
OpenShift Container Platform 4.13

Storage

Configuring and managing storage in OpenShift Container Platform

Last Updated: 2025-11-07

OpenShift Container Platform 4.13 Storage

Configuring and managing storage in OpenShift Container Platform

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring persistent volumes from various storage back
ends and managing dynamic allocation from Pods.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM STORAGE OVERVIEW
1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM STORAGE
1.2. STORAGE TYPES

1.2.1. Ephemeral storage
1.2.2. Persistent storage

1.3. CONTAINER STORAGE INTERFACE (CSI)
1.4. DYNAMIC PROVISIONING

CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE
2.1. OVERVIEW
2.2. TYPES OF EPHEMERAL STORAGE

Root
Runtime

2.3. EPHEMERAL STORAGE MANAGEMENT
2.4. MONITORING EPHEMERAL STORAGE

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE
3.1. PERSISTENT STORAGE OVERVIEW
3.2. LIFECYCLE OF A VOLUME AND CLAIM

3.2.1. Provision storage
3.2.2. Bind claims
3.2.3. Use pods and claimed PVs
3.2.4. Storage Object in Use Protection
3.2.5. Release a persistent volume
3.2.6. Reclaim policy for persistent volumes
3.2.7. Reclaiming a persistent volume manually
3.2.8. Changing the reclaim policy of a persistent volume

3.3. PERSISTENT VOLUMES
3.3.1. Types of PVs
3.3.2. Capacity
3.3.3. Access modes
3.3.4. Phase

3.3.4.1. Mount options
3.4. PERSISTENT VOLUME CLAIMS

3.4.1. Storage classes
3.4.2. Access modes
3.4.3. Resources
3.4.4. Claims as volumes

3.5. BLOCK VOLUME SUPPORT
3.5.1. Block volume examples

3.6. USING FSGROUP TO REDUCE POD TIMEOUTS

CHAPTER 4. CONFIGURING PERSISTENT STORAGE
4.1. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

4.1.1. Creating the EBS storage class
4.1.2. Creating the persistent volume claim
4.1.3. Volume format
4.1.4. Maximum number of EBS volumes on a node
4.1.5. Encrypting container persistent volumes on AWS with a KMS key
4.1.6. Additional resources

4.2. PERSISTENT STORAGE USING AZURE
4.2.1. Creating the Azure storage class

9
9
11
11
11
11
11

13
13
13
13
13
13
15

16
16
16
16
16
17
17
17
17
18
18
19

20
20
20
23
23
24
25
26
26
26
26
28
30

32
32
32
32
33
33
33
35
35
35

Table of Contents

1

4.2.2. Creating the persistent volume claim
4.2.3. Volume format
4.2.4. Machine sets that deploy machines with ultra disks using PVCs

4.2.4.1. Creating machines with ultra disks by using machine sets
4.2.4.2. Troubleshooting resources for machine sets that enable ultra disks

4.2.4.2.1. Unable to mount a persistent volume claim backed by an ultra disk
4.3. PERSISTENT STORAGE USING AZURE FILE

4.3.1. Create the Azure File share persistent volume claim
4.3.2. Mount the Azure File share in a pod

4.4. PERSISTENT STORAGE USING CINDER
4.4.1. Manual provisioning with Cinder

4.4.1.1. Creating the persistent volume
4.4.1.2. Persistent volume formatting
4.4.1.3. Cinder volume security

4.5. PERSISTENT STORAGE USING FIBRE CHANNEL
4.5.1. Provisioning

4.5.1.1. Enforcing disk quotas
4.5.1.2. Fibre Channel volume security

4.6. PERSISTENT STORAGE USING FLEXVOLUME
4.6.1. About FlexVolume drivers
4.6.2. FlexVolume driver example
4.6.3. Installing FlexVolume drivers
4.6.4. Consuming storage using FlexVolume drivers

4.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK
4.7.1. Creating the GCE storage class
4.7.2. Creating the persistent volume claim
4.7.3. Volume format

4.8. PERSISTENT STORAGE USING ISCSI
4.8.1. Provisioning
4.8.2. Enforcing disk quotas
4.8.3. iSCSI volume security

4.8.3.1. Challenge Handshake Authentication Protocol (CHAP) configuration
4.8.4. iSCSI multipathing
4.8.5. iSCSI custom initiator IQN

4.9. PERSISTENT STORAGE USING NFS
4.9.1. Provisioning
4.9.2. Enforcing disk quotas
4.9.3. NFS volume security

4.9.3.1. Group IDs
4.9.3.2. User IDs
4.9.3.3. SELinux
4.9.3.4. Export settings

4.9.4. Reclaiming resources
4.9.5. Additional configuration and troubleshooting

4.10. RED HAT OPENSHIFT DATA FOUNDATION
4.11. PERSISTENT STORAGE USING VMWARE VSPHERE VOLUMES

4.11.1. Dynamically provisioning VMware vSphere volumes
4.11.2. Prerequisites

4.11.2.1. Dynamically provisioning VMware vSphere volumes using the UI
4.11.2.2. Dynamically provisioning VMware vSphere volumes using the CLI

4.11.3. Statically provisioning VMware vSphere volumes
4.11.3.1. Formatting VMware vSphere volumes

36
36
37
37
40
40
40
41

42
43
44
44
45
45
46
46
47
47
48
48
48
49
51
52
52
52
53
53
53
54
54
54
55
55
56
56
58
58
59
59
60
61
61

62
62
63
64
64
64
64
65
67

OpenShift Container Platform 4.13 Storage

2

. .CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE
5.1. LOCAL STORAGE OVERVIEW

5.1.1. Overview of HostPath Provisioner functionality
5.1.2. Overview of Local Storage Operator functionality
5.1.3. Overview of LVM Storage functionality

5.2. PERSISTENT STORAGE USING LOCAL VOLUMES
5.2.1. Installing the Local Storage Operator
5.2.2. Provisioning local volumes by using the Local Storage Operator
5.2.3. Provisioning local volumes without the Local Storage Operator
5.2.4. Creating the local volume persistent volume claim
5.2.5. Attach the local claim
5.2.6. Automating discovery and provisioning for local storage devices
5.2.7. Using tolerations with Local Storage Operator pods
5.2.8. Local Storage Operator Metrics
5.2.9. Deleting the Local Storage Operator resources

5.2.9.1. Removing a local volume or local volume set
5.2.9.2. Uninstalling the Local Storage Operator

5.3. PERSISTENT STORAGE USING HOSTPATH
5.3.1. Overview
5.3.2. Statically provisioning hostPath volumes
5.3.3. Mounting the hostPath share in a privileged pod

5.4. PERSISTENT STORAGE USING LOGICAL VOLUME MANAGER STORAGE
5.4.1. Logical Volume Manager Storage installation

5.4.1.1. Prerequisites to install LVM Storage
5.4.1.2. Installing LVM Storage with the CLI
5.4.1.3. Installing LVM Storage with the web console
5.4.1.4. Uninstalling LVM Storage by using the CLI
5.4.1.5. Uninstalling LVM Storage installed using the OpenShift Web Console
5.4.1.6. Installing LVM Storage in a disconnected environment
5.4.1.7. Installing LVM Storage using RHACM
5.4.1.8. Limitations to configure the size of the devices used in LVM Storage

5.4.2. Provisioning storage using LVM Storage
5.4.3. Expanding PVCs
5.4.4. Upgrading LVM Storage on single-node OpenShift clusters
5.4.5. Volume snapshots for single-node OpenShift

5.4.5.1. Creating volume snapshots in single-node OpenShift
5.4.5.2. Restoring volume snapshots in single-node OpenShift
5.4.5.3. Deleting volume snapshots in single-node OpenShift

5.4.6. Volume cloning for single-node OpenShift
5.4.6.1. Creating volume clones in single-node OpenShift
5.4.6.2. Deleting cloned volumes in single-node OpenShift

5.4.7. Monitoring LVM Storage
5.4.7.1. Metrics
5.4.7.2. Alerts

5.4.8. Downloading log files and diagnostic information using must-gather
5.4.9. LVM Storage reference YAML file
5.4.10. Troubleshooting persistent storage

5.4.10.1. Investigating a PVC stuck in the Pending state
5.4.10.2. Recovering from a missing storage class
5.4.10.3. Recovering from node failure
5.4.10.4. Recovering from disk failure
5.4.10.5. Performing a forced clean-up

68
68
68
68
69
69
69
71
75
77
78
79
82
83
84
84
85
86
86
87
88
89
89
89
90
91

92
93
94
95
99
99
101
101
102
103
103
104
105
105
106
106
106
107
107
108
109
109
110
111

112
113

Table of Contents

3

. .CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)
6.1. CONFIGURING CSI VOLUMES

6.1.1. CSI architecture
6.1.1.1. External CSI controllers
6.1.1.2. CSI driver daemon set

6.1.2. CSI drivers supported by OpenShift Container Platform
6.1.3. Dynamic provisioning
6.1.4. Example using the CSI driver
6.1.5. Volume populators

6.2. CSI INLINE EPHEMERAL VOLUMES
6.2.1. Overview of CSI inline ephemeral volumes

6.2.1.1. Support limitations
6.2.2. CSI Volume Admission plugin

6.2.2.1. Overview
6.2.2.2. Pod security profile enforcement
6.2.2.3. Pod security profile warning
6.2.2.4. Pod security profile audit
6.2.2.5. Default behavior for the CSI Volume Admission plugin

6.2.3. Embedding a CSI inline ephemeral volume in the pod specification
6.2.4. Additional resources

6.3. SHARED RESOURCE CSI DRIVER OPERATOR
6.3.1. About CSI
6.3.2. Sharing secrets across namespaces
6.3.3. Using a SharedSecret instance in a pod
6.3.4. Sharing a config map across namespaces
6.3.5. Using a SharedConfigMap instance in a pod
6.3.6. Additional support limitations for the Shared Resource CSI Driver
6.3.7. Additional details about VolumeAttributes on shared resource pod volumes

6.3.7.1. The refreshResource attribute
6.3.7.2. The refreshResources attribute
6.3.7.3. Validation of volumeAttributes before provisioning a shared resource volume for a pod

6.3.8. Integration between shared resources, Insights Operator, and OpenShift Container Platform Builds
6.4. CSI VOLUME SNAPSHOTS

6.4.1. Overview of CSI volume snapshots
6.4.2. CSI snapshot controller and sidecar

6.4.2.1. External controller
6.4.2.2. External sidecar

6.4.3. About the CSI Snapshot Controller Operator
6.4.3.1. Volume snapshot CRDs

6.4.4. Volume snapshot provisioning
6.4.4.1. Dynamic provisioning
6.4.4.2. Manual provisioning

6.4.5. Creating a volume snapshot
6.4.6. Deleting a volume snapshot
6.4.7. Restoring a volume snapshot

6.5. CSI VOLUME CLONING
6.5.1. Overview of CSI volume cloning

6.5.1.1. Support limitations
6.5.2. Provisioning a CSI volume clone

6.6. MANAGING THE DEFAULT STORAGE CLASS
6.6.1. Overview
6.6.2. Managing the default storage class using the web console
6.6.3. Managing the default storage class using the CLI

116
116
116
116
117
117

120
120
121
121
121
121
122
122
122
123
123
124
124
125
125
125
125
126
128
128
130
131
131
131
131
132
132
132
133
133
133
133
134
134
134
135
135
137
139
140
140
140
140
142
142
143
143

OpenShift Container Platform 4.13 Storage

4

6.6.4. Absent or multiple default storage classes
6.6.4.1. Multiple default storage classes
6.6.4.2. Absent default storage class

6.6.4.2.1. Procedure
6.6.5. Changing the default storage class

6.7. CSI AUTOMATIC MIGRATION
6.7.1. Overview
6.7.2. Storage class implications
6.7.3. vSphere automatic migration

6.7.3.1. New installations of OpenShift Container Platform
6.7.3.2. Updating from OpenShift Container Platform 4.13 to 4.14
6.7.3.3. Updating from OpenShift Container Platform 4.12 to 4.13
6.7.3.4. Using the web console to opt in to automatic CSI migration

6.7.3.4.1. Prerequisites
6.7.3.4.2. Procedure

6.7.3.5. Using the CLI to opt in to automatic CSI migration
6.7.3.5.1. Prerequisites
6.7.3.5.2. Procedure

6.8. ALICLOUD DISK CSI DRIVER OPERATOR
6.8.1. Overview
6.8.2. About CSI

6.9. AWS ELASTIC BLOCK STORE CSI DRIVER OPERATOR
6.9.1. Overview
6.9.2. About CSI
6.9.3. User-managed encryption

6.10. AWS ELASTIC FILE SERVICE CSI DRIVER OPERATOR
6.10.1. Overview
6.10.2. About CSI
6.10.3. Setting up the AWS EFS CSI Driver Operator

6.10.3.1. Installing the AWS EFS CSI Driver Operator
6.10.3.2. Configuring AWS EFS CSI Driver Operator with Security Token Service
6.10.3.3. Installing the AWS EFS CSI Driver

6.10.4. Creating the AWS EFS storage class
6.10.4.1. Creating the AWS EFS storage class using the console
6.10.4.2. Creating the AWS EFS storage class using the CLI

6.10.5. AWS EFS CSI cross account support
6.10.6. Creating and configuring access to EFS volumes in AWS
6.10.7. Dynamic provisioning for Amazon Elastic File Storage
6.10.8. Creating static PVs with Amazon Elastic File Storage
6.10.9. Amazon Elastic File Storage security
6.10.10. Amazon Elastic File Storage troubleshooting
6.10.11. Uninstalling the AWS EFS CSI Driver Operator
6.10.12. Additional resources

6.11. AZURE DISK CSI DRIVER OPERATOR
6.11.1. Overview
6.11.2. About CSI
6.11.3. Creating a storage class with storage account type
6.11.4. User-managed encryption
6.11.5. Machine sets that deploy machines with ultra disks using PVCs

6.11.5.1. Creating machines with ultra disks by using machine sets
6.11.5.2. Troubleshooting resources for machine sets that enable ultra disks

6.11.5.2.1. Unable to mount a persistent volume claim backed by an ultra disk
6.11.6. Additional resources

144
144
144
145
145
146
146
147
147
147
147
148
148
148
149
149
149
149
149
150
150
150
150
151
151
152
152
152
152
152
153
155
156
156
156
157
162
163
164
165
165
166
167
167
167
168
168
169
170
170
173
173
173

Table of Contents

5

6.12. AZURE FILE CSI DRIVER OPERATOR
6.12.1. Overview
6.12.2. NFS support
6.12.3. About CSI

6.13. AZURE STACK HUB CSI DRIVER OPERATOR
6.13.1. Overview
6.13.2. About CSI
6.13.3. Additional resources

6.14. GCP PD CSI DRIVER OPERATOR
6.14.1. Overview
6.14.2. About CSI
6.14.3. GCP PD CSI driver storage class parameters
6.14.4. Creating a custom-encrypted persistent volume
6.14.5. User-managed encryption
6.14.6. Additional resources

6.15. GOOGLE COMPUTE PLATFORM FILESTORE CSI DRIVER OPERATOR
6.15.1. Overview
6.15.2. About CSI
6.15.3. Installing the GCP Filestore CSI Driver Operator
6.15.4. Creating a storage class for GCP Filestore Storage
6.15.5. Destroying clusters and GCP Filestore
6.15.6. Additional resources

6.16. IBM VPC BLOCK CSI DRIVER OPERATOR
6.16.1. Overview
6.16.2. About CSI

6.17. IBM POWER VIRTUAL SERVER BLOCK CSI DRIVER OPERATOR
6.17.1. Introduction
6.17.2. Overview
6.17.3. About CSI

6.18. OPENSTACK CINDER CSI DRIVER OPERATOR
6.18.1. Overview
6.18.2. About CSI
6.18.3. Making OpenStack Cinder CSI the default storage class

6.19. OPENSTACK MANILA CSI DRIVER OPERATOR
6.19.1. Overview
6.19.2. About CSI
6.19.3. Manila CSI Driver Operator limitations
6.19.4. Dynamically provisioning Manila CSI volumes

6.20. RED HAT VIRTUALIZATION CSI DRIVER OPERATOR
6.20.1. Overview
6.20.2. About CSI
6.20.3. Red Hat Virtualization (RHV) CSI driver storage class
6.20.4. Creating a persistent volume on RHV

6.21. VMWARE VSPHERE CSI DRIVER OPERATOR
6.21.1. Overview
6.21.2. About CSI
6.21.3. vSphere CSI limitations
6.21.4. vSphere storage policy
6.21.5. ReadWriteMany vSphere volume support
6.21.6. VMware vSphere CSI Driver Operator requirements
6.21.7. Removing a third-party vSphere CSI Driver Operator
6.21.8. vSphere persistent disks encryption

6.21.8.1. Using datastore URL

173
173
174
175
175
175
175
176
176
176
176
176
177
179
179
179
179
180
180
181

182
183
183
183
183
183
184
184
184
185
185
185
185
187
187
187
187
188
190
190
190
190
191

193
193
194
194
194
195
195
195
196
197

OpenShift Container Platform 4.13 Storage

6

. .

. .

. .

. .

6.21.8.2. Using tag-based placement
6.21.9. vSphere CSI topology overview

6.21.9.1. Creating vSphere storage topology during installation
6.21.9.1.1. Procedure

6.21.9.2. Creating vSphere storage topology postinstallation
6.21.9.2.1. Procedure

6.21.9.3. Creating vSphere storage topology without an infra topology
6.21.9.3.1. Procedure

6.21.9.4. Results
6.21.10. Additional resources

CHAPTER 7. GENERIC EPHEMERAL VOLUMES
7.1. OVERVIEW
7.2. LIFECYCLE AND PERSISTENT VOLUME CLAIMS
7.3. SECURITY
7.4. PERSISTENT VOLUME CLAIM NAMING
7.5. CREATING GENERIC EPHEMERAL VOLUMES

CHAPTER 8. EXPANDING PERSISTENT VOLUMES
8.1. ENABLING VOLUME EXPANSION SUPPORT
8.2. EXPANDING CSI VOLUMES
8.3. EXPANDING FLEXVOLUME WITH A SUPPORTED DRIVER
8.4. EXPANDING LOCAL VOLUMES
8.5. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH A FILE SYSTEM
8.6. RECOVERING FROM FAILURE WHEN EXPANDING VOLUMES

CHAPTER 9. DYNAMIC PROVISIONING
9.1. ABOUT DYNAMIC PROVISIONING
9.2. AVAILABLE DYNAMIC PROVISIONING PLUGINS
9.3. DEFINING A STORAGE CLASS

9.3.1. Basic StorageClass object definition
9.3.2. Storage class annotations
9.3.3. RHOSP Cinder object definition
9.3.4. RHOSP Manila Container Storage Interface (CSI) object definition
9.3.5. AWS Elastic Block Store (EBS) object definition
9.3.6. Azure Disk object definition
9.3.7. Azure File object definition

9.3.7.1. Considerations when using Azure File
9.3.8. GCE PersistentDisk (gcePD) object definition
9.3.9. VMware vSphere object definition

9.4. CHANGING THE DEFAULT STORAGE CLASS

CHAPTER 10. DETACH VOLUMES AFTER NON-GRACEFUL NODE SHUTDOWN
10.1. OVERVIEW
10.2. ADDING AN OUT-OF-SERVICE TAINT MANUALLY FOR AUTOMATIC VOLUME DETACHMENT

197
198
199
199
199
199
201
201

204
204

205
205
205
206
206
206

208
208
208
209
209
210
211

212
212
212
213
213
214
215
215
215
216
217
218
219
219

220

222
222
222

Table of Contents

7

OpenShift Container Platform 4.13 Storage

8

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM STORAGE
OVERVIEW

OpenShift Container Platform supports multiple types of storage, both for on-premise and cloud
providers. You can manage container storage for persistent and non-persistent data in an OpenShift
Container Platform cluster.

1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM STORAGE

This glossary defines common terms that are used in the storage content.

Access modes

Volume access modes describe volume capabilities. You can use access modes to match persistent
volume claim (PVC) and persistent volume (PV). The following are the examples of access modes:

ReadWriteOnce (RWO)

ReadOnlyMany (ROX)

ReadWriteMany (RWX)

ReadWriteOncePod (RWOP)

Cinder

The Block Storage service for Red Hat OpenStack Platform (RHOSP) which manages the
administration, security, and scheduling of all volumes.

Config map

A config map provides a way to inject configuration data into pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

Container Storage Interface (CSI)

An API specification for the management of container storage across different container
orchestration (CO) systems.

Dynamic Provisioning

The framework allows you to create storage volumes on-demand, eliminating the need for cluster
administrators to pre-provision persistent storage.

Ephemeral storage

Pods and containers can require temporary or transient local storage for their operation. The lifetime
of this ephemeral storage does not extend beyond the life of the individual pod, and this ephemeral
storage cannot be shared across pods.

Fiber channel

A networking technology that is used to transfer data among data centers, computer servers,
switches and storage.

FlexVolume

FlexVolume is an out-of-tree plugin interface that uses an exec-based model to interface with
storage drivers. You must install the FlexVolume driver binaries in a pre-defined volume plugin path
on each node and in some cases the control plane nodes.

fsGroup

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM STORAGE OVERVIEW

9

The fsGroup defines a file system group ID of a pod.

iSCSI

Internet Small Computer Systems Interface (iSCSI) is an Internet Protocol-based storage networking
standard for linking data storage facilities. An iSCSI volume allows an existing iSCSI (SCSI over IP)
volume to be mounted into your Pod.

hostPath

A hostPath volume in an OpenShift Container Platform cluster mounts a file or directory from the
host node’s filesystem into your pod.

KMS key

The Key Management Service (KMS) helps you achieve the required level of encryption of your data
across different services. you can use the KMS key to encrypt, decrypt, and re-encrypt data.

Local volumes

A local volume represents a mounted local storage device such as a disk, partition or directory.

NFS

A Network File System (NFS) that allows remote hosts to mount file systems over a network and
interact with those file systems as though they are mounted locally. This enables system
administrators to consolidate resources onto centralized servers on the network.

OpenShift Data Foundation

A provider of agnostic persistent storage for OpenShift Container Platform supporting file, block,
and object storage, either in-house or in hybrid clouds

Persistent storage

Pods and containers can require permanent storage for their operation. OpenShift Container
Platform uses the Kubernetes persistent volume (PV) framework to allow cluster administrators to
provision persistent storage for a cluster. Developers can use PVC to request PV resources without
having specific knowledge of the underlying storage infrastructure.

Persistent volumes (PV)

OpenShift Container Platform uses the Kubernetes persistent volume (PV) framework to allow
cluster administrators to provision persistent storage for a cluster. Developers can use PVC to
request PV resources without having specific knowledge of the underlying storage infrastructure.

Persistent volume claims (PVCs)

You can use a PVC to mount a PersistentVolume into a Pod. You can access the storage without
knowing the details of the cloud environment.

Pod

One or more containers with shared resources, such as volume and IP addresses, running in your
OpenShift Container Platform cluster. A pod is the smallest compute unit defined, deployed, and
managed.

Reclaim policy

A policy that tells the cluster what to do with the volume after it is released. A volume’s reclaim policy
can be Retain, Recycle, or Delete.

Role-based access control (RBAC)

Role-based access control (RBAC) is a method of regulating access to computer or network
resources based on the roles of individual users within your organization.

Stateless applications

A stateless application is an application program that does not save client data generated in one
session for use in the next session with that client.

Stateful applications

OpenShift Container Platform 4.13 Storage

10

A stateful application is an application program that saves data to persistent disk storage. A server,
client, and applications can use a persistent disk storage. You can use the Statefulset object in
OpenShift Container Platform to manage the deployment and scaling of a set of Pods, and provides
guarantee about the ordering and uniqueness of these Pods.

Static provisioning

A cluster administrator creates a number of PVs. PVs contain the details of storage. PVs exist in the
Kubernetes API and are available for consumption.

Storage

OpenShift Container Platform supports many types of storage, both for on-premise and cloud
providers. You can manage container storage for persistent and non-persistent data in an OpenShift
Container Platform cluster.

Storage class

A storage class provides a way for administrators to describe the classes of storage they offer.
Different classes might map to quality of service levels, backup policies, arbitrary policies determined
by the cluster administrators.

VMware vSphere’s Virtual Machine Disk (VMDK) volumes

Virtual Machine Disk (VMDK) is a file format that describes containers for virtual hard disk drives that
is used in virtual machines.

1.2. STORAGE TYPES

OpenShift Container Platform storage is broadly classified into two categories, namely ephemeral
storage and persistent storage.

1.2.1. Ephemeral storage

Pods and containers are ephemeral or transient in nature and designed for stateless applications.
Ephemeral storage allows administrators and developers to better manage the local storage for some of
their operations. For more information about ephemeral storage overview, types, and management, see
Understanding ephemeral storage .

1.2.2. Persistent storage

Stateful applications deployed in containers require persistent storage. OpenShift Container Platform
uses a pre-provisioned storage framework called persistent volumes (PV) to allow cluster administrators
to provision persistent storage. The data inside these volumes can exist beyond the lifecycle of an
individual pod. Developers can use persistent volume claims (PVCs) to request storage requirements.
For more information about persistent storage overview, configuration, and lifecycle, see Understanding
persistent storage.

1.3. CONTAINER STORAGE INTERFACE (CSI)

CSI is an API specification for the management of container storage across different container
orchestration (CO) systems. You can manage the storage volumes within the container native
environments, without having specific knowledge of the underlying storage infrastructure. With the CSI,
storage works uniformly across different container orchestration systems, regardless of the storage
vendors you are using. For more information about CSI, see Using Container Storage Interface (CSI) .

1.4. DYNAMIC PROVISIONING

Dynamic Provisioning allows you to create storage volumes on-demand, eliminating the need for cluster

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM STORAGE OVERVIEW

11

Dynamic Provisioning allows you to create storage volumes on-demand, eliminating the need for cluster
administrators to pre-provision storage. For more information about dynamic provisioning, see Dynamic
provisioning.

OpenShift Container Platform 4.13 Storage

12

CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE

2.1. OVERVIEW

In addition to persistent storage, pods and containers can require ephemeral or transient local storage
for their operation. The lifetime of this ephemeral storage does not extend beyond the life of the
individual pod, and this ephemeral storage cannot be shared across pods.

Pods use ephemeral local storage for scratch space, caching, and logs. Issues related to the lack of local
storage accounting and isolation include the following:

Pods cannot detect how much local storage is available to them.

Pods cannot request guaranteed local storage.

Local storage is a best-effort resource.

Pods can be evicted due to other pods filling the local storage, after which new pods are not
admitted until sufficient storage is reclaimed.

Unlike persistent volumes, ephemeral storage is unstructured and the space is shared between all pods
running on a node, in addition to other uses by the system, the container runtime, and OpenShift
Container Platform. The ephemeral storage framework allows pods to specify their transient local
storage needs. It also allows OpenShift Container Platform to schedule pods where appropriate, and to
protect the node against excessive use of local storage.

While the ephemeral storage framework allows administrators and developers to better manage local
storage, I/O throughput and latency are not directly effected.

2.2. TYPES OF EPHEMERAL STORAGE

Ephemeral local storage is always made available in the primary partition. There are two basic ways of
creating the primary partition: root and runtime.

Root
This partition holds the kubelet root directory, /var/lib/kubelet/ by default, and /var/log/ directory. This
partition can be shared between user pods, the OS, and Kubernetes system daemons. This partition can
be consumed by pods through EmptyDir volumes, container logs, image layers, and container-writable
layers. Kubelet manages shared access and isolation of this partition. This partition is ephemeral, and
applications cannot expect any performance SLAs, such as disk IOPS, from this partition.

Runtime
This is an optional partition that runtimes can use for overlay file systems. OpenShift Container Platform
attempts to identify and provide shared access along with isolation to this partition. Container image
layers and writable layers are stored here. If the runtime partition exists, the root partition does not hold
any image layer or other writable storage.

2.3. EPHEMERAL STORAGE MANAGEMENT

Cluster administrators can manage ephemeral storage within a project by setting quotas that define the
limit ranges and number of requests for ephemeral storage across all pods in a non-terminal state.
Developers can also set requests and limits on this compute resource at the pod and container level.

You can manage local ephemeral storage by specifying requests and limits. Each container in a pod can

CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE

13

1 3

2

You can manage local ephemeral storage by specifying requests and limits. Each container in a pod can
specify the following:

spec.containers[].resources.limits.ephemeral-storage

spec.containers[].resources.requests.ephemeral-storage

Limits and requests for ephemeral storage are measured in byte quantities. You can express storage as
a plain integer or as a fixed-point number using one of these suffixes: E, P, T, G, M, k. You can also use
the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki. For example, the following quantities all represent
approximately the same value: 128974848, 129e6, 129M, and 123Mi. The case of the suffixes is
significant. If you specify 400m of ephemeral storage, this requests 0.4 bytes, rather than 400
mebibytes (400Mi) or 400 megabytes (400M), which was probably what was intended.

The following example shows a pod with two containers. Each container requests 2GiB of local
ephemeral storage. Each container has a limit of 4GiB of local ephemeral storage. Therefore, the pod
has a request of 4GiB of local ephemeral storage, and a limit of 8GiB of local ephemeral storage.

Request for local ephemeral storage.

Limit for local ephemeral storage.

This setting in the pod spec affects how the scheduler makes a decision on scheduling pods, and also
how kubelet evict pods. First of all, the scheduler ensures that the sum of the resource requests of the
scheduled containers is less than the capacity of the node. In this case, the pod can be assigned to a
node only if its available ephemeral storage (allocatable resource) is more than 4GiB.

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - name: app
 image: images.my-company.example/app:v4
 resources:
 requests:
 ephemeral-storage: "2Gi" 1
 limits:
 ephemeral-storage: "4Gi" 2
 volumeMounts:
 - name: ephemeral
 mountPath: "/tmp"
 - name: log-aggregator
 image: images.my-company.example/log-aggregator:v6
 resources:
 requests:
 ephemeral-storage: "2Gi" 3
 volumeMounts:
 - name: ephemeral
 mountPath: "/tmp"
 volumes:
 - name: ephemeral
 emptyDir: {}

OpenShift Container Platform 4.13 Storage

14

Secondly, at the container level, since the first container sets resource limit, kubelet eviction manager
measures the disk usage of this container and evicts the pod if the storage usage of this container
exceeds its limit (4GiB). At the pod level, kubelet works out an overall pod storage limit by adding up the
limits of all the containers in that pod. In this case, the total storage usage at the pod level is the sum of
the disk usage from all containers plus the pod’s emptyDir volumes. If this total usage exceeds the
overall pod storage limit (4GiB), then the kubelet also marks the pod for eviction.

For information about defining quotas for projects, see Quota setting per project.

2.4. MONITORING EPHEMERAL STORAGE

You can use /bin/df as a tool to monitor ephemeral storage usage on the volume where ephemeral
container data is located, which is /var/lib/kubelet and /var/lib/containers. The available space for only
/var/lib/kubelet is shown when you use the df command if /var/lib/containers is placed on a separate
disk by the cluster administrator.

To show the human-readable values of used and available space in /var/lib, enter the following
command:

The output shows the ephemeral storage usage in /var/lib:

Example output

$ df -h /var/lib

Filesystem Size Used Avail Use% Mounted on
/dev/disk/by-partuuid/4cd1448a-01 69G 32G 34G 49% /

CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE

15

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/building_applications/#resource-quotas-per-project

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

3.1. PERSISTENT STORAGE OVERVIEW

Managing storage is a distinct problem from managing compute resources. OpenShift Container
Platform uses the Kubernetes persistent volume (PV) framework to allow cluster administrators to
provision persistent storage for a cluster. Developers can use persistent volume claims (PVCs) to
request PV resources without having specific knowledge of the underlying storage infrastructure.

PVCs are specific to a project, and are created and used by developers as a means to use a PV. PV
resources on their own are not scoped to any single project; they can be shared across the entire
OpenShift Container Platform cluster and claimed from any project. After a PV is bound to a PVC, that
PV can not then be bound to additional PVCs. This has the effect of scoping a bound PV to a single
namespace, that of the binding project.

PVs are defined by a PersistentVolume API object, which represents a piece of existing storage in the
cluster that was either statically provisioned by the cluster administrator or dynamically provisioned
using a StorageClass object. It is a resource in the cluster just like a node is a cluster resource.

PVs are volume plugins like Volumes but have a lifecycle that is independent of any individual pod that
uses the PV. PV objects capture the details of the implementation of the storage, be that NFS, iSCSI, or
a cloud-provider-specific storage system.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

PVCs are defined by a PersistentVolumeClaim API object, which represents a request for storage by a
developer. It is similar to a pod in that pods consume node resources and PVCs consume PV resources.
For example, pods can request specific levels of resources, such as CPU and memory, while PVCs can
request specific storage capacity and access modes. For example, they can be mounted once read-
write or many times read-only.

3.2. LIFECYCLE OF A VOLUME AND CLAIM

PVs are resources in the cluster. PVCs are requests for those resources and also act as claim checks to
the resource. The interaction between PVs and PVCs have the following lifecycle.

3.2.1. Provision storage

In response to requests from a developer defined in a PVC, a cluster administrator configures one or
more dynamic provisioners that provision storage and a matching PV.

Alternatively, a cluster administrator can create a number of PVs in advance that carry the details of the
real storage that is available for use. PVs exist in the API and are available for use.

3.2.2. Bind claims

When you create a PVC, you request a specific amount of storage, specify the required access mode,
and create a storage class to describe and classify the storage. The control loop in the master watches
for new PVCs and binds the new PVC to an appropriate PV. If an appropriate PV does not exist, a
provisioner for the storage class creates one.

The size of all PVs might exceed your PVC size. This is especially true with manually provisioned PVs. To

OpenShift Container Platform 4.13 Storage

16

The size of all PVs might exceed your PVC size. This is especially true with manually provisioned PVs. To
minimize the excess, OpenShift Container Platform binds to the smallest PV that matches all other
criteria.

Claims remain unbound indefinitely if a matching volume does not exist or can not be created with any
available provisioner servicing a storage class. Claims are bound as matching volumes become available.
For example, a cluster with many manually provisioned 50Gi volumes would not match a PVC requesting
100Gi. The PVC can be bound when a 100Gi PV is added to the cluster.

3.2.3. Use pods and claimed PVs

Pods use claims as volumes. The cluster inspects the claim to find the bound volume and mounts that
volume for a pod. For those volumes that support multiple access modes, you must specify which mode
applies when you use the claim as a volume in a pod.

Once you have a claim and that claim is bound, the bound PV belongs to you for as long as you need it.
You can schedule pods and access claimed PVs by including persistentVolumeClaim in the pod’s
volumes block.

NOTE

If you attach persistent volumes that have high file counts to pods, those pods can fail or
can take a long time to start. For more information, see When using Persistent Volumes
with high file counts in OpenShift, why do pods fail to start or take an excessive amount
of time to achieve "Ready" state?.

3.2.4. Storage Object in Use Protection

The Storage Object in Use Protection feature ensures that PVCs in active use by a pod and PVs that are
bound to PVCs are not removed from the system, as this can result in data loss.

Storage Object in Use Protection is enabled by default.

NOTE

A PVC is in active use by a pod when a Pod object exists that uses the PVC.

If a user deletes a PVC that is in active use by a pod, the PVC is not removed immediately. PVC removal
is postponed until the PVC is no longer actively used by any pods. Also, if a cluster admin deletes a PV
that is bound to a PVC, the PV is not removed immediately. PV removal is postponed until the PV is no
longer bound to a PVC.

3.2.5. Release a persistent volume

When you are finished with a volume, you can delete the PVC object from the API, which allows
reclamation of the resource. The volume is considered released when the claim is deleted, but it is not
yet available for another claim. The previous claimant’s data remains on the volume and must be
handled according to policy.

3.2.6. Reclaim policy for persistent volumes

The reclaim policy of a persistent volume tells the cluster what to do with the volume after it is released.
A volume’s reclaim policy can be Retain, Recycle, or Delete.

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

17

https://access.redhat.com/solutions/6221251

Retain reclaim policy allows manual reclamation of the resource for those volume plugins that
support it.

Recycle reclaim policy recycles the volume back into the pool of unbound persistent volumes
once it is released from its claim.

IMPORTANT

The Recycle reclaim policy is deprecated in OpenShift Container Platform 4. Dynamic
provisioning is recommended for equivalent and better functionality.

Delete reclaim policy deletes both the PersistentVolume object from OpenShift Container
Platform and the associated storage asset in external infrastructure, such as Amazon Elastic
Block Store (Amazon EBS) or VMware vSphere.

NOTE

Dynamically provisioned volumes are always deleted.

3.2.7. Reclaiming a persistent volume manually

When a persistent volume claim (PVC) is deleted, the persistent volume (PV) still exists and is
considered "released". However, the PV is not yet available for another claim because the data of the
previous claimant remains on the volume.

Procedure

To manually reclaim the PV as a cluster administrator:

1. Delete the PV by running the following command:

The associated storage asset in the external infrastructure, such as an AWS EBS, GCE PD, Azure
Disk, or Cinder volume, still exists after the PV is deleted.

2. Clean up the data on the associated storage asset.

3. Delete the associated storage asset. Alternately, to reuse the same storage asset, create a new
PV with the storage asset definition.

The reclaimed PV is now available for use by another PVC.

3.2.8. Changing the reclaim policy of a persistent volume

To change the reclaim policy of a persistent volume:

1. List the persistent volumes in your cluster:

Example output

$ oc delete pv <pv_name>

$ oc get pv

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS

OpenShift Container Platform 4.13 Storage

18

1

2. Choose one of your persistent volumes and change its reclaim policy:

3. Verify that your chosen persistent volume has the right policy:

Example output

In the preceding output, the volume bound to claim default/claim3 now has a Retain reclaim
policy. The volume will not be automatically deleted when a user deletes claim default/claim3.

3.3. PERSISTENT VOLUMES

Each PV contains a spec and status, which is the specification and status of the volume, for example:

PersistentVolume object definition example

Name of the persistent volume.

CLAIM STORAGECLASS REASON AGE
 pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim1 manual 10s
 pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim2 manual 6s
 pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim3 manual 3s

$ oc patch pv <your-pv-name> -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'

$ oc get pv

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM STORAGECLASS REASON AGE
 pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim1 manual 10s
 pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim2 manual 6s
 pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Retain Bound
default/claim3 manual 3s

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001 1
spec:
 capacity:
 storage: 5Gi 2
 accessModes:
 - ReadWriteOnce 3
 persistentVolumeReclaimPolicy: Retain 4
 ...
status:
 ...

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

19

2

3

4

The amount of storage available to the volume.

The access mode, defining the read-write and mount permissions.

The reclaim policy, indicating how the resource should be handled once it is released.

3.3.1. Types of PVs

OpenShift Container Platform supports the following persistent volume plugins:

AliCloud Disk

AWS Elastic Block Store (EBS)

AWS Elastic File Store (EFS)

Azure Disk

Azure File

Cinder

Fibre Channel

GCP Persistent Disk

GCP Filestore

IBM Power Virtual Server Block

IBM VPC Block

HostPath

iSCSI

Local volume

NFS

OpenStack Manila

Red Hat OpenShift Data Foundation

VMware vSphere

3.3.2. Capacity

Generally, a persistent volume (PV) has a specific storage capacity. This is set by using the capacity
attribute of the PV.

Currently, storage capacity is the only resource that can be set or requested. Future attributes may
include IOPS, throughput, and so on.

3.3.3. Access modes

OpenShift Container Platform 4.13 Storage

20

A persistent volume can be mounted on a host in any way supported by the resource provider. Providers
have different capabilities and each PV’s access modes are set to the specific modes supported by that
particular volume. For example, NFS can support multiple read-write clients, but a specific NFS PV
might be exported on the server as read-only. Each PV gets its own set of access modes describing that
specific PV’s capabilities.

Claims are matched to volumes with similar access modes. The only two matching criteria are access
modes and size. A claim’s access modes represent a request. Therefore, you might be granted more, but
never less. For example, if a claim requests RWO, but the only volume available is an NFS PV
(RWO+ROX+RWX), the claim would then match NFS because it supports RWO.

Direct matches are always attempted first. The volume’s modes must match or contain more modes
than you requested. The size must be greater than or equal to what is expected. If two types of volumes,
such as NFS and iSCSI, have the same set of access modes, either of them can match a claim with those
modes. There is no ordering between types of volumes and no way to choose one type over another.

All volumes with the same modes are grouped, and then sorted by size, smallest to largest. The binder
gets the group with matching modes and iterates over each, in size order, until one size matches.

The following table lists the access modes:

Table 3.1. Access modes

Access Mode CLI abbreviation Description

ReadWriteOnce RWO The volume can be mounted as read-write by a single node.

ReadOnlyMany ROX The volume can be mounted as read-only by many nodes.

ReadWriteMany RWX The volume can be mounted as read-write by many nodes.

IMPORTANT

Volume access modes are descriptors of volume capabilities. They are not enforced
constraints. The storage provider is responsible for runtime errors resulting from invalid
use of the resource.

For example, NFS offers ReadWriteOnce access mode. You must mark the claims as
read-only if you want to use the volume’s ROX capability. Errors in the provider show up
at runtime as mount errors.

iSCSI and Fibre Channel volumes do not currently have any fencing mechanisms. You
must ensure the volumes are only used by one node at a time. In certain situations, such
as draining a node, the volumes can be used simultaneously by two nodes. Before draining
the node, first ensure the pods that use these volumes are deleted.

Table 3.2. Supported access modes for PVs

Volume plugin ReadWriteOnce [1] ReadOnlyMany ReadWriteMany

AliCloud Disk � - -

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

21

AWS EBS [2] � - -

AWS EFS � � �

Azure File � � �

Azure Disk � - -

Cinder � - -

Fibre Channel � � � [3]

GCP Persistent Disk � - -

GCP Filestore � � �

HostPath � - -

IBM Power Virtual
Server Disk

 � � �

IBM VPC Disk � - -

iSCSI � � � [3]

Local volume � - -

LVM Storage � - -

NFS � � �

OpenStack Manila - - �

Red Hat OpenShift Data
Foundation

 � - �

Volume plugin ReadWriteOnce [1] ReadOnlyMany ReadWriteMany

OpenShift Container Platform 4.13 Storage

22

VMware vSphere � - � [4]

Volume plugin ReadWriteOnce [1] ReadOnlyMany ReadWriteMany

1. ReadWriteOnce (RWO) volumes cannot be mounted on multiple nodes. If a node fails, the
system does not allow the attached RWO volume to be mounted on a new node because it is
already assigned to the failed node. If you encounter a multi-attach error message as a result,
force delete the pod on a shutdown or crashed node to avoid data loss in critical workloads, such
as when dynamic persistent volumes are attached.

2. Use a recreate deployment strategy for pods that rely on Amazon EBS.

3. Only raw block volumes support the ReadWriteMany (RWX) access mode for Fibre Channel and
iSCSI. For more information, see "Block volume support".

4. If the underlying vSphere environment supports the vSAN file service, then the vSphere
Container Storage Interface (CSI) Driver Operator installed by OpenShift Container Platform
supports provisioning of ReadWriteMany (RWX) volumes. If you do not have vSAN file service
configured, and you request RWX, the volume fails to get created and an error is logged. For
more information, see "Using Container Storage Interface" → "VMware vSphere CSI Driver
Operator".

3.3.4. Phase

Volumes can be found in one of the following phases:

Table 3.3. Volume phases

Phase Description

Available A free resource not yet bound to a claim.

Bound The volume is bound to a claim.

Released The claim was deleted, but the resource is not yet reclaimed by the
cluster.

Failed The volume has failed its automatic reclamation.

You can view the name of the PVC that is bound to the PV by running the following command:

3.3.4.1. Mount options

You can specify mount options while mounting a PV by using the attribute mountOptions.

For example:

$ oc get pv <pv_claim>

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

23

1

Mount options example

Specified mount options are used while mounting the PV to the disk.

The following PV types support mount options:

AWS Elastic Block Store (EBS)

Azure Disk

Azure File

Cinder

GCE Persistent Disk

iSCSI

Local volume

NFS

Red Hat OpenShift Data Foundation (Ceph RBD only)

VMware vSphere

NOTE

Fibre Channel and HostPath PVs do not support mount options.

Additional resources

ReadWriteMany vSphere volume support

3.4. PERSISTENT VOLUME CLAIMS

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 mountOptions: 1
 - nfsvers=4.1
 nfs:
 path: /tmp
 server: 172.17.0.2
 persistentVolumeReclaimPolicy: Retain
 claimRef:
 name: claim1
 namespace: default

OpenShift Container Platform 4.13 Storage

24

1

2

3

4

Each PersistentVolumeClaim object contains a spec and status, which is the specification and status
of the persistent volume claim (PVC), for example:

PersistentVolumeClaim object definition example

Name of the PVC.

The access mode, defining the read-write and mount permissions.

The amount of storage available to the PVC.

Name of the StorageClass required by the claim.

3.4.1. Storage classes

Claims can optionally request a specific storage class by specifying the storage class’s name in the
storageClassName attribute. Only PVs of the requested class, ones with the same storageClassName
as the PVC, can be bound to the PVC. The cluster administrator can configure dynamic provisioners to
service one or more storage classes. The cluster administrator can create a PV on demand that matches
the specifications in the PVC.

IMPORTANT

The Cluster Storage Operator might install a default storage class depending on the
platform in use. This storage class is owned and controlled by the Operator. It cannot be
deleted or modified beyond defining annotations and labels. If different behavior is
desired, you must define a custom storage class.

The cluster administrator can also set a default storage class for all PVCs. When a default storage class
is configured, the PVC must explicitly ask for StorageClass or storageClassName annotations set to
"" to be bound to a PV without a storage class.

NOTE

If more than one storage class is marked as default, a PVC can only be created if the
storageClassName is explicitly specified. Therefore, only one storage class should be set
as the default.

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: myclaim 1
spec:
 accessModes:
 - ReadWriteOnce 2
 resources:
 requests:
 storage: 8Gi 3
 storageClassName: gold 4
status:
 ...

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

25

1

2

3

3.4.2. Access modes

Claims use the same conventions as volumes when requesting storage with specific access modes.

3.4.3. Resources

Claims, such as pods, can request specific quantities of a resource. In this case, the request is for storage.
The same resource model applies to volumes and claims.

3.4.4. Claims as volumes

Pods access storage by using the claim as a volume. Claims must exist in the same namespace as the
pod using the claim. The cluster finds the claim in the pod’s namespace and uses it to get the
PersistentVolume backing the claim. The volume is mounted to the host and into the pod, for example:

Mount volume to the host and into the pod example

Path to mount the volume inside the pod.

Name of the volume to mount. Do not mount to the container root, /, or any path that is the same
in the host and the container. This can corrupt your host system if the container is sufficiently
privileged, such as the host /dev/pts files. It is safe to mount the host by using /host.

Name of the PVC, that exists in the same namespace, to use.

3.5. BLOCK VOLUME SUPPORT

OpenShift Container Platform can statically provision raw block volumes. These volumes do not have a
file system, and can provide performance benefits for applications that either write to the disk directly
or implement their own storage service.

Raw block volumes are provisioned by specifying volumeMode: Block in the PV and PVC specification.

IMPORTANT

Pods using raw block volumes must be configured to allow privileged containers.

kind: Pod
apiVersion: v1
metadata:
 name: mypod
spec:
 containers:
 - name: myfrontend
 image: dockerfile/nginx
 volumeMounts:
 - mountPath: "/var/www/html" 1
 name: mypd 2
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim 3

OpenShift Container Platform 4.13 Storage

26

The following table displays which volume plugins support block volumes.

Table 3.4. Block volume support

Volume Plugin Manually provisioned Dynamically
provisioned

Fully supported

Amazon Elastic Block
Store (Amazon EBS)

� � �

Amazon Elastic File
Storage (Amazon EFS)

AliCloud Disk � � �

Azure Disk � � �

Azure File

Cinder � � �

Fibre Channel � �

GCP � � �

HostPath

IBM VPC Disk � � �

iSCSI � �

Local volume � �

LVM Storage � � �

NFS

Red Hat OpenShift Data
Foundation

� � �

VMware vSphere � � �

IMPORTANT

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

27

1

1

IMPORTANT

Using any of the block volumes that can be provisioned manually, but are not provided as
fully supported, is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

3.5.1. Block volume examples

PV example

volumeMode must be set to Block to indicate that this PV is a raw block volume.

PVC example

volumeMode must be set to Block to indicate that a raw block PVC is requested.

Pod specification example

apiVersion: v1
kind: PersistentVolume
metadata:
 name: block-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 volumeMode: Block 1
 persistentVolumeReclaimPolicy: Retain
 fc:
 targetWWNs: ["50060e801049cfd1"]
 lun: 0
 readOnly: false

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: block-pvc
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Block 1
 resources:
 requests:
 storage: 10Gi

OpenShift Container Platform 4.13 Storage

28

https://access.redhat.com/support/offerings/techpreview/

1

2

3

volumeDevices, instead of volumeMounts, is used for block devices. Only
PersistentVolumeClaim sources can be used with raw block volumes.

devicePath, instead of mountPath, represents the path to the physical device where the raw block
is mapped to the system.

The volume source must be of type persistentVolumeClaim and must match the name of the
PVC as expected.

Table 3.5. Accepted values for volumeMode

Value Default

Filesystem Yes

Block No

Table 3.6. Binding scenarios for block volumes

PV
volumeMode

PVC volumeMode Binding result

Filesystem Filesystem Bind

Unspecified Unspecified Bind

Filesystem Unspecified Bind

Unspecified Filesystem Bind

Block Block Bind

apiVersion: v1
kind: Pod
metadata:
 name: pod-with-block-volume
spec:
 containers:
 - name: fc-container
 image: fedora:26
 command: ["/bin/sh", "-c"]
 args: ["tail -f /dev/null"]
 volumeDevices: 1
 - name: data
 devicePath: /dev/xvda 2
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: block-pvc 3

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

29

1

Unspecified Block No Bind

Block Unspecified No Bind

Filesystem Block No Bind

Block Filesystem No Bind

PV
volumeMode

PVC volumeMode Binding result

IMPORTANT

Unspecified values result in the default value of Filesystem.

3.6. USING FSGROUP TO REDUCE POD TIMEOUTS

If a storage volume contains many files (~1,000,000 or greater), you may experience pod timeouts.

This can occur because, by default, OpenShift Container Platform recursively changes ownership and
permissions for the contents of each volume to match the fsGroup specified in a pod’s securityContext
when that volume is mounted. For large volumes, checking and changing ownership and permissions can
be time consuming, slowing pod startup. You can use the fsGroupChangePolicy field inside a
securityContext to control the way that OpenShift Container Platform checks and manages ownership
and permissions for a volume.

fsGroupChangePolicy defines behavior for changing ownership and permission of the volume before
being exposed inside a pod. This field only applies to volume types that support fsGroup-controlled
ownership and permissions. This field has two possible values:

OnRootMismatch: Only change permissions and ownership if permission and ownership of root
directory does not match with expected permissions of the volume. This can help shorten the
time it takes to change ownership and permission of a volume to reduce pod timeouts.

Always: Always change permission and ownership of the volume when a volume is mounted.

fsGroupChangePolicy example

OnRootMismatch specifies skipping recursive permission change, thus helping to avoid pod
timeout problems.

NOTE

securityContext:
 runAsUser: 1000
 runAsGroup: 3000
 fsGroup: 2000
 fsGroupChangePolicy: "OnRootMismatch" 1
 ...

OpenShift Container Platform 4.13 Storage

30

NOTE

The fsGroupChangePolicyfield has no effect on ephemeral volume types, such as secret,
configMap, and emptydir.

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

31

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

4.1. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

OpenShift Container Platform supports Amazon Elastic Block Store (EBS) volumes. You can provision
your OpenShift Container Platform cluster with persistent storage by using Amazon EC2.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. You can dynamically provision Amazon EBS volumes. Persistent volumes are
not bound to a single project or namespace; they can be shared across the OpenShift Container
Platform cluster. Persistent volume claims are specific to a project or namespace and can be requested
by users. You can define a KMS key to encrypt container-persistent volumes on AWS. By default, newly
created clusters using OpenShift Container Platform version 4.10 and later use gp3 storage and the
AWS EBS CSI driver .

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

IMPORTANT

OpenShift Container Platform 4.12 and later provides automatic migration for the AWS
Block in-tree volume plugin to its equivalent CSI driver.

CSI automatic migration should be seamless. Migration does not change how you use all
existing API objects, such as persistent volumes, persistent volume claims, and storage
classes. For more information about migration, see CSI automatic migration .

4.1.1. Creating the EBS storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

4.1.2. Creating the persistent volume claim

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform.

Procedure

1. In the OpenShift Container Platform console, click Storage → Persistent Volume Claims.

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

3. Define the desired options on the page that appears.

a. Select the previously-created storage class from the drop-down menu.

b. Enter a unique name for the storage claim.

c. Select the access mode. This selection determines the read and write access for the

OpenShift Container Platform 4.13 Storage

32

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://github.com/openshift/aws-ebs-csi-driver

c. Select the access mode. This selection determines the read and write access for the
storage claim.

d. Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

4.1.3. Volume format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that the
volume contains a file system as specified by the fsType parameter in the persistent volume definition.
If the device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This verification enables you to use unformatted AWS volumes as persistent volumes, because
OpenShift Container Platform formats them before the first use.

4.1.4. Maximum number of EBS volumes on a node

By default, OpenShift Container Platform supports a maximum of 39 EBS volumes attached to one
node. This limit is consistent with the AWS volume limits . The volume limit depends on the instance type.

IMPORTANT

As a cluster administrator, you must use either in-tree or Container Storage Interface
(CSI) volumes and their respective storage classes, but never both volume types at the
same time. The maximum attached EBS volume number is counted separately for in-tree
and CSI volumes, which means you could have up to 39 EBS volumes of each type.

For information about accessing additional storage options, such as volume snapshots, that are not
possible with in-tree volume plug-ins, see AWS Elastic Block Store CSI Driver Operator .

4.1.5. Encrypting container persistent volumes on AWS with a KMS key

Defining a KMS key to encrypt container-persistent volumes on AWS is useful when you have explicit
compliance and security guidelines when deploying to AWS.

Prerequisites

Underlying infrastructure must contain storage.

You must create a customer KMS key on AWS.

Procedure

1. Create a storage class:

$ cat << EOF | oc create -f -
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: <storage-class-name> 1
parameters:
 fsType: ext4 2

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

33

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html#linux-specific-volume-limits

1

2

3

Specifies the name of the storage class.

File system that is created on provisioned volumes.

Specifies the full Amazon Resource Name (ARN) of the key to use when encrypting the
container-persistent volume. If you do not provide any key, but the encrypted field is set
to true, then the default KMS key is used. See Finding the key ID and key ARN on AWS in
the AWS documentation.

2. Create a persistent volume claim (PVC) with the storage class specifying the KMS key:

3. Create workload containers to consume the PVC:

 encrypted: "true"
 kmsKeyId: keyvalue 3
provisioner: ebs.csi.aws.com
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer
EOF

$ cat << EOF | oc create -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mypvc
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Filesystem
 storageClassName: <storage-class-name>
 resources:
 requests:
 storage: 1Gi
EOF

$ cat << EOF | oc create -f -
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: httpd
 image: quay.io/centos7/httpd-24-centos7
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /mnt/storage
 name: data
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: mypvc
EOF

OpenShift Container Platform 4.13 Storage

34

https://docs.aws.amazon.com/kms/latest/developerguide/find-cmk-id-arn.html

4.1.6. Additional resources

See AWS Elastic Block Store CSI Driver Operator for information about accessing additional
storage options, such as volume snapshots, that are not possible with in-tree volume plugins.

4.2. PERSISTENT STORAGE USING AZURE

OpenShift Container Platform supports Microsoft Azure Disk volumes. You can provision your
OpenShift Container Platform cluster with persistent storage using Azure. Some familiarity with
Kubernetes and Azure is assumed. The Kubernetes persistent volume framework allows administrators
to provision a cluster with persistent storage and gives users a way to request those resources without
having any knowledge of the underlying infrastructure. Azure Disk volumes can be provisioned
dynamically. Persistent volumes are not bound to a single project or namespace; they can be shared
across the OpenShift Container Platform cluster. Persistent volume claims are specific to a project or
namespace and can be requested by users.

IMPORTANT

OpenShift Container Platform 4.11 and later provides automatic migration for the Azure
Disk in-tree volume plugin to its equivalent CSI driver.

CSI automatic migration should be seamless. Migration does not change how you use all
existing API objects, such as persistent volumes, persistent volume claims, and storage
classes. For more information about migration, see CSI automatic migration .

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional resources

Microsoft Azure Disk

4.2.1. Creating the Azure storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

Procedure

1. In the OpenShift Container Platform console, click Storage → Storage Classes.

2. In the storage class overview, click Create Storage Class.

3. Define the desired options on the page that appears.

a. Enter a name to reference the storage class.

b. Enter an optional description.

c. Select the reclaim policy.

d. Select kubernetes.io/azure-disk from the drop down list.

i. Enter the storage account type. This corresponds to your Azure storage account SKU

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

35

https://azure.microsoft.com/en-us/services/storage/disks

i. Enter the storage account type. This corresponds to your Azure storage account SKU
tier. Valid options are Premium_LRS, Standard_LRS, StandardSSD_LRS, and
UltraSSD_LRS.

ii. Enter the kind of account. Valid options are shared, dedicated, and managed.

IMPORTANT

Red Hat only supports the use of kind: Managed in the storage class.

With Shared and Dedicated, Azure creates unmanaged disks, while
OpenShift Container Platform creates a managed disk for machine OS
(root) disks. But because Azure Disk does not allow the use of both
managed and unmanaged disks on a node, unmanaged disks created
with Shared or Dedicated cannot be attached to OpenShift Container
Platform nodes.

e. Enter additional parameters for the storage class as desired.

4. Click Create to create the storage class.

Additional resources

Azure Disk Storage Class

4.2.2. Creating the persistent volume claim

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform.

Procedure

1. In the OpenShift Container Platform console, click Storage → Persistent Volume Claims.

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

3. Define the desired options on the page that appears.

a. Select the previously-created storage class from the drop-down menu.

b. Enter a unique name for the storage claim.

c. Select the access mode. This selection determines the read and write access for the
storage claim.

d. Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

4.2.3. Volume format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the

OpenShift Container Platform 4.13 Storage

36

https://kubernetes.io/docs/concepts/storage/storage-classes/#new-azure-disk-storage-class-starting-from-v1-7-2

device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted Azure volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

4.2.4. Machine sets that deploy machines with ultra disks using PVCs

You can create a machine set running on Azure that deploys machines with ultra disks. Ultra disks are
high-performance storage that are intended for use with the most demanding data workloads.

Both the in-tree plugin and CSI driver support using PVCs to enable ultra disks. You can also deploy
machines with ultra disks as data disks without creating a PVC.

Additional resources

Microsoft Azure ultra disks documentation

Machine sets that deploy machines on ultra disks using CSI PVCs

Machine sets that deploy machines on ultra disks as data disks

4.2.4.1. Creating machines with ultra disks by using machine sets

You can deploy machines with ultra disks on Azure by editing your machine set YAML file.

Prerequisites

Have an existing Microsoft Azure cluster.

Procedure

1. Copy an existing Azure MachineSet custom resource (CR) and edit it by running the following
command:

where <machine_set_name> is the machine set that you want to provision machines with ultra
disks.

2. Add the following lines in the positions indicated:

$ oc edit machineset <machine_set_name>

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
spec:
 template:
 spec:
 metadata:
 labels:
 disk: ultrassd 1
 providerSpec:
 value:
 ultraSSDCapability: Enabled 2

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

37

https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types#ultra-disks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/machine_management/#machineset-azure-ultra-disk_creating-machineset-azure

1

2

1

2

3

4

5

1

Specify a label to use to select a node that is created by this machine set. This procedure
uses disk.ultrassd for this value.

These lines enable the use of ultra disks.

3. Create a machine set using the updated configuration by running the following command:

4. Create a storage class that contains the following YAML definition:

Specify the name of the storage class. This procedure uses ultra-disk-sc for this value.

Specify the number of IOPS for the storage class.

Specify the throughput in MBps for the storage class.

For Azure Kubernetes Service (AKS) version 1.21 or later, use disk.csi.azure.com. For
earlier versions of AKS, use kubernetes.io/azure-disk.

Optional: Specify this parameter to wait for the creation of the pod that will use the disk.

5. Create a persistent volume claim (PVC) to reference the ultra-disk-sc storage class that
contains the following YAML definition:

Specify the name of the PVC. This procedure uses ultra-disk for this value.

$ oc create -f <machine_set_name>.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: ultra-disk-sc 1
parameters:
 cachingMode: None
 diskIopsReadWrite: "2000" 2
 diskMbpsReadWrite: "320" 3
 kind: managed
 skuname: UltraSSD_LRS
provisioner: disk.csi.azure.com 4
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer 5

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: ultra-disk 1
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: ultra-disk-sc 2
 resources:
 requests:
 storage: 4Gi 3

OpenShift Container Platform 4.13 Storage

38

2

3

1

2

This PVC references the ultra-disk-sc storage class.

Specify the size for the storage class. The minimum value is 4Gi.

6. Create a pod that contains the following YAML definition:

Specify the label of the machine set that enables the use of ultra disks. This procedure
uses disk.ultrassd for this value.

This pod references the ultra-disk PVC.

Verification

1. Validate that the machines are created by running the following command:

The machines should be in the Running state.

2. For a machine that is running and has a node attached, validate the partition by running the
following command:

In this command, oc debug node/<node_name> starts a debugging shell on the node
<node_name> and passes a command with --. The passed command chroot /host provides
access to the underlying host OS binaries, and lsblk shows the block devices that are attached
to the host OS machine.

Next steps

To use an ultra disk from within a pod, create a workload that uses the mount point. Create a

apiVersion: v1
kind: Pod
metadata:
 name: nginx-ultra
spec:
 nodeSelector:
 disk: ultrassd 1
 containers:
 - name: nginx-ultra
 image: alpine:latest
 command:
 - "sleep"
 - "infinity"
 volumeMounts:
 - mountPath: "/mnt/azure"
 name: volume
 volumes:
 - name: volume
 persistentVolumeClaim:
 claimName: ultra-disk 2

$ oc get machines

$ oc debug node/<node_name> -- chroot /host lsblk

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

39

To use an ultra disk from within a pod, create a workload that uses the mount point. Create a
YAML file similar to the following example:

4.2.4.2. Troubleshooting resources for machine sets that enable ultra disks

Use the information in this section to understand and recover from issues you might encounter.

4.2.4.2.1. Unable to mount a persistent volume claim backed by an ultra disk

If there is an issue mounting a persistent volume claim backed by an ultra disk, the pod becomes stuck in
the ContainerCreating state and an alert is triggered.

For example, if the additionalCapabilities.ultraSSDEnabled parameter is not set on the machine that
backs the node that hosts the pod, the following error message appears:

To resolve this issue, describe the pod by running the following command:

4.3. PERSISTENT STORAGE USING AZURE FILE

OpenShift Container Platform supports Microsoft Azure File volumes. You can provision your OpenShift
Container Platform cluster with persistent storage using Azure. Some familiarity with Kubernetes and
Azure is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. You can provision Azure File volumes dynamically.

apiVersion: v1
kind: Pod
metadata:
 name: ssd-benchmark1
spec:
 containers:
 - name: ssd-benchmark1
 image: nginx
 ports:
 - containerPort: 80
 name: "http-server"
 volumeMounts:
 - name: lun0p1
 mountPath: "/tmp"
 volumes:
 - name: lun0p1
 hostPath:
 path: /var/lib/lun0p1
 type: DirectoryOrCreate
 nodeSelector:
 disktype: ultrassd

StorageAccountType UltraSSD_LRS can be used only when additionalCapabilities.ultraSSDEnabled
is set.

$ oc -n <stuck_pod_namespace> describe pod <stuck_pod_name>

OpenShift Container Platform 4.13 Storage

40

1

2

Persistent volumes are not bound to a single project or namespace, and you can share them across the
OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace,
and can be requested by users for use in applications.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

IMPORTANT

Azure File volumes use Server Message Block.

IMPORTANT

OpenShift Container Platform 4.13 and later provides automatic migration for the Azure
File in-tree volume plugin to its equivalent CSI driver.

CSI automatic migration should be seamless. Migration does not change how you use all
existing API objects, such as persistent volumes, persistent volume claims, and storage
classes. For more information about migration, see CSI automatic migration .

Additional resources

Azure Files

4.3.1. Create the Azure File share persistent volume claim

To create the persistent volume claim, you must first define a Secret object that contains the Azure
account and key. This secret is used in the PersistentVolume definition, and will be referenced by the
persistent volume claim for use in applications.

Prerequisites

An Azure File share exists.

The credentials to access this share, specifically the storage account and key, are available.

Procedure

1. Create a Secret object that contains the Azure File credentials:

The Azure File storage account name.

The Azure File storage account key.

2. Create a PersistentVolume object that references the Secret object you created:

$ oc create secret generic <secret-name> --from-literal=azurestorageaccountname=
<storage-account> \ 1
 --from-literal=azurestorageaccountkey=<storage-account-key> 2

apiVersion: "v1"
kind: "PersistentVolume"

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

41

https://azure.microsoft.com/en-us/services/storage/files/

1

2

3

4

1

2

3

4

The name of the persistent volume.

The size of this persistent volume.

The name of the secret that contains the Azure File share credentials.

The name of the Azure File share.

3. Create a PersistentVolumeClaim object that maps to the persistent volume you created:

The name of the persistent volume claim.

The size of this persistent volume claim.

The name of the storage class that is used to provision the persistent volume. Specify the
storage class used in the PersistentVolume definition.

The name of the existing PersistentVolume object that references the Azure File share.

4.3.2. Mount the Azure File share in a pod

After the persistent volume claim has been created, it can be used inside by an application. The following
example demonstrates mounting this share inside of a pod.

Prerequisites

metadata:
 name: "pv0001" 1
spec:
 capacity:
 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"
 storageClassName: azure-file-sc
 azureFile:
 secretName: <secret-name> 3
 shareName: share-1 4
 readOnly: false

apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:
 name: "claim1" 1
spec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: "5Gi" 2
 storageClassName: azure-file-sc 3
 volumeName: "pv0001" 4

OpenShift Container Platform 4.13 Storage

42

1

2

3

A persistent volume claim exists that is mapped to the underlying Azure File share.

Procedure

Create a pod that mounts the existing persistent volume claim:

The name of the pod.

The path to mount the Azure File share inside the pod. Do not mount to the container root,
/, or any path that is the same in the host and the container. This can corrupt your host
system if the container is sufficiently privileged, such as the host /dev/pts files. It is safe to
mount the host by using /host.

The name of the PersistentVolumeClaim object that has been previously created.

4.4. PERSISTENT STORAGE USING CINDER

OpenShift Container Platform supports OpenStack Cinder. Some familiarity with Kubernetes and
OpenStack is assumed.

Cinder volumes can be provisioned dynamically. Persistent volumes are not bound to a single project or
namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume
claims are specific to a project or namespace and can be requested by users.

IMPORTANT

OpenShift Container Platform 4.11 and later provides automatic migration for the Cinder
in-tree volume plugin to its equivalent CSI driver.

CSI automatic migration should be seamless. Migration does not change how you use all
existing API objects, such as persistent volumes, persistent volume claims, and storage
classes. For more information about migration, see CSI automatic migration .

Additional resources

For more information about how OpenStack Block Storage provides persistent block storage
management for virtual hard drives, see OpenStack Cinder.

apiVersion: v1
kind: Pod
metadata:
 name: pod-name 1
spec:
 containers:
 ...
 volumeMounts:
 - mountPath: "/data" 2
 name: azure-file-share
 volumes:
 - name: azure-file-share
 persistentVolumeClaim:
 claimName: claim1 3

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

43

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/8/html-single/architecture_guide/index#comp-cinder

1

2

3

4

5

4.4.1. Manual provisioning with Cinder

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform.

Prerequisites

OpenShift Container Platform configured for Red Hat OpenStack Platform (RHOSP)

Cinder volume ID

4.4.1.1. Creating the persistent volume

You must define your persistent volume (PV) in an object definition before creating it in OpenShift
Container Platform:

Procedure

1. Save your object definition to a file.

cinder-persistentvolume.yaml

The name of the volume that is used by persistent volume claims or pods.

The amount of storage allocated to this volume.

Indicates cinder for Red Hat OpenStack Platform (RHOSP) Cinder volumes.

The file system that is created when the volume is mounted for the first time.

The Cinder volume to use.

IMPORTANT

Do not change the fstype parameter value after the volume is formatted and
provisioned. Changing this value can result in data loss and pod failure.

2. Create the object definition file you saved in the previous step.

apiVersion: "v1"
kind: "PersistentVolume"
metadata:
 name: "pv0001" 1
spec:
 capacity:
 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"
 cinder: 3
 fsType: "ext3" 4
 volumeID: "f37a03aa-6212-4c62-a805-9ce139fab180" 5

$ oc create -f cinder-persistentvolume.yaml

OpenShift Container Platform 4.13 Storage

44

4.4.1.2. Persistent volume formatting

You can use unformatted Cinder volumes as PVs because OpenShift Container Platform formats them
before the first use.

Before OpenShift Container Platform mounts the volume and passes it to a container, the system
checks that it contains a file system as specified by the fsType parameter in the PV definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

4.4.1.3. Cinder volume security

If you use Cinder PVs in your application, configure security for their deployment configurations.

Prerequisites

An SCC must be created that uses the appropriate fsGroup strategy.

Procedure

1. Create a service account and add it to the SCC:

2. In your application’s deployment configuration, provide the service account name and
securityContext:

$ oc create serviceaccount <service_account>

$ oc adm policy add-scc-to-user <new_scc> -z <service_account> -n <project>

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend-1
spec:
 replicas: 1 1
 selector: 2
 name: frontend
 template: 3
 metadata:
 labels: 4
 name: frontend 5
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always
 serviceAccountName: <service_account> 6
 securityContext:
 fsGroup: 7777 7

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

45

1

2

3

4

5

6

7

The number of copies of the pod to run.

The label selector of the pod to run.

A template for the pod that the controller creates.

The labels on the pod. They must include labels from the label selector.

The maximum name length after expanding any parameters is 63 characters.

Specifies the service account you created.

Specifies an fsGroup for the pods.

4.5. PERSISTENT STORAGE USING FIBRE CHANNEL

OpenShift Container Platform supports Fibre Channel, allowing you to provision your OpenShift
Container Platform cluster with persistent storage using Fibre channel volumes. Some familiarity with
Kubernetes and Fibre Channel is assumed.

IMPORTANT

Persistent storage using Fibre Channel is not supported on ARM architecture based
infrastructures.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. Persistent volumes are not bound to a single project or namespace; they can
be shared across the OpenShift Container Platform cluster. Persistent volume claims are specific to a
project or namespace and can be requested by users.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional resources

Using Fibre Channel devices

4.5.1. Provisioning

To provision Fibre Channel volumes using the PersistentVolume API the following must be available:

The targetWWNs (array of Fibre Channel target’s World Wide Names).

A valid LUN number.

The filesystem type.

A persistent volume and a LUN have a one-to-one mapping between them.

Prerequisites

OpenShift Container Platform 4.13 Storage

46

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/using-fibre-channel-devices_managing-storage-devices

1

2 3

Fibre Channel LUNs must exist in the underlying infrastructure.

PersistentVolume object definition

World wide identifiers (WWIDs). Either FC wwids or a combination of FC targetWWNs and lun
must be set, but not both simultaneously. The FC WWID identifier is recommended over the WWNs
target because it is guaranteed to be unique for every storage device, and independent of the path
that is used to access the device. The WWID identifier can be obtained by issuing a SCSI Inquiry to
retrieve the Device Identification Vital Product Data (page 0x83) or Unit Serial Number (page
0x80). FC WWIDs are identified as /dev/disk/by-id/ to reference the data on the disk, even if the
path to the device changes and even when accessing the device from different systems.

Fibre Channel WWNs are identified as /dev/disk/by-path/pci-<IDENTIFIER>-fc-0x<WWN>-lun-
<LUN#>, but you do not need to provide any part of the path leading up to the WWN, including the
0x, and anything after, including the - (hyphen).

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

4.5.1.1. Enforcing disk quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is mapped to a single
persistent volume, and unique names must be used for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount, such
as 10Gi, and be matched with a corresponding volume of equal or greater capacity.

4.5.1.2. Fibre Channel volume security

Users request storage with a persistent volume claim. This claim only lives in the user’s namespace, and
can only be referenced by a pod within that same namespace. Any attempt to access a persistent
volume across a namespace causes the pod to fail.

Each Fibre Channel LUN must be accessible by all nodes in the cluster.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 fc:
 wwids: [3600508b400105e210000900000490000] 1
 targetWWNs: ['500a0981891b8dc5', '500a0981991b8dc5'] 2
 lun: 2 3
 fsType: ext4

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

47

4.6. PERSISTENT STORAGE USING FLEXVOLUME

IMPORTANT

FlexVolume is a deprecated feature. Deprecated functionality is still included in
OpenShift Container Platform and continues to be supported; however, it will be
removed in a future release of this product and is not recommended for new
deployments.

Out-of-tree Container Storage Interface (CSI) driver is the recommended way to write
volume drivers in OpenShift Container Platform. Maintainers of FlexVolume drivers
should implement a CSI driver and move users of FlexVolume to CSI. Users of
FlexVolume should move their workloads to CSI driver.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

OpenShift Container Platform supports FlexVolume, an out-of-tree plugin that uses an executable
model to interface with drivers.

To use storage from a back-end that does not have a built-in plugin, you can extend OpenShift
Container Platform through FlexVolume drivers and provide persistent storage to applications.

Pods interact with FlexVolume drivers through the flexvolume in-tree plugin.

Additional resources

Expanding persistent volumes

4.6.1. About FlexVolume drivers

A FlexVolume driver is an executable file that resides in a well-defined directory on all nodes in the
cluster. OpenShift Container Platform calls the FlexVolume driver whenever it needs to mount or
unmount a volume represented by a PersistentVolume object with flexVolume as the source.

IMPORTANT

Attach and detach operations are not supported in OpenShift Container Platform for
FlexVolume.

4.6.2. FlexVolume driver example

The first command-line argument of the FlexVolume driver is always an operation name. Other
parameters are specific to each operation. Most of the operations take a JavaScript Object Notation
(JSON) string as a parameter. This parameter is a complete JSON string, and not the name of a file with
the JSON data.

The FlexVolume driver contains:

All flexVolume.options.

Some options from flexVolume prefixed by kubernetes.io/, such as fsType and readwrite.

OpenShift Container Platform 4.13 Storage

48

1

2

3

4

The content of the referenced secret, if specified, prefixed by kubernetes.io/secret/.

FlexVolume driver JSON input example

All options from flexVolume.options.

The value of flexVolume.fsType.

ro/rw based on flexVolume.readOnly.

All keys and their values from the secret referenced by flexVolume.secretRef.

OpenShift Container Platform expects JSON data on standard output of the driver. When not specified,
the output describes the result of the operation.

FlexVolume driver default output example

Exit code of the driver should be 0 for success and 1 for error.

Operations should be idempotent, which means that the mounting of an already mounted volume should
result in a successful operation.

4.6.3. Installing FlexVolume drivers

FlexVolume drivers that are used to extend OpenShift Container Platform are executed only on the
node. To implement FlexVolumes, a list of operations to call and the installation path are all that is
required.

Prerequisites

FlexVolume drivers must implement these operations:

init

Initializes the driver. It is called during initialization of all nodes.

Arguments: none

Executed on: node

{
 "fooServer": "192.168.0.1:1234", 1
 "fooVolumeName": "bar",
 "kubernetes.io/fsType": "ext4", 2
 "kubernetes.io/readwrite": "ro", 3
 "kubernetes.io/secret/<key name>": "<key value>", 4
 "kubernetes.io/secret/<another key name>": "<another key value>",
}

{
 "status": "<Success/Failure/Not supported>",
 "message": "<Reason for success/failure>"
}

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

49

Expected output: default JSON

mount

Mounts a volume to directory. This can include anything that is necessary to mount the
volume, including finding the device and then mounting the device.

Arguments: <mount-dir> <json>

Executed on: node

Expected output: default JSON

unmount

Unmounts a volume from a directory. This can include anything that is necessary to clean up
the volume after unmounting.

Arguments: <mount-dir>

Executed on: node

Expected output: default JSON

mountdevice

Mounts a volume’s device to a directory where individual pods can then bind mount.

This call-out does not pass "secrets" specified in the FlexVolume spec. If your driver requires secrets, do
not implement this call-out.

Arguments: <mount-dir> <json>

Executed on: node

Expected output: default JSON

unmountdevice

Unmounts a volume’s device from a directory.

Arguments: <mount-dir>

Executed on: node

Expected output: default JSON

All other operations should return JSON with {"status": "Not supported"} and exit code 1.

Procedure

To install the FlexVolume driver:

1. Ensure that the executable file exists on all nodes in the cluster.

2. Place the executable file at the volume plugin path: /etc/kubernetes/kubelet-
plugins/volume/exec/<vendor>~<driver>/<driver>.

For example, to install the FlexVolume driver for the storage foo, place the executable file at:

OpenShift Container Platform 4.13 Storage

50

1

2

3

4

5

6

7

For example, to install the FlexVolume driver for the storage foo, place the executable file at:
/etc/kubernetes/kubelet-plugins/volume/exec/openshift.com~foo/foo.

4.6.4. Consuming storage using FlexVolume drivers

Each PersistentVolume object in OpenShift Container Platform represents one storage asset in the
storage back-end, such as a volume.

Procedure

Use the PersistentVolume object to reference the installed storage.

Persistent volume object definition using FlexVolume drivers example

The name of the volume. This is how it is identified through persistent volume claims or from pods.
This name can be different from the name of the volume on back-end storage.

The amount of storage allocated to this volume.

The name of the driver. This field is mandatory.

The file system that is present on the volume. This field is optional.

The reference to a secret. Keys and values from this secret are provided to the FlexVolume driver
on invocation. This field is optional.

The read-only flag. This field is optional.

The additional options for the FlexVolume driver. In addition to the flags specified by the user in
the options field, the following flags are also passed to the executable:

"fsType":"<FS type>",
"readwrite":"<rw>",
"secret/key1":"<secret1>"
...
"secret/keyN":"<secretN>"

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001 1
spec:
 capacity:
 storage: 1Gi 2
 accessModes:
 - ReadWriteOnce
 flexVolume:
 driver: openshift.com/foo 3
 fsType: "ext4" 4
 secretRef: foo-secret 5
 readOnly: true 6
 options: 7
 fooServer: 192.168.0.1:1234
 fooVolumeName: bar

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

51

NOTE

Secrets are passed only to mount or unmount call-outs.

4.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK

OpenShift Container Platform supports GCE Persistent Disk volumes (gcePD). You can provision your
OpenShift Container Platform cluster with persistent storage using GCE. Some familiarity with
Kubernetes and GCE is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

GCE Persistent Disk volumes can be provisioned dynamically.

Persistent volumes are not bound to a single project or namespace; they can be shared across the
OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace
and can be requested by users.

IMPORTANT

OpenShift Container Platform 4.12 and later provides automatic migration for the GCE
Persist Disk in-tree volume plugin to its equivalent CSI driver.

CSI automatic migration should be seamless. Migration does not change how you use all
existing API objects, such as persistent volumes, persistent volume claims, and storage
classes.

For more information about migration, see CSI automatic migration .

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional resources

GCE Persistent Disk

4.7.1. Creating the GCE storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

4.7.2. Creating the persistent volume claim

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform.

Procedure

1. In the OpenShift Container Platform console, click Storage → Persistent Volume Claims.

OpenShift Container Platform 4.13 Storage

52

https://cloud.google.com/compute/docs/disks/

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

3. Define the desired options on the page that appears.

a. Select the previously-created storage class from the drop-down menu.

b. Enter a unique name for the storage claim.

c. Select the access mode. This selection determines the read and write access for the
storage claim.

d. Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

4.7.3. Volume format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that the
volume contains a file system as specified by the fsType parameter in the persistent volume definition.
If the device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This verification enables you to use unformatted GCE volumes as persistent volumes, because
OpenShift Container Platform formats them before the first use.

4.8. PERSISTENT STORAGE USING ISCSI

You can provision your OpenShift Container Platform cluster with persistent storage using iSCSI. Some
familiarity with Kubernetes and iSCSI is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

IMPORTANT

When you use iSCSI on Amazon Web Services, you must update the default security
policy to include TCP traffic between nodes on the iSCSI ports. By default, they are ports
860 and 3260.

IMPORTANT

Users must ensure that the iSCSI initiator is already configured on all OpenShift
Container Platform nodes by installing the iscsi-initiator-utils package and configuring
their initiator name in /etc/iscsi/initiatorname.iscsi. The iscsi-initiator-utils package is
already installed on deployments that use Red Hat Enterprise Linux CoreOS (RHCOS).

For more information, see Managing Storage Devices .

4.8.1. Provisioning

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

53

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_storage_devices/index#getting-started-with-iscsi_managing-storage-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/managing_storage_devices/index#configuring-an-iscsi-initiator_managing-storage-devices

Verify that the storage exists in the underlying infrastructure before mounting it as a volume in
OpenShift Container Platform. All that is required for the iSCSI is the iSCSI target portal, a valid iSCSI
Qualified Name (IQN), a valid LUN number, the filesystem type, and the PersistentVolume API.

PersistentVolume object definition

4.8.2. Enforcing disk quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is one persistent volume.
Kubernetes enforces unique names for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount (for
example, 10Gi) and be matched with a corresponding volume of equal or greater capacity.

4.8.3. iSCSI volume security

Users request storage with a PersistentVolumeClaim object. This claim only lives in the user’s
namespace and can only be referenced by a pod within that same namespace. Any attempt to access a
persistent volume claim across a namespace causes the pod to fail.

Each iSCSI LUN must be accessible by all nodes in the cluster.

4.8.3.1. Challenge Handshake Authentication Protocol (CHAP) configuration

Optionally, OpenShift Container Platform can use CHAP to authenticate itself to iSCSI targets:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.16.154.81:3260
 iqn: iqn.2014-12.example.server:storage.target00
 lun: 0
 fsType: 'ext4'

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.0.0.1:3260
 iqn: iqn.2016-04.test.com:storage.target00
 lun: 0

OpenShift Container Platform 4.13 Storage

54

1

2

3

1

Enable CHAP authentication of iSCSI discovery.

Enable CHAP authentication of iSCSI session.

Specify name of Secrets object with user name + password. This Secret object must be available in
all namespaces that can use the referenced volume.

4.8.4. iSCSI multipathing

For iSCSI-based storage, you can configure multiple paths by using the same IQN for more than one
target portal IP address. Multipathing ensures access to the persistent volume when one or more of the
components in a path fail.

To specify multi-paths in the pod specification, use the portals field. For example:

Add additional target portals using the portals field.

4.8.5. iSCSI custom initiator IQN

Configure the custom initiator iSCSI Qualified Name (IQN) if the iSCSI targets are restricted to certain
IQNs, but the nodes that the iSCSI PVs are attached to are not guaranteed to have these IQNs.

To specify a custom initiator IQN, use initiatorName field.

 fsType: ext4
 chapAuthDiscovery: true 1
 chapAuthSession: true 2
 secretRef:
 name: chap-secret 3

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.0.0.1:3260
 portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260'] 1
 iqn: iqn.2016-04.test.com:storage.target00
 lun: 0
 fsType: ext4
 readOnly: false

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi-pv
spec:

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

55

1 Specify the name of the initiator.

4.9. PERSISTENT STORAGE USING NFS

OpenShift Container Platform clusters can be provisioned with persistent storage using NFS. Persistent
volumes (PVs) and persistent volume claims (PVCs) provide a convenient method for sharing a volume
across a project. While the NFS-specific information contained in a PV definition could also be defined
directly in a Pod definition, doing so does not create the volume as a distinct cluster resource, making
the volume more susceptible to conflicts.

Additional resources

Mounting NFS shares

4.9.1. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. To provision NFS volumes, a list of NFS servers and export paths are all that is
required.

Procedure

1. Create an object definition for the PV:

The name of the volume. This is the PV identity in various oc <command> pod

 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.0.0.1:3260
 portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260']
 iqn: iqn.2016-04.test.com:storage.target00
 lun: 0
 initiatorName: iqn.2016-04.test.com:custom.iqn 1
 fsType: ext4
 readOnly: false

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001 1
spec:
 capacity:
 storage: 5Gi 2
 accessModes:
 - ReadWriteOnce 3
 nfs: 4
 path: /tmp 5
 server: 172.17.0.2 6
 persistentVolumeReclaimPolicy: Retain 7

OpenShift Container Platform 4.13 Storage

56

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_file_systems/mounting-nfs-shares_managing-file-systems

1

2

3

4

5

6

7

1

2

The name of the volume. This is the PV identity in various oc <command> pod
commands.

The amount of storage allocated to this volume.

Though this appears to be related to controlling access to the volume, it is actually used
similarly to labels and used to match a PVC to a PV. Currently, no access rules are enforced
based on the accessModes.

The volume type being used, in this case the nfs plugin.

The path that is exported by the NFS server.

The hostname or IP address of the NFS server.

The reclaim policy for the PV. This defines what happens to a volume when released.

NOTE

Each NFS volume must be mountable by all schedulable nodes in the cluster.

2. Verify that the PV was created:

Example output

3. Create a persistent volume claim that binds to the new PV:

The access modes do not enforce security, but rather act as labels to match a PV to a PVC.

This claim looks for PVs offering 5Gi or greater capacity.

4. Verify that the persistent volume claim was created:

$ oc get pv

NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
pv0001 <none> 5Gi RWO Available 31s

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: nfs-claim1
spec:
 accessModes:
 - ReadWriteOnce 1
 resources:
 requests:
 storage: 5Gi 2
 volumeName: pv0001
 storageClassName: ""

$ oc get pvc

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

57

Example output

4.9.2. Enforcing disk quotas

You can use disk partitions to enforce disk quotas and size constraints. Each partition can be its own
export. Each export is one PV. OpenShift Container Platform enforces unique names for PVs, but the
uniqueness of the NFS volume’s server and path is up to the administrator.

Enforcing quotas in this way allows the developer to request persistent storage by a specific amount,
such as 10Gi, and be matched with a corresponding volume of equal or greater capacity.

4.9.3. NFS volume security

This section covers NFS volume security, including matching permissions and SELinux considerations.
The user is expected to understand the basics of POSIX permissions, process UIDs, supplemental
groups, and SELinux.

Developers request NFS storage by referencing either a PVC by name or the NFS volume plugin directly
in the volumes section of their Pod definition.

The /etc/exports file on the NFS server contains the accessible NFS directories. The target NFS
directory has POSIX owner and group IDs. The OpenShift Container Platform NFS plugin mounts the
container’s NFS directory with the same POSIX ownership and permissions found on the exported NFS
directory. However, the container is not run with its effective UID equal to the owner of the NFS mount,
which is the desired behavior.

As an example, if the target NFS directory appears on the NFS server as:

Example output

Example output

Then the container must match SELinux labels, and either run with a UID of 65534, the nfsnobody
owner, or with 5555 in its supplemental groups to access the directory.

NOTE

The owner ID of 65534 is used as an example. Even though NFS’s root_squash maps
root, uid 0, to nfsnobody, uid 65534, NFS exports can have arbitrary owner IDs. Owner
65534 is not required for NFS exports.

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
nfs-claim1 Bound pv0001 5Gi RWO 2m

$ ls -lZ /opt/nfs -d

drwxrws---. nfsnobody 5555 unconfined_u:object_r:usr_t:s0 /opt/nfs

$ id nfsnobody

uid=65534(nfsnobody) gid=65534(nfsnobody) groups=65534(nfsnobody)

OpenShift Container Platform 4.13 Storage

58

1

2

4.9.3.1. Group IDs

The recommended way to handle NFS access, assuming it is not an option to change permissions on the
NFS export, is to use supplemental groups. Supplemental groups in OpenShift Container Platform are
used for shared storage, of which NFS is an example. In contrast, block storage such as iSCSI uses the
fsGroup SCC strategy and the fsGroup value in the securityContext of the pod.

NOTE

To gain access to persistent storage, it is generally preferable to use supplemental group
IDs versus user IDs.

Because the group ID on the example target NFS directory is 5555, the pod can define that group ID
using supplementalGroups under the securityContext definition of the pod. For example:

securityContext must be defined at the pod level, not under a specific container.

An array of GIDs defined for the pod. In this case, there is one element in the array. Additional GIDs
would be comma-separated.

Assuming there are no custom SCCs that might satisfy the pod requirements, the pod likely matches the
restricted SCC. This SCC has the supplementalGroups strategy set to RunAsAny, meaning that any
supplied group ID is accepted without range checking.

As a result, the above pod passes admissions and is launched. However, if group ID range checking is
desired, a custom SCC is the preferred solution. A custom SCC can be created such that minimum and
maximum group IDs are defined, group ID range checking is enforced, and a group ID of 5555 is allowed.

NOTE

To use a custom SCC, you must first add it to the appropriate service account. For
example, use the default service account in the given project unless another has been
specified on the Pod specification.

4.9.3.2. User IDs

User IDs can be defined in the container image or in the Pod definition.

NOTE

It is generally preferable to use supplemental group IDs to gain access to persistent
storage versus using user IDs.

In the example target NFS directory shown above, the container needs its UID set to 65534, ignoring
group IDs for the moment, so the following can be added to the Pod definition:

spec:
 containers:
 - name:
 ...
 securityContext: 1
 supplementalGroups: [5555] 2

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

59

1

2

Pods contain a securityContext definition specific to each container and a pod’s securityContext
which applies to all containers defined in the pod.

65534 is the nfsnobody user.

Assuming that the project is default and the SCC is restricted, the user ID of 65534 as requested by the
pod is not allowed. Therefore, the pod fails for the following reasons:

It requests 65534 as its user ID.

All SCCs available to the pod are examined to see which SCC allows a user ID of 65534. While all
policies of the SCCs are checked, the focus here is on user ID.

Because all available SCCs use MustRunAsRange for their runAsUser strategy, UID range
checking is required.

65534 is not included in the SCC or project’s user ID range.

It is generally considered a good practice not to modify the predefined SCCs. The preferred way to fix
this situation is to create a custom SCC A custom SCC can be created such that minimum and maximum
user IDs are defined, UID range checking is still enforced, and the UID of 65534 is allowed.

NOTE

To use a custom SCC, you must first add it to the appropriate service account. For
example, use the default service account in the given project unless another has been
specified on the Pod specification.

4.9.3.3. SELinux

Red Hat Enterprise Linux (RHEL) and Red Hat Enterprise Linux CoreOS (RHCOS) systems are
configured to use SELinux on remote NFS servers by default.

For non-RHEL and non-RHCOS systems, SELinux does not allow writing from a pod to a remote NFS
server. The NFS volume mounts correctly but it is read-only. You will need to enable the correct SELinux
permissions by using the following procedure.

Prerequisites

The container-selinux package must be installed. This package provides the virt_use_nfs
SELinux boolean.

Procedure

Enable the virt_use_nfs boolean using the following command. The -P option makes this
boolean persistent across reboots.

spec:
 containers: 1
 - name:
 ...
 securityContext:
 runAsUser: 65534 2

OpenShift Container Platform 4.13 Storage

60

4.9.3.4. Export settings

To enable arbitrary container users to read and write the volume, each exported volume on the NFS
server should conform to the following conditions:

Every export must be exported using the following format:

The firewall must be configured to allow traffic to the mount point.

For NFSv4, configure the default port 2049 (nfs).

NFSv4

For NFSv3, there are three ports to configure: 2049 (nfs), 20048 (mountd), and 111
(portmapper).

NFSv3

The NFS export and directory must be set up so that they are accessible by the target pods.
Either set the export to be owned by the container’s primary UID, or supply the pod group
access using supplementalGroups, as shown in the group IDs above.

4.9.4. Reclaiming resources

NFS implements the OpenShift Container Platform Recyclable plugin interface. Automatic processes
handle reclamation tasks based on policies set on each persistent volume.

By default, PVs are set to Retain.

Once claim to a PVC is deleted, and the PV is released, the PV object should not be reused. Instead, a
new PV should be created with the same basic volume details as the original.

For example, the administrator creates a PV named nfs1:

setsebool -P virt_use_nfs 1

/<example_fs> *(rw,root_squash)

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT

iptables -I INPUT 1 -p tcp --dport 20048 -j ACCEPT

iptables -I INPUT 1 -p tcp --dport 111 -j ACCEPT

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs1
spec:
 capacity:

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

61

The user creates PVC1, which binds to nfs1. The user then deletes PVC1, releasing claim to nfs1. This
results in nfs1 being Released. If the administrator wants to make the same NFS share available, they
should create a new PV with the same NFS server details, but a different PV name:

Deleting the original PV and re-creating it with the same name is discouraged. Attempting to manually
change the status of a PV from Released to Available causes errors and potential data loss.

4.9.5. Additional configuration and troubleshooting

Depending on what version of NFS is being used and how it is configured, there may be additional
configuration steps needed for proper export and security mapping. The following are some that may
apply:

NFSv4 mount incorrectly shows
all files with ownership of
nobody:nobody

Could be attributed to the ID mapping settings, found in
/etc/idmapd.conf on your NFS.

See this Red Hat Solution.

Disabling ID mapping on NFSv4
On the NFS server, run the following command:

4.10. RED HAT OPENSHIFT DATA FOUNDATION

Red Hat OpenShift Data Foundation is a provider of agnostic persistent storage for OpenShift
Container Platform supporting file, block, and object storage, either in-house or in hybrid clouds. As a
Red Hat storage solution, Red Hat OpenShift Data Foundation is completely integrated with OpenShift
Container Platform for deployment, management, and monitoring. For more information, see the Red
Hat OpenShift Data Foundation documentation.

 storage: 1Mi
 accessModes:
 - ReadWriteMany
 nfs:
 server: 192.168.1.1
 path: "/"

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs2
spec:
 capacity:
 storage: 1Mi
 accessModes:
 - ReadWriteMany
 nfs:
 server: 192.168.1.1
 path: "/"

echo 'Y' >
/sys/module/nfsd/parameters/nfs4_disable_idmapping

OpenShift Container Platform 4.13 Storage

62

https://access.redhat.com/solutions/33455
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation

IMPORTANT

OpenShift Data Foundation on top of Red Hat Hyperconverged Infrastructure (RHHI) for
Virtualization, which uses hyperconverged nodes that host virtual machines installed with
OpenShift Container Platform, is not a supported configuration. For more information
about supported platforms, see the Red Hat OpenShift Data Foundation Supportability
and Interoperability Guide.

4.11. PERSISTENT STORAGE USING VMWARE VSPHERE VOLUMES

OpenShift Container Platform allows use of VMware vSphere’s Virtual Machine Disk (VMDK) volumes.
You can provision your OpenShift Container Platform cluster with persistent storage using VMware
vSphere. Some familiarity with Kubernetes and VMware vSphere is assumed.

VMware vSphere volumes can be provisioned dynamically. OpenShift Container Platform creates the
disk in vSphere and attaches this disk to the correct image.

NOTE

OpenShift Container Platform provisions new volumes as independent persistent disks
that can freely attach and detach the volume on any node in the cluster. Consequently,
you cannot back up volumes that use snapshots, or restore volumes from snapshots. See
Snapshot Limitations for more information.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

Persistent volumes are not bound to a single project or namespace; they can be shared across the
OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace
and can be requested by users.

IMPORTANT

For vSphere:

For new installations of OpenShift Container Platform 4.13, or later, automatic
migration is enabled by default. Updating to OpenShift Container Platform 4.14
and later also provides automatic migration.
CSI automatic migration should be seamless. Migration does not change how you
use all existing API objects, such as persistent volumes, persistent volume claims,
and storage classes. For more information about migration, see CSI automatic
migration.

When updating from OpenShift Container Platform 4.12, or earlier, to 4.13,
automatic CSI migration for vSphere only occurs if you opt in. If you do not opt in,
OpenShift Container Platform defaults to using the in-tree (non-CSI) plugin to
provision vSphere storage. Carefully review the indicated consequences before
opting in to migration.

Additional resources

VMware vSphere

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

63

https://access.redhat.com/articles/4731161
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.vm_admin.doc/GUID-53F65726-A23B-4CF0-A7D5-48E584B88613.html
https://access.redhat.com/node/7011683
https://www.vmware.com/au/products/vsphere.html

4.11.1. Dynamically provisioning VMware vSphere volumes

Dynamically provisioning VMware vSphere volumes is the recommended method.

4.11.2. Prerequisites

An OpenShift Container Platform cluster installed on a VMware vSphere version that meets the
requirements for the components that you use. See Installing a cluster on vSphere for
information about vSphere version support.

You can use either of the following procedures to dynamically provision these volumes using the default
storage class.

4.11.2.1. Dynamically provisioning VMware vSphere volumes using the UI

OpenShift Container Platform installs a default storage class, named thin, that uses the thin disk format
for provisioning volumes.

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in
OpenShift Container Platform.

Procedure

1. In the OpenShift Container Platform console, click Storage → Persistent Volume Claims.

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

3. Define the required options on the resulting page.

a. Select the thin storage class.

b. Enter a unique name for the storage claim.

c. Select the access mode to determine the read and write access for the created storage
claim.

d. Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

4.11.2.2. Dynamically provisioning VMware vSphere volumes using the CLI

OpenShift Container Platform installs a default StorageClass, named thin, that uses the thin disk
format for provisioning volumes.

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in
OpenShift Container Platform.

Procedure (CLI)

1. You can define a VMware vSphere PersistentVolumeClaim by creating a file, pvc.yaml, with the

OpenShift Container Platform 4.13 Storage

64

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/installing_on_vsphere/#installing-a-cluster-on-vsphere-with-user-provisioned-infrastructure

1

2

3

1. You can define a VMware vSphere PersistentVolumeClaim by creating a file, pvc.yaml, with the
following contents:

A unique name that represents the persistent volume claim.

The access mode of the persistent volume claim. With ReadWriteOnce, the volume can be
mounted with read and write permissions by a single node.

The size of the persistent volume claim.

2. Enter the following command to create the PersistentVolumeClaim object from the file:

4.11.3. Statically provisioning VMware vSphere volumes

To statically provision VMware vSphere volumes you must create the virtual machine disks for reference
by the persistent volume framework.

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in
OpenShift Container Platform.

Procedure

1. Create the virtual machine disks. Virtual machine disks (VMDKs) must be created manually
before statically provisioning VMware vSphere volumes. Use either of the following methods:

Create using vmkfstools. Access ESX through Secure Shell (SSH) and then use following
command to create a VMDK volume:

Create using vmware-diskmanager:

2. Create a persistent volume that references the VMDKs. Create a file, pv1.yaml, with the
PersistentVolume object definition:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: pvc 1
spec:
 accessModes:
 - ReadWriteOnce 2
 resources:
 requests:
 storage: 1Gi 3

$ oc create -f pvc.yaml

$ vmkfstools -c <size> /vmfs/volumes/<datastore-name>/volumes/<disk-name>.vmdk

$ shell vmware-vdiskmanager -c -t 0 -s <size> -a lsilogic <disk-name>.vmdk

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

65

1

2

3

4

5

The name of the volume. This name is how it is identified by persistent volume claims or
pods.

The amount of storage allocated to this volume.

The volume type used, with vsphereVolume for vSphere volumes. The label is used to
mount a vSphere VMDK volume into pods. The contents of a volume are preserved when it
is unmounted. The volume type supports VMFS and VSAN datastore.

The existing VMDK volume to use. If you used vmkfstools, you must enclose the datastore
name in square brackets, [], in the volume definition, as shown previously.

The file system type to mount. For example, ext4, xfs, or other file systems.

IMPORTANT

Changing the value of the fsType parameter after the volume is formatted and
provisioned can result in data loss and pod failure.

3. Create the PersistentVolume object from the file:

4. Create a persistent volume claim that maps to the persistent volume you created in the previous
step. Create a file, pvc1.yaml, with the PersistentVolumeClaim object definition:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv1 1
spec:
 capacity:
 storage: 1Gi 2
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 vsphereVolume: 3
 volumePath: "[datastore1] volumes/myDisk" 4
 fsType: ext4 5

$ oc create -f pv1.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc1 1
spec:
 accessModes:
 - ReadWriteOnce 2
 resources:
 requests:
 storage: "1Gi" 3
 volumeName: pv1 4

OpenShift Container Platform 4.13 Storage

66

1

2

3

4

A unique name that represents the persistent volume claim.

The access mode of the persistent volume claim. With ReadWriteOnce, the volume can be
mounted with read and write permissions by a single node.

The size of the persistent volume claim.

The name of the existing persistent volume.

5. Create the PersistentVolumeClaim object from the file:

4.11.3.1. Formatting VMware vSphere volumes

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that the
volume contains a file system that is specified by the fsType parameter value in the PersistentVolume
(PV) definition. If the device is not formatted with the file system, all data from the device is erased, and
the device is automatically formatted with the specified file system.

Because OpenShift Container Platform formats them before the first use, you can use unformatted
vSphere volumes as PVs.

$ oc create -f pvc1.yaml

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

67

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

5.1. LOCAL STORAGE OVERVIEW

You can use any of the following solutions to provision local storage:

HostPath Provisioner (HPP)

Local Storage Operator (LSO)

Logical Volume Manager (LVM) Storage

WARNING

These solutions support provisioning only node-local storage. The workloads are
bound to the nodes that provide the storage. If the node becomes unavailable, the
workload also becomes unavailable. To maintain workload availability despite node
failures, you must ensure storage data replication through active or passive
replication mechanisms.

5.1.1. Overview of HostPath Provisioner functionality

You can perform the following actions using HostPath Provisioner (HPP):

Map the host filesystem paths to storage classes for provisioning local storage.

Statically create storage classes to configure filesystem paths on a node for storage
consumption.

Statically provision Persistent Volumes (PVs) based on the storage class.

Create workloads and PersistentVolumeClaims (PVCs) while being aware of the underlying
storage topology.

NOTE

HPP is available in upstream Kubernetes. However, it is not recommended to use HPP
from upstream Kubernetes.

5.1.2. Overview of Local Storage Operator functionality

You can perform the following actions using Local Storage Operator (LSO):

Assign the storage devices (disks or partitions) to the storage classes without modifying the
device configuration.

Statically provision PVs and storage classes by configuring the LocalVolume custom resource
(CR).

Create workloads and PVCs while being aware of the underlying storage topology.



OpenShift Container Platform 4.13 Storage

68

NOTE

LSO is developed and delivered by Red Hat.

5.1.3. Overview of LVM Storage functionality

You can perform the following actions using Logical Volume Manager (LVM) Storage:

Configure storage devices (disks or partitions) as lvm2 volume groups and expose the volume
groups as storage classes.

Create workloads and request storage by using PVCs without considering the node topology.

LVM Storage uses the TopoLVM CSI driver to dynamically allocate storage space to the nodes in the
topology and provision PVs.

NOTE

LVM Storage is developed and maintained by Red Hat. The CSI driver provided with LVM
Storage is the upstream project "topolvm".

5.2. PERSISTENT STORAGE USING LOCAL VOLUMES

OpenShift Container Platform can be provisioned with persistent storage by using local volumes. Local
persistent volumes allow you to access local storage devices, such as a disk or partition, by using the
standard persistent volume claim interface.

Local volumes can be used without manually scheduling pods to nodes because the system is aware of
the volume node constraints. However, local volumes are still subject to the availability of the underlying
node and are not suitable for all applications.

NOTE

Local volumes can only be used as a statically created persistent volume.

5.2.1. Installing the Local Storage Operator

The Local Storage Operator is not installed in OpenShift Container Platform by default. Use the
following procedure to install and configure this Operator to enable local volumes in your cluster.

Prerequisites

Access to the OpenShift Container Platform web console or command-line interface (CLI).

Procedure

1. Create the openshift-local-storage project:

2. Optional: Allow local storage creation on infrastructure nodes.
You might want to use the Local Storage Operator to create volumes on infrastructure nodes in
support of components such as logging and monitoring.

$ oc adm new-project openshift-local-storage

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

69

You must adjust the default node selector so that the Local Storage Operator includes the
infrastructure nodes, and not just worker nodes.

To block the Local Storage Operator from inheriting the cluster-wide default selector, enter the
following command:

3. Optional: Allow local storage to run on the management pool of CPUs in single-node
deployment.
Use the Local Storage Operator in single-node deployments and allow the use of CPUs that
belong to the management pool. Perform this step on single-node installations that use
management workload partitioning.

To allow Local Storage Operator to run on the management CPU pool, run following
commands:

From the UI

To install the Local Storage Operator from the web console, follow these steps:

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → OperatorHub.

3. Type Local Storage into the filter box to locate the Local Storage Operator.

4. Click Install.

5. On the Install Operator page, select A specific namespace on the cluster. Select openshift-
local-storage from the drop-down menu.

6. Adjust the values for Update Channel and Approval Strategy to the values that you want.

7. Click Install.

Once finished, the Local Storage Operator will be listed in the Installed Operators section of the web
console.

From the CLI

1. Install the Local Storage Operator from the CLI.

a. Create an object YAML file to define an Operator group and subscription for the Local
Storage Operator, such as openshift-local-storage.yaml:

Example openshift-local-storage.yaml

$ oc annotate namespace openshift-local-storage openshift.io/node-selector=''

$ oc annotate namespace openshift-local-storage
workload.openshift.io/allowed='management'

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: local-operator-group
 namespace: openshift-local-storage

OpenShift Container Platform 4.13 Storage

70

1 The user approval policy for an install plan.

2. Create the Local Storage Operator object by entering the following command:

At this point, the Operator Lifecycle Manager (OLM) is now aware of the Local Storage
Operator. A ClusterServiceVersion (CSV) for the Operator should appear in the target
namespace, and APIs provided by the Operator should be available for creation.

3. Verify local storage installation by checking that all pods and the Local Storage Operator have
been created:

a. Check that all the required pods have been created:

Example output

b. Check the ClusterServiceVersion (CSV) YAML manifest to see that the Local Storage
Operator is available in the openshift-local-storage project:

Example output

After all checks have passed, the Local Storage Operator is installed successfully.

5.2.2. Provisioning local volumes by using the Local Storage Operator

spec:
 targetNamespaces:
 - openshift-local-storage

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: local-storage-operator
 namespace: openshift-local-storage
spec:
 channel: stable
 installPlanApproval: Automatic 1
 name: local-storage-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc apply -f openshift-local-storage.yaml

$ oc -n openshift-local-storage get pods

NAME READY STATUS RESTARTS AGE
local-storage-operator-746bf599c9-vlt5t 1/1 Running 0 19m

$ oc get csvs -n openshift-local-storage

NAME DISPLAY VERSION REPLACES PHASE
local-storage-operator.4.2.26-202003230335 Local Storage 4.2.26-202003230335
Succeeded

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

71

1

2

Local volumes cannot be created by dynamic provisioning. Instead, persistent volumes can be created
by the Local Storage Operator. The local volume provisioner looks for any file system or block volume
devices at the paths specified in the defined resource.

Prerequisites

The Local Storage Operator is installed.

You have a local disk that meets the following conditions:

It is attached to a node.

It is not mounted.

It does not contain partitions.

Procedure

1. Create the local volume resource. This resource must define the nodes and paths to the local
volumes.

NOTE

Do not use different storage class names for the same device. Doing so will
create multiple persistent volumes (PVs).

Example: Filesystem

The namespace where the Local Storage Operator is installed.

Optional: A node selector containing a list of nodes where the local storage volumes are
attached. This example uses the node hostnames, obtained from oc get node. If a value is
not defined, then the Local Storage Operator will attempt to find matching disks on all

apiVersion: "local.storage.openshift.io/v1"
kind: "LocalVolume"
metadata:
 name: "local-disks"
 namespace: "openshift-local-storage" 1
spec:
 nodeSelector: 2
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-140-183
 - ip-10-0-158-139
 - ip-10-0-164-33
 storageClassDevices:
 - storageClassName: "local-sc" 3
 volumeMode: Filesystem 4
 fsType: xfs 5
 devicePaths: 6
 - /path/to/device 7

OpenShift Container Platform 4.13 Storage

72

3

4

5

6

7

not defined, then the Local Storage Operator will attempt to find matching disks on all
available nodes.

The name of the storage class to use when creating persistent volume objects. The Local
Storage Operator automatically creates the storage class if it does not exist. Be sure to use
a storage class that uniquely identifies this set of local volumes.

The volume mode, either Filesystem or Block, that defines the type of local volumes.

NOTE

A raw block volume (volumeMode: Block) is not formatted with a file
system. Use this mode only if any application running on the pod can use
raw block devices.

The file system that is created when the local volume is mounted for the first time.

The path containing a list of local storage devices to choose from.

Replace this value with your actual local disks filepath to the LocalVolume resource by-id,
such as /dev/disk/by-id/wwn. PVs are created for these local disks when the provisioner is
deployed successfully.

NOTE

If you are running OpenShift Container Platform with RHEL KVM, you must
assign a serial number to your VM disk. Otherwise, the VM disk can not be
identified after reboot. You can use the virsh edit <VM> command to add
the <serial>mydisk</serial> definition.

Example: Block

apiVersion: "local.storage.openshift.io/v1"
kind: "LocalVolume"
metadata:
 name: "local-disks"
 namespace: "openshift-local-storage" 1
spec:
 nodeSelector: 2
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-136-143
 - ip-10-0-140-255
 - ip-10-0-144-180
 storageClassDevices:
 - storageClassName: "local-sc" 3
 volumeMode: Block 4
 devicePaths: 5
 - /path/to/device 6

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

73

1

2

3

4

5

6

The namespace where the Local Storage Operator is installed.

Optional: A node selector containing a list of nodes where the local storage volumes are
attached. This example uses the node hostnames, obtained from oc get node. If a value is
not defined, then the Local Storage Operator will attempt to find matching disks on all
available nodes.

The name of the storage class to use when creating persistent volume objects.

The volume mode, either Filesystem or Block, that defines the type of local volumes.

The path containing a list of local storage devices to choose from.

Replace this value with your actual local disks filepath to the LocalVolume resource by-id,
such as dev/disk/by-id/wwn. PVs are created for these local disks when the provisioner is
deployed successfully.

NOTE

If you are running OpenShift Container Platform with RHEL KVM, you must
assign a serial number to your VM disk. Otherwise, the VM disk can not be
identified after reboot. You can use the virsh edit <VM> command to add the
<serial>mydisk</serial> definition.

2. Create the local volume resource in your OpenShift Container Platform cluster. Specify the file
you just created:

3. Verify that the provisioner was created and that the corresponding daemon sets were created:

Example output

$ oc create -f <local-volume>.yaml

$ oc get all -n openshift-local-storage

NAME READY STATUS RESTARTS AGE
pod/diskmaker-manager-9wzms 1/1 Running 0 5m43s
pod/diskmaker-manager-jgvjp 1/1 Running 0 5m43s
pod/diskmaker-manager-tbdsj 1/1 Running 0 5m43s
pod/local-storage-operator-7db4bd9f79-t6k87 1/1 Running 0 14m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
service/local-storage-operator-metrics ClusterIP 172.30.135.36 <none>
8383/TCP,8686/TCP 14m

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE
daemonset.apps/diskmaker-manager 3 3 3 3 3 <none>
5m43s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/local-storage-operator 1/1 1 1 14m

OpenShift Container Platform 4.13 Storage

74

Note the desired and current number of daemon set processes. A desired count of 0 indicates
that the label selectors were invalid.

4. Verify that the persistent volumes were created:

Example output

IMPORTANT

Editing the LocalVolume object does not change the fsType or volumeMode of existing
persistent volumes because doing so might result in a destructive operation.

5.2.3. Provisioning local volumes without the Local Storage Operator

Local volumes cannot be created by dynamic provisioning. Instead, persistent volumes can be created
by defining the persistent volume (PV) in an object definition. The local volume provisioner looks for any
file system or block volume devices at the paths specified in the defined resource.

IMPORTANT

Manual provisioning of PVs includes the risk of potential data leaks across PV reuse when
PVCs are deleted. The Local Storage Operator is recommended for automating the life
cycle of devices when provisioning local PVs.

Prerequisites

Local disks are attached to the OpenShift Container Platform nodes.

Procedure

1. Define the PV. Create a file, such as example-pv-filesystem.yaml or example-pv-block.yaml,
with the PersistentVolume object definition. This resource must define the nodes and paths to
the local volumes.

NOTE

Do not use different storage class names for the same device. Doing so will
create multiple PVs.

NAME DESIRED CURRENT READY AGE
replicaset.apps/local-storage-operator-7db4bd9f79 1 1 1 14m

$ oc get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
local-pv-1cec77cf 100Gi RWO Delete Available local-sc 88m
local-pv-2ef7cd2a 100Gi RWO Delete Available local-sc
82m
local-pv-3fa1c73 100Gi RWO Delete Available local-sc 48m

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

75

1

2

3

example-pv-filesystem.yaml

The volume mode, either Filesystem or Block, that defines the type of PVs.

The name of the storage class to use when creating PV resources. Use a storage class that
uniquely identifies this set of PVs.

The path containing a list of local storage devices to choose from, or a directory. You can
only specify a directory with Filesystem volumeMode.

NOTE

A raw block volume (volumeMode: block) is not formatted with a file system.
Use this mode only if any application running on the pod can use raw block
devices.

example-pv-block.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
 name: example-pv-filesystem
spec:
 capacity:
 storage: 100Gi
 volumeMode: Filesystem 1
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-sc 2
 local:
 path: /dev/xvdf 3
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - example-node

apiVersion: v1
kind: PersistentVolume
metadata:
 name: example-pv-block
spec:
 capacity:
 storage: 100Gi
 volumeMode: Block 1
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-sc 2

OpenShift Container Platform 4.13 Storage

76

1

2

3

The volume mode, either Filesystem or Block, that defines the type of PVs.

The name of the storage class to use when creating PV resources. Be sure to use a storage
class that uniquely identifies this set of PVs.

The path containing a list of local storage devices to choose from.

2. Create the PV resource in your OpenShift Container Platform cluster. Specify the file you just
created:

3. Verify that the local PV was created:

Example output

5.2.4. Creating the local volume persistent volume claim

Local volumes must be statically created as a persistent volume claim (PVC) to be accessed by the pod.

Prerequisites

Persistent volumes have been created using the local volume provisioner.

Procedure

1. Create the PVC using the corresponding storage class:

 local:
 path: /dev/xvdf 3
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - example-node

$ oc create -f <example-pv>.yaml

$ oc get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
example-pv-filesystem 100Gi RWO Delete Available local-sc
3m47s
example-pv1 1Gi RWO Delete Bound local-storage/pvc1 local-
sc 12h
example-pv2 1Gi RWO Delete Bound local-storage/pvc2 local-
sc 12h
example-pv3 1Gi RWO Delete Bound local-storage/pvc3 local-
sc 12h

kind: PersistentVolumeClaim

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

77

1

2

3

4

Name of the PVC.

The type of the PVC. Defaults to Filesystem.

The amount of storage available to the PVC.

Name of the storage class required by the claim.

2. Create the PVC in the OpenShift Container Platform cluster, specifying the file you just
created:

5.2.5. Attach the local claim

After a local volume has been mapped to a persistent volume claim it can be specified inside of a
resource.

Prerequisites

A persistent volume claim exists in the same namespace.

Procedure

1. Include the defined claim in the resource spec. The following example declares the persistent
volume claim inside a pod:

apiVersion: v1
metadata:
 name: local-pvc-name 1
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Filesystem 2
 resources:
 requests:
 storage: 100Gi 3
 storageClassName: local-sc 4

$ oc create -f <local-pvc>.yaml

apiVersion: v1
kind: Pod
spec:
...
 containers:
 volumeMounts:
 - name: local-disks 1
 mountPath: /data 2
 volumes:
 - name: local-disks
 persistentVolumeClaim:
 claimName: local-pvc-name 3
...

OpenShift Container Platform 4.13 Storage

78

1

2

3

The name of the volume to mount.

The path inside the pod where the volume is mounted. Do not mount to the container root,
/, or any path that is the same in the host and the container. This can corrupt your host
system if the container is sufficiently privileged, such as the host /dev/pts files. It is safe to
mount the host by using /host.

The name of the existing persistent volume claim to use.

2. Create the resource in the OpenShift Container Platform cluster, specifying the file you just
created:

5.2.6. Automating discovery and provisioning for local storage devices

The Local Storage Operator automates local storage discovery and provisioning. With this feature, you
can simplify installation when dynamic provisioning is not available during deployment, such as with bare
metal, VMware, or AWS store instances with attached devices.

IMPORTANT

Automatic discovery and provisioning is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

IMPORTANT

Automatic discovery and provisioning is fully supported when used to deploy Red Hat
OpenShift Data Foundation on-premise or with platform-agnostic deployment.

Use the following procedure to automatically discover local devices, and to automatically provision local
volumes for selected devices.

WARNING

Use the LocalVolumeSet object with caution. When you automatically provision
persistent volumes (PVs) from local disks, the local PVs might claim all devices that
match. If you are using a LocalVolumeSet object, make sure the Local Storage
Operator is the only entity managing local devices on the node. Creating multiple
instances of a LocalVolumeSet that target a node more than once is not
supported.

$ oc create -f <local-pod>.yaml



CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

79

https://access.redhat.com/support/offerings/techpreview/

Prerequisites

You have cluster administrator permissions.

You have installed the Local Storage Operator.

You have attached local disks to OpenShift Container Platform nodes.

You have access to the OpenShift Container Platform web console and the oc command-line
interface (CLI).

Procedure

1. To enable automatic discovery of local devices from the web console:

a. Click Operators → Installed Operators.

b. In the openshift-local-storage namespace, click Local Storage.

c. Click the Local Volume Discovery tab.

d. Click Create Local Volume Discovery and then select either Form view or YAML view.

e. Configure the LocalVolumeDiscovery object parameters.

f. Click Create.
The Local Storage Operator creates a local volume discovery instance named auto-
discover-devices.

2. To display a continuous list of available devices on a node:

a. Log in to the OpenShift Container Platform web console.

b. Navigate to Compute → Nodes.

c. Click the node name that you want to open. The "Node Details" page is displayed.

d. Select the Disks tab to display the list of the selected devices.
The device list updates continuously as local disks are added or removed. You can filter the
devices by name, status, type, model, capacity, and mode.

3. To automatically provision local volumes for the discovered devices from the web console:

a. Navigate to Operators → Installed Operators and select Local Storage from the list of
Operators.

b. Select Local Volume Set → Create Local Volume Set.

c. Enter a volume set name and a storage class name.

d. Choose All nodes or Select nodes to apply filters accordingly.

NOTE

Only worker nodes are available, regardless of whether you filter using All
nodes or Select nodes.

e. Select the disk type, mode, size, and limit you want to apply to the local volume set, and click

OpenShift Container Platform 4.13 Storage

80

1

2

e. Select the disk type, mode, size, and limit you want to apply to the local volume set, and click
Create.
A message displays after several minutes, indicating that the "Operator reconciled
successfully."

4. Alternatively, to provision local volumes for the discovered devices from the CLI:

a. Create an object YAML file to define the local volume set, such as local-volume-set.yaml,
as shown in the following example:

Determines the storage class that is created for persistent volumes that are
provisioned from discovered devices. The Local Storage Operator automatically
creates the storage class if it does not exist. Be sure to use a storage class that
uniquely identifies this set of local volumes.

When using the local volume set feature, the Local Storage Operator does not support
the use of logical volume management (LVM) devices.

b. Create the local volume set object:

c. Verify that the local persistent volumes were dynamically provisioned based on the storage

apiVersion: local.storage.openshift.io/v1alpha1
kind: LocalVolumeSet
metadata:
 name: example-autodetect
spec:
 nodeSelector:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - worker-0
 - worker-1
 storageClassName: local-sc 1
 volumeMode: Filesystem
 fsType: ext4
 maxDeviceCount: 10
 deviceInclusionSpec:
 deviceTypes: 2
 - disk
 - part
 deviceMechanicalProperties:
 - NonRotational
 minSize: 10G
 maxSize: 100G
 models:
 - SAMSUNG
 - Crucial_CT525MX3
 vendors:
 - ATA
 - ST2000LM

$ oc apply -f local-volume-set.yaml

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

81

c. Verify that the local persistent volumes were dynamically provisioned based on the storage
class:

Example output

NOTE

Results are deleted after they are removed from the node. Symlinks must be manually
removed.

5.2.7. Using tolerations with Local Storage Operator pods

Taints can be applied to nodes to prevent them from running general workloads. To allow the Local
Storage Operator to use tainted nodes, you must add tolerations to the Pod or DaemonSet definition.
This allows the created resources to run on these tainted nodes.

You apply tolerations to the Local Storage Operator pod through the LocalVolume resource and apply
taints to a node through the node specification. A taint on a node instructs the node to repel all pods
that do not tolerate the taint. Using a specific taint that is not on other pods ensures that the Local
Storage Operator pod can also run on that node.

IMPORTANT

Taints and tolerations consist of a key, value, and effect. As an argument, it is expressed
as key=value:effect. An operator allows you to leave one of these parameters empty.

Prerequisites

The Local Storage Operator is installed.

Local disks are attached to OpenShift Container Platform nodes with a taint.

Tainted nodes are expected to provision local storage.

Procedure

To configure local volumes for scheduling on tainted nodes:

1. Modify the YAML file that defines the Pod and add the LocalVolume spec, as shown in the
following example:

$ oc get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
local-pv-1cec77cf 100Gi RWO Delete Available local-sc
88m
local-pv-2ef7cd2a 100Gi RWO Delete Available local-sc
82m
local-pv-3fa1c73 100Gi RWO Delete Available local-sc
48m

 apiVersion: "local.storage.openshift.io/v1"
 kind: "LocalVolume"

OpenShift Container Platform 4.13 Storage

82

1

2

3

4

5

Specify the key that you added to the node.

Specify the Equal operator to require the key/value parameters to match. If operator is
Exists, the system checks that the key exists and ignores the value. If operator is Equal,
then the key and value must match.

Specify the value local of the tainted node.

The volume mode, either Filesystem or Block, defining the type of the local volumes.

The path containing a list of local storage devices to choose from.

2. Optional: To create local persistent volumes on only tainted nodes, modify the YAML file and
add the LocalVolume spec, as shown in the following example:

The defined tolerations will be passed to the resulting daemon sets, allowing the diskmaker and
provisioner pods to be created for nodes that contain the specified taints.

5.2.8. Local Storage Operator Metrics

OpenShift Container Platform provides the following metrics for the Local Storage Operator:

lso_discovery_disk_count: total number of discovered devices on each node

lso_lvset_provisioned_PV_count: total number of PVs created by LocalVolumeSet objects

lso_lvset_unmatched_disk_count: total number of disks that Local Storage Operator did not
select for provisioning because of mismatching criteria

lso_lvset_orphaned_symlink_count: number of devices with PVs that no longer match
LocalVolumeSet object criteria

lso_lv_orphaned_symlink_count: number of devices with PVs that no longer match
LocalVolume object criteria

 metadata:
 name: "local-disks"
 namespace: "openshift-local-storage"
 spec:
 tolerations:
 - key: localstorage 1
 operator: Equal 2
 value: "localstorage" 3
 storageClassDevices:
 - storageClassName: "local-sc"
 volumeMode: Block 4
 devicePaths: 5
 - /dev/xvdg

spec:
 tolerations:
 - key: node-role.kubernetes.io/master
 operator: Exists

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

83

lso_lv_provisioned_PV_count: total number of provisioned PVs for LocalVolume

To use these metrics, enable them by doing one of the following:

When installing the Local Storage Operator from OperatorHub in the web console, select the
Enable Operator recommended cluster monitoring on this Namespace checkbox.

Manually add the openshift.io/cluster-monitoring=true label to the Operator namespace by
running the following command:

5.2.9. Deleting the Local Storage Operator resources

5.2.9.1. Removing a local volume or local volume set

Occasionally, local volumes and local volume sets must be deleted. While removing the entry in the
resource and deleting the persistent volume is typically enough, if you want to reuse the same device
path or have it managed by a different storage class, then additional steps are needed.

NOTE

The following procedure outlines an example for removing a local volume. The same
procedure can also be used to remove symlinks for a local volume set custom resource.

Prerequisites

The persistent volume must be in a Released or Available state.

WARNING

Deleting a persistent volume that is still in use can result in data loss or
corruption.

Procedure

1. Edit the previously created local volume to remove any unwanted disks.

a. Edit the cluster resource:

b. Navigate to the lines under devicePaths, and delete any representing unwanted disks.

2. Delete any persistent volumes created.

$ oc label ns/openshift-local-storage openshift.io/cluster-monitoring=true



$ oc edit localvolume <local_volume_name> -n openshift-local-storage

$ oc delete pv <pv_name>

OpenShift Container Platform 4.13 Storage

84

1

3. Delete directory and included symlinks on the node.

WARNING

The following step involves accessing a node as the root user. Modifying the
state of the node beyond the steps in this procedure could result in cluster
instability.

The name of the storage class used to create the local volumes.

5.2.9.2. Uninstalling the Local Storage Operator

To uninstall the Local Storage Operator, you must remove the Operator and all created resources in the
openshift-local-storage project.

WARNING

Uninstalling the Local Storage Operator while local storage PVs are still in use is not
recommended. While the PVs will remain after the Operator’s removal, there might
be indeterminate behavior if the Operator is uninstalled and reinstalled without
removing the PVs and local storage resources.

Prerequisites

Access to the OpenShift Container Platform web console.

Procedure

1. Delete any local volume resources installed in the project, such as localvolume,
localvolumeset, and localvolumediscovery by running the following commands:

2. Uninstall the Local Storage Operator from the web console.

a. Log in to the OpenShift Container Platform web console.



$ oc debug node/<node_name> -- chroot /host rm -rf /mnt/local-storage/<sc_name> 1



$ oc delete localvolume --all --all-namespaces

$ oc delete localvolumeset --all --all-namespaces

$ oc delete localvolumediscovery --all --all-namespaces

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

85

b. Navigate to Operators → Installed Operators.

c. Type Local Storage into the filter box to locate the Local Storage Operator.

d. Click the Options menu at the end of the Local Storage Operator.

e. Click Uninstall Operator.

f. Click Remove in the window that appears.

3. The PVs created by the Local Storage Operator will remain in the cluster until deleted. After
these volumes are no longer in use, delete them by running the following command:

4. Delete the openshift-local-storage project by running the following command:

5.3. PERSISTENT STORAGE USING HOSTPATH

A hostPath volume in an OpenShift Container Platform cluster mounts a file or directory from the host
node’s filesystem into your pod. Most pods will not need a hostPath volume, but it does offer a quick
option for testing should an application require it.

IMPORTANT

The cluster administrator must configure pods to run as privileged. This grants access to
pods in the same node.

5.3.1. Overview

OpenShift Container Platform supports hostPath mounting for development and testing on a single-
node cluster.

In a production cluster, you would not use hostPath. Instead, a cluster administrator would provision a
network resource, such as a GCE Persistent Disk volume, an NFS share, or an Amazon EBS volume.
Network resources support the use of storage classes to set up dynamic provisioning.

A hostPath volume must be provisioned statically.

IMPORTANT

$ oc delete pv <pv-name>

$ oc delete project openshift-local-storage

OpenShift Container Platform 4.13 Storage

86

1

2

IMPORTANT

Do not mount to the container root, /, or any path that is the same in the host and the
container. This can corrupt your host system if the container is sufficiently privileged. It is
safe to mount the host by using /host. The following example shows the / directory from
the host being mounted into the container at /host.

5.3.2. Statically provisioning hostPath volumes

A pod that uses a hostPath volume must be referenced by manual (static) provisioning.

Procedure

1. Define the persistent volume (PV) by creating a pv.yaml file with the PersistentVolume object
definition:

The name of the volume. This name is how the volume is identified by persistent volume
(PV) claims or pods.

Used to bind persistent volume claim (PVC) requests to the PV.

apiVersion: v1
kind: Pod
metadata:
 name: test-host-mount
spec:
 containers:
 - image: registry.access.redhat.com/ubi9/ubi
 name: test-container
 command: ['sh', '-c', 'sleep 3600']
 volumeMounts:
 - mountPath: /host
 name: host-slash
 volumes:
 - name: host-slash
 hostPath:
 path: /
 type: ''

apiVersion: v1
kind: PersistentVolume
metadata:
 name: task-pv-volume 1
 labels:
 type: local
spec:
 storageClassName: manual 2
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteOnce 3
 persistentVolumeReclaimPolicy: Retain
 hostPath:
 path: "/mnt/data" 4

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

87

3

4

The volume can be mounted as read-write by a single node.

The configuration file specifies that the volume is at /mnt/data on the cluster’s node. To
avoid corrupting your host system, do not mount to the container root, /, or any path that is
the same in the host and the container. You can safely mount the host by using /host

2. Create the PV from the file:

3. Define the PVC by creating a pvc.yaml file with the PersistentVolumeClaim object definition:

4. Create the PVC from the file:

5.3.3. Mounting the hostPath share in a privileged pod

After the persistent volume claim has been created, it can be used inside by an application. The following
example demonstrates mounting this share inside of a pod.

Prerequisites

A persistent volume claim exists that is mapped to the underlying hostPath share.

Procedure

Create a privileged pod that mounts the existing persistent volume claim:

$ oc create -f pv.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: task-pvc-volume
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 storageClassName: manual

$ oc create -f pvc.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pod-name 1
spec:
 containers:
 ...
 securityContext:
 privileged: true 2
 volumeMounts:
 - mountPath: /data 3

OpenShift Container Platform 4.13 Storage

88

1

2

3

4

The name of the pod.

The pod must run as privileged to access the node’s storage.

The path to mount the host path share inside the privileged pod. Do not mount to the
container root, /, or any path that is the same in the host and the container. This can
corrupt your host system if the container is sufficiently privileged, such as the host /dev/pts
files. It is safe to mount the host by using /host.

The name of the PersistentVolumeClaim object that has been previously created.

5.4. PERSISTENT STORAGE USING LOGICAL VOLUME MANAGER
STORAGE

Logical Volume Manager (LVM) Storage uses the TopoLVM CSI driver to dynamically provision local
storage on single-node OpenShift clusters.

LVM Storage creates thin-provisioned volumes using Logical Volume Manager and provides dynamic
provisioning of block storage on a limited resources single-node OpenShift cluster.

You can create volume groups, persistent volume claims (PVCs), volume snapshots, and volume clones
by using LVM Storage.

5.4.1. Logical Volume Manager Storage installation

You can install Logical Volume Manager (LVM) Storage on a single-node OpenShift cluster and
configure it to dynamically provision storage for your workloads.

You can deploy LVM Storage on single-node OpenShift clusters by using the OpenShift Container
Platform CLI (oc), OpenShift Container Platform web console, or Red Hat Advanced Cluster
Management (RHACM).

5.4.1.1. Prerequisites to install LVM Storage

The prerequisites to install LVM Storage are as follows:

Ensure that you have a minimum of 10 milliCPU and 100 MiB of RAM.

Ensure that every managed cluster has dedicated disks that are used to provision storage. LVM
Storage uses only those disks that are empty and do not contain file system signatures. To
ensure that the disks are empty and do not contain file system signatures, wipe the disks before
using them.

Before installing LVM Storage in a private CI environment where you can reuse the storage
devices that you configured in the previous LVM Storage installation, ensure that you have
wiped the disks that are not in use. If you do not wipe the disks before installing LVM Storage,

 name: hostpath-privileged
 ...
 securityContext: {}
 volumes:
 - name: hostpath-privileged
 persistentVolumeClaim:
 claimName: task-pvc-volume 4

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

89

you cannot reuse the disks without manual intervention.

NOTE

You cannot wipe the disks that are in use.

If you want to install LVM Storage by using Red Hat Advanced Cluster Management (RHACM),
ensure that you have installed RHACM on an OpenShift Container Platform cluster. See the
Installing LVM Storage using RHACM section.

Additional resources

Red Hat Advanced Cluster Management for Kubernetes: Installing while connected online

5.4.1.2. Installing LVM Storage with the CLI

As a cluster administrator, you can install Logical Volume Manager (LVM) Storage by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the LVM Storage Operator.

a. Save the following YAML in the lvms-namespace.yaml file:

b. Create the Namespace CR:

2. Create an Operator group for the LVM Storage Operator.

a. Save the following YAML in the lvms-operatorgroup.yaml file:

apiVersion: v1
kind: Namespace
metadata:
 labels:
 openshift.io/cluster-monitoring: "true"
 pod-security.kubernetes.io/enforce: privileged
 pod-security.kubernetes.io/audit: privileged
 pod-security.kubernetes.io/warn: privileged
 name: openshift-storage

$ oc create -f lvms-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-storage-operatorgroup
 namespace: openshift-storage

OpenShift Container Platform 4.13 Storage

90

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html/install/installing#installing-while-connected-online

b. Create the OperatorGroup CR:

3. Subscribe to the LVM Storage Operator.

a. Save the following YAML in the lvms-sub.yaml file:

b. Create the Subscription CR:

4. To verify that the Operator is installed, enter the following command:

Example output

5.4.1.3. Installing LVM Storage with the web console

You can install Logical Volume Manager (LVM) Storage by using the Red Hat OpenShift Container
Platform OperatorHub.

Prerequisites

You have access to the single-node OpenShift cluster.

You are using an account with the cluster-admin and Operator installation permissions.

Procedure

1. Log in to the OpenShift Container Platform Web Console.

2. Click Operators → OperatorHub.

spec:
 targetNamespaces:
 - openshift-storage

$ oc create -f lvms-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: lvms
 namespace: openshift-storage
spec:
 installPlanApproval: Automatic
 name: lvms-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc create -f lvms-sub.yaml

$ oc get csv -n openshift-storage -o custom-
columns=Name:.metadata.name,Phase:.status.phase

Name Phase
4.13.0-202301261535 Succeeded

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

91

3. Scroll or type LVM Storage into the Filter by keyword box to find LVM Storage.

4. Click Install.

5. Set the following options on the Install Operator page:

a. Update Channel as stable-4.13.

b. Installation Mode as A specific namespace on the cluster.

c. Installed Namespace as Operator recommended namespace openshift-storage. If the
openshift-storage namespace does not exist, it is created during the operator installation.

d. Approval Strategy as Automatic or Manual.
If you select Automatic updates, then the Operator Lifecycle Manager (OLM)
automatically upgrades the running instance of your Operator without any intervention.

If you select Manual updates, then the OLM creates an update request. As a cluster
administrator, you must then manually approve that update request to update the Operator
to a newer version.

6. Click Install.

Verification steps

Verify that LVM Storage shows a green tick, indicating successful installation.

5.4.1.4. Uninstalling LVM Storage by using the CLI

You can uninstall LVM Storage by using the OpenShift CLI (oc).

Prerequisites

You have logged in to oc as a user with cluster-admin permissions.

You deleted the persistent volume claims (PVCs), volume snapshots, and volume clones
provisioned by LVM Storage. You have also deleted the applications that are using these
resources.

You deleted the LVMCluster custom resource (CR).

Procedure

1. Get the currentCSV value for the LVM Storage Operator by running the following command:

Example output

2. Delete the subscription by running the following command:

$ oc get subscription.operators.coreos.com lvms-operator -n <namespace> -o yaml | grep
currentCSV

currentCSV: lvms-operator.v4.15.3

OpenShift Container Platform 4.13 Storage

92

1

Example output

3. Delete the CSV for the LVM Storage Operator in the target namespace by running the
following command:

Replace <currentCSV> with the currentCSV value for the LVM Storage Operator.

Example output

Verification

To verify that the LVM Storage Operator is uninstalled, run the following command:

If the LVM Storage Operator was successfully uninstalled, it does not appear in the output of
this command.

5.4.1.5. Uninstalling LVM Storage installed using the OpenShift Web Console

You can uninstall LVM Storage using the Red Hat OpenShift Container Platform Web Console.

Prerequisites

You deleted all the applications on the clusters that are using the storage provisioned by LVM
Storage.

You deleted the persistent volume claims (PVCs) and persistent volumes (PVs) provisioned
using LVM Storage.

You deleted all volume snapshots provisioned by LVM Storage.

You verified that no logical volume resources exist by using the oc get logicalvolume
command.

You have access to the single-node OpenShift cluster using an account with cluster-admin
permissions.

Procedure

1. From the Operators → Installed Operators page, scroll to LVM Storage or type LVM Storage
into the Filter by name to find and click on it.

2. Click on the LVMCluster tab.

$ oc delete subscription.operators.coreos.com lvms-operator -n <namespace>

subscription.operators.coreos.com "lvms-operator" deleted

$ oc delete clusterserviceversion <currentCSV> -n <namespace> 1

clusterserviceversion.operators.coreos.com "lvms-operator.v4.15.3" deleted

$ oc get csv -n <namespace>

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

93

3. On the right-hand side of the LVMCluster page, select Delete LVMCluster from the Actions
drop-down menu.

4. Click on the Details tab.

5. On the right-hand side of the Operator Details page, select Uninstall Operator from the
Actions drop-down menu.

6. Select Remove. LVM Storage stops running and is completely removed.

5.4.1.6. Installing LVM Storage in a disconnected environment

You can install LVM Storage on OpenShift Container Platform 4.13 in a disconnected environment. All
sections referenced in this procedure are linked in Additional resources .

Prerequisites

You read the About disconnected installation mirroring section.

You have access to the OpenShift Container Platform image repository.

You created a mirror registry.

Procedure

1. Follow the steps in the Creating the image set configuration procedure. To create an
ImageSetConfiguration resource for LVM Storage, you can use the following example YAML
file:

Example ImageSetConfiguration file for LVM Storage

kind: ImageSetConfiguration
apiVersion: mirror.openshift.io/v1alpha2
archiveSize: 4 1
storageConfig: 2
 registry:
 imageURL: example.com/mirror/oc-mirror-metadata 3
 skipTLS: false
mirror:
 platform:
 channels:
 - name: stable-4.13 4
 type: ocp
 graph: true 5
 operators:
 - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.13 6
 packages:
 - name: lvms-operator 7
 channels:
 - name: stable 8
 additionalImages:
 - name: registry.redhat.io/ubi9/ubi:latest 9
 helm: {}

OpenShift Container Platform 4.13 Storage

94

1

2

3

4

5

6

7

8

9

Add archiveSize to set the maximum size, in GiB, of each file within the image set.

Set the back-end location to save the image set metadata to. This location can be a
registry or local directory. It is required to specify storageConfig values, unless you are
using the Technology Preview OCI feature.

Set the registry URL for the storage backend.

Set the channel to retrieve the OpenShift Container Platform images from.

Add graph: true to generate the OpenShift Update Service (OSUS) graph image to allow
for an improved cluster update experience when using the web console. For more
information, see About the OpenShift Update Service .

Set the Operator catalog to retrieve the OpenShift Container Platform images from.

Specify only certain Operator packages to include in the image set. Remove this field to
retrieve all packages in the catalog.

Specify only certain channels of the Operator packages to include in the image set. You
must always include the default channel for the Operator package even if you do not use
the bundles in that channel. You can find the default channel by running the following
command: oc mirror list operators --catalog=<catalog_name> --package=
<package_name>.

Specify any additional images to include in image set.

2. Follow the procedure in the Mirroring an image set to a mirror registry section.

3. Follow the procedure in the Configuring image registry repository mirroring section.

Additional resources

Configuring image registry repository mirroring

Why use imagestreams

5.4.1.7. Installing LVM Storage using RHACM

LVM Storage is deployed on single-node OpenShift clusters using Red Hat Advanced Cluster
Management (RHACM). You create a Policy object on RHACM that deploys and configures the
Operator when it is applied to managed clusters which match the selector specified in the
PlacementRule resource. The policy is also applied to clusters that are imported later and satisfy the
placement rule.

Prerequisites

Access to the RHACM cluster using an account with cluster-admin and Operator installation
permissions.

Dedicated disks on each single-node OpenShift cluster to be used by LVM Storage.

The single-node OpenShift cluster needs to be managed by RHACM, either imported or
created.

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

95

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/images/#images-configuration-registry-mirror_image-configuration
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/images/#images-imagestream-use_image-configuration

Procedure

1. Log in to the RHACM CLI using your OpenShift Container Platform credentials.

2. Create a namespace in which you will create policies.

3. To create a policy, save the following YAML to a file with a name such as policy-lvms-
operator.yaml:

oc create ns lvms-policy-ns

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-install-lvms
spec:
 clusterConditions:
 - status: "True"
 type: ManagedClusterConditionAvailable
 clusterSelector: 1
 matchExpressions:
 - key: mykey
 operator: In
 values:
 - myvalue

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-install-lvms
placementRef:
 apiGroup: apps.open-cluster-management.io
 kind: PlacementRule
 name: placement-install-lvms
subjects:
- apiGroup: policy.open-cluster-management.io
 kind: Policy
 name: install-lvms

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 annotations:
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
 policy.open-cluster-management.io/standards: NIST SP 800-53
 name: install-lvms
spec:
 disabled: false
 remediationAction: enforce
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: install-lvms

OpenShift Container Platform 4.13 Storage

96

 spec:
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Namespace
 metadata:
 labels:
 openshift.io/cluster-monitoring: "true"
 pod-security.kubernetes.io/enforce: privileged
 pod-security.kubernetes.io/audit: privileged
 pod-security.kubernetes.io/warn: privileged
 name: openshift-storage
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1
 kind: OperatorGroup
 metadata:
 name: openshift-storage-operatorgroup
 namespace: openshift-storage
 spec:
 targetNamespaces:
 - openshift-storage
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: lvms
 namespace: openshift-storage
 spec:
 installPlanApproval: Automatic
 name: lvms-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 remediationAction: enforce
 severity: low
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: lvms
 spec:
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: lvm.topolvm.io/v1alpha1
 kind: LVMCluster
 metadata:
 name: my-lvmcluster
 namespace: openshift-storage
 spec:
 storage:
 deviceClasses:
 - name: vg1
 default: true

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

97

1

2

3

1

Replace the key and value in PlacementRule.spec.clusterSelector to match the labels
set on the single-node OpenShift clusters on which you want to install LVM Storage.

To control or restrict the volume group to your preferred disks, you can manually specify
the local paths of the disks in the deviceSelector section of the LVMCluster YAML.

To add a node filter, which is a subset of the additional worker nodes, specify the required
filter in the nodeSelector section. LVM Storage detects and uses the additional worker
nodes when the new nodes show up.

IMPORTANT

This nodeSelector node filter matching is not the same as the pod label
matching.

4. Create the policy in the namespace by running the following command:

The policy-lvms-operator.yaml is the name of the file to which the policy is saved.

This creates a Policy, a PlacementRule, and a PlacementBinding object in the lvms-policy-ns
namespace. The policy creates a Namespace, OperatorGroup, Subscription, and LVMCluster
resource on the clusters that match the placement rule. This deploys the Operator on the
single-node OpenShift clusters which match the selection criteria and configures it to set up the
required resources to provision storage. The Operator uses all the disks specified in the
LVMCluster CR. If no disks are specified, the Operator uses all the unused disks on the single-
node OpenShift node.

IMPORTANT

After a device is added to the LVMCluster, it cannot be removed.

Red Hat Advanced Cluster Management for Kubernetes: Installing while connected online

 deviceSelector: 2
 paths:
 - /dev/disk/by-path/pci-0000:87:00.0-nvme-1
 - /dev/disk/by-path/pci-0000:88:00.0-nvme-1
 thinPoolConfig:
 name: thin-pool-1
 sizePercent: 90
 overprovisionRatio: 10
 nodeSelector: 3
 nodeSelectorTerms:
 - matchExpressions:
 - key: app
 operator: In
 values:
 - test1
 remediationAction: enforce
 severity: low

oc create -f policy-lvms-operator.yaml -n lvms-policy-ns 1

OpenShift Container Platform 4.13 Storage

98

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/install/installing#installing-while-connected-online

Additional resources

Overview of chunk size

Limitations to configure the size of the devices used in LVM Storage

Adding worker nodes to single-node OpenShift clusters

5.4.1.8. Limitations to configure the size of the devices used in LVM Storage

The limitations to configure the size of the devices that you can use to provision storage using LVM
Storage are as follows:

The total storage size that you can provision is limited by the size of the underlying Logical
Volume Manager (LVM) thin pool and the over-provisioning factor.

The size of the logical volume depends on the size of the Physical Extent (PE) and the Logical
Extent (LE).

You can define the size of PE and LE during the physical and logical device creation.

The default PE and LE size is 4 MB.

If the size of the PE is increased, the maximum size of the LVM is determined by the kernel
limits and your disk space.

Table 5.1. Size limits for different architectures using the default PE and LE size

Architecture RHEL 6 RHEL 7 RHEL 8 RHEL 9

32-bit 16 TB - - -

64-bit 8 EB [1]

100 TB [2]

8 EB [1]

500 TB [2]

8 EB 8 EB

1. Theoretical size.

2. Tested size.

Additional resources

Configuring a RAID-enabled data volume

About disk encryption

Configuring disk encryption and mirroring

Additional resources

Red Hat Advanced Cluster Management for Kubernetes: Installing while connected online

5.4.2. Provisioning storage using LVM Storage

You can provision persistent volume claims (PVCs) using the storage class that is created during the

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

99

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html-single/configuring_and_managing_logical_volumes/index#overview-of-chunk-size_creating-and-managing-thin-provisioned-volumes
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#adding-worker-nodes-to-single-node-openshift-clusters
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/installation_configuration/#installation-special-config-raid_installing-customizing
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/installation_configuration/#installation-special-config-encrypt-disk_installing-customizing
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/installation_configuration/#installation-special-config-storage-procedure_installing-customizing
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/install/installing#installing-while-connected-online

You can provision persistent volume claims (PVCs) using the storage class that is created during the
Operator installation. You can provision block and file PVCs, however, the storage is allocated only when
a pod that uses the PVC is created.

NOTE

LVM Storage provisions PVCs in units of 1 GiB. The requested storage is rounded up to
the nearest GiB.

Procedure

1. Identify the StorageClass that is created when LVM Storage is deployed.
The StorageClass name is in the format, lvms-<device-class-name>. The device-class-name
is the name of the device class that you provided in the LVMCluster of the Policy YAML. For
example, if the deviceClass is called vg1, then the storageClass name is lvms-vg1.

The volumeBindingMode of the storage class is set to WaitForFirstConsumer.

2. To create a PVC where the application requires storage, save the following YAML to a file with a
name such as pvc.yaml.

Example YAML to create a PVC

3. Create the PVC by running the following command:

block pvc
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: lvm-block-1
 namespace: default
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 resources:
 requests:
 storage: 10Gi
 storageClassName: lvms-vg1

file pvc
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: lvm-file-1
 namespace: default
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Filesystem
 resources:
 requests:
 storage: 10Gi
 storageClassName: lvms-vg1

OpenShift Container Platform 4.13 Storage

100

The created PVCs remain in pending state until you deploy the pods that use them.

Additional resources

Adding worker nodes to single-node OpenShift clusters

Additional resources

Red Hat Advanced Cluster Management for Kubernetes: Installing while connected online

5.4.3. Expanding PVCs

To leverage the new storage after adding additional capacity, you can expand existing persistent volume
claims (PVCs) with LVM Storage.

Prerequisites

Dynamic provisioning is used.

The controlling StorageClass object has allowVolumeExpansion set to true.

Procedure

1. Modify the .spec.resources.requests.storage field in the desired PVC resource to the new
size by running the following command:

2. Watch the status.conditions field of the PVC to see if the resize has completed. OpenShift
Container Platform adds the Resizing condition to the PVC during expansion, which is removed
after the expansion completes.

Additional resources

Enabling volume expansion support

5.4.4. Upgrading LVM Storage on single-node OpenShift clusters

You can upgrade the Logical Volume Manager (LVM) Storage Operator to ensure compatibility with
your single-node OpenShift version.

Prerequisites

You have upgraded your single-node OpenShift cluster.

You have installed a previous version of the LVM Storage Operator.

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

oc create -f pvc.yaml -ns <application_namespace>

oc patch <pvc_name> -n <application_namespace> -p '{ "spec": { "resources": { "requests": {
"storage": "<desired_size>" }}}}'

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

101

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#adding-worker-nodes-to-single-node-openshift-clusters
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html/install/installing#installing-while-connected-online

1

Procedure

1. Update the Subscription resource for the LVM Storage Operator by running the following
command:

Replace <update-channel> with the version of the LVM Storage Operator that you want
to install, for example stable-4.13.

2. View the upgrade events to check that the installation is complete by running the following
command:

Example output

Verification

Verify the version of the LVM Storage Operator by running the following command:

Example output

5.4.5. Volume snapshots for single-node OpenShift

You can take volume snapshots of persistent volumes (PVs) that are provisioned by LVM Storage. You
can also create volume snapshots of the cloned volumes. Volume snapshots help you to do the following:

Back up your application data.

IMPORTANT

$ oc patch subscription lvms-operator -n openshift-storage --type merge --patch '{"spec":
{"channel":"<update-channel>"}}' 1

$ oc get events -n openshift-storage

...
8m13s Normal RequirementsUnknown clusterserviceversion/lvms-operator.v4.13
requirements not yet checked
8m11s Normal RequirementsNotMet clusterserviceversion/lvms-operator.v4.13 one
or more requirements couldn't be found
7m50s Normal AllRequirementsMet clusterserviceversion/lvms-operator.v4.13 all
requirements found, attempting install
7m50s Normal InstallSucceeded clusterserviceversion/lvms-operator.v4.13 waiting
for install components to report healthy
7m49s Normal InstallWaiting clusterserviceversion/lvms-operator.v4.13 installing:
waiting for deployment lvms-operator to become ready: deployment "lvms-operator" waiting
for 1 outdated replica(s) to be terminated
7m39s Normal InstallSucceeded clusterserviceversion/lvms-operator.v4.13 install
strategy completed with no errors
...

$ oc get subscription lvms-operator -n openshift-storage -o jsonpath='{.status.installedCSV}'

lvms-operator.v4.13

OpenShift Container Platform 4.13 Storage

102

IMPORTANT

Volume snapshots are located on the same devices as the original data. To use
the volume snapshots as backups, you need to move the snapshots to a secure
location. You can use OpenShift API for Data Protection backup and restore
solutions.

Revert to a state at which the volume snapshot was taken.

Additional resources

OADP features

5.4.5.1. Creating volume snapshots in single-node OpenShift

You can create volume snapshots based on the available capacity of the thin pool and the
overprovisioning limits. LVM Storage creates a VolumeSnapshotClass with the lvms-<deviceclass-
name> name.

Prerequisites

You ensured that the persistent volume claim (PVC) is in Bound state. This is required for a
consistent snapshot.

You stopped all the I/O to the PVC before taking the snapshot.

Procedure

1. Log in to the single-node OpenShift for which you need to run the oc command.

2. Save the following YAML to a file with a name such as lvms-vol-snapshot.yaml.

Example YAML to create a volume snapshot

3. Create the snapshot by running the following command in the same namespace as the PVC:

A read-only copy of the PVC is created as a volume snapshot.

5.4.5.2. Restoring volume snapshots in single-node OpenShift

When you restore a volume snapshot, a new persistent volume claim (PVC) is created. The restored PVC
is independent of the volume snapshot and the source PVC.

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
 name: lvm-block-1-snap
spec:
 volumeSnapshotClassName: lvms-vg1
 source:
 persistentVolumeClaimName: lvm-block-1

oc create -f lvms-vol-snapshot.yaml

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

103

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/backup_and_restore/#oadp-features_oadp-features-plugins

Prerequisites

The storage class must be the same as that of the source PVC.

The size of the requested PVC must be the same as that of the source volume of the snapshot.

IMPORTANT

A snapshot must be restored to a PVC of the same size as the source volume of
the snapshot. If a larger PVC is required, you can resize the PVC after the
snapshot is restored successfully.

Procedure

1. Identify the storage class name of the source PVC and volume snapshot name.

2. Save the following YAML to a file with a name such as lvms-vol-restore.yaml to restore the
snapshot.

Example YAML to restore a PVC.

3. Create the policy by running the following command in the same namespace as the snapshot:

5.4.5.3. Deleting volume snapshots in single-node OpenShift

You can delete volume snapshots resources and persistent volume claims (PVCs).

Procedure

1. Delete the volume snapshot resource by running the following command:

NOTE

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: lvm-block-1-restore
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 Resources:
 Requests:
 storage: 2Gi
 storageClassName: lvms-vg1
 dataSource:
 name: lvm-block-1-snap
 kind: VolumeSnapshot
 apiGroup: snapshot.storage.k8s.io

oc create -f lvms-vol-restore.yaml

oc delete volumesnapshot <volume_snapshot_name> -n <namespace>

OpenShift Container Platform 4.13 Storage

104

NOTE

When you delete a persistent volume claim (PVC), the snapshots of the PVC are
not deleted.

2. To delete the restored volume snapshot, delete the PVC that was created to restore the volume
snapshot by running the following command:

5.4.6. Volume cloning for single-node OpenShift

A clone is a duplicate of an existing storage volume that can be used like any standard volume.

5.4.6.1. Creating volume clones in single-node OpenShift

You create a clone of a volume to make a point-in-time copy of the data. A persistent volume claim
(PVC) cannot be cloned with a different size.

IMPORTANT

The cloned PVC has write access.

Prerequisites

You ensured that the PVC is in Bound state. This is required for a consistent snapshot.

You ensured that the StorageClass is the same as that of the source PVC.

Procedure

1. Identify the storage class of the source PVC.

2. To create a volume clone, save the following YAML to a file with a name such as lvms-vol-
clone.yaml:

Example YAML to clone a volume

oc delete pvc <pvc_name> -n <namespace>

apiVersion: v1
kind: PersistentVolumeClaim
Metadata:
 name: lvm-block-1-clone
Spec:
 storageClassName: lvms-vg1
 dataSource:
 name: lvm-block-1
 kind: PersistentVolumeClaim
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 Resources:
 Requests:
 storage: 2Gi

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

105

3. Create the policy in the same namespace as the source PVC by running the following command:

5.4.6.2. Deleting cloned volumes in single-node OpenShift

You can delete cloned volumes.

Procedure

To delete the cloned volume, delete the cloned PVC by running the following command:

5.4.7. Monitoring LVM Storage

To enable cluster monitoring, you must add the following label in the namespace where you have
installed LVM Storage:

IMPORTANT

For information about enabling cluster monitoring in RHACM, see Observability and
Adding custom metrics.

5.4.7.1. Metrics

You can monitor LVM Storage by viewing the metrics.

The following table describes the topolvm metrics:

Table 5.2. topolvm metrics

Alert Description

topolvm_thinpool_data_percent Indicates the percentage of data space used in the
LVM thinpool.

topolvm_thinpool_metadata_percent Indicates the percentage of metadata space used in
the LVM thinpool.

topolvm_thinpool_size_bytes Indicates the size of the LVM thin pool in bytes.

topolvm_volumegroup_available_bytes Indicates the available space in the LVM volume
group in bytes.

topolvm_volumegroup_size_bytes Indicates the size of the LVM volume group in bytes.

oc create -f lvms-vol-clone.yaml

oc delete pvc <clone_pvc_name> -n <namespace>

openshift.io/cluster-monitoring=true

OpenShift Container Platform 4.13 Storage

106

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html-single/observability/index
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html-single/observability/index#adding-custom-metrics

topolvm_thinpool_overprovisioned_available Indicates the available over-provisioned size of the
LVM thin pool in bytes.

Alert Description

NOTE

Metrics are updated every 10 minutes or when there is a change, such as a new logical
volume creation, in the thin pool.

5.4.7.2. Alerts

When the thin pool and volume group reach maximum storage capacity, further operations fail. This can
lead to data loss.

LVM Storage sends the following alerts when the usage of the thin pool and volume group exceeds a
certain value:

Table 5.3. LVM Storage alerts

Alert Description

VolumeGroupUsageAtThresholdNearFull This alert is triggered when both the volume group
and thin pool usage exceeds 75% on nodes. Data
deletion or volume group expansion is required.

VolumeGroupUsageAtThresholdCritical This alert is triggered when both the volume group
and thin pool usage exceeds 85% on nodes. In this
case, the volume group is critically full. Data deletion
or volume group expansion is required.

ThinPoolDataUsageAtThresholdNearFull This alert is triggered when the thin pool data uusage
in the volume group exceeds 75% on nodes. Data
deletion or thin pool expansion is required.

ThinPoolDataUsageAtThresholdCritical This alert is triggered when the thin pool data usage
in the volume group exceeds 85% on nodes. Data
deletion or thin pool expansion is required.

ThinPoolMetaDataUsageAtThresholdNearFul
l

This alert is triggered when the thin pool metadata
usage in the volume group exceeds 75% on nodes.
Data deletion or thin pool expansion is required.

ThinPoolMetaDataUsageAtThresholdCritical This alert is triggered when the thin pool metadata
usage in the volume group exceeds 85% on nodes.
Data deletion or thin pool expansion is required.

5.4.8. Downloading log files and diagnostic information using must-gather

When LVM Storage is unable to automatically resolve a problem, use the must-gather tool to collect the

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

107

When LVM Storage is unable to automatically resolve a problem, use the must-gather tool to collect the
log files and diagnostic information so that you or the Red Hat Support can review the problem and
determine a solution.

Procedure

Run the must-gather command from the client connected to the LVM Storage cluster:

Additional resources

About the must-gather tool

5.4.9. LVM Storage reference YAML file

The sample LVMCluster custom resource (CR) describes all the fields in the YAML file.

Example LVMCluster CR

$ oc adm must-gather --image=registry.redhat.io/lvms4/lvms-must-gather-rhel8:v4.13 --dest-
dir=<directory_name>

apiVersion: lvm.topolvm.io/v1alpha1
kind: LVMCluster
metadata:
 name: my-lvmcluster
spec:
 tolerations:
 - effect: NoSchedule
 key: xyz
 operator: Equal
 value: "true"
 storage:
 deviceClasses: 1
 - name: vg1 2
 default: true
 nodeSelector: 3
 nodeSelectorTerms: 4
 - matchExpressions:
 - key: mykey
 operator: In
 values:
 - ssd
 deviceSelector: 5
 paths:
 - /dev/disk/by-path/pci-0000:87:00.0-nvme-1
 - /dev/disk/by-path/pci-0000:88:00.0-nvme-1
 - /dev/disk/by-path/pci-0000:89:00.0-nvme-1
 thinPoolConfig: 6
 name: thin-pool-1 7
 sizePercent: 90 8
 overprovisionRatio: 10 9
status:
 deviceClassStatuses: 10

OpenShift Container Platform 4.13 Storage

108

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/support/#about-must-gather_gathering-cluster-data

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

The LVM volume groups to be created on the cluster. Currently, only a single deviceClass is
supported.

The name of the LVM volume group to be created on the nodes.

The nodes on which to create the LVM volume group. If the field is empty, all nodes are considered.

A list of node selector requirements.

A list of device paths which is used to create the LVM volume group. If this field is empty, all unused
disks on the node are used.

The LVM thin pool configuration.

The name of the thin pool to be created in the LVM volume group.

The percentage of remaining space in the LVM volume group that should be used for creating the
thin pool.

The factor by which additional storage can be provisioned compared to the available storage in the
thin pool.

The status of the deviceClass.

The status of the LVM volume group on each node.

The list of devices used to create the LVM volume group.

The node on which the deviceClass was created.

The status of the LVM volume group on the node.

This field is deprecated.

The status of the LVMCluster.

5.4.10. Troubleshooting persistent storage

While configuring persistent storage using Logical Volume Manager (LVM) Storage, you can encounter
several issues that require troubleshooting.

5.4.10.1. Investigating a PVC stuck in the Pending state

 - name: vg1
 nodeStatus: 11
 - devices: 12
 - /dev/nvme0n1
 - /dev/nvme1n1
 - /dev/nvme2n1
 node: my-node.example.com 13
 status: Ready 14
 ready: true 15
 state: Ready 16

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

109

1

A persistent volume claim (PVC) can get stuck in the Pending state for the following reasons:

Insufficient computing resources.

Network problems.

Mismatched storage class or node selector.

No available persistent volumes (PVs).

The node with the PV is in the Not Ready state.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the OpenShift CLI (oc) as a user with cluster-admin permissions.

Procedure

1. Retrieve the list of PVCs by running the following command:

Example output

2. Inspect the events associated with a PVC stuck in the Pending state by running the following
command:

Replace <pvc_name> with the name of the PVC. For example, lvms-vg1.

Example output

5.4.10.2. Recovering from a missing storage class

If you encounter the storage class not found error, check the LVMCluster custom resource (CR) and
ensure that all the Logical Volume Manager (LVM) Storage pods are in the Running state.

Prerequisites

You have installed the OpenShift CLI (oc).

$ oc get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
lvms-test Pending lvms-vg1 11s

$ oc describe pvc <pvc_name> 1

Type Reason Age From Message
---- ------ ---- ---- -------
Warning ProvisioningFailed 4s (x2 over 17s) persistentvolume-controller
storageclass.storage.k8s.io "lvms-vg1" not found

OpenShift Container Platform 4.13 Storage

110

You have logged in to the OpenShift CLI (oc) as a user with cluster-admin permissions.

Procedure

1. Verify that the LVMCluster CR is present by running the following command:

Example output

2. If the LVMCluster CR is not present, create an LVMCluster CR. For more information, see
"Creating a Logical Volume Manager cluster on a single-node OpenShift worker node".

3. In the openshift-storage namespace, check that all the LVM Storage pods are in the Running
state by running the following command:

Example output

The output of this command must contain a running instance of the following pods:

lvms-operator

vg-manager

topolvm-controller

topolvm-node
If the topolvm-node pod is stuck in the Init state, it is due to a failure to locate an available
disk for LVM Storage to use. To retrieve the necessary information to troubleshoot this
issue, review the logs of the vg-manager pod by running the following command:

5.4.10.3. Recovering from node failure

A persistent volume claim (PVC) can be stuck in the Pending state due to a node failure in the cluster.

To identify the failed node, you can examine the restart count of the topolvm-node pod. An increased
restart count indicates potential problems with the underlying node, which might require further
investigation and troubleshooting.

$ oc get lvmcluster -n openshift-storage

NAME AGE
my-lvmcluster 65m

$ oc get pods -n openshift-storage

NAME READY STATUS RESTARTS AGE
lvms-operator-7b9fb858cb-6nsml 3/3 Running 0 70m
topolvm-controller-5dd9cf78b5-7wwr2 5/5 Running 0 66m
topolvm-node-dr26h 4/4 Running 0 66m
vg-manager-r6zdv 1/1 Running 0 66m

$ oc logs -l app.kubernetes.io/component=vg-manager -n openshift-storage

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

111

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the OpenShift CLI (oc) as a user with cluster-admin permissions.

Procedure

Examine the restart count of the topolvm-node pod instances by running the following
command:

Example output

Next steps

If the PVC is stuck in the Pending state even after you have resolved any issues with the node,
you must perform a forced clean-up. For more information, see "Performing a forced clean-up".

Additional resources

Performing a forced clean-up

5.4.10.4. Recovering from disk failure

If you see a failure message while inspecting the events associated with the persistent volume claim
(PVC), there can be a problem with the underlying volume or disk.

Disk and volume provisioning issues result with a generic error message such as Failed to provision
volume with storage class <storage_class_name>. The generic error message is followed by a
specific volume failure error message.

The following table describes the volume failure error messages:

Table 5.4. Volume failure error messages

Error message Description

Failed to check volume existence Indicates a problem in verifying whether the volume
already exists. Volume verification failure can be
caused by network connectivity problems or other
failures.

$ oc get pods -n openshift-storage

NAME READY STATUS RESTARTS AGE
lvms-operator-7b9fb858cb-6nsml 3/3 Running 0 70m
topolvm-controller-5dd9cf78b5-7wwr2 5/5 Running 0 66m
topolvm-node-dr26h 4/4 Running 0 66m
topolvm-node-54as8 4/4 Running 0 66m
topolvm-node-78fft 4/4 Running 17 (8s ago) 66m
vg-manager-r6zdv 1/1 Running 0 66m
vg-manager-990ut 1/1 Running 0 66m
vg-manager-an118 1/1 Running 0 66m

OpenShift Container Platform 4.13 Storage

112

1

Failed to bind volume Failure to bind a volume can happen if the persistent
volume (PV) that is available does not match the
requirements of the PVC.

FailedMount or FailedAttachVolume This error indicates problems when trying to mount
the volume to a node. If the disk has failed, this error
can appear when a pod tries to use the PVC.

FailedUnMount This error indicates problems when trying to unmount
a volume from a node. If the disk has failed, this error
can appear when a pod tries to use the PVC.

Volume is already exclusively attached to
one node and cannot be attached to another

This error can appear with storage solutions that do
not support ReadWriteMany access modes.

Error message Description

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the OpenShift CLI (oc) as a user with cluster-admin permissions.

Procedure

1. Inspect the events associated with a PVC by running the following command:

Replace <pvc_name> with the name of the PVC.

2. Establish a direct connection to the host where the problem is occurring.

3. Resolve the disk issue.

Next steps

If the volume failure messages persist or recur even after you have resolved the issue with the
disk, you must perform a forced clean-up. For more information, see "Performing a forced
clean-up".

Additional resources

Performing a forced clean-up

5.4.10.5. Performing a forced clean-up

If the disk or node-related problems persist even after you have completed the troubleshooting
procedures, you must perform a forced clean-up. A forced clean-up is used to address persistent issues
and ensure the proper functioning of Logical Volume Manager (LVM) Storage.

$ oc describe pvc <pvc_name> 1

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

113

1

1

1

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the OpenShift CLI (oc) as a user with cluster-admin permissions.

You have deleted all the persistent volume claims (PVCs) that were created by using LVM
Storage.

You have stopped the pods that are using the PVCs that were created by using LVM Storage.

Procedure

1. Switch to the openshift-storage namespace by running the following command:

2. Check if the LogicalVolume custom resources (CRs) are present by running the following
command:

a. If the LogicalVolume CRs are present, delete them by running the following command:

Replace <name> with the name of the LogicalVolume CR.

b. After deleting the LogicalVolume CRs, remove their finalizers by running the following
command:

Replace <name> with the name of the LogicalVolume CR.

3. Check if the LVMVolumeGroup CRs are present by running the following command:

a. If the LVMVolumeGroup CRs are present, delete them by running the following command:

Replace <name> with the name of the LVMVolumeGroup CR.

b. After deleting the LVMVolumeGroup CRs, remove their finalizers by running the following
command:

$ oc project openshift-storage

$ oc get logicalvolume

$ oc delete logicalvolume <name> 1

$ oc patch logicalvolume <name> -p '{"metadata":{"finalizers":[]}}' --type=merge 1

$ oc get lvmvolumegroup

$ oc delete lvmvolumegroup <name> 1

$ oc patch lvmvolumegroup <name> -p '{"metadata":{"finalizers":[]}}' --type=merge 1

OpenShift Container Platform 4.13 Storage

114

1

1

Replace <name> with the name of the LVMVolumeGroup CR.

4. Delete any LVMVolumeGroupNodeStatus CRs by running the following command:

5. Delete the LVMCluster CR by running the following command:

a. After deleting the LVMCluster CR, remove its finalizer by running the following command:

Replace <name> with the name of the LVMCluster CR.

$ oc delete lvmvolumegroupnodestatus --all

$ oc delete lvmcluster --all

$ oc patch lvmcluster <name> -p '{"metadata":{"finalizers":[]}}' --type=merge 1

CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE

115

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

6.1. CONFIGURING CSI VOLUMES

The Container Storage Interface (CSI) allows OpenShift Container Platform to consume storage from
storage back ends that implement the CSI interface as persistent storage.

NOTE

OpenShift Container Platform 4.13 supports version 1.6.0 of the CSI specification.

6.1.1. CSI architecture

CSI drivers are typically shipped as container images. These containers are not aware of OpenShift
Container Platform where they run. To use CSI-compatible storage back end in OpenShift Container
Platform, the cluster administrator must deploy several components that serve as a bridge between
OpenShift Container Platform and the storage driver.

The following diagram provides a high-level overview about the components running in pods in the
OpenShift Container Platform cluster.

It is possible to run multiple CSI drivers for different storage back ends. Each driver needs its own
external controllers deployment and daemon set with the driver and CSI registrar.

6.1.1.1. External CSI controllers

External CSI controllers is a deployment that deploys one or more pods with five containers:

The snapshotter container watches VolumeSnapshot and VolumeSnapshotContent objects
and is responsible for the creation and deletion of VolumeSnapshotContent object.

OpenShift Container Platform 4.13 Storage

116

https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec

The resizer container is a sidecar container that watches for PersistentVolumeClaim updates
and triggers ControllerExpandVolume operations against a CSI endpoint if you request more
storage on PersistentVolumeClaim object.

An external CSI attacher container translates attach and detach calls from OpenShift Container
Platform to respective ControllerPublish and ControllerUnpublish calls to the CSI driver.

An external CSI provisioner container that translates provision and delete calls from OpenShift
Container Platform to respective CreateVolume and DeleteVolume calls to the CSI driver.

A CSI driver container.

The CSI attacher and CSI provisioner containers communicate with the CSI driver container using UNIX
Domain Sockets, ensuring that no CSI communication leaves the pod. The CSI driver is not accessible
from outside of the pod.

NOTE

The attach, detach, provision, and delete operations typically require the CSI driver to
use credentials to the storage backend. Run the CSI controller pods on infrastructure
nodes so the credentials are never leaked to user processes, even in the event of a
catastrophic security breach on a compute node.

NOTE

The external attacher must also run for CSI drivers that do not support third-party attach
or detach operations. The external attacher will not issue any ControllerPublish or
ControllerUnpublish operations to the CSI driver. However, it still must run to implement
the necessary OpenShift Container Platform attachment API.

6.1.1.2. CSI driver daemon set

The CSI driver daemon set runs a pod on every node that allows OpenShift Container Platform to
mount storage provided by the CSI driver to the node and use it in user workloads (pods) as persistent
volumes (PVs). The pod with the CSI driver installed contains the following containers:

A CSI driver registrar, which registers the CSI driver into the openshift-node service running on
the node. The openshift-node process running on the node then directly connects with the CSI
driver using the UNIX Domain Socket available on the node.

A CSI driver.

The CSI driver deployed on the node should have as few credentials to the storage back end as possible.
OpenShift Container Platform will only use the node plugin set of CSI calls such as
NodePublish/NodeUnpublish and NodeStage/NodeUnstage, if these calls are implemented.

6.1.2. CSI drivers supported by OpenShift Container Platform

OpenShift Container Platform installs certain CSI drivers by default, giving users storage options that
are not possible with in-tree volume plugins.

To create CSI-provisioned persistent volumes that mount to these supported storage assets, OpenShift
Container Platform installs the necessary CSI driver Operator, the CSI driver, and the required storage
class by default. For more details about the default namespace of the Operator and driver, see the

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

117

documentation for the specific CSI Driver Operator.

IMPORTANT

The AWS EFS and GCP Filestore CSI drivers are not installed by default, and must be
installed manually. For instructions on installing the AWS EFS CSI driver, see Setting up
AWS Elastic File Service CSI Driver Operator. For instructions on installing the GCP
Filestore CSI driver, see Google Compute Platform Filestore CSI Driver Operator .

The following table describes the CSI drivers that are installed with OpenShift Container Platform
supported by OpenShift Container Platform and which CSI features they support, such as volume
snapshots and resize.

IMPORTANT

If your CSI driver is not listed in the following table, you must follow the installation
instructions provided by your CSI storage vendor to use their supported CSI features.

For a list of third-party-certified CSI drivers, see the Red Hat ecosystem portal under Additional
resources.

Table 6.1. Supported CSI drivers and features in OpenShift Container Platform

CSI driver CSI volume
snapshots

CSI cloning CSI resize Inline ephemeral
volumes

AliCloud Disk � - � -

AWS EBS � - � -

AWS EFS - - - -

Google Compute
Platform (GCP)
persistent disk
(PD)

 � � � -

GCP Filestore � - � -

IBM Power Virtual
Server Block

 - - � -

IBM VPC Block �[3] - �[3] -

LVM Storage � � � -

OpenShift Container Platform 4.13 Storage

118

https://access.redhat.com/documentation/en-us/openshift_dedicated/4/html/storage/using-container-storage-interface-csi#osd-persistent-storage-aws-efs-csi
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/storage/using-container-storage-interface-csi#persistent-storage-csi-google-cloud-file-overview

Microsoft Azure
Disk

 � � � -

Microsoft Azure
Stack Hub

 � � � -

Microsoft Azure
File

 - - � �

OpenStack Cinder � � � -

OpenShift Data
Foundation

 � � � -

OpenStack Manila � - - -

Red Hat
Virtualization
(oVirt)

 - - � -

Shared Resource - - - �

VMware vSphere �[1] - �[2] -

CSI driver CSI volume
snapshots

CSI cloning CSI resize Inline ephemeral
volumes

1.

Requires vSphere version 7.0 Update 3 or later for both vCenter Server and ESXi.

Does not support fileshare volumes.

2.

Offline volume expansion: minimum required vSphere version is 6.7 Update 3 P06

Online volume expansion: minimum required vSphere version is 7.0 Update 2.

3.

Does not support offline snapshots or resize. Volume must be attached to a running pod.

IMPORTANT

If your CSI driver is not listed in the preceding table, you must follow the installation
instructions provided by your CSI storage vendor to use their supported CSI features.

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

119

1

2

Additional resources

Red Hat ecosystem portal

Third-party support policy

6.1.3. Dynamic provisioning

Dynamic provisioning of persistent storage depends on the capabilities of the CSI driver and underlying
storage back end. The provider of the CSI driver should document how to create a storage class in
OpenShift Container Platform and the parameters available for configuration.

The created storage class can be configured to enable dynamic provisioning.

Procedure

Create a default storage class that ensures all PVCs that do not require any special storage class
are provisioned by the installed CSI driver.

The name of the storage class that will be created.

The name of the CSI driver that has been installed.

6.1.4. Example using the CSI driver

The following example installs a default MySQL template without any changes to the template.

Prerequisites

The CSI driver has been deployed.

A storage class has been created for dynamic provisioning.

Procedure

Create the MySQL template:

Example output

oc create -f - << EOF
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: <storage-class> 1
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: <provisioner-name> 2
parameters:
EOF

oc new-app mysql-persistent

OpenShift Container Platform 4.13 Storage

120

https://catalog.redhat.com/
https://access.redhat.com/articles/third-party-software-support

Example output

6.1.5. Volume populators

Volume populators use the datasource field in a persistent volume claim (PVC) spec to create pre-
populated volumes.

Volume population is currently enabled, and supported as a Technology Preview feature. However,
OpenShift Container Platform does not ship with any volume populators.

IMPORTANT

Volume populators is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

For more information about volume populators, see Kubernetes volume populators .

6.2. CSI INLINE EPHEMERAL VOLUMES

Container Storage Interface (CSI) inline ephemeral volumes allow you to define a Pod spec that creates
inline ephemeral volumes when a pod is deployed and delete them when a pod is destroyed.

This feature is only available with supported Container Storage Interface (CSI) drivers: * Shared
Resource CSI driver * Azure File CSI driver

6.2.1. Overview of CSI inline ephemeral volumes

Traditionally, volumes that are backed by Container Storage Interface (CSI) drivers can only be used
with a PersistentVolume and PersistentVolumeClaim object combination.

This feature allows you to specify CSI volumes directly in the Pod specification, rather than in a
PersistentVolume object. Inline volumes are ephemeral and do not persist across pod restarts.

6.2.1.1. Support limitations

By default, OpenShift Container Platform supports CSI inline ephemeral volumes with these limitations:

--> Deploying template "openshift/mysql-persistent" to project default
...

oc get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE
mysql Bound kubernetes-dynamic-pv-3271ffcb4e1811e8 1Gi
RWO cinder 3s

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

121

https://access.redhat.com/support/offerings/techpreview/
https://kubernetes.io/blog/2022/05/16/volume-populators-beta/

1

Support is only available for CSI drivers. In-tree and FlexVolumes are not supported.

The Shared Resource CSI Driver supports using inline ephemeral volumes only to access
Secrets or ConfigMaps across multiple namespaces as a Technology Preview feature.

Community or storage vendors provide other CSI drivers that support these volumes. Follow
the installation instructions provided by the CSI driver provider.

CSI drivers might not have implemented the inline volume functionality, including Ephemeral capacity.
For details, see the CSI driver documentation.

IMPORTANT

Shared Resource CSI Driver is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

6.2.2. CSI Volume Admission plugin

The Container Storage Interface (CSI) Volume Admission plugin allows you to restrict the use of an
individual CSI driver capable of provisioning CSI ephemeral volumes on pod admission. Administrators
can add a csi-ephemeral-volume-profile label, and this label is then inspected by the Admission plugin
and used in enforcement, warning, and audit decisions.

6.2.2.1. Overview

To use the CSI Volume Admission plugin, administrators add the security.openshift.io/csi-ephemeral-
volume-profile label to a CSIDriver object, which declares the CSI driver’s effective pod security profile
when it is used to provide CSI ephemeral volumes, as shown in the following example:

CSI driver object YAML file with the csi-ephemeral-volume-profile label set to "restricted"

This “effective profile” communicates that a pod can use the CSI driver to mount CSI ephemeral
volumes when the pod’s namespace is governed by a pod security standard.

The CSI Volume Admission plugin inspects pod volumes when pods are created; existing pods that use
CSI volumes are not affected. If a pod uses a container storage interface (CSI) volume, the plugin looks
up the CSIDriver object and inspects the csi-ephemeral-volume-profile label, and then use the label’s
value in its enforcement, warning, and audit decisions.

6.2.2.2. Pod security profile enforcement

When a CSI driver has the csi-ephemeral-volume-profile label, pods using the CSI driver to mount CSI

kind: CSIDriver
metadata:
 name: csi.mydriver.company.org
 labels:
 security.openshift.io/csi-ephemeral-volume-profile: restricted 1

OpenShift Container Platform 4.13 Storage

122

https://access.redhat.com/support/offerings/techpreview/

When a CSI driver has the csi-ephemeral-volume-profile label, pods using the CSI driver to mount CSI
ephemeral volumes must run in a namespace that enforces a pod security standard of equal or greater
permission. If the namespace enforces a more restrictive standard, the CSI Volume Admission plugin
denies admission. The following table describes the enforcement behavior for different pod security
profiles for given label values.

Table 6.2. Pod security profile enforcement

Pod security profile Driver label: restricted Driver label: baseline Driver label: privileged

Restricted Allowed Denied Denied

Baseline Allowed Allowed Denied

Privileged Allowed Allowed Allowed

6.2.2.3. Pod security profile warning

The CSI Volume Admission plugin can warn you if the CSI driver’s effective profile is more permissive
than the pod security warning profile for the pod namespace. The following table shows when a warning
occurs for different pod security profiles for given label values.

Table 6.3. Pod security profile warning

Pod security profile Driver label: restricted Driver label: baseline Driver label: privileged

Restricted No warning Warning Warning

Baseline No warning No warning Warning

Privileged No warning No warning No warning

6.2.2.4. Pod security profile audit

The CSI Volume Admission plugin can apply audit annotations to the pod if the CSI driver’s effective
profile is more permissive than the pod security audit profile for the pod namespace. The following table
shows the audit annotation applied for different pod security profiles for given label values.

Table 6.4. Pod security profile audit

Pod security profile Driver label: restricted Driver label: baseline Driver label: privileged

Restricted No audit Audit Audit

Baseline No audit No audit Audit

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

123

Privileged No audit No audit No audit

Pod security profile Driver label: restricted Driver label: baseline Driver label: privileged

6.2.2.5. Default behavior for the CSI Volume Admission plugin

If the referenced CSI driver for a CSI ephemeral volume does not have the csi-ephemeral-volume-
profile label, the CSI Volume Admission plugin considers the driver to have the privileged profile for
enforcement, warning, and audit behaviors. Likewise, if the pod’s namespace does not have the pod
security admission label set, the Admission plugin assumes the restricted profile is allowed for
enforcement, warning, and audit decisions. Therefore, if no labels are set, CSI ephemeral volumes using
that CSI driver are only usable in privileged namespaces by default.

The CSI drivers that ship with OpenShift Container Platform and support ephemeral volumes have a
reasonable default set for the csi-ephemeral-volume-profile label:

Shared Resource CSI driver: restricted

Azure File CSI driver: privileged

An admin can change the default value of the label if desired.

6.2.3. Embedding a CSI inline ephemeral volume in the pod specification

You can embed a CSI inline ephemeral volume in the Pod specification in OpenShift Container Platform.
At runtime, nested inline volumes follow the ephemeral lifecycle of their associated pods so that the CSI
driver handles all phases of volume operations as pods are created and destroyed.

Procedure

1. Create the Pod object definition and save it to a file.

2. Embed the CSI inline ephemeral volume in the file.

my-csi-app.yaml

kind: Pod
apiVersion: v1
metadata:
 name: my-csi-app
spec:
 containers:
 - name: my-frontend
 image: busybox
 volumeMounts:
 - mountPath: "/data"
 name: my-csi-inline-vol
 command: ["sleep", "1000000"]
 volumes: 1

OpenShift Container Platform 4.13 Storage

124

1 The name of the volume that is used by pods.

3. Create the object definition file that you saved in the previous step.

6.2.4. Additional resources

Pod Security Standards

6.3. SHARED RESOURCE CSI DRIVER OPERATOR

As a cluster administrator, you can use the Shared Resource CSI Driver in OpenShift Container Platform
to provision inline ephemeral volumes that contain the contents of Secret or ConfigMap objects. This
way, pods and other Kubernetes types that expose volume mounts, and OpenShift Container Platform
Builds can securely use the contents of those objects across potentially any namespace in the cluster.
To accomplish this, there are currently two types of shared resources: a SharedSecret custom resource
for Secret objects, and a SharedConfigMap custom resource for ConfigMap objects.

IMPORTANT

The Shared Resource CSI Driver is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

NOTE

To enable the Shared Resource CSI Driver, you must enable features using feature gates .

6.3.1. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

6.3.2. Sharing secrets across namespaces

To share a secret across namespaces in a cluster, you create a SharedSecret custom resource (CR)

 - name: my-csi-inline-vol
 csi:
 driver: inline.storage.kubernetes.io
 volumeAttributes:
 foo: bar

$ oc create -f my-csi-app.yaml

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

125

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://access.redhat.com/support/offerings/techpreview/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-cluster-enabling

To share a secret across namespaces in a cluster, you create a SharedSecret custom resource (CR)
instance for the Secret object that you want to share.

Prerequisites

You must have permission to perform the following actions:

Create instances of the sharedsecrets.sharedresource.openshift.io custom resource
definition (CRD) at a cluster-scoped level.

Manage roles and role bindings across the namespaces in the cluster to control which users can
get, list, and watch those instances.

Manage roles and role bindings to control whether the service account specified by a pod can
mount a Container Storage Interface (CSI) volume that references the SharedSecret CR
instance you want to use.

Access the namespaces that contain the Secrets you want to share.

Procedure

Create a SharedSecret CR instance for the Secret object you want to share across
namespaces in the cluster:

6.3.3. Using a SharedSecret instance in a pod

To access a SharedSecret custom resource (CR) instance from a pod, you grant a given service account
RBAC permissions to use that SharedSecret CR instance.

Prerequisites

You have created a SharedSecret CR instance for the secret you want to share across
namespaces in the cluster.

You must have permission to perform the following actions

Discover which SharedSecret CR instances are available by entering the oc get
sharedsecrets command and getting a non-empty list back.

Determine if the service account your pod specifies is allowed to use the given
SharedSecret CR instance. That is, you can run oc adm policy who-can use <identifier of
specific SharedSecret> to see if the service account in your namespace is listed.

Determine if the service account your pod specifies is allowed to use csi volumes, or if you,

$ oc apply -f - <<EOF
apiVersion: sharedresource.openshift.io/v1alpha1
kind: SharedSecret
metadata:
 name: my-share
spec:
 secretRef:
 name: <name of secret>
 namespace: <namespace of secret>
EOF

OpenShift Container Platform 4.13 Storage

126

Determine if the service account your pod specifies is allowed to use csi volumes, or if you,
as the requesting user who created the pod directly, are allowed to use csi volumes. See
"Understanding and managing pod security admission" for details.

NOTE

If neither of the last two prerequisites in this list are met, create, or ask someone to
create, the necessary role-based access control (RBAC) so that you can discover
SharedSecret CR instances and enable service accounts to use SharedSecret CR
instances.

Procedure

1. Grant a given service account RBAC permissions to use the SharedSecret CR instance in its
pod by using oc apply with YAML content:

NOTE

Currently, kubectl and oc have hard-coded special case logic restricting the use
verb to roles centered around pod security. Therefore, you cannot use oc create
role … ​ to create the role needed for consuming SharedSecret CR instances.

2. Create the RoleBinding associated with the role by using the oc command:

3. Access the SharedSecret CR instance from a pod:

$ oc apply -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: shared-resource-my-share
 namespace: my-namespace
rules:
 - apiGroups:
 - sharedresource.openshift.io
 resources:
 - sharedsecrets
 resourceNames:
 - my-share
 verbs:
 - use
EOF

$ oc create rolebinding shared-resource-my-share --role=shared-resource-my-share --
serviceaccount=my-namespace:builder

$ oc apply -f - <<EOF
kind: Pod
apiVersion: v1
metadata:
 name: my-app
 namespace: my-namespace
spec:

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

127

6.3.4. Sharing a config map across namespaces

To share a config map across namespaces in a cluster, you create a SharedConfigMap custom resource
(CR) instance for that config map.

Prerequisites

You must have permission to perform the following actions:

Create instances of the sharedconfigmaps.sharedresource.openshift.io custom resource
definition (CRD) at a cluster-scoped level.

Manage roles and role bindings across the namespaces in the cluster to control which users can
get, list, and watch those instances.

Manage roles and role bindings across the namespaces in the cluster to control which service
accounts in pods that mount your Container Storage Interface (CSI) volume can use those
instances.

Access the namespaces that contain the Secrets you want to share.

Procedure

1. Create a SharedConfigMap CR instance for the config map that you want to share across
namespaces in the cluster:

6.3.5. Using a SharedConfigMap instance in a pod

 serviceAccountName: default

containers omitted …. Follow standard use of ‘volumeMounts’ for referencing your shared
resource volume

 volumes:
 - name: my-csi-volume
 csi:
 readOnly: true
 driver: csi.sharedresource.openshift.io
 volumeAttributes:
 sharedSecret: my-share

EOF

$ oc apply -f - <<EOF
apiVersion: sharedresource.openshift.io/v1alpha1
kind: SharedConfigMap
metadata:
 name: my-share
spec:
 configMapRef:
 name: <name of configmap>
 namespace: <namespace of configmap>
EOF

OpenShift Container Platform 4.13 Storage

128

Next steps

To access a SharedConfigMap custom resource (CR) instance from a pod, you grant a given service
account RBAC permissions to use that SharedConfigMap CR instance.

Prerequisites

You have created a SharedConfigMap CR instance for the config map that you want to share
across namespaces in the cluster.

You must have permission to perform the following actions:

Discover which SharedConfigMap CR instances are available by entering the oc get
sharedconfigmaps command and getting a non-empty list back.

Determine if the service account your pod specifies is allowed to use the given
SharedSecret CR instance. That is, you can run oc adm policy who-can use <identifier of
specific SharedSecret> to see if the service account in your namespace is listed.

Determine if the service account your pod specifies is allowed to use csi volumes, or if you,
as the requesting user who created the pod directly, are allowed to use csi volumes. See
"Understanding and managing pod security admission" for details.

NOTE

If neither of the last two prerequisites in this list are met, create, or ask someone to
create, the necessary role-based access control (RBAC) so that you can discover
SharedConfigMap CR instances and enable service accounts to use SharedConfigMap
CR instances.

Procedure

1. Grant a given service account RBAC permissions to use the SharedConfigMap CR instance in
its pod by using oc apply with YAML content.

NOTE

Currently, kubectl and oc have hard-coded special case logic restricting the use
verb to roles centered around pod security. Therefore, you cannot use oc create
role … ​ to create the role needed for consuming a SharedConfigMap CR
instance.

$ oc apply -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: shared-resource-my-share
 namespace: my-namespace
rules:
 - apiGroups:
 - sharedresource.openshift.io
 resources:
 - sharedconfigmaps
 resourceNames:

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

129

2. Create the RoleBinding associated with the role by using the oc command:

3. Access the SharedConfigMap CR instance from a pod:

6.3.6. Additional support limitations for the Shared Resource CSI Driver

The Shared Resource CSI Driver has the following noteworthy limitations:

The driver is subject to the limitations of Container Storage Interface (CSI) inline ephemeral
volumes.

The value of the readOnly field must be true. On Pod creation, a validating admission webhook
rejects the pod creation if readOnly is false. If for some reason the validating admission
webhook cannot be contacted, on volume provisioning during pod startup, the driver returns an
error to the kubelet. Requiring readOnly is true is in keeping with proposed best practices for
the upstream Kubernetes CSI Driver to apply SELinux labels to associated volumes.

The driver ignores the FSType field because it only supports tmpfs volumes.

The driver ignores the NodePublishSecretRef field. Instead, it uses SubjectAccessReviews
with the use verb to evaluate whether a pod can obtain a volume that contains SharedSecret
or SharedConfigMap custom resource (CR) instances.

You cannot create SharedSecret or SharedConfigMap custom resource (CR) instances whose

 - my-share
 verbs:
 - use
EOF

oc create rolebinding shared-resource-my-share --role=shared-resource-my-share --
serviceaccount=my-namespace:builder

$ oc apply -f - <<EOF
kind: Pod
apiVersion: v1
metadata:
 name: my-app
 namespace: my-namespace
spec:
 serviceAccountName: default

containers omitted …. Follow standard use of ‘volumeMounts’ for referencing your shared
resource volume

 volumes:
 - name: my-csi-volume
 csi:
 readOnly: true
 driver: csi.sharedresource.openshift.io
 volumeAttributes:
 sharedConfigMap: my-share

EOF

OpenShift Container Platform 4.13 Storage

130

You cannot create SharedSecret or SharedConfigMap custom resource (CR) instances whose
names start with openshift.

6.3.7. Additional details about VolumeAttributes on shared resource pod volumes

The following attributes affect shared resource pod volumes in various ways:

The refreshResource attribute in the volumeAttributes properties.

The refreshResources attribute in the Shared Resource CSI Driver configuration.

The sharedSecret and sharedConfigMap attributes in the volumeAttributes properties.

6.3.7.1. The refreshResource attribute

The Shared Resource CSI Driver honors the refreshResource attribute in volumeAttributes properties
of the volume. This attribute controls whether updates to the contents of the underlying Secret or
ConfigMap object are copied to the volume after the volume is initially provisioned as part of pod
startup. The default value of refreshResource is true, which means that the contents are updated.

IMPORTANT

If the Shared Resource CSI Driver configuration has disabled the refreshing of both the
shared SharedSecret and SharedConfigMap custom resource (CR) instances, then the
refreshResource attribute in the volumeAttribute properties has no effect. The intent
of this attribute is to disable refresh for specific volume mounts when refresh is generally
allowed.

6.3.7.2. The refreshResources attribute

You can use a global switch to enable or disable refreshing of shared resources. This switch is the
refreshResources attribute in the csi-driver-shared-resource-config config map for the Shared
Resource CSI Driver, which you can find in the openshift-cluster-csi-drivers namespace. If you set this
refreshResources attribute to false, none of the Secret or ConfigMap object-related content stored
in the volume is updated after the initial provisioning of the volume.

IMPORTANT

Using this Shared Resource CSI Driver configuration to disable refreshing affects all the
cluster’s volume mounts that use the Shared Resource CSI Driver, regardless of the
refreshResource attribute in the volumeAttributes properties of any of those volumes.

6.3.7.3. Validation of volumeAttributes before provisioning a shared resource volume for a
pod

In the volumeAttributes of a single volume, you must set either a sharedSecret or a sharedConfigMap
attribute to the value of a SharedSecret or a SharedConfigMap CS instance. Otherwise, when the
volume is provisioned during pod startup, a validation checks the volumeAttributes of that volume and
returns an error to the kubelet under the following conditions:

Both sharedSecret and sharedConfigMap attributes have specified values.

Neither sharedSecret nor sharedConfigMap attributes have specified values.

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

131

The value of the sharedSecret or sharedConfigMap attribute does not correspond to the
name of a SharedSecret or SharedConfigMap CR instance on the cluster.

6.3.8. Integration between shared resources, Insights Operator, and OpenShift
Container Platform Builds

Integration between shared resources, Insights Operator, and OpenShift Container Platform Builds
makes using Red Hat subscriptions (RHEL entitlements) easier in OpenShift Container Platform Builds.

Previously, in OpenShift Container Platform 4.9.x and earlier, you manually imported your credentials
and copied them to each project or namespace where you were running builds.

Now, in OpenShift Container Platform 4.10 and later, OpenShift Container Platform Builds can use Red
Hat subscriptions (RHEL entitlements) by referencing shared resources and the simple content access
feature provided by Insights Operator:

The simple content access feature imports your subscription credentials to a well-known Secret
object. See the links in the following "Additional resources" section.

The cluster administrator creates a SharedSecret custom resource (CR) instance around that
Secret object and grants permission to particular projects or namespaces. In particular, the
cluster administrator gives the builder service account permission to use that SharedSecret
CR instance.

Builds that run within those projects or namespaces can mount a CSI Volume that references
the SharedSecret CR instance and its entitled RHEL content.

Additional resources

Importing simple content access certificates with Insights Operator

Adding subscription entitlements as a build secret

6.4. CSI VOLUME SNAPSHOTS

This document describes how to use volume snapshots with supported Container Storage Interface
(CSI) drivers to help protect against data loss in OpenShift Container Platform. Familiarity with
persistent volumes is suggested.

6.4.1. Overview of CSI volume snapshots

A snapshot represents the state of the storage volume in a cluster at a particular point in time. Volume
snapshots can be used to provision a new volume.

OpenShift Container Platform supports Container Storage Interface (CSI) volume snapshots by default.
However, a specific CSI driver is required.

With CSI volume snapshots, a cluster administrator can:

Deploy a third-party CSI driver that supports snapshots.

Create a new persistent volume claim (PVC) from an existing volume snapshot.

Take a snapshot of an existing PVC.

OpenShift Container Platform 4.13 Storage

132

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/support/#insights-operator-simple-access
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/builds/#builds-source-secrets-entitlements_running-entitled-builds

Restore a snapshot as a different PVC.

Delete an existing volume snapshot.

With CSI volume snapshots, an app developer can:

Use volume snapshots as building blocks for developing application- or cluster-level storage
backup solutions.

Rapidly rollback to a previous development version.

Use storage more efficiently by not having to make a full copy each time.

Be aware of the following when using volume snapshots:

Support is only available for CSI drivers. In-tree and FlexVolumes are not supported.

OpenShift Container Platform only ships with select CSI drivers. For CSI drivers that are not
provided by an OpenShift Container Platform Driver Operator, it is recommended to use the
CSI drivers provided by community or storage vendors . Follow the installation instructions
furnished by the CSI driver provider.

CSI drivers may or may not have implemented the volume snapshot functionality. CSI drivers
that have provided support for volume snapshots will likely use the csi-external-snapshotter
sidecar. See documentation provided by the CSI driver for details.

6.4.2. CSI snapshot controller and sidecar

OpenShift Container Platform provides a snapshot controller that is deployed into the control plane. In
addition, your CSI driver vendor provides the CSI snapshot sidecar as a helper container that is installed
during the CSI driver installation.

The CSI snapshot controller and sidecar provide volume snapshotting through the OpenShift Container
Platform API. These external components run in the cluster.

The external controller is deployed by the CSI Snapshot Controller Operator.

6.4.2.1. External controller

The CSI snapshot controller binds VolumeSnapshot and VolumeSnapshotContent objects. The
controller manages dynamic provisioning by creating and deleting VolumeSnapshotContent objects.

6.4.2.2. External sidecar

Your CSI driver vendor provides the csi-external-snapshotter sidecar. This is a separate helper
container that is deployed with the CSI driver. The sidecar manages snapshots by triggering
CreateSnapshot and DeleteSnapshot operations. Follow the installation instructions provided by your
vendor.

6.4.3. About the CSI Snapshot Controller Operator

The CSI Snapshot Controller Operator runs in the openshift-cluster-storage-operator namespace. It is
installed by the Cluster Version Operator (CVO) in all clusters by default.

The CSI Snapshot Controller Operator installs the CSI snapshot controller, which runs in the openshift-

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

133

https://kubernetes-csi.github.io/docs/drivers.html

The CSI Snapshot Controller Operator installs the CSI snapshot controller, which runs in the openshift-
cluster-storage-operator namespace.

6.4.3.1. Volume snapshot CRDs

During OpenShift Container Platform installation, the CSI Snapshot Controller Operator creates the
following snapshot custom resource definitions (CRDs) in the snapshot.storage.k8s.io/v1 API group:

VolumeSnapshotContent

A snapshot taken of a volume in the cluster that has been provisioned by a cluster administrator.
Similar to the PersistentVolume object, the VolumeSnapshotContent CRD is a cluster resource
that points to a real snapshot in the storage back end.

For manually pre-provisioned snapshots, a cluster administrator creates a number of
VolumeSnapshotContent CRDs. These carry the details of the real volume snapshot in the storage
system.

The VolumeSnapshotContent CRD is not namespaced and is for use by a cluster administrator.

VolumeSnapshot

Similar to the PersistentVolumeClaim object, the VolumeSnapshot CRD defines a developer
request for a snapshot. The CSI Snapshot Controller Operator runs the CSI snapshot controller,
which handles the binding of a VolumeSnapshot CRD with an appropriate
VolumeSnapshotContent CRD. The binding is a one-to-one mapping.
The VolumeSnapshot CRD is namespaced. A developer uses the CRD as a distinct request for a
snapshot.

VolumeSnapshotClass

Allows a cluster administrator to specify different attributes belonging to a VolumeSnapshot object.
These attributes may differ among snapshots taken of the same volume on the storage system, in
which case they would not be expressed by using the same storage class of a persistent volume
claim.
The VolumeSnapshotClass CRD defines the parameters for the csi-external-snapshotter sidecar
to use when creating a snapshot. This allows the storage back end to know what kind of snapshot to
dynamically create if multiple options are supported.

Dynamically provisioned snapshots use the VolumeSnapshotClass CRD to specify storage-
provider-specific parameters to use when creating a snapshot.

The VolumeSnapshotContentClass CRD is not namespaced and is for use by a cluster
administrator to enable global configuration options for their storage back end.

6.4.4. Volume snapshot provisioning

There are two ways to provision snapshots: dynamically and manually.

6.4.4.1. Dynamic provisioning

Instead of using a preexisting snapshot, you can request that a snapshot be taken dynamically from a
persistent volume claim. Parameters are specified using a VolumeSnapshotClass CRD.

OpenShift Container Platform 4.13 Storage

134

1

6.4.4.2. Manual provisioning

As a cluster administrator, you can manually pre-provision a number of VolumeSnapshotContent
objects. These carry the real volume snapshot details available to cluster users.

6.4.5. Creating a volume snapshot

When you create a VolumeSnapshot object, OpenShift Container Platform creates a volume snapshot.

Prerequisites

Logged in to a running OpenShift Container Platform cluster.

A PVC created using a CSI driver that supports VolumeSnapshot objects.

A storage class to provision the storage back end.

No pods are using the persistent volume claim (PVC) that you want to take a snapshot of.

WARNING

Creating a volume snapshot of a PVC that is in use by a pod can cause
unwritten data and cached data to be excluded from the snapshot. To
ensure that all data is written to the disk, delete the pod that is using the
PVC before creating the snapshot.

Procedure

To dynamically create a volume snapshot:

1. Create a file with the VolumeSnapshotClass object described by the following YAML:

volumesnapshotclass.yaml

The name of the CSI driver that is used to create snapshots of this
VolumeSnapshotClass object. The name must be the same as the Provisioner field of
the storage class that is responsible for the PVC that is being snapshotted.

NOTE



apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
 name: csi-hostpath-snap
driver: hostpath.csi.k8s.io 1
deletionPolicy: Delete

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

135

1

2

1

NOTE

Depending on the driver that you used to configure persistent storage, additional
parameters might be required. You can also use an existing
VolumeSnapshotClass object.

2. Create the object you saved in the previous step by entering the following command:

3. Create a VolumeSnapshot object:

volumesnapshot-dynamic.yaml

The request for a particular class by the volume snapshot. If the
volumeSnapshotClassName setting is absent and there is a default volume snapshot
class, a snapshot is created with the default volume snapshot class name. But if the field is
absent and no default volume snapshot class exists, then no snapshot is created.

The name of the PersistentVolumeClaim object bound to a persistent volume. This
defines what you want to create a snapshot of. Required for dynamically provisioning a
snapshot.

4. Create the object you saved in the previous step by entering the following command:

To manually provision a snapshot:

1. Provide a value for the volumeSnapshotContentName parameter as the source for the
snapshot, in addition to defining volume snapshot class as shown above.

volumesnapshot-manual.yaml

The volumeSnapshotContentName parameter is required for pre-provisioned snapshots.

$ oc create -f volumesnapshotclass.yaml

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
 name: mysnap
spec:
 volumeSnapshotClassName: csi-hostpath-snap 1
 source:
 persistentVolumeClaimName: myclaim 2

$ oc create -f volumesnapshot-dynamic.yaml

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
 name: snapshot-demo
spec:
 source:
 volumeSnapshotContentName: mycontent 1

OpenShift Container Platform 4.13 Storage

136

1

2

3

2. Create the object you saved in the previous step by entering the following command:

Verification

After the snapshot has been created in the cluster, additional details about the snapshot are available.

1. To display details about the volume snapshot that was created, enter the following command:

The following example displays details about the mysnap volume snapshot:

volumesnapshot.yaml

The pointer to the actual storage content that was created by the controller.

The time when the snapshot was created. The snapshot contains the volume content that
was available at this indicated time.

If the value is set to true, the snapshot can be used to restore as a new PVC.
If the value is set to false, the snapshot was created. However, the storage back end needs
to perform additional tasks to make the snapshot usable so that it can be restored as a new
volume. For example, Amazon Elastic Block Store data might be moved to a different, less
expensive location, which can take several minutes.

2. To verify that the volume snapshot was created, enter the following command:

The pointer to the actual content is displayed. If the boundVolumeSnapshotContentName
field is populated, a VolumeSnapshotContent object exists and the snapshot was created.

3. To verify that the snapshot is ready, confirm that the VolumeSnapshot object has
readyToUse: true.

6.4.6. Deleting a volume snapshot

$ oc create -f volumesnapshot-manual.yaml

$ oc describe volumesnapshot mysnap

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
 name: mysnap
spec:
 source:
 persistentVolumeClaimName: myclaim
 volumeSnapshotClassName: csi-hostpath-snap
status:
 boundVolumeSnapshotContentName: snapcontent-1af4989e-a365-4286-96f8-
d5dcd65d78d6 1
 creationTime: "2020-01-29T12:24:30Z" 2
 readyToUse: true 3
 restoreSize: 500Mi

$ oc get volumesnapshotcontent

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

137

1

You can configure how OpenShift Container Platform deletes volume snapshots.

Procedure

1. Specify the deletion policy that you require in the VolumeSnapshotClass object, as shown in
the following example:

volumesnapshotclass.yaml

When deleting the volume snapshot, if the Delete value is set, the underlying snapshot is
deleted along with the VolumeSnapshotContent object. If the Retain value is set, both
the underlying snapshot and VolumeSnapshotContent object remain.
If the Retain value is set and the VolumeSnapshot object is deleted without deleting the
corresponding VolumeSnapshotContent object, the content remains. The snapshot itself
is also retained in the storage back end.

2. Delete the volume snapshot by entering the following command:

Example output

3. If the deletion policy is set to Retain, delete the volume snapshot content by entering the
following command:

4. Optional: If the VolumeSnapshot object is not successfully deleted, enter the following
command to remove any finalizers for the leftover resource so that the delete operation can
continue:

IMPORTANT

Only remove the finalizers if you are confident that there are no existing
references from either persistent volume claims or volume snapshot contents to
the VolumeSnapshot object. Even with the --force option, the delete operation
does not delete snapshot objects until all finalizers are removed.

Example output

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
 name: csi-hostpath-snap
driver: hostpath.csi.k8s.io
deletionPolicy: Delete 1

$ oc delete volumesnapshot <volumesnapshot_name>

volumesnapshot.snapshot.storage.k8s.io "mysnapshot" deleted

$ oc delete volumesnapshotcontent <volumesnapshotcontent_name>

$ oc patch -n $PROJECT volumesnapshot/$NAME --type=merge -p '{"metadata":
{"finalizers":null}}'

OpenShift Container Platform 4.13 Storage

138

1

2

3

The finalizers are removed and the volume snapshot is deleted.

6.4.7. Restoring a volume snapshot

The VolumeSnapshot CRD content can be used to restore the existing volume to a previous state.

After your VolumeSnapshot CRD is bound and the readyToUse value is set to true, you can use that
resource to provision a new volume that is pre-populated with data from the snapshot. .Prerequisites *
Logged in to a running OpenShift Container Platform cluster. * A persistent volume claim (PVC)
created using a Container Storage Interface (CSI) driver that supports volume snapshots. * A storage
class to provision the storage back end. * A volume snapshot has been created and is ready to use.

Procedure

1. Specify a VolumeSnapshot data source on a PVC as shown in the following:

pvc-restore.yaml

Name of the VolumeSnapshot object representing the snapshot to use as source.

Must be set to the VolumeSnapshot value.

Must be set to the snapshot.storage.k8s.io value.

2. Create a PVC by entering the following command:

3. Verify that the restored PVC has been created by entering the following command:

A new PVC such as myclaim-restore is displayed.

volumesnapshotclass.snapshot.storage.k8s.io "csi-ocs-rbd-snapclass" deleted

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: myclaim-restore
spec:
 storageClassName: csi-hostpath-sc
 dataSource:
 name: mysnap 1
 kind: VolumeSnapshot 2
 apiGroup: snapshot.storage.k8s.io 3
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

$ oc create -f pvc-restore.yaml

$ oc get pvc

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

139

6.5. CSI VOLUME CLONING

Volume cloning duplicates an existing persistent volume to help protect against data loss in OpenShift
Container Platform. This feature is only available with supported Container Storage Interface (CSI)
drivers. You should be familiar with persistent volumes before you provision a CSI volume clone.

6.5.1. Overview of CSI volume cloning

A Container Storage Interface (CSI) volume clone is a duplicate of an existing persistent volume at a
particular point in time.

Volume cloning is similar to volume snapshots, although it is more efficient. For example, a cluster
administrator can duplicate a cluster volume by creating another instance of the existing cluster volume.

Cloning creates an exact duplicate of the specified volume on the back-end device, rather than creating
a new empty volume. After dynamic provisioning, you can use a volume clone just as you would use any
standard volume.

No new API objects are required for cloning. The existing dataSource field in the
PersistentVolumeClaim object is expanded so that it can accept the name of an existing
PersistentVolumeClaim in the same namespace.

6.5.1.1. Support limitations

By default, OpenShift Container Platform supports CSI volume cloning with these limitations:

The destination persistent volume claim (PVC) must exist in the same namespace as the source
PVC.

Cloning is supported with a different Storage Class.

Destination volume can be the same for a different storage class as the source.

You can use the default storage class and omit storageClassName in the spec.

Support is only available for CSI drivers. In-tree and FlexVolumes are not supported.

CSI drivers might not have implemented the volume cloning functionality. For details, see the
CSI driver documentation.

6.5.2. Provisioning a CSI volume clone

When you create a cloned persistent volume claim (PVC) API object, you trigger the provisioning of a
CSI volume clone. The clone pre-populates with the contents of another PVC, adhering to the same
rules as any other persistent volume. The one exception is that you must add a dataSource that
references an existing PVC in the same namespace.

Prerequisites

You are logged in to a running OpenShift Container Platform cluster.

Your PVC is created using a CSI driver that supports volume cloning.

Your storage back end is configured for dynamic provisioning. Cloning support is not available
for static provisioners.

OpenShift Container Platform 4.13 Storage

140

1

Procedure

To clone a PVC from an existing PVC:

1. Create and save a file with the PersistentVolumeClaim object described by the following
YAML:

pvc-clone.yaml

The name of the storage class that provisions the storage back end. The default storage
class can be used and storageClassName can be omitted in the spec.

2. Create the object you saved in the previous step by running the following command:

A new PVC pvc-1-clone is created.

3. Verify that the volume clone was created and is ready by running the following command:

The pvc-1-clone shows that it is Bound.

You are now ready to use the newly cloned PVC to configure a pod.

4. Create and save a file with the Pod object described by the YAML. For example:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-1-clone
 namespace: mynamespace
spec:
 storageClassName: csi-cloning 1
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi
 dataSource:
 kind: PersistentVolumeClaim
 name: pvc-1

$ oc create -f pvc-clone.yaml

$ oc get pvc pvc-1-clone

kind: Pod
apiVersion: v1
metadata:
 name: mypod
spec:
 containers:
 - name: myfrontend
 image: dockerfile/nginx
 volumeMounts:
 - mountPath: "/var/www/html"

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

141

1 The cloned PVC created during the CSI volume cloning operation.

The created Pod object is now ready to consume, clone, snapshot, or delete your cloned PVC
independently of its original dataSource PVC.

6.6. MANAGING THE DEFAULT STORAGE CLASS

6.6.1. Overview

Managing the default storage class allows you to accomplish several different objectives:

Enforcing static provisioning by disabling dynamic provisioning.

When you have other preferred storage classes, preventing the storage operator from re-
creating the initial default storage class.

Renaming, or otherwise changing, the default storage class

To accomplish these objectives, you change the setting for the spec.storageClassState field in the
ClusterCSIDriver object. The possible settings for this field are:

Managed: (Default) The Container Storage Interface (CSI) operator is actively managing its
default storage class, so that most manual changes made by a cluster administrator to the
default storage class are removed, and the default storage class is continuously re-created if
you attempt to manually delete it.

Unmanaged: You can modify the default storage class. The CSI operator is not actively
managing storage classes, so that it is not reconciling the default storage class it creates
automatically.

Removed: The CSI operators deletes the default storage class.

Managing the default storage classes is supported by the following Container Storage Interface (CSI)
driver operators:

AliCloud Disk

Amazon Web Services (AWS) Elastic Block Storage (EBS)

Azure Disk

Azure File

Google Cloud Platform (GCP) Persistent Disk (PD)

IBM VPC Block

OpenStack Cinder

 name: mypd
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: pvc-1-clone 1

OpenShift Container Platform 4.13 Storage

142

1

Red Hat Virtualization

VMware vSphere

6.6.2. Managing the default storage class using the web console

Prerequisites

Access to the OpenShift Container Platform web console.

Access to the cluster with cluster-admin privileges.

Procedure

To manage the default storage class using the web console:

1. Log in to the web console.

2. Click Administration > CustomResourceDefinitions.

3. On the CustomResourceDefinitions page, type clustercsidriver to find the ClusterCSIDriver
object.

4. Click ClusterCSIDriver, and then click the Instances tab.

5. Click the name of the desired instance, and then click the YAML tab.

6. Add the spec.storageClassState field with a value of Managed, Unmanaged, or Removed.

Example

spec.storageClassState field set to "Unmanaged"

7. Click Save.

6.6.3. Managing the default storage class using the CLI

Prerequisites

Access to the cluster with cluster-admin privileges.

Procedure

...
spec:
 driverConfig:
 driverType: ''
 logLevel: Normal
 managementState: Managed
 observedConfig: null
 operatorLogLevel: Normal
 storageClassState: Unmanaged 1
...

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

143

1

To manage the storage class using the CLI, run the following command:

Where ${STATE} is "Removed" or "Managed" or "Unmanaged".

Where $DRIVERNAME is the provisioner name. You can find the provisioner name by running the
command oc get sc.

6.6.4. Absent or multiple default storage classes

6.6.4.1. Multiple default storage classes

Multiple default storage classes can occur if you mark a non-default storage class as default and do not
unset the existing default storage class, or you create a default storage class when a default storage
class is already present. With multiple default storage classes present, any persistent volume claim
(PVC) requesting the default storage class (pvc.spec.storageClassName=nil) gets the most recently
created default storage class, regardless of the default status of that storage class, and the
administrator receives an alert in the alerts dashboard that there are multiple default storage classes,
MultipleDefaultStorageClasses.

6.6.4.2. Absent default storage class

There are two possible scenarios where PVCs can attempt to use a non-existent default storage class:

An administrator removes the default storage class or marks it as non-default, and then a user
creates a PVC requesting the default storage class.

During installation, the installer creates a PVC requesting the default storage class, which has
not yet been created.

In the preceding scenarios, the PVCs remain in pending state indefinitely.

OpenShift Container Platform provides a feature to retroactively assign the default storage class to
PVCs, so that they do not remain in the pending state. With this feature enabled, PVCs requesting the
default storage class that are created when no default storage classes exists, remain in the pending
state until a default storage class is created, or one of the existing storage classes is declared the
default. As soon as the default storage class is created or declared, the PVC gets the new default
storage class.

IMPORTANT

Retroactive default storage class assignment is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

$ oc patch clustercsidriver $DRIVERNAME --type=merge -p "{\"spec\":
{\"storageClassState\":\"${STATE}\"}}" 1

OpenShift Container Platform 4.13 Storage

144

https://access.redhat.com/support/offerings/techpreview/

1

1

6.6.4.2.1. Procedure

To enable retroactive default storage class assignment:

1. Enable feature gates (see Nodes → Working with clusters → Enabling features using feature
gates).

IMPORTANT

After turning on Technology Preview features using feature gates, they cannot
be turned off. As a result, cluster upgrades are prevented.

The following configuration example enables retroactive default storage class assignment, and
all other Technology Preview features:

Enables retroactive default storage class assignment.

6.6.5. Changing the default storage class

Use the following procedure to change the default storage class.

For example, if you have two defined storage classes, gp3 and standard, and you want to change the
default storage class from gp3 to standard.

Prerequisites

Access to the cluster with cluster-admin privileges.

Procedure

To change the default storage class:

1. List the storage classes:

Example output

(default) indicates the default storage class.

apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
 name: cluster
spec:
 featureSet: TechPreviewNoUpgrade 1
...

$ oc get storageclass

NAME TYPE
gp3 (default) kubernetes.io/aws-ebs 1
standard kubernetes.io/aws-ebs

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

145

2. Make the desired storage class the default.
For the desired storage class, set the storageclass.kubernetes.io/is-default-class annotation
to true by running the following command:

NOTE

You can have multiple default storage classes for a short time. However, you
should ensure that only one default storage class exists eventually.

With multiple default storage classes present, any persistent volume claim (PVC)
requesting the default storage class (pvc.spec.storageClassName=nil) gets the
most recently created default storage class, regardless of the default status of
that storage class, and the administrator receives an alert in the alerts dashboard
that there are multiple default storage classes, MultipleDefaultStorageClasses.

3. Remove the default storage class setting from the old default storage class.
For the old default storage class, change the value of the storageclass.kubernetes.io/is-
default-class annotation to false by running the following command:

4. Verify the changes:

Example output

6.7. CSI AUTOMATIC MIGRATION

In-tree storage drivers that are traditionally shipped with OpenShift Container Platform are being
deprecated and replaced by their equivalent Container Storage Interface (CSI) drivers. OpenShift
Container Platform provides automatic migration for in-tree volume plugins to their equivalent CSI
drivers.

6.7.1. Overview

This feature automatically migrates volumes that were provisioned using in-tree storage plugins to their
counterpart Container Storage Interface (CSI) drivers.

This process does not perform any data migration; OpenShift Container Platform only translates the
persistent volume object in memory. As a result, the translated persistent volume object is not stored on
disk, nor is its contents changed. CSI automatic migration should be seamless. This feature does not
change how you use all existing API objects: for example, PersistentVolumes,
PersistentVolumeClaims, and StorageClasses.

$ oc patch storageclass standard -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class": "true"}}}'

$ oc patch storageclass gp3 -p '{"metadata": {"annotations": {"storageclass.kubernetes.io/is-
default-class": "false"}}}'

$ oc get storageclass

NAME TYPE
gp3 kubernetes.io/aws-ebs
standard (default) kubernetes.io/aws-ebs

OpenShift Container Platform 4.13 Storage

146

The following in-tree to CSI drivers are automatically migrated:

Azure Disk

OpenStack Cinder

Amazon Web Services (AWS) Elastic Block Storage (EBS)

Google Compute Engine Persistent Disk (GCP PD)

Azure File

VMware vSphere (see information below for specific migration behavior for vSphere)

CSI migration for these volume types is considered generally available (GA), and requires no manual
intervention.

CSI automatic migration of in-tree persistent volumes (PVs) or persistent volume claims (PVCs) does
not enable any new CSI driver features, such as snapshots or expansion, if the original in-tree storage
plugin did not support it.

6.7.2. Storage class implications

For new OpenShift Container Platform 4.13, and later, installations, the default storage class is the CSI
storage class. All volumes provisioned using this storage class are CSI persistent volumes (PVs).

For clusters upgraded from 4.12, and earlier, to 4.13, and later, the CSI storage class is created, and is set
as the default if no default storage class was set prior to the upgrade. In the very unlikely case that there
is a storage class with the same name, the existing storage class remains unchanged. Any existing in-tree
storage classes remain, and might be necessary for certain features, such as volume expansion to work
for existing in-tree PVs. While storage class referencing to the in-tree storage plugin will continue
working, we recommend that you switch the default storage class to the CSI storage class.

To change the default storage class, see Changing the default storage class .

6.7.3. vSphere automatic migration

IMPORTANT

Migration includes significant consequences:

Enabling migration cannot be undone.

Migration can take a while to complete depending on how many nodes are on the
cluster.

6.7.3.1. New installations of OpenShift Container Platform

For new installations of OpenShift Container Platform 4.13, or later, automatic migration is enabled by
default.

6.7.3.2. Updating from OpenShift Container Platform 4.13 to 4.14

If you are using vSphere in-tree persistent volumes (PVs) and want to update from OpenShift Container
Platform 4.13 to 4.14, first update vSphere vCenter and ESXI host to 7.0 Update 3L or 8.0 Update 2,

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

147

otherwise the OpenShift Container Platform update is blocked. After updating vSphere, your OpenShift
Container Platform update can occur and automatic Container Storage Interface (CSI) migration is
enabled by default.

Alternatively, if you do not want to update vSphere, you can proceed with an OpenShift Container
Platform update by performing an administrator acknowledgment:

IMPORTANT

If you do not update to vSphere 7.0 Update 3L or 8.0 Update 2 and use an administrator
acknowledgment to update to OpenShift Container Platform 4.14, known issues can
occur due to CSI migration being enabled by default in OpenShift Container Platform
4.14. Before proceeding with the administrator acknowledgement, carefully read this
knowledge base article.

6.7.3.3. Updating from OpenShift Container Platform 4.12 to 4.13

If you are using vSphere in-tree persistent volumes (PVs) and want to update from OpenShift Container
Platform 4.12 to 4.13, update vSphere vCenter and ESXI host to 7.0 Update 3L or 8.0 Update 2,
otherwise the OpenShift Container Platform update is blocked. After updating vSphere, your OpenShift
Container Platform update can occur and automatic Container Storage Interface (CSI) migration for
vSphere only occurs if you opt in.

Alternatively, if you do not want to update vSphere, you can proceed with an OpenShift Container
Platform update by running the following command to perform an administrator acknowledgment:

It is generally safe to provide the requested administrator acknowledgment for updates from OpenShift
Container Platform 4.12 to 4.13 because CSI migration is not yet enabled for upgraded clusters from 4.12
to 4.13. However, Red Hat recommends that you start planning an update of your vSphere environment
for a future update to 4.14, so that all the in-tree volumes can be managed by the CSI driver seamlessly.

IMPORTANT

If you do not update to OpenShift Container Platform 4.13.10, or later, and do not update
vSphere, and then opt in to migration (see Using the web console to opt in to automatic
CSI migration or Using the CLI to opt in to automatic CSI migration below), known issues
can occur. Review the consequences listed above for migration before opting in and
carefully read this knowledge base article .

6.7.3.4. Using the web console to opt in to automatic CSI migration

6.7.3.4.1. Prerequisites

Access to the OpenShift Container Platform web console.

Access to the cluster with cluster-admin privileges.

oc -n openshift-config patch cm admin-acks --patch '{"data":{"ack-4.13-kube-127-vsphere-migration-
in-4.14":"true"}}' --type=merge

oc -n openshift-config patch cm admin-acks --patch '{"data":{"ack-4.12-kube-126-vsphere-migration-
in-4.14":"true"}}' --type=merge

OpenShift Container Platform 4.13 Storage

148

https://access.redhat.com/node/7011683
https://access.redhat.com/node/7011683

1

6.7.3.4.2. Procedure

To opt in to automatic CSI migration for vSphere:

1. Log in to the web console.

2. Click Administration → CustomResourceDefinitions.

3. On the CustomResourceDefinitions page, type "Storage" to find the Storage custom
resource (CR).

4. Click the Storage CR.

5. On the storages.operator.openshift.io page, click the Instances tab.

6. Click the name of the desired instance, and then click the YAML tab.

7. Set the spec.vsphereStorageDriver parameter to CSIWithMigrationDriver, as shown in the
following example:

spec.vsphereStorageDriver parameter set to CSIWithMigrationDriver

8. Click Save.

6.7.3.5. Using the CLI to opt in to automatic CSI migration

6.7.3.5.1. Prerequisites

Access to the cluster with cluster-admin privileges.

6.7.3.5.2. Procedure

To opt in to automatic CSI migration for vSphere, run the following command:

NOTE

You can determine when migration is complete by verifying that the
VSphereMigrationControllerAvailable condition is set to "true" in the Storage object.

6.8. ALICLOUD DISK CSI DRIVER OPERATOR

....
spec:
 logLevel: Normal
 managementState: Managed
 operatorLogLevel: Normal
 vsphereStorageDriver: CSIWithMigrationDriver 1
...

oc patch storage cluster --type=merge -p '{"spec":
{"vsphereStorageDriver":"CSIWithMigrationDriver"}}'

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

149

6.8.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) using the Container
Storage Interface (CSI) driver for Alibaba AliCloud Disk Storage.

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
CSI Operator and driver.

To create CSI-provisioned PVs that mount to AliCloud Disk storage assets, OpenShift Container
Platform installs the AliCloud Disk CSI Driver Operator and the AliCloud Disk CSI driver, by default, in the
openshift-cluster-csi-drivers namespace.

The AliCloud Disk CSI Driver Operator provides a storage class (alicloud-disk) that you can use
to create persistent volume claims (PVCs). The AliCloud Disk CSI Driver Operator supports
dynamic volume provisioning by allowing storage volumes to be created on demand, eliminating
the need for cluster administrators to pre-provision storage. You can disable this default
storage class if desired (see Managing the default storage class).

The AliCloud Disk CSI driver enables you to create and mount AliCloud Disk PVs.

6.8.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

Additional resources

Configuring CSI volumes

6.9. AWS ELASTIC BLOCK STORE CSI DRIVER OPERATOR

6.9.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) using the AWS EBS
CSI driver.

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
Container Storage Interface (CSI) Operator and driver.

To create CSI-provisioned PVs that mount to AWS EBS storage assets, OpenShift Container Platform
installs the AWS EBS CSI Driver Operator (a Red Hat operator) and the AWS EBS CSI driver by default
in the openshift-cluster-csi-drivers namespace.

The AWS EBS CSI Driver Operator provides a StorageClass by default that you can use to
create PVCs. You can disable this default storage class if desired (see Managing the default
storage class). You also have the option to create the AWS EBS StorageClass as described in
Persistent storage using Amazon Elastic Block Store .

The AWS EBS CSI driver enables you to create and mount AWS EBS PVs.

NOTE

OpenShift Container Platform 4.13 Storage

150

https://github.com/openshift/aws-ebs-csi-driver
https://github.com/openshift/aws-ebs-csi-driver-operator

NOTE

If you installed the AWS EBS CSI Operator and driver on an OpenShift Container
Platform 4.5 cluster, you must uninstall the 4.5 Operator and driver before you update to
OpenShift Container Platform 4.13.

6.9.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

IMPORTANT

OpenShift Container Platform defaults to using the CSI plugin to provision Amazon
Elastic Block Store (Amazon EBS) storage.

For information about dynamically provisioning AWS EBS persistent volumes in OpenShift Container
Platform, see Persistent storage using Amazon Elastic Block Store .

6.9.3. User-managed encryption

The user-managed encryption feature allows you to provide keys during installation that encrypt
OpenShift Container Platform node root volumes, and enables all managed storage classes to use these
keys to encrypt provisioned storage volumes. You must specify the custom key in the platform.
<cloud_type>.defaultMachinePlatform field in the install-config YAML file.

This features supports the following storage types:

Amazon Web Services (AWS) Elastic Block storage (EBS)

Microsoft Azure Disk storage

Google Cloud Platform (GCP) persistent disk (PD) storage

NOTE

If there is no encrypted key defined in the storage class, only set encrypted: "true" in the
storage class. The AWS EBS CSI driver uses the AWS managed alias/aws/ebs, which is
created by Amazon EBS automatically in each region by default to encrypt provisioned
storage volumes. In addition, the managed storage classes all have the encrypted: "true"
setting.

For information about installing with user-managed encryption for Amazon EBS, see Installation
configuration parameters.

Additional resources

Persistent storage using Amazon Elastic Block Store

Configuring CSI volumes

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

151

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/installing_on_aws/#installation-configuration-parameters_installing-aws-customizations

6.10. AWS ELASTIC FILE SERVICE CSI DRIVER OPERATOR

6.10.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) using the Container
Storage Interface (CSI) driver for AWS Elastic File Service (EFS).

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
CSI Operator and driver.

After installing the AWS EFS CSI Driver Operator, OpenShift Container Platform installs the AWS EFS
CSI Operator and the AWS EFS CSI driver by default in the openshift-cluster-csi-drivers namespace.
This allows the AWS EFS CSI Driver Operator to create CSI-provisioned PVs that mount to AWS EFS
assets.

The AWS EFS CSI Driver Operator , after being installed, does not create a storage class by
default to use to create persistent volume claims (PVCs). However, you can manually create the
AWS EFS StorageClass. The AWS EFS CSI Driver Operator supports dynamic volume
provisioning by allowing storage volumes to be created on-demand. This eliminates the need for
cluster administrators to pre-provision storage.

The AWS EFS CSI driver enables you to create and mount AWS EFS PVs.

NOTE

AWS EFS only supports regional volumes, not zonal volumes.

6.10.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

6.10.3. Setting up the AWS EFS CSI Driver Operator

1. Install the AWS EFS CSI Driver Operator (a Red Hat operator).

2. Install the AWS EFS CSI Driver.

6.10.3.1. Installing the AWS EFS CSI Driver Operator

The AWS EFS CSI Driver Operator (a Red Hat operator) is not installed in OpenShift Container Platform
by default. Use the following procedure to install and configure the AWS EFS CSI Driver Operator in
your cluster.

Prerequisites

Access to the OpenShift Container Platform web console.

Procedure

To install the AWS EFS CSI Driver Operator from the web console:

OpenShift Container Platform 4.13 Storage

152

https://github.com/openshift/aws-efs-csi-driver-operator
https://github.com/openshift/aws-efs-csi-driver-operator

1. Log in to the web console.

2. Install the AWS EFS CSI Operator:

a. Click Operators → OperatorHub.

b. Locate the AWS EFS CSI Operator by typing AWS EFS CSI in the filter box.

c. Click the AWS EFS CSI Driver Operator button.

IMPORTANT

Be sure to select the AWS EFS CSI Driver Operator and not the AWS EFS
Operator. The AWS EFS Operator is a community Operator and is not
supported by Red Hat.

d. On the AWS EFS CSI Driver Operator page, click Install.

e. On the Install Operator page, ensure that:

All namespaces on the cluster (default) is selected.

Installed Namespace is set to openshift-cluster-csi-drivers.

f. Click Install.
After the installation finishes, the AWS EFS CSI Operator is listed in the Installed
Operators section of the web console.

Next steps

If you are using AWS EFS with AWS Secure Token Service (STS), you must configure the AWS
EFS CSI Driver with STS. For more information, see Configuring AWS EFS CSI Driver with STS .

6.10.3.2. Configuring AWS EFS CSI Driver Operator with Security Token Service

This procedure explains how to configure the AWS EFS CSI Driver Operator with OpenShift Container
Platform on AWS Security Token Service (STS).

Perform this procedure before you have installed the AWS EFS CSI Operator, but not yet installed the
AWS EFS CSI driver as part of the Installing the AWS EFS CSI Driver Operator procedure.

IMPORTANT

If you perform this procedure after installing the driver and creating volumes, your
volumes will fail to mount into pods.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

AWS account credentials

You have installed the AWS EFS CSI Operator.

Procedure

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

153

To configure the AWS EFS CSI Driver Operator with STS:

1. Extract the CCO utility (ccoctl) binary from the OpenShift Container Platform release image,
which you used to install the cluster with STS. For more information, see "Configuring the Cloud
Credential Operator utility".

2. Create and save an EFS CredentialsRequest YAML file, such as shown in the following
example, and then place it in the credrequests directory:

Example

3. Run the ccoctl tool to generate a new IAM role in AWS, and create a YAML file for it in the local
file system (<path_to_ccoctl_output_dir>/manifests/openshift-cluster-csi-drivers-aws-efs-
cloud-credentials-credentials.yaml).

name=<name> is the name used to tag any cloud resources that are created for tracking.

region=<aws_region> is the AWS region where cloud resources are created.

dir=<path_to_directory_with_list_of_credentials_requests>/credrequests is the
directory containing the EFS CredentialsRequest file in previous step.

<aws_account_id> is the AWS account ID.

Example

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: openshift-aws-efs-csi-driver
 namespace: openshift-cloud-credential-operator
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - action:
 - elasticfilesystem:*
 effect: Allow
 resource: '*'
 secretRef:
 name: aws-efs-cloud-credentials
 namespace: openshift-cluster-csi-drivers
 serviceAccountNames:
 - aws-efs-csi-driver-operator
 - aws-efs-csi-driver-controller-sa

$ ccoctl aws create-iam-roles --name=<name> --region=<aws_region> --credentials-
requests-dir=<path_to_directory_with_list_of_credentials_requests>/credrequests --identity-
provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.
<aws_region>.amazonaws.com

$ ccoctl aws create-iam-roles --name my-aws-efs --credentials-requests-dir credrequests
--identity-provider-arn arn:aws:iam::123456789012:oidc-provider/my-aws-efs-oidc.s3.us-
east-2.amazonaws.com

OpenShift Container Platform 4.13 Storage

154

Example output

4. Create the AWS EFS cloud credentials and secret:

Example

Example output

Additional resources

Installing the AWS EFS CSI Driver Operator

Configuring the Cloud Credential Operator utility

Installing the AWS EFS CSI Driver

6.10.3.3. Installing the AWS EFS CSI Driver

Prerequisites

Access to the OpenShift Container Platform web console.

Procedure

1. Click Administration → CustomResourceDefinitions → ClusterCSIDriver.

2. On the Instances tab, click Create ClusterCSIDriver.

3. Use the following YAML file:

2022/03/21 06:24:44 Role arn:aws:iam::123456789012:role/my-aws-efs -openshift-
cluster-csi-drivers-aws-efs-cloud- created
2022/03/21 06:24:44 Saved credentials configuration to: /manifests/openshift-cluster-csi-
drivers-aws-efs-cloud-credentials-credentials.yaml
2022/03/21 06:24:45 Updated Role policy for Role my-aws-efs-openshift-cluster-csi-
drivers-aws-efs-cloud-

$ oc create -f <path_to_ccoctl_output_dir>/manifests/openshift-cluster-csi-drivers-aws-efs-
cloud-credentials-credentials.yaml

$ oc create -f /manifests/openshift-cluster-csi-drivers-aws-efs-cloud-credentials-
credentials.yaml

secret/aws-efs-cloud-credentials created

apiVersion: operator.openshift.io/v1
kind: ClusterCSIDriver
metadata:
 name: efs.csi.aws.com
spec:
 managementState: Managed

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

155

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/authentication_and_authorization/#cco-ccoctl-configuring_cco-mode-sts

4. Click Create.

5. Wait for the following Conditions to change to a "True" status:

AWSEFSDriverNodeServiceControllerAvailable

AWSEFSDriverControllerServiceControllerAvailable

6.10.4. Creating the AWS EFS storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

The AWS EFS CSI Driver Operator (a Red Hat operator) , after being installed, does not create a storage
class by default. However, you can manually create the AWS EFS storage class.

6.10.4.1. Creating the AWS EFS storage class using the console

Procedure

1. In the OpenShift Container Platform console, click Storage → StorageClasses.

2. On the StorageClasses page, click Create StorageClass.

3. On the StorageClass page, perform the following steps:

a. Enter a name to reference the storage class.

b. Optional: Enter the description.

c. Select the reclaim policy.

d. Select efs.csi.aws.com from the Provisioner drop-down list.

e. Optional: Set the configuration parameters for the selected provisioner.

4. Click Create.

6.10.4.2. Creating the AWS EFS storage class using the CLI

Procedure

Create a StorageClass object:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: efs-sc
provisioner: efs.csi.aws.com
parameters:
 provisioningMode: efs-ap 1
 fileSystemId: fs-a5324911 2
 directoryPerms: "700" 3

OpenShift Container Platform 4.13 Storage

156

https://github.com/openshift/aws-efs-csi-driver-operator

1

2

3

4 5

6

provisioningMode must be efs-ap to enable dynamic provisioning.

fileSystemId must be the ID of the EFS volume created manually.

directoryPerms is the default permission of the root directory of the volume. In this
example, the volume is accessible only by the owner.

gidRangeStart and gidRangeEnd set the range of POSIX Group IDs (GIDs) that are used
to set the GID of the AWS access point. If not specified, the default range is 50000-
7000000. Each provisioned volume, and thus AWS access point, is assigned a unique GID
from this range.

basePath is the directory on the EFS volume that is used to create dynamically
provisioned volumes. In this case, a PV is provisioned as “/dynamic_provisioning/<random
uuid>” on the EFS volume. Only the subdirectory is mounted to pods that use the PV.

NOTE

A cluster admin can create several StorageClass objects, each using a different
EFS volume.

6.10.5. AWS EFS CSI cross account support

Cross account support allows you to have an OpenShift Container Platform cluster in one AWS account
and mount your file system in another AWS account using the AWS Elastic File System (EFS) Container
Storage Interface (CSI) driver.

NOTE

Both the OpenShift Container Platform cluster and EFS file system must be in the same
region.

Prerequisites

Access to an OpenShift Container Platform cluster with administrator rights

Two valid AWS accounts

Procedure

The following procedure demonstrates how to set up:

OpenShift Container Platform cluster in AWS account A

Mount an AWS EFS file system in account B

To use AWS EFS across accounts:

1. Install OpenShift Container Platform cluster with AWS account A and install the EFS CSI Driver
Operator.

 gidRangeStart: "1000" 4
 gidRangeEnd: "2000" 5
 basePath: "/dynamic_provisioning" 6

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

157

2. Create an EFS volume in AWS account B:

a. Create a virtual private cloud (VPC) called, for example, "my-efs-vpc” with CIDR, for
example, “172.20.0.0/16” and subnet for the AWS EFS volume.

b. On the AWS console, go to https://console.aws.amazon.com/efs.

c. Click Create new filesystem:

i. Create a filesystem named, for example, "my-filesystem”.

ii. Select the VPC created earlier (“my-efs-vpc”).

iii. Accept the default for the remaining settings.

d. Ensure that the volume and Mount Targets have been created:

i. Check https://console.aws.amazon.com/efs#/file-systems.

ii. Click your volume, and on the Network tab wait for all Mount Targets to be available
(approximately 1-2 minutes).

e. On the Network tab, copy the Security Group ID. You will need it for the next step.

3. Configure networking access to the AWS EFS volume on AWS account B:

a. Go to https://console.aws.amazon.com/ec2/v2/home#SecurityGroups.

b. Find the Security Group used by the AWS EFS volume by filtering for the group ID copied
earlier.

c. On the Inbound rules tab, click Edit inbound rules, and then add a new rule to allow
OpenShift Container Platform nodes to access the AWS EFS volumes (that is, use NFS
ports from the cluster):

Type: NFS

Protocol: TCP

Port range: 2049

Source: Custom/IP address range of your OpenShift Container Platform cluster nodes
(for example, “10.0.0.0/16”)

d. Save the rule.

NOTE

If you encounter mounting issues, re-check the port number, IP address
range, and verify that the AWS EFS volume uses the expected security
group.

4. Create VPC peering between the OpenShift Container Platform cluster VPC in AWS account A
and the AWS EFS VPC in AWS account B:
Ensure the two VPCs are using different network CIDRs, and after creating the VPC peering,
add routes in each VPC to connect the two VPC networks.

OpenShift Container Platform 4.13 Storage

158

https://console.aws.amazon.com/efs
https://console.aws.amazon.com/efs#/file-systems
https://console.aws.amazon.com/ec2/v2/home#SecurityGroups

a. Create a peering connection called, for example, “my-efs-crossaccount-peering-
connection” in account B. For the local VPC ID, use the EFS-located VPC. To peer with the
VPC for account A, for the VPC ID use the OpenShift Container Platform cluster VPC ID.

b. Accept the peer connection in AWS account A.

c. Modify the route table of each subnet (EFS-volume used subnets) in AWS account B:

i. On the left pane, under Virtual private cloud, click the down arrow to expand the
available options.

ii. Under Virtual private cloud, click Route tables".

iii. Click the Routes tab.

iv. Under Destination, enter 10.0.0.0/16.

v. Under Target, use the peer connection type point from the created peer connection.

d. Modify the route table of each subnet (OpenShift Container Platform cluster nodes used
subnets) in AWS account A:

i. On the left pane, under Virtual private cloud, click the down arrow to expand the
available options.

ii. Under Virtual private cloud, click Route tables".

iii. Click the Routes tab.

iv. Under Destination, enter the CIDR for the VPC in account B, which for this example is
172.20.0.0/16.

v. Under Target, use the peer connection type point from the created peer connection.

5. Create an IAM role, for example, “my-efs-acrossaccount-role” in AWS account B, which has a
trust relationship with AWS account A, and add an inline AWS EFS policy with permissions to call
“my-efs-acrossaccount-driver-policy”.
This role is used by the CSI driver’s controller service running on the OpenShift Container
Platform cluster in AWS account A to determine the mount targets for your file system in AWS
account B.

Trust relationships trusted entity trusted account A configuration on my-efs-acrossaccount-
role in account B

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::301721915996:root"
 },
 "Action": "sts:AssumeRole",
 "Condition": {}
 }
]
}

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

159

6. In AWS account A, attach an inline policy to the IAM role of the AWS EFS CSI driver’s controller
service account with the necessary permissions to perform Security Token Service (STS)
assume role on the IAM role created earlier.

my-cross-account-assume-policy policy attached to my-efs-acrossaccount-role in account B

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::589722580343:role/my-efs-acrossaccount-role"
 }
}

my-efs-acrossaccount-driver-policy attached to my-efs-acrossaccount-role in account B

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeSubnets"
],
 "Resource": "*"
 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": [
 "elasticfilesystem:DescribeMountTargets",
 "elasticfilesystem:DeleteAccessPoint",
 "elasticfilesystem:ClientMount",
 "elasticfilesystem:DescribeAccessPoints",
 "elasticfilesystem:ClientWrite",
 "elasticfilesystem:ClientRootAccess",
 "elasticfilesystem:DescribeFileSystems",
 "elasticfilesystem:CreateAccessPoint"
],
 "Resource": [
 "arn:aws:elasticfilesystem:*:589722580343:access-point/*",
 "arn:aws:elasticfilesystem:*:589722580343:file-system/*"
]
 }
]
}

my-cross-account-assume-policy policy attached to Openshift cluster efs csi driver user in
account A

{
 "Version": "2012-10-17",

OpenShift Container Platform 4.13 Storage

160

7. In AWS account A, attach the AWS-managed policy
“AmazonElasticFileSystemClientFullAccess” to OpenShift Container Platform cluster master
role. The role name is in the form <clusterID>-master-role (for example, my-0120ef-czjrl-
master-role).

8. Create a Kubernetes secret with awsRoleArn as the key and the role created earlier as the
value:

Since the driver controller needs to get the cross account role information from the secret, you
need to add the secret role binding to the AWS EFS CSI driver controller ServiceAccount (SA):

9. Create a filesystem policy for the file system (AWS EFS volume) in account B, which allows
AWS account A to perform a mount on it.

This step is not mandatory, but can be safer for AWS EFS volume usage.

 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::589722580343:role/my-efs-acrossaccount-role"
 }
}

$ oc -n openshift-cluster-csi-drivers create secret generic my-efs-cross-account --from-
literal=awsRoleArn='arn:aws:iam::589722580343:role/my-efs-acrossaccount-role'

$ oc -n openshift-cluster-csi-drivers create role access-secrets --verb=get,list,watch --
resource=secrets

$ oc -n openshift-cluster-csi-drivers create rolebinding --role=access-secrets default-to-
secrets --serviceaccount=openshift-cluster-csi-drivers:aws-efs-csi-driver-controller-sa

EFS volume filesystem policy in account B
{
 "Version": "2012-10-17",
 "Id": "efs-policy-wizard-8089bf4a-9787-40f0-958e-bc2363012ace",
 "Statement": [
 {
 "Sid": "efs-statement-bd285549-cfa2-4f8b-861e-c372399fd238",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "elasticfilesystem:ClientRootAccess",
 "elasticfilesystem:ClientWrite",
 "elasticfilesystem:ClientMount"
],
 "Resource": "arn:aws:elasticfilesystem:us-east-2:589722580343:file-system/fs-
091066a9bf9becbd5",
 "Condition": {
 "Bool": {
 "elasticfilesystem:AccessedViaMountTarget": "true"
 }

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

161

10. Create an AWS EFS volume storage class using a similar configuration to the following:

6.10.6. Creating and configuring access to EFS volumes in AWS

This procedure explains how to create and configure EFS volumes in AWS so that you can use them in
OpenShift Container Platform.

Prerequisites

AWS account credentials

Procedure

To create and configure access to an EFS volume in AWS:

1. On the AWS console, open https://console.aws.amazon.com/efs.

 }
 },
 {
 "Sid": "efs-statement-03646e39-d80f-4daf-b396-281be1e43bab",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::589722580343:role/my-efs-acrossaccount-role"
 },
 "Action": [
 "elasticfilesystem:ClientRootAccess",
 "elasticfilesystem:ClientWrite",
 "elasticfilesystem:ClientMount"
],
 "Resource": "arn:aws:elasticfilesystem:us-east-2:589722580343:file-system/fs-
091066a9bf9becbd5"
 }
]
}

The cross account efs volume storageClass
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: efs-cross-account-mount-sc
provisioner: efs.csi.aws.com
mountOptions:
 - tls
parameters:
 provisioningMode: efs-ap
 fileSystemId: fs-00f6c3ae6f06388bb
 directoryPerms: "700"
 gidRangeStart: "1000"
 gidRangeEnd: "2000"
 basePath: "/account-a-data"
 csi.storage.k8s.io/provisioner-secret-name: my-efs-cross-account
 csi.storage.k8s.io/provisioner-secret-namespace: openshift-cluster-csi-drivers
volumeBindingMode: Immediate

OpenShift Container Platform 4.13 Storage

162

https://console.aws.amazon.com/efs

2. Click Create file system:

Enter a name for the file system.

For Virtual Private Cloud (VPC), select your OpenShift Container Platform’s' virtual
private cloud (VPC).

Accept default settings for all other selections.

3. Wait for the volume and mount targets to finish being fully created:

a. Go to https://console.aws.amazon.com/efs#/file-systems.

b. Click your volume, and on the Network tab wait for all mount targets to become available
(~1-2 minutes).

4. On the Network tab, copy the Security Group ID (you will need this in the next step).

5. Go to https://console.aws.amazon.com/ec2/v2/home#SecurityGroups, and find the Security
Group used by the EFS volume.

6. On the Inbound rules tab, click Edit inbound rules, and then add a new rule with the following
settings to allow OpenShift Container Platform nodes to access EFS volumes :

Type: NFS

Protocol: TCP

Port range: 2049

Source: Custom/IP address range of your nodes (for example: “10.0.0.0/16”)
This step allows OpenShift Container Platform to use NFS ports from the cluster.

7. Save the rule.

6.10.7. Dynamic provisioning for Amazon Elastic File Storage

The AWS EFS CSI driver supports a different form of dynamic provisioning than other CSI drivers. It
provisions new PVs as subdirectories of a pre-existing EFS volume. The PVs are independent of each
other. However, they all share the same EFS volume. When the volume is deleted, all PVs provisioned
out of it are deleted too. The EFS CSI driver creates an AWS Access Point for each such subdirectory.
Due to AWS AccessPoint limits, you can only dynamically provision 1000 PVs from a single
StorageClass/EFS volume.

IMPORTANT

Note that PVC.spec.resources is not enforced by EFS.

In the example below, you request 5 GiB of space. However, the created PV is limitless
and can store any amount of data (like petabytes). A broken application, or even a rogue
application, can cause significant expenses when it stores too much data on the volume.

Using monitoring of EFS volume sizes in AWS is strongly recommended.

Prerequisites

You have created Amazon Elastic File Storage (Amazon EFS) volumes.

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

163

https://console.aws.amazon.com/efs#/file-systems
https://console.aws.amazon.com/ec2/v2/home#SecurityGroups
https://github.com/openshift/aws-efs-csi-driver

You have created the AWS EFS storage class.

Procedure

To enable dynamic provisioning:

Create a PVC (or StatefulSet or Template) as usual, referring to the StorageClass created
previously.

If you have problems setting up dynamic provisioning, see AWS EFS troubleshooting.

Additional resources

Creating and configuring access to AWS EFS volume(s)

Creating the AWS EFS storage class

6.10.8. Creating static PVs with Amazon Elastic File Storage

It is possible to use an Amazon Elastic File Storage (Amazon EFS) volume as a single PV without any
dynamic provisioning. The whole volume is mounted to pods.

Prerequisites

You have created Amazon EFS volumes.

Procedure

Create the PV using the following YAML file:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: test
spec:
 storageClassName: efs-sc
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 5Gi

apiVersion: v1
kind: PersistentVolume
metadata:
 name: efs-pv
spec:
 capacity: 1
 storage: 5Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteMany
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 csi:

OpenShift Container Platform 4.13 Storage

164

1

2

3

spec.capacity does not have any meaning and is ignored by the CSI driver. It is used only
when binding to a PVC. Applications can store any amount of data to the volume.

volumeHandle must be the same ID as the EFS volume you created in AWS. If you are
providing your own access point, volumeHandle should be <EFS volume ID>::<access
point ID>. For example: fs-6e633ada::fsap-081a1d293f0004630.

If desired, you can disable encryption in transit. Encryption is enabled by default.

If you have problems setting up static PVs, see AWS EFS troubleshooting.

6.10.9. Amazon Elastic File Storage security

The following information is important for Amazon Elastic File Storage (Amazon EFS) security.

When using access points, for example, by using dynamic provisioning as described earlier, Amazon
automatically replaces GIDs on files with the GID of the access point. In addition, EFS considers the user
ID, group ID, and secondary group IDs of the access point when evaluating file system permissions. EFS
ignores the NFS client’s IDs. For more information about access points, see
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html.

As a consequence, EFS volumes silently ignore FSGroup; OpenShift Container Platform is not able to
replace the GIDs of files on the volume with FSGroup. Any pod that can access a mounted EFS access
point can access any file on it.

Unrelated to this, encryption in transit is enabled by default. For more information, see
https://docs.aws.amazon.com/efs/latest/ug/encryption-in-transit.html.

6.10.10. Amazon Elastic File Storage troubleshooting

The following information provides guidance on how to troubleshoot issues with Amazon Elastic File
Storage (Amazon EFS):

The AWS EFS Operator and CSI driver run in namespace openshift-cluster-csi-drivers.

To initiate gathering of logs of the AWS EFS Operator and CSI driver, run the following
command:

 driver: efs.csi.aws.com
 volumeHandle: fs-ae66151a 2
 volumeAttributes:
 encryptInTransit: "false" 3

$ oc adm must-gather
[must-gather] OUT Using must-gather plugin-in image: quay.io/openshift-release-
dev/ocp-v4.0-art-
dev@sha256:125f183d13601537ff15b3239df95d47f0a604da2847b561151fedd699f5e3a5
[must-gather] OUT namespace/openshift-must-gather-xm4wq created
[must-gather] OUT clusterrolebinding.rbac.authorization.k8s.io/must-gather-2bd8x
created
[must-gather] OUT pod for plug-in image quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:125f183d13601537ff15b3239df95d47f0a604da2847b561151fedd699f5e3a5
created

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

165

https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/efs/latest/ug/encryption-in-transit.html

1

To show AWS EFS Operator errors, view the ClusterCSIDriver status:

If a volume cannot be mounted to a pod (as shown in the output of the following command):

Warning message indicating volume not mounted.

This error is frequently caused by AWS dropping packets between an OpenShift Container
Platform node and Amazon EFS.

Check that the following are correct:

AWS firewall and Security Groups

Networking: port number and IP addresses

6.10.11. Uninstalling the AWS EFS CSI Driver Operator

All EFS PVs are inaccessible after uninstalling the AWS EFS CSI Driver Operator (a Red Hat operator).

Prerequisites

Access to the OpenShift Container Platform web console.

Procedure

To uninstall the AWS EFS CSI Driver Operator from the web console:

1. Log in to the web console.

2. Stop all applications that use AWS EFS PVs.

3. Delete all AWS EFS PVs:

a. Click Storage → PersistentVolumeClaims.

b. Select each PVC that is in use by the AWS EFS CSI Driver Operator, click the drop-down
menu on the far right of the PVC, and then click Delete PersistentVolumeClaims.

4. Uninstall the AWS EFS CSI driver :

NOTE

$ oc get clustercsidriver efs.csi.aws.com -o yaml

$ oc describe pod
...
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 2m13s default-scheduler Successfully assigned default/efs-app to
ip-10-0-135-94.ec2.internal
 Warning FailedMount 13s kubelet MountVolume.SetUp failed for volume "pvc-
d7c097e6-67ec-4fae-b968-7e7056796449" : rpc error: code = DeadlineExceeded desc =
context deadline exceeded 1
 Warning FailedMount 10s kubelet Unable to attach or mount volumes: unmounted
volumes=[persistent-storage], unattached volumes=[persistent-storage kube-api-access-
9j477]: timed out waiting for the condition

OpenShift Container Platform 4.13 Storage

166

https://github.com/openshift/aws-efs-csi-driver-operator
https://github.com/openshift/aws-efs-csi-driver

NOTE

Before you can uninstall the Operator, you must remove the CSI driver first.

a. Click Administration → CustomResourceDefinitions → ClusterCSIDriver.

b. On the Instances tab, for efs.csi.aws.com, on the far left side, click the drop-down menu,
and then click Delete ClusterCSIDriver.

c. When prompted, click Delete.

5. Uninstall the AWS EFS CSI Operator:

a. Click Operators → Installed Operators.

b. On the Installed Operators page, scroll or type AWS EFS CSI into the Search by name box
to find the Operator, and then click it.

c. On the upper, right of the Installed Operators > Operator details page, click Actions →
Uninstall Operator.

d. When prompted on the Uninstall Operator window, click the Uninstall button to remove
the Operator from the namespace. Any applications deployed by the Operator on the
cluster need to be cleaned up manually.
After uninstalling, the AWS EFS CSI Driver Operator is no longer listed in the Installed
Operators section of the web console.

NOTE

Before you can destroy a cluster (openshift-install destroy cluster), you must delete
the EFS volume in AWS. An OpenShift Container Platform cluster cannot be destroyed
when there is an EFS volume that uses the cluster’s VPC. Amazon does not allow deletion
of such a VPC.

6.10.12. Additional resources

Configuring CSI volumes

6.11. AZURE DISK CSI DRIVER OPERATOR

6.11.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) using the Container
Storage Interface (CSI) driver for Microsoft Azure Disk Storage.

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
CSI Operator and driver.

To create CSI-provisioned PVs that mount to Azure Disk storage assets, OpenShift Container Platform
installs the Azure Disk CSI Driver Operator and the Azure Disk CSI driver by default in the openshift-
cluster-csi-drivers namespace.

The Azure Disk CSI Driver Operator provides a storage class named managed-csi that you can
use to create persistent volume claims (PVCs). The Azure Disk CSI Driver Operator supports

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

167

dynamic volume provisioning by allowing storage volumes to be created on-demand, eliminating
the need for cluster administrators to pre-provision storage. You can disable this default
storage class if desired (see Managing the default storage class).

The Azure Disk CSI driver enables you to create and mount Azure Disk PVs.

6.11.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

NOTE

OpenShift Container Platform provides automatic migration for the Azure Disk in-tree
volume plugin to its equivalent CSI driver. For more information, see CSI automatic
migration.

6.11.3. Creating a storage class with storage account type

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage
class, you can obtain dynamically provisioned persistent volumes.

When creating a storage class, you can designate the storage account type. This corresponds to your
Azure storage account SKU tier. Valid options are Standard_LRS, Premium_LRS, StandardSSD_LRS,
UltraSSD_LRS, Premium_ZRS, StandardSSD_ZRS, and PremiumV2_LRS. For information about
finding your Azure SKU tier, see SKU Types.

Both ZRS and PremiumV2_LRS have some region limitations. For information about these limitations,
see ZRS limitations and Premium_LRS limitations.

Prerequisites

Access to an OpenShift Container Platform cluster with administrator rights

Procedure

Use the following steps to create a storage class with a storage account type.

1. Create a storage class designating the storage account type using a YAML file similar to the
following:

$ oc create -f - << EOF
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: <storage-class> 1
provisioner: disk.csi.azure.com
parameters:
 skuName: <storage-class-account-type> 2
reclaimPolicy: Delete

OpenShift Container Platform 4.13 Storage

168

https://learn.microsoft.com/en-us/rest/api/storagerp/srp_sku_types
https://learn.microsoft.com/en-us/azure/virtual-machines/disks-deploy-zrs?tabs=portal#limitations
https://learn.microsoft.com/en-us/azure/virtual-machines/disks-deploy-premium-v2?tabs=azure-cli#limitations

1

2

1

Storage class name.

Storage account type. This corresponds to your Azure storage account SKU
tier:`Standard_LRS`, Premium_LRS, StandardSSD_LRS, UltraSSD_LRS,
Premium_ZRS, StandardSSD_ZRS, PremiumV2_LRS.

NOTE

For PremiumV2_LRS, specify cachingMode: None in storageclass.parameters.

2. Ensure that the storage class was created by listing the storage classes:

Example output

New storage class with storage account type.

6.11.4. User-managed encryption

The user-managed encryption feature allows you to provide keys during installation that encrypt
OpenShift Container Platform node root volumes, and enables all managed storage classes to use these
keys to encrypt provisioned storage volumes. You must specify the custom key in the platform.
<cloud_type>.defaultMachinePlatform field in the install-config YAML file.

This features supports the following storage types:

Amazon Web Services (AWS) Elastic Block storage (EBS)

Microsoft Azure Disk storage

Google Cloud Platform (GCP) persistent disk (PD) storage

NOTE

If the OS (root) disk is encrypted, and there is no encrypted key defined in the storage
class, Azure Disk CSI driver uses the OS disk encryption key by default to encrypt
provisioned storage volumes.

volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
EOF

$ oc get storageclass

$ oc get storageclass
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE
azurefile-csi file.csi.azure.com Delete Immediate true 68m
managed-csi (default) disk.csi.azure.com Delete WaitForFirstConsumer true
68m
sc-prem-zrs disk.csi.azure.com Delete WaitForFirstConsumer true
4m25s 1

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

169

1

For information about installing with user-managed encryption for Azure, see Enabling user-managed
encryption for Azure.

6.11.5. Machine sets that deploy machines with ultra disks using PVCs

You can create a machine set running on Azure that deploys machines with ultra disks. Ultra disks are
high-performance storage that are intended for use with the most demanding data workloads.

Both the in-tree plugin and CSI driver support using PVCs to enable ultra disks. You can also deploy
machines with ultra disks as data disks without creating a PVC.

Additional resources

Microsoft Azure ultra disks documentation

Machine sets that deploy machines on ultra disks using in-tree PVCs

Machine sets that deploy machines on ultra disks as data disks

6.11.5.1. Creating machines with ultra disks by using machine sets

You can deploy machines with ultra disks on Azure by editing your machine set YAML file.

Prerequisites

Have an existing Microsoft Azure cluster.

Procedure

1. Copy an existing Azure MachineSet custom resource (CR) and edit it by running the following
command:

where <machine_set_name> is the machine set that you want to provision machines with ultra
disks.

2. Add the following lines in the positions indicated:

Specify a label to use to select a node that is created by this machine set. This procedure
uses disk.ultrassd for this value.

$ oc edit machineset <machine_set_name>

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
spec:
 template:
 spec:
 metadata:
 labels:
 disk: ultrassd 1
 providerSpec:
 value:
 ultraSSDCapability: Enabled 2

OpenShift Container Platform 4.13 Storage

170

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/installing_on_azure/#enabling-user-managed-encryption-on-azure
https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types#ultra-disks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/machine_management/#machineset-azure-ultra-disk_creating-machineset-azure

2

1

2

3

4

5

1

2

These lines enable the use of ultra disks.

3. Create a machine set using the updated configuration by running the following command:

4. Create a storage class that contains the following YAML definition:

Specify the name of the storage class. This procedure uses ultra-disk-sc for this value.

Specify the number of IOPS for the storage class.

Specify the throughput in MBps for the storage class.

For Azure Kubernetes Service (AKS) version 1.21 or later, use disk.csi.azure.com. For
earlier versions of AKS, use kubernetes.io/azure-disk.

Optional: Specify this parameter to wait for the creation of the pod that will use the disk.

5. Create a persistent volume claim (PVC) to reference the ultra-disk-sc storage class that
contains the following YAML definition:

Specify the name of the PVC. This procedure uses ultra-disk for this value.

This PVC references the ultra-disk-sc storage class.

$ oc create -f <machine_set_name>.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: ultra-disk-sc 1
parameters:
 cachingMode: None
 diskIopsReadWrite: "2000" 2
 diskMbpsReadWrite: "320" 3
 kind: managed
 skuname: UltraSSD_LRS
provisioner: disk.csi.azure.com 4
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer 5

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: ultra-disk 1
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: ultra-disk-sc 2
 resources:
 requests:
 storage: 4Gi 3

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

171

3

1

2

Specify the size for the storage class. The minimum value is 4Gi.

6. Create a pod that contains the following YAML definition:

Specify the label of the machine set that enables the use of ultra disks. This procedure
uses disk.ultrassd for this value.

This pod references the ultra-disk PVC.

Verification

1. Validate that the machines are created by running the following command:

The machines should be in the Running state.

2. For a machine that is running and has a node attached, validate the partition by running the
following command:

In this command, oc debug node/<node_name> starts a debugging shell on the node
<node_name> and passes a command with --. The passed command chroot /host provides
access to the underlying host OS binaries, and lsblk shows the block devices that are attached
to the host OS machine.

Next steps

To use an ultra disk from within a pod, create a workload that uses the mount point. Create a
YAML file similar to the following example:

apiVersion: v1
kind: Pod
metadata:
 name: nginx-ultra
spec:
 nodeSelector:
 disk: ultrassd 1
 containers:
 - name: nginx-ultra
 image: alpine:latest
 command:
 - "sleep"
 - "infinity"
 volumeMounts:
 - mountPath: "/mnt/azure"
 name: volume
 volumes:
 - name: volume
 persistentVolumeClaim:
 claimName: ultra-disk 2

$ oc get machines

$ oc debug node/<node_name> -- chroot /host lsblk

OpenShift Container Platform 4.13 Storage

172

6.11.5.2. Troubleshooting resources for machine sets that enable ultra disks

Use the information in this section to understand and recover from issues you might encounter.

6.11.5.2.1. Unable to mount a persistent volume claim backed by an ultra disk

If there is an issue mounting a persistent volume claim backed by an ultra disk, the pod becomes stuck in
the ContainerCreating state and an alert is triggered.

For example, if the additionalCapabilities.ultraSSDEnabled parameter is not set on the machine that
backs the node that hosts the pod, the following error message appears:

To resolve this issue, describe the pod by running the following command:

6.11.6. Additional resources

Persistent storage using Azure Disk

Configuring CSI volumes

6.12. AZURE FILE CSI DRIVER OPERATOR

6.12.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) by using the
Container Storage Interface (CSI) driver for Microsoft Azure File Storage.

apiVersion: v1
kind: Pod
metadata:
 name: ssd-benchmark1
spec:
 containers:
 - name: ssd-benchmark1
 image: nginx
 ports:
 - containerPort: 80
 name: "http-server"
 volumeMounts:
 - name: lun0p1
 mountPath: "/tmp"
 volumes:
 - name: lun0p1
 hostPath:
 path: /var/lib/lun0p1
 type: DirectoryOrCreate
 nodeSelector:
 disktype: ultrassd

StorageAccountType UltraSSD_LRS can be used only when additionalCapabilities.ultraSSDEnabled
is set.

$ oc -n <stuck_pod_namespace> describe pod <stuck_pod_name>

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

173

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
CSI Operator and driver.

To create CSI-provisioned PVs that mount to Azure File storage assets, OpenShift Container Platform
installs the Azure File CSI Driver Operator and the Azure File CSI driver by default in the openshift-
cluster-csi-drivers namespace.

The Azure File CSI Driver Operator provides a storage class that is named azurefile-csi that you
can use to create persistent volume claims (PVCs). You can disable this default storage class if
desired (see Managing the default storage class).

The Azure File CSI driver enables you to create and mount Azure File PVs. The Azure File CSI
driver supports dynamic volume provisioning by allowing storage volumes to be created on-
demand, eliminating the need for cluster administrators to pre-provision storage.

Azure File CSI Driver Operator does not support:

Virtual hard disks (VHD)

Network File System (NFS): OpenShift Container Platform does not deploy a NFS-backed
storage class.

For more information about supported features, see Supported CSI drivers and features .

6.12.2. NFS support

OpenShift Container Platform supports the Azure File Container Storage Interface (CSI) Driver
Operator with Network File System (NFS) with the following restrictions:

Creating pods with Azure File NFS volumes that are scheduled to the control plane node causes
the mount to be denied.
To work around this issue: If your control plane nodes are schedulable, and the pods can run on
worker nodes, use nodeSelector or Affinity to schedule the pod in worker nodes.

FS Group policy behavior:

IMPORTANT

Azure File CSI with NFS does not honor the fsGroupChangePolicy requested by
pods. Azure File CSI with NFS applies a default OnRootMismatch FS Group
policy regardless of the policy requested by the pod.

The Azure File CSI Operator does not automatically create a storage class for NFS. You must
create it manually. Use a file similar to the following:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: <storage-class-name> 1
provisioner: file.csi.azure.com 2
parameters:
 protocol: nfs 3
 skuName: Premium_LRS # available values: Premium_LRS, Premium_ZRS
mountOptions:
 - nconnect=4

OpenShift Container Platform 4.13 Storage

174

1

2

3

Storage class name.

Specifies the Azure File CSI provider.

Specifies NFS as the storage backend protocol.

6.12.3. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

Additional resources

Persistent storage using Azure File

Configuring CSI volumes

6.13. AZURE STACK HUB CSI DRIVER OPERATOR

6.13.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) using the Container
Storage Interface (CSI) driver for Azure Stack Hub Storage. Azure Stack Hub, which is part of the Azure
Stack portfolio, allows you to run apps in an on-premise environment and deliver Azure services in your
datacenter.

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
CSI Operator and driver.

To create CSI-provisioned PVs that mount to Azure Stack Hub storage assets, OpenShift Container
Platform installs the Azure Stack Hub CSI Driver Operator and the Azure Stack Hub CSI driver by default
in the openshift-cluster-csi-drivers namespace.

The Azure Stack Hub CSI Driver Operator provides a storage class (managed-csi), with
"Standard_LRS" as the default storage account type, that you can use to create persistent
volume claims (PVCs). The Azure Stack Hub CSI Driver Operator supports dynamic volume
provisioning by allowing storage volumes to be created on-demand, eliminating the need for
cluster administrators to pre-provision storage.

The Azure Stack Hub CSI driver enables you to create and mount Azure Stack Hub PVs.

6.13.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

175

6.13.3. Additional resources

Configuring CSI volumes

6.14. GCP PD CSI DRIVER OPERATOR

6.14.1. Overview

OpenShift Container Platform can provision persistent volumes (PVs) using the Container Storage
Interface (CSI) driver for Google Cloud Platform (GCP) persistent disk (PD) storage.

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
Container Storage Interface (CSI) Operator and driver.

To create CSI-provisioned persistent volumes (PVs) that mount to GCP PD storage assets, OpenShift
Container Platform installs the GCP PD CSI Driver Operator and the GCP PD CSI driver by default in
the openshift-cluster-csi-drivers namespace.

GCP PD CSI Driver Operator: By default, the Operator provides a storage class that you can
use to create PVCs. You can disable this default storage class if desired (see Managing the
default storage class). You also have the option to create the GCP PD storage class as
described in Persistent storage using GCE Persistent Disk .

GCP PD driver: The driver enables you to create and mount GCP PD PVs.

NOTE

OpenShift Container Platform provides automatic migration for the GCE Persistent Disk
in-tree volume plugin to its equivalent CSI driver. For more information, see CSI
automatic migration.

6.14.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

6.14.3. GCP PD CSI driver storage class parameters

The Google Cloud Platform (GCP) persistent disk (PD) Container Storage Interface (CSI) driver uses
the CSI external-provisioner sidecar as a controller. This is a separate helper container that is deployed
with the CSI driver. The sidecar manages persistent volumes (PVs) by triggering the CreateVolume
operation.

The GCP PD CSI driver uses the csi.storage.k8s.io/fstype parameter key to support dynamic
provisioning. The following table describes all the GCP PD CSI storage class parameters that are
supported by OpenShift Container Platform.

Table 6.5. CreateVolume Parameters

OpenShift Container Platform 4.13 Storage

176

Parameter Values Default Description

type pd-ssd, pd-standard, or
pd-balanced

pd-standard Allows you to choose between
standard PVs or solid-state-drive
PVs.

The driver does not validate the
value, thus all the possible values are
accepted.

replication-
type

none or regional-pd none Allows you to choose between zonal
or regional PVs.

disk-
encryption-
kms-key

Fully qualified resource
identifier for the key to use
to encrypt new disks.

Empty string Uses customer-managed encryption
keys (CMEK) to encrypt new disks.

6.14.4. Creating a custom-encrypted persistent volume

When you create a PersistentVolumeClaim object, OpenShift Container Platform provisions a new
persistent volume (PV) and creates a PersistentVolume object. You can add a custom encryption key in
Google Cloud Platform (GCP) to protect a PV in your cluster by encrypting the newly created PV.

For encryption, the newly attached PV that you create uses customer-managed encryption keys
(CMEK) on a cluster by using a new or existing Google Cloud Key Management Service (KMS) key.

Prerequisites

You are logged in to a running OpenShift Container Platform cluster.

You have created a Cloud KMS key ring and key version.

For more information about CMEK and Cloud KMS resources, see Using customer-managed encryption
keys (CMEK).

Procedure

To create a custom-encrypted PV, complete the following steps:

1. Create a storage class with the Cloud KMS key. The following example enables dynamic
provisioning of encrypted volumes:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: csi-gce-pd-cmek
provisioner: pd.csi.storage.gke.io
volumeBindingMode: "WaitForFirstConsumer"
allowVolumeExpansion: true
parameters:
 type: pd-standard
 disk-encryption-kms-key: projects/<key-project-id>/locations/<location>/keyRings/<key-
ring>/cryptoKeys/<key> 1

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

177

https://cloud.google.com/kubernetes-engine/docs/how-to/using-cmek

1 This field must be the resource identifier for the key that will be used to encrypt new disks.
Values are case-sensitive. For more information about providing key ID values, see
Retrieving a resource’s ID and Getting a Cloud KMS resource ID .

NOTE

You cannot add the disk-encryption-kms-key parameter to an existing storage
class. However, you can delete the storage class and recreate it with the same
name and a different set of parameters. If you do this, the provisioner of the
existing class must be pd.csi.storage.gke.io.

2. Deploy the storage class on your OpenShift Container Platform cluster using the oc command:

Example output

3. Create a file named pvc.yaml that matches the name of your storage class object that you
created in the previous step:

NOTE

If you marked the new storage class as default, you can omit the
storageClassName field.

4. Apply the PVC on your cluster:

$ oc describe storageclass csi-gce-pd-cmek

Name: csi-gce-pd-cmek
IsDefaultClass: No
Annotations: None
Provisioner: pd.csi.storage.gke.io
Parameters: disk-encryption-kms-key=projects/key-project-
id/locations/location/keyRings/ring-name/cryptoKeys/key-name,type=pd-standard
AllowVolumeExpansion: true
MountOptions: none
ReclaimPolicy: Delete
VolumeBindingMode: WaitForFirstConsumer
Events: none

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: podpvc
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: csi-gce-pd-cmek
 resources:
 requests:
 storage: 6Gi

$ oc apply -f pvc.yaml

OpenShift Container Platform 4.13 Storage

178

https://cloud.google.com/kms/docs/resource-hierarchy#retrieve_resource_id
https://cloud.google.com/kms/docs/getting-resource-ids

5. Get the status of your PVC and verify that it is created and bound to a newly provisioned PV:

Example output

NOTE

If your storage class has the volumeBindingMode field set to
WaitForFirstConsumer, you must create a pod to use the PVC before you can
verify it.

Your CMEK-protected PV is now ready to use with your OpenShift Container Platform cluster.

6.14.5. User-managed encryption

The user-managed encryption feature allows you to provide keys during installation that encrypt
OpenShift Container Platform node root volumes, and enables all managed storage classes to use these
keys to encrypt provisioned storage volumes. You must specify the custom key in the platform.
<cloud_type>.defaultMachinePlatform field in the install-config YAML file.

This features supports the following storage types:

Amazon Web Services (AWS) Elastic Block storage (EBS)

Microsoft Azure Disk storage

Google Cloud Platform (GCP) persistent disk (PD) storage

For information about installing with user-managed encryption for GCP PD, see Installation
configuration parameters.

6.14.6. Additional resources

Persistent storage using GCE Persistent Disk

Configuring CSI volumes

6.15. GOOGLE COMPUTE PLATFORM FILESTORE CSI DRIVER
OPERATOR

6.15.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) using the Container
Storage Interface (CSI) driver for Google Compute Platform (GCP) Filestore Storage.

IMPORTANT

$ oc get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
podpvc Bound pvc-e36abf50-84f3-11e8-8538-42010a800002 10Gi RWO csi-
gce-pd-cmek 9s

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

179

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/installing_on_google_cloud/#installation-configuration-parameters_installing-gcp-customizations

IMPORTANT

GCP Filestore CSI Driver Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
CSI Operator and driver.

To create CSI-provisioned PVs that mount to GCP Filestore Storage assets, you install the GCP
Filestore CSI Driver Operator and the GCP Filestore CSI driver in the openshift-cluster-csi-drivers
namespace.

The GCP Filestore CSI Driver Operator does not provide a storage class by default, but you can
create one if needed. The GCP Filestore CSI Driver Operator supports dynamic volume
provisioning by allowing storage volumes to be created on demand, eliminating the need for
cluster administrators to pre-provision storage.

The GCP Filestore CSI driver enables you to create and mount GCP Filestore PVs.

6.15.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

6.15.3. Installing the GCP Filestore CSI Driver Operator

The Google Compute Platform (GCP) Filestore Container Storage Interface (CSI) Driver Operator is
not installed in OpenShift Container Platform by default. Use the following procedure to install the GCP
Filestore CSI Driver Operator in your cluster.

Prerequisites

Access to the OpenShift Container Platform web console.

Procedure

To install the GCP Filestore CSI Driver Operator from the web console:

1. Log in to the web console.

2. Enable the Filestore API in the GCE project by running the following command:

$ gcloud services enable file.googleapis.com --project <my_gce_project> 1

OpenShift Container Platform 4.13 Storage

180

https://access.redhat.com/support/offerings/techpreview/

1 Replace <my_gce_project> with your Google Cloud project.

You can also do this using Google Cloud web console.

3. Install the GCP Filestore CSI Operator:

a. Click Operators → OperatorHub.

b. Locate the GCP Filestore CSI Operator by typing GCP Filestore in the filter box.

c. Click the GCP Filestore CSI Driver Operator button.

d. On the GCP Filestore CSI Driver Operator page, click Install.

e. On the Install Operator page, ensure that:

All namespaces on the cluster (default) is selected.

Installed Namespace is set to openshift-cluster-csi-drivers.

f. Click Install.
After the installation finishes, the GCP Filestore CSI Operator is listed in the Installed
Operators section of the web console.

4. Install the GCP Filestore CSI Driver:

a. Click administration → CustomResourceDefinitions → ClusterCSIDriver.

b. On the Instances tab, click Create ClusterCSIDriver.
Use the following YAML file:

c. Click Create.

d. Wait for the following Conditions to change to a "true" status:

GCPFilestoreDriverCredentialsRequestControllerAvailable

GCPFilestoreDriverNodeServiceControllerAvailable

GCPFilestoreDriverControllerServiceControllerAvailable

Additional resources

Enabling an API in your Google Cloud .

Enabling an API using the Google Cloud web console .

6.15.4. Creating a storage class for GCP Filestore Storage

apiVersion: operator.openshift.io/v1
kind: ClusterCSIDriver
metadata:
 name: filestore.csi.storage.gke.io
spec:
 managementState: Managed

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

181

https://cloud.google.com/endpoints/docs/openapi/enable-api
https://support.google.com/googleapi/answer/6158841?hl=en

1

After installing the Operator, you should create a storage class for dynamic provisioning of Google
Compute Platform (GCP) Filestore volumes.

Prerequisites

You are logged in to the running OpenShift Container Platform cluster.

Procedure

To create a storage class:

1. Create a storage class using the following example YAML file:

Example YAML file

Specify the name of the GCP virtual private cloud (VPC) network where Filestore
instances should be created in.

2. Specify the name of the VPC network where Filestore instances should be created in.
It is recommended to specify the VPC network that the Filestore instances should be created in.
If no VPC network is specified, the Container Storage Interface (CSI) driver tries to create the
instances in the default VPC network of the project. On IPI installations, the VPC network name
is typically the cluster name with the suffix "-network". However, on UPI installations, the VPC
network name can be any value chosen by the user.

You can find out the VPC network name by inspecting the MachineSets objects with the
following command:

In this example, the VPC network name in this cluster is "gcp-filestore-network".

6.15.5. Destroying clusters and GCP Filestore

Typically, if you destroy a cluster, the OpenShift Container Platform installer deletes all of the cloud
resources that belong to that cluster. However, when a cluster is destroyed, Google Compute Platform
(GCP) Filestore instances are not automatically deleted, so you must manually delete all persistent
volume claims (PVCs) that use the Filestore storage class before destroying the cluster.

Procedure

To delete all GCP Filestore PVCs:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: filestore-csi
provisioner: filestore.csi.storage.gke.io
parameters:
 network: network-name 1
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer

$ oc -n openshift-machine-api get machinesets -o yaml | grep "network:"
 - network: gcp-filestore-network
(...)

OpenShift Container Platform 4.13 Storage

182

1

1. List all PVCs that were created using the storage class filestore-csi:

2. Delete all of the PVCs listed by the previous command:

Replace <pvc-name> with the name of any PVC that you need to delete.

6.15.6. Additional resources

Configuring CSI volumes

6.16. IBM VPC BLOCK CSI DRIVER OPERATOR

6.16.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) using the Container
Storage Interface (CSI) driver for IBM Virtual Private Cloud (VPC) Block Storage.

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
CSI Operator and driver.

To create CSI-provisioned PVs that mount to IBM VPC Block storage assets, OpenShift Container
Platform installs the IBM VPC Block CSI Driver Operator and the IBM VPC Block CSI driver by default in
the openshift-cluster-csi-drivers namespace.

The IBM VPC Block CSI Driver Operator provides three storage classes named ibmc-vpc-block-
10iops-tier (default), ibmc-vpc-block-5iops-tier, and ibmc-vpc-block-custom for different
tiers that you can use to create persistent volume claims (PVCs). The IBM VPC Block CSI Driver
Operator supports dynamic volume provisioning by allowing storage volumes to be created on
demand, eliminating the need for cluster administrators to pre-provision storage. You can
disable this default storage class if desired (see Managing the default storage class).

The IBM VPC Block CSI driver enables you to create and mount IBM VPC Block PVs.

6.16.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

Additional resources

Configuring CSI volumes

6.17. IBM POWER VIRTUAL SERVER BLOCK CSI DRIVER OPERATOR

$ oc get pvc -o json -A | jq -r '.items[] | select(.spec.storageClassName == "filestore-csi")

$ oc delete <pvc-name> 1

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

183

6.17.1. Introduction

The IBM Power Virtual Server Block CSI Driver will be installed through IBM Power Virtual Server Block
CSI Driver Operator and the operator is based on libarary-go. The OpenShift library-go is a collection of
functions that allow us to build OpenShift operators easily. Most of the functionality of a CSI driver
operator is already available there. The IBM Power Virtual Server Block CSI Driver Operator is installed
by the cluster-storage-operator. The Cluster-storage-operator installs the IBM Power Virtual Server
Block CSI Driver Operator if the Platform type is Power Virtual Servers.

6.17.2. Overview

OpenShift Container Platform can provision persistent volumes (PVs) by using the Container Storage
Interface (CSI) driver for IBM Power Virtual Server Block Storage.

IMPORTANT

IBM Power Virtual Server Block CSI Driver Operator is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Familiarity with persistent storage and configuring CSI volumes is helpful when working with a CSI
Operator and driver.

To create CSI-provisioned PVs that mount to IBM Power Virtual Server Block storage assets, OpenShift
Container Platform installs the IBM Power Virtual Server Block CSI Driver Operator and the IBM Power
Virtual Server Block CSI driver by default in the openshift-cluster-csi-drivers namespace.

The IBM Power Virtual Server Block CSI Driver Operator provides two storage classes named
ibm-powervs-tier1 (default), and ibm-powervs-tier3 for different tiers that you can use to
create persistent volume claims (PVCs). The IBM Power Virtual Server Block CSI Driver
Operator supports dynamic volume provisioning by allowing storage volumes to be created on
demand, eliminating the need for cluster administrators to pre-provision storage.

The IBM Power Virtual Server Block CSI driver allows you to create and mount IBM Power Virtual
Server Block PVs.

6.17.3. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

Additional resources

Configuring CSI volumes

OpenShift Container Platform 4.13 Storage

184

https://access.redhat.com/support/offerings/techpreview/

6.18. OPENSTACK CINDER CSI DRIVER OPERATOR

6.18.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) using the Container
Storage Interface (CSI) driver for OpenStack Cinder.

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
Container Storage Interface (CSI) Operator and driver.

To create CSI-provisioned PVs that mount to OpenStack Cinder storage assets, OpenShift Container
Platform installs the OpenStack Cinder CSI Driver Operator and the OpenStack Cinder CSI driver in the
openshift-cluster-csi-drivers namespace.

The OpenStack Cinder CSI Driver Operator provides a CSI storage class that you can use to
create PVCs. You can disable this default storage class if desired (see Managing the default
storage class).

The OpenStack Cinder CSI driver enables you to create and mount OpenStack Cinder PVs.

NOTE

OpenShift Container Platform provides automatic migration for the Cinder in-tree
volume plugin to its equivalent CSI driver. For more information, see CSI automatic
migration.

6.18.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

IMPORTANT

OpenShift Container Platform defaults to using the CSI plugin to provision Cinder
storage.

6.18.3. Making OpenStack Cinder CSI the default storage class

The OpenStack Cinder CSI driver uses the cinder.csi.openstack.org parameter key to support
dynamic provisioning.

To enable OpenStack Cinder CSI provisioning in OpenShift Container Platform, it is recommended that
you overwrite the default in-tree storage class with standard-csi. Alternatively, you can create the
persistent volume claim (PVC) and specify the storage class as "standard-csi".

In OpenShift Container Platform, the default storage class references the in-tree Cinder driver.
However, with CSI automatic migration enabled, volumes created using the default storage class actually
use the CSI driver.

Procedure

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

185

Use the following steps to apply the standard-csi storage class by overwriting the default in-tree
storage class.

1. List the storage class:

Example output

2. Change the value of the annotation storageclass.kubernetes.io/is-default-class to false for
the default storage class, as shown in the following example:

3. Make another storage class the default by adding or modifying the annotation as
storageclass.kubernetes.io/is-default-class=true.

4. Verify that the PVC is now referencing the CSI storage class by default:

Example output

5. Optional: You can define a new PVC without having to specify the storage class:

$ oc get storageclass

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE
standard(default) cinder.csi.openstack.org Delete WaitForFirstConsumer true
46h
standard-csi kubernetes.io/cinder Delete WaitForFirstConsumer true
46h

$ oc patch storageclass standard -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class": "false"}}}'

$ oc patch storageclass standard-csi -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class": "true"}}}'

$ oc get storageclass

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE
standard kubernetes.io/cinder Delete WaitForFirstConsumer true
46h
standard-csi(default) cinder.csi.openstack.org Delete WaitForFirstConsumer true
46h

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: cinder-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

OpenShift Container Platform 4.13 Storage

186

A PVC that does not specify a specific storage class is automatically provisioned by using the
default storage class.

6. Optional: After the new file has been configured, create it in your cluster:

Additional resources

Configuring CSI volumes

6.19. OPENSTACK MANILA CSI DRIVER OPERATOR

6.19.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) using the Container
Storage Interface (CSI) driver for the OpenStack Manila shared file system service.

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
Container Storage Interface (CSI) Operator and driver.

To create CSI-provisioned PVs that mount to Manila storage assets, OpenShift Container Platform
installs the Manila CSI Driver Operator and the Manila CSI driver by default on any OpenStack cluster
that has the Manila service enabled.

The Manila CSI Driver Operator creates the required storage class that is needed to create
PVCs for all available Manila share types. The Operator is installed in the openshift-cluster-csi-
drivers namespace.

The Manila CSI driver enables you to create and mount Manila PVs. The driver is installed in the
openshift-manila-csi-driver namespace.

6.19.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

6.19.3. Manila CSI Driver Operator limitations

The following limitations apply to the Manila Container Storage Interface (CSI) Driver Operator:

Only NFS is supported

OpenStack Manila supports many network-attached storage protocols, such as NFS, CIFS, and
CEPHFS, and these can be selectively enabled in the OpenStack cloud. The Manila CSI Driver
Operator in OpenShift Container Platform only supports using the NFS protocol. If NFS is not
available and enabled in the underlying OpenStack cloud, you cannot use the Manila CSI Driver
Operator to provision storage for OpenShift Container Platform.

Snapshots are not supported if the back end is CephFS-NFS

To take snapshots of persistent volumes (PVs) and revert volumes to snapshots, you must ensure

$ oc create -f cinder-claim.yaml

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

187

https://wiki.openstack.org/wiki/Manila

that the Manila share type that you are using supports these features. A Red Hat OpenStack
administrator must enable support for snapshots (share type extra-spec snapshot_support) and
for creating shares from snapshots (share type extra-spec
create_share_from_snapshot_support) in the share type associated with the storage class you
intend to use.

FSGroups are not supported

Since Manila CSI provides shared file systems for access by multiple readers and multiple writers, it
does not support the use of FSGroups. This is true even for persistent volumes created with the
ReadWriteOnce access mode. It is therefore important not to specify the fsType attribute in any
storage class that you manually create for use with Manila CSI Driver.

IMPORTANT

In Red Hat OpenStack Platform 16.x and 17.x, the Shared File Systems service (Manila)
with CephFS through NFS fully supports serving shares to OpenShift Container Platform
through the Manila CSI. However, this solution is not intended for massive scale. Be sure
to review important recommendations in CephFS NFS Manila-CSI Workload
Recommendations for Red Hat OpenStack Platform.

6.19.4. Dynamically provisioning Manila CSI volumes

OpenShift Container Platform installs a storage class for each available Manila share type.

The YAML files that are created are completely decoupled from Manila and from its Container Storage
Interface (CSI) plugin. As an application developer, you can dynamically provision ReadWriteMany
(RWX) storage and deploy pods with applications that safely consume the storage using YAML
manifests.

You can use the same pod and persistent volume claim (PVC) definitions on-premise that you use with
OpenShift Container Platform on AWS, Google Cloud, Azure, and other platforms, with the exception of
the storage class reference in the PVC definition.

IMPORTANT

By default the access-rule assigned to a volume is set to 0.0.0.0/0. To limit the clients
that can mount the persistent volume (PV), create a new storage class with an IP or a
subnet mask in the nfs-shareClient storage class parameter.

NOTE

Manila service is optional. If the service is not enabled in Red Hat OpenStack Platform
(RHOSP), the Manila CSI driver is not installed and the storage classes for Manila are not
created.

Prerequisites

RHOSP is deployed with appropriate Manila share infrastructure so that it can be used to
dynamically provision and mount volumes in OpenShift Container Platform.

Procedure (UI)

To dynamically create a Manila CSI volume using the web console:

1. In the OpenShift Container Platform console, click Storage → Persistent Volume Claims.

OpenShift Container Platform 4.13 Storage

188

https://access.redhat.com/articles/6667651

1

2

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

3. Define the required options on the resulting page.

a. Select the appropriate storage class.

b. Enter a unique name for the storage claim.

c. Select the access mode to specify read and write access for the PVC you are creating.

IMPORTANT

Use RWX if you want the PV that fulfills this PVC to be mounted to multiple
pods on multiple nodes in the cluster.

4. Define the size of the storage claim.

5. Click Create to create the PVC and generate a PV.

Procedure (CLI)

To dynamically create a Manila CSI volume using the command-line interface (CLI):

1. Create and save a file with the PersistentVolumeClaim object described by the following
YAML:

pvc-manila.yaml

Use RWX if you want the PV that fulfills this PVC to be mounted to multiple pods on
multiple nodes in the cluster.

The name of the storage class that provisions the storage back end. Manila storage classes
are provisioned by the Operator and have the csi-manila- prefix.

2. Create the object you saved in the previous step by running the following command:

A new PVC is created.

3. To verify that the volume was created and is ready, run the following command:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-manila
spec:
 accessModes: 1
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-manila-gold 2

$ oc create -f pvc-manila.yaml

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

189

The pvc-manila shows that it is Bound.

You can now use the new PVC to configure a pod.

Additional resources

Configuring CSI volumes

6.20. RED HAT VIRTUALIZATION CSI DRIVER OPERATOR

6.20.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) using the Container
Storage Interface (CSI) driver for Red Hat Virtualization (RHV).

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
Container Storage Interface (CSI) Operator and driver.

To create CSI-provisioned PVs that mount to RHV storage assets, OpenShift Container Platform
installs the oVirt CSI Driver Operator and the oVirt CSI driver by default in the openshift-cluster-csi-
drivers namespace.

The oVirt CSI Driver Operator provides a default StorageClass object that you can use to
create Persistent Volume Claims (PVCs). You can disable this default storage class if desired
(see Managing the default storage class).

The oVirt CSI driver enables you to create and mount oVirt PVs.

6.20.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

NOTE

The oVirt CSI driver does not support snapshots.

6.20.3. Red Hat Virtualization (RHV) CSI driver storage class

OpenShift Container Platform creates a default object of type StorageClass named ovirt-csi-sc which
is used for creating dynamically provisioned persistent volumes.

To create additional storage classes for different configurations, create and save a file with the
StorageClass object described by the following sample YAML:

ovirt-storageclass.yaml

$ oc get pvc pvc-manila

OpenShift Container Platform 4.13 Storage

190

1

2

3

4

5

6

7

8

Name of the storage class.

Set to false if the storage class is the default storage class in the cluster. If set to true, the existing
default storage class must be edited and set to false.

true enables dynamic volume expansion, false prevents it. true is recommended.

Dynamically provisioned persistent volumes of this storage class are created with this reclaim
policy. This default policy is Delete.

Indicates how to provision and bind PersistentVolumeClaims. When not set,
VolumeBindingImmediate is used. This field is only applied by servers that enable the
VolumeScheduling feature.

The RHV storage domain name to use.

If true, the disk is thin provisioned. If false, the disk is preallocated. Thin provisioning is
recommended.

Optional: File system type to be created. Possible values: ext4 (default) or xfs.

6.20.4. Creating a persistent volume on RHV

When you create a PersistentVolumeClaim (PVC) object, OpenShift Container Platform provisions a
new persistent volume (PV) and creates a PersistentVolume object.

Prerequisites

You are logged in to a running OpenShift Container Platform cluster.

You provided the correct RHV credentials in ovirt-credentials secret.

You have installed the oVirt CSI driver.

You have defined at least one storage class.

Procedure

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: <storage_class_name> 1
 annotations:
 storageclass.kubernetes.io/is-default-class: "<boolean>" 2
provisioner: csi.ovirt.org
allowVolumeExpansion: <boolean> 3
reclaimPolicy: Delete 4
volumeBindingMode: Immediate 5
parameters:
 storageDomainName: <rhv-storage-domain-name> 6
 thinProvisioning: "<boolean>" 7
 csi.storage.k8s.io/fstype: <file_system_type> 8

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

191

1

2

3

If you are using the web console to dynamically create a persistent volume on RHV:

1. In the OpenShift Container Platform console, click Storage → Persistent Volume Claims.

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

3. Define the required options on the resulting page.

4. Select the appropriate StorageClass object, which is ovirt-csi-sc by default.

5. Enter a unique name for the storage claim.

6. Select the access mode. Currently, RWO (ReadWriteOnce) is the only supported access
mode.

7. Define the size of the storage claim.

8. Select the Volume Mode:
Filesystem: Mounted into pods as a directory. This mode is the default.

Block: Block device, without any file system on it

9. Click Create to create the PersistentVolumeClaim object and generate a
PersistentVolume object.

If you are using the command-line interface (CLI) to dynamically create a RHV CSI volume:

1. Create and save a file with the PersistentVolumeClaim object described by the following
sample YAML:

pvc-ovirt.yaml

Name of the required storage class.

Volume size in GiB.

Supported options:

Filesystem: Mounted into pods as a directory. This mode is the default.

Block: Block device, without any file system on it.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-ovirt
spec:
 storageClassName: ovirt-csi-sc 1
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <volume size> 2
 volumeMode: <volume mode> 3

OpenShift Container Platform 4.13 Storage

192

2. Create the object you saved in the previous step by running the following command:

$ oc create -f pvc-ovirt.yaml

3. To verify that the volume was created and is ready, run the following command:

$ oc get pvc pvc-ovirt

The pvc-ovirt shows that it is Bound.

NOTE

If you need to update the Operator credentials, see the instructions in How to modify the
RHV credentials in OCP 4.

Additional resources

Configuring CSI volumes

Dynamic Provisioning

6.21. VMWARE VSPHERE CSI DRIVER OPERATOR

6.21.1. Overview

OpenShift Container Platform can provision persistent volumes (PVs) using the Container Storage
Interface (CSI) VMware vSphere driver for Virtual Machine Disk (VMDK) volumes.

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
CSI Operator and driver.

To create CSI-provisioned persistent volumes (PVs) that mount to vSphere storage assets, OpenShift
Container Platform installs the vSphere CSI Driver Operator and the vSphere CSI driver by default in the
openshift-cluster-csi-drivers namespace.

vSphere CSI Driver Operator: The Operator provides a storage class, called thin-csi, that you
can use to create persistent volumes claims (PVCs). The vSphere CSI Driver Operator supports
dynamic volume provisioning by allowing storage volumes to be created on-demand, eliminating
the need for cluster administrators to pre-provision storage. You can disable this default
storage class if desired (see Managing the default storage class).

vSphere CSI driver: The driver enables you to create and mount vSphere PVs. In OpenShift
Container Platform 4.13, the driver version is 3.0.1. The vSphere CSI driver supports all of the file
systems supported by the underlying Red Hat Core OS release, including XFS and Ext4. For
more information about supported file systems, see Overview of available file systems .

IMPORTANT

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

193

https://access.redhat.com/solutions/6115581
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/assembly_overview-of-available-file-systems_managing-file-systems

IMPORTANT

For vSphere:

For new installations of OpenShift Container Platform 4.13, or later, automatic
migration is enabled by default. Updating to OpenShift Container Platform 4.14
and later also provides automatic migration.
CSI automatic migration should be seamless. Migration does not change how you
use all existing API objects, such as persistent volumes, persistent volume claims,
and storage classes. For more information about migration, see CSI automatic
migration.

When updating from OpenShift Container Platform 4.12, or earlier, to 4.13,
automatic CSI migration for vSphere only occurs if you opt in. If you do not opt in,
OpenShift Container Platform defaults to using the in-tree (non-CSI) plugin to
provision vSphere storage. Carefully review the indicated consequences before
opting in to migration.

6.21.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plugins.

6.21.3. vSphere CSI limitations

The following limitations apply to the vSphere Container Storage Interface (CSI) Driver Operator:

The vSphere CSI Driver supports dynamic and static provisioning. However, when using static
provisioning in the PV specifications, do not use the key
storage.kubernetes.io/csiProvisionerIdentity in csi.volumeAttributes because this key
indicates dynamically provisioned PVs.

Migrating persistent container volumes between datastores using the vSphere client interface is
not supported with OpenShift Container Platform.

6.21.4. vSphere storage policy

The vSphere CSI Driver Operator storage class uses vSphere’s storage policy. OpenShift Container
Platform automatically creates a storage policy that targets datastore configured in cloud configuration:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: thin-csi
provisioner: csi.vsphere.vmware.com
parameters:
 StoragePolicyName: "$openshift-storage-policy-xxxx"
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: false
reclaimPolicy: Delete

OpenShift Container Platform 4.13 Storage

194

https://access.redhat.com/node/7011683

6.21.5. ReadWriteMany vSphere volume support

If the underlying vSphere environment supports the vSAN file service, then vSphere Container Storage
Interface (CSI) Driver Operator installed by OpenShift Container Platform supports provisioning of
ReadWriteMany (RWX) volumes. If vSAN file service is not configured, then ReadWriteOnce (RWO) is
the only access mode available. If you do not have vSAN file service configured, and you request RWX,
the volume fails to get created and an error is logged.

For more information about configuring the vSAN file service in your environment, see vSAN File
Service.

You can request RWX volumes by making the following persistent volume claim (PVC):

Requesting a PVC of the RWX volume type should result in provisioning of persistent volumes (PVs)
backed by the vSAN file service.

6.21.6. VMware vSphere CSI Driver Operator requirements

To install the vSphere CSI Driver Operator, the following requirements must be met:

VMware vSphere version: 7.0 Update 2 or later, or VMware Cloud Foundation 4.3 or later; 8.0
Update 1 or later, or VMware Cloud Foundation 5.0 or later

vCenter version: 7.0 Update 2 or later, or VMware Cloud Foundation 4.3 or later; 8.0 Update 1 or
later, or VMware Cloud Foundation 5.0 or later

Virtual machines of hardware version 15 or later

No third-party vSphere CSI driver already installed in the cluster

If a third-party vSphere CSI driver is present in the cluster, OpenShift Container Platform does not
overwrite it. The presence of a third-party vSphere CSI driver prevents OpenShift Container Platform
from updating to OpenShift Container Platform 4.13 or later.

NOTE

The VMware vSphere CSI Driver Operator is supported only on clusters deployed with
platform: vsphere in the installation manifest.

To remove a third-party CSI driver, see Removing a third-party vSphere CSI Driver .

6.21.7. Removing a third-party vSphere CSI Driver Operator

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: myclaim
spec:
 resources:
 requests:
 storage: 1Gi
 accessModes:
 - ReadWriteMany
 storageClassName: thin-csi

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

195

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vsan.doc/GUID-82565B82-C911-42F7-85B1-E9EF973EE90C.html

OpenShift Container Platform 4.10, and later, includes a built-in version of the vSphere Container
Storage Interface (CSI) Operator Driver that is supported by Red Hat. If you have installed a vSphere
CSI driver provided by the community or another vendor, updates to the next major version of
OpenShift Container Platform, such as 4.13, or later, might be disabled for your cluster.

OpenShift Container Platform 4.12, and later, clusters are still fully supported, and updates to z-stream
releases of 4.12, such as 4.12.z, are not blocked, but you must correct this state by removing the third-
party vSphere CSI Driver before updates to next major version of OpenShift Container Platform can
occur. Removing the third-party vSphere CSI driver does not require deletion of associated persistent
volume (PV) objects, and no data loss should occur.

NOTE

These instructions may not be complete, so consult the vendor or community provider
uninstall guide to ensure removal of the driver and components.

To uninstall the third-party vSphere CSI Driver:

1. Delete the third-party vSphere CSI Driver (VMware vSphere Container Storage Plugin)
Deployment and Daemonset objects.

2. Delete the configmap and secret objects that were installed previously with the third-party
vSphere CSI Driver.

3. Delete the third-party vSphere CSI driver CSIDriver object:

After you have removed the third-party vSphere CSI Driver from the OpenShift Container Platform
cluster, installation of Red Hat’s vSphere CSI Driver Operator automatically resumes, and any conditions
that could block upgrades to OpenShift Container Platform 4.11, or later, are automatically removed. If
you had existing vSphere CSI PV objects, their lifecycle is now managed by Red Hat’s vSphere CSI Driver
Operator.

6.21.8. vSphere persistent disks encryption

You can encrypt virtual machines (VMs) and dynamically provisioned persistent volumes (PVs) on
OpenShift Container Platform running on top of vSphere.

NOTE

OpenShift Container Platform does not support RWX-encrypted PVs. You cannot
request RWX PVs out of a storage class that uses an encrypted storage policy.

You must encrypt VMs before you can encrypt PVs, which you can do during or after installation.

For information about encrypting VMs, see:

Requirements for encrypting virtual machines

During installation: Step 7 of Installing RHCOS and starting the OpenShift Container Platform
bootstrap process

$ oc delete CSIDriver csi.vsphere.vmware.com

csidriver.storage.k8s.io "csi.vsphere.vmware.com" deleted

OpenShift Container Platform 4.13 Storage

196

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/installing_on_vsphere/#installation-vsphere-encrypted-vms_installing-vsphere
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/installing_on_vsphere/#installation-vsphere-machines_installing-vsphere

1

Enabling encryption on a vSphere cluster

After encrypting VMs, you can configure a storage class that supports dynamic encryption volume
provisioning using the vSphere Container Storage Interface (CSI) driver. This can be accomplished in
one of two ways using:

Datastore URL: This approach is not very flexible, and forces you to use a single datastore. It
also does not support topology-aware provisioning.

Tag-based placement: Encrypts the provisioned volumes and uses tag-based placement to
target specific datastores.

6.21.8.1. Using datastore URL

Procedure

To encrypt using the datastore URL:

1. Find out the name of the default storage policy in your datastore that supports encryption.
This is same policy that was used for encrypting your VMs.

2. Create a storage class that uses this storage policy:

Name of default storage policy in your datastore that supports encryption

6.21.8.2. Using tag-based placement

Procedure

To encrypt using tag-based placement:

1. In vCenter create a category for tagging datastores that will be made available to this storage
class. Also, ensure that StoragePod(Datastore clusters), Datastore, and Folder are selected
as Associable Entities for the created category.

2. In vCenter, create a tag that uses the category created earlier.

3. Assign the previously created tag to each datastore that will be made available to the storage
class. Make sure that datastores are shared with hosts participating in the OpenShift Container
Platform cluster.

4. In vCenter, from the main menu, click Policies and Profiles.

5. On the Policies and Profiles page, in the navigation pane, click VM Storage Policies.

6. Click CREATE.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: encryption
provisioner: csi.vsphere.vmware.com
parameters:
 storagePolicyName: <storage-policy-name> 1
 datastoreurl: "ds:///vmfs/volumes/vsan:522e875627d-b090c96b526bb79c/"

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

197

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/installing_on_vsphere/#vsphere-post-installation-encryption

1

7. Type a name for the storage policy.

8. Select Enable host based rules and Enable tag based placement rules.

9. In the Next tab:

a. Select Encryption and Default Encryption Properties.

b. Select the tag category created earlier, and select tag selected. Verify that the policy is
selecting matching datastores.

10. Create the storage policy.

11. Create a storage class that uses the storage policy:

Name of the storage policy that you created for encryption

6.21.9. vSphere CSI topology overview

OpenShift Container Platform provides the ability to deploy OpenShift Container Platform for vSphere
on different zones and regions, which allows you to deploy over multiple compute clusters and
datacenters, thus helping to avoid a single point of failure.

This is accomplished by defining zone and region categories in vCenter, and then assigning these
categories to different failure domains, such as a compute cluster, by creating tags for these zone and
region categories. After you have created the appropriate categories, and assigned tags to vCenter
objects, you can create additional machinesets that create virtual machines (VMs) that are responsible
for scheduling pods in those failure domains.

The following example defines two failure domains with one region and two zones:

Table 6.6. vSphere storage topology with one region and two zones

Compute cluster Failure domain Description

Compute cluster: ocp1,
Datacenter: Atlanta

openshift-region: us-east-1 (tag),
openshift-zone: us-east-1a (tag)

This defines a failure domain in
region us-east-1 with zone us-
east-1a.

Computer cluster: ocp2,
Datacenter: Atlanta

openshift-region: us-east-1 (tag),
openshift-zone: us-east-1b (tag)

This defines a different failure
domain within the same region
called us-east-1b.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: csi-encrypted
provisioner: csi.vsphere.vmware.com
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer
parameters:
 storagePolicyName: <storage-policy-name> 1

OpenShift Container Platform 4.13 Storage

198

6.21.9.1. Creating vSphere storage topology during installation

6.21.9.1.1. Procedure

Specify the topology during installation. See the Configuring regions and zones for a VMware
vCenter section.

No additional action is necessary and the default storage class that is created by OpenShift Container
Platform is topology aware and should allow provisioning of volumes in different failure domains.

Additional resources

Configuring regions and zones for a VMware vCenter

6.21.9.2. Creating vSphere storage topology postinstallation

6.21.9.2.1. Procedure

1. In the VMware vCenter vSphere client GUI, define appropriate zone and region catagories and
tags.
While vSphere allows you to create categories with any arbitrary name, OpenShift Container
Platform strongly recommends use of openshift-region and openshift-zone names for
defining topology categories.

For more information about vSphere categories and tags, see the VMware vSphere
documentation.

2. In OpenShift Container Platform, create failure domains. See the Specifying multiple regions and
zones for your cluster on vSphere section.

3. Create a tag to assign to datastores across failure domains:
When an OpenShift Container Platform spans more than one failure domain, the datastore
might not be shared across those failure domains, which is where topology-aware provisioning of
persistent volumes (PVs) is useful.

a. In vCenter, create a category for tagging the datastores. For example, openshift-zonal-
datastore-cat. You can use any other category name, provided the category uniquely is
used for tagging datastores participating in OpenShift Container Platform cluster. Also,
ensure that StoragePod, Datastore, and Folder are selected as Associable Entities for the
created category.

b. In vCenter, create a tag that uses the previously created category. This example uses the
tag name openshift-zonal-datastore.

c. Assign the previously created tag (in this example openshift-zonal-datastore) to each
datastore in a failure domain that would be considered for dynamic provisioning.

NOTE

You can use any names you like for datastore categories and tags. The
names used in this example are provided as recommendations. Ensure that
the tags and categories that you define uniquely identify only datastores that
are shared with all hosts in the OpenShift Container Platform cluster.

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

199

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/installing_on_vsphere/#configuring-vsphere-regions-zones_installing-vsphere-installer-provisioned-network-customizations

1

2

4. As needed, create a storage policy that targets the tag-based datastores in each failure domain:

a. In vCenter, from the main menu, click Policies and Profiles.

b. On the Policies and Profiles page, in the navigation pane, click VM Storage Policies.

c. Click CREATE.

d. Type a name for the storage policy.

e. For the rules, choose Tag Placement rules and select the tag and category that targets the
desired datastores (in this example, the openshift-zonal-datastore tag).
The datastores are listed in the storage compatibility table.

5. Create a new storage class that uses the new zoned storage policy:

a. Click Storage > StorageClasses.

b. On the StorageClasses page, click Create StorageClass.

c. Type a name for the new storage class in Name.

d. Under Provisioner, select csi.vsphere.vmware.com.

e. Under Additional parameters, for the StoragePolicyName parameter, set Value to the
name of the new zoned storage policy that you created earlier.

f. Click Create.

Example output

New topology aware storage class name.

Specify zoned storage policy.

NOTE

You can also create the storage class by editing the preceding YAML file and
running the command oc create -f $FILE.

Additional resources

Specifying multiple regions and zones for your cluster on vSphere

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: zoned-sc 1
provisioner: csi.vsphere.vmware.com
parameters:
 StoragePolicyName: zoned-storage-policy 2
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer

OpenShift Container Platform 4.13 Storage

200

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/installing_on_vsphere/#specifying-regions-zones-infrastructure-vsphere_post-install-vsphere-zones-regions-configuration

1

2

VMware vSphere tag documentation

6.21.9.3. Creating vSphere storage topology without an infra topology

NOTE

OpenShift Container Platform recommends using the infrastructure object for specifying
failure domains in a topology aware setup. Specifying failure domains in the infrastructure
object and specify topology-categories in the ClusterCSIDriver object at the same time
is an unsupported operation.

6.21.9.3.1. Procedure

1. In the VMware vCenter vSphere client GUI, define appropriate zone and region catagories and
tags.
While vSphere allows you to create categories with any arbitrary name, OpenShift Container
Platform strongly recommends use of openshift-region and openshift-zone names for
defining topology.

For more information about vSphere categories and tags, see the VMware vSphere
documentation.

2. To allow the container storage interface (CSI) driver to detect this topology, edit the
clusterCSIDriver object YAML file driverConfig section:

Specify the openshift-zone and openshift-region categories that you created earlier.

Set driverType to vSphere.

Example output

Ensure that driverType is set to vSphere.

openshift-zone and openshift-region categories created earlier in vCenter.

~ $ oc edit clustercsidriver csi.vsphere.vmware.com -o yaml

apiVersion: operator.openshift.io/v1
kind: ClusterCSIDriver
metadata:
 name: csi.vsphere.vmware.com
spec:
 logLevel: Normal
 managementState: Managed
 observedConfig: null
 operatorLogLevel: Normal
 unsupportedConfigOverrides: null
 driverConfig:
 driverType: vSphere 1
 vSphere:
 topologyCategories: 2
 - openshift-zone
 - openshift-region

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

201

https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-vcenter-esxi-management/GUID-16422FF7-235B-4A44-92E2-532F6AED0923.html?hWord=N4IghgNiBcIC5gOYgL5A

1

3. Verify that CSINode object has topology keys by running the following commands:

Example output

Example output

Topology keys from vSphere openshift-zone and openshift-region catagories.

NOTE

CSINode objects might take some time to receive updated topology
information. After the driver is updated, CSINode objects should have topology
keys in them.

4. Create a tag to assign to datastores across failure domains:
When an OpenShift Container Platform spans more than one failure domain, the datastore
might not be shared across those failure domains, which is where topology-aware provisioning of
persistent volumes (PVs) is useful.

a. In vCenter, create a category for tagging the datastores. For example, openshift-zonal-
datastore-cat. You can use any other category name, provided the category uniquely is
used for tagging datastores participating in OpenShift Container Platform cluster. Also,
ensure that StoragePod, Datastore, and Folder are selected as Associable Entities for the
created category.

b. In vCenter, create a tag that uses the previously created category. This example uses the
tag name openshift-zonal-datastore.

~ $ oc get csinode

NAME DRIVERS AGE
co8-4s88d-infra-2m5vd 1 27m
co8-4s88d-master-0 1 70m
co8-4s88d-master-1 1 70m
co8-4s88d-master-2 1 70m
co8-4s88d-worker-j2hmg 1 47m
co8-4s88d-worker-mbb46 1 47m
co8-4s88d-worker-zlk7d 1 47m

~ $ oc get csinode co8-4s88d-worker-j2hmg -o yaml

...
spec:
 drivers:
 - allocatable:
 count: 59
 name: csi-vsphere.vmware.com
 nodeID: co8-4s88d-worker-j2hmg
 topologyKeys: 1
 - topology.csi.vmware.com/openshift-zone
 - topology.csi.vmware.com/openshift-region

OpenShift Container Platform 4.13 Storage

202

1

2

c. Assign the previously created tag (in this example openshift-zonal-datastore) to each
datastore in a failure domain that would be considered for dynamic provisioning.

NOTE

You can use any names you like for categories and tags. The names used in
this example are provided as recommendations. Ensure that the tags and
categories that you define uniquely identify only datastores that are shared
with all hosts in the OpenShift Container Platform cluster.

5. Create a storage policy that targets the tag-based datastores in each failure domain:

a. In vCenter, from the main menu, click Policies and Profiles.

b. On the Policies and Profiles page, in the navigation pane, click VM Storage Policies.

c. Click CREATE.

d. Type a name for the storage policy.

e. For the rules, choose Tag Placement rules and select the tag and category that targets the
desired datastores (in this example, the openshift-zonal-datastore tag).
The datastores are listed in the storage compatibility table.

6. Create a new storage class that uses the new zoned storage policy:

a. Click Storage > StorageClasses.

b. On the StorageClasses page, click Create StorageClass.

c. Type a name for the new storage class in Name.

d. Under Provisioner, select csi.vsphere.vmware.com.

e. Under Additional parameters, for the StoragePolicyName parameter, set Value to the
name of the new zoned storage policy that you created earlier.

f. Click Create.

Example output

New topology aware storage class name.

Specify zoned storage policy.

NOTE

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: zoned-sc 1
provisioner: csi.vsphere.vmware.com
parameters:
 StoragePolicyName: zoned-storage-policy 2
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer

CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)

203

1 2

3

NOTE

You can also create the storage class by editing the preceding YAML file and
running the command oc create -f $FILE.

Additional resources

VMware vSphere tag documentation

6.21.9.4. Results

Creating persistent volume claims (PVCs) and PVs from the topology aware storage class are truly
zonal, and should use the datastore in their respective zone depending on how pods are scheduled:

Example output

PV has zoned keys.

PV is using the zoned storage class.

6.21.10. Additional resources

Configuring CSI volumes

$ oc get pv <pv_name> -o yaml

...
nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.csi.vmware.com/openshift-zone 1
 operator: In
 values:
 - <openshift_zone>
 - key: topology.csi.vmware.com/openshift-region 2
 operator: In
 values:
 - <openshift_region>
...
peristentVolumeclaimPolicy: Delete
storageClassName: <zoned_storage_class_name> 3
volumeMode: Filesystem
...

OpenShift Container Platform 4.13 Storage

204

https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-vcenter-esxi-management/GUID-16422FF7-235B-4A44-92E2-532F6AED0923.html?hWord=N4IghgNiBcIC5gOYgL5A

CHAPTER 7. GENERIC EPHEMERAL VOLUMES

7.1. OVERVIEW

Generic ephemeral volumes are a type of ephemeral volume that can be provided by all storage drivers
that support persistent volumes and dynamic provisioning. Generic ephemeral volumes are similar to
emptyDir volumes in that they provide a per-pod directory for scratch data, which is usually empty after
provisioning.

Generic ephemeral volumes are specified inline in the pod spec and follow the pod’s lifecycle. They are
created and deleted along with the pod.

Generic ephemeral volumes have the following features:

Storage can be local or network-attached.

Volumes can have a fixed size that pods are not able to exceed.

Volumes might have some initial data, depending on the driver and parameters.

Typical operations on volumes are supported, assuming that the driver supports them, including
snapshotting, cloning, resizing, and storage capacity tracking.

NOTE

Generic ephemeral volumes do not support offline snapshots and resize.

Due to this limitation, the following Container Storage Interface (CSI) drivers do not
support the following features for generic ephemeral volumes:

Azure Disk CSI driver does not support resize.

Cinder CSI driver does not support snapshot.

7.2. LIFECYCLE AND PERSISTENT VOLUME CLAIMS

The parameters for a volume claim are allowed inside a volume source of a pod. Labels, annotations, and
the whole set of fields for persistent volume claims (PVCs) are supported. When such a pod is created,
the ephemeral volume controller then creates an actual PVC object (from the template shown in the
Creating generic ephemeral volumes procedure) in the same namespace as the pod, and ensures that
the PVC is deleted when the pod is deleted. This triggers volume binding and provisioning in one of two
ways:

Either immediately, if the storage class uses immediate volume binding.
With immediate binding, the scheduler is forced to select a node that has access to the volume
after it is available.

When the pod is tentatively scheduled onto a node (WaitForFirstConsumervolume binding
mode).
This volume binding option is recommended for generic ephemeral volumes because then the
scheduler can choose a suitable node for the pod.

In terms of resource ownership, a pod that has generic ephemeral storage is the owner of the PVCs that
provide that ephemeral storage. When the pod is deleted, the Kubernetes garbage collector deletes the
PVC, which then usually triggers deletion of the volume because the default reclaim policy of storage

CHAPTER 7. GENERIC EPHEMERAL VOLUMES

205

classes is to delete volumes. You can create quasi-ephemeral local storage by using a storage class with
a reclaim policy of retain: the storage outlives the pod, and in this case, you must ensure that volume
clean-up happens separately. While these PVCs exist, they can be used like any other PVC. In particular,
they can be referenced as data source in volume cloning or snapshotting. The PVC object also holds the
current status of the volume.

Additional resources

Creating generic ephemeral volumes

7.3. SECURITY

You can enable the generic ephemeral volume feature to allows users who can create pods to also
create persistent volume claims (PVCs) indirectly. This feature works even if these users do not have
permission to create PVCs directly. Cluster administrators must be aware of this. If this does not fit your
security model, use an admission webhook that rejects objects such as pods that have a generic
ephemeral volume.

The normal namespace quota for PVCs still applies, so even if users are allowed to use this new
mechanism, they cannot use it to circumvent other policies.

7.4. PERSISTENT VOLUME CLAIM NAMING

Automatically created persistent volume claims (PVCs) are named by a combination of the pod name
and the volume name, with a hyphen (-) in the middle. This naming convention also introduces a
potential conflict between different pods, and between pods and manually created PVCs.

For example, pod-a with volume scratch and pod with volume a-scratch both end up with the same
PVC name, pod-a-scratch.

Such conflicts are detected, and a PVC is only used for an ephemeral volume if it was created for the
pod. This check is based on the ownership relationship. An existing PVC is not overwritten or modified,
but this does not resolve the conflict. Without the right PVC, a pod cannot start.

IMPORTANT

Be careful when naming pods and volumes inside the same namespace so that naming
conflicts do not occur.

7.5. CREATING GENERIC EPHEMERAL VOLUMES

Procedure

1. Create the pod object definition and save it to a file.

2. Include the generic ephemeral volume information in the file.

my-example-pod-with-generic-vols.yaml

kind: Pod
apiVersion: v1
metadata:
 name: my-app

OpenShift Container Platform 4.13 Storage

206

1 Generic ephemeral volume claim.

spec:
 containers:
 - name: my-frontend
 image: busybox:1.28
 volumeMounts:
 - mountPath: "/mnt/storage"
 name: data
 command: ["sleep", "1000000"]
 volumes:
 - name: data 1
 ephemeral:
 volumeClaimTemplate:
 metadata:
 labels:
 type: my-app-ephvol
 spec:
 accessModes: ["ReadWriteOnce"]
 storageClassName: "gp2-csi"
 resources:
 requests:
 storage: 1Gi

CHAPTER 7. GENERIC EPHEMERAL VOLUMES

207

1

1

CHAPTER 8. EXPANDING PERSISTENT VOLUMES

8.1. ENABLING VOLUME EXPANSION SUPPORT

Before you can expand persistent volumes, the StorageClass object must have the
allowVolumeExpansion field set to true.

Procedure

Edit the StorageClass object and add the allowVolumeExpansion attribute by running the
following command:

Specifies the name of the storage class.

The following example demonstrates adding this line at the bottom of the storage class
configuration.

Setting this attribute to true allows PVCs to be expanded after creation.

8.2. EXPANDING CSI VOLUMES

You can use the Container Storage Interface (CSI) to expand storage volumes after they have already
been created.

CSI volume expansion does not support the following:

Recovering from failure when expanding volumes

Shrinking

Prerequisites

The underlying CSI driver supports resize.

Dynamic provisioning is used.

The controlling StorageClass object has allowVolumeExpansion set to true. For more
information, see "Enabling volume expansion support."

Procedure

1. For the persistent volume claim (PVC), set .spec.resources.requests.storage to the desired

$ oc edit storageclass <storage_class_name> 1

apiVersion: storage.k8s.io/v1
kind: StorageClass
...
parameters:
 type: gp2
reclaimPolicy: Delete
allowVolumeExpansion: true 1

OpenShift Container Platform 4.13 Storage

208

1. For the persistent volume claim (PVC), set .spec.resources.requests.storage to the desired
new size.

2. Watch the status.conditions field of the PVC to see if the resize has completed. OpenShift
Container Platform adds the Resizing condition to the PVC during expansion, which is removed
after expansion completes.

8.3. EXPANDING FLEXVOLUME WITH A SUPPORTED DRIVER

When using FlexVolume to connect to your back-end storage system, you can expand persistent
storage volumes after they have already been created. This is done by manually updating the persistent
volume claim (PVC) in OpenShift Container Platform.

FlexVolume allows expansion if the driver is set with RequiresFSResize to true. The FlexVolume can be
expanded on pod restart.

Similar to other volume types, FlexVolume volumes can also be expanded when in use by a pod.

Prerequisites

The underlying volume driver supports resize.

The driver is set with the RequiresFSResize capability to true.

Dynamic provisioning is used.

The controlling StorageClass object has allowVolumeExpansion set to true.

Procedure

To use resizing in the FlexVolume plugin, you must implement the ExpandableVolumePlugin
interface using these methods:

RequiresFSResize

If true, updates the capacity directly. If false, calls the ExpandFS method to finish the
filesystem resize.

ExpandFS

If true, calls ExpandFS to resize filesystem after physical volume expansion is done. The
volume driver can also perform physical volume resize together with filesystem resize.

IMPORTANT

Because OpenShift Container Platform does not support installation of FlexVolume
plugins on control plane nodes, it does not support control-plane expansion of
FlexVolume.

8.4. EXPANDING LOCAL VOLUMES

You can manually expand persistent volumes (PVs) and persistent volume claims (PVCs) created by
using the local storage operator (LSO).

Procedure

CHAPTER 8. EXPANDING PERSISTENT VOLUMES

209

1

1. Expand the underlying devices. Ensure that appropriate capacity is available on these devices.

2. Update the corresponding PV objects to match the new device sizes by editing the
.spec.capacity field of the PV.

3. For the storage class that is used for binding the PVC to PVet, set
allowVolumeExpansion:true.

4. For the PVC, set .spec.resources.requests.storage to match the new size.

Kubelet should automatically expand the underlying file system on the volume, if necessary, and update
the status field of the PVC to reflect the new size.

8.5. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH A FILE
SYSTEM

Expanding PVCs based on volume types that need file system resizing, such as GCE, EBS, and Cinder, is
a two-step process. First, expand the volume objects in the cloud provider. Second, expand the file
system on the node.

Expanding the file system on the node only happens when a new pod is started with the volume.

Prerequisites

The controlling StorageClass object must have allowVolumeExpansion set to true.

Procedure

1. Edit the PVC and request a new size by editing spec.resources.requests. For example, the
following expands the ebs PVC to 8 Gi:

Updating spec.resources.requests to a larger amount expands the PVC.

2. After the cloud provider object has finished resizing, the PVC is set to
FileSystemResizePending. Check the condition by entering the following command:

3. When the cloud provider object has finished resizing, the PersistentVolume object reflects the
newly requested size in PersistentVolume.Spec.Capacity. At this point, you can create or
recreate a new pod from the PVC to finish the file system resizing. Once the pod is running, the

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: ebs
spec:
 storageClass: "storageClassWithFlagSet"
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 8Gi 1

$ oc describe pvc <pvc_name>

OpenShift Container Platform 4.13 Storage

210

newly requested size is available and the FileSystemResizePending condition is removed from
the PVC.

8.6. RECOVERING FROM FAILURE WHEN EXPANDING VOLUMES

If expanding underlying storage fails, the OpenShift Container Platform administrator can manually
recover the persistent volume claim (PVC) state and cancel the resize requests. Otherwise, the resize
requests are continuously retried by the controller.

Procedure

1. Mark the persistent volume (PV) that is bound to the PVC with the Retain reclaim policy. This
can be done by editing the PV and changing persistentVolumeReclaimPolicy to Retain.

2. Delete the PVC.

3. Manually edit the PV and delete the claimRef entry from the PV specs to ensure that the newly
created PVC can bind to the PV marked Retain. This marks the PV as Available.

4. Re-create the PVC in a smaller size, or a size that can be allocated by the underlying storage
provider.

5. Set the volumeName field of the PVC to the name of the PV. This binds the PVC to the
provisioned PV only.

6. Restore the reclaim policy on the PV.

Additional resources

The controlling StorageClass object has allowVolumeExpansion set to true (see Enabling
volume expansion support).

CHAPTER 8. EXPANDING PERSISTENT VOLUMES

211

CHAPTER 9. DYNAMIC PROVISIONING

9.1. ABOUT DYNAMIC PROVISIONING

The StorageClass resource object describes and classifies storage that can be requested, as well as
provides a means for passing parameters for dynamically provisioned storage on demand.
StorageClass objects can also serve as a management mechanism for controlling different levels of
storage and access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators
(storage-admin) define and create the StorageClass objects that users can request without needing
any detailed knowledge about the underlying storage volume sources.

The OpenShift Container Platform persistent volume framework enables this functionality and allows
administrators to provision a cluster with persistent storage. The framework also gives users a way to
request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While
all of them can be statically provisioned by an administrator, some types of storage are created
dynamically using the built-in provider and plugin APIs.

9.2. AVAILABLE DYNAMIC PROVISIONING PLUGINS

OpenShift Container Platform provides the following provisioner plugins, which have generic
implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new
storage resources:

Storage type Provisioner plugin name Notes

Red Hat OpenStack Platform
(RHOSP) Cinder

kubernetes.io/cinder

RHOSP Manila Container Storage
Interface (CSI)

manila.csi.openstack.org Once installed, the OpenStack
Manila CSI Driver Operator and
ManilaDriver automatically create
the required storage classes for
all available Manila share types
needed for dynamic provisioning.

Amazon Elastic Block Store
(Amazon EBS)

kubernetes.io/aws-ebs For dynamic provisioning when
using multiple clusters in different
zones, tag each node with
Key=kubernetes.io/cluster/<c
luster_name>,Value=
<cluster_id> where
<cluster_name> and
<cluster_id> are unique per
cluster.

Azure Disk kubernetes.io/azure-disk

OpenShift Container Platform 4.13 Storage

212

Azure File kubernetes.io/azure-file The persistent-volume-binder
service account requires
permissions to create and get
secrets to store the Azure storage
account and keys.

GCE Persistent Disk (gcePD) kubernetes.io/gce-pd In multi-zone configurations, it is
advisable to run one OpenShift
Container Platform cluster per
GCE project to avoid PVs from
being created in zones where no
node in the current cluster exists.

IBM Power Virtual Server Block powervs.csi.ibm.com After installation, the IBM Power
Virtual Server Block CSI Driver
Operator and IBM Power Virtual
Server Block CSI Driver
automatically create the required
storage classes for dynamic
provisioning.

VMware vSphere kubernetes.io/vsphere-
volume

Storage type Provisioner plugin name Notes

IMPORTANT

Any chosen provisioner plugin also requires configuration for the relevant cloud, host, or
third-party provider as per the relevant documentation.

9.3. DEFINING A STORAGE CLASS

StorageClass objects are currently a globally scoped object and must be created by cluster-admin or
storage-admin users.

IMPORTANT

The Cluster Storage Operator might install a default storage class depending on the
platform in use. This storage class is owned and controlled by the Operator. It cannot be
deleted or modified beyond defining annotations and labels. If different behavior is
desired, you must define a custom storage class.

The following sections describe the basic definition for a StorageClass object and specific examples for
each of the supported plugin types.

9.3.1. Basic StorageClass object definition

The following resource shows the parameters and default values that you use to configure a storage
class. This example uses the AWS ElasticBlockStore (EBS) object definition.

CHAPTER 9. DYNAMIC PROVISIONING

213

https://www.vmware.com/support/vsphere.html

1

2

3

4

5

6

Sample StorageClass definition

(required) The API object type.

(required) The current apiVersion.

(required) The name of the storage class.

(optional) Annotations for the storage class.

(required) The type of provisioner associated with this storage class.

(optional) The parameters required for the specific provisioner, this will change from plug-in to
plug-in.

9.3.2. Storage class annotations

To set a storage class as the cluster-wide default, add the following annotation to your storage class
metadata:

For example:

This enables any persistent volume claim (PVC) that does not specify a specific storage class to
automatically be provisioned through the default storage class. However, your cluster can have more
than one storage class, but only one of them can be the default storage class.

NOTE

The beta annotation storageclass.beta.kubernetes.io/is-default-class is still working;
however, it will be removed in a future release.

kind: StorageClass 1
apiVersion: storage.k8s.io/v1 2
metadata:
 name: <storage-class-name> 3
 annotations: 4
 storageclass.kubernetes.io/is-default-class: 'true'
 ...
provisioner: kubernetes.io/aws-ebs 5
parameters: 6
 type: gp3
...

storageclass.kubernetes.io/is-default-class: "true"

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
...

OpenShift Container Platform 4.13 Storage

214

1

2

3

4

To set a storage class description, add the following annotation to your storage class metadata:

For example:

9.3.3. RHOSP Cinder object definition

cinder-storageclass.yaml

Name of the storage class. The persistent volume claim uses this storage class for provisioning the
associated persistent volumes.

Volume type created in Cinder. Default is empty.

Availability Zone. If not specified, volumes are generally round-robined across all active zones
where the OpenShift Container Platform cluster has a node.

File system that is created on dynamically provisioned volumes. This value is copied to the fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume
is mounted for the first time. The default value is ext4.

9.3.4. RHOSP Manila Container Storage Interface (CSI) object definition

Once installed, the OpenStack Manila CSI Driver Operator and ManilaDriver automatically create the
required storage classes for all available Manila share types needed for dynamic provisioning.

9.3.5. AWS Elastic Block Store (EBS) object definition

aws-ebs-storageclass.yaml

kubernetes.io/description: My Storage Class Description

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
 kubernetes.io/description: My Storage Class Description
...

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: <storage-class-name> 1
provisioner: kubernetes.io/cinder
parameters:
 type: fast 2
 availability: nova 3
 fsType: ext4 4

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

CHAPTER 9. DYNAMIC PROVISIONING

215

1

2

3

4

5

6

1

2

(required) Name of the storage class. The persistent volume claim uses this storage class for
provisioning the associated persistent volumes.

(required) Select from io1, gp3, sc1, st1. The default is gp3. See the AWS documentation for valid
Amazon Resource Name (ARN) values.

Optional: Only for io1 volumes. I/O operations per second per GiB. The AWS volume plugin
multiplies this with the size of the requested volume to compute IOPS of the volume. The value cap
is 20,000 IOPS, which is the maximum supported by AWS. See the AWS documentation for further
details.

Optional: Denotes whether to encrypt the EBS volume. Valid values are true or false.

Optional: The full ARN of the key to use when encrypting the volume. If none is supplied, but
encypted is set to true, then AWS generates a key. See the AWS documentation for a valid ARN
value.

Optional: File system that is created on dynamically provisioned volumes. This value is copied to
the fsType field of dynamically provisioned persistent volumes and the file system is created when
the volume is mounted for the first time. The default value is ext4.

9.3.6. Azure Disk object definition

azure-advanced-disk-storageclass.yaml

Name of the storage class. The persistent volume claim uses this storage class for provisioning the
associated persistent volumes.

Using WaitForFirstConsumer is strongly recommended. This provisions the volume while allowing
enough storage to schedule the pod on a free worker node from an available zone.

 name: <storage-class-name> 1
provisioner: kubernetes.io/aws-ebs
parameters:
 type: io1 2
 iopsPerGB: "10" 3
 encrypted: "true" 4
 kmsKeyId: keyvalue 5
 fsType: ext4 6

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: <storage-class-name> 1
provisioner: kubernetes.io/azure-disk
volumeBindingMode: WaitForFirstConsumer 2
allowVolumeExpansion: true
parameters:
 kind: Managed 3
 storageaccounttype: Premium_LRS 4
reclaimPolicy: Delete

OpenShift Container Platform 4.13 Storage

216

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

3

4

Possible values are Shared (default), Managed, and Dedicated.

IMPORTANT

Red Hat only supports the use of kind: Managed in the storage class.

With Shared and Dedicated, Azure creates unmanaged disks, while OpenShift
Container Platform creates a managed disk for machine OS (root) disks. But
because Azure Disk does not allow the use of both managed and unmanaged disks
on a node, unmanaged disks created with Shared or Dedicated cannot be attached
to OpenShift Container Platform nodes.

Azure storage account SKU tier. Default is empty. Note that Premium VMs can attach both
Standard_LRS and Premium_LRS disks, Standard VMs can only attach Standard_LRS disks,
Managed VMs can only attach managed disks, and unmanaged VMs can only attach unmanaged
disks.

a. If kind is set to Shared, Azure creates all unmanaged disks in a few shared storage
accounts in the same resource group as the cluster.

b. If kind is set to Managed, Azure creates new managed disks.

c. If kind is set to Dedicated and a storageAccount is specified, Azure uses the specified
storage account for the new unmanaged disk in the same resource group as the cluster.
For this to work:

The specified storage account must be in the same region.

Azure Cloud Provider must have write access to the storage account.

d. If kind is set to Dedicated and a storageAccount is not specified, Azure creates a new
dedicated storage account for the new unmanaged disk in the same resource group as the
cluster.

9.3.7. Azure File object definition

The Azure File storage class uses secrets to store the Azure storage account name and the storage
account key that are required to create an Azure Files share. These permissions are created as part of
the following procedure.

Procedure

1. Define a ClusterRole object that allows access to create and view secrets:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: system:azure-cloud-provider
 name: <persistent-volume-binder-role> 1
rules:
- apiGroups: ['']
 resources: ['secrets']
 verbs: ['get','create']

CHAPTER 9. DYNAMIC PROVISIONING

217

1

1

2

3

4

The name of the cluster role to view and create secrets.

2. Add the cluster role to the service account:

3. Create the Azure File StorageClass object:

Name of the storage class. The persistent volume claim uses this storage class for
provisioning the associated persistent volumes.

Location of the Azure storage account, such as eastus. Default is empty, meaning that a
new Azure storage account will be created in the OpenShift Container Platform cluster’s
location.

SKU tier of the Azure storage account, such as Standard_LRS. Default is empty, meaning
that a new Azure storage account will be created with the Standard_LRS SKU.

Name of the Azure storage account. If a storage account is provided, then skuName and
location are ignored. If no storage account is provided, then the storage class searches for
any storage account that is associated with the resource group for any accounts that
match the defined skuName and location.

9.3.7.1. Considerations when using Azure File

The following file system features are not supported by the default Azure File storage class:

Symlinks

Hard links

Extended attributes

Sparse files

Named pipes

Additionally, the owner user identifier (UID) of the Azure File mounted directory is different from the
process UID of the container. The uid mount option can be specified in the StorageClass object to
define a specific user identifier to use for the mounted directory.

$ oc adm policy add-cluster-role-to-user <persistent-volume-binder-role>
system:serviceaccount:kube-system:persistent-volume-binder

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: <azure-file> 1
provisioner: kubernetes.io/azure-file
parameters:
 location: eastus 2
 skuName: Standard_LRS 3
 storageAccount: <storage-account> 4
reclaimPolicy: Delete
volumeBindingMode: Immediate

OpenShift Container Platform 4.13 Storage

218

1

2

3

1

2

The following StorageClass object demonstrates modifying the user and group identifier, along with
enabling symlinks for the mounted directory.

Specifies the user identifier to use for the mounted directory.

Specifies the group identifier to use for the mounted directory.

Enables symlinks.

9.3.8. GCE PersistentDisk (gcePD) object definition

gce-pd-storageclass.yaml

Name of the storage class. The persistent volume claim uses this storage class for provisioning the
associated persistent volumes.

Select either pd-standard or pd-ssd. The default is pd-standard.

9.3.9. VMware vSphere object definition

vsphere-storageclass.yaml

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: azure-file
mountOptions:
 - uid=1500 1
 - gid=1500 2
 - mfsymlinks 3
provisioner: kubernetes.io/azure-file
parameters:
 location: eastus
 skuName: Standard_LRS
reclaimPolicy: Delete
volumeBindingMode: Immediate

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: <storage-class-name> 1
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard 2
 replication-type: none
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
reclaimPolicy: Delete

kind: StorageClass
apiVersion: storage.k8s.io/v1

CHAPTER 9. DYNAMIC PROVISIONING

219

1

2

1

Name of the storage class. The persistent volume claim uses this storage class for provisioning the
associated persistent volumes.

For more information about using VMware vSphere CSI with OpenShift Container Platform, see the
Kubernetes documentation.

9.4. CHANGING THE DEFAULT STORAGE CLASS

Use the following procedure to change the default storage class.

For example, if you have two defined storage classes, gp3 and standard, and you want to change the
default storage class from gp3 to standard.

Prerequisites

Access to the cluster with cluster-admin privileges.

Procedure

To change the default storage class:

1. List the storage classes:

Example output

(default) indicates the default storage class.

2. Make the desired storage class the default.
For the desired storage class, set the storageclass.kubernetes.io/is-default-class annotation
to true by running the following command:

NOTE

metadata:
 name: <storage-class-name> 1
provisioner: csi.vsphere.vmware.com 2

$ oc get storageclass

NAME TYPE
gp3 (default) kubernetes.io/aws-ebs 1
standard kubernetes.io/aws-ebs

$ oc patch storageclass standard -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class": "true"}}}'

OpenShift Container Platform 4.13 Storage

220

https://kubernetes.io/docs/concepts/storage/volumes/#vsphere-csi-migration

NOTE

You can have multiple default storage classes for a short time. However, you
should ensure that only one default storage class exists eventually.

With multiple default storage classes present, any persistent volume claim (PVC)
requesting the default storage class (pvc.spec.storageClassName=nil) gets the
most recently created default storage class, regardless of the default status of
that storage class, and the administrator receives an alert in the alerts dashboard
that there are multiple default storage classes, MultipleDefaultStorageClasses.

3. Remove the default storage class setting from the old default storage class.
For the old default storage class, change the value of the storageclass.kubernetes.io/is-
default-class annotation to false by running the following command:

4. Verify the changes:

Example output

$ oc patch storageclass gp3 -p '{"metadata": {"annotations": {"storageclass.kubernetes.io/is-
default-class": "false"}}}'

$ oc get storageclass

NAME TYPE
gp3 kubernetes.io/aws-ebs
standard (default) kubernetes.io/aws-ebs

CHAPTER 9. DYNAMIC PROVISIONING

221

1

CHAPTER 10. DETACH VOLUMES AFTER NON-GRACEFUL
NODE SHUTDOWN

This feature allows drivers to automatically detach volumes when a node goes down non-gracefully.

IMPORTANT

Detach CSI volumes after non-graceful node shutdown is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

10.1. OVERVIEW

A graceful node shutdown occurs when the kubelet’s node shutdown manager detects the upcoming
node shutdown action. Non-graceful shutdowns occur when the kubelet does not detect a node
shutdown action, which can occur because of system or hardware failures. Also, the kubelet may not
detect a node shutdown action when the shutdown command does not trigger the Inhibitor Locks
mechanism used by the kubelet on Linux, or because of a user error, for example, if the
shutdownGracePeriod and shutdownGracePeriodCriticalPods details are not configured correctly for
that node.

With this feature, when a non-graceful node shutdown occurs, you can manually add an out-of-service
taint on the node to allow volumes to automatically detach from the node.

10.2. ADDING AN OUT-OF-SERVICE TAINT MANUALLY FOR
AUTOMATIC VOLUME DETACHMENT

Prerequisites

Access to the cluster with cluster-admin privileges.

Procedure

To allow volumes to detach automatically from a node after a non-graceful node shutdown:

1. After a node is detected as unhealthy, shut down the worker node.

2. Ensure that the node is shutdown by running the following command and checking the status:

<node_name> = name of the node that shut down non-gracefully

IMPORTANT

$ oc get node <node_name> 1

OpenShift Container Platform 4.13 Storage

222

https://access.redhat.com/support/offerings/techpreview/

1

IMPORTANT

If the node is not completely shut down, do not proceed with tainting the node. If
the node is still up and the taint is applied, filesystem corruption can occur.

3. Taint the corresponding node object by running the following command:

IMPORTANT

Tainting a node this way deletes all pods on that node. This also causes any pods
that are backed by statefulsets to be evicted, and replacement pods to be
created on a different node.

<node_name> = name of the node that shut down non-gracefully

After the taint is applied, the volumes detach from the shutdown node allowing their disks to be
attached to a different node.

Example

The resulting YAML file resembles the following:

4. Restart the node.

5. Remove the taint.

$ oc adm taint node <node_name> node.kubernetes.io/out-of-
service=nodeshutdown:NoExecute 1

spec:
 taints:
 - effect: NoExecute
 key: node.kubernetes.io/out-of-service
 value: nodeshutdown

CHAPTER 10. DETACH VOLUMES AFTER NON-GRACEFUL NODE SHUTDOWN

223

	Table of Contents
	CHAPTER 1. OPENSHIFT CONTAINER PLATFORM STORAGE OVERVIEW
	1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM STORAGE
	1.2. STORAGE TYPES
	1.2.1. Ephemeral storage
	1.2.2. Persistent storage

	1.3. CONTAINER STORAGE INTERFACE (CSI)
	1.4. DYNAMIC PROVISIONING

	CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE
	2.1. OVERVIEW
	2.2. TYPES OF EPHEMERAL STORAGE
	Root
	Runtime

	2.3. EPHEMERAL STORAGE MANAGEMENT
	2.4. MONITORING EPHEMERAL STORAGE

	CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE
	3.1. PERSISTENT STORAGE OVERVIEW
	3.2. LIFECYCLE OF A VOLUME AND CLAIM
	3.2.1. Provision storage
	3.2.2. Bind claims
	3.2.3. Use pods and claimed PVs
	3.2.4. Storage Object in Use Protection
	3.2.5. Release a persistent volume
	3.2.6. Reclaim policy for persistent volumes
	3.2.7. Reclaiming a persistent volume manually
	3.2.8. Changing the reclaim policy of a persistent volume

	3.3. PERSISTENT VOLUMES
	3.3.1. Types of PVs
	3.3.2. Capacity
	3.3.3. Access modes
	3.3.4. Phase
	3.3.4.1. Mount options

	3.4. PERSISTENT VOLUME CLAIMS
	3.4.1. Storage classes
	3.4.2. Access modes
	3.4.3. Resources
	3.4.4. Claims as volumes

	3.5. BLOCK VOLUME SUPPORT
	3.5.1. Block volume examples

	3.6. USING FSGROUP TO REDUCE POD TIMEOUTS

	CHAPTER 4. CONFIGURING PERSISTENT STORAGE
	4.1. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE
	4.1.1. Creating the EBS storage class
	4.1.2. Creating the persistent volume claim
	4.1.3. Volume format
	4.1.4. Maximum number of EBS volumes on a node
	4.1.5. Encrypting container persistent volumes on AWS with a KMS key
	4.1.6. Additional resources

	4.2. PERSISTENT STORAGE USING AZURE
	4.2.1. Creating the Azure storage class
	4.2.2. Creating the persistent volume claim
	4.2.3. Volume format
	4.2.4. Machine sets that deploy machines with ultra disks using PVCs
	4.2.4.1. Creating machines with ultra disks by using machine sets
	4.2.4.2. Troubleshooting resources for machine sets that enable ultra disks

	4.3. PERSISTENT STORAGE USING AZURE FILE
	4.3.1. Create the Azure File share persistent volume claim
	4.3.2. Mount the Azure File share in a pod

	4.4. PERSISTENT STORAGE USING CINDER
	4.4.1. Manual provisioning with Cinder
	4.4.1.1. Creating the persistent volume
	4.4.1.2. Persistent volume formatting
	4.4.1.3. Cinder volume security

	4.5. PERSISTENT STORAGE USING FIBRE CHANNEL
	4.5.1. Provisioning
	4.5.1.1. Enforcing disk quotas
	4.5.1.2. Fibre Channel volume security

	4.6. PERSISTENT STORAGE USING FLEXVOLUME
	4.6.1. About FlexVolume drivers
	4.6.2. FlexVolume driver example
	4.6.3. Installing FlexVolume drivers
	4.6.4. Consuming storage using FlexVolume drivers

	4.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK
	4.7.1. Creating the GCE storage class
	4.7.2. Creating the persistent volume claim
	4.7.3. Volume format

	4.8. PERSISTENT STORAGE USING ISCSI
	4.8.1. Provisioning
	4.8.2. Enforcing disk quotas
	4.8.3. iSCSI volume security
	4.8.3.1. Challenge Handshake Authentication Protocol (CHAP) configuration

	4.8.4. iSCSI multipathing
	4.8.5. iSCSI custom initiator IQN

	4.9. PERSISTENT STORAGE USING NFS
	4.9.1. Provisioning
	4.9.2. Enforcing disk quotas
	4.9.3. NFS volume security
	4.9.3.1. Group IDs
	4.9.3.2. User IDs
	4.9.3.3. SELinux
	4.9.3.4. Export settings

	4.9.4. Reclaiming resources
	4.9.5. Additional configuration and troubleshooting

	4.10. RED HAT OPENSHIFT DATA FOUNDATION
	4.11. PERSISTENT STORAGE USING VMWARE VSPHERE VOLUMES
	4.11.1. Dynamically provisioning VMware vSphere volumes
	4.11.2. Prerequisites
	4.11.2.1. Dynamically provisioning VMware vSphere volumes using the UI
	4.11.2.2. Dynamically provisioning VMware vSphere volumes using the CLI

	4.11.3. Statically provisioning VMware vSphere volumes
	4.11.3.1. Formatting VMware vSphere volumes

	CHAPTER 5. PERSISTENT STORAGE USING LOCAL STORAGE
	5.1. LOCAL STORAGE OVERVIEW
	5.1.1. Overview of HostPath Provisioner functionality
	5.1.2. Overview of Local Storage Operator functionality
	5.1.3. Overview of LVM Storage functionality

	5.2. PERSISTENT STORAGE USING LOCAL VOLUMES
	5.2.1. Installing the Local Storage Operator
	5.2.2. Provisioning local volumes by using the Local Storage Operator
	5.2.3. Provisioning local volumes without the Local Storage Operator
	5.2.4. Creating the local volume persistent volume claim
	5.2.5. Attach the local claim
	5.2.6. Automating discovery and provisioning for local storage devices
	5.2.7. Using tolerations with Local Storage Operator pods
	5.2.8. Local Storage Operator Metrics
	5.2.9. Deleting the Local Storage Operator resources
	5.2.9.1. Removing a local volume or local volume set
	5.2.9.2. Uninstalling the Local Storage Operator

	5.3. PERSISTENT STORAGE USING HOSTPATH
	5.3.1. Overview
	5.3.2. Statically provisioning hostPath volumes
	5.3.3. Mounting the hostPath share in a privileged pod

	5.4. PERSISTENT STORAGE USING LOGICAL VOLUME MANAGER STORAGE
	5.4.1. Logical Volume Manager Storage installation
	5.4.1.1. Prerequisites to install LVM Storage
	5.4.1.2. Installing LVM Storage with the CLI
	5.4.1.3. Installing LVM Storage with the web console
	5.4.1.4. Uninstalling LVM Storage by using the CLI
	5.4.1.5. Uninstalling LVM Storage installed using the OpenShift Web Console
	5.4.1.6. Installing LVM Storage in a disconnected environment
	5.4.1.7. Installing LVM Storage using RHACM
	5.4.1.8. Limitations to configure the size of the devices used in LVM Storage

	5.4.2. Provisioning storage using LVM Storage
	5.4.3. Expanding PVCs
	5.4.4. Upgrading LVM Storage on single-node OpenShift clusters
	5.4.5. Volume snapshots for single-node OpenShift
	5.4.5.1. Creating volume snapshots in single-node OpenShift
	5.4.5.2. Restoring volume snapshots in single-node OpenShift
	5.4.5.3. Deleting volume snapshots in single-node OpenShift

	5.4.6. Volume cloning for single-node OpenShift
	5.4.6.1. Creating volume clones in single-node OpenShift
	5.4.6.2. Deleting cloned volumes in single-node OpenShift

	5.4.7. Monitoring LVM Storage
	5.4.7.1. Metrics
	5.4.7.2. Alerts

	5.4.8. Downloading log files and diagnostic information using must-gather
	5.4.9. LVM Storage reference YAML file
	5.4.10. Troubleshooting persistent storage
	5.4.10.1. Investigating a PVC stuck in the Pending state
	5.4.10.2. Recovering from a missing storage class
	5.4.10.3. Recovering from node failure
	5.4.10.4. Recovering from disk failure
	5.4.10.5. Performing a forced clean-up

	CHAPTER 6. USING CONTAINER STORAGE INTERFACE (CSI)
	6.1. CONFIGURING CSI VOLUMES
	6.1.1. CSI architecture
	6.1.1.1. External CSI controllers
	6.1.1.2. CSI driver daemon set

	6.1.2. CSI drivers supported by OpenShift Container Platform
	6.1.3. Dynamic provisioning
	6.1.4. Example using the CSI driver
	6.1.5. Volume populators

	6.2. CSI INLINE EPHEMERAL VOLUMES
	6.2.1. Overview of CSI inline ephemeral volumes
	6.2.1.1. Support limitations

	6.2.2. CSI Volume Admission plugin
	6.2.2.1. Overview
	6.2.2.2. Pod security profile enforcement
	6.2.2.3. Pod security profile warning
	6.2.2.4. Pod security profile audit
	6.2.2.5. Default behavior for the CSI Volume Admission plugin

	6.2.3. Embedding a CSI inline ephemeral volume in the pod specification
	6.2.4. Additional resources

	6.3. SHARED RESOURCE CSI DRIVER OPERATOR
	6.3.1. About CSI
	6.3.2. Sharing secrets across namespaces
	6.3.3. Using a SharedSecret instance in a pod
	6.3.4. Sharing a config map across namespaces
	6.3.5. Using a SharedConfigMap instance in a pod
	6.3.6. Additional support limitations for the Shared Resource CSI Driver
	6.3.7. Additional details about VolumeAttributes on shared resource pod volumes
	6.3.7.1. The refreshResource attribute
	6.3.7.2. The refreshResources attribute
	6.3.7.3. Validation of volumeAttributes before provisioning a shared resource volume for a pod

	6.3.8. Integration between shared resources, Insights Operator, and OpenShift Container Platform Builds

	6.4. CSI VOLUME SNAPSHOTS
	6.4.1. Overview of CSI volume snapshots
	6.4.2. CSI snapshot controller and sidecar
	6.4.2.1. External controller
	6.4.2.2. External sidecar

	6.4.3. About the CSI Snapshot Controller Operator
	6.4.3.1. Volume snapshot CRDs

	6.4.4. Volume snapshot provisioning
	6.4.4.1. Dynamic provisioning
	6.4.4.2. Manual provisioning

	6.4.5. Creating a volume snapshot
	6.4.6. Deleting a volume snapshot
	6.4.7. Restoring a volume snapshot

	6.5. CSI VOLUME CLONING
	6.5.1. Overview of CSI volume cloning
	6.5.1.1. Support limitations

	6.5.2. Provisioning a CSI volume clone

	6.6. MANAGING THE DEFAULT STORAGE CLASS
	6.6.1. Overview
	6.6.2. Managing the default storage class using the web console
	6.6.3. Managing the default storage class using the CLI
	6.6.4. Absent or multiple default storage classes
	6.6.4.1. Multiple default storage classes
	6.6.4.2. Absent default storage class

	6.6.5. Changing the default storage class

	6.7. CSI AUTOMATIC MIGRATION
	6.7.1. Overview
	6.7.2. Storage class implications
	6.7.3. vSphere automatic migration
	6.7.3.1. New installations of OpenShift Container Platform
	6.7.3.2. Updating from OpenShift Container Platform 4.13 to 4.14
	6.7.3.3. Updating from OpenShift Container Platform 4.12 to 4.13
	6.7.3.4. Using the web console to opt in to automatic CSI migration
	6.7.3.5. Using the CLI to opt in to automatic CSI migration

	6.8. ALICLOUD DISK CSI DRIVER OPERATOR
	6.8.1. Overview
	6.8.2. About CSI

	6.9. AWS ELASTIC BLOCK STORE CSI DRIVER OPERATOR
	6.9.1. Overview
	6.9.2. About CSI
	6.9.3. User-managed encryption

	6.10. AWS ELASTIC FILE SERVICE CSI DRIVER OPERATOR
	6.10.1. Overview
	6.10.2. About CSI
	6.10.3. Setting up the AWS EFS CSI Driver Operator
	6.10.3.1. Installing the AWS EFS CSI Driver Operator
	6.10.3.2. Configuring AWS EFS CSI Driver Operator with Security Token Service
	6.10.3.3. Installing the AWS EFS CSI Driver

	6.10.4. Creating the AWS EFS storage class
	6.10.4.1. Creating the AWS EFS storage class using the console
	6.10.4.2. Creating the AWS EFS storage class using the CLI

	6.10.5. AWS EFS CSI cross account support
	6.10.6. Creating and configuring access to EFS volumes in AWS
	6.10.7. Dynamic provisioning for Amazon Elastic File Storage
	6.10.8. Creating static PVs with Amazon Elastic File Storage
	6.10.9. Amazon Elastic File Storage security
	6.10.10. Amazon Elastic File Storage troubleshooting
	6.10.11. Uninstalling the AWS EFS CSI Driver Operator
	6.10.12. Additional resources

	6.11. AZURE DISK CSI DRIVER OPERATOR
	6.11.1. Overview
	6.11.2. About CSI
	6.11.3. Creating a storage class with storage account type
	6.11.4. User-managed encryption
	6.11.5. Machine sets that deploy machines with ultra disks using PVCs
	6.11.5.1. Creating machines with ultra disks by using machine sets
	6.11.5.2. Troubleshooting resources for machine sets that enable ultra disks

	6.11.6. Additional resources

	6.12. AZURE FILE CSI DRIVER OPERATOR
	6.12.1. Overview
	6.12.2. NFS support
	6.12.3. About CSI

	6.13. AZURE STACK HUB CSI DRIVER OPERATOR
	6.13.1. Overview
	6.13.2. About CSI
	6.13.3. Additional resources

	6.14. GCP PD CSI DRIVER OPERATOR
	6.14.1. Overview
	6.14.2. About CSI
	6.14.3. GCP PD CSI driver storage class parameters
	6.14.4. Creating a custom-encrypted persistent volume
	6.14.5. User-managed encryption
	6.14.6. Additional resources

	6.15. GOOGLE COMPUTE PLATFORM FILESTORE CSI DRIVER OPERATOR
	6.15.1. Overview
	6.15.2. About CSI
	6.15.3. Installing the GCP Filestore CSI Driver Operator
	6.15.4. Creating a storage class for GCP Filestore Storage
	6.15.5. Destroying clusters and GCP Filestore
	6.15.6. Additional resources

	6.16. IBM VPC BLOCK CSI DRIVER OPERATOR
	6.16.1. Overview
	6.16.2. About CSI

	6.17. IBM POWER VIRTUAL SERVER BLOCK CSI DRIVER OPERATOR
	6.17.1. Introduction
	6.17.2. Overview
	6.17.3. About CSI

	6.18. OPENSTACK CINDER CSI DRIVER OPERATOR
	6.18.1. Overview
	6.18.2. About CSI
	6.18.3. Making OpenStack Cinder CSI the default storage class

	6.19. OPENSTACK MANILA CSI DRIVER OPERATOR
	6.19.1. Overview
	6.19.2. About CSI
	6.19.3. Manila CSI Driver Operator limitations
	6.19.4. Dynamically provisioning Manila CSI volumes

	6.20. RED HAT VIRTUALIZATION CSI DRIVER OPERATOR
	6.20.1. Overview
	6.20.2. About CSI
	6.20.3. Red Hat Virtualization (RHV) CSI driver storage class
	6.20.4. Creating a persistent volume on RHV

	6.21. VMWARE VSPHERE CSI DRIVER OPERATOR
	6.21.1. Overview
	6.21.2. About CSI
	6.21.3. vSphere CSI limitations
	6.21.4. vSphere storage policy
	6.21.5. ReadWriteMany vSphere volume support
	6.21.6. VMware vSphere CSI Driver Operator requirements
	6.21.7. Removing a third-party vSphere CSI Driver Operator
	6.21.8. vSphere persistent disks encryption
	6.21.8.1. Using datastore URL
	6.21.8.2. Using tag-based placement

	6.21.9. vSphere CSI topology overview
	6.21.9.1. Creating vSphere storage topology during installation
	6.21.9.2. Creating vSphere storage topology postinstallation
	6.21.9.3. Creating vSphere storage topology without an infra topology
	6.21.9.4. Results

	6.21.10. Additional resources

	CHAPTER 7. GENERIC EPHEMERAL VOLUMES
	7.1. OVERVIEW
	7.2. LIFECYCLE AND PERSISTENT VOLUME CLAIMS
	7.3. SECURITY
	7.4. PERSISTENT VOLUME CLAIM NAMING
	7.5. CREATING GENERIC EPHEMERAL VOLUMES

	CHAPTER 8. EXPANDING PERSISTENT VOLUMES
	8.1. ENABLING VOLUME EXPANSION SUPPORT
	8.2. EXPANDING CSI VOLUMES
	8.3. EXPANDING FLEXVOLUME WITH A SUPPORTED DRIVER
	8.4. EXPANDING LOCAL VOLUMES
	8.5. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH A FILE SYSTEM
	8.6. RECOVERING FROM FAILURE WHEN EXPANDING VOLUMES

	CHAPTER 9. DYNAMIC PROVISIONING
	9.1. ABOUT DYNAMIC PROVISIONING
	9.2. AVAILABLE DYNAMIC PROVISIONING PLUGINS
	9.3. DEFINING A STORAGE CLASS
	9.3.1. Basic StorageClass object definition
	9.3.2. Storage class annotations
	9.3.3. RHOSP Cinder object definition
	9.3.4. RHOSP Manila Container Storage Interface (CSI) object definition
	9.3.5. AWS Elastic Block Store (EBS) object definition
	9.3.6. Azure Disk object definition
	9.3.7. Azure File object definition
	9.3.7.1. Considerations when using Azure File

	9.3.8. GCE PersistentDisk (gcePD) object definition
	9.3.9. VMware vSphere object definition

	9.4. CHANGING THE DEFAULT STORAGE CLASS

	CHAPTER 10. DETACH VOLUMES AFTER NON-GRACEFUL NODE SHUTDOWN
	10.1. OVERVIEW
	10.2. ADDING AN OUT-OF-SERVICE TAINT MANUALLY FOR AUTOMATIC VOLUME DETACHMENT

