
Red Hat Enterprise Linux 9

Configuring and managing logical volumes

Configuring and managing the LVM on RHEL

Last Updated: 2024-02-19

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

Configuring and managing the LVM on RHEL

Notice légale

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Résumé

Logical volume management (LVM) creates a layer of abstraction over physical storage to create a
logical storage volume, which is a virtual block storage device that a file system, database, or
application can use. The physical volume (PV) is either a partition or a whole disk. By using these
PVs, you can create a volume group (VG) to create a pool of disk space for the logical volumes (LV)
from the available storage. You can create a logical volume (LV) by combining physical volumes
into a volume group. LV provides more flexibility than using physical storage, and the created LVs
can be extended or reduced without repartitioning or reformatting the physical device. You can also

perform several advanced operations with the LVM, such as creating thin-provisioned logical
volumes, snapshots of the original volume, RAID volumes, cache volumes, and striped logical
volumes

. .

. .

. .

. .

. .

. .

. .

. .

Table des matières

RENDRE L'OPEN SOURCE PLUS INCLUSIF

FOURNIR UN RETOUR D'INFORMATION SUR LA DOCUMENTATION DE RED HAT

CHAPITRE 1. OVERVIEW OF LOGICAL VOLUME MANAGEMENT
1.1. LVM ARCHITECTURE
1.2. ADVANTAGES OF LVM

CHAPITRE 2. MANAGING LVM PHYSICAL VOLUMES
2.1. OVERVIEW OF PHYSICAL VOLUMES
2.2. MULTIPLE PARTITIONS ON A DISK
2.3. CREATING LVM PHYSICAL VOLUME
2.4. REMOVING LVM PHYSICAL VOLUMES
2.5. RESSOURCES SUPPLÉMENTAIRES

CHAPITRE 3. MANAGING LVM VOLUME GROUPS
3.1. CREATING LVM VOLUME GROUP
3.2. COMBINING LVM VOLUME GROUPS
3.3. REMOVING PHYSICAL VOLUMES FROM A VOLUME GROUP
3.4. SPLITTING A LVM VOLUME GROUP

CHAPITRE 4. MANAGING LVM LOGICAL VOLUMES
4.1. OVERVIEW OF LOGICAL VOLUMES
4.2. CREATING LVM LOGICAL VOLUME
4.3. CREATING A RAID0 STRIPED LOGICAL VOLUME
4.4. RENAMING LVM LOGICAL VOLUMES
4.5. REMOVING A DISK FROM A LOGICAL VOLUME
4.6. REMOVING LVM LOGICAL VOLUMES
4.7. MANAGING LVM LOGICAL VOLUMES USING RHEL SYSTEM ROLES
4.8. REMOVING LVM VOLUME GROUPS

CHAPITRE 5. MODIFYING THE SIZE OF A LOGICAL VOLUME
5.1. GROWING A LOGICAL VOLUME AND FILE SYSTEM
5.2. SHRINKING LOGICAL VOLUMES

CHAPITRE 6. CONFIGURING RAID LOGICAL VOLUMES
6.1. RAID LOGICAL VOLUMES
6.2. RAID LEVELS AND LINEAR SUPPORT
6.3. LVM RAID SEGMENT TYPES
6.4. CREATING RAID LOGICAL VOLUMES
6.5. CREATING A RAID0 STRIPED LOGICAL VOLUME
6.6. PARAMETERS FOR CREATING A RAID0
6.7. SOFT DATA CORRUPTION
6.8. CREATING A RAID LV WITH DM INTEGRITY
6.9. MINIMUM AND MAXIMUM I/O RATE OPTIONS
6.10. CONVERTING A LINEAR DEVICE TO A RAID LOGICAL VOLUME
6.11. CONVERTING AN LVM RAID1 LOGICAL VOLUME TO AN LVM LINEAR LOGICAL VOLUME
6.12. CONVERTING A MIRRORED LVM DEVICE TO A RAID1 LOGICAL VOLUME
6.13. RESIZING A RAID LOGICAL VOLUME
6.14. CHANGING THE NUMBER OF IMAGES IN AN EXISTING RAID1 DEVICE
6.15. SPLITTING OFF A RAID IMAGE AS A SEPARATE LOGICAL VOLUME
6.16. SPLITTING AND MERGING A RAID IMAGE

4

5

6
6
7

9
9

10
11

12
12

13
13
14
14
15

17
17
18
19

20
21
22
22
24

25
25
27

29
29
29
31
32
33
34
35
36
38
38
39
40
41
41

43
44

Table des matières

1

. .

. .

. .

. .

. .

. .

CHAPITRE 7. SNAPSHOT OF LOGICAL VOLUMES
7.1. OVERVIEW OF SNAPSHOT VOLUMES
7.2. CREATING A SNAPSHOT OF THE ORIGINAL VOLUME
7.3. MERGING SNAPSHOT TO ITS ORIGINAL VOLUME

CHAPITRE 8. CREATING AND MANAGING THIN PROVISIONED VOLUMES (THIN VOLUMES)
8.1. OVERVIEW OF THIN PROVISIONING
8.2. CREATING THINLY-PROVISIONED LOGICAL VOLUMES
8.3. OVERVIEW OF CHUNK SIZE
8.4. THINLY-PROVISIONED SNAPSHOT VOLUMES
8.5. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES
8.6. HISTORICAL LOGICAL VOLUMES
8.7. TRACKING AND DISPLAYING REMOVED THIN SNAPSHOT VOLUMES

CHAPITRE 9. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE
9.1. CACHING METHODS IN LVM
9.2. LVM CACHING COMPONENTS
9.3. ENABLING DM-CACHE CACHING FOR A LOGICAL VOLUME
9.4. ENABLING DM-CACHE CACHING WITH A CACHEPOOL FOR A LOGICAL VOLUME
9.5. ENABLING DM-WRITECACHE CACHING FOR A LOGICAL VOLUME
9.6. DISABLING CACHING FOR A LOGICAL VOLUME

CHAPITRE 10. LIMITING LVM DEVICE VISIBILITY AND USAGE
10.1. THE LVM DEVICES FILE
10.2. THE LVM DEVICE FILTER

CHAPITRE 11. GROUPING LVM OBJECTS WITH TAGS
11.1. LVM OBJECT TAGS
11.2. ADDING TAGS TO LVM OBJECTS
11.3. REMOVING TAGS FROM LVM OBJECTS
11.4. DISPLAYING TAGS ON LVM OBJECTS
11.5. CONTROLLING LOGICAL VOLUME ACTIVATION WITH TAGS

CHAPITRE 12. TROUBLESHOOTING LVM
12.1. GATHERING DIAGNOSTIC DATA ON LVM
12.2. DISPLAYING INFORMATION ABOUT FAILED LVM DEVICES
12.3. REMOVING LOST LVM PHYSICAL VOLUMES FROM A VOLUME GROUP
12.4. FINDING THE METADATA OF A MISSING LVM PHYSICAL VOLUME
12.5. RESTORING METADATA ON AN LVM PHYSICAL VOLUME
12.6. ROUNDING ERRORS IN LVM OUTPUT
12.7. PREVENTING THE ROUNDING ERROR WHEN CREATING AN LVM VOLUME
12.8. TROUBLESHOOTING LVM RAID
12.9. TROUBLESHOOTING DUPLICATE PHYSICAL VOLUME WARNINGS FOR MULTIPATHED LVM DEVICES

46
46
46
48

50
50
51

54
55
56
58
59

62
62
62
63
64
66
68

70
70
73

76
76
76
77
77
78

79
79
80
81

82
83
84
85
86

90

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

2

Table des matières

3

RENDRE L'OPEN SOURCE PLUS INCLUSIF
Red Hat s'engage à remplacer les termes problématiques dans son code, sa documentation et ses
propriétés Web. Nous commençons par ces quatre termes : master, slave, blacklist et whitelist. En raison
de l'ampleur de cette entreprise, ces changements seront mis en œuvre progressivement au cours de
plusieurs versions à venir. Pour plus de détails, voir le message de notre directeur technique Chris
Wright.

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

FOURNIR UN RETOUR D'INFORMATION SUR LA
DOCUMENTATION DE RED HAT

Nous apprécions vos commentaires sur notre documentation. Faites-nous savoir comment nous
pouvons l'améliorer.

Soumettre des commentaires sur des passages spécifiques

1. Consultez la documentation au format Multi-page HTML et assurez-vous que le bouton
Feedback apparaît dans le coin supérieur droit après le chargement complet de la page.

2. Utilisez votre curseur pour mettre en évidence la partie du texte que vous souhaitez commenter.

3. Cliquez sur le bouton Add Feedback qui apparaît près du texte en surbrillance.

4. Ajoutez vos commentaires et cliquez sur Submit.

Soumettre des commentaires via Bugzilla (compte requis)

1. Connectez-vous au site Web de Bugzilla.

2. Sélectionnez la version correcte dans le menu Version.

3. Saisissez un titre descriptif dans le champ Summary.

4. Saisissez votre suggestion d'amélioration dans le champ Description. Incluez des liens vers les
parties pertinentes de la documentation.

5. Cliquez sur Submit Bug.

FOURNIR UN RETOUR D'INFORMATION SUR LA DOCUMENTATION DE RED HAT

5

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 9&component=Documentation

CHAPITRE 1. OVERVIEW OF LOGICAL VOLUME
MANAGEMENT

Logical volume management (LVM) creates a layer of abstraction over physical storage, which helps you
to create logical storage volumes. This provides much greater flexibility in a number of ways than using
physical storage directly.

In addition, the hardware storage configuration is hidden from the software so it can be resized and
moved without stopping applications or unmounting file systems. This can reduce operational costs.

1.1. LVM ARCHITECTURE

The following are the components of LVM:

Physical volume

A physical volume (PV) is a partition or whole disk designated for LVM use. For more information, see
Managing LVM physical volumes.

Volume group

A volume group (VG) is a collection of physical volumes (PVs), which creates a pool of disk space out
of which logical volumes can be allocated. For more information, see Managing LVM volume groups.

Logical volume

A logical volume represents a mountable storage device. For more information, see Managing LVM
logical volumes.

The following diagram illustrates the components of LVM:

Figure 1.1. LVM logical volume components

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

6

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-physical-volumes_configuring-and-managing-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes

Figure 1.1. LVM logical volume components

1.2. ADVANTAGES OF LVM

Logical volumes provide the following advantages over using physical storage directly:

Flexible capacity

When using logical volumes, you can aggregate devices and partitions into a single logical volume.
With this functionality, file systems can extend across multiple devices as though they were a single,
large one.

Resizeable storage volumes

You can extend logical volumes or reduce logical volumes in size with simple software commands,
without reformatting and repartitioning the underlying devices.

Online data relocation

To deploy newer, faster, or more resilient storage subsystems, you can move data while your system
is active. Data can be rearranged on disks while the disks are in use. For example, you can empty a
hot-swappable disk before removing it.

Convenient device naming

Logical storage volumes can be managed with user-defined and custom names.

Striped Volumes

CHAPITRE 1. OVERVIEW OF LOGICAL VOLUME MANAGEMENT

7

You can create a logical volume that stripes data across two or more devices. This can dramatically
increase throughput.

RAID volumes

Logical volumes provide a convenient way to configure RAID for your data. This provides protection
against device failure and improves performance.

Volume snapshots

You can take snapshots, which is a point-in-time copy of logical volumes for consistent backups or to
test the effect of changes without affecting the real data.

Thin volumes

Logical volumes can be thinly provisioned. This allows you to create logical volumes that are larger
than the available physical space.

Cache volumes

A cache logical volume uses a fast block device, such as an SSD drive to improve the performance of
a larger and slower block device.

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

8

CHAPITRE 2. MANAGING LVM PHYSICAL VOLUMES
The physical volume (PV) is a partition or whole disk designated for LVM use. To use the device for an
LVM logical volume, the device must be initialized as a physical volume.

If you are using a whole disk device for your physical volume, the disk must have no partition table. For
DOS disk partitions, the partition id should be set to 0x8e using the fdisk or cfdisk command or an
equivalent. If you are using a whole disk device for your physical volume, the disk must have no partition
table. Any existing partition table must be erased, which will effectively destroy all data on that disk. You
can remove an existing partition table using the wipefs -a <PhysicalVolume>` command as root.

2.1. OVERVIEW OF PHYSICAL VOLUMES

Initializing a block device as a physical volume places a label near the start of the device. The following
describes the LVM label:

An LVM label provides correct identification and device ordering for a physical device. An
unlabeled, non-LVM device can change names across reboots depending on the order they are
discovered by the system during boot. An LVM label remains persistent across reboots and
throughout a cluster.

The LVM label identifies the device as an LVM physical volume. It contains a random unique
identifier, the UUID for the physical volume. It also stores the size of the block device in bytes,
and it records where the LVM metadata will be stored on the device.

By default, the LVM label is placed in the second 512-byte sector. You can overwrite this default
setting by placing the label on any of the first 4 sectors when you create the physical volume.
This allows LVM volumes to co-exist with other users of these sectors, if necessary.

The following describes the LVM metadata:

The LVM metadata contains the configuration details of the LVM volume groups on your
system. By default, an identical copy of the metadata is maintained in every metadata area in
every physical volume within the volume group. LVM metadata is small and stored as ASCII.

Currently LVM allows you to store 0, 1, or 2 identical copies of its metadata on each physical
volume. The default is 1 copy. Once you configure the number of metadata copies on the
physical volume, you cannot change that number at a later time. The first copy is stored at the
start of the device, shortly after the label. If there is a second copy, it is placed at the end of the
device. If you accidentally overwrite the area at the beginning of your disk by writing to a
different disk than you intend, a second copy of the metadata at the end of the device will allow
you to recover the metadata.

The following diagram illustrates the layout of an LVM physical volume. The LVM label is on the second
sector, followed by the metadata area, followed by the usable space on the device.

NOTE

In the Linux kernel and throughout this document, sectors are considered to be 512 bytes
in size.

Figure 2.1. Physical volume layout

CHAPITRE 2. MANAGING LVM PHYSICAL VOLUMES

9

Figure 2.1. Physical volume layout

Ressources supplémentaires

Multiple partitions on a disk

2.2. MULTIPLE PARTITIONS ON A DISK

You can create physical volumes (PV) out of disk partitions by using LVM.

Red Hat recommends that you create a single partition that covers the whole disk to label as an LVM
physical volume for the following reasons:

Administrative convenience

It is easier to keep track of the hardware in a system if each real disk only appears once. This
becomes particularly true if a disk fails.

Striping performance

LVM cannot tell that two physical volumes are on the same physical disk. If you create a striped
logical volume when two physical volumes are on the same physical disk, the stripes could be on
different partitions on the same disk. This would result in a decrease in performance rather than an
increase.

RAID redundancy

LVM cannot determine that the two physical volumes are on the same device. If you create a RAID
logical volume when two physical volumes are on the same device, performance and fault tolerance
could be lost.

Although it is not recommended, there may be specific circumstances when you will need to divide a disk
into separate LVM physical volumes. For example, on a system with few disks it may be necessary to
move data around partitions when you are migrating an existing system to LVM volumes. Additionally, if
you have a very large disk and want to have more than one volume group for administrative purposes
then it is necessary to partition the disk. If you do have a disk with more than one partition and both of
those partitions are in the same volume group, take care to specify which partitions are to be included in
a logical volume when creating volumes.

Note that although LVM supports using a non-partitioned disk as physical volume, it is recommended to

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-physical-volumes_configuring-and-managing-logical-volumes#multiple-partitions-on-a-disk_managing-lvm-physical-volumes

create a single, whole-disk partition because creating a PV without a partition can be problematic in a
mixed operating system environment. Other operating systems may interpret the device as free, and
overwrite the PV label at the beginning of the drive.

2.3. CREATING LVM PHYSICAL VOLUME

This procedure describes how to create and label LVM physical volumes (PVs).

In this procedure, replace the /dev/vdb1, /dev/vdb2, and /dev/vdb3 with the available storage devices in
your system.

Conditions préalables

The lvm2 package is installed.

Procédure

1. Create multiple physical volumes by using the space-delimited device names as arguments to
the pvcreate command:

pvcreate /dev/vdb1 /dev/vdb2 /dev/vdb3
 Physical volume "/dev/vdb1" successfully created.
 Physical volume "/dev/vdb2" successfully created.
 Physical volume "/dev/vdb3" successfully created.

This places a label on /dev/vdb1, /dev/vdb2, and /dev/vdb3, marking them as physical volumes
belonging to LVM.

2. View the created physical volumes by using any one of the following commands as per your
requirement:

a. The pvdisplay command, which provides a verbose multi-line output for each physical
volume. It displays physical properties, such as size, extents, volume group, and other
options in a fixed format:

pvdisplay
--- NEW Physical volume ---
 PV Name /dev/vdb1
 VG Name
 PV Size 1.00 GiB
[..]
--- NEW Physical volume ---
 PV Name /dev/vdb2
 VG Name
 PV Size 1.00 GiB
[..]
--- NEW Physical volume ---
 PV Name /dev/vdb3
 VG Name
 PV Size 1.00 GiB
[..]

b. The pvs command provides physical volume information in a configurable form, displaying
one line per physical volume:

CHAPITRE 2. MANAGING LVM PHYSICAL VOLUMES

11

pvs
 PV VG Fmt Attr PSize PFree
/dev/vdb1 lvm2 1020.00m 0
/dev/vdb2 lvm2 1020.00m 0
/dev/vdb3 lvm2 1020.00m 0

c. The pvscan command scans all supported LVM block devices in the system for physical
volumes. You can define a filter in the lvm.conf file so that this command avoids scanning
specific physical volumes:

pvscan
 PV /dev/vdb1 lvm2 [1.00 GiB]
 PV /dev/vdb2 lvm2 [1.00 GiB]
 PV /dev/vdb3 lvm2 [1.00 GiB]

Ressources supplémentaires

pvcreate(8), pvdisplay(8), pvs(8), pvscan(8), and lvm(8) man pages

2.4. REMOVING LVM PHYSICAL VOLUMES

If a device is no longer required for use by LVM, you can remove the LVM label by using the pvremove
command. Executing the pvremove command zeroes the LVM metadata on an empty physical volume.

Procédure

1. Remove a physical volume:

pvremove /dev/vdb3
Labels on physical volume "/dev/vdb3" successfully wiped.

2. View the existing physical volumes and verify if the required volume is removed:

pvs
 PV VG Fmt Attr PSize PFree
/dev/vdb1 lvm2 1020.00m 0
/dev/vdb2 lvm2 1020.00m 0

If the physical volume you want to remove is currently part of a volume group, you must remove it from
the volume group with the vgreduce command. For more information, see Removing physical volumes
from a volume group

Ressources supplémentaires

pvremove(8) man page

2.5. RESSOURCES SUPPLÉMENTAIRES

Creating a partition table on a disk with parted .

parted(8) man page.

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

12

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#removing-physical-volumes-from-a-volume-group_managing-lvm-volume-groups
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_file_systems/index#proc_creating-a-partition-table-on-a-disk-with-parted_assembly_creating-a-partition-table-on-a-disk

CHAPITRE 3. MANAGING LVM VOLUME GROUPS
A volume group (VG) is a collection of physical volumes (PVs), which creates a pool of disk space out of
which logical volumes (LVs) can be allocated.

Within a volume group, the disk space available for allocation is divided into units of a fixed-size called
extents. An extent is the smallest unit of space that can be allocated. Within a physical volume, extents
are referred to as physical extents.

A logical volume is allocated into logical extents of the same size as the physical extents. The extent size
is therefore the same for all logical volumes in the volume group. The volume group maps the logical
extents to physical extents.

3.1. CREATING LVM VOLUME GROUP

This procedure describes how to create an LVM volume group (VG) myvg, by using the /dev/vdb1 and
/dev/vdb2 physical volumes.

Conditions préalables

The lvm2 package is installed.

One or more physical volumes are created. For more information about creating physical
volumes, see Creating LVM physical volume.

Procédure

1. Create a volume group:

vgcreate myvg /dev/vdb1 /dev/vdb2
 Volume group "myvg" successfully created.

This creates a VG with the name of myvg. The PVs /dev/vdb1 and /dev/vdb2 are the base
storage level for the myvg VG .

2. View the created volume groups by using any one of the following commands according to your
requirement:

a. The vgs command provides volume group information in a configurable form, displaying
one line per volume groups:

vgs
 VG #PV #LV #SN Attr VSize VFree
 myvg 2 0 0 wz-n 159.99g 159.99g

b. The vgdisplay command displays volume group properties such as size, extents, number of
physical volumes, and other options in a fixed form. The following example shows the
output of the vgdisplay command for the volume group myvg. To display all existing
volume groups, do not specify a volume group:

vgdisplay myvg
 --- Volume group ---
 VG Name myvg
 System ID

CHAPITRE 3. MANAGING LVM VOLUME GROUPS

13

 Format lvm2
 Metadata Areas 4
 Metadata Sequence No 6
 VG Access read/write
[..]

c. The vgscan command scans all supported LVM block devices in the system for volume
group:

vgscan
 Found volume group "myvg" using metadata type lvm2

3. Optional: Increase a volume group’s capacity by adding one or more free physical volumes:

vgextend myvg /dev/vdb3
Physical volume "/dev/vdb3" successfully created.
Volume group "myvg" successfully extended

4. Optional: Rename an existing volume group:

vgrename myvg myvg1
Volume group "myvg" successfully renamed to "myvg1"

Ressources supplémentaires

vgcreate(8), vgextend(8), vgdisplay(8), vgs(8), vgscan(8), vgrename(8), and lvm(8) man
pages

3.2. COMBINING LVM VOLUME GROUPS

To combine two volume groups into a single volume group, use the vgmerge command. You can merge
an inactive "source" volume with an active or an inactive "destination" volume if the physical extent sizes
of the volume are equal and the physical and logical volume summaries of both volume groups fit into
the destination volume groups limits.

Procédure

Merge the inactive volume group databases into the active or inactive volume group myvg
giving verbose runtime information:

vgmerge -v myvg databases

Ressources supplémentaires

vgmerge(8) man page

3.3. REMOVING PHYSICAL VOLUMES FROM A VOLUME GROUP

To remove unused physical volumes from a volume group, use the vgreduce command. The vgreduce
command shrinks a volume group’s capacity by removing one or more empty physical volumes. This
frees those physical volumes to be used in different volume groups or to be removed from the system.

Procédure

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

14

Procédure

1. If the physical volume is still being used, migrate the data to another physical volume from the
same volume group :

pvmove /dev/vdb3
 /dev/vdb3: Moved: 2.0%
 ...
 /dev/vdb3: Moved: 79.2%
 ...
 /dev/vdb3: Moved: 100.0%

2. If there are no enough free extents on the other physical volumes in the existing volume group:

a. Create a new physical volume from /dev/vdb4:

pvcreate /dev/vdb4
 Physical volume "/dev/vdb4" successfully created

b. Add the newly created physical volume to the myvg volume group:

vgextend myvg /dev/vdb4
 Volume group "myvg" successfully extended

c. Move the data from /dev/vdb3 to /dev/vdb4:

pvmove /dev/vdb3 /dev/vdb4
 /dev/vdb3: Moved: 33.33%
 /dev/vdb3: Moved: 100.00%

3. Remove the physical volume /dev/vdb3 from the volume group:

vgreduce myvg /dev/vdb3
Removed "/dev/vdb3" from volume group "myvg"

Vérification

Verify if the /dev/vdb3 physical volume is removed from the myvg volume group:

pvs
 PV VG Fmt Attr PSize PFree Used
 /dev/vdb1 myvg lvm2 a-- 1020.00m 0 1020.00m
 /dev/vdb2 myvg lvm2 a-- 1020.00m 0 1020.00m
 /dev/vdb3 lvm2 a-- 1020.00m 1008.00m 12.00m

Ressources supplémentaires

vgreduce(8), pvmove(8), and pvs(8) man pages

3.4. SPLITTING A LVM VOLUME GROUP

If there is enough unused space on the physical volumes, a new volume group can be created without
adding new disks.

CHAPITRE 3. MANAGING LVM VOLUME GROUPS

15

In the initial setup, the volume group myvg consists of /dev/vdb1, /dev/vdb2, and /dev/vdb3. After
completing this procedure, the volume group myvg will consist of /dev/vdb1 and /dev/vdb2, and the
second volume group, yourvg, will consist of /dev/vdb3.

Conditions préalables

You have sufficient space in the volume group. Use the vgscan command to determine how
much free space is currently available in the volume group.

Depending on the free capacity in the existing physical volume, move all the used physical
extents to other physical volume using the pvmove command. For more information, see
Removing physical volumes from a volume group .

Procédure

1. Split the existing volume group myvg to the new volume group yourvg:

vgsplit myvg yourvg /dev/vdb3
 Volume group "yourvg" successfully split from "myvg"

NOTE

If you have created a logical volume using the existing volume group, use the
following command to deactivate the logical volume:

lvchange -a n /dev/myvg/mylv

For more information on creating logical volumes, see Managing LVM logical
volumes.

2. View the attributes of the two volume group:

vgs
 VG #PV #LV #SN Attr VSize VFree
 myvg 2 1 0 wz--n- 34.30G 10.80G
 yourvg 1 0 0 wz--n- 17.15G 17.15G

Vérification

Verify if the newly created volume group yourvg consists of /dev/vdb3 physical volume:

pvs
 PV VG Fmt Attr PSize PFree Used
 /dev/vdb1 myvg lvm2 a-- 1020.00m 0 1020.00m
 /dev/vdb2 myvg lvm2 a-- 1020.00m 0 1020.00m
 /dev/vdb3 yourvg lvm2 a-- 1020.00m 1008.00m 12.00m

Ressources supplémentaires

vgsplit(8), vgs(8), and pvs(8) man pages

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

16

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#removing-physical-volumes-from-a-volume-group_managing-lvm-volume-groups
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes

CHAPITRE 4. MANAGING LVM LOGICAL VOLUMES
A logical volume is a virtual, block storage device that a file system, database, or application can use. To
create an LVM logical volume, the physical volumes (PVs) are combined into a volume group (VG). This
creates a pool of disk space out of which LVM logical volumes (LVs) can be allocated.

4.1. OVERVIEW OF LOGICAL VOLUMES

An administrator can grow or shrink logical volumes without destroying data, unlike standard disk
partitions. If the physical volumes in a volume group are on separate drives or RAID arrays, then
administrators can also spread a logical volume across the storage devices.

You can lose data if you shrink a logical volume to a smaller capacity than the data on the volume
requires. Further, some file systems are not capable of shrinking. To ensure maximum flexibility, create
logical volumes to meet your current needs, and leave excess storage capacity unallocated. You can
safely extend logical volumes to use unallocated space, depending on your needs.

IMPORTANT

On AMD, Intel, ARM systems, and IBM Power Systems servers, the boot loader cannot
read LVM volumes. You must make a standard, non-LVM disk partition for your /boot
partition. On IBM Z, the zipl boot loader supports /boot on LVM logical volumes with
linear mapping. By default, the installation process always creates the / and swap
partitions within LVM volumes, with a separate /boot partition on a physical volume.

The following are the different types of logical volumes:

Linear volumes

A linear volume aggregates space from one or more physical volumes into one logical volume. For
example, if you have two 60GB disks, you can create a 120GB logical volume. The physical storage is
concatenated.

Striped logical volumes

When you write data to an LVM logical volume, the file system lays the data out across the
underlying physical volumes. You can control the way the data is written to the physical volumes by
creating a striped logical volume. For large sequential reads and writes, this can improve the
efficiency of the data I/O.
Striping enhances performance by writing data to a predetermined number of physical volumes in
round-robin fashion. With striping, I/O can be done in parallel. In some situations, this can result in
near-linear performance gain for each additional physical volume in the stripe.

RAID logical volumes

LVM supports RAID levels 0, 1, 4, 5, 6, and 10. RAID logical volumes are not cluster-aware. When you
create a RAID logical volume, LVM creates a metadata subvolume that is one extent in size for every
data or parity subvolume in the array.

Thin-provisioned logical volumes (thin volumes)

Using thin-provisioned logical volumes, you can create logical volumes that are larger than the
available physical storage. Creating a thinly provisioned set of volumes allows the system to allocate
what you use instead of allocating the full amount of storage that is requested

Snapshot volumes

The LVM snapshot feature provides the ability to create virtual images of a device at a particular
instant without causing a service interruption. When a change is made to the original device (the

CHAPITRE 4. MANAGING LVM LOGICAL VOLUMES

17

origin) after a snapshot is taken, the snapshot feature makes a copy of the changed data area as it
was prior to the change so that it can reconstruct the state of the device.

Thin-provisioned snapshot volumes

Using thin-provisioned snapshot volumes, you can have more virtual devices to be stored on the
same data volume. Thinly provisioned snapshots are useful because you are not copying all of the
data that you are looking to capture at a given time.

Cache volumes

LVM supports the use of fast block devices, such as SSD drives as write-back or write-through
caches for larger slower block devices. Users can create cache logical volumes to improve the
performance of their existing logical volumes or create new cache logical volumes composed of a
small and fast device coupled with a large and slow device.

4.2. CREATING LVM LOGICAL VOLUME

This procedure describes how to create mylv LVM logical volume (LV) from the myvg volume group,
which is created by using the /dev/vdb1, /dev/vdb2, and /dev/vdb3 physical volumes.

Conditions préalables

The lvm2 package is installed.

The volume group is created. For more information, see Creating LVM volume group.

Procédure

1. Create a logical volume:

lvcreate -n mylv -L 500M myvg

Use the -n option to set the LV name to mylv, and the -L option to set the size of LV in units of
Mb, but it is possible to use any other units. The LV type is linear by default, but the user can
specify the desired type by using the --type option.

IMPORTANT

The command fails if the VG does not have a sufficient number of free physical
extents for the requested size and type.

2. View the created logical volumes by using any one of the following commands as per your
requirement:

a. The lvs command provides logical volume information in a configurable form, displaying one
line per logical volume:

lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
 mylv myvg -wi-ao---- 500.00m

b. The lvdisplay command displays logical volume properties, such as size, layout, and
mapping in a fixed format:

lvdisplay -v /dev/myvg/mylv

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#creating-lvm-volume-group_managing-lvm-volume-groups

 --- Logical volume ---
 LV Path /dev/myvg/mylv
 LV Name mylv
 VG Name myvg
 LV UUID YTnAk6-kMlT-c4pG-HBFZ-Bx7t-ePMk-7YjhaM
 LV Write Access read/write
[..]

c. The lvscan command scans for all logical volumes in the system and lists them:

lvscan
 ACTIVE '/dev/myvg/mylv' [500.00 MiB] inherit

3. Create a file system on the logical volume. The following command creates an xfs file system
on the logical volume:

mkfs.xfs /dev/myvg/mylv
meta-data=/dev/myvg/mylv isize=512 agcount=4, agsize=32000 blks
 = sectsz=512 attr=2, projid32bit=1
 = crc=1 finobt=1, sparse=1, rmapbt=0
 = reflink=1
data = bsize=4096 blocks=128000, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=1368, version=2
 = sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
Discarding blocks...Done.

4. Mount the logical volume and report the file system disk space usage:

mount /dev/myvg/mylv /mnt

df -h
Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/myvg-mylv 506528 29388 477140 6% /mnt

Ressources supplémentaires

lvcreate(8), lvdisplay(8), lvs(8), lvscan(8), lvm(8) and mkfs.xfs(8) man pages

4.3. CREATING A RAID0 STRIPED LOGICAL VOLUME

A RAID0 logical volume spreads logical volume data across multiple data subvolumes in units of stripe
size. The following procedure creates an LVM RAID0 logical volume called mylv that stripes data across
the disks.

Conditions préalables

1. You have created three or more physical volumes. For more information on creating physical
volumes, see Creating LVM physical volume.

2. You have created the volume group. For more information, see Creating LVM volume group.

CHAPITRE 4. MANAGING LVM LOGICAL VOLUMES

19

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-physical-volumes_configuring-and-managing-logical-volumes#creating-lvm-physical-volume_managing-lvm-physical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#creating-lvm-volume-group_managing-lvm-volume-groups

Procédure

1. Create a RAID0 logical volume from the existing volume group. The following command creates
the RAID0 volume mylv from the volume group myvg, which is 2G in size, with three stripes and a
stripe size of 4kB:

lvcreate --type raid0 -L 2G --stripes 3 --stripesize 4 -n mylv my_vg
 Rounding size 2.00 GiB (512 extents) up to stripe boundary size 2.00 GiB(513 extents).
 Logical volume "mylv" created.

2. Create a file system on the RAID0 logical volume. The following command creates an ext4 file
system on the logical volume:

mkfs.ext4 /dev/my_vg/mylv

3. Mount the logical volume and report the file system disk space usage:

mount /dev/my_vg/mylv /mnt

df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/my_vg-mylv 2002684 6168 1875072 1% /mnt

Vérification

View the created RAID0 stripped logical volume:

lvs -a -o +devices,segtype my_vg
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert Devices Type
 mylv my_vg rwi-a-r--- 2.00g mylv_rimage_0(0),mylv_rimage_1(0),mylv_rimage_2(0) raid0
 [mylv_rimage_0] my_vg iwi-aor--- 684.00m /dev/sdf1(0) linear
 [mylv_rimage_1] my_vg iwi-aor--- 684.00m /dev/sdg1(0) linear
 [mylv_rimage_2] my_vg iwi-aor--- 684.00m /dev/sdh1(0) linear

4.4. RENAMING LVM LOGICAL VOLUMES

This procedure describes how to rename an existing logical volume mylv to mylv1.

Procédure

1. If the logical volume is currently mounted, unmount the volume:

umount /mnt

Replace /mnt with the mount point.

2. Rename an existing logical volume:

lvrename myvg mylv mylv1
Renamed "mylv" to "mylv1" in volume group "myvg"

You can also rename the logical volume by specifying the full paths to the devices:

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

20

lvrename /dev/myvg/mylv /dev/myvg/mylv1

Ressources supplémentaires

lvrename(8) man page

4.5. REMOVING A DISK FROM A LOGICAL VOLUME

This procedure describes how to remove a disk from an existing logical volume, either to replace the disk
or to use the disk as part of a different volume.

In order to remove a disk, you must first move the extents on the LVM physical volume to a different
disk or set of disks.

Procédure

1. View the used and free space of physical volumes when using the LV:

pvs -o+pv_used
 PV VG Fmt Attr PSize PFree Used
 /dev/vdb1 myvg lvm2 a-- 1020.00m 0 1020.00m
 /dev/vdb2 myvg lvm2 a-- 1020.00m 0 1020.00m
 /dev/vdb3 myvg lvm2 a-- 1020.00m 1008.00m 12.00m

2. Move the data to other physical volume:

a. If there are enough free extents on the other physical volumes in the existing volume group,
use the following command to move the data:

pvmove /dev/vdb3
 /dev/vdb3: Moved: 2.0%
 ...
 /dev/vdb3: Moved: 79.2%
 ...
 /dev/vdb3: Moved: 100.0%

b. If there are no enough free extents on the other physical volumes in the existing volume
group, use the following commands to add a new physical volume, extend the volume group
using the newly created physical volume, and move the data to this physical volume:

pvcreate /dev/vdb4
 Physical volume "/dev/vdb4" successfully created

vgextend myvg /dev/vdb4
 Volume group "myvg" successfully extended

pvmove /dev/vdb3 /dev/vdb4
 /dev/vdb3: Moved: 33.33%
 /dev/vdb3: Moved: 100.00%

3. Remove the physical volume:

CHAPITRE 4. MANAGING LVM LOGICAL VOLUMES

21

vgreduce myvg /dev/vdb3
Removed "/dev/vdb3" from volume group "myvg"

If a logical volume contains a physical volume that fails, you cannot use that logical volume. To
remove missing physical volumes from a volume group, you can use the --removemissing
parameter of the vgreduce command, if there are no logical volumes that are allocated on the
missing physical volumes:

vgreduce --removemissing myvg

Ressources supplémentaires

pvmove(8), vgextend(8), vereduce(8), and pvs(8) man pages

4.6. REMOVING LVM LOGICAL VOLUMES

This procedure describes how to remove an existing logical volume /dev/myvg/mylv1 from the volume
group myvg.

Procédure

1. If the logical volume is currently mounted, unmount the volume:

umount /mnt

2. If the logical volume exists in a clustered environment, deactivate the logical volume on all
nodes where it is active. Use the following command on each such node:

lvchange --activate n vg-name/lv-name

3. Remove the logical volume using the lvremove utility:

lvremove /dev/myvg/mylv1

Do you really want to remove active logical volume "mylv1"? [y/n]: y
Logical volume "mylv1" successfully removed

NOTE

In this case, the logical volume has not been deactivated. If you explicitly
deactivated the logical volume before removing it, you would not see the prompt
verifying whether you want to remove an active logical volume.

Ressources supplémentaires

lvremove(8) man page

4.7. MANAGING LVM LOGICAL VOLUMES USING RHEL SYSTEM
ROLES

Use the storage role to perform the following tasks:

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

22

Create an LVM logical volume in a volume group consisting of multiple disks.

Create an ext4 file system with a given label on the logical volume.

Persistently mount the ext4 file system.

Conditions préalables

An Ansible playbook including the storage role

4.7.1. Exemple de script Ansible pour la gestion des volumes logiques

Cette section fournit un exemple de manuel de jeu Ansible. Ce playbook applique le rôle storage pour
créer un volume logique LVM dans un groupe de volumes.

Exemple 4.1. Un playbook qui crée un volume logique mylv dans le groupe de volumes myvg

- hosts: all
 vars:
 storage_pools:
 - name: myvg
 disks:
 - sda
 - sdb
 - sdc
 volumes:
 - name: mylv
 size: 2G
 fs_type: ext4
 mount_point: /mnt/data
 roles:
 - rhel-system-roles.storage

Le groupe de volumes myvg se compose des disques suivants :

/dev/sda

/dev/sdb

/dev/sdc

Si le groupe de volumes myvg existe déjà, la procédure ajoute le volume logique au groupe
de volumes.

Si le groupe de volumes myvg n'existe pas, le playbook le crée.

La procédure crée un système de fichiers Ext4 sur le volume logique mylv et monte de
manière persistante le système de fichiers à l'adresse /mnt.

Ressources supplémentaires

Le fichier /usr/share/ansible/roles/rhel-system-roles.storage/README.md.

4.7.2. Ressources supplémentaires

CHAPITRE 4. MANAGING LVM LOGICAL VOLUMES

23

For more information about the storage role, see Managing local storage using RHEL System
Roles.

4.8. REMOVING LVM VOLUME GROUPS

This procedure describes how to remove an existing volume group.

Conditions préalables

The volume group contains no logical volumes. To remove logical volumes from a volume group,
see Removing LVM logical volumes.

Procédure

1. If the volume group exists in a clustered environment, stop the lockspace of the volume group
on all other nodes. Use the following command on all nodes except the node where you are
performing the removing:

vgchange --lockstop vg-name

Wait for the lock to stop.

2. Remove the volume group:

vgremove vg-name
 Volume group "vg-name" successfully removed

Ressources supplémentaires

vgremove(8) man page

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/administration_and_configuration_tasks_using_system_roles_in_rhel/managing-local-storage-using-rhel-system-roles_assembly_updating-packages-to-enable-automation-for-the-rhel-system-roles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes#removing-lvm-logical-volumes_managing-lvm-logical-volumes

CHAPITRE 5. MODIFYING THE SIZE OF A LOGICAL VOLUME
After you have created a logical volume, you can modify the size of the volume.

5.1. GROWING A LOGICAL VOLUME AND FILE SYSTEM

This procedure describes how to extend the logical volume and grow a file system on the same logical
volume.

To increase the size of a logical volume, use the lvextend command. When you extend the logical
volume, you can indicate how much you want to extend the volume, or how large you want it to be after
you extend it.

Conditions préalables

1. You have an existing logical volume (LV) with a file system on it. Determine the file system type
by using the df -Th command.
For more information on creating LV and a file system, see Creating LVM logical volume.

2. You have sufficient space in the volume group to grow your LV and file system. Use the vgs -o
name,vgfree command to determine the available space.

Procédure

1. Optional: If the volume group has insufficient space to grow your LV, then add a new physical
volume to the volume group by using the following command:

vgextend myvg /dev/vdb3
Physical volume "/dev/vdb3" successfully created.
Volume group "myvg" successfully extended

For more information, see Creating LVM volume group.

2. Now that the volume group is large enough, execute any one of the following steps as per your
requirement:

a. To extend the LV with the provided size, use the following command:

lvextend -L 3G /dev/myvg/mylv
Size of logical volume myvg/mylv changed from 2.00 GiB (512 extents) to 3.00 GiB (768
extents).
Logical volume myvg/mylv successfully resized.

NOTE

You can use the -r option of the lvextend command to extend the logical
volume and resize the underlying file system with a single command:

lvextend -r -L 3G /dev/myvg/mylv

CHAPITRE 5. MODIFYING THE SIZE OF A LOGICAL VOLUME

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes#creating-lvm-logical-volume_managing-lvm-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#creating-lvm-volume-group_managing-lvm-volume-groups

AVERTISSEMENT

You can also extend the logical volume using the lvresize command
with the same arguments, but this command does not guarantee
against accidental shrinkage.

b. To extend the mylv logical volume to fill all of the unallocated space in the myvg volume
group, use the following command:

lvextend -l +100%FREE /dev/myvg/mylv
 Size of logical volume myvg/mylv changed from 10.00 GiB (2560 extents) to 6.35 TiB
(1665465 extents).
 Logical volume myvg/mylv successfully resized.

As with the lvcreate command, you can use the -l argument of the lvextend command to
specify the number of extents by which to increase the size of the logical volume. You can
also use this argument to specify a percentage of the volume group, or a percentage of the
remaining free space in the volume group.

3. If you are not using the r option with the lvextend command to extend the LV and resize the file
system with a single command, then resize the file system on the logical volume by using the
following command:

xfs_growfs /mnt/mnt1/
meta-data=/dev/mapper/myvg-mylv isize=512 agcount=4, agsize=65536 blks
 = sectsz=512 attr=2, projid32bit=1
 = crc=1 finobt=1, sparse=1, rmapbt=0
 = reflink=1
data = bsize=4096 blocks=262144, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=2560, version=2
 = sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
data blocks changed from 262144 to 524288

NOTE

Without the -D option, xfs_growfs grows the file system to the maximum size
supported by the underlying device. For more information, see Increasing the
size of an XFS file system.

For resizing an ext4 file system, see Resizing an ext4 file system .

Vérification

Verify if the file system is growing by using the following command:

df -Th



Red Hat Enterprise Linux 9 Configuring and managing logical volumes

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_file_systems#assembly_increasing-the-size-of-an-xfs-file-system_getting-started-with-xfs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_file_systems#resizing-an-ext-file-system_getting-started-with-an-ext4-file-system

Filesystem Type Size Used Avail Use% Mounted on
devtmpfs devtmpfs 1.9G 0 1.9G 0% /dev
tmpfs tmpfs 1.9G 0 1.9G 0% /dev/shm
tmpfs tmpfs 1.9G 8.6M 1.9G 1% /run
tmpfs tmpfs 1.9G 0 1.9G 0% /sys/fs/cgroup
/dev/mapper/rhel-root xfs 45G 3.7G 42G 9% /
/dev/vda1 xfs 1014M 369M 646M 37% /boot
tmpfs tmpfs 374M 0 374M 0% /run/user/0
/dev/mapper/myvg-mylv xfs 2.0G 47M 2.0G 3% /mnt/mnt1

Ressources supplémentaires

vgextend(8), lvextend(8), and xfs_growfs(8) man pages

5.2. SHRINKING LOGICAL VOLUMES

You can reduce the size of a logical volume with the lvreduce command.

NOTE

Shrinking is not supported on a GFS2 or XFS file system, so you cannot reduce the size of
a logical volume that contains a GFS2 or XFS file system.

If the logical volume you are reducing contains a file system, to prevent data loss you must ensure that
the file system is not using the space in the logical volume that is being reduced. For this reason, it is
recommended that you use the --resizefs option of the lvreduce command when the logical volume
contains a file system.

When you use this option, the lvreduce command attempts to reduce the file system before shrinking
the logical volume. If shrinking the file system fails, as can occur if the file system is full or the file system
does not support shrinking, then the lvreduce command will fail and not attempt to shrink the logical
volume.

AVERTISSEMENT

In most cases, the lvreduce command warns about possible data loss and asks for a
confirmation. However, you should not rely on these confirmation prompts to
prevent data loss because in some cases you will not see these prompts, such as
when the logical volume is inactive or the --resizefs option is not used.

Note that using the --test option of the lvreduce command does not indicate where
the operation is safe, as this option does not check the file system or test the file
system resize.

Procédure

To shrink the mylv logical volume in myvg volume group to 64 megabytes, use the following
command:



CHAPITRE 5. MODIFYING THE SIZE OF A LOGICAL VOLUME

27

lvreduce --resizefs -L 64M myvg/mylv
fsck from util-linux 2.37.2
/dev/mapper/myvg-mylv: clean, 11/25688 files, 4800/102400 blocks
resize2fs 1.46.2 (28-Feb-2021)
Resizing the filesystem on /dev/mapper/myvg-mylv to 65536 (1k) blocks.
The filesystem on /dev/mapper/myvg-mylv is now 65536 (1k) blocks long.

Size of logical volume myvg/mylv changed from 100.00 MiB (25 extents) to 64.00 MiB (16
extents).
 Logical volume myvg/mylv successfully resized.

In this example, mylv contains a file system, which this command resizes together with the logical
volume.

Specifying the - sign before the resize value indicates that the value will be subtracted from the
logical volume’s actual size. To shrink a logical volume to an absolute size of 64 megabytes, use
the following command:

lvreduce --resizefs -L -64M myvg/mylv

Ressources supplémentaires

lvreduce(8) man page

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

28

CHAPITRE 6. CONFIGURING RAID LOGICAL VOLUMES
You can create, activate, change, remove, display, and use LVM Redundant Array of Independent Disks
(RAID) volumes.

6.1. RAID LOGICAL VOLUMES

Logical volume manager (LVM) supports Redundant Array of Independent Disks (RAID) levels 0, 1, 4, 5,
6, and 10. An LVM RAID volume has the following characteristics:

LVM creates and manages RAID logical volumes that leverage the Multiple Devices (MD) kernel
drivers.

You can temporarily split RAID1 images from the array and merge them back into the array later.

LVM RAID volumes support snapshots.

Other characteristics include:

Clusters

RAID logical volumes are not cluster-aware.
Although you can create and activate RAID logical volumes exclusively on one machine, you cannot
activate them simultaneously on more than one machine.

Subvolumes

When you create a RAID logical volume (LV), LVM creates a metadata subvolume that is one extent
in size for every data or parity subvolume in the array.
For example, creating a 2-way RAID1 array results in two metadata subvolumes (lv_rmeta_0 and
lv_rmeta_1) and two data subvolumes (lv_rimage_0 and lv_rimage_1). Similarly, creating a 3-way
stripe and one implicit parity device, RAID4 results in four metadata subvolumes (lv_rmeta_0,
lv_rmeta_1, lv_rmeta_2, and lv_rmeta_3) and four data subvolumes (lv_rimage_0, lv_rimage_1,
lv_rimage_2, and lv_rimage_3).

Integrity

You can lose data when a RAID device fails or when soft corruption occurs. Soft corruption in data
storage implies that the data retrieved from a storage device is different from the data written to
that device. Adding integrity to a RAID LV reduces or prevent soft corruption. For more information,
see Creating a RAID LV with DM integrity .

6.2. RAID LEVELS AND LINEAR SUPPORT

The following are the supported configurations by RAID, including levels 0, 1, 4, 5, 6, 10, and linear:

Niveau 0

RAID level 0, often called striping, is a performance-oriented striped data mapping technique. This
means the data being written to the array is broken down into stripes and written across the member
disks of the array, allowing high I/O performance at low inherent cost but provides no redundancy.
RAID level 0 implementations only stripe the data across the member devices up to the size of the
smallest device in the array. This means that if you have multiple devices with slightly different sizes,
each device gets treated as though it was the same size as the smallest drive. Therefore, the
common storage capacity of a level 0 array is the total capacity of all disks. If the member disks have
a different size, then the RAID0 uses all the space of those disks using the available zones.

CHAPITRE 6. CONFIGURING RAID LOGICAL VOLUMES

29

Niveau 1

RAID level 1, or mirroring, provides redundancy by writing identical data to each member disk of the
array, leaving a mirrored copy on each disk. Mirroring remains popular due to its simplicity and high
level of data availability. Level 1 operates with two or more disks, and provides very good data
reliability and improves performance for read-intensive applications but at relatively high costs.
RAID level 1 is costly because you write the same information to all of the disks in the array, which
provides data reliability, but in a much less space-efficient manner than parity based RAID levels such
as level 5. However, this space inefficiency comes with a performance benefit, which is parity-based
RAID levels that consume considerably more CPU power in order to generate the parity while RAID
level 1 simply writes the same data more than once to the multiple RAID members with very little
CPU overhead. As such, RAID level 1 can outperform the parity-based RAID levels on machines
where software RAID is employed and CPU resources on the machine are consistently taxed with
operations other than RAID activities.

The storage capacity of the level 1 array is equal to the capacity of the smallest mirrored hard disk in
a hardware RAID or the smallest mirrored partition in a software RAID. Level 1 redundancy is the
highest possible among all RAID types, with the array being able to operate with only a single disk
present.

Niveau 4

Level 4 uses parity concentrated on a single disk drive to protect data. Parity information is
calculated based on the content of the rest of the member disks in the array. This information can
then be used to reconstruct data when one disk in the array fails. The reconstructed data can then be
used to satisfy I/O requests to the failed disk before it is replaced and to repopulate the failed disk
after it has been replaced.
Since the dedicated parity disk represents an inherent bottleneck on all write transactions to the
RAID array, level 4 is seldom used without accompanying technologies such as write-back caching.
Or it is used in specific circumstances where the system administrator is intentionally designing the
software RAID device with this bottleneck in mind such as an array that has little to no write
transactions once the array is populated with data. RAID level 4 is so rarely used that it is not
available as an option in Anaconda. However, it could be created manually by the user if needed.

The storage capacity of hardware RAID level 4 is equal to the capacity of the smallest member
partition multiplied by the number of partitions minus one. The performance of a RAID level 4 array is
always asymmetrical, which means reads outperform writes. This is because write operations
consume extra CPU resources and main memory bandwidth when generating parity, and then also
consume extra bus bandwidth when writing the actual data to disks because you are not only writing
the data, but also the parity. Read operations need only read the data and not the parity unless the
array is in a degraded state. As a result, read operations generate less traffic to the drives and across
the buses of the computer for the same amount of data transfer under normal operating conditions.

Niveau 5

This is the most common type of RAID. By distributing parity across all the member disk drives of an
array, RAID level 5 eliminates the write bottleneck inherent in level 4. The only performance
bottleneck is the parity calculation process itself. Modern CPUs can calculate parity very fast.
However, if you have a large number of disks in a RAID 5 array such that the combined aggregate
data transfer speed across all devices is high enough, parity calculation can be a bottleneck.
Level 5 has asymmetrical performance, and reads substantially outperforming writes. The storage
capacity of RAID level 5 is calculated the same way as with level 4.

Level 6

This is a common level of RAID when data redundancy and preservation, and not performance, are
the paramount concerns, but where the space inefficiency of level 1 is not acceptable. Level 6 uses a
complex parity scheme to be able to recover from the loss of any two drives in the array. This

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

30

complex parity scheme creates a significantly higher CPU burden on software RAID devices and also
imposes an increased burden during write transactions. As such, level 6 is considerably more
asymmetrical in performance than levels 4 and 5.
The total capacity of a RAID level 6 array is calculated similarly to RAID level 5 and 4, except that you
must subtract two devices instead of one from the device count for the extra parity storage space.

Level 10

This RAID level attempts to combine the performance advantages of level 0 with the redundancy of
level 1. It also reduces some of the space wasted in level 1 arrays with more than two devices. With
level 10, it is possible, for example, to create a 3-drive array configured to store only two copies of
each piece of data, which then allows the overall array size to be 1.5 times the size of the smallest
devices instead of only equal to the smallest device, similar to a 3-device, level 1 array. This avoids
CPU process usage to calculate parity similar to RAID level 6, but it is less space efficient.
The creation of RAID level 10 is not supported during installation. It is possible to create one manually
after installation.

Linear RAID

Linear RAID is a grouping of drives to create a larger virtual drive.
In linear RAID, the chunks are allocated sequentially from one member drive, going to the next drive
only when the first is completely filled. This grouping provides no performance benefit, as it is unlikely
that any I/O operations split between member drives. Linear RAID also offers no redundancy and
decreases reliability. If any one member drive fails, the entire array cannot be used and data can be
lost. The capacity is the total of all member disks.

6.3. LVM RAID SEGMENT TYPES

To create a RAID logical volume, you can specify a RAID type by using the --type argument of the
lvcreate command. For most users, specifying one of the five available primary types, which are raid1,
raid4, raid5, raid6, and raid10, should be sufficient.

The following table describes the possible RAID segment types.

Tableau 6.1. LVM RAID segment types

Segment type Description

raid1 RAID1 mirroring. This is the default value for the --type argument of the
lvcreate command, when you specify the -m argument without
specifying striping.

raid4 RAID4 dedicated parity disk.

raid5_la
RAID5 left asymmetric.

Rotating parity 0 with data continuation.

raid5_ra
RAID5 right asymmetric.

Rotating parity N with data continuation.

CHAPITRE 6. CONFIGURING RAID LOGICAL VOLUMES

31

raid5_ls
RAID5 left symmetric.

It is same as raid5.

Rotating parity 0 with data restart.

raid5_rs
RAID5 right symmetric.

Rotating parity N with data restart.

raid6_zr
RAID6 zero restart.

It is same as raid6.

Rotating parity zero (left-to-right) with data restart.

raid6_nr
RAID6 N restart.

Rotating parity N (left-to-right) with data restart.

raid6_nc
RAID6 N continue.

Rotating parity N (left-to-right) with data continuation.

raid10
Striped mirrors. This is the default value for the --type
argument of the lvcreate command if you specify the -m
argument along with the number of stripes that is greater than
1.

Striping of mirror sets.

raid0/raid0_meta Striping. RAID0 spreads logical volume data across multiple data
subvolumes in units of stripe size. This is used to increase performance.
Logical volume data is lost if any of the data subvolumes fail.

Segment type Description

6.4. CREATING RAID LOGICAL VOLUMES

You can create RAID1 arrays with multiple numbers of copies, according to the value you specify for the -
m argument. Similarly, you can specify the number of stripes for a RAID 0, 4, 5, 6, and 10 logical volume
with the -i argument. You can also specify the stripe size with the -I argument. The following procedure
describes different ways to create different types of RAID logical volume.

Procédure

Create a 2-way RAID. The following command creates a 2-way RAID1 array, named my_lv, in the

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

32

Create a 2-way RAID. The following command creates a 2-way RAID1 array, named my_lv, in the
volume group my_vg, that is 1G in size:

lvcreate --type raid1 -m 1 -L 1G -n my_lv my_vg
Logical volume "my_lv" created.

Create a RAID5 array with stripes. The following command creates a RAID5 array with three
stripes and one implicit parity drive, named my_lv, in the volume group my_vg, that is 1G in size.
Note that you can specify the number of stripes similar to an LVM striped volume. The correct
number of parity drives is added automatically.

lvcreate --type raid5 -i 3 -L 1G -n my_lv my_vg

Create a RAID6 array with stripes. The following command creates a RAID6 array with three 3
stripes and two implicit parity drives, named my_lv, in the volume group my_vg, that is 1G one
gigabyte in size:

lvcreate --type raid6 -i 3 -L 1G -n my_lv my_vg

Vérification

Display the LVM device my_vg/my_lv, which is a 2-way RAID1 array:

lvs -a -o name,copy_percent,devices _my_vg_
 LV Copy% Devices
 my_lv 6.25 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sde1(0)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rmeta_0] /dev/sde1(256)
 [my_lv_rmeta_1] /dev/sdf1(0)

Ressources supplémentaires

lvcreate(8) and lvmraid(7) man pages

6.5. CREATING A RAID0 STRIPED LOGICAL VOLUME

A RAID0 logical volume spreads logical volume data across multiple data subvolumes in units of stripe
size. The following procedure creates an LVM RAID0 logical volume called mylv that stripes data across
the disks.

Conditions préalables

1. You have created three or more physical volumes. For more information on creating physical
volumes, see Creating LVM physical volume.

2. You have created the volume group. For more information, see Creating LVM volume group.

Procédure

1. Create a RAID0 logical volume from the existing volume group. The following command creates
the RAID0 volume mylv from the volume group myvg, which is 2G in size, with three stripes and a
stripe size of 4kB:

CHAPITRE 6. CONFIGURING RAID LOGICAL VOLUMES

33

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-physical-volumes_configuring-and-managing-logical-volumes#creating-lvm-physical-volume_managing-lvm-physical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#creating-lvm-volume-group_managing-lvm-volume-groups

lvcreate --type raid0 -L 2G --stripes 3 --stripesize 4 -n mylv my_vg
 Rounding size 2.00 GiB (512 extents) up to stripe boundary size 2.00 GiB(513 extents).
 Logical volume "mylv" created.

2. Create a file system on the RAID0 logical volume. The following command creates an ext4 file
system on the logical volume:

mkfs.ext4 /dev/my_vg/mylv

3. Mount the logical volume and report the file system disk space usage:

mount /dev/my_vg/mylv /mnt

df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/my_vg-mylv 2002684 6168 1875072 1% /mnt

Vérification

View the created RAID0 stripped logical volume:

lvs -a -o +devices,segtype my_vg
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert Devices Type
 mylv my_vg rwi-a-r--- 2.00g mylv_rimage_0(0),mylv_rimage_1(0),mylv_rimage_2(0) raid0
 [mylv_rimage_0] my_vg iwi-aor--- 684.00m /dev/sdf1(0) linear
 [mylv_rimage_1] my_vg iwi-aor--- 684.00m /dev/sdg1(0) linear
 [mylv_rimage_2] my_vg iwi-aor--- 684.00m /dev/sdh1(0) linear

6.6. PARAMETERS FOR CREATING A RAID0

You can create a RAID0 striped logical volume using the lvcreate --type raid0[meta] --stripes _Stripes
--stripesize StripeSize VolumeGroup [PhysicalVolumePath] command.

The following table describes different parameters, which you can use while creating a RAID0 striped
logical volume.

Tableau 6.2. Parameters for creating a RAID0 striped logical volume

Paramètres Description

--type raid0[_meta] Specifying raid0 creates a RAID0 volume without metadata volumes.
Specifying raid0_meta creates a RAID0 volume with metadata
volumes. Since RAID0 is non-resilient, it does not store any mirrored data
blocks as RAID1/10 or calculate and store any parity blocks as RAID4/5/6
do. Hence, it does not need metadata volumes to keep state about
resynchronization progress of mirrored or parity blocks. Metadata
volumes become mandatory on a conversion from RAID0 to
RAID4/5/6/10. Specifying raid0_meta preallocates those metadata
volumes to prevent a respective allocation failure.

--stripes Stripes Specifies the number of devices to spread the logical volume across.

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

34

--stripesize StripeSize Specifies the size of each stripe in kilobytes. This is the amount of data
that is written to one device before moving to the next device.

VolumeGroup Specifies the volume group to use.

PhysicalVolumePath Specifies the devices to use. If this is not specified, LVM will choose the
number of devices specified by the Stripes option, one for each stripe.

Paramètres Description

6.7. SOFT DATA CORRUPTION

Soft corruption in data storage implies that the data retrieved from a storage device is different from
the data written to that device. The corrupted data can exist indefinitely on storage devices. You might
not discover this corrupted data until you retrieve and attempt to use this data.

Depending on the type of configuration, a Redundant Array of Independent Disks (RAID) logical
volume(LV) prevents data loss when a device fails. If a device consisting of a RAID array fails, the data
can be recovered from other devices that are part of that RAID LV. However, a RAID configuration does
not ensure the integrity of the data itself. Soft corruption, silent corruption, soft errors, and silent errors
are terms that describe data that has become corrupted, even if the system design and software
continues to function as expected.

Device mapper (DM) integrity is used with RAID levels 1, 4, 5, 6, and 10 to mitigate or prevent data loss
due to soft corruption. The RAID layer ensures that a non-corrupted copy of the data can fix the soft
corruption errors. The integrity layer sits above each RAID image while an extra sub LV stores the
integrity metadata or data checksums for each RAID image. When you retrieve data from an RAID LV
with integrity, the integrity data checksums analyze the data for corruption. If corruption is detected, the
integrity layer returns an error message, and the RAID layer retrieves a non-corrupted copy of the data
from another RAID image. The RAID layer automatically rewrites non-corrupted data over the corrupted
data to repair the soft corruption.

When creating a new RAID LV with DM integrity or adding integrity to an existing RAID LV, consider the
following points:

The integrity metadata requires additional storage space. For each RAID image, every 500MB
data requires 4MB of additional storage space because of the checksums that get added to the
data.

While some RAID configurations are impacted more than others, adding DM integrity impacts
performance due to latency when accessing the data. A RAID1 configuration typically offers
better performance than RAID5 or its variants.

The RAID integrity block size also impacts performance. Configuring a larger RAID integrity
block size offers better performance. However, a smaller RAID integrity block size offers greater
backward compatibility.

There are two integrity modes available: bitmap or journal. The bitmap integrity mode typically
offers better performance than journal mode.

ASTUCE

CHAPITRE 6. CONFIGURING RAID LOGICAL VOLUMES

35

ASTUCE

If you experience performance issues, either use RAID1 with integrity or test the performance of a
particular RAID configuration to ensure that it meets your requirements.

6.8. CREATING A RAID LV WITH DM INTEGRITY

When you create a RAID LV with device mapper (DM) integrity or add integrity to an existing RAID LV, it
mitigates the risk of losing data due to soft corruption. Wait for the integrity synchronization and the
RAID metadata to complete before using the LV. Otherwise, the background initialization might impact
the LV’s performance.

Procédure

1. Create a RAID LV with DM integrity. The following example creates a new RAID LV with integrity
named test-lv in the my_vg volume group, with a usable size of 256M and RAID level 1:

lvcreate --type raid1 --raidintegrity y -L 256M -n test-lv my_vg
Creating integrity metadata LV test-lv_rimage_0_imeta with size 8.00 MiB.
Logical volume "test-lv_rimage_0_imeta" created.
Creating integrity metadata LV test-lv_rimage_1_imeta with size 8.00 MiB.
Logical volume "test-lv_rimage_1_imeta" created.
Logical volume "test-lv" created.

NOTE

To add DM integrity to an existing RAID LV, use the following command:

lvconvert --raidintegrity y my_vg/test-lv

Adding integrity to a RAID LV limits the number of operations that you can perform on that
RAID LV.

2. Optional: Remove the integrity before performing certain operations.

lvconvert --raidintegrity n my_vg/test-lv
Logical volume my_vg/test-lv has removed integrity.

Vérification

View information about the added DM integrity:

View information about the test-lv RAID LV that was created in the my_vg volume group:

lvs -a my_vg
 LV VG Attr LSize Origin Cpy%Sync
 test-lv my_vg rwi-a-r--- 256.00m 2.10
 [test-lv_rimage_0] my_vg gwi-aor--- 256.00m [test-lv_rimage_0_iorig] 93.75
 [test-lv_rimage_0_imeta] my_vg ewi-ao---- 8.00m
 [test-lv_rimage_0_iorig] my_vg -wi-ao---- 256.00m
 [test-lv_rimage_1] my_vg gwi-aor--- 256.00m [test-lv_rimage_1_iorig] 85.94
 [...]

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

36

The following describes different options from this output:

g attribute

It is the list of attributes under the Attr column indicates that the RAID image is using
integrity. The integrity stores the checksums in the _imeta RAID LV.

Cpy%Sync column

It indicates the synchronization progress for both the top level RAID LV and for each
RAID image.

RAID image

It is is indicated in the LV column by raid_image_N.

LV column

It ensures that the synchronization progress displays 100% for the top level RAID LV and
for each RAID image.

Display the type for each RAID LV:

lvs -a my-vg -o+segtype
 LV VG Attr LSize Origin Cpy%Sync Type
 test-lv my_vg rwi-a-r--- 256.00m 87.96 raid1
 [test-lv_rimage_0] my_vg gwi-aor--- 256.00m [test-lv_rimage_0_iorig] 100.00
integrity
 [test-lv_rimage_0_imeta] my_vg ewi-ao---- 8.00m linear
 [test-lv_rimage_0_iorig] my_vg -wi-ao---- 256.00m linear
 [test-lv_rimage_1] my_vg gwi-aor--- 256.00m [test-lv_rimage_1_iorig] 100.00
integrity
 [...]

There is an incremental counter that counts the number of mismatches detected on each
RAID image. View the data mismatches detected by integrity from rimage_0 under
my_vg/test-lv:

lvs -o+integritymismatches my_vg/test-lv_rimage_0
 LV VG Attr LSize Origin Cpy%Sync IntegMismatches
 [test-lv_rimage_0] my_vg gwi-aor--- 256.00m [test-lv_rimage_0_iorig] 100.00
0

In this example, the integrity has not detected any data mismatches and thus the
IntegMismatches counter shows zero (0).

View the data integrity information in the /var/log/messages log files, as shown in the
following examples:

Exemple 6.1. Example of dm-integrity mismatches from the kernel message logs

device-mapper: integrity: dm-12: Checksum failed at sector 0x24e7

Exemple 6.2. Example of dm-integrity data corrections from the kernel message
logs

md/raid1:mdX: read error corrected (8 sectors at 9448 on dm-16)

CHAPITRE 6. CONFIGURING RAID LOGICAL VOLUMES

37

Ressources supplémentaires

lvcreate(8) and lvmraid(7) man pages

6.9. MINIMUM AND MAXIMUM I/O RATE OPTIONS

When you create a RAID logical volumes, the background I/O required to initialize the logical volumes
with the sync operation can expel other I/O operations to LVM devices, such as updates to volume
group metadata, particularly when you are creating many RAID logical volumes. This can cause the other
LVM operations to slow down.

You can control the rate at which a RAID logical volume is initialized by implementing recovery throttling.
To control the rate at which sync operations are performed, set the minimum and maximum I/O rate for
those operations with the --minrecoveryrate and --maxrecoveryrate options of the lvcreate
command.

You can specify these options as follows:

--maxrecoveryrate Rate[bBsSkKmMgG]

Sets the maximum recovery rate for a RAID logical volume so that it will not expel nominal I/O
operations. Specify the Rate as an amount per second for each device in the array. If you do not
provide a suffix, then it assumes kiB/sec/device. Setting the recovery rate to 0 means it will be
unbounded.

--minrecoveryrate Rate[bBsSkKmMgG]

Sets the minimum recovery rate for a RAID logical volume to ensure that I/O for sync operations
achieves a minimum throughput, even when heavy nominal I/O is present. Specify the Rate as an
amount per second for each device in the array. If you do not give a suffix, then it assumes
kiB/sec/device.

For example, use the lvcreate --type raid10 -i 2 -m 1 -L 10G --maxrecoveryrate 128 -n my_lv my_vg
command to create a 2-way RAID10 array my_lv, which is in the volume group my_vg with 3 stripes that is
10G in size with a maximum recovery rate of 128 kiB/sec/device. You can also specify minimum and
maximum recovery rates for a RAID scrubbing operation.

6.10. CONVERTING A LINEAR DEVICE TO A RAID LOGICAL VOLUME

You can convert an existing linear logical volume to a RAID logical volume. To perform this operation,
use the --type argument of the lvconvert command.

RAID logical volumes are composed of metadata and data subvolume pairs. When you convert a linear
device to a RAID1 array, it creates a new metadata subvolume and associates it with the original logical
volume on one of the same physical volumes that the linear volume is on. The additional images are
added in a metadata/data subvolume pair. If the metadata image that pairs with the original logical
volume cannot be placed on the same physical volume, the lvconvert fails.

Procédure

1. View the logical volume device that needs to be converted:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv /dev/sde1(0)

2. Convert the linear logical volume to a RAID device. The following command converts the linear

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

38

2. Convert the linear logical volume to a RAID device. The following command converts the linear
logical volume my_lv in volume group __my_vg, to a 2-way RAID1 array:

lvconvert --type raid1 -m 1 my_vg/my_lv
 Are you sure you want to convert linear LV my_vg/my_lv to raid1 with 2 images enhancing
resilience? [y/n]: y
 Logical volume my_vg/my_lv successfully converted.

Vérification

Ensure if the logical volume is converted to a RAID device:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 6.25 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sde1(0)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rmeta_0] /dev/sde1(256)
 [my_lv_rmeta_1] /dev/sdf1(0)

Ressources supplémentaires

The lvconvert(8) man page

6.11. CONVERTING AN LVM RAID1 LOGICAL VOLUME TO AN LVM
LINEAR LOGICAL VOLUME

You can convert an existing RAID1 LVM logical volume to an LVM linear logical volume. To perform this
operation, use the lvconvert command and specify the -m0 argument. This removes all the RAID data
subvolumes and all the RAID metadata subvolumes that make up the RAID array, leaving the top-level
RAID1 image as the linear logical volume.

Procédure

1. Display an existing LVM RAID1 logical volume:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] /dev/sdf1(0)

2. Convert an existing RAID1 LVM logical volume to an LVM linear logical volume. The following
command converts the LVM RAID1 logical volume my_vg/my_lv to an LVM linear device:

lvconvert -m0 my_vg/my_lv
 Are you sure you want to convert raid1 LV my_vg/my_lv to type linear losing all resilience?
[y/n]: y
 Logical volume my_vg/my_lv successfully converted.

When you convert an LVM RAID1 logical volume to an LVM linear volume, you can also specify

CHAPITRE 6. CONFIGURING RAID LOGICAL VOLUMES

39

which physical volumes to remove. In the following example, the lvconvert command specifies
that you want to remove /dev/sde1, leaving /dev/sdf1 as the physical volume that makes up the
linear device:

lvconvert -m0 my_vg/my_lv /dev/sde1

Vérification

Verify if the RAID1 logical volume was converted to an LVM linear device:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv /dev/sdf1(1)

Ressources supplémentaires

The lvconvert(8) man page

6.12. CONVERTING A MIRRORED LVM DEVICE TO A RAID1 LOGICAL
VOLUME

You can convert an existing mirrored LVM device with a segment type mirror to a RAID1 LVM device. To
perform this operation, use the lvconvert command with the --type raid1 argument. This renames the
mirror subvolumes named mimage to RAID subvolumes named rimage.

In addition, it also removes the mirror log and and creates metadata subvolumes named rmeta for the
data subvolumes on the same physical volumes as the corresponding data subvolumes.

Procédure

1. View the layout of a mirrored logical volume my_vg/my_lv:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 15.20 my_lv_mimage_0(0),my_lv_mimage_1(0)
 [my_lv_mimage_0] /dev/sde1(0)
 [my_lv_mimage_1] /dev/sdf1(0)
 [my_lv_mlog] /dev/sdd1(0)

2. Convert the mirrored logical volume my_vg/my_lv to a RAID1 logical volume:

lvconvert --type raid1 my_vg/my_lv
Are you sure you want to convert mirror LV my_vg/my_lv to raid1 type? [y/n]: y
Logical volume my_vg/my_lv successfully converted.

Vérification

Verify if the mirrored logical volume is converted to a RAID1 logical volume:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

40

 [my_lv_rimage_0] /dev/sde1(0)
 [my_lv_rimage_1] /dev/sdf1(0)
 [my_lv_rmeta_0] /dev/sde1(125)
 [my_lv_rmeta_1] /dev/sdf1(125)

Ressources supplémentaires

The lvconvert(8) man page

6.13. RESIZING A RAID LOGICAL VOLUME

You can resize a RAID logical volume in the following ways;

You can increase the size of a RAID logical volume of any type with the lvresize or lvextend
command. This does not change the number of RAID images. For striped RAID logical volumes
the same stripe rounding constraints apply as when you create a striped RAID logical volume.

You can reduce the size of a RAID logical volume of any type with the lvresize or lvreduce
command. This does not change the number of RAID images. As with the lvextend command,
the same stripe rounding constraints apply as when you create a striped RAID logical volume.

You can change the number of stripes on a striped RAID logical volume (raid4/5/6/10) with the -
-stripes N parameter of the lvconvert command. This increases or reduces the size of the RAID
logical volume by the capacity of the stripes added or removed. Note that raid10 volumes are
capable only of adding stripes. This capability is part of the RAID reshaping feature that allows
you to change attributes of a RAID logical volume while keeping the same RAID level. For
information on RAID reshaping and examples of using the lvconvert command to reshape a
RAID logical volume, see the lvmraid(7) man page.

6.14. CHANGING THE NUMBER OF IMAGES IN AN EXISTING RAID1
DEVICE

You can change the number of images in an existing RAID1 array, similar to the way you can change the
number of images in the implementation of LVM mirroring.

When you add images to a RAID1 logical volume with the lvconvert command, you can perform the
following operations:

specify the total number of images for the resulting device,

how many images to add to the device, and

can optionally specify on which physical volumes the new metadata/data image pairs reside.

Procédure

1. Display the LVM device my_vg/my_lv, which is a 2-way RAID1 array:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 6.25 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sde1(0)

CHAPITRE 6. CONFIGURING RAID LOGICAL VOLUMES

41

 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rmeta_0] /dev/sde1(256)
 [my_lv_rmeta_1] /dev/sdf1(0)

Metadata subvolumes named rmeta always exist on the same physical devices as their data
subvolume counterparts rimage. The metadata/data subvolume pairs will not be created on the
same physical volumes as those from another metadata/data subvolume pair in the RAID array
unless you specify --alloc anywhere.

2. Convert the 2-way RAID1 logical volume my_vg/my_lv to a 3-way RAID1 logical volume:

lvconvert -m 2 my_vg/my_lv
Are you sure you want to convert raid1 LV my_vg/my_lv to 3 images enhancing resilience?
[y/n]: y
Logical volume my_vg/my_lv successfully converted.

The following are a few examples of changing the number of images in an existing RAID1 device:

You can also specify which physical volumes to use while adding an image to RAID. The
following command converts the 2-way RAID1 logical volume my_vg/my_lv to a 3-way RAID1
logical volume, specifying that the physical volume /dev/sdd1 be used for the array:

lvconvert -m 2 my_vg/my_lv /dev/sdd1

Convert the 3-way RAID1 logical volume into a 2-way RAID1 logical volume:

lvconvert -m1 my_vg/my_lv
Are you sure you want to convert raid1 LV my_vg/my_lv to 2 images reducing resilience?
[y/n]: y
Logical volume my_vg/my_lv successfully converted.

Convert the 3-way RAID1 logical volume into a 2-way RAID1 logical volume by specifying the
physical volume /dev/sde1, which contains the image to remove:

lvconvert -m1 my_vg/my_lv /dev/sde1

Additionally, when you remove an image and its associated metadata subvolume volume,
any higher-numbered images will be shifted down to fill the slot. Removing lv_rimage_1
from a 3-way RAID1 array that consists of lv_rimage_0, lv_rimage_1, and lv_rimage_2
results in a RAID1 array that consists of lv_rimage_0 and lv_rimage_1. The subvolume
lv_rimage_2 will be renamed and take over the empty slot, becoming lv_rimage_1.

Vérification

View the RAID1 device after changing the number of images in an existing RAID1 device:

lvs -a -o name,copy_percent,devices my_vg
 LV Cpy%Sync Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sdd1(1)
 [my_lv_rimage_1] /dev/sde1(1)
 [my_lv_rimage_2] /dev/sdf1(1)

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

42

 [my_lv_rmeta_0] /dev/sdd1(0)
 [my_lv_rmeta_1] /dev/sde1(0)
 [my_lv_rmeta_2] /dev/sdf1(0)

Ressources supplémentaires

The lvconvert(8) man page

6.15. SPLITTING OFF A RAID IMAGE AS A SEPARATE LOGICAL
VOLUME

You can split off an image of a RAID logical volume to form a new logical volume. When you are
removing a RAID image from an existing RAID1 logical volume or removing a RAID data subvolume and
its associated metadata subvolume from the middle of the device, any higher numbered images will be
shifted down to fill the slot. The index numbers on the logical volumes that make up a RAID array will
thus be an unbroken sequence of integers.

NOTE

You cannot split off a RAID image if the RAID1 array is not yet in sync.

Procédure

1. Display the LVM device my_vg/my_lv, which is a 2-way RAID1 array:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 12.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] /dev/sdf1(0)

2. Split the RAID image into a separate logical volume. The following example splits a 2-way RAID1
logical volume, my_lv, into two linear logical volumes, my_lv and new:

lvconvert --splitmirror 1 -n new my_vg/my_lv
Are you sure you want to split raid1 LV my_vg/my_lv losing all resilience? [y/n]: y

Split a 3-way RAID1 logical volume, my_lv, into a 2-way RAID1 logical volume, my_lv, and a linear
logical volume, new:

lvconvert --splitmirror 1 -n new my_vg/my_lv

Vérification

View the logical volume after you split off an image of a RAID logical volume:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv /dev/sde1(1)
 new /dev/sdf1(1)

CHAPITRE 6. CONFIGURING RAID LOGICAL VOLUMES

43

Ressources supplémentaires

The lvconvert(8) man page

6.16. SPLITTING AND MERGING A RAID IMAGE

You can temporarily split off an image of a RAID1 array for read-only use while tracking any changes by
using the --trackchanges argument with the --splitmirrors argument of the lvconvert command. Using
this feature, you can merge the image into an array at a later time while resyncing only those portions of
the array that have changed since the image was split.

When you split off a RAID image with the --trackchanges argument, you can specify which image to
split but you cannot change the name of the volume being split. In addition, the resulting volumes have
the following constraints:

The new volume you create is read-only.

You cannot resize the new volume.

You cannot rename the remaining array.

You cannot resize the remaining array.

You can activate the new volume and the remaining array independently.

You can merge an image that was split off. When you merge the image, only the portions of the array
that have changed since the image was split are resynced.

Procédure

1. Create a RAID logical volume:

lvcreate --type raid1 -m 2 -L 1G -n my_lv my_vg
 Logical volume "my_lv" created

2. Optional: View the created RAID logical volume:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sdb1(1)
 [my_lv_rimage_1] /dev/sdc1(1)
 [my_lv_rimage_2] /dev/sdd1(1)
 [my_lv_rmeta_0] /dev/sdb1(0)
 [my_lv_rmeta_1] /dev/sdc1(0)
 [my_lv_rmeta_2] /dev/sdd1(0)

3. Split an image from the created RAID logical volume and track the changes to the remaining
array:

lvconvert --splitmirrors 1 --trackchanges my_vg/my_lv
 my_lv_rimage_2 split from my_lv for read-only purposes.
 Use 'lvconvert --merge my_vg/my_lv_rimage_2' to merge back into my_lv

4. Optional: View the logical volume after splitting the image:

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

44

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sdc1(1)
 [my_lv_rimage_1] /dev/sdd1(1)
 [my_lv_rmeta_0] /dev/sdc1(0)
 [my_lv_rmeta_1] /dev/sdd1(0)

5. Merge the volume back into the array:

lvconvert --merge my_vg/my_lv_rimage_1
 my_vg/my_lv_rimage_1 successfully merged back into my_vg/my_lv

Vérification

View the merged logical volume:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sdc1(1)
 [my_lv_rimage_1] /dev/sdd1(1)
 [my_lv_rmeta_0] /dev/sdc1(0)
 [my_lv_rmeta_1] /dev/sdd1(0)

Ressources supplémentaires

The lvconvert(8) man page

CHAPITRE 6. CONFIGURING RAID LOGICAL VOLUMES

45

CHAPITRE 7. SNAPSHOT OF LOGICAL VOLUMES
Using the LVM snapshot feature, you can create virtual images of a volume, for example, /dev/sda, at a
particular instant without causing a service interruption.

7.1. OVERVIEW OF SNAPSHOT VOLUMES

When you modify the original volume (the origin) after you take a snapshot, the snapshot feature makes
a copy of the modified data area as it was prior to the change so that it can reconstruct the state of the
volume. When you create a snapshot, full read and write access to the origin stays possible.

Since a snapshot copies only the data areas that change after the snapshot is created, the snapshot
feature requires a minimal amount of storage. For example, with a rarely updated origin, 3-5 % of the
origin’s capacity is sufficient to maintain the snapshot. It does not provide a substitute for a backup
procedure. Snapshot copies are virtual copies and are not an actual media backup.

The size of the snapshot controls the amount of space set aside for storing the changes to the origin
volume. For example, if you create a snapshot and then completely overwrite the origin, the snapshot
should be at least as big as the origin volume to hold the changes. You should regularly monitor the size
of the snapshot. For example, a short-lived snapshot of a read-mostly volume, such as /usr, would need
less space than a long-lived snapshot of a volume because it contains many writes, such as /home.

If a snapshot is full, the snapshot becomes invalid because it can no longer track changes on the origin
volume. But you can configure LVM to automatically extend a snapshot whenever its usage exceeds the
snapshot_autoextend_threshold value to avoid snapshot becoming invalid. Snapshots are fully
resizable and you can perform the following operations:

If you have the storage capacity, you can increase the size of the snapshot volume to prevent it
from getting dropped.

If the snapshot volume is larger than you need, you can reduce the size of the volume to free up
space that is needed by other logical volumes.

The snapshot volume provide the following benefits:

Most typically, you take a snapshot when you need to perform a backup on a logical volume
without halting the live system that is continuously updating the data.

You can execute the fsck command on a snapshot file system to check the file system integrity
and determine if the original file system requires file system repair.

Since the snapshot is read/write, you can test applications against production data by taking a
snapshot and running tests against the snapshot without touching the real data.

You can create LVM volumes for use with Red Hat Virtualization. You can use LVM snapshots to
create snapshots of virtual guest images. These snapshots can provide a convenient way to
modify existing guests or create new guests with minimal additional storage.

7.2. CREATING A SNAPSHOT OF THE ORIGINAL VOLUME

Use lvcreate command with the -s or --size argument followed by the required size to create a snapshot
of the original volume (the origin). A snapshot of a volume is writable. By default, a snapshot volume is
activated with the origin during normal activation commands as compared to the thinly-provisioned

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

46

snapshots. LVM does not support creating a snapshot volume that is larger than the sum of the origin
volume’s size and the required metadata size for the volume. If you specify a snapshot volume that is
larger than this, LVM creates a snapshot volume that is required for the size of the origin.

NOTE

The nodes in a cluster do not support LVM snapshots. You cannot create a snapshot
volume in a shared volume group. However, if you need to create a consistent backup of
data on a shared logical volume you can activate the volume exclusively and then create
the snapshot.

The following procedure creates an origin logical volume named origin and a snapshot volume of this
original volume named snap.

Conditions préalables

You have created volume group vg001. For more information, see Creating LVM volume group.

Procédure

1. Create a logical volume named origin from the volume group vg001:

lvcreate -L 1G -n origin vg001
Logical volume "origin" created.

2. Create a snapshot logical volume named snap of /dev/vg001/origin that is 100 MB in size:

lvcreate --size 100M --name snap --snapshot /dev/vg001/origin
 Logical volume "snap" created.

If the original logical volume contains a file system, you can mount the snapshot logical volume
on an arbitrary directory in order to access the contents of the file system to run a backup while
the original file system continues to get updated.

3. Display the origin volume and the current percentage of the snapshot volume being used:

lvs -a -o +devices
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
Devices
 origin vg001 owi-a-s--- 1.00g /dev/sde1(0)
 snap vg001 swi-a-s--- 100.00m origin 0.00 /dev/sde1(256)

You can also display the status of logical volume /dev/vg001/origin with all the snapshot logical
volumes and their status, such as active or inactive by using the lvdisplay /dev/vg001/origin
command.

CHAPITRE 7. SNAPSHOT OF LOGICAL VOLUMES

47

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#creating-lvm-volume-group_managing-lvm-volume-groups

AVERTISSEMENT

Since the snapshot increases in size as the origin volume changes, it is
important to monitor the percentage of the snapshot volume regularly with
the lvs command to be sure it does not become full. A snapshot that is
100% full is lost completely, as a write to unchanged parts of the origin
would be unable to succeed without corrupting the snapshot.

4. You can configure LVM to automatically extend a snapshot when its usage exceeds the
snapshot_autoextend_threshold value to avoid the snapshot becoming invalid when it is 100%
full. View the existing values for the snapshot_autoextend_threshold and
snapshot_autoextend_percent options from the /etc/lvm.conf file and edit them as per your
requirements.
The following example, sets the snapshot_autoextend_threshold option to value less than 100
and snapshot_autoextend_percent option to the value depending on your requirement to
extend the snapshot volume:

vi /etc/lvm.conf
snapshot_autoextend_threshold = 70
snapshot_autoextend_percent = 20

You can also extend this snapshot manually by executing the following command:

lvextend -L+100M /dev/vg001/snap

NOTE

This feature requires unallocated space in the volume group. An automatic
extension of a snapshot does not increase the size of a snapshot volume beyond
the maximum calculated size that is necessary for the snapshot. Once a snapshot
has grown large enough to cover the origin, it is no longer monitored for
automatic extension.

Ressources supplémentaires

lvcreate(8), lvextend(8), and lvs(8) man pages

/etc/lvm/lvm.conf file

7.3. MERGING SNAPSHOT TO ITS ORIGINAL VOLUME

Use the lvconvert command with the --merge option to merge a snapshot into its original (the origin)
volume. You can perform a system rollback if you have lost data or files, or otherwise you have to restore
your system to a previous state. After you merge the snapshot volume, the resulting logical volume has
the origin volume’s name, minor number, and UUID. While the merge is in progress, reads or writes to the
origin appear as they were directed to the snapshot being merged. When the merge finishes, the
merged snapshot is removed.

If both the origin and snapshot volume are not open and active, the merge starts immediately.



Red Hat Enterprise Linux 9 Configuring and managing logical volumes

48

Otherwise, the merge starts after either the origin or snapshot are activated and both are closed. You
can merge a snapshot into an origin that cannot be closed, for example a root file system, after the
origin volume is activated.

Procédure

1. Merge the snapshot volume. The following command merges snapshot volume vg001/snap into
its origin:

lvconvert --merge vg001/snap
Merging of volume vg001/snap started.
 vg001/origin: Merged: 100.00%

2. View the origin volume:

lvs -a -o +devices
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
Devices
 origin vg001 owi-a-s--- 1.00g /dev/sde1(0)

Ressources supplémentaires

lvconvert(8) man page

CHAPITRE 7. SNAPSHOT OF LOGICAL VOLUMES

49

CHAPITRE 8. CREATING AND MANAGING THIN PROVISIONED
VOLUMES (THIN VOLUMES)

Red Hat Enterprise Linux supports thin provisioned snapshot volumes and logical volumes.

Logical volumes and snapshot volumes can be thinly provisioned:

Using thin-provisioned logical volumes, you can create logical volumes that are larger than the
available physical storage.

Using thin-provisioned snapshot volumes, you can store more virtual devices on the same data
volume.

8.1. OVERVIEW OF THIN PROVISIONING

Many modern storage stacks now provide the ability to choose between thick provisioning and thin
provisioning:

Thick provisioning provides the traditional behavior of block storage where blocks are allocated
regardless of their actual usage.

Thin provisioning grants the ability to provision a larger pool of block storage that may be larger
in size than the physical device storing the data, resulting in over-provisioning. Over-
provisioning is possible because individual blocks are not allocated until they are actually used. If
you have multiple thin-provisioned devices that share the same pool, then these devices can be
over-provisioned.

By using thin provisioning, you can over-commit the physical storage, and instead can manage a pool of
free space known as a thin pool. You can allocate this thin pool to an arbitrary number of devices when
needed by applications. You can expand the thin pool dynamically when needed for cost-effective
allocation of storage space.

For example, if ten users each request a 100GB file system for their application, then you can create
what appears to be a 100GB file system for each user but which is backed by less actual storage that is
used only when needed.

NOTE

When using thin provisioning, it is important that you monitor the storage pool and add
more capacity as the available physical space runs out.

The following are a few advantages of using thin-provisioned devices:

You can create logical volumes that are larger than the available physical storage.

You can have more virtual devices to be stored on the same data volume.

You can create file systems that can grow logically and automatically to support the data
requirements and the unused blocks are returned to the pool for use by any file system in the
pool

The following are the potential drawbacks of using thin-provisioned devices:

Thin-provisioned volumes have an inherent risk of running out of available physical storage. If
you have over-provisioned your underlying storage, it could possibly result in an outage due to

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

50

the lack of available physical storage. For example, if you create 10T of thinly provisioned
storage with only 1T physical storage for backing, the volumes will become unavailable or
unwritable after the 1T is exhausted.

If volumes are not sending discards to the layers after thin-provisioned devices, then the
accounting for usage will not be accurate. For example, placing a file system without the -o
discard mount option and not running fstrim periodically on top of thin-provisioned devices
will never unallocate previously used storage. In such cases, you end up using the full provisioned
amount over time even if you are not really using it.

You must monitor the logical and physical usage so as to not run out of available physical space.

Copy on Write (CoW) operation can be slower on file systems with snapshots.

Data blocks can be intermixed between multiple file systems leading to random access
limitations of the underlying storage even when it does not appear that way to the end user.

8.2. CREATING THINLY-PROVISIONED LOGICAL VOLUMES

Using thin-provisioned logical volumes, you can create logical volumes that are larger than the available
physical storage. Creating a thinly provisioned set of volumes allows the system to allocate what you use
instead of allocating the full amount of storage that is requested.

Using the -T or --thin option of the lvcreate command, you can create either a thin pool or a thin
volume. You can also use the -T option of the lvcreate command to create both a thin pool and a thin
volume at the same time with a single command. This procedure describes how to create and grow
thinly-provisioned logical volumes.

Conditions préalables

You have created a volume group. For more information, see Creating LVM volume group.

Procédure

1. Create a thin pool:

lvcreate -L 100M -T vg001/mythinpool
 Thin pool volume with chunk size 64.00 KiB can address at most 15.81 TiB of data.
 Logical volume "mythinpool" created.

Note that since you are creating a pool of physical space, you must specify the size of the pool.
The -T option of the lvcreate command does not take an argument; it determines what type of
device is to be created from the other options that are added with the command. You can also
create thin pool using additional parameters as shown in the following examples:

You can also create a thin pool using the --thinpool parameter of the lvcreate command.
Unlike the -T option, the --thinpool parameter requires that you specify the name of the
thin pool logical volume you are creating. The following example uses the --thinpool
parameter to create a thin pool named mythinpool in the volume group vg001 that is 100M
in size:

lvcreate -L 100M --thinpool mythinpool vg001
 Thin pool volume with chunk size 64.00 KiB can address at most 15.81 TiB of data.
 Logical volume "mythinpool" created.

As striping is supported for pool creation, you can use the -i and -I options to create stripes.

CHAPITRE 8. CREATING AND MANAGING THIN PROVISIONED VOLUMES (THIN VOLUMES)

51

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-volume-groups_configuring-and-managing-logical-volumes#creating-lvm-volume-group_managing-lvm-volume-groups

As striping is supported for pool creation, you can use the -i and -I options to create stripes.
The following command creates a 100M thin pool named as thinpool in volume group vg001
with two 64 kB stripes and a chunk size of 256 kB. It also creates a 1T thin volume named
vg001/thinvolume.

NOTE

Ensure that there are two physical volumes with sufficient free space in the
volume group or you cannot create the thin pool.

lvcreate -i 2 -I 64 -c 256 -L 100M -T vg001/thinpool -V 1T --name thinvolume

2. Create a thin volume:

lvcreate -V 1G -T vg001/mythinpool -n thinvolume
 WARNING: Sum of all thin volume sizes (1.00 GiB) exceeds the size of thin pool
vg001/mythinpool (100.00 MiB).
 WARNING: You have not turned on protection against thin pools running out of space.
 WARNING: Set activation/thin_pool_autoextend_threshold below 100 to trigger automatic
extension of thin pools before they get full.
 Logical volume "thinvolume" created.

In this case, you are specifying virtual size for the volume that is greater than the pool that
contains it. You can also create thin volumes using additional parameters as shown in the
following examples:

To create both a thin volume and a thin pool, use the -T option of the lvcreate command
and specify both the size and virtual size argument:

lvcreate -L 100M -T vg001/mythinpool -V 1G -n thinvolume
 Thin pool volume with chunk size 64.00 KiB can address at most 15.81 TiB of data.
 WARNING: Sum of all thin volume sizes (1.00 GiB) exceeds the size of thin pool
vg001/mythinpool (100.00 MiB).
 WARNING: You have not turned on protection against thin pools running out of space.
 WARNING: Set activation/thin_pool_autoextend_threshold below 100 to trigger
automatic extension of thin pools before they get full.
 Logical volume "thinvolume" created.

To use the remaining free space to create a thin volume and thin pool, use the 100%FREE
option:

lvcreate -V 1G -l 100%FREE -T vg001/mythinpool -n thinvolume
Thin pool volume with chunk size 64.00 KiB can address at most <15.88 TiB of data.
 Logical volume "thinvolume" created.

To convert an existing logical volume to a thin pool volume, use the --thinpool parameter of
the lvconvert command. You must also use the --poolmetadata parameter in conjunction
with the --thinpool parameter to convert an existing logical volume to a thin pool volume’s
metadata volume.
The following example converts the existing logical volume lv1 in volume group vg001 to a
thin pool volume and converts the existing logical volume lv2 in volume group vg001 to the
metadata volume for that thin pool volume:

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

52

lvconvert --thinpool vg001/lv1 --poolmetadata vg001/lv2
 Converted vg001/lv1 to thin pool.

NOTE

Converting a logical volume to a thin pool volume or a thin pool metadata
volume destroys the content of the logical volume, as lvconvert does not
preserve the content of the devices but instead overwrites the content.

By default, the lvcreate command approximately sets the size of the thin pool metadata
logical volume by using the following formula:

Pool_LV_size / Pool_LV_chunk_size * 64

If you have large numbers of snapshots or if you have have small chunk sizes for your thin
pool and therefore expect significant growth of the size of the thin pool at a later time, you
may need to increase the default value of the thin pool’s metadata volume using the --
poolmetadatasize parameter of the lvcreate command. The supported value for the thin
pool’s metadata logical volume is in the range between 2MiB and 16GiB.

The following example illustrates how to increase the default value of the thin pools’
metadata volume:

lvcreate -V 1G -l 100%FREE -T vg001/mythinpool --poolmetadatasize 16M -n
thinvolume
Thin pool volume with chunk size 64.00 KiB can address at most 15.81 TiB of data.
 Logical volume "thinvolume" created.

3. View the created thin pool and thin volume:

lvs -a -o +devices
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync
Convert Devices
 [lvol0_pmspare] vg001 ewi------- 4.00m /dev/sda(0)
 mythinpool vg001 twi-aotz-- 100.00m 0.00 10.94
mythinpool_tdata(0)
 [mythinpool_tdata] vg001 Twi-ao---- 100.00m
/dev/sda(1)
 [mythinpool_tmeta] vg001 ewi-ao---- 4.00m
/dev/sda(26)
 thinvolume vg001 Vwi-a-tz-- 1.00g mythinpool 0.00

4. Optional: Extend the size of a thin pool with the lvextend command. You cannot, however,
reduce the size of a thin pool.

NOTE

This command fails if you use -l 100%FREE argument while creating a thin pool
and thin volume.

The following command resizes an existing thin pool that is 100M in size by extending it another
100M:

CHAPITRE 8. CREATING AND MANAGING THIN PROVISIONED VOLUMES (THIN VOLUMES)

53

lvextend -L+100M vg001/mythinpool
 Size of logical volume vg001/mythinpool_tdata changed from 100.00 MiB (25 extents) to
200.00 MiB (50 extents).
 WARNING: Sum of all thin volume sizes (1.00 GiB) exceeds the size of thin pool
vg001/mythinpool (200.00 MiB).
 WARNING: You have not turned on protection against thin pools running out of space.
 WARNING: Set activation/thin_pool_autoextend_threshold below 100 to trigger automatic
extension of thin pools before they get full.

 Logical volume vg001/mythinpool successfully resized

lvs -a -o +devices
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync
Convert Devices
 [lvol0_pmspare] vg001 ewi------- 4.00m /dev/sda(0)
 mythinpool vg001 twi-aotz-- 200.00m 0.00 10.94
mythinpool_tdata(0)
 [mythinpool_tdata] vg001 Twi-ao---- 200.00m
/dev/sda(1)
 [mythinpool_tdata] vg001 Twi-ao---- 200.00m
/dev/sda(27)
 [mythinpool_tmeta] vg001 ewi-ao---- 4.00m
/dev/sda(26)
 thinvolume vg001 Vwi-a-tz-- 1.00g mythinpool 0.00

5. Optional: To rename the thin pool and thin volume, use the following command:

lvrename vg001/mythinpool vg001/mythinpool1
 Renamed "mythinpool" to "mythinpool1" in volume group "vg001"

lvrename vg001/thinvolume vg001/thinvolume1
 Renamed "thinvolume" to "thinvolume1" in volume group "vg001"

View the thin pool and thin volume after renaming:

lvs
 LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
mythinpool1 vg001 twi-a-tz 100.00m 0.00
thinvolume1 vg001 Vwi-a-tz 1.00g mythinpool1 0.00

6. Optional: To remove the thin pool, use the following command:

lvremove -f vg001/mythinpool1
 Logical volume "thinvolume1" successfully removed.
 Logical volume "mythinpool1" successfully removed.

Ressources supplémentaires

lvcreate(8), lvrename(8), lvs(8), and lvconvert(8) man pages

8.3. OVERVIEW OF CHUNK SIZE

A chunk is the largest unit of physical disk dedicated to snapshot storage.

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

54

Use the following criteria for using the chunk size:

A smaller chunk size requires more metadata and hinders performance, but provides better
space utilization with snapshots.

A bigger chunk size requires less metadata manipulation, but makes the snapshot less space
efficient.

Be default, lvm2 starts with a 64KiB chunk size and estimates good metadata size for such chunk size.
The minimal metadata size lvm2 can create and use is 2 MiB. If the metadata size needs to be larger
than 128 MiB it begins to increase the chunk size, so the metadata size stays compact. However, this
may result in some big chunk size values, which are less space efficient for snapshot usage. In such cases,
a smaller chunk size and bigger metadata size is a better option.

To specify the chunk size according to your requirement, use the -c or --chunksize parameter to
overrule lvm2 estimated chunk size. Be aware that you cannot change the chunk size once the thinpool
is created.

If the volume data size is in the range of TiB, use ~15.8GiB as the metadata size, which is the maximum
supported size, and set the chunk size according to your requirement. But, note that it is not possible to
increase the metadata size if you need to extend the volume’s data size and have a small chunk size.

NOTE

Using the inappropriate combination of chunk size and metadata size may result in
potentially problematic situation, when user runs out of space in metadata or they may
not further grow their thin-pool size because of limited maximum addressable thin-pool
data size.

Ressources supplémentaires

lvmthin(7) man page

8.4. THINLY-PROVISIONED SNAPSHOT VOLUMES

Red Hat Enterprise Linux supports thinly-provisioned snapshot volumes. A snapshot of a thin logical
volume also creates a thin logical volume (LV). A thin snapshot volume has the same characteristics as
any other thin volume. You can independently activate the volume, extend the volume, rename the
volume, remove the volume, and even snapshot the volume.

NOTE

Similarly to all LVM snapshot volumes, and all thin volumes, thin snapshot volumes are not
supported across the nodes in a cluster. The snapshot volume must be exclusively
activated on only one cluster node.

Traditional snapshots must allocate new space for each snapshot created, where data is preserved as
changes are made to the origin. But thin-provisioning snapshots share the same space with the origin.
Snapshots of thin LVs are efficient because the data blocks common to a thin LV and any of its
snapshots are shared. You can create snapshots of thin LVs or from the other thin snapshots. Blocks
common to recursive snapshots are also shared in the thin pool.

Thin snapshot volumes provide the following benefits:

Increasing the number of snapshots of the origin has a negligible impact on performance.

CHAPITRE 8. CREATING AND MANAGING THIN PROVISIONED VOLUMES (THIN VOLUMES)

55

A thin snapshot volume can reduce disk usage because only the new data is written and is not
copied to each snapshot.

There is no need to simultaneously activate the thin snapshot volume with the origin, which is a
requirement of traditional snapshots.

When restoring an origin from a snapshot, it is not required to merge the thin snapshot. You can
remove the origin and instead use the snapshot. Traditional snapshots have a separate volume
where they store changes that must be copied back, that is, merged to the origin to reset it.

There is a significantly higher limit on the number of allowed snapshots as compared to the
traditional snapshots.

Although there are many advantages for using thin snapshot volumes, there are some use cases for
which the traditional LVM snapshot volume feature might be more appropriate to your needs. You can
use traditional snapshots with all types of volumes. However, to use thin-snapshots requires you to use
thin-provisioning.

NOTE

You cannot limit the size of a thin snapshot volume; the snapshot uses all of the space in
the thin pool, if necessary. In general, you should consider the specific requirements of
your site when deciding which snapshot format to use.

By default, a thin snapshot volume is skipped during normal activation commands.

8.5. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES

Using thin-provisioned snapshot volumes, you can have more virtual devices stored on the same data
volume.

IMPORTANT

When creating a thin snapshot volume, do not specify the size of the volume. If you
specify a size parameter, the snapshot that will be created will not be a thin snapshot
volume and will not use the thin pool for storing data. For example, the command
lvcreate -s vg/thinvolume -L10M will not create a thin snapshot, even though the origin
volume is a thin volume.

Thin snapshots can be created for thinly-provisioned origin volumes, or for origin volumes that are not
thinly-provisioned. The following procedure describes different ways to create a thinly-provisioned
snapshot volume.

Conditions préalables

You have created a thinly-provisioned logical volume. For more information, see Overview of
thin provisioning.

Procédure

Create a thinly-provisioned snapshot volume. The following command creates a thinly-
provisioned snapshot volume named as mysnapshot1 of the thinly-provisioned logical volume
vg001/thinvolume:

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

56

lvcreate -s --name mysnapshot1 vg001/thinvolume
 Logical volume "mysnapshot1" created

lvs
 LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
 mysnapshot1 vg001 Vwi-a-tz 1.00g mythinpool thinvolume 0.00
 mythinpool vg001 twi-a-tz 100.00m 0.00
 thinvolume vg001 Vwi-a-tz 1.00g mythinpool 0.00

NOTE

When using thin provisioning, it is important that the storage administrator
monitor the storage pool and add more capacity if it starts to become full. For
information on extending the size of a thin volume, see Creating thinly-
provisioned logical volumes .

You can also create a thinly-provisioned snapshot of a non-thinly-provisioned logical volume.
Since the non-thinly-provisioned logical volume is not contained within a thin pool, it is referred
to as an external origin. External origin volumes can be used and shared by many thinly-
provisioned snapshot volumes, even from different thin pools. The external origin must be
inactive and read-only at the time the thinly-provisioned snapshot is created.
The following example creates a thin snapshot volume of the read-only, inactive logical volume
named origin_volume. The thin snapshot volume is named mythinsnap. The logical volume
origin_volume then becomes the thin external origin for the thin snapshot volume mythinsnap in
volume group vg001 that uses the existing thin pool vg001/pool. The origin volume must be in
the same volume group as the snapshot volume. Do not specify the volume group when
specifying the origin logical volume.

lvcreate -s --thinpool vg001/pool origin_volume --name mythinsnap

You can create a second thinly-provisioned snapshot volume of the first snapshot volume by
executing the following command.

lvcreate -s vg001/mysnapshot1 --name mysnapshot2
Logical volume "mysnapshot2" created.

To create a third thinly-provisioned snapshot volume, use the following command:

lvcreate -s vg001/mysnapshot2 --name mysnapshot3
Logical volume "mysnapshot3" created.

Vérification

Display a list of all ancestors and descendants of a thin snapshot logical volume:

$ lvs -o name,lv_ancestors,lv_descendants vg001
 LV Ancestors Descendants
 mysnapshot2 mysnapshot1,thinvolume mysnapshot3
 mysnapshot1 thinvolume mysnapshot2,mysnapshot3
 mysnapshot3 mysnapshot2,mysnapshot1,thinvolume
 mythinpool
 thinvolume mysnapshot1,mysnapshot2,mysnapshot3

CHAPITRE 8. CREATING AND MANAGING THIN PROVISIONED VOLUMES (THIN VOLUMES)

57

Here,

thinvolume is an origin volume in volume group vg001.

mysnapshot1 is a snapshot of thinvolume

mysnapshot2 is a snapshot of mysnapshot1

mysnapshot3 is a snapshot of mysnapshot2

NOTE

The lv_ancestors and lv_descendants fields display existing dependencies.
However, they do not track removed entries which can break a dependency chain
if the entry was removed from the middle of the chain.

Ressources supplémentaires

lvcreate(8) man page

8.6. HISTORICAL LOGICAL VOLUMES

You can configure the system to track thin snapshot and thin logical volumes that have been removed
by enabling the record_lvs_history metadata option in the lvm.conf configuration file. This allows you
to display a full thin snapshot dependency chain that includes logical volumes that have been removed
from the original dependency chain and have become historical logical volumes.

You can configure the system to retain historical volumes for a defined period of time by specifying the
retention time, in seconds, with the lvs_history_retention_time metadata option in the lvm.conf
configuration file.

A historical logical volume retains a simplified representation of the already removed logical volume,
including the following reporting fields for the volume:

lv_time_removed: the removal time of the logical volume

lv_time: the creation time of the logical volume

lv_name: the name of the logical volume

lv_uuid: the UUID of the logical volume

vg_name: the volume group that contains the logical volume.

IMPORTANT

A historical logical volume cannot be reactivated.

When you remove a volume, the historical logical volume name acquires a hyphen as a prefix. For
example, if you remove the logical volume lvol1, the name of the historical volume becomes -lvol1.

Logical Volume Manager (LVM) does not keep historical logical volumes if the volume has no live
descendant. This means that if you remove a logical volume at the end of a snapshot chain, the logical
volume is not retained as a historical logical volume.

To include historical logical volumes in volume display, you specify the -H|--history option of an LVM

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

58

To include historical logical volumes in volume display, you specify the -H|--history option of an LVM
display command. You can display a full thin snapshot dependency chain that includes historical volumes
by specifying the lv_full_ancestors and lv_full_descendants reporting fields along with the -H option.

8.7. TRACKING AND DISPLAYING REMOVED THIN SNAPSHOT
VOLUMES

This procedure describes how to display and manage deleted historical logical volumes.

Procédure

1. Ensure that historical logical volumes are retained by setting record_lvs_history=1 in the
lvm.conf file. This metadata option is not enabled by default.

2. Optional: Set the value of the lvs_history_retention_time option in seconds. This is the time
interval after which a record about individual historical logical volume is automatically destroyed.
The automatic default value is 0 and it disables this feature. If you do not set this option, you can
also delete individual historical volumes manually.

3. To display a thin-provisioned snapshot chain:
Dans cet exemple :

lvol1 is an origin volume, the first volume in the chain.

lvol2 is a snapshot of lvol1.

lvol3 is a snapshot of lvol2.

lvol4 is a snapshot of lvol3.

lvol5 is also a snapshot of lvol3.

lvs -H -o name,full_ancestors,full_descendants
 LV FAncestors FDescendants
 lvol1 lvol2,lvol3,lvol4,lvol5
 lvol2 lvol1 lvol3,lvol4,lvol5
 lvol3 lvol2,lvol1 lvol4,lvol5
 lvol4 lvol3,lvol2,lvol1
 lvol5 lvol3,lvol2,lvol1
 pool

Note that, despite using lvs utility with the -H option, no thin snapshot volume is removed
and there are no historical logical volumes to display.

4. Remove logical volume lvol3 from the snapshot chain:

lvremove -f vg/lvol3
 Logical volume "lvol3" successfully removed

5. Run the lvs utility to see the details of historical logical volumes, along with their ancestors and
descendants:

lvs -H -o name,full_ancestors,full_descendants
 LV FAncestors FDescendants
 lvol1 lvol2,-lvol3,lvol4,lvol5

CHAPITRE 8. CREATING AND MANAGING THIN PROVISIONED VOLUMES (THIN VOLUMES)

59

 lvol2 lvol1 -lvol3,lvol4,lvol5
 -lvol3 lvol2,lvol1 lvol4,lvol5
 lvol4 -lvol3,lvol2,lvol1
 lvol5 -lvol3,lvol2,lvol1
 pool

6. Additionally, display the removal timestamp of a historical volume:

lvs -H -o name,full_ancestors,full_descendants,time_removed
 LV FAncestors FDescendants RTime
 lvol1 lvol2,-lvol3,lvol4,lvol5
 lvol2 lvol1 -lvol3,lvol4,lvol5
 -lvol3 lvol2,lvol1 lvol4,lvol5 2016-03-14 14:14:32 +0100
 lvol4 -lvol3,lvol2,lvol1
 lvol5 -lvol3,lvol2,lvol1
 pool

7. You can reference historical logical volumes individually in a display command by specifying the
vgname/lvname format:

lvs -H vg/-lvol3
 LV VG Attr LSize
 -lvol3 vg ----h----- 0

Note that the fifth bit in the lv_attr field is set to h to indicate the volume is a historical one.

8. LVM does not keep historical logical volumes if the volume has no live descendant. This means
that if you remove a logical volume at the end of a snapshot chain, the logical volume is not
retained as a historical logical volume.

lvremove -f vg/lvol5
 Automatically removing historical logical volume vg/-lvol5.
 Logical volume "lvol5" successfully removed
lvs -H -o name,full_ancestors,full_descendants
 LV FAncestors FDescendants
 lvol1 lvol2,-lvol3,lvol4
 lvol2 lvol1 -lvol3,lvol4
 -lvol3 lvol2,lvol1 lvol4
 lvol4 -lvol3,lvol2,lvol1
 pool

9. Remove the volume lvol1 and lvol2 and to see how the lvs command displays the volumes
once they have been removed.

lvremove -f vg/lvol1 vg/lvol2
 Logical volume "lvol1" successfully removed
 Logical volume "lvol2" successfully removed
lvs -H -o name,full_ancestors,full_descendants
 LV FAncestors FDescendants
 -lvol1 -lvol2,-lvol3,lvol4
 -lvol2 -lvol1 -lvol3,lvol4
 -lvol3 -lvol2,-lvol1 lvol4
 lvol4 -lvol3,-lvol2,-lvol1
 pool

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

60

10. Remove a historical logical volume completely by specifying the name of the historical volume
that now includes the hyphen, as in the following example

lvremove -f vg/-lvol3
Historical logical volume "lvol3" successfully removed
lvs -H -o name,full_ancestors,full_descendants
 LV FAncestors FDescendants
 -lvol1 -lvol2,lvol4
 -lvol2 -lvol1 lvol4
 lvol4 -lvol2,-lvol1
 pool

CHAPITRE 8. CREATING AND MANAGING THIN PROVISIONED VOLUMES (THIN VOLUMES)

61

CHAPITRE 9. ENABLING CACHING TO IMPROVE LOGICAL
VOLUME PERFORMANCE

You can add caching to an LVM logical volume to improve performance. LVM then caches I/O
operations to the logical volume using a fast device, such as an SSD.

The following procedures create a special LV from the fast device, and attach this special LV to the
original LV to improve the performance.

9.1. CACHING METHODS IN LVM

LVM provides the following kinds of caching. Each one is suitable for different kinds of I/O patterns on
the logical volume.

dm-cache

This method speeds up access to frequently used data by caching it on the faster volume. The
method caches both read and write operations.
The dm-cache method creates logical volumes of the type cache.

dm-writecache

This method caches only write operations. The faster volume stores the write operations and then
migrates them to the slower disk in the background. The faster volume is usually an SSD or a
persistent memory (PMEM) disk.
The dm-writecache method creates logical volumes of the type writecache.

Ressources supplémentaires

lvmcache(7) man page

9.2. LVM CACHING COMPONENTS

LVM provides support for adding a cache to LVM logical volumes. LVM caching uses the following LVM
logical volume types:

Main LV

The larger, slower, and original volume.

Cache pool LV

A composite LV that you can use for caching data from the main LV. It has two sub-LVs: data for
holding cache data and metadata for managing the cache data. You can configure specific disks for
data and metadata. You can use the cache pool only with dm-cache.

Cachevol LV

A linear LV that you can use for caching data from the main LV. You cannot configure separate disks
for data and metadata. cachevol can be only used with either dm-cache or dm-writecache.

All of these associated LVs must be in the same volume group.

You can combine a main logical volume (LV) with a faster, usually smaller, LV that holds the cached data.
The fast LV is created from fast block devices, such as SSD drives. When you enable caching for a logical
volume, LVM renames and hides the original volumes, and presents a new logical volume that is

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

62

composed of the original logical volumes. The composition of the new logical volume depends on the
caching method and whether you are using the cachevol or cachepool option.

The cachevol and cachepool options expose different levels of control over the placement of the
caching components:

With the cachevol option, the faster device stores both the cached copies of data blocks and
the metadata for managing the cache.

With the cachepool option, separate devices can store the cached copies of data blocks and
the metadata for managing the cache.
The dm-writecache method is not compatible with cachepool.

In all configurations, LVM exposes a single resulting device, which groups together all the caching
components. The resulting device has the same name as the original slow logical volume.

Ressources supplémentaires

lvmcache(7) man page

Creating and managing thin provisioned volumes (thin volumes)

9.3. ENABLING DM-CACHE CACHING FOR A LOGICAL VOLUME

This procedure enables caching of commonly used data on a logical volume using the dm-cache method.

Conditions préalables

A slow logical volume that you want to speed up using dm-cache exists on your system.

The volume group that contains the slow logical volume also contains an unused physical volume
on a fast block device.

Procédure

1. Create a cachevol volume on the fast device:

lvcreate --size cachevol-size --name <fastvol> <vg> </dev/fast-pv>

Replace the following values:

cachevol-size

The size of the cachevol volume, such as 5G

fastvol

A name for the cachevol volume

vg

The volume group name

/dev/fast-pv

The path to the fast block device, such as /dev/sdf

Exemple 9.1. Creating a cachevol volume

CHAPITRE 9. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE

63

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_and_managing_logical_volumes/index#creating-and-managing-thin-provisioned-volumes_configuring-and-managing-logical-volumes

lvcreate --size 5G --name fastvol vg /dev/sdf
Logical volume "fastvol" created.

2. Attach the cachevol volume to the main logical volume to begin caching:

lvconvert --type cache --cachevol <fastvol> <vg/main-lv>

Replace the following values:

fastvol

The name of the cachevol volume

vg

The volume group name

main-lv

The name of the slow logical volume

Exemple 9.2. Attaching the cachevol volume to the main LV

lvconvert --type cache --cachevol fastvol vg/main-lv
Erase all existing data on vg/fastvol? [y/n]: y
Logical volume vg/main-lv is now cached.

Verification steps

Verify if the newly created logical volume has dm-cache enabled:

lvs --all --options +devices <vg>

LV Pool Type Devices
main-lv [fastvol_cvol] cache main-lv_corig(0)
[fastvol_cvol] linear /dev/fast-pv
[main-lv_corig] linear /dev/slow-pv

Ressources supplémentaires

lvmcache(7) man page

9.4. ENABLING DM-CACHE CACHING WITH A CACHEPOOL FOR A
LOGICAL VOLUME

This procedure enables you to create the cache data and the cache metadata logical volumes
individually and then combine the volumes into a cache pool.

Conditions préalables

A slow logical volume that you want to speed up using dm-cache exists on your system.

The volume group that contains the slow logical volume also contains an unused physical volume

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

64

The volume group that contains the slow logical volume also contains an unused physical volume
on a fast block device.

Procédure

1. Create a cachepool volume on the fast device:

lvcreate --type cache-pool --size <cachepool-size> --name <fastpool> <vg /dev/fast>

Replace the following values:

cachepool-size

The size of the cachepool, such as 5G

fastpool

A name for the cachepool volume

vg

The volume group name

/dev/fast

The path to the fast block device, such as /dev/sdf1

NOTE

You can use --poolmetadata option to specify the location of the pool
metadata when creating the cache-pool.

Exemple 9.3. Creating a cachepool volume

lvcreate --type cache-pool --size 5G --name fastpool vg /dev/sde
Logical volume "fastpool" created.

2. Attach the cachepool to the main logical volume to begin caching:

lvconvert --type cache --cachepool <fastpool> <vg/main>

Replace the following values:

fastpool

The name of the cachepool volume

vg

The volume group name

main

The name of the slow logical volume

Exemple 9.4. Attaching the cachepool to the main LV

lvconvert --type cache --cachepool fastpool vg/main
Do you want wipe existing metadata of cache pool vg/fastpool? [y/n]: y
Logical volume vg/main is now cached.

CHAPITRE 9. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE

65

Verification steps

Examine the newly created devicevolume with the cache-pool type:

lvs --all --options +devices <vg>

LV Pool Type Devices
[fastpool_cpool] cache-pool fastpool_pool_cdata(0)
[fastpool_cpool_cdata] linear /dev/sdf1(4)
[fastpool_cpool_cmeta] linear /dev/sdf1(2)
[lvol0_pmspare] linear /dev/sdf1(0)
main [fastpoool_cpool] cache main_corig(0)
[main_corig] linear /dev/sdf1(O)

Ressources supplémentaires

lvcreate(8) man page

lvmcache(7) man page

lvconvert(8) man page

9.5. ENABLING DM-WRITECACHE CACHING FOR A LOGICAL VOLUME

This procedure enables caching of write I/O operations to a logical volume using the dm-writecache
method.

Conditions préalables

A slow logical volume that you want to speed up using dm-writecache exists on your system.

The volume group that contains the slow logical volume also contains an unused physical volume
on a fast block device.

If the slow logical volume is active, deactivate it.

Procédure

1. If the slow logical volume is active, deactivate it:

lvchange --activate n <vg>/<main-lv>

Replace the following values:

vg

The volume group name

main-lv

The name of the slow logical volume

2. Create a deactivated cachevol volume on the fast device:

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

66

lvcreate --activate n --size <cachevol-size> --name <fastvol> <vg> </dev/fast-pv>

Replace the following values:

cachevol-size

The size of the cachevol volume, such as 5G

fastvol

A name for the cachevol volume

vg

The volume group name

/dev/fast-pv

The path to the fast block device, such as /dev/sdf

Exemple 9.5. Creating a deactivated cachevol volume

lvcreate --activate n --size 5G --name fastvol vg /dev/sdf
WARNING: Logical volume vg/fastvol not zeroed.
Logical volume "fastvol" created.

3. Attach the cachevol volume to the main logical volume to begin caching:

lvconvert --type writecache --cachevol <fastvol> <vg/main-lv>

Replace the following values:

fastvol

The name of the cachevol volume

vg

The volume group name

main-lv

The name of the slow logical volume

Exemple 9.6. Attaching the cachevol volume to the main LV

lvconvert --type writecache --cachevol fastvol vg/main-lv
Erase all existing data on vg/fastvol? [y/n]?: y
Using writecache block size 4096 for unknown file system block size, logical block
size 512, physical block size 512.
WARNING: unable to detect a file system block size on vg/main-lv
WARNING: using a writecache block size larger than the file system block size may
corrupt the file system.
Use writecache block size 4096? [y/n]: y
Logical volume vg/main-lv now has writecache.

4. Activate the resulting logical volume:

lvchange --activate y <vg/main-lv>

CHAPITRE 9. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE

67

Replace the following values:

vg

The volume group name

main-lv

The name of the slow logical volume

Verification steps

Examine the newly created devices:

lvs --all --options +devices vg

LV VG Attr LSize Pool Origin Data% Meta% Move Log
Cpy%Sync Convert Devices
 main-lv vg Cwi-a-C--- 500.00m [fastvol_cvol] [main-lv_wcorig] 0.00
main-lv_wcorig(0)
 [fastvol_cvol] vg Cwi-aoC--- 252.00m
/dev/sdc1(0)
 [main-lv_wcorig] vg owi-aoC--- 500.00m
/dev/sdb1(0)

Ressources supplémentaires

lvmcache(7) man page

9.6. DISABLING CACHING FOR A LOGICAL VOLUME

This procedure disables dm-cache or dm-writecache caching that is currently enabled on a logical
volume.

Conditions préalables

Caching is enabled on a logical volume.

Procédure

1. Deactivate the logical volume:

lvchange --activate n <vg>/<main-lv>

Replace vg with the volume group name, and main-lv with the name of the logical volume where
caching is enabled.

2. Detach the cachevol or cachepool volume:

lvconvert --splitcache <vg>/<main-lv>

Replace the following values:

Replace vg with the volume group name, and main-lv with the name of the logical volume where
caching is enabled.

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

68

Exemple 9.7. Detaching the cachevol or cachepool volume

lvconvert --splitcache vg/main-lv
Detaching writecache already clean.
Logical volume vg/main-lv writecache has been detached.

Verification steps

Check that the logical volumes are no longer attached together:

lvs --all --options +devices <vg>

LV Attr Type Devices
fastvol -wi------- linear /dev/fast-pv
main-lv -wi------- linear /dev/slow-pv

Ressources supplémentaires

The lvmcache(7) man page

CHAPITRE 9. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE

69

CHAPITRE 10. LIMITING LVM DEVICE VISIBILITY AND USAGE
You can limit the devices that are visible and usable to Logical Volume Manager (LVM) by controlling
the devices that LVM can scan.

Use LVM commands to control LVM device scanning. LVM commands interact with a file called the
system.devices file, which lists the visible and usable devices. This feature is enabled by default in
Red Hat Enterprise Linux 9.

If you disable the devices file feature, the LVM device filter is enabled automatically.

To adjust the configuration of LVM device scanning, edit the LVM device filter settings in the
/etc/lvm/lvm.conf file. The filters in the lvm.conf file consist of a series of simple regular expressions.
The system applies these expressions to each device name in the /dev directory to decide whether to
accept or reject each detected block device.

10.1. THE LVM DEVICES FILE

The Logical Volume Manager (LVM) system.devices file controls device visibility and usability to LVM.
You can find the devices file in the /etc/lvm/devices/ directory. Use LVM commands to manage the
devices file. Do not directly edit the system.devices file.

By default, the system.devices file feature is enabled in Red Hat Enterprise Linux 9. When active, it
replaces the LVM device filter. To enable the LVM device filter, disable the system.devices file. For
more information see Disabling the system.devices file .

10.1.1. Ressources supplémentaires

lvmdevices(8) and lvm.conf(5) man pages

10.1.2. Adding devices to the system.devices file

To use devices with the Logical Volume Manager (LVM), the system.devices file must contain a list of
the device IDs, otherwise LVM ignores them. The operating system (OS) installer adds devices to the
system.devices file during installation. A newly installed system includes the root device into the
devices file automatically. Any Physical Volumes (PV) attached to the system during OS installation are
also included into the devices file. You can also specifically add devices to the devices file. LVM detects
and uses only the list of devices stored in the devices file.

Procédure

Add devices to the system.devices file by using one of the following methods:

Add devices by including their names to the devices file:

$ lvmdevices --adddev <device_name>

Add all devices in a Volume Group (VG) to the devices file:

$ vgimportdevices <vg_name>

Add all devices in all visible VGs to the devices file:

$ vgimportdevices --all

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

70

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/limiting-lvm-device-visibility-and-usage_configuring-and-managing-logical-volumes#disabling-the-system-devices-file_the-lvm-devices-file

To implicitly include new devices into the system.devices file, use one of the following commands:

Use the pvcreate command to initialize a new device:

$ pvcreate <device_name>

This action automatically adds the new Physical Volume (PV) to the system.devices file.

Initialize new devices and add the new device arguments to the devices file automatically:

$ vgcreate <vg_name> <device_names>

Replace <vg_name> with the name of the VG, from which you want to add devices.

Replace <device_names> with a space-separated list of the devices you want to add.

Use the vgextend command to initialize new devices:

$ vgextend <vg_name> <device_names>

Replace <vg_name> with the name of the VG, from which you want to add devices.

Replace <device_names> with the names of the devices you want to add.

This adds the new device arguments to the devices file automatically.

Vérification

Use the following verification steps only in case you need to explicitly add new devices to the
system.devices file.

Display the system.devices file, to check the list of devices:

$ cat /etc/lvm/devices/system.devices

Update the system.devices file to match most recent device information:

$ lvmdevices --update

Ressources supplémentaires

lvmdevices(8), pvcreate(8), vgcreate(8) and vgextend(8) man pages

10.1.3. Removing devices from the system.devices file

Remove a device to prevent the Logical Volume Manager (LVM) from detecting or using that device.

Procédure

Remove a device by using one of the following methods depending on the information you have
about that device:

Remove a device by name:

$ lvmdevices --deldev <device_name>

CHAPITRE 10. LIMITING LVM DEVICE VISIBILITY AND USAGE

71

Remove a device by the Physical Volume ID (PVID) of the device:

$ lvmdevices --delpvid <PV_UUID>

Vérification

Use the following verification steps only in case you need to explicitly remove a devices in the
system.devices file.

Display the system.devices file to verify, that the deleted device no longer present:

$ cat /etc/lvm/devices/system.devices

Update the system.devices file to match most recent device information:

$ lvmdevices --update

Ressources supplémentaires

lvmdevices(8) man page

10.1.4. Creating custom devices files

Logical Volume Manager (LVM) commands use the default system.devices file of the system. You can
also create and use custom devices files by specifying the new file name in the LVM commands. Custom
devices files are useful in cases when only certain applications need to use certain devices.

Procédure

1. Create a custom devices file in the /etc/lvm/devices/ directory.

2. Include the new devices file name in the LVM command:

$ lvmdevices --devicesfile <devices_file_name>

3. Optional: Display the new devices file to verify that the name of the new device is present:

$ cat /etc/lvm/devices/<devices_file_name>

Ressources supplémentaires

lvmdevices(8) man page

10.1.5. Accessing all devices on the system

You can enable Logical Volume Manager (LVM) to access and use all devices on the system, which
overrides the restrictions caused by the devices listed in the system.devices file.

Procédure

Specify an empty devices file:

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

72

$ lvmdevices --devicesfile ""

Ressources supplémentaires

lvmdevices(8) man page

10.1.6. Disabling the system.devices file

You can disable the system.devices file functionality. This action automatically enables the Logical
Volume Manager (LVM) device filter.

Procédure

1. Open the lvm.conf file.

2. Set the following value in the devices section:

use_devicesfile=0

IMPORTANT

If you remove the system.devices file, this action effectively disables it. This applies
even if you enable the system.devices file in the lvm.conf configuration file by setting
use_devicesfile=1 in the devices section. Disabling the devices file automatically enables
the lvm.conf device filter.

Ressources supplémentaires

lvmdevices(8) and lvm.conf(5) man pages

10.2. THE LVM DEVICE FILTER

The Logical Volume Manager (LVM) device filter is a list of device name patterns. You can use it to
specify a set of mandatory criteria by which the system can evaluate devices and consider them as valid
for use with LVM. The LVM device filter enables you control over which devices LVM uses. This can help
to prevent accidental data loss or unauthorized access to storage devices.

10.2.1. LVM device filter pattern characteristics

The patterns of LVM device filter are in the form of regular expression. A regular expression delimits
with a character and precedes with either a for acceptance, or r for rejection. The first regular expression
in the list that matches a device determines if LVM accepts or rejects (ignores) a specific device. Then,
LVM looks for the initial regular expression in the list that matches the path of a device. LVM uses this
regular expression to determine whether the device should be approved with an a outcome or rejected
with an r outcome.

If a single device has multiple path names, LVM accesses these path names according to their order of
listing. Before any r pattern, if at least one path name matches an a pattern, LVM approves the device.
However, if all path names are consistent with an r pattern before an a pattern is found, the device is
rejected.

Path names that do not match the pattern do not affect the approval status of the device. If no path
names correspond to a pattern for a device, LVM still approves the device.

CHAPITRE 10. LIMITING LVM DEVICE VISIBILITY AND USAGE

73

For each device on the system, the udev rules generate multiple symlinks. Directories contain symlinks,
such as /dev/disk/by-id/, /dev/disk/by-uuid/, /dev/disk/by-path/ to ensure that each device on the
system is accessible through multiple path names.

To reject a device in the filter, all of the path names associated with that particular device must match
the corresponding reject r expressions. However, identifying all possible path names to reject can be
challenging. This is why it is better to create filters that specifically accept certain paths and reject all
others, using a series of specific a expressions followed by a single r|.*| expression that rejects
everything else.

While defining a specific device in the filter, use a symlink name for that device instead of the kernel
name. The kernel name for a device can change, such as /dev/sda while certain symlink names do not
change such as /dev/disk/by-id/wwn-*.

The default device filter accepts all devices connected to the system. An ideal user configured device
filter accepts one or more patterns and rejects everything else. For example, the pattern list ending with
r|.*|.

You can find the LVM devices filter configuration in the devices/filter and devices/global_filter
configuration fields in the lvm.conf file. The devices/filter and devices/global_filter configuration
fields are equivalent.

IMPORTANT

In Red Hat Enterprise Linux 9, the /etc/lvm/devices/system.devices file is enabled by
default. The system automatically enables the LVM devices filter, when the
system.devices file is disabled.

Ressources supplémentaires

lvm.conf(5) man page

10.2.2. Examples of LVM device filter configurations

The following examples display the filter configurations to control the devices that LVM scans and uses
later. To configure the device filter in the lvm.conf file, see

NOTE

Some LVM filter configurations can cause duplicate Physical Volume (PV) warnings. See
the example filter configurations in to avoid this issue.

To scan all the devices, enter:

filter = ["|a.*|"]

To remove the cdrom device to avoid delays if the drive contains no media, enter:

filter = ["r|^/dev/cdrom$|"]

To add all loop devices and remove all other devices, enter:

filter = ["a|loop|", "r|.*|"]

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

74

To add all loop and Integrated Development Environment (IDE) devices and remove all other
block devices, enter:

filter = ["a|loop|", "a|/dev/hd.*|", "r|.*|"]

To add only partition 8 on the first IDE drive and remove all other block devices, enter:

filter = ["a|^/dev/hda8$|", "r|.*|"]

Ressources supplémentaires

lvm.conf(5) man page

10.2.3. Applying an LVM device filter configuration

You can control which devices LVM scans by setting up filters in the lvm.conf configuration file.

Conditions préalables

You have disabled the system.devices file feature.

You have prepared the device filter pattern that you want to use.

Procédure

1. Use the following command to test the device filter pattern, without actually modifying the
/etc/lvm/lvm.conf file. The following includes an example filter configuration.

lvs --config 'devices{ filter = ["a|/dev/emcpower.|", "r|.|"] }'

2. Add the device filter pattern in the configuration section devices of the /etc/lvm/lvm.conf file:

filter = ["a|/dev/emcpower.*|", "r|*.|"]

3. Verify missing physical volumes and volume groups respectively:

pvscan -v

vgscan -v

4. Scan only necessary devices on reboot:

dracut --force --verbose

This command rebuilds the initramfs file system so that LVM scans only the necessary devices
at the time of reboot.

CHAPITRE 10. LIMITING LVM DEVICE VISIBILITY AND USAGE

75

CHAPITRE 11. GROUPING LVM OBJECTS WITH TAGS
You can assign tags to logical volume management (LVM) objects to group them. With this feature, you
can automate the control of LVM behavior, such as activation, by a group. You can also use tags on LVM
objects as a command.

11.1. LVM OBJECT TAGS

A logical volume management (LVM) tag is a word that is used to group LVM2 objects of the same type.
You can attach tags to objects such as physical volumes, volume groups, and logical volumes .

To avoid ambiguity, prefix each tag with @. Each tag is expanded by replacing it with all the objects that
possess that tag and that are of the type expected by its position on the command line.

LVM tags are strings of up to 1024 characters. LVM tags cannot start with a hyphen.

A valid tag consists of a limited range of characters only. The allowed characters are A-Z a-z 0-9 _ + . - /
= ! : # &.

Only objects in a volume group can be tagged. Physical volumes lose their tags if they are removed from
a volume group; this is because tags are stored as part of the volume group metadata and that is
deleted when a physical volume is removed.

You can apply some commands to all volume groups (VG), logical volumes (LV), or physical volumes
(PV) that have the same tag. The man page of the given command shows the syntax, such as VG|Tag,
LV|Tag, or PV|Tag when you can substitute a tag name for a VG, LV, or PV name.

11.2. ADDING TAGS TO LVM OBJECTS

You can add tags to LVM objects to group them by using the --addtag option with various volume
management commands.

Conditions préalables

The lvm2 package is installed.

Procédure

To add a tag to an existing PV, use:

pvchange --addtag <@tag> <PV>

To add a tag to an existing VG, use:

vgchange --addtag <@tag> <VG>

To add a tag to a VG during creation, use:

vgcreate --addtag <@tag> <VG>

To add a tag to an existing LV, use:

lvchange --addtag <@tag> <LV>

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

76

To add a tag to a LV during creation, use:

lvcreate --addtag <@tag> ...

11.3. REMOVING TAGS FROM LVM OBJECTS

If you no longer want to keep your LVM objects grouped, you can remove tags from the objects by using
the --deltag option with various volume management commands.

Conditions préalables

The lvm2 package is installed.

You have created tags on physical volumes (PV), volume groups (VG), or logical volumes (LV).

Procédure

To remove a tag from an existing PV, use:

pvchange --deltag @tag PV

To remove a tag from an existing VG, use:

vgchange --deltag @tag VG

To remove a tag from an existing LV, use:

lvchange --deltag @tag LV

11.4. DISPLAYING TAGS ON LVM OBJECTS

You can display tags on your LVM objects with the following commands.

Conditions préalables

The lvm2 package is installed.

You have created tags on physical volumes (PV), volume groups (VG), or logical volumes (LV).

Procédure

To display all tags on an existing PV, use:

pvs -o tags <PV>

To display all tags on an existing VG, use:

vgs -o tags <VG>

To display all tags on an existing LV, use:

CHAPITRE 11. GROUPING LVM OBJECTS WITH TAGS

77

lvs -o tags <LV>

11.5. CONTROLLING LOGICAL VOLUME ACTIVATION WITH TAGS

This procedure describes how to specify in the configuration file that only certain logical volumes should
be activated on that host.

Procédure

For example, the following entry acts as a filter for activation requests (such as vgchange -ay) and only
activates vg1/lvol0 and any logical volumes or volume groups with the database tag in the metadata on
that host:

activation { volume_list = ["vg1/lvol0", "@database"] }

The special match @* that causes a match only if any metadata tag matches any host tag on that
machine.

As another example, consider a situation where every machine in the cluster has the following entry in
the configuration file:

tags { hosttags = 1 }

If you want to activate vg1/lvol2 only on host db2, do the following:

1. Run lvchange --addtag @db2 vg1/lvol2 from any host in the cluster.

2. Run lvchange -ay vg1/lvol2.

This solution involves storing host names inside the volume group metadata.

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

78

CHAPITRE 12. TROUBLESHOOTING LVM
You can use Logical Volume Manager (LVM) tools to troubleshoot a variety of issues in LVM volumes
and groups.

12.1. GATHERING DIAGNOSTIC DATA ON LVM

If an LVM command is not working as expected, you can gather diagnostics in the following ways.

Procédure

Use the following methods to gather different kinds of diagnostic data:

Add the -v argument to any LVM command to increase the verbosity level of the command
output. Verbosity can be further increased by adding additional v’s. A maximum of four
such v’s is allowed, for example, -vvvv.

In the log section of the /etc/lvm/lvm.conf configuration file, increase the value of the level
option. This causes LVM to provide more details in the system log.

If the problem is related to the logical volume activation, enable LVM to log messages
during the activation:

i. Set the activation = 1 option in the log section of the /etc/lvm/lvm.conf configuration
file.

ii. Execute the LVM command with the -vvvv option.

iii. Examine the command output.

iv. Reset the activation option to 0.
If you do not reset the option to 0, the system might become unresponsive during low
memory situations.

Display an information dump for diagnostic purposes:

lvmdump

Display additional system information:

lvs -v

pvs --all

dmsetup info --columns

Examine the last backup of the LVM metadata in the /etc/lvm/backup/ directory and
archived versions in the /etc/lvm/archive/ directory.

Check the current configuration information:

lvmconfig

Check the /run/lvm/hints cache file for a record of which devices have physical volumes on

CHAPITRE 12. TROUBLESHOOTING LVM

79

Check the /run/lvm/hints cache file for a record of which devices have physical volumes on
them.

Ressources supplémentaires

lvmdump(8) man page

12.2. DISPLAYING INFORMATION ABOUT FAILED LVM DEVICES

Troubleshooting information about a failed Logical Volume Manager (LVM) volume can help you
determine the reason of the failure. You can check the following examples of the most common LVM
volume failures.

Exemple 12.1. Failed volume groups

In this example, one of the devices that made up the volume group myvg failed. The volume group
usability then depends on the type of failure. For example, the volume group is still usable if RAID
volumes are also involved. You can also see information about the failed device.

vgs --options +devices
 /dev/vdb1: open failed: No such device or address
 /dev/vdb1: open failed: No such device or address
 WARNING: Couldn't find device with uuid 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-z1lf4s.
 WARNING: VG myvg is missing PV 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-z1lf4s (last written to
/dev/sdb1).
 WARNING: Couldn't find all devices for LV myvg/mylv while checking used and assumed
devices.

VG #PV #LV #SN Attr VSize VFree Devices
myvg 2 2 0 wz-pn- <3.64t <3.60t [unknown](0)
myvg 2 2 0 wz-pn- <3.64t <3.60t [unknown](5120),/dev/vdb1(0)

Exemple 12.2. Failed logical volume

In this example, one of the devices failed. This can be a reason for the logical volume in the volume
group to fail. The command output shows the failed logical volumes.

lvs --all --options +devices

 /dev/vdb1: open failed: No such device or address
 /dev/vdb1: open failed: No such device or address
 WARNING: Couldn't find device with uuid 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-z1lf4s.
 WARNING: VG myvg is missing PV 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-z1lf4s (last written to
/dev/sdb1).
 WARNING: Couldn't find all devices for LV myvg/mylv while checking used and assumed
devices.

 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert Devices
 mylv myvg -wi-a---p- 20.00g [unknown](0)
[unknown](5120),/dev/sdc1(0)

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

80

Exemple 12.3. Failed image of a RAID logical volume

The following examples show the command output from the pvs and lvs utilities when an image of a
RAID logical volume has failed. The logical volume is still usable.

pvs

 Error reading device /dev/sdc1 at 0 length 4.

 Error reading device /dev/sdc1 at 4096 length 4.

 Couldn't find device with uuid b2J8oD-vdjw-tGCA-ema3-iXob-Jc6M-TC07Rn.

 WARNING: Couldn't find all devices for LV myvg/my_raid1_rimage_1 while checking used and
assumed devices.

 WARNING: Couldn't find all devices for LV myvg/my_raid1_rmeta_1 while checking used and
assumed devices.

 PV VG Fmt Attr PSize PFree
 /dev/sda2 rhel_bp-01 lvm2 a-- <464.76g 4.00m
 /dev/sdb1 myvg lvm2 a-- <836.69g 736.68g
 /dev/sdd1 myvg lvm2 a-- <836.69g <836.69g
 /dev/sde1 myvg lvm2 a-- <836.69g <836.69g
 [unknown] myvg lvm2 a-m <836.69g 736.68g

lvs -a --options name,vgname,attr,size,devices myvg

 Couldn't find device with uuid b2J8oD-vdjw-tGCA-ema3-iXob-Jc6M-TC07Rn.

 WARNING: Couldn't find all devices for LV myvg/my_raid1_rimage_1 while checking used and
assumed devices.

 WARNING: Couldn't find all devices for LV myvg/my_raid1_rmeta_1 while checking used and
assumed devices.

 LV VG Attr LSize Devices
 my_raid1 myvg rwi-a-r-p- 100.00g my_raid1_rimage_0(0),my_raid1_rimage_1(0)
 [my_raid1_rimage_0] myvg iwi-aor--- 100.00g /dev/sdb1(1)
 [my_raid1_rimage_1] myvg Iwi-aor-p- 100.00g [unknown](1)
 [my_raid1_rmeta_0] myvg ewi-aor--- 4.00m /dev/sdb1(0)
 [my_raid1_rmeta_1] myvg ewi-aor-p- 4.00m [unknown](0)

12.3. REMOVING LOST LVM PHYSICAL VOLUMES FROM A VOLUME
GROUP

If a physical volume fails, you can activate the remaining physical volumes in the volume group and
remove all the logical volumes that used that physical volume from the volume group.

Procédure

1. Activate the remaining physical volumes in the volume group:

CHAPITRE 12. TROUBLESHOOTING LVM

81

vgchange --activate y --partial myvg

2. Check which logical volumes will be removed:

vgreduce --removemissing --test myvg

3. Remove all the logical volumes that used the lost physical volume from the volume group:

vgreduce --removemissing --force myvg

4. Optional: If you accidentally removed logical volumes that you wanted to keep, you can reverse
the vgreduce operation:

vgcfgrestore myvg

AVERTISSEMENT

If you remove a thin pool, LVM cannot reverse the operation.

12.4. FINDING THE METADATA OF A MISSING LVM PHYSICAL
VOLUME

If the volume group’s metadata area of a physical volume is accidentally overwritten or otherwise
destroyed, you get an error message indicating that the metadata area is incorrect, or that the system
was unable to find a physical volume with a particular UUID.

This procedure finds the latest archived metadata of a physical volume that is missing or corrupted.

Procédure

1. Find the archived metadata file of the volume group that contains the physical volume. The
archived metadata files are located at the /etc/lvm/archive/volume-group-name_backup-
number.vg path:

cat /etc/lvm/archive/myvg_00000-1248998876.vg

Replace 00000-1248998876 with the backup-number. Select the last known valid metadata
file, which has the highest number for the volume group.

2. Find the UUID of the physical volume. Use one of the following methods.

List the logical volumes:

lvs --all --options +devices

 Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk'.

Examine the archived metadata file. Find the UUID as the value labeled id = in the



Red Hat Enterprise Linux 9 Configuring and managing logical volumes

82

Examine the archived metadata file. Find the UUID as the value labeled id = in the
physical_volumes section of the volume group configuration.

Deactivate the volume group using the --partial option:

vgchange --activate n --partial myvg

 PARTIAL MODE. Incomplete logical volumes will be processed.
 WARNING: Couldn't find device with uuid 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-
z1lf4s.
 WARNING: VG myvg is missing PV 42B7bu-YCMp-CEVD-CmKH-2rk6-fiO9-z1lf4s (last
written to /dev/vdb1).
 0 logical volume(s) in volume group "myvg" now active

12.5. RESTORING METADATA ON AN LVM PHYSICAL VOLUME

This procedure restores metadata on a physical volume that is either corrupted or replaced with a new
device. You might be able to recover the data from the physical volume by rewriting the metadata area
on the physical volume.

AVERTISSEMENT

Do not attempt this procedure on a working LVM logical volume. You will lose your
data if you specify the incorrect UUID.

Conditions préalables

You have identified the metadata of the missing physical volume. For details, see Finding the
metadata of a missing LVM physical volume.

Procédure

1. Restore the metadata on the physical volume:

pvcreate --uuid physical-volume-uuid \
 --restorefile /etc/lvm/archive/volume-group-name_backup-number.vg \
 block-device

NOTE

The command overwrites only the LVM metadata areas and does not affect the
existing data areas.

Exemple 12.4. Restoring a physical volume on /dev/vdb1

The following example labels the /dev/vdb1 device as a physical volume with the following
properties:

The UUID of FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk



CHAPITRE 12. TROUBLESHOOTING LVM

83

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/troubleshooting-lvm_configuring-and-managing-logical-volumes#finding-the-metadata-of-a-missing-lvm-physical-volume_troubleshooting-lvm

The metadata information contained in VG_00050.vg, which is the most recent good
archived metadata for the volume group

pvcreate --uuid "FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk" \
 --restorefile /etc/lvm/archive/VG_00050.vg \
 /dev/vdb1

 ...
 Physical volume "/dev/vdb1" successfully created

2. Restore the metadata of the volume group:

vgcfgrestore myvg

 Restored volume group myvg

3. Display the logical volumes on the volume group:

lvs --all --options +devices myvg

The logical volumes are currently inactive. For example:

 LV VG Attr LSize Origin Snap% Move Log Copy% Devices
 mylv myvg -wi--- 300.00G /dev/vdb1 (0),/dev/vdb1(0)
 mylv myvg -wi--- 300.00G /dev/vdb1 (34728),/dev/vdb1(0)

4. If the segment type of the logical volumes is RAID, resynchronize the logical volumes:

lvchange --resync myvg/mylv

5. Activate the logical volumes:

lvchange --activate y myvg/mylv

6. If the on-disk LVM metadata takes at least as much space as what overrode it, this procedure
can recover the physical volume. If what overrode the metadata went past the metadata area,
the data on the volume may have been affected. You might be able to use the fsck command to
recover that data.

Verification steps

Display the active logical volumes:

lvs --all --options +devices

 LV VG Attr LSize Origin Snap% Move Log Copy% Devices
 mylv myvg -wi--- 300.00G /dev/vdb1 (0),/dev/vdb1(0)
 mylv myvg -wi--- 300.00G /dev/vdb1 (34728),/dev/vdb1(0)

12.6. ROUNDING ERRORS IN LVM OUTPUT

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

84

LVM commands that report the space usage in volume groups round the reported number to 2 decimal
places to provide human-readable output. This includes the vgdisplay and vgs utilities.

As a result of the rounding, the reported value of free space might be larger than what the physical
extents on the volume group provide. If you attempt to create a logical volume the size of the reported
free space, you might get the following error:

Insufficient free extents

To work around the error, you must examine the number of free physical extents on the volume group,
which is the accurate value of free space. You can then use the number of extents to create the logical
volume successfully.

12.7. PREVENTING THE ROUNDING ERROR WHEN CREATING AN LVM
VOLUME

When creating an LVM logical volume, you can specify the number of logical extents of the logical
volume to avoid rounding error.

Procédure

1. Find the number of free physical extents in the volume group:

vgdisplay myvg

Exemple 12.5. Free extents in a volume group

For example, the following volume group has 8780 free physical extents:

--- Volume group ---
 VG Name myvg
 System ID
 Format lvm2
 Metadata Areas 4
 Metadata Sequence No 6
 VG Access read/write
[...]
Free PE / Size 8780 / 34.30 GB

2. Create the logical volume. Enter the volume size in extents rather than bytes.

Exemple 12.6. Creating a logical volume by specifying the number of extents

lvcreate --extents 8780 --name mylv myvg

Exemple 12.7. Creating a logical volume to occupy all the remaining space

Alternatively, you can extend the logical volume to use a percentage of the remaining free
space in the volume group. For example:

lvcreate --extents 100%FREE --name mylv myvg

CHAPITRE 12. TROUBLESHOOTING LVM

85

Verification steps

Check the number of extents that the volume group now uses:

vgs --options +vg_free_count,vg_extent_count

 VG #PV #LV #SN Attr VSize VFree Free #Ext
 myvg 2 1 0 wz--n- 34.30G 0 0 8780

12.8. TROUBLESHOOTING LVM RAID

You can troubleshoot various issues in LVM RAID devices to correct data errors, recover devices, or
replace failed devices.

12.8.1. Checking data coherency in a RAID logical volume (RAID scrubbing)

LVM provides scrubbing support for RAID logical volumes. RAID scrubbing is the process of reading all
the data and parity blocks in an array and checking to see whether they are coherent.

Procédure

1. Optional: Limit the I/O bandwidth that the scrubbing process uses.
When you perform a RAID scrubbing operation, the background I/O required by the sync
operations can crowd out other I/O to LVM devices, such as updates to volume group metadata.
This might cause the other LVM operations to slow down. You can control the rate of the
scrubbing operation by implementing recovery throttling.

Add the following options to the lvchange --syncaction commands in the next steps:

--maxrecoveryrate Rate[bBsSkKmMgG]

Sets the maximum recovery rate so that the operation does crowd out nominal I/O
operations. Setting the recovery rate to 0 means that the operation is unbounded.

--minrecoveryrate Rate[bBsSkKmMgG]

Sets the minimum recovery rate to ensure that I/O for sync operations achieves a minimum
throughput, even when heavy nominal I/O is present.

Specify the Rate value as an amount per second for each device in the array. If you provide no
suffix, the options assume kiB per second per device.

2. Display the number of discrepancies in the array, without repairing them:

lvchange --syncaction check vg/raid_lv

3. Correct the discrepancies in the array:

lvchange --syncaction repair vg/raid_lv

NOTE

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

86

NOTE

The lvchange --syncaction repair operation does not perform the same
function as the lvconvert --repair operation:

The lvchange --syncaction repair operation initiates a background
synchronization operation on the array.

The lvconvert --repair operation repairs or replaces failed devices in a mirror
or RAID logical volume.

4. Optional: Display information about the scrubbing operation:

lvs -o +raid_sync_action,raid_mismatch_count vg/lv

The raid_sync_action field displays the current synchronization operation that the RAID
volume is performing. It can be one of the following values:

idle

All sync operations complete (doing nothing)

resync

Initializing an array or recovering after a machine failure

recover

Replacing a device in the array

check

Looking for array inconsistencies

repair

Looking for and repairing inconsistencies

The raid_mismatch_count field displays the number of discrepancies found during a
check operation.

The Cpy%Sync field displays the progress of the sync operations.

The lv_attr field provides additional indicators. Bit 9 of this field displays the health of the
logical volume, and it supports the following indicators:

m (mismatches) indicates that there are discrepancies in a RAID logical volume. This
character is shown after a scrubbing operation has detected that portions of the RAID
are not coherent.

r (refresh) indicates that a device in a RAID array has suffered a failure and the kernel
regards it as failed, even though LVM can read the device label and considers the
device to be operational. Refresh the logical volume to notify the kernel that the device
is now available, or replace the device if you suspect that it failed.

Ressources supplémentaires

For more information, see the lvchange(8) and lvmraid(7) man pages.

12.8.2. Failed devices in LVM RAID

RAID is not like traditional LVM mirroring. LVM mirroring required failed devices to be removed or the

CHAPITRE 12. TROUBLESHOOTING LVM

87

mirrored logical volume would hang. RAID arrays can keep on running with failed devices. In fact, for
RAID types other than RAID1, removing a device would mean converting to a lower level RAID (for
example, from RAID6 to RAID5, or from RAID4 or RAID5 to RAID0).

Therefore, rather than removing a failed device unconditionally and potentially allocating a replacement,
LVM allows you to replace a failed device in a RAID volume in a one-step solution by using the --repair
argument of the lvconvert command.

12.8.3. Recovering a failed RAID device in a logical volume

If the LVM RAID device failure is a transient failure or you are able to repair the device that failed, you
can initiate recovery of the failed device.

Conditions préalables

The previously failed device is now working.

Procédure

Refresh the logical volume that contains the RAID device:

lvchange --refresh my_vg/my_lv

Verification steps

Examine the logical volume with the recovered device:

lvs --all --options name,devices,lv_attr,lv_health_status my_vg

12.8.4. Replacing a failed RAID device in a logical volume

This procedure replaces a failed device that serves as a physical volume in an LVM RAID logical volume.

Conditions préalables

The volume group includes a physical volume that provides enough free capacity to replace the
failed device.
If no physical volume with sufficient free extents is available on the volume group, add a new,
sufficiently large physical volume using the vgextend utility.

Procédure

1. In the following example, a RAID logical volume is laid out as follows:

lvs --all --options name,copy_percent,devices my_vg

 LV Cpy%Sync Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] /dev/sdc1(1)
 [my_lv_rimage_2] /dev/sdd1(1)

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

88

 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] /dev/sdc1(0)
 [my_lv_rmeta_2] /dev/sdd1(0)

2. If the /dev/sdc device fails, the output of the lvs command is as follows:

lvs --all --options name,copy_percent,devices my_vg

 /dev/sdc: open failed: No such device or address
 Couldn't find device with uuid A4kRl2-vIzA-uyCb-cci7-bOod-H5tX-IzH4Ee.
 WARNING: Couldn't find all devices for LV my_vg/my_lv_rimage_1 while checking used and
assumed devices.
 WARNING: Couldn't find all devices for LV my_vg/my_lv_rmeta_1 while checking used and
assumed devices.
 LV Cpy%Sync Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] [unknown](1)
 [my_lv_rimage_2] /dev/sdd1(1)
 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] [unknown](0)
 [my_lv_rmeta_2] /dev/sdd1(0)

3. Replace the failed device and display the logical volume:

lvconvert --repair my_vg/my_lv

 /dev/sdc: open failed: No such device or address
 Couldn't find device with uuid A4kRl2-vIzA-uyCb-cci7-bOod-H5tX-IzH4Ee.
 WARNING: Couldn't find all devices for LV my_vg/my_lv_rimage_1 while checking used and
assumed devices.
 WARNING: Couldn't find all devices for LV my_vg/my_lv_rmeta_1 while checking used and
assumed devices.
Attempt to replace failed RAID images (requires full device resync)? [y/n]: y
 Faulty devices in my_vg/my_lv successfully replaced.

Optional: To manually specify the physical volume that replaces the failed device, add the
physical volume at the end of the command:

lvconvert --repair my_vg/my_lv replacement_pv

4. Examine the logical volume with the replacement:

lvs --all --options name,copy_percent,devices my_vg

 /dev/sdc: open failed: No such device or address
 /dev/sdc1: open failed: No such device or address
 Couldn't find device with uuid A4kRl2-vIzA-uyCb-cci7-bOod-H5tX-IzH4Ee.
 LV Cpy%Sync Devices
 my_lv 43.79 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] /dev/sdb1(1)
 [my_lv_rimage_2] /dev/sdd1(1)

CHAPITRE 12. TROUBLESHOOTING LVM

89

 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] /dev/sdb1(0)
 [my_lv_rmeta_2] /dev/sdd1(0)

Until you remove the failed device from the volume group, LVM utilities still indicate that LVM
cannot find the failed device.

5. Remove the failed device from the volume group:

vgreduce --removemissing VG

12.9. TROUBLESHOOTING DUPLICATE PHYSICAL VOLUME
WARNINGS FOR MULTIPATHED LVM DEVICES

When using LVM with multipathed storage, LVM commands that list a volume group or logical volume
might display messages such as the following:

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/dm-5 not /dev/sdd
Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/emcpowerb not /dev/sde
Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/sddlmab not /dev/sdf

You can troubleshoot these warnings to understand why LVM displays them, or to hide the warnings.

12.9.1. Root cause of duplicate PV warnings

When a multipath software such as Device Mapper Multipath (DM Multipath), EMC PowerPath, or
Hitachi Dynamic Link Manager (HDLM) manages storage devices on the system, each path to a
particular logical unit (LUN) is registered as a different SCSI device.

The multipath software then creates a new device that maps to those individual paths. Because each
LUN has multiple device nodes in the /dev directory that point to the same underlying data, all the
device nodes contain the same LVM metadata.

Tableau 12.1. Example device mappings in different multipath software

Multipath software SCSI paths to a LUN Multipath device mapping to
paths

DM Multipath /dev/sdb and /dev/sdc /dev/mapper/mpath1 or
/dev/mapper/mpatha

EMC PowerPath /dev/emcpowera

HDLM /dev/sddlmab

As a result of the multiple device nodes, LVM tools find the same metadata multiple times and report
them as duplicates.

12.9.2. Cases of duplicate PV warnings

LVM displays the duplicate PV warnings in either of the following cases:

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

90

Single paths to the same device

The two devices displayed in the output are both single paths to the same device.
The following example shows a duplicate PV warning in which the duplicate devices are both single
paths to the same device.

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/sdd not /dev/sdf

If you list the current DM Multipath topology using the multipath -ll command, you can find both
/dev/sdd and /dev/sdf under the same multipath map.

These duplicate messages are only warnings and do not mean that the LVM operation has failed.
Rather, they are alerting you that LVM uses only one of the devices as a physical volume and ignores
the others.

If the messages indicate that LVM chooses the incorrect device or if the warnings are disruptive to
users, you can apply a filter. The filter configures LVM to search only the necessary devices for
physical volumes, and to leave out any underlying paths to multipath devices. As a result, the
warnings no longer appear.

Multipath maps

The two devices displayed in the output are both multipath maps.
The following examples show a duplicate PV warning for two devices that are both multipath maps.
The duplicate physical volumes are located on two different devices rather than on two different
paths to the same device.

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/mapper/mpatha not
/dev/mapper/mpathc

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/emcpowera not
/dev/emcpowerh

This situation is more serious than duplicate warnings for devices that are both single paths to the
same device. These warnings often mean that the machine is accessing devices that it should not
access: for example, LUN clones or mirrors.

Unless you clearly know which devices you should remove from the machine, this situation might be
unrecoverable. Red Hat recommends that you contact Red Hat Technical Support to address this
issue.

12.9.3. Example LVM device filters that prevent duplicate PV warnings

The following examples show LVM device filters that avoid the duplicate physical volume warnings that
are caused by multiple storage paths to a single logical unit (LUN).

You can configure the filter for logical volume manager (LVM) to check metadata for all devices.
Metadata includes local hard disk drive with the root volume group on it and any multipath devices. By
rejecting the underlying paths to a multipath device (such as /dev/sdb, /dev/sdd), you can avoid these
duplicate PV warnings, because LVM finds each unique metadata area once on the multipath device
itself.

To accept the second partition on the first hard disk drive and any device mapper (DM)
Multipath devices and reject everything else, enter:

CHAPITRE 12. TROUBLESHOOTING LVM

91

filter = ["a|/dev/sda2$|", "a|/dev/mapper/mpath.*|", "r|.*|"]

To accept all HP SmartArray controllers and any EMC PowerPath devices, enter:

filter = ["a|/dev/cciss/.*|", "a|/dev/emcpower.*|", "r|.*|"]

To accept any partitions on the first IDE drive and any multipath devices, enter:

filter = ["a|/dev/hda.*|", "a|/dev/mapper/mpath.*|", "r|.*|"]

12.9.4. Ressources supplémentaires

Ressources supplémentaires

Limiting LVM device visibility and usage

The LVM device filter

Red Hat Enterprise Linux 9 Configuring and managing logical volumes

92

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/assembly_limiting-lvm-device-visibility-and-usage-configuring-and-managing-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/assembly_limiting-lvm-device-visibility-and-usage-configuring-and-managing-logical-volumes#the-lvm-device-filter_device-scan

	Table des matières
	RENDRE L'OPEN SOURCE PLUS INCLUSIF
	FOURNIR UN RETOUR D'INFORMATION SUR LA DOCUMENTATION DE RED HAT
	CHAPITRE 1. OVERVIEW OF LOGICAL VOLUME MANAGEMENT
	1.1. LVM ARCHITECTURE
	1.2. ADVANTAGES OF LVM

	CHAPITRE 2. MANAGING LVM PHYSICAL VOLUMES
	2.1. OVERVIEW OF PHYSICAL VOLUMES
	2.2. MULTIPLE PARTITIONS ON A DISK
	2.3. CREATING LVM PHYSICAL VOLUME
	2.4. REMOVING LVM PHYSICAL VOLUMES
	2.5. RESSOURCES SUPPLÉMENTAIRES

	CHAPITRE 3. MANAGING LVM VOLUME GROUPS
	3.1. CREATING LVM VOLUME GROUP
	3.2. COMBINING LVM VOLUME GROUPS
	3.3. REMOVING PHYSICAL VOLUMES FROM A VOLUME GROUP
	3.4. SPLITTING A LVM VOLUME GROUP

	CHAPITRE 4. MANAGING LVM LOGICAL VOLUMES
	4.1. OVERVIEW OF LOGICAL VOLUMES
	4.2. CREATING LVM LOGICAL VOLUME
	4.3. CREATING A RAID0 STRIPED LOGICAL VOLUME
	4.4. RENAMING LVM LOGICAL VOLUMES
	4.5. REMOVING A DISK FROM A LOGICAL VOLUME
	4.6. REMOVING LVM LOGICAL VOLUMES
	4.7. MANAGING LVM LOGICAL VOLUMES USING RHEL SYSTEM ROLES
	4.7.1. Exemple de script Ansible pour la gestion des volumes logiques
	4.7.2. Ressources supplémentaires

	4.8. REMOVING LVM VOLUME GROUPS

	CHAPITRE 5. MODIFYING THE SIZE OF A LOGICAL VOLUME
	5.1. GROWING A LOGICAL VOLUME AND FILE SYSTEM
	5.2. SHRINKING LOGICAL VOLUMES

	CHAPITRE 6. CONFIGURING RAID LOGICAL VOLUMES
	6.1. RAID LOGICAL VOLUMES
	6.2. RAID LEVELS AND LINEAR SUPPORT
	6.3. LVM RAID SEGMENT TYPES
	6.4. CREATING RAID LOGICAL VOLUMES
	6.5. CREATING A RAID0 STRIPED LOGICAL VOLUME
	6.6. PARAMETERS FOR CREATING A RAID0
	6.7. SOFT DATA CORRUPTION
	6.8. CREATING A RAID LV WITH DM INTEGRITY
	6.9. MINIMUM AND MAXIMUM I/O RATE OPTIONS
	6.10. CONVERTING A LINEAR DEVICE TO A RAID LOGICAL VOLUME
	6.11. CONVERTING AN LVM RAID1 LOGICAL VOLUME TO AN LVM LINEAR LOGICAL VOLUME
	6.12. CONVERTING A MIRRORED LVM DEVICE TO A RAID1 LOGICAL VOLUME
	6.13. RESIZING A RAID LOGICAL VOLUME
	6.14. CHANGING THE NUMBER OF IMAGES IN AN EXISTING RAID1 DEVICE
	6.15. SPLITTING OFF A RAID IMAGE AS A SEPARATE LOGICAL VOLUME
	6.16. SPLITTING AND MERGING A RAID IMAGE

	CHAPITRE 7. SNAPSHOT OF LOGICAL VOLUMES
	7.1. OVERVIEW OF SNAPSHOT VOLUMES
	7.2. CREATING A SNAPSHOT OF THE ORIGINAL VOLUME
	7.3. MERGING SNAPSHOT TO ITS ORIGINAL VOLUME

	CHAPITRE 8. CREATING AND MANAGING THIN PROVISIONED VOLUMES (THIN VOLUMES)
	8.1. OVERVIEW OF THIN PROVISIONING
	8.2. CREATING THINLY-PROVISIONED LOGICAL VOLUMES
	8.3. OVERVIEW OF CHUNK SIZE
	8.4. THINLY-PROVISIONED SNAPSHOT VOLUMES
	8.5. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES
	8.6. HISTORICAL LOGICAL VOLUMES
	8.7. TRACKING AND DISPLAYING REMOVED THIN SNAPSHOT VOLUMES

	CHAPITRE 9. ENABLING CACHING TO IMPROVE LOGICAL VOLUME PERFORMANCE
	9.1. CACHING METHODS IN LVM
	9.2. LVM CACHING COMPONENTS
	9.3. ENABLING DM-CACHE CACHING FOR A LOGICAL VOLUME
	9.4. ENABLING DM-CACHE CACHING WITH A CACHEPOOL FOR A LOGICAL VOLUME
	9.5. ENABLING DM-WRITECACHE CACHING FOR A LOGICAL VOLUME
	9.6. DISABLING CACHING FOR A LOGICAL VOLUME

	CHAPITRE 10. LIMITING LVM DEVICE VISIBILITY AND USAGE
	10.1. THE LVM DEVICES FILE
	10.1.1. Ressources supplémentaires
	10.1.2. Adding devices to the system.devices file
	10.1.3. Removing devices from the system.devices file
	10.1.4. Creating custom devices files
	10.1.5. Accessing all devices on the system
	10.1.6. Disabling the system.devices file

	10.2. THE LVM DEVICE FILTER
	10.2.1. LVM device filter pattern characteristics
	10.2.2. Examples of LVM device filter configurations
	10.2.3. Applying an LVM device filter configuration

	CHAPITRE 11. GROUPING LVM OBJECTS WITH TAGS
	11.1. LVM OBJECT TAGS
	11.2. ADDING TAGS TO LVM OBJECTS
	11.3. REMOVING TAGS FROM LVM OBJECTS
	11.4. DISPLAYING TAGS ON LVM OBJECTS
	11.5. CONTROLLING LOGICAL VOLUME ACTIVATION WITH TAGS

	CHAPITRE 12. TROUBLESHOOTING LVM
	12.1. GATHERING DIAGNOSTIC DATA ON LVM
	12.2. DISPLAYING INFORMATION ABOUT FAILED LVM DEVICES
	12.3. REMOVING LOST LVM PHYSICAL VOLUMES FROM A VOLUME GROUP
	12.4. FINDING THE METADATA OF A MISSING LVM PHYSICAL VOLUME
	12.5. RESTORING METADATA ON AN LVM PHYSICAL VOLUME
	12.6. ROUNDING ERRORS IN LVM OUTPUT
	12.7. PREVENTING THE ROUNDING ERROR WHEN CREATING AN LVM VOLUME
	12.8. TROUBLESHOOTING LVM RAID
	12.8.1. Checking data coherency in a RAID logical volume (RAID scrubbing)
	12.8.2. Failed devices in LVM RAID
	12.8.3. Recovering a failed RAID device in a logical volume
	12.8.4. Replacing a failed RAID device in a logical volume

	12.9. TROUBLESHOOTING DUPLICATE PHYSICAL VOLUME WARNINGS FOR MULTIPATHED LVM DEVICES
	12.9.1. Root cause of duplicate PV warnings
	12.9.2. Cases of duplicate PV warnings
	12.9.3. Example LVM device filters that prevent duplicate PV warnings
	12.9.4. Ressources supplémentaires

