
OpenShift Container Platform 4.18

Ingress and load balancing

Exposing services and managing external traffic in OpenShift Container Platform

Last Updated: 2025-09-18

OpenShift Container Platform 4.18 Ingress and load balancing

Exposing services and managing external traffic in OpenShift Container Platform

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document explains how to configure routes, manage ingress traffic, and implement various
load balancing solutions in OpenShift Container Platform.

. .

. .

Table of Contents

CHAPTER 1. CONFIGURING ROUTES
1.1. ROUTE CONFIGURATION

1.1.1. Creating an HTTP-based route
1.1.2. Creating a route for Ingress Controller sharding
1.1.3. Configuring route timeouts
1.1.4. HTTP Strict Transport Security

1.1.4.1. Enabling HTTP Strict Transport Security per-route
1.1.4.2. Disabling HTTP Strict Transport Security per-route
1.1.4.3. Enforcing HTTP Strict Transport Security per-domain

1.1.5. Throughput issue troubleshooting methods
1.1.6. Using cookies to keep route statefulness

1.1.6.1. Annotating a route with a cookie
1.1.7. Path-based routes
1.1.8. HTTP header configuration

1.1.8.1. Order of precedence
1.1.8.2. Special case headers

1.1.9. Setting or deleting HTTP request and response headers in a route
1.1.10. Route-specific annotations
1.1.11. Configuring the route admission policy
1.1.12. Creating a route through an Ingress object
1.1.13. Creating a route using the default certificate through an Ingress object
1.1.14. Creating a route using the destination CA certificate in the Ingress annotation
1.1.15. Configuring the OpenShift Container Platform Ingress Controller for dual-stack networking

1.2. SECURED ROUTES
1.2.1. Creating a re-encrypt route with a custom certificate
1.2.2. Creating an edge route with a custom certificate
1.2.3. Creating a passthrough route
1.2.4. Creating a route with externally managed certificate

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC
2.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW

2.1.1. Comparision: Fault tolerant access to external IP addresses
2.2. CONFIGURING EXTERNALIPS FOR SERVICES

2.2.1. Prerequisites
2.2.2. About ExternalIP
2.2.3. Configuration for ExternalIP
2.2.4. Restrictions on the assignment of an external IP address
2.2.5. Example policy objects
2.2.6. ExternalIP address block configuration

2.2.6.1. Example external IP configurations
2.2.7. Configure external IP address blocks for your cluster
2.2.8. Additional resources
2.2.9. Next steps

2.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
2.3.1. Using Ingress Controllers and routes
2.3.2. Prerequisites
2.3.3. Creating a project and service
2.3.4. Exposing the service by creating a route
2.3.5. Ingress sharding in OpenShift Container Platform
2.3.6. Ingress Controller sharding

2.3.6.1. Traditional sharding example

6
6
6
7
9

10
10
11

12
15
16
16
17
18
18

20
21
22
30
31

33
34
36
37
37
39
40
41

44
44
44
45
45
45
46
47
48
49
50
51
51
51
52
52
52
53
53
54
54
55

Table of Contents

1

2.3.6.2. Overlapped sharding example
2.3.6.3. Sharding the default Ingress Controller
2.3.6.4. Ingress sharding and DNS
2.3.6.5. Configuring Ingress Controller sharding by using route labels
2.3.6.6. Configuring Ingress Controller sharding by using namespace labels
2.3.6.7. Creating a route for Ingress Controller sharding
2.3.6.8. Additional resources

2.4. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY
2.4.1. Ingress Controller endpoint publishing strategy

2.4.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal
2.4.1.2. Configuring the Ingress Controller endpoint publishing scope to External
2.4.1.3. Adding a single NodePort service to an Ingress Controller

2.4.2. Additional resources
2.5. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER

2.5.1. Using a load balancer to get traffic into the cluster
2.5.2. Prerequisites
2.5.3. Creating a project and service
2.5.4. Exposing the service by creating a route
2.5.5. Creating a load balancer service

2.6. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS
2.6.1. Configuring Classic Load Balancer timeouts on AWS

2.6.1.1. Configuring route timeouts
2.6.1.2. Configuring Classic Load Balancer timeouts

2.6.2. Configuring ingress cluster traffic on AWS using a Network Load Balancer
2.6.2.1. Switching the Ingress Controller from using a Classic Load Balancer to a Network Load Balancer
2.6.2.2. Switching the Ingress Controller from using a Network Load Balancer to a Classic Load Balancer
2.6.2.3. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer
2.6.2.4. Configuring an Ingress Controller Network Load Balancer on an existing AWS cluster
2.6.2.5. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster
2.6.2.6. Choosing subnets while creating a LoadBalancerService Ingress Controller
2.6.2.7. Updating the subnets on an existing Ingress Controller
2.6.2.8. Configuring AWS Elastic IP (EIP) addresses for a Network Load Balancer (NLB)

2.6.3. Additional resources
2.7. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP

2.7.1. Prerequisites
2.7.2. Attaching an ExternalIP to a service
2.7.3. Additional resources

2.8. CONFIGURING INGRESS CLUSTER TRAFFIC BY USING A NODEPORT
2.8.1. Using a NodePort to get traffic into the cluster
2.8.2. Prerequisites
2.8.3. Creating a project and service
2.8.4. Exposing the service by creating a route
2.8.5. Additional resources

2.9. CONFIGURING INGRESS CLUSTER TRAFFIC USING LOAD BALANCER ALLOWED SOURCE RANGES

2.9.1. Configuring load balancer allowed source ranges
2.9.2. Migrating to load balancer allowed source ranges
2.9.3. Additional resources

2.10. PATCHING EXISTING INGRESS OBJECTS
2.10.1. Patching Ingress objects to resolve an ingressWithoutClassName alert

2.11. CONFIGURING AN INGRESS CONTROLLER FOR MANUAL DNS MANAGEMENT
2.11.1. Managed DNS management policy
2.11.2. Unmanaged DNS management policy

56
57
58
58
60
61

63
63
64
66
66
67
70
70
71
71
71
72
73
75
75
75
76
77
77
78
79
80
81

82
84
86
87
88
88
88
89
89
89
90
90
91

92

92
92
93
94
94
95
95
95
96

OpenShift Container Platform 4.18 Ingress and load balancing

2

. .

. .

2.11.3. Creating a custom Ingress Controller with the Unmanaged DNS management policy
2.11.4. Modifying an existing Ingress Controller
2.11.5. Additional resources

CHAPTER 3. LOAD BALANCING ON RHOSP
3.1. LIMITATIONS OF LOAD BALANCER SERVICES

3.1.1. Local external traffic policies
3.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING OCTAVIA

3.2.1. Scaling clusters by using Octavia
3.3. SERVICES FOR A USER-MANAGED LOAD BALANCER

3.3.1. Configuring a user-managed load balancer
3.4. SPECIFYING A FLOATING IP ADDRESS IN THE INGRESS CONTROLLER

CHAPTER 4. LOAD BALANCING WITH METALLB
4.1. CONFIGURING METALLB ADDRESS POOLS

4.1.1. About the IPAddressPool custom resource
4.1.2. Configuring an address pool
4.1.3. Configure MetalLB address pool for VLAN
4.1.4. Example address pool configurations

4.1.4.1. Example: IPv4 and CIDR ranges
4.1.4.2. Example: Assign IP addresses
4.1.4.3. Example: IPv4 and IPv6 addresses
4.1.4.4. Example: Assign IP address pools to services or namespaces

4.1.5. Next steps
4.2. ABOUT ADVERTISING FOR THE IP ADDRESS POOLS

4.2.1. About the BGPAdvertisement custom resource
4.2.2. Configuring MetalLB with a BGP advertisement and a basic use case

4.2.2.1. Example: Advertise a basic address pool configuration with BGP
4.2.3. Configuring MetalLB with a BGP advertisement and an advanced use case

4.2.3.1. Example: Advertise an advanced address pool configuration with BGP
4.2.4. Advertising an IP address pool from a subset of nodes
4.2.5. About the L2Advertisement custom resource
4.2.6. Configuring MetalLB with an L2 advertisement
4.2.7. Configuring MetalLB with a L2 advertisement and label
4.2.8. Configuring MetalLB with an L2 advertisement for selected interfaces
4.2.9. Configuring MetalLB with secondary networks

4.2.9.1. Enabling IP forwarding for a specific interface
4.2.9.2. Enabling IP forwarding globally

4.2.10. Additional resources
4.3. CONFIGURING METALLB BGP PEERS

4.3.1. About the BGP peer custom resource
4.3.2. Configuring a BGP peer
4.3.3. Configure a specific set of BGP peers for a given address pool
4.3.4. Exposing a service through a network VRF
4.3.5. Example BGP peer configurations

4.3.5.1. Example: Limit which nodes connect to a BGP peer
4.3.5.2. Example: Specify a BFD profile for a BGP peer
4.3.5.3. Example: Specify BGP peers for dual-stack networking

4.3.6. Next steps
4.4. CONFIGURING COMMUNITY ALIAS

4.4.1. About the community custom resource
4.4.2. Configuring MetalLB with a BGP advertisement and community alias

4.5. CONFIGURING METALLB BFD PROFILES

96
97
97

98
98
98
98
98
99

102
109

111
111
111

112
114
115
115
115
116
116
117
117
117
119
119

120
120
122
123
124
124
125
127
127
129
129
129
129
131
131

134
138
138
139
139
140
140
140
140
142

Table of Contents

3

4.5.1. About the BFD profile custom resource
4.5.2. Configuring a BFD profile
4.5.3. Next steps

4.6. CONFIGURING SERVICES TO USE METALLB
4.6.1. Request a specific IP address
4.6.2. Request an IP address from a specific pool
4.6.3. Accept any IP address
4.6.4. Share a specific IP address
4.6.5. Configuring a service with MetalLB

4.7. MANAGING SYMMETRIC ROUTING WITH METALLB
4.7.1. Challenges of managing symmetric routing with MetalLB
4.7.2. Overview of managing symmetric routing by using VRFs with MetalLB
4.7.3. Configuring symmetric routing by using VRFs with MetalLB

4.8. CONFIGURING THE INTEGRATION OF METALLB AND FRR-K8S
4.8.1. FRR configurations
4.8.2. Configuring the FRRConfiguration CRD

4.8.2.1. The routers field
4.8.2.2. The toAdvertise field
4.8.2.3. The toReceive field
4.8.2.4. The bgp field
4.8.2.5. The nodeSelector field

4.8.3. How FRR-K8s merges multiple configurations
4.8.3.1. Configuration conflicts
4.8.3.2. Merging

4.9. METALLB LOGGING, TROUBLESHOOTING, AND SUPPORT
4.9.1. Setting the MetalLB logging levels

4.9.1.1. FRRouting (FRR) log levels
4.9.2. Troubleshooting BGP issues
4.9.3. Troubleshooting BFD issues
4.9.4. MetalLB metrics for BGP and BFD
4.9.5. About collecting MetalLB data

142
144
144
144
145
145
146
146
147
149
149
149
150
155
156
157
157
157
158
159
160
164
164
165
165
165
169
170
173
174
175

OpenShift Container Platform 4.18 Ingress and load balancing

4

Table of Contents

5

1

CHAPTER 1. CONFIGURING ROUTES

1.1. ROUTE CONFIGURATION

1.1.1. Creating an HTTP-based route

Create a route to host your application at a public URL. The route can either be secure or unsecured,
depending on the network security configuration of your application. An HTTP-based route is an
unsecured route that uses the basic HTTP routing protocol and exposes a service on an unsecured
application port.

The following procedure describes how to create a simple HTTP-based route to a web application, using
the hello-openshift application as an example.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as an administrator.

You have a web application that exposes a port and a TCP endpoint listening for traffic on the
port.

Procedure

1. Create a project called hello-openshift by running the following command:

2. Create a pod in the project by running the following command:

3. Create a service called hello-openshift by running the following command:

4. Create an unsecured route to the hello-openshift application by running the following
command:

Verification

To verify that the route resource that you created, run the following command:

In this example, the route is named hello-openshift.

$ oc new-project hello-openshift

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

$ oc expose svc hello-openshift

$ oc get routes -o yaml <name of resource> 1

OpenShift Container Platform 4.18 Ingress and load balancing

6

1

2

Sample YAML definition of the created unsecured route

The host field is an alias DNS record that points to the service. This field can be any valid DNS
name, such as www.example.com. The DNS name must follow DNS952 subdomain conventions. If
not specified, a route name is automatically generated.

The targetPort field is the target port on pods that is selected by the service that this route points
to.

NOTE

To display your default ingress domain, run the following command:

1.1.2. Creating a route for Ingress Controller sharding

A route allows you to host your application at a URL. Ingress Controller sharding helps balance incoming
traffic load among a set of Ingress Controllers. It can also isolate traffic to a specific Ingress Controller.
For example, company A goes to one Ingress Controller and company B to another.

The following procedure describes how to create a route for Ingress Controller sharding, using the hello-
openshift application as an example.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as a project administrator.

You have a web application that exposes a port and an HTTP or TLS endpoint listening for
traffic on the port.

You have configured the Ingress Controller for sharding.

Procedure

1. Create a project called hello-openshift by running the following command:

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: hello-openshift
spec:
 host: www.example.com 1
 port:
 targetPort: 8080 2
 to:
 kind: Service
 name: hello-openshift

$ oc get ingresses.config/cluster -o jsonpath={.spec.domain}

$ oc new-project hello-openshift

CHAPTER 1. CONFIGURING ROUTES

7

1

2

2. Create a pod in the project by running the following command:

3. Create a service called hello-openshift by running the following command:

4. Create a route definition called hello-openshift-route.yaml:

YAML definition of the created route for sharding

Both the label key and its corresponding label value must match the ones specified in the
Ingress Controller. In this example, the Ingress Controller has the label key and value type:
sharded.

The route will be exposed using the value of the subdomain field. When you specify the
subdomain field, you must leave the hostname unset. If you specify both the host and
subdomain fields, then the route will use the value of the host field, and ignore the
subdomain field.

5. Use hello-openshift-route.yaml to create a route to the hello-openshift application by running
the following command:

Verification

Get the status of the route with the following command:

The resulting Route resource should look similar to the following:

Example output

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 labels:
 type: sharded 1
 name: hello-openshift-edge
 namespace: hello-openshift
spec:
 subdomain: hello-openshift 2
 tls:
 termination: edge
 to:
 kind: Service
 name: hello-openshift

$ oc -n hello-openshift create -f hello-openshift-route.yaml

$ oc -n hello-openshift get routes/hello-openshift-edge -o yaml

OpenShift Container Platform 4.18 Ingress and load balancing

8

1

2

3

The hostname the Ingress Controller, or router, uses to expose the route. The value of the
host field is automatically determined by the Ingress Controller, and uses its domain. In this
example, the domain of the Ingress Controller is <apps-
sharded.basedomain.example.net>.

The hostname of the Ingress Controller. If the hostname is not set, the route can use a
subdomain instead. When you specify a subdomain, you automatically use the domain of
the Ingress Controller that exposes the route. When a route is exposed by multiple Ingress
Controllers, the route is hosted at multiple URLs.

The name of the Ingress Controller. In this example, the Ingress Controller has the name
sharded.

1.1.3. Configuring route timeouts

You can configure the default timeouts for an existing route when you have services in need of a low
timeout, which is required for Service Level Availability (SLA) purposes, or a high timeout, for cases with
a slow back end.

IMPORTANT

If you configured a user-managed external load balancer in front of your OpenShift
Container Platform cluster, ensure that the timeout value for the user-managed external
load balancer is higher than the timeout value for the route. This configuration prevents
network congestion issues over the network that your cluster uses.

Prerequisites

You need a deployed Ingress Controller on a running cluster.

Procedure

1. Using the oc annotate command, add the timeout to the route:

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 labels:
 type: sharded
 name: hello-openshift-edge
 namespace: hello-openshift
spec:
 subdomain: hello-openshift
 tls:
 termination: edge
 to:
 kind: Service
 name: hello-openshift
status:
 ingress:
 - host: hello-openshift.<apps-sharded.basedomain.example.net> 1
 routerCanonicalHostname: router-sharded.<apps-sharded.basedomain.example.net> 2
 routerName: sharded 3

CHAPTER 1. CONFIGURING ROUTES

9

1 Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m),
hours (h), or days (d).

The following example sets a timeout of two seconds on a route named myroute:

1.1.4. HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) policy is a security enhancement, which signals to the browser
client that only HTTPS traffic is allowed on the route host. HSTS also optimizes web traffic by signaling
HTTPS transport is required, without using HTTP redirects. HSTS is useful for speeding up interactions
with websites.

When HSTS policy is enforced, HSTS adds a Strict Transport Security header to HTTP and HTTPS
responses from the site. You can use the insecureEdgeTerminationPolicy value in a route to redirect
HTTP to HTTPS. When HSTS is enforced, the client changes all requests from the HTTP URL to HTTPS
before the request is sent, eliminating the need for a redirect.

Cluster administrators can configure HSTS to do the following:

Enable HSTS per-route

Disable HSTS per-route

Enforce HSTS per-domain, for a set of domains, or use namespace labels in combination with
domains

IMPORTANT

HSTS works only with secure routes, either edge-terminated or re-encrypt. The
configuration is ineffective on HTTP or passthrough routes.

1.1.4.1. Enabling HTTP Strict Transport Security per-route

HTTP strict transport security (HSTS) is implemented in the HAProxy template and applied to edge and
re-encrypt routes that have the haproxy.router.openshift.io/hsts_header annotation.

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the OpenShift CLI (oc).

Procedure

To enable HSTS on a route, add the haproxy.router.openshift.io/hsts_header value to the
edge-terminated or re-encrypt route. You can use the oc annotate tool to do this by running
the following command. To properly run the command, ensure that the semicolon (;) in the

$ oc annotate route <route_name> \
 --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit> 1

$ oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s

OpenShift Container Platform 4.18 Ingress and load balancing

10

1

2

3

haproxy.router.openshift.io/hsts_header route annotation is also surrounded by double
quotation marks ("").

Example annotate command that sets the maximum age to 31536000 ms
(approximetly 8.5 hours)

Example route configured with an annotation

Required. max-age measures the length of time, in seconds, that the HSTS policy is in
effect. If set to 0, it negates the policy.

Optional. When included, includeSubDomains tells the client that all subdomains of the
host must have the same HSTS policy as the host.

Optional. When max-age is greater than 0, you can add preload in
haproxy.router.openshift.io/hsts_header to allow external services to include this site in
their HSTS preload lists. For example, sites such as Google can construct a list of sites that
have preload set. Browsers can then use these lists to determine which sites they can
communicate with over HTTPS, even before they have interacted with the site. Without
preload set, browsers must have interacted with the site over HTTPS, at least once, to get
the header.

Additional resources

Enabling HTTP/2 Ingress connectivity

1.1.4.2. Disabling HTTP Strict Transport Security per-route

To disable HTTP strict transport security (HSTS) per-route, you can set the max-age value in the route
annotation to 0.

Prerequisites

$ oc annotate route <route_name> -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header=max-age=31536000;\
includeSubDomains;preload"

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=31536000;includeSubDomains;preload
1 2 3

...
spec:
 host: def.abc.com
 tls:
 termination: "reencrypt"
 ...
 wildcardPolicy: "Subdomain"
...

CHAPTER 1. CONFIGURING ROUTES

11

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#nw-http2-haproxy_configuring-ingress

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the OpenShift CLI (oc).

Procedure

To disable HSTS, set the max-age value in the route annotation to 0, by entering the following
command:

TIP

You can alternatively apply the following YAML to create the config map:

Example of disabling HSTS per-route

To disable HSTS for every route in a namespace, enter the following command:

Verification

1. To query the annotation for all routes, enter the following command:

Example output

1.1.4.3. Enforcing HTTP Strict Transport Security per-domain

To enforce HTTP Strict Transport Security (HSTS) per-domain for secure routes, add a
requiredHSTSPolicies record to the Ingress spec to capture the configuration of the HSTS policy.

If you configure a requiredHSTSPolicy to enforce HSTS, then any newly created route must be
configured with a compliant HSTS policy annotation.

NOTE

$ oc annotate route <route_name> -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=0"

metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=0

$ oc annotate route --all -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=0"

$ oc get route --all-namespaces -o go-template='{{range .items}}{{if .metadata.annotations}}
{{$a := index .metadata.annotations "haproxy.router.openshift.io/hsts_header"}}{{$n :=
.metadata.name}}{{with $a}}Name: {{$n}} HSTS: {{$a}}{{"\n"}}{{else}}{{""}}{{end}}{{end}}
{{end}}'

Name: routename HSTS: max-age=0

OpenShift Container Platform 4.18 Ingress and load balancing

12

NOTE

To handle upgraded clusters with non-compliant HSTS routes, you can update the
manifests at the source and apply the updates.

NOTE

You cannot use oc expose route or oc create route commands to add a route in a
domain that enforces HSTS, because the API for these commands does not accept
annotations.

IMPORTANT

HSTS cannot be applied to insecure, or non-TLS routes, even if HSTS is requested for all
routes globally.

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the OpenShift CLI (oc).

Procedure

1. Edit the Ingress configuration YAML by running the following command and updating fields as
needed:

Example HSTS policy

$ oc edit ingresses.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: 'hello-openshift-default.apps.username.devcluster.openshift.com'
 requiredHSTSPolicies: 1
 - domainPatterns: 2
 - '*hello-openshift-default.apps.username.devcluster.openshift.com'
 - '*hello-openshift-default2.apps.username.devcluster.openshift.com'
 namespaceSelector: 3
 matchLabels:
 myPolicy: strict
 maxAge: 4
 smallestMaxAge: 1
 largestMaxAge: 31536000
 preloadPolicy: RequirePreload 5
 includeSubDomainsPolicy: RequireIncludeSubDomains 6
 - domainPatterns:
 - 'abc.example.com'
 - '*xyz.example.com'
 namespaceSelector:
 matchLabels: {}

CHAPTER 1. CONFIGURING ROUTES

13

1

2

3

4

5

6

Required. requiredHSTSPolicies are validated in order, and the first matching
domainPatterns applies.

Required. You must specify at least one domainPatterns hostname. Any number of
domains can be listed. You can include multiple sections of enforcing options for different
domainPatterns.

Optional. If you include namespaceSelector, it must match the labels of the project where
the routes reside, to enforce the set HSTS policy on the routes. Routes that only match the
namespaceSelector and not the domainPatterns are not validated.

Required. max-age measures the length of time, in seconds, that the HSTS policy is in
effect. This policy setting allows for a smallest and largest max-age to be enforced.

The largestMaxAge value must be between 0 and 2147483647. It can be left
unspecified, which means no upper limit is enforced.

The smallestMaxAge value must be between 0 and 2147483647. Enter 0 to disable
HSTS for troubleshooting, otherwise enter 1 if you never want HSTS to be disabled. It
can be left unspecified, which means no lower limit is enforced.

Optional. Including preload in haproxy.router.openshift.io/hsts_header allows external
services to include this site in their HSTS preload lists. Browsers can then use these lists to
determine which sites they can communicate with over HTTPS, before they have
interacted with the site. Without preload set, browsers need to interact at least once with
the site to get the header. preload can be set with one of the following:

RequirePreload: preload is required by the RequiredHSTSPolicy.

RequireNoPreload: preload is forbidden by the RequiredHSTSPolicy.

NoOpinion: preload does not matter to the RequiredHSTSPolicy.

Optional. includeSubDomainsPolicy can be set with one of the following:

RequireIncludeSubDomains: includeSubDomains is required by the
RequiredHSTSPolicy.

RequireNoIncludeSubDomains: includeSubDomains is forbidden by the
RequiredHSTSPolicy.

NoOpinion: includeSubDomains does not matter to the RequiredHSTSPolicy.

2. You can apply HSTS to all routes in the cluster or in a particular namespace by entering the oc
annotate command.

To apply HSTS to all routes in the cluster, enter the oc annotate command. For example:

 maxAge: {}
 preloadPolicy: NoOpinion
 includeSubDomainsPolicy: RequireNoIncludeSubDomains

$ oc annotate route --all --all-namespaces --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=31536000"

OpenShift Container Platform 4.18 Ingress and load balancing

14

1

To apply HSTS to all routes in a particular namespace, enter the oc annotate command.
For example:

Verification

You can review the HSTS policy you configured. For example:

To review the maxAge set for required HSTS policies, enter the following command:

To review the HSTS annotations on all routes, enter the following command:

Example output

1.1.5. Throughput issue troubleshooting methods

Sometimes applications deployed by using OpenShift Container Platform can cause network throughput
issues, such as unusually high latency between specific services.

If pod logs do not reveal any cause of the problem, use the following methods to analyze performance
issues:

Use a packet analyzer, such as ping or tcpdump to analyze traffic between a pod and its node.
For example, run the tcpdump tool on each pod while reproducing the behavior that led to the
issue. Review the captures on both sides to compare send and receive timestamps to analyze
the latency of traffic to and from a pod. Latency can occur in OpenShift Container Platform if a
node interface is overloaded with traffic from other pods, storage devices, or the data plane.

podip is the IP address for the pod. Run the oc get pod <pod_name> -o wide command
to get the IP address of a pod.

The tcpdump command generates a file at /tmp/dump.pcap containing all traffic between
these two pods. You can run the analyzer shortly before the issue is reproduced and stop the
analyzer shortly after the issue is finished reproducing to minimize the size of the file. You can
also run a packet analyzer between the nodes with:

$ oc annotate route --all -n my-namespace --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=31536000"

$ oc get clusteroperator/ingress -n openshift-ingress-operator -o jsonpath='{range
.spec.requiredHSTSPolicies[*]}{.spec.requiredHSTSPolicies.maxAgePolicy.largestMaxAge}
{"\n"}{end}'

$ oc get route --all-namespaces -o go-template='{{range .items}}{{if .metadata.annotations}}
{{$a := index .metadata.annotations "haproxy.router.openshift.io/hsts_header"}}{{$n :=
.metadata.name}}{{with $a}}Name: {{$n}} HSTS: {{$a}}{{"\n"}}{{else}}{{""}}{{end}}{{end}}
{{end}}'

Name: <_routename_> HSTS: max-age=31536000;preload;includeSubDomains

$ tcpdump -s 0 -i any -w /tmp/dump.pcap host <podip 1> && host <podip 2> 1

$ tcpdump -s 0 -i any -w /tmp/dump.pcap port 4789

CHAPTER 1. CONFIGURING ROUTES

15

https://access.redhat.com/solutions/4569211
https://access.redhat.com/solutions/5074041

Use a bandwidth measuring tool, such as iperf, to measure streaming throughput and UDP
throughput. Locate any bottlenecks by running the tool from the pods first, and then running it
from the nodes.

For information on installing and using iperf, see this Red Hat Solution .

In some cases, the cluster might mark the node with the router pod as unhealthy due to latency
issues. Use worker latency profiles to adjust the frequency that the cluster waits for a status
update from the node before taking action.

If your cluster has designated lower-latency and higher-latency nodes, configure the
spec.nodePlacement field in the Ingress Controller to control the placement of the router pod.

Additional resources

Latency spikes or temporary reduction in throughput to remote workers

Ingress Controller configuration parameters

1.1.6. Using cookies to keep route statefulness

OpenShift Container Platform provides sticky sessions, which enables stateful application traffic by
ensuring all traffic hits the same endpoint. However, if the endpoint pod terminates, whether through
restart, scaling, or a change in configuration, this statefulness can disappear.

OpenShift Container Platform can use cookies to configure session persistence. The ingress controller
selects an endpoint to handle any user requests, and creates a cookie for the session. The cookie is
passed back in the response to the request and the user sends the cookie back with the next request in
the session. The cookie tells the ingress controller which endpoint is handling the session, ensuring that
client requests use the cookie so that they are routed to the same pod.

NOTE

Cookies cannot be set on passthrough routes, because the HTTP traffic cannot be seen.
Instead, a number is calculated based on the source IP address, which determines the
backend.

If backends change, the traffic can be directed to the wrong server, making it less sticky.
If you are using a load balancer, which hides source IP, the same number is set for all
connections and traffic is sent to the same pod.

1.1.6.1. Annotating a route with a cookie

You can set a cookie name to overwrite the default, auto-generated one for the route. This allows the
application receiving route traffic to know the cookie name. Deleting the cookie can force the next
request to re-choose an endpoint. The result is that if a server is overloaded, that server tries to remove
the requests from the client and redistribute them.

Procedure

1. Annotate the route with the specified cookie name:

where:

$ oc annotate route <route_name> router.openshift.io/cookie_name="<cookie_name>"

OpenShift Container Platform 4.18 Ingress and load balancing

16

https://access.redhat.com/solutions/6129701
https://access.redhat.com/solutions/33103
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-edge-remote-workers-latency
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#nw-ingress-controller-configuration-parameters_configuring-ingress

<route_name>

Specifies the name of the route.

<cookie_name>

Specifies the name for the cookie.

For example, to annotate the route my_route with the cookie name my_cookie:

2. Capture the route hostname in a variable:

where:

<route_name>

Specifies the name of the route.

3. Save the cookie, and then access the route:

Use the cookie saved by the previous command when connecting to the route:

1.1.7. Path-based routes

Path-based routes specify a path component that can be compared against a URL, which requires that
the traffic for the route be HTTP based. Thus, multiple routes can be served using the same hostname,
each with a different path. Routers should match routes based on the most specific path to the least.

The following table shows example routes and their accessibility:

Table 1.1. Route availability

Route When Compared to Accessible

www.example.com/test www.example.com/test Yes

www.example.com No

www.example.com/test and
www.example.com

www.example.com/test Yes

www.example.com Yes

www.example.com www.example.com/text Yes (Matched by the host, not the
route)

www.example.com Yes

$ oc annotate route my_route router.openshift.io/cookie_name="my_cookie"

$ ROUTE_NAME=$(oc get route <route_name> -o jsonpath='{.spec.host}')

$ curl $ROUTE_NAME -k -c /tmp/cookie_jar

$ curl $ROUTE_NAME -k -b /tmp/cookie_jar

CHAPTER 1. CONFIGURING ROUTES

17

1

An unsecured route with a path

The path is the only added attribute for a path-based route.

NOTE

Path-based routing is not available when using passthrough TLS, as the router does not
terminate TLS in that case and cannot read the contents of the request.

1.1.8. HTTP header configuration

OpenShift Container Platform provides different methods for working with HTTP headers. When setting
or deleting headers, you can use specific fields in the Ingress Controller or an individual route to modify
request and response headers. You can also set certain headers by using route annotations. The various
ways of configuring headers can present challenges when working together.

NOTE

You can only set or delete headers within an IngressController or Route CR, you cannot
append them. If an HTTP header is set with a value, that value must be complete and not
require appending in the future. In situations where it makes sense to append a header,
such as the X-Forwarded-For header, use the
spec.httpHeaders.forwardedHeaderPolicy field, instead of spec.httpHeaders.actions.

1.1.8.1. Order of precedence

When the same HTTP header is modified both in the Ingress Controller and in a route, HAProxy
prioritizes the actions in certain ways depending on whether it is a request or response header.

For HTTP response headers, actions specified in the Ingress Controller are executed after the
actions specified in a route. This means that the actions specified in the Ingress Controller take
precedence.

For HTTP request headers, actions specified in a route are executed after the actions specified
in the Ingress Controller. This means that the actions specified in the route take precedence.

For example, a cluster administrator sets the X-Frame-Options response header with the value DENY in
the Ingress Controller using the following configuration:

Example IngressController spec

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-unsecured
spec:
 host: www.example.com
 path: "/test" 1
 to:
 kind: Service
 name: service-name

apiVersion: operator.openshift.io/v1

OpenShift Container Platform 4.18 Ingress and load balancing

18

A route owner sets the same response header that the cluster administrator set in the Ingress
Controller, but with the value SAMEORIGIN using the following configuration:

Example Route spec

When both the IngressController spec and Route spec are configuring the X-Frame-Options response
header, then the value set for this header at the global level in the Ingress Controller takes precedence,
even if a specific route allows frames. For a request header, the Route spec value overrides the
IngressController spec value.

This prioritization occurs because the haproxy.config file uses the following logic, where the Ingress
Controller is considered the front end and individual routes are considered the back end. The header
value DENY applied to the front end configurations overrides the same header with the value
SAMEORIGIN that is set in the back end:

Additionally, any actions defined in either the Ingress Controller or a route override values set using
route annotations.

kind: IngressController
...
spec:
 httpHeaders:
 actions:
 response:
 - name: X-Frame-Options
 action:
 type: Set
 set:
 value: DENY

apiVersion: route.openshift.io/v1
kind: Route
...
spec:
 httpHeaders:
 actions:
 response:
 - name: X-Frame-Options
 action:
 type: Set
 set:
 value: SAMEORIGIN

frontend public
 http-response set-header X-Frame-Options 'DENY'

frontend fe_sni
 http-response set-header X-Frame-Options 'DENY'

frontend fe_no_sni
 http-response set-header X-Frame-Options 'DENY'

backend be_secure:openshift-monitoring:alertmanager-main
 http-response set-header X-Frame-Options 'SAMEORIGIN'

CHAPTER 1. CONFIGURING ROUTES

19

1.1.8.2. Special case headers

The following headers are either prevented entirely from being set or deleted, or allowed under specific
circumstances:

Table 1.2. Special case header configuration options

Header name Configurable
using
IngressControll
er spec

Configurable
using Route spec

Reason for
disallowment

Configurable
using another
method

proxy No No The proxy HTTP
request header
can be used to
exploit vulnerable
CGI applications
by injecting the
header value into
the
HTTP_PROXY
environment
variable. The
proxy HTTP
request header is
also non-standard
and prone to error
during
configuration.

No

host No Yes When the host
HTTP request
header is set using
the
IngressControll
er CR, HAProxy
can fail when
looking up the
correct route.

No

strict-transport-
security

No No The strict-
transport-
security HTTP
response header is
already handled
using route
annotations and
does not need a
separate
implementation.

Yes: the
haproxy.router.
openshift.io/hst
s_header route
annotation

OpenShift Container Platform 4.18 Ingress and load balancing

20

cookie and set-
cookie

No No The cookies that
HAProxy sets are
used for session
tracking to map
client connections
to particular back-
end servers.
Allowing these
headers to be set
could interfere
with HAProxy’s
session affinity
and restrict
HAProxy’s
ownership of a
cookie.

Yes:

the
haproxy
.router.
openshi
ft.io/dis
able_co
okie
route
annotatio
n

the
haproxy
.router.
openshi
ft.io/coo
kie_nam
e route
annotatio
n

Header name Configurable
using
IngressControll
er spec

Configurable
using Route spec

Reason for
disallowment

Configurable
using another
method

1.1.9. Setting or deleting HTTP request and response headers in a route

You can set or delete certain HTTP request and response headers for compliance purposes or other
reasons. You can set or delete these headers either for all routes served by an Ingress Controller or for
specific routes.

For example, you might want to enable a web application to serve content in alternate locations for
specific routes if that content is written in multiple languages, even if there is a default global location
specified by the Ingress Controller serving the routes.

The following procedure creates a route that sets the Content-Location HTTP request header so that
the URL associated with the application, https://app.example.com, directs to the location
https://app.example.com/lang/en-us. Directing application traffic to this location means that anyone
using that specific route is accessing web content written in American English.

Prerequisites

You have installed the OpenShift CLI (oc).

You are logged into an OpenShift Container Platform cluster as a project administrator.

You have a web application that exposes a port and an HTTP or TLS endpoint listening for
traffic on the port.

Procedure

CHAPTER 1. CONFIGURING ROUTES

21

1

2

3

4

5

1. Create a route definition and save it in a file called app-example-route.yaml:

YAML definition of the created route with HTTP header directives

The list of actions you want to perform on the HTTP headers.

The type of header you want to change. In this case, a response header.

The name of the header you want to change. For a list of available headers you can set or
delete, see HTTP header configuration .

The type of action being taken on the header. This field can have the value Set or Delete.

When setting HTTP headers, you must provide a value. The value can be a string from a list
of available directives for that header, for example DENY, or it can be a dynamic value that
will be interpreted using HAProxy’s dynamic value syntax. In this case, the value is set to the
relative location of the content.

2. Create a route to your existing web application using the newly created route definition:

For HTTP request headers, the actions specified in the route definitions are executed after any actions
performed on HTTP request headers in the Ingress Controller. This means that any values set for those
request headers in a route will take precedence over the ones set in the Ingress Controller. For more
information on the processing order of HTTP headers, see HTTP header configuration .

1.1.10. Route-specific annotations

The Ingress Controller can set the default options for all the routes it exposes. An individual route can
override some of these defaults by providing specific configurations in its annotations. Red Hat does not
support adding a route annotation to an operator-managed route.

IMPORTANT

apiVersion: route.openshift.io/v1
kind: Route
...
spec:
 host: app.example.com
 tls:
 termination: edge
 to:
 kind: Service
 name: app-example
 httpHeaders:
 actions: 1
 response: 2
 - name: Content-Location 3
 action:
 type: Set 4
 set:
 value: /lang/en-us 5

$ oc -n app-example create -f app-example-route.yaml

OpenShift Container Platform 4.18 Ingress and load balancing

22

IMPORTANT

To create an allow list with multiple source IPs or subnets, use a space-delimited list. Any
other delimiter type causes the list to be ignored without a warning or error message.

Table 1.3. Route annotations

Variable Description Environment variable used as
default

haproxy.router.openshift.io/b
alance

Sets the load-balancing
algorithm. Available options are
random, source,

roundrobin[1], and leastconn.
The default value is source for
TLS passthrough routes. For all
other routes, the default is
random.

ROUTER_TCP_BALANCE_S
CHEME for passthrough routes.
Otherwise, use
ROUTER_LOAD_BALANCE_
ALGORITHM.

haproxy.router.openshift.io/d
isable_cookies

Disables the use of cookies to
track related connections. If set to
'true' or 'TRUE', the balance
algorithm is used to choose which
back-end serves connections for
each incoming HTTP request.

router.openshift.io/cookie_n
ame

Specifies an optional cookie to
use for this route. The name must
consist of any combination of
upper and lower case letters,
digits, "_", and "-". The default is
the hashed internal key name for
the route.

haproxy.router.openshift.io/p
od-concurrent-connections

Sets the maximum number of
connections that are allowed to a
backing pod from a router.
Note: If there are multiple pods,
each can have this many
connections. If you have multiple
routers, there is no coordination
among them, each may connect
this many times. If not set, or set
to 0, there is no limit.

haproxy.router.openshift.io/r
ate-limit-connections

Setting 'true' or 'TRUE' enables
rate limiting functionality which is
implemented through stick-tables
on the specific backend per route.
Note: Using this annotation
provides basic protection against
denial-of-service attacks.

CHAPTER 1. CONFIGURING ROUTES

23

haproxy.router.openshift.io/r
ate-limit-
connections.concurrent-tcp

Limits the number of concurrent
TCP connections made through
the same source IP address. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
denial-of-service attacks.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
http

Limits the rate at which a client
with the same source IP address
can make HTTP requests. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
denial-of-service attacks.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
tcp

Limits the rate at which a client
with the same source IP address
can make TCP connections. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
denial-of-service attacks.

haproxy.router.openshift.io/ti
meout

Sets a server-side timeout for the
route. (TimeUnits)

ROUTER_DEFAULT_SERVE
R_TIMEOUT

haproxy.router.openshift.io/ti
meout-tunnel

This timeout applies to a tunnel
connection, for example,
WebSocket over cleartext, edge,
reencrypt, or passthrough routes.
With cleartext, edge, or reencrypt
route types, this annotation is
applied as a timeout tunnel with
the existing timeout value. For the
passthrough route types, the
annotation takes precedence over
any existing timeout value set.

ROUTER_DEFAULT_TUNNE
L_TIMEOUT

ingresses.config/cluster
ingress.operator.openshift.io
/hard-stop-after

You can set either an
IngressController or the ingress
config . This annotation redeploys
the router and configures the HA
proxy to emit the haproxy hard-
stop-after global option, which
defines the maximum time
allowed to perform a clean soft-
stop.

ROUTER_HARD_STOP_AFT
ER

Variable Description Environment variable used as
default

OpenShift Container Platform 4.18 Ingress and load balancing

24

router.openshift.io/haproxy.h
ealth.check.interval

Sets the interval for the back-end
health checks. (TimeUnits)

ROUTER_BACKEND_CHEC
K_INTERVAL

haproxy.router.openshift.io/i
p_allowlist

Sets an allowlist for the route. The
allowlist is a space-separated list
of IP addresses and CIDR ranges
for the approved source
addresses. Requests from IP
addresses that are not in the
allowlist are dropped.

The maximum number of IP
addresses and CIDR ranges
directly visible in the

haproxy.config file is 61. [2]

haproxy.router.openshift.io/h
sts_header

Sets a Strict-Transport-Security
header for the edge terminated or
re-encrypt route.

haproxy.router.openshift.io/r
ewrite-target

Sets the rewrite path of the
request on the backend.

router.openshift.io/cookie-
same-site

Sets a value to restrict cookies.
The values are:

Lax: the browser does not send
cookies on cross-site requests,
but does send cookies when users
navigate to the origin site from an
external site. This is the default
browser behavior when the
SameSite value is not specified.

Strict: the browser sends cookies
only for same-site requests.

None: the browser sends cookies
for both cross-site and same-site
requests.

This value is applicable to re-
encrypt and edge routes only. For
more information, see the
SameSite cookies documentation.

Variable Description Environment variable used as
default

CHAPTER 1. CONFIGURING ROUTES

25

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

haproxy.router.openshift.io/s
et-forwarded-headers

Sets the policy for handling the
Forwarded and X-Forwarded-
For HTTP headers per route. The
values are:

append: appends the header,
preserving any existing header.
This is the default value.

replace: sets the header,
removing any existing header.

never: never sets the header, but
preserves any existing header.

if-none: sets the header if it is not
already set.

ROUTER_SET_FORWARDE
D_HEADERS

Variable Description Environment variable used as
default

1. By default, the router reloads every 5 s which resets the balancing connection across pods from
the beginning. As a result, the roundrobin state is not preserved across reloads. This algorithm
works best when pods have nearly identical computing capabilites and storage capacity. If your
application or service has continuously changing endpoints, for example, due to the use of a
CI/CD pipeline, uneven balancing can result. In this case, use a different algorithm.

2. If the number of IP addresses and CIDR ranges in an allowlist exceeds 61, they are written into a
separate file that is then referenced from the haproxy.config file. This file is stored in the
/var/lib/haproxy/router/allowlists folder.

NOTE

To ensure that the addresses are written to the allowlist, check that the full list of
CIDR ranges are listed in the Ingress Controller configuration file. The etcd
object size limit restricts how large a route annotation can be. Because of this, it
creates a threshold for the maximum number of IP addresses and CIDR ranges
that you can include in an allowlist.

NOTE

Environment variables cannot be edited.

Router timeout variables

TimeUnits are represented by a number followed by the unit: us *(microseconds), ms (milliseconds,
default), s (seconds), m (minutes), h *(hours), d (days).

The regular expression is: [1-9][0-9]*(us\|ms\|s\|m\|h\|d).

OpenShift Container Platform 4.18 Ingress and load balancing

26

Variable Default Description

ROUTER_BACKEND_CHECK_INTE
RVAL

5000ms Length of time between subsequent
liveness checks on back ends.

ROUTER_CLIENT_FIN_TIMEOUT 1s Controls the TCP FIN timeout period for
the client connecting to the route. If the
FIN sent to close the connection does not
answer within the given time, HAProxy
closes the connection. This is harmless if
set to a low value and uses fewer
resources on the router.

ROUTER_DEFAULT_CLIENT_TIME
OUT

30s Length of time that a client has to
acknowledge or send data.

ROUTER_DEFAULT_CONNECT_TI
MEOUT

5s The maximum connection time.

ROUTER_DEFAULT_SERVER_FIN_
TIMEOUT

1s Controls the TCP FIN timeout from the
router to the pod backing the route.

ROUTER_DEFAULT_SERVER_TIME
OUT

30s Length of time that a server has to
acknowledge or send data.

ROUTER_DEFAULT_TUNNEL_TIME
OUT

1h Length of time for TCP or WebSocket
connections to remain open. This timeout
period resets whenever HAProxy reloads.

ROUTER_SLOWLORIS_HTTP_KEE
PALIVE

300s Set the maximum time to wait for a new
HTTP request to appear. If this is set too
low, it can cause problems with browsers
and applications not expecting a small
keepalive value.

Some effective timeout values can be the
sum of certain variables, rather than the
specific expected timeout. For example,
ROUTER_SLOWLORIS_HTTP_KEE
PALIVE adjusts timeout http-keep-
alive. It is set to 300s by default, but
HAProxy also waits on tcp-request
inspect-delay, which is set to 5s. In this
case, the overall timeout would be 300s
plus 5s.

ROUTER_SLOWLORIS_TIMEOUT 10s Length of time the transmission of an
HTTP request can take.

CHAPTER 1. CONFIGURING ROUTES

27

1

RELOAD_INTERVAL 5s Allows the minimum frequency for the
router to reload and accept new changes.

ROUTER_METRICS_HAPROXY_TIM
EOUT

5s Timeout for the gathering of HAProxy
metrics.

Variable Default Description

A route setting custom timeout

Specifies the new timeout with HAProxy supported units (us, ms, s, m, h, d). If the unit is not
provided, ms is the default.

NOTE

Setting a server-side timeout value for passthrough routes too low can cause WebSocket
connections to timeout frequently on that route.

A route that allows only one specific IP address

A route that allows several IP addresses

A route that allows an IP address CIDR network

A route that allows both IP an address and IP address CIDR networks

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/timeout: 5500ms 1
...

metadata:
 annotations:
 haproxy.router.openshift.io/ip_allowlist: 192.168.1.10

metadata:
 annotations:
 haproxy.router.openshift.io/ip_allowlist: 192.168.1.10 192.168.1.11 192.168.1.12

metadata:
 annotations:
 haproxy.router.openshift.io/ip_allowlist: 192.168.1.0/24

metadata:
 annotations:
 haproxy.router.openshift.io/ip_allowlist: 180.5.61.153 192.168.1.0/24 10.0.0.0/8

OpenShift Container Platform 4.18 Ingress and load balancing

28

1

A route specifying a rewrite target

Sets / as rewrite path of the request on the backend.

Setting the haproxy.router.openshift.io/rewrite-target annotation on a route specifies that the Ingress
Controller should rewrite paths in HTTP requests using this route before forwarding the requests to the
backend application. The part of the request path that matches the path specified in spec.path is
replaced with the rewrite target specified in the annotation.

The following table provides examples of the path rewriting behavior for various combinations of
spec.path, request path, and rewrite target.

Table 1.4. rewrite-target examples

Route.spec.path Request path Rewrite target Forwarded request
path

/foo /foo / /

/foo /foo/ / /

/foo /foo/bar / /bar

/foo /foo/bar/ / /bar/

/foo /foo /bar /bar

/foo /foo/ /bar /bar/

/foo /foo/bar /baz /baz/bar

/foo /foo/bar/ /baz /baz/bar/

/foo/ /foo / N/A (request path does
not match route path)

/foo/ /foo/ / /

/foo/ /foo/bar / /bar

Certain special characters in haproxy.router.openshift.io/rewrite-target require special handling

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/rewrite-target: / 1
...

CHAPTER 1. CONFIGURING ROUTES

29

Certain special characters in haproxy.router.openshift.io/rewrite-target require special handling
because they must be escaped properly. Refer to the following table to understand how these
characters are handled.

Table 1.5. Special character handling

For character Use characters Notes

\# Avoid # because it terminates the
rewrite expression

% % or %% Avoid odd sequences such as
%%%

‘ \’ Avoid ‘ because it is ignored

All other valid URL characters can be used without escaping.

1.1.11. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

WARNING

Allowing claims across namespaces should only be enabled for clusters with trust
between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

Cluster administrator privileges.

Procedure

Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

Sample Ingress Controller configuration



$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed

OpenShift Container Platform 4.18 Ingress and load balancing

30

TIP

You can alternatively apply the following YAML to configure the route admission policy:

1.1.12. Creating a route through an Ingress object

Some ecosystem components have an integration with Ingress resources but not with route resources.
To cover this case, OpenShift Container Platform automatically creates managed route objects when an
Ingress object is created. These route objects are deleted when the corresponding Ingress objects are
deleted.

Procedure

1. Define an Ingress object in the OpenShift Container Platform console or by entering the oc
create command:

YAML Definition of an Ingress

...

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: "reencrypt" 1
 route.openshift.io/destination-ca-certificate-secret: secret-ca-cert 2
spec:
 rules:
 - host: www.example.com 3
 http:
 paths:
 - backend:
 service:
 name: frontend
 port:
 number: 443
 path: /
 pathType: Prefix
 tls:
 - hosts:
 - www.example.com
 secretName: example-com-tls-certificate

CHAPTER 1. CONFIGURING ROUTES

31

1

3

2

The route.openshift.io/termination annotation can be used to configure the
spec.tls.termination field of the Route as Ingress has no field for this. The accepted

When working with an Ingress object, you must specify an explicit hostname, unlike when
working with routes. You can use the <host_name>.<cluster_ingress_domain> syntax,
for example apps.openshiftdemos.com, to take advantage of the *.
<cluster_ingress_domain> wildcard DNS record and serving certificate for the cluster.
Otherwise, you must ensure that there is a DNS record for the chosen hostname.

a. If you specify the passthrough value in the route.openshift.io/termination
annotation, set path to '' and pathType to ImplementationSpecific in the spec:

The route.openshift.io/destination-ca-certificate-secret can be used on an Ingress
object to define a route with a custom destination certificate (CA). The annotation
references a kubernetes secret, secret-ca-cert that will be inserted into the generated
route.

a. To specify a route object with a destination CA from an ingress object, you must create
a kubernetes.io/tls or Opaque type secret with a certificate in PEM-encoded format
in the data.tls.crt specifier of the secret.

2. List your routes:

The result includes an autogenerated route whose name starts with frontend-:

If you inspect this route, it looks this:

YAML Definition of an autogenerated route

 spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: ''
 pathType: ImplementationSpecific
 backend:
 service:
 name: frontend
 port:
 number: 443

$ oc apply -f ingress.yaml

$ oc get routes

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
frontend-gnztq www.example.com frontend 443 reencrypt/Redirect None

apiVersion: route.openshift.io/v1
kind: Route
metadata:

OpenShift Container Platform 4.18 Ingress and load balancing

32

1.1.13. Creating a route using the default certificate through an Ingress object

If you create an Ingress object without specifying any TLS configuration, OpenShift Container Platform
generates an insecure route. To create an Ingress object that generates a secure, edge-terminated
route using the default ingress certificate, you can specify an empty TLS configuration as follows.

Prerequisites

You have a service that you want to expose.

You have access to the OpenShift CLI (oc).

Procedure

1. Create a YAML file for the Ingress object. In this example, the file is called example-
ingress.yaml:

YAML definition of an Ingress object

 name: frontend-gnztq
 ownerReferences:
 - apiVersion: networking.k8s.io/v1
 controller: true
 kind: Ingress
 name: frontend
 uid: 4e6c59cc-704d-4f44-b390-617d879033b6
spec:
 host: www.example.com
 path: /
 port:
 targetPort: https
 tls:
 certificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 insecureEdgeTerminationPolicy: Redirect
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 [...]
 -----END RSA PRIVATE KEY-----
 termination: reencrypt
 destinationCACertificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 to:
 kind: Service
 name: frontend

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 ...

CHAPTER 1. CONFIGURING ROUTES

33

1

1

2

3

Use this exact syntax to specify TLS without specifying a custom certificate.

2. Create the Ingress object by running the following command:

Verification

Verify that OpenShift Container Platform has created the expected route for the Ingress object
by running the following command:

Example output

The name of the route includes the name of the Ingress object followed by a random suffix.

In order to use the default certificate, the route should not specify spec.certificate.

The route should specify the edge termination policy.

1.1.14. Creating a route using the destination CA certificate in the Ingress annotation

The route.openshift.io/destination-ca-certificate-secret annotation can be used on an Ingress object
to define a route with a custom destination CA certificate.

Prerequisites

You may have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate

spec:
 rules:
 ...
 tls:
 - {} 1

$ oc create -f example-ingress.yaml

$ oc get routes -o yaml

apiVersion: v1
items:
- apiVersion: route.openshift.io/v1
 kind: Route
 metadata:
 name: frontend-j9sdd 1
 ...
 spec:
 ...
 tls: 2
 insecureEdgeTerminationPolicy: Redirect
 termination: edge 3
 ...

OpenShift Container Platform 4.18 Ingress and load balancing

34

1

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a separate destination CA certificate in a PEM-encoded file.

You must have a service that you want to expose.

Procedure

1. Create a secret for the destination CA certificate by entering the following command:

For example:

Example output

2. Add the route.openshift.io/destination-ca-certificate-secret to the Ingress annotations:

The annotation references a kubernetes secret.

3. The secret referenced in this annotation will be inserted into the generated route.

Example output

$ oc create secret generic dest-ca-cert --from-file=tls.crt=<file_path>

$ oc -n test-ns create secret generic dest-ca-cert --from-file=tls.crt=tls.crt

secret/dest-ca-cert created

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: "reencrypt"
 route.openshift.io/destination-ca-certificate-secret: secret-ca-cert 1
...

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: reencrypt
 route.openshift.io/destination-ca-certificate-secret: secret-ca-cert
spec:
...
 tls:
 insecureEdgeTerminationPolicy: Redirect
 termination: reencrypt
 destinationCACertificate: |
 -----BEGIN CERTIFICATE-----

CHAPTER 1. CONFIGURING ROUTES

35

1.1.15. Configuring the OpenShift Container Platform Ingress Controller for dual-
stack networking

If your OpenShift Container Platform cluster is configured for IPv4 and IPv6 dual-stack networking,
your cluster is externally reachable by OpenShift Container Platform routes.

The Ingress Controller automatically serves services that have both IPv4 and IPv6 endpoints, but you
can configure the Ingress Controller for single-stack or dual-stack services.

Prerequisites

You deployed an OpenShift Container Platform cluster on bare metal.

You installed the OpenShift CLI (oc).

Procedure

1. To have the Ingress Controller serve traffic over IPv4/IPv6 to a workload, you can create a
service YAML file or modify an existing service YAML file by setting the ipFamilies and
ipFamilyPolicy fields. For example:

Sample service YAML file

 [...]
 -----END CERTIFICATE-----
...

apiVersion: v1
kind: Service
metadata:
 creationTimestamp: yyyy-mm-ddT00:00:00Z
 labels:
 name: <service_name>
 manager: kubectl-create
 operation: Update
 time: yyyy-mm-ddT00:00:00Z
 name: <service_name>
 namespace: <namespace_name>
 resourceVersion: "<resource_version_number>"
 selfLink: "/api/v1/namespaces/<namespace_name>/services/<service_name>"
 uid: <uid_number>
spec:
 clusterIP: 172.30.0.0/16
 clusterIPs: 1
 - 172.30.0.0/16
 - <second_IP_address>
 ipFamilies: 2
 - IPv4
 - IPv6
 ipFamilyPolicy: RequireDualStack 3
 ports:
 - port: 8080
 protocol: TCP
 targetport: 8080

OpenShift Container Platform 4.18 Ingress and load balancing

36

1

2

3

In a dual-stack instance, there are two different clusterIPs provided.

For a single-stack instance, enter IPv4 or IPv6. For a dual-stack instance, enter both IPv4
and IPv6.

For a single-stack instance, enter SingleStack. For a dual-stack instance, enter
RequireDualStack.

These resources generate corresponding endpoints. The Ingress Controller now watches
endpointslices.

2. To view endpoints, enter the following command:

3. To view endpointslices, enter the following command:

Additional resources

Specifying an alternative cluster domain using the appsDomain option

1.2. SECURED ROUTES

Secure routes provide the ability to use several types of TLS termination to serve certificates to the
client. The following sections describe how to create re-encrypt, edge, and passthrough routes with
custom certificates.

IMPORTANT

If you create routes in Microsoft Azure through public endpoints, the resource names are
subject to restriction. You cannot create resources that use certain terms. For a list of
terms that Azure restricts, see Resolve reserved resource name errors in the Azure
documentation.

1.2.1. Creating a re-encrypt route with a custom certificate

You can configure a secure route using reencrypt TLS termination with a custom certificate by using the
oc create route command.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

 selector:
 name: <namespace_name>
 sessionAffinity: None
 type: ClusterIP
status:
 loadbalancer: {}

$ oc get endpoints

$ oc get endpointslices

CHAPTER 1. CONFIGURING ROUTES

37

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#nw-ingress-configuring-application-domain_configuring-ingress
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-reserved-resource-name

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a separate destination CA certificate in a PEM-encoded file.

You must have a service that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and reencrypt TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You must also specify a destination CA certificate to enable the Ingress Controller to trust the
service’s certificate. You may also specify a CA certificate if needed to complete the certificate chain.
Substitute the actual path names for tls.crt, tls.key, cacert.crt, and (optionally) ca.crt. Substitute the
name of the Service resource that you want to expose for frontend. Substitute the appropriate
hostname for www.example.com.

Create a secure Route resource using reencrypt TLS termination and a custom certificate:

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route reencrypt --service=frontend --cert=tls.crt --key=tls.key --dest-ca-
cert=destca.crt --ca-cert=ca.crt --hostname=www.example.com

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: reencrypt
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----

OpenShift Container Platform 4.18 Ingress and load balancing

38

See oc create route reencrypt --help for more options.

1.2.2. Creating an edge route with a custom certificate

You can configure a secure route using edge TLS termination with a custom certificate by using the oc
create route command. With an edge route, the Ingress Controller terminates TLS encryption before
forwarding traffic to the destination pod. The route specifies the TLS certificate and key that the
Ingress Controller uses for the route.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a service that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and edge TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You may also specify a CA certificate if needed to complete the certificate chain. Substitute
the actual path names for tls.crt, tls.key, and (optionally) ca.crt. Substitute the name of the service that
you want to expose for frontend. Substitute the appropriate hostname for www.example.com.

Create a secure Route resource using edge TLS termination and a custom certificate.

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

 [...]
 -----END CERTIFICATE-----
 destinationCACertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route edge --service=frontend --cert=tls.crt --key=tls.key --ca-cert=ca.crt --
hostname=www.example.com

apiVersion: route.openshift.io/v1
kind: Route
metadata:

CHAPTER 1. CONFIGURING ROUTES

39

See oc create route edge --help for more options.

1.2.3. Creating a passthrough route

You can configure a secure route using passthrough termination by using the oc create route
command. With passthrough termination, encrypted traffic is sent straight to the destination without
the router providing TLS termination. Therefore no key or certificate is required on the route.

Prerequisites

You must have a service that you want to expose.

Procedure

Create a Route resource:

If you examine the resulting Route resource, it should look similar to the following:

A Secured Route Using Passthrough Termination

 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: edge
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

$ oc create route passthrough route-passthrough-secured --service=frontend --port=8080

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-passthrough-secured 1
spec:
 host: www.example.com
 port:
 targetPort: 8080
 tls:
 termination: passthrough 2
 insecureEdgeTerminationPolicy: None 3

OpenShift Container Platform 4.18 Ingress and load balancing

40

1

2

3

The name of the object, which is limited to 63 characters.

The termination field is set to passthrough. This is the only required tls field.

Optional insecureEdgeTerminationPolicy. The only valid values are None, Redirect, or
empty for disabled.

The destination pod is responsible for serving certificates for the traffic at the endpoint. This is
currently the only method that can support requiring client certificates, also known as two-way
authentication.

1.2.4. Creating a route with externally managed certificate

IMPORTANT

Securing route with external certificates in TLS secrets is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

You can configure OpenShift Container Platform routes with third-party certificate management
solutions by using the .spec.tls.externalCertificate field of the route API. You can reference externally
managed TLS certificates via secrets, eliminating the need for manual certificate management. Using
the externally managed certificate reduces errors ensuring a smoother rollout of certificate updates,
enabling the OpenShift router to serve renewed certificates promptly.

NOTE

This feature applies to both edge routes and re-encrypt routes.

Prerequisites

You must enable the RouteExternalCertificate feature gate.

You have create permission on the routes/custom-host sub-resource, which is used for both
creating and updating routes.

You must have a secret containing a valid certificate/key pair in PEM-encoded format of type
kubernetes.io/tls, which includes both tls.key and tls.crt keys.

You must place the referenced secret in the same namespace as the route you want to secure.

Procedure

1. Create a role in the same namespace as the secret to allow the router service account read

 to:
 kind: Service
 name: frontend

CHAPTER 1. CONFIGURING ROUTES

41

https://access.redhat.com/support/offerings/techpreview/

1

2

1

1

1

1. Create a role in the same namespace as the secret to allow the router service account read
access by running the following command:

Specify the actual name of your secret.

Specify the namespace where both your secret and route reside.

2. Create a rolebinding in the same namespace as the secret and bind the router service account
to the newly created role by running the following command:

Specify the namespace where both your secret and route reside.

3. Create a YAML file that defines the route and specifies the secret containing your certificate
using the following example.

YAML definition of the secure route

Specify the actual name of your secret.

4. Create a route resource by running the following command:

Specify the generated YAML filename.

If the secret exists and has a certificate/key pair, the router will serve the generated certificate if all
prerequisites are met.

NOTE

$ oc create role secret-reader --verb=get,list,watch --resource=secrets --resource-name=
<secret-name> \ 1
--namespace=<current-namespace> 2

$ oc create rolebinding secret-reader-binding --role=secret-reader --
serviceaccount=openshift-ingress:router --namespace=<current-namespace> 1

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: myedge
 namespace: test
spec:
 host: myedge-test.apps.example.com
 tls:
 externalCertificate:
 name: <secret-name> 1
 termination: edge
 [...]
[...]

$ oc apply -f <route.yaml> 1

OpenShift Container Platform 4.18 Ingress and load balancing

42

NOTE

If .spec.tls.externalCertificate is not provided, the router will use default generated
certificates.

You cannot provide the .spec.tls.certificate field or the .spec.tls.key field when using
the .spec.tls.externalCertificate field.

Additional resources

For troubleshooting routes with externally managed certificates, check the OpenShift Container
Platform router pod logs for errors, see Investigating pod issues.

CHAPTER 1. CONFIGURING ROUTES

43

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/support/#investigating-pod-issues

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

2.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW

OpenShift Container Platform provides the following methods for communicating from outside the
cluster with services running in the cluster.

The methods are recommended, in order or preference:

If you have HTTP/HTTPS, use an Ingress Controller.

If you have a TLS-encrypted protocol other than HTTPS. For example, for TLS with the SNI
header, use an Ingress Controller.

Otherwise, use a Load Balancer, an External IP, or a NodePort.

Method Purpose

Use an Ingress Controller Allows access to HTTP/HTTPS traffic and TLS-
encrypted protocols other than HTTPS (for example,
TLS with the SNI header).

Automatically assign an external IP using a load
balancer service

Allows traffic to non-standard ports through an IP
address assigned from a pool. Most cloud platforms
offer a method to start a service with a load-balancer
IP address.

About MetalLB and the MetalLB Operator Allows traffic to a specific IP address or address from
a pool on the machine network. For bare-metal
installations or platforms that are like bare metal,
MetalLB provides a way to start a service with a
load-balancer IP address.

Manually assign an external IP to a service Allows traffic to non-standard ports through a
specific IP address.

Configure a NodePort Expose a service on all nodes in the cluster.

2.1.1. Comparision: Fault tolerant access to external IP addresses

For the communication methods that provide access to an external IP address, fault tolerant access to
the IP address is another consideration. The following features provide fault tolerant access to an
external IP address.

IP failover

IP failover manages a pool of virtual IP address for a set of nodes. It is implemented with Keepalived
and Virtual Router Redundancy Protocol (VRRP). IP failover is a layer 2 mechanism only and relies on
multicast. Multicast can have disadvantages for some networks.

MetalLB

MetalLB has a layer 2 mode, but it does not use multicast. Layer 2 mode has a disadvantage that it
transfers all traffic for an external IP address through one node.

OpenShift Container Platform 4.18 Ingress and load balancing

44

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#about-metallb

Manually assigning external IP addresses

You can configure your cluster with an IP address block that is used to assign external IP addresses
to services. By default, this feature is disabled. This feature is flexible, but places the largest burden
on the cluster or network administrator. The cluster is prepared to receive traffic that is destined for
the external IP, but each customer has to decide how they want to route traffic to nodes.

2.2. CONFIGURING EXTERNALIPS FOR SERVICES

As a cluster administrator, you can select an IP address block that is external to the cluster that can send
traffic to services in the cluster.

This functionality is generally most useful for clusters installed on bare-metal hardware.

2.2.1. Prerequisites

Your network infrastructure must route traffic for the external IP addresses to your cluster.

2.2.2. About ExternalIP

For non-cloud environments, OpenShift Container Platform supports the use of the ExternalIP facility
to specify external IP addresses in the spec.externalIPs[] parameter of the Service object. A service
configured with an ExternalIP functions similarly to a service with type=NodePort, whereby you traffic
directs to a local node for load balancing.

IMPORTANT

For cloud environments, use the load balancer services for automatic deployment of a
cloud load balancer to target the endpoints of a service.

After you specify a value for the parameter, OpenShift Container Platform assigns an additional virtual
IP address to the service. The IP address can exist outside of the service network that you defined for
your cluster.

WARNING

Because ExternalIP is disabled by default, enabling the ExternalIP functionality
might introduce security risks for the service, because in-cluster traffic to an
external IP address is directed to that service. This configuration means that cluster
users could intercept sensitive traffic destined for external resources.

You can use either a MetalLB implementation or an IP failover deployment to attach an ExternalIP
resource to a service in the following ways:

Automatic assignment of an external IP

OpenShift Container Platform automatically assigns an IP address from the autoAssignCIDRs CIDR
block to the spec.externalIPs[] array when you create a Service object with
spec.type=LoadBalancer set. For this configuration, OpenShift Container Platform implements a



CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

45

cloud version of the load balancer service type and assigns IP addresses to the services. Automatic
assignment is disabled by default and must be configured by a cluster administrator as described in
the "Configuration for ExternalIP" section.

Manual assignment of an external IP

OpenShift Container Platform uses the IP addresses assigned to the spec.externalIPs[] array when
you create a Service object. You cannot specify an IP address that is already in use by another
service.

After using either the MetalLB implementation or an IP failover deployment to host external IP address
blocks, you must configure your networking infrastructure to ensure that the external IP address blocks
are routed to your cluster. This configuration means that the IP address is not configured in the network
interfaces from nodes. To handle the traffic, you must configure the routing and access to the external
IP by using a method, such as static Address Resolution Protocol (ARP) entries.

OpenShift Container Platform extends the ExternalIP functionality in Kubernetes by adding the
following capabilities:

Restrictions on the use of external IP addresses by users through a configurable policy

Allocation of an external IP address automatically to a service upon request

2.2.3. Configuration for ExternalIP

The following parameters in the Network.config.openshift.io custom resource (CR) govern the use of
an external IP address in OpenShift Container Platform:

spec.externalIP.autoAssignCIDRs defines an IP address block used by the load balancer when
choosing an external IP address for the service. OpenShift Container Platform supports only a
single IP address block for automatic assignment. This configuration requires less steps than
manually assigning ExternalIPs to services, which requires managing the port space of a limited
number of shared IP addresses. If you enable automatic assignment, the Cloud Controller
Manager Operator allocates an external IP address to a Service object with
spec.type=LoadBalancer defind in its configuration.

spec.externalIP.policy defines the permissible IP address blocks when manually specifying an
IP address. OpenShift Container Platform does not apply policy rules to IP address blocks that
you defined in the spec.externalIP.autoAssignCIDRs parameter.

If routed correctly, external traffic from the configured external IP address block can reach service
endpoints through any TCP or UDP port that the service exposes.

IMPORTANT

As a cluster administrator, you must configure routing to externalIPs. You must also
ensure that the IP address block you assign terminates at one or more nodes in your
cluster. For more information, see Kubernetes External IPs .

OpenShift Container Platform supports both automatic and manual IP address assignment. This
support guarantees that each address gets assigned to a maximum of one service and that each service
can expose its chosen ports regardless of the ports exposed by other services.

NOTE

OpenShift Container Platform 4.18 Ingress and load balancing

46

https://kubernetes.io/docs/concepts/services-networking/service/#external-ips

NOTE

To use IP address blocks defined by autoAssignCIDRs in OpenShift Container Platform,
you must configure the necessary IP address assignment and routing for your host
network.

The following YAML describes a service with an external IP address configured:

Example Service object with spec.externalIPs[] set

If you run a private cluster on a cloud-provider platform, you can change the publishing scope to
internal for the load balancer of the Ingress Controller by running the following patch command:

After you run this command, the Ingress Controller restricts access to routes for OpenShift Container
Platform applications to internal networks only.

2.2.4. Restrictions on the assignment of an external IP address

As a cluster administrator, you can specify IP address blocks to allow and to reject IP addresses for a
service. Restrictions apply only to users without cluster-admin privileges. A cluster administrator can
always set the service spec.externalIPs[] field to any IP address.

You configure an IP address policy by specifying Classless Inter-Domain Routing (CIDR) address blocks
for the spec.ExternalIP.policy parameter in the policy object.

Example in JSON form of a policy object and its CIDR parameters

apiVersion: v1
kind: Service
metadata:
 name: http-service
spec:
 clusterIP: 172.30.163.110
 externalIPs:
 - 192.168.132.253
 externalTrafficPolicy: Cluster
 ports:
 - name: highport
 nodePort: 31903
 port: 30102
 protocol: TCP
 targetPort: 30102
 selector:
 app: web
 sessionAffinity: None
 type: LoadBalancer
status:
 loadBalancer:
 ingress:
 - ip: 192.168.132.253
...

$ oc -n openshift-ingress-operator patch ingresscontrollers/ingress-controller-with-nlb --type=merge --
patch='{"spec":{"endpointPublishingStrategy":{"loadBalancer":{"scope":"Internal"}}}}'

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

47

When configuring policy restrictions, the following rules apply:

If policy is set to {}, creating a Service object with spec.ExternalIPs[] results in a failed service.
This setting is the default for OpenShift Container Platform. The same behavior exists for
policy: null.

If policy is set and either policy.allowedCIDRs[] or policy.rejectedCIDRs[] is set, the following
rules apply:

If allowedCIDRs[] and rejectedCIDRs[] are both set, rejectedCIDRs[] has precedence
over allowedCIDRs[].

If allowedCIDRs[] is set, creating a Service object with spec.ExternalIPs[] succeeds only if
the specified IP addresses are allowed.

If rejectedCIDRs[] is set, creating a Service object with spec.ExternalIPs[] succeeds only
if the specified IP addresses are not rejected.

2.2.5. Example policy objects

The examples in this section show different spec.externalIP.policy configurations.

In the following example, the policy prevents OpenShift Container Platform from creating any
service with a specified external IP address.

Example policy to reject any value specified for Service object spec.externalIPs[]

In the following example, both the allowedCIDRs and rejectedCIDRs fields are set.

Example policy that includes both allowed and rejected CIDR blocks

{
 "policy": {
 "allowedCIDRs": [],
 "rejectedCIDRs": []
 }
}

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy: {}
...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy:

OpenShift Container Platform 4.18 Ingress and load balancing

48

1

2

In the following example, policy is set to {}. With this configuration, using the oc get
networks.config.openshift.io -o yaml command to view the configuration means policy
parameter does not show on the command output. The same behavior exists for policy: null.

Example policy to allow any value specified for Service object spec.externalIPs[]

2.2.6. ExternalIP address block configuration

The configuration for ExternalIP address blocks is defined by a Network custom resource (CR) named
cluster. The Network CR is part of the config.openshift.io API group.

IMPORTANT

During cluster installation, the Cluster Version Operator (CVO) automatically creates a
Network CR named cluster. Creating any other CR objects of this type is not supported.

The following YAML describes the ExternalIP configuration:

Network.config.openshift.io CR named cluster

Defines the IP address block in CIDR format that is available for automatic assignment of external
IP addresses to a service. Only a single IP address range is allowed.

Defines restrictions on manual assignment of an IP address to a service. If no restrictions are
defined, specifying the spec.externalIP field in a Service object is not allowed. By default, no
restrictions are defined.

 allowedCIDRs:
 - 172.16.66.10/23
 rejectedCIDRs:
 - 172.16.66.10/24
...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 externalIP:
 policy: {}
...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 autoAssignCIDRs: [] 1
 policy: 2
 ...

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

49

1

2

restrictions are defined.

The following YAML describes the fields for the policy stanza:

Network.config.openshift.io policy stanza

A list of allowed IP address ranges in CIDR format.

A list of rejected IP address ranges in CIDR format.

2.2.6.1. Example external IP configurations

Several possible configurations for external IP address pools are displayed in the following examples:

The following YAML describes a configuration that enables automatically assigned external IP
addresses:

Example configuration with spec.externalIP.autoAssignCIDRs set

The following YAML configures policy rules for the allowed and rejected CIDR ranges:

Example configuration with spec.externalIP.policy set

policy:
 allowedCIDRs: [] 1
 rejectedCIDRs: [] 2

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP:
 autoAssignCIDRs:
 - 192.168.132.254/29

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP:
 policy:
 allowedCIDRs:
 - 192.168.132.0/29
 - 192.168.132.8/29
 rejectedCIDRs:
 - 192.168.132.7/32

OpenShift Container Platform 4.18 Ingress and load balancing

50

1

2.2.7. Configure external IP address blocks for your cluster

As a cluster administrator, you can configure the following ExternalIP settings:

An ExternalIP address block used by OpenShift Container Platform to automatically populate
the spec.clusterIP field for a Service object.

A policy object to restrict what IP addresses may be manually assigned to the spec.clusterIP
array of a Service object.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Optional: To display the current external IP configuration, enter the following command:

2. To edit the configuration, enter the following command:

3. Modify the ExternalIP configuration, as in the following example:

Specify the configuration for the externalIP stanza.

4. To confirm the updated ExternalIP configuration, enter the following command:

2.2.8. Additional resources

Configuring IP failover

About MetalLB and the MetalLB Operator

2.2.9. Next steps

Configuring ingress cluster traffic for a service external IP

$ oc describe networks.config cluster

$ oc edit networks.config cluster

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP: 1
 ...

$ oc get networks.config cluster -o go-template='{{.spec.externalIP}}{{"\n"}}'

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

51

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/configuring_network_settings/#configuring-ipfailover
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#about-metallb

2.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS
CONTROLLER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses an Ingress Controller.

2.3.1. Using Ingress Controllers and routes

The Ingress Operator manages Ingress Controllers and wildcard DNS.

Using an Ingress Controller is the most common way to allow external access to an OpenShift Container
Platform cluster.

An Ingress Controller is configured to accept external requests and proxy them based on the configured
routes. This is limited to HTTP, HTTPS using SNI, and TLS using SNI, which is sufficient for web
applications and services that work over TLS with SNI.

Work with your administrator to configure an Ingress Controller to accept external requests and proxy
them based on the configured routes.

The administrator can create a wildcard DNS entry and then set up an Ingress Controller. Then, you can
work with the edge Ingress Controller without having to contact the administrators.

By default, every Ingress Controller in the cluster can admit any route created in any project in the
cluster.

The Ingress Controller:

Has two replicas by default, which means it should be running on two worker nodes.

Can be scaled up to have more replicas on more nodes.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

2.3.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin username

You have an OpenShift Container Platform cluster with at least one master and at least one
node and a system outside the cluster that has network access to the cluster. This procedure
assumes that the external system is on the same subnet as the cluster. The additional
networking required for external systems on a different subnet is out-of-scope for this topic.

OpenShift Container Platform 4.18 Ingress and load balancing

52

2.3.3. Creating a project and service

If the project and service that you want to expose does not exist, create the project and then create the
service.

If the project and service already exists, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the OpenShift CLI (oc) and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

NOTE

By default, the new service does not have an external IP address.

2.3.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Prerequisites

You logged into OpenShift Container Platform.

Procedure

1. Log in to the project where the service you want to expose is located:

2. Run the oc expose service command to expose the route:

$ oc new-project <project_name>

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n <project_name>

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

$ oc project <project_name>

$ oc expose service nodejs-ex

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

53

Example output

3. To verify that the service is exposed, you can use a tool, such as curl to check that the service is
accessible from outside the cluster.

a. To find the hostname of the route, enter the following command:

Example output

b. To check that the host responds to a GET request, enter the following command:

Example curl command

Example output

2.3.5. Ingress sharding in OpenShift Container Platform

In OpenShift Container Platform, an Ingress Controller can serve all routes, or it can serve a subset of
routes. By default, the Ingress Controller serves any route created in any namespace in the cluster. You
can add additional Ingress Controllers to your cluster to optimize routing by creating shards, which are
subsets of routes based on selected characteristics. To mark a route as a member of a shard, use labels
in the route or namespace metadata field. The Ingress Controller uses selectors, also known as a
selection expression, to select a subset of routes from the entire pool of routes to serve.

Ingress sharding is useful in cases where you want to load balance incoming traffic across multiple
Ingress Controllers, when you want to isolate traffic to be routed to a specific Ingress Controller, or for a
variety of other reasons described in the next section.

By default, each route uses the default domain of the cluster. However, routes can be configured to use
the domain of the router instead.

2.3.6. Ingress Controller sharding

You can use Ingress sharding, also known as router sharding, to distribute a set of routes across multiple
routers by adding labels to routes, namespaces, or both. The Ingress Controller uses a corresponding
set of selectors to admit only the routes that have a specified label. Each Ingress shard comprises the
routes that are filtered by using a given selection expression.

As the primary mechanism for traffic to enter the cluster, the demands on the Ingress Controller can be
significant. As a cluster administrator, you can shard the routes to:

route.route.openshift.io/nodejs-ex exposed

$ oc get route

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
nodejs-ex nodejs-ex-myproject.example.com nodejs-ex 8080-tcp None

$ curl --head nodejs-ex-myproject.example.com

HTTP/1.1 200 OK
...

OpenShift Container Platform 4.18 Ingress and load balancing

54

Balance Ingress Controllers, or routers, with several routes to accelerate responses to changes.

Assign certain routes to have different reliability guarantees than other routes.

Allow certain Ingress Controllers to have different policies defined.

Allow only specific routes to use additional features.

Expose different routes on different addresses so that internal and external users can see
different routes, for example.

Transfer traffic from one version of an application to another during a blue-green deployment.

When Ingress Controllers are sharded, a given route is admitted to zero or more Ingress Controllers in
the group. The status of a route describes whether an Ingress Controller has admitted the route. An
Ingress Controller only admits a route if the route is unique to a shard.

With sharding, you can distribute subsets of routes over multiple Ingress Controllers. These subsets can
be nonoverlapping, also called traditional sharding, or overlapping, otherwise known as overlapped
sharding.

The following table outlines three sharding methods:

Sharding method Description

Namespace selector After you add a namespace selector to the Ingress Controller, all routes in a
namespace that have matching labels for the namespace selector are included in
the Ingress shard. Consider this method when an Ingress Controller serves all
routes created in a namespace.

Route selector After you add a route selector to the Ingress Controller, all routes with labels that
match the route selector are included in the Ingress shard. Consider this method
when you want an Ingress Controller to serve only a subset of routes or a specific
route in a namespace.

Namespace and route
selectors

Provides your Ingress Controller scope for both namespace selector and route
selector methods. Consider this method when you want the flexibility of both the
namespace selector and the route selector methods.

2.3.6.1. Traditional sharding example

An example of a configured Ingress Controller finops-router that has the label selector
spec.namespaceSelector.matchExpressions with key values set to finance and ops:

Example YAML definition for finops-router

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: finops-router
 namespace: openshift-ingress-operator
spec:
 namespaceSelector:
 matchExpressions:

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

55

An example of a configured Ingress Controller dev-router that has the label selector
spec.namespaceSelector.matchLabels.name with the key value set to dev:

Example YAML definition for dev-router

If all application routes are in separate namespaces, such as each labeled with name:finance, name:ops,
and name:dev, the configuration effectively distributes your routes between the two Ingress
Controllers. OpenShift Container Platform routes for console, authentication, and other purposes
should not be handled.

In the previous scenario, sharding becomes a special case of partitioning, with no overlapping subsets.
Routes are divided between router shards.

WARNING

The default Ingress Controller continues to serve all routes unless the
namespaceSelector or routeSelector fields contain routes that are meant for
exclusion. See this Red Hat Knowledgebase solution and the section "Sharding the
default Ingress Controller" for more information on how to exclude routes from the
default Ingress Controller.

2.3.6.2. Overlapped sharding example

An example of a configured Ingress Controller devops-router that has the label selector
spec.namespaceSelector.matchExpressions with key values set to dev and ops:

Example YAML definition for devops-router

 - key: name
 operator: In
 values:
 - finance
 - ops

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: dev-router
 namespace: openshift-ingress-operator
spec:
 namespaceSelector:
 matchLabels:
 name: dev



apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: devops-router
 namespace: openshift-ingress-operator

OpenShift Container Platform 4.18 Ingress and load balancing

56

https://access.redhat.com/solutions/5097511

The routes in the namespaces labeled name:dev and name:ops are now serviced by two different
Ingress Controllers. With this configuration, you have overlapping subsets of routes.

With overlapping subsets of routes you can create more complex routing rules. For example, you can
divert higher priority traffic to the dedicated finops-router while sending lower priority traffic to
devops-router.

2.3.6.3. Sharding the default Ingress Controller

After creating a new Ingress shard, there might be routes that are admitted to your new Ingress shard
that are also admitted by the default Ingress Controller. This is because the default Ingress Controller
has no selectors and admits all routes by default.

You can restrict an Ingress Controller from servicing routes with specific labels using either namespace
selectors or route selectors. The following procedure restricts the default Ingress Controller from
servicing your newly sharded finance, ops, and dev, routes using a namespace selector. This adds
further isolation to Ingress shards.

IMPORTANT

You must keep all of OpenShift Container Platform’s administration routes on the same
Ingress Controller. Therefore, avoid adding additional selectors to the default Ingress
Controller that exclude these essential routes.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as a project administrator.

Procedure

1. Modify the default Ingress Controller by running the following command:

2. Edit the Ingress Controller to contain a namespaceSelector that excludes the routes with any
of the finance, ops, and dev labels:

spec:
 namespaceSelector:
 matchExpressions:
 - key: name
 operator: In
 values:
 - dev
 - ops

$ oc edit ingresscontroller -n openshift-ingress-operator default

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

57

The default Ingress Controller will no longer serve the namespaces labeled name:finance, name:ops,
and name:dev.

2.3.6.4. Ingress sharding and DNS

The cluster administrator is responsible for making a separate DNS entry for each router in a project. A
router will not forward unknown routes to another router.

Consider the following example:

Router A lives on host 192.168.0.5 and has routes with *.foo.com.

Router B lives on host 192.168.1.9 and has routes with *.example.com.

Separate DNS entries must resolve *.foo.com to the node hosting Router A and *.example.com to the
node hosting Router B:

*.foo.com A IN 192.168.0.5

*.example.com A IN 192.168.1.9

2.3.6.5. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Figure 2.1. Ingress sharding using route labels

 namespaceSelector:
 matchExpressions:
 - key: name
 operator: NotIn
 values:
 - finance
 - ops
 - dev

OpenShift Container Platform 4.18 Ingress and load balancing

58

1

Figure 2.1. Ingress sharding using route labels

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

2. Apply the Ingress Controller router-internal.yaml file:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: sharded
 namespace: openshift-ingress-operator
spec:
 domain: <apps-sharded.basedomain.example.net> 1
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

59

The Ingress Controller selects routes in any namespace that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yaml:

2.3.6.6. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Figure 2.2. Ingress sharding using namespace labels

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

Example output

oc apply -f router-internal.yaml

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net

$ cat router-internal.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController

OpenShift Container Platform 4.18 Ingress and load balancing

60

1 Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yaml:

2.3.6.7. Creating a route for Ingress Controller sharding

A route allows you to host your application at a URL. Ingress Controller sharding helps balance incoming
traffic load among a set of Ingress Controllers. It can also isolate traffic to a specific Ingress Controller.
For example, company A goes to one Ingress Controller and company B to another.

The following procedure describes how to create a route for Ingress Controller sharding, using the hello-
openshift application as an example.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as a project administrator.

You have a web application that exposes a port and an HTTP or TLS endpoint listening for
traffic on the port.

You have configured the Ingress Controller for sharding.

Procedure

1. Create a project called hello-openshift by running the following command:

metadata:
 name: sharded
 namespace: openshift-ingress-operator
spec:
 domain: <apps-sharded.basedomain.example.net> 1
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:
 type: sharded

$ oc apply -f router-internal.yaml

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net

$ oc new-project hello-openshift

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

61

1

2

2. Create a pod in the project by running the following command:

3. Create a service called hello-openshift by running the following command:

4. Create a route definition called hello-openshift-route.yaml:

YAML definition of the created route for sharding

Both the label key and its corresponding label value must match the ones specified in the
Ingress Controller. In this example, the Ingress Controller has the label key and value type:
sharded.

The route will be exposed using the value of the subdomain field. When you specify the
subdomain field, you must leave the hostname unset. If you specify both the host and
subdomain fields, then the route will use the value of the host field, and ignore the
subdomain field.

5. Use hello-openshift-route.yaml to create a route to the hello-openshift application by running
the following command:

Verification

Get the status of the route with the following command:

The resulting Route resource should look similar to the following:

Example output

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 labels:
 type: sharded 1
 name: hello-openshift-edge
 namespace: hello-openshift
spec:
 subdomain: hello-openshift 2
 tls:
 termination: edge
 to:
 kind: Service
 name: hello-openshift

$ oc -n hello-openshift create -f hello-openshift-route.yaml

$ oc -n hello-openshift get routes/hello-openshift-edge -o yaml

OpenShift Container Platform 4.18 Ingress and load balancing

62

1

2

3

The hostname the Ingress Controller, or router, uses to expose the route. The value of the
host field is automatically determined by the Ingress Controller, and uses its domain. In this
example, the domain of the Ingress Controller is <apps-
sharded.basedomain.example.net>.

The hostname of the Ingress Controller. If the hostname is not set, the route can use a
subdomain instead. When you specify a subdomain, you automatically use the domain of
the Ingress Controller that exposes the route. When a route is exposed by multiple Ingress
Controllers, the route is hosted at multiple URLs.

The name of the Ingress Controller. In this example, the Ingress Controller has the name
sharded.

2.3.6.8. Additional resources

Baseline Ingress Controller (router) performance

Configuring the Ingress Controller

Installing a cluster on bare metal

Installing a cluster on vSphere

About network policy

2.4. CONFIGURING THE INGRESS CONTROLLER ENDPOINT
PUBLISHING STRATEGY

The endpointPublishingStrategy is used to publish the Ingress Controller endpoints to other networks,
enable load balancer integrations, and provide access to other systems.

IMPORTANT

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 labels:
 type: sharded
 name: hello-openshift-edge
 namespace: hello-openshift
spec:
 subdomain: hello-openshift
 tls:
 termination: edge
 to:
 kind: Service
 name: hello-openshift
status:
 ingress:
 - host: hello-openshift.<apps-sharded.basedomain.example.net> 1
 routerCanonicalHostname: router-sharded.<apps-sharded.basedomain.example.net> 2
 routerName: sharded 3

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

63

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/scalability_and_performance/#baseline-router-performance_routing-optimization
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#configuring-ingress-controller
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_bare_metal/#installing-bare-metal
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_vmware_vsphere/#installing-vsphere
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/network_security/#about-network-policy

IMPORTANT

On Red Hat OpenStack Platform (RHOSP), the LoadBalancerService endpoint
publishing strategy is supported only if a cloud provider is configured to create health
monitors. For RHOSP 16.2, this strategy is possible only if you use the Amphora Octavia
provider.

For more information, see the "Setting RHOSP Cloud Controller Manager options"
section of the RHOSP installation documentation.

2.4.1. Ingress Controller endpoint publishing strategy

NodePortService endpoint publishing strategy

The NodePortService endpoint publishing strategy publishes the Ingress Controller using a Kubernetes
NodePort service.

In this configuration, the Ingress Controller deployment uses container networking. A NodePortService
is created to publish the deployment. The specific node ports are dynamically allocated by OpenShift
Container Platform; however, to support static port allocations, your changes to the node port field of
the managed NodePortService are preserved.

Figure 2.3. Diagram of NodePortService

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform

OpenShift Container Platform 4.18 Ingress and load balancing

64

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress NodePort endpoint publishing strategy:

All the available nodes in the cluster have their own, externally accessible IP addresses. The
service running in the cluster is bound to the unique NodePort for all the nodes.

When the client connects to a node that is down, for example, by connecting the 10.0.128.4 IP
address in the graphic, the node port directly connects the client to an available node that is
running the service. In this scenario, no load balancing is required. As the image shows, the
10.0.128.4 address is down and another IP address must be used instead.

NOTE

The Ingress Operator ignores any updates to .spec.ports[].nodePort fields of the
service.

By default, ports are allocated automatically and you can access the port allocations for
integrations. However, sometimes static port allocations are necessary to integrate with
existing infrastructure which may not be easily reconfigured in response to dynamic ports.
To achieve integrations with static node ports, you can update the managed service
resource directly.

For more information, see the Kubernetes Services documentation on NodePort.

HostNetwork endpoint publishing strategy

The HostNetwork endpoint publishing strategy publishes the Ingress Controller on node ports where
the Ingress Controller is deployed.

An Ingress Controller with the HostNetwork endpoint publishing strategy can have only one pod replica
per node. If you want n replicas, you must use at least n nodes where those replicas can be scheduled.
Because each pod replica requests ports 80 and 443 on the node host where it is scheduled, a replica
cannot be scheduled to a node if another pod on the same node is using those ports.

The HostNetwork object has a hostNetwork field with the following default values for the optional
binding ports: httpPort: 80, httpsPort: 443, and statsPort: 1936. By specifying different binding ports
for your network, you can deploy multiple Ingress Controllers on the same node for the HostNetwork
strategy.

Example

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: internal
 namespace: openshift-ingress-operator
spec:
 domain: example.com
 endpointPublishingStrategy:
 type: HostNetwork
 hostNetwork:
 httpPort: 80
 httpsPort: 443
 statsPort: 1936

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

65

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

2.4.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal

When a cluster administrator installs a new cluster without specifying that the cluster is private, the
default Ingress Controller is created with a scope set to External. Cluster administrators can change an
External scoped Ingress Controller to Internal.

Prerequisites

You installed the oc CLI.

Procedure

To change an External scoped Ingress Controller to Internal, enter the following command:

To check the status of the Ingress Controller, enter the following command:

The Progressing status condition indicates whether you must take further action. For
example, the status condition can indicate that you need to delete the service by entering
the following command:

If you delete the service, the Ingress Operator recreates it as Internal.

2.4.1.2. Configuring the Ingress Controller endpoint publishing scope to External

When a cluster administrator installs a new cluster without specifying that the cluster is private, the
default Ingress Controller is created with a scope set to External.

The Ingress Controller’s scope can be configured to be Internal during installation or after, and cluster
administrators can change an Internal Ingress Controller to External.

IMPORTANT

On some platforms, it is necessary to delete and recreate the service.

Changing the scope can cause disruption to Ingress traffic, potentially for several
minutes. This applies to platforms where it is necessary to delete and recreate the
service, because the procedure can cause OpenShift Container Platform to deprovision
the existing service load balancer, provision a new one, and update DNS.

Prerequisites

You installed the oc CLI.

Procedure

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch='{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"scope":"Internal"}}}}'

$ oc -n openshift-ingress-operator get ingresscontrollers/default -o yaml

$ oc -n openshift-ingress delete services/router-default

OpenShift Container Platform 4.18 Ingress and load balancing

66

To change an Internal scoped Ingress Controller to External, enter the following command:

To check the status of the Ingress Controller, enter the following command:

The Progressing status condition indicates whether you must take further action. For
example, the status condition can indicate that you need to delete the service by entering
the following command:

If you delete the service, the Ingress Operator recreates it as External.

2.4.1.3. Adding a single NodePort service to an Ingress Controller

Instead of creating a NodePort-type Service for each project, you can create a custom Ingress
Controller to use the NodePortService endpoint publishing strategy. To prevent port conflicts,
consider this configuration for your Ingress Controller when you want to apply a set of routes, through
Ingress sharding, to nodes that might already have a HostNetwork Ingress Controller.

Before you set a NodePort-type Service for each project, read the following considerations:

You must create a wildcard DNS record for the Nodeport Ingress Controller domain. A
Nodeport Ingress Controller route can be reached from the address of a worker node. For more
information about the required DNS records for routes, see "User-provisioned DNS
requirements".

You must expose a route for your service and specify the --hostname argument for your
custom Ingress Controller domain.

You must append the port that is assigned to the NodePort-type Service in the route so that
you can access application pods.

Prerequisites

You installed the OpenShift CLI (oc).

Logged in as a user with cluster-admin privileges.

You created a wildcard DNS record.

Procedure

1. Create a custom resource (CR) file for the Ingress Controller:

Example of a CR file that defines information for the IngressController object

$ oc -n openshift-ingress-operator patch ingresscontrollers/private --type=merge --
patch='{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"scope":"External"}}}}'

$ oc -n openshift-ingress-operator get ingresscontrollers/default -o yaml

$ oc -n openshift-ingress delete services/router-default

apiVersion: v1
items:

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

67

1

2

3

4

1

Specify the a custom name for the IngressController CR.

The DNS name that the Ingress Controller services. As an example, the default
ingresscontroller domain is apps.ipi-cluster.example.com, so you would specify the
<custom_ic_domain_name> as nodeportsvc.ipi-cluster.example.com.

Specify the label for the nodes that include the custom Ingress Controller.

Specify the label for a set of namespaces. Substitute <key>:<value> with a map of key-
value pairs where <key> is a unique name for the new label and <value> is its value. For
example: ingresscontroller: custom-ic.

2. Add a label to a node by using the oc label node command:

Where <value> must match the key-value pair specified in the nodePlacement section of
your IngressController CR.

3. Create the IngressController object:

4. Find the port for the service created for the IngressController CR:

Example output that shows port 80:32432/TCP for the router-nodeport-custom-ic3
service

- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: <custom_ic_name> 1
 namespace: openshift-ingress-operator
 spec:
 replicas: 1
 domain: <custom_ic_domain_name> 2
 nodePlacement:
 nodeSelector:
 matchLabels:
 <key>: <value> 3
 namespaceSelector:
 matchLabels:
 <key>: <value> 4
 endpointPublishingStrategy:
 type: NodePortService
...

$ oc label node <node_name> <key>=<value> 1

$ oc create -f <ingress_controller_cr>.yaml

$ oc get svc -n openshift-ingress

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE

OpenShift Container Platform 4.18 Ingress and load balancing

68

1

1

5. To create a new project, enter the following command:

6. To label the new namespace, enter the following command:

Where <key>=<value> must match the value in the namespaceSelector section of your
Ingress Controller CR.

7. Create a new application in your cluster:

An example of <image_name> is quay.io/openshifttest/hello-openshift:multiarch.

8. Create a Route object for a service, so that the pod can use the service to expose the
application external to the cluster.

NOTE

You must specify the domain name of your custom Ingress Controller in the --
hostname argument. If you do not do this, the Ingress Operator uses the default
Ingress Controller to serve all the routes for your cluster.

9. Check that the route has the Admitted status and that it includes metadata for the custom
Ingress Controller:

Example output

router-internal-default ClusterIP 172.30.195.74 <none>
80/TCP,443/TCP,1936/TCP 223d
router-nodeport-custom-ic3 NodePort 172.30.109.219 <none>
80:32432/TCP,443:31366/TCP,1936:30499/TCP 155m

$ oc new-project <project_name>

$ oc label namespace <project_name> <key>=<value> 1

$ oc new-app --image=<image_name> 1

$ oc expose svc/<service_name> --hostname=<svc_name>-<project_name>.
<custom_ic_domain_name> 1

$ oc get route/hello-openshift -o json | jq '.status.ingress'

...
{
 "conditions": [
 {
 "lastTransitionTime": "2024-05-17T18:25:41Z",
 "status": "True",
 "type": "Admitted"
 }
],

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

69

1 1

10. Update the default IngressController CR to prevent the default Ingress Controller from
managing the NodePort-type Service. The default Ingress Controller will continue to monitor
all other cluster traffic.

Verification

1. Verify that the DNS entry can route inside and outside of your cluster by entering the following
command. The command outputs the IP address of the node that received the label from
running the oc label node command earlier in the procedure.

2. To verify that your cluster uses the IP addresses from external DNS servers for DNS resolution,
check the connection of your cluster by entering the following command:

Where <port> is the node port from the NodePort-type Service. Based on example
output from the oc get svc -n openshift-ingress command, the 80:32432/TCP HTTP
route means that 32432 is the node port.

Output example

2.4.2. Additional resources

Ingress Controller configuration parameters

Setting RHOSP Cloud Controller Manager options

User-provisioned DNS requirements

2.5. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD
BALANCER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a load balancer.

 [
 {
 "host": "hello-openshift.nodeportsvc.ipi-cluster.example.com",
 "routerCanonicalHostname": "router-nodeportsvc.nodeportsvc.ipi-cluster.example.com",
 "routerName": "nodeportsvc", "wildcardPolicy": "None"
 }
],
}

$ oc patch --type=merge -n openshift-ingress-operator ingresscontroller/default --patch
'{"spec":{"namespaceSelector":{"matchExpressions":[{"key":"
<key>","operator":"NotIn","values":["<value>]}]}}}'

$ dig +short <svc_name>-<project_name>.<custom_ic_domain_name>

$ curl <svc_name>-<project_name>.<custom_ic_domain_name>:<port> 1

Hello OpenShift!

OpenShift Container Platform 4.18 Ingress and load balancing

70

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#nw-ingress-controller-configuration-parameters_configuring-ingress
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_openstack/#installation-osp-setting-cloud-provider-options_installing-openstack-installer-custom
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_any_platform/#installation-dns-user-infra_installing-platform-agnostic

2.5.1. Using a load balancer to get traffic into the cluster

If you do not need a specific external IP address, you can configure a load balancer service to allow
external access to an OpenShift Container Platform cluster.

A load balancer service allocates a unique IP. The load balancer has a single edge router IP, which can be
a virtual IP (VIP), but is still a single machine for initial load balancing.

NOTE

If a pool is configured, it is done at the infrastructure level, not by a cluster administrator.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

2.5.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

2.5.3. Creating a project and service

If the project and service that you want to expose does not exist, create the project and then create the
service.

If the project and service already exists, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the OpenShift CLI (oc) and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

2. Use the oc new-app command to create your service:

$ oc new-project <project_name>

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

71

3. To verify that the service was created, run the following command:

Example output

NOTE

By default, the new service does not have an external IP address.

2.5.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Prerequisites

You logged into OpenShift Container Platform.

Procedure

1. Log in to the project where the service you want to expose is located:

2. Run the oc expose service command to expose the route:

Example output

3. To verify that the service is exposed, you can use a tool, such as curl to check that the service is
accessible from outside the cluster.

a. To find the hostname of the route, enter the following command:

Example output

b. To check that the host responds to a GET request, enter the following command:

$ oc get svc -n <project_name>

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

$ oc project <project_name>

$ oc expose service nodejs-ex

route.route.openshift.io/nodejs-ex exposed

$ oc get route

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
nodejs-ex nodejs-ex-myproject.example.com nodejs-ex 8080-tcp None

OpenShift Container Platform 4.18 Ingress and load balancing

72

1

2

Example curl command

Example output

2.5.5. Creating a load balancer service

Use the following procedure to create a load balancer service.

Prerequisites

Make sure that the project and service you want to expose exist.

Your cloud provider supports load balancers.

Procedure

To create a load balancer service:

1. Log in to OpenShift Container Platform.

2. Load the project where the service you want to expose is located.

3. Open a text file on the control plane node and paste the following text, editing the file as
needed:

Sample load balancer configuration file

apiVersion: v1
kind: Service
metadata:
 name: egress-2 1
spec:
 ports:
 - name: db
 port: 3306 2
 loadBalancerIP:
 loadBalancerSourceRanges: 3
 - 10.0.0.0/8
 - 192.168.0.0/16
 type: LoadBalancer 4
 selector:
 name: mysql 5

Enter a descriptive name for the load balancer service.

Enter the same port that the service you want to expose is listening on.

$ curl --head nodejs-ex-myproject.example.com

HTTP/1.1 200 OK
...

$ oc project project1

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

73

3

4

5

Enter a list of specific IP addresses to restrict traffic through the load balancer. This field is
ignored if the cloud-provider does not support the feature.

Enter Loadbalancer as the type.

Enter the name of the service.

NOTE

To restrict the traffic through the load balancer to specific IP addresses, it is
recommended to use the Ingress Controller field
spec.endpointPublishingStrategy.loadBalancer.allowedSourceRanges. Do
not set the loadBalancerSourceRanges field.

4. Save and exit the file.

5. Run the following command to create the service:

For example:

6. Execute the following command to view the new service:

Example output

The service has an external IP address automatically assigned if there is a cloud provider
enabled.

7. On the master, use a tool, such as cURL, to make sure you can reach the service using the public
IP address:

For example:

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connecting with the
service:

If you have a MySQL client, log in with the standard CLI command:

$ oc create -f <file-name>

$ oc create -f mysql-lb.yaml

$ oc get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
egress-2 LoadBalancer 172.30.22.226 ad42f5d8b303045-487804948.example.com
3306:30357/TCP 15m

$ curl <public-ip>:<port>

$ curl 172.29.121.74:3306

OpenShift Container Platform 4.18 Ingress and load balancing

74

Example output

2.6. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses load balancers on AWS, specifically a Network Load
Balancer (NLB) or a Classic Load Balancer (CLB). Both types of load balancers can forward the client’s
IP address to the node, but a CLB requires proxy protocol support, which OpenShift Container Platform
automatically enables.

There are two ways to configure an Ingress Controller to use an NLB:

1. By force replacing the Ingress Controller that is currently using a CLB. This deletes the
IngressController object and an outage will occur while the new DNS records propagate and
the NLB is being provisioned.

2. By editing an existing Ingress Controller that uses a CLB to use an NLB. This changes the load
balancer without having to delete and recreate the IngressController object.

Both methods can be used to switch from an NLB to a CLB.

You can configure these load balancers on a new or existing AWS cluster.

2.6.1. Configuring Classic Load Balancer timeouts on AWS

OpenShift Container Platform provides a method for setting a custom timeout period for a specific
route or Ingress Controller. Additionally, an AWS Classic Load Balancer (CLB) has its own timeout
period with a default time of 60 seconds.

If the timeout period of the CLB is shorter than the route timeout or Ingress Controller timeout, the
load balancer can prematurely terminate the connection. You can prevent this problem by increasing
both the timeout period of the route and CLB.

2.6.1.1. Configuring route timeouts

You can configure the default timeouts for an existing route when you have services in need of a low
timeout, which is required for Service Level Availability (SLA) purposes, or a high timeout, for cases with
a slow back end.

IMPORTANT

If you configured a user-managed external load balancer in front of your OpenShift
Container Platform cluster, ensure that the timeout value for the user-managed external
load balancer is higher than the timeout value for the route. This configuration prevents
network congestion issues over the network that your cluster uses.

$ mysql -h 172.30.131.89 -u admin -p

Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

75

1

Prerequisites

You need a deployed Ingress Controller on a running cluster.

Procedure

1. Using the oc annotate command, add the timeout to the route:

Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m),
hours (h), or days (d).

The following example sets a timeout of two seconds on a route named myroute:

2.6.1.2. Configuring Classic Load Balancer timeouts

You can configure the default timeouts for a Classic Load Balancer (CLB) to extend idle connections.

Prerequisites

You must have a deployed Ingress Controller on a running cluster.

Procedure

1. Set an AWS connection idle timeout of five minutes for the default ingresscontroller by
running the following command:

2. Optional: Restore the default value of the timeout by running the following command:

NOTE

You must specify the scope field when you change the connection timeout value unless
the current scope is already set. When you set the scope field, you do not need to do so
again if you restore the default timeout value.

$ oc annotate route <route_name> \
 --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit> 1

$ oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s

$ oc -n openshift-ingress-operator patch ingresscontroller/default \
 --type=merge --patch='{"spec":{"endpointPublishingStrategy": \
 {"type":"LoadBalancerService", "loadBalancer": \
 {"scope":"External", "providerParameters":{"type":"AWS", "aws": \
 {"type":"Classic", "classicLoadBalancer": \
 {"connectionIdleTimeout":"5m"}}}}}}}'

$ oc -n openshift-ingress-operator patch ingresscontroller/default \
 --type=merge --patch='{"spec":{"endpointPublishingStrategy": \
 {"loadBalancer":{"providerParameters":{"aws":{"classicLoadBalancer": \
 {"connectionIdleTimeout":null}}}}}}}'

OpenShift Container Platform 4.18 Ingress and load balancing

76

2.6.2. Configuring ingress cluster traffic on AWS using a Network Load Balancer

OpenShift Container Platform provides methods for communicating from outside the cluster with
services that run in the cluster. One such method uses a Network Load Balancer (NLB). You can
configure an NLB on a new or existing AWS cluster.

2.6.2.1. Switching the Ingress Controller from using a Classic Load Balancer to a Network
Load Balancer

You can switch the Ingress Controller that is using a Classic Load Balancer (CLB) to one that uses a
Network Load Balancer (NLB) on AWS.

Switching between these load balancers will not delete the IngressController object.

WARNING

This procedure might cause the following issues:

An outage that can last several minutes due to new DNS records
propagation, new load balancers provisioning, and other factors. IP
addresses and canonical names of the Ingress Controller load balancer
might change after applying this procedure.

Leaked load balancer resources due to a change in the annotation of the
service.

Procedure

1. Modify the existing Ingress Controller that you want to switch to using an NLB. This example
assumes that your default Ingress Controller has an External scope and no other
customizations:

Example ingresscontroller.yaml file

NOTE



apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

77

NOTE

If you do not specify a value for the
spec.endpointPublishingStrategy.loadBalancer.providerParameters.aws.typ
e field, the Ingress Controller uses the spec.loadBalancer.platform.aws.type
value from the cluster Ingress configuration that was set during installation.

TIP

If your Ingress Controller has other customizations that you want to update, such as changing
the domain, consider force replacing the Ingress Controller definition file instead.

2. Apply the changes to the Ingress Controller YAML file by running the command:

Expect several minutes of outages while the Ingress Controller updates.

2.6.2.2. Switching the Ingress Controller from using a Network Load Balancer to a Classic
Load Balancer

You can switch the Ingress Controller that is using a Network Load Balancer (NLB) to one that uses a
Classic Load Balancer (CLB) on AWS.

Switching between these load balancers will not delete the IngressController object.

WARNING

This procedure might cause an outage that can last several minutes due to new DNS
records propagation, new load balancers provisioning, and other factors. IP
addresses and canonical names of the Ingress Controller load balancer might
change after applying this procedure.

Procedure

1. Modify the existing Ingress Controller that you want to switch to using a CLB. This example
assumes that your default Ingress Controller has an External scope and no other
customizations:

Example ingresscontroller.yaml file

$ oc apply -f ingresscontroller.yaml



apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:

OpenShift Container Platform 4.18 Ingress and load balancing

78

NOTE

If you do not specify a value for the
spec.endpointPublishingStrategy.loadBalancer.providerParameters.aws.typ
e field, the Ingress Controller uses the spec.loadBalancer.platform.aws.type
value from the cluster Ingress configuration that was set during installation.

TIP

If your Ingress Controller has other customizations that you want to update, such as changing
the domain, consider force replacing the Ingress Controller definition file instead.

2. Apply the changes to the Ingress Controller YAML file by running the command:

Expect several minutes of outages while the Ingress Controller updates.

2.6.2.3. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer

You can replace an Ingress Controller that is using a Classic Load Balancer (CLB) with one that uses a
Network Load Balancer (NLB) on AWS.

WARNING

This procedure might cause the following issues:

An outage that can last several minutes due to new DNS records
propagation, new load balancers provisioning, and other factors. IP
addresses and canonical names of the Ingress Controller load balancer
might change after applying this procedure.

Leaked load balancer resources due to a change in the annotation of the
service.

Procedure

1. Create a file with a new default Ingress Controller. The following example assumes that your
default Ingress Controller has an External scope and no other customizations:

Example ingresscontroller.yml file

 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: Classic
 type: LoadBalancerService

$ oc apply -f ingresscontroller.yaml



CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

79

If your default Ingress Controller has other customizations, ensure that you modify the file
accordingly.

TIP

If your Ingress Controller has no other customizations and you are only updating the load
balancer type, consider following the procedure detailed in "Switching the Ingress Controller
from using a Classic Load Balancer to a Network Load Balancer".

2. Force replace the Ingress Controller YAML file:

Wait until the Ingress Controller is replaced. Expect several of minutes of outages.

2.6.2.4. Configuring an Ingress Controller Network Load Balancer on an existing AWS
cluster

You can create an Ingress Controller backed by an AWS Network Load Balancer (NLB) on an existing
cluster.

Prerequisites

You must have an installed AWS cluster.

PlatformStatus of the infrastructure resource must be AWS.

To verify that the PlatformStatus is AWS, run:

Procedure

Create an Ingress Controller backed by an AWS NLB on an existing cluster.

1. Create the Ingress Controller manifest:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

$ oc replace --force --wait -f ingresscontroller.yml

$ oc get infrastructure/cluster -o jsonpath='{.status.platformStatus.type}'
AWS

OpenShift Container Platform 4.18 Ingress and load balancing

80

1

2

3

Example output

Replace $my_ingress_controller with a unique name for the Ingress Controller.

Replace $my_unique_ingress_domain with a domain name that is unique among all
Ingress Controllers in the cluster. This variable must be a subdomain of the DNS name
<clustername>.<domain>.

You can replace External with Internal to use an internal NLB.

2. Create the resource in the cluster:

IMPORTANT

Before you can configure an Ingress Controller NLB on a new AWS cluster, you must
complete the Creating the installation configuration file procedure.

2.6.2.5. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster

You can create an Ingress Controller backed by an AWS Network Load Balancer (NLB) on a new cluster.

Prerequisites

Create the install-config.yaml file and complete any modifications to it.

Procedure

Create an Ingress Controller backed by an AWS NLB on a new cluster.

1. Change to the directory that contains the installation program and create the manifests:

 $ cat ingresscontroller-aws-nlb.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: $my_ingress_controller 1
 namespace: openshift-ingress-operator
spec:
 domain: $my_unique_ingress_domain 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: External 3
 providerParameters:
 type: AWS
 aws:
 type: NLB

$ oc create -f ingresscontroller-aws-nlb.yaml

$./openshift-install create manifests --dir <installation_directory> 1

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

81

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#installation-initializing_installing-aws-network-customizations

1

1

For <installation_directory>, specify the name of the directory that contains the install-
config.yaml file for your cluster.

2. Create a file that is named cluster-ingress-default-ingresscontroller.yaml in the
<installation_directory>/manifests/ directory:

For <installation_directory>, specify the directory name that contains the manifests/
directory for your cluster.

After creating the file, several network configuration files are in the manifests/ directory, as
shown:

Example output

3. Open the cluster-ingress-default-ingresscontroller.yaml file in an editor and enter a custom
resource (CR) that describes the Operator configuration you want:

4. Save the cluster-ingress-default-ingresscontroller.yaml file and quit the text editor.

5. Optional: Back up the manifests/cluster-ingress-default-ingresscontroller.yaml file. The
installation program deletes the manifests/ directory when creating the cluster.

2.6.2.6. Choosing subnets while creating a LoadBalancerService Ingress Controller

You can manually specify load balancer subnets for Ingress Controllers in an existing cluster. By default,
the load balancer subnets are automatically discovered by AWS, but specifying them in the Ingress
Controller overrides this, allowing for manual control.

Prerequisites

$ touch <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml 1

$ ls <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml

cluster-ingress-default-ingresscontroller.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

OpenShift Container Platform 4.18 Ingress and load balancing

82

1

2

3

You must have an installed AWS cluster.

You must know the names or IDs of the subnets to which you intend to map your
IngressController.

Procedure

1. Create a custom resource (CR) file.
Create a YAML file (e.g., sample-ingress.yaml) with the following content:

2. Create a custom resource (CR) file.
Add subnets to your YAML file:

Replace <name> with a name for the IngressController.

Replace <domain> with the DNS name serviced by the IngressController.

You can also use the networkLoadBalancer field if using an NLB.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: <name>
spec:
 domain: <domain>
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: External
 dnsManagementPolicy: Managed

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: <name> 1
 namespace: openshift-ingress-operator
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: Classic
 classicLoadBalancer: 3
 subnets:
 ids: 4
 - <subnet> 5
 - <subnet>
 - <subnet>
dnsManagementPolicy: Managed

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

83

4

5

You can optionally specify a subnet by name using the names field instead of specifying
the subnet by ID.

Specify subnet IDs (or names if you using names).

IMPORTANT

You can specify a maximum of one subnet per availability zone. Only
provide public subnets for external Ingress Controllers and private subnets
for internal Ingress Controllers.

3. Apply the CR file.

a. Save the file and apply it using the OpenShift CLI (oc).

b. Confirm the load balancer was provisioned successfully by checking the IngressController
conditions.

2.6.2.7. Updating the subnets on an existing Ingress Controller

You can update an IngressController with manually specified load balancer subnets in OpenShift
Container Platform to avoid any disruptions, to maintain the stability of your services, and to ensure that
your network configuration aligns with your specific requirements. The following procedures show you
how to select and apply new subnets, verify the configuration changes, and confirm successful load
balancer provisioning.

WARNING

This procedure may cause an outage that can last several minutes due to new DNS
records propagation, new load balancers provisioning, and other factors. IP
addresses and canonical names of the Ingress Controller load balancer might
change after applying this procedure.

Procedure

To update an IngressController with manually specified load balancer subnets, you can follow these
steps:

1. Modify the existing IngressController to update to the new subnets.

$ oc apply -f sample-ingress.yaml

$ oc get ingresscontroller -n openshift-ingress-operator <name> -o jsonpath="
{.status.conditions}" | yq -PC



apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

OpenShift Container Platform 4.18 Ingress and load balancing

84

1

2

3

4

5

6

Replace <name> with a name for the IngressController.

Replace <domain> with the DNS name serviced by the IngressController.

Specify updated subnet IDs (or names if you using names).

You can also use the networkLoadBalancer field if using an NLB.

You can optionally specify a subnet by name using the names field instead of specifying
the subnet by ID.

Update subnet IDs (or names if you are using names).

IMPORTANT

You can specify a maximum of one subnet per availability zone. Only provide
public subnets for external Ingress Controllers and private subnets for internal
Ingress Controllers.

2. Examine the Progressing condition on the IngressController for instructions on how to apply
the subnet updates by running the following command:

Example output

 name: <name> 1
 namespace: openshift-ingress-operator
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: Classic 3
 classicLoadBalancer: 4
 subnets:
 ids: 5
 - <updated_subnet> 6
 - <updated_subnet>
 - <updated_subnet>

$ oc get ingresscontroller -n openshift-ingress-operator subnets -o jsonpath="
{.status.conditions[?(@.type==\"Progressing\")]}" | yq -PC

lastTransitionTime: "2024-11-25T20:19:31Z"
message: 'One or more status conditions indicate progressing:
LoadBalancerProgressing=True (OperandsProgressing: One or more managed resources
are progressing: The IngressController subnets were changed from [...] to [...]. To effectuate
this change, you must delete the service: `oc -n openshift-ingress delete svc/router-<name>`;
the service load-balancer will then be deprovisioned and a new one created. This will most
likely cause the new load-balancer to have a different host name and IP address and cause

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

85

3. To apply the update, delete the service associated with the Ingress controller by running the
following command:

Verification

To confirm that the load balancer was provisioned successfully, check the IngressController
conditions by running the following command:

2.6.2.8. Configuring AWS Elastic IP (EIP) addresses for a Network Load Balancer (NLB)

You can specify static IPs, otherwise known as elastic IPs, for your network load balancer (NLB) in the
Ingress Controller. This is useful in situations where you want to configure appropriate firewall rules for
your cluster network.

Prerequisites

You must have an installed AWS cluster.

You must know the names or IDs of the subnets to which you intend to map your
IngressController.

Procedure

1. Create a YAML file that contains the following content:

sample-ingress.yaml

disruption. To return to the previous state, you can revert the change to the
IngressController: [...]'
reason: IngressControllerProgressing
status: "True"
type: Progressing

$ oc -n openshift-ingress delete svc/router-<name>

$ oc get ingresscontroller -n openshift-ingress-operator <name> -o jsonpath="
{.status.conditions}" | yq -PC

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: <name> 1
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 loadBalancer:
 scope: External 3
 type: LoadBalancerService
 providerParameters:
 type: AWS
 aws:
 type: NLB

OpenShift Container Platform 4.18 Ingress and load balancing

86

1

2

3

4

5

Replace the <name> placeholder with a name for the Ingress Controller.

Replace the <domain> placeholder with the DNS name serviced by the Ingress Controller.

The scope must be set to the value External and be Internet-facing in order to allocate
EIPs.

Specify the IDs and names for your subnets. The total number of IDs and names must be
equal to your allocated EIPs.

Specify the EIP addresses.

IMPORTANT

You can specify a maximum of one subnet per availability zone. Only provide
public subnets for external Ingress Controllers. You can associate one EIP
address per subnet.

2. Save and apply the CR file by entering the following command:

Verification

1. Confirm the load balancer was provisioned successfully by checking the IngressController
conditions by running the following command:

2.6.3. Additional resources

Installing a cluster on AWS with network customizations .

For more information on support for NLBs, see Network Load Balancer support on AWS .

For more information on proxy protocol support for CLBs, see Configure proxy protocol
support for your Classic Load Balancer

2.7. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE

 networkLoadBalancer:
 subnets: 4
 ids:
 - <subnet_ID>
 names:
 - <subnet_A>
 - <subnet_B>
 eipAllocations: 5
 - <eipalloc_A>
 - <eipalloc_B>
 - <eipalloc_C>

$ oc apply -f sample-ingress.yaml

$ oc get ingresscontroller -n openshift-ingress-operator <name> -o jsonpath="
{.status.conditions}" | yq -PC

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

87

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#installing-aws-network-customizations
https://kubernetes.io/docs/concepts/services-networking/service/#aws-nlb-support
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-proxy-protocol.html

2.7. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE
EXTERNAL IP

You can use either a MetalLB implementation or an IP failover deployment to attach an ExternalIP
resource to a service so that the service is available to traffic outside your OpenShift Container Platform
cluster. Hosting an external IP address in this way is only applicable for a cluster installed on bare-metal
hardware.

You must ensure that you correctly configure the external network infrastructure to route traffic to the
service.

2.7.1. Prerequisites

Your cluster is configured with ExternalIPs enabled. For more information, read Configuring
ExternalIPs for services.

NOTE

Do not use the same ExternalIP for the egress IP.

2.7.2. Attaching an ExternalIP to a service

You can attach an ExternalIP resource to a service. If you configured your cluster to automatically attach
the resource to a service, you might not need to manually attach an ExternalIP to the service.

The examples in the procedure use a scenario that manually attaches an ExternalIP resource to a service
in a cluster with an IP failover configuration.

Procedure

1. Confirm compatible IP address ranges for the ExternalIP resource by entering the following
command in your CLI:

NOTE

If autoAssignCIDRs is set and you did not specify a value for spec.externalIPs
in the ExternalIP resource, OpenShift Container Platform automatically assigns
ExternalIP to a new Service object.

2. Choose one of the following options to attach an ExternalIP resource to the service:

a. If you are creating a new service, specify a value in the spec.externalIPs field and array of
one or more valid IP addresses in the allowedCIDRs parameter.

Example of service YAML configuration file that supports an ExternalIP
resource

$ oc get networks.config cluster -o jsonpath='{.spec.externalIP}{"\n"}'

apiVersion: v1
kind: Service
metadata:
 name: svc-with-externalip

OpenShift Container Platform 4.18 Ingress and load balancing

88

b. If you are attaching an ExternalIP to an existing service, enter the following command.
Replace <name> with the service name. Replace <ip_address> with a valid ExternalIP
address. You can provide multiple IP addresses separated by commas.

For example:

Example output

3. To confirm that an ExternalIP address is attached to the service, enter the following command.
If you specified an ExternalIP for a new service, you must create the service first.

Example output

2.7.3. Additional resources

About MetalLB and the MetalLB Operator

Configuring IP failover

Configuring ExternalIPs for services

2.8. CONFIGURING INGRESS CLUSTER TRAFFIC BY USING A
NODEPORT

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a NodePort.

2.8.1. Using a NodePort to get traffic into the cluster

Use a NodePort-type Service resource to expose a service on a specific port on all nodes in the cluster.

spec:
 externalIPs:
 policy:
 allowedCIDRs:
 - 192.168.123.0/28

$ oc patch svc <name> -p \
 '{
 "spec": {
 "externalIPs": ["<ip_address>"]
 }
 }'

$ oc patch svc mysql-55-rhel7 -p '{"spec":{"externalIPs":["192.174.120.10"]}}'

"mysql-55-rhel7" patched

$ oc get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 192.174.120.10 3306/TCP 13m

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

89

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#about-metallb
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/configuring_network_settings/#configuring-ipfailover

Use a NodePort-type Service resource to expose a service on a specific port on all nodes in the cluster.
The port is specified in the Service resource’s .spec.ports[*].nodePort field.

IMPORTANT

Using a node port requires additional port resources.

A NodePort exposes the service on a static port on the node’s IP address. NodePorts are in the 30000
to 32767 range by default, which means a NodePort is unlikely to match a service’s intended port. For
example, port 8080 may be exposed as port 31020 on the node.

The administrator must ensure the external IP addresses are routed to the nodes.

NodePorts and external IPs are independent and both can be used concurrently.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

2.8.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin <user_name>

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

2.8.3. Creating a project and service

If the project and service that you want to expose does not exist, create the project and then create the
service.

If the project and service already exists, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the OpenShift CLI (oc) and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

$ oc new-project <project_name>

OpenShift Container Platform 4.18 Ingress and load balancing

90

1

2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

NOTE

By default, the new service does not have an external IP address.

2.8.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Prerequisites

You logged into OpenShift Container Platform.

Procedure

1. Log in to the project where the service you want to expose is located:

2. To expose a node port for the application, modify the custom resource definition (CRD) of a
service by entering the following command:

Example output

Optional: Specify the node port range for the application. By default, OpenShift Container
Platform selects an available port in the 30000-32767 range.

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n <project_name>

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

$ oc project <project_name>

$ oc edit svc <service_name>

spec:
 ports:
 - name: 8443-tcp
 nodePort: 30327 1
 port: 8443
 protocol: TCP
 targetPort: 8443
 sessionAffinity: None
 type: NodePort 2

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

91

2 Define the service type.

3. Optional: To confirm the service is available with a node port exposed, enter the following
command:

Example output

4. Optional: To remove the service created automatically by the oc new-app command, enter the
following command:

Verification

To check that the service node port is updated with a port in the 30000-32767 range, enter the
following command:

In the following example output, the updated port is 30327:

Example output

2.8.5. Additional resources

Configuring the node port service range

Adding a single NodePort service to an Ingress Controller

2.9. CONFIGURING INGRESS CLUSTER TRAFFIC USING LOAD
BALANCER ALLOWED SOURCE RANGES

You can specify a list of IP address ranges for the IngressController. This restricts access to the load
balancer service when the endpointPublishingStrategy is LoadBalancerService.

2.9.1. Configuring load balancer allowed source ranges

You can enable and configure the
spec.endpointPublishingStrategy.loadBalancer.allowedSourceRanges field. By configuring load
balancer allowed source ranges, you can limit the access to the load balancer for the Ingress Controller
to a specified list of IP address ranges. The Ingress Operator reconciles the load balancer Service and
sets the spec.loadBalancerSourceRanges field based on AllowedSourceRanges.

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.217.127 <none> 3306/TCP 9m44s
nodejs-ex-ingress NodePort 172.30.107.72 <none> 3306:31345/TCP 39s

$ oc delete svc nodejs-ex

$ oc get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
httpd NodePort 172.xx.xx.xx <none> 8443:30327/TCP 109s

OpenShift Container Platform 4.18 Ingress and load balancing

92

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/configuring_network_settings/#configuring-node-port-service-range

1

NOTE

If you have already set the spec.loadBalancerSourceRanges field or the load balancer
service anotation service.beta.kubernetes.io/load-balancer-source-ranges in a
previous version of OpenShift Container Platform, Ingress Controller starts reporting
Progressing=True after an upgrade. To fix this, set AllowedSourceRanges that
overwrites the spec.loadBalancerSourceRanges field and clears the
service.beta.kubernetes.io/load-balancer-source-ranges annotation. Ingress
Controller starts reporting Progressing=False again.

Prerequisites

You have a deployed Ingress Controller on a running cluster.

Procedure

Set the allowed source ranges API for the Ingress Controller by running the following command:

The example value 0.0.0.0/0 specifies the allowed source range.

2.9.2. Migrating to load balancer allowed source ranges

If you have already set the annotation service.beta.kubernetes.io/load-balancer-source-ranges, you
can migrate to load balancer allowed source ranges. When you set the AllowedSourceRanges, the
Ingress Controller sets the spec.loadBalancerSourceRanges field based on the
AllowedSourceRanges value and unsets the service.beta.kubernetes.io/load-balancer-source-
ranges annotation.

NOTE

If you have already set the spec.loadBalancerSourceRanges field or the load balancer
service anotation service.beta.kubernetes.io/load-balancer-source-ranges in a
previous version of OpenShift Container Platform, the Ingress Controller starts reporting
Progressing=True after an upgrade. To fix this, set AllowedSourceRanges that
overwrites the spec.loadBalancerSourceRanges field and clears the
service.beta.kubernetes.io/load-balancer-source-ranges annotation. The Ingress
Controller starts reporting Progressing=False again.

Prerequisites

You have set the service.beta.kubernetes.io/load-balancer-source-ranges annotation.

Procedure

1. Ensure that the service.beta.kubernetes.io/load-balancer-source-ranges is set:

$ oc -n openshift-ingress-operator patch ingresscontroller/default \
 --type=merge --patch='{"spec":{"endpointPublishingStrategy": \
 {"type":"LoadBalancerService", "loadbalancer": \
 {"scope":"External", "allowedSourceRanges":["0.0.0.0/0"]}}}}' 1

$ oc get svc router-default -n openshift-ingress -o yaml

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

93

1

Example output

2. Ensure that the spec.loadBalancerSourceRanges field is unset:

Example output

3. Update your cluster to OpenShift Container Platform 4.18.

4. Set the allowed source ranges API for the ingresscontroller by running the following
command:

The example value 0.0.0.0/0 specifies the allowed source range.

2.9.3. Additional resources

Introduction to OpenShift updates

2.10. PATCHING EXISTING INGRESS OBJECTS

You can update or modify the following fields of existing Ingress objects without recreating the objects
or disrupting services to them:

Specifications

Host

Path

Backend services

SSL/TLS settings

Annotations

apiVersion: v1
kind: Service
metadata:
 annotations:
 service.beta.kubernetes.io/load-balancer-source-ranges: 192.168.0.1/32

$ oc get svc router-default -n openshift-ingress -o yaml

...
spec:
 loadBalancerSourceRanges:
 - 0.0.0.0/0
...

$ oc -n openshift-ingress-operator patch ingresscontroller/default \
 --type=merge --patch='{"spec":{"endpointPublishingStrategy": \
 {"loadBalancer":{"allowedSourceRanges":["0.0.0.0/0"]}}}}' 1

OpenShift Container Platform 4.18 Ingress and load balancing

94

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#understanding-openshift-updates

2.10.1. Patching Ingress objects to resolve an ingressWithoutClassName alert

The ingressClassName field specifies the name of the IngressClass object. You must define the
ingressClassName field for each Ingress object.

If you have not defined the ingressClassName field for an Ingress object, you could experience routing
issues. After 24 hours, you will receive an ingressWithoutClassName alert to remind you to set the
ingressClassName field.

Procedure

Patch the Ingress objects with a completed ingressClassName field to ensure proper routing and
functionality.

1. List all IngressClass objects:

2. List all Ingress objects in all namespaces:

3. Patch the Ingress object:

Replace <ingress_name> with the name of the Ingress object. This command patches the
Ingress object to include the desired ingress class name.

2.11. CONFIGURING AN INGRESS CONTROLLER FOR MANUAL DNS
MANAGEMENT

As a cluster administrator, when you create an Ingress Controller, the Operator manages the DNS
records automatically. This has some limitations when the required DNS zone is different from the
cluster DNS zone or when the DNS zone is hosted outside the cloud provider.

As a cluster administrator, you can configure an Ingress Controller to stop automatic DNS management
and start manual DNS management. Set dnsManagementPolicy to specify when it should be
automatically or manually managed.

When you change an Ingress Controller from Managed to Unmanaged DNS management policy, the
Operator does not clean up the previous wildcard DNS record provisioned on the cloud. When you
change an Ingress Controller from Unmanaged to Managed DNS management policy, the Operator
attempts to create the DNS record on the cloud provider if it does not exist or updates the DNS record
if it already exists.

IMPORTANT

When you set dnsManagementPolicy to unmanaged, you have to manually manage the
lifecycle of the wildcard DNS record on the cloud provider.

2.11.1. Managed DNS management policy

$ oc get ingressclass

$ oc get ingress -A

$ oc patch ingress/<ingress_name> --type=merge --patch '{"spec":
{"ingressClassName":"openshift-default"}}'

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

95

1

2

3

4

The Managed DNS management policy for Ingress Controllers ensures that the lifecycle of the wildcard
DNS record on the cloud provider is automatically managed by the Operator.

2.11.2. Unmanaged DNS management policy

The Unmanaged DNS management policy for Ingress Controllers ensures that the lifecycle of the
wildcard DNS record on the cloud provider is not automatically managed, instead it becomes the
responsibility of the cluster administrator.

NOTE

On the AWS cloud platform, if the domain on the Ingress Controller does not match with
dnsConfig.Spec.BaseDomain then the DNS management policy is automatically set to
Unmanaged.

2.11.3. Creating a custom Ingress Controller with the Unmanaged DNS management
policy

As a cluster administrator, you can create a new custom Ingress Controller with the Unmanaged DNS
management policy.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a custom resource (CR) file named sample-ingress.yaml containing the following:

Specify the <name> with a name for the IngressController object.

Specify the domain based on the DNS record that was created as a prerequisite.

Specify the scope as External to expose the load balancer externally.

dnsManagementPolicy indicates if the Ingress Controller is managing the lifecycle of the
wildcard DNS record associated with the load balancer. The valid values are Managed and
Unmanaged. The default value is Managed.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: <name> 1
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: External 3
 dnsManagementPolicy: Unmanaged 4

OpenShift Container Platform 4.18 Ingress and load balancing

96

2. Save the file to apply the changes.

2.11.4. Modifying an existing Ingress Controller

As a cluster administrator, you can modify an existing Ingress Controller to manually manage the DNS
record lifecycle.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Modify the chosen IngressController to set dnsManagementPolicy:

2. Optional: You can delete the associated DNS record in the cloud provider.

2.11.5. Additional resources

Ingress Controller configuration parameters

oc apply -f <name>.yaml 1

SCOPE=$(oc -n openshift-ingress-operator get ingresscontroller <name> -o=jsonpath="
{.status.endpointPublishingStrategy.loadBalancer.scope}")

oc -n openshift-ingress-operator patch ingresscontrollers/<name> --type=merge --
patch='{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"dnsManagementPolicy":"Unmanaged", "scope":"${SCOPE}"}}}}'

CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC

97

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#nw-ingress-controller-configuration-parameters_configuring-ingress

CHAPTER 3. LOAD BALANCING ON RHOSP

3.1. LIMITATIONS OF LOAD BALANCER SERVICES

OpenShift Container Platform clusters on Red Hat OpenStack Platform (RHOSP) use Octavia to handle
load balancer services. As a result of this choice, such clusters have a number of functional limitations.

RHOSP Octavia has two supported providers: Amphora and OVN. These providers differ in terms of
available features as well as implementation details. These distinctions affect load balancer services that
are created on your cluster.

3.1.1. Local external traffic policies

You can set the external traffic policy (ETP) parameter, .spec.externalTrafficPolicy, on a load balancer
service to preserve the source IP address of incoming traffic when it reaches service endpoint pods.
However, if your cluster uses the Amphora Octavia provider, the source IP of the traffic is replaced with
the IP address of the Amphora VM. This behavior does not occur if your cluster uses the OVN Octavia
provider.

Having the ETP option set to Local requires that health monitors be created for the load balancer.
Without health monitors, traffic can be routed to a node that does not have a functional endpoint, which
causes the connection to drop. To force Cloud Provider OpenStack to create health monitors, you must
set the value of the create-monitor option in the cloud provider configuration to true.

In RHOSP 16.2, the OVN Octavia provider does not support health monitors. Therefore, setting the ETP
to local is unsupported.

In RHOSP 16.2, the Amphora Octavia provider does not support HTTP monitors on UDP pools. As a
result, UDP load balancer services have UDP-CONNECT monitors created instead. Due to
implementation details, this configuration only functions properly with the OVN-Kubernetes CNI plugin.

3.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING
OCTAVIA

OpenShift Container Platform clusters that run on Red Hat OpenStack Platform (RHOSP) can use the
Octavia load balancing service to distribute traffic across multiple virtual machines (VMs) or floating IP
addresses. This feature mitigates the bottleneck that single machines or addresses create.

You must create your own Octavia load balancer to use it for application network scaling.

3.2.1. Scaling clusters by using Octavia

If you want to use multiple API load balancers, create an Octavia load balancer and then configure your
cluster to use it.

Prerequisites

Octavia is available on your Red Hat OpenStack Platform (RHOSP) deployment.

Procedure

1. From a command line, create an Octavia load balancer that uses the Amphora driver:

OpenShift Container Platform 4.18 Ingress and load balancing

98

You can use a name of your choice instead of API_OCP_CLUSTER.

2. After the load balancer becomes active, create listeners:

NOTE

To view the status of the load balancer, enter openstack loadbalancer list.

3. Create a pool that uses the round robin algorithm and has session persistence enabled:

4. To ensure that control plane machines are available, create a health monitor:

5. Add the control plane machines as members of the load balancer pool:

6. Optional: To reuse the cluster API floating IP address, unset it:

7. Add either the unset API_FIP or a new address to the created load balancer VIP:

Your cluster now uses Octavia for load balancing.

3.3. SERVICES FOR A USER-MANAGED LOAD BALANCER

You can configure an OpenShift Container Platform cluster on Red Hat OpenStack Platform (RHOSP)
to use a user-managed load balancer in place of the default load balancer.

IMPORTANT

$ openstack loadbalancer create --name API_OCP_CLUSTER --vip-subnet-id
<id_of_worker_vms_subnet>

$ openstack loadbalancer listener create --name API_OCP_CLUSTER_6443 --protocol
HTTPS--protocol-port 6443 API_OCP_CLUSTER

$ openstack loadbalancer pool create --name API_OCP_CLUSTER_pool_6443 --lb-
algorithm ROUND_ROBIN --session-persistence type=<source_IP_address> --listener
API_OCP_CLUSTER_6443 --protocol HTTPS

$ openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --timeout 10 --type
TCP API_OCP_CLUSTER_pool_6443

$ for SERVER in $(MASTER-0-IP MASTER-1-IP MASTER-2-IP)
do
 openstack loadbalancer member create --address $SERVER --protocol-port 6443
API_OCP_CLUSTER_pool_6443
done

$ openstack floating ip unset $API_FIP

$ openstack floating ip set --port $(openstack loadbalancer show -c <vip_port_id> -f value
API_OCP_CLUSTER) $API_FIP

CHAPTER 3. LOAD BALANCING ON RHOSP

99

IMPORTANT

Configuring a user-managed load balancer depends on your vendor’s load balancer.

The information and examples in this section are for guideline purposes only. Consult the
vendor documentation for more specific information about the vendor’s load balancer.

Red Hat supports the following services for a user-managed load balancer:

Ingress Controller

OpenShift API

OpenShift MachineConfig API

You can choose whether you want to configure one or all of these services for a user-managed load
balancer. Configuring only the Ingress Controller service is a common configuration option. To better
understand each service, view the following diagrams:

Figure 3.1. Example network workflow that shows an Ingress Controller operating in an OpenShift
Container Platform environment

Figure 3.2. Example network workflow that shows an OpenShift API operating in an OpenShift

OpenShift Container Platform 4.18 Ingress and load balancing

100

Figure 3.2. Example network workflow that shows an OpenShift API operating in an OpenShift
Container Platform environment

Figure 3.3. Example network workflow that shows an OpenShift MachineConfig API operating in an
OpenShift Container Platform environment

The following configuration options are supported for user-managed load balancers:

Use a node selector to map the Ingress Controller to a specific set of nodes. You must assign a
static IP address to each node in this set, or configure each node to receive the same IP address
from the Dynamic Host Configuration Protocol (DHCP). Infrastructure nodes commonly receive
this type of configuration.

CHAPTER 3. LOAD BALANCING ON RHOSP

101

Target all IP addresses on a subnet. This configuration can reduce maintenance overhead,
because you can create and destroy nodes within those networks without reconfiguring the load
balancer targets. If you deploy your ingress pods by using a machine set on a smaller network,
such as a /27 or /28, you can simplify your load balancer targets.

TIP

You can list all IP addresses that exist in a network by checking the machine config pool’s
resources.

Before you configure a user-managed load balancer for your OpenShift Container Platform cluster,
consider the following information:

For a front-end IP address, you can use the same IP address for the front-end IP address, the
Ingress Controller’s load balancer, and API load balancer. Check the vendor’s documentation for
this capability.

For a back-end IP address, ensure that an IP address for an OpenShift Container Platform
control plane node does not change during the lifetime of the user-managed load balancer. You
can achieve this by completing one of the following actions:

Assign a static IP address to each control plane node.

Configure each node to receive the same IP address from the DHCP every time the node
requests a DHCP lease. Depending on the vendor, the DHCP lease might be in the form of
an IP reservation or a static DHCP assignment.

Manually define each node that runs the Ingress Controller in the user-managed load balancer
for the Ingress Controller back-end service. For example, if the Ingress Controller moves to an
undefined node, a connection outage can occur.

3.3.1. Configuring a user-managed load balancer

You can configure an OpenShift Container Platform cluster on Red Hat OpenStack Platform (RHOSP)
to use a user-managed load balancer in place of the default load balancer.

IMPORTANT

Before you configure a user-managed load balancer, ensure that you read the "Services
for a user-managed load balancer" section.

Read the following prerequisites that apply to the service that you want to configure for your user-
managed load balancer.

NOTE

MetalLB, which runs on a cluster, functions as a user-managed load balancer.

OpenShift API prerequisites

You defined a front-end IP address.

TCP ports 6443 and 22623 are exposed on the front-end IP address of your load balancer.
Check the following items:

Port 6443 provides access to the OpenShift API service.

OpenShift Container Platform 4.18 Ingress and load balancing

102

Port 6443 provides access to the OpenShift API service.

Port 22623 can provide ignition startup configurations to nodes.

The front-end IP address and port 6443 are reachable by all users of your system with a
location external to your OpenShift Container Platform cluster.

The front-end IP address and port 22623 are reachable only by OpenShift Container Platform
nodes.

The load balancer backend can communicate with OpenShift Container Platform control plane
nodes on port 6443 and 22623.

Ingress Controller prerequisites

You defined a front-end IP address.

TCP ports 443 and 80 are exposed on the front-end IP address of your load balancer.

The front-end IP address, port 80 and port 443 are be reachable by all users of your system
with a location external to your OpenShift Container Platform cluster.

The front-end IP address, port 80 and port 443 are reachable to all nodes that operate in your
OpenShift Container Platform cluster.

The load balancer backend can communicate with OpenShift Container Platform nodes that
run the Ingress Controller on ports 80, 443, and 1936.

Prerequisite for health check URL specifications

You can configure most load balancers by setting health check URLs that determine if a service is
available or unavailable. OpenShift Container Platform provides these health checks for the OpenShift
API, Machine Configuration API, and Ingress Controller backend services.

The following examples show health check specifications for the previously listed backend services:

Example of a Kubernetes API health check specification

Example of a Machine Config API health check specification

Example of an Ingress Controller health check specification

Path: HTTPS:6443/readyz
Healthy threshold: 2
Unhealthy threshold: 2
Timeout: 10
Interval: 10

Path: HTTPS:22623/healthz
Healthy threshold: 2
Unhealthy threshold: 2
Timeout: 10
Interval: 10

Path: HTTP:1936/healthz/ready
Healthy threshold: 2

CHAPTER 3. LOAD BALANCING ON RHOSP

103

Procedure

1. Configure the HAProxy Ingress Controller, so that you can enable access to the cluster from
your load balancer on ports 6443, 22623, 443, and 80. Depending on your needs, you can
specify the IP address of a single subnet or IP addresses from multiple subnets in your HAProxy
configuration.

Example HAProxy configuration with one listed subnet

Unhealthy threshold: 2
Timeout: 5
Interval: 10

...
listen my-cluster-api-6443
 bind 192.168.1.100:6443
 mode tcp
 balance roundrobin
 option httpchk
 http-check connect
 http-check send meth GET uri /readyz
 http-check expect status 200
 server my-cluster-master-2 192.168.1.101:6443 check inter 10s rise 2 fall 2
 server my-cluster-master-0 192.168.1.102:6443 check inter 10s rise 2 fall 2
 server my-cluster-master-1 192.168.1.103:6443 check inter 10s rise 2 fall 2

listen my-cluster-machine-config-api-22623
 bind 192.168.1.100:22623
 mode tcp
 balance roundrobin
 option httpchk
 http-check connect
 http-check send meth GET uri /healthz
 http-check expect status 200
 server my-cluster-master-2 192.168.1.101:22623 check inter 10s rise 2 fall 2
 server my-cluster-master-0 192.168.1.102:22623 check inter 10s rise 2 fall 2
 server my-cluster-master-1 192.168.1.103:22623 check inter 10s rise 2 fall 2

listen my-cluster-apps-443
 bind 192.168.1.100:443
 mode tcp
 balance roundrobin
 option httpchk
 http-check connect
 http-check send meth GET uri /healthz/ready
 http-check expect status 200
 server my-cluster-worker-0 192.168.1.111:443 check port 1936 inter 10s rise 2 fall 2
 server my-cluster-worker-1 192.168.1.112:443 check port 1936 inter 10s rise 2 fall 2
 server my-cluster-worker-2 192.168.1.113:443 check port 1936 inter 10s rise 2 fall 2

listen my-cluster-apps-80
 bind 192.168.1.100:80
 mode tcp
 balance roundrobin
 option httpchk

OpenShift Container Platform 4.18 Ingress and load balancing

104

Example HAProxy configuration with multiple listed subnets

 http-check connect
 http-check send meth GET uri /healthz/ready
 http-check expect status 200
 server my-cluster-worker-0 192.168.1.111:80 check port 1936 inter 10s rise 2 fall 2
 server my-cluster-worker-1 192.168.1.112:80 check port 1936 inter 10s rise 2 fall 2
 server my-cluster-worker-2 192.168.1.113:80 check port 1936 inter 10s rise 2 fall 2
...

...
listen api-server-6443
 bind *:6443
 mode tcp
 server master-00 192.168.83.89:6443 check inter 1s
 server master-01 192.168.84.90:6443 check inter 1s
 server master-02 192.168.85.99:6443 check inter 1s
 server bootstrap 192.168.80.89:6443 check inter 1s

listen machine-config-server-22623
 bind *:22623
 mode tcp
 server master-00 192.168.83.89:22623 check inter 1s
 server master-01 192.168.84.90:22623 check inter 1s
 server master-02 192.168.85.99:22623 check inter 1s
 server bootstrap 192.168.80.89:22623 check inter 1s

listen ingress-router-80
 bind *:80
 mode tcp
 balance source
 server worker-00 192.168.83.100:80 check inter 1s
 server worker-01 192.168.83.101:80 check inter 1s

listen ingress-router-443
 bind *:443
 mode tcp
 balance source
 server worker-00 192.168.83.100:443 check inter 1s
 server worker-01 192.168.83.101:443 check inter 1s

listen ironic-api-6385
 bind *:6385
 mode tcp
 balance source
 server master-00 192.168.83.89:6385 check inter 1s
 server master-01 192.168.84.90:6385 check inter 1s
 server master-02 192.168.85.99:6385 check inter 1s
 server bootstrap 192.168.80.89:6385 check inter 1s

listen inspector-api-5050
 bind *:5050
 mode tcp
 balance source
 server master-00 192.168.83.89:5050 check inter 1s
 server master-01 192.168.84.90:5050 check inter 1s

CHAPTER 3. LOAD BALANCING ON RHOSP

105

2. Use the curl CLI command to verify that the user-managed load balancer and its resources are
operational:

a. Verify that the cluster machine configuration API is accessible to the Kubernetes API server
resource, by running the following command and observing the response:

If the configuration is correct, you receive a JSON object in response:

b. Verify that the cluster machine configuration API is accessible to the Machine config server
resource, by running the following command and observing the output:

If the configuration is correct, the output from the command shows the following response:

c. Verify that the controller is accessible to the Ingress Controller resource on port 80, by
running the following command and observing the output:

If the configuration is correct, the output from the command shows the following response:

d. Verify that the controller is accessible to the Ingress Controller resource on port 443, by
running the following command and observing the output:

 server master-02 192.168.85.99:5050 check inter 1s
 server bootstrap 192.168.80.89:5050 check inter 1s
...

$ curl https://<loadbalancer_ip_address>:6443/version --insecure

{
 "major": "1",
 "minor": "11+",
 "gitVersion": "v1.11.0+ad103ed",
 "gitCommit": "ad103ed",
 "gitTreeState": "clean",
 "buildDate": "2019-01-09T06:44:10Z",
 "goVersion": "go1.10.3",
 "compiler": "gc",
 "platform": "linux/amd64"
}

$ curl -v https://<loadbalancer_ip_address>:22623/healthz --insecure

HTTP/1.1 200 OK
Content-Length: 0

$ curl -I -L -H "Host: console-openshift-console.apps.<cluster_name>.<base_domain>"
http://<load_balancer_front_end_IP_address>

HTTP/1.1 302 Found
content-length: 0
location: https://console-openshift-console.apps.ocp4.private.opequon.net/
cache-control: no-cache

$ curl -I -L --insecure --resolve console-openshift-console.apps.<cluster_name>.
<base_domain>:443:<Load Balancer Front End IP Address> https://console-openshift-

OpenShift Container Platform 4.18 Ingress and load balancing

106

If the configuration is correct, the output from the command shows the following response:

3. Configure the DNS records for your cluster to target the front-end IP addresses of the user-
managed load balancer. You must update records to your DNS server for the cluster API and
applications over the load balancer.

Examples of modified DNS records

IMPORTANT

DNS propagation might take some time for each DNS record to become
available. Ensure that each DNS record propagates before validating each
record.

4. For your OpenShift Container Platform cluster to use the user-managed load balancer, you
must specify the following configuration in your cluster’s install-config.yaml file:

console.apps.<cluster_name>.<base_domain>

HTTP/1.1 200 OK
referrer-policy: strict-origin-when-cross-origin
set-cookie: csrf-
token=UlYWOyQ62LWjw2h003xtYSKlh1a0Py2hhctw0WmV2YEdhJjFyQwWcGBsja261dG
LgaYO0nxzVErhiXt6QepA7g==; Path=/; Secure; SameSite=Lax
x-content-type-options: nosniff
x-dns-prefetch-control: off
x-frame-options: DENY
x-xss-protection: 1; mode=block
date: Wed, 04 Oct 2023 16:29:38 GMT
content-type: text/html; charset=utf-8
set-cookie:
1e2670d92730b515ce3a1bb65da45062=1bf5e9573c9a2760c964ed1659cc1673; path=/;
HttpOnly; Secure; SameSite=None
cache-control: private

<load_balancer_ip_address> A api.<cluster_name>.<base_domain>
A record pointing to Load Balancer Front End

<load_balancer_ip_address> A apps.<cluster_name>.<base_domain>
A record pointing to Load Balancer Front End

...
platform:
 openstack:
 loadBalancer:
 type: UserManaged 1
 apiVIPs:
 - <api_ip> 2
 ingressVIPs:
 - <ingress_ip> 3
...

CHAPTER 3. LOAD BALANCING ON RHOSP

107

1 1

2

3

Set UserManaged for the type parameter to specify a user-managed load balancer for
your cluster. The parameter defaults to OpenShiftManagedDefault, which denotes the

Required parameter when you specify a user-managed load balancer. Specify the user-
managed load balancer’s public IP address, so that the Kubernetes API can communicate
with the user-managed load balancer.

Required parameter when you specify a user-managed load balancer. Specify the user-
managed load balancer’s public IP address, so that the user-managed load balancer can
manage ingress traffic for your cluster.

Verification

1. Use the curl CLI command to verify that the user-managed load balancer and DNS record
configuration are operational:

a. Verify that you can access the cluster API, by running the following command and observing
the output:

If the configuration is correct, you receive a JSON object in response:

b. Verify that you can access the cluster machine configuration, by running the following
command and observing the output:

If the configuration is correct, the output from the command shows the following response:

c. Verify that you can access each cluster application on port, by running the following
command and observing the output:

If the configuration is correct, the output from the command shows the following response:

$ curl https://api.<cluster_name>.<base_domain>:6443/version --insecure

{
 "major": "1",
 "minor": "11+",
 "gitVersion": "v1.11.0+ad103ed",
 "gitCommit": "ad103ed",
 "gitTreeState": "clean",
 "buildDate": "2019-01-09T06:44:10Z",
 "goVersion": "go1.10.3",
 "compiler": "gc",
 "platform": "linux/amd64"
 }

$ curl -v https://api.<cluster_name>.<base_domain>:22623/healthz --insecure

HTTP/1.1 200 OK
Content-Length: 0

$ curl http://console-openshift-console.apps.<cluster_name>.<base_domain> -I -L --
insecure

OpenShift Container Platform 4.18 Ingress and load balancing

108

d. Verify that you can access each cluster application on port 443, by running the following
command and observing the output:

If the configuration is correct, the output from the command shows the following response:

3.4. SPECIFYING A FLOATING IP ADDRESS IN THE INGRESS
CONTROLLER

By default, a floating IP address gets randomly assigned to your OpenShift Container Platform cluster
on Red Hat OpenStack Platform (RHOSP) upon deployment. This floating IP address is associated with
your Ingress port.

You might want to pre-create a floating IP address before updating your DNS records and cluster
deployment. In this situation, you can define a floating IP address to the Ingress Controller. You can do
this regardless of whether you are using Octavia or a user-managed cluster.

HTTP/1.1 302 Found
content-length: 0
location: https://console-openshift-console.apps.<cluster-name>.<base domain>/
cache-control: no-cacheHTTP/1.1 200 OK
referrer-policy: strict-origin-when-cross-origin
set-cookie: csrf-
token=39HoZgztDnzjJkq/JuLJMeoKNXlfiVv2YgZc09c3TBOBU4NI6kDXaJH1LdicNhN1UsQ
Wzon4Dor9GWGfopaTEQ==; Path=/; Secure
x-content-type-options: nosniff
x-dns-prefetch-control: off
x-frame-options: DENY
x-xss-protection: 1; mode=block
date: Tue, 17 Nov 2020 08:42:10 GMT
content-type: text/html; charset=utf-8
set-cookie:
1e2670d92730b515ce3a1bb65da45062=9b714eb87e93cf34853e87a92d6894be; path=/;
HttpOnly; Secure; SameSite=None
cache-control: private

$ curl https://console-openshift-console.apps.<cluster_name>.<base_domain> -I -L --
insecure

HTTP/1.1 200 OK
referrer-policy: strict-origin-when-cross-origin
set-cookie: csrf-
token=UlYWOyQ62LWjw2h003xtYSKlh1a0Py2hhctw0WmV2YEdhJjFyQwWcGBsja261dG
LgaYO0nxzVErhiXt6QepA7g==; Path=/; Secure; SameSite=Lax
x-content-type-options: nosniff
x-dns-prefetch-control: off
x-frame-options: DENY
x-xss-protection: 1; mode=block
date: Wed, 04 Oct 2023 16:29:38 GMT
content-type: text/html; charset=utf-8
set-cookie:
1e2670d92730b515ce3a1bb65da45062=1bf5e9573c9a2760c964ed1659cc1673; path=/;
HttpOnly; Secure; SameSite=None
cache-control: private

CHAPTER 3. LOAD BALANCING ON RHOSP

109

1

2

3

4

Procedure

1. Create the Ingress Controller custom resource (CR) file with the floating IPs:

Example Ingress config sample-ingress.yaml

The name of your Ingress Controller. If you are using the default Ingress Controller, the
value for this field is default.

The DNS name serviced by the Ingress Controller.

You must set the scope to External to use a floating IP address.

The floating IP address associated with the port your Ingress Controller is listening on.

2. Apply the CR file by running the following command:

3. Update your DNS records with the Ingress Controller endpoint:

4. Continue with creating your OpenShift Container Platform cluster.

Verification

Confirm that the load balancer was successfully provisioned by checking the IngressController
conditions using the following command:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: <name> 1
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: External 3
 providerParameters:
 type: OpenStack
 openstack:
 floatingIP: <ingress_port_IP> 4

$ oc apply -f sample-ingress.yaml

*.apps.<name>.<domain>. IN A <ingress_port_IP>

$ oc get ingresscontroller -n openshift-ingress-operator <name> -o jsonpath="
{.status.conditions}" | yq -PC

OpenShift Container Platform 4.18 Ingress and load balancing

110

CHAPTER 4. LOAD BALANCING WITH METALLB

4.1. CONFIGURING METALLB ADDRESS POOLS

As a cluster administrator, you can add, modify, and delete address pools. The MetalLB Operator uses
the address pool custom resources to set the IP addresses that MetalLB can assign to services. The
namespace used in the examples assume the namespace is metallb-system.

For more information about how to install the MetalLB Operator, see About MetalLB and the MetalLB
Operator.

4.1.1. About the IPAddressPool custom resource

The fields for the IPAddressPool custom resource are described in the following tables.

Table 4.1. MetalLB IPAddressPool pool custom resource

Field Type Description

metadata.name string Specifies the name for the address pool. When you add a
service, you can specify this pool name in the
metallb.io/address-pool annotation to select an IP address
from a specific pool. The names doc-example, silver, and
gold are used throughout the documentation.

metadata.name
space

string Specifies the namespace for the address pool. Specify the same
namespace that the MetalLB Operator uses.

metadata.label string Optional: Specifies the key value pair assigned to the
IPAddressPool. This can be referenced by the
ipAddressPoolSelectors in the BGPAdvertisement and
L2Advertisement CRD to associate the IPAddressPool with
the advertisement

spec.addresses string Specifies a list of IP addresses for MetalLB Operator to assign to
services. You can specify multiple ranges in a single pool; they
will all share the same settings. Specify each range in CIDR
notation or as starting and ending IP addresses separated with a
hyphen.

CHAPTER 4. LOAD BALANCING WITH METALLB

111

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#about-metallb

spec.autoAssig
n

boolean Optional: Specifies whether MetalLB automatically assigns IP
addresses from this pool. Specify false if you want to explicitly
request an IP address from this pool with the
metallb.io/address-pool annotation. The default value is
true.

NOTE

For IP address pool configurations, ensure the
addresses field specifies only IPs that are
available and not in use by other network
devices, especially gateway addresses, to
prevent conflicts when autoAssign is enabled.

spec.avoidBugg
yIPs

boolean Optional: This ensures when enabled that IP addresses ending .0
and .255 are not allocated from the pool. The default value is
false. Some older consumer network equipment mistakenly
block IP addresses ending in .0 and .255.

Field Type Description

You can assign IP addresses from an IPAddressPool to services and namespaces by configuring the
spec.serviceAllocation specification.

Table 4.2. MetalLB IPAddressPool custom resource spec.serviceAllocation subfields

Field Type Description

priority int Optional: Defines the priority between IP address pools when
more than one IP address pool matches a service or namespace.
A lower number indicates a higher priority.

namespaces array (string) Optional: Specifies a list of namespaces that you can assign to
IP addresses in an IP address pool.

namespaceSele
ctors

array
(LabelSelector)

Optional: Specifies namespace labels that you can assign to IP
addresses from an IP address pool by using label selectors in a
list format.

serviceSelector
s

array
(LabelSelector)

Optional: Specifies service labels that you can assign to IP
addresses from an address pool by using label selectors in a list
format.

4.1.2. Configuring an address pool

As a cluster administrator, you can add address pools to your cluster to control the IP addresses that
MetalLB can assign to load-balancer services.

Prerequisites

OpenShift Container Platform 4.18 Ingress and load balancing

112

1

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a file, such as ipaddresspool.yaml, with content like the following example:

This label assigned to the IPAddressPool can be referenced by the
ipAddressPoolSelectors in the BGPAdvertisement CRD to associate the
IPAddressPool with the advertisement.

2. Apply the configuration for the IP address pool:

Verification

1. View the address pool by entering the following command:

Example output

2. Confirm that the address pool name, such as doc-example, and the IP address ranges exist in

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example
 labels: 1
 zone: east
spec:
 addresses:
 - 203.0.113.1-203.0.113.10
 - 203.0.113.65-203.0.113.75
...

$ oc apply -f ipaddresspool.yaml

$ oc describe -n metallb-system IPAddressPool doc-example

Name: doc-example
Namespace: metallb-system
Labels: zone=east
Annotations: <none>
API Version: metallb.io/v1beta1
Kind: IPAddressPool
Metadata:
 ...
Spec:
 Addresses:
 203.0.113.1-203.0.113.10
 203.0.113.65-203.0.113.75
 Auto Assign: true
Events: <none>

CHAPTER 4. LOAD BALANCING WITH METALLB

113

1

2

2. Confirm that the address pool name, such as doc-example, and the IP address ranges exist in
the output.

4.1.3. Configure MetalLB address pool for VLAN

As a cluster administrator, you can add address pools to your cluster to control the IP addresses on a
created VLAN that MetalLB can assign to load-balancer services

Prerequisites

Install the OpenShift CLI (oc).

Configure a separate VLAN.

Log in as a user with cluster-admin privileges.

Procedure

1. Create a file, such as ipaddresspool-vlan.yaml, that is similar to the following example:

This label assigned to the IPAddressPool can be referenced by the
ipAddressPoolSelectors in the BGPAdvertisement CRD to associate the
IPAddressPool with the advertisement.

This IP range must match the subnet assigned to the VLAN on your network. To support
layer 2 (L2) mode, the IP address range must be within the same subnet as the cluster
nodes.

2. Apply the configuration for the IP address pool:

3. To ensure this configuration applies to the VLAN you need to set the spec
gatewayConfig.ipForwarding to Global.

a. Run the following command to edit the network configuration custom resource (CR):

b. Update the spec.defaultNetwork.ovnKubernetesConfig section to include the
gatewayConfig.ipForwarding set to Global. It should look something like this:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example-vlan
 labels:
 zone: east 1
spec:
 addresses:
 - 192.168.100.1-192.168.100.254 2

$ oc apply -f ipaddresspool-vlan.yaml

$ oc edit network.operator.openshift/cluster

OpenShift Container Platform 4.18 Ingress and load balancing

114

Example

4.1.4. Example address pool configurations

The following examples show address pool configurations for specific scenarios.

4.1.4.1. Example: IPv4 and CIDR ranges

You can specify a range of IP addresses in classless inter-domain routing (CIDR) notation. You can
combine CIDR notation with the notation that uses a hyphen to separate lower and upper bounds.

4.1.4.2. Example: Assign IP addresses

You can set the autoAssign field to false to prevent MetalLB from automatically assigning IP
addresses from the address pool. You can then assign a single IP address or multiple IP addresses from
an IP address pool. To assign an IP address, append the /32 CIDR notation to the target IP address in
the spec.addresses parameter. This setting ensures that only the specific IP address is avilable for
assignment, leaving non-reserved IP addresses for application use.

Example IPAddressPool CR that assigns multiple IP addresses

...
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 gatewayConfig:
 ipForwarding: Global
...

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: doc-example-cidr
 namespace: metallb-system
spec:
 addresses:
 - 192.168.100.0/24
 - 192.168.200.0/24
 - 192.168.255.1-192.168.255.5
...

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: doc-example-reserved
 namespace: metallb-system
spec:
 addresses:
 - 192.168.100.1/32

CHAPTER 4. LOAD BALANCING WITH METALLB

115

1

NOTE

When you add a service, you can request a specific IP address from the address pool or
you can specify the pool name in an annotation to request any IP address from the pool.

4.1.4.3. Example: IPv4 and IPv6 addresses

You can add address pools that use IPv4 and IPv6. You can specify multiple ranges in the addresses
list, just like several IPv4 examples.

Whether the service is assigned a single IPv4 address, a single IPv6 address, or both is determined by
how you add the service. The spec.ipFamilies and spec.ipFamilyPolicy fields control how IP
addresses are assigned to the service.

Where 10.0.100.0/28 is the local network IP address followed by the /28 network prefix.

4.1.4.4. Example: Assign IP address pools to services or namespaces

You can assign IP addresses from an IPAddressPool to services and namespaces that you specify.

If you assign a service or namespace to more than one IP address pool, MetalLB uses an available IP
address from the higher-priority IP address pool. If no IP addresses are available from the assigned IP
address pools with a high priority, MetalLB uses available IP addresses from an IP address pool with
lower priority or no priority.

NOTE

You can use the matchLabels label selector, the matchExpressions label selector, or
both, for the namespaceSelectors and serviceSelectors specifications. This example
demonstrates one label selector for each specification.

 - 192.168.200.1/32
 autoAssign: false
...

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: doc-example-combined
 namespace: metallb-system
spec:
 addresses:
 - 10.0.100.0/28 1
 - 2002:2:2::1-2002:2:2::100
...

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: doc-example-service-allocation
 namespace: metallb-system
spec:

OpenShift Container Platform 4.18 Ingress and load balancing

116

1

2

3

4

Assign a priority to the address pool. A lower number indicates a higher priority.

Assign one or more namespaces to the IP address pool in a list format.

Assign one or more namespace labels to the IP address pool by using label selectors in a list format.

Assign one or more service labels to the IP address pool by using label selectors in a list format.

4.1.5. Next steps

Configuring MetalLB with an L2 advertisement and label

Configuring MetalLB BGP peers

Configuring services to use MetalLB

4.2. ABOUT ADVERTISING FOR THE IP ADDRESS POOLS

You can configure MetalLB so that the IP address is advertised with layer 2 protocols, the BGP
protocol, or both. With layer 2, MetalLB provides a fault-tolerant external IP address. With BGP,
MetalLB provides fault-tolerance for the external IP address and load balancing.

MetalLB supports advertising using L2 and BGP for the same set of IP addresses.

MetalLB provides the flexibility to assign address pools to specific BGP peers effectively to a subset of
nodes on the network. This allows for more complex configurations, for example facilitating the isolation
of nodes or the segmentation of the network.

4.2.1. About the BGPAdvertisement custom resource

The fields for the BGPAdvertisements object are defined in the following table:

Table 4.3. BGPAdvertisements configuration

 addresses:
 - 192.168.20.0/24
 serviceAllocation:
 priority: 50 1
 namespaces: 2
 - namespace-a
 - namespace-b
 namespaceSelectors: 3
 - matchLabels:
 zone: east
 serviceSelectors: 4
 - matchExpressions:
 - key: security
 operator: In
 values:
 - S1
...

CHAPTER 4. LOAD BALANCING WITH METALLB

117

Field Type Description

metadata.name string Specifies the name for the BGP advertisement.

metadata.name
space

string Specifies the namespace for the BGP advertisement. Specify
the same namespace that the MetalLB Operator uses.

spec.aggregatio
nLength

integer Optional: Specifies the number of bits to include in a 32-bit
CIDR mask. To aggregate the routes that the speaker advertises
to BGP peers, the mask is applied to the routes for several
service IP addresses and the speaker advertises the aggregated
route. For example, with an aggregation length of 24, the
speaker can aggregate several 10.0.1.x/32 service IP addresses
and advertise a single 10.0.1.0/24 route.

spec.aggregatio
nLengthV6

integer Optional: Specifies the number of bits to include in a 128-bit
CIDR mask. For example, with an aggregation length of 124, the
speaker can aggregate several fc00:f853:0ccd:e799::x/128
service IP addresses and advertise a single
fc00:f853:0ccd:e799::0/124 route.

spec.communiti
es

string Optional: Specifies one or more BGP communities. Each
community is specified as two 16-bit values separated by the
colon character. Well-known communities must be specified as
16-bit values:

NO_EXPORT: 65535:65281

NO_ADVERTISE: 65535:65282

NO_EXPORT_SUBCONFED: 65535:65283

NOTE

You can also use community objects
that are created along with the strings.

spec.localPref integer Optional: Specifies the local preference for this advertisement.
This BGP attribute applies to BGP sessions within the
Autonomous System.

spec.ipAddress
Pools

string Optional: The list of IPAddressPools to advertise with this
advertisement, selected by name.

OpenShift Container Platform 4.18 Ingress and load balancing

118

spec.ipAddress
PoolSelectors

string Optional: A selector for the IPAddressPools that gets
advertised with this advertisement. This is for associating the
IPAddressPool to the advertisement based on the label
assigned to the IPAddressPool instead of the name itself. If
no IPAddressPool is selected by this or by the list, the
advertisement is applied to all the IPAddressPools.

spec.nodeSelec
tors

string Optional: NodeSelectors allows to limit the nodes to announce
as next hops for the load balancer IP. When empty, all the nodes
are announced as next hops.

spec.peers string Optional: Use a list to specify the metadata.name values for
each BGPPeer resource that receives advertisements for the
MetalLB service IP address. The MetalLB service IP address is
assigned from the IP address pool. By default, the MetalLB
service IP address is advertised to all configured BGPPeer
resources. Use this field to limit the advertisement to specific
BGPpeer resources.

Field Type Description

4.2.2. Configuring MetalLB with a BGP advertisement and a basic use case

Configure MetalLB as follows so that the peer BGP routers receive one 203.0.113.200/32 route and one
fc00:f853:ccd:e799::1/128 route for each load-balancer IP address that MetalLB assigns to a service.
Because the localPref and communities fields are not specified, the routes are advertised with
localPref set to zero and no BGP communities.

4.2.2.1. Example: Advertise a basic address pool configuration with BGP

Configure MetalLB as follows so that the IPAddressPool is advertised with the BGP protocol.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IP address pool.

a. Create a file, such as ipaddresspool.yaml, with content like the following example:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example-bgp-basic
spec:
 addresses:
 - 203.0.113.200/30

CHAPTER 4. LOAD BALANCING WITH METALLB

119

b. Apply the configuration for the IP address pool:

2. Create a BGP advertisement.

a. Create a file, such as bgpadvertisement.yaml, with content like the following example:

b. Apply the configuration:

4.2.3. Configuring MetalLB with a BGP advertisement and an advanced use case

Configure MetalLB as follows so that MetalLB assigns IP addresses to load-balancer services in the
ranges between 203.0.113.200 and 203.0.113.203 and between fc00:f853:ccd:e799::0 and
fc00:f853:ccd:e799::f.

To explain the two BGP advertisements, consider an instance when MetalLB assigns the IP address of
203.0.113.200 to a service. With that IP address as an example, the speaker advertises two routes to
BGP peers:

203.0.113.200/32, with localPref set to 100 and the community set to the numeric value of the
NO_ADVERTISE community. This specification indicates to the peer routers that they can use
this route but they should not propagate information about this route to BGP peers.

203.0.113.200/30, aggregates the load-balancer IP addresses assigned by MetalLB into a single
route. MetalLB advertises the aggregated route to BGP peers with the community attribute set
to 8000:800. BGP peers propagate the 203.0.113.200/30 route to other BGP peers. When
traffic is routed to a node with a speaker, the 203.0.113.200/32 route is used to forward the
traffic into the cluster and to a pod that is associated with the service.

As you add more services and MetalLB assigns more load-balancer IP addresses from the pool, peer
routers receive one local route, 203.0.113.20x/32, for each service, as well as the 203.0.113.200/30
aggregate route. Each service that you add generates the /30 route, but MetalLB deduplicates the
routes to one BGP advertisement before communicating with peer routers.

4.2.3.1. Example: Advertise an advanced address pool configuration with BGP

Configure MetalLB as follows so that the IPAddressPool is advertised with the BGP protocol.

Prerequisites

 - fc00:f853:ccd:e799::/124

$ oc apply -f ipaddresspool.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: bgpadvertisement-basic
 namespace: metallb-system
spec:
 ipAddressPools:
 - doc-example-bgp-basic

$ oc apply -f bgpadvertisement.yaml

OpenShift Container Platform 4.18 Ingress and load balancing

120

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IP address pool.

a. Create a file, such as ipaddresspool.yaml, with content like the following example:

b. Apply the configuration for the IP address pool:

2. Create a BGP advertisement.

a. Create a file, such as bgpadvertisement1.yaml, with content like the following example:

b. Apply the configuration:

c. Create a file, such as bgpadvertisement2.yaml, with content like the following example:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example-bgp-adv
 labels:
 zone: east
spec:
 addresses:
 - 203.0.113.200/30
 - fc00:f853:ccd:e799::/124
 autoAssign: false

$ oc apply -f ipaddresspool.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: bgpadvertisement-adv-1
 namespace: metallb-system
spec:
 ipAddressPools:
 - doc-example-bgp-adv
 communities:
 - 65535:65282
 aggregationLength: 32
 localPref: 100

$ oc apply -f bgpadvertisement1.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: bgpadvertisement-adv-2

CHAPTER 4. LOAD BALANCING WITH METALLB

121

d. Apply the configuration:

4.2.4. Advertising an IP address pool from a subset of nodes

To advertise an IP address from an IP addresses pool, from a specific set of nodes only, use the
.spec.nodeSelector specification in the BGPAdvertisement custom resource. This specification
associates a pool of IP addresses with a set of nodes in the cluster. This is useful when you have nodes
on different subnets in a cluster and you want to advertise an IP addresses from an address pool from a
specific subnet, for example a public-facing subnet only.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IP address pool by using a custom resource:

2. Control which nodes in the cluster the IP address from pool1 advertises from by defining the
.spec.nodeSelector value in the BGPAdvertisement custom resource:

 namespace: metallb-system
spec:
 ipAddressPools:
 - doc-example-bgp-adv
 communities:
 - 8000:800
 aggregationLength: 30
 aggregationLengthV6: 124

$ oc apply -f bgpadvertisement2.yaml

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: pool1
spec:
 addresses:
 - 4.4.4.100-4.4.4.200
 - 2001:100:4::200-2001:100:4::400

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: example
spec:
 ipAddressPools:
 - pool1
 nodeSelector:
 - matchLabels:

OpenShift Container Platform 4.18 Ingress and load balancing

122

In this example, the IP address from pool1 advertises from NodeA and NodeB only.

4.2.5. About the L2Advertisement custom resource

The fields for the l2Advertisements object are defined in the following table:

Table 4.4. L2 advertisements configuration

Field Type Description

metadata.name string Specifies the name for the L2 advertisement.

metadata.name
space

string Specifies the namespace for the L2 advertisement. Specify the
same namespace that the MetalLB Operator uses.

spec.ipAddress
Pools

string Optional: The list of IPAddressPools to advertise with this
advertisement, selected by name.

spec.ipAddress
PoolSelectors

string Optional: A selector for the IPAddressPools that gets
advertised with this advertisement. This is for associating the
IPAddressPool to the advertisement based on the label
assigned to the IPAddressPool instead of the name itself. If
no IPAddressPool is selected by this or by the list, the
advertisement is applied to all the IPAddressPools.

spec.nodeSelec
tors

string Optional: NodeSelectors limits the nodes to announce as next
hops for the load balancer IP. When empty, all the nodes are
announced as next hops.

IMPORTANT

Limiting the nodes to announce as next hops is
a Technology Preview feature only. Technology
Preview features are not supported with Red
Hat production service level agreements (SLAs)
and might not be functionally complete. Red
Hat does not recommend using them in
production. These features provide early access
to upcoming product features, enabling
customers to test functionality and provide
feedback during the development process.

For more information about the support scope
of Red Hat Technology Preview features, see
Technology Preview Features Support Scope.

spec.interfaces string Optional: The list of interfaces that are used to announce the
load balancer IP.

 kubernetes.io/hostname: NodeA
 - matchLabels:
 kubernetes.io/hostname: NodeB

CHAPTER 4. LOAD BALANCING WITH METALLB

123

https://access.redhat.com/support/offerings/techpreview/

4.2.6. Configuring MetalLB with an L2 advertisement

Configure MetalLB as follows so that the IPAddressPool is advertised with the L2 protocol.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IP address pool.

a. Create a file, such as ipaddresspool.yaml, with content like the following example:

b. Apply the configuration for the IP address pool:

2. Create a L2 advertisement.

a. Create a file, such as l2advertisement.yaml, with content like the following example:

b. Apply the configuration:

4.2.7. Configuring MetalLB with a L2 advertisement and label

The ipAddressPoolSelectors field in the BGPAdvertisement and L2Advertisement custom resource
definitions is used to associate the IPAddressPool to the advertisement based on the label assigned to
the IPAddressPool instead of the name itself.

This example shows how to configure MetalLB so that the IPAddressPool is advertised with the L2

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example-l2
spec:
 addresses:
 - 4.4.4.0/24
 autoAssign: false

$ oc apply -f ipaddresspool.yaml

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: l2advertisement
 namespace: metallb-system
spec:
 ipAddressPools:
 - doc-example-l2

$ oc apply -f l2advertisement.yaml

OpenShift Container Platform 4.18 Ingress and load balancing

124

This example shows how to configure MetalLB so that the IPAddressPool is advertised with the L2
protocol by configuring the ipAddressPoolSelectors field.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IP address pool.

a. Create a file, such as ipaddresspool.yaml, with content like the following example:

b. Apply the configuration for the IP address pool:

2. Create a L2 advertisement advertising the IP using ipAddressPoolSelectors.

a. Create a file, such as l2advertisement.yaml, with content like the following example:

b. Apply the configuration:

4.2.8. Configuring MetalLB with an L2 advertisement for selected interfaces

By default, the IP addresses from IP address pool that has been assigned to the service, is advertised

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example-l2-label
 labels:
 zone: east
spec:
 addresses:
 - 172.31.249.87/32

$ oc apply -f ipaddresspool.yaml

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: l2advertisement-label
 namespace: metallb-system
spec:
 ipAddressPoolSelectors:
 - matchExpressions:
 - key: zone
 operator: In
 values:
 - east

$ oc apply -f l2advertisement.yaml

CHAPTER 4. LOAD BALANCING WITH METALLB

125

By default, the IP addresses from IP address pool that has been assigned to the service, is advertised
from all the network interfaces. The interfaces field in the L2Advertisement custom resource definition
is used to restrict those network interfaces that advertise the IP address pool.

This example shows how to configure MetalLB so that the IP address pool is advertised only from the
network interfaces listed in the interfaces field of all nodes.

Prerequisites

You have installed the OpenShift CLI (oc).

You are logged in as a user with cluster-admin privileges.

Procedure

1. Create an IP address pool.

a. Create a file, such as ipaddresspool.yaml, and enter the configuration details like the
following example:

b. Apply the configuration for the IP address pool like the following example:

2. Create a L2 advertisement advertising the IP with interfaces selector.

a. Create a YAML file, such as l2advertisement.yaml, and enter the configuration details like
the following example:

b. Apply the configuration for the advertisement like the following example:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example-l2
spec:
 addresses:
 - 4.4.4.0/24
 autoAssign: false

$ oc apply -f ipaddresspool.yaml

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: l2advertisement
 namespace: metallb-system
spec:
 ipAddressPools:
 - doc-example-l2
 interfaces:
 - interfaceA
 - interfaceB

$ oc apply -f l2advertisement.yaml

OpenShift Container Platform 4.18 Ingress and load balancing

126

IMPORTANT

The interface selector does not affect how MetalLB chooses the node to announce a
given IP by using L2. The chosen node does not announce the service if the node does
not have the selected interface.

4.2.9. Configuring MetalLB with secondary networks

From OpenShift Container Platform 4.14 the default network behavior is to not allow forwarding of IP
packets between network interfaces. Therefore, when MetalLB is configured on a secondary interface,
you need to add a machine configuration to enable IP forwarding for only the required interfaces.

NOTE

OpenShift Container Platform clusters upgraded from 4.13 are not affected because a
global parameter is set during upgrade to enable global IP forwarding.

To enable IP forwarding for the secondary interface, you have two options:

Enable IP forwarding for a specific interface.

Enable IP forwarding for all interfaces.

NOTE

Enabling IP forwarding for a specific interface provides more granular control,
while enabling it for all interfaces applies a global setting.

4.2.9.1. Enabling IP forwarding for a specific interface

Procedure

1. Patch the Cluster Network Operator, setting the parameter routingViaHost to true, by running
the following command:

2. Enable forwarding for a specific secondary interface, such as bridge-net by creating and
applying a MachineConfig CR:

a. Base64-encode the string that is used to configure network kernel parameters by running
the following command on your local machine:

Example output

$ oc patch network.operator cluster -p '{"spec":{"defaultNetwork":{"ovnKubernetesConfig":
{"gatewayConfig": {"routingViaHost": true} }}}}' --type=merge

$ echo -e "net.ipv4.conf.bridge-net.forwarding = 1\nnet.ipv6.conf.bridge-net.forwarding =
1\nnet.ipv4.conf.bridge-net.rp_filter = 0\nnet.ipv6.conf.bridge-net.rp_filter = 0" | base64 -
w0

bmV0LmlwdjQuY29uZi5icmlkZ2UtbmV0LmZvcndhcmRpbmcgPSAxCm5ldC5pcHY2LmNvb
mYuYnJpZGdlLW5ldC5mb3J3YXJkaW5nID0gMQpuZXQuaXB2NC5jb25mLmJyaWRnZS1
uZXQucnBfZmlsdGVyID0gMApuZXQuaXB2Ni5jb25mLmJyaWRnZS1uZXQucnBfZmlsdGV

CHAPTER 4. LOAD BALANCING WITH METALLB

127

1

2

b. Create the MachineConfig CR to enable IP forwarding for the specified secondary
interface named bridge-net.

c. Save the following YAML in the enable-ip-forward.yaml file:

Node role where you want to enable IP forwarding, for example, worker

Populate with the generated base64 string

d. Apply the configuration by running the following command:

Verification

1. After you apply the machine config, verify the changes by following this procedure:

a. Enter into a debug session on the target node by running the following command:

This step instantiates a debug pod called <node-name>-debug.

b. Set /host as the root directory within the debug shell by running the following command:

The debug pod mounts the host’s root file system in /host within the pod. By changing the

yID0gMAo=

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: <node_role> 1
 name: 81-enable-global-forwarding
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-
8;base64,bmV0LmlwdjQuY29uZi5icmlkZ2UtbmV0LmZvcndhcmRpbmcgPSAxCm5ldC5pcH
Y2LmNvbmYuYnJpZGdlLW5ldC5mb3J3YXJkaW5nID0gMQpuZXQuaXB2NC5jb25mLmJy
aWRnZS1uZXQucnBfZmlsdGVyID0gMApuZXQuaXB2Ni5jb25mLmJyaWRnZS1uZXQucn
BfZmlsdGVyID0gMAo= 2
 verification: {}
 filesystem: root
 mode: 420
 path: /etc/sysctl.d/enable-global-forwarding.conf
 osImageURL: ""

$ oc apply -f enable-ip-forward.yaml

$ oc debug node/<node-name>

$ chroot /host

OpenShift Container Platform 4.18 Ingress and load balancing

128

The debug pod mounts the host’s root file system in /host within the pod. By changing the
root directory to /host, you can run binaries contained in the host’s executable paths.

c. Verify that IP forwarding is enabled by running the following command:

Expected output

The output indicates that IPv4 and IPv6 packet forwarding is enabled on the bridge-net
interface.

4.2.9.2. Enabling IP forwarding globally

Enable IP forwarding globally by running the following command:

4.2.10. Additional resources

Configuring a community alias .

4.3. CONFIGURING METALLB BGP PEERS

As a cluster administrator, you can add, modify, and delete Border Gateway Protocol (BGP) peers. The
MetalLB Operator uses the BGP peer custom resources to identify which peers that MetalLB speaker
pods contact to start BGP sessions. The peers receive the route advertisements for the load-balancer
IP addresses that MetalLB assigns to services.

4.3.1. About the BGP peer custom resource

The fields for the BGP peer custom resource are described in the following table.

Table 4.5. MetalLB BGP peer custom resource

Field Type Description

metadata.name string Specifies the name for the BGP peer custom resource.

metadata.name
space

string Specifies the namespace for the BGP peer custom resource.

spec.myASN integer Specifies the Autonomous System Number (ASN) for the local
end of the BGP session. In all BGP peer custom resources that
you add, specify the same value . The range is 0 to 4294967295.

$ cat /etc/sysctl.d/enable-global-forwarding.conf

net.ipv4.conf.bridge-net.forwarding = 1
net.ipv6.conf.bridge-net.forwarding = 1
net.ipv4.conf.bridge-net.rp_filter = 0
net.ipv6.conf.bridge-net.rp_filter = 0

$ oc patch network.operator cluster -p '{"spec":{"defaultNetwork":{"ovnKubernetesConfig":
{"gatewayConfig":{"ipForwarding": "Global"}}}}}' --type=merge

CHAPTER 4. LOAD BALANCING WITH METALLB

129

spec.peerASN integer Specifies the ASN for the remote end of the BGP session. The
range is 0 to 4294967295. If you use this field, you cannot
specify a value in the spec.dynamicASN field.

spec.dynamicA
SN

string Detects the ASN to use for the remote end of the session
without explicitly setting it. Specify internal for a peer with the
same ASN, or external for a peer with a different ASN. If you
use this field, you cannot specify a value in the spec.peerASN
field.

spec.peerAddre
ss

string Specifies the IP address of the peer to contact for establishing
the BGP session.

spec.sourceAd
dress

string Optional: Specifies the IP address to use when establishing the
BGP session. The value must be an IPv4 address.

spec.peerPort integer Optional: Specifies the network port of the peer to contact for
establishing the BGP session. The range is 0 to 16384.

spec.holdTime string Optional: Specifies the duration for the hold time to propose to
the BGP peer. The minimum value is 3 seconds (3s). The
common units are seconds and minutes, such as 3s, 1m, and
5m30s. To detect path failures more quickly, also configure
BFD.

spec.keepaliveT
ime

string Optional: Specifies the maximum interval between sending
keep-alive messages to the BGP peer. If you specify this field,
you must also specify a value for the holdTime field. The
specified value must be less than the value for the holdTime
field.

spec.routerID string Optional: Specifies the router ID to advertise to the BGP peer. If
you specify this field, you must specify the same value in every
BGP peer custom resource that you add.

spec.password string Optional: Specifies the MD5 password to send to the peer for
routers that enforce TCP MD5 authenticated BGP sessions.

spec.password
Secret

string Optional: Specifies name of the authentication secret for the
BGP Peer. The secret must live in the metallb namespace and
be of type basic-auth.

spec.bfdProfile string Optional: Specifies the name of a BFD profile.

spec.nodeSelec
tors

object[] Optional: Specifies a selector, using match expressions and
match labels, to control which nodes can connect to the BGP
peer.

Field Type Description

OpenShift Container Platform 4.18 Ingress and load balancing

130

spec.ebgpMulti
Hop

boolean Optional: Specifies that the BGP peer is multiple network hops
away. If the BGP peer is not directly connected to the same
network, the speaker cannot establish a BGP session unless this
field is set to true. This field applies to external BGP. External
BGP is the term that is used to describe when a BGP peer
belongs to a different Autonomous System.

connectTime duration Specifies how long BGP waits between connection attempts to
a neighbor.

Field Type Description

NOTE

The passwordSecret field is mutually exclusive with the password field, and contains a
reference to a secret containing the password to use. Setting both fields results in a
failure of the parsing.

4.3.2. Configuring a BGP peer

As a cluster administrator, you can add a BGP peer custom resource to exchange routing information
with network routers and advertise the IP addresses for services.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Configure MetalLB with a BGP advertisement.

Procedure

1. Create a file, such as bgppeer.yaml, with content like the following example:

2. Apply the configuration for the BGP peer:

4.3.3. Configure a specific set of BGP peers for a given address pool

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 namespace: metallb-system
 name: doc-example-peer
spec:
 peerAddress: 10.0.0.1
 peerASN: 64501
 myASN: 64500
 routerID: 10.10.10.10

$ oc apply -f bgppeer.yaml

CHAPTER 4. LOAD BALANCING WITH METALLB

131

This procedure illustrates how to:

Configure a set of address pools (pool1 and pool2).

Configure a set of BGP peers (peer1 and peer2).

Configure BGP advertisement to assign pool1 to peer1 and pool2 to peer2.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create address pool pool1.

a. Create a file, such as ipaddresspool1.yaml, with content like the following example:

b. Apply the configuration for the IP address pool pool1:

2. Create address pool pool2.

a. Create a file, such as ipaddresspool2.yaml, with content like the following example:

b. Apply the configuration for the IP address pool pool2:

3. Create BGP peer1.

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: pool1
spec:
 addresses:
 - 4.4.4.100-4.4.4.200
 - 2001:100:4::200-2001:100:4::400

$ oc apply -f ipaddresspool1.yaml

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: pool2
spec:
 addresses:
 - 5.5.5.100-5.5.5.200
 - 2001:100:5::200-2001:100:5::400

$ oc apply -f ipaddresspool2.yaml

OpenShift Container Platform 4.18 Ingress and load balancing

132

a. Create a file, such as bgppeer1.yaml, with content like the following example:

b. Apply the configuration for the BGP peer:

4. Create BGP peer2.

a. Create a file, such as bgppeer2.yaml, with content like the following example:

b. Apply the configuration for the BGP peer2:

5. Create BGP advertisement 1.

a. Create a file, such as bgpadvertisement1.yaml, with content like the following example:

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 namespace: metallb-system
 name: peer1
spec:
 peerAddress: 10.0.0.1
 peerASN: 64501
 myASN: 64500
 routerID: 10.10.10.10

$ oc apply -f bgppeer1.yaml

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 namespace: metallb-system
 name: peer2
spec:
 peerAddress: 10.0.0.2
 peerASN: 64501
 myASN: 64500
 routerID: 10.10.10.10

$ oc apply -f bgppeer2.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: bgpadvertisement-1
 namespace: metallb-system
spec:
 ipAddressPools:
 - pool1
 peers:
 - peer1
 communities:
 - 65535:65282
 aggregationLength: 32
 aggregationLengthV6: 128
 localPref: 100

CHAPTER 4. LOAD BALANCING WITH METALLB

133

b. Apply the configuration:

6. Create BGP advertisement 2.

a. Create a file, such as bgpadvertisement2.yaml, with content like the following example:

b. Apply the configuration:

4.3.4. Exposing a service through a network VRF

You can expose a service through a virtual routing and forwarding (VRF) instance by associating a VRF
on a network interface with a BGP peer.

IMPORTANT

Exposing a service through a VRF on a BGP peer is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

By using a VRF on a network interface to expose a service through a BGP peer, you can segregate traffic
to the service, configure independent routing decisions, and enable multi-tenancy support on a network
interface.

NOTE

$ oc apply -f bgpadvertisement1.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: bgpadvertisement-2
 namespace: metallb-system
spec:
 ipAddressPools:
 - pool2
 peers:
 - peer2
 communities:
 - 65535:65282
 aggregationLength: 32
 aggregationLengthV6: 128
 localPref: 100

$ oc apply -f bgpadvertisement2.yaml

OpenShift Container Platform 4.18 Ingress and load balancing

134

https://access.redhat.com/support/offerings/techpreview/

NOTE

By establishing a BGP session through an interface belonging to a network VRF, MetalLB
can advertise services through that interface and enable external traffic to reach the
service through this interface. However, the network VRF routing table is different from
the default VRF routing table used by OVN-Kubernetes. Therefore, the traffic cannot
reach the OVN-Kubernetes network infrastructure.

To enable the traffic directed to the service to reach the OVN-Kubernetes network
infrastructure, you must configure routing rules to define the next hops for network
traffic. See the NodeNetworkConfigurationPolicy resource in "Managing symmetric
routing with MetalLB" in the Additional resources section for more information.

These are the high-level steps to expose a service through a network VRF with a BGP peer:

1. Define a BGP peer and add a network VRF instance.

2. Specify an IP address pool for MetalLB.

3. Configure a BGP route advertisement for MetalLB to advertise a route using the specified IP
address pool and the BGP peer associated with the VRF instance.

4. Deploy a service to test the configuration.

Prerequisites

You installed the OpenShift CLI (oc).

You logged in as a user with cluster-admin privileges.

You defined a NodeNetworkConfigurationPolicy to associate a Virtual Routing and
Forwarding (VRF) instance with a network interface. For more information about completing
this prerequisite, see the Additional resources section.

You installed MetalLB on your cluster.

Procedure

1. Create a BGPPeer custom resources (CR):

a. Create a file, such as frrviavrf.yaml, with content like the following example:

Specifies the network VRF instance to associate with the BGP peer. MetalLB can

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 name: frrviavrf
 namespace: metallb-system
spec:
 myASN: 100
 peerASN: 200
 peerAddress: 192.168.130.1
 vrf: ens4vrf 1

CHAPTER 4. LOAD BALANCING WITH METALLB

135

1

1

Specifies the network VRF instance to associate with the BGP peer. MetalLB can
advertise services and make routing decisions based on the routing information in the
VRF.

NOTE

You must configure this network VRF instance in a
NodeNetworkConfigurationPolicy CR. See the Additional resources for
more information.

b. Apply the configuration for the BGP peer by running the following command:

2. Create an IPAddressPool CR:

a. Create a file, such as first-pool.yaml, with content like the following example:

b. Apply the configuration for the IP address pool by running the following command:

3. Create a BGPAdvertisement CR:

a. Create a file, such as first-adv.yaml, with content like the following example:

In this example, MetalLB advertises a range of IP addresses from the first-pool IP
address pool to the frrviavrf BGP peer.

b. Apply the configuration for the BGP advertisement by running the following command:

$ oc apply -f frrviavrf.yaml

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: first-pool
 namespace: metallb-system
spec:
 addresses:
 - 192.169.10.0/32

$ oc apply -f first-pool.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: first-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - first-pool
 peers:
 - frrviavrf 1

$ oc apply -f first-adv.yaml

OpenShift Container Platform 4.18 Ingress and load balancing

136

4. Create a Namespace, Deployment, and Service CR:

a. Create a file, such as deploy-service.yaml, with content like the following example:

b. Apply the configuration for the namespace, deployment, and service by running the
following command:

Verification

apiVersion: v1
kind: Namespace
metadata:
 name: test

apiVersion: apps/v1
kind: Deployment
metadata:
 name: server
 namespace: test
spec:
 selector:
 matchLabels:
 app: server
 template:
 metadata:
 labels:
 app: server
 spec:
 containers:
 - name: server
 image: registry.redhat.io/ubi9/ubi
 ports:
 - name: http
 containerPort: 30100
 command: ["/bin/sh", "-c"]
 args: ["sleep INF"]

apiVersion: v1
kind: Service
metadata:
 name: server1
 namespace: test
spec:
 ports:
 - name: http
 port: 30100
 protocol: TCP
 targetPort: 30100
 selector:
 app: server
 type: LoadBalancer

$ oc apply -f deploy-service.yaml

CHAPTER 4. LOAD BALANCING WITH METALLB

137

1. Identify a MetalLB speaker pod by running the following command:

Example output

2. Verify that the state of the BGP session is Established in the speaker pod by running the
following command, replacing the variables to match your configuration:

Example output

3. Verify that the service is advertised correctly by running the following command:

Additional resources

About virtual routing and forwarding

Example: Network interface with a VRF instance node network configuration policy

Configuring an egress service

Managing symmetric routing with MetalLB

4.3.5. Example BGP peer configurations

4.3.5.1. Example: Limit which nodes connect to a BGP peer

You can specify the node selectors field to control which nodes can connect to a BGP peer.

$ oc get -n metallb-system pods -l component=speaker

NAME READY STATUS RESTARTS AGE
speaker-c6c5f 6/6 Running 0 69m

$ oc exec -n metallb-system <speaker_pod> -c frr -- vtysh -c "show bgp vrf <vrf_name>
neigh"

BGP neighbor is 192.168.30.1, remote AS 200, local AS 100, external link
 BGP version 4, remote router ID 192.168.30.1, local router ID 192.168.30.71
 BGP state = Established, up for 04:20:09

...

$ oc exec -n metallb-system <speaker_pod> -c frr -- vtysh -c "show bgp vrf <vrf_name> ipv4"

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 name: doc-example-nodesel
 namespace: metallb-system
spec:
 peerAddress: 10.0.20.1
 peerASN: 64501
 myASN: 64500

OpenShift Container Platform 4.18 Ingress and load balancing

138

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/multiple_networks/#cnf-about-virtual-routing-and-forwarding_about-virtual-routing-and-forwarding
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/kubernetes_nmstate/#virt-example-host-vrf_k8s-nmstate-updating-node-network-config
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/ovn-kubernetes_network_plugin/#configuring-egress-traffic-loadbalancer-services

4.3.5.2. Example: Specify a BFD profile for a BGP peer

You can specify a BFD profile to associate with BGP peers. BFD compliments BGP by providing more
rapid detection of communication failures between peers than BGP alone.

NOTE

Deleting the bidirectional forwarding detection (BFD) profile and removing the
bfdProfile added to the border gateway protocol (BGP) peer resource does not disable
the BFD. Instead, the BGP peer starts using the default BFD profile. To disable BFD from
a BGP peer resource, delete the BGP peer configuration and recreate it without a BFD
profile. For more information, see BZ#2050824.

4.3.5.3. Example: Specify BGP peers for dual-stack networking

To support dual-stack networking, add one BGP peer custom resource for IPv4 and one BGP peer
custom resource for IPv6.

 nodeSelectors:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values: [compute-1.example.com, compute-2.example.com]

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 name: doc-example-peer-bfd
 namespace: metallb-system
spec:
 peerAddress: 10.0.20.1
 peerASN: 64501
 myASN: 64500
 holdTime: "10s"
 bfdProfile: doc-example-bfd-profile-full

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 name: doc-example-dual-stack-ipv4
 namespace: metallb-system
spec:
 peerAddress: 10.0.20.1
 peerASN: 64500
 myASN: 64500

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 name: doc-example-dual-stack-ipv6
 namespace: metallb-system
spec:

CHAPTER 4. LOAD BALANCING WITH METALLB

139

https://bugzilla.redhat.com/show_bug.cgi?id=2050824

4.3.6. Next steps

Configuring services to use MetalLB

4.4. CONFIGURING COMMUNITY ALIAS

As a cluster administrator, you can configure a community alias and use it across different
advertisements.

4.4.1. About the community custom resource

The community custom resource is a collection of aliases for communities. Users can define named
aliases to be used when advertising ipAddressPools using the BGPAdvertisement. The fields for the
community custom resource are described in the following table.

NOTE

The community CRD applies only to BGPAdvertisement.

Table 4.6. MetalLB community custom resource

Field Type Description

metadata.name string Specifies the name for the community.

metadata.name
space

string Specifies the namespace for the community. Specify the same
namespace that the MetalLB Operator uses.

spec.communiti
es

string Specifies a list of BGP community aliases that can be used in
BGPAdvertisements. A community alias consists of a pair of
name (alias) and value (number:number). Link the
BGPAdvertisement to a community alias by referring to the alias
name in its spec.communities field.

Table 4.7. CommunityAlias

Field Type Description

name string The name of the alias for the community.

value string The BGP community value corresponding to the given name.

4.4.2. Configuring MetalLB with a BGP advertisement and community alias

Configure MetalLB as follows so that the IPAddressPool is advertised with the BGP protocol and the

 peerAddress: 2620:52:0:88::104
 peerASN: 64500
 myASN: 64500

OpenShift Container Platform 4.18 Ingress and load balancing

140

Configure MetalLB as follows so that the IPAddressPool is advertised with the BGP protocol and the
community alias set to the numeric value of the NO_ADVERTISE community.

In the following example, the peer BGP router doc-example-peer-community receives one
203.0.113.200/32 route and one fc00:f853:ccd:e799::1/128 route for each load-balancer IP address
that MetalLB assigns to a service. A community alias is configured with the NO_ADVERTISE
community.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IP address pool.

a. Create a file, such as ipaddresspool.yaml, with content like the following example:

b. Apply the configuration for the IP address pool:

2. Create a community alias named community1.

3. Create a BGP peer named doc-example-bgp-peer.

a. Create a file, such as bgppeer.yaml, with content like the following example:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example-bgp-community
spec:
 addresses:
 - 203.0.113.200/30
 - fc00:f853:ccd:e799::/124

$ oc apply -f ipaddresspool.yaml

apiVersion: metallb.io/v1beta1
kind: Community
metadata:
 name: community1
 namespace: metallb-system
spec:
 communities:
 - name: NO_ADVERTISE
 value: '65535:65282'

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 namespace: metallb-system

CHAPTER 4. LOAD BALANCING WITH METALLB

141

1

b. Apply the configuration for the BGP peer:

4. Create a BGP advertisement with the community alias.

a. Create a file, such as bgpadvertisement.yaml, with content like the following example:

Specify the CommunityAlias.name here and not the community custom resource
(CR) name.

b. Apply the configuration:

4.5. CONFIGURING METALLB BFD PROFILES

As a cluster administrator, you can add, modify, and delete Bidirectional Forwarding Detection (BFD)
profiles. The MetalLB Operator uses the BFD profile custom resources to identify which BGP sessions
use BFD to provide faster path failure detection than BGP alone provides.

4.5.1. About the BFD profile custom resource

The fields for the BFD profile custom resource are described in the following table.

Table 4.8. BFD profile custom resource

Field Type Description

metadata.name string Specifies the name for the BFD profile custom resource.

 name: doc-example-bgp-peer
spec:
 peerAddress: 10.0.0.1
 peerASN: 64501
 myASN: 64500
 routerID: 10.10.10.10

$ oc apply -f bgppeer.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: bgp-community-sample
 namespace: metallb-system
spec:
 aggregationLength: 32
 aggregationLengthV6: 128
 communities:
 - NO_ADVERTISE 1
 ipAddressPools:
 - doc-example-bgp-community
 peers:
 - doc-example-peer

$ oc apply -f bgpadvertisement.yaml

OpenShift Container Platform 4.18 Ingress and load balancing

142

metadata.name
space

string Specifies the namespace for the BFD profile custom resource.

spec.detectMult
iplier

integer Specifies the detection multiplier to determine packet loss. The
remote transmission interval is multiplied by this value to
determine the connection loss detection timer.

For example, when the local system has the detect multiplier set
to 3 and the remote system has the transmission interval set to
300, the local system detects failures only after 900 ms without
receiving packets.

The range is 2 to 255. The default value is 3.

spec.echoMode boolean Specifies the echo transmission mode. If you are not using
distributed BFD, echo transmission mode works only when the
peer is also FRR. The default value is false and echo
transmission mode is disabled.

When echo transmission mode is enabled, consider increasing
the transmission interval of control packets to reduce bandwidth
usage. For example, consider increasing the transmit interval to
2000 ms.

spec.echoInterv
al

integer Specifies the minimum transmission interval, less jitter, that this
system uses to send and receive echo packets. The range is 10
to 60000. The default value is 50 ms.

spec.minimumT
tl

integer Specifies the minimum expected TTL for an incoming control
packet. This field applies to multi-hop sessions only.

The purpose of setting a minimum TTL is to make the packet
validation requirements more stringent and avoid receiving
control packets from other sessions.

The default value is 254 and indicates that the system expects
only one hop between this system and the peer.

spec.passiveMo
de

boolean Specifies whether a session is marked as active or passive. A
passive session does not attempt to start the connection.
Instead, a passive session waits for control packets from a peer
before it begins to reply.

Marking a session as passive is useful when you have a router
that acts as the central node of a star network and you want to
avoid sending control packets that you do not need the system
to send.

The default value is false and marks the session as active.

Field Type Description

CHAPTER 4. LOAD BALANCING WITH METALLB

143

spec.receiveInte
rval

integer Specifies the minimum interval that this system is capable of
receiving control packets. The range is 10 to 60000. The default
value is 300 ms.

spec.transmitInt
erval

integer Specifies the minimum transmission interval, less jitter, that this
system uses to send control packets. The range is 10 to 60000.
The default value is 300 ms.

Field Type Description

4.5.2. Configuring a BFD profile

As a cluster administrator, you can add a BFD profile and configure a BGP peer to use the profile. BFD
provides faster path failure detection than BGP alone.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a file, such as bfdprofile.yaml, with content like the following example:

2. Apply the configuration for the BFD profile:

4.5.3. Next steps

Configure a BGP peer to use the BFD profile.

4.6. CONFIGURING SERVICES TO USE METALLB

As a cluster administrator, when you add a service of type LoadBalancer, you can control how MetalLB
assigns an IP address.

apiVersion: metallb.io/v1beta1
kind: BFDProfile
metadata:
 name: doc-example-bfd-profile-full
 namespace: metallb-system
spec:
 receiveInterval: 300
 transmitInterval: 300
 detectMultiplier: 3
 echoMode: false
 passiveMode: true
 minimumTtl: 254

$ oc apply -f bfdprofile.yaml

OpenShift Container Platform 4.18 Ingress and load balancing

144

4.6.1. Request a specific IP address

Like some other load-balancer implementations, MetalLB accepts the spec.loadBalancerIP field in the
service specification.

If the requested IP address is within a range from any address pool, MetalLB assigns the requested IP
address. If the requested IP address is not within any range, MetalLB reports a warning.

Example service YAML for a specific IP address

If MetalLB cannot assign the requested IP address, the EXTERNAL-IP for the service reports
<pending> and running oc describe service <service_name> includes an event like the following
example.

Example event when MetalLB cannot assign a requested IP address

4.6.2. Request an IP address from a specific pool

To assign an IP address from a specific range, but you are not concerned with the specific IP address,
then you can use the metallb.io/address-pool annotation to request an IP address from the specified
address pool.

Example service YAML for an IP address from a specific pool

apiVersion: v1
kind: Service
metadata:
 name: <service_name>
 annotations:
 metallb.io/address-pool: <address_pool_name>
spec:
 selector:
 <label_key>: <label_value>
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 type: LoadBalancer
 loadBalancerIP: <ip_address>

 ...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning AllocationFailed 3m16s metallb-controller Failed to allocate IP for "default/invalid-
request": "4.3.2.1" is not allowed in config

apiVersion: v1
kind: Service
metadata:
 name: <service_name>
 annotations:
 metallb.io/address-pool: <address_pool_name>
spec:

CHAPTER 4. LOAD BALANCING WITH METALLB

145

If the address pool that you specify for <address_pool_name> does not exist, MetalLB attempts to
assign an IP address from any pool that permits automatic assignment.

4.6.3. Accept any IP address

By default, address pools are configured to permit automatic assignment. MetalLB assigns an IP address
from these address pools.

To accept any IP address from any pool that is configured for automatic assignment, no special
annotation or configuration is required.

Example service YAML for accepting any IP address

4.6.4. Share a specific IP address

By default, services do not share IP addresses. However, if you need to colocate services on a single IP
address, you can enable selective IP sharing by adding the metallb.io/allow-shared-ip annotation to the
services.

 selector:
 <label_key>: <label_value>
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 type: LoadBalancer

apiVersion: v1
kind: Service
metadata:
 name: <service_name>
spec:
 selector:
 <label_key>: <label_value>
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 type: LoadBalancer

apiVersion: v1
kind: Service
metadata:
 name: service-http
 annotations:
 metallb.io/address-pool: doc-example
 metallb.io/allow-shared-ip: "web-server-svc" 1
spec:
 ports:
 - name: http
 port: 80 2
 protocol: TCP
 targetPort: 8080
 selector:

OpenShift Container Platform 4.18 Ingress and load balancing

146

1

2

3

4

Specify the same value for the metallb.io/allow-shared-ip annotation. This value is referred to as
the sharing key .

Specify different port numbers for the services.

Specify identical pod selectors if you must specify externalTrafficPolicy: local so the services
send traffic to the same set of pods. If you use the cluster external traffic policy, then the pod
selectors do not need to be identical.

Optional: If you specify the three preceding items, MetalLB might colocate the services on the
same IP address. To ensure that services share an IP address, specify the IP address to share.

By default, Kubernetes does not allow multiprotocol load balancer services. This limitation would
normally make it impossible to run a service like DNS that needs to listen on both TCP and UDP. To
work around this limitation of Kubernetes with MetalLB, create two services:

For one service, specify TCP and for the second service, specify UDP.

In both services, specify the same pod selector.

Specify the same sharing key and spec.loadBalancerIP value to colocate the TCP and UDP
services on the same IP address.

4.6.5. Configuring a service with MetalLB

You can configure a load-balancing service to use an external IP address from an address pool.

Prerequisites

Install the OpenShift CLI (oc).

Install the MetalLB Operator and start MetalLB.

 <label_key>: <label_value> 3
 type: LoadBalancer
 loadBalancerIP: 172.31.249.7 4

apiVersion: v1
kind: Service
metadata:
 name: service-https
 annotations:
 metallb.io/address-pool: doc-example
 metallb.io/allow-shared-ip: "web-server-svc"
spec:
 ports:
 - name: https
 port: 443
 protocol: TCP
 targetPort: 8080
 selector:
 <label_key>: <label_value>
 type: LoadBalancer
 loadBalancerIP: 172.31.249.7

CHAPTER 4. LOAD BALANCING WITH METALLB

147

1

2

Configure at least one address pool.

Configure your network to route traffic from the clients to the host network for the cluster.

Procedure

1. Create a <service_name>.yaml file. In the file, ensure that the spec.type field is set to
LoadBalancer.
Refer to the examples for information about how to request the external IP address that
MetalLB assigns to the service.

2. Create the service:

Example output

Verification

Describe the service:

Example output

Name: <service_name>
Namespace: default
Labels: <none>
Annotations: metallb.io/address-pool: doc-example 1
Selector: app=service_name
Type: LoadBalancer 2
IP Family Policy: SingleStack
IP Families: IPv4
IP: 10.105.237.254
IPs: 10.105.237.254
LoadBalancer Ingress: 192.168.100.5 3
Port: <unset> 80/TCP
TargetPort: 8080/TCP
NodePort: <unset> 30550/TCP
Endpoints: 10.244.0.50:8080
Session Affinity: None
External Traffic Policy: Cluster
Events: 4
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal nodeAssigned 32m (x2 over 32m) metallb-speaker announcing from node "
<node_name>"

The annotation is present if you request an IP address from a specific pool.

The service type must indicate LoadBalancer.

$ oc apply -f <service_name>.yaml

service/<service_name> created

$ oc describe service <service_name>

OpenShift Container Platform 4.18 Ingress and load balancing

148

3

4

The load-balancer ingress field indicates the external IP address if the service is assigned
correctly.

The events field indicates the node name that is assigned to announce the external IP
address. If you experience an error, the events field indicates the reason for the error.

4.7. MANAGING SYMMETRIC ROUTING WITH METALLB

As a cluster administrator, you can effectively manage traffic for pods behind a MetalLB load-balancer
service with multiple host interfaces by implementing features from MetalLB, NMState, and OVN-
Kubernetes. By combining these features in this context, you can provide symmetric routing, traffic
segregation, and support clients on different networks with overlapping CIDR addresses.

To achieve this functionality, learn how to implement virtual routing and forwarding (VRF) instances with
MetalLB, and configure egress services.

IMPORTANT

Configuring symmetric traffic by using a VRF instance with MetalLB and an egress
service is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

4.7.1. Challenges of managing symmetric routing with MetalLB

When you use MetalLB with multiple host interfaces, MetalLB exposes and announces a service through
all available interfaces on the host. This can present challenges relating to network isolation, asymmetric
return traffic and overlapping CIDR addresses.

One option to ensure that return traffic reaches the correct client is to use static routes. However, with
this solution, MetalLB cannot isolate the services and then announce each service through a different
interface. Additionally, static routing requires manual configuration and requires maintenance if remote
sites are added.

A further challenge of symmetric routing when implementing a MetalLB service is scenarios where
external systems expect the source and destination IP address for an application to be the same. The
default behavior for OpenShift Container Platform is to assign the IP address of the host network
interface as the source IP address for traffic originating from pods. This is problematic with multiple host
interfaces.

You can overcome these challenges by implementing a configuration that combines features from
MetalLB, NMState, and OVN-Kubernetes.

4.7.2. Overview of managing symmetric routing by using VRFs with MetalLB

You can overcome the challenges of implementing symmetric routing by using NMState to configure a
VRF instance on a host, associating the VRF instance with a MetalLB BGPPeer resource, and
configuring an egress service for egress traffic with OVN-Kubernetes.

Figure 4.1. Network overview of managing symmetric routing by using VRFs with MetalLB

CHAPTER 4. LOAD BALANCING WITH METALLB

149

https://access.redhat.com/support/offerings/techpreview/

Figure 4.1. Network overview of managing symmetric routing by using VRFs with MetalLB

The configuration process involves three stages:

1. Define a VRF and routing rules

Configure a NodeNetworkConfigurationPolicy custom resource (CR) to associate a VRF
instance with a network interface.

Use the VRF routing table to direct ingress and egress traffic.

2. Link the VRF to a MetalLB BGPPeer

Configure a MetalLB BGPPeer resource to use the VRF instance on a network interface.

By associating the BGPPeer resource with the VRF instance, the designated network interface
becomes the primary interface for the BGP session, and MetalLB advertises the services
through this interface.

3. Configure an egress service

Configure an egress service to choose the network associated with the VRF instance for egress
traffic.

Optional: Configure an egress service to use the IP address of the MetalLB load-balancer
service as the source IP for egress traffic.

4.7.3. Configuring symmetric routing by using VRFs with MetalLB

You can configure symmetric network routing for applications behind a MetalLB service that require the
same ingress and egress network paths.

This example associates a VRF routing table with MetalLB and an egress service to enable symmetric
routing for ingress and egress traffic for pods behind a LoadBalancer service.

NOTE

OpenShift Container Platform 4.18 Ingress and load balancing

150

NOTE

If you use the sourceIPBy: "LoadBalancerIP" setting in the EgressService CR,
you must specify the load-balancer node in the BGPAdvertisement custom
resource (CR).

You can use the sourceIPBy: "Network" setting on clusters that use OVN-
Kubernetes configured with the gatewayConfig.routingViaHost specification
set to true only. Additionally, if you use the sourceIPBy: "Network" setting, you
must schedule the application workload on nodes configured with the network
VRF instance.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the Kubernetes NMState Operator.

Install the MetalLB Operator.

Procedure

1. Create a NodeNetworkConfigurationPolicy CR to define the VRF instance:

a. Create a file, such as node-network-vrf.yaml, with content like the following example:

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: vrfpolicy 1
spec:
 nodeSelector:
 vrf: "true" 2
 maxUnavailable: 3
 desiredState:
 interfaces:
 - name: ens4vrf 3
 type: vrf 4
 state: up
 vrf:
 port:
 - ens4 5
 route-table-id: 2 6
 - name: ens4 7
 type: ethernet
 state: up
 ipv4:
 address:
 - ip: 192.168.130.130
 prefix-length: 24
 dhcp: false
 enabled: true

CHAPTER 4. LOAD BALANCING WITH METALLB

151

1

2

3

4

5

6

7

8

9

10

The name of the policy.

This example applies the policy to all nodes with the label vrf:true.

The name of the interface.

The type of interface. This example creates a VRF instance.

The node interface that the VRF attaches to.

The name of the route table ID for the VRF.

The IPv4 address of the interface associated with the VRF.

Defines the configuration for network routes. The next-hop-address field defines the
IP address of the next hop for the route. The next-hop-interface field defines the
outgoing interface for the route. In this example, the VRF routing table is 2, which
references the ID that you define in the EgressService CR.

Defines additional route rules. The ip-to fields must match the Cluster Network CIDR,
Service Network CIDR, and Internal Masquerade subnet CIDR. You can view the
values for these CIDR address specifications by running the following command: oc
describe network.operator/cluster.

The main routing table that the Linux kernel uses when calculating routes has the ID
254.

b. Apply the policy by running the following command:

2. Create a BGPPeer custom resource (CR):

a. Create a file, such as frr-via-vrf.yaml, with content like the following example:

 routes: 8
 config:
 - destination: 0.0.0.0/0
 metric: 150
 next-hop-address: 192.168.130.1
 next-hop-interface: ens4
 table-id: 2
 route-rules: 9
 config:
 - ip-to: 172.30.0.0/16
 priority: 998
 route-table: 254 10
 - ip-to: 10.132.0.0/14
 priority: 998
 route-table: 254
 - ip-to: 169.254.0.0/17
 priority: 998
 route-table: 254

$ oc apply -f node-network-vrf.yaml

OpenShift Container Platform 4.18 Ingress and load balancing

152

1 Specifies the VRF instance to associate with the BGP peer. MetalLB can advertise
services and make routing decisions based on the routing information in the VRF.

b. Apply the configuration for the BGP peer by running the following command:

3. Create an IPAddressPool CR:

a. Create a file, such as first-pool.yaml, with content like the following example:

b. Apply the configuration for the IP address pool by running the following command:

4. Create a BGPAdvertisement CR:

a. Create a file, such as first-adv.yaml, with content like the following example:

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 name: frrviavrf
 namespace: metallb-system
spec:
 myASN: 100
 peerASN: 200
 peerAddress: 192.168.130.1
 vrf: ens4vrf 1

$ oc apply -f frr-via-vrf.yaml

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: first-pool
 namespace: metallb-system
spec:
 addresses:
 - 192.169.10.0/32

$ oc apply -f first-pool.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: first-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - first-pool
 peers:
 - frrviavrf 1
 nodeSelectors:
 - matchLabels:
 egress-service.k8s.ovn.org/test-server1: "" 2

CHAPTER 4. LOAD BALANCING WITH METALLB

153

1

2

1

2

3

4

5

In this example, MetalLB advertises a range of IP addresses from the first-pool IP
address pool to the frrviavrf BGP peer.

In this example, the EgressService CR configures the source IP address for egress
traffic to use the load-balancer service IP address. Therefore, you must specify the
load-balancer node for return traffic to use the same return path for the traffic
originating from the pod.

b. Apply the configuration for the BGP advertisement by running the following command:

5. Create an EgressService CR:

a. Create a file, such as egress-service.yaml, with content like the following example:

Specify the name for the egress service. The name of the EgressService resource
must match the name of the load-balancer service that you want to modify.

Specify the namespace for the egress service. The namespace for the EgressService
must match the namespace of the load-balancer service that you want to modify. The
egress service is namespace-scoped.

This example assigns the LoadBalancer service ingress IP address as the source IP
address for egress traffic.

If you specify LoadBalancer for the sourceIPBy specification, a single node handles
the LoadBalancer service traffic. In this example, only a node with the label vrf: "true"
can handle the service traffic. If you do not specify a node, OVN-Kubernetes selects a
worker node to handle the service traffic. When a node is selected, OVN-Kubernetes
labels the node in the following format: egress-
service.k8s.ovn.org/<svc_namespace>-<svc_name>: "".

Specify the routing table ID for egress traffic. Ensure that the value matches the
route-table-id ID defined in the NodeNetworkConfigurationPolicy resource, for
example, route-table-id: 2.

b. Apply the configuration for the egress service by running the following command:

$ oc apply -f first-adv.yaml

apiVersion: k8s.ovn.org/v1
kind: EgressService
metadata:
 name: server1 1
 namespace: test 2
spec:
 sourceIPBy: "LoadBalancerIP" 3
 nodeSelector:
 matchLabels:
 vrf: "true" 4
 network: "2" 5

$ oc apply -f egress-service.yaml

OpenShift Container Platform 4.18 Ingress and load balancing

154

1

Verification

1. Verify that you can access the application endpoint of the pods running behind the MetalLB
service by running the following command:

Update the external IP address and port number to suit your application endpoint.

2. Optional: If you assigned the LoadBalancer service ingress IP address as the source IP address
for egress traffic, verify this configuration by using tools such as tcpdump to analyze packets
received at the external client.

Additional resources

About virtual routing and forwarding

Exposing a service through a network VRF

Example: Network interface with a VRF instance node network configuration policy

Configuring an egress service

4.8. CONFIGURING THE INTEGRATION OF METALLB AND FRR-K8S

FRRouting (FRR) is a free, open source internet routing protocol suite for Linux and UNIX platforms.
FRR-K8s is a Kubernetes based DaemonSet that exposes a subset of the FRR API in a Kubernetes-
compliant manner. As a cluster administrator, you can use the FRRConfiguration custom resource (CR)
to access some of the FRR services not provided by MetalLB, for example, receiving routes. MetalLB
generates the FRR-K8s configuration corresponding to the MetalLB configuration applied.

$ curl <external_ip_address>:<port_number> 1

CHAPTER 4. LOAD BALANCING WITH METALLB

155

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/multiple_networks/#cnf-about-virtual-routing-and-forwarding_about-virtual-routing-and-forwarding
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/kubernetes_nmstate/#virt-example-host-vrf_k8s-nmstate-updating-node-network-config
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/ovn-kubernetes_network_plugin/#configuring-egress-traffic-loadbalancer-services

WARNING

When configuring Virtual Route Forwarding (VRF) users must change their VRFs to
a table ID lower than 1000 as higher than 1000 is reserved for OpenShift Container
Platform.

4.8.1. FRR configurations

You can create multiple FRRConfiguration CRs to use FRR services in MetalLB. MetalLB generates an
FRRConfiguration object which FRR-K8s merges with all other configurations that all users have
created.

For example, you can configure FRR-K8s to receive all of the prefixes advertised by a given neighbor.
The following example configures FRR-K8s to receive all of the prefixes advertised by a BGPPeer with
host 172.18.0.5:

Example FRRConfiguration CR

You can also configure FRR-K8s to always block a set of prefixes, regardless of the configuration
applied. This can be useful to avoid routes towards the pods or ClusterIPs CIDRs that might result in
cluster malfunctions. The following example blocks the set of prefixes 192.168.1.0/24:

Example MetalLB CR



apiVersion: frrk8s.metallb.io/v1beta1
kind: FRRConfiguration
metadata:
 name: test
 namespace: metallb-system
spec:
 bgp:
 routers:
 - asn: 64512
 neighbors:
 - address: 172.18.0.5
 asn: 64512
 toReceive:
 allowed:
 mode: all

apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system
spec:
 bgpBackend: frr-k8s
 frrk8sConfig:
 alwaysBlock:
 - 192.168.1.0/24

OpenShift Container Platform 4.18 Ingress and load balancing

156

You can set FRR-K8s to block the Cluster Network CIDR and Service Network CIDR. You can view the
values for these CIDR address specifications by running the following command:

4.8.2. Configuring the FRRConfiguration CRD

The following section provides reference examples that use the FRRConfiguration custom resource
(CR).

4.8.2.1. The routers field

You can use the routers field to configure multiple routers, one for each Virtual Routing and Forwarding
(VRF) resource. For each router, you must define the Autonomous System Number (ASN).

You can also define a list of Border Gateway Protocol (BGP) neighbors to connect to, as in the
following example:

Example FRRConfiguration CR

4.8.2.2. The toAdvertise field

By default, FRR-K8s does not advertise the prefixes configured as part of a router configuration. In
order to advertise them, you use the toAdvertise field.

You can advertise a subset of the prefixes, as in the following example:

Example FRRConfiguration CR

$ oc describe network.config/cluster

apiVersion: frrk8s.metallb.io/v1beta1
kind: FRRConfiguration
metadata:
 name: test
 namespace: frr-k8s-system
spec:
 bgp:
 routers:
 - asn: 64512
 neighbors:
 - address: 172.30.0.3
 asn: 4200000000
 ebgpMultiHop: true
 port: 180
 - address: 172.18.0.6
 asn: 4200000000
 port: 179

apiVersion: frrk8s.metallb.io/v1beta1
kind: FRRConfiguration
metadata:
 name: test
 namespace: frr-k8s-system
spec:
 bgp:

CHAPTER 4. LOAD BALANCING WITH METALLB

157

1

1

Advertises a subset of prefixes.

The following example shows you how to advertise all of the prefixes:

Example FRRConfiguration CR

Advertises all prefixes.

4.8.2.3. The toReceive field

By default, FRR-K8s does not process any prefixes advertised by a neighbor. You can use the
toReceive field to process such addresses.

You can configure for a subset of the prefixes, as in this example:

Example FRRConfiguration CR

 routers:
 - asn: 64512
 neighbors:
 - address: 172.30.0.3
 asn: 4200000000
 ebgpMultiHop: true
 port: 180
 toAdvertise:
 allowed:
 prefixes: 1
 - 192.168.2.0/24
 prefixes:
 - 192.168.2.0/24
 - 192.169.2.0/24

apiVersion: frrk8s.metallb.io/v1beta1
kind: FRRConfiguration
metadata:
 name: test
 namespace: frr-k8s-system
spec:
 bgp:
 routers:
 - asn: 64512
 neighbors:
 - address: 172.30.0.3
 asn: 4200000000
 ebgpMultiHop: true
 port: 180
 toAdvertise:
 allowed:
 mode: all 1
 prefixes:
 - 192.168.2.0/24
 - 192.169.2.0/24

OpenShift Container Platform 4.18 Ingress and load balancing

158

1 2 The prefix is applied if the prefix length is less than or equal to the le prefix length and greater
than or equal to the ge prefix length.

The following example configures FRR to handle all the prefixes announced:

Example FRRConfiguration CR

4.8.2.4. The bgp field

You can use the bgp field to define various BFD profiles and associate them with a neighbor. In the
following example, BFD backs up the BGP session and FRR can detect link failures:

Example FRRConfiguration CR

apiVersion: frrk8s.metallb.io/v1beta1
kind: FRRConfiguration
metadata:
 name: test
 namespace: frr-k8s-system
spec:
 bgp:
 routers:
 - asn: 64512
 neighbors:
 - address: 172.18.0.5
 asn: 64512
 port: 179
 toReceive:
 allowed:
 prefixes:
 - prefix: 192.168.1.0/24
 - prefix: 192.169.2.0/24
 ge: 25 1
 le: 28 2

apiVersion: frrk8s.metallb.io/v1beta1
kind: FRRConfiguration
metadata:
 name: test
 namespace: frr-k8s-system
spec:
 bgp:
 routers:
 - asn: 64512
 neighbors:
 - address: 172.18.0.5
 asn: 64512
 port: 179
 toReceive:
 allowed:
 mode: all

apiVersion: frrk8s.metallb.io/v1beta1

CHAPTER 4. LOAD BALANCING WITH METALLB

159

4.8.2.5. The nodeSelector field

By default, FRR-K8s applies the configuration to all nodes where the daemon is running. You can use
the nodeSelector field to specify the nodes to which you want to apply the configuration. For example:

Example FRRConfiguration CR

The fields for the FRRConfiguration custom resource are described in the following table:

Table 4.9. MetalLB FRRConfiguration custom resource

Field Type Description

spec.bgp.router
s

array Specifies the routers that FRR is to configure (one per VRF).

spec.bgp.router
s.asn

integer The Autonomous System Number (ASN) to use for the local end
of the session.

spec.bgp.router
s.id

string Specifies the ID of the bgp router.

kind: FRRConfiguration
metadata:
 name: test
 namespace: frr-k8s-system
spec:
 bgp:
 routers:
 - asn: 64512
 neighbors:
 - address: 172.30.0.3
 asn: 64512
 port: 180
 bfdProfile: defaultprofile
 bfdProfiles:
 - name: defaultprofile

apiVersion: frrk8s.metallb.io/v1beta1
kind: FRRConfiguration
metadata:
 name: test
 namespace: frr-k8s-system
spec:
 bgp:
 routers:
 - asn: 64512
 nodeSelector:
 labelSelector:
 foo: "bar"

OpenShift Container Platform 4.18 Ingress and load balancing

160

spec.bgp.router
s.vrf

string Specifies the host vrf used to establish sessions from this router.

spec.bgp.router
s.neighbors

array Specifies the neighbors to establish BGP sessions with.

spec.bgp.router
s.neighbors.asn

integer Specifies the ASN to use for the remote end of the session. If
you use this field, you cannot specify a value in the
spec.bgp.routers.neighbors.dynamicASN field.

spec.bgp.router
s.neighbors.dyn
amicASN

string Detects the ASN to use for the remote end of the session
without explicitly setting it. Specify internal for a neighbor with
the same ASN, or external for a neighbor with a different ASN.
If you use this field, you cannot specify a value in the
spec.bgp.routers.neighbors.asn field.

spec.bgp.router
s.neighbors.add
ress

string Specifies the IP address to establish the session with.

spec.bgp.router
s.neighbors.por
t

integer Specifies the port to dial when establishing the session. Defaults
to 179.

spec.bgp.router
s.neighbors.pas
sword

string Specifies the password to use for establishing the BGP session.
Password and PasswordSecret are mutually exclusive.

spec.bgp.router
s.neighbors.pas
swordSecret

string Specifies the name of the authentication secret for the neighbor.
The secret must be of type "kubernetes.io/basic-auth", and in
the same namespace as the FRR-K8s daemon. The key
"password" stores the password in the secret. Password and
PasswordSecret are mutually exclusive.

spec.bgp.router
s.neighbors.hol
dTime

duration Specifies the requested BGP hold time, per RFC4271. Defaults
to 180s.

spec.bgp.router
s.neighbors.kee
paliveTime

duration Specifies the requested BGP keepalive time, per RFC4271.
Defaults to 60s.

spec.bgp.router
s.neighbors.con
nectTime

duration Specifies how long BGP waits between connection attempts to
a neighbor.

Field Type Description

CHAPTER 4. LOAD BALANCING WITH METALLB

161

spec.bgp.router
s.neighbors.ebg
pMultiHop

boolean Indicates if the BGPPeer is multi-hops away.

spec.bgp.router
s.neighbors.bfd
Profile

string Specifies the name of the BFD Profile to use for the BFD session
associated with the BGP session. If not set, the BFD session is
not set up.

spec.bgp.router
s.neighbors.toA
dvertise.allowed

array Represents the list of prefixes to advertise to a neighbor, and
the associated properties.

spec.bgp.router
s.neighbors.toA
dvertise.allowed
.prefixes

string array Specifies the list of prefixes to advertise to a neighbor. This list
must match the prefixes that you define in the router.

spec.bgp.router
s.neighbors.toA
dvertise.allowed
.mode

string Specifies the mode to use when handling the prefixes. You can
set to filtered to allow only the prefixes in the prefixes list. You
can set to all to allow all the prefixes configured on the router.

spec.bgp.router
s.neighbors.toA
dvertise.withLo
calPref

array Specifies the prefixes associated with an advertised local
preference. You must specify the prefixes associated with a
local preference in the prefixes allowed to be advertised.

spec.bgp.router
s.neighbors.toA
dvertise.withLo
calPref.prefixes

string array Specifies the prefixes associated with the local preference.

spec.bgp.router
s.neighbors.toA
dvertise.withLo
calPref.localPref

integer Specifies the local preference associated with the prefixes.

spec.bgp.router
s.neighbors.toA
dvertise.withCo
mmunity

array Specifies the prefixes associated with an advertised BGP
community. You must include the prefixes associated with a
local preference in the list of prefixes that you want to advertise.

Field Type Description

OpenShift Container Platform 4.18 Ingress and load balancing

162

spec.bgp.router
s.neighbors.toA
dvertise.withCo
mmunity.prefixe
s

string array Specifies the prefixes associated with the community.

spec.bgp.router
s.neighbors.toA
dvertise.withCo
mmunity.comm
unity

string Specifies the community associated with the prefixes.

spec.bgp.router
s.neighbors.toR
eceive

array Specifies the prefixes to receive from a neighbor.

spec.bgp.router
s.neighbors.toR
eceive.allowed

array Specifies the information that you want to receive from a
neighbor.

spec.bgp.router
s.neighbors.toR
eceive.allowed.
prefixes

array Specifies the prefixes allowed from a neighbor.

spec.bgp.router
s.neighbors.toR
eceive.allowed.
mode

string Specifies the mode to use when handling the prefixes. When set
to filtered, only the prefixes in the prefixes list are allowed.
When set to all, all the prefixes configured on the router are
allowed.

spec.bgp.router
s.neighbors.dis
ableMP

boolean Disables MP BGP to prevent it from separating IPv4 and IPv6
route exchanges into distinct BGP sessions.

spec.bgp.router
s.prefixes

string array Specifies all prefixes to advertise from this router instance.

spec.bgp.bfdPr
ofiles

array Specifies the list of bfd profiles to use when configuring the
neighbors.

spec.bgp.bfdPr
ofiles.name

string The name of the BFD Profile to be referenced in other parts of
the configuration.

spec.bgp.bfdPr
ofiles.receiveInt
erval

integer Specifies the minimum interval at which this system can receive
control packets, in milliseconds. Defaults to 300ms.

Field Type Description

CHAPTER 4. LOAD BALANCING WITH METALLB

163

spec.bgp.bfdPr
ofiles.transmitIn
terval

integer Specifies the minimum transmission interval, excluding jitter,
that this system wants to use to send BFD control packets, in
milliseconds. Defaults to 300ms.

spec.bgp.bfdPr
ofiles.detectMul
tiplier

integer Configures the detection multiplier to determine packet loss. To
determine the connection loss-detection timer, multiply the
remote transmission interval by this value.

spec.bgp.bfdPr
ofiles.echoInter
val

integer Configures the minimal echo receive transmission-interval that
this system can handle, in milliseconds. Defaults to 50ms.

spec.bgp.bfdPr
ofiles.echoMod
e

boolean Enables or disables the echo transmission mode. This mode is
disabled by default, and not supported on multihop setups.

spec.bgp.bfdPr
ofiles.passiveM
ode

boolean Mark session as passive. A passive session does not attempt to
start the connection and waits for control packets from peers
before it begins replying.

spec.bgp.bfdPr
ofiles.Minimum
Ttl

integer For multihop sessions only. Configures the minimum expected
TTL for an incoming BFD control packet.

spec.nodeSelec
tor

string Limits the nodes that attempt to apply this configuration. If
specified, only those nodes whose labels match the specified
selectors attempt to apply the configuration. If it is not specified,
all nodes attempt to apply this configuration.

status string Defines the observed state of FRRConfiguration.

Field Type Description

4.8.3. How FRR-K8s merges multiple configurations

In a case where multiple users add configurations that select the same node, FRR-K8s merges the
configurations. Each configuration can only extend others. This means that it is possible to add a new
neighbor to a router, or to advertise an additional prefix to a neighbor, but not possible to remove a
component added by another configuration.

4.8.3.1. Configuration conflicts

Certain configurations can cause conflicts, leading to errors, for example:

different ASN for the same router (in the same VRF)

different ASN for the same neighbor (with the same IP / port)

OpenShift Container Platform 4.18 Ingress and load balancing

164

multiple BFD profiles with the same name but different values

When the daemon finds an invalid configuration for a node, it reports the configuration as invalid and
reverts to the previous valid FRR configuration.

4.8.3.2. Merging

When merging, it is possible to do the following actions:

Extend the set of IPs that you want to advertise to a neighbor.

Add an extra neighbor with its set of IPs.

Extend the set of IPs to which you want to associate a community.

Allow incoming routes for a neighbor.

Each configuration must be self contained. This means, for example, that it is not possible to allow
prefixes that are not defined in the router section by leveraging prefixes coming from another
configuration.

If the configurations to be applied are compatible, merging works as follows:

FRR-K8s combines all the routers.

FRR-K8s merges all prefixes and neighbors for each router.

FRR-K8s merges all filters for each neighbor.

NOTE

A less restrictive filter has precedence over a stricter one. For example, a filter accepting
some prefixes has precedence over a filter not accepting any, and a filter accepting all
prefixes has precedence over one that accepts some.

4.9. METALLB LOGGING, TROUBLESHOOTING, AND SUPPORT

If you need to troubleshoot MetalLB configuration, see the following sections for commonly used
commands.

4.9.1. Setting the MetalLB logging levels

MetalLB uses FRRouting (FRR) in a container with the default setting of info generates a lot of logging.
You can control the verbosity of the logs generated by setting the logLevel as illustrated in this
example.

Gain a deeper insight into MetalLB by setting the logLevel to debug as follows:

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

CHAPTER 4. LOAD BALANCING WITH METALLB

165

Procedure

1. Create a file, such as setdebugloglevel.yaml, with content like the following example:

2. Apply the configuration:

NOTE

Use oc replace as the understanding is the metallb CR is already created and
here you are changing the log level.

3. Display the names of the speaker pods:

Example output

NOTE

Speaker and controller pods are recreated to ensure the updated logging level is
applied. The logging level is modified for all the components of MetalLB.

4. View the speaker logs:

Example output

{"branch":"main","caller":"main.go:92","commit":"3d052535","goversion":"gc / go1.17.1 /
amd64","level":"info","msg":"MetalLB speaker starting (commit 3d052535, branch
main)","ts":"2022-05-17T09:55:05Z","version":""}
{"caller":"announcer.go:110","event":"createARPResponder","interface":"ens4","level":"info","m
sg":"created ARP responder for interface","ts":"2022-05-17T09:55:05Z"}
{"caller":"announcer.go:119","event":"createNDPResponder","interface":"ens4","level":"info","m
sg":"created NDP responder for interface","ts":"2022-05-17T09:55:05Z"}

apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system
spec:
 logLevel: debug
 nodeSelector:
 node-role.kubernetes.io/worker: ""

$ oc replace -f setdebugloglevel.yaml

$ oc get -n metallb-system pods -l component=speaker

NAME READY STATUS RESTARTS AGE
speaker-2m9pm 4/4 Running 0 9m19s
speaker-7m4qw 3/4 Running 0 19s
speaker-szlmx 4/4 Running 0 9m19s

$ oc logs -n metallb-system speaker-7m4qw -c speaker

OpenShift Container Platform 4.18 Ingress and load balancing

166

{"caller":"announcer.go:110","event":"createARPResponder","interface":"tun0","level":"info","ms
g":"created ARP responder for interface","ts":"2022-05-17T09:55:05Z"}
{"caller":"announcer.go:119","event":"createNDPResponder","interface":"tun0","level":"info","m
sg":"created NDP responder for interface","ts":"2022-05-17T09:55:05Z"}
I0517 09:55:06.515686 95 request.go:665] Waited for 1.026500832s due to client-side
throttling, not priority and fairness, request:
GET:https://172.30.0.1:443/apis/operators.coreos.com/v1alpha1?timeout=32s
{"Starting Manager":"(MISSING)","caller":"k8s.go:389","level":"info","ts":"2022-05-
17T09:55:08Z"}
{"caller":"speakerlist.go:310","level":"info","msg":"node event - forcing sync","node
addr":"10.0.128.4","node event":"NodeJoin","node name":"ci-ln-qb8t3mb-72292-7s7rh-
worker-a-vvznj","ts":"2022-05-17T09:55:08Z"}
{"caller":"service_controller.go:113","controller":"ServiceReconciler","enqueueing":"openshift-
kube-controller-manager-operator/metrics","epslice":"{\"metadata\":{\"name\":\"metrics-
xtsxr\",\"generateName\":\"metrics-\",\"namespace\":\"openshift-kube-controller-manager-
operator\",\"uid\":\"ac6766d7-8504-492c-9d1e-
4ae8897990ad\",\"resourceVersion\":\"9041\",\"generation\":4,\"creationTimestamp\":\"2022-
05-17T07:16:53Z\",\"labels\":{\"app\":\"kube-controller-manager-
operator\",\"endpointslice.kubernetes.io/managed-by\":\"endpointslice-
controller.k8s.io\",\"kubernetes.io/service-name\":\"metrics\"},\"annotations\":
{\"endpoints.kubernetes.io/last-change-trigger-time\":\"2022-05-
17T07:21:34Z\"},\"ownerReferences\":
[{\"apiVersion\":\"v1\",\"kind\":\"Service\",\"name\":\"metrics\",\"uid\":\"0518eed3-6152-42be-
b566-0bd00a60faf8\",\"controller\":true,\"blockOwnerDeletion\":true}],\"managedFields\":
[{\"manager\":\"kube-controller-
manager\",\"operation\":\"Update\",\"apiVersion\":\"discovery.k8s.io/v1\",\"time\":\"2022-05-
17T07:20:02Z\",\"fieldsType\":\"FieldsV1\",\"fieldsV1\":{\"f:addressType\":{},\"f:endpoints\":
{},\"f:metadata\":{\"f:annotations\":{\".\":{},\"f:endpoints.kubernetes.io/last-change-trigger-
time\":{}},\"f:generateName\":{},\"f:labels\":{\".\":{},\"f:app\":
{},\"f:endpointslice.kubernetes.io/managed-by\":{},\"f:kubernetes.io/service-name\":
{}},\"f:ownerReferences\":{\".\":{},\"k:{\\\"uid\\\":\\\"0518eed3-6152-42be-b566-
0bd00a60faf8\\\"}\":{}}},\"f:ports\":{}}}]},\"addressType\":\"IPv4\",\"endpoints\":[{\"addresses\":
[\"10.129.0.7\"],\"conditions\":{\"ready\":true,\"serving\":true,\"terminating\":false},\"targetRef\":
{\"kind\":\"Pod\",\"namespace\":\"openshift-kube-controller-manager-
operator\",\"name\":\"kube-controller-manager-operator-6b98b89ddd-
8d4nf\",\"uid\":\"dd5139b8-e41c-4946-a31b-
1a629314e844\",\"resourceVersion\":\"9038\"},\"nodeName\":\"ci-ln-qb8t3mb-72292-7s7rh-
master-0\",\"zone\":\"us-central1-a\"}],\"ports\":
[{\"name\":\"https\",\"protocol\":\"TCP\",\"port\":8443}]}","level":"debug","ts":"2022-05-
17T09:55:08Z"}

5. View the FRR logs:

Example output

Started watchfrr
2022/05/17 09:55:05 ZEBRA: client 16 says hello and bids fair to announce only bgp routes
vrf=0
2022/05/17 09:55:05 ZEBRA: client 31 says hello and bids fair to announce only vnc routes
vrf=0
2022/05/17 09:55:05 ZEBRA: client 38 says hello and bids fair to announce only static routes
vrf=0
2022/05/17 09:55:05 ZEBRA: client 43 says hello and bids fair to announce only bfd routes

$ oc logs -n metallb-system speaker-7m4qw -c frr

CHAPTER 4. LOAD BALANCING WITH METALLB

167

vrf=0
2022/05/17 09:57:25.089 BGP: Creating Default VRF, AS 64500
2022/05/17 09:57:25.090 BGP: dup addr detect enable max_moves 5 time 180 freeze
disable freeze_time 0
2022/05/17 09:57:25.090 BGP: bgp_get: Registering BGP instance (null) to zebra
2022/05/17 09:57:25.090 BGP: Registering VRF 0
2022/05/17 09:57:25.091 BGP: Rx Router Id update VRF 0 Id 10.131.0.1/32
2022/05/17 09:57:25.091 BGP: RID change : vrf VRF default(0), RTR ID 10.131.0.1
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF br0
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF ens4
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF ens4 addr 10.0.128.4/32
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF ens4 addr
fe80::c9d:84da:4d86:5618/64
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF lo
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF ovs-system
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF tun0
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF tun0 addr 10.131.0.1/23
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF tun0 addr
fe80::40f1:d1ff:feb6:5322/64
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF veth2da49fed
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF veth2da49fed addr
fe80::24bd:d1ff:fec1:d88/64
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF veth2fa08c8c
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF veth2fa08c8c addr
fe80::6870:ff:fe96:efc8/64
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF veth41e356b7
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF veth41e356b7 addr
fe80::48ff:37ff:fede:eb4b/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF veth1295c6e2
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF veth1295c6e2 addr
fe80::b827:a2ff:feed:637/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF veth9733c6dc
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF veth9733c6dc addr
fe80::3cf4:15ff:fe11:e541/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF veth336680ea
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF veth336680ea addr
fe80::94b1:8bff:fe7e:488c/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF vetha0a907b7
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF vetha0a907b7 addr
fe80::3855:a6ff:fe73:46c3/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF vethf35a4398
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF vethf35a4398 addr
fe80::40ef:2fff:fe57:4c4d/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF vethf831b7f4
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF vethf831b7f4 addr
fe80::f0d9:89ff:fe7c:1d32/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF vxlan_sys_4789
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF vxlan_sys_4789 addr
fe80::80c1:82ff:fe4b:f078/64
2022/05/17 09:57:26.094 BGP: 10.0.0.1 [FSM] Timer (start timer expire).
2022/05/17 09:57:26.094 BGP: 10.0.0.1 [FSM] BGP_Start (Idle->Connect), fd -1
2022/05/17 09:57:26.094 BGP: Allocated bnc 10.0.0.1/32(0)(VRF default) peer
0x7f807f7631a0
2022/05/17 09:57:26.094 BGP: sendmsg_zebra_rnh: sending cmd
ZEBRA_NEXTHOP_REGISTER for 10.0.0.1/32 (vrf VRF default)
2022/05/17 09:57:26.094 BGP: 10.0.0.1 [FSM] Waiting for NHT

OpenShift Container Platform 4.18 Ingress and load balancing

168

2022/05/17 09:57:26.094 BGP: bgp_fsm_change_status : vrf default(0), Status: Connect
established_peers 0
2022/05/17 09:57:26.094 BGP: 10.0.0.1 went from Idle to Connect
2022/05/17 09:57:26.094 BGP: 10.0.0.1 [FSM] TCP_connection_open_failed (Connect-
>Active), fd -1
2022/05/17 09:57:26.094 BGP: bgp_fsm_change_status : vrf default(0), Status: Active
established_peers 0
2022/05/17 09:57:26.094 BGP: 10.0.0.1 went from Connect to Active
2022/05/17 09:57:26.094 ZEBRA: rnh_register msg from client bgp: hdr->length=8,
type=nexthop vrf=0
2022/05/17 09:57:26.094 ZEBRA: 0: Add RNH 10.0.0.1/32 type Nexthop
2022/05/17 09:57:26.094 ZEBRA: 0:10.0.0.1/32: Evaluate RNH, type Nexthop (force)
2022/05/17 09:57:26.094 ZEBRA: 0:10.0.0.1/32: NH has become unresolved
2022/05/17 09:57:26.094 ZEBRA: 0: Client bgp registers for RNH 10.0.0.1/32 type Nexthop
2022/05/17 09:57:26.094 BGP: VRF default(0): Rcvd NH update 10.0.0.1/32(0) - metric 0/0
#nhops 0/0 flags 0x6
2022/05/17 09:57:26.094 BGP: NH update for 10.0.0.1/32(0)(VRF default) - flags 0x6
chgflags 0x0 - evaluate paths
2022/05/17 09:57:26.094 BGP: evaluate_paths: Updating peer (10.0.0.1(VRF default)) status
with NHT
2022/05/17 09:57:30.081 ZEBRA: Event driven route-map update triggered
2022/05/17 09:57:30.081 ZEBRA: Event handler for route-map: 10.0.0.1-out
2022/05/17 09:57:30.081 ZEBRA: Event handler for route-map: 10.0.0.1-in
2022/05/17 09:57:31.104 ZEBRA: netlink_parse_info: netlink-listen (NS 0) type
RTM_NEWNEIGH(28), len=76, seq=0, pid=0
2022/05/17 09:57:31.104 ZEBRA: Neighbor Entry received is not on a VLAN or a BRIDGE,
ignoring
2022/05/17 09:57:31.105 ZEBRA: netlink_parse_info: netlink-listen (NS 0) type
RTM_NEWNEIGH(28), len=76, seq=0, pid=0
2022/05/17 09:57:31.105 ZEBRA: Neighbor Entry received is not on a VLAN or a BRIDGE,
ignoring

4.9.1.1. FRRouting (FRR) log levels

The following table describes the FRR logging levels.

Table 4.10. Log levels

Log level Description

all Supplies all logging information for all logging levels.

debug Information that is diagnostically helpful to people. Set to debug to give
detailed troubleshooting information.

info Provides information that always should be logged but under normal
circumstances does not require user intervention. This is the default logging
level.

warn Anything that can potentially cause inconsistent MetalLB behaviour.
Usually MetalLB automatically recovers from this type of error.

CHAPTER 4. LOAD BALANCING WITH METALLB

169

error Any error that is fatal to the functioning of MetalLB. These errors usually
require administrator intervention to fix.

none Turn off all logging.

Log level Description

4.9.2. Troubleshooting BGP issues

As a cluster administrator, if you need to troubleshoot BGP configuration issues, you need to run
commands in the FRR container.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Display the names of the frr-k8s pods by running the following command:

Example output

2. Display the running configuration for FRR by running the following command:

Example output

Building configuration...

Current configuration:
!
frr version 8.5.3
frr defaults traditional
hostname some-hostname
log file /etc/frr/frr.log informational
log timestamp precision 3
no ip forwarding
no ipv6 forwarding
service integrated-vtysh-config
!
router bgp 64500 1
 bgp router-id 10.0.1.2
 no bgp ebgp-requires-policy

$ oc -n metallb-system get pods -l component=frr-k8s

NAME READY STATUS RESTARTS AGE
frr-k8s-thsmw 6/6 Running 0 109m

$ oc exec -n metallb-system frr-k8s-thsmw -c frr -- vtysh -c "show running-config"

OpenShift Container Platform 4.18 Ingress and load balancing

170

1

2

3

 no bgp default ipv4-unicast
 no bgp network import-check
 neighbor 10.0.2.3 remote-as 64500 2
 neighbor 10.0.2.3 bfd profile doc-example-bfd-profile-full 3
 neighbor 10.0.2.3 timers 5 15
 neighbor 10.0.2.4 remote-as 64500
 neighbor 10.0.2.4 bfd profile doc-example-bfd-profile-full
 neighbor 10.0.2.4 timers 5 15
 !
 address-family ipv4 unicast
 network 203.0.113.200/30 4
 neighbor 10.0.2.3 activate
 neighbor 10.0.2.3 route-map 10.0.2.3-in in
 neighbor 10.0.2.4 activate
 neighbor 10.0.2.4 route-map 10.0.2.4-in in
 exit-address-family
 !
 address-family ipv6 unicast
 network fc00:f853:ccd:e799::/124
 neighbor 10.0.2.3 activate
 neighbor 10.0.2.3 route-map 10.0.2.3-in in
 neighbor 10.0.2.4 activate
 neighbor 10.0.2.4 route-map 10.0.2.4-in in
 exit-address-family
!
route-map 10.0.2.3-in deny 20
!
route-map 10.0.2.4-in deny 20
!
ip nht resolve-via-default
!
ipv6 nht resolve-via-default
!
line vty
!
bfd
 profile doc-example-bfd-profile-full
 transmit-interval 35
 receive-interval 35
 passive-mode
 echo-mode
 echo-interval 35
 minimum-ttl 10
 !
!
end

The router bgp section indicates the ASN for MetalLB.

Confirm that a neighbor <ip-address> remote-as <peer-ASN> line exists for each BGP
peer custom resource that you added.

If you configured BFD, confirm that the BFD profile is associated with the correct BGP
peer and that the BFD profile appears in the command output.

CHAPTER 4. LOAD BALANCING WITH METALLB

171

4

1

2

Confirm that the network <ip-address-range> lines match the IP address ranges that you
specified in address pool custom resources that you added.

3. Display the BGP summary by running the following command:

Example output

IPv4 Unicast Summary:
BGP router identifier 10.0.1.2, local AS number 64500 vrf-id 0
BGP table version 1
RIB entries 1, using 192 bytes of memory
Peers 2, using 29 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
PfxSnt
10.0.2.3 4 64500 387 389 0 0 0 00:32:02 0 1 1
10.0.2.4 4 64500 0 0 0 0 0 never Active 0 2

Total number of neighbors 2

IPv6 Unicast Summary:
BGP router identifier 10.0.1.2, local AS number 64500 vrf-id 0
BGP table version 1
RIB entries 1, using 192 bytes of memory
Peers 2, using 29 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
PfxSnt
10.0.2.3 4 64500 387 389 0 0 0 00:32:02 NoNeg
10.0.2.4 4 64500 0 0 0 0 0 never Active 0

Total number of neighbors 2

Confirm that the output includes a line for each BGP peer custom resource that you
added.

Output that shows 0 messages received and messages sent indicates a BGP peer that
does not have a BGP session. Check network connectivity and the BGP configuration of
the BGP peer.

4. Display the BGP peers that received an address pool by running the following command:

Replace ipv4 with ipv6 to display the BGP peers that received an IPv6 address pool. Replace
203.0.113.200/30 with an IPv4 or IPv6 IP address range from an address pool.

Example output

$ oc exec -n metallb-system frr-k8s-thsmw -c frr -- vtysh -c "show bgp summary"

$ oc exec -n metallb-system frr-k8s-thsmw -c frr -- vtysh -c "show bgp ipv4 unicast
203.0.113.200/30"

OpenShift Container Platform 4.18 Ingress and load balancing

172

1

BGP routing table entry for 203.0.113.200/30
Paths: (1 available, best #1, table default)
 Advertised to non peer-group peers:
 10.0.2.3 1
 Local
 0.0.0.0 from 0.0.0.0 (10.0.1.2)
 Origin IGP, metric 0, weight 32768, valid, sourced, local, best (First path received)
 Last update: Mon Jan 10 19:49:07 2022

Confirm that the output includes an IP address for a BGP peer.

4.9.3. Troubleshooting BFD issues

The Bidirectional Forwarding Detection (BFD) implementation that Red Hat supports uses FRRouting
(FRR) in a container in the speaker pods. The BFD implementation relies on BFD peers also being
configured as BGP peers with an established BGP session. As a cluster administrator, if you need to
troubleshoot BFD configuration issues, you need to run commands in the FRR container.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Display the names of the speaker pods:

Example output

2. Display the BFD peers:

Example output

Session count: 2
SessionId LocalAddress PeerAddress Status
========= ============ =========== ======
3909139637 10.0.1.2 10.0.2.3 up <.>

<.> Confirm that the PeerAddress column includes each BFD peer. If the output does not list a
BFD peer IP address that you expected the output to include, troubleshoot BGP connectivity
with the peer. If the status field indicates down, check for connectivity on the links and

$ oc get -n metallb-system pods -l component=speaker

NAME READY STATUS RESTARTS AGE
speaker-66bth 4/4 Running 0 26m
speaker-gvfnf 4/4 Running 0 26m
...

$ oc exec -n metallb-system speaker-66bth -c frr -- vtysh -c "show bfd peers brief"

CHAPTER 4. LOAD BALANCING WITH METALLB

173

equipment between the node and the peer. You can determine the node name for the speaker
pod with a command like oc get pods -n metallb-system speaker-66bth -o
jsonpath='{.spec.nodeName}'.

4.9.4. MetalLB metrics for BGP and BFD

OpenShift Container Platform captures the following Prometheus metrics for MetalLB that relate to
BGP peers and BFD profiles.

Table 4.11. MetalLB BFD metrics

Name Description

frrk8s_bfd_control_packe
t_input

Counts the number of BFD control packets received from each BFD peer.

frrk8s_bfd_control_packe
t_output

Counts the number of BFD control packets sent to each BFD peer.

frrk8s_bfd_echo_packet_i
nput

Counts the number of BFD echo packets received from each BFD peer.

frrk8s_bfd_echo_packet_
output

Counts the number of BFD echo packets sent to each BFD.

frrk8s_bfd_session_down
_events

Counts the number of times the BFD session with a peer entered the down
state.

frrk8s_bfd_session_up Indicates the connection state with a BFD peer. 1 indicates the session is up
and 0 indicates the session is down.

frrk8s_bfd_session_up_e
vents

Counts the number of times the BFD session with a peer entered the up
state.

frrk8s_bfd_zebra_notifica
tions

Counts the number of BFD Zebra notifications for each BFD peer.

Table 4.12. MetalLB BGP metrics

Name Description

frrk8s_bgp_announced_p
refixes_total

Counts the number of load balancer IP address prefixes that are advertised
to BGP peers. The terms prefix and aggregated route have the same
meaning.

frrk8s_bgp_session_up Indicates the connection state with a BGP peer. 1 indicates the session is up
and 0 indicates the session is down.

OpenShift Container Platform 4.18 Ingress and load balancing

174

frrk8s_bgp_updates_total Counts the number of BGP update messages sent to each BGP peer.

frrk8s_bgp_opens_sent Counts the number of BGP open messages sent to each BGP peer.

frrk8s_bgp_opens_receiv
ed

Counts the number of BGP open messages received from each BGP peer.

frrk8s_bgp_notifications_
sent

Counts the number of BGP notification messages sent to each BGP peer.

frrk8s_bgp_updates_total
_received

Counts the number of BGP update messages received from each BGP
peer.

frrk8s_bgp_keepalives_se
nt

Counts the number of BGP keepalive messages sent to each BGP peer.

frrk8s_bgp_keepalives_re
ceived

Counts the number of BGP keepalive messages received from each BGP
peer.

frrk8s_bgp_route_refresh
_sent

Counts the number of BGP route refresh messages sent to each BGP peer.

frrk8s_bgp_total_sent Counts the number of total BGP messages sent to each BGP peer.

frrk8s_bgp_total_receive
d

Counts the number of total BGP messages received from each BGP peer.

Name Description

Additional resources

See Querying metrics for all projects with the monitoring dashboard for information about using
the monitoring dashboard.

4.9.5. About collecting MetalLB data

You can use the oc adm must-gather CLI command to collect information about your cluster, your
MetalLB configuration, and the MetalLB Operator. The following features and objects are associated
with MetalLB and the MetalLB Operator:

The namespace and child objects that the MetalLB Operator is deployed in

All MetalLB Operator custom resource definitions (CRDs)

The oc adm must-gather CLI command collects the following information from FRRouting (FRR) that
Red Hat uses to implement BGP and BFD:

/etc/frr/frr.conf

/etc/frr/frr.log

CHAPTER 4. LOAD BALANCING WITH METALLB

175

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/monitoring/#querying-metrics-for-all-projects-with-mon-dashboard_accessing-metrics-as-an-administrator

/etc/frr/daemons configuration file

/etc/frr/vtysh.conf

The log and configuration files in the preceding list are collected from the frr container in each speaker
pod.

In addition to the log and configuration files, the oc adm must-gather CLI command collects the
output from the following vtysh commands:

show running-config

show bgp ipv4

show bgp ipv6

show bgp neighbor

show bfd peer

No additional configuration is required when you run the oc adm must-gather CLI command.

Additional resources

Gathering data about your cluster

OpenShift Container Platform 4.18 Ingress and load balancing

176

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/support/#gathering-cluster-data

	Table of Contents
	CHAPTER 1. CONFIGURING ROUTES
	1.1. ROUTE CONFIGURATION
	1.1.1. Creating an HTTP-based route
	1.1.2. Creating a route for Ingress Controller sharding
	1.1.3. Configuring route timeouts
	1.1.4. HTTP Strict Transport Security
	1.1.4.1. Enabling HTTP Strict Transport Security per-route
	1.1.4.2. Disabling HTTP Strict Transport Security per-route
	1.1.4.3. Enforcing HTTP Strict Transport Security per-domain

	1.1.5. Throughput issue troubleshooting methods
	1.1.6. Using cookies to keep route statefulness
	1.1.6.1. Annotating a route with a cookie

	1.1.7. Path-based routes
	1.1.8. HTTP header configuration
	1.1.8.1. Order of precedence
	1.1.8.2. Special case headers

	1.1.9. Setting or deleting HTTP request and response headers in a route
	1.1.10. Route-specific annotations
	1.1.11. Configuring the route admission policy
	1.1.12. Creating a route through an Ingress object
	1.1.13. Creating a route using the default certificate through an Ingress object
	1.1.14. Creating a route using the destination CA certificate in the Ingress annotation
	1.1.15. Configuring the OpenShift Container Platform Ingress Controller for dual-stack networking

	1.2. SECURED ROUTES
	1.2.1. Creating a re-encrypt route with a custom certificate
	1.2.2. Creating an edge route with a custom certificate
	1.2.3. Creating a passthrough route
	1.2.4. Creating a route with externally managed certificate

	CHAPTER 2. CONFIGURING INGRESS CLUSTER TRAFFIC
	2.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW
	2.1.1. Comparision: Fault tolerant access to external IP addresses

	2.2. CONFIGURING EXTERNALIPS FOR SERVICES
	2.2.1. Prerequisites
	2.2.2. About ExternalIP
	2.2.3. Configuration for ExternalIP
	2.2.4. Restrictions on the assignment of an external IP address
	2.2.5. Example policy objects
	2.2.6. ExternalIP address block configuration
	2.2.6.1. Example external IP configurations

	2.2.7. Configure external IP address blocks for your cluster
	2.2.8. Additional resources
	2.2.9. Next steps

	2.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
	2.3.1. Using Ingress Controllers and routes
	2.3.2. Prerequisites
	2.3.3. Creating a project and service
	2.3.4. Exposing the service by creating a route
	2.3.5. Ingress sharding in OpenShift Container Platform
	2.3.6. Ingress Controller sharding
	2.3.6.1. Traditional sharding example
	2.3.6.2. Overlapped sharding example
	2.3.6.3. Sharding the default Ingress Controller
	2.3.6.4. Ingress sharding and DNS
	2.3.6.5. Configuring Ingress Controller sharding by using route labels
	2.3.6.6. Configuring Ingress Controller sharding by using namespace labels
	2.3.6.7. Creating a route for Ingress Controller sharding
	2.3.6.8. Additional resources

	2.4. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY
	2.4.1. Ingress Controller endpoint publishing strategy
	2.4.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal
	2.4.1.2. Configuring the Ingress Controller endpoint publishing scope to External
	2.4.1.3. Adding a single NodePort service to an Ingress Controller

	2.4.2. Additional resources

	2.5. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
	2.5.1. Using a load balancer to get traffic into the cluster
	2.5.2. Prerequisites
	2.5.3. Creating a project and service
	2.5.4. Exposing the service by creating a route
	2.5.5. Creating a load balancer service

	2.6. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS
	2.6.1. Configuring Classic Load Balancer timeouts on AWS
	2.6.1.1. Configuring route timeouts
	2.6.1.2. Configuring Classic Load Balancer timeouts

	2.6.2. Configuring ingress cluster traffic on AWS using a Network Load Balancer
	2.6.2.1. Switching the Ingress Controller from using a Classic Load Balancer to a Network Load Balancer
	2.6.2.2. Switching the Ingress Controller from using a Network Load Balancer to a Classic Load Balancer
	2.6.2.3. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer
	2.6.2.4. Configuring an Ingress Controller Network Load Balancer on an existing AWS cluster
	2.6.2.5. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster
	2.6.2.6. Choosing subnets while creating a LoadBalancerService Ingress Controller
	2.6.2.7. Updating the subnets on an existing Ingress Controller
	2.6.2.8. Configuring AWS Elastic IP (EIP) addresses for a Network Load Balancer (NLB)

	2.6.3. Additional resources

	2.7. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP
	2.7.1. Prerequisites
	2.7.2. Attaching an ExternalIP to a service
	2.7.3. Additional resources

	2.8. CONFIGURING INGRESS CLUSTER TRAFFIC BY USING A NODEPORT
	2.8.1. Using a NodePort to get traffic into the cluster
	2.8.2. Prerequisites
	2.8.3. Creating a project and service
	2.8.4. Exposing the service by creating a route
	2.8.5. Additional resources

	2.9. CONFIGURING INGRESS CLUSTER TRAFFIC USING LOAD BALANCER ALLOWED SOURCE RANGES
	2.9.1. Configuring load balancer allowed source ranges
	2.9.2. Migrating to load balancer allowed source ranges
	2.9.3. Additional resources

	2.10. PATCHING EXISTING INGRESS OBJECTS
	2.10.1. Patching Ingress objects to resolve an ingressWithoutClassName alert

	2.11. CONFIGURING AN INGRESS CONTROLLER FOR MANUAL DNS MANAGEMENT
	2.11.1. Managed DNS management policy
	2.11.2. Unmanaged DNS management policy
	2.11.3. Creating a custom Ingress Controller with the Unmanaged DNS management policy
	2.11.4. Modifying an existing Ingress Controller
	2.11.5. Additional resources

	CHAPTER 3. LOAD BALANCING ON RHOSP
	3.1. LIMITATIONS OF LOAD BALANCER SERVICES
	3.1.1. Local external traffic policies

	3.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING OCTAVIA
	3.2.1. Scaling clusters by using Octavia

	3.3. SERVICES FOR A USER-MANAGED LOAD BALANCER
	3.3.1. Configuring a user-managed load balancer

	3.4. SPECIFYING A FLOATING IP ADDRESS IN THE INGRESS CONTROLLER

	CHAPTER 4. LOAD BALANCING WITH METALLB
	4.1. CONFIGURING METALLB ADDRESS POOLS
	4.1.1. About the IPAddressPool custom resource
	4.1.2. Configuring an address pool
	4.1.3. Configure MetalLB address pool for VLAN
	4.1.4. Example address pool configurations
	4.1.4.1. Example: IPv4 and CIDR ranges
	4.1.4.2. Example: Assign IP addresses
	4.1.4.3. Example: IPv4 and IPv6 addresses
	4.1.4.4. Example: Assign IP address pools to services or namespaces

	4.1.5. Next steps

	4.2. ABOUT ADVERTISING FOR THE IP ADDRESS POOLS
	4.2.1. About the BGPAdvertisement custom resource
	4.2.2. Configuring MetalLB with a BGP advertisement and a basic use case
	4.2.2.1. Example: Advertise a basic address pool configuration with BGP

	4.2.3. Configuring MetalLB with a BGP advertisement and an advanced use case
	4.2.3.1. Example: Advertise an advanced address pool configuration with BGP

	4.2.4. Advertising an IP address pool from a subset of nodes
	4.2.5. About the L2Advertisement custom resource
	4.2.6. Configuring MetalLB with an L2 advertisement
	4.2.7. Configuring MetalLB with a L2 advertisement and label
	4.2.8. Configuring MetalLB with an L2 advertisement for selected interfaces
	4.2.9. Configuring MetalLB with secondary networks
	4.2.9.1. Enabling IP forwarding for a specific interface
	4.2.9.2. Enabling IP forwarding globally

	4.2.10. Additional resources

	4.3. CONFIGURING METALLB BGP PEERS
	4.3.1. About the BGP peer custom resource
	4.3.2. Configuring a BGP peer
	4.3.3. Configure a specific set of BGP peers for a given address pool
	4.3.4. Exposing a service through a network VRF
	4.3.5. Example BGP peer configurations
	4.3.5.1. Example: Limit which nodes connect to a BGP peer
	4.3.5.2. Example: Specify a BFD profile for a BGP peer
	4.3.5.3. Example: Specify BGP peers for dual-stack networking

	4.3.6. Next steps

	4.4. CONFIGURING COMMUNITY ALIAS
	4.4.1. About the community custom resource
	4.4.2. Configuring MetalLB with a BGP advertisement and community alias

	4.5. CONFIGURING METALLB BFD PROFILES
	4.5.1. About the BFD profile custom resource
	4.5.2. Configuring a BFD profile
	4.5.3. Next steps

	4.6. CONFIGURING SERVICES TO USE METALLB
	4.6.1. Request a specific IP address
	4.6.2. Request an IP address from a specific pool
	4.6.3. Accept any IP address
	4.6.4. Share a specific IP address
	4.6.5. Configuring a service with MetalLB

	4.7. MANAGING SYMMETRIC ROUTING WITH METALLB
	4.7.1. Challenges of managing symmetric routing with MetalLB
	4.7.2. Overview of managing symmetric routing by using VRFs with MetalLB
	4.7.3. Configuring symmetric routing by using VRFs with MetalLB

	4.8. CONFIGURING THE INTEGRATION OF METALLB AND FRR-K8S
	4.8.1. FRR configurations
	4.8.2. Configuring the FRRConfiguration CRD
	4.8.2.1. The routers field
	4.8.2.2. The toAdvertise field
	4.8.2.3. The toReceive field
	4.8.2.4. The bgp field
	4.8.2.5. The nodeSelector field

	4.8.3. How FRR-K8s merges multiple configurations
	4.8.3.1. Configuration conflicts
	4.8.3.2. Merging

	4.9. METALLB LOGGING, TROUBLESHOOTING, AND SUPPORT
	4.9.1. Setting the MetalLB logging levels
	4.9.1.1. FRRouting (FRR) log levels

	4.9.2. Troubleshooting BGP issues
	4.9.3. Troubleshooting BFD issues
	4.9.4. MetalLB metrics for BGP and BFD
	4.9.5. About collecting MetalLB data

