
OpenShift Container Platform 4.19

OVN-Kubernetes network plugin

In-depth configuration and troubleshooting for the OVN-Kubernetes network plugin
in OpenShift Container Platform

Last Updated: 2026-01-15

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

In-depth configuration and troubleshooting for the OVN-Kubernetes network plugin in OpenShift
Container Platform

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on the architecture, configuration, and troubleshooting of the
OVN-Kubernetes network plugin in OpenShift Container Platform.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN
1.1. OVN-KUBERNETES PURPOSE
1.2. OVN-KUBERNETES IPV6 AND DUAL-STACK LIMITATIONS
1.3. SESSION AFFINITY

1.3.1. Stickiness timeout for session affinity

CHAPTER 2. OVN-KUBERNETES ARCHITECTURE
2.1. INTRODUCTION TO OVN-KUBERNETES ARCHITECTURE
2.2. LISTING ALL RESOURCES IN THE OVN-KUBERNETES PROJECT
2.3. LISTING THE OVN-KUBERNETES NORTHBOUND DATABASE CONTENTS
2.4. COMMAND-LINE ARGUMENTS FOR OVN-NBCTL TO EXAMINE NORTHBOUND DATABASE CONTENTS

2.5. LISTING THE OVN-KUBERNETES SOUTHBOUND DATABASE CONTENTS
2.6. COMMAND-LINE ARGUMENTS FOR OVN-SBCTL TO EXAMINE SOUTHBOUND DATABASE CONTENTS

2.7. OVN-KUBERNETES LOGICAL ARCHITECTURE
2.7.1. Installing network-tools on local host
2.7.2. Running network-tools

2.8. ADDITIONAL RESOURCES

CHAPTER 3. TROUBLESHOOTING OVN-KUBERNETES
3.1. MONITORING OVN-KUBERNETES HEALTH BY USING READINESS PROBES
3.2. VIEWING OVN-KUBERNETES ALERTS IN THE CONSOLE
3.3. VIEWING OVN-KUBERNETES ALERTS IN THE CLI
3.4. VIEWING THE OVN-KUBERNETES LOGS USING THE CLI
3.5. VIEWING THE OVN-KUBERNETES LOGS USING THE WEB CONSOLE

3.5.1. Changing the OVN-Kubernetes log levels
3.6. CHECKING THE OVN-KUBERNETES POD NETWORK CONNECTIVITY
3.7. CHECKING OVN-KUBERNETES NETWORK TRAFFIC WITH OVS SAMPLING USING THE CLI

3.7.1. OVN-Kubernetes network traffic with OVS sampling flags
3.8. ADDITIONAL RESOURCES

CHAPTER 4. TRACING OPENFLOW WITH OVNKUBE-TRACE
4.1. INSTALLING THE OVNKUBE-TRACE ON LOCAL HOST
4.2. RUNNING OVNKUBE-TRACE
4.3. ADDITIONAL RESOURCES

CHAPTER 5. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING
5.1. CONVERTING TO A DUAL-STACK CLUSTER NETWORK
5.2. CONVERTING TO A SINGLE-STACK CLUSTER NETWORK

CHAPTER 6. CONFIGURING OVN-KUBERNETES INTERNAL IP ADDRESS SUBNETS
6.1. CONFIGURING THE OVN-KUBERNETES JOIN SUBNET
6.2. CONFIGURING THE OVN-KUBERNETES MASQUERADE SUBNET AS A POST-INSTALLATION
OPERATION
6.3. CONFIGURING THE OVN-KUBERNETES TRANSIT SUBNET

CHAPTER 7. CONFIGURING A GATEWAY
7.1. CONFIGURING EGRESS ROUTING POLICIES

CHAPTER 8. CONFIGURE AN EXTERNAL GATEWAY ON THE DEFAULT NETWORK
8.1. PREREQUISITES
8.2. HOW OPENSHIFT CONTAINER PLATFORM DETERMINES THE EXTERNAL GATEWAY IP ADDRESS
8.3. ADMINPOLICYBASEDEXTERNALROUTE OBJECT CONFIGURATION

4
5
6
7
7

8
8

10
12

16
17

19
20
22
22
25

27
27
28
28
29
30
30
33
34
37
38

39
39
40
46

47
47
51

52
52

53
54

56
56

58
58
58
58

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

8.3.1. Example secondary external gateway configurations
8.4. CONFIGURE A SECONDARY EXTERNAL GATEWAY
8.5. ADDITIONAL RESOURCES

CHAPTER 9. CONFIGURING AN EGRESS IP ADDRESS
9.1. EGRESS IP ADDRESS ARCHITECTURAL DESIGN AND IMPLEMENTATION

9.1.1. Platform support
9.1.2. Public cloud platform considerations

9.1.2.1. Amazon Web Services (AWS) IP address capacity limits
9.1.2.2. Google Cloud IP address capacity limits
9.1.2.3. Microsoft Azure IP address capacity limits

9.1.3. Architectural diagram of an egress IP address configuration
9.1.4. Considerations for using an egress IP address on additional network interfaces

9.2. EGRESSIP OBJECT
9.3. ASSIGNMENT OF EGRESS IPS TO A NAMESPACE, NODES, AND PODS
9.4. ASSIGNING AN EGRESS IP ADDRESS TO A NAMESPACE
9.5. UNDERSTANDING EGRESSIP FAILOVER CONTROL

9.5.1. Configuring the EgressIP failover time limit
9.5.2. EgressIP failover settings

9.6. LABELING A NODE TO HOST EGRESS IP ADDRESSES
9.7. CONFIGURING DUAL-STACK NETWORKING FOR AN EGRESSIP OBJECT
9.8. ADDITIONAL RESOURCES

CHAPTER 10. CONFIGURING AN EGRESS SERVICE
10.1. EGRESS SERVICE CUSTOM RESOURCE
10.2. DEPLOYING AN EGRESS SERVICE

CHAPTER 11. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
11.1. ABOUT AN EGRESS ROUTER POD

11.1.1. Egress router modes
11.1.2. Egress router pod implementation
11.1.3. Deployment considerations
11.1.4. Failover configuration

11.2. ADDITIONAL RESOURCES

CHAPTER 12. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE
12.1. EGRESS ROUTER CUSTOM RESOURCE
12.2. DEPLOYING AN EGRESS ROUTER IN REDIRECT MODE

CHAPTER 13. ENABLING MULTICAST FOR A PROJECT
13.1. ABOUT MULTICAST
13.2. ENABLING MULTICAST BETWEEN PODS

CHAPTER 14. DISABLING MULTICAST FOR A PROJECT
14.1. DISABLING MULTICAST BETWEEN PODS

CHAPTER 15. TRACKING NETWORK FLOWS
15.1. NETWORK OBJECT CONFIGURATION FOR TRACKING NETWORK FLOWS
15.2. ADDING DESTINATIONS FOR NETWORK FLOWS COLLECTORS
15.3. DELETING ALL DESTINATIONS FOR NETWORK FLOWS COLLECTORS
15.4. ADDITIONAL RESOURCES

CHAPTER 16. CONFIGURING HYBRID NETWORKING
16.1. CONFIGURING HYBRID NETWORKING WITH OVN-KUBERNETES
16.2. ADDITIONAL RESOURCES

60
62
62

64
64
64
65
67
67
67
67
68
70
72
72
74
74
75
76
76
78

79
79
80

84
84
84
84
85
85
86

87
87
88

92
92
92

95
95

96
96
97
99
99

100
100
101

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

2

Table of Contents

3

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK
PLUGIN

The OpenShift Container Platform cluster uses a virtualized network for pod and service networks.

Part of Red Hat OpenShift Networking, the OVN-Kubernetes network plugin is the default network
provider for OpenShift Container Platform. OVN-Kubernetes is based on Open Virtual Network (OVN)
and provides an overlay-based networking implementation. A cluster that uses the OVN-Kubernetes
plugin also runs Open vSwitch (OVS) on each node. OVN configures OVS on each node to implement
the declared network configuration.

NOTE

OVN-Kubernetes is the default networking solution for OpenShift Container Platform
and single-node OpenShift deployments.

OVN-Kubernetes, which arose from the OVS project, uses many of the same constructs, such as open
flow rules, to decide how packets travel through the network. For more information, see the Open
Virtual Network website.

OVN-Kubernetes is a series of daemons for OVS that transform virtual network configurations into
OpenFlow rules. OpenFlow is a protocol for communicating with network switches and routers,
providing a means for remotely controlling the flow of network traffic on a network device. This means
that network administrators can configure, manage, and watch the flow of network traffic.

OVN-Kubernetes provides more of the advanced functionality not available with OpenFlow. OVN
supports distributed virtual routing, distributed logical switches, access control, Dynamic Host
Configuration Protocol (DHCP), and DNS. OVN implements distributed virtual routing within logic flows
that equate to open flows. For example, if you have a pod that sends out a DHCP request to the DHCP
server on the network, a logic flow rule in the request helps the OVN-Kubernetes handle the packet. This
means that the server can respond with gateway, DNS server, IP address, and other information.

OVN-Kubernetes runs a daemon on each node. There are daemon sets for the databases and for the
OVN controller that run on every node. The OVN controller programs the Open vSwitch daemon on the
nodes to support the following network provider features:

Egress IPs

Firewalls

Hardware offloading

Hybrid networking

Internet Protocol Security (IPsec) encryption

IPv6

Multicast.

Network policy and network policy logs

Routers

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

4

https://www.ovn.org/en/

1.1. OVN-KUBERNETES PURPOSE

The OVN-Kubernetes network plugin is an open-source, fully-featured Kubernetes CNI plugin that uses
Open Virtual Network (OVN) to manage network traffic flows. OVN is a community developed, vendor-
agnostic network virtualization solution. The OVN-Kubernetes network plugin uses the following
technologies:

OVN to manage network traffic flows.

Kubernetes network policy support and logs, including ingress and egress rules.

The Generic Network Virtualization Encapsulation (Geneve) protocol, rather than Virtual
Extensible LAN (VXLAN), to create an overlay network between nodes.

The OVN-Kubernetes network plugin supports the following capabilities:

Hybrid clusters that can run both Linux and Microsoft Windows workloads. This environment is
known as hybrid networking.

Offloading of network data processing from the host central processing unit (CPU) to
compatible network cards and data processing units (DPUs). This is known as hardware
offloading.

IPv4-primary dual-stack networking on bare-metal, VMware vSphere, IBM Power®, IBM Z®, and
Red Hat OpenStack Platform (RHOSP) platforms.

IPv6 single-stack networking on RHOSP and bare metal platforms.

IPv6-primary dual-stack networking for a cluster running on a bare-metal, a VMware vSphere, or
an RHOSP platform.

Egress firewall devices and egress IP addresses.

Egress router devices that operate in redirect mode.

IPsec encryption of intracluster communications.

Red Hat does not support the following postinstallation configurations that use the OVN-Kubernetes
network plugin:

Configuring the primary network interface, including using the NMState Operator to configure
bonding for the interface.

Configuring a sub-interface or additional network interface on a network device that uses the
Open vSwitch (OVS) or an OVN-Kubernetes br-ex bridge network.

Creating additional virtual local area networks (VLANs) on the primary network interface.

Using the primary network interface, such as eth0 or bond0, that you created for a node during
cluster installation to create additional secondary networks.

Red Hat does support the following postinstallation configurations that use the OVN-Kubernetes
network plugin:

Creating additional VLANs from the base physical interface, such as eth0.100, where you
configured the primary network interface as a VLAN for a node during cluster installation. This
works because the Open vSwitch (OVS) bridge attaches to the initial VLAN sub-interface, such

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

5

as eth0.100, leaving the base physical interface available for new configurations.

Creating an additional OVN secondary network with a localnet topology network requires that
you define the secondary network in a NodeNetworkConfigurationPolicy (NNCP) object.
After you create the network, pods or virtual machines (VMs) can then attach to the network.
These secondary networks give a dedicated connection to the physical network, which might or
might not use VLAN tagging. You cannot access these networks from the host network of a
node where the host does not have the required setup, such as the required network settings.

1.2. OVN-KUBERNETES IPV6 AND DUAL-STACK LIMITATIONS

The OVN-Kubernetes network plugin has the following limitations:

For clusters configured for dual-stack networking, both IPv4 and IPv6 traffic must use the
same network interface as the default gateway.
If this requirement is not met, pods on the host in the ovnkube-node daemon set enter the
CrashLoopBackOff state.

If you display a pod with a command such as oc get pod -n openshift-ovn-kubernetes -l
app=ovnkube-node -o yaml, the status field has more than one message about the default
gateway, as shown in the following output:

The only resolution is to reconfigure the host networking so that both IP families use the same
network interface for the default gateway.

For clusters configured for dual-stack networking, both the IPv4 and IPv6 routing tables must
contain the default gateway.
If this requirement is not met, pods on the host in the ovnkube-node daemon set enter the
CrashLoopBackOff state.

If you display a pod with a command such as oc get pod -n openshift-ovn-kubernetes -l
app=ovnkube-node -o yaml, the status field has more than one message about the default
gateway, as shown in the following output:

The only resolution is to reconfigure the host networking so that both IP families contain the
default gateway.

If you set the ipv6.disable parameter to 1 in the kernelArgument section of the
MachineConfig custom resource (CR) for your cluster, OVN-Kubernetes pods enter a
CrashLoopBackOff state. Additionally, updating your cluster to a later version of OpenShift
Container Platform fails because the Network Operator remains on a Degraded state. Red Hat
does not support disabling IPv6 adddresses for your cluster so do not set the ipv6.disable
parameter to 1.

I1006 16:09:50.985852 60651 helper_linux.go:73] Found default gateway interface br-ex
192.168.127.1
I1006 16:09:50.985923 60651 helper_linux.go:73] Found default gateway interface ens4
fe80::5054:ff:febe:bcd4
F1006 16:09:50.985939 60651 ovnkube.go:130] multiple gateway interfaces detected: br-ex
ens4

I0512 19:07:17.589083 108432 helper_linux.go:74] Found default gateway interface br-ex
192.168.123.1
F0512 19:07:17.589141 108432 ovnkube.go:133] failed to get default gateway interface

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

6

1.3. SESSION AFFINITY

Session affinity is a feature that applies to Kubernetes Service objects. You can use session affinity if
you want to ensure that each time you connect to a <service_VIP>:<Port>, the traffic is always load
balanced to the same back end. For more information, including how to set session affinity based on a
client’s IP address, see Session affinity.

1.3.1. Stickiness timeout for session affinity

The OVN-Kubernetes network plugin for OpenShift Container Platform calculates the stickiness
timeout for a session from a client based on the last packet. For example, if you run a curl command 10
times, the sticky session timer starts from the tenth packet not the first. As a result, if the client is
continuously contacting the service, then the session never times out. The timeout starts when the
service has not received a packet for the amount of time set by the timeoutSeconds parameter.

Additional resources

Configuring an egress firewall for a project

About network policy

Logging network policy events

Enabling multicast for a project

Configuring IPsec encryption

link:https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-
single/operator_apis/#network-operator-openshift-io-v1[Network [operator.openshift.io/v1\]

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

7

https://kubernetes.io/docs/reference/networking/virtual-ips/#session-affinity
https://kubernetes.io/docs/reference/networking/virtual-ips/#session-stickiness-timeout
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/network_security/#configuring-egress-firewall-ovn
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/network_security/#about-network-policy
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/network_security/#logging-network-security
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/network_security/#configuring-ipsec-ovn

CHAPTER 2. OVN-KUBERNETES ARCHITECTURE

2.1. INTRODUCTION TO OVN-KUBERNETES ARCHITECTURE

The following diagram shows the OVN-Kubernetes architecture.

Figure 2.1. OVK-Kubernetes architecture

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

8

Figure 2.1. OVK-Kubernetes architecture

The key components are:

CHAPTER 2. OVN-KUBERNETES ARCHITECTURE

9

Cloud Management System (CMS) - A platform specific client for OVN that provides a CMS
specific plugin for OVN integration. The plugin translates the cloud management system’s
concept of the logical network configuration, stored in the CMS configuration database in a
CMS-specific format, into an intermediate representation understood by OVN.

OVN Northbound database (nbdb) container - Stores the logical network configuration
passed by the CMS plugin.

OVN Southbound database (sbdb) container - Stores the physical and logical network
configuration state for Open vSwitch (OVS) system on each node, including tables that bind
them.

OVN north daemon (ovn-northd) - This is the intermediary client between nbdb container and
sbdb container. It translates the logical network configuration in terms of conventional network
concepts, taken from the nbdb container, into logical data path flows in the sbdb container.
The container name for ovn-northd daemon is northd and it runs in the ovnkube-node pods.

ovn-controller - This is the OVN agent that interacts with OVS and hypervisors, for any
information or update that is needed for sbdb container. The ovn-controller reads logical flows
from the sbdb container, translates them into OpenFlow flows and sends them to the node’s
OVS daemon. The container name is ovn-controller and it runs in the ovnkube-node pods.

The OVN northd, northbound database, and southbound database run on each node in the cluster and
mostly contain and process information that is local to that node.

The OVN northbound database has the logical network configuration passed down to it by the cloud
management system (CMS). The OVN northbound database contains the current desired state of the
network, presented as a collection of logical ports, logical switches, logical routers, and more. The ovn-
northd (northd container) connects to the OVN northbound database and the OVN southbound
database. It translates the logical network configuration in terms of conventional network concepts,
taken from the OVN northbound database, into logical data path flows in the OVN southbound
database.

The OVN southbound database has physical and logical representations of the network and binding
tables that link them together. It contains the chassis information of the node and other constructs like
remote transit switch ports that are required to connect to the other nodes in the cluster. The OVN
southbound database also contains all the logic flows. The logic flows are shared with the ovn-
controller process that runs on each node and the ovn-controller turns those into OpenFlow rules to
program Open vSwitch(OVS).

The Kubernetes control plane nodes contain two ovnkube-control-plane pods on separate nodes,
which perform the central IP address management (IPAM) allocation for each node in the cluster. At
any given time, a single ovnkube-control-plane pod is the leader.

2.2. LISTING ALL RESOURCES IN THE OVN-KUBERNETES PROJECT

Finding the resources and containers that run in the OVN-Kubernetes project is important to help you
understand the OVN-Kubernetes networking implementation.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift CLI (oc) installed.

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

10

Procedure

1. Run the following command to get all resources, endpoints, and ConfigMaps in the OVN-
Kubernetes project:

Example output

There is one ovnkube-node pod for each node in the cluster. The ovnkube-config config map
has the OpenShift Container Platform OVN-Kubernetes configurations.

$ oc get all,ep,cm -n openshift-ovn-kubernetes

Warning: apps.openshift.io/v1 DeploymentConfig is deprecated in v4.14+, unavailable in
v4.10000+
NAME READY STATUS RESTARTS AGE
pod/ovnkube-control-plane-65c6f55656-6d55h 2/2 Running 0 114m
pod/ovnkube-control-plane-65c6f55656-fd7vw 2/2 Running 2 (104m ago) 114m
pod/ovnkube-node-bcvts 8/8 Running 0 113m
pod/ovnkube-node-drgvv 8/8 Running 0 113m
pod/ovnkube-node-f2pxt 8/8 Running 0 113m
pod/ovnkube-node-frqsb 8/8 Running 0 105m
pod/ovnkube-node-lbxkk 8/8 Running 0 105m
pod/ovnkube-node-tt7bx 8/8 Running 1 (102m ago) 105m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/ovn-kubernetes-control-plane ClusterIP None <none> 9108/TCP
114m
service/ovn-kubernetes-node ClusterIP None <none> 9103/TCP,9105/TCP
114m

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE
daemonset.apps/ovnkube-node 6 6 6 6 6
beta.kubernetes.io/os=linux 114m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/ovnkube-control-plane 3/3 3 3 114m

NAME DESIRED CURRENT READY AGE
replicaset.apps/ovnkube-control-plane-65c6f55656 3 3 3 114m

NAME ENDPOINTS AGE
endpoints/ovn-kubernetes-control-plane 10.0.0.3:9108,10.0.0.4:9108,10.0.0.5:9108
114m
endpoints/ovn-kubernetes-node 10.0.0.3:9105,10.0.0.4:9105,10.0.0.5:9105 + 9 more...
114m

NAME DATA AGE
configmap/control-plane-status 1 113m
configmap/kube-root-ca.crt 1 114m
configmap/openshift-service-ca.crt 1 114m
configmap/ovn-ca 1 114m
configmap/ovnkube-config 1 114m
configmap/signer-ca 1 114m

CHAPTER 2. OVN-KUBERNETES ARCHITECTURE

11

2. List all of the containers in the ovnkube-node pods by running the following command:

Expected output

The ovnkube-node pod is made up of several containers. It is responsible for hosting the
northbound database (nbdb container), the southbound database (sbdb container), the north
daemon (northd container), ovn-controller and the ovnkube-controller container. The
ovnkube-controller container watches for API objects like pods, egress IPs, namespaces,
services, endpoints, egress firewall, and network policies. It is also responsible for allocating pod
IP from the available subnet pool for that node.

3. List all the containers in the ovnkube-control-plane pods by running the following command:

Expected output

The ovnkube-control-plane pod has a container (ovnkube-cluster-manager) that resides on
each OpenShift Container Platform node. The ovnkube-cluster-manager container allocates
pod subnet, transit switch subnet IP and join switch subnet IP to each node in the cluster. The
kube-rbac-proxy container monitors metrics for the ovnkube-cluster-manager container.

2.3. LISTING THE OVN-KUBERNETES NORTHBOUND DATABASE
CONTENTS

Each node is controlled by the ovnkube-controller container running in the ovnkube-node pod on that
node. To understand the OVN logical networking entities you need to examine the northbound database
that is running as a container inside the ovnkube-node pod on that node to see what objects are in the
node you wish to see.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift CLI (oc) installed.

PROCEDURE

To run ovn nbctl or sbctl commands in a cluster you must open a remote shell into the
nbdb or sbdb containers on the relevant node

1. List pods by running the following command:

$ oc get pods ovnkube-node-bcvts -o jsonpath='{.spec.containers[*].name}' -n openshift-ovn-
kubernetes

ovn-controller ovn-acl-logging kube-rbac-proxy-node kube-rbac-proxy-ovn-metrics northd
nbdb sbdb ovnkube-controller

$ oc get pods ovnkube-control-plane-65c6f55656-6d55h -o
jsonpath='{.spec.containers[*].name}' -n openshift-ovn-kubernetes

kube-rbac-proxy ovnkube-cluster-manager

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

12

Example output

2. Optional: To list the pods with node information, run the following command:

Example output

3. Navigate into a pod to look at the northbound database by running the following command:

4. Run the following command to show all the objects in the northbound database:

The output is too long to list here. The list includes the NAT rules, logical switches, load
balancers and so on.

You can narrow down and focus on specific components by using some of the following optional
commands:

$ oc get po -n openshift-ovn-kubernetes

NAME READY STATUS RESTARTS AGE
ovnkube-control-plane-8444dff7f9-4lh9k 2/2 Running 0 27m
ovnkube-control-plane-8444dff7f9-5rjh9 2/2 Running 0 27m
ovnkube-node-55xs2 8/8 Running 0 26m
ovnkube-node-7r84r 8/8 Running 0 16m
ovnkube-node-bqq8p 8/8 Running 0 17m
ovnkube-node-mkj4f 8/8 Running 0 26m
ovnkube-node-mlr8k 8/8 Running 0 26m
ovnkube-node-wqn2m 8/8 Running 0 16m

$ oc get pods -n openshift-ovn-kubernetes -owide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
ovnkube-control-plane-8444dff7f9-4lh9k 2/2 Running 0 27m 10.0.0.3 ci-ln-
t487nnb-72292-mdcnq-master-1 <none> <none>
ovnkube-control-plane-8444dff7f9-5rjh9 2/2 Running 0 27m 10.0.0.4 ci-ln-
t487nnb-72292-mdcnq-master-2 <none> <none>
ovnkube-node-55xs2 8/8 Running 0 26m 10.0.0.4 ci-ln-t487nnb-
72292-mdcnq-master-2 <none> <none>
ovnkube-node-7r84r 8/8 Running 0 17m 10.0.128.3 ci-ln-t487nnb-
72292-mdcnq-worker-b-wbz7z <none> <none>
ovnkube-node-bqq8p 8/8 Running 0 17m 10.0.128.2 ci-ln-
t487nnb-72292-mdcnq-worker-a-lh7ms <none> <none>
ovnkube-node-mkj4f 8/8 Running 0 27m 10.0.0.5 ci-ln-t487nnb-
72292-mdcnq-master-0 <none> <none>
ovnkube-node-mlr8k 8/8 Running 0 27m 10.0.0.3 ci-ln-t487nnb-
72292-mdcnq-master-1 <none> <none>
ovnkube-node-wqn2m 8/8 Running 0 17m 10.0.128.4 ci-ln-
t487nnb-72292-mdcnq-worker-c-przlm <none> <none>

$ oc rsh -c nbdb -n openshift-ovn-kubernetes ovnkube-node-55xs2

$ ovn-nbctl show

CHAPTER 2. OVN-KUBERNETES ARCHITECTURE

13

a. Run the following command to show the list of logical routers:

Example output

NOTE

From this output you can see there is router on each node plus an
ovn_cluster_router.

b. Run the following command to show the list of logical switches:

Example output

NOTE

From this output you can see there is an ext switch for each node plus
switches with the node name itself and a join switch.

c. Run the following command to show the list of load balancers:

Example output

$ oc exec -n openshift-ovn-kubernetes -it ovnkube-node-55xs2 \
-c northd -- ovn-nbctl lr-list

45339f4f-7d0b-41d0-b5f9-9fca9ce40ce6 (GR_ci-ln-t487nnb-72292-mdcnq-master-2)
96a0a0f0-e7ed-4fec-8393-3195563de1b8 (ovn_cluster_router)

$ oc exec -n openshift-ovn-kubernetes -it ovnkube-node-55xs2 \
-c nbdb -- ovn-nbctl ls-list

bdd7dc3d-d848-4a74-b293-cc15128ea614 (ci-ln-t487nnb-72292-mdcnq-master-2)
b349292d-ee03-4914-935f-1940b6cb91e5 (ext_ci-ln-t487nnb-72292-mdcnq-master-2)
0aac0754-ea32-4e33-b086-35eeabf0a140 (join)
992509d7-2c3f-4432-88db-c179e43592e5 (transit_switch)

$ oc exec -n openshift-ovn-kubernetes -it ovnkube-node-55xs2 \
-c nbdb -- ovn-nbctl lb-list

UUID LB PROTO VIP IPs
7c84c673-ed2a-4436-9a1f-9bc5dd181eea Service_default/ tcp 172.30.0.1:443
10.0.0.3:6443,169.254.169.2:6443,10.0.0.5:6443
4d663fd9-ddc8-4271-b333-4c0e279e20bb Service_default/ tcp 172.30.0.1:443
10.0.0.3:6443,10.0.0.4:6443,10.0.0.5:6443
292eb07f-b82f-4962-868a-4f541d250bca Service_openshif tcp
172.30.105.247:443 10.129.0.12:8443
034b5a7f-bb6a-45e9-8e6d-573a82dc5ee3 Service_openshif tcp
172.30.192.38:443 10.0.0.3:10259,10.0.0.4:10259,10.0.0.5:10259
a68bb53e-be84-48df-bd38-bdd82fcd4026 Service_openshif tcp
172.30.161.125:8443 10.129.0.32:8443
6cc21b3d-2c54-4c94-8ff5-d8e017269c2e Service_openshif tcp 172.30.3.144:443
10.129.0.22:8443

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

14

37996ffd-7268-4862-a27f-61cd62e09c32 Service_openshif tcp
172.30.181.107:443 10.129.0.18:8443
81d4da3c-f811-411f-ae0c-bc6713d0861d Service_openshif tcp
172.30.228.23:443 10.129.0.29:8443
ac5a4f3b-b6ba-4ceb-82d0-d84f2c41306e Service_openshif tcp
172.30.14.240:9443 10.129.0.36:9443
c88979fb-1ef5-414b-90ac-43b579351ac9 Service_openshif tcp
172.30.231.192:9001
10.128.0.5:9001,10.128.2.5:9001,10.129.0.5:9001,10.129.2.4:9001,10.130.0.3:9001,10.13
1.0.3:9001
fcb0a3fb-4a77-4230-a84a-be45dce757e8 Service_openshif tcp
172.30.189.92:443 10.130.0.17:8440
67ef3e7b-ceb9-4bf0-8d96-b43bde4c9151 Service_openshif tcp
172.30.67.218:443 10.129.0.9:8443
d0032fba-7d5e-424a-af25-4ab9b5d46e81 Service_openshif tcp
172.30.102.137:2379 10.0.0.3:2379,10.0.0.4:2379,10.0.0.5:2379
 tcp 172.30.102.137:9979
10.0.0.3:9979,10.0.0.4:9979,10.0.0.5:9979
7361c537-3eec-4e6c-bc0c-0522d182abd4 Service_openshif tcp
172.30.198.215:9001
10.0.0.3:9001,10.0.0.4:9001,10.0.0.5:9001,10.0.128.2:9001,10.0.128.3:9001,10.0.128.4:9
001
0296c437-1259-410b-a6fd-81c310ad0af5 Service_openshif tcp
172.30.198.215:9001
10.0.0.3:9001,169.254.169.2:9001,10.0.0.5:9001,10.0.128.2:9001,10.0.128.3:9001,10.0.1
28.4:9001
5d5679f5-45b8-479d-9f7c-08b123c688b8 Service_openshif tcp
172.30.38.253:17698 10.128.0.52:17698,10.129.0.84:17698,10.130.0.60:17698
2adcbab4-d1c9-447d-9573-b5dc9f2efbfa Service_openshif tcp
172.30.148.52:443 10.0.0.4:9202,10.0.0.5:9202
 tcp 172.30.148.52:444
10.0.0.4:9203,10.0.0.5:9203
 tcp 172.30.148.52:445
10.0.0.4:9204,10.0.0.5:9204
 tcp 172.30.148.52:446
10.0.0.4:9205,10.0.0.5:9205
2a33a6d7-af1b-4892-87cc-326a380b809b Service_openshif tcp
172.30.67.219:9091 10.129.2.16:9091,10.131.0.16:9091
 tcp 172.30.67.219:9092
10.129.2.16:9092,10.131.0.16:9092
 tcp 172.30.67.219:9093
10.129.2.16:9093,10.131.0.16:9093
 tcp 172.30.67.219:9094
10.129.2.16:9094,10.131.0.16:9094
f56f59d7-231a-4974-99b3-792e2741ec8d Service_openshif tcp
172.30.89.212:443 10.128.0.41:8443,10.129.0.68:8443,10.130.0.44:8443
08c2c6d7-d217-4b96-b5d8-c80c4e258116 Service_openshif tcp
172.30.102.137:2379 10.0.0.3:2379,169.254.169.2:2379,10.0.0.5:2379
 tcp 172.30.102.137:9979
10.0.0.3:9979,169.254.169.2:9979,10.0.0.5:9979
60a69c56-fc6a-4de6-bd88-3f2af5ba5665 Service_openshif tcp
172.30.10.193:443 10.129.0.25:8443
ab1ef694-0826-4671-a22c-565fc2d282ec Service_openshif tcp
172.30.196.123:443 10.128.0.33:8443,10.129.0.64:8443,10.130.0.37:8443
b1fb34d3-0944-4770-9ee3-2683e7a630e2 Service_openshif tcp
172.30.158.93:8443 10.129.0.13:8443

CHAPTER 2. OVN-KUBERNETES ARCHITECTURE

15

NOTE

From this truncated output you can see there are many OVN-Kubernetes
load balancers. Load balancers in OVN-Kubernetes are representations of
services.

5. Run the following command to display the options available with the command ovn-nbctl:

2.4. COMMAND-LINE ARGUMENTS FOR OVN-NBCTL TO EXAMINE
NORTHBOUND DATABASE CONTENTS

The following table describes the command-line arguments that can be used with ovn-nbctl to examine
the contents of the northbound database.

NOTE

Open a remote shell in the pod you want to view the contents of and then run the ovn-
nbctl commands.

Table 2.1. Command-line arguments to examine northbound database contents

Argument Description

ovn-nbctl show An overview of the northbound database contents as seen from a specific
node.

ovn-nbctl show
<switch_or_router>

Show the details associated with the specified switch or router.

ovn-nbctl lr-list Show the logical routers.

ovn-nbctl lrp-list <router> Using the router information from ovn-nbctl lr-list to show the router
ports.

ovn-nbctl lr-nat-list
<router>

Show network address translation details for the specified router.

ovn-nbctl ls-list Show the logical switches

95811c11-56e2-4877-be1e-c78ccb3a82a9 Service_openshif tcp
172.30.46.85:9001 10.130.0.16:9001
4baba1d1-b873-4535-884c-3f6fc07a50fd Service_openshif tcp 172.30.28.87:443
10.129.0.26:8443
6c2e1c90-f0ca-484e-8a8e-40e71442110a Service_openshif udp 172.30.0.10:53
10.128.0.13:5353,10.128.2.6:5353,10.129.0.39:5353,10.129.2.6:5353,10.130.0.11:5353,1
0.131.0.9:5353

$ oc exec -n openshift-ovn-kubernetes -it ovnkube-node-55xs2 \
-c nbdb ovn-nbctl --help

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

16

ovn-nbctl lsp-list
<switch>

Using the switch information from ovn-nbctl ls-list to show the switch
port.

ovn-nbctl lsp-get-type
<port>

Get the type for the logical port.

ovn-nbctl lb-list Show the load balancers.

Argument Description

2.5. LISTING THE OVN-KUBERNETES SOUTHBOUND DATABASE
CONTENTS

Each node is controlled by the ovnkube-controller container running in the ovnkube-node pod on that
node. To understand the OVN logical networking entities you need to examine the northbound database
that is running as a container inside the ovnkube-node pod on that node to see what objects are in the
node you wish to see.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift CLI (oc) installed.

PROCEDURE

To run ovn nbctl or sbctl commands in a cluster you must open a remote shell into the
nbdb or sbdb containers on the relevant node

1. List the pods by running the following command:

Example output

2. Optional: To list the pods with node information, run the following command:

$ oc get po -n openshift-ovn-kubernetes

NAME READY STATUS RESTARTS AGE
ovnkube-control-plane-8444dff7f9-4lh9k 2/2 Running 0 27m
ovnkube-control-plane-8444dff7f9-5rjh9 2/2 Running 0 27m
ovnkube-node-55xs2 8/8 Running 0 26m
ovnkube-node-7r84r 8/8 Running 0 16m
ovnkube-node-bqq8p 8/8 Running 0 17m
ovnkube-node-mkj4f 8/8 Running 0 26m
ovnkube-node-mlr8k 8/8 Running 0 26m
ovnkube-node-wqn2m 8/8 Running 0 16m

$ oc get pods -n openshift-ovn-kubernetes -owide

CHAPTER 2. OVN-KUBERNETES ARCHITECTURE

17

Example output

3. Navigate into a pod to look at the southbound database:

4. Run the following command to show all the objects in the southbound database:

Example output

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
ovnkube-control-plane-8444dff7f9-4lh9k 2/2 Running 0 27m 10.0.0.3 ci-ln-
t487nnb-72292-mdcnq-master-1 <none> <none>
ovnkube-control-plane-8444dff7f9-5rjh9 2/2 Running 0 27m 10.0.0.4 ci-ln-
t487nnb-72292-mdcnq-master-2 <none> <none>
ovnkube-node-55xs2 8/8 Running 0 26m 10.0.0.4 ci-ln-t487nnb-
72292-mdcnq-master-2 <none> <none>
ovnkube-node-7r84r 8/8 Running 0 17m 10.0.128.3 ci-ln-t487nnb-
72292-mdcnq-worker-b-wbz7z <none> <none>
ovnkube-node-bqq8p 8/8 Running 0 17m 10.0.128.2 ci-ln-
t487nnb-72292-mdcnq-worker-a-lh7ms <none> <none>
ovnkube-node-mkj4f 8/8 Running 0 27m 10.0.0.5 ci-ln-t487nnb-
72292-mdcnq-master-0 <none> <none>
ovnkube-node-mlr8k 8/8 Running 0 27m 10.0.0.3 ci-ln-t487nnb-
72292-mdcnq-master-1 <none> <none>
ovnkube-node-wqn2m 8/8 Running 0 17m 10.0.128.4 ci-ln-
t487nnb-72292-mdcnq-worker-c-przlm <none> <none>

$ oc rsh -c sbdb -n openshift-ovn-kubernetes ovnkube-node-55xs2

$ ovn-sbctl show

Chassis "5db31703-35e9-413b-8cdf-69e7eecb41f7"
 hostname: ci-ln-9gp362t-72292-v2p94-worker-a-8bmwz
 Encap geneve
 ip: "10.0.128.4"
 options: {csum="true"}
 Port_Binding tstor-ci-ln-9gp362t-72292-v2p94-worker-a-8bmwz
Chassis "070debed-99b7-4bce-b17d-17e720b7f8bc"
 hostname: ci-ln-9gp362t-72292-v2p94-worker-b-svmp6
 Encap geneve
 ip: "10.0.128.2"
 options: {csum="true"}
 Port_Binding k8s-ci-ln-9gp362t-72292-v2p94-worker-b-svmp6
 Port_Binding rtoe-GR_ci-ln-9gp362t-72292-v2p94-worker-b-svmp6
 Port_Binding openshift-monitoring_alertmanager-main-1
 Port_Binding rtoj-GR_ci-ln-9gp362t-72292-v2p94-worker-b-svmp6
 Port_Binding etor-GR_ci-ln-9gp362t-72292-v2p94-worker-b-svmp6
 Port_Binding cr-rtos-ci-ln-9gp362t-72292-v2p94-worker-b-svmp6
 Port_Binding openshift-e2e-loki_loki-promtail-qcrcz
 Port_Binding jtor-GR_ci-ln-9gp362t-72292-v2p94-worker-b-svmp6
 Port_Binding openshift-multus_network-metrics-daemon-mkd4t
 Port_Binding openshift-ingress-canary_ingress-canary-xtvj4
 Port_Binding openshift-ingress_router-default-6c76cbc498-pvlqk
 Port_Binding openshift-dns_dns-default-zz582

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

18

This detailed output shows the chassis and the ports that are attached to the chassis which in
this case are all of the router ports and anything that runs like host networking. Any pods
communicate out to the wider network using source network address translation (SNAT). Their
IP address is translated into the IP address of the node that the pod is running on and then sent
out into the network.

In addition to the chassis information the southbound database has all the logic flows and those
logic flows are then sent to the ovn-controller running on each of the nodes. The ovn-
controller translates the logic flows into open flow rules and ultimately programs OpenvSwitch
so that your pods can then follow open flow rules and make it out of the network.

5. Run the following command to display the options available with the command ovn-sbctl:

2.6. COMMAND-LINE ARGUMENTS FOR OVN-SBCTL TO EXAMINE
SOUTHBOUND DATABASE CONTENTS

The following table describes the command-line arguments that can be used with ovn-sbctl to examine
the contents of the southbound database.

NOTE

 Port_Binding openshift-monitoring_thanos-querier-57585899f5-lbf4f
 Port_Binding openshift-network-diagnostics_network-check-target-tn228
 Port_Binding openshift-monitoring_prometheus-k8s-0
 Port_Binding openshift-image-registry_image-registry-68899bd877-xqxjj
Chassis "179ba069-0af1-401c-b044-e5ba90f60fea"
 hostname: ci-ln-9gp362t-72292-v2p94-master-0
 Encap geneve
 ip: "10.0.0.5"
 options: {csum="true"}
 Port_Binding tstor-ci-ln-9gp362t-72292-v2p94-master-0
Chassis "68c954f2-5a76-47be-9e84-1cb13bd9dab9"
 hostname: ci-ln-9gp362t-72292-v2p94-worker-c-mjf9w
 Encap geneve
 ip: "10.0.128.3"
 options: {csum="true"}
 Port_Binding tstor-ci-ln-9gp362t-72292-v2p94-worker-c-mjf9w
Chassis "2de65d9e-9abf-4b6e-a51d-a1e038b4d8af"
 hostname: ci-ln-9gp362t-72292-v2p94-master-2
 Encap geneve
 ip: "10.0.0.4"
 options: {csum="true"}
 Port_Binding tstor-ci-ln-9gp362t-72292-v2p94-master-2
Chassis "1d371cb8-5e21-44fd-9025-c4b162cc4247"
 hostname: ci-ln-9gp362t-72292-v2p94-master-1
 Encap geneve
 ip: "10.0.0.3"
 options: {csum="true"}
 Port_Binding tstor-ci-ln-9gp362t-72292-v2p94-master-1

$ oc exec -n openshift-ovn-kubernetes -it ovnkube-node-55xs2 \
-c sbdb ovn-sbctl --help

CHAPTER 2. OVN-KUBERNETES ARCHITECTURE

19

NOTE

Open a remote shell in the pod you wish to view the contents of and then run the ovn-
sbctl commands.

Table 2.2. Command-line arguments to examine southbound database contents

Argument Description

ovn-sbctl show An overview of the southbound database contents as seen from a specific
node.

ovn-sbctl list
Port_Binding <port>

List the contents of southbound database for a the specified port .

ovn-sbctl dump-flows List the logical flows.

2.7. OVN-KUBERNETES LOGICAL ARCHITECTURE

OVN is a network virtualization solution. It creates logical switches and routers. These switches and
routers are interconnected to create any network topologies. When you run ovnkube-trace with the log
level set to 2 or 5 the OVN-Kubernetes logical components are exposed. The following diagram shows
how the routers and switches are connected in OpenShift Container Platform.

Figure 2.2. OVN-Kubernetes router and switch components

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

20

Figure 2.2. OVN-Kubernetes router and switch components

The key components involved in packet processing are:

Gateway routers

Gateway routers sometimes called L3 gateway routers, are typically used between the distributed
routers and the physical network. Gateway routers including their logical patch ports are bound to a
physical location (not distributed), or chassis. The patch ports on this router are known as l3gateway
ports in the ovn-southbound database (ovn-sbdb).

Distributed logical routers

Distributed logical routers and the logical switches behind them, to which virtual machines and
containers attach, effectively reside on each hypervisor.

Join local switch

Join local switches are used to connect the distributed router and gateway routers. It reduces the
number of IP addresses needed on the distributed router.

Logical switches with patch ports

Logical switches with patch ports are used to virtualize the network stack. They connect remote
logical ports through tunnels.

Logical switches with localnet ports

CHAPTER 2. OVN-KUBERNETES ARCHITECTURE

21

Logical switches with localnet ports are used to connect OVN to the physical network. They connect
remote logical ports by bridging the packets to directly connected physical L2 segments using
localnet ports.

Patch ports

Patch ports represent connectivity between logical switches and logical routers and between peer
logical routers. A single connection has a pair of patch ports at each such point of connectivity, one
on each side.

l3gateway ports

l3gateway ports are the port binding entries in the ovn-sbdb for logical patch ports used in the
gateway routers. They are called l3gateway ports rather than patch ports just to portray the fact that
these ports are bound to a chassis just like the gateway router itself.

localnet ports

localnet ports are present on the bridged logical switches that allows a connection to a locally
accessible network from each ovn-controller instance. This helps model the direct connectivity to
the physical network from the logical switches. A logical switch can only have a single localnet port
attached to it.

2.7.1. Installing network-tools on local host

Install network-tools on your local host to make a collection of tools available for debugging OpenShift
Container Platform cluster network issues.

Procedure

1. Clone the network-tools repository onto your workstation with the following command:

2. Change into the directory for the repository you just cloned:

3. Optional: List all available commands:

2.7.2. Running network-tools

Get information about the logical switches and routers by running network-tools.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster as a user with cluster-admin privileges.

You have installed network-tools on local host.

Procedure

1. List the routers by running the following command:

$ git clone git@github.com:openshift/network-tools.git

$ cd network-tools

$./debug-scripts/network-tools -h

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

22

Example output

2. List the localnet ports by running the following command:

Example output

3. List the l3gateway ports by running the following command:

Example output

$./debug-scripts/network-tools ovn-db-run-command ovn-nbctl lr-list

944a7b53-7948-4ad2-a494-82b55eeccf87 (GR_ci-ln-54932yb-72292-kd676-worker-c-rzj99)
84bd4a4c-4b0b-4a47-b0cf-a2c32709fc53 (ovn_cluster_router)

$./debug-scripts/network-tools ovn-db-run-command \
ovn-sbctl find Port_Binding type=localnet

_uuid : d05298f5-805b-4838-9224-1211afc2f199
additional_chassis : []
additional_encap : []
chassis : []
datapath : f3c2c959-743b-4037-854d-26627902597c
encap : []
external_ids : {}
gateway_chassis : []
ha_chassis_group : []
logical_port : br-ex_ci-ln-54932yb-72292-kd676-worker-c-rzj99
mac : [unknown]
mirror_rules : []
nat_addresses : []
options : {network_name=physnet}
parent_port : []
port_security : []
requested_additional_chassis: []
requested_chassis : []
tag : []
tunnel_key : 2
type : localnet
up : false
virtual_parent : []

[...]

$./debug-scripts/network-tools ovn-db-run-command \
ovn-sbctl find Port_Binding type=l3gateway

_uuid : 5207a1f3-1cf3-42f1-83e9-387bbb06b03c
additional_chassis : []
additional_encap : []
chassis : ca6eb600-3a10-4372-a83e-e0d957c4cd92
datapath : f3c2c959-743b-4037-854d-26627902597c
encap : []

CHAPTER 2. OVN-KUBERNETES ARCHITECTURE

23

4. List the patch ports by running the following command:

Example output

external_ids : {}
gateway_chassis : []
ha_chassis_group : []
logical_port : etor-GR_ci-ln-54932yb-72292-kd676-worker-c-rzj99
mac : ["42:01:0a:00:80:04"]
mirror_rules : []
nat_addresses : ["42:01:0a:00:80:04 10.0.128.4"]
options : {l3gateway-chassis="84737c36-b383-4c83-92c5-2bd5b3c7e772", peer=rtoe-
GR_ci-ln-54932yb-72292-kd676-worker-c-rzj99}
parent_port : []
port_security : []
requested_additional_chassis: []
requested_chassis : []
tag : []
tunnel_key : 1
type : l3gateway
up : true
virtual_parent : []

_uuid : 6088d647-84f2-43f2-b53f-c9d379042679
additional_chassis : []
additional_encap : []
chassis : ca6eb600-3a10-4372-a83e-e0d957c4cd92
datapath : dc9cea00-d94a-41b8-bdb0-89d42d13aa2e
encap : []
external_ids : {}
gateway_chassis : []
ha_chassis_group : []
logical_port : jtor-GR_ci-ln-54932yb-72292-kd676-worker-c-rzj99
mac : [router]
mirror_rules : []
nat_addresses : []
options : {l3gateway-chassis="84737c36-b383-4c83-92c5-2bd5b3c7e772", peer=rtoj-
GR_ci-ln-54932yb-72292-kd676-worker-c-rzj99}
parent_port : []
port_security : []
requested_additional_chassis: []
requested_chassis : []
tag : []
tunnel_key : 2
type : l3gateway
up : true
virtual_parent : []

[...]

$./debug-scripts/network-tools ovn-db-run-command \
ovn-sbctl find Port_Binding type=patch

_uuid : 785fb8b6-ee5a-4792-a415-5b1cb855dac2
additional_chassis : []

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

24

2.8. ADDITIONAL RESOURCES

Tracing Openflow with ovnkube-trace

OVN architecture

ovn-nbctl linux manual page

additional_encap : []
chassis : []
datapath : f1ddd1cc-dc0d-43b4-90ca-12651305acec
encap : []
external_ids : {}
gateway_chassis : []
ha_chassis_group : []
logical_port : stor-ci-ln-54932yb-72292-kd676-worker-c-rzj99
mac : [router]
mirror_rules : []
nat_addresses : ["0a:58:0a:80:02:01 10.128.2.1 is_chassis_resident(\"cr-rtos-ci-ln-
54932yb-72292-kd676-worker-c-rzj99\")"]
options : {peer=rtos-ci-ln-54932yb-72292-kd676-worker-c-rzj99}
parent_port : []
port_security : []
requested_additional_chassis: []
requested_chassis : []
tag : []
tunnel_key : 1
type : patch
up : false
virtual_parent : []

_uuid : c01ff587-21a5-40b4-8244-4cd0425e5d9a
additional_chassis : []
additional_encap : []
chassis : []
datapath : f6795586-bf92-4f84-9222-efe4ac6a7734
encap : []
external_ids : {}
gateway_chassis : []
ha_chassis_group : []
logical_port : rtoj-ovn_cluster_router
mac : ["0a:58:64:40:00:01 100.64.0.1/16"]
mirror_rules : []
nat_addresses : []
options : {peer=jtor-ovn_cluster_router}
parent_port : []
port_security : []
requested_additional_chassis: []
requested_chassis : []
tag : []
tunnel_key : 1
type : patch
up : false
virtual_parent : []
[...]

CHAPTER 2. OVN-KUBERNETES ARCHITECTURE

25

https://www.ovn.org/support/dist-docs/ovn-architecture.7.html
https://man7.org/linux/man-pages/man8/ovn-nbctl.8.html

ovn-sbctl linux manual page

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

26

https://man7.org/linux/man-pages/man8/ovn-sbctl.8.html

CHAPTER 3. TROUBLESHOOTING OVN-KUBERNETES
OVN-Kubernetes has many sources of built-in health checks and logs. Follow the instructions in these
sections to examine your cluster. If a support case is necessary, follow the support guide to collect
additional information through a must-gather. Only use the -- gather_network_logs when instructed by
support.

3.1. MONITORING OVN-KUBERNETES HEALTH BY USING READINESS
PROBES

The ovnkube-control-plane and ovnkube-node pods have containers configured with readiness
probes.

Prerequisites

Access to the OpenShift CLI (oc).

You have access to the cluster with cluster-admin privileges.

You have installed jq.

Procedure

1. Review the details of the ovnkube-node readiness probe by running the following command:

The readiness probe for the northbound and southbound database containers in the ovnkube-
node pod checks for the health of the databases and the ovnkube-controller container.

The ovnkube-controller container in the ovnkube-node pod has a readiness probe to verify
the presence of the OVN-Kubernetes CNI configuration file, the absence of which would
indicate that the pod is not running or is not ready to accept requests to configure pods.

2. Show all events including the probe failures, for the namespace by using the following
command:

3. Show the events for just a specific pod:

4. Show the messages and statuses from the cluster network operator:

5. Show the ready status of each container in ovnkube-node pods by running the following script:

$ oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node \
-o json | jq '.items[0].spec.containers[] | .name,.readinessProbe'

$ oc get events -n openshift-ovn-kubernetes

$ oc describe pod ovnkube-node-9lqfk -n openshift-ovn-kubernetes

$ oc get co/network -o json | jq '.status.conditions[]'

$ for p in $(oc get pods --selector app=ovnkube-node -n openshift-ovn-kubernetes \
-o jsonpath='{range.items[*]}{" "}{.metadata.name}'); do echo === $p ===; \

CHAPTER 3. TROUBLESHOOTING OVN-KUBERNETES

27

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#support_gathering_data_gathering-cluster-data

NOTE

The expectation is all container statuses are reporting as true. Failure of a
readiness probe sets the status to false.

Additional resources

Monitoring application health by using health checks

3.2. VIEWING OVN-KUBERNETES ALERTS IN THE CONSOLE

The Alerting UI provides detailed information about alerts and their governing alerting rules and silences.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

Procedure (UI)

1. In the Administrator perspective, select Observe → Alerting. The three main pages in the
Alerting UI in this perspective are the Alerts, Silences, and Alerting Rules pages.

2. View the rules for OVN-Kubernetes alerts by selecting Observe → Alerting → Alerting Rules.

3.3. VIEWING OVN-KUBERNETES ALERTS IN THE CLI

You can get information about alerts and their governing alerting rules and silences from the command
line.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift CLI (oc) installed.

You have installed jq.

Procedure

1. View active or firing alerts by running the following commands.

a. Set the alert manager route environment variable by running the following command:

b. Issue a curl request to the alert manager route API by running the following command,
replacing $ALERT_MANAGER with the URL of your Alertmanager instance:

oc get pods -n openshift-ovn-kubernetes $p -o json | jq '.status.containerStatuses[] | .name,
.ready'; \
done

$ ALERT_MANAGER=$(oc get route alertmanager-main -n openshift-monitoring \
-o jsonpath='{@.spec.host}')

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

28

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/building_applications/#application-health

2. View alerting rules by running the following command:

3.4. VIEWING THE OVN-KUBERNETES LOGS USING THE CLI

You can view the logs for each of the pods in the ovnkube-master and ovnkube-node pods using the
OpenShift CLI (oc).

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Access to the OpenShift CLI (oc).

You have installed jq.

Procedure

1. View the log for a specific pod:

where:

-f

Optional: Specifies that the output follows what is being written into the logs.

<pod_name>

Specifies the name of the pod.

<container_name>

Optional: Specifies the name of a container. When a pod has more than one container, you
must specify the container name.

<namespace>

Specify the namespace the pod is running in.

For example:

The contents of log files are printed out.

$ curl -s -k -H "Authorization: Bearer $(oc create token prometheus-k8s -n openshift-
monitoring)" https://$ALERT_MANAGER/api/v1/alerts | jq '.data[] | "\(.labels.severity) \
(.labels.alertname) \(.labels.pod) \(.labels.container) \(.labels.endpoint) \
(.labels.instance)"'

$ oc -n openshift-monitoring exec -c prometheus prometheus-k8s-0 -- curl -s
'http://localhost:9090/api/v1/rules' | jq '.data.groups[].rules[] | select(((.name|contains("ovn"))
or (.name|contains("OVN")) or (.name|contains("Ovn")) or (.name|contains("North")) or
(.name|contains("South"))) and .type=="alerting")'

$ oc logs -f <pod_name> -c <container_name> -n <namespace>

$ oc logs ovnkube-node-5dx44 -n openshift-ovn-kubernetes

$ oc logs -f ovnkube-node-5dx44 -c ovnkube-controller -n openshift-ovn-kubernetes

CHAPTER 3. TROUBLESHOOTING OVN-KUBERNETES

29

2. Examine the most recent entries in all the containers in the ovnkube-node pods:

3. View the last 5 lines of every log in every container in an ovnkube-node pod using the following
command:

3.5. VIEWING THE OVN-KUBERNETES LOGS USING THE WEB
CONSOLE

You can view the logs for each of the pods in the ovnkube-master and ovnkube-node pods in the web
console.

Prerequisites

Access to the OpenShift CLI (oc).

Procedure

1. In the OpenShift Container Platform console, navigate to Workloads → Pods or navigate to the
pod through the resource you want to investigate.

2. Select the openshift-ovn-kubernetes project from the drop-down menu.

3. Click the name of the pod you want to investigate.

4. Click Logs. By default for the ovnkube-master the logs associated with the northd container
are displayed.

5. Use the down-down menu to select logs for each container in turn.

3.5.1. Changing the OVN-Kubernetes log levels

The default log level for OVN-Kubernetes is 4. To debug OVN-Kubernetes, set the log level to 5. Follow
this procedure to increase the log level of the OVN-Kubernetes to help you debug an issue.

Prerequisites

You have access to the cluster with cluster-admin privileges.

You have access to the OpenShift Container Platform web console.

Procedure

1. Run the following command to get detailed information for all pods in the OVN-Kubernetes
project:

$ for p in $(oc get pods --selector app=ovnkube-node -n openshift-ovn-kubernetes \
-o jsonpath='{range.items[*]}{" "}{.metadata.name}'); \
do echo === $p ===; for container in $(oc get pods -n openshift-ovn-kubernetes $p \
-o json | jq -r '.status.containerStatuses[] | .name');do echo ---$container---; \
oc logs -c $container $p -n openshift-ovn-kubernetes --tail=5; done; done

$ oc logs -l app=ovnkube-node -n openshift-ovn-kubernetes --all-containers --tail 5

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

30

1

Example output

2. Create a ConfigMap file similar to the following example and use a filename such as env-
overrides.yaml:

Example ConfigMap file

Specify the name of the node you want to set the debug log level on.

$ oc get po -o wide -n openshift-ovn-kubernetes

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
ovnkube-control-plane-65497d4548-9ptdr 2/2 Running 2 (128m ago) 147m 10.0.0.3
ci-ln-3njdr9b-72292-5nwkp-master-0 <none> <none>
ovnkube-control-plane-65497d4548-j6zfk 2/2 Running 0 147m 10.0.0.5 ci-
ln-3njdr9b-72292-5nwkp-master-2 <none> <none>
ovnkube-node-5dx44 8/8 Running 0 146m 10.0.0.3 ci-ln-
3njdr9b-72292-5nwkp-master-0 <none> <none>
ovnkube-node-dpfn4 8/8 Running 0 146m 10.0.0.4 ci-ln-3njdr9b-
72292-5nwkp-master-1 <none> <none>
ovnkube-node-kwc9l 8/8 Running 0 134m 10.0.128.2 ci-ln-
3njdr9b-72292-5nwkp-worker-a-2fjcj <none> <none>
ovnkube-node-mcrhl 8/8 Running 0 134m 10.0.128.4 ci-ln-
3njdr9b-72292-5nwkp-worker-c-v9x5v <none> <none>
ovnkube-node-nsct4 8/8 Running 0 146m 10.0.0.5 ci-ln-3njdr9b-
72292-5nwkp-master-2 <none> <none>
ovnkube-node-zrj9f 8/8 Running 0 134m 10.0.128.3 ci-ln-3njdr9b-
72292-5nwkp-worker-b-v78h7 <none> <none>

kind: ConfigMap
apiVersion: v1
metadata:
 name: env-overrides
 namespace: openshift-ovn-kubernetes
data:
 ci-ln-3njdr9b-72292-5nwkp-master-0: | 1
 # This sets the log level for the ovn-kubernetes node process:
 OVN_KUBE_LOG_LEVEL=5
 # You might also/instead want to enable debug logging for ovn-controller:
 OVN_LOG_LEVEL=dbg
 ci-ln-3njdr9b-72292-5nwkp-master-2: |
 # This sets the log level for the ovn-kubernetes node process:
 OVN_KUBE_LOG_LEVEL=5
 # You might also/instead want to enable debug logging for ovn-controller:
 OVN_LOG_LEVEL=dbg
 _master: | 2
 # This sets the log level for the ovn-kubernetes master process as well as the ovn-
dbchecker:
 OVN_KUBE_LOG_LEVEL=5
 # You might also/instead want to enable debug logging for northd, nbdb and sbdb on all
masters:
 OVN_LOG_LEVEL=dbg

CHAPTER 3. TROUBLESHOOTING OVN-KUBERNETES

31

2 Specify _master to set the log levels of ovnkube-master components.

3. Apply the ConfigMap file by using the following command:

Example output

4. Restart the ovnkube pods to apply the new log level by using the following commands:

5. To verify that the `ConfigMap`file has been applied to all nodes for a specific pod, run the
following command:

where:

<XXXX>

Specifies the random sequence of letters for a pod from the previous step.

Example output

$ oc apply -n openshift-ovn-kubernetes -f env-overrides.yaml

configmap/env-overrides.yaml created

$ oc delete pod -n openshift-ovn-kubernetes \
--field-selector spec.nodeName=ci-ln-3njdr9b-72292-5nwkp-master-0 -l app=ovnkube-node

$ oc delete pod -n openshift-ovn-kubernetes \
--field-selector spec.nodeName=ci-ln-3njdr9b-72292-5nwkp-master-2 -l app=ovnkube-node

$ oc delete pod -n openshift-ovn-kubernetes -l app=ovnkube-node

$ oc logs -n openshift-ovn-kubernetes --all-containers --prefix ovnkube-node-<xxxx> | grep -
E -m 10 '(Logging config:|vconsole|DBG)'

[pod/ovnkube-node-2cpjc/sbdb] + exec /usr/share/ovn/scripts/ovn-ctl --no-monitor '--ovn-
sb-log=-vconsole:info -vfile:off -vPATTERN:console:%D{%Y-%m-
%dT%H:%M:%S.###Z}|%05N|%c%T|%p|%m' run_sb_ovsdb
[pod/ovnkube-node-2cpjc/ovnkube-controller] I1012 14:39:59.984506 35767
config.go:2247] Logging config: {File: CNIFile:/var/log/ovn-kubernetes/ovn-k8s-cni-
overlay.log LibovsdbFile:/var/log/ovnkube/libovsdb.log Level:5 LogFileMaxSize:100
LogFileMaxBackups:5 LogFileMaxAge:0 ACLLoggingRateLimit:20}
[pod/ovnkube-node-2cpjc/northd] + exec ovn-northd --no-chdir -vconsole:info -vfile:off '-
vPATTERN:console:%D{%Y-%m-%dT%H:%M:%S.###Z}|%05N|%c%T|%p|%m' --pidfile
/var/run/ovn/ovn-northd.pid --n-threads=1
[pod/ovnkube-node-2cpjc/nbdb] + exec /usr/share/ovn/scripts/ovn-ctl --no-monitor '--ovn-
nb-log=-vconsole:info -vfile:off -vPATTERN:console:%D{%Y-%m-
%dT%H:%M:%S.###Z}|%05N|%c%T|%p|%m' run_nb_ovsdb
[pod/ovnkube-node-2cpjc/ovn-controller] 2023-10-
12T14:39:54.552Z|00002|hmap|DBG|lib/shash.c:114: 1 bucket with 6+ nodes, including 1
bucket with 6 nodes (32 nodes total across 32 buckets)
[pod/ovnkube-node-2cpjc/ovn-controller] 2023-10-
12T14:39:54.553Z|00003|hmap|DBG|lib/shash.c:114: 1 bucket with 6+ nodes, including 1
bucket with 6 nodes (64 nodes total across 64 buckets)

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

32

6. Optional: Check the ConfigMap file has been applied by running the following command:

Example output

3.6. CHECKING THE OVN-KUBERNETES POD NETWORK
CONNECTIVITY

The connectivity check controller, in OpenShift Container Platform 4.10 and later, orchestrates
connection verification checks in your cluster. These include Kubernetes API, OpenShift API and

[pod/ovnkube-node-2cpjc/ovn-controller] 2023-10-
12T14:39:54.553Z|00004|hmap|DBG|lib/shash.c:114: 1 bucket with 6+ nodes, including 1
bucket with 7 nodes (32 nodes total across 32 buckets)
[pod/ovnkube-node-2cpjc/ovn-controller] 2023-10-
12T14:39:54.553Z|00005|reconnect|DBG|unix:/var/run/openvswitch/db.sock: entering
BACKOFF
[pod/ovnkube-node-2cpjc/ovn-controller] 2023-10-
12T14:39:54.553Z|00007|reconnect|DBG|unix:/var/run/openvswitch/db.sock: entering
CONNECTING
[pod/ovnkube-node-2cpjc/ovn-controller] 2023-10-
12T14:39:54.553Z|00008|ovsdb_cs|DBG|unix:/var/run/openvswitch/db.sock:
SERVER_SCHEMA_REQUESTED -> SERVER_SCHEMA_REQUESTED at lib/ovsdb-
cs.c:423

for f in $(oc -n openshift-ovn-kubernetes get po -l 'app=ovnkube-node' --no-headers -o
custom-columns=N:.metadata.name) ; do echo "---- $f ----" ; oc -n openshift-ovn-kubernetes
exec -c ovnkube-controller $f -- pgrep -a -f init-ovnkube-controller | grep -P -o
'^.*loglevel\s+\d' ; done

---- ovnkube-node-2dt57 ----
60981 /usr/bin/ovnkube --init-ovnkube-controller xpst8-worker-c-vmh5n.c.openshift-
qe.internal --init-node xpst8-worker-c-vmh5n.c.openshift-qe.internal --config-
file=/run/ovnkube-config/ovnkube.conf --ovn-empty-lb-events --loglevel 4
---- ovnkube-node-4zznh ----
178034 /usr/bin/ovnkube --init-ovnkube-controller xpst8-master-2.c.openshift-qe.internal --
init-node xpst8-master-2.c.openshift-qe.internal --config-file=/run/ovnkube-
config/ovnkube.conf --ovn-empty-lb-events --loglevel 4
---- ovnkube-node-548sx ----
77499 /usr/bin/ovnkube --init-ovnkube-controller xpst8-worker-a-fjtnb.c.openshift-qe.internal -
-init-node xpst8-worker-a-fjtnb.c.openshift-qe.internal --config-file=/run/ovnkube-
config/ovnkube.conf --ovn-empty-lb-events --loglevel 4
---- ovnkube-node-6btrf ----
73781 /usr/bin/ovnkube --init-ovnkube-controller xpst8-worker-b-p8rww.c.openshift-
qe.internal --init-node xpst8-worker-b-p8rww.c.openshift-qe.internal --config-
file=/run/ovnkube-config/ovnkube.conf --ovn-empty-lb-events --loglevel 4
---- ovnkube-node-fkc9r ----
130707 /usr/bin/ovnkube --init-ovnkube-controller xpst8-master-0.c.openshift-qe.internal --
init-node xpst8-master-0.c.openshift-qe.internal --config-file=/run/ovnkube-
config/ovnkube.conf --ovn-empty-lb-events --loglevel 5
---- ovnkube-node-tk9l4 ----
181328 /usr/bin/ovnkube --init-ovnkube-controller xpst8-master-1.c.openshift-qe.internal --
init-node xpst8-master-1.c.openshift-qe.internal --config-file=/run/ovnkube-
config/ovnkube.conf --ovn-empty-lb-events --loglevel 4

CHAPTER 3. TROUBLESHOOTING OVN-KUBERNETES

33

individual nodes. The results for the connection tests are stored in PodNetworkConnectivity objects in
the openshift-network-diagnostics namespace. Connection tests are performed every minute in
parallel.

Prerequisites

Access to the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

You have installed jq.

Procedure

1. To list the current PodNetworkConnectivityCheck objects, enter the following command:

2. View the most recent success for each connection object by using the following command:

3. View the most recent failures for each connection object by using the following command:

4. View the most recent outages for each connection object by using the following command:

The connectivity check controller also logs metrics from these checks into Prometheus.

5. View all the metrics by running the following command:

6. View the latency between the source pod and the openshift api service for the last 5 minutes:

3.7. CHECKING OVN-KUBERNETES NETWORK TRAFFIC WITH OVS
SAMPLING USING THE CLI

IMPORTANT

$ oc get podnetworkconnectivitychecks -n openshift-network-diagnostics

$ oc get podnetworkconnectivitychecks -n openshift-network-diagnostics \
-o json | jq '.items[]| .spec.targetEndpoint,.status.successes[0]'

$ oc get podnetworkconnectivitychecks -n openshift-network-diagnostics \
-o json | jq '.items[]| .spec.targetEndpoint,.status.failures[0]'

$ oc get podnetworkconnectivitychecks -n openshift-network-diagnostics \
-o json | jq '.items[]| .spec.targetEndpoint,.status.outages[0]'

$ oc exec prometheus-k8s-0 -n openshift-monitoring -- \
promtool query instant http://localhost:9090 \
'{component="openshift-network-diagnostics"}'

$ oc exec prometheus-k8s-0 -n openshift-monitoring -- \
promtool query instant http://localhost:9090 \
'{component="openshift-network-diagnostics"}'

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

34

IMPORTANT

Checking OVN-Kubernetes network traffic with OVS sampling is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OVN-Kubernetes network traffic can be viewed with OVS sampling via the CLI for the following network
APIs:

NetworkPolicy

AdminNetworkPolicy

BaselineNetworkPolicy

UserDefinedNetwork isolation

EgressFirewall

Multicast ACLs.

Scripts for these networking events are found in the /usr/bin/ovnkube-observ path of each OVN-
Kubernetes node.

Although both the Network Observability Operator and checking OVN-Kubernetes network traffic with
OVS sampling are good for debuggability, the Network Observability Operator is intended for observing
network events. Alternatively, checking OVN-Kubernetes network traffic with OVS sampling using the
CLI is intended to help with packet tracing; it can also be used while the Network Observability Operator
is installed, however that is not a requirement.

Administrators can add the --add-ovs-collect option to view network traffic across the node, or pass in
additional flags to filter result for specific pods. Additional flags can be found in the "OVN-Kubernetes
network traffic with OVS sampling flags" section.

Use the following procedure to view OVN-Kubernetes network traffic using the CLI.

Prerequisites

You are logged in to the cluster as a user with cluster-admin privileges.

You have created a source pod and a destination pod and ran traffic between them.

You have created at least one of the following network APIs: NetworkPolicy,
AdminNetworkPolicy, BaselineNetworkPolicy, UserDefinedNetwork isolation, multicast, or
egress firewalls.

Procedure

1. To enable the OVNObservability with OVS sampling feature, enable TechPreviewNoUpgrade
feature set in the FeatureGate CR named cluster by entering the following command:

CHAPTER 3. TROUBLESHOOTING OVN-KUBERNETES

35

https://access.redhat.com/support/offerings/techpreview/

Example output

2. Confirm that the OVNObservability feature is enabled by entering the following command:

Example output

3. Obtain a list of the pods inside of the namespace in which you have created one of the relevant
network APIs by entering the following command. Note the NODE name of the pods, as they
are used in the following step.

Example output

4. Obtain a list of OVN-Kubernetes pods and locate the pod that shares the same NODE as the
pods from the previous step by entering the following command:

Example output

5. Open a bash shell inside of the ovnkube-node pod by entering the following command:

$ oc patch --type=merge --patch '{"spec": {"featureSet": "TechPreviewNoUpgrade"}}'
featuregate/cluster

featuregate.config.openshift.io/cluster patched

$ oc get featuregate cluster -o yaml

 featureGates:
...
 enabled:
 - name: OVNObservability

$ oc get pods -n <namespace> -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
destination-pod 1/1 Running 0 53s 10.131.0.23 ci-ln-1gqp7b2-72292-bb9dv-
worker-a-gtmpc <none> <none>
source-pod 1/1 Running 0 56s 10.131.0.22 ci-ln-1gqp7b2-72292-bb9dv-
worker-a-gtmpc <none> <none>

$ oc get pods -n openshift-ovn-kubernetes -o wide

NAME
... READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE
ovnkube-node-jzn5b 8/8 Running 1 (34m ago) 37m 10.0.128.2 ci-ln-1gqp7b2-
72292-bb9dv-worker-a-gtmpc <none>
...

$ oc exec -it <pod_name> -n openshift-ovn-kubernetes -- bash

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

36

6. While inside of the ovnkube-node pod, you can run the ovnkube-observ -add-ovs-collector
script to show network events using the OVS collector. For example:

Example output

7. You can filter the content by type, such as source pods, by entering the following command with
the -filter-src-ip flag and your pod’s IP address. For example:

Example output

For a full list of flags that can be passed in with /usr/bin/ovnkube-observ, see "OVN-
Kubernetes network traffic with OVS sampling flags".

3.7.1. OVN-Kubernetes network traffic with OVS sampling flags

The following flags are available to view OVN-Kubernetes network traffic by using the CLI. Append
these flags to the following syntax in your terminal after you have opened a bash shell inside of the
ovnkube-node pod:

Command syntax

/usr/bin/ovnkube-observ -add-ovs-collector

...
2024/12/02 19:41:41.327584 OVN-K message: Allowed by default allow from local node
policy, direction ingress
2024/12/02 19:41:41.327593 src=10.131.0.2, dst=10.131.0.6

2024/12/02 19:41:41.327692 OVN-K message: Allowed by default allow from local node
policy, direction ingress
2024/12/02 19:41:41.327715 src=10.131.0.6, dst=10.131.0.2
...

/usr/bin/ovnkube-observ -add-ovs-collector -filter-src-ip <pod_ip_address>

...
Found group packets, id 14
2024/12/10 16:27:12.456473 OVN-K message: Allowed by admin network policy allow-
egress-group1, direction Egress
2024/12/10 16:27:12.456570 src=10.131.0.22, dst=10.131.0.23

2024/12/10 16:27:14.484421 OVN-K message: Allowed by admin network policy allow-
egress-group1, direction Egress
2024/12/10 16:27:14.484428 src=10.131.0.22, dst=10.131.0.23

2024/12/10 16:27:12.457222 OVN-K message: Allowed by network policy test:allow-ingress-
from-specific-pod, direction Ingress
2024/12/10 16:27:12.457228 src=10.131.0.22, dst=10.131.0.23

2024/12/10 16:27:12.457288 OVN-K message: Allowed by network policy test:allow-ingress-
from-specific-pod, direction Ingress
2024/12/10 16:27:12.457299 src=10.131.0.22, dst=10.131.0.23
...

CHAPTER 3. TROUBLESHOOTING OVN-KUBERNETES

37

Flag Description

-h Returns a complete list flags that can be used with the usr/bin/ovnkube-
observ command. `

-add-ovs-collector Add OVS collector to enable sampling. Use with caution. Make sure no one else is
using observability.

-enable-enrichment Enrich samples with NBDB data. Defaults to true.

-filter-dst-ip Filter only packets to a given destination IP.

-filter-src-ip Filters only packets from a given source IP.

-log-cookie Print raw sample cookie with psample group_id.

-output-file Output file to write the samples to.

-print-full-packet Print full received packet. When false, only source and destination IPs are printed
with every sample.

3.8. ADDITIONAL RESOURCES

Gathering data about your cluster for Red Hat Support

Implementation of connection health checks

Verifying network connectivity for an endpoint

/usr/bin/ovnkube-observ <flag>

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

38

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#support_gathering_data_gathering-cluster-data
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/advanced_networking/#nw-pod-network-connectivity-implementation_verifying-connectivity-endpoint
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/advanced_networking/#nw-pod-network-connectivity-verify_verifying-connectivity-endpoint

CHAPTER 4. TRACING OPENFLOW WITH OVNKUBE-TRACE
OVN and OVS traffic flows can be simulated in a single utility called ovnkube-trace. The ovnkube-trace
utility runs ovn-trace, ovs-appctl ofproto/trace and ovn-detrace and correlates that information in a
single output.

You can execute the ovnkube-trace binary from a dedicated container. For releases after OpenShift
Container Platform 4.7, you can also copy the binary to a local host and execute it from that host.

4.1. INSTALLING THE OVNKUBE-TRACE ON LOCAL HOST

The ovnkube-trace tool traces packet simulations for arbitrary UDP or TCP traffic between points in an
OVN-Kubernetes driven OpenShift Container Platform cluster. Copy the ovnkube-trace binary to your
local host making it available to run against the cluster.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

1. Create a pod variable by using the following command:

2. Run the following command on your local host to copy the binary from the ovnkube-control-
plane pods:

NOTE

If you are using Red Hat Enterprise Linux (RHEL) 8 to run the ovnkube-trace
tool, you must copy the file /usr/lib/rhel8/ovnkube-trace to your local host.

3. Make ovnkube-trace executable by running the following command:

4. Display the options available with ovnkube-trace by running the following command:

Expected output

$ POD=$(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-control-plane -o name |
head -1 | awk -F '/' '{print $NF}')

$ oc cp -n openshift-ovn-kubernetes $POD:/usr/bin/ovnkube-trace -c ovnkube-cluster-
manager ovnkube-trace

$ chmod +x ovnkube-trace

$./ovnkube-trace -help

Usage of ./ovnkube-trace:
 -addr-family string

CHAPTER 4. TRACING OPENFLOW WITH OVNKUBE-TRACE

39

The command-line arguments supported are familiar Kubernetes constructs, such as
namespaces, pods, services so you do not need to find the MAC address, the IP address of the
destination nodes, or the ICMP type.

The log levels are:

0 (minimal output)

2 (more verbose output showing results of trace commands)

5 (debug output)

4.2. RUNNING OVNKUBE-TRACE

Run ovn-trace to simulate packet forwarding within an OVN logical network.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You have installed ovnkube-trace on local host

Example: Testing that DNS resolution works from a deployed pod

This example illustrates how to test the DNS resolution from a deployed pod to the core DNS pod that
runs in the cluster.

 Address family (ip4 or ip6) to be used for tracing (default "ip4")
 -dst string
 dest: destination pod name
 -dst-ip string
 destination IP address (meant for tests to external targets)
 -dst-namespace string
 k8s namespace of dest pod (default "default")
 -dst-port string
 dst-port: destination port (default "80")
 -kubeconfig string
 absolute path to the kubeconfig file
 -loglevel string
 loglevel: klog level (default "0")
 -ovn-config-namespace string
 namespace used by ovn-config itself
 -service string
 service: destination service name
 -skip-detrace
 skip ovn-detrace command
 -src string
 src: source pod name
 -src-namespace string
 k8s namespace of source pod (default "default")
 -tcp
 use tcp transport protocol
 -udp
 use udp transport protocol

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

40

1

2

3

4

5

6

Procedure

1. Start a web service in the default namespace by entering the following command:

2. List the pods running in the openshift-dns namespace:

Example output

3. Run the following ovnkube-trace command to verify DNS resolution is working:

Namespace of the source pod

Source pod name

Namespace of destination pod

Destination pod name

Use the udp transport protocol. Port 53 is the port the DNS service uses.

Set the log level to 0 (0 is minimal and 5 is debug)

Example output if the src&dst pod lands on the same node

$ oc run web --namespace=default --image=quay.io/openshifttest/nginx --labels="app=web" -
-expose --port=80

oc get pods -n openshift-dns

NAME READY STATUS RESTARTS AGE
dns-default-8s42x 2/2 Running 0 5h8m
dns-default-mdw6r 2/2 Running 0 4h58m
dns-default-p8t5h 2/2 Running 0 4h58m
dns-default-rl6nk 2/2 Running 0 5h8m
dns-default-xbgqx 2/2 Running 0 5h8m
dns-default-zv8f6 2/2 Running 0 4h58m
node-resolver-62jjb 1/1 Running 0 5h8m
node-resolver-8z4cj 1/1 Running 0 4h59m
node-resolver-bq244 1/1 Running 0 5h8m
node-resolver-hc58n 1/1 Running 0 4h59m
node-resolver-lm6z4 1/1 Running 0 5h8m
node-resolver-zfx5k 1/1 Running 0 5h

$./ovnkube-trace \
 -src-namespace default \ 1
 -src web \ 2
 -dst-namespace openshift-dns \ 3
 -dst dns-default-p8t5h \ 4
 -udp -dst-port 53 \ 5
 -loglevel 0 6

ovn-trace source pod to destination pod indicates success from web to dns-default-p8t5h
ovn-trace destination pod to source pod indicates success from dns-default-p8t5h to web

CHAPTER 4. TRACING OPENFLOW WITH OVNKUBE-TRACE

41

Example output if the src&dst pod lands on a different node

The ouput indicates success from the deployed pod to the DNS port and also indicates that it is
successful going back in the other direction. So you know bi-directional traffic is supported on
UDP port 53 if my web pod wants to do dns resolution from core DNS.

If for example that did not work and you wanted to get the ovn-trace, the ovs-appctl of proto/trace
and ovn-detrace, and more debug type information increase the log level to 2 and run the command
again as follows:

The output from this increased log level is too much to list here. In a failure situation the output of this
command shows which flow is dropping that traffic. For example an egress or ingress network policy may
be configured on the cluster that does not allow that traffic.

Example: Verifying by using debug output a configured default deny

This example illustrates how to identify by using the debug output that an ingress default deny policy
blocks traffic.

Procedure

1. Create the following YAML that defines a deny-by-default policy to deny ingress from all pods
in all namespaces. Save the YAML in the deny-by-default.yaml file:

ovs-appctl ofproto/trace source pod to destination pod indicates success from web to dns-
default-p8t5h
ovs-appctl ofproto/trace destination pod to source pod indicates success from dns-default-
p8t5h to web
ovn-detrace source pod to destination pod indicates success from web to dns-default-p8t5h
ovn-detrace destination pod to source pod indicates success from dns-default-p8t5h to web

ovn-trace source pod to destination pod indicates success from web to dns-default-8s42x
ovn-trace (remote) source pod to destination pod indicates success from web to dns-default-
8s42x
ovn-trace destination pod to source pod indicates success from dns-default-8s42x to web
ovn-trace (remote) destination pod to source pod indicates success from dns-default-8s42x to
web
ovs-appctl ofproto/trace source pod to destination pod indicates success from web to dns-
default-8s42x
ovs-appctl ofproto/trace destination pod to source pod indicates success from dns-default-
8s42x to web
ovn-detrace source pod to destination pod indicates success from web to dns-default-8s42x
ovn-detrace destination pod to source pod indicates success from dns-default-8s42x to web

$./ovnkube-trace \
 -src-namespace default \
 -src web \
 -dst-namespace openshift-dns \
 -dst dns-default-467qw \
 -udp -dst-port 53 \
 -loglevel 2

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

42

2. Apply the policy by entering the following command:

Example output

3. Start a web service in the default namespace by entering the following command:

4. Run the following command to create the prod namespace:

5. Run the following command to label the prod namespace:

6. Run the following command to deploy an alpine image in the prod namespace and start a shell:

7. Open another terminal session.

8. In this new terminal session run ovn-trace to verify the failure in communication between the
source pod test-6459 running in namespace prod and destination pod running in the default
namespace:

Example output

9. Increase the log level to 2 to expose the reason for the failure by running the following
command:

 name: deny-by-default
 namespace: default
spec:
 podSelector: {}
 ingress: []

$ oc apply -f deny-by-default.yaml

networkpolicy.networking.k8s.io/deny-by-default created

$ oc run web --namespace=default --image=quay.io/openshifttest/nginx --labels="app=web" -
-expose --port=80

$ oc create namespace prod

$ oc label namespace/prod purpose=production

$ oc run test-6459 --namespace=prod --rm -i -t --image=alpine -- sh

$./ovnkube-trace \
 -src-namespace prod \
 -src test-6459 \
 -dst-namespace default \
 -dst web \
 -tcp -dst-port 80 \
 -loglevel 0

ovn-trace source pod to destination pod indicates failure from test-6459 to web

CHAPTER 4. TRACING OPENFLOW WITH OVNKUBE-TRACE

43

1

Example output

Ingress traffic is blocked due to the default deny policy being in place.

10. Create a policy that allows traffic from all pods in a particular namespaces with a label
purpose=production. Save the YAML in the web-allow-prod.yaml file:

11. Apply the policy by entering the following command:

$./ovnkube-trace \
 -src-namespace prod \
 -src test-6459 \
 -dst-namespace default \
 -dst web \
 -tcp -dst-port 80 \
 -loglevel 2

...
--
 3. ls_out_acl_hint (northd.c:7454): !ct.new && ct.est && !ct.rpl && ct_mark.blocked == 0,
priority 4, uuid 12efc456
 reg0[8] = 1;
 reg0[10] = 1;
 next;
 5. ls_out_acl_action (northd.c:7835): reg8[30..31] == 0, priority 500, uuid 69372c5d
 reg8[30..31] = 1;
 next(4);
 5. ls_out_acl_action (northd.c:7835): reg8[30..31] == 1, priority 500, uuid 2fa0af89
 reg8[30..31] = 2;
 next(4);
 4. ls_out_acl_eval (northd.c:7691): reg8[30..31] == 2 && reg0[10] == 1 && (outport ==
@a16982411286042166782_ingressDefaultDeny), priority 2000, uuid 447d0dab
 reg8[17] = 1;
 ct_commit { ct_mark.blocked = 1; }; 1
 next;
...

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-prod
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: web
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 purpose: production

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

44

12. Run ovnkube-trace to verify that traffic is now allowed by entering the following command:

Expected output

13. Run the following command in the shell that was opened in step six to connect nginx to the
web-server:

Expected output

$ oc apply -f web-allow-prod.yaml

$./ovnkube-trace \
 -src-namespace prod \
 -src test-6459 \
 -dst-namespace default \
 -dst web \
 -tcp -dst-port 80 \
 -loglevel 0

ovn-trace source pod to destination pod indicates success from test-6459 to web
ovn-trace destination pod to source pod indicates success from web to test-6459
ovs-appctl ofproto/trace source pod to destination pod indicates success from test-6459 to
web
ovs-appctl ofproto/trace destination pod to source pod indicates success from web to test-
6459
ovn-detrace source pod to destination pod indicates success from test-6459 to web
ovn-detrace destination pod to source pod indicates success from web to test-6459

 wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

CHAPTER 4. TRACING OPENFLOW WITH OVNKUBE-TRACE

45

4.3. ADDITIONAL RESOURCES

Tracing Openflow with ovnkube-trace utility

ovnkube-trace

<p>Thank you for using nginx.</p>
</body>
</html>

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

46

https://access.redhat.com/solutions/5887511
https://github.com/ovn-kubernetes/ovn-kubernetes/blob/master/docs/troubleshooting/ovnkube-trace.md

CHAPTER 5. CONVERTING TO IPV4/IPV6 DUAL-STACK
NETWORKING

As a cluster administrator, you can convert your IPv4 single-stack cluster to a dual-network cluster
network that supports IPv4 and IPv6 address families. After converting to dual-stack networking, new
and existing pods have dual-stack networking enabled.

IMPORTANT

When using dual-stack networking where IPv6 is required, you cannot use IPv4-mapped
IPv6 addresses, such as ::FFFF:198.51.100.1.

Additional resources

For more information about platform-specific support for dual-stack networking, see OVN-
Kubernetes purpose

5.1. CONVERTING TO A DUAL-STACK CLUSTER NETWORK

As a cluster administrator, you can convert your single-stack cluster network to a dual-stack cluster
network.

IMPORTANT

After converting your cluster to use dual-stack networking, you must re-create any
existing pods for them to receive IPv6 addresses, because only new pods are assigned
IPv6 addresses.

Converting a single-stack cluster network to a dual-stack cluster network consists of creating patches
and applying them to the network and infrastructure of the cluster. You can convert to a dual-stack
cluster network for a cluster that runs on either installer-provisioned infrastructure or user-provisioned
infrastructure.

NOTE

Each patch operation that changes clusterNetwork, serviceNetwork,
apiServerInternalIPs, and ingressIP objects triggers a restart of the cluster. Changing
the MachineNetworks object does not cause a reboot of the cluster.

On installer-provisioned infrastructure only, if you need to add IPv6 virtual IPs (VIPs) for API and Ingress
services to an existing dual-stack-configured cluster, you need to patch only the infrastructure and not
the network for the cluster.

IMPORTANT

CHAPTER 5. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING

47

1

1

2

IMPORTANT

If you already upgraded your cluster to OpenShift Container Platform 4.16 or later and
you need to convert the single-stack cluster network to a dual-stack cluster network, you
must specify an existing IPv4 machineNetwork network configuration from the install-
config.yaml file for API and Ingress services in the YAML configuration patch file. This
configuration ensures that IPv4 traffic exists in the same network interface as the default
gateway.

Example YAML configuration file with an added IPv4 address block for the
machineNetwork network

Ensure that you specify an address block for the machineNetwork network where
your machines operate. You must select both API and Ingress IP addresses for the
machine network.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Your cluster uses the OVN-Kubernetes network plugin.

The cluster nodes have IPv6 addresses.

You have configured an IPv6-enabled router based on your infrastructure.

Procedure

1. To specify IPv6 address blocks for cluster and service networks, create a YAML configuration
patch file that has a similar configuration to the following example:

Specify an object with the cidr and hostPrefix parameters. The host prefix must be 64 or
greater. The IPv6 Classless Inter-Domain Routing (CIDR) prefix must be large enough to
accommodate the specified host prefix.

Specify an IPv6 CIDR with a prefix of 112. Kubernetes uses only the lowest 16 bits. For a
prefix of 112, IP addresses are assigned from 112 to 128 bits.

- op: add
 path: /spec/platformSpec/baremetal/machineNetworks/- 1
 value: 192.168.1.0/24
 # ...

- op: add
 path: /spec/clusterNetwork/-
 value: 1
 cidr: fd01::/48
 hostPrefix: 64
- op: add
 path: /spec/serviceNetwork/-
 value: fd02::/112 2

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

48

1

1

2

2. Patch the cluster network configuration by entering the following command in your CLI:

Where file specifies the name of your created YAML file.

Example output

3. On installer-provisioned infrastructure where you added IPv6 VIPs for API and Ingress services,
complete the following steps:

a. Specify IPv6 VIPs for API and Ingress services for your cluster. Create a YAML
configuration patch file that has a similar configuration to the following example:

Ensure that you specify an address block for the machineNetwork network where your
machines operate. You must select both API and Ingress IP addresses for the machine
network.

Ensure that you specify each file path according to your platform. The example
demonstrates a file path on a bare-metal platform.

b. Patch the infrastructure by entering the following command in your CLI:

Where:

<file>

Specifies the name of your created YAML file.

Example output

Verification

1. Show the cluster network configuration by entering the following command in your CLI:

$ oc patch network.config.openshift.io cluster \ 1
 --type='json' --patch-file <file>.yaml

network.config.openshift.io/cluster patched

- op: add
 path: /spec/platformSpec/baremetal/machineNetworks/- 1
 value: fd2e:6f44:5dd8::/64
- op: add
 path: /spec/platformSpec/baremetal/apiServerInternalIPs/- 2
 value: fd2e:6f44:5dd8::4
- op: add
 path: /spec/platformSpec/baremetal/ingressIPs/-
 value: fd2e:6f44:5dd8::5

$ oc patch infrastructure cluster \
 --type='json' --patch-file <file>.yaml

infrastructure/cluster patched

CHAPTER 5. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING

49

2. Verify the successful installation of the patch on the network configuration by checking that the
cluster network configuration recognizes the IPv6 address blocks that you specified in the
YAML file.

Example output

3. Complete the following additional tasks for a cluster that runs on installer-provisioned
infrastructure:

a. Show the cluster infrastructure configuration by entering the following command in your
CLI:

b. Verify the successful installation of the patch on the cluster infrastructure by checking that
the infrastructure recognizes the IPv6 address blocks that you specified in the YAML file.

Example output

$ oc describe network

...
Status:
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Cidr: fd01::/48
 Host Prefix: 64
 Cluster Network MTU: 1400
 Network Type: OVNKubernetes
 Service Network:
 172.30.0.0/16
 fd02::/112
...

$ oc describe infrastructure

...
spec:
...
 platformSpec:
 baremetal:
 apiServerInternalIPs:
 - 192.168.123.5
 - fd2e:6f44:5dd8::4
 ingressIPs:
 - 192.168.123.10
 - fd2e:6f44:5dd8::5
status:
...
 platformStatus:
 baremetal:
 apiServerInternalIP: 192.168.123.5
 apiServerInternalIPs:
 - 192.168.123.5
 - fd2e:6f44:5dd8::4
 ingressIP: 192.168.123.10

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

50

5.2. CONVERTING TO A SINGLE-STACK CLUSTER NETWORK

As a cluster administrator, you can convert your dual-stack cluster network to a single-stack cluster
network.

IMPORTANT

If you originally converted your IPv4 single-stack cluster network to a dual-stack cluster,
you can convert only back to the IPv4 single-stack cluster and not an IPv6 single-stack
cluster network. The same restriction applies for converting back to an IPv6 single-stack
cluster network.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Your cluster uses the OVN-Kubernetes network plugin.

The cluster nodes have IPv6 addresses.

You have enabled dual-stack networking.

Procedure

1. Edit the networks.config.openshift.io custom resource (CR) by running the following
command:

2. Remove the IPv4 or IPv6 configuration that you added to the cidr and the hostPrefix
parameters from completing the "Converting to a dual-stack cluster network " procedure steps.

 ingressIPs:
 - 192.168.123.10
 - fd2e:6f44:5dd8::5
...

$ oc edit networks.config.openshift.io

CHAPTER 5. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING

51

CHAPTER 6. CONFIGURING OVN-KUBERNETES INTERNAL IP
ADDRESS SUBNETS

As a cluster administrator, you can change the IP address ranges that the OVN-Kubernetes network
plugin uses for the join and transit subnets.

6.1. CONFIGURING THE OVN-KUBERNETES JOIN SUBNET

You can change the join subnet used by OVN-Kubernetes to avoid conflicting with any existing subnets
already in use in your environment.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Ensure that the cluster uses the OVN-Kubernetes network plugin.

Procedure

To change the OVN-Kubernetes join subnet, enter the following command:

where:

<join_subnet>

Specifies an IP address subnet for internal use by OVN-Kubernetes. The subnet must be
larger than the number of nodes in the cluster and it must be large enough to accommodate
one IP address per node in the cluster. This subnet cannot overlap with any other subnets
used by OpenShift Container Platform or on the host itself. The default value for IPv4 is
100.64.0.0/16 and the default value for IPv6 is fd98::/64.

Example output

Verification

To confirm that the configuration is active, enter the following command:

The command operation can take up to 30 minutes for this change to take effect.

Example output

$ oc patch network.operator.openshift.io cluster --type='merge' \
 -p='{"spec":{"defaultNetwork":{"ovnKubernetesConfig":
 {"ipv4":{"internalJoinSubnet": "<join_subnet>"},
 "ipv6":{"internalJoinSubnet": "<join_subnet>"}}}}}'

network.operator.openshift.io/cluster patched

$ oc get network.operator.openshift.io \
 -o jsonpath="{.items[0].spec.defaultNetwork}"

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

52

{
 "ovnKubernetesConfig": {
 "ipv4": {
 "internalJoinSubnet": "100.64.1.0/16"
 },
 },
 "type": "OVNKubernetes"
}

6.2. CONFIGURING THE OVN-KUBERNETES MASQUERADE SUBNET
AS A POST-INSTALLATION OPERATION

You can change the masquerade subnet used by OVN-Kubernetes as a post-installation operation to
avoid conflicts with any existing subnets that are already in use in your environment.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a user with cluster-admin privileges.

Procedure

Change your cluster’s masquerade subnet:

For dualstack clusters using IPv6, run the following command:

where:

ipv4_masquerade_subnet

Specifies an IP address to be used as the IPv4 masquerade subnet. This range cannot
overlap with any other subnets used by OpenShift Container Platform or on the host
itself. In versions of OpenShift Container Platform earlier than 4.17, the default value for
IPv4 was 169.254.169.0/29, and clusters that were upgraded to version 4.17 maintain this
value. For new clusters starting from version 4.17, the default value is 169.254.0.0/17.

ipv6_masquerade_subnet

Specifies an IP address to be used as the IPv6 masquerade subnet. This range cannot
overlap with any other subnets used by OpenShift Container Platform or on the host
itself. The default value for IPv6 is fd69::/125.

For clusters using IPv4, run the following command:

where:

ipv4_masquerade_subnet::Specifies an IP address to be used as the IPv4 masquerade

$ oc patch networks.operator.openshift.io cluster --type=merge -p '{"spec":
{"defaultNetwork":{"ovnKubernetesConfig":{"gatewayConfig":{"ipv4":
{"internalMasqueradeSubnet": "<ipv4_masquerade_subnet>"},"ipv6":
{"internalMasqueradeSubnet": "<ipv6_masquerade_subnet>"}}}}}}'

$ oc patch networks.operator.openshift.io cluster --type=merge -p '{"spec":
{"defaultNetwork":{"ovnKubernetesConfig":{"gatewayConfig":{"ipv4":
{"internalMasqueradeSubnet": "<ipv4_masquerade_subnet>"}}}}}}'

CHAPTER 6. CONFIGURING OVN-KUBERNETES INTERNAL IP ADDRESS SUBNETS

53

ipv4_masquerade_subnet::Specifies an IP address to be used as the IPv4 masquerade
subnet. This range cannot overlap with any other subnets used by OpenShift Container
Platform or on the host itself. In versions of OpenShift Container Platform earlier than 4.17,
the default value for IPv4 was 169.254.169.0/29, and clusters that were upgraded to version
4.17 maintain this value. For new clusters starting from version 4.17, the default value is
169.254.0.0/17.

6.3. CONFIGURING THE OVN-KUBERNETES TRANSIT SUBNET

You can change the transit subnet used by OVN-Kubernetes to avoid conflicting with any existing
subnets already in use in your environment.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Ensure that the cluster uses the OVN-Kubernetes network plugin.

Procedure

To change the OVN-Kubernetes transit subnet, enter the following command:

where:

<transit_subnet>

Specifies an IP address subnet for the distributed transit switch that enables east-west
traffic. This subnet cannot overlap with any other subnets used by OVN-Kubernetes or on
the host itself. The default value for IPv4 is 100.88.0.0/16 and the default value for IPv6 is
fd97::/64.

Example output

Verification

To confirm that the configuration is active, enter the following command:

It can take up to 30 minutes for this change to take effect.

Example output

{

$ oc patch network.operator.openshift.io cluster --type='merge' \
 -p='{"spec":{"defaultNetwork":{"ovnKubernetesConfig":
 {"ipv4":{"internalTransitSwitchSubnet": "<transit_subnet>"},
 "ipv6":{"internalTransitSwitchSubnet": "<transit_subnet>"}}}}}'

network.operator.openshift.io/cluster patched

$ oc get network.operator.openshift.io \
 -o jsonpath="{.items[0].spec.defaultNetwork}"

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

54

 "ovnKubernetesConfig": {
 "ipv4": {
 "internalTransitSwitchSubnet": "100.88.1.0/16"
 },
 },
 "type": "OVNKubernetes"
}

CHAPTER 6. CONFIGURING OVN-KUBERNETES INTERNAL IP ADDRESS SUBNETS

55

CHAPTER 7. CONFIGURING A GATEWAY
As a cluster administrator you can configure the gatewayConfig object to manage how external traffic
leaves the cluster. You do so by setting the routingViaHost parameter to one of the following values:

true means that egress traffic routes through a specific local gateway on the node that hosts
the pod. Egress traffic routes through the host and this traffic applies to the routing table of the
host.

false means that egress traffic routes through a dedicated node but a group of nodes share the
same gateway. Egress traffic does not route through the host. The Open vSwitch (OVS)
outputs traffic directly to the node IP interface.

7.1. CONFIGURING EGRESS ROUTING POLICIES

As a cluster administrator you can configure egress routing policies by using the gatewayConfig
specification in the Cluster Network Operator (CNO). You can use the following procedure to set the
routingViaHost field to true or false.

You can follow the optional step in the procedure to enable IP forwarding alongside the
routingViaHost=true configuration if you need the host network of the node to act as a router for
traffic not related to OVN-Kubernetes. For example, possible use cases for combining local gateway
with IP forwarding include:

Configuring all pod egress traffic to be forwarded via the node’s IP

Integrating OVN-Kubernetes CNI with external network address translation (NAT) devices

Configuring OVN-Kubernetes CNI to use a kernel routing table

Prerequisites

You are logged in as a user with admin privileges.

Procedure

1. Back up the existing network configuration by running the following command:

2. Set the routingViaHost parameter to true by entering the following command. Egress traffic
then gets routed through a specific gateway according to the routes that you configured on the
node.

3. Verify the correct application of the routingViaHost=true configuration by running the
following command:

Example output

$ oc get network.operator cluster -o yaml > network-config-backup.yaml

$ oc patch networks.operator.openshift.io cluster --type=merge -p '{"spec":{"defaultNetwork":
{"ovnKubernetesConfig":{"gatewayConfig":{"routingViaHost": true}}}}}'

$ oc get networks.operator.openshift.io cluster -o yaml | grep -A 5 "gatewayConfig"

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

56

1 A value of true means that egress traffic gets routed through a specific local gateway on
the node that hosts the pod. A value of false for the parameter means that a group of
nodes share a single gateway so traffic does not get routed through a single host.

4. Optional: Enable IP forwarding globally by running the following command:

a. Verify that the ipForwarding spec has been set to Global by running the following
command:

Example output

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
...
gatewayConfig:
 ipv4: {}
 ipv6: {}
 routingViaHost: true 1
 genevePort: 6081
 ipsecConfig:
...

$ oc patch network.operator cluster --type=merge -p '{"spec":{"defaultNetwork":
{"ovnKubernetesConfig":{"gatewayConfig":{"ipForwarding": "Global"}}}}}'

$ oc get networks.operator.openshift.io cluster -o yaml | grep -A 5 "gatewayConfig"

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
...
gatewayConfig:
 ipForwarding: Global
 ipv4: {}
 ipv6: {}
 routingViaHost: true
 genevePort: 6081
...

CHAPTER 7. CONFIGURING A GATEWAY

57

CHAPTER 8. CONFIGURE AN EXTERNAL GATEWAY ON THE
DEFAULT NETWORK

As a cluster administrator, you can configure an external gateway on the default network.

This feature offers the following benefits:

Granular control over egress traffic on a per-namespace basis

Flexible configuration of static and dynamic external gateway IP addresses

Support for both IPv4 and IPv6 address families

8.1. PREREQUISITES

Your cluster uses the OVN-Kubernetes network plugin.

Your infrastructure is configured to route traffic from the secondary external gateway.

8.2. HOW OPENSHIFT CONTAINER PLATFORM DETERMINES THE
EXTERNAL GATEWAY IP ADDRESS

You configure a secondary external gateway with the AdminPolicyBasedExternalRoute custom
resource (CR) from the k8s.ovn.org API group. The CR supports static and dynamic approaches to
specifying an external gateway’s IP address.

Each namespace that a AdminPolicyBasedExternalRoute CR targets cannot be selected by any other
AdminPolicyBasedExternalRoute CR. A namespace cannot have concurrent secondary external
gateways.

Changes to policies are isolated in the controller. If a policy fails to apply, changes to other policies do not
trigger a retry of other policies. Policies are only re-evaluated, applying any differences that might have
occurred by the change, when updates to the policy itself or related objects to the policy such as target
namespaces, pod gateways, or namespaces hosting them from dynamic hops are made.

Static assignment

You specify an IP address directly.

Dynamic assignment

You specify an IP address indirectly, with namespace and pod selectors, and an optional network
attachment definition.

If the name of a network attachment definition is provided, the external gateway IP address
of the network attachment is used.

If the name of a network attachment definition is not provided, the external gateway IP
address for the pod itself is used. However, this approach works only if the pod is configured
with hostNetwork set to true.

8.3. ADMINPOLICYBASEDEXTERNALROUTE OBJECT
CONFIGURATION

You can define an AdminPolicyBasedExternalRoute object, which is cluster scoped, with the following

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

58

You can define an AdminPolicyBasedExternalRoute object, which is cluster scoped, with the following
properties. A namespace can be selected by only one AdminPolicyBasedExternalRoute CR at a time.

Table 8.1. AdminPolicyBasedExternalRoute object

Field Type Description

metadata.name string Specifies the name of the
AdminPolicyBasedExternalRoute object.

spec.from string Specifies a namespace selector that the routing
policies apply to. Only namespaceSelector is
supported for external traffic. For example:

A namespace can only be targeted by one
AdminPolicyBasedExternalRoute CR. If a
namespace is selected by more than one
AdminPolicyBasedExternalRoute CR, a failed
error status occurs on the second and subsequent
CRs that target the same namespace. To apply
updates, you must change the policy itself or related
objects to the policy such as target namespaces, pod
gateways, or namespaces hosting them from
dynamic hops in order for the policy to be re-
evaluated and your changes to be applied.

spec.nextHops object Specifies the destinations where the packets are
forwarded to. Must be either or both of static and
dynamic. You must have at least one next hop
defined.

Table 8.2. nextHops object

Field Type Description

static array Specifies an array of static IP addresses.

dynamic array Specifies an array of pod selectors corresponding to
pods configured with a network attachment
definition to use as the external gateway target.

Table 8.3. nextHops.static object

from:
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: novxlan-
externalgw-ecmp-4059

CHAPTER 8. CONFIGURE AN EXTERNAL GATEWAY ON THE DEFAULT NETWORK

59

Field Type Description

ip string Specifies either an IPv4 or IPv6 address of the next
destination hop.

bfdEnabled boolean Optional: Specifies whether Bi-Directional
Forwarding Detection (BFD) is supported by the
network. The default value is false.

Table 8.4. nextHops.dynamic object

Field Type Description

podSelector string Specifies a [set-based]
(https://kubernetes.io/docs/concepts/overview/wor
king-with-objects/labels/#set-based-requirement)
label selector to filter the pods in the namespace that
match this network configuration.

namespaceSelector string Specifies a set-based selector to filter the
namespaces that the podSelector applies to. You
must specify a value for this field.

bfdEnabled boolean Optional: Specifies whether Bi-Directional
Forwarding Detection (BFD) is supported by the
network. The default value is false.

networkAttachmentName string Optional: Specifies the name of a network
attachment definition. The name must match the list
of logical networks associated with the pod. If this
field is not specified, the host network of the pod is
used. However, the pod must be configure as a host
network pod to use the host network.

8.3.1. Example secondary external gateway configurations

In the following example, the AdminPolicyBasedExternalRoute object configures two static IP
addresses as external gateways for pods in namespaces with the kubernetes.io/metadata.name:
novxlan-externalgw-ecmp-4059 label.

apiVersion: k8s.ovn.org/v1
kind: AdminPolicyBasedExternalRoute
metadata:
 name: default-route-policy
spec:
 from:
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: novxlan-externalgw-ecmp-4059
 nextHops:

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

60

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#set-based-requirement

In the following example, the AdminPolicyBasedExternalRoute object configures a dynamic external
gateway. The IP addresses used for the external gateway are derived from the additional network
attachments associated with each of the selected pods.

In the following example, the AdminPolicyBasedExternalRoute object configures both static and
dynamic external gateways.

 static:
 - ip: "172.18.0.8"
 - ip: "172.18.0.9"

apiVersion: k8s.ovn.org/v1
kind: AdminPolicyBasedExternalRoute
metadata:
 name: shadow-traffic-policy
spec:
 from:
 namespaceSelector:
 matchLabels:
 externalTraffic: ""
 nextHops:
 dynamic:
 - podSelector:
 matchLabels:
 gatewayPod: ""
 namespaceSelector:
 matchLabels:
 shadowTraffic: ""
 networkAttachmentName: shadow-gateway
 - podSelector:
 matchLabels:
 gigabyteGW: ""
 namespaceSelector:
 matchLabels:
 gatewayNamespace: ""
 networkAttachmentName: gateway

apiVersion: k8s.ovn.org/v1
kind: AdminPolicyBasedExternalRoute
metadata:
 name: multi-hop-policy
spec:
 from:
 namespaceSelector:
 matchLabels:
 trafficType: "egress"
 nextHops:
 static:
 - ip: "172.18.0.8"
 - ip: "172.18.0.9"
 dynamic:
 - podSelector:
 matchLabels:
 gatewayPod: ""
 namespaceSelector:

CHAPTER 8. CONFIGURE AN EXTERNAL GATEWAY ON THE DEFAULT NETWORK

61

8.4. CONFIGURE A SECONDARY EXTERNAL GATEWAY

You can configure an external gateway on the default network for a namespace in your cluster.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

1. Create a YAML file that contains an AdminPolicyBasedExternalRoute object.

2. To create an admin policy based external route, enter the following command:

where:

<file>

Specifies the name of the YAML file that you created in the previous step.

Example output

3. To confirm that the admin policy based external route was created, enter the following
command:

where:

<name>

Specifies the name of the AdminPolicyBasedExternalRoute object.

Example output

8.5. ADDITIONAL RESOURCES

 matchLabels:
 egressTraffic: ""
 networkAttachmentName: gigabyte

$ oc create -f <file>.yaml

adminpolicybasedexternalroute.k8s.ovn.org/default-route-policy created

$ oc describe apbexternalroute <name> | tail -n 6

Status:
 Last Transition Time: 2023-04-24T15:09:01Z
 Messages:
 Configured external gateway IPs: 172.18.0.8
 Status: Success
Events: <none>

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

62

For more information about additional network attachments, see Understanding multiple
networks

CHAPTER 8. CONFIGURE AN EXTERNAL GATEWAY ON THE DEFAULT NETWORK

63

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/multiple_networks/#understanding-multiple-networks

CHAPTER 9. CONFIGURING AN EGRESS IP ADDRESS
As a cluster administrator, you can configure the OVN-Kubernetes Container Network Interface (CNI)
network plugin to assign one or more egress IP addresses to a namespace, or to specific pods in a
namespace.

9.1. EGRESS IP ADDRESS ARCHITECTURAL DESIGN AND
IMPLEMENTATION

By using the OpenShift Container Platform egress IP address functionality, you can ensure that the
traffic from one or more pods in one or more namespaces has a consistent source IP address for
services outside the cluster network.

For example, you might have a pod that periodically queries a database that is hosted on a server
outside of your cluster. To enforce access requirements for the server, a packet filtering device is
configured to allow traffic only from specific IP addresses. To ensure that you can reliably allow access
to the server from only that specific pod, you can configure a specific egress IP address for the pod that
makes the requests to the server.

An egress IP address assigned to a namespace is different from an egress router, which is used to send
traffic to specific destinations.

In some cluster configurations, application pods and ingress router pods run on the same node. If you
configure an egress IP address for an application project in this scenario, the IP address is not used when
you send a request to a route from the application project.

IMPORTANT

Egress IP addresses must not be configured in any Linux network configuration files, such
as ifcfg-eth0.

9.1.1. Platform support

The Egress IP address feature that runs on a primary host network is supported on the following
platforms:

Platform Supported

Bare metal Yes

VMware vSphere Yes

Red Hat OpenStack Platform (RHOSP) Yes

Amazon Web Services (AWS) Yes

Google Cloud Yes

Microsoft Azure Yes

IBM Z® and IBM® LinuxONE Yes

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

64

IBM Z® and IBM® LinuxONE for Red Hat Enterprise
Linux (RHEL) KVM

Yes

IBM Power® Yes

Nutanix Yes

Platform Supported

The Egress IP address feature that runs on secondary host networks is supported on the following
platform:

Platform Supported

Bare metal Yes

IMPORTANT

The assignment of egress IP addresses to control plane nodes with the EgressIP feature
is not supported on a cluster provisioned on Amazon Web Services (AWS).
(BZ#2039656).

9.1.2. Public cloud platform considerations

Typically, public cloud providers place a limit on egress IP addresses. This means that there is a
constraint on the absolute number of assignable IP addresses per node for clusters provisioned on
public cloud infrastructure. The maximum number of assignable IP addresses per node, or the IP
capacity, can be described in the following formula:

While the Egress IP addresses capability manages the IP address capacity per node, it is important to
plan for this constraint in your deployments. For example, if a public cloud provider limits IP address
capacity to 10 IP addresses per node, and you have 8 nodes, the total number of assignable IP addresses
is only 80. To achieve a higher IP address capacity, you would need to allocate additional nodes. For
example, if you needed 150 assignable IP addresses, you would need to allocate 7 additional nodes.

To confirm the IP capacity and subnets for any node in your public cloud environment, you can enter the
oc get node <node_name> -o yaml command. The cloud.network.openshift.io/egress-ipconfig
annotation includes capacity and subnet information for the node.

The annotation value is an array with a single object with fields that provide the following information for
the primary network interface:

interface: Specifies the interface ID on AWS and Azure and the interface name on Google
Cloud.

ifaddr: Specifies the subnet mask for one or both IP address families.

capacity: Specifies the IP address capacity for the node. On AWS, the IP address capacity is

IP capacity = public cloud default capacity - sum(current IP assignments)

CHAPTER 9. CONFIGURING AN EGRESS IP ADDRESS

65

https://bugzilla.redhat.com/show_bug.cgi?id=2039656

capacity: Specifies the IP address capacity for the node. On AWS, the IP address capacity is
provided per IP address family. On Azure and Google Cloud, the IP address capacity includes
both IPv4 and IPv6 addresses.

Automatic attachment and detachment of egress IP addresses for traffic between nodes are available.
This allows for traffic from many pods in namespaces to have a consistent source IP address to locations
outside of the cluster. This also supports OpenShift SDN and OVN-Kubernetes, which is the default
networking plugin in Red Hat OpenShift Networking in OpenShift Container Platform 4.19.

NOTE

The RHOSP egress IP address feature creates a Neutron reservation port called
egressip-<IP address>. Using the same RHOSP user as the one used for the OpenShift
Container Platform cluster installation, you can assign a floating IP address to this
reservation port to have a predictable SNAT address for egress traffic. When an egress IP
address on an RHOSP network is moved from one node to another, because of a node
failover, for example, the Neutron reservation port is removed and recreated. This means
that the floating IP association is lost and you need to manually reassign the floating IP
address to the new reservation port.

NOTE

When an RHOSP cluster administrator assigns a floating IP to the reservation port,
OpenShift Container Platform cannot delete the reservation port. The
CloudPrivateIPConfig object cannot perform delete and move operations until an
RHOSP cluster administrator unassigns the floating IP from the reservation port.

The following examples illustrate the annotation from nodes on several public cloud providers. The
annotations are indented for readability.

Example cloud.network.openshift.io/egress-ipconfig annotation on AWS

Example cloud.network.openshift.io/egress-ipconfig annotation on Google Cloud

The following sections describe the IP address capacity for supported public cloud environments for use
in your capacity calculation.

cloud.network.openshift.io/egress-ipconfig: [
 {
 "interface":"eni-078d267045138e436",
 "ifaddr":{"ipv4":"10.0.128.0/18"},
 "capacity":{"ipv4":14,"ipv6":15}
 }
]

cloud.network.openshift.io/egress-ipconfig: [
 {
 "interface":"nic0",
 "ifaddr":{"ipv4":"10.0.128.0/18"},
 "capacity":{"ip":14}
 }
]

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

66

9.1.2.1. Amazon Web Services (AWS) IP address capacity limits

On AWS, constraints on IP address assignments depend on the instance type configured. For more
information, see IP addresses per network interface per instance type

9.1.2.2. Google Cloud IP address capacity limits

On Google Cloud, the networking model implements additional node IP addresses through IP address
aliasing, rather than IP address assignments. However, IP address capacity maps directly to IP aliasing
capacity.

The following capacity limits exist for IP aliasing assignment:

Per node, the maximum number of IP aliases, both IPv4 and IPv6, is 100.

Per VPC, the maximum number of IP aliases is unspecified, but OpenShift Container Platform
scalability testing reveals the maximum to be approximately 15,000.

For more information, see Per instance quotas and Alias IP ranges overview .

9.1.2.3. Microsoft Azure IP address capacity limits

On Azure, the following capacity limits exist for IP address assignment:

Per NIC, the maximum number of assignable IP addresses, for both IPv4 and IPv6, is 256.

Per virtual network, the maximum number of assigned IP addresses cannot exceed 65,536.

For more information, see Networking limits .

9.1.3. Architectural diagram of an egress IP address configuration

The following diagram depicts an egress IP address configuration. The diagram describes four pods in
two different namespaces running on three nodes in a cluster. The nodes are assigned IP addresses
from the 192.168.126.0/18 CIDR block on the host network.

Node 1

meta:
name: node1
labels:
k8s.ovn.org/egress-assignable: ""

Both Node 1 and Node 3 are labeled with k8s.ovn.org/egress-assignable: "" and thus available for the
assignment of egress IP addresses.

The dashed lines in the diagram depict the traffic flow from pod1, pod2, and pod3 traveling through the
pod network to egress the cluster from Node 1 and Node 3. When an external service receives traffic
from any of the pods selected by the example EgressIP object, the source IP address is either
192.168.126.10 or 192.168.126.102. The traffic is balanced roughly equally between these two nodes.

CHAPTER 9. CONFIGURING AN EGRESS IP ADDRESS

67

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://cloud.google.com/vpc/docs/quota#per_instance
https://cloud.google.com/vpc/docs/alias-ip
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits?toc=/azure/virtual-network/toc.json#networking-limits

Based on the diagram, the following manifest file defines namespaces:

Namespace objects

Based on the diagram, the following EgressIP object describes a configuration that selects all pods in
any namespace with the env label set to prod. The egress IP addresses for the selected pods are
192.168.126.10 and 192.168.126.102.

EgressIP object

For the configuration in the previous example, OpenShift Container Platform assigns both egress IP
addresses to the available nodes. The status field reflects whether and where the egress IP addresses
are assigned.

9.1.4. Considerations for using an egress IP address on additional network interfaces

In OpenShift Container Platform, egress IP addresses provide administrators a way to control network
traffic. Egress IP addresses can be used with a br-ex Open vSwitch (OVS) bridge interface and any
physical interface that has IP connectivity enabled.

You can inspect your network interface type by running the following command:

apiVersion: v1
kind: Namespace
metadata:
 name: namespace1
 labels:
 env: prod

apiVersion: v1
kind: Namespace
metadata:
 name: namespace2
 labels:
 env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egressips-prod
spec:
 egressIPs:
 - 192.168.126.10
 - 192.168.126.102
 namespaceSelector:
 matchLabels:
 env: prod
status:
 items:
 - node: node1
 egressIP: 192.168.126.10
 - node: node3
 egressIP: 192.168.126.102

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

68

The primary network interface is assigned a node IP address which also contains a subnet mask.
Information for this node IP address can be retrieved from the Kubernetes node object for each node
within your cluster by inspecting the k8s.ovn.org/node-primary-ifaddr annotation. In an IPv4 cluster,
this annotation is similar to the following example: "k8s.ovn.org/node-primary-ifaddr:
{"ipv4":"192.168.111.23/24"}".

If the egress IP address is not within the subnet of the primary network interface subnet, you can use an
egress IP address on another Linux network interface that is not of the primary network interface type.
By doing so, OpenShift Container Platform administrators are provided with a greater level of control
over networking aspects such as routing, addressing, segmentation, and security policies. This feature
provides users with the option to route workload traffic over specific network interfaces for purposes
such as traffic segmentation or meeting specialized requirements.

If the egress IP address is not within the subnet of the primary network interface, then the selection of
another network interface for egress traffic might occur if they are present on a node.

You can determine which other network interfaces might support egress IP address addresses by
inspecting the k8s.ovn.org/host-cidrs Kubernetes node annotation. This annotation contains the
addresses and subnet mask found for the primary network interface. It also contains additional network
interface addresses and subnet mask information. These addresses and subnet masks are assigned to
network interfaces that use the longest prefix match routing mechanism to determine which network
interface supports the egress IP address.

NOTE

OVN-Kubernetes provides a mechanism to control and direct outbound network traffic
from specific namespaces and pods. This ensures that it exits the cluster through a
particular network interface and with a specific egress IP address.

As an administrator who wants an egress IP address and traffic to route over a particular interface that is
not the primary network interface, you must meet the following conditions:

OpenShift Container Platform is installed on a bare-metal cluster. This feature is disabled within
a cloud or a hypervisor environment.

Your OpenShift Container Platform pods are not configured as host-networked.

You understand that if a network interface is removed or if the IP address and subnet mask
which allows the egress IP address to be hosted on the interface is removed, reconfiguration of
the egress IP address occurs. Consequently, the egress IP address might get assigned to
another node and interface.

If you use an Egress IP address on a secondary network interface card (NIC), you must use the
Node Tuning Operator to enable IP forwarding on the secondary NIC.

You configured a NIC with routes by ensuring a gateway exists in the main routing table. As a
postinstallation task, Red Hat does not support configuring a NIC on a cluster that uses OVN-
Kubernetes.

Routes associated with an egress interface get copied from the main routing table to the
routing table that was created to support the Egress IP object.

$ ip -details link show

CHAPTER 9. CONFIGURING AN EGRESS IP ADDRESS

69

https://networklessons.com/cisco/ccna-200-301/longest-prefix-match-routing

9.2. EGRESSIP OBJECT

View the following YAML files to better understand how you can effectively configure an EgressIP
object to better meet your needs.

The following YAML describes the API for the EgressIP object. The scope of the object is cluster-wide
and is not created in a namespace.

where:

<name>

The name for the EgressIPs object.

<egressIPs>

An array of one or more IP addresses.

<namespaceSelector>

One or more selectors for the namespaces to associate the egress IP addresses with.

<podSelector>

Optional parameter. One or more selectors for pods in the specified namespaces to associate egress
IP addresses with. Applying these selectors allows for the selection of a subset of pods within a
namespace.

The following YAML describes the stanza for the namespace selector:

Namespace selector stanza

where:

<namespaceSelector>

One or more matching rules for namespaces. If more than one match rule is provided, all matching
namespaces are selected.

The following YAML describes the optional stanza for the pod selector:

Pod selector stanza

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: <name>
spec:
 egressIPs:
 - <ip_address>
 namespaceSelector:
 ...
 podSelector:
 ...

namespaceSelector:
 matchLabels:
 <label_name>: <label_value>

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

70

where:

<podSelector>

Optional parameter. One or more matching rules for pods in the namespaces that match the
specified namespaceSelector rules. If specified, only pods that match are selected. Others pods in
the namespace are not selected.

In the following example, the EgressIP object associates the 192.168.126.11 and 192.168.126.102
egress IP addresses with pods that have the app label set to web and are in the namespaces that have
the env label set to prod:

Example EgressIP object

In the following example, the EgressIP object associates the 192.168.127.30 and 192.168.127.40
egress IP addresses with any pods that do not have the environment label set to development:

Example EgressIP object

9.3. ASSIGNMENT OF EGRESS IPS TO A NAMESPACE, NODES, AND

podSelector:
 matchLabels:
 <label_name>: <label_value>

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-group1
spec:
 egressIPs:
 - 192.168.126.11
 - 192.168.126.102
 podSelector:
 matchLabels:
 app: web
 namespaceSelector:
 matchLabels:
 env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-group2
spec:
 egressIPs:
 - 192.168.127.30
 - 192.168.127.40
 namespaceSelector:
 matchExpressions:
 - key: environment
 operator: NotIn
 values:
 - development

CHAPTER 9. CONFIGURING AN EGRESS IP ADDRESS

71

9.3. ASSIGNMENT OF EGRESS IPS TO A NAMESPACE, NODES, AND
PODS

To assign one or more egress IPs to a namespace or specific pods in a namespace, the following
conditions must be satisfied:

At least one node in your cluster must have the k8s.ovn.org/egress-assignable: "" label.

An EgressIP object exists that defines one or more egress IP addresses to use as the source IP
address for traffic leaving the cluster from pods in a namespace.

IMPORTANT

If you create EgressIP objects prior to labeling any nodes in your cluster for egress IP
assignment, OpenShift Container Platform might assign every egress IP address to the
first node with the k8s.ovn.org/egress-assignable: "" label.

To ensure that egress IP addresses are widely distributed across nodes in the cluster,
always apply the label to the nodes you intent to host the egress IP addresses before
creating any EgressIP objects.

When creating an EgressIP object, the following conditions apply to nodes that are labeled with the
k8s.ovn.org/egress-assignable: "" label:

An egress IP address is never assigned to more than one node at a time.

An egress IP address is equally balanced between available nodes that can host the egress IP
address.

If the spec.EgressIPs array in an EgressIP object specifies more than one IP address, the
following conditions apply:

No node will ever host more than one of the specified IP addresses.

Traffic is balanced roughly equally between the specified IP addresses for a given
namespace.

If a node becomes unavailable, any egress IP addresses assigned to it are automatically
reassigned, subject to the previously described conditions.

When a pod matches the selector for multiple EgressIP objects, there is no guarantee which of the
egress IP addresses that are specified in the EgressIP objects is assigned as the egress IP address for
the pod.

Additionally, if an EgressIP object specifies multiple egress IP addresses, there is no guarantee which of
the egress IP addresses might be used. For example, if a pod matches a selector for an EgressIP object
with two egress IP addresses, 10.10.20.1 and 10.10.20.2, either might be used for each TCP connection
or UDP conversation.

9.4. ASSIGNING AN EGRESS IP ADDRESS TO A NAMESPACE

You can assign one or more egress IP addresses to a namespace or to specific pods in a namespace.

Prerequisites

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

72

Install the OpenShift CLI (oc).

Log in to the cluster as a cluster administrator.

Configure at least one node to host an egress IP address.

Procedure

1. Create an EgressIP object.

a. Create a <egressips_name>.yaml file where <egressips_name> is the name of the
object.

b. In the file that you created, define an EgressIP object, as in the following example:

2. To create the object, enter the following command.

where:

<egressips_name>

Replace <egressips_name> with the name of the object.

Example output

3. Optional: Store the <egressips_name>.yaml file so that you can make changes later.

4. Add labels to the namespace that requires egress IP addresses. To add a label to the
namespace of an EgressIP object defined in step 1, run the following command:

where:

<namespace>

Replace <namespace> with the namespace that requires egress IP addresses.

Verification

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-project1
spec:
 egressIPs:
 - 192.168.127.10
 - 192.168.127.11
 namespaceSelector:
 matchLabels:
 env: qa

$ oc apply -f <egressips_name>.yaml

egressips.k8s.ovn.org/<egressips_name> created

$ oc label ns <namespace> env=qa

CHAPTER 9. CONFIGURING AN EGRESS IP ADDRESS

73

To show all egress IP addresses that are in use in your cluster, enter the following command:

NOTE

The command oc get egressip only returns one egress IP address regardless of
how many are configured. This is not a bug and is a limitation of Kubernetes. As a
workaround, you can pass in the -o yaml or -o json flags to return all egress IPs
addresses in use.

Example output

9.5. UNDERSTANDING EGRESSIP FAILOVER CONTROL

The reachabilityTotalTimeoutSeconds parameter controls how quickly the system detects a failing
egressIP node and initiates a failover. This parameter directly determines the maximum time the
platform waits before declaring a node unreachable.

IMPORTANT

When you configure egressIP with multiple egress nodes, the complete failover time
from node failure to recovery on a new node is expected to be on the order of seconds or
longer. This is because the new IP assignment can only begin after the
reachabilityTotalTimeoutSeconds period has fully elapsed without a successful check.

To ensure traffic uses the correct external path, egressIP traffic on a node will always egress through
the network interface on which the egressIP address has been assigned.

9.5.1. Configuring the EgressIP failover time limit

Follow this procedure to configure the reachabilityTotalTimeoutSeconds parameter and control how
quickly the system detects a failing egressIP node and initiates a failover.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a cluster administrator.

Procedure

1. Edit the Network custom resource by running the following command:

$ oc get egressip -o yaml

...
spec:
 egressIPs:
 - 192.168.127.10
 - 192.168.127.11
...

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

74

2. Navigate to the egressIPConfig: {} section under
spec:defaultNetwork:ovnKubernetesConfig:

3. Modify the block to include the reachabilityTotalTimeoutSeconds parameter with your
chosen value, 5 seconds for example. Make sure to use the correct indentation:

NOTE

The value must be an integer between 0 and 60. For details on possible values,
see the "EgressIP failover settings" section.

4. Save and exit the editor. The operator automatically applies the changes.

Verification

1. Verify that the system correctly accepted the reachabilityTotalTimeoutSeconds parameter
by running the following command:

2. Inspect the output and confirm that the reachabilityTotalTimeoutSeconds parameter is
correctly nested under spec:defaultNetwork:ovnKubernetesConfig:egressIPConfig: with
your intended value:

9.5.2. EgressIP failover settings

The reachabilityTotalTimeoutSeconds parameter defines the total time limit in seconds for the
platform health check process before a node is declared down.

The following table summarizes the acceptable values and their implications:

$ oc edit network.operator cluster

 defaultNetwork:
 ovnKubernetesConfig:
 egressIPConfig:
 reachabilityTotalTimeoutSeconds: 5

$ oc get network.operator cluster -o yaml

 # ...
 spec:
 # ...
 defaultNetwork:
 ovnKubernetesConfig:
 egressIPConfig:
 reachabilityTotalTimeoutSeconds: 5
 gatewayConfig:
 # ...

CHAPTER 9. CONFIGURING AN EGRESS IP ADDRESS

75

1

Parameter Value
(Seconds)

Effect on reachability
check

Failover impact and use case

0 Disables the reachability
check.

No automatic failover: Use only if an external system
handles node health monitoring and failover. The
platform will not automatically react to node failures.

1 - 60 Sets the total time limit
for reachability probing.

Directly controls detection time: This value defines
the lower limit for your overall failover time. A smaller
value leads to faster failover but might increase
network traffic. Default: 1 second. The maximum
accepted integer value is 60.

9.6. LABELING A NODE TO HOST EGRESS IP ADDRESSES

You can apply the k8s.ovn.org/egress-assignable="" label to a node in your cluster so that OpenShift
Container Platform can assign one or more egress IP addresses to the node.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a cluster administrator.

Procedure

To label a node so that it can host one or more egress IP addresses, enter the following
command:

The name of the node to label.

TIP

You can alternatively apply the following YAML to add the label to a node:

9.7. CONFIGURING DUAL-STACK NETWORKING FOR AN EGRESSIP
OBJECT

$ oc label nodes <node_name> k8s.ovn.org/egress-assignable="" 1

apiVersion: v1
kind: Node
metadata:
 labels:
 k8s.ovn.org/egress-assignable: ""
 name: <node_name>

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

76

For a cluster configured for dual-stack networking, you can apply dual-stack networking to a single
EgressIP object. The EgressIP object can then extend dual-stack networking capabilities to a pod.

IMPORTANT

Red Hat does not support creating two EgressIP objects to represent dual-stack
networking capabilities. For example, specifying IPv4 addresses with one object and
using another object to specify IPv6 addresses. This configuration limit impacts address-
type assignments to pods.

Prerequisites

You created two egress nodes so that an EgressIP object can allocate IPv4 addresses to one
node and IPv6 addresses to the other node. For more information, see "Assignment of egress IP
addresses to nodes".

Procedure

Create an EgressIP object and configure IPv4 and IPv6 addresses for the object. The following
example EgressIP object uses selectors to identify which pods use the specified egress IP
addresses for their outbound traffic:

Verification

1. Create a Pod manifest file to test and validate your EgressIP object. The pod serves as a client
workload that sends outbound traffic to verify that your EgressIP policy works as expected.

kind: EgressIP
metadata:
 name: egressip-dual
spec:
 egressIPs:
 - 192.168.118.30
 - 2600:52:7:94::30
 namespaceSelector:
 matchLabels:
 env: qa
 podSelector:
 matchLabels:
 egressip: ds
...

apiVersion: v1
kind: Pod
metadata:
 name: ubi-egressip-pod
 namespace: test
 labels:
 egressip: ds
spec:
 containers:
 - name: fedora-curl

CHAPTER 9. CONFIGURING AN EGRESS IP ADDRESS

77

where:

<labels>

Sets custom identifiers so that the EgressIP object can use these labels to apply egress IP
address to target pods.

2. Run a curl request from inside a pod to an external server. This action verifies that outbound
traffic correctly uses an address that you specified in the EgressIP object.

where:

<ipv_address>

Depending on the EgressIP object, enter an IPv4 or IPv6 address.

9.8. ADDITIONAL RESOURCES

LabelSelector meta/v1

LabelSelectorRequirement meta/v1

 image: registry.redhat.io/ubi9/ubi
 command: ["/bin/bash", "-c", "sleep infinity"]
...

$ curl <ipv_address>

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

78

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/common_object_reference/#labelselector-meta-v1
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/common_object_reference/#labelselectorrequirement-meta-v1

CHAPTER 10. CONFIGURING AN EGRESS SERVICE
As a cluster administrator, you can configure egress traffic for pods behind a load balancer service by
using an egress service.

IMPORTANT

Egress service is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

You can use the EgressService custom resource (CR) to manage egress traffic in the following ways:

Assign a load balancer service IP address as the source IP address for egress traffic for pods
behind the load balancer service.
Assigning the load balancer IP address as the source IP address in this context is useful to
present a single point of egress and ingress. For example, in some scenarios, an external system
communicating with an application behind a load balancer service can expect the source and
destination IP address for the application to be the same.

NOTE

When you assign the load balancer service IP address to egress traffic for pods
behind the service, OVN-Kubernetes restricts the ingress and egress point to a
single node. This limits the load balancing of traffic that MetalLB typically
provides.

Assign the egress traffic for pods behind a load balancer to a different network than the default
node network.
This is useful to assign the egress traffic for applications behind a load balancer to a different
network than the default network. Typically, the different network is implemented by using a
VRF instance associated with a network interface.

10.1. EGRESS SERVICE CUSTOM RESOURCE

Define the configuration for an egress service in an EgressService custom resource. The following
YAML describes the fields for the configuration of an egress service:

apiVersion: k8s.ovn.org/v1
kind: EgressService
metadata:
 name: <egress_service_name> 1
 namespace: <namespace> 2
spec:
 sourceIPBy: <egress_traffic_ip> 3
 nodeSelector: 4

CHAPTER 10. CONFIGURING AN EGRESS SERVICE

79

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

Specify the name for the egress service. The name of the EgressService resource must match
the name of the load-balancer service that you want to modify.

Specify the namespace for the egress service. The namespace for the EgressService must match
the namespace of the load-balancer service that you want to modify. The egress service is
namespace-scoped.

Specify the source IP address of egress traffic for pods behind a service. Valid values are
LoadBalancerIP or Network. Use the LoadBalancerIP value to assign the LoadBalancer service
ingress IP address as the source IP address for egress traffic. Specify Network to assign the
network interface IP address as the source IP address for egress traffic.

Optional: If you use the LoadBalancerIP value for the sourceIPBy specification, a single node
handles the LoadBalancer service traffic. Use the nodeSelector field to limit which node can be
assigned this task. When a node is selected to handle the service traffic, OVN-Kubernetes labels
the node in the following format: egress-service.k8s.ovn.org/<svc-namespace>-<svc-name>:
"". When the nodeSelector field is not specified, any node can manage the LoadBalancer service
traffic.

Optional: Specify the routing table ID for egress traffic. Ensure that the value matches the route-
table-id ID defined in the NodeNetworkConfigurationPolicy resource. If you do not include the
network specification, the egress service uses the default host network.

Example egress service specification

10.2. DEPLOYING AN EGRESS SERVICE

You can deploy an egress service to manage egress traffic for pods behind a LoadBalancer service.

The following example configures the egress traffic to have the same source IP address as the ingress
IP address of the LoadBalancer service.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

 matchLabels:
 node-role.kubernetes.io/<role>: ""
 network: <egress_traffic_network> 5

apiVersion: k8s.ovn.org/v1
kind: EgressService
metadata:
 name: test-egress-service
 namespace: test-namespace
spec:
 sourceIPBy: "LoadBalancerIP"
 nodeSelector:
 matchLabels:
 vrf: "true"
 network: "2"

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

80

You configured MetalLB BGPPeer resources.

Procedure

1. Create an IPAddressPool CR with the desired IP for the service:

a. Create a file, such as ip-addr-pool.yaml, with content like the following example:

b. Apply the configuration for the IP address pool by running the following command:

2. Create Service and EgressService CRs:

a. Create a file, such as service-egress-service.yaml, with content like the following example:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: example-pool
 namespace: metallb-system
spec:
 addresses:
 - 172.19.0.100/32

$ oc apply -f ip-addr-pool.yaml

apiVersion: v1
kind: Service
metadata:
 name: example-service
 namespace: example-namespace
 annotations:
 metallb.io/address-pool: example-pool 1
spec:
 selector:
 app: example
 ports:
 - name: http
 protocol: TCP
 port: 8080
 targetPort: 8080
 type: LoadBalancer

apiVersion: k8s.ovn.org/v1
kind: EgressService
metadata:
 name: example-service
 namespace: example-namespace
spec:
 sourceIPBy: "LoadBalancerIP" 2
 nodeSelector: 3
 matchLabels:
 node-role.kubernetes.io/worker: ""

CHAPTER 10. CONFIGURING AN EGRESS SERVICE

81

1

2

3

1

1

The LoadBalancer service uses the IP address assigned by MetalLB from the
example-pool IP address pool.

This example uses the LoadBalancerIP value to assign the ingress IP address of the
LoadBalancer service as the source IP address of egress traffic.

When you specify the LoadBalancerIP value, a single node handles the LoadBalancer
service’s traffic. In this example, only nodes with the worker label can be selected to
handle the traffic. When a node is selected, OVN-Kubernetes labels the node in the
following format egress-service.k8s.ovn.org/<svc-namespace>-<svc-name>: "".

NOTE

If you use the sourceIPBy: "LoadBalancerIP" setting, you must specify the
load-balancer node in the BGPAdvertisement custom resource (CR).

b. Apply the configuration for the service and egress service by running the following
command:

3. Create a BGPAdvertisement CR to advertise the service:

a. Create a file, such as service-bgp-advertisement.yaml, with content like the following
example:

In this example, the EgressService CR configures the source IP address for egress
traffic to use the load-balancer service IP address. Therefore, you must specify the
load-balancer node for return traffic to use the same return path for the traffic
originating from the pod.

Verification

1. Verify that you can access the application endpoint of the pods running behind the MetalLB
service by running the following command:

Update the external IP address and port number to suit your application endpoint.

$ oc apply -f service-egress-service.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: example-bgp-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - example-pool
 nodeSelectors:
 - matchLabels:
 egress-service.k8s.ovn.org/example-namespace-example-service: "" 1

$ curl <external_ip_address>:<port_number> 1

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

82

2. If you assigned the LoadBalancer service’s ingress IP address as the source IP address for
egress traffic, verify this configuration by using tools such as tcpdump to analyze packets
received at the external client.

Additional resources

Exposing a service through a network VRF

Example: Network interface with a VRF instance node network configuration policy

Managing symmetric routing with MetalLB

About virtual routing and forwarding

CHAPTER 10. CONFIGURING AN EGRESS SERVICE

83

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ingress_and_load_balancing/#nw-metallb-bgp-peer-vrf_configure-metallb-bgp-peers
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/kubernetes_nmstate/#virt-example-host-vrf_k8s-nmstate-updating-node-network-config
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ingress_and_load_balancing/#metallb-configure-return-traffic
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/multiple_networks/#cnf-about-virtual-routing-and-forwarding_about-virtual-routing-and-forwarding

CHAPTER 11. CONSIDERATIONS FOR THE USE OF AN EGRESS
ROUTER POD

11.1. ABOUT AN EGRESS ROUTER POD

The OpenShift Container Platform egress router pod redirects traffic to a specified remote server from
a private source IP address that is not used for any other purpose. An egress router pod can send
network traffic to servers that are set up to allow access only from specific IP addresses.

NOTE

The egress router pod is not intended for every outgoing connection. Creating large
numbers of egress router pods can exceed the limits of your network hardware. For
example, creating an egress router pod for every project or application could exceed the
number of local MAC addresses that the network interface can handle before reverting to
filtering MAC addresses in software.

IMPORTANT

The egress router image is not compatible with Amazon AWS, Azure Cloud, or any other
cloud platform that does not support layer 2 manipulations due to their incompatibility
with macvlan traffic.

11.1.1. Egress router modes

In redirect mode , an egress router pod configures iptables rules to redirect traffic from its own IP
address to one or more destination IP addresses. Client pods that need to use the reserved source IP
address must be configured to access the service for the egress router rather than connecting directly
to the destination IP. You can access the destination service and port from the application pod by using
the curl command. For example:

NOTE

The egress router CNI plugin supports redirect mode only. The egress router CNI plugin
does not support HTTP proxy mode or DNS proxy mode.

11.1.2. Egress router pod implementation

The egress router implementation uses the egress router Container Network Interface (CNI) plugin. The
plugin adds a secondary network interface to a pod.

An egress router is a pod that has two network interfaces. For example, the pod can have eth0 and net1
network interfaces. The eth0 interface is on the cluster network and the pod continues to use the
interface for ordinary cluster-related network traffic. The net1 interface is on a secondary network and
has an IP address and gateway for that network. Other pods in the OpenShift Container Platform
cluster can access the egress router service and the service enables the pods to access external
services. The egress router acts as a bridge between pods and an external system.

Traffic that leaves the egress router exits through a node, but the packets have the MAC address of the
net1 interface from the egress router pod.

$ curl <router_service_IP> <port>

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

84

When you add an egress router custom resource, the Cluster Network Operator creates the following
objects:

The network attachment definition for the net1 secondary network interface of the pod.

A deployment for the egress router.

If you delete an egress router custom resource, the Operator deletes the two objects in the preceding
list that are associated with the egress router.

11.1.3. Deployment considerations

An egress router pod adds an additional IP address and MAC address to the primary network interface
of the node. As a result, you might need to configure your hypervisor or cloud provider to allow the
additional address.

Red Hat OpenStack Platform (RHOSP)

If you deploy OpenShift Container Platform on RHOSP, you must allow traffic from the IP and MAC
addresses of the egress router pod on your OpenStack environment. If you do not allow the traffic,
then communication will fail :

VMware vSphere

If you are using VMware vSphere, see the VMware documentation for securing vSphere standard
switches. View and change VMware vSphere default settings by selecting the host virtual switch from
the vSphere Web Client.

Specifically, ensure that the following are enabled:

MAC Address Changes

Forged Transits

Promiscuous Mode Operation

11.1.4. Failover configuration

To avoid downtime, the Cluster Network Operator deploys the egress router pod as a deployment
resource. The deployment name is egress-router-cni-deployment. The pod that corresponds to the
deployment has a label of app=egress-router-cni.

To create a new service for the deployment, use the oc expose deployment/egress-router-cni-
deployment --port <port_number> command or create a file like the following example:

$ openstack port set --allowed-address \
 ip_address=<ip_address>,mac_address=<mac_address> <neutron_port_uuid>

apiVersion: v1
kind: Service
metadata:
 name: app-egress
spec:
 ports:
 - name: tcp-8080
 protocol: TCP

CHAPTER 11. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD

85

https://access.redhat.com/solutions/2803331
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html

11.2. ADDITIONAL RESOURCES

Deploying an egress router in redirection mode

 port: 8080
 - name: tcp-8443
 protocol: TCP
 port: 8443
 - name: udp-80
 protocol: UDP
 port: 80
 type: ClusterIP
 selector:
 app: egress-router-cni

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

86

1

2

3

4

5

CHAPTER 12. DEPLOYING AN EGRESS ROUTER POD IN
REDIRECT MODE

As a cluster administrator, you can deploy an egress router pod to redirect traffic to specified
destination IP addresses from a reserved source IP address.

The egress router implementation uses the egress router Container Network Interface (CNI) plugin.

12.1. EGRESS ROUTER CUSTOM RESOURCE

Define the configuration for an egress router pod in an egress router custom resource. The following
YAML describes the fields for the configuration of an egress router in redirect mode:

Optional: The namespace field specifies the namespace to create the egress router in. If you do
not specify a value in the file or on the command line, the default namespace is used.

The addresses field specifies the IP addresses to configure on the secondary network interface.

The ip field specifies the reserved source IP address and netmask from the physical network that
the node is on to use with egress router pod. Use CIDR notation to specify the IP address and
netmask.

The gateway field specifies the IP address of the network gateway.

Optional: The redirectRules field specifies a combination of egress destination IP address, egress
router port, and protocol. Incoming connections to the egress router on the specified port and
protocol are routed to the destination IP address.

apiVersion: network.operator.openshift.io/v1
kind: EgressRouter
metadata:
 name: <egress_router_name>
 namespace: <namespace> 1
spec:
 addresses: [2
 {
 ip: "<egress_router>", 3
 gateway: "<egress_gateway>" 4
 }
]
 mode: Redirect
 redirect: {
 redirectRules: [5
 {
 destinationIP: "<egress_destination>",
 port: <egress_router_port>,
 targetPort: <target_port>, 6
 protocol: <network_protocol> 7
 },
 ...
],
 fallbackIP: "<egress_destination>" 8
 }

CHAPTER 12. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

87

6

7

8

Optional: The targetPort field specifies the network port on the destination IP address. If this field
is not specified, traffic is routed to the same network port that it arrived on.

The protocol field supports TCP, UDP, or SCTP.

Optional: The fallbackIP field specifies a destination IP address. If you do not specify any redirect
rules, the egress router sends all traffic to this fallback IP address. If you specify redirect rules, any
connections to network ports that are not defined in the rules are sent by the egress router to this
fallback IP address. If you do not specify this field, the egress router rejects connections to network
ports that are not defined in the rules.

Example egress router specification

12.2. DEPLOYING AN EGRESS ROUTER IN REDIRECT MODE

apiVersion: network.operator.openshift.io/v1
kind: EgressRouter
metadata:
 name: egress-router-redirect
spec:
 networkInterface: {
 macvlan: {
 mode: "Bridge"
 }
 }
 addresses: [
 {
 ip: "192.168.12.99/24",
 gateway: "192.168.12.1"
 }
]
 mode: Redirect
 redirect: {
 redirectRules: [
 {
 destinationIP: "10.0.0.99",
 port: 80,
 protocol: UDP
 },
 {
 destinationIP: "203.0.113.26",
 port: 8080,
 targetPort: 80,
 protocol: TCP
 },
 {
 destinationIP: "203.0.113.27",
 port: 8443,
 targetPort: 443,
 protocol: TCP
 }
]
 }

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

88

1

You can deploy an egress router to redirect traffic from its own reserved source IP address to one or
more destination IP addresses.

After you add an egress router, the client pods that need to use the reserved source IP address must be
modified to connect to the egress router rather than connecting directly to the destination IP.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router definition.

2. To ensure that other pods can find the IP address of the egress router pod, create a service that
uses the egress router, as in the following example:

Specify the label for the egress router. The value shown is added by the Cluster Network
Operator and is not configurable.

After you create the service, your pods can connect to the service. The egress router pod
redirects traffic to the corresponding port on the destination IP address. The connections
originate from the reserved source IP address.

Verification

To verify that the Cluster Network Operator started the egress router, complete the following
procedure:

1. View the network attachment definition that the Operator created for the egress router:

The name of the network attachment definition is not configurable.

Example output

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: web-app
 protocol: TCP
 port: 8080
 type: ClusterIP
 selector:
 app: egress-router-cni 1

$ oc get network-attachment-definition egress-router-cni-nad

NAME AGE
egress-router-cni-nad 18m

CHAPTER 12. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

89

2. View the deployment for the egress router pod:

The name of the deployment is not configurable.

Example output

3. View the status of the egress router pod:

Example output

4. View the logs and the routing table for the egress router pod.

a. Get the node name for the egress router pod:

b. Enter into a debug session on the target node. This step instantiates a debug pod called
<node_name>-debug:

c. Set /host as the root directory within the debug shell. The debug pod mounts the root file
system of the host in /host within the pod. By changing the root directory to /host, you can run
binaries from the executable paths of the host:

d. From within the chroot environment console, display the egress router logs:

Example output

$ oc get deployment egress-router-cni-deployment

NAME READY UP-TO-DATE AVAILABLE AGE
egress-router-cni-deployment 1/1 1 1 18m

$ oc get pods -l app=egress-router-cni

NAME READY STATUS RESTARTS AGE
egress-router-cni-deployment-575465c75c-qkq6m 1/1 Running 0 18m

$ POD_NODENAME=$(oc get pod -l app=egress-router-cni -o jsonpath="
{.items[0].spec.nodeName}")

$ oc debug node/$POD_NODENAME

chroot /host

cat /tmp/egress-router-log

2021-04-26T12:27:20Z [debug] Called CNI ADD
2021-04-26T12:27:20Z [debug] Gateway: 192.168.12.1
2021-04-26T12:27:20Z [debug] IP Source Addresses: [192.168.12.99/24]
2021-04-26T12:27:20Z [debug] IP Destinations: [80 UDP 10.0.0.99/30 8080 TCP
203.0.113.26/30 80 8443 TCP 203.0.113.27/30 443]
2021-04-26T12:27:20Z [debug] Created macvlan interface
2021-04-26T12:27:20Z [debug] Renamed macvlan to "net1"
2021-04-26T12:27:20Z [debug] Adding route to gateway 192.168.12.1 on macvlan interface

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

90

The logging file location and logging level are not configurable when you start the egress router
by creating an EgressRouter object as described in this procedure.

e. From within the chroot environment console, get the container ID:

Example output

f. Determine the process ID of the container. In this example, the container ID is bac9fae69ddb6:

Example output

g. Enter the network namespace of the container:

h. Display the routing table:

In the following example output, the net1 network interface is the default route. Traffic for the
cluster network uses the eth0 network interface. Traffic for the 192.168.12.0/24 network uses
the net1 network interface and originates from the reserved source IP address 192.168.12.99.
The pod routes all other traffic to the gateway at IP address 192.168.12.1. Routing for the
service network is not shown.

Example output

2021-04-26T12:27:20Z [debug] deleted default route {Ifindex: 3 Dst: <nil> Src: <nil> Gw:
10.128.10.1 Flags: [] Table: 254}
2021-04-26T12:27:20Z [debug] Added new default route with gateway 192.168.12.1
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p
UDP --dport 80 -j DNAT --to-destination 10.0.0.99
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p
TCP --dport 8080 -j DNAT --to-destination 203.0.113.26:80
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p
TCP --dport 8443 -j DNAT --to-destination 203.0.113.27:443
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat -o net1 -j SNAT --to-
source 192.168.12.99

crictl ps --name egress-router-cni-pod | awk '{print $1}'

CONTAINER
bac9fae69ddb6

crictl inspect -o yaml bac9fae69ddb6 | grep 'pid:' | awk '{print $2}'

68857

nsenter -n -t 68857

ip route

default via 192.168.12.1 dev net1
10.128.10.0/23 dev eth0 proto kernel scope link src 10.128.10.18
192.168.12.0/24 dev net1 proto kernel scope link src 192.168.12.99
192.168.12.1 dev net1

CHAPTER 12. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

91

CHAPTER 13. ENABLING MULTICAST FOR A PROJECT

13.1. ABOUT MULTICAST

With IP multicast, data is broadcast to many IP addresses simultaneously.

IMPORTANT

At this time, multicast is best used for low-bandwidth coordination or service
discovery and not a high-bandwidth solution.

By default, network policies affect all connections in a namespace. However,
multicast is unaffected by network policies. If multicast is enabled in the same
namespace as your network policies, it is always allowed, even if there is a deny-
all network policy.

Cluster administrators must consider the implications of the exemption of
multicast from network policies before enabling it.

Multicast traffic between OpenShift Container Platform pods is disabled by default. If you are using the
OVN-Kubernetes network plugin, you can enable multicast on a per-project basis.

13.2. ENABLING MULTICAST BETWEEN PODS

You can enable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command to enable multicast for a project. Replace <namespace> with the
namespace for the project you want to enable multicast for.

TIP

You can alternatively apply the following YAML to add the annotation:

$ oc annotate namespace <namespace> \
 k8s.ovn.org/multicast-enabled=true

apiVersion: v1
kind: Namespace
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/multicast-enabled: "true"

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

92

Verification

To verify that multicast is enabled for a project, complete the following procedure:

1. Change your current project to the project that you enabled multicast for. Replace <project>
with the project name.

2. Create a pod to act as a multicast receiver:

3. Create a pod to act as a multicast sender:

4. In a new terminal window or tab, start the multicast listener.

a. Get the IP address for the Pod:

$ oc project <project>

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: mlistener
 labels:
 app: multicast-verify
spec:
 containers:
 - name: mlistener
 image: registry.access.redhat.com/ubi9
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat hostname && sleep inf"]
 ports:
 - containerPort: 30102
 name: mlistener
 protocol: UDP
EOF

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: msender
 labels:
 app: multicast-verify
spec:
 containers:
 - name: msender
 image: registry.access.redhat.com/ubi9
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat && sleep inf"]
EOF

$ POD_IP=$(oc get pods mlistener -o jsonpath='{.status.podIP}')

CHAPTER 13. ENABLING MULTICAST FOR A PROJECT

93

b. Start the multicast listener by entering the following command:

5. Start the multicast transmitter.

a. Get the pod network IP address range:

b. To send a multicast message, enter the following command:

If multicast is working, the previous command returns the following output:

$ oc exec mlistener -i -t -- \
 socat UDP4-RECVFROM:30102,ip-add-membership=224.1.0.1:$POD_IP,fork
EXEC:hostname

$ CIDR=$(oc get Network.config.openshift.io cluster \
 -o jsonpath='{.status.clusterNetwork[0].cidr}')

$ oc exec msender -i -t -- \
 /bin/bash -c "echo | socat STDIO UDP4-
DATAGRAM:224.1.0.1:30102,range=$CIDR,ip-multicast-ttl=64"

mlistener

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

94

1

CHAPTER 14. DISABLING MULTICAST FOR A PROJECT

14.1. DISABLING MULTICAST BETWEEN PODS

You can disable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Disable multicast by running the following command:

The namespace for the project you want to disable multicast for.

TIP

You can alternatively apply the following YAML to delete the annotation:

$ oc annotate namespace <namespace> \ 1
 k8s.ovn.org/multicast-enabled-

apiVersion: v1
kind: Namespace
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/multicast-enabled: null

CHAPTER 14. DISABLING MULTICAST FOR A PROJECT

95

CHAPTER 15. TRACKING NETWORK FLOWS
As a cluster administrator, you can collect information about pod network flows from your cluster to
assist with the following areas:

Monitor ingress and egress traffic on the pod network.

Troubleshoot performance issues.

Gather data for capacity planning and security audits.

When you enable the collection of the network flows, only the metadata about the traffic is collected.
For example, packet data is not collected, but the protocol, source address, destination address, port
numbers, number of bytes, and other packet-level information is collected.

The data is collected in one or more of the following record formats:

NetFlow

sFlow

IPFIX

When you configure the Cluster Network Operator (CNO) with one or more collector IP addresses and
port numbers, the Operator configures Open vSwitch (OVS) on each node to send the network flows
records to each collector.

You can configure the Operator to send records to more than one type of network flow collector. For
example, you can send records to NetFlow collectors and also send records to sFlow collectors.

When OVS sends data to the collectors, each type of collector receives identical records. For example, if
you configure two NetFlow collectors, OVS on a node sends identical records to the two collectors. If
you also configure two sFlow collectors, the two sFlow collectors receive identical records. However,
each collector type has a unique record format.

Collecting the network flows data and sending the records to collectors affects performance. Nodes
process packets at a slower rate. If the performance impact is too great, you can delete the destinations
for collectors to disable collecting network flows data and restore performance.

NOTE

Enabling network flow collectors might have an impact on the overall performance of the
cluster network.

15.1. NETWORK OBJECT CONFIGURATION FOR TRACKING NETWORK
FLOWS

The fields for configuring network flows collectors in the Cluster Network Operator (CNO) are shown in
the following table:

Table 15.1. Network flows configuration

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

96

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.

spec.exportNet
workFlows

object One or more of netFlow, sFlow, or ipfix.

spec.exportNet
workFlows.netF
low.collectors

array A list of IP address and network port pairs for up to 10 collectors.

spec.exportNet
workFlows.sFlo
w.collectors

array A list of IP address and network port pairs for up to 10 collectors.

spec.exportNet
workFlows.ipfix.
collectors

array A list of IP address and network port pairs for up to 10 collectors.

After applying the following manifest to the CNO, the Operator configures Open vSwitch (OVS) on
each node in the cluster to send network flows records to the NetFlow collector that is listening at
192.168.1.99:2056.

Example configuration for tracking network flows

15.2. ADDING DESTINATIONS FOR NETWORK FLOWS COLLECTORS

As a cluster administrator, you can configure the Cluster Network Operator (CNO) to send network
flows metadata about the pod network to a network flows collector.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You have a network flows collector and know the IP address and port that it listens on.

Procedure

1. Create a patch file that specifies the network flows collector type and the IP address and port

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 exportNetworkFlows:
 netFlow:
 collectors:
 - 192.168.1.99:2056

CHAPTER 15. TRACKING NETWORK FLOWS

97

1. Create a patch file that specifies the network flows collector type and the IP address and port
information of the collectors:

2. Configure the CNO with the network flows collectors:

Example output

Verification

Verification is not typically necessary. You can run the following command to confirm that Open vSwitch
(OVS) on each node is configured to send network flows records to one or more collectors.

1. View the Operator configuration to confirm that the exportNetworkFlows field is configured:

Example output

2. View the network flows configuration in OVS from each node:

Example output

spec:
 exportNetworkFlows:
 netFlow:
 collectors:
 - 192.168.1.99:2056

$ oc patch network.operator cluster --type merge -p "$(cat <file_name>.yaml)"

network.operator.openshift.io/cluster patched

$ oc get network.operator cluster -o jsonpath="{.spec.exportNetworkFlows}"

{"netFlow":{"collectors":["192.168.1.99:2056"]}}

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node -o
jsonpath='{range@.items[*]}{.metadata.name}{"\n"}{end}');
 do ;
 echo;
 echo $pod;
 oc -n openshift-ovn-kubernetes exec -c ovnkube-controller $pod \
 -- bash -c 'for type in ipfix sflow netflow ; do ovs-vsctl find $type ; done';
done

ovnkube-node-xrn4p
_uuid : a4d2aaca-5023-4f3d-9400-7275f92611f9
active_timeout : 60
add_id_to_interface : false
engine_id : []
engine_type : []
external_ids : {}
targets : ["192.168.1.99:2056"]

ovnkube-node-z4vq9

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

98

15.3. DELETING ALL DESTINATIONS FOR NETWORK FLOWS
COLLECTORS

As a cluster administrator, you can configure the Cluster Network Operator (CNO) to stop sending
network flows metadata to a network flows collector.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

1. Remove all network flows collectors:

Example output

15.4. ADDITIONAL RESOURCES

Network [operator.openshift.io/v1]

_uuid : 61d02fdb-9228-4993-8ff5-b27f01a29bd6
active_timeout : 60
add_id_to_interface : false
engine_id : []
engine_type : []
external_ids : {}
targets : ["192.168.1.99:2056"]-

...

$ oc patch network.operator cluster --type='json' \
 -p='[{"op":"remove", "path":"/spec/exportNetworkFlows"}]'

network.operator.openshift.io/cluster patched

CHAPTER 15. TRACKING NETWORK FLOWS

99

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operator_apis/#network-operator-openshift-io-v1

CHAPTER 16. CONFIGURING HYBRID NETWORKING
As a cluster administrator, you can configure the Red Hat OpenShift Networking OVN-Kubernetes
network plugin to allow Linux and Windows nodes to host Linux and Windows workloads, respectively.

16.1. CONFIGURING HYBRID NETWORKING WITH OVN-KUBERNETES

You can configure your cluster to use hybrid networking with the OVN-Kubernetes network plugin. This
allows a hybrid cluster that supports different node networking configurations.

NOTE

This configuration is necessary to run both Linux and Windows nodes in the same cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a user with cluster-admin privileges.

Ensure that the cluster uses the OVN-Kubernetes network plugin.

Procedure

1. To configure the OVN-Kubernetes hybrid network overlay, enter the following command:

where:

cidr

Specify the CIDR configuration used for nodes on the additional overlay network. This CIDR
must not overlap with the cluster network CIDR.

hostPrefix

Specifies the subnet prefix length to assign to each individual node. For example, if
hostPrefix is set to 23, then each node is assigned a /23 subnet out of the given cidr, which

$ oc patch networks.operator.openshift.io cluster --type=merge \
 -p '{
 "spec":{
 "defaultNetwork":{
 "ovnKubernetesConfig":{
 "hybridOverlayConfig":{
 "hybridClusterNetwork":[
 {
 "cidr": "<cidr>",
 "hostPrefix": <prefix>
 }
],
 "hybridOverlayVXLANPort": <overlay_port>
 }
 }
 }
 }
 }'

OpenShift Container Platform 4.19 OVN-Kubernetes network plugin

100

allows for 510 (2^(32 - 23) - 2) pod IP addresses. If you are required to provide access to
nodes from an external network, configure load balancers and routers to manage the traffic.

hybridOverlayVXLANPort

Specify a custom VXLAN port for the additional overlay network. This is required for running
Windows nodes in a cluster installed on vSphere, and must not be configured for any other
cloud provider. The custom port can be any open port excluding the default 6081 port. For
more information on this requirement, see Pod-to-pod connectivity between hosts is broken
in the Microsoft documentation.

NOTE

Windows Server Long-Term Servicing Channel (LTSC): Windows Server 2019 is
not supported on clusters with a custom hybridOverlayVXLANPort value
because this Windows server version does not support selecting a custom VXLAN
port.

Example output

2. To confirm that the configuration is active, enter the following command. It can take several
minutes for the update to apply.

16.2. ADDITIONAL RESOURCES

Understanding Windows container workloads

Enabling Windows container workloads

Installing a cluster on AWS with network customizations

Installing a cluster on Azure with network customizations

network.operator.openshift.io/cluster patched

$ oc get network.operator.openshift.io -o jsonpath="
{.items[0].spec.defaultNetwork.ovnKubernetesConfig}"

CHAPTER 16. CONFIGURING HYBRID NETWORKING

101

https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/common-problems#pod-to-pod-connectivity-between-hosts-is-broken-on-my-kubernetes-cluster-running-on-vsphere
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/windows_container_support_for_openshift/#understanding-windows-container-workloads
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/windows_container_support_for_openshift/#enabling-windows-container-workloads
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_aws/#installing-aws-network-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_azure/#installing-azure-network-customizations

	Table of Contents
	CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN
	1.1. OVN-KUBERNETES PURPOSE
	1.2. OVN-KUBERNETES IPV6 AND DUAL-STACK LIMITATIONS
	1.3. SESSION AFFINITY
	1.3.1. Stickiness timeout for session affinity

	CHAPTER 2. OVN-KUBERNETES ARCHITECTURE
	2.1. INTRODUCTION TO OVN-KUBERNETES ARCHITECTURE
	2.2. LISTING ALL RESOURCES IN THE OVN-KUBERNETES PROJECT
	2.3. LISTING THE OVN-KUBERNETES NORTHBOUND DATABASE CONTENTS
	2.4. COMMAND-LINE ARGUMENTS FOR OVN-NBCTL TO EXAMINE NORTHBOUND DATABASE CONTENTS
	2.5. LISTING THE OVN-KUBERNETES SOUTHBOUND DATABASE CONTENTS
	2.6. COMMAND-LINE ARGUMENTS FOR OVN-SBCTL TO EXAMINE SOUTHBOUND DATABASE CONTENTS
	2.7. OVN-KUBERNETES LOGICAL ARCHITECTURE
	2.7.1. Installing network-tools on local host
	2.7.2. Running network-tools

	2.8. ADDITIONAL RESOURCES

	CHAPTER 3. TROUBLESHOOTING OVN-KUBERNETES
	3.1. MONITORING OVN-KUBERNETES HEALTH BY USING READINESS PROBES
	3.2. VIEWING OVN-KUBERNETES ALERTS IN THE CONSOLE
	3.3. VIEWING OVN-KUBERNETES ALERTS IN THE CLI
	3.4. VIEWING THE OVN-KUBERNETES LOGS USING THE CLI
	3.5. VIEWING THE OVN-KUBERNETES LOGS USING THE WEB CONSOLE
	3.5.1. Changing the OVN-Kubernetes log levels

	3.6. CHECKING THE OVN-KUBERNETES POD NETWORK CONNECTIVITY
	3.7. CHECKING OVN-KUBERNETES NETWORK TRAFFIC WITH OVS SAMPLING USING THE CLI
	3.7.1. OVN-Kubernetes network traffic with OVS sampling flags

	3.8. ADDITIONAL RESOURCES

	CHAPTER 4. TRACING OPENFLOW WITH OVNKUBE-TRACE
	4.1. INSTALLING THE OVNKUBE-TRACE ON LOCAL HOST
	4.2. RUNNING OVNKUBE-TRACE
	4.3. ADDITIONAL RESOURCES

	CHAPTER 5. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING
	5.1. CONVERTING TO A DUAL-STACK CLUSTER NETWORK
	5.2. CONVERTING TO A SINGLE-STACK CLUSTER NETWORK

	CHAPTER 6. CONFIGURING OVN-KUBERNETES INTERNAL IP ADDRESS SUBNETS
	6.1. CONFIGURING THE OVN-KUBERNETES JOIN SUBNET
	6.2. CONFIGURING THE OVN-KUBERNETES MASQUERADE SUBNET AS A POST-INSTALLATION OPERATION
	6.3. CONFIGURING THE OVN-KUBERNETES TRANSIT SUBNET

	CHAPTER 7. CONFIGURING A GATEWAY
	7.1. CONFIGURING EGRESS ROUTING POLICIES

	CHAPTER 8. CONFIGURE AN EXTERNAL GATEWAY ON THE DEFAULT NETWORK
	8.1. PREREQUISITES
	8.2. HOW OPENSHIFT CONTAINER PLATFORM DETERMINES THE EXTERNAL GATEWAY IP ADDRESS
	8.3. ADMINPOLICYBASEDEXTERNALROUTE OBJECT CONFIGURATION
	8.3.1. Example secondary external gateway configurations

	8.4. CONFIGURE A SECONDARY EXTERNAL GATEWAY
	8.5. ADDITIONAL RESOURCES

	CHAPTER 9. CONFIGURING AN EGRESS IP ADDRESS
	9.1. EGRESS IP ADDRESS ARCHITECTURAL DESIGN AND IMPLEMENTATION
	9.1.1. Platform support
	9.1.2. Public cloud platform considerations
	9.1.2.1. Amazon Web Services (AWS) IP address capacity limits
	9.1.2.2. Google Cloud IP address capacity limits
	9.1.2.3. Microsoft Azure IP address capacity limits

	9.1.3. Architectural diagram of an egress IP address configuration
	9.1.4. Considerations for using an egress IP address on additional network interfaces

	9.2. EGRESSIP OBJECT
	9.3. ASSIGNMENT OF EGRESS IPS TO A NAMESPACE, NODES, AND PODS
	9.4. ASSIGNING AN EGRESS IP ADDRESS TO A NAMESPACE
	9.5. UNDERSTANDING EGRESSIP FAILOVER CONTROL
	9.5.1. Configuring the EgressIP failover time limit
	9.5.2. EgressIP failover settings

	9.6. LABELING A NODE TO HOST EGRESS IP ADDRESSES
	9.7. CONFIGURING DUAL-STACK NETWORKING FOR AN EGRESSIP OBJECT
	9.8. ADDITIONAL RESOURCES

	CHAPTER 10. CONFIGURING AN EGRESS SERVICE
	10.1. EGRESS SERVICE CUSTOM RESOURCE
	10.2. DEPLOYING AN EGRESS SERVICE

	CHAPTER 11. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
	11.1. ABOUT AN EGRESS ROUTER POD
	11.1.1. Egress router modes
	11.1.2. Egress router pod implementation
	11.1.3. Deployment considerations
	11.1.4. Failover configuration

	11.2. ADDITIONAL RESOURCES

	CHAPTER 12. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE
	12.1. EGRESS ROUTER CUSTOM RESOURCE
	12.2. DEPLOYING AN EGRESS ROUTER IN REDIRECT MODE

	CHAPTER 13. ENABLING MULTICAST FOR A PROJECT
	13.1. ABOUT MULTICAST
	13.2. ENABLING MULTICAST BETWEEN PODS

	CHAPTER 14. DISABLING MULTICAST FOR A PROJECT
	14.1. DISABLING MULTICAST BETWEEN PODS

	CHAPTER 15. TRACKING NETWORK FLOWS
	15.1. NETWORK OBJECT CONFIGURATION FOR TRACKING NETWORK FLOWS
	15.2. ADDING DESTINATIONS FOR NETWORK FLOWS COLLECTORS
	15.3. DELETING ALL DESTINATIONS FOR NETWORK FLOWS COLLECTORS
	15.4. ADDITIONAL RESOURCES

	CHAPTER 16. CONFIGURING HYBRID NETWORKING
	16.1. CONFIGURING HYBRID NETWORKING WITH OVN-KUBERNETES
	16.2. ADDITIONAL RESOURCES

