
OpenShift Container Platform 4.18

Authentication and authorization

Configuring user authentication and access controls for users and services

Last Updated: 2026-02-19

OpenShift Container Platform 4.18 Authentication and authorization

Configuring user authentication and access controls for users and services

Legal Notice

Copyright © Red Hat.

Except as otherwise noted below, the text of and illustrations in this documentation are licensed by
Red Hat under the Creative Commons Attribution–Share Alike 3.0 Unported license . If you
distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, the Red Hat logo, JBoss, Hibernate, and RHCE are trademarks or registered trademarks of
Red Hat, LLC. or its subsidiaries in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

XFS is a trademark or registered trademark of Hewlett Packard Enterprise Development LP or its
subsidiaries in the United States and other countries.

The OpenStack ® Word Mark and OpenStack logo are trademarks or registered trademarks of the
Linux Foundation, used under license.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for defining identity providers in OpenShift Container
Platform. It also discusses how to configure role-based access control to secure the cluster.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW OF AUTHENTICATION AND AUTHORIZATION
1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM AUTHENTICATION AND
AUTHORIZATION
1.2. ABOUT AUTHENTICATION IN OPENSHIFT CONTAINER PLATFORM
1.3. ABOUT AUTHORIZATION IN OPENSHIFT CONTAINER PLATFORM

CHAPTER 2. UNDERSTANDING AUTHENTICATION
2.1. USERS
2.2. GROUPS
2.3. API AUTHENTICATION

2.3.1. OpenShift Container Platform OAuth server
2.3.1.1. OAuth token requests
2.3.1.2. API impersonation
2.3.1.3. Authentication metrics for Prometheus

CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER
3.1. OPENSHIFT CONTAINER PLATFORM OAUTH SERVER
3.2. OAUTH TOKEN REQUEST FLOWS AND RESPONSES
3.3. OPTIONS FOR THE INTERNAL OAUTH SERVER

3.3.1. OAuth token duration options
3.3.2. OAuth grant options

3.4. CONFIGURING THE INTERNAL OAUTH SERVER’S TOKEN DURATION
3.5. CONFIGURING TOKEN INACTIVITY TIMEOUT FOR THE INTERNAL OAUTH SERVER
3.6. CUSTOMIZING THE INTERNAL OAUTH SERVER URL
3.7. OAUTH SERVER METADATA
3.8. TROUBLESHOOTING OAUTH API EVENTS

CHAPTER 4. CONFIGURING OAUTH CLIENTS
4.1. DEFAULT OAUTH CLIENTS
4.2. REGISTERING AN ADDITIONAL OAUTH CLIENT
4.3. CONFIGURING TOKEN INACTIVITY TIMEOUT FOR AN OAUTH CLIENT
4.4. ADDITIONAL RESOURCES

CHAPTER 5. MANAGING USER-OWNED OAUTH ACCESS TOKENS
5.1. LISTING USER-OWNED OAUTH ACCESS TOKENS
5.2. VIEWING THE DETAILS OF A USER-OWNED OAUTH ACCESS TOKEN
5.3. DELETING USER-OWNED OAUTH ACCESS TOKENS
5.4. ADDING UNAUTHENTICATED GROUPS TO CLUSTER ROLES

CHAPTER 6. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION
6.1. ABOUT IDENTITY PROVIDERS IN OPENSHIFT CONTAINER PLATFORM
6.2. SUPPORTED IDENTITY PROVIDERS
6.3. REMOVING THE KUBEADMIN USER
6.4. IDENTITY PROVIDER PARAMETERS
6.5. SAMPLE IDENTITY PROVIDER CR
6.6. MANUALLY PROVISIONING A USER WHEN USING THE LOOKUP MAPPING METHOD

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS
7.1. CONFIGURING AN HTPASSWD IDENTITY PROVIDER

7.1.1. About identity providers in OpenShift Container Platform
7.1.2. About htpasswd authentication
7.1.3. Creating the htpasswd file

7.1.3.1. Creating an htpasswd file using Linux

8

8
9

10

12
12
12
13
13
13
14
14

16
16
16
16
17
17
17
18

20
21
22

24
24
24
25
26

27
27
27
28
29

31
31
31
32
32
33
34

35
35
35
35
35
35

Table of Contents

1

7.1.3.2. Creating an htpasswd file using Windows
7.1.4. Creating the htpasswd secret
7.1.5. Sample htpasswd CR
7.1.6. Adding an identity provider to your cluster
7.1.7. Updating users for an htpasswd identity provider
7.1.8. Configuring identity providers using the web console

7.2. CONFIGURING A KEYSTONE IDENTITY PROVIDER
7.2.1. About identity providers in OpenShift Container Platform
7.2.2. About Keystone authentication
7.2.3. Creating the secret
7.2.4. Creating a config map
7.2.5. Sample Keystone CR
7.2.6. Adding an identity provider to your cluster

7.3. CONFIGURING AN LDAP IDENTITY PROVIDER
7.3.1. About identity providers in OpenShift Container Platform
7.3.2. About LDAP authentication
7.3.3. Creating the LDAP secret
7.3.4. Creating a config map
7.3.5. Sample LDAP CR
7.3.6. Adding an identity provider to your cluster

7.4. CONFIGURING A BASIC AUTHENTICATION IDENTITY PROVIDER
7.4.1. About identity providers in OpenShift Container Platform
7.4.2. About basic authentication
7.4.3. Creating the secret
7.4.4. Creating a config map
7.4.5. Sample basic authentication CR
7.4.6. Adding an identity provider to your cluster
7.4.7. Example Apache HTTPD configuration for basic identity providers

7.4.7.1. File requirements
7.4.8. Basic authentication troubleshooting

7.5. CONFIGURING A REQUEST HEADER IDENTITY PROVIDER
7.5.1. About identity providers in OpenShift Container Platform
7.5.2. About request header authentication

7.5.2.1. SSPI connection support on Microsoft Windows
7.5.3. Creating a config map
7.5.4. Sample request header CR
7.5.5. Adding an identity provider to your cluster
7.5.6. Example Apache authentication configuration using request header

7.5.6.1. Custom proxy configuration
7.5.6.2. Configuring Apache authentication using request header

7.6. CONFIGURING A GITHUB OR GITHUB ENTERPRISE IDENTITY PROVIDER
7.6.1. About identity providers in OpenShift Container Platform
7.6.2. About GitHub authentication
7.6.3. Registering a GitHub application
7.6.4. Creating the secret
7.6.5. Creating a config map
7.6.6. Sample GitHub CR
7.6.7. Adding an identity provider to your cluster

7.7. CONFIGURING A GITLAB IDENTITY PROVIDER
7.7.1. About identity providers in OpenShift Container Platform
7.7.2. About GitLab authentication
7.7.3. Creating the secret
7.7.4. Creating a config map

36
37
37
38
39
40
41
41
41
41

42
42
43
44
44
44
45
46
46
48
49
49
49
50
50
51
52
52
53
54
54
55
55
55
56
56
58
59
59
59
63
64
64
64
65
65
66
67
68
68
68
68
69

OpenShift Container Platform 4.18 Authentication and authorization

2

. .

. .

. .

. .

. .

7.7.5. Sample GitLab CR
7.7.6. Adding an identity provider to your cluster

7.8. CONFIGURING A GOOGLE IDENTITY PROVIDER
7.8.1. About identity providers in OpenShift Container Platform
7.8.2. About Google authentication
7.8.3. Creating the secret
7.8.4. Sample Google CR
7.8.5. Adding an identity provider to your cluster

7.9. CONFIGURING AN OPENID CONNECT IDENTITY PROVIDER
7.9.1. About identity providers in OpenShift Container Platform
7.9.2. About OpenID Connect authentication
7.9.3. Supported OIDC providers
7.9.4. Creating the secret
7.9.5. Creating a config map
7.9.6. Sample OpenID Connect CRs
7.9.7. Adding an identity provider to your cluster
7.9.8. Configuring identity providers using the web console

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS
8.1. RBAC OVERVIEW

8.1.1. Default cluster roles
8.1.2. Evaluating authorization

8.1.2.1. Cluster role aggregation
8.2. PROJECTS AND NAMESPACES
8.3. DEFAULT PROJECTS
8.4. VIEWING CLUSTER ROLES AND BINDINGS
8.5. VIEWING LOCAL ROLES AND BINDINGS
8.6. ADDING ROLES TO USERS
8.7. CREATING A LOCAL ROLE
8.8. CREATING A CLUSTER ROLE
8.9. LOCAL ROLE BINDING COMMANDS
8.10. CLUSTER ROLE BINDING COMMANDS
8.11. CREATING A CLUSTER ADMIN
8.12. CLUSTER ROLE BINDINGS FOR UNAUTHENTICATED GROUPS

CHAPTER 9. REMOVING THE KUBEADMIN USER
9.1. THE KUBEADMIN USER
9.2. REMOVING THE KUBEADMIN USER

CHAPTER 10. UNDERSTANDING AND CREATING SERVICE ACCOUNTS
10.1. SERVICE ACCOUNTS OVERVIEW

10.1.1. Automatically generated image pull secrets
10.2. CREATING SERVICE ACCOUNTS
10.3. GRANTING ROLES TO SERVICE ACCOUNTS

CHAPTER 11. USING SERVICE ACCOUNTS IN APPLICATIONS
11.1. SERVICE ACCOUNTS OVERVIEW
11.2. DEFAULT SERVICE ACCOUNTS

11.2.1. Default cluster service accounts
11.2.2. Default project service accounts and roles
11.2.3. Automatically generated image pull secrets

11.3. CREATING SERVICE ACCOUNTS

CHAPTER 12. USING A SERVICE ACCOUNT AS AN OAUTH CLIENT

70
71
71
71
72
72
72
73
74
74
74
75
76
76
77
79
80

81
81

82
83
84
84
85
86
92
94
96
97
97
98
98
99

100
100
100

101
101
101
102
103

106
106
106
106
107
107
108

110

Table of Contents

3

. .

. .

. .

. .

. .

12.1. SERVICE ACCOUNTS AS OAUTH CLIENTS
12.1.1. Redirect URIs for service accounts as OAuth clients

CHAPTER 13. SCOPING TOKENS
13.1. ABOUT SCOPING TOKENS

13.1.1. User scopes
13.1.2. Role scope

13.2. ADDING UNAUTHENTICATED GROUPS TO CLUSTER ROLES

CHAPTER 14. USING BOUND SERVICE ACCOUNT TOKENS
14.1. ABOUT BOUND SERVICE ACCOUNT TOKENS
14.2. CONFIGURING BOUND SERVICE ACCOUNT TOKENS USING VOLUME PROJECTION
14.3. CREATING BOUND SERVICE ACCOUNT TOKENS OUTSIDE THE POD

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS
15.1. ABOUT SECURITY CONTEXT CONSTRAINTS

15.1.1. Default security context constraints
15.1.2. Security context constraints settings
15.1.3. Security context constraints strategies
15.1.4. Controlling volumes
15.1.5. Admission control
15.1.6. Security context constraints prioritization

15.2. ABOUT PRE-ALLOCATED SECURITY CONTEXT CONSTRAINTS VALUES
15.3. EXAMPLE SECURITY CONTEXT CONSTRAINTS
15.4. CREATING SECURITY CONTEXT CONSTRAINTS
15.5. CONFIGURING A WORKLOAD TO REQUIRE A SPECIFIC SCC
15.6. ROLE-BASED ACCESS TO SECURITY CONTEXT CONSTRAINTS
15.7. REFERENCE OF SECURITY CONTEXT CONSTRAINTS COMMANDS

15.7.1. Listing security context constraints
15.7.2. Examining security context constraints
15.7.3. Updating security context constraints
15.7.4. Deleting security context constraints

15.8. ADDITIONAL RESOURCES

CHAPTER 16. UNDERSTANDING AND MANAGING POD SECURITY ADMISSION
16.1. ABOUT POD SECURITY ADMISSION

16.1.1. Pod security admission modes
16.1.2. Pod security admission profiles
16.1.3. Privileged namespaces
16.1.4. Pod security admission and security context constraints

16.2. ABOUT POD SECURITY ADMISSION SYNCHRONIZATION
16.2.1. Pod security admission synchronization namespace exclusions

16.2.1.1. Permanently disabled namespaces
16.2.1.2. Initially disabled namespaces

16.3. CONTROLLING POD SECURITY ADMISSION SYNCHRONIZATION
16.4. CONFIGURING POD SECURITY ADMISSION FOR A NAMESPACE
16.5. ABOUT POD SECURITY ADMISSION ALERTS

16.5.1. Identifying pod security violations
16.6. ADDITIONAL RESOURCES

CHAPTER 17. IMPERSONATING THE SYSTEM:ADMIN USER
17.1. API IMPERSONATION
17.2. IMPERSONATING THE SYSTEM:ADMIN USER
17.3. IMPERSONATING THE SYSTEM:ADMIN GROUP

110
110

113
113
113
113
113

115
115
115
118

120
120
121
125
126
128
129
130
131
132
134
135
137
138
138
139
140
140
141

142
142
142
142
143
143
143
144
144
144
145
146
146
146
147

148
148
148
148

OpenShift Container Platform 4.18 Authentication and authorization

4

. .

. .

17.4. ADDING UNAUTHENTICATED GROUPS TO CLUSTER ROLES

CHAPTER 18. SYNCING LDAP GROUPS
18.1. ABOUT CONFIGURING LDAP SYNC

18.1.1. About the RFC 2307 configuration file
18.1.2. About the Active Directory configuration file
18.1.3. About the augmented Active Directory configuration file

18.2. RUNNING LDAP SYNC
18.2.1. Syncing the LDAP server with OpenShift Container Platform
18.2.2. Syncing OpenShift Container Platform groups with the LDAP server
18.2.3. Syncing subgroups from the LDAP server with OpenShift Container Platform

18.3. RUNNING A GROUP PRUNING JOB
18.4. AUTOMATICALLY SYNCING LDAP GROUPS
18.5. LDAP GROUP SYNC EXAMPLES

18.5.1. Syncing groups using the RFC 2307 schema
18.5.2. Syncing groups using the RFC2307 schema with user-defined name mappings
18.5.3. Syncing groups using RFC 2307 with user-defined error tolerances
18.5.4. Syncing groups using the Active Directory schema
18.5.5. Syncing groups using the augmented Active Directory schema

18.5.5.1. LDAP nested membership sync example
18.6. LDAP SYNC CONFIGURATION SPECIFICATION

18.6.1. v1.LDAPSyncConfig
18.6.2. v1.StringSource
18.6.3. v1.LDAPQuery
18.6.4. v1.RFC2307Config
18.6.5. v1.ActiveDirectoryConfig
18.6.6. v1.AugmentedActiveDirectoryConfig

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS
19.1. ABOUT THE CLOUD CREDENTIAL OPERATOR

19.1.1. Modes
19.1.2. Determining the Cloud Credential Operator mode

19.1.2.1. Determining the Cloud Credential Operator mode by using the web console
19.1.2.2. Determining the Cloud Credential Operator mode by using the CLI

19.1.3. Default behavior
19.1.4. Additional resources

19.2. THE CLOUD CREDENTIAL OPERATOR IN MINT MODE
19.2.1. Mint mode credentials management

19.2.1.1. Mint mode permissions requirements
19.2.1.2. Admin credentials root secret format

19.2.2. Maintaining cloud provider credentials
19.2.3. Additional resources

19.3. THE CLOUD CREDENTIAL OPERATOR IN PASSTHROUGH MODE
19.3.1. Passthrough mode permissions requirements

19.3.1.1. Amazon Web Services (AWS) permissions
19.3.1.2. Microsoft Azure permissions
19.3.1.3. Google Cloud permissions
19.3.1.4. Red Hat OpenStack Platform (RHOSP) permissions
19.3.1.5. VMware vSphere permissions

19.3.2. Admin credentials root secret format
19.3.3. Passthrough mode credential maintenance

19.3.3.1. Maintaining cloud provider credentials
19.3.4. Reducing permissions after installation

149

150
150
152
153
154
155
155
155
156
157
157
161
161

163
165
168
169
171

174
175
177
177
178
180
180

182
182
182
183
184
187
189
189
189
189
190
191

192
193
193
194
194
194
194
194
194
195
197
197
198

Table of Contents

5

19.3.5. Additional resources
19.4. MANUAL MODE WITH LONG-TERM CREDENTIALS FOR COMPONENTS

19.4.1. User-managed credentials
19.4.2. Additional resources

19.5. MANUAL MODE WITH SHORT-TERM CREDENTIALS FOR COMPONENTS
19.5.1. AWS Security Token Service

19.5.1.1. AWS Security Token Service authentication process
19.5.1.1.1. Authentication flow for AWS STS
19.5.1.1.2. Token refreshing for AWS STS
19.5.1.1.3. OpenID Connect requirements for AWS STS

19.5.1.2. AWS component secret formats
19.5.1.3. AWS component secret permissions requirements
19.5.1.4. OLM-managed Operator support for authentication with AWS STS

19.5.2. GCP Workload Identity
19.5.2.1. Google Cloud Workload Identity authentication process
19.5.2.2. Google Cloud component secret formats
19.5.2.3. OLM-managed Operator support for authentication with GCP Workload Identity
19.5.2.4. Application support for GCP Workload Identity service account tokens

19.5.3. Microsoft Entra Workload ID
19.5.3.1. Microsoft Entra Workload ID authentication process
19.5.3.2. Azure component secret formats
19.5.3.3. Azure component secret permissions requirements
19.5.3.4. OLM-managed Operator support for authentication with Microsoft Entra Workload ID

19.5.4. Additional resources

198
199
199
199
199

200
200
201
201

202
202
203
210
210
210
211
212
213
213
213
214
215
222
222

OpenShift Container Platform 4.18 Authentication and authorization

6

Table of Contents

7

CHAPTER 1. OVERVIEW OF AUTHENTICATION AND
AUTHORIZATION

1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM AUTHENTICATION AND AUTHORIZATION

This glossary defines common terms that are used in OpenShift Container Platform authentication and
authorization.

authentication

An authentication determines access to an OpenShift Container Platform cluster and ensures only
authenticated users access the OpenShift Container Platform cluster.

authorization

Authorization determines whether the identified user has permissions to perform the requested
action.

bearer token

Bearer token is used to authenticate to API with the header Authorization: Bearer <token>.

Cloud Credential Operator

The Cloud Credential Operator (CCO) manages cloud provider credentials as custom resource
definitions (CRDs).

config map

A config map provides a way to inject configuration data into the pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

containers

Lightweight and executable images that consist of software and all its dependencies. Because
containers virtualize the operating system, you can run containers in a data center, public or private
cloud, or your local host.

Custom Resource (CR)

A CR is an extension of the Kubernetes API.

group

A group is a set of users. A group is useful for granting permissions to multiple users one time.

HTPasswd

HTPasswd updates the files that store usernames and password for authentication of HTTP users.

Keystone

Keystone is an Red Hat OpenStack Platform (RHOSP) project that provides identity, token, catalog,
and policy services.

Lightweight directory access protocol (LDAP)

LDAP is a protocol that queries user information.

manual mode

In manual mode, a user manages cloud credentials instead of the Cloud Credential Operator (CCO).

mint mode

In mint mode, the Cloud Credential Operator (CCO) uses the provided administrator-level cloud

OpenShift Container Platform 4.18 Authentication and authorization

8

In mint mode, the Cloud Credential Operator (CCO) uses the provided administrator-level cloud
credential to create new credentials for components in the cluster with only the specific permissions
that are required.

NOTE

Mint mode is the default and the preferred setting for the CCO to use on the
platforms for which it is supported.

namespace

A namespace isolates specific system resources that are visible to all processes. Inside a namespace,
only processes that are members of that namespace can see those resources.

node

A node is a worker machine in the OpenShift Container Platform cluster. A node is either a virtual
machine (VM) or a physical machine.

OAuth client

OAuth client is used to get a bearer token.

OAuth server

The OpenShift Container Platform control plane includes a built-in OAuth server that determines the
user’s identity from the configured identity provider and creates an access token.

OpenID Connect

The OpenID Connect is a protocol to authenticate the users to use single sign-on (SSO) to access
sites that use OpenID Providers.

passthrough mode

In passthrough mode, the Cloud Credential Operator (CCO) passes the provided cloud credential to
the components that request cloud credentials.

pod

A pod is the smallest logical unit in Kubernetes. A pod is comprised of one or more containers to run
in a worker node.

regular users

Users that are created automatically in the cluster upon first login or via the API.

request header

A request header is an HTTP header that is used to provide information about HTTP request context,
so that the server can track the response of the request.

role-based access control (RBAC)

A key security control to ensure that cluster users and workloads have access to only the resources
required to execute their roles.

service accounts

Service accounts are used by the cluster components or applications.

system users

Users that are created automatically when the cluster is installed.

users

Users is an entity that can make requests to API.

1.2. ABOUT AUTHENTICATION IN OPENSHIFT CONTAINER PLATFORM

CHAPTER 1. OVERVIEW OF AUTHENTICATION AND AUTHORIZATION

9

To control access to an OpenShift Container Platform cluster, a cluster administrator can configure user
authentication and ensure only approved users access the cluster.

To interact with an OpenShift Container Platform cluster, users must first authenticate to the OpenShift
Container Platform API in some way. You can authenticate by providing an OAuth access token or an
X.509 client certificate in your requests to the OpenShift Container Platform API.

NOTE

If you do not present a valid access token or certificate, your request is unauthenticated
and you receive an HTTP 401 error.

An administrator can configure authentication through the following tasks:

Configuring an identity provider: You can define any supported identity provider in OpenShift
Container Platform and add it to your cluster.

Configuring the internal OAuth server: The OpenShift Container Platform control plane includes
a built-in OAuth server that determines the user’s identity from the configured identity provider
and creates an access token. You can configure the token duration and inactivity timeout, and
customize the internal OAuth server URL.

NOTE

Users can view and manage OAuth tokens owned by them .

Registering an OAuth client: OpenShift Container Platform includes several default OAuth
clients. You can register and configure additional OAuth clients .

NOTE

When users send a request for an OAuth token, they must specify either a default
or custom OAuth client that receives and uses the token.

Managing cloud provider credentials using the Cloud Credentials Operator: Cluster components
use cloud provider credentials to get permissions required to perform cluster-related tasks.

Impersonating a system admin user: You can grant cluster administrator permissions to a user
by impersonating a system admin user .

1.3. ABOUT AUTHORIZATION IN OPENSHIFT CONTAINER PLATFORM

Authorization involves determining whether the identified user has permissions to perform the
requested action.

Administrators can define permissions and assign them to users using the RBAC objects, such as rules,
roles, and bindings. To understand how authorization works in OpenShift Container Platform, see
Evaluating authorization.

You can also control access to an OpenShift Container Platform cluster through projects and
namespaces.

Along with controlling user access to a cluster, you can also control the actions a pod can perform and
the resources it can access using security context constraints (SCCs) .

OpenShift Container Platform 4.18 Authentication and authorization

10

You can manage authorization for OpenShift Container Platform through the following tasks:

Viewing local and cluster roles and bindings.

Creating a local role and assigning it to a user or group.

Creating a cluster role and assigning it to a user or group: OpenShift Container Platform
includes a set of default cluster roles. You can create additional cluster roles and add them to a
user or group.

Creating a cluster-admin user: By default, your cluster has only one cluster administrator called
kubeadmin. You can create another cluster administrator . Before creating a cluster
administrator, ensure that you have configured an identity provider.

NOTE

After creating the cluster admin user, delete the existing kubeadmin user to
improve cluster security.

Creating service accounts: Service accounts provide a flexible way to control API access without
sharing a regular user’s credentials. A user can create and use a service account in applications
and also as an OAuth client.

Scoping tokens: A scoped token is a token that identifies as a specific user who can perform
only specific operations. You can create scoped tokens to delegate some of your permissions to
another user or a service account.

Syncing LDAP groups: You can manage user groups in one place by syncing the groups stored
in an LDAP server with the OpenShift Container Platform user groups.

CHAPTER 1. OVERVIEW OF AUTHENTICATION AND AUTHORIZATION

11

CHAPTER 2. UNDERSTANDING AUTHENTICATION
For users to interact with OpenShift Container Platform, they must first authenticate to the cluster. The
authentication layer identifies the user associated with requests to the OpenShift Container Platform
API. The authorization layer then uses information about the requesting user to determine if the request
is allowed.

As an administrator, you can configure authentication for OpenShift Container Platform.

2.1. USERS

A user in OpenShift Container Platform is an entity that can make requests to the OpenShift Container
Platform API. An OpenShift Container Platform User object represents an actor which can be granted
permissions in the system by adding roles to them or to their groups. Typically, this represents the
account of a developer or administrator that is interacting with OpenShift Container Platform.

Several types of users can exist:

User type Description

Regular users This is the way most interactive OpenShift Container Platform users are represented.
Regular users are created automatically in the system upon first login or can be created
via the API. Regular users are represented with the User object. Examples: joe alice

System users Many of these are created automatically when the infrastructure is defined, mainly for
the purpose of enabling the infrastructure to interact with the API securely. They
include a cluster administrator (with access to everything), a per-node user, users for
use by routers and registries, and various others. Finally, there is an anonymous
system user that is used by default for unauthenticated requests. Examples:
system:admin system:openshift-registry system:node:node1.example.com

Service
accounts

These are special system users associated with projects; some are created
automatically when the project is first created, while project administrators can create
more for the purpose of defining access to the contents of each project. Service
accounts are represented with the ServiceAccount object. Examples:
system:serviceaccount:default:deployer
system:serviceaccount:foo:builder

Each user must authenticate in some way to access OpenShift Container Platform. API requests with no
authentication or invalid authentication are authenticated as requests by the anonymous system user.
After authentication, policy determines what the user is authorized to do.

2.2. GROUPS

A user can be assigned to one or more groups, each of which represent a certain set of users. Groups are
useful when managing authorization policies to grant permissions to multiple users at once, for example
allowing access to objects within a project, versus granting them to users individually.

In addition to explicitly defined groups, there are also system groups, or virtual groups, that are
automatically provisioned by the cluster.

The following default virtual groups are most important:

OpenShift Container Platform 4.18 Authentication and authorization

12

Virtual group Description

system:authenticated Automatically associated with all authenticated users.

system:authenticated:oa
uth

Automatically associated with all users authenticated with an OAuth access
token.

system:unauthenticated Automatically associated with all unauthenticated users.

2.3. API AUTHENTICATION

Requests to the OpenShift Container Platform API are authenticated using the following methods:

OAuth access tokens

Obtained from the OpenShift Container Platform OAuth server using the
<namespace_route>/oauth/authorize and <namespace_route>/oauth/token endpoints.

Sent as an Authorization: Bearer… ​ header.

Sent as a websocket subprotocol header in the form
base64url.bearer.authorization.k8s.io.<base64url-encoded-token> for websocket
requests.

X.509 client certificates

Requires an HTTPS connection to the API server.

Verified by the API server against a trusted certificate authority bundle.

The API server creates and distributes certificates to controllers to authenticate themselves.

Any request with an invalid access token or an invalid certificate is rejected by the authentication layer
with a 401 error.

If no access token or certificate is presented, the authentication layer assigns the system:anonymous
virtual user and the system:unauthenticated virtual group to the request. This allows the authorization
layer to determine which requests, if any, an anonymous user is allowed to make.

2.3.1. OpenShift Container Platform OAuth server

The OpenShift Container Platform master includes a built-in OAuth server. Users obtain OAuth access
tokens to authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to
determine the identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns
the token for use.

2.3.1.1. OAuth token requests

Every request for an OAuth token must specify the OAuth client that will receive and use the token. The

CHAPTER 2. UNDERSTANDING AUTHENTICATION

13

Every request for an OAuth token must specify the OAuth client that will receive and use the token. The
following OAuth clients are automatically created when starting the OpenShift Container Platform API:

OAuth client Usage

openshift-browser-client Requests tokens at
<namespace_route>/oauth/token/request with

a user-agent that can handle interactive logins. [1]

openshift-challenging-client Requests tokens with a user-agent that can handle
WWW-Authenticate challenges.

1. <namespace_route> refers to the namespace route. This is found by running the following
command:

All requests for OAuth tokens involve a request to <namespace_route>/oauth/authorize. Most
authentication integrations place an authenticating proxy in front of this endpoint, or configure
OpenShift Container Platform to validate credentials against a backing identity provider. Requests to
<namespace_route>/oauth/authorize can come from user-agents that cannot display interactive login
pages, such as the CLI. Therefore, OpenShift Container Platform supports authenticating using a
WWW-Authenticate challenge in addition to interactive login flows.

If an authenticating proxy is placed in front of the <namespace_route>/oauth/authorize endpoint, it
sends unauthenticated, non-browser user-agents WWW-Authenticate challenges rather than
displaying an interactive login page or redirecting to an interactive login flow.

NOTE

To prevent cross-site request forgery (CSRF) attacks against browser clients, only send
Basic authentication challenges with if a X-CSRF-Token header is on the request. Clients
that expect to receive Basic WWW-Authenticate challenges must set this header to a
non-empty value.

If the authenticating proxy cannot support WWW-Authenticate challenges, or if
OpenShift Container Platform is configured to use an identity provider that does not
support WWW-Authenticate challenges, you must use a browser to manually obtain a
token from <namespace_route>/oauth/token/request.

2.3.1.2. API impersonation

You can configure a request to the OpenShift Container Platform API to act as though it originated
from another user. For more information, see User impersonation in the Kubernetes documentation.

2.3.1.3. Authentication metrics for Prometheus

OpenShift Container Platform captures the following Prometheus system metrics during authentication
attempts:

openshift_auth_basic_password_count counts the number of oc login user name and
password attempts.

$ oc get route oauth-openshift -n openshift-authentication -o json | jq .spec.host

OpenShift Container Platform 4.18 Authentication and authorization

14

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation

openshift_auth_basic_password_count_result counts the number of oc login user name
and password attempts by result, success or error.

openshift_auth_form_password_count counts the number of web console login attempts.

openshift_auth_form_password_count_result counts the number of web console login
attempts by result, success or error.

openshift_auth_password_total counts the total number of oc login and web console login
attempts.

CHAPTER 2. UNDERSTANDING AUTHENTICATION

15

CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER

3.1. OPENSHIFT CONTAINER PLATFORM OAUTH SERVER

The OpenShift Container Platform master includes a built-in OAuth server. Users obtain OAuth access
tokens to authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to
determine the identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns
the token for use.

3.2. OAUTH TOKEN REQUEST FLOWS AND RESPONSES

The OAuth server supports standard authorization code grant and the implicit grant OAuth
authorization flows.

When requesting an OAuth token using the implicit grant flow (response_type=token) with a client_id
configured to request WWW-Authenticate challenges (like openshift-challenging-client), these are
the possible server responses from /oauth/authorize, and how they should be handled:

Status Content Client response

302 Location header containing an
access_token parameter in the URL
fragment (RFC 6749 section 4.2.2)

Use the access_token value as the OAuth
token.

302 Location header containing an error query
parameter (RFC 6749 section 4.1.2.1)

Fail, optionally surfacing the error (and
optional error_description) query values to
the user.

302 Other Location header Follow the redirect, and process the result
using these rules.

401 WWW-Authenticate header present Respond to challenge if type is recognized
(e.g. Basic, Negotiate, etc), resubmit
request, and process the result using these
rules.

401 WWW-Authenticate header missing No challenge authentication is possible. Fail
and show response body (which might contain
links or details on alternate methods to obtain
an OAuth token).

Other Other Fail, optionally surfacing response body to the
user.

3.3. OPTIONS FOR THE INTERNAL OAUTH SERVER

OpenShift Container Platform 4.18 Authentication and authorization

16

https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.2
https://tools.ietf.org/html/rfc6749#section-4.2.2
https://tools.ietf.org/html/rfc6749#section-4.1.2.1

Several configuration options are available for the internal OAuth server.

3.3.1. OAuth token duration options

The internal OAuth server generates two kinds of tokens:

Token Description

Access tokens Longer-lived tokens that grant access to the API.

Authorize codes Short-lived tokens whose only use is to be exchanged for an access
token.

You can configure the default duration for both types of token. If necessary, you can override the
duration of the access token by using an OAuthClient object definition.

3.3.2. OAuth grant options

When the OAuth server receives token requests for a client to which the user has not previously granted
permission, the action that the OAuth server takes is dependent on the OAuth client’s grant strategy.

The OAuth client requesting token must provide its own grant strategy.

You can apply the following default methods:

Grant option Description

auto Auto-approve the grant and retry the request.

prompt Prompt the user to approve or deny the grant.

3.4. CONFIGURING THE INTERNAL OAUTH SERVER’S TOKEN
DURATION

You can configure default options for the internal OAuth server’s token duration.

IMPORTANT

By default, tokens are only valid for 24 hours. Existing sessions expire after this time
elapses.

If the default time is insufficient, then this can be modified using the following procedure.

Procedure

1. Create a configuration file that contains the token duration options. The following file sets this
to 48 hours, twice the default.

apiVersion: config.openshift.io/v1

CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER

17

1 Set accessTokenMaxAgeSeconds to control the lifetime of access tokens. The default
lifetime is 24 hours, or 86400 seconds. This attribute cannot be negative. If set to zero, the
default lifetime is used.

2. Apply the new configuration file:

NOTE

Because you update the existing OAuth server, you must use the oc apply
command to apply the change.

3. Confirm that the changes are in effect:

Example output

3.5. CONFIGURING TOKEN INACTIVITY TIMEOUT FOR THE INTERNAL
OAUTH SERVER

You can configure OAuth tokens to expire after a set period of inactivity. By default, no token inactivity
timeout is set.

NOTE

If the token inactivity timeout is also configured in your OAuth client, that value overrides
the timeout that is set in the internal OAuth server configuration.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have configured an identity provider (IDP).

Procedure

kind: OAuth
metadata:
 name: cluster
spec:
 tokenConfig:
 accessTokenMaxAgeSeconds: 172800 1

$ oc apply -f </path/to/file.yaml>

$ oc describe oauth.config.openshift.io/cluster

...
Spec:
 Token Config:
 Access Token Max Age Seconds: 172800
...

OpenShift Container Platform 4.18 Authentication and authorization

18

1

1. Update the OAuth configuration to set a token inactivity timeout.

a. Edit the OAuth object:

Add the spec.tokenConfig.accessTokenInactivityTimeout field and set your timeout
value:

Set a value with the appropriate units, for example 400s for 400 seconds, or 30m for
30 minutes. The minimum allowed timeout value is 300s.

b. Save the file to apply the changes.

2. Check that the OAuth server pods have restarted:

Do not continue to the next step until PROGRESSING is listed as False, as shown in the
following output:

Example output

3. Check that a new revision of the Kubernetes API server pods has rolled out. This will take several
minutes.

Do not continue to the next step until PROGRESSING is listed as False, as shown in the
following output:

Example output

If PROGRESSING is showing True, wait a few minutes and try again.

Verification

1. Log in to the cluster with an identity from your IDP.

$ oc edit oauth cluster

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
...
spec:
 tokenConfig:
 accessTokenInactivityTimeout: 400s 1

$ oc get clusteroperators authentication

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.18.0 True False False 145m

$ oc get clusteroperators kube-apiserver

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
kube-apiserver 4.18.0 True False False 145m

CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER

19

1

2. Execute a command and verify that it was successful.

3. Wait longer than the configured timeout without using the identity. In this procedure’s example,
wait longer than 400 seconds.

4. Try to execute a command from the same identity’s session.
This command should fail because the token should have expired due to inactivity longer than
the configured timeout.

Example output

3.6. CUSTOMIZING THE INTERNAL OAUTH SERVER URL

You can customize the internal OAuth server URL by setting the custom hostname and TLS certificate
in the spec.componentRoutes field of the cluster Ingress configuration.

WARNING

If you update the internal OAuth server URL, you might break trust from
components in the cluster that need to communicate with the OpenShift OAuth
server to retrieve OAuth access tokens. Components that need to trust the OAuth
server will need to include the proper CA bundle when calling OAuth endpoints. For
example:

For self-signed certificates, the ca.crt file must contain the custom CA
certificate, otherwise the login will not succeed.

The Cluster Authentication Operator publishes the OAuth server’s serving
certificate in the oauth-serving-cert config map in the openshift-config-managed
namespace. You can find the certificate in the data.ca-bundle.crt key of the config
map.

Prerequisites

You have logged in to the cluster as a user with administrative privileges.

You have created a secret in the openshift-config namespace containing the TLS certificate
and key. This is required if the domain for the custom hostname suffix does not match the
cluster domain suffix. The secret is optional if the suffix matches.

TIP

You can create a TLS secret by using the oc create secret tls command.

error: You must be logged in to the server (Unauthorized)


$ oc login -u <username> -p <password> --certificate-authority=<path_to_ca.crt>
1

OpenShift Container Platform 4.18 Authentication and authorization

20

1

2

Procedure

1. Edit the cluster Ingress configuration:

2. Set the custom hostname and optionally the serving certificate and key:

The custom hostname.

Reference to a secret in the openshift-config namespace that contains a TLS certificate
(tls.crt) and key (tls.key). This is required if the domain for the custom hostname suffix
does not match the cluster domain suffix. The secret is optional if the suffix matches.

3. Save the file to apply the changes.

3.7. OAUTH SERVER METADATA

Applications running in OpenShift Container Platform might have to discover information about the
built-in OAuth server. For example, they might have to discover what the address of the
<namespace_route> is without manual configuration. To aid in this, OpenShift Container Platform
implements the IETF OAuth 2.0 Authorization Server Metadata draft specification.

Thus, any application running inside the cluster can issue a GET request to
https://openshift.default.svc/.well-known/oauth-authorization-server to fetch the following
information:

{
 "issuer": "https://<namespace_route>", 1
 "authorization_endpoint": "https://<namespace_route>/oauth/authorize", 2
 "token_endpoint": "https://<namespace_route>/oauth/token", 3
 "scopes_supported": [4
 "user:full",
 "user:info",
 "user:check-access",
 "user:list-scoped-projects",
 "user:list-projects"
],
 "response_types_supported": [5
 "code",
 "token"

$ oc edit ingress.config.openshift.io cluster

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 componentRoutes:
 - name: oauth-openshift
 namespace: openshift-authentication
 hostname: <custom_hostname> 1
 servingCertKeyPairSecret:
 name: <secret_name> 2

CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER

21

https://tools.ietf.org/html/draft-ietf-oauth-discovery-10

1

2

3

4

5

6

7

],
 "grant_types_supported": [6
 "authorization_code",
 "implicit"
],
 "code_challenge_methods_supported": [7
 "plain",
 "S256"
]
}

The authorization server’s issuer identifier, which is a URL that uses the https scheme and has no
query or fragment components. This is the location where .well-known RFC 5785 resources
containing information about the authorization server are published.

URL of the authorization server’s authorization endpoint. See RFC 6749.

URL of the authorization server’s token endpoint. See RFC 6749.

JSON array containing a list of the OAuth 2.0 RFC 6749 scope values that this authorization server
supports. Note that not all supported scope values are advertised.

JSON array containing a list of the OAuth 2.0 response_type values that this authorization server
supports. The array values used are the same as those used with the response_types parameter
defined by "OAuth 2.0 Dynamic Client Registration Protocol" in RFC 7591 .

JSON array containing a list of the OAuth 2.0 grant type values that this authorization server
supports. The array values used are the same as those used with the grant_types parameter
defined by OAuth 2.0 Dynamic Client Registration Protocol in RFC 7591 .

JSON array containing a list of PKCE RFC 7636 code challenge methods supported by this
authorization server. Code challenge method values are used in the code_challenge_method
parameter defined in Section 4.3 of RFC 7636 . The valid code challenge method values are those
registered in the IANA PKCE Code Challenge Methods registry. See IANA OAuth Parameters.

3.8. TROUBLESHOOTING OAUTH API EVENTS

In some cases the API server returns an unexpected condition error message that is difficult to debug
without direct access to the API master log. The underlying reason for the error is purposely obscured in
order to avoid providing an unauthenticated user with information about the server’s state.

A subset of these errors is related to service account OAuth configuration issues. These issues are
captured in events that can be viewed by non-administrator users. When encountering an unexpected
condition server error during OAuth, run oc get events to view these events under ServiceAccount.

The following example warns of a service account that is missing a proper OAuth redirect URI:

Example output

$ oc get events | grep ServiceAccount

1m 1m 1 proxy ServiceAccount Warning
NoSAOAuthRedirectURIs service-account-oauth-client-getter

OpenShift Container Platform 4.18 Authentication and authorization

22

https://tools.ietf.org/html/rfc5785
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636#section-4.3
http://www.iana.org/assignments/oauth-parameters

Running oc describe sa/<service_account_name> reports any OAuth events associated with the
given service account name.

Example output

The following is a list of the possible event errors:

No redirect URI annotations or an invalid URI is specified

Invalid route specified

Invalid reference type specified

Missing SA tokens

system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

$ oc describe sa/proxy | grep -A5 Events

Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason
Message
 --------- -------- ----- ---- ------------- -------- ------ -------
 3m 3m 1 service-account-oauth-client-getter Warning
NoSAOAuthRedirectURIs system:serviceaccount:myproject:proxy has no redirectURIs; set
serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI
using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

Reason Message
NoSAOAuthRedirectURIs system:serviceaccount:myproject:proxy has no redirectURIs; set
serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI
using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

Reason Message
NoSAOAuthRedirectURIs [routes.route.openshift.io "<name>" not found,
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

Reason Message
NoSAOAuthRedirectURIs [no kind "<name>" is registered for version "v1",
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

Reason Message
NoSAOAuthTokens system:serviceaccount:myproject:proxy has no tokens

CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER

23

1

CHAPTER 4. CONFIGURING OAUTH CLIENTS
Several OAuth clients are created by default in OpenShift Container Platform. You can also register and
configure additional OAuth clients.

4.1. DEFAULT OAUTH CLIENTS

The following OAuth clients are automatically created when starting the OpenShift Container Platform
API:

OAuth client Usage

openshift-browser-client Requests tokens at
<namespace_route>/oauth/token/request with a user-

agent that can handle interactive logins. [1]

openshift-challenging-client Requests tokens with a user-agent that can handle WWW-
Authenticate challenges.

openshift-cli-client Requests tokens by using a local HTTP server fetching an
authorization code grant.

1. <namespace_route> refers to the namespace route. This is found by running the following
command:

4.2. REGISTERING AN ADDITIONAL OAUTH CLIENT

If you need an additional OAuth client to manage authentication for your OpenShift Container Platform
cluster, you can register one.

Procedure

To register additional OAuth clients:

The name of the OAuth client is used as the client_id parameter when making requests to
<namespace_route>/oauth/authorize and <namespace_route>/oauth/token.

The secret is used as the client_secret parameter when making requests to

$ oc get route oauth-openshift -n openshift-authentication -o json | jq .spec.host

$ oc create -f <(echo '
kind: OAuthClient
apiVersion: oauth.openshift.io/v1
metadata:
 name: demo 1
secret: "..." 2
redirectURIs:
 - "http://www.example.com/" 3
grantMethod: prompt 4
')

OpenShift Container Platform 4.18 Authentication and authorization

24

2

3

4

1

1

The secret is used as the client_secret parameter when making requests to
<namespace_route>/oauth/token.

The redirect_uri parameter specified in requests to
<namespace_route>/oauth/authorize and <namespace_route>/oauth/token must be
equal to or prefixed by one of the URIs listed in the redirectURIs parameter value.

The grantMethod is used to determine what action to take when this client requests
tokens and has not yet been granted access by the user. Specify auto to automatically
approve the grant and retry the request, or prompt to prompt the user to approve or deny
the grant.

4.3. CONFIGURING TOKEN INACTIVITY TIMEOUT FOR AN OAUTH
CLIENT

You can configure OAuth clients to expire OAuth tokens after a set period of inactivity. By default, no
token inactivity timeout is set.

NOTE

If the token inactivity timeout is also configured in the internal OAuth server
configuration, the timeout that is set in the OAuth client overrides that value.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have configured an identity provider (IDP).

Procedure

Update the OAuthClient configuration to set a token inactivity timeout.

a. Edit the OAuthClient object:

Replace <oauth_client> with the OAuth client to configure, for example, console.

Add the accessTokenInactivityTimeoutSeconds field and set your timeout value:

The minimum allowed timeout value in seconds is 300.

$ oc edit oauthclient <oauth_client> 1

apiVersion: oauth.openshift.io/v1
grantMethod: auto
kind: OAuthClient
metadata:
...
accessTokenInactivityTimeoutSeconds: 600 1

CHAPTER 4. CONFIGURING OAUTH CLIENTS

25

b. Save the file to apply the changes.

Verification

1. Log in to the cluster with an identity from your IDP. Be sure to use the OAuth client that you just
configured.

2. Perform an action and verify that it was successful.

3. Wait longer than the configured timeout without using the identity. In this procedure’s example,
wait longer than 600 seconds.

4. Try to perform an action from the same identity’s session.
This attempt should fail because the token should have expired due to inactivity longer than the
configured timeout.

4.4. ADDITIONAL RESOURCES

OAuthClient [oauth.openshift.io/v1]

OpenShift Container Platform 4.18 Authentication and authorization

26

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/oauth_apis/#oauthclient-oauth-openshift-io-v1

CHAPTER 5. MANAGING USER-OWNED OAUTH ACCESS
TOKENS

Users can review their own OAuth access tokens and delete any that are no longer needed.

5.1. LISTING USER-OWNED OAUTH ACCESS TOKENS

You can list your user-owned OAuth access tokens. Token names are not sensitive and cannot be used
to log in.

Procedure

List all user-owned OAuth access tokens:

Example output

List user-owned OAuth access tokens for a particular OAuth client:

Example output

5.2. VIEWING THE DETAILS OF A USER-OWNED OAUTH ACCESS
TOKEN

You can view the details of a user-owned OAuth access token.

Procedure

Describe the details of a user-owned OAuth access token:

Example output

$ oc get useroauthaccesstokens

NAME CLIENT NAME CREATED EXPIRES
REDIRECT URI SCOPES
<token1> openshift-challenging-client 2021-01-11T19:25:35Z 2021-01-12 19:25:35
+0000 UTC https://oauth-openshift.apps.example.com/oauth/token/implicit user:full
<token2> openshift-browser-client 2021-01-11T19:27:06Z 2021-01-12 19:27:06 +0000
UTC https://oauth-openshift.apps.example.com/oauth/token/display user:full
<token3> console 2021-01-11T19:26:29Z 2021-01-12 19:26:29 +0000 UTC
https://console-openshift-console.apps.example.com/auth/callback user:full

$ oc get useroauthaccesstokens --field-selector=clientName="console"

NAME CLIENT NAME CREATED EXPIRES
REDIRECT URI SCOPES
<token3> console 2021-01-11T19:26:29Z 2021-01-12 19:26:29 +0000 UTC
https://console-openshift-console.apps.example.com/auth/callback user:full

$ oc describe useroauthaccesstokens <token_name>

CHAPTER 5. MANAGING USER-OWNED OAUTH ACCESS TOKENS

27

1

2

3

4

5

6

The token name, which is the sha256 hash of the token. Token names are not sensitive and
cannot be used to log in.

The client name, which describes where the token originated from.

The value in seconds from the creation time before this token expires.

If there is a token inactivity timeout set for the OAuth server, this is the value in seconds
from the creation time before this token can no longer be used.

The scopes for this token.

The user name associated with this token.

5.3. DELETING USER-OWNED OAUTH ACCESS TOKENS

The oc logout command only invalidates the OAuth token for the active session. You can use the
following procedure to delete any user-owned OAuth tokens that are no longer needed.

Name: <token_name> 1
Namespace:
Labels: <none>
Annotations: <none>
API Version: oauth.openshift.io/v1
Authorize Token: sha256~Ksckkug-9Fg_RWn_AUysPoIg-_HqmFI9zUL_CgD8wr8
Client Name: openshift-browser-client 2
Expires In: 86400 3
Inactivity Timeout Seconds: 317 4
Kind: UserOAuthAccessToken
Metadata:
 Creation Timestamp: 2021-01-11T19:27:06Z
 Managed Fields:
 API Version: oauth.openshift.io/v1
 Fields Type: FieldsV1
 fieldsV1:
 f:authorizeToken:
 f:clientName:
 f:expiresIn:
 f:redirectURI:
 f:scopes:
 f:userName:
 f:userUID:
 Manager: oauth-server
 Operation: Update
 Time: 2021-01-11T19:27:06Z
 Resource Version: 30535
 Self Link: /apis/oauth.openshift.io/v1/useroauthaccesstokens/<token_name>
 UID: f9d00b67-ab65-489b-8080-e427fa3c6181
Redirect URI: https://oauth-openshift.apps.example.com/oauth/token/display
Scopes:
 user:full 5
User Name: <user_name> 6
User UID: 82356ab0-95f9-4fb3-9bc0-10f1d6a6a345
Events: <none>

OpenShift Container Platform 4.18 Authentication and authorization

28

Deleting an OAuth access token logs out the user from all sessions that use the token.

Procedure

Delete the user-owned OAuth access token:

Example output

5.4. ADDING UNAUTHENTICATED GROUPS TO CLUSTER ROLES

As a cluster administrator, you can add unauthenticated users to the following cluster roles in OpenShift
Container Platform by creating a cluster role binding. Unauthenticated users do not have access to non-
public cluster roles. This should only be done in specific use cases when necessary.

You can add unauthenticated users to the following cluster roles:

system:scope-impersonation

system:webhook

system:oauth-token-deleter

self-access-reviewer

IMPORTANT

Always verify compliance with your organization’s security standards when modifying
unauthenticated access.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file named add-<cluster_role>-unauth.yaml and add the following content:

$ oc delete useroauthaccesstokens <token_name>

useroauthaccesstoken.oauth.openshift.io "<token_name>" deleted

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 name: <cluster_role>access-unauthenticated
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: <cluster_role>

CHAPTER 5. MANAGING USER-OWNED OAUTH ACCESS TOKENS

29

2. Apply the configuration by running the following command:

subjects:
 - apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:unauthenticated

$ oc apply -f add-<cluster_role>.yaml

OpenShift Container Platform 4.18 Authentication and authorization

30

CHAPTER 6. UNDERSTANDING IDENTITY PROVIDER
CONFIGURATION

The OpenShift Container Platform master includes a built-in OAuth server. Developers and
administrators obtain OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth to specify an identity provider after you install your
cluster.

6.1. ABOUT IDENTITY PROVIDERS IN OPENSHIFT CONTAINER
PLATFORM

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

6.2. SUPPORTED IDENTITY PROVIDERS

You can configure the following types of identity providers:

Identity provider Description

htpasswd Configure the htpasswd identity provider to validate user names and passwords
against a flat file generated using htpasswd.

Keystone Configure the keystone identity provider to integrate your OpenShift Container
Platform cluster with Keystone to enable shared authentication with an OpenStack
Keystone v3 server configured to store users in an internal database.

LDAP Configure the ldap identity provider to validate user names and passwords against an
LDAPv3 server, using simple bind authentication.

Basic
authentication

Configure a basic-authentication identity provider for users to log in to OpenShift
Container Platform with credentials validated against a remote identity provider. Basic
authentication is a generic backend integration mechanism.

Request header Configure a request-header identity provider to identify users from request header
values, such as X-Remote-User. It is typically used in combination with an
authenticating proxy, which sets the request header value.

GitHub or GitHub
Enterprise

Configure a github identity provider to validate user names and passwords against
GitHub or GitHub Enterprise’s OAuth authentication server.

GitLab Configure a gitlab identity provider to use GitLab.com or any other GitLab instance as
an identity provider.

CHAPTER 6. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION

31

http://httpd.apache.org/docs/2.4/programs/htpasswd.html
https://gitlab.com/

Google Configure a google identity provider using Google’s OpenID Connect integration.

OpenID Connect Configure an oidc identity provider to integrate with an OpenID Connect identity
provider using an Authorization Code Flow.

Identity provider Description

Once an identity provider has been defined, you can use RBAC to define and apply permissions .

6.3. REMOVING THE KUBEADMIN USER

After you define an identity provider and create a new cluster-admin user, you can remove the
kubeadmin to improve cluster security.

WARNING

If you follow this procedure before another user is a cluster-admin, then OpenShift
Container Platform must be reinstalled. It is not possible to undo this command.

Prerequisites

You must have configured at least one identity provider.

You must have added the cluster-admin role to a user.

You must be logged in as an administrator.

Procedure

Remove the kubeadmin secrets:

6.4. IDENTITY PROVIDER PARAMETERS

The following parameters are common to all identity providers:

Parameter Description

name The provider name is prefixed to provider user names to form an identity name.



$ oc delete secrets kubeadmin -n kube-system

OpenShift Container Platform 4.18 Authentication and authorization

32

https://developers.google.com/identity/protocols/OpenIDConnect
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth

1

2

3

mappingMethod Defines how new identities are mapped to users when they log in. Enter one of the
following values:

claim
The default value. Provisions a user with the identity’s preferred user name. Fails if a
user with that user name is already mapped to another identity.

lookup
Looks up an existing identity, user identity mapping, and user, but does not
automatically provision users or identities. This allows cluster administrators to set
up identities and users manually, or using an external process. Using this method
requires you to manually provision users.

add
Provisions a user with the identity’s preferred user name. If a user with that user
name already exists, the identity is mapped to the existing user, adding to any
existing identity mappings for the user. Required when multiple identity providers
are configured that identify the same set of users and map to the same user names.

Parameter Description

NOTE

When adding or changing identity providers, you can map identities from the new
provider to existing users by setting the mappingMethod parameter to add.

6.5. SAMPLE IDENTITY PROVIDER CR

The following custom resource (CR) shows the parameters and default values that you use to configure
an identity provider. This example uses the htpasswd identity provider.

Sample identity provider CR

This provider name is prefixed to provider user names to form an identity name.

Controls how mappings are established between this provider’s identities and User objects.

An existing secret containing a file generated using htpasswd.

6.6. MANUALLY PROVISIONING A USER WHEN USING THE LOOKUP

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: my_identity_provider 1
 mappingMethod: claim 2
 type: HTPasswd
 htpasswd:
 fileData:
 name: htpass-secret 3

CHAPTER 6. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION

33

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

6.6. MANUALLY PROVISIONING A USER WHEN USING THE LOOKUP
MAPPING METHOD

Typically, identities are automatically mapped to users during login. The lookup mapping method
disables this automatic mapping, which requires you to provision users manually. If you are using the
lookup mapping method, use the following procedure for each user after configuring the identity
provider.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Create an OpenShift Container Platform user:

2. Create an OpenShift Container Platform identity:

Where <identity_provider_user_id> is a name that uniquely represents the user in the identity
provider.

3. Create a user identity mapping for the created user and identity:

Additional resources

How to create user, identity and map user and identity in LDAP authentication for
mappingMethod as lookup inside the OAuth manifest

How to create user, identity and map user and identity in OIDC authentication for
mappingMethod as lookup

$ oc create user <username>

$ oc create identity <identity_provider>:<identity_provider_user_id>

$ oc create useridentitymapping <identity_provider>:<identity_provider_user_id>
<username>

OpenShift Container Platform 4.18 Authentication and authorization

34

https://access.redhat.com/solutions/6006921
https://access.redhat.com/solutions/7072510

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

7.1. CONFIGURING AN HTPASSWD IDENTITY PROVIDER

Configure the htpasswd identity provider to allow users to log in to OpenShift Container Platform with
credentials from an htpasswd file.

To define an htpasswd identity provider, perform the following tasks:

1. Create an htpasswd file to store the user and password information.

2. Create a secret to represent the htpasswd file.

3. Define an htpasswd identity provider resource that references the secret.

4. Apply the resource to the default OAuth configuration to add the identity provider.

7.1.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

7.1.2. About htpasswd authentication

Using htpasswd authentication in OpenShift Container Platform allows you to identify users based on an
htpasswd file. An htpasswd file is a flat file that contains the user name and hashed password for each
user. You can use the htpasswd utility to create this file.

WARNING

Do not use htpasswd authentication in OpenShift Container Platform for
production environments. Use htpasswd authentication only for development
environments.

7.1.3. Creating the htpasswd file

See one of the following sections for instructions about how to create the htpasswd file:

Creating an htpasswd file using Linux

Creating an htpasswd file using Windows

7.1.3.1. Creating an htpasswd file using Linux

To use the htpasswd identity provider, you must generate a flat file that contains the user names and



CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

35

To use the htpasswd identity provider, you must generate a flat file that contains the user names and
passwords for your cluster by using htpasswd.

Prerequisites

Have access to the htpasswd utility. On Red Hat Enterprise Linux this is available by installing
the httpd-tools package.

Procedure

1. Create or update your flat file with a user name and hashed password:

The command generates a hashed version of the password.

For example:

Example output

2. Continue to add or update credentials to the file:

7.1.3.2. Creating an htpasswd file using Windows

To use the htpasswd identity provider, you must generate a flat file that contains the user names and
passwords for your cluster by using htpasswd.

Prerequisites

Have access to htpasswd.exe. This file is included in the \bin directory of many Apache httpd
distributions.

Procedure

1. Create or update your flat file with a user name and hashed password:

The command generates a hashed version of the password.

For example:

Example output

$ htpasswd -c -B -b </path/to/users.htpasswd> <username> <password>

$ htpasswd -c -B -b users.htpasswd <username> <password>

Adding password for user user1

$ htpasswd -B -b </path/to/users.htpasswd> <user_name> <password>

> htpasswd.exe -c -B -b <\path\to\users.htpasswd> <username> <password>

> htpasswd.exe -c -B -b users.htpasswd <username> <password>

OpenShift Container Platform 4.18 Authentication and authorization

36

http://httpd.apache.org/docs/2.4/programs/htpasswd.html
http://httpd.apache.org/docs/2.4/programs/htpasswd.html

1

2. Continue to add or update credentials to the file:

7.1.4. Creating the htpasswd secret

To use the htpasswd identity provider, you must define a secret that contains the htpasswd user file.

Prerequisites

Create an htpasswd file.

Procedure

Create a Secret object that contains the htpasswd users file:

The secret key containing the users file for the --from-file argument must be named
htpasswd, as shown in the above command.

TIP

You can alternatively apply the following YAML to create the secret:

7.1.5. Sample htpasswd CR

The following custom resource (CR) shows the parameters and acceptable values for an htpasswd
identity provider.

htpasswd CR

Adding password for user user1

> htpasswd.exe -b <\path\to\users.htpasswd> <username> <password>

$ oc create secret generic htpass-secret --from-file=htpasswd=<path_to_users.htpasswd> -n
openshift-config 1

apiVersion: v1
kind: Secret
metadata:
 name: htpass-secret
 namespace: openshift-config
type: Opaque
data:
 htpasswd: <base64_encoded_htpasswd_file_contents>

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: my_htpasswd_provider 1

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

37

1

2

3

This provider name is prefixed to provider user names to form an identity name.

Controls how mappings are established between this provider’s identities and User objects.

An existing secret containing a file generated using htpasswd.

Additional resources

See Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.1.6. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the custom resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Log in to the cluster as a user from your identity provider, entering the password when
prompted.

3. Confirm that the user logged in successfully, and display the user name.

 mappingMethod: claim 2
 type: HTPasswd
 htpasswd:
 fileData:
 name: htpass-secret 3

$ oc apply -f </path/to/CR>

$ oc login -u <username>

$ oc whoami

OpenShift Container Platform 4.18 Authentication and authorization

38

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

7.1.7. Updating users for an htpasswd identity provider

You can add or remove users from an existing htpasswd identity provider.

Prerequisites

You have created a Secret object that contains the htpasswd user file. This procedure assumes
that it is named htpass-secret.

You have configured an htpasswd identity provider. This procedure assumes that it is named
my_htpasswd_provider.

You have access to the htpasswd utility. On Red Hat Enterprise Linux this is available by
installing the httpd-tools package.

You have cluster administrator privileges.

Procedure

1. Retrieve the htpasswd file from the htpass-secret Secret object and save the file to your file
system:

2. Add or remove users from the users.htpasswd file.

To add a new user:

Example output

To remove an existing user:

Example output

3. Replace the htpass-secret Secret object with the updated users in the users.htpasswd file:

TIP

$ oc get secret htpass-secret -ojsonpath={.data.htpasswd} -n openshift-config | base64 --
decode > users.htpasswd

$ htpasswd -bB users.htpasswd <username> <password>

Adding password for user <username>

$ htpasswd -D users.htpasswd <username>

Deleting password for user <username>

$ oc create secret generic htpass-secret --from-file=htpasswd=users.htpasswd --dry-
run=client -o yaml -n openshift-config | oc replace -f -

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

39

TIP

You can alternatively apply the following YAML to replace the secret:

4. If you removed one or more users, you must additionally remove existing resources for each
user.

a. Delete the User object:

Example output

Be sure to remove the user, otherwise the user can continue using their token as long as it
has not expired.

b. Delete the Identity object for the user:

Example output

7.1.8. Configuring identity providers using the web console

Configure your identity provider (IDP) through the web console instead of the CLI.

Prerequisites

You must be logged in to the web console as a cluster administrator.

Procedure

1. Navigate to Administration → Cluster Settings.

2. Under the Configuration tab, click OAuth.

3. Under the Identity Providers section, select your identity provider from the Add drop-down
menu.

NOTE

apiVersion: v1
kind: Secret
metadata:
 name: htpass-secret
 namespace: openshift-config
type: Opaque
data:
 htpasswd: <base64_encoded_htpasswd_file_contents>

$ oc delete user <username>

user.user.openshift.io "<username>" deleted

$ oc delete identity my_htpasswd_provider:<username>

identity.user.openshift.io "my_htpasswd_provider:<username>" deleted

OpenShift Container Platform 4.18 Authentication and authorization

40

NOTE

You can specify multiple IDPs through the web console without overwriting existing IDPs.

7.2. CONFIGURING A KEYSTONE IDENTITY PROVIDER

Configure the keystone identity provider to integrate your OpenShift Container Platform cluster with
Keystone to enable shared authentication with an OpenStack Keystone v3 server configured to store
users in an internal database. This configuration allows users to log in to OpenShift Container Platform
with their Keystone credentials.

7.2.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

7.2.2. About Keystone authentication

Keystone is an OpenStack project that provides identity, token, catalog, and policy services.

You can configure the integration with Keystone so that the new OpenShift Container Platform users
are based on either the Keystone user names or unique Keystone IDs. With both methods, users log in
by entering their Keystone user name and password. Basing the OpenShift Container Platform users on
the Keystone ID is more secure because if you delete a Keystone user and create a new Keystone user
with that user name, the new user might have access to the old user’s resources.

7.2.3. Creating the secret

Identity providers use OpenShift Container Platform Secret objects in the openshift-config
namespace to contain the client secret, client certificates, and keys.

Procedure

Create a Secret object that contains the key and certificate by using the following command:

TIP

$ oc create secret tls <secret_name> --key=key.pem --cert=cert.pem -n openshift-config

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

41

http://docs.openstack.org/developer/keystone/

TIP

You can alternatively apply the following YAML to create the secret:

7.2.4. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

Procedure

Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

TIP

You can alternatively apply the following YAML to create the config map:

7.2.5. Sample Keystone CR

The following custom resource (CR) shows the parameters and acceptable values for a Keystone
identity provider.

Keystone CR

apiVersion: v1
kind: Secret
metadata:
 name: <secret_name>
 namespace: openshift-config
type: kubernetes.io/tls
data:
 tls.crt: <base64_encoded_cert>
 tls.key: <base64_encoded_key>

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: ca-config-map
 namespace: openshift-config
data:
 ca.crt: |
 <CA_certificate_PEM>

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:

OpenShift Container Platform 4.18 Authentication and authorization

42

1

2

3

4

5

6

7

This provider name is prefixed to provider user names to form an identity name.

Controls how mappings are established between this provider’s identities and User objects.

Keystone domain name. In Keystone, usernames are domain-specific. Only a single domain is
supported.

The URL to use to connect to the Keystone server (required). This must use https.

Optional: Reference to an OpenShift Container Platform ConfigMap object containing the PEM-
encoded certificate authority bundle to use in validating server certificates for the configured URL.

Optional: Reference to an OpenShift Container Platform Secret object containing the client
certificate to present when making requests to the configured URL.

Reference to an OpenShift Container Platform Secret object containing the key for the client
certificate. Required if tlsClientCert is specified.

Additional resources

See Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.2.6. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the custom resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

 identityProviders:
 - name: keystoneidp 1
 mappingMethod: claim 2
 type: Keystone
 keystone:
 domainName: default 3
 url: https://keystone.example.com:5000 4
 ca: 5
 name: ca-config-map
 tlsClientCert: 6
 name: client-cert-secret
 tlsClientKey: 7
 name: client-key-secret

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

43

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Log in to the cluster as a user from your identity provider, entering the password when
prompted.

3. Confirm that the user logged in successfully, and display the user name.

7.3. CONFIGURING AN LDAP IDENTITY PROVIDER

Configure the ldap identity provider to validate user names and passwords against an LDAPv3 server,
using simple bind authentication.

7.3.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

7.3.2. About LDAP authentication

During authentication, the LDAP directory is searched for an entry that matches the provided user
name. If a single unique match is found, a simple bind is attempted using the distinguished name (DN) of
the entry plus the provided password.

These are the steps taken:

1. Generate a search filter by combining the attribute and filter in the configured url with the
user-provided user name.

2. Search the directory using the generated filter. If the search does not return exactly one entry,
deny access.

3. Attempt to bind to the LDAP server using the DN of the entry retrieved from the search, and
the user-provided password.

4. If the bind is unsuccessful, deny access.

5. If the bind is successful, build an identity using the configured attributes as the identity, email

$ oc apply -f </path/to/CR>

$ oc login -u <username>

$ oc whoami

OpenShift Container Platform 4.18 Authentication and authorization

44

5. If the bind is successful, build an identity using the configured attributes as the identity, email
address, display name, and preferred user name.

The configured url is an RFC 2255 URL, which specifies the LDAP host and search parameters to use.
The syntax of the URL is:

ldap://host:port/basedn?attribute?scope?filter

For this URL:

URL component Description

ldap For regular LDAP, use the string ldap. For secure LDAP (LDAPS), use ldaps instead.

host:port The name and port of the LDAP server. Defaults to localhost:389 for ldap and
localhost:636 for LDAPS.

basedn The DN of the branch of the directory where all searches should start from. At the very
least, this must be the top of your directory tree, but it could also specify a subtree in
the directory.

attribute The attribute to search for. Although RFC 2255 allows a comma-separated list of
attributes, only the first attribute will be used, no matter how many are provided. If no
attributes are provided, the default is to use uid. It is recommended to choose an
attribute that will be unique across all entries in the subtree you will be using.

scope The scope of the search. Can be either one or sub. If the scope is not provided, the
default is to use a scope of sub.

filter A valid LDAP search filter. If not provided, defaults to (objectClass=*)

When doing searches, the attribute, filter, and provided user name are combined to create a search filter
that looks like:

(&(<filter>)(<attribute>=<username>))

For example, consider a URL of:

ldap://ldap.example.com/o=Acme?cn?sub?(enabled=true)

When a client attempts to connect using a user name of bob, the resulting search filter will be (&
(enabled=true)(cn=bob)).

If the LDAP directory requires authentication to search, specify a bindDN and bindPassword to use to
perform the entry search.

7.3.3. Creating the LDAP secret

To use the identity provider, you must define an OpenShift Container Platform Secret object that
contains the bindPassword field.

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

45

1

Procedure

Create a Secret object that contains the bindPassword field:

The secret key containing the bindPassword for the --from-literal argument must be called
bindPassword.

TIP

You can alternatively apply the following YAML to create the secret:

7.3.4. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

Procedure

Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

TIP

You can alternatively apply the following YAML to create the config map:

7.3.5. Sample LDAP CR
The following custom resource (CR) shows the parameters and acceptable values for an LDAP identity

$ oc create secret generic ldap-secret --from-literal=bindPassword=<secret> -n openshift-
config 1

apiVersion: v1
kind: Secret
metadata:
 name: ldap-secret
 namespace: openshift-config
type: Opaque
data:
 bindPassword: <base64_encoded_bind_password>

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: ca-config-map
 namespace: openshift-config
data:
 ca.crt: |
 <CA_certificate_PEM>

OpenShift Container Platform 4.18 Authentication and authorization

46

1

2

3

4

5

6

7

8

9

The following custom resource (CR) shows the parameters and acceptable values for an LDAP identity
provider.

LDAP CR

This provider name is prefixed to the returned user ID to form an identity name.

Controls how mappings are established between this provider’s identities and User objects.

List of attributes to use as the identity. First non-empty attribute is used. At least one attribute is
required. If none of the listed attribute have a value, authentication fails. Defined attributes are
retrieved as raw, allowing for binary values to be used.

List of attributes to use as the email address. First non-empty attribute is used.

List of attributes to use as the display name. First non-empty attribute is used.

List of attributes to use as the preferred user name when provisioning a user for this identity. First
non-empty attribute is used.

Optional DN to use to bind during the search phase. Must be set if bindPassword is defined.

Optional reference to an OpenShift Container Platform Secret object containing the bind
password. Must be set if bindDN is defined.

Optional: Reference to an OpenShift Container Platform ConfigMap object containing the PEM-

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: ldapidp 1
 mappingMethod: claim 2
 type: LDAP
 ldap:
 attributes:
 id: 3
 - dn
 email: 4
 - mail
 name: 5
 - cn
 preferredUsername: 6
 - uid
 bindDN: "" 7
 bindPassword: 8
 name: ldap-secret
 ca: 9
 name: ca-config-map
 insecure: false 10
 url: "ldaps://ldaps.example.com/ou=users,dc=acme,dc=com?uid" 11

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

47

10

11

When true, no TLS connection is made to the server. When false, ldaps:// URLs connect using TLS,
and ldap:// URLs are upgraded to TLS. This must be set to false when ldaps:// URLs are in use, as

An RFC 2255 URL which specifies the LDAP host and search parameters to use.

NOTE

To whitelist users for an LDAP integration, use the lookup mapping method. Before a
login from LDAP would be allowed, a cluster administrator must create an Identity object
and a User object for each LDAP user.

Additional resources

See Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.3.6. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the custom resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Log in to the cluster as a user from your identity provider, entering the password when
prompted.

3. Confirm that the user logged in successfully, and display the user name.

$ oc apply -f </path/to/CR>

$ oc login -u <username>

$ oc whoami

OpenShift Container Platform 4.18 Authentication and authorization

48

1

7.4. CONFIGURING A BASIC AUTHENTICATION IDENTITY PROVIDER

Configure the basic-authentication identity provider for users to log in to OpenShift Container
Platform with credentials validated against a remote identity provider. Basic authentication is a generic
back-end integration mechanism.

7.4.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

7.4.2. About basic authentication

Basic authentication is a generic back-end integration mechanism that allows users to log in to
OpenShift Container Platform with credentials validated against a remote identity provider.

Because basic authentication is generic, you can use this identity provider for advanced authentication
configurations.

IMPORTANT

Basic authentication must use an HTTPS connection to the remote server to prevent
potential snooping of the user ID and password and man-in-the-middle attacks.

With basic authentication configured, users send their user name and password to OpenShift Container
Platform, which then validates those credentials against a remote server by making a server-to-server
request, passing the credentials as a basic authentication header. This requires users to send their
credentials to OpenShift Container Platform during login.

NOTE

This only works for user name/password login mechanisms, and OpenShift Container
Platform must be able to make network requests to the remote authentication server.

User names and passwords are validated against a remote URL that is protected by basic authentication
and returns JSON.

A 401 response indicates failed authentication.

A non-200 status, or the presence of a non-empty "error" key, indicates an error:

A 200 status with a sub (subject) key indicates success:

The subject must be unique to the authenticated user and must not be able to be modified.

{"error":"Error message"}

{"sub":"userid"} 1

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

49

A successful response can optionally provide additional data, such as:

A display name using the name key. For example:

An email address using the email key. For example:

A preferred user name using the preferred_username key. This is useful when the unique,
unchangeable subject is a database key or UID, and a more human-readable name exists. This is
used as a hint when provisioning the OpenShift Container Platform user for the authenticated
identity. For example:

7.4.3. Creating the secret

Identity providers use OpenShift Container Platform Secret objects in the openshift-config
namespace to contain the client secret, client certificates, and keys.

Procedure

Create a Secret object that contains the key and certificate by using the following command:

TIP

You can alternatively apply the following YAML to create the secret:

7.4.4. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

Procedure

Define an OpenShift Container Platform ConfigMap object containing the certificate authority

{"sub":"userid", "name": "User Name", ...}

{"sub":"userid", "email":"user@example.com", ...}

{"sub":"014fbff9a07c", "preferred_username":"bob", ...}

$ oc create secret tls <secret_name> --key=key.pem --cert=cert.pem -n openshift-config

apiVersion: v1
kind: Secret
metadata:
 name: <secret_name>
 namespace: openshift-config
type: kubernetes.io/tls
data:
 tls.crt: <base64_encoded_cert>
 tls.key: <base64_encoded_key>

OpenShift Container Platform 4.18 Authentication and authorization

50

1

2

3

4

Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

TIP

You can alternatively apply the following YAML to create the config map:

7.4.5. Sample basic authentication CR

The following custom resource (CR) shows the parameters and acceptable values for a basic
authentication identity provider.

Basic authentication CR

This provider name is prefixed to the returned user ID to form an identity name.

Controls how mappings are established between this provider’s identities and User objects.

URL accepting credentials in Basic authentication headers.

Optional: Reference to an OpenShift Container Platform ConfigMap object containing the PEM-
encoded certificate authority bundle to use in validating server certificates for the configured URL.

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: ca-config-map
 namespace: openshift-config
data:
 ca.crt: |
 <CA_certificate_PEM>

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: basicidp 1
 mappingMethod: claim 2
 type: BasicAuth
 basicAuth:
 url: https://www.example.com/remote-idp 3
 ca: 4
 name: ca-config-map
 tlsClientCert: 5
 name: client-cert-secret
 tlsClientKey: 6
 name: client-key-secret

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

51

5

6

Optional: Reference to an OpenShift Container Platform Secret object containing the client
certificate to present when making requests to the configured URL.

Reference to an OpenShift Container Platform Secret object containing the key for the client
certificate. Required if tlsClientCert is specified.

Additional resources

See Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.4.6. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the custom resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Log in to the cluster as a user from your identity provider, entering the password when
prompted.

3. Confirm that the user logged in successfully, and display the user name.

7.4.7. Example Apache HTTPD configuration for basic identity providers

The basic identify provider (IDP) configuration in OpenShift Container Platform 4 requires that the IDP
server respond with JSON for success and failures. You can use CGI scripting in Apache HTTPD to
accomplish this. This section provides examples.

$ oc apply -f </path/to/CR>

$ oc login -u <username>

$ oc whoami

OpenShift Container Platform 4.18 Authentication and authorization

52

Example /etc/httpd/conf.d/login.conf

<VirtualHost *:443>
 # CGI Scripts in here
 DocumentRoot /var/www/cgi-bin

 # SSL Directives
 SSLEngine on
 SSLCipherSuite PROFILE=SYSTEM
 SSLProxyCipherSuite PROFILE=SYSTEM
 SSLCertificateFile /etc/pki/tls/certs/localhost.crt
 SSLCertificateKeyFile /etc/pki/tls/private/localhost.key

 # Configure HTTPD to execute scripts
 ScriptAlias /basic /var/www/cgi-bin

 # Handles a failed login attempt
 ErrorDocument 401 /basic/fail.cgi

 # Handles authentication
 <Location /basic/login.cgi>
 AuthType Basic
 AuthName "Please Log In"
 AuthBasicProvider file
 AuthUserFile /etc/httpd/conf/passwords
 Require valid-user
 </Location>
</VirtualHost>

Example /var/www/cgi-bin/login.cgi

#!/bin/bash
echo "Content-Type: application/json"
echo ""
echo '{"sub":"userid", "name":"'$REMOTE_USER'"}'
exit 0

Example /var/www/cgi-bin/fail.cgi

#!/bin/bash
echo "Content-Type: application/json"
echo ""
echo '{"error": "Login failure"}'
exit 0

7.4.7.1. File requirements

These are the requirements for the files you create on an Apache HTTPD web server:

login.cgi and fail.cgi must be executable (chmod +x).

login.cgi and fail.cgi must have proper SELinux contexts if SELinux is enabled: restorecon -
RFv /var/www/cgi-bin, or ensure that the context is httpd_sys_script_exec_t using ls -laZ.

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

53

login.cgi is only executed if your user successfully logs in per Require and Auth directives.

fail.cgi is executed if the user fails to log in, resulting in an HTTP 401 response.

7.4.8. Basic authentication troubleshooting

The most common issue relates to network connectivity to the backend server. For simple debugging,
run curl commands on the master. To test for a successful login, replace the <user> and <password> in
the following example command with valid credentials. To test an invalid login, replace them with false
credentials.

Successful responses

A 200 status with a sub (subject) key indicates success:

The subject must be unique to the authenticated user, and must not be able to be modified.

A successful response can optionally provide additional data, such as:

A display name using the name key:

An email address using the email key:

A preferred user name using the preferred_username key:

The preferred_username key is useful when the unique, unchangeable subject is a database
key or UID, and a more human-readable name exists. This is used as a hint when provisioning the
OpenShift Container Platform user for the authenticated identity.

Failed responses

A 401 response indicates failed authentication.

A non-200 status or the presence of a non-empty "error" key indicates an error: {"error":"Error
message"}

7.5. CONFIGURING A REQUEST HEADER IDENTITY PROVIDER

Configure the request-header identity provider to identify users from request header values, such as X-
Remote-User. It is typically used in combination with an authenticating proxy, which sets the request
header value.

$ curl --cacert /path/to/ca.crt --cert /path/to/client.crt --key /path/to/client.key -u <user>:<password> -v
https://www.example.com/remote-idp

{"sub":"userid"}

{"sub":"userid", "name": "User Name", ...}

{"sub":"userid", "email":"user@example.com", ...}

{"sub":"014fbff9a07c", "preferred_username":"bob", ...}

OpenShift Container Platform 4.18 Authentication and authorization

54

7.5.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

7.5.2. About request header authentication

A request header identity provider identifies users from request header values, such as X-Remote-User.
It is typically used in combination with an authenticating proxy, which sets the request header value. The
request header identity provider cannot be combined with other identity providers that use direct
password logins, such as htpasswd, Keystone, LDAP or basic authentication.

NOTE

You can also use the request header identity provider for advanced configurations such
as the community-supported SAML authentication. Note that this solution is not
supported by Red Hat.

For users to authenticate using this identity provider, they must access
https://<namespace_route>/oauth/authorize (and subpaths) via an authenticating proxy. To
accomplish this, configure the OAuth server to redirect unauthenticated requests for OAuth tokens to
the proxy endpoint that proxies to https://<namespace_route>/oauth/authorize.

To redirect unauthenticated requests from clients expecting browser-based login flows:

Set the provider.loginURL parameter to the authenticating proxy URL that will authenticate
interactive clients and then proxy the request to https://<namespace_route>/oauth/authorize.

To redirect unauthenticated requests from clients expecting WWW-Authenticate challenges:

Set the provider.challengeURL parameter to the authenticating proxy URL that will
authenticate clients expecting WWW-Authenticate challenges and then proxy the request to
https://<namespace_route>/oauth/authorize.

The provider.challengeURL and provider.loginURL parameters can include the following tokens in
the query portion of the URL:

${url} is replaced with the current URL, escaped to be safe in a query parameter.
For example: https://www.example.com/sso-login?then=${url}

${query} is replaced with the current query string, unescaped.
For example: https://www.example.com/auth-proxy/oauth/authorize?${query}

IMPORTANT

As of OpenShift Container Platform 4.1, your proxy must support mutual TLS.

7.5.2.1. SSPI connection support on Microsoft Windows

IMPORTANT

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

55

https://github.com/openshift/request-header-saml-service-provider

IMPORTANT

Using SSPI connection support on Microsoft Windows is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The OpenShift CLI (oc) supports the Security Support Provider Interface (SSPI) to allow for SSO flows
on Microsft Windows. If you use the request header identity provider with a GSSAPI-enabled proxy to
connect an Active Directory server to OpenShift Container Platform, users can automatically
authenticate to OpenShift Container Platform by using the oc command line interface from a domain-
joined Microsoft Windows computer.

7.5.3. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

Procedure

Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

TIP

You can alternatively apply the following YAML to create the config map:

7.5.4. Sample request header CR

The following custom resource (CR) shows the parameters and acceptable values for a request header
identity provider.

Request header CR

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: ca-config-map
 namespace: openshift-config
data:
 ca.crt: |
 <CA_certificate_PEM>

apiVersion: config.openshift.io/v1

OpenShift Container Platform 4.18 Authentication and authorization

56

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

This provider name is prefixed to the user name in the request header to form an identity name.

Controls how mappings are established between this provider’s identities and User objects.

Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will authenticate
browser-based clients and then proxy their request to
https://<namespace_route>/oauth/authorize. The URL that proxies to
https://<namespace_route>/oauth/authorize must end with /authorize (with no trailing slash),
and also proxy subpaths, in order for OAuth approval flows to work properly. ${url} is replaced with
the current URL, escaped to be safe in a query parameter. ${query} is replaced with the current
query string. If this attribute is not defined, then loginURL must be used.

Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will authenticate
clients which expect WWW-Authenticate challenges, and then proxy them to
https://<namespace_route>/oauth/authorize. ${url} is replaced with the current URL, escaped to
be safe in a query parameter. ${query} is replaced with the current query string. If this attribute is
not defined, then challengeURL must be used.

Reference to an OpenShift Container Platform ConfigMap object containing a PEM-encoded
certificate bundle. Used as a trust anchor to validate the TLS certificates presented by the remote
server.

IMPORTANT

As of OpenShift Container Platform 4.1, the ca field is required for this identity
provider. This means that your proxy must support mutual TLS.

Optional: list of common names (cn). If set, a valid client certificate with a Common Name (cn) in
the specified list must be presented before the request headers are checked for user names. If

kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: requestheaderidp 1
 mappingMethod: claim 2
 type: RequestHeader
 requestHeader:
 challengeURL: "https://www.example.com/challenging-proxy/oauth/authorize?${query}" 3
 loginURL: "https://www.example.com/login-proxy/oauth/authorize?${query}" 4
 ca: 5
 name: ca-config-map
 clientCommonNames: 6
 - my-auth-proxy
 headers: 7
 - X-Remote-User
 - SSO-User
 emailHeaders: 8
 - X-Remote-User-Email
 nameHeaders: 9
 - X-Remote-User-Display-Name
 preferredUsernameHeaders: 10
 - X-Remote-User-Login

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

57

7

8

9

10

the specified list must be presented before the request headers are checked for user names. If
empty, any Common Name is allowed. Can only be used in combination with ca.

Header names to check, in order, for the user identity. The first header containing a value is used as
the identity. Required, case-insensitive.

Header names to check, in order, for an email address. The first header containing a value is used as
the email address. Optional, case-insensitive.

Header names to check, in order, for a display name. The first header containing a value is used as
the display name. Optional, case-insensitive.

Header names to check, in order, for a preferred user name, if different than the immutable
identity determined from the headers specified in headers. The first header containing a value is
used as the preferred user name when provisioning. Optional, case-insensitive.

Additional resources

See Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.5.5. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the custom resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Log in to the cluster as a user from your identity provider, entering the password when
prompted.

3. Confirm that the user logged in successfully, and display the user name.

$ oc apply -f </path/to/CR>

$ oc login -u <username>

OpenShift Container Platform 4.18 Authentication and authorization

58

7.5.6. Example Apache authentication configuration using request header

This example configures an Apache authentication proxy for the OpenShift Container Platform using
the request header identity provider.

7.5.6.1. Custom proxy configuration

Using the mod_auth_gssapi module is a popular way to configure the Apache authentication proxy
using the request header identity provider; however, it is not required. Other proxies can easily be used if
the following requirements are met:

Block the X-Remote-User header from client requests to prevent spoofing.

Enforce client certificate authentication in the RequestHeaderIdentityProvider configuration.

Require the X-Csrf-Token header be set for all authentication requests using the challenge
flow.

Make sure only the /oauth/authorize endpoint and its subpaths are proxied; redirects must be
rewritten to allow the backend server to send the client to the correct location.

The URL that proxies to https://<namespace_route>/oauth/authorize must end with
/authorize with no trailing slash. For example, https://proxy.example.com/login-
proxy/authorize?… ​ must proxy to https://<namespace_route>/oauth/authorize?… ​.

Subpaths of the URL that proxies to https://<namespace_route>/oauth/authorize must proxy
to subpaths of https://<namespace_route>/oauth/authorize. For example,
https://proxy.example.com/login-proxy/authorize/approve?… ​ must proxy to
https://<namespace_route>/oauth/authorize/approve?… ​.

NOTE

The https://<namespace_route> address is the route to the OAuth server and can be
obtained by running oc get route -n openshift-authentication.

7.5.6.2. Configuring Apache authentication using request header

This example uses the mod_auth_gssapi module to configure an Apache authentication proxy using
the request header identity provider.

Prerequisites

Obtain the mod_auth_gssapi module from the Optional channel. You must have the following
packages installed on your local machine:

httpd

mod_ssl

mod_session

$ oc whoami

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

59

https://access.redhat.com/solutions/392003

1

apr-util-openssl

mod_auth_gssapi

Generate a CA for validating requests that submit the trusted header. Define an OpenShift
Container Platform ConfigMap object containing the CA. This is done by running:

The CA must be stored in the ca.crt key of the ConfigMap object.

TIP

You can alternatively apply the following YAML to create the config map:

Generate a client certificate for the proxy. You can generate this certificate by using any x509
certificate tooling. The client certificate must be signed by the CA you generated for validating
requests that submit the trusted header.

Create the custom resource (CR) for your identity providers.

Procedure

This proxy uses a client certificate to connect to the OAuth server, which is configured to trust the X-
Remote-User header.

1. Create the certificate for the Apache configuration. The certificate that you specify as the
SSLProxyMachineCertificateFile parameter value is the proxy’s client certificate that is used
to authenticate the proxy to the server. It must use TLS Web Client Authentication as the
extended key type.

2. Create the Apache configuration. Use the following template to provide your required settings
and values:

IMPORTANT

Carefully review the template and customize its contents to fit your environment.

LoadModule request_module modules/mod_request.so
LoadModule auth_gssapi_module modules/mod_auth_gssapi.so
Some Apache configurations might require these modules.
LoadModule auth_form_module modules/mod_auth_form.so
LoadModule session_module modules/mod_session.so

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config 1

apiVersion: v1
kind: ConfigMap
metadata:
 name: ca-config-map
 namespace: openshift-config
data:
 ca.crt: |
 <CA_certificate_PEM>

OpenShift Container Platform 4.18 Authentication and authorization

60

Nothing needs to be served over HTTP. This virtual host simply redirects to
HTTPS.
<VirtualHost *:80>
 DocumentRoot /var/www/html
 RewriteEngine On
 RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
 # This needs to match the certificates you generated. See the CN and X509v3
 # Subject Alternative Name in the output of:
 # openssl x509 -text -in /etc/pki/tls/certs/localhost.crt
 ServerName www.example.com

 DocumentRoot /var/www/html
 SSLEngine on
 SSLCertificateFile /etc/pki/tls/certs/localhost.crt
 SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
 SSLCACertificateFile /etc/pki/CA/certs/ca.crt

 SSLProxyEngine on
 SSLProxyCACertificateFile /etc/pki/CA/certs/ca.crt
 # It is critical to enforce client certificates. Otherwise, requests can
 # spoof the X-Remote-User header by accessing the /oauth/authorize endpoint
 # directly.
 SSLProxyMachineCertificateFile /etc/pki/tls/certs/authproxy.pem

 # To use the challenging-proxy, an X-Csrf-Token must be present.
 RewriteCond %{REQUEST_URI} ^/challenging-proxy
 RewriteCond %{HTTP:X-Csrf-Token} ^$ [NC]
 RewriteRule ^.* - [F,L]

 <Location /challenging-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://<namespace_route>/oauth/authorize
 AuthName "SSO Login"
 # For Kerberos
 AuthType GSSAPI
 Require valid-user
 RequestHeader set X-Remote-User %{REMOTE_USER}s

 GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab
 # Enable the following if you want to allow users to fallback
 # to password based authentication when they do not have a client
 # configured to perform kerberos authentication.
 GssapiBasicAuth On

 # For ldap:
 # AuthBasicProvider ldap
 # AuthLDAPURL "ldap://ldap.example.com:389/ou=People,dc=my-domain,dc=com?uid?
sub?(objectClass=*)"
 </Location>

 <Location /login-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://<namespace_route>/oauth/authorize

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

61

 AuthName "SSO Login"
 AuthType GSSAPI
 Require valid-user
 RequestHeader set X-Remote-User %{REMOTE_USER}s env=REMOTE_USER

 GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab
 # Enable the following if you want to allow users to fallback
 # to password based authentication when they do not have a client
 # configured to perform kerberos authentication.
 GssapiBasicAuth On

 ErrorDocument 401 /login.html
 </Location>

</VirtualHost>

RequestHeader unset X-Remote-User

NOTE

The https://<namespace_route> address is the route to the OAuth server and
can be obtained by running oc get route -n openshift-authentication.

3. Update the identityProviders stanza in the custom resource (CR):

4. Verify the configuration.

a. Confirm that you can bypass the proxy by requesting a token by supplying the correct client
certificate and header:

b. Confirm that requests that do not supply the client certificate fail by requesting a token
without the certificate:

identityProviders:
 - name: requestheaderidp
 type: RequestHeader
 requestHeader:
 challengeURL: "https://<namespace_route>/challenging-proxy/oauth/authorize?${query}"
 loginURL: "https://<namespace_route>/login-proxy/oauth/authorize?${query}"
 ca:
 name: ca-config-map
 clientCommonNames:
 - my-auth-proxy
 headers:
 - X-Remote-User

curl -L -k -H "X-Remote-User: joe" \
 --cert /etc/pki/tls/certs/authproxy.pem \
 https://<namespace_route>/oauth/token/request

curl -L -k -H "X-Remote-User: joe" \
 https://<namespace_route>/oauth/token/request

OpenShift Container Platform 4.18 Authentication and authorization

62

1

c. Confirm that the challengeURL redirect is active:

Copy the challengeURL redirect to use in the next step.

d. Run this command to show a 401 response with a WWW-Authenticate basic challenge, a
negotiate challenge, or both challenges:

e. Test logging in to the OpenShift CLI (oc) with and without using a Kerberos ticket:

i. If you generated a Kerberos ticket by using kinit, destroy it:

Make sure to provide the name of your Kerberos cache.

ii. Log in to the oc tool by using your Kerberos credentials:

Enter your Kerberos password at the prompt.

iii. Log out of the oc tool:

iv. Use your Kerberos credentials to get a ticket:

Enter your Kerberos user name and password at the prompt.

v. Confirm that you can log in to the oc tool:

If your configuration is correct, you are logged in without entering separate credentials.

7.6. CONFIGURING A GITHUB OR GITHUB ENTERPRISE IDENTITY
PROVIDER

Configure the github identity provider to validate user names and passwords against GitHub or GitHub
Enterprise’s OAuth authentication server. OAuth facilitates a token exchange flow between OpenShift
Container Platform and GitHub or GitHub Enterprise.

You can use the GitHub integration to connect to either GitHub or GitHub Enterprise. For GitHub

curl -k -v -H 'X-Csrf-Token: 1' \
 https://<namespace_route>/oauth/authorize?client_id=openshift-challenging-
client&response_type=token

curl -k -v -H 'X-Csrf-Token: 1' \
 <challengeURL_redirect + query>

kdestroy -c cache_name 1

oc login -u <username>

oc logout

kinit

oc login

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

63

You can use the GitHub integration to connect to either GitHub or GitHub Enterprise. For GitHub
Enterprise integrations, you must provide the hostname of your instance and can optionally provide a
ca certificate bundle to use in requests to the server.

NOTE

The following steps apply to both GitHub and GitHub Enterprise unless noted.

7.6.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

7.6.2. About GitHub authentication

Configuring GitHub authentication allows users to log in to OpenShift Container Platform with their
GitHub credentials. To prevent anyone with any GitHub user ID from logging in to your OpenShift
Container Platform cluster, you can restrict access to only those in specific GitHub organizations.

7.6.3. Registering a GitHub application

To use GitHub or GitHub Enterprise as an identity provider, you must register an application to use.

Procedure

1. Register an application on GitHub:

For GitHub, click Settings → Developer settings → OAuth Apps → Register a new OAuth
application.

For GitHub Enterprise, go to your GitHub Enterprise home page and then click Settings →
Developer settings → Register a new application.

2. Enter an application name, for example My OpenShift Install.

3. Enter a homepage URL, such as https://oauth-openshift.apps.<cluster-name>.<cluster-
domain>.

4. Optional: Enter an application description.

5. Enter the authorization callback URL, where the end of the URL contains the identity provider
name:

https://oauth-openshift.apps.<cluster-name>.<cluster-domain>/oauth2callback/<idp-provider-
name>

For example:

https://oauth-openshift.apps.openshift-cluster.example.com/oauth2callback/github

OpenShift Container Platform 4.18 Authentication and authorization

64

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/authorizing-oauth-apps
https://github.com/settings/profile
https://github.com/settings/apps
https://github.com/settings/developers
https://github.com/settings/applications/new

6. Click Register application. GitHub provides a client ID and a client secret. You need these
values to complete the identity provider configuration.

7.6.4. Creating the secret

Identity providers use OpenShift Container Platform Secret objects in the openshift-config
namespace to contain the client secret, client certificates, and keys.

Procedure

Create a Secret object containing a string by using the following command:

TIP

You can alternatively apply the following YAML to create the secret:

You can define a Secret object containing the contents of a file by using the following
command:

7.6.5. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

NOTE

This procedure is only required for GitHub Enterprise.

Procedure

Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

TIP

$ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

apiVersion: v1
kind: Secret
metadata:
 name: <secret_name>
 namespace: openshift-config
type: Opaque
data:
 clientSecret: <base64_encoded_client_secret>

$ oc create secret generic <secret_name> --from-file=<path_to_file> -n openshift-config

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

65

1

2

3

4

TIP

You can alternatively apply the following YAML to create the config map:

7.6.6. Sample GitHub CR

The following custom resource (CR) shows the parameters and acceptable values for a GitHub identity
provider.

GitHub CR

This provider name is prefixed to the GitHub numeric user ID to form an identity name. It is also
used to build the callback URL.

Controls how mappings are established between this provider’s identities and User objects.

Optional: Reference to an OpenShift Container Platform ConfigMap object containing the PEM-
encoded certificate authority bundle to use in validating server certificates for the configured URL.
Only for use in GitHub Enterprise with a non-publicly trusted root certificate.

The client ID of a registered GitHub OAuth application. The application must be configured with a
callback URL of https://oauth-openshift.apps.<cluster-name>.<cluster-
domain>/oauth2callback/<idp-provider-name>.

apiVersion: v1
kind: ConfigMap
metadata:
 name: ca-config-map
 namespace: openshift-config
data:
 ca.crt: |
 <CA_certificate_PEM>

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: githubidp 1
 mappingMethod: claim 2
 type: GitHub
 github:
 ca: 3
 name: ca-config-map
 clientID: {...} 4
 clientSecret: 5
 name: github-secret
 hostname: ... 6
 organizations: 7
 - myorganization1
 - myorganization2
 teams: 8
 - myorganization1/team-a
 - myorganization2/team-b

OpenShift Container Platform 4.18 Authentication and authorization

66

https://github.com/settings/applications/new

5

6

7

8

domain>/oauth2callback/<idp-provider-name>.

Reference to an OpenShift Container Platform Secret object containing the client secret issued by
GitHub.

For GitHub Enterprise, you must provide the hostname of your instance, such as example.com.
This value must match the GitHub Enterprise hostname value in in the /setup/settings file and
cannot include a port number. If this value is not set, then either teams or organizations must be
defined. For GitHub, omit this parameter.

The list of organizations. Either the organizations or teams field must be set unless the hostname
field is set, or if mappingMethod is set to lookup. Cannot be used in combination with the teams
field.

The list of teams. Either the teams or organizations field must be set unless the hostname field is
set, or if mappingMethod is set to lookup. Cannot be used in combination with the organizations
field.

NOTE

If organizations or teams is specified, only GitHub users that are members of at least
one of the listed organizations will be allowed to log in. If the GitHub OAuth application
configured in clientID is not owned by the organization, an organization owner must grant
third-party access to use this option. This can be done during the first GitHub login by
the organization’s administrator, or from the GitHub organization settings.

Additional resources

See Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.6.7. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the custom resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

NOTE

$ oc apply -f </path/to/CR>

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

67

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Obtain a token from the OAuth server.
As long as the kubeadmin user has been removed, the oc login command provides instructions
on how to access a web page where you can retrieve the token.

You can also access this page from the web console by navigating to (?) Help → Command
Line Tools → Copy Login Command.

3. Log in to the cluster, passing in the token to authenticate.

NOTE

This identity provider does not support logging in with a user name and password.

4. Confirm that the user logged in successfully, and display the user name.

7.7. CONFIGURING A GITLAB IDENTITY PROVIDER

Configure the gitlab identity provider using GitLab.com or any other GitLab instance as an identity
provider.

7.7.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

7.7.2. About GitLab authentication

Configuring GitLab authentication allows users to log in to OpenShift Container Platform with their
GitLab credentials.

If you use GitLab version 7.7.0 to 11.0, you connect using the OAuth integration. If you use GitLab
version 11.1 or later, you can use OpenID Connect (OIDC) to connect instead of OAuth.

7.7.3. Creating the secret

Identity providers use OpenShift Container Platform Secret objects in the openshift-config
namespace to contain the client secret, client certificates, and keys.

$ oc login --token=<token>

$ oc whoami

OpenShift Container Platform 4.18 Authentication and authorization

68

https://gitlab.com/
https://docs.gitlab.com/ce/integration/oauth_provider.html
https://docs.gitlab.com/ce/integration/openid_connect_provider.html

Procedure

Create a Secret object containing a string by using the following command:

TIP

You can alternatively apply the following YAML to create the secret:

You can define a Secret object containing the contents of a file by using the following
command:

7.7.4. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

NOTE

This procedure is only required for GitHub Enterprise.

Procedure

Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

TIP

$ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

apiVersion: v1
kind: Secret
metadata:
 name: <secret_name>
 namespace: openshift-config
type: Opaque
data:
 clientSecret: <base64_encoded_client_secret>

$ oc create secret generic <secret_name> --from-file=<path_to_file> -n openshift-config

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

69

1

2

3

4

5

6

TIP

You can alternatively apply the following YAML to create the config map:

7.7.5. Sample GitLab CR

The following custom resource (CR) shows the parameters and acceptable values for a GitLab identity
provider.

GitLab CR

This provider name is prefixed to the GitLab numeric user ID to form an identity name. It is also
used to build the callback URL.

Controls how mappings are established between this provider’s identities and User objects.

The client ID of a registered GitLab OAuth application. The application must be configured with a
callback URL of https://oauth-openshift.apps.<cluster-name>.<cluster-
domain>/oauth2callback/<idp-provider-name>.

Reference to an OpenShift Container Platform Secret object containing the client secret issued by
GitLab.

The host URL of a GitLab provider. This could either be https://gitlab.com/ or any other self
hosted instance of GitLab.

Optional: Reference to an OpenShift Container Platform ConfigMap object containing the PEM-
encoded certificate authority bundle to use in validating server certificates for the configured URL.

apiVersion: v1
kind: ConfigMap
metadata:
 name: ca-config-map
 namespace: openshift-config
data:
 ca.crt: |
 <CA_certificate_PEM>

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: gitlabidp 1
 mappingMethod: claim 2
 type: GitLab
 gitlab:
 clientID: {...} 3
 clientSecret: 4
 name: gitlab-secret
 url: https://gitlab.com 5
 ca: 6
 name: ca-config-map

OpenShift Container Platform 4.18 Authentication and authorization

70

https://docs.gitlab.com/ce/api/oauth2.html

Additional resources

See Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.7.6. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the custom resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Log in to the cluster as a user from your identity provider, entering the password when
prompted.

3. Confirm that the user logged in successfully, and display the user name.

7.8. CONFIGURING A GOOGLE IDENTITY PROVIDER

Configure the google identity provider using the Google OpenID Connect integration .

7.8.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

$ oc apply -f </path/to/CR>

$ oc login -u <username>

$ oc whoami

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

71

https://developers.google.com/identity/protocols/OpenIDConnect

7.8.2. About Google authentication

Using Google as an identity provider allows any Google user to authenticate to your server. You can limit
authentication to members of a specific hosted domain with the hostedDomain configuration attribute.

NOTE

Using Google as an identity provider requires users to get a token using
<namespace_route>/oauth/token/request to use with command-line tools.

7.8.3. Creating the secret

Identity providers use OpenShift Container Platform Secret objects in the openshift-config
namespace to contain the client secret, client certificates, and keys.

Procedure

Create a Secret object containing a string by using the following command:

TIP

You can alternatively apply the following YAML to create the secret:

You can define a Secret object containing the contents of a file by using the following
command:

7.8.4. Sample Google CR

The following custom resource (CR) shows the parameters and acceptable values for a Google identity
provider.

Google CR

$ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

apiVersion: v1
kind: Secret
metadata:
 name: <secret_name>
 namespace: openshift-config
type: Opaque
data:
 clientSecret: <base64_encoded_client_secret>

$ oc create secret generic <secret_name> --from-file=<path_to_file> -n openshift-config

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:

OpenShift Container Platform 4.18 Authentication and authorization

72

1

2

3

4

5

This provider name is prefixed to the Google numeric user ID to form an identity name. It is also
used to build the redirect URL.

Controls how mappings are established between this provider’s identities and User objects.

The client ID of a registered Google project. The project must be configured with a redirect URI of
https://oauth-openshift.apps.<cluster-name>.<cluster-domain>/oauth2callback/<idp-
provider-name>.

Reference to an OpenShift Container Platform Secret object containing the client secret issued by
Google.

A hosted domain used to restrict sign-in accounts. Optional if the lookup mappingMethod is
used. If empty, any Google account is allowed to authenticate.

Additional resources

See Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.8.5. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the custom resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

NOTE

 identityProviders:
 - name: googleidp 1
 mappingMethod: claim 2
 type: Google
 google:
 clientID: {...} 3
 clientSecret: 4
 name: google-secret
 hostedDomain: "example.com" 5

$ oc apply -f </path/to/CR>

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

73

https://console.developers.google.com/
https://developers.google.com/identity/protocols/OpenIDConnect#hd-param

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

2. Obtain a token from the OAuth server.
As long as the kubeadmin user has been removed, the oc login command provides instructions
on how to access a web page where you can retrieve the token.

You can also access this page from the web console by navigating to (?) Help → Command
Line Tools → Copy Login Command.

3. Log in to the cluster, passing in the token to authenticate.

NOTE

This identity provider does not support logging in with a user name and password.

4. Confirm that the user logged in successfully, and display the user name.

7.9. CONFIGURING AN OPENID CONNECT IDENTITY PROVIDER

Configure the oidc identity provider to integrate with an OpenID Connect identity provider using an
Authorization Code Flow.

7.9.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

7.9.2. About OpenID Connect authentication

The Authentication Operator in OpenShift Container Platform requires that the configured OpenID
Connect identity provider implements the OpenID Connect Discovery specification.

NOTE

ID Token and UserInfo decryptions are not supported.

By default, the openid scope is requested. If required, extra scopes can be specified in the extraScopes
field.

$ oc login --token=<token>

$ oc whoami

OpenShift Container Platform 4.18 Authentication and authorization

74

http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://openid.net/specs/openid-connect-discovery-1_0.html

Claims are read from the JWT id_token returned from the OpenID identity provider and, if specified,
from the JSON returned by the UserInfo URL.

At least one claim must be configured to use as the user’s identity. The standard identity claim is sub.

You can also indicate which claims to use as the user’s preferred user name, display name, and email
address. If multiple claims are specified, the first one with a non-empty value is used. The following table
lists the standard claims:

Claim Description

sub Short for "subject identifier." The remote identity for the user at the
issuer.

preferred_username The preferred user name when provisioning a user. A shorthand name
that the user wants to be referred to as, such as janedoe. Typically a
value that corresponding to the user’s login or username in the
authentication system, such as username or email.

email Email address.

name Display name.

See the OpenID claims documentation for more information.

NOTE

Unless your OpenID Connect identity provider supports the resource owner password
credentials (ROPC) grant flow, users must get a token from
<namespace_route>/oauth/token/request to use with command-line tools.

7.9.3. Supported OIDC providers

Red Hat tests and supports specific OpenID Connect (OIDC) providers with OpenShift Container
Platform. The following OpenID Connect (OIDC) providers are tested and supported with OpenShift
Container Platform. Using an OIDC provider that is not on the following list might work with OpenShift
Container Platform, but the provider was not tested by Red Hat and therefore is not supported by Red
Hat.

Active Directory Federation Services for Windows Server

NOTE

Currently, it is not supported to use Active Directory Federation Services for
Windows Server with OpenShift Container Platform when custom claims are
used.

GitLab

Google

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

75

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Keycloak

Microsoft identity platform (Azure Active Directory v2.0)

NOTE

Currently, it is not supported to use Microsoft identity platform when group
names are required to be synced.

Okta

Ping Identity

Red Hat Single Sign-On

7.9.4. Creating the secret

Identity providers use OpenShift Container Platform Secret objects in the openshift-config
namespace to contain the client secret, client certificates, and keys.

Procedure

Create a Secret object containing a string by using the following command:

TIP

You can alternatively apply the following YAML to create the secret:

You can define a Secret object containing the contents of a file by using the following
command:

7.9.5. Creating a config map

Identity providers use OpenShift Container Platform ConfigMap objects in the openshift-config
namespace to contain the certificate authority bundle. These are primarily used to contain certificate
bundles needed by the identity provider.

NOTE

$ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-
config

apiVersion: v1
kind: Secret
metadata:
 name: <secret_name>
 namespace: openshift-config
type: Opaque
data:
 clientSecret: <base64_encoded_client_secret>

$ oc create secret generic <secret_name> --from-file=<path_to_file> -n openshift-config

OpenShift Container Platform 4.18 Authentication and authorization

76

NOTE

This procedure is only required for GitHub Enterprise.

Procedure

Define an OpenShift Container Platform ConfigMap object containing the certificate authority
by using the following command. The certificate authority must be stored in the ca.crt key of
the ConfigMap object.

TIP

You can alternatively apply the following YAML to create the config map:

7.9.6. Sample OpenID Connect CRs

The following custom resources (CRs) show the parameters and acceptable values for an OpenID
Connect identity provider.

If you must specify a custom certificate bundle, extra scopes, extra authorization request parameters, or
a userInfo URL, use the full OpenID Connect CR.

Standard OpenID Connect CR

$ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: ca-config-map
 namespace: openshift-config
data:
 ca.crt: |
 <CA_certificate_PEM>

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: oidcidp 1
 mappingMethod: claim 2
 type: OpenID
 openID:
 clientID: ... 3
 clientSecret: 4
 name: idp-secret
 claims: 5
 preferredUsername:
 - preferred_username
 name:
 - name

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

77

1

2

3

4

5

6

This provider name is prefixed to the value of the identity claim to form an identity name. It is also
used to build the redirect URL.

Controls how mappings are established between this provider’s identities and User objects.

The client ID of a client registered with the OpenID provider. The client must be allowed to redirect
to https://oauth-openshift.apps.<cluster_name>.
<cluster_domain>/oauth2callback/<idp_provider_name>.

A reference to an OpenShift Container Platform Secret object containing the client secret.

The list of claims to use as the identity. The first non-empty claim is used.

The Issuer Identifier described in the OpenID spec. Must use https without query or fragment
component.

Full OpenID Connect CR

 email:
 - email
 groups:
 - groups
 issuer: https://www.idp-issuer.com 6

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: oidcidp
 mappingMethod: claim
 type: OpenID
 openID:
 clientID: ...
 clientSecret:
 name: idp-secret
 ca: 1
 name: ca-config-map
 extraScopes: 2
 - email
 - profile
 extraAuthorizeParameters: 3
 include_granted_scopes: "true"
 claims:
 preferredUsername: 4
 - preferred_username
 - email
 name: 5
 - nickname
 - given_name
 - name
 email: 6
 - custom_email_claim

OpenShift Container Platform 4.18 Authentication and authorization

78

https://openid.net/specs/openid-connect-core-1_0.html#IssuerIdentifier

1

2

3

4

5

6

7

Optional: Reference to an OpenShift Container Platform config map containing the PEM-encoded
certificate authority bundle to use in validating server certificates for the configured URL.

Optional: The list of scopes to request, in addition to the openid scope, during the authorization
token request.

Optional: A map of extra parameters to add to the authorization token request.

The list of claims to use as the preferred user name when provisioning a user for this identity. The
first non-empty claim is used.

The list of claims to use as the display name. The first non-empty claim is used.

The list of claims to use as the email address. The first non-empty claim is used.

The list of claims to use to synchronize groups from the OpenID Connect provider to OpenShift
Container Platform upon user login. The first non-empty claim is used.

Additional resources

See Identity provider parameters for information on parameters, such as mappingMethod, that
are common to all identity providers.

7.9.7. Adding an identity provider to your cluster

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

Create an OpenShift Container Platform cluster.

Create the custom resource (CR) for your identity providers.

You must be logged in as an administrator.

Procedure

1. Apply the defined CR:

NOTE

If a CR does not exist, oc apply creates a new CR and might trigger the following
warning: Warning: oc apply should be used on resources created by either
oc create --save-config or oc apply. In this case you can safely ignore this
warning.

 - email
 groups: 7
 - groups
 issuer: https://www.idp-issuer.com

$ oc apply -f </path/to/CR>

CHAPTER 7. CONFIGURING IDENTITY PROVIDERS

79

2. Obtain a token from the OAuth server.
As long as the kubeadmin user has been removed, the oc login command provides instructions
on how to access a web page where you can retrieve the token.

You can also access this page from the web console by navigating to (?) Help → Command
Line Tools → Copy Login Command.

3. Log in to the cluster, passing in the token to authenticate.

NOTE

If your OpenID Connect identity provider supports the resource owner password
credentials (ROPC) grant flow, you can log in with a user name and password.
You might need to take steps to enable the ROPC grant flow for your identity
provider.

After the OIDC identity provider is configured in OpenShift Container Platform,
you can log in by using the following command, which prompts for your user
name and password:

4. Confirm that the user logged in successfully, and display the user name.

7.9.8. Configuring identity providers using the web console

Configure your identity provider (IDP) through the web console instead of the CLI.

Prerequisites

You must be logged in to the web console as a cluster administrator.

Procedure

1. Navigate to Administration → Cluster Settings.

2. Under the Configuration tab, click OAuth.

3. Under the Identity Providers section, select your identity provider from the Add drop-down
menu.

NOTE

You can specify multiple IDPs through the web console without overwriting existing IDPs.

$ oc login --token=<token>

$ oc login -u <identity_provider_username> --server=
<api_server_url_and_port>

$ oc whoami

OpenShift Container Platform 4.18 Authentication and authorization

80

CHAPTER 8. USING RBAC TO DEFINE AND APPLY
PERMISSIONS

8.1. RBAC OVERVIEW

Role-based access control (RBAC) objects determine whether a user is allowed to perform a given
action within a project.

Cluster administrators can use the cluster roles and bindings to control who has various access levels to
the OpenShift Container Platform platform itself and all projects.

Developers can use local roles and bindings to control who has access to their projects. Note that
authorization is a separate step from authentication, which is more about determining the identity of
who is taking the action.

Authorization is managed using:

Authorization
object

Description

Rules Sets of permitted verbs on a set of objects. For example, whether a user or service
account can create pods.

Roles Collections of rules. You can associate, or bind, users and groups to multiple roles.

Bindings Associations between users and/or groups with a role.

There are two levels of RBAC roles and bindings that control authorization:

RBAC level Description

Cluster RBAC Roles and bindings that are applicable across all projects. Cluster roles exist cluster-
wide, and cluster role bindings can reference only cluster roles.

Local RBAC Roles and bindings that are scoped to a given project. While local roles exist only in a
single project, local role bindings can reference both cluster and local roles.

A cluster role binding is a binding that exists at the cluster level. A role binding exists at the project level.
The cluster role view must be bound to a user using a local role binding for that user to view the project.
Create local roles only if a cluster role does not provide the set of permissions needed for a particular
situation.

This two-level hierarchy allows reuse across multiple projects through the cluster roles while allowing
customization inside of individual projects through local roles.

During evaluation, both the cluster role bindings and the local role bindings are used. For example:

1. Cluster-wide "allow" rules are checked.

2. Locally-bound "allow" rules are checked.

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

81

3. Deny by default.

8.1.1. Default cluster roles

OpenShift Container Platform includes a set of default cluster roles that you can bind to users and
groups cluster-wide or locally.

IMPORTANT

It is not recommended to manually modify the default cluster roles. Modifications to
these system roles can prevent a cluster from functioning properly.

Default cluster
role

Description

admin A project manager. If used in a local binding, an admin has rights to view any resource
in the project and modify any resource in the project except for quota.

basic-user A user that can get basic information about projects and users.

cluster-admin A super-user that can perform any action in any project. When bound to a user with a
local binding, they have full control over quota and every action on every resource in the
project.

cluster-status A user that can get basic cluster status information.

cluster-reader A user that can get or view most of the objects but cannot modify them.

edit A user that can modify most objects in a project but does not have the power to view or
modify roles or bindings.

self-provisioner A user that can create their own projects.

view A user who cannot make any modifications, but can see most objects in a project. They
cannot view or modify roles or bindings.

Be mindful of the difference between local and cluster bindings. For example, if you bind the cluster-
admin role to a user by using a local role binding, it might appear that this user has the privileges of a
cluster administrator. This is not the case. Binding the cluster-admin to a user in a project grants super
administrator privileges for only that project to the user. That user has the permissions of the cluster
role admin, plus a few additional permissions like the ability to edit rate limits, for that project. This
binding can be confusing via the web console UI, which does not list cluster role bindings that are bound
to true cluster administrators. However, it does list local role bindings that you can use to locally bind
cluster-admin.

The relationships between cluster roles, local roles, cluster role bindings, local role bindings, users,
groups and service accounts are illustrated below.

OpenShift Container Platform 4.18 Authentication and authorization

82

WARNING

The get pods/exec, get pods/*, and get * rules grant execution privileges when they
are applied to a role. Apply the principle of least privilege and assign only the
minimal RBAC rights required for users and agents. For more information, see
RBAC rules allow execution privileges .

8.1.2. Evaluating authorization

OpenShift Container Platform evaluates authorization by using:

Identity

The user name and list of groups that the user belongs to.

Action

The action you perform. In most cases, this consists of:

Project: The project you access. A project is a Kubernetes namespace with additional
annotations that allows a community of users to organize and manage their content in
isolation from other communities.

Verb : The action itself: get, list, create, update, delete, deletecollection, or watch.

Resource name: The API endpoint that you access.



CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

83

https://access.redhat.com/solutions/6989997

Bindings

The full list of bindings, the associations between users or groups with a role.

OpenShift Container Platform evaluates authorization by using the following steps:

1. The identity and the project-scoped action is used to find all bindings that apply to the user or
their groups.

2. Bindings are used to locate all the roles that apply.

3. Roles are used to find all the rules that apply.

4. The action is checked against each rule to find a match.

5. If no matching rule is found, the action is then denied by default.

TIP

Remember that users and groups can be associated with, or bound to, multiple roles at the same time.

Project administrators can use the CLI to view local roles and bindings, including a matrix of the verbs
and resources each are associated with.

IMPORTANT

The cluster role bound to the project administrator is limited in a project through a local
binding. It is not bound cluster-wide like the cluster roles granted to the cluster-admin or
system:admin.

Cluster roles are roles defined at the cluster level but can be bound either at the cluster
level or at the project level.

8.1.2.1. Cluster role aggregation

The default admin, edit, view, and cluster-reader cluster roles support cluster role aggregation, where
the cluster rules for each role are dynamically updated as new rules are created. This feature is relevant
only if you extend the Kubernetes API by creating custom resources.

8.2. PROJECTS AND NAMESPACES

A Kubernetes namespace provides a mechanism to scope resources in a cluster. The Kubernetes
documentation has more information on namespaces.

Namespaces provide a unique scope for:

Named resources to avoid basic naming collisions.

Delegated management authority to trusted users.

The ability to limit community resource consumption.

Most objects in the system are scoped by namespace, but some are excepted and have no namespace,
including nodes and users.

A project is a Kubernetes namespace with additional annotations and is the central vehicle by which

OpenShift Container Platform 4.18 Authentication and authorization

84

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#aggregated-clusterroles
https://kubernetes.io/docs/tasks/administer-cluster/namespaces/

access to resources for regular users is managed. A project allows a community of users to organize and
manage their content in isolation from other communities. Users must be given access to projects by
administrators, or if allowed to create projects, automatically have access to their own projects.

Projects can have a separate name, displayName, and description.

The mandatory name is a unique identifier for the project and is most visible when using the CLI
tools or API. The maximum name length is 63 characters.

The optional displayName is how the project is displayed in the web console (defaults to
name).

The optional description can be a more detailed description of the project and is also visible in
the web console.

Each project scopes its own set of:

Object Description

Objects Pods, services, replication controllers, etc.

Policies Rules for which users can or cannot perform actions on objects.

Constraints Quotas for each kind of object that can be limited.

Service
accounts

Service accounts act automatically with designated access to objects in the project.

Cluster administrators can create projects and delegate administrative rights for the project to any
member of the user community. Cluster administrators can also allow developers to create their own
projects.

Developers and administrators can interact with projects by using the CLI or the web console.

8.3. DEFAULT PROJECTS

OpenShift Container Platform comes with a number of default projects, and projects starting with
openshift- are the most essential to users. These projects host master components that run as pods
and other infrastructure components. The pods created in these namespaces that have a critical pod
annotation are considered critical, and the have guaranteed admission by kubelet. Pods created for
master components in these namespaces are already marked as critical.

IMPORTANT

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

85

https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/#rescheduler-guaranteed-scheduling-of-critical-add-ons

IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved
for running core cluster components.

The following default projects are considered highly privileged: default, kube-public,
kube-system, openshift, openshift-infra, openshift-node, and other system-created
projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies
on admission plugins, such as pod security admission, security context constraints, cluster
resource quotas, and image reference resolution, does not work in highly privileged
projects.

8.4. VIEWING CLUSTER ROLES AND BINDINGS

You can use the oc CLI to view cluster roles and bindings by using the oc describe command.

Prerequisites

Install the oc CLI.

Obtain permission to view the cluster roles and bindings.

Users with the cluster-admin default cluster role bound cluster-wide can perform any action on any
resource, including viewing cluster roles and bindings.

Procedure

1. To view the cluster roles and their associated rule sets:

Example output

$ oc describe clusterrole.rbac

Name: admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 .packages.apps.redhat.com [] [] [* create update
patch delete get list watch]
 imagestreams [] [] [create delete
deletecollection get list patch update watch create get list watch]
 imagestreams.image.openshift.io [] [] [create delete
deletecollection get list patch update watch create get list watch]
 secrets [] [] [create delete deletecollection
get list patch update watch get list watch create delete deletecollection patch update]
 buildconfigs/webhooks [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildconfigs [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildlogs [] [] [create delete deletecollection
get list patch update watch get list watch]
 deploymentconfigs/scale [] [] [create delete

OpenShift Container Platform 4.18 Authentication and authorization

86

deletecollection get list patch update watch get list watch]
 deploymentconfigs [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreamimages [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreammappings [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreamtags [] [] [create delete
deletecollection get list patch update watch get list watch]
 processedtemplates [] [] [create delete
deletecollection get list patch update watch get list watch]
 routes [] [] [create delete deletecollection
get list patch update watch get list watch]
 templateconfigs [] [] [create delete
deletecollection get list patch update watch get list watch]
 templateinstances [] [] [create delete
deletecollection get list patch update watch get list watch]
 templates [] [] [create delete
deletecollection get list patch update watch get list watch]
 deploymentconfigs.apps.openshift.io/scale [] [] [create delete
deletecollection get list patch update watch get list watch]
 deploymentconfigs.apps.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildconfigs.build.openshift.io/webhooks [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildconfigs.build.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildlogs.build.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreamimages.image.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreammappings.image.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreamtags.image.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 routes.route.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 processedtemplates.template.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 templateconfigs.template.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 templateinstances.template.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 templates.template.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 serviceaccounts [] [] [create delete
deletecollection get list patch update watch impersonate create delete deletecollection patch
update get list watch]
 imagestreams/secrets [] [] [create delete
deletecollection get list patch update watch]
 rolebindings [] [] [create delete
deletecollection get list patch update watch]
 roles [] [] [create delete deletecollection
get list patch update watch]
 rolebindings.authorization.openshift.io [] [] [create delete
deletecollection get list patch update watch]

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

87

 roles.authorization.openshift.io [] [] [create delete
deletecollection get list patch update watch]
 imagestreams.image.openshift.io/secrets [] [] [create delete
deletecollection get list patch update watch]
 rolebindings.rbac.authorization.k8s.io [] [] [create delete
deletecollection get list patch update watch]
 roles.rbac.authorization.k8s.io [] [] [create delete
deletecollection get list patch update watch]
 networkpolicies.extensions [] [] [create delete
deletecollection patch update create delete deletecollection get list patch update watch get
list watch]
 networkpolicies.networking.k8s.io [] [] [create delete
deletecollection patch update create delete deletecollection get list patch update watch get
list watch]
 configmaps [] [] [create delete
deletecollection patch update get list watch]
 endpoints [] [] [create delete
deletecollection patch update get list watch]
 persistentvolumeclaims [] [] [create delete
deletecollection patch update get list watch]
 pods [] [] [create delete deletecollection
patch update get list watch]
 replicationcontrollers/scale [] [] [create delete
deletecollection patch update get list watch]
 replicationcontrollers [] [] [create delete
deletecollection patch update get list watch]
 services [] [] [create delete deletecollection
patch update get list watch]
 daemonsets.apps [] [] [create delete
deletecollection patch update get list watch]
 deployments.apps/scale [] [] [create delete
deletecollection patch update get list watch]
 deployments.apps [] [] [create delete
deletecollection patch update get list watch]
 replicasets.apps/scale [] [] [create delete
deletecollection patch update get list watch]
 replicasets.apps [] [] [create delete
deletecollection patch update get list watch]
 statefulsets.apps/scale [] [] [create delete
deletecollection patch update get list watch]
 statefulsets.apps [] [] [create delete
deletecollection patch update get list watch]
 horizontalpodautoscalers.autoscaling [] [] [create delete
deletecollection patch update get list watch]
 cronjobs.batch [] [] [create delete
deletecollection patch update get list watch]
 jobs.batch [] [] [create delete
deletecollection patch update get list watch]
 daemonsets.extensions [] [] [create delete
deletecollection patch update get list watch]
 deployments.extensions/scale [] [] [create delete
deletecollection patch update get list watch]
 deployments.extensions [] [] [create delete
deletecollection patch update get list watch]
 ingresses.extensions [] [] [create delete
deletecollection patch update get list watch]

OpenShift Container Platform 4.18 Authentication and authorization

88

 replicasets.extensions/scale [] [] [create delete
deletecollection patch update get list watch]
 replicasets.extensions [] [] [create delete
deletecollection patch update get list watch]
 replicationcontrollers.extensions/scale [] [] [create delete
deletecollection patch update get list watch]
 poddisruptionbudgets.policy [] [] [create delete
deletecollection patch update get list watch]
 deployments.apps/rollback [] [] [create delete
deletecollection patch update]
 deployments.extensions/rollback [] [] [create delete
deletecollection patch update]
 catalogsources.operators.coreos.com [] [] [create update
patch delete get list watch]
 clusterserviceversions.operators.coreos.com [] [] [create update
patch delete get list watch]
 installplans.operators.coreos.com [] [] [create update
patch delete get list watch]
 packagemanifests.operators.coreos.com [] [] [create update
patch delete get list watch]
 subscriptions.operators.coreos.com [] [] [create update
patch delete get list watch]
 buildconfigs/instantiate [] [] [create]
 buildconfigs/instantiatebinary [] [] [create]
 builds/clone [] [] [create]
 deploymentconfigrollbacks [] [] [create]
 deploymentconfigs/instantiate [] [] [create]
 deploymentconfigs/rollback [] [] [create]
 imagestreamimports [] [] [create]
 localresourceaccessreviews [] [] [create]
 localsubjectaccessreviews [] [] [create]
 podsecuritypolicyreviews [] [] [create]
 podsecuritypolicyselfsubjectreviews [] [] [create]
 podsecuritypolicysubjectreviews [] [] [create]
 resourceaccessreviews [] [] [create]
 routes/custom-host [] [] [create]
 subjectaccessreviews [] [] [create]
 subjectrulesreviews [] [] [create]
 deploymentconfigrollbacks.apps.openshift.io [] [] [create]
 deploymentconfigs.apps.openshift.io/instantiate [] [] [create]
 deploymentconfigs.apps.openshift.io/rollback [] [] [create]
 localsubjectaccessreviews.authorization.k8s.io [] [] [create]
 localresourceaccessreviews.authorization.openshift.io [] [] [create]
 localsubjectaccessreviews.authorization.openshift.io [] [] [create]
 resourceaccessreviews.authorization.openshift.io [] [] [create]
 subjectaccessreviews.authorization.openshift.io [] [] [create]
 subjectrulesreviews.authorization.openshift.io [] [] [create]
 buildconfigs.build.openshift.io/instantiate [] [] [create]
 buildconfigs.build.openshift.io/instantiatebinary [] [] [create]
 builds.build.openshift.io/clone [] [] [create]
 imagestreamimports.image.openshift.io [] [] [create]
 routes.route.openshift.io/custom-host [] [] [create]
 podsecuritypolicyreviews.security.openshift.io [] [] [create]
 podsecuritypolicyselfsubjectreviews.security.openshift.io [] [] [create]
 podsecuritypolicysubjectreviews.security.openshift.io [] [] [create]
 jenkins.build.openshift.io [] [] [edit view view admin

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

89

edit view]
 builds [] [] [get create delete
deletecollection get list patch update watch get list watch]
 builds.build.openshift.io [] [] [get create delete
deletecollection get list patch update watch get list watch]
 projects [] [] [get delete get delete get patch
update]
 projects.project.openshift.io [] [] [get delete get delete
get patch update]
 namespaces [] [] [get get list watch]
 pods/attach [] [] [get list watch create delete
deletecollection patch update]
 pods/exec [] [] [get list watch create delete
deletecollection patch update]
 pods/portforward [] [] [get list watch create
delete deletecollection patch update]
 pods/proxy [] [] [get list watch create delete
deletecollection patch update]
 services/proxy [] [] [get list watch create delete
deletecollection patch update]
 routes/status [] [] [get list watch update]
 routes.route.openshift.io/status [] [] [get list watch update]
 appliedclusterresourcequotas [] [] [get list watch]
 bindings [] [] [get list watch]
 builds/log [] [] [get list watch]
 deploymentconfigs/log [] [] [get list watch]
 deploymentconfigs/status [] [] [get list watch]
 events [] [] [get list watch]
 imagestreams/status [] [] [get list watch]
 limitranges [] [] [get list watch]
 namespaces/status [] [] [get list watch]
 pods/log [] [] [get list watch]
 pods/status [] [] [get list watch]
 replicationcontrollers/status [] [] [get list watch]
 resourcequotas/status [] [] [get list watch]
 resourcequotas [] [] [get list watch]
 resourcequotausages [] [] [get list watch]
 rolebindingrestrictions [] [] [get list watch]
 deploymentconfigs.apps.openshift.io/log [] [] [get list watch]
 deploymentconfigs.apps.openshift.io/status [] [] [get list watch]
 controllerrevisions.apps [] [] [get list watch]
 rolebindingrestrictions.authorization.openshift.io [] [] [get list watch]
 builds.build.openshift.io/log [] [] [get list watch]
 imagestreams.image.openshift.io/status [] [] [get list watch]
 appliedclusterresourcequotas.quota.openshift.io [] [] [get list watch]
 imagestreams/layers [] [] [get update get]
 imagestreams.image.openshift.io/layers [] [] [get update get]
 builds/details [] [] [update]
 builds.build.openshift.io/details [] [] [update]

Name: basic-user
Labels: <none>
Annotations: openshift.io/description: A user that can get basic information about projects.
 rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:

OpenShift Container Platform 4.18 Authentication and authorization

90

2. To view the current set of cluster role bindings, which shows the users and groups that are
bound to various roles:

Example output

 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 selfsubjectrulesreviews [] [] [create]
 selfsubjectaccessreviews.authorization.k8s.io [] [] [create]
 selfsubjectrulesreviews.authorization.openshift.io [] [] [create]
 clusterroles.rbac.authorization.k8s.io [] [] [get list watch]
 clusterroles [] [] [get list]
 clusterroles.authorization.openshift.io [] [] [get list]
 storageclasses.storage.k8s.io [] [] [get list]
 users [] [~] [get]
 users.user.openshift.io [] [~] [get]
 projects [] [] [list watch]
 projects.project.openshift.io [] [] [list watch]
 projectrequests [] [] [list]
 projectrequests.project.openshift.io [] [] [list]

Name: cluster-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:
Resources Non-Resource URLs Resource Names Verbs
--------- ----------------- -------------- -----
. [] [] [*]
 [*] [] [*]

...

$ oc describe clusterrolebinding.rbac

Name: alertmanager-main
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: alertmanager-main
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount alertmanager-main openshift-monitoring

Name: basic-users
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:
 Kind: ClusterRole
 Name: basic-user
Subjects:
 Kind Name Namespace
 ---- ---- ---------

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

91

8.5. VIEWING LOCAL ROLES AND BINDINGS

 Group system:authenticated

Name: cloud-credential-operator-rolebinding
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: cloud-credential-operator-role
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount default openshift-cloud-credential-operator

Name: cluster-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:
 Kind: ClusterRole
 Name: cluster-admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:masters

Name: cluster-admins
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:
 Kind: ClusterRole
 Name: cluster-admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:cluster-admins
 User system:admin

Name: cluster-api-manager-rolebinding
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: cluster-api-manager-role
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount default openshift-machine-api

...

OpenShift Container Platform 4.18 Authentication and authorization

92

You can use the oc CLI to view local roles and bindings by using the oc describe command.

Prerequisites

Install the oc CLI.

Obtain permission to view the local roles and bindings:

Users with the cluster-admin default cluster role bound cluster-wide can perform any
action on any resource, including viewing local roles and bindings.

Users with the admin default cluster role bound locally can view and manage roles and
bindings in that project.

Procedure

1. To view the current set of local role bindings, which show the users and groups that are bound to
various roles for the current project:

2. To view the local role bindings for a different project, add the -n flag to the command:

Example output

$ oc describe rolebinding.rbac

$ oc describe rolebinding.rbac -n joe-project

Name: admin
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 User kube:admin

Name: system:deployers
Labels: <none>
Annotations: openshift.io/description:
 Allows deploymentconfigs in this namespace to rollout pods in
 this namespace. It is auto-managed by a controller; remove
 subjects to disa...
Role:
 Kind: ClusterRole
 Name: system:deployer
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount deployer joe-project

Name: system:image-builders

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

93

8.6. ADDING ROLES TO USERS

You can use the oc adm administrator CLI to manage the roles and bindings.

Binding, or adding, a role to users or groups gives the user or group the access that is granted by the
role. You can add and remove roles to and from users and groups using oc adm policy commands.

You can bind any of the default cluster roles to local users or groups in your project.

Procedure

1. Add a role to a user in a specific project:

For example, you can add the admin role to the alice user in joe project by running:

TIP

Labels: <none>
Annotations: openshift.io/description:
 Allows builds in this namespace to push images to this
 namespace. It is auto-managed by a controller; remove subjects
 to disable.
Role:
 Kind: ClusterRole
 Name: system:image-builder
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount builder joe-project

Name: system:image-pullers
Labels: <none>
Annotations: openshift.io/description:
 Allows all pods in this namespace to pull images from this
 namespace. It is auto-managed by a controller; remove subjects
 to disable.
Role:
 Kind: ClusterRole
 Name: system:image-puller
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:serviceaccounts:joe-project

$ oc adm policy add-role-to-user <role> <user> -n <project>

$ oc adm policy add-role-to-user admin alice -n joe

OpenShift Container Platform 4.18 Authentication and authorization

94

TIP

You can alternatively apply the following YAML to add the role to the user:

2. View the local role bindings and verify the addition in the output:

For example, to view the local role bindings for the joe project:

Example output

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: admin-0
 namespace: joe
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: admin
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: alice

$ oc describe rolebinding.rbac -n <project>

$ oc describe rolebinding.rbac -n joe

Name: admin
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 User kube:admin

Name: admin-0
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 User alice 1

Name: system:deployers
Labels: <none>

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

95

1 The alice user has been added to the admins RoleBinding.

8.7. CREATING A LOCAL ROLE

You can create a local role for a project and then bind it to a user.

Procedure

1. To create a local role for a project, run the following command:

Annotations: openshift.io/description:
 Allows deploymentconfigs in this namespace to rollout pods in
 this namespace. It is auto-managed by a controller; remove
 subjects to disa...
Role:
 Kind: ClusterRole
 Name: system:deployer
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount deployer joe

Name: system:image-builders
Labels: <none>
Annotations: openshift.io/description:
 Allows builds in this namespace to push images to this
 namespace. It is auto-managed by a controller; remove subjects
 to disable.
Role:
 Kind: ClusterRole
 Name: system:image-builder
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount builder joe

Name: system:image-pullers
Labels: <none>
Annotations: openshift.io/description:
 Allows all pods in this namespace to pull images from this
 namespace. It is auto-managed by a controller; remove subjects
 to disable.
Role:
 Kind: ClusterRole
 Name: system:image-puller
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:serviceaccounts:joe

$ oc create role <name> --verb=<verb> --resource=<resource> -n <project>

OpenShift Container Platform 4.18 Authentication and authorization

96

In this command, specify:

<name>, the local role’s name

<verb>, a comma-separated list of the verbs to apply to the role

<resource>, the resources that the role applies to

<project>, the project name

For example, to create a local role that allows a user to view pods in the blue project, run the
following command:

2. To bind the new role to a user, run the following command:

8.8. CREATING A CLUSTER ROLE

You can create a cluster role.

Procedure

1. To create a cluster role, run the following command:

In this command, specify:

<name>, the local role’s name

<verb>, a comma-separated list of the verbs to apply to the role

<resource>, the resources that the role applies to

For example, to create a cluster role that allows a user to view pods, run the following command:

8.9. LOCAL ROLE BINDING COMMANDS

When you manage a user or group’s associated roles for local role bindings using the following
operations, a project may be specified with the -n flag. If it is not specified, then the current project is
used.

You can use the following commands for local RBAC management.

Table 8.1. Local role binding operations

$ oc create role podview --verb=get --resource=pod -n blue

$ oc adm policy add-role-to-user podview user2 --role-namespace=blue -n blue

$ oc create clusterrole <name> --verb=<verb> --resource=<resource>

$ oc create clusterrole podviewonly --verb=get --resource=pod

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

97

Command Description

$ oc adm policy who-can <verb> <resource> Indicates which users can perform an action on a
resource.

$ oc adm policy add-role-to-user <role>
<username>

Binds a specified role to specified users in the
current project.

$ oc adm policy remove-role-from-user
<role> <username>

Removes a given role from specified users in the
current project.

$ oc adm policy remove-user <username> Removes specified users and all of their roles in the
current project.

$ oc adm policy add-role-to-group <role>
<groupname>

Binds a given role to specified groups in the current
project.

$ oc adm policy remove-role-from-group
<role> <groupname>

Removes a given role from specified groups in the
current project.

$ oc adm policy remove-group <groupname> Removes specified groups and all of their roles in the
current project.

8.10. CLUSTER ROLE BINDING COMMANDS

You can also manage cluster role bindings using the following operations. The -n flag is not used for
these operations because cluster role bindings use non-namespaced resources.

Table 8.2. Cluster role binding operations

Command Description

$ oc adm policy add-cluster-role-to-user
<role> <username>

Binds a given role to specified users for all projects in
the cluster.

$ oc adm policy remove-cluster-role-from-
user <role> <username>

Removes a given role from specified users for all
projects in the cluster.

$ oc adm policy add-cluster-role-to-group
<role> <groupname>

Binds a given role to specified groups for all projects
in the cluster.

$ oc adm policy remove-cluster-role-from-
group <role> <groupname>

Removes a given role from specified groups for all
projects in the cluster.

8.11. CREATING A CLUSTER ADMIN

The cluster-admin role is required to perform administrator level tasks on the OpenShift Container

OpenShift Container Platform 4.18 Authentication and authorization

98

The cluster-admin role is required to perform administrator level tasks on the OpenShift Container
Platform cluster, such as modifying cluster resources.

Prerequisites

You must have created a user to define as the cluster admin.

Procedure

Define the user as a cluster admin:

8.12. CLUSTER ROLE BINDINGS FOR UNAUTHENTICATED GROUPS

NOTE

Before OpenShift Container Platform 4.17, unauthenticated groups were allowed access
to some cluster roles. Clusters updated from versions before OpenShift Container
Platform 4.17 retain this access for unauthenticated groups.

For security reasons OpenShift Container Platform 4.18 does not allow unauthenticated groups to have
default access to cluster roles.

There are use cases where it might be necessary to add system:unauthenticated to a cluster role.

Cluster administrators can add unauthenticated users to the following cluster roles:

system:scope-impersonation

system:webhook

system:oauth-token-deleter

self-access-reviewer

IMPORTANT

Always verify compliance with your organization’s security standards when modifying
unauthenticated access.

$ oc adm policy add-cluster-role-to-user cluster-admin <user>

CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS

99

CHAPTER 9. REMOVING THE KUBEADMIN USER

9.1. THE KUBEADMIN USER

OpenShift Container Platform creates a cluster administrator, kubeadmin, after the installation process
completes.

This user has the cluster-admin role automatically applied and is treated as the root user for the cluster.
The password is dynamically generated and unique to your OpenShift Container Platform environment.
After installation completes the password is provided in the installation program’s output. For example:

9.2. REMOVING THE KUBEADMIN USER

After you define an identity provider and create a new cluster-admin user, you can remove the
kubeadmin to improve cluster security.

WARNING

If you follow this procedure before another user is a cluster-admin, then OpenShift
Container Platform must be reinstalled. It is not possible to undo this command.

Prerequisites

You must have configured at least one identity provider.

You must have added the cluster-admin role to a user.

You must be logged in as an administrator.

Procedure

Remove the kubeadmin secrets:

INFO Install complete!
INFO Run 'export KUBECONFIG=<your working directory>/auth/kubeconfig' to manage the cluster
with 'oc', the OpenShift CLI.
INFO The cluster is ready when 'oc login -u kubeadmin -p <provided>' succeeds (wait a few minutes).
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.demo1.openshift4-beta-abcorp.com
INFO Login to the console with user: kubeadmin, password: <provided>



$ oc delete secrets kubeadmin -n kube-system

OpenShift Container Platform 4.18 Authentication and authorization

100

CHAPTER 10. UNDERSTANDING AND CREATING SERVICE
ACCOUNTS

10.1. SERVICE ACCOUNTS OVERVIEW

A service account is an OpenShift Container Platform account that allows a component to directly
access the API. Service accounts are API objects that exist within each project. Service accounts provide
a flexible way to control API access without sharing a regular user’s credentials.

When you use the OpenShift Container Platform CLI or web console, your API token authenticates you
to the API. You can associate a component with a service account so that they can access the API
without using a regular user’s credentials.

For example, service accounts can allow:

Replication controllers to make API calls to create or delete pods

Applications inside containers to make API calls for discovery purposes

External applications to make API calls for monitoring or integration purposes

Each service account’s user name is derived from its project and name:

Every service account is also a member of two groups:

Group Description

system:serviceaccounts Includes all service accounts in the system.

system:serviceaccounts:<project> Includes all service accounts in the specified project.

10.1.1. Automatically generated image pull secrets

By default, OpenShift Container Platform creates an image pull secret for each service account.

NOTE

Prior to OpenShift Container Platform 4.16, a long-lived service account API token secret
was also generated for each service account that was created. Starting with OpenShift
Container Platform 4.16, this service account API token secret is no longer created.

After upgrading to 4.18, any existing long-lived service account API token secrets are not
deleted and will continue to function. For information about detecting long-lived API
tokens that are in use in your cluster or deleting them if they are not needed, see the Red
Hat Knowledgebase article Long-lived service account API tokens in OpenShift
Container Platform.

This image pull secret is necessary to integrate the OpenShift image registry into the cluster’s user
authentication and authorization system.

system:serviceaccount:<project>:<name>

CHAPTER 10. UNDERSTANDING AND CREATING SERVICE ACCOUNTS

101

https://access.redhat.com/articles/7058801

1

However, if you do not enable the ImageRegistry capability or if you disable the integrated OpenShift
image registry in the Cluster Image Registry Operator’s configuration, an image pull secret is not
generated for each service account.

When the integrated OpenShift image registry is disabled on a cluster that previously had it enabled, the
previously generated image pull secrets are deleted automatically.

10.2. CREATING SERVICE ACCOUNTS

You can create a service account in a project and grant it permissions by binding it to a role.

Procedure

1. Optional: To view the service accounts in the current project:

Example output

2. To create a new service account in the current project:

To create a service account in a different project, specify -n <project_name>.

Example output

TIP

You can alternatively apply the following YAML to create the service account:

3. Optional: View the secrets for the service account:

Example output

$ oc get sa

NAME SECRETS AGE
builder 1 2d
default 1 2d
deployer 1 2d

$ oc create sa <service_account_name> 1

serviceaccount "robot" created

apiVersion: v1
kind: ServiceAccount
metadata:
 name: <service_account_name>
 namespace: <current_project>

$ oc describe sa robot

OpenShift Container Platform 4.18 Authentication and authorization

102

10.3. GRANTING ROLES TO SERVICE ACCOUNTS

You can grant roles to service accounts in the same way that you grant roles to a regular user account.

Procedure

1. You can modify the service accounts for the current project. For example, to add the view role
to the robot service account in the top-secret project:

TIP

You can alternatively apply the following YAML to add the role:

2. You can also grant access to a specific service account in a project. For example, from the
project to which the service account belongs, use the -z flag and specify the
<service_account_name>

IMPORTANT

If you want to grant access to a specific service account in a project, use the -z
flag. Using this flag helps prevent typos and ensures that access is granted to
only the specified service account.

TIP

Name: robot
Namespace: project1
Labels: <none>
Annotations: openshift.io/internal-registry-pull-secret-ref: robot-dockercfg-qzbhb
Image pull secrets: robot-dockercfg-qzbhb
Mountable secrets: robot-dockercfg-qzbhb
Tokens: <none>
Events: <none>

$ oc policy add-role-to-user view system:serviceaccount:top-secret:robot

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: view
 namespace: top-secret
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: view
subjects:
- kind: ServiceAccount
 name: robot
 namespace: top-secret

$ oc policy add-role-to-user <role_name> -z <service_account_name>

CHAPTER 10. UNDERSTANDING AND CREATING SERVICE ACCOUNTS

103

TIP

You can alternatively apply the following YAML to add the role:

3. To modify a different namespace, you can use the -n option to indicate the project namespace
it applies to, as shown in the following examples.

For example, to allow all service accounts in all projects to view resources in the my-project
project:

TIP

You can alternatively apply the following YAML to add the role:

To allow all service accounts in the managers project to edit resources in the my-project
project:

TIP

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: <rolebinding_name>
 namespace: <current_project_name>
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: <role_name>
subjects:
- kind: ServiceAccount
 name: <service_account_name>
 namespace: <current_project_name>

$ oc policy add-role-to-group view system:serviceaccounts -n my-project

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: view
 namespace: my-project
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: view
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:serviceaccounts

$ oc policy add-role-to-group edit system:serviceaccounts:managers -n my-project

OpenShift Container Platform 4.18 Authentication and authorization

104

TIP

You can alternatively apply the following YAML to add the role:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: edit
 namespace: my-project
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: edit
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:serviceaccounts:managers

CHAPTER 10. UNDERSTANDING AND CREATING SERVICE ACCOUNTS

105

CHAPTER 11. USING SERVICE ACCOUNTS IN APPLICATIONS

11.1. SERVICE ACCOUNTS OVERVIEW

A service account is an OpenShift Container Platform account that allows a component to directly
access the API. Service accounts are API objects that exist within each project. Service accounts provide
a flexible way to control API access without sharing a regular user’s credentials.

When you use the OpenShift Container Platform CLI or web console, your API token authenticates you
to the API. You can associate a component with a service account so that they can access the API
without using a regular user’s credentials.

For example, service accounts can allow:

Replication controllers to make API calls to create or delete pods

Applications inside containers to make API calls for discovery purposes

External applications to make API calls for monitoring or integration purposes

Each service account’s user name is derived from its project and name:

Every service account is also a member of two groups:

Group Description

system:serviceaccounts Includes all service accounts in the system.

system:serviceaccounts:<project> Includes all service accounts in the specified project.

11.2. DEFAULT SERVICE ACCOUNTS

Your OpenShift Container Platform cluster contains default service accounts for cluster management
and generates more service accounts for each project.

11.2.1. Default cluster service accounts

Several infrastructure controllers run using service account credentials. The following service accounts
are created in the OpenShift Container Platform infrastructure project (openshift-infra) at server start,
and given the following roles cluster-wide:

Service account Description

replication-controller Assigned the system:replication-controller role

deployment-
controller

Assigned the system:deployment-controller role

system:serviceaccount:<project>:<name>

OpenShift Container Platform 4.18 Authentication and authorization

106

build-controller Assigned the system:build-controller role. Additionally, the build-controller
service account is included in the privileged security context constraint to create
privileged build pods.

Service account Description

11.2.2. Default project service accounts and roles

Three service accounts are automatically created in each project:

Service account Usage

builder Used by build pods. It is given the system:image-builder role, which allows
pushing images to any imagestream in the project using the internal Docker
registry.

NOTE

The builder service account is not created if the Build cluster
capability is not enabled.

deployer Used by deployment pods and given the system:deployer role, which allows
viewing and modifying replication controllers and pods in the project.

NOTE

The deployer service account is not created if the
DeploymentConfig cluster capability is not enabled.

default Used to run all other pods unless they specify a different service account.

All service accounts in a project are given the system:image-puller role, which allows pulling images
from any image stream in the project using the internal container image registry.

11.2.3. Automatically generated image pull secrets

By default, OpenShift Container Platform creates an image pull secret for each service account.

NOTE

CHAPTER 11. USING SERVICE ACCOUNTS IN APPLICATIONS

107

1

NOTE

Prior to OpenShift Container Platform 4.16, a long-lived service account API token secret
was also generated for each service account that was created. Starting with OpenShift
Container Platform 4.16, this service account API token secret is no longer created.

After upgrading to 4.18, any existing long-lived service account API token secrets are not
deleted and will continue to function. For information about detecting long-lived API
tokens that are in use in your cluster or deleting them if they are not needed, see the Red
Hat Knowledgebase article Long-lived service account API tokens in OpenShift
Container Platform.

This image pull secret is necessary to integrate the OpenShift image registry into the cluster’s user
authentication and authorization system.

However, if you do not enable the ImageRegistry capability or if you disable the integrated OpenShift
image registry in the Cluster Image Registry Operator’s configuration, an image pull secret is not
generated for each service account.

When the integrated OpenShift image registry is disabled on a cluster that previously had it enabled, the
previously generated image pull secrets are deleted automatically.

11.3. CREATING SERVICE ACCOUNTS

You can create a service account in a project and grant it permissions by binding it to a role.

Procedure

1. Optional: To view the service accounts in the current project:

Example output

2. To create a new service account in the current project:

To create a service account in a different project, specify -n <project_name>.

Example output

TIP

$ oc get sa

NAME SECRETS AGE
builder 1 2d
default 1 2d
deployer 1 2d

$ oc create sa <service_account_name> 1

serviceaccount "robot" created

OpenShift Container Platform 4.18 Authentication and authorization

108

https://access.redhat.com/articles/7058801

TIP

You can alternatively apply the following YAML to create the service account:

3. Optional: View the secrets for the service account:

Example output

apiVersion: v1
kind: ServiceAccount
metadata:
 name: <service_account_name>
 namespace: <current_project>

$ oc describe sa robot

Name: robot
Namespace: project1
Labels: <none>
Annotations: openshift.io/internal-registry-pull-secret-ref: robot-dockercfg-qzbhb
Image pull secrets: robot-dockercfg-qzbhb
Mountable secrets: robot-dockercfg-qzbhb
Tokens: <none>
Events: <none>

CHAPTER 11. USING SERVICE ACCOUNTS IN APPLICATIONS

109

CHAPTER 12. USING A SERVICE ACCOUNT AS AN OAUTH
CLIENT

12.1. SERVICE ACCOUNTS AS OAUTH CLIENTS

You can use a service account as a constrained form of OAuth client. Service accounts can request only
a subset of scopes that allow access to some basic user information and role-based power inside of the
service account’s own namespace:

user:info

user:check-access

role:<any_role>:<service_account_namespace>

role:<any_role>:<service_account_namespace>:!

When using a service account as an OAuth client:

client_id is system:serviceaccount:<service_account_namespace>:
<service_account_name>.

client_secret can be any of the API tokens for that service account. For example:

To get WWW-Authenticate challenges, set an serviceaccounts.openshift.io/oauth-want-
challenges annotation on the service account to true.

redirect_uri must match an annotation on the service account.

12.1.1. Redirect URIs for service accounts as OAuth clients

Annotation keys must have the prefix serviceaccounts.openshift.io/oauth-redirecturi. or
serviceaccounts.openshift.io/oauth-redirectreference. such as:

serviceaccounts.openshift.io/oauth-redirecturi.<name>

In its simplest form, the annotation can be used to directly specify valid redirect URIs. For example:

"serviceaccounts.openshift.io/oauth-redirecturi.first": "https://example.com"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com"

The first and second postfixes in the above example are used to separate the two valid redirect URIs.

In more complex configurations, static redirect URIs may not be enough. For example, perhaps you want
all Ingresses for a route to be considered valid. This is where dynamic redirect URIs via the
serviceaccounts.openshift.io/oauth-redirectreference. prefix come into play.

For example:

$ oc sa get-token <service_account_name>

OpenShift Container Platform 4.18 Authentication and authorization

110

1

2

3

"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Since the value for this annotation contains serialized JSON data, it is easier to see in an expanded
format:

Now you can see that an OAuthRedirectReference allows us to reference the route named jenkins.
Thus, all Ingresses for that route will now be considered valid. The full specification for an
OAuthRedirectReference is:

kind refers to the type of the object being referenced. Currently, only route is supported.

name refers to the name of the object. The object must be in the same namespace as the service
account.

group refers to the group of the object. Leave this blank, as the group for a route is the empty
string.

Both annotation prefixes can be combined to override the data provided by the reference object. For
example:

"serviceaccounts.openshift.io/oauth-redirecturi.first": "custompath"
"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

The first postfix is used to tie the annotations together. Assuming that the jenkins route had an Ingress
of https://example.com, now https://example.com/custompath is considered valid, but
https://example.com is not. The format for partially supplying override data is as follows:

{
 "kind": "OAuthRedirectReference",
 "apiVersion": "v1",
 "reference": {
 "kind": "Route",
 "name": "jenkins"
 }
}

{
 "kind": "OAuthRedirectReference",
 "apiVersion": "v1",
 "reference": {
 "kind": ..., 1
 "name": ..., 2
 "group": ... 3
 }
}

CHAPTER 12. USING A SERVICE ACCOUNT AS AN OAUTH CLIENT

111

Type Syntax

Scheme "https://"

Hostname "//website.com"

Port "//:8000"

Path "examplepath"

NOTE

Specifying a hostname override will replace the hostname data from the referenced
object, which is not likely to be desired behavior.

Any combination of the above syntax can be combined using the following format:

<scheme:>//<hostname><:port>/<path>

The same object can be referenced more than once for more flexibility:

"serviceaccounts.openshift.io/oauth-redirecturi.first": "custompath"
"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "//:8000"
"serviceaccounts.openshift.io/oauth-redirectreference.second": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Assuming that the route named jenkins has an Ingress of https://example.com, then both
https://example.com:8000 and https://example.com/custompath are considered valid.

Static and dynamic annotations can be used at the same time to achieve the desired behavior:

"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com"

OpenShift Container Platform 4.18 Authentication and authorization

112

CHAPTER 13. SCOPING TOKENS

13.1. ABOUT SCOPING TOKENS

You can create scoped tokens to delegate some of your permissions to another user or service account.
For example, a project administrator might want to delegate the power to create pods.

A scoped token is a token that identifies as a given user but is limited to certain actions by its scope.
Only a user with the cluster-admin role can create scoped tokens.

Scopes are evaluated by converting the set of scopes for a token into a set of PolicyRules. Then, the
request is matched against those rules. The request attributes must match at least one of the scope
rules to be passed to the "normal" authorizer for further authorization checks.

13.1.1. User scopes

User scopes are focused on getting information about a given user. They are intent-based, so the rules
are automatically created for you:

user:full - Allows full read/write access to the API with all of the user’s permissions.

user:info - Allows read-only access to information about the user, such as name and groups.

user:check-access - Allows access to self-localsubjectaccessreviews and self-
subjectaccessreviews. These are the variables where you pass an empty user and groups in
your request object.

user:list-projects - Allows read-only access to list the projects the user has access to.

13.1.2. Role scope

The role scope allows you to have the same level of access as a given role filtered by namespace.

role:<cluster-role name>:<namespace or * for all> - Limits the scope to the rules specified
by the cluster-role, but only in the specified namespace .

NOTE

Caveat: This prevents escalating access. Even if the role allows access to
resources like secrets, rolebindings, and roles, this scope will deny access to
those resources. This helps prevent unexpected escalations. Many people do not
think of a role like edit as being an escalating role, but with access to a secret it is.

role:<cluster-role name>:<namespace or * for all>:! - This is similar to the example above,
except that including the bang causes this scope to allow escalating access.

13.2. ADDING UNAUTHENTICATED GROUPS TO CLUSTER ROLES

As a cluster administrator, you can add unauthenticated users to the following cluster roles in OpenShift
Container Platform by creating a cluster role binding. Unauthenticated users do not have access to non-
public cluster roles. This should only be done in specific use cases when necessary.

You can add unauthenticated users to the following cluster roles:

CHAPTER 13. SCOPING TOKENS

113

system:scope-impersonation

system:webhook

system:oauth-token-deleter

self-access-reviewer

IMPORTANT

Always verify compliance with your organization’s security standards when modifying
unauthenticated access.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file named add-<cluster_role>-unauth.yaml and add the following content:

2. Apply the configuration by running the following command:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 name: <cluster_role>access-unauthenticated
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: <cluster_role>
subjects:
 - apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:unauthenticated

$ oc apply -f add-<cluster_role>.yaml

OpenShift Container Platform 4.18 Authentication and authorization

114

1

CHAPTER 14. USING BOUND SERVICE ACCOUNT TOKENS
You can use bound service account tokens, which improves the ability to integrate with cloud provider
identity access management (IAM) services, such as OpenShift Container Platform on AWS IAM or
Google Cloud IAM.

14.1. ABOUT BOUND SERVICE ACCOUNT TOKENS

You can use bound service account tokens to limit the scope of permissions for a given service account
token. These tokens are audience and time-bound. This facilitates the authentication of a service
account to an IAM role and the generation of temporary credentials mounted to a pod. You can request
bound service account tokens by using volume projection and the TokenRequest API.

14.2. CONFIGURING BOUND SERVICE ACCOUNT TOKENS USING
VOLUME PROJECTION

You can configure pods to request bound service account tokens by using volume projection.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have created a service account. This procedure assumes that the service account is named
build-robot.

Procedure

1. Optional: Set the service account issuer.
This step is typically not required if the bound tokens are used only within the cluster.

IMPORTANT

If you change the service account issuer to a custom one, the previous service
account issuer is still trusted for the next 24 hours.

You can force all holders to request a new bound token either by manually
restarting all pods in the cluster or by performing a rolling node restart. Before
performing either action, wait for a new revision of the Kubernetes API server
pods to roll out with your service account issuer changes.

a. Edit the cluster Authentication object:

b. Set the spec.serviceAccountIssuer field to the desired service account issuer value:

This value should be a URL from which the recipient of a bound token can source the
public keys necessary to verify the signature of the token. The default is
https://kubernetes.default.svc.

$ oc edit authentications cluster

spec:
 serviceAccountIssuer: https://test.default.svc 1

CHAPTER 14. USING BOUND SERVICE ACCOUNT TOKENS

115

1

c. Save the file to apply the changes.

d. Wait for a new revision of the Kubernetes API server pods to roll out. It can take several
minutes for all nodes to update to the new revision. Run the following command:

Review the NodeInstallerProgressing status condition for the Kubernetes API server to
verify that all nodes are at the latest revision. The output shows
AllNodesAtLatestRevision upon successful update:

In this example, the latest revision number is 12.

If the output shows a message similar to one of the following messages, the update is still in
progress. Wait a few minutes and try again.

3 nodes are at revision 11; 0 nodes have achieved new revision 12

2 nodes are at revision 11; 1 nodes are at revision 12

e. Optional: Force the holder to request a new bound token either by performing a rolling node
restart or by manually restarting all pods in the cluster.

Perform a rolling node restart:

WARNING

It is not recommended to perform a rolling node restart if you have
custom workloads running on your cluster, because it can cause a
service interruption. Instead, manually restart all pods in the cluster.

Restart nodes sequentially. Wait for the node to become fully available before
restarting the next node. See Rebooting a node gracefully for instructions on how to
drain, restart, and mark a node as schedulable again.

Manually restart all pods in the cluster:

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

AllNodesAtLatestRevision
3 nodes are at revision 12 1



OpenShift Container Platform 4.18 Authentication and authorization

116

1

2

WARNING

Be aware that running this command causes a service interruption,
because it deletes every running pod in every namespace. These
pods will automatically restart after they are deleted.

Run the following command:

2. Configure a pod to use a bound service account token by using volume projection.

a. Create a file called pod-projected-svc-token.yaml with the following contents:

Prevents containers from running as root to minimize compromise risks.

Sets the default seccomp profile, limiting to essential system calls, to reduce risks.



$ for I in $(oc get ns -o jsonpath='{range .items[*]} {.metadata.name}{"\n"} {end}'); \
 do oc delete pods --all -n $I; \
 sleep 1; \
 done

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 securityContext:
 runAsNonRoot: true 1
 seccompProfile:
 type: RuntimeDefault 2
 containers:
 - image: nginx
 name: nginx
 volumeMounts:
 - mountPath: /var/run/secrets/tokens
 name: vault-token
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 serviceAccountName: build-robot 3
 volumes:
 - name: vault-token
 projected:
 sources:
 - serviceAccountToken:
 path: vault-token 4
 expirationSeconds: 7200 5
 audience: vault 6

CHAPTER 14. USING BOUND SERVICE ACCOUNT TOKENS

117

3

4

5

6

A reference to an existing service account.

The path relative to the mount point of the file to project the token into.

Optionally set the expiration of the service account token, in seconds. The default
value is 3600 seconds (1 hour), and this value must be at least 600 seconds (10
minutes). The kubelet starts trying to rotate the token if the token is older than 80
percent of its time to live or if the token is older than 24 hours.

Optionally set the intended audience of the token. The recipient of a token should
verify that the recipient identity matches the audience claim of the token, and should
otherwise reject the token. The audience defaults to the identifier of the API server.

NOTE

In order to prevent unexpected failure, OpenShift Container Platform
overrides the expirationSeconds value to be one year from the initial token
generation with the --service-account-extend-token-expiration default of
true. You cannot change this setting.

b. Create the pod:

The kubelet requests and stores the token on behalf of the pod, makes the token available
to the pod at a configurable file path, and refreshes the token as it approaches expiration.

3. The application that uses the bound token must handle reloading the token when it rotates.
The kubelet rotates the token if it is older than 80 percent of its time to live, or if the token is
older than 24 hours.

14.3. CREATING BOUND SERVICE ACCOUNT TOKENS OUTSIDE THE
POD

Prerequisites

You have created a service account. This procedure assumes that the service account is named
build-robot.

Procedure

Create the bound service account token outside the pod by running the following command:

Example output

$ oc create -f pod-projected-svc-token.yaml

$ oc create token build-robot

eyJhbGciOiJSUzI1NiIsImtpZCI6IkY2M1N4MHRvc2xFNnFSQlA4eG9GYzVPdnN3NkhIV0tRW
mFrUDRNcWx4S0kifQ.eyJhdWQiOlsiaHR0cHM6Ly9pc3N1ZXIyLnRlc3QuY29tIiwiaHR0cHM6L
y9pc3N1ZXIxLnRlc3QuY29tIiwiaHR0cHM6Ly9rdWJlcm5ldGVzLmRlZmF1bHQuc3ZjIl0sImV4c
CI6MTY3OTU0MzgzMCwiaWF0IjoxNjc5NTQwMjMwLCJpc3MiOiJodHRwczovL2lzc3VlcjIudGV
zdC5jb20iLCJrdWJlcm5ldGVzLmlvIjp7Im5hbWVzcGFjZSI6ImRlZmF1bHQiLCJzZXJ2aWNlYW

OpenShift Container Platform 4.18 Authentication and authorization

118

Additional resources

Rebooting a node gracefully

Creating service accounts

Njb3VudCI6eyJuYW1lIjoidGVzdC1zYSIsInVpZCI6ImM3ZjA4MjkwLWIzOTUtNGM4NC04NjI4L
TMzMTM1NTVhNWY1OSJ9fSwibmJmIjoxNjc5NTQwMjMwLCJzdWIiOiJzeXN0ZW06c2Vydmlj
ZWFjY291bnQ6ZGVmYXVsdDp0ZXN0LXNhIn0.WyAOPvh1BFMUl3LNhBCrQeaB5wSynbnCf
ojWuNNPSilT4YvFnKibxwREwmzHpV4LO1xOFZHSi6bXBOmG_o-
m0XNDYL3FrGHd65mymiFyluztxa2lgHVxjw5reIV5ZLgNSol3Y8bJqQqmNg3rtQQWRML2kpJB
XdDHNww0E5XOypmffYkfkadli8lN5QQD-
MhsCbiAF8waCYs8bj6V6Y7uUKTcxee8sCjiRMVtXKjQtooERKm-
CH_p57wxCljIBeM89VdaR51NJGued4hVV5lxvVrYZFu89lBEAq4oyQN_d6N1vBWGXQMyoihn
t_fQjn-NfnlJWk-3NSZDIluDJAv7e-MTEk3geDrHVQKNEzDei2-Un64hSzb-
n1g1M0Vn0885wQBQAePC9UlZm8YZlMNk1tq6wIUKQTMv3HPfi5HtBRqVc2eVs0EfMX4-x-
PHhPCasJ6qLJWyj6DvyQ08dP4DW_TWZVGvKlmId0hzwpg59TTcLR0iCklSEJgAVEEd13Aa_
M0-
faD11L3MhUGxw0qxgOsPczdXUsolSISbefs7OKymzFSIkTAn9sDQ8PHMOsuyxsK8vzfrR-
E0z7MAeguZ2kaIY7cZqbN6WFy0caWgx46hrKem9vCKALefElRYbCg3hcBmowBcRTOqaFHL
NnHghhU1LaRpoFzH7OUarqX9SGQ

CHAPTER 14. USING BOUND SERVICE ACCOUNT TOKENS

119

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-nodes-rebooting-gracefully_nodes-nodes-rebooting

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS
In OpenShift Container Platform, you can use security context constraints (SCCs) to control permissions
for the pods in your cluster.

Default SCCs are created during installation and when you install some Operators or other components.
As a cluster administrator, you can also create your own SCCs by using the OpenShift CLI (oc).

IMPORTANT

Do not modify the default SCCs. Customizing the default SCCs can lead to issues when
some of the platform pods deploy or OpenShift Container Platform is upgraded.
Additionally, the default SCC values are reset to the defaults during some cluster
upgrades, which discards all customizations to those SCCs.

Instead of modifying the default SCCs, create and modify your own SCCs as needed. For
detailed steps, see Creating security context constraints .

15.1. ABOUT SECURITY CONTEXT CONSTRAINTS

Similar to the way that RBAC resources control user access, administrators can use security context
constraints (SCCs) to control permissions for pods. These permissions determine the actions that a pod
can perform and what resources it can access. You can use SCCs to define a set of conditions that a pod
must run with to be accepted into the system.

Security context constraints allow an administrator to control:

Whether a pod can run privileged containers with the allowPrivilegedContainer flag

Whether a pod is constrained with the allowPrivilegeEscalation flag

The capabilities that a container can request

The use of host directories as volumes

The SELinux context of the container

The container user ID

The use of host namespaces and networking

The allocation of an FSGroup that owns the pod volumes

The configuration of allowable supplemental groups

Whether a container requires write access to its root file system

The usage of volume types

The configuration of allowable seccomp profiles

IMPORTANT

OpenShift Container Platform 4.18 Authentication and authorization

120

IMPORTANT

Do not set the openshift.io/run-level label on any namespaces in OpenShift Container
Platform. This label is for use by internal OpenShift Container Platform components to
manage the startup of major API groups, such as the Kubernetes API server and
OpenShift API server. If the openshift.io/run-level label is set, no SCCs are applied to
pods in that namespace, causing any workloads running in that namespace to be highly
privileged.

15.1.1. Default security context constraints

The cluster contains several default security context constraints (SCCs) as described in the table below.
Additional SCCs might be installed when you install Operators or other components to OpenShift
Container Platform.

IMPORTANT

Do not modify the default SCCs. Customizing the default SCCs can lead to issues when
some of the platform pods deploy or OpenShift Container Platform is upgraded.
Additionally, the default SCC values are reset to the defaults during some cluster
upgrades, which discards all customizations to those SCCs.

Instead of modifying the default SCCs, create and modify your own SCCs as needed. For
detailed steps, see Creating security context constraints .

Table 15.1. Default security context constraints

Security context
constraint

Description

anyuid Provides all features of the restricted SCC, but allows users to run with any UID
and any GID.

hostaccess Allows access to all host namespaces but still requires pods to be run with a UID
and SELinux context that are allocated to the namespace.

WARNING

This SCC allows host access to namespaces, file systems,
and PIDs. It should only be used by trusted pods. Grant with
caution.



CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

121

hostmount-anyuid Provides all the features of the restricted SCC, but allows host mounts and
running as any UID and any GID on the system.

WARNING

This SCC allows host file system access as any UID,
including UID 0. Grant with caution.

hostnetwork Allows using host networking and host ports but still requires pods to be run with a
UID and SELinux context that are allocated to the namespace.

WARNING

If additional workloads are run on control plane hosts, use
caution when providing access to hostnetwork. A
workload that runs hostnetwork on a control plane host is
effectively root on the cluster and must be trusted
accordingly.

hostnetwork-v2 Like the hostnetwork SCC, but with the following differences:

ALL capabilities are dropped from containers.

The NET_BIND_SERVICE capability can be added explicitly.

seccompProfile is set to runtime/default by default.

allowPrivilegeEscalation must be unset or set to false in security
contexts.

Security context
constraint

Description





OpenShift Container Platform 4.18 Authentication and authorization

122

node-exporter Used for the Prometheus node exporter.

WARNING

This SCC allows host file system access as any UID,
including UID 0. Grant with caution.

nonroot Provides all features of the restricted SCC, but allows users to run with any non-
root UID. The user must specify the UID or it must be specified in the manifest of
the container runtime.

nonroot-v2 Like the nonroot SCC, but with the following differences:

ALL capabilities are dropped from containers.

The NET_BIND_SERVICE capability can be added explicitly.

seccompProfile is set to runtime/default by default.

allowPrivilegeEscalation must be unset or set to false in security
contexts.

Security context
constraint

Description



CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

123

privileged Allows access to all privileged and host features and the ability to run as any user,
any group, any FSGroup, and with any SELinux context.

WARNING

This is the most relaxed SCC and should be used only for
cluster administration. Grant with caution.

The privileged SCC allows:

Users to run privileged pods

Pods to mount host directories as volumes

Pods to run as any user

Pods to run with any MCS label

Pods to use the host’s IPC namespace

Pods to use the host’s PID namespace

Pods to use any FSGroup

Pods to use any supplemental group

Pods to use any seccomp profiles

Pods to request any capabilities

NOTE

Setting privileged: true in the pod specification does not
necessarily select the privileged SCC. The SCC that has
allowPrivilegedContainer: true and has the highest
prioritization will be chosen if the user has the permissions to use
it.

Security context
constraint

Description



OpenShift Container Platform 4.18 Authentication and authorization

124

restricted Denies access to all host features and requires pods to be run with a UID, and
SELinux context that are allocated to the namespace.

The restricted SCC:

Ensures that pods cannot run as privileged

Ensures that pods cannot mount host directory volumes

Requires that a pod is run as a user in a pre-allocated range of UIDs

Requires that a pod is run with a pre-allocated MCS label

Requires that a pod is run with a preallocated FSGroup

Allows pods to use any supplemental group

In clusters that were upgraded from OpenShift Container Platform 4.10 or earlier,
this SCC is available for use by any authenticated user. The restricted SCC is no
longer available to users of new OpenShift Container Platform 4.11 or later
installations, unless the access is explicitly granted.

restricted-v2 Like the restricted SCC, but with the following differences:

ALL capabilities are dropped from containers.

The NET_BIND_SERVICE capability can be added explicitly.

seccompProfile is set to runtime/default by default.

allowPrivilegeEscalation must be unset or set to false in security
contexts.

This is the most restrictive SCC provided by a new installation and will be used by
default for authenticated users.

NOTE

The restricted-v2 SCC is the most restrictive of the SCCs that
is included by default with the system. However, you can create a
custom SCC that is even more restrictive. For example, you can
create an SCC that restricts readOnlyRootFilesystem to
true.

Security context
constraint

Description

15.1.2. Security context constraints settings

Security context constraints (SCCs) are composed of settings and strategies that control the security
features a pod has access to. These settings fall into three categories:

Category Description

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

125

Controlled by a boolean Fields of this type default to the most restrictive value. For example,
AllowPrivilegedContainer is always set to false if unspecified.

Controlled by an
allowable set

Fields of this type are checked against the set to ensure their value is allowed.

Controlled by a strategy Items that have a strategy to generate a value provide:

A mechanism to generate the value, and

A mechanism to ensure that a specified value falls into the set of
allowable values.

Category Description

CRI-O has the following default list of capabilities that are allowed for each container of a pod:

CHOWN

DAC_OVERRIDE

FSETID

FOWNER

SETGID

SETUID

SETPCAP

NET_BIND_SERVICE

KILL

The containers use the capabilities from this default list, but pod manifest authors can alter the list by
requesting additional capabilities or removing some of the default behaviors. Use the
allowedCapabilities, defaultAddCapabilities, and requiredDropCapabilities parameters to control
such requests from the pods. With these parameters you can specify which capabilities can be
requested, which ones must be added to each container, and which ones must be forbidden, or dropped,
from each container.

NOTE

You can drop all capabilites from containers by setting the requiredDropCapabilities
parameter to ALL. This is what the restricted-v2 SCC does.

15.1.3. Security context constraints strategies

RunAsUser

MustRunAs - Requires a runAsUser to be configured. Uses the configured runAsUser as the

OpenShift Container Platform 4.18 Authentication and authorization

126

MustRunAs - Requires a runAsUser to be configured. Uses the configured runAsUser as the
default. Validates against the configured runAsUser.

Example MustRunAs snippet

MustRunAsRange - Requires minimum and maximum values to be defined if not using pre-
allocated values. Uses the minimum as the default. Validates against the entire allowable range.

Example MustRunAsRange snippet

MustRunAsNonRoot - Requires that the pod be submitted with a non-zero runAsUser or have
the USER directive defined in the image. No default provided.

Example MustRunAsNonRoot snippet

RunAsAny - No default provided. Allows any runAsUser to be specified.

Example RunAsAny snippet

SELinuxContext

MustRunAs - Requires seLinuxOptions to be configured if not using pre-allocated values.
Uses seLinuxOptions as the default. Validates against seLinuxOptions.

RunAsAny - No default provided. Allows any seLinuxOptions to be specified.

SupplementalGroups

MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses

...
runAsUser:
 type: MustRunAs
 uid: <id>
...

...
runAsUser:
 type: MustRunAsRange
 uidRangeMax: <maxvalue>
 uidRangeMin: <minvalue>
...

...
runAsUser:
 type: MustRunAsNonRoot
...

...
runAsUser:
 type: RunAsAny
...

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

127

MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses
the minimum value of the first range as the default. Validates against all ranges.

RunAsAny - No default provided. Allows any supplementalGroups to be specified.

FSGroup

MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses
the minimum value of the first range as the default. Validates against the first ID in the first
range.

RunAsAny - No default provided. Allows any fsGroup ID to be specified.

15.1.4. Controlling volumes

The usage of specific volume types can be controlled by setting the volumes field of the SCC.

The allowable values of this field correspond to the volume sources that are defined when creating a
volume:

awsElasticBlockStore

azureDisk

azureFile

cephFS

cinder

configMap

csi

downwardAPI

emptyDir

fc

flexVolume

flocker

gcePersistentDisk

ephemeral

gitRepo

glusterfs

hostPath

iscsi

OpenShift Container Platform 4.18 Authentication and authorization

128

https://kubernetes.io/docs/concepts/storage/volumes/#awselasticblockstore
https://kubernetes.io/docs/concepts/storage/volumes/#azuredisk
https://kubernetes.io/docs/concepts/storage/volumes/#azurefile
https://kubernetes.io/docs/concepts/storage/volumes/#cephfs
https://kubernetes.io/docs/concepts/storage/volumes/#cinder
https://kubernetes.io/docs/concepts/storage/volumes/#configmap
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/#csi-ephemeral-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#downwardapi
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/volumes/#fc
https://kubernetes.io/docs/concepts/storage/volumes/#flexvolume
https://kubernetes.io/docs/concepts/storage/volumes/#flocker
https://kubernetes.io/docs/concepts/storage/volumes/#gcepersistentdisk
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/#generic-ephemeral-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#gitrepo
https://kubernetes.io/docs/concepts/storage/volumes/#glusterfs
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#iscsi

nfs

persistentVolumeClaim

photonPersistentDisk

portworxVolume

projected

quobyte

rbd

scaleIO

secret

storageos

vsphereVolume

* (A special value to allow the use of all volume types.)

none (A special value to disallow the use of all volumes types. Exists only for backwards
compatibility.)

The recommended minimum set of allowed volumes for new SCCs are configMap, downwardAPI,
emptyDir, persistentVolumeClaim, secret, and projected.

NOTE

This list of allowable volume types is not exhaustive because new types are added with
each release of OpenShift Container Platform.

NOTE

For backwards compatibility, the usage of allowHostDirVolumePlugin overrides settings
in the volumes field. For example, if allowHostDirVolumePlugin is set to false but
allowed in the volumes field, then the hostPath value will be removed from volumes.

15.1.5. Admission control

Admission control with SCCs allows for control over the creation of resources based on the capabilities
granted to a user.

In terms of the SCCs, this means that an admission controller can inspect the user information made
available in the context to retrieve an appropriate set of SCCs. Doing so ensures the pod is authorized
to make requests about its operating environment or to generate a set of constraints to apply to the
pod.

The set of SCCs that admission uses to authorize a pod are determined by the user identity and groups
that the user belongs to. Additionally, if the pod specifies a service account, the set of allowable SCCs
includes any constraints accessible to the service account.

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

129

https://kubernetes.io/docs/concepts/storage/volumes/#nfs
https://kubernetes.io/docs/concepts/storage/volumes/#persistentvolumeclaim
https://kubernetes.io/docs/concepts/storage/volumes/#portworxvolume
https://kubernetes.io/docs/concepts/storage/volumes/#projected
https://kubernetes.io/docs/concepts/storage/volumes/#quobyte
https://kubernetes.io/docs/concepts/storage/volumes/#rbd
https://kubernetes.io/docs/concepts/storage/volumes/#scaleio
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/storage/volumes/#storageos
https://kubernetes.io/docs/concepts/storage/volumes/#vspherevolume

NOTE

When you create a workload resource, such as deployment, only the service account is
used to find the SCCs and admit the pods when they are created.

Admission uses the following approach to create the final security context for the pod:

1. Retrieve all SCCs available for use.

2. Generate field values for security context settings that were not specified on the request.

3. Validate the final settings against the available constraints.

If a matching set of constraints is found, then the pod is accepted. If the request cannot be matched to
an SCC, the pod is rejected.

A pod must validate every field against the SCC. The following are examples for just two of the fields
that must be validated:

NOTE

These examples are in the context of a strategy using the pre-allocated values.

An FSGroup SCC strategy of MustRunAs

If the pod defines a fsGroup ID, then that ID must equal the default fsGroup ID. Otherwise, the pod is
not validated by that SCC and the next SCC is evaluated.

If the SecurityContextConstraints.fsGroup field has value RunAsAny and the pod specification omits
the Pod.spec.securityContext.fsGroup, then this field is considered valid. Note that it is possible that
during validation, other SCC settings will reject other pod fields and thus cause the pod to fail.

A SupplementalGroups SCC strategy of MustRunAs

If the pod specification defines one or more supplementalGroups IDs, then the pod’s IDs must equal
one of the IDs in the namespace’s openshift.io/sa.scc.supplemental-groups annotation. Otherwise,
the pod is not validated by that SCC and the next SCC is evaluated.

If the SecurityContextConstraints.supplementalGroups field has value RunAsAny and the pod
specification omits the Pod.spec.securityContext.supplementalGroups, then this field is considered
valid. Note that it is possible that during validation, other SCC settings will reject other pod fields and
thus cause the pod to fail.

15.1.6. Security context constraints prioritization

Security context constraints (SCCs) have a priority field that affects the ordering when attempting to
validate a request by the admission controller.

A priority value of 0 is the lowest possible priority. A nil priority is considered a 0, or lowest, priority.
Higher priority SCCs are moved to the front of the set when sorting.

When the complete set of available SCCs is determined, the SCCs are ordered in the following manner:

1. The highest priority SCCs are ordered first.

OpenShift Container Platform 4.18 Authentication and authorization

130

2. If the priorities are equal, the SCCs are sorted from most restrictive to least restrictive.

3. If both the priorities and restrictions are equal, the SCCs are sorted by name.

By default, the anyuid SCC granted to cluster administrators is given priority in their SCC set. This
allows cluster administrators to run pods as any user by specifying RunAsUser in the pod’s
SecurityContext.

15.2. ABOUT PRE-ALLOCATED SECURITY CONTEXT CONSTRAINTS
VALUES

The admission controller is aware of certain conditions in the security context constraints (SCCs) that
trigger it to look up pre-allocated values from a namespace and populate the SCC before processing
the pod. Each SCC strategy is evaluated independently of other strategies, with the pre-allocated
values, where allowed, for each policy aggregated with pod specification values to make the final values
for the various IDs defined in the running pod.

The following SCCs cause the admission controller to look for pre-allocated values when no ranges are
defined in the pod specification:

1. A RunAsUser strategy of MustRunAsRange with no minimum or maximum set. Admission
looks for the openshift.io/sa.scc.uid-range annotation to populate range fields.

2. An SELinuxContext strategy of MustRunAs with no level set. Admission looks for the
openshift.io/sa.scc.mcs annotation to populate the level.

3. A FSGroup strategy of MustRunAs. Admission looks for the
openshift.io/sa.scc.supplemental-groups annotation.

4. A SupplementalGroups strategy of MustRunAs. Admission looks for the
openshift.io/sa.scc.supplemental-groups annotation.

During the generation phase, the security context provider uses default values for any parameter values
that are not specifically set in the pod. Default values are based on the selected strategy:

1. RunAsAny and MustRunAsNonRoot strategies do not provide default values. If the pod needs
a parameter value, such as a group ID, you must define the value in the pod specification.

2. MustRunAs (single value) strategies provide a default value that is always used. For example,
for group IDs, even if the pod specification defines its own ID value, the namespace’s default
parameter value also appears in the pod’s groups.

3. MustRunAsRange and MustRunAs (range-based) strategies provide the minimum value of
the range. As with a single value MustRunAs strategy, the namespace’s default parameter value
appears in the running pod. If a range-based strategy is configurable with multiple ranges, it
provides the minimum value of the first configured range.

NOTE

FSGroup and SupplementalGroups strategies fall back to the openshift.io/sa.scc.uid-
range annotation if the openshift.io/sa.scc.supplemental-groups annotation does not
exist on the namespace. If neither exists, the SCC is not created.

NOTE

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

131

NOTE

By default, the annotation-based FSGroup strategy configures itself with a single range
based on the minimum value for the annotation. For example, if your annotation reads
1/3, the FSGroup strategy configures itself with a minimum and maximum value of 1. If
you want to allow more groups to be accepted for the FSGroup field, you can configure a
custom SCC that does not use the annotation.

NOTE

The openshift.io/sa.scc.supplemental-groups annotation accepts a comma-delimited
list of blocks in the format of <start>/<length or <start>-<end>. The
openshift.io/sa.scc.uid-range annotation accepts only a single block.

15.3. EXAMPLE SECURITY CONTEXT CONSTRAINTS

The following examples show the security context constraints (SCC) format and annotations:

Annotated privileged SCC

allowHostDirVolumePlugin: true
allowHostIPC: true
allowHostNetwork: true
allowHostPID: true
allowHostPorts: true
allowPrivilegedContainer: true
allowedCapabilities: 1
- '*'
apiVersion: security.openshift.io/v1
defaultAddCapabilities: [] 2
fsGroup: 3
 type: RunAsAny
groups: 4
- system:cluster-admins
- system:nodes
kind: SecurityContextConstraints
metadata:
 annotations:
 kubernetes.io/description: 'privileged allows access to all privileged and host
 features and the ability to run as any user, any group, any fsGroup, and with
 any SELinux context. WARNING: this is the most relaxed SCC and should be used
 only for cluster administration. Grant with caution.'
 creationTimestamp: null
 name: privileged
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities: null 5
runAsUser: 6
 type: RunAsAny
seLinuxContext: 7
 type: RunAsAny
seccompProfiles:
- '*'

OpenShift Container Platform 4.18 Authentication and authorization

132

1

2

3

4

5

6

7

8

9

10

1

A list of capabilities that a pod can request. An empty list means that none of capabilities can be
requested while the special symbol * allows any capabilities.

A list of additional capabilities that are added to any pod.

The FSGroup strategy, which dictates the allowable values for the security context.

The groups that can access this SCC.

A list of capabilities to drop from a pod. Or, specify ALL to drop all capabilities.

The runAsUser strategy type, which dictates the allowable values for the security context.

The seLinuxContext strategy type, which dictates the allowable values for the security context.

The supplementalGroups strategy, which dictates the allowable supplemental groups for the
security context.

The users who can access this SCC.

The allowable volume types for the security context. In the example, * allows the use of all volume
types.

The users and groups fields on the SCC control which users can access the SCC. By default, cluster
administrators, nodes, and the build controller are granted access to the privileged SCC. All
authenticated users are granted access to the restricted-v2 SCC.

Without explicit runAsUser setting

When a container or pod does not request a user ID under which it should be run, the effective UID
depends on the SCC that emits this pod. Because the restricted-v2 SCC is granted to all
authenticated users by default, it will be available to all users and service accounts and used in most
cases. The restricted-v2 SCC uses MustRunAsRange strategy for constraining and defaulting the
possible values of the securityContext.runAsUser field. The admission plugin will look for the
openshift.io/sa.scc.uid-range annotation on the current project to populate range fields, as it

supplementalGroups: 8
 type: RunAsAny
users: 9
- system:serviceaccount:default:registry
- system:serviceaccount:default:router
- system:serviceaccount:openshift-infra:build-controller
volumes: 10
- '*'

apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo
spec:
 securityContext: 1
 containers:
 - name: sec-ctx-demo
 image: gcr.io/google-samples/node-hello:1.0

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

133

1

does not provide this range. In the end, a container will have runAsUser equal to the first value of
the range that is hard to predict because every project has different ranges.

With explicit runAsUser setting

A container or pod that requests a specific user ID will be accepted by OpenShift Container
Platform only when a service account or a user is granted access to a SCC that allows such a user
ID. The SCC can allow arbitrary IDs, an ID that falls into a range, or the exact user ID specific to the
request.

This configuration is valid for SELinux, fsGroup, and Supplemental Groups.

15.4. CREATING SECURITY CONTEXT CONSTRAINTS

If the default security context constraints (SCCs) do not satisfy your application workload requirements,
you can create a custom SCC by using the OpenShift CLI (oc).

IMPORTANT

Creating and modifying your own SCCs are advanced operations that might cause
instability to your cluster. If you have questions about using your own SCCs, contact Red
Hat Support. For information about contacting Red Hat support, see Getting support.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a user with the cluster-admin role.

Procedure

1. Define the SCC in a YAML file named scc-admin.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo
spec:
 securityContext:
 runAsUser: 1000 1
 containers:
 - name: sec-ctx-demo
 image: gcr.io/google-samples/node-hello:1.0

kind: SecurityContextConstraints
apiVersion: security.openshift.io/v1
metadata:
 name: scc-admin
allowPrivilegedContainer: true
runAsUser:
 type: RunAsAny
seLinuxContext:

OpenShift Container Platform 4.18 Authentication and authorization

134

Optionally, you can drop specific capabilities for an SCC by setting the
requiredDropCapabilities field with the desired values. Any specified capabilities are dropped
from the container. To drop all capabilities, specify ALL. For example, to create an SCC that
drops the KILL, MKNOD, and SYS_CHROOT capabilities, add the following to the SCC object:

NOTE

You cannot list a capability in both allowedCapabilities and
requiredDropCapabilities.

CRI-O supports the same list of capability values that are found in the Docker documentation.

2. Create the SCC by passing in the file:

Example output

Verification

Verify that the SCC was created:

Example output

15.5. CONFIGURING A WORKLOAD TO REQUIRE A SPECIFIC SCC

 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
users:
- my-admin-user
groups:
- my-admin-group

requiredDropCapabilities:
- KILL
- MKNOD
- SYS_CHROOT

$ oc create -f scc-admin.yaml

securitycontextconstraints "scc-admin" created

$ oc get scc scc-admin

NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
PRIORITY READONLYROOTFS VOLUMES
scc-admin true [] RunAsAny RunAsAny RunAsAny RunAsAny <none> false
[awsElasticBlockStore azureDisk azureFile cephFS cinder configMap downwardAPI
emptyDir fc flexVolume flocker gcePersistentDisk gitRepo glusterfs iscsi nfs
persistentVolumeClaim photonPersistentDisk quobyte rbd secret vsphere]

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

135

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

1

You can configure a workload to require a certain security context constraint (SCC). This is useful in
scenarios where you want to pin a specific SCC to the workload or if you want to prevent your required
SCC from being preempted by another SCC in the cluster.

To require a specific SCC, set the openshift.io/required-scc annotation on your workload. You can set
this annotation on any resource that can set a pod manifest template, such as a deployment or daemon
set.

The SCC must exist in the cluster and must be applicable to the workload, otherwise pod admission fails.
An SCC is considered applicable to the workload if the user creating the pod or the pod’s service
account has use permissions for the SCC in the pod’s namespace.

WARNING

Do not change the openshift.io/required-scc annotation in the live pod’s manifest,
because doing so causes the pod admission to fail. To change the required SCC,
update the annotation in the underlying pod template, which causes the pod to be
deleted and re-created.

Prerequisites

The SCC must exist in the cluster.

Procedure

1. Create a YAML file for the deployment and specify a required SCC by setting the
openshift.io/required-scc annotation:

Example deployment.yaml

Specify the name of the SCC to require.

2. Create the resource by running the following command:

Verification



apiVersion: config.openshift.io/v1
kind: Deployment
apiVersion: apps/v1
spec:
...
 template:
 metadata:
 annotations:
 openshift.io/required-scc: "my-scc" 1
...

$ oc create -f deployment.yaml

OpenShift Container Platform 4.18 Authentication and authorization

136

1

Verify that the deployment used the specified SCC:

a. View the value of the pod’s openshift.io/scc annotation by running the following command:

Replace <pod_name> with the name of your deployment pod.

b. Examine the output and confirm that the displayed SCC matches the SCC that you defined
in the deployment:

Example output

15.6. ROLE-BASED ACCESS TO SECURITY CONTEXT CONSTRAINTS

You can specify SCCs as resources that are handled by RBAC. This allows you to scope access to your
SCCs to a certain project or to the entire cluster. Assigning users, groups, or service accounts directly to
an SCC retains cluster-wide scope.

IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved
for running core cluster components.

The following default projects are considered highly privileged: default, kube-public,
kube-system, openshift, openshift-infra, openshift-node, and other system-created
projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies
on admission plugins, such as pod security admission, security context constraints, cluster
resource quotas, and image reference resolution, does not work in highly privileged
projects.

To include access to SCCs for your role, specify the scc resource when creating a role.

This results in the following role definition:

$ oc get pod <pod_name> -o jsonpath='{.metadata.annotations.openshift\.io\/scc}{"\n"}'
1

my-scc

$ oc create role <role-name> --verb=use --resource=scc --resource-name=<scc-name> -n
<namespace>

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
...
 name: role-name 1
 namespace: namespace 2
...
rules:
- apiGroups:
 - security.openshift.io 3
 resourceNames:

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

137

1

2

3

4

5

6

The role’s name.

Namespace of the defined role. Defaults to default if not specified.

The API group that includes the SecurityContextConstraints resource. Automatically defined
when scc is specified as a resource.

An example name for an SCC you want to have access.

Name of the resource group that allows users to specify SCC names in the resourceNames field.

A list of verbs to apply to the role.

A local or cluster role with such a rule allows the subjects that are bound to it with a role binding or a
cluster role binding to use the user-defined SCC called scc-name.

NOTE

Because RBAC is designed to prevent escalation, even project administrators are unable
to grant access to an SCC. By default, they are not allowed to use the verb use on SCC
resources, including the restricted-v2 SCC.

15.7. REFERENCE OF SECURITY CONTEXT CONSTRAINTS
COMMANDS

You can manage security context constraints (SCCs) in your instance as normal API objects by using the
OpenShift CLI (oc).

NOTE

You must have cluster-admin privileges to manage SCCs.

15.7.1. Listing security context constraints

To get a current list of SCCs:

Example output

 - scc-name 4
 resources:
 - securitycontextconstraints 5
 verbs: 6
 - use

$ oc get scc

NAME PRIV CAPS SELINUX RUNASUSER FSGROUP
SUPGROUP PRIORITY READONLYROOTFS VOLUMES
anyuid false <no value> MustRunAs RunAsAny RunAsAny
RunAsAny 10 false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]
hostaccess false <no value> MustRunAs MustRunAsRange MustRunAs

OpenShift Container Platform 4.18 Authentication and authorization

138

15.7.2. Examining security context constraints

You can view information about a particular SCC, including which users, service accounts, and groups
the SCC is applied to.

For example, to examine the restricted SCC:

Example output

RunAsAny <no value> false
["configMap","downwardAPI","emptyDir","hostPath","persistentVolumeClaim","projected","secret"]
hostmount-anyuid false <no value> MustRunAs RunAsAny RunAsAny
RunAsAny <no value> false
["configMap","downwardAPI","emptyDir","hostPath","nfs","persistentVolumeClaim","projected","secret"]

hostnetwork false <no value> MustRunAs MustRunAsRange MustRunAs
MustRunAs <no value> false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]
hostnetwork-v2 false ["NET_BIND_SERVICE"] MustRunAs MustRunAsRange
MustRunAs MustRunAs <no value> false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]
node-exporter true <no value> RunAsAny RunAsAny RunAsAny
RunAsAny <no value> false ["*"]
nonroot false <no value> MustRunAs MustRunAsNonRoot RunAsAny
RunAsAny <no value> false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]
nonroot-v2 false ["NET_BIND_SERVICE"] MustRunAs MustRunAsNonRoot
RunAsAny RunAsAny <no value> false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]
privileged true ["*"] RunAsAny RunAsAny RunAsAny RunAsAny
<no value> false ["*"]
restricted false <no value> MustRunAs MustRunAsRange MustRunAs
RunAsAny <no value> false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]
restricted-v2 false ["NET_BIND_SERVICE"] MustRunAs MustRunAsRange
MustRunAs RunAsAny <no value> false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]

$ oc describe scc restricted

Name: restricted
Priority: <none>
Access:
 Users: <none> 1
 Groups: <none> 2
Settings:
 Allow Privileged: false
 Allow Privilege Escalation: true
 Default Add Capabilities: <none>
 Required Drop Capabilities: KILL,MKNOD,SETUID,SETGID
 Allowed Capabilities: <none>
 Allowed Seccomp Profiles: <none>
 Allowed Volume Types:
configMap,downwardAPI,emptyDir,persistentVolumeClaim,projected,secret

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

139

1

2

Lists which users and service accounts the SCC is applied to.

Lists which groups the SCC is applied to.

NOTE

To preserve customized SCCs during upgrades, do not edit settings on the default SCCs.

15.7.3. Updating security context constraints

If your custom SCC no longer satisfies your application workloads requirements, you can update your
SCC by using the OpenShift CLI (oc).

To update an existing SCC:

IMPORTANT

To preserve customized SCCs during upgrades, do not edit settings on the default SCCs.

15.7.4. Deleting security context constraints

If you no longer require your custom SCC, you can delete the SCC by using the OpenShift CLI (oc).

To delete an SCC:

IMPORTANT

 Allowed Flexvolumes: <all>
 Allowed Unsafe Sysctls: <none>
 Forbidden Sysctls: <none>
 Allow Host Network: false
 Allow Host Ports: false
 Allow Host PID: false
 Allow Host IPC: false
 Read Only Root Filesystem: false
 Run As User Strategy: MustRunAsRange
 UID: <none>
 UID Range Min: <none>
 UID Range Max: <none>
 SELinux Context Strategy: MustRunAs
 User: <none>
 Role: <none>
 Type: <none>
 Level: <none>
 FSGroup Strategy: MustRunAs
 Ranges: <none>
 Supplemental Groups Strategy: RunAsAny
 Ranges: <none>

$ oc edit scc <scc_name>

$ oc delete scc <scc_name>

OpenShift Container Platform 4.18 Authentication and authorization

140

IMPORTANT

Do not delete default SCCs. If you delete a default SCC, it is regenerated by the Cluster
Version Operator.

15.8. ADDITIONAL RESOURCES

Getting support

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

141

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/support/#getting-support

CHAPTER 16. UNDERSTANDING AND MANAGING POD
SECURITY ADMISSION

Pod security admission is an implementation of the Kubernetes pod security standards . Use pod security
admission to restrict the behavior of pods.

16.1. ABOUT POD SECURITY ADMISSION

OpenShift Container Platform includes Kubernetes pod security admission . Pods that do not comply
with the pod security admission defined globally or at the namespace level are not admitted to the
cluster and cannot run.

Globally, the privileged profile is enforced, and the restricted profile is used for warnings and audits.

You can also configure the pod security admission settings at the namespace level.

IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved
for running core cluster components.

The following default projects are considered highly privileged: default, kube-public,
kube-system, openshift, openshift-infra, openshift-node, and other system-created
projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies
on admission plugins, such as pod security admission, security context constraints, cluster
resource quotas, and image reference resolution, does not work in highly privileged
projects.

16.1.1. Pod security admission modes

You can configure the following pod security admission modes for a namespace:

Table 16.1. Pod security admission modes

Mode Label Description

enforce pod-
security.kubernetes.io/enfor
ce

Rejects a pod from admission if it does not comply
with the set profile

audit pod-
security.kubernetes.io/audit

Logs audit events if a pod does not comply with the
set profile

warn pod-
security.kubernetes.io/warn

Displays warnings if a pod does not comply with the
set profile

16.1.2. Pod security admission profiles

You can set each of the pod security admission modes to one of the following profiles:

Table 16.2. Pod security admission profiles

OpenShift Container Platform 4.18 Authentication and authorization

142

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://kubernetes.io/docs/concepts/security/pod-security-admission

Profile Description

privileged Least restrictive policy; allows for known privilege escalation

baseline Minimally restrictive policy; prevents known privilege escalations

restricted Most restrictive policy; follows current pod hardening best practices

16.1.3. Privileged namespaces

The following system namespaces are always set to the privileged pod security admission profile:

default

kube-public

kube-system

You cannot change the pod security profile for these privileged namespaces.

Example privileged namespace configuration

16.1.4. Pod security admission and security context constraints

Pod security admission standards and security context constraints are reconciled and enforced by two
independent controllers. The two controllers work independently using the following processes to
enforce security policies:

1. The security context constraint controller may mutate some security context fields per the pod’s
assigned SCC. For example, if the seccomp profile is empty or not set and if the pod’s assigned
SCC enforces seccompProfiles field to be runtime/default, the controller sets the default
type to RuntimeDefault.

2. The security context constraint controller validates the pod’s security context against the
matching SCC.

3. The pod security admission controller validates the pod’s security context against the pod
security standard assigned to the namespace.

16.2. ABOUT POD SECURITY ADMISSION SYNCHRONIZATION

apiVersion: v1
kind: Namespace
metadata:
 labels:
 openshift.io/cluster-monitoring: "true"
 pod-security.kubernetes.io/enforce: privileged
 pod-security.kubernetes.io/audit: privileged
 pod-security.kubernetes.io/warn: privileged
 name: "<mig_namespace>"
...

CHAPTER 16. UNDERSTANDING AND MANAGING POD SECURITY ADMISSION

143

In addition to the global pod security admission control configuration, a controller applies pod security
admission control warn and audit labels to namespaces according to the SCC permissions of the
service accounts that are in a given namespace.

The controller examines ServiceAccount object permissions to use security context constraints in each
namespace. Security context constraints (SCCs) are mapped to pod security profiles based on their
field values; the controller uses these translated profiles. Pod security admission warn and audit labels
are set to the most privileged pod security profile in the namespace to prevent displaying warnings and
logging audit events when pods are created.

Namespace labeling is based on consideration of namespace-local service account privileges.

Applying pods directly might use the SCC privileges of the user who runs the pod. However, user
privileges are not considered during automatic labeling.

16.2.1. Pod security admission synchronization namespace exclusions

Pod security admission synchronization is permanently disabled on most system-created namespaces.
Synchronization is also initially disabled on user-created openshift-* prefixed namespaces, but you can
enable synchronization on them later.

IMPORTANT

If a pod security admission label (pod-security.kubernetes.io/<mode>) is manually
modified from the automatically labeled value on a label-synchronized namespace,
synchronization is disabled for that label.

If necessary, you can enable synchronization again by using one of the following methods:

By removing the modified pod security admission label from the namespace

By setting the security.openshift.io/scc.podSecurityLabelSync label to true
If you force synchronization by adding this label, then any modified pod security
admission labels will be overwritten.

16.2.1.1. Permanently disabled namespaces

Namespaces that are defined as part of the cluster payload have pod security admission synchronization
disabled permanently. The following namespaces are permanently disabled:

default

kube-node-lease

kube-system

kube-public

openshift

All system-created namespaces that are prefixed with openshift- , except for openshift-
operators

16.2.1.2. Initially disabled namespaces

By default, all namespaces that have an openshift- prefix have pod security admission synchronization

OpenShift Container Platform 4.18 Authentication and authorization

144

By default, all namespaces that have an openshift- prefix have pod security admission synchronization
disabled initially. You can enable synchronization for user-created openshift-* namespaces and for the
openshift-operators namespace.

NOTE

You cannot enable synchronization for any system-created openshift-* namespaces,
except for openshift-operators.

If an Operator is installed in a user-created openshift-* namespace, synchronization is enabled
automatically after a cluster service version (CSV) is created in the namespace. The synchronized label
is derived from the permissions of the service accounts in the namespace.

16.3. CONTROLLING POD SECURITY ADMISSION SYNCHRONIZATION

You can enable or disable automatic pod security admission synchronization for most namespaces.

IMPORTANT

You cannot enable pod security admission synchronization on some system-created
namespaces. For more information, see Pod security admission synchronization
namespace exclusions.

Procedure

For each namespace that you want to configure, set a value for the
security.openshift.io/scc.podSecurityLabelSync label:

To disable pod security admission label synchronization in a namespace, set the value of the
security.openshift.io/scc.podSecurityLabelSync label to false.
Run the following command:

To enable pod security admission label synchronization in a namespace, set the value of the
security.openshift.io/scc.podSecurityLabelSync label to true.
Run the following command:

NOTE

Use the --overwrite flag to overwrite the value if this label is already set on the
namespace.

Additional resources

Pod security admission synchronization namespace exclusions

$ oc label namespace <namespace>
security.openshift.io/scc.podSecurityLabelSync=false

$ oc label namespace <namespace>
security.openshift.io/scc.podSecurityLabelSync=true

CHAPTER 16. UNDERSTANDING AND MANAGING POD SECURITY ADMISSION

145

1

2

16.4. CONFIGURING POD SECURITY ADMISSION FOR A NAMESPACE

You can configure the pod security admission settings at the namespace level. For each of the pod
security admission modes on the namespace, you can set which pod security admission profile to use.

Procedure

For each pod security admission mode that you want to set on a namespace, run the following
command:

Set <namespace> to the namespace to configure.

Set <mode> to enforce, warn, or audit. Set <profile> to restricted, baseline, or
privileged.

16.5. ABOUT POD SECURITY ADMISSION ALERTS

A PodSecurityViolation alert is triggered when the Kubernetes API server reports that there is a pod
denial on the audit level of the pod security admission controller. This alert persists for one day.

View the Kubernetes API server audit logs to investigate alerts that were triggered. As an example, a
workload is likely to fail admission if global enforcement is set to the restricted pod security level.

For assistance in identifying pod security admission violation audit events, see Audit annotations in the
Kubernetes documentation.

16.5.1. Identifying pod security violations

The PodSecurityViolation alert does not provide details on which workloads are causing pod security
violations. You can identify the affected workloads by reviewing the Kubernetes API server audit logs.
This procedure uses the must-gather tool to gather the audit logs and then searches for the pod-
security.kubernetes.io/audit-violations annotation.

Prerequisites

You have installed jq.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. To gather the audit logs, enter the following command:

2. To output the affected workload details, enter the following command:

$ oc label namespace <namespace> \ 1
 pod-security.kubernetes.io/<mode>=<profile> \ 2
 --overwrite

$ oc adm must-gather -- /usr/bin/gather_audit_logs

$ zgrep -h pod-security.kubernetes.io/audit-violations must-gather.local.

OpenShift Container Platform 4.18 Authentication and authorization

146

https://kubernetes.io/docs/reference/labels-annotations-taints/audit-annotations/#pod-security-kubernetes-io-audit-violations

Replace <archive_id> and <image_digest_id> with the actual path names.

Example output

16.6. ADDITIONAL RESOURCES

Viewing audit logs

Managing security context constraints

<archive_id>/<image_digest_id>/audit_logs/kube-apiserver/*log.gz \
 | jq -r 'select((.annotations["pod-security.kubernetes.io/audit-violations"] != null) and
(.objectRef.resource=="pods")) | .objectRef.namespace + " " + .objectRef.name' \
 | sort | uniq -c

1 test-namespace my-pod

CHAPTER 16. UNDERSTANDING AND MANAGING POD SECURITY ADMISSION

147

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#nodes-nodes-audit-log-basic-viewing_audit-log-view

CHAPTER 17. IMPERSONATING THE SYSTEM:ADMIN USER

17.1. API IMPERSONATION

You can configure a request to the OpenShift Container Platform API to act as though it originated
from another user. For more information, see User impersonation in the Kubernetes documentation.

17.2. IMPERSONATING THE SYSTEM:ADMIN USER

You can grant a user permission to impersonate system:admin, which grants them cluster administrator
permissions.

Procedure

To grant a user permission to impersonate system:admin, run the following command:

TIP

You can alternatively apply the following YAML to grant permission to impersonate
system:admin:

17.3. IMPERSONATING THE SYSTEM:ADMIN GROUP

When a system:admin user is granted cluster administration permissions through a group, you must
include the --as=<user> --as-group=<group1> --as-group=<group2> parameters in the command to
impersonate the associated groups.

Procedure

To grant a user permission to impersonate a system:admin by impersonating the associated
cluster administration groups, run the following command:

$ oc create clusterrolebinding <any_valid_name> --clusterrole=sudoer --user=<username>

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: <any_valid_name>
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: sudoer
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: <username>

$ oc create clusterrolebinding <any_valid_name> --clusterrole=sudoer --as=<user> \
--as-group=<group1> --as-group=<group2>

OpenShift Container Platform 4.18 Authentication and authorization

148

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation

17.4. ADDING UNAUTHENTICATED GROUPS TO CLUSTER ROLES

As a cluster administrator, you can add unauthenticated users to the following cluster roles in OpenShift
Container Platform by creating a cluster role binding. Unauthenticated users do not have access to non-
public cluster roles. This should only be done in specific use cases when necessary.

You can add unauthenticated users to the following cluster roles:

system:scope-impersonation

system:webhook

system:oauth-token-deleter

self-access-reviewer

IMPORTANT

Always verify compliance with your organization’s security standards when modifying
unauthenticated access.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file named add-<cluster_role>-unauth.yaml and add the following content:

2. Apply the configuration by running the following command:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 name: <cluster_role>access-unauthenticated
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: <cluster_role>
subjects:
 - apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:unauthenticated

$ oc apply -f add-<cluster_role>.yaml

CHAPTER 17. IMPERSONATING THE SYSTEM:ADMIN USER

149

1

2

3

CHAPTER 18. SYNCING LDAP GROUPS
As an administrator, you can use groups to manage users, change their permissions, and enhance
collaboration. Your organization may have already created user groups and stored them in an LDAP
server. OpenShift Container Platform can sync those LDAP records with internal OpenShift Container
Platform records, enabling you to manage your groups in one place. OpenShift Container Platform
currently supports group sync with LDAP servers using three common schemas for defining group
membership: RFC 2307, Active Directory, and augmented Active Directory.

For more information on configuring LDAP, see Configuring an LDAP identity provider .

NOTE

You must have cluster-admin privileges to sync groups.

18.1. ABOUT CONFIGURING LDAP SYNC

Before you can run LDAP sync, you need a sync configuration file. This file contains the following LDAP
client configuration details:

Configuration for connecting to your LDAP server.

Sync configuration options that are dependent on the schema used in your LDAP server.

An administrator-defined list of name mappings that maps OpenShift Container Platform group
names to groups in your LDAP server.

The format of the configuration file depends upon the schema you are using: RFC 2307, Active
Directory, or augmented Active Directory.

LDAP client configuration

The LDAP client configuration section of the configuration defines the connections to your LDAP
server.

The LDAP client configuration section of the configuration defines the connections to your LDAP
server.

LDAP client configuration

The connection protocol, IP address of the LDAP server hosting your database, and the port to
connect to, formatted as scheme://host:port.

Optional distinguished name (DN) to use as the Bind DN. OpenShift Container Platform uses this if
elevated privilege is required to retrieve entries for the sync operation.

Optional password to use to bind. OpenShift Container Platform uses this if elevated privilege is
necessary to retrieve entries for the sync operation. This value may also be provided in an
environment variable, external file, or encrypted file.

url: ldap://10.0.0.0:389 1
bindDN: cn=admin,dc=example,dc=com 2
bindPassword: <password> 3
insecure: false 4
ca: my-ldap-ca-bundle.crt 5

OpenShift Container Platform 4.18 Authentication and authorization

150

4

5

1

2

3

4

5

6

When false, secure LDAP (ldaps://) URLs connect using TLS, and insecure LDAP (ldap://) URLs
are upgraded to TLS. When true, no TLS connection is made to the server and you cannot use

The certificate bundle to use for validating server certificates for the configured URL. If empty,
OpenShift Container Platform uses system-trusted roots. This only applies if insecure is set to
false.

LDAP query definition

Sync configurations consist of LDAP query definitions for the entries that are required for
synchronization. The specific definition of an LDAP query depends on the schema used to store
membership information in the LDAP server.

LDAP query definition

The distinguished name (DN) of the branch of the directory where all searches will start from. It is
required that you specify the top of your directory tree, but you can also specify a subtree in the
directory.

The scope of the search. Valid values are base, one, or sub. If this is left undefined, then a scope of
sub is assumed. Descriptions of the scope options can be found in the table below.

The behavior of the search with respect to aliases in the LDAP tree. Valid values are never, search,
base, or always. If this is left undefined, then the default is to always dereference aliases.
Descriptions of the dereferencing behaviors can be found in the table below.

The time limit allowed for the search by the client, in seconds. A value of 0 imposes no client-side
limit.

A valid LDAP search filter. If this is left undefined, then the default is (objectClass=*).

The optional maximum size of response pages from the server, measured in LDAP entries. If set to
0, no size restrictions will be made on pages of responses. Setting paging sizes is necessary when
queries return more entries than the client or server allow by default.

Table 18.1. LDAP search scope options

LDAP search
scope

Description

base Only consider the object specified by the base DN given for the query.

one Consider all of the objects on the same level in the tree as the base DN for the query.

baseDN: ou=users,dc=example,dc=com 1
scope: sub 2
derefAliases: never 3
timeout: 0 4
filter: (objectClass=person) 5
pageSize: 0 6

CHAPTER 18. SYNCING LDAP GROUPS

151

sub Consider the entire subtree rooted at the base DN given for the query.

LDAP search
scope

Description

Table 18.2. LDAP dereferencing behaviors

Dereferencing
behavior

Description

never Never dereference any aliases found in the LDAP tree.

search Only dereference aliases found while searching.

base Only dereference aliases while finding the base object.

always Always dereference all aliases found in the LDAP tree.

User-defined name mapping

A user-defined name mapping explicitly maps the names of OpenShift Container Platform groups to
unique identifiers that find groups on your LDAP server. The mapping uses normal YAML syntax. A
user-defined mapping can contain an entry for every group in your LDAP server or only a subset of
those groups. If there are groups on the LDAP server that do not have a user-defined name
mapping, the default behavior during sync is to use the attribute specified as the OpenShift
Container Platform group’s name.

User-defined name mapping

18.1.1. About the RFC 2307 configuration file

The RFC 2307 schema requires you to provide an LDAP query definition for both user and group
entries, as well as the attributes with which to represent them in the internal OpenShift Container
Platform records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships:

NOTE

If using user-defined name mappings, your configuration file will differ.

LDAP sync configuration that uses RFC 2307 schema: rfc2307_config.yaml

groupUIDNameMapping:
 "cn=group1,ou=groups,dc=example,dc=com": firstgroup
 "cn=group2,ou=groups,dc=example,dc=com": secondgroup
 "cn=group3,ou=groups,dc=example,dc=com": thirdgroup

OpenShift Container Platform 4.18 Authentication and authorization

152

1

2

3

4

5

6

7

The IP address and host of the LDAP server where this group’s record is stored.

When false, secure LDAP (ldaps://) URLs connect using TLS, and insecure LDAP (ldap://) URLs
are upgraded to TLS. When true, no TLS connection is made to the server and you cannot use
ldaps:// URL schemes.

The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

The attribute to use as the name of the group.

The attribute on the group that stores the membership information.

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

The attribute to use as the name of the user in the OpenShift Container Platform group record.

18.1.2. About the Active Directory configuration file

The Active Directory schema requires you to provide an LDAP query definition for user entries, as well as
the attributes to represent them with in the internal OpenShift Container Platform group records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389 1
insecure: false 2
bindDN: cn=admin,dc=example,dc=com
bindPassword:
 file: "/etc/secrets/bindPassword"
rfc2307:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn 3
 groupNameAttributes: [cn] 4
 groupMembershipAttributes: [member] 5
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 userUIDAttribute: dn 6
 userNameAttributes: [mail] 7
 tolerateMemberNotFoundErrors: false
 tolerateMemberOutOfScopeErrors: false

CHAPTER 18. SYNCING LDAP GROUPS

153

1

2

users of an OpenShift Container Platform group by their e-mail, but define the name of the group by
the name of the group on the LDAP server. The following configuration file creates these relationships:

LDAP sync configuration that uses Active Directory schema: active_directory_config.yaml

The attribute to use as the name of the user in the OpenShift Container Platform group record.

The attribute on the user that stores the membership information.

18.1.3. About the augmented Active Directory configuration file

The augmented Active Directory schema requires you to provide an LDAP query definition for both user
entries and group entries, as well as the attributes with which to represent them in the internal
OpenShift Container Platform group records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships.

LDAP sync configuration that uses augmented Active Directory schema:
augmented_active_directory_config.yaml

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
activeDirectory:
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=person)
 pageSize: 0
 userNameAttributes: [mail] 1
 groupMembershipAttributes: [memberOf] 2

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
augmentedActiveDirectory:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn 1
 groupNameAttributes: [cn] 2
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=person)

OpenShift Container Platform 4.18 Authentication and authorization

154

1

2

3

4

The attribute that uniquely identifies a group on the LDAP server. You cannot specify
groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the
whitelist / blacklist method.

The attribute to use as the name of the group.

The attribute to use as the name of the user in the OpenShift Container Platform group record.

The attribute on the user that stores the membership information.

18.2. RUNNING LDAP SYNC

Once you have created a sync configuration file, you can begin to sync. OpenShift Container Platform
allows administrators to perform a number of different sync types with the same server.

18.2.1. Syncing the LDAP server with OpenShift Container Platform

You can sync all groups from the LDAP server with OpenShift Container Platform.

Prerequisites

Create a sync configuration file.

You have access to the cluster as a user with the cluster-admin role.

Procedure

To sync all groups from the LDAP server with OpenShift Container Platform:

NOTE

By default, all group synchronization operations are dry-run, so you must set the -
-confirm flag on the oc adm groups sync command to make changes to
OpenShift Container Platform group records.

18.2.2. Syncing OpenShift Container Platform groups with the LDAP server

You can sync all groups already in OpenShift Container Platform that correspond to groups in the LDAP
server specified in the configuration file.

Prerequisites

Create a sync configuration file.

You have access to the cluster as a user with the cluster-admin role.

Procedure

 pageSize: 0
 userNameAttributes: [mail] 3
 groupMembershipAttributes: [memberOf] 4

$ oc adm groups sync --sync-config=config.yaml --confirm

CHAPTER 18. SYNCING LDAP GROUPS

155

Procedure

To sync OpenShift Container Platform groups with the LDAP server:

NOTE

By default, all group synchronization operations are dry-run, so you must set the -
-confirm flag on the oc adm groups sync command to make changes to
OpenShift Container Platform group records.

18.2.3. Syncing subgroups from the LDAP server with OpenShift Container Platform

You can sync a subset of LDAP groups with OpenShift Container Platform using whitelist files, blacklist
files, or both.

NOTE

You can use any combination of blacklist files, whitelist files, or whitelist literals. Whitelist
and blacklist files must contain one unique group identifier per line, and you can include
whitelist literals directly in the command itself. These guidelines apply to groups found on
LDAP servers as well as groups already present in OpenShift Container Platform.

Prerequisites

Create a sync configuration file.

You have access to the cluster as a user with the cluster-admin role.

Procedure

To sync a subset of LDAP groups with OpenShift Container Platform, use any the following
commands:

$ oc adm groups sync --type=openshift --sync-config=config.yaml --confirm

$ oc adm groups sync --whitelist=<whitelist_file> \
 --sync-config=config.yaml \
 --confirm

$ oc adm groups sync --blacklist=<blacklist_file> \
 --sync-config=config.yaml \
 --confirm

$ oc adm groups sync <group_unique_identifier> \
 --sync-config=config.yaml \
 --confirm

$ oc adm groups sync <group_unique_identifier> \
 --whitelist=<whitelist_file> \
 --blacklist=<blacklist_file> \
 --sync-config=config.yaml \
 --confirm

OpenShift Container Platform 4.18 Authentication and authorization

156

1

NOTE

By default, all group synchronization operations are dry-run, so you must set the -
-confirm flag on the oc adm groups sync command to make changes to
OpenShift Container Platform group records.

18.3. RUNNING A GROUP PRUNING JOB

An administrator can also choose to remove groups from OpenShift Container Platform records if the
records on the LDAP server that created them are no longer present. The prune job will accept the
same sync configuration file and whitelists or blacklists as used for the sync job.

For example:

18.4. AUTOMATICALLY SYNCING LDAP GROUPS

You can automatically sync LDAP groups on a periodic basis by configuring a cron job.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have configured an LDAP identity provider (IDP).
This procedure assumes that you created an LDAP secret named ldap-secret and a config map
named ca-config-map.

Procedure

1. Create a project where the cron job will run:

This procedure uses a project called ldap-sync.

2. Locate the secret and config map that you created when configuring the LDAP identity
provider and copy them to this new project.

The secret and config map exist in the openshift-config project and must be copied to the new

$ oc adm groups sync --type=openshift \
 --whitelist=<whitelist_file> \
 --sync-config=config.yaml \
 --confirm

$ oc adm prune groups --sync-config=/path/to/ldap-sync-config.yaml --confirm

$ oc adm prune groups --whitelist=/path/to/whitelist.txt --sync-config=/path/to/ldap-sync-config.yaml --
confirm

$ oc adm prune groups --blacklist=/path/to/blacklist.txt --sync-config=/path/to/ldap-sync-config.yaml --
confirm

$ oc new-project ldap-sync 1

CHAPTER 18. SYNCING LDAP GROUPS

157

The secret and config map exist in the openshift-config project and must be copied to the new
ldap-sync project.

3. Define a service account:

Example ldap-sync-service-account.yaml

4. Create the service account:

5. Define a cluster role:

Example ldap-sync-cluster-role.yaml

6. Create the cluster role:

7. Define a cluster role binding to bind the cluster role to the service account:

Example ldap-sync-cluster-role-binding.yaml

kind: ServiceAccount
apiVersion: v1
metadata:
 name: ldap-group-syncer
 namespace: ldap-sync

$ oc create -f ldap-sync-service-account.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: ldap-group-syncer
rules:
 - apiGroups:
 - user.openshift.io
 resources:
 - groups
 verbs:
 - get
 - list
 - create
 - update

$ oc create -f ldap-sync-cluster-role.yaml

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: ldap-group-syncer
subjects:
 - kind: ServiceAccount
 name: ldap-group-syncer 1
 namespace: ldap-sync
roleRef:

OpenShift Container Platform 4.18 Authentication and authorization

158

1

2

1

Reference to the service account created earlier in this procedure.

Reference to the cluster role created earlier in this procedure.

8. Create the cluster role binding:

9. Define a config map that specifies the sync configuration file:

Example ldap-sync-config-map.yaml

Define the sync configuration file.

 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: ldap-group-syncer 2

$ oc create -f ldap-sync-cluster-role-binding.yaml

kind: ConfigMap
apiVersion: v1
metadata:
 name: ldap-group-syncer
 namespace: ldap-sync
data:
 sync.yaml: | 1
 kind: LDAPSyncConfig
 apiVersion: v1
 url: ldaps://10.0.0.0:636 2
 insecure: false
 bindDN: cn=admin,dc=example,dc=com 3
 bindPassword:
 file: "/etc/secrets/bindPassword"
 ca: /etc/ldap-ca/ca.crt
 rfc2307: 4
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com" 5
 scope: sub
 filter: "(objectClass=groupOfMembers)"
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn
 groupNameAttributes: [cn]
 groupMembershipAttributes: [member]
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com" 6
 scope: sub
 derefAliases: never
 pageSize: 0
 userUIDAttribute: dn
 userNameAttributes: [uid]
 tolerateMemberNotFoundErrors: false
 tolerateMemberOutOfScopeErrors: false

CHAPTER 18. SYNCING LDAP GROUPS

159

2

3

4

5

6

Specify the URL.

Specify the bindDN.

This example uses the RFC2307 schema; adjust values as necessary. You can also use a
different schema.

Specify the baseDN for groupsQuery.

Specify the baseDN for usersQuery.

10. Create the config map:

11. Define a cron job:

Example ldap-sync-cron-job.yaml

$ oc create -f ldap-sync-config-map.yaml

kind: CronJob
apiVersion: batch/v1
metadata:
 name: ldap-group-syncer
 namespace: ldap-sync
spec: 1
 schedule: "*/30 * * * *" 2
 concurrencyPolicy: Forbid
 jobTemplate:
 spec:
 backoffLimit: 0
 ttlSecondsAfterFinished: 1800 3
 template:
 spec:
 containers:
 - name: ldap-group-sync
 image: "registry.redhat.io/openshift4/ose-cli:latest"
 command:
 - "/bin/bash"
 - "-c"
 - "oc adm groups sync --sync-config=/etc/config/sync.yaml --confirm" 4
 volumeMounts:
 - mountPath: "/etc/config"
 name: "ldap-sync-volume"
 - mountPath: "/etc/secrets"
 name: "ldap-bind-password"
 - mountPath: "/etc/ldap-ca"
 name: "ldap-ca"
 volumes:
 - name: "ldap-sync-volume"
 configMap:
 name: "ldap-group-syncer"
 - name: "ldap-bind-password"
 secret:
 secretName: "ldap-secret" 5

OpenShift Container Platform 4.18 Authentication and authorization

160

1

2

3

4

5

6

Configure the settings for the cron job. See "Creating cron jobs" for more information on
cron job settings.

The schedule for the job specified in cron format. This example cron job runs every 30
minutes. Adjust the frequency as necessary, making sure to take into account how long the
sync takes to run.

How long, in seconds, to keep finished jobs. This should match the period of the job
schedule in order to clean old failed jobs and prevent unnecessary alerts. For more
information, see TTL-after-finished Controller in the Kubernetes documentation.

The LDAP sync command for the cron job to run. Passes in the sync configuration file that
was defined in the config map.

This secret was created when the LDAP IDP was configured.

This config map was created when the LDAP IDP was configured.

12. Create the cron job:

Additional resources

Configuring an LDAP identity provider

Creating cron jobs

18.5. LDAP GROUP SYNC EXAMPLES

This section contains examples for the RFC 2307, Active Directory, and augmented Active Directory
schemas.

NOTE

These examples assume that all users are direct members of their respective groups.
Specifically, no groups have other groups as members. See the Nested Membership Sync
Example for information on how to sync nested groups.

18.5.1. Syncing groups using the RFC 2307 schema

For the RFC 2307 schema, the following examples synchronize a group named admins that has two
members: Jane and Jim. The examples explain:

 - name: "ldap-ca"
 configMap:
 name: "ca-config-map" 6
 restartPolicy: "Never"
 terminationGracePeriodSeconds: 30
 activeDeadlineSeconds: 500
 dnsPolicy: "ClusterFirst"
 serviceAccountName: "ldap-group-syncer"

$ oc create -f ldap-sync-cron-job.yaml

CHAPTER 18. SYNCING LDAP GROUPS

161

https://en.wikipedia.org/wiki/Cron
https://kubernetes.io/docs/concepts/workloads/controllers/ttlafterfinished
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-nodes-jobs-creating-cron_nodes-nodes-jobs

1

2

How the group and users are added to the LDAP server.

What the resulting group record in OpenShift Container Platform will be after synchronization.

NOTE

These examples assume that all users are direct members of their respective groups.
Specifically, no groups have other groups as members. See the Nested Membership Sync
Example for information on how to sync nested groups.

In the RFC 2307 schema, both users (Jane and Jim) and groups exist on the LDAP server as first-class
entries, and group membership is stored in attributes on the group. The following snippet of ldif defines
the users and group for this schema:

LDAP entries that use RFC 2307 schema: rfc2307.ldif

The group is a first-class entry in the LDAP server.

Members of a group are listed with an identifying reference as attributes on the group.

Prerequisites

Create the configuration file.

 dn: ou=users,dc=example,dc=com
 objectClass: organizationalUnit
 ou: users
 dn: cn=Jane,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jane
 sn: Smith
 displayName: Jane Smith
 mail: jane.smith@example.com
 dn: cn=Jim,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jim
 sn: Adams
 displayName: Jim Adams
 mail: jim.adams@example.com
 dn: ou=groups,dc=example,dc=com
 objectClass: organizationalUnit
 ou: groups
 dn: cn=admins,ou=groups,dc=example,dc=com 1
 objectClass: groupOfNames
 cn: admins
 owner: cn=admin,dc=example,dc=com
 description: System Administrators
 member: cn=Jane,ou=users,dc=example,dc=com 2
 member: cn=Jim,ou=users,dc=example,dc=com

OpenShift Container Platform 4.18 Authentication and authorization

162

1

2

3

4

5

You have access to the cluster as a user with the cluster-admin role.

Procedure

Run the sync with the rfc2307_config.yaml file:

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the rfc2307_config.yaml file

The last time this OpenShift Container Platform group was synchronized with the LDAP
server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as specified by the sync file.

The users that are members of the group, named as specified by the sync file.

18.5.2. Syncing groups using the RFC2307 schema with user-defined name
mappings

When syncing groups with user-defined name mappings, the configuration file changes to contain these
mappings as shown below.

LDAP sync configuration that uses RFC 2307 schema with user-defined name mappings:
rfc2307_config_user_defined.yaml

$ oc adm groups sync --sync-config=rfc2307_config.yaml --confirm

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2
 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:
 name: admins 4
users: 5
- jane.smith@example.com
- jim.adams@example.com

kind: LDAPSyncConfig
apiVersion: v1
groupUIDNameMapping:
 "cn=admins,ou=groups,dc=example,dc=com": Administrators 1
rfc2307:
 groupsQuery:

CHAPTER 18. SYNCING LDAP GROUPS

163

1

2

3

4

The user-defined name mapping.

The unique identifier attribute that is used for the keys in the user-defined name mapping. You
cannot specify groupsQuery filters when using DN for groupUIDAttribute. For fine-grained
filtering, use the whitelist / blacklist method.

The attribute to name OpenShift Container Platform groups with if their unique identifier is not in
the user-defined name mapping.

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

Prerequisites

Create the configuration file.

You have access to the cluster as a user with the cluster-admin role.

Procedure

Run the sync with the rfc2307_config_user_defined.yaml file:

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the
rfc2307_config_user_defined.yaml file

 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn 2
 groupNameAttributes: [cn] 3
 groupMembershipAttributes: [member]
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 pageSize: 0
 userUIDAttribute: dn 4
 userNameAttributes: [mail]
 tolerateMemberNotFoundErrors: false
 tolerateMemberOutOfScopeErrors: false

$ oc adm groups sync --sync-config=rfc2307_config_user_defined.yaml --confirm

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com

OpenShift Container Platform 4.18 Authentication and authorization

164

1 The name of the group as specified by the user-defined name mapping.

18.5.3. Syncing groups using RFC 2307 with user-defined error tolerances

By default, if the groups being synced contain members whose entries are outside of the scope defined
in the member query, the group sync fails with an error:

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with dn="<user-dn>" would search outside of the
base dn specified (dn="<base-dn>")".

This often indicates a misconfigured baseDN in the usersQuery field. However, in cases where the
baseDN intentionally does not contain some of the members of the group, setting
tolerateMemberOutOfScopeErrors: true allows the group sync to continue. Out of scope members
will be ignored.

Similarly, when the group sync process fails to locate a member for a group, it fails outright with errors:

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with base dn="<user-dn>" refers to a non-
existent entry".
Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in
group "<group>" failed because of "search for entry with base dn="<user-dn>" and filter "<filter>" did
not return any results".

This often indicates a misconfigured usersQuery field. However, in cases where the group contains
member entries that are known to be missing, setting tolerateMemberNotFoundErrors: true allows the
group sync to continue. Problematic members will be ignored.

WARNING

Enabling error tolerances for the LDAP group sync causes the sync process to
ignore problematic member entries. If the LDAP group sync is not configured
correctly, this could result in synced OpenShift Container Platform groups missing
members.

LDAP entries that use RFC 2307 schema with problematic group membership:
rfc2307_problematic_users.ldif

 openshift.io/ldap.url: LDAP_SERVER_IP:389
 creationTimestamp:
 name: Administrators 1
users:
- jane.smith@example.com
- jim.adams@example.com



 dn: ou=users,dc=example,dc=com
 objectClass: organizationalUnit

CHAPTER 18. SYNCING LDAP GROUPS

165

1

2

A member that does not exist on the LDAP server.

A member that may exist, but is not under the baseDN in the user query for the sync job.

To tolerate the errors in the above example, the following additions to your sync configuration file must
be made:

LDAP sync configuration that uses RFC 2307 schema tolerating errors:
rfc2307_config_tolerating.yaml

 ou: users
 dn: cn=Jane,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jane
 sn: Smith
 displayName: Jane Smith
 mail: jane.smith@example.com
 dn: cn=Jim,ou=users,dc=example,dc=com
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 cn: Jim
 sn: Adams
 displayName: Jim Adams
 mail: jim.adams@example.com
 dn: ou=groups,dc=example,dc=com
 objectClass: organizationalUnit
 ou: groups
 dn: cn=admins,ou=groups,dc=example,dc=com
 objectClass: groupOfNames
 cn: admins
 owner: cn=admin,dc=example,dc=com
 description: System Administrators
 member: cn=Jane,ou=users,dc=example,dc=com
 member: cn=Jim,ou=users,dc=example,dc=com
 member: cn=INVALID,ou=users,dc=example,dc=com 1
 member: cn=Jim,ou=OUTOFSCOPE,dc=example,dc=com 2

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
rfc2307:
 groupsQuery:
 baseDN: "ou=groups,dc=example,dc=com"
 scope: sub
 derefAliases: never
 groupUIDAttribute: dn
 groupNameAttributes: [cn]
 groupMembershipAttributes: [member]
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub

OpenShift Container Platform 4.18 Authentication and authorization

166

1

2

3

1

The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery
filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist
method.

When true, the sync job tolerates groups for which some members were not found, and members
whose LDAP entries are not found are ignored. The default behavior for the sync job is to fail if a
member of a group is not found.

When true, the sync job tolerates groups for which some members are outside the user scope
given in the usersQuery base DN, and members outside the member query scope are ignored.
The default behavior for the sync job is to fail if a member of a group is out of scope.

Prerequisites

Create the configuration file.

You have access to the cluster as a user with the cluster-admin role.

Procedure

Run the sync with the rfc2307_config_tolerating.yaml file:

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the rfc2307_config.yaml file

The users that are members of the group, as specified by the sync file. Members for which
lookup encountered tolerated errors are absent.

 derefAliases: never
 userUIDAttribute: dn 1
 userNameAttributes: [mail]
 tolerateMemberNotFoundErrors: true 2
 tolerateMemberOutOfScopeErrors: true 3

$ oc adm groups sync --sync-config=rfc2307_config_tolerating.yaml --confirm

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
 openshift.io/ldap.url: LDAP_SERVER_IP:389
 creationTimestamp:
 name: admins
users: 1
- jane.smith@example.com
- jim.adams@example.com

CHAPTER 18. SYNCING LDAP GROUPS

167

1

18.5.4. Syncing groups using the Active Directory schema

In the Active Directory schema, both users (Jane and Jim) exist in the LDAP server as first-class
entries, and group membership is stored in attributes on the user. The following snippet of ldif defines
the users and group for this schema:

LDAP entries that use Active Directory schema: active_directory.ldif

The user’s group memberships are listed as attributes on the user, and the group does not exist as
an entry on the server. The memberOf attribute does not have to be a literal attribute on the user;
in some LDAP servers, it is created during search and returned to the client, but not committed to
the database.

Prerequisites

Create the configuration file.

You have access to the cluster as a user with the cluster-admin role.

Procedure

Run the sync with the active_directory_config.yaml file:

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com
memberOf: admins 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: admins

$ oc adm groups sync --sync-config=active_directory_config.yaml --confirm

OpenShift Container Platform 4.18 Authentication and authorization

168

1

2

3

4

5

OpenShift Container Platform group created by using the
active_directory_config.yaml file

The last time this OpenShift Container Platform group was synchronized with the LDAP
server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as listed in the LDAP server.

The users that are members of the group, named as specified by the sync file.

18.5.5. Syncing groups using the augmented Active Directory schema

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP
server as first-class entries, and group membership is stored in attributes on the user. The following
snippet of ldif defines the users and group for this schema:

LDAP entries that use augmented Active Directory schema: augmented_active_directory.ldif

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
 openshift.io/ldap.uid: admins 2
 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:
 name: admins 4
users: 5
- jane.smith@example.com
- jim.adams@example.com

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson

CHAPTER 18. SYNCING LDAP GROUPS

169

1

2

The user’s group memberships are listed as attributes on the user.

The group is a first-class entry on the LDAP server.

Prerequisites

Create the configuration file.

You have access to the cluster as a user with the cluster-admin role.

Procedure

Run the sync with the augmented_active_directory_config.yaml file:

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the
augmented_active_directory_config.yaml file

objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 2
objectClass: groupOfNames
cn: admins
owner: cn=admin,dc=example,dc=com
description: System Administrators
member: cn=Jane,ou=users,dc=example,dc=com
member: cn=Jim,ou=users,dc=example,dc=com

$ oc adm groups sync --sync-config=augmented_active_directory_config.yaml --confirm

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2
 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:
 name: admins 4

OpenShift Container Platform 4.18 Authentication and authorization

170

1

2

3

4

5

The last time this OpenShift Container Platform group was synchronized with the LDAP
server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as specified by the sync file.

The users that are members of the group, named as specified by the sync file.

18.5.5.1. LDAP nested membership sync example

Groups in OpenShift Container Platform do not nest. The LDAP server must flatten group membership
before the data can be consumed. Microsoft’s Active Directory Server supports this feature via the
LDAP_MATCHING_RULE_IN_CHAIN rule, which has the OID 1.2.840.113556.1.4.1941. Furthermore,
only explicitly whitelisted groups can be synced when using this matching rule.

This section has an example for the augmented Active Directory schema, which synchronizes a group
named admins that has one user Jane and one group otheradmins as members. The otheradmins
group has one user member: Jim. This example explains:

How the group and users are added to the LDAP server.

What the LDAP sync configuration file looks like.

What the resulting group record in OpenShift Container Platform will be after synchronization.

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP
server as first-class entries, and group membership is stored in attributes on the user or the group. The
following snippet of ldif defines the users and groups for this schema:

LDAP entries that use augmented Active Directory schema with nested members:
augmented_active_directory_nested.ldif

users: 5
- jane.smith@example.com
- jim.adams@example.com

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com 1

CHAPTER 18. SYNCING LDAP GROUPS

171

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

1 2 5

3 4

6

The user’s and group’s memberships are listed as attributes on the object.

The groups are first-class entries on the LDAP server.

The otheradmins group is a member of the admins group.

When syncing nested groups with Active Directory, you must provide an LDAP query definition for both
user entries and group entries, as well as the attributes with which to represent them in the internal
OpenShift Container Platform group records. Furthermore, certain changes are required in this
configuration:

The oc adm groups sync command must explicitly whitelist groups.

The user’s groupMembershipAttributes must include "memberOf:1.2.840.113556.1.4.1941:"
to comply with the LDAP_MATCHING_RULE_IN_CHAIN rule.

The groupUIDAttribute must be set to dn.

The groupsQuery:

Must not set filter.

Must set a valid derefAliases.

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: cn=otheradmins,ou=groups,dc=example,dc=com 2

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 3
objectClass: group
cn: admins
owner: cn=admin,dc=example,dc=com
description: System Administrators
member: cn=Jane,ou=users,dc=example,dc=com
member: cn=otheradmins,ou=groups,dc=example,dc=com

dn: cn=otheradmins,ou=groups,dc=example,dc=com 4
objectClass: group
cn: otheradmins
owner: cn=admin,dc=example,dc=com
description: Other System Administrators
memberOf: cn=admins,ou=groups,dc=example,dc=com 5 6
member: cn=Jim,ou=users,dc=example,dc=com

OpenShift Container Platform 4.18 Authentication and authorization

172

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

1

2

3

4

5

Should not set baseDN as that value is ignored.

Should not set scope as that value is ignored.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the
distinguished name whenever possible for user- or administrator-facing fields. For example, identify the
users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the
common name. The following configuration file creates these relationships:

LDAP sync configuration that uses augmented Active Directory schema with nested
members: augmented_active_directory_config_nested.yaml

groupsQuery filters cannot be specified. The groupsQuery base DN and scope values are
ignored. groupsQuery must set a valid derefAliases.

The attribute that uniquely identifies a group on the LDAP server. It must be set to dn.

The attribute to use as the name of the group.

The attribute to use as the name of the user in the OpenShift Container Platform group record.

NOTE

mail or sAMAccountName are preferred choices in most installations.

The attribute on the user that stores the membership information. Note the use of
LDAP_MATCHING_RULE_IN_CHAIN.

Prerequisites

Create the configuration file.

You have access to the cluster as a user with the cluster-admin role.

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
augmentedActiveDirectory:
 groupsQuery: 1
 derefAliases: never
 pageSize: 0
 groupUIDAttribute: dn 2
 groupNameAttributes: [cn] 3
 usersQuery:
 baseDN: "ou=users,dc=example,dc=com"
 scope: sub
 derefAliases: never
 filter: (objectclass=person)
 pageSize: 0
 userNameAttributes: [mail] 4
 groupMembershipAttributes: ["memberOf:1.2.840.113556.1.4.1941:"] 5

CHAPTER 18. SYNCING LDAP GROUPS

173

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

1

2

3

4

5

Procedure

Run the sync with the augmented_active_directory_config_nested.yaml file:

NOTE

You must explicitly whitelist the cn=admins,ou=groups,dc=example,dc=com
group.

OpenShift Container Platform creates the following group record as a result of the above sync
operation:

OpenShift Container Platform group created by using the
augmented_active_directory_config_nested.yaml file

The last time this OpenShift Container Platform group was synchronized with the LDAP
server, in ISO 6801 format.

The unique identifier for the group on the LDAP server.

The IP address and host of the LDAP server where this group’s record is stored.

The name of the group as specified by the sync file.

The users that are members of the group, named as specified by the sync file. Note that
members of nested groups are included since the group membership was flattened by the
Microsoft Active Directory Server.

18.6. LDAP SYNC CONFIGURATION SPECIFICATION

The object specification for the configuration file is below. Note that the different schema objects have
different fields. For example, v1.ActiveDirectoryConfig has no groupsQuery field whereas
v1.RFC2307Config and v1.AugmentedActiveDirectoryConfig both do.

IMPORTANT

$ oc adm groups sync \
 'cn=admins,ou=groups,dc=example,dc=com' \
 --sync-config=augmented_active_directory_config_nested.yaml \
 --confirm

apiVersion: user.openshift.io/v1
kind: Group
metadata:
 annotations:
 openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
 openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2
 openshift.io/ldap.url: LDAP_SERVER_IP:389 3
 creationTimestamp:
 name: admins 4
users: 5
- jane.smith@example.com
- jim.adams@example.com

OpenShift Container Platform 4.18 Authentication and authorization

174

IMPORTANT

There is no support for binary attributes. All attribute data coming from the LDAP server
must be in the format of a UTF-8 encoded string. For example, never use a binary
attribute, such as objectGUID, as an ID attribute. You must use string attributes, such as
sAMAccountName or userPrincipalName, instead.

18.6.1. v1.LDAPSyncConfig

LDAPSyncConfig holds the necessary configuration options to define an LDAP group sync.

Name Description Schema

kind String value representing the
REST resource this object
represents. Servers may infer this
from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://github.com/kubernetes/c
ommunity/blob/master/contribut
ors/devel/sig-architecture/api-
conventions.md#types-kinds

string

apiVersion Defines the versioned schema of
this representation of an object.
Servers should convert
recognized schemas to the latest
internal value, and may reject
unrecognized values. More info:
https://github.com/kubernetes/c
ommunity/blob/master/contribut
ors/devel/sig-architecture/api-
conventions.md#resources

string

url Host is the scheme, host and port
of the LDAP server to connect to:
scheme://host:port

string

bindDN Optional DN to bind to the LDAP
server with.

string

bindPassword Optional password to bind with
during the search phase.

v1.StringSource

CHAPTER 18. SYNCING LDAP GROUPS

175

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#resources

insecure If true, indicates the connection
should not use TLS. If false,
ldaps:// URLs connect using TLS,
and ldap:// URLs are upgraded to
a TLS connection using StartTLS
as specified in
https://tools.ietf.org/html/rfc283
0. If you set insecure to true,
you cannot use ldaps:// URL
schemes.

boolean

ca Optional trusted certificate
authority bundle to use when
making requests to the server. If
empty, the default system roots
are used.

string

groupUIDNameMapping Optional direct mapping of LDAP
group UIDs to OpenShift
Container Platform group names.

object

rfc2307 Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to RFC2307: first-class group
and user entries, with group
membership determined by a
multi-valued attribute on the
group entry listing its members.

v1.RFC2307Config

activeDirectory Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to that used in Active Directory:
first-class user entries, with group
membership determined by a
multi-valued attribute on
members listing groups they are a
member of.

v1.ActiveDirectoryConfig

augmentedActiveDirectory Holds the configuration for
extracting data from an LDAP
server set up in a fashion similar
to that used in Active Directory as
described above, with one
addition: first-class group entries
exist and are used to hold
metadata but not group
membership.

v1.AugmentedActiveDirectoryCon
fig

Name Description Schema

OpenShift Container Platform 4.18 Authentication and authorization

176

https://tools.ietf.org/html/rfc2830

18.6.2. v1.StringSource

StringSource allows specifying a string inline, or externally via environment variable or file. When it
contains only a string value, it marshals to a simple JSON string.

Name Description Schema

value Specifies the cleartext value, or
an encrypted value if keyFile is
specified.

string

env Specifies an environment variable
containing the cleartext value, or
an encrypted value if the keyFile
is specified.

string

file References a file containing the
cleartext value, or an encrypted
value if a keyFile is specified.

string

keyFile References a file containing the
key to use to decrypt the value.

string

18.6.3. v1.LDAPQuery

LDAPQuery holds the options necessary to build an LDAP query.

Name Description Schema

baseDN DN of the branch of the directory
where all searches should start
from.

string

scope The optional scope of the search.
Can be base: only the base
object, one: all objects on the
base level, sub: the entire
subtree. Defaults to sub if not
set.

string

derefAliases The optional behavior of the
search with regards to aliases. Can
be never: never dereference
aliases, search: only dereference
in searching, base: only
dereference in finding the base
object, always: always
dereference. Defaults to always
if not set.

string

CHAPTER 18. SYNCING LDAP GROUPS

177

timeout Holds the limit of time in seconds
that any request to the server can
remain outstanding before the
wait for a response is given up. If
this is 0, no client-side limit is
imposed.

integer

filter A valid LDAP search filter that
retrieves all relevant entries from
the LDAP server with the base
DN.

string

pageSize Maximum preferred page size,
measured in LDAP entries. A page
size of 0 means no paging will be
done.

integer

Name Description Schema

18.6.4. v1.RFC2307Config

RFC2307Config holds the necessary configuration options to define how an LDAP group sync interacts
with an LDAP server using the RFC2307 schema.

Name Description Schema

groupsQuery Holds the template for an LDAP
query that returns group entries.

v1.LDAPQuery

groupUIDAttribute Defines which attribute on an
LDAP group entry will be
interpreted as its unique
identifier. (ldapGroupUID)

string

groupNameAttributes Defines which attributes on an
LDAP group entry will be
interpreted as its name to use for
an OpenShift Container Platform
group.

string array

groupMembershipAttributes Defines which attributes on an
LDAP group entry will be
interpreted as its members. The
values contained in those
attributes must be queryable by
your UserUIDAttribute.

string array

usersQuery Holds the template for an LDAP
query that returns user entries.

v1.LDAPQuery

OpenShift Container Platform 4.18 Authentication and authorization

178

userUIDAttribute Defines which attribute on an
LDAP user entry will be
interpreted as its unique
identifier. It must correspond to
values that will be found from the
GroupMembershipAttributes.

string

userNameAttributes Defines which attributes on an
LDAP user entry will be used, in
order, as its OpenShift Container
Platform user name. The first
attribute with a non-empty value
is used. This should match your
PreferredUsername setting for
your
LDAPPasswordIdentityProvi
der. The attribute to use as the
name of the user in the OpenShift
Container Platform group record.
mail or sAMAccountName are
preferred choices in most
installations.

string array

tolerateMemberNotFoundErr
ors

Determines the behavior of the
LDAP sync job when missing user
entries are encountered. If true,
an LDAP query for users that
does not find any will be tolerated
and an only and error will be
logged. If false, the LDAP sync
job will fail if a query for users
does not find any. The default
value is false. Misconfigured
LDAP sync jobs with this flag set
to true can cause group
membership to be removed, so it
is recommended to use this flag
with caution.

boolean

Name Description Schema

CHAPTER 18. SYNCING LDAP GROUPS

179

tolerateMemberOutOfScopeE
rrors

Determines the behavior of the
LDAP sync job when out-of-
scope user entries are
encountered. If true, an LDAP
query for a user that falls outside
of the base DN given for the all
user query will be tolerated and
only an error will be logged. If
false, the LDAP sync job will fail if
a user query would search outside
of the base DN specified by the all
user query. Misconfigured LDAP
sync jobs with this flag set to true
can result in groups missing users,
so it is recommended to use this
flag with caution.

boolean

Name Description Schema

18.6.5. v1.ActiveDirectoryConfig

ActiveDirectoryConfig holds the necessary configuration options to define how an LDAP group sync
interacts with an LDAP server using the Active Directory schema.

Name Description Schema

usersQuery Holds the template for an LDAP
query that returns user entries.

v1.LDAPQuery

userNameAttributes Defines which attributes on an
LDAP user entry will be
interpreted as its OpenShift
Container Platform user name.
The attribute to use as the name
of the user in the OpenShift
Container Platform group record.
mail or sAMAccountName are
preferred choices in most
installations.

string array

groupMembershipAttributes Defines which attributes on an
LDAP user entry will be
interpreted as the groups it is a
member of.

string array

18.6.6. v1.AugmentedActiveDirectoryConfig

AugmentedActiveDirectoryConfig holds the necessary configuration options to define how an LDAP
group sync interacts with an LDAP server using the augmented Active Directory schema.

OpenShift Container Platform 4.18 Authentication and authorization

180

Name Description Schema

usersQuery Holds the template for an LDAP
query that returns user entries.

v1.LDAPQuery

userNameAttributes Defines which attributes on an
LDAP user entry will be
interpreted as its OpenShift
Container Platform user name.
The attribute to use as the name
of the user in the OpenShift
Container Platform group record.
mail or sAMAccountName are
preferred choices in most
installations.

string array

groupMembershipAttributes Defines which attributes on an
LDAP user entry will be
interpreted as the groups it is a
member of.

string array

groupsQuery Holds the template for an LDAP
query that returns group entries.

v1.LDAPQuery

groupUIDAttribute Defines which attribute on an
LDAP group entry will be
interpreted as its unique
identifier. (ldapGroupUID)

string

groupNameAttributes Defines which attributes on an
LDAP group entry will be
interpreted as its name to use for
an OpenShift Container Platform
group.

string array

CHAPTER 18. SYNCING LDAP GROUPS

181

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

19.1. ABOUT THE CLOUD CREDENTIAL OPERATOR

The Cloud Credential Operator (CCO) manages cloud provider credentials as custom resource
definitions (CRDs). The CCO syncs on CredentialsRequest custom resources (CRs) to allow OpenShift
Container Platform components to request cloud provider credentials with the specific permissions that
are required for the cluster to run.

By setting different values for the credentialsMode parameter in the install-config.yaml file, the CCO
can be configured to operate in several different modes. If no mode is specified, or the
credentialsMode parameter is set to an empty string (""), the CCO operates in its default mode.

19.1.1. Modes

By setting different values for the credentialsMode parameter in the install-config.yaml file, the CCO
can be configured to operate in mint, passthrough, or manual mode. These options provide transparency
and flexibility in how the CCO uses cloud credentials to process CredentialsRequest CRs in the cluster,
and allow the CCO to be configured to suit the security requirements of your organization. Not all CCO
modes are supported for all cloud providers.

Mint: In mint mode, the CCO uses the provided admin-level cloud credential to create new
credentials for components in the cluster with only the specific permissions that are required.

Passthrough: In passthrough mode, the CCO passes the provided cloud credential to the
components that request cloud credentials.

Manual mode with long-term credentials for components: In manual mode, you can manage
long-term cloud credentials instead of the CCO.

Manual mode with short-term credentials for components: For some providers, you can use
the CCO utility (ccoctl) during installation to implement short-term credentials for individual
components. These credentials are created and managed outside the OpenShift Container
Platform cluster.

Table 19.1. CCO mode support matrix

Cloud provider Mint Passthrough Manual with
long-term
credentials

Manual with
short-term
credentials

Amazon Web Services (AWS) X X X X

Global Microsoft Azure X X X

Microsoft Azure Stack Hub X

Google Cloud X X X X

IBM Cloud® X [1]

OpenShift Container Platform 4.18 Authentication and authorization

182

Nutanix X [1]

Red Hat OpenStack Platform
(RHOSP)

 X

VMware vSphere X

Cloud provider Mint Passthrough Manual with
long-term
credentials

Manual with
short-term
credentials

1. This platform uses the ccoctl utility during installation to configure long-term credentials.

19.1.2. Determining the Cloud Credential Operator mode

For platforms that support using the CCO in multiple modes, you can determine what mode the CCO is
configured to use by using the web console or the CLI.

Figure 19.1. Determining the CCO configuration

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

183

Figure 19.1. Determining the CCO configuration

19.1.2.1. Determining the Cloud Credential Operator mode by using the web console

You can determine what mode the Cloud Credential Operator (CCO) is configured to use by using the
web console.

OpenShift Container Platform 4.18 Authentication and authorization

184

NOTE

Only Amazon Web Services (AWS), global Microsoft Azure, and Google Cloud clusters
support multiple CCO modes.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator
permissions.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Navigate to Administration → Cluster Settings.

3. On the Cluster Settings page, select the Configuration tab.

4. Under Configuration resource, select CloudCredential.

5. On the CloudCredential details page, select the YAML tab.

6. In the YAML block, check the value of spec.credentialsMode. The following values are possible,
though not all are supported on all platforms:

'': The CCO is operating in the default mode. In this configuration, the CCO operates in mint
or passthrough mode, depending on the credentials provided during installation.

Mint: The CCO is operating in mint mode.

Passthrough: The CCO is operating in passthrough mode.

Manual: The CCO is operating in manual mode.

IMPORTANT

To determine the specific configuration of an AWS, Google Cloud, or global
Microsoft Azure cluster that has a spec.credentialsMode of '', Mint, or Manual,
you must investigate further.

AWS and Google Cloud clusters support using mint mode with the root secret
deleted.

An AWS, Google Cloud, or global Microsoft Azure cluster that uses manual mode
might be configured to create and manage cloud credentials from outside of the
cluster with AWS STS, Google Cloud Workload Identity, or Microsoft Entra
Workload ID. You can determine whether your cluster uses this strategy by
examining the cluster Authentication object.

7. AWS or Google Cloud clusters that use the default ('') only: To determine whether the cluster is
operating in mint or passthrough mode, inspect the annotations on the cluster root secret:

a. Navigate to Workloads → Secrets and look for the root secret for your cloud provider.

NOTE

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

185

NOTE

Ensure that the Project dropdown is set to All Projects.

Platform Secret name

AWS aws-creds

Google Cloud gcp-credentials

b. To view the CCO mode that the cluster is using, click 1 annotation under Annotations, and
check the value field. The following values are possible:

Mint: The CCO is operating in mint mode.

Passthrough: The CCO is operating in passthrough mode.

If your cluster uses mint mode, you can also determine whether the cluster is operating
without the root secret.

8. AWS or Google Cloud clusters that use mint mode only: To determine whether the cluster is
operating without the root secret, navigate to Workloads → Secrets and look for the root
secret for your cloud provider.

NOTE

Ensure that the Project dropdown is set to All Projects.

Platform Secret name

AWS aws-creds

Google Cloud gcp-credentials

If you see one of these values, your cluster is using mint or passthrough mode with the root
secret present.

If you do not see these values, your cluster is using the CCO in mint mode with the root
secret removed.

9. AWS, Google Cloud, or global Microsoft Azure clusters that use manual mode only: To
determine whether the cluster is configured to create and manage cloud credentials from
outside of the cluster, you must check the cluster Authentication object YAML values.

a. Navigate to Administration → Cluster Settings.

b. On the Cluster Settings page, select the Configuration tab.

c. Under Configuration resource, select Authentication.

d. On the Authentication details page, select the YAML tab.

OpenShift Container Platform 4.18 Authentication and authorization

186

e. In the YAML block, check the value of the .spec.serviceAccountIssuer parameter.

A value that contains a URL that is associated with your cloud provider indicates that
the CCO is using manual mode with short-term credentials for components. These
clusters are configured using the ccoctl utility to create and manage cloud credentials
from outside of the cluster.

An empty value ('') indicates that the cluster is using the CCO in manual mode but was
not configured using the ccoctl utility.

19.1.2.2. Determining the Cloud Credential Operator mode by using the CLI

You can determine what mode the Cloud Credential Operator (CCO) is configured to use by using the
CLI.

NOTE

Only Amazon Web Services (AWS), global Microsoft Azure, and Google Cloud clusters
support multiple CCO modes.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator
permissions.

You have installed the OpenShift CLI (oc).

Procedure

1. Log in to oc on the cluster as a user with the cluster-admin role.

2. To determine the mode that the CCO is configured to use, enter the following command:

The following output values are possible, though not all are supported on all platforms:

'': The CCO is operating in the default mode. In this configuration, the CCO operates in mint
or passthrough mode, depending on the credentials provided during installation.

Mint: The CCO is operating in mint mode.

Passthrough: The CCO is operating in passthrough mode.

Manual: The CCO is operating in manual mode.

IMPORTANT

$ oc get cloudcredentials cluster \
 -o=jsonpath={.spec.credentialsMode}

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

187

IMPORTANT

To determine the specific configuration of an AWS, Google Cloud, or global
Microsoft Azure cluster that has a spec.credentialsMode of '', Mint, or Manual,
you must investigate further.

AWS and Google Cloud clusters support using mint mode with the root secret
deleted.

An AWS, Google Cloud, or global Microsoft Azure cluster that uses manual mode
might be configured to create and manage cloud credentials from outside of the
cluster with AWS STS, Google Cloud Workload Identity, or Microsoft Entra
Workload ID. You can determine whether your cluster uses this strategy by
examining the cluster Authentication object.

3. AWS or Google Cloud clusters that use the default ('') only: To determine whether the cluster is
operating in mint or passthrough mode, run the following command:

where <secret_name> is aws-creds for AWS or gcp-credentials for Google Cloud.

This command displays the value of the .metadata.annotations parameter in the cluster root
secret object. The following output values are possible:

Mint: The CCO is operating in mint mode.

Passthrough: The CCO is operating in passthrough mode.

If your cluster uses mint mode, you can also determine whether the cluster is operating without
the root secret.

4. AWS or Google Cloud clusters that use mint mode only: To determine whether the cluster is
operating without the root secret, run the following command:

where <secret_name> is aws-creds for AWS or gcp-credentials for Google Cloud.

If the root secret is present, the output of this command returns information about the secret.
An error indicates that the root secret is not present on the cluster.

5. AWS, Google Cloud, or global Microsoft Azure clusters that use manual mode only: To
determine whether the cluster is configured to create and manage cloud credentials from
outside of the cluster, run the following command:

This command displays the value of the .spec.serviceAccountIssuer parameter in the cluster

$ oc get secret <secret_name> \
 -n kube-system \
 -o jsonpath \
 --template '{ .metadata.annotations }'

$ oc get secret <secret_name> \
 -n=kube-system

$ oc get authentication cluster \
 -o jsonpath \
 --template='{ .spec.serviceAccountIssuer }'

OpenShift Container Platform 4.18 Authentication and authorization

188

This command displays the value of the .spec.serviceAccountIssuer parameter in the cluster
Authentication object.

An output of a URL that is associated with your cloud provider indicates that the CCO is
using manual mode with short-term credentials for components. These clusters are
configured using the ccoctl utility to create and manage cloud credentials from outside of
the cluster.

An empty output indicates that the cluster is using the CCO in manual mode but was not
configured using the ccoctl utility.

19.1.3. Default behavior

For platforms on which multiple modes are supported (AWS, Azure, and Google Cloud), when the CCO
operates in its default mode, it checks the provided credentials dynamically to determine for which
mode they are sufficient to process CredentialsRequest CRs.

By default, the CCO determines whether the credentials are sufficient for mint mode, which is the
preferred mode of operation, and uses those credentials to create appropriate credentials for
components in the cluster. If the credentials are not sufficient for mint mode, it determines whether they
are sufficient for passthrough mode. If the credentials are not sufficient for passthrough mode, the
CCO cannot adequately process CredentialsRequest CRs.

If the provided credentials are determined to be insufficient during installation, the installation fails. For
AWS, the installation program fails early in the process and indicates which required permissions are
missing. Other providers might not provide specific information about the cause of the error until errors
are encountered.

If the credentials are changed after a successful installation and the CCO determines that the new
credentials are insufficient, the CCO puts conditions on any new CredentialsRequest CRs to indicate
that it cannot process them because of the insufficient credentials.

To resolve insufficient credentials issues, provide a credential with sufficient permissions. If an error
occurred during installation, try installing again. For issues with new CredentialsRequest CRs, wait for
the CCO to try to process the CR again. As an alternative, you can configure your cluster to use a
different CCO mode that is supported for your cloud provider.

19.1.4. Additional resources

Cluster Operators reference page for the Cloud Credential Operator

19.2. THE CLOUD CREDENTIAL OPERATOR IN MINT MODE

Mint mode is the default Cloud Credential Operator (CCO) credentials mode for OpenShift Container
Platform on platforms that support it. Mint mode supports Amazon Web Services (AWS) and Google
Cloud clusters.

19.2.1. Mint mode credentials management

For clusters that use the CCO in mint mode, the administrator-level credential is stored in the kube-
system namespace. The CCO uses the admin credential to process the CredentialsRequest objects in
the cluster and create users for components with limited permissions.

With mint mode, each cluster component has only the specific permissions it requires. Cloud credential

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

189

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#cloud-credential-operator_operator-reference

With mint mode, each cluster component has only the specific permissions it requires. Cloud credential
reconciliation is automatic and continuous so that components can perform actions that require
additional credentials or permissions.

For example, a minor version cluster update (such as updating from OpenShift Container Platform 4.17
to 4.18) might include an updated CredentialsRequest resource for a cluster component. The CCO,
operating in mint mode, uses the admin credential to process the CredentialsRequest resource and
create users with limited permissions to satisfy the updated authentication requirements.

NOTE

By default, mint mode requires storing the admin credential in the cluster kube-system
namespace. If this approach does not meet the security requirements of your
organization, you can remove the credential after installing the cluster .

19.2.1.1. Mint mode permissions requirements

When using the CCO in mint mode, ensure that the credential you provide meets the requirements of
the cloud on which you are running or installing OpenShift Container Platform. If the provided
credentials are not sufficient for mint mode, the CCO cannot create an IAM user.

The credential you provide for mint mode in Amazon Web Services (AWS) must have the following
permissions:

Example 19.1. Required AWS permissions

iam:CreateAccessKey

iam:CreateUser

iam:DeleteAccessKey

iam:DeleteUser

iam:DeleteUserPolicy

iam:GetUser

iam:GetUserPolicy

iam:ListAccessKeys

iam:PutUserPolicy

iam:TagUser

iam:SimulatePrincipalPolicy

The credential you provide for mint mode in Google Cloud must have the following permissions:

Example 19.2. Required Google Cloud permissions

resourcemanager.projects.get

OpenShift Container Platform 4.18 Authentication and authorization

190

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/postinstallation_configuration/#manually-removing-cloud-creds_changing-cloud-credentials-configuration

serviceusage.services.list

iam.serviceAccountKeys.create

iam.serviceAccountKeys.delete

iam.serviceAccountKeys.list

iam.serviceAccounts.create

iam.serviceAccounts.delete

iam.serviceAccounts.get

iam.roles.create

iam.roles.get

iam.roles.list

iam.roles.undelete

iam.roles.update

resourcemanager.projects.getIamPolicy

resourcemanager.projects.setIamPolicy

19.2.1.2. Admin credentials root secret format

Each cloud provider uses a credentials root secret in the kube-system namespace by convention, which
is then used to satisfy all credentials requests and create their respective secrets. This is done either by
minting new credentials with mint mode , or by copying the credentials root secret with passthrough
mode.

The format for the secret varies by cloud, and is also used for each CredentialsRequest secret.

Amazon Web Services (AWS) secret format

Google Cloud secret format

apiVersion: v1
kind: Secret
metadata:
 namespace: kube-system
 name: aws-creds
stringData:
 aws_access_key_id: <base64-encoded_access_key_id>
 aws_secret_access_key: <base64-encoded_secret_access_key>

apiVersion: v1
kind: Secret
metadata:
 namespace: kube-system

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

191

19.2.2. Maintaining cloud provider credentials

If your cloud provider credentials are changed for any reason, you must manually update the secret that
the Cloud Credential Operator (CCO) uses to manage cloud provider credentials.

The process for rotating cloud credentials depends on the mode that the CCO is configured to use.
After you rotate credentials for a cluster that is using mint mode, you must manually remove the
component credentials that were created by the removed credential.

Prerequisites

Your cluster is installed on a platform that supports rotating cloud credentials manually with the
CCO mode that you are using:

For mint mode, Amazon Web Services (AWS) and Google Cloud are supported.

You have changed the credentials that are used to interface with your cloud provider.

The new credentials have sufficient permissions for the mode CCO is configured to use in your
cluster.

Procedure

1. In the Administrator perspective of the web console, navigate to Workloads → Secrets.

2. In the table on the Secrets page, find the root secret for your cloud provider.

Platform Secret name

AWS aws-creds

Google Cloud gcp-credentials

3. Click the Options menu in the same row as the secret and select Edit Secret.

4. Record the contents of the Value field or fields. You can use this information to verify that the
value is different after updating the credentials.

5. Update the text in the Value field or fields with the new authentication information for your
cloud provider, and then click Save.

6. Delete each component secret that is referenced by the individual CredentialsRequest
objects.

a. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role.

b. Get the names and namespaces of all referenced component secrets:

 name: gcp-credentials
stringData:
 service_account.json: <base64-encoded_service_account>

$ oc -n openshift-cloud-credential-operator get CredentialsRequest \

OpenShift Container Platform 4.18 Authentication and authorization

192

1

2

where <provider_spec> is the corresponding value for your cloud provider:

AWS: AWSProviderSpec

Google Cloud: GCPProviderSpec

Partial example output for AWS

c. Delete each of the referenced component secrets:

Specify the name of a secret.

Specify the namespace that contains the secret.

Example deletion of an AWS secret

You do not need to manually delete the credentials from your provider console. Deleting
the referenced component secrets will cause the CCO to delete the existing credentials
from the platform and create new ones.

Verification

To verify that the credentials have changed:

1. In the Administrator perspective of the web console, navigate to Workloads → Secrets.

2. Verify that the contents of the Value field or fields have changed.

19.2.3. Additional resources

Removing cloud provider credentials

19.3. THE CLOUD CREDENTIAL OPERATOR IN PASSTHROUGH MODE

Passthrough mode is supported for Amazon Web Services (AWS), Microsoft Azure, Google Cloud, Red
Hat OpenStack Platform (RHOSP), and VMware vSphere.

 -o json | jq -r '.items[] | select (.spec.providerSpec.kind=="<provider_spec>") |
.spec.secretRef'

{
 "name": "ebs-cloud-credentials",
 "namespace": "openshift-cluster-csi-drivers"
}
{
 "name": "cloud-credential-operator-iam-ro-creds",
 "namespace": "openshift-cloud-credential-operator"
}

$ oc delete secret <secret_name> \ 1
 -n <secret_namespace> 2

$ oc delete secret ebs-cloud-credentials -n openshift-cluster-csi-drivers

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

193

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/postinstallation_configuration/#manually-removing-cloud-creds_changing-cloud-credentials-configuration

In passthrough mode, the Cloud Credential Operator (CCO) passes the provided cloud credential to the
components that request cloud credentials. The credential must have permissions to perform the
installation and complete the operations that are required by components in the cluster, but does not
need to be able to create new credentials. The CCO does not attempt to create additional limited-
scoped credentials in passthrough mode.

NOTE

Manual mode is the only supported CCO configuration for Microsoft Azure Stack Hub.

19.3.1. Passthrough mode permissions requirements

When using the CCO in passthrough mode, ensure that the credential you provide meets the
requirements of the cloud on which you are running or installing OpenShift Container Platform. If the
provided credentials the CCO passes to a component that creates a CredentialsRequest CR are not
sufficient, that component will report an error when it tries to call an API that it does not have
permissions for.

19.3.1.1. Amazon Web Services (AWS) permissions

The credential you provide for passthrough mode in AWS must have all the requested permissions for all
CredentialsRequest CRs that are required by the version of OpenShift Container Platform you are
running or installing.

To locate the CredentialsRequest CRs that are required, see Manually creating long-term credentials
for AWS.

19.3.1.2. Microsoft Azure permissions

The credential you provide for passthrough mode in Azure must have all the requested permissions for
all CredentialsRequest CRs that are required by the version of OpenShift Container Platform you are
running or installing.

To locate the CredentialsRequest CRs that are required, see Manually creating long-term credentials
for Azure.

19.3.1.3. Google Cloud permissions

The credential you provide for passthrough mode in Google Cloud must have all the requested
permissions for all CredentialsRequest CRs that are required by the version of OpenShift Container
Platform you are running or installing.

To locate the CredentialsRequest CRs that are required, see Manually creating long-term credentials
for Google Cloud.

19.3.1.4. Red Hat OpenStack Platform (RHOSP) permissions

To install an OpenShift Container Platform cluster on RHOSP, the CCO requires a credential with the
permissions of a member user role.

19.3.1.5. VMware vSphere permissions

To install an OpenShift Container Platform cluster on VMware vSphere, the CCO requires a credential
with the following vSphere privileges:

OpenShift Container Platform 4.18 Authentication and authorization

194

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#manually-create-iam_installing-aws-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_azure/#manually-create-iam_installing-azure-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_google_cloud/#manually-create-iam_installing-gcp-customizations

Table 19.2. Required vSphere privileges

Category Privileges

Datastore Allocate space

Folder Create folder, Delete folder

vSphere Tagging All privileges

Network Assign network

Resource Assign virtual machine to resource pool

Profile-driven storage All privileges

vApp All privileges

Virtual machine All privileges

19.3.2. Admin credentials root secret format

Each cloud provider uses a credentials root secret in the kube-system namespace by convention, which
is then used to satisfy all credentials requests and create their respective secrets. This is done either by
minting new credentials with mint mode , or by copying the credentials root secret with passthrough
mode.

The format for the secret varies by cloud, and is also used for each CredentialsRequest secret.

Amazon Web Services (AWS) secret format

Microsoft Azure secret format

apiVersion: v1
kind: Secret
metadata:
 namespace: kube-system
 name: aws-creds
stringData:
 aws_access_key_id: <base64-encoded_access_key_id>
 aws_secret_access_key: <base64-encoded_secret_access_key>

apiVersion: v1
kind: Secret
metadata:
 namespace: kube-system
 name: azure-credentials
stringData:
 azure_subscription_id: <base64-encoded_subscription_id>
 azure_client_id: <base64-encoded_client_id>
 azure_client_secret: <base64-encoded_client_secret>

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

195

On Microsoft Azure, the credentials secret format includes two properties that must contain the
cluster’s infrastructure ID, generated randomly for each cluster installation. This value can be found
after running create manifests:

Example output

This value would be used in the secret data as follows:

Google Cloud secret format

Red Hat OpenStack Platform (RHOSP) secret format

VMware vSphere secret format

 azure_tenant_id: <base64-encoded_tenant_id>
 azure_resource_prefix: <base64-encoded_resource_prefix>
 azure_resourcegroup: <base64-encoded_resource_group>
 azure_region: <base64-encoded_region>

$ cat .openshift_install_state.json | jq '."*installconfig.ClusterID".InfraID' -r

mycluster-2mpcn

azure_resource_prefix: mycluster-2mpcn
azure_resourcegroup: mycluster-2mpcn-rg

apiVersion: v1
kind: Secret
metadata:
 namespace: kube-system
 name: gcp-credentials
stringData:
 service_account.json: <base64-encoded_service_account>

apiVersion: v1
kind: Secret
metadata:
 namespace: kube-system
 name: openstack-credentials
data:
 clouds.yaml: <base64-encoded_cloud_creds>
 clouds.conf: <base64-encoded_cloud_creds_init>

apiVersion: v1
kind: Secret
metadata:
 namespace: kube-system
 name: vsphere-creds
data:
 vsphere.openshift.example.com.username: <base64-encoded_username>
 vsphere.openshift.example.com.password: <base64-encoded_password>

OpenShift Container Platform 4.18 Authentication and authorization

196

19.3.3. Passthrough mode credential maintenance

If CredentialsRequest CRs change over time as the cluster is upgraded, you must manually update the
passthrough mode credential to meet the requirements. To avoid credentials issues during an upgrade,
check the CredentialsRequest CRs in the release image for the new version of OpenShift Container
Platform before upgrading. To locate the CredentialsRequest CRs that are required for your cloud
provider, see Manually creating long-term credentials for AWS, Azure, or Google Cloud.

19.3.3.1. Maintaining cloud provider credentials

If your cloud provider credentials are changed for any reason, you must manually update the secret that
the Cloud Credential Operator (CCO) uses to manage cloud provider credentials.

The process for rotating cloud credentials depends on the mode that the CCO is configured to use.
After you rotate credentials for a cluster that is using mint mode, you must manually remove the
component credentials that were created by the removed credential.

Prerequisites

Your cluster is installed on a platform that supports rotating cloud credentials manually with the
CCO mode that you are using:

For passthrough mode, Amazon Web Services (AWS), Microsoft Azure, Google Cloud, Red
Hat OpenStack Platform (RHOSP), and VMware vSphere are supported.

You have changed the credentials that are used to interface with your cloud provider.

The new credentials have sufficient permissions for the mode CCO is configured to use in your
cluster.

Procedure

1. In the Administrator perspective of the web console, navigate to Workloads → Secrets.

2. In the table on the Secrets page, find the root secret for your cloud provider.

Platform Secret name

AWS aws-creds

Azure azure-credentials

Google Cloud gcp-credentials

RHOSP openstack-credentials

VMware vSphere vsphere-creds

3. Click the Options menu in the same row as the secret and select Edit Secret.

4. Record the contents of the Value field or fields. You can use this information to verify that the

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

197

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#manually-create-iam_installing-aws-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_azure/#manually-create-iam_installing-azure-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_google_cloud/#manually-create-iam_installing-gcp-customizations

4. Record the contents of the Value field or fields. You can use this information to verify that the
value is different after updating the credentials.

5. Update the text in the Value field or fields with the new authentication information for your
cloud provider, and then click Save.

6. If you are updating the credentials for a vSphere cluster that does not have the vSphere CSI
Driver Operator enabled, you must force a rollout of the Kubernetes controller manager to apply
the updated credentials.

NOTE

If the vSphere CSI Driver Operator is enabled, this step is not required.

To apply the updated vSphere credentials, log in to the OpenShift Container Platform CLI as a
user with the cluster-admin role and run the following command:

While the credentials are rolling out, the status of the Kubernetes Controller Manager Operator
reports Progressing=true. To view the status, run the following command:

Verification

To verify that the credentials have changed:

1. In the Administrator perspective of the web console, navigate to Workloads → Secrets.

2. Verify that the contents of the Value field or fields have changed.

Additional resources

vSphere CSI Driver Operator

19.3.4. Reducing permissions after installation

When using passthrough mode, each component has the same permissions used by all other
components. If you do not reduce the permissions after installing, all components have the broad
permissions that are required to run the installer.

After installation, you can reduce the permissions on your credential to only those that are required to
run the cluster, as defined by the CredentialsRequest CRs in the release image for the version of
OpenShift Container Platform that you are using.

To locate the CredentialsRequest CRs that are required for AWS, Azure, or Google Cloud and learn
how to change the permissions the CCO uses, see Manually creating long-term credentials for AWS,
Azure, or Google Cloud.

19.3.5. Additional resources

$ oc patch kubecontrollermanager cluster \
 -p='{"spec": {"forceRedeploymentReason": "recovery-'"$(date)"'"}}' \
 --type=merge

$ oc get co kube-controller-manager

OpenShift Container Platform 4.18 Authentication and authorization

198

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/storage/#vmware-vsphere-csi-driver-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#manually-create-iam_installing-aws-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_azure/#manually-create-iam_installing-azure-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_google_cloud/#manually-create-iam_installing-gcp-customizations

Manually creating long-term credentials for AWS

Manually creating long-term credentials for Azure

Manually creating long-term credentials for Google Cloud

19.4. MANUAL MODE WITH LONG-TERM CREDENTIALS FOR
COMPONENTS

Manual mode is supported for Amazon Web Services (AWS), global Microsoft Azure, Microsoft Azure
Stack Hub, Google Cloud, IBM Cloud®, and Nutanix.

19.4.1. User-managed credentials

In manual mode, a user manages cloud credentials instead of the Cloud Credential Operator (CCO). To
use this mode, you must examine the CredentialsRequest CRs in the release image for the version of
OpenShift Container Platform that you are running or installing, create corresponding credentials in the
underlying cloud provider, and create Kubernetes Secrets in the correct namespaces to satisfy all
CredentialsRequest CRs for the cluster’s cloud provider. Some platforms use the CCO utility (ccoctl)
to facilitate this process during installation and updates.

Using manual mode with long-term credentials allows each cluster component to have only the
permissions it requires, without storing an administrator-level credential in the cluster. This mode also
does not require connectivity to services such as the AWS public IAM endpoint. However, you must
manually reconcile permissions with new release images for every upgrade.

For information about configuring your cloud provider to use manual mode, see the manual credentials
management options for your cloud provider.

NOTE

An AWS, global Azure, or Google Cloud cluster that uses manual mode might be
configured to use short-term credentials for different components. For more
information, see Manual mode with short-term credentials for components.

19.4.2. Additional resources

Manually creating long-term credentials for AWS

Manually creating long-term credentials for Azure

Manually creating long-term credentials for Google Cloud

Configuring IAM for IBM Cloud®

Configuring IAM for Nutanix

Manual mode with short-term credentials for components

Preparing to update a cluster with manually maintained credentials

19.5. MANUAL MODE WITH SHORT-TERM CREDENTIALS FOR
COMPONENTS

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

199

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#manually-create-iam_installing-aws-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_azure/#manually-create-iam_installing-azure-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_google_cloud/#manually-create-iam_installing-gcp-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#manually-create-iam_installing-aws-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_azure/#manually-create-iam_installing-azure-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_google_cloud/#manually-create-iam_installing-gcp-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_ibm_cloud/#configuring-iam-ibm-cloud
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_nutanix/#manually-create-iam-nutanix_installing-nutanix-installer-provisioned
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#preparing-manual-creds-update

During installation, you can configure the Cloud Credential Operator (CCO) to operate in manual mode
and use the CCO utility (ccoctl) to implement short-term security credentials for individual components
that are created and managed outside the OpenShift Container Platform cluster.

NOTE

This credentials strategy is supported for Amazon Web Services (AWS), Google Cloud,
and global Microsoft Azure only.

For AWS and Google Cloud clusters, you must configure your cluster to use this strategy
during installation of a new OpenShift Container Platform cluster. You cannot configure
an existing AWS or Google Cloud cluster that uses a different credentials strategy to use
this feature.

If you did not configure your Azure cluster to use Microsoft Entra Workload ID during
installation, you can enable this authentication method on an existing cluster .

Cloud providers use different terms for their implementation of this authentication method.

Table 19.3. Short-term credentials provider terminology

Cloud provider Provider nomenclature

Amazon Web Services (AWS) AWS Security Token Service (STS)

Google Cloud GCP Workload Identity

Global Microsoft Azure Microsoft Entra Workload ID

19.5.1. AWS Security Token Service

In manual mode with Security Token Service (STS), the individual OpenShift Container Platform cluster
components use the AWS STS to assign components IAM roles that provide short-term, limited-
privilege security credentials. These credentials are associated with IAM roles that are specific to each
component that makes AWS API calls.

Additional resources

Configuring an AWS cluster to use short-term credentials

19.5.1.1. AWS Security Token Service authentication process

The AWS Security Token Service (STS) and the AssumeRole API action allow pods to retrieve access
keys that are defined by an IAM role policy.

The OpenShift Container Platform cluster includes a Kubernetes service account signing service. This
service uses a private key to sign service account JSON web tokens (JWT). A pod that requires a
service account token requests one through the pod specification. When the pod is created and
assigned to a node, the node retrieves a signed service account from the service account signing service
and mounts it onto the pod.

Clusters that use STS contain an IAM role ID in their Kubernetes configuration secrets. Workloads
assume the identity of this IAM role ID. The signed service account token issued to the workload aligns

OpenShift Container Platform 4.18 Authentication and authorization

200

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/postinstallation_configuration/#post-install-enable-token-auth_changing-cloud-credentials-configuration
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#installing-aws-with-short-term-creds_installing-aws-customizations
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

with the configuration in AWS, which allows AWS STS to grant access keys for the specified IAM role to
the workload.

AWS STS grants access keys only for requests that include service account tokens that meet the
following conditions:

The token name and namespace match the service account name and namespace.

The token is signed by a key that matches the public key.

The public key pair for the service account signing key used by the cluster is stored in an AWS S3
bucket. AWS STS federation validates that the service account token signature aligns with the public
key stored in the S3 bucket.

19.5.1.1.1. Authentication flow for AWS STS

The following diagram illustrates the authentication flow between AWS and the OpenShift Container
Platform cluster when using AWS STS.

Token signing is the Kubernetes service account signing service on the OpenShift Container
Platform cluster.

The Kubernetes service account in the pod is the signed service account token.

Figure 19.2. AWS Security Token Service authentication flow

Requests for new and refreshed credentials are automated by using an appropriately configured AWS
IAM OpenID Connect (OIDC) identity provider combined with AWS IAM roles. Service account tokens
that are trusted by AWS IAM are signed by OpenShift Container Platform and can be projected into a
pod and used for authentication.

19.5.1.1.2. Token refreshing for AWS STS

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

201

1

2

The signed service account token that a pod uses expires after a period of time. For clusters that use
AWS STS, this time period is 3600 seconds, or one hour.

The kubelet on the node that the pod is assigned to ensures that the token is refreshed. The kubelet
attempts to rotate a token when it is older than 80 percent of its time to live.

19.5.1.1.3. OpenID Connect requirements for AWS STS

You can store the public portion of the encryption keys for your OIDC configuration in a public or private
S3 bucket.

The OIDC spec requires the use of HTTPS. AWS services require a public endpoint to expose the OIDC
documents in the form of JSON web key set (JWKS) public keys. This allows AWS services to validate
the bound tokens signed by Kubernetes and determine whether to trust certificates. As a result, both S3
bucket options require a public HTTPS endpoint and private endpoints are not supported.

To use AWS STS, the public AWS backbone for the AWS STS service must be able to communicate with
a public S3 bucket or a private S3 bucket with a public CloudFront endpoint. You can choose which type
of bucket to use when you process CredentialsRequest objects during installation:

By default, the CCO utility (ccoctl) stores the OIDC configuration files in a public S3 bucket and
uses the S3 URL as the public OIDC endpoint.

As an alternative, you can have the ccoctl utility store the OIDC configuration in a private S3
bucket that is accessed by the IAM identity provider through a public CloudFront distribution
URL.

19.5.1.2. AWS component secret formats

Using manual mode with the AWS Security Token Service (STS) changes the content of the AWS
credentials that are provided to individual OpenShift Container Platform components. Compare the
following secret formats:

AWS secret format using long-term credentials

The namespace for the component.

The name of the component secret.

AWS secret format using AWS STS

apiVersion: v1
kind: Secret
metadata:
 namespace: <target_namespace> 1
 name: <target_secret_name> 2
data:
 aws_access_key_id: <base64_encoded_access_key_id>
 aws_secret_access_key: <base64_encoded_secret_access_key>

apiVersion: v1
kind: Secret
metadata:
 namespace: <target_namespace> 1

OpenShift Container Platform 4.18 Authentication and authorization

202

1

2

3

4

The namespace for the component.

The name of the component secret.

The IAM role for the component.

The path to the service account token inside the pod. By convention, this is
/var/run/secrets/openshift/serviceaccount/token for OpenShift Container Platform components.

19.5.1.3. AWS component secret permissions requirements

OpenShift Container Platform components require the following permissions. These values are in the
CredentialsRequest custom resource (CR) for each component.

NOTE

These permissions apply to all resources. Unless specified, there are no request
conditions on these permissions.

Component Custom resource Required permissions for
services

Cluster CAPI Operator openshift-cluster-api-aws EC2

ec2:CreateTags

ec2:DescribeAvailabi
lityZones

ec2:DescribeDhcpOp
tions

ec2:DescribeImages

ec2:DescribeInstanc
es

ec2:DescribeInternet
Gateways

ec2:DescribeSecurity
Groups

ec2:DescribeSubnets

ec2:DescribeVpcs

ec2:DescribeNetwork

 name: <target_secret_name> 2
stringData:
 credentials: |-
 [default]
 sts_regional_endpoints = regional
 role_name: <operator_role_name> 3
 web_identity_token_file: <path_to_token> 4

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

203

ec2:DescribeNetwork
Interfaces

ec2:DescribeNetwork
InterfaceAttribute

ec2:ModifyNetworkIn
terfaceAttribute

ec2:RunInstances

ec2:TerminateInstan
ces

Elastic load balancing

elasticloadbalancing:
DescribeLoadBalanc
ers

elasticloadbalancing:
DescribeTargetGrou
ps

elasticloadbalancing:
DescribeTargetHealt
h

elasticloadbalancing:
RegisterInstancesWit
hLoadBalancer

elasticloadbalancing:
RegisterTargets

elasticloadbalancing:
DeregisterTargets

Identity and Access
Management (IAM)

iam:PassRole

iam:CreateServiceLin
kedRole

Key Management Service (KMS)

kms:Decrypt

kms:Encrypt

kms:GenerateDataKe
y

kms:GenerateDataKe
yWithoutPlainText

kms:DescribeKey

kms:RevokeGrant[1]

Component Custom resource Required permissions for
services

OpenShift Container Platform 4.18 Authentication and authorization

204

kms:CreateGrant [1]

kms:ListGrants [1]

Machine API Operator openshift-machine-api-aws EC2

ec2:CreateTags

ec2:DescribeAvailabi
lityZones

ec2:DescribeDhcpOp
tions

ec2:DescribeImages

ec2:DescribeInstanc
es

ec2:DescribeInstanc
eTypes

ec2:DescribeInternet
Gateways

ec2:DescribeSecurity
Groups

ec2:DescribeRegions

ec2:DescribeSubnets

ec2:DescribeVpcs

ec2:RunInstances

ec2:TerminateInstan
ces

Elastic load balancing

elasticloadbalancing:
DescribeLoadBalanc
ers

elasticloadbalancing:
DescribeTargetGrou
ps

elasticloadbalancing:
DescribeTargetHealt
h

elasticloadbalancing:
RegisterInstancesWit
hLoadBalancer

elasticloadbalancing:
RegisterTargets

Component Custom resource Required permissions for
services

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

205

elasticloadbalancing:
DeregisterTargets

Identity and Access
Management (IAM)

iam:PassRole

iam:CreateServiceLin
kedRole

Key Management Service (KMS)

kms:Decrypt

kms:Encrypt

kms:GenerateDataKe
y

kms:GenerateDataKe
yWithoutPlainText

kms:DescribeKey

kms:RevokeGrant[1]

kms:CreateGrant [1]

kms:ListGrants [1]

Cloud Credential Operator cloud-credential-operator-
iam-ro

Identity and Access
Management (IAM)

iam:GetUser

iam:GetUserPolicy

iam:ListAccessKeys

Component Custom resource Required permissions for
services

OpenShift Container Platform 4.18 Authentication and authorization

206

Cluster Image Registry Operator openshift-image-registry S3

s3:CreateBucket

s3:DeleteBucket

s3:PutBucketTaggin
g

s3:GetBucketTaggin
g

s3:PutBucketPublicA
ccessBlock

s3:GetBucketPublicA
ccessBlock

s3:PutEncryptionCon
figuration

s3:GetEncryptionCo
nfiguration

s3:PutLifecycleConfi
guration

s3:GetLifecycleConfi
guration

s3:GetBucketLocatio
n

s3:ListBucket

s3:GetObject

s3:PutObject

s3:DeleteObject

s3:ListBucketMultipa
rtUploads

s3:AbortMultipartUpl
oad

s3:ListMultipartUploa
dParts

Component Custom resource Required permissions for
services

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

207

Ingress Operator openshift-ingress Elastic load balancing

elasticloadbalancing:
DescribeLoadBalanc
ers

Route 53

route53:ListHostedZ
ones

route53:ListTagsFor
Resources

route53:ChangeReso
urceRecordSets

Tag

tag:GetResources

Security Token Service (STS)

sts:AssumeRole

Cluster Network Operator openshift-cloud-network-
config-controller-aws

EC2

ec2:DescribeInstanc
es

ec2:DescribeInstanc
eStatus

ec2:DescribeInstanc
eTypes

ec2:UnassignPrivateI
pAddresses

ec2:AssignPrivateIp
Addresses

ec2:UnassignIpv6Ad
dresses

ec2:AssignIpv6Addre
sses

ec2:DescribeSubnets

ec2:DescribeNetwork
Interfaces

aws-ebs-csi-driver-operator EC2

Component Custom resource Required permissions for
services

OpenShift Container Platform 4.18 Authentication and authorization

208

AWS Elastic Block Store CSI
Driver Operator

ec2:AttachVolume

ec2:CreateSnapshot

ec2:CreateTags

ec2:CreateVolume

ec2:DeleteSnapshot

ec2:DeleteTags

ec2:DeleteVolume

ec2:DescribeInstanc
es

ec2:DescribeSnapsh
ots

ec2:DescribeTags

ec2:DescribeVolume
s

ec2:DescribeVolume
sModifications

ec2:DetachVolume

ec2:ModifyVolume

ec2:DescribeAvailabi
lityZones

ec2:EnableFastSnap
shotRestores

Key Management Service (KMS)

kms:ReEncrypt*

kms:Decrypt

kms:Encrypt

kms:GenerateDataKe
y

kms:GenerateDataKe
yWithoutPlainText

kms:DescribeKey

kms:RevokeGrant[1]

kms:CreateGrant [1]

kms:ListGrants [1]

Component Custom resource Required permissions for
services

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

209

Component Custom resource Required permissions for
services1. Request condition: kms:GrantIsForAWSResource: true

19.5.1.4. OLM-managed Operator support for authentication with AWS STS

Certain Operators managed by the Operator Lifecycle Manager (OLM) on AWS clusters can use manual
mode with STS. These Operators authenticate with limited-privilege, short-term credentials that are
managed outside the cluster. To determine if an Operator supports authentication with AWS STS, see
the Operator description in OperatorHub.

Additional resources

CCO-based workflow for OLM-managed Operators with AWS STS

19.5.2. GCP Workload Identity

In manual mode with GCP Workload Identity, the individual OpenShift Container Platform cluster
components use the Google Cloud workload identity provider to allow components to impersonate
Google Cloud service accounts using short-term, limited-privilege credentials.

Additional resources

Configuring a Google Cloud cluster to use short-term credentials

19.5.2.1. Google Cloud Workload Identity authentication process

Requests for new and refreshed credentials are automated by using an appropriately configured OpenID
Connect (OIDC) identity provider combined with IAM service accounts. Service account tokens that are
trusted by Google Cloud are signed by OpenShift Container Platform and can be projected into a pod
and used for authentication. Tokens are refreshed after one hour.

The following diagram details the authentication flow between Google Cloud and the OpenShift
Container Platform cluster when using Google Cloud Workload Identity.

Figure 19.3. Google Cloud Workload Identity authentication flow

OpenShift Container Platform 4.18 Authentication and authorization

210

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#osdk-cco-aws-sts
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_google_cloud/#installing-gcp-with-short-term-creds_installing-gcp-customizations

1

2

3

Figure 19.3. Google Cloud Workload Identity authentication flow

19.5.2.2. Google Cloud component secret formats

Using manual mode with Google Cloud Workload Identity changes the content of the Google Cloud
credentials that are provided to individual OpenShift Container Platform components. Compare the
following secret content:

Google Cloud secret format

The namespace for the component.

The name of the component secret.

The Base64 encoded service account.

apiVersion: v1
kind: Secret
metadata:
 namespace: <target_namespace> 1
 name: <target_secret_name> 2
data:
 service_account.json: <service_account> 3

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

211

1

2

1

2

3

4

Content of the Base64 encoded service_account.json file using long-term credentials

The credential type is service_account.

The private RSA key that is used to authenticate to Google Cloud. This key must be kept secure
and is not rotated.

Content of the Base64 encoded service_account.json file using Google Cloud Workload
Identity

The credential type is external_account.

The target audience is the Google Cloud Workload Identity provider.

The resource URL of the service account that can be impersonated with these credentials.

The path to the service account token inside the pod. By convention, this is
/var/run/secrets/openshift/serviceaccount/token for OpenShift Container Platform components.

19.5.2.3. OLM-managed Operator support for authentication with GCP Workload Identity

Certain Operators managed by the Operator Lifecycle Manager (OLM) on Google Cloud clusters can

{
 "type": "service_account", 1
 "project_id": "<project_id>",
 "private_key_id": "<private_key_id>",
 "private_key": "<private_key>", 2
 "client_email": "<client_email_address>",
 "client_id": "<client_id>",
 "auth_uri": "https://accounts.google.com/o/oauth2/auth",
 "token_uri": "https://oauth2.googleapis.com/token",
 "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
 "client_x509_cert_url":
"https://www.googleapis.com/robot/v1/metadata/x509/<client_email_address>"
}

{
 "type": "external_account", 1
 "audience": "//iam.googleapis.com/projects/123456789/locations/global/workloadIdentityPools/test-
pool/providers/test-provider", 2
 "subject_token_type": "urn:ietf:params:oauth:token-type:jwt",
 "token_url": "https://sts.googleapis.com/v1/token",
 "service_account_impersonation_url": "https://iamcredentials.googleapis.com/v1/projects/-
/serviceAccounts/<client_email_address>:generateAccessToken", 3
 "credential_source": {
 "file": "<path_to_token>", 4
 "format": {
 "type": "text"
 }
 }
}

OpenShift Container Platform 4.18 Authentication and authorization

212

use manual mode with GCP Workload Identity. These Operators authenticate with limited-privilege,
short-term credentials that are managed outside the cluster. To determine if an Operator supports
authentication with GCP Workload Identity, see the Operator description in OperatorHub.

Additional resources

CCO-based workflow for OLM-managed Operators with Google Cloud Platform Workload
Identity

19.5.2.4. Application support for GCP Workload Identity service account tokens

Applications in customer workloads on OpenShift Container Platform clusters that use Google Cloud
Platform Workload Identity can authenticate by using GCP Workload Identity. To use this authentication
method with your applications, you must complete configuration steps on the cloud provider console
and your OpenShift Container Platform cluster.

Additional resources

Configuring GCP Workload Identity authentication for applications on Google Cloud

19.5.3. Microsoft Entra Workload ID

In manual mode with Microsoft Entra Workload ID, the individual OpenShift Container Platform cluster
components use the Workload ID provider to assign components short-term security credentials.

Additional resources

Configuring a global Microsoft Azure cluster to use short-term credentials

19.5.3.1. Microsoft Entra Workload ID authentication process

The following diagram details the authentication flow between Azure and the OpenShift Container
Platform cluster when using Microsoft Entra Workload ID.

Figure 19.4. Workload ID authentication flow

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

213

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#osdk-cco-gcp
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-pods-short-term-auth-configuring-gcp_nodes-pods-short-term-auth
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_azure/#installing-azure-with-short-term-creds_installing-azure-customizations

1

2

Figure 19.4. Workload ID authentication flow

19.5.3.2. Azure component secret formats

Using manual mode with Microsoft Entra Workload ID changes the content of the Azure credentials that
are provided to individual OpenShift Container Platform components. Compare the following secret
formats:

Azure secret format using long-term credentials

The namespace for the component.

The name of the component secret.

apiVersion: v1
kind: Secret
metadata:
 namespace: <target_namespace> 1
 name: <target_secret_name> 2
data:
 azure_client_id: <client_id> 3
 azure_client_secret: <client_secret> 4
 azure_region: <region>
 azure_resource_prefix: <resource_group_prefix> 5
 azure_resourcegroup: <resource_group_prefix>-rg 6
 azure_subscription_id: <subscription_id>
 azure_tenant_id: <tenant_id>
type: Opaque

OpenShift Container Platform 4.18 Authentication and authorization

214

3

4

5

6

1

2

3

4

The client ID of the Microsoft Entra ID identity that the component uses to authenticate.

The component secret that is used to authenticate with Microsoft Entra ID for the <client_id>
identity.

The resource group prefix.

The resource group. This value is formed by the <resource_group_prefix> and the suffix -rg.

Azure secret format using Microsoft Entra Workload ID

The namespace for the component.

The name of the component secret.

The client ID of the user-assigned managed identity that the component uses to authenticate.

The path to the mounted service account token file.

19.5.3.3. Azure component secret permissions requirements

OpenShift Container Platform components require the following permissions. These values are in the
CredentialsRequest custom resource (CR) for each component.

Component Custom resource Required permissions for
services

apiVersion: v1
kind: Secret
metadata:
 namespace: <target_namespace> 1
 name: <target_secret_name> 2
data:
 azure_client_id: <client_id> 3
 azure_federated_token_file: <path_to_token_file> 4
 azure_region: <region>
 azure_subscription_id: <subscription_id>
 azure_tenant_id: <tenant_id>
type: Opaque

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

215

Cloud Controller Manager
Operator

openshift-azure-cloud-
controller-manager Microsoft.Compute/vi

rtualMachines/read

Microsoft.Network/lo
adBalancers/read

Microsoft.Network/lo
adBalancers/write

Microsoft.Network/ne
tworkInterfaces/read

Microsoft.Network/ne
tworkSecurityGroups
/read

Microsoft.Network/ne
tworkSecurityGroups
/write

Microsoft.Network/pu
blicIPAddresses/join/
action

Microsoft.Network/pu
blicIPAddresses/read

Microsoft.Network/pu
blicIPAddresses/writ
e

Cluster CAPI Operator openshift-cluster-api-azure role: Contributor [1]

Machine API Operator openshift-machine-api-azure
Microsoft.Compute/a
vailabilitySets/delete

Microsoft.Compute/a
vailabilitySets/read

Microsoft.Compute/a
vailabilitySets/write

Microsoft.Compute/d
iskEncryptionSets/re
ad

Microsoft.Compute/d
isks/delete

Microsoft.Compute/g
alleries/images/versi
ons/read

Component Custom resource Required permissions for
services

OpenShift Container Platform 4.18 Authentication and authorization

216

Microsoft.Compute/s
kus/read

Microsoft.Compute/vi
rtualMachines/delete

Microsoft.Compute/vi
rtualMachines/extens
ions/delete

Microsoft.Compute/vi
rtualMachines/extens
ions/read

Microsoft.Compute/vi
rtualMachines/extens
ions/write

Microsoft.Compute/vi
rtualMachines/read

Microsoft.Compute/vi
rtualMachines/write

Microsoft.ManagedId
entity/userAssignedI
dentities/assign/actio
n

Microsoft.Network/ap
plicationSecurityGro
ups/read

Microsoft.Network/lo
adBalancers/backen
dAddressPools/join/a
ction

Microsoft.Network/lo
adBalancers/read

Microsoft.Network/lo
adBalancers/write

Microsoft.Network/ne
tworkInterfaces/delet
e

Microsoft.Network/ne
tworkInterfaces/join/
action

Microsoft.Network/ne
tworkInterfaces/load
Balancers/read

Microsoft.Network/ne
tworkInterfaces/read

Microsoft.Network/ne
tworkInterfaces/write

Component Custom resource Required permissions for
services

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

217

Microsoft.Network/ne
tworkSecurityGroups
/read

Microsoft.Network/ne
tworkSecurityGroups
/write

Microsoft.Network/pu
blicIPAddresses/dele
te

Microsoft.Network/pu
blicIPAddresses/join/
action

Microsoft.Network/pu
blicIPAddresses/read

Microsoft.Network/pu
blicIPAddresses/writ
e

Microsoft.Network/ro
uteTables/read

Microsoft.Network/vir
tualNetworks/delete

Microsoft.Network/vir
tualNetworks/read

Microsoft.Network/vir
tualNetworks/subnet
s/join/action

Microsoft.Network/vir
tualNetworks/subnet
s/read

Microsoft.Resources/
subscriptions/resour
ceGroups/read

Cluster Image Registry Operator openshift-image-registry-
azure

Data permissions

Microsoft.Storage/st
orageAccounts/blob
Services/containers/
blobs/delete

Microsoft.Storage/st
orageAccounts/blob
Services/containers/
blobs/write

Microsoft.Storage/st
orageAccounts/blob
Services/containers/

Component Custom resource Required permissions for
services

OpenShift Container Platform 4.18 Authentication and authorization

218

blobs/read

Microsoft.Storage/st
orageAccounts/blob
Services/containers/
blobs/add/action

Microsoft.Storage/st
orageAccounts/blob
Services/containers/
blobs/move/action

General permissions

Microsoft.Storage/st
orageAccounts/blob
Services/read

Microsoft.Storage/st
orageAccounts/blob
Services/containers/r
ead

Microsoft.Storage/st
orageAccounts/blob
Services/containers/
write

Microsoft.Storage/st
orageAccounts/blob
Services/generateUs
erDelegationKey/acti
on

Microsoft.Storage/st
orageAccounts/read

Microsoft.Storage/st
orageAccounts/write

Microsoft.Storage/st
orageAccounts/delet
e

Microsoft.Storage/st
orageAccounts/listK
eys/action

Microsoft.Resources/
tags/write

Component Custom resource Required permissions for
services

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

219

Ingress Operator openshift-ingress-azure
Microsoft.Network/dn
sZones/A/delete

Microsoft.Network/dn
sZones/A/write

Microsoft.Network/pr
ivateDnsZones/A/del
ete

Microsoft.Network/pr
ivateDnsZones/A/writ
e

Cluster Network Operator openshift-cloud-network-
config-controller-azure Microsoft.Network/ne

tworkInterfaces/read

Microsoft.Network/ne
tworkInterfaces/write

Microsoft.Compute/vi
rtualMachines/read

Microsoft.Network/vir
tualNetworks/read

Microsoft.Network/vir
tualNetworks/subnet
s/join/action

Microsoft.Network/lo
adBalancers/backen
dAddressPools/join/a
ction

Component Custom resource Required permissions for
services

OpenShift Container Platform 4.18 Authentication and authorization

220

Azure File CSI Driver Operator azure-file-csi-driver-operator
Microsoft.Network/ne
tworkSecurityGroups
/join/action

Microsoft.Network/vir
tualNetworks/subnet
s/read

Microsoft.Network/vir
tualNetworks/subnet
s/write

Microsoft.Storage/st
orageAccounts/delet
e

Microsoft.Storage/st
orageAccounts/fileSe
rvices/read

Microsoft.Storage/st
orageAccounts/fileSe
rvices/shares/delete

Microsoft.Storage/st
orageAccounts/fileSe
rvices/shares/read

Microsoft.Storage/st
orageAccounts/fileSe
rvices/shares/write

Microsoft.Storage/st
orageAccounts/listK
eys/action

Microsoft.Storage/st
orageAccounts/read

Microsoft.Storage/st
orageAccounts/write

Component Custom resource Required permissions for
services

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

221

Azure Disk CSI Driver Operator azure-disk-csi-driver-
operator Microsoft.Compute/d

isks/*

Microsoft.Compute/s
napshots/*

Microsoft.Compute/vi
rtualMachineScaleSe
ts/*/read

Microsoft.Compute/vi
rtualMachineScaleSe
ts/read

Microsoft.Compute/vi
rtualMachineScaleSe
ts/virtualMachines/wr
ite

Microsoft.Compute/vi
rtualMachines/*/read

Microsoft.Compute/vi
rtualMachines/write

Microsoft.Resources/
subscriptions/resour
ceGroups/read

Component Custom resource Required permissions for
services

1. This component requires a role rather than a set of permissions.

19.5.3.4. OLM-managed Operator support for authentication with Microsoft Entra
Workload ID

Certain Operators managed by the Operator Lifecycle Manager (OLM) on Azure clusters can use
manual mode with Microsoft Entra Workload ID. These Operators authenticate with short-term
credentials that are managed outside the cluster. To determine if an Operator supports authentication
with Workload ID, see the Operator description in OperatorHub.

Additional resources

CCO-based workflow for OLM-managed Operators with Microsoft Entra Workload ID

19.5.4. Additional resources

Configuring an AWS cluster to use short-term credentials

Configuring a Google Cloud cluster to use short-term credentials

Configuring a global Microsoft Azure cluster to use short-term credentials

OpenShift Container Platform 4.18 Authentication and authorization

222

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#osdk-cco-azure
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#installing-aws-with-short-term-creds_installing-aws-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_google_cloud/#installing-gcp-with-short-term-creds_installing-gcp-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_azure/#installing-azure-with-short-term-creds_installing-azure-customizations

Preparing to update a cluster with manually maintained credentials

CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS

223

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#preparing-manual-creds-update

	Table of Contents
	CHAPTER 1. OVERVIEW OF AUTHENTICATION AND AUTHORIZATION
	1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM AUTHENTICATION AND AUTHORIZATION
	1.2. ABOUT AUTHENTICATION IN OPENSHIFT CONTAINER PLATFORM
	1.3. ABOUT AUTHORIZATION IN OPENSHIFT CONTAINER PLATFORM

	CHAPTER 2. UNDERSTANDING AUTHENTICATION
	2.1. USERS
	2.2. GROUPS
	2.3. API AUTHENTICATION
	2.3.1. OpenShift Container Platform OAuth server
	2.3.1.1. OAuth token requests
	2.3.1.2. API impersonation
	2.3.1.3. Authentication metrics for Prometheus

	CHAPTER 3. CONFIGURING THE INTERNAL OAUTH SERVER
	3.1. OPENSHIFT CONTAINER PLATFORM OAUTH SERVER
	3.2. OAUTH TOKEN REQUEST FLOWS AND RESPONSES
	3.3. OPTIONS FOR THE INTERNAL OAUTH SERVER
	3.3.1. OAuth token duration options
	3.3.2. OAuth grant options

	3.4. CONFIGURING THE INTERNAL OAUTH SERVER’S TOKEN DURATION
	3.5. CONFIGURING TOKEN INACTIVITY TIMEOUT FOR THE INTERNAL OAUTH SERVER
	3.6. CUSTOMIZING THE INTERNAL OAUTH SERVER URL
	3.7. OAUTH SERVER METADATA
	3.8. TROUBLESHOOTING OAUTH API EVENTS

	CHAPTER 4. CONFIGURING OAUTH CLIENTS
	4.1. DEFAULT OAUTH CLIENTS
	4.2. REGISTERING AN ADDITIONAL OAUTH CLIENT
	4.3. CONFIGURING TOKEN INACTIVITY TIMEOUT FOR AN OAUTH CLIENT
	4.4. ADDITIONAL RESOURCES

	CHAPTER 5. MANAGING USER-OWNED OAUTH ACCESS TOKENS
	5.1. LISTING USER-OWNED OAUTH ACCESS TOKENS
	5.2. VIEWING THE DETAILS OF A USER-OWNED OAUTH ACCESS TOKEN
	5.3. DELETING USER-OWNED OAUTH ACCESS TOKENS
	5.4. ADDING UNAUTHENTICATED GROUPS TO CLUSTER ROLES

	CHAPTER 6. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION
	6.1. ABOUT IDENTITY PROVIDERS IN OPENSHIFT CONTAINER PLATFORM
	6.2. SUPPORTED IDENTITY PROVIDERS
	6.3. REMOVING THE KUBEADMIN USER
	6.4. IDENTITY PROVIDER PARAMETERS
	6.5. SAMPLE IDENTITY PROVIDER CR
	6.6. MANUALLY PROVISIONING A USER WHEN USING THE LOOKUP MAPPING METHOD

	CHAPTER 7. CONFIGURING IDENTITY PROVIDERS
	7.1. CONFIGURING AN HTPASSWD IDENTITY PROVIDER
	7.1.1. About identity providers in OpenShift Container Platform
	7.1.2. About htpasswd authentication
	7.1.3. Creating the htpasswd file
	7.1.3.1. Creating an htpasswd file using Linux
	7.1.3.2. Creating an htpasswd file using Windows

	7.1.4. Creating the htpasswd secret
	7.1.5. Sample htpasswd CR
	7.1.6. Adding an identity provider to your cluster
	7.1.7. Updating users for an htpasswd identity provider
	7.1.8. Configuring identity providers using the web console

	7.2. CONFIGURING A KEYSTONE IDENTITY PROVIDER
	7.2.1. About identity providers in OpenShift Container Platform
	7.2.2. About Keystone authentication
	7.2.3. Creating the secret
	7.2.4. Creating a config map
	7.2.5. Sample Keystone CR
	7.2.6. Adding an identity provider to your cluster

	7.3. CONFIGURING AN LDAP IDENTITY PROVIDER
	7.3.1. About identity providers in OpenShift Container Platform
	7.3.2. About LDAP authentication
	7.3.3. Creating the LDAP secret
	7.3.4. Creating a config map
	7.3.5. Sample LDAP CR
	7.3.6. Adding an identity provider to your cluster

	7.4. CONFIGURING A BASIC AUTHENTICATION IDENTITY PROVIDER
	7.4.1. About identity providers in OpenShift Container Platform
	7.4.2. About basic authentication
	7.4.3. Creating the secret
	7.4.4. Creating a config map
	7.4.5. Sample basic authentication CR
	7.4.6. Adding an identity provider to your cluster
	7.4.7. Example Apache HTTPD configuration for basic identity providers
	7.4.7.1. File requirements

	7.4.8. Basic authentication troubleshooting

	7.5. CONFIGURING A REQUEST HEADER IDENTITY PROVIDER
	7.5.1. About identity providers in OpenShift Container Platform
	7.5.2. About request header authentication
	7.5.2.1. SSPI connection support on Microsoft Windows

	7.5.3. Creating a config map
	7.5.4. Sample request header CR
	7.5.5. Adding an identity provider to your cluster
	7.5.6. Example Apache authentication configuration using request header
	7.5.6.1. Custom proxy configuration
	7.5.6.2. Configuring Apache authentication using request header

	7.6. CONFIGURING A GITHUB OR GITHUB ENTERPRISE IDENTITY PROVIDER
	7.6.1. About identity providers in OpenShift Container Platform
	7.6.2. About GitHub authentication
	7.6.3. Registering a GitHub application
	7.6.4. Creating the secret
	7.6.5. Creating a config map
	7.6.6. Sample GitHub CR
	7.6.7. Adding an identity provider to your cluster

	7.7. CONFIGURING A GITLAB IDENTITY PROVIDER
	7.7.1. About identity providers in OpenShift Container Platform
	7.7.2. About GitLab authentication
	7.7.3. Creating the secret
	7.7.4. Creating a config map
	7.7.5. Sample GitLab CR
	7.7.6. Adding an identity provider to your cluster

	7.8. CONFIGURING A GOOGLE IDENTITY PROVIDER
	7.8.1. About identity providers in OpenShift Container Platform
	7.8.2. About Google authentication
	7.8.3. Creating the secret
	7.8.4. Sample Google CR
	7.8.5. Adding an identity provider to your cluster

	7.9. CONFIGURING AN OPENID CONNECT IDENTITY PROVIDER
	7.9.1. About identity providers in OpenShift Container Platform
	7.9.2. About OpenID Connect authentication
	7.9.3. Supported OIDC providers
	7.9.4. Creating the secret
	7.9.5. Creating a config map
	7.9.6. Sample OpenID Connect CRs
	7.9.7. Adding an identity provider to your cluster
	7.9.8. Configuring identity providers using the web console

	CHAPTER 8. USING RBAC TO DEFINE AND APPLY PERMISSIONS
	8.1. RBAC OVERVIEW
	8.1.1. Default cluster roles
	8.1.2. Evaluating authorization
	8.1.2.1. Cluster role aggregation

	8.2. PROJECTS AND NAMESPACES
	8.3. DEFAULT PROJECTS
	8.4. VIEWING CLUSTER ROLES AND BINDINGS
	8.5. VIEWING LOCAL ROLES AND BINDINGS
	8.6. ADDING ROLES TO USERS
	8.7. CREATING A LOCAL ROLE
	8.8. CREATING A CLUSTER ROLE
	8.9. LOCAL ROLE BINDING COMMANDS
	8.10. CLUSTER ROLE BINDING COMMANDS
	8.11. CREATING A CLUSTER ADMIN
	8.12. CLUSTER ROLE BINDINGS FOR UNAUTHENTICATED GROUPS

	CHAPTER 9. REMOVING THE KUBEADMIN USER
	9.1. THE KUBEADMIN USER
	9.2. REMOVING THE KUBEADMIN USER

	CHAPTER 10. UNDERSTANDING AND CREATING SERVICE ACCOUNTS
	10.1. SERVICE ACCOUNTS OVERVIEW
	10.1.1. Automatically generated image pull secrets

	10.2. CREATING SERVICE ACCOUNTS
	10.3. GRANTING ROLES TO SERVICE ACCOUNTS

	CHAPTER 11. USING SERVICE ACCOUNTS IN APPLICATIONS
	11.1. SERVICE ACCOUNTS OVERVIEW
	11.2. DEFAULT SERVICE ACCOUNTS
	11.2.1. Default cluster service accounts
	11.2.2. Default project service accounts and roles
	11.2.3. Automatically generated image pull secrets

	11.3. CREATING SERVICE ACCOUNTS

	CHAPTER 12. USING A SERVICE ACCOUNT AS AN OAUTH CLIENT
	12.1. SERVICE ACCOUNTS AS OAUTH CLIENTS
	12.1.1. Redirect URIs for service accounts as OAuth clients

	CHAPTER 13. SCOPING TOKENS
	13.1. ABOUT SCOPING TOKENS
	13.1.1. User scopes
	13.1.2. Role scope

	13.2. ADDING UNAUTHENTICATED GROUPS TO CLUSTER ROLES

	CHAPTER 14. USING BOUND SERVICE ACCOUNT TOKENS
	14.1. ABOUT BOUND SERVICE ACCOUNT TOKENS
	14.2. CONFIGURING BOUND SERVICE ACCOUNT TOKENS USING VOLUME PROJECTION
	14.3. CREATING BOUND SERVICE ACCOUNT TOKENS OUTSIDE THE POD

	CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS
	15.1. ABOUT SECURITY CONTEXT CONSTRAINTS
	15.1.1. Default security context constraints
	15.1.2. Security context constraints settings
	15.1.3. Security context constraints strategies
	15.1.4. Controlling volumes
	15.1.5. Admission control
	15.1.6. Security context constraints prioritization

	15.2. ABOUT PRE-ALLOCATED SECURITY CONTEXT CONSTRAINTS VALUES
	15.3. EXAMPLE SECURITY CONTEXT CONSTRAINTS
	15.4. CREATING SECURITY CONTEXT CONSTRAINTS
	15.5. CONFIGURING A WORKLOAD TO REQUIRE A SPECIFIC SCC
	15.6. ROLE-BASED ACCESS TO SECURITY CONTEXT CONSTRAINTS
	15.7. REFERENCE OF SECURITY CONTEXT CONSTRAINTS COMMANDS
	15.7.1. Listing security context constraints
	15.7.2. Examining security context constraints
	15.7.3. Updating security context constraints
	15.7.4. Deleting security context constraints

	15.8. ADDITIONAL RESOURCES

	CHAPTER 16. UNDERSTANDING AND MANAGING POD SECURITY ADMISSION
	16.1. ABOUT POD SECURITY ADMISSION
	16.1.1. Pod security admission modes
	16.1.2. Pod security admission profiles
	16.1.3. Privileged namespaces
	16.1.4. Pod security admission and security context constraints

	16.2. ABOUT POD SECURITY ADMISSION SYNCHRONIZATION
	16.2.1. Pod security admission synchronization namespace exclusions
	16.2.1.1. Permanently disabled namespaces
	16.2.1.2. Initially disabled namespaces

	16.3. CONTROLLING POD SECURITY ADMISSION SYNCHRONIZATION
	16.4. CONFIGURING POD SECURITY ADMISSION FOR A NAMESPACE
	16.5. ABOUT POD SECURITY ADMISSION ALERTS
	16.5.1. Identifying pod security violations

	16.6. ADDITIONAL RESOURCES

	CHAPTER 17. IMPERSONATING THE SYSTEM:ADMIN USER
	17.1. API IMPERSONATION
	17.2. IMPERSONATING THE SYSTEM:ADMIN USER
	17.3. IMPERSONATING THE SYSTEM:ADMIN GROUP
	17.4. ADDING UNAUTHENTICATED GROUPS TO CLUSTER ROLES

	CHAPTER 18. SYNCING LDAP GROUPS
	18.1. ABOUT CONFIGURING LDAP SYNC
	18.1.1. About the RFC 2307 configuration file
	18.1.2. About the Active Directory configuration file
	18.1.3. About the augmented Active Directory configuration file

	18.2. RUNNING LDAP SYNC
	18.2.1. Syncing the LDAP server with OpenShift Container Platform
	18.2.2. Syncing OpenShift Container Platform groups with the LDAP server
	18.2.3. Syncing subgroups from the LDAP server with OpenShift Container Platform

	18.3. RUNNING A GROUP PRUNING JOB
	18.4. AUTOMATICALLY SYNCING LDAP GROUPS
	18.5. LDAP GROUP SYNC EXAMPLES
	18.5.1. Syncing groups using the RFC 2307 schema
	18.5.2. Syncing groups using the RFC2307 schema with user-defined name mappings
	18.5.3. Syncing groups using RFC 2307 with user-defined error tolerances
	18.5.4. Syncing groups using the Active Directory schema
	18.5.5. Syncing groups using the augmented Active Directory schema
	18.5.5.1. LDAP nested membership sync example

	18.6. LDAP SYNC CONFIGURATION SPECIFICATION
	18.6.1. v1.LDAPSyncConfig
	18.6.2. v1.StringSource
	18.6.3. v1.LDAPQuery
	18.6.4. v1.RFC2307Config
	18.6.5. v1.ActiveDirectoryConfig
	18.6.6. v1.AugmentedActiveDirectoryConfig

	CHAPTER 19. MANAGING CLOUD PROVIDER CREDENTIALS
	19.1. ABOUT THE CLOUD CREDENTIAL OPERATOR
	19.1.1. Modes
	19.1.2. Determining the Cloud Credential Operator mode
	19.1.2.1. Determining the Cloud Credential Operator mode by using the web console
	19.1.2.2. Determining the Cloud Credential Operator mode by using the CLI

	19.1.3. Default behavior
	19.1.4. Additional resources

	19.2. THE CLOUD CREDENTIAL OPERATOR IN MINT MODE
	19.2.1. Mint mode credentials management
	19.2.1.1. Mint mode permissions requirements
	19.2.1.2. Admin credentials root secret format

	19.2.2. Maintaining cloud provider credentials
	19.2.3. Additional resources

	19.3. THE CLOUD CREDENTIAL OPERATOR IN PASSTHROUGH MODE
	19.3.1. Passthrough mode permissions requirements
	19.3.1.1. Amazon Web Services (AWS) permissions
	19.3.1.2. Microsoft Azure permissions
	19.3.1.3. Google Cloud permissions
	19.3.1.4. Red Hat OpenStack Platform (RHOSP) permissions
	19.3.1.5. VMware vSphere permissions

	19.3.2. Admin credentials root secret format
	19.3.3. Passthrough mode credential maintenance
	19.3.3.1. Maintaining cloud provider credentials

	19.3.4. Reducing permissions after installation
	19.3.5. Additional resources

	19.4. MANUAL MODE WITH LONG-TERM CREDENTIALS FOR COMPONENTS
	19.4.1. User-managed credentials
	19.4.2. Additional resources

	19.5. MANUAL MODE WITH SHORT-TERM CREDENTIALS FOR COMPONENTS
	19.5.1. AWS Security Token Service
	19.5.1.1. AWS Security Token Service authentication process
	19.5.1.2. AWS component secret formats
	19.5.1.3. AWS component secret permissions requirements
	19.5.1.4. OLM-managed Operator support for authentication with AWS STS

	19.5.2. GCP Workload Identity
	19.5.2.1. Google Cloud Workload Identity authentication process
	19.5.2.2. Google Cloud component secret formats
	19.5.2.3. OLM-managed Operator support for authentication with GCP Workload Identity
	19.5.2.4. Application support for GCP Workload Identity service account tokens

	19.5.3. Microsoft Entra Workload ID
	19.5.3.1. Microsoft Entra Workload ID authentication process
	19.5.3.2. Azure component secret formats
	19.5.3.3. Azure component secret permissions requirements
	19.5.3.4. OLM-managed Operator support for authentication with Microsoft Entra Workload ID

	19.5.4. Additional resources

