& RedHat

OpenShift Container Platform 4.19

Networking Operators

Managing networking-specific Operators in OpenShift Container Platform

Last Updated: 2026-01-15

OpenShift Container Platform 4.19 Networking Operators

Managing networking-specific Operators in OpenShift Container Platform

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document covers the installation, configuration, and management of various networking-
related Operators in OpenShift Container Platform.

Table of Contents

Table of Contents

CHAPTER 1. KUBERNETES NMSTATE OPERATOR ...ttt ittt et ei et eaneennneanns 7
11 INSTALLING THE KUBERNETES NMSTATE OPERATOR 8
1.1.1. Installing the Kubernetes NMState Operator by using the web console 8
1.1.2. Installing the Kubernetes NMState Operator by using the CLI 9
1.1.3. Viewing metrics collected by the Kubernetes NMState Operator 10
1.2. UNINSTALLING THE KUBERNETES NMSTATE OPERATOR 13
1.3. ADDITIONAL RESOURCES 14
CHAPTER 2. AWS LOAD BALANCER OPERATOR .. .tiiiittiittttitettiteeateeneeeaneenaneennneenneenns 16
2.1. AWS LOAD BALANCER OPERATOR RELEASE NOTES 16
2.1.1. AWS Load Balancer Operator 1.2.0 16
2.1.1.1. Notable changes 16
2.1.2. AWS Load Balancer Operator 1.1.1 16
2.1.3. AWS Load Balancer Operator 1.1.0 16
2.1.3.1. Notable changes 16
2.1.3.2. New features 17
2.1.3.3. Bug fixes 17
2.1.4. AWS Load Balancer Operator 1.0.1 17
2.1.5. AWS Load Balancer Operator 1.0.0 17
2.1.5.1. Notable changes 7
2.1.5.2. Bug fixes 17
2.1.6. Earlier versions 17
2.2. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER PLATFORM 18
2.2.1. AWS Load Balancer Operator considerations 18
2.2.2. AWS Load Balancer Operator 18
2.2.3. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into an Outpost 19
2.3. PREPARING AN AWS STS CLUSTER FOR THE AWS LOAD BALANCER OPERATOR 20
2.3.1. Prerequisites 20
2.3.2. Creating an IAM role for the AWS Load Balancer Operator 21
2.3.2.1. Creating an AWS IAM role by using the Cloud Credential Operator utility 21
2.3.2.2. Creating an AWS |IAM role by using the AWS CLI 22
2.3.3. Configuring the ARN role for the AWS Load Balancer Operator 23
2.3.4. Creating an IAM role for the AWS Load Balancer Controller 24
2.3.4.1. Creating an AWS IAM role for the controller by using the Cloud Credential Operator utility 24
2.3.4.2. Creating an AWS IAM role for the controller by using the AWS CLI 25
2.3.5. Additional resources 27
2.4. INSTALLING THE AWS LOAD BALANCER OPERATOR 27
2.4.1. Installing the AWS Load Balancer Operator by using the web console 27
2.4.2. Installing the AWS Load Balancer Operator by using the CLI 28
2.4.3. Creating the AWS Load Balancer Controller 30
2.5. CONFIGURING THE AWS LOAD BALANCER OPERATOR 33
2.5.1. Trusting the certificate authority of the cluster-wide proxy 33
2.5.2. Adding TLS termination on the AWS Load Balancer 34
2.5.3. Creating multiple ingress resources through a single AWS Load Balancer 35
2.5.4. AWS Load Balancer Operator logs 38
CHAPTER 3. EBPF MANAGER OPERATOR .. .itiiittttitttttt ettt eiteeaieeeaneenaneeanneenneenn 39
3.1. ABOUT THE EBPF MANAGER OPERATOR 39
3.1.1. About Extended Berkeley Packet Filter (eBPF) 39
3.1.2. About the eBPF Manager Operator 39
3.1.3. Additional resources 40

OpenShift Container Platform 4.19 Networking Operators

3.1.4. Next steps
3.2. INSTALLING THE EBPF MANAGER OPERATOR
3.2.1. Installing the eBPF Manager Operator using the CLI
3.2.2. Installing the eBPF Manager Operator using the web console
3.2.3. Next steps
3.3. DEPLOYING AN EBPF PROGRAM
3.3.1. Deploying a containerized eBPF program

CHAPTER 4. EXTERNAL DNS OPERATORo

4.1. EXTERNAL DNS OPERATOR RELEASE NOTES
4.1.1. External DNS Operator 1.3.2
4..2. External DNS Operator 1.3.1
4.1.3. External DNS Operator 1.3.0
4.1.3.1. Bug fixes
4.1.4. External DNS Operator 1.2.0
4.1.4.1. New features
4.1.4.2. Bug fixes
4.1.5. External DNS Operator 1.1.1
4.1.6. External DNS Operator 1.1.0
4..6.1. Bug fixes
4..7. External DNS Operator 1.0.1
4.1.8. External DNS Operator 1.0.0
4.1.8.1. Bug fixes
4.2. UNDERSTANDING THE EXTERNAL DNS OPERATOR
4.2.1. External DNS Operator
4.2.2. Viewing External DNS Operator logs
4.2.2.1. External DNS Operator domain name limitations
4.3.INSTALLING THE EXTERNAL DNS OPERATOR
4.3.1. Installing the External DNS Operator with OperatorHub
4.3.2. Installing the External DNS Operator by using the CLI
4.4, EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS
4.4.1. External DNS Operator configuration parameters
4.5. CREATING DNS RECORDS ON AWS

4.5.1. Creating DNS records on an public hosted zone for AWS by using Red Hat External DNS Operator
4.5.2. Creating DNS records in a different AWS Account using a shared VPC

4.6. CREATING DNS RECORDS ON AZURE
4.6.1. Creating DNS records on an Azure DNS zone
4.7. CREATING DNS RECORDS ON GOOGLE CLOUD

4.7.1. Creating DNS records on a public managed zone for Google Cloud

4.8. CREATING DNS RECORDS ON INFOBLOX
4.8.1. Creating DNS records on a public DNS zone on Infoblox

4.9. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL DNS OPERATOR

4.9.1. Trusting the certificate authority of the cluster-wide proxy

CHAPTER 5. METALLB OPERATOR ... i e i

5.1. ABOUT METALLB AND THE METALLB OPERATOR
5.1.1. When to use MetallLB
5.1.2. MetallLB Operator custom resources
5.1.3. MetalLB software components
5.1.4. MetalLB and external traffic policy
5.1.5. MetalLB concepts for layer 2 mode
5.1.6. MetalLB concepts for BGP mode
5.1.7. Limitations and restrictions

40
40
40
42
42
43
43

45
45
45
45
45
45
45
46
46
46
46
46
46
46
46
46
46
47
47
48
48
49

51

51
53

55
56
57
59
59

61

61
62
62

64
64
64
65
66
67
69

71

5.1.7.1. Infrastructure considerations for MetalLB
5.1.7.2. Limitations for layer 2 mode
5.1.7.2.1. Single-node bottleneck
5.1.7.2.2. Slow failover performance
5.1.7.2.3. Additional Network and MetalLB cannot use same network
5.1.7.3. Limitations for BGP mode
5.1.7.3.1. Node failure can break all active connections
5.1.7.3.2. Support for a single ASN and a single router ID only
5.1.8. Additional resources
5.2. INSTALLING THE METALLB OPERATOR
5.2.1. Installing the MetalLB Operator from the OperatorHub by using the web console
5.2.2. Installing from OperatorHub using the CLI
5.2.3. Starting MetalLB on your cluster
5.2.4. Deployment specifications for MetalLB
5.2.4.1. Limit speaker pods to specific nodes
5.2.4.2. Configuring pod priority and pod affinity in a MetalLB deployment
5.2.4.3. Configuring pod CPU limits in a MetalLB deployment
5.2.5. Additional resources
5.2.6. Next steps
5.3. UPGRADING THE METALLB OPERATOR
5.3.1. Manually upgrading the MetalLB Operator
5.3.2. Additional resources

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

6.1. CLUSTER NETWORK OPERATOR
6.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
6.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
6.4. ENABLING IP FORWARDING GLOBALLY
6.5. VIEWING CLUSTER NETWORK OPERATOR LOGS
6.6. CLUSTER NETWORK OPERATOR CONFIGURATION
6.6.1. Cluster Network Operator configuration object
6.6.1.1. defaultNetwork object configuration
6.6.1.1.1. Configuration for the OVN-Kubernetes network plugin
6.6.2. Cluster Network Operator example configuration
6.7. ADDITIONAL RESOURCES

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

7.]. CHECKING THE STATUS OF THE DNS OPERATOR
7.2.VIEW THE DEFAULT DNS
7.3. USING DNS FORWARDING
7.4. CHECKING DNS OPERATOR STATUS
7.5. VIEWING DNS OPERATOR LOGS
7.6.SETTING THE COREDNS LOG LEVEL
7.7.VIEWING THE COREDNS LOGS
7.8. SETTING THE COREDNS OPERATOR LOG LEVEL
7.9. TUNING THE COREDNS CACHE
7.10. ADVANCED TASKS
7.10.1. Changing the DNS Operator managementState
7.10.2. Controlling DNS pod placement
7.10.3. Configuring DNS forwarding with TLS

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

8.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
8.2. THE INGRESS CONFIGURATION ASSET

Table of Contents

71
71
71
71
72
72
72
72
73
73
73
74
75
77
77
78
80
80
81
81
81
82

................ 83

83
83
84
85
86
86
86
87
88
93
94

................ 95

95
95
96
98
99
99
100
100
101
102
102
102
104

OpenShift Container Platform 4.19 Networking Operators

8.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS
8.3.1. Ingress Controller TLS security profiles
8.3.1.1. Understanding TLS security profiles
8.3.1.2. Configuring the TLS security profile for the Ingress Controller
8.3.1.3. Configuring mutual TLS authentication
8.4. VIEW THE DEFAULT INGRESS CONTROLLER
8.5. VIEW INGRESS OPERATOR STATUS
8.6. VIEW INGRESS CONTROLLER LOGS
8.7.VIEW INGRESS CONTROLLER STATUS
8.8. CREATING A CUSTOM INGRESS CONTROLLER
8.9. CONFIGURING THE INGRESS CONTROLLER
8.9.1. Setting a custom default certificate
8.9.2. Removing a custom default certificate
8.9.3. Autoscaling an Ingress Controller
8.9.4. Scaling an Ingress Controller
8.9.5. Configuring Ingress access logging
8.9.6. Setting Ingress Controller thread count
8.9.7. Configuring an Ingress Controller to use an internal load balancer
8.9.8. Configuring global access for an Ingress Controller on Google Cloud
8.9.9. Setting the Ingress Controller health check interval
8.9.10. Configuring the default Ingress Controller for your cluster to be internal
8.9.11. Configuring the route admission policy
8.9.12. Using wildcard routes
8.9.13. HTTP header configuration
8.9.13.1. Order of precedence
8.9.13.2. Special case headers
8.9.14. Setting or deleting HTTP request and response headers in an Ingress Controller
8.9.15. Using X-Forwarded headers
8.9.15.1. Example use cases
8.9.16. Enable or disable HTTP/2 on Ingress Controllers
8.9.16.1. Enabling HTTP/2
8.9.16.2. Disabling HTTP/2
8.9.17. Configuring the PROXY protocol for an Ingress Controller
8.9.18. Specifying an alternative cluster domain using the appsDomain option
8.9.19. Converting HTTP header case
8.9.20. Using router compression
8.9.21. Exposing router metrics
8.9.22. Customizing HAProxy error code response pages
8.9.23. Setting the Ingress Controller maximum connections
8.10. ADDITIONAL RESOURCES

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM
9.1. INGRESS NODE FIREWALL OPERATOR
9.2. INSTALLING THE INGRESS NODE FIREWALL OPERATOR
9.2.1. Installing the Ingress Node Firewall Operator using the CLI
9.2.2. Installing the Ingress Node Firewall Operator using the web console
9.3. DEPLOYING INGRESS NODE FIREWALL OPERATOR
9.3.1. Ingress Node Firewall configuration object
9.3.2. Ingress Node Firewall Operator example configuration
9.3.3. Ingress Node Firewall rules object
9.3.3.1. Ingress object configuration
9.3.3.2. Ingress Node Firewall rules object example
9.3.3.3. Zero trust Ingress Node Firewall rules object example

107
18
18

120

122

123

123

123

124

124

125

125

126

127
131

132

136

136

138

139

140

140
141

142

142

143

145

146

147

147

148

149

150
152

153
155

156
157

160

160

161
161
161
161
163
164
164
165
166
166
167
168

Table of Contents

9.4. INGRESS NODE FIREWALL OPERATOR INTEGRATION 169
9.5. CONFIGURING INGRESS NODE FIREWALL OPERATOR TO USE THE EBPF MANAGER OPERATOR 169
9.6. VIEWING INGRESS NODE FIREWALL OPERATOR RULES 170
9.7. TROUBLESHOOTING THE INGRESS NODE FIREWALL OPERATOR 171
9.8. ADDITIONAL RESOURCES 171
CHAPTER 10. SR-IOV OPERAT O R 1.ttt ittt ettt et e e aeennneeaneeraneennneenn 172
10.1. INSTALLING THE SR-IOV NETWORK OPERATOR 172
10.1.1. Installing the SR-IOV Network Operator 172
10.1.1.1. CLI: Installing the SR-IOV Network Operator 172
10.1.1.2. Web console: Installing the SR-IOV Network Operator 173
10.1.2. Next steps 174
10.2. CONFIGURING THE SR-IOV NETWORK OPERATOR 174
10.2.1. Configuring the SR-IOV Network Operator 174
10.2.1.1. SR-IOV Network Operator config custom resource 175
10.2.1.2. About the Network Resources Injector 177
10.2.1.3. Disabling or enabling the Network Resources Injector 178
10.2.1.4. About the SR-IOV Network Operator admission controller webhook 179
10.2.1.5. Disabling or enabling the SR-IOV Network Operator admission controller webhook 179
10.2.1.6. About custom node selectors 180
10.2.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon 180
10.2.1.8. Configuring the SR-IOV Network Operator for single node installations 181
10.2.1.9. Deploying the SR-IOV Operator for hosted control planes 182
10.2.2. About the SR-IOV network metrics exporter 183
10.2.2.1. Enabling the SR-IOV network metrics exporter 185
10.2.3. Next steps 186
10.3. UNINSTALLING THE SR-IOV NETWORK OPERATOR 186
10.3.1. Uninstalling the SR-IOV Network Operator 186
CHAPTER 11, DPU OPERAT O R 1.ttt ittt ettt et et ea et aaeeeeeeanneeanneeaneeenneennnens 188
11.1. ABOUT DPU AND THE DPU OPERATOR 188
11.1.1. Orchestrating DPUs with the DPU Operator 188
11.2. INSTALLING THE DPU OPERATOR 189
11.2.1. Installing the DPU Operator by using the CLI 189
11.2.2. Installing the DPU Operator using the web console 190
11.2.3. Next steps 191
11.3. CONFIGURING THE DPU OPERATOR 191
11.3.1. Configuring the DPU Operator 191
11.4. RUNNING A WORKLOAD ON THE DPU 192
11.4.1. Running a workload on the DPU 192
11.4.2. Creating a service function chain on the DPU 193
11.5. UNINSTALLING THE DPU OPERATOR 194
11.5.1. Uninstalling the DPU Operator 194

OpenShift Container Platform 4.19 Networking Operators

CHAPTER 1. KUBERNETES NMSTATE OPERATOR

CHAPTER 1. KUBERNETES NMSTATE OPERATOR

The Kubernetes NMState Operator provides a Kubernetes API for performing state-driven network
configuration across the OpenShift Container Platform cluster’s nodes with NMState. The Kubernetes
NMState Operator provides users with functionality to configure various network interface types, DNS,
and routing on cluster nodes. Additionally, the daemons on the cluster nodes periodically report on the
state of each node’s network interfaces to the APl server.

IMPORTANT

Red Hat supports the Kubernetes NMState Operator in production environments on
bare-metal, IBM Power®, IBM Z°, IBM® LinuxONE, VMware vSphere, and Red Hat
OpenStack Platform (RHOSP) installations.

Red Hat support exists for using the Kubernetes NMState Operator on Microsoft Azure
but in a limited capacity. Support is limited to configuring DNS servers on your system as
a postinstallation task.

Before you can use NMState with OpenShift Container Platform, you must install the Kubernetes
NMState Operator. After you install the Kubernetes NMState Operator, you can complete the following
tasks:

® Observing and updating the node network state and configuration
® Creating a manifest object that includes a customized br-ex bridge

For more information on these tasks, see the Additional resources section.

NOTE

The Kubernetes NMState Operator updates the network configuration of a secondary
NIC. The Operator cannot update the network configuration of the primary NIC, or
update the br-ex bridge on most on-premise networks.

On a bare-metal platform, using the Kubernetes NMState Operator to update the br-ex
bridge network configuration is only supported if you set the br-ex bridge as the interface
in a machine config manifest file. To update the br-ex bridge as a postinstallation task,
you must set the br-ex bridge as the interface in the NMState configuration of the
NodeNetworkConfigurationPolicy custom resource (CR) for your cluster. For more
information, see Creating a manifest object that includes a customized br-ex bridge in
Postinstallation configuration.

OpenShift Container Platform uses nmstate to report on and configure the state of the node network.
This makes it possible to modify the network policy configuration, such as by creating a Linux bridge on
all nodes, by applying a single configuration manifest to the cluster.

Node networking is monitored and updated by the following objects:

NodeNetworkState
Reports the state of the network on that node.

NodeNetworkConfigurationPolicy

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_bare_metal/#creating-manifest-file-customized-br-ex-bridge_bare-metal-postinstallation-configuration
https://nmstate.github.io/

OpenShift Container Platform 4.19 Networking Operators

Describes the requested network configuration on nodes. You update the node network
configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy CR to the cluster.

NodeNetworkConfigurationEnactment
Reports the network policies enacted upon each node.

NOTE

Do not make configuration changes to the br-ex bridge or its underlying interfaces as a
postinstallation task.

1.1. INSTALLING THE KUBERNETES NMSTATE OPERATOR

You can install the Kubernetes NMState Operator by using the web console or the CLI.

1.1.1. Installing the Kubernetes NMState Operator by using the web console

You can install the Kubernetes NMState Operator by using the web console. After you install the
Kubernetes NMState Operator, the Operator has deployed the NMState State Controller as a daemon
set across all of the cluster nodes.

Prerequisites

® You are logged in as a user with cluster-admin privileges.

Procedure

1. Select Operators = OperatorHub.

2. In the search field below All Items, enter nmstate and click Enter to search for the Kubernetes
NMState Operator.

3. Click on the Kubernetes NMState Operator search result.
4. Click on Install to open the Install Operator window.

5. Click Install to install the Operator.

6. After the Operator finishes installing, click View Operator.

7. Under Provided APlIs, click Create Instance to open the dialog box for creating an instance of
kubernetes-nmstate.

8. In the Name field of the dialog box, ensure the name of the instance is hmstate.

NOTE

The name restriction is a known issue. The instance is a singleton for the entire
cluster.

9. Accept the default settings and click Create to create the instance.

CHAPTER 1. KUBERNETES NMSTATE OPERATOR

1.1.2. Installing the Kubernetes NMState Operator by using the CLI

You can install the Kubernetes NMState Operator by using the OpenShift CLI (oc). After it is installed,
the Operator can deploy the NMState State Controller as a daemon set across all of the cluster nodes.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You are logged in as a user with cluster-admin privileges.

Procedure

1. Create the nmstate Operator namespace:

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Namespace
metadata:

name: openshift-nmstate
spec:

finalizers:

- kubernetes
EOF

2. Create the OperatorGroup:

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: openshift-nmstate
namespace: openshift-nmstate
spec:
targetNamespaces:
- openshift-nmstate
EOF

3. Subscribe to the nmstate Operator:

$ cat << EOF| oc apply -f -

apiVersion: operators.coreos.com/vialphaft

kind: Subscription
metadata:
name: kubernetes-nmstate-operator
namespace: openshift-nmstate
spec:
channel: stable
installPlanApproval: Automatic
name: kubernetes-nmstate-operator
source: redhat-operators

sourceNamespace: openshift-marketplace

EOF

OpenShift Container Platform 4.19 Networking Operators

4. Confirm the ClusterServiceVersion (CSV) status for the nmstate Operator deployment equals
Succeeded:

$ oc get clusterserviceversion -n openshift-nmstate \
-0 custom-columns=Name:.metadata.name,Phase:.status.phase

5. Create aninstance of the nmstate Operator:

$ cat << EOF | oc apply -f -
apiVersion: nmstate.io/v1
kind: NMState
metadata:

name: nmstate
EOF

6. If your cluster has problems with the DNS health check probe because of DNS connectivity
issues, you can add the following DNS host name configuration to the NMState CRD to build in
health checks that can resolve these issues:

apiVersion: nmstate.io/v1
kind: NMState
metadata:

name: nmstate
spec:

probeConfiguration:

dns:
host: redhat.com

#...

a. Apply the DNS host name configuration to your cluster network by running the following
command. Ensure that you replace <filename> with the name of your CRD file.

I $ oc apply -f <filename>.yaml

b. Monitor the nmstate CRD until the resource reaches the Available condition by running
the following command. Ensure that you set a value for the --timeout option so that if the
Available condition is not met within this set maximum waiting time, the command times
out and generates an error message.

I $ oc wait --for=condition=Available nmstate/nmstate --timeout=600s

Verification

1. Verify that all pods for the NMState Operator have the Running status by entering the
following command:

I $ oc get pod -n openshift-nmstate
1.1.3. Viewing metrics collected by the Kubernetes NMState Operator

The Kubernetes NMState Operator, kubernetes-nmstate-operator, can collect metrics from the
kubernetes_nmstate_features_applied component and expose them as ready-to-use metrics. As a

10

CHAPTER 1. KUBERNETES NMSTATE OPERATOR

use case for viewing metrics, consider a situation where you created a
NodeNetworkConfigurationPolicy custom resource and you want to confirm that the policy is active.

NOTE

The kubernetes_nmstate_features_applied metrics are not an APl and might change
between OpenShift Container Platform versions.

In the web console, the Metrics Ul includes some predefined CPU, memory, bandwidth, and network
packet queries for the selected project. You can run custom Prometheus Query Language (PromQL)
queries for CPU, memory, bandwidth, network packet and application metrics for the project.

The following example demonstrates a NodeNetworkConfigurationPolicy manifest example that is
applied to an OpenShift Container Platform cluster:

#...
interfaces:
- name: br1
type: linux-bridge
state: up
ipvé4:
enabled: true
dhcp: true
dhcp-custom-hostname: foo
bridge:
options:
stp:
enabled: false
port: []
#...

The NodeNetworkConfigurationPolicy manifest exposes metrics and makes them available to the
Cluster Monitoring Operator (CMO). The following example shows some exposed metrics:

controller_runtime_reconcile_time_seconds_bucket{controller="nodenetworkconfigurationenactment",le
="0.005"} 16
controller_runtime_reconcile_time_seconds_bucket{controller="nodenetworkconfigurationenactment",le
="0.01"} 16
controller_runtime_reconcile_time_seconds_bucket{controller="nodenetworkconfigurationenactment",le
="0.025"} 16

HELP kubernetes_nmstate_features_applied Number of nmstate features applied labeled by its
name

TYPE kubernetes_nmstate_features_applied gauge
kubernetes_nmstate_features_applied{name="dhcpv4-custom-hostname"} 1

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the web console as the administrator and installed the Kubernetes
NMState Operator.

1

OpenShift Container Platform 4.19 Networking Operators

® You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

® You have enabled monitoring for user-defined projects.

® You have deployed a service in a user-defined project.

® You have created a NodeNetworkConfigurationPolicy manifest and applied it to your cluster.

Procedure

IMPORTANT

Starting with OpenShift Container Platform 4.19, the perspectives in the web console
have unified. The Developer perspective is no longer enabled by default.

All users can interact with all OpenShift Container Platform web console features.
However, if you are not the cluster owner, you might need to request permission to
access certain features from the cluster owner.

You can still enable the Developer perspective. On the Getting Started pane in the web
console, you can take a tour of the console, find information on setting up your cluster,
view a quick start for enabling the Developer perspective, and follow links to explore new
features and capabilities.

1. If you want to view the metrics from the Developer perspective in the OpenShift Container
Platform web console, complete the following tasks:

a.

b.

Click Observe.

To view the metrics of a specific project, select the project in the Project: list. For example,
openshift-nmstate.

. Click the Metrics tab.

. To visualize the metrics on the plot, select a query from the Select query list or create a

custom PromQL query based on the selected query by selecting Show PromQL.

W NOTE

N A You can only run one query at a time with the developer role.

2. If you want to view the metrics in the OpenShift Container Platform web console as an
administrator, complete the following tasks:

a.

b.

C.

Click Observe — Metrics.

Enter kubernetes_nmstate_features_applied in the Expression field.

Click Add query and then Run queries.

3. To explore the visualized metrics, do any of the following tasks:

a.

12

To zoom into the plot and change the time range, do any of the following tasks:

® To visually select the time range, click and drag on the plot horizontally.

CHAPTER 1. KUBERNETES NMSTATE OPERATOR

® To select the time range, use the menu which is in the upper left of the console.
b. To reset the time range, select Reset zoom.

c. To display the output for all the queries at a specific point in time, hold the mouse cursor on
the plot at that point. The query output displays in a pop-up box.

1.2. UNINSTALLING THE KUBERNETES NMSTATE OPERATOR
You can use the Operator Lifecycle Manager (OLM) to uninstall the Kubernetes NMState Operator, but
by design OLM does not delete any associated custom resource definitions (CRDs), custom resources

(CRs), or API Services.

Before you uninstall the Kubernetes NMState Operator from the Subcription resource used by OLM,
identify what Kubernetes NMState Operator resources to delete. This identification ensures that you
can delete resources without impacting your running cluster.

If you need to reinstall the Kubernetes NMState Operator, see "Installing the Kubernetes NMState
Operator by using the CLI" or "Installing the Kubernetes NMState Operator by using the web console".

Prerequisites
® You have installed the OpenShift CLI (oc).
® You have installed the jg CLI tool.

® You are logged in as a user with cluster-admin privileges.

Procedure

1. Unsubscribe the Kubernetes NMState Operator from the Subcription resource by running the
following command:

I $ oc delete --namespace openshift-nmstate subscription kubernetes-nmstate-operator

2. Find the ClusterServiceVersion (CSV) resource that associates with the Kubernetes NMState
Operator:

I $ oc get --namespace openshift-nmstate clusterserviceversion

Example output that lists a CSV resource

NAME DISPLAY VERSION REPLACES PHASE
kubernetes-nmstate-operator.v4.19.0 Kubernetes NMState Operator 4.19.0
Succeeded

3. Delete the CSV resource. After you delete the file, OLM deletes certain resources, such as
RBAC, that it created for the Operator.

$ oc delete --namespace openshift-nmstate clusterserviceversion kubernetes-nmstate-
operator.v4.19.0

13

OpenShift Container Platform 4.19 Networking Operators

4. Delete the nmstate CR and any associated Deployment resources by running the following
commands:

I $ oc -n openshift-nmstate delete nmstate nmstate

I $ oc delete --all deployments --namespace=openshift-nmstate

5. After you deleted the nmstate CR, remove the hmstate-console-plugin console plugin name
from the console.operator.openshift.io/cluster CR.

a. Store the position of the nmstate-console-plugin entry that exists among the list of
enable plugins by running the following command. The following command uses the jgq CLI
tool to store the index of the entry in an environment variable named INDEX:

INDEX=$(oc get console.operator.openshift.io cluster -o json | jq -r ".spec.plugins |
to_entries[] | select(.value == "nmstate-console-plugin”) | .key')

b. Remove the nmstate-console-plugin entry from the
console.operator.openshift.io/cluster CR by running the following patch command:

$ oc patch console.operator.openshift.io cluster --type=json -p "[{\"op\": \"remove\",
\"path\": \"/spec/plugins/$SINDEX\"}]" @)

ﬂ INDEX is an auxiliary variable. You can specify a different name for this variable.

6. Delete all the custom resource definitions (CRDs), such as nmstates.nmstate.io, by running the
following commands:

I $ oc delete crd nmstates.nmstate.io
I $ oc delete crd nodenetworkconfigurationenactments.nmstate.io
I $ oc delete crd nodenetworkstates.nmstate.io

I $ oc delete crd nodenetworkconfigurationpolicies.nmstate.io

7. Delete the namespace:

I $ oc delete namespace openshift-nmstate

1.3. ADDITIONAL RESOURCES
® Creating an interface on nodes
® Observing and updating the node network state and configuration

® Creating a manifest object that includes a customized br-ex bridge (Installer-provisioned
infrastructure)

14

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/kubernetes_nmstate/#virt-creating-interface-on-nodes_k8s-nmstate-updating-node-network-config
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/kubernetes_nmstate/#k8s-nmstate-updating-node-network-config
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_bare_metal/#creating-manifest-file-customized-br-ex-bridge_ipi-install-installation-workflow

CHAPTER 1. KUBERNETES NMSTATE OPERATOR

® Creating a manifest object that includes a customized br-ex bridge (User-provisioned
infrastructure)

15

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_bare_metal/#creating-manifest-file-customized-br-ex-bridge_installing-bare-metal

OpenShift Container Platform 4.19 Networking Operators

CHAPTER 2. AWS LOAD BALANCER OPERATOR

2.1. AWS LOAD BALANCER OPERATOR RELEASE NOTES

The AWS Load Balancer (ALB) Operator deploys and manages an instance of the
AWSLoadBalancerController resource.

IMPORTANT

The AWS Load Balancer (ALB) Operator is only supported on the x86_64 architecture.

These release notes track the development of the AWS Load Balancer Operator in OpenShift Container
Platform.

For an overview of the AWS Load Balancer Operator, see AWS Load Balancer Operator in OpenShift
Container Platform.

NOTE

AWS Load Balancer Operator currently does not support AWS GovCloud.

2.1.1. AWS Load Balancer Operator 1.2.0

The following advisory is available for the AWS Load Balancer Operator version 1.2.0:

® RHEA-2025:0034 Release of AWS Load Balancer Operator 1.2.z on OperatorHub

2.1.1.1. Notable changes

® This release supports the AWS Load Balancer Controller version 2.8.2.

® With this release, the platform tags defined in the Infrastructure resource will now be added to
all AWS objects created by the controller.

2.1.2. AWS Load Balancer Operator 1.1.1

The following advisory is available for the AWS Load Balancer Operator version 1.1.1:

® RHEA-2024:0555 Release of AWS Load Balancer Operator 1.1.z on OperatorHub

2.1.3. AWS Load Balancer Operator 1.1.0

The AWS Load Balancer Operator version 1.1.0 supports the AWS Load Balancer Controller version
2.4.4,

The following advisory is available for the AWS Load Balancer Operator version 1.1.0:

® RHEA-2023:6218 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

2.1.3.1. Notable changes

16

https://access.redhat.com/errata/RHEA-2025:0034
https://access.redhat.com/errata/RHEA-2024:0555
https://access.redhat.com/errata/RHEA-2023:6218

CHAPTER 2. AWS LOAD BALANCER OPERATOR

® This release uses the Kubernetes API version 0.27.2.

2.1.3.2. New features

® The AWS Load Balancer Operator now supports a standardized Security Token Service (STS)
flow by using the Cloud Credential Operator.

2.1.3.3. Bug fixes

® AFIPS-compliant cluster must use TLS version 1.2. Previously, webhooks for the AWS Load
Balancer Controller only accepted TLS 1.3 as the minimum version, resulting in an error such as
the following on a FIPS-compliant cluster:

I remote error: tls: protocol version not supported

Now, the AWS Load Balancer Controller accepts TLS 1.2 as the minimum TLS version, resolving
this issue. (OCPBUGS-14846)

2.1.4. AWS Load Balancer Operator 1.0.1

The following advisory is available for the AWS Load Balancer Operator version 1.0.1:

® Release of AWS Load Balancer Operator 1.0.1 on OperatorHub

2.1.5. AWS Load Balancer Operator 1.0.0

The AWS Load Balancer Operator is now generally available with this release. The AWS Load Balancer
Operator version 1.0.0 supports the AWS Load Balancer Controller version 2.4.4.

The following advisory is available for the AWS Load Balancer Operator version 1.0.0:

® RHEA-2023:1954 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

IMPORTANT

The AWS Load Balancer (ALB) Operator version 1.x.x cannot upgrade automatically from
the Technology Preview version O.x.x. To upgrade from an earlier version, you must
uninstall the ALB operands and delete the aws-load-balancer-operator namespace.

2.1.5.1. Notable changes

® This release uses the new v1 API version.

2.1.5.2. Bug fixes

® Previously, the controller provisioned by the AWS Load Balancer Operator did not properly use
the configuration for the cluster-wide proxy. These settings are now applied appropriately to
the controller. (OCPBUGS-4052, OCPBUGS-5295)

2.1.6. Earlier versions

17

https://issues.redhat.com/browse/OCPBUGS-14846
https://access.redhat.com/errata/RHEA-2024:0556
https://access.redhat.com/errata/RHEA-2023:1954
https://issues.redhat.com/browse/OCPBUGS-4052
https://issues.redhat.com/browse/OCPBUGS-5295

OpenShift Container Platform 4.19 Networking Operators

The two earliest versions of the AWS Load Balancer Operator are available as a Technology Preview.
These versions should not be used in a production cluster. For more information about the support
scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

The following advisory is available for the AWS Load Balancer Operator version 0.2.0:

® RHEA-2022:9084 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

The following advisory is available for the AWS Load Balancer Operator version 0.0.1:

® RHEA-2022:5780 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

2.2. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The AWS Load Balancer Operator deploys and manages the AWS Load Balancer Controller. You can
install the AWS Load Balancer Operator from OperatorHub by using OpenShift Container Platform web
console or CLI.

2.2.1. AWS Load Balancer Operator considerations

Review the following limitations before installing and using the AWS Load Balancer Operator:

® The IP traffic mode only works on AWS Elastic Kubernetes Service (EKS). The AWS Load
Balancer Operator disables the IP traffic mode for the AWS Load Balancer Controller. As a
result of disabling the IP traffic mode, the AWS Load Balancer Controller cannot use the pod
readiness gate.

® The AWS Load Balancer Operator adds command-line flags such as --disable-ingress-class-
annotation and --disable-ingress-group-name-annotation to the AWS Load Balancer
Controller. Therefore, the AWS Load Balancer Operator does not allow using the
kubernetes.io/ingress.class and alb.ingress.kubernetes.io/group.name annotations in the
Ingress resource.

® You have configured the AWS Load Balancer Operator so that the SVC type is NodePort (not
LoadBalancer or ClusterlP).

2.2.2. AWS Load Balancer Operator

The AWS Load Balancer Operator can tag the public subnets if the kubernetes.io/role/elb tag is
missing. Also, the AWS Load Balancer Operator detects the following information from the underlying
AWS cloud:

® The ID of the virtual private cloud (VPC) on which the cluster hosting the Operator is deployed
in.

® Public and private subnets of the discovered VPC.

The AWS Load Balancer Operator supports the Kubernetes service resource of type LoadBalancer by
using Network Load Balancer (NLB) with the instance target type only.

Procedure

18

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/errata/RHEA-2022:9084
https://access.redhat.com/errata/RHEA-2022:5780

CHAPTER 2. AWS LOAD BALANCER OPERATOR

1. To deploy the AWS Load Balancer Operator on-demand from OperatorHub, create a
Subscription object by running the following command:

$ oc -n aws-load-balancer-operator get sub aws-load-balancer-operator --
template="{{.status.installplan.name}}{{"\n"}}'

2. Check if the status of an install plan is Complete by running the following command:

Q)

I $ oc -n aws-load-balancer-operator get ip <install_plan_name> --template="{{.status.phase}}

3. View the status of the aws-load-balancer-operator-controller-manager deployment by
running the following command:

$ oc get -n aws-load-balancer-operator deployment/aws-load-balancer-operator-controller-
manager

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
aws-load-balancer-operator-controller-manager 1/1 1 1 23h

2.2.3. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into
an Outpost

You can configure the AWS Load Balancer Operator to provision an AWS Application Load Balancer in
an AWS VPC cluster extended into an Outpost. AWS Outposts does not support AWS Network Load
Balancers. As a result, the AWS Load Balancer Operator cannot provision Network Load Balancers in an
Outpost.

You can create an AWS Application Load Balancer either in the cloud subnet or in the Outpost subnet.
An Application Load Balancer in the cloud can attach to cloud-based compute nodes and an Application

Load Balancer in the Outpost can attach to edge compute nodes. You must annotate Ingress resources
with the Outpost subnet or the VPC subnet, but not both.

Prerequisites

® You have extended an AWS VPC cluster into an Outpost.
® You have installed the OpenShift CLI (oc).

® You have installed the AWS Load Balancer Operator and created the AWS Load Balancer
Controller.

Procedure

e Configure the Ingress resource to use a specified subnet:

Example Ingress resource configuration

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

19

OpenShift Container Platform 4.19 Networking Operators

name: <application_name>
annotations:

alb.ingress.kubernetes.io/subnets: <subnet_id> ﬂ

spec:
ingressClassName: alb
rules:
- http:
paths:
- path: /
pathType: Exact
backend:
service:
name: <application_name>
port:
number: 80

ﬂ Specifies the subnet to use.
o To use the Application Load Balancer in an Outpost, specify the Outpost subnet ID.

o To use the Application Load Balancer in the cloud, you must specify at least two
subnets in different availability zones.

2.3. PREPARING AN AWS STS CLUSTER FOR THE AWS LOAD
BALANCER OPERATOR

You can install the Amazon Web Services (AWS) Load Balancer Operator on a cluster that uses the
Security Token Service (STS). Follow these steps to prepare your cluster before installing the Operator.

The AWS Load Balancer Operator relies on the CredentialsRequest object to bootstrap the Operator
and the AWS Load Balancer Controller. The AWS Load Balancer Operator waits until the required
secrets are created and available.

2.3.1. Prerequisites

® You installed the OpenShift CLI (o¢).

® You know the infrastructure ID of your cluster. To show this ID, run the following command in
your CLI:

I $ oc get infrastructure cluster -o=jsonpath="{.status.infrastructureName}"

® You know the OpenID Connect (OIDC) DNS information for your cluster. To show this
information, enter the following command in your CLI:

I $ oc get authentication.config cluster -o=jsonpath="{.spec.serviceAccountlssuer}" ﬂ

Q An OIDC DNS example is https://rh-oidc.s3.us-east-
1.amazonaws.com/28292va7ad7mr9r4he1fb09b14t59t4f.

20

CHAPTER 2. AWS LOAD BALANCER OPERATOR

® Youlogged into the AWS Web Console, navigated to IAM - Access management — Identity
providers, and located the OIDC Amazon Resource Name (ARN) information. An OIDC ARN
example is arn:aws:iam::777777777777:oidc-provider/<oidc_dns_url>.

2.3.2. Creating an IAM role for the AWS Load Balancer Operator

An additional Amazon Web Services (AWS) Identity and Access Management (IAM) role is required to
successfully install the AWS Load Balancer Operator on a cluster that uses STS. The IAM role is required
to interact with subnets and Virtual Private Clouds (VPCs). The AWS Load Balancer Operator
generates the CredentialsRequest object with the IAM role to bootstrap itself.

You can create the IAM role by using the following options:

® Using the Cloud Credential Operator utility (ccoctl) and a predefined CredentialsRequest
object.

e Using the AWS CLI and predefined AWS manifests.

Use the AWS CLI if your environment does not support the ccoctl command.

2.3.2.1. Creating an AWS IAM role by using the Cloud Credential Operator utility

You can use the Cloud Credential Operator utility (ccoctl) to create an AWS IAM role for the AWS Load
Balancer Operator. An AWS |IAM role interacts with subnets and Virtual Private Clouds (VPCs).
Prerequisites

® You must extract and prepare the ccoctl binary.

Procedure

1. Download the CredentialsRequest custom resource (CR) and store it in a directory by running
the following command:

$ curl --create-dirs -0 <credentials_requests_dir>/operator.yaml
https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/hack/operator-
credentials-request.yaml

2. Use the ccoctl utility to create an AWS IAM role by running the following command:

$ ccoctl aws create-iam-roles \
--name <name> \
--region=<aws_region> \
--credentials-requests-dir=<credentials_requests_dir>\
--identity-provider-arn <oidc_arn>

Example output

2023/09/12 11:38:57 Role arn:aws:iam:: 777777777777 :role/<name>-aws-load-balancer-

operator-aws-load-balancer-operator created ﬂ
2023/09/12 11:38:57 Saved credentials configuration to:
/home/user/<credentials_requests_dir>/manifests/aws-load-balancer-operator-aws-load-

21

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_aws/#cco-ccoctl-configuring_installing-aws-customizations

OpenShift Container Platform 4.19 Networking Operators

balancer-operator-credentials.yaml
2023/09/12 11:38:58 Updated Role policy for Role <name>-aws-load-balancer-operator-aws-
load-balancer-operator created

ﬂ Note the Amazon Resource Name (ARN) of an AWS IAM role that was created for the
AWS Load Balancer Operator, such as arn:aws:iam::777777777777:role/<name>-aws-
load-balancer-operator-aws-load-balancer-operator.

NOTE

The length of an AWS IAM role name must be less than or equal to 12 characters.

2.3.2.2. Creating an AWS IAM role by using the AWS CLI

You can use the AWS Command Line Interface to create an IAM role for the AWS Load Balancer
Operator. The IAM role is used to interact with subnets and Virtual Private Clouds (VPCs).

Prerequisites

® You must have access to the AWS Command Line Interface (aws).

Procedure

1. Generate a trust policy file by using your identity provider by running the following command:

$ cat <<EOF > albo-operator-trust-policy.json
{
"Version": "2012-10-17",
"Statement”: |
{
"Effect": "Allow",
"Principal™: {
"Federated": "<oidc_arn>"
b
"Action": "sts:AssumeRoleWithWebldentity",
"Condition": {
"StringEquals™: {
"<cluster_oidc_endpoint>:sub": "system:serviceaccount:aws-load-balancer-
operator:aws-load-balancer-operator-controller-manager” g
}
}
}
]

}
EOF

Specifies the Amazon Resource Name (ARN) of the OIDC identity provider, such as
arn:aws:iam::777777777777:oidc-provider/rh-oidc.s3.us-east-
1.amazonaws.com/28292va7ad7mr9r4he1fb09b14t59t4f.

9 Specifies the service account for the AWS Load Balancer Controller. An example of

<cluster_oidc_endpoints is rh-oidc.s3.us-east-
1.amazonaws.com/28292va7ad7mr9r4he1fb09b14t59t4f.

22

CHAPTER 2. AWS LOAD BALANCER OPERATOR

2. Create the IAM role with the generated trust policy by running the following command:

$ aws iam create-role --role-name albo-operator --assume-role-policy-document file://albo-
operator-trust-policy.json

Example output

ROLE arn:aws:iam::<aws_account_number>:role/albo-operator 2023-08-02T12:13:22Z ﬂ
ASSUMEROLEPOLICYDOCUMENT 2012-10-17

STATEMENT sts:AssumeRoleWithWebldentity Allow

STRINGEQUALS system:serviceaccount:aws-load-balancer-operator:aws-load-balancer-
controller-manager

PRINCIPAL arn:aws:iam:<aws_account_number>:oidc-provider/<cluster_oidc_endpoint>

Note the ARN of the created AWS IAM role that was created for the AWS Load Balancer
Operator, such as arn:aws:iam::777777777777:role/albo-operator.

3. Download the permission policy for the AWS Load Balancer Operator by running the following
command:

$ curl -0 albo-operator-permission-policy.json
https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/hack/operator-
permission-policy.json

4. Attach the permission policy for the AWS Load Balancer Controller to the IAM role by running
the following command:

$ aws iam put-role-policy --role-name albo-operator --policy-name perms-policy-albo-
operator --policy-document file://albo-operator-permission-policy.json

2.3.3. Configuring the ARN role for the AWS Load Balancer Operator

You can configure the Amazon Resource Name (ARN) role for the AWS Load Balancer Operator as an
environment variable. You can configure the ARN role by using the CLI.

Prerequisites

® You have installed the OpenShift CLI (oc).
Procedure
1. Create the aws-load-balancer-operator project by running the following command:

I $ oc new-project aws-load-balancer-operator

2. Create the OperatorGroup object by running the following command:

$ cat <<EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

name: aws-load-balancer-operator

23

OpenShift Container Platform 4.19 Networking Operators

namespace: aws-load-balancer-operator
spec:

targetNamespaces: []
EOF

3. Create the Subscription object by running the following command:

$ cat <<EOF | oc apply -f -
apiVersion: operators.coreos.com/vialphaft
kind: Subscription
metadata:
name: aws-load-balancer-operator
namespace: aws-load-balancer-operator
spec:
channel: stable-v1
name: aws-load-balancer-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
config:
env:
- name: ROLEARN
value: "<albo_role_arn>"
EOF

Specifies the ARN role to be used in the CredentialsRequest to provision the AWS
credentials for the AWS Load Balancer Operator. An example for <albo_role_arns is
arn:aws:iam::<aws_account_numbers>:role/albo-operator.

NOTE

The AWS Load Balancer Operator waits until the secret is created before
moving to the Available status.

2.3.4. Creating an IAM role for the AWS Load Balancer Controller

The CredentialsRequest object for the AWS Load Balancer Controller must be set with a manually
provisioned IAM role.

You can create the IAM role by using the following options:

e Using the Cloud Credential Operator utility (ccoctl) and a predefined CredentialsRequest
object.

e Using the AWS CLI and predefined AWS manifests.

Use the AWS CLI if your environment does not support the ccoctl command.
2.3.4.1. Creating an AWS IAM role for the controller by using the Cloud Credential Operator
utility

You can use the Cloud Credential Operator utility (ccoctl) to create an AWS IAM role for the AWS Load

Balancer Controller. An AWS IAM role is used to interact with subnets and Virtual Private Clouds
(VPCs).

24

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_aws/#cco-ccoctl-configuring_installing-aws-customizations

CHAPTER 2. AWS LOAD BALANCER OPERATOR

Prerequisites

® You must extract and prepare the ccoctl binary.

Procedure

1. Download the CredentialsRequest custom resource (CR) and store it in a directory by running
the following command:

$ curl --create-dirs -0 <credentials_requests_dir>/controller.yaml
https://raw.githubusercontent.com/openshift/aws-load-balancer-
operator/main/hack/controller/controller-credentials-request.yaml

2. Use the ccoctl utility to create an AWS IAM role by running the following command:

$ ccoctl aws create-iam-roles \
--name <name> \
--region=<aws_region> \
--credentials-requests-dir=<credentials_requests_dir>\
--identity-provider-arn <oidc_arn>

Example output

2023/09/12 11:38:57 Role arn:aws:iam:: 777777777777 :role/<name>-aws-load-balancer-

operator-aws-load-balancer-controller created ﬂ

2023/09/12 11:38:57 Saved credentials configuration to:
/home/user/<credentials_requests_dir>/manifests/aws-load-balancer-operator-aws-load-
balancer-controller-credentials.yaml

2023/09/12 11:38:58 Updated Role policy for Role <name>-aws-load-balancer-operator-aws-
load-balancer-controller created

ﬂ Note the Amazon Resource Name (ARN) of an AWS IAM role that was created for the
AWS Load Balancer Controller, such as arn:aws:iam::777777777777:role/<name>-aws-
load-balancer-operator-aws-load-balancer-controller.

NOTE

The length of an AWS IAM role name must be less than or equal to 12 characters.

2.3.4.2. Creating an AWS IAM role for the controller by using the AWS CLI

You can use the AWS command-line interface to create an AWS IAM role for the AWS Load Balancer
Controller. An AWS IAM role is used to interact with subnets and Virtual Private Clouds (VPCs).

Prerequisites

® You must have access to the AWS command-line interface (aws).

Procedure

1. Generate a trust policy file using your identity provider by running the following command:

25

OpenShift Container Platform 4.19 Networking Operators

$ cat <<EOF > albo-controller-trust-policy.json
{
"Version": "2012-10-17",
"Statement”: |
{
"Effect": "Allow",
"Principal™: {
"Federated": "<oidc_arn>"
b
"Action": "sts:AssumeRoleWithWebldentity",
"Condition": {
"StringEquals™: {
"<cluster_oidc_endpoint>:sub": "system:serviceaccount:aws-load-balancer-
operator:aws-load-balancer-operator-controller-manager” g
}
}
}
]

}
EOF

ﬂ Specifies the Amazon Resource Name (ARN) of the OIDC identity provider, such as
arn:aws:iam::777777777777:oidc-provider/rh-oidc.s3.us-east-
1.amazonaws.com/28292va7ad7mr9r4he1fb09b14t59t4f.

9 Specifies the service account for the AWS Load Balancer Controller. An example of
<cluster_oidc_endpoints is rh-oidc.s3.us-east-
1.amazonaws.com/28292va7ad7mr9r4he1fb09b14t59t4f.

2. Create an AWS IAM role with the generated trust policy by running the following command:

$ aws iam create-role --role-name albo-controller --assume-role-policy-document file://albo-
controller-trust-policy.json

Example output

ROLE arn:aws:iam::<aws_account_number>:role/albo-controller 2023-08-02T12:13:22Z ﬂ
ASSUMEROLEPOLICYDOCUMENT 2012-10-17

STATEMENT sts:AssumeRoleWithWebldentity Allow

STRINGEQUALS system:serviceaccount:aws-load-balancer-operator:aws-load-balancer-
operator-controller-manager

PRINCIPAL arn:aws:iam:<aws_account_number>:oidc-provider/<cluster_oidc_endpoint>

Note the ARN of an AWS IAM role for the AWS Load Balancer Controller, such as
arn:aws:iam::777777777777:role/albo-controller.

3. Download the permission policy for the AWS Load Balancer Controller by running the following
command:

$ curl -0 albo-controller-permission-policy.json

https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/assets/iam-
policy.json

26

CHAPTER 2. AWS LOAD BALANCER OPERATOR

4. Attach the permission policy for the AWS Load Balancer Controller to an AWS IAM role by
running the following command:

$ aws iam put-role-policy --role-name albo-controller --policy-name perms-policy-albo-
controller --policy-document file://albo-controller-permission-policy.json

5. Create a YAML file that defines the AWSLoadBalancerController object:

Example sample-aws-Ib-manual-creds.yaml file

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerControlier €))
metadata:
name: clustere
spec:
credentialsRequestConfig:
stsIAMRoleARN: <albc_role_arn> @)

Defines the AWSLoadBalancerController object.

Defines the AWS Load Balancer Controller name. All related resources use this instance
name as a suffix.

®9

9 Specifies the ARN role for the AWS Load Balancer Controller. The CredentialsRequest
object uses this ARN role to provision the AWS credentials. An example of
<albc_role_arns is arn:aws:iam::777777777777:role/albo-controller.

2.3.5. Additional resources

® Configuring the Cloud Credential Operator utility

2.4.INSTALLING THE AWS LOAD BALANCER OPERATOR

The AWS Load Balancer Operator deploys and manages the AWS Load Balancer Controller. You can
install the AWS Load Balancer Operator from the OperatorHub by using OpenShift Container Platform
web console or CLI.

2.4.1. Installing the AWS Load Balancer Operator by using the web console

You can install the AWS Load Balancer Operator by using the web console.

Prerequisites

® You have logged in to the OpenShift Container Platform web console as a user with cluster-
admin permissions.

® Your cluster is configured with AWS as the platform type and cloud provider.
e |f you are using a security token service (STS) or user-provisioned infrastructure, follow the
related preparation steps. For example, if you are using AWS Security Token Service, see

"Preparing for the AWS Load Balancer Operator on a cluster using the AWS Security Token
Service (STS)".

27

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_aws/#cco-ccoctl-configuring_installing-aws-customizations

OpenShift Container Platform 4.19 Networking Operators

Procedure

1. Navigate to Operators = OperatorHub in the OpenShift Container Platform web console.

2. Select the AWS Load Balancer Operator. You can use the Filter by keyword text box or use
the filter list to search for the AWS Load Balancer Operator from the list of Operators.

3. Select the aws-load-balancer-operator namespace.

4. On the Install Operator page, select the following options:

. Update the channelas stable-v1.

Q

b. Installation mode as All namespaces on the cluster (default)

c. Installed Namespace as aws-load-balancer-operator. If the aws-load-balancer-operator
namespace does not exist, it gets created during the Operator installation.

d. Select Update approvalas Automatic or Manual. By default, the Update approvalis set to
Automatic. If you select automatic updates, the Operator Lifecycle Manager (OLM)
automatically upgrades the running instance of your Operator without any intervention. If
you select manual updates, the OLM creates an update request. As a cluster administrator,
you must then manually approve that update request to update the Operator updated to
the new version.

5. Click Install.

Verification

e Verify that the AWS Load Balancer Operator shows the Status as Succeeded on the Installed
Operators dashboard.

2.4.2. Installing the AWS Load Balancer Operator by using the CLI

You can install the AWS Load Balancer Operator by using the CLI.

Prerequisites

® You are logged in to the OpenShift Container Platform web console as a user with cluster-
admin permissions.

® Your cluster is configured with AWS as the platform type and cloud provider.

® You are logged into the OpenShift CLI (o¢).

Procedure
1. Create a Namespace object:

a. Create a YAML file that defines the Namespace object:

Example namespace.yaml file

apiVersion: vi
kind: Namespace
metadata:

28

CHAPTER 2. AWS LOAD BALANCER OPERATOR
I name: aws-load-balancer-operator

b. Create the Namespace object by running the following command:

I $ oc apply -f namespace.yaml

2. Create an OperatorGroup object:

a. Create a YAML file that defines the OperatorGroup object:

Example operatorgroup.yaml file

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: aws-lb-operatorgroup
namespace: aws-load-balancer-operator
spec:
upgradeStrategy: Default

b. Create the OperatorGroup object by running the following command:
I $ oc apply -f operatorgroup.yaml

3. Create a Subscription object:

a. Create a YAML file that defines the Subscription object:

Example subscription.yaml file

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: aws-load-balancer-operator
namespace: aws-load-balancer-operator
spec:
channel: stable-v1
installPlanApproval: Automatic
name: aws-load-balancer-operator
source: redhat-operators
sourceNamespace: openshift-marketplace

b. Create the Subscription object by running the following command:

I $ oc apply -f subscription.yaml

Verification

1. Get the name of the install plan from the subscription:
$ oc -n aws-load-balancer-operator \

get subscription aws-load-balancer-operator \
--template="{{.status.installplan.name}}{{"\n"}}'

29

OpenShift Container Platform 4.19 Networking Operators

2. Check the status of the install plan:

$ oc -n aws-load-balancer-operator \
get ip <install_plan_name> \
--template="{{.status.phase}}{{"\n"}}'

The output must be Complete.

2.4.3. Creating the AWS Load Balancer Controller

You can install only a single instance of the AWSLoadBalancerController object in a cluster. You can
create the AWS Load Balancer Controller by using CLI. The AWS Load Balancer Operator reconciles
only the cluster named resource.

Prerequisites

® You have created the echoserver namespace.

® You have access to the OpenShift CLI (oc¢).

Procedure

1. Create a YAML file that defines the AWSLoadBalancerController object:

Example sample-aws-Ib.yaml file

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerControlier €))
metadata:

name: clusterg
spec:

subnetTagging: Auto 6

additionalResourceTags:

- key: example.org/security-scope

value: staging
ingressClass: alb
config:

replicas: 2 G
enabledAddons: @)
- AWSWAFv2 ©)

Defines the AWSLoadBalancerController object.

®9

Defines the AWS Load Balancer Controller name. This instance name gets added as a
suffix to all related resources.

Configures the subnet tagging method for the AWS Load Balancer Controller. The
following values are valid:

® Auto: The AWS Load Balancer Operator determines the subnets that belong to the
cluster and tags them appropriately. The Operator cannot determine the role correctly
if the internal subnet tags are not present on internal subnet.

30

CHAPTER 2. AWS LOAD BALANCER OPERATOR

® Manual: You manually tag the subnets that belong to the cluster with the appropriate
role tags. Use this option if you installed your cluster on user-provided infrastructure.

Defines the tags used by the AWS Load Balancer Controller when it provisions AWS
resources.

Defines the ingress class name. The default value is alb.
Specifies the number of replicas of the AWS Load Balancer Controller.

Specifies annotations as an add-on for the AWS Load Balancer Controller.

Q90® O

Enables the alb.ingress.kubernetes.io/wafv2-acl-arn annotation.

2. Create the AWSLoadBalancerController object by running the following command:

I $ oc create -f sample-aws-Ib.yaml

3. Create a YAML file that defines the Deployment resource:

Example sample-aws-Ib.yaml file

apiVersion: apps/v1
kind: Deployment @)
metadata:
name: <echoserver> g
namespace: echoserver
spec:
selector:
matchLabels:
app: echoserver
replicas: 3 6
template:
metadata:
labels:
app: echoserver
spec:
containers:
- image: openshift/origin-node
command:
- "/bin/socat"
args:
- TCP4-LISTEN:8080,reuseaddr,fork
- EXEC:'/bin/bash -c \"printf W'HTTP/1.0 200 OK\N\m\n\n\\\"; sed -e \\\"/A\r/g\\"\™
imagePullPolicy: Always
name: echoserver
ports:
- containerPort: 8080

ﬂ Defines the deployment resource.
9 Specifies the deployment name.

9 Specifies the number of replicas of the deployment.

31

OpenShift Container Platform 4.19 Networking Operators

4. Create a YAML file that defines the Service resource:

Example service-albo.yaml file

apiVersion: vi
kind: Service)
metadata:
name: <echoserver> g
namespace: echoserver
spec:
ports:
- port: 80
targetPort: 8080
protocol: TCP
type: NodePort
selector:
app: echoserver

ﬂ Defines the service resource.

9 Specifies the service name.

5. Create a YAML file that defines the Ingress resource:

Example ingress-albo.yaml file

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: <name> ﬂ
namespace: echoserver
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing
alb.ingress.kubernetes.io/target-type: instance
spec:
ingressClassName: alb
rules:
- http:
paths:
- path: /
pathType: Exact
backend:
service:

name: <echoserver> g
port:
number: 80

ﬂ Specify a name for the Ingress resource.

9 Specifies the service name.

Verification

32

CHAPTER 2. AWS LOAD BALANCER OPERATOR

® Save the status of the Ingress resource in the HOST variable by running the following
command:

$ HOST=$(oc get ingress -n echoserver echoserver --template="{{(index
.status.loadBalancer.ingress 0).hostname}}')

e Verify the status of the Ingress resource by running the following command:

I $ curl $HOST

2.5. CONFIGURING THE AWS LOAD BALANCER OPERATOR

2.5.1. Trusting the certificate authority of the cluster-wide proxy

You can configure the cluster-wide proxy in the AWS Load Balancer Operator. After configuring the
cluster-wide proxy, Operator Lifecycle Manager (OLM) automatically updates all the deployments of
the Operators with the environment variables such as HTTP_PROXY, HTTPS_PROXY, and
NO_PROXY. These variables are populated to the managed controller by the AWS Load Balancer
Operator.

1. Create the config map to contain the certificate authority (CA) bundle in the aws-load-
balancer-operator namespace by running the following command:

I $ oc -n aws-load-balancer-operator create configmap trusted-ca

2. Toinject the trusted CA bundle into the config map, add the config.openshift.io/inject-
trusted-cabundle=true label to the config map by running the following command:

$ oc -n aws-load-balancer-operator label cm trusted-ca config.openshift.io/inject-trusted-
cabundle=true

3. Update the AWS Load Balancer Operator subscription to access the config map in the AWS
Load Balancer Operator deployment by running the following command:

$ oc -n aws-load-balancer-operator patch subscription aws-load-balancer-operator --
type="'merge' -p {"spec":{"config":{"env":
[{"name":"TRUSTED_CA_CONFIGMAP_NAME","value":"trusted-ca"}],"volumes":
[{"name":"trusted-ca","configMap":{"name":"trusted-ca"}}],"volumeMounts":[{"name":"trusted-
ca","mountPath":"/etc/pki/tls/certs/albo-tls-ca-bundle.crt","subPath":"ca-bundle.crt"}]}}}'

4. After the AWS Load Balancer Operator is deployed, verify that the CA bundle is added to the
aws-load-balancer-operator-controller-manager deployment by running the following
command:

$ oc -n aws-load-balancer-operator exec deploy/aws-load-balancer-operator-controller-

manager -c manager -- bash -c "Is -l /etc/pki/tls/certs/albo-tls-ca-bundle.crt; printenv
TRUSTED_CA_CONFIGMAP_NAME"

Example output

-rw-r--r--. 1 root 1000690000 5875 Jan 11 12:25 /etc/pki/tls/certs/albo-tls-ca-bundle.crt
trusted-ca

33

OpenShift Container Platform 4.19 Networking Operators

5. Optional: Restart deployment of the AWS Load Balancer Operator every time the config map
changes by running the following command:

$ oc -n aws-load-balancer-operator rollout restart deployment/aws-load-balancer-operator-
controller-manager

Additional resources

® Certificate injection using Operators

2.5.2. Adding TLS termination on the AWS Load Balancer

You can route the traffic for the domain to pods of a service and add TLS termination on the AWS Load
Balancer.

Prerequisites

® You have an access to the OpenShift CLI (oc¢).

Procedure

1. Create a YAML file that defines the AWSLoadBalancerController resource:

Example add-tls-termination-albc.yaml file

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:

name: cluster
spec:

subnetTagging: Auto

ingressClass: tls-termination ﬂ

Defines the ingress class name. If the ingress class is not present in your cluster the AWS
Load Balancer Controller creates one. The AWS Load Balancer Controller reconciles the
additional ingress class values if spec.controller is set to ingress.k8s.aws/alb.

2. Create a YAML file that defines the Ingress resource:

Example add-tls-termination-ingress.yaml file

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: <example> ﬂ
annotations:

alb.ingress.kubernetes.io/scheme: internet-facing g

alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:us-west-2:xxxxx 6
spec:

ingressClassName: tls-termination ﬂ

34

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/configuring_network_settings/#certificate-injection-using-operators_configuring-a-custom-pki

CHAPTER 2. AWS LOAD BALANCER OPERATOR

rules:

- host: example.com 6
http:
paths:
- path: /
pathType: Exact
backend:
service:

name: <example_service> G
port:
number: 80

ﬂ Specifies the ingress name.

The controller provisions the load balancer for ingress in a public subnet to access the load
balancer over the internet.

9 The Amazon Resource Name (ARN) of the certificate that you attach to the load balancer.
Q Defines the ingress class name.
6 Defines the domain for traffic routing.

6 Defines the service for traffic routing.

2.5.3. Creating multiple ingress resources through a single AWS Load Balancer

You can route the traffic to different services with multiple ingress resources that are part of a single
domain through a single AWS Load Balancer. Each ingress resource provides different endpoints of the
domain.

Prerequisites

® You have an access to the OpenShift CLI (oc¢).

Procedure

1. Create an IngressClassParams resource YAML file, for example, sample-single-lb-
params.yaml, as follows:

apiVersion: elbv2.k8s.aws/v1ibetal 0
kind: IngressClassParams
metadata:

name: single-lb-params 9
spec:
group:
name: single-lb 6

Defines the API group and version of the IngressClassParams resource.

Specifies the IngressClassParams resource name.

-

Specifies the IngressGroup resource name. All of the Ingress resources of this class
belong to this InaressGroup.

35

OpenShift Container Platform 4.19 Networking Operators

2. Create the IngressClassParams resource by running the following command:

I $ oc create -f sample-single-lb-params.yaml

3. Create the IngressClass resource YAML file, for example, sample-single-Ib-class.yaml, as
follows:

apiVersion: networking.k8s.io/v1 ﬂ
kind: IngressClass
metadata:
name: single-lb g
spec:
controller: ingress.k8s.aws/alb 6
parameters:
apiGroup: elbv2.k8s.aws ﬂ
kind: IngressClassParams 9
name: single-lb-params G

Defines the API group and version of the IngressClass resource.

Specifies the ingress class name.

Defines the controller name. The ingress.k8s.aws/alb value denotes that all ingress
resources of this class should be managed by the AWS Load Balancer Controller.

Defines the API group of the IngressClassParams resource.

Defines the resource type of the IngressClassParams resource.

QOO0 009

Defines the IngressClassParams resource name.

4. Create the IngressClass resource by running the following command:

I $ oc create -f sample-single-lb-class.yaml

5. Create the AWSLoadBalancerController resource YAML file, for example, sample-single-
Ib.yaml, as follows:

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:

name: cluster
spec:

subnetTagging: Auto

ingressClass: single-Ib

ﬂ Defines the name of the IngressClass resource.

6. Create the AWSLoadBalancerController resource by running the following command:

36

CHAPTER 2. AWS LOAD BALANCER OPERATOR
I $ oc create -f sample-single-lb.yaml

7. Create the Ingress resource YAML file, for example, sample-multiple-ingress.yaml, as follows:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: example-1 ﬂ
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing g
alb.ingress.kubernetes.io/group.order: "1" 6
alb.ingress.kubernetes.io/target-type: instance ﬂ
spec:
ingressClassName: single-1b 6
rules:
- host: example.com G
http:
paths:
- path: /blog ﬂ
pathType: Prefix
backend:
service:

name: example-1 6
port:

number: 80 Q
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: example-2
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing
alb.ingress.kubernetes.io/group.order: "2"
alb.ingress.kubernetes.io/target-type: instance
spec:
ingressClassName: single-1b
rules:
- host: example.com
http:
paths:
- path: /store
pathType: Prefix
backend:
service:
name: example-2
port:
number: 80
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: example-3
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing

37

OpenShift Container Platform 4.19 Networking Operators

alb.ingress.kubernetes.io/group.order: "3"
alb.ingress.kubernetes.io/target-type: instance

spec:
ingressClassName: single-Ib
rules:
- host: example.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: example-3
port:
number: 80

Specifies the ingress name.
Indicates the load balancer to provision in the public subnet to access the internet.

Specifies the order in which the rules from the multiple ingress resources are matched
when the request is received at the load balancer.

Indicates that the load balancer will target OpenShift Container Platform nodes to reach
the service.

Specifies the ingress class that belongs to this ingress.

Defines a domain name used for request routing.

Defines the path that must route to the service.

Defines the service name that serves the endpoint configured in the Ingress resource.

Defines the port on the service that serves the endpoint.

O090® 0 00

8. Create the Ingress resource by running the following command:

I $ oc create -f sample-multiple-ingress.yaml

2.5.4. AWS Load Balancer Operator logs

You can view the AWS Load Balancer Operator logs by using the oc logs command.

Procedure

® View the logs of the AWS Load Balancer Operator by running the following command:

$ oc logs -n aws-load-balancer-operator deployment/aws-load-balancer-operator-controller-
manager -c manager

38

CHAPTER 3. EBPF MANAGER OPERATOR

CHAPTER 3. EBPF MANAGER OPERATOR

3.1. ABOUT THE EBPF MANAGER OPERATOR

IMPORTANT

eBPF Manager Operator is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

3.1.1. About Extended Berkeley Packet Filter (eBPF)

eBPF extends the original Berkeley Packet Filter for advanced network traffic filtering. It acts as a virtual
machine inside the Linux kernel, allowing you to run sandboxed programs in response to events such as
network packets, system calls, or kernel functions.

3.1.2. About the eBPF Manager Operator

eBPF Manager simplifies the management and deployment of eBPF programs within Kubernetes, as
well as enhancing the security around using eBPF programs. It utilizes Kubernetes custom resource
definitions (CRDs) to manage eBPF programs packaged as OCI container images. This approach helps
to delineate deployment permissions and enhance security by restricting program types deployable by
specific users.

eBPF Manager is a software stack designed to manage eBPF programs within Kubernetes. It facilitates
the loading, unloading, modifying, and monitoring of eBPF programs in Kubernetes clusters. It includes a
daemon, CRDs, an agent, and an operator:

bpfman
A system daemon that manages eBPF programs via a gRPC API.
eBPF CRDs

A set of CRDs like XdpProgram and TcProgram for loading eBPF programs, and a bpfman-
generated CRD (BpfProgram) for representing the state of loaded programs.

bpfman-agent
Runs within a daemonset container, ensuring eBPF programs on each node are in the desired state.
bpfman-operator

Manages the lifecycle of the bpfman-agent and CRDs in the cluster using the Operator SDK.
The eBPF Manager Operator offers the following features:

® Enhances security by centralizing eBPF program loading through a controlled daemon. eBPF
Manager has the elevated privileges so the applications don't need to be. eBPF program control
is regulated by standard Kubernetes Role-based access control (RBAC), which can allow or deny
an application’s access to the different eBPF Manager CRDs that manage eBPF program
loading and unloading.

39

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.19 Networking Operators

® Provides detailed visibility into active eBPF programs, improving your ability to debug issues
across the system.

® Facilitates the coexistence of multiple eBPF programs from different sources using protocols
like libxdp for XDP and TC programs, enhancing interoperability.

® Streamlines the deployment and lifecycle management of eBPF programs in Kubernetes.

Developers can focus on program interaction rather than lifecycle management, with support
for existing eBPF libraries like Cilium, libbpf, and Aya.

3.1.3. Additional resources
® ¢BPF Documentation
® bpfman

® eBPF Manager custom resource definition (CRD) API specification

3.1.4. Next steps

® |nstalling the eBPF Manager Operator

3.2. INSTALLING THE EBPF MANAGER OPERATOR

As a cluster administrator, you can install the eBPF Manager Operator by using the OpenShift Container
Platform CLI or the web console.

IMPORTANT

eBPF Manager Operator is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

3.2.1. Installing the eBPF Manager Operator using the CLI

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have an account with administrator privileges.

Procedure

1. To create the bpfman namespace, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: v1

40

https://ebpf.io/what-is-ebpf/
https://bpfman.io/latest
https://bpfman.io/latest/developer-guide/api-spec/
https://access.redhat.com/support/offerings/techpreview/

CHAPTER 3. EBPF MANAGER OPERATOR

kind: Namespace
metadata:
labels:
pod-security.kubernetes.io/enforce: privileged
pod-security.kubernetes.io/enforce-version: v1.24
name: bpfman
EOF

2. To create an OperatorGroup CR, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: bpfman-operators
namespace: bpfman
EOF

3. Subscribe to the eBPF Manager Operator.

a. To create a Subscription CR for the eBPF Manager Operator, enter the following
command:

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: bpfman-operator
namespace: bpfman
spec:
name: bpfman-operator
channel: alpha
source: community-operators
sourceNamespace: openshift-marketplace
EOF

4. To verify that the Operator is installed, enter the following command:
I $ oc get ip -n bpfman
Example output

NAME CSV APPROVAL APPROVED
install-ppjx| security-profiles-operator.v0.8.5 Automatic true

5. To verify the version of the Operator, enter the following command:

I $ oc get csv -n bpfman

Example output

NAME DISPLAY VERSION REPLACES
PHASE

41

OpenShift Container Platform 4.19 Networking Operators

bpfman-operator.v0.5.0 eBPF Manager Operator 0.5.0 bpfman-
operator.v0.4.2 Succeeded

3.2.2. Installing the eBPF Manager Operator using the web console

As a cluster administrator, you can install the eBPF Manager Operator using the web console.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have an account with administrator privileges.

Procedure
1. Install the eBPF Manager Operator:

a. Inthe OpenShift Container Platform web console, click Operators = OperatorHub.

b. Select eBPF Manager Operator from the list of available Operators, and if prompted to
Show community Operator, click Continue.

c. Click Install.

d. On the Install Operator page, under Installed Namespace, select Operator
recommended Namespace.

e. Click Install.

2. Verify that the eBPF Manager Operator is installed successfully:

a. Navigate to the Operators — Installed Operators page.

b. Ensure that eBPF Manager Operator is listed in the openshift-ingress-node-firewall
project with a Status of InstallSucceeded.

NOTE
During installation an Operator might display a Failed status. If the

installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not have a Status of InstallSucceeded, troubleshoot using the
following steps:

® Inspect the Operator Subscriptions and Install Plans tabs for any failures or errors
under Status.

® Navigate to the Workloads — Pods page and check the logs for pods in the bpfman
project.

3.2.3. Next steps

® Deploying a containerized eBPF program

42

CHAPTER 3. EBPF MANAGER OPERATOR

® Configuring Ingress Node Firewall Operator to use the eBPF Manager Operator

3.3. DEPLOYING AN EBPF PROGRAM

As a cluster administrator, you can deploy containerized eBPF applications with the eBPF Manager
Operator.

For the example eBPF program deployed in this procedure, the sample manifest does the following:

First, it creates basic Kubernetes objects like Namespace, ServiceAccount, and ClusterRoleBinding.
It also creates a XdpProgram object, which is a custom resource definition (CRD) that eBPF Manager
provides, that loads the eBPF XDP program. Each program type has it's own CRD, but they are similar in
what they do. For more information, see Loading eBPF Programs On Kubernetes.

Second, it creates a daemon set which runs a user space program that reads the eBPF maps that the
eBPF program is populating. This eBPF map is volume mounted using a Container Storage Interface
(CSI) driver. By volume mounting the eBPF map in the container in lieu of accessing it on the host, the
application pod can access the eBPF maps without being privileged. For more information on how the
CSlis configured, see See Deploying an eBPF enabled application On Kubernetes .

IMPORTANT

eBPF Manager Operator is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

3.3.1. Deploying a containerized eBPF program

As a cluster administrator, you can deploy an eBPF program to nodes on your cluster. In this procedure,
a sample containerized eBPF program is installed in the go-xdp-counter namespace.

Prerequisites
® You have installed the OpenShift CLI (oc).

® You have an account with administrator privileges.

® You have installed the eBPF Manager Operator.

Procedure

1. To download the manifest, enter the following command:

$ curl -L https://github.com/bpfman/bpfman/releases/download/v0.5.1/go-xdp-counter-install-
selinux.yaml -0 go-xdp-counter-install-selinux.yaml

2. To deploy the sample eBPF application, enter the following command:

I $ oc create -f go-xdp-counter-install-selinux.yaml

43

https://bpfman.io/main/getting-started/example-bpf-k8s/#loading-ebpf-programs-on-kubernetes
https://bpfman.io/main/getting-started/example-bpf-k8s/#deploying-an-ebpf-enabled-application-on-kubernetes
https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.19 Networking Operators

44

Example output

namespace/go-xdp-counter created
serviceaccount/bpfman-app-go-xdp-counter created
clusterrolebinding.rbac.authorization.k8s.io/xdp-binding created
daemonset.apps/go-xdp-counter-ds created
xdpprogram.bpfman.io/go-xdp-counter-example created
selinuxprofile.security-profiles-operator.x-k8s.io/bpfman-secure created

3. To confirm that the eBPF sample application deployed successfully, enter the following
command:

$ oc get all -o wide -n go-xdp-counter

Example output

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
pod/go-xdp-counter-ds-4m9cw 1/1 Running 0 44s 10.129.0.92 ci-In-dcbq7d2-

72292-ztrkp-master-1 <none> <none>

pod/go-xdp-counter-ds-7hzww 1/1 Running 0 44s 10.130.0.86 ci-In-dcbq7d2-
72292-ztrkp-master-2 <none> <none>

pod/go-xdp-counter-ds-gm9zx 1/1 Running 0 44s 10.128.0.101 ci-In-dcbg7d2-
72292-ztrkp-master-0 <none> <none>

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE CONTAINERS IMAGES

SELECTOR

daemonset.apps/go-xdp-counter-ds 3 3 3 3 3 <none> 44s

go-xdp-counter quay.io/bpfman-userspace/go-xdp-counter:v0.5.0 name=go-xdp-counter

4. To confirm that the example XDP program is running, enter the following command:

$ oc get xdpprogram go-xdp-counter-example

Example output

NAME BPFFUNCTIONNAME NODESELECTOR STATUS
go-xdp-counter-example xdp_stats { ReconcileSuccess

5. To confirm that the XDP program is collecting data, enter the following command:

$ oc logs <pod_name> -n go-xdp-counter

Replace <pod_name> with the name of an XDP program pod, such as go-xdp-counter-ds-
4m9cw.

Example output

2024/08/13 15:20:06 15016 packets received
2024/08/13 15:20:06 93581579 bytes received

CHAPTER 4. EXTERNAL DNS OPERATOR

CHAPTER 4. EXTERNAL DNS OPERATOR

4.1. EXTERNAL DNS OPERATOR RELEASE NOTES

The External DNS Operator deploys and manages ExternalDNS to provide name resolution for services
and routes from the external DNS provider to OpenShift Container Platform.

IMPORTANT

The External DNS Operator is only supported on the x86_64 architecture.

These release notes track the development of the External DNS Operator in OpenShift Container
Platform.

4.1.1. External DNS Operator 1.3.2

The following advisory is available for the External DNS Operator version 1.3.2:

® RHEA-2025:22454 Product Enhancement Advisory

4.1.2. External DNS Operator 1.3.1

The following advisory is available for the External DNS Operator version 1.3.1:
® RHEA-2025:15598 Product Enhancement Advisory

This update includes improved container security.

4.1.3. External DNS Operator 1.3.0

The following advisory is available for the External DNS Operator version 1.3.0:
® RHEA-2024:8550 Product Enhancement Advisory

This update includes a rebase to the 0.14.2 version of the upstream project.

4.1.3.1. Bug fixes

Previously, the ExternalDNS Operator could not deploy operands on HCP clusters. With this release, the
Operator deploys operands in a running and ready state. (OCPBUGS-37059)

Previously, the ExternalDNS Operator was not using RHEL 9 as its building or base images. With this
release, RHELO is the base. (OCPBUGS-41683)

Previously, the godoc had a broken link for Infoblox provider. With this release, the godoc is revised for

accuracy. Some links are removed while some other are replaced with GitHub permalinks. (OCPBUGS-
36797)

4.1.4. External DNS Operator 1.2.0

The following advisory is available for the External DNS Operator version 1.2.0:

® RHEA-2022:5867 ExternalDNS Operator 1.2 operator/operand containers

45

https://access.redhat.com/errata/RHEA-2025:22454
https://access.redhat.com/errata/RHEA-2025:15598
https://access.redhat.com/errata/RHEA-2024:8550
https://issues.redhat.com/browse/OCPBUGS-37059
https://issues.redhat.com/browse/OCPBUGS-41683
https://issues.redhat.com/browse/OCPBUGS-36797
https://access.redhat.com/errata/RHEA-2023:7239

OpenShift Container Platform 4.19 Networking Operators

4.1.4.1. New features

® The External DNS Operator now supports AWS shared VPC. For more information, see
Creating DNS records in a different AWS Account using a shared VPC .

4.1.4.2. Bug fixes

® The update strategy for the operand changed from Rolling to Recreate. (OCPBUGS-3630)

4.1.5. External DNS Operator 1.1.1

The following advisory is available for the External DNS Operator version 1.1.1:

® RHEA-2024:0536 ExternalDNS Operator 1.1 operator/operand containers

4.1.6. External DNS Operator 1.1.0

This release included a rebase of the operand from the upstream project version 0.13.1. The following
advisory is available for the External DNS Operator version 1.1.0:

® RHEA-2022:9086-01ExternalDNS Operator 1.1 operator/operand containers

4.1.6.1. Bug fixes

® Previously, the ExternalDNS Operator enforced an empty defaultMode value for volumes,
which caused constant updates due to a conflict with the OpenShift API. Now, the defaultMode
value is not enforced and operand deployment does not update constantly. (OCPBUGS-2793)

4.1.7. External DNS Operator 1.0.1

The following advisory is available for the External DNS Operator version 1.0.1:

® RHEA-2024:0537 ExternalDNS Operator 1.0 operator/operand containers

4.1.8. External DNS Operator 1.0.0

The following advisory is available for the External DNS Operator version 1.0.0:

® RHEA-2022:5867 ExternalDNS Operator 1.0 operator/operand containers

4.1.8.1. Bug fixes

® Previously, the External DNS Operator issued a warning about the violation of the restricted
SCC policy during ExternalDNS operand pod deployments. This issue has been resolved.
(BZ#2086408)

4.2. UNDERSTANDING THE EXTERNAL DNS OPERATOR

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform.

4.2.1. External DNS Operator

46

https://issues.redhat.com/browse/OCPBUGS-3630
https://access.redhat.com/errata/RHEA-2024:0536
https://access.redhat.com/errata/RHEA-2022:9086
https://issues.redhat.com/browse/OCPBUGS-2793
https://access.redhat.com/errata/RHEA-2024:0537
https://access.redhat.com/errata/RHEA-2022:5867
https://bugzilla.redhat.com/show_bug.cgi?id=2086408

CHAPTER 4. EXTERNAL DNS OPERATOR

The External DNS Operator implements the External DNS API from the olm.openshift.io API group.
The External DNS Operator updates services, routes, and external DNS providers.

Prerequisites

® You have installed the yq CLI tool.

Procedure

You can deploy the External DNS Operator on demand from the OperatorHub. Deploying the External
DNS Operator creates a Subscription object.

1. Check the name of an install plan, such as install-zcvlr, by running the following command:

$ oc -n external-dns-operator get sub external-dns-operator -o yaml | yq
'.status.installplan.name’

2. Check if the status of an install plan is Complete by running the following command:

I $ oc -n external-dns-operator get ip <install_plan_name> -o yaml | yq '".status.phase'’

3. View the status of the external-dns-operator deployment by running the following command:

I $ oc get -n external-dns-operator deployment/external-dns-operator

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
external-dns-operator 1/1 1 1 23h

4.2.2. Viewing External DNS Operator logs

You can view External DNS Operator logs by using the oc logs command.

Procedure

1. View the logs of the External DNS Operator by running the following command:

I $ oc logs -n external-dns-operator deployment/external-dns-operator -¢ external-dns-operator

4.2.2.1. External DNS Operator domain name limitations

The External DNS Operator uses the TXT registry which adds the prefix for TXT records. This reduces
the maximum length of the domain name for TXT records. A DNS record cannot be present without a
corresponding TXT record, so the domain name of the DNS record must follow the same limit as the
TXT records. For example, a DNS record of <domain_name_from_source> results in a TXT record of
external-dns-<record_type>-<domain_name_from_source>.

The domain name of the DNS records generated by the External DNS Operator has the following
limitations:

47

OpenShift Container Platform 4.19 Networking Operators

Record type Number of characters

CNAME 44

Wildcard CNAME records 42

on AzureDNS

A 48
Wildcard A records on 46
AzureDNS

The following error appears in the External DNS Operator logs if the generated domain name exceeds
any of the domain name limitations:

time="2022-09-02T08:53:57Z" level=error msg="Failure in zone test.example.io. [Id:
/hostedzone/Z06988883Q0HORLEUMXXX]"

time="2022-09-02T08:53:57Z" level=error msg="InvalidChangeBatch: [FATAL problem:
DomainLabelTooLong (Domain label is too long) encountered with 'external-dns-a-hello-openshift-
aaaaaaaaaa-bbbbbbbbbb-cccccec|\n\tstatus code: 400, request id: e54dfd5a-06¢6-47b0-bcb9-
a4f7c3a4e0c6”

4.3. INSTALLING THE EXTERNAL DNS OPERATOR

You can install the External DNS Operator on cloud providers such as AWS, Azure, and Google Cloud.

4.3.1. Installing the External DNS Operator with OperatorHub

You can install the External DNS Operator by using the OpenShift Container Platform OperatorHub.

Procedure

1. Click Operators = OperatorHub in the OpenShift Container Platform web console.

2. Click External DNS Operator. You can use the Filter by keyword text box or the filter list to
search for External DNS Operator from the list of Operators.

3. Select the external-dns-operator namespace.
4. On the External DNS Operator page, click Install.

5. On the Install Operator page, ensure that you selected the following options:

a. Update the channel as stable-v1.
b. Installation mode as A specific name on the cluster

c. Installed namespace as external-dns-operator. If namespace external-dns-operator does
not exist, it gets created during the Operator installation.

d. Select Approval Strategy as Automatic or Manual. Approval Strategy is set to Automatic
by default.

48

CHAPTER 4. EXTERNAL DNS OPERATOR

e. Click Install.

If you select Automatic updates, the Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without any intervention.

If you select Manual updates, the OLM creates an update request. As a cluster administrator, you must
then manually approve that update request to have the Operator updated to the new version.

Verification

Verify that the External DNS Operator shows the Status as Succeeded on the Installed Operators
dashboard.

4.3.2. Installing the External DNS Operator by using the CLI

You can install the External DNS Operator by using the CLI.

Prerequisites

® You are logged in to the OpenShift Container Platform web console as a user with cluster-
admin permissions.

® You are logged into the OpenShift CLI (o¢).

Procedure
1. Create a Namespace object:

a. Create a YAML file that defines the Namespace object:

Example namespace.yaml file

apiVersion: vi
kind: Namespace
metadata:
name: external-dns-operator

b. Create the Namespace object by running the following command:

I $ oc apply -f namespace.yaml

2. Create an OperatorGroup object:

a. Create a YAML file that defines the OperatorGroup object:

Example operatorgroup.yaml file

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: external-dns-operator
namespace: external-dns-operator
spec:

49

OpenShift Container Platform 4.19 Networking Operators

upgradeStrategy: Default
targetNamespaces:
- external-dns-operator

b. Create the OperatorGroup object by running the following command:
I $ oc apply -f operatorgroup.yaml

3. Create a Subscription object:

a. Create a YAML file that defines the Subscription object:

Example subscription.yaml file

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: external-dns-operator
namespace: external-dns-operator
spec:
channel: stable-v1
installPlanApproval: Automatic
name: external-dns-operator
source: redhat-operators
sourceNamespace: openshift-marketplace

b. Create the Subscription object by running the following command:

I $ oc apply -f subscription.yaml

Verification

1. Get the name of the install plan from the subscription by running the following command:
$ oc -n external-dns-operator \

get subscription external-dns-operator \
--template="{{.status.installplan.name}}{{"\n"}}'

2. Verify that the status of the install plan is Complete by running the following command:
$ oc -n external-dns-operator \

get ip <install_plan_name> \
--template="{{.status.phase}}{{"\n"}}'

3. Verify that the status of the external-dns-operator pod is Running by running the following
command:

I $ oc -n external-dns-operator get pod

Example output

50

CHAPTER 4. EXTERNAL DNS OPERATOR

NAME READY STATUS RESTARTS AGE
external-dns-operator-5584585fd7-5lwgm 2/2 Running 0 11m

4. Verify that the catalog source of the subscription is redhat-operators by running the following
command:

I $ oc -n external-dns-operator get subscription

5. Check the external-dns-operator version by running the following command:

I $ oc -n external-dns-operator get csv

4.4. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS

The External DNS Operator includes the following configuration parameters.

4.4.1. External DNS Operator configuration parameters

The External DNS Operator includes the following configuration parameters:

Parameter Description

spec Enables the type of a cloud provider.

spec:
provider:

type: AWS @)
aws:
credentials:

name: aws-access-key 9

6 Defines available options such as AWS, Google Cloud, Azure, and
Infoblox.

9 Defines a secret name for your cloud provider.

zones Enables you to specify DNS zones by their domains. If you do not specify zones,
the ExternalDNS resource discovers all of the zones present in your cloud

provider account.

zones:
- "myzoneid" 0

ﬁ Specifies the name of DNS zones.

51

OpenShift Container Platform 4.19 Networking Operators

Parameter Description

domains Enables you to specify AWS zones by their domains. If you do not specify
domains, the ExternalDNS resource discovers all of the zones present in your

cloud provider account.

domains:
- filterType: Include

matchType: Exact

name: "myzonedomaini.com" e
- filterType: Include

matchType: Pattern ﬂ
pattern: ".*\\.otherzonedomain\\.com"

Ensures that the ExternalDNS resource includes the domain name.

Instructs ExternalDNS that the domain matching has to be exact as
opposed to regular expression match.

Defines the name of the domain.

Sets the regex-domain-filter flag in the ExternalDNS resource. You
can limit possible domains by using a Regex filter.

® 90 99

Defines the regex pattern to be used by the ExternalDNS resource to
filter the domains of the target zones.

source Enables you to specify the source for the DNS records, Service or Route.

source: 0

type: Service g
service:

serviceType:G
- LoadBalancer

- ClusterlP

labelFilter: @)

matchLabels:
external-dns.mydomain.org/publish: "yes"

hostnameAnnotation: "Allow" 6
fgdnTemplate:

- "{{.Name}}.myzonedomain.com" G

6 Defines the settings for the source of DNS records.

9 The ExternalDNS resource uses the Service type as the source for
creating DNS records.

g Sets the service-type-filter flag in the ExternalDNS resource. The
serviceType contains the following fields:

e default: LoadBalancer

e expected: ClusterlP

52

CHAPTER 4. EXTERNAL DNS OPERATOR

o ExternalName

Ensures that the controller considers only those resources which matches
with label filter.

o

The default value for hosthameAnnotation is Ignore which instructs
ExternalDNS to generate DNS records using the templates specified in
the field fqdnTemplates. When the value is Allow the DNS records get
generated based on the value specified in the external-
dns.alpha.kubernetes.io/hosthname annotation.

(]

@ The External DNS Operator uses a string to generate DNS names from
sources that do not define a hostname, or to add a hostname suffix when
paired with the fake source.

source:

type: OpenShiftRoute ﬂ
openshiftRouteOptions:

routerName: default 9
labelFilter:
matchLabels:
external-dns.mydomain.org/publish: "yes"

ﬁ Creates DNS records.

9 If the source type is OpenShiftRoute, then you can pass the Ingress
Controller name. The ExternalDNS resource uses the canonical name of
the Ingress Controller as the target for CNAME records.

4.5. CREATING DNS RECORDS ON AWS

You can create DNS records on AWS and AWS GovCloud by using the External DNS Operator.
4.5.1. Creating DNS records on an public hosted zone for AWS by using Red Hat
External DNS Operator

You can create DNS records on a public hosted zone for AWS by using the Red Hat External DNS
Operator. You can use the same instructions to create DNS records on a hosted zone for AWS
GovCloud.

Procedure

1. Check the user profile, such as system:admin, by running the following command. The user
profile must have access to the kube-system namespace. If you do not have the credentials,
you can fetch the credentials from the kube-system namespace to use the cloud provider
client by running the following command:

I $ oc whoami

2. Fetch the values from aws-creds secret present in kube-system namespace.

53

OpenShift Container Platform 4.19 Networking Operators

$ export AWS_ACCESS_KEY_ID=$(oc get secrets aws-creds -n kube-system --template=
{{.data.aws_access_key_id}} | base64 -d)

$ export AWS_SECRET_ACCESS_KEY=%(oc get secrets aws-creds -n kube-system --
template={{.data.aws_secret_access_key}} | base64 -d)

3. Get the routes to check the domain:

I $ oc get routes --all-namespaces | grep console

Example output

openshift-console console console-openshift-
console.apps.testextdnsoperator.apacshift.support console https
reencrypt/Redirect None

openshift-console downloads downloads-openshift-
console.apps.testextdnsoperator.apacshift.support downloads http
edge/Redirect None

4. Getthe list of DNS zones and find the DNS zone that corresponds to the domain of the route
that you previously queried:

I $ aws route53 list-hosted-zones | grep testextdnsoperator.apacshift.support

Example output

HOSTEDZONES terraform /hostedzone/Z02355203TNN1XXXX1J60
testextdnsoperator.apacshift.support. 5

5. Create ExternalDNS resource for route source:

$ cat <<EOF | oc create -f -
apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:
name: sample-aws ﬂ
spec:
domains:

- filterType: Include 3

matchType: Exact

name: testextdnsoperator.apacshift.support ﬂ
provider:

type: AWS @
source:

type: OpenShiftRoute ﬂ
openshiftRouteOptions:

routerName: default 6
EOF

ﬂ Defines the name of external DNS resource.

54

CHAPTER 4. EXTERNAL DNS OPERATOR

By default all hosted zones are selected as potential targets. You can include a hosted
zone that you need.

The matching of the target zone’s domain has to be exact (as opposed to regular
expression match).

Specify the exact domain of the zone you want to update. The hostname of the routes
must be subdomains of the specified domain.

Defines the AWS Route53 DNS provider.
Defines options for the source of DNS records.

Defines OpenShift route resource as the source for the DNS records which gets created in
the previously specified DNS provider.

@ 99® 6 © o

If the source is OpenShiftRoute, then you can pass the OpenShift Ingress Controller
name. External DNS Operator selects the canonical hostname of that router as the target
while creating CNAME record.

6. Check the records created for OCP routes using the following command:

$ aws route53 list-resource-record-sets --hosted-zone-id Z02355203TNN1XXXX1J60 --
query "ResourceRecordSets[?Type == 'CNAME']" | grep console

4.5.2. Creating DNS records in a different AWS Account using a shared VPC

You can use the ExternalDNS Operator to create DNS records in a different AWS account using a
shared Virtual Private Cloud (VPC). By using a shared VPC, an organization can connect resources from
multiple projects to a common VPC network. Organizations can then use VPC sharing to use a single
Route 53 instance across multiple AWS accounts.

Prerequisites

® You have created two Amazon AWS accounts: one with a VPC and a Route 53 private hosted
zone configured (Account A), and another for installing a cluster (Account B).

® You have created an IAM Policy and IAM Role with the appropriate permissions in Account A for
Account B to create DNS records in the Route 53 hosted zone of Account A.

® You have installed a cluster in Account B into the existing VPC for Account A.

® You have installed the ExternalDNS Operator in the cluster in Account B.

Procedure

1. Get the Role ARN of the IAM Role that you created to allow Account B to access Account A's
Route 53 hosted zone by running the following command:

I $ aws --profile account-a iam get-role --role-name user-rol1 | head -1

Example output

55

OpenShift Container Platform 4.19 Networking Operators

ROLE arn:aws:iam::1234567890123:role/user-rol1 2023-09-14T17:21:54+00:00 3600 /
AROA3SGB2ZRKRT5NISNJN user-rol1

2. Locate the private hosted zone to use with Account A’s credentials by running the following
command:

$ aws --profile account-a route53 list-hosted-zones | grep
testextdnsoperator.apacshift.support

Example output

HOSTEDZONES terraform /hostedzone/Z02355203TNN1XXXX1J60
testextdnsoperator.apacshift.support. 5

3. Create the ExternalDNS object by running the following command:

$ cat <<EOF | oc create -f -
apiVersion: externaldns.olm.openshift.io/vibetal
kind: ExternalDNS
metadata:
name: sample-aws
spec:
domains:
- filterType: Include
matchType: Exact
name: testextdnsoperator.apacshift.support
provider:
type: AWS
aws:
assumeRole:
arn: arn:aws:iam::12345678901234:role/user-rol1 ﬂ
source:
type: OpenShiftRoute
openshiftRouteOptions:
routerName: default
EOF

ﬂ Specify the Role ARN to have DNS records created in Account A.

4. Check the records created for OpenShift Container Platform (OCP) routes by using the
following command:

$ aws --profile account-a route53 list-resource-record-sets --hosted-zone-id
Z02355203TNN1XXXX1J60 --query "ResourceRecordSets[?Type == 'CNAME"" | grep
console-openshift-console

4.6. CREATING DNS RECORDS ON AZURE

You can create DNS records on Azure by using the External DNS Operator.

56

CHAPTER 4. EXTERNAL DNS OPERATOR

IMPORTANT

Using the External DNS Operator on a Microsoft Entra Workload ID-enabled cluster or a
cluster that runs in Microsoft Azure Government (MAG) regions is not supported.

4.6.1. Creating DNS records on an Azure DNS zone

You can create Domain Name Server (DNS) records on a public or private DNS zone for Azure by using
the External DNS Operator.

Prerequisites

® You must have administrator privileges.

® The admin user must have access to the kube-system namespace.

Procedure

1. Fetch the credentials from the kube-system namespace to use the cloud provider client by
running the following command:

$ CLIENT_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_client_id}} | base64 -d)

{{.data.azure_client_secret}} | base64 -d)

$ RESOURCE_GROUP=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_resourcegroup}} | base64 -d)

$ SUBSCRIPTION_ID=$(oc get secrets azure-credentials -n kube-system --template=

I $ CLIENT_SECRET=$(oc get secrets azure-credentials -n kube-system --template=
I {{.data.azure_subscription_id}} | base64 -d)

$ TENANT_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_tenant_id}} | base64 -d)

2. Login to Azure by running the following command:

$ az login --service-principal -u "${CLIENT_ID}" -p "${CLIENT_SECRET}" --tenant
"${TENANT_ID}"

3. Getallist of routes by running the following command:

I $ oc get routes --all-namespaces | grep console

Example output

openshift-console console console-openshift-
console.apps.test.azure.example.com console https reencrypt/Redirect
None

57

OpenShift Container Platform 4.19 Networking Operators

openshift-console downloads downloads-openshift-
console.apps.test.azure.example.com downloads http edge/Redirect
None

4. Get alist of DNS zones.

a. For public DNS zones by running the following command:

I $ az network dns zone list --resource-group "${RESOURCE_GROUP}"

b. For private DNS zones by running the following command:

I $ az network private-dns zone list -g "${RESOURCE_GROUP}"

5. Create a YAML file, for example, external-dns-sample-azure.yaml, that defines the
ExternalDNS object:

Example external-dns-sample-azure.yaml file

apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:

name: sample-azure ﬂ
spec:
zones:
- "/subscriptions/1234567890/resourceGroups/test-azure-xxxxx-

rg/providers/Microsoft.Network/dnszones/test.azure.example.com"” g
provider:

type: Azure 6
source:

openshiftRouteOptions: ﬂ
routerName: default 6
type: OpenShiftRoute G

Specifies the External DNS name.
Defines the zone ID. For a private DNS zone, change dnszones to privateDnsZones.
Defines the provider type.

You can define options for the source of DNS records.

0000

If the source type is OpenShiftRoute, you can pass the OpenShift Ingress Controller
name. External DNS selects the canonical hostname of that router as the target while
creating CNAME record.

Defines the route resource as the source for the Azure DNS records.

o

Troubleshooting
1. Check the records created for the routes.

a. For public DNS zones by running the following command:

58

CHAPTER 4. EXTERNAL DNS OPERATOR

$ az network dns record-set list -g "${RESOURCE_GROUP}" -z "${ZONE_NAME}" |
grep console

b. For private DNS zones by running the following command:

$ az network private-dns record-set list -g "${RESOURCE_GROUP}" -z
"${ZONE_NAME}" | grep console

4.7. CREATING DNS RECORDS ON GOOGLE CLOUD

You can create DNS records on Google Cloud by using the External DNS Operator.

IMPORTANT

Using the External DNS Operator on a cluster with Google Cloud Workload Identity
enabled is not supported. For more information about the Google Cloud Workload
Identity, see Google Cloud Workload Identity.

4.7.1. Creating DNS records on a public managed zone for Google Cloud

You can create DNS records on a public managed zone for Google Cloud by using the External DNS
Operator.

Prerequisites

You must have administrator privileges.

Procedure

1.

Copy the gcp-credentials secret in the encoded-gcloud.json file by running the following
command:

$ oc get secret gcp-credentials -n kube-system --template="{{$v := index .data
"service_account.json"}H{{$v}}' | base64 -d - > decoded-gcloud.json

Export your Google credentials by running the following command:

I $ export GOOGLE_CREDENTIALS=decoded-gcloud.json

Activate your account by using the following command:

$ gcloud auth activate-service-account <client_email as per decoded-gcloud.json> --key-
file=decoded-gcloud.json

Set your project by running the following command:

I $ gcloud config set project <project_id as per decoded-gcloud.json>

Get a list of routes by running the following command:

I $ oc get routes --all-namespaces | grep console

59

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#cco-short-term-creds-gcp_cco-short-term-creds

OpenShift Container Platform 4.19 Networking Operators

Example output

openshift-console console console-openshift-
console.apps.test.gcp.example.com console https reencrypt/Redirect
None

openshift-console downloads downloads-openshift-
console.apps.test.gcp.example.com downloads http edge/Redirect
None

6. Get alist of managed zones, such as qe-cvs4g-private-zone test.gcp.example.com, by

running the following command:

I $ gcloud dns managed-zones list | grep test.gcp.example.com

7. Create a YAML file, for example, external-dns-sample-gcp.yaml, that defines the
ExternalDNS object:

Example external-dns-sample-gcp.yaml file

apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:

name: sample-gcp ﬂ
spec:
domains:

- filterType: Include 3
matchType: Exact
name: test.gcp.example.com ﬂ
provider:

type: GCP 6
source:

openshiftRouteOptions: G
routerName: default
type: OpenShiftRoute 6

Specifies the External DNS name.

zone.

The domain of the target must match the string defined by the name key.

must be subdomains of the specified domain.
Defines the provider type.

You can define options for the source of DNS records.

OS90® 006 9

By default, all hosted zones are selected as potential targets. You can include your hosted

Specify the exact domain of the zone you want to update. The hostname of the routes

If the source type is OpenShiftRoute, you can pass the OpenShift Ingress Controller

name. External DNS selects the canonical hostname of that router as the target while

creating CNAME record.

60

CHAPTER 4. EXTERNAL DNS OPERATOR

@ Defines the route resource as the source for Google Cloud DNS records.

8. Check the DNS records created for OpenShift Container Platform routes by running the
following command:

I $ gcloud dns record-sets list --zone=qe-cvs4g-private-zone | grep console

4.8. CREATING DNS RECORDS ON INFOBLOX

You can create DNS records on Infoblox by using the External DNS Operator.

4.8.1. Creating DNS records on a public DNS zone on Infoblox

You can create DNS records on a public DNS zone on Infoblox by using the External DNS Operator.
Prerequisites
® You have access to the OpenShift CLI (oc¢).
® You have access to the Infoblox Ul.
Procedure
1. Create a secret object with Infoblox credentials by running the following command:
$ oc -n external-dns-operator create secret generic infoblox-credentials --from-

literal=EXTERNAL_DNS_INFOBLOX_WAPI|_USERNAME=<infoblox_username> --from-
literal=EXTERNAL_DNS_INFOBLOX_WAP|_PASSWORD=<infoblox_password>

2. Getallist of routes by running the following command:

I $ oc get routes --all-namespaces | grep console

Example Output

openshift-console console console-openshift-console.apps.test.example.com
console https reencrypt/Redirect None

openshift-console downloads downloads-openshift-
console.apps.test.example.com downloads http edge/Redirect

None

3. Create a YAML file, for example, external-dns-sample-infoblox.yaml, that defines the
ExternalDNS object:

Example external-dns-sample-infoblox.yaml file

apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:

name: sample-infoblox ﬂ
spec:

61

OpenShift Container Platform 4.19 Networking Operators

provider:
type: Infoblox g
infoblox:
credentials:
name: infoblox-credentials
gridHost: ${INFOBLOX_GRID_PUBLIC_IP}
wapiPort: 443
wapiVersion: "2.3.1"
domains:
- filterType: Include
matchType: Exact
name: test.example.com
source:

type: OpenShiftRoute 6
openshiftRouteOptions:

routerName: default ﬂ

Specifies the External DNS name.
Defines the provider type.

You can define options for the source of DNS records.

- -

If the source type is OpenShiftRoute, you can pass the OpenShift Ingress Controller
name. External DNS selects the canonical hostname of that router as the target while
creating CNAME record.

4. Create the ExternalDNS resource on Infoblox by running the following command:

I $ oc create -f external-dns-sample-infoblox.yaml

5. From the Infoblox Ul, check the DNS records created for console routes:
a. Click Data Management - DNS — Zones.

b. Select the zone name.

4.9. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL
DNS OPERATOR

After configuring the cluster-wide proxy, the Operator Lifecycle Manager (OLM) triggers automatic
updates to all of the deployed Operators with the new contents of the HTTP_PROXY, HTTPS_PROXY,
and NO_PROXY environment variables.

4.9.1. Trusting the certificate authority of the cluster-wide proxy

You can configure the External DNS Operator to trust the certificate authority of the cluster-wide
proxy.

Procedure

1. Create the config map to contain the CA bundle in the external-dns-operator namespace by
running the following command:

62

CHAPTER 4. EXTERNAL DNS OPERATOR

I $ oc -n external-dns-operator create configmap trusted-ca

2. Toinject the trusted CA bundle into the config map, add the config.openshift.io/inject-
trusted-cabundle=true label to the config map by running the following command:

$ oc -n external-dns-operator label cm trusted-ca config.openshift.io/inject-trusted-
cabundle=true

3. Update the subscription of the External DNS Operator by running the following command:

$ oc -n external-dns-operator patch subscription external-dns-operator --type='json’ -
p="[{"op": "add", "path": "/spec/config", "value":{"env":
[{"name":"TRUSTED_CA_CONFIGMAP_NAME","value":"trusted-ca"}}}]'

Verification

e After the deployment of the External DNS Operator is completed, verify that the trusted CA
environment variable is added, outputted as trusted-ca, to the external-dns-operator
deployment by running the following command:

$ oc -n external-dns-operator exec deploy/external-dns-operator -c external-dns-operator --
printenv TRUSTED_CA_CONFIGMAP_NAME

63

OpenShift Container Platform 4.19 Networking Operators

CHAPTER 5. METALLB OPERATOR

5.1. ABOUT METALLB AND THE METALLB OPERATOR

As a cluster administrator, you can add the MetalLB Operator to your cluster so that when a service of
type LoadBalancer is added to the cluster, MetalLB can add an external IP address for the service. The
external IP address is added to the host network for your cluster.

5.1.1. When to use MetalLB

Using MetalLB is valuable when you have a bare-metal cluster, or an infrastructure that is like bare
metal, and you want fault-tolerant access to an application through an external IP address.

You must configure your networking infrastructure to ensure that network traffic for the external IP
address is routed from clients to the host network for the cluster.

After deploying MetalLB with the MetalLB Operator, when you add a service of type LoadBalancer,
MetalLB provides a platform-native load balancer.

When external traffic enters your OpenShift Container Platform cluster through a MetalLB
LoadBalancer service, the return traffic to the client has the external IP address of the load balancer as
the source IP.

MetalLB operating in layer2 mode provides support for failover by utilizing a mechanism similar to IP
failover. However, instead of relying on the virtual router redundancy protocol (VRRP) and keepalived,
MetallLB leverages a gossip-based protocol to identify instances of node failure. When a failover is
detected, another node assumes the role of the leader node, and a gratuitous ARP message is
dispatched to broadcast this change.

MetallLB operating in layer3 or border gateway protocol (BGP) mode delegates failure detection to the
network. The BGP router or routers that the OpenShift Container Platform nodes have established a
connection with will identify any node failure and terminate the routes to that node.

Using MetalLB instead of IP failover is preferable for ensuring high availability of pods and services.

5.1.2. MetalLB Operator custom resources

The MetallLB Operator monitors its own namespace for the following custom resources:

MetalLB

When you add a MetalLB custom resource to the cluster, the MetalLB Operator deploys MetalLB on
the cluster. The Operator only supports a single instance of the custom resource. If the instance is
deleted, the Operator removes MetalLB from the cluster.

IPAddressPool

MetalLB requires one or more pools of IP addresses that it can assign to a service when you add a
service of type LoadBalancer. An IPAddressPool includes a list of IP addresses. The list can be a
single IP address that is set using a range, such as 1.1.1.1-1.1.1.1, a range specified in CIDR notation, a
range specified as a starting and ending address separated by a hyphen, or a combination of the
three. An IPAddressPool requires a name. The documentation uses names like doc-example, doc-
example-reserved, and doc-example-ipv6. The MetalLB controller assigns IP addresses from a
pool of addresses in an IPAddressPool. L2Advertisement and BGPAdvertisement custom

64

CHAPTER 5. METALLB OPERATOR

resources enable the advertisement of a given IP from a given pool. You can assign IP addresses
from an IPAddressPool to services and namespaces by using the spec.serviceAllocation
specification in the IPAddressPool custom resource.

NOTE
: A single IPAddressPool can be referenced by a L2 advertisement and a BGP
advertisement.
BGPPeer

The BGP peer custom resource identifies the BGP router for MetalLB to communicate with, the AS
number of the router, the AS number for MetalLB, and customizations for route advertisement.
MetallLB advertises the routes for service load-balancer IP addresses to one or more BGP peers.

BFDProfile

The BFD profile custom resource configures Bidirectional Forwarding Detection (BFD) for a BGP
peer. BFD provides faster path failure detection than BGP alone provides.

L2Advertisement

The L2Advertisement custom resource advertises an IP coming from an IPAddressPool using the
L2 protocol.

BGPAdvertisement
The BGPAdvertisement custom resource advertises an IP coming from an IPAddressPool using the
BGP protocol.

After you add the MetalLB custom resource to the cluster and the Operator deploys MetallLB, the
controller and speaker MetalLB software components begin running.

MetalLB validates all relevant custom resources.

5.1.3. MetalLB software components

When you install the MetalLB Operator, the metallb-operator-controller-manager deployment starts a
pod. The pod is the implementation of the Operator. The pod monitors for changes to all the relevant
resources.

When the Operator starts an instance of MetallLB, it starts a controller deployment and a speaker
daemon set.

NOTE

You can configure deployment specifications in the MetalLB custom resource to manage
how controller and speaker pods deploy and run in your cluster. For more information
about these deployment specifications, see the Additional resources section.

controller

The Operator starts the deployment and a single pod. When you add a service of type
LoadBalancer, Kubernetes uses the controller to allocate an IP address from an address pool. In
case of a service failure, verify you have the following entry in your controller pod logs:

Example output

65

OpenShift Container Platform 4.19 Networking Operators

I "event""ipAllocated","ip":"172.22.0.201","msg":"IP address assigned by controller

speaker

The Operator starts a daemon set for speaker pods. By default, a pod is started on each node in
your cluster. You can limit the pods to specific nodes by specifying a node selector in the MetalLB
custom resource when you start MetalLB. If the controller allocated the IP address to the service
and service is still unavailable, read the speaker pod logs. If the speaker pod is unavailable, run the
oc describe pod -n command.

For layer 2 mode, after the controller allocates an IP address for the service, the speaker pods use
an algorithm to determine which speaker pod on which node will announce the load balancer IP
address. The algorithm involves hashing the node name and the load balancer IP address. For more
information, see "MetalLB and external traffic policy”. The speaker uses Address Resolution
Protocol (ARP) to announce IPv4 addresses and Neighbor Discovery Protocol (NDP) to announce
IPv6 addresses.

For Border Gateway Protocol (BGP) mode, after the controller allocates an IP address for the service,
each speaker pod advertises the load balancer IP address with its BGP peers. You can configure which
nodes start BGP sessions with BGP peers.

Requests for the load balancer IP address are routed to the node with the speaker that announces the
IP address. After the node receives the packets, the service proxy routes the packets to an endpoint for
the service. The endpoint can be on the same node in the optimal case, or it can be on another node.
The service proxy chooses an endpoint each time a connection is established.

5.1.4. MetalLB and external traffic policy

With layer 2 mode, one node in your cluster receives all the traffic for the service IP address. With BGP
mode, a router on the host network opens a connection to one of the nodes in the cluster for a new
client connection. How your cluster handles the traffic after it enters the node is affected by the
external traffic policy.

cluster

This is the default value for spec.externalTrafficPolicy.

With the cluster traffic policy, after the node receives the traffic, the service proxy distributes the
traffic to all the pods in your service. This policy provides uniform traffic distribution across the pods,
but it obscures the client IP address and it can appear to the application in your pods that the traffic
originates from the node rather than the client.

local

With the local traffic policy, after the node receives the traffic, the service proxy only sends traffic

to the pods on the same node. For example, if the speaker pod on node A announces the external
service IP, then all traffic is sent to node A. After the traffic enters node A, the service proxy only
sends traffic to pods for the service that are also on node A. Pods for the service that are on
additional nodes do not receive any traffic from node A. Pods for the service on additional nodes act
as replicas in case failover is needed.

This policy does not affect the client IP address. Application pods can determine the client IP address
from the incoming connections.

66

CHAPTER 5. METALLB OPERATOR

NOTE

The following information is important when configuring the external traffic policy in BGP
mode.

Although MetalLB advertises the load balancer IP address from all the eligible nodes, the
number of nodes loadbalancing the service can be limited by the capacity of the router to
establish equal-cost multipath (ECMP) routes. If the number of nodes advertising the IP
is greater than the ECMP group limit of the router, the router will use less nodes than the
ones advertising the IP.

For example, if the external traffic policy is set to local and the router has an ECMP
group limit set to 16 and the pods implementing a LoadBalancer service are deployed on
30 nodes, this would result in pods deployed on 14 nodes not receiving any traffic. In this
situation, it would be preferable to set the external traffic policy for the service to
cluster.

5.1.5. MetalLB concepts for layer 2 mode

In layer 2 mode, the speaker pod on one node announces the external IP address for a service to the
host network. From a network perspective, the node appears to have multiple IP addresses assigned to
a network interface.

NOTE

In layer 2 mode, MetalLB relies on ARP and NDP. These protocols implement local
address resolution within a specific subnet. In this context, the client must be able to reach
the VIP assigned by MetalLB that exists on the same subnet as the nodes announcing the
service in order for MetallLB to work.

The speaker pod responds to ARP requests for IPv4 services and NDP requests for IPv6.

In layer 2 mode, all traffic for a service IP address is routed through one node. After traffic enters the
node, the service proxy for the CNI network provider distributes the traffic to all the pods for the
service.

Because all traffic for a service enters through a single node in layer 2 mode, in a strict sense, MetalLB
does not implement a load balancer for layer 2. Rather, MetalLB implements a failover mechanism for
layer 2 so that when a speaker pod becomes unavailable, a speaker pod on a different node can
announce the service IP address.

When a node becomes unavailable, failover is automatic. The speaker pods on the other nodes detect
that a node is unavailable and a new speaker pod and node take ownership of the service IP address
from the failed node.

67

OpenShift Container Platform 4.19 Networking Operators

Service External client
Cluster IP
172.130.x.x
Loadbalancer IP
192.168.100.200
Project MetalLB
Service network namespace namespace Host network
172130.0.0/16 192.168.100.0/24
Node 1
App pod Speaker
10.128 x.x 192.168.100.11
— 192.168.100.11 —
192.168.100.200
Node 2
Pod network Speaker
10128.0.0/14 192.168.100.21 19216810021
Node 3
App pod Speaker —192.168.100.31 =
10.130.x.x 192.168.100.31

The preceding graphic shows the following concepts related to MetalLB:

68

An application is available through a service that has a cluster IP on the 172.130.0.0/16 subnet.

That IP address is accessible from inside the cluster. The service also has an external IP address
that MetallLB assigned to the service, 192.168.100.200.

Nodes 1and 3 have a pod for the application.
The speaker daemon set runs a pod on each node. The MetalLB Operator starts these pods.

Each speaker pod is a host-networked pod. The IP address for the pod is identical to the IP
address for the node on the host network.

The speaker pod on node Tuses ARP to announce the external IP address for the service,
192.168.100.200. The speaker pod that announces the external IP address must be on the
same node as an endpoint for the service and the endpoint must be in the Ready condition.

Client traffic is routed to the host network and connects to the 192.168.100.200 IP address.
After traffic enters the node, the service proxy sends the traffic to the application pod on the
same node or another node according to the external traffic policy that you set for the service.

o If the external traffic policy for the service is set to cluster, the node that advertises the
192.168.100.200 load balancer IP address is selected from the nodes where a speaker pod
is running. Only that node can receive traffic for the service.

o If the external traffic policy for the service is set to local, the node that advertises the
192.168.100.200 load balancer IP address is selected from the nodes where a speaker pod
is running and at least an endpoint of the service. Only that node can receive traffic for the
service. In the preceding graphic, either node 1 or 3 would advertise 192.168.100.200.

CHAPTER 5. METALLB OPERATOR

® |f node 1becomes unavailable, the external IP address fails over to another node. On another
node that has an instance of the application pod and service endpoint, the speaker pod begins
to announce the external IP address, 192.168.100.200 and the new node receives the client
traffic. In the diagram, the only candidate is node 3.

5.1.6. MetalLB concepts for BGP mode

In BGP mode, by default each speaker pod advertises the load balancer IP address for a service to each
BGP peer. It is also possible to advertise the IPs coming from a given pool to a specific set of peers by
adding an optional list of BGP peers. BGP peers are commonly network routers that are configured to
use the BGP protocol. When a router receives traffic for the load balancer IP address, the router picks
one of the nodes with a speaker pod that advertised the IP address. The router sends the traffic to that
node. After traffic enters the node, the service proxy for the CNI network plugin distributes the traffic to
all the pods for the service.

The directly-connected router on the same layer 2 network segment as the cluster nodes can be
configured as a BGP peer. If the directly-connected router is not configured as a BGP peer, you need to
configure your network so that packets for load balancer IP addresses are routed between the BGP
peers and the cluster nodes that run the speaker pods.

Each time a router receives new traffic for the load balancer IP address, it creates a new connection to a
node. Each router manufacturer has an implementation-specific algorithm for choosing which node to
initiate the connection with. However, the algorithms commonly are designed to distribute traffic across
the available nodes for the purpose of balancing the network load.

If a node becomes unavailable, the router initiates a new connection with another node that has a
speaker pod that advertises the load balancer IP address.

69

OpenShift Container Platform 4.19 Networking Operators

Figure 5.1. MetalLB topology diagram for BGP mode

Service Autonomous System
Cluster IPs
172.130.x.x Rirouter
Loadbalancer IP
203.0.113.200
Project MetalLB Host network
namespace namespace 10.0.1.0/24
Node 1
Service network Speaker
172.130.0.0/16 10.0.1.1
10.0.11
203.0.113.200
Node 2
Pod network App pod Speaker
10.128.0.0/14 10.128.x.x 10.0.1.21 10.0.1.21
203.0.113.200
Node 3
App pod Speaker
10.0.1.31
10.130.x.x 10.0.1.31 203.0.113.200

The preceding graphic shows the following concepts related to MetalLB:

70

An application is available through a service that has an IPv4 cluster IP on the 172.130.0.0/16

subnet. That IP address is accessible from inside the cluster. The service also has an external IP
address that MetalLB assigned to the service, 203.0.113.200.

Nodes 2 and 3 have a pod for the application.

The speaker daemon set runs a pod on each node. The MetalLB Operator starts these pods.
You can configure MetallLB to specify which nodes run the speaker pods.

Each speaker pod is a host-networked pod. The IP address for the pod is identical to the IP
address for the node on the host network.

Each speaker pod starts a BGP session with all BGP peers and advertises the load balancer IP
addresses or aggregated routes to the BGP peers. The speaker pods advertise that they are
part of Autonomous System 65010. The diagram shows a router, R1, as a BGP peer within the
same Autonomous System. However, you can configure MetalLB to start BGP sessions with
peers that belong to other Autonomous Systems.

All the nodes with a speaker pod that advertises the load balancer IP address can receive
traffic for the service.

o If the external traffic policy for the service is set to cluster, all the nodes where a speaker
pod is running advertise the 203.0.113.200 load balancer IP address and all the nodes with a
speaker pod can receive traffic for the service. The host prefix is advertised to the router

CHAPTER 5. METALLB OPERATOR

peer only if the external traffic policy is set to cluster.

o If the external traffic policy for the service is set to local, then all the nodes where a
speaker pod is running and at least an endpoint of the service is running can advertise the
203.0.113.200 load balancer IP address. Only those nodes can receive traffic for the
service. In the preceding graphic, nodes 2 and 3 would advertise 203.0.113.200.

® You can configure MetalLB to control which speaker pods start BGP sessions with specific
BGP peers by specifying a node selector when you add a BGP peer custom resource.

® Any routers, such as R, that are configured to use BGP can be set as BGP peers.

e Client traffic is routed to one of the nodes on the host network. After traffic enters the node,
the service proxy sends the traffic to the application pod on the same node or another node
according to the external traffic policy that you set for the service.

® |f anode becomes unavailable, the router detects the failure and initiates a new connection with
another node. You can configure MetalLB to use a Bidirectional Forwarding Detection (BFD)

profile for BGP peers. BFD provides faster link failure detection so that routers can initiate new
connections earlier than without BFD.

5.1.7. Limitations and restrictions

5.1.7.1. Infrastructure considerations for MetalLB

MetalLB is primarily useful for on-premise, bare metal installations because these installations do not
include a native load-balancer capability. In addition to bare metal installations, installations of
OpenShift Container Platform on some infrastructures might not include a native load-balancer
capability. For example, the following infrastructures can benefit from adding the MetalLB Operator:

® Bare metal

® VMware vSphere

® |BM Z®and IBM® LinuxONE

® |BM Z® and IBM® LinuxONE for Red Hat Enterprise Linux (RHEL) KVM

® |[BM Power®
5.1.7.2. Limitations for layer 2 mode

5.1.7.2.1. Single-node bottleneck

MetalLB routes all traffic for a service through a single node, the node can become a bottleneck and
limit performance.

Layer 2 mode limits the ingress bandwidth for your service to the bandwidth of a single node. This is a
fundamental limitation of using ARP and NDP to direct traffic.

5.1.7.2.2. Slow failover performance

Failover between nodes depends on cooperation from the clients. When a failover occurs, MetalLB
sends gratuitous ARP packets to notify clients that the MAC address associated with the service IP has
changed.

71

OpenShift Container Platform 4.19 Networking Operators

Most client operating systems handle gratuitous ARP packets correctly and update their neighbor
caches promptly. When clients update their caches quickly, failover completes within a few seconds.
Clients typically fail over to a new node within 10 seconds. However, some client operating systems either
do not handle gratuitous ARP packets at all or have outdated implementations that delay the cache
update.

Recent versions of common operating systems such as Windows, macOS, and Linux implement layer 2
failover correctly. Issues with slow failover are not expected except for older and less common client
operating systems.

To minimize the impact from a planned failover on outdated clients, keep the old node running for a few
minutes after flipping leadership. The old node can continue to forward traffic for outdated clients until
their caches refresh.

During an unplanned failover, the service IPs are unreachable until the outdated clients refresh their
cache entries.

5.1.7.2.3. Additional Network and MetalLB cannot use same network

Using the same VLAN for both MetalLB and an additional network interface set up on a source pod
might result in a connection failure. This occurs when both the MetalLB IP and the source pod reside on
the same node.

To avoid connection failures, place the MetalLB IP in a different subnet from the one where the source
pod resides. This configuration ensures that traffic from the source pod will take the default gateway.
Consequently, the traffic can effectively reach its destination by using the OVN overlay network,
ensuring that the connection functions as intended.

5.1.7.3. Limitations for BGP mode

5.1.7.3.1. Node failure can break all active connections

MetalLB shares a limitation that is common to BGP-based load balancing. When a BGP session
terminates, such as when a node fails or when a speaker pod restarts, the session termination might
result in resetting all active connections. End users can experience a Connection reset by peer
message.

The consequence of a terminated BGP session is implementation-specific for each router
manufacturer. However, you can anticipate that a change in the number of speaker pods affects the
number of BGP sessions and that active connections with BGP peers will break.

To avoid or reduce the likelihood of a service interruption, you can specify a node selector when you add
a BGP peer. By limiting the number of nodes that start BGP sessions, a fault on a node that does not
have a BGP session has no affect on connections to the service.

5.1.7.3.2. Support for a single ASN and a single router ID only

When you add a BGP peer custom resource, you specify the spec.myASN field to identify the
Autonomous System Number (ASN) that MetalLB belongs to. OpenShift Container Platform uses an
implementation of BGP with MetalLB that requires MetalLLB to belong to a single ASN. If you attempt to
add a BGP peer and specify a different value for spec.myASN than an existing BGP peer custom
resource, you receive an error.

72

CHAPTER 5. METALLB OPERATOR

Similarly, when you add a BGP peer custom resource, the spec.routerlD field is optional. If you specify a

value for this field, you must specify the same value for all other BGP peer custom resources that you
add.

The limitation to support a single ASN and single router ID is a difference with the community-supported
implementation of MetalLB.

5.1.8. Additional resources
® Comparison: Fault tolerant access to external IP addresses
® Removing IP failover

® Deployment specifications for MetallLB

5.2. INSTALLING THE METALLB OPERATOR

As a cluster administrator, you can add the MetalLB Operator so that the Operator can manage the
lifecycle for an instance of MetalLB on your cluster.

MetalLB and IP failover are incompatible. If you configured IP failover for your cluster, perform the steps
to remove IP failover before you install the Operator.

5.2.1. Installing the MetalLB Operator from the OperatorHub by using the web
console

As a cluster administrator, you can install the MetalLB Operator by using the OpenShift Container
Platform web console.

Prerequisites

® | ogin as a user with cluster-admin privileges.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators - OperatorHub.

2. Type a keyword into the Filter by keyword box or scroll to find the Operator you want. For
example, type metallb to find the MetalLB Operator.

You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. On the Install Operator page, accept the defaults and click Install.

Verification
1. To confirm that the installation is successful:

a. Navigate to the Operators — Installed Operators page.

b. Check that the Operator is installed in the openshift-operators namespace and that its
status is Succeeded.

73

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ingress_and_load_balancing/#overview-traffic-comparision_overview-traffic
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/configuring_network_settings/#nw-ipfailover-remove_configuring-ipfailover
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/configuring_network_settings/#nw-ipfailover-remove_configuring-ipfailover

OpenShift Container Platform 4.19 Networking Operators

2. If the Operator is not installed successfully, check the status of the Operator and review the
logs:

a. Navigate to the Operators = Installed Operators page and inspect the Status column for
any errors or failures.

b. Navigate to the Workloads — Pods page and check the logs in any pods in the openshift-
operators project that are reporting issues.
5.2.2. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub using the CLI. You can use the OpenShift CLI (oc¢) to install the MetalLB Operator.

It is recommended that when using the CLI you install the Operator in the metallb-system namespace.

Prerequisites
® A cluster installed on bare-metal hardware.

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the MetalLB Operator by entering the following command:

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Namespace
metadata:

name: metallb-system
EOF

2. Create an Operator group custom resource (CR) in the namespace:

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: metallb-operator
namespace: metallb-system
EOF

3. Confirm the Operator group is installed in the namespace:

I $ oc get operatorgroup -n metallb-system

Example output

NAME AGE
metallb-operator 14m

74

CHAPTER 5. METALLB OPERATOR

4. Create a Subscription CR:

a. Define the Subscription CR and save the YAML file, for example, metallb-sub.yami:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: metallb-operator-sub
namespace: metallb-system
spec:
channel: stable
name: metallb-operator
source: redhat-operators ﬂ
sourceNamespace: openshift-marketplace

@ Youmust specify the redhat-operators value.

b. To create the Subscription CR, run the following command:

I $ oc create -f metallb-sub.yaml

5. Optional: To ensure BGP and BFD metrics appear in Prometheus, you can label the namespace
as in the following command:

I $ oc label ns metallb-system "openshift.io/cluster-monitoring=true”

Verification

The verification steps assume the MetalLB Operator is installed in the metallb-system namespace.

1. Confirm the install plan is in the namespace:

I $ oc get installplan -n metallb-system

Example output

NAME CSv APPROVAL APPROVED
install-wzg94 metallb-operator.4.19.0-nnnnnnnnnnnn Automatic true
NOTE

Installation of the Operator might take a few seconds.

2. To verify that the Operator is installed, enter the following command and then check that
output shows Succeeded for the Operator:

$ oc get clusterserviceversion -n metallb-system \
-0 custom-columns=Name:.metadata.name,Phase:.status.phase

5.2.3. Starting MetalLB on your cluster

75

OpenShift Container Platform 4.19 Networking Operators

After you install the Operator, you need to configure a single instance of a MetalLB custom resource.
After you configure the custom resource, the Operator starts MetalLB on your cluster.

Prerequisites
® |nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.
® |nstall the MetalLB Operator.

Procedure
This procedure assumes the MetalLB Operator is installed in the metallb-system namespace. If you
installed using the web console substitute openshift-operators for the namespace.

1. Create asingle instance of a MetalLB custom resource:

$ cat << EOF | oc apply -f -
apiVersion: metallb.io/vibetal
kind: MetalLB
metadata:

name: metallb

namespace: metallb-system
EOF

Verification

Confirm that the deployment for the MetalLB controller and the daemon set for the MetalLB speaker
are running.

1. Verify that the deployment for the controller is running:

I $ oc get deployment -n metallb-system controller

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
controller 1/1 1 1 11m

2. Verify that the daemon set for the speaker is running:

I $ oc get daemonset -n metallb-system speaker

Example output

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
SELECTOR AGE
speaker 6 6 6 6 6 kubernetes.io/os=linux 18m

The example output indicates 6 speaker pods. The number of speaker pods in your cluster
might differ from the example output. Make sure the output indicates one pod for each node in
your cluster.

76

CHAPTER 5. METALLB OPERATOR

5.2.4. Deployment specifications for MetalLB

When you start an instance of MetalLB using the MetalLB custom resource, you can configure
deployment specifications in the MetalLB custom resource to manage how the controller or speaker
pods deploy and run in your cluster. Use these deployment specifications to manage the following tasks:

® Select nodes for MetallLB pod deployment.

® Manage scheduling by using pod priority and pod affinity.
® Assign CPU limits for MetalLB pods.

® Assign a container RuntimeClass for MetalLB pods.

® Assign metadata for MetalLB pods.

5.2.4.1. Limit speaker pods to specific nodes

By default, when you start MetalLB with the MetalLB Operator, the Operator starts an instance of a
speaker pod on each node in the cluster. Only the nodes with a speaker pod can advertise a load
balancer IP address. You can configure the MetalLB custom resource with a node selector to specify
which nodes run the speaker pods.

The most common reason to limit the speaker pods to specific nodes is to ensure that only nodes with
network interfaces on specific networks advertise load balancer IP addresses. Only the nodes with a
running speaker pod are advertised as destinations of the load balancer IP address.

If you limit the speaker pods to specific nodes and specify local for the external traffic policy of a
service, then you must ensure that the application pods for the service are deployed to the same nodes.

Example configuration to limit speaker pods to worker nodes

apiVersion: metallb.io/vibetal
kind: MetallLB
metadata:
name: metallb
namespace: metallb-system
spec:
nodeSelector: ﬂ
node-role.kubernetes.io/worker: ™"
speakerTolerations: 9
- key: "Example"
operator: "Exists"
effect: "NoExecute"

ﬂ The example configuration specifies to assign the speaker pods to worker nodes, but you can
specify labels that you assigned to nodes or any valid node selector.

9 In this example configuration, the pod that this toleration is attached to tolerates any taint that

matches the key value and effect value using the operator.

After you apply a manifest with the spec.nodeSelector field, you can check the number of pods that the
Operator deployed with the oc get daemonset -n metallb-system speaker command. Similarly, you
can display the nodes that match your labels with a command like oc get nodes -l node-

77

OpenShift Container Platform 4.19 Networking Operators

role.kubernetes.io/worker=.

You can optionally allow the node to control which speaker pods should, or should not, be scheduled on
them by using affinity rules. You can also limit these pods by applying a list of tolerations. For more
information about affinity rules, taints, and tolerations, see the additional resources.

5.2.4.2. Configuring pod priority and pod affinity in a MetalLB deployment

You can optionally assign pod priority and pod affinity rules to controller and speaker pods by
configuring the MetalLB custom resource. The pod priority indicates the relative importance of a pod
on a node and schedules the pod based on this priority. Set a high priority on your controller or speaker
pod to ensure scheduling priority over other pods on the node.

Pod affinity manages relationships among pods. Assign pod affinity to the controller or speaker pods
to control on what node the scheduler places the pod in the context of pod relationships. For example,
you can use pod affinity rules to ensure that certain pods are located on the same node or nodes, which
can help improve network communication and reduce latency between those components.

Prerequisites

® You are logged in as a user with cluster-admin privileges.
® You have installed the MetalLB Operator.

® You have started the MetalLB Operator on your cluster.

Procedure

1. Create a PriorityClass custom resource, such as myPriorityClass.yaml, to configure the
priority level. This example defines a PriorityClass named high-priority with a value of
1000000. Pods that are assigned this priority class are considered higher priority during
scheduling compared to pods with lower priority classes:

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
name: high-priority
value: 1000000

2. Apply the PriorityClass custom resource configuration:

I $ oc apply -f myPriorityClass.yaml

3. Create a MetalLB custom resource, such as MetalLBPodConfig.yaml, to specify the
priorityClassName and podAffinity values:

apiVersion: metallb.io/vibetal
kind: MetalLB
metadata:
name: metallb
namespace: metallb-system
spec:
logLevel: debug
controllerConfig:

78

CHAPTER 5. METALLB OPERATOR

priorityClassName: high-priority ﬂ
affinity:
podAffinity: @)
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchLabels:
app: metallb
topologyKey: kubernetes.io/hostname
speakerConfig:
priorityClassName: high-priority
affinity:
podAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchLabels:
app: metallb
topologyKey: kubernetes.io/hostname

ﬂ Specifies the priority class for the MetalLB controller pods. In this case, it is set to high-
priority.

9 Specifies that you are configuring pod affinity rules. These rules dictate how pods are
scheduled in relation to other pods or nodes. This configuration instructs the scheduler to
schedule pods that have the label app: metallb onto nodes that share the same
hostname. This helps to co-locate MetalLB-related pods on the same nodes, potentially
optimizing network communication, latency, and resource usage between these pods.

4. Apply the MetalLB custom resource configuration:

I $ oc apply -f MetalLBPodConfig.yaml

Verification

® To view the priority class that you assigned to pods in the metallb-system namespace, run the
following command:

$ oc get pods -n metallb-system -o custom-
columns=NAME:.metadata.name,PRIORITY:.spec.priorityClassName

Example output

NAME PRIORITY
controller-584f5¢c8cd8-5zbvg high-priority
metallb-operator-controller-manager-9¢8d9985-szkqg <none>
metallb-operator-webhook-server-c895594d4-shjgx ~ <none>
speaker-dddf7 high-priority

® To verify that the scheduler placed pods according to pod affinity rules, view the metadata for
the pod'’s node or nodes by running the following command:

$ oc get pod -o=custom-columns=NODE:.spec.nodeName,NAME:.metadata.name -n
metallb-system

79

OpenShift Container Platform 4.19 Networking Operators

5.2.4.3. Configuring pod CPU limits in a MetalLB deployment

You can optionally assign pod CPU limits to controller and speaker pods by configuring the MetalLB
custom resource. Defining CPU limits for the controller or speaker pods helps you to manage compute

resources on the node. This ensures all pods on the node have the necessary compute resources to
manage workloads and cluster housekeeping.

Prerequisites
® You are logged in as a user with cluster-admin privileges.

® You have installed the MetalLB Operator.

Procedure

1. Create a MetalLB custom resource file, such as CPULimits.yaml, to specify the cpu value for
the controller and speaker pods:

apiVersion: metallb.io/vibetal
kind: MetalLB
metadata:
name: metallb
namespace: metallb-system
spec:
logLevel: debug
controllerConfig:
resources:
limits:
cpu: "200m"
speakerConfig:
resources:
limits:
cpu: "300m"

2. Apply the MetalLB custom resource configuration:

I $ oc apply -f CPULimits.yaml

Verification

® To view compute resources for a pod, run the following command, replacing <pod_name> with
your target pod:

I $ oc describe pod <pod_name>

5.2.5. Additional resources

Placing pods on specific nodes using node selectors

Controlling pod placement using node taints

Understanding pod priority

Understanding pod affinity

80

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-node-selectors
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-taints-tolerations-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-pods-priority-about_nodes-pods-priority
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-pod-affinity-about_nodes-scheduler-pod-affinity

CHAPTER 5. METALLB OPERATOR

5.2.6. Next steps

® Configuring MetalLB address pools

5.3. UPGRADING THE METALLB OPERATOR

A Subscription custom resource (CR) that subscribes the namespace to metallb-system by default,

automatically sets the installPlanApproval parameter to Automatic. This means that when Red Hat-

provided Operator catalogs include a newer version of the MetalLB Operator, the MetalLB Operator is
automatically upgraded.

If you need to manually control upgrading the MetalLB Operator, set the installPlanApproval
parameter to Manual.

5.3.1. Manually upgrading the MetalLB Operator

To manually control upgrading the MetalLB Operator, you must edit the Subscription custom resource
(CR) that subscribes the namespace to metallb-system. A Subscription CR is created as part of the
Operator installation and the CR has the installPlanApproval parameter set to Automatic by default.

Prerequisites

® You updated your cluster to the latest z-stream release.
® You used OperatorHub to install the MetalLB Operator.

® Access the cluster as a user with the cluster-admin role.

Procedure

1. Get the YAML definition of the metallb-operator subscription in the metallb-system
namespace by entering the following command:

I $ oc -n metallb-system get subscription metallb-operator -o yaml

2. Edit the Subscription CR by setting the installPlanApproval parameter to Manual:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: metallb-operator
namespace: metallb-system
#...
spec:
channel: stable
installPlanApproval: Manual
name: metallb-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
#...

3. Find the latest OpenShift Container Platform 4.19 version of the MetalLB Operator by entering
the following command:

81

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ingress_and_load_balancing/#nw-metallb-configure-address-pool_configure-metallb-address-pools

OpenShift Container Platform 4.19 Networking Operators

I $ oc -n metallb-system get csv

4. Check the install plan that exists in the namespace by entering the following command.

I $ oc -n metallb-system get installplan

Example output that shows install-tsz2g as a manual install plan

NAME CSV APPROVAL APPROVED
install-shpomd metallb-operator.v4.19.0-202502261233 Automatic true
install-tsz2g metallb-operator.v4.19.0-202503102139 Manual false

5. Edit the install plan that exists in the namespace by entering the following command. Ensure
that you replace <name_of_installplan> with the name of the install plan, such as install-tsz2g.

I $ oc edit installplan <name_of_installplan> -n metallb-system

a. With the install plan open in your editor, set the spec.approval parameter to Manual and
set the spec.approved parameter to true.

NOTE

After you edit the install plan, the upgrade operation starts. If you enter the
oc -n metallb-system get csv command during the upgrade operation, the
output might show the Replacing or the Pending status.

Verification

® To verify that the Operator is upgraded, enter the following command and then check that
output shows Succeeded for the Operator:

I $ oc -n metallb-system get csv

5.3.2. Additional resources

® |ntroduction to OpenShift updates

® |nstalling the MetalLB Operator

82

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/updating_clusters/#intro-to-updates_intro-to-updates

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORNV

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT
CONTAINER PLATFORM

You can use the Cluster Network Operator (CNO) to deploy and manage cluster network components
on an OpenShift Container Platform cluster, including the Container Network Interface (CNI) network
plugin selected for the cluster during installation.

6.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator implements the network API from the operator.openshift.io API group.
The Operator deploys the OVN-Kubernetes network plugin, or the network provider plugin that you
selected during cluster installation, by using a daemon set.

Procedure

The Cluster Network Operator is deployed during installation as a Kubernetes Deployment.
1. Run the following command to view the Deployment status:

I $ oc get -n openshift-network-operator deployment/network-operator

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
network-operator 1/1 1 1 56m

2. Run the following command to view the state of the Cluster Network Operator:

I $ oc get clusteroperator/network

Example output

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.16.1 True False False 50m

The following fields provide information about the status of the operator: AVAILABLE,
PROGRESSING, and DEGRADED. The AVAILABLE field is True when the Cluster Network
Operator reports an available status condition.

6.2. VIEWING THE CLUSTER NETWORK CONFIGURATION

Every new OpenShift Container Platform installation has a network.config object named cluster.

Procedure

® Use the oc describe command to view the cluster network configuration:

I $ oc describe network.config/cluster

Example output

83

OpenShift Container Platform 4.19 Networking Operators

Name: cluster

Namespace:

Labels: <none>

Annotations: <none>

API Version: config.openshift.io/v1
Kind: Network

Metadata:
Creation Timestamp: 2024-08-08T11:25:56Z
Generation: 3
Resource Version: 29821
uID: 808dd2be-5077-4ff7-b6bb-21b7110126¢7
Spec:

Cluster Network:
Cidr: 10.128.0.0/14
Host Prefix: 23
External IP:
Policy:
Network Diagnostics:
Mode:
Source Placement:
Target Placement:
Network Type: OVNKubernetes
Service Network:
172.30.0.0/16

Status: g

Cluster Network:
Cidr: 10.128.0.0/14
Host Prefix: 23

Cluster Network MTU: 1360

Conditions:
Last Transition Time: 2024-08-08T11:51:50Z
Message:
Observed Generation: 0
Reason: AsExpected
Status: True
Type: NetworkDiagnosticsAvailable
Network Type: OVNKubernetes
Service Network:
172.30.0.0/16

Events: <none>

ﬂ The Spec field displays the configured state of the cluster network.

9 The Status field displays the current state of the cluster network configuration.

6.3. VIEWING CLUSTER NETWORK OPERATOR STATUS

You can inspect the status and view the details of the Cluster Network Operator using the oc describe
command.
Procedure

® Run the following command to view the status of the Cluster Network Operator:

84

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORNV

I $ oc describe clusteroperators/network

6.4. ENABLING IP FORWARDING GLOBALLY

From OpenShift Container Platform 4.14 onward, global IP address forwarding is disabled on OVN-
Kubernetes based cluster deployments to prevent undesirable effects for cluster administrators with
nodes acting as routers. However, in some cases where an administrator expects traffic to be forwarded
a new configuration parameter ipForwarding is available to allow forwarding of all IP traffic.

To re-enable IP forwarding for all traffic on OVN-Kubernetes managed interfaces set the
gatewayConfig.ipForwarding specification in the Cluster Network Operator to Global following this
procedure:

Procedure

1. Backup the existing network configuration by running the following command:

I $ oc get network.operator cluster -o yaml > network-config-backup.yaml

2. Run the following command to modify the existing network configuration:
I $ oc edit network.operator cluster
a. Add or update the following block under spec as illustrated in the following example:

spec:

clusterNetwork:

- cidr: 10.128.0.0/14
hostPrefix: 23

serviceNetwork:

- 172.30.0.0/16

networkType: OVNKubernetes

clusterNetworkMTU: 8900

defaultNetwork:
ovnKubernetesConfig:

gatewayConfig:
ipForwarding: Global

b. Save and close the file.

3. After applying the changes, the OpenShift Cluster Network Operator (CNO) applies the update
across the cluster. You can monitor the progress by using the following command:

I $ oc get clusteroperators network

The status should eventually report as Available, Progressing=False, and Degraded=False.

4. Alternatively, you can enable IP forwarding globally by running the following command:

$ oc patch network.operator cluster -p {"spec":{"defaultNetwork":{"ovnKubernetesConfig":
{"gatewayConfig":{"ipForwarding": "Global"}}}}}' --type=merge

85

OpenShift Container Platform 4.19 Networking Operators

NOTE

The other valid option for this parameter is Restricted in case you want to revert
this change. Restricted is the default and with that setting global IP address
forwarding is disabled.

6.5. VIEWING CLUSTER NETWORK OPERATOR LOGS

You can view Cluster Network Operator logs by using the oc logs command.

Procedure

® Run the following command to view the logs of the Cluster Network Operator:

I $ oc logs --namespace=openshift-network-operator deployment/network-operator

6.6. CLUSTER NETWORK OPERATOR CONFIGURATION

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO)
configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the
fields for the Network APl in the operator.openshift.io APl group.

The CNO configuration inherits the following fields during cluster installation from the Network APl in
the Network.config.openshift.io API group:

clusterNetwork

IP address pools from which pod IP addresses are allocated.
serviceNetwork

IP address pool for services.
defaultNetwork.type

Cluster network plugin. OVNKubernetes is the only supported plugin during installation.

NOTE

After cluster installation, you can only modify the clusterNetwork IP address range.

You can specify the cluster network plugin configuration for your cluster by setting the fields for the
defaultNetwork object in the CNO object named cluster.

6.6.1. Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 6.1. Cluster Network Operator configuration object

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.

86

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORNV

Field Type Description
spec.clusterNet array A list specifying the blocks of IP addresses from which pod IP
work addresses are allocated and the subnet prefix length assigned to

each individual node in the cluster. For example:

spec:
clusterNetwork:
- cidr: 10.128.0.0/19
hostPrefix: 23
- cidr: 10.128.32.0/19
hostPrefix: 23

spec.serviceNet array A block of IP addresses for services. The OVN-Kubernetes
work network plugin supports only a single IP address block for the
service network. For example:

spec:
serviceNetwork:
-172.30.0.0/14

This value is ready-only and inherited from the
Network.config.openshift.io object named cluster during
cluster installation.

spec.defaultNet object Configures the network plugin for the cluster network.

work

spec.additional array This setting enables a dynamic routing provider. The FRR routing
RoutingCapabili capability provider is required for the route advertisement
ties.providers feature. The only supported value is FRR.

o FRR: The FRR routing provider

spec:
additionalRoutingCapabilities:
providers:
- FRR

IMPORTANT

For a cluster that needs to deploy objects across multiple networks, ensure that you
specify the same value for the clusterNetwork.hostPrefix parameter for each network
type that is defined in the install-config.yaml file. Setting a different value for each
clusterNetwork.hostPrefix parameter can impact the OVN-Kubernetes network plugin,
where the plugin cannot effectively route object traffic among different nodes.

6.6.1.1. defaultNetwork object configuration

87

OpenShift Container Platform 4.19 Networking Operators

The values for the defaultNetwork object are defined in the following table:

Table 6.2. defaultNetwork object

Field Type Description

type string OVNKubernetes. The Red Hat OpenShift
Networking network plugin is selected during
installation. This value cannot be changed after
cluster installation.

NOTE

OpensShift Container Platform uses

4 the OVN-Kubernetes network plugin
by default.
ovnKubernetesConfig object This object is only valid for the OVN-Kubernetes

network plugin.

6.6.1.1.1. Configuration for the OVN-Kubernetes network plugin

The following table describes the configuration fields for the OVN-Kubernetes network plugin:

Table 6.3. ovhKubernetesConfig object
Field Type Description

mtu integer The maximum transmission unit (MTU) for the Geneve (Generic
Network Virtualization Encapsulation) overlay network. This
value is normally configured automatically.

genevePort integer The UDP port for the Geneve overlay network.

ipsecConfig object An object describing the IPsec mode for the cluster.

ipv4 object Specifies a configuration object for IPv4 settings.

ipvé object Specifies a configuration object for IPv6 settings.
policyAuditConf object Specify a configuration object for customizing network policy
ig audit logging. If unset, the defaults audit log settings are used.

88

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORNV

Field Type Description
routeAdvertise string Specifies whether to advertise cluster network routes. The
ments default value is Disabled.

e Enabled: Import routes to the cluster network and
advertise cluster network routes as configured in
RouteAdvertisements objects.

e Disabled: Do notimport routes to the cluster network
or advertise cluster network routes.

gatewayConfig object Optional: Specify a configuration object for customizing how
egress traffic is sent to the node gateway. Valid values are
Shared and Local. The default value isShared. In the default
setting, the Open vSwitch (OVS) outputs traffic directly to the
node IP interface. In the Local setting, it traverses the host
network; consequently, it gets applied to the routing table of the
host.

NOTE

While migrating egress traffic, you can expect
some disruption to workloads and service traffic
until the Cluster Network Operator (CNO)
successfully rolls out the changes.

Table 6.4. ovhKubernetesConfig.ipv4 object

Field Type Description
internalTransitS string If your existing network infrastructure overlaps with the
witchSubnet 100.88.0.0/16 IPv4 subnet, you can specify a different IP

address range for internal use by OVN-Kubernetes. The subnet
for the distributed transit switch that enables east-west traffic.
This subnet cannot overlap with any other subnets used by
OVN-Kubernetes or on the host itself. It must be large enough
to accommodate one IP address per node in your cluster.

The default value is 100.88.0.0/16.

89

OpenShift Container Platform 4.19 Networking Operators

Field Type Description
internaldoinSub string If your existing network infrastructure overlaps with the
net 100.64.0.0/16 IPv4 subnet, you can specify a different IP

address range for internal use by OVN-Kubernetes. You must
ensure that the IP address range does not overlap with any other
subnet used by your OpenShift Container Platform installation.
The IP address range must be larger than the maximum number
of nodes that can be added to the cluster. For example, if the
clusterNetwork.cidr value is 10.128.0.0/14 and the
clusterNetwork.hostPrefix value is /23, then the maximum
number of nodes is 2A(23-14)=512.

The default value is 100.64.0.0/16.

Table 6.5. ovhKubernetesConfig.ipv6 object

Field Type Description
internalTransitS string If your existing network infrastructure overlaps with the
witchSubnet fd97::/64 IPv6 subnet, you can specify a different IP address

range for internal use by OVN-Kubernetes. The subnet for the
distributed transit switch that enables east-west traffic. This
subnet cannot overlap with any other subnets used by OVN-
Kubernetes or on the host itself. It must be large enough to
accommodate one IP address per node in your cluster.

The default value is fd97::/64.

internaldoinSub string If your existing network infrastructure overlaps with the

net fd98::/64 IPv6 subnet, you can specify a different IP address
range for internal use by OVN-Kubernetes. You must ensure
that the IP address range does not overlap with any other subnet
used by your OpenShift Container Platform installation. The IP
address range must be larger than the maximum number of
nodes that can be added to the cluster.

The default value is fd98::/64.

Table 6.6. policyAuditConfig object
Field Type Description

rateLimit integer The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

90

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORNV

Field Type Description
maxFileSize integer The maximum size for the audit log in bytes. The default value is
50000000 or 50 MB.
maxLogFiles integer The maximum number of log files that are retained.
destination string One of the following additional audit log targets:
libc
The libc syslog() function of the journald process on the
host.

udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>
A Unix Domain Socket file specified by <file>.

null

Do not send the audit logs to any additional target.

syslogFacility string The syslog facility, such as kern, as defined by RFC5424. The
default value is localO.

Table 6.7. gatewayConfig object
Field Type Description

routingViaHost boolean Set this field to true to send egress traffic from pods to the
host networking stack. For highly-specialized installations and
applications that rely on manually configured routes in the
kernel routing table, you might want to route egress traffic to
the host networking stack. By default, egress traffic is processed
in OVN to exit the cluster and is not affected by specialized
routes in the kernel routing table. The default value is false.

This field has an interaction with the Open vSwitch hardware
offloading feature. If you set this field to true, you do not
receive the performance benefits of the offloading because
egress traffic is processed by the host networking stack.

o1

OpenShift Container Platform 4.19 Networking Operators

Field Type Description

ipForwarding object You can control IP forwarding for all traffic on OVN-Kubernetes
managed interfaces by using the ipForwarding specification in
the Network resource. Specify Restricted to only allow IP
forwarding for Kubernetes related traffic. Specify Global to
allow forwarding of all IP traffic. For new installations, the default
is Restricted. For updates to OpenShift Container Platform
414 or later, the default is Global.

NOTE

The default value of Restricted sets the IP
forwarding to drop.

ipv4 object Optional: Specify an object to configure the internal OVN-
Kubernetes masquerade address for host to service traffic for
IPv4 addresses.

ipv6 object Optional: Specify an object to configure the internal OVN-
Kubernetes masquerade address for host to service traffic for
IPv6 addresses.

Table 6.8. gatewayConfig.ipv4 object

Field Type Description
internalMasquer string The masquerade IPv4 addresses that are used internally to
adeSubnet enable host to service traffic. The host is configured with these

IP addresses as well as the shared gateway bridge interface. The
default value is 169.254.169.0/29.

IMPORTANT

For OpenShift Container Platform 4.17 and later
versions, clusters use 169.254.0.0/17 as the
default masquerade subnet. For upgraded
clusters, there is no change to the default
masquerade subnet.

Table 6.9. gatewayConfig.ipv6 object

Field Type Description

92

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORNV

Field Type Description
internalMasquer string The masquerade IPv6 addresses that are used internally to
adeSubnet enable host to service traffic. The host is configured with these

IP addresses as well as the shared gateway bridge interface. The
default value is fd69::/125.

IMPORTANT

For OpenShift Container Platform 4.17 and later
versions, clusters use fd69::/112 as the default
masquerade subnet. For upgraded clusters,
there is no change to the default masquerade
subnet.

Table 6.10. ipsecConfig object

Field Type Description

mode string Specifies the behavior of the IPsec implementation. Must be
one of the following values:

e Disabled: IPsecis not enabled on cluster nodes.

e External: IPsecis enabled for network traffic with
external hosts.

o Full: IPsec is enabled for pod traffic and network
traffic with external hosts.

NOTE

You can only change the configuration for your cluster network plugin during cluster
installation, except for the gatewayConfig field that can be changed at runtime as a
postinstallation activity.

Example OVN-Kubernetes configuration with IPSec enabled

defaultNetwork:
type: OVNKubernetes
ovnKubernetesConfig:
mtu: 1400
genevePort: 6081
ipsecConfig:
mode: Full

6.6.2. Cluster Network Operator example configuration

A complete CNO configuration is specified in the following example:

OpenShift Container Platform 4.19 Networking Operators

Example Cluster Network Operator object

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
serviceNetwork:
- 172.30.0.0/16
networkType: OVNKubernetes

6.7. ADDITIONAL RESOURCES
® Network APl in the operator.openshift.io APl group
® Expanding the cluster network IP address range

® How to configure OVN to use kernel routing table

94

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operator_apis/#network-operator-openshift-io-v1
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/configuring_network_settings/#nw-cluster-network-range-edit_configuring-cluster-network-range
https://access.redhat.com/solutions/6969174

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

In OpenShift Container Platform, the DNS Operator deploys and manages a CoreDNS instance to
provide a name resolution service to pods inside the cluster, enables DNS-based Kubernetes Service
discovery, and resolves internal cluster.local names.

7.1. CHECKING THE STATUS OF THE DNS OPERATOR

The DNS Operator implements the dns API from the operator.openshift.io APl group. The Operator
deploys CoreDNS using a daemon set, creates a service for the daemon set, and configures the kubelet
to instruct pods to use the CoreDNS service IP address for name resolution.

Procedure

The DNS Operator is deployed during installation with a Deployment object.

1. Use the oc get command to view the deployment status:
I $ oc get -n openshift-dns-operator deployment/dns-operator
Example output

NAME READY UP-TO-DATE AVAILABLE AGE
dns-operator 1/1 1 1 23h

2. Use the oc get command to view the state of the DNS Operator:

I $ oc get clusteroperator/dns

Example output

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE
dns 4.1.15-0.11 True False False 92m

AVAILABLE, PROGRESSING, and DEGRADED provide information about the status of the
Operator. AVAILABLE is True when at least 1 pod from the CoreDNS daemon set reports an
Available status condition, and the DNS service has a cluster IP address.

7.2.VIEW THE DEFAULT DNS

Every new OpenShift Container Platform installation has a dns.operator named default.

Procedure

1. Use the oc describe command to view the default dns:

I $ oc describe dns.operator/default

Example output

95

OpenShift Container Platform 4.19 Networking Operators

Name: default
Namespace:
Labels: <none>

Annotations: <none>
APl Version: operator.openshift.io/v1
Kind: DNS

Status:
Cluster Domain: cluster.local ﬂ
Cluster IP: 172.30.0.10 @

ﬂ The Cluster Domain field is the base DNS domain used to construct fully qualified pod and
service domain names.

9 The Cluster IP is the address pods query for name resolution. The IP is defined as the 10th

address in the service CIDR range.

2. To find the service CIDR range, such as 172.30.0.0/16, of your cluster, use the oc get command:

I $ oc get networks.config/cluster -o jsonpath="{$.status.serviceNetwork}'

7.3. USING DNS FORWARDING

You can use DNS forwarding to override the default forwarding configuration in the /etc/resolv.conf file
in the following ways:

® Specify name servers (spec.servers) for every zone. If the forwarded zone is the ingress
domain managed by OpenShift Container Platform, then the upstream name server must be
authorized for the domain.

® Provide a list of upstream DNS servers (spec.upstreamResolvers).

® Change the default forwarding policy.

NOTE

A DNS forwarding configuration for the default domain can have both the default servers
specified in the /etc/resolv.conf file and the upstream DNS servers.

Procedure

® Modify the DNS Operator object named default:
I $ oc edit dns.operator/default

After you issue the previous command, the Operator creates and updates the config map
named dns-default with additional server configuration blocks based on spec.servers. If none
of the servers have a zone that matches the query, then name resolution falls back to the
upstream DNS servers.

Configuring DNS forwarding

96

®0 0 o9

o

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
name: default
spec:
cache:
negativeTTL: Os
positiveTTL: Os
logLevel: Normal
nodePlacement: {}
operatorLoglLevel: Normal
servers:
- name: example-server ﬂ
zones:
- example.com g
forwardPlugin:
policy: Random e
upstreams:
-1.1.1.1
-2.2.2.2:5353

upstreamResolvers: 6
policy: Random G
protocolStrategy: " ﬂ
transportConfig: {} 6
upstreams:
- type: SystemResolvConf Q
- type: Network

address: 1.2.3.4 @

port: 53 m

status:
clusterDomain: cluster.local
clusterlP: x.y.z.10
conditions:

Must comply with the rHfc6335 service name syntax.

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field.

Defines the policy to select upstream resolvers listed in the forwardPlugin. Default value is
Random. You can also use the values RoundRobin, and Sequential.

A maximum of 15 upstreams is allowed per forwardPlugin.

You can use upstreamResolvers to override the default forwarding policy and forward
DNS resolution to the specified DNS resolvers (upstream resolvers) for the default
domain. If you do not provide any upstream resolvers, the DNS name queries go to the
servers declared in /etc/resolv.conf.

Determines the order in which upstream servers listed in upstreams are selected for
querying. You can specify one of these values: Random, RoundRobin, or Sequential. The
default value is Sequential.

97

OpenShift Container Platform 4.19 Networking Operators

Q When omitted, the platform chooses a default, normally the protocol of the original client
request. Set to TCP to specify that the platform should use TCP for all upstream DNS

Used to configure the transport type, server name, and optional custom CA or CA bundle
to use when forwarding DNS requests to an upstream resolver.

You can specify two types of upstreams: SystemResolvConf or Network.
SystemResolvConf configures the upstream to use /etc/resolv.conf and Network
defines a Networkresolver. You can specify one or both.

If the specified type is Network, you must provide an IP address. The address field must
be a valid IPv4 or IPv6 address.

O @ O o

If the specified type is Network, you can optionally provide a port. The port field must have
a value between 1 and 65535. If you do not specify a port for the upstream, the default
portis 853.

Additional resources

® For more information on DNS forwarding, see the CoreDNS forward documentation.

7.4. CHECKING DNS OPERATOR STATUS

You can inspect the status and view the details of the DNS Operator using the oc describe command.

Procedure

® View the status of the DNS Operator:

I $ oc describe clusteroperators/dns

Though the messages and spelling might vary in a specific release, the expected status output

looks like:
Status:
Conditions:
Last Transition Time: <date>
Message: DNS "default” is available.
Reason: AsExpected
Status: True
Type: Available
Last Transition Time: <date>
Message: Desired and current number of DNSes are equal
Reason: AsExpected
Status: False
Type: Progressing
Last Transition Time: <date>
Reason: DNSNotDegraded
Status: False
Type: Degraded
Last Transition Time: <date>
Message: DNS default is upgradeable: DNS Operator can be upgraded

98

https://coredns.io/plugins/forward/

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Reason: DNSUpgradeable
Status: True
Type: Upgradeable

7.5. VIEWING DNS OPERATOR LOGS

You can view DNS Operator logs by using the oc logs command.
Procedure
® View the logs of the DNS Operator:

I $ oc logs -n openshift-dns-operator deployment/dns-operator -¢c dns-operator

7.6.SETTING THE COREDNS LOG LEVEL

Log levels for CoreDNS and the CoreDNS Operator are set by using different methods. You can
configure the CoreDNS log level to determine the amount of detail in logged error messages. The valid
values for CoreDNS log level are Normal, Debug, and Trace. The default logLevel is Normal.

NOTE

The CoreDNS error log level is always enabled. The following log level settings report
different error responses:

e JogLevel: Normal enables the "errors” class: log . { class error }.
® loglLevel: Debug enables the "denial” class: log . { class denial error }.

® JogLevel: Trace enables the "all" class: log . { class all }.

Procedure

e TosetlogLevel to Debug, enter the following command:
I $ oc patch dnses.operator.openshift.io/default -p {"spec":{"logLevel":"Debug"}}' --type=merge
e TosetloglLevel to Trace, enter the following command:

I $ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Trace"}}' --type=merge

Verification

® To ensure the desired log level was set, check the config map:

I $ oc get configmap/dns-default -n openshift-dns -o yaml

For example, after setting the logLevel to Trace, you should see this stanza in each server
block:

errors
log . {

99

OpenShift Container Platform 4.19 Networking Operators

I class all
}

7.7.VIEWING THE COREDNS LOGS

You can view CoreDNS logs by using the oc logs command.

Procedure

® View the logs of a specific CoreDNS pod by entering the following command:

I $ oc -n openshift-dns logs -¢ dns <core_dns_pod_name>

® Follow the logs of all CoreDNS pods by entering the following command:

$ oc -n openshift-dns logs -¢ dns - dns.operator.openshift.io/daemonset-dns=default -f --
max-log-requests=<number>

ﬂ Specifies the number of DNS pods to stream logs from. The maximum is 6.

7.8.SETTING THE COREDNS OPERATOR LOG LEVEL

Log levels for CoreDNS and CoreDNS Operator are set by using different methods. Cluster
administrators can configure the Operator log level to more quickly track down OpenShift DNS issues.
The valid values for operatorLogLevel are Normal, Debug, and Trace. Trace has the most detailed
information. The default operatorlogLevel is Normal. There are seven logging levels for Operator

issues: Trace, Debug, Info, Warning, Error, Fatal, and Panic. After the logging level is set, log entries with
that severity or anything above it will be logged.

e operatorLogLevel: "Normal" sets logrus.SetLogLevel("Info").
e operatorLogLevel: "Debug” sets logrus.SetLogLevel("Debug").
o operatorLogLevel: "Trace" sets logrus.SetLogLevel("Trace").

Procedure

e To set operatorLogLevel to Debug, enter the following command:

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Debug"}}' --
type=merge

® To set operatorLoglLevel to Trace, enter the following command:

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Trace"}}' --
type=merge

Verification

1. To review the resulting change, enter the following command:

100

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

I $ oc get dnses.operator -A -oyaml

You should see two log level entries. The operatorLogLevel applies to OpenShift DNS
Operator issues, and the logLevel applies to the daemonset of CoreDNS pods:

logLevel: Trace
operatorLoglevel: Debug

2. Toreview the logs for the daemonset, enter the following command:

I $ oc logs -n openshift-dns ds/dns-default

7.9. TUNING THE COREDNS CACHE

For CoreDNS, you can configure the maximum duration of both successful or unsuccessful caching, also
known respectively as positive or negative caching. Tuning the cache duration of DNS query responses
can reduce the load for any upstream DNS resolvers.

WARNING
Setting TTL fields to low values could lead to an increased load on the cluster, any

upstream resolvers, or both.

Procedure

1. Edit the DNS Operator object named default by running the following command:

I $ oc edit dns.operator.openshift.io/default

2. Modify the time-to-live (TTL) caching values:

Configuring DNS caching

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
name: default
spec:
cache:
positiveTTL: 1h @)

negativeTTL: 0.5h10m @)

ﬂ The string value 1h is converted to its respective number of seconds by CoreDNS. If this
field is omitted, the value is assumed to be 0s and the cluster uses the internal default
value of 900s as a fallback.

Q The string value can be a combination of units such as 0.5h10m and is converted to its

101

OpenShift Container Platform 4.19 Networking Operators

Verification

1. To review the change, look at the config map again by running the following command:

I $ oc get configmap/dns-default -n openshift-dns -o yaml

2. Verify that you see entries that look like the following example:

cache 3600 {
denial 9984 2400

}

Additional resources

For more information on caching, see CoreDNS cache.

7.10. ADVANCED TASKS

7.10.1. Changing the DNS Operator managementState

The DNS Operator manages the CoreDNS component to provide a name resolution service for pods
and services in the cluster. The managementState of the DNS Operator is set to Managed by default,
which means that the DNS Operator is actively managing its resources. You can change it to
Unmanaged, which means the DNS Operator is not managing its resources.
The following are use cases for changing the DNS Operator managementState:
® You are a developer and want to test a configuration change to see if it fixes an issue in
CoreDNS. You can stop the DNS Operator from overwriting the configuration change by setting
the managementState to Unmanaged.
® You are a cluster administrator and have reported an issue with CoreDNS, but need to apply a

workaround until the issue is fixed. You can set the managementState field of the DNS
Operator to Unmanaged to apply the workaround.

Procedure

1. Change managementState to Unmanaged in the DNS Operator:

oc patch dns.operator.openshift.io default --type merge --patch '{"spec":
{"managementState":"Unmanaged"}}'

2. Review managementState of the DNS Operator by using the jsonpath command-line JSON
parser:

I $ oc get dns.operator.openshift.io default -ojsonpath="'{.spec.managementState}'

NOTE

You cannot upgrade while the managementState is set to Unmanaged.

7.10.2. Controlling DNS pod placement

102

https://coredns.io/plugins/cache/

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

The DNS Operator has two daemon sets: one for CoreDNS called dns-default and one for managing
the /etc/hosts file called node-resolver.

You can assign and run CoreDNS pods on specified nodes. For example, if the cluster administrator has
configured security policies that prohibit communication between pairs of nodes, you can configure
CoreDNS pods to run on a restricted set of nodes.

DNS service is available to all pods if the following circumstances are true:

® DNS pods are running on some nodes in the cluster.

® The nodes on which DNS pods are not running have network connectivity to nodes on which
DNS pods are running,

The node-resolver daemon set must run on every node host because it adds an entry for the cluster
image registry to support pulling images. The node-resolver pods have only one job: to look up the
image-registry.openshift-image-registry.svc service’s cluster IP address and add it to /etc/hosts on
the node host so that the container runtime can resolve the service name.

As a cluster administrator, you can use a custom node selector to configure the daemon set for
CoreDNS to run or not run on certain nodes.

Prerequisites

® You installed the oc CLI.
® You are logged in to the cluster as a user with cluster-admin privileges.

® Your DNS Operator managementState is set to Managed.

Procedure
® To allow the daemon set for CoreDNS to run on certain nodes, configure a taint and toleration:

1. Set a taint on the nodes that you want to control DNS pod placement by entering the
following command:

I $ oc adm taint nodes <node_name> dns-only=abc:NoExecute ﬂ

ﬂ Replace <node_name> with the actual name of the node.

2. Modify the DNS Operator object named default to include the corresponding toleration by
entering the following command:

I $ oc edit dns.operator/default

3. Specify a taint key and a toleration for the taint. The following toleration matches the taint
set on the nodes.

spec:
nodePlacement:
tolerations:
- effect: NoExecute

key: "dns-only" ﬂ

103

OpenShift Container Platform 4.19 Networking Operators

operator: Equal
value: abc

tolerationSeconds: 3600 g

ﬂ If the key field is set to dns-only, it can be tolerated indefinitely.

9 The tolerationSeconds field is optional.

4. Optional: To specify node placement using a node selector, modify the default DNS
Operator:

a. Edit the DNS Operator object named default to include a node selector:

spec:
nodePlacement:

nodeSelector: ﬂ
node-role.kubernetes.io/control-plane: "

This node selector ensures that the CoreDNS pods run only on control plane
nodes.

7.10.3. Configuring DNS forwarding with TLS

When working in a highly regulated environment, you might need the ability to secure DNS traffic when
forwarding requests to upstream resolvers so that you can ensure additional DNS traffic and data
privacy.

Be aware that CoreDNS caches forwarded connections for 10 seconds. CoreDNS will hold a TCP
connection open for those 10 seconds if no request is issued.

NOTE

With large clusters, ensure that your DNS server is aware that it might get many new
connections to hold open because you can initiate a connection per node. Set up your
DNS hierarchy accordingly to avoid performance issues.

Procedure

1. Modify the DNS Operator object named default:
I $ oc edit dns.operator/default

Cluster administrators can configure transport layer security (TLS) for forwarded DNS queries.

Configuring DNS forwarding with TLS

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
name: default
spec:
servers:

104

O o O @9 o 6 o 69

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

- name: example-server ﬂ
zones:
- example.com 9
forwardPlugin:
transportConfig:
transport: TLS 6
tls:
caBundle:
name: mycacert
serverName: dnstls.example.com ﬂ
policy: Random 6
upstreams:
-1.1.14
-2.2.2.2:5353
upstreamResolvers: ﬂ
transportConfig:
transport: TLS
tls:
caBundle:
name: mycacert
serverName: dnstls.example.com
upstreams:

- type: Network 6
address: 1.2.3.4 Q

port: 53 @

Must comply with the rHfc6335 service name syntax.

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field. The cluster
domain, cluster.local, is an invalid subdomain for zones.

When configuring TLS for forwarded DNS queries, set the transport field to have the value
TLS.

When configuring TLS for forwarded DNS queries, this is a mandatory server name used as
part of the server name indication (SNI) to validate the upstream TLS server certificate.

Defines the policy to select upstream resolvers. Default value is Random. You can also use
the values RoundRobin, and Sequential.

Required. Use it to provide upstream resolvers. A maximum of 15 upstreams entries are
allowed per forwardPlugin entry.

Optional. You can use it to override the default policy and forward DNS resolution to the
specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide

any upstream resolvers, the DNS name queries go to the servers in /etc/resolv.conf.

Only the Network type is allowed when using TLS and you must provide an IP address.
Network type indicates that this upstream resolver should handle forwarded requests
separately from the upstream resolvers listed in /etc/resolv.conf.

The address field must be a valid IPv4 or IPv6 address.

105

OpenShift Container Platform 4.19 Networking Operators

@ You can optionally provide a port. The port must have a value between 1 and 65535. If you
do not specify a port for the upstream, the default port is 853.

NOTE

If servers is undefined or invalid, the config map only contains the default server.

Verification

1. View the config map:

I $ oc get configmap/dns-default -n openshift-dns -o yaml

Sample DNS ConfigMap based on TLS forwarding example

apiVersion: vi
data:
Corefile: |
example.com:5353 {
forward . 1.1.1.1 2.2.2.2:5353

}
bar.com:5353 example.com:5353 {

forward . 3.3.3.3 4.4.4.4:5454 §)
}
.:56353 {
errors
health
kubernetes cluster.local in-addr.arpa ip6.arpa {
pods insecure
upstream
fallthrough in-addr.arpa ip6.arpa
}
prometheus :9153
forward . /etc/resolv.conf 1.2.3.4:53 {
policy Random
}
cache 30
reload
}
kind: ConfigMap
metadata:
labels:
dns.operator.openshift.io/owning-dns: default
name: dns-default
namespace: openshift-dns

ﬂ Changes to the forwardPlugin triggers a rolling update of the CoreDNS daemon set.

Additional resources

® For more information on DNS forwarding, see the CoreDNS forward documentation.

106

https://coredns.io/plugins/forward/

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The Ingress Operator implements the IngressController API and is the component responsible for
enabling external access to OpenShift Container Platform cluster services.

8.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

8.2. THE INGRESS CONFIGURATION ASSET

The installation program generates an asset with an Ingress resource in the config.openshift.io API
group, cluster-ingress-02-config.yml.

YAML Definition of the Ingress resource

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
name: cluster
spec:
domain: apps.openshiftdemos.com

The installation program stores this asset in the cluster-ingress-02-config.yml file in the manifests/
directory. This Ingress resource defines the cluster-wide configuration for Ingress. This Ingress
configuration is used as follows:

® The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for
the default Ingress Controller.

® The OpenShift API Server Operator uses the domain from the cluster Ingress configuration.
This domain is also used when generating a default host for a Route resource that does not
specify an explicit host.

8.3.INGRESS CONTROLLER CONFIGURATION PARAMETERS

The IngressController custom resource (CR) includes optional configuration parameters that you can
configure to meet specific needs for your organization.

107

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

OpenShift Container Platform 4.19 Networking Operators

Parameter Description

domain domain is a DNS name serviced by the Ingress Controller and is used to
configure multiple features:

e Forthe LoadBalancerService endpoint publishing strategy,
domain is used to configure DNS records. See
endpointPublishingStrategy.

e When using a generated default certificate, the certificate is valid for
domain and its subdomains. See defaultCertificate.

® The value is published to individual Route statuses so that users know
where to target external DNS records.

The domain value must be unique among all Ingress Controllers and cannot be

updated.

If empty, the default value is ingress.config.openshift.io/cluster
.spec.domain.

replicas replicas is the number of Ingress Controller replicas. If not set, the default
value is 2.

108

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

Parameter Description

endpointPublishingStr endpointPublishingStrategy is used to publish the Ingress Controller
ategy endpoints to other networks, enable load balancer integrations, and provide
access to other systems.

For cloud environments, use the loadBalancer field to configure the endpoint
publishing strategy for your Ingress Controller.

On Google Cloud, AWS, and Azure you can configure the following
endpointPublishingStrategy fields:

o loadBalancer.scope
o loadBalancer.allowedSourceRanges

If not set, the default value is based on
infrastructure.config.openshift.io/cluster .status.platform:

e Azure: LoadBalancerService (with External scope)
® Google Cloud: LoadBalancerService (with External scope)

For most platforms, the endpointPublishingStrategy value can be
updated. On Google Cloud, you can configure the following
endpointPublishingStrategy fields:

o loadBalancer.scope
o loadbalancer.providerParameters.gcp.clientAccess

For non-cloud environments, such as a bare-metal platform, use the
NodePortService, HostNetwork, or Private fields to configure the
endpoint publishing strategy for your Ingress Controller.

If you do not set a value in one of these fields, the default value is based on
binding ports specified in the .status.platform value in the
IngressController CR.

If you need to update the endpointPublishingStrategy value after your
cluster is deployed, you can configure the following
endpointPublishingStrategy fields:

o hostNetwork.protocol
e nodePort.protocol

e private.protocol

109

OpenShift Container Platform 4.19 Networking Operators

Parameter Description

110

defaultCertificate

namespaceSelector

routeSelector

nodePlacement

The defaultCertificate value is a reference to a secret that contains the
default certificate that is served by the Ingress Controller. When Routes do not
specify their own certificate, defaultCertificate is used.

The secret must contain the following keys and data: * tls.crt: certificate file
contents * tls.key: key file contents

If not set, a wildcard certificate is automatically generated and used. The
certificate is valid for the Ingress Controller domain and subdomains, and
the generated certificate’s CA is automatically integrated with the cluster’s
trust store.

The in-use certificate, whether generated or user-specified, is automatically
integrated with OpenShift Container Platform built-in OAuth server.

namespaceSelector is used to filter the set of namespaces serviced by the
Ingress Controller. This is useful for implementing shards.

routeSelector is used to filter the set of Routes serviced by the Ingress
Controller. This is useful for implementing shards.

nodePlacement enables explicit control over the scheduling of the Ingress
Controller.

If not set, the defaults values are used.

NOTE

The nodePlacement parameter includes two parts,
nodeSelector and tolerations. For example:

nodePlacement:
nodeSelector:
matchLabels:
kubernetes.io/os: linux
tolerations:
- effect: NoSchedule
operator: Exists

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

Parameter Description

tisSecurityProfile tisSecurityProfile specifies settings for TLS connections for Ingress
Controllers.

If not set, the default value is based on the
apiservers.config.openshift.io/cluster resource.

When using the Old, Intermediate, and Modern profile types, the effective
profile configuration is subject to change between releases. For example, given
a specification to use the Intermediate profile deployed on release X.Y.Z, an
upgrade to release X.Y.Z+1 may cause a new profile configuration to be
applied to the Ingress Controller, resulting in a rollout.

The minimum TLS version for Ingress Controllers is 1.1, and the maximum TLS
version is 1.3.

NOTE

Ciphers and the minimum TLS version of the configured
security profile are reflected in the TLSProfile status.

IMPORTANT

The Ingress Operator converts the TLS 1.0 of anOld or
Custom profile to 1.1.

clientTLS clientTLS authenticates client access to the cluster and services; as a result,
mutual TLS authentication is enabled. If not set, then client TLS is not enabled.

clientTLS has the required subfields,
spec.clientTLS.clientCertificatePolicy and spec.clientTLS.ClientCA.

The ClientCertificatePolicy subfield accepts one of the two values:
Required or Optional. The ClientCA subfield specifies a config map that is
in the openshift-config namespace. The config map should contain a CA
certificate bundle.

The AllowedSubjectPatterns is an optional value that specifies a list of
regular expressions, which are matched against the distinguished name on a
valid client certificate to filter requests. The regular expressions must use
PCRE syntax. At least one pattern must match a client certificate's
distinguished name; otherwise, the Ingress Controller rejects the certificate and
denies the connection. If not specified, the Ingress Controller does not reject
certificates based on the distinguished name.

m

OpenShift Container Platform 4.19 Networking Operators

Parameter Description

routeAdmission routeAdmission defines a policy for handling new route claims, such as
allowing or denying claims across namespaces.

namespaceOwnership describes how hostname claims across namespaces
should be handled. The default is Strict.

Strict: does not allow routes to claim the same hostname across
namespaces.

InterNamespaceAllowed: allows routes to claim different paths of
the same hostname across namespaces.

wildcardPolicy describes how routes with wildcard policies are handled by
the Ingress Controller.

12

WildcardsAllowed: Indicates routes with any wildcard policy are
admitted by the Ingress Controller.

WildcardsDisallowed: Indicates only routes with a wildcard policy
of None are admitted by the Ingress Controller. Updating
wildcardPolicy from WildcardsAllowed to
WildcardsDisallowed causes admitted routes with a wildcard policy
of Subdomain to stop working. These routes must be recreated to a
wildcard policy of None to be readmitted by the Ingress Controller.
WildcardsDisallowed is the default setting.

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

Parameter Description

IngressControllerLoggi logging defines parameters for what is logged where. If this field is empty,
ng operational logs are enabled but access logs are disabled.

® access describes how client requests are logged. If this field is
empty, access logging is disabled.

o destination describes a destination for log messages.
m type is the type of destination for logs:

e Container specifies that logs should go to a sidecar
container. The Ingress Operator configures the
container, named logs, on the Ingress Controller pod and
configures the Ingress Controller to write logs to the
container. The expectation is that the administrator
configures a custom logging solution that reads logs
from this container. Using container logs means that
logs may be dropped if the rate of logs exceeds the
container runtime capacity or the custom logging
solution capacity.

e Syslog specifies that logs are sent to a Syslog
endpoint. The administrator must specify an endpoint
that can receive Syslog messages. The expectation is
that the administrator has configured a custom Syslog
instance.

m container describes parameters for the Container logging
destination type. Currently there are no parameters for
container logging, so this field must be empty.

m syslog describes parameters for the Syslog logging
destination type:

e address is the IP address of the syslog endpoint that
receives log messages.

e portis the UDP port number of the syslog endpoint that
receives log messages.

e maxLength is the maximum length of the syslog
message. It must be between 480 and 4096 bytes. If this
field is empty, the maximum length is set to the default
value of 1024 bytes.

e facility specifies the syslog facility of log messages. If
this field is empty, the facility is local1. Otherwise, it
must specify a valid syslog facility: kern, user, mail,
daemon, auth, syslog, Ipr, news, uucp, cron, auth2,
ftp, ntp, audit, alert, cron2, local0, local1, local2,
local3.local4, local5, local6, orlocal?.

o httpLogFormat specifies the format of the log message for an
HTTP request. If this field is empty, log messages use the
implementation’s default HTTP log format. For HAProxy's default
HTTP log format, see the HAProxy documentation.

13

http://cbonte.github.io/haproxy-dconv/2.0/configuration.html#8.2.3

OpenShift Container Platform 4.19 Networking Operators

Parameter Description

httpHeaders httpHeaders defines the policy for HTTP headers.

By setting the forwardedHeaderPolicy for the
IngressControllerHTTPHeaders, you specify when and how the Ingress
Controller sets the Forwarded, X-Forwarded-For, X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, and X-Forwarded-Proto-Version
HTTP headers.

By default, the policy is set to Append.

e Append specifies that the Ingress Controller appends the headers,
preserving any existing headers.

e Replace specifies that the Ingress Controller sets the headers,
removing any existing headers.

o IfNone specifies that the Ingress Controller sets the headers if they
are not already set.

o Never specifies that the Ingress Controller never sets the headers,
preserving any existing headers.

By setting headerNameCaseAdjustments, you can specify case
adjustments that can be applied to HTTP header names. Each adjustment is
specified as an HTTP header name with the desired capitalization. For example,
specifying X-Forwarded-For indicates that the x-forwarded-for HTTP
header should be adjusted to have the specified capitalization.

These adjustments are only applied to cleartext, edge-terminated, and re-
encrypt routes, and only when using HTTP/1.

For request headers, these adjustments are applied only for routes that have
the haproxy.router.openshift.io/h1-adjust-case=true annotation. For
response headers, these adjustments are applied to all HTTP responses. If this
field is empty, no request headers are adjusted.

actions specifies options for performing certain actions on headers. Headers
cannot be set or deleted for TLS passthrough connections. The actions field
has additional subfields spec.httpHeader.actions.response and
spec.httpHeader.actions.request:

e The response subfield specifies a list of HTTP response headers to
set or delete.

e The request subfield specifies a list of HTTP request headers to set
or delete.

14

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

Parameter Description

httpCompression httpCompression defines the policy for HTTP traffic compression.

e mimeTypes defines a list of MIME types to which compression
should be applied. For example, text/css; charset=utf-8, text/html,
text/*, image/svg+xml, application/octet-stream, X-
custom/customsub, using the format pattern,type/subtype;
[;attribute=value]. Thetypes are: application, image, message,
multipart, text, video, or a custom type prefaced by X-; e.g. To see the
full notation for MIME types and subtypes, see RFC1341

httpErrorCodePages httpErrorCodePages specifies custom HTTP error code response pages. By
default, an IngressController uses error pages built into the IngressController
image.

httpCaptureCookies httpCaptureCookies specifies HTTP cookies that you want to capture in

access logs. If the httpCaptureCookies field is empty, the access logs do not
capture the cookies.

For any cookie that you want to capture, the following parameters must be in
your IngressController configuration:

® nhame specifies the name of the cookie.

e maxLength specifies tha maximum length of the cookie.

e matchType specifies if the field hame of the cookie exactly matches
the capture cookie setting or is a prefix of the capture cookie setting.

The matchType field uses the Exact and Prefix parameters.

For example:

httpCaptureCookies:

- matchType: Exact
maxLength: 128
name: MYCOOKIE

115

https://datatracker.ietf.org/doc/html/rfc1341#page-7

OpenShift Container Platform 4.19 Networking Operators

Parameter Description

httpCaptureHeaders httpCaptureHeaders specifies the HTTP headers that you want to capture
in the access logs. If the httpCaptureHeaders field is empty, the access logs
do not capture the headers.

httpCaptureHeaders contains two lists of headers to capture in the access
logs. The two lists of header fields are request and response. In both lists,
the name field must specify the header name and themaxlength field must
specify the maximum length of the header. For example:

httpCaptureHeaders:

request:

- maxLength: 256
name: Connection

- maxLength: 128
name: User-Agent

response:

- maxLength: 256
name: Content-Type

- maxLength: 256
name: Content-Length

tuningOptions tuningOptions specifies options for tuning the performance of Ingress
Controller pods.

e clientFinTimeout specifies how long a connection is held open while
waiting for the client response to the server closing the connection.
The default timeout is 18.

e clientTimeout specifies how long a connection is held open while
waiting for a client response. The default timeout is 30s.

o headerBufferBytes specifies how much memory is reserved, in
bytes, for Ingress Controller connection sessions. This value must be
at least 16384 if HTTP/2 is enabled for the Ingress Controller. If not
set, the default value is 32768 bytes. Setting this field not
recommended because headerBufferBytes values that are too
small can break the Ingress Controller, and headerBufferBytes
values that are too large could cause the Ingress Controller to use
significantly more memory than necessary.

o headerBufferMaxRewriteBytes specifies how much memory
should be reserved, in bytes, from headerBufferBytes for HTTP
header rewriting and appending for Ingress Controller connection
sessions. The minimum value for headerBufferMaxRewriteBytes is
4096. headerBufferBytes must be greater than
headerBufferMaxRewriteBytes for incoming HTTP requests. If
not set, the default value is 8192 bytes. Setting this field not
recommended because headerBufferMaxRewriteBytes values
that are too small can break the Ingress Controller and
headerBufferMaxRewriteBytes values that are too large could
cause the Ingress Controller to use significantly more memory than
necessary.

e healthChecklinterval specifies how long the router waits between
health checks. The default is 5s.

16

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

e serverTimeout specifies how long a connection is held open while
waiting for a server response. The default timeout is 30s.

o threadCount specifies the number of threads to create per HAProxy
process. Creating more threads allows each Ingress Controller pod to
handle more connections, at the cost of more system resources being
used. HAProxy supports up to 64 threads. If this field is empty, the
Ingress Controller uses the default value of 4 threads. The default
value can change in future releases. Setting this field is not
recommended because increasing the number of HAProxy threads
allows Ingress Controller pods to use more CPU time under load, and
prevent other pods from receiving the CPU resources they need to
perform. Reducing the number of threads can cause the Ingress
Controller to perform poorly.

e tlsinspectDelay specifies how long the router can hold data to find
a matching route. Setting this value too short can cause the router to
fall back to the default certificate for edge-terminated, reencrypted,
or passthrough routes, even when using a better matched certificate.
The default inspect delay is 5s.

e tunnelTimeout specifies how long a tunnel connection, including

websockets, remains open while the tunnel is idle. The default timeout
is 1h.

e maxConnections specifies the maximum number of simultaneous
connections that can be established per HAProxy process. Increasing
this value allows each ingress controller pod to handle more
connections at the cost of additional system resources. Permitted
values are 0,-1, any value within the range 2000 and 2000000, or the
field can be left empty.

o |If this field is left empty or has the value 0, the Ingress Controller
will use the default value of 50000. This value is subject to
change in future releases.

o If the field has the value of -1, then HAProxy will dynamically
compute a maximum value based on the available ulimits in the
running container. This process results in a large computed value

that will incur significant memory usage compared to the current
default value of 50000.

o |If the field has a value that is greater than the current operating
system limit, the HAProxy process will not start.

o If you choose a discrete value and the router pod is migrated to a
new node, it is possible the new node does not have an identical
ulimit configured. In such cases, the pod fails to start.

o If you have nodes with different ulimits configured, and you
choose a discrete value, it is recommended to use the value of -1
for this field so that the maximum number of connections is
calculated at runtime.

17

OpenShift Container Platform 4.19 Networking Operators

Parameter Description

logEmptyRequests logEmptyRequests specifies connections for which no request is received
and logged. These empty requests come from load balancer health probes or
web browser speculative connections (preconnect) and logging these requests
can be undesirable. However, these requests can be caused by network errors,
in which case logging empty requests can be useful for diagnosing the errors.
These requests can be caused by port scans, and logging empty requests can
aid in detecting intrusion attempts. Allowed values for this field are Log and
Ignore. The default value isLog.

The LoggingPolicy type accepts either one of two values:

e Log: Setting this value to Log indicates that an event should be
logged.

e Ignore: Setting this value to lgnore sets the dontlognull option in
the HAproxy configuration.

HTTPEmptyRequestsP HTTPEmptyRequestsPolicy describes how HTTP connections are handled
olicy if the connection times out before a request is received. Allowed values for this
field are Respond and Ignore. The default value isRespond.

The HTTPEmptyRequestsPolicy type accepts either one of two values:

e Respond: If the field is set to Respond, the Ingress Controller sends
an HTTP 400 or 408 response, logs the connection if access logging is
enabled, and counts the connection in the appropriate metrics.

e Ignore: Setting this option tolgnore adds the http-ignore-probes
parameter in the HAproxy configuration. If the field is set to Ignore,
the Ingress Controller closes the connection without sending a
response, then logs the connection, or incrementing metrics.

These connections come from load balancer health probes or web browser
speculative connections (preconnect) and can be safely ignored. However,
these requests can be caused by network errors, so setting this field to Ignore
can impede detection and diagnosis of problems. These requests can be
caused by port scans, in which case logging empty requests can aid in detecting
intrusion attempts.

8.3.1. Ingress Controller TLS security profiles

TLS security profiles provide a way for servers to regulate which ciphers a connecting client can use
when connecting to the server.

8.3.1.1. Understanding TLS security profiles

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by various OpenShift Container Platform components. The OpenShift Container Platform TLS security
profiles are based on Mozilla recommended configurations.

18

https://wiki.mozilla.org/Security/Server_Side_TLS

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

You can specify one of the following TLS security profiles for each component:

Table 8.1. TLS security profiles

Profile Description

Old This profile is intended for use with legacy clients or libraries. The profile
is based on the Old backward compatibility recommended configuration.

The Old profile requires a minimum TLS version of 1.0.

y NOTE
For the Ingress Controller, the minimum TLS version is
: converted from 1.0 to 1.1.
Intermediate This profile is the default TLS security profile for the Ingress Controller,

kubelet, and control plane. The profile is based on the Intermediate
compatibility recommended configuration.

The Intermediate profile requires a minimum TLS version of 1.2.

NOTE

This profile is the recommended configuration for the
majority of clients.

R

Modern This profile is intended for use with modern clients that have no need for
backwards compatibility. This profile is based on the Modern
compatibility recommended configuration.

The Modern profile requires a minimum TLS version of 1.3.

Custom This profile allows you to define the TLS version and ciphers to use.

WARNING
Use caution when using a Custom profile,

because invalid configurations can cause
problems.

NOTE

When using one of the predefined profile types, the effective profile configuration is
subject to change between releases. For example, given a specification to use the
Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might
cause a new profile configuration to be applied, resulting in a rollout.

19

https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

OpenShift Container Platform 4.19 Networking Operators

8.3.1.2. Configuring the TLS security profile for the Ingress Controller

To configure a TLS security profile for an Ingress Controller, edit the IngressController custom
resource (CR) to specify a predefined or custom TLS security profile. If a TLS security profile is not
configured, the default value is based on the TLS security profile set for the APl server.

Sample IngressController CR that configures the Old TLS security profile

apiVersion: operator.openshift.io/v1
kind: IngressController

spec:
tisSecurityProfile:
old: {}
type: Old

The TLS security profile defines the minimum TLS version and the TLS ciphers for TLS connections for
Ingress Controllers.

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the
IngressController custom resource (CR) under Status.Tls Profile and the configured TLS security
profile under Spec.Tls Security Profile. For the Custom TLS security profile, the specific ciphers and
minimum TLS version are listed under both parameters.

NOTE

The HAProxy Ingress Controller image supports TLS 1.3 and the Modern profile.

The Ingress Operator also converts the TLS 1.0 of an Old or Custom profile to 1.1.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the IngressController CR in the openshift-ingress-operator project to configure the TLS
security profile:

I $ oc edit IngressController default -n openshift-ingress-operator

2. Add the spec.tisSecurityProfile field:

Sample IngressController CR for a Custom profile

apiVersion: operator.openshift.io/v1
kind: IngressController

spec:
tisSecurityProfile:

type: Custom ﬂ
custom:

120

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

ciphers: e

- ECDHE-ECDSA-CHACHA20-POLY 1305
- ECDHE-RSA-CHACHA20-POLY1305

- ECDHE-RSA-AES128-GCM-SHA256

- ECDHE-ECDSA-AES128-GCM-SHA256
minTLSVersion: VersionTLS11

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

9 Specify the appropriate field for the selected type:
e old: {}
e intermediate: {}
e modern: {}

® custom:

9 For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

3. Save the file to apply the changes.

Verification

e Verify that the profile is set in the IngressController CR:

I $ oc describe IngressController default -n openshift-ingress-operator

Example output

Name: default
Namespace: openshift-ingress-operator
Labels: <none>

Annotations: <none>
API Version: operator.openshift.io/v1
Kind: IngressController

Spec:

Tls Security Profile:
Custom:

Ciphers:
ECDHE-ECDSA-CHACHA20-POLY 1305
ECDHE-RSA-CHACHA20-POLY 1305
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES128-GCM-SHA256

Min TLS Version: VersionTLS11

Type: Custom

121

OpenShift Container Platform 4.19 Networking Operators

8.3.1.3. Configuring mutual TLS authentication

You can configure the Ingress Controller to enable mutual TLS (mTLS) authentication by setting a
spec.clientTLS value. The clientTLS value configures the Ingress Controller to verify client certificates.
This configuration includes setting a clientCA value, which is a reference to a config map. The config
map contains the PEM-encoded CA certificate bundle that is used to verify a client’s certificate.
Optionally, you can also configure a list of certificate subject filters.

If the clientCA value specifies an X509v3 certificate revocation list (CRL) distribution point, the Ingress
Operator downloads and manages a CRL config map based on the HTTP URI X509v3 CRL Distribution
Point specified in each provided certificate. The Ingress Controller uses this config map during
mTLS/TLS negotiation. Requests that do not provide valid certificates are rejected.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.
® You have a PEM-encoded CA certificate bundle.

e |f your CA bundle references a CRL distribution point, you must have also included the end-
entity or leaf certificate to the client CA bundle. This certificate must have included an HTTP
URI under CRL Distribution Points, as described in RFC 5280. For example:

Issuer: C=US, O=Example Inc, CN=Example Global G2 TLS RSA SHA256 2020 CA1
Subject: SOME SIGNED CERT X509v3 CRL Distribution Points:
Full Name:
URI:http://crl.example.com/example.crl

Procedure

1. In the openshift-config namespace, create a config map from your CA bundle:
$ oc create configmap \

router-ca-certs-default \

--from-file=ca-bundle.pem=client-ca.crt \ﬂ
-n openshift-config

The config map data key must be ca-bundle.pem, and the data value must be a CA
certificate in PEM format.

2. Edit the IngressController resource in the openshift-ingress-operator project:

I $ oc edit IngressController default -n openshift-ingress-operator

3. Add the spec.clientTLS field and subfields to configure mutual TLS:

Sample IngressController CR for a clientTLS profile that specifies filtering patterns

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator

122

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

spec:
clientTLS:
clientCertificatePolicy: Required
clientCA:
name: router-ca-certs-default
allowedSubjectPatterns:
- ""/CN=example.com/ST=NC/C=US/O=Security/OU=0OpenShift$"

4. Optional, get the Distinguished Name (DN) for allowedSubjectPatterns by entering the
following command.

I $ openssl x509 -in custom-cert.pem -noout -subject

Example output

I subject=C=US, ST=NC, O=Security, OU=0OpenShift, CN=example.com

8.4. VIEW THE DEFAULT INGRESS CONTROLLER
The Ingress Operator is a core feature of OpenShift Container Platform and is enabled out of the box.

Every new OpenShift Container Platform installation has an ingresscontroller named default. It can be
supplemented with additional Ingress Controllers. If the default ingresscontroller is deleted, the
Ingress Operator will automatically recreate it within a minute.

Procedure

® View the default Ingress Controller:

I $ oc describe --namespace=openshift-ingress-operator ingresscontroller/default

8.5. VIEW INGRESS OPERATOR STATUS

You can view and inspect the status of your Ingress Operator.

Procedure

® View your Ingress Operator status:

I $ oc describe clusteroperators/ingress

8.6. VIEW INGRESS CONTROLLER LOGS
You can view your Ingress Controller logs.
Procedure

® \iew your Ingress Controller logs:

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator -c
<container_name>

123

OpenShift Container Platform 4.19 Networking Operators

8.7.VIEW INGRESS CONTROLLER STATUS

Your can view the status of a particular Ingress Controller.

Procedure

® View the status of an Ingress Controller:

I $ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>

8.8. CREATING A CUSTOM INGRESS CONTROLLER

As a cluster administrator, you can create a new custom Ingress Controller. Because the default Ingress
Controller might change during OpenShift Container Platform updates, creating a custom Ingress
Controller can be helpful when maintaining a configuration manually that persists across cluster updates.

This example provides a minimal spec for a custom Ingress Controller. To further customize your custom
Ingress Controller, see "Configuring the Ingress Controller”.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Create a YAML file that defines the custom IngressController object:

Example custom-ingress-controller.yaml file

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: <custom_name> ﬂ

namespace: openshift-ingress-operator
spec:

defaultCertificate:

name: <custom-ingress-custom-certs> g

replicas: 1 e

domain: <custom_domain> ﬂ

Specify the a custom name for the IngressController object.

Specify the name of the secret with the custom wildcard certificate.

Minimum replica needs to be ONE

Specify the domain to your domain name. The domain specified on the IngressController
object and the domain used for the certificate must match. For example, if the domain

value is "custom_domain.mycompany.com", then the certificate must have SAN
*.custom_domain.mycompany.com (with the *. added to the domain).

OO

124

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

2. Create the object by running the following command:

I $ oc create -f custom-ingress-controller.yaml

8.9. CONFIGURING THE INGRESS CONTROLLER

8.9.1. Setting a custom default certificate

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a
Secret resource and editing the IngressController custom resource (CR).

Prerequisites

® You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a
trusted certificate authority or by a private trusted certificate authority that you configuredin a
custom PKI.

® Your certificate meets the following requirements:

o The certificate is valid for the ingress domain.

o The certificate uses the subjectAltName extension to specify a wildcard domain, such as
*.apps.ocp4.example.com.

® You must have an IngressController CR, which includes just having the default
IngressController CR. You can run the following command to check that you have an
IngressController CR:

I $ oc --namespace openshift-ingress-operator get ingresscontrollers

NOTE

If you have intermediate certificates, they must be included in the tls.crt file of the secret
containing a custom default certificate. Order matters when specifying a certificate; list
your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the
current working directory. Substitute the actual path names for tls.crt and tls.key. You also may
substitute another name for custom-certs-default when creating the Secret resource and referencing
itin the IngressController CR.

NOTE

This action will cause the Ingress Controller to be redeployed, using a rolling deployment
strategy.

-

1. Create a Secret resource containing the custom certificate in the openshift-ingress
namespace using the tls.crt and tls.key files.

125

OpenShift Container Platform 4.19 Networking Operators

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

2. Update the IngressController CR to reference the new certificate secret:

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
--patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

3. Verify the update was effective:

$ echo Q |\

openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null \

openssl x509 -noout -subject -issuer -enddate

where:

<domain>

Specifies the base domain name for your cluster.

Example output

subject=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = *.apps.example.com
issuer=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = example.com
notAfter=May 10 08:32:45 2022 GM

TIP

You can alternatively apply the following YAML to set a custom default certificate:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

defaultCertificate:

name: custom-certs-default

The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s
deployment to use the custom certificate.

8.9.2. Removing a custom default certificate

As an administrator, you can remove a custom certificate that you configured an Ingress Controller to
use.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

126

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

® You have installed the OpenShift CLI (oc).

® You previously configured a custom default certificate for the Ingress Controller.

Procedure

® Toremove the custom certificate and restore the certificate that ships with OpenShift
Container Platform, enter the following command:

$ oc patch -n openshift-ingress-operator ingresscontrollers/default \
--type json -p $'- op: remove\n path: /spec/defaultCertificate’

There can be a delay while the cluster reconciles the new certificate configuration.

Verification

® To confirm that the original cluster certificate is restored, enter the following command:

$echoQ]\

openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null |\

openssl x509 -noout -subject -issuer -enddate

where:

<domain>

Specifies the base domain name for your cluster.

Example output

subject=CN = *.apps.<domain>
issuer=CN = ingress-operator@1620633373
notAfter=May 10 10:44:36 2023 GMT

8.9.3. Autoscaling an Ingress Controller

You can automatically scale an Ingress Controller to dynamically meet routing performance or
availability requirements. For example, the requirement to increase throughput.

The following procedure provides an example for scaling up the default Ingress Controller.

Prerequisites

® You have the OpenShift CLI (oc¢) installed.

® You have access to an OpenShift Container Platform cluster as a user with the cluster-admin
role.

® On VMware vSphere, bare-metal, and Nutanix installer-provisioned infrastructure, scaling up
Ingress Controller pods does not improve external traffic performance. To improve

performance, ensure that you complete the following prerequisites:

© You manually configured a user-managed load balancer for your cluster.

127

OpenShift Container Platform 4.19 Networking Operators

o You ensured that the load balancer was configured for the cluster nodes that handle
incoming traffic from the Ingress Controller.

® You installed the Custom Metrics Autoscaler Operator and an associated KEDA Controller.

© You can install the Operator by using OperatorHub on the web console. After you install the
Operator, you can create an instance of KedaController.

Procedure

1. Create a service account to authenticate with Thanos by running the following command:

$ oc create -n openshift-ingress-operator serviceaccount thanos && oc describe -n openshift-
ingress-operator serviceaccount thanos

Example output

Name: thanos

Namespace: openshift-ingress-operator
Labels: <none>

Annotations: <none>

Image pull secrets: thanos-dockercfg-kfvf2
Mountable secrets: thanos-dockercfg-kfvf2
Tokens: <none>
Events: <none>

2. Manually create the service account secret token with the following command:

$ oc apply -f - <<EOF
apiVersion: v1
kind: Secret
metadata:
name: thanos-token
namespace: openshift-ingress-operator
annotations:
kubernetes.io/service-account.name: thanos
type: kubernetes.io/service-account-token
EOF

3. Define a TriggerAuthentication object within the openshift-ingress-operator namespace by
using the service account’s token.

a. Create the TriggerAuthentication object and pass the value of the secret variable to the
TOKEN parameter:

$ oc apply -f - <<EOF
apiVersion: keda.sh/vialphaft
kind: TriggerAuthentication
metadata:
name: keda-trigger-auth-prometheus
namespace: openshift-ingress-operator
spec:
secretTargetRef:
- parameter: bearerToken
name: thanos-token

128

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

key: token
- parameter: ca
name: thanos-token
key: ca.crt
EOF

4. Create and apply a role for reading metrics from Thanos:

a. Create a new role, thanos-metrics-reader.yaml, that reads metrics from pods and nodes:

thanos-metrics-reader.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: thanos-metrics-reader
namespace: openshift-ingress-operator
rules:
- apiGroups:
resources:
- pods
- nodes
verbs:
- get
- apiGroups:
- metrics.k8s.io
resources:
- pods
- nodes
verbs:
- get
- list
- watch
- apiGroups:
resources:
- namespaces
verbs:
- get

b. Apply the new role by running the following command:

I $ oc apply -f thanos-metrics-reader.yaml

5. Add the new role to the service account by entering the following commands:

$ oc adm policy -n openshift-ingress-operator add-role-to-user thanos-metrics-reader -z
thanos --role-namespace=openshift-ingress-operator

$ oc adm policy -n openshift-ingress-operator add-cluster-role-to-user cluster-monitoring-view
-z thanos

129

OpenShift Container Platform 4.19 Networking Operators

130

NOTE

The argument add-cluster-role-to-user is only required if you use cross-
namespace queries. The following step uses a query from the kube-metrics
namespace which requires this argument.

6. Create a new ScaledObject YAML file, ingress-autoscaler.yaml, that targets the default
Ingress Controller deployment:

Example ScaledObject definition

00 00

apiVersion: keda.sh/vialpha1l
kind: ScaledObject
metadata:
name: ingress-scaler
namespace: openshift-ingress-operator
spec:
scaleTargetRef: ﬂ
apiVersion: operator.openshift.io/v1
kind: IngressController
name: default
envSourceContainerName: ingress-operator
minReplicaCount: 1
maxReplicaCount: 20 9
cooldownPeriod: 1
pollinglnterval: 1
triggers:
- type: prometheus
metricType: AverageValue
metadata:
serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9091 6
namespace: openshift-ingress-operator ﬂ
metricName: 'kube-node-role'
threshold: "1’
query: 'sum(kube_node_role{role="worker",service="kube-state-metrics"})' 6
authModes: "bearer"
authenticationRef:
name: keda-trigger-auth-prometheus

The custom resource that you are targeting. In this case, the Ingress Controller.

Optional: The maximum number of replicas. If you omit this field, the default maximum is
set to 100 replicas.

The Thanos service endpoint in the openshift-monitoring namespace.
The Ingress Operator namespace.

This expression evaluates to however many worker nodes are present in the deployed
cluster.

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

IMPORTANT

If you are using cross-namespace queries, you must target port 9091 and not port
9092 in the serverAddress field. You also must have elevated privileges to read
metrics from this port.

7. Apply the custom resource definition by running the following command:

I $ oc apply -f ingress-autoscaler.yaml

Verification

e Verify that the default Ingress Controller is scaled out to match the value returned by the kube-
state-metrics query by running the following commands:

o Use the grep command to search the Ingress Controller YAML file for the number of
replicas:

I $ oc get -n openshift-ingress-operator ingresscontroller/default -o yaml | grep replicas:

o Get the pods in the openshift-ingress project:

I $ oc get pods -n openshift-ingress
Example output

NAME READY STATUS RESTARTS AGE
router-default-7b5df44ff-I9pmm 2/2 Running 0 17h
router-default-7b5df44ff-s5sl5 2/2 Running 0 3d22h
router-default-7b5df44ff-wwsth 2/2 Running 0 66s

Additional resources

® |nstalling the custom metrics autoscaler

Enabling monitoring for user-defined projects

Understanding custom metrics autoscaler trigger authentications

Understanding custom metrics autoscaler triggers

Understanding how to add custom metrics autoscalers

8.9.4. Scaling an Ingress Controller

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as
the requirement to increase throughput. 0¢c commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController.

NOTE

Scaling is not an immediate action, as it takes time to create the desired number of
replicas.

131

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-cma-autoscaling-custom-install_nodes-cma-autoscaling-custom-install
https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.19/html/configuring_user_workload_monitoring/preparing-to-configure-the-monitoring-stack-uwm#enabling-monitoring-for-user-defined-projects-uwm_preparing-to-configure-the-monitoring-stack-uwm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-cma-autoscaling-custom-trigger-auth
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-cma-autoscaling-custom-prometheus
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-cma-autoscaling-custom-adding

OpenShift Container Platform 4.19 Networking Operators

Prerequisites

® On VMware vSphere, bare-metal, and Nutanix installer-provisioned infrastructure, scaling up
Ingress Controller pods does not improve external traffic performance. To improve
performance, ensure that you complete the following prerequisites:

© You manually configured a user-managed load balancer for your cluster.

o You ensured that the load balancer was configured for the cluster nodes that handle
incoming traffic from the Ingress Controller.

Procedure

1. View the current number of available replicas for the default IngressController:

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

2. Scale the default IngressController to the desired number of replicas by using the oc patch
command. The following example scales the default IngressController to 3 replicas.

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas":
3}}' --type=merge

3. Verify that the default IngressController scaled to the number of replicas that you specified:

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

TIP

You can alternatively apply the following YAML to scale an Ingress Controller to three replicas:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:

replicas: 3 ﬂ

ﬂ If you need a different amount of replicas, change the replicas value.

8.9.5. Configuring Ingress access logging

You can configure the Ingress Controller to enable access logs. If you have clusters that do not receive
much traffic, then you can log to a sidecar. If you have high traffic clusters, to avoid exceeding the
capacity of the logging stack or to integrate with a logging infrastructure outside of OpenShift
Container Platform, you can forward logs to a custom syslog endpoint. You can also specify the format
for access logs.

132

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog
logging infrastructure, or for short-term use while diagnosing problems with the Ingress Controller.

Syslog is needed for high-traffic clusters where access logs could exceed the OpenShift Logging
stack’s capacity, or for environments where any logging solution needs to integrate with an existing
Syslog logging infrastructure. The Syslog use-cases can overlap.

Prerequisites

® | ogin as a user with cluster-admin privileges.

Procedure

Configure Ingress access logging to a sidecar.

® To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a sidecar container, you must specify
Container spec.logging.access.destination.type. The following example is an Ingress
Controller definition that logs to a Container destination:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Container

® When you configure the Ingress Controller to log to a sidecar, the operator creates a container
named logs inside the Ingress Controller Pod:

I $ oc -n openshift-ingress logs deployment.apps/router-default -c logs

Example output

2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-
57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public
be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080
0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"

Configure Ingress access logging to a Syslog endpoint.

® To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a Syslog endpoint destination, you
must specify Syslog for spec.logging.access.destination.type. If the destination type is
Syslog, you must also specify a destination endpoint using
spec.logging.access.destination.syslog.address and you can specify a facility using
spec.logging.access.destination.syslog.facility. The following example is an Ingress
Controller definition that logs to a Syslog destination:

I apiVersion: operator.openshift.io/v1

133

OpenShift Container Platform 4.19 Networking Operators

kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Syslog
syslog:
address: 1.2.3.4
port: 10514

NOTE

The syslog destination port must be UDP.

The syslog destination address must be an IP address. It does not support DNS
hostname.

Configure Ingress access logging with a specific log format.

® You can specify spec.logging.access.httpLogFormat to customize the log format. The
following example is an Ingress Controller definition that logs to a syslog endpoint with IP
address 1.2.3.4 and port 10514:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Syslog
syslog:
address: 1.2.3.4
port: 10514
httpLogFormat: 'Y%ci:%cp [Yet] %ft Y%ob/%s %B %bq Y%eHM Y%HU %HV'

Disable Ingress access logging.

® To disable Ingress access logging, leave spec.logging or spec.logging.access empty:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:

134

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

replicas: 2

logging:
access: null

Allow the Ingress Controller to modify the HAProxy log length when using a sidecar.

e Use spec.logging.access.destination.syslog.maxLength if you are using
spec.logging.access.destination.type: Syslog.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Syslog
syslog:
address: 1.2.3.4
maxLength: 4096
port: 10514

e Use spec.logging.access.destination.container.maxLength if you are using
spec.logging.access.destination.type: Container.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
container:
maxLength: 8192
type: Container
httpCaptureHeaders:
request:
- maxLength: 128
name: X-Forwarded-For

® To view the original client source IP address by using the X-Forwarded-For header in the
Ingress access logs, see the "Capturing Original Client IP from the X-Forwarded-For Header in
Ingress and Application Logs" Red Hat Knowledgebase solution.

Additional resources

® Capturing Original Client IP from the X-Forwarded-For Header in Ingress and Application Logs

135

https://access.redhat.com/solutions/7096271

OpenShift Container Platform 4.19 Networking Operators

8.9.6. Setting Ingress Controller thread count

A cluster administrator can set the thread count to increase the amount of incoming connections a
cluster can handle. You can patch an existing Ingress Controller to increase the amount of threads.

Prerequisites

® The following assumes that you already created an Ingress Controller.

Procedure

e Update the Ingress Controller to increase the number of threads:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"threadCount": 8}}}'

NOTE

If you have a node that is capable of running large amounts of resources, you can
configure spec.nodePlacement.nodeSelector with labels that match the
capacity of the intended node, and configure spec.tuningOptions.threadCount
to an appropriately high value.

8.9.7. Configuring an Ingress Controller to use an internal load balancer

When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public
cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an
internal cloud load balancer.

WARNING
If your cloud provider is Microsoft Azure, you must have at least one public load

balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController, you can change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

136

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

Figure 8.1. Diagram of LoadBalancer

A

Client

Cloud Provider

DNS

apps.foo.openshift.example.com foo.az.lb.cloudprovider.com Load balancer

’ Ingress ’
load balancer

www.yourappl.openshift.com www.yourapp2.openshift.com

Node 1 Node 2 Node N
Pod Pod Pod
-t 10.0.128.5 10.0.128.6
Cluster

(Service yourapp1:8080, yourapp2:4200)

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress LoadBalancerService endpoint publishing strategy:

® You can load balance externally, using the cloud provider load balancer, or internally, using the
OpenShift Ingress Controller Load Balancer.

® You can use the single IP address of the load balancer and more familiar ports, such as 8080
and 4200 as shown on the cluster depicted in the graphic.

e Traffic from the external load balancer is directed at the pods, and managed by the load
balancer, as depicted in the instance of a down node. See the Kubernetes Services
documentation for implementation details.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

137

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer

OpenShift Container Platform 4.19 Networking Operators

1. Create an IngressController custom resource (CR) in a file named <hame>-ingress-
controller.yaml, such as in the following example:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
namespace: openshift-ingress-operator
name: <name>
spec:
domain: <domain> 9
endpointPublishingStrategy:
type: LoadBalancerService
loadBalancer:

scope: Internal 6
Q Replace <names with a name for the IngressController object.
9 Specify the domain for the application published by the controller.

g Specify a value of Internal to use an internal load balancer.

2. Create the Ingress Controller defined in the previous step by running the following command:
I $ oc create -f <name>-ingress-controller.yaml ﬂ

Q Replace <names with the name of the IngressController object.

3. Optional: Confirm that the Ingress Controller was created by running the following command:

I $ oc --all-namespaces=true get ingresscontrollers

8.9.8. Configuring global access for an Ingress Controller on Google Cloud

An Ingress Controller created on Google Cloud with an internal load balancer generates an internal IP
address for the service. A cluster administrator can specify the global access option, which enables
clients in any region within the same VPC network and compute region as the load balancer, to reach
the workloads running on your cluster.

For more information, see the Google Cloud documentation for global access.

Prerequisites

® You deployed an OpenShift Container Platform cluster on Google Cloud infrastructure.
® You configured an Ingress Controller to use an internal load balancer.

® You installed the OpenShift CLI (o¢).

Procedure

1. Configure the Ingress Controller resource to allow global access.

138

https://cloud.google.com/kubernetes-engine/docs/how-to/internal-load-balancing#global_access

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

NOTE

You can also create an Ingress Controller and specify the global access option.

a. Configure the Ingress Controller resource:

I $ oc -n openshift-ingress-operator edit ingresscontroller/default

b. Edit the YAML file:

Sample clientAccess configuration to Global

spec:
endpointPublishingStrategy:
loadBalancer:
providerParameters:
gcp:
clientAccess: Global ﬂ
type: GCP
scope: Internal
type: LoadBalancerService

Q Set gcp.clientAccess to Global.

c. Save the file to apply the changes.

2. Run the following command to verify that the service allows global access:

I $ oc -n openshift-ingress edit svc/router-default -o yaml

The output shows that global access is enabled for Google Cloud with the annotation,
networking.gke.io/internal-load-balancer-allow-global-access.
8.9.9. Setting the Ingress Controller health check interval

A cluster administrator can set the health check interval to define how long the router waits between
two consecutive health checks. This value is applied globally as a default for all routes. The default value
is 5 seconds.

Prerequisites

® The following assumes that you already created an Ingress Controller.

Procedure

® Update the Ingress Controller to change the interval between back end health checks:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"healthChecklinterval": "8s"}}}'

139

OpenShift Container Platform 4.19 Networking Operators

NOTE

To override the healthChecklnterval for a single route, use the route annotation
router.openshift.io/haproxy.health.check.interval

~

8.9.10. Configuring the default Ingress Controller for your cluster to be internal

You can configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

WARNING
If your cloud provider is Microsoft Azure, you must have at least one public load

balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController, you can change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
namespace: openshift-ingress-operator
name: default
spec:
endpointPublishingStrategy:
type: LoadBalancerService
loadBalancer:
scope: Internal
EOF

8.9.11. Configuring the route admission policy

140

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

WARNING
Allowing claims across namespaces should only be enabled for clusters with trust

between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

® Cluster administrator privileges.

Procedure

e Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

Sample Ingress Controller configuration

spec:
routeAdmission:
namespaceOwnership: InterNamespaceAllowed

TIP

You can alternatively apply the following YAML to configure the route admission policy:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

routeAdmission:

namespaceOwnership: InterNamespaceAllowed

8.9.12. Using wildcard routes

The HAProxy Ingress Controller has support for wildcard routes. The Ingress Operator uses
wildcardPolicy to configure the ROUTER_ALLOW_WILDCARD_ROUTES environment variable of
the Ingress Controller.

141

OpenShift Container Platform 4.19 Networking Operators

The default behavior of the Ingress Controller is to admit routes with a wildcard policy of None, which is
backwards compatible with existing IngressController resources.

Procedure

1. Configure the wildcard policy.

a. Use the following command to edit the IngressController resource:

I $ oc edit IngressController

b. Under spec, set the wildcardPolicy field to WildcardsDisallowed or WildcardsAllowed:

spec:
routeAdmission:
wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed

8.9.13. HTTP header configuration

OpenShift Container Platform provides different methods for working with HTTP headers. When setting
or deleting headers, you can use specific fields in the Ingress Controller or an individual route to modify
request and response headers. You can also set certain headers by using route annotations. The various
ways of configuring headers can present challenges when working together.

NOTE

You can only set or delete headers within an IngressController or Route CR, you cannot
append them. If an HTTP header is set with a value, that value must be complete and not
require appending in the future. In situations where it makes sense to append a header,
such as the X-Forwarded-For header, use the
spec.httpHeaders.forwardedHeaderPolicy field, instead of spec.httpHeaders.actions.

8.9.13.1. Order of precedence

When the same HTTP header is modified both in the Ingress Controller and in a route, HAProxy
prioritizes the actions in certain ways depending on whether it is a request or response header.

® For HTTP response headers, actions specified in the Ingress Controller are executed after the
actions specified in a route. This means that the actions specified in the Ingress Controller take
precedence.

® For HTTP request headers, actions specified in a route are executed after the actions specified
in the Ingress Controller. This means that the actions specified in the route take precedence.

For example, a cluster administrator sets the X-Frame-Options response header with the value DENY in
the Ingress Controller using the following configuration:

Example IngressController spec

apiVersion: operator.openshift.io/v1
kind: IngressController
#...
spec:
httpHeaders:

142

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

actions:
response:
- name: X-Frame-Options
action:
type: Set
set:
value: DENY

A route owner sets the same response header that the cluster administrator set in the Ingress
Controller, but with the value SAMEORIGIN using the following configuration:

Example Route spec

apiVersion: route.openshift.io/v1
kind: Route
#...
spec:
httpHeaders:
actions:
response:
- name: X-Frame-Options
action:
type: Set
set:
value: SAMEORIGIN

When both the IngressController spec and Route spec are configuring the X-Frame-Options response
header, then the value set for this header at the global level in the Ingress Controller takes precedence,
even if a specific route allows frames. For a request header, the Route spec value overrides the
IngressController spec value.

This prioritization occurs because the haproxy.config file uses the following logic, where the Ingress
Controller is considered the front end and individual routes are considered the back end. The header

value DENY applied to the front end configurations overrides the same header with the value
SAMEORIGIN that is set in the back end:

frontend public
http-response set-header X-Frame-Options 'DENY"

frontend fe_sni
http-response set-header X-Frame-Options 'DENY"

frontend fe_no_sni
http-response set-header X-Frame-Options 'DENY"

backend be_secure:openshift-monitoring:alertmanager-main
http-response set-header X-Frame-Options 'SAMEORIGIN'

Additionally, any actions defined in either the Ingress Controller or a route override values set using
route annotations.

8.9.13.2. Special case headers

143

OpenShift Container Platform 4.19 Networking Operators

The following headers are either prevented entirely from being set or deleted, or allowed under specific

circumstances:

Table 8.2. Special case header configuration options

Header name Configurable
using
IngressControll
er spec

proxy No

host No

strict-transport- No
security

144

Configurable
using Route spec

No

Yes

No

Reason for
disallowment

The proxy HTTP
request header
can be used to
exploit vulnerable
CGl applications
by injecting the
header value into
the
HTTP_PROXY
environment
variable. The
proxy HTTP
request header is
also non-standard
and prone to error
during
configuration.

When the host
HTTP request
header is set using
the
IngressControll
er CR, HAProxy
can fail when
looking up the
correct route.

The strict-
transport-
security HTTP
response header is
already handled
using route
annotations and
does not need a
separate
implementation.

Configurable
using another
method

No

No

Yes: the
haproxy.router.
openshift.io/hst
s_header route
annotation

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

Header name Configurable Configurable Reason for Configurable
using using Route spec disallowment using another
IngressControll method
er spec
cookie and set- No No The cookies that Yes:
cookie HAProxy sets are
used for session e the
tracking to map haproxy
client connections router. .
. openshi
to particular back- ftio/dis
end servers. able co
Allowing these okie
headers to be set route
could interfere annotatio
with HAProxy's n
session affinity
and restrict ° ';‘he
gy
ownership of a openshi
cookie. ft.io/coo
kie_nam
eroute
annotatio

n

8.9.14. Setting or deleting HTTP request and response headers in an Ingress
Controller

You can set or delete certain HTTP request and response headers for compliance purposes or other
reasons. You can set or delete these headers either for all routes served by an Ingress Controller or for
specific routes.

For example, you might want to migrate an application running on your cluster to use mutual TLS, which
requires that your application checks for an X-Forwarded-Client-Cert request header, but the
OpenShift Container Platform default Ingress Controller provides an X-SSL-Client-Der request header.

The following procedure modifies the Ingress Controller to set the X-Forwarded-Client-Cert request
header, and delete the X-SSL-Client-Der request header.

Prerequisites
® You have installed the OpenShift CLI (oc).

® You have access to an OpenShift Container Platform cluster as a user with the cluster-admin
role.

Procedure

1. Edit the Ingress Controller resource:

I $ oc -n openshift-ingress-operator edit ingresscontroller/default

145

OpenShift Container Platform 4.19 Networking Operators

2. Replace the X-SSL-Client-Der HTTP request header with the X-Forwarded-Client-Cert HTTP
request header:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
httpHeaders:

actions: ﬂ
request: 9

- name: X-Forwarded-Client-Cert 6
action:
type: Set ﬂ
set:
value: "%{+Q}[ssl_c_der,base64]" 6
- name: X-SSL-Client-Der
action:
type: Delete

The list of actions you want to perform on the HTTP headers.
The type of header you want to change. In this case, a request header.

The name of the header you want to change. For a list of available headers you can set or
delete, see HTTP header configuration.

The type of action being taken on the header. This field can have the value Set or Delete.

When setting HTTP headers, you must provide a value. The value can be a string from a list
of available directives for that header, for example DENY, or it can be a dynamic value that

will be interpreted using HAProxy's dynamic value syntax. In this case, a dynamic value is
added.

®0 000

NOTE

For setting dynamic header values for HTTP responses, allowed sample fetchers
are res.hdr and ssl_c_der. For setting dynamic header values for HTTP
requests, allowed sample fetchers are req.hdr and ssl_c_der. Both request and
response dynamic values can use the lower and base64 converters.

3. Save the file to apply the changes.

8.9.15. Using X-Forwarded headers

You configure the HAProxy Ingress Controller to specify a policy for how to handle HTTP headers
including Forwarded and X-Forwarded-For. The Ingress Operator uses the HTTPHeaders field to
configure the ROUTER_SET_FORWARDED_HEADERS environment variable of the Ingress

Controller.

Procedure

146

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

1. Configure the HTTPHeaders field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

I $ oc edit IngressController

b. Under spec, set the HTTPHeaders policy field to Append, Replace, IfNone, or Never:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

httpHeaders:

forwardedHeaderPolicy: Append

8.9.15.1. Example use cases

As a cluster administrator, you can:

e Configure an external proxy that injects the X-Forwarded-For header into each request before
forwarding it to an Ingress Controller.
To configure the Ingress Controller to pass the header through unmodified, you specify the
never policy. The Ingress Controller then never sets the headers, and applications receive only
the headers that the external proxy provides.

e Configure the Ingress Controller to pass the X-Forwarded-For header that your external proxy
sets on external cluster requests through unmodified.
To configure the Ingress Controller to set the X-Forwarded-For header on internal cluster
requests, which do not go through the external proxy, specify the if-none policy. If an HTTP
request already has the header set through the external proxy, then the Ingress Controller
preserves it. If the header is absent because the request did not come through the proxy, then
the Ingress Controller adds the header.

As an application developer, you can:

e Configure an application-specific external proxy that injects the X-Forwarded-For header.

To configure an Ingress Controller to pass the header through unmodified for an application’s
Route, without affecting the policy for other Routes, add an annotation
haproxy.router.openshift.io/set-forwarded-headers: if-none or
haproxy.router.openshift.io/set-forwarded-headers: never on the Route for the application.

NOTE

You can set the haproxy.router.openshift.io/set-forwarded-headers
annotation on a per route basis, independent from the globally set value for the
Ingress Controller.

8.9.16. Enable or disable HTTP/2 on Ingress Controllers

You can enable or disable transparent end-to-end HTTP/2 connectivity in HAProxy. Application owners
can use HTTP/2 protocol capabilities, including single connection, header compression, binary streams,
and more.

147

OpenShift Container Platform 4.19 Networking Operators

You can enable or disable HTTP/2 connectivity for an individual Ingress Controller or for the entire
cluster.

AN NOTE

If you enable or disable HTTP/2 connectivity for an individual Ingress Controller and for
& . the entire cluster, the HTTP/2 configuration for the Ingress Controller takes precedence
ey over the HTTP/2 configuration for the cluster.

To enable the use of HTTP/2 for a connection from the client to an HAProxy instance, a route must
specify a custom certificate. A route that uses the default certificate cannot use HTTP/2. This
restriction is necessary to avoid problems from connection coalescing, where the client re-uses a
connection for different routes that use the same certificate.

Consider the following use cases for an HTTP/2 connection for each route type:

® Forare-encrypt route, the connection from HAProxy to the application pod can use HTTP/2 if
the application supports using Application-Level Protocol Negotiation (ALPN) to negotiate
HTTP/2 with HAProxy. You cannot use HTTP/2 with a re-encrypt route unless the Ingress
Controller has HTTP/2 enabled.

® For a passthrough route, the connection can use HTTP/2 if the application supports using ALPN
to negotiate HTTP/2 with the client. You can use HTTP/2 with a passthrough route if the
Ingress Controller has HTTP/2 enabled or disabled.

® Foranedge-terminated secure route, the connection uses HTTP/2 if the service specifies only
appProtocol: kubernetes.io/h2c. You can use HTTP/2 with an edge-terminated secure route if
the Ingress Controller has HTTP/2 enabled or disabled.

® Foraninsecure route, the connection uses HTTP/2 if the service specifies only appProtocol:
kubernetes.io/h2c. You can use HTTP/2 with an insecure route if the Ingress Controller has
HTTP/2 enabled or disabled.

IMPORTANT

For non-passthrough routes, the Ingress Controller negotiates its connection to the
application independently of the connection from the client. This means a client might
connect to the Ingress Controller and negotiate HTTP/1.1. The Ingress Controller might
then connect to the application, negotiate HTTP/2, and forward the request from the
client HTTP/1.1 connection by using the HTTP/2 connection to the application.

This sequence of events causes an issue if the client subsequently tries to upgrade its
connection from HTTP/1.1 to the WebSocket protocol. Consider that if you have an
application that is intending to accept WebSocket connections, and the application
attempts to allow for HTTP/2 protocol negotiation, the client fails any attempt to
upgrade to the WebSocket protocol.

8.9.16.1. Enabling HTTP/2

You can enable HTTP/2 on a specific Ingress Controller, or you can enable HTTP/2 for the entire
cluster.

Procedure

® To enable HTTP/2 on a specific Ingress Controller, enter the oc annotate command:

148

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name>
ingress.operator.openshift.io/default-enable-http2=true ﬂ

Replace <ingresscontroller_names with the name of an Ingress Controller to enable
HTTP/2.

® Toenable HTTP/2 for the entire cluster, enter the oc annotate command:

I $ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true

TIP

Alternatively, you can apply the following YAML code to enable HTTP/2:

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
name: cluster
annotations:
ingress.operator.openshift.io/default-enable-http2: "true"

8.9.16.2. Disabling HTTP/2

You can disable HTTP/2 on a specific Ingress Controller, or you can disable HTTP/2 for the entire
cluster.

Procedure

® To disable HTTP/2 on a specific Ingress Controller, enter the oc annotate command:

$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name>
ingress.operator.openshift.io/default-enable-http2=false

Replace <ingresscontroller_names with the name of an Ingress Controller to disable
HTTP/2.

® Todisable HTTP/2 for the entire cluster, enter the oc annotate command:

$ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-
http2=false

149

OpenShift Container Platform 4.19 Networking Operators

TIP

Alternatively, you can apply the following YAML code to disable HTTP/2:

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
name: cluster
annotations:
ingress.operator.openshift.io/default-enable-http2: "false"

8.9.17. Configuring the PROXY protocol for an Ingress Controller

A cluster administrator can configure the PROXY protocol when an Ingress Controller uses either the
HostNetwork, NodePortService, or Private endpoint publishing strategy types. The PROXY protocol
enables the load balancer to preserve the original client addresses for connections that the Ingress
Controller receives. The original client addresses are useful for logging, filtering, and injecting HTTP
headers. In the default configuration, the connections that the Ingress Controller receives only contain
the source address that is associated with the load balancer.

WARNING
The default Ingress Controller with installer-provisioned clusters on non-cloud

platforms that use a Keepalived Ingress Virtual IP (VIP) do not support the PROXY
protocol.

The PROXY protocol enables the load balancer to preserve the original client addresses for connections
that the Ingress Controller receives. The original client addresses are useful for logging, filtering, and
injecting HTTP headers. In the default configuration, the connections that the Ingress Controller
receives contain only the source IP address that is associated with the load balancer.

IMPORTANT

For a passthrough route configuration, servers in OpenShift Container Platform clusters
cannot observe the original client source IP address. If you need to know the original client
source IP address, configure Ingress access logging for your Ingress Controller so that
you can view the client source IP addresses.

For re-encrypt and edge routes, the OpenShift Container Platform router sets the
Forwarded and X-Forwarded-For headers so that application workloads check the client
source IP address.

For more information about Ingress access logging, see "Configuring Ingress access
logging".

Configuring the PROXY protocol for an Ingress Controller is not supported when using the
LoadBalancerService endpoint publishing strategy type. This restriction is because when OpenShift
Container Platform runs in a cloud platform, and an Ingress Controller specifies that a service load

150

https://www.haproxy.org/download/2.8/doc/proxy-protocol.txt

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

balancer should be used, the Ingress Operator configures the load balancer service and enables the
PROXY protocol based on the platform requirement for preserving source addresses.

IMPORTANT

You must configure both OpenShift Container Platform and the external load balancer
to use either the PROXY protocol or TCP.

This feature is not supported in cloud deployments. This restriction is because when OpenShift
Container Platform runs in a cloud platform, and an Ingress Controller specifies that a service load
balancer should be used, the Ingress Operator configures the load balancer service and enables the
PROXY protocol based on the platform requirement for preserving source addresses.

IMPORTANT

You must configure both OpenShift Container Platform and the external load balancer
to either use the PROXY protocol or to use Transmission Control Protocol (TCP).

Prerequisites

® You created an Ingress Controller.

Procedure

1. Edit the Ingress Controller resource by entering the following command in your CLI:

I $ oc -n openshift-ingress-operator edit ingresscontroller/default

2. Set the PROXY configuration:

e |f your Ingress Controller uses the HostNetwork endpoint publishing strategy type, set the
spec.endpointPublishingStrategy.hostNetwork.protocol subfield to PROXY:

Sample hostNetwork configuration to PROXY

#...
spec:
endpointPublishingStrategy:
hostNetwork:
protocol: PROXY
type: HostNetwork
#...

e |f your Ingress Controller uses the NodePortService endpoint publishing strategy type, set
the spec.endpointPublishingStrategy.nodePort.protocol subfield to PROXY:

Sample nodePort configuration to PROXY
...
spec:
endpointPublishingStrategy:
nodePort:

151

OpenShift Container Platform 4.19 Networking Operators

protocol: PROXY
type: NodePortService
#...

e |f your Ingress Controller uses the Private endpoint publishing strategy type, set the
spec.endpointPublishingStrategy.private.protocol subfield to PROXY:

Sample private configuration to PROXY

#...
spec:
endpointPublishingStrategy:
private:
protocol: PROXY
type: Private
#...

Additional resources

® Configuring Ingress access logging

8.9.18. Specifying an alternative cluster domain using the appsDomain option

As a cluster administrator, you can specify an alternative to the default cluster domain for user-created
routes by configuring the appsDomain field. The appsDomain field is an optional domain for
OpenShift Container Platform to use instead of the default, which is specified in the domain field. If you

specify an alternative domain, it overrides the default cluster domain for the purpose of determining the
default host for a new route.

For example, you can use the DNS domain for your company as the default domain for routes and
ingresses for applications running on your cluster.

Prerequisites
® You deployed an OpenShift Container Platform cluster.

® You installed the oc command-line interface.

Procedure

1. Configure the appsDomain field by specifying an alternative default domain for user-created
routes.

a. Edit the ingress cluster resource:

I $ oc edit ingresses.config/cluster -o yam|

b. Edit the YAML file:

Sample appsDomain configuration to test.example.com

apiVersion: config.openshift.io/v1
kind: Ingress

152

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

metadata:
name: cluster

spec:
domain: apps.example.com ﬂ
appsDomain: <test.example.com> 9

Specifies the default domain. You cannot modify the default domain after installation.

Optional: Domain for OpenShift Container Platform infrastructure to use for
application routes. Instead of the default prefix, apps, you can use an alternative prefix
like test.

1]
2]

2. Verify that an existing route contains the domain name specified in the appsDomain field by
exposing the route and verifying the route domain change:

NOTE

Wait for the openshift-apiserver finish rolling updates before exposing the
route.

a. Expose the route by entering the following command. The command outputs
route.route.openshift.io/hello-openshift exposed to designate exposure of the route.

I $ oc expose service hello-openshift

b. Get alist of routes by running the following command:

I $ oc get routes

Example output

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD

hello-openshift hello_openshift-<my_project>.test.example.com

hello-openshift 8080-tcp None

8.9.19. Converting HTTP header case

HAProxy lowercases HTTP header names by default; for example, changing Host: xyz.com to host:
xyz.com. If legacy applications are sensitive to the capitalization of HTTP header names, use the Ingress
Controller spec.httpHeaders.headerNameCaseAdjustments AP field for a solution to accommodate
legacy applications until they can be fixed.

IMPORTANT

OpenShift Container Platform includes HAProxy 2.8. If you want to update to this version
of the web-based load balancer, ensure that you add the
spec.httpHeaders.headerNameCaseAdjustments section to your cluster’s
configuration file.

153

OpenShift Container Platform 4.19 Networking Operators

As a cluster administrator, you can convert the HTTP header case by entering the oc patch command or
by setting the HeaderNameCaseAdjustments field in the Ingress Controller YAML file.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have access to the cluster as a user with the cluster-admin role.

Procedure
® Capitalize an HTTP header by using the oc patch command.

a. Change the HTTP header from host to Host by running the following command:

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch="{"spec":{"httpHeaders":{"headerNameCaseAdjustments":["Host"|}}}'

b. Create a Route resource YAML file so that the annotation can be applied to the
application.

Example of a route named my-application

apiVersion: route.openshift.io/v1
kind: Route
metadata:

annotations:

haproxy.router.openshift.io/h1-adjust-case: true ﬂ
name: <application_name>
namespace: <application_name>
#...

Set haproxy.router.openshift.io/h1-adjust-case so that the Ingress Controller can
adjust the host request header as specified.

® Specify adjustments by configuring the HeaderNameCaseAdjustments field in the Ingress
Controller YAML configuration file.

a. The following example Ingress Controller YAML file adjusts the host header to Host for
HTTP/1requests to appropriately annotated routes:

Example Ingress Controller YAML

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
httpHeaders:
headerNameCaseAdjustments:
- Host

154

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

b. The following example route enables HTTP response header name case adjustments by

using the haproxy.router.openshift.io/h1-adjust-case annotation:

Example route YAML

apiVersion: route.openshift.io/v1
kind: Route
metadata:
annotations:
haproxy.router.openshift.io/h1-adjust-case: true ﬂ
name: my-application
namespace: my-application
spec:
to:
kind: Service
name: my-application

Q Set haproxy.router.openshift.io/h1-adjust-case to true.

8.9.20. Using router compression

You configure the HAProxy Ingress Controller to specify router compression globally for specific MIME
types. You can use the mimeTypes variable to define the formats of MIME types to which compression
is applied. The types are: application, image, message, multipart, text, video, or a custom type prefaced
by "X-". To see the full notation for MIME types and subtypes, see RFC1341.

Procedure

NOTE

Memory allocated for compression can affect the max connections. Additionally,
compression of large buffers can cause latency, like heavy regex or long lists of regex.

Not all MIME types benefit from compression, but HAProxy still uses resources to try to
compress if instructed to. Generally, text formats, such as html, css, and s, formats
benefit from compression, but formats that are already compressed, such as image, audio,
and video, benefit little in exchange for the time and resources spent on compression.

1. Configure the httpCompression field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

I $ oc edit -n openshift-ingress-operator ingresscontrollers/default

b. Under spec, set the httpCompression policy field to mimeTypes and specify a list of

MIME types that should have compression applied:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:

155

https://datatracker.ietf.org/doc/html/rfc1341#page-7

OpenShift Container Platform 4.19 Networking Operators

httpCompression:
mimeTypes:
- "text/html"
- "text/css; charset=utf-8"
- "application/json"

8.9.21. Exposing router metrics

You can expose the HAProxy router metrics by default in Prometheus format on the default stats port,
1936. The external metrics collection and aggregation systems such as Prometheus can access the
HAProxy router metrics. You can view the HAProxy router metrics in a browser in the HTML and comma
separated values (CSV) format.

Prerequisites

® You configured your firewall to access the default stats port, 1936.
Procedure
1. Get the router pod name by running the following command:

I $ oc get pods -n openshift-ingress
Example output

NAME READY STATUS RESTARTS AGE
router-default-76bfffb66¢c-46qwp 1/1 Running 0 11h

2. Get the router’s username and password, which the router pod stores in the
/var/lib/haproxy/conf/metrics-auth/statsUsername and /var/lib/haproxy/conf/metrics-
auth/statsPassword files:

a. Get the username by running the following command:

I $ oc rsh <router_pod_name> cat metrics-auth/statsUsername

b. Get the password by running the following command:

I $ oc rsh <router_pod_name> cat metrics-auth/statsPassword

3. Get the router IP and metrics certificates by running the following command:

I $ oc describe pod <router_pod>

4. Get the raw statistics in Prometheus format by running the following command:

I $ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

5. Access the metrics securely by running the following command:

I $ curl -u user:password https://<router_|IP>:<stats_port>/metrics -k

156

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

6. Access the default stats port, 1936, by running the following command:

I $ curl -u <user>:<password> http://<router_|P>:<stats_port>/metrics

Example 8.1. Example output
HELP haproxy_backend_connections_total Total number of connections.
TYPE haproxy_backend_connections_total gauge
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-

route"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route-alt"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route01"} 0

HELP haproxy_exporter_server_threshold Number of servers tracked and the current
threshold value.

TYPE haproxy_exporter_server_threshold gauge
haproxy_exporter_server_threshold{type="current"} 11
haproxy_exporter_server_threshold{type="limit"} 500

HELP haproxy_frontend_bytes_in_total Current total of incoming bytes.
TYPE haproxy_frontend_bytes_in_total gauge
haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} 0
haproxy_frontend_bytes_in_total{frontend="fe_sni"} 0
haproxy_frontend_bytes_in_total{frontend="public"} 119070

HELP haproxy_server_bytes_in_total Current total of incoming bytes.

TYPE haproxy_server_bytes_in_total gauge
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_no_sni",service="
ll} 0
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_sni",service=""}

0

haproxy_server_bytes_in_total{namespace="default",pod="docker-registry-5-
nk5fz",route="docker-registry",server="10.130.0.89:5000",service="docker-registry"} 0
haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-vkjgx",route="hello-
route",server="10.130.0.90:8080",service="hello-svc-1"} 0

7. Launch the stats window by entering the following URL in a browser:

I http://<user>:<password>@-<router_IP>:<stats_port>

8. Optional: Get the stats in CSV format by entering the following URL in a browser:

I http://<user>:<password>@-<router_ip>:1936/metrics;csv

8.9.22. Customizing HAProxy error code response pages

As a cluster administrator, you can specify a custom error code response page for either 503, 404, or
both error pages. The HAProxy router serves a 503 error page when the application pod is not running

157

OpenShift Container Platform 4.19 Networking Operators

or a 404 error page when the requested URL does not exist. For example, if you customize the 503 error
code response page, then the page is served when the application pod is not running, and the default
404 error code HTTP response page is served by the HAProxy router for an incorrect route or a non-
existing route.

Custom error code response pages are specified in a config map then patched to the Ingress Controller.
The config map keys have two available file names as follows: error-page-503.http and error-page-
404.http.

Custom HTTP error code response pages must follow the HAProxy HTTP error page configuration
guidelines. Here is an example of the default OpenShift Container Platform HAProxy router http 503
error code response page. You can use the default content as a template for creating your own custom

page.

By default, the HAProxy router serves only a 503 error page when the application is not running or when
the route is incorrect or non-existent. This default behavior is the same as the behavior on OpenShift
Container Platform 4.8 and earlier. If a config map for the customization of an HTTP error code
response is not provided, and you are using a custom HTTP error code response page, the router serves
a default 404 or 503 error code response page.

NOTE

If you use the OpenShift Container Platform default 503 error code page as a template
for your customizations, the headers in the file require an editor that can use CRLF line
endings.

Procedure

1. Create a config map named my-custom-error-code-pages in the openshift-config
namespace:

$ oc -n openshift-config create configmap my-custom-error-code-pages \
--from-file=error-page-503.http \
--from-file=error-page-404.http

IMPORTANT

If you do not specify the correct format for the custom error code response
page, a router pod outage occurs. To resolve this outage, you must delete or
correct the config map and delete the affected router pods so they can be
recreated with the correct information.

2. Patch the Ingress Controller to reference the my-custom-error-code-pages config map by
name:

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":
{"httpErrorCodePages":{"name":"my-custom-error-code-pages"}}}' --type=merge

The Ingress Operator copies the my-custom-error-code-pages config map from the
openshift-config namespace to the openshift-ingress namespace. The Operator names the
config map according to the pattern, <your_ingresscontroller_name>-errorpages, in the
openshift-ingress namespace.

3. Display the copy:

158

https://www.haproxy.com/documentation/hapee/latest/configuration/config-sections/http-errors/
https://raw.githubusercontent.com/openshift/router/master/images/router/haproxy/conf/error-page-503.http

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

I $ oc get cm default-errorpages -n openshift-ingress

Example output

NAME DATA AGE
default-errorpages 2 25s ﬂ

The example config map name is default-errorpages because the default Ingress
Controller custom resource (CR) was patched.

4. Confirm that the config map containing the custom error response page mounts on the router
volume where the config map key is the filename that has the custom HTTP error code
response:

® For503 custom HTTP custom error code response:

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-503.http

® For 404 custom HTTP custom error code response:

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-404.http

Verification

Verify your custom error code HTTP response:

1. Create a test project and application:

I $ oc new-project test-ingress
I $ oc new-app django-psql-example

2. For 503 custom http error code response:
a. Stop all the pods for the application.
b. Run the following curl command or visit the route hostname in the browser:
I $ curl -vk <route_hostname>
3. For 404 custom http error code response:
a. Visit a non-existent route or an incorrect route.
b. Run the following curl command or visit the route hostname in the browser:

I $ curl -vk <route_hostname>

4. Check if the errorfile attribute is properly in the haproxy.config file:

159

OpenShift Container Platform 4.19 Networking Operators
I $ oc -n openshift-ingress rsh <routers> cat /var/lib/haproxy/conf/haproxy.config | grep errorfile

8.9.23. Setting the Ingress Controller maximum connections
A cluster administrator can set the maximum number of simultaneous connections for OpenShift router

deployments. You can patch an existing Ingress Controller to increase the maximum number of
connections.

Prerequisites

® The following assumes that you already created an Ingress Controller
Procedure
e Update the Ingress Controller to change the maximum number of connections for HAProxy:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"maxConnections": 7500}}}'

WARNING
If you set the spec.tuningOptions.maxConnections value greater than

the current operating system limit, the HAProxy process will not start. See
the table in the "Ingress Controller configuration parameters” section for
more information about this parameter.

8.10. ADDITIONAL RESOURCES

® Configuring a custom PKI

160

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/configuring_network_settings/#configuring-a-custom-pki

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORN

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN
OPENSHIFT CONTAINER PLATFORM

The Ingress Node Firewall Operator provides a stateless, eBPF-based firewall for managing node-level
ingress traffic in OpenShift Container Platform.

9.1. INGRESS NODE FIREWALL OPERATOR

The Ingress Node Firewall Operator provides ingress firewall rules at a node level by deploying the
daemon set to nodes you specify and manage in the firewall configurations. To deploy the daemon set,
you create an IngressNodeFirewallConfig custom resource (CR). The Operator applies the
IngressNodeFirewallConfig CR to create ingress node firewall daemon set daemon, which run on all
nodes that match the nodeSelector.

You configure rules of the IngressNodeFirewall CR and apply them to clusters using the
nodeSelector and setting values to "true”.

IMPORTANT
The Ingress Node Firewall Operator supports only stateless firewall rules.

Network interface controllers (NICs) that do not support native XDP drivers will run at a
lower performance.

For OpenShift Container Platform 4.14 or later, you must run Ingress Node Firewall
Operator on RHEL 9.0 or later.

9.2. INSTALLING THE INGRESS NODE FIREWALL OPERATOR

As a cluster administrator, you can install the Ingress Node Firewall Operator by using the OpenShift
Container Platform CLI or the web console.
9.2.1. Installing the Ingress Node Firewall Operator using the CLI

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have an account with administrator privileges.

Procedure

1. To create the openshift-ingress-node-firewall namespace, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
labels:
pod-security.kubernetes.io/enforce: privileged

161

OpenShift Container Platform 4.19 Networking Operators

pod-security.kubernetes.io/enforce-version: v1.24
name: openshift-ingress-node-firewall
EOF

2. To create an OperatorGroup CR, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: ingress-node-firewall-operators
namespace: openshift-ingress-node-firewall
EOF

3. Subscribe to the Ingress Node Firewall Operator.

® To create a Subscription CR for the Ingress Node Firewall Operator, enter the following
command:

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: ingress-node-firewall-sub
namespace: openshift-ingress-node-firewall
spec:
name: ingress-node-firewall
channel: stable
source: redhat-operators
sourceNamespace: openshift-marketplace
EOF

4. To verify that the Operator is installed, enter the following command:
I $ oc get ip -n openshift-ingress-node-firewall
Example output

NAME CSV APPROVAL APPROVED
install-5cvnz ingress-node-firewall.4.19.0-202211122336 Automatic true

5. To verify the version of the Operator, enter the following command:

I $ oc get csv -n openshift-ingress-node-firewall

Example output

NAME DISPLAY VERSION REPLACES
PHASE

ingress-node-firewall.4.19.0-202211122336 Ingress Node Firewall Operator 4.19.0-
202211122336 ingress-node-firewall.4.19.0-202211102047 Succeeded

162

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORN

9.2.2. Installing the Ingress Node Firewall Operator using the web console

As a cluster administrator, you can install the Operator using the web console.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have an account with administrator privileges.

Procedure

1. Install the Ingress Node Firewall Operator:

a.

b.

d.

In the OpenShift Container Platform web console, click Operators = OperatorHub.

Select Ingress Node Firewall Operator from the list of available Operators, and then click
Install.

On the Install Operator page, under Installed Namespace, select Operator
recommended Namespace.

Click Install.

2. Verify that the Ingress Node Firewall Operator is installed successfully:

a.

b.

Navigate to the Operators — Installed Operators page.

Ensure that Ingress Node Firewall Operatoris listed in the openshift-ingress-node-
firewall project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not have a Status of InstallSucceeded, troubleshoot using the
following steps:

® |nspect the Operator Subscriptions and Install Plans tabs for any failures or errors
under Status.

e Navigate to the Workloads = Pods page and check the logs for pods in the openshift-
ingress-node-firewall project.

® Check the namespace of the YAML file. If the annotation is missing, you can add the
annotation workload.openshift.io/allowed=management to the Operator namespace

with the following command:

$ oc annotate ns/openshift-ingress-node-firewall
workload.openshift.io/allowed=management

163

OpenShift Container Platform 4.19 Networking Operators

NOTE

For single-node OpenShift clusters, the openshift-ingress-node-
firewall namespace requires the
workload.openshift.io/allowed=management annotation.

9.3. DEPLOYING INGRESS NODE FIREWALL OPERATOR

Prerequisite

® The Ingress Node Firewall Operator is installed.

Procedure

To deploy the Ingress Node Firewall Operator, create a IngressNodeFirewallConfig custom resource
that will deploy the Operator’s daemon set. You can deploy one or multiple IngressNodeFirewall CRDs
to nodes by applying firewall rules.

1. Create the IngressNodeFirewallConfig inside the openshift-ingress-node-firewall
namespace named ingressnodefirewallconfig.

2. Run the following command to deploy Ingress Node Firewall Operator rules:

I $ oc apply -f rule.yaml

9.3.1. Ingress Node Firewall configuration object

The fields for the Ingress Node Firewall configuration object are described in the following table:

Table 9.1. Ingress Node Firewall Configuration object
Field Type Description

metadata.name string The name of the CR object. The name of the firewall rules object
must be ingressnodefirewallconfig.

metadata.name string Namespace for the Ingress Firewall Operator CR object. The
space IngressNodeFirewallConfig CR must be created inside the
openshift-ingress-node-firewall namespace.

164

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Field Type Description
spec.nodeSelec string A node selection constraint used to target nodes through
tor specified node labels. For example:

spec:

nodeSelector:
node-role.kubernetes.io/worker: ""

NOTE

One label used in nodeSelector must match a
label on the nodes in order for the daemon set
to start. For example, if the node labels hode-
role.kubernetes.io/worker and node-
type.kubernetes.io/vm are applied to a node,
then at least one label must be set using
nodeSelector for the daemon set to start.

spec.ebpfProgr boolean Specifies if the Node Ingress Firewall Operator uses the eBPF
amManagerMod Manager Operator or not to manage eBPF programs. This
e capability is a Technology Preview feature.

For more information about the support scope of Red Hat
Technology Preview features, see Technology Preview Features
Support Scope.

NOTE

The Operator consumes the CR and creates an ingress node firewall daemon set on all
the nodes that match the nodeSelector.

9.3.2. Ingress Node Firewall Operator example configuration

A complete Ingress Node Firewall Configuration is specified in the following example:

Example of how to create an Ingress Node Firewall Configuration object

$ cat << EOF | oc create -f -
apiVersion: ingressnodefirewall.openshift.io/vialphal
kind: IngressNodeFirewallConfig
metadata:
name: ingressnodefirewallconfig
namespace: openshift-ingress-node-firewall
spec:

165

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.19 Networking Operators

nodeSelector:
node-role.kubernetes.io/worker: "
EOF

NOTE

The Operator consumes the CR object and creates an ingress node firewall daemon set
on all the nodes that match the nodeSelector.

9.3.3. Ingress Node Firewall rules object

The fields for the Ingress Node Firewall rules object are described in the following table:

Table 9.2. Ingress Node Firewall rules object

Field Type Description
metadata.name string The name of the CR object.
interfaces array The fields for this object specify the interfaces to apply the

firewall rules to. For example, - en0 and - en1.

nodeSelector array You can use hodeSelector to select the nodes to apply the
firewall rules to. Set the value of your named hodeselector
labels to true to apply the rule.

ingress object ingress allows you to configure the rules that allow outside
access to the services on your cluster.

9.3.3.1. Ingress object configuration

The values for the ingress object are defined in the following table:

Table 9.3. ingress object
Field Type Description

sourceCIDRs array Allows you to set the CIDR block. You can configure
multiple CIDRs from different address families.

‘ NOTE
Different CIDRs allow you to use the
¢ same order rule. In the case that
there are multiple
IngressNodeFirewall objects for
¢ the same nodes and interfaces with

overlapping CIDRs, the order field
will specify which rule is applied first.
Rules are applied in ascending order.

166

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Field Type Description

rules array Ingress firewall rules.order objects are ordered
starting at 1 for eachsource.CIDR with up to 100
rules per CIDR. Lower order rules are executed first.

rules.protocolConfig.protocol supports the
following protocols: TCP, UDP, SCTP, ICMP and
ICMPV6. ICMP and ICMPV6 rules can match against
ICMP and ICMPV6 types or codes. TCP, UDP, and
SCTP rules can match against a single destination
port or a range of ports using <start : end-1>
format.

Set rules.action to allow to apply the rule ordeny
to disallow the rule.

NOTE

Ingress firewall rules are verified
using a verification webhook that
blocks any invalid configuration. The
verification webhook prevents you
from blocking any critical cluster
services such as the APl server.

9.3.3.2. Ingress Node Firewall rules object example

A complete Ingress Node Firewall configuration is specified in the following example:

Example Ingress Node Firewall configuration

apiVersion: ingressnodefirewall.openshift.io/vialphal
kind: IngressNodeFirewall
metadata:
name: ingressnodefirewall
spec:
interfaces:
- ethO
nodeSelector:
matchLabels:
<ingress_firewall_label_name>: <label_value> 0
ingress:
- sourceCIDRs:
-172.16.0.0/12
rules:
- order: 10
protocolConfig:
protocol: ICMP
icmp:
icmpType: 8 #ICMP Echo request
action: Deny
- order: 20

167

OpenShift Container Platform 4.19 Networking Operators

protocolConfig:
protocol: TCP

tep:
ports: "8000-9000"
action: Deny

- sourceCIDRs:
- fc00:f853:ccd:e793::0/64
rules:
- order: 10
protocolConfig:
protocol: ICMPv6
icmpv6:
icmpType: 128 #/ICMPV6 Echo request
action: Deny

ﬂ A<label_name> and a <label_value> must exist on the node and must match the nodeselector label
and value applied to the nodes you want the ingressfirewallconfig CR to run on. The <label_value>
can be true or false. By using nodeSelector labels, you can target separate groups of nodes to
apply different rules to using the ingressfirewallconfig CR.

9.3.3.3. Zero trust Ingress Node Firewall rules object example

Zero trust Ingress Node Firewall rules can provide additional security to multi-interface clusters. For
example, you can use zero trust Ingress Node Firewall rules to drop all traffic on a specific interface
except for SSH.

A complete configuration of a zero trust Ingress Node Firewall rule set is specified in the following
example:

IMPORTANT

Users need to add all ports their application will use to their allowlist in the following case
to ensure proper functionality.

Example zero trust Ingress Node Firewall rules

apiVersion: ingressnodefirewall.openshift.io/vialphal
kind: IngressNodeFirewall

metadata:

name: ingressnodefirewall-zero-trust

spec:

interfaces:

-eth1 @)

nodeSelector:

matchLabels:
<ingress_firewall_label_name>: <label_value> 9
ingress:

- sourceCIDRs:
-0.0.0.00 €
rules:
- order: 10
protocolConfig:
protocol: TCP

168

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORN

tep:
ports: 22
action: Allow
- order: 20

action: Deny ﬂ

Network-interface cluster

The <label_name> and <label_value> needs to match the nodeSelector label and value applied to
the specific nodes with which you wish to apply the ingressfirewallconfig CR.

0.0.0.0/0 set to match any CIDR

action set to Deny

o0 o009

IMPORTANT

eBPF Manager Operator integration is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

9.4.INGRESS NODE FIREWALL OPERATOR INTEGRATION

The Ingress Node Firewall uses eBPF programs to implement some of its key firewall functionality. By
default these eBPF programs are loaded into the kernel using a mechanism specific to the Ingress Node
Firewall. You can configure the Ingress Node Firewall Operator to use the eBPF Manager Operator for
loading and managing these programs instead.

When this integration is enabled, the following limitations apply:

® The Ingress Node Firewall Operator uses TCX if XDP is not available and TCX is incompatible
with bpfman.

® The Ingress Node Firewall Operator daemon set pods remain in the ContainerCreating state
until the firewall rules are applied.

® The Ingress Node Firewall Operator daemon set pods run as privileged.

9.5. CONFIGURING INGRESS NODE FIREWALL OPERATOR TO USE
THE EBPF MANAGER OPERATOR

The Ingress Node Firewall uses eBPF programs to implement some of its key firewall functionality. By
default these eBPF programs are loaded into the kernel using a mechanism specific to the Ingress Node
Firewall.

169

https://access.redhat.com/support/offerings/techpreview/
https://www.kernel.org/doc/html/latest/bpf/index.html
https://www.kernel.org/doc/html/latest/bpf/index.html

OpenShift Container Platform 4.19 Networking Operators

As a cluster administrator, you can configure the Ingress Node Firewall Operator to use the eBPF
Manager Operator for loading and managing these programs instead, adding additional security and
observability functionality.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have an account with administrator privileges.
® You installed the Ingress Node Firewall Operator.

® You have installed the eBPF Manager Operator.

Procedure

1. Apply the following labels to the ingress-node-firewall-system namespace:

$ oc label namespace openshift-ingress-node-firewall \
pod-security.kubernetes.io/enforce=privileged \
pod-security.kubernetes.io/warn=privileged --overwrite

2. Edit the IngressNodeFirewallConfig object named ingressnodefirewallconfig and set the
ebpfProgramManagerMode field:

Ingress Node Firewall Operator configuration object

apiVersion: ingressnodefirewall.openshift.io/vialphal
kind: IngressNodeFirewallConfig
metadata:
name: ingressnodefirewallconfig
namespace: openshift-ingress-node-firewall
spec:
nodeSelector:
node-role.kubernetes.io/worker: "
ebpfProgramManagerMode: <ebpf_mode>

where:
<ebpf_modes>: Specifies whether or not the Ingress Node Firewall Operator uses the eBPF

Manager Operator to manage eBPF programs. Must be either true or false. If unset, eBPF
Manager is not used.

9.6. VIEWING INGRESS NODE FIREWALL OPERATOR RULES

Procedure

1. Run the following command to view all current rules :

I $ oc get ingressnodefirewall

2. Choose one of the returned <resource> names and run the following command to view the
rules or configs:

170

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORN

I $ oc get <resource> <name> -0 yaml

9.7. TROUBLESHOOTING THE INGRESS NODE FIREWALL OPERATOR

® Run the following command to list installed Ingress Node Firewall custom resource definitions
(CRD):

I $ oc get crds | grep ingressnodefirewall

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
ingressnodefirewallconfigs.ingressnodefirewall.openshift.io 2022-08-25T10:03:01Z
ingressnodefirewallnodestates.ingressnodefirewall.openshift.io 2022-08-25T10:03:00Z
ingressnodefirewalls.ingressnodefirewall.openshift.io 2022-08-25T10:03:00Z

® Run the following command to view the state of the Ingress Node Firewall Operator:

I $ oc get pods -n openshift-ingress-node-firewall

Example output

NAME READY STATUS RESTARTS AGE
ingress-node-firewall-controller-manager 2/2 Running 0 5d21h
ingress-node-firewall-daemon-pgx56 3/3 Running 0 5d21h

The following fields provide information about the status of the Operator: READY, STATUS,
AGE, and RESTARTS. The STATUS field is Running when the Ingress Node Firewall Operator
is deploying a daemon set to the assigned nodes.

® Run the following command to collect all ingress firewall node pods' logs:

I $ oc adm must-gather — gather_ingress_node_firewall
The logs are available in the sos node’s report containing eBPF bpftool outputs at

/sos_commands/ebpf. These reports include lookup tables used or updated as the ingress
firewall XDP handles packet processing, updates statistics, and emits events.

9.8. ADDITIONAL RESOURCES

® About the eBPF Manager Operator

171

OpenShift Container Platform 4.19 Networking Operators

CHAPTER 10. SR-IOV OPERATOR

10.1. INSTALLING THE SR-IOV NETWORK OPERATOR

You can install the Single Root I/O Virtualization (SR-IOV) Network Operator on your cluster to manage

SR-10OV network devices and network attachments.

10.1.1. Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Single Root I/O Virtualization (SR-I0V) Network Operator

by using the OpenShift Container Platform CLI or the web console.

10.1.1.1. CLI: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

® A clusterinstalled on bare-metal hardware with nodes that have hardware that supports SR-

IOV.
e Install the OpenShift CLI (oc).

® An account with cluster-admin privileges.

Procedure

1. Create the openshift-sriov-network-operator namespace by entering the following command:

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
name: openshift-sriov-network-operator
annotations:
workload.openshift.io/allowed: management
EOF

2. Create an OperatorGroup custom resource (CR) by entering the following command:

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: sriov-network-operators
namespace: openshift-sriov-network-operator
spec:
targetNamespaces:
- openshift-sriov-network-operator
EOF

3. Create a Subscription CR for the SR-IOV Network Operator by entering the following

command:

172

CHAPTER 10. SR-IOV OPERATOR

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: sriov-network-operator-subscription
namespace: openshift-sriov-network-operator
spec:
channel: stable
name: sriov-network-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
EOF

4. Create an SriovoperatorConfig resource by entering the following command:

$ cat <<EOF | oc create -f -
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
name: default
namespace: openshift-sriov-network-operator
spec:
enablelnjector: true
enableOperatorWebhook: true
logLevel: 2
disableDrain: false
EOF

Verification

® To verify that the Operator is installed, enter the following command and then check that
output shows Succeeded for the Operator:

$ oc get csv -n openshift-sriov-network-operator \
-0 custom-columns=Name:.metadata.name,Phase:.status.phase

10.1.1.2. Web console: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the web console.

Prerequisites

® A clusterinstalled on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

e Install the OpenShift CLI (oc).

® An account with cluster-admin privileges.

Procedure
1. Install the SR-IOV Network Operator:

a. Inthe OpenShift Container Platform web console, click Operators = OperatorHub.

173

OpenShift Container Platform 4.19 Networking Operators

b. Select SR-IOV Network Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, under Installed Namespace, select Operator
recommended Namespace.

d. Click Install.

2. Verify that the SR-IOV Network Operator is installed successfully:

a. Navigate to the Operators — Installed Operators page.

b. Ensure that SR-IOV Network Operatoris listed in the openshift-sriov-network-operator
project with a Status of InstallSucceeded.

4 NOTE
During installation an Operator might display a Failed status. If the

installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

® |nspect the Operator Subscriptions and Install Plans tabs for any failure or errors
under Status.

e Navigate to the Workloads = Pods page and check the logs for pods in the openshift-
sriov-network-operator project.

® Check the namespace of the YAML file. If the annotation is missing, you can add the

annotation workload.openshift.io/allowed=management to the Operator namespace
with the following command:

$ oc annotate ns/openshift-sriov-network-operator
workload.openshift.io/allowed=management

NOTE

For single-node OpenShift clusters, the annotation
workload.openshift.io/allowed=management is required for the
namespace.

10.1.2. Next steps

® Configuring the SR-IOV Network Operator

10.2. CONFIGURING THE SR-IOV NETWORK OPERATOR

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network devices
and network attachments in your cluster.

10.2.1. Configuring the SR-IOV Network Operator

174

CHAPTER 10. SR-IOV OPERATOR

® Create a SriovOperatorConfig custom resource (CR) to deploy all the SR-IOV Operator
components:

a. Create a file named sriovOperatorConfig.yaml using the following YAML:

o
2]

©

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:

name: default ﬂ
namespace: openshift-sriov-network-operator

spec:

disableDrain: false
enablelnjector: true 9
enableOperatorWebhook: true 6
logLevel: 2
featureGates:

metricsExporter: false

The only valid name for the SriovOperatorConfig resource is default and it must be in
the namespace where the Operator is deployed.

The enablelnjector field, if not specified in the CR or explicitly set to true, defaults to
false or <none>, preventing any network-resources-injector pod from running in the
namespace. The recommended setting is true.

The enableOperatorWebhook field, if not specified in the CR or explicitly set to true,
defaults to false or <nones, preventing any operator-webhook pod from running in
the namespace. The recommended setting is true.

b. Create the resource by running the following command:

I $ oc apply -f sriovOperatorConfig.yaml

10.2.1.1. SR-IOV Network Operator config custom resource

The fields for the sriovoperatorconfig custom resource are described in the following table:

Table 10.1. SR-I0OV Network Operator config custom resource

Field Type Description

metadata.name string Specifies the name of the SR-IOV Network Operator instance.
The default value is default. Do not set a different value.

metadata.name string Specifies the namespace of the SR-IOV Network Operator

space instance. The default value is openshift-sriov-network-
operator. Do not set a different value.

spec.configDae string Specifies the node selection to control scheduling the SR-IOV

monNodeSelect Network Config Daemon on selected nodes. By default, this field

or is not set and the Operator deploys the SR-IOV Network Config

daemon set on worker nodes.

175

OpenShift Container Platform 4.19 Networking Operators

Field Type Description
spec.disableDra boolean Specifies whether to disable the node draining process or enable
in the node draining process when you apply a new policy to

configure the NIC on a node. Setting this field to true facilitates
software development and installing OpenShift Container
Platform on a single node. By default, this field is not set.

For single-node clusters, set this field to true after installing the
Operator. This field must remain set to true.

spec.enablelnje boolean Specifies whether to enable or disable the Network Resources
ctor Injector daemon set.

spec.enableOpe boolean Specifies whether to enable or disable the Operator Admission
ratorWebhook Controller webhook daemon set.

spec.logLevel integer Specifies the log verbosity level of the Operator. By default, this

field is set to 0, which shows only basic logs. Set to2 to show all
the available logs.

spec.featureGat map[string]bool Specifies whether to enable or disable the optional features. For

es example, metricsExporter.

spec.featureGat boolean Specifies whether to enable or disable the SR-IOV Network
es.metricsExpor Operator metrics. By default, this field is set to false.

ter

176

CHAPTER 10. SR-IOV OPERATOR

Field Type Description

spec.featureGat boolean Specifies whether to reset the firmware on virtual function (VF)

es.mellanoxFir changes in the SR-IOV Network Operator. Some chipsets, such

mwareReset as the Intel C740 Series, do not completely power off the PCI-E

devices, which is required to configure VFs on NVIDIA/Mellanox
NICs. By default, this field is set to false.

IMPORTANT

The
spec.featureGates.mellanoxFirmwareRes
et parameter is a Technology Preview feature
only. Technology Preview features are not
supported with Red Hat production service level
agreements (SLAs) and might not be
functionally complete. Red Hat does not
recommend using them in production. These
features provide early access to upcoming
product features, enabling customers to test
functionality and provide feedback during the
development process.

For more information about the support scope
of Red Hat Technology Preview features, see
Technology Preview Features Support Scope

10.2.1.2. About the Network Resources Injector

The Network Resources Injector is a Kubernetes Dynamic Admission Controller application, which
provides the following capabilities:

® Mutation of resource requests and limits in a pod specification to add an SR-IOV resource name
according to an SR-IOV network attachment definition annotation.

® Mutation of a pod specification with a Downward APl volume to expose pod annotations, labels,
and huge pages requests and limits. Containers that run in the pod can access the exposed
information as files under the /etc/podnetinfo path.

The Network Resources Injector is enabled by the SR-IOV Network Operator when the enablelnjector is
set to true in the SriovOperatorConfig CR. The network-resources-injector pod runs as a daemon set
on all control plane nodes. The following is an example of Network Resources Injector pods running in a
cluster with three control plane nodes:

I $ oc get pods -n openshift-sriov-network-operator

Example output

NAME READY STATUS RESTARTS AGE
network-resources-injector-5¢z5p 1/1 Running 0 10m
network-resources-injector-dwqpx 1/1 Running 0 10m
network-resources-injector-lktz5 1/1 Running 0 10m

177

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.19 Networking Operators

By default, the failurePolicy field in the Network Resources Injector webhook is set to Ignore. This
default setting prevents pod creation from being blocked if the webhook is unavailable.

If you set the failurePolicy field to Fail, and the Network Resources Injector webhook is unavailable, the
webhook attempts to mutate all pod creation and update requests. This behavior can block pod creation
and disrupt normal cluster operations. To prevent such issues, you can enable the
featureGates.resourcelnjectorMatchCondition feature in the SriovOperatorConfig object to limit the
scope of the Network Resources Injector webhook. If this feature is enabled, the webhook applies only to
pods with the secondary network annotation k8s.v1.cni.cncf.io/networks.

If you set the failurePolicy field to Fail after enabling the resourcelnjectorMatchCondition feature,
the webhook applies only to pods with the secondary network annotation k8s.v1.cni.cncf.io/networks.
If the webhook is unavailable, pods without this annotation are still deployed, preventing unnecessary
disruptions to cluster operations.

The featureGates.resourcelnjectorMatchCondition feature is disabled by default. To enable this
feature, set the featureGates.resourcelnjectorMatchCondition field to true in the
SriovOperatorConfig object.

Example SriovOperatorConfig object configuration

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:

name: default

namespace: sriov-network-operator
spec:
#...

featureGates:

resourcelnjectorMatchCondition: true

#...

10.2.1.3. Disabling or enabling the Network Resources Injector

To disable or enable the Network Resources Injector, complete the following procedure.

Prerequisites

® |nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® You must have installed the SR-IOV Network Operator.

Procedure

e Set the enablelnjector field. Replace <value> with false to disable the feature or true to
enable the feature.

$ oc patch sriovoperatorconfig default \

--type=merge -n openshift-sriov-network-operator \
--patch '{ "spec": { "enablelnjector": <value>}}'

178

CHAPTER 10. SR-IOV OPERATOR

TIP

You can alternatively apply the following YAML to update the Operator:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
name: default
namespace: openshift-sriov-network-operator
spec:
enablelnjector: <value>

10.2.1.4. About the SR-IOV Network Operator admission controller webhook

The SR-IOV Network Operator Admission Controller webhook is a Kubernetes Dynamic Admission
Controller application. It provides the following capabilities:

® Validation of the SriovNetworkNodePolicy CR when it is created or updated.

® Mutation of the SriovNetworkNodePolicy CR by setting the default value for the priority and
deviceType fields when the CR is created or updated.

The SR-IOV Network Operator Admission Controller webhook is enabled by the Operator when the
enableOperatorWebhook is set to true in the SriovOperatorConfig CR. The operator-webhook pod
runs as a daemon set on all control plane nodes.

NOTE

Use caution when disabling the SR-IOV Network Operator Admission Controller
webhook. You can disable the webhook under specific circumstances, such as
troubleshooting, or if you want to use unsupported devices. For information about
configuring unsupported devices, see Configuring the SR-IOV Network Operator to use
an unsupported NIC.

The following is an example of the Operator Admission Controller webhook pods running in a cluster
with three control plane nodes:

I $ oc get pods -n openshift-sriov-network-operator

Example output

NAME READY STATUS RESTARTS AGE
operator-webhook-9jkw6 1/1 Running 0 16m
operator-webhook-kbr5p 1/1 Running 0 16m
operator-webhook-rpfrl 1/1 Running 0 16m

10.2.1.5. Disabling or enabling the SR-IOV Network Operator admission controller webhook

To disable or enable the admission controller webhook, complete the following procedure.

Prerequisites

e Install the OpenShift CLI (oc).

179

https://access.redhat.com/articles/7010183

OpenShift Container Platform 4.19 Networking Operators

® | ogin as a user with cluster-admin privileges.

® You must have installed the SR-IOV Network Operator.

Procedure

® Set the enableOperatorWebhook field. Replace <values> with false to disable the feature or
true to enable it:

$ oc patch sriovoperatorconfig default --type=merge \
-n openshift-sriov-network-operator \
--patch '{ "spec": { "enableOperatorWebhook": <value> } }'

TIP

You can alternatively apply the following YAML to update the Operator:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
name: default
namespace: openshift-sriov-network-operator
spec:
enableOperatorWebhook: <value>

10.2.1.6. About custom node selectors

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

10.2.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

To specify the nodes where the SR-IOV Network Config daemon is deployed, complete the following
procedure.

IMPORTANT

When you update the configDaemonNodeSelector field, the SR-IOV Network Config
daemon is recreated on each selected node. While the daemon is recreated, cluster users
are unable to apply any new SR-1IOV Network node policy or create new SR-IOV pods.

Procedure

® To update the node selector for the operator, enter the following command:
$ oc patch sriovoperatorconfig default --type=json \

-n openshift-sriov-network-operator \
--patch '[{

180

CHAPTER 10. SR-IOV OPERATOR

"op": "replace”,
"path": "/spec/configDaemonNodeSelector”,
"value": {<node_label>}

'

Replace <node_label> with a label to apply as in the following example: "node-
role.kubernetes.io/worker": """

TIP

You can alternatively apply the following YAML to update the Operator:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:

name: default

namespace: openshift-sriov-network-operator
spec:

configDaemonNodeSelector:

<node_label>

10.2.1.8. Configuring the SR-IOV Network Operator for single node installations

By default, the SR-IOV Network Operator drains workloads from a node before every policy change.
The Operator performs this action to ensure that there no workloads using the virtual functions before
the reconfiguration.

For installations on a single node, there are no other nodes to receive the workloads. As a result, the
Operator must be configured not to drain the workloads from the single node.

IMPORTANT

After performing the following procedure to disable draining workloads, you must remove
any workload that uses an SR-IOV network interface before you change any SR-IOV
network node policy.

Prerequisites

® |nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® You must have installed the SR-IOV Network Operator.

Procedure

® To set the disableDrain field to true and the configDaemonNodeSelector field to node-
role.kubernetes.io/master: """, enter the following command:

$ oc patch sriovoperatorconfig default --type=merge -n openshift-sriov-network-operator --
patch '{ "spec": { "disableDrain": true, "configDaemonNodeSelector": { "node-
role.kubernetes.io/master”: " } } }'

181

OpenShift Container Platform 4.19 Networking Operators

TIP

You can alternatively apply the following YAML to update the Operator:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
name: default
namespace: openshift-sriov-network-operator
spec:
disableDrain: true
configDaemonNodeSelector:
node-role.kubernetes.io/master: "

10.2.1.9. Deploying the SR-IOV Operator for hosted control planes

After you configure and deploy your hosting service cluster, you can create a subscription to the SR-IOV
Operator on a hosted cluster. The SR-IOV pod runs on worker machines rather than the control plane.

Prerequisites

You must configure and deploy the hosted cluster on AWS.

Procedure

1. Create a namespace and an Operator group:

apiVersion: v1i
kind: Namespace
metadata:
name: openshift-sriov-network-operator
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: sriov-network-operators
namespace: openshift-sriov-network-operator
spec:
targetNamespaces:
- openshift-sriov-network-operator

2. Create a subscription to the SR-IOV Operator:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:

name: sriov-network-operator-subsription

namespace: openshift-sriov-network-operator
spec:

channel: stable

name: sriov-network-operator

config:

nodeSelector:

182

CHAPTER 10. SR-IOV OPERATOR

node-role.kubernetes.io/worker: "
source: redhat-operators
sourceNamespace: openshift-marketplace

Verification

1. To verify that the SR-IOV Operator is ready, run the following command and view the resulting
output:

I $ oc get csv -n openshift-sriov-network-operator

Example output

NAME DISPLAY VERSION REPLACES
PHASE

sriov-network-operator.4.19.0-202211021237 SR-IOV Network Operator 4.19.0-
202211021237 sriov-network-operator.4.19.0-202210290517 Succeeded

2. To verify that the SR-IOV pods are deployed, run the following command:

I $ oc get pods -n openshift-sriov-network-operator

10.2.2. About the SR-IOV network metrics exporter

The Single Root I/O Virtualization (SR-IOV) network metrics exporter reads the metrics for SR-IOV
virtual functions (VFs) and exposes these VF metrics in Prometheus format. When the SR-IOV network
metrics exporter is enabled, you can query the SR-IOV VF metrics by using the OpenShift Container
Platform web console to monitor the networking activity of the SR-IOV pods.

When you query the SR-IOV VF metrics by using the web console, the SR-IOV network metrics exporter
fetches and returns the VF network statistics along with the name and namespace of the pod that the
VF is attached to.

The SR-IOV VF metrics that the metrics exporter reads and exposes in Prometheus format are
described in the following table:

Table 10.2. SR-IOV VF metrics

Metric Description Example PromQL query to

examine the VF metric

sriov_vf_rx_bytes Received bytes per virtual sriov_vf_rx_bytes * on
function. (pciAddr,node)
group_left(pod,namespace,d
ev_type)

sriov_kubepoddevice

sriov_vf_tx_bytes Transmitted bytes per virtual sriov_vf_tx_bytes * on
function. (pciAddr,node)
group_left(pod,namespace,d
ev_type)

sriov_kubepoddevice

183

OpenShift Container Platform 4.19 Networking Operators

Metric

sriov_vf_rx_packets

sriov_vf_tx_packets

sriov_vf_rx_dropped

sriov_vf_tx_dropped

sriov_vf_rx_multicast

sriov_vf_rx_broadcast

sriov_kubepoddevice

Description

Received packets per virtual
function.

Transmitted packets per virtual
function.

Dropped packets upon receipt
per virtual function.

Dropped packets during

transmission per virtual function.

Received multicast packets per
virtual function.

Received broadcast packets per
virtual function.

Virtual functions linked to active
pods.

Example PromQL query to

examine the VF metric

sriov_vf_rx_packets * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

sriov_vf_tx_packets * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

sriov_vf_rx_dropped * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

sriov_vf_tx_dropped * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

sriov_vf_rx_multicast * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

sriov_vf_rx_broadcast * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

You can also combine these queries with the kube-state-metrics to get more information about the SR-
IOV pods. For example, you can use the following query to get the VF network statistics along with the
application name from the standard Kubernetes pod label:

(sriov_vf_tx_packets * on (pciAddr,node) group_left(pod,namespace) sriov_kubepoddevice) * on
(pod,namespace) group_left (label_app_kubernetes_io_name) kube_pod_labels

184

CHAPTER 10. SR-IOV OPERATOR

10.2.2.1. Enabling the SR-IOV network metrics exporter

The Single Root I/O Virtualization (SR-IOV) network metrics exporter is disabled by default. To enable
the metrics exporter, you must set the spec.featureGates.metricsExporter field to true.

IMPORTANT

When the metrics exporter is enabled, the SR-IOV Network Operator deploys the metrics
exporter only on nodes with SR-IOV capabilities.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in as a user with cluster-admin privileges.
® You have installed the SR-IOV Network Operator.
Procedure
1. Enable cluster monitoring by running the following command:

I $ oc label ns/openshift-sriov-network-operator openshift.io/cluster-monitoring=true

To enable cluster monitoring, you must add the openshift.io/cluster-monitoring=true label in
the namespace where you have installed the SR-IOV Network Operator.

2. Set the spec.featureGates.metricsExporter field to true by running the following command:

$ oc patch -n openshift-sriov-network-operator sriovoperatorconfig/default \
--type="merge' -p="{"spec": {"featureGates": {"metricsExporter": true}}}'

Verification

1. Check that the SR-IOV network metrics exporter is enabled by running the following command:

I $ oc get pods -n openshift-sriov-network-operator

Example output

NAME READY STATUS RESTARTS AGE
operator-webhook-hzfg4 1/1 Running 0 5d22h
sriov-network-config-daemon-tr54m 1/1 Running 0 5d22h
sriov-network-metrics-exporter-z6d7t 1/1 Running 0 10s

sriov-network-operator-cc6fd88bc-9bsmt 1/1 Running 0 5d22h

The sriov-network-metrics-exporter pod must be in the READY state.

2. Optional: Examine the SR-IOV virtual function (VF) metrics by using the OpenShift Container
Platform web console. For more information, see "Querying metrics".

Additional resources

185

OpenShift Container Platform 4.19 Networking Operators

® Querying metrics for all projects with the monitoring dashboard

® Querying metrics for user-defined projects as a developer

10.2.3. Next steps

® Configuring an SR-IOV network device

® Optional: Uninstalling the SR-IOV Network Operator

10.3. UNINSTALLING THE SR-IOV NETWORK OPERATOR

To uninstall the SR-IOV Network Operator, you must delete any running SR-IOV workloads, uninstall the
Operator, and delete the webhooks that the Operator used.

10.3.1. Uninstalling the SR-IOV Network Operator

As a cluster administrator, you can uninstall the SR-IOV Network Operator.

Prerequisites

® You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

® You have the SR-IOV Network Operator installed.

Procedure

1. Delete all SR-IOV custom resources (CRs):

I $ oc delete sriovnetwork -n openshift-sriov-network-operator --all
I $ oc delete sriovnetworknodepolicy -n openshift-sriov-network-operator --all
I $ oc delete sriovibnetwork -n openshift-sriov-network-operator --all

I $ oc delete sriovoperatorconfigs -n openshift-sriov-network-operator --all

2. Follow the instructions in the "Deleting Operators from a cluster” section to remove the SR-IOV
Network Operator from your cluster.

3. Delete the SR-IOV custom resource definitions that remain in the cluster after the SR-IOV
Network Operator is uninstalled:

I $ oc delete crd sriovibnetworks.sriovnetwork.openshift.io
I $ oc delete crd sriovnetworknodepolicies.sriovnetwork.openshift.io
I $ oc delete crd sriovnetworknodestates.sriovnetwork.openshift.io

I $ oc delete crd sriovnetworkpoolconfigs.sriovnetwork.openshift.io

186

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.19/html/accessing_metrics/accessing-metrics-as-an-administrator#querying-metrics-for-all-projects-with-mon-dashboard_accessing-metrics-as-an-administrator
https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.19/html/accessing_metrics/accessing-metrics-as-a-developer#querying-metrics-for-user-defined-projects-with-mon-dashboard_accessing-metrics-as-a-developer
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/hardware_networks/#configuring-sriov-device

I $ oc delete crd sriovnetworks.sriovnetwork.openshift.io

I $ oc delete crd sriovoperatorconfigs.sriovnetwork.openshift.io

4. Delete the SR-IOV Network Operator namespace:

I $ oc delete namespace openshift-sriov-network-operator

Additional resources

® Deleting Operators from a cluster

CHAPTER 10. SR-IOV OPERATOR

187

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operators/#olm-deleting-operators-from-a-cluster

OpenShift Container Platform 4.19 Networking Operators

CHAPTER 1. DPU OPERATOR

11.1. ABOUT DPU AND THE DPU OPERATOR

As a cluster administrator, you can add the DPU Operator to your cluster to manage DPU devices and
network attachments.

IMPORTANT

The DPU Operator is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

11.1.1. Orchestrating DPUs with the DPU Operator

A Data Processing Unit (DPU) is a type of programmable processor that is considered one of the three
fundamental pillars of computing, alongside CPUs and GPUs. While CPUs handle general computing
tasks and GPUs accelerate specific workloads, the primary role of the DPU is to offload and accelerate
data-centric workloads, such as networking, storage, and security functions.

DPUs are typically used in data centers and cloud environments to improve performance, reduce
latency, and enhance security by offloading these tasks from the CPU. DPUs can also be used to create
a more efficient and flexible infrastructure by enabling the deployment of specialized workloads closer
to the data source.

The DPU Operator is responsible for managing the DPU devices and network attachments. The DPU
Operator deploys the DPU daemon onto OpenShift Container Platform compute nodes that interface
through an API controlling the DPU daemon running on the DPU. The DPU Operator is responsible for
the life-cycle management of the ovn-kube components and the necessary host network initialization
on the DPU.

The currently supported DPU device is described in the following table.

Table 11.1. Supported device

Vendor Device Firmware Description
Intel IPU E2100 Version 2.0.0.11126 A DPU designed to offload networking,
or later storage, and security tasks from host

CPUs in data centers, improving
efficiency and performance. For
instructions on deploying a full end-to-
end solution, see the Red Hat
Knowledgebase solution Accelerating
Confidential Al on OpenShift with the
Intel E2100 IPU, DPU Operator, and F5
NGINX.

188

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/articles/7120276

CHAPTER 11. DPU OPERATOR

11.2. INSTALLING THE DPU OPERATOR

You can install the Data Processing Unit (DPU) Operator on your cluster to manage DPU devices and
network attachments. Install the DPU Operator on both the host cluster and all the DPU clusters. The
DPU Operator manages the lifecycle of all the supported DPUs.

As a cluster administrator, you can install the DPU Operator by using the OpenShift Container Platform
CLI or the web console.

NOTE

You need to install the DPU Operator on the host cluster and each of the DPU clusters.

11.2.1. Installing the DPU Operator by using the CLI

As a cluster administrator, you can install the DPU Operator by using the CLI.

NOTE

The CLI must be used to install the DPU Operator on the DPU cluster.

Prerequisites

e Install the OpenShift CLI (oc).

® An account with cluster-admin privileges.

Procedure

1. Create the openshift-dpu-operator namespace by entering the following command:

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:

name: openshift-dpu-operator

annotations:

workload.openshift.io/allowed: management

EOF

2. Create an OperatorGroup custom resource (CR) by entering the following command:

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

name: dpu-operators

namespace: openshift-dpu-operator
spec:

targetNamespaces:

- openshift-dpu-operator
EOF

189

OpenShift Container Platform 4.19 Networking Operators

3. Create a Subscription CR for the DPU Operator by entering the following command:

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: openshift-dpu-operator-subscription
namespace: openshift-dpu-operator
spec:
channel: stable
name: dpu-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
EOF

Verification

1. To verify that the Operator is installed, enter the following command and then check that
output shows Succeeded for the Operator:

I $ oc get csv -n openshift-dpu-operator \
-0 custom-columns=Name:.metadata.name,Phase:.status.phase
2. Change to the openshift-dpu-operator project:
I $ oc project openshift-dpu-operator
3. Verify the DPU Operator is running by entering the following command:
I $ oc get pods -n openshift-dpu-operator
Example output

NAME READY STATUS RESTARTS AGE
dpu-operator-controller-manager-6b7bbb5db8-7Ivkj 2/2 Running 0 2m9s

11.2.2. Installing the DPU Operator using the web console

As a cluster administrator, you can install the DPU Operator by using the web console.

Prerequisites

e Install the OpenShift CLI (oc).

® An account with cluster-admin privileges.

Procedure
1. In the OpenShift Container Platform web console, click Operators - OperatorHub.

2. Select DPU Operator from the list of available Operators, and then click Install.

190

3.

CHAPTER 11. DPU OPERATOR

On the Install Operator page, under Installed Namespace, the Operator recommended
Namespace option is preselected by default. No action is required.

a. Click Install.

Verification

1.

2.

Navigate to the Operators — Installed Operators page.

Ensure that DPU Operator is listed in the openshift-dpu-operator project with a Status of
InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the installation
later succeeds with an InstallSucceeded message, you can ignore the Failed
message.

Troubleshooting

1.2.3.

Inspect the Operator Subscriptions and Install Plans tabs for any failure or errors under
Status.

Navigate to the Workloads —» Pods page and check the logs for pods in the openshift-dpu-
operator project.

Check the namespace of the YAML file. If the annotation is missing, you can add the annotation
workload.openshift.io/allowed=management to the Operator namespace with the following
command:

I $ oc annotate ns/openshift-dpu-operator workload.openshift.io/allowed=management

NOTE

For single-node OpenShift clusters, the annotation
workload.openshift.io/allowed=management is required for the namespace.

L

Next steps

Configuring the DPU Operator

11.3. CONFIGURING THE DPU OPERATOR

You can configure the DPU Operator to manage the DPU devices and network attachments in your

cluster.

11.3.1. Configuring the DPU Operator

To configure the DPU Operator follow these steps:

Procedure

191

OpenShift Container Platform 4.19 Networking Operators

1. Create a DpuOperatorConfig custom resource (CR) on both the host cluster and on each of
the DPU clusters. The DPU Operator in each cluster is activated after this CR is created.

2. Create a file named dpu-operator-host-config.yaml by using the following YAML:

apiVersion: config.openshift.io/v1
kind: DpuOperatorConfig
metadata:

name: dpu-operator-config ﬂ
spec:

mode: host 9

ﬂ The name of the custom resource must be dpu-operator-config.
Set the value to host on the host cluster. On each DPU cluster, which runs a single
MicroShift cluster per DPU, set the value to dpu.
3. Create the resource by running the following command:

I $ oc apply -f dpu-operator-host-config.yaml

4. You must label all nodes that either have an attached DPU or are functioning as a DPU. On the
host cluster, this means labeling all compute nodes assuming each node has an attached DPU
with dpu=true. On the DPU, where each MicroShift cluster consists of a single node, label that
single node in each cluster with dpu=true. You can apply this label by running the following
command:

I $ oc label node <node_name> dpu=true

where:

node_name

Refers to the name of your node, such as worker-1.

11.4. RUNNING A WORKLOAD ON THE DPU

Running workloads on a DPU enables offloading specialized infrastructure tasks such as networking,
security, and storage to a dedicated processing unit. This improves performance, enforces a stronger
security boundary between infrastructure and application workloads, and frees up host CPU resources.

11.4.1. Running a workload on the DPU

Follow these steps to deploy a workload on the DPU.

Prerequisites
® The OpenShift CLI (o¢) is installed.
® An account with cluster-admin privileges is available.

® The DPU Operator is installed.

192

CHAPTER 11. DPU OPERATOR

Procedure

1. Create a sample workload on the host side by using the following YAML, save the file as
workload-host.yaml:

apiVersion: vi
kind: Pod
metadata:
name: my-pod
namespace: default
annotations:
k8s.v1.cni.cncf.io/networks: default-sriov-net
spec:
nodeSelector:
kubernetes.io/hostname: worker-237 ﬂ
containers:
- name: appcntri
image: registry.access.redhat.com/ubi9/ubi:latest
command: [/bin/sh', '-c', 'sleep infinity']
imagePullPolicy: Always
securityContext:
priviledged: true
runAsNonRoot: false
runAsUser: 0
seccompProfile:
type: RuntimeDefault
resources:
requests:
openshift.io/dpu: '1'
limits:
openshift.io/dpu: '1'

ﬂ The name of the node where the workload is deployed.

2. Create the workload by running the following command:

I $ oc apply -f workload-host.yaml

11.4.2. Creating a service function chain on the DPU

Network service chaining, also known as service function chaining (SFC) is a capability that uses
software-defined networking (SDN) capabilities to create a chain of connected network services, such
as L4-7 services like firewalls, network address translation (NAT), and intrusion protection.

Follow this procedure on the DPU to create the network function my-network-function in the service
function chain.

Prerequisites

® |nstall the OpenShift CLI (oc).
® An account with cluster-admin privileges.

® |[nstall the DPU Operator.

193

OpenShift Container Platform 4.19 Networking Operators

Procedure

1. Save the following YAML file example as sfc.yaml:

apiVersion: config.openshift.io/v1
kind: ServiceFunctionChain
metadata:

name: sfc

namespace: openshift-dpu-operator
spec:

networkFunctions:

- name: my-network-function ﬂ

image: quay.io/example-org/my-network-function:latest g

The name of the network function. This name is used to identify the network function in
the service function chain.

The URL to the container image that contains the network function. The image must be
accessible from the DPU.

2. Create the chain by running the following command on the DPU nodes:

I $ oc apply -f sfc.yaml

11.5. UNINSTALLING THE DPU OPERATOR

To uninstall the DPU Operator, you must first delete any running DPU workloads. Follow this procedure
to uninstall the DPU Operator.

11.5.1. Uninstalling the DPU Operator

As a cluster administrator, you can uninstall the DPU Operator.

Prerequisites

® You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

® You have the DPU Operator installed.

Procedure

1. Delete the DpuOperatorConfig CR that was created by running the following command

I $ oc delete DpuOperatorConfig dpu-operator-config

2. Delete the subscription that was used to install the DPU Operator by running the following
command:

I $ oc delete Subscription openshift-dpu-operator-subscription -n openshift-dpu-operator

3. Remove the OperatorGroup resource that was created by running the following command:

194

CHAPTER 11. DPU OPERATOR

I $ oc delete OperatorGroup dpu-operators -n openshift-dpu-operator

4. Uninstall the DPU Operator as follows:

a. Check the installed Operators by running the following command:

I $ oc get csv -n openshift-dpu-operator

Example output

NAME DISPLAY VERSION REPLACES PHASE
dpu-operator.v4.19.0-202503130333 DPU Operator 4.19.0-202503130333
Failed

b. Delete the DPU Operator by running the following command:

I $ oc delete csv dpu-operator.v4.19.0-202503130333 -n openshift-dpu-operator

5. Delete the namespace that was created for the DPU Operator by running the following
command:

I $ oc delete namespace openshift-dpu-operator

Verification

1. Verify that the DPU Operator is uninstalled by running the following command. An example of
succesful command output is No resources found in openshift-dpu-operator namespace.

I $ oc get csv -n openshift-dpu-operator

Additional resources

® Deleting Operators from a cluster

195

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operators/#olm-deleting-operators-from-a-cluster

	Table of Contents
	CHAPTER 1. KUBERNETES NMSTATE OPERATOR
	1.1. INSTALLING THE KUBERNETES NMSTATE OPERATOR
	1.1.1. Installing the Kubernetes NMState Operator by using the web console
	1.1.2. Installing the Kubernetes NMState Operator by using the CLI
	1.1.3. Viewing metrics collected by the Kubernetes NMState Operator

	1.2. UNINSTALLING THE KUBERNETES NMSTATE OPERATOR
	1.3. ADDITIONAL RESOURCES

	CHAPTER 2. AWS LOAD BALANCER OPERATOR
	2.1. AWS LOAD BALANCER OPERATOR RELEASE NOTES
	2.1.1. AWS Load Balancer Operator 1.2.0
	2.1.1.1. Notable changes

	2.1.2. AWS Load Balancer Operator 1.1.1
	2.1.3. AWS Load Balancer Operator 1.1.0
	2.1.3.1. Notable changes
	2.1.3.2. New features
	2.1.3.3. Bug fixes

	2.1.4. AWS Load Balancer Operator 1.0.1
	2.1.5. AWS Load Balancer Operator 1.0.0
	2.1.5.1. Notable changes
	2.1.5.2. Bug fixes

	2.1.6. Earlier versions

	2.2. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	2.2.1. AWS Load Balancer Operator considerations
	2.2.2. AWS Load Balancer Operator
	2.2.3. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into an Outpost

	2.3. PREPARING AN AWS STS CLUSTER FOR THE AWS LOAD BALANCER OPERATOR
	2.3.1. Prerequisites
	2.3.2. Creating an IAM role for the AWS Load Balancer Operator
	2.3.2.1. Creating an AWS IAM role by using the Cloud Credential Operator utility
	2.3.2.2. Creating an AWS IAM role by using the AWS CLI

	2.3.3. Configuring the ARN role for the AWS Load Balancer Operator
	2.3.4. Creating an IAM role for the AWS Load Balancer Controller
	2.3.4.1. Creating an AWS IAM role for the controller by using the Cloud Credential Operator utility
	2.3.4.2. Creating an AWS IAM role for the controller by using the AWS CLI

	2.3.5. Additional resources

	2.4. INSTALLING THE AWS LOAD BALANCER OPERATOR
	2.4.1. Installing the AWS Load Balancer Operator by using the web console
	2.4.2. Installing the AWS Load Balancer Operator by using the CLI
	2.4.3. Creating the AWS Load Balancer Controller

	2.5. CONFIGURING THE AWS LOAD BALANCER OPERATOR
	2.5.1. Trusting the certificate authority of the cluster-wide proxy
	2.5.2. Adding TLS termination on the AWS Load Balancer
	2.5.3. Creating multiple ingress resources through a single AWS Load Balancer
	2.5.4. AWS Load Balancer Operator logs

	CHAPTER 3. EBPF MANAGER OPERATOR
	3.1. ABOUT THE EBPF MANAGER OPERATOR
	3.1.1. About Extended Berkeley Packet Filter (eBPF)
	3.1.2. About the eBPF Manager Operator
	3.1.3. Additional resources
	3.1.4. Next steps

	3.2. INSTALLING THE EBPF MANAGER OPERATOR
	3.2.1. Installing the eBPF Manager Operator using the CLI
	3.2.2. Installing the eBPF Manager Operator using the web console
	3.2.3. Next steps

	3.3. DEPLOYING AN EBPF PROGRAM
	3.3.1. Deploying a containerized eBPF program

	CHAPTER 4. EXTERNAL DNS OPERATOR
	4.1. EXTERNAL DNS OPERATOR RELEASE NOTES
	4.1.1. External DNS Operator 1.3.2
	4.1.2. External DNS Operator 1.3.1
	4.1.3. External DNS Operator 1.3.0
	4.1.3.1. Bug fixes

	4.1.4. External DNS Operator 1.2.0
	4.1.4.1. New features
	4.1.4.2. Bug fixes

	4.1.5. External DNS Operator 1.1.1
	4.1.6. External DNS Operator 1.1.0
	4.1.6.1. Bug fixes

	4.1.7. External DNS Operator 1.0.1
	4.1.8. External DNS Operator 1.0.0
	4.1.8.1. Bug fixes

	4.2. UNDERSTANDING THE EXTERNAL DNS OPERATOR
	4.2.1. External DNS Operator
	4.2.2. Viewing External DNS Operator logs
	4.2.2.1. External DNS Operator domain name limitations

	4.3. INSTALLING THE EXTERNAL DNS OPERATOR
	4.3.1. Installing the External DNS Operator with OperatorHub
	4.3.2. Installing the External DNS Operator by using the CLI

	4.4. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS
	4.4.1. External DNS Operator configuration parameters

	4.5. CREATING DNS RECORDS ON AWS
	4.5.1. Creating DNS records on an public hosted zone for AWS by using Red Hat External DNS Operator
	4.5.2. Creating DNS records in a different AWS Account using a shared VPC

	4.6. CREATING DNS RECORDS ON AZURE
	4.6.1. Creating DNS records on an Azure DNS zone

	4.7. CREATING DNS RECORDS ON GOOGLE CLOUD
	4.7.1. Creating DNS records on a public managed zone for Google Cloud

	4.8. CREATING DNS RECORDS ON INFOBLOX
	4.8.1. Creating DNS records on a public DNS zone on Infoblox

	4.9. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL DNS OPERATOR
	4.9.1. Trusting the certificate authority of the cluster-wide proxy

	CHAPTER 5. METALLB OPERATOR
	5.1. ABOUT METALLB AND THE METALLB OPERATOR
	5.1.1. When to use MetalLB
	5.1.2. MetalLB Operator custom resources
	5.1.3. MetalLB software components
	5.1.4. MetalLB and external traffic policy
	5.1.5. MetalLB concepts for layer 2 mode
	5.1.6. MetalLB concepts for BGP mode
	5.1.7. Limitations and restrictions
	5.1.7.1. Infrastructure considerations for MetalLB
	5.1.7.2. Limitations for layer 2 mode
	5.1.7.3. Limitations for BGP mode

	5.1.8. Additional resources

	5.2. INSTALLING THE METALLB OPERATOR
	5.2.1. Installing the MetalLB Operator from the OperatorHub by using the web console
	5.2.2. Installing from OperatorHub using the CLI
	5.2.3. Starting MetalLB on your cluster
	5.2.4. Deployment specifications for MetalLB
	5.2.4.1. Limit speaker pods to specific nodes
	5.2.4.2. Configuring pod priority and pod affinity in a MetalLB deployment
	5.2.4.3. Configuring pod CPU limits in a MetalLB deployment

	5.2.5. Additional resources
	5.2.6. Next steps

	5.3. UPGRADING THE METALLB OPERATOR
	5.3.1. Manually upgrading the MetalLB Operator
	5.3.2. Additional resources

	CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	6.1. CLUSTER NETWORK OPERATOR
	6.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
	6.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
	6.4. ENABLING IP FORWARDING GLOBALLY
	6.5. VIEWING CLUSTER NETWORK OPERATOR LOGS
	6.6. CLUSTER NETWORK OPERATOR CONFIGURATION
	6.6.1. Cluster Network Operator configuration object
	6.6.1.1. defaultNetwork object configuration

	6.6.2. Cluster Network Operator example configuration

	6.7. ADDITIONAL RESOURCES

	CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	7.1. CHECKING THE STATUS OF THE DNS OPERATOR
	7.2. VIEW THE DEFAULT DNS
	7.3. USING DNS FORWARDING
	7.4. CHECKING DNS OPERATOR STATUS
	7.5. VIEWING DNS OPERATOR LOGS
	7.6. SETTING THE COREDNS LOG LEVEL
	7.7. VIEWING THE COREDNS LOGS
	7.8. SETTING THE COREDNS OPERATOR LOG LEVEL
	7.9. TUNING THE COREDNS CACHE
	7.10. ADVANCED TASKS
	7.10.1. Changing the DNS Operator managementState
	7.10.2. Controlling DNS pod placement
	7.10.3. Configuring DNS forwarding with TLS

	CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	8.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
	8.2. THE INGRESS CONFIGURATION ASSET
	8.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS
	8.3.1. Ingress Controller TLS security profiles
	8.3.1.1. Understanding TLS security profiles
	8.3.1.2. Configuring the TLS security profile for the Ingress Controller
	8.3.1.3. Configuring mutual TLS authentication

	8.4. VIEW THE DEFAULT INGRESS CONTROLLER
	8.5. VIEW INGRESS OPERATOR STATUS
	8.6. VIEW INGRESS CONTROLLER LOGS
	8.7. VIEW INGRESS CONTROLLER STATUS
	8.8. CREATING A CUSTOM INGRESS CONTROLLER
	8.9. CONFIGURING THE INGRESS CONTROLLER
	8.9.1. Setting a custom default certificate
	8.9.2. Removing a custom default certificate
	8.9.3. Autoscaling an Ingress Controller
	8.9.4. Scaling an Ingress Controller
	8.9.5. Configuring Ingress access logging
	8.9.6. Setting Ingress Controller thread count
	8.9.7. Configuring an Ingress Controller to use an internal load balancer
	8.9.8. Configuring global access for an Ingress Controller on Google Cloud
	8.9.9. Setting the Ingress Controller health check interval
	8.9.10. Configuring the default Ingress Controller for your cluster to be internal
	8.9.11. Configuring the route admission policy
	8.9.12. Using wildcard routes
	8.9.13. HTTP header configuration
	8.9.13.1. Order of precedence
	8.9.13.2. Special case headers

	8.9.14. Setting or deleting HTTP request and response headers in an Ingress Controller
	8.9.15. Using X-Forwarded headers
	8.9.15.1. Example use cases

	8.9.16. Enable or disable HTTP/2 on Ingress Controllers
	8.9.16.1. Enabling HTTP/2
	8.9.16.2. Disabling HTTP/2

	8.9.17. Configuring the PROXY protocol for an Ingress Controller
	8.9.18. Specifying an alternative cluster domain using the appsDomain option
	8.9.19. Converting HTTP header case
	8.9.20. Using router compression
	8.9.21. Exposing router metrics
	8.9.22. Customizing HAProxy error code response pages
	8.9.23. Setting the Ingress Controller maximum connections

	8.10. ADDITIONAL RESOURCES

	CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	9.1. INGRESS NODE FIREWALL OPERATOR
	9.2. INSTALLING THE INGRESS NODE FIREWALL OPERATOR
	9.2.1. Installing the Ingress Node Firewall Operator using the CLI
	9.2.2. Installing the Ingress Node Firewall Operator using the web console

	9.3. DEPLOYING INGRESS NODE FIREWALL OPERATOR
	9.3.1. Ingress Node Firewall configuration object
	9.3.2. Ingress Node Firewall Operator example configuration
	9.3.3. Ingress Node Firewall rules object
	9.3.3.1. Ingress object configuration
	9.3.3.2. Ingress Node Firewall rules object example
	9.3.3.3. Zero trust Ingress Node Firewall rules object example

	9.4. INGRESS NODE FIREWALL OPERATOR INTEGRATION
	9.5. CONFIGURING INGRESS NODE FIREWALL OPERATOR TO USE THE EBPF MANAGER OPERATOR
	9.6. VIEWING INGRESS NODE FIREWALL OPERATOR RULES
	9.7. TROUBLESHOOTING THE INGRESS NODE FIREWALL OPERATOR
	9.8. ADDITIONAL RESOURCES

	CHAPTER 10. SR-IOV OPERATOR
	10.1. INSTALLING THE SR-IOV NETWORK OPERATOR
	10.1.1. Installing the SR-IOV Network Operator
	10.1.1.1. CLI: Installing the SR-IOV Network Operator
	10.1.1.2. Web console: Installing the SR-IOV Network Operator

	10.1.2. Next steps

	10.2. CONFIGURING THE SR-IOV NETWORK OPERATOR
	10.2.1. Configuring the SR-IOV Network Operator
	10.2.1.1. SR-IOV Network Operator config custom resource
	10.2.1.2. About the Network Resources Injector
	10.2.1.3. Disabling or enabling the Network Resources Injector
	10.2.1.4. About the SR-IOV Network Operator admission controller webhook
	10.2.1.5. Disabling or enabling the SR-IOV Network Operator admission controller webhook
	10.2.1.6. About custom node selectors
	10.2.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon
	10.2.1.8. Configuring the SR-IOV Network Operator for single node installations
	10.2.1.9. Deploying the SR-IOV Operator for hosted control planes

	10.2.2. About the SR-IOV network metrics exporter
	10.2.2.1. Enabling the SR-IOV network metrics exporter

	10.2.3. Next steps

	10.3. UNINSTALLING THE SR-IOV NETWORK OPERATOR
	10.3.1. Uninstalling the SR-IOV Network Operator

	CHAPTER 11. DPU OPERATOR
	11.1. ABOUT DPU AND THE DPU OPERATOR
	11.1.1. Orchestrating DPUs with the DPU Operator

	11.2. INSTALLING THE DPU OPERATOR
	11.2.1. Installing the DPU Operator by using the CLI
	11.2.2. Installing the DPU Operator using the web console
	11.2.3. Next steps

	11.3. CONFIGURING THE DPU OPERATOR
	11.3.1. Configuring the DPU Operator

	11.4. RUNNING A WORKLOAD ON THE DPU
	11.4.1. Running a workload on the DPU
	11.4.2. Creating a service function chain on the DPU

	11.5. UNINSTALLING THE DPU OPERATOR
	11.5.1. Uninstalling the DPU Operator

