& RedHat

OpenShift Container Platform 4.19

Tutorials

Getting started in OpenShift Container Platform

Last Updated: 2026-01-15

OpenShift Container Platform 4.19 Tutorials

Getting started in OpenShift Container Platform

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information to help you get started in OpenShift Container Platform. This
includes definitions for common terms found in Kubernetes and OpenShift Container Platform. This
also contains a walkthrough of the OpenShift Container Platform web console, as well as creating
and building applications by using the command-line interface.

Table of Contents

Table of Contents

CHAPTER 1. TUTORIALS OVERVIEW Lo i i i e it 3
1.1. ADDITIONAL LEARNING RESOURCES 3
CHAPTER 2. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE WEB CONSOLE 4

2.1. PREREQUISITES 4
2.2. CREATING A PROJECT 4
2.3. GRANTING VIEW PERMISSIONS 5
2.4. DEPLOYING THE FRONT-END APPLICATION 6

2.4.1. Viewing pod details 7

2.4.2. Scaling up the application 8
2.5.DEPLOYING THE BACK-END APPLICATION 9

2.6. DEPLOYING THE DATABASE APPLICATION 11
2.6.1. Providing access to the database by creating a secret 12
2.6.2. Loading data into the database 13

2.7.VIEWING THE APPLICATION IN A WEB BROWSER 14

CHAPTER 3. TUTORIAL: DEPLOYING AN APPLICATIONBYUSINGTHECLIcciiiiiiiiiieennnn. 16

3.1. PREREQUISITES 16

3.2. CREATING A PROJECT 16

3.3. GRANTING VIEW PERMISSIONS 17

3.4. DEPLOYING THE FRONT-END APPLICATION 18
3.4.1. Exposing the front-end service 19
3.4.2. Viewing pod details 20
3.4.3. Scaling up the deployment 21

3.5. DEPLOYING THE BACK-END APPLICATION 22
3.5.1. Exposing the back-end service 23

3.6. DEPLOYING THE DATABASE APPLICATION 23
3.6.1. Providing access to the database by creating a secret 24
3.6.2. Loading data into the database 25

3.7.VIEWING THE APPLICATION IN A WEB BROWSER 26

CHAPTER 4. ADDITIONAL HANDS-ON LEARNING .. .ttt ei et eaeeannennneenn, 28

4.1. RED HAT DEVELOPER LEARNING PATHS 28

4.2. RED HAT TRAINING COURSES 28

4.3. RED HAT CHEAT SHEETS 29

OpenShift Container Platform 4.19 Tutorials

CHAPTER 1. TUTORIALS OVERVIEW

CHAPTER 1. TUTORIALS OVERVIEW

You can follow an end-to-end example of deploying an application on OpenShift Container Platform
either by using the OpenShift CLI (o¢) or the web console.

Choose one of the following tutorials:
® Tutorial: Deploying an application by using the CLI

® Tutorial: Deploying an application by using the web console

1.1. ADDITIONAL LEARNING RESOURCES

To discover additional tutorials and hands-on learning resources for OpenShift Container Platform, see
Additional hands-on learning.

OpenShift Container Platform 4.19 Tutorials

CHAPTER 2. TUTORIAL: DEPLOYING AN APPLICATION BY

USING THE WEB CONSOLE

To learn how to stand up an application on OpenShift Container Platform by using the web console,
follow the provided tutorial. In this tutorial, you will deploy the services that are required for an
application that displays a map of national parks across the world.

To complete this tutorial, you will perform the following steps:

1.

Create a project for the application.
This step allows your application to be isolated from other cluster user’s workloads.

Grant view permissions.
This step grants view permissions to interact with the OpenShift API to help discover services
and other resources running within the project.

Deploy the front-end application.
This step deploys the parksmap front-end application, exposes it externally, and scales it up to
two instances.

Deploy the back-end application.
This step deploys the nationalparks back-end application and exposes it externally.

Deploy the database application.
This step deploys the mongodb-nationalparks MongoDB database, loads data into the
database, and sets up the necessary credentials to access the database.

After you complete these steps, you can view the national parks application in a web browser .

2.1. PREREQUISITES

Before you start this tutorial, ensure that you have the following required prerequisites:

® You have access to a test OpenShift Container Platform cluster.
If your organization does not have a cluster to test on, you can request access to the Developer
Sandbox to get a trial of OpenShift Container Platform.

® You have the appropriate permissions, such as the cluster-admin cluster role, to create a
project and applications within it.
If you do not have the required permissions, contact your cluster administrator. You need the
self-provisioner role to create a project and the admin role on the project to modify resources
in that project.
If you are using Developer Sandbox, a project is created for you with the required permissions.

® You have logged in to the OpenShift Container Platform web console .

2.2. CREATING A PROJECT

Create a new project to contain all required resources and application components for the tutorial.

A project enables a community of users to organize and manage their content in isolation. Projects are
OpenShift Container Platform extensions to Kubernetes namespaces. Projects have additional features
that enable user self-provisioning. Each project has its own set of objects, policies, constraints, and

https://developers.redhat.com/developer-sandbox
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#viewing-cluster-roles_using-rbac
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console-overview

CHAPTER 2. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE WEB CONSOLE

service accounts.
Cluster administrators can allow developers to create their own projects. In most cases, you
automatically have access to your own projects. Administrators can grant access to other projects as

needed.

This procedure creates a new project called user-getting-started. You will use this project throughout
the rest of this tutorial.

IMPORTANT

If you are using Developer Sandbox to complete this tutorial, skip this procedure. A
project has already been created for you.

Prerequisites

® You have logged in to the OpenShift Container Platform web console.

Procedure

1. Navigate to Home — Projects.
2. Click Create Project.
3. Inthe Name field, enter user-getting-started.

4. Click Create.

Additional resources

® Viewing a project by using the web console

2.3. GRANTING VIEW PERMISSIONS
Configure the necessary permissions for the application to access the required cluster resources.

OpenShift Container Platform automatically creates several service accounts in every project. The
default service account takes responsibility for running the pods. OpenShift Container Platform uses
and injects this service account into every pod that launches.

By default, the default service account has limited permissions to interact with the OpenShift API.

As a requirement of the application, you must assign the view role to the default service account to
allow it to communicate with the OpenShift API to learn about pods, services, and resources within the
project.

Prerequisites

® You have cluster-admin or project-level admin privileges.

Procedure

1. Navigate to User Management - RoleBindings.

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/building_applications/#viewing-a-project-using-the-web-console_projects

OpenShift Container Platform 4.19 Tutorials

2. Click Create binding
3. In the Name field, enter sa-user-account.

4. In the Namespace field, search for and select user-getting-started.

IMPORTANT

If you are using a different project, select the name of your project.

5. In the Role name field, search for and select view.
6. Under Subject, select ServiceAccount.

7. In the Subject namespacefield, search for and select user-getting-started.

IMPORTANT

If you are using a different project, select the name of your project.

8. In the Subject namefield, enter default.

9. Click Create.

Additional resources

® RBAC overview

2.4. DEPLOYING THE FRONT-END APPLICATION
Deploy the front-end application that provides the external-facing web component for the tutorial.

The simplest way to deploy an application in OpenShift Container Platform is to run a provided container
image.

The following procedure deploys parksmap, which is the front-end component of the national-parks-
app application. The web application displays an interactive map of the locations of national parks
across the world.

Procedure

1. From the Quick create (ﬁ) menu in the upper right corner, click Container images.

2. Select Image name from external registryand enter
quay.io/openshiftroadshow/parksmap:latest.

3. Scroll to the General section.
4. In the Application name field, enter national-parks-app.
5. In the Name field, ensure that the value is parksmap.

6. Scroll to the Deploy section.

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#authorization-overview_using-rbac

CHAPTER 2. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE WEB CONSOLE

7. In the Resource typefield, ensure that Deployment is selected.

8. In the Advanced options section, ensure that Create a routeis selected.
By default, services running on OpenShift Container Platform are not accessible externally. You
must select this option to create a route so that external clients can access your service.

9. Click the Labels hyperlink.
The application code requires certain labels to be set.

10. Add the following labels to the text area and press Enter after each key/value pair:
® app=national-parks-app
e component=parksmap
e role=frontend

1. Click Create.
You are redirected to the Topology page where you can see the parksmap deployment in the
national-parks-app application.

Additional resources

® \Viewing the topology of your application

2.4.1. Viewing pod details

Retrieve detailed pod information to confirm the running status and resource configuration of the
applications in this tutorial.

OpenShift Container Platform uses the Kubernetes concept of a pod, which is one or more containers
deployed together on one host, and the smallest compute unit that can be defined, deployed, and
managed. Pods are the rough equivalent of a machine instance, physical or virtual, to a container.

The Overview panel enables you to access many features of the parksmap deployment. The Details
and Resources tabs enable you to scale application pods and check the status of builds, services, and
routes.

Prerequisites

® You have deployed the parksmap front-end application.

Procedure

1. Navigate to Workloads — Topology.

2. Click the parksmap deployment in the national-parks-app application.

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/building_applications/#odc-viewing-application-topology_viewing-application-composition-using-topology-view

OpenShift Container Platform 4.19 Tutorials

Figure 2.1. Parksmap deployment

4

Q parksmap | %

This opens an overview panel with the following tabs:

® Details: View details about your deployment, edit certain settings, and scale your
deployment.

® Resources: View details for the pods, services, and routes associated with your deployment.
® Observe: View metrics and events for your deployment.

3. Toview the logs for a pod, select the Resources tab and click View logs next to the parksmap
pod.

Additional resources

® |nteracting with applications and components
® Scaling application pods and checking builds and routes

® | abels and annotations used for the Topology view

2.4.2. Scaling up the application

Scale the application deployment up or down to meet workload demands.

In Kubernetes, a Deployment object defines how an application deploys. In most cases when you deploy
an application, OpenShift Container Platform creates the Pod, Service, ReplicaSet, and Deployment
resources for you.

When you deploy the parksmap image, a deployment resource is created. In this example, only one pod
is deployed. You might want to scale up your application to keep up with user demand or to ensure that

your application is always running even if one pod is down.

The following procedure scales the parksmap deployment to use two instances.

Prerequisites

® You have deployed the parksmap front-end application.

Procedure

1. Navigate to Workloads = Topology and click the parksmap deployment.

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/building_applications/#odc-interacting-with-applications-and-components_viewing-application-composition-using-topology-view
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/building_applications/#odc-scaling-application-pods-and-checking-builds-and-routes_viewing-application-composition-using-topology-view
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/building_applications/#odc-labels-and-annotations-used-for-topology-view_viewing-application-composition-using-topology-view

CHAPTER 2. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE WEB CONSOLE

2. Select the Details tab.
3. Use the up arrow to scale the pod to two instances.

Figure 2.2. Scaling application

,,l %
Scaling to 2
W
Name Update strategy
parksmap RollingUpdate
Namespace Max unavailable
@ user-getting-started 25% of 2 pods

TIP

You can use the down arrow to scale your deployment back down to one pod instance.

Additional resources

® Recommended practices for scaling the cluster

2.5. DEPLOYING THE BACK-END APPLICATION

Deploy the back-end application that provides the service that queries the database to return the
national park data required for your application.

The following procedure deploys nationalparks, which is the back-end component for the national-
parks-app application. The Python application performs 2D geo-spatial queries against a MongoDB
database to locate and return map coordinates of all national parks in the world.

Prerequisites

® You have deployed the parksmap front-end application.

Procedure

1. From the Quick create (ﬂ) menu in the upper right corner, click Import from Git

2. In the Git Repo URL field, enter https://github.com/openshift-roadshow/nationalparks-
py.git.

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/scalability_and_performance/#recommended-scale-practices_recommended-control-plane-practices

OpenShift Container Platform 4.19 Tutorials

A builder image is automatically detected, but the import strategy defaults to Dockerfile instead
of Python.

3. Change the import strategy:
a. Click Edit Import Strategy.
b. Select Builder Image.
c. Select Python.
4. Scroll to the General section.
5. In the Application field, ensure that the value is national-parks-app.
6. In the Name field, enter nationalparks.
7. Scroll to the Deploy section.
8. In the Resource typefield, ensure that Deployment is selected.
9. In the Advanced options section, ensure that Create a routeis selected.
By default, services running on OpenShift Container Platform are not accessible externally. You
must select this option to create a route so that external clients can access your service.
10. Click the Labels hyperlink.
The application code requires certain labels to be set.
1. Add the following labels to the text area and press Enter after each key/value pair:
® app=national-parks-app
e component=nationalparks
e role=backend
e type=parksmap-backend
12. Click Create.
You are redirected to the Topology page where you can see the nationalparks deployment in
the national-parks-app application.
Verification
1. Navigate to Workloads — Topology.
2. Click the nationalparks deployment in the national-parks-app application.
3. Click the Resources tab.

Wait for the build to complete successfully.

Additional resources

10

Adding services to your application

Importing a codebase from Git to create an application

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/building_applications/#odc-adding-services-to-your-application_viewing-application-composition-using-topology-view
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/building_applications/#odc-importing-codebase-from-git-to-create-application_odc-creating-applications-using-developer-perspective

CHAPTER 2. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE WEB CONSOLE

2.6. DEPLOYING THE DATABASE APPLICATION

Deploy a MongoDB database application to contain the information that your application requires. For
this tutorial, you will deploy a database application called mongodb-nationalparks that holds the
national park location information.

Prerequisites

You have deployed the parksmap front-end application.

You have deployed the nationalparks back-end application.

Procedure

1.

From the Quick create (ﬁ) menu in the upper right corner, click Container images.

. Select Image name from external registryand enter registry.redhat.io/rhmap47/mongodb.

In the Runtime iconfield, search for and select mongodb.
Scroll to the General section.

In the Application name field, enter national-parks-app.

In the Name field, enter mongodb-nationalparks.

Scroll to the Deploy section.

In the Resource typefield, ensure that Deployment is selected.

Click Show advanced Deployment option.

. Under Environment variables (runtime only), add the following names and values:

Table 2.1. Environment variable names and values

Name Value

MONGODB_USER mongodb

MONGODB_PASSWORD mongodb

MONGODB_DATABASE mongodb

MONGODB_ADMIN_PASSWORD mongodb
TIP

Click Add value to add each additional environment variable.

In the Advanced options section, clear Create a route
The database application does not need to be accessed externally, so a route is not required.

1

OpenShift Container Platform 4.19 Tutorials

12. Click Create.
You are redirected to the Topology page where you can see the mongodb-nationalparks
deployment in the national-parks-app application.

2.6.1. Providing access to the database by creating a secret

Create a Secret resource to securely provide the back-end application with the sensitive database
connection credentials.

The nationalparks application needs information, such as the database name, username, and
passwords, to access the MongoDB database. However, because this information is sensitive, you
should not store it directly in the pod.

You can use a secret to store sensitive information, and share that secret with workloads.

Secret objects provide a mechanism to hold sensitive information such as passwords, OpenShift
Container Platform client configuration files, and private source repository credentials. Secrets
decouple sensitive content from the pods. You can mount secrets into containers by using a volume
plugin or by passing the secret in as an environment variable. The system can then use secrets to
provide the pod with the sensitive information.

The following procedure creates the nationalparks-mongodb-parameters secret and mounts it to the
nationalparks workload.

Prerequisites

® You have deployed the nationalparks back-end application.

® You have deployed the mongodb-nationalparks database application.

Procedure

1. Navigate to Workloads — Secrets.
2. Click Create = Key/value secret
3. In the Secret name field, enter nationalparks-mongodb-parameters.

4. Enter the following values for Key and Value:

Table 2.2. Secret keys and values

Key Value
DATABASE_SERVICE_NAME mongodb-nationalparks
MONGODB_USER mongodb
MONGODB_PASSWORD mongodb
MONGODB_DATABASE mongodb

12

CHAPTER 2. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE WEB CONSOLE

Key Value
MONGODB_ADMIN_PASSWORD mongodb
TIP

Click Add key/value to add each additional key/value pair.

5. Click Create.
6. Click Add Secret to workload
7. From the Add this secret to workloadlist, select nationalparks.

8. Click Save.
This change in configuration triggers a new rollout of the nationalparks deployment with the
environment variables properly injected.

Additional resources

® Understanding secrets

2.6.2. Loading data into the database

After you have deployed the mongodb-nationalparks database application, load the national park
location information into the database.

Prerequisites

® You have deployed the nationalparks back-end application.

® You have deployed the mongodb-nationalparks database application.

Procedure

1. Navigate to Workloads — Topology.
2. Click the nationalparks deployment and select the Resources tab.
3. Copy the Location URL from your route.

4. Paste the URL into your web browser and add the following at the end of the URL.:

I /ws/data/load
For example:

I https://nationalparks-user-getting-started.apps.cluster.example.com/ws/data/load

Example output

13

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-pods-secrets-about_nodes-pods-secrets

OpenShift Container Platform 4.19 Tutorials

I ltems inserted in database: 2893

2.7.VIEWING THE APPLICATION IN A WEB BROWSER
After you have deployed the necessary applications and loaded data into the database, you are now

ready view your application through a browser. You can access the application by opening the URL for
the front-end application.

Prerequisites

® You have deployed the parksmap front-end application.
® You have deployed the nationalparks back-end application.
® You have deployed the mongodb-nationalparks database application.

® You have loaded the data into the mongodb-nationalparks database.

Procedure

1. Navigate to Workloads — Topology.
2. Click the Open URL link from the parksmap deployment.

Figure 2.3. National parks across the world

o parksmap $

3. Verify that your web browser displays a map of the national parks across the world.

14

CHAPTER 2. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE WEB CONSOLE

Figure 2.4. National parks across the world

‘“ - b O Streets.

B National Parks (PY)

If you allow the application to access your location, the map will center on your location.

15

OpenShift Container Platform 4.19 Tutorials

CHAPTER 3. TUTORIAL: DEPLOYING AN APPLICATION BY
USING THE CLI

To learn how to stand up an application on OpenShift Container Platform by using the OpenShift CLI
(oc), follow the provided tutorial. In this tutorial, you will deploy the services that are required for an
application that displays a map of national parks across the world.

To complete this tutorial, you will perform the following steps:

1. Create a project for the application.
This step allows your application to be isolated from other cluster user’s workloads.

2. Grant view permissions.
This step grants view permissions to interact with the OpenShift API to help discover services
and other resources running within the project.

3. Deploy the front-end application.

This step deploys the parksmap front-end application, exposes it externally, and scales it up to
two instances.

4. Deploy the back-end application.
This step deploys the nationalparks back-end application and exposes it externally.

5. Deploy the database application.
This step deploys the mongodb-nationalparks MongoDB database, loads data into the
database, and sets up the necessary credentials to access the database.

After you complete these steps, you can view the national parks application in a web browser .

3.1. PREREQUISITES
Before you start this tutorial, ensure that you have the following required prerequisites:
® You have installed the OpenShift CLI (oc).

® You have access to a test OpenShift Container Platform cluster.

If your organization does not have a cluster to test on, you can request access to the Developer
Sandbox to get a trial of OpenShift Container Platform.

® You have the appropriate permissions, such as the cluster-admin cluster role, to create a
project and applications within it.
If you do not have the required permissions, contact your cluster administrator. You need the

self-provisioner role to create a project and the admin role on the project to modify resources
in that project.

If you are using Developer Sandbox, a project is created for you with the required permissions.

® You have logged in to your cluster by using the OpenShift CLI (oc).

3.2. CREATING A PROJECT

Create a new project to contain all required resources and application components for the tutorial.

A project enables a community of users to organize and manage their content in isolation. Projects are

16

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#installing-openshift-cli
https://developers.redhat.com/developer-sandbox
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#viewing-cluster-roles_using-rbac
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#cli-logging-in_cli-developer-commands

CHAPTER 3. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE CL|

OpenShift Container Platform extensions to Kubernetes namespaces. Projects have additional features
that enable user self-provisioning. Each project has its own set of objects, policies, constraints, and
service accounts.

Cluster administrators can allow developers to create their own projects. In most cases, you
automatically have access to your own projects. Administrators can grant access to other projects as
needed.

This procedure creates a new project called user-getting-started. You will use this project throughout
the rest of this tutorial.

IMPORTANT

If you are using Developer Sandbox to complete this tutorial, skip this procedure. A
project has already been created for you.

Prerequisites

® You have logged in to the OpenShift CLI (oc¢).

Procedure

® Create a project by running the following command:

I $ oc new-project user-getting-started

Example output

Now using project "user-getting-started" on server "https://openshift.example.com:6443".

Additional resources

® oc new-project

3.3. GRANTING VIEW PERMISSIONS
Configure the necessary permissions for the application to access the required cluster resources.

OpenShift Container Platform automatically creates several service accounts in every project. The
default service account takes responsibility for running the pods. OpenShift Container Platform uses
and injects this service account into every pod that launches.

By default, the default service account has limited permissions to interact with the OpenShift API.

As a requirement of the application, you must assign the view role to the default service account to
allow it to communicate with the OpenShift API to learn about pods, services, and resources within the
project.

Prerequisites

® You have access to an OpenShift Container Platform cluster.

17

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-new-project

OpenShift Container Platform 4.19 Tutorials

® You have installed the OpenShift CLI (oc).

® You have cluster-admin or project-level admin privileges.

Procedure

® Add the view role to the default service accountin the user-getting-started project by running
the following command:

I $ oc adm policy add-role-to-user view -z default -n user-getting-started

IMPORTANT

If you are using a different project, replace user-getting-started with the name
of your project.

Additional resources

® RBAC overview

® oc adm policy add-role-to-user

3.4. DEPLOYING THE FRONT-END APPLICATION
Deploy the front-end application that provides the external-facing web component for the tutorial.

The simplest way to deploy an application in OpenShift Container Platform is to run a provided container
image.

The following procedure deploys parksmap, which is the front-end component of the national-parks-
app application. The web application displays an interactive map of the locations of national parks
across the world.

Prerequisites
® You have access to an OpenShift Container Platform cluster.

® You have installed the OpenShift CLI (oc).
Procedure
® Deploy the parksmap application by running the following command:

$ oc new-app quay.io/openshiftroadshow/parksmap:latest --name=parksmap -I
'app=national-parks-app,component=parksmap,role=frontend,app.kubernetes.io/part-
of=national-parks-app'

Example output

--> Found container image 0c2f55f (4 years old) from quay.io for
"quay.io/openshiftroadshow/parksmap:latest”

* An image stream tag will be created as "parksmap:latest” that will track this image

18

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#authorization-overview_using-rbac
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-adm-policy-add-role-to-user

CHAPTER 3. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE CL|

--> Creating resources with label app=national-parks-app,app.kubernetes.io/part-of=national-
parks-app,component=parksmap,role=frontend ...

imagestream.image.openshift.io "parksmap" created

deployment.apps "parksmap" created

service "parksmap" created
--> Success

Application is not exposed. You can expose services to the outside world by executing one
or more of the commands below:

'oc expose service/parksmap'

Run 'oc status' to view your app.

Additional resources

® ocCnew-app

3.4.1. Exposing the front-end service

By default, services running on OpenShift Container Platform are not accessible externally. To expose
your service so that external clients can access it, you can create a route.

A Route object is a OpenShift Container Platform networking resource similar to a Kubernetes Ingress
object. The default OpenShift Container Platform router (HAProxy) uses the HTTP header of the
incoming request to determine where to proxy the connection.

Optionally, you can define security, such as TLS, for the route.
Prerequisites
® You have deployed the parksmap front-end application.

® You have cluster-admin or project-level admin privileges.

Procedure

e Create aroute to expose the parksmap front-end application by running the following
command:

I $ oc create route edge parksmap --service=parksmap

Verification

e Verify that the application route was successfully created by running the following command:

I $ oc get route parksmap

Example output

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
parksmap parksmap-user-getting-started.apps.cluster.example.com parksmap

8080-tcp edge None

19

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-new-app

OpenShift Container Platform 4.19 Tutorials

Additional resources

® occreate route edge

® ocget

3.4.2. Viewing pod details

Retrieve detailed pod information to confirm the running status and resource configuration of the
applications in this tutorial.

OpenShift Container Platform uses the Kubernetes concept of a pod, which is one or more containers
deployed together on one host, and the smallest compute unit that can be defined, deployed, and

managed. Pods are the rough equivalent of a machine instance, physical or virtual, to a container.

You can view the pods in your cluster and to determine the health of those pods and the cluster as a
whole.

Prerequisites

® You have deployed the parksmap front-end application.

Procedure

® Listall podsin the current project by running the following command:
I $ oc get pods

Example output

NAME READY STATUS RESTARTS AGE
parksmap-5f9579955-6sng8 1/1 Running 0 77s

® Show details for a pod by running the following command:

I $ oc describe pod parksmap-5f9579955-6sng8

Example output

Name: parksmap-5f9579955-6sng8

Namespace: user-getting-started

Priority: 0

Service Account: default

Node: ci-In-fr1rt92-72292-4fzf9-worker-a-g9g7¢/10.0.128.4
Start Time: Wed, 26 Mar 2025 14:03:19 -0400

Labels: app=national-parks-app

app.kubernetes.io/part-of=national-parks-app
component=parksmap
deployment=parksmap
pod-template-hash=848bd4954b
role=frontend

® View logs for a pod by running the following command:

20

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-create-route-edge
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-get

CHAPTER 3. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE CL|

I $ oc logs parksmap-5f9579955-6sng8

Example output

2025-03-26 18:03:24.774 INFO 1 --- [main] o0.s.m.s.b.SimpleBrokerMessageHandler
: Started.

2025-03-26 18:03:24.798 INFO 1 --- [main]

s.b.c.e.t. TomcatEmbeddedServletContainer : Tomcat started on port(s): 8080 (http)
2025-03-26 18:03:24.801 INFO 1 --- [main] c.o.evg.roadshow.ParksMapApplication

: Started ParksMapApplication in 4.053 seconds (JVM running for 4.46)

Additional resources

® oc describe
® ocget
® Viewing pods

® \Viewing pod logs

3.4.3. Scaling up the deployment

Scale the application deployment up or down to meet workload demands.

In Kubernetes, a Deployment object defines how an application deploys. In most cases when you deploy
an application, OpenShift Container Platform creates the Pod, Service, ReplicaSet, and Deployment
resources for you.

When you deploy the parksmap image, a deployment resource is created. In this example, only one pod
is deployed. You might want to scale up your application to keep up with user demand or to ensure that
your application is always running even if one pod is down.

The following procedure scales the parksmap deployment to use two instances.

Prerequisites

® You have deployed the parksmap front-end application.

Procedure

® Scale your deployment from one pod instance to two pod instances by running the following
command:

I $ oc scale --replicas=2 deployment/parksmap

Example output

I deployment.apps/parksmap scaled

Verification

21

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-describe
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-get
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#viewing-pods
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#viewing-pod-logs

OpenShift Container Platform 4.19 Tutorials

e Verify that your deployment scaled up properly by running the following command:

I $ oc get pods
Example output

NAME READY STATUS RESTARTS AGE
parksmap-5f9579955-6sng8 1/1 Running 0 7m39s
parksmap-5f9579955-8tgft 1/1 Running 0 24s

Verify that two parksmap pods are listed.

TIP

To scale your deployment back down to one pod instance, pass in 1 to the --replicas option:

I $ oc scale --replicas=1 deployment/parksmap

Additional resources

® ocscale

3.5.DEPLOYING THE BACK-END APPLICATION

Deploy the back-end application that provides the service that queries the database to return the
national park data required for your application.

The following procedure deploys nationalparks, which is the back-end component for the national-
parks-app application. The Python application performs 2D geo-spatial queries against a MongoDB
database to locate and return map coordinates of all national parks in the world.

Prerequisites

® You have deployed the parksmap front-end application.

Procedure

e Create the nationalparks back-end application by running the following command:

$ oc new-app python~https://github.com/openshift-roadshow/nationalparks-py.git --name
nationalparks -l 'app=national-parks-
app,component=nationalparks,role=backend,app.kubernetes.io/part-of=national-parks-
app,app.-kubernetes.io/name=python' --allow-missing-images=true

Example output

--> Found image 9531750 (2 weeks old) in image stream "openshift/python" under tag "3.11-
ubi8" for "python"

Python 3.11

22

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-scale

CHAPTER 3. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE CL|

--> Creating resources with label app=national-parks-
app,app.-kubernetes.io/name=python,app.kubernetes.io/part-of=national-parks-
app,component=nationalparks,role=backend ...

imagestream.image.openshift.io "nationalparks" created

buildconfig.build.openshift.io "nationalparks" created

deployment.apps "nationalparks" created

service "nationalparks” created
--> Success

Build scheduled, use 'oc logs -f buildconfig/nationalparks' to track its progress.

Application is not exposed. You can expose services to the outside world by executing one
or more of the commands below:

'oc expose service/nationalparks'

Run 'oc status' to view your app.

3.5.1. Exposing the back-end service

To expose the back-end service so that it is accessible externally, create a route.

Prerequisites
® You have deployed the nationalparks back-end application.
® You have cluster-admin or project-level admin privileges.

Procedure

1. Create a route to expose the nationalparks back-end application by running the following
command:

I $ oc create route edge nationalparks --service=nationalparks
2. Label the nationalparks route by running the following command:
I $ oc label route nationalparks type=parksmap-backend

The application code expects the nationalparks route to be labeled with type=parksmap-
backend.

Additional resources

® oc label

3.6. DEPLOYING THE DATABASE APPLICATION

Deploy a MongoDB database application to contain the information that your application requires. For
this tutorial, you will deploy a database application called mongodb-nationalparks that holds the
national park location information.

Prerequisites

® You have deployed the parksmap front-end application.

23

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-label

OpenShift Container Platform 4.19 Tutorials

® You have deployed the nationalparks back-end application.

Procedure

e Deploy the mongodb-nationalparks database application by running the following command:

$ oc new-app registry.redhat.io/rhmap47/mongodb --name mongodb-nationalparks -e
MONGODB_USER=mongodb -e MONGODB_PASSWORD=mongodb -e
MONGODB_DATABASE=mongodb -e MONGODB_ADMIN_PASSWORD=mongodb -I
'app.kubernetes.io/part-of=national-parks-app,app.kubernetes.io/name=mongodb'

Example output

--> Found container image 7a61087 (12 days old) from quay.io for
"quay.io/mongodb/mongodb-enterprise-server"

* An image stream tag will be created as "mongodb-nationalparks:latest” that will track this
image

--> Creating resources with label app.kubernetes.io/name=mongodb,app.kubernetes.io/part-
of=national-parks-app ...

imagestream.image.openshift.io "mongodb-nationalparks" created

deployment.apps "mongodb-nationalparks” created

service "mongodb-nationalparks” created
--> Success

Application is not exposed. You can expose services to the outside world by executing one
or more of the commands below:

'oc expose service/mongodb-nationalparks'

Run 'oc status' to view your app.

3.6.1. Providing access to the database by creating a secret

Create a Secret resource to securely provide the back-end application with the sensitive database
connection credentials.

The nationalparks application needs information, such as the database name, username, and
passwords, to access the MongoDB database. However, because this information is sensitive, you
should not store it directly in the pod.

You can use a secret to store sensitive information, and share that secret with workloads.

Secret objects provide a mechanism to hold sensitive information such as passwords, OpenShift
Container Platform client configuration files, and private source repository credentials. Secrets
decouple sensitive content from the pods. You can mount secrets into containers by using a volume
plugin or by passing the secret in as an environment variable. The system can then use secrets to
provide the pod with the sensitive information.

The following procedure creates the nationalparks-mongodb-parameters secret and mounts it to the
nationalparks workload.

Prerequisites

® You have deployed the nationalparks back-end application.

24

CHAPTER 3. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE CL|

® You have deployed the mongodb-nationalparks database application.

Procedure

1. Create the secret with the required database access information by running the following
command:

$ oc create secret generic nationalparks-mongodb-parameters --from-
literal=DATABASE_SERVICE_NAME=mongodb-nationalparks --from-
literal=MONGODB_USER=mongodb --from-literal=MONGODB_PASSWORD=mongodb --
from-literal=MONGODB_DATABASE=mongodb --from-
literal=MONGODB_ADMIN_PASSWORD=mongodb

2. Import the environment from the secret to the nationalparks workload by running the following
command:

I $ oc set env --from=secret/nationalparks-mongodb-parameters deploy/nationalparks

3. Wait for the nationalparks deployment to roll out a new revision with this environment
information. Check the status of the nationalparks deployment by running the following
command:

I $ oc rollout status deployment nationalparks

Example output

I deployment "nationalparks" successfully rolled out

Additional resources

® Understanding secrets
® oc create secret generic
® ocsetenv

® oc rollout status

3.6.2. Loading data into the database

After you have deployed the mongodb-nationalparks database application, load the national park
location information into the database.

Prerequisites

® You have deployed the nationalparks back-end application.

® You have deployed the mongodb-nationalparks database application.

Procedure

® | oad the national parks data by running the following command:

25

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-pods-secrets-about_nodes-pods-secrets
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-create-secret-generic
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-set-env
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-rollout-status

OpenShift Container Platform 4.19 Tutorials

$ oc exec $(oc get pods -| component=nationalparks | tail -n 1 | awk '{print $1;}') -- curl -s
http://localhost:8080/ws/data/load

Example output

I "ltems inserted in database: 2893"

Verification

e Verify that the map data was loaded properly by running the following command:

$ oc exec $(oc get pods -| component=nationalparks | tail -n 1 | awk '{print $1;}') -- curl -s
http://localhost:8080/ws/data/all

Example output (trimmed)

, {"id": "Great Zimbabwe", "latitude": "-20.2674635", "longitude": "30.9337986", "name":
"Great Zimbabwe"}]

Additional resources

® OocCexec

3.7.VIEWING THE APPLICATION IN A WEB BROWSER

After you have deployed the necessary applications and loaded data into the database, you are now
ready view your application through a browser. You can get the URL for the application by retrieving the
route information for the front-end application.

Prerequisites

® You have deployed the parksmap front-end application.
® You have deployed the nationalparks back-end application.
® You have deployed the mongodb-nationalparks database application.

® You have loaded the data into the mongodb-nationalparks database.

Procedure

1. Get your route information to retrieve your map application URL by running the following
command:

I $ oc get route parksmap

Example output

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
parksmap parksmap-user-getting-started.apps.cluster.example.com parksmap

26

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#oc-exec

CHAPTER 3. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE CLI

I 8080-tcp edge None

2. From the above output, copy the value in the HOST/PORT column.

3. Add https:// in front of the copied value to get the application URL. This is necessary because
the route is a secured route.

Example application URL

I https://parksmap-user-getting-started.apps.cluster.example.com

4. Paste this application URL into your web browser. Your browser should display a map of the
national parks across the world.

Figure 3.1. National parks across the world

If you allow the application to access your location, the map will center on your location.

27

OpenShift Container Platform 4.19 Tutorials

CHAPTER 4. ADDITIONAL HANDS-ON LEARNING

Explore additional learning resources provided by Red Hat for administrators and developers to gain
hands-on experience with OpenShift Container Platform.

4.1. RED HAT DEVELOPER LEARNING PATHS

The Red Hat Developer program provides several learning paths for developers to get started working
with OpenShift Container Platform.

The following table lists several recommended learning paths for OpenShift Container Platform:

Table 4.1. Red Hat Developer learning paths

Learning path Description

Foundations of OpenShift This learning path covers basic Red Hat OpenShift
concepts and how to create and deploy applications
through various methods.

Using OpenShift This learning path covers managing cluster access,
database operations, and resource management.

Developing applications on OpenShift This learning path covers deploying applications from
source code and images, and developing with
Node,js.

How to deploy full-stack JavaScript applications in This learning path covers how to deploy a full-stack

OpenShift JavaScript application in an OpenShift Container

Platform cluster.

Store persistent data in Red Hat OpenShift using This learning path covers how to create and use
PVCs persistent volume claims (PVCs) for persistent
storage in OpenShift Container Platform.

For the full list of available Red Hat Developer learning paths for OpenShift Container Platform, see
OpenShift and Kubernetes learning.

4.2. RED HAT TRAINING COURSES

Red Hat Training offers a variety of courses to help you learn Red Hat OpenShift and related
technologies. Free and paid courses are available online and in-person.

The following tables list several recommended training courses for OpenShift Container Platform, both
for developers and administrators:

Table 4.2. Red Hat Training courses for developers

Course Description

28

https://developers.redhat.com/learn/openshift/foundations-openshift
https://developers.redhat.com/learn/openshift/using-openshift
https://developers.redhat.com/learn/openshift/develop-on-openshift
https://developers.redhat.com/learn/openshift/how-deploy-full-stack-javascript-applications-openshift
https://developers.redhat.com/learn/openshift/store-persistent-data-red-hat-openshift-using-pvcs
https://developers.redhat.com/learn/openshift

CHAPTER 4. ADDITIONAL HANDS-ON LEARNING

Course Description

DOI101: Introduction to OpenShift Applications This course helps developers learn to deploy, scale,
and troubleshoot applications in OpenShift
Container Platform.

DO188: Red Hat OpenShift Development I: This course helps developers learn to build, run, and
Introduction to Containers with Podman manage containers with Podman and OpenShift
Container Platform.

D0O288: Red Hat OpenShift Developer II: Building This course helps developers learn to design, build,
and Deploying Cloud-native Applications and deploy containerized software applications on an
OpensShift Container Platform cluster.

Table 4.3. Red Hat Training courses for administrators

Course Description

DO180: Red Hat OpenShift Administration I: This course helps cluster administrators learn to

Operating a Production Cluster manage OpenShift Container Platform clusters and
collaborate with developers to support application
workloads.

DO280: Red Hat OpenShift Administration Il This course helps cluster administrators learn to

Configuring a Production Cluster configure security features, manage Operators, and

perform cluster updates.

DO322: Red Hat OpenShift Installation Lab This course helps cluster administrators learn to
install OpenShift Container Platform clusters in
various environments.

For the full list of available courses, see Red Hat Training and Certification. You can also take the skills
assessment to get recommendations for where to start learning.

4.3. RED HAT CHEAT SHEETS

Red Hat publishes several cheat sheets that provide quick references of common OpenShift CLI (o¢)
commands for working with OpenShift Container Platform.

The following table lists several recommended cheat sheets for OpenShift Container Platform:

Table 4.4. Red Hat cheat sheets

Cheat sheet Description

Red Hat OpenShift Cheat Sheet This cheat sheet provides many OpenShift CLI (OC)
commands for managing an application’s lifecycle.

https://www.redhat.com/en/services/training/do101-introduction-openshift-applications
https://www.redhat.com/en/services/training/do188-red-hat-open-shift-development-introduction-containers-with-podman
https://www.redhat.com/en/services/training/red-hat-openshift-developer-ii-building-and-deploying-cloud-native-applications
https://www.redhat.com/en/services/training/red-hat-openshift-administration-i-operating-a-production-cluster
https://www.redhat.com/en/services/training/red-hat-openshift-administration-ii-configuring-a-production-cluster
https://www.redhat.com/en/services/training/do322-red-hat-openshift-installation-lab
https://www.redhat.com/en/services/training-and-certification
https://skills.ole.redhat.com/en
https://developers.redhat.com/cheat-sheets/red-hat-openshift-container-platform

OpenShift Container Platform 4.19 Tutorials

Cheat sheet Description

OpenShift command line essentials cheat sheet

This cheat sheet provides a quick look at several
essential OpenShift CLI (0€) commands, such as
creating applications, debugging, and editing
deployments.

For the full list of available cheat sheets, see Red Hat Developer cheat sheets.

30

https://developers.redhat.com/cheat-sheets/openshift-command-line-essentials-cheat-sheet
https://developers.redhat.com/cheat-sheets

	Table of Contents
	CHAPTER 1. TUTORIALS OVERVIEW
	1.1. ADDITIONAL LEARNING RESOURCES

	CHAPTER 2. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE WEB CONSOLE
	2.1. PREREQUISITES
	2.2. CREATING A PROJECT
	2.3. GRANTING VIEW PERMISSIONS
	2.4. DEPLOYING THE FRONT-END APPLICATION
	2.4.1. Viewing pod details
	2.4.2. Scaling up the application

	2.5. DEPLOYING THE BACK-END APPLICATION
	2.6. DEPLOYING THE DATABASE APPLICATION
	2.6.1. Providing access to the database by creating a secret
	2.6.2. Loading data into the database

	2.7. VIEWING THE APPLICATION IN A WEB BROWSER

	CHAPTER 3. TUTORIAL: DEPLOYING AN APPLICATION BY USING THE CLI
	3.1. PREREQUISITES
	3.2. CREATING A PROJECT
	3.3. GRANTING VIEW PERMISSIONS
	3.4. DEPLOYING THE FRONT-END APPLICATION
	3.4.1. Exposing the front-end service
	3.4.2. Viewing pod details
	3.4.3. Scaling up the deployment

	3.5. DEPLOYING THE BACK-END APPLICATION
	3.5.1. Exposing the back-end service

	3.6. DEPLOYING THE DATABASE APPLICATION
	3.6.1. Providing access to the database by creating a secret
	3.6.2. Loading data into the database

	3.7. VIEWING THE APPLICATION IN A WEB BROWSER

	CHAPTER 4. ADDITIONAL HANDS-ON LEARNING
	4.1. RED HAT DEVELOPER LEARNING PATHS
	4.2. RED HAT TRAINING COURSES
	4.3. RED HAT CHEAT SHEETS

