
OpenShift Container Platform 4.18

Postinstallation configuration

Day 2 operations for OpenShift Container Platform

Last Updated: 2026-02-19

OpenShift Container Platform 4.18 Postinstallation configuration

Day 2 operations for OpenShift Container Platform

Legal Notice

Copyright © Red Hat.

Except as otherwise noted below, the text of and illustrations in this documentation are licensed by
Red Hat under the Creative Commons Attribution–Share Alike 3.0 Unported license . If you
distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, the Red Hat logo, JBoss, Hibernate, and RHCE are trademarks or registered trademarks of
Red Hat, LLC. or its subsidiaries in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

XFS is a trademark or registered trademark of Hewlett Packard Enterprise Development LP or its
subsidiaries in the United States and other countries.

The OpenStack ® Word Mark and OpenStack logo are trademarks or registered trademarks of the
Linux Foundation, used under license.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions and guidance on post installation activities for OpenShift
Container Platform.

. .

. .

. .

Table of Contents

CHAPTER 1. POSTINSTALLATION CONFIGURATION OVERVIEW
1.1. POSTINSTALLATION CONFIGURATION TASKS

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER
2.1. ABOUT PRIVATE CLUSTERS

2.1.1. DNS
2.1.2. Ingress Controller
2.1.3. API server

2.2. CONFIGURING DNS RECORDS TO BE PUBLISHED IN A PRIVATE ZONE
2.3. SETTING THE INGRESS CONTROLLER TO PRIVATE
2.4. RESTRICTING THE API SERVER TO PRIVATE
2.5. CONFIGURING A PRIVATE STORAGE ENDPOINT ON AZURE

2.5.1. Limitations for configuring a private storage endpoint on Azure
2.5.2. Configuring a private storage endpoint on Azure by enabling the Image Registry Operator to discover
VNet and subnet names
2.5.3. Configuring a private storage endpoint on Azure with user-provided VNet and subnet names
2.5.4. Optional: Disabling redirect when using a private storage endpoint on Azure

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

3.1. ABOUT CLUSTERS WITH MULTI-ARCHITECTURE COMPUTE MACHINES
3.1.1. Configuring your cluster with multi-architecture compute machines
3.1.2. Verifying cluster compatibility

3.2. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON AWS
3.2.1. Adding a multi-architecture compute machine set to your AWS cluster
3.2.2. Additional resources

3.3. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON AZURE
3.3.1. Creating a 64-bit ARM boot image using the Azure image gallery
3.3.2. Adding a multi-architecture compute machine set to your Azure cluster
3.3.3. Additional resources

3.4. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON GOOGLE CLOUD
3.4.1. Adding a multi-architecture compute machine set to your Google Cloud cluster
3.4.2. Additional resources

3.5. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON BARE METAL, IBM
POWER, OR IBM Z

3.5.1. Creating RHCOS machines using an ISO image
3.5.2. Creating RHCOS machines by PXE or iPXE booting
3.5.3. Approving the certificate signing requests for your machines

3.6. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM Z AND IBM
LINUXONE WITH Z/VM

3.6.1. Creating RHCOS machines on IBM Z with z/VM
3.6.2. Approving the certificate signing requests for your machines

3.7. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM Z AND IBM
LINUXONE IN AN LPAR

3.7.1. Creating RHCOS machines on IBM Z in an LPAR
3.7.2. Approving the certificate signing requests for your machines

3.8. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM Z AND IBM
LINUXONE WITH RHEL KVM

3.8.1. Creating RHCOS machines using virt-install
3.8.2. Approving the certificate signing requests for your machines

3.9. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM POWER
3.9.1. Creating RHCOS machines using an ISO image

11
11

13
13
13
13
13
14
15
16
18
18

19
20
22

24
24
24
26
27
27
30
30
30
33
35
36
36
39

39
40
42
44

47
47
50

53
53
56

59
60
62
64
65

Table of Contents

1

. .

3.9.2. Creating RHCOS machines by PXE or iPXE booting
3.9.3. Approving the certificate signing requests for your machines

3.10. MANAGING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES
3.10.1. Scheduling workloads on clusters with multi-architecture compute machines

3.10.1.1. Sample multi-architecture node workload deployments
3.10.2. Enabling 64k pages on the Red Hat Enterprise Linux CoreOS (RHCOS) kernel
3.10.3. Importing manifest lists in image streams on your multi-architecture compute machines

3.11. MANAGING WORKLOADS ON MULTI-ARCHITECTURE CLUSTERS BY USING THE MULTIARCH TUNING
OPERATOR

3.11.1. Installing the Multiarch Tuning Operator by using the CLI
3.11.2. Installing the Multiarch Tuning Operator by using the web console
3.11.3. Multiarch Tuning Operator pod labels and architecture support overview
3.11.4. Creating the ClusterPodPlacementConfig object

3.11.4.1. Creating the ClusterPodPlacementConfig object by using the CLI
3.11.4.2. Creating the ClusterPodPlacementConfig object by using the web console

3.11.5. Deleting the ClusterPodPlacementConfig object by using the CLI
3.11.6. Deleting the ClusterPodPlacementConfig object by using the web console
3.11.7. Uninstalling the Multiarch Tuning Operator by using the CLI
3.11.8. Uninstalling the Multiarch Tuning Operator by using the web console

3.12. MULTIARCH TUNING OPERATOR RELEASE NOTES
3.12.1. Release notes for the Multiarch Tuning Operator 1.2.1

3.12.1.1. Bug fixes
3.12.2. Release notes for the Multiarch Tuning Operator 1.2.0

3.12.2.1. New features and enhancements
3.12.2.2. Bug fixes

3.12.3. Release notes for the Multiarch Tuning Operator 1.1.1
3.12.3.1. Bug fixes

3.12.4. Release notes for the Multiarch Tuning Operator 1.1.0
3.12.4.1. New features and enhancements
3.12.4.2. Bug fixes

3.12.5. Release notes for the Multiarch Tuning Operator 1.0.0
3.12.5.1. New features and enhancements

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS
4.1. AVAILABLE CLUSTER CUSTOMIZATIONS

4.1.1. Cluster configuration resources
4.1.2. Operator configuration resources
4.1.3. Additional configuration resources
4.1.4. Informational Resources

4.2. ADDING WORKER NODES
4.2.1. Adding worker nodes to an on-premise cluster
4.2.2. Adding worker nodes to installer-provisioned infrastructure clusters
4.2.3. Adding worker nodes to user-provisioned infrastructure clusters
4.2.4. Adding worker nodes to clusters managed by the Assisted Installer
4.2.5. Adding worker nodes to clusters managed by the multicluster engine for Kubernetes

4.3. ADJUST WORKER NODES
4.3.1. Understanding the difference between compute machine sets and the machine config pool
4.3.2. Scaling a compute machine set manually
4.3.3. The compute machine set deletion policy
4.3.4. Creating default cluster-wide node selectors

4.4. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY
PROFILES

4.4.1. Understanding worker latency profiles

67
69
72
72
72
75
77

78
79
81

82
83
85
86
87
87
88
90
90
91
91
91
91
91
91

92
92
92
92
92
92

93
93
93
94
94
95
95
95
96
96
96
96
96
97
97
98
99

102
103

OpenShift Container Platform 4.18 Postinstallation configuration

2

. .

4.4.2. Using and changing worker latency profiles
4.5. MANAGING CONTROL PLANE MACHINES

4.5.1. Adding a control plane node to your cluster
4.6. CREATING INFRASTRUCTURE MACHINE SETS FOR PRODUCTION ENVIRONMENTS

4.6.1. Creating a compute machine set
4.6.2. Creating an infrastructure node
4.6.3. Creating a machine config pool for infrastructure machines

4.7. ASSIGNING MACHINE SET RESOURCES TO INFRASTRUCTURE NODES
4.7.1. Binding infrastructure node workloads using taints and tolerations

4.8. MOVING RESOURCES TO INFRASTRUCTURE MACHINE SETS
4.8.1. Moving the router
4.8.2. Moving the default registry
4.8.3. Moving the monitoring solution

4.9. ABOUT THE CLUSTER AUTOSCALER
4.9.1. Automatic node removal
4.9.2. Limitations
4.9.3. Interaction with other scheduling features
4.9.4. Cluster autoscaler resource definition
4.9.5. Deploying a cluster autoscaler

4.10. APPLYING AUTOSCALING TO YOUR CLUSTER
4.11. CONFIGURING LINUX CGROUP
4.12. ENABLING TECHNOLOGY PREVIEW FEATURES USING FEATUREGATES

4.12.1. Understanding feature gates
4.12.2. Enabling feature sets using the web console
4.12.3. Enabling feature sets using the CLI

4.13. ETCD TASKS
4.13.1. About etcd encryption
4.13.2. Supported encryption types
4.13.3. Enabling etcd encryption
4.13.4. Disabling etcd encryption
4.13.5. Backing up etcd data
4.13.6. Defragmenting etcd data

4.13.6.1. Automatic defragmentation
4.13.6.2. Manual defragmentation

4.13.7. Restoring to a previous cluster state
4.13.8. Issues and workarounds for restoring a persistent storage state

4.14. POD DISRUPTION BUDGETS
4.14.1. Understanding how to use pod disruption budgets to specify the number of pods that must be up
4.14.2. Specifying the number of pods that must be up with pod disruption budgets
4.14.3. Specifying the eviction policy for unhealthy pods

CHAPTER 5. POSTINSTALLATION NODE TASKS
5.1. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

5.1.1. About adding RHEL compute nodes to a cluster
5.1.2. System requirements for RHEL compute nodes

5.1.2.1. Certificate signing requests management
5.1.3. Preparing the machine to run the playbook
5.1.4. Preparing a RHEL compute node
5.1.5. Adding a RHEL compute machine to your cluster
5.1.6. Required parameters for the Ansible hosts file
5.1.7. Optional: Removing RHCOS compute machines from a cluster

5.2. ADDING RHCOS COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER
5.2.1. Prerequisites

106
108
108
115
115
117
119
122
122
124
124
126
128
130
130
131
131
132
135
135
135
139
139
144
145
147
147
148
148
150
151

153
154
154
157
159
160
160
162
163

165
165
165
165
167
167
168
169
170
171
172
172

Table of Contents

3

5.2.2. Creating RHCOS machines using an ISO image
5.2.3. Creating RHCOS machines by PXE or iPXE booting
5.2.4. Approving the certificate signing requests for your machines
5.2.5. Adding a new RHCOS worker node with a custom /var partition in AWS

5.3. DEPLOYING MACHINE HEALTH CHECKS
5.3.1. About machine health checks

5.3.1.1. Limitations when deploying machine health checks
5.3.2. Sample MachineHealthCheck resource

5.3.2.1. Short-circuiting machine health check remediation
5.3.2.1.1. Setting maxUnhealthy by using an absolute value
5.3.2.1.2. Setting maxUnhealthy by using percentages

5.3.3. Creating a machine health check resource
5.3.4. Scaling a compute machine set manually
5.3.5. Understanding the difference between compute machine sets and the machine config pool

5.4. RECOMMENDED NODE HOST PRACTICES
5.4.1. Creating a KubeletConfig CR to edit kubelet parameters
5.4.2. Modifying the number of unavailable worker nodes
5.4.3. Control plane node sizing
5.4.4. Setting up CPU Manager

5.5. HUGE PAGES
5.5.1. What huge pages do
5.5.2. How huge pages are consumed by apps

5.5.2.1. Allocating huge pages of a specific size
5.5.2.2. Huge page requirements

5.5.3. Configuring huge pages at boot time
5.6. UNDERSTANDING DEVICE PLUGINS

5.6.1. Example device plugins
5.6.2. Methods for deploying a device plugin
5.6.3. Understanding the Device Manager
5.6.4. Enabling Device Manager

5.7. TAINTS AND TOLERATIONS
5.7.1. Understanding taints and tolerations
5.7.2. Adding taints and tolerations
5.7.3. Adding taints and tolerations using a compute machine set
5.7.4. Binding a user to a node using taints and tolerations
5.7.5. Controlling nodes with special hardware using taints and tolerations
5.7.6. Removing taints and tolerations

5.8. TOPOLOGY MANAGER
5.8.1. Topology Manager policies
5.8.2. Setting up Topology Manager
5.8.3. Pod interactions with Topology Manager policies

5.9. RESOURCE REQUESTS AND OVERCOMMITMENT
5.10. CLUSTER-LEVEL OVERCOMMIT USING THE CLUSTER RESOURCE OVERRIDE OPERATOR

5.10.1. Installing the Cluster Resource Override Operator using the web console
5.10.2. Installing the Cluster Resource Override Operator using the CLI
5.10.3. Configuring cluster-level overcommit

5.11. NODE-LEVEL OVERCOMMIT
5.11.1. Understanding container CPU and memory requests
5.11.2. Understanding overcommitment and quality of service classes

5.11.2.1. Understanding how to reserve memory across quality of service tiers
5.11.3. Understanding swap memory and QoS
5.11.4. Understanding nodes overcommitment
5.11.5. Disabling or enforcing CPU limits using CPU CFS quotas

172
174
176
179
184
184
185
185
186
187
187
188
188
189
190
191

195
196
198

203
203
204
205
205
205
207
207
208
208
209
210
210
213
214
217
217
218
219
219

220
220
221
222
224
226
229
231
231
231

232
232
233
234

OpenShift Container Platform 4.18 Postinstallation configuration

4

. .

. .

. .

. .

5.11.6. Reserving resources for system processes
5.11.7. Disabling overcommitment for a node

5.12. PROJECT-LEVEL LIMITS
5.12.1. Disabling overcommitment for a project

5.13. FREEING NODE RESOURCES USING GARBAGE COLLECTION
5.13.1. Understanding how terminated containers are removed through garbage collection
5.13.2. Understanding how images are removed through garbage collection
5.13.3. Configuring garbage collection for containers and images

5.14. USING THE NODE TUNING OPERATOR
5.14.1. Accessing an example Node Tuning Operator specification
5.14.2. Custom tuning specification
5.14.3. Default profiles set on a cluster
5.14.4. Supported TuneD daemon plugins

5.15. CONFIGURING THE MAXIMUM NUMBER OF PODS PER NODE
5.16. MACHINE SCALING WITH STATIC IP ADDRESSES

5.16.1. Scaling machines to use static IP addresses
5.16.2. Machine set scaling of machines with configured static IP addresses
5.16.3. Using a machine set to scale machines with configured static IP addresses

CHAPTER 6. POSTINSTALLATION NETWORK CONFIGURATION
6.1. USING THE CLUSTER NETWORK OPERATOR
6.2. NETWORK CONFIGURATION TASKS

6.2.1. Creating default network policies for a new project
6.2.1.1. Modifying the template for new projects
6.2.1.2. Adding network policies to the new project template

CHAPTER 7. CONFIGURING IMAGE STREAMS AND IMAGE REGISTRIES
7.1. CONFIGURING IMAGE STREAMS FOR A DISCONNECTED CLUSTER

7.1.1. Cluster Samples Operator assistance for mirroring
7.1.2. Using Cluster Samples Operator image streams with alternate or mirrored registries
7.1.3. Preparing your cluster to gather support data

7.2. CONFIGURING PERIODIC IMPORTING OF CLUSTER SAMPLE OPERATOR IMAGE STREAM TAGS

CHAPTER 8. POSTINSTALLATION STORAGE CONFIGURATION
8.1. DYNAMIC PROVISIONING
8.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY
8.3. DEPLOY RED HAT OPENSHIFT DATA FOUNDATION

CHAPTER 9. PREPARING FOR USERS
9.1. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION

9.1.1. About identity providers in OpenShift Container Platform
9.1.2. Supported identity providers
9.1.3. Identity provider parameters
9.1.4. Sample identity provider CR

9.2. USING RBAC TO DEFINE AND APPLY PERMISSIONS
9.2.1. RBAC overview

9.2.1.1. Default cluster roles
9.2.1.2. Evaluating authorization

9.2.1.2.1. Cluster role aggregation
9.2.2. Projects and namespaces
9.2.3. Default projects
9.2.4. Viewing cluster roles and bindings
9.2.5. Viewing local roles and bindings
9.2.6. Adding roles to users

235
235
235
236
236
236
237
238
241
242
242
247
248
249
250
251

252
253

256
256
256
256
256
257

260
260
260
261
262
263

265
265
265
266

269
269
269
269
270
270
271
271

272
274
275
275
276
276
283
284

Table of Contents

5

. .

. .

. .

. .

9.2.7. Creating a local role
9.2.8. Creating a cluster role
9.2.9. Local role binding commands
9.2.10. Cluster role binding commands
9.2.11. Creating a cluster admin
9.2.12. Cluster role bindings for unauthenticated groups
9.2.13. Adding unauthenticated groups to cluster roles

9.3. THE KUBEADMIN USER
9.3.1. Removing the kubeadmin user

9.4. POPULATING OPERATORHUB FROM MIRRORED OPERATOR CATALOGS
9.4.1. Prerequisites

9.4.1.1. Creating the ImageContentSourcePolicy object
9.4.1.2. Adding a catalog source to a cluster

9.5. ABOUT OPERATOR INSTALLATION WITH OPERATORHUB
9.5.1. Installing from OperatorHub by using the web console
9.5.2. Installing from OperatorHub by using the CLI

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION
10.1. ROTATING CLOUD PROVIDER SERVICE KEYS WITH THE CLOUD CREDENTIAL OPERATOR UTILITY

10.1.1. Rotating AWS OIDC bound service account signer keys
10.1.2. Rotating Google Cloud OIDC bound service account signer keys
10.1.3. Rotating Azure OIDC bound service account signer keys
10.1.4. Rotating IBM Cloud credentials

10.2. ROTATING CLOUD PROVIDER CREDENTIALS
10.2.1. Rotating cloud provider credentials manually

10.3. REMOVING CLOUD PROVIDER CREDENTIALS
10.3.1. Removing cloud provider credentials

10.4. ENABLING TOKEN-BASED AUTHENTICATION
10.4.1. Configuring the Cloud Credential Operator utility
10.4.2. Enabling Microsoft Entra Workload ID on an existing cluster
10.4.3. Enabling AWS Security Token Service (STS) on an existing cluster
10.4.4. Verifying that a cluster uses short-term credentials

10.5. ADDITIONAL RESOURCES

CHAPTER 11. CONFIGURING ALERT NOTIFICATIONS
11.1. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS
11.2. ADDITIONAL RESOURCES

CHAPTER 12. CONVERTING A CONNECTED CLUSTER TO A DISCONNECTED CLUSTER

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS
13.1. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS
13.2. UPGRADING OPENSHIFT CONTAINER PLATFORM CLUSTERS

13.2.1. Upgrading an OpenShift Container Platform cluster
13.2.1.1. Cluster updates for OpenShift clusters

13.2.2. Verifying cluster API versions between update versions
13.2.2.1. OpenShift Container Platform API compatibility

13.2.2.1.1. About Kubernetes version skew
13.2.2.2. Determining the cluster version update path
13.2.2.3. Selecting the target release

13.2.2.3.1. Determining what z-stream updates are available
13.2.2.3.2. Changing the channel for a Control Plane Only update

13.2.2.3.2.1. Changing the channel for an early EUS to EUS update

287
287
288
288
289
289
289
290
291
291
291
292
292
294
295
297

305

305
305
309
313
317
317
317

320
320
321
321

322
327
331
332

333
333
333

334

335
335
335
335
335
336
336
336
336
337
337
338
339

OpenShift Container Platform 4.18 Postinstallation configuration

6

13.2.2.3.3. Changing the channel for a y-stream update
13.2.3. Preparing a bare-metal cluster for platform update

13.2.3.1. Ensuring the host firmware is compatible with the update
13.2.3.2. Ensuring that layered products are compatible with the update
13.2.3.3. Applying MachineConfigPool labels to nodes before the update

13.2.3.3.1. Staggering the cluster update
13.2.3.3.2. Dividing worker nodes into MachineConfigPool groups
13.2.3.3.3. Reviewing configured cluster MachineConfigPool roles
13.2.3.3.4. Creating MachineConfigPool groups for the cluster

13.2.3.4. Disconnected environment considerations
13.2.3.5. Preparing the cluster platform for update

13.2.4. Configuring application pods before updating your OpenShift Container Platform cluster
13.2.4.1. Ensuring that workloads run uninterrupted with pod disruption budgets
13.2.4.2. Ensuring that pods do not run on the same cluster node
13.2.4.3. Application liveness, readiness, and startup probes

13.2.5. Before you update the telco core CNF cluster
13.2.5.1. Pausing worker nodes before the update
13.2.5.2. Backup the etcd database before you proceed with the update

13.2.5.2.1. Backing up etcd data
13.2.5.2.2. Creating a single etcd backup

13.2.5.3. Checking the cluster health
13.2.6. Completing the control plane Only cluster update

13.2.6.1. Acknowledging the control plane only or y-stream update
13.2.6.2. Starting the cluster update
13.2.6.3. Monitoring the cluster update
13.2.6.4. Updating the OLM Operators

13.2.6.4.1. Performing the second y-stream update
13.2.6.4.2. Acknowledging the y-stream release update

13.2.6.5. Starting the y-stream control plane update
13.2.6.6. Monitoring the second part of a <y+1> cluster update
13.2.6.7. Updating all the OLM Operators
13.2.6.8. Updating the worker nodes
13.2.6.9. Verifying the health of the newly updated cluster

13.2.7. Completing the y-stream cluster update
13.2.7.1. Acknowledging the control plane only or y-stream update
13.2.7.2. Starting the cluster update
13.2.7.3. Monitoring the cluster update
13.2.7.4. Updating the OLM Operators
13.2.7.5. Updating the worker nodes
13.2.7.6. Verifying the health of the newly updated cluster

13.2.8. Completing the z-stream cluster update
13.2.8.1. Starting the cluster update
13.2.8.2. Updating the worker nodes
13.2.8.3. Verifying the health of the newly updated cluster

13.3. TROUBLESHOOTING AND MAINTAINING OPENSHIFT CONTAINER PLATFORM CLUSTERS
13.3.1. Troubleshooting and maintaining OpenShift Container Platform clusters

13.3.1.1. Getting Support
13.3.1.1.1. About the Red Hat Knowledgebase
13.3.1.1.2. Searching the Red Hat Knowledgebase
13.3.1.1.3. Submitting a support case

13.3.2. General troubleshooting
13.3.2.1. Querying your cluster
13.3.2.2. Checking pod logs

340
341
341
341

342
342
342
343
344
346
346
348
348
348
349
349
349
350
350
352
355
356
356
358
358
360
362
364
365
366
368
369
371
373
373
374
375
377
379
381
382
383
383
385
387
387
388
388
388
389
390
390
392

Table of Contents

7

13.3.2.3. Describing a pod
13.3.2.4. Reviewing events
13.3.2.5. Connecting to a pod
13.3.2.6. Debugging a pod
13.3.2.7. Running a command on a pod

13.3.3. Cluster maintenance
13.3.3.1. Checking cluster Operators
13.3.3.2. Watching for failed pods

13.3.4. Security
13.3.4.1. Authentication

13.3.5. Certificate maintenance
13.3.5.1. Certificates manually managed by the administrator

13.3.5.1.1. Managing proxy certificates
13.3.5.1.2. User-provisioned API server certificates

13.3.5.2. Certificates managed by the cluster
13.3.5.2.1. Certificates managed by etcd
13.3.5.2.2. Node certificates
13.3.5.2.3. Service CA certificates

13.3.6. Machine Config Operator
13.3.6.1. Purpose of the Machine Config Operator
13.3.6.2. Applying several machine config files at the same time

13.3.7. Bare-metal node maintenance
13.3.7.1. Connecting to a bare-metal node in your cluster
13.3.7.2. Moving applications to pods within the cluster
13.3.7.3. DIMM memory replacement
13.3.7.4. Disk replacement
13.3.7.5. Cluster network card replacement

13.4. OBSERVABILITY
13.4.1. Observability in OpenShift Container Platform clusters

13.4.1.1. Understanding the monitoring stack
13.4.1.2. Key performance metrics

13.4.1.2.1. Example queries in PromQL
13.4.1.2.2. Recommendations for storage of metrics

13.4.1.3. Monitoring at the far edge network
13.4.1.4. Alerting

13.4.1.4.1. Viewing default alerts
13.4.1.4.2. Alert notifications

13.4.1.5. Workload monitoring
13.4.1.5.1. Creating a workload alert

13.5. SECURITY
13.5.1. Security basics

13.5.1.1. RBAC overview
Operational RBAC considerations

13.5.1.2. Security accounts overview
13.5.1.3. Identity provider configuration
13.5.1.4. Replacing the kubeadmin user with a cluster-admin user
13.5.1.5. Security considerations
13.5.1.6. Advancement of pod security in Kubernetes and OpenShift Container Platform
13.5.1.7. Bare-metal infrastructure
13.5.1.8. Lifecycle management

13.5.2. Host security
13.5.2.1. Red Hat Enterprise Linux CoreOS (RHCOS)
13.5.2.2. Command-line host access

393
393
394
395
396
396
397
397
397
397
398
398
398
399
399
400
400
400
400
401
401
401
401
402
403
403
403
403
404
404
405
405
408
409
412
412
413
413
414
415
415
415
416
416
417
417
418
418
419
419
419
419

420

OpenShift Container Platform 4.18 Postinstallation configuration

8

13.5.2.3. Linux capabilities
13.5.3. Security context constraints

421
422

Table of Contents

9

OpenShift Container Platform 4.18 Postinstallation configuration

10

CHAPTER 1. POSTINSTALLATION CONFIGURATION
OVERVIEW

After installing OpenShift Container Platform, a cluster administrator can configure and customize the
following components:

Machine

Bare metal

Cluster

Node

Network

Storage

Users

Alerts and notifications

1.1. POSTINSTALLATION CONFIGURATION TASKS

You can perform the postinstallation configuration tasks to configure your environment to meet your
needs.

The following lists details these configurations:

Configure operating system features : The Machine Config Operator (MCO) manages
MachineConfig objects. By using the MCO, you can configure nodes and custom resources.

Configure cluster features. You can modify the following features of an OpenShift Container
Platform cluster:

Image registry

Networking configuration

Image build behavior

Identity provider

The etcd configuration

Machine set creation to handle the workloads

Cloud provider credential management

Configuring a private cluster: By default, the installation program provisions OpenShift
Container Platform by using a publicly accessible DNS and endpoints. To make your cluster
accessible only from within an internal network, configure the following components to make
them private:

DNS

CHAPTER 1. POSTINSTALLATION CONFIGURATION OVERVIEW

11

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_configuration/#machine-config-overview

Ingress Controller

API server

Perform node operations : By default, OpenShift Container Platform uses Red Hat Enterprise
Linux CoreOS (RHCOS) compute machines. You can perform the following node operations:

Add and remove compute machines.

Add and remove taints and tolerations.

Configure the maximum number of pods per node.

Enable Device Manager.

Configure users: Users can authenticate themselves to the API by using OAuth access tokens.
You can configure OAuth to perform the following tasks:

Specify an identity provider.

Use role-based access control to define and grant permissions to users.

Install an Operator from OperatorHub.

Configuring alert notifications: By default, firing alerts are displayed on the Alerting UI of the
web console. You can also configure OpenShift Container Platform to send alert notifications to
external systems.

OpenShift Container Platform 4.18 Postinstallation configuration

12

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER
After you install an OpenShift Container Platform version 4.18 cluster, you can set some of its core
components to be private.

2.1. ABOUT PRIVATE CLUSTERS

By default, OpenShift Container Platform is provisioned using publicly-accessible DNS and endpoints.
You can set the DNS, Ingress Controller, and API server to private after you deploy your private cluster.

IMPORTANT

If the cluster has any public subnets, load balancer services created by administrators
might be publicly accessible. To ensure cluster security, verify that these services are
explicitly annotated as private.

2.1.1. DNS

If you install OpenShift Container Platform on installer-provisioned infrastructure, the installation
program creates records in a pre-existing public zone and, where possible, creates a private zone for the
cluster’s own DNS resolution. In both the public zone and the private zone, the installation program or
cluster creates DNS entries for *.apps, for the Ingress object, and api, for the API server.

The *.apps records in the public and private zone are identical, so when you delete the public zone, the
private zone seamlessly provides all DNS resolution for the cluster.

2.1.2. Ingress Controller

Because the default Ingress object is created as public, the load balancer is internet-facing and in the
public subnets.

The Ingress Operator generates a default certificate for an Ingress Controller to serve as a placeholder
until you configure a custom default certificate. Do not use Operator-generated default certificates in
production clusters. The Ingress Operator does not rotate its own signing certificate or the default
certificates that it generates. Operator-generated default certificates are intended as placeholders for
custom default certificates that you configure.

2.1.3. API server

By default, the installation program creates appropriate network load balancers for the API server to
use for both internal and external traffic.

On Amazon Web Services (AWS), separate public and private load balancers are created. The load
balancers are identical except that an additional port is available on the internal one for use within the
cluster. Although the installation program automatically creates or destroys the load balancer based on
API server requirements, the cluster does not manage or maintain them. As long as you preserve the
cluster’s access to the API server, you can manually modify or move the load balancers. For the public
load balancer, port 6443 is open and the health check is configured for HTTPS against the /readyz path.

On Google Cloud, a single load balancer is created to manage both internal and external API traffic, so
you do not need to modify the load balancer.

On Microsoft Azure, both public and private load balancers are created. However, because of limitations
in current implementation, you just retain both load balancers in a private cluster.

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER

13

2.2. CONFIGURING DNS RECORDS TO BE PUBLISHED IN A PRIVATE
ZONE

For all OpenShift Container Platform clusters, whether public or private, DNS records are published in a
public zone by default.

You can remove the public zone from the cluster DNS configuration to avoid exposing DNS records to
the public. You might want to avoid exposing sensitive information, such as internal domain names,
internal IP addresses, or the number of clusters at an organization, or you might simply have no need to
publish records publicly. If all the clients that should be able to connect to services within the cluster use
a private DNS service that has the DNS records from the private zone, then there is no need to have a
public DNS record for the cluster.

After you deploy a cluster, you can modify its DNS to use only a private zone by modifying the DNS
custom resource (CR). Modifying the DNS CR in this way means that any DNS records that are
subsequently created are not published to public DNS servers, which keeps knowledge of the DNS
records isolated to internal users. This can be done when you configure the cluster to be private, or if you
never want DNS records to be publicly resolvable.

Alternatively, even in a private cluster, you might keep the public zone for DNS records because it allows
clients to resolve DNS names for applications running on that cluster. For example, an organization can
have machines that connect to the public internet and then establish VPN connections for certain
private IP ranges in order to connect to private IP addresses. The DNS lookups from these machines
use the public DNS to determine the private addresses of those services, and then connect to the
private addresses over the VPN.

Procedure

1. Review the DNS CR for your cluster by running the following command and observing the
output:

Example output

$ oc get dnses.config.openshift.io/cluster -o yaml

apiVersion: config.openshift.io/v1
kind: DNS
metadata:
 creationTimestamp: "2019-10-25T18:27:09Z"
 generation: 2
 name: cluster
 resourceVersion: "37966"
 selfLink: /apis/config.openshift.io/v1/dnses/cluster
 uid: 0e714746-f755-11f9-9cb1-02ff55d8f976
spec:
 baseDomain: <base_domain>
 privateZone:
 tags:
 Name: <infrastructure_id>-int
 kubernetes.io/cluster/<infrastructure_id>: owned
 publicZone:
 id: Z2XXXXXXXXXXA4
status: {}

OpenShift Container Platform 4.18 Postinstallation configuration

14

Note that the spec section contains both a private and a public zone.

2. Patch the DNS CR to remove the public zone by running the following command:

Example output

The Ingress Operator consults the DNS CR definition when it creates DNS records for
IngressController objects. If only private zones are specified, only private records are created.

IMPORTANT

Existing DNS records are not modified when you remove the public zone. You
must manually delete previously published public DNS records if you no longer
want them to be published publicly.

Verification

Review the DNS CR for your cluster and confirm that the public zone was removed, by running
the following command and observing the output:

Example output

2.3. SETTING THE INGRESS CONTROLLER TO PRIVATE

After you deploy a cluster, you can modify its Ingress Controller to use only a private zone.

Procedure

$ oc patch dnses.config.openshift.io/cluster --type=merge --patch='{"spec": {"publicZone":
null}}'

dns.config.openshift.io/cluster patched

$ oc get dnses.config.openshift.io/cluster -o yaml

apiVersion: config.openshift.io/v1
kind: DNS
metadata:
 creationTimestamp: "2019-10-25T18:27:09Z"
 generation: 2
 name: cluster
 resourceVersion: "37966"
 selfLink: /apis/config.openshift.io/v1/dnses/cluster
 uid: 0e714746-f755-11f9-9cb1-02ff55d8f976
spec:
 baseDomain: <base_domain>
 privateZone:
 tags:
 Name: <infrastructure_id>-int
 kubernetes.io/cluster/<infrastructure_id>-wfpg4: owned
status: {}

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER

15

1. Modify the default Ingress Controller to use only an internal endpoint:

Example output

The public DNS entry is removed, and the private zone entry is updated.

2.4. RESTRICTING THE API SERVER TO PRIVATE

After you deploy a cluster to Amazon Web Services (AWS) or Microsoft Azure, you can reconfigure the
API server to use only the private zone.

Prerequisites

Install the OpenShift CLI (oc).

Have access to the web console as a user with admin privileges.

Procedure

1. In the web portal or console for your cloud provider, take the following actions:

a. Locate and delete the appropriate load balancer component:

AWS clusters: Delete the external load balancer. The API DNS entry in the private zone
already points to the internal load balancer, which uses an identical configuration, so you
do not need to modify the internal load balancer.

Azure: Delete the following resources:

The api-v4 rule for the public load balancer.

The frontendIPConfiguration parameter that is associated with the api-v4 rule for
the public load balancer.

The public IP that is specified in the frontendIPConfiguration parameter.

b. Azure clusters: Configure the Ingress Controller endpoint publishing scope to Internal. For
more information, see "Configuring the Ingress Controller endpoint publishing scope to
Internal".

$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: default
spec:
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal
EOF

ingresscontroller.operator.openshift.io "default" deleted
ingresscontroller.operator.openshift.io/default replaced

OpenShift Container Platform 4.18 Postinstallation configuration

16

1

2

c. Delete the api.$clustername.$yourdomain or api.$clustername DNS entry in the public
zone.

2. AWS clusters: Remove the external load balancers:

IMPORTANT

You can run the following steps only for an installer-provisioned infrastructure
(IPI) cluster. For a user-provisioned infrastructure (UPI) cluster, you must
manually remove or disable the external load balancers.

If your cluster uses a control plane machine set, delete the lines in the control plane machine
set custom resource that configure your public or external load balancer:

Delete the name value for the external load balancer, which ends in -ext.

Delete the type value for the external load balancer.

If your cluster does not use a control plane machine set, you must delete the external load
balancers from each control plane machine.

i. From your terminal, list the cluster machines by running the following command:

Example output

The control plane machines contain master in the name.

ii. Remove the external load balancer from each control plane machine:

A. Edit a control plane machine object to by running the following command:

...
providerSpec:
 value:
...
 loadBalancers:
 - name: lk4pj-ext 1
 type: network 2
 - name: lk4pj-int
 type: network
...

$ oc get machine -n openshift-machine-api

NAME STATE TYPE REGION ZONE AGE
lk4pj-master-0 running m4.xlarge us-east-1 us-east-1a 17m
lk4pj-master-1 running m4.xlarge us-east-1 us-east-1b 17m
lk4pj-master-2 running m4.xlarge us-east-1 us-east-1a 17m
lk4pj-worker-us-east-1a-5fzfj running m4.xlarge us-east-1 us-east-1a 15m
lk4pj-worker-us-east-1a-vbghs running m4.xlarge us-east-1 us-east-1a 15m
lk4pj-worker-us-east-1b-zgpzg running m4.xlarge us-east-1 us-east-1b 15m

$ oc edit machines -n openshift-machine-api <control_plane_name> 1

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER

17

1

1

2

Specify the name of the control plane machine object to modify.

B. Remove the lines that describe the external load balancer, which are marked in the
following example:

Delete the name value for the external load balancer, which ends in -ext.

Delete the type value for the external load balancer.

C. Save your changes and exit the object specification.

D. Repeat this process for each of the control plane machines.

Additional resources

Configuring the Ingress Controller endpoint publishing scope to Internal

2.5. CONFIGURING A PRIVATE STORAGE ENDPOINT ON AZURE

You can leverage the Image Registry Operator to use private endpoints on Azure, which enables
seamless configuration of private storage accounts when OpenShift Container Platform is deployed on
private Azure clusters. This allows you to deploy the image registry without exposing public-facing
storage endpoints.

IMPORTANT

Do not configure a private storage endpoint on Microsoft Azure Red Hat OpenShift
(ARO), because the endpoint can put your Microsoft Azure Red Hat OpenShift cluster in
an unrecoverable state.

You can configure the Image Registry Operator to use private storage endpoints on Azure in one of two
ways:

By configuring the Image Registry Operator to discover the VNet and subnet names

With user-provided Azure Virtual Network (VNet) and subnet names

2.5.1. Limitations for configuring a private storage endpoint on Azure

The following limitations apply when configuring a private storage endpoint on Azure:

...
providerSpec:
 value:
...
 loadBalancers:
 - name: lk4pj-ext 1
 type: network 2
 - name: lk4pj-int
 type: network
...

OpenShift Container Platform 4.18 Postinstallation configuration

18

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/ingress_and_load_balancing/#nw-ingresscontroller-change-internal_nw-configuring-ingress-controller-endpoint-publishing-strategy

When configuring the Image Registry Operator to use a private storage endpoint, public
network access to the storage account is disabled. Consequently, pulling images from the
registry outside of OpenShift Container Platform only works by setting disableRedirect: true in
the registry Operator configuration. With redirect enabled, the registry redirects the client to
pull images directly from the storage account, which will no longer work due to disabled public
network access. For more information, see "Disabling redirect when using a private storage
endpoint on Azure".

This operation cannot be undone by the Image Registry Operator.

2.5.2. Configuring a private storage endpoint on Azure by enabling the Image
Registry Operator to discover VNet and subnet names

The following procedure shows you how to set up a private storage endpoint on Azure by configuring
the Image Registry Operator to discover VNet and subnet names.

Prerequisites

You have configured the image registry to run on Azure.

Your network has been set up using the Installer Provisioned Infrastructure installation method.
For users with a custom network setup, see "Configuring a private storage endpoint on Azure
with user-provided VNet and subnet names".

Procedure

1. Edit the Image Registry Operator config object and set networkAccess.type to Internal:

2. Optional: Enter the following command to confirm that the Operator has completed
provisioning. This might take a few minutes.

3. Optional: If the registry is exposed by a route, and you are configuring your storage account to
be private, you must disable redirect if you want pulls external to the cluster to continue to work.
Enter the following command to disable redirect on the Image Operator configuration:

NOTE

$ oc edit configs.imageregistry/cluster

...
spec:
 # ...
 storage:
 azure:
 # ...
 networkAccess:
 type: Internal
...

$ oc get configs.imageregistry/cluster -o=jsonpath="
{.spec.storage.azure.privateEndpointName}" -w

$ oc patch configs.imageregistry cluster --type=merge -p '{"spec":{"disableRedirect": true}}'

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER

19

NOTE

When redirect is enabled, pulling images from outside of the cluster will not work.

Verification

1. Fetch the registry service name by running the following command:

Example output

2. Enter debug mode by running the following command:

3. Run the suggested chroot command. For example:

4. Enter the following command to log in to your container registry:

Example output

5. Enter the following command to verify that you can pull an image from the registry:

Example output

2.5.3. Configuring a private storage endpoint on Azure with user-provided VNet and
subnet names

$ oc get imagestream -n openshift

NAME IMAGE REPOSITORY TAGS UPDATED
cli image-registry.openshift-image-registry.svc:5000/openshift/cli latest 8 hours ago
...

$ oc debug node/<node_name>

$ chroot /host

$ podman login --tls-verify=false -u unused -p $(oc whoami -t) image-registry.openshift-
image-registry.svc:5000

Login Succeeded!

$ podman pull --tls-verify=false image-registry.openshift-image-
registry.svc:5000/openshift/tools

Trying to pull image-registry.openshift-image-
registry.svc:5000/openshift/tools/openshift/tools...
Getting image source signatures
Copying blob 6b245f040973 done
Copying config 22667f5368 done
Writing manifest to image destination
Storing signatures
22667f53682a2920948d19c7133ab1c9c3f745805c14125859d20cede07f11f9

OpenShift Container Platform 4.18 Postinstallation configuration

20

Use the following procedure to configure a storage account that has public network access disabled and
is exposed behind a private storage endpoint on Azure.

Prerequisites

You have configured the image registry to run on Azure.

You must know the VNet and subnet names used for your Azure environment.

If your network was configured in a separate resource group in Azure, you must also know its
name.

Procedure

1. Edit the Image Registry Operator config object and configure the private endpoint using your
VNet and subnet names:

2. Optional: Enter the following command to confirm that the Operator has completed
provisioning. This might take a few minutes.

NOTE

When redirect is enabled, pulling images from outside of the cluster will not work.

Verification

1. Fetch the registry service name by running the following command:

Example output

$ oc edit configs.imageregistry/cluster

...
spec:
 # ...
 storage:
 azure:
 # ...
 networkAccess:
 type: Internal
 internal:
 subnetName: <subnet_name>
 vnetName: <vnet_name>
 networkResourceGroupName: <network_resource_group_name>
...

$ oc get configs.imageregistry/cluster -o=jsonpath="
{.spec.storage.azure.privateEndpointName}" -w

$ oc get imagestream -n openshift

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER

21

2. Enter debug mode by running the following command:

3. Run the suggested chroot command. For example:

4. Enter the following command to log in to your container registry:

Example output

5. Enter the following command to verify that you can pull an image from the registry:

Example output

2.5.4. Optional: Disabling redirect when using a private storage endpoint on Azure

By default, redirect is enabled when using the image registry. Redirect allows off-loading of traffic from
the registry pods into the object storage, which makes pull faster. When redirect is enabled and the
storage account is private, users from outside of the cluster are unable to pull images from the registry.

In some cases, users might want to disable redirect so that users from outside of the cluster can pull
images from the registry.

Use the following procedure to disable redirect.

Prerequisites

You have configured the image registry to run on Azure.

NAME IMAGE REPOSITORY TAGS UPDATED
cli image-registry.openshift-image-registry.svc:5000/openshift/cli latest 8 hours ago
...

$ oc debug node/<node_name>

$ chroot /host

$ podman login --tls-verify=false -u unused -p $(oc whoami -t) image-registry.openshift-
image-registry.svc:5000

Login Succeeded!

$ podman pull --tls-verify=false image-registry.openshift-image-
registry.svc:5000/openshift/tools

Trying to pull image-registry.openshift-image-
registry.svc:5000/openshift/tools/openshift/tools...
Getting image source signatures
Copying blob 6b245f040973 done
Copying config 22667f5368 done
Writing manifest to image destination
Storing signatures
22667f53682a2920948d19c7133ab1c9c3f745805c14125859d20cede07f11f9

OpenShift Container Platform 4.18 Postinstallation configuration

22

You have configured a route.

Procedure

Enter the following command to disable redirect on the image registry configuration:

Verification

1. Fetch the registry service name by running the following command:

Example output

2. Enter the following command to log in to your container registry:

Example output

3. Enter the following command to verify that you can pull an image from the registry:

Example output

$ oc patch configs.imageregistry cluster --type=merge -p '{"spec":{"disableRedirect": true}}'

$ oc get imagestream -n openshift

NAME IMAGE REPOSITORY TAGS UPDATED
cli default-route-openshift-image-registry.<cluster_dns>/cli latest 8 hours ago
...

$ podman login --tls-verify=false -u unused -p $(oc whoami -t) default-route-openshift-image-
registry.<cluster_dns>

Login Succeeded!

$ podman pull --tls-verify=false default-route-openshift-image-registry.<cluster_dns>
/openshift/tools

Trying to pull default-route-openshift-image-registry.<cluster_dns>/openshift/tools...
Getting image source signatures
Copying blob 6b245f040973 done
Copying config 22667f5368 done
Writing manifest to image destination
Storing signatures
22667f53682a2920948d19c7133ab1c9c3f745805c14125859d20cede07f11f9

CHAPTER 2. CONFIGURING A PRIVATE CLUSTER

23

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE
COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

3.1. ABOUT CLUSTERS WITH MULTI-ARCHITECTURE COMPUTE
MACHINES

An OpenShift Container Platform cluster with multi-architecture compute machines is a cluster that
supports compute machines with different architectures.

Configuring multi-architecture compute machines involves some additional considerations:

When there are nodes with multiple architectures in your cluster, the architecture of the
container image that you deploy to a node must be consistent with the architecture of that
node. You need to ensure that the pod is assigned to the node with the appropriate architecture
and that it matches the container image architecture. For more information on assigning pods
to nodes, see Assigning pods to nodes .

In installer-provisioned installations, you are restricted to using the infrastructure provided by a
single cloud provider. Adding external nodes, regardless of their architecture, to these clusters is
not supported.

Clusters that are installed with the platform type none are unable to use some features, such as
managing compute machines with the Machine API. This limitation applies even if the compute
machines that are attached to the cluster are installed on a platform that would normally
support the feature. This parameter cannot be changed after installation.

IMPORTANT

Review the information in the guidelines for deploying OpenShift Container
Platform on non-tested platforms before you attempt to install an OpenShift
Container Platform cluster in virtualized or cloud environments.

The Cluster Samples Operator is not supported on clusters with multi-architecture compute
machines. Your cluster can be created without this capability. For more information, see Cluster
capabilities.

For information on migrating your single-architecture cluster to a cluster that supports multi-
architecture compute machines, see Migrating to a cluster with multi-architecture compute
machines.

3.1.1. Configuring your cluster with multi-architecture compute machines

To create a cluster with multi-architecture compute machines with different installation options and
platforms, you can use the documentation in the following table:

Table 3.1. Cluster with multi-architecture compute machine installation options

OpenShift Container Platform 4.18 Postinstallation configuration

24

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://access.redhat.com/articles/4207611
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installation_overview/#cluster-capabilities
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#migrating-to-multi-payload

Documentation section Platform User-
provisione
d
installatio
n

Installer-
provisione
d
installatio
n

Control
Plane

Compute
node

../../post_installation_configuration/c
onfiguring-multi-arch-compute-
machines/creating-multi-arch-
compute-nodes-
azure.adoc#creating-multi-arch-
compute-nodes-azure[Creating a
cluster with multi-architecture
compute machines on Azure]

Microsoft
Azure

✓ ✓ aarch64
or
x86_64

aarch64,
x86_64

../../post_installation_configuration/c
onfiguring-multi-arch-compute-
machines/creating-multi-arch-
compute-nodes-aws.adoc#creating-
multi-arch-compute-nodes-
aws[Creating a cluster with multi-
architecture compute machines on
AWS]

Amazon
Web
Services
(AWS)

✓ ✓ aarch64
or
x86_64

aarch64,
x86_64

../../post_installation_configuration/c
onfiguring-multi-arch-compute-
machines/creating-multi-arch-
compute-nodes-gcp.adoc#creating-
multi-arch-compute-nodes-
gcp[Creating a cluster with multi-
architecture compute machines on
Google Cloud]

Google
Cloud

 ✓ aarch64
or
x86_64

aarch64,
x86_64

Creating a cluster with multi-
architecture compute machines on
bare metal, IBM Power, or IBM Z

Bare
metal

✓ aarch64
or
x86_64

aarch64,
x86_64

IBM
Power

✓ x86_64
or
ppc64le

x86_64,
ppc64le

IBM Z ✓ x86_64
or s390x

x86_64,
s390x

Creating a cluster with multi-
architecture compute machines on
IBM Z® and IBM® LinuxONE with
z/VM

IBM Z®
and IBM®
LinuxONE

✓ x86_64 x86_64,
s390x

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

25

Creating a cluster with multi-
architecture compute machines on
IBM Z® and IBM® LinuxONE with
RHEL KVM

IBM Z®
and IBM®
LinuxONE

✓ x86_64 x86_64,
s390x

Creating a cluster with multi-
architecture compute machines on
IBM Power®

IBM
Power®

✓ x86_64 x86_64,
ppc64le

Documentation section Platform User-
provisione
d
installatio
n

Installer-
provisione
d
installatio
n

Control
Plane

Compute
node

IMPORTANT

Autoscaling from zero is currently not supported on Google Cloud.

3.1.2. Verifying cluster compatibility

Before you can start adding compute nodes of different architectures to your cluster, you must verify
that your cluster is multi-architecture compatible.

Prerequisites

You installed the OpenShift CLI (oc).

IBM Power only: Ensure that you meet the following prerequisites:

When using multiple architectures, hosts for OpenShift Container Platform nodes must
share the same storage layer. If they do not have the same storage layer, use a storage
provider such as nfs-provisioner.

You should limit the number of network hops between the compute and control plane as
much as possible.

Procedure

1. Log in to the OpenShift CLI (oc).

2. You can check that your cluster uses the architecture payload by running the following
command:

Verification

If you see the following output, your cluster is using the multi-architecture payload:

$ oc adm release info -o jsonpath="{ .metadata.metadata}"

{
 "release.openshift.io/architecture": "multi",

OpenShift Container Platform 4.18 Postinstallation configuration

26

You can then begin adding multi-arch compute nodes to your cluster.

If you see the following output, your cluster is not using the multi-architecture payload:

IMPORTANT

To migrate your cluster so the cluster supports multi-architecture compute
machines, follow the procedure in Migrating to a cluster with multi-architecture
compute machines.

3.2. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON AWS

To deploy a cluster on Amazon Web Services (AWS) with multi-architecture compute machines, you
must first create a single-architecture installer-provisioned cluster that uses the multi-architecture
installer binary.

You can also migrate your current cluster with single-architecture compute machines to a cluster with
multi-architecture compute machines. After creating a multi-architecture cluster, you can add nodes
with different architectures to the cluster.

3.2.1. Adding a multi-architecture compute machine set to your AWS cluster

After creating a multi-architecture cluster, you can add nodes with different architectures.

You can add multi-architecture compute machines to a multi-architecture cluster in the following ways:

Adding 64-bit x86 compute machines to a cluster that uses 64-bit ARM control plane machines
and already includes 64-bit ARM compute machines. In this case, 64-bit x86 is considered the
secondary architecture.

Adding 64-bit ARM compute machines to a cluster that uses 64-bit x86 control plane machines
and already includes 64-bit x86 compute machines. In this case, 64-bit ARM is considered the
secondary architecture.

NOTE

Before adding a secondary architecture node to your cluster, it is recommended to install
the Multiarch Tuning Operator, and deploy a ClusterPodPlacementConfig custom
resource. For more information, see "Managing workloads on multi-architecture clusters
by using the Multiarch Tuning Operator".

Prerequisites

You installed the OpenShift CLI (oc).

You used the installation program to create a 64-bit ARM or 64-bit x86 single-architecture

 "url": "https://access.redhat.com/errata/<errata_version>"
}

{
 "url": "https://access.redhat.com/errata/<errata_version>"
}

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

27

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#migrating-to-multi-payload

You used the installation program to create a 64-bit ARM or 64-bit x86 single-architecture
cluster with the multi-architecture installer binary.

Procedure

1. Log in to the OpenShift CLI (oc).

2. Create a YAML file and add the configuration to create a compute machine set to control the
64-bit ARM or 64-bit x86 compute nodes in your cluster.

Example MachineSet object for an AWS 64-bit ARM or x86 compute node

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 name: <infrastructure_id>-aws-machine-set-0
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>-<zone>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: <role>
 machine.openshift.io/cluster-api-machine-type: <role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>-<zone>
 spec:
 metadata:
 labels:
 node-role.kubernetes.io/<role>: ""
 providerSpec:
 value:
 ami:
 id: ami-02a574449d4f4d280
 apiVersion: awsproviderconfig.openshift.io/v1beta1
 blockDevices:
 - ebs:
 iops: 0
 volumeSize: 120
 volumeType: gp2
 credentialsSecret:
 name: aws-cloud-credentials
 deviceIndex: 0
 iamInstanceProfile:
 id: <infrastructure_id>-worker-profile
 instanceType: m6g.xlarge
 kind: AWSMachineProviderConfig
 placement:
 availabilityZone: us-east-1a
 region: <region>

OpenShift Container Platform 4.18 Postinstallation configuration

28

where:

<infrastructure_id>

Specifies the infrastructure ID that is based on the cluster ID that you set when you
provisioned the cluster. If you have the OpenShift CLI (oc) installed, you can obtain the
infrastructure ID by running the following command:

<role>-<zone>

Specifies the infrastructure ID, role node label, and zone.

<role>

Specifies the role node label to add.

ami.id

Specifies a Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI) for
your AWS region for the nodes. The RHCOS AMI must be compatible with the machine
architecture.

instanceType

Specifies a machine type that aligns with the CPU architecture of the chosen AMI. For more
information, see "Tested instance types for AWS 64-bit ARM".

availabilityZone

Specifies the zone. For example, us-east-1a. Ensure that the zone you select has machines
with the required architecture.

region

Specifies the region. For example, us-east-1. Ensure that the zone you select has machines
with the required architecture.

 securityGroups:
 - filters:
 - name: tag:Name
 values:
 - <infrastructure_id>-node
 subnet:
 filters:
 - name: tag:Name
 values:
 - <infrastructure_id>-subnet-private-<zone>
 tags:
 - name: kubernetes.io/cluster/<infrastructure_id>
 value: owned
 - name: <custom_tag_name>
 value: <custom_tag_value>
 userDataSecret:
 name: worker-user-data

$ oc get -o jsonpath="{.status.infrastructureName}{'\n'}" infrastructure cluster

$ oc get configmap/coreos-bootimages \
 -n openshift-machine-config-operator \
 -o jsonpath='{.data.stream}' | jq \
 -r '.architectures.<arch>.images.aws.regions."<region>".image'

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

29

3. Create the compute machine set by running the following command:

Replace <file_name> with the name of the YAML file with compute machine set
configuration. For example: aws-arm64-machine-set-0.yaml, or aws-amd64-machine-set-
0.yaml.

Verification

1. Verify that the new machines are running by running the following command:

The output must include the machine set that you created.

Example output

2. You can check if the nodes are ready and schedulable by running the following command:

3.2.2. Additional resources

Installing a cluster on AWS with customizations

Migrating to a cluster with multi-architecture compute machines

Tested instance types for AWS 64-bit ARM

Managing workloads on multi-architecture clusters by using the Multiarch Tuning Operator

3.3. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON AZURE

To deploy a cluster on Microsoft Azure with multi-architecture compute machines, you must first create
a single-architecture installer-provisioned cluster that uses the multi-architecture installer binary.

You can also migrate your current cluster with single-architecture compute machines to a cluster with
multi-architecture compute machines. After creating a multi-architecture cluster, you can add nodes
with different architectures to the cluster.

3.3.1. Creating a 64-bit ARM boot image using the Azure image gallery

You can generate a 64-bit x86 boot image or a 64-bit ARM boot image by using the Azure image
gallery.

The procedure example describes how to manually generate a 64-bit ARM boot image. If you want to
generate a 64-bit x86 boot image, replace aarch64 with x86_64; Additionally, replace any instances of
rhcos-arm64 with rhcos-x86_64.

$ oc create -f <file_name>

$ oc get machineset -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
<infrastructure_id>-aws-machine-set-0 2 2 2 2 10m

$ oc get nodes

OpenShift Container Platform 4.18 Postinstallation configuration

30

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#installing-aws-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#migrating-to-multi-payload
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#installation-aws-arm-tested-machine-types_installing-aws-customizations

Prerequisites

You installed the Azure CLI (az).

You created a single-architecture Azure installer-provisioned cluster with the multi-architecture
installer binary.

Procedure

1. Log in to your Azure account by running the following command:

2. Create a storage account and upload the aarch64 virtual hard drive (VHD) to your storage
account. The OpenShift Container Platform installation program creates a resource group,
however, the boot image can also be uploaded to a custom named resource group:

The westus object is an example region.

3. Create a storage container using the storage account you generated by entering the following
command:

4. You must use the OpenShift Container Platform installation program JSON file to extract the
URL and aarch64 VHD name:

a. Extract the URL field and set it to RHCOS_VHD_ORIGIN_URL as the file name by running
the following command:

For a 64-bit x86 boot image, replace architectures.aarch64 with
architectures.x86_64.

b. Extract the aarch64 VHD name and set it to BLOB_NAME as the file name by running the
following command:

For a 64-bit x86 boot image, replace architectures.aarch64 with
architectures.x86_64 and replace aarch64.vhd with x86_64.vhd.

5. Generate a shared access signature (SAS) token. Use this token to upload the RHCOS VHD to
your storage container with the following commands:

$ az login

$ az storage account create -n ${STORAGE_ACCOUNT_NAME} -g
${RESOURCE_GROUP} -l westus --sku Standard_LRS

$ az storage container create -n ${CONTAINER_NAME} --account-name
${STORAGE_ACCOUNT_NAME}

$ RHCOS_VHD_ORIGIN_URL=$(oc -n openshift-machine-config-operator get
configmap/coreos-bootimages -o jsonpath='{.data.stream}' | jq -r
'.architectures.aarch64."rhel-coreos-extensions"."azure-disk".url')

$ BLOB_NAME=rhcos-$(oc -n openshift-machine-config-operator get configmap/coreos-
bootimages -o jsonpath='{.data.stream}' | jq -r '.architectures.aarch64."rhel-coreos-
extensions"."azure-disk".release')-azure.aarch64.vhd

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

31

6. Copy the RHCOS VHD into the storage container:

You can check the status of the copying process with the following command:

Example output

If the status parameter displays the success object, the copying process is complete.

7. Create an image gallery using the following command:

Use the image gallery to create an image definition. In the following example command, rhcos-
arm64 is the name of the image definition.

For a 64-bit x86 boot image, replace --offer arm --sku arm64 with `--offer x86_64 --sku
x86_64 `.

8. To get the URL of the VHD and set it to RHCOS_VHD_URL as the file name, run the following
command:

$ end=`date -u -d "30 minutes" '+%Y-%m-%dT%H:%MZ'`

$ sas=`az storage container generate-sas -n ${CONTAINER_NAME} --account-name
${STORAGE_ACCOUNT_NAME} --https-only --permissions dlrw --expiry $end -o tsv`

$ az storage blob copy start --account-name ${STORAGE_ACCOUNT_NAME} --sas-token
"$sas" \
 --source-uri "${RHCOS_VHD_ORIGIN_URL}" \
 --destination-blob "${BLOB_NAME}" --destination-container ${CONTAINER_NAME}

$ az storage blob show -c ${CONTAINER_NAME} -n ${BLOB_NAME} --account-name
${STORAGE_ACCOUNT_NAME} | jq .properties.copy

{
 "completionTime": null,
 "destinationSnapshot": null,
 "id": "1fd97630-03ca-489a-8c4e-cfe839c9627d",
 "incrementalCopy": null,
 "progress": "17179869696/17179869696",
 "source": "https://rhcos.blob.core.windows.net/imagebucket/rhcos-411.86.202207130959-0-
azure.aarch64.vhd",
 "status": "success",
 "statusDescription": null
}

$ az sig create --resource-group ${RESOURCE_GROUP} --gallery-name
${GALLERY_NAME}

$ az sig image-definition create --resource-group ${RESOURCE_GROUP} --gallery-name
${GALLERY_NAME} --gallery-image-definition rhcos-arm64 --publisher RedHat --offer arm -
-sku arm64 --os-type linux --architecture Arm64 --hyper-v-generation V2

$ RHCOS_VHD_URL=$(az storage blob url --account-name
${STORAGE_ACCOUNT_NAME} -c ${CONTAINER_NAME} -n "${BLOB_NAME}" -o tsv)

OpenShift Container Platform 4.18 Postinstallation configuration

32

9. Use the RHCOS_VHD_URL file, your storage account, resource group, and image gallery to
create an image version. In the following example, 1.0.0 is the image version.

10. Optional: Now that your arm64 boot image is now generated, you can access the ID of your
image with the following command:

The following example image ID is used in the recourseID parameter of the compute machine
set:

Example resourceID

3.3.2. Adding a multi-architecture compute machine set to your Azure cluster

After creating a multi-architecture cluster, you can add nodes with different architectures.

You can add multi-architecture compute machines to a multi-architecture cluster in the following ways:

Adding 64-bit x86 compute machines to a cluster that uses 64-bit ARM control plane machines
and already includes 64-bit ARM compute machines. In this case, 64-bit x86 is considered the
secondary architecture.

Adding 64-bit ARM compute machines to a cluster that uses 64-bit x86 control plane machines
and already includes 64-bit x86 compute machines. In this case, 64-bit ARM is considered the
secondary architecture.

To create a custom compute machine set on Azure, see "Creating a compute machine set on Azure".

NOTE

Before adding a secondary architecture node to your cluster, it is recommended to install
the Multiarch Tuning Operator, and deploy a ClusterPodPlacementConfig custom
resource. For more information, see "Managing workloads on multi-architecture clusters
by using the Multiarch Tuning Operator".

Prerequisites

You installed the OpenShift CLI (oc).

You created a 64-bit ARM or 64-bit x86 boot image.

You used the installation program to create a 64-bit ARM or 64-bit x86 single-architecture

$ az sig image-version create --resource-group ${RESOURCE_GROUP} --gallery-name
${GALLERY_NAME} --gallery-image-definition rhcos-arm64 --gallery-image-version 1.0.0 --
os-vhd-storage-account ${STORAGE_ACCOUNT_NAME} --os-vhd-uri
${RHCOS_VHD_URL}

$ az sig image-version show -r $GALLERY_NAME -g $RESOURCE_GROUP -i rhcos-arm64
-e 1.0.0

/resourceGroups/${RESOURCE_GROUP}/providers/Microsoft.Compute/galleries/${GALLERY
_NAME}/images/rhcos-arm64/versions/1.0.0

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

33

You used the installation program to create a 64-bit ARM or 64-bit x86 single-architecture
cluster with the multi-architecture installer binary.

Procedure

1. Log in to the OpenShift CLI (oc).

2. Create a YAML file and add the configuration to create a compute machine set to control the
64-bit ARM or 64-bit x86 compute nodes in your cluster.

Example MachineSet object for an Azure 64-bit ARM or x86 compute node

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: worker
 machine.openshift.io/cluster-api-machine-type: worker
 name: <infrastructure_id>-machine-set-0
 namespace: openshift-machine-api
spec:
 replicas: 2
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-machine-set-0
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: worker
 machine.openshift.io/cluster-api-machine-type: worker
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-machine-set-0
 spec:
 lifecycleHooks: {}
 metadata: {}
 providerSpec:
 value:
 acceleratedNetworking: true
 apiVersion: machine.openshift.io/v1beta1
 credentialsSecret:
 name: azure-cloud-credentials
 namespace: openshift-machine-api
 image:
 offer: ""
 publisher: ""
 resourceID:
/resourceGroups/${RESOURCE_GROUP}/providers/Microsoft.Compute/galleries/${GALLERY
_NAME}/images/rhcos-arm64/versions/1.0.0
 sku: ""
 version: ""
 kind: AzureMachineProviderSpec
 location: <region>
 managedIdentity: <infrastructure_id>-identity
 networkResourceGroup: <infrastructure_id>-rg

OpenShift Container Platform 4.18 Postinstallation configuration

34

where:

image.resourceID

Specifies the boot image, such as arm64 or amd64.

vmSize

Specifies the instance type used in your installation. Some example instance types are
Standard_D4ps_v5 or D8ps.

3. Create the compute machine set by running the following command:

Replace <file_name> with the name of the YAML file with compute machine set
configuration. For example: arm64-machine-set-0.yaml, or amd64-machine-set-0.yaml.

Verification

1. Verify that the new machines are running by running the following command:

The output must include the machine set that you created.

Example output

2. You can check if the nodes are ready and schedulable by running the following command:

3.3.3. Additional resources

Installing a cluster on Azure with customizations

 osDisk:
 diskSettings: {}
 diskSizeGB: 128
 managedDisk:
 storageAccountType: Premium_LRS
 osType: Linux
 publicIP: false
 publicLoadBalancer: <infrastructure_id>
 resourceGroup: <infrastructure_id>-rg
 subnet: <infrastructure_id>-worker-subnet
 userDataSecret:
 name: worker-user-data
 vmSize: Standard_D4ps_v5
 vnet: <infrastructure_id>-vnet
 zone: "<zone>"

$ oc create -f <file_name>

$ oc get machineset -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
<infrastructure_id>-machine-set-0 2 2 2 2 10m

$ oc get nodes

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

35

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_azure/#installing-azure-customizations

Migrating to a cluster with multi-architecture compute machines

Creating a compute machine set on Azure

Managing workloads on multi-architecture clusters by using the Multiarch Tuning Operator

3.4. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON GOOGLE CLOUD

To deploy a cluster on Google Cloud with multi-architecture compute machines, you must first create a
single-architecture installer-provisioned cluster that uses the multi-architecture installer binary.

You can also migrate your current cluster with single-architecture compute machines to a cluster with
multi-architecture compute machines. After creating a multi-architecture cluster, you can add nodes
with different architectures to the cluster.

3.4.1. Adding a multi-architecture compute machine set to your Google Cloud
cluster

After creating a multi-architecture cluster, you can add nodes with different architectures.

You can add multi-architecture compute machines to a multi-architecture cluster in the following ways:

Adding 64-bit x86 compute machines to a cluster that uses 64-bit ARM control plane machines
and already includes 64-bit ARM compute machines. In this case, 64-bit x86 is considered the
secondary architecture.

Adding 64-bit ARM compute machines to a cluster that uses 64-bit x86 control plane machines
and already includes 64-bit x86 compute machines. In this case, 64-bit ARM is considered the
secondary architecture.

NOTE

Before adding a secondary architecture node to your cluster, it is recommended to install
the Multiarch Tuning Operator, and deploy a ClusterPodPlacementConfig custom
resource. For more information, see "Managing workloads on multi-architecture clusters
by using the Multiarch Tuning Operator".

Prerequisites

You installed the OpenShift CLI (oc).

You used the installation program to create a 64-bit ARM or 64-bit x86 single-architecture
cluster with the multi-architecture installer binary.

Procedure

1. Log in to the OpenShift CLI (oc).

2. Create a YAML file and add the configuration to create a compute machine set to control the
64-bit ARM or 64-bit x86 compute nodes in your cluster.

Example MachineSet object for a Google Cloud 64-bit ARM or 64-bit x86 compute
node

OpenShift Container Platform 4.18 Postinstallation configuration

36

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#migrating-to-multi-payload
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_management/#creating-machineset-azure

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 name: <infrastructure_id>-w-a
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-w-a
 template:
 metadata:
 creationTimestamp: null
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: <role>
 machine.openshift.io/cluster-api-machine-type: <role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-w-a
 spec:
 metadata:
 labels:
 node-role.kubernetes.io/<role>: ""
 providerSpec:
 value:
 apiVersion: gcpprovider.openshift.io/v1beta1
 canIPForward: false
 credentialsSecret:
 name: gcp-cloud-credentials
 deletionProtection: false
 disks:
 - autoDelete: true
 boot: true
 image: <path_to_image>
 labels: null
 sizeGb: 128
 type: pd-ssd
 gcpMetadata:
 - key: <custom_metadata_key>
 value: <custom_metadata_value>
 kind: GCPMachineProviderSpec
 machineType: n1-standard-4
 metadata:
 creationTimestamp: null
 networkInterfaces:
 - network: <infrastructure_id>-network
 subnetwork: <infrastructure_id>-worker-subnet
 projectID: <project_name>
 region: us-central1
 serviceAccounts:
 - email: <infrastructure_id>-w@<project_name>.iam.gserviceaccount.com
 scopes:
 - https://www.googleapis.com/auth/cloud-platform
 tags:

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

37

where:

<infrastructure_id>

Specifies the infrastructure ID that is based on the cluster ID that you set when you
provisioned the cluster. You can obtain the infrastructure ID by running the following
command:

<role>

Specifies the role node label to add.

<path_to_image>

Specifies the path to the image that is used in current compute machine sets. You need the
project and image name for your path to image.
To access the project and image name, run the following command:

Example output

Use the project and name parameters from the output to create the path to image field in
your machine set. The path to the image should follow the following format:

gcpMetadata

Optional parameter. Specifies custom metadata in the form of a key:value pair. For example
use cases, see "Setting custom metadata".

machineType

Specifies a machine type that aligns with the CPU architecture of the chosen OS image. For
more information, see "Tested instance types for Google Cloud on 64-bit ARM
infrastructures".

projectID

Specifies the name of the Google Cloud project that you use for your cluster.

region

 - <infrastructure_id>-worker
 userDataSecret:
 name: worker-user-data
 zone: us-central1-a

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

$ oc get configmap/coreos-bootimages \
 -n openshift-machine-config-operator \
 -o jsonpath='{.data.stream}' | jq \
 -r '.architectures.aarch64.images.gcp'

 "gcp": {
 "release": "415.92.202309142014-0",
 "project": "rhcos-cloud",
 "name": "rhcos-415-92-202309142014-0-gcp-aarch64"
 }

$ projects/<project>/global/images/<image_name>

OpenShift Container Platform 4.18 Postinstallation configuration

38

Specifies the region. For example, us-central1. Ensure that the zone you select has machines
with the required architecture.

3. Create the compute machine set by running the following command:

Replace <file_name> with the name of the YAML file with compute machine set
configuration. For example: gcp-arm64-machine-set-0.yaml, or gcp-amd64-machine-set-
0.yaml.

Verification

1. Verify that the new machines are running by running the following command:

The output must include the machine set that you created.

Example output

2. You can check if the nodes are ready and schedulable by running the following command:

3.4.2. Additional resources

Migrating to a cluster with multi-architecture compute machines

Managing workloads on multi-architecture clusters by using the Multiarch Tuning Operator

Tested instance types for Google Cloud on 64-bit ARM infrastructures

Setting custom metadata

3.5. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON BARE METAL, IBM POWER, OR IBM Z

To create a cluster with multi-architecture compute machines on bare metal (x86_64 or aarch64), IBM
Power® (ppc64le), or IBM Z® (s390x) you must have an existing single-architecture cluster on one of
these platforms. Follow the installations procedures for your platform:

Installing a user provisioned cluster on bare metal . You can then add 64-bit ARM compute
machines to your OpenShift Container Platform cluster on bare metal.

Installing a cluster on IBM Power® . You can then add x86_64 compute machines to your
OpenShift Container Platform cluster on IBM Power®.

Installing a cluster on IBM Z® and IBM® LinuxONE . You can then add x86_64 compute machines
to your OpenShift Container Platform cluster on IBM Z® and IBM® LinuxONE.

$ oc create -f <file_name>

$ oc get machineset -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
<infrastructure_id>-gcp-machine-set-0 2 2 2 2 10m

$ oc get nodes

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

39

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#migrating-to-multi-payload
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_google_cloud/#installation-gcp-tested-machine-types-arm_installing-gcp-customizations
https://cloud.google.com/compute/docs/metadata/setting-custom-metadata
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_bare_metal/#installing-bare-metal
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_ibm_power/#preparing-to-install-on-ibm-power
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_ibm_z_and_ibm_linuxone/#preparing-to-install-on-ibm-z

IMPORTANT

The bare metal installer-provisioned infrastructure and the Bare Metal Operator do not
support adding secondary architecture nodes during the initial cluster setup. You can add
secondary architecture nodes manually only after the initial cluster setup.

Before you can add additional compute nodes to your cluster, you must upgrade your cluster to one that
uses the multi-architecture payload. For more information on migrating to the multi-architecture
payload, see Migrating to a cluster with multi-architecture compute machines .

The following procedures explain how to create a RHCOS compute machine using an ISO image or
network PXE booting. This allows you to add additional nodes to your cluster and deploy a cluster with
multi-architecture compute machines.

NOTE

Before adding a secondary architecture node to your cluster, it is recommended to install
the Multiarch Tuning Operator, and deploy a ClusterPodPlacementConfig object. For
more information, see Managing workloads on multi-architecture clusters by using the
Multiarch Tuning Operator.

3.5.1. Creating RHCOS machines using an ISO image

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare
metal cluster by using an ISO image to create the machines.

Prerequisites

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

You must have the OpenShift CLI (oc) installed.

Procedure

1. Extract the Ignition config file from the cluster by running the following command:

2. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.
Note the URLs of these files.

3. You can validate that the ignition files are available on the URLs. The following example gets
the Ignition config files for the compute node:

4. You can access the ISO image for booting your new machine by running to following command:

$ oc extract -n openshift-machine-api secret/worker-user-data-managed --keys=userData --
to=- > worker.ign

$ curl -k http://<HTTP_server>/worker.ign

RHCOS_VHD_ORIGIN_URL=$(oc -n openshift-machine-config-operator get
configmap/coreos-bootimages -o jsonpath='{.data.stream}' | jq -r '.architectures.
<architecture>.artifacts.metal.formats.iso.disk.location')

OpenShift Container Platform 4.18 Postinstallation configuration

40

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#migrating-to-multi-payload

1

2

5. Use the ISO file to install RHCOS on more compute machines. Use the same method that you
used when you created machines before you installed the cluster:

Burn the ISO image to a disk and boot it directly.

Use ISO redirection with a LOM interface.

6. Boot the RHCOS ISO image without specifying any options, or interrupting the live boot
sequence. Wait for the installer to boot into a shell prompt in the RHCOS live environment.

NOTE

You can interrupt the RHCOS installation boot process to add kernel arguments.
However, for this ISO procedure you must use the coreos-installer command as
outlined in the following steps, instead of adding kernel arguments.

7. Run the coreos-installer command and specify the options that meet your installation
requirements. At a minimum, you must specify the URL that points to the Ignition config file for
the node type, and the device that you are installing to:

You must run the coreos-installer command by using sudo, because the core user does
not have the required root privileges to perform the installation.

The --ignition-hash option is required when the Ignition config file is obtained through an
HTTP URL to validate the authenticity of the Ignition config file on the cluster node.
<digest> is the Ignition config file SHA512 digest obtained in a preceding step.

NOTE

If you want to provide your Ignition config files through an HTTPS server that
uses TLS, you can add the internal certificate authority (CA) to the system trust
store before running coreos-installer.

The following example initializes a compute node installation to the /dev/sda device. The
Ignition config file for the compute node is obtained from an HTTP web server with the IP
address 192.168.1.2:

8. Monitor the progress of the RHCOS installation on the console of the machine.

IMPORTANT

$ sudo coreos-installer install --ignition-url=http://<HTTP_server>/<node_type>.ign <device>
--ignition-hash=sha512-<digest> 1 2

$ sudo coreos-installer install --ignition-
url=http://192.168.1.2:80/installation_directory/worker.ign /dev/sda --ignition-hash=sha512-
a5a2d43879223273c9b60af66b44202a1d1248fc01cf156c46d4a79f552b6bad47bc8cc78ddf011
6e80c59d2ea9e32ba53bc807afbca581aa059311def2c3e3b

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

41

1

2

IMPORTANT

Ensure that the installation is successful on each node before commencing with
the OpenShift Container Platform installation. Observing the installation process
can also help to determine the cause of RHCOS installation issues that might
arise.

9. Continue to create more compute machines for your cluster.

3.5.2. Creating RHCOS machines by PXE or iPXE booting

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare
metal cluster by using PXE or iPXE booting.

Prerequisites

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

Obtain the URLs of the RHCOS ISO image, compressed metal BIOS, kernel, and initramfs files
that you uploaded to your HTTP server during cluster installation.

You have access to the PXE booting infrastructure that you used to create the machines for
your OpenShift Container Platform cluster during installation. The machines must boot from
their local disks after RHCOS is installed on them.

If you use UEFI, you have access to the grub.conf file that you modified during OpenShift
Container Platform installation.

Procedure

1. Confirm that your PXE or iPXE installation for the RHCOS images is correct.

For PXE:

DEFAULT pxeboot
TIMEOUT 20
PROMPT 0
LABEL pxeboot
 KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 1
 APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img coreos.inst.install_dev=/dev/sda
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img 2

Specify the location of the live kernel file that you uploaded to your HTTP server.

Specify locations of the RHCOS files that you uploaded to your HTTP server. The
initrd parameter value is the location of the live initramfs file, the
coreos.inst.ignition_url parameter value is the location of the worker Ignition config
file, and the coreos.live.rootfs_url parameter value is the location of the live rootfs
file. The coreos.inst.ignition_url and coreos.live.rootfs_url parameters only support
HTTP and HTTPS.

NOTE

OpenShift Container Platform 4.18 Postinstallation configuration

42

1

2

3

NOTE

This configuration does not enable serial console access on machines with a
graphical console. To configure a different console, add one or more
console= arguments to the APPEND line. For example, add console=tty0
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise
Linux?.

For iPXE (x86_64 + aarch64):

kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img coreos.inst.install_dev=/dev/sda
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1 2
initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img 3
boot

Specify the locations of the RHCOS files that you uploaded to your HTTP server. The
kernel parameter value is the location of the kernel file, the initrd=main argument is
needed for booting on UEFI systems, the coreos.live.rootfs_url parameter value is
the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the
location of the worker Ignition config file.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your HTTP server.

NOTE

This configuration does not enable serial console access on machines with a
graphical console To configure a different console, add one or more
console= arguments to the kernel line. For example, add console=tty0
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise Linux?
and "Enabling the serial console for PXE and ISO installation" in the
"Advanced RHCOS installation configuration" section.

NOTE

To network boot the CoreOS kernel on aarch64 architecture, you need to
use a version of iPXE build with the IMAGE_GZIP option enabled. See
IMAGE_GZIP option in iPXE .

For PXE (with UEFI and GRUB as second stage) on aarch64:

menuentry 'Install CoreOS' {
 linux rhcos-<version>-live-kernel-<architecture>

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

43

https://access.redhat.com/articles/7212
https://access.redhat.com/articles/7212
https://ipxe.org/buildcfg/image_gzip

1

2

3

coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img coreos.inst.install_dev=/dev/sda
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1 2
 initrd rhcos-<version>-live-initramfs.<architecture>.img 3
}

Specify the locations of the RHCOS files that you uploaded to your HTTP/TFTP
server. The kernel parameter value is the location of the kernel file on your TFTP
server. The coreos.live.rootfs_url parameter value is the location of the rootfs file,
and the coreos.inst.ignition_url parameter value is the location of the worker Ignition
config file on your HTTP Server.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your TFTP server.

2. Use the PXE or iPXE infrastructure to create the required compute machines for your cluster.

3.5.3. Approving the certificate signing requests for your machines

To add machines to a cluster, verify the status of the certificate signing requests (CSRs) generated for
each machine. If manual approval is required, approve the client requests first, followed by the server
requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or
Approved status for each machine that you added to the cluster:

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.31.3
master-1 Ready master 63m v1.31.3
master-2 Ready master 64m v1.31.3

OpenShift Container Platform 4.18 Postinstallation configuration

44

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

where:

<csr_name>

Specifies the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
...

$ oc adm certificate approve <csr_name>

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

45

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

where:

<csr_name>

Specifies the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal
Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal
Pending
...

$ oc adm certificate approve <csr_name>

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.31.3
master-1 Ready master 73m v1.31.3
master-2 Ready master 74m v1.31.3
worker-0 Ready worker 11m v1.31.3
worker-1 Ready worker 11m v1.31.3

OpenShift Container Platform 4.18 Postinstallation configuration

46

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

3.6. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON IBM Z AND IBM LINUXONE WITH Z/VM

To create a cluster with multi-architecture compute machines on IBM Z® and IBM® LinuxONE (s390x)
with z/VM, you must have an existing single-architecture x86_64 cluster. You can then add s390x
compute machines to your OpenShift Container Platform cluster.

Before you can add s390x nodes to your cluster, you must upgrade your cluster to one that uses the
multi-architecture payload. For more information on migrating to the multi-architecture payload, see
Migrating to a cluster with multi-architecture compute machines .

The following procedures explain how to create a RHCOS compute machine using a z/VM instance. This
will allow you to add s390x nodes to your cluster and deploy a cluster with multi-architecture compute
machines.

To create an IBM Z® or IBM® LinuxONE (s390x) cluster with multi-architecture compute machines on
x86_64, follow the instructions for Installing a cluster on IBM Z® and IBM® LinuxONE . You can then add
x86_64 compute machines as described in Creating a cluster with multi-architecture compute machines
on bare metal, IBM Power, or IBM Z.

NOTE

Before adding a secondary architecture node to your cluster, it is recommended to install
the Multiarch Tuning Operator, and deploy a ClusterPodPlacementConfig object. For
more information, see Managing workloads on multi-architecture clusters by using the
Multiarch Tuning Operator.

3.6.1. Creating RHCOS machines on IBM Z with z/VM

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines running on IBM Z®
with z/VM and attach them to your existing cluster.

Prerequisites

You have a domain name server (DNS) that can perform hostname and reverse lookup for the
nodes.

You have an HTTP or HTTPS server running on your provisioning machine that is accessible to
the machines you create.

Procedure

1. Extract the Ignition config file from the cluster by running the following command:

2. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.

$ oc extract -n openshift-machine-api secret/worker-user-data-managed --keys=userData --
to=- > worker.ign

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

47

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#migrating-to-multi-payload
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_ibm_z_and_ibm_linuxone/#preparing-to-install-on-ibm-z

2. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.
Note the URL of this file.

3. You can validate that the Ignition file is available on the URL. The following example gets the
Ignition config file for the compute node:

4. Download the RHEL live kernel, initramfs, and rootfs files by running the following commands:

5. Move the downloaded RHEL live kernel, initramfs, and rootfs files to an HTTP or HTTPS server
that is accessible from the RHCOS guest you want to add.

6. Create a parameter file for the guest. The following parameters are specific for the virtual
machine:

Optional: To specify a static IP address, add an ip= parameter with the following entries,
with each separated by a colon:

i. The IP address for the machine.

ii. An empty string.

iii. The gateway.

iv. The netmask.

v. The machine host and domain name in the form hostname.domainname. If you omit
this value, RHCOS obtains the hostname through a reverse DNS lookup.

vi. The network interface name. If you omit this value, RHCOS applies the IP configuration
to all available interfaces.

vii. The value none.

For coreos.inst.ignition_url=, specify the URL to the worker.ign file. Only HTTP and
HTTPS protocols are supported.

For coreos.live.rootfs_url=, specify the matching rootfs artifact for the kernel and
initramfs you are booting. Only HTTP and HTTPS protocols are supported.

For installations on DASD-type disks, complete the following tasks:

$ curl -k http://<http_server>/worker.ign

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.kernel.location')

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.initramfs.location')

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.rootfs.location')

OpenShift Container Platform 4.18 Postinstallation configuration

48

i. For coreos.inst.install_dev=, specify /dev/dasda.

ii. Use rd.dasd= to specify the DASD where RHCOS is to be installed.

iii. You can adjust further parameters if required.
The following is an example parameter file, additional-worker-dasd.parm:

Write all options in the parameter file as a single line and make sure that you have no
newline characters.

For installations on FCP-type disks, complete the following tasks:

i. Use rd.zfcp=<adapter>,<wwpn>,<lun> to specify the FCP disk where RHCOS is to be
installed. For multipathing, repeat this step for each additional path.

NOTE

When you install with multiple paths, you must enable multipathing
directly after the installation, not at a later point in time, as this can cause
problems.

ii. Set the install device as: coreos.inst.install_dev=/dev/sda.

NOTE

If additional LUNs are configured with NPIV, FCP requires
zfcp.allow_lun_scan=0. If you must enable zfcp.allow_lun_scan=1
because you use a CSI driver, for example, you must configure your NPIV
so that each node cannot access the boot partition of another node.

iii. You can adjust further parameters if required.

IMPORTANT

Additional postinstallation steps are required to fully enable
multipathing. For more information, see “Enabling multipathing with
kernel arguments on RHCOS" in Machine configuration.

The following is an example parameter file, additional-worker-fcp.parm for a worker
node with multipathing:

cio_ignore=all,!condev rd.neednet=1 \
console=ttysclp0 \
coreos.inst.install_dev=/dev/dasda \
coreos.inst.ignition_url=http://<http_server>/worker.ign \
coreos.live.rootfs_url=http://<http_server>/rhcos-<version>-live-rootfs.
<architecture>.img \
ip=<ip>::<gateway>:<netmask>:<hostname>::none nameserver=<dns> \
rd.znet=qeth,0.0.bdf0,0.0.bdf1,0.0.bdf2,layer2=1,portno=0 \
rd.dasd=0.0.3490 \
zfcp.allow_lun_scan=0

cio_ignore=all,!condev rd.neednet=1 \

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

49

Write all options in the parameter file as a single line and make sure that you have no
newline characters.

7. Transfer the initramfs, kernel, parameter files, and RHCOS images to z/VM, for example, by
using FTP. For details about how to transfer the files with FTP and boot from the virtual reader,
see Booting the installation on IBM Z® to install RHEL in z/VM .

8. Punch the files to the virtual reader of the z/VM guest virtual machine.
See PUNCH in IBM® Documentation.

TIP

You can use the CP PUNCH command or, if you use Linux, the vmur command to transfer files
between two z/VM guest virtual machines.

9. Log in to CMS on the bootstrap machine.

10. IPL the bootstrap machine from the reader by running the following command:

$ ipl c

See IPL in IBM® Documentation.

3.6.2. Approving the certificate signing requests for your machines

To add machines to a cluster, verify the status of the certificate signing requests (CSRs) generated for
each machine. If manual approval is required, approve the client requests first, followed by the server
requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

console=ttysclp0 \
coreos.inst.install_dev=/dev/sda \
coreos.live.rootfs_url=http://<http_server>/rhcos-<version>-live-rootfs.
<architecture>.img \
coreos.inst.ignition_url=http://<http_server>/worker.ign \
ip=<ip>::<gateway>:<netmask>:<hostname>::none nameserver=<dns> \
rd.znet=qeth,0.0.bdf0,0.0.bdf1,0.0.bdf2,layer2=1,portno=0 \
zfcp.allow_lun_scan=0 \
rd.zfcp=0.0.1987,0x50050763070bc5e3,0x4008400B00000000 \
rd.zfcp=0.0.19C7,0x50050763070bc5e3,0x4008400B00000000 \
rd.zfcp=0.0.1987,0x50050763071bc5e3,0x4008400B00000000 \
rd.zfcp=0.0.19C7,0x50050763071bc5e3,0x4008400B00000000

$ oc get nodes

OpenShift Container Platform 4.18 Postinstallation configuration

50

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html-single/interactively_installing_rhel_over_the_network/index#installing-under-z-vm_booting-the-installation-media
https://www.ibm.com/docs/en/zvm/latest?topic=commands-punch
https://www.ibm.com/docs/en/zvm/latest?topic=commands-ipl

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.31.3
master-1 Ready master 63m v1.31.3
master-2 Ready master 64m v1.31.3

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
...

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

51

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

where:

<csr_name>

Specifies the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

where:

$ oc adm certificate approve <csr_name>

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal
Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal
Pending
...

$ oc adm certificate approve <csr_name>

OpenShift Container Platform 4.18 Postinstallation configuration

52

<csr_name>

Specifies the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

3.7. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON IBM Z AND IBM LINUXONE IN AN LPAR

To create a cluster with multi-architecture compute machines on IBM Z® and IBM® LinuxONE (s390x) in
an LPAR, you must have an existing single-architecture x86_64 cluster. You can then add s390x
compute machines to your OpenShift Container Platform cluster.

Before you can add s390x nodes to your cluster, you must upgrade your cluster to one that uses the
multi-architecture payload. For more information on migrating to the multi-architecture payload, see
Migrating to a cluster with multi-architecture compute machines .

The following procedures explain how to create a RHCOS compute machine using an LPAR instance.
This will allow you to add s390x nodes to your cluster and deploy a cluster with multi-architecture
compute machines.

NOTE

To create an IBM Z® or IBM® LinuxONE (s390x) cluster with multi-architecture compute
machines on x86_64, follow the instructions for Installing a cluster on IBM Z® and IBM®
LinuxONE. You can then add x86_64 compute machines as described in Creating a
cluster with multi-architecture compute machines on bare metal, IBM Power, or IBM Z.

3.7.1. Creating RHCOS machines on IBM Z in an LPAR

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines running on IBM Z®

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.31.3
master-1 Ready master 73m v1.31.3
master-2 Ready master 74m v1.31.3
worker-0 Ready worker 11m v1.31.3
worker-1 Ready worker 11m v1.31.3

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

53

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#migrating-to-multi-payload
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_ibm_z_and_ibm_linuxone/#preparing-to-install-on-ibm-z

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines running on IBM Z®
in a logical partition (LPAR) and attach them to your existing cluster.

Prerequisites

You have a domain name server (DNS) that can perform hostname and reverse lookup for the
nodes.

You have an HTTP or HTTPS server running on your provisioning machine that is accessible to
the machines you create.

Procedure

1. Extract the Ignition config file from the cluster by running the following command:

2. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.
Note the URL of this file.

3. You can validate that the Ignition file is available on the URL. The following example gets the
Ignition config file for the compute node:

4. Download the RHEL live kernel, initramfs, and rootfs files by running the following commands:

5. Move the downloaded RHEL live kernel, initramfs, and rootfs files to an HTTP or HTTPS server
that is accessible from the RHCOS guest you want to add.

6. Create a parameter file for the guest. The following parameters are specific for the virtual
machine:

Optional: To specify a static IP address, add an ip= parameter with the following entries,
with each separated by a colon:

i. The IP address for the machine.

ii. An empty string.

iii. The gateway.

$ oc extract -n openshift-machine-api secret/worker-user-data-managed --keys=userData --
to=- > worker.ign

$ curl -k http://<http_server>/worker.ign

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.kernel.location')

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.initramfs.location')

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.rootfs.location')

OpenShift Container Platform 4.18 Postinstallation configuration

54

iv. The netmask.

v. The machine host and domain name in the form hostname.domainname. If you omit
this value, RHCOS obtains the hostname through a reverse DNS lookup.

vi. The network interface name. If you omit this value, RHCOS applies the IP configuration
to all available interfaces.

vii. The value none.

For coreos.inst.ignition_url=, specify the URL to the worker.ign file. Only HTTP and
HTTPS protocols are supported.

For coreos.live.rootfs_url=, specify the matching rootfs artifact for the kernel and
initramfs you are booting. Only HTTP and HTTPS protocols are supported.

For installations on DASD-type disks, complete the following tasks:

i. For coreos.inst.install_dev=, specify /dev/dasda.

ii. Use rd.dasd= to specify the DASD where RHCOS is to be installed.

iii. You can adjust further parameters if required.
The following is an example parameter file, additional-worker-dasd.parm:

Write all options in the parameter file as a single line and make sure that you have no
newline characters.

For installations on FCP-type disks, complete the following tasks:

i. Use rd.zfcp=<adapter>,<wwpn>,<lun> to specify the FCP disk where RHCOS is to be
installed. For multipathing, repeat this step for each additional path.

NOTE

When you install with multiple paths, you must enable multipathing
directly after the installation, not at a later point in time, as this can cause
problems.

ii. Set the install device as: coreos.inst.install_dev=/dev/sda.

NOTE

cio_ignore=all,!condev rd.neednet=1 \
console=ttysclp0 \
coreos.inst.install_dev=/dev/dasda \
coreos.inst.ignition_url=http://<http_server>/worker.ign \
coreos.live.rootfs_url=http://<http_server>/rhcos-<version>-live-rootfs.
<architecture>.img \
ip=<ip>::<gateway>:<netmask>:<hostname>::none nameserver=<dns> \
rd.znet=qeth,0.0.bdf0,0.0.bdf1,0.0.bdf2,layer2=1,portno=0 \
rd.dasd=0.0.3490 \
zfcp.allow_lun_scan=0

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

55

NOTE

If additional LUNs are configured with NPIV, FCP requires
zfcp.allow_lun_scan=0. If you must enable zfcp.allow_lun_scan=1
because you use a CSI driver, for example, you must configure your NPIV
so that each node cannot access the boot partition of another node.

iii. You can adjust further parameters if required.

IMPORTANT

Additional postinstallation steps are required to fully enable
multipathing. For more information, see “Enabling multipathing with
kernel arguments on RHCOS" in Machine configuration.

The following is an example parameter file, additional-worker-fcp.parm for a worker
node with multipathing:

Write all options in the parameter file as a single line and make sure that you have no
newline characters.

7. Transfer the initramfs, kernel, parameter files, and RHCOS images to the LPAR, for example
with FTP. For details about how to transfer the files with FTP and boot, see Booting the
installation on IBM Z® to install RHEL in an LPAR.

8. Boot the machine

3.7.2. Approving the certificate signing requests for your machines

To add machines to a cluster, verify the status of the certificate signing requests (CSRs) generated for
each machine. If manual approval is required, approve the client requests first, followed by the server
requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

cio_ignore=all,!condev rd.neednet=1 \
console=ttysclp0 \
coreos.inst.install_dev=/dev/sda \
coreos.live.rootfs_url=http://<http_server>/rhcos-<version>-live-rootfs.
<architecture>.img \
coreos.inst.ignition_url=http://<http_server>/worker.ign \
ip=<ip>::<gateway>:<netmask>:<hostname>::none nameserver=<dns> \
rd.znet=qeth,0.0.bdf0,0.0.bdf1,0.0.bdf2,layer2=1,portno=0 \
zfcp.allow_lun_scan=0 \
rd.zfcp=0.0.1987,0x50050763070bc5e3,0x4008400B00000000 \
rd.zfcp=0.0.19C7,0x50050763070bc5e3,0x4008400B00000000 \
rd.zfcp=0.0.1987,0x50050763071bc5e3,0x4008400B00000000 \
rd.zfcp=0.0.19C7,0x50050763071bc5e3,0x4008400B00000000

OpenShift Container Platform 4.18 Postinstallation configuration

56

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html-single/interactively_installing_rhel_over_the_network/index#installing-in-an-lpar_booting-the-installation-media

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.31.3
master-1 Ready master 63m v1.31.3
master-2 Ready master 64m v1.31.3

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
...

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

57

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

where:

<csr_name>

Specifies the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

where:

$ oc adm certificate approve <csr_name>

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal
Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal
Pending
...

$ oc adm certificate approve <csr_name>

OpenShift Container Platform 4.18 Postinstallation configuration

58

<csr_name>

Specifies the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

3.8. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON IBM Z AND IBM LINUXONE WITH RHEL KVM

To create a cluster with multi-architecture compute machines on IBM Z® and IBM® LinuxONE (s390x)
with RHEL KVM, you must have an existing single-architecture x86_64 cluster. You can then add s390x
compute machines to your OpenShift Container Platform cluster.

Before you can add s390x nodes to your cluster, you must upgrade your cluster to one that uses the
multi-architecture payload. For more information on migrating to the multi-architecture payload, see
Migrating to a cluster with multi-architecture compute machines .

The following procedures explain how to create a RHCOS compute machine using a RHEL KVM
instance. This will allow you to add s390x nodes to your cluster and deploy a cluster with multi-
architecture compute machines.

To create an IBM Z® or IBM® LinuxONE (s390x) cluster with multi-architecture compute machines on
x86_64, follow the instructions for Installing a cluster on IBM Z® and IBM® LinuxONE . You can then add
x86_64 compute machines as described in Creating a cluster with multi-architecture compute machines
on bare metal, IBM Power, or IBM Z.

NOTE

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.31.3
master-1 Ready master 73m v1.31.3
master-2 Ready master 74m v1.31.3
worker-0 Ready worker 11m v1.31.3
worker-1 Ready worker 11m v1.31.3

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

59

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#migrating-to-multi-payload
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_ibm_z_and_ibm_linuxone/#preparing-to-install-on-ibm-z

NOTE

Before adding a secondary architecture node to your cluster, it is recommended to install
the Multiarch Tuning Operator, and deploy a ClusterPodPlacementConfig object. For
more information, see Managing workloads on multi-architecture clusters by using the
Multiarch Tuning Operator.

3.8.1. Creating RHCOS machines using virt-install

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your cluster by
using virt-install.

Prerequisites

You have at least one LPAR running on RHEL 8.7 or later with KVM, referred to as RHEL KVM
host in this procedure.

The KVM/QEMU hypervisor is installed on the RHEL KVM host.

You have a domain name server (DNS) that can perform hostname and reverse lookup for the
nodes.

An HTTP or HTTPS server is set up.

Procedure

1. Extract the Ignition config file from the cluster by running the following command:

2. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.
Note the URL of this file.

3. You can validate that the Ignition file is available on the URL. The following example gets the
Ignition config file for the compute node:

4. Download the RHEL live kernel, initramfs, and rootfs files by running the following commands:

5. Move the downloaded RHEL live kernel, initramfs, and rootfs files to an HTTP or HTTPS server

$ oc extract -n openshift-machine-api secret/worker-user-data-managed --keys=userData --
to=- > worker.ign

$ curl -k http://<HTTP_server>/worker.ign

 $ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.kernel.location')

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.initramfs.location')

$ curl -LO $(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o
jsonpath='{.data.stream}' \
| jq -r '.architectures.s390x.artifacts.metal.formats.pxe.rootfs.location')

OpenShift Container Platform 4.18 Postinstallation configuration

60

1

2

3

4

5

5. Move the downloaded RHEL live kernel, initramfs, and rootfs files to an HTTP or HTTPS server
before you launch virt-install.

6. Create the new KVM guest nodes using the RHEL kernel, initramfs, and Ignition files; the new
disk image; and adjusted parm line arguments.

For os-variant, specify the RHEL version for the RHCOS compute machine. rhel9.4 is the
recommended version. To query the supported RHEL version of your operating system,
run the following command:

NOTE

The os-variant is case sensitive.

For --location, specify the location of the kernel/initrd on the HTTP or HTTPS server.

Specify the location of the worker.ign config file. Only HTTP and HTTPS protocols are
supported.

Specify the location of the rootfs artifact for the kernel and initramfs you are booting.
Only HTTP and HTTPS protocols are supported

Optional: For hostname, specify the fully qualified hostname of the client machine.

NOTE

$ virt-install \
 --connect qemu:///system \
 --name <vm_name> \
 --autostart \
 --os-variant rhel9.4 \ 1
 --cpu host \
 --vcpus <vcpus> \
 --memory <memory_mb> \
 --disk <vm_name>.qcow2,size=<image_size> \
 --network network=<virt_network_parm> \
 --location <media_location>,kernel=<rhcos_kernel>,initrd=<rhcos_initrd> \ 2
 --extra-args "rd.neednet=1" \
 --extra-args "coreos.inst.install_dev=/dev/vda" \
 --extra-args "coreos.inst.ignition_url=http://<http_server>/worker.ign " \ 3
 --extra-args "coreos.live.rootfs_url=http://<http_server>/rhcos-<version>-live-rootfs.
<architecture>.img" \ 4
 --extra-args "ip=<ip>::<gateway>:<netmask>:<hostname>::none" \ 5
 --extra-args "nameserver=<dns>" \
 --extra-args "console=ttysclp0" \
 --noautoconsole \
 --wait

$ osinfo-query os -f short-id

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

61

NOTE

If you are using HAProxy as a load balancer, update your HAProxy rules for
ingress-router-443 and ingress-router-80 in the /etc/haproxy/haproxy.cfg
configuration file.

7. Continue to create more compute machines for your cluster.

3.8.2. Approving the certificate signing requests for your machines

To add machines to a cluster, verify the status of the certificate signing requests (CSRs) generated for
each machine. If manual approval is required, approve the client requests first, followed by the server
requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.31.3
master-1 Ready master 63m v1.31.3
master-2 Ready master 64m v1.31.3

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
...

OpenShift Container Platform 4.18 Postinstallation configuration

62

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

where:

<csr_name>

Specifies the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

$ oc adm certificate approve <csr_name>

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

63

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

where:

<csr_name>

Specifies the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

3.9. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES ON IBM POWER

To create a cluster with multi-architecture compute machines on IBM Power® (ppc64le), you must have
an existing single-architecture (x86_64) cluster. You can then add ppc64le compute machines to your
OpenShift Container Platform cluster.

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal
Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal
Pending
...

$ oc adm certificate approve <csr_name>

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.31.3
master-1 Ready master 73m v1.31.3
master-2 Ready master 74m v1.31.3
worker-0 Ready worker 11m v1.31.3
worker-1 Ready worker 11m v1.31.3

OpenShift Container Platform 4.18 Postinstallation configuration

64

IMPORTANT

Before you can add ppc64le nodes to your cluster, you must upgrade your cluster to one
that uses the multi-architecture payload. For more information on migrating to the multi-
architecture payload, see Migrating to a cluster with multi-architecture compute
machines.

The following procedures explain how to create a RHCOS compute machine using an ISO image or
network PXE booting. This will allow you to add ppc64le nodes to your cluster and deploy a cluster with
multi-architecture compute machines.

To create an IBM Power® (ppc64le) cluster with multi-architecture compute machines on x86_64,
follow the instructions for Installing a cluster on IBM Power® . You can then add x86_64 compute
machines as described in Creating a cluster with multi-architecture compute machines on bare metal,
IBM Power, or IBM Z.

NOTE

Before adding a secondary architecture node to your cluster, it is recommended to install
the Multiarch Tuning Operator, and deploy a ClusterPodPlacementConfig object. For
more information, see Managing workloads on multi-architecture clusters by using the
Multiarch Tuning Operator.

3.9.1. Creating RHCOS machines using an ISO image

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your cluster by
using an ISO image to create the machines.

Prerequisites

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

You must have the OpenShift CLI (oc) installed.

Procedure

1. Extract the Ignition config file from the cluster by running the following command:

2. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.
Note the URLs of these files.

3. You can validate that the ignition files are available on the URLs. The following example gets
the Ignition config files for the compute node:

4. You can access the ISO image for booting your new machine by running to following command:

$ oc extract -n openshift-machine-api secret/worker-user-data-managed --keys=userData --
to=- > worker.ign

$ curl -k http://<HTTP_server>/worker.ign

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

65

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#migrating-to-multi-payload
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_ibm_power/#preparing-to-install-on-ibm-power

1

2

5. Use the ISO file to install RHCOS on more compute machines. Use the same method that you
used when you created machines before you installed the cluster:

Burn the ISO image to a disk and boot it directly.

Use ISO redirection with a LOM interface.

6. Boot the RHCOS ISO image without specifying any options, or interrupting the live boot
sequence. Wait for the installer to boot into a shell prompt in the RHCOS live environment.

NOTE

You can interrupt the RHCOS installation boot process to add kernel arguments.
However, for this ISO procedure you must use the coreos-installer command as
outlined in the following steps, instead of adding kernel arguments.

7. Run the coreos-installer command and specify the options that meet your installation
requirements. At a minimum, you must specify the URL that points to the Ignition config file for
the node type, and the device that you are installing to:

You must run the coreos-installer command by using sudo, because the core user does
not have the required root privileges to perform the installation.

The --ignition-hash option is required when the Ignition config file is obtained through an
HTTP URL to validate the authenticity of the Ignition config file on the cluster node.
<digest> is the Ignition config file SHA512 digest obtained in a preceding step.

NOTE

If you want to provide your Ignition config files through an HTTPS server that
uses TLS, you can add the internal certificate authority (CA) to the system trust
store before running coreos-installer.

The following example initializes a compute node installation to the /dev/sda device. The
Ignition config file for the compute node is obtained from an HTTP web server with the IP
address 192.168.1.2:

8. Monitor the progress of the RHCOS installation on the console of the machine.

IMPORTANT

RHCOS_VHD_ORIGIN_URL=$(oc -n openshift-machine-config-operator get
configmap/coreos-bootimages -o jsonpath='{.data.stream}' | jq -r '.architectures.
<architecture>.artifacts.metal.formats.iso.disk.location')

$ sudo coreos-installer install --ignition-url=http://<HTTP_server>/<node_type>.ign <device>
--ignition-hash=sha512-<digest> 1 2

$ sudo coreos-installer install --ignition-
url=http://192.168.1.2:80/installation_directory/worker.ign /dev/sda --ignition-hash=sha512-
a5a2d43879223273c9b60af66b44202a1d1248fc01cf156c46d4a79f552b6bad47bc8cc78ddf011
6e80c59d2ea9e32ba53bc807afbca581aa059311def2c3e3b

OpenShift Container Platform 4.18 Postinstallation configuration

66

1

2

IMPORTANT

Ensure that the installation is successful on each node before commencing with
the OpenShift Container Platform installation. Observing the installation process
can also help to determine the cause of RHCOS installation issues that might
arise.

9. Continue to create more compute machines for your cluster.

3.9.2. Creating RHCOS machines by PXE or iPXE booting

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare
metal cluster by using PXE or iPXE booting.

Prerequisites

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

Obtain the URLs of the RHCOS ISO image, compressed metal BIOS, kernel, and initramfs files
that you uploaded to your HTTP server during cluster installation.

You have access to the PXE booting infrastructure that you used to create the machines for
your OpenShift Container Platform cluster during installation. The machines must boot from
their local disks after RHCOS is installed on them.

If you use UEFI, you have access to the grub.conf file that you modified during OpenShift
Container Platform installation.

Procedure

1. Confirm that your PXE or iPXE installation for the RHCOS images is correct.

For PXE:

DEFAULT pxeboot
TIMEOUT 20
PROMPT 0
LABEL pxeboot
 KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 1
 APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img coreos.inst.install_dev=/dev/sda
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img 2

Specify the location of the live kernel file that you uploaded to your HTTP server.

Specify locations of the RHCOS files that you uploaded to your HTTP server. The
initrd parameter value is the location of the live initramfs file, the
coreos.inst.ignition_url parameter value is the location of the worker Ignition config
file, and the coreos.live.rootfs_url parameter value is the location of the live rootfs
file. The coreos.inst.ignition_url and coreos.live.rootfs_url parameters only support
HTTP and HTTPS.

NOTE

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

67

1

2

3

NOTE

This configuration does not enable serial console access on machines with a
graphical console. To configure a different console, add one or more
console= arguments to the APPEND line. For example, add console=tty0
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise
Linux?.

For iPXE (x86_64 + ppc64le):

kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img coreos.inst.install_dev=/dev/sda
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1 2
initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img 3
boot

Specify the locations of the RHCOS files that you uploaded to your HTTP server. The
kernel parameter value is the location of the kernel file, the initrd=main argument is
needed for booting on UEFI systems, the coreos.live.rootfs_url parameter value is
the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the
location of the worker Ignition config file.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your HTTP server.

NOTE

This configuration does not enable serial console access on machines with a
graphical console To configure a different console, add one or more
console= arguments to the kernel line. For example, add console=tty0
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise Linux?
and "Enabling the serial console for PXE and ISO installation" in the
"Advanced RHCOS installation configuration" section.

NOTE

To network boot the CoreOS kernel on ppc64le architecture, you need to
use a version of iPXE build with the IMAGE_GZIP option enabled. See
IMAGE_GZIP option in iPXE .

For PXE (with UEFI and GRUB as second stage) on ppc64le:

menuentry 'Install CoreOS' {
 linux rhcos-<version>-live-kernel-<architecture>

OpenShift Container Platform 4.18 Postinstallation configuration

68

https://access.redhat.com/articles/7212
https://access.redhat.com/articles/7212
https://ipxe.org/buildcfg/image_gzip

1

2

3

coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img coreos.inst.install_dev=/dev/sda
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1 2
 initrd rhcos-<version>-live-initramfs.<architecture>.img 3
}

Specify the locations of the RHCOS files that you uploaded to your HTTP/TFTP
server. The kernel parameter value is the location of the kernel file on your TFTP
server. The coreos.live.rootfs_url parameter value is the location of the rootfs file,
and the coreos.inst.ignition_url parameter value is the location of the worker Ignition
config file on your HTTP Server.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your TFTP server.

2. Use the PXE or iPXE infrastructure to create the required compute machines for your cluster.

3.9.3. Approving the certificate signing requests for your machines

To add machines to a cluster, verify the status of the certificate signing requests (CSRs) generated for
each machine. If manual approval is required, approve the client requests first, followed by the server
requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or
Approved status for each machine that you added to the cluster:

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.31.3
master-1 Ready master 63m v1.31.3
master-2 Ready master 64m v1.31.3

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

69

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

where:

<csr_name>

Specifies the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
...

$ oc adm certificate approve <csr_name>

OpenShift Container Platform 4.18 Postinstallation configuration

70

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

where:

<csr_name>

Specifies the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal
Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal
Pending
...

$ oc adm certificate approve <csr_name>

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes -o wide

NAME STATUS ROLES AGE VERSION INTERNAL-IP
EXTERNAL-IP OS-IMAGE KERNEL-VERSION
CONTAINER-RUNTIME
worker-0-ppc64le Ready worker 42d v1.31.3 192.168.200.21 <none>
Red Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow) 5.14.0-
284.34.1.el9_2.ppc64le cri-o://1.31.3-3.rhaos4.15.gitb36169e.el9
worker-1-ppc64le Ready worker 42d v1.31.3 192.168.200.20 <none>

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

71

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

3.10. MANAGING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE
MACHINES

Managing a cluster that has nodes with multiple architectures requires you to consider node architecture
as you monitor the cluster and manage your workloads. This requires you to take additional
considerations into account when you configure cluster resource requirements and behavior, or
schedule workloads in a multi-architecture cluster.

3.10.1. Scheduling workloads on clusters with multi-architecture compute machines

When you deploy workloads on a cluster with compute nodes that use different architectures, you must
align pod architecture with the architecture of the underlying node. Your workload may also require
additional configuration to particular resources depending on the underlying node architecture.

You can use the Multiarch Tuning Operator to enable architecture-aware scheduling of workloads on
clusters with multi-architecture compute machines. The Multiarch Tuning Operator implements
additional scheduler predicates in the pods specifications based on the architectures that the pods can
support at creation time.

3.10.1.1. Sample multi-architecture node workload deployments

Scheduling a workload to an appropriate node based on architecture works in the same way as
scheduling based on any other node characteristic. Consider the following options when determining
how to schedule your workloads.

Using nodeAffinity to schedule nodes with specific architectures

You can allow a workload to be scheduled on only a set of nodes with architectures supported by its
images, you can set the spec.affinity.nodeAffinity field in your pod’s template specification.

Example deployment with node affinity set

Red Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow) 5.14.0-
284.34.1.el9_2.ppc64le cri-o://1.31.3-3.rhaos4.15.gitb36169e.el9
master-0-x86 Ready control-plane,master 75d v1.31.3 10.248.0.38 10.248.0.38
Red Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow) 5.14.0-
284.34.1.el9_2.x86_64 cri-o://1.31.3-3.rhaos4.15.gitb36169e.el9
master-1-x86 Ready control-plane,master 75d v1.31.3 10.248.0.39 10.248.0.39
Red Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow) 5.14.0-
284.34.1.el9_2.x86_64 cri-o://1.31.3-3.rhaos4.15.gitb36169e.el9
master-2-x86 Ready control-plane,master 75d v1.31.3 10.248.0.40 10.248.0.40
Red Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow) 5.14.0-
284.34.1.el9_2.x86_64 cri-o://1.31.3-3.rhaos4.15.gitb36169e.el9
worker-0-x86 Ready worker 75d v1.31.3 10.248.0.43 10.248.0.43 Red
Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow) 5.14.0-
284.34.1.el9_2.x86_64 cri-o://1.31.3-3.rhaos4.15.gitb36169e.el9
worker-1-x86 Ready worker 75d v1.31.3 10.248.0.44 10.248.0.44 Red
Hat Enterprise Linux CoreOS 415.92.202309261919-0 (Plow) 5.14.0-
284.34.1.el9_2.x86_64 cri-o://1.31.3-3.rhaos4.15.gitb36169e.el9

OpenShift Container Platform 4.18 Postinstallation configuration

72

1 Specify the supported architectures. Valid values include amd64,arm64, or both values.

Tainting each node for a specific architecture

You can taint a node to avoid the node scheduling workloads that are incompatible with its
architecture. When your cluster uses a MachineSet object, you can add parameters to the
.spec.template.spec.taints field to avoid workloads being scheduled on nodes with non-supported
architectures.
Before you add a taint to a node, you must scale down the MachineSet object or remove existing
available machines. For more information, see Modifying a compute machine set .

Example machine set with taint set

You can also set a taint on a specific node by running the following command:

Creating a default toleration in a namespace

When a node or machine set has a taint, only workloads that tolerate that taint can be scheduled.

apiVersion: apps/v1
kind: Deployment
metadata: # ...
spec:
 # ...
 template:
 # ...
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/arch
 operator: In
 values: 1
 - amd64
 - arm64

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata: # ...
spec:
 # ...
 template:
 # ...
 spec:
 # ...
 taints:
 - effect: NoSchedule
 key: multiarch.openshift.io/arch
 value: arm64

$ oc adm taint nodes <node-name> multiarch.openshift.io/arch=arm64:NoSchedule

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

73

When a node or machine set has a taint, only workloads that tolerate that taint can be scheduled.
You can annotate a namespace so all of the workloads get the same default toleration by running the
following command:

Example default toleration set on a namespace

Tolerating architecture taints in workloads

When a node or machine set has a taint, only workloads that tolerate that taint can be scheduled.
You can configure your workload with a toleration so that it is scheduled on nodes with specific
architecture taints.

Example deployment with toleration set

This example deployment can be scheduled on nodes and machine sets that have the
multiarch.openshift.io/arch=arm64 taint specified.

Using node affinity with taints and tolerations

When a scheduler computes the set of nodes to schedule a pod, tolerations can broaden the set
while node affinity restricts the set. If you set a taint on nodes that have a specific architecture, you
must also add a toleration to workloads that you want to be scheduled there.

Example deployment with node affinity and toleration set

$ oc annotate namespace my-namespace \
 'scheduler.alpha.kubernetes.io/defaultTolerations'='[{"operator": "Exists", "effect": "NoSchedule",
"key": "multiarch.openshift.io/arch"}]'

apiVersion: apps/v1
kind: Deployment
metadata: # ...
spec:
 # ...
 template:
 # ...
 spec:
 tolerations:
 - key: "multiarch.openshift.io/arch"
 value: "arm64"
 operator: "Equal"
 effect: "NoSchedule"

apiVersion: apps/v1
kind: Deployment
metadata: # ...
spec:
 # ...
 template:
 # ...
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:

OpenShift Container Platform 4.18 Postinstallation configuration

74

Additional resources

Managing workloads on multi-architecture clusters by using the Multiarch Tuning Operator

Controlling pod placement using node taints

Controlling pod placement on nodes using node affinity

Controlling pod placement using the scheduler

Modifying a compute machine set

3.10.2. Enabling 64k pages on the Red Hat Enterprise Linux CoreOS (RHCOS) kernel

You can enable the 64k memory page in the Red Hat Enterprise Linux CoreOS (RHCOS) kernel on the
64-bit ARM compute machines in your cluster. The 64k page size kernel specification can be used for
large GPU or high memory workloads. This is done using the Machine Config Operator (MCO) which
uses a machine config pool to update the kernel. To enable 64k page sizes, you must dedicate a
machine config pool for ARM64 to enable on the kernel.

IMPORTANT

Using 64k pages is exclusive to 64-bit ARM architecture compute nodes or clusters
installed on 64-bit ARM machines. If you configure the 64k pages kernel on a machine
config pool using 64-bit x86 machines, the machine config pool and MCO will degrade.

Prerequisites

You installed the OpenShift CLI (oc).

You created a cluster with compute nodes of different architecture on one of the supported
platforms.

Procedure

1. Label the nodes where you want to run the 64k page size kernel:

Example command

 - matchExpressions:
 - key: kubernetes.io/arch
 operator: In
 values:
 - amd64
 - arm64
 tolerations:
 - key: "multiarch.openshift.io/arch"
 value: "arm64"
 operator: "Equal"
 effect: "NoSchedule"

$ oc label node <node_name> <label>

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

75

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-scheduler-node-affinity
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-scheduler-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_management/#machineset-modifying_modifying-machineset

1

2

2. Create a machine config pool that contains the worker role that uses the ARM64 architecture
and the worker-64k-pages role:

3. Create a machine config on your compute node to enable 64k-pages with the 64k-pages
parameter.

Example MachineConfig

Specify the value of the machineconfiguration.openshift.io/role label in the custom
machine config pool. The example MachineConfig uses the worker-64k-pages label to
enable 64k pages in the worker-64k-pages pool.

Specify your desired kernel type. Valid values are 64k-pages and default

NOTE

The 64k-pages type is supported on only 64-bit ARM architecture based
compute nodes. The realtime type is supported on only 64-bit x86 architecture
based compute nodes.

Verification

$ oc label node worker-arm64-01 node-role.kubernetes.io/worker-64k-pages=

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-64k-pages
spec:
 machineConfigSelector:
 matchExpressions:
 - key: machineconfiguration.openshift.io/role
 operator: In
 values:
 - worker
 - worker-64k-pages
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker-64k-pages: ""
 kubernetes.io/arch: arm64

$ oc create -f <filename>.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: "worker-64k-pages" 1
 name: 99-worker-64kpages
spec:
 kernelType: 64k-pages 2

OpenShift Container Platform 4.18 Postinstallation configuration

76

To view your new worker-64k-pages machine config pool, run the following command:

Example output

3.10.3. Importing manifest lists in image streams on your multi-architecture
compute machines

On an OpenShift Container Platform 4.18 cluster with multi-architecture compute machines, the image
streams in the cluster do not import manifest lists automatically. You must manually change the default
importMode option to the PreserveOriginal option in order to import the manifest list.

Prerequisites

You installed the OpenShift Container Platform CLI (oc).

Procedure

The following example command shows how to patch the ImageStream cli-artifacts so that the
cli-artifacts:latest image stream tag is imported as a manifest list.

Verification

You can check that the manifest lists imported properly by inspecting the image stream tag.
The following command will list the individual architecture manifests for a particular tag.

If the dockerImageManifests object is present, then the manifest list import was successful.

Example output of the dockerImageManifests object

$ oc get mcp

NAME CONFIG UPDATED UPDATING
DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-9d55ac9a91127c36314e1efe7d77fbf8 True False
False 3 3 3 0 361d
worker rendered-worker-e7b61751c4a5b7ff995d64b967c421ff True False
False 7 7 7 0 361d
worker-64k-pages rendered-worker-64k-pages-e7b61751c4a5b7ff995d64b967c421ff True
False False 2 2 2 0 35m

$ oc patch is/cli-artifacts -n openshift -p '{"spec":{"tags":[{"name":"latest","importPolicy":
{"importMode":"PreserveOriginal"}}]}}'

$ oc get istag cli-artifacts:latest -n openshift -oyaml

dockerImageManifests:
 - architecture: amd64
 digest:
sha256:16d4c96c52923a9968fbfa69425ec703aff711f1db822e4e9788bf5d2bee5d77
 manifestSize: 1252
 mediaType: application/vnd.docker.distribution.manifest.v2+json

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

77

3.11. MANAGING WORKLOADS ON MULTI-ARCHITECTURE CLUSTERS
BY USING THE MULTIARCH TUNING OPERATOR

The Multiarch Tuning Operator optimizes workload management within multi-architecture clusters and
in single-architecture clusters transitioning to multi-architecture environments.

Architecture-aware workload scheduling allows the scheduler to place pods onto nodes that match the
architecture of the pod images.

By default, the scheduler does not consider the architecture of a pod’s container images when
determining the placement of new pods onto nodes.

To enable architecture-aware workload scheduling, you must create the ClusterPodPlacementConfig
object. When you create the ClusterPodPlacementConfig object, the Multiarch Tuning Operator
deploys the necessary operands to support architecture-aware workload scheduling. You can also use
the nodeAffinityScoring plugin in the ClusterPodPlacementConfig object to set cluster-wide scores
for node architectures. If you enable the nodeAffinityScoring plugin, the scheduler first filters nodes
with compatible architectures and then places the pod on the node with the highest score.

When a pod is created, the operands perform the following actions:

1. Add the multiarch.openshift.io/scheduling-gate scheduling gate that prevents the scheduling
of the pod.

2. Compute a scheduling predicate that includes the supported architecture values for the
kubernetes.io/arch label.

3. Integrate the scheduling predicate as a nodeAffinity requirement in the pod specification.

4. Remove the scheduling gate from the pod.

IMPORTANT

 os: linux
 - architecture: arm64
 digest:
sha256:6ec8ad0d897bcdf727531f7d0b716931728999492709d19d8b09f0d90d57f626
 manifestSize: 1252
 mediaType: application/vnd.docker.distribution.manifest.v2+json
 os: linux
 - architecture: ppc64le
 digest:
sha256:65949e3a80349cdc42acd8c5b34cde6ebc3241eae8daaeea458498fedb359a6a
 manifestSize: 1252
 mediaType: application/vnd.docker.distribution.manifest.v2+json
 os: linux
 - architecture: s390x
 digest:
sha256:75f4fa21224b5d5d511bea8f92dfa8e1c00231e5c81ab95e83c3013d245d1719
 manifestSize: 1252
 mediaType: application/vnd.docker.distribution.manifest.v2+json
 os: linux

OpenShift Container Platform 4.18 Postinstallation configuration

78

IMPORTANT

Note the following operand behaviors:

If the nodeSelector field is already configured with the kubernetes.io/arch label
for a workload, the operand does not update the nodeAffinity field for that
workload.

If the nodeSelector field is not configured with the kubernetes.io/arch label for
a workload, the operand updates the nodeAffinity field for that workload.
However, in that nodeAffinity field, the operand updates only the node selector
terms that are not configured with the kubernetes.io/arch label.

If the nodeName field is already set, the Multiarch Tuning Operator does not
process the pod.

If the pod is owned by a DaemonSet, the operand does not update the
nodeAffinity field.

If both nodeSelector or nodeAffinity and preferredAffinity fields are set for the
kubernetes.io/arch label, the operand does not update the nodeAffinity field.

If only nodeSelector or nodeAffinity field is set for the kubernetes.io/arch
label and the nodeAffinityScoring plugin is disabled, the operand does not
update the nodeAffinity field.

If the nodeAffinity.preferredDuringSchedulingIgnoredDuringExecution field
already contains terms that score nodes based on the kubernetes.io/arch label,
the operand ignores the configuration in the nodeAffinityScoring plugin.

3.11.1. Installing the Multiarch Tuning Operator by using the CLI

You can install the Multiarch Tuning Operator by using the OpenShift CLI (oc).

Prerequisites

You have installed oc.

You have logged in to oc as a user with cluster-admin privileges.

Procedure

1. Create a new project named openshift-multiarch-tuning-operator by running the following
command:

2. Create an OperatorGroup object:

a. Create a YAML file with the configuration for creating an OperatorGroup object.

Example YAML configuration for creating an OperatorGroup object

$ oc create ns openshift-multiarch-tuning-operator

apiVersion: operators.coreos.com/v1

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

79

1

1

b. Create the OperatorGroup object by running the following command:

Replace <file_name> with the name of the YAML file that contains the
OperatorGroup object configuration.

3. Create a Subscription object:

a. Create a YAML file with the configuration for creating a Subscription object.

Example YAML configuration for creating a Subscription object

b. Create the Subscription object by running the following command:

Replace <file_name> with the name of the YAML file that contains the Subscription
object configuration.

NOTE

For more details about configuring the Subscription object and OperatorGroup object,
see "Installing from OperatorHub by using the CLI".

Verification

1. To verify that the Multiarch Tuning Operator is installed, run the following command:

Example output

kind: OperatorGroup
metadata:
 name: openshift-multiarch-tuning-operator
 namespace: openshift-multiarch-tuning-operator
spec: {}

$ oc create -f <file_name> 1

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-multiarch-tuning-operator
 namespace: openshift-multiarch-tuning-operator
spec:
 channel: stable
 name: multiarch-tuning-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 installPlanApproval: Automatic
 startingCSV: multiarch-tuning-operator.<version>

$ oc create -f <file_name> 1

$ oc get csv -n openshift-multiarch-tuning-operator

OpenShift Container Platform 4.18 Postinstallation configuration

80

The installation is successful if the Operator is in Succeeded phase.

2. Optional: To verify that the OperatorGroup object is created, run the following command:

Example output

3. Optional: To verify that the Subscription object is created, run the following command:

Example output

Additional resources

Installing from OperatorHub using the CLI

3.11.2. Installing the Multiarch Tuning Operator by using the web console

You can install the Multiarch Tuning Operator by using the OpenShift Container Platform web console.

Prerequisites

You have access to the cluster with cluster-admin privileges.

You have access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → OperatorHub.

3. Enter Multiarch Tuning Operator in the search field.

4. Click Multiarch Tuning Operator.

5. Select the Multiarch Tuning Operator version from the Version list.

6. Click Install

NAME DISPLAY VERSION REPLACES
PHASE
multiarch-tuning-operator.<version> Multiarch Tuning Operator <version> multiarch-
tuning-operator.1.0.0 Succeeded

$ oc get operatorgroup -n openshift-multiarch-tuning-operator

NAME AGE
openshift-multiarch-tuning-operator-q8zbb 133m

$ oc get subscription -n openshift-multiarch-tuning-operator

NAME PACKAGE SOURCE CHANNEL
multiarch-tuning-operator multiarch-tuning-operator redhat-operators stable

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

81

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#olm-installing-operator-from-operatorhub-using-cli_olm-installing-operators-in-namespace

7. Set the following options on the Operator Installation page:

a. Set Update Channel to stable.

b. Set Installation Mode to All namespaces on the cluster.

c. Set Installed Namespace to Operator recommended Namespace or Select a
Namespace.
The recommended Operator namespace is openshift-multiarch-tuning-operator. If the
openshift-multiarch-tuning-operator namespace does not exist, it is created during the
operator installation.

If you select Select a namespace, you must select a namespace for the Operator from the
Select Project list.

d. Update approval as Automatic or Manual.
If you select Automatic updates, Operator Lifecycle Manager (OLM) automatically updates
the running instance of the Multiarch Tuning Operator without any intervention.

If you select Manual updates, OLM creates an update request. As a cluster administrator,
you must manually approve the update request to update the Multiarch Tuning Operator to
a newer version.

8. Optional: Select the Enable Operator recommended cluster monitoring on this Namespace
checkbox.

9. Click Install.

Verification

1. Navigate to Operators → Installed Operators.

2. Verify that the Multiarch Tuning Operator is listed with the Status field as Succeeded in the
openshift-multiarch-tuning-operator namespace.

3.11.3. Multiarch Tuning Operator pod labels and architecture support overview

After installing the Multiarch Tuning Operator, you can verify the multi-architecture support for
workloads in your cluster. You can identify and manage pods based on their architecture compatibility by
using the pod labels. These labels are automatically set on the newly created pods to provide insights
into their architecture support.

The following table describes the labels that the Multiarch Tuning Operator adds when you create a pod:

Table 3.2. Pod labels that the Multiarch Tuning Operator adds when you create a pod

Label Description

multiarch.openshift.io/multi-arch: "" The pod supports multiple architectures.

multiarch.openshift.io/single-arch: "" The pod supports only a single architecture.

multiarch.openshift.io/arm64: "" The pod supports the arm64 architecture.

OpenShift Container Platform 4.18 Postinstallation configuration

82

multiarch.openshift.io/amd64: "" The pod supports the amd64 architecture.

multiarch.openshift.io/ppc64le: "" The pod supports the ppc64le architecture.

multiarch.openshift.io/s390x: "" The pod supports the s390x architecture.

multirach.openshift.io/node-affinity: set The Operator has set the node affinity requirement
for the architecture.

multirach.openshift.io/node-affinity: not-set The Operator did not set the node affinity
requirement. For example, when the pod already has
a node affinity for the architecture, the Multiarch
Tuning Operator adds this label to the pod.

multiarch.openshift.io/scheduling-gate: gated The pod is gated.

multiarch.openshift.io/scheduling-gate:
removed

The pod gate has been removed.

multiarch.openshift.io/inspection-error: "" An error has occurred while building the node affinity
requirements.

multiarch.openshift.io/preferred-node-
affinity: set

The Operator has set the architecture preferences in
the pod.

multiarch.openshift.io/preferred-node-
affinity: not-set

The Operator did not set the architecture
preferences in the pod because the user had already
set them in the
preferredDuringSchedulingIgnoredDuringEx
ecution node affinity.

Label Description

3.11.4. Creating the ClusterPodPlacementConfig object

After installing the Multiarch Tuning Operator, you must create the ClusterPodPlacementConfig
object. When you create this object, the Multiarch Tuning Operator deploys an operand that enables
architecture-aware workload scheduling.

NOTE

You can create only one instance of the ClusterPodPlacementConfig object.

Example ClusterPodPlacementConfig object configuration

apiVersion: multiarch.openshift.io/v1beta1
kind: ClusterPodPlacementConfig
metadata:
 name: cluster 1

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

83

1

2

3

4

5

6

7

8

9

You must set this field value to cluster.

Optional: You can set the field value to Normal, Debug, Trace, or TraceAll. The value is set to
Normal by default.

Optional: You can configure the namespaceSelector to select the namespaces in which the
Multiarch Tuning Operator’s pod placement operand must process the nodeAffinity of the pods.
All namespaces are considered by default.

Optional: Includes a list of plugins for architecture-aware workload scheduling.

Optional: You can use this plugin to set architecture preferences for pod placement. When
enabled, the scheduler first filters out nodes that do not meet the pod’s requirements. Then, it
prioritizes the remaining nodes based on the architecture scores defined in the
nodeAffinityScoring.platforms field.

Optional: Set this field to true to enable the nodeAffinityScoring plugin. The default value is
false.

Optional: Defines a list of architectures and their corresponding scores.

Specify the node architecture to score. The scheduler prioritizes nodes for pod placement based
on the architecture scores that you set and the scheduling requirements defined in the pod
specification. Accepted values are arm64, amd64, ppc64le, or s390x.

Assign a score to the architecture. The value for this field must be configured in the range of 1
(lowest priority) to 100 (highest priority). The scheduler uses this score to prioritize nodes for pod
placement, favoring nodes with architectures that have higher scores.

In this example, the operator field value is set to DoesNotExist. Therefore, if the key field value
(multiarch.openshift.io/exclude-pod-placement) is set as a label in a namespace, the operand does
not process the nodeAffinity of the pods in that namespace. Instead, the operand processes the
nodeAffinity of the pods in namespaces that do not contain the label.

If you want the operand to process the nodeAffinity of the pods only in specific namespaces, you can
configure the namespaceSelector as follows:

spec:
 logVerbosityLevel: Normal 2
 namespaceSelector: 3
 matchExpressions:
 - key: multiarch.openshift.io/exclude-pod-placement
 operator: DoesNotExist
 plugins: 4
 nodeAffinityScoring: 5
 enabled: true 6
 platforms: 7
 - architecture: amd64 8
 weight: 100 9
 - architecture: arm64
 weight: 50

namespaceSelector:

OpenShift Container Platform 4.18 Postinstallation configuration

84

In this example, the operator field value is set to Exists. Therefore, the operand processes the
nodeAffinity of the pods only in namespaces that contain the multiarch.openshift.io/include-pod-
placement label.

IMPORTANT

This Operator excludes pods in namespaces starting with kube-. It also excludes pods
that are expected to be scheduled on control plane nodes.

3.11.4.1. Creating the ClusterPodPlacementConfig object by using the CLI

To deploy the pod placement operand that enables architecture-aware workload scheduling, you can
create the ClusterPodPlacementConfig object by using the OpenShift CLI (oc).

Prerequisites

You have installed oc.

You have logged in to oc as a user with cluster-admin privileges.

You have installed the Multiarch Tuning Operator.

Procedure

1. Create a ClusterPodPlacementConfig object YAML file:

Example ClusterPodPlacementConfig object configuration

2. Create the ClusterPodPlacementConfig object by running the following command:

 matchExpressions:
 - key: multiarch.openshift.io/include-pod-placement
 operator: Exists

apiVersion: multiarch.openshift.io/v1beta1
kind: ClusterPodPlacementConfig
metadata:
 name: cluster
spec:
 logVerbosityLevel: Normal
 namespaceSelector:
 matchExpressions:
 - key: multiarch.openshift.io/exclude-pod-placement
 operator: DoesNotExist
 plugins:
 nodeAffinityScoring:
 enabled: true
 platforms:
 - architecture: amd64
 weight: 100
 - architecture: arm64
 weight: 50

$ oc create -f <file_name> 1

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

85

1 Replace <file_name> with the name of the ClusterPodPlacementConfig object YAML
file.

Verification

To check that the ClusterPodPlacementConfig object is created, run the following command:

Example output

3.11.4.2. Creating the ClusterPodPlacementConfig object by using the web console

To deploy the pod placement operand that enables architecture-aware workload scheduling, you can
create the ClusterPodPlacementConfig object by using the OpenShift Container Platform web
console.

Prerequisites

You have access to the cluster with cluster-admin privileges.

You have access to the OpenShift Container Platform web console.

You have installed the Multiarch Tuning Operator.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → Installed Operators.

3. On the Installed Operators page, click Multiarch Tuning Operator.

4. Click the Cluster Pod Placement Config tab.

5. Select either Form view or YAML view.

6. Configure the ClusterPodPlacementConfig object parameters.

7. Click Create.

8. Optional: If you want to edit the ClusterPodPlacementConfig object, perform the following
actions:

a. Click the Cluster Pod Placement Config tab.

b. Select Edit ClusterPodPlacementConfig from the options menu.

c. Click YAML and edit the ClusterPodPlacementConfig object parameters.

$ oc get clusterpodplacementconfig

NAME AGE
cluster 29s

OpenShift Container Platform 4.18 Postinstallation configuration

86

d. Click Save.

Verification

On the Cluster Pod Placement Config page, check that the ClusterPodPlacementConfig
object is in the Ready state.

3.11.5. Deleting the ClusterPodPlacementConfig object by using the CLI

You can create only one instance of the ClusterPodPlacementConfig object. If you want to re-create
this object, you must first delete the existing instance.

You can delete this object by using the OpenShift CLI (oc).

Prerequisites

You have installed oc.

You have logged in to oc as a user with cluster-admin privileges.

Procedure

1. Log in to the OpenShift CLI (oc).

2. Delete the ClusterPodPlacementConfig object by running the following command:

Verification

To check that the ClusterPodPlacementConfig object is deleted, run the following command:

Example output

3.11.6. Deleting the ClusterPodPlacementConfig object by using the web console

You can create only one instance of the ClusterPodPlacementConfig object. If you want to re-create
this object, you must first delete the existing instance.

You can delete this object by using the OpenShift Container Platform web console.

Prerequisites

You have access to the cluster with cluster-admin privileges.

You have access to the OpenShift Container Platform web console.

You have created the ClusterPodPlacementConfig object.

$ oc delete clusterpodplacementconfig cluster

$ oc get clusterpodplacementconfig

No resources found

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

87

1

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → Installed Operators.

3. On the Installed Operators page, click Multiarch Tuning Operator.

4. Click the Cluster Pod Placement Config tab.

5. Select Delete ClusterPodPlacementConfig from the options menu.

6. Click Delete.

Verification

On the Cluster Pod Placement Config page, check that the ClusterPodPlacementConfig
object has been deleted.

3.11.7. Uninstalling the Multiarch Tuning Operator by using the CLI

You can uninstall the Multiarch Tuning Operator by using the OpenShift CLI (oc).

Prerequisites

You have installed oc.

You have logged in to oc as a user with cluster-admin privileges.

You deleted the ClusterPodPlacementConfig object.

IMPORTANT

You must delete the ClusterPodPlacementConfig object before uninstalling
the Multiarch Tuning Operator. Uninstalling the Operator without deleting the
ClusterPodPlacementConfig object can lead to unexpected behavior.

Procedure

1. Get the Subscription object name for the Multiarch Tuning Operator by running the following
command:

Replace <namespace> with the name of the namespace where you want to uninstall the
Multiarch Tuning Operator.

Example output

2. Get the currentCSV value for the Multiarch Tuning Operator by running the following

$ oc get subscription.operators.coreos.com -n <namespace> 1

NAME PACKAGE SOURCE CHANNEL
openshift-multiarch-tuning-operator multiarch-tuning-operator redhat-operators stable

OpenShift Container Platform 4.18 Postinstallation configuration

88

1

1

1

1

2. Get the currentCSV value for the Multiarch Tuning Operator by running the following
command:

Replace <subscription_name> with the Subscription object name. For example:
openshift-multiarch-tuning-operator. Replace <namespace> with the name of the
namespace where you want to uninstall the Multiarch Tuning Operator.

Example output

3. Delete the Subscription object by running the following command:

Replace <subscription_name> with the Subscription object name. Replace
<namespace> with the name of the namespace where you want to uninstall the Multiarch
Tuning Operator.

Example output

4. Delete the CSV for the Multiarch Tuning Operator in the target namespace using the
currentCSV value by running the following command:

Replace <currentCSV> with the currentCSV value for the Multiarch Tuning Operator. For
example: multiarch-tuning-operator.<version>. Replace <namespace> with the name of
the namespace where you want to uninstall the Multiarch Tuning Operator.

Example output

Verification

To verify that the Multiarch Tuning Operator is uninstalled, run the following command:

Replace <namespace> with the name of the namespace where you have uninstalled the
Multiarch Tuning Operator.

$ oc get subscription.operators.coreos.com <subscription_name> -n <namespace> -o yaml |
grep currentCSV 1

currentCSV: multiarch-tuning-operator.<version>

$ oc delete subscription.operators.coreos.com <subscription_name> -n <namespace> 1

subscription.operators.coreos.com "openshift-multiarch-tuning-operator" deleted

$ oc delete clusterserviceversion <currentCSV_value> -n <namespace> 1

clusterserviceversion.operators.coreos.com "multiarch-tuning-operator.<version>" deleted

$ oc get csv -n <namespace> 1

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

89

Example output

3.11.8. Uninstalling the Multiarch Tuning Operator by using the web console

You can uninstall the Multiarch Tuning Operator by using the OpenShift Container Platform web
console.

Prerequisites

You have access to the cluster with cluster-admin permissions.

You deleted the ClusterPodPlacementConfig object.

IMPORTANT

You must delete the ClusterPodPlacementConfig object before uninstalling
the Multiarch Tuning Operator. Uninstalling the Operator without deleting the
ClusterPodPlacementConfig object can lead to unexpected behavior.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → OperatorHub.

3. Enter Multiarch Tuning Operator in the search field.

4. Click Multiarch Tuning Operator.

5. Click the Details tab.

6. From the Actions menu, select Uninstall Operator.

7. When prompted, click Uninstall.

Verification

1. Navigate to Operators → Installed Operators.

2. On the Installed Operators page, verify that the Multiarch Tuning Operator is not listed.

3.12. MULTIARCH TUNING OPERATOR RELEASE NOTES

The Multiarch Tuning Operator (MTO) optimizes workload management within multi-architecture
clusters and in single-architecture clusters transitioning to multi-architecture environments.

These release notes track the development of the Multiarch Tuning Operator.

For more information, see Managing workloads on multi-architecture clusters by using the Multiarch
Tuning Operator.

No resources found in openshift-multiarch-tuning-operator namespace.

OpenShift Container Platform 4.18 Postinstallation configuration

90

3.12.1. Release notes for the Multiarch Tuning Operator 1.2.1

Issued: 15 December 2025

3.12.1.1. Bug fixes

Previously, the Multiarch Tuning Operator image inspector incorrectly processed images whose
registry address included a digest, tag, and port number. The port portion of the registry was
incorrectly interpreted as an image tag and was trimmed, causing the inspector to construct an
invalid image reference. With this update, image references that contain a digest, tag, and
registry port are now correctly parsed and handled. (MULTIARCH-5767)

3.12.2. Release notes for the Multiarch Tuning Operator 1.2.0

Issued: 22 October 2025

3.12.2.1. New features and enhancements

With this release, you can enable the exec format error monitor plugin for the Multiarch Tuning
Operator. This plugin detects ENOEXEC errors, which occur when a pod attempts to execute a
binary incompatible with the node’s architecture. You enable this plugin by setting the
plugins.execFormatErrorMonitor.enabled parameter to true in the
ClusterPodPlacementConfig object. For more information, see Creating the
ClusterPodPlacementConfig object.

3.12.2.2. Bug fixes

Previously, the Multiarch Tuning Operator incorrectly handled the Operator bundle image
inspector, restricting it to a single architecture, which could cause OLM to fail when installing
Operators. With this update, MTO now sets the bundle image to support all architectures,
allowing Operators to be successfully installed on single-architecture clusters when the
Multiarch Tuning Operator is deployed. (MULTIARCH-5546)

Previously, when a cluster global pull secret was changed, stale authentication information could
remain in the Multiarch Tuning Operator cache. With this update, the cache is cleared whenever
a cluster global pull secret is changed. (MULTIARCH-5538)

Previously, the Multiarch Tuning Operator failed to process pods if an image reference
contained both a tag and a digest. With this update, the image inspector prioritizes the digest if
both are present. (MULTIARCH-5584)

Previously, the Multiarch Tuning Operator did not respect the
.spec.registrySources.containerRuntimeSearchRegistries field in the
config.openshift.io/Image custom resource when a workload image did not specify a registry
URL. With this update, the Operator can now handle this case, allowing workload images without
an explicit registry URL to be pulled successfully. (MULTIARCH-5611)

Previously, if the ClusterPodPlacementConfig object was deleted less than 1 second after its
creation, some finalizers were not removed in time, causing certain resources to remain. With
this update, all finalizers are properly deleted when the ClusterPodPlacementConfig object is
deleted. (MULTIARCH-5372)

3.12.3. Release notes for the Multiarch Tuning Operator 1.1.1

CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER

91

https://issues.redhat.com/browse/MULTIARCH-5767
https://issues.redhat.com/browse/MULTIARCH-5546
https://issues.redhat.com/browse/MULTIARCH-5538
https://issues.redhat.com/browse/MULTIARCH-5584
https://issues.redhat.com/browse/MULTIARCH-5611
https://issues.redhat.com/browse/MULTIARCH-5372

Issued: 27 May 2025

3.12.3.1. Bug fixes

Previously, the pod placement operand did not support authenticating registries using wildcard
entries in the hostname of their pull secret. This caused inconsistent behavior with Kubelet when
pulling images, because Kubelet supported wildcard entries while the operand required exact
hostname matches. As a result, image pulls could fail unexpectedly when registries used
wildcard hostnames.
With this release, the pod placement operand supports pull secrets that include wildcard
hostnames, ensuring consistent and reliable image authentication and pulling.

Previously, when image inspection failed after all retries and the nodeAffinityScoring plugin
was enabled, the pod placement operand applied incorrect nodeAffinityScoring labels.
With this release, the operand sets nodeAffinityScoring labels correctly, even when image
inspection fails. It now applies these labels independently of the required affinity process to
ensure accurate and consistent scheduling.

3.12.4. Release notes for the Multiarch Tuning Operator 1.1.0

Issued: 18 March 2025

3.12.4.1. New features and enhancements

The Multiarch Tuning Operator is now supported on managed offerings, including ROSA with
Hosted Control Planes (HCP) and other HCP environments.

With this release, you can configure architecture-aware workload scheduling by using the new
plugins field in the ClusterPodPlacementConfig object. You can use the
plugins.nodeAffinityScoring field to set architecture preferences for pod placement. If you
enable the nodeAffinityScoring plugin, the scheduler first filters out nodes that do not meet
the pod requirements. Then, the scheduler prioritizes the remaining nodes based on the
architecture scores defined in the nodeAffinityScoring.platforms field.

3.12.4.2. Bug fixes

With this release, the Multiarch Tuning Operator does not update the nodeAffinity field for
pods that are managed by a daemon set. (OCPBUGS-45885)

3.12.5. Release notes for the Multiarch Tuning Operator 1.0.0

Issued: 31 October 2024

3.12.5.1. New features and enhancements

With this release, the Multiarch Tuning Operator supports custom network scenarios and
cluster-wide custom registries configurations.

With this release, you can identify pods based on their architecture compatibility by using the
pod labels that the Multiarch Tuning Operator adds to newly created pods.

With this release, you can monitor the behavior of the Multiarch Tuning Operator by using the
metrics and alerts that are registered in the Cluster Monitoring Operator.

OpenShift Container Platform 4.18 Postinstallation configuration

92

https://issues.redhat.com/browse/OCPBUGS-45885

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS
After installing OpenShift Container Platform, you can further expand and customize your cluster to
your requirements.

4.1. AVAILABLE CLUSTER CUSTOMIZATIONS

You complete most of the cluster configuration and customization after you deploy your OpenShift
Container Platform cluster. A number of configuration resources are available.

NOTE

If you install your cluster on IBM Z®, not all features and functions are available.

You modify the configuration resources to configure the major features of the cluster, such as the
image registry, networking configuration, image build behavior, and the identity provider.

For current documentation of the settings that you control by using these resources, use the oc explain
command, for example oc explain builds --api-version=config.openshift.io/v1

4.1.1. Cluster configuration resources

All cluster configuration resources are globally scoped (not namespaced) and named cluster.

Resource name Description

apiserver.config
.openshift.io

Provides API server configuration such as certificates and certificate authorities.

authentication.c
onfig.openshift.i
o

Controls the identity provider and authentication configuration for the cluster.

build.config.ope
nshift.io

Controls default and enforced configuration for all builds on the cluster.

console.config.
openshift.io

Configures the behavior of the web console interface, including the logout behavior.

featuregate.conf
ig.openshift.io

Enables FeatureGates so that you can use Tech Preview features.

image.config.op
enshift.io

Configures how specific image registries should be treated (allowed, disallowed,
insecure, CA details).

ingress.config.o
penshift.io

Configuration details related to routing such as the default domain for routes.

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

93

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#api-server-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#understanding-identity-provider
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/builds_using_buildconfig/#build-configuration
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/web_console/#configuring-web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-cluster-enabling
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/images/#image-configuration
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#nw-installation-ingress-config-asset_ingress-operator

oauth.config.op
enshift.io

Configures identity providers and other behavior related to internal OAuth server flows.

project.config.o
penshift.io

Configures how projects are created including the project template.

proxy.config.op
enshift.io

Defines proxies to be used by components needing external network access. Note: not
all components currently consume this value.

scheduler.confi
g.openshift.io

Configures scheduler behavior such as profiles and default node selectors.

Resource name Description

4.1.2. Operator configuration resources

These configuration resources are cluster-scoped instances, named cluster, which control the behavior
of a specific component as owned by a particular Operator.

Resource name Description

consoles.operat
or.openshift.io

Controls console appearance such as branding customizations

config.imagereg
istry.operator.o
penshift.io

Configures OpenShift image registry settings such as public routing, log levels, proxy
settings, resource constraints, replica counts, and storage type.

config.samples.
operator.opens
hift.io

Configures the Samples Operator to control which example image streams and
templates are installed on the cluster.

4.1.3. Additional configuration resources

These configuration resources represent a single instance of a particular component. In some cases, you
can request multiple instances by creating multiple instances of the resource. In other cases, the
Operator can use only a specific resource instance name in a specific namespace. Reference the
component-specific documentation for details on how and when you can create additional resource
instances.

Resource
name

Instance
name

Namespace Description

alertmana
ger.monit
oring.core
os.com

main openshift-
monitorin
g

Controls the Alertmanager deployment parameters.

OpenShift Container Platform 4.18 Postinstallation configuration

94

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#configuring-internal-oauth
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/building_applications/#configuring-project-creation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-scheduler-profiles
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/registry/#registry-operator-configuration-resource-overview_configuring-registry-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/images/#configuring-samples-operator
https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.18/html/configuring_core_platform_monitoring/configuring-alerts-and-notifications

ingressco
ntroller.op
erator.ope
nshift.io

default openshift-
ingress-
operator

Configures Ingress Operator behavior such as domain,
number of replicas, certificates, and controller placement.

Resource
name

Instance
name

Namespace Description

4.1.4. Informational Resources

You use these resources to retrieve information about the cluster. Some configurations might require
you to edit these resources directly.

Resource
name

Instance name Description

clusterversio
n.config.ope
nshift.io

version In OpenShift Container Platform 4.18, you must not customize the
ClusterVersion resource for production clusters. Instead, follow the
process to update a cluster.

dns.config.o
penshift.io

cluster You cannot modify the DNS settings for your cluster. You can check the
DNS Operator status.

infrastructur
e.config.ope
nshift.io

cluster Configuration details allowing the cluster to interact with its cloud
provider.

network.conf
ig.openshift.i
o

cluster You cannot modify your cluster networking after installation. To
customize your network, follow the process to customize networking
during installation.

4.2. ADDING WORKER NODES

After you deploy your OpenShift Container Platform cluster, you can add worker nodes to scale cluster
resources. There are different ways you can add worker nodes depending on the installation method and
the environment of your cluster.

4.2.1. Adding worker nodes to an on-premise cluster

For on-premise clusters, you can add worker nodes by using the OpenShift Container Platform CLI (oc)
to generate an ISO image, which can then be used to boot one or more nodes in your target cluster. This
process can be used regardless of how you installed your cluster.

You can add one or more nodes at a time while customizing each node with more complex
configurations, such as static network configuration, or you can specify only the MAC address of each
node. Any configurations that are not specified during ISO generation are retrieved from the target
cluster and applied to the new nodes.

Preflight validation checks are also performed when booting the ISO image to inform you of failure-

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

95

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#configuring-ingress-controller
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#updating-cluster-web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#nw-dns-operator-status_dns-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#installing-aws-network-customizations

Preflight validation checks are also performed when booting the ISO image to inform you of failure-
causing issues before you attempt to boot each node.

Adding worker nodes to an on-premise cluster

4.2.2. Adding worker nodes to installer-provisioned infrastructure clusters

For installer-provisioned infrastructure clusters, you can manually or automatically scale the
MachineSet object to match the number of available bare-metal hosts.

To add a bare-metal host, you must configure all network prerequisites, configure an associated
baremetalhost object, then provision the worker node to the cluster. You can add a bare-metal host
manually or by using the web console.

Adding worker nodes using the web console

Adding worker nodes using YAML in the web console

Manually adding a worker node to an installer-provisioned infrastructure cluster

4.2.3. Adding worker nodes to user-provisioned infrastructure clusters

For user-provisioned infrastructure clusters, you can add worker nodes by using a RHEL or RHCOS ISO
image and connecting it to your cluster using cluster Ignition config files. For RHEL worker nodes, the
following example uses Ansible playbooks to add worker nodes to the cluster. For RHCOS worker nodes,
the following example uses an ISO image and network booting to add worker nodes to the cluster.

Adding RHCOS worker nodes to a user-provisioned infrastructure cluster

Adding RHEL worker nodes to a user-provisioned infrastructure cluster

4.2.4. Adding worker nodes to clusters managed by the Assisted Installer

For clusters managed by the Assisted Installer, you can add worker nodes by using the Red Hat
OpenShift Cluster Manager console, the Assisted Installer REST API or you can manually add worker
nodes using an ISO image and cluster Ignition config files.

Adding worker nodes using the OpenShift Cluster Manager

Adding worker nodes using the Assisted Installer REST API

Manually adding worker nodes to a SNO cluster

4.2.5. Adding worker nodes to clusters managed by the multicluster engine for
Kubernetes

For clusters managed by the multicluster engine for Kubernetes, you can add worker nodes by using the
dedicated multicluster engine console.

Creating your cluster with the console

4.3. ADJUST WORKER NODES

If you incorrectly sized the worker nodes during deployment, adjust them by creating one or more new

OpenShift Container Platform 4.18 Postinstallation configuration

96

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#adding-node-iso
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/scalability_and_performance/#adding-bare-metal-host-to-cluster-using-web-console_managing-bare-metal-hosts
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/scalability_and_performance/#adding-bare-metal-host-to-cluster-using-yaml_managing-bare-metal-hosts
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_bare_metal/#preparing-the-bare-metal-node_bare-metal-expanding-the-cluster
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#sno-adding-worker-nodes-to-sno-clusters_add-workers
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#adding-worker-nodes-using-the-assisted-installer-api
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#sno-adding-worker-nodes-to-single-node-clusters-manually_add-workers
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#on-prem-creating-your-cluster-with-the-console

If you incorrectly sized the worker nodes during deployment, adjust them by creating one or more new
compute machine sets, scale them up, then scale the original compute machine set down before
removing them.

4.3.1. Understanding the difference between compute machine sets and the
machine config pool

MachineSet objects describe OpenShift Container Platform nodes with respect to the cloud or machine
provider.

The MachineConfigPool object allows MachineConfigController components to define and provide
the status of machines in the context of upgrades.

The MachineConfigPool object allows users to configure how upgrades are rolled out to the OpenShift
Container Platform nodes in the machine config pool.

The NodeSelector object can be replaced with a reference to the MachineSet object.

4.3.2. Scaling a compute machine set manually

To add or remove an instance of a machine in a compute machine set, you can manually scale the
compute machine set.

This guidance is relevant to fully automated, installer-provisioned infrastructure installations.
Customized, user-provisioned infrastructure installations do not have compute machine sets.

Prerequisites

Install an OpenShift Container Platform cluster and the oc command line.

Log in to oc as a user with cluster-admin permission.

Procedure

1. View the compute machine sets that are in the cluster by running the following command:

The compute machine sets are listed in the form of <clusterid>-worker-<aws-region-az>.

2. View the compute machines that are in the cluster by running the following command:

3. Set the annotation on the compute machine that you want to delete by running the following
command:

4. Scale the compute machine set by running one of the following commands:

$ oc get machinesets.machine.openshift.io -n openshift-machine-api

$ oc get machines.machine.openshift.io -n openshift-machine-api

$ oc annotate machines.machine.openshift.io/<machine_name> -n openshift-machine-api
machine.openshift.io/delete-machine="true"

$ oc scale --replicas=2 machinesets.machine.openshift.io <machineset> -n openshift-
machine-api

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

97

Or:

TIP

You can alternatively apply the following YAML to scale the compute machine set:

You can scale the compute machine set up or down. It takes several minutes for the new
machines to be available.

IMPORTANT

By default, the machine controller tries to drain the node that is backed by the
machine until it succeeds. In some situations, such as with a misconfigured pod
disruption budget, the drain operation might not be able to succeed. If the drain
operation fails, the machine controller cannot proceed removing the machine.

You can skip draining the node by annotating machine.openshift.io/exclude-
node-draining in a specific machine.

Verification

Verify the deletion of the intended machine by running the following command:

4.3.3. The compute machine set deletion policy

Random, Newest, and Oldest are the three supported deletion options. The default is Random,
meaning that random machines are chosen and deleted when scaling compute machine sets down. The
deletion policy can be set according to the use case by modifying the particular compute machine set:

Specific machines can also be prioritized for deletion by adding the annotation
machine.openshift.io/delete-machine=true to the machine of interest, regardless of the deletion
policy.

IMPORTANT

$ oc edit machinesets.machine.openshift.io <machineset> -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <machineset>
 namespace: openshift-machine-api
spec:
 replicas: 2

$ oc get machines.machine.openshift.io

spec:
 deletePolicy: <delete_policy>
 replicas: <desired_replica_count>

OpenShift Container Platform 4.18 Postinstallation configuration

98

1

IMPORTANT

By default, the OpenShift Container Platform router pods are deployed on workers.
Because the router is required to access some cluster resources, including the web
console, do not scale the worker compute machine set to 0 unless you first relocate the
router pods.

NOTE

Custom compute machine sets can be used for use cases requiring that services run on
specific nodes and that those services are ignored by the controller when the worker
compute machine sets are scaling down. This prevents service disruption.

4.3.4. Creating default cluster-wide node selectors

You can use default cluster-wide node selectors on pods together with labels on nodes to constrain all
pods created in a cluster to specific nodes.

With cluster-wide node selectors, when you create a pod in that cluster, OpenShift Container Platform
adds the default node selectors to the pod and schedules the pod on nodes with matching labels.

You configure cluster-wide node selectors by editing the Scheduler Operator custom resource (CR).
You add labels to a node, a compute machine set, or a machine config. Adding the label to the compute
machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to
a node or machine config do not persist if the node or machine goes down.

NOTE

You can add additional key/value pairs to a pod. But you cannot add a different value for
a default key.

Procedure

To add a default cluster-wide node selector:

1. Edit the Scheduler Operator CR to add the default cluster-wide node selectors:

Example Scheduler Operator CR with a node selector

Add a node selector with the appropriate <key>:<value> pairs.

After making this change, wait for the pods in the openshift-kube-apiserver project to

$ oc edit scheduler cluster

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 name: cluster
...
spec:
 defaultNodeSelector: type=user-node,region=east 1
 mastersSchedulable: false

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

99

1

After making this change, wait for the pods in the openshift-kube-apiserver project to
redeploy. This can take several minutes. The default cluster-wide node selector does not take
effect until the pods redeploy.

2. Add labels to a node by using a compute machine set or editing the node directly:

Use a compute machine set to add labels to nodes managed by the compute machine set
when a node is created:

a. Run the following command to add labels to a MachineSet object:

Add a <key>/<value> pair for each label.

For example:

TIP

You can alternatively apply the following YAML to add labels to a compute machine set:

b. Verify that the labels are added to the MachineSet object by using the oc edit
command:
For example:

Example MachineSet object

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api 1

$ oc patch MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <machineset>
 namespace: openshift-machine-api
spec:
 template:
 spec:
 metadata:
 labels:
 region: "east"
 type: "user-node"

$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
 ...
spec:

OpenShift Container Platform 4.18 Postinstallation configuration

100

c. Redeploy the nodes associated with that compute machine set by scaling down to 0
and scaling up the nodes:
For example:

d. When the nodes are ready and available, verify that the label is added to the nodes by
using the oc get command:

For example:

Example output

Add labels directly to a node:

a. Edit the Node object for the node:

For example, to label a node:

TIP

 ...
 template:
 metadata:
 ...
 spec:
 metadata:
 labels:
 region: east
 type: user-node
 ...

$ oc scale --replicas=0 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

$ oc scale --replicas=1 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

$ oc get nodes -l <key>=<value>

$ oc get nodes -l type=user-node

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-c-vmqzp Ready worker 61s v1.31.3

$ oc label nodes <name> <key>=<value>

$ oc label nodes ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 type=user-node
region=east

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

101

TIP

You can alternatively apply the following YAML to add labels to a node:

b. Verify that the labels are added to the node using the oc get command:

For example:

Example output

4.4. IMPROVING CLUSTER STABILITY IN HIGH LATENCY
ENVIRONMENTS USING WORKER LATENCY PROFILES

If the cluster administrator has performed latency tests for platform verification, they can discover the
need to adjust the operation of the cluster to ensure stability in cases of high latency. The cluster
administrator needs to change only one parameter, recorded in a file, which controls four parameters
affecting how supervisory processes read status and interpret the health of the cluster. Changing only
the one parameter provides cluster tuning in an easy, supportable manner.

The Kubelet process provides the starting point for monitoring cluster health. The Kubelet sets status
values for all nodes in the OpenShift Container Platform cluster. The Kubernetes Controller Manager
(kube controller) reads the status values every 10 seconds, by default. If the kube controller cannot
read a node status value, it loses contact with that node after a configured period. The default behavior
is:

1. The node controller on the control plane updates the node health to Unhealthy and marks the
node Ready condition`Unknown`.

2. In response, the scheduler stops scheduling pods to that node.

3. The Node Lifecycle Controller adds a node.kubernetes.io/unreachable taint with a
NoExecute effect to the node and schedules any pods on the node for eviction after five
minutes, by default.

This behavior can cause problems if your network is prone to latency issues, especially if you have nodes
at the network edge. In some cases, the Kubernetes Controller Manager might not receive an update
from a healthy node due to network latency. The Kubelet evicts pods from the node even though the

kind: Node
apiVersion: v1
metadata:
 name: <node_name>
 labels:
 type: "user-node"
 region: "east"

$ oc get nodes -l <key>=<value>,<key>=<value>

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 Ready worker 17m v1.31.3

OpenShift Container Platform 4.18 Postinstallation configuration

102

node is healthy.

To avoid this problem, you can use worker latency profiles to adjust the frequency that the Kubelet and
the Kubernetes Controller Manager wait for status updates before taking action. These adjustments
help to ensure that your cluster runs properly if network latency between the control plane and the
worker nodes is not optimal.

These worker latency profiles contain three sets of parameters that are predefined with carefully tuned
values to control the reaction of the cluster to increased latency. There is no need to experimentally find
the best values manually.

You can configure worker latency profiles when installing a cluster or at any time you notice increased
latency in your cluster network.

4.4.1. Understanding worker latency profiles

Review the following information to learn about worker latency profiles, which allow you to control the
reaction of the cluster to latency issues without needing to determine the best values by using manual
methods.

Worker latency profiles are four different categories of carefully-tuned parameters. The four parameters
which implement these values are node-status-update-frequency, node-monitor-grace-period,
default-not-ready-toleration-seconds and default-unreachable-toleration-seconds.

IMPORTANT

Setting these parameters manually is not supported. Incorrect parameter settings
adversely affect cluster stability.

All worker latency profiles configure the following parameters:

node-status-update-frequency

Specifies how often the kubelet posts node status to the API server.

node-monitor-grace-period

Specifies the amount of time in seconds that the Kubernetes Controller Manager waits for an update
from a kubelet before marking the node unhealthy and adding the node.kubernetes.io/not-ready or
node.kubernetes.io/unreachable taint to the node.

default-not-ready-toleration-seconds

Specifies the amount of time in seconds after marking a node unhealthy that the Kube API Server
Operator waits before evicting pods from that node.

default-unreachable-toleration-seconds

Specifies the amount of time in seconds after marking a node unreachable that the Kube API Server
Operator waits before evicting pods from that node.

The following Operators monitor the changes to the worker latency profiles and respond accordingly:

The Machine Config Operator (MCO) updates the node-status-update-frequency parameter
on the worker nodes.

The Kubernetes Controller Manager updates the node-monitor-grace-period parameter on
the control plane nodes.

The Kubernetes API Server Operator updates the default-not-ready-toleration-seconds and

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

103

The Kubernetes API Server Operator updates the default-not-ready-toleration-seconds and
default-unreachable-toleration-seconds parameters on the control plane nodes.

Although the default configuration works in most cases, OpenShift Container Platform offers two other
worker latency profiles for situations where the network is experiencing higher latency than usual. The
three worker latency profiles are described in the following sections:

Default worker latency profile

With the Default profile, each Kubelet updates its status every 10 seconds (node-status-update-
frequency). The Kube Controller Manager checks the statuses of Kubelet every 5 seconds.
The Kubernetes Controller Manager waits 40 seconds (node-monitor-grace-period) for a status
update from Kubelet before considering the Kubelet unhealthy. If no status is made available to the
Kubernetes Controller Manager, it then marks the node with the node.kubernetes.io/not-ready or
node.kubernetes.io/unreachable taint and evicts the pods on that node.

If a pod is on a node that has the NoExecute taint, the pod runs according to tolerationSeconds. If
the node has no taint, it will be evicted in 300 seconds (default-not-ready-toleration-seconds and
default-unreachable-toleration-seconds settings of the Kube API Server).

Profile Component Parameter Value

Default kubelet node-status-update-
frequency

10s

Kubelet
Controller
Manager

node-monitor-grace-period 40s

Kubernetes
API Server
Operator

default-not-ready-
toleration-seconds

300s

Kubernetes
API Server
Operator

default-unreachable-
toleration-seconds

300s

Medium worker latency profile

Use the MediumUpdateAverageReaction profile if the network latency is slightly higher than usual.
The MediumUpdateAverageReaction profile reduces the frequency of kubelet updates to 20
seconds and changes the period that the Kubernetes Controller Manager waits for those updates to
2 minutes. The pod eviction period for a pod on that node is reduced to 60 seconds. If the pod has
the tolerationSeconds parameter, the eviction waits for the period specified by that parameter.

The Kubernetes Controller Manager waits for 2 minutes to consider a node unhealthy. In another
minute, the eviction process starts.

Profile Component Parameter Value

OpenShift Container Platform 4.18 Postinstallation configuration

104

MediumUpdateAverageReaction kubelet node-status-update-
frequency

20s

Kubelet
Controller
Manager

node-monitor-grace-period 2m

Kubernetes
API Server
Operator

default-not-ready-
toleration-seconds

60s

Kubernetes
API Server
Operator

default-unreachable-
toleration-seconds

60s

Profile Component Parameter Value

Low worker latency profile

Use the LowUpdateSlowReaction profile if the network latency is extremely high.
The LowUpdateSlowReaction profile reduces the frequency of kubelet updates to 1 minute and
changes the period that the Kubernetes Controller Manager waits for those updates to 5 minutes.
The pod eviction period for a pod on that node is reduced to 60 seconds. If the pod has the
tolerationSeconds parameter, the eviction waits for the period specified by that parameter.

The Kubernetes Controller Manager waits for 5 minutes to consider a node unhealthy. In another
minute, the eviction process starts.

Profile Component Parameter Value

LowUpdateSlowReaction kubelet node-status-update-
frequency

1m

Kubelet
Controller
Manager

node-monitor-grace-period 5m

Kubernetes
API Server
Operator

default-not-ready-
toleration-seconds

60s

Kubernetes
API Server
Operator

default-unreachable-
toleration-seconds

60s

NOTE

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

105

NOTE

The latency profiles do not support custom machine config pools, only the default worker
machine config pools.

4.4.2. Using and changing worker latency profiles

You can change a worker latency profile to deal with network latency at any time by editing the
node.config object. This allows you to ensure that your cluster runs properly if network latency between
the control plane and the worker nodes fluctuates.

You must move one worker latency profile at a time. For example, you cannot move directly from the
Default profile to the LowUpdateSlowReaction worker latency profile. You must move from the
Default worker latency profile to the MediumUpdateAverageReaction profile first, then to
LowUpdateSlowReaction. Similarly, when returning to the Default profile, you must move from the low
profile to the medium profile first, then to Default.

NOTE

You can also configure worker latency profiles upon installing an OpenShift Container
Platform cluster.

Procedure

1. Move to the medium worker latency profile:

a. Edit the node.config object:

b. Add spec.workerLatencyProfile: MediumUpdateAverageReaction:

Example node.config object

$ oc edit nodes.config/cluster

apiVersion: config.openshift.io/v1
kind: Node
metadata:
 annotations:
 include.release.openshift.io/ibm-cloud-managed: "true"
 include.release.openshift.io/self-managed-high-availability: "true"
 include.release.openshift.io/single-node-developer: "true"
 release.openshift.io/create-only: "true"
 creationTimestamp: "2022-07-08T16:02:51Z"
 generation: 1
 name: cluster
 ownerReferences:
 - apiVersion: config.openshift.io/v1
 kind: ClusterVersion
 name: version
 uid: 36282574-bf9f-409e-a6cd-3032939293eb
 resourceVersion: "1865"
 uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:

OpenShift Container Platform 4.18 Postinstallation configuration

106

where:

spec.workerLatencyProfile.MediumUpdateAverageReaction

Specifies that the medium worker latency policy should be used.

Scheduling on each worker node is disabled as the change is being applied.

2. Optional: Move to the low worker latency profile:

a. Edit the node.config object:

b. Change the spec.workerLatencyProfile value to LowUpdateSlowReaction:

Example node.config object

where:

spec.workerLatencyProfile.LowUpdateSlowReaction

Specifies that the low worker latency policy should be used.

Scheduling on each worker node is disabled as the change is being applied.

Verification

When all nodes return to the Ready condition, you can use the following command to look in the

 workerLatencyProfile: MediumUpdateAverageReaction

...

$ oc edit nodes.config/cluster

apiVersion: config.openshift.io/v1
kind: Node
metadata:
 annotations:
 include.release.openshift.io/ibm-cloud-managed: "true"
 include.release.openshift.io/self-managed-high-availability: "true"
 include.release.openshift.io/single-node-developer: "true"
 release.openshift.io/create-only: "true"
 creationTimestamp: "2022-07-08T16:02:51Z"
 generation: 1
 name: cluster
 ownerReferences:
 - apiVersion: config.openshift.io/v1
 kind: ClusterVersion
 name: version
 uid: 36282574-bf9f-409e-a6cd-3032939293eb
 resourceVersion: "1865"
 uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:
 workerLatencyProfile: LowUpdateSlowReaction 1

...

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

107

When all nodes return to the Ready condition, you can use the following command to look in the
Kubernetes Controller Manager to ensure it was applied:

Example output

where:

status.message: all static pod revision(s) have updated latency profile

Specifies that the profile is applied and active.

To change the medium profile to default or change the default to medium, edit the node.config object
and set the spec.workerLatencyProfile parameter to the appropriate value.

4.5. MANAGING CONTROL PLANE MACHINES

Control plane machine sets provide management capabilities for control plane machines that are similar
to what compute machine sets provide for compute machines. The availability and initial status of
control plane machine sets on your cluster depend on your cloud provider and the version of OpenShift
Container Platform that you installed. For more information, see Getting started with control plane
machine sets.

4.5.1. Adding a control plane node to your cluster

When installing a cluster on bare-metal infrastructure, you can manually scale up to 4 or 5 control plane
nodes for your cluster. The example in the procedure uses node-5 as the new control plane node.

Prerequisites

You have installed a healthy cluster with at least three control plane nodes.

You have created a single control plane node that you intend to add to your cluster as a
postinstalltion task.

$ oc get KubeControllerManager -o yaml | grep -i workerlatency -A 5 -B 5

...
 - lastTransitionTime: "2022-07-11T19:47:10Z"
 reason: ProfileUpdated
 status: "False"
 type: WorkerLatencyProfileProgressing
 - lastTransitionTime: "2022-07-11T19:47:10Z"
 message: all static pod revision(s) have updated latency profile
 reason: ProfileUpdated
 status: "True"
 type: WorkerLatencyProfileComplete
 - lastTransitionTime: "2022-07-11T19:20:11Z"
 reason: AsExpected
 status: "False"
 type: WorkerLatencyProfileDegraded
 - lastTransitionTime: "2022-07-11T19:20:36Z"
 status: "False"
...

OpenShift Container Platform 4.18 Postinstallation configuration

108

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_management/#cpmso-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_management/#cpmso-getting-started

Procedure

1. Retrieve pending Certificate Signing Requests (CSRs) for the new control plane node by
entering the following command:

2. Approve all pending CSRs for the control plane node by entering the following command:

IMPORTANT

You must approve the CSRs to complete the installation.

3. Confirm that the control plane node is in the Ready status by entering the following command:

NOTE

On installer-provisioned infrastructure, the etcd Operator relies on the Machine
API to manage the control plane and ensure etcd quorum. The Machine API then
uses Machine CRs to represent and manage the underlying control plane nodes.

4. Create the BareMetalHost and Machine CRs and link them to the Node CR of the control
plane node.

a. Create the BareMetalHost CR with a unique .metadata.name value as demonstrated in the
following example:

b. Apply the BareMetalHost CR by entering the following command:

$ oc get csr | grep Pending

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}
{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get nodes

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: node-5
 namespace: openshift-machine-api
spec:
 automatedCleaningMode: metadata
 bootMACAddress: 00:00:00:00:00:02
 bootMode: UEFI
 customDeploy:
 method: install_coreos
 externallyProvisioned: true
 online: true
 userData:
 name: master-user-data-managed
 namespace: openshift-machine-api
...

$ oc apply -f <filename> 1

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

109

1 1

1

1

Replace <filename> with the name of the BareMetalHost CR.

c. Create the Machine CR by using the unique .metadata.name value as demonstrated in the
following example:

Replace <cluster_name> with the name of the specific cluster, for example, test-
day2-1-6qv96.

d. Get the cluster name by running the following command:

e. Apply the Machine CR by entering the following command:

Replace <filename> with the name of the Machine CR.

f. Link BareMetalHost, Machine, and Node objects by running the link-machine-and-

apiVersion: machine.openshift.io/v1beta1
kind: Machine
metadata:
 annotations:
 machine.openshift.io/instance-state: externally provisioned
 metal3.io/BareMetalHost: openshift-machine-api/node-5
 finalizers:
 - machine.machine.openshift.io
 labels:
 machine.openshift.io/cluster-api-cluster: <cluster_name> 1
 machine.openshift.io/cluster-api-machine-role: master
 machine.openshift.io/cluster-api-machine-type: master
 name: node-5
 namespace: openshift-machine-api
spec:
 metadata: {}
 providerSpec:
 value:
 apiVersion: baremetal.cluster.k8s.io/v1alpha1
 customDeploy:
 method: install_coreos
 hostSelector: {}
 image:
 checksum: ""
 url: ""
 kind: BareMetalMachineProviderSpec
 metadata:
 creationTimestamp: null
 userData:
 name: master-user-data-managed
...

$ oc get infrastructure cluster -o=jsonpath='{.status.infrastructureName}{"\n"}'

$ oc apply -f <filename> 1

OpenShift Container Platform 4.18 Postinstallation configuration

110

f. Link BareMetalHost, Machine, and Node objects by running the link-machine-and-
node.sh script:

i. Copy the following link-machine-and-node.sh script to a local machine:

#!/bin/bash

Credit goes to
https://bugzilla.redhat.com/show_bug.cgi?id=1801238.
This script will link Machine object
and Node object. This is needed
in order to have IP address of
the Node present in the status of the Machine.

set -e

machine="$1"
node="$2"

if [-z "$machine"] || [-z "$node"]; then
 echo "Usage: $0 MACHINE NODE"
 exit 1
fi

node_name=$(echo "${node}" | cut -f2 -d':')

oc proxy &
proxy_pid=$!
function kill_proxy {
 kill $proxy_pid
}
trap kill_proxy EXIT SIGINT

HOST_PROXY_API_PATH="http://localhost:8001/apis/metal3.io/v1alpha1/namespace
s/openshift-machine-api/baremetalhosts"

function print_nics() {
 local ips
 local eob
 declare -a ips

 readarray -t ips < <(echo "${1}" \
 | jq '.[] | select(. | .type == "InternalIP") | .address' \
 | sed 's/"//g')

 eob=','
 for ((i=0; i<${#ips[@]}; i++)); do
 if [$((i+1)) -eq ${#ips[@]}]; then
 eob=""
 fi
 cat <<- EOF
 {
 "ip": "${ips[$i]}",
 "mac": "00:00:00:00:00:00",
 "model": "unknown",
 "speedGbps": 10,

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

111

 "vlanId": 0,
 "pxe": true,
 "name": "eth1"
 }${eob}
EOF
 done
}

function wait_for_json() {
 local name
 local url
 local curl_opts
 local timeout

 local start_time
 local curr_time
 local time_diff

 name="$1"
 url="$2"
 timeout="$3"
 shift 3
 curl_opts="$@"
 echo -n "Waiting for $name to respond"
 start_time=$(date +%s)
 until curl -g -X GET "$url" "${curl_opts[@]}" 2> /dev/null | jq '.' 2> /dev/null >
/dev/null; do
 echo -n "."
 curr_time=$(date +%s)
 time_diff=$((curr_time - start_time))
 if [[$time_diff -gt $timeout]]; then
 printf '\nTimed out waiting for %s' "${name}"
 return 1
 fi
 sleep 5
 done
 echo " Success!"
 return 0
}
wait_for_json oc_proxy "${HOST_PROXY_API_PATH}" 10 -H "Accept:
application/json" -H "Content-Type: application/json"

addresses=$(oc get node -n openshift-machine-api "${node_name}" -o json | jq -c
'.status.addresses')

machine_data=$(oc get machines.machine.openshift.io -n openshift-machine-api -o
json "${machine}")
host=$(echo "$machine_data" | jq
'.metadata.annotations["metal3.io/BareMetalHost"]' | cut -f2 -d/ | sed 's/"//g')

if [-z "$host"]; then
 echo "Machine $machine is not linked to a host yet." 1>&2
 exit 1
fi

The address structure on the host doesn't match the node, so extract

OpenShift Container Platform 4.18 Postinstallation configuration

112

ii. Make the script executable by entering the following command:

the values we want into separate variables so we can build the patch
we need.
hostname=$(echo "${addresses}" | jq '.[] | select(. | .type == "Hostname") | .address' |
sed 's/"//g')

set +e
read -r -d '' host_patch << EOF
{
 "status": {
 "hardware": {
 "hostname": "${hostname}",
 "nics": [
$(print_nics "${addresses}")
],
 "systemVendor": {
 "manufacturer": "Red Hat",
 "productName": "product name",
 "serialNumber": ""
 },
 "firmware": {
 "bios": {
 "date": "04/01/2014",
 "vendor": "SeaBIOS",
 "version": "1.11.0-2.el7"
 }
 },
 "ramMebibytes": 0,
 "storage": [],
 "cpu": {
 "arch": "x86_64",
 "model": "Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz",
 "clockMegahertz": 2199.998,
 "count": 4,
 "flags": []
 }
 }
 }
}
EOF
set -e

echo "PATCHING HOST"
echo "${host_patch}" | jq .

curl -s \
 -X PATCH \
 "${HOST_PROXY_API_PATH}/${host}/status" \
 -H "Content-type: application/merge-patch+json" \
 -d "${host_patch}"

oc get baremetalhost -n openshift-machine-api -o yaml "${host}"

$ chmod +x link-machine-and-node.sh

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

113

iii. Run the script by entering the following command:

NOTE

The first node-5 instance represents the machine, and the second
instance represents the node.

Verification

1. Confirm members of etcd by executing into one of the pre-existing control plane nodes:

a. Open a remote shell session to the control plane node by entering the following command:

b. List etcd members:

2. Check the etcd Operator configuration process until completion by entering the following
command. Expected output shows False under the PROGRESSING column.

3. Confirm etcd health by running the following commands:

a. Open a remote shell session to the control plane node:

b. Check endpoint health. Expected output shows is healthy for the endpoint.

4. Verify that all nodes are ready by entering the following command. The expected output shows
the Ready status beside each node entry.

5. Verify that the cluster Operators are all available by entering the following command. Expected
output lists each Operator and shows the available status as True beside each listed Operator.

6. Verify that the cluster version is correct by entering the following command:

Example output

$ bash link-machine-and-node.sh node-5 node-5

$ oc rsh -n openshift-etcd etcd-node-0

etcdctl member list -w table

$ oc get clusteroperator etcd

$ oc rsh -n openshift-etcd etcd-node-0

etcdctl endpoint health

$ oc get nodes

$ oc get ClusterOperators

$ oc get ClusterVersion

OpenShift Container Platform 4.18 Postinstallation configuration

114

4.6. CREATING INFRASTRUCTURE MACHINE SETS FOR PRODUCTION
ENVIRONMENTS

You can create a compute machine set to create machines that host only infrastructure components,
such as the default router, the integrated container image registry, and components for cluster metrics
and monitoring. These infrastructure machines are not counted toward the total number of subscriptions
that are required to run the environment.

For information on infrastructure nodes and which components can run on infrastructure nodes, see
Creating infrastructure machine sets.

To create an infrastructure node, you can use a machine set, assign a label to the nodes , or use a
machine config pool.

For sample machine sets that you can use with these procedures, see Creating machine sets for
different clouds.

Applying a specific node selector to all infrastructure components causes OpenShift Container Platform
to schedule those workloads on nodes with that label .

4.6.1. Creating a compute machine set

In addition to the compute machine sets created by the installation program, you can create your own to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. Create a new YAML file that contains the compute machine set custom resource (CR) sample
and is named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

2. Optional: If you are not sure which value to set for a specific field, you can check an existing
compute machine set from your cluster.

a. To list the compute machine sets in your cluster, run the following command:

Example output

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version OpenShift Container Platform.5 True False 5h57m Cluster version is
OpenShift Container Platform.5

$ oc get machinesets -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

115

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_management/#creating-infrastructure-machinesets
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_management/#creating-infrastructure-machinesets-clouds

1

2

3

b. To view values of a specific compute machine set custom resource (CR), run the following
command:

Example output

The cluster infrastructure ID.

A default node label.

NOTE

For clusters that have user-provisioned infrastructure, a compute
machine set can only create worker and infra type machines.

The values in the <providerSpec> section of the compute machine set CR are
platform-specific. For more information about <providerSpec> parameters in the CR,
see the sample compute machine set CR configuration for your provider.

3. Create a MachineSet CR by running the following command:

agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

$ oc get machineset <machineset_name> \
 -n openshift-machine-api -o yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-<role> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: <role>
 machine.openshift.io/cluster-api-machine-type: <role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 spec:
 providerSpec: 3
 ...

OpenShift Container Platform 4.18 Postinstallation configuration

116

Verification

View the list of compute machine sets by running the following command:

Example output

When the new compute machine set is available, the DESIRED and CURRENT values match. If
the compute machine set is not available, wait a few minutes and run the command again.

4.6.2. Creating an infrastructure node

IMPORTANT

See "Creating infrastructure machine sets" for installer-provisioned infrastructure
environments or for any cluster where the control plane nodes are managed by the
machine API.

You can use labels to configure worker nodes as infrastructure nodes, where you can move
infrastructure resources.

After you create the infrastructure nodes, you can move appropriate workloads to those nodes by using
taints and tolerations.

You can optionally create a default cluster-wide node selector. The default node selector is applied to
pods created in all namespaces and creates an intersection with any existing node selectors on a pod,
which additionally constrains the pod’s selector.

IMPORTANT

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-infra-us-east-1a 1 1 1 1 11m
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

117

IMPORTANT

If the default node selector key conflicts with the key of a pod’s label, then the default
node selector is not applied.

However, do not set a default node selector that might cause a pod to become
unschedulable. For example, setting the default node selector to a specific node role,
such as node-role.kubernetes.io/infra="", when a pod’s label is set to a different node
role, such as node-role.kubernetes.io/master="", can cause the pod to become
unschedulable. For this reason, use caution when setting the default node selector to
specific node roles.

You can alternatively use a project node selector to avoid cluster-wide node selector key
conflicts.

Procedure

1. Add a label to the worker nodes that you want to act as infrastructure nodes:

2. Check to see if applicable nodes now have the infra role:

3. Optional: Create a default cluster-wide node selector:

a. Edit the Scheduler object:

b. Add the defaultNodeSelector field with the appropriate node selector:

This example node selector deploys pods on infrastructure nodes by default.

c. Save the file to apply the changes.

You can now move infrastructure resources to the new infrastructure nodes. Also, remove any
workloads that you do not want, or that do not belong, on the new infrastructure node. See the
list of workloads supported for use on infrastructure nodes in "OpenShift Container Platform
infrastructure components".

Additional resources

For information on how to configure project node selectors to avoid cluster-wide node selector
key conflicts, see Project node selectors .

$ oc label node <node-name> node-role.kubernetes.io/infra=""

$ oc get nodes

$ oc edit scheduler cluster

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 name: cluster
spec:
 defaultNodeSelector: node-role.kubernetes.io/infra=""
...

OpenShift Container Platform 4.18 Postinstallation configuration

118

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#project-node-selectors_nodes-scheduler-node-selectors

1

2

4.6.3. Creating a machine config pool for infrastructure machines

If you need infrastructure machines to have dedicated configurations, you must create an infra pool.

IMPORTANT

Creating a custom machine configuration pool overrides default worker pool
configurations if they refer to the same file or unit.

Procedure

1. Add a label to the node you want to assign as the infra node with a specific label:

2. Create a machine config pool that contains both the worker role and your custom role as
machine config selector:

Example output

Add the worker role and your custom role.

Add the label you added to the node as a nodeSelector.

NOTE

Custom machine config pools inherit machine configs from the worker pool.
Custom pools use any machine config targeted for the worker pool, but add the
ability to also deploy changes that are targeted at only the custom pool. Because
a custom pool inherits resources from the worker pool, any change to the worker
pool also affects the custom pool.

3. After you have the YAML file, you can create the machine config pool:

$ oc label node <node_name> <label>

$ oc label node ci-ln-n8mqwr2-f76d1-xscn2-worker-c-6fmtx node-role.kubernetes.io/infra=

$ cat infra.mcp.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: infra
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,infra]} 1
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/infra: "" 2

$ oc create -f infra.mcp.yaml

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

119

4. Check the machine configs to ensure that the infrastructure configuration rendered
successfully:

Example output

You should see a new machine config, with the rendered-infra-* prefix.

$ oc get machineconfig

NAME GENERATEDBYCONTROLLER
IGNITIONVERSION CREATED
00-master 365c1cfd14de5b0e3b85e0fc815b0060f36ab955
3.2.0 31d
00-worker 365c1cfd14de5b0e3b85e0fc815b0060f36ab955
3.2.0 31d
01-master-container-runtime
365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 31d
01-master-kubelet 365c1cfd14de5b0e3b85e0fc815b0060f36ab955
3.2.0 31d
01-worker-container-runtime
365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 31d
01-worker-kubelet 365c1cfd14de5b0e3b85e0fc815b0060f36ab955
3.2.0 31d
99-master-1ae2a1e0-a115-11e9-8f14-005056899d54-registries
365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 31d
99-master-ssh 3.2.0 31d
99-worker-1ae64748-a115-11e9-8f14-005056899d54-registries
365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 31d
99-worker-ssh 3.2.0 31d
rendered-infra-4e48906dca84ee702959c71a53ee80e7
365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 23m
rendered-master-072d4b2da7f88162636902b074e9e28e
5b6fb8349a29735e48446d435962dec4547d3090 3.2.0 31d
rendered-master-3e88ec72aed3886dec061df60d16d1af
02c07496ba0417b3e12b78fb32baf6293d314f79 3.2.0 31d
rendered-master-419bee7de96134963a15fdf9dd473b25
365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 17d
rendered-master-53f5c91c7661708adce18739cc0f40fb
365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 13d
rendered-master-a6a357ec18e5bce7f5ac426fc7c5ffcd
365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 7d3h
rendered-master-dc7f874ec77fc4b969674204332da037
5b6fb8349a29735e48446d435962dec4547d3090 3.2.0 31d
rendered-worker-1a75960c52ad18ff5dfa6674eb7e533d
5b6fb8349a29735e48446d435962dec4547d3090 3.2.0 31d
rendered-worker-2640531be11ba43c61d72e82dc634ce6
5b6fb8349a29735e48446d435962dec4547d3090 3.2.0 31d
rendered-worker-4e48906dca84ee702959c71a53ee80e7
365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 7d3h
rendered-worker-4f110718fe88e5f349987854a1147755
365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 17d
rendered-worker-afc758e194d6188677eb837842d3b379
02c07496ba0417b3e12b78fb32baf6293d314f79 3.2.0 31d
rendered-worker-daa08cc1e8f5fcdeba24de60cd955cc3
365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 13d

OpenShift Container Platform 4.18 Postinstallation configuration

120

1

5. Optional: To deploy changes to a custom pool, create a machine config that uses the custom
pool name as the label, such as infra. Note that this is not required and only shown for
instructional purposes. In this manner, you can apply any custom configurations specific to only
your infra nodes.

NOTE

After you create the new machine config pool, the MCO generates a new
rendered config for that pool, and associated nodes of that pool reboot to apply
the new configuration.

a. Create a machine config:

Example output

Add the label you added to the node as a nodeSelector.

b. Apply the machine config to the infra-labeled nodes:

6. Confirm that your new machine config pool is available:

Example output

$ cat infra.mc.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 name: 51-infra
 labels:
 machineconfiguration.openshift.io/role: infra 1
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - path: /etc/infratest
 mode: 0644
 contents:
 source: data:,infra

$ oc create -f infra.mc.yaml

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
infra rendered-infra-60e35c2e99f42d976e084fa94da4d0fc True False False 1
1 1 0 4m20s
master rendered-master-9360fdb895d4c131c7c4bebbae099c90 True False False

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

121

In this example, a worker node was changed to an infra node.

Additional resources

See Node configuration management with machine config pools for more information on
grouping infra machines in a custom pool.

4.7. ASSIGNING MACHINE SET RESOURCES TO INFRASTRUCTURE
NODES

After creating an infrastructure machine set, the worker and infra roles are applied to new infra nodes.
Nodes with the infra role are not counted toward the total number of subscriptions that are required to
run the environment, even when the worker role is also applied.

However, when an infra node is assigned the worker role, there is a chance that user workloads can get
assigned inadvertently to the infra node. To avoid this, you can apply a taint to the infra node and
tolerations for the pods that you want to control.

4.7.1. Binding infrastructure node workloads using taints and tolerations

If you have an infrastructure node that has the infra and worker roles assigned, you must configure the
node so that user workloads are not assigned to it.

IMPORTANT

It is recommended that you preserve the dual infra,worker label that is created for
infrastructure nodes and use taints and tolerations to manage nodes that user workloads
are scheduled on. If you remove the worker label from the node, you must create a
custom pool to manage it. A node with a label other than master or worker is not
recognized by the MCO without a custom pool. Maintaining the worker label allows the
node to be managed by the default worker machine config pool, if no custom pools that
select the custom label exists. The infra label communicates to the cluster that it does
not count toward the total number of subscriptions.

Prerequisites

Configure additional MachineSet objects in your OpenShift Container Platform cluster.

Procedure

1. Add a taint to the infrastructure node to prevent scheduling user workloads on it:

a. Determine if the node has the taint:

Sample output

3 3 3 0 91m
worker rendered-worker-60e35c2e99f42d976e084fa94da4d0fc True False False
2 2 2 0 91m

$ oc describe nodes <node_name>

oc describe node ci-ln-iyhx092-f76d1-nvdfm-worker-b-wln2l

OpenShift Container Platform 4.18 Postinstallation configuration

122

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/architecture/#architecture-machine-config-pools_control-plane

This example shows that the node has a taint. You can proceed with adding a toleration to
your pod in the next step.

b. If you have not configured a taint to prevent scheduling user workloads on it:

For example:

TIP

You can alternatively edit the pod specification to add the taint:

These examples place a taint on node1 that has the node-role.kubernetes.io/infra key and
the NoSchedule taint effect. Nodes with the NoSchedule effect schedule only pods that
tolerate the taint, but allow existing pods to remain scheduled on the node.

If you added a NoSchedule taint to the infrastructure node, any pods that are controlled by
a daemon set on that node are marked as misscheduled. You must either delete the pods
or add a toleration to the pods as shown in the Red Hat Knowledgebase solution add
toleration on misscheduled DNS pods. Note that you cannot add a toleration to a daemon
set object that is managed by an operator.

NOTE

If a descheduler is used, pods violating node taints could be evicted from the
cluster.

2. Add tolerations to the pods that you want to schedule on the infrastructure node, such as the
router, registry, and monitoring workloads. Referencing the previous examples, add the
following tolerations to the Pod object specification:

Name: ci-ln-iyhx092-f76d1-nvdfm-worker-b-wln2l
Roles: worker
 ...
Taints: node-role.kubernetes.io/infra=reserved:NoSchedule
 ...

$ oc adm taint nodes <node_name> <key>=<value>:<effect>

$ oc adm taint nodes node1 node-role.kubernetes.io/infra=reserved:NoSchedule

apiVersion: v1
kind: Node
metadata:
 name: node1
...
spec:
 taints:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
...

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

123

https://access.redhat.com/solutions/6592171

1

2

3

4

Specify the key that you added to the node.

Specify the value of the key-value pair taint that you added to the node.

Specify the effect that you added to the node.

Specify the Equal Operator to require a taint with the key node-role.kubernetes.io/infra
to be present on the node.

This toleration matches the taint created by the oc adm taint command. A pod with this
toleration can be scheduled onto the infrastructure node.

NOTE

Moving pods for an Operator installed via OLM to an infrastructure node is not
always possible. The capability to move Operator pods depends on the
configuration of each Operator.

3. Schedule the pod to the infrastructure node by using a scheduler. See the documentation for
"Controlling pod placement using the scheduler" for details.

4. Remove any workloads that you do not want, or that do not belong, on the new infrastructure
node. See the list of workloads supported for use on infrastructure nodes in "OpenShift
Container Platform infrastructure components".

Additional resources

See Controlling pod placement using the scheduler for general information on scheduling a pod
to a node.

4.8. MOVING RESOURCES TO INFRASTRUCTURE MACHINE SETS

Some of the infrastructure resources are deployed in your cluster by default. You can move them to the
infrastructure machine sets that you created.

4.8.1. Moving the router

You can deploy the router pod to a different compute machine set. By default, the pod is deployed to a
worker node.

apiVersion: v1
kind: Pod
metadata:
 annotations:

...
spec:
...
 tolerations:
 - key: node-role.kubernetes.io/infra 1
 value: reserved 2
 effect: NoSchedule 3
 operator: Equal 4

OpenShift Container Platform 4.18 Postinstallation configuration

124

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-scheduler-about

Prerequisites

Configure additional compute machine sets in your OpenShift Container Platform cluster.

Procedure

1. View the IngressController custom resource for the router Operator:

The command output resembles the following text:

2. Edit the ingresscontroller resource and change the nodeSelector to use the infra label:

$ oc get ingresscontroller default -n openshift-ingress-operator -o yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: 2019-04-18T12:35:39Z
 finalizers:
 - ingresscontroller.operator.openshift.io/finalizer-ingresscontroller
 generation: 1
 name: default
 namespace: openshift-ingress-operator
 resourceVersion: "11341"
 selfLink: /apis/operator.openshift.io/v1/namespaces/openshift-ingress-
operator/ingresscontrollers/default
 uid: 79509e05-61d6-11e9-bc55-02ce4781844a
spec: {}
status:
 availableReplicas: 2
 conditions:
 - lastTransitionTime: 2019-04-18T12:36:15Z
 status: "True"
 type: Available
 domain: apps.<cluster>.example.com
 endpointPublishingStrategy:
 type: LoadBalancerService
 selector: ingresscontroller.operator.openshift.io/deployment-ingresscontroller=default

$ oc edit ingresscontroller default -n openshift-ingress-operator

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: "2025-03-26T21:15:43Z"
 finalizers:
 - ingresscontroller.operator.openshift.io/finalizer-ingresscontroller
 generation: 1
 name: default
...
spec:
 nodePlacement:
 nodeSelector: 1
 matchLabels:

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

125

1

1

Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector parameter in the format shown or use <key>: <value>
pairs, based on the value specified for the node. If you added a taint to the infrastructure
node, also add a matching toleration.

3. Confirm that the router pod is running on the infra node.

a. View the list of router pods and note the node name of the running pod:

Example output

In this example, the running pod is on the ip-10-0-217-226.ec2.internal node.

b. View the node status of the running pod:

Specify the <node_name> that you obtained from the pod list.

Example output

Because the role list includes infra, the pod is running on the correct node.

4.8.2. Moving the default registry

You configure the registry Operator to deploy its pods to different nodes.

Prerequisites

Configure additional compute machine sets in your OpenShift Container Platform cluster.

Procedure

 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved
...

$ oc get pod -n openshift-ingress -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
router-default-86798b4b5d-bdlvd 1/1 Running 0 28s 10.130.2.4 ip-10-
0-217-226.ec2.internal <none> <none>
router-default-955d875f4-255g8 0/1 Terminating 0 19h 10.129.2.4 ip-10-
0-148-172.ec2.internal <none> <none>

$ oc get node <node_name> 1

NAME STATUS ROLES AGE VERSION
ip-10-0-217-226.ec2.internal Ready infra,worker 17h v1.31.3

OpenShift Container Platform 4.18 Postinstallation configuration

126

1. View the config/instance object:

Example output

2. Edit the config/instance object:

$ oc get configs.imageregistry.operator.openshift.io/cluster -o yaml

apiVersion: imageregistry.operator.openshift.io/v1
kind: Config
metadata:
 creationTimestamp: 2019-02-05T13:52:05Z
 finalizers:
 - imageregistry.operator.openshift.io/finalizer
 generation: 1
 name: cluster
 resourceVersion: "56174"
 selfLink: /apis/imageregistry.operator.openshift.io/v1/configs/cluster
 uid: 36fd3724-294d-11e9-a524-12ffeee2931b
spec:
 httpSecret: d9a012ccd117b1e6616ceccb2c3bb66a5fed1b5e481623
 logging: 2
 managementState: Managed
 proxy: {}
 replicas: 1
 requests:
 read: {}
 write: {}
 storage:
 s3:
 bucket: image-registry-us-east-1-c92e88cad85b48ec8b312344dff03c82-392c
 region: us-east-1
status:
...

$ oc edit configs.imageregistry.operator.openshift.io/cluster

apiVersion: imageregistry.operator.openshift.io/v1
kind: Config
metadata:
 name: cluster
...
spec:
 logLevel: Normal
 managementState: Managed
 nodeSelector: 1
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

127

1 Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector parameter in the format shown or use <key>: <value>

3. Verify the registry pod has been moved to the infrastructure node.

a. Run the following command to identify the node where the registry pod is located:

b. Confirm the node has the label you specified:

Review the command output and confirm that node-role.kubernetes.io/infra is in the
LABELS list.

4.8.3. Moving the monitoring solution

The monitoring stack includes multiple components, including Prometheus, Thanos Querier, and
Alertmanager. The Cluster Monitoring Operator manages this stack. To redeploy the monitoring stack
to infrastructure nodes, you can create and apply a custom config map.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config config map and change the nodeSelector to use the infra
label:

$ oc get pods -o wide -n openshift-image-registry

$ oc describe node <node_name>

$ oc edit configmap cluster-monitoring-config -n openshift-monitoring

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |+
 alertmanagerMain:
 nodeSelector: 1
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 prometheusK8s:
 nodeSelector:

OpenShift Container Platform 4.18 Postinstallation configuration

128

Add a nodeSelector parameter with the appropriate value to the component you want to

 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 prometheusOperator:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 metricsServer:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 kubeStateMetrics:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 telemeterClient:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 openshiftStateMetrics:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 thanosQuerier:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule
 monitoringPlugin:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - key: node-role.kubernetes.io/infra
 value: reserved
 effect: NoSchedule

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

129

1 Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector parameter in the format shown or use <key>: <value>
pairs, based on the value specified for the node. If you added a taint to the infrastructure
node, also add a matching toleration.

2. Watch the monitoring pods move to the new machines:

3. If a component has not moved to the infra node, delete the pod with this component:

The component from the deleted pod is re-created on the infra node.

4.9. ABOUT THE CLUSTER AUTOSCALER

The cluster autoscaler adjusts the size of an OpenShift Container Platform cluster to meet its current
deployment needs. It uses declarative, Kubernetes-style arguments to provide infrastructure
management that does not rely on objects of a specific cloud provider. The cluster autoscaler has a
cluster scope, and is not associated with a particular namespace.

The cluster autoscaler increases the size of the cluster when there are pods that fail to schedule on any
of the current worker nodes due to insufficient resources or when another node is necessary to meet
deployment needs. The cluster autoscaler does not increase the cluster resources beyond the limits
that you specify.

The cluster autoscaler computes the total memory, CPU, and GPU on all nodes the cluster, even though
it does not manage the control plane nodes. These values are not single-machine oriented. They are an
aggregation of all the resources in the entire cluster. For example, if you set the maximum memory
resource limit, the cluster autoscaler includes all the nodes in the cluster when calculating the current
memory usage. That calculation is then used to determine if the cluster autoscaler has the capacity to
add more worker resources.

IMPORTANT

Ensure that the maxNodesTotal value in the ClusterAutoscaler resource definition that
you create is large enough to account for the total possible number of machines in your
cluster. This value must encompass the number of control plane machines and the
possible number of compute machines that you might scale to.

4.9.1. Automatic node removal

Every 10 seconds, the cluster autoscaler checks which nodes are unnecessary in the cluster and removes
them. The cluster autoscaler considers a node for removal if the following conditions apply:

The node utilization is less than the node utilization level threshold for the cluster. The node
utilization level is the sum of the requested resources divided by the allocated resources for the
node. If you do not specify a value in the ClusterAutoscaler custom resource, the cluster
autoscaler uses a default value of 0.5, which corresponds to 50% utilization.

The cluster autoscaler can move all pods running on the node to the other nodes. The
Kubernetes scheduler is responsible for scheduling pods on the nodes.

$ watch 'oc get pod -n openshift-monitoring -o wide'

$ oc delete pod -n openshift-monitoring <pod>

OpenShift Container Platform 4.18 Postinstallation configuration

130

The cluster autoscaler does not have scale down disabled annotation.

If the following types of pods are present on a node, the cluster autoscaler will not remove the node:

Pods with restrictive pod disruption budgets (PDBs).

Kube-system pods that do not run on the node by default.

Kube-system pods that do not have a PDB or have a PDB that is too restrictive.

Pods that are not backed by a controller object such as a deployment, replica set, or stateful set.

Pods with local storage.

Pods that cannot be moved elsewhere because of a lack of resources, incompatible node
selectors or affinity, matching anti-affinity, and so on.

Unless they also have a "cluster-autoscaler.kubernetes.io/safe-to-evict": "true" annotation,
pods that have a "cluster-autoscaler.kubernetes.io/safe-to-evict": "false" annotation.

For example, you set the maximum CPU limit to 64 cores and configure the cluster autoscaler to only
create machines that have 8 cores each. If your cluster starts with 30 cores, the cluster autoscaler can
add up to 4 more nodes with 32 cores, for a total of 62.

4.9.2. Limitations

If you configure the cluster autoscaler, additional usage restrictions apply:

Do not modify the nodes that are in autoscaled node groups directly. All nodes within the same
node group have the same capacity and labels and run the same system pods.

Specify requests for your pods.

If you have to prevent pods from being deleted too quickly, configure appropriate PDBs.

Confirm that your cloud provider quota is large enough to support the maximum node pools
that you configure.

Do not run additional node group autoscalers, especially the ones offered by your cloud
provider.

NOTE

The cluster autoscaler only adds nodes in autoscaled node groups if doing so would
result in a schedulable pod. If the available node types cannot meet the requirements for
a pod request, or if the node groups that could meet these requirements are at their
maximum size, the cluster autoscaler cannot scale up.

4.9.3. Interaction with other scheduling features

The horizontal pod autoscaler (HPA) and the cluster autoscaler modify cluster resources in different
ways. The HPA changes the deployment’s or replica set’s number of replicas based on the current CPU
load. If the load increases, the HPA creates new replicas, regardless of the amount of resources available
to the cluster. If there are not enough resources, the cluster autoscaler adds resources so that the HPA-
created pods can run. If the load decreases, the HPA stops some replicas. If this action causes some
nodes to be underutilized or completely empty, the cluster autoscaler deletes the unnecessary nodes.

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

131

The cluster autoscaler takes pod priorities into account. The Pod Priority and Preemption feature
enables scheduling pods based on priorities if the cluster does not have enough resources, but the
cluster autoscaler ensures that the cluster has resources to run all pods. To honor the intention of both
features, the cluster autoscaler includes a priority cutoff function. You can use this cutoff to schedule
"best-effort" pods, which do not cause the cluster autoscaler to increase resources but instead run only
when spare resources are available.

Pods with priority lower than the cutoff value do not cause the cluster to scale up or prevent the cluster
from scaling down. No new nodes are added to run the pods, and nodes running these pods might be
deleted to free resources.

4.9.4. Cluster autoscaler resource definition

This ClusterAutoscaler resource definition shows the parameters and sample values for the cluster
autoscaler.

NOTE

When you change the configuration of an existing cluster autoscaler, it restarts.

Table 4.1. Cluster autoscaler parameters

apiVersion: "autoscaling.openshift.io/v1"
kind: "ClusterAutoscaler"
metadata:
 name: "default"
spec:
 podPriorityThreshold: -10
 resourceLimits:
 maxNodesTotal: 24
 cores:
 min: 8
 max: 128
 memory:
 min: 4
 max: 256
 gpus:
 - type: <gpu_type>
 min: 0
 max: 16
 logVerbosity: 4
 scaleDown:
 enabled: true
 delayAfterAdd: 10m
 delayAfterDelete: 5m
 delayAfterFailure: 30s
 unneededTime: 5m
 utilizationThreshold: "0.4"
 expanders: ["Random"]

OpenShift Container Platform 4.18 Postinstallation configuration

132

Parameter Description

podPriorityThreshol
d

Specify the priority that a pod must exceed to cause the cluster autoscaler to
deploy additional nodes. Enter a 32-bit integer value. The
podPriorityThreshold value is compared to the value of the PriorityClass
that you assign to each pod.

maxNodesTotal Specify the maximum number of nodes to deploy. This value is the total number
of machines that are deployed in your cluster, not just the ones that the
autoscaler controls. Ensure that this value is large enough to account for all of
your control plane and compute machines and the total number of replicas that
you specify in your MachineAutoscaler resources.

cores.min Specify the minimum number of cores to deploy in the cluster.

cores.max Specify the maximum number of cores to deploy in the cluster.

memory.min Specify the minimum amount of memory, in GiB, in the cluster.

memory.max Specify the maximum amount of memory, in GiB, in the cluster.

gpus.type Optional: To configure the cluster autoscaler to deploy GPU-enabled nodes,
specify a type value. This value must match the value of the
spec.template.spec.metadata.labels[cluster-api/accelerator] label in the
machine set that manages the GPU-enabled nodes of that type. For example,
this value might be nvidia-t4 to represent Nvidia T4 GPUs, or nvidia-a10g for
A10G GPUs. For more information, see "Labeling GPU machine sets for the
cluster autoscaler".

gpus.min Specify the minimum number of GPUs of the specified type to deploy in the
cluster.

gpus.max Specify the maximum number of GPUs of the specified type to deploy in the
cluster.

logVerbosity Specify the logging verbosity level between 0 and 10. The following log level
thresholds are provided for guidance:

1: (Default) Basic information about changes.

4: Debug-level verbosity for troubleshooting typical issues.

9: Extensive, protocol-level debugging information.

If you do not specify a value, the default value of 1 is used.

scaleDown In this section, you can specify the period to wait for each action by using any valid
ParseDuration interval, including ns, us, ms, s, m, and h.

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

133

https://golang.org/pkg/time/#ParseDuration

scaleDown.enabled Specify whether the cluster autoscaler can remove unnecessary nodes.

scaleDown.delayAfte
rAdd

Optional: Specify the period to wait before deleting a node after a node has
recently been added. If you do not specify a value, the default value of 10m is
used.

scaleDown.delayAfte
rDelete

Optional: Specify the period to wait before deleting a node after a node has
recently been deleted. If you do not specify a value, the default value of 0s is
used.

scaleDown.delayAfte
rFailure

Optional: Specify the period to wait before deleting a node after a scale down
failure occurred. If you do not specify a value, the default value of 3m is used.

scaleDown.unneede
dTime

Optional: Specify a period of time before an unnecessary node is eligible for
deletion. If you do not specify a value, the default value of 10m is used.

scaleDown.utilizatio
nThreshold

Optional: Specify the node utilization level. Nodes below this utilization level are
eligible for deletion.

The node utilization level is the sum of the requested resources divided by the
allocated resources for the node, and must be a value greater than "0" but less
than "1". If you do not specify a value, the cluster autoscaler uses a default value
of "0.5", which corresponds to 50% utilization. You must express this value as a
string.

expanders Optional: Specify any expanders that you want the cluster autoscaler to use. The
following values are valid:

LeastWaste: Selects the machine set that minimizes the idle CPU after
scaling. If multiple machine sets would yield the same amount of idle
CPU, the selection minimizes unused memory.

Priority: Selects the machine set with the highest user-assigned priority.
To use this expander, you must create a config map that defines the
priority of your machine sets. For more information, see "Configuring a
priority expander for the cluster autoscaler."

Random: (Default) Selects the machine set randomly.

If you do not specify a value, the default value of Random is used.

You can specify multiple expanders by using the [LeastWaste, Priority] format.
The cluster autoscaler applies each expander according to the specified order.

In the [LeastWaste, Priority] example, the cluster autoscaler first evaluates
according to the LeastWaste criteria. If more than one machine set satisfies the
LeastWaste criteria equally well, the cluster autoscaler then evaluates according
to the Priority criteria. If more than one machine set satisfies all of the specified
expanders equally well, the cluster autoscaler selects one to use at random.

Parameter Description

OpenShift Container Platform 4.18 Postinstallation configuration

134

NOTE

When performing a scaling operation, the cluster autoscaler remains within the ranges set
in the ClusterAutoscaler resource definition, such as the minimum and maximum
number of cores to deploy or the amount of memory in the cluster. However, the cluster
autoscaler does not correct the current values in your cluster to be within those ranges.

The minimum and maximum CPUs, memory, and GPU values are determined by
calculating those resources on all nodes in the cluster, even if the cluster autoscaler does
not manage the nodes. For example, the control plane nodes are considered in the total
memory in the cluster, even though the cluster autoscaler does not manage the control
plane nodes.

4.9.5. Deploying a cluster autoscaler

To deploy a cluster autoscaler, you create an instance of the ClusterAutoscaler resource.

Procedure

1. Create a YAML file for a ClusterAutoscaler resource that contains the custom resource
definition.

2. Create the custom resource in the cluster by running the following command:

where:

<filename>

Specifies the name of the YAML file you created.

4.10. APPLYING AUTOSCALING TO YOUR CLUSTER

Applying autoscaling to an OpenShift Container Platform cluster involves deploying a cluster autoscaler
and then deploying machine autoscalers for each machine type in your cluster.

For more information, see Applying autoscaling to an OpenShift Container Platform cluster .

4.11. CONFIGURING LINUX CGROUP

As of OpenShift Container Platform 4.14, OpenShift Container Platform uses Linux control group
version 2 (cgroup v2) in your cluster. If you are using cgroup v1 on OpenShift Container Platform 4.13 or
earlier, migrating to OpenShift Container Platform 4.14 or later will not automatically update your cgroup
configuration to version 2. A fresh installation of OpenShift Container Platform 4.14 or later will use
cgroup v2 by default. However, you can enable Linux control group version 1 (cgroup v1) upon
installation.

cgroup v2 is the current version of the Linux cgroup API. cgroup v2 offers several improvements over
cgroup v1, including a unified hierarchy, safer sub-tree delegation, new features such as Pressure Stall
Information, and enhanced resource management and isolation. However, cgroup v2 has different CPU,
memory, and I/O management characteristics than cgroup v1. Therefore, some workloads might
experience slight differences in memory or CPU usage on clusters that run cgroup v2.

You can change between cgroup v1 and cgroup v2, as needed. Enabling cgroup v1 in OpenShift

$ oc create -f <filename>.yaml

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

135

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_management/#applying-autoscaling
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/index.html
https://www.kernel.org/doc/html/latest/accounting/psi.html

1

You can change between cgroup v1 and cgroup v2, as needed. Enabling cgroup v1 in OpenShift
Container Platform disables all cgroup v2 controllers and hierarchies in your cluster.

IMPORTANT

cgroup v1 is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

Prerequisites

You have a running OpenShift Container Platform cluster that uses version 4.12 or later.

You are logged in to the cluster as a user with administrative privileges.

Procedure

1. Configure the wanted cgroup version on your nodes:

a. Edit the node.config object:

b. Add spec.cgroupMode: "v1":

Example node.config object

Enables cgroup v1.

$ oc edit nodes.config/cluster

apiVersion: config.openshift.io/v1
kind: Node
metadata:
 annotations:
 include.release.openshift.io/ibm-cloud-managed: "true"
 include.release.openshift.io/self-managed-high-availability: "true"
 include.release.openshift.io/single-node-developer: "true"
 release.openshift.io/create-only: "true"
 creationTimestamp: "2022-07-08T16:02:51Z"
 generation: 1
 name: cluster
 ownerReferences:
 - apiVersion: config.openshift.io/v1
 kind: ClusterVersion
 name: version
 uid: 36282574-bf9f-409e-a6cd-3032939293eb
 resourceVersion: "1865"
 uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:
 cgroupMode: "v1" 1
...

OpenShift Container Platform 4.18 Postinstallation configuration

136

1

Verification

1. Check the machine configs to see that the new machine configs were added:

Example output

New machine configs are created, as expected.

2. Check that the new kernelArguments were added to the new machine configs:

Example output for cgroup v1

$ oc get mc

NAME GENERATEDBYCONTROLLER
IGNITIONVERSION AGE
00-master 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0
33m
00-worker 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0
33m
01-master-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
01-master-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
01-worker-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
01-worker-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
97-master-generated-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-worker-generated-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-master-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-master-ssh 3.2.0 40m
99-worker-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.2.0 33m
99-worker-ssh 3.2.0 40m
rendered-master-23d4317815a5f854bd3553d689cfe2e9
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 10s 1
rendered-master-23e785de7587df95a4b517e0647e5ab7
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
rendered-worker-dcc7f1b92892d34db74d6832bcc9ccd4
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 10s

$ oc describe mc <name>

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

137

1

2

Disables cgroup v2.

Enables cgroup v1 in systemd.

3. Check the nodes to see that scheduling on the nodes is disabled. This indicates that the change
is being applied:

Example output

4. After a node returns to the Ready state, start a debug session for that node:

5. Set /host as the root directory within the debug shell:

6. Check that the sys/fs/cgroup/cgroup2fs file is present on your nodes. This file is created by
cgroup v1:

Example output

Additional resources

Configuring the Linux cgroup version on your nodes

4.12. ENABLING TECHNOLOGY PREVIEW FEATURES USING

 name: 05-worker-kernelarg-selinuxpermissive
spec:
 kernelArguments:
 systemd.unified_cgroup_hierarchy=0 1
 systemd.legacy_systemd_cgroup_controller=1 2
 psi=0

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ci-ln-fm1qnwt-72292-99kt6-master-0 Ready,SchedulingDisabled master 58m
v1.31.3
ci-ln-fm1qnwt-72292-99kt6-master-1 Ready master 58m v1.31.3
ci-ln-fm1qnwt-72292-99kt6-master-2 Ready master 58m v1.31.3
ci-ln-fm1qnwt-72292-99kt6-worker-a-h5gt4 Ready,SchedulingDisabled worker 48m
v1.31.3
ci-ln-fm1qnwt-72292-99kt6-worker-b-7vtmd Ready worker 48m v1.31.3
ci-ln-fm1qnwt-72292-99kt6-worker-c-rhzkv Ready worker 48m v1.31.3

$ oc debug node/<node_name>

sh-4.4# chroot /host

$ stat -c %T -f /sys/fs/cgroup

cgroup2fs

OpenShift Container Platform 4.18 Postinstallation configuration

138

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-cluster-cgroups-2

4.12. ENABLING TECHNOLOGY PREVIEW FEATURES USING
FEATUREGATES

You can turn on a subset of the current Technology Preview features on for all nodes in the cluster by
editing the FeatureGate custom resource (CR).

4.12.1. Understanding feature gates

You can use the FeatureGate custom resource (CR) to enable specific feature sets so that you can use
specific non-default features in your cluster.

A feature set is a collection of OpenShift Container Platform features that are not enabled by default.

You can activate the following feature set by using the FeatureGate CR:

TechPreviewNoUpgrade. This feature set is a subset of the current Technology Preview
features. This feature set allows you to enable these Technology Preview features on test
clusters, where you can fully test them, while leaving the features disabled on production
clusters.

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster cannot
be undone and prevents minor version updates. You should not enable this
feature set on production clusters.

The following Technology Preview features are enabled by this feature set:

External cloud providers. Enables support for external cloud providers for clusters on
vSphere, AWS, Azure, and GCP. Support for OpenStack is GA. This is an internal feature
that most users do not need to interact with. (ExternalCloudProvider)

Swap memory on nodes. Enables swap memory use for OpenShift Container Platform
workloads on a per-node basis. (NodeSwap)

OpenStack Machine API Provider. This gate has no effect and is planned to be removed
from this feature set in a future release. (MachineAPIProviderOpenStack)

Insights Operator. Enables the InsightsDataGather CRD, which allows users to configure
some Insights data gathering options. The feature set also enables the DataGather CRD,
which allows users to run Insights data gathering on-demand. (InsightsConfigAPI)

Insights Operator. Enables a new data collection feature called 'Insights Runtime Extractor'
which, when enabled, allows Red Hat to gather more runtime workload data about your
OpenShift Container Platform containers. (InsightsRuntimeExtractor)

Dynamic Resource Allocation API. Enables a new API for requesting and sharing resources
between pods and containers. This is an internal feature that most users do not need to
interact with. (DynamicResourceAllocation)



CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

139

Pod security admission enforcement. Enables the restricted enforcement mode for pod
security admission. Instead of only logging a warning, pods are rejected if they violate pod
security standards. (OpenShiftPodSecurityAdmission)

StatefulSet pod availability upgrading limits. Enables users to define the maximum number
of statefulset pods unavailable during updates which reduces application downtime.
(MaxUnavailableStatefulSet)

Image mode behavior of image streams. Enables a new API for controlling the import mode
behavior of image streams. (imageStreamImportMode)

OVNObservability resource allows you to verify expected network behavior. Supports the
following network APIs: NetworkPolicy, AdminNetworkPolicy, BaselineNetworkPolicy,
UserDefinesdNetwork isolation, multicast ACLs, and egress firewalls. When enabled, you
can view network events in the terminal.

gcpLabelsTags

vSphereStaticIPs

routeExternalCertificate

automatedEtcdBackup

gcpClusterHostedDNS

vSphereControlPlaneMachineset

dnsNameResolver

machineConfigNodes

metricsServer

installAlternateInfrastructureAWS

mixedCPUsAllocation

managedBootImages

onClusterBuild

signatureStores

SigstoreImageVerification

DisableKubeletCloudCredentialProviders

BareMetalLoadBalancer

ClusterAPIInstallAWS

ClusterAPIInstallAzure

ClusterAPIInstallNutanix

OpenShift Container Platform 4.18 Postinstallation configuration

140

ClusterAPIInstallOpenStack

ClusterAPIInstallVSphere

HardwareSpeed

KMSv1

NetworkDiagnosticsConfig

VSphereDriverConfiguration

ExternalOIDC

ChunkSizeMiB

ClusterAPIInstallGCP

ClusterAPIInstallPowerVS

EtcdBackendQuota

InsightsConfig

InsightsOnDemandDataGather

MetricsCollectionProfiles

NewOLM

AWSClusterHostedDNS

AdditionalRoutingCapabilities

AutomatedEtcdBackup

BootcNodeManagement

CSIDriverSharedResource

ClusterMonitoringConfig

ConsolePluginContentSecurityPolicy

DNSNameResolver

DynamicResourceAllocation

EtcdBackendQuota

Example

GCPClusterHostedDNS

ImageStreamImportMode

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

141

IngressControllerDynamicConfigurationManager

InsightsConfig

InsightsConfigAPI

InsightsOnDemandDataGather

InsightsRuntimeExtractor

MachineAPIProviderOpenStack

MachineConfigNodes

MaxUnavailableStatefulSet

MetricsCollectionProfiles

MinimumKubeletVersion

MixedCPUsAllocation

NetworkSegmentation

NodeSwap

NutanixMultiSubnets

OVNObservability

OnClusterBuild

OpenShiftPodSecurityAdmission

PersistentIPsForVirtualization

PinnedImages

PlatformOperators

ProcMountType

RouteAdvertisements

RouteExternalCertificate

ServiceAccountTokenNodeBinding

SignatureStores

SigstoreImageVerification

TranslateStreamCloseWebsocketRequests

UpgradeStatus

OpenShift Container Platform 4.18 Postinstallation configuration

142

UserNamespacesPodSecurityStandards

UserNamespacesSupport

VSphereMultiNetworks

VolumeAttributesClass

VolumeGroupSnapshot

ExternalOIDC

AWSEFSDriverVolumeMetrics

AdminNetworkPolicy

AlibabaPlatform

AzureWorkloadIdentity

BareMetalLoadBalancer

BuildCSIVolumes

ChunkSizeMiB

CloudDualStackNodeIPs

DisableKubeletCloudCredentialProviders

GCPLabelsTags

HardwareSpeed

IngressControllerLBSubnetsAWS

KMSv1

ManagedBootImages

ManagedBootImagesAWS

MultiArchInstallAWS

MultiArchInstallGCP

NetworkDiagnosticsConfig

NetworkLiveMigration

NodeDisruptionPolicy

PrivateHostedZoneAWS

SetEIPForNLBIngressController

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

143

VSphereControlPlaneMachineSet

VSphereDriverConfiguration

VSphereMultiVCenters

VSphereStaticIPs

ValidatingAdmissionPolicy

See the Additional resources sections for information on some of these features.

4.12.2. Enabling feature sets using the web console

You can use the OpenShift Container Platform web console to enable feature sets for all of the nodes
in a cluster by editing the FeatureGate custom resource (CR). Completing this task enables non-default
features in your cluster.

Procedure

1. In the OpenShift Container Platform web console, switch to the Administration → Custom
Resource Definitions page.

2. On the Custom Resource Definitions page, click FeatureGate.

3. On the Custom Resource Definition Details page, click the Instances tab.

4. Click the cluster feature gate, then click the YAML tab.

5. Edit the cluster instance to add specific feature sets:

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster cannot
be undone and prevents minor version updates. You should not enable this
feature set on production clusters.

Sample Feature Gate custom resource

where:

metadata.name



apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
 name: cluster 1
...
spec:
 featureSet: TechPreviewNoUpgrade 2

OpenShift Container Platform 4.18 Postinstallation configuration

144

Specifies the name of the FeatureGate CR. You must specify cluster for the name.

spec.featureSet

Specifies the feature set that you want to enable:

TechPreviewNoUpgrade enables specific Technology Preview features.

After you save the changes, new machine configs are created, the machine config pools are
updated, and scheduling on each node is disabled while the change is being applied.

Verification

You can verify that the feature gates are enabled by looking at the kubelet.conf file on a node after the
nodes return to the ready state.

1. From the Administrator perspective in the web console, navigate to Compute → Nodes.

2. Select a node.

3. In the Node details page, click Terminal.

4. In the terminal window, change your root directory to /host:

5. View the kubelet.conf file:

Sample output

The features that are listed as true are enabled on your cluster.

NOTE

The features listed vary depending upon the OpenShift Container Platform
version.

4.12.3. Enabling feature sets using the CLI

You can use the OpenShift CLI (oc) to enable feature sets for all of the nodes in a cluster by editing the
FeatureGate custom resource (CR). Completing this task enables non-default features in your cluster.

Prerequisites

You have installed the OpenShift CLI (oc).

sh-4.2# chroot /host

sh-4.2# cat /etc/kubernetes/kubelet.conf

...
featureGates:
 InsightsOperatorPullingSCA: true,
 LegacyNodeRoleBehavior: false
...

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

145

Procedure

Edit the FeatureGate CR named cluster:

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster cannot
be undone and prevents minor version updates. You should not enable this
feature set on production clusters.

Sample FeatureGate custom resource

where:

metadata.name

Specifies the name of the FeatureGate CR. This must be cluster.

spec.featureSet

Specifies the feature set that you want to enable:

TechPreviewNoUpgrade enables specific Technology Preview features.

After you save the changes, new machine configs are created, the machine config pools are
updated, and scheduling on each node is disabled while the change is being applied.

Verification

You can verify that the feature gates are enabled by looking at the kubelet.conf file on a node after the
nodes return to the ready state.

1. From the Administrator perspective in the web console, navigate to Compute → Nodes.

2. Select a node.

3. In the Node details page, click Terminal.

4. In the terminal window, change your root directory to /host:

$ oc edit featuregate cluster



apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
 name: cluster
...
spec:
 featureSet: TechPreviewNoUpgrade

sh-4.2# chroot /host

OpenShift Container Platform 4.18 Postinstallation configuration

146

5. View the kubelet.conf file:

Sample output

The features that are listed as true are enabled on your cluster.

NOTE

The features listed vary depending upon the OpenShift Container Platform
version.

4.13. ETCD TASKS

Back up etcd, enable or disable etcd encryption, or defragment etcd data.

NOTE

If you deployed a bare-metal cluster, you can scale the cluster up to 5 nodes as part of
your post-installation tasks. For more information, see Node scaling for etcd.

4.13.1. About etcd encryption

By default, etcd data is not encrypted in OpenShift Container Platform. You can enable etcd encryption
for your cluster to provide an additional layer of data security. For example, it can help protect the loss
of sensitive data if an etcd backup is exposed to the incorrect parties.

When you enable etcd encryption, the following OpenShift API server and Kubernetes API server
resources are encrypted:

Secrets

Config maps

Routes

OAuth access tokens

OAuth authorize tokens

When you enable etcd encryption, encryption keys are created. You must have these keys to restore
from an etcd backup.

NOTE

sh-4.2# cat /etc/kubernetes/kubelet.conf

...
featureGates:
 InsightsOperatorPullingSCA: true,
 LegacyNodeRoleBehavior: false
...

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

147

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/scalability_and_performance/#etcd-node-scaling_recommended-etcd-practices

NOTE

Etcd encryption only encrypts values, not keys. Resource types, namespaces, and object
names are unencrypted.

If etcd encryption is enabled during a backup, the
static_kuberesources_<datetimestamp>.tar.gz file contains the encryption keys for
the etcd snapshot. For security reasons, store this file separately from the etcd snapshot.
However, this file is required to restore a previous state of etcd from the respective etcd
snapshot.

4.13.2. Supported encryption types

The following encryption types are supported for encrypting etcd data in OpenShift Container Platform:

AES-CBC

Uses AES-CBC with PKCS#7 padding and a 32 byte key to perform the encryption. The encryption
keys are rotated weekly.

AES-GCM

Uses AES-GCM with a random nonce and a 32 byte key to perform the encryption. The encryption
keys are rotated weekly.

4.13.3. Enabling etcd encryption

You can enable etcd encryption to encrypt sensitive resources in your cluster.

WARNING

Do not back up etcd resources until the initial encryption process is completed. If
the encryption process is not completed, the backup might be only partially
encrypted.

After you enable etcd encryption, several changes can occur:

The etcd encryption might affect the memory consumption of a few
resources.

You might notice a transient affect on backup performance because the
leader must serve the backup.

A disk I/O can affect the node that receives the backup state.

You can encrypt the etcd database in either AES-GCM or AES-CBC encryption.

NOTE

To migrate your etcd database from one encryption type to the other, you can modify
the API server’s spec.encryption.type field. Migration of the etcd data to the new
encryption type occurs automatically.



OpenShift Container Platform 4.18 Postinstallation configuration

148

1 1

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Modify the APIServer object:

2. Set the spec.encryption.type field to aesgcm or aescbc:

Set to aesgcm for AES-GCM encryption or aescbc for AES-CBC encryption.

3. Save the file to apply the changes.
The encryption process starts. It can take 20 minutes or longer for this process to complete,
depending on the size of the etcd database.

4. Verify that etcd encryption was successful.

a. Review the Encrypted status condition for the OpenShift API server to verify that its
resources were successfully encrypted:

The output shows EncryptionCompleted upon successful encryption:

If the output shows EncryptionInProgress, encryption is still in progress. Wait a few
minutes and try again.

b. Review the Encrypted status condition for the Kubernetes API server to verify that its
resources were successfully encrypted:

The output shows EncryptionCompleted upon successful encryption:

If the output shows EncryptionInProgress, encryption is still in progress. Wait a few
minutes and try again.

c. Review the Encrypted status condition for the OpenShift OAuth API server to verify that

$ oc edit apiserver

spec:
 encryption:
 type: aesgcm 1

$ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

EncryptionCompleted
All resources encrypted: routes.route.openshift.io

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

EncryptionCompleted
All resources encrypted: secrets, configmaps

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

149

1

c. Review the Encrypted status condition for the OpenShift OAuth API server to verify that
its resources were successfully encrypted:

The output shows EncryptionCompleted upon successful encryption:

If the output shows EncryptionInProgress, encryption is still in progress. Wait a few
minutes and try again.

4.13.4. Disabling etcd encryption

You can disable encryption of etcd data in your cluster.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Modify the APIServer object:

2. Set the encryption field type to identity:

The identity type is the default value and means that no encryption is performed.

3. Save the file to apply the changes.
The decryption process starts. It can take 20 minutes or longer for this process to complete,
depending on the size of your cluster.

4. Verify that etcd decryption was successful.

a. Review the Encrypted status condition for the OpenShift API server to verify that its
resources were successfully decrypted:

The output shows DecryptionCompleted upon successful decryption:

$ oc get authentication.operator.openshift.io -o=jsonpath='{range
.items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

EncryptionCompleted
All resources encrypted: oauthaccesstokens.oauth.openshift.io,
oauthauthorizetokens.oauth.openshift.io

$ oc edit apiserver

spec:
 encryption:
 type: identity 1

$ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

OpenShift Container Platform 4.18 Postinstallation configuration

150

If the output shows DecryptionInProgress, decryption is still in progress. Wait a few
minutes and try again.

b. Review the Encrypted status condition for the Kubernetes API server to verify that its
resources were successfully decrypted:

The output shows DecryptionCompleted upon successful decryption:

If the output shows DecryptionInProgress, decryption is still in progress. Wait a few
minutes and try again.

c. Review the Encrypted status condition for the OpenShift OAuth API server to verify that
its resources were successfully decrypted:

The output shows DecryptionCompleted upon successful decryption:

If the output shows DecryptionInProgress, decryption is still in progress. Wait a few
minutes and try again.

4.13.5. Backing up etcd data

Follow these steps to back up etcd data by creating an etcd snapshot and backing up the resources for
the static pods. This backup can be saved and used at a later time if you need to restore etcd.

IMPORTANT

Only save a backup from a single control plane host. Do not take a backup from each
control plane host in the cluster.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have checked whether the cluster-wide proxy is enabled.

TIP

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

$ oc get authentication.operator.openshift.io -o=jsonpath='{range
.items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

151

TIP

You can check whether the proxy is enabled by reviewing the output of oc get proxy cluster -o
yaml. The proxy is enabled if the httpProxy, httpsProxy, and noProxy fields have values set.

Procedure

1. Start a debug session as root for a control plane node:

2. Change your root directory to /host in the debug shell:

3. If the cluster-wide proxy is enabled, export the NO_PROXY, HTTP_PROXY, and
HTTPS_PROXY environment variables by running the following commands:

4. Run the cluster-backup.sh script in the debug shell and pass in the location to save the backup
to.

TIP

The cluster-backup.sh script is maintained as a component of the etcd Cluster Operator and is
a wrapper around the etcdctl snapshot save command.

Example script output

$ oc debug --as-root node/<node_name>

sh-4.4# chroot /host

$ export HTTP_PROXY=http://<your_proxy.example.com>:8080

$ export HTTPS_PROXY=https://<your_proxy.example.com>:8080

$ export NO_PROXY=<example.com>

sh-4.4# /usr/local/bin/cluster-backup.sh /home/core/assets/backup

found latest kube-apiserver: /etc/kubernetes/static-pod-resources/kube-apiserver-pod-6
found latest kube-controller-manager: /etc/kubernetes/static-pod-resources/kube-controller-
manager-pod-7
found latest kube-scheduler: /etc/kubernetes/static-pod-resources/kube-scheduler-pod-6
found latest etcd: /etc/kubernetes/static-pod-resources/etcd-pod-3
ede95fe6b88b87ba86a03c15e669fb4aa5bf0991c180d3c6895ce72eaade54a1
etcdctl version: 3.4.14
API version: 3.4
{"level":"info","ts":1624647639.0188997,"caller":"snapshot/v3_snapshot.go:119","msg":"created
temporary db file","path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db.part"}
{"level":"info","ts":"2021-06-
25T19:00:39.030Z","caller":"clientv3/maintenance.go:200","msg":"opened snapshot stream;
downloading"}
{"level":"info","ts":1624647639.0301006,"caller":"snapshot/v3_snapshot.go:127","msg":"fetching
snapshot","endpoint":"https://10.0.0.5:2379"}
{"level":"info","ts":"2021-06-

OpenShift Container Platform 4.18 Postinstallation configuration

152

In this example, two files are created in the /home/core/assets/backup/ directory on the control
plane host:

snapshot_<datetimestamp>.db: This file is the etcd snapshot. The cluster-backup.sh
script confirms its validity.

static_kuberesources_<datetimestamp>.tar.gz: This file contains the resources for the
static pods. If etcd encryption is enabled, it also contains the encryption keys for the etcd
snapshot.

NOTE

If etcd encryption is enabled, it is recommended to store this second file
separately from the etcd snapshot for security reasons. However, this file is
required to restore from the etcd snapshot.

Keep in mind that etcd encryption only encrypts values, not keys. This means
that resource types, namespaces, and object names are unencrypted.

4.13.6. Defragmenting etcd data

For large and dense clusters, etcd can suffer from poor performance if the keyspace grows too large
and exceeds the space quota. Periodically maintain and defragment etcd to free up space in the data
store. Monitor Prometheus for etcd metrics and defragment it when required; otherwise, etcd can raise
a cluster-wide alarm that puts the cluster into a maintenance mode that accepts only key reads and
deletes.

Monitor these key metrics:

etcd_server_quota_backend_bytes, which is the current quota limit

etcd_mvcc_db_total_size_in_use_in_bytes, which indicates the actual database usage after a
history compaction

etcd_mvcc_db_total_size_in_bytes, which shows the database size, including free space
waiting for defragmentation

Defragment etcd data to reclaim disk space after events that cause disk fragmentation, such as etcd
history compaction.

History compaction is performed automatically every five minutes and leaves gaps in the back-end
database. This fragmented space is available for use by etcd, but is not available to the host file system.
You must defragment etcd to make this space available to the host file system.

Defragmentation occurs automatically, but you can also trigger it manually.

25T19:00:40.215Z","caller":"clientv3/maintenance.go:208","msg":"completed snapshot read;
closing"}
{"level":"info","ts":1624647640.6032252,"caller":"snapshot/v3_snapshot.go:142","msg":"fetched
snapshot","endpoint":"https://10.0.0.5:2379","size":"114 MB","took":1.584090459}
{"level":"info","ts":1624647640.6047094,"caller":"snapshot/v3_snapshot.go:152","msg":"saved",
"path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db"}
Snapshot saved at /home/core/assets/backup/snapshot_2021-06-25_190035.db
{"hash":3866667823,"revision":31407,"totalKey":12828,"totalSize":114446336}
snapshot db and kube resources are successfully saved to /home/core/assets/backup

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

153

NOTE

Automatic defragmentation is good for most cases, because the etcd operator uses
cluster information to determine the most efficient operation for the user.

4.13.6.1. Automatic defragmentation

The etcd Operator automatically defragments disks. No manual intervention is needed.

Verify that the defragmentation process is successful by viewing one of these logs:

etcd logs

cluster-etcd-operator pod

operator status error log

WARNING

Automatic defragmentation can cause leader election failure in various OpenShift
core components, such as the Kubernetes controller manager, which triggers a
restart of the failing component. The restart is harmless and either triggers failover
to the next running instance or the component resumes work again after the
restart.

Example log output for successful defragmentation

Example log output for unsuccessful defragmentation

4.13.6.2. Manual defragmentation

A Prometheus alert indicates when you need to use manual defragmentation. The alert is displayed in
two cases:

When etcd uses more than 50% of its available space for more than 10 minutes

When etcd is actively using less than 50% of its total database size for more than 10 minutes

You can also determine whether defragmentation is needed by checking the etcd database size in MB
that will be freed by defragmentation with the PromQL expression:
(etcd_mvcc_db_total_size_in_bytes - etcd_mvcc_db_total_size_in_use_in_bytes)/1024/1024



etcd member has been defragmented: <member_name>, memberID: <member_id>

failed defrag on member: <member_name>, memberID: <member_id>: <error_message>

OpenShift Container Platform 4.18 Postinstallation configuration

154

WARNING

Defragmenting etcd is a blocking action. The etcd member will not respond until
defragmentation is complete. For this reason, wait at least one minute between
defragmentation actions on each of the pods to allow the cluster to recover.

Follow this procedure to defragment etcd data on each etcd member.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Determine which etcd member is the leader, because the leader should be defragmented last.

a. Get the list of etcd pods:

Example output

b. Choose a pod and run the following command to determine which etcd member is the
leader:

Example output



$ oc -n openshift-etcd get pods -l k8s-app=etcd -o wide

etcd-ip-10-0-159-225.example.redhat.com 3/3 Running 0 175m
10.0.159.225 ip-10-0-159-225.example.redhat.com <none> <none>
etcd-ip-10-0-191-37.example.redhat.com 3/3 Running 0 173m
10.0.191.37 ip-10-0-191-37.example.redhat.com <none> <none>
etcd-ip-10-0-199-170.example.redhat.com 3/3 Running 0 176m
10.0.199.170 ip-10-0-199-170.example.redhat.com <none> <none>

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com etcdctl endpoint
status --cluster -w table

Defaulting container name to etcdctl.
Use 'oc describe pod/etcd-ip-10-0-159-225.example.redhat.com -n openshift-etcd' to see
all of the containers in this pod.
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.5.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.5.9 | 104 MB | false | false |

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

155

Based on the IS LEADER column of this output, the https://10.0.199.170:2379 endpoint is
the leader. Matching this endpoint with the output of the previous step, the pod name of
the leader is etcd-ip-10-0-199-170.example.redhat.com.

2. Defragment an etcd member.

a. Connect to the running etcd container, passing in the name of a pod that is not the leader:

b. Unset the ETCDCTL_ENDPOINTS environment variable:

c. Defragment the etcd member:

Example output

If a timeout error occurs, increase the value for --command-timeout until the command
succeeds.

d. Verify that the database size was reduced:

Example output

This example shows that the database size for this etcd member is now 41 MB as opposed

7 | 91624 | 91624 | |
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.5.9 | 104 MB | true | false |
7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com

sh-4.4# unset ETCDCTL_ENDPOINTS

sh-4.4# etcdctl --command-timeout=30s --endpoints=https://localhost:2379 defrag

Finished defragmenting etcd member[https://localhost:2379]

sh-4.4# etcdctl endpoint status -w table --cluster

+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.5.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.5.9 | 41 MB | false | false |
7 | 91624 | 91624 | | 1
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.5.9 | 104 MB | true | false |
7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

OpenShift Container Platform 4.18 Postinstallation configuration

156

This example shows that the database size for this etcd member is now 41 MB as opposed
to the starting size of 104 MB.

e. Repeat these steps to connect to each of the other etcd members and defragment them.
Always defragment the leader last.
Wait at least one minute between defragmentation actions to allow the etcd pod to recover.
Until the etcd pod recovers, the etcd member will not respond.

3. If any NOSPACE alarms were triggered due to the space quota being exceeded, clear them.

a. Check if there are any NOSPACE alarms:

Example output

b. Clear the alarms:

4.13.7. Restoring to a previous cluster state

You can use a saved etcd backup to restore a previous cluster state or restore a cluster that has lost the
majority of control plane hosts.

For high availability (HA) clusters, a three-node HA cluster requires you to shut down etcd on two hosts
to avoid a cluster split. On four-node and five-node HA clusters, you must shut down three hosts.
Quorum requires a simple majority of nodes. The minimum number of nodes required for quorum on a
three-node HA cluster is two. On four-node and five-node HA clusters, the minimum number of nodes
required for quorum is three. If you start a new cluster from backup on your recovery host, the other etcd
members might still be able to form quorum and continue service.

NOTE

If your cluster uses a control plane machine set, see "Recovering a degraded etcd
Operator" in "Troubleshooting the control plane machine set" for an etcd recovery
procedure. For OpenShift Container Platform on a single node, see "Restoring to a
previous cluster state for a single node".

IMPORTANT

When you restore your cluster, you must use an etcd backup that was taken from the
same z-stream release. For example, an OpenShift Container Platform 4.18.2 cluster must
use an etcd backup that was taken from 4.18.2.

Prerequisites

Access to the cluster as a user with the cluster-admin role through a certificate-based
kubeconfig file, like the one that was used during installation.

A healthy control plane host to use as the recovery host.

sh-4.4# etcdctl alarm list

memberID:12345678912345678912 alarm:NOSPACE

sh-4.4# etcdctl alarm disarm

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

157

You have SSH access to control plane hosts.

A backup directory containing both the etcd snapshot and the resources for the static pods,
which were from the same backup. The file names in the directory must be in the following
formats: snapshot_<datetimestamp>.db and
static_kuberesources_<datetimestamp>.tar.gz.

Nodes must be accessible or bootable.

IMPORTANT

For non-recovery control plane nodes, it is not required to establish SSH connectivity or
to stop the static pods. You can delete and re-create other non-recovery, control plane
machines, one by one.

Procedure

1. Select a control plane host to use as the recovery host. This is the host that you run the restore
operation on.

2. Establish SSH connectivity to each of the control plane nodes, including the recovery host.
kube-apiserver becomes inaccessible after the restore process starts, so you cannot access
the control plane nodes. For this reason, it is recommended to establish SSH connectivity to
each control plane host in a separate terminal.

IMPORTANT

If you do not complete this step, you will not be able to access the control plane
hosts to complete the restore procedure, and you will be unable to recover your
cluster from this state.

3. Using SSH, connect to each control plane node and run the following command to disable etcd:

4. Copy the etcd backup directory to the recovery control plane host.
This procedure assumes that you copied the backup directory containing the etcd snapshot
and the resources for the static pods to the /home/core/ directory of your recovery control
plane host.

5. Use SSH to connect to the recovery host and restore the cluster from a previous backup by
running the following command:

6. Exit the SSH session.

7. Once the API responds, turn off the etcd Operator quorum guard by running the following
command:

$ sudo -E /usr/local/bin/disable-etcd.sh

$ sudo -E /usr/local/bin/cluster-restore.sh /home/core/<etcd-backup-directory>

$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides":
{"useUnsupportedUnsafeNonHANonProductionUnstableEtcd": true}}}'

OpenShift Container Platform 4.18 Postinstallation configuration

158

8. Monitor the recovery progress of the control plane by running the following command:

NOTE

It can take up to 15 minutes for the control plane to recover.

9. Once recovered, enable the quorum guard by running the following command:

Troubleshooting

If you see no progress rolling out the etcd static pods, you can force redeployment from the cluster-
etcd-operator by running the following command:

Additional resources

Recommended etcd practices

Installing a user-provisioned cluster on bare metal

Replacing a bare-metal control plane node

4.13.8. Issues and workarounds for restoring a persistent storage state

If your OpenShift Container Platform cluster uses persistent storage of any form, a state of the cluster
is typically stored outside etcd. When you restore from an etcd backup, the status of the workloads in
OpenShift Container Platform is also restored. However, if the etcd snapshot is old, the status might be
invalid or outdated.

IMPORTANT

The contents of persistent volumes (PVs) are never part of the etcd snapshot. When you
restore an OpenShift Container Platform cluster from an etcd snapshot, non-critical
workloads might gain access to critical data, or vice-versa.

The following are some example scenarios that produce an out-of-date status:

MySQL database is running in a pod backed up by a PV object. Restoring OpenShift Container
Platform from an etcd snapshot does not bring back the volume on the storage provider, and
does not produce a running MySQL pod, despite the pod repeatedly attempting to start. You
must manually restore this pod by restoring the volume on the storage provider, and then
editing the PV to point to the new volume.

Pod P1 is using volume A, which is attached to node X. If the etcd snapshot is taken while another
pod uses the same volume on node Y, then when the etcd restore is performed, pod P1 might
not be able to start correctly due to the volume still being attached to node Y. OpenShift

$ oc adm wait-for-stable-cluster

$ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": null}}'

$ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$(date --rfc-3339=ns
)"'"}}' --type=merge

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

159

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/scalability_and_performance/#recommended-etcd-practices
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_bare_metal/#installing-bare-metal
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installation_overview/#replacing-a-bare-metal-control-plane-node_bare-metal-expanding-the-cluster

Container Platform is not aware of the attachment, and does not automatically detach it. When
this occurs, the volume must be manually detached from node Y so that the volume can attach
on node X, and then pod P1 can start.

Cloud provider or storage provider credentials were updated after the etcd snapshot was taken.
This causes any CSI drivers or Operators that depend on the those credentials to not work. You
might have to manually update the credentials required by those drivers or Operators.

A device is removed or renamed from OpenShift Container Platform nodes after the etcd
snapshot is taken. The Local Storage Operator creates symlinks for each PV that it manages
from /dev/disk/by-id or /dev directories. This situation might cause the local PVs to refer to
devices that no longer exist.
To fix this problem, an administrator must:

1. Manually remove the PVs with invalid devices.

2. Remove symlinks from respective nodes.

3. Delete LocalVolume or LocalVolumeSet objects (see Storage → Configuring persistent
storage → Persistent storage using local volumes → Deleting the Local Storage Operator
Resources).

4.14. POD DISRUPTION BUDGETS

Understand and configure pod disruption budgets.

4.14.1. Understanding how to use pod disruption budgets to specify the number of
pods that must be up

A pod disruption budget allows the specification of safety constraints on pods during operations, such as
draining a node for maintenance.

PodDisruptionBudget is an API object that specifies the minimum number or percentage of replicas
that must be up at a time. Setting these in projects can be helpful during node maintenance (such as
scaling a cluster down or a cluster upgrade) and is only honored on voluntary evictions (not on node
failures).

A PodDisruptionBudget object’s configuration consists of the following key parts:

A label selector, which is a label query over a set of pods.

An availability level, which specifies the minimum number of pods that must be available
simultaneously, either:

minAvailable is the number of pods must always be available, even during a disruption.

maxUnavailable is the number of pods can be unavailable during a disruption.

NOTE

OpenShift Container Platform 4.18 Postinstallation configuration

160

NOTE

Available refers to the number of pods that has condition Ready=True. Ready=True
refers to the pod that is able to serve requests and should be added to the load balancing
pools of all matching services.

A maxUnavailable of 0% or 0 or a minAvailable of 100% or equal to the number of
replicas is permitted but can block nodes from being drained.

WARNING

The default setting for maxUnavailable is 1 for all the machine config pools in
OpenShift Container Platform. It is recommended to not change this value and
update one control plane node at a time. Do not change this value to 3 for the
control plane pool.

You can check for pod disruption budgets across all projects with the following:

NOTE

The following example contains some values that are specific to OpenShift Container
Platform on AWS.

Example output

The PodDisruptionBudget is considered healthy when there are at least minAvailable pods running in
the system. Every pod above that limit can be evicted.

NOTE



$ oc get poddisruptionbudget --all-namespaces

NAMESPACE NAME MIN AVAILABLE MAX UNAVAILABLE
ALLOWED DISRUPTIONS AGE
openshift-apiserver openshift-apiserver-pdb N/A 1 1
121m
openshift-cloud-controller-manager aws-cloud-controller-manager 1 N/A 1
125m
openshift-cloud-credential-operator pod-identity-webhook 1 N/A 1
117m
openshift-cluster-csi-drivers aws-ebs-csi-driver-controller-pdb N/A 1 1
121m
openshift-cluster-storage-operator csi-snapshot-controller-pdb N/A 1 1
122m
openshift-cluster-storage-operator csi-snapshot-webhook-pdb N/A 1 1
122m
openshift-console console N/A 1 1
116m
#...

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

161

1 1

2

3

1

2

3

NOTE

Depending on your pod priority and preemption settings, lower-priority pods might be
removed despite their pod disruption budget requirements.

4.14.2. Specifying the number of pods that must be up with pod disruption budgets

You can use a PodDisruptionBudget object to specify the minimum number or percentage of replicas
that must be up at a time.

Procedure

To configure a pod disruption budget:

1. Create a YAML file with the an object definition similar to the following:

PodDisruptionBudget is part of the policy/v1 API group.

The minimum number of pods that must be available simultaneously. This can be either an
integer or a string specifying a percentage, for example, 20%.

A label query over a set of resources. The result of matchLabels and matchExpressions
are logically conjoined. Leave this parameter blank, for example selector {}, to select all
pods in the project.

Or:

PodDisruptionBudget is part of the policy/v1 API group.

The maximum number of pods that can be unavailable simultaneously. This can be either
an integer or a string specifying a percentage, for example, 20%.

A label query over a set of resources. The result of matchLabels and matchExpressions
are logically conjoined. Leave this parameter blank, for example selector {}, to select all
pods in the project.

apiVersion: policy/v1 1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 minAvailable: 2 2
 selector: 3
 matchLabels:
 name: my-pod

apiVersion: policy/v1 1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 maxUnavailable: 25% 2
 selector: 3
 matchLabels:
 name: my-pod

OpenShift Container Platform 4.18 Postinstallation configuration

162

1

pods in the project.

2. Run the following command to add the object to project:

4.14.3. Specifying the eviction policy for unhealthy pods

When you use pod disruption budgets (PDBs) to specify how many pods must be available
simultaneously, you can also define the criteria for how unhealthy pods are considered for eviction.

You can choose one of the following policies:

IfHealthyBudget

Running pods that are not yet healthy can be evicted only if the guarded application is not disrupted.

AlwaysAllow

Running pods that are not yet healthy can be evicted regardless of whether the criteria in the pod
disruption budget is met. This policy can help evict malfunctioning applications, such as ones with
pods stuck in the CrashLoopBackOff state or failing to report the Ready status.

NOTE

It is recommended to set the unhealthyPodEvictionPolicy field to AlwaysAllow in
the PodDisruptionBudget object to support the eviction of misbehaving applications
during a node drain. The default behavior is to wait for the application pods to
become healthy before the drain can proceed.

Procedure

1. Create a YAML file that defines a PodDisruptionBudget object and specify the unhealthy pod
eviction policy:

Example pod-disruption-budget.yaml file

Choose either IfHealthyBudget or AlwaysAllow as the unhealthy pod eviction policy. The
default is IfHealthyBudget when the unhealthyPodEvictionPolicy field is empty.

2. Create the PodDisruptionBudget object by running the following command:

$ oc create -f </path/to/file> -n <project_name>

apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 minAvailable: 2
 selector:
 matchLabels:
 name: my-pod
 unhealthyPodEvictionPolicy: AlwaysAllow 1

CHAPTER 4. POSTINSTALLATION CLUSTER TASKS

163

With a PDB that has the AlwaysAllow unhealthy pod eviction policy set, you can now drain nodes and
evict the pods for a malfunctioning application guarded by this PDB.

Additional resources

Enabling features using feature gates

Unhealthy Pod Eviction Policy in the Kubernetes documentation

$ oc create -f pod-disruption-budget.yaml

OpenShift Container Platform 4.18 Postinstallation configuration

164

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-cluster-enabling-features
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#unhealthy-pod-eviction-policy

CHAPTER 5. POSTINSTALLATION NODE TASKS
After installing OpenShift Container Platform, you can further expand and customize your cluster to
your requirements through certain node tasks.

5.1. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT
CONTAINER PLATFORM CLUSTER

Understand and work with RHEL compute nodes.

5.1.1. About adding RHEL compute nodes to a cluster

In OpenShift Container Platform 4.18, you have the option of using Red Hat Enterprise Linux (RHEL)
machines as compute machines in your cluster if you use a user-provisioned or installer-provisioned
infrastructure installation on the x86_64 architecture. You must use Red Hat Enterprise Linux CoreOS
(RHCOS) machines for the control plane machines in your cluster.

If you choose to use RHEL compute machines in your cluster, you are responsible for all operating
system life cycle management and maintenance. You must perform system updates, apply patches, and
complete all other required tasks.

For installer-provisioned infrastructure clusters, you must manually add RHEL compute machines
because automatic scaling in installer-provisioned infrastructure clusters adds Red Hat Enterprise Linux
CoreOS (RHCOS) compute machines by default.

IMPORTANT

Because removing OpenShift Container Platform from a machine in the cluster
requires destroying the operating system, you must use dedicated hardware for
any RHEL machines that you add to the cluster.

Swap memory is disabled on all RHEL machines that you add to your OpenShift
Container Platform cluster. You cannot enable swap memory on these machines.

5.1.2. System requirements for RHEL compute nodes

The Red Hat Enterprise Linux (RHEL) compute machine hosts in your OpenShift Container Platform
environment must meet the following minimum hardware specifications and system-level requirements:

You must have an active OpenShift Container Platform subscription on your Red Hat account. If
you do not, contact your sales representative for more information.

Production environments must provide compute machines to support your expected workloads.
As a cluster administrator, you must calculate the expected workload and add about 10% for
overhead. For production environments, allocate enough resources so that a node host failure
does not affect your maximum capacity.

Each system must meet the following hardware requirements:

Physical or virtual system, or an instance running on a public or private IaaS.

Base operating system: Use RHEL 8.8 or a later version with the minimal installation option.

IMPORTANT

CHAPTER 5. POSTINSTALLATION NODE TASKS

165

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_8_installation/index

IMPORTANT

Adding RHEL 7 compute machines to an OpenShift Container Platform
cluster is not supported.

If you have RHEL 7 compute machines that were previously supported in a
past OpenShift Container Platform version, you cannot upgrade them to
RHEL 8. You must deploy new RHEL 8 hosts, and the old RHEL 7 hosts
should be removed. See the "Deleting nodes" section for more information.

For the most recent list of major functionality that has been deprecated or
removed within OpenShift Container Platform, refer to the Deprecated and
removed features section of the OpenShift Container Platform release
notes.

If you deployed OpenShift Container Platform in FIPS mode, you must enable FIPS on the
RHEL machine before you boot it. See Installing a RHEL 8 system with FIPS mode enabled
in the RHEL 8 documentation.

IMPORTANT

To enable FIPS mode for your cluster, you must run the installation program
from a Red Hat Enterprise Linux (RHEL) computer configured to operate in
FIPS mode. For more information about configuring FIPS mode on RHEL,
see Switching RHEL to FIPS mode .

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux
CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core
components use the RHEL cryptographic libraries that have been submitted
to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and
s390x architectures.

NetworkManager 1.0 or later.

1 vCPU.

Minimum 8 GB RAM.

Minimum 15 GB hard disk space for the file system containing /var/.

Minimum 1 GB hard disk space for the file system containing /usr/local/bin/.

Minimum 1 GB hard disk space for the file system containing its temporary directory. The
temporary system directory is determined according to the rules defined in the tempfile
module in the Python standard library.

Each system must meet any additional requirements for your system provider. For example, if
you installed your cluster on VMware vSphere, your disks must be configured according to its
storage guidelines and the disk.enableUUID=TRUE attribute must be set.

Each system must be able to access the cluster’s API endpoints by using DNS-resolvable
hostnames. Any network security access control that is in place must allow system access to the
cluster’s API service endpoints.

For clusters installed on Microsoft Azure:

OpenShift Container Platform 4.18 Postinstallation configuration

166

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/assembly_installing-a-rhel-8-system-with-fips-mode-enabled_security-hardening
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/security_hardening/switching-rhel-to-fips-mode_security-hardening
https://github.com/vmware-archive/vsphere-storage-for-kubernetes/blob/master/documentation/prerequisites.md

Ensure the system includes the hardware requirement of a Standard_D8s_v3 virtual
machine.

Enable Accelerated Networking. Accelerated Networking uses single root I/O virtualization
(SR-IOV) to provide Microsoft Azure VMs with a more direct path to the switch.

Additional resources

Deleting nodes

Accelerated Networking for Microsoft Azure VMs

5.1.2.1. Certificate signing requests management

On user-provisioned infrastructure, you must provide a mechanism for approving cluster certificate
signing requests (CSRs) after installation when your cluster has limited access to automatic machine
management.

The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot
guarantee the validity of a serving certificate that is requested by using kubelet credentials because it
cannot confirm that the correct machine issued the request. You must determine and implement a
method of verifying the validity of the kubelet serving certificate requests and approving them.

5.1.3. Preparing the machine to run the playbook

Before you can add compute machines that use Red Hat Enterprise Linux (RHEL) as the operating
system to an OpenShift Container Platform 4.18 cluster, you must prepare a RHEL 8 machine to run an
Ansible playbook that adds the new node to the cluster. This machine is not part of the cluster but must
be able to access it.

Prerequisites

Install the OpenShift CLI (oc) on the machine that you run the playbook on.

Log in as a user with cluster-admin permission.

Procedure

1. Ensure that the kubeconfig file for the cluster and the installation program that you used to
install the cluster are on the RHEL 8 machine. One way to accomplish this is to use the same
machine that you used to install the cluster.

2. Configure the machine to access all of the RHEL hosts that you plan to use as compute
machines. You can use any method that your company allows, including a bastion with an SSH
proxy or a VPN.

3. Configure a user on the machine that you run the playbook on that has SSH access to all of the
RHEL hosts.

IMPORTANT

If you use SSH key-based authentication, you must manage the key with an SSH
agent.

4. If you have not already done so, register the machine with RHSM and attach a pool with an

CHAPTER 5. POSTINSTALLATION NODE TASKS

167

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-nodes-working-deleting_nodes-nodes-working
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_management/#machineset-azure-accelerated-networking_creating-machineset-azure

4. If you have not already done so, register the machine with RHSM and attach a pool with an
OpenShift subscription to it:

a. Register the machine with RHSM:

b. Pull the latest subscription data from RHSM:

c. List the available subscriptions:

d. In the output for the previous command, find the pool ID for an OpenShift Container
Platform subscription and attach it:

5. Enable the repositories required by OpenShift Container Platform 4.18:

6. Install the required packages, including openshift-ansible:

The openshift-ansible package provides installation program utilities and pulls in other
packages that you require to add a RHEL compute node to your cluster, such as Ansible,
playbooks, and related configuration files. The openshift-clients provides the oc CLI, and the
jq package improves the display of JSON output on your command line.

5.1.4. Preparing a RHEL compute node

Before you add a Red Hat Enterprise Linux (RHEL) machine to your OpenShift Container Platform
cluster, you must register each host with Red Hat Subscription Manager (RHSM), attach an active
OpenShift Container Platform subscription, and enable the required repositories.

1. On each host, register with RHSM:

2. Pull the latest subscription data from RHSM:

3. List the available subscriptions:

subscription-manager register --username=<user_name> --password=<password>

subscription-manager refresh

subscription-manager list --available --matches '*OpenShift*'

subscription-manager attach --pool=<pool_id>

subscription-manager repos \
 --enable="rhel-8-for-x86_64-baseos-rpms" \
 --enable="rhel-8-for-x86_64-appstream-rpms" \
 --enable="rhocp-4.18-for-rhel-8-x86_64-rpms"

yum install openshift-ansible openshift-clients jq

subscription-manager register --username=<user_name> --password=<password>

subscription-manager refresh

OpenShift Container Platform 4.18 Postinstallation configuration

168

4. In the output for the previous command, find the pool ID for an OpenShift Container Platform
subscription and attach it:

5. Disable all yum repositories:

a. Disable all the enabled RHSM repositories:

b. List the remaining yum repositories and note their names under repo id, if any:

c. Use yum-config-manager to disable the remaining yum repositories:

Alternatively, disable all repositories:

Note that this might take a few minutes if you have a large number of available repositories

6. Enable only the repositories required by OpenShift Container Platform 4.18:

7. Stop and disable firewalld on the host:

NOTE

You must not enable firewalld later. If you do, you cannot access OpenShift
Container Platform logs on the worker.

5.1.5. Adding a RHEL compute machine to your cluster

You can add compute machines that use Red Hat Enterprise Linux as the operating system to an
OpenShift Container Platform 4.18 cluster.

Prerequisites

You installed the required packages and performed the necessary configuration on the machine

subscription-manager list --available --matches '*OpenShift*'

subscription-manager attach --pool=<pool_id>

subscription-manager repos --disable="*"

yum repolist

yum-config-manager --disable <repo_id>

yum-config-manager --disable *

subscription-manager repos \
 --enable="rhel-8-for-x86_64-baseos-rpms" \
 --enable="rhel-8-for-x86_64-appstream-rpms" \
 --enable="rhocp-4.18-for-rhel-8-x86_64-rpms" \
 --enable="fast-datapath-for-rhel-8-x86_64-rpms"

systemctl disable --now firewalld.service

CHAPTER 5. POSTINSTALLATION NODE TASKS

169

1

2

3

4

1

You installed the required packages and performed the necessary configuration on the machine
that you run the playbook on.

You prepared the RHEL hosts for installation.

Procedure

Perform the following steps on the machine that you prepared to run the playbook:

1. Create an Ansible inventory file that is named /<path>/inventory/hosts that defines your
compute machine hosts and required variables:

[all:vars]
ansible_user=root 1
#ansible_become=True 2

openshift_kubeconfig_path="~/.kube/config" 3

[new_workers] 4
mycluster-rhel8-0.example.com
mycluster-rhel8-1.example.com

Specify the user name that runs the Ansible tasks on the remote compute machines.

If you do not specify root for the ansible_user, you must set ansible_become to True
and assign the user sudo permissions.

Specify the path and file name of the kubeconfig file for your cluster.

List each RHEL machine to add to your cluster. You must provide the fully-qualified
domain name for each host. This name is the hostname that the cluster uses to access the
machine, so set the correct public or private name to access the machine.

2. Navigate to the Ansible playbook directory:

3. Run the playbook:

For <path>, specify the path to the Ansible inventory file that you created.

5.1.6. Required parameters for the Ansible hosts file

You must define the following parameters in the Ansible hosts file before you add Red Hat Enterprise
Linux (RHEL) compute machines to your cluster.

Parameter Description Values

$ cd /usr/share/ansible/openshift-ansible

$ ansible-playbook -i /<path>/inventory/hosts playbooks/scaleup.yml 1

OpenShift Container Platform 4.18 Postinstallation configuration

170

1

1

ansible_user The SSH user that allows SSH-based
authentication without requiring a
password. If you use SSH key-based
authentication, then you must manage
the key with an SSH agent.

A user name on the system. The default
value is root.

ansible_becom
e

If the values of ansible_user is not root,
you must set ansible_become to True,
and the user that you specify as the
ansible_user must be configured for
passwordless sudo access.

True. If the value is not True, do not
specify and define this parameter.

openshift_kube
config_path

Specifies a path and file name to a local
directory that contains the kubeconfig
file for your cluster.

The path and name of the configuration
file.

Parameter Description Values

5.1.7. Optional: Removing RHCOS compute machines from a cluster

After you add the Red Hat Enterprise Linux (RHEL) compute machines to your cluster, you can
optionally remove the Red Hat Enterprise Linux CoreOS (RHCOS) compute machines to free up
resources.

Prerequisites

You have added RHEL compute machines to your cluster.

Procedure

1. View the list of machines and record the node names of the RHCOS compute machines:

2. For each RHCOS compute machine, delete the node:

a. Mark the node as unschedulable by running the oc adm cordon command:

Specify the node name of one of the RHCOS compute machines.

b. Drain all the pods from the node:

Specify the node name of the RHCOS compute machine that you isolated.

$ oc get nodes -o wide

$ oc adm cordon <node_name> 1

$ oc adm drain <node_name> --force --delete-emptydir-data --ignore-daemonsets 1

CHAPTER 5. POSTINSTALLATION NODE TASKS

171

1

c. Delete the node:

Specify the node name of the RHCOS compute machine that you drained.

3. Review the list of compute machines to ensure that only the RHEL nodes remain:

4. Remove the RHCOS machines from the load balancer for your cluster’s compute machines. You
can delete the virtual machines or reimage the physical hardware for the RHCOS compute
machines.

5.2. ADDING RHCOS COMPUTE MACHINES TO AN OPENSHIFT
CONTAINER PLATFORM CLUSTER

You can add more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines to your OpenShift
Container Platform cluster on bare metal.

Before you add more compute machines to a cluster that you installed on bare metal infrastructure, you
must create RHCOS machines for it to use. You can either use an ISO image or network PXE booting to
create the machines.

5.2.1. Prerequisites

You installed a cluster on bare metal.

You have installation media and Red Hat Enterprise Linux CoreOS (RHCOS) images that you
used to create your cluster. If you do not have these files, you must obtain them by following the
instructions in the installation procedure.

5.2.2. Creating RHCOS machines using an ISO image

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare
metal cluster by using an ISO image to create the machines.

Prerequisites

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

You must have the OpenShift CLI (oc) installed.

Procedure

1. Extract the Ignition config file from the cluster by running the following command:

2. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.

$ oc delete nodes <node_name> 1

$ oc get nodes -o wide

$ oc extract -n openshift-machine-api secret/worker-user-data-managed --keys=userData --
to=- > worker.ign

OpenShift Container Platform 4.18 Postinstallation configuration

172

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_bare_metal/#installing-bare-metal

1

2

2. Upload the worker.ign Ignition config file you exported from your cluster to your HTTP server.
Note the URLs of these files.

3. You can validate that the ignition files are available on the URLs. The following example gets
the Ignition config files for the compute node:

4. You can access the ISO image for booting your new machine by running to following command:

5. Use the ISO file to install RHCOS on more compute machines. Use the same method that you
used when you created machines before you installed the cluster:

Burn the ISO image to a disk and boot it directly.

Use ISO redirection with a LOM interface.

6. Boot the RHCOS ISO image without specifying any options, or interrupting the live boot
sequence. Wait for the installer to boot into a shell prompt in the RHCOS live environment.

NOTE

You can interrupt the RHCOS installation boot process to add kernel arguments.
However, for this ISO procedure you must use the coreos-installer command as
outlined in the following steps, instead of adding kernel arguments.

7. Run the coreos-installer command and specify the options that meet your installation
requirements. At a minimum, you must specify the URL that points to the Ignition config file for
the node type, and the device that you are installing to:

You must run the coreos-installer command by using sudo, because the core user does
not have the required root privileges to perform the installation.

The --ignition-hash option is required when the Ignition config file is obtained through an
HTTP URL to validate the authenticity of the Ignition config file on the cluster node.
<digest> is the Ignition config file SHA512 digest obtained in a preceding step.

NOTE

If you want to provide your Ignition config files through an HTTPS server that
uses TLS, you can add the internal certificate authority (CA) to the system trust
store before running coreos-installer.

The following example initializes a compute node installation to the /dev/sda device. The

$ curl -k http://<HTTP_server>/worker.ign

RHCOS_VHD_ORIGIN_URL=$(oc -n openshift-machine-config-operator get
configmap/coreos-bootimages -o jsonpath='{.data.stream}' | jq -r '.architectures.
<architecture>.artifacts.metal.formats.iso.disk.location')

$ sudo coreos-installer install --ignition-url=http://<HTTP_server>/<node_type>.ign <device>
--ignition-hash=sha512-<digest> 1 2

CHAPTER 5. POSTINSTALLATION NODE TASKS

173

The following example initializes a compute node installation to the /dev/sda device. The
Ignition config file for the compute node is obtained from an HTTP web server with the IP
address 192.168.1.2:

8. Monitor the progress of the RHCOS installation on the console of the machine.

IMPORTANT

Ensure that the installation is successful on each node before commencing with
the OpenShift Container Platform installation. Observing the installation process
can also help to determine the cause of RHCOS installation issues that might
arise.

9. Continue to create more compute machines for your cluster.

5.2.3. Creating RHCOS machines by PXE or iPXE booting

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare
metal cluster by using PXE or iPXE booting.

Prerequisites

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

Obtain the URLs of the RHCOS ISO image, compressed metal BIOS, kernel, and initramfs files
that you uploaded to your HTTP server during cluster installation.

You have access to the PXE booting infrastructure that you used to create the machines for
your OpenShift Container Platform cluster during installation. The machines must boot from
their local disks after RHCOS is installed on them.

If you use UEFI, you have access to the grub.conf file that you modified during OpenShift
Container Platform installation.

Procedure

1. Confirm that your PXE or iPXE installation for the RHCOS images is correct.

For PXE:

DEFAULT pxeboot
TIMEOUT 20
PROMPT 0
LABEL pxeboot
 KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 1
 APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img coreos.inst.install_dev=/dev/sda

$ sudo coreos-installer install --ignition-
url=http://192.168.1.2:80/installation_directory/worker.ign /dev/sda --ignition-hash=sha512-
a5a2d43879223273c9b60af66b44202a1d1248fc01cf156c46d4a79f552b6bad47bc8cc78ddf011
6e80c59d2ea9e32ba53bc807afbca581aa059311def2c3e3b

OpenShift Container Platform 4.18 Postinstallation configuration

174

1

2

1

2

3

coreos.inst.ignition_url=http://<HTTP_server>/worker.ign
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img 2

Specify the location of the live kernel file that you uploaded to your HTTP server.

Specify locations of the RHCOS files that you uploaded to your HTTP server. The
initrd parameter value is the location of the live initramfs file, the
coreos.inst.ignition_url parameter value is the location of the worker Ignition config
file, and the coreos.live.rootfs_url parameter value is the location of the live rootfs
file. The coreos.inst.ignition_url and coreos.live.rootfs_url parameters only support
HTTP and HTTPS.

NOTE

This configuration does not enable serial console access on machines with a
graphical console. To configure a different console, add one or more
console= arguments to the APPEND line. For example, add console=tty0
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise
Linux?.

For iPXE (x86_64 + aarch64):

kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img coreos.inst.install_dev=/dev/sda
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1 2
initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img 3
boot

Specify the locations of the RHCOS files that you uploaded to your HTTP server. The
kernel parameter value is the location of the kernel file, the initrd=main argument is
needed for booting on UEFI systems, the coreos.live.rootfs_url parameter value is
the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the
location of the worker Ignition config file.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your HTTP server.

NOTE

CHAPTER 5. POSTINSTALLATION NODE TASKS

175

https://access.redhat.com/articles/7212

1

2

3

NOTE

This configuration does not enable serial console access on machines with a
graphical console To configure a different console, add one or more
console= arguments to the kernel line. For example, add console=tty0
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise Linux?
and "Enabling the serial console for PXE and ISO installation" in the
"Advanced RHCOS installation configuration" section.

NOTE

To network boot the CoreOS kernel on aarch64 architecture, you need to
use a version of iPXE build with the IMAGE_GZIP option enabled. See
IMAGE_GZIP option in iPXE .

For PXE (with UEFI and GRUB as second stage) on aarch64:

menuentry 'Install CoreOS' {
 linux rhcos-<version>-live-kernel-<architecture>
coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img coreos.inst.install_dev=/dev/sda
coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1 2
 initrd rhcos-<version>-live-initramfs.<architecture>.img 3
}

Specify the locations of the RHCOS files that you uploaded to your HTTP/TFTP
server. The kernel parameter value is the location of the kernel file on your TFTP
server. The coreos.live.rootfs_url parameter value is the location of the rootfs file,
and the coreos.inst.ignition_url parameter value is the location of the worker Ignition
config file on your HTTP Server.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your TFTP server.

2. Use the PXE or iPXE infrastructure to create the required compute machines for your cluster.

5.2.4. Approving the certificate signing requests for your machines

To add machines to a cluster, verify the status of the certificate signing requests (CSRs) generated for
each machine. If manual approval is required, approve the client requests first, followed by the server
requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

OpenShift Container Platform 4.18 Postinstallation configuration

176

https://access.redhat.com/articles/7212
https://ipxe.org/buildcfg/image_gzip

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.31.3
master-1 Ready master 63m v1.31.3
master-2 Ready master 64m v1.31.3

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
...

CHAPTER 5. POSTINSTALLATION NODE TASKS

177

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

where:

<csr_name>

Specifies the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

where:

$ oc adm certificate approve <csr_name>

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal
Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal
Pending
...

$ oc adm certificate approve <csr_name>

OpenShift Container Platform 4.18 Postinstallation configuration

178

<csr_name>

Specifies the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

5.2.5. Adding a new RHCOS worker node with a custom /var partition in AWS

OpenShift Container Platform supports partitioning devices during installation by using machine configs
that are processed during the bootstrap. However, if you use /var partitioning, the device name must be
determined at installation and cannot be changed. You cannot add different instance types as nodes if
they have a different device naming schema. For example, if you configured the /var partition with the
default AWS device name for m4.large instances, dev/xvdb, you cannot directly add an AWS m5.large
instance, as m5.large instances use a /dev/nvme1n1 device by default. The device might fail to partition
due to the different naming schema.

The procedure in this section shows how to add a new Red Hat Enterprise Linux CoreOS (RHCOS)
compute node with an instance that uses a different device name from what was configured at
installation. You create a custom user data secret and configure a new compute machine set. These
steps are specific to an AWS cluster. The principles apply to other cloud deployments also. However, the
device naming schema is different for other deployments and should be determined on a per-case basis.

Procedure

1. On a command line, change to the openshift-machine-api namespace:

2. Create a new secret from the worker-user-data secret:

a. Export the userData section of the secret to a text file:

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.31.3
master-1 Ready master 73m v1.31.3
master-2 Ready master 74m v1.31.3
worker-0 Ready worker 11m v1.31.3
worker-1 Ready worker 11m v1.31.3

$ oc project openshift-machine-api

CHAPTER 5. POSTINSTALLATION NODE TASKS

179

b. Edit the text file to add the storage, filesystems, and systemd stanzas for the partitions
you want to use for the new node. You can specify any Ignition configuration parameters as
needed.

NOTE

Do not change the values in the ignition stanza.

$ oc get secret worker-user-data --template='{{index .data.userData | base64decode}}' |
jq > userData.txt

{
 "ignition": {
 "config": {
 "merge": [
 {
 "source": "https:...."
 }
]
 },
 "security": {
 "tls": {
 "certificateAuthorities": [
 {
 "source": "data:text/plain;charset=utf-8;base64,.....=="
 }
]
 }
 },
 "version": "3.2.0"
 },
 "storage": {
 "disks": [
 {
 "device": "/dev/nvme1n1", 1
 "partitions": [
 {
 "label": "var",
 "sizeMiB": 50000, 2
 "startMiB": 0 3
 }
]
 }
],
 "filesystems": [
 {
 "device": "/dev/disk/by-partlabel/var", 4
 "format": "xfs", 5
 "path": "/var" 6
 }
]
 },
 "systemd": {

OpenShift Container Platform 4.18 Postinstallation configuration

180

https://coreos.github.io/ignition/configuration-v3_2/

1

2

3

4

5

6

7

Specifies an absolute path to the AWS block device.

Specifies the size of the data partition in Mebibytes.

Specifies the start of the partition in Mebibytes. When adding a data partition to the
boot disk, a minimum value of 25000 MB (Mebibytes) is recommended. The root file
system is automatically resized to fill all available space up to the specified offset. If no
value is specified, or if the specified value is smaller than the recommended minimum,
the resulting root file system will be too small, and future reinstalls of RHCOS might
overwrite the beginning of the data partition.

Specifies an absolute path to the /var partition.

Specifies the filesystem format.

Specifies the mount-point of the filesystem while Ignition is running relative to where
the root filesystem will be mounted. This is not necessarily the same as where it should
be mounted in the real root, but it is encouraged to make it the same.

Defines a systemd mount unit that mounts the /dev/disk/by-partlabel/var device to
the /var partition.

c. Extract the disableTemplating section from the work-user-data secret to a text file:

d. Create the new user data secret file from the two text files. This user data secret passes the
additional node partition information in the userData.txt file to the newly created node.

3. Create a new compute machine set for the new node:

a. Create a new compute machine set YAML file, similar to the following, which is configured
for AWS. Add the required partitions and the newly-created user data secret:

TIP

Use an existing compute machine set as a template and change the parameters as needed
for the new node.

 "units": [7
 {
 "contents": "[Unit]\nBefore=local-
fs.target\n[Mount]\nWhere=/var\nWhat=/dev/disk/by-
partlabel/var\nOptions=defaults,pquota\n[Install]\nWantedBy=local-fs.target\n",
 "enabled": true,
 "name": "var.mount"
 }
]
 }
}

$ oc get secret worker-user-data --template='{{index .data.disableTemplating |
base64decode}}' | jq > disableTemplating.txt

$ oc create secret generic worker-user-data-x5 --from-file=userData=userData.txt --
from-file=disableTemplating=disableTemplating.txt

CHAPTER 5. POSTINSTALLATION NODE TASKS

181

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: auto-52-92tf4
 name: worker-us-east-2-nvme1n1 1
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: auto-52-92tf4
 machine.openshift.io/cluster-api-machineset: auto-52-92tf4-worker-us-east-2b
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: auto-52-92tf4
 machine.openshift.io/cluster-api-machine-role: worker
 machine.openshift.io/cluster-api-machine-type: worker
 machine.openshift.io/cluster-api-machineset: auto-52-92tf4-worker-us-east-2b
 spec:
 metadata: {}
 providerSpec:
 value:
 ami:
 id: ami-0c2dbd95931a
 apiVersion: awsproviderconfig.openshift.io/v1beta1
 blockDevices:
 - DeviceName: /dev/nvme1n1 2
 ebs:
 encrypted: true
 iops: 0
 volumeSize: 120
 volumeType: gp2
 - DeviceName: /dev/nvme1n2 3
 ebs:
 encrypted: true
 iops: 0
 volumeSize: 50
 volumeType: gp2
 credentialsSecret:
 name: aws-cloud-credentials
 deviceIndex: 0
 iamInstanceProfile:
 id: auto-52-92tf4-worker-profile
 instanceType: m6i.large
 kind: AWSMachineProviderConfig
 metadata:
 creationTimestamp: null
 placement:
 availabilityZone: us-east-2b
 region: us-east-2
 securityGroups:
 - filters:
 - name: tag:Name
 values:

OpenShift Container Platform 4.18 Postinstallation configuration

182

1

2

3

4

1

Specifies a name for the new node.

Specifies an absolute path to the AWS block device, here an encrypted EBS volume.

Optional. Specifies an additional EBS volume.

Specifies the user data secret file.

b. Create the compute machine set:

The machines might take a few moments to become available.

4. Verify that the new partition and nodes are created:

a. Verify that the compute machine set is created:

Example output

This is the new compute machine set.

b. Verify that the new node is created:

Example output

 - auto-52-92tf4-worker-sg
 subnet:
 id: subnet-07a90e5db1
 tags:
 - name: kubernetes.io/cluster/auto-52-92tf4
 value: owned
 userDataSecret:
 name: worker-user-data-x5 4

$ oc create -f <file-name>.yaml

$ oc get machineset

NAME DESIRED CURRENT READY AVAILABLE AGE
ci-ln-2675bt2-76ef8-bdgsc-worker-us-east-1a 1 1 1 1 124m
ci-ln-2675bt2-76ef8-bdgsc-worker-us-east-1b 2 2 2 2 124m
worker-us-east-2-nvme1n1 1 1 1 1 2m35s 1

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ip-10-0-128-78.ec2.internal Ready worker 117m v1.31.3
ip-10-0-146-113.ec2.internal Ready master 127m v1.31.3
ip-10-0-153-35.ec2.internal Ready worker 118m v1.31.3
ip-10-0-176-58.ec2.internal Ready master 126m v1.31.3
ip-10-0-217-135.ec2.internal Ready worker 2m57s v1.31.3 1
ip-10-0-225-248.ec2.internal Ready master 127m v1.31.3
ip-10-0-245-59.ec2.internal Ready worker 116m v1.31.3

CHAPTER 5. POSTINSTALLATION NODE TASKS

183

1

1

This is new new node.

c. Verify that the custom /var partition is created on the new node:

For example:

Example output

The nvme1n1 device is mounted to the /var partition.

Additional resources

For more information on how OpenShift Container Platform uses disk partitioning, see Disk
partitioning.

5.3. DEPLOYING MACHINE HEALTH CHECKS

Understand and deploy machine health checks.

IMPORTANT

You can use the advanced machine management and scaling capabilities only in clusters
where the Machine API is operational. Clusters with user-provisioned infrastructure
require additional validation and configuration to use the Machine API.

Clusters with the infrastructure platform type none cannot use the Machine API. This
limitation applies even if the compute machines that are attached to the cluster are
installed on a platform that supports the feature. This parameter cannot be changed
after installation.

To view the platform type for your cluster, run the following command:

5.3.1. About machine health checks

NOTE

$ oc debug node/<node-name> -- chroot /host lsblk

$ oc debug node/ip-10-0-217-135.ec2.internal -- chroot /host lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
nvme0n1 202:0 0 120G 0 disk
|-nvme0n1p1 202:1 0 1M 0 part
|-nvme0n1p2 202:2 0 127M 0 part
|-nvme0n1p3 202:3 0 384M 0 part /boot
`-nvme0n1p4 202:4 0 119.5G 0 part /sysroot
nvme1n1 202:16 0 50G 0 disk
`-nvme1n1p1 202:17 0 48.8G 0 part /var 1

$ oc get infrastructure cluster -o jsonpath='{.status.platform}'

OpenShift Container Platform 4.18 Postinstallation configuration

184

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_bare_metal/#installation-user-infra-machines-advanced_disk_installing-bare-metal

NOTE

You can only apply a machine health check to machines that are managed by compute
machine sets or control plane machine sets.

To monitor machine health, create a resource to define the configuration for a controller. Set a condition
to check, such as staying in the NotReady status for five minutes or displaying a permanent condition in
the node-problem-detector, and a label for the set of machines to monitor.

The controller that observes a MachineHealthCheck resource checks for the defined condition. If a
machine fails the health check, the machine is automatically deleted and one is created to take its place.
When a machine is deleted, you see a machine deleted event.

To limit disruptive impact of the machine deletion, the controller drains and deletes only one node at a
time. If there are more unhealthy machines than the maxUnhealthy threshold allows for in the targeted
pool of machines, remediation stops and therefore enables manual intervention.

NOTE

Consider the timeouts carefully, accounting for workloads and requirements.

Long timeouts can result in long periods of downtime for the workload on the
unhealthy machine.

Too short timeouts can result in a remediation loop. For example, the timeout for
checking the NotReady status must be long enough to allow the machine to
complete the startup process.

To stop the check, remove the resource.

5.3.1.1. Limitations when deploying machine health checks

There are limitations to consider before deploying a machine health check:

Only machines owned by a machine set are remediated by a machine health check.

If the node for a machine is removed from the cluster, a machine health check considers the
machine to be unhealthy and remediates it immediately.

If the corresponding node for a machine does not join the cluster after the
nodeStartupTimeout, the machine is remediated.

A machine is remediated immediately if the Machine resource phase is Failed.

Additional resources

About control plane machine sets

5.3.2. Sample MachineHealthCheck resource

The MachineHealthCheck resource for all cloud-based installation types, and other than bare metal,
resembles the following YAML file:

apiVersion: machine.openshift.io/v1beta1

CHAPTER 5. POSTINSTALLATION NODE TASKS

185

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_management/#cpmso-about

1

2 3

4

5 6

7

8

Specify the name of the machine health check to deploy.

Specify a label for the machine pool that you want to check.

Specify the machine set to track in <cluster_name>-<label>-<zone> format. For example, prod-
node-us-east-1a.

Specify the timeout duration for a node condition. If a condition is met for the duration of the
timeout, the machine will be remediated. Long timeouts can result in long periods of downtime for
a workload on an unhealthy machine.

Specify the amount of machines allowed to be concurrently remediated in the targeted pool. This
can be set as a percentage or an integer. If the number of unhealthy machines exceeds the limit set
by maxUnhealthy, remediation is not performed.

Specify the timeout duration that a machine health check must wait for a node to join the cluster
before a machine is determined to be unhealthy.

NOTE

The matchLabels are examples only; you must map your machine groups based on your
specific needs.

5.3.2.1. Short-circuiting machine health check remediation

Short-circuiting ensures that machine health checks remediate machines only when the cluster is
healthy. Short-circuiting is configured through the maxUnhealthy field in the MachineHealthCheck
resource.

If the user defines a value for the maxUnhealthy field, before remediating any machines, the
MachineHealthCheck compares the value of maxUnhealthy with the number of machines within its
target pool that it has determined to be unhealthy. Remediation is not performed if the number of
unhealthy machines exceeds the maxUnhealthy limit.

IMPORTANT

kind: MachineHealthCheck
metadata:
 name: example 1
 namespace: openshift-machine-api
spec:
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-machine-role: <role> 2
 machine.openshift.io/cluster-api-machine-type: <role> 3
 machine.openshift.io/cluster-api-machineset: <cluster_name>-<label>-<zone> 4
 unhealthyConditions:
 - type: "Ready"
 timeout: "300s" 5
 status: "False"
 - type: "Ready"
 timeout: "300s" 6
 status: "Unknown"
 maxUnhealthy: "40%" 7
 nodeStartupTimeout: "10m" 8

OpenShift Container Platform 4.18 Postinstallation configuration

186

IMPORTANT

If maxUnhealthy is not set, the value defaults to 100% and the machines are remediated
regardless of the state of the cluster.

The appropriate maxUnhealthy value depends on the scale of the cluster you deploy and how many
machines the MachineHealthCheck covers. For example, you can use the maxUnhealthy value to
cover multiple compute machine sets across multiple availability zones so that if you lose an entire zone,
your maxUnhealthy setting prevents further remediation within the cluster. In global Azure regions that
do not have multiple availability zones, you can use availability sets to ensure high availability.

IMPORTANT

If you configure a MachineHealthCheck resource for the control plane, set the value of
maxUnhealthy to 1.

This configuration ensures that the machine health check takes no action when multiple
control plane machines appear to be unhealthy. Multiple unhealthy control plane
machines can indicate that the etcd cluster is degraded or that a scaling operation to
replace a failed machine is in progress.

If the etcd cluster is degraded, manual intervention might be required. If a scaling
operation is in progress, the machine health check should allow it to finish.

The maxUnhealthy field can be set as either an integer or percentage. There are different remediation
implementations depending on the maxUnhealthy value.

5.3.2.1.1. Setting maxUnhealthy by using an absolute value

If maxUnhealthy is set to 2:

Remediation will be performed if 2 or fewer nodes are unhealthy

Remediation will not be performed if 3 or more nodes are unhealthy

These values are independent of how many machines are being checked by the machine health check.

5.3.2.1.2. Setting maxUnhealthy by using percentages

If maxUnhealthy is set to 40% and there are 25 machines being checked:

Remediation will be performed if 10 or fewer nodes are unhealthy

Remediation will not be performed if 11 or more nodes are unhealthy

If maxUnhealthy is set to 40% and there are 6 machines being checked:

Remediation will be performed if 2 or fewer nodes are unhealthy

Remediation will not be performed if 3 or more nodes are unhealthy

NOTE

CHAPTER 5. POSTINSTALLATION NODE TASKS

187

NOTE

The allowed number of machines is rounded down when the percentage of
maxUnhealthy machines that are checked is not a whole number.

5.3.3. Creating a machine health check resource

You can create a MachineHealthCheck resource for machine sets in your cluster.

NOTE

You can only apply a machine health check to machines that are managed by compute
machine sets or control plane machine sets.

Prerequisites

Install the oc command-line interface.

Procedure

1. Create a healthcheck.yml file that contains the definition of your machine health check.

2. Apply the healthcheck.yml file to your cluster:

5.3.4. Scaling a compute machine set manually

To add or remove an instance of a machine in a compute machine set, you can manually scale the
compute machine set.

This guidance is relevant to fully automated, installer-provisioned infrastructure installations.
Customized, user-provisioned infrastructure installations do not have compute machine sets.

Prerequisites

Install an OpenShift Container Platform cluster and the oc command line.

Log in to oc as a user with cluster-admin permission.

Procedure

1. View the compute machine sets that are in the cluster by running the following command:

The compute machine sets are listed in the form of <clusterid>-worker-<aws-region-az>.

2. View the compute machines that are in the cluster by running the following command:

3. Set the annotation on the compute machine that you want to delete by running the following

$ oc apply -f healthcheck.yml

$ oc get machinesets.machine.openshift.io -n openshift-machine-api

$ oc get machines.machine.openshift.io -n openshift-machine-api

OpenShift Container Platform 4.18 Postinstallation configuration

188

3. Set the annotation on the compute machine that you want to delete by running the following
command:

4. Scale the compute machine set by running one of the following commands:

Or:

TIP

You can alternatively apply the following YAML to scale the compute machine set:

You can scale the compute machine set up or down. It takes several minutes for the new
machines to be available.

IMPORTANT

By default, the machine controller tries to drain the node that is backed by the
machine until it succeeds. In some situations, such as with a misconfigured pod
disruption budget, the drain operation might not be able to succeed. If the drain
operation fails, the machine controller cannot proceed removing the machine.

You can skip draining the node by annotating machine.openshift.io/exclude-
node-draining in a specific machine.

Verification

Verify the deletion of the intended machine by running the following command:

5.3.5. Understanding the difference between compute machine sets and the
machine config pool

MachineSet objects describe OpenShift Container Platform nodes with respect to the cloud or machine
provider.

$ oc annotate machines.machine.openshift.io/<machine_name> -n openshift-machine-api
machine.openshift.io/delete-machine="true"

$ oc scale --replicas=2 machinesets.machine.openshift.io <machineset> -n openshift-
machine-api

$ oc edit machinesets.machine.openshift.io <machineset> -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <machineset>
 namespace: openshift-machine-api
spec:
 replicas: 2

$ oc get machines.machine.openshift.io

CHAPTER 5. POSTINSTALLATION NODE TASKS

189

The MachineConfigPool object allows MachineConfigController components to define and provide
the status of machines in the context of upgrades.

The MachineConfigPool object allows users to configure how upgrades are rolled out to the OpenShift
Container Platform nodes in the machine config pool.

The NodeSelector object can be replaced with a reference to the MachineSet object.

5.4. RECOMMENDED NODE HOST PRACTICES

The OpenShift Container Platform node configuration file contains important options. For example, two
parameters control the maximum number of pods that can be scheduled to a node: podsPerCore and
maxPods.

When both options are in use, the lower of the two values limits the number of pods on a node.
Exceeding these values can result in the following conditions:

Increased CPU utilization.

Slow pod scheduling.

Potential out-of-memory scenarios, depending on the amount of memory in the node.

Exhausting the pool of IP addresses.

Resource overcommitting, leading to poor user application performance.

IMPORTANT

In Kubernetes, a pod that is holding a single container actually uses two containers. The
second container is used to set up networking prior to the actual container starting.
Therefore, a system running 10 pods will actually have 20 containers running.

NOTE

Disk IOPS throttling from the cloud provider might have an impact on CRI-O and kubelet.
They might get overloaded when there are large number of I/O intensive pods running on
the nodes. It is recommended that you monitor the disk I/O on the nodes and use
volumes with sufficient throughput for the workload.

The podsPerCore parameter sets the number of pods that the node can run based on the number of
processor cores on the node. For example, if podsPerCore is set to 10 on a node with 4 processor
cores, the maximum number of pods allowed on the node is 40.

Setting podsPerCore to 0 disables this limit. The default is 0. The value of the podsPerCore parameter
cannot exceed the value of the maxPods parameter.

The maxPods parameter sets the number of pods that the node can run to a fixed value, regardless of
the properties of the node.

kubeletConfig:
 podsPerCore: 10

 kubeletConfig:

OpenShift Container Platform 4.18 Postinstallation configuration

190

5.4.1. Creating a KubeletConfig CR to edit kubelet parameters

The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited.
However, there is also a new kubelet-config-controller added to the Machine Config Controller (MCC).
This lets you use a KubeletConfig custom resource (CR) to edit the kubelet parameters.

NOTE

As the fields in the kubeletConfig object are passed directly to the kubelet from
upstream Kubernetes, the kubelet validates those values directly. Invalid values in the
kubeletConfig object might cause cluster nodes to become unavailable. For valid values,
see the Kubernetes documentation.

Consider the following guidance:

Edit an existing KubeletConfig CR to modify existing settings or add new settings, instead of
creating a CR for each change. It is recommended that you create a CR only to modify a
different machine config pool, or for changes that are intended to be temporary, so that you
can revert the changes.

Create one KubeletConfig CR for each machine config pool with all the config changes you
want for that pool.

As needed, create multiple KubeletConfig CRs with a limit of 10 per cluster. For the first
KubeletConfig CR, the Machine Config Operator (MCO) creates a machine config appended
with kubelet. With each subsequent CR, the controller creates another kubelet machine config
with a numeric suffix. For example, if you have a kubelet machine config with a -2 suffix, the next
kubelet machine config is appended with -3.

NOTE

If you are applying a kubelet or container runtime config to a custom machine config
pool, the custom role in the machineConfigSelector must match the name of the
custom machine config pool.

For example, because the following custom machine config pool is named infra, the
custom role must also be infra:

If you want to delete the machine configs, delete them in reverse order to avoid exceeding the limit. For
example, you delete the kubelet-3 machine config before deleting the kubelet-2 machine config.

 maxPods: 250

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: infra
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,infra]}
...

CHAPTER 5. POSTINSTALLATION NODE TASKS

191

https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

1

NOTE

If you have a machine config with a kubelet-9 suffix, and you create another
KubeletConfig CR, a new machine config is not created, even if there are fewer than 10
kubelet machine configs.

Example KubeletConfig CR

Example showing a KubeletConfig machine config

The following procedure is an example to show how to configure the maximum number of pods per
node, the maximum PIDs per node, and the maximum container log size size on the worker nodes.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CR for the type of node you
want to configure. Perform one of the following steps:

a. View the machine config pool:

For example:

Example output

If a label has been added it appears under labels.

$ oc get kubeletconfig

NAME AGE
set-kubelet-config 15m

$ oc get mc | grep kubelet

...
99-worker-generated-kubelet-1 b5c5119de007945b6fe6fb215db3b8e2ceb12511 3.4.0
26m
...

$ oc describe machineconfigpool <name>

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: set-kubelet-config 1

OpenShift Container Platform 4.18 Postinstallation configuration

192

b. If the label is not present, add a key/value pair:

Procedure

1. View the available machine configuration objects that you can select:

By default, the two kubelet-related configs are 01-master-kubelet and 01-worker-kubelet.

2. Check the current value for the maximum pods per node:

For example:

Look for value: pods: <value> in the Allocatable stanza:

Example output

3. Configure the worker nodes as needed:

a. Create a YAML file similar to the following that contains the kubelet configuration:

IMPORTANT

Kubelet configurations that target a specific machine config pool also affect
any dependent pools. For example, creating a kubelet configuration for the
pool containing worker nodes will also apply to any subset pools, including
the pool containing infrastructure nodes. To avoid this, you must create a
new machine config pool with a selection expression that only includes
worker nodes, and have your kubelet configuration target this new pool.

$ oc label machineconfigpool worker custom-kubelet=set-kubelet-config

$ oc get machineconfig

$ oc describe node <node_name>

$ oc describe node ci-ln-5grqprb-f76d1-ncnqq-worker-a-mdv94

Allocatable:
 attachable-volumes-aws-ebs: 25
 cpu: 3500m
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 15341844Ki
 pods: 250

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-kubelet-config
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: set-kubelet-config 1

CHAPTER 5. POSTINSTALLATION NODE TASKS

193

1

2

Enter the label from the machine config pool.

Add the kubelet configuration. For example:

Use podPidsLimit to set the maximum number of PIDs in any pod.

Use containerLogMaxSize to set the maximum size of the container log file before it is
rotated.

Use maxPods to set the maximum pods per node.

NOTE

The rate at which the kubelet talks to the API server depends on queries
per second (QPS) and burst values. The default values, 50 for
kubeAPIQPS and 100 for kubeAPIBurst, are sufficient if there are
limited pods running on each node. It is recommended to update the
kubelet QPS and burst rates if there are enough CPU and memory
resources on the node.

b. Update the machine config pool for workers with the label:

c. Create the KubeletConfig object:

Verification

1. Verify that the KubeletConfig object is created:

 kubeletConfig: 2
 podPidsLimit: 8192
 containerLogMaxSize: 50Mi
 maxPods: 500

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-kubelet-config
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: set-kubelet-config
 kubeletConfig:
 maxPods: <pod_count>
 kubeAPIBurst: <burst_rate>
 kubeAPIQPS: <QPS>

$ oc label machineconfigpool worker custom-kubelet=set-kubelet-config

$ oc create -f change-maxPods-cr.yaml

$ oc get kubeletconfig

OpenShift Container Platform 4.18 Postinstallation configuration

194

1

Example output

Depending on the number of worker nodes in the cluster, wait for the worker nodes to be
rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15 minutes.

2. Verify that the changes are applied to the node:

a. Check on a worker node that the maxPods value changed:

b. Locate the Allocatable stanza:

In this example, the pods parameter should report the value you set in the
KubeletConfig object.

3. Verify the change in the KubeletConfig object:

This should show a status of True and type:Success, as shown in the following example:

5.4.2. Modifying the number of unavailable worker nodes

NAME AGE
set-kubelet-config 15m

$ oc describe node <node_name>

 ...
Allocatable:
 attachable-volumes-gce-pd: 127
 cpu: 3500m
 ephemeral-storage: 123201474766
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 14225400Ki
 pods: 500 1
 ...

$ oc get kubeletconfigs set-kubelet-config -o yaml

spec:
 kubeletConfig:
 containerLogMaxSize: 50Mi
 maxPods: 500
 podPidsLimit: 8192
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: set-kubelet-config
status:
 conditions:
 - lastTransitionTime: "2021-06-30T17:04:07Z"
 message: Success
 status: "True"
 type: Success

CHAPTER 5. POSTINSTALLATION NODE TASKS

195

By default, only one machine is allowed to be unavailable when applying the kubelet-related
configuration to the available worker nodes. For a large cluster, it can take a long time for the
configuration change to be reflected. At any time, you can adjust the number of machines that are
updating to speed up the process.

Procedure

1. Edit the worker machine config pool:

2. Add the maxUnavailable field and set the value:

IMPORTANT

When setting the value, consider the number of worker nodes that can be
unavailable without affecting the applications running on the cluster.

5.4.3. Control plane node sizing

To ensure optimal performance and stability, determine the resource requirements for control plane
nodes. These sizing guidelines depend on the number and type of nodes and objects in your cluster.

The following control plane node size recommendations are based on the results of a control plane
density focused testing, or Cluster-density. This test creates the following objects across a given
number of namespaces:

1 image stream

1 build

5 deployments, with 2 pod replicas in a sleep state, mounting 4 secrets, 4 config maps, and 1
downward API volume each

5 services, each one pointing to the TCP/8080 and TCP/8443 ports of one of the previous
deployments

1 route pointing to the first of the previous services

10 secrets containing 2048 random string characters

10 config maps containing 2048 random string characters

Number of compute
nodes

Cluster-density
(namespaces)

CPU cores Memory (GB)

24 500 4 16

120 1000 8 32

$ oc edit machineconfigpool worker

spec:
 maxUnavailable: <node_count>

OpenShift Container Platform 4.18 Postinstallation configuration

196

252 4000 16, but 24 if using the
OVN-Kubernetes
network plug-in

64, but 128 if using the
OVN-Kubernetes
network plug-in

501, but untested with
the OVN-Kubernetes
network plug-in

4000 16 96

Number of compute
nodes

Cluster-density
(namespaces)

CPU cores Memory (GB)

The data from the table above is based on an OpenShift Container Platform running on top of AWS,
using r5.4xlarge instances as control-plane nodes and m5.2xlarge instances as compute nodes.

On a large and dense cluster with three control plane nodes, the CPU and memory usage will spike up
when one of the nodes is stopped, rebooted, or fails. The failures can be due to unexpected issues with
power, network, underlying infrastructure, or intentional cases where the cluster is restarted after
shutting it down to save costs. The remaining two control plane nodes must handle the load in order to
be highly available, which leads to increase in the resource usage. This is also expected during upgrades
because the control plane nodes are cordoned, drained, and rebooted serially to apply the operating
system updates, as well as the control plane Operators update. To avoid cascading failures, keep the
overall CPU and memory resource usage on the control plane nodes to at most 60% of all available
capacity to handle the resource usage spikes. Increase the CPU and memory on the control plane nodes
accordingly to avoid potential downtime due to lack of resources.

IMPORTANT

The node sizing varies depending on the number of nodes and object counts in the
cluster. It also depends on whether the objects are actively being created on the cluster.
During object creation, the control plane is more active in terms of resource usage
compared to when the objects are in the Running phase.

Operator Lifecycle Manager (OLM) runs on the control plane nodes and its memory footprint depends
on the number of namespaces and user installed operators that OLM needs to manage on the cluster.
Control plane nodes need to be sized accordingly to avoid OOM kills. Following data points are based on
the results from cluster maximums testing.

Number of namespaces OLM memory at idle state (GB) OLM memory with 5 user
operators installed (GB)

500 0.823 1.7

1000 1.2 2.5

1500 1.7 3.2

2000 2 4.4

3000 2.7 5.6

CHAPTER 5. POSTINSTALLATION NODE TASKS

197

4000 3.8 7.6

5000 4.2 9.02

6000 5.8 11.3

7000 6.6 12.9

8000 6.9 14.8

9000 8 17.7

10,000 9.9 21.6

Number of namespaces OLM memory at idle state (GB) OLM memory with 5 user
operators installed (GB)

IMPORTANT

You can modify the control plane node size in a running OpenShift Container Platform
4.18 cluster for the following configurations only:

Clusters installed with a user-provisioned installation method.

AWS clusters installed with an installer-provisioned infrastructure installation
method.

Clusters that use a control plane machine set to manage control plane machines.

For all other configurations, you must estimate your total node count and use the
suggested control plane node size during installation.

NOTE

In OpenShift Container Platform 4.18, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. The sizes are determined taking that into consideration.

5.4.4. Setting up CPU Manager

To configure CPU manager, create a KubeletConfig custom resource (CR) and apply it to the desired
set of nodes.

Procedure

1. Label a node by running the following command:

2. To enable CPU Manager for all compute nodes, edit the CR by running the following command:

oc label node perf-node.example.com cpumanager=true

OpenShift Container Platform 4.18 Postinstallation configuration

198

1

2

3. Add the custom-kubelet: cpumanager-enabled label to metadata.labels section.

4. Create a KubeletConfig, cpumanager-kubeletconfig.yaml, custom resource (CR). Refer to
the label created in the previous step to have the correct nodes updated with the new kubelet
config. See the machineConfigPoolSelector section:

Specify a policy:

none. This policy explicitly enables the existing default CPU affinity scheme, providing
no affinity beyond what the scheduler does automatically. This is the default policy.

static. This policy allows containers in guaranteed pods with integer CPU requests. It
also limits access to exclusive CPUs on the node. If static, you must use a lowercase s.

Optional. Specify the CPU Manager reconcile frequency. The default is 5s.

5. Create the dynamic kubelet config by running the following command:

This adds the CPU Manager feature to the kubelet config and, if needed, the Machine Config
Operator (MCO) reboots the node. To enable CPU Manager, a reboot is not needed.

6. Check for the merged kubelet config by running the following command:

Example output

oc edit machineconfigpool worker

metadata:
 creationTimestamp: 2020-xx-xxx
 generation: 3
 labels:
 custom-kubelet: cpumanager-enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cpumanager-enabled
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: cpumanager-enabled
 kubeletConfig:
 cpuManagerPolicy: static 1
 cpuManagerReconcilePeriod: 5s 2

oc create -f cpumanager-kubeletconfig.yaml

oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep
ownerReference -A7

 "ownerReferences": [
 {
 "apiVersion": "machineconfiguration.openshift.io/v1",

CHAPTER 5. POSTINSTALLATION NODE TASKS

199

1

2

7. Check the compute node for the updated kubelet.conf file by running the following command:

Example output

cpuManagerPolicy is defined when you create the KubeletConfig CR.

cpuManagerReconcilePeriod is defined when you create the KubeletConfig CR.

8. Create a project by running the following command:

9. Create a pod that requests a core or multiple cores. Both limits and requests must have their
CPU value set to a whole integer. That is the number of cores that will be dedicated to this pod:

Example output

 "kind": "KubeletConfig",
 "name": "cpumanager-enabled",
 "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"
 }
]

oc debug node/perf-node.example.com
sh-4.2# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager

cpuManagerPolicy: static 1
cpuManagerReconcilePeriod: 5s 2

$ oc new-project <project_name>

cat cpumanager-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 generateName: cpumanager-
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: cpumanager
 image: gcr.io/google_containers/pause:3.2
 resources:
 requests:
 cpu: 1
 memory: "1G"
 limits:
 cpu: 1
 memory: "1G"
 securityContext:
 allowPrivilegeEscalation: false

OpenShift Container Platform 4.18 Postinstallation configuration

200

10. Create the pod:

Verification

1. Verify that the pod is scheduled to the node that you labeled by running the following
command:

Example output

2. Verify that a CPU has been exclusively assigned to the pod by running the following command:

Example output

3. Verify that the cgroups are set up correctly. Get the process ID (PID) of the pause process by
running the following commands:

NOTE

 capabilities:
 drop: [ALL]
 nodeSelector:
 cpumanager: "true"

oc create -f cpumanager-pod.yaml

oc describe pod cpumanager

Name: cpumanager-6cqz7
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: perf-node.example.com/xxx.xx.xx.xxx
...
 Limits:
 cpu: 1
 memory: 1G
 Requests:
 cpu: 1
 memory: 1G
...
QoS Class: Guaranteed
Node-Selectors: cpumanager=true

oc describe node --selector='cpumanager=true' | grep -i cpumanager- -B2

NAMESPACE NAME CPU Requests CPU Limits Memory Requests Memory
Limits Age
cpuman cpumanager-mlrrz 1 (28%) 1 (28%) 1G (13%) 1G (13%) 27m

oc debug node/perf-node.example.com

sh-4.2# systemctl status | grep -B5 pause

CHAPTER 5. POSTINSTALLATION NODE TASKS

201

NOTE

If the output returns multiple pause process entries, you must identify the
correct pause process.

Example output

4. Verify that pods of quality of service (QoS) tier Guaranteed are placed within the
kubepods.slice subdirectory by running the following commands:

NOTE

Pods of other QoS tiers end up in child cgroups of the parent kubepods.

Example output

5. Check the allowed CPU list for the task by running the following command:

Example output

6. Verify that another pod on the system cannot run on the core allocated for the Guaranteed
pod. For example, to verify the pod in the besteffort QoS tier, run the following commands:

Example output

├─init.scope
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
└─kubepods.slice
 ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice
 │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope
 │ └─32706 /pause

cd /sys/fs/cgroup/kubepods.slice/kubepods-
pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-
b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope

for i in `ls cpuset.cpus cgroup.procs` ; do echo -n "$i "; cat $i ; done

cpuset.cpus 1
tasks 32706

grep ^Cpus_allowed_list /proc/32706/status

 Cpus_allowed_list: 1

cat /sys/fs/cgroup/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-
podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-
c56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus

oc describe node perf-node.example.com

OpenShift Container Platform 4.18 Postinstallation configuration

202

This VM has two CPU cores. The system-reserved setting reserves 500 millicores, meaning
that half of one core is subtracted from the total capacity of the node to arrive at the Node
Allocatable amount. You can see that Allocatable CPU is 1500 millicores. This means you can
run one of the CPU Manager pods since each will take one whole core. A whole core is
equivalent to 1000 millicores. If you try to schedule a second pod, the system will accept the
pod, but it will never be scheduled:

5.5. HUGE PAGES

Understand and configure huge pages.

5.5.1. What huge pages do

To optimize memory mapping efficiency, understand the function of huge pages. Unlike standard 4Ki
blocks, huge pages are larger memory segments that reduce the tracking load on the translation
lookaside buffer (TLB) hardware cache.

Memory is managed in blocks known as pages. On most systems, a page is 4Ki; 1Mi of memory is equal to
256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The translation lookaside buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,

...
Capacity:
 attachable-volumes-aws-ebs: 39
 cpu: 2
 ephemeral-storage: 124768236Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 8162900Ki
 pods: 250
Allocatable:
 attachable-volumes-aws-ebs: 39
 cpu: 1500m
 ephemeral-storage: 124768236Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 7548500Ki
 pods: 250
------- ---- ------------ ---------- --------------- ------------- --
-
 default cpumanager-6cqz7 1 (66%) 1 (66%) 1G (12%)
1G (12%) 29m

Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 1440m (96%) 1 (66%)

NAME READY STATUS RESTARTS AGE
cpumanager-6cqz7 1/1 Running 0 33m
cpumanager-7qc2t 0/1 Pending 0 11s

CHAPTER 5. POSTINSTALLATION NODE TASKS

203

and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common
huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. To use huge pages, code must be
written so that applications are aware of them. Transparent huge pages (THP) attempt to automate the
management of huge pages without application knowledge, but they have limitations. In particular, they
are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high memory
utilization or fragmentation because of defragmenting efforts of THP, which can lock memory pages.
For this reason, some applications might be designed to or recommend usage of pre-allocated huge
pages instead of THP.

5.5.2. How huge pages are consumed by apps

To enable applications to consume huge pages, nodes must pre-allocate these memory segments to
report capacity. Because a node can only pre-allocate huge pages for a single size, you must align this
configuration with your specific workload requirements.

Huge pages can be consumed through container-level resource requirements by using the resource
name hugepages-<size>, where size is the most compact binary notation by using integer values
supported on a particular node. For example, if a node supports 2048 KiB page sizes, the node exposes
a schedulable resource hugepages-2Mi. Unlike CPU or memory, huge pages do not support over-
commitment.

spec.containers.resources.limits.hugepages-2Mi: Specifies the amount of memory for
hugepages as the exact amount to be allocated.

IMPORTANT

apiVersion: v1
kind: Pod
metadata:
 generateName: hugepages-volume-
spec:
 containers:
 - securityContext:
 privileged: true
 image: rhel7:latest
 command:
 - sleep
 - inf
 name: example
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 resources:
 limits:
 hugepages-2Mi: 100Mi
 memory: "1Gi"
 cpu: "1"
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

OpenShift Container Platform 4.18 Postinstallation configuration

204

IMPORTANT

Do not specify this value as the amount of memory for hugepages multiplied by
the size of the page. For example, given a huge page size of 2 MB, if you want to
use 100 MB of huge-page-backed RAM for your application, then you would
allocate 50 huge pages. OpenShift Container Platform handles the math for you.
As in the above example, you can specify 100MB directly.

5.5.2.1. Allocating huge pages of a specific size

Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, precede the
huge pages boot command parameters with a huge page size selection parameter hugepagesz=<size>.
The <size> value must be specified in bytes with an optional scale suffix [kKmMgG]. The default huge
page size can be defined with the default_hugepagesz=<size> boot parameter.

5.5.2.2. Huge page requirements

Huge page requests must equal the limits. This is the default if limits are specified, but requests
are not.

Huge pages are isolated at a pod scope. Container isolation is planned in a future iteration.

EmptyDir volumes backed by huge pages must not consume more huge page memory than the
pod request.

Applications that consume huge pages via shmget() with SHM_HUGETLB must run with a
supplemental group that matches proc/sys/vm/hugetlb_shm_group.

5.5.3. Configuring huge pages at boot time

To ensure nodes in your OpenShift Container Platform cluster pre-allocate memory for specific
workloads, reserve huge pages at boot time. This configuration sets aside memory resources during
system startup, offering a distinct alternative to run-time allocation.

There are two ways of reserving huge pages: at boot time and at run time. Reserving at boot time
increases the possibility of success because the memory has not yet been significantly fragmented. The
Node Tuning Operator currently supports boot-time allocation of huge pages on specific nodes.

NOTE

The TuneD boot-loader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS)
compute nodes.

Procedure

1. Label all nodes that need the same huge pages setting by a label by entering the following
command:

2. Create a file with the following content and name it hugepages-tuned-boottime.yaml:

$ oc label node <node_using_hugepages> node-role.kubernetes.io/worker-hp=

apiVersion: tuned.openshift.io/v1
kind: Tuned

CHAPTER 5. POSTINSTALLATION NODE TASKS

205

where:

metadata.name

Specifies the name of the Tuned resource to hugepages.

spec.profile

Specifies the profile section to allocate huge pages.

spec.profile.data

Specifies the order of parameters. The order is important as some platforms support huge
pages of various sizes.

spec.recommend.machineConfigLabels

Specifies the enablement of a machine config pool based matching.

3. Create the Tuned hugepages object by entering the following command:

4. Create a file with the following content and name it hugepages-mcp.yaml:

metadata:
 name: hugepages
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Boot time configuration for hugepages
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50
 name: openshift-node-hugepages

 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: "worker-hp"
 priority: 30
 profile: openshift-node-hugepages
...

$ oc create -f hugepages-tuned-boottime.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-hp
 labels:
 worker-hp: ""
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,worker-hp]}
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker-hp: ""

OpenShift Container Platform 4.18 Postinstallation configuration

206

5. Create the machine config pool by entering the following command:

Verification

To check that enough non-fragmented memory exists and that all the nodes in the worker-hp
machine config pool now have 50 2Mi huge pages allocated, enter the following command:

5.6. UNDERSTANDING DEVICE PLUGINS

The device plugin provides a consistent and portable solution to consume hardware devices across
clusters. The device plugin provides support for these devices through an extension mechanism, which
makes these devices available to Containers, provides health checks of these devices, and securely
shares them.

IMPORTANT

OpenShift Container Platform supports the device plugin API, but the device plugin
Containers are supported by individual vendors.

A device plugin is a gRPC service running on the nodes (external to the kubelet) that is responsible for
managing specific hardware resources. Any device plugin must support following remote procedure calls
(RPCs):

5.6.1. Example device plugins

$ oc create -f hugepages-mcp.yaml

$ oc get node <node_using_hugepages> -o jsonpath="{.status.allocatable.hugepages-2Mi}"
100Mi

service DevicePlugin {
 // GetDevicePluginOptions returns options to be communicated with Device
 // Manager
 rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {}

 // ListAndWatch returns a stream of List of Devices
 // Whenever a Device state change or a Device disappears, ListAndWatch
 // returns the new list
 rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}

 // Allocate is called during container creation so that the Device
 // Plug-in can run device specific operations and instruct Kubelet
 // of the steps to make the Device available in the container
 rpc Allocate(AllocateRequest) returns (AllocateResponse) {}

 // PreStartcontainer is called, if indicated by Device Plug-in during
 // registration phase, before each container start. Device plug-in
 // can run device specific operations such as resetting the device
 // before making devices available to the container
 rpc PreStartcontainer(PreStartcontainerRequest) returns (PreStartcontainerResponse) {}
}

CHAPTER 5. POSTINSTALLATION NODE TASKS

207

Nvidia GPU device plugin for COS-based operating system

Nvidia official GPU device plugin

Solarflare device plugin

KubeVirt device plugins: vfio and kvm

Kubernetes device plugin for IBM® Crypto Express (CEX) cards

NOTE

For easy device plugin reference implementation, there is a stub device plugin in the
Device Manager code:
vendor/k8s.io/kubernetes/pkg/kubelet/cm/deviceplugin/device_plugin_stub.go.

5.6.2. Methods for deploying a device plugin

Daemon sets are the recommended approach for device plugin deployments.

Upon start, the device plugin will try to create a UNIX domain socket at
/var/lib/kubelet/device-plugin/ on the node to serve RPCs from Device Manager.

Since device plugins must manage hardware resources, access to the host file system, as well as
socket creation, they must be run in a privileged security context.

More specific details regarding deployment steps can be found with each device plugin
implementation.

5.6.3. Understanding the Device Manager

Device Manager provides a mechanism for advertising specialized node hardware resources with the
help of plugins known as device plugins.

You can advertise specialized hardware without requiring any upstream code changes.

IMPORTANT

OpenShift Container Platform supports the device plugin API, but the device plugin
Containers are supported by individual vendors.

Device Manager advertises devices as Extended Resources. User pods can consume devices,
advertised by Device Manager, using the same Limit/Request mechanism, which is used for requesting
any other Extended Resource.

Upon start, the device plugin registers itself with Device Manager invoking Register on the
/var/lib/kubelet/device-plugins/kubelet.sock and starts a gRPC service at /var/lib/kubelet/device-
plugins/<plugin>.sock for serving Device Manager requests.

Device Manager, while processing a new registration request, invokes ListAndWatch remote procedure
call (RPC) at the device plugin service. In response, Device Manager gets a list of Device objects from
the plugin over a gRPC stream. Device Manager will keep watching on the stream for new updates from
the plugin. On the plugin side, the plugin will also keep the stream open and whenever there is a change
in the state of any of the devices, a new device list is sent to the Device Manager over the same
streaming connection.

OpenShift Container Platform 4.18 Postinstallation configuration

208

https://github.com/GoogleCloudPlatform/Container-engine-accelerators/tree/master/cmd/nvidia_gpu
https://github.com/NVIDIA/k8s-device-plugin
https://github.com/vikaschoudhary16/sfc-device-plugin
https://github.com/kubevirt/kubernetes-device-plugins
https://github.com/ibm-s390-cloud/k8s-cex-dev-plugin

1

While handling a new pod admission request, Kubelet passes requested Extended Resources to the
Device Manager for device allocation. Device Manager checks in its database to verify if a corresponding
plugin exists or not. If the plugin exists and there are free allocatable devices as well as per local cache,
Allocate RPC is invoked at that particular device plugin.

Additionally, device plugins can also perform several other device-specific operations, such as driver
installation, device initialization, and device resets. These functionalities vary from implementation to
implementation.

5.6.4. Enabling Device Manager

Enable Device Manager to implement a device plugin to advertise specialized hardware without any
upstream code changes.

Device Manager provides a mechanism for advertising specialized node hardware resources with the
help of plugins known as device plugins.

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure by entering the following command. Perform one of the following steps:

a. View the machine config:

For example:

Example output

Label required for the Device Manager.

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a Device Manager CR

oc describe machineconfig <name>

oc describe machineconfig 00-worker

Name: 00-worker
Namespace:
Labels: machineconfiguration.openshift.io/role=worker 1

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: devicemgr 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 machineconfiguration.openshift.io: devicemgr 2
 kubeletConfig:
 feature-gates:
 - DevicePlugins=true 3

CHAPTER 5. POSTINSTALLATION NODE TASKS

209

1

2

3

Assign a name to CR.

Enter the label from the Machine Config Pool.

Set DevicePlugins to 'true`.

2. Create the Device Manager:

Example output

3. Ensure that Device Manager was actually enabled by confirming that /var/lib/kubelet/device-
plugins/kubelet.sock is created on the node. This is the UNIX domain socket on which the
Device Manager gRPC server listens for new plugin registrations. This sock file is created when
the Kubelet is started only if Device Manager is enabled.

5.7. TAINTS AND TOLERATIONS

Understand and work with taints and tolerations.

5.7.1. Understanding taints and tolerations

A taint allows a node to refuse a pod to be scheduled unless that pod has a matching toleration.

You apply taints to a node through the Node specification (NodeSpec) and apply tolerations to a pod
through the Pod specification (PodSpec). When you apply a taint to a node, the scheduler cannot place
a pod on that node unless the pod can tolerate the taint.

Example taint in a node specification

Example toleration in a Pod spec

$ oc create -f devicemgr.yaml

kubeletconfig.machineconfiguration.openshift.io/devicemgr created

apiVersion: v1
kind: Node
metadata:
 name: my-node
#...
spec:
 taints:
 - effect: NoExecute
 key: key1
 value: value1
#...

apiVersion: v1
kind: Pod
metadata:
 name: my-pod

OpenShift Container Platform 4.18 Postinstallation configuration

210

Taints and tolerations consist of a key, value, and effect.

Table 5.1. Taint and toleration components

Parameter Description

key The key is any string, up to 253 characters. The key must begin with a letter or
number, and may contain letters, numbers, hyphens, dots, and underscores.

value The value is any string, up to 63 characters. The value must begin with a letter
or number, and may contain letters, numbers, hyphens, dots, and underscores.

effect The effect is one of the following:

NoSchedule [1]
New pods that do not match the taint
are not scheduled onto that node.

Existing pods on the node remain.

PreferNoSchedule
New pods that do not match the taint
might be scheduled onto that node,
but the scheduler tries not to.

Existing pods on the node remain.

NoExecute
New pods that do not match the taint
cannot be scheduled onto that node.

Existing pods on the node that do not
have a matching toleration are
removed.

operator
Equal The key/value/effect parameters must

match. This is the default.

Exists The key/effect parameters must match. You
must leave a blank value parameter, which
matches any.

#...
spec:
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"
 tolerationSeconds: 3600
#...

CHAPTER 5. POSTINSTALLATION NODE TASKS

211

1. If you add a NoSchedule taint to a control plane node, the node must have the node-
role.kubernetes.io/master=:NoSchedule taint, which is added by default.
For example:

A toleration matches a taint:

If the operator parameter is set to Equal:

the key parameters are the same;

the value parameters are the same;

the effect parameters are the same.

If the operator parameter is set to Exists:

the key parameters are the same;

the effect parameters are the same.

The following taints are built into OpenShift Container Platform:

node.kubernetes.io/not-ready: The node is not ready. This corresponds to the node condition
Ready=False.

node.kubernetes.io/unreachable: The node is unreachable from the node controller. This
corresponds to the node condition Ready=Unknown.

node.kubernetes.io/memory-pressure: The node has memory pressure issues. This
corresponds to the node condition MemoryPressure=True.

node.kubernetes.io/disk-pressure: The node has disk pressure issues. This corresponds to the
node condition DiskPressure=True.

node.kubernetes.io/network-unavailable: The node network is unavailable.

node.kubernetes.io/unschedulable: The node is unschedulable.

node.cloudprovider.kubernetes.io/uninitialized: When the node controller is started with an

apiVersion: v1
kind: Node
metadata:
 annotations:
 machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0
 machineconfiguration.openshift.io/currentConfig: rendered-master-
cdc1ab7da414629332cc4c3926e6e59c
 name: my-node
#...
spec:
 taints:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
#...

OpenShift Container Platform 4.18 Postinstallation configuration

212

1

2

node.cloudprovider.kubernetes.io/uninitialized: When the node controller is started with an
external cloud provider, this taint is set on a node to mark it as unusable. After a controller from
the cloud-controller-manager initializes this node, the kubelet removes this taint.

node.kubernetes.io/pid-pressure: The node has pid pressure. This corresponds to the node
condition PIDPressure=True.

IMPORTANT

OpenShift Container Platform does not set a default pid.available evictionHard.

5.7.2. Adding taints and tolerations

You add tolerations to pods and taints to nodes to allow the node to control which pods should or
should not be scheduled on them. For existing pods and nodes, you should add the toleration to the pod
first, then add the taint to the node to avoid pods being removed from the node before you can add the
toleration.

Procedure

1. Add a toleration to a pod by editing the Pod spec to include a tolerations stanza:

Sample pod configuration file with an Equal operator

The toleration parameters, as described in the Taint and toleration components table.

The tolerationSeconds parameter specifies how long a pod can remain bound to a node
before being evicted.

For example:

Sample pod configuration file with an Exists operator

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "key1" 1
 value: "value1"
 operator: "Equal"
 effect: "NoExecute"
 tolerationSeconds: 3600 2
#...

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:

CHAPTER 5. POSTINSTALLATION NODE TASKS

213

1 The Exists operator does not take a value.

This example places a taint on node1 that has key key1, value value1, and taint effect
NoExecute.

2. Add a taint to a node by using the following command with the parameters described in the
Taint and toleration components table:

For example:

This command places a taint on node1 that has key key1, value value1, and effect NoExecute.

NOTE

If you add a NoSchedule taint to a control plane node, the node must have the
node-role.kubernetes.io/master=:NoSchedule taint, which is added by default.

For example:

The tolerations on the pod match the taint on the node. A pod with either toleration can be
scheduled onto node1.

5.7.3. Adding taints and tolerations using a compute machine set

You can add taints to nodes using a compute machine set. All nodes associated with the MachineSet

 tolerations:
 - key: "key1"
 operator: "Exists" 1
 effect: "NoExecute"
 tolerationSeconds: 3600
#...

$ oc adm taint nodes <node_name> <key>=<value>:<effect>

$ oc adm taint nodes node1 key1=value1:NoExecute

apiVersion: v1
kind: Node
metadata:
 annotations:
 machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-
v8jxv-master-0
 machineconfiguration.openshift.io/currentConfig: rendered-master-
cdc1ab7da414629332cc4c3926e6e59c
 name: my-node
#...
spec:
 taints:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
#...

OpenShift Container Platform 4.18 Postinstallation configuration

214

1

2

You can add taints to nodes using a compute machine set. All nodes associated with the MachineSet
object are updated with the taint. Tolerations respond to taints added by a compute machine set in the
same manner as taints added directly to the nodes.

Procedure

1. Add a toleration to a pod by editing the Pod spec to include a tolerations stanza:

Sample pod configuration file with Equal operator

The toleration parameters, as described in the Taint and toleration components table.

The tolerationSeconds parameter specifies how long a pod is bound to a node before
being evicted.

For example:

Sample pod configuration file with Exists operator

2. Add the taint to the MachineSet object:

a. Edit the MachineSet YAML for the nodes you want to taint or you can create a new
MachineSet object:

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "key1" 1
 value: "value1"
 operator: "Equal"
 effect: "NoExecute"
 tolerationSeconds: 3600 2
#...

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "key1"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 3600
#...

$ oc edit machineset <machineset>

CHAPTER 5. POSTINSTALLATION NODE TASKS

215

b. Add the taint to the spec.template.spec section:

Example taint in a compute machine set specification

This example places a taint that has the key key1, value value1, and taint effect NoExecute
on the nodes.

c. Scale down the compute machine set to 0:

TIP

You can alternatively apply the following YAML to scale the compute machine set:

Wait for the machines to be removed.

d. Scale up the compute machine set as needed:

Or:

Wait for the machines to start. The taint is added to the nodes associated with the
MachineSet object.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: my-machineset
#...
spec:
#...
 template:
#...
 spec:
 taints:
 - effect: NoExecute
 key: key1
 value: value1
#...

$ oc scale --replicas=0 machineset <machineset> -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <machineset>
 namespace: openshift-machine-api
spec:
 replicas: 0

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

OpenShift Container Platform 4.18 Postinstallation configuration

216

5.7.4. Binding a user to a node using taints and tolerations

If you want to dedicate a set of nodes for exclusive use by a particular set of users, add a toleration to
their pods. Then, add a corresponding taint to those nodes. The pods with the tolerations are allowed to
use the tainted nodes or any other nodes in the cluster.

If you want ensure the pods are scheduled to only those tainted nodes, also add a label to the same set
of nodes and add a node affinity to the pods so that the pods can only be scheduled onto nodes with
that label.

Procedure

To configure a node so that users can use only that node:

1. Add a corresponding taint to those nodes:
For example:

TIP

You can alternatively apply the following YAML to add the taint:

2. Add a toleration to the pods by writing a custom admission controller.

5.7.5. Controlling nodes with special hardware using taints and tolerations

In a cluster where a small subset of nodes have specialized hardware, you can use taints and tolerations
to keep pods that do not need the specialized hardware off of those nodes, leaving the nodes for pods
that do need the specialized hardware. You can also require pods that need specialized hardware to use
specific nodes.

You can achieve this by adding a toleration to pods that need the special hardware and tainting the
nodes that have the specialized hardware.

Procedure

To ensure nodes with specialized hardware are reserved for specific pods:

1. Add a toleration to pods that need the special hardware.
For example:

$ oc adm taint nodes node1 dedicated=groupName:NoSchedule

kind: Node
apiVersion: v1
metadata:
 name: my-node
#...
spec:
 taints:
 - key: dedicated
 value: groupName
 effect: NoSchedule
#...

apiVersion: v1

CHAPTER 5. POSTINSTALLATION NODE TASKS

217

2. Taint the nodes that have the specialized hardware using one of the following commands:

Or:

TIP

You can alternatively apply the following YAML to add the taint:

5.7.6. Removing taints and tolerations

You can remove taints from nodes and tolerations from pods as needed. You should add the toleration
to the pod first, then add the taint to the node to avoid pods being removed from the node before you
can add the toleration.

Procedure

To remove taints and tolerations:

1. To remove a taint from a node:

For example:

kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "disktype"
 value: "ssd"
 operator: "Equal"
 effect: "NoSchedule"
 tolerationSeconds: 3600
#...

$ oc adm taint nodes <node-name> disktype=ssd:NoSchedule

$ oc adm taint nodes <node-name> disktype=ssd:PreferNoSchedule

kind: Node
apiVersion: v1
metadata:
 name: my_node
#...
spec:
 taints:
 - key: disktype
 value: ssd
 effect: PreferNoSchedule
#...

$ oc adm taint nodes <node-name> <key>-

$ oc adm taint nodes ip-10-0-132-248.ec2.internal key1-

OpenShift Container Platform 4.18 Postinstallation configuration

218

Example output

2. To remove a toleration from a pod, edit the Pod spec to remove the toleration:

5.8. TOPOLOGY MANAGER

Understand and work with Topology Manager.

5.8.1. Topology Manager policies

Topology Manager aligns Pod resources of all Quality of Service (QoS) classes by collecting topology
hints from Hint Providers, such as CPU Manager and Device Manager, and using the collected hints to
align the Pod resources.

Topology Manager supports four allocation policies, which you assign in the KubeletConfig custom
resource (CR) named cpumanager-enabled:

none policy

This is the default policy and does not perform any topology alignment.

best-effort policy

For each container in a pod with the best-effort topology management policy, kubelet tries to align
all the required resources on a NUMA node according to the preferred NUMA node affinity for that
container. Even if the allocation is not possible due to insufficient resources, the Topology Manager
still admits the pod but the allocation is shared with other NUMA nodes.

restricted policy

For each container in a pod with the restricted topology management policy, kubelet determines the
theoretical minimum number of NUMA nodes that can fulfill the request. If the actual allocation
requires more than the that number of NUMA nodes, the Topology Manager rejects the admission,
placing the pod in a Terminated state. If the number of NUMA nodes can fulfill the request, the
Topology Manager admits the pod and the pod starts running.

single-numa-node policy

For each container in a pod with the single-numa-node topology management policy, kubelet
admits the pod if all the resources required by the pod can be allocated on the same NUMA node. If a
single NUMA node affinity is not possible, the Topology Manager rejects the pod from the node. This
results in a pod in a Terminated state with a pod admission failure.

node/ip-10-0-132-248.ec2.internal untainted

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
#...
spec:
 tolerations:
 - key: "key2"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 3600
#...

CHAPTER 5. POSTINSTALLATION NODE TASKS

219

1

2

5.8.2. Setting up Topology Manager

To use Topology Manager, you must configure an allocation policy in the KubeletConfig custom
resource (CR) named cpumanager-enabled. This file might exist if you have set up CPU Manager. If the
file does not exist, you can create the file.

Prerequisites

Configure the CPU Manager policy to be static.

Procedure

To activate Topology Manager:

1. Configure the Topology Manager allocation policy in the custom resource.

This parameter must be static with a lowercase s.

Specify your selected Topology Manager allocation policy. Here, the policy is single-numa-
node. Acceptable values are: default, best-effort, restricted, single-numa-node.

5.8.3. Pod interactions with Topology Manager policies

The example Pod specs illustrate pod interactions with Topology Manager.

The following pod runs in the BestEffort QoS class because no resource requests or limits are specified.

The next pod runs in the Burstable QoS class because requests are less than limits.

$ oc edit KubeletConfig cpumanager-enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cpumanager-enabled
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: cpumanager-enabled
 kubeletConfig:
 cpuManagerPolicy: static 1
 cpuManagerReconcilePeriod: 5s
 topologyManagerPolicy: single-numa-node 2

spec:
 containers:
 - name: nginx
 image: nginx

spec:
 containers:
 - name: nginx
 image: nginx

OpenShift Container Platform 4.18 Postinstallation configuration

220

If the selected policy is anything other than none, Topology Manager would process all the pods and it
enforces resource alignment only for the Guaranteed Qos Pod specification. When the Topology
Manager policy is set to none, the relevant containers are pinned to any available CPU without
considering NUMA affinity. This is the default behavior and it does not optimize for performance-
sensitive workloads. Other values enable the use of topology awareness information from device plugins
core resources, such as CPU and memory. The Topology Manager attempts to align the CPU, memory,
and device allocations according to the topology of the node when the policy is set to other values than
none. For more information about the available values, see Topology Manager policies .

The following example pod runs in the Guaranteed QoS class because requests are equal to limits.

Topology Manager would consider this pod. The Topology Manager would consult the Hint Providers,
which are the CPU Manager, the Device Manager, and the Memory Manager, to get topology hints for
the pod.

Topology Manager will use this information to store the best topology for this container. In the case of
this pod, CPU Manager and Device Manager will use this stored information at the resource allocation
stage.

5.9. RESOURCE REQUESTS AND OVERCOMMITMENT

You can use resource requests in an overcommitted environment help you ensure that your cluster is
properly configured.

For each compute resource, a container can specify a resource request and limit. Scheduling decisions
are made based on the request to ensure that a node has enough capacity available to meet the
requested value. If a container specifies limits, but omits requests, the requests are defaulted to the
limits. A container is not able to exceed the specified limit on the node.

The enforcement of limits is dependent upon the compute resource type. If a container makes no
request or limit, the container is scheduled to a node with no resource guarantees. In practice, the
container is able to consume as much of the specified resource as is available with the lowest local
priority. In low resource situations, containers that specify no resource requests are given the lowest
quality of service.

Scheduling is based on resources requested, where quota and hard limits refer to resource limits, which

 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "2"
 example.com/device: "1"
 requests:
 memory: "200Mi"
 cpu: "2"
 example.com/device: "1"

CHAPTER 5. POSTINSTALLATION NODE TASKS

221

Scheduling is based on resources requested, where quota and hard limits refer to resource limits, which
can be set higher than requested resources. The difference between the request and the limit
determines the level of overcommit. For example, if a container is given a memory request of 1Gi and a
memory limit of 2Gi, the container is scheduled based on the 1Gi request being available on the node,
but could use up to 2Gi; so it is 100% overcommitted.

5.10. CLUSTER-LEVEL OVERCOMMIT USING THE CLUSTER
RESOURCE OVERRIDE OPERATOR

You can use the Cluster Resource Override Operator to control the level of overcommit and manage
container density across all the nodes in your cluster. The Operator, which is an admission webhook,
controls how nodes in specific projects can exceed defined memory and CPU limits.

The Operator modifies the ratio between the requests and limits that are set on developer containers. In
conjunction with a per-project limit range that specifies limits and defaults, you can achieve the desired
level of overcommit.

You must install the Cluster Resource Override Operator by using the OpenShift Container Platform
console or CLI as shown in the following sections. After you deploy the Cluster Resource Override
Operator, the Operator modifies all new pods in specific namespaces. The Operator does not edit pods
that existed before you deployed the Operator.

During the installation, you create a ClusterResourceOverride custom resource (CR), where you set
the level of overcommit, as shown in the following example:

where:

metadata.name

Specifies a name for the object. The name must be cluster.

spec.podResourceOverride.spec.memoryRequestToLimitPercent

If a container memory limit has been specified or defaulted, the memory request is overridden to this
percentage of the limit, between 1-100. The default is 50.

spec.podResourceOverride.spec.cpuRequestToLimitPercent

If a container CPU limit has been specified or defaulted, the CPU request is overridden to this
percentage of the limit, between 1-100. The default is 25.

spec.podResourceOverride.spec.limitCPUToMemoryPercent

If a container memory limit has been specified or defaulted, the CPU limit is overridden to a
percentage of the memory limit, if specified. Scaling 1Gi of RAM at 100 percent is equal to 1 CPU
core. This is processed before overriding the CPU request (if configured). The default is 200.

NOTE

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 name: cluster
spec:
 podResourceOverride:
 spec:
 memoryRequestToLimitPercent: 50
 cpuRequestToLimitPercent: 25
 limitCPUToMemoryPercent: 200
...

OpenShift Container Platform 4.18 Postinstallation configuration

222

NOTE

The Cluster Resource Override Operator overrides have no effect if limits have not been
set on containers. Create a LimitRange object with default limits per individual project or
configure limits in Pod specs for the overrides to apply.

When configured, you can enable overrides on a per-project basis by applying the following label to the
Namespace object for each project where you want the overrides to apply. For example, you can
configure override so that infrastructure components are not subject to the overrides.

The Operator watches for the ClusterResourceOverride CR and ensures that the
ClusterResourceOverride admission webhook is installed into the same namespace as the operator.

For example, a pod has the following resources limits:

The Cluster Resource Override Operator intercepts the original pod request, then overrides the
resources according to the configuration set in the ClusterResourceOverride object.

apiVersion: v1
kind: Namespace
metadata:

...

 labels:
 clusterresourceoverrides.admission.autoscaling.openshift.io/enabled: "true"

...

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
 namespace: my-namespace
...
spec:
 containers:
 - name: hello-openshift
 image: openshift/hello-openshift
 resources:
 limits:
 memory: "512Mi"
 cpu: "2000m"
...

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
 namespace: my-namespace
...
spec:
 containers:
 - image: openshift/hello-openshift

CHAPTER 5. POSTINSTALLATION NODE TASKS

223

where:

spec.containers.resources.limits.cpu

Specifies that the CPU limit has been overridden to 1 because the limitCPUToMemoryPercent
parameter is set to 200 in the ClusterResourceOverride object. As such, 200% of the memory limit,
512Mi in CPU terms, is 1 CPU core.

spec.containers.resources.memory.cpu

Specifies that the CPU request is now 250m because the cpuRequestToLimit is set to 25 in the
ClusterResourceOverride object. As such, 25% of the 1 CPU core is 250m.

5.10.1. Installing the Cluster Resource Override Operator using the web console

You can use the OpenShift Container Platform web console to install the Cluster Resource Override
Operator to help you control overcommit in your cluster.

By default, the installation process creates a Cluster Resource Override Operator pod on a worker node
in the clusterresourceoverride-operator namespace. You can move this pod to another node, such as
an infrastructure node, as needed. Infrastructure nodes are not counted toward the total number of
subscriptions that are required to run the environment. For more information, see "Moving the Cluster
Resource Override Operator pods".

Prerequisites

The Cluster Resource Override Operator has no effect if limits have not been set on containers.
You must specify default limits for a project using a LimitRange object or configure limits in
Pod specs for the overrides to apply.

Procedure

1. In the OpenShift Container Platform web console, navigate to Home → Projects

a. Click Create Project.

b. Specify clusterresourceoverride-operator as the name of the project.

c. Click Create.

2. Navigate to Operators → OperatorHub.

a. Choose ClusterResourceOverride Operator from the list of available Operators and click
Install.

b. On the Install Operator page, make sure A specific Namespace on the cluster is selected
for Installation Mode.

 name: hello-openshift
 resources:
 limits:
 cpu: "1"
 memory: 512Mi
 requests:
 cpu: 250m
 memory: 256Mi
...

OpenShift Container Platform 4.18 Postinstallation configuration

224

c. Make sure clusterresourceoverride-operator is selected for Installed Namespace.

d. Select an Update Channel and Approval Strategy.

e. Click Install.

3. On the Installed Operators page, click ClusterResourceOverride.

a. On the ClusterResourceOverride Operator details page, click Create
ClusterResourceOverride.

b. On the Create ClusterResourceOverride page, click YAML view and edit the YAML
template to set the overcommit values as needed:

where:

metadata.name

Specifies a name for the CR. The name must be cluster.

spec.podResourceOverride.spec.memoryRequestToLimitPercent

Specifies the percentage to override the container memory limit, if used, between 1-100.
The default is 50. This parameter is optional.

spec.podResourceOverride.spec.cpuRequestToLimitPercent

Specifies the percentage to override the container CPU limit, if used, between 1-100.
The default is 25. This parameter is optional.

spec.podResourceOverride.spec.limitCPUToMemoryPercent

Specifies the percentage to override the container memory limit, if used. Scaling 1 Gi of
RAM at 100 percent is equal to 1 CPU core. This is processed before overriding the CPU
request, if configured. The default is 200. This parameter is optional.

c. Click Create.

4. Check the current state of the admission webhook by checking the status of the cluster custom
resource:

a. On the ClusterResourceOverride Operator page, click cluster.

b. On the ClusterResourceOverride Details page, click YAML. The
mutatingWebhookConfigurationRef section displays when the webhook is called.

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 name: cluster
spec:
 podResourceOverride:
 spec:
 memoryRequestToLimitPercent: 50
 cpuRequestToLimitPercent: 25
 limitCPUToMemoryPercent: 200

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 annotations:

CHAPTER 5. POSTINSTALLATION NODE TASKS

225

where:

status.mutatingWebhookConfigurationRef

Specifies the ClusterResourceOverride admission webhook.

5.10.2. Installing the Cluster Resource Override Operator using the CLI

You can use the OpenShift CLI to install the Cluster Resource Override Operator to help you control
overcommit in your cluster.

By default, the installation process creates a Cluster Resource Override Operator pod on a worker node
in the clusterresourceoverride-operator namespace. You can move this pod to another node, such as
an infrastructure node, as needed. Infrastructure nodes are not counted toward the total number of
subscriptions that are required to run the environment. For more information, see "Moving the Cluster
Resource Override Operator pods".

Prerequisites

The Cluster Resource Override Operator has no effect if limits have not been set on containers.
You must specify default limits for a project using a LimitRange object or configure limits in
Pod specs for the overrides to apply.

Procedure

 kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"operator.autoscaling.openshift.io/v1","kind":"ClusterResourceOverride","met
adata":{"annotations":{},"name":"cluster"},"spec":{"podResourceOverride":{"spec":
{"cpuRequestToLimitPercent":25,"limitCPUToMemoryPercent":200,"memoryRequestToLi
mitPercent":50}}}}
 creationTimestamp: "2019-12-18T22:35:02Z"
 generation: 1
 name: cluster
 resourceVersion: "127622"
 selfLink: /apis/operator.autoscaling.openshift.io/v1/clusterresourceoverrides/cluster
 uid: 978fc959-1717-4bd1-97d0-ae00ee111e8d
spec:
 podResourceOverride:
 spec:
 cpuRequestToLimitPercent: 25
 limitCPUToMemoryPercent: 200
 memoryRequestToLimitPercent: 50
status:

...

 mutatingWebhookConfigurationRef:
 apiVersion: admissionregistration.k8s.io/v1
 kind: MutatingWebhookConfiguration
 name: clusterresourceoverrides.admission.autoscaling.openshift.io
 resourceVersion: "127621"
 uid: 98b3b8ae-d5ce-462b-8ab5-a729ea8f38f3

...

OpenShift Container Platform 4.18 Postinstallation configuration

226

1. Create a namespace for the Cluster Resource Override Operator:

a. Create a Namespace object YAML file (for example, cro-namespace.yaml) for the Cluster
Resource Override Operator:

b. Create the namespace:

For example:

2. Create an Operator group:

a. Create an OperatorGroup object YAML file (for example, cro-og.yaml) for the Cluster
Resource Override Operator:

b. Create the Operator Group:

For example:

3. Create a subscription:

a. Create a Subscription object YAML file (for example, cro-sub.yaml) for the Cluster
Resource Override Operator:

apiVersion: v1
kind: Namespace
metadata:
 name: clusterresourceoverride-operator

$ oc create -f <file-name>.yaml

$ oc create -f cro-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: clusterresourceoverride-operator
 namespace: clusterresourceoverride-operator
spec:
 targetNamespaces:
 - clusterresourceoverride-operator

$ oc create -f <file-name>.yaml

$ oc create -f cro-og.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: clusterresourceoverride
 namespace: clusterresourceoverride-operator
spec:
 channel: "stable"

CHAPTER 5. POSTINSTALLATION NODE TASKS

227

b. Create the subscription:

For example:

4. Create a ClusterResourceOverride custom resource (CR) object in the
clusterresourceoverride-operator namespace:

a. Change to the clusterresourceoverride-operator namespace.

b. Create a ClusterResourceOverride object YAML file (for example, cro-cr.yaml) for the
Cluster Resource Override Operator:

where

metadata.name

Specifies a name for the CR. The name must be cluster.

spec.podResourceOverride.spec.memoryRequestToLimitPercent

Specifies the percentage to override the container memory limit, if used, between 1-100.
The default is 50. This parameter is optional.

spec.podResourceOverride.spec.cpuRequestToLimitPercent

Specifies the percentage to override the container CPU limit, if used, between 1-100.
The default is 25. This parameter is optional.

spec.podResourceOverride.spec.limitCPUToMemoryPercent

Specifies the percentage to override the container memory limit, if used. Scaling 1 Gi of
RAM at 100 percent is equal to 1 CPU core. This is processed before overriding the CPU
request, if configured. The default is 200. This parameter is optional.

c. Create the ClusterResourceOverride object:

 name: clusterresourceoverride
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc create -f <file-name>.yaml

$ oc create -f cro-sub.yaml

$ oc project clusterresourceoverride-operator

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 name: cluster
spec:
 podResourceOverride:
 spec:
 memoryRequestToLimitPercent: 50
 cpuRequestToLimitPercent: 25
 limitCPUToMemoryPercent: 200

$ oc create -f <file-name>.yaml

OpenShift Container Platform 4.18 Postinstallation configuration

228

For example:

5. Verify the current state of the admission webhook by checking the status of the cluster custom
resource.

The mutatingWebhookConfigurationRef section displays when the webhook is called.

Example output

where:

status.mutatingWebhookConfigurationRef

Specifies the ClusterResourceOverride admission webhook.

5.10.3. Configuring cluster-level overcommit

$ oc create -f cro-cr.yaml

$ oc get clusterresourceoverride cluster -n clusterresourceoverride-operator -o yaml

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"operator.autoscaling.openshift.io/v1","kind":"ClusterResourceOverride","metadat
a":{"annotations":{},"name":"cluster"},"spec":{"podResourceOverride":{"spec":
{"cpuRequestToLimitPercent":25,"limitCPUToMemoryPercent":200,"memoryRequestToLimitPe
rcent":50}}}}
 creationTimestamp: "2019-12-18T22:35:02Z"
 generation: 1
 name: cluster
 resourceVersion: "127622"
 selfLink: /apis/operator.autoscaling.openshift.io/v1/clusterresourceoverrides/cluster
 uid: 978fc959-1717-4bd1-97d0-ae00ee111e8d
spec:
 podResourceOverride:
 spec:
 cpuRequestToLimitPercent: 25
 limitCPUToMemoryPercent: 200
 memoryRequestToLimitPercent: 50
status:

...

 mutatingWebhookConfigurationRef:
 apiVersion: admissionregistration.k8s.io/v1
 kind: MutatingWebhookConfiguration
 name: clusterresourceoverrides.admission.autoscaling.openshift.io
 resourceVersion: "127621"
 uid: 98b3b8ae-d5ce-462b-8ab5-a729ea8f38f3

...

CHAPTER 5. POSTINSTALLATION NODE TASKS

229

You can use the OpenShift CLI to configure the Cluster Resource Override Operator to help control
overcommit in your cluster.

The Cluster Resource Override Operator requires a ClusterResourceOverride custom resource (CR)
and a label for each project where you want the Operator to control overcommit.

By default, the installation process creates two Cluster Resource Override pods on the control plane
nodes in the clusterresourceoverride-operator namespace. You can move these pods to other nodes,
such as infrastructure nodes, as needed. Infrastructure nodes are not counted toward the total number
of subscriptions that are required to run the environment. For more information, see "Moving the
Cluster Resource Override Operator pods".

Prerequisites

The Cluster Resource Override Operator has no effect if limits have not been set on containers.
You must specify default limits for a project using a LimitRange object or configure limits in
Pod specs for the overrides to apply.

Procedure

1. Edit the ClusterResourceOverride CR:

where:

spec.podResourceOverride.spec.memoryRequestToLimitPercent

Specifies the percentage to override the container memory limit, if used, between 1-100. The
default is 50. This parameter is optional.

spec.podResourceOverride.spec.cpuRequestToLimitPercent

Specifies the percentage to override the container CPU limit, if used, between 1-100. The
default is 25. This parameter is optional.

spec.podResourceOverride.spec.limitCPUToMemoryPercent

Specifies the percentage to override the container memory limit, if used. Scaling 1Gi of RAM
at 100 percent is equal to 1 CPU core. This is processed before overriding the CPU request, if
configured. The default is 200. This parameter is optional.

2. Ensure the following label has been added to the Namespace object for each project where you
want the Cluster Resource Override Operator to control overcommit:

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 name: cluster
spec:
 podResourceOverride:
 spec:
 memoryRequestToLimitPercent: 50
 cpuRequestToLimitPercent: 25
 limitCPUToMemoryPercent: 200
...

apiVersion: v1
kind: Namespace
metadata:

OpenShift Container Platform 4.18 Postinstallation configuration

230

where:

metadata.labels.clusterresourceoverrides.admission.autoscaling.openshift.io/enabled:
"true"

Specifies that you want to use the Cluster Resource Override Operator with this project.

5.11. NODE-LEVEL OVERCOMMIT

You can use various ways to control overcommit on specific nodes, such as quality of service (QOS)
guarantees, CPU limits, or reserve resources. You can also disable overcommit for specific nodes and
specific projects.

5.11.1. Understanding container CPU and memory requests

Review the following information to learn about container CPU and memory requests to help you ensure
that your cluster is properly configured.

A container is guaranteed the amount of CPU it requests and is additionally able to consume excess
CPU available on the node, up to any limit specified by the container. If multiple containers are
attempting to use excess CPU, CPU time is distributed based on the amount of CPU requested by each
container.

For example, if one container requested 500m of CPU time and another container requested 250m of
CPU time, any extra CPU time available on the node is distributed among the containers in a 2:1 ratio. If a
container specified a limit, it will be throttled not to use more CPU than the specified limit. CPU requests
are enforced using the CFS shares support in the Linux kernel. By default, CPU limits are enforced using
the CFS quota support in the Linux kernel over a 100ms measuring interval, though this can be disabled.

A container is guaranteed the amount of memory it requests. A container can use more memory than
requested, but once it exceeds its requested amount, it could be terminated in a low memory situation
on the node. If a container uses less memory than requested, it will not be terminated unless system
tasks or daemons need more memory than was accounted for in the node’s resource reservation. If a
container specifies a limit on memory, it is immediately terminated if it exceeds the limit amount.

5.11.2. Understanding overcommitment and quality of service classes

You can use Quality of Service (QoS) classes in an overcommitted environment to help you ensure that
your cluster is properly configured.

A node is overcommitted when it has a pod scheduled that makes no request, or when the sum of limits
across all pods on that node exceeds available machine capacity.

In an overcommitted environment, the pods on the node might attempt to use more compute resource
than is available at any given point in time. When this occurs, the node must give priority to one pod over
another. The facility used to make this decision is referred to as a Quality of Service (QoS) class.

A pod is designated as one of three QoS classes with decreasing order of priority:

...

 labels:
 clusterresourceoverrides.admission.autoscaling.openshift.io/enabled: "true"

...

CHAPTER 5. POSTINSTALLATION NODE TASKS

231

Table 5.2. Quality of Service classes

Priority Class Name Description

1 (highest) Guarantee
d

If limits and optionally requests are set (not equal to 0) for all resources and
they are equal, then the pod is classified as Guaranteed.

2 Burstable If requests and optionally limits are set (not equal to 0) for all resources, and
they are not equal, then the pod is classified as Burstable.

3 (lowest) BestEffort If requests and limits are not set for any of the resources, then the pod is
classified as BestEffort.

Memory is an incompressible resource, so in low memory situations, containers that have the lowest
priority are terminated first:

Guaranteed containers are considered top priority, and are guaranteed to only be terminated if
they exceed their limits, or if the system is under memory pressure and there are no lower
priority containers that can be evicted.

Burstable containers under system memory pressure are more likely to be terminated when
they exceed their requests and no other BestEffort containers exist.

BestEffort containers are treated with the lowest priority. Processes in these containers are
first to be terminated if the system runs out of memory.

5.11.2.1. Understanding how to reserve memory across quality of service tiers

You can use the qos-reserved parameter to specify a percentage of memory to be reserved by a pod in
a particular QoS level. This feature attempts to reserve requested resources to exclude pods from
lower QoS classes from using resources requested by pods in higher QoS classes.

OpenShift Container Platform uses the qos-reserved parameter as follows:

A value of qos-reserved=memory=100% prevents the Burstable and BestEffort QoS classes
from consuming memory that was requested by a higher QoS class. This increases the risk of
inducing OOM on BestEffort and Burstable workloads in favor of increasing memory resource
guarantees for Guaranteed and Burstable workloads.

A value of qos-reserved=memory=50% allows the Burstable and BestEffort QoS classes to
consume half of the memory requested by a higher QoS class.

A value of qos-reserved=memory=0% allows a Burstable and BestEffort QoS classes to
consume up to the full node allocatable amount if available, but increases the risk that a
Guaranteed workload does not have access to requested memory. This condition effectively
disables this feature.

5.11.3. Understanding swap memory and QoS

Review the following information to learn how swap memory and QoS interact in an overcommitted
environment to help you ensure that your cluster is properly configured.

You can disable swap by default on your nodes to preserve quality of service (QoS) guarantees.

OpenShift Container Platform 4.18 Postinstallation configuration

232

You can disable swap by default on your nodes to preserve quality of service (QoS) guarantees.
Otherwise, physical resources on a node can oversubscribe, affecting the resource guarantees the
Kubernetes scheduler makes during pod placement.

For example, if two guaranteed pods have reached their memory limit, each container could start using
swap memory. Eventually, if there is not enough swap space, processes in the pods can be terminated
due to the system being oversubscribed.

Failing to disable swap causes nodes to not recognize that they are experiencing MemoryPressure,
resulting in pods not receiving the memory they made in their scheduling request. As a result, additional
pods are placed on the node to further increase memory pressure, ultimately increasing your risk of
experiencing a system out of memory (OOM) event.

IMPORTANT

If swap is enabled, any out-of-resource handling eviction thresholds for available memory
will not work as expected. Out-of-resource handling allows pods to be evicted from a
node when it is under memory pressure, and rescheduled on an alternative node that has
no such pressure.

5.11.4. Understanding nodes overcommitment

To maintain optimal system performance and stability in an overcommitted environment in OpenShift
Container Platform, configure your nodes to manage resource contention effectively.

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.

To ensure this behavior, OpenShift Container Platform configures the kernel to always overcommit
memory by setting the vm.overcommit_memory parameter to 1, overriding the default operating
system setting.

OpenShift Container Platform also configures the kernel to not panic when it runs out of memory by
setting the vm.panic_on_oom parameter to 0. A setting of 0 instructs the kernel to call the OOM killer
in an Out of Memory (OOM) condition, which kills processes based on priority.

You can view the current setting by running the following commands on your nodes:

Example output

Example output

$ sysctl -a |grep commit

#...
vm.overcommit_memory = 0
#...

$ sysctl -a |grep panic

#...
vm.panic_on_oom = 0
#...

CHAPTER 5. POSTINSTALLATION NODE TASKS

233

NOTE

The previous commands should already be set on nodes, so no further action is required.

You can also perform the following configurations for each node:

Disable or enforce CPU limits using CPU CFS quotas

Reserve resources for system processes

Reserve memory across quality of service tiers

Additional resources

Disabling or enforcing CPU limits using CPU CFS quotas

Reserving resources for system processes

Understanding how to reserve memory across quality of service tiers

5.11.5. Disabling or enforcing CPU limits using CPU CFS quotas

You can disable the default enforcement of CPU limits for nodes in a machine config pool.

By default, nodes enforce specified CPU limits using the Completely Fair Scheduler (CFS) quota
support in the Linux kernel.

If you disable CPU limit enforcement, it is important to understand the impact on your node:

If a container has a CPU request, the request continues to be enforced by CFS shares in the
Linux kernel.

If a container does not have a CPU request, but does have a CPU limit, the CPU request
defaults to the specified CPU limit, and is enforced by CFS shares in the Linux kernel.

If a container has both a CPU request and limit, the CPU request is enforced by CFS shares in
the Linux kernel, and the CPU limit has no impact on the node.

Prerequisites

You have the label associated with the static MachineConfigPool CRD for the type of node
you want to configure.

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a disabling CPU limits

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: disable-cpu-units
spec:
 machineConfigPoolSelector:

OpenShift Container Platform 4.18 Postinstallation configuration

234

where:

metadata.name

Specifies a name for the CR.

spec.machineConfigPoolSelector.matchLabels

Specifies the label from the machine config pool.

spec.kubeletConfig.cpuCfsQuota

Specifies the cpuCfsQuota parameter to false.

2. Run the following command to create the CR:

5.11.6. Reserving resources for system processes

You can explicitly reserve resources for non-pod processes by allocating node resources through
specifying resources available for scheduling.

To provide more reliable scheduling and minimize node resource overcommitment, each node can
reserve a portion of its resources for use by the system daemons that are required to run on your node
for your cluster to function.

NOTE

It is recommended that you reserve resources for incompressible resources such as
memory.

For more details, see Allocating Resources for Nodes in the Additional resources section.

Additional resources

Allocating resources for nodes

5.11.7. Disabling overcommitment for a node

When overcommitment is enabled on a node, you can disable overcommitment on that node. Disabling
overcommit can help ensure predictability, stability, and high performance in your cluster.

Procedure

Run the following command on a node to disable overcommitment on that node:

5.12. PROJECT-LEVEL LIMITS

 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: ""
 kubeletConfig:
 cpuCfsQuota: false

$ oc create -f <file_name>.yaml

$ sysctl -w vm.overcommit_memory=0

CHAPTER 5. POSTINSTALLATION NODE TASKS

235

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-nodes-resources-configuring-setting_nodes-nodes-resources-configuring

To help control overcommit, you can set per-project resource limit ranges, specifying memory and CPU
limits and defaults for a project that overcommit cannot exceed.

For information on project-level resource limits, see the Additional resources section.

Alternatively, you can disable overcommitment for specific projects.

5.12.1. Disabling overcommitment for a project

If overcommitment is enabled on a project, you can disable overcommitment for that projects. This
allows infrastructure components to be configured independently of overcommitment.

Procedure

1. Create or edit the namespace object file.

2. Add the following annotation:

where:

metadata.annotations.quota.openshift.io/cluster-resource-override-enabled.false

Specifies that overcommit is disabled for this namespace.

5.13. FREEING NODE RESOURCES USING GARBAGE COLLECTION

Understand and use garbage collection.

5.13.1. Understanding how terminated containers are removed through garbage
collection

You can help ensure that your nodes are running efficiently by using container garbage collection to
remove terminated containers.

When eviction thresholds are set for garbage collection, the node tries to keep any container for any
pod accessible from the API. If the pod has been deleted, the containers will be as well. Containers are
preserved as long the pod is not deleted and the eviction threshold is not reached. If the node is under
disk pressure, it will remove containers and their logs will no longer be accessible using oc logs.

eviction-soft - A soft eviction threshold pairs an eviction threshold with a required
administrator-specified grace period.

eviction-hard - A hard eviction threshold has no grace period, and if observed, OpenShift
Container Platform takes immediate action.

The following table lists the eviction thresholds:

Table 5.3. Variables for configuring container garbage collection

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 quota.openshift.io/cluster-resource-override-enabled: "false"
...

OpenShift Container Platform 4.18 Postinstallation configuration

236

Node condition Eviction signal Description

MemoryPressure memory.available The available memory on the
node.

DiskPressure
nodefs.available

nodefs.inodesFree

imagefs.available

imagefs.inodesFree

The available disk space or inodes
on the node root file system,
nodefs, or image file system,
imagefs.

NOTE

For evictionHard you must specify all of these parameters. If you do not specify all
parameters, only the specified parameters are applied and the garbage collection will not
function properly.

If a node is oscillating above and below a soft eviction threshold, but not exceeding its associated grace
period, the corresponding node would constantly oscillate between true and false. As a consequence,
the scheduler could make poor scheduling decisions.

To protect against this oscillation, use the evictionpressure-transition-period flag to control how long
OpenShift Container Platform must wait before transitioning out of a pressure condition. OpenShift
Container Platform will not set an eviction threshold as being met for the specified pressure condition
for the period specified before toggling the condition back to false.

NOTE

Setting the evictionPressureTransitionPeriod parameter to 0 configures the default
value of 5 minutes. You cannot set an eviction pressure transition period to zero seconds.

5.13.2. Understanding how images are removed through garbage collection

You can help ensure that your nodes are running efficiently by using image garbage collection to
removes images that are not referenced by any running pods.

OpenShift Container Platform determines which images to remove from a node based on the disk usage
that is reported by cAdvisor.

The policy for image garbage collection is based on two conditions:

The percent of disk usage (expressed as an integer) which triggers image garbage collection.
The default is 85.

The percent of disk usage (expressed as an integer) to which image garbage collection
attempts to free. Default is 80.

For image garbage collection, you can modify any of the following variables using a custom resource.

Table 5.4. Variables for configuring image garbage collection

CHAPTER 5. POSTINSTALLATION NODE TASKS

237

Setting Description

imageMinimumGCA
ge

The minimum age for an unused image before the image is removed by garbage
collection. The default is 2m.

imageGCHighThresh
oldPercent

The percent of disk usage, expressed as an integer, which triggers image garbage
collection. The default is 85. This value must be greater than the
imageGCLowThresholdPercent value.

imageGCLowThresh
oldPercent

The percent of disk usage, expressed as an integer, to which image garbage
collection attempts to free. The default is 80. This value must be less than the
imageGCHighThresholdPercent value.

Two lists of images are retrieved in each garbage collector run:

1. A list of images currently running in at least one pod.

2. A list of images available on a host.

As new containers are run, new images appear. All images are marked with a time stamp. If the image is
running (the first list above) or is newly detected (the second list above), it is marked with the current
time. The remaining images are already marked from the previous spins. All images are then sorted by
the time stamp.

Once the collection starts, the oldest images get deleted first until the stopping criterion is met.

5.13.3. Configuring garbage collection for containers and images

As an administrator, you can configure how OpenShift Container Platform performs garbage collection
by creating a kubeletConfig object for each machine config pool. Performing garbage collection helps
ensure that your nodes are running efficiently.

NOTE

OpenShift Container Platform supports only one kubeletConfig object for each machine
config pool.

You can configure any combination of the following:

Soft eviction for containers

Hard eviction for containers

Eviction for images

Container garbage collection removes terminated containers. Image garbage collection removes images
that are not referenced by any running pods.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure by entering the following command:

OpenShift Container Platform 4.18 Postinstallation configuration

238

For example:

Example output

where:

metadata.labels

Specifies a label to use with the kubelet configuration.

TIP

If the label is not present, add a key/value pair such as:

$ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

1. Create a custom resource (CR) for your configuration change.

IMPORTANT

If there is one file system, or if /var/lib/kubelet and /var/lib/containers/ are in the
same file system, the settings with the highest values trigger evictions, as those
are met first. The file system triggers the eviction.

Sample configuration for a container garbage collection CR

$ oc edit machineconfigpool <name>

$ oc edit machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: "2022-11-16T15:34:25Z"
 generation: 4
 labels:
 pools.operator.machineconfiguration.openshift.io/worker: ""
 name: worker
#...

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: worker-kubeconfig
spec:
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: ""
 kubeletConfig:

CHAPTER 5. POSTINSTALLATION NODE TASKS

239

where:

metadata.name

Specifies a name for the object.

spec.machineConfigPoolSelector.matchLabels

Specifies the label from the machine config pool.

spec.kubeletConfig.evictionSoft

Specifies a soft eviction and eviction thresholds for container garbage collection.

spec.kubeletConfig.evictionSoftGracePeriod

Specifies a grace period for the soft eviction of containers. This parameter does not apply to
eviction-hard.

spec.kubeletConfig.evictionHard

Specifies a soft eviction and eviction thresholds for container garbage collection. For
evictionHard you must specify all of these parameters. If you do not specify all parameters,
only the specified parameters are applied and the garbage collection will not function
properly.

spec.kubeletConfig.evictionPressureTransitionPeriod

Specifies the duration to wait before transitioning out of an eviction pressure condition for
container garbage collection. Setting the evictionPressureTransitionPeriod parameter to
0 configures the default value of 5 minutes.

spec.kubeletConfig.imageMinimumGCAge

Specifies the minimum age for an unused image before the image is removed by garbage
collection.

spec.kubeletConfig.imageGCHighThresholdPercent

Specifies the percent of disk usage, expressed as an integer, that triggers image garbage
collection. This value must be greater than the imageGCLowThresholdPercent value.

 evictionSoft:
 memory.available: "500Mi"
 nodefs.available: "10%"
 nodefs.inodesFree: "5%"
 imagefs.available: "15%"
 imagefs.inodesFree: "10%"
 evictionSoftGracePeriod:
 memory.available: "1m30s"
 nodefs.available: "1m30s"
 nodefs.inodesFree: "1m30s"
 imagefs.available: "1m30s"
 imagefs.inodesFree: "1m30s"
 evictionHard:
 memory.available: "200Mi"
 nodefs.available: "5%"
 nodefs.inodesFree: "4%"
 imagefs.available: "10%"
 imagefs.inodesFree: "5%"
 evictionPressureTransitionPeriod: 3m
 imageMinimumGCAge: 5m
 imageGCHighThresholdPercent: 80
 imageGCLowThresholdPercent: 75
#...

OpenShift Container Platform 4.18 Postinstallation configuration

240

spec.kubeletConfig.imageGCHighThresholdPercent

Specifies the percent of disk usage, expressed as an integer, to which image garbage
collection attempts to free. This value must be less than the
imageGCHighThresholdPercent value.

2. Run the following command to create the CR:

For example:

Example output

Verification

Verify that garbage collection is active by entering the following command. The Machine Config
Pool you specified in the custom resource appears with UPDATING as 'true` until the change is
fully implemented:

Example output

5.14. USING THE NODE TUNING OPERATOR

Understand and use the Node Tuning Operator.

The Node Tuning Operator helps you manage node-level tuning by orchestrating the TuneD daemon
and achieves low latency performance by using the Performance Profile controller. The majority of high-
performance applications require some level of kernel tuning. The Node Tuning Operator provides a
unified management interface to users of node-level sysctls and more flexibility to add custom tuning
specified by user needs.

The Operator manages the containerized TuneD daemon for OpenShift Container Platform as a
Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized TuneD
daemons running in the cluster in the format that the daemons understand. The daemons run on all
nodes in the cluster, one per node.

Node-level settings applied by the containerized TuneD daemon are rolled back on an event that
triggers a profile change or when the containerized TuneD daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator uses the Performance Profile controller to implement automatic tuning to
achieve low latency performance for OpenShift Container Platform applications.

$ oc create -f <file_name>.yaml

$ oc create -f gc-container.yaml

kubeletconfig.machineconfiguration.openshift.io/gc-container created

$ oc get machineconfigpool

NAME CONFIG UPDATED UPDATING
master rendered-master-546383f80705bd5aeaba93 True False
worker rendered-worker-b4c51bb33ccaae6fc4a6a5 False True

CHAPTER 5. POSTINSTALLATION NODE TASKS

241

The cluster administrator configures a performance profile to define node-level settings such as the
following:

Updating the kernel to kernel-rt.

Choosing CPUs for housekeeping.

Choosing CPUs for running workloads.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for
OpenShift applications. In OpenShift Container Platform 4.11 and later, this functionality
is part of the Node Tuning Operator.

5.14.1. Accessing an example Node Tuning Operator specification

Use this process to access an example Node Tuning Operator specification.

Procedure

Run the following command to access an example Node Tuning Operator specification:

The default CR is meant for delivering standard node-level tuning for the OpenShift Container Platform
platform and it can only be modified to set the Operator Management state. Any other custom changes
to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs.
Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift
Container Platform nodes based on node or pod labels and profile priorities.

WARNING

While in certain situations the support for pod labels can be a convenient way of
automatically delivering required tuning, this practice is discouraged and strongly
advised against, especially in large-scale clusters. The default Tuned CR ships
without pod label matching. If a custom profile is created with pod label matching,
then the functionality will be enabled at that time. The pod label functionality will be
deprecated in future versions of the Node Tuning Operator.

5.14.2. Custom tuning specification

The custom resource (CR) for the Operator has two major sections. The first section, profile:, is a list of
TuneD profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The

oc get tuned.tuned.openshift.io/default -o yaml -n openshift-cluster-node-tuning-operator



OpenShift Container Platform 4.18 Postinstallation configuration

242

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The
existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning
specifications are merged and appropriate objects for the containerized TuneD daemons are updated.

Management state

The Operator Management state is set by adjusting the default Tuned CR. By default, the Operator is in
the Managed state and the spec.managementState field is not present in the default Tuned CR. Valid
values for the Operator Management state are as follows:

Managed: the Operator will update its operands as configuration resources are updated

Unmanaged: the Operator will ignore changes to the configuration resources

Removed: the Operator will remove its operands and resources the Operator provisioned

Profile data

The profile: section lists TuneD profiles and their names.

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR. The recommend: section
is a list of items to recommend the profiles based on a selection criteria.

The individual items of the list:

profile:
- name: tuned_profile_1
 data: |
 # TuneD profile specification
 [main]
 summary=Description of tuned_profile_1 profile

 [sysctl]
 net.ipv4.ip_forward=1
 # ... other sysctl's or other TuneD daemon plugins supported by the containerized TuneD

...

- name: tuned_profile_n
 data: |
 # TuneD profile specification
 [main]
 summary=Description of tuned_profile_n profile

 # tuned_profile_n profile settings

recommend:
<recommend-item-1>
...
<recommend-item-n>

- machineConfigLabels: 1
 <mcLabels> 2

CHAPTER 5. POSTINSTALLATION NODE TASKS

243

1

2

3

4

5

6

7

8

9

1

2

3

4

Optional.

A dictionary of key/value MachineConfig labels. The keys must be unique.

If omitted, profile match is assumed unless a profile with a higher priority matches first or
machineConfigLabels is set.

An optional list.

Profile ordering priority. Lower numbers mean higher priority (0 is the highest priority).

A TuneD profile to apply on a match. For example tuned_profile_1.

Optional operand configuration.

Turn debugging on or off for the TuneD daemon. Options are true for on or false for off. The
default is false.

Turn reapply_sysctl functionality on or off for the TuneD daemon. Options are true for on and
false for off.

<match> is an optional list recursively defined as follows:

Node or pod label name.

Optional node or pod label value. If omitted, the presence of <label_name> is enough to match.

Optional object type (node or pod). If omitted, node is assumed.

An optional <match> list.

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is
assumed and the profile with the respective <match> section will not be applied or recommended.
Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item
of the <match> list matches, the entire <match> list evaluates to true. Therefore, the list acts as logical
OR operator.

If machineConfigLabels is defined, machine config pool based matching is turned on for the given

 match: 3
 <match> 4
 priority: <priority> 5
 profile: <tuned_profile_name> 6
 operand: 7
 debug: <bool> 8
 tunedConfig:
 reapply_sysctl: <bool> 9

- label: <label_name> 1
 value: <label_value> 2
 type: <label_type> 3
 <match> 4

OpenShift Container Platform 4.18 Postinstallation configuration

244

recommend: list item. <mcLabels> specifies the labels for a machine config. The machine config is
created automatically to apply host settings, such as kernel boot parameters, for the profile
<tuned_profile_name>. This involves finding all machine config pools with machine config selector
matching <mcLabels> and setting the profile <tuned_profile_name> on all nodes that are assigned
the found machine config pools. To target nodes that have both master and worker roles, you must use
the master role.

The list items match and machineConfigLabels are connected by the logical OR operator. The match
item is evaluated first in a short-circuit manner. Therefore, if it evaluates to true, the
machineConfigLabels item is not considered.

IMPORTANT

When using machine config pool based matching, it is advised to group nodes with the
same hardware configuration into the same machine config pool. Not following this
practice might result in TuneD operands calculating conflicting kernel parameters for two
or more nodes sharing the same machine config pool.

Example: Node or pod label based matching

The CR above is translated for the containerized TuneD daemon into its recommend.conf file based on
the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and,
therefore, it is considered first. The containerized TuneD daemon running on a given node looks to see if
there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the
entire <match> section evaluates as false. If there is such a pod with the label, in order for the <match>
section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and
no other profile is considered. If the node/pod label combination did not match, the second highest
priority profile (openshift-control-plane) is considered. This profile is applied if the containerized
TuneD pod runs on a node with labels node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and,
therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile
with higher priority matches on a given node.

- match:
 - label: tuned.openshift.io/elasticsearch
 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 type: pod
 priority: 10
 profile: openshift-control-plane-es
- match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 priority: 20
 profile: openshift-control-plane
- priority: 30
 profile: openshift-node

CHAPTER 5. POSTINSTALLATION NODE TASKS

245

Example: Machine config pool based matching

To minimize node reboots, label the target nodes with a label the machine config pool’s node selector
will match, then create the Tuned CR above and finally create the custom machine config pool itself.

Cloud provider-specific TuneD profiles

With this functionality, all Cloud provider-specific nodes can conveniently be assigned a TuneD profile

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: openshift-node-custom
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom OpenShift node profile with an additional kernel parameter
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_custom=+skew_tick=1
 name: openshift-node-custom

 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: "worker-custom"
 priority: 20
 profile: openshift-node-custom

OpenShift Container Platform 4.18 Postinstallation configuration

246

With this functionality, all Cloud provider-specific nodes can conveniently be assigned a TuneD profile
specifically tailored to a given Cloud provider on a OpenShift Container Platform cluster. This can be
accomplished without adding additional node labels or grouping nodes into machine config pools.

This functionality takes advantage of spec.providerID node object values in the form of <cloud-
provider>://<cloud-provider-specific-id> and writes the file /var/lib/ocp-tuned/provider with the
value <cloud-provider> in NTO operand containers. The content of this file is then used by TuneD to
load provider-<cloud-provider> profile if such profile exists.

The openshift profile that both openshift-control-plane and openshift-node profiles inherit settings
from is now updated to use this functionality through the use of conditional profile loading. Neither NTO
nor TuneD currently include any Cloud provider-specific profiles. However, it is possible to create a
custom profile provider-<cloud-provider> that will be applied to all Cloud provider-specific cluster
nodes.

Example GCE Cloud provider profile

NOTE

Due to profile inheritance, any setting specified in the provider-<cloud-provider> profile
will be overwritten by the openshift profile and its child profiles.

5.14.3. Default profiles set on a cluster

The following are the default profiles set on a cluster.

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: provider-gce
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=GCE Cloud provider-specific profile
 # Your tuning for GCE Cloud provider goes here.
 name: provider-gce

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: default
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Optimize systems running OpenShift (provider specific parent profile)
 include=-provider-${f:exec:cat:/var/lib/ocp-tuned/provider},openshift
 name: openshift
 recommend:
 - profile: openshift-control-plane
 priority: 30

CHAPTER 5. POSTINSTALLATION NODE TASKS

247

Starting with OpenShift Container Platform 4.9, all OpenShift TuneD profiles are shipped with the
TuneD package. You can use the oc exec command to view the contents of these profiles:

5.14.4. Supported TuneD daemon plugins

Excluding the [main] section, the following TuneD plugins are supported when using custom profiles
defined in the profile: section of the Tuned CR:

audio

cpu

disk

eeepc_she

modules

mounts

net

scheduler

scsi_host

selinux

sysctl

sysfs

usb

video

vm

bootloader

There is some dynamic tuning functionality provided by some of these plugins that is not supported. The
following TuneD plugins are currently not supported:

script

systemd

NOTE

 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 - profile: openshift-node
 priority: 40

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/openshift{,-
control-plane,-node} -name tuned.conf -exec grep -H ^ {} \;

OpenShift Container Platform 4.18 Postinstallation configuration

248

NOTE

The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS)
worker nodes.

Additional resources

Available TuneD Plugins

Getting Started with TuneD

5.15. CONFIGURING THE MAXIMUM NUMBER OF PODS PER NODE

You can use the podsPerCore and maxPods parameters in a kublet configuration to control the
maximum number of pods that can be scheduled to a node. If you use both options, the lower of the two
limits the number of pods on a node. Setting an appropriate maximum can help ensure your nodes run
efficiently.

For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum number of
pods allowed on the node will be 40.

Prerequisites

You have the label associated with the static MachineConfigPool CRD for the type of node
you want to configure.

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a max-pods CR

where:

metadata.name

Specifies a name for the CR.

spec.machineConfigPoolSelector.matchLabels

Specifies the label from the machine config pool.

spec.kubeletConfig.podsPerCore

Specifies the number of pods the node can run based on the number of processor cores on

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-max-pods
spec:
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: ""
 kubeletConfig:
 podsPerCore: 10
 maxPods: 250
#...

CHAPTER 5. POSTINSTALLATION NODE TASKS

249

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance#available-tuned-plug-ins_customizing-tuned-profiles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance

Specifies the number of pods the node can run based on the number of processor cores on
the node.

spec.kubeletConfig.maxPods

Specifies the number of pods the node can run to a fixed value, regardless of the properties
of the node.

NOTE

Setting podsPerCore to 0 disables this limit.

In the above example, the default value for podsPerCore is 10 and the default value for
maxPods is 250. This means that unless the node has 25 cores or more, by default,
podsPerCore will be the limiting factor.

2. Run the following command to create the CR:

Verification

List the MachineConfigPool CRDs to check if the change is applied. The UPDATING column
reports True if the change is picked up by the Machine Config Controller:

Example output

After the change is complete, the UPDATED column reports True.

Example output

5.16. MACHINE SCALING WITH STATIC IP ADDRESSES

After you deployed your cluster to run nodes with static IP addresses, you can scale an instance of a
machine or a machine set to use one of these static IP addresses.

Additional resources

Static IP addresses for vSphere nodes

$ oc create -f <file_name>.yaml

$ oc get machineconfigpools

NAME CONFIG UPDATED UPDATING DEGRADED
master master-9cc2c72f205e103bb534 False False False
worker worker-8cecd1236b33ee3f8a5e False True False

$ oc get machineconfigpools

NAME CONFIG UPDATED UPDATING DEGRADED
master master-9cc2c72f205e103bb534 False True False
worker worker-8cecd1236b33ee3f8a5e True False False

OpenShift Container Platform 4.18 Postinstallation configuration

250

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_vmware_vsphere/#installation-vsphere-installer-infra-requirements_ipi-vsphere-installation-reqs

5.16.1. Scaling machines to use static IP addresses

You can scale additional machine sets to use pre-defined static IP addresses on your cluster. For this
configuration, you need to create a machine resource YAML file and then define static IP addresses in
this file.

Prerequisites

You deployed a cluster that runs at least one node with a configured static IP address.

Procedure

1. Create a machine resource YAML file and define static IP address network information in the
network parameter.

Example of a machine resource YAML file with static IP address information defined
in the network parameter.

apiVersion: machine.openshift.io/v1beta1
kind: Machine
metadata:
 creationTimestamp: null
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: <role>
 machine.openshift.io/cluster-api-machine-type: <role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 name: <infrastructure_id>-<role>
 namespace: openshift-machine-api
spec:
 lifecycleHooks: {}
 metadata: {}
 providerSpec:
 value:
 apiVersion: machine.openshift.io/v1beta1
 credentialsSecret:
 name: vsphere-cloud-credentials
 diskGiB: 120
 kind: VSphereMachineProviderSpec
 memoryMiB: 8192
 metadata:
 creationTimestamp: null
 network:
 devices:
 - gateway: 192.168.204.1 1
 ipAddrs:
 - 192.168.204.8/24 2
 nameservers: 3
 - 192.168.204.1
 networkName: qe-segment-204
 numCPUs: 4
 numCoresPerSocket: 2
 snapshot: ""
 template: <vm_template_name>
 userDataSecret:

CHAPTER 5. POSTINSTALLATION NODE TASKS

251

1

2

3

The IP address for the default gateway for the network interface.

Lists IPv4, IPv6, or both IP addresses that installation program passes to the network
interface. Both IP families must use the same network interface for the default network.

Lists a DNS nameserver. You can define up to 3 DNS nameservers. Consider defining
more than one DNS nameserver to take advantage of DNS resolution if that one DNS
nameserver becomes unreachable.

Create a machine custom resource (CR) by entering the following command in your
terminal:

5.16.2. Machine set scaling of machines with configured static IP addresses

You can use a machine set to scale machines with configured static IP addresses.

After you configure a machine set to request a static IP address for a machine, the machine controller
creates an IPAddressClaim resource in the openshift-machine-api namespace. The external controller
then creates an IPAddress resource and binds any static IP addresses to the IPAddressClaim
resource.

IMPORTANT

Your organization might use numerous types of IP address management (IPAM) services.
If you want to enable a particular IPAM service on OpenShift Container Platform, you
might need to manually create the IPAddressClaim resource in a YAML definition and
then bind a static IP address to this resource by entering the following command in your
oc CLI:

The following demonstrates an example of an IPAddressClaim resource:

 name: worker-user-data
 workspace:
 datacenter: <vcenter_data_center_name>
 datastore: <vcenter_datastore_name>
 folder: <vcenter_vm_folder_path>
 resourcepool: <vsphere_resource_pool>
 server: <vcenter_server_ip>
status: {}

$ oc create -f <file_name>.yaml

$ oc create -f <ipaddressclaim_filename>

kind: IPAddressClaim
metadata:
 finalizers:
 - machine.openshift.io/ip-claim-protection
 name: cluster-dev-9n5wg-worker-0-m7529-claim-0-0
 namespace: openshift-machine-api
spec:
 poolRef:

OpenShift Container Platform 4.18 Postinstallation configuration

252

The machine controller updates the machine with a status of IPAddressClaimed to indicate that a
static IP address has successfully bound to the IPAddressClaim resource. The machine controller
applies the same status to a machine with multiple IPAddressClaim resources that each contain a
bound static IP address.The machine controller then creates a virtual machine and applies static IP
addresses to any nodes listed in the providerSpec of a machine’s configuration.

5.16.3. Using a machine set to scale machines with configured static IP addresses

You can use a machine set to scale machines with configured static IP addresses.

The example in the procedure demonstrates the use of controllers for scaling machines in a machine set.

Prerequisites

You deployed a cluster that runs at least one node with a configured static IP address.

Procedure

1. Configure a machine set by specifying IP pool information in the
network.devices.addressesFromPools schema of the machine set’s YAML file:

 apiGroup: ipamcontroller.example.io
 kind: IPPool
 name: static-ci-pool
status: {}

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 annotations:
 machine.openshift.io/memoryMb: "8192"
 machine.openshift.io/vCPU: "4"
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 name: <infrastructure_id>-<role>
 namespace: openshift-machine-api
spec:
 replicas: 0
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 template:
 metadata:
 labels:
 ipam: "true"
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: worker
 machine.openshift.io/cluster-api-machine-type: worker
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 spec:
 lifecycleHooks: {}
 metadata: {}
 providerSpec:
 value:

CHAPTER 5. POSTINSTALLATION NODE TASKS

253

1

2

Specifies an IP pool, which lists a static IP address or a range of static IP addresses. The IP
Pool can either be a reference to a custom resource definition (CRD) or a resource
supported by the IPAddressClaims resource handler. The machine controller accesses
static IP addresses listed in the machine set’s configuration and then allocates each
address to each machine.

Lists a nameserver. You must specify a nameserver for nodes that receive static IP
address, because the Dynamic Host Configuration Protocol (DHCP) network configuration
does not support static IP addresses.

2. Scale the machine set by entering the following commands in your oc CLI:

Or:

After each machine is scaled up, the machine controller creates an IPAddressClaim resource.

3. Optional: Check that the IPAddressClaim resource exists in the openshift-machine-api
namespace by entering the following command:

 apiVersion: machine.openshift.io/v1beta1
 credentialsSecret:
 name: vsphere-cloud-credentials
 diskGiB: 120
 kind: VSphereMachineProviderSpec
 memoryMiB: 8192
 metadata: {}
 network:
 devices:
 - addressesFromPools: 1
 - group: ipamcontroller.example.io
 name: static-ci-pool
 resource: IPPool
 nameservers:
 - "192.168.204.1" 2
 networkName: qe-segment-204
 numCPUs: 4
 numCoresPerSocket: 2
 snapshot: ""
 template: rvanderp4-dev-9n5wg-rhcos-generated-region-generated-zone
 userDataSecret:
 name: worker-user-data
 workspace:
 datacenter: IBMCdatacenter
 datastore: /IBMCdatacenter/datastore/vsanDatastore
 folder: /IBMCdatacenter/vm/rvanderp4-dev-9n5wg
 resourcePool: /IBMCdatacenter/host/IBMCcluster//Resources
 server: vcenter.ibmc.devcluster.openshift.com

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

$ oc get ipaddressclaims.ipam.cluster.x-k8s.io -n openshift-machine-api

OpenShift Container Platform 4.18 Postinstallation configuration

254

1

2

Example oc CLI output that lists two IP pools listed in the openshift-machine-api
namespace

4. Create an IPAddress resource by entering the following command:

The following example shows an IPAddress resource with defined network configuration
information and one defined static IP address:

The name of the target IPAddressClaim resource.

Details information about the static IP address or addresses from your nodes.

NOTE

By default, the external controller automatically scans any resources in the
machine set for recognizable address pool types. When the external controller
finds kind: IPPool defined in the IPAddress resource, the controller binds any
static IP addresses to the IPAddressClaim resource.

5. Update the IPAddressClaim status with a reference to the IPAddress resource:

NAME POOL NAME POOL KIND
cluster-dev-9n5wg-worker-0-m7529-claim-0-0 static-ci-pool IPPool
cluster-dev-9n5wg-worker-0-wdqkt-claim-0-0 static-ci-pool IPPool

$ oc create -f ipaddress.yaml

apiVersion: ipam.cluster.x-k8s.io/v1alpha1
kind: IPAddress
metadata:
 name: cluster-dev-9n5wg-worker-0-m7529-ipaddress-0-0
 namespace: openshift-machine-api
spec:
 address: 192.168.204.129
 claimRef: 1
 name: cluster-dev-9n5wg-worker-0-m7529-claim-0-0
 gateway: 192.168.204.1
 poolRef: 2
 apiGroup: ipamcontroller.example.io
 kind: IPPool
 name: static-ci-pool
 prefix: 23

$ oc --type=merge patch IPAddressClaim cluster-dev-9n5wg-worker-0-m7529-claim-0-0 -
p='{"status":{"addressRef": {"name": "cluster-dev-9n5wg-worker-0-m7529-ipaddress-0-0"}}}' -
n openshift-machine-api --subresource=status

CHAPTER 5. POSTINSTALLATION NODE TASKS

255

CHAPTER 6. POSTINSTALLATION NETWORK
CONFIGURATION

After installing OpenShift Container Platform, you can further expand and customize your network to
your requirements.

6.1. USING THE CLUSTER NETWORK OPERATOR

You can use the Cluster Network Operator (CNO) to deploy and manage cluster network components
on an OpenShift Container Platform cluster, including the Container Network Interface (CNI) network
plugin selected for the cluster during installation.

For more information, see Cluster Network Operator in OpenShift Container Platform .

6.2. NETWORK CONFIGURATION TASKS

Configuring the cluster-wide proxy

Configuring ingress cluster traffic overview

Configuring the node port service range

Configuring IPsec encryption

Create a network policy or configure multitenant isolation with network policies

Optimizing routing

Understanding multiple networks

6.2.1. Creating default network policies for a new project

As a cluster administrator, you can modify the new project template to automatically include
NetworkPolicy objects when you create a new project.

6.2.1.1. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Log in as a user with cluster-admin privileges.

2. Generate the default project template:

OpenShift Container Platform 4.18 Postinstallation configuration

256

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#nw-cluster-network-operator_cluster-network-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/configuring_network_settings/#enable-cluster-wide-proxy
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/ingress_and_load_balancing/#overview-traffic
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/configuring_network_settings/#configuring-node-port-service-range
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/network_security/#configuring-ipsec-ovn
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/network_security/#creating-network-policy
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/network_security/#multitenant-network-policy
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/scalability_and_performance/#routing-optimization
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/multiple_networks/#understanding-multiple-networks

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified
template:

5. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

7. After you save your changes, create a new project to verify that your changes were successfully
applied.

6.2.1.2. Adding network policies to the new project template

As a cluster administrator, you can add network policies to the default template for new projects.
OpenShift Container Platform will automatically create all the NetworkPolicy objects specified in the
template in the project.

Prerequisites

Your cluster uses a default container network interface (CNI) network plugin that supports
NetworkPolicy objects, such as the OVN-Kubernetes.

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

$ oc create -f template.yaml -n openshift-config

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...
spec:
 projectRequestTemplate:
 name: <template_name>
...

CHAPTER 6. POSTINSTALLATION NETWORK CONFIGURATION

257

You installed the OpenShift CLI (oc).

You must log in to the cluster with a user with cluster-admin privileges.

You must have created a custom default project template for new projects.

Procedure

1. Edit the default template for a new project by running the following command:

Replace <project_template> with the name of the default template that you configured for
your cluster. The default template name is project-request.

2. In the template, add each NetworkPolicy object as an element to the objects parameter. The
objects parameter accepts a collection of one or more objects.
In the following example, the objects parameter collection includes several NetworkPolicy
objects.

$ oc edit template <project_template> -n openshift-config

objects:
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-same-namespace
 spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-openshift-ingress
 spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress:
 podSelector: {}
 policyTypes:
 - Ingress
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-kube-apiserver-operator
 spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: openshift-kube-apiserver-operator
 podSelector:
 matchLabels:

OpenShift Container Platform 4.18 Postinstallation configuration

258

1

3. Optional: Create a new project and confirm the successful creation of your network policy
objects.

a. Create a new project:

Replace <project> with the name for the project you are creating.

b. Confirm that the network policy objects in the new project template exist in the new project:

Expected output:

 app: kube-apiserver-operator
 policyTypes:
 - Ingress
...

$ oc new-project <project> 1

$ oc get networkpolicy

NAME POD-SELECTOR AGE
allow-from-openshift-ingress <none> 7s
allow-from-same-namespace <none> 7s

CHAPTER 6. POSTINSTALLATION NETWORK CONFIGURATION

259

CHAPTER 7. CONFIGURING IMAGE STREAMS AND IMAGE
REGISTRIES

You can update the global pull secret for your cluster by either replacing the current pull secret or
appending a new pull secret. The procedure is required when users use a separate registry to store
images than the registry used during installation. For more information, see Using image pull secrets .

For information about images and configuring image streams or image registries, see the following
documentation:

Overview of images

Image Registry Operator in OpenShift Container Platform

Configuring image registry settings

7.1. CONFIGURING IMAGE STREAMS FOR A DISCONNECTED CLUSTER

After installing OpenShift Container Platform in a disconnected environment, configure the image
streams for the Cluster Samples Operator and the must-gather image stream.

7.1.1. Cluster Samples Operator assistance for mirroring

During installation, OpenShift Container Platform creates a config map named imagestreamtag-to-
image in the openshift-cluster-samples-operator namespace.

The imagestreamtag-to-image config map contains an entry, the populating image, for each image
stream tag.

The format of the key for each entry in the data field in the config map is
<image_stream_name>_<image_stream_tag_name>.

During a disconnected installation of OpenShift Container Platform, the status of the Cluster Samples
Operator is set to Removed. If you choose to change it to Managed, it installs samples.

NOTE

The use of samples in a network-restricted or discontinued environment might require
access to services external to your network. Some example services include: Github,
Maven Central, npm, RubyGems, PyPi and others. There might be additional steps to
take that allow the Cluster Samples Operators objects to reach the services they require.

Use the following principles to determine which images you need to mirror for your image streams to
import:

While the Cluster Samples Operator is set to Removed, you can create your mirrored registry, or
determine which existing mirrored registry you want to use.

Mirror the samples you want to the mirrored registry using the new config map as your guide.

Add any of the image streams you did not mirror to the skippedImagestreams list of the
Cluster Samples Operator configuration object.

Set samplesRegistry of the Cluster Samples Operator configuration object to the mirrored

OpenShift Container Platform 4.18 Postinstallation configuration

260

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/images/#using-image-pull-secrets
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/images/#overview-of-images
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/registry/#configuring-registry-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/images/#image-configuration

Set samplesRegistry of the Cluster Samples Operator configuration object to the mirrored
registry.

Then set the Cluster Samples Operator to Managed to install the image streams you have
mirrored.

7.1.2. Using Cluster Samples Operator image streams with alternate or mirrored
registries

You can use an alternate or mirror registry to host your images streams instead of using the Red Hat
registry.

Most image streams in the openshift namespace managed by the Cluster Samples Operator point to
images located in the Red Hat registry at registry.redhat.io.

NOTE

The cli, installer, must-gather, and tests image streams, while part of the install payload,
are not managed by the Cluster Samples Operator. These are not addressed in this
procedure.

IMPORTANT

The Cluster Samples Operator must be set to Managed in a disconnected environment.
To install the image streams, you must have a mirrored registry.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Create a pull secret for your mirror registry.

Procedure

1. Access the images of a specific image stream to mirror, for example:

2. Mirror images from registry.redhat.io associated with any image streams you need

3. Create the image configuration object for the cluster by running the following command:

4. Add the required trusted CAs for the mirror in the image configuration object:

$ oc get is <imagestream> -n openshift -o json | jq .spec.tags[].from.name | grep
registry.redhat.io

$ oc image mirror registry.redhat.io/rhscl/ruby-25-rhel7:latest ${MIRROR_ADDR}/rhscl/ruby-
25-rhel7:latest

$ oc create configmap registry-config --from-
file=${MIRROR_ADDR_HOSTNAME}..5000=$path/ca.crt -n openshift-config

$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"registry-config"}}}' --type=merge

CHAPTER 7. CONFIGURING IMAGE STREAMS AND IMAGE REGISTRIES

261

https://registry.redhat.io
https://registry.redhat.io

5. Update the samplesRegistry field in the Cluster Samples Operator configuration object to
contain the hostname portion of the mirror location defined in the mirror configuration:

IMPORTANT

This step is required because the image stream import process does not use the
mirror or search mechanism at this time.

6. Add any image streams that are not mirrored into the skippedImagestreams field of the
Cluster Samples Operator configuration object. Or if you do not want to support any of the
sample image streams, set the Cluster Samples Operator to Removed in the Cluster Samples
Operator configuration object.

NOTE

The Cluster Samples Operator issues alerts if image stream imports are failing
but the Cluster Samples Operator is either periodically retrying or does not
appear to be retrying them.

Many of the templates in the openshift namespace reference the image streams. You can use
Removed to purge both the image streams and templates. This eliminates the possibility of
attempts to use the templates if they are not functional because of any missing image streams.

7.1.3. Preparing your cluster to gather support data

Clusters using a restricted network must import the default must-gather image to gather debugging
data for Red Hat support. The must-gather image is not imported by default, and clusters on a
restricted network do not have access to the internet to pull the latest image from a remote repository.

Procedure

1. If you have not added your mirror registry’s trusted CA to your cluster’s image configuration
object as part of the Cluster Samples Operator configuration, perform the following steps:

a. Create the cluster’s image configuration object:

b. Add the required trusted CAs for the mirror in the cluster’s image configuration object:

2. Import the default must-gather image from your installation payload:

When running the oc adm must-gather command, use the --image flag and point to the payload
image, as in the following example:

$ oc edit configs.samples.operator.openshift.io -n openshift-cluster-samples-operator

$ oc create configmap registry-config --from-
file=${MIRROR_ADDR_HOSTNAME}..5000=$path/ca.crt -n openshift-config

$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"registry-config"}}}' --type=merge

$ oc import-image is/must-gather -n openshift

OpenShift Container Platform 4.18 Postinstallation configuration

262

7.2. CONFIGURING PERIODIC IMPORTING OF CLUSTER SAMPLE
OPERATOR IMAGE STREAM TAGS

You can ensure that you always have access to the latest versions of the Cluster Sample Operator
images by periodically importing the image stream tags when new versions become available.

Procedure

1. Fetch all the imagestreams in the openshift namespace by running the following command:

2. Fetch the tags for every imagestream in the openshift namespace by running the following
command:

For example:

Example output

3. Schedule periodic importing of images for each tag present in the image stream by running the
following command:

For example:

NOTE

$ oc adm must-gather --image=$(oc adm release info --image-for must-gather)

oc get imagestreams -n openshift

$ oc get is <image-stream-name> -o jsonpath="{range .spec.tags[*]}{.name}{'\t'}{.from.name}
{'\n'}{end}" -n openshift

$ oc get is ubi8-openjdk-17 -o jsonpath="{range .spec.tags[*]}{.name}{'\t'}{.from.name}{'\n'}
{end}" -n openshift

1.11 registry.access.redhat.com/ubi8/openjdk-17:1.11
1.12 registry.access.redhat.com/ubi8/openjdk-17:1.12

$ oc tag <repository/image> <image-stream-name:tag> --scheduled -n openshift

$ oc tag registry.access.redhat.com/ubi8/openjdk-17:1.11 ubi8-openjdk-17:1.11 --scheduled -
n openshift

$ oc tag registry.access.redhat.com/ubi8/openjdk-17:1.12 ubi8-openjdk-17:1.12 --scheduled -
n openshift

CHAPTER 7. CONFIGURING IMAGE STREAMS AND IMAGE REGISTRIES

263

NOTE

Using the --scheduled flag is recommended to periodically re-import an image
when working with an external container image registry. The --scheduled flag
helps to ensure that you receive the latest versions and security updates.
Additionally, this setting allows the import process to automatically retry if a
temporary error initially prevents the image from being imported.

By default, scheduled image imports occur every 15 minutes cluster-wide.

4. Verify the scheduling status of the periodic import by running the following command:

For example:

Example output

oc get imagestream <image-stream-name> -o jsonpath="{range .spec.tags[*]}Tag: {.name}
{'\t'}Scheduled: {.importPolicy.scheduled}{'\n'}{end}" -n openshift

oc get imagestream ubi8-openjdk-17 -o jsonpath="{range .spec.tags[*]}Tag: {.name}
{'\t'}Scheduled: {.importPolicy.scheduled}{'\n'}{end}" -n openshift

Tag: 1.11 Scheduled: true
Tag: 1.12 Scheduled: true

OpenShift Container Platform 4.18 Postinstallation configuration

264

CHAPTER 8. POSTINSTALLATION STORAGE
CONFIGURATION

After installing OpenShift Container Platform, you can further expand and customize your cluster to
your requirements, including storage configuration.

By default, containers operate by using the ephemeral storage or transient local storage. The ephemeral
storage has a lifetime limitation. To store the data for a long time, you must configure persistent
storage. You can configure storage by using one of the following methods:

Dynamic provisioning

You can dynamically provision storage on-demand by defining and creating storage classes that
control different levels of storage, including storage access.

Static provisioning

You can use Kubernetes persistent volumes to make existing storage available to a cluster. Static
provisioning can support various device configurations and mount options.

8.1. DYNAMIC PROVISIONING

Dynamic Provisioning allows you to create storage volumes on-demand, eliminating the need for cluster
administrators to pre-provision storage. See Dynamic provisioning.

8.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY

To select the optimal storage solution for your OpenShift Container Platform cluster application, review
the recommended and configurable storage technologies. By reviewing this summary, you can identify
the supported options that best meet your specific workload requirements.

Table 8.1. Recommended and configurable storage technology

Storage type Block File Object

ROX Yes Yes Yes

RWX No Yes Yes

Registry Configurable Configurable Recommended

Scaled registry Not configurable Configurable Recommended

Metrics Recommended Configurable Not configurable

Elasticsearch Logging Recommended Configurable Not supported

Loki Logging Not configurable Not configurable Recommended

Apps Recommended Recommended Not configurable

where:

CHAPTER 8. POSTINSTALLATION STORAGE CONFIGURATION

265

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/storage/#dynamic-provisioning

ROX

Specifies ReadOnlyMany access mode.

ROX.Yes

Specifies that this access mode

RWX

Specifies ReadWriteMany access mode.

Metrics

Specifies Prometheus as the underlying technology used for metrics.

Metrics.Configurable

For metrics, using file storage with the ReadWriteMany (RWX) access mode is unreliable. If you use
file storage, do not configure the RWX access mode on any persistent volume claims (PVCs) that are
configured for use with metrics.

Elasticsearch Logging.Configurable

For logging, review the recommended storage solution in Configuring persistent storage for the log
store section. Using NFS storage as a persistent volume or through NAS, such as Gluster, can corrupt
the data. Therefore, NFS is not supported for Elasticsearch storage and LokiStack log store in
OpenShift Container Platform Logging. You must use one persistent volume type per log store.

Apps.Not configurable

Specifies that object storage is not consumed through PVs or PVCs of OpenShift Container
Platform. Apps must integrate with the object storage REST API.

NOTE

A scaled registry is an OpenShift image registry where two or more pod replicas are
running.

8.3. DEPLOY RED HAT OPENSHIFT DATA FOUNDATION

Red Hat OpenShift Data Foundation is a provider of agnostic persistent storage for OpenShift
Container Platform supporting file, block, and object storage, either in-house or in hybrid clouds. As a
Red Hat storage solution, Red Hat OpenShift Data Foundation is completely integrated with OpenShift
Container Platform for deployment, management, and monitoring. For more information, see the Red
Hat OpenShift Data Foundation documentation.

IMPORTANT

OpenShift Data Foundation on top of Red Hat Hyperconverged Infrastructure (RHHI) for
Virtualization, which uses hyperconverged nodes that host virtual machines installed with
OpenShift Container Platform, is not a supported configuration. For more information
about supported platforms, see the Red Hat OpenShift Data Foundation Supportability
and Interoperability Guide.

If you are looking for Red Hat OpenShift Data
Foundation information about…​

See the following Red Hat OpenShift Data
Foundation documentation:

What’s new, known issues, notable bug fixes, and
Technology Previews

OpenShift Data Foundation 4.12 Release Notes

OpenShift Container Platform 4.18 Postinstallation configuration

266

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation
https://access.redhat.com/articles/4731161
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/4.12_release_notes

Supported workloads, layouts, hardware and
software requirements, sizing and scaling
recommendations

Planning your OpenShift Data Foundation 4.12
deployment

Instructions on deploying OpenShift Data
Foundation to use an external Red Hat Ceph Storage
cluster

Deploying OpenShift Data Foundation 4.12 in
external mode

Instructions on deploying OpenShift Data
Foundation to local storage on bare metal
infrastructure

Deploying OpenShift Data Foundation 4.12 using
bare metal infrastructure

Instructions on deploying OpenShift Data
Foundation on Red Hat OpenShift Container
Platform VMware vSphere clusters

Deploying OpenShift Data Foundation 4.12 on
VMware vSphere

Instructions on deploying OpenShift Data
Foundation using Amazon Web Services for local or
cloud storage

Deploying OpenShift Data Foundation 4.12 using
Amazon Web Services

Instructions on deploying and managing OpenShift
Data Foundation on existing Red Hat OpenShift
Container Platform Google Cloud clusters

Deploying and managing OpenShift Data Foundation
4.12 using Google Cloud

Instructions on deploying and managing OpenShift
Data Foundation on existing Red Hat OpenShift
Container Platform Azure clusters

Deploying and managing OpenShift Data Foundation
4.12 using Microsoft Azure

Instructions on deploying OpenShift Data
Foundation to use local storage on IBM Power®
infrastructure

Deploying OpenShift Data Foundation on IBM
Power®

Instructions on deploying OpenShift Data
Foundation to use local storage on IBM Z®
infrastructure

Deploying OpenShift Data Foundation on IBM Z®
infrastructure

Allocating storage to core services and hosted
applications in Red Hat OpenShift Data Foundation,
including snapshot and clone

Managing and allocating resources

Managing storage resources across a hybrid cloud or
multicloud environment using the Multicloud Object
Gateway (NooBaa)

Managing hybrid and multicloud resources

Safely replacing storage devices for Red Hat
OpenShift Data Foundation

Replacing devices

If you are looking for Red Hat OpenShift Data
Foundation information about…​

See the following Red Hat OpenShift Data
Foundation documentation:

CHAPTER 8. POSTINSTALLATION STORAGE CONFIGURATION

267

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/planning_your_deployment
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_in_external_mode
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_using_bare_metal_infrastructure
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_on_vmware_vsphere
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_using_amazon_web_services
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_and_managing_openshift_data_foundation_using_google_cloud
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_using_microsoft_azure/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html-single/deploying_openshift_data_foundation_using_ibm_power/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_using_ibm_z_infrastructure/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/managing_and_allocating_storage_resources
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/managing_hybrid_and_multicloud_resources
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/replacing_devices

Safely replacing a node in a Red Hat OpenShift Data
Foundation cluster

Replacing nodes

Scaling operations in Red Hat OpenShift Data
Foundation

Scaling storage

Monitoring a Red Hat OpenShift Data Foundation
4.12 cluster

Monitoring Red Hat OpenShift Data Foundation 4.12

Resolve issues encountered during operations Troubleshooting OpenShift Data Foundation 4.12

Migrating your OpenShift Container Platform cluster
from version 3 to version 4

Migration

If you are looking for Red Hat OpenShift Data
Foundation information about…​

See the following Red Hat OpenShift Data
Foundation documentation:

OpenShift Container Platform 4.18 Postinstallation configuration

268

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/replacing_nodes
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/scaling_storage
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/monitoring_openshift_data_foundation
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/troubleshooting_openshift_data_foundation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/migrating_from_version_3_to_4/index

CHAPTER 9. PREPARING FOR USERS
After installing OpenShift Container Platform, you can further expand and customize your cluster to
your requirements, including taking steps to prepare for users.

9.1. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION

The OpenShift Container Platform control plane includes a built-in OAuth server. Developers and
administrators obtain OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth to specify an identity provider after you install your
cluster.

9.1.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must
create a custom resource (CR) that describes that identity provider and add it to the cluster.

NOTE

OpenShift Container Platform user names containing /, :, and % are not supported.

9.1.2. Supported identity providers

You can configure the following types of identity providers:

Identity provider Description

htpasswd Configure the htpasswd identity provider to validate user names and passwords
against a flat file generated using htpasswd.

Keystone Configure the keystone identity provider to integrate your OpenShift Container
Platform cluster with Keystone to enable shared authentication with an OpenStack
Keystone v3 server configured to store users in an internal database.

LDAP Configure the ldap identity provider to validate user names and passwords against an
LDAPv3 server, using simple bind authentication.

Basic
authentication

Configure a basic-authentication identity provider for users to log in to OpenShift
Container Platform with credentials validated against a remote identity provider. Basic
authentication is a generic backend integration mechanism.

Request header Configure a request-header identity provider to identify users from request header
values, such as X-Remote-User. It is typically used in combination with an
authenticating proxy, which sets the request header value.

GitHub or GitHub
Enterprise

Configure a github identity provider to validate user names and passwords against
GitHub or GitHub Enterprise’s OAuth authentication server.

CHAPTER 9. PREPARING FOR USERS

269

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#configuring-htpasswd-identity-provider
http://httpd.apache.org/docs/2.4/programs/htpasswd.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#configuring-keystone-identity-provider
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#configuring-ldap-identity-provider
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#configuring-basic-authentication-identity-provider
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#configuring-request-header-identity-provider
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#configuring-github-identity-provider

GitLab Configure a gitlab identity provider to use GitLab.com or any other GitLab instance as
an identity provider.

Google Configure a google identity provider using Google’s OpenID Connect integration.

OpenID Connect Configure an oidc identity provider to integrate with an OpenID Connect identity
provider using an Authorization Code Flow.

Identity provider Description

After you define an identity provider, you can use RBAC to define and apply permissions .

9.1.3. Identity provider parameters

The following parameters are common to all identity providers:

Parameter Description

name The provider name is prefixed to provider user names to form an identity name.

mappingMethod Defines how new identities are mapped to users when they log in. Enter one of the
following values:

claim
The default value. Provisions a user with the identity’s preferred user name. Fails if a
user with that user name is already mapped to another identity.

lookup
Looks up an existing identity, user identity mapping, and user, but does not
automatically provision users or identities. This allows cluster administrators to set
up identities and users manually, or using an external process. Using this method
requires you to manually provision users.

add
Provisions a user with the identity’s preferred user name. If a user with that user
name already exists, the identity is mapped to the existing user, adding to any
existing identity mappings for the user. Required when multiple identity providers
are configured that identify the same set of users and map to the same user names.

NOTE

When adding or changing identity providers, you can map identities from the new
provider to existing users by setting the mappingMethod parameter to add.

9.1.4. Sample identity provider CR

The following custom resource (CR) shows the parameters and default values that you use to configure
an identity provider. This example uses the htpasswd identity provider.

Sample identity provider CR

apiVersion: config.openshift.io/v1

OpenShift Container Platform 4.18 Postinstallation configuration

270

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#configuring-gitlab-identity-provider
https://gitlab.com/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#configuring-google-identity-provider
https://developers.google.com/identity/protocols/OpenIDConnect
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#configuring-oidc-identity-provider
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#authorization-overview_using-rbac

1

2

3

This provider name is prefixed to provider user names to form an identity name.

Controls how mappings are established between this provider’s identities and User objects.

An existing secret containing a file generated using htpasswd.

9.2. USING RBAC TO DEFINE AND APPLY PERMISSIONS

Understand and apply role-based access control.

9.2.1. RBAC overview

Role-based access control (RBAC) objects determine whether a user is allowed to perform a given
action within a project.

Cluster administrators can use the cluster roles and bindings to control who has various access levels to
the OpenShift Container Platform platform itself and all projects.

Developers can use local roles and bindings to control who has access to their projects. Note that
authorization is a separate step from authentication, which is more about determining the identity of
who is taking the action.

Authorization is managed using:

Authorization
object

Description

Rules Sets of permitted verbs on a set of objects. For example, whether a user or service
account can create pods.

Roles Collections of rules. You can associate, or bind, users and groups to multiple roles.

Bindings Associations between users and/or groups with a role.

There are two levels of RBAC roles and bindings that control authorization:

kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: my_identity_provider 1
 mappingMethod: claim 2
 type: HTPasswd
 htpasswd:
 fileData:
 name: htpass-secret 3

CHAPTER 9. PREPARING FOR USERS

271

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

RBAC level Description

Cluster RBAC Roles and bindings that are applicable across all projects. Cluster roles exist cluster-
wide, and cluster role bindings can reference only cluster roles.

Local RBAC Roles and bindings that are scoped to a given project. While local roles exist only in a
single project, local role bindings can reference both cluster and local roles.

A cluster role binding is a binding that exists at the cluster level. A role binding exists at the project level.
The cluster role view must be bound to a user using a local role binding for that user to view the project.
Create local roles only if a cluster role does not provide the set of permissions needed for a particular
situation.

This two-level hierarchy allows reuse across multiple projects through the cluster roles while allowing
customization inside of individual projects through local roles.

During evaluation, both the cluster role bindings and the local role bindings are used. For example:

1. Cluster-wide "allow" rules are checked.

2. Locally-bound "allow" rules are checked.

3. Deny by default.

9.2.1.1. Default cluster roles

OpenShift Container Platform includes a set of default cluster roles that you can bind to users and
groups cluster-wide or locally.

IMPORTANT

It is not recommended to manually modify the default cluster roles. Modifications to
these system roles can prevent a cluster from functioning properly.

Default cluster
role

Description

admin A project manager. If used in a local binding, an admin has rights to view any resource
in the project and modify any resource in the project except for quota.

basic-user A user that can get basic information about projects and users.

cluster-admin A super-user that can perform any action in any project. When bound to a user with a
local binding, they have full control over quota and every action on every resource in the
project.

cluster-status A user that can get basic cluster status information.

OpenShift Container Platform 4.18 Postinstallation configuration

272

cluster-reader A user that can get or view most of the objects but cannot modify them.

edit A user that can modify most objects in a project but does not have the power to view or
modify roles or bindings.

self-provisioner A user that can create their own projects.

view A user who cannot make any modifications, but can see most objects in a project. They
cannot view or modify roles or bindings.

Default cluster
role

Description

Be mindful of the difference between local and cluster bindings. For example, if you bind the cluster-
admin role to a user by using a local role binding, it might appear that this user has the privileges of a
cluster administrator. This is not the case. Binding the cluster-admin to a user in a project grants super
administrator privileges for only that project to the user. That user has the permissions of the cluster
role admin, plus a few additional permissions like the ability to edit rate limits, for that project. This
binding can be confusing via the web console UI, which does not list cluster role bindings that are bound
to true cluster administrators. However, it does list local role bindings that you can use to locally bind
cluster-admin.

The relationships between cluster roles, local roles, cluster role bindings, local role bindings, users,
groups and service accounts are illustrated below.

CHAPTER 9. PREPARING FOR USERS

273

WARNING

The get pods/exec, get pods/*, and get * rules grant execution privileges when they
are applied to a role. Apply the principle of least privilege and assign only the
minimal RBAC rights required for users and agents. For more information, see
RBAC rules allow execution privileges .

9.2.1.2. Evaluating authorization

OpenShift Container Platform evaluates authorization by using:

Identity

The user name and list of groups that the user belongs to.

Action

The action you perform. In most cases, this consists of:

Project: The project you access. A project is a Kubernetes namespace with additional
annotations that allows a community of users to organize and manage their content in
isolation from other communities.

Verb : The action itself: get, list, create, update, delete, deletecollection, or watch.

Resource name: The API endpoint that you access.

Bindings

The full list of bindings, the associations between users or groups with a role.

OpenShift Container Platform evaluates authorization by using the following steps:

1. The identity and the project-scoped action is used to find all bindings that apply to the user or
their groups.

2. Bindings are used to locate all the roles that apply.

3. Roles are used to find all the rules that apply.

4. The action is checked against each rule to find a match.

5. If no matching rule is found, the action is then denied by default.

TIP

Remember that users and groups can be associated with, or bound to, multiple roles at the same time.

Project administrators can use the CLI to view local roles and bindings, including a matrix of the verbs
and resources each are associated with.

IMPORTANT



OpenShift Container Platform 4.18 Postinstallation configuration

274

https://access.redhat.com/solutions/6989997

IMPORTANT

The cluster role bound to the project administrator is limited in a project through a local
binding. It is not bound cluster-wide like the cluster roles granted to the cluster-admin or
system:admin.

Cluster roles are roles defined at the cluster level but can be bound either at the cluster
level or at the project level.

9.2.1.2.1. Cluster role aggregation

The default admin, edit, view, and cluster-reader cluster roles support cluster role aggregation, where
the cluster rules for each role are dynamically updated as new rules are created. This feature is relevant
only if you extend the Kubernetes API by creating custom resources.

9.2.2. Projects and namespaces

A Kubernetes namespace provides a mechanism to scope resources in a cluster. The Kubernetes
documentation has more information on namespaces.

Namespaces provide a unique scope for:

Named resources to avoid basic naming collisions.

Delegated management authority to trusted users.

The ability to limit community resource consumption.

Most objects in the system are scoped by namespace, but some are excepted and have no namespace,
including nodes and users.

A project is a Kubernetes namespace with additional annotations and is the central vehicle by which
access to resources for regular users is managed. A project allows a community of users to organize and
manage their content in isolation from other communities. Users must be given access to projects by
administrators, or if allowed to create projects, automatically have access to their own projects.

Projects can have a separate name, displayName, and description.

The mandatory name is a unique identifier for the project and is most visible when using the CLI
tools or API. The maximum name length is 63 characters.

The optional displayName is how the project is displayed in the web console (defaults to
name).

The optional description can be a more detailed description of the project and is also visible in
the web console.

Each project scopes its own set of:

Object Description

Objects Pods, services, replication controllers, etc.

Policies Rules for which users can or cannot perform actions on objects.

CHAPTER 9. PREPARING FOR USERS

275

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#aggregated-clusterroles
https://kubernetes.io/docs/tasks/administer-cluster/namespaces/

Constraints Quotas for each kind of object that can be limited.

Service
accounts

Service accounts act automatically with designated access to objects in the project.

Object Description

Cluster administrators can create projects and delegate administrative rights for the project to any
member of the user community. Cluster administrators can also allow developers to create their own
projects.

Developers and administrators can interact with projects by using the CLI or the web console.

9.2.3. Default projects

OpenShift Container Platform comes with a number of default projects, and projects starting with
openshift- are the most essential to users. These projects host master components that run as pods
and other infrastructure components. The pods created in these namespaces that have a critical pod
annotation are considered critical, and the have guaranteed admission by kubelet. Pods created for
master components in these namespaces are already marked as critical.

IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved
for running core cluster components.

The following default projects are considered highly privileged: default, kube-public,
kube-system, openshift, openshift-infra, openshift-node, and other system-created
projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies
on admission plugins, such as pod security admission, security context constraints, cluster
resource quotas, and image reference resolution, does not work in highly privileged
projects.

9.2.4. Viewing cluster roles and bindings

You can use the oc CLI to view cluster roles and bindings by using the oc describe command.

Prerequisites

Install the oc CLI.

Obtain permission to view the cluster roles and bindings.

Users with the cluster-admin default cluster role bound cluster-wide can perform any action on any
resource, including viewing cluster roles and bindings.

Procedure

1. To view the cluster roles and their associated rule sets:

$ oc describe clusterrole.rbac

OpenShift Container Platform 4.18 Postinstallation configuration

276

https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/#rescheduler-guaranteed-scheduling-of-critical-add-ons

Example output

Name: admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 .packages.apps.redhat.com [] [] [* create update
patch delete get list watch]
 imagestreams [] [] [create delete
deletecollection get list patch update watch create get list watch]
 imagestreams.image.openshift.io [] [] [create delete
deletecollection get list patch update watch create get list watch]
 secrets [] [] [create delete deletecollection
get list patch update watch get list watch create delete deletecollection patch update]
 buildconfigs/webhooks [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildconfigs [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildlogs [] [] [create delete deletecollection
get list patch update watch get list watch]
 deploymentconfigs/scale [] [] [create delete
deletecollection get list patch update watch get list watch]
 deploymentconfigs [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreamimages [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreammappings [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreamtags [] [] [create delete
deletecollection get list patch update watch get list watch]
 processedtemplates [] [] [create delete
deletecollection get list patch update watch get list watch]
 routes [] [] [create delete deletecollection
get list patch update watch get list watch]
 templateconfigs [] [] [create delete
deletecollection get list patch update watch get list watch]
 templateinstances [] [] [create delete
deletecollection get list patch update watch get list watch]
 templates [] [] [create delete
deletecollection get list patch update watch get list watch]
 deploymentconfigs.apps.openshift.io/scale [] [] [create delete
deletecollection get list patch update watch get list watch]
 deploymentconfigs.apps.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildconfigs.build.openshift.io/webhooks [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildconfigs.build.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 buildlogs.build.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreamimages.image.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 imagestreammappings.image.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]

CHAPTER 9. PREPARING FOR USERS

277

 imagestreamtags.image.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 routes.route.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 processedtemplates.template.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 templateconfigs.template.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 templateinstances.template.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 templates.template.openshift.io [] [] [create delete
deletecollection get list patch update watch get list watch]
 serviceaccounts [] [] [create delete
deletecollection get list patch update watch impersonate create delete deletecollection patch
update get list watch]
 imagestreams/secrets [] [] [create delete
deletecollection get list patch update watch]
 rolebindings [] [] [create delete
deletecollection get list patch update watch]
 roles [] [] [create delete deletecollection
get list patch update watch]
 rolebindings.authorization.openshift.io [] [] [create delete
deletecollection get list patch update watch]
 roles.authorization.openshift.io [] [] [create delete
deletecollection get list patch update watch]
 imagestreams.image.openshift.io/secrets [] [] [create delete
deletecollection get list patch update watch]
 rolebindings.rbac.authorization.k8s.io [] [] [create delete
deletecollection get list patch update watch]
 roles.rbac.authorization.k8s.io [] [] [create delete
deletecollection get list patch update watch]
 networkpolicies.extensions [] [] [create delete
deletecollection patch update create delete deletecollection get list patch update watch get
list watch]
 networkpolicies.networking.k8s.io [] [] [create delete
deletecollection patch update create delete deletecollection get list patch update watch get
list watch]
 configmaps [] [] [create delete
deletecollection patch update get list watch]
 endpoints [] [] [create delete
deletecollection patch update get list watch]
 persistentvolumeclaims [] [] [create delete
deletecollection patch update get list watch]
 pods [] [] [create delete deletecollection
patch update get list watch]
 replicationcontrollers/scale [] [] [create delete
deletecollection patch update get list watch]
 replicationcontrollers [] [] [create delete
deletecollection patch update get list watch]
 services [] [] [create delete deletecollection
patch update get list watch]
 daemonsets.apps [] [] [create delete
deletecollection patch update get list watch]
 deployments.apps/scale [] [] [create delete
deletecollection patch update get list watch]
 deployments.apps [] [] [create delete

OpenShift Container Platform 4.18 Postinstallation configuration

278

deletecollection patch update get list watch]
 replicasets.apps/scale [] [] [create delete
deletecollection patch update get list watch]
 replicasets.apps [] [] [create delete
deletecollection patch update get list watch]
 statefulsets.apps/scale [] [] [create delete
deletecollection patch update get list watch]
 statefulsets.apps [] [] [create delete
deletecollection patch update get list watch]
 horizontalpodautoscalers.autoscaling [] [] [create delete
deletecollection patch update get list watch]
 cronjobs.batch [] [] [create delete
deletecollection patch update get list watch]
 jobs.batch [] [] [create delete
deletecollection patch update get list watch]
 daemonsets.extensions [] [] [create delete
deletecollection patch update get list watch]
 deployments.extensions/scale [] [] [create delete
deletecollection patch update get list watch]
 deployments.extensions [] [] [create delete
deletecollection patch update get list watch]
 ingresses.extensions [] [] [create delete
deletecollection patch update get list watch]
 replicasets.extensions/scale [] [] [create delete
deletecollection patch update get list watch]
 replicasets.extensions [] [] [create delete
deletecollection patch update get list watch]
 replicationcontrollers.extensions/scale [] [] [create delete
deletecollection patch update get list watch]
 poddisruptionbudgets.policy [] [] [create delete
deletecollection patch update get list watch]
 deployments.apps/rollback [] [] [create delete
deletecollection patch update]
 deployments.extensions/rollback [] [] [create delete
deletecollection patch update]
 catalogsources.operators.coreos.com [] [] [create update
patch delete get list watch]
 clusterserviceversions.operators.coreos.com [] [] [create update
patch delete get list watch]
 installplans.operators.coreos.com [] [] [create update
patch delete get list watch]
 packagemanifests.operators.coreos.com [] [] [create update
patch delete get list watch]
 subscriptions.operators.coreos.com [] [] [create update
patch delete get list watch]
 buildconfigs/instantiate [] [] [create]
 buildconfigs/instantiatebinary [] [] [create]
 builds/clone [] [] [create]
 deploymentconfigrollbacks [] [] [create]
 deploymentconfigs/instantiate [] [] [create]
 deploymentconfigs/rollback [] [] [create]
 imagestreamimports [] [] [create]
 localresourceaccessreviews [] [] [create]
 localsubjectaccessreviews [] [] [create]
 podsecuritypolicyreviews [] [] [create]
 podsecuritypolicyselfsubjectreviews [] [] [create]

CHAPTER 9. PREPARING FOR USERS

279

 podsecuritypolicysubjectreviews [] [] [create]
 resourceaccessreviews [] [] [create]
 routes/custom-host [] [] [create]
 subjectaccessreviews [] [] [create]
 subjectrulesreviews [] [] [create]
 deploymentconfigrollbacks.apps.openshift.io [] [] [create]
 deploymentconfigs.apps.openshift.io/instantiate [] [] [create]
 deploymentconfigs.apps.openshift.io/rollback [] [] [create]
 localsubjectaccessreviews.authorization.k8s.io [] [] [create]
 localresourceaccessreviews.authorization.openshift.io [] [] [create]
 localsubjectaccessreviews.authorization.openshift.io [] [] [create]
 resourceaccessreviews.authorization.openshift.io [] [] [create]
 subjectaccessreviews.authorization.openshift.io [] [] [create]
 subjectrulesreviews.authorization.openshift.io [] [] [create]
 buildconfigs.build.openshift.io/instantiate [] [] [create]
 buildconfigs.build.openshift.io/instantiatebinary [] [] [create]
 builds.build.openshift.io/clone [] [] [create]
 imagestreamimports.image.openshift.io [] [] [create]
 routes.route.openshift.io/custom-host [] [] [create]
 podsecuritypolicyreviews.security.openshift.io [] [] [create]
 podsecuritypolicyselfsubjectreviews.security.openshift.io [] [] [create]
 podsecuritypolicysubjectreviews.security.openshift.io [] [] [create]
 jenkins.build.openshift.io [] [] [edit view view admin
edit view]
 builds [] [] [get create delete
deletecollection get list patch update watch get list watch]
 builds.build.openshift.io [] [] [get create delete
deletecollection get list patch update watch get list watch]
 projects [] [] [get delete get delete get patch
update]
 projects.project.openshift.io [] [] [get delete get delete
get patch update]
 namespaces [] [] [get get list watch]
 pods/attach [] [] [get list watch create delete
deletecollection patch update]
 pods/exec [] [] [get list watch create delete
deletecollection patch update]
 pods/portforward [] [] [get list watch create
delete deletecollection patch update]
 pods/proxy [] [] [get list watch create delete
deletecollection patch update]
 services/proxy [] [] [get list watch create delete
deletecollection patch update]
 routes/status [] [] [get list watch update]
 routes.route.openshift.io/status [] [] [get list watch update]
 appliedclusterresourcequotas [] [] [get list watch]
 bindings [] [] [get list watch]
 builds/log [] [] [get list watch]
 deploymentconfigs/log [] [] [get list watch]
 deploymentconfigs/status [] [] [get list watch]
 events [] [] [get list watch]
 imagestreams/status [] [] [get list watch]
 limitranges [] [] [get list watch]
 namespaces/status [] [] [get list watch]
 pods/log [] [] [get list watch]
 pods/status [] [] [get list watch]

OpenShift Container Platform 4.18 Postinstallation configuration

280

2. To view the current set of cluster role bindings, which shows the users and groups that are
bound to various roles:

Example output

 replicationcontrollers/status [] [] [get list watch]
 resourcequotas/status [] [] [get list watch]
 resourcequotas [] [] [get list watch]
 resourcequotausages [] [] [get list watch]
 rolebindingrestrictions [] [] [get list watch]
 deploymentconfigs.apps.openshift.io/log [] [] [get list watch]
 deploymentconfigs.apps.openshift.io/status [] [] [get list watch]
 controllerrevisions.apps [] [] [get list watch]
 rolebindingrestrictions.authorization.openshift.io [] [] [get list watch]
 builds.build.openshift.io/log [] [] [get list watch]
 imagestreams.image.openshift.io/status [] [] [get list watch]
 appliedclusterresourcequotas.quota.openshift.io [] [] [get list watch]
 imagestreams/layers [] [] [get update get]
 imagestreams.image.openshift.io/layers [] [] [get update get]
 builds/details [] [] [update]
 builds.build.openshift.io/details [] [] [update]

Name: basic-user
Labels: <none>
Annotations: openshift.io/description: A user that can get basic information about projects.
 rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 selfsubjectrulesreviews [] [] [create]
 selfsubjectaccessreviews.authorization.k8s.io [] [] [create]
 selfsubjectrulesreviews.authorization.openshift.io [] [] [create]
 clusterroles.rbac.authorization.k8s.io [] [] [get list watch]
 clusterroles [] [] [get list]
 clusterroles.authorization.openshift.io [] [] [get list]
 storageclasses.storage.k8s.io [] [] [get list]
 users [] [~] [get]
 users.user.openshift.io [] [~] [get]
 projects [] [] [list watch]
 projects.project.openshift.io [] [] [list watch]
 projectrequests [] [] [list]
 projectrequests.project.openshift.io [] [] [list]

Name: cluster-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:
Resources Non-Resource URLs Resource Names Verbs
--------- ----------------- -------------- -----
. [] [] [*]
 [*] [] [*]

...

$ oc describe clusterrolebinding.rbac

CHAPTER 9. PREPARING FOR USERS

281

Example output
Name: alertmanager-main
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: alertmanager-main
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount alertmanager-main openshift-monitoring

Name: basic-users
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:
 Kind: ClusterRole
 Name: basic-user
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated

Name: cloud-credential-operator-rolebinding
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: cloud-credential-operator-role
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount default openshift-cloud-credential-operator

Name: cluster-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:
 Kind: ClusterRole
 Name: cluster-admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:masters

Name: cluster-admins
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:
 Kind: ClusterRole
 Name: cluster-admin
Subjects:
 Kind Name Namespace

OpenShift Container Platform 4.18 Postinstallation configuration

282

9.2.5. Viewing local roles and bindings

You can use the oc CLI to view local roles and bindings by using the oc describe command.

Prerequisites

Install the oc CLI.

Obtain permission to view the local roles and bindings:

Users with the cluster-admin default cluster role bound cluster-wide can perform any
action on any resource, including viewing local roles and bindings.

Users with the admin default cluster role bound locally can view and manage roles and
bindings in that project.

Procedure

1. To view the current set of local role bindings, which show the users and groups that are bound to
various roles for the current project:

2. To view the local role bindings for a different project, add the -n flag to the command:

Example output

 ---- ---- ---------
 Group system:cluster-admins
 User system:admin

Name: cluster-api-manager-rolebinding
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: cluster-api-manager-role
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount default openshift-machine-api

...

$ oc describe rolebinding.rbac

$ oc describe rolebinding.rbac -n joe-project

Name: admin
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: admin
Subjects:

CHAPTER 9. PREPARING FOR USERS

283

9.2.6. Adding roles to users

You can use the oc adm administrator CLI to manage the roles and bindings.

Binding, or adding, a role to users or groups gives the user or group the access that is granted by the
role. You can add and remove roles to and from users and groups using oc adm policy commands.

 Kind Name Namespace
 ---- ---- ---------
 User kube:admin

Name: system:deployers
Labels: <none>
Annotations: openshift.io/description:
 Allows deploymentconfigs in this namespace to rollout pods in
 this namespace. It is auto-managed by a controller; remove
 subjects to disa...
Role:
 Kind: ClusterRole
 Name: system:deployer
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount deployer joe-project

Name: system:image-builders
Labels: <none>
Annotations: openshift.io/description:
 Allows builds in this namespace to push images to this
 namespace. It is auto-managed by a controller; remove subjects
 to disable.
Role:
 Kind: ClusterRole
 Name: system:image-builder
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount builder joe-project

Name: system:image-pullers
Labels: <none>
Annotations: openshift.io/description:
 Allows all pods in this namespace to pull images from this
 namespace. It is auto-managed by a controller; remove subjects
 to disable.
Role:
 Kind: ClusterRole
 Name: system:image-puller
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:serviceaccounts:joe-project

OpenShift Container Platform 4.18 Postinstallation configuration

284

You can bind any of the default cluster roles to local users or groups in your project.

Procedure

1. Add a role to a user in a specific project:

For example, you can add the admin role to the alice user in joe project by running:

TIP

You can alternatively apply the following YAML to add the role to the user:

2. View the local role bindings and verify the addition in the output:

For example, to view the local role bindings for the joe project:

Example output

$ oc adm policy add-role-to-user <role> <user> -n <project>

$ oc adm policy add-role-to-user admin alice -n joe

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: admin-0
 namespace: joe
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: admin
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: alice

$ oc describe rolebinding.rbac -n <project>

$ oc describe rolebinding.rbac -n joe

Name: admin
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 User kube:admin

CHAPTER 9. PREPARING FOR USERS

285

Name: admin-0
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 User alice 1

Name: system:deployers
Labels: <none>
Annotations: openshift.io/description:
 Allows deploymentconfigs in this namespace to rollout pods in
 this namespace. It is auto-managed by a controller; remove
 subjects to disa...
Role:
 Kind: ClusterRole
 Name: system:deployer
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount deployer joe

Name: system:image-builders
Labels: <none>
Annotations: openshift.io/description:
 Allows builds in this namespace to push images to this
 namespace. It is auto-managed by a controller; remove subjects
 to disable.
Role:
 Kind: ClusterRole
 Name: system:image-builder
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount builder joe

Name: system:image-pullers
Labels: <none>
Annotations: openshift.io/description:
 Allows all pods in this namespace to pull images from this
 namespace. It is auto-managed by a controller; remove subjects
 to disable.
Role:
 Kind: ClusterRole
 Name: system:image-puller
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:serviceaccounts:joe

OpenShift Container Platform 4.18 Postinstallation configuration

286

1 The alice user has been added to the admins RoleBinding.

9.2.7. Creating a local role

You can create a local role for a project and then bind it to a user.

Procedure

1. To create a local role for a project, run the following command:

In this command, specify:

<name>, the local role’s name

<verb>, a comma-separated list of the verbs to apply to the role

<resource>, the resources that the role applies to

<project>, the project name

For example, to create a local role that allows a user to view pods in the blue project, run the
following command:

2. To bind the new role to a user, run the following command:

9.2.8. Creating a cluster role

You can create a cluster role.

Procedure

1. To create a cluster role, run the following command:

In this command, specify:

<name>, the local role’s name

<verb>, a comma-separated list of the verbs to apply to the role

<resource>, the resources that the role applies to

For example, to create a cluster role that allows a user to view pods, run the following command:

$ oc create role <name> --verb=<verb> --resource=<resource> -n <project>

$ oc create role podview --verb=get --resource=pod -n blue

$ oc adm policy add-role-to-user podview user2 --role-namespace=blue -n blue

$ oc create clusterrole <name> --verb=<verb> --resource=<resource>

$ oc create clusterrole podviewonly --verb=get --resource=pod

CHAPTER 9. PREPARING FOR USERS

287

9.2.9. Local role binding commands

When you manage a user or group’s associated roles for local role bindings using the following
operations, a project may be specified with the -n flag. If it is not specified, then the current project is
used.

You can use the following commands for local RBAC management.

Table 9.1. Local role binding operations

Command Description

$ oc adm policy who-can <verb> <resource> Indicates which users can perform an action on a
resource.

$ oc adm policy add-role-to-user <role>
<username>

Binds a specified role to specified users in the
current project.

$ oc adm policy remove-role-from-user
<role> <username>

Removes a given role from specified users in the
current project.

$ oc adm policy remove-user <username> Removes specified users and all of their roles in the
current project.

$ oc adm policy add-role-to-group <role>
<groupname>

Binds a given role to specified groups in the current
project.

$ oc adm policy remove-role-from-group
<role> <groupname>

Removes a given role from specified groups in the
current project.

$ oc adm policy remove-group <groupname> Removes specified groups and all of their roles in the
current project.

9.2.10. Cluster role binding commands

You can also manage cluster role bindings using the following operations. The -n flag is not used for
these operations because cluster role bindings use non-namespaced resources.

Table 9.2. Cluster role binding operations

Command Description

$ oc adm policy add-cluster-role-to-user
<role> <username>

Binds a given role to specified users for all projects in
the cluster.

$ oc adm policy remove-cluster-role-from-
user <role> <username>

Removes a given role from specified users for all
projects in the cluster.

$ oc adm policy add-cluster-role-to-group
<role> <groupname>

Binds a given role to specified groups for all projects
in the cluster.

OpenShift Container Platform 4.18 Postinstallation configuration

288

$ oc adm policy remove-cluster-role-from-
group <role> <groupname>

Removes a given role from specified groups for all
projects in the cluster.

Command Description

9.2.11. Creating a cluster admin

The cluster-admin role is required to perform administrator level tasks on the OpenShift Container
Platform cluster, such as modifying cluster resources.

Prerequisites

You must have created a user to define as the cluster admin.

Procedure

Define the user as a cluster admin:

9.2.12. Cluster role bindings for unauthenticated groups

NOTE

Before OpenShift Container Platform 4.17, unauthenticated groups were allowed access
to some cluster roles. Clusters updated from versions before OpenShift Container
Platform 4.17 retain this access for unauthenticated groups.

For security reasons OpenShift Container Platform 4.18 does not allow unauthenticated groups to have
default access to cluster roles.

There are use cases where it might be necessary to add system:unauthenticated to a cluster role.

Cluster administrators can add unauthenticated users to the following cluster roles:

system:scope-impersonation

system:webhook

system:oauth-token-deleter

self-access-reviewer

IMPORTANT

Always verify compliance with your organization’s security standards when modifying
unauthenticated access.

9.2.13. Adding unauthenticated groups to cluster roles

As a cluster administrator, you can add unauthenticated users to the following cluster roles in OpenShift

$ oc adm policy add-cluster-role-to-user cluster-admin <user>

CHAPTER 9. PREPARING FOR USERS

289

As a cluster administrator, you can add unauthenticated users to the following cluster roles in OpenShift
Container Platform by creating a cluster role binding. Unauthenticated users do not have access to non-
public cluster roles. This should only be done in specific use cases when necessary.

You can add unauthenticated users to the following cluster roles:

system:scope-impersonation

system:webhook

system:oauth-token-deleter

self-access-reviewer

IMPORTANT

Always verify compliance with your organization’s security standards when modifying
unauthenticated access.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file named add-<cluster_role>-unauth.yaml and add the following content:

2. Apply the configuration by running the following command:

9.3. THE KUBEADMIN USER

OpenShift Container Platform creates a cluster administrator, kubeadmin, after the installation process
completes.

This user has the cluster-admin role automatically applied and is treated as the root user for the cluster.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 name: <cluster_role>access-unauthenticated
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: <cluster_role>
subjects:
 - apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:unauthenticated

$ oc apply -f add-<cluster_role>.yaml

OpenShift Container Platform 4.18 Postinstallation configuration

290

This user has the cluster-admin role automatically applied and is treated as the root user for the cluster.
The password is dynamically generated and unique to your OpenShift Container Platform environment.
After installation completes the password is provided in the installation program’s output. For example:

9.3.1. Removing the kubeadmin user

After you define an identity provider and create a new cluster-admin user, you can remove the
kubeadmin to improve cluster security.

WARNING

If you follow this procedure before another user is a cluster-admin, then OpenShift
Container Platform must be reinstalled. It is not possible to undo this command.

Prerequisites

You must have configured at least one identity provider.

You must have added the cluster-admin role to a user.

You must be logged in as an administrator.

Procedure

Remove the kubeadmin secrets:

9.4. POPULATING OPERATORHUB FROM MIRRORED OPERATOR
CATALOGS

If you mirrored Operator catalogs for use with disconnected clusters, you can populate OperatorHub
with the Operators from your mirrored catalogs. You can use the generated manifests from the
mirroring process to create the required ImageContentSourcePolicy and CatalogSource objects.

9.4.1. Prerequisites

Mirroring Operator catalogs for use with disconnected clusters

INFO Install complete!
INFO Run 'export KUBECONFIG=<your working directory>/auth/kubeconfig' to manage the cluster
with 'oc', the OpenShift CLI.
INFO The cluster is ready when 'oc login -u kubeadmin -p <provided>' succeeds (wait a few minutes).
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.demo1.openshift4-beta-abcorp.com
INFO Login to the console with user: kubeadmin, password: <provided>



$ oc delete secrets kubeadmin -n kube-system

CHAPTER 9. PREPARING FOR USERS

291

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/disconnected_environments/#olm-mirror-catalog_installing-mirroring-installation-images

9.4.1.1. Creating the ImageContentSourcePolicy object

After mirroring Operator catalog content to your mirror registry, create the required
ImageContentSourcePolicy (ICSP) object. The ICSP object configures nodes to translate between the
image references stored in Operator manifests and the mirrored registry.

Procedure

On a host with access to the disconnected cluster, create the ICSP by running the following
command to specify the imageContentSourcePolicy.yaml file in your manifests directory:

where <path/to/manifests/dir> is the path to the manifests directory for your mirrored content.

You can now create a CatalogSource object to reference your mirrored index image and
Operator content.

9.4.1.2. Adding a catalog source to a cluster

Adding a catalog source to an OpenShift Container Platform cluster enables the discovery and
installation of Operators for users. Cluster administrators can create a CatalogSource object that
references an index image. OperatorHub uses catalog sources to populate the user interface.

TIP

Alternatively, you can use the web console to manage catalog sources. From the Administration →
Cluster Settings → Configuration → OperatorHub page, click the Sources tab, where you can create,
update, delete, disable, and enable individual sources.

Prerequisites

You built and pushed an index image to a registry.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a CatalogSource object that references your index image. If you used the oc adm
catalog mirror command to mirror your catalog to a target registry, you can use the generated
catalogSource.yaml file in your manifests directory as a starting point.

a. Modify the following to your specifications and save it as a catalogSource.yaml file:

$ oc create -f <path/to/manifests/dir>/imageContentSourcePolicy.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-operator-catalog 1
 namespace: openshift-marketplace 2
spec:
 sourceType: grpc
 grpcPodConfig:
 securityContextConfig: <security_mode> 3
 image: <registry>/<namespace>/redhat-operator-index:v4.18 4

OpenShift Container Platform 4.18 Postinstallation configuration

292

1

2

3

4

5

6

If you mirrored content to local files before uploading to a registry, remove any
backslash (/) characters from the metadata.name field to avoid an "invalid resource
name" error when you create the object.

If you want the catalog source to be available globally to users in all namespaces,
specify the openshift-marketplace namespace. Otherwise, you can specify a different
namespace for the catalog to be scoped and available only for that namespace.

Specify the value of legacy or restricted. If the field is not set, the default value is
legacy. In a future OpenShift Container Platform release, it is planned that the default
value will be restricted.

NOTE

If your catalog cannot run with restricted permissions, it is
recommended that you manually set this field to legacy.

Specify your index image. If you specify a tag after the image name, for example
:v4.18, the catalog source pod uses an image pull policy of Always, meaning the pod
always pulls the image prior to starting the container. If you specify a digest, for
example @sha256:<id>, the image pull policy is IfNotPresent, meaning the pod pulls
the image only if it does not already exist on the node.

Specify your name or an organization name publishing the catalog.

Catalog sources can automatically check for new versions to keep up to date.

b. Use the file to create the CatalogSource object:

2. Verify the following resources are created successfully.

a. Check the pods:

Example output

b. Check the catalog source:

 displayName: My Operator Catalog
 publisher: <publisher_name> 5
 updateStrategy:
 registryPoll: 6
 interval: 30m

$ oc apply -f catalogSource.yaml

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE
my-operator-catalog-6njx6 1/1 Running 0 28s
marketplace-operator-d9f549946-96sgr 1/1 Running 0 26h

$ oc get catalogsource -n openshift-marketplace

CHAPTER 9. PREPARING FOR USERS

293

Example output

c. Check the package manifest:

Example output

You can now install the Operators from the OperatorHub page on your OpenShift Container Platform
web console.

Additional resources

Accessing images for Operators from private registries

Image template for custom catalog sources

Image pull policy

9.5. ABOUT OPERATOR INSTALLATION WITH OPERATORHUB

OperatorHub is a user interface for discovering Operators; it works in conjunction with Operator
Lifecycle Manager (OLM), which installs and manages Operators on a cluster.

As a cluster administrator, you can install an Operator from OperatorHub by using the OpenShift
Container Platform web console or CLI. Subscribing an Operator to one or more namespaces makes the
Operator available to developers on your cluster.

During installation, you must determine the following initial settings for the Operator:

Installation Mode

Choose All namespaces on the cluster (default) to have the Operator installed on all namespaces
or choose individual namespaces, if available, to only install the Operator on selected namespaces.
This example chooses All namespaces…​ to make the Operator available to all users and projects.

Update Channel

If an Operator is available through multiple channels, you can choose which channel you want to
subscribe to. For example, to deploy from the stable channel, if available, select it from the list.

Approval Strategy

You can choose automatic or manual updates.
If you choose automatic updates for an installed Operator, when a new version of that Operator is
available in the selected channel, Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without human intervention.

If you select manual updates, when a newer version of an Operator is available, OLM creates an
update request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

NAME DISPLAY TYPE PUBLISHER AGE
my-operator-catalog My Operator Catalog grpc 5s

$ oc get packagemanifest -n openshift-marketplace

NAME CATALOG AGE
jaeger-product My Operator Catalog 93s

OpenShift Container Platform 4.18 Postinstallation configuration

294

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#olm-accessing-images-private-registries_olm-managing-custom-catalogs
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#olm-catalogsource-image-template_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/images/#image-pull-policy

9.5.1. Installing from OperatorHub by using the web console

You can install and subscribe to an Operator from OperatorHub by using the OpenShift Container
Platform web console.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

1. Navigate in the web console to the Operators → OperatorHub page.

2. Scroll or type a keyword into the Filter by keyword box to find the Operator you want. For
example, type jaeger to find the Jaeger Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. Select the Operator to display additional information.

NOTE

Choosing a Community Operator warns that Red Hat does not certify
Community Operators; you must acknowledge the warning before continuing.

4. Read the information about the Operator and click Install.

5. On the Install Operator page, configure your Operator installation:

a. If you want to install a specific version of an Operator, select an Update channel and
Version from the lists. You can browse the various versions of an Operator across any
channels it might have, view the metadata for that channel and version, and select the exact
version you want to install.

NOTE

The version selection defaults to the latest version for the channel selected.
If the latest version for the channel is selected, the Automatic approval
strategy is enabled by default. Otherwise, Manual approval is required when
not installing the latest version for the selected channel.

Installing an Operator with Manual approval causes all Operators installed
within the namespace to function with the Manual approval strategy and all
Operators are updated together. If you want to update Operators
independently, install Operators into separate namespaces.

b. Confirm the installation mode for the Operator:

All namespaces on the cluster (default) installs the Operator in the default openshift-
operators namespace to watch and be made available to all namespaces in the cluster.
This option is not always available.

A specific namespace on the cluster allows you to choose a specific, single namespace

CHAPTER 9. PREPARING FOR USERS

295

A specific namespace on the cluster allows you to choose a specific, single namespace
in which to install the Operator. The Operator will only watch and be made available for
use in this single namespace.

c. For clusters on cloud providers with token authentication enabled:

If the cluster uses AWS Security Token Service (STS Mode in the web console), enter
the Amazon Resource Name (ARN) of the AWS IAM role of your service account in the
role ARN field. To create the role’s ARN, follow the procedure described in Preparing
AWS account.

If the cluster uses Microsoft Entra Workload ID (Workload Identity / Federated
Identity Mode in the web console), add the client ID, tenant ID, and subscription ID in
the appropriate fields.

If the cluster uses Google Cloud Platform Workload Identity (GCP Workload Identity /
Federated Identity Mode in the web console), add the project number, pool ID,
provider ID, and service account email in the appropriate fields.

d. For Update approval, select either the Automatic or Manual approval strategy.

IMPORTANT

If the web console shows that the cluster uses AWS STS, Microsoft Entra
Workload ID, or GCP Workload Identity, you must set Update approval to
Manual.

Subscriptions with automatic approvals for updates are not recommended
because there might be permission changes to make before updating.
Subscriptions with manual approvals for updates ensure that administrators
have the opportunity to verify the permissions of the later version, take any
necessary steps, and then update.

6. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster:

a. If you selected a Manual approval strategy, the upgrade status of the subscription remains
Upgrading until you review and approve the install plan.
After approving on the Install Plan page, the subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

Verification

After the upgrade status of the subscription is Up to date, select Operators → Installed
Operators to verify that the cluster service version (CSV) of the installed Operator eventually
shows up. The Status should eventually resolve to Succeeded in the relevant namespace.

NOTE

For the All namespaces…​ installation mode, the status resolves to Succeeded in
the openshift-operators namespace, but the status is Copied if you check in
other namespaces.

OpenShift Container Platform 4.18 Postinstallation configuration

296

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html/tutorials/cloud-experts-deploy-api-data-protection#prepare-aws-account_cloud-experts-deploy-api-data-protection

If it does not:

Check the logs in any pods in the openshift-operators project (or other relevant
namespace if A specific namespace…​ installation mode was selected) on the Workloads →
Pods page that are reporting issues to troubleshoot further.

When the Operator is installed, the metadata indicates which channel and version are installed.

NOTE

The Channel and Version dropdown menus are still available for viewing other
version metadata in this catalog context.

9.5.2. Installing from OperatorHub by using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub by using the CLI. Use the oc command to create or update a Subscription object.

For SingleNamespace install mode, you must also ensure an appropriate Operator group exists in the
related namespace. An Operator group, defined by an OperatorGroup object, selects target
namespaces in which to generate required RBAC access for all Operators in the same namespace as the
Operator group.

TIP

In most cases, the web console method of this procedure is preferred because it automates tasks in the
background, such as handling the creation of OperatorGroup and Subscription objects automatically
when choosing SingleNamespace mode.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

You have installed the OpenShift CLI (oc).

Procedure

1. View the list of Operators available to the cluster from OperatorHub:

Example 9.1. Example output

$ oc get packagemanifests -n openshift-marketplace

NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
advanced-cluster-management Red Hat Operators 91m
amq7-cert-manager Red Hat Operators 91m
...
couchbase-enterprise-certified Certified Operators 91m
crunchy-postgres-operator Certified Operators 91m
mongodb-enterprise Certified Operators 91m
...
etcd Community Operators 91m

CHAPTER 9. PREPARING FOR USERS

297

1

2 3

4

Note the catalog for your desired Operator.

2. Inspect your desired Operator to verify its supported install modes and available channels:

Example 9.2. Example output

Indicates which install modes are supported.

Example channel names.

The channel selected by default if one is not specified.

TIP

jaeger Community Operators 91m
kubefed Community Operators 91m
...

$ oc describe packagemanifests <operator_name> -n openshift-marketplace

...
Kind: PackageManifest
...
 Install Modes: 1
 Supported: true
 Type: OwnNamespace
 Supported: true
 Type: SingleNamespace
 Supported: false
 Type: MultiNamespace
 Supported: true
 Type: AllNamespaces
...
 Entries:
 Name: example-operator.v3.7.11
 Version: 3.7.11
 Name: example-operator.v3.7.10
 Version: 3.7.10
 Name: stable-3.7 2
...
 Entries:
 Name: example-operator.v3.8.5
 Version: 3.8.5
 Name: example-operator.v3.8.4
 Version: 3.8.4
 Name: stable-3.8 3
 Default Channel: stable-3.8 4

OpenShift Container Platform 4.18 Postinstallation configuration

298

TIP

You can print an Operator’s version and channel information in YAML format by running the
following command:

3. If more than one catalog is installed in a namespace, run the following command to look up the
available versions and channels of an Operator from a specific catalog:

IMPORTANT

If you do not specify the Operator’s catalog, running the oc get
packagemanifest and oc describe packagemanifest commands might return a
package from an unexpected catalog if the following conditions are met:

Multiple catalogs are installed in the same namespace.

The catalogs contain the same Operators or Operators with the same name.

4. If the Operator you intend to install supports the AllNamespaces install mode, and you choose
to use this mode, skip this step, because the openshift-operators namespace already has an
appropriate Operator group in place by default, called global-operators.
If the Operator you intend to install supports the SingleNamespace install mode, and you
choose to use this mode, you must ensure an appropriate Operator group exists in the related
namespace. If one does not exist, you can create create one by following these steps:

IMPORTANT

You can only have one Operator group per namespace. For more information,
see "Operator groups".

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml, for
SingleNamespace install mode:

Example OperatorGroup object for SingleNamespace install mode

$ oc get packagemanifests <operator_name> -n <catalog_namespace> -o yaml

$ oc get packagemanifest \
 --selector=catalog=<catalogsource_name> \
 --field-selector metadata.name=<operator_name> \
 -n <catalog_namespace> -o yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: <operatorgroup_name>
 namespace: <namespace> 1
spec:
 targetNamespaces:
 - <namespace> 2

CHAPTER 9. PREPARING FOR USERS

299

1 2 For SingleNamespace install mode, use the same <namespace> value for both the
metadata.namespace and spec.targetNamespaces fields.

b. Create the OperatorGroup object:

5. Create a Subscription object to subscribe a namespace to an Operator:

a. Create a YAML file for the Subscription object, for example subscription.yaml:

NOTE

If you want to subscribe to a specific version of an Operator, set the
startingCSV field to the desired version and set the installPlanApproval
field to Manual to prevent the Operator from automatically upgrading if a
later version exists in the catalog. For details, see the following "Example
Subscription object with a specific starting Operator version".

Example 9.3. Example Subscription object

$ oc apply -f operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: <subscription_name>
 namespace: <namespace_per_install_mode> 1
spec:
 channel: <channel_name> 2
 name: <operator_name> 3
 source: <catalog_name> 4
 sourceNamespace: <catalog_source_namespace> 5
 config:
 env: 6
 - name: ARGS
 value: "-v=10"
 envFrom: 7
 - secretRef:
 name: license-secret
 volumes: 8
 - name: <volume_name>
 configMap:
 name: <configmap_name>
 volumeMounts: 9
 - mountPath: <directory_name>
 name: <volume_name>
 tolerations: 10
 - operator: "Exists"
 resources: 11
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:

OpenShift Container Platform 4.18 Postinstallation configuration

300

1

2

3

4

5

6

7

8

9

10

11

12

For default AllNamespaces install mode usage, specify the openshift-operators
namespace. Alternatively, you can specify a custom global namespace, if you have
created one. For SingleNamespace install mode usage, specify the relevant single
namespace.

Name of the channel to subscribe to.

Name of the Operator to subscribe to.

Name of the catalog source that provides the Operator.

Namespace of the catalog source. Use openshift-marketplace for the default
OperatorHub catalog sources.

The env parameter defines a list of environment variables that must exist in all
containers in the pod created by OLM.

The envFrom parameter defines a list of sources to populate environment
variables in the container.

The volumes parameter defines a list of volumes that must exist on the pod
created by OLM.

The volumeMounts parameter defines a list of volume mounts that must exist in all
containers in the pod created by OLM. If a volumeMount references a volume that
does not exist, OLM fails to deploy the Operator.

The tolerations parameter defines a list of tolerations for the pod created by OLM.

The resources parameter defines resource constraints for all the containers in the
pod created by OLM.

The nodeSelector parameter defines a NodeSelector for the pod created by
OLM.

Example 9.4. Example Subscription object with a specific starting Operator version

 memory: "128Mi"
 cpu: "500m"
 nodeSelector: 12
 foo: bar

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: example-operator
 namespace: example-operator
spec:
 channel: stable-3.7
 installPlanApproval: Manual 1
 name: example-operator

CHAPTER 9. PREPARING FOR USERS

301

1

2

1

1

Set the approval strategy to Manual in case your specified version is superseded by
a later version in the catalog. This plan prevents an automatic upgrade to a later
version and requires manual approval before the starting CSV can complete the
installation.

Set a specific version of an Operator CSV.

b. For clusters on cloud providers with token authentication enabled, such as Amazon Web
Services (AWS) Security Token Service (STS), Microsoft Entra Workload ID, or Google
Cloud Platform Workload Identity, configure your Subscription object by following these
steps:

i. Ensure the Subscription object is set to manual update approvals:

Example 9.5. Example Subscription object with manual update approvals

Subscriptions with automatic approvals for updates are not recommended
because there might be permission changes to make before updating.
Subscriptions with manual approvals for updates ensure that administrators
have the opportunity to verify the permissions of the later version, take any
necessary steps, and then update.

ii. Include the relevant cloud provider-specific fields in the Subscription object’s config
section:
If the cluster is in AWS STS mode, include the following fields:

Example 9.6. Example Subscription object with AWS STS variables

Include the role ARN details.

If the cluster is in Workload ID mode, include the following fields:

 source: custom-operators
 sourceNamespace: openshift-marketplace
 startingCSV: example-operator.v3.7.10 2

kind: Subscription
...
spec:
 installPlanApproval: Manual 1

kind: Subscription
...
spec:
 config:
 env:
 - name: ROLEARN
 value: "<role_arn>" 1

OpenShift Container Platform 4.18 Postinstallation configuration

302

1

2

3

Example 9.7. Example Subscription object with Workload ID variables

Include the client ID.

Include the tenant ID.

Include the subscription ID.

If the cluster is in GCP Workload Identity mode, include the following fields:

Example 9.8. Example Subscription object with GCP Workload Identity variables

where:

<audience>

Created in Google Cloud by the administrator when they set up GCP Workload
Identity, the AUDIENCE value must be a preformatted URL in the following format:

<service_account_email>

The SERVICE_ACCOUNT_EMAIL value is a Google Cloud service account email
that is impersonated during Operator operation, for example:

kind: Subscription
...
spec:
 config:
 env:
 - name: CLIENTID
 value: "<client_id>" 1
 - name: TENANTID
 value: "<tenant_id>" 2
 - name: SUBSCRIPTIONID
 value: "<subscription_id>" 3

kind: Subscription
...
spec:
 config:
 env:
 - name: AUDIENCE
 value: "<audience_url>" 1
 - name: SERVICE_ACCOUNT_EMAIL
 value: "<service_account_email>" 2

//iam.googleapis.com/projects/<project_number>/locations/global/workloadIdentityP
ools/<pool_id>/providers/<provider_id>

<service_account_name>@<project_id>.iam.gserviceaccount.com

CHAPTER 9. PREPARING FOR USERS

303

c. Create the Subscription object by running the following command:

6. If you set the installPlanApproval field to Manual, manually approve the pending install plan to
complete the Operator installation. For more information, see "Manually approving a pending
Operator update".

At this point, OLM is now aware of the selected Operator. A cluster service version (CSV) for the
Operator should appear in the target namespace, and APIs provided by the Operator should be available
for creation.

Verification

1. Check the status of the Subscription object for your installed Operator by running the
following command:

2. If you created an Operator group for SingleNamespace install mode, check the status of the
OperatorGroup object by running the following command:

Additional resources

About OperatorGroups

$ oc apply -f subscription.yaml

$ oc describe subscription <subscription_name> -n <namespace>

$ oc describe operatorgroup <operatorgroup_name> -n <namespace>

OpenShift Container Platform 4.18 Postinstallation configuration

304

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#olm-operatorgroups-about_olm-understanding-operatorgroups

CHAPTER 10. CHANGING THE CLOUD PROVIDER
CREDENTIALS CONFIGURATION

For supported configurations, you can change how OpenShift Container Platform authenticates with
your cloud provider.

To determine which cloud credentials strategy your cluster uses, see Determining the Cloud Credential
Operator mode.

10.1. ROTATING CLOUD PROVIDER SERVICE KEYS WITH THE CLOUD
CREDENTIAL OPERATOR UTILITY

Some organizations require the rotation of the service keys that authenticate the cluster. You can use
the Cloud Credential Operator (CCO) utility (ccoctl) to update keys for clusters installed on the
following cloud providers:

Amazon Web Services (AWS) with Security Token Service (STS)

Google Cloud with GCP Workload Identity

Microsoft Azure with Workload ID

IBM Cloud

10.1.1. Rotating AWS OIDC bound service account signer keys

If the Cloud Credential Operator (CCO) for your OpenShift Container Platform cluster on Amazon Web
Services (AWS) is configured to operate in manual mode with STS, you can rotate the bound service
account signer key.

To rotate the key, you delete the existing key on your cluster, which causes the Kubernetes API server to
create a new key. To reduce authentication failures during this process, you must immediately add the
new public key to the existing issuer file. After the cluster is using the new key for authentication, you
can remove any remaining keys.

IMPORTANT

The process to rotate OIDC bound service account signer keys is disruptive and takes a
significant amount of time. Some steps are time-sensitive. Before proceeding, observe
the following considerations:

Read the following steps and ensure that you understand and accept the time
requirement. The exact time requirement varies depending on the individual
cluster, but it is likely to require at least one hour.

To reduce the risk of authentication failures, ensure that you understand and
prepare for the time-sensitive steps.

During this process, you must refresh all service accounts and restart all pods on
the cluster. These actions are disruptive to workloads. To mitigate this impact,
you can temporarily halt these services and then redeploy them when the cluster
is ready.

Prerequisites

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

305

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#cco-determine-mode_about-cloud-credential-operator

1 1

You have access to the OpenShift CLI (oc) as a user with the cluster-admin role.

You have created an AWS account for the ccoctl utility to use with the following permissions:

s3:GetObject

s3:PutObject

s3:PutObjectTagging

For clusters that store the OIDC configuration in a private S3 bucket that is accessed by the
IAM identity provider through a public CloudFront distribution URL, the AWS account that
runs the ccoctl utility requires the cloudfront:ListDistributions permission.

You have configured the ccoctl utility.

Your cluster is in a stable state. You can confirm that the cluster is stable by running the
following command:

Procedure

1. Configure the following environment variables:

This value should match the name of the cluster that was specified in the metadata.name
field of the install-config.yaml file during installation.

NOTE

Your cluster might differ from this example, and the resource names might not
be derived identically from the cluster name. Ensure that you specify the correct
corresponding resource names for your cluster.

For AWS clusters that store the OIDC configuration in a public S3 bucket, configure the
following environment variable:

For AWS clusters that store the OIDC configuration in a private S3 bucket that is accessed
by the IAM identity provider through a public CloudFront distribution URL, complete the
following steps:

i. Extract the public CloudFront distribution URL by running the following command:

Example output

$ oc adm wait-for-stable-cluster --minimum-stable-period=5s

INFRA_ID=$(oc get infrastructures cluster -o jsonpath='{.status.infrastructureName}')
CLUSTER_NAME=${INFRA_ID%-*} 1

AWS_BUCKET=$(oc get authentication cluster -o jsonpath=
{'.spec.serviceAccountIssuer'} | awk -F'://' '{print$2}' |awk -F'.' '{print$1}')

$ basename $(oc get authentication cluster -o jsonpath=
{'.spec.serviceAccountIssuer'})

OpenShift Container Platform 4.18 Postinstallation configuration

306

where <subdomain> is an alphanumeric string.

ii. Determine the private S3 bucket name by running the following command:

Example output

where <s3_bucket> is the private S3 bucket name for your cluster.

iii. Configure the following environment variable:

where <s3_bucket> is the private S3 bucket name for your cluster.

2. Create a temporary directory to use and assign it an environment variable by running the
following command:

3. To cause the Kubernetes API server to create a new bound service account signing key, you
delete the next bound service account signing key.

IMPORTANT

After you complete this step, the Kubernetes API server starts to roll out a new
key. To reduce the risk of authentication failures, complete the remaining steps
as quickly as possible. The remaining steps might be disruptive to workloads.

When you are ready, delete the next bound service account signing key by running the following
command:

4. Download the public key from the service account signing key secret that the Kubernetes API
server created by running the following command:

<subdomain>.cloudfront.net

$ aws cloudfront list-distributions --query "DistributionList.Items[].{DomainName:
DomainName, OriginDomainName: Origins.Items[0].DomainName}[?
contains(DomainName, '<subdomain>.cloudfront.net')]"

[
 {
 "DomainName": "<subdomain>.cloudfront.net",
 "OriginDomainName": "<s3_bucket>.s3.us-east-2.amazonaws.com"
 }
]

AWS_BUCKET=$<s3_bucket>

$ TEMPDIR=$(mktemp -d)

$ oc delete secrets/next-bound-service-account-signing-key \
 -n openshift-kube-apiserver-operator

$ oc get secret/next-bound-service-account-signing-key \
 -n openshift-kube-apiserver-operator \

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

307

1

2

3

4

5. Use the public key to create a keys.json file by running the following command:

The --dry-run option outputs files, including the new keys.json file, to the disk without
making API calls.

Specify the path to the public key that you downloaded in the previous step.

Because the --dry-run option does not make any API calls, some parameters do not require
real values.

Specify any valid AWS region, such as us-east-1. This value does not need to match the
region the cluster is in.

6. Rename the keys.json file by running the following command:

where <number> is a two-digit numerical value that varies depending on your environment.

7. Download the existing keys.json file from the cloud provider by running the following
command:

8. Combine the two keys.json files by running the following command:

9. To enable authentication for the old and new keys during the rotation, upload the combined
keys.json file to the cloud provider by running the following command:

10. Wait for the Kubernetes API server to update and use the new key. You can monitor the update
progress by running the following command:

 -ojsonpath='{ .data.service-account\.pub }' | base64 \
 -d > ${TEMPDIR}/serviceaccount-signer.public

$ ccoctl aws create-identity-provider \
 --dry-run \ 1
 --output-dir ${TEMPDIR} \
 --public-key-file=${TEMPDIR}/serviceaccount-signer.public \ 2
 --name fake \ 3
 --region us-east-1 4

$ cp ${TEMPDIR}/<number>-keys.json ${TEMPDIR}/jwks.new.json

$ aws s3api get-object \
 --bucket ${AWS_BUCKET} \
 --key keys.json ${TEMPDIR}/jwks.current.json

$ jq -s '{ keys: map(.keys[])}' ${TEMPDIR}/jwks.current.json ${TEMPDIR}/jwks.new.json >
${TEMPDIR}/jwks.combined.json

$ aws s3api put-object \
 --bucket ${AWS_BUCKET} \
 --tagging "openshift.io/cloud-credential-operator/${CLUSTER_NAME}=owned" \
 --key keys.json \
 --body ${TEMPDIR}/jwks.combined.json

OpenShift Container Platform 4.18 Postinstallation configuration

308

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

11. To ensure that all pods on the cluster use the new key, you must restart them.

IMPORTANT

This step maintains uptime for services that are configured for high availability
across multiple nodes, but might cause downtime for any services that are not.

Restart all of the pods in the cluster by running the following command:

12. Monitor the restart and update process by running the following command:

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

13. Monitor the update progress by running the following command:

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

14. Replace the combined keys.json file with the updated keys.json file on the cloud provider by
running the following command:

10.1.2. Rotating Google Cloud OIDC bound service account signer keys

If the Cloud Credential Operator (CCO) for your OpenShift Container Platform cluster on Google
Cloud is configured to operate in manual mode with GCP Workload Identity, you can rotate the bound
service account signer key.

To rotate the key, you delete the existing key on your cluster, which causes the Kubernetes API server to

$ oc adm wait-for-stable-cluster

All clusteroperators are stable

$ oc adm reboot-machine-config-pool mcp/worker mcp/master

$ oc adm wait-for-node-reboot nodes --all

All nodes rebooted

$ oc adm wait-for-stable-cluster

All clusteroperators are stable

$ aws s3api put-object \
 --bucket ${AWS_BUCKET} \
 --tagging "openshift.io/cloud-credential-operator/${CLUSTER_NAME}=owned" \
 --key keys.json \
 --body ${TEMPDIR}/jwks.new.json

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

309

To rotate the key, you delete the existing key on your cluster, which causes the Kubernetes API server to
create a new key. To reduce authentication failures during this process, you must immediately add the
new public key to the existing issuer file. After the cluster is using the new key for authentication, you
can remove any remaining keys.

IMPORTANT

The process to rotate OIDC bound service account signer keys is disruptive and takes a
significant amount of time. Some steps are time-sensitive. Before proceeding, observe
the following considerations:

Read the following steps and ensure that you understand and accept the time
requirement. The exact time requirement varies depending on the individual
cluster, but it is likely to require at least one hour.

To reduce the risk of authentication failures, ensure that you understand and
prepare for the time-sensitive steps.

During this process, you must refresh all service accounts and restart all pods on
the cluster. These actions are disruptive to workloads. To mitigate this impact,
you can temporarily halt these services and then redeploy them when the cluster
is ready.

Prerequisites

You have access to the OpenShift CLI (oc) as a user with the cluster-admin role.

You have added one of the following authentication options to the Google Cloud account that
the ccoctl utility uses:

The IAM Workload Identity Pool Admin role

The following granular permissions:

storage.objects.create

storage.objects.delete

You have configured the ccoctl utility.

Your cluster is in a stable state. You can confirm that the cluster is stable by running the
following command:

Procedure

1. Configure the following environment variables:

NOTE

$ oc adm wait-for-stable-cluster --minimum-stable-period=5s

CURRENT_ISSUER=$(oc get authentication cluster -o
jsonpath='{.spec.serviceAccountIssuer}')
GCP_BUCKET=$(echo ${CURRENT_ISSUER} | cut -d "/" -f4)

OpenShift Container Platform 4.18 Postinstallation configuration

310

1

2

3

NOTE

Your cluster might differ from this example, and the resource names might not
be derived identically from the cluster name. Ensure that you specify the correct
corresponding resource names for your cluster.

2. Create a temporary directory to use and assign it an environment variable by running the
following command:

3. To cause the Kubernetes API server to create a new bound service account signing key, you
delete the next bound service account signing key.

IMPORTANT

After you complete this step, the Kubernetes API server starts to roll out a new
key. To reduce the risk of authentication failures, complete the remaining steps
as quickly as possible. The remaining steps might be disruptive to workloads.

When you are ready, delete the next bound service account signing key by running the following
command:

4. Download the public key from the service account signing key secret that the Kubernetes API
server created by running the following command:

5. Use the public key to create a keys.json file by running the following command:

The --dry-run option outputs files, including the new keys.json file, to the disk without
making API calls.

Specify the path to the public key that you downloaded in the previous step.

Because the --dry-run option does not make any API calls, some parameters do not require
real values.

$ TEMPDIR=$(mktemp -d)

$ oc delete secrets/next-bound-service-account-signing-key \
 -n openshift-kube-apiserver-operator

$ oc get secret/next-bound-service-account-signing-key \
 -n openshift-kube-apiserver-operator \
 -ojsonpath='{ .data.service-account\.pub }' | base64 \
 -d > ${TEMPDIR}/serviceaccount-signer.public

$ ccoctl gcp create-workload-identity-provider \
 --dry-run \ 1
 --output-dir=${TEMPDIR} \
 --public-key-file=${TEMPDIR}/serviceaccount-signer.public \ 2
 --name fake \ 3
 --project fake \
 --workload-identity-pool fake

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

311

6. Rename the keys.json file by running the following command:

where <number> is a two-digit numerical value that varies depending on your environment.

7. Download the existing keys.json file from the cloud provider by running the following
command:

8. Combine the two keys.json files by running the following command:

9. To enable authentication for the old and new keys during the rotation, upload the combined
keys.json file to the cloud provider by running the following command:

10. Wait for the Kubernetes API server to update and use the new key. You can monitor the update
progress by running the following command:

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

11. To ensure that all pods on the cluster use the new key, you must restart them.

IMPORTANT

This step maintains uptime for services that are configured for high availability
across multiple nodes, but might cause downtime for any services that are not.

Restart all of the pods in the cluster by running the following command:

12. Monitor the restart and update process by running the following command:

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

$ cp ${TEMPDIR}/<number>-keys.json ${TEMPDIR}/jwks.new.json

$ gcloud storage cp gs://${GCP_BUCKET}/keys.json ${TEMPDIR}/jwks.current.json

$ jq -s '{ keys: map(.keys[])}' ${TEMPDIR}/jwks.current.json ${TEMPDIR}/jwks.new.json >
${TEMPDIR}/jwks.combined.json

$ gcloud storage cp ${TEMPDIR}/jwks.combined.json gs://${GCP_BUCKET}/keys.json

$ oc adm wait-for-stable-cluster

All clusteroperators are stable

$ oc adm reboot-machine-config-pool mcp/worker mcp/master

$ oc adm wait-for-node-reboot nodes --all

All nodes rebooted

OpenShift Container Platform 4.18 Postinstallation configuration

312

13. Monitor the update progress by running the following command:

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

14. Replace the combined keys.json file with the updated keys.json file on the cloud provider by
running the following command:

10.1.3. Rotating Azure OIDC bound service account signer keys

If the Cloud Credential Operator (CCO) for your OpenShift Container Platform cluster on Microsoft
Azure is configured to operate in manual mode with Microsoft Entra Workload ID, you can rotate the
bound service account signer key.

To rotate the key, you delete the existing key on your cluster, which causes the Kubernetes API server to
create a new key. To reduce authentication failures during this process, you must immediately add the
new public key to the existing issuer file. After the cluster is using the new key for authentication, you
can remove any remaining keys.

IMPORTANT

The process to rotate OIDC bound service account signer keys is disruptive and takes a
significant amount of time. Some steps are time-sensitive. Before proceeding, observe
the following considerations:

Read the following steps and ensure that you understand and accept the time
requirement. The exact time requirement varies depending on the individual
cluster, but it is likely to require at least one hour.

To reduce the risk of authentication failures, ensure that you understand and
prepare for the time-sensitive steps.

During this process, you must refresh all service accounts and restart all pods on
the cluster. These actions are disruptive to workloads. To mitigate this impact,
you can temporarily halt these services and then redeploy them when the cluster
is ready.

Prerequisites

You have access to the OpenShift CLI (oc) as a user with the cluster-admin role.

You have created a global Azure account for the ccoctl utility to use with the following
permissions:

Microsoft.Storage/storageAccounts/listkeys/action

Microsoft.Storage/storageAccounts/read

$ oc adm wait-for-stable-cluster

All clusteroperators are stable

$ gcloud storage cp ${TEMPDIR}/jwks.new.json gs://${GCP_BUCKET}/keys.json

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

313

Microsoft.Storage/storageAccounts/write

Microsoft.Storage/storageAccounts/blobServices/containers/read

Microsoft.Storage/storageAccounts/blobServices/containers/write

You have configured the ccoctl utility.

Your cluster is in a stable state. You can confirm that the cluster is stable by running the
following command:

Procedure

1. Configure the following environment variables:

NOTE

Your cluster might differ from this example, and the resource names might not
be derived identically from the cluster name. Ensure that you specify the correct
corresponding resource names for your cluster.

2. Create a temporary directory to use and assign it an environment variable by running the
following command:

3. To cause the Kubernetes API server to create a new bound service account signing key, you
delete the next bound service account signing key.

IMPORTANT

After you complete this step, the Kubernetes API server starts to roll out a new
key. To reduce the risk of authentication failures, complete the remaining steps
as quickly as possible. The remaining steps might be disruptive to workloads.

When you are ready, delete the next bound service account signing key by running the following
command:

4. Download the public key from the service account signing key secret that the Kubernetes API
server created by running the following command:

$ oc adm wait-for-stable-cluster --minimum-stable-period=5s

CURRENT_ISSUER=$(oc get authentication cluster -o
jsonpath='{.spec.serviceAccountIssuer}')
AZURE_STORAGE_ACCOUNT=$(echo ${CURRENT_ISSUER} | cut -d "/" -f3 | cut -d "." -f1)
AZURE_STORAGE_CONTAINER=$(echo ${CURRENT_ISSUER} | cut -d "/" -f4)

$ TEMPDIR=$(mktemp -d)

$ oc delete secrets/next-bound-service-account-signing-key \
 -n openshift-kube-apiserver-operator

$ oc get secret/next-bound-service-account-signing-key \

OpenShift Container Platform 4.18 Postinstallation configuration

314

1

2

3

4

5

5. Use the public key to create a keys.json file by running the following command:

The ccoctl azure command does not include a --dry-run option. To use the --dry-run
option, you must specify aws for an Azure cluster.

The --dry-run option outputs files, including the new keys.json file, to the disk without
making API calls.

Specify the path to the public key that you downloaded in the previous step.

Because the --dry-run option does not make any API calls, some parameters do not require
real values.

Specify any valid AWS region, such as us-east-1. This value does not need to match the
region the cluster is in.

6. Rename the keys.json file by running the following command:

where <number> is a two-digit numerical value that varies depending on your environment.

7. Download the existing keys.json file from the cloud provider by running the following
command:

8. Combine the two keys.json files by running the following command:

9. To enable authentication for the old and new keys during the rotation, upload the combined
keys.json file to the cloud provider by running the following command:

 -n openshift-kube-apiserver-operator \
 -ojsonpath='{ .data.service-account\.pub }' | base64 \
 -d > ${TEMPDIR}/serviceaccount-signer.public

$ ccoctl aws create-identity-provider \ 1
 --dry-run \ 2
 --output-dir ${TEMPDIR} \
 --public-key-file=${TEMPDIR}/serviceaccount-signer.public \ 3
 --name fake \ 4
 --region us-east-1 5

$ cp ${TEMPDIR}/<number>-keys.json ${TEMPDIR}/jwks.new.json

$ az storage blob download \
 --container-name ${AZURE_STORAGE_CONTAINER} \
 --account-name ${AZURE_STORAGE_ACCOUNT} \
 --name 'openid/v1/jwks' \
 -f ${TEMPDIR}/jwks.current.json

$ jq -s '{ keys: map(.keys[])}' ${TEMPDIR}/jwks.current.json ${TEMPDIR}/jwks.new.json >
${TEMPDIR}/jwks.combined.json

$ az storage blob upload \
 --overwrite \
 --account-name ${AZURE_STORAGE_ACCOUNT} \

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

315

10. Wait for the Kubernetes API server to update and use the new key. You can monitor the update
progress by running the following command:

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

11. To ensure that all pods on the cluster use the new key, you must restart them.

IMPORTANT

This step maintains uptime for services that are configured for high availability
across multiple nodes, but might cause downtime for any services that are not.

Restart all of the pods in the cluster by running the following command:

12. Monitor the restart and update process by running the following command:

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

13. Monitor the update progress by running the following command:

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

14. Replace the combined keys.json file with the updated keys.json file on the cloud provider by
running the following command:

 --container-name ${AZURE_STORAGE_CONTAINER} \
 --name 'openid/v1/jwks' \
 -f ${TEMPDIR}/jwks.combined.json

$ oc adm wait-for-stable-cluster

All clusteroperators are stable

$ oc adm reboot-machine-config-pool mcp/worker mcp/master

$ oc adm wait-for-node-reboot nodes --all

All nodes rebooted

$ oc adm wait-for-stable-cluster

All clusteroperators are stable

$ az storage blob upload \
 --overwrite \
 --account-name ${AZURE_STORAGE_ACCOUNT} \
 --container-name ${AZURE_STORAGE_CONTAINER} \
 --name 'openid/v1/jwks' \
 -f ${TEMPDIR}/jwks.new.json

OpenShift Container Platform 4.18 Postinstallation configuration

316

1

2

3

4

10.1.4. Rotating IBM Cloud credentials

You can rotate API keys for your existing service IDs and update the corresponding secrets.

Prerequisites

You have configured the ccoctl utility.

You have existing service IDs in a live OpenShift Container Platform cluster installed.

Procedure

Use the ccoctl utility to rotate your API keys for the service IDs and update the secrets by
running the following command:

The name of the provider. For example: ibmcloud or powervs.

The kubeconfig file associated with the cluster. For example,
<installation_directory>/auth/kubeconfig.

The directory where the credential requests are stored.

The name of the OpenShift Container Platform cluster.

NOTE

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

10.2. ROTATING CLOUD PROVIDER CREDENTIALS

Some organizations require the rotation of the cloud provider credentials. To allow the cluster to use the
new credentials, you must update the secrets that the Cloud Credential Operator (CCO) uses to
manage cloud provider credentials.

10.2.1. Rotating cloud provider credentials manually

If your cloud provider credentials are changed for any reason, you must manually update the secret that
the Cloud Credential Operator (CCO) uses to manage cloud provider credentials.

The process for rotating cloud credentials depends on the mode that the CCO is configured to use.
After you rotate credentials for a cluster that is using mint mode, you must manually remove the
component credentials that were created by the removed credential.

Prerequisites

$ ccoctl <provider_name> refresh-keys \ 1
 --kubeconfig <openshift_kubeconfig_file> \ 2
 --credentials-requests-dir <path_to_credential_requests_directory> \ 3
 --name <name> 4

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

317

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#cloud-credential-operator_cluster-operators-ref

Your cluster is installed on a platform that supports rotating cloud credentials manually with the
CCO mode that you are using:

For mint mode, Amazon Web Services (AWS) and Google Cloud are supported.

For passthrough mode, Amazon Web Services (AWS), Microsoft Azure, Google Cloud, Red
Hat OpenStack Platform (RHOSP), and VMware vSphere are supported.

You have changed the credentials that are used to interface with your cloud provider.

The new credentials have sufficient permissions for the mode CCO is configured to use in your
cluster.

Procedure

1. In the Administrator perspective of the web console, navigate to Workloads → Secrets.

2. In the table on the Secrets page, find the root secret for your cloud provider.

Platform Secret name

AWS aws-creds

Azure azure-credentials

Google Cloud gcp-credentials

RHOSP openstack-credentials

VMware vSphere vsphere-creds

3. Click the Options menu in the same row as the secret and select Edit Secret.

4. Record the contents of the Value field or fields. You can use this information to verify that the
value is different after updating the credentials.

5. Update the text in the Value field or fields with the new authentication information for your
cloud provider, and then click Save.

6. If you are updating the credentials for a vSphere cluster that does not have the vSphere CSI
Driver Operator enabled, you must force a rollout of the Kubernetes controller manager to apply
the updated credentials.

NOTE

If the vSphere CSI Driver Operator is enabled, this step is not required.

To apply the updated vSphere credentials, log in to the OpenShift Container Platform CLI as a
user with the cluster-admin role and run the following command:

OpenShift Container Platform 4.18 Postinstallation configuration

318

1

2

While the credentials are rolling out, the status of the Kubernetes Controller Manager Operator
reports Progressing=true. To view the status, run the following command:

7. If the CCO for your cluster is configured to use mint mode, delete each component secret that
is referenced by the individual CredentialsRequest objects.

a. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role.

b. Get the names and namespaces of all referenced component secrets:

where <provider_spec> is the corresponding value for your cloud provider:

AWS: AWSProviderSpec

Google Cloud: GCPProviderSpec

Partial example output for AWS

c. Delete each of the referenced component secrets:

Specify the name of a secret.

Specify the namespace that contains the secret.

Example deletion of an AWS secret

You do not need to manually delete the credentials from your provider console. Deleting

$ oc patch kubecontrollermanager cluster \
 -p='{"spec": {"forceRedeploymentReason": "recovery-'"$(date)"'"}}' \
 --type=merge

$ oc get co kube-controller-manager

$ oc -n openshift-cloud-credential-operator get CredentialsRequest \
 -o json | jq -r '.items[] | select (.spec.providerSpec.kind=="<provider_spec>") |
.spec.secretRef'

{
 "name": "ebs-cloud-credentials",
 "namespace": "openshift-cluster-csi-drivers"
}
{
 "name": "cloud-credential-operator-iam-ro-creds",
 "namespace": "openshift-cloud-credential-operator"
}

$ oc delete secret <secret_name> \ 1
 -n <secret_namespace> 2

$ oc delete secret ebs-cloud-credentials -n openshift-cluster-csi-drivers

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

319

You do not need to manually delete the credentials from your provider console. Deleting
the referenced component secrets will cause the CCO to delete the existing credentials
from the platform and create new ones.

Verification

To verify that the credentials have changed:

1. In the Administrator perspective of the web console, navigate to Workloads → Secrets.

2. Verify that the contents of the Value field or fields have changed.

Additional resources

The Cloud Credential Operator in mint mode

The Cloud Credential Operator in passthrough mode

vSphere CSI Driver Operator

10.3. REMOVING CLOUD PROVIDER CREDENTIALS

After installing OpenShift Container Platform, some organizations require the removal of the cloud
provider credentials that were used during the initial installation. To allow the cluster to use the new
credentials, you must update the secrets that the Cloud Credential Operator (CCO) uses to manage
cloud provider credentials.

10.3.1. Removing cloud provider credentials

For clusters that use the Cloud Credential Operator (CCO) in mint mode, the administrator-level
credential is stored in the kube-system namespace. The CCO uses the admin credential to process the
CredentialsRequest objects in the cluster and create users for components with limited permissions.

After installing an OpenShift Container Platform cluster with the CCO in mint mode, you can remove the
administrator-level credential secret from the kube-system namespace in the cluster. The CCO only
requires the administrator-level credential during changes that require reconciling new or modified
CredentialsRequest custom resources, such as minor cluster version updates.

NOTE

Before performing a minor version cluster update (for example, updating from OpenShift
Container Platform 4.17 to 4.18), you must reinstate the credential secret with the
administrator-level credential. If the credential is not present, the update might be
blocked.

Prerequisites

Your cluster is installed on a platform that supports removing cloud credentials from the CCO.
Supported platforms are AWS and Google Cloud.

Procedure

1. In the Administrator perspective of the web console, navigate to Workloads → Secrets.

2. In the table on the Secrets page, find the root secret for your cloud provider.

OpenShift Container Platform 4.18 Postinstallation configuration

320

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#cco-mode-mint
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#cco-mode-passthrough
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/storage/#persistent-storage-csi-vsphere
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#cloud-credential-operator_cluster-operators-ref

Platform Secret name

AWS aws-creds

Google Cloud gcp-credentials

3. Click the Options menu in the same row as the secret and select Delete Secret.

Additional resources

The Cloud Credential Operator in mint mode

10.4. ENABLING TOKEN-BASED AUTHENTICATION

After installing an OpenShift Container Platform cluster on Microsoft Azure or Amazon Web Services
(AWS), you can enable Microsoft Entra Workload ID or Security Token Service (STS) to use short-term
credentials.

10.4.1. Configuring the Cloud Credential Operator utility

To configure an existing cluster to create and manage cloud credentials from outside of the cluster,
extract and prepare the Cloud Credential Operator utility (ccoctl) binary.

NOTE

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift CLI (oc).

Procedure

1. Set a variable for the OpenShift Container Platform release image by running the following
command:

2. Obtain the CCO container image from the OpenShift Container Platform release image by
running the following command:

NOTE

$ RELEASE_IMAGE=$(oc get clusterversion -o jsonpath={..desired.image})

$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator'
$RELEASE_IMAGE -a ~/.pull-secret)

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

321

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#cco-mode-mint

1

NOTE

Ensure that the architecture of the $RELEASE_IMAGE matches the
architecture of the environment in which you will use the ccoctl tool.

3. Extract the ccoctl binary from the CCO container image within the OpenShift Container
Platform release image by running the following command:

For <rhel_version>, specify the value that corresponds to the version of Red Hat
Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by
default. The following values are valid:

rhel8: Specify this value for hosts that use RHEL 8.

rhel9: Specify this value for hosts that use RHEL 9.

4. Change the permissions to make ccoctl executable by running the following command:

Verification

To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run
the command, for example:

Example output

10.4.2. Enabling Microsoft Entra Workload ID on an existing cluster

$ oc image extract $CCO_IMAGE \
 --file="/usr/bin/ccoctl.<rhel_version>" \ 1
 -a ~/.pull-secret

$ chmod 775 ccoctl.<rhel_version>

$./ccoctl.rhel9

OpenShift credentials provisioning tool

Usage:
 ccoctl [command]

Available Commands:
 aws Manage credentials objects for AWS cloud
 azure Manage credentials objects for Azure
 gcp Manage credentials objects for Google cloud
 help Help about any command
 ibmcloud Manage credentials objects for {ibm-cloud-title}
 nutanix Manage credentials objects for Nutanix

Flags:
 -h, --help help for ccoctl

Use "ccoctl [command] --help" for more information about a command.

OpenShift Container Platform 4.18 Postinstallation configuration

322

1

If you did not configure your Microsoft Azure OpenShift Container Platform cluster to use Microsoft
Entra Workload ID during installation, you can enable this authentication method on an existing cluster.

IMPORTANT

The process to enable Workload ID on an existing cluster is disruptive and takes a
significant amount of time. Before proceeding, observe the following considerations:

Read the following steps and ensure that you understand and accept the time
requirement. The exact time requirement varies depending on the individual
cluster, but it is likely to require at least one hour.

During this process, you must refresh all service accounts and restart all pods on
the cluster. These actions are disruptive to workloads. To mitigate this impact,
you can temporarily halt these services and then redeploy them when the cluster
is ready.

After starting this process, do not attempt to update the cluster until it is
complete. If an update is triggered, the process to enable Workload ID on an
existing cluster fails.

Prerequisites

You have installed an OpenShift Container Platform cluster on Microsoft Azure.

You have access to the cluster using an account with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

You have extracted and prepared the Cloud Credential Operator utility (ccoctl) binary.

You have access to your Azure account by using the Azure CLI (az).

Procedure

1. Create an output directory for the manifests that the ccoctl utility generates. This procedure
uses ./output_dir as an example.

2. Extract the service account public signing key for the cluster to the output directory by running
the following command:

This procedure uses a file named serviceaccount-signer.public as an example.

3. Use the extracted service account public signing key to create an OpenID Connect (OIDC)
issuer and Azure blob storage container with OIDC configuration files by running the following
command:

$ oc get secret/next-bound-service-account-signing-key \
 -n openshift-kube-apiserver-operator \
 -ojsonpath='{ .data.service-account\.pub }' | base64 -d \
 > output_dir/serviceaccount-signer.public 1

$./ccoctl azure create-oidc-issuer \
 --name <azure_infra_name> \ 1

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

323

1

2

3

4

1

The value of the name parameter is used to create an Azure resource group. To use an
existing Azure resource group instead of creating a new one, specify the --oidc-resource-
group-name argument with the existing group name as its value.

Specify the region of the existing cluster.

Specify the subscription ID of the existing cluster.

Specify the file that contains the service account public signing key for the cluster.

4. Verify that the configuration file for the Azure pod identity webhook was created by running the
following command:

Example output

The file azure-ad-pod-identity-webhook-config.yaml contains the Azure pod identity
webhook configuration.

5. Set an OIDC_ISSUER_URL variable with the OIDC issuer URL from the generated manifests in
the output directory by running the following command:

6. Update the spec.serviceAccountIssuer parameter of the cluster authentication configuration
by running the following command:

7. Monitor the configuration update progress by running the following command:

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

 --output-dir ./output_dir \
 --region <azure_region> \ 2
 --subscription-id <azure_subscription_id> \ 3
 --tenant-id <azure_tenant_id> \
 --public-key-file ./output_dir/serviceaccount-signer.public 4

$ ll ./output_dir/manifests

total 8
-rw-------. 1 cloud-user cloud-user 193 May 22 02:29 azure-ad-pod-identity-webhook-
config.yaml 1
-rw-------. 1 cloud-user cloud-user 165 May 22 02:29 cluster-authentication-02-config.yaml

$ OIDC_ISSUER_URL=`awk '/serviceAccountIssuer/ { print $2 }'
./output_dir/manifests/cluster-authentication-02-config.yaml`

$ oc patch authentication cluster \
 --type=merge \
 -p "{\"spec\":{\"serviceAccountIssuer\":\"${OIDC_ISSUER_URL}\"}}"

$ oc adm wait-for-stable-cluster

OpenShift Container Platform 4.18 Postinstallation configuration

324

8. Restart all of the pods in the cluster by running the following command:

Restarting a pod updates the serviceAccountIssuer field and refreshes the service account
public signing key.

9. Monitor the restart and update process by running the following command:

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

10. Update the Cloud Credential Operator spec.credentialsMode parameter to Manual by
running the following command:

11. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release
image by running the following command:

NOTE

This command might take a few moments to run.

12. Set an AZURE_INSTALL_RG variable with the Azure resource group name by running the
following command:

13. Use the ccoctl utility to create managed identities for all CredentialsRequest objects by
running the following command:

NOTE

All clusteroperators are stable

$ oc adm reboot-machine-config-pool mcp/worker mcp/master

$ oc adm wait-for-node-reboot nodes --all

All nodes rebooted

$ oc patch cloudcredential cluster \
 --type=merge \
 --patch '{"spec":{"credentialsMode":"Manual"}}'

$ oc adm release extract \
 --credentials-requests \
 --included \
 --to <path_to_directory_for_credentials_requests> \
 --registry-config ~/.pull-secret

$ AZURE_INSTALL_RG=`oc get infrastructure cluster -o jsonpath --template '{
.status.platformStatus.azure.resourceGroupName }'`

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

325

1

2

NOTE

The following command does not show all available options. For a complete list of
options, including those that might be necessary for your specific use case, run $
ccoctl azure create-managed-identities --help.

Specify the name of the resource group that contains the DNS zone.

Optional: Specify the virtual network resource group if it is different from the cluster
resource group.

14. Apply the Azure pod identity webhook configuration for Workload ID by running the following
command:

15. Apply the secrets generated by the ccoctl utility by running the following command:

This process might take several minutes.

16. Restart all of the pods in the cluster by running the following command:

Restarting a pod updates the serviceAccountIssuer field and refreshes the service account
public signing key.

17. Monitor the restart and update process by running the following command:

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

18. Monitor the configuration update progress by running the following command:

$ ccoctl azure create-managed-identities \
 --name <azure_infra_name> \
 --output-dir ./output_dir \
 --region <azure_region> \
 --subscription-id <azure_subscription_id> \
 --credentials-requests-dir <path_to_directory_for_credentials_requests> \
 --issuer-url "${OIDC_ISSUER_URL}" \
 --dnszone-resource-group-name <azure_dns_zone_resourcegroup_name> \ 1
 --installation-resource-group-name "${AZURE_INSTALL_RG}" \
 --network-resource-group-name <azure_resource_group> 2

$ oc apply -f ./output_dir/manifests/azure-ad-pod-identity-webhook-config.yaml

$ find ./output_dir/manifests -iname "openshift*yaml" -print0 | xargs -I {} -0 -t oc replace -f {}

$ oc adm reboot-machine-config-pool mcp/worker mcp/master

$ oc adm wait-for-node-reboot nodes --all

All nodes rebooted

$ oc adm wait-for-stable-cluster

OpenShift Container Platform 4.18 Postinstallation configuration

326

This process might take 15 minutes or longer. The following output indicates that the process is
complete:

19. Optional: Remove the Azure root credentials secret by running the following command:

10.4.3. Enabling AWS Security Token Service (STS) on an existing cluster

If you did not configure your Amazon Web Services (AWS) OpenShift Container Platform cluster to use
Security Token Service (STS) during installation, you can enable this authentication method on an
existing cluster.

IMPORTANT

The process to enable STS on an existing cluster is disruptive and takes a significant
amount of time. Before proceeding, observe the following considerations:

Read the following steps and ensure that you understand and accept the time
requirement. The exact time requirement varies depending on the individual
cluster, but it is likely to require at least one hour.

During this process, you must refresh all service accounts and restart all pods on
the cluster. These actions are disruptive to workloads. To mitigate this impact,
you can temporarily halt these services and then redeploy them when the cluster
is ready.

Do not update the cluster until this process is complete.

Prerequisites

You have installed an OpenShift Container Platform cluster on AWS.

You have access to the cluster using an account with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

You have extracted and prepared the Cloud Credential Operator utility (ccoctl) binary.

You have access to your AWS account by using the AWS CLI (aws).

Procedure

1. Create an output directory for ccoctl generated manifests by running the following command:

2. Create the AWS Identity and Access Management (IAM) OpenID Connect (OIDC) provider.

a. Extract the service account public signing key for the cluster by running the following
command:

All clusteroperators are stable

$ oc delete secret -n kube-system azure-credentials

$ mkdir ./output_dir

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

327

1

1

2

3

4

This procedure uses a file named serviceaccount-signer.public as an example.

b. Create the AWS IAM identity provider and S3 bucket by running the following command:

Specify the output directory you created earlier.

Specify a globally unique name. This name functions as a prefix for AWS resources
created by this command.

Specify the AWS region of the cluster.

Specify the relative path to the serviceaccount-signer.public file you created earlier.

c. Save or note the Amazon Resource Name (ARN) for the IAM identity provider. You can find
this information in the final line of the output of the previous command.

3. Update the cluster authentication configuration.

a. Extract the OIDC issuer URL and update the authentication configuration of the cluster by
running the following commands:

b. Monitor the configuration update progress by running the following command:

This process might take 15 minutes or longer. The following output indicates that the
process is complete:

4. Restart pods to apply the issuer update.

a. Restart all of the pods in the cluster by running the following command:

Restarting a pod updates the serviceAccountIssuer field and refreshes the service

$ oc get secret/next-bound-service-account-signing-key \
 -n openshift-kube-apiserver-operator \
 -ojsonpath='{ .data.service-account\.pub }' | base64 -d \
 > output_dir/serviceaccount-signer.public 1

$./ccoctl aws create-identity-provider \
 --output-dir output_dir \ 1
 --name <name_you_choose> \ 2
 --region us-east-2 \ 3
 --public-key-file output_dir/serviceaccount-signer.public 4

$ OIDC_ISSUER_URL=`awk '/serviceAccountIssuer/ { print $2 }'
output_dir/manifests/cluster-authentication-02-config.yaml`
$ oc patch authentication cluster --type=merge -p "{\"spec\":
{\"serviceAccountIssuer\":\"${OIDC_ISSUER_URL}\"}}"

$ oc adm wait-for-stable-cluster

All clusteroperators are stable

$ oc adm reboot-machine-config-pool mcp/worker mcp/master

OpenShift Container Platform 4.18 Postinstallation configuration

328

Restarting a pod updates the serviceAccountIssuer field and refreshes the service
account public signing key.

b. Monitor the restart and update process by running the following command:

This process might take 15 minutes or longer. The following output indicates that the
process is complete:

5. Update the Cloud Credential Operator spec.credentialsMode parameter to Manual by
running the following command:

6. Extract CredentialsRequests objects.

a. Create a CLUSTER_VERSION environment variable by running the following command:

b. Create a CLUSTER_IMAGE environment variable by running the following command:

c. Extract CredentialsRequests objects from the release image by running the following
command:

7. Create AWS IAM roles and apply secrets.

a. Create an IAM role for each CredentialsRequests object by running the following
command:

$ oc adm wait-for-node-reboot nodes --all

All nodes rebooted

$ oc patch cloudcredential cluster \
 --type=merge \
 --patch '{"spec":{"credentialsMode":"Manual"}}'

$ CLUSTER_VERSION=$(oc get clusterversion version -o json | jq -r
'.status.desired.version')

$ CLUSTER_IMAGE=$(oc get clusterversion version -o json | jq -r ".status.history[] |
select(.version == \"${CLUSTER_VERSION}\") | .image")

$ oc adm release extract \
 --credentials-requests \
 --cloud=aws \
 --from ${CLUSTER_IMAGE} \
 --to output_dir/cred-reqs

$./ccoctl aws create-iam-roles \
 --output-dir ./output_dir/ \ 1
 --name <name_you_choose> \ 2
 --identity-provider-arn <identity_provider_arn> \ 3
 --region us-east-2 \ 4
 --credentials-requests-dir ./output_dir/cred-reqs/ 5

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

329

1

2

3

4

5

Specify the output directory you created earlier.

Specify a globally unique name. This name functions as a prefix for AWS resources
created by this command.

Specify the ARN for the IAM identity provider.

Specify the AWS region of the cluster.

Specify the relative path to the folder where you extracted the CredentialsRequest
files with the oc adm release extract command.

b. Apply the generated secrets by running the following command:

8. Finish the configuration process by restarting the cluster.

a. Restart all of the pods in the cluster by running the following command:

b. Monitor the restart and update process by running the following command:

This process might take 15 minutes or longer. The following output indicates that the
process is complete:

c. Monitor the configuration update progress by running the following command:

This process might take 15 minutes or longer. The following output indicates that the
process is complete:

9. Optional: Remove the AWS root credentials secret by running the following command:

Additional resources

Microsoft Entra Workload ID

Configuring an Azure cluster to use short-term credentials

AWS Security Token Service

$ find ./output_dir/manifests -iname "openshift*yaml" -print0 | xargs -I {} -0 -t oc replace -f
{}

$ oc adm reboot-machine-config-pool mcp/worker mcp/master

$ oc adm wait-for-node-reboot nodes --all

All nodes rebooted

$ oc adm wait-for-stable-cluster

All clusteroperators are stable

$ oc delete secret -n kube-system aws-creds

OpenShift Container Platform 4.18 Postinstallation configuration

330

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#cco-short-term-creds-azure_cco-short-term-creds
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_azure/#installing-azure-with-short-term-creds_installing-azure-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#cco-short-term-creds-aws_cco-short-term-creds

Configuring an AWS cluster to use short-term credentials

10.4.4. Verifying that a cluster uses short-term credentials

You can verify that a cluster uses short-term security credentials for individual components by checking
the Cloud Credential Operator (CCO) configuration and other values in the cluster.

Prerequisites

You deployed an OpenShift Container Platform cluster using the Cloud Credential Operator
utility (ccoctl) to implement short-term credentials.

You installed the OpenShift CLI (oc).

You are logged in as a user with cluster-admin privileges.

Procedure

Verify that the CCO is configured to operate in manual mode by running the following
command:

The following output confirms that the CCO is operating in manual mode:

Example output

Verify that the cluster does not have root credentials by running the following command:

where <secret_name> is the name of the root secret for your cloud provider.

Platform Secret name

Amazon Web Services (AWS) aws-creds

Microsoft Azure azure-credentials

Google Cloud gcp-credentials

An error confirms that the root secret is not present on the cluster.

Example output for an AWS cluster

Verify that the components are using short-term security credentials for individual components

$ oc get cloudcredentials cluster \
 -o=jsonpath={.spec.credentialsMode}

Manual

$ oc get secrets \
 -n kube-system <secret_name>

Error from server (NotFound): secrets "aws-creds" not found

CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION

331

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_aws/#installing-aws-with-short-term-creds_installing-aws-customizations

Verify that the components are using short-term security credentials for individual components
by running the following command:

This command displays the value of the .spec.serviceAccountIssuer parameter in the cluster
Authentication object. An output of a URL that is associated with your cloud provider indicates
that the cluster is using manual mode with short-term credentials that are created and managed
from outside of the cluster.

Azure clusters: Verify that the components are assuming the Azure client ID that is specified in
the secret manifests by running the following command:

An output that contains the azure_client_id and azure_federated_token_file felids confirms
that the components are assuming the Azure client ID.

Azure clusters: Verify that the pod identity webhook is running by running the following
command:

Example output

10.5. ADDITIONAL RESOURCES

About the Cloud Credential Operator

$ oc get authentication cluster \
 -o jsonpath \
 --template='{ .spec.serviceAccountIssuer }'

$ oc get secrets \
 -n openshift-image-registry installer-cloud-credentials \
 -o jsonpath='{.data}'

$ oc get pods \
 -n openshift-cloud-credential-operator

NAME READY STATUS RESTARTS AGE
cloud-credential-operator-59cf744f78-r8pbq 2/2 Running 2 71m
pod-identity-webhook-548f977b4c-859lz 1/1 Running 1 70m

OpenShift Container Platform 4.18 Postinstallation configuration

332

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#about-cloud-credential-operator

CHAPTER 11. CONFIGURING ALERT NOTIFICATIONS
In OpenShift Container Platform, an alert is fired when the conditions defined in an alerting rule are true.
An alert provides a notification that a set of circumstances are apparent within a cluster. Firing alerts can
be viewed in the Alerting UI in the OpenShift Container Platform web console by default. After an
installation, you can configure OpenShift Container Platform to send alert notifications to external
systems.

11.1. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS

In OpenShift Container Platform 4.18, firing alerts can be viewed in the Alerting UI. Alerts are not
configured by default to be sent to any notification systems. You can configure OpenShift Container
Platform to send alerts to the following receiver types:

PagerDuty

Webhook

Email

Slack

Microsoft Teams

Routing alerts to receivers enables you to send timely notifications to the appropriate teams when
failures occur. For example, critical alerts require immediate attention and are typically paged to an
individual or a critical response team. Alerts that provide non-critical warning notifications might instead
be routed to a ticketing system for non-immediate review.

Checking that alerting is operational by using the watchdog alert

OpenShift Container Platform monitoring includes a watchdog alert that fires continuously.
Alertmanager repeatedly sends watchdog alert notifications to configured notification providers. The
provider is usually configured to notify an administrator when it stops receiving the watchdog alert. This
mechanism helps you quickly identify any communication issues between Alertmanager and the
notification provider.

11.2. ADDITIONAL RESOURCES

About OpenShift Container Platform monitoring

Configuring alerts and notifications for core platform monitoring

Configuring alerts and notifications for user workload monitoring

CHAPTER 11. CONFIGURING ALERT NOTIFICATIONS

333

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.18/html/about_monitoring/about-ocp-monitoring
https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.18/html/configuring_core_platform_monitoring/configuring-alerts-and-notifications
https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.18/html/configuring_user_workload_monitoring/configuring-alerts-and-notifications-uwm

CHAPTER 12. CONVERTING A CONNECTED CLUSTER TO A
DISCONNECTED CLUSTER

There might be some scenarios where you need to convert your OpenShift Container Platform cluster
from a connected cluster to a disconnected cluster.

A disconnected cluster, also known as a restricted cluster, does not have an active connection to the
internet. As such, you must mirror the contents of your registries and installation media. You can create
this mirror registry on a host that can access both the internet and your closed network, or copy images
to a device that you can move across network boundaries.

For information on how to convert your cluster, see the Converting a connected cluster to a
disconnected cluster procedure in the Disconnected environments section.

OpenShift Container Platform 4.18 Postinstallation configuration

334

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/disconnected_environments/#converting-to-disconnected

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT
CONTAINER PLATFORM CLUSTERS

13.1. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM
CLUSTERS

You can use the following Day 2 operations to manage OpenShift Container Platform clusters.

Updating an OpenShift Container Platform cluster

Updating your cluster is a critical task that ensures that bugs and potential security vulnerabilities are
patched. For more information, see Updating an OpenShift Container Platform cluster .

Troubleshooting and maintaining OpenShift Container Platform clusters

To maintain and troubleshoot a bare-metal environment where high-bandwidth network throughput
is required, see Troubleshooting and maintaining OpenShift Container Platform clusters .

Observability in OpenShift Container Platform clusters

OpenShift Container Platform generates a large amount of data, such as performance metrics and
logs from the platform and the workloads running on it. As an administrator, you can use tools to
collect and analyze the available data. For more information, see Observability in OpenShift
Container Platform.

Security

You can enhance security for high-bandwidth network deployments by following key security
considerations. For more information, see Security basics.

13.2. UPGRADING OPENSHIFT CONTAINER PLATFORM CLUSTERS

13.2.1. Upgrading an OpenShift Container Platform cluster

OpenShift Container Platform has long term support or extended update support (EUS) on all even
releases and update paths between EUS releases. You can update from one EUS version to the next
EUS version. It is also possible to update between y-stream and z-stream versions.

13.2.1.1. Cluster updates for OpenShift clusters

Updating your cluster is a critical task that ensures that bugs and potential security vulnerabilities are
patched. Often, updates to cloud-native applications require additional functionality from the platform
that comes when you update the cluster version. You also must update the cluster periodically to ensure
that the cluster platform version is supported.

You can minimize the effort required to stay current with updates by keeping up-to-date with EUS
releases and upgrading to select important z-stream releases only.

NOTE

The update path for the cluster can vary depending on the size and topology of the
cluster.

The following update scenarios are described:

Control Plane Only updates

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

335

Y-stream updates

Z-stream updates

IMPORTANT

Control Plane Only updates were previously known as EUS-to-EUS updates. Control
Plane Only updates are only viable between even-numbered minor versions of OpenShift
Container Platform.

13.2.2. Verifying cluster API versions between update versions

APIs change over time as components are updated. It is important to verify that your application APIs
are compatible with the updated cluster version.

13.2.2.1. OpenShift Container Platform API compatibility

When considering what z-stream release to update to as part of a new y-stream update, you must be
sure that all the patches that are in the z-stream version you are moving from are in the new z-stream
version. If the version you update to does not have all the required patches, the built-in compatibility of
Kubernetes is broken.

For example, if the cluster version is 4.15.32, you must update to 4.16 z-stream release that has all of the
patches that are applied to 4.15.32.

13.2.2.1.1. About Kubernetes version skew

Each cluster Operator supports specific API versions. Kubernetes APIs evolve over time, and newer
versions can be deprecated or change existing APIs. This is referred to as "version skew". For every new
release, you must review the API changes. The APIs might be compatible across several releases of an
Operator, but compatibility is not guaranteed. To mitigate against problems that arise from version
skew, follow a well-defined update strategy.

Additional resources

Understanding API tiers

Kubernetes version skew policy

13.2.2.2. Determining the cluster version update path

Use the Red Hat OpenShift Container Platform Update Graph tool to determine if the path is valid for
the z-stream release you want to update to.

IMPORTANT

The <4.y+1.z> or <4.y+2.z> version that you update to must have the same patch level as
the <4.y.z> release you are updating from.

The OpenShift Container Platform update process mandates that if a fix is present in a
specific <4.y.z> release, then the that fix must be present in the <4.y+1.z> release that you
update to.

Figure 13.1. Bug fix backporting and the update graph

OpenShift Container Platform 4.18 Postinstallation configuration

336

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/api_overview/#understanding-api-support-tiers
https://kubernetes.io/releases/version-skew-policy/
https://access.redhat.com/labs/ocpupgradegraph/update_path/

Figure 13.1. Bug fix backporting and the update graph

IMPORTANT

OpenShift Container Platform development has a strict backport policy that prevents
regressions. For example, a bug must be fixed in 4.16.z before it is fixed in 4.15.z. This
means that the update graph does not allow for updates to chronologically older releases
even if the minor version is greater, for example, updating from 4.15.24 to 4.16.2.

Additional resources

Understanding update channels and releases

13.2.2.3. Selecting the target release

Use the Red Hat OpenShift Container Platform Update Graph or the cincinnati-graph-data repository
to determine what release to update to.

13.2.2.3.1. Determining what z-stream updates are available

Before you can update to a new z-stream release, you need to know what versions are available.

NOTE

You do not need to change the channel when performing a z-stream update.

Procedure

1. Determine which z-stream releases are available. Run the following command:

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

337

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#understanding-update-channels-releases
https://access.redhat.com/labs/ocpupgradegraph/update_path
https://github.com/openshift/cincinnati-graph-data/tree/master/channels

Example output

13.2.2.3.2. Changing the channel for a Control Plane Only update

You must change the channel to the required version for a Control Plane Only update.

NOTE

You do not need to change the channel when performing a z-stream update.

Procedure

1. Determine the currently configured update channel by running the following command:

Example output

2. Change the channel to point to the new channel you want to update to by running the following
command:

3. Confirm the updated channel by running the following command:

$ oc adm upgrade

Cluster version is 4.14.34

Upstream is unset, so the cluster will use an appropriate default.
Channel: stable-4.14 (available channels: candidate-4.14, candidate-4.15, eus-4.14, eus-4.16,
fast-4.14, fast-4.15, stable-4.14, stable-4.15)

Recommended updates:

 VERSION IMAGE
 4.14.37 quay.io/openshift-release-dev/ocp-
release@sha256:14e6ba3975e6c73b659fa55af25084b20ab38a543772ca70e184b903db7309
2b
 4.14.36 quay.io/openshift-release-dev/ocp-
release@sha256:4bc4925e8028158e3f313aa83e59e181c94d88b4aa82a3b00202d6f354e8dfe
d
 4.14.35 quay.io/openshift-release-dev/ocp-
release@sha256:883088e3e6efa7443b0ac28cd7682c2fdbda889b576edad626769bf956ac085
8

$ oc get clusterversion -o=jsonpath='{.items[*].spec}' | jq

{
 "channel": "stable-4.14",
 "clusterID": "01eb9a57-2bfb-4f50-9d37-dc04bd5bac75"
}

$ oc adm upgrade channel eus-4.16

$ oc get clusterversion -o=jsonpath='{.items[*].spec}' | jq

OpenShift Container Platform 4.18 Postinstallation configuration

338

Example output

13.2.2.3.2.1. Changing the channel for an early EUS to EUS update

The update path to a brand new release of OpenShift Container Platform is not available in either the
EUS channel or the stable channel until 45 to 90 days after the initial GA of a minor release.

To begin testing an update to a new release, you can use the fast channel.

Procedure

1. Change the channel to fast-<y+1>. For example, run the following command:

2. Check the update path from the new channel. Run the following command:

3. Follow the update procedure to get to version 4.16 (<y+1> from version 4.15)

NOTE

{
 "channel": "eus-4.16",
 "clusterID": "01eb9a57-2bfb-4f50-9d37-dc04bd5bac75"
}

$ oc adm upgrade channel fast-4.16

$ oc adm upgrade

Cluster version is 4.15.33

Upgradeable=False

 Reason: AdminAckRequired
 Message: Kubernetes 1.28 and therefore {product-title} 4.16 remove several APIs which
require admin consideration. Please see the knowledge article
https://access.redhat.com/articles/6958394 for details and instructions.

Upstream is unset, so the cluster will use an appropriate default.
Channel: fast-4.16 (available channels: candidate-4.15, candidate-4.16, eus-4.15, eus-4.16,
fast-4.15, fast-4.16, stable-4.15, stable-4.16)

Recommended updates:

 VERSION IMAGE
 4.16.14 quay.io/openshift-release-dev/ocp-release@sha256:6618dd3c0f5
 4.16.13 quay.io/openshift-release-dev/ocp-release@sha256:7a72abc3
 4.16.12 quay.io/openshift-release-dev/ocp-release@sha256:1c8359fc2
 4.16.11 quay.io/openshift-release-dev/ocp-release@sha256:bc9006febfe
 4.16.10 quay.io/openshift-release-dev/ocp-release@sha256:dece7b61b1
 4.15.36 quay.io/openshift-release-dev/ocp-release@sha256:c31a56d19
 4.15.35 quay.io/openshift-release-dev/ocp-release@sha256:f21253
 4.15.34 quay.io/openshift-release-dev/ocp-release@sha256:2dd69c5

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

339

NOTE

You can keep your worker nodes paused between EUS releases even if you are
using the fast channel.

4. When you get to the required <y+1> release, change the channel again, this time to fast-<y+2>.

5. Follow the EUS update procedure to get to the required <y+2> release.

13.2.2.3.3. Changing the channel for a y-stream update

In a y-stream update you change the channel to the next release channel.

NOTE

Use the stable or EUS release channels for production clusters.

Procedure

1. Change the update channel by running the following command:

2. Check the update path from the new channel. Run the following command:

Example output

$ oc adm upgrade channel stable-4.15

$ oc adm upgrade

Cluster version is 4.14.34

Upgradeable=False

 Reason: AdminAckRequired
 Message: Kubernetes 1.27 and therefore {product-title} 4.15 remove several APIs which
require admin consideration. Please see the knowledge article
https://access.redhat.com/articles/6958394 for details and instructions.

Upstream is unset, so the cluster will use an appropriate default.
Channel: stable-4.15 (available channels: candidate-4.14, candidate-4.15, eus-4.14, eus-4.15,
fast-4.14, fast-4.15, stable-4.14, stable-4.15)

Recommended updates:

 VERSION IMAGE
 4.15.33 quay.io/openshift-release-dev/ocp-release@sha256:7142dd4b560
 4.15.32 quay.io/openshift-release-dev/ocp-release@sha256:cda8ea5b13dc9
 4.15.31 quay.io/openshift-release-dev/ocp-release@sha256:07cf61e67d3eeee
 4.15.30 quay.io/openshift-release-dev/ocp-release@sha256:6618dd3c0f5
 4.15.29 quay.io/openshift-release-dev/ocp-release@sha256:7a72abc3
 4.15.28 quay.io/openshift-release-dev/ocp-release@sha256:1c8359fc2
 4.15.27 quay.io/openshift-release-dev/ocp-release@sha256:bc9006febfe
 4.15.26 quay.io/openshift-release-dev/ocp-release@sha256:dece7b61b1
 4.14.38 quay.io/openshift-release-dev/ocp-release@sha256:c93914c62d7

OpenShift Container Platform 4.18 Postinstallation configuration

340

13.2.3. Preparing a bare-metal cluster for platform update

On bare-metal hardware, you often must update the firmware to take on important security fixes, take
on new functionality, or maintain compatibility with the new release of OpenShift Container Platform.

13.2.3.1. Ensuring the host firmware is compatible with the update

You are responsible for the firmware versions that you run in your clusters. Updating host firmware is not
a part of the OpenShift Container Platform update process. It is not recommended to update firmware
in conjunction with the OpenShift Container Platform version.

IMPORTANT

Hardware vendors advise that it is best to apply the latest certified firmware version for
the specific hardware that you are running. For each different use case, always verify
firmware updates in test environments before applying them in production. For example,
workloads with high throughput requirements can be negatively affected outdated host
firmware.

You should thoroughly test new firmware updates to ensure that they work as expected
with the current version of OpenShift Container Platform. For best results, test the latest
firmware version with the target OpenShift Container Platform update version.

13.2.3.2. Ensuring that layered products are compatible with the update

Verify that all layered products run on the version of OpenShift Container Platform that you are
updating to before you begin the update. This generally includes all Operators.

Procedure

1. Verify the currently installed Operators in the cluster. For example, run the following command:

Example output

2. Check that Operators that you install with OLM are compatible with the update version.
Operators that are installed with the Operator Lifecycle Manager (OLM) are not part of the
standard cluster Operators set.

Use the Operator Update Information Checker to understand if you must update an Operator

 4.14.37 quay.io/openshift-release-dev/ocp-release@sha256:c31a56d19
 4.14.36 quay.io/openshift-release-dev/ocp-release@sha256:f21253
 4.14.35 quay.io/openshift-release-dev/ocp-release@sha256:2dd69c5

$ oc get csv -A

NAMESPACE NAME DISPLAY VERSION REPLACES
PHASE
gitlab-operator-kubernetes.v0.17.2 GitLab 0.17.2 gitlab-operator-
kubernetes.v0.17.1 Succeeded
openshift-operator-lifecycle-manager packageserver Package Server 0.19.0
Succeeded

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

341

Use the Operator Update Information Checker to understand if you must update an Operator
after each y-stream update or if you can wait until you have fully updated to the next EUS
release.

TIP

You can also use the Operator Update Information Checker to see what versions of OpenShift
Container Platform are compatible with specific releases of an Operator.

3. Check that Operators that you install outside of OLM are compatible with the update version.
For all OLM-installed Operators that are not directly supported by Red Hat, contact the
Operator vendor to ensure release compatibility.

Some Operators are compatible with several releases of OpenShift Container Platform.
See "Updating the worker nodes" for more information.

See "Updating all the OLM Operators" for information about updating an Operator after
performing the first y-stream control plane update.

Additional resources

Updating the worker nodes

Updating all the OLM Operators

13.2.3.3. Applying MachineConfigPool labels to nodes before the update

Prepare MachineConfigPool (MCP) node labels to group nodes together in groups of roughly 8 to 10
nodes. With MCP groups, you can reboot groups of nodes independently from the rest of the cluster.

You use the MCP node labels to pause and unpause the set of nodes during the update process so that
you can do the update and reboot at a time of your choosing.

13.2.3.3.1. Staggering the cluster update

Sometimes there are problems during the update. Often the problem is related to hardware failure or
nodes needing to be reset. Using MCP node labels, you can update nodes in stages by pausing the
update at critical moments, tracking paused and unpaused nodes as you proceed. When a problem
occurs, you use the nodes that are in an unpaused state to ensure that there are enough nodes running
to keep all applications pods running.

13.2.3.3.2. Dividing worker nodes into MachineConfigPool groups

How you divide worker nodes into MCPs can vary depending on how many nodes are in the cluster or
how many nodes you assign to a node role. By default, the two roles in a cluster are control plane and
worker roles.

You can also move nodes between MCP groups if both groups have the same machine config, which is
important if you have too many nodes in one large machine config pool. For more information about
MCP groups, see Additional resources .

NOTE

OpenShift Container Platform 4.18 Postinstallation configuration

342

https://access.redhat.com/labs/ocpouic/?upgrade_path=4.14 to 4.16
https://access.redhat.com/labs/ocpouic/?upgrade_path=4.14 to 4.16

NOTE

Larger clusters can have as many as 100 worker nodes. No matter how many nodes there
are in the cluster, keep each MachineConfigPool group to around 10 nodes. This allows
you to control how many nodes are taken down at a time. With multiple
MachineConfigPool groups, you can unpause several groups at a time to accelerate the
update, or separate the update over two or more maintenance windows.

Example cluster with 15 worker nodes

Consider a cluster with 15 worker nodes:

10 worker nodes are control plane nodes.

5 worker nodes are data plane nodes.

Split the control plane and data plane worker node roles into at least 2 MCP groups each. Having 2
MCP groups per role means that you can have one set of nodes that are not affected by the update.

Example cluster with 6 worker nodes

Consider a cluster with 6 worker nodes:

Split the worker nodes into 3 MCP groups of 2 nodes each.

Upgrade one of the MCP groups. Allow the updated nodes to sit through a day to allow for
verification of application compatibility before completing the update on the other 4 nodes.

IMPORTANT

The process and pace at which you unpause the MCP groups is determined by your
applications and configuration.

If your pod can handle being scheduled across nodes in a cluster, you can unpause several
MCP groups at a time and set the MaxUnavailable field in the MCP custom resource
(CR) to as high as 50%. This allows up to half of the nodes in an MCP group to restart and
get updated.

Additional resources

Node configuration management with machine config pools

13.2.3.3.3. Reviewing configured cluster MachineConfigPool roles

Review the currently configured MachineConfigPool roles in the cluster.

Procedure

1. Get the currently configured mcp groups in the cluster:

Example output

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

343

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_configuration/#architecture-machine-config-pools_machine-config-overview

2. Compare the list of mcp roles to list of nodes in the cluster:

Example output

NOTE

When you apply an mcp group change, the node roles are updated.

Determine how you want to separate the worker nodes into mcp groups.

13.2.3.3.4. Creating MachineConfigPool groups for the cluster

Creating mcp groups is a 2-step process:

1. Add an mcp label to the nodes in the cluster

2. Apply an mcp CR to the cluster that organizes the nodes based on their labels

Procedure

1. Label the nodes so that they can be put into mcp groups. Run the following commands:

The mcp-1 and mcp-2 labels are applied to the nodes. For example:

Example output

READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT
AGE
master rendered-master-bere83 True False False 3 3 3
0 25d
worker rendered-worker-245c4f True False False 2 2 2
0 25d

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 39d v1.27.15+6147456
ctrl-plane-1 Ready control-plane,master 39d v1.27.15+6147456
ctrl-plane-2 Ready control-plane,master 39d v1.27.15+6147456
worker-0 Ready worker 39d v1.27.15+6147456
worker-1 Ready worker 39d v1.27.15+6147456

$ oc label node worker-0 node-role.kubernetes.io/mcp-1=

$ oc label node worker-1 node-role.kubernetes.io/mcp-2=

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 39d v1.27.15+6147456
ctrl-plane-1 Ready control-plane,master 39d v1.27.15+6147456
ctrl-plane-2 Ready control-plane,master 39d v1.27.15+6147456
worker-0 Ready mcp-1,worker 39d v1.27.15+6147456
worker-1 Ready mcp-2,worker 39d v1.27.15+6147456

OpenShift Container Platform 4.18 Postinstallation configuration

344

2. Create YAML custom resources (CRs) that apply the labels as mcp CRs in the cluster. Save the
following YAML in the mcps.yaml file:

3. Create the MachineConfigPool resources:

Example output

Verification

Monitor the MachineConfigPool resources as they are applied in the cluster. After you apply the mcp
resources, the nodes are added into the new machine config pools. This takes a few minutes.

NOTE

The nodes do not reboot while being added into the mcp groups. The original worker and
master mcp groups remain unchanged.

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: mcp-2
spec:
 machineConfigSelector:
 matchExpressions:
 - {
 key: machineconfiguration.openshift.io/role,
 operator: In,
 values: [worker,mcp-2]
 }
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/mcp-2: ""

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: mcp-1
spec:
 machineConfigSelector:
 matchExpressions:
 - {
 key: machineconfiguration.openshift.io/role,
 operator: In,
 values: [worker,mcp-1]
 }
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/mcp-1: ""

$ oc apply -f mcps.yaml

machineconfigpool.machineconfiguration.openshift.io/mcp-2 created

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

345

Check the status of the new mcp resources:

Example output

Eventually, the resources are fully applied:

Additional resources

Performing a Control Plane Only update

Factors affecting update duration

Ensuring that CNF workloads run uninterrupted with pod disruption budgets

Ensuring that pods do not run on the same cluster node

13.2.3.4. Disconnected environment considerations

To update clusters in disconnected environments, you must update your offline image repository.

Additional resources

API compatibility guidelines

Mirroring images for a disconnected installation by using the oc-mirror plugin v2

13.2.3.5. Preparing the cluster platform for update

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT
AGE
master rendered-master-be3e83 True False False 3 3 3
0 25d
mcp-1 rendered-mcp-1-2f4c4f False True True 1 0 0
0 10s
mcp-2 rendered-mcp-2-2r4s1f False True True 1 0 0
0 10s
worker rendered-worker-23fc4f False True True 0 0 0
2 25d

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT
AGE
master rendered-master-be3e83 True False False 3 3 3
0 25d
mcp-1 rendered-mcp-1-2f4c4f True False False 1 1 1
0 7m33s
mcp-2 rendered-mcp-2-2r4s1f True False False 1 1 1
0 51s
worker rendered-worker-23fc4f True False False 0 0 0
0 25d

OpenShift Container Platform 4.18 Postinstallation configuration

346

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#control-plane-only-update
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#factors-affecting-update-duration_openshift-update-duration
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/api_overview/#api-compatibility-guidelines_compatibility-guidelines
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/disconnected_environments/#about-installing-oc-mirror-v2

Before you update the cluster, perform basic checks and verifications to ensure that the cluster is ready
for the update.

Procedure

1. Verify that there are no failed or in progress pods in the cluster by running the following
command:

NOTE

You might have to run this command more than once if there are pods that are in
a pending state.

2. Verify that all nodes in the cluster are available:

Example output

3. Verify that all bare-metal nodes are provisioned and ready.

Example output

An error occurred while provisioning the worker-1 node.

Verification

Verify that all cluster Operators are ready:

Example output

$ oc get pods -A | grep -E -vi 'complete|running'

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 32d v1.27.15+6147456
ctrl-plane-1 Ready control-plane,master 32d v1.27.15+6147456
ctrl-plane-2 Ready control-plane,master 32d v1.27.15+6147456
worker-0 Ready mcp-1,worker 32d v1.27.15+6147456
worker-1 Ready mcp-2,worker 32d v1.27.15+6147456

$ oc get bmh -n openshift-machine-api

NAME STATE CONSUMER ONLINE ERROR AGE
ctrl-plane-0 unmanaged cnf-58879-master-0 true 33d
ctrl-plane-1 unmanaged cnf-58879-master-1 true 33d
ctrl-plane-2 unmanaged cnf-58879-master-2 true 33d
worker-0 unmanaged cnf-58879-worker-0-45879 true 33d
worker-1 progressing cnf-58879-worker-0-dszsh false 1d

$ oc get co

NAME VERSION AVAILABLE PROGRESSING DEGRADED

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

347

Additional resources

Investigating pod issues

13.2.4. Configuring application pods before updating your OpenShift Container
Platform cluster

Configure application pods to ensure workload availability during OpenShift Container Platform
updates. For example, use deployment strategies, pod disruption budgets, anti-affinity rules, and health
probes to maintain high availability and prevent service disruption. In the telecommunications industry,
most containerized network function (CNF) vendors follow the guidance in Red Hat best practices for
Kubernetes to ensure that the cluster can schedule pods properly during an upgrade.

IMPORTANT

Always deploy pods in groups by using Deployment resources. Deployment resources
spread the workload across all of the available pods ensuring there is no single point of
failure. When a pod that is managed by a Deployment resource is deleted, a new pod
takes its place automatically.

Additional resources

Red Hat best practices for Kubernetes

13.2.4.1. Ensuring that workloads run uninterrupted with pod disruption budgets

To prevent interruption of upgrading worker nodes, configure the pod disruption budget properly. For
more information, see Additional resources .

Additional resources

Specifying the number of pods that must be up with pod disruption budgets

Configuring an OpenShift Container Platform cluster for pods

Pod preemption and other scheduler settings

13.2.4.2. Ensuring that pods do not run on the same cluster node

High availability in Kubernetes requires duplicate processes to be running on separate nodes in the
cluster. This ensures that the application continues to run even if one node becomes unavailable. In
OpenShift Container Platform, processes can be automatically duplicated in separate pods in a
deployment. You configure anti-affinity in the Pod resource to ensure that the pods in a deployment do
not run on the same cluster node.

During an update, setting pod anti-affinity ensures that pods are distributed evenly across nodes in the

SINCE MESSAGE
authentication 4.14.34 True False False 17h
baremetal 4.14.34 True False False 32d

...

service-ca 4.14.34 True False False 32d
storage 4.14.34 True False False 32d

OpenShift Container Platform 4.18 Postinstallation configuration

348

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/support/#investigating-pod-issues
https://redhat-best-practices-for-k8s.github.io/guide/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-pods-pod-disruption-configuring_nodes-pods-configuring
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#priority-preemption-other_nodes-pods-priority

During an update, setting pod anti-affinity ensures that pods are distributed evenly across nodes in the
cluster. This means that node reboots are easier during an update. For example, if there are 4 pods from
a single deployment on a node, and the pod disruption budget is set to only allow 1 pod to be deleted at
a time, then it will take 4 times as long for that node to reboot. Setting pod anti-affinity spreads pods
across the cluster to prevent such occurrences.

Additional resources

Configuring a pod affinity rule

13.2.4.3. Application liveness, readiness, and startup probes

You can use liveness, readiness and startup probes to check the health of your live application
containers before you schedule an update. These are very useful tools to use with pods that are
dependent upon keeping state for their application containers.

Liveness health check

Determines if a container is running. If the liveness probe fails for a container, the pod responds
based on the restart policy.

Readiness probe

Determines if a container is ready to accept service requests. If the readiness probe fails for a
container, the kubelet removes the container from the list of available service endpoints.

Startup probe

A startup probe indicates whether the application within a container is started. All other probes are
disabled until the startup succeeds. If the startup probe does not succeed, the kubelet stops the
container, and the container is subject to the pod restartPolicy setting.

Additional resources

Understanding health checks

13.2.5. Before you update the telco core CNF cluster

Before you start the cluster update, you must pause worker nodes, back up the etcd database, and do a
final cluster health check before proceeding.

13.2.5.1. Pausing worker nodes before the update

You must pause the worker nodes before you proceed with the update. In the following example, there
are 2 mcp groups, mcp-1 and mcp-2. You patch the spec.paused field to true for each of the
MachineConfigPool groups.

Procedure

1. Patch the mcp CRs to pause the nodes and drain and remove the pods from those nodes by
running the following command:

2. Get the status of the paused mcp groups:

$ oc patch mcp/mcp-1 --type merge --patch '{"spec":{"paused":true}}'

$ oc patch mcp/mcp-2 --type merge --patch '{"spec":{"paused":true}}'

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

349

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-scheduler-pod-affinity-configuring_nodes-scheduler-pod-affinity
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/building_applications/#application-health-about_application-health

Example output

NOTE

The default control plane and worker mcp groups are not changed during an update.

13.2.5.2. Backup the etcd database before you proceed with the update

You must backup the etcd database before you proceed with the update.

13.2.5.2.1. Backing up etcd data

Follow these steps to back up etcd data by creating an etcd snapshot and backing up the resources for
the static pods. This backup can be saved and used at a later time if you need to restore etcd.

IMPORTANT

Only save a backup from a single control plane host. Do not take a backup from each
control plane host in the cluster.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have checked whether the cluster-wide proxy is enabled.

TIP

You can check whether the proxy is enabled by reviewing the output of oc get proxy cluster -o
yaml. The proxy is enabled if the httpProxy, httpsProxy, and noProxy fields have values set.

Procedure

1. Start a debug session as root for a control plane node:

2. Change your root directory to /host in the debug shell:

3. If the cluster-wide proxy is enabled, export the NO_PROXY, HTTP_PROXY, and
HTTPS_PROXY environment variables by running the following commands:

$ oc get mcp -o json | jq -r '["MCP","Paused"], ["---","------"], (.items[] | [(.metadata.name),
(.spec.paused)]) | @tsv' | grep -v worker

MCP Paused
--- ------
master false
mcp-1 true
mcp-2 true

$ oc debug --as-root node/<node_name>

sh-4.4# chroot /host

OpenShift Container Platform 4.18 Postinstallation configuration

350

4. Run the cluster-backup.sh script in the debug shell and pass in the location to save the backup
to.

TIP

The cluster-backup.sh script is maintained as a component of the etcd Cluster Operator and is
a wrapper around the etcdctl snapshot save command.

Example script output

In this example, two files are created in the /home/core/assets/backup/ directory on the control
plane host:

snapshot_<datetimestamp>.db: This file is the etcd snapshot. The cluster-backup.sh
script confirms its validity.

static_kuberesources_<datetimestamp>.tar.gz: This file contains the resources for the

$ export HTTP_PROXY=http://<your_proxy.example.com>:8080

$ export HTTPS_PROXY=https://<your_proxy.example.com>:8080

$ export NO_PROXY=<example.com>

sh-4.4# /usr/local/bin/cluster-backup.sh /home/core/assets/backup

found latest kube-apiserver: /etc/kubernetes/static-pod-resources/kube-apiserver-pod-6
found latest kube-controller-manager: /etc/kubernetes/static-pod-resources/kube-controller-
manager-pod-7
found latest kube-scheduler: /etc/kubernetes/static-pod-resources/kube-scheduler-pod-6
found latest etcd: /etc/kubernetes/static-pod-resources/etcd-pod-3
ede95fe6b88b87ba86a03c15e669fb4aa5bf0991c180d3c6895ce72eaade54a1
etcdctl version: 3.4.14
API version: 3.4
{"level":"info","ts":1624647639.0188997,"caller":"snapshot/v3_snapshot.go:119","msg":"created
temporary db file","path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db.part"}
{"level":"info","ts":"2021-06-
25T19:00:39.030Z","caller":"clientv3/maintenance.go:200","msg":"opened snapshot stream;
downloading"}
{"level":"info","ts":1624647639.0301006,"caller":"snapshot/v3_snapshot.go:127","msg":"fetching
snapshot","endpoint":"https://10.0.0.5:2379"}
{"level":"info","ts":"2021-06-
25T19:00:40.215Z","caller":"clientv3/maintenance.go:208","msg":"completed snapshot read;
closing"}
{"level":"info","ts":1624647640.6032252,"caller":"snapshot/v3_snapshot.go:142","msg":"fetched
snapshot","endpoint":"https://10.0.0.5:2379","size":"114 MB","took":1.584090459}
{"level":"info","ts":1624647640.6047094,"caller":"snapshot/v3_snapshot.go:152","msg":"saved",
"path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db"}
Snapshot saved at /home/core/assets/backup/snapshot_2021-06-25_190035.db
{"hash":3866667823,"revision":31407,"totalKey":12828,"totalSize":114446336}
snapshot db and kube resources are successfully saved to /home/core/assets/backup

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

351

1

static_kuberesources_<datetimestamp>.tar.gz: This file contains the resources for the
static pods. If etcd encryption is enabled, it also contains the encryption keys for the etcd
snapshot.

NOTE

If etcd encryption is enabled, it is recommended to store this second file
separately from the etcd snapshot for security reasons. However, this file is
required to restore from the etcd snapshot.

Keep in mind that etcd encryption only encrypts values, not keys. This means
that resource types, namespaces, and object names are unencrypted.

13.2.5.2.2. Creating a single etcd backup

Follow these steps to create a single etcd backup by creating and applying a custom resource (CR).

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift CLI (oc).

Procedure

If dynamically-provisioned storage is available, complete the following steps to create a single
automated etcd backup:

a. Create a persistent volume claim (PVC) named etcd-backup-pvc.yaml with contents such
as the following example:

The amount of storage available to the PVC. Adjust this value for your requirements.

b. Apply the PVC by running the following command:

c. Verify the creation of the PVC by running the following command:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: etcd-backup-pvc
 namespace: openshift-etcd
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 200Gi 1
 volumeMode: Filesystem

$ oc apply -f etcd-backup-pvc.yaml

$ oc get pvc

OpenShift Container Platform 4.18 Postinstallation configuration

352

1

Example output

NOTE

Dynamic PVCs stay in the Pending state until they are mounted.

d. Create a CR file named etcd-single-backup.yaml with contents such as the following
example:

The name of the PVC to save the backup to. Adjust this value according to your
environment.

e. Apply the CR to start a single backup:

If dynamically-provisioned storage is not available, complete the following steps to create a
single automated etcd backup:

a. Create a StorageClass CR file named etcd-backup-local-storage.yaml with the following
contents:

b. Apply the StorageClass CR by running the following command:

c. Create a PV named etcd-backup-pv-fs.yaml with contents such as the following example:

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
etcd-backup-pvc Bound 51s

apiVersion: operator.openshift.io/v1alpha1
kind: EtcdBackup
metadata:
 name: etcd-single-backup
 namespace: openshift-etcd
spec:
 pvcName: etcd-backup-pvc 1

$ oc apply -f etcd-single-backup.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: etcd-backup-local-storage
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: Immediate

$ oc apply -f etcd-backup-local-storage.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
 name: etcd-backup-pv-fs
spec:

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

353

1

2

1

The amount of storage available to the PV. Adjust this value for your requirements.

Replace this value with the node to attach this PV to.

d. Verify the creation of the PV by running the following command:

Example output

e. Create a PVC named etcd-backup-pvc.yaml with contents such as the following example:

The amount of storage available to the PVC. Adjust this value for your requirements.

f. Apply the PVC by running the following command:

 capacity:
 storage: 100Gi 1
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 storageClassName: etcd-backup-local-storage
 local:
 path: /mnt
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - <example_master_node> 2

$ oc get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
etcd-backup-pv-fs 100Gi RWO Retain Available etcd-backup-
local-storage 10s

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: etcd-backup-pvc
 namespace: openshift-etcd
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Filesystem
 resources:
 requests:
 storage: 10Gi 1

$ oc apply -f etcd-backup-pvc.yaml

OpenShift Container Platform 4.18 Postinstallation configuration

354

1

g. Create a CR file named etcd-single-backup.yaml with contents such as the following
example:

The name of the persistent volume claim (PVC) to save the backup to. Adjust this
value according to your environment.

h. Apply the CR to start a single backup:

Additional resources

Backing up etcd

13.2.5.3. Checking the cluster health

You should check the cluster health often during the update. Check for the node status, cluster
Operators status and failed pods.

Procedure

1. Check the status of the cluster Operators by running the following command:

Example output

2. Check the status of the cluster nodes:

apiVersion: operator.openshift.io/v1alpha1
kind: EtcdBackup
metadata:
 name: etcd-single-backup
 namespace: openshift-etcd
spec:
 pvcName: etcd-backup-pvc 1

$ oc apply -f etcd-single-backup.yaml

$ oc get co

NAME VERSION AVAILABLE PROGRESSING DEGRADED
SINCE MESSAGE
authentication 4.14.34 True False False 4d22h
baremetal 4.14.34 True False False 4d22h
cloud-controller-manager 4.14.34 True False False 4d23h
cloud-credential 4.14.34 True False False 4d23h
cluster-autoscaler 4.14.34 True False False 4d22h
config-operator 4.14.34 True False False 4d22h
console 4.14.34 True False False 4d22h
...
service-ca 4.14.34 True False False 4d22h
storage 4.14.34 True False False 4d22h

$ oc get nodes

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

355

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/backup_and_restore/#backup-etcd

Example output

3. Check that there are no in-progress or failed pods. There should be no pods returned when you
run the following command.

13.2.6. Completing the control plane Only cluster update

Complete the following steps to perform the control plane only cluster update.

IMPORTANT

Control plane only updates were previously known as EUS-to-EUS updates. Control plane
only updates are only viable between even-numbered minor versions of OpenShift
Container Platform.

13.2.6.1. Acknowledging the control plane only or y-stream update

When you update to all versions from 4.11 and later, you must manually acknowledge that the update can
continue.

IMPORTANT

Before you acknowledge the update, verify that you are not using any of the Kubernetes
APIs that are removed from the version you are updating to. For example, in OpenShift
Container Platform 4.17, there are no API removals. See "Kubernetes API removals" for
more information.

Prerequisites

You have verified that APIs for all of the applications running on your cluster are compatible
with the next Y-stream release of OpenShift Container Platform. For more details about
compatibility, see "Verifying cluster API versions between update versions".

Procedure

Complete the administrative acknowledgment to start the cluster update by running the
following command:

If the cluster update does not complete successfully, more details about the update failure are
provided in the Reason and Message sections.

Example output

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 4d22h v1.27.15+6147456
ctrl-plane-1 Ready control-plane,master 4d22h v1.27.15+6147456
ctrl-plane-2 Ready control-plane,master 4d22h v1.27.15+6147456
worker-0 Ready mcp-1,worker 4d22h v1.27.15+6147456
worker-1 Ready mcp-2,worker 4d22h v1.27.15+6147456

$ oc get po -A | grep -E -iv 'running|complete'

$ oc adm upgrade

OpenShift Container Platform 4.18 Postinstallation configuration

356

NOTE

In this example, a linked Red Hat Knowledgebase article (Preparing to upgrade to
OpenShift Container Platform 4.16) provides more detail about verifying API
compatibility between releases.

Verification

Verify the update by running the following command:

Example output

Cluster version is 4.15.45

Upgradeable=False

 Reason: MultipleReasons
 Message: Cluster should not be upgraded between minor versions for multiple reasons:
AdminAckRequired,ResourceDeletesInProgress
 * Kubernetes 1.29 and therefore OpenShift 4.16 remove several APIs which require admin
consideration. Please see the knowledge article https://access.redhat.com/articles/7031404
for details and instructions.
 * Cluster minor level upgrades are not allowed while resource deletions are in progress;
resources=PrometheusRule "openshift-kube-apiserver/kube-apiserver-recording-rules"

ReleaseAccepted=False

 Reason: PreconditionChecks
 Message: Preconditions failed for payload loaded version="4.16.34"
image="quay.io/openshift-release-dev/ocp-
release@sha256:41bb08c560f6db5039ccdf242e590e8b23049b5eb31e1c4f6021d1d520b353b
8": Precondition "ClusterVersionUpgradeable" failed because of "MultipleReasons": Cluster
should not be upgraded between minor versions for multiple reasons:
AdminAckRequired,ResourceDeletesInProgress
 * Kubernetes 1.29 and therefore OpenShift 4.16 remove several APIs which require admin
consideration. Please see the knowledge article https://access.redhat.com/articles/7031404
for details and instructions.
 * Cluster minor level upgrades are not allowed while resource deletions are in progress;
resources=PrometheusRule "openshift-kube-apiserver/kube-apiserver-recording-rules"

Upstream is unset, so the cluster will use an appropriate default.
Channel: eus-4.16 (available channels: candidate-4.15, candidate-4.16, eus-4.16, fast-4.15,
fast-4.16, stable-4.15, stable-4.16)

Recommended updates:

 VERSION IMAGE
 4.16.34 quay.io/openshift-release-dev/ocp-
release@sha256:41bb08c560f6db5039ccdf242e590e8b23049b5eb31e1c4f6021d1d520b353b
8

$ oc get configmap admin-acks -n openshift-config -o json | jq .data

{

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

357

https://access.redhat.com/articles/7031404

1

NOTE

In this example, the cluster is updated from version 4.14 to 4.15, and then from
4.15 to 4.16 in a Control Plane Only update.

Additional resources

Kubernetes API removals

13.2.6.2. Starting the cluster update

When updating from one y-stream release to the next, you must ensure that the intermediate z-stream
releases are also compatible.

NOTE

You can verify that you are updating to a viable release by running the oc adm upgrade
command. The oc adm upgrade command lists the compatible update releases.

Procedure

1. Start the update:

IMPORTANT

Control plane only update: Ensure you point to the interim <y+1> release
path

Y-stream update - Ensure you use the correct <y.z> release that follows the
Kubernetes version skew policy.

Z-stream update - Verify that there are no problems moving to that specific
release

Example output

The Requested update value changes depending on your particular update.

Additional resources

Selecting the target release

13.2.6.3. Monitoring the cluster update

 "ack-4.14-kube-1.28-api-removals-in-4.15": "true",
 "ack-4.15-kube-1.29-api-removals-in-4.16": "true"
}

$ oc adm upgrade --to=4.15.33

Requested update to 4.15.33 1

OpenShift Container Platform 4.18 Postinstallation configuration

358

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#kube-api-removals_updating-cluster-prepare
https://kubernetes.io/releases/version-skew-policy/

You should check the cluster health often during the update. Check for the node status, cluster
Operators status and failed pods.

Procedure

Monitor the cluster update. For example, to monitor the cluster update from version 4.14 to 4.15,
run the following command:

Example output

Verification

During the update the watch command cycles through one or several of the cluster Operators at a time,
providing a status of the Operator update in the MESSAGE column.

When the cluster Operators update process is complete, each control plane nodes is rebooted, one at a
time.

NOTE

During this part of the update, messages are reported that state cluster Operators are
being updated again or are in a degraded state. This is because the control plane node is
offline while it reboots nodes.

$ watch "oc get clusterversion; echo; oc get co | head -1; oc get co | grep 4.14; oc get co |
grep 4.15; echo; oc get no; echo; oc get po -A | grep -E -iv 'running|complete'"

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.14.34 True True 4m6s Working towards 4.15.33: 111 of 873 done
(12% complete), waiting on kube-apiserver

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
MESSAGE
authentication 4.14.34 True False False 4d22h
baremetal 4.14.34 True False False 4d23h
cloud-controller-manager 4.14.34 True False False 4d23h
cloud-credential 4.14.34 True False False 4d23h
cluster-autoscaler 4.14.34 True False False 4d23h
console 4.14.34 True False False 4d22h

...

storage 4.14.34 True False False 4d23h
config-operator 4.15.33 True False False 4d23h
etcd 4.15.33 True False False 4d23h

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 4d23h v1.27.15+6147456
ctrl-plane-1 Ready control-plane,master 4d23h v1.27.15+6147456
ctrl-plane-2 Ready control-plane,master 4d23h v1.27.15+6147456
worker-0 Ready mcp-1,worker 4d23h v1.27.15+6147456
worker-1 Ready mcp-2,worker 4d23h v1.27.15+6147456

NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-marketplace redhat-marketplace-rf86t 0/1 ContainerCreating 0 0s

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

359

As soon as the last control plane node reboot is complete, the cluster version is displayed as updated.

When the control plane update is complete a message such as the following is displayed. This example
shows an update completed to the intermediate y-stream release.

13.2.6.4. Updating the OLM Operators

Software needs to vetted before it is loaded onto a production cluster. Production clusters are also
quite often configured in disconnected network, which means that they are not always directly
connected to the internet. Because the clusters are in a disconnected network, the OpenShift Container
Platform Operators are configured for manual update during installation so that new versions can be
managed on a cluster-by-cluster basis. Complete the following procedure to move the Operators to the
newer versions.

Procedure

1. Check to see which Operators need to be updated:

Example output

2. Patch the InstallPlan resources for those Operators:

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.15.33 True False 28m Cluster version is 4.15.33

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE
authentication 4.15.33 True False False 5d
baremetal 4.15.33 True False False 5d
cloud-controller-manager 4.15.33 True False False 5d1h
cloud-credential 4.15.33 True False False 5d1h
cluster-autoscaler 4.15.33 True False False 5d
config-operator 4.15.33 True False False 5d
console 4.15.33 True False False 5d

...

service-ca 4.15.33 True False False 5d
storage 4.15.33 True False False 5d

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 5d v1.28.13+2ca1a23
ctrl-plane-1 Ready control-plane,master 5d v1.28.13+2ca1a23
ctrl-plane-2 Ready control-plane,master 5d v1.28.13+2ca1a23
worker-0 Ready mcp-1,worker 5d v1.28.13+2ca1a23
worker-1 Ready mcp-2,worker 5d v1.28.13+2ca1a23

$ oc get installplan -A | grep -E 'APPROVED|false'

NAMESPACE NAME CSV APPROVAL
APPROVED
metallb-system install-nwjnh metallb-operator.v4.16.0-202409202304 Manual
false
openshift-nmstate install-5r7wr kubernetes-nmstate-operator.4.16.0-202409251605
Manual false

OpenShift Container Platform 4.18 Postinstallation configuration

360

Example output

3. Monitor the namespace by running the following command:

Example output

When the update is complete, the required pods should be in a Running state, and the required
ReplicaSet resources should be ready:

Verification

Verify that the Operators do not need to be updated for a second time:

$ oc patch installplan -n metallb-system install-nwjnh --type merge --patch \
'{"spec":{"approved":true}}'

installplan.operators.coreos.com/install-nwjnh patched

$ oc get all -n metallb-system

NAME READY STATUS RESTARTS AGE
pod/metallb-operator-controller-manager-69b5f884c-8bp22 0/1 ContainerCreating 0
4s
pod/metallb-operator-controller-manager-77895bdb46-bqjdx 1/1 Running 0
4m1s
pod/metallb-operator-webhook-server-5d9b968896-vnbhk 0/1 ContainerCreating 0
4s
pod/metallb-operator-webhook-server-d76f9c6c8-57r4w 1/1 Running 0
4m1s

...

NAME DESIRED CURRENT READY AGE
replicaset.apps/metallb-operator-controller-manager-69b5f884c 1 1 0 4s
replicaset.apps/metallb-operator-controller-manager-77895bdb46 1 1 1 4m1s
replicaset.apps/metallb-operator-controller-manager-99b76f88 0 0 0 4m40s
replicaset.apps/metallb-operator-webhook-server-5d9b968896 1 1 0 4s
replicaset.apps/metallb-operator-webhook-server-6f7dbfdb88 0 0 0 4m40s
replicaset.apps/metallb-operator-webhook-server-d76f9c6c8 1 1 1 4m1s

NAME READY STATUS RESTARTS AGE
pod/metallb-operator-controller-manager-69b5f884c-8bp22 1/1 Running 0 25s
pod/metallb-operator-webhook-server-5d9b968896-vnbhk 1/1 Running 0 25s

...

NAME DESIRED CURRENT READY AGE
replicaset.apps/metallb-operator-controller-manager-69b5f884c 1 1 1 25s
replicaset.apps/metallb-operator-controller-manager-77895bdb46 0 0 0 4m22s
replicaset.apps/metallb-operator-webhook-server-5d9b968896 1 1 1 25s
replicaset.apps/metallb-operator-webhook-server-d76f9c6c8 0 0 0 4m22s

$ oc get installplan -A | grep -E 'APPROVED|false'

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

361

There should be no output returned.

NOTE

Sometimes you have to approve an update twice because some Operators have
interim z-stream release versions that need to be installed before the final
version.

Additional resources

Updating the worker nodes

13.2.6.4.1. Performing the second y-stream update

After completing the first y-stream update, you must update the y-stream control plane version to the
new EUS version.

Procedure

1. Verify that the <4.y.z> release that you selected is still listed as a good channel to move to:

Example output

NOTE

$ oc adm upgrade

Cluster version is 4.15.33

Upgradeable=False

 Reason: AdminAckRequired
 Message: Kubernetes 1.29 and therefore OpenShift 4.16 remove several APIs which require
admin consideration. Please see the knowledge article
https://access.redhat.com/articles/7031404 for details and instructions.

Upstream is unset, so the cluster will use an appropriate default.
Channel: eus-4.16 (available channels: candidate-4.15, candidate-4.16, eus-4.16, fast-4.15,
fast-4.16, stable-4.15, stable-4.16)

Recommended updates:

 VERSION IMAGE
 4.16.14 quay.io/openshift-release-dev/ocp-
release@sha256:0521a0f1acd2d1b77f76259cb9bae9c743c60c37d9903806a3372c141425365
8
 4.16.13 quay.io/openshift-release-dev/ocp-
release@sha256:6078cb4ae197b5b0c526910363b8aff540343bfac62ecb1ead9e068d541da27
b
 4.15.34 quay.io/openshift-release-dev/ocp-
release@sha256:f2e0c593f6ed81250c11d0bac94dbaf63656223477b7e8693a652f933056af6e

OpenShift Container Platform 4.18 Postinstallation configuration

362

NOTE

If you update soon after the initial GA of a new Y-stream release, you might not
see new y-stream releases available when you run the oc adm upgrade
command.

2. Optional: View the potential update releases that are not recommended. Run the following
command:

Example output

NOTE

The example shows a potential error that can affect clusters hosted in Microsoft
Azure. It does not show risks for bare-metal clusters.

$ oc adm upgrade --include-not-recommended

Cluster version is 4.15.33

Upgradeable=False

 Reason: AdminAckRequired
 Message: Kubernetes 1.29 and therefore OpenShift 4.16 remove several APIs which require
admin consideration. Please see the knowledge article
https://access.redhat.com/articles/7031404 for details and instructions.

Upstream is unset, so the cluster will use an appropriate default.Channel: eus-4.16 (available
channels: candidate-4.15, candidate-4.16, eus-4.16, fast-4.15, fast-4.16, stable-4.15, stable-
4.16)

Recommended updates:

 VERSION IMAGE
 4.16.14 quay.io/openshift-release-dev/ocp-
release@sha256:0521a0f1acd2d1b77f76259cb9bae9c743c60c37d9903806a3372c141425365
8
 4.16.13 quay.io/openshift-release-dev/ocp-
release@sha256:6078cb4ae197b5b0c526910363b8aff540343bfac62ecb1ead9e068d541da27
b
 4.15.34 quay.io/openshift-release-dev/ocp-
release@sha256:f2e0c593f6ed81250c11d0bac94dbaf63656223477b7e8693a652f933056af6e

Supported but not recommended updates:

 Version: 4.16.15
 Image: quay.io/openshift-release-dev/ocp-release@sha256:671bc35e
 Recommended: Unknown
 Reason: EvaluationFailed
 Message: Exposure to AzureRegistryImagePreservation is unknown due to an evaluation
failure: invalid PromQL result length must be one, but is 0
 In Azure clusters, the in-cluster image registry may fail to preserve images on update.
https://issues.redhat.com/browse/IR-461

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

363

13.2.6.4.2. Acknowledging the y-stream release update

When moving between y-stream releases, you must run a patch command to explicitly acknowledge the
update. In the output of the oc adm upgrade command, a URL is provided that shows the specific
command to run.

IMPORTANT

Before you acknowledge the update, verify that you are not using any of the Kubernetes
APIs that are removed from the version you are updating to. For example, in OpenShift
Container Platform 4.17, there are no API removals. See "Kubernetes API removals" for
more information.

Prerequisites

You have verified that APIs for all of the applications running on your cluster are compatible
with the next Y-stream release of OpenShift Container Platform. For more details about
compatibility, see "Verifying cluster API versions between update versions".

Procedure

Complete the administrative acknowledgment to start the cluster update by running the
following command:

If the cluster update does not complete successfully, more details about the update failure are
provided in the Reason and Message sections.

Example output

$ oc adm upgrade

Cluster version is 4.15.45

Upgradeable=False

 Reason: MultipleReasons
 Message: Cluster should not be upgraded between minor versions for multiple reasons:
AdminAckRequired,ResourceDeletesInProgress
 * Kubernetes 1.29 and therefore OpenShift 4.16 remove several APIs which require admin
consideration. Please see the knowledge article https://access.redhat.com/articles/7031404
for details and instructions.
 * Cluster minor level upgrades are not allowed while resource deletions are in progress;
resources=PrometheusRule "openshift-kube-apiserver/kube-apiserver-recording-rules"

ReleaseAccepted=False

 Reason: PreconditionChecks
 Message: Preconditions failed for payload loaded version="4.16.34"
image="quay.io/openshift-release-dev/ocp-
release@sha256:41bb08c560f6db5039ccdf242e590e8b23049b5eb31e1c4f6021d1d520b353b
8": Precondition "ClusterVersionUpgradeable" failed because of "MultipleReasons": Cluster
should not be upgraded between minor versions for multiple reasons:
AdminAckRequired,ResourceDeletesInProgress
 * Kubernetes 1.29 and therefore OpenShift 4.16 remove several APIs which require admin
consideration. Please see the knowledge article https://access.redhat.com/articles/7031404

OpenShift Container Platform 4.18 Postinstallation configuration

364

NOTE

In this example, a linked Red Hat Knowledgebase article (Preparing to upgrade to
OpenShift Container Platform 4.16) provides more detail about verifying API
compatibility between releases.

Verification

Verify the update by running the following command:

Example output

NOTE

In this example, the cluster is updated from version 4.14 to 4.15, and then from
4.15 to 4.16 in a Control Plane Only update.

Additional resources

Preparing to update to OpenShift Container Platform 4.18

13.2.6.5. Starting the y-stream control plane update

After you have determined the full new release that you are moving to, you can run the oc adm
upgrade –to=x.y.z command.

Procedure

Start the y-stream control plane update. For example, run the following command:

for details and instructions.
 * Cluster minor level upgrades are not allowed while resource deletions are in progress;
resources=PrometheusRule "openshift-kube-apiserver/kube-apiserver-recording-rules"

Upstream is unset, so the cluster will use an appropriate default.
Channel: eus-4.16 (available channels: candidate-4.15, candidate-4.16, eus-4.16, fast-4.15,
fast-4.16, stable-4.15, stable-4.16)

Recommended updates:

 VERSION IMAGE
 4.16.34 quay.io/openshift-release-dev/ocp-
release@sha256:41bb08c560f6db5039ccdf242e590e8b23049b5eb31e1c4f6021d1d520b353b
8

$ oc get configmap admin-acks -n openshift-config -o json | jq .data

{
 "ack-4.14-kube-1.28-api-removals-in-4.15": "true",
 "ack-4.15-kube-1.29-api-removals-in-4.16": "true"
}

$ oc adm upgrade --to=4.16.14

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

365

https://access.redhat.com/articles/7031404
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#updating-cluster-prepare

Example output

You might move to a z-stream release that has potential issues with platforms other than the
one you are running on. The following example shows a potential problem for cluster updates on
Microsoft Azure:

Example output

NOTE

The example shows a potential error that can affect clusters hosted in Microsoft
Azure. It does not show risks for bare-metal clusters.

Example output

13.2.6.6. Monitoring the second part of a <y+1> cluster update

Monitor the second part of the cluster update to the <y+1> version.

Procedure

Monitor the progress of the second part of the <y+1> update. For example, to monitor the
update from 4.15 to 4.16, run the following command:

Requested update to 4.16.14

$ oc adm upgrade --to=4.16.15

error: the update 4.16.15 is not one of the recommended updates, but is available as a
conditional update. To accept the Recommended=Unknown risk and to proceed with update
use --allow-not-recommended.
 Reason: EvaluationFailed
 Message: Exposure to AzureRegistryImagePreservation is unknown due to an evaluation
failure: invalid PromQL result length must be one, but is 0
 In Azure clusters, the in-cluster image registry may fail to preserve images on update.
https://issues.redhat.com/browse/IR-461

$ oc adm upgrade --to=4.16.15 --allow-not-recommended

warning: with --allow-not-recommended you have accepted the risks with 4.14.11 and
bypassed Recommended=Unknown EvaluationFailed: Exposure to
AzureRegistryImagePreservation is unknown due to an evaluation failure: invalid PromQL
result length must be one, but is 0
In Azure clusters, the in-cluster image registry may fail to preserve images on update.
https://issues.redhat.com/browse/IR-461

Requested update to 4.16.15

$ watch "oc get clusterversion; echo; oc get co | head -1; oc get co | grep 4.15; oc get co |
grep 4.16; echo; oc get no; echo; oc get po -A | grep -E -iv 'running|complete'"

OpenShift Container Platform 4.18 Postinstallation configuration

366

Example output

As soon as the last control plane node is complete, the cluster version is updated to the new
EUS release. For example:

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.15.33 True True 10m Working towards 4.16.14: 132 of 903 done
(14% complete), waiting on kube-controller-manager, kube-scheduler

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
MESSAGE
authentication 4.15.33 True False False 5d3h
baremetal 4.15.33 True False False 5d4h
cloud-controller-manager 4.15.33 True False False 5d4h
cloud-credential 4.15.33 True False False 5d4h
cluster-autoscaler 4.15.33 True False False 5d4h
console 4.15.33 True False False 5d3h
...
config-operator 4.16.14 True False False 5d4h
etcd 4.16.14 True False False 5d4h
kube-apiserver 4.16.14 True True False 5d4h
NodeInstallerProgressing: 1 node is at revision 15; 2 nodes are at revision 17

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 5d4h v1.28.13+2ca1a23
ctrl-plane-1 Ready control-plane,master 5d4h v1.28.13+2ca1a23
ctrl-plane-2 Ready control-plane,master 5d4h v1.28.13+2ca1a23
worker-0 Ready mcp-1,worker 5d4h v1.27.15+6147456
worker-1 Ready mcp-2,worker 5d4h v1.27.15+6147456

NAMESPACE NAME READY
STATUS RESTARTS AGE
openshift-kube-apiserver kube-apiserver-ctrl-plane-0
0/5 Pending 0 <invalid>

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.16.14 True False 123m Cluster version is 4.16.14

NAME VERSION AVAILABLE PROGRESSING DEGRADED
SINCE MESSAGE
authentication 4.16.14 True False False 5d6h
baremetal 4.16.14 True False False 5d7h
cloud-controller-manager 4.16.14 True False False 5d7h
cloud-credential 4.16.14 True False False 5d7h
cluster-autoscaler 4.16.14 True False False 5d7h
config-operator 4.16.14 True False False 5d7h
console 4.16.14 True False False 5d6h
#...
operator-lifecycle-manager-packageserver 4.16.14 True False False 5d7h
service-ca 4.16.14 True False False 5d7h
storage 4.16.14 True False False 5d7h

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 5d7h v1.29.8+f10c92d
ctrl-plane-1 Ready control-plane,master 5d7h v1.29.8+f10c92d

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

367

Additional resources

Monitoring the cluster update

13.2.6.7. Updating all the OLM Operators

In the second phase of a multi-version upgrade, you must approve all of the Operators and additionally
add installations plans for any other Operators that you want to upgrade.

Follow the same procedure as outlined in "Updating the OLM Operators". Ensure that you also update
any non-OLM Operators as required.

Procedure

1. Monitor the cluster update. For example, to monitor the cluster update from version 4.14 to 4.15,
run the following command:

2. Check to see which Operators need to be updated:

3. Patch the InstallPlan resources for those Operators:

4. Monitor the namespace by running the following command:

When the update is complete, the required pods should be in a Running state, and the required
ReplicaSet resources should be ready.

Verification

During the update the watch command cycles through one or several of the cluster Operators at a time,
providing a status of the Operator update in the MESSAGE column.

When the cluster Operators update process is complete, each control plane nodes is rebooted, one at a
time.

NOTE

During this part of the update, messages are reported that state cluster Operators are
being updated again or are in a degraded state. This is because the control plane node is
offline while it reboots nodes.

ctrl-plane-2 Ready control-plane,master 5d7h v1.29.8+f10c92d
worker-0 Ready mcp-1,worker 5d7h v1.27.15+6147456
worker-1 Ready mcp-2,worker 5d7h v1.27.15+6147456

$ watch "oc get clusterversion; echo; oc get co | head -1; oc get co | grep 4.14; oc get co |
grep 4.15; echo; oc get no; echo; oc get po -A | grep -E -iv 'running|complete'"

$ oc get installplan -A | grep -E 'APPROVED|false'

$ oc patch installplan -n metallb-system install-nwjnh --type merge --patch \
'{"spec":{"approved":true}}'

$ oc get all -n metallb-system

OpenShift Container Platform 4.18 Postinstallation configuration

368

Additional resources

Monitoring the cluster update

Updating the OLM Operators

13.2.6.8. Updating the worker nodes

You upgrade the worker nodes after you have updated the control plane by unpausing the relevant mcp
groups you created. Unpausing the mcp group starts the upgrade process for the worker nodes in that
group. Each of the worker nodes in the cluster reboot to upgrade to the new EUS, y-stream or z-stream
version as required.

In the case of control plane only upgrades, note that when a worker node is updated it will only require
one reboot and will jump <y+2>-release versions. This is a feature that was added to decrease the
amount of time that it takes to upgrade large bare-metal clusters.

IMPORTANT

This is a potential holding point. You can have a cluster version that is fully supported to
run in production with the control plane that is updated to a new EUS release while the
worker nodes are at a <y-2>-release. This allows large clusters to upgrade in steps across
several maintenance windows.

1. You can check how many nodes are managed in an mcp group. Run the following command to
get the list of mcp groups:

Example output

NOTE

You decide how many mcp groups to upgrade at a time. This depends on how
many pods can be taken down at a time and how your pod disruption budget and
anti-affinity settings are configured.

2. Get the list of nodes in the cluster:

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-c9a52144456dbff9c9af9c5a37d1b614 True False False
3 3 3 0 36d
mcp-1 rendered-mcp-1-07fe50b9ad51fae43ed212e84e1dcc8e False False False
1 0 0 0 47h
mcp-2 rendered-mcp-2-07fe50b9ad51fae43ed212e84e1dcc8e False False False
1 0 0 0 47h
worker rendered-worker-f1ab7b9a768e1b0ac9290a18817f60f0 True False False
0 0 0 0 36d

$ oc get nodes

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

369

Example output

3. Confirm the MachineConfigPool groups that are paused:

Example output

NOTE

Each MachineConfigPool can be unpaused independently. Therefore, if a
maintenance window runs out of time other MCPs do not need to be unpaused
immediately. The cluster is supported to run with some worker nodes still at <y-
2>-release version.

4. Unpause the required mcp group to begin the upgrade:

Example output

5. Confirm that the required mcp group is unpaused:

Example output

6. As each mcp group is upgraded, continue to unpause and upgrade the remaining nodes.

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 5d8h v1.29.8+f10c92d
ctrl-plane-1 Ready control-plane,master 5d8h v1.29.8+f10c92d
ctrl-plane-2 Ready control-plane,master 5d8h v1.29.8+f10c92d
worker-0 Ready mcp-1,worker 5d8h v1.27.15+6147456
worker-1 Ready mcp-2,worker 5d8h v1.27.15+6147456

$ oc get mcp -o json | jq -r '["MCP","Paused"], ["---","------"], (.items[] | [(.metadata.name),
(.spec.paused)]) | @tsv' | grep -v worker

MCP Paused
--- ------
master false
mcp-1 true
mcp-2 true

$ oc patch mcp/mcp-1 --type merge --patch '{"spec":{"paused":false}}'

machineconfigpool.machineconfiguration.openshift.io/mcp-1 patched

$ oc get mcp -o json | jq -r '["MCP","Paused"], ["---","------"], (.items[] | [(.metadata.name),
(.spec.paused)]) | @tsv' | grep -v worker

MCP Paused
--- ------
master false
mcp-1 false
mcp-2 true

OpenShift Container Platform 4.18 Postinstallation configuration

370

Example output

13.2.6.9. Verifying the health of the newly updated cluster

After updating the cluster, verify that the cluster is back up and running.

Procedure

1. Check the cluster version by running the following command:

Example output

This should return the new cluster version and the PROGRESSING column should return False.

2. Check that all nodes are ready:

Example output

All nodes in the cluster should be in a Ready status and running the same version.

3. Check that there are no paused mcp resources in the cluster:

Example output

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 5d8h v1.29.8+f10c92d
ctrl-plane-1 Ready control-plane,master 5d8h v1.29.8+f10c92d
ctrl-plane-2 Ready control-plane,master 5d8h v1.29.8+f10c92d
worker-0 Ready mcp-1,worker 5d8h v1.29.8+f10c92d
worker-1 NotReady,SchedulingDisabled mcp-2,worker 5d8h v1.27.15+6147456

$ oc get clusterversion

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.16.14 True False 4h38m Cluster version is 4.16.14

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 5d9h v1.29.8+f10c92d
ctrl-plane-1 Ready control-plane,master 5d9h v1.29.8+f10c92d
ctrl-plane-2 Ready control-plane,master 5d9h v1.29.8+f10c92d
worker-0 Ready mcp-1,worker 5d9h v1.29.8+f10c92d
worker-1 Ready mcp-2,worker 5d9h v1.29.8+f10c92d

$ oc get mcp -o json | jq -r '["MCP","Paused"], ["---","------"], (.items[] | [(.metadata.name),
(.spec.paused)]) | @tsv' | grep -v worker

MCP Paused

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

371

4. Check that all cluster Operators are available:

Example output

All cluster Operators should report True in the AVAILABLE column.

5. Check that all pods are healthy:

This should not return any pods.

NOTE

--- ------
master false
mcp-1 false
mcp-2 false

$ oc get co

NAME VERSION AVAILABLE PROGRESSING DEGRADED
SINCE MESSAGE
authentication 4.16.14 True False False 5d9h
baremetal 4.16.14 True False False 5d9h
cloud-controller-manager 4.16.14 True False False 5d10h
cloud-credential 4.16.14 True False False 5d10h
cluster-autoscaler 4.16.14 True False False 5d9h
config-operator 4.16.14 True False False 5d9h
console 4.16.14 True False False 5d9h
control-plane-machine-set 4.16.14 True False False 5d9h
csi-snapshot-controller 4.16.14 True False False 5d9h
dns 4.16.14 True False False 5d9h
etcd 4.16.14 True False False 5d9h
image-registry 4.16.14 True False False 85m
ingress 4.16.14 True False False 5d9h
insights 4.16.14 True False False 5d9h
kube-apiserver 4.16.14 True False False 5d9h
kube-controller-manager 4.16.14 True False False 5d9h
kube-scheduler 4.16.14 True False False 5d9h
kube-storage-version-migrator 4.16.14 True False False 4h48m
machine-api 4.16.14 True False False 5d9h
machine-approver 4.16.14 True False False 5d9h
machine-config 4.16.14 True False False 5d9h
marketplace 4.16.14 True False False 5d9h
monitoring 4.16.14 True False False 5d9h
network 4.16.14 True False False 5d9h
node-tuning 4.16.14 True False False 5d7h
openshift-apiserver 4.16.14 True False False 5d9h
openshift-controller-manager 4.16.14 True False False 5d9h
openshift-samples 4.16.14 True False False 5h24m
operator-lifecycle-manager 4.16.14 True False False 5d9h
operator-lifecycle-manager-catalog 4.16.14 True False False 5d9h
operator-lifecycle-manager-packageserver 4.16.14 True False False 5d9h
service-ca 4.16.14 True False False 5d9h
storage 4.16.14 True False False 5d9h

$ oc get po -A | grep -E -iv 'complete|running'

OpenShift Container Platform 4.18 Postinstallation configuration

372

NOTE

You might see a few pods still moving after the update. Watch this for a while to
make sure all pods are cleared.

13.2.7. Completing the y-stream cluster update

Complete the following steps to perform a y-stream cluster update.

13.2.7.1. Acknowledging the control plane only or y-stream update

When you update to all versions from 4.11 and later, you must manually acknowledge that the update can
continue.

IMPORTANT

Before you acknowledge the update, verify that you are not using any of the Kubernetes
APIs that are removed from the version you are updating to. For example, in OpenShift
Container Platform 4.17, there are no API removals. See "Kubernetes API removals" for
more information.

Prerequisites

You have verified that APIs for all of the applications running on your cluster are compatible
with the next Y-stream release of OpenShift Container Platform. For more details about
compatibility, see "Verifying cluster API versions between update versions".

Procedure

Complete the administrative acknowledgment to start the cluster update by running the
following command:

If the cluster update does not complete successfully, more details about the update failure are
provided in the Reason and Message sections.

Example output

$ oc adm upgrade

Cluster version is 4.15.45

Upgradeable=False

 Reason: MultipleReasons
 Message: Cluster should not be upgraded between minor versions for multiple reasons:
AdminAckRequired,ResourceDeletesInProgress
 * Kubernetes 1.29 and therefore OpenShift 4.16 remove several APIs which require admin
consideration. Please see the knowledge article https://access.redhat.com/articles/7031404
for details and instructions.
 * Cluster minor level upgrades are not allowed while resource deletions are in progress;
resources=PrometheusRule "openshift-kube-apiserver/kube-apiserver-recording-rules"

ReleaseAccepted=False

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

373

NOTE

In this example, a linked Red Hat Knowledgebase article (Preparing to upgrade to
OpenShift Container Platform 4.16) provides more detail about verifying API
compatibility between releases.

Verification

Verify the update by running the following command:

Example output

NOTE

In this example, the cluster is updated from version 4.14 to 4.15, and then from
4.15 to 4.16 in a Control Plane Only update.

Additional resources

Kubernetes API removals

13.2.7.2. Starting the cluster update

 Reason: PreconditionChecks
 Message: Preconditions failed for payload loaded version="4.16.34"
image="quay.io/openshift-release-dev/ocp-
release@sha256:41bb08c560f6db5039ccdf242e590e8b23049b5eb31e1c4f6021d1d520b353b
8": Precondition "ClusterVersionUpgradeable" failed because of "MultipleReasons": Cluster
should not be upgraded between minor versions for multiple reasons:
AdminAckRequired,ResourceDeletesInProgress
 * Kubernetes 1.29 and therefore OpenShift 4.16 remove several APIs which require admin
consideration. Please see the knowledge article https://access.redhat.com/articles/7031404
for details and instructions.
 * Cluster minor level upgrades are not allowed while resource deletions are in progress;
resources=PrometheusRule "openshift-kube-apiserver/kube-apiserver-recording-rules"

Upstream is unset, so the cluster will use an appropriate default.
Channel: eus-4.16 (available channels: candidate-4.15, candidate-4.16, eus-4.16, fast-4.15,
fast-4.16, stable-4.15, stable-4.16)

Recommended updates:

 VERSION IMAGE
 4.16.34 quay.io/openshift-release-dev/ocp-
release@sha256:41bb08c560f6db5039ccdf242e590e8b23049b5eb31e1c4f6021d1d520b353b
8

$ oc get configmap admin-acks -n openshift-config -o json | jq .data

{
 "ack-4.14-kube-1.28-api-removals-in-4.15": "true",
 "ack-4.15-kube-1.29-api-removals-in-4.16": "true"
}

OpenShift Container Platform 4.18 Postinstallation configuration

374

https://access.redhat.com/articles/7031404
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#kube-api-removals_updating-cluster-prepare

1

When updating from one y-stream release to the next, you must ensure that the intermediate z-stream
releases are also compatible.

NOTE

You can verify that you are updating to a viable release by running the oc adm upgrade
command. The oc adm upgrade command lists the compatible update releases.

Procedure

1. Start the update:

IMPORTANT

Control plane only update: Ensure you point to the interim <y+1> release
path

Y-stream update - Ensure you use the correct <y.z> release that follows the
Kubernetes version skew policy.

Z-stream update - Verify that there are no problems moving to that specific
release

Example output

The Requested update value changes depending on your particular update.

Additional resources

Selecting the target release

13.2.7.3. Monitoring the cluster update

You should check the cluster health often during the update. Check for the node status, cluster
Operators status and failed pods.

Procedure

Monitor the cluster update. For example, to monitor the cluster update from version 4.14 to 4.15,
run the following command:

Example output

$ oc adm upgrade --to=4.15.33

Requested update to 4.15.33 1

$ watch "oc get clusterversion; echo; oc get co | head -1; oc get co | grep 4.14; oc get co |
grep 4.15; echo; oc get no; echo; oc get po -A | grep -E -iv 'running|complete'"

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

375

https://kubernetes.io/releases/version-skew-policy/

Verification

During the update the watch command cycles through one or several of the cluster Operators at a time,
providing a status of the Operator update in the MESSAGE column.

When the cluster Operators update process is complete, each control plane nodes is rebooted, one at a
time.

NOTE

During this part of the update, messages are reported that state cluster Operators are
being updated again or are in a degraded state. This is because the control plane node is
offline while it reboots nodes.

As soon as the last control plane node reboot is complete, the cluster version is displayed as updated.

When the control plane update is complete a message such as the following is displayed. This example
shows an update completed to the intermediate y-stream release.

version 4.14.34 True True 4m6s Working towards 4.15.33: 111 of 873 done
(12% complete), waiting on kube-apiserver

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
MESSAGE
authentication 4.14.34 True False False 4d22h
baremetal 4.14.34 True False False 4d23h
cloud-controller-manager 4.14.34 True False False 4d23h
cloud-credential 4.14.34 True False False 4d23h
cluster-autoscaler 4.14.34 True False False 4d23h
console 4.14.34 True False False 4d22h

...

storage 4.14.34 True False False 4d23h
config-operator 4.15.33 True False False 4d23h
etcd 4.15.33 True False False 4d23h

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 4d23h v1.27.15+6147456
ctrl-plane-1 Ready control-plane,master 4d23h v1.27.15+6147456
ctrl-plane-2 Ready control-plane,master 4d23h v1.27.15+6147456
worker-0 Ready mcp-1,worker 4d23h v1.27.15+6147456
worker-1 Ready mcp-2,worker 4d23h v1.27.15+6147456

NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-marketplace redhat-marketplace-rf86t 0/1 ContainerCreating 0 0s

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.15.33 True False 28m Cluster version is 4.15.33

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE
authentication 4.15.33 True False False 5d
baremetal 4.15.33 True False False 5d
cloud-controller-manager 4.15.33 True False False 5d1h
cloud-credential 4.15.33 True False False 5d1h

OpenShift Container Platform 4.18 Postinstallation configuration

376

13.2.7.4. Updating the OLM Operators

Software needs to vetted before it is loaded onto a production cluster. Production clusters are also
quite often configured in disconnected network, which means that they are not always directly
connected to the internet. Because the clusters are in a disconnected network, the OpenShift Container
Platform Operators are configured for manual update during installation so that new versions can be
managed on a cluster-by-cluster basis. Complete the following procedure to move the Operators to the
newer versions.

Procedure

1. Check to see which Operators need to be updated:

Example output

2. Patch the InstallPlan resources for those Operators:

Example output

3. Monitor the namespace by running the following command:

cluster-autoscaler 4.15.33 True False False 5d
config-operator 4.15.33 True False False 5d
console 4.15.33 True False False 5d

...

service-ca 4.15.33 True False False 5d
storage 4.15.33 True False False 5d

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 5d v1.28.13+2ca1a23
ctrl-plane-1 Ready control-plane,master 5d v1.28.13+2ca1a23
ctrl-plane-2 Ready control-plane,master 5d v1.28.13+2ca1a23
worker-0 Ready mcp-1,worker 5d v1.28.13+2ca1a23
worker-1 Ready mcp-2,worker 5d v1.28.13+2ca1a23

$ oc get installplan -A | grep -E 'APPROVED|false'

NAMESPACE NAME CSV APPROVAL
APPROVED
metallb-system install-nwjnh metallb-operator.v4.16.0-202409202304 Manual
false
openshift-nmstate install-5r7wr kubernetes-nmstate-operator.4.16.0-202409251605
Manual false

$ oc patch installplan -n metallb-system install-nwjnh --type merge --patch \
'{"spec":{"approved":true}}'

installplan.operators.coreos.com/install-nwjnh patched

$ oc get all -n metallb-system

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

377

Example output

When the update is complete, the required pods should be in a Running state, and the required
ReplicaSet resources should be ready:

Verification

Verify that the Operators do not need to be updated for a second time:

There should be no output returned.

NOTE

Sometimes you have to approve an update twice because some Operators have
interim z-stream release versions that need to be installed before the final
version.

Additional resources

Updating the worker nodes

NAME READY STATUS RESTARTS AGE
pod/metallb-operator-controller-manager-69b5f884c-8bp22 0/1 ContainerCreating 0
4s
pod/metallb-operator-controller-manager-77895bdb46-bqjdx 1/1 Running 0
4m1s
pod/metallb-operator-webhook-server-5d9b968896-vnbhk 0/1 ContainerCreating 0
4s
pod/metallb-operator-webhook-server-d76f9c6c8-57r4w 1/1 Running 0
4m1s

...

NAME DESIRED CURRENT READY AGE
replicaset.apps/metallb-operator-controller-manager-69b5f884c 1 1 0 4s
replicaset.apps/metallb-operator-controller-manager-77895bdb46 1 1 1 4m1s
replicaset.apps/metallb-operator-controller-manager-99b76f88 0 0 0 4m40s
replicaset.apps/metallb-operator-webhook-server-5d9b968896 1 1 0 4s
replicaset.apps/metallb-operator-webhook-server-6f7dbfdb88 0 0 0 4m40s
replicaset.apps/metallb-operator-webhook-server-d76f9c6c8 1 1 1 4m1s

NAME READY STATUS RESTARTS AGE
pod/metallb-operator-controller-manager-69b5f884c-8bp22 1/1 Running 0 25s
pod/metallb-operator-webhook-server-5d9b968896-vnbhk 1/1 Running 0 25s

...

NAME DESIRED CURRENT READY AGE
replicaset.apps/metallb-operator-controller-manager-69b5f884c 1 1 1 25s
replicaset.apps/metallb-operator-controller-manager-77895bdb46 0 0 0 4m22s
replicaset.apps/metallb-operator-webhook-server-5d9b968896 1 1 1 25s
replicaset.apps/metallb-operator-webhook-server-d76f9c6c8 0 0 0 4m22s

$ oc get installplan -A | grep -E 'APPROVED|false'

OpenShift Container Platform 4.18 Postinstallation configuration

378

13.2.7.5. Updating the worker nodes

You upgrade the worker nodes after you have updated the control plane by unpausing the relevant mcp
groups you created. Unpausing the mcp group starts the upgrade process for the worker nodes in that
group. Each of the worker nodes in the cluster reboot to upgrade to the new EUS, y-stream or z-stream
version as required.

In the case of control plane only upgrades, note that when a worker node is updated it will only require
one reboot and will jump <y+2>-release versions. This is a feature that was added to decrease the
amount of time that it takes to upgrade large bare-metal clusters.

IMPORTANT

This is a potential holding point. You can have a cluster version that is fully supported to
run in production with the control plane that is updated to a new EUS release while the
worker nodes are at a <y-2>-release. This allows large clusters to upgrade in steps across
several maintenance windows.

1. You can check how many nodes are managed in an mcp group. Run the following command to
get the list of mcp groups:

Example output

NOTE

You decide how many mcp groups to upgrade at a time. This depends on how
many pods can be taken down at a time and how your pod disruption budget and
anti-affinity settings are configured.

2. Get the list of nodes in the cluster:

Example output

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-c9a52144456dbff9c9af9c5a37d1b614 True False False
3 3 3 0 36d
mcp-1 rendered-mcp-1-07fe50b9ad51fae43ed212e84e1dcc8e False False False
1 0 0 0 47h
mcp-2 rendered-mcp-2-07fe50b9ad51fae43ed212e84e1dcc8e False False False
1 0 0 0 47h
worker rendered-worker-f1ab7b9a768e1b0ac9290a18817f60f0 True False False
0 0 0 0 36d

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 5d8h v1.29.8+f10c92d
ctrl-plane-1 Ready control-plane,master 5d8h v1.29.8+f10c92d
ctrl-plane-2 Ready control-plane,master 5d8h v1.29.8+f10c92d

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

379

3. Confirm the MachineConfigPool groups that are paused:

Example output

NOTE

Each MachineConfigPool can be unpaused independently. Therefore, if a
maintenance window runs out of time other MCPs do not need to be unpaused
immediately. The cluster is supported to run with some worker nodes still at <y-
2>-release version.

4. Unpause the required mcp group to begin the upgrade:

Example output

5. Confirm that the required mcp group is unpaused:

Example output

6. As each mcp group is upgraded, continue to unpause and upgrade the remaining nodes.

Example output

worker-0 Ready mcp-1,worker 5d8h v1.27.15+6147456
worker-1 Ready mcp-2,worker 5d8h v1.27.15+6147456

$ oc get mcp -o json | jq -r '["MCP","Paused"], ["---","------"], (.items[] | [(.metadata.name),
(.spec.paused)]) | @tsv' | grep -v worker

MCP Paused
--- ------
master false
mcp-1 true
mcp-2 true

$ oc patch mcp/mcp-1 --type merge --patch '{"spec":{"paused":false}}'

machineconfigpool.machineconfiguration.openshift.io/mcp-1 patched

$ oc get mcp -o json | jq -r '["MCP","Paused"], ["---","------"], (.items[] | [(.metadata.name),
(.spec.paused)]) | @tsv' | grep -v worker

MCP Paused
--- ------
master false
mcp-1 false
mcp-2 true

$ oc get nodes

NAME STATUS ROLES AGE VERSION

OpenShift Container Platform 4.18 Postinstallation configuration

380

13.2.7.6. Verifying the health of the newly updated cluster

After updating the cluster, verify that the cluster is back up and running.

Procedure

1. Check the cluster version by running the following command:

Example output

This should return the new cluster version and the PROGRESSING column should return False.

2. Check that all nodes are ready:

Example output

All nodes in the cluster should be in a Ready status and running the same version.

3. Check that there are no paused mcp resources in the cluster:

Example output

4. Check that all cluster Operators are available:

ctrl-plane-0 Ready control-plane,master 5d8h v1.29.8+f10c92d
ctrl-plane-1 Ready control-plane,master 5d8h v1.29.8+f10c92d
ctrl-plane-2 Ready control-plane,master 5d8h v1.29.8+f10c92d
worker-0 Ready mcp-1,worker 5d8h v1.29.8+f10c92d
worker-1 NotReady,SchedulingDisabled mcp-2,worker 5d8h v1.27.15+6147456

$ oc get clusterversion

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.16.14 True False 4h38m Cluster version is 4.16.14

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 5d9h v1.29.8+f10c92d
ctrl-plane-1 Ready control-plane,master 5d9h v1.29.8+f10c92d
ctrl-plane-2 Ready control-plane,master 5d9h v1.29.8+f10c92d
worker-0 Ready mcp-1,worker 5d9h v1.29.8+f10c92d
worker-1 Ready mcp-2,worker 5d9h v1.29.8+f10c92d

$ oc get mcp -o json | jq -r '["MCP","Paused"], ["---","------"], (.items[] | [(.metadata.name),
(.spec.paused)]) | @tsv' | grep -v worker

MCP Paused
--- ------
master false
mcp-1 false
mcp-2 false

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

381

Example output

All cluster Operators should report True in the AVAILABLE column.

5. Check that all pods are healthy:

This should not return any pods.

NOTE

You might see a few pods still moving after the update. Watch this for a while to
make sure all pods are cleared.

13.2.8. Completing the z-stream cluster update

$ oc get co

NAME VERSION AVAILABLE PROGRESSING DEGRADED
SINCE MESSAGE
authentication 4.16.14 True False False 5d9h
baremetal 4.16.14 True False False 5d9h
cloud-controller-manager 4.16.14 True False False 5d10h
cloud-credential 4.16.14 True False False 5d10h
cluster-autoscaler 4.16.14 True False False 5d9h
config-operator 4.16.14 True False False 5d9h
console 4.16.14 True False False 5d9h
control-plane-machine-set 4.16.14 True False False 5d9h
csi-snapshot-controller 4.16.14 True False False 5d9h
dns 4.16.14 True False False 5d9h
etcd 4.16.14 True False False 5d9h
image-registry 4.16.14 True False False 85m
ingress 4.16.14 True False False 5d9h
insights 4.16.14 True False False 5d9h
kube-apiserver 4.16.14 True False False 5d9h
kube-controller-manager 4.16.14 True False False 5d9h
kube-scheduler 4.16.14 True False False 5d9h
kube-storage-version-migrator 4.16.14 True False False 4h48m
machine-api 4.16.14 True False False 5d9h
machine-approver 4.16.14 True False False 5d9h
machine-config 4.16.14 True False False 5d9h
marketplace 4.16.14 True False False 5d9h
monitoring 4.16.14 True False False 5d9h
network 4.16.14 True False False 5d9h
node-tuning 4.16.14 True False False 5d7h
openshift-apiserver 4.16.14 True False False 5d9h
openshift-controller-manager 4.16.14 True False False 5d9h
openshift-samples 4.16.14 True False False 5h24m
operator-lifecycle-manager 4.16.14 True False False 5d9h
operator-lifecycle-manager-catalog 4.16.14 True False False 5d9h
operator-lifecycle-manager-packageserver 4.16.14 True False False 5d9h
service-ca 4.16.14 True False False 5d9h
storage 4.16.14 True False False 5d9h

$ oc get po -A | grep -E -iv 'complete|running'

OpenShift Container Platform 4.18 Postinstallation configuration

382

1

Complete the following steps to perform a z-stream cluster update.

13.2.8.1. Starting the cluster update

When updating from one y-stream release to the next, you must ensure that the intermediate z-stream
releases are also compatible.

NOTE

You can verify that you are updating to a viable release by running the oc adm upgrade
command. The oc adm upgrade command lists the compatible update releases.

Procedure

1. Start the update:

IMPORTANT

Control plane only update: Ensure you point to the interim <y+1> release
path

Y-stream update - Ensure you use the correct <y.z> release that follows the
Kubernetes version skew policy.

Z-stream update - Verify that there are no problems moving to that specific
release

Example output

The Requested update value changes depending on your particular update.

Additional resources

Selecting the target release

13.2.8.2. Updating the worker nodes

You upgrade the worker nodes after you have updated the control plane by unpausing the relevant mcp
groups you created. Unpausing the mcp group starts the upgrade process for the worker nodes in that
group. Each of the worker nodes in the cluster reboot to upgrade to the new EUS, y-stream or z-stream
version as required.

In the case of control plane only upgrades, note that when a worker node is updated it will only require
one reboot and will jump <y+2>-release versions. This is a feature that was added to decrease the
amount of time that it takes to upgrade large bare-metal clusters.

IMPORTANT

$ oc adm upgrade --to=4.15.33

Requested update to 4.15.33 1

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

383

https://kubernetes.io/releases/version-skew-policy/

IMPORTANT

This is a potential holding point. You can have a cluster version that is fully supported to
run in production with the control plane that is updated to a new EUS release while the
worker nodes are at a <y-2>-release. This allows large clusters to upgrade in steps across
several maintenance windows.

1. You can check how many nodes are managed in an mcp group. Run the following command to
get the list of mcp groups:

Example output

NOTE

You decide how many mcp groups to upgrade at a time. This depends on how
many pods can be taken down at a time and how your pod disruption budget and
anti-affinity settings are configured.

2. Get the list of nodes in the cluster:

Example output

3. Confirm the MachineConfigPool groups that are paused:

Example output

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-c9a52144456dbff9c9af9c5a37d1b614 True False False
3 3 3 0 36d
mcp-1 rendered-mcp-1-07fe50b9ad51fae43ed212e84e1dcc8e False False False
1 0 0 0 47h
mcp-2 rendered-mcp-2-07fe50b9ad51fae43ed212e84e1dcc8e False False False
1 0 0 0 47h
worker rendered-worker-f1ab7b9a768e1b0ac9290a18817f60f0 True False False
0 0 0 0 36d

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 5d8h v1.29.8+f10c92d
ctrl-plane-1 Ready control-plane,master 5d8h v1.29.8+f10c92d
ctrl-plane-2 Ready control-plane,master 5d8h v1.29.8+f10c92d
worker-0 Ready mcp-1,worker 5d8h v1.27.15+6147456
worker-1 Ready mcp-2,worker 5d8h v1.27.15+6147456

$ oc get mcp -o json | jq -r '["MCP","Paused"], ["---","------"], (.items[] | [(.metadata.name),
(.spec.paused)]) | @tsv' | grep -v worker

OpenShift Container Platform 4.18 Postinstallation configuration

384

NOTE

Each MachineConfigPool can be unpaused independently. Therefore, if a
maintenance window runs out of time other MCPs do not need to be unpaused
immediately. The cluster is supported to run with some worker nodes still at <y-
2>-release version.

4. Unpause the required mcp group to begin the upgrade:

Example output

5. Confirm that the required mcp group is unpaused:

Example output

6. As each mcp group is upgraded, continue to unpause and upgrade the remaining nodes.

Example output

13.2.8.3. Verifying the health of the newly updated cluster

After updating the cluster, verify that the cluster is back up and running.

MCP Paused
--- ------
master false
mcp-1 true
mcp-2 true

$ oc patch mcp/mcp-1 --type merge --patch '{"spec":{"paused":false}}'

machineconfigpool.machineconfiguration.openshift.io/mcp-1 patched

$ oc get mcp -o json | jq -r '["MCP","Paused"], ["---","------"], (.items[] | [(.metadata.name),
(.spec.paused)]) | @tsv' | grep -v worker

MCP Paused
--- ------
master false
mcp-1 false
mcp-2 true

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 5d8h v1.29.8+f10c92d
ctrl-plane-1 Ready control-plane,master 5d8h v1.29.8+f10c92d
ctrl-plane-2 Ready control-plane,master 5d8h v1.29.8+f10c92d
worker-0 Ready mcp-1,worker 5d8h v1.29.8+f10c92d
worker-1 NotReady,SchedulingDisabled mcp-2,worker 5d8h v1.27.15+6147456

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

385

Procedure

1. Check the cluster version by running the following command:

Example output

This should return the new cluster version and the PROGRESSING column should return False.

2. Check that all nodes are ready:

Example output

All nodes in the cluster should be in a Ready status and running the same version.

3. Check that there are no paused mcp resources in the cluster:

Example output

4. Check that all cluster Operators are available:

Example output

$ oc get clusterversion

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.16.14 True False 4h38m Cluster version is 4.16.14

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ctrl-plane-0 Ready control-plane,master 5d9h v1.29.8+f10c92d
ctrl-plane-1 Ready control-plane,master 5d9h v1.29.8+f10c92d
ctrl-plane-2 Ready control-plane,master 5d9h v1.29.8+f10c92d
worker-0 Ready mcp-1,worker 5d9h v1.29.8+f10c92d
worker-1 Ready mcp-2,worker 5d9h v1.29.8+f10c92d

$ oc get mcp -o json | jq -r '["MCP","Paused"], ["---","------"], (.items[] | [(.metadata.name),
(.spec.paused)]) | @tsv' | grep -v worker

MCP Paused
--- ------
master false
mcp-1 false
mcp-2 false

$ oc get co

NAME VERSION AVAILABLE PROGRESSING DEGRADED
SINCE MESSAGE
authentication 4.16.14 True False False 5d9h
baremetal 4.16.14 True False False 5d9h
cloud-controller-manager 4.16.14 True False False 5d10h

OpenShift Container Platform 4.18 Postinstallation configuration

386

All cluster Operators should report True in the AVAILABLE column.

5. Check that all pods are healthy:

This should not return any pods.

NOTE

You might see a few pods still moving after the update. Watch this for a while to
make sure all pods are cleared.

13.3. TROUBLESHOOTING AND MAINTAINING OPENSHIFT
CONTAINER PLATFORM CLUSTERS

13.3.1. Troubleshooting and maintaining OpenShift Container Platform clusters

Troubleshooting and maintenance are weekly tasks that can be a challenge if you do not have the tools
to reach your goal, whether you want to update a component or investigate an issue. Part of the
challenge is knowing where and how to search for tools and answers.

To maintain and troubleshoot a bare-metal environment with high performance requirements, see the

cloud-credential 4.16.14 True False False 5d10h
cluster-autoscaler 4.16.14 True False False 5d9h
config-operator 4.16.14 True False False 5d9h
console 4.16.14 True False False 5d9h
control-plane-machine-set 4.16.14 True False False 5d9h
csi-snapshot-controller 4.16.14 True False False 5d9h
dns 4.16.14 True False False 5d9h
etcd 4.16.14 True False False 5d9h
image-registry 4.16.14 True False False 85m
ingress 4.16.14 True False False 5d9h
insights 4.16.14 True False False 5d9h
kube-apiserver 4.16.14 True False False 5d9h
kube-controller-manager 4.16.14 True False False 5d9h
kube-scheduler 4.16.14 True False False 5d9h
kube-storage-version-migrator 4.16.14 True False False 4h48m
machine-api 4.16.14 True False False 5d9h
machine-approver 4.16.14 True False False 5d9h
machine-config 4.16.14 True False False 5d9h
marketplace 4.16.14 True False False 5d9h
monitoring 4.16.14 True False False 5d9h
network 4.16.14 True False False 5d9h
node-tuning 4.16.14 True False False 5d7h
openshift-apiserver 4.16.14 True False False 5d9h
openshift-controller-manager 4.16.14 True False False 5d9h
openshift-samples 4.16.14 True False False 5h24m
operator-lifecycle-manager 4.16.14 True False False 5d9h
operator-lifecycle-manager-catalog 4.16.14 True False False 5d9h
operator-lifecycle-manager-packageserver 4.16.14 True False False 5d9h
service-ca 4.16.14 True False False 5d9h
storage 4.16.14 True False False 5d9h

$ oc get po -A | grep -E -iv 'complete|running'

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

387

To maintain and troubleshoot a bare-metal environment with high performance requirements, see the
following procedures.

IMPORTANT

This troubleshooting information is not a reference for configuring OpenShift Container
Platform or developing cloud-native applications.

For information about developing cloud-native applications on OpenShift Container
Platform, see Red Hat Best Practices for Kubernetes .

13.3.1.1. Getting Support

If you experience difficulty with a procedure, visit the Red Hat Customer Portal . From the Customer
Portal, you can find help in various ways:

Search or browse through the Red Hat Knowledgebase of articles and solutions about Red Hat
products.

Submit a support case to Red Hat Support.

Access other product documentation.

To identify issues with your deployment, you can use the debugging tool or check the health endpoint of
your deployment. After you have debugged or obtained health information about your deployment, you
can search the Red Hat Knowledgebase for a solution or file a support ticket.

13.3.1.1.1. About the Red Hat Knowledgebase

The Red Hat Knowledgebase provides rich content aimed at helping you make the most of Red Hat’s
products and technologies. The Red Hat Knowledgebase consists of articles, product documentation,
and videos outlining best practices on installing, configuring, and using Red Hat products. In addition, you
can search for solutions to known issues, each providing concise root cause descriptions and remedial
steps.

13.3.1.1.2. Searching the Red Hat Knowledgebase

In the event of an OpenShift Container Platform issue, you can perform an initial search to determine if
a solution already exists within the Red Hat Knowledgebase.

Prerequisites

You have a Red Hat Customer Portal account.

Procedure

1. Log in to the Red Hat Customer Portal .

2. Click Search.

3. In the search field, input keywords and strings relating to the problem, including:

OpenShift Container Platform components (such as etcd)

Related procedure (such as installation)

OpenShift Container Platform 4.18 Postinstallation configuration

388

https://redhat-best-practices-for-k8s.github.io/guide/
https://access.redhat.com/
https://access.redhat.com/knowledgebase
http://access.redhat.com

Warnings, error messages, and other outputs related to explicit failures

4. Click the Enter key.

5. Optional: Select the OpenShift Container Platform product filter.

6. Optional: Select the Documentation content type filter.

13.3.1.1.3. Submitting a support case

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

You have a Red Hat Customer Portal account.

You have a Red Hat Standard or Premium subscription.

Procedure

1. Log in to the Customer Support page of the Red Hat Customer Portal.

2. Click Get support.

3. On the Cases tab of the Customer Support page:

a. Optional: Change the pre-filled account and owner details if needed.

b. Select the appropriate category for your issue, such as Bug or Defect, and click Continue.

4. Enter the following information:

a. In the Summary field, enter a concise but descriptive problem summary and further details
about the symptoms being experienced, as well as your expectations.

b. Select OpenShift Container Platform from the Product drop-down menu.

c. Select 4.18 from the Version drop-down.

5. Review the list of suggested Red Hat Knowledgebase solutions for a potential match against the
problem that is being reported. If the suggested articles do not address the issue, click
Continue.

6. Review the updated list of suggested Red Hat Knowledgebase solutions for a potential match
against the problem that is being reported. The list is refined as you provide more information
during the case creation process. If the suggested articles do not address the issue, click
Continue.

7. Ensure that the account information presented is as expected, and if not, amend accordingly.

8. Check that the autofilled OpenShift Container Platform Cluster ID is correct. If it is not,
manually obtain your cluster ID.

To manually obtain your cluster ID using the OpenShift Container Platform web console:

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

389

https://access.redhat.com/support/cases/#/case/list

a. Navigate to Home → Overview.

b. Find the value in the Cluster ID field of the Details section.

Alternatively, it is possible to open a new support case through the OpenShift Container
Platform web console and have your cluster ID autofilled.

a. From the toolbar, navigate to (?) Help → Open Support Case.

b. The Cluster ID value is autofilled.

To obtain your cluster ID using the OpenShift CLI (oc), run the following command:

9. Complete the following questions where prompted and then click Continue:

What are you experiencing? What are you expecting to happen?

Define the value or impact to you or the business.

Where are you experiencing this behavior? What environment?

When does this behavior occur? Frequency? Repeatedly? At certain times?

10. Upload relevant diagnostic data files and click Continue. It is recommended to include data
gathered using the oc adm must-gather command as a starting point, plus any issue specific
data that is not collected by that command.

11. Input relevant case management details and click Continue.

12. Preview the case details and click Submit.

13.3.2. General troubleshooting

When you encounter a problem, the first step is to find the specific area where the issue is happening. To
narrow down the potential problematic areas, complete one or more of the following tasks:

Query your cluster

Check your pod logs

Debug a pod

Review events

13.3.2.1. Querying your cluster

Get information about your cluster so that you can more accurately find potential problems.

Procedure

1. Switch into a project by running the following command:

2. Query your cluster version, cluster Operator, and node within that namespace by running the

$ oc get clusterversion -o jsonpath='{.items[].spec.clusterID}{"\n"}'

$ oc project <project_name>

OpenShift Container Platform 4.18 Postinstallation configuration

390

2. Query your cluster version, cluster Operator, and node within that namespace by running the
following command:

Example output

$ oc get clusterversion,clusteroperator,node

NAME VERSION AVAILABLE PROGRESSING SINCE
STATUS
clusterversion.config.openshift.io/version 4.16.11 True False 62d Cluster
version is 4.16.11

NAME VERSION AVAILABLE
PROGRESSING DEGRADED SINCE MESSAGE
clusteroperator.config.openshift.io/authentication 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/baremetal 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/cloud-controller-manager 4.16.11 True
False False 62d
clusteroperator.config.openshift.io/cloud-credential 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/cluster-autoscaler 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/config-operator 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/console 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/control-plane-machine-set 4.16.11 True
False False 62d
clusteroperator.config.openshift.io/csi-snapshot-controller 4.16.11 True
False False 62d
clusteroperator.config.openshift.io/dns 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/etcd 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/image-registry 4.16.11 True False
False 55d
clusteroperator.config.openshift.io/ingress 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/insights 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/kube-apiserver 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/kube-controller-manager 4.16.11 True
False False 62d
clusteroperator.config.openshift.io/kube-scheduler 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/kube-storage-version-migrator 4.16.11 True
False False 62d
clusteroperator.config.openshift.io/machine-api 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/machine-approver 4.16.11 True
False False 62d
clusteroperator.config.openshift.io/machine-config 4.16.11 True False
False 62d

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

391

For more information, see "oc get" and "Reviewing pod status".

Additional resources

oc get

Reviewing pod status

13.3.2.2. Checking pod logs

Get logs from the pod so that you can review the logs for issues.

Procedure

1. List the pods by running the following command:

Example output

clusteroperator.config.openshift.io/marketplace 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/monitoring 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/network 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/node-tuning 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/openshift-apiserver 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/openshift-controller-manager 4.16.11 True
False False 62d
clusteroperator.config.openshift.io/openshift-samples 4.16.11 True
False False 35d
clusteroperator.config.openshift.io/operator-lifecycle-manager 4.16.11 True
False False 62d
clusteroperator.config.openshift.io/operator-lifecycle-manager-catalog 4.16.11 True
False False 62d
clusteroperator.config.openshift.io/operator-lifecycle-manager-packageserver 4.16.11 True
False False 62d
clusteroperator.config.openshift.io/service-ca 4.16.11 True False
False 62d
clusteroperator.config.openshift.io/storage 4.16.11 True False
False 62d

NAME STATUS ROLES AGE VERSION
node/ctrl-plane-0 Ready control-plane,master,worker 62d v1.29.7
node/ctrl-plane-1 Ready control-plane,master,worker 62d v1.29.7
node/ctrl-plane-2 Ready control-plane,master,worker 62d v1.29.7

$ oc get pod

NAME READY STATUS RESTARTS AGE
busybox-1 1/1 Running 168 (34m ago) 7d
busybox-2 1/1 Running 119 (9m20s ago) 4d23h
busybox-3 1/1 Running 168 (43m ago) 7d
busybox-4 1/1 Running 168 (43m ago) 7d

OpenShift Container Platform 4.18 Postinstallation configuration

392

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/cli_tools/#oc-get
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/support/#reviewing-pod-status_investigating-pod-issues

2. Check pod log files by running the following command:

For more information, see "oc logs", "Logging", and "Inspecting pod and container logs".

Additional resources

oc logs

Logging

Inspecting pod and container logs

13.3.2.3. Describing a pod

To troubleshoot pod issues and view detailed information about a pod in OpenShift Container Platform,
you can describe a pod using the oc describe pod command. The Events section in the output
provides detailed information about the pod and the containers inside of it.

Procedure

Describe a pod by running the following command:

Example output

Additional resources

oc describe

13.3.2.4. Reviewing events

$ oc logs -n <namespace> busybox-1

$ oc describe pod -n <namespace> busybox-1

Name: busybox-1
Namespace: busy
Priority: 0
Service Account: default
Node: worker-3/192.168.0.0
Start Time: Mon, 27 Nov 2023 14:41:25 -0500
Labels: app=busybox
 pod-template-hash=<hash>
Annotations: k8s.ovn.org/pod-networks:
…
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Pulled 41m (x170 over 7d1h) kubelet Container image
"quay.io/quay/busybox:latest" already present on machine
 Normal Created 41m (x170 over 7d1h) kubelet Created container busybox
 Normal Started 41m (x170 over 7d1h) kubelet Started container busybox

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

393

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/cli_tools/#oc-logs
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#security-monitoring-cluster-logging_security-monitoring
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/support/#inspecting-pod-and-container-logs_investigating-pod-issues
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/cli_tools/#oc-describe

1

1

You can review the events in a given namespace to find potential issues.

Procedure

1. Check for events in your namespace by running the following command:

Adding the --sort-by=".metadata.creationTimestamp" flag places the most recent
events at the end of the output.

2. Optional: If the events within your specified namespace do not provide enough information,
expand your query to all namespaces by running the following command:

The --sort-by=".metadata.creationTimestamp" flag places the most recent events at the
end of the output.

To filter the results of all events from a cluster, you can use the grep command. For example, if
you are looking for errors, the errors can appear in two different sections of the output: the
TYPE or MESSAGE sections. With the grep command, you can search for keywords, such as
error or failed.

3. For example, search for a message that contains warning or error by running the following
command:

Example output

4. Optional: To clean up the events and see only recurring events, you can delete the events in the
relevant namespace by running the following command:

For more information, see "Watching cluster events".

Additional resources

Watching cluster events

13.3.2.5. Connecting to a pod

You can directly connect to a currently running pod with the oc rsh command, which provides you with a
shell on that pod.

$ oc get events -n <namespace> --sort-by=".metadata.creationTimestamp" 1

$ oc get events -A --sort-by=".metadata.creationTimestamp" 1

$ oc get events -A | grep -Ei "warning|error"

NAMESPACE LAST SEEN TYPE REASON OBJECT MESSAGE
openshift 59s Warning FailedMount pod/openshift-1 MountVolume.SetUp failed
for volume "v4-0-config-user-idp-0-file-data" : references non-existent secret key: test

$ oc delete events -n <namespace> --all

OpenShift Container Platform 4.18 Postinstallation configuration

394

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#security-monitoring-events_security-monitoring

WARNING

In pods that run a low-latency application, latency issues can occur when you run
the oc rsh command. Use the oc rsh command only if you cannot connect to the
node by using the oc debug command.

Procedure

Connect to your pod by running the following command:

For more information, see "oc rsh" and "Accessing running pods".

Additional resources

oc rsh

Accessing running pods

13.3.2.6. Debugging a pod

In certain cases, you do not want to directly interact with your pod that is in production.

To avoid interfering with running traffic, you can use a secondary pod that is a copy of your original pod.
The secondary pod uses the same components as that of the original pod but does not have running
traffic.

Procedure

1. List the pods by running the following command:

Example output

2. Debug a pod by running the following command:

Example output



$ oc rsh -n <namespace> busybox-1

$ oc get pod

NAME READY STATUS RESTARTS AGE
busybox-1 1/1 Running 168 (34m ago) 7d
busybox-2 1/1 Running 119 (9m20s ago) 4d23h
busybox-3 1/1 Running 168 (43m ago) 7d
busybox-4 1/1 Running 168 (43m ago) 7d

$ oc debug -n <namespace> busybox-1

Starting pod/busybox-1-debug, command was: sleep 3600

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

395

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/cli_tools/#oc-rsh
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/support/#accessing-running-pods_investigating-pod-issues

If you do not see a shell prompt, press Enter.

For more information, see "oc debug" and "Starting debug pods with root access".

Additional resources

oc debug

Starting debug pods with root access

13.3.2.7. Running a command on a pod

If you want to run a command or set of commands on a pod without directly logging into it, you can use
the oc exec -it command. You can interact with the pod quickly to get process or output information
from the pod. A common use case is to run the oc exec -it command inside a script to run the same
command on multiple pods in a replica set or deployment.

WARNING

In pods that run a low-latency application, the oc exec command can cause latency
issues.

Procedure

To run a command on a pod without logging into it, run the following command:

For more information, see "oc exec" and "Executing remote commands in containers".

Additional resources

oc exec

Executing remote commands in containers

13.3.3. Cluster maintenance

When deploying OpenShift Container Platform on bare-metal infrastructure, you must pay more
attention to certain configurations which can have a significant impact on cluster stability. You can
troubleshoot more effectively by completing these tasks:

Monitor for failed or failing hardware components

Periodically check the status of the cluster Operators

NOTE

Pod IP: 10.133.2.11



$ oc exec -it <pod> -- <command>

OpenShift Container Platform 4.18 Postinstallation configuration

396

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/cli_tools/#oc-debug
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/support/#starting-debug-pods-with-root-access_investigating-pod-issues
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/cli_tools/#oc-exec
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-containers-remote-commands-about_nodes-containers-remote-commands

NOTE

For hardware monitoring, contact your hardware vendor to find the appropriate logging
tool for your specific hardware.

13.3.3.1. Checking cluster Operators

Periodically check the status of your cluster Operators to find issues early.

Procedure

Check the status of the cluster Operators by running the following command:

13.3.3.2. Watching for failed pods

To reduce troubleshooting time, regularly monitor for failed pods in your cluster.

Procedure

To watch for failed pods, run the following command:

13.3.4. Security

Implementing a robust cluster security profile is important for building resilient environments.

13.3.4.1. Authentication

Determine which identity providers are in your cluster. For more information about supported identity
providers, see "Supported identity providers" in Authentication and authorization.

After you know which providers are configured, you can inspect the openshift-authentication
namespace to determine if there are potential issues.

Procedure

1. Check the events in the openshift-authentication namespace by running the following
command:

2. Check the pods in the openshift-authentication namespace by running the following
command:

3. Optional: If you need more information, check the logs of one of the running pods by running
the following command:

$ oc get co

$ oc get po -A | grep -Eiv 'complete|running'

$ oc get events -n openshift-authentication --sort-by='.metadata.creationTimestamp'

$ oc get pod -n openshift-authentication

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

397

Additional resources

Supported identity providers

13.3.5. Certificate maintenance

Certificate maintenance is required for continuous cluster authentication. As a cluster administrator, you
must manually renew certain certificates, while others are automatically renewed by the cluster.

Learn about certificates in OpenShift Container Platform and how to maintain them by using the
following resources:

Which OpenShift certificates do rotate automatically and which do not in Openshift 4.x?

Checking etcd certificate expiry in OpenShift 4

13.3.5.1. Certificates manually managed by the administrator

The following certificates must be renewed by a cluster administrator:

Proxy certificates

User-provisioned certificates for the API server

13.3.5.1.1. Managing proxy certificates

Proxy certificates allow users to specify one or more custom certificate authority (CA) certificates that
are used by platform components when making egress connections.

NOTE

Certain CAs set expiration dates and you might need to renew these certificates every
two years.

If you did not originally set the requested certificates, you can determine the certificate expiration in
several ways. Most Cloud-native Network Functions (CNFs) use certificates that are not specifically
designed for browser-based connectivity. Therefore, you need to pull the certificate from the
ConfigMap object of your deployment.

Procedure

To get the expiration date, run the following command against the certificate file:

For more information about determining how and when to renew your proxy certificates, see "Proxy
certificates" in Security and compliance .

Additional resources

Proxy certificates

$ oc logs -n openshift-authentication <pod_name>

$ openssl x509 -enddate -noout -in <cert_file_name>.pem

OpenShift Container Platform 4.18 Postinstallation configuration

398

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#supported-identity-providers
https://access.redhat.com/solutions/5018231
https://access.redhat.com/solutions/7000968
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-proxy-certificates

13.3.5.1.2. User-provisioned API server certificates

The API server is accessible by clients that are external to the cluster at api.<cluster_name>.
<base_domain>. You might want clients to access the API server at a different hostname or without the
need to distribute the cluster-managed certificate authority (CA) certificates to the clients. You must
set a custom default certificate to be used by the API server when serving content.

For more information, see "User-provided certificates for the API server" in Security and compliance

Additional resources

User-provisioned certificates for the API server

13.3.5.2. Certificates managed by the cluster

You only need to check cluster-managed certificates if you detect an issue in the logs. The following
certificates are automatically managed by the cluster:

Service CA certificates

Node certificates

Bootstrap certificates

etcd certificates

OLM certificates

Machine Config Operator certificates

Monitoring and cluster logging Operator component certificates

Control plane certificates

Ingress certificates

Additional resources

Service CA certificates

Node certificates

Bootstrap certificates

etcd certificates

OLM certificates

Machine Config Operator certificates

Monitoring and cluster logging Operator component certificates

Control plane certificates

Ingress certificates

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

399

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-user-provided-certificates-for-the-api-server
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-service-ca-certificates_cert-types-service-ca-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-node-certificates_cert-types-node-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-bootstrap-certificates_cert-types-bootstrap-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-etcd-certificates-cert-types-etcd-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-olm-certificates_cert-types-olm-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-machine-config-operator-certificates_cert-types-machine-config-operator-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-monitoring-and-cluster-logging-operator-component-certificates_cert-types-monitoring-and-cluster-logging-operator-component-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-control-plane-certificates_cert-types-control-plane-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-ingress-certificates_cert-types-ingress-certificates

13.3.5.2.1. Certificates managed by etcd

The etcd certificates are used for encrypted communication between etcd member peers as well as
encrypted client traffic. The certificates are renewed automatically within the cluster provided that
communication between all nodes and all services is current. Therefore, if your cluster might lose
communication between components during a specific period of time, which is close to the end of the
etcd certificate lifetime, it is recommended to renew the certificate in advance. For example,
communication can be lost during an upgrade due to nodes rebooting at different times.

You can manually renew etcd certificates by running the following command:

For more information about updating etcd certificates, see Checking etcd certificate expiry in
OpenShift 4. For more information about etcd certificates, see "etcd certificates" in Security and
compliance.

Additional resources

etcd certificates

13.3.5.2.2. Node certificates

Node certificates are self-signed certificates, which means that they are signed by the cluster and they
originate from an internal certificate authority (CA) that is generated by the bootstrap process.

After the cluster is installed, the cluster automatically renews the node certificates.

For more information, see "Node certificates" in Security and compliance .

Additional resources

Node certificates

13.3.5.2.3. Service CA certificates

The service-ca is an Operator that creates a self-signed certificate authority (CA) when an OpenShift
Container Platform cluster is deployed. This allows user to add certificates to their deployments without
manually creating them. Service CA certificates are self-signed certificates.

For more information, see "Service CA certificates" in Security and compliance .

Additional resources

Service CA certificates

13.3.6. Machine Config Operator

The Machine Config Operator provides useful information to cluster administrators and controls what is
running directly on the bare-metal host.

The Machine Config Operator differentiates between groups of nodes in the cluster, allowing control
plane nodes and worker nodes to run with different configurations. These groups of nodes run worker

$ for each in $(oc get secret -n openshift-etcd | grep "kubernetes.io/tls" | grep -e \
"etcd-peer\|etcd-serving" | awk '{print $1}'); do oc get secret $each -n openshift-etcd -o \
jsonpath="{.data.tls\.crt}" | base64 -d | openssl x509 -noout -enddate; done

OpenShift Container Platform 4.18 Postinstallation configuration

400

https://access.redhat.com/solutions/7000968
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-etcd-certificates_cert-types-etcd-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-node-certificates_cert-types-node-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-service-ca-certificates_cert-types-service-ca-certificates

or application pods, which are called MachineConfigPool (mcp) groups. The same machine config is
applied to all nodes or only to one MCP in the cluster.

For more information about the Machine Config Operator, see Machine Config Operator.

13.3.6.1. Purpose of the Machine Config Operator

The Machine Config Operator (MCO) manages and applies configuration and updates of Red Hat
Enterprise Linux CoreOS (RHCOS) and container runtime, including everything between the kernel and
kubelet. Managing RHCOS is important since most telecommunications companies run on bare-metal
hardware and use some sort of hardware accelerator or kernel modification. Applying machine
configuration to RHCOS manually can cause problems because the MCO monitors each node and what
is applied to it.

You must consider these minor components and how the MCO can help you manage your clusters
effectively.

IMPORTANT

You must use the MCO to perform all changes on worker or control plane nodes. Do not
manually make changes to RHCOS or node files.

13.3.6.2. Applying several machine config files at the same time

When you need to change the machine config for a group of nodes in the cluster, also known as machine
config pools (MCPs), sometimes the changes must be applied with several different machine config
files. The nodes need to restart for the machine config file to be applied. After each machine config file
is applied to the cluster, all nodes restart that are affected by the machine config file.

To prevent the nodes from restarting for each machine config file, you can apply all of the changes at
the same time by pausing each MCP that is updated by the new machine config file.

Procedure

1. Pause the affected MCP by running the following command:

2. After you apply all machine config changes to the cluster, run the following command:

This allows the nodes in your MCP to reboot into the new configurations.

13.3.7. Bare-metal node maintenance

You can connect to a node for general troubleshooting. However, in some cases, you need to perform
troubleshooting or maintenance tasks on certain hardware components. This section discusses topics
that you need to perform for hardware maintenance.

13.3.7.1. Connecting to a bare-metal node in your cluster

You can connect to bare-metal cluster nodes for general maintenance tasks.

NOTE

$ oc patch mcp/<mcp_name> --type merge --patch '{"spec":{"paused":true}}'

$ oc patch mcp/<mcp_name> --type merge --patch '{"spec":{"paused":false}}'

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

401

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#machine-config-operator_cluster-operators-ref

NOTE

Configuring the cluster node from the host operating system is not recommended or
supported.

To troubleshoot your nodes, you can do the following tasks:

Retrieve logs from a node

Use debugging

Use SSH to connect to a node

IMPORTANT

Use SSH only if you cannot connect to the node with the oc debug command.

Procedure

1. Retrieve the logs from a node by running the following command:

2. Use debugging by running the following command:

3. Set /host as the root directory within the debug shell. The debug pod mounts the host’s root file
system in /host within the pod. By changing the root directory to /host, you can run binaries
contained in the host’s executable paths:

Output

4. Optional: Use SSH to connect to the node by running the following command:

13.3.7.2. Moving applications to pods within the cluster

For scheduled hardware maintenance, you need to consider how to move your application pods to other
nodes within the cluster without affecting the pod workload.

Procedure

Mark the node as unschedulable by running the following command:

$ oc adm node-logs <node_name> -u crio

$ oc debug node/<node_name>

chroot /host

You are now logged in as root on the node

$ ssh core@<node_name>

$ oc adm cordon <node_name>

OpenShift Container Platform 4.18 Postinstallation configuration

402

When the node is unschedulable, no pods can be scheduled on the node. For more information, see
"Working with nodes".

NOTE

When moving CNF applications, you might need to verify ahead of time that there are
enough additional worker nodes in the cluster due to anti-affinity and pod disruption
budget.

Additional resources

Working with nodes

13.3.7.3. DIMM memory replacement

Dual in-line memory module (DIMM) problems sometimes only appear after a server reboots. You can
check the log files for these problems.

When you perform a standard reboot and the server does not start, you can see a message in the
console that there is a faulty DIMM memory. In that case, you can acknowledge the faulty DIMM and
continue rebooting if the remaining memory is sufficient. Then, you can schedule a maintenance window
to replace the faulty DIMM.

Sometimes, a message in the event logs indicates a bad memory module. In these cases, you can
schedule the memory replacement before the server is rebooted.

13.3.7.4. Disk replacement

If you do not have disk redundancy configured on your node through hardware or software redundant
array of independent disks (RAID), you need to check the following:

Does the disk contain running pod images?

Does the disk contain persistent data for pods?

For more information, see "OpenShift Container Platform storage overview" in Storage.

Additional resources

OpenShift Container Platform storage overview

13.3.7.5. Cluster network card replacement

When you replace a network card, the MAC address changes. The MAC address can be part of the
DHCP or SR-IOV Operator configuration, router configuration, firewall rules, or cloud-native application
configuration. Before you bring back a node online after replacing a network card, you must verify that
these configurations are up-to-date.

IMPORTANT

If you do not have specific procedures for MAC address changes within the network,
contact your network administrator or network hardware vendor.

13.4. OBSERVABILITY

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

403

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-nodes-working_nodes-nodes-working
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/storage/#storage-overview_storage-overview

13.4.1. Observability in OpenShift Container Platform clusters

OpenShift Container Platform generates a large amount of data, such as performance metrics and logs
from both the platform and the workloads running on it. As an administrator, you can use various tools
to collect and analyze all the data available. What follows is an outline of best practices for system
engineers, architects, and administrators configuring the observability stack.

Unless explicitly stated, the material in this document refers to both Edge and Core deployments.

13.4.1.1. Understanding the monitoring stack

The monitoring stack uses the following components:

Prometheus collects and analyzes metrics from OpenShift Container Platform components and
from workloads, if configured to do so.

Alertmanager is a component of Prometheus that handles routing, grouping, and silencing of
alerts.

Thanos handles long term storage of metrics.

Figure 13.2. OpenShift Container Platform monitoring architecture

NOTE

OpenShift Container Platform 4.18 Postinstallation configuration

404

NOTE

For single-node OpenShift clusters, disable Alertmanager and Thanos because the
clusters sends all metrics to the hub cluster for analysis and retention.

Additional resources

About OpenShift Container Platform monitoring

Core platform monitoring first steps

13.4.1.2. Key performance metrics

Depending on your system, you can have hundreds of available measurements.

Consider the following key metrics:

etcd response times

API response times

Pod restarts and scheduling

Resource usage

OVN health

Overall cluster operator health

If a metric is important, set up an alert for it.

NOTE

You can check the available metrics by running the following command:

13.4.1.2.1. Example queries in PromQL

Using the OpenShift Container Platform console, you can explore the following queries in the metrics
query browser.

NOTE

The URL for the console is https://<OpenShift Console FQDN>/monitoring/query-
browser. You can get the Openshift Console FQDN by running the following command:

Table 13.1. Node memory & CPU usage

$ oc -n openshift-monitoring exec -c prometheus prometheus-k8s-0 -- curl -qsk
http://localhost:9090/api/v1/metadata | jq '.data

$ oc get routes -n openshift-console console -o jsonpath='{.status.ingress[0].host}'

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

405

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.18/html/about_monitoring/about-ocp-monitoring
https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.18/html/getting_started/core-platform-monitoring-first-steps
https:

Metric Query

CPU % requests by node sum by (node)
(sum_over_time(kube_pod_container_resour
ce_requests{resource="cpu"}[60m]))/sum by
(node)
(sum_over_time(kube_node_status_allocata
ble{resource="cpu"}[60m])) *100

Overall cluster CPU % utilization sum by (managed_cluster)
(sum_over_time(kube_pod_container_resour
ce_requests{resource="memory"}
[60m]))/sum by (managed_cluster)
(sum_over_time(kube_node_status_allocata
ble{resource="cpu"}[60m])) *100

Memory % requests by node sum by (node)
(sum_over_time(kube_pod_container_resour
ce_requests{resource="memory"}
[60m]))/sum by (node)
(sum_over_time(kube_node_status_allocata
ble{resource="memory"}[60m])) *100

Overall cluster memory % utilization (1-(sum by (managed_cluster)
(avg_over_timenode_memory_MemAvailable
_bytes[60m]))/sum by (managed_cluster)
(avg_over_time(kube_node_status_allocatab
le{resource="memory"}[60m])))*100

Table 13.2. API latency by verb

Metric Query

GET histogram_quantile (0.99, sum by
(le,managed_cluster)
(sum_over_time(apiserver_request_duration
_seconds_bucket{apiserver=~"kube-
apiserver|openshift-apiserver", verb="GET"}
[60m])))

PATCH histogram_quantile (0.99, sum by
(le,managed_cluster)
(sum_over_time(apiserver_request_duration
_seconds_bucket{apiserver="kube-
apiserver|openshift-apiserver",
verb="PATCH"}[60m])))

OpenShift Container Platform 4.18 Postinstallation configuration

406

POST histogram_quantile (0.99, sum by
(le,managed_cluster)
(sum_over_time(apiserver_request_duration
_seconds_bucket{apiserver="kube-
apiserver|openshift-apiserver",
verb="POST"}[60m])))

LIST histogram_quantile (0.99, sum by
(le,managed_cluster)
(sum_over_time(apiserver_request_duration
_seconds_bucket{apiserver="kube-
apiserver|openshift-apiserver", verb="LIST"}
[60m])))

PUT histogram_quantile (0.99, sum by
(le,managed_cluster)
(sum_over_time(apiserver_request_duration
_seconds_bucket{apiserver="kube-
apiserver|openshift-apiserver", verb="PUT"}
[60m])))

DELETE histogram_quantile (0.99, sum by
(le,managed_cluster)
(sum_over_time(apiserver_request_duration
_seconds_bucket{apiserver="kube-
apiserver|openshift-apiserver",
verb="DELETE"}[60m])))

Combined histogram_quantile(0.99, sum by
(le,managed_cluster)
(sum_over_time(apiserver_request_duration
_seconds_bucket{apiserver=~"(openshift-
apiserver|kube-apiserver)", verb!="WATCH"}
[60m])))

Metric Query

Table 13.3. etcd

Metric Query

fsync 99th percentile latency (per instance) histogram_quantile(0.99,
rate(etcd_disk_wal_fsync_duration_seconds
_bucket[2m]))

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

407

fsync 99th percentile latency (per cluster) sum by (managed_cluster) (
histogram_quantile(0.99,
rate(etcd_disk_wal_fsync_duration_seconds
_bucket[60m])))

Leader elections sum(rate(etcd_server_leader_changes_seen
_total[1440m]))

Network latency histogram_quantile(0.99,
rate(etcd_network_peer_round_trip_time_se
conds_bucket[5m]))

Metric Query

Table 13.4. Operator health

Metric Query

Degraded operators sum by (managed_cluster, name)
(avg_over_time(cluster_operator_conditions{
condition="Degraded", name!="version"}
[60m]))

Total degraded operators per cluster sum by (managed_cluster)
(avg_over_time(cluster_operator_conditions{
condition="Degraded", name!="version"}
[60m]))

13.4.1.2.2. Recommendations for storage of metrics

By default, Prometheus does not back up saved metrics with persistent storage. If you restart the
Prometheus pods, all metrics data are lost. You must configure the monitoring stack to use the back-
end storage that is available on the platform. To meet the high IO demands of Prometheus, use local
storage.

For smaller clusters, you can use the Local Storage Operator for persistent storage for Prometheus. Red
Hat OpenShift Data Foundation (ODF), which deploys a ceph cluster for block, file, and object storage,
is suitable for larger clusters.

To keep system resource requirements low on a single-node OpenShift cluster, do not provision back-
end storage for the monitoring stack. Such clusters forward all metrics to the hub cluster where you can
provision a third party monitoring platform.

Additional resources

Accessing metrics as an administrator

Persistent storage using local volumes

OpenShift Container Platform 4.18 Postinstallation configuration

408

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.18/html/accessing_metrics/accessing-metrics-as-an-administrator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/storage/#local-storage-install_persistent-storage-local

13.4.1.3. Monitoring at the far edge network

OpenShift Container Platform clusters at the edge must keep the footprint of the platform components
to a minimum. The following procedure is an example of how to configure a single-node OpenShift or a
node at the far edge network with a small monitoring footprint.

Prerequisites

For environments that use Red Hat Advanced Cluster Management (RHACM), you have
enabled the Observability service.

The hub cluster is running Red Hat OpenShift Data Foundation (ODF).

Procedure

1. Create a ConfigMap CR, and save it as monitoringConfigMap.yaml, as in the following
example:

2. Apply the ConfigMap CR by running the following command on the single-node OpenShift
cluster:

3. Create a Namespace CR, and save it as monitoringNamespace.yaml, as in the following
example:

4. Apply the Namespace CR by running the following command on the hub cluster :

5. Create an ObjectBucketClaim CR, and save it as monitoringObjectBucketClaim.yaml, as in
the following example:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 data:
 config.yaml: |
 alertmanagerMain:
 enabled: false
 telemeterClient:
 enabled: false
 prometheusK8s:
 retention: 24h

$ oc apply -f monitoringConfigMap.yaml

apiVersion: v1
kind: Namespace
metadata:
 name: open-cluster-management-observability

$ oc apply -f monitoringNamespace.yaml

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

409

6. Apply the ObjectBucketClaim CR by running the following command on the hub cluster:

7. Create a Secret CR, and save it as monitoringSecret.yaml, as in the following example:

8. Apply the Secret CR by running the following command in the hub cluster:

9. Get the keys for the NooBaa service and the back-end bucket name from the hub cluster by
running the following commands:

10. Create a Secret CR for bucket storage and save it as monitoringBucketSecret.yaml, as in the
following example:

metadata:
 name: multi-cloud-observability
 namespace: open-cluster-management-observability
spec:
 storageClassName: openshift-storage.noobaa.io
 generateBucketName: acm-multi

$ oc apply -f monitoringObjectBucketClaim.yaml

apiVersion: v1
kind: Secret
metadata:
 name: multiclusterhub-operator-pull-secret
 namespace: open-cluster-management-observability
stringData:
 .dockerconfigjson: 'PULL_SECRET'

$ oc apply -f monitoringSecret.yaml

$ NOOBAA_ACCESS_KEY=$(oc get secret noobaa-admin -n openshift-storage -o json | jq -r
'.data.AWS_ACCESS_KEY_ID|@base64d')

$ NOOBAA_SECRET_KEY=$(oc get secret noobaa-admin -n openshift-storage -o json | jq -r
'.data.AWS_SECRET_ACCESS_KEY|@base64d')

$ OBJECT_BUCKET=$(oc get objectbucketclaim -n open-cluster-management-observability
multi-cloud-observability -o json | jq -r .spec.bucketName)

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: s3
 config:
 bucket: ${OBJECT_BUCKET}
 endpoint: s3.openshift-storage.svc

OpenShift Container Platform 4.18 Postinstallation configuration

410

11. Apply the Secret CR by running the following command on the hub cluster:

12. Create the MultiClusterObservability CR and save it as
monitoringMultiClusterObservability.yaml, as in the following example:

13. Apply the MultiClusterObservability CR by running the following command on the hub cluster:

Verification

1. Check the routes and pods in the namespace to validate that the services have deployed on the
hub cluster by running the following command:

Example output

 insecure: true
 access_key: ${NOOBAA_ACCESS_KEY}
 secret_key: ${NOOBAA_SECRET_KEY}

$ oc apply -f monitoringBucketSecret.yaml

apiVersion: observability.open-cluster-management.io/v1beta2
kind: MultiClusterObservability
metadata:
 name: observability
spec:
 advanced:
 retentionConfig:
 blockDuration: 2h
 deleteDelay: 48h
 retentionInLocal: 24h
 retentionResolutionRaw: 3d
 enableDownsampling: false
 observabilityAddonSpec:
 enableMetrics: true
 interval: 300
 storageConfig:
 alertmanagerStorageSize: 10Gi
 compactStorageSize: 100Gi
 metricObjectStorage:
 key: thanos.yaml
 name: thanos-object-storage
 receiveStorageSize: 25Gi
 ruleStorageSize: 10Gi
 storeStorageSize: 25Gi

$ oc apply -f monitoringMultiClusterObservability.yaml

$ oc get routes,pods -n open-cluster-management-observability

NAME HOST/PORT
PATH SERVICES PORT TERMINATION WILDCARD
route.route.openshift.io/alertmanager alertmanager-open-cluster-management-
observability.cloud.example.com /api/v2 alertmanager oauth-proxy

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

411

1 A dashboard is accessible at the grafana route listed. You can use this to view metrics
across all managed clusters.

For more information on observability in Red Hat Advanced Cluster Management, see Observability.

13.4.1.4. Alerting

OpenShift Container Platform includes a large number of alert rules, which can change from release to
release.

13.4.1.4.1. Viewing default alerts

Review all of the alert rules in a cluster.

Procedure

To review all the alert rules in a cluster, run the following command:

Rules can include a description and provide a link to additional information and mitigation steps.
For example, see the rule for etcdHighFsyncDurations:

reencrypt/Redirect None
route.route.openshift.io/grafana grafana-open-cluster-management-
observability.cloud.example.com grafana oauth-proxy
reencrypt/Redirect None 1
route.route.openshift.io/observatorium-api observatorium-api-open-cluster-management-
observability.cloud.example.com observability-observatorium-api public
passthrough/None None
route.route.openshift.io/rbac-query-proxy rbac-query-proxy-open-cluster-management-
observability.cloud.example.com rbac-query-proxy https
reencrypt/Redirect None

NAME READY STATUS RESTARTS AGE
pod/observability-alertmanager-0 3/3 Running 0 1d
pod/observability-alertmanager-1 3/3 Running 0 1d
pod/observability-alertmanager-2 3/3 Running 0 1d
pod/observability-grafana-685b47bb47-dq4cw 3/3 Running 0 1d
<...snip…>
pod/observability-thanos-store-shard-0-0 1/1 Running 0 1d
pod/observability-thanos-store-shard-1-0 1/1 Running 0 1d
pod/observability-thanos-store-shard-2-0 1/1 Running 0 1d

$ oc get cm -n openshift-monitoring prometheus-k8s-rulefiles-0 -o yaml

 - alert: etcdHighFsyncDurations
 annotations:
 description: 'etcd cluster "{{ $labels.job }}": 99th percentile fsync durations
 are {{ $value }}s on etcd instance {{ $labels.instance }}.'
 runbook_url: https://github.com/openshift/runbooks/blob/master/alerts/cluster-etcd-
operator/etcdHighFsyncDurations.md
 summary: etcd cluster 99th percentile fsync durations are too high.
 expr: |
 histogram_quantile(0.99,
rate(etcd_disk_wal_fsync_duration_seconds_bucket{job=~".*etcd.*"}[5m]))

OpenShift Container Platform 4.18 Postinstallation configuration

412

https://docs.redhat.com/en/documentation/red_hat_advanced_cluster_management_for_kubernetes/2.12/html/observability/index

1

13.4.1.4.2. Alert notifications

You can view alerts in the OpenShift Container Platform console. However, an administrator must
configure an external receiver to forward the alerts to. OpenShift Container Platform supports the
following receiver types:

PagerDuty

A third-party incident response platform.

Webhook

An arbitrary API endpoint that receives an alert through a POST request and can take any necessary
action.

Email

Sends an email to a designated address.

Slack

Sends a notification to either a Slack channel or an individual user.

Additional resources

Managing alerts

13.4.1.5. Workload monitoring

By default, OpenShift Container Platform does not collect metrics for application workloads. You can
configure a cluster to collect workload metrics.

Prerequisites

You have defined endpoints to gather workload metrics on the cluster.

Procedure

1. Create a ConfigMap CR and save it as monitoringConfigMap.yaml, as in the following
example:

Set to true to enable workload monitoring.

2. Apply the ConfigMap CR by running the following command:

 > 1
 for: 10m
 labels:
 severity: critical

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true 1

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

413

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.18/html/managing_alerts/index

1

2

3. Create a ServiceMonitor CR, and save it as monitoringServiceMonitor.yaml, as in the
following example:

Use endpoints to define workload metrics.

Prometheus scrapes the path /metrics by default. You can define a custom path here.

4. Apply the ServiceMonitor CR by running the following command:

Prometheus scrapes the /metrics path by default. However, you can define a custom path. The vendor
of the application must decide whether to expose the endpoint for scraping, with metrics that they
deem relevant.

13.4.1.5.1. Creating a workload alert

You can enable alerts for user workloads on a cluster.

Procedure

1. Create a ConfigMap CR, and save it as monitoringConfigMap.yaml, as in the following
example:

$ oc apply -f monitoringConfigMap.yaml

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 app: ui
 name: myapp
 namespace: myns
spec:
 endpoints: 1
 - interval: 30s
 port: ui-http
 scheme: http
 path: /healthz 2
 selector:
 matchLabels:
 app: ui

$ oc apply -f monitoringServiceMonitor.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true 1
...

OpenShift Container Platform 4.18 Postinstallation configuration

414

1 Set to true to enable workload monitoring.

2. Apply the ConfigMap CR by running the following command:

3. Create a YAML file for alerting rules, monitoringAlertRule.yaml, as in the following example:

4. Apply the alert rule by running the following command:

Additional resources

ServiceMonitor[monitoring.coreos.com/v1]

Enabling monitoring for user-defined projects

Managing alerting rules for user-defined projects

13.5. SECURITY

13.5.1. Security basics

Security is a critical component of OpenShift Container Platform deployments, particularly when
running cloud-native applications.

You can enhance security for high-bandwidth network deployments by following key security
considerations. By implementing these standards and best practices, you can strengthen security in
most use cases.

13.5.1.1. RBAC overview

Role-based access control (RBAC) objects determine whether a user is allowed to perform a given
action within a project.

Cluster administrators can use the cluster roles and bindings to control who has various access levels to
the OpenShift Container Platform platform itself and all projects.

Developers can use local roles and bindings to control who has access to their projects. Authorization is

$ oc apply -f monitoringConfigMap.yaml

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 name: myapp-alert
 namespace: myns
spec:
 groups:
 - name: example
 rules:
 - alert: InternalErrorsAlert
 expr: flask_http_request_total{status="500"} > 0
...

$ oc apply -f monitoringAlertRule.yaml

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

415

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/monitoring_apis/#servicemonitor-monitoring-coreos-com-v1
https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.18/html/configuring_user_workload_monitoring/preparing-to-configure-the-monitoring-stack-uwm#enabling-monitoring-for-user-defined-projects-uwm_preparing-to-configure-the-monitoring-stack-uwm
https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.18/html/managing_alerts/managing-alerts-as-a-developer#managing-alerting-rules-for-user-defined-projects-uwm_managing-alerts-as-a-developer

Developers can use local roles and bindings to control who has access to their projects. Authorization is
a separate step from authentication, which is more about determining the identity of who is taking the
action.

Authorization is managed using the following authorization objects:

Rules

Sets of permitted actions on specific objects. For example, a rule can determine whether a user or
service account can create pods. Each rule specifies an API resource, the resource within that API,
and the allowed action.

Roles

Collections of rules that define what actions users or groups can perform. You can associate or bind
rules to multiple users or groups. A role file can contain one or more rules that specify the actions
and resources allowed for that role.
Roles are categorized into the following types:

Cluster roles can be defined at the cluster level. They are not tied to a single namespace.
They can apply across all namespaces or specific namespaces when you bind them to users,
groups, or service accounts.

Project roles can be created within a specific namespace, and they only apply to that
namespace. You can assign permissions to specific users to create roles and role bindings
within their namespace, ensuring they do not affect other namespaces.

Bindings

Associations between users and groups with a role. You can create a role binding to connect the rules
in a role to a specific user ID or group. This brings together the role and the user or group, defining
what actions they can perform.

NOTE

You can bind more than one role to a user or group.

For more information on RBAC, see "Using RBAC to define and apply permissions".

Operational RBAC considerations
To reduce operational overhead, manage access through groups rather than handling individual user IDs
across multiple clusters. By managing groups at an organizational level, you can streamline access
control and simplify administration across your organization.

Additional resources

Using RBAC to define and apply permissions

13.5.1.2. Security accounts overview

A service account is an OpenShift Container Platform account that allows a component to directly
access the API. Service accounts are API objects that exist within each project. Service accounts provide
a flexible way to control API access without sharing a regular user’s credentials.

You can use service accounts to apply role-based access control (RBAC) to pods. By assigning service
accounts to workloads, such as pods and deployments, you can grant additional permissions, such as
pulling from different registries. This also allows you to assign lower privileges to service accounts,

OpenShift Container Platform 4.18 Postinstallation configuration

416

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#authorization-overview_using-rbac

reducing the security footprint of the pods that run under them.

For more information about service accounts, see "Understanding and creating service accounts".

Additional resources

Understanding and creating service accounts

13.5.1.3. Identity provider configuration

Configuring an identity provider is the first step in setting up users on the cluster. You can manage
groups at the organizational level by using an identity provider.

The identity provider can pull in specific user groups that are maintained at the organizational level,
rather than the cluster level. This allows you to add and remove users from groups that follow your
organization’s established practices.

NOTE

You must set up a cron job to run frequently to pull any changes into the cluster.

You can use an identity provider to manage access levels for specific groups within your organization.
For example, you can perform the following actions to manage access levels:

Assign the cluster-admin role to teams that require cluster-level privileges.

Grant application administrators specific privileges to manage only their respective projects.

Provide operational teams with view access across the cluster to enable monitoring without
allowing modifications.

For information about configuring an identity provider, see "Understanding identity provider
configuration".

Additional resources

Understanding identity provider configuration

13.5.1.4. Replacing the kubeadmin user with a cluster-admin user

The kubeadmin user with the cluster-admin privileges is created on every cluster by default. To
enhance the cluster security, you can replace the`kubeadmin` user with a cluster-admin user and then
disable or remove the kubeadmin user.

Prerequisites

You have created a user with cluster-admin privileges.

You have installed the OpenShift CLI (oc).

You have administrative access to a virtual vault for secure storage.

Procedure

1. Create an emergency cluster-admin user by using the htpasswd identity provider. For more

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

417

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#understanding-and-creating-service-accounts
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#understanding-identity-provider

1. Create an emergency cluster-admin user by using the htpasswd identity provider. For more
information, see "About htpasswd authentication".

2. Assign the cluster-admin privileges to the new user by running the following command:

3. Verify the emergency user access:

a. Log in to the cluster using the new emergency user.

b. Confirm that the user has cluster-admin privileges by running the following command:

Ensure the output shows the ID of the emergency user.

4. Store the password or authentication key for the emergency user securely in a virtual vault.

NOTE

Follow the best practices of your organization for securing sensitive credentials.

5. Disable or remove the kubeadmin user to reduce security risks by running the following
command:

Additional resources

Configuring an htpasswd identity provider

13.5.1.5. Security considerations

Workloads might handle sensitive data and demand high reliability. A single security vulnerability might
lead to broader, cluster-wide compromises. With numerous components running on an OpenShift
Container Platform cluster, you must secure each component to prevent any breach from escalating.
Ensuring security across the entire infrastructure, including all components, is essential to maintaining
the integrity of the network and avoiding vulnerabilities.

The following key security features are essential for all industries that handle sensitive data:

Security Context Constraints (SCCs): Provide granular control over pod security in the
OpenShift Container Platform clusters.

Pod Security Admission (PSA): Kubernetes-native pod security controls.

Encryption: Ensures data confidentiality in high-throughput network environments.

13.5.1.6. Advancement of pod security in Kubernetes and OpenShift Container Platform

Kubernetes initially had limited pod security. When OpenShift Container Platform integrated
Kubernetes, Red Hat added pod security through Security Context Constraints (SCCs). In Kubernetes
version 1.3, PodSecurityPolicy (PSP) was introduced as a similar feature. However, Pod Security

$ oc adm policy add-cluster-role-to-user cluster-admin <emergency_user>

$ oc whoami

$ oc delete secrets kubeadmin -n kube-system

OpenShift Container Platform 4.18 Postinstallation configuration

418

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#identity-provider-htpasswd-about_configuring-htpasswd-identity-provider

Admission (PSA) was introduced in Kubernetes version 1.21, which resulted in the deprecation of PSP in
Kubernetes version 1.25.

PSA also became available in OpenShift Container Platform version 4.11. While PSA improves pod
security, it lacks features provided by SCCs that are still necessary for certain use cases. Therefore,
OpenShift Container Platform continues to support both PSA and SCCs.

13.5.1.7. Bare-metal infrastructure

Hardware requirements

In several industries, such as telco and finance, clusters are primarily built on bare-metal hardware.
This means that the (op-system-first) operating system is installed directly on the physical machines,
without using virtual machines. This reduces network connectivity complexity, minimizes latency, and
optimizes CPU usage for applications.

Network requirements

Networks in these industries sometimes require much higher bandwidth compared to standard IT
networks. For example, Telco networks commonly use dual-port 25 GB connections or 100 GB
network interface cards (NICs) to handle massive data throughput. Security is critical, requiring
encrypted connections and secure endpoints to protect sensitive personal data.

13.5.1.8. Lifecycle management

Upgrades are critical for security. When a vulnerability is discovered, it is patched in the latest z-stream
release. This fix is then rolled back through each lower y-stream release until all supported versions are
patched. Releases that are no longer supported do not receive patches. Therefore, it is important to
upgrade OpenShift Container Platform clusters regularly to stay within a supported release and ensure
they remain protected against vulnerabilities.

For more information about lifecycle management and upgrades, see "Upgrading OpenShift Container
Platform clusters".

Additional resources

Upgrading an OpenShift cluster

13.5.2. Host security

13.5.2.1. Red Hat Enterprise Linux CoreOS (RHCOS)

Red Hat Enterprise Linux CoreOS (RHCOS) is different from Red Hat Enterprise Linux (RHEL) in key
areas. For more information, see "About RHCOS".

A major distinction is the control of rpm-ostree, which is updated through the Machine Config Operator.

RHCOS follows the same immutable design used for pods in OpenShift Container Platform. This
ensures that the operating system remains consistent across the cluster. For information about RHCOS
architecture, see "Red Hat Enterprise Linux CoreOS (RHCOS)".

To manage hosts effectively while maintaining security, avoid direct access whenever possible. Instead,
you can use the following methods for host management:

Debug pod

Direct SSHs

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

419

Console access

Review the following RHCOS security mechanisms that are integral to maintaining host security:

Linux namespaces

Provide isolation for processes and resources. Each container keeps its processes and files within its
own namespace. If a user escapes from the container namespace, they could gain access to the host
operating system, potentially compromising security.

Security-Enhanced Linux (SELinux)

Enforces mandatory access controls to restrict access to files and directories by processes. SELinux
adds an extra layer of security by preventing unauthorized access to files if a process tries to break
its confinement.
SELinux follows the security policy of denying everything unless explicitly allowed. If a process
attempts to modify or access a file without permission, SELinux denies access. For more
information, see Introduction to SELinux.

Linux capabilities

Assign specific privileges to processes at a granular level, minimizing the need for full root
permissions. For more information, see "Linux capabilities".

Control groups (cgroups)

Allocate and manage system resources, such as CPU and memory for processes and containers,
ensuring efficient usage. As of OpenShift Container Platform 4.16, there are two versions of cgroups.
cgroup v2 is now configured by default.

CRI-O

Serves as a lightweight container runtime that enforces security boundaries and manages container
workloads.

Additional resources

About RHCOS

Red Hat Enterprise Linux CoreOS (RHCOS)

Linux capabilities

13.5.2.2. Command-line host access

Direct access to a host must be restricted to avoid modifying the host or accessing pods that should not
be accessed. For users who need direct access to a host, it is recommended to use an external
authenticator, like SSSD with LDAP, to manage access. This helps maintain consistency across the
cluster through the Machine Config Operator.

IMPORTANT

Do not configure direct access to the root ID on any OpenShift Container Platform
cluster server.

You can connect to a node in the cluster using the following methods:

Using debug pod

This is the recommended method to access a node. To debug or connect to a node, run the following
command:

OpenShift Container Platform 4.18 Postinstallation configuration

420

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html-single/using_selinux/index#introduction-to-selinux_getting-started-with-selinux
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/architecture/#rhcos-about_architecture-rhcos
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/architecture/#red-hat-enterprise-linux-coreos

After connecting to the node, run the following command to get access to the root file system:

This gives you root access within a debug pod on the node. For more information, see "Starting
debug pods with root access".

Direct SSH

Avoid using the root user. Instead, use the core user ID (or your own ID). To connect to the node
using SSH, run the following command:

IMPORTANT

The core user ID is initially given sudo privileges within the cluster.

If you cannot connect to a node using SSH, see How to connect to OpenShift Container Platform 4.x
Cluster nodes using SSH bastion pod to add your SSH key to the core user.

After connecting to the node using SSH, run the following command to get access to the root shell:

Console Access

Ensure that consoles are secure. Do not allow direct login with the root ID, instead use individual IDs.

NOTE

Follow the best practices of your organization for securing console access.

Additional resources

Starting debug pods with root access

13.5.2.3. Linux capabilities

Linux capabilities define the actions a process can perform on the host system. By default, pods are
granted several capabilities unless security measures are applied. These default capabilities are as
follows:

CHOWN

DAC_OVERRIDE

FSETID

FOWNER

$ oc debug node/<worker_node_name>

chroot /host

$ ssh core@<worker_node_name>

$ sudo -i

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

421

https://access.redhat.com/solutions/4073041
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/support/#starting-debug-pods-with-root-access_investigating-pod-issues

SETGID

SETUID

SETPCAP

NET_BIND_SERVICE

KILL

You can modify which capabilities that a pod can receive by configuring Security Context Constraints
(SCCs).

IMPORTANT

You must not assign the following capabilities to a pod:

SYS_ADMIN: A powerful capability that grants elevated privileges. Allowing this
capability can break security boundaries and pose a significant security risk.

NET_ADMIN: Allows control over networking, like SR-IOV ports, but can be
replaced with alternative solutions in modern setups.

For more information about Linux capabilities, see the Linux capabilities man page.

13.5.3. Security context constraints

Similar to the way that RBAC resources control user access, administrators can use security context
constraints (SCCs) to control permissions for pods. These permissions determine the actions that a pod
can perform and what resources it can access. You can use SCCs to define a set of conditions that a pod
must run.

Security context constraints allow an administrator to control the following security constraints:

Whether a pod can run privileged containers with the allowPrivilegedContainer flag

Whether a pod is constrained with the allowPrivilegeEscalation flag

The capabilities that a container can request

The use of host directories as volumes

The SELinux context of the container

The container user ID

The use of host namespaces and networking

The allocation of an FSGroup that owns the pod volumes

The configuration of allowable supplemental groups

Whether a container requires write access to its root file system

The usage of volume types

OpenShift Container Platform 4.18 Postinstallation configuration

422

https://man7.org/linux/man-pages/man7/capabilities.7.html

The configuration of allowable seccomp profiles

Default SCCs are created during installation and when you install some Operators or other components.
As a cluster administrator, you can also create your own SCCs by using the OpenShift CLI (oc).

For information about default security context constraints, see Default security context constraints .

IMPORTANT

Do not modify the default SCCs. Customizing the default SCCs can lead to issues when
some of the platform pods deploy or OpenShift Container Platform is upgraded.
Additionally, the default SCC values are reset to the defaults during some cluster
upgrades, which discards all customizations to those SCCs.

Instead of modifying the default SCCs, create and modify your own SCCs as needed. For
detailed steps, see Creating security context constraints .

You can use the following basic SCCs:

restricted

restricted-v2

The restricted-v2 SCC is the most restrictive SCC provided by a new installation and is used by default
for authenticated users. It aligns with Pod Security Admission (PSA) restrictions and improves security,
as the original restricted SCC is less restrictive. It also helps transition from the original SCCs to v2
across multiple releases. Eventually, the original SCCs get deprecated. Therefore, it is recommended to
use the restricted-v2 SCC.

You can examine the restricted-v2 SCC by running the following command:

Example output

$ oc describe scc restricted-v2

Name: restricted-v2
Priority: <none>
Access:
 Users: <none>
 Groups: <none>
Settings:
 Allow Privileged: false
 Allow Privilege Escalation: false
 Default Add Capabilities: <none>
 Required Drop Capabilities: ALL
 Allowed Capabilities: NET_BIND_SERVICE
 Allowed Seccomp Profiles: runtime/default
 Allowed Volume Types:
configMap,downwardAPI,emptyDir,ephemeral,persistentVolumeClaim,projected,secret
 Allowed Flexvolumes: <all>
 Allowed Unsafe Sysctls: <none>
 Forbidden Sysctls: <none>
 Allow Host Network: false
 Allow Host Ports: false

CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS

423

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#default-sccs_configuring-internal-oauth
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#security-context-constraints-creating_configuring-internal-oauth

The restricted-v2 SCC explicitly denies everything except what it explicitly allows. The following
settings define the allowed capabilities and security restrictions:

Default add capabilities: Set to <none>. It means that no capabilities are added to a pod by
default.

Required drop capabilities: Set to ALL. This drops all the default Linux capabilities of a pod.

Allowed capabilities: NET_BIND_SERVICE. A pod can request this capability, but it is not added
by default.

Allowed seccomp profiles: runtime/default.

For more information, see Managing security context constraints.

 Allow Host PID: false
 Allow Host IPC: false
 Read Only Root Filesystem: false
 Run As User Strategy: MustRunAsRange
 UID: <none>
 UID Range Min: <none>
 UID Range Max: <none>
 SELinux Context Strategy: MustRunAs
 User: <none>
 Role: <none>
 Type: <none>
 Level: <none>
 FSGroup Strategy: MustRunAs
 Ranges: <none>
 Supplemental Groups Strategy: RunAsAny
 Ranges: <none>

OpenShift Container Platform 4.18 Postinstallation configuration

424

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#managing-security-context-constraints

	Table of Contents
	CHAPTER 1. POSTINSTALLATION CONFIGURATION OVERVIEW
	1.1. POSTINSTALLATION CONFIGURATION TASKS

	CHAPTER 2. CONFIGURING A PRIVATE CLUSTER
	2.1. ABOUT PRIVATE CLUSTERS
	2.1.1. DNS
	2.1.2. Ingress Controller
	2.1.3. API server

	2.2. CONFIGURING DNS RECORDS TO BE PUBLISHED IN A PRIVATE ZONE
	2.3. SETTING THE INGRESS CONTROLLER TO PRIVATE
	2.4. RESTRICTING THE API SERVER TO PRIVATE
	2.5. CONFIGURING A PRIVATE STORAGE ENDPOINT ON AZURE
	2.5.1. Limitations for configuring a private storage endpoint on Azure
	2.5.2. Configuring a private storage endpoint on Azure by enabling the Image Registry Operator to discover VNet and subnet names
	2.5.3. Configuring a private storage endpoint on Azure with user-provided VNet and subnet names
	2.5.4. Optional: Disabling redirect when using a private storage endpoint on Azure

	CHAPTER 3. CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES ON AN OPENSHIFT CLUSTER
	3.1. ABOUT CLUSTERS WITH MULTI-ARCHITECTURE COMPUTE MACHINES
	3.1.1. Configuring your cluster with multi-architecture compute machines
	3.1.2. Verifying cluster compatibility

	3.2. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON AWS
	3.2.1. Adding a multi-architecture compute machine set to your AWS cluster
	3.2.2. Additional resources

	3.3. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON AZURE
	3.3.1. Creating a 64-bit ARM boot image using the Azure image gallery
	3.3.2. Adding a multi-architecture compute machine set to your Azure cluster
	3.3.3. Additional resources

	3.4. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON GOOGLE CLOUD
	3.4.1. Adding a multi-architecture compute machine set to your Google Cloud cluster
	3.4.2. Additional resources

	3.5. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON BARE METAL, IBM POWER, OR IBM Z
	3.5.1. Creating RHCOS machines using an ISO image
	3.5.2. Creating RHCOS machines by PXE or iPXE booting
	3.5.3. Approving the certificate signing requests for your machines

	3.6. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM Z AND IBM LINUXONE WITH Z/VM
	3.6.1. Creating RHCOS machines on IBM Z with z/VM
	3.6.2. Approving the certificate signing requests for your machines

	3.7. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM Z AND IBM LINUXONE IN AN LPAR
	3.7.1. Creating RHCOS machines on IBM Z in an LPAR
	3.7.2. Approving the certificate signing requests for your machines

	3.8. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM Z AND IBM LINUXONE WITH RHEL KVM
	3.8.1. Creating RHCOS machines using virt-install
	3.8.2. Approving the certificate signing requests for your machines

	3.9. CREATING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES ON IBM POWER
	3.9.1. Creating RHCOS machines using an ISO image
	3.9.2. Creating RHCOS machines by PXE or iPXE booting
	3.9.3. Approving the certificate signing requests for your machines

	3.10. MANAGING A CLUSTER WITH MULTI-ARCHITECTURE COMPUTE MACHINES
	3.10.1. Scheduling workloads on clusters with multi-architecture compute machines
	3.10.1.1. Sample multi-architecture node workload deployments

	3.10.2. Enabling 64k pages on the Red Hat Enterprise Linux CoreOS (RHCOS) kernel
	3.10.3. Importing manifest lists in image streams on your multi-architecture compute machines

	3.11. MANAGING WORKLOADS ON MULTI-ARCHITECTURE CLUSTERS BY USING THE MULTIARCH TUNING OPERATOR
	3.11.1. Installing the Multiarch Tuning Operator by using the CLI
	3.11.2. Installing the Multiarch Tuning Operator by using the web console
	3.11.3. Multiarch Tuning Operator pod labels and architecture support overview
	3.11.4. Creating the ClusterPodPlacementConfig object
	3.11.4.1. Creating the ClusterPodPlacementConfig object by using the CLI
	3.11.4.2. Creating the ClusterPodPlacementConfig object by using the web console

	3.11.5. Deleting the ClusterPodPlacementConfig object by using the CLI
	3.11.6. Deleting the ClusterPodPlacementConfig object by using the web console
	3.11.7. Uninstalling the Multiarch Tuning Operator by using the CLI
	3.11.8. Uninstalling the Multiarch Tuning Operator by using the web console

	3.12. MULTIARCH TUNING OPERATOR RELEASE NOTES
	3.12.1. Release notes for the Multiarch Tuning Operator 1.2.1
	3.12.1.1. Bug fixes

	3.12.2. Release notes for the Multiarch Tuning Operator 1.2.0
	3.12.2.1. New features and enhancements
	3.12.2.2. Bug fixes

	3.12.3. Release notes for the Multiarch Tuning Operator 1.1.1
	3.12.3.1. Bug fixes

	3.12.4. Release notes for the Multiarch Tuning Operator 1.1.0
	3.12.4.1. New features and enhancements
	3.12.4.2. Bug fixes

	3.12.5. Release notes for the Multiarch Tuning Operator 1.0.0
	3.12.5.1. New features and enhancements

	CHAPTER 4. POSTINSTALLATION CLUSTER TASKS
	4.1. AVAILABLE CLUSTER CUSTOMIZATIONS
	4.1.1. Cluster configuration resources
	4.1.2. Operator configuration resources
	4.1.3. Additional configuration resources
	4.1.4. Informational Resources

	4.2. ADDING WORKER NODES
	4.2.1. Adding worker nodes to an on-premise cluster
	4.2.2. Adding worker nodes to installer-provisioned infrastructure clusters
	4.2.3. Adding worker nodes to user-provisioned infrastructure clusters
	4.2.4. Adding worker nodes to clusters managed by the Assisted Installer
	4.2.5. Adding worker nodes to clusters managed by the multicluster engine for Kubernetes

	4.3. ADJUST WORKER NODES
	4.3.1. Understanding the difference between compute machine sets and the machine config pool
	4.3.2. Scaling a compute machine set manually
	4.3.3. The compute machine set deletion policy
	4.3.4. Creating default cluster-wide node selectors

	4.4. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES
	4.4.1. Understanding worker latency profiles
	4.4.2. Using and changing worker latency profiles

	4.5. MANAGING CONTROL PLANE MACHINES
	4.5.1. Adding a control plane node to your cluster

	4.6. CREATING INFRASTRUCTURE MACHINE SETS FOR PRODUCTION ENVIRONMENTS
	4.6.1. Creating a compute machine set
	4.6.2. Creating an infrastructure node
	4.6.3. Creating a machine config pool for infrastructure machines

	4.7. ASSIGNING MACHINE SET RESOURCES TO INFRASTRUCTURE NODES
	4.7.1. Binding infrastructure node workloads using taints and tolerations

	4.8. MOVING RESOURCES TO INFRASTRUCTURE MACHINE SETS
	4.8.1. Moving the router
	4.8.2. Moving the default registry
	4.8.3. Moving the monitoring solution

	4.9. ABOUT THE CLUSTER AUTOSCALER
	4.9.1. Automatic node removal
	4.9.2. Limitations
	4.9.3. Interaction with other scheduling features
	4.9.4. Cluster autoscaler resource definition
	4.9.5. Deploying a cluster autoscaler

	4.10. APPLYING AUTOSCALING TO YOUR CLUSTER
	4.11. CONFIGURING LINUX CGROUP
	4.12. ENABLING TECHNOLOGY PREVIEW FEATURES USING FEATUREGATES
	4.12.1. Understanding feature gates
	4.12.2. Enabling feature sets using the web console
	4.12.3. Enabling feature sets using the CLI

	4.13. ETCD TASKS
	4.13.1. About etcd encryption
	4.13.2. Supported encryption types
	4.13.3. Enabling etcd encryption
	4.13.4. Disabling etcd encryption
	4.13.5. Backing up etcd data
	4.13.6. Defragmenting etcd data
	4.13.6.1. Automatic defragmentation
	4.13.6.2. Manual defragmentation

	4.13.7. Restoring to a previous cluster state
	4.13.8. Issues and workarounds for restoring a persistent storage state

	4.14. POD DISRUPTION BUDGETS
	4.14.1. Understanding how to use pod disruption budgets to specify the number of pods that must be up
	4.14.2. Specifying the number of pods that must be up with pod disruption budgets
	4.14.3. Specifying the eviction policy for unhealthy pods

	CHAPTER 5. POSTINSTALLATION NODE TASKS
	5.1. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	5.1.1. About adding RHEL compute nodes to a cluster
	5.1.2. System requirements for RHEL compute nodes
	5.1.2.1. Certificate signing requests management

	5.1.3. Preparing the machine to run the playbook
	5.1.4. Preparing a RHEL compute node
	5.1.5. Adding a RHEL compute machine to your cluster
	5.1.6. Required parameters for the Ansible hosts file
	5.1.7. Optional: Removing RHCOS compute machines from a cluster

	5.2. ADDING RHCOS COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	5.2.1. Prerequisites
	5.2.2. Creating RHCOS machines using an ISO image
	5.2.3. Creating RHCOS machines by PXE or iPXE booting
	5.2.4. Approving the certificate signing requests for your machines
	5.2.5. Adding a new RHCOS worker node with a custom /var partition in AWS

	5.3. DEPLOYING MACHINE HEALTH CHECKS
	5.3.1. About machine health checks
	5.3.1.1. Limitations when deploying machine health checks

	5.3.2. Sample MachineHealthCheck resource
	5.3.2.1. Short-circuiting machine health check remediation

	5.3.3. Creating a machine health check resource
	5.3.4. Scaling a compute machine set manually
	5.3.5. Understanding the difference between compute machine sets and the machine config pool

	5.4. RECOMMENDED NODE HOST PRACTICES
	5.4.1. Creating a KubeletConfig CR to edit kubelet parameters
	5.4.2. Modifying the number of unavailable worker nodes
	5.4.3. Control plane node sizing
	5.4.4. Setting up CPU Manager

	5.5. HUGE PAGES
	5.5.1. What huge pages do
	5.5.2. How huge pages are consumed by apps
	5.5.2.1. Allocating huge pages of a specific size
	5.5.2.2. Huge page requirements

	5.5.3. Configuring huge pages at boot time

	5.6. UNDERSTANDING DEVICE PLUGINS
	5.6.1. Example device plugins
	5.6.2. Methods for deploying a device plugin
	5.6.3. Understanding the Device Manager
	5.6.4. Enabling Device Manager

	5.7. TAINTS AND TOLERATIONS
	5.7.1. Understanding taints and tolerations
	5.7.2. Adding taints and tolerations
	5.7.3. Adding taints and tolerations using a compute machine set
	5.7.4. Binding a user to a node using taints and tolerations
	5.7.5. Controlling nodes with special hardware using taints and tolerations
	5.7.6. Removing taints and tolerations

	5.8. TOPOLOGY MANAGER
	5.8.1. Topology Manager policies
	5.8.2. Setting up Topology Manager
	5.8.3. Pod interactions with Topology Manager policies

	5.9. RESOURCE REQUESTS AND OVERCOMMITMENT
	5.10. CLUSTER-LEVEL OVERCOMMIT USING THE CLUSTER RESOURCE OVERRIDE OPERATOR
	5.10.1. Installing the Cluster Resource Override Operator using the web console
	5.10.2. Installing the Cluster Resource Override Operator using the CLI
	5.10.3. Configuring cluster-level overcommit

	5.11. NODE-LEVEL OVERCOMMIT
	5.11.1. Understanding container CPU and memory requests
	5.11.2. Understanding overcommitment and quality of service classes
	5.11.2.1. Understanding how to reserve memory across quality of service tiers

	5.11.3. Understanding swap memory and QoS
	5.11.4. Understanding nodes overcommitment
	5.11.5. Disabling or enforcing CPU limits using CPU CFS quotas
	5.11.6. Reserving resources for system processes
	5.11.7. Disabling overcommitment for a node

	5.12. PROJECT-LEVEL LIMITS
	5.12.1. Disabling overcommitment for a project

	5.13. FREEING NODE RESOURCES USING GARBAGE COLLECTION
	5.13.1. Understanding how terminated containers are removed through garbage collection
	5.13.2. Understanding how images are removed through garbage collection
	5.13.3. Configuring garbage collection for containers and images

	5.14. USING THE NODE TUNING OPERATOR
	5.14.1. Accessing an example Node Tuning Operator specification
	5.14.2. Custom tuning specification
	5.14.3. Default profiles set on a cluster
	5.14.4. Supported TuneD daemon plugins

	5.15. CONFIGURING THE MAXIMUM NUMBER OF PODS PER NODE
	5.16. MACHINE SCALING WITH STATIC IP ADDRESSES
	5.16.1. Scaling machines to use static IP addresses
	5.16.2. Machine set scaling of machines with configured static IP addresses
	5.16.3. Using a machine set to scale machines with configured static IP addresses

	CHAPTER 6. POSTINSTALLATION NETWORK CONFIGURATION
	6.1. USING THE CLUSTER NETWORK OPERATOR
	6.2. NETWORK CONFIGURATION TASKS
	6.2.1. Creating default network policies for a new project
	6.2.1.1. Modifying the template for new projects
	6.2.1.2. Adding network policies to the new project template

	CHAPTER 7. CONFIGURING IMAGE STREAMS AND IMAGE REGISTRIES
	7.1. CONFIGURING IMAGE STREAMS FOR A DISCONNECTED CLUSTER
	7.1.1. Cluster Samples Operator assistance for mirroring
	7.1.2. Using Cluster Samples Operator image streams with alternate or mirrored registries
	7.1.3. Preparing your cluster to gather support data

	7.2. CONFIGURING PERIODIC IMPORTING OF CLUSTER SAMPLE OPERATOR IMAGE STREAM TAGS

	CHAPTER 8. POSTINSTALLATION STORAGE CONFIGURATION
	8.1. DYNAMIC PROVISIONING
	8.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY
	8.3. DEPLOY RED HAT OPENSHIFT DATA FOUNDATION

	CHAPTER 9. PREPARING FOR USERS
	9.1. UNDERSTANDING IDENTITY PROVIDER CONFIGURATION
	9.1.1. About identity providers in OpenShift Container Platform
	9.1.2. Supported identity providers
	9.1.3. Identity provider parameters
	9.1.4. Sample identity provider CR

	9.2. USING RBAC TO DEFINE AND APPLY PERMISSIONS
	9.2.1. RBAC overview
	9.2.1.1. Default cluster roles
	9.2.1.2. Evaluating authorization

	9.2.2. Projects and namespaces
	9.2.3. Default projects
	9.2.4. Viewing cluster roles and bindings
	9.2.5. Viewing local roles and bindings
	9.2.6. Adding roles to users
	9.2.7. Creating a local role
	9.2.8. Creating a cluster role
	9.2.9. Local role binding commands
	9.2.10. Cluster role binding commands
	9.2.11. Creating a cluster admin
	9.2.12. Cluster role bindings for unauthenticated groups
	9.2.13. Adding unauthenticated groups to cluster roles

	9.3. THE KUBEADMIN USER
	9.3.1. Removing the kubeadmin user

	9.4. POPULATING OPERATORHUB FROM MIRRORED OPERATOR CATALOGS
	9.4.1. Prerequisites
	9.4.1.1. Creating the ImageContentSourcePolicy object
	9.4.1.2. Adding a catalog source to a cluster

	9.5. ABOUT OPERATOR INSTALLATION WITH OPERATORHUB
	9.5.1. Installing from OperatorHub by using the web console
	9.5.2. Installing from OperatorHub by using the CLI

	CHAPTER 10. CHANGING THE CLOUD PROVIDER CREDENTIALS CONFIGURATION
	10.1. ROTATING CLOUD PROVIDER SERVICE KEYS WITH THE CLOUD CREDENTIAL OPERATOR UTILITY
	10.1.1. Rotating AWS OIDC bound service account signer keys
	10.1.2. Rotating Google Cloud OIDC bound service account signer keys
	10.1.3. Rotating Azure OIDC bound service account signer keys
	10.1.4. Rotating IBM Cloud credentials

	10.2. ROTATING CLOUD PROVIDER CREDENTIALS
	10.2.1. Rotating cloud provider credentials manually

	10.3. REMOVING CLOUD PROVIDER CREDENTIALS
	10.3.1. Removing cloud provider credentials

	10.4. ENABLING TOKEN-BASED AUTHENTICATION
	10.4.1. Configuring the Cloud Credential Operator utility
	10.4.2. Enabling Microsoft Entra Workload ID on an existing cluster
	10.4.3. Enabling AWS Security Token Service (STS) on an existing cluster
	10.4.4. Verifying that a cluster uses short-term credentials

	10.5. ADDITIONAL RESOURCES

	CHAPTER 11. CONFIGURING ALERT NOTIFICATIONS
	11.1. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS
	11.2. ADDITIONAL RESOURCES

	CHAPTER 12. CONVERTING A CONNECTED CLUSTER TO A DISCONNECTED CLUSTER
	CHAPTER 13. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS
	13.1. DAY 2 OPERATIONS FOR OPENSHIFT CONTAINER PLATFORM CLUSTERS
	13.2. UPGRADING OPENSHIFT CONTAINER PLATFORM CLUSTERS
	13.2.1. Upgrading an OpenShift Container Platform cluster
	13.2.1.1. Cluster updates for OpenShift clusters

	13.2.2. Verifying cluster API versions between update versions
	13.2.2.1. OpenShift Container Platform API compatibility
	13.2.2.2. Determining the cluster version update path
	13.2.2.3. Selecting the target release

	13.2.3. Preparing a bare-metal cluster for platform update
	13.2.3.1. Ensuring the host firmware is compatible with the update
	13.2.3.2. Ensuring that layered products are compatible with the update
	13.2.3.3. Applying MachineConfigPool labels to nodes before the update
	13.2.3.4. Disconnected environment considerations
	13.2.3.5. Preparing the cluster platform for update

	13.2.4. Configuring application pods before updating your OpenShift Container Platform cluster
	13.2.4.1. Ensuring that workloads run uninterrupted with pod disruption budgets
	13.2.4.2. Ensuring that pods do not run on the same cluster node
	13.2.4.3. Application liveness, readiness, and startup probes

	13.2.5. Before you update the telco core CNF cluster
	13.2.5.1. Pausing worker nodes before the update
	13.2.5.2. Backup the etcd database before you proceed with the update
	13.2.5.3. Checking the cluster health

	13.2.6. Completing the control plane Only cluster update
	13.2.6.1. Acknowledging the control plane only or y-stream update
	13.2.6.2. Starting the cluster update
	13.2.6.3. Monitoring the cluster update
	13.2.6.4. Updating the OLM Operators
	13.2.6.5. Starting the y-stream control plane update
	13.2.6.6. Monitoring the second part of a <y+1> cluster update
	13.2.6.7. Updating all the OLM Operators
	13.2.6.8. Updating the worker nodes
	13.2.6.9. Verifying the health of the newly updated cluster

	13.2.7. Completing the y-stream cluster update
	13.2.7.1. Acknowledging the control plane only or y-stream update
	13.2.7.2. Starting the cluster update
	13.2.7.3. Monitoring the cluster update
	13.2.7.4. Updating the OLM Operators
	13.2.7.5. Updating the worker nodes
	13.2.7.6. Verifying the health of the newly updated cluster

	13.2.8. Completing the z-stream cluster update
	13.2.8.1. Starting the cluster update
	13.2.8.2. Updating the worker nodes
	13.2.8.3. Verifying the health of the newly updated cluster

	13.3. TROUBLESHOOTING AND MAINTAINING OPENSHIFT CONTAINER PLATFORM CLUSTERS
	13.3.1. Troubleshooting and maintaining OpenShift Container Platform clusters
	13.3.1.1. Getting Support

	13.3.2. General troubleshooting
	13.3.2.1. Querying your cluster
	13.3.2.2. Checking pod logs
	13.3.2.3. Describing a pod
	13.3.2.4. Reviewing events
	13.3.2.5. Connecting to a pod
	13.3.2.6. Debugging a pod
	13.3.2.7. Running a command on a pod

	13.3.3. Cluster maintenance
	13.3.3.1. Checking cluster Operators
	13.3.3.2. Watching for failed pods

	13.3.4. Security
	13.3.4.1. Authentication

	13.3.5. Certificate maintenance
	13.3.5.1. Certificates manually managed by the administrator
	13.3.5.2. Certificates managed by the cluster

	13.3.6. Machine Config Operator
	13.3.6.1. Purpose of the Machine Config Operator
	13.3.6.2. Applying several machine config files at the same time

	13.3.7. Bare-metal node maintenance
	13.3.7.1. Connecting to a bare-metal node in your cluster
	13.3.7.2. Moving applications to pods within the cluster
	13.3.7.3. DIMM memory replacement
	13.3.7.4. Disk replacement
	13.3.7.5. Cluster network card replacement

	13.4. OBSERVABILITY
	13.4.1. Observability in OpenShift Container Platform clusters
	13.4.1.1. Understanding the monitoring stack
	13.4.1.2. Key performance metrics
	13.4.1.3. Monitoring at the far edge network
	13.4.1.4. Alerting
	13.4.1.5. Workload monitoring

	13.5. SECURITY
	13.5.1. Security basics
	13.5.1.1. RBAC overview
	13.5.1.2. Security accounts overview
	13.5.1.3. Identity provider configuration
	13.5.1.4. Replacing the kubeadmin user with a cluster-admin user
	13.5.1.5. Security considerations
	13.5.1.6. Advancement of pod security in Kubernetes and OpenShift Container Platform
	13.5.1.7. Bare-metal infrastructure
	13.5.1.8. Lifecycle management

	13.5.2. Host security
	13.5.2.1. Red Hat Enterprise Linux CoreOS (RHCOS)
	13.5.2.2. Command-line host access
	13.5.2.3. Linux capabilities

	13.5.3. Security context constraints

