
OpenShift Container Platform 4.19

Networking Operators

Managing networking-specific Operators in OpenShift Container Platform

Last Updated: 2026-01-15

OpenShift Container Platform 4.19 Networking Operators

Managing networking-specific Operators in OpenShift Container Platform

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document covers the installation, configuration, and management of various networking-
related Operators in OpenShift Container Platform.

. .

. .

. .

Table of Contents

CHAPTER 1. KUBERNETES NMSTATE OPERATOR
1.1. INSTALLING THE KUBERNETES NMSTATE OPERATOR

1.1.1. Installing the Kubernetes NMState Operator by using the web console
1.1.2. Installing the Kubernetes NMState Operator by using the CLI
1.1.3. Viewing metrics collected by the Kubernetes NMState Operator

1.2. UNINSTALLING THE KUBERNETES NMSTATE OPERATOR
1.3. ADDITIONAL RESOURCES

CHAPTER 2. AWS LOAD BALANCER OPERATOR
2.1. AWS LOAD BALANCER OPERATOR RELEASE NOTES

2.1.1. AWS Load Balancer Operator 1.2.0
2.1.1.1. Notable changes

2.1.2. AWS Load Balancer Operator 1.1.1
2.1.3. AWS Load Balancer Operator 1.1.0

2.1.3.1. Notable changes
2.1.3.2. New features
2.1.3.3. Bug fixes

2.1.4. AWS Load Balancer Operator 1.0.1
2.1.5. AWS Load Balancer Operator 1.0.0

2.1.5.1. Notable changes
2.1.5.2. Bug fixes

2.1.6. Earlier versions
2.2. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER PLATFORM

2.2.1. AWS Load Balancer Operator considerations
2.2.2. AWS Load Balancer Operator
2.2.3. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into an Outpost

2.3. PREPARING AN AWS STS CLUSTER FOR THE AWS LOAD BALANCER OPERATOR
2.3.1. Prerequisites
2.3.2. Creating an IAM role for the AWS Load Balancer Operator

2.3.2.1. Creating an AWS IAM role by using the Cloud Credential Operator utility
2.3.2.2. Creating an AWS IAM role by using the AWS CLI

2.3.3. Configuring the ARN role for the AWS Load Balancer Operator
2.3.4. Creating an IAM role for the AWS Load Balancer Controller

2.3.4.1. Creating an AWS IAM role for the controller by using the Cloud Credential Operator utility
2.3.4.2. Creating an AWS IAM role for the controller by using the AWS CLI

2.3.5. Additional resources
2.4. INSTALLING THE AWS LOAD BALANCER OPERATOR

2.4.1. Installing the AWS Load Balancer Operator by using the web console
2.4.2. Installing the AWS Load Balancer Operator by using the CLI
2.4.3. Creating the AWS Load Balancer Controller

2.5. CONFIGURING THE AWS LOAD BALANCER OPERATOR
2.5.1. Trusting the certificate authority of the cluster-wide proxy
2.5.2. Adding TLS termination on the AWS Load Balancer
2.5.3. Creating multiple ingress resources through a single AWS Load Balancer
2.5.4. AWS Load Balancer Operator logs

CHAPTER 3. EBPF MANAGER OPERATOR
3.1. ABOUT THE EBPF MANAGER OPERATOR

3.1.1. About Extended Berkeley Packet Filter (eBPF)
3.1.2. About the eBPF Manager Operator
3.1.3. Additional resources

7
8
8
9

10
13
14

16
16
16
16
16
16
16
17
17
17
17
17
17
17
18
18
18
19

20
20
21
21
22
23
24
24
25
27
27
27
28
30
33
33
34
35
38

39
39
39
39
40

Table of Contents

1

. .

. .

3.1.4. Next steps
3.2. INSTALLING THE EBPF MANAGER OPERATOR

3.2.1. Installing the eBPF Manager Operator using the CLI
3.2.2. Installing the eBPF Manager Operator using the web console
3.2.3. Next steps

3.3. DEPLOYING AN EBPF PROGRAM
3.3.1. Deploying a containerized eBPF program

CHAPTER 4. EXTERNAL DNS OPERATOR
4.1. EXTERNAL DNS OPERATOR RELEASE NOTES

4.1.1. External DNS Operator 1.3.2
4.1.2. External DNS Operator 1.3.1
4.1.3. External DNS Operator 1.3.0

4.1.3.1. Bug fixes
4.1.4. External DNS Operator 1.2.0

4.1.4.1. New features
4.1.4.2. Bug fixes

4.1.5. External DNS Operator 1.1.1
4.1.6. External DNS Operator 1.1.0

4.1.6.1. Bug fixes
4.1.7. External DNS Operator 1.0.1
4.1.8. External DNS Operator 1.0.0

4.1.8.1. Bug fixes
4.2. UNDERSTANDING THE EXTERNAL DNS OPERATOR

4.2.1. External DNS Operator
4.2.2. Viewing External DNS Operator logs

4.2.2.1. External DNS Operator domain name limitations
4.3. INSTALLING THE EXTERNAL DNS OPERATOR

4.3.1. Installing the External DNS Operator with OperatorHub
4.3.2. Installing the External DNS Operator by using the CLI

4.4. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS
4.4.1. External DNS Operator configuration parameters

4.5. CREATING DNS RECORDS ON AWS
4.5.1. Creating DNS records on an public hosted zone for AWS by using Red Hat External DNS Operator
4.5.2. Creating DNS records in a different AWS Account using a shared VPC

4.6. CREATING DNS RECORDS ON AZURE
4.6.1. Creating DNS records on an Azure DNS zone

4.7. CREATING DNS RECORDS ON GOOGLE CLOUD
4.7.1. Creating DNS records on a public managed zone for Google Cloud

4.8. CREATING DNS RECORDS ON INFOBLOX
4.8.1. Creating DNS records on a public DNS zone on Infoblox

4.9. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL DNS OPERATOR
4.9.1. Trusting the certificate authority of the cluster-wide proxy

CHAPTER 5. METALLB OPERATOR
5.1. ABOUT METALLB AND THE METALLB OPERATOR

5.1.1. When to use MetalLB
5.1.2. MetalLB Operator custom resources
5.1.3. MetalLB software components
5.1.4. MetalLB and external traffic policy
5.1.5. MetalLB concepts for layer 2 mode
5.1.6. MetalLB concepts for BGP mode
5.1.7. Limitations and restrictions

40
40
40
42
42
43
43

45
45
45
45
45
45
45
46
46
46
46
46
46
46
46
46
46
47
47
48
48
49
51
51

53
53
55
56
57
59
59
61
61

62
62

64
64
64
64
65
66
67
69
71

OpenShift Container Platform 4.19 Networking Operators

2

. .

. .

. .

5.1.7.1. Infrastructure considerations for MetalLB
5.1.7.2. Limitations for layer 2 mode

5.1.7.2.1. Single-node bottleneck
5.1.7.2.2. Slow failover performance
5.1.7.2.3. Additional Network and MetalLB cannot use same network

5.1.7.3. Limitations for BGP mode
5.1.7.3.1. Node failure can break all active connections
5.1.7.3.2. Support for a single ASN and a single router ID only

5.1.8. Additional resources
5.2. INSTALLING THE METALLB OPERATOR

5.2.1. Installing the MetalLB Operator from the OperatorHub by using the web console
5.2.2. Installing from OperatorHub using the CLI
5.2.3. Starting MetalLB on your cluster
5.2.4. Deployment specifications for MetalLB

5.2.4.1. Limit speaker pods to specific nodes
5.2.4.2. Configuring pod priority and pod affinity in a MetalLB deployment
5.2.4.3. Configuring pod CPU limits in a MetalLB deployment

5.2.5. Additional resources
5.2.6. Next steps

5.3. UPGRADING THE METALLB OPERATOR
5.3.1. Manually upgrading the MetalLB Operator
5.3.2. Additional resources

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
6.1. CLUSTER NETWORK OPERATOR
6.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
6.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
6.4. ENABLING IP FORWARDING GLOBALLY
6.5. VIEWING CLUSTER NETWORK OPERATOR LOGS
6.6. CLUSTER NETWORK OPERATOR CONFIGURATION

6.6.1. Cluster Network Operator configuration object
6.6.1.1. defaultNetwork object configuration

6.6.1.1.1. Configuration for the OVN-Kubernetes network plugin
6.6.2. Cluster Network Operator example configuration

6.7. ADDITIONAL RESOURCES

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
7.1. CHECKING THE STATUS OF THE DNS OPERATOR
7.2. VIEW THE DEFAULT DNS
7.3. USING DNS FORWARDING
7.4. CHECKING DNS OPERATOR STATUS
7.5. VIEWING DNS OPERATOR LOGS
7.6. SETTING THE COREDNS LOG LEVEL
7.7. VIEWING THE COREDNS LOGS
7.8. SETTING THE COREDNS OPERATOR LOG LEVEL
7.9. TUNING THE COREDNS CACHE
7.10. ADVANCED TASKS

7.10.1. Changing the DNS Operator managementState
7.10.2. Controlling DNS pod placement
7.10.3. Configuring DNS forwarding with TLS

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
8.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
8.2. THE INGRESS CONFIGURATION ASSET

71
71
71
71
72
72
72
72
73
73
73
74
75
77
77
78
80
80
81
81
81

82

83
83
83
84
85
86
86
86
87
88
93
94

95
95
95
96
98
99
99

100
100
101
102
102
102
104

107
107
107

Table of Contents

3

. .

8.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS
8.3.1. Ingress Controller TLS security profiles

8.3.1.1. Understanding TLS security profiles
8.3.1.2. Configuring the TLS security profile for the Ingress Controller
8.3.1.3. Configuring mutual TLS authentication

8.4. VIEW THE DEFAULT INGRESS CONTROLLER
8.5. VIEW INGRESS OPERATOR STATUS
8.6. VIEW INGRESS CONTROLLER LOGS
8.7. VIEW INGRESS CONTROLLER STATUS
8.8. CREATING A CUSTOM INGRESS CONTROLLER
8.9. CONFIGURING THE INGRESS CONTROLLER

8.9.1. Setting a custom default certificate
8.9.2. Removing a custom default certificate
8.9.3. Autoscaling an Ingress Controller
8.9.4. Scaling an Ingress Controller
8.9.5. Configuring Ingress access logging
8.9.6. Setting Ingress Controller thread count
8.9.7. Configuring an Ingress Controller to use an internal load balancer
8.9.8. Configuring global access for an Ingress Controller on Google Cloud
8.9.9. Setting the Ingress Controller health check interval
8.9.10. Configuring the default Ingress Controller for your cluster to be internal
8.9.11. Configuring the route admission policy
8.9.12. Using wildcard routes
8.9.13. HTTP header configuration

8.9.13.1. Order of precedence
8.9.13.2. Special case headers

8.9.14. Setting or deleting HTTP request and response headers in an Ingress Controller
8.9.15. Using X-Forwarded headers

8.9.15.1. Example use cases
8.9.16. Enable or disable HTTP/2 on Ingress Controllers

8.9.16.1. Enabling HTTP/2
8.9.16.2. Disabling HTTP/2

8.9.17. Configuring the PROXY protocol for an Ingress Controller
8.9.18. Specifying an alternative cluster domain using the appsDomain option
8.9.19. Converting HTTP header case
8.9.20. Using router compression
8.9.21. Exposing router metrics
8.9.22. Customizing HAProxy error code response pages
8.9.23. Setting the Ingress Controller maximum connections

8.10. ADDITIONAL RESOURCES

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM
9.1. INGRESS NODE FIREWALL OPERATOR
9.2. INSTALLING THE INGRESS NODE FIREWALL OPERATOR

9.2.1. Installing the Ingress Node Firewall Operator using the CLI
9.2.2. Installing the Ingress Node Firewall Operator using the web console

9.3. DEPLOYING INGRESS NODE FIREWALL OPERATOR
9.3.1. Ingress Node Firewall configuration object
9.3.2. Ingress Node Firewall Operator example configuration
9.3.3. Ingress Node Firewall rules object

9.3.3.1. Ingress object configuration
9.3.3.2. Ingress Node Firewall rules object example
9.3.3.3. Zero trust Ingress Node Firewall rules object example

107
118
118

120
122
123
123
123
124
124
125
125
126
127
131
132
136
136
138
139
140
140
141

142
142
143
145
146
147
147
148
149
150
152
153
155
156
157
160
160

161
161
161
161

163
164
164
165
166
166
167
168

OpenShift Container Platform 4.19 Networking Operators

4

. .

. .

9.4. INGRESS NODE FIREWALL OPERATOR INTEGRATION
9.5. CONFIGURING INGRESS NODE FIREWALL OPERATOR TO USE THE EBPF MANAGER OPERATOR
9.6. VIEWING INGRESS NODE FIREWALL OPERATOR RULES
9.7. TROUBLESHOOTING THE INGRESS NODE FIREWALL OPERATOR
9.8. ADDITIONAL RESOURCES

CHAPTER 10. SR-IOV OPERATOR
10.1. INSTALLING THE SR-IOV NETWORK OPERATOR

10.1.1. Installing the SR-IOV Network Operator
10.1.1.1. CLI: Installing the SR-IOV Network Operator
10.1.1.2. Web console: Installing the SR-IOV Network Operator

10.1.2. Next steps
10.2. CONFIGURING THE SR-IOV NETWORK OPERATOR

10.2.1. Configuring the SR-IOV Network Operator
10.2.1.1. SR-IOV Network Operator config custom resource
10.2.1.2. About the Network Resources Injector
10.2.1.3. Disabling or enabling the Network Resources Injector
10.2.1.4. About the SR-IOV Network Operator admission controller webhook
10.2.1.5. Disabling or enabling the SR-IOV Network Operator admission controller webhook
10.2.1.6. About custom node selectors
10.2.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon
10.2.1.8. Configuring the SR-IOV Network Operator for single node installations
10.2.1.9. Deploying the SR-IOV Operator for hosted control planes

10.2.2. About the SR-IOV network metrics exporter
10.2.2.1. Enabling the SR-IOV network metrics exporter

10.2.3. Next steps
10.3. UNINSTALLING THE SR-IOV NETWORK OPERATOR

10.3.1. Uninstalling the SR-IOV Network Operator

CHAPTER 11. DPU OPERATOR
11.1. ABOUT DPU AND THE DPU OPERATOR

11.1.1. Orchestrating DPUs with the DPU Operator
11.2. INSTALLING THE DPU OPERATOR

11.2.1. Installing the DPU Operator by using the CLI
11.2.2. Installing the DPU Operator using the web console
11.2.3. Next steps

11.3. CONFIGURING THE DPU OPERATOR
11.3.1. Configuring the DPU Operator

11.4. RUNNING A WORKLOAD ON THE DPU
11.4.1. Running a workload on the DPU
11.4.2. Creating a service function chain on the DPU

11.5. UNINSTALLING THE DPU OPERATOR
11.5.1. Uninstalling the DPU Operator

169
169
170
171
171

172
172
172
172
173
174
174
174
175
177
178
179
179
180
180
181

182
183
185
186
186
186

188
188
188
189
189
190
191
191
191

192
192
193
194
194

Table of Contents

5

OpenShift Container Platform 4.19 Networking Operators

6

CHAPTER 1. KUBERNETES NMSTATE OPERATOR
The Kubernetes NMState Operator provides a Kubernetes API for performing state-driven network
configuration across the OpenShift Container Platform cluster’s nodes with NMState. The Kubernetes
NMState Operator provides users with functionality to configure various network interface types, DNS,
and routing on cluster nodes. Additionally, the daemons on the cluster nodes periodically report on the
state of each node’s network interfaces to the API server.

IMPORTANT

Red Hat supports the Kubernetes NMState Operator in production environments on
bare-metal, IBM Power®, IBM Z®, IBM® LinuxONE, VMware vSphere, and Red Hat
OpenStack Platform (RHOSP) installations.

Red Hat support exists for using the Kubernetes NMState Operator on Microsoft Azure
but in a limited capacity. Support is limited to configuring DNS servers on your system as
a postinstallation task.

Before you can use NMState with OpenShift Container Platform, you must install the Kubernetes
NMState Operator. After you install the Kubernetes NMState Operator, you can complete the following
tasks:

Observing and updating the node network state and configuration

Creating a manifest object that includes a customized br-ex bridge

For more information on these tasks, see the Additional resources section.

NOTE

The Kubernetes NMState Operator updates the network configuration of a secondary
NIC. The Operator cannot update the network configuration of the primary NIC, or
update the br-ex bridge on most on-premise networks.

On a bare-metal platform, using the Kubernetes NMState Operator to update the br-ex
bridge network configuration is only supported if you set the br-ex bridge as the interface
in a machine config manifest file. To update the br-ex bridge as a postinstallation task,
you must set the br-ex bridge as the interface in the NMState configuration of the
NodeNetworkConfigurationPolicy custom resource (CR) for your cluster. For more
information, see Creating a manifest object that includes a customized br-ex bridge in
Postinstallation configuration.

OpenShift Container Platform uses nmstate to report on and configure the state of the node network.
This makes it possible to modify the network policy configuration, such as by creating a Linux bridge on
all nodes, by applying a single configuration manifest to the cluster.

Node networking is monitored and updated by the following objects:

NodeNetworkState

Reports the state of the network on that node.

NodeNetworkConfigurationPolicy

Describes the requested network configuration on nodes. You update the node network

CHAPTER 1. KUBERNETES NMSTATE OPERATOR

7

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_bare_metal/#creating-manifest-file-customized-br-ex-bridge_bare-metal-postinstallation-configuration
https://nmstate.github.io/

Describes the requested network configuration on nodes. You update the node network
configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy CR to the cluster.

NodeNetworkConfigurationEnactment

Reports the network policies enacted upon each node.

NOTE

Do not make configuration changes to the br-ex bridge or its underlying interfaces as a
postinstallation task.

1.1. INSTALLING THE KUBERNETES NMSTATE OPERATOR

You can install the Kubernetes NMState Operator by using the web console or the CLI.

1.1.1. Installing the Kubernetes NMState Operator by using the web console

You can install the Kubernetes NMState Operator by using the web console. After you install the
Kubernetes NMState Operator, the Operator has deployed the NMState State Controller as a daemon
set across all of the cluster nodes.

Prerequisites

You are logged in as a user with cluster-admin privileges.

Procedure

1. Select Operators → OperatorHub.

2. In the search field below All Items, enter nmstate and click Enter to search for the Kubernetes
NMState Operator.

3. Click on the Kubernetes NMState Operator search result.

4. Click on Install to open the Install Operator window.

5. Click Install to install the Operator.

6. After the Operator finishes installing, click View Operator.

7. Under Provided APIs, click Create Instance to open the dialog box for creating an instance of
kubernetes-nmstate.

8. In the Name field of the dialog box, ensure the name of the instance is nmstate.

NOTE

The name restriction is a known issue. The instance is a singleton for the entire
cluster.

9. Accept the default settings and click Create to create the instance.

OpenShift Container Platform 4.19 Networking Operators

8

1.1.2. Installing the Kubernetes NMState Operator by using the CLI

You can install the Kubernetes NMState Operator by using the OpenShift CLI (oc). After it is installed,
the Operator can deploy the NMState State Controller as a daemon set across all of the cluster nodes.

Prerequisites

You have installed the OpenShift CLI (oc).

You are logged in as a user with cluster-admin privileges.

Procedure

1. Create the nmstate Operator namespace:

2. Create the OperatorGroup:

3. Subscribe to the nmstate Operator:

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Namespace
metadata:
 name: openshift-nmstate
spec:
 finalizers:
 - kubernetes
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-nmstate
 namespace: openshift-nmstate
spec:
 targetNamespaces:
 - openshift-nmstate
EOF

$ cat << EOF| oc apply -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: kubernetes-nmstate-operator
 namespace: openshift-nmstate
spec:
 channel: stable
 installPlanApproval: Automatic
 name: kubernetes-nmstate-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

CHAPTER 1. KUBERNETES NMSTATE OPERATOR

9

4. Confirm the ClusterServiceVersion (CSV) status for the nmstate Operator deployment equals
Succeeded:

5. Create an instance of the nmstate Operator:

6. If your cluster has problems with the DNS health check probe because of DNS connectivity
issues, you can add the following DNS host name configuration to the NMState CRD to build in
health checks that can resolve these issues:

a. Apply the DNS host name configuration to your cluster network by running the following
command. Ensure that you replace <filename> with the name of your CRD file.

b. Monitor the nmstate CRD until the resource reaches the Available condition by running
the following command. Ensure that you set a value for the --timeout option so that if the
Available condition is not met within this set maximum waiting time, the command times
out and generates an error message.

Verification

1. Verify that all pods for the NMState Operator have the Running status by entering the
following command:

1.1.3. Viewing metrics collected by the Kubernetes NMState Operator

The Kubernetes NMState Operator, kubernetes-nmstate-operator, can collect metrics from the
kubernetes_nmstate_features_applied component and expose them as ready-to-use metrics. As a

$ oc get clusterserviceversion -n openshift-nmstate \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

$ cat << EOF | oc apply -f -
apiVersion: nmstate.io/v1
kind: NMState
metadata:
 name: nmstate
EOF

apiVersion: nmstate.io/v1
kind: NMState
metadata:
 name: nmstate
spec:
 probeConfiguration:
 dns:
 host: redhat.com
...

$ oc apply -f <filename>.yaml

$ oc wait --for=condition=Available nmstate/nmstate --timeout=600s

$ oc get pod -n openshift-nmstate

OpenShift Container Platform 4.19 Networking Operators

10

use case for viewing metrics, consider a situation where you created a
NodeNetworkConfigurationPolicy custom resource and you want to confirm that the policy is active.

NOTE

The kubernetes_nmstate_features_applied metrics are not an API and might change
between OpenShift Container Platform versions.

In the web console, the Metrics UI includes some predefined CPU, memory, bandwidth, and network
packet queries for the selected project. You can run custom Prometheus Query Language (PromQL)
queries for CPU, memory, bandwidth, network packet and application metrics for the project.

The following example demonstrates a NodeNetworkConfigurationPolicy manifest example that is
applied to an OpenShift Container Platform cluster:

The NodeNetworkConfigurationPolicy manifest exposes metrics and makes them available to the
Cluster Monitoring Operator (CMO). The following example shows some exposed metrics:

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the web console as the administrator and installed the Kubernetes
NMState Operator.

You have access to the cluster as a developer or as a user with view permissions for the project

...
interfaces:
 - name: br1
 type: linux-bridge
 state: up
 ipv4:
 enabled: true
 dhcp: true
 dhcp-custom-hostname: foo
 bridge:
 options:
 stp:
 enabled: false
 port: []
...

controller_runtime_reconcile_time_seconds_bucket{controller="nodenetworkconfigurationenactment",le
="0.005"} 16
controller_runtime_reconcile_time_seconds_bucket{controller="nodenetworkconfigurationenactment",le
="0.01"} 16
controller_runtime_reconcile_time_seconds_bucket{controller="nodenetworkconfigurationenactment",le
="0.025"} 16
...
HELP kubernetes_nmstate_features_applied Number of nmstate features applied labeled by its
name
TYPE kubernetes_nmstate_features_applied gauge
kubernetes_nmstate_features_applied{name="dhcpv4-custom-hostname"} 1

CHAPTER 1. KUBERNETES NMSTATE OPERATOR

11

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

You have enabled monitoring for user-defined projects.

You have deployed a service in a user-defined project.

You have created a NodeNetworkConfigurationPolicy manifest and applied it to your cluster.

IMPORTANT

Starting with OpenShift Container Platform 4.19, the perspectives in the web console
have unified. The Developer perspective is no longer enabled by default.

All users can interact with all OpenShift Container Platform web console features.
However, if you are not the cluster owner, you might need to request permission to
access certain features from the cluster owner.

You can still enable the Developer perspective. On the Getting Started pane in the web
console, you can take a tour of the console, find information on setting up your cluster,
view a quick start for enabling the Developer perspective, and follow links to explore new
features and capabilities.

Procedure

1. If you want to view the metrics from the Developer perspective in the OpenShift Container
Platform web console, complete the following tasks:

a. Click Observe.

b. To view the metrics of a specific project, select the project in the Project: list. For example,
openshift-nmstate.

c. Click the Metrics tab.

d. To visualize the metrics on the plot, select a query from the Select query list or create a
custom PromQL query based on the selected query by selecting Show PromQL.

NOTE

You can only run one query at a time with the developer role.

2. If you want to view the metrics in the OpenShift Container Platform web console as an
administrator, complete the following tasks:

a. Click Observe → Metrics.

b. Enter kubernetes_nmstate_features_applied in the Expression field.

c. Click Add query and then Run queries.

3. To explore the visualized metrics, do any of the following tasks:

a. To zoom into the plot and change the time range, do any of the following tasks:

To visually select the time range, click and drag on the plot horizontally.

OpenShift Container Platform 4.19 Networking Operators

12

To select the time range, use the menu which is in the upper left of the console.

b. To reset the time range, select Reset zoom.

c. To display the output for all the queries at a specific point in time, hold the mouse cursor on
the plot at that point. The query output displays in a pop-up box.

1.2. UNINSTALLING THE KUBERNETES NMSTATE OPERATOR

You can use the Operator Lifecycle Manager (OLM) to uninstall the Kubernetes NMState Operator, but
by design OLM does not delete any associated custom resource definitions (CRDs), custom resources
(CRs), or API Services.

Before you uninstall the Kubernetes NMState Operator from the Subcription resource used by OLM,
identify what Kubernetes NMState Operator resources to delete. This identification ensures that you
can delete resources without impacting your running cluster.

If you need to reinstall the Kubernetes NMState Operator, see "Installing the Kubernetes NMState
Operator by using the CLI" or "Installing the Kubernetes NMState Operator by using the web console".

Prerequisites

You have installed the OpenShift CLI (oc).

You have installed the jq CLI tool.

You are logged in as a user with cluster-admin privileges.

Procedure

1. Unsubscribe the Kubernetes NMState Operator from the Subcription resource by running the
following command:

2. Find the ClusterServiceVersion (CSV) resource that associates with the Kubernetes NMState
Operator:

Example output that lists a CSV resource

3. Delete the CSV resource. After you delete the file, OLM deletes certain resources, such as
RBAC, that it created for the Operator.

4. Delete the nmstate CR and any associated Deployment resources by running the following

$ oc delete --namespace openshift-nmstate subscription kubernetes-nmstate-operator

$ oc get --namespace openshift-nmstate clusterserviceversion

NAME DISPLAY VERSION REPLACES PHASE
kubernetes-nmstate-operator.v4.19.0 Kubernetes NMState Operator 4.19.0
Succeeded

$ oc delete --namespace openshift-nmstate clusterserviceversion kubernetes-nmstate-
operator.v4.19.0

CHAPTER 1. KUBERNETES NMSTATE OPERATOR

13

1

4. Delete the nmstate CR and any associated Deployment resources by running the following
commands:

5. After you deleted the nmstate CR, remove the nmstate-console-plugin console plugin name
from the console.operator.openshift.io/cluster CR.

a. Store the position of the nmstate-console-plugin entry that exists among the list of
enable plugins by running the following command. The following command uses the jq CLI
tool to store the index of the entry in an environment variable named INDEX:

b. Remove the nmstate-console-plugin entry from the
console.operator.openshift.io/cluster CR by running the following patch command:

INDEX is an auxiliary variable. You can specify a different name for this variable.

6. Delete all the custom resource definitions (CRDs), such as nmstates.nmstate.io, by running the
following commands:

7. Delete the namespace:

1.3. ADDITIONAL RESOURCES

Creating an interface on nodes

Observing and updating the node network state and configuration

Creating a manifest object that includes a customized br-ex bridge (Installer-provisioned
infrastructure)

Creating a manifest object that includes a customized br-ex bridge (User-provisioned

$ oc -n openshift-nmstate delete nmstate nmstate

$ oc delete --all deployments --namespace=openshift-nmstate

INDEX=$(oc get console.operator.openshift.io cluster -o json | jq -r '.spec.plugins |
to_entries[] | select(.value == "nmstate-console-plugin") | .key')

$ oc patch console.operator.openshift.io cluster --type=json -p "[{\"op\": \"remove\",
\"path\": \"/spec/plugins/$INDEX\"}]" 1

$ oc delete crd nmstates.nmstate.io

$ oc delete crd nodenetworkconfigurationenactments.nmstate.io

$ oc delete crd nodenetworkstates.nmstate.io

$ oc delete crd nodenetworkconfigurationpolicies.nmstate.io

$ oc delete namespace openshift-nmstate

OpenShift Container Platform 4.19 Networking Operators

14

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/kubernetes_nmstate/#virt-creating-interface-on-nodes_k8s-nmstate-updating-node-network-config
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/kubernetes_nmstate/#k8s-nmstate-updating-node-network-config
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_bare_metal/#creating-manifest-file-customized-br-ex-bridge_ipi-install-installation-workflow

Creating a manifest object that includes a customized br-ex bridge (User-provisioned
infrastructure)

CHAPTER 1. KUBERNETES NMSTATE OPERATOR

15

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_bare_metal/#creating-manifest-file-customized-br-ex-bridge_installing-bare-metal

CHAPTER 2. AWS LOAD BALANCER OPERATOR

2.1. AWS LOAD BALANCER OPERATOR RELEASE NOTES

The AWS Load Balancer (ALB) Operator deploys and manages an instance of the
AWSLoadBalancerController resource.

IMPORTANT

The AWS Load Balancer (ALB) Operator is only supported on the x86_64 architecture.

These release notes track the development of the AWS Load Balancer Operator in OpenShift Container
Platform.

For an overview of the AWS Load Balancer Operator, see AWS Load Balancer Operator in OpenShift
Container Platform.

NOTE

AWS Load Balancer Operator currently does not support AWS GovCloud.

2.1.1. AWS Load Balancer Operator 1.2.0

The following advisory is available for the AWS Load Balancer Operator version 1.2.0:

RHEA-2025:0034 Release of AWS Load Balancer Operator 1.2.z on OperatorHub

2.1.1.1. Notable changes

This release supports the AWS Load Balancer Controller version 2.8.2.

With this release, the platform tags defined in the Infrastructure resource will now be added to
all AWS objects created by the controller.

2.1.2. AWS Load Balancer Operator 1.1.1

The following advisory is available for the AWS Load Balancer Operator version 1.1.1:

RHEA-2024:0555 Release of AWS Load Balancer Operator 1.1.z on OperatorHub

2.1.3. AWS Load Balancer Operator 1.1.0

The AWS Load Balancer Operator version 1.1.0 supports the AWS Load Balancer Controller version
2.4.4.

The following advisory is available for the AWS Load Balancer Operator version 1.1.0:

RHEA-2023:6218 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

2.1.3.1. Notable changes

OpenShift Container Platform 4.19 Networking Operators

16

https://access.redhat.com/errata/RHEA-2025:0034
https://access.redhat.com/errata/RHEA-2024:0555
https://access.redhat.com/errata/RHEA-2023:6218

This release uses the Kubernetes API version 0.27.2.

2.1.3.2. New features

The AWS Load Balancer Operator now supports a standardized Security Token Service (STS)
flow by using the Cloud Credential Operator.

2.1.3.3. Bug fixes

A FIPS-compliant cluster must use TLS version 1.2. Previously, webhooks for the AWS Load
Balancer Controller only accepted TLS 1.3 as the minimum version, resulting in an error such as
the following on a FIPS-compliant cluster:

Now, the AWS Load Balancer Controller accepts TLS 1.2 as the minimum TLS version, resolving
this issue. (OCPBUGS-14846)

2.1.4. AWS Load Balancer Operator 1.0.1

The following advisory is available for the AWS Load Balancer Operator version 1.0.1:

Release of AWS Load Balancer Operator 1.0.1 on OperatorHub

2.1.5. AWS Load Balancer Operator 1.0.0

The AWS Load Balancer Operator is now generally available with this release. The AWS Load Balancer
Operator version 1.0.0 supports the AWS Load Balancer Controller version 2.4.4.

The following advisory is available for the AWS Load Balancer Operator version 1.0.0:

RHEA-2023:1954 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

IMPORTANT

The AWS Load Balancer (ALB) Operator version 1.x.x cannot upgrade automatically from
the Technology Preview version 0.x.x. To upgrade from an earlier version, you must
uninstall the ALB operands and delete the aws-load-balancer-operator namespace.

2.1.5.1. Notable changes

This release uses the new v1 API version.

2.1.5.2. Bug fixes

Previously, the controller provisioned by the AWS Load Balancer Operator did not properly use
the configuration for the cluster-wide proxy. These settings are now applied appropriately to
the controller. (OCPBUGS-4052, OCPBUGS-5295)

2.1.6. Earlier versions

The two earliest versions of the AWS Load Balancer Operator are available as a Technology Preview.

remote error: tls: protocol version not supported

CHAPTER 2. AWS LOAD BALANCER OPERATOR

17

https://issues.redhat.com/browse/OCPBUGS-14846
https://access.redhat.com/errata/RHEA-2024:0556
https://access.redhat.com/errata/RHEA-2023:1954
https://issues.redhat.com/browse/OCPBUGS-4052
https://issues.redhat.com/browse/OCPBUGS-5295

The two earliest versions of the AWS Load Balancer Operator are available as a Technology Preview.
These versions should not be used in a production cluster. For more information about the support
scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope .

The following advisory is available for the AWS Load Balancer Operator version 0.2.0:

RHEA-2022:9084 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

The following advisory is available for the AWS Load Balancer Operator version 0.0.1:

RHEA-2022:5780 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

2.2. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The AWS Load Balancer Operator deploys and manages the AWS Load Balancer Controller. You can
install the AWS Load Balancer Operator from OperatorHub by using OpenShift Container Platform web
console or CLI.

2.2.1. AWS Load Balancer Operator considerations

Review the following limitations before installing and using the AWS Load Balancer Operator:

The IP traffic mode only works on AWS Elastic Kubernetes Service (EKS). The AWS Load
Balancer Operator disables the IP traffic mode for the AWS Load Balancer Controller. As a
result of disabling the IP traffic mode, the AWS Load Balancer Controller cannot use the pod
readiness gate.

The AWS Load Balancer Operator adds command-line flags such as --disable-ingress-class-
annotation and --disable-ingress-group-name-annotation to the AWS Load Balancer
Controller. Therefore, the AWS Load Balancer Operator does not allow using the
kubernetes.io/ingress.class and alb.ingress.kubernetes.io/group.name annotations in the
Ingress resource.

You have configured the AWS Load Balancer Operator so that the SVC type is NodePort (not
LoadBalancer or ClusterIP).

2.2.2. AWS Load Balancer Operator

The AWS Load Balancer Operator can tag the public subnets if the kubernetes.io/role/elb tag is
missing. Also, the AWS Load Balancer Operator detects the following information from the underlying
AWS cloud:

The ID of the virtual private cloud (VPC) on which the cluster hosting the Operator is deployed
in.

Public and private subnets of the discovered VPC.

The AWS Load Balancer Operator supports the Kubernetes service resource of type LoadBalancer by
using Network Load Balancer (NLB) with the instance target type only.

Procedure

1. To deploy the AWS Load Balancer Operator on-demand from OperatorHub, create a

OpenShift Container Platform 4.19 Networking Operators

18

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/errata/RHEA-2022:9084
https://access.redhat.com/errata/RHEA-2022:5780

1. To deploy the AWS Load Balancer Operator on-demand from OperatorHub, create a
Subscription object by running the following command:

2. Check if the status of an install plan is Complete by running the following command:

3. View the status of the aws-load-balancer-operator-controller-manager deployment by
running the following command:

Example output

2.2.3. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into
an Outpost

You can configure the AWS Load Balancer Operator to provision an AWS Application Load Balancer in
an AWS VPC cluster extended into an Outpost. AWS Outposts does not support AWS Network Load
Balancers. As a result, the AWS Load Balancer Operator cannot provision Network Load Balancers in an
Outpost.

You can create an AWS Application Load Balancer either in the cloud subnet or in the Outpost subnet.
An Application Load Balancer in the cloud can attach to cloud-based compute nodes and an Application
Load Balancer in the Outpost can attach to edge compute nodes. You must annotate Ingress resources
with the Outpost subnet or the VPC subnet, but not both.

Prerequisites

You have extended an AWS VPC cluster into an Outpost.

You have installed the OpenShift CLI (oc).

You have installed the AWS Load Balancer Operator and created the AWS Load Balancer
Controller.

Procedure

Configure the Ingress resource to use a specified subnet:

Example Ingress resource configuration

$ oc -n aws-load-balancer-operator get sub aws-load-balancer-operator --
template='{{.status.installplan.name}}{{"\n"}}'

$ oc -n aws-load-balancer-operator get ip <install_plan_name> --template='{{.status.phase}}
{{"\n"}}'

$ oc get -n aws-load-balancer-operator deployment/aws-load-balancer-operator-controller-
manager

NAME READY UP-TO-DATE AVAILABLE AGE
aws-load-balancer-operator-controller-manager 1/1 1 1 23h

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

CHAPTER 2. AWS LOAD BALANCER OPERATOR

19

1

1

Specifies the subnet to use.

To use the Application Load Balancer in an Outpost, specify the Outpost subnet ID.

To use the Application Load Balancer in the cloud, you must specify at least two
subnets in different availability zones.

2.3. PREPARING AN AWS STS CLUSTER FOR THE AWS LOAD
BALANCER OPERATOR

You can install the Amazon Web Services (AWS) Load Balancer Operator on a cluster that uses the
Security Token Service (STS). Follow these steps to prepare your cluster before installing the Operator.

The AWS Load Balancer Operator relies on the CredentialsRequest object to bootstrap the Operator
and the AWS Load Balancer Controller. The AWS Load Balancer Operator waits until the required
secrets are created and available.

2.3.1. Prerequisites

You installed the OpenShift CLI (oc).

You know the infrastructure ID of your cluster. To show this ID, run the following command in
your CLI:

You know the OpenID Connect (OIDC) DNS information for your cluster. To show this
information, enter the following command in your CLI:

An OIDC DNS example is https://rh-oidc.s3.us-east-
1.amazonaws.com/28292va7ad7mr9r4he1fb09b14t59t4f.

You logged into the AWS Web Console, navigated to IAM → Access management → Identity

 name: <application_name>
 annotations:
 alb.ingress.kubernetes.io/subnets: <subnet_id> 1
spec:
 ingressClassName: alb
 rules:
 - http:
 paths:
 - path: /
 pathType: Exact
 backend:
 service:
 name: <application_name>
 port:
 number: 80

$ oc get infrastructure cluster -o=jsonpath="{.status.infrastructureName}"

$ oc get authentication.config cluster -o=jsonpath="{.spec.serviceAccountIssuer}" 1

OpenShift Container Platform 4.19 Networking Operators

20

You logged into the AWS Web Console, navigated to IAM → Access management → Identity
providers, and located the OIDC Amazon Resource Name (ARN) information. An OIDC ARN
example is arn:aws:iam::777777777777:oidc-provider/<oidc_dns_url>.

2.3.2. Creating an IAM role for the AWS Load Balancer Operator

An additional Amazon Web Services (AWS) Identity and Access Management (IAM) role is required to
successfully install the AWS Load Balancer Operator on a cluster that uses STS. The IAM role is required
to interact with subnets and Virtual Private Clouds (VPCs). The AWS Load Balancer Operator
generates the CredentialsRequest object with the IAM role to bootstrap itself.

You can create the IAM role by using the following options:

Using the Cloud Credential Operator utility (ccoctl) and a predefined CredentialsRequest
object.

Using the AWS CLI and predefined AWS manifests.

Use the AWS CLI if your environment does not support the ccoctl command.

2.3.2.1. Creating an AWS IAM role by using the Cloud Credential Operator utility

You can use the Cloud Credential Operator utility (ccoctl) to create an AWS IAM role for the AWS Load
Balancer Operator. An AWS IAM role interacts with subnets and Virtual Private Clouds (VPCs).

Prerequisites

You must extract and prepare the ccoctl binary.

Procedure

1. Download the CredentialsRequest custom resource (CR) and store it in a directory by running
the following command:

2. Use the ccoctl utility to create an AWS IAM role by running the following command:

Example output

$ curl --create-dirs -o <credentials_requests_dir>/operator.yaml
https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/hack/operator-
credentials-request.yaml

$ ccoctl aws create-iam-roles \
 --name <name> \
 --region=<aws_region> \
 --credentials-requests-dir=<credentials_requests_dir> \
 --identity-provider-arn <oidc_arn>

2023/09/12 11:38:57 Role arn:aws:iam::777777777777:role/<name>-aws-load-balancer-
operator-aws-load-balancer-operator created 1
2023/09/12 11:38:57 Saved credentials configuration to:
/home/user/<credentials_requests_dir>/manifests/aws-load-balancer-operator-aws-load-

CHAPTER 2. AWS LOAD BALANCER OPERATOR

21

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_aws/#cco-ccoctl-configuring_installing-aws-customizations

1

1

2

Note the Amazon Resource Name (ARN) of an AWS IAM role that was created for the
AWS Load Balancer Operator, such as arn:aws:iam::777777777777:role/<name>-aws-
load-balancer-operator-aws-load-balancer-operator.

NOTE

The length of an AWS IAM role name must be less than or equal to 12 characters.

2.3.2.2. Creating an AWS IAM role by using the AWS CLI

You can use the AWS Command Line Interface to create an IAM role for the AWS Load Balancer
Operator. The IAM role is used to interact with subnets and Virtual Private Clouds (VPCs).

Prerequisites

You must have access to the AWS Command Line Interface (aws).

Procedure

1. Generate a trust policy file by using your identity provider by running the following command:

Specifies the Amazon Resource Name (ARN) of the OIDC identity provider, such as
arn:aws:iam::777777777777:oidc-provider/rh-oidc.s3.us-east-
1.amazonaws.com/28292va7ad7mr9r4he1fb09b14t59t4f.

Specifies the service account for the AWS Load Balancer Controller. An example of
<cluster_oidc_endpoint> is rh-oidc.s3.us-east-
1.amazonaws.com/28292va7ad7mr9r4he1fb09b14t59t4f.

balancer-operator-credentials.yaml
2023/09/12 11:38:58 Updated Role policy for Role <name>-aws-load-balancer-operator-aws-
load-balancer-operator created

$ cat <<EOF > albo-operator-trust-policy.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "<oidc_arn>" 1
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "<cluster_oidc_endpoint>:sub": "system:serviceaccount:aws-load-balancer-
operator:aws-load-balancer-operator-controller-manager" 2
 }
 }
 }
]
}
EOF

OpenShift Container Platform 4.19 Networking Operators

22

1

2. Create the IAM role with the generated trust policy by running the following command:

Example output

Note the ARN of the created AWS IAM role that was created for the AWS Load Balancer
Operator, such as arn:aws:iam::777777777777:role/albo-operator.

3. Download the permission policy for the AWS Load Balancer Operator by running the following
command:

4. Attach the permission policy for the AWS Load Balancer Controller to the IAM role by running
the following command:

2.3.3. Configuring the ARN role for the AWS Load Balancer Operator

You can configure the Amazon Resource Name (ARN) role for the AWS Load Balancer Operator as an
environment variable. You can configure the ARN role by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

1. Create the aws-load-balancer-operator project by running the following command:

2. Create the OperatorGroup object by running the following command:

$ aws iam create-role --role-name albo-operator --assume-role-policy-document file://albo-
operator-trust-policy.json

ROLE arn:aws:iam::<aws_account_number>:role/albo-operator 2023-08-02T12:13:22Z 1
ASSUMEROLEPOLICYDOCUMENT 2012-10-17
STATEMENT sts:AssumeRoleWithWebIdentity Allow
STRINGEQUALS system:serviceaccount:aws-load-balancer-operator:aws-load-balancer-
controller-manager
PRINCIPAL arn:aws:iam:<aws_account_number>:oidc-provider/<cluster_oidc_endpoint>

$ curl -o albo-operator-permission-policy.json
https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/hack/operator-
permission-policy.json

$ aws iam put-role-policy --role-name albo-operator --policy-name perms-policy-albo-
operator --policy-document file://albo-operator-permission-policy.json

$ oc new-project aws-load-balancer-operator

$ cat <<EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: aws-load-balancer-operator

CHAPTER 2. AWS LOAD BALANCER OPERATOR

23

1

3. Create the Subscription object by running the following command:

Specifies the ARN role to be used in the CredentialsRequest to provision the AWS
credentials for the AWS Load Balancer Operator. An example for <albo_role_arn> is
arn:aws:iam::<aws_account_number>:role/albo-operator.

NOTE

The AWS Load Balancer Operator waits until the secret is created before
moving to the Available status.

2.3.4. Creating an IAM role for the AWS Load Balancer Controller

The CredentialsRequest object for the AWS Load Balancer Controller must be set with a manually
provisioned IAM role.

You can create the IAM role by using the following options:

Using the Cloud Credential Operator utility (ccoctl) and a predefined CredentialsRequest
object.

Using the AWS CLI and predefined AWS manifests.

Use the AWS CLI if your environment does not support the ccoctl command.

2.3.4.1. Creating an AWS IAM role for the controller by using the Cloud Credential Operator
utility

You can use the Cloud Credential Operator utility (ccoctl) to create an AWS IAM role for the AWS Load
Balancer Controller. An AWS IAM role is used to interact with subnets and Virtual Private Clouds
(VPCs).

 namespace: aws-load-balancer-operator
spec:
 targetNamespaces: []
EOF

$ cat <<EOF | oc apply -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
spec:
 channel: stable-v1
 name: aws-load-balancer-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 config:
 env:
 - name: ROLEARN
 value: "<albo_role_arn>" 1
EOF

OpenShift Container Platform 4.19 Networking Operators

24

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_aws/#cco-ccoctl-configuring_installing-aws-customizations

1

Prerequisites

You must extract and prepare the ccoctl binary.

Procedure

1. Download the CredentialsRequest custom resource (CR) and store it in a directory by running
the following command:

2. Use the ccoctl utility to create an AWS IAM role by running the following command:

Example output

Note the Amazon Resource Name (ARN) of an AWS IAM role that was created for the
AWS Load Balancer Controller, such as arn:aws:iam::777777777777:role/<name>-aws-
load-balancer-operator-aws-load-balancer-controller.

NOTE

The length of an AWS IAM role name must be less than or equal to 12 characters.

2.3.4.2. Creating an AWS IAM role for the controller by using the AWS CLI

You can use the AWS command-line interface to create an AWS IAM role for the AWS Load Balancer
Controller. An AWS IAM role is used to interact with subnets and Virtual Private Clouds (VPCs).

Prerequisites

You must have access to the AWS command-line interface (aws).

Procedure

1. Generate a trust policy file using your identity provider by running the following command:

$ curl --create-dirs -o <credentials_requests_dir>/controller.yaml
https://raw.githubusercontent.com/openshift/aws-load-balancer-
operator/main/hack/controller/controller-credentials-request.yaml

$ ccoctl aws create-iam-roles \
 --name <name> \
 --region=<aws_region> \
 --credentials-requests-dir=<credentials_requests_dir> \
 --identity-provider-arn <oidc_arn>

2023/09/12 11:38:57 Role arn:aws:iam::777777777777:role/<name>-aws-load-balancer-
operator-aws-load-balancer-controller created 1
2023/09/12 11:38:57 Saved credentials configuration to:
/home/user/<credentials_requests_dir>/manifests/aws-load-balancer-operator-aws-load-
balancer-controller-credentials.yaml
2023/09/12 11:38:58 Updated Role policy for Role <name>-aws-load-balancer-operator-aws-
load-balancer-controller created

CHAPTER 2. AWS LOAD BALANCER OPERATOR

25

1

2

1

Specifies the Amazon Resource Name (ARN) of the OIDC identity provider, such as
arn:aws:iam::777777777777:oidc-provider/rh-oidc.s3.us-east-
1.amazonaws.com/28292va7ad7mr9r4he1fb09b14t59t4f.

Specifies the service account for the AWS Load Balancer Controller. An example of
<cluster_oidc_endpoint> is rh-oidc.s3.us-east-
1.amazonaws.com/28292va7ad7mr9r4he1fb09b14t59t4f.

2. Create an AWS IAM role with the generated trust policy by running the following command:

Example output

Note the ARN of an AWS IAM role for the AWS Load Balancer Controller, such as
arn:aws:iam::777777777777:role/albo-controller.

3. Download the permission policy for the AWS Load Balancer Controller by running the following
command:

$ cat <<EOF > albo-controller-trust-policy.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "<oidc_arn>" 1
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "<cluster_oidc_endpoint>:sub": "system:serviceaccount:aws-load-balancer-
operator:aws-load-balancer-operator-controller-manager" 2
 }
 }
 }
]
}
EOF

$ aws iam create-role --role-name albo-controller --assume-role-policy-document file://albo-
controller-trust-policy.json

ROLE arn:aws:iam::<aws_account_number>:role/albo-controller 2023-08-02T12:13:22Z 1
ASSUMEROLEPOLICYDOCUMENT 2012-10-17
STATEMENT sts:AssumeRoleWithWebIdentity Allow
STRINGEQUALS system:serviceaccount:aws-load-balancer-operator:aws-load-balancer-
operator-controller-manager
PRINCIPAL arn:aws:iam:<aws_account_number>:oidc-provider/<cluster_oidc_endpoint>

$ curl -o albo-controller-permission-policy.json
https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/assets/iam-
policy.json

OpenShift Container Platform 4.19 Networking Operators

26

1

2

3

4. Attach the permission policy for the AWS Load Balancer Controller to an AWS IAM role by
running the following command:

5. Create a YAML file that defines the AWSLoadBalancerController object:

Example sample-aws-lb-manual-creds.yaml file

Defines the AWSLoadBalancerController object.

Defines the AWS Load Balancer Controller name. All related resources use this instance
name as a suffix.

Specifies the ARN role for the AWS Load Balancer Controller. The CredentialsRequest
object uses this ARN role to provision the AWS credentials. An example of
<albc_role_arn> is arn:aws:iam::777777777777:role/albo-controller.

2.3.5. Additional resources

Configuring the Cloud Credential Operator utility

2.4. INSTALLING THE AWS LOAD BALANCER OPERATOR

The AWS Load Balancer Operator deploys and manages the AWS Load Balancer Controller. You can
install the AWS Load Balancer Operator from the OperatorHub by using OpenShift Container Platform
web console or CLI.

2.4.1. Installing the AWS Load Balancer Operator by using the web console

You can install the AWS Load Balancer Operator by using the web console.

Prerequisites

You have logged in to the OpenShift Container Platform web console as a user with cluster-
admin permissions.

Your cluster is configured with AWS as the platform type and cloud provider.

If you are using a security token service (STS) or user-provisioned infrastructure, follow the
related preparation steps. For example, if you are using AWS Security Token Service, see
"Preparing for the AWS Load Balancer Operator on a cluster using the AWS Security Token
Service (STS)".

$ aws iam put-role-policy --role-name albo-controller --policy-name perms-policy-albo-
controller --policy-document file://albo-controller-permission-policy.json

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController 1
metadata:
 name: cluster 2
spec:
 credentialsRequestConfig:
 stsIAMRoleARN: <albc_role_arn> 3

CHAPTER 2. AWS LOAD BALANCER OPERATOR

27

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_aws/#cco-ccoctl-configuring_installing-aws-customizations

Procedure

1. Navigate to Operators → OperatorHub in the OpenShift Container Platform web console.

2. Select the AWS Load Balancer Operator. You can use the Filter by keyword text box or use
the filter list to search for the AWS Load Balancer Operator from the list of Operators.

3. Select the aws-load-balancer-operator namespace.

4. On the Install Operator page, select the following options:

a. Update the channel as stable-v1.

b. Installation mode as All namespaces on the cluster (default).

c. Installed Namespace as aws-load-balancer-operator. If the aws-load-balancer-operator
namespace does not exist, it gets created during the Operator installation.

d. Select Update approval as Automatic or Manual. By default, the Update approval is set to
Automatic. If you select automatic updates, the Operator Lifecycle Manager (OLM)
automatically upgrades the running instance of your Operator without any intervention. If
you select manual updates, the OLM creates an update request. As a cluster administrator,
you must then manually approve that update request to update the Operator updated to
the new version.

5. Click Install.

Verification

Verify that the AWS Load Balancer Operator shows the Status as Succeeded on the Installed
Operators dashboard.

2.4.2. Installing the AWS Load Balancer Operator by using the CLI

You can install the AWS Load Balancer Operator by using the CLI.

Prerequisites

You are logged in to the OpenShift Container Platform web console as a user with cluster-
admin permissions.

Your cluster is configured with AWS as the platform type and cloud provider.

You are logged into the OpenShift CLI (oc).

Procedure

1. Create a Namespace object:

a. Create a YAML file that defines the Namespace object:

Example namespace.yaml file

apiVersion: v1
kind: Namespace
metadata:

OpenShift Container Platform 4.19 Networking Operators

28

b. Create the Namespace object by running the following command:

2. Create an OperatorGroup object:

a. Create a YAML file that defines the OperatorGroup object:

Example operatorgroup.yaml file

b. Create the OperatorGroup object by running the following command:

3. Create a Subscription object:

a. Create a YAML file that defines the Subscription object:

Example subscription.yaml file

b. Create the Subscription object by running the following command:

Verification

1. Get the name of the install plan from the subscription:

 name: aws-load-balancer-operator

$ oc apply -f namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: aws-lb-operatorgroup
 namespace: aws-load-balancer-operator
spec:
 upgradeStrategy: Default

$ oc apply -f operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
spec:
 channel: stable-v1
 installPlanApproval: Automatic
 name: aws-load-balancer-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc apply -f subscription.yaml

$ oc -n aws-load-balancer-operator \
 get subscription aws-load-balancer-operator \
 --template='{{.status.installplan.name}}{{"\n"}}'

CHAPTER 2. AWS LOAD BALANCER OPERATOR

29

1

2

3

2. Check the status of the install plan:

The output must be Complete.

2.4.3. Creating the AWS Load Balancer Controller

You can install only a single instance of the AWSLoadBalancerController object in a cluster. You can
create the AWS Load Balancer Controller by using CLI. The AWS Load Balancer Operator reconciles
only the cluster named resource.

Prerequisites

You have created the echoserver namespace.

You have access to the OpenShift CLI (oc).

Procedure

1. Create a YAML file that defines the AWSLoadBalancerController object:

Example sample-aws-lb.yaml file

Defines the AWSLoadBalancerController object.

Defines the AWS Load Balancer Controller name. This instance name gets added as a
suffix to all related resources.

Configures the subnet tagging method for the AWS Load Balancer Controller. The
following values are valid:

Auto: The AWS Load Balancer Operator determines the subnets that belong to the
cluster and tags them appropriately. The Operator cannot determine the role correctly
if the internal subnet tags are not present on internal subnet.

$ oc -n aws-load-balancer-operator \
 get ip <install_plan_name> \
 --template='{{.status.phase}}{{"\n"}}'

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController 1
metadata:
 name: cluster 2
spec:
 subnetTagging: Auto 3
 additionalResourceTags: 4
 - key: example.org/security-scope
 value: staging
 ingressClass: alb 5
 config:
 replicas: 2 6
 enabledAddons: 7
 - AWSWAFv2 8

OpenShift Container Platform 4.19 Networking Operators

30

4

5

6

7

8

1

2

3

Manual: You manually tag the subnets that belong to the cluster with the appropriate
role tags. Use this option if you installed your cluster on user-provided infrastructure.

Defines the tags used by the AWS Load Balancer Controller when it provisions AWS
resources.

Defines the ingress class name. The default value is alb.

Specifies the number of replicas of the AWS Load Balancer Controller.

Specifies annotations as an add-on for the AWS Load Balancer Controller.

Enables the alb.ingress.kubernetes.io/wafv2-acl-arn annotation.

2. Create the AWSLoadBalancerController object by running the following command:

3. Create a YAML file that defines the Deployment resource:

Example sample-aws-lb.yaml file

Defines the deployment resource.

Specifies the deployment name.

Specifies the number of replicas of the deployment.

$ oc create -f sample-aws-lb.yaml

apiVersion: apps/v1
kind: Deployment 1
metadata:
 name: <echoserver> 2
 namespace: echoserver
spec:
 selector:
 matchLabels:
 app: echoserver
 replicas: 3 3
 template:
 metadata:
 labels:
 app: echoserver
 spec:
 containers:
 - image: openshift/origin-node
 command:
 - "/bin/socat"
 args:
 - TCP4-LISTEN:8080,reuseaddr,fork
 - EXEC:'/bin/bash -c \"printf \\\"HTTP/1.0 200 OK\r\n\r\n\\\"; sed -e \\\"/^\r/q\\\"\"'
 imagePullPolicy: Always
 name: echoserver
 ports:
 - containerPort: 8080

CHAPTER 2. AWS LOAD BALANCER OPERATOR

31

1

2

1

2

4. Create a YAML file that defines the Service resource:

Example service-albo.yaml file

Defines the service resource.

Specifies the service name.

5. Create a YAML file that defines the Ingress resource:

Example ingress-albo.yaml file

Specify a name for the Ingress resource.

Specifies the service name.

Verification

apiVersion: v1
kind: Service 1
metadata:
 name: <echoserver> 2
 namespace: echoserver
spec:
 ports:
 - port: 80
 targetPort: 8080
 protocol: TCP
 type: NodePort
 selector:
 app: echoserver

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: <name> 1
 namespace: echoserver
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing
 alb.ingress.kubernetes.io/target-type: instance
spec:
 ingressClassName: alb
 rules:
 - http:
 paths:
 - path: /
 pathType: Exact
 backend:
 service:
 name: <echoserver> 2
 port:
 number: 80

OpenShift Container Platform 4.19 Networking Operators

32

Save the status of the Ingress resource in the HOST variable by running the following
command:

Verify the status of the Ingress resource by running the following command:

2.5. CONFIGURING THE AWS LOAD BALANCER OPERATOR

2.5.1. Trusting the certificate authority of the cluster-wide proxy

You can configure the cluster-wide proxy in the AWS Load Balancer Operator. After configuring the
cluster-wide proxy, Operator Lifecycle Manager (OLM) automatically updates all the deployments of
the Operators with the environment variables such as HTTP_PROXY, HTTPS_PROXY, and
NO_PROXY. These variables are populated to the managed controller by the AWS Load Balancer
Operator.

1. Create the config map to contain the certificate authority (CA) bundle in the aws-load-
balancer-operator namespace by running the following command:

2. To inject the trusted CA bundle into the config map, add the config.openshift.io/inject-
trusted-cabundle=true label to the config map by running the following command:

3. Update the AWS Load Balancer Operator subscription to access the config map in the AWS
Load Balancer Operator deployment by running the following command:

4. After the AWS Load Balancer Operator is deployed, verify that the CA bundle is added to the
aws-load-balancer-operator-controller-manager deployment by running the following
command:

Example output

$ HOST=$(oc get ingress -n echoserver echoserver --template='{{(index
.status.loadBalancer.ingress 0).hostname}}')

$ curl $HOST

$ oc -n aws-load-balancer-operator create configmap trusted-ca

$ oc -n aws-load-balancer-operator label cm trusted-ca config.openshift.io/inject-trusted-
cabundle=true

$ oc -n aws-load-balancer-operator patch subscription aws-load-balancer-operator --
type='merge' -p '{"spec":{"config":{"env":
[{"name":"TRUSTED_CA_CONFIGMAP_NAME","value":"trusted-ca"}],"volumes":
[{"name":"trusted-ca","configMap":{"name":"trusted-ca"}}],"volumeMounts":[{"name":"trusted-
ca","mountPath":"/etc/pki/tls/certs/albo-tls-ca-bundle.crt","subPath":"ca-bundle.crt"}]}}}'

$ oc -n aws-load-balancer-operator exec deploy/aws-load-balancer-operator-controller-
manager -c manager -- bash -c "ls -l /etc/pki/tls/certs/albo-tls-ca-bundle.crt; printenv
TRUSTED_CA_CONFIGMAP_NAME"

-rw-r--r--. 1 root 1000690000 5875 Jan 11 12:25 /etc/pki/tls/certs/albo-tls-ca-bundle.crt
trusted-ca

CHAPTER 2. AWS LOAD BALANCER OPERATOR

33

1

5. Optional: Restart deployment of the AWS Load Balancer Operator every time the config map
changes by running the following command:

Additional resources

Certificate injection using Operators

2.5.2. Adding TLS termination on the AWS Load Balancer

You can route the traffic for the domain to pods of a service and add TLS termination on the AWS Load
Balancer.

Prerequisites

You have an access to the OpenShift CLI (oc).

Procedure

1. Create a YAML file that defines the AWSLoadBalancerController resource:

Example add-tls-termination-albc.yaml file

Defines the ingress class name. If the ingress class is not present in your cluster the AWS
Load Balancer Controller creates one. The AWS Load Balancer Controller reconciles the
additional ingress class values if spec.controller is set to ingress.k8s.aws/alb.

2. Create a YAML file that defines the Ingress resource:

Example add-tls-termination-ingress.yaml file

$ oc -n aws-load-balancer-operator rollout restart deployment/aws-load-balancer-operator-
controller-manager

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:
 name: cluster
spec:
 subnetTagging: Auto
 ingressClass: tls-termination 1

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: <example> 1
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing 2
 alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:us-west-2:xxxxx 3
spec:
 ingressClassName: tls-termination 4

OpenShift Container Platform 4.19 Networking Operators

34

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/configuring_network_settings/#certificate-injection-using-operators_configuring-a-custom-pki

1

2

3

4

5

6

1

2

3

Specifies the ingress name.

The controller provisions the load balancer for ingress in a public subnet to access the load
balancer over the internet.

The Amazon Resource Name (ARN) of the certificate that you attach to the load balancer.

Defines the ingress class name.

Defines the domain for traffic routing.

Defines the service for traffic routing.

2.5.3. Creating multiple ingress resources through a single AWS Load Balancer

You can route the traffic to different services with multiple ingress resources that are part of a single
domain through a single AWS Load Balancer. Each ingress resource provides different endpoints of the
domain.

Prerequisites

You have an access to the OpenShift CLI (oc).

Procedure

1. Create an IngressClassParams resource YAML file, for example, sample-single-lb-
params.yaml, as follows:

Defines the API group and version of the IngressClassParams resource.

Specifies the IngressClassParams resource name.

Specifies the IngressGroup resource name. All of the Ingress resources of this class
belong to this IngressGroup.

 rules:
 - host: example.com 5
 http:
 paths:
 - path: /
 pathType: Exact
 backend:
 service:
 name: <example_service> 6
 port:
 number: 80

apiVersion: elbv2.k8s.aws/v1beta1 1
kind: IngressClassParams
metadata:
 name: single-lb-params 2
spec:
 group:
 name: single-lb 3

CHAPTER 2. AWS LOAD BALANCER OPERATOR

35

1

2

3

4

5

6

1

belong to this IngressGroup.

2. Create the IngressClassParams resource by running the following command:

3. Create the IngressClass resource YAML file, for example, sample-single-lb-class.yaml, as
follows:

Defines the API group and version of the IngressClass resource.

Specifies the ingress class name.

Defines the controller name. The ingress.k8s.aws/alb value denotes that all ingress
resources of this class should be managed by the AWS Load Balancer Controller.

Defines the API group of the IngressClassParams resource.

Defines the resource type of the IngressClassParams resource.

Defines the IngressClassParams resource name.

4. Create the IngressClass resource by running the following command:

5. Create the AWSLoadBalancerController resource YAML file, for example, sample-single-
lb.yaml, as follows:

Defines the name of the IngressClass resource.

6. Create the AWSLoadBalancerController resource by running the following command:

$ oc create -f sample-single-lb-params.yaml

apiVersion: networking.k8s.io/v1 1
kind: IngressClass
metadata:
 name: single-lb 2
spec:
 controller: ingress.k8s.aws/alb 3
 parameters:
 apiGroup: elbv2.k8s.aws 4
 kind: IngressClassParams 5
 name: single-lb-params 6

$ oc create -f sample-single-lb-class.yaml

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:
 name: cluster
spec:
 subnetTagging: Auto
 ingressClass: single-lb 1

OpenShift Container Platform 4.19 Networking Operators

36

7. Create the Ingress resource YAML file, for example, sample-multiple-ingress.yaml, as follows:

$ oc create -f sample-single-lb.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: example-1 1
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing 2
 alb.ingress.kubernetes.io/group.order: "1" 3
 alb.ingress.kubernetes.io/target-type: instance 4
spec:
 ingressClassName: single-lb 5
 rules:
 - host: example.com 6
 http:
 paths:
 - path: /blog 7
 pathType: Prefix
 backend:
 service:
 name: example-1 8
 port:
 number: 80 9

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: example-2
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing
 alb.ingress.kubernetes.io/group.order: "2"
 alb.ingress.kubernetes.io/target-type: instance
spec:
 ingressClassName: single-lb
 rules:
 - host: example.com
 http:
 paths:
 - path: /store
 pathType: Prefix
 backend:
 service:
 name: example-2
 port:
 number: 80

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: example-3
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing

CHAPTER 2. AWS LOAD BALANCER OPERATOR

37

1

2

3

4

5

6

7

8

9

Specifies the ingress name.

Indicates the load balancer to provision in the public subnet to access the internet.

Specifies the order in which the rules from the multiple ingress resources are matched
when the request is received at the load balancer.

Indicates that the load balancer will target OpenShift Container Platform nodes to reach
the service.

Specifies the ingress class that belongs to this ingress.

Defines a domain name used for request routing.

Defines the path that must route to the service.

Defines the service name that serves the endpoint configured in the Ingress resource.

Defines the port on the service that serves the endpoint.

8. Create the Ingress resource by running the following command:

2.5.4. AWS Load Balancer Operator logs

You can view the AWS Load Balancer Operator logs by using the oc logs command.

Procedure

View the logs of the AWS Load Balancer Operator by running the following command:

 alb.ingress.kubernetes.io/group.order: "3"
 alb.ingress.kubernetes.io/target-type: instance
spec:
 ingressClassName: single-lb
 rules:
 - host: example.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: example-3
 port:
 number: 80

$ oc create -f sample-multiple-ingress.yaml

$ oc logs -n aws-load-balancer-operator deployment/aws-load-balancer-operator-controller-
manager -c manager

OpenShift Container Platform 4.19 Networking Operators

38

CHAPTER 3. EBPF MANAGER OPERATOR

3.1. ABOUT THE EBPF MANAGER OPERATOR

IMPORTANT

eBPF Manager Operator is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

3.1.1. About Extended Berkeley Packet Filter (eBPF)

eBPF extends the original Berkeley Packet Filter for advanced network traffic filtering. It acts as a virtual
machine inside the Linux kernel, allowing you to run sandboxed programs in response to events such as
network packets, system calls, or kernel functions.

3.1.2. About the eBPF Manager Operator

eBPF Manager simplifies the management and deployment of eBPF programs within Kubernetes, as
well as enhancing the security around using eBPF programs. It utilizes Kubernetes custom resource
definitions (CRDs) to manage eBPF programs packaged as OCI container images. This approach helps
to delineate deployment permissions and enhance security by restricting program types deployable by
specific users.

eBPF Manager is a software stack designed to manage eBPF programs within Kubernetes. It facilitates
the loading, unloading, modifying, and monitoring of eBPF programs in Kubernetes clusters. It includes a
daemon, CRDs, an agent, and an operator:

bpfman

A system daemon that manages eBPF programs via a gRPC API.

eBPF CRDs

A set of CRDs like XdpProgram and TcProgram for loading eBPF programs, and a bpfman-
generated CRD (BpfProgram) for representing the state of loaded programs.

bpfman-agent

Runs within a daemonset container, ensuring eBPF programs on each node are in the desired state.

bpfman-operator

Manages the lifecycle of the bpfman-agent and CRDs in the cluster using the Operator SDK.

The eBPF Manager Operator offers the following features:

Enhances security by centralizing eBPF program loading through a controlled daemon. eBPF
Manager has the elevated privileges so the applications don’t need to be. eBPF program control
is regulated by standard Kubernetes Role-based access control (RBAC), which can allow or deny
an application’s access to the different eBPF Manager CRDs that manage eBPF program
loading and unloading.

Provides detailed visibility into active eBPF programs, improving your ability to debug issues

CHAPTER 3. EBPF MANAGER OPERATOR

39

https://access.redhat.com/support/offerings/techpreview/

Provides detailed visibility into active eBPF programs, improving your ability to debug issues
across the system.

Facilitates the coexistence of multiple eBPF programs from different sources using protocols
like libxdp for XDP and TC programs, enhancing interoperability.

Streamlines the deployment and lifecycle management of eBPF programs in Kubernetes.
Developers can focus on program interaction rather than lifecycle management, with support
for existing eBPF libraries like Cilium, libbpf, and Aya.

3.1.3. Additional resources

eBPF Documentation

bpfman

eBPF Manager custom resource definition (CRD) API specification

3.1.4. Next steps

Installing the eBPF Manager Operator

3.2. INSTALLING THE EBPF MANAGER OPERATOR

As a cluster administrator, you can install the eBPF Manager Operator by using the OpenShift Container
Platform CLI or the web console.

IMPORTANT

eBPF Manager Operator is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

3.2.1. Installing the eBPF Manager Operator using the CLI

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have an account with administrator privileges.

Procedure

1. To create the bpfman namespace, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: v1

OpenShift Container Platform 4.19 Networking Operators

40

https://ebpf.io/what-is-ebpf/
https://bpfman.io/latest
https://bpfman.io/latest/developer-guide/api-spec/
https://access.redhat.com/support/offerings/techpreview/

2. To create an OperatorGroup CR, enter the following command:

3. Subscribe to the eBPF Manager Operator.

a. To create a Subscription CR for the eBPF Manager Operator, enter the following
command:

4. To verify that the Operator is installed, enter the following command:

Example output

5. To verify the version of the Operator, enter the following command:

Example output

kind: Namespace
metadata:
 labels:
 pod-security.kubernetes.io/enforce: privileged
 pod-security.kubernetes.io/enforce-version: v1.24
 name: bpfman
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: bpfman-operators
 namespace: bpfman
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: bpfman-operator
 namespace: bpfman
spec:
 name: bpfman-operator
 channel: alpha
 source: community-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get ip -n bpfman

NAME CSV APPROVAL APPROVED
install-ppjxl security-profiles-operator.v0.8.5 Automatic true

$ oc get csv -n bpfman

NAME DISPLAY VERSION REPLACES
PHASE

CHAPTER 3. EBPF MANAGER OPERATOR

41

3.2.2. Installing the eBPF Manager Operator using the web console

As a cluster administrator, you can install the eBPF Manager Operator using the web console.

Prerequisites

You have installed the OpenShift CLI (oc).

You have an account with administrator privileges.

Procedure

1. Install the eBPF Manager Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Select eBPF Manager Operator from the list of available Operators, and if prompted to
Show community Operator, click Continue.

c. Click Install.

d. On the Install Operator page, under Installed Namespace, select Operator
recommended Namespace.

e. Click Install.

2. Verify that the eBPF Manager Operator is installed successfully:

a. Navigate to the Operators → Installed Operators page.

b. Ensure that eBPF Manager Operator is listed in the openshift-ingress-node-firewall
project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not have a Status of InstallSucceeded, troubleshoot using the
following steps:

Inspect the Operator Subscriptions and Install Plans tabs for any failures or errors
under Status.

Navigate to the Workloads → Pods page and check the logs for pods in the bpfman
project.

3.2.3. Next steps

Deploying a containerized eBPF program

bpfman-operator.v0.5.0 eBPF Manager Operator 0.5.0 bpfman-
operator.v0.4.2 Succeeded

OpenShift Container Platform 4.19 Networking Operators

42

Configuring Ingress Node Firewall Operator to use the eBPF Manager Operator

3.3. DEPLOYING AN EBPF PROGRAM

As a cluster administrator, you can deploy containerized eBPF applications with the eBPF Manager
Operator.

For the example eBPF program deployed in this procedure, the sample manifest does the following:

First, it creates basic Kubernetes objects like Namespace, ServiceAccount, and ClusterRoleBinding.
It also creates a XdpProgram object, which is a custom resource definition (CRD) that eBPF Manager
provides, that loads the eBPF XDP program. Each program type has it’s own CRD, but they are similar in
what they do. For more information, see Loading eBPF Programs On Kubernetes .

Second, it creates a daemon set which runs a user space program that reads the eBPF maps that the
eBPF program is populating. This eBPF map is volume mounted using a Container Storage Interface
(CSI) driver. By volume mounting the eBPF map in the container in lieu of accessing it on the host, the
application pod can access the eBPF maps without being privileged. For more information on how the
CSI is configured, see See Deploying an eBPF enabled application On Kubernetes .

IMPORTANT

eBPF Manager Operator is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

3.3.1. Deploying a containerized eBPF program

As a cluster administrator, you can deploy an eBPF program to nodes on your cluster. In this procedure,
a sample containerized eBPF program is installed in the go-xdp-counter namespace.

Prerequisites

You have installed the OpenShift CLI (oc).

You have an account with administrator privileges.

You have installed the eBPF Manager Operator.

Procedure

1. To download the manifest, enter the following command:

2. To deploy the sample eBPF application, enter the following command:

$ curl -L https://github.com/bpfman/bpfman/releases/download/v0.5.1/go-xdp-counter-install-
selinux.yaml -o go-xdp-counter-install-selinux.yaml

$ oc create -f go-xdp-counter-install-selinux.yaml

CHAPTER 3. EBPF MANAGER OPERATOR

43

https://bpfman.io/main/getting-started/example-bpf-k8s/#loading-ebpf-programs-on-kubernetes
https://bpfman.io/main/getting-started/example-bpf-k8s/#deploying-an-ebpf-enabled-application-on-kubernetes
https://access.redhat.com/support/offerings/techpreview/

Example output

3. To confirm that the eBPF sample application deployed successfully, enter the following
command:

Example output

4. To confirm that the example XDP program is running, enter the following command:

Example output

5. To confirm that the XDP program is collecting data, enter the following command:

Replace <pod_name> with the name of an XDP program pod, such as go-xdp-counter-ds-
4m9cw.

Example output

namespace/go-xdp-counter created
serviceaccount/bpfman-app-go-xdp-counter created
clusterrolebinding.rbac.authorization.k8s.io/xdp-binding created
daemonset.apps/go-xdp-counter-ds created
xdpprogram.bpfman.io/go-xdp-counter-example created
selinuxprofile.security-profiles-operator.x-k8s.io/bpfman-secure created

$ oc get all -o wide -n go-xdp-counter

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
pod/go-xdp-counter-ds-4m9cw 1/1 Running 0 44s 10.129.0.92 ci-ln-dcbq7d2-
72292-ztrkp-master-1 <none> <none>
pod/go-xdp-counter-ds-7hzww 1/1 Running 0 44s 10.130.0.86 ci-ln-dcbq7d2-
72292-ztrkp-master-2 <none> <none>
pod/go-xdp-counter-ds-qm9zx 1/1 Running 0 44s 10.128.0.101 ci-ln-dcbq7d2-
72292-ztrkp-master-0 <none> <none>

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE CONTAINERS IMAGES
SELECTOR
daemonset.apps/go-xdp-counter-ds 3 3 3 3 3 <none> 44s
go-xdp-counter quay.io/bpfman-userspace/go-xdp-counter:v0.5.0 name=go-xdp-counter

$ oc get xdpprogram go-xdp-counter-example

NAME BPFFUNCTIONNAME NODESELECTOR STATUS
go-xdp-counter-example xdp_stats {} ReconcileSuccess

$ oc logs <pod_name> -n go-xdp-counter

2024/08/13 15:20:06 15016 packets received
2024/08/13 15:20:06 93581579 bytes received
...

OpenShift Container Platform 4.19 Networking Operators

44

CHAPTER 4. EXTERNAL DNS OPERATOR

4.1. EXTERNAL DNS OPERATOR RELEASE NOTES

The External DNS Operator deploys and manages ExternalDNS to provide name resolution for services
and routes from the external DNS provider to OpenShift Container Platform.

IMPORTANT

The External DNS Operator is only supported on the x86_64 architecture.

These release notes track the development of the External DNS Operator in OpenShift Container
Platform.

4.1.1. External DNS Operator 1.3.2

The following advisory is available for the External DNS Operator version 1.3.2:

RHEA-2025:22454 Product Enhancement Advisory

4.1.2. External DNS Operator 1.3.1

The following advisory is available for the External DNS Operator version 1.3.1:

RHEA-2025:15598 Product Enhancement Advisory

This update includes improved container security.

4.1.3. External DNS Operator 1.3.0

The following advisory is available for the External DNS Operator version 1.3.0:

RHEA-2024:8550 Product Enhancement Advisory

This update includes a rebase to the 0.14.2 version of the upstream project.

4.1.3.1. Bug fixes

Previously, the ExternalDNS Operator could not deploy operands on HCP clusters. With this release, the
Operator deploys operands in a running and ready state. (OCPBUGS-37059)

Previously, the ExternalDNS Operator was not using RHEL 9 as its building or base images. With this
release, RHEL9 is the base. (OCPBUGS-41683)

Previously, the godoc had a broken link for Infoblox provider. With this release, the godoc is revised for
accuracy. Some links are removed while some other are replaced with GitHub permalinks. (OCPBUGS-
36797)

4.1.4. External DNS Operator 1.2.0

The following advisory is available for the External DNS Operator version 1.2.0:

RHEA-2022:5867 ExternalDNS Operator 1.2 operator/operand containers

CHAPTER 4. EXTERNAL DNS OPERATOR

45

https://access.redhat.com/errata/RHEA-2025:22454
https://access.redhat.com/errata/RHEA-2025:15598
https://access.redhat.com/errata/RHEA-2024:8550
https://issues.redhat.com/browse/OCPBUGS-37059
https://issues.redhat.com/browse/OCPBUGS-41683
https://issues.redhat.com/browse/OCPBUGS-36797
https://access.redhat.com/errata/RHEA-2023:7239

4.1.4.1. New features

The External DNS Operator now supports AWS shared VPC. For more information, see
Creating DNS records in a different AWS Account using a shared VPC .

4.1.4.2. Bug fixes

The update strategy for the operand changed from Rolling to Recreate. (OCPBUGS-3630)

4.1.5. External DNS Operator 1.1.1

The following advisory is available for the External DNS Operator version 1.1.1:

RHEA-2024:0536 ExternalDNS Operator 1.1 operator/operand containers

4.1.6. External DNS Operator 1.1.0

This release included a rebase of the operand from the upstream project version 0.13.1. The following
advisory is available for the External DNS Operator version 1.1.0:

RHEA-2022:9086-01 ExternalDNS Operator 1.1 operator/operand containers

4.1.6.1. Bug fixes

Previously, the ExternalDNS Operator enforced an empty defaultMode value for volumes,
which caused constant updates due to a conflict with the OpenShift API. Now, the defaultMode
value is not enforced and operand deployment does not update constantly. (OCPBUGS-2793)

4.1.7. External DNS Operator 1.0.1

The following advisory is available for the External DNS Operator version 1.0.1:

RHEA-2024:0537 ExternalDNS Operator 1.0 operator/operand containers

4.1.8. External DNS Operator 1.0.0

The following advisory is available for the External DNS Operator version 1.0.0:

RHEA-2022:5867 ExternalDNS Operator 1.0 operator/operand containers

4.1.8.1. Bug fixes

Previously, the External DNS Operator issued a warning about the violation of the restricted
SCC policy during ExternalDNS operand pod deployments. This issue has been resolved.
(BZ#2086408)

4.2. UNDERSTANDING THE EXTERNAL DNS OPERATOR

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform.

4.2.1. External DNS Operator

The External DNS Operator implements the External DNS API from the olm.openshift.io API group.

OpenShift Container Platform 4.19 Networking Operators

46

https://issues.redhat.com/browse/OCPBUGS-3630
https://access.redhat.com/errata/RHEA-2024:0536
https://access.redhat.com/errata/RHEA-2022:9086
https://issues.redhat.com/browse/OCPBUGS-2793
https://access.redhat.com/errata/RHEA-2024:0537
https://access.redhat.com/errata/RHEA-2022:5867
https://bugzilla.redhat.com/show_bug.cgi?id=2086408

The External DNS Operator implements the External DNS API from the olm.openshift.io API group.
The External DNS Operator updates services, routes, and external DNS providers.

Prerequisites

You have installed the yq CLI tool.

Procedure

You can deploy the External DNS Operator on demand from the OperatorHub. Deploying the External
DNS Operator creates a Subscription object.

1. Check the name of an install plan, such as install-zcvlr, by running the following command:

2. Check if the status of an install plan is Complete by running the following command:

3. View the status of the external-dns-operator deployment by running the following command:

Example output

4.2.2. Viewing External DNS Operator logs

You can view External DNS Operator logs by using the oc logs command.

Procedure

1. View the logs of the External DNS Operator by running the following command:

4.2.2.1. External DNS Operator domain name limitations

The External DNS Operator uses the TXT registry which adds the prefix for TXT records. This reduces
the maximum length of the domain name for TXT records. A DNS record cannot be present without a
corresponding TXT record, so the domain name of the DNS record must follow the same limit as the
TXT records. For example, a DNS record of <domain_name_from_source> results in a TXT record of
external-dns-<record_type>-<domain_name_from_source>.

The domain name of the DNS records generated by the External DNS Operator has the following
limitations:

$ oc -n external-dns-operator get sub external-dns-operator -o yaml | yq
'.status.installplan.name'

$ oc -n external-dns-operator get ip <install_plan_name> -o yaml | yq '.status.phase'

$ oc get -n external-dns-operator deployment/external-dns-operator

NAME READY UP-TO-DATE AVAILABLE AGE
external-dns-operator 1/1 1 1 23h

$ oc logs -n external-dns-operator deployment/external-dns-operator -c external-dns-operator

CHAPTER 4. EXTERNAL DNS OPERATOR

47

Record type Number of characters

CNAME 44

Wildcard CNAME records
on AzureDNS

42

A 48

Wildcard A records on
AzureDNS

46

The following error appears in the External DNS Operator logs if the generated domain name exceeds
any of the domain name limitations:

4.3. INSTALLING THE EXTERNAL DNS OPERATOR

You can install the External DNS Operator on cloud providers such as AWS, Azure, and Google Cloud.

4.3.1. Installing the External DNS Operator with OperatorHub

You can install the External DNS Operator by using the OpenShift Container Platform OperatorHub.

Procedure

1. Click Operators → OperatorHub in the OpenShift Container Platform web console.

2. Click External DNS Operator. You can use the Filter by keyword text box or the filter list to
search for External DNS Operator from the list of Operators.

3. Select the external-dns-operator namespace.

4. On the External DNS Operator page, click Install.

5. On the Install Operator page, ensure that you selected the following options:

a. Update the channel as stable-v1.

b. Installation mode as A specific name on the cluster.

c. Installed namespace as external-dns-operator. If namespace external-dns-operator does
not exist, it gets created during the Operator installation.

d. Select Approval Strategy as Automatic or Manual. Approval Strategy is set to Automatic
by default.

time="2022-09-02T08:53:57Z" level=error msg="Failure in zone test.example.io. [Id:
/hostedzone/Z06988883Q0H0RL6UMXXX]"
time="2022-09-02T08:53:57Z" level=error msg="InvalidChangeBatch: [FATAL problem:
DomainLabelTooLong (Domain label is too long) encountered with 'external-dns-a-hello-openshift-
aaaaaaaaaa-bbbbbbbbbb-ccccccc']\n\tstatus code: 400, request id: e54dfd5a-06c6-47b0-bcb9-
a4f7c3a4e0c6"

OpenShift Container Platform 4.19 Networking Operators

48

e. Click Install.

If you select Automatic updates, the Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without any intervention.

If you select Manual updates, the OLM creates an update request. As a cluster administrator, you must
then manually approve that update request to have the Operator updated to the new version.

Verification

Verify that the External DNS Operator shows the Status as Succeeded on the Installed Operators
dashboard.

4.3.2. Installing the External DNS Operator by using the CLI

You can install the External DNS Operator by using the CLI.

Prerequisites

You are logged in to the OpenShift Container Platform web console as a user with cluster-
admin permissions.

You are logged into the OpenShift CLI (oc).

Procedure

1. Create a Namespace object:

a. Create a YAML file that defines the Namespace object:

Example namespace.yaml file

b. Create the Namespace object by running the following command:

2. Create an OperatorGroup object:

a. Create a YAML file that defines the OperatorGroup object:

Example operatorgroup.yaml file

apiVersion: v1
kind: Namespace
metadata:
 name: external-dns-operator

$ oc apply -f namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: external-dns-operator
 namespace: external-dns-operator
spec:

CHAPTER 4. EXTERNAL DNS OPERATOR

49

b. Create the OperatorGroup object by running the following command:

3. Create a Subscription object:

a. Create a YAML file that defines the Subscription object:

Example subscription.yaml file

b. Create the Subscription object by running the following command:

Verification

1. Get the name of the install plan from the subscription by running the following command:

2. Verify that the status of the install plan is Complete by running the following command:

3. Verify that the status of the external-dns-operator pod is Running by running the following
command:

Example output

 upgradeStrategy: Default
 targetNamespaces:
 - external-dns-operator

$ oc apply -f operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: external-dns-operator
 namespace: external-dns-operator
spec:
 channel: stable-v1
 installPlanApproval: Automatic
 name: external-dns-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc apply -f subscription.yaml

$ oc -n external-dns-operator \
 get subscription external-dns-operator \
 --template='{{.status.installplan.name}}{{"\n"}}'

$ oc -n external-dns-operator \
 get ip <install_plan_name> \
 --template='{{.status.phase}}{{"\n"}}'

$ oc -n external-dns-operator get pod

OpenShift Container Platform 4.19 Networking Operators

50

1

2

1

4. Verify that the catalog source of the subscription is redhat-operators by running the following
command:

5. Check the external-dns-operator version by running the following command:

4.4. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS

The External DNS Operator includes the following configuration parameters.

4.4.1. External DNS Operator configuration parameters

The External DNS Operator includes the following configuration parameters:

Parameter Description

spec Enables the type of a cloud provider.

Defines available options such as AWS, Google Cloud, Azure, and
Infoblox.

Defines a secret name for your cloud provider.

zones Enables you to specify DNS zones by their domains. If you do not specify zones,
the ExternalDNS resource discovers all of the zones present in your cloud
provider account.

Specifies the name of DNS zones.

NAME READY STATUS RESTARTS AGE
external-dns-operator-5584585fd7-5lwqm 2/2 Running 0 11m

$ oc -n external-dns-operator get subscription

$ oc -n external-dns-operator get csv

spec:
 provider:
 type: AWS 1
 aws:
 credentials:
 name: aws-access-key 2

zones:
- "myzoneid" 1

CHAPTER 4. EXTERNAL DNS OPERATOR

51

1

2

3

4

5

1

2

3

domains Enables you to specify AWS zones by their domains. If you do not specify
domains, the ExternalDNS resource discovers all of the zones present in your
cloud provider account.

Ensures that the ExternalDNS resource includes the domain name.

Instructs ExternalDNS that the domain matching has to be exact as
opposed to regular expression match.

Defines the name of the domain.

Sets the regex-domain-filter flag in the ExternalDNS resource. You
can limit possible domains by using a Regex filter.

Defines the regex pattern to be used by the ExternalDNS resource to
filter the domains of the target zones.

source Enables you to specify the source for the DNS records, Service or Route.

Defines the settings for the source of DNS records.

The ExternalDNS resource uses the Service type as the source for
creating DNS records.

Sets the service-type-filter flag in the ExternalDNS resource. The
serviceType contains the following fields:

default: LoadBalancer

expected: ClusterIP

Parameter Description

domains:
- filterType: Include 1
 matchType: Exact 2
 name: "myzonedomain1.com" 3
- filterType: Include
 matchType: Pattern 4
 pattern: ".*\\.otherzonedomain\\.com" 5

source: 1
 type: Service 2
 service:
 serviceType: 3
 - LoadBalancer
 - ClusterIP
 labelFilter: 4
 matchLabels:
 external-dns.mydomain.org/publish: "yes"
 hostnameAnnotation: "Allow" 5
 fqdnTemplate:
 - "{{.Name}}.myzonedomain.com" 6

OpenShift Container Platform 4.19 Networking Operators

52

4

5

6

1

2

NodePort

LoadBalancer

ExternalName

Ensures that the controller considers only those resources which matches
with label filter.

The default value for hostnameAnnotation is Ignore which instructs
ExternalDNS to generate DNS records using the templates specified in
the field fqdnTemplates. When the value is Allow the DNS records get
generated based on the value specified in the external-
dns.alpha.kubernetes.io/hostname annotation.

The External DNS Operator uses a string to generate DNS names from
sources that do not define a hostname, or to add a hostname suffix when
paired with the fake source.

Creates DNS records.

If the source type is OpenShiftRoute, then you can pass the Ingress
Controller name. The ExternalDNS resource uses the canonical name of
the Ingress Controller as the target for CNAME records.

Parameter Description

4.5. CREATING DNS RECORDS ON AWS

You can create DNS records on AWS and AWS GovCloud by using the External DNS Operator.

4.5.1. Creating DNS records on an public hosted zone for AWS by using Red Hat
External DNS Operator

You can create DNS records on a public hosted zone for AWS by using the Red Hat External DNS
Operator. You can use the same instructions to create DNS records on a hosted zone for AWS
GovCloud.

Procedure

1. Check the user profile, such as system:admin, by running the following command. The user
profile must have access to the kube-system namespace. If you do not have the credentials,
you can fetch the credentials from the kube-system namespace to use the cloud provider
client by running the following command:

2. Fetch the values from aws-creds secret present in kube-system namespace.

source:
 type: OpenShiftRoute 1
 openshiftRouteOptions:
 routerName: default 2
 labelFilter:
 matchLabels:
 external-dns.mydomain.org/publish: "yes"

$ oc whoami

CHAPTER 4. EXTERNAL DNS OPERATOR

53

1

3. Get the routes to check the domain:

Example output

4. Get the list of DNS zones and find the DNS zone that corresponds to the domain of the route
that you previously queried:

Example output

5. Create ExternalDNS resource for route source:

Defines the name of external DNS resource.

$ export AWS_ACCESS_KEY_ID=$(oc get secrets aws-creds -n kube-system --template=
{{.data.aws_access_key_id}} | base64 -d)

$ export AWS_SECRET_ACCESS_KEY=$(oc get secrets aws-creds -n kube-system --
template={{.data.aws_secret_access_key}} | base64 -d)

$ oc get routes --all-namespaces | grep console

openshift-console console console-openshift-
console.apps.testextdnsoperator.apacshift.support console https
reencrypt/Redirect None
openshift-console downloads downloads-openshift-
console.apps.testextdnsoperator.apacshift.support downloads http
edge/Redirect None

$ aws route53 list-hosted-zones | grep testextdnsoperator.apacshift.support

HOSTEDZONES terraform /hostedzone/Z02355203TNN1XXXX1J6O
testextdnsoperator.apacshift.support. 5

$ cat <<EOF | oc create -f -
apiVersion: externaldns.olm.openshift.io/v1beta1
kind: ExternalDNS
metadata:
 name: sample-aws 1
spec:
 domains:
 - filterType: Include 2
 matchType: Exact 3
 name: testextdnsoperator.apacshift.support 4
 provider:
 type: AWS 5
 source: 6
 type: OpenShiftRoute 7
 openshiftRouteOptions:
 routerName: default 8
EOF

OpenShift Container Platform 4.19 Networking Operators

54

2

3

4

5

6

7

8

By default all hosted zones are selected as potential targets. You can include a hosted
zone that you need.

The matching of the target zone’s domain has to be exact (as opposed to regular
expression match).

Specify the exact domain of the zone you want to update. The hostname of the routes
must be subdomains of the specified domain.

Defines the AWS Route53 DNS provider.

Defines options for the source of DNS records.

Defines OpenShift route resource as the source for the DNS records which gets created in
the previously specified DNS provider.

If the source is OpenShiftRoute, then you can pass the OpenShift Ingress Controller
name. External DNS Operator selects the canonical hostname of that router as the target
while creating CNAME record.

6. Check the records created for OCP routes using the following command:

4.5.2. Creating DNS records in a different AWS Account using a shared VPC

You can use the ExternalDNS Operator to create DNS records in a different AWS account using a
shared Virtual Private Cloud (VPC). By using a shared VPC, an organization can connect resources from
multiple projects to a common VPC network. Organizations can then use VPC sharing to use a single
Route 53 instance across multiple AWS accounts.

Prerequisites

You have created two Amazon AWS accounts: one with a VPC and a Route 53 private hosted
zone configured (Account A), and another for installing a cluster (Account B).

You have created an IAM Policy and IAM Role with the appropriate permissions in Account A for
Account B to create DNS records in the Route 53 hosted zone of Account A.

You have installed a cluster in Account B into the existing VPC for Account A.

You have installed the ExternalDNS Operator in the cluster in Account B.

Procedure

1. Get the Role ARN of the IAM Role that you created to allow Account B to access Account A’s
Route 53 hosted zone by running the following command:

Example output

$ aws route53 list-resource-record-sets --hosted-zone-id Z02355203TNN1XXXX1J6O --
query "ResourceRecordSets[?Type == 'CNAME']" | grep console

$ aws --profile account-a iam get-role --role-name user-rol1 | head -1

CHAPTER 4. EXTERNAL DNS OPERATOR

55

1

2. Locate the private hosted zone to use with Account A’s credentials by running the following
command:

Example output

3. Create the ExternalDNS object by running the following command:

Specify the Role ARN to have DNS records created in Account A.

4. Check the records created for OpenShift Container Platform (OCP) routes by using the
following command:

4.6. CREATING DNS RECORDS ON AZURE

You can create DNS records on Azure by using the External DNS Operator.

IMPORTANT

ROLE arn:aws:iam::1234567890123:role/user-rol1 2023-09-14T17:21:54+00:00 3600 /
AROA3SGB2ZRKRT5NISNJN user-rol1

$ aws --profile account-a route53 list-hosted-zones | grep
testextdnsoperator.apacshift.support

HOSTEDZONES terraform /hostedzone/Z02355203TNN1XXXX1J6O
testextdnsoperator.apacshift.support. 5

$ cat <<EOF | oc create -f -
apiVersion: externaldns.olm.openshift.io/v1beta1
kind: ExternalDNS
metadata:
 name: sample-aws
spec:
 domains:
 - filterType: Include
 matchType: Exact
 name: testextdnsoperator.apacshift.support
 provider:
 type: AWS
 aws:
 assumeRole:
 arn: arn:aws:iam::12345678901234:role/user-rol1 1
 source:
 type: OpenShiftRoute
 openshiftRouteOptions:
 routerName: default
EOF

$ aws --profile account-a route53 list-resource-record-sets --hosted-zone-id
Z02355203TNN1XXXX1J6O --query "ResourceRecordSets[?Type == 'CNAME']" | grep
console-openshift-console

OpenShift Container Platform 4.19 Networking Operators

56

IMPORTANT

Using the External DNS Operator on a Microsoft Entra Workload ID-enabled cluster or a
cluster that runs in Microsoft Azure Government (MAG) regions is not supported.

4.6.1. Creating DNS records on an Azure DNS zone

You can create Domain Name Server (DNS) records on a public or private DNS zone for Azure by using
the External DNS Operator.

Prerequisites

You must have administrator privileges.

The admin user must have access to the kube-system namespace.

Procedure

1. Fetch the credentials from the kube-system namespace to use the cloud provider client by
running the following command:

2. Log in to Azure by running the following command:

3. Get a list of routes by running the following command:

Example output

$ CLIENT_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_client_id}} | base64 -d)

$ CLIENT_SECRET=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_client_secret}} | base64 -d)

$ RESOURCE_GROUP=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_resourcegroup}} | base64 -d)

$ SUBSCRIPTION_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_subscription_id}} | base64 -d)

$ TENANT_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_tenant_id}} | base64 -d)

$ az login --service-principal -u "${CLIENT_ID}" -p "${CLIENT_SECRET}" --tenant
"${TENANT_ID}"

$ oc get routes --all-namespaces | grep console

openshift-console console console-openshift-
console.apps.test.azure.example.com console https reencrypt/Redirect
None

CHAPTER 4. EXTERNAL DNS OPERATOR

57

1

2

3

4

5

6

4. Get a list of DNS zones.

a. For public DNS zones by running the following command:

b. For private DNS zones by running the following command:

5. Create a YAML file, for example, external-dns-sample-azure.yaml, that defines the
ExternalDNS object:

Example external-dns-sample-azure.yaml file

Specifies the External DNS name.

Defines the zone ID. For a private DNS zone, change dnszones to privateDnsZones.

Defines the provider type.

You can define options for the source of DNS records.

If the source type is OpenShiftRoute, you can pass the OpenShift Ingress Controller
name. External DNS selects the canonical hostname of that router as the target while
creating CNAME record.

Defines the route resource as the source for the Azure DNS records.

Troubleshooting

1. Check the records created for the routes.

a. For public DNS zones by running the following command:

openshift-console downloads downloads-openshift-
console.apps.test.azure.example.com downloads http edge/Redirect
None

$ az network dns zone list --resource-group "${RESOURCE_GROUP}"

$ az network private-dns zone list -g "${RESOURCE_GROUP}"

apiVersion: externaldns.olm.openshift.io/v1beta1
kind: ExternalDNS
metadata:
 name: sample-azure 1
spec:
 zones:
 - "/subscriptions/1234567890/resourceGroups/test-azure-xxxxx-
rg/providers/Microsoft.Network/dnszones/test.azure.example.com" 2
 provider:
 type: Azure 3
 source:
 openshiftRouteOptions: 4
 routerName: default 5
 type: OpenShiftRoute 6

OpenShift Container Platform 4.19 Networking Operators

58

b. For private DNS zones by running the following command:

4.7. CREATING DNS RECORDS ON GOOGLE CLOUD

You can create DNS records on Google Cloud by using the External DNS Operator.

IMPORTANT

Using the External DNS Operator on a cluster with Google Cloud Workload Identity
enabled is not supported. For more information about the Google Cloud Workload
Identity, see Google Cloud Workload Identity .

4.7.1. Creating DNS records on a public managed zone for Google Cloud

You can create DNS records on a public managed zone for Google Cloud by using the External DNS
Operator.

Prerequisites

You must have administrator privileges.

Procedure

1. Copy the gcp-credentials secret in the encoded-gcloud.json file by running the following
command:

2. Export your Google credentials by running the following command:

3. Activate your account by using the following command:

4. Set your project by running the following command:

5. Get a list of routes by running the following command:

$ az network dns record-set list -g "${RESOURCE_GROUP}" -z "${ZONE_NAME}" |
grep console

$ az network private-dns record-set list -g "${RESOURCE_GROUP}" -z
"${ZONE_NAME}" | grep console

$ oc get secret gcp-credentials -n kube-system --template='{{$v := index .data
"service_account.json"}}{{$v}}' | base64 -d - > decoded-gcloud.json

$ export GOOGLE_CREDENTIALS=decoded-gcloud.json

$ gcloud auth activate-service-account <client_email as per decoded-gcloud.json> --key-
file=decoded-gcloud.json

$ gcloud config set project <project_id as per decoded-gcloud.json>

$ oc get routes --all-namespaces | grep console

CHAPTER 4. EXTERNAL DNS OPERATOR

59

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#cco-short-term-creds-gcp_cco-short-term-creds

1

2

3

4

5

6

7

Example output

6. Get a list of managed zones, such as qe-cvs4g-private-zone test.gcp.example.com, by
running the following command:

7. Create a YAML file, for example, external-dns-sample-gcp.yaml, that defines the
ExternalDNS object:

Example external-dns-sample-gcp.yaml file

Specifies the External DNS name.

By default, all hosted zones are selected as potential targets. You can include your hosted
zone.

The domain of the target must match the string defined by the name key.

Specify the exact domain of the zone you want to update. The hostname of the routes
must be subdomains of the specified domain.

Defines the provider type.

You can define options for the source of DNS records.

If the source type is OpenShiftRoute, you can pass the OpenShift Ingress Controller
name. External DNS selects the canonical hostname of that router as the target while
creating CNAME record.

openshift-console console console-openshift-
console.apps.test.gcp.example.com console https reencrypt/Redirect
None
openshift-console downloads downloads-openshift-
console.apps.test.gcp.example.com downloads http edge/Redirect
None

$ gcloud dns managed-zones list | grep test.gcp.example.com

apiVersion: externaldns.olm.openshift.io/v1beta1
kind: ExternalDNS
metadata:
 name: sample-gcp 1
spec:
 domains:
 - filterType: Include 2
 matchType: Exact 3
 name: test.gcp.example.com 4
 provider:
 type: GCP 5
 source:
 openshiftRouteOptions: 6
 routerName: default 7
 type: OpenShiftRoute 8

OpenShift Container Platform 4.19 Networking Operators

60

8 Defines the route resource as the source for Google Cloud DNS records.

8. Check the DNS records created for OpenShift Container Platform routes by running the
following command:

4.8. CREATING DNS RECORDS ON INFOBLOX

You can create DNS records on Infoblox by using the External DNS Operator.

4.8.1. Creating DNS records on a public DNS zone on Infoblox

You can create DNS records on a public DNS zone on Infoblox by using the External DNS Operator.

Prerequisites

You have access to the OpenShift CLI (oc).

You have access to the Infoblox UI.

Procedure

1. Create a secret object with Infoblox credentials by running the following command:

2. Get a list of routes by running the following command:

Example Output

3. Create a YAML file, for example, external-dns-sample-infoblox.yaml, that defines the
ExternalDNS object:

Example external-dns-sample-infoblox.yaml file

$ gcloud dns record-sets list --zone=qe-cvs4g-private-zone | grep console

$ oc -n external-dns-operator create secret generic infoblox-credentials --from-
literal=EXTERNAL_DNS_INFOBLOX_WAPI_USERNAME=<infoblox_username> --from-
literal=EXTERNAL_DNS_INFOBLOX_WAPI_PASSWORD=<infoblox_password>

$ oc get routes --all-namespaces | grep console

openshift-console console console-openshift-console.apps.test.example.com
console https reencrypt/Redirect None
openshift-console downloads downloads-openshift-
console.apps.test.example.com downloads http edge/Redirect
None

apiVersion: externaldns.olm.openshift.io/v1beta1
kind: ExternalDNS
metadata:
 name: sample-infoblox 1
spec:

CHAPTER 4. EXTERNAL DNS OPERATOR

61

1

2

3

4

Specifies the External DNS name.

Defines the provider type.

You can define options for the source of DNS records.

If the source type is OpenShiftRoute, you can pass the OpenShift Ingress Controller
name. External DNS selects the canonical hostname of that router as the target while
creating CNAME record.

4. Create the ExternalDNS resource on Infoblox by running the following command:

5. From the Infoblox UI, check the DNS records created for console routes:

a. Click Data Management → DNS → Zones.

b. Select the zone name.

4.9. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL
DNS OPERATOR

After configuring the cluster-wide proxy, the Operator Lifecycle Manager (OLM) triggers automatic
updates to all of the deployed Operators with the new contents of the HTTP_PROXY, HTTPS_PROXY,
and NO_PROXY environment variables.

4.9.1. Trusting the certificate authority of the cluster-wide proxy

You can configure the External DNS Operator to trust the certificate authority of the cluster-wide
proxy.

Procedure

1. Create the config map to contain the CA bundle in the external-dns-operator namespace by
running the following command:

 provider:
 type: Infoblox 2
 infoblox:
 credentials:
 name: infoblox-credentials
 gridHost: ${INFOBLOX_GRID_PUBLIC_IP}
 wapiPort: 443
 wapiVersion: "2.3.1"
 domains:
 - filterType: Include
 matchType: Exact
 name: test.example.com
 source:
 type: OpenShiftRoute 3
 openshiftRouteOptions:
 routerName: default 4

$ oc create -f external-dns-sample-infoblox.yaml

OpenShift Container Platform 4.19 Networking Operators

62

2. To inject the trusted CA bundle into the config map, add the config.openshift.io/inject-
trusted-cabundle=true label to the config map by running the following command:

3. Update the subscription of the External DNS Operator by running the following command:

Verification

After the deployment of the External DNS Operator is completed, verify that the trusted CA
environment variable is added, outputted as trusted-ca, to the external-dns-operator
deployment by running the following command:

$ oc -n external-dns-operator create configmap trusted-ca

$ oc -n external-dns-operator label cm trusted-ca config.openshift.io/inject-trusted-
cabundle=true

$ oc -n external-dns-operator patch subscription external-dns-operator --type='json' -
p='[{"op": "add", "path": "/spec/config", "value":{"env":
[{"name":"TRUSTED_CA_CONFIGMAP_NAME","value":"trusted-ca"}]}}]'

$ oc -n external-dns-operator exec deploy/external-dns-operator -c external-dns-operator --
printenv TRUSTED_CA_CONFIGMAP_NAME

CHAPTER 4. EXTERNAL DNS OPERATOR

63

CHAPTER 5. METALLB OPERATOR

5.1. ABOUT METALLB AND THE METALLB OPERATOR

As a cluster administrator, you can add the MetalLB Operator to your cluster so that when a service of
type LoadBalancer is added to the cluster, MetalLB can add an external IP address for the service. The
external IP address is added to the host network for your cluster.

5.1.1. When to use MetalLB

Using MetalLB is valuable when you have a bare-metal cluster, or an infrastructure that is like bare
metal, and you want fault-tolerant access to an application through an external IP address.

You must configure your networking infrastructure to ensure that network traffic for the external IP
address is routed from clients to the host network for the cluster.

After deploying MetalLB with the MetalLB Operator, when you add a service of type LoadBalancer,
MetalLB provides a platform-native load balancer.

When external traffic enters your OpenShift Container Platform cluster through a MetalLB
LoadBalancer service, the return traffic to the client has the external IP address of the load balancer as
the source IP.

MetalLB operating in layer2 mode provides support for failover by utilizing a mechanism similar to IP
failover. However, instead of relying on the virtual router redundancy protocol (VRRP) and keepalived,
MetalLB leverages a gossip-based protocol to identify instances of node failure. When a failover is
detected, another node assumes the role of the leader node, and a gratuitous ARP message is
dispatched to broadcast this change.

MetalLB operating in layer3 or border gateway protocol (BGP) mode delegates failure detection to the
network. The BGP router or routers that the OpenShift Container Platform nodes have established a
connection with will identify any node failure and terminate the routes to that node.

Using MetalLB instead of IP failover is preferable for ensuring high availability of pods and services.

5.1.2. MetalLB Operator custom resources

The MetalLB Operator monitors its own namespace for the following custom resources:

MetalLB

When you add a MetalLB custom resource to the cluster, the MetalLB Operator deploys MetalLB on
the cluster. The Operator only supports a single instance of the custom resource. If the instance is
deleted, the Operator removes MetalLB from the cluster.

IPAddressPool

MetalLB requires one or more pools of IP addresses that it can assign to a service when you add a
service of type LoadBalancer. An IPAddressPool includes a list of IP addresses. The list can be a
single IP address that is set using a range, such as 1.1.1.1-1.1.1.1, a range specified in CIDR notation, a
range specified as a starting and ending address separated by a hyphen, or a combination of the
three. An IPAddressPool requires a name. The documentation uses names like doc-example, doc-
example-reserved, and doc-example-ipv6. The MetalLB controller assigns IP addresses from a
pool of addresses in an IPAddressPool. L2Advertisement and BGPAdvertisement custom

OpenShift Container Platform 4.19 Networking Operators

64

resources enable the advertisement of a given IP from a given pool. You can assign IP addresses
from an IPAddressPool to services and namespaces by using the spec.serviceAllocation
specification in the IPAddressPool custom resource.

NOTE

A single IPAddressPool can be referenced by a L2 advertisement and a BGP
advertisement.

BGPPeer

The BGP peer custom resource identifies the BGP router for MetalLB to communicate with, the AS
number of the router, the AS number for MetalLB, and customizations for route advertisement.
MetalLB advertises the routes for service load-balancer IP addresses to one or more BGP peers.

BFDProfile

The BFD profile custom resource configures Bidirectional Forwarding Detection (BFD) for a BGP
peer. BFD provides faster path failure detection than BGP alone provides.

L2Advertisement

The L2Advertisement custom resource advertises an IP coming from an IPAddressPool using the
L2 protocol.

BGPAdvertisement

The BGPAdvertisement custom resource advertises an IP coming from an IPAddressPool using the
BGP protocol.

After you add the MetalLB custom resource to the cluster and the Operator deploys MetalLB, the
controller and speaker MetalLB software components begin running.

MetalLB validates all relevant custom resources.

5.1.3. MetalLB software components

When you install the MetalLB Operator, the metallb-operator-controller-manager deployment starts a
pod. The pod is the implementation of the Operator. The pod monitors for changes to all the relevant
resources.

When the Operator starts an instance of MetalLB, it starts a controller deployment and a speaker
daemon set.

NOTE

You can configure deployment specifications in the MetalLB custom resource to manage
how controller and speaker pods deploy and run in your cluster. For more information
about these deployment specifications, see the Additional resources section.

controller

The Operator starts the deployment and a single pod. When you add a service of type
LoadBalancer, Kubernetes uses the controller to allocate an IP address from an address pool. In
case of a service failure, verify you have the following entry in your controller pod logs:

Example output

CHAPTER 5. METALLB OPERATOR

65

speaker

The Operator starts a daemon set for speaker pods. By default, a pod is started on each node in
your cluster. You can limit the pods to specific nodes by specifying a node selector in the MetalLB
custom resource when you start MetalLB. If the controller allocated the IP address to the service
and service is still unavailable, read the speaker pod logs. If the speaker pod is unavailable, run the
oc describe pod -n command.
For layer 2 mode, after the controller allocates an IP address for the service, the speaker pods use
an algorithm to determine which speaker pod on which node will announce the load balancer IP
address. The algorithm involves hashing the node name and the load balancer IP address. For more
information, see "MetalLB and external traffic policy". The speaker uses Address Resolution
Protocol (ARP) to announce IPv4 addresses and Neighbor Discovery Protocol (NDP) to announce
IPv6 addresses.

For Border Gateway Protocol (BGP) mode, after the controller allocates an IP address for the service,
each speaker pod advertises the load balancer IP address with its BGP peers. You can configure which
nodes start BGP sessions with BGP peers.

Requests for the load balancer IP address are routed to the node with the speaker that announces the
IP address. After the node receives the packets, the service proxy routes the packets to an endpoint for
the service. The endpoint can be on the same node in the optimal case, or it can be on another node.
The service proxy chooses an endpoint each time a connection is established.

5.1.4. MetalLB and external traffic policy

With layer 2 mode, one node in your cluster receives all the traffic for the service IP address. With BGP
mode, a router on the host network opens a connection to one of the nodes in the cluster for a new
client connection. How your cluster handles the traffic after it enters the node is affected by the
external traffic policy.

cluster

This is the default value for spec.externalTrafficPolicy.
With the cluster traffic policy, after the node receives the traffic, the service proxy distributes the
traffic to all the pods in your service. This policy provides uniform traffic distribution across the pods,
but it obscures the client IP address and it can appear to the application in your pods that the traffic
originates from the node rather than the client.

local

With the local traffic policy, after the node receives the traffic, the service proxy only sends traffic
to the pods on the same node. For example, if the speaker pod on node A announces the external
service IP, then all traffic is sent to node A. After the traffic enters node A, the service proxy only
sends traffic to pods for the service that are also on node A. Pods for the service that are on
additional nodes do not receive any traffic from node A. Pods for the service on additional nodes act
as replicas in case failover is needed.
This policy does not affect the client IP address. Application pods can determine the client IP address
from the incoming connections.

NOTE

"event":"ipAllocated","ip":"172.22.0.201","msg":"IP address assigned by controller

OpenShift Container Platform 4.19 Networking Operators

66

NOTE

The following information is important when configuring the external traffic policy in BGP
mode.

Although MetalLB advertises the load balancer IP address from all the eligible nodes, the
number of nodes loadbalancing the service can be limited by the capacity of the router to
establish equal-cost multipath (ECMP) routes. If the number of nodes advertising the IP
is greater than the ECMP group limit of the router, the router will use less nodes than the
ones advertising the IP.

For example, if the external traffic policy is set to local and the router has an ECMP
group limit set to 16 and the pods implementing a LoadBalancer service are deployed on
30 nodes, this would result in pods deployed on 14 nodes not receiving any traffic. In this
situation, it would be preferable to set the external traffic policy for the service to
cluster.

5.1.5. MetalLB concepts for layer 2 mode

In layer 2 mode, the speaker pod on one node announces the external IP address for a service to the
host network. From a network perspective, the node appears to have multiple IP addresses assigned to
a network interface.

NOTE

In layer 2 mode, MetalLB relies on ARP and NDP. These protocols implement local
address resolution within a specific subnet. In this context, the client must be able to reach
the VIP assigned by MetalLB that exists on the same subnet as the nodes announcing the
service in order for MetalLB to work.

The speaker pod responds to ARP requests for IPv4 services and NDP requests for IPv6.

In layer 2 mode, all traffic for a service IP address is routed through one node. After traffic enters the
node, the service proxy for the CNI network provider distributes the traffic to all the pods for the
service.

Because all traffic for a service enters through a single node in layer 2 mode, in a strict sense, MetalLB
does not implement a load balancer for layer 2. Rather, MetalLB implements a failover mechanism for
layer 2 so that when a speaker pod becomes unavailable, a speaker pod on a different node can
announce the service IP address.

When a node becomes unavailable, failover is automatic. The speaker pods on the other nodes detect
that a node is unavailable and a new speaker pod and node take ownership of the service IP address
from the failed node.

CHAPTER 5. METALLB OPERATOR

67

The preceding graphic shows the following concepts related to MetalLB:

An application is available through a service that has a cluster IP on the 172.130.0.0/16 subnet.
That IP address is accessible from inside the cluster. The service also has an external IP address
that MetalLB assigned to the service, 192.168.100.200.

Nodes 1 and 3 have a pod for the application.

The speaker daemon set runs a pod on each node. The MetalLB Operator starts these pods.

Each speaker pod is a host-networked pod. The IP address for the pod is identical to the IP
address for the node on the host network.

The speaker pod on node 1 uses ARP to announce the external IP address for the service,
192.168.100.200. The speaker pod that announces the external IP address must be on the
same node as an endpoint for the service and the endpoint must be in the Ready condition.

Client traffic is routed to the host network and connects to the 192.168.100.200 IP address.
After traffic enters the node, the service proxy sends the traffic to the application pod on the
same node or another node according to the external traffic policy that you set for the service.

If the external traffic policy for the service is set to cluster, the node that advertises the
192.168.100.200 load balancer IP address is selected from the nodes where a speaker pod
is running. Only that node can receive traffic for the service.

If the external traffic policy for the service is set to local, the node that advertises the
192.168.100.200 load balancer IP address is selected from the nodes where a speaker pod
is running and at least an endpoint of the service. Only that node can receive traffic for the
service. In the preceding graphic, either node 1 or 3 would advertise 192.168.100.200.

OpenShift Container Platform 4.19 Networking Operators

68

If node 1 becomes unavailable, the external IP address fails over to another node. On another
node that has an instance of the application pod and service endpoint, the speaker pod begins
to announce the external IP address, 192.168.100.200 and the new node receives the client
traffic. In the diagram, the only candidate is node 3.

5.1.6. MetalLB concepts for BGP mode

In BGP mode, by default each speaker pod advertises the load balancer IP address for a service to each
BGP peer. It is also possible to advertise the IPs coming from a given pool to a specific set of peers by
adding an optional list of BGP peers. BGP peers are commonly network routers that are configured to
use the BGP protocol. When a router receives traffic for the load balancer IP address, the router picks
one of the nodes with a speaker pod that advertised the IP address. The router sends the traffic to that
node. After traffic enters the node, the service proxy for the CNI network plugin distributes the traffic to
all the pods for the service.

The directly-connected router on the same layer 2 network segment as the cluster nodes can be
configured as a BGP peer. If the directly-connected router is not configured as a BGP peer, you need to
configure your network so that packets for load balancer IP addresses are routed between the BGP
peers and the cluster nodes that run the speaker pods.

Each time a router receives new traffic for the load balancer IP address, it creates a new connection to a
node. Each router manufacturer has an implementation-specific algorithm for choosing which node to
initiate the connection with. However, the algorithms commonly are designed to distribute traffic across
the available nodes for the purpose of balancing the network load.

If a node becomes unavailable, the router initiates a new connection with another node that has a
speaker pod that advertises the load balancer IP address.

Figure 5.1. MetalLB topology diagram for BGP mode

CHAPTER 5. METALLB OPERATOR

69

Figure 5.1. MetalLB topology diagram for BGP mode

The preceding graphic shows the following concepts related to MetalLB:

An application is available through a service that has an IPv4 cluster IP on the 172.130.0.0/16
subnet. That IP address is accessible from inside the cluster. The service also has an external IP
address that MetalLB assigned to the service, 203.0.113.200.

Nodes 2 and 3 have a pod for the application.

The speaker daemon set runs a pod on each node. The MetalLB Operator starts these pods.
You can configure MetalLB to specify which nodes run the speaker pods.

Each speaker pod is a host-networked pod. The IP address for the pod is identical to the IP
address for the node on the host network.

Each speaker pod starts a BGP session with all BGP peers and advertises the load balancer IP
addresses or aggregated routes to the BGP peers. The speaker pods advertise that they are
part of Autonomous System 65010. The diagram shows a router, R1, as a BGP peer within the
same Autonomous System. However, you can configure MetalLB to start BGP sessions with
peers that belong to other Autonomous Systems.

All the nodes with a speaker pod that advertises the load balancer IP address can receive
traffic for the service.

If the external traffic policy for the service is set to cluster, all the nodes where a speaker
pod is running advertise the 203.0.113.200 load balancer IP address and all the nodes with a
speaker pod can receive traffic for the service. The host prefix is advertised to the router

OpenShift Container Platform 4.19 Networking Operators

70

peer only if the external traffic policy is set to cluster.

If the external traffic policy for the service is set to local, then all the nodes where a
speaker pod is running and at least an endpoint of the service is running can advertise the
203.0.113.200 load balancer IP address. Only those nodes can receive traffic for the
service. In the preceding graphic, nodes 2 and 3 would advertise 203.0.113.200.

You can configure MetalLB to control which speaker pods start BGP sessions with specific
BGP peers by specifying a node selector when you add a BGP peer custom resource.

Any routers, such as R1, that are configured to use BGP can be set as BGP peers.

Client traffic is routed to one of the nodes on the host network. After traffic enters the node,
the service proxy sends the traffic to the application pod on the same node or another node
according to the external traffic policy that you set for the service.

If a node becomes unavailable, the router detects the failure and initiates a new connection with
another node. You can configure MetalLB to use a Bidirectional Forwarding Detection (BFD)
profile for BGP peers. BFD provides faster link failure detection so that routers can initiate new
connections earlier than without BFD.

5.1.7. Limitations and restrictions

5.1.7.1. Infrastructure considerations for MetalLB

MetalLB is primarily useful for on-premise, bare metal installations because these installations do not
include a native load-balancer capability. In addition to bare metal installations, installations of
OpenShift Container Platform on some infrastructures might not include a native load-balancer
capability. For example, the following infrastructures can benefit from adding the MetalLB Operator:

Bare metal

VMware vSphere

IBM Z® and IBM® LinuxONE

IBM Z® and IBM® LinuxONE for Red Hat Enterprise Linux (RHEL) KVM

IBM Power®

5.1.7.2. Limitations for layer 2 mode

5.1.7.2.1. Single-node bottleneck

MetalLB routes all traffic for a service through a single node, the node can become a bottleneck and
limit performance.

Layer 2 mode limits the ingress bandwidth for your service to the bandwidth of a single node. This is a
fundamental limitation of using ARP and NDP to direct traffic.

5.1.7.2.2. Slow failover performance

Failover between nodes depends on cooperation from the clients. When a failover occurs, MetalLB
sends gratuitous ARP packets to notify clients that the MAC address associated with the service IP has
changed.

CHAPTER 5. METALLB OPERATOR

71

Most client operating systems handle gratuitous ARP packets correctly and update their neighbor
caches promptly. When clients update their caches quickly, failover completes within a few seconds.
Clients typically fail over to a new node within 10 seconds. However, some client operating systems either
do not handle gratuitous ARP packets at all or have outdated implementations that delay the cache
update.

Recent versions of common operating systems such as Windows, macOS, and Linux implement layer 2
failover correctly. Issues with slow failover are not expected except for older and less common client
operating systems.

To minimize the impact from a planned failover on outdated clients, keep the old node running for a few
minutes after flipping leadership. The old node can continue to forward traffic for outdated clients until
their caches refresh.

During an unplanned failover, the service IPs are unreachable until the outdated clients refresh their
cache entries.

5.1.7.2.3. Additional Network and MetalLB cannot use same network

Using the same VLAN for both MetalLB and an additional network interface set up on a source pod
might result in a connection failure. This occurs when both the MetalLB IP and the source pod reside on
the same node.

To avoid connection failures, place the MetalLB IP in a different subnet from the one where the source
pod resides. This configuration ensures that traffic from the source pod will take the default gateway.
Consequently, the traffic can effectively reach its destination by using the OVN overlay network,
ensuring that the connection functions as intended.

5.1.7.3. Limitations for BGP mode

5.1.7.3.1. Node failure can break all active connections

MetalLB shares a limitation that is common to BGP-based load balancing. When a BGP session
terminates, such as when a node fails or when a speaker pod restarts, the session termination might
result in resetting all active connections. End users can experience a Connection reset by peer
message.

The consequence of a terminated BGP session is implementation-specific for each router
manufacturer. However, you can anticipate that a change in the number of speaker pods affects the
number of BGP sessions and that active connections with BGP peers will break.

To avoid or reduce the likelihood of a service interruption, you can specify a node selector when you add
a BGP peer. By limiting the number of nodes that start BGP sessions, a fault on a node that does not
have a BGP session has no affect on connections to the service.

5.1.7.3.2. Support for a single ASN and a single router ID only

When you add a BGP peer custom resource, you specify the spec.myASN field to identify the
Autonomous System Number (ASN) that MetalLB belongs to. OpenShift Container Platform uses an
implementation of BGP with MetalLB that requires MetalLB to belong to a single ASN. If you attempt to
add a BGP peer and specify a different value for spec.myASN than an existing BGP peer custom
resource, you receive an error.

Similarly, when you add a BGP peer custom resource, the spec.routerID field is optional. If you specify a

OpenShift Container Platform 4.19 Networking Operators

72

Similarly, when you add a BGP peer custom resource, the spec.routerID field is optional. If you specify a
value for this field, you must specify the same value for all other BGP peer custom resources that you
add.

The limitation to support a single ASN and single router ID is a difference with the community-supported
implementation of MetalLB.

5.1.8. Additional resources

Comparison: Fault tolerant access to external IP addresses

Removing IP failover

Deployment specifications for MetalLB

5.2. INSTALLING THE METALLB OPERATOR

As a cluster administrator, you can add the MetalLB Operator so that the Operator can manage the
lifecycle for an instance of MetalLB on your cluster.

MetalLB and IP failover are incompatible. If you configured IP failover for your cluster, perform the steps
to remove IP failover before you install the Operator.

5.2.1. Installing the MetalLB Operator from the OperatorHub by using the web
console

As a cluster administrator, you can install the MetalLB Operator by using the OpenShift Container
Platform web console.

Prerequisites

Log in as a user with cluster-admin privileges.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → OperatorHub.

2. Type a keyword into the Filter by keyword box or scroll to find the Operator you want. For
example, type metallb to find the MetalLB Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. On the Install Operator page, accept the defaults and click Install.

Verification

1. To confirm that the installation is successful:

a. Navigate to the Operators → Installed Operators page.

b. Check that the Operator is installed in the openshift-operators namespace and that its
status is Succeeded.

2. If the Operator is not installed successfully, check the status of the Operator and review the

CHAPTER 5. METALLB OPERATOR

73

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ingress_and_load_balancing/#overview-traffic-comparision_overview-traffic
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/configuring_network_settings/#nw-ipfailover-remove_configuring-ipfailover
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/configuring_network_settings/#nw-ipfailover-remove_configuring-ipfailover

2. If the Operator is not installed successfully, check the status of the Operator and review the
logs:

a. Navigate to the Operators → Installed Operators page and inspect the Status column for
any errors or failures.

b. Navigate to the Workloads → Pods page and check the logs in any pods in the openshift-
operators project that are reporting issues.

5.2.2. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub using the CLI. You can use the OpenShift CLI (oc) to install the MetalLB Operator.

It is recommended that when using the CLI you install the Operator in the metallb-system namespace.

Prerequisites

A cluster installed on bare-metal hardware.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the MetalLB Operator by entering the following command:

2. Create an Operator group custom resource (CR) in the namespace:

3. Confirm the Operator group is installed in the namespace:

Example output

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Namespace
metadata:
 name: metallb-system
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: metallb-operator
 namespace: metallb-system
EOF

$ oc get operatorgroup -n metallb-system

NAME AGE
metallb-operator 14m

OpenShift Container Platform 4.19 Networking Operators

74

1

4. Create a Subscription CR:

a. Define the Subscription CR and save the YAML file, for example, metallb-sub.yaml:

You must specify the redhat-operators value.

b. To create the Subscription CR, run the following command:

5. Optional: To ensure BGP and BFD metrics appear in Prometheus, you can label the namespace
as in the following command:

Verification

The verification steps assume the MetalLB Operator is installed in the metallb-system namespace.

1. Confirm the install plan is in the namespace:

Example output

NOTE

Installation of the Operator might take a few seconds.

2. To verify that the Operator is installed, enter the following command and then check that
output shows Succeeded for the Operator:

5.2.3. Starting MetalLB on your cluster

After you install the Operator, you need to configure a single instance of a MetalLB custom resource.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: metallb-operator-sub
 namespace: metallb-system
spec:
 channel: stable
 name: metallb-operator
 source: redhat-operators 1
 sourceNamespace: openshift-marketplace

$ oc create -f metallb-sub.yaml

$ oc label ns metallb-system "openshift.io/cluster-monitoring=true"

$ oc get installplan -n metallb-system

NAME CSV APPROVAL APPROVED
install-wzg94 metallb-operator.4.19.0-nnnnnnnnnnnn Automatic true

$ oc get clusterserviceversion -n metallb-system \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

CHAPTER 5. METALLB OPERATOR

75

After you install the Operator, you need to configure a single instance of a MetalLB custom resource.
After you configure the custom resource, the Operator starts MetalLB on your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the MetalLB Operator.

Procedure

This procedure assumes the MetalLB Operator is installed in the metallb-system namespace. If you
installed using the web console substitute openshift-operators for the namespace.

1. Create a single instance of a MetalLB custom resource:

Verification

Confirm that the deployment for the MetalLB controller and the daemon set for the MetalLB speaker
are running.

1. Verify that the deployment for the controller is running:

Example output

2. Verify that the daemon set for the speaker is running:

Example output

The example output indicates 6 speaker pods. The number of speaker pods in your cluster
might differ from the example output. Make sure the output indicates one pod for each node in
your cluster.

$ cat << EOF | oc apply -f -
apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system
EOF

$ oc get deployment -n metallb-system controller

NAME READY UP-TO-DATE AVAILABLE AGE
controller 1/1 1 1 11m

$ oc get daemonset -n metallb-system speaker

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
SELECTOR AGE
speaker 6 6 6 6 6 kubernetes.io/os=linux 18m

OpenShift Container Platform 4.19 Networking Operators

76

1

2

5.2.4. Deployment specifications for MetalLB

When you start an instance of MetalLB using the MetalLB custom resource, you can configure
deployment specifications in the MetalLB custom resource to manage how the controller or speaker
pods deploy and run in your cluster. Use these deployment specifications to manage the following tasks:

Select nodes for MetalLB pod deployment.

Manage scheduling by using pod priority and pod affinity.

Assign CPU limits for MetalLB pods.

Assign a container RuntimeClass for MetalLB pods.

Assign metadata for MetalLB pods.

5.2.4.1. Limit speaker pods to specific nodes

By default, when you start MetalLB with the MetalLB Operator, the Operator starts an instance of a
speaker pod on each node in the cluster. Only the nodes with a speaker pod can advertise a load
balancer IP address. You can configure the MetalLB custom resource with a node selector to specify
which nodes run the speaker pods.

The most common reason to limit the speaker pods to specific nodes is to ensure that only nodes with
network interfaces on specific networks advertise load balancer IP addresses. Only the nodes with a
running speaker pod are advertised as destinations of the load balancer IP address.

If you limit the speaker pods to specific nodes and specify local for the external traffic policy of a
service, then you must ensure that the application pods for the service are deployed to the same nodes.

Example configuration to limit speaker pods to worker nodes

The example configuration specifies to assign the speaker pods to worker nodes, but you can
specify labels that you assigned to nodes or any valid node selector.

In this example configuration, the pod that this toleration is attached to tolerates any taint that
matches the key value and effect value using the operator.

After you apply a manifest with the spec.nodeSelector field, you can check the number of pods that the
Operator deployed with the oc get daemonset -n metallb-system speaker command. Similarly, you
can display the nodes that match your labels with a command like oc get nodes -l node-

apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system
spec:
 nodeSelector: 1
 node-role.kubernetes.io/worker: ""
 speakerTolerations: 2
 - key: "Example"
 operator: "Exists"
 effect: "NoExecute"

CHAPTER 5. METALLB OPERATOR

77

role.kubernetes.io/worker=.

You can optionally allow the node to control which speaker pods should, or should not, be scheduled on
them by using affinity rules. You can also limit these pods by applying a list of tolerations. For more
information about affinity rules, taints, and tolerations, see the additional resources.

5.2.4.2. Configuring pod priority and pod affinity in a MetalLB deployment

You can optionally assign pod priority and pod affinity rules to controller and speaker pods by
configuring the MetalLB custom resource. The pod priority indicates the relative importance of a pod
on a node and schedules the pod based on this priority. Set a high priority on your controller or speaker
pod to ensure scheduling priority over other pods on the node.

Pod affinity manages relationships among pods. Assign pod affinity to the controller or speaker pods
to control on what node the scheduler places the pod in the context of pod relationships. For example,
you can use pod affinity rules to ensure that certain pods are located on the same node or nodes, which
can help improve network communication and reduce latency between those components.

Prerequisites

You are logged in as a user with cluster-admin privileges.

You have installed the MetalLB Operator.

You have started the MetalLB Operator on your cluster.

Procedure

1. Create a PriorityClass custom resource, such as myPriorityClass.yaml, to configure the
priority level. This example defines a PriorityClass named high-priority with a value of
1000000. Pods that are assigned this priority class are considered higher priority during
scheduling compared to pods with lower priority classes:

2. Apply the PriorityClass custom resource configuration:

3. Create a MetalLB custom resource, such as MetalLBPodConfig.yaml, to specify the
priorityClassName and podAffinity values:

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: high-priority
value: 1000000

$ oc apply -f myPriorityClass.yaml

apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system
spec:
 logLevel: debug
 controllerConfig:

OpenShift Container Platform 4.19 Networking Operators

78

1

2

Specifies the priority class for the MetalLB controller pods. In this case, it is set to high-
priority.

Specifies that you are configuring pod affinity rules. These rules dictate how pods are
scheduled in relation to other pods or nodes. This configuration instructs the scheduler to
schedule pods that have the label app: metallb onto nodes that share the same
hostname. This helps to co-locate MetalLB-related pods on the same nodes, potentially
optimizing network communication, latency, and resource usage between these pods.

4. Apply the MetalLB custom resource configuration:

Verification

To view the priority class that you assigned to pods in the metallb-system namespace, run the
following command:

Example output

To verify that the scheduler placed pods according to pod affinity rules, view the metadata for
the pod’s node or nodes by running the following command:

 priorityClassName: high-priority 1
 affinity:
 podAffinity: 2
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchLabels:
 app: metallb
 topologyKey: kubernetes.io/hostname
 speakerConfig:
 priorityClassName: high-priority
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchLabels:
 app: metallb
 topologyKey: kubernetes.io/hostname

$ oc apply -f MetalLBPodConfig.yaml

$ oc get pods -n metallb-system -o custom-
columns=NAME:.metadata.name,PRIORITY:.spec.priorityClassName

NAME PRIORITY
controller-584f5c8cd8-5zbvg high-priority
metallb-operator-controller-manager-9c8d9985-szkqg <none>
metallb-operator-webhook-server-c895594d4-shjgx <none>
speaker-dddf7 high-priority

$ oc get pod -o=custom-columns=NODE:.spec.nodeName,NAME:.metadata.name -n
metallb-system

CHAPTER 5. METALLB OPERATOR

79

5.2.4.3. Configuring pod CPU limits in a MetalLB deployment

You can optionally assign pod CPU limits to controller and speaker pods by configuring the MetalLB
custom resource. Defining CPU limits for the controller or speaker pods helps you to manage compute
resources on the node. This ensures all pods on the node have the necessary compute resources to
manage workloads and cluster housekeeping.

Prerequisites

You are logged in as a user with cluster-admin privileges.

You have installed the MetalLB Operator.

Procedure

1. Create a MetalLB custom resource file, such as CPULimits.yaml, to specify the cpu value for
the controller and speaker pods:

2. Apply the MetalLB custom resource configuration:

Verification

To view compute resources for a pod, run the following command, replacing <pod_name> with
your target pod:

5.2.5. Additional resources

Placing pods on specific nodes using node selectors

Controlling pod placement using node taints

Understanding pod priority

Understanding pod affinity

apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system
spec:
 logLevel: debug
 controllerConfig:
 resources:
 limits:
 cpu: "200m"
 speakerConfig:
 resources:
 limits:
 cpu: "300m"

$ oc apply -f CPULimits.yaml

$ oc describe pod <pod_name>

OpenShift Container Platform 4.19 Networking Operators

80

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-node-selectors
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-taints-tolerations-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-pods-priority-about_nodes-pods-priority
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-pod-affinity-about_nodes-scheduler-pod-affinity

5.2.6. Next steps

Configuring MetalLB address pools

5.3. UPGRADING THE METALLB OPERATOR

A Subscription custom resource (CR) that subscribes the namespace to metallb-system by default,
automatically sets the installPlanApproval parameter to Automatic. This means that when Red Hat-
provided Operator catalogs include a newer version of the MetalLB Operator, the MetalLB Operator is
automatically upgraded.

If you need to manually control upgrading the MetalLB Operator, set the installPlanApproval
parameter to Manual.

5.3.1. Manually upgrading the MetalLB Operator

To manually control upgrading the MetalLB Operator, you must edit the Subscription custom resource
(CR) that subscribes the namespace to metallb-system. A Subscription CR is created as part of the
Operator installation and the CR has the installPlanApproval parameter set to Automatic by default.

Prerequisites

You updated your cluster to the latest z-stream release.

You used OperatorHub to install the MetalLB Operator.

Access the cluster as a user with the cluster-admin role.

Procedure

1. Get the YAML definition of the metallb-operator subscription in the metallb-system
namespace by entering the following command:

2. Edit the Subscription CR by setting the installPlanApproval parameter to Manual:

3. Find the latest OpenShift Container Platform 4.19 version of the MetalLB Operator by entering
the following command:

$ oc -n metallb-system get subscription metallb-operator -o yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: metallb-operator
 namespace: metallb-system
...
spec:
 channel: stable
 installPlanApproval: Manual
 name: metallb-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
...

CHAPTER 5. METALLB OPERATOR

81

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ingress_and_load_balancing/#nw-metallb-configure-address-pool_configure-metallb-address-pools

4. Check the install plan that exists in the namespace by entering the following command.

Example output that shows install-tsz2g as a manual install plan

5. Edit the install plan that exists in the namespace by entering the following command. Ensure
that you replace <name_of_installplan> with the name of the install plan, such as install-tsz2g.

a. With the install plan open in your editor, set the spec.approval parameter to Manual and
set the spec.approved parameter to true.

NOTE

After you edit the install plan, the upgrade operation starts. If you enter the
oc -n metallb-system get csv command during the upgrade operation, the
output might show the Replacing or the Pending status.

Verification

To verify that the Operator is upgraded, enter the following command and then check that
output shows Succeeded for the Operator:

5.3.2. Additional resources

Introduction to OpenShift updates

Installing the MetalLB Operator

$ oc -n metallb-system get csv

$ oc -n metallb-system get installplan

NAME CSV APPROVAL APPROVED
install-shpmd metallb-operator.v4.19.0-202502261233 Automatic true
install-tsz2g metallb-operator.v4.19.0-202503102139 Manual false

$ oc edit installplan <name_of_installplan> -n metallb-system

$ oc -n metallb-system get csv

OpenShift Container Platform 4.19 Networking Operators

82

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/updating_clusters/#intro-to-updates_intro-to-updates

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT
CONTAINER PLATFORM

You can use the Cluster Network Operator (CNO) to deploy and manage cluster network components
on an OpenShift Container Platform cluster, including the Container Network Interface (CNI) network
plugin selected for the cluster during installation.

6.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator implements the network API from the operator.openshift.io API group.
The Operator deploys the OVN-Kubernetes network plugin, or the network provider plugin that you
selected during cluster installation, by using a daemon set.

Procedure

The Cluster Network Operator is deployed during installation as a Kubernetes Deployment.

1. Run the following command to view the Deployment status:

Example output

2. Run the following command to view the state of the Cluster Network Operator:

Example output

The following fields provide information about the status of the operator: AVAILABLE,
PROGRESSING, and DEGRADED. The AVAILABLE field is True when the Cluster Network
Operator reports an available status condition.

6.2. VIEWING THE CLUSTER NETWORK CONFIGURATION

Every new OpenShift Container Platform installation has a network.config object named cluster.

Procedure

Use the oc describe command to view the cluster network configuration:

Example output

$ oc get -n openshift-network-operator deployment/network-operator

NAME READY UP-TO-DATE AVAILABLE AGE
network-operator 1/1 1 1 56m

$ oc get clusteroperator/network

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.16.1 True False False 50m

$ oc describe network.config/cluster

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

83

1

2

The Spec field displays the configured state of the cluster network.

The Status field displays the current state of the cluster network configuration.

6.3. VIEWING CLUSTER NETWORK OPERATOR STATUS

You can inspect the status and view the details of the Cluster Network Operator using the oc describe
command.

Procedure

Run the following command to view the status of the Cluster Network Operator:

Name: cluster
Namespace:
Labels: <none>
Annotations: <none>
API Version: config.openshift.io/v1
Kind: Network
Metadata:
 Creation Timestamp: 2024-08-08T11:25:56Z
 Generation: 3
 Resource Version: 29821
 UID: 808dd2be-5077-4ff7-b6bb-21b7110126c7
Spec: 1
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 External IP:
 Policy:
 Network Diagnostics:
 Mode:
 Source Placement:
 Target Placement:
 Network Type: OVNKubernetes
 Service Network:
 172.30.0.0/16
Status: 2
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Cluster Network MTU: 1360
 Conditions:
 Last Transition Time: 2024-08-08T11:51:50Z
 Message:
 Observed Generation: 0
 Reason: AsExpected
 Status: True
 Type: NetworkDiagnosticsAvailable
 Network Type: OVNKubernetes
 Service Network:
 172.30.0.0/16
Events: <none>

OpenShift Container Platform 4.19 Networking Operators

84

6.4. ENABLING IP FORWARDING GLOBALLY

From OpenShift Container Platform 4.14 onward, global IP address forwarding is disabled on OVN-
Kubernetes based cluster deployments to prevent undesirable effects for cluster administrators with
nodes acting as routers. However, in some cases where an administrator expects traffic to be forwarded
a new configuration parameter ipForwarding is available to allow forwarding of all IP traffic.

To re-enable IP forwarding for all traffic on OVN-Kubernetes managed interfaces set the
gatewayConfig.ipForwarding specification in the Cluster Network Operator to Global following this
procedure:

Procedure

1. Backup the existing network configuration by running the following command:

2. Run the following command to modify the existing network configuration:

a. Add or update the following block under spec as illustrated in the following example:

b. Save and close the file.

3. After applying the changes, the OpenShift Cluster Network Operator (CNO) applies the update
across the cluster. You can monitor the progress by using the following command:

The status should eventually report as Available, Progressing=False, and Degraded=False.

4. Alternatively, you can enable IP forwarding globally by running the following command:

NOTE

$ oc describe clusteroperators/network

$ oc get network.operator cluster -o yaml > network-config-backup.yaml

$ oc edit network.operator cluster

spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 serviceNetwork:
 - 172.30.0.0/16
 networkType: OVNKubernetes
 clusterNetworkMTU: 8900
 defaultNetwork:
 ovnKubernetesConfig:
 gatewayConfig:
 ipForwarding: Global

$ oc get clusteroperators network

$ oc patch network.operator cluster -p '{"spec":{"defaultNetwork":{"ovnKubernetesConfig":
{"gatewayConfig":{"ipForwarding": "Global"}}}}}' --type=merge

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

85

NOTE

The other valid option for this parameter is Restricted in case you want to revert
this change. Restricted is the default and with that setting global IP address
forwarding is disabled.

6.5. VIEWING CLUSTER NETWORK OPERATOR LOGS

You can view Cluster Network Operator logs by using the oc logs command.

Procedure

Run the following command to view the logs of the Cluster Network Operator:

6.6. CLUSTER NETWORK OPERATOR CONFIGURATION

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO)
configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the
fields for the Network API in the operator.openshift.io API group.

The CNO configuration inherits the following fields during cluster installation from the Network API in
the Network.config.openshift.io API group:

clusterNetwork

IP address pools from which pod IP addresses are allocated.

serviceNetwork

IP address pool for services.

defaultNetwork.type

Cluster network plugin. OVNKubernetes is the only supported plugin during installation.

NOTE

After cluster installation, you can only modify the clusterNetwork IP address range.

You can specify the cluster network plugin configuration for your cluster by setting the fields for the
defaultNetwork object in the CNO object named cluster.

6.6.1. Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 6.1. Cluster Network Operator configuration object

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.

$ oc logs --namespace=openshift-network-operator deployment/network-operator

OpenShift Container Platform 4.19 Networking Operators

86

spec.clusterNet
work

array A list specifying the blocks of IP addresses from which pod IP
addresses are allocated and the subnet prefix length assigned to
each individual node in the cluster. For example:

spec.serviceNet
work

array A block of IP addresses for services. The OVN-Kubernetes
network plugin supports only a single IP address block for the
service network. For example:

This value is ready-only and inherited from the
Network.config.openshift.io object named cluster during
cluster installation.

spec.defaultNet
work

object Configures the network plugin for the cluster network.

spec.additional
RoutingCapabili
ties.providers

array This setting enables a dynamic routing provider. The FRR routing
capability provider is required for the route advertisement
feature. The only supported value is FRR.

FRR: The FRR routing provider

Field Type Description

IMPORTANT

For a cluster that needs to deploy objects across multiple networks, ensure that you
specify the same value for the clusterNetwork.hostPrefix parameter for each network
type that is defined in the install-config.yaml file. Setting a different value for each
clusterNetwork.hostPrefix parameter can impact the OVN-Kubernetes network plugin,
where the plugin cannot effectively route object traffic among different nodes.

6.6.1.1. defaultNetwork object configuration

spec:
 clusterNetwork:
 - cidr: 10.128.0.0/19
 hostPrefix: 23
 - cidr: 10.128.32.0/19
 hostPrefix: 23

spec:
 serviceNetwork:
 - 172.30.0.0/14

spec:
 additionalRoutingCapabilities:
 providers:
 - FRR

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

87

The values for the defaultNetwork object are defined in the following table:

Table 6.2. defaultNetwork object

Field Type Description

type string OVNKubernetes. The Red Hat OpenShift
Networking network plugin is selected during
installation. This value cannot be changed after
cluster installation.

NOTE

OpenShift Container Platform uses
the OVN-Kubernetes network plugin
by default.

ovnKubernetesConfig object This object is only valid for the OVN-Kubernetes
network plugin.

6.6.1.1.1. Configuration for the OVN-Kubernetes network plugin

The following table describes the configuration fields for the OVN-Kubernetes network plugin:

Table 6.3. ovnKubernetesConfig object

Field Type Description

mtu integer The maximum transmission unit (MTU) for the Geneve (Generic
Network Virtualization Encapsulation) overlay network. This
value is normally configured automatically.

genevePort integer The UDP port for the Geneve overlay network.

ipsecConfig object An object describing the IPsec mode for the cluster.

ipv4 object Specifies a configuration object for IPv4 settings.

ipv6 object Specifies a configuration object for IPv6 settings.

policyAuditConf
ig

object Specify a configuration object for customizing network policy
audit logging. If unset, the defaults audit log settings are used.

OpenShift Container Platform 4.19 Networking Operators

88

routeAdvertise
ments

string Specifies whether to advertise cluster network routes. The
default value is Disabled.

Enabled: Import routes to the cluster network and
advertise cluster network routes as configured in
RouteAdvertisements objects.

Disabled: Do not import routes to the cluster network
or advertise cluster network routes.

gatewayConfig object Optional: Specify a configuration object for customizing how
egress traffic is sent to the node gateway. Valid values are
Shared and Local. The default value is Shared. In the default
setting, the Open vSwitch (OVS) outputs traffic directly to the
node IP interface. In the Local setting, it traverses the host
network; consequently, it gets applied to the routing table of the
host.

NOTE

While migrating egress traffic, you can expect
some disruption to workloads and service traffic
until the Cluster Network Operator (CNO)
successfully rolls out the changes.

Field Type Description

Table 6.4. ovnKubernetesConfig.ipv4 object

Field Type Description

internalTransitS
witchSubnet

string If your existing network infrastructure overlaps with the
100.88.0.0/16 IPv4 subnet, you can specify a different IP
address range for internal use by OVN-Kubernetes. The subnet
for the distributed transit switch that enables east-west traffic.
This subnet cannot overlap with any other subnets used by
OVN-Kubernetes or on the host itself. It must be large enough
to accommodate one IP address per node in your cluster.

The default value is 100.88.0.0/16.

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

89

internalJoinSub
net

string If your existing network infrastructure overlaps with the
100.64.0.0/16 IPv4 subnet, you can specify a different IP
address range for internal use by OVN-Kubernetes. You must
ensure that the IP address range does not overlap with any other
subnet used by your OpenShift Container Platform installation.
The IP address range must be larger than the maximum number
of nodes that can be added to the cluster. For example, if the
clusterNetwork.cidr value is 10.128.0.0/14 and the
clusterNetwork.hostPrefix value is /23, then the maximum
number of nodes is 2^(23-14)=512.

The default value is 100.64.0.0/16.

Field Type Description

Table 6.5. ovnKubernetesConfig.ipv6 object

Field Type Description

internalTransitS
witchSubnet

string If your existing network infrastructure overlaps with the
fd97::/64 IPv6 subnet, you can specify a different IP address
range for internal use by OVN-Kubernetes. The subnet for the
distributed transit switch that enables east-west traffic. This
subnet cannot overlap with any other subnets used by OVN-
Kubernetes or on the host itself. It must be large enough to
accommodate one IP address per node in your cluster.

The default value is fd97::/64.

internalJoinSub
net

string If your existing network infrastructure overlaps with the
fd98::/64 IPv6 subnet, you can specify a different IP address
range for internal use by OVN-Kubernetes. You must ensure
that the IP address range does not overlap with any other subnet
used by your OpenShift Container Platform installation. The IP
address range must be larger than the maximum number of
nodes that can be added to the cluster.

The default value is fd98::/64.

Table 6.6. policyAuditConfig object

Field Type Description

rateLimit integer The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

OpenShift Container Platform 4.19 Networking Operators

90

maxFileSize integer The maximum size for the audit log in bytes. The default value is
50000000 or 50 MB.

maxLogFiles integer The maximum number of log files that are retained.

destination string One of the following additional audit log targets:

libc
The libc syslog() function of the journald process on the
host.

udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>
A Unix Domain Socket file specified by <file>.

null
Do not send the audit logs to any additional target.

syslogFacility string The syslog facility, such as kern, as defined by RFC5424. The
default value is local0.

Field Type Description

Table 6.7. gatewayConfig object

Field Type Description

routingViaHost boolean Set this field to true to send egress traffic from pods to the
host networking stack. For highly-specialized installations and
applications that rely on manually configured routes in the
kernel routing table, you might want to route egress traffic to
the host networking stack. By default, egress traffic is processed
in OVN to exit the cluster and is not affected by specialized
routes in the kernel routing table. The default value is false.

This field has an interaction with the Open vSwitch hardware
offloading feature. If you set this field to true, you do not
receive the performance benefits of the offloading because
egress traffic is processed by the host networking stack.

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

91

ipForwarding object You can control IP forwarding for all traffic on OVN-Kubernetes
managed interfaces by using the ipForwarding specification in
the Network resource. Specify Restricted to only allow IP
forwarding for Kubernetes related traffic. Specify Global to
allow forwarding of all IP traffic. For new installations, the default
is Restricted. For updates to OpenShift Container Platform
4.14 or later, the default is Global.

NOTE

The default value of Restricted sets the IP
forwarding to drop.

ipv4 object Optional: Specify an object to configure the internal OVN-
Kubernetes masquerade address for host to service traffic for
IPv4 addresses.

ipv6 object Optional: Specify an object to configure the internal OVN-
Kubernetes masquerade address for host to service traffic for
IPv6 addresses.

Field Type Description

Table 6.8. gatewayConfig.ipv4 object

Field Type Description

internalMasquer
adeSubnet

string The masquerade IPv4 addresses that are used internally to
enable host to service traffic. The host is configured with these
IP addresses as well as the shared gateway bridge interface. The
default value is 169.254.169.0/29.

IMPORTANT

For OpenShift Container Platform 4.17 and later
versions, clusters use 169.254.0.0/17 as the
default masquerade subnet. For upgraded
clusters, there is no change to the default
masquerade subnet.

Table 6.9. gatewayConfig.ipv6 object

Field Type Description

OpenShift Container Platform 4.19 Networking Operators

92

internalMasquer
adeSubnet

string The masquerade IPv6 addresses that are used internally to
enable host to service traffic. The host is configured with these
IP addresses as well as the shared gateway bridge interface. The
default value is fd69::/125.

IMPORTANT

For OpenShift Container Platform 4.17 and later
versions, clusters use fd69::/112 as the default
masquerade subnet. For upgraded clusters,
there is no change to the default masquerade
subnet.

Field Type Description

Table 6.10. ipsecConfig object

Field Type Description

mode string Specifies the behavior of the IPsec implementation. Must be
one of the following values:

Disabled: IPsec is not enabled on cluster nodes.

External: IPsec is enabled for network traffic with
external hosts.

Full: IPsec is enabled for pod traffic and network
traffic with external hosts.

NOTE

You can only change the configuration for your cluster network plugin during cluster
installation, except for the gatewayConfig field that can be changed at runtime as a
postinstallation activity.

Example OVN-Kubernetes configuration with IPSec enabled

6.6.2. Cluster Network Operator example configuration

A complete CNO configuration is specified in the following example:

defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 mtu: 1400
 genevePort: 6081
 ipsecConfig:
 mode: Full

CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

93

Example Cluster Network Operator object

6.7. ADDITIONAL RESOURCES

Network API in the operator.openshift.io API group

Expanding the cluster network IP address range

How to configure OVN to use kernel routing table

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 serviceNetwork:
 - 172.30.0.0/16
 networkType: OVNKubernetes

OpenShift Container Platform 4.19 Networking Operators

94

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operator_apis/#network-operator-openshift-io-v1
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/configuring_network_settings/#nw-cluster-network-range-edit_configuring-cluster-network-range
https://access.redhat.com/solutions/6969174

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

In OpenShift Container Platform, the DNS Operator deploys and manages a CoreDNS instance to
provide a name resolution service to pods inside the cluster, enables DNS-based Kubernetes Service
discovery, and resolves internal cluster.local names.

7.1. CHECKING THE STATUS OF THE DNS OPERATOR

The DNS Operator implements the dns API from the operator.openshift.io API group. The Operator
deploys CoreDNS using a daemon set, creates a service for the daemon set, and configures the kubelet
to instruct pods to use the CoreDNS service IP address for name resolution.

Procedure

The DNS Operator is deployed during installation with a Deployment object.

1. Use the oc get command to view the deployment status:

Example output

2. Use the oc get command to view the state of the DNS Operator:

Example output

AVAILABLE, PROGRESSING, and DEGRADED provide information about the status of the
Operator. AVAILABLE is True when at least 1 pod from the CoreDNS daemon set reports an
Available status condition, and the DNS service has a cluster IP address.

7.2. VIEW THE DEFAULT DNS

Every new OpenShift Container Platform installation has a dns.operator named default.

Procedure

1. Use the oc describe command to view the default dns:

Example output

$ oc get -n openshift-dns-operator deployment/dns-operator

NAME READY UP-TO-DATE AVAILABLE AGE
dns-operator 1/1 1 1 23h

$ oc get clusteroperator/dns

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE
dns 4.1.15-0.11 True False False 92m

$ oc describe dns.operator/default

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

95

1

2

The Cluster Domain field is the base DNS domain used to construct fully qualified pod and
service domain names.

The Cluster IP is the address pods query for name resolution. The IP is defined as the 10th
address in the service CIDR range.

2. To find the service CIDR range, such as 172.30.0.0/16, of your cluster, use the oc get command:

7.3. USING DNS FORWARDING

You can use DNS forwarding to override the default forwarding configuration in the /etc/resolv.conf file
in the following ways:

Specify name servers (spec.servers) for every zone. If the forwarded zone is the ingress
domain managed by OpenShift Container Platform, then the upstream name server must be
authorized for the domain.

Provide a list of upstream DNS servers (spec.upstreamResolvers).

Change the default forwarding policy.

NOTE

A DNS forwarding configuration for the default domain can have both the default servers
specified in the /etc/resolv.conf file and the upstream DNS servers.

Procedure

Modify the DNS Operator object named default:

After you issue the previous command, the Operator creates and updates the config map
named dns-default with additional server configuration blocks based on spec.servers. If none
of the servers have a zone that matches the query, then name resolution falls back to the
upstream DNS servers.

Configuring DNS forwarding

Name: default
Namespace:
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: DNS
...
Status:
 Cluster Domain: cluster.local 1
 Cluster IP: 172.30.0.10 2
...

$ oc get networks.config/cluster -o jsonpath='{$.status.serviceNetwork}'

$ oc edit dns.operator/default

OpenShift Container Platform 4.19 Networking Operators

96

1

2

3

4

5

6

Must comply with the rfc6335 service name syntax.

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field.

Defines the policy to select upstream resolvers listed in the forwardPlugin. Default value is
Random. You can also use the values RoundRobin, and Sequential.

A maximum of 15 upstreams is allowed per forwardPlugin.

You can use upstreamResolvers to override the default forwarding policy and forward
DNS resolution to the specified DNS resolvers (upstream resolvers) for the default
domain. If you do not provide any upstream resolvers, the DNS name queries go to the
servers declared in /etc/resolv.conf.

Determines the order in which upstream servers listed in upstreams are selected for
querying. You can specify one of these values: Random, RoundRobin, or Sequential. The
default value is Sequential.

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
 name: default
spec:
 cache:
 negativeTTL: 0s
 positiveTTL: 0s
 logLevel: Normal
 nodePlacement: {}
 operatorLogLevel: Normal
 servers:
 - name: example-server 1
 zones:
 - example.com 2
 forwardPlugin:
 policy: Random 3
 upstreams: 4
 - 1.1.1.1
 - 2.2.2.2:5353
 upstreamResolvers: 5
 policy: Random 6
 protocolStrategy: "" 7
 transportConfig: {} 8
 upstreams:
 - type: SystemResolvConf 9
 - type: Network
 address: 1.2.3.4 10
 port: 53 11
 status:
 clusterDomain: cluster.local
 clusterIP: x.y.z.10
 conditions:
...

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

97

7

8

9

10

11

When omitted, the platform chooses a default, normally the protocol of the original client
request. Set to TCP to specify that the platform should use TCP for all upstream DNS

Used to configure the transport type, server name, and optional custom CA or CA bundle
to use when forwarding DNS requests to an upstream resolver.

You can specify two types of upstreams: SystemResolvConf or Network.
SystemResolvConf configures the upstream to use /etc/resolv.conf and Network
defines a Networkresolver. You can specify one or both.

If the specified type is Network, you must provide an IP address. The address field must
be a valid IPv4 or IPv6 address.

If the specified type is Network, you can optionally provide a port. The port field must have
a value between 1 and 65535. If you do not specify a port for the upstream, the default
port is 853.

Additional resources

For more information on DNS forwarding, see the CoreDNS forward documentation.

7.4. CHECKING DNS OPERATOR STATUS

You can inspect the status and view the details of the DNS Operator using the oc describe command.

Procedure

View the status of the DNS Operator:

Though the messages and spelling might vary in a specific release, the expected status output
looks like:

$ oc describe clusteroperators/dns

Status:
 Conditions:
 Last Transition Time: <date>
 Message: DNS "default" is available.
 Reason: AsExpected
 Status: True
 Type: Available
 Last Transition Time: <date>
 Message: Desired and current number of DNSes are equal
 Reason: AsExpected
 Status: False
 Type: Progressing
 Last Transition Time: <date>
 Reason: DNSNotDegraded
 Status: False
 Type: Degraded
 Last Transition Time: <date>
 Message: DNS default is upgradeable: DNS Operator can be upgraded

OpenShift Container Platform 4.19 Networking Operators

98

https://coredns.io/plugins/forward/

7.5. VIEWING DNS OPERATOR LOGS

You can view DNS Operator logs by using the oc logs command.

Procedure

View the logs of the DNS Operator:

7.6. SETTING THE COREDNS LOG LEVEL

Log levels for CoreDNS and the CoreDNS Operator are set by using different methods. You can
configure the CoreDNS log level to determine the amount of detail in logged error messages. The valid
values for CoreDNS log level are Normal, Debug, and Trace. The default logLevel is Normal.

NOTE

The CoreDNS error log level is always enabled. The following log level settings report
different error responses:

logLevel: Normal enables the "errors" class: log . { class error }.

logLevel: Debug enables the "denial" class: log . { class denial error }.

logLevel: Trace enables the "all" class: log . { class all }.

Procedure

To set logLevel to Debug, enter the following command:

To set logLevel to Trace, enter the following command:

Verification

To ensure the desired log level was set, check the config map:

For example, after setting the logLevel to Trace, you should see this stanza in each server
block:

 Reason: DNSUpgradeable
 Status: True
 Type: Upgradeable

$ oc logs -n openshift-dns-operator deployment/dns-operator -c dns-operator

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Debug"}}' --type=merge

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Trace"}}' --type=merge

$ oc get configmap/dns-default -n openshift-dns -o yaml

errors
log . {

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

99

1

7.7. VIEWING THE COREDNS LOGS

You can view CoreDNS logs by using the oc logs command.

Procedure

View the logs of a specific CoreDNS pod by entering the following command:

Follow the logs of all CoreDNS pods by entering the following command:

Specifies the number of DNS pods to stream logs from. The maximum is 6.

7.8. SETTING THE COREDNS OPERATOR LOG LEVEL

Log levels for CoreDNS and CoreDNS Operator are set by using different methods. Cluster
administrators can configure the Operator log level to more quickly track down OpenShift DNS issues.
The valid values for operatorLogLevel are Normal, Debug, and Trace. Trace has the most detailed
information. The default operatorlogLevel is Normal. There are seven logging levels for Operator
issues: Trace, Debug, Info, Warning, Error, Fatal, and Panic. After the logging level is set, log entries with
that severity or anything above it will be logged.

operatorLogLevel: "Normal" sets logrus.SetLogLevel("Info").

operatorLogLevel: "Debug" sets logrus.SetLogLevel("Debug").

operatorLogLevel: "Trace" sets logrus.SetLogLevel("Trace").

Procedure

To set operatorLogLevel to Debug, enter the following command:

To set operatorLogLevel to Trace, enter the following command:

Verification

1. To review the resulting change, enter the following command:

 class all
}

$ oc -n openshift-dns logs -c dns <core_dns_pod_name>

$ oc -n openshift-dns logs -c dns -l dns.operator.openshift.io/daemonset-dns=default -f --
max-log-requests=<number> 1

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Debug"}}' --
type=merge

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Trace"}}' --
type=merge

OpenShift Container Platform 4.19 Networking Operators

100

1

2

You should see two log level entries. The operatorLogLevel applies to OpenShift DNS
Operator issues, and the logLevel applies to the daemonset of CoreDNS pods:

2. To review the logs for the daemonset, enter the following command:

7.9. TUNING THE COREDNS CACHE

For CoreDNS, you can configure the maximum duration of both successful or unsuccessful caching, also
known respectively as positive or negative caching. Tuning the cache duration of DNS query responses
can reduce the load for any upstream DNS resolvers.

WARNING

Setting TTL fields to low values could lead to an increased load on the cluster, any
upstream resolvers, or both.

Procedure

1. Edit the DNS Operator object named default by running the following command:

2. Modify the time-to-live (TTL) caching values:

Configuring DNS caching

The string value 1h is converted to its respective number of seconds by CoreDNS. If this
field is omitted, the value is assumed to be 0s and the cluster uses the internal default
value of 900s as a fallback.

The string value can be a combination of units such as 0.5h10m and is converted to its

$ oc get dnses.operator -A -oyaml

 logLevel: Trace
 operatorLogLevel: Debug

$ oc logs -n openshift-dns ds/dns-default



$ oc edit dns.operator.openshift.io/default

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
 name: default
spec:
 cache:
 positiveTTL: 1h 1
 negativeTTL: 0.5h10m 2

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

101

Verification

1. To review the change, look at the config map again by running the following command:

2. Verify that you see entries that look like the following example:

Additional resources

For more information on caching, see CoreDNS cache.

7.10. ADVANCED TASKS

7.10.1. Changing the DNS Operator managementState

The DNS Operator manages the CoreDNS component to provide a name resolution service for pods
and services in the cluster. The managementState of the DNS Operator is set to Managed by default,
which means that the DNS Operator is actively managing its resources. You can change it to
Unmanaged, which means the DNS Operator is not managing its resources.

The following are use cases for changing the DNS Operator managementState:

You are a developer and want to test a configuration change to see if it fixes an issue in
CoreDNS. You can stop the DNS Operator from overwriting the configuration change by setting
the managementState to Unmanaged.

You are a cluster administrator and have reported an issue with CoreDNS, but need to apply a
workaround until the issue is fixed. You can set the managementState field of the DNS
Operator to Unmanaged to apply the workaround.

Procedure

1. Change managementState to Unmanaged in the DNS Operator:

2. Review managementState of the DNS Operator by using the jsonpath command-line JSON
parser:

NOTE

You cannot upgrade while the managementState is set to Unmanaged.

7.10.2. Controlling DNS pod placement

$ oc get configmap/dns-default -n openshift-dns -o yaml

 cache 3600 {
 denial 9984 2400
 }

oc patch dns.operator.openshift.io default --type merge --patch '{"spec":
{"managementState":"Unmanaged"}}'

$ oc get dns.operator.openshift.io default -ojsonpath='{.spec.managementState}'

OpenShift Container Platform 4.19 Networking Operators

102

https://coredns.io/plugins/cache/

1

The DNS Operator has two daemon sets: one for CoreDNS called dns-default and one for managing
the /etc/hosts file called node-resolver.

You can assign and run CoreDNS pods on specified nodes. For example, if the cluster administrator has
configured security policies that prohibit communication between pairs of nodes, you can configure
CoreDNS pods to run on a restricted set of nodes.

DNS service is available to all pods if the following circumstances are true:

DNS pods are running on some nodes in the cluster.

The nodes on which DNS pods are not running have network connectivity to nodes on which
DNS pods are running,

The node-resolver daemon set must run on every node host because it adds an entry for the cluster
image registry to support pulling images. The node-resolver pods have only one job: to look up the
image-registry.openshift-image-registry.svc service’s cluster IP address and add it to /etc/hosts on
the node host so that the container runtime can resolve the service name.

As a cluster administrator, you can use a custom node selector to configure the daemon set for
CoreDNS to run or not run on certain nodes.

Prerequisites

You installed the oc CLI.

You are logged in to the cluster as a user with cluster-admin privileges.

Your DNS Operator managementState is set to Managed.

Procedure

To allow the daemon set for CoreDNS to run on certain nodes, configure a taint and toleration:

1. Set a taint on the nodes that you want to control DNS pod placement by entering the
following command:

Replace <node_name> with the actual name of the node.

2. Modify the DNS Operator object named default to include the corresponding toleration by
entering the following command:

3. Specify a taint key and a toleration for the taint. The following toleration matches the taint
set on the nodes.

$ oc adm taint nodes <node_name> dns-only=abc:NoExecute 1

$ oc edit dns.operator/default

 spec:
 nodePlacement:
 tolerations:
 - effect: NoExecute
 key: "dns-only" 1

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

103

1

2

1

If the key field is set to dns-only, it can be tolerated indefinitely.

The tolerationSeconds field is optional.

4. Optional: To specify node placement using a node selector, modify the default DNS
Operator:

a. Edit the DNS Operator object named default to include a node selector:

This node selector ensures that the CoreDNS pods run only on control plane
nodes.

7.10.3. Configuring DNS forwarding with TLS

When working in a highly regulated environment, you might need the ability to secure DNS traffic when
forwarding requests to upstream resolvers so that you can ensure additional DNS traffic and data
privacy.

Be aware that CoreDNS caches forwarded connections for 10 seconds. CoreDNS will hold a TCP
connection open for those 10 seconds if no request is issued.

NOTE

With large clusters, ensure that your DNS server is aware that it might get many new
connections to hold open because you can initiate a connection per node. Set up your
DNS hierarchy accordingly to avoid performance issues.

Procedure

1. Modify the DNS Operator object named default:

Cluster administrators can configure transport layer security (TLS) for forwarded DNS queries.

Configuring DNS forwarding with TLS

 operator: Equal
 value: abc
 tolerationSeconds: 3600 2

 spec:
 nodePlacement:
 nodeSelector: 1
 node-role.kubernetes.io/control-plane: ""

$ oc edit dns.operator/default

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
 name: default
spec:
 servers:

OpenShift Container Platform 4.19 Networking Operators

104

1

2

3

4

5

6

7

8

9

Must comply with the rfc6335 service name syntax.

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field. The cluster
domain, cluster.local, is an invalid subdomain for zones.

When configuring TLS for forwarded DNS queries, set the transport field to have the value
TLS.

When configuring TLS for forwarded DNS queries, this is a mandatory server name used as
part of the server name indication (SNI) to validate the upstream TLS server certificate.

Defines the policy to select upstream resolvers. Default value is Random. You can also use
the values RoundRobin, and Sequential.

Required. Use it to provide upstream resolvers. A maximum of 15 upstreams entries are
allowed per forwardPlugin entry.

Optional. You can use it to override the default policy and forward DNS resolution to the
specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide
any upstream resolvers, the DNS name queries go to the servers in /etc/resolv.conf.

Only the Network type is allowed when using TLS and you must provide an IP address.
Network type indicates that this upstream resolver should handle forwarded requests
separately from the upstream resolvers listed in /etc/resolv.conf.

The address field must be a valid IPv4 or IPv6 address.

 - name: example-server 1
 zones:
 - example.com 2
 forwardPlugin:
 transportConfig:
 transport: TLS 3
 tls:
 caBundle:
 name: mycacert
 serverName: dnstls.example.com 4
 policy: Random 5
 upstreams: 6
 - 1.1.1.1
 - 2.2.2.2:5353
 upstreamResolvers: 7
 transportConfig:
 transport: TLS
 tls:
 caBundle:
 name: mycacert
 serverName: dnstls.example.com
 upstreams:
 - type: Network 8
 address: 1.2.3.4 9
 port: 53 10

CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

105

10

1

You can optionally provide a port. The port must have a value between 1 and 65535. If you
do not specify a port for the upstream, the default port is 853.

NOTE

If servers is undefined or invalid, the config map only contains the default server.

Verification

1. View the config map:

Sample DNS ConfigMap based on TLS forwarding example

Changes to the forwardPlugin triggers a rolling update of the CoreDNS daemon set.

Additional resources

For more information on DNS forwarding, see the CoreDNS forward documentation.

$ oc get configmap/dns-default -n openshift-dns -o yaml

apiVersion: v1
data:
 Corefile: |
 example.com:5353 {
 forward . 1.1.1.1 2.2.2.2:5353
 }
 bar.com:5353 example.com:5353 {
 forward . 3.3.3.3 4.4.4.4:5454 1
 }
 .:5353 {
 errors
 health
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 upstream
 fallthrough in-addr.arpa ip6.arpa
 }
 prometheus :9153
 forward . /etc/resolv.conf 1.2.3.4:53 {
 policy Random
 }
 cache 30
 reload
 }
kind: ConfigMap
metadata:
 labels:
 dns.operator.openshift.io/owning-dns: default
 name: dns-default
 namespace: openshift-dns

OpenShift Container Platform 4.19 Networking Operators

106

https://coredns.io/plugins/forward/

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The Ingress Operator implements the IngressController API and is the component responsible for
enabling external access to OpenShift Container Platform cluster services.

8.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

8.2. THE INGRESS CONFIGURATION ASSET

The installation program generates an asset with an Ingress resource in the config.openshift.io API
group, cluster-ingress-02-config.yml.

YAML Definition of the Ingress resource

The installation program stores this asset in the cluster-ingress-02-config.yml file in the manifests/
directory. This Ingress resource defines the cluster-wide configuration for Ingress. This Ingress
configuration is used as follows:

The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for
the default Ingress Controller.

The OpenShift API Server Operator uses the domain from the cluster Ingress configuration.
This domain is also used when generating a default host for a Route resource that does not
specify an explicit host.

8.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

The IngressController custom resource (CR) includes optional configuration parameters that you can
configure to meet specific needs for your organization.

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: apps.openshiftdemos.com

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

107

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

Parameter Description

domain domain is a DNS name serviced by the Ingress Controller and is used to
configure multiple features:

For the LoadBalancerService endpoint publishing strategy,
domain is used to configure DNS records. See
endpointPublishingStrategy.

When using a generated default certificate, the certificate is valid for
domain and its subdomains. See defaultCertificate.

The value is published to individual Route statuses so that users know
where to target external DNS records.

The domain value must be unique among all Ingress Controllers and cannot be
updated.

If empty, the default value is ingress.config.openshift.io/cluster
.spec.domain.

replicas replicas is the number of Ingress Controller replicas. If not set, the default
value is 2.

OpenShift Container Platform 4.19 Networking Operators

108

endpointPublishingStr
ategy

endpointPublishingStrategy is used to publish the Ingress Controller
endpoints to other networks, enable load balancer integrations, and provide
access to other systems.

For cloud environments, use the loadBalancer field to configure the endpoint
publishing strategy for your Ingress Controller.

On Google Cloud, AWS, and Azure you can configure the following
endpointPublishingStrategy fields:

loadBalancer.scope

loadBalancer.allowedSourceRanges

If not set, the default value is based on
infrastructure.config.openshift.io/cluster .status.platform:

Azure: LoadBalancerService (with External scope)

Google Cloud: LoadBalancerService (with External scope)

For most platforms, the endpointPublishingStrategy value can be
updated. On Google Cloud, you can configure the following
endpointPublishingStrategy fields:

loadBalancer.scope

loadbalancer.providerParameters.gcp.clientAccess

For non-cloud environments, such as a bare-metal platform, use the
NodePortService, HostNetwork, or Private fields to configure the
endpoint publishing strategy for your Ingress Controller.

If you do not set a value in one of these fields, the default value is based on
binding ports specified in the .status.platform value in the
IngressController CR.

If you need to update the endpointPublishingStrategy value after your
cluster is deployed, you can configure the following
endpointPublishingStrategy fields:

hostNetwork.protocol

nodePort.protocol

private.protocol

Parameter Description

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

109

defaultCertificate The defaultCertificate value is a reference to a secret that contains the
default certificate that is served by the Ingress Controller. When Routes do not
specify their own certificate, defaultCertificate is used.

The secret must contain the following keys and data: * tls.crt: certificate file
contents * tls.key: key file contents

If not set, a wildcard certificate is automatically generated and used. The
certificate is valid for the Ingress Controller domain and subdomains, and
the generated certificate’s CA is automatically integrated with the cluster’s
trust store.

The in-use certificate, whether generated or user-specified, is automatically
integrated with OpenShift Container Platform built-in OAuth server.

namespaceSelector namespaceSelector is used to filter the set of namespaces serviced by the
Ingress Controller. This is useful for implementing shards.

routeSelector routeSelector is used to filter the set of Routes serviced by the Ingress
Controller. This is useful for implementing shards.

nodePlacement nodePlacement enables explicit control over the scheduling of the Ingress
Controller.

If not set, the defaults values are used.

NOTE

The nodePlacement parameter includes two parts,
nodeSelector and tolerations. For example:

Parameter Description

nodePlacement:
 nodeSelector:
 matchLabels:
 kubernetes.io/os: linux
 tolerations:
 - effect: NoSchedule
 operator: Exists

OpenShift Container Platform 4.19 Networking Operators

110

tlsSecurityProfile tlsSecurityProfile specifies settings for TLS connections for Ingress
Controllers.

If not set, the default value is based on the
apiservers.config.openshift.io/cluster resource.

When using the Old, Intermediate, and Modern profile types, the effective
profile configuration is subject to change between releases. For example, given
a specification to use the Intermediate profile deployed on release X.Y.Z, an
upgrade to release X.Y.Z+1 may cause a new profile configuration to be
applied to the Ingress Controller, resulting in a rollout.

The minimum TLS version for Ingress Controllers is 1.1, and the maximum TLS
version is 1.3.

NOTE

Ciphers and the minimum TLS version of the configured
security profile are reflected in the TLSProfile status.

IMPORTANT

The Ingress Operator converts the TLS 1.0 of an Old or
Custom profile to 1.1.

clientTLS clientTLS authenticates client access to the cluster and services; as a result,
mutual TLS authentication is enabled. If not set, then client TLS is not enabled.

clientTLS has the required subfields,
spec.clientTLS.clientCertificatePolicy and spec.clientTLS.ClientCA.

The ClientCertificatePolicy subfield accepts one of the two values:
Required or Optional. The ClientCA subfield specifies a config map that is
in the openshift-config namespace. The config map should contain a CA
certificate bundle.

The AllowedSubjectPatterns is an optional value that specifies a list of
regular expressions, which are matched against the distinguished name on a
valid client certificate to filter requests. The regular expressions must use
PCRE syntax. At least one pattern must match a client certificate’s
distinguished name; otherwise, the Ingress Controller rejects the certificate and
denies the connection. If not specified, the Ingress Controller does not reject
certificates based on the distinguished name.

Parameter Description

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

111

routeAdmission routeAdmission defines a policy for handling new route claims, such as
allowing or denying claims across namespaces.

namespaceOwnership describes how hostname claims across namespaces
should be handled. The default is Strict.

Strict: does not allow routes to claim the same hostname across
namespaces.

InterNamespaceAllowed: allows routes to claim different paths of
the same hostname across namespaces.

wildcardPolicy describes how routes with wildcard policies are handled by
the Ingress Controller.

WildcardsAllowed: Indicates routes with any wildcard policy are
admitted by the Ingress Controller.

WildcardsDisallowed: Indicates only routes with a wildcard policy
of None are admitted by the Ingress Controller. Updating
wildcardPolicy from WildcardsAllowed to
WildcardsDisallowed causes admitted routes with a wildcard policy
of Subdomain to stop working. These routes must be recreated to a
wildcard policy of None to be readmitted by the Ingress Controller.
WildcardsDisallowed is the default setting.

Parameter Description

OpenShift Container Platform 4.19 Networking Operators

112

IngressControllerLoggi
ng

logging defines parameters for what is logged where. If this field is empty,
operational logs are enabled but access logs are disabled.

access describes how client requests are logged. If this field is
empty, access logging is disabled.

destination describes a destination for log messages.

type is the type of destination for logs:

Container specifies that logs should go to a sidecar
container. The Ingress Operator configures the
container, named logs, on the Ingress Controller pod and
configures the Ingress Controller to write logs to the
container. The expectation is that the administrator
configures a custom logging solution that reads logs
from this container. Using container logs means that
logs may be dropped if the rate of logs exceeds the
container runtime capacity or the custom logging
solution capacity.

Syslog specifies that logs are sent to a Syslog
endpoint. The administrator must specify an endpoint
that can receive Syslog messages. The expectation is
that the administrator has configured a custom Syslog
instance.

container describes parameters for the Container logging
destination type. Currently there are no parameters for
container logging, so this field must be empty.

syslog describes parameters for the Syslog logging
destination type:

address is the IP address of the syslog endpoint that
receives log messages.

port is the UDP port number of the syslog endpoint that
receives log messages.

maxLength is the maximum length of the syslog
message. It must be between 480 and 4096 bytes. If this
field is empty, the maximum length is set to the default
value of 1024 bytes.

facility specifies the syslog facility of log messages. If
this field is empty, the facility is local1. Otherwise, it
must specify a valid syslog facility: kern, user, mail,
daemon, auth, syslog, lpr, news, uucp, cron, auth2,
ftp, ntp, audit, alert, cron2, local0, local1, local2,
local3. local4, local5, local6, or local7.

httpLogFormat specifies the format of the log message for an
HTTP request. If this field is empty, log messages use the
implementation’s default HTTP log format. For HAProxy’s default
HTTP log format, see the HAProxy documentation.

Parameter Description

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

113

http://cbonte.github.io/haproxy-dconv/2.0/configuration.html#8.2.3

httpHeaders httpHeaders defines the policy for HTTP headers.

By setting the forwardedHeaderPolicy for the
IngressControllerHTTPHeaders, you specify when and how the Ingress
Controller sets the Forwarded, X-Forwarded-For, X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, and X-Forwarded-Proto-Version
HTTP headers.

By default, the policy is set to Append.

Append specifies that the Ingress Controller appends the headers,
preserving any existing headers.

Replace specifies that the Ingress Controller sets the headers,
removing any existing headers.

IfNone specifies that the Ingress Controller sets the headers if they
are not already set.

Never specifies that the Ingress Controller never sets the headers,
preserving any existing headers.

By setting headerNameCaseAdjustments, you can specify case
adjustments that can be applied to HTTP header names. Each adjustment is
specified as an HTTP header name with the desired capitalization. For example,
specifying X-Forwarded-For indicates that the x-forwarded-for HTTP
header should be adjusted to have the specified capitalization.

These adjustments are only applied to cleartext, edge-terminated, and re-
encrypt routes, and only when using HTTP/1.

For request headers, these adjustments are applied only for routes that have
the haproxy.router.openshift.io/h1-adjust-case=true annotation. For
response headers, these adjustments are applied to all HTTP responses. If this
field is empty, no request headers are adjusted.

actions specifies options for performing certain actions on headers. Headers
cannot be set or deleted for TLS passthrough connections. The actions field
has additional subfields spec.httpHeader.actions.response and
spec.httpHeader.actions.request:

The response subfield specifies a list of HTTP response headers to
set or delete.

The request subfield specifies a list of HTTP request headers to set
or delete.

Parameter Description

OpenShift Container Platform 4.19 Networking Operators

114

httpCompression httpCompression defines the policy for HTTP traffic compression.

mimeTypes defines a list of MIME types to which compression
should be applied. For example, text/css; charset=utf-8, text/html,
text/*, image/svg+xml, application/octet-stream, X-
custom/customsub, using the format pattern, type/subtype;
[;attribute=value]. The types are: application, image, message,
multipart, text, video, or a custom type prefaced by X-; e.g. To see the
full notation for MIME types and subtypes, see RFC1341

httpErrorCodePages httpErrorCodePages specifies custom HTTP error code response pages. By
default, an IngressController uses error pages built into the IngressController
image.

httpCaptureCookies httpCaptureCookies specifies HTTP cookies that you want to capture in
access logs. If the httpCaptureCookies field is empty, the access logs do not
capture the cookies.

For any cookie that you want to capture, the following parameters must be in
your IngressController configuration:

name specifies the name of the cookie.

maxLength specifies tha maximum length of the cookie.

matchType specifies if the field name of the cookie exactly matches
the capture cookie setting or is a prefix of the capture cookie setting.
The matchType field uses the Exact and Prefix parameters.

For example:

Parameter Description

 httpCaptureCookies:
 - matchType: Exact
 maxLength: 128
 name: MYCOOKIE

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

115

https://datatracker.ietf.org/doc/html/rfc1341#page-7

httpCaptureHeaders httpCaptureHeaders specifies the HTTP headers that you want to capture
in the access logs. If the httpCaptureHeaders field is empty, the access logs
do not capture the headers.

httpCaptureHeaders contains two lists of headers to capture in the access
logs. The two lists of header fields are request and response. In both lists,
the name field must specify the header name and the maxlength field must
specify the maximum length of the header. For example:

tuningOptions tuningOptions specifies options for tuning the performance of Ingress
Controller pods.

clientFinTimeout specifies how long a connection is held open while
waiting for the client response to the server closing the connection.
The default timeout is 1s.

clientTimeout specifies how long a connection is held open while
waiting for a client response. The default timeout is 30s.

headerBufferBytes specifies how much memory is reserved, in
bytes, for Ingress Controller connection sessions. This value must be
at least 16384 if HTTP/2 is enabled for the Ingress Controller. If not
set, the default value is 32768 bytes. Setting this field not
recommended because headerBufferBytes values that are too
small can break the Ingress Controller, and headerBufferBytes
values that are too large could cause the Ingress Controller to use
significantly more memory than necessary.

headerBufferMaxRewriteBytes specifies how much memory
should be reserved, in bytes, from headerBufferBytes for HTTP
header rewriting and appending for Ingress Controller connection
sessions. The minimum value for headerBufferMaxRewriteBytes is
4096. headerBufferBytes must be greater than
headerBufferMaxRewriteBytes for incoming HTTP requests. If
not set, the default value is 8192 bytes. Setting this field not
recommended because headerBufferMaxRewriteBytes values
that are too small can break the Ingress Controller and
headerBufferMaxRewriteBytes values that are too large could
cause the Ingress Controller to use significantly more memory than
necessary.

healthCheckInterval specifies how long the router waits between
health checks. The default is 5s.

Parameter Description

 httpCaptureHeaders:
 request:
 - maxLength: 256
 name: Connection
 - maxLength: 128
 name: User-Agent
 response:
 - maxLength: 256
 name: Content-Type
 - maxLength: 256
 name: Content-Length

OpenShift Container Platform 4.19 Networking Operators

116

serverFinTimeout specifies how long a connection is held open
while waiting for the server response to the client that is closing the
connection. The default timeout is 1s.

serverTimeout specifies how long a connection is held open while
waiting for a server response. The default timeout is 30s.

threadCount specifies the number of threads to create per HAProxy
process. Creating more threads allows each Ingress Controller pod to
handle more connections, at the cost of more system resources being
used. HAProxy supports up to 64 threads. If this field is empty, the
Ingress Controller uses the default value of 4 threads. The default
value can change in future releases. Setting this field is not
recommended because increasing the number of HAProxy threads
allows Ingress Controller pods to use more CPU time under load, and
prevent other pods from receiving the CPU resources they need to
perform. Reducing the number of threads can cause the Ingress
Controller to perform poorly.

tlsInspectDelay specifies how long the router can hold data to find
a matching route. Setting this value too short can cause the router to
fall back to the default certificate for edge-terminated, reencrypted,
or passthrough routes, even when using a better matched certificate.
The default inspect delay is 5s.

tunnelTimeout specifies how long a tunnel connection, including
websockets, remains open while the tunnel is idle. The default timeout
is 1h.

maxConnections specifies the maximum number of simultaneous
connections that can be established per HAProxy process. Increasing
this value allows each ingress controller pod to handle more
connections at the cost of additional system resources. Permitted
values are 0, -1, any value within the range 2000 and 2000000, or the
field can be left empty.

If this field is left empty or has the value 0, the Ingress Controller
will use the default value of 50000. This value is subject to
change in future releases.

If the field has the value of -1, then HAProxy will dynamically
compute a maximum value based on the available ulimits in the
running container. This process results in a large computed value
that will incur significant memory usage compared to the current
default value of 50000.

If the field has a value that is greater than the current operating
system limit, the HAProxy process will not start.

If you choose a discrete value and the router pod is migrated to a
new node, it is possible the new node does not have an identical
ulimit configured. In such cases, the pod fails to start.

If you have nodes with different ulimits configured, and you
choose a discrete value, it is recommended to use the value of -1
for this field so that the maximum number of connections is
calculated at runtime.

Parameter Description

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

117

logEmptyRequests logEmptyRequests specifies connections for which no request is received
and logged. These empty requests come from load balancer health probes or
web browser speculative connections (preconnect) and logging these requests
can be undesirable. However, these requests can be caused by network errors,
in which case logging empty requests can be useful for diagnosing the errors.
These requests can be caused by port scans, and logging empty requests can
aid in detecting intrusion attempts. Allowed values for this field are Log and
Ignore. The default value is Log.

The LoggingPolicy type accepts either one of two values:

Log: Setting this value to Log indicates that an event should be
logged.

Ignore: Setting this value to Ignore sets the dontlognull option in
the HAproxy configuration.

HTTPEmptyRequestsP
olicy

HTTPEmptyRequestsPolicy describes how HTTP connections are handled
if the connection times out before a request is received. Allowed values for this
field are Respond and Ignore. The default value is Respond.

The HTTPEmptyRequestsPolicy type accepts either one of two values:

Respond: If the field is set to Respond, the Ingress Controller sends
an HTTP 400 or 408 response, logs the connection if access logging is
enabled, and counts the connection in the appropriate metrics.

Ignore: Setting this option to Ignore adds the http-ignore-probes
parameter in the HAproxy configuration. If the field is set to Ignore,
the Ingress Controller closes the connection without sending a
response, then logs the connection, or incrementing metrics.

These connections come from load balancer health probes or web browser
speculative connections (preconnect) and can be safely ignored. However,
these requests can be caused by network errors, so setting this field to Ignore
can impede detection and diagnosis of problems. These requests can be
caused by port scans, in which case logging empty requests can aid in detecting
intrusion attempts.

Parameter Description

8.3.1. Ingress Controller TLS security profiles

TLS security profiles provide a way for servers to regulate which ciphers a connecting client can use
when connecting to the server.

8.3.1.1. Understanding TLS security profiles

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by various OpenShift Container Platform components. The OpenShift Container Platform TLS security
profiles are based on Mozilla recommended configurations .

OpenShift Container Platform 4.19 Networking Operators

118

https://wiki.mozilla.org/Security/Server_Side_TLS

You can specify one of the following TLS security profiles for each component:

Table 8.1. TLS security profiles

Profile Description

Old This profile is intended for use with legacy clients or libraries. The profile
is based on the Old backward compatibility recommended configuration.

The Old profile requires a minimum TLS version of 1.0.

NOTE

For the Ingress Controller, the minimum TLS version is
converted from 1.0 to 1.1.

Intermediate This profile is the default TLS security profile for the Ingress Controller,
kubelet, and control plane. The profile is based on the Intermediate
compatibility recommended configuration.

The Intermediate profile requires a minimum TLS version of 1.2.

NOTE

This profile is the recommended configuration for the
majority of clients.

Modern This profile is intended for use with modern clients that have no need for
backwards compatibility. This profile is based on the Modern
compatibility recommended configuration.

The Modern profile requires a minimum TLS version of 1.3.

Custom This profile allows you to define the TLS version and ciphers to use.

WARNING

Use caution when using a Custom profile,
because invalid configurations can cause
problems.

NOTE

When using one of the predefined profile types, the effective profile configuration is
subject to change between releases. For example, given a specification to use the
Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might
cause a new profile configuration to be applied, resulting in a rollout.



CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

119

https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

8.3.1.2. Configuring the TLS security profile for the Ingress Controller

To configure a TLS security profile for an Ingress Controller, edit the IngressController custom
resource (CR) to specify a predefined or custom TLS security profile. If a TLS security profile is not
configured, the default value is based on the TLS security profile set for the API server.

Sample IngressController CR that configures the Old TLS security profile

The TLS security profile defines the minimum TLS version and the TLS ciphers for TLS connections for
Ingress Controllers.

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the
IngressController custom resource (CR) under Status.Tls Profile and the configured TLS security
profile under Spec.Tls Security Profile. For the Custom TLS security profile, the specific ciphers and
minimum TLS version are listed under both parameters.

NOTE

The HAProxy Ingress Controller image supports TLS 1.3 and the Modern profile.

The Ingress Operator also converts the TLS 1.0 of an Old or Custom profile to 1.1.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the IngressController CR in the openshift-ingress-operator project to configure the TLS
security profile:

2. Add the spec.tlsSecurityProfile field:

Sample IngressController CR for a Custom profile

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 old: {}
 type: Old
 ...

$ oc edit IngressController default -n openshift-ingress-operator

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 type: Custom 1
 custom: 2

OpenShift Container Platform 4.19 Networking Operators

120

1

2

3

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

Specify the appropriate field for the selected type:

old: {}

intermediate: {}

modern: {}

custom:

For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

3. Save the file to apply the changes.

Verification

Verify that the profile is set in the IngressController CR:

Example output

 ciphers: 3
 - ECDHE-ECDSA-CHACHA20-POLY1305
 - ECDHE-RSA-CHACHA20-POLY1305
 - ECDHE-RSA-AES128-GCM-SHA256
 - ECDHE-ECDSA-AES128-GCM-SHA256
 minTLSVersion: VersionTLS11
 ...

$ oc describe IngressController default -n openshift-ingress-operator

Name: default
Namespace: openshift-ingress-operator
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: IngressController
 ...
Spec:
 ...
 Tls Security Profile:
 Custom:
 Ciphers:
 ECDHE-ECDSA-CHACHA20-POLY1305
 ECDHE-RSA-CHACHA20-POLY1305
 ECDHE-RSA-AES128-GCM-SHA256
 ECDHE-ECDSA-AES128-GCM-SHA256
 Min TLS Version: VersionTLS11
 Type: Custom
 ...

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

121

1

8.3.1.3. Configuring mutual TLS authentication

You can configure the Ingress Controller to enable mutual TLS (mTLS) authentication by setting a
spec.clientTLS value. The clientTLS value configures the Ingress Controller to verify client certificates.
This configuration includes setting a clientCA value, which is a reference to a config map. The config
map contains the PEM-encoded CA certificate bundle that is used to verify a client’s certificate.
Optionally, you can also configure a list of certificate subject filters.

If the clientCA value specifies an X509v3 certificate revocation list (CRL) distribution point, the Ingress
Operator downloads and manages a CRL config map based on the HTTP URI X509v3 CRL Distribution
Point specified in each provided certificate. The Ingress Controller uses this config map during
mTLS/TLS negotiation. Requests that do not provide valid certificates are rejected.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have a PEM-encoded CA certificate bundle.

If your CA bundle references a CRL distribution point, you must have also included the end-
entity or leaf certificate to the client CA bundle. This certificate must have included an HTTP
URI under CRL Distribution Points, as described in RFC 5280. For example:

Procedure

1. In the openshift-config namespace, create a config map from your CA bundle:

The config map data key must be ca-bundle.pem, and the data value must be a CA
certificate in PEM format.

2. Edit the IngressController resource in the openshift-ingress-operator project:

3. Add the spec.clientTLS field and subfields to configure mutual TLS:

Sample IngressController CR for a clientTLS profile that specifies filtering patterns

 Issuer: C=US, O=Example Inc, CN=Example Global G2 TLS RSA SHA256 2020 CA1
 Subject: SOME SIGNED CERT X509v3 CRL Distribution Points:
 Full Name:
 URI:http://crl.example.com/example.crl

$ oc create configmap \
 router-ca-certs-default \
 --from-file=ca-bundle.pem=client-ca.crt \ 1
 -n openshift-config

$ oc edit IngressController default -n openshift-ingress-operator

 apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: default
 namespace: openshift-ingress-operator

OpenShift Container Platform 4.19 Networking Operators

122

4. Optional, get the Distinguished Name (DN) for allowedSubjectPatterns by entering the
following command.

Example output

8.4. VIEW THE DEFAULT INGRESS CONTROLLER

The Ingress Operator is a core feature of OpenShift Container Platform and is enabled out of the box.

Every new OpenShift Container Platform installation has an ingresscontroller named default. It can be
supplemented with additional Ingress Controllers. If the default ingresscontroller is deleted, the
Ingress Operator will automatically recreate it within a minute.

Procedure

View the default Ingress Controller:

8.5. VIEW INGRESS OPERATOR STATUS

You can view and inspect the status of your Ingress Operator.

Procedure

View your Ingress Operator status:

8.6. VIEW INGRESS CONTROLLER LOGS

You can view your Ingress Controller logs.

Procedure

View your Ingress Controller logs:

 spec:
 clientTLS:
 clientCertificatePolicy: Required
 clientCA:
 name: router-ca-certs-default
 allowedSubjectPatterns:
 - "^/CN=example.com/ST=NC/C=US/O=Security/OU=OpenShift$"

$ openssl x509 -in custom-cert.pem -noout -subject

subject=C=US, ST=NC, O=Security, OU=OpenShift, CN=example.com

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/default

$ oc describe clusteroperators/ingress

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator -c
<container_name>

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

123

1

2

3

4

8.7. VIEW INGRESS CONTROLLER STATUS

Your can view the status of a particular Ingress Controller.

Procedure

View the status of an Ingress Controller:

8.8. CREATING A CUSTOM INGRESS CONTROLLER

As a cluster administrator, you can create a new custom Ingress Controller. Because the default Ingress
Controller might change during OpenShift Container Platform updates, creating a custom Ingress
Controller can be helpful when maintaining a configuration manually that persists across cluster updates.

This example provides a minimal spec for a custom Ingress Controller. To further customize your custom
Ingress Controller, see "Configuring the Ingress Controller".

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a YAML file that defines the custom IngressController object:

Example custom-ingress-controller.yaml file

Specify the a custom name for the IngressController object.

Specify the name of the secret with the custom wildcard certificate.

Minimum replica needs to be ONE

Specify the domain to your domain name. The domain specified on the IngressController
object and the domain used for the certificate must match. For example, if the domain
value is "custom_domain.mycompany.com", then the certificate must have SAN
*.custom_domain.mycompany.com (with the *. added to the domain).

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: <custom_name> 1
 namespace: openshift-ingress-operator
spec:
 defaultCertificate:
 name: <custom-ingress-custom-certs> 2
 replicas: 1 3
 domain: <custom_domain> 4

OpenShift Container Platform 4.19 Networking Operators

124

2. Create the object by running the following command:

8.9. CONFIGURING THE INGRESS CONTROLLER

8.9.1. Setting a custom default certificate

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a
Secret resource and editing the IngressController custom resource (CR).

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a
trusted certificate authority or by a private trusted certificate authority that you configured in a
custom PKI.

Your certificate meets the following requirements:

The certificate is valid for the ingress domain.

The certificate uses the subjectAltName extension to specify a wildcard domain, such as
*.apps.ocp4.example.com.

You must have an IngressController CR, which includes just having the default
IngressController CR. You can run the following command to check that you have an
IngressController CR:

NOTE

If you have intermediate certificates, they must be included in the tls.crt file of the secret
containing a custom default certificate. Order matters when specifying a certificate; list
your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the
current working directory. Substitute the actual path names for tls.crt and tls.key. You also may
substitute another name for custom-certs-default when creating the Secret resource and referencing
it in the IngressController CR.

NOTE

This action will cause the Ingress Controller to be redeployed, using a rolling deployment
strategy.

1. Create a Secret resource containing the custom certificate in the openshift-ingress
namespace using the tls.crt and tls.key files.

$ oc create -f custom-ingress-controller.yaml

$ oc --namespace openshift-ingress-operator get ingresscontrollers

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

125

2. Update the IngressController CR to reference the new certificate secret:

3. Verify the update was effective:

where:

<domain>

Specifies the base domain name for your cluster.

Example output

TIP

You can alternatively apply the following YAML to set a custom default certificate:

The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s
deployment to use the custom certificate.

8.9.2. Removing a custom default certificate

As an administrator, you can remove a custom certificate that you configured an Ingress Controller to
use.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
 --patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

$ echo Q |\
 openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null |\
 openssl x509 -noout -subject -issuer -enddate

subject=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = *.apps.example.com
issuer=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = example.com
notAfter=May 10 08:32:45 2022 GM

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 defaultCertificate:
 name: custom-certs-default

OpenShift Container Platform 4.19 Networking Operators

126

You have installed the OpenShift CLI (oc).

You previously configured a custom default certificate for the Ingress Controller.

Procedure

To remove the custom certificate and restore the certificate that ships with OpenShift
Container Platform, enter the following command:

There can be a delay while the cluster reconciles the new certificate configuration.

Verification

To confirm that the original cluster certificate is restored, enter the following command:

where:

<domain>

Specifies the base domain name for your cluster.

Example output

8.9.3. Autoscaling an Ingress Controller

You can automatically scale an Ingress Controller to dynamically meet routing performance or
availability requirements. For example, the requirement to increase throughput.

The following procedure provides an example for scaling up the default Ingress Controller.

Prerequisites

You have the OpenShift CLI (oc) installed.

You have access to an OpenShift Container Platform cluster as a user with the cluster-admin
role.

On VMware vSphere, bare-metal, and Nutanix installer-provisioned infrastructure, scaling up
Ingress Controller pods does not improve external traffic performance. To improve
performance, ensure that you complete the following prerequisites:

You manually configured a user-managed load balancer for your cluster.

$ oc patch -n openshift-ingress-operator ingresscontrollers/default \
 --type json -p $'- op: remove\n path: /spec/defaultCertificate'

$ echo Q | \
 openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null | \
 openssl x509 -noout -subject -issuer -enddate

subject=CN = *.apps.<domain>
issuer=CN = ingress-operator@1620633373
notAfter=May 10 10:44:36 2023 GMT

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

127

You ensured that the load balancer was configured for the cluster nodes that handle
incoming traffic from the Ingress Controller.

You installed the Custom Metrics Autoscaler Operator and an associated KEDA Controller.

You can install the Operator by using OperatorHub on the web console. After you install the
Operator, you can create an instance of KedaController.

Procedure

1. Create a service account to authenticate with Thanos by running the following command:

Example output

2. Manually create the service account secret token with the following command:

3. Define a TriggerAuthentication object within the openshift-ingress-operator namespace by
using the service account’s token.

a. Create the TriggerAuthentication object and pass the value of the secret variable to the
TOKEN parameter:

$ oc create -n openshift-ingress-operator serviceaccount thanos && oc describe -n openshift-
ingress-operator serviceaccount thanos

Name: thanos
Namespace: openshift-ingress-operator
Labels: <none>
Annotations: <none>
Image pull secrets: thanos-dockercfg-kfvf2
Mountable secrets: thanos-dockercfg-kfvf2
Tokens: <none>
Events: <none>

$ oc apply -f - <<EOF
apiVersion: v1
kind: Secret
metadata:
 name: thanos-token
 namespace: openshift-ingress-operator
 annotations:
 kubernetes.io/service-account.name: thanos
type: kubernetes.io/service-account-token
EOF

$ oc apply -f - <<EOF
apiVersion: keda.sh/v1alpha1
kind: TriggerAuthentication
metadata:
 name: keda-trigger-auth-prometheus
 namespace: openshift-ingress-operator
spec:
 secretTargetRef:
 - parameter: bearerToken
 name: thanos-token

OpenShift Container Platform 4.19 Networking Operators

128

4. Create and apply a role for reading metrics from Thanos:

a. Create a new role, thanos-metrics-reader.yaml, that reads metrics from pods and nodes:

thanos-metrics-reader.yaml

b. Apply the new role by running the following command:

5. Add the new role to the service account by entering the following commands:

NOTE

 key: token
 - parameter: ca
 name: thanos-token
 key: ca.crt
EOF

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: thanos-metrics-reader
 namespace: openshift-ingress-operator
rules:
- apiGroups:
 - ""
 resources:
 - pods
 - nodes
 verbs:
 - get
- apiGroups:
 - metrics.k8s.io
 resources:
 - pods
 - nodes
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - ""
 resources:
 - namespaces
 verbs:
 - get

$ oc apply -f thanos-metrics-reader.yaml

$ oc adm policy -n openshift-ingress-operator add-role-to-user thanos-metrics-reader -z
thanos --role-namespace=openshift-ingress-operator

$ oc adm policy -n openshift-ingress-operator add-cluster-role-to-user cluster-monitoring-view
-z thanos

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

129

1

2

3

4

5

NOTE

The argument add-cluster-role-to-user is only required if you use cross-
namespace queries. The following step uses a query from the kube-metrics
namespace which requires this argument.

6. Create a new ScaledObject YAML file, ingress-autoscaler.yaml, that targets the default
Ingress Controller deployment:

Example ScaledObject definition

The custom resource that you are targeting. In this case, the Ingress Controller.

Optional: The maximum number of replicas. If you omit this field, the default maximum is
set to 100 replicas.

The Thanos service endpoint in the openshift-monitoring namespace.

The Ingress Operator namespace.

This expression evaluates to however many worker nodes are present in the deployed
cluster.

IMPORTANT

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: ingress-scaler
 namespace: openshift-ingress-operator
spec:
 scaleTargetRef: 1
 apiVersion: operator.openshift.io/v1
 kind: IngressController
 name: default
 envSourceContainerName: ingress-operator
 minReplicaCount: 1
 maxReplicaCount: 20 2
 cooldownPeriod: 1
 pollingInterval: 1
 triggers:
 - type: prometheus
 metricType: AverageValue
 metadata:
 serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9091 3
 namespace: openshift-ingress-operator 4
 metricName: 'kube-node-role'
 threshold: '1'
 query: 'sum(kube_node_role{role="worker",service="kube-state-metrics"})' 5
 authModes: "bearer"
 authenticationRef:
 name: keda-trigger-auth-prometheus

OpenShift Container Platform 4.19 Networking Operators

130

IMPORTANT

If you are using cross-namespace queries, you must target port 9091 and not port
9092 in the serverAddress field. You also must have elevated privileges to read
metrics from this port.

7. Apply the custom resource definition by running the following command:

Verification

Verify that the default Ingress Controller is scaled out to match the value returned by the kube-
state-metrics query by running the following commands:

Use the grep command to search the Ingress Controller YAML file for the number of
replicas:

Get the pods in the openshift-ingress project:

Example output

Additional resources

Installing the custom metrics autoscaler

Enabling monitoring for user-defined projects

Understanding custom metrics autoscaler trigger authentications

Understanding custom metrics autoscaler triggers

Understanding how to add custom metrics autoscalers

8.9.4. Scaling an Ingress Controller

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as
the requirement to increase throughput. oc commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController.

NOTE

Scaling is not an immediate action, as it takes time to create the desired number of
replicas.

$ oc apply -f ingress-autoscaler.yaml

$ oc get -n openshift-ingress-operator ingresscontroller/default -o yaml | grep replicas:

$ oc get pods -n openshift-ingress

NAME READY STATUS RESTARTS AGE
router-default-7b5df44ff-l9pmm 2/2 Running 0 17h
router-default-7b5df44ff-s5sl5 2/2 Running 0 3d22h
router-default-7b5df44ff-wwsth 2/2 Running 0 66s

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

131

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-cma-autoscaling-custom-install_nodes-cma-autoscaling-custom-install
https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.19/html/configuring_user_workload_monitoring/preparing-to-configure-the-monitoring-stack-uwm#enabling-monitoring-for-user-defined-projects-uwm_preparing-to-configure-the-monitoring-stack-uwm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-cma-autoscaling-custom-trigger-auth
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-cma-autoscaling-custom-prometheus
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-cma-autoscaling-custom-adding

1

Prerequisites

On VMware vSphere, bare-metal, and Nutanix installer-provisioned infrastructure, scaling up
Ingress Controller pods does not improve external traffic performance. To improve
performance, ensure that you complete the following prerequisites:

You manually configured a user-managed load balancer for your cluster.

You ensured that the load balancer was configured for the cluster nodes that handle
incoming traffic from the Ingress Controller.

Procedure

1. View the current number of available replicas for the default IngressController:

2. Scale the default IngressController to the desired number of replicas by using the oc patch
command. The following example scales the default IngressController to 3 replicas.

3. Verify that the default IngressController scaled to the number of replicas that you specified:

TIP

You can alternatively apply the following YAML to scale an Ingress Controller to three replicas:

If you need a different amount of replicas, change the replicas value.

8.9.5. Configuring Ingress access logging

You can configure the Ingress Controller to enable access logs. If you have clusters that do not receive
much traffic, then you can log to a sidecar. If you have high traffic clusters, to avoid exceeding the
capacity of the logging stack or to integrate with a logging infrastructure outside of OpenShift
Container Platform, you can forward logs to a custom syslog endpoint. You can also specify the format
for access logs.

Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas":
3}}' --type=merge

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 3 1

OpenShift Container Platform 4.19 Networking Operators

132

Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog
logging infrastructure, or for short-term use while diagnosing problems with the Ingress Controller.

Syslog is needed for high-traffic clusters where access logs could exceed the OpenShift Logging
stack’s capacity, or for environments where any logging solution needs to integrate with an existing
Syslog logging infrastructure. The Syslog use-cases can overlap.

Prerequisites

Log in as a user with cluster-admin privileges.

Procedure

Configure Ingress access logging to a sidecar.

To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a sidecar container, you must specify
Container spec.logging.access.destination.type. The following example is an Ingress
Controller definition that logs to a Container destination:

When you configure the Ingress Controller to log to a sidecar, the operator creates a container
named logs inside the Ingress Controller Pod:

Example output

Configure Ingress access logging to a Syslog endpoint.

To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a Syslog endpoint destination, you
must specify Syslog for spec.logging.access.destination.type. If the destination type is
Syslog, you must also specify a destination endpoint using
spec.logging.access.destination.syslog.address and you can specify a facility using
spec.logging.access.destination.syslog.facility. The following example is an Ingress
Controller definition that logs to a Syslog destination:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Container

$ oc -n openshift-ingress logs deployment.apps/router-default -c logs

2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-
57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public
be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080
0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"

apiVersion: operator.openshift.io/v1

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

133

NOTE

The syslog destination port must be UDP.

The syslog destination address must be an IP address. It does not support DNS
hostname.

Configure Ingress access logging with a specific log format.

You can specify spec.logging.access.httpLogFormat to customize the log format. The
following example is an Ingress Controller definition that logs to a syslog endpoint with IP
address 1.2.3.4 and port 10514:

Disable Ingress access logging.

To disable Ingress access logging, leave spec.logging or spec.logging.access empty:

kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 port: 10514

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 port: 10514
 httpLogFormat: '%ci:%cp [%t] %ft %b/%s %B %bq %HM %HU %HV'

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:

OpenShift Container Platform 4.19 Networking Operators

134

Allow the Ingress Controller to modify the HAProxy log length when using a sidecar.

Use spec.logging.access.destination.syslog.maxLength if you are using
spec.logging.access.destination.type: Syslog.

Use spec.logging.access.destination.container.maxLength if you are using
spec.logging.access.destination.type: Container.

To view the original client source IP address by using the X-Forwarded-For header in the
Ingress access logs, see the "Capturing Original Client IP from the X-Forwarded-For Header in
Ingress and Application Logs" Red Hat Knowledgebase solution.

Additional resources

Capturing Original Client IP from the X-Forwarded-For Header in Ingress and Application Logs

 replicas: 2
 logging:
 access: null

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 maxLength: 4096
 port: 10514

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 container:
 maxLength: 8192
 type: Container
 httpCaptureHeaders:
 request:
 - maxLength: 128
 name: X-Forwarded-For

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

135

https://access.redhat.com/solutions/7096271

8.9.6. Setting Ingress Controller thread count

A cluster administrator can set the thread count to increase the amount of incoming connections a
cluster can handle. You can patch an existing Ingress Controller to increase the amount of threads.

Prerequisites

The following assumes that you already created an Ingress Controller.

Procedure

Update the Ingress Controller to increase the number of threads:

NOTE

If you have a node that is capable of running large amounts of resources, you can
configure spec.nodePlacement.nodeSelector with labels that match the
capacity of the intended node, and configure spec.tuningOptions.threadCount
to an appropriately high value.

8.9.7. Configuring an Ingress Controller to use an internal load balancer

When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public
cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an
internal cloud load balancer.

WARNING

If your cloud provider is Microsoft Azure, you must have at least one public load
balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController, you can change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Figure 8.1. Diagram of LoadBalancer

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"threadCount": 8}}}'



OpenShift Container Platform 4.19 Networking Operators

136

Figure 8.1. Diagram of LoadBalancer

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress LoadBalancerService endpoint publishing strategy:

You can load balance externally, using the cloud provider load balancer, or internally, using the
OpenShift Ingress Controller Load Balancer.

You can use the single IP address of the load balancer and more familiar ports, such as 8080
and 4200 as shown on the cluster depicted in the graphic.

Traffic from the external load balancer is directed at the pods, and managed by the load
balancer, as depicted in the instance of a down node. See the Kubernetes Services
documentation for implementation details.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IngressController custom resource (CR) in a file named <name>-ingress-

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

137

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer

1

2

3

1

1. Create an IngressController custom resource (CR) in a file named <name>-ingress-
controller.yaml, such as in the following example:

Replace <name> with a name for the IngressController object.

Specify the domain for the application published by the controller.

Specify a value of Internal to use an internal load balancer.

2. Create the Ingress Controller defined in the previous step by running the following command:

Replace <name> with the name of the IngressController object.

3. Optional: Confirm that the Ingress Controller was created by running the following command:

8.9.8. Configuring global access for an Ingress Controller on Google Cloud

An Ingress Controller created on Google Cloud with an internal load balancer generates an internal IP
address for the service. A cluster administrator can specify the global access option, which enables
clients in any region within the same VPC network and compute region as the load balancer, to reach
the workloads running on your cluster.

For more information, see the Google Cloud documentation for global access.

Prerequisites

You deployed an OpenShift Container Platform cluster on Google Cloud infrastructure.

You configured an Ingress Controller to use an internal load balancer.

You installed the OpenShift CLI (oc).

Procedure

1. Configure the Ingress Controller resource to allow global access.

NOTE

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: <name> 1
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal 3

$ oc create -f <name>-ingress-controller.yaml 1

$ oc --all-namespaces=true get ingresscontrollers

OpenShift Container Platform 4.19 Networking Operators

138

https://cloud.google.com/kubernetes-engine/docs/how-to/internal-load-balancing#global_access

1

NOTE

You can also create an Ingress Controller and specify the global access option.

a. Configure the Ingress Controller resource:

b. Edit the YAML file:

Sample clientAccess configuration to Global

Set gcp.clientAccess to Global.

c. Save the file to apply the changes.

2. Run the following command to verify that the service allows global access:

The output shows that global access is enabled for Google Cloud with the annotation,
networking.gke.io/internal-load-balancer-allow-global-access.

8.9.9. Setting the Ingress Controller health check interval

A cluster administrator can set the health check interval to define how long the router waits between
two consecutive health checks. This value is applied globally as a default for all routes. The default value
is 5 seconds.

Prerequisites

The following assumes that you already created an Ingress Controller.

Procedure

Update the Ingress Controller to change the interval between back end health checks:

NOTE

$ oc -n openshift-ingress-operator edit ingresscontroller/default

 spec:
 endpointPublishingStrategy:
 loadBalancer:
 providerParameters:
 gcp:
 clientAccess: Global 1
 type: GCP
 scope: Internal
 type: LoadBalancerService

$ oc -n openshift-ingress edit svc/router-default -o yaml

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"healthCheckInterval": "8s"}}}'

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

139

NOTE

To override the healthCheckInterval for a single route, use the route annotation
router.openshift.io/haproxy.health.check.interval

8.9.10. Configuring the default Ingress Controller for your cluster to be internal

You can configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

WARNING

If your cloud provider is Microsoft Azure, you must have at least one public load
balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController, you can change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

8.9.11. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same



$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: default
spec:
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal
EOF

OpenShift Container Platform 4.19 Networking Operators

140

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

WARNING

Allowing claims across namespaces should only be enabled for clusters with trust
between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

Cluster administrator privileges.

Procedure

Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

Sample Ingress Controller configuration

TIP

You can alternatively apply the following YAML to configure the route admission policy:

8.9.12. Using wildcard routes

The HAProxy Ingress Controller has support for wildcard routes. The Ingress Operator uses
wildcardPolicy to configure the ROUTER_ALLOW_WILDCARD_ROUTES environment variable of
the Ingress Controller.



$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed
...

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

141

The default behavior of the Ingress Controller is to admit routes with a wildcard policy of None, which is
backwards compatible with existing IngressController resources.

Procedure

1. Configure the wildcard policy.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the wildcardPolicy field to WildcardsDisallowed or WildcardsAllowed:

8.9.13. HTTP header configuration

OpenShift Container Platform provides different methods for working with HTTP headers. When setting
or deleting headers, you can use specific fields in the Ingress Controller or an individual route to modify
request and response headers. You can also set certain headers by using route annotations. The various
ways of configuring headers can present challenges when working together.

NOTE

You can only set or delete headers within an IngressController or Route CR, you cannot
append them. If an HTTP header is set with a value, that value must be complete and not
require appending in the future. In situations where it makes sense to append a header,
such as the X-Forwarded-For header, use the
spec.httpHeaders.forwardedHeaderPolicy field, instead of spec.httpHeaders.actions.

8.9.13.1. Order of precedence

When the same HTTP header is modified both in the Ingress Controller and in a route, HAProxy
prioritizes the actions in certain ways depending on whether it is a request or response header.

For HTTP response headers, actions specified in the Ingress Controller are executed after the
actions specified in a route. This means that the actions specified in the Ingress Controller take
precedence.

For HTTP request headers, actions specified in a route are executed after the actions specified
in the Ingress Controller. This means that the actions specified in the route take precedence.

For example, a cluster administrator sets the X-Frame-Options response header with the value DENY in
the Ingress Controller using the following configuration:

Example IngressController spec

$ oc edit IngressController

spec:
 routeAdmission:
 wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed

apiVersion: operator.openshift.io/v1
kind: IngressController
...
spec:
 httpHeaders:

OpenShift Container Platform 4.19 Networking Operators

142

A route owner sets the same response header that the cluster administrator set in the Ingress
Controller, but with the value SAMEORIGIN using the following configuration:

Example Route spec

When both the IngressController spec and Route spec are configuring the X-Frame-Options response
header, then the value set for this header at the global level in the Ingress Controller takes precedence,
even if a specific route allows frames. For a request header, the Route spec value overrides the
IngressController spec value.

This prioritization occurs because the haproxy.config file uses the following logic, where the Ingress
Controller is considered the front end and individual routes are considered the back end. The header
value DENY applied to the front end configurations overrides the same header with the value
SAMEORIGIN that is set in the back end:

Additionally, any actions defined in either the Ingress Controller or a route override values set using
route annotations.

8.9.13.2. Special case headers

The following headers are either prevented entirely from being set or deleted, or allowed under specific

 actions:
 response:
 - name: X-Frame-Options
 action:
 type: Set
 set:
 value: DENY

apiVersion: route.openshift.io/v1
kind: Route
...
spec:
 httpHeaders:
 actions:
 response:
 - name: X-Frame-Options
 action:
 type: Set
 set:
 value: SAMEORIGIN

frontend public
 http-response set-header X-Frame-Options 'DENY'

frontend fe_sni
 http-response set-header X-Frame-Options 'DENY'

frontend fe_no_sni
 http-response set-header X-Frame-Options 'DENY'

backend be_secure:openshift-monitoring:alertmanager-main
 http-response set-header X-Frame-Options 'SAMEORIGIN'

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

143

The following headers are either prevented entirely from being set or deleted, or allowed under specific
circumstances:

Table 8.2. Special case header configuration options

Header name Configurable
using
IngressControll
er spec

Configurable
using Route spec

Reason for
disallowment

Configurable
using another
method

proxy No No The proxy HTTP
request header
can be used to
exploit vulnerable
CGI applications
by injecting the
header value into
the
HTTP_PROXY
environment
variable. The
proxy HTTP
request header is
also non-standard
and prone to error
during
configuration.

No

host No Yes When the host
HTTP request
header is set using
the
IngressControll
er CR, HAProxy
can fail when
looking up the
correct route.

No

strict-transport-
security

No No The strict-
transport-
security HTTP
response header is
already handled
using route
annotations and
does not need a
separate
implementation.

Yes: the
haproxy.router.
openshift.io/hst
s_header route
annotation

OpenShift Container Platform 4.19 Networking Operators

144

cookie and set-
cookie

No No The cookies that
HAProxy sets are
used for session
tracking to map
client connections
to particular back-
end servers.
Allowing these
headers to be set
could interfere
with HAProxy’s
session affinity
and restrict
HAProxy’s
ownership of a
cookie.

Yes:

the
haproxy
.router.
openshi
ft.io/dis
able_co
okie
route
annotatio
n

the
haproxy
.router.
openshi
ft.io/coo
kie_nam
e route
annotatio
n

Header name Configurable
using
IngressControll
er spec

Configurable
using Route spec

Reason for
disallowment

Configurable
using another
method

8.9.14. Setting or deleting HTTP request and response headers in an Ingress
Controller

You can set or delete certain HTTP request and response headers for compliance purposes or other
reasons. You can set or delete these headers either for all routes served by an Ingress Controller or for
specific routes.

For example, you might want to migrate an application running on your cluster to use mutual TLS, which
requires that your application checks for an X-Forwarded-Client-Cert request header, but the
OpenShift Container Platform default Ingress Controller provides an X-SSL-Client-Der request header.

The following procedure modifies the Ingress Controller to set the X-Forwarded-Client-Cert request
header, and delete the X-SSL-Client-Der request header.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to an OpenShift Container Platform cluster as a user with the cluster-admin
role.

Procedure

1. Edit the Ingress Controller resource:

$ oc -n openshift-ingress-operator edit ingresscontroller/default

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

145

1

2

3

4

5

2. Replace the X-SSL-Client-Der HTTP request header with the X-Forwarded-Client-Cert HTTP
request header:

The list of actions you want to perform on the HTTP headers.

The type of header you want to change. In this case, a request header.

The name of the header you want to change. For a list of available headers you can set or
delete, see HTTP header configuration .

The type of action being taken on the header. This field can have the value Set or Delete.

When setting HTTP headers, you must provide a value. The value can be a string from a list
of available directives for that header, for example DENY, or it can be a dynamic value that
will be interpreted using HAProxy’s dynamic value syntax. In this case, a dynamic value is
added.

NOTE

For setting dynamic header values for HTTP responses, allowed sample fetchers
are res.hdr and ssl_c_der. For setting dynamic header values for HTTP
requests, allowed sample fetchers are req.hdr and ssl_c_der. Both request and
response dynamic values can use the lower and base64 converters.

3. Save the file to apply the changes.

8.9.15. Using X-Forwarded headers

You configure the HAProxy Ingress Controller to specify a policy for how to handle HTTP headers
including Forwarded and X-Forwarded-For. The Ingress Operator uses the HTTPHeaders field to
configure the ROUTER_SET_FORWARDED_HEADERS environment variable of the Ingress
Controller.

Procedure

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 actions: 1
 request: 2
 - name: X-Forwarded-Client-Cert 3
 action:
 type: Set 4
 set:
 value: "%{+Q}[ssl_c_der,base64]" 5
 - name: X-SSL-Client-Der
 action:
 type: Delete

OpenShift Container Platform 4.19 Networking Operators

146

1. Configure the HTTPHeaders field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the HTTPHeaders policy field to Append, Replace, IfNone, or Never:

8.9.15.1. Example use cases

As a cluster administrator, you can:

Configure an external proxy that injects the X-Forwarded-For header into each request before
forwarding it to an Ingress Controller.
To configure the Ingress Controller to pass the header through unmodified, you specify the
never policy. The Ingress Controller then never sets the headers, and applications receive only
the headers that the external proxy provides.

Configure the Ingress Controller to pass the X-Forwarded-For header that your external proxy
sets on external cluster requests through unmodified.
To configure the Ingress Controller to set the X-Forwarded-For header on internal cluster
requests, which do not go through the external proxy, specify the if-none policy. If an HTTP
request already has the header set through the external proxy, then the Ingress Controller
preserves it. If the header is absent because the request did not come through the proxy, then
the Ingress Controller adds the header.

As an application developer, you can:

Configure an application-specific external proxy that injects the X-Forwarded-For header.
To configure an Ingress Controller to pass the header through unmodified for an application’s
Route, without affecting the policy for other Routes, add an annotation
haproxy.router.openshift.io/set-forwarded-headers: if-none or
haproxy.router.openshift.io/set-forwarded-headers: never on the Route for the application.

NOTE

You can set the haproxy.router.openshift.io/set-forwarded-headers
annotation on a per route basis, independent from the globally set value for the
Ingress Controller.

8.9.16. Enable or disable HTTP/2 on Ingress Controllers

You can enable or disable transparent end-to-end HTTP/2 connectivity in HAProxy. Application owners
can use HTTP/2 protocol capabilities, including single connection, header compression, binary streams,
and more.

$ oc edit IngressController

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 forwardedHeaderPolicy: Append

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

147

You can enable or disable HTTP/2 connectivity for an individual Ingress Controller or for the entire
cluster.

NOTE

If you enable or disable HTTP/2 connectivity for an individual Ingress Controller and for
the entire cluster, the HTTP/2 configuration for the Ingress Controller takes precedence
over the HTTP/2 configuration for the cluster.

To enable the use of HTTP/2 for a connection from the client to an HAProxy instance, a route must
specify a custom certificate. A route that uses the default certificate cannot use HTTP/2. This
restriction is necessary to avoid problems from connection coalescing, where the client re-uses a
connection for different routes that use the same certificate.

Consider the following use cases for an HTTP/2 connection for each route type:

For a re-encrypt route, the connection from HAProxy to the application pod can use HTTP/2 if
the application supports using Application-Level Protocol Negotiation (ALPN) to negotiate
HTTP/2 with HAProxy. You cannot use HTTP/2 with a re-encrypt route unless the Ingress
Controller has HTTP/2 enabled.

For a passthrough route, the connection can use HTTP/2 if the application supports using ALPN
to negotiate HTTP/2 with the client. You can use HTTP/2 with a passthrough route if the
Ingress Controller has HTTP/2 enabled or disabled.

For an edge-terminated secure route, the connection uses HTTP/2 if the service specifies only
appProtocol: kubernetes.io/h2c. You can use HTTP/2 with an edge-terminated secure route if
the Ingress Controller has HTTP/2 enabled or disabled.

For an insecure route, the connection uses HTTP/2 if the service specifies only appProtocol:
kubernetes.io/h2c. You can use HTTP/2 with an insecure route if the Ingress Controller has
HTTP/2 enabled or disabled.

IMPORTANT

For non-passthrough routes, the Ingress Controller negotiates its connection to the
application independently of the connection from the client. This means a client might
connect to the Ingress Controller and negotiate HTTP/1.1. The Ingress Controller might
then connect to the application, negotiate HTTP/2, and forward the request from the
client HTTP/1.1 connection by using the HTTP/2 connection to the application.

This sequence of events causes an issue if the client subsequently tries to upgrade its
connection from HTTP/1.1 to the WebSocket protocol. Consider that if you have an
application that is intending to accept WebSocket connections, and the application
attempts to allow for HTTP/2 protocol negotiation, the client fails any attempt to
upgrade to the WebSocket protocol.

8.9.16.1. Enabling HTTP/2

You can enable HTTP/2 on a specific Ingress Controller, or you can enable HTTP/2 for the entire
cluster.

Procedure

To enable HTTP/2 on a specific Ingress Controller, enter the oc annotate command:

OpenShift Container Platform 4.19 Networking Operators

148

1

1

Replace <ingresscontroller_name> with the name of an Ingress Controller to enable
HTTP/2.

To enable HTTP/2 for the entire cluster, enter the oc annotate command:

TIP

Alternatively, you can apply the following YAML code to enable HTTP/2:

8.9.16.2. Disabling HTTP/2

You can disable HTTP/2 on a specific Ingress Controller, or you can disable HTTP/2 for the entire
cluster.

Procedure

To disable HTTP/2 on a specific Ingress Controller, enter the oc annotate command:

Replace <ingresscontroller_name> with the name of an Ingress Controller to disable
HTTP/2.

To disable HTTP/2 for the entire cluster, enter the oc annotate command:

TIP

$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name>
ingress.operator.openshift.io/default-enable-http2=true 1

$ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
 annotations:
 ingress.operator.openshift.io/default-enable-http2: "true"

$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name>
ingress.operator.openshift.io/default-enable-http2=false 1

$ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-
http2=false

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

149

TIP

Alternatively, you can apply the following YAML code to disable HTTP/2:

8.9.17. Configuring the PROXY protocol for an Ingress Controller

A cluster administrator can configure the PROXY protocol when an Ingress Controller uses either the
HostNetwork, NodePortService, or Private endpoint publishing strategy types. The PROXY protocol
enables the load balancer to preserve the original client addresses for connections that the Ingress
Controller receives. The original client addresses are useful for logging, filtering, and injecting HTTP
headers. In the default configuration, the connections that the Ingress Controller receives only contain
the source address that is associated with the load balancer.

WARNING

The default Ingress Controller with installer-provisioned clusters on non-cloud
platforms that use a Keepalived Ingress Virtual IP (VIP) do not support the PROXY
protocol.

The PROXY protocol enables the load balancer to preserve the original client addresses for connections
that the Ingress Controller receives. The original client addresses are useful for logging, filtering, and
injecting HTTP headers. In the default configuration, the connections that the Ingress Controller
receives contain only the source IP address that is associated with the load balancer.

IMPORTANT

For a passthrough route configuration, servers in OpenShift Container Platform clusters
cannot observe the original client source IP address. If you need to know the original client
source IP address, configure Ingress access logging for your Ingress Controller so that
you can view the client source IP addresses.

For re-encrypt and edge routes, the OpenShift Container Platform router sets the
Forwarded and X-Forwarded-For headers so that application workloads check the client
source IP address.

For more information about Ingress access logging, see "Configuring Ingress access
logging".

Configuring the PROXY protocol for an Ingress Controller is not supported when using the
LoadBalancerService endpoint publishing strategy type. This restriction is because when OpenShift
Container Platform runs in a cloud platform, and an Ingress Controller specifies that a service load

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
 annotations:
 ingress.operator.openshift.io/default-enable-http2: "false"



OpenShift Container Platform 4.19 Networking Operators

150

https://www.haproxy.org/download/2.8/doc/proxy-protocol.txt

balancer should be used, the Ingress Operator configures the load balancer service and enables the
PROXY protocol based on the platform requirement for preserving source addresses.

IMPORTANT

You must configure both OpenShift Container Platform and the external load balancer
to use either the PROXY protocol or TCP.

This feature is not supported in cloud deployments. This restriction is because when OpenShift
Container Platform runs in a cloud platform, and an Ingress Controller specifies that a service load
balancer should be used, the Ingress Operator configures the load balancer service and enables the
PROXY protocol based on the platform requirement for preserving source addresses.

IMPORTANT

You must configure both OpenShift Container Platform and the external load balancer
to either use the PROXY protocol or to use Transmission Control Protocol (TCP).

Prerequisites

You created an Ingress Controller.

Procedure

1. Edit the Ingress Controller resource by entering the following command in your CLI:

2. Set the PROXY configuration:

If your Ingress Controller uses the HostNetwork endpoint publishing strategy type, set the
spec.endpointPublishingStrategy.hostNetwork.protocol subfield to PROXY:

Sample hostNetwork configuration to PROXY

If your Ingress Controller uses the NodePortService endpoint publishing strategy type, set
the spec.endpointPublishingStrategy.nodePort.protocol subfield to PROXY:

Sample nodePort configuration to PROXY

$ oc -n openshift-ingress-operator edit ingresscontroller/default

...
 spec:
 endpointPublishingStrategy:
 hostNetwork:
 protocol: PROXY
 type: HostNetwork
...

...
 spec:
 endpointPublishingStrategy:
 nodePort:

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

151

If your Ingress Controller uses the Private endpoint publishing strategy type, set the
spec.endpointPublishingStrategy.private.protocol subfield to PROXY:

Sample private configuration to PROXY

Additional resources

Configuring Ingress access logging

8.9.18. Specifying an alternative cluster domain using the appsDomain option

As a cluster administrator, you can specify an alternative to the default cluster domain for user-created
routes by configuring the appsDomain field. The appsDomain field is an optional domain for
OpenShift Container Platform to use instead of the default, which is specified in the domain field. If you
specify an alternative domain, it overrides the default cluster domain for the purpose of determining the
default host for a new route.

For example, you can use the DNS domain for your company as the default domain for routes and
ingresses for applications running on your cluster.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the oc command-line interface.

Procedure

1. Configure the appsDomain field by specifying an alternative default domain for user-created
routes.

a. Edit the ingress cluster resource:

b. Edit the YAML file:

Sample appsDomain configuration to test.example.com

 protocol: PROXY
 type: NodePortService
...

...
 spec:
 endpointPublishingStrategy:
 private:
 protocol: PROXY
 type: Private
...

$ oc edit ingresses.config/cluster -o yaml

apiVersion: config.openshift.io/v1
kind: Ingress

OpenShift Container Platform 4.19 Networking Operators

152

1

2

Specifies the default domain. You cannot modify the default domain after installation.

Optional: Domain for OpenShift Container Platform infrastructure to use for
application routes. Instead of the default prefix, apps, you can use an alternative prefix
like test.

2. Verify that an existing route contains the domain name specified in the appsDomain field by
exposing the route and verifying the route domain change:

NOTE

Wait for the openshift-apiserver finish rolling updates before exposing the
route.

a. Expose the route by entering the following command. The command outputs
route.route.openshift.io/hello-openshift exposed to designate exposure of the route.

b. Get a list of routes by running the following command:

Example output

8.9.19. Converting HTTP header case

HAProxy lowercases HTTP header names by default; for example, changing Host: xyz.com to host:
xyz.com. If legacy applications are sensitive to the capitalization of HTTP header names, use the Ingress
Controller spec.httpHeaders.headerNameCaseAdjustments API field for a solution to accommodate
legacy applications until they can be fixed.

IMPORTANT

OpenShift Container Platform includes HAProxy 2.8. If you want to update to this version
of the web-based load balancer, ensure that you add the
spec.httpHeaders.headerNameCaseAdjustments section to your cluster’s
configuration file.

As a cluster administrator, you can convert the HTTP header case by entering the oc patch command or

metadata:
 name: cluster
spec:
 domain: apps.example.com 1
 appsDomain: <test.example.com> 2

$ oc expose service hello-openshift

$ oc get routes

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
hello-openshift hello_openshift-<my_project>.test.example.com
hello-openshift 8080-tcp None

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

153

1

As a cluster administrator, you can convert the HTTP header case by entering the oc patch command or
by setting the HeaderNameCaseAdjustments field in the Ingress Controller YAML file.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

Capitalize an HTTP header by using the oc patch command.

a. Change the HTTP header from host to Host by running the following command:

b. Create a Route resource YAML file so that the annotation can be applied to the
application.

Example of a route named my-application

Set haproxy.router.openshift.io/h1-adjust-case so that the Ingress Controller can
adjust the host request header as specified.

Specify adjustments by configuring the HeaderNameCaseAdjustments field in the Ingress
Controller YAML configuration file.

a. The following example Ingress Controller YAML file adjusts the host header to Host for
HTTP/1 requests to appropriately annotated routes:

Example Ingress Controller YAML

b. The following example route enables HTTP response header name case adjustments by

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch='{"spec":{"httpHeaders":{"headerNameCaseAdjustments":["Host"]}}}'

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/h1-adjust-case: true 1
 name: <application_name>
 namespace: <application_name>
...

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 headerNameCaseAdjustments:
 - Host

OpenShift Container Platform 4.19 Networking Operators

154

1

b. The following example route enables HTTP response header name case adjustments by
using the haproxy.router.openshift.io/h1-adjust-case annotation:

Example route YAML

Set haproxy.router.openshift.io/h1-adjust-case to true.

8.9.20. Using router compression

You configure the HAProxy Ingress Controller to specify router compression globally for specific MIME
types. You can use the mimeTypes variable to define the formats of MIME types to which compression
is applied. The types are: application, image, message, multipart, text, video, or a custom type prefaced
by "X-". To see the full notation for MIME types and subtypes, see RFC1341.

NOTE

Memory allocated for compression can affect the max connections. Additionally,
compression of large buffers can cause latency, like heavy regex or long lists of regex.

Not all MIME types benefit from compression, but HAProxy still uses resources to try to
compress if instructed to. Generally, text formats, such as html, css, and js, formats
benefit from compression, but formats that are already compressed, such as image, audio,
and video, benefit little in exchange for the time and resources spent on compression.

Procedure

1. Configure the httpCompression field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the httpCompression policy field to mimeTypes and specify a list of
MIME types that should have compression applied:

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/h1-adjust-case: true 1
 name: my-application
 namespace: my-application
spec:
 to:
 kind: Service
 name: my-application

$ oc edit -n openshift-ingress-operator ingresscontrollers/default

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

155

https://datatracker.ietf.org/doc/html/rfc1341#page-7

8.9.21. Exposing router metrics

You can expose the HAProxy router metrics by default in Prometheus format on the default stats port,
1936. The external metrics collection and aggregation systems such as Prometheus can access the
HAProxy router metrics. You can view the HAProxy router metrics in a browser in the HTML and comma
separated values (CSV) format.

Prerequisites

You configured your firewall to access the default stats port, 1936.

Procedure

1. Get the router pod name by running the following command:

Example output

2. Get the router’s username and password, which the router pod stores in the
/var/lib/haproxy/conf/metrics-auth/statsUsername and /var/lib/haproxy/conf/metrics-
auth/statsPassword files:

a. Get the username by running the following command:

b. Get the password by running the following command:

3. Get the router IP and metrics certificates by running the following command:

4. Get the raw statistics in Prometheus format by running the following command:

5. Access the metrics securely by running the following command:

 httpCompression:
 mimeTypes:
 - "text/html"
 - "text/css; charset=utf-8"
 - "application/json"
 ...

$ oc get pods -n openshift-ingress

NAME READY STATUS RESTARTS AGE
router-default-76bfffb66c-46qwp 1/1 Running 0 11h

$ oc rsh <router_pod_name> cat metrics-auth/statsUsername

$ oc rsh <router_pod_name> cat metrics-auth/statsPassword

$ oc describe pod <router_pod>

$ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

$ curl -u user:password https://<router_IP>:<stats_port>/metrics -k

OpenShift Container Platform 4.19 Networking Operators

156

6. Access the default stats port, 1936, by running the following command:

Example 8.1. Example output

7. Launch the stats window by entering the following URL in a browser:

8. Optional: Get the stats in CSV format by entering the following URL in a browser:

8.9.22. Customizing HAProxy error code response pages

As a cluster administrator, you can specify a custom error code response page for either 503, 404, or
both error pages. The HAProxy router serves a 503 error page when the application pod is not running

$ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

...
HELP haproxy_backend_connections_total Total number of connections.
TYPE haproxy_backend_connections_total gauge
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route-alt"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route01"} 0
...
HELP haproxy_exporter_server_threshold Number of servers tracked and the current
threshold value.
TYPE haproxy_exporter_server_threshold gauge
haproxy_exporter_server_threshold{type="current"} 11
haproxy_exporter_server_threshold{type="limit"} 500
...
HELP haproxy_frontend_bytes_in_total Current total of incoming bytes.
TYPE haproxy_frontend_bytes_in_total gauge
haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} 0
haproxy_frontend_bytes_in_total{frontend="fe_sni"} 0
haproxy_frontend_bytes_in_total{frontend="public"} 119070
...
HELP haproxy_server_bytes_in_total Current total of incoming bytes.
TYPE haproxy_server_bytes_in_total gauge
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_no_sni",service="
"} 0
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_sni",service=""}
0
haproxy_server_bytes_in_total{namespace="default",pod="docker-registry-5-
nk5fz",route="docker-registry",server="10.130.0.89:5000",service="docker-registry"} 0
haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-vkjqx",route="hello-
route",server="10.130.0.90:8080",service="hello-svc-1"} 0
...

http://<user>:<password>@<router_IP>:<stats_port>

http://<user>:<password>@<router_ip>:1936/metrics;csv

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

157

or a 404 error page when the requested URL does not exist. For example, if you customize the 503 error
code response page, then the page is served when the application pod is not running, and the default
404 error code HTTP response page is served by the HAProxy router for an incorrect route or a non-
existing route.

Custom error code response pages are specified in a config map then patched to the Ingress Controller.
The config map keys have two available file names as follows: error-page-503.http and error-page-
404.http.

Custom HTTP error code response pages must follow the HAProxy HTTP error page configuration
guidelines. Here is an example of the default OpenShift Container Platform HAProxy router http 503
error code response page. You can use the default content as a template for creating your own custom
page.

By default, the HAProxy router serves only a 503 error page when the application is not running or when
the route is incorrect or non-existent. This default behavior is the same as the behavior on OpenShift
Container Platform 4.8 and earlier. If a config map for the customization of an HTTP error code
response is not provided, and you are using a custom HTTP error code response page, the router serves
a default 404 or 503 error code response page.

NOTE

If you use the OpenShift Container Platform default 503 error code page as a template
for your customizations, the headers in the file require an editor that can use CRLF line
endings.

Procedure

1. Create a config map named my-custom-error-code-pages in the openshift-config
namespace:

IMPORTANT

If you do not specify the correct format for the custom error code response
page, a router pod outage occurs. To resolve this outage, you must delete or
correct the config map and delete the affected router pods so they can be
recreated with the correct information.

2. Patch the Ingress Controller to reference the my-custom-error-code-pages config map by
name:

The Ingress Operator copies the my-custom-error-code-pages config map from the
openshift-config namespace to the openshift-ingress namespace. The Operator names the
config map according to the pattern, <your_ingresscontroller_name>-errorpages, in the
openshift-ingress namespace.

3. Display the copy:

$ oc -n openshift-config create configmap my-custom-error-code-pages \
 --from-file=error-page-503.http \
 --from-file=error-page-404.http

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":
{"httpErrorCodePages":{"name":"my-custom-error-code-pages"}}}' --type=merge

OpenShift Container Platform 4.19 Networking Operators

158

https://www.haproxy.com/documentation/hapee/latest/configuration/config-sections/http-errors/
https://raw.githubusercontent.com/openshift/router/master/images/router/haproxy/conf/error-page-503.http

1

Example output

NAME DATA AGE
default-errorpages 2 25s 1

The example config map name is default-errorpages because the default Ingress
Controller custom resource (CR) was patched.

4. Confirm that the config map containing the custom error response page mounts on the router
volume where the config map key is the filename that has the custom HTTP error code
response:

For 503 custom HTTP custom error code response:

For 404 custom HTTP custom error code response:

Verification

Verify your custom error code HTTP response:

1. Create a test project and application:

2. For 503 custom http error code response:

a. Stop all the pods for the application.

b. Run the following curl command or visit the route hostname in the browser:

3. For 404 custom http error code response:

a. Visit a non-existent route or an incorrect route.

b. Run the following curl command or visit the route hostname in the browser:

4. Check if the errorfile attribute is properly in the haproxy.config file:

$ oc get cm default-errorpages -n openshift-ingress

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-503.http

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-404.http

$ oc new-project test-ingress

$ oc new-app django-psql-example

$ curl -vk <route_hostname>

$ curl -vk <route_hostname>

CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

159

8.9.23. Setting the Ingress Controller maximum connections

A cluster administrator can set the maximum number of simultaneous connections for OpenShift router
deployments. You can patch an existing Ingress Controller to increase the maximum number of
connections.

Prerequisites

The following assumes that you already created an Ingress Controller

Procedure

Update the Ingress Controller to change the maximum number of connections for HAProxy:

WARNING

If you set the spec.tuningOptions.maxConnections value greater than
the current operating system limit, the HAProxy process will not start. See
the table in the "Ingress Controller configuration parameters" section for
more information about this parameter.

8.10. ADDITIONAL RESOURCES

Configuring a custom PKI

$ oc -n openshift-ingress rsh <router> cat /var/lib/haproxy/conf/haproxy.config | grep errorfile

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"maxConnections": 7500}}}'



OpenShift Container Platform 4.19 Networking Operators

160

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/configuring_network_settings/#configuring-a-custom-pki

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN
OPENSHIFT CONTAINER PLATFORM

The Ingress Node Firewall Operator provides a stateless, eBPF-based firewall for managing node-level
ingress traffic in OpenShift Container Platform.

9.1. INGRESS NODE FIREWALL OPERATOR

The Ingress Node Firewall Operator provides ingress firewall rules at a node level by deploying the
daemon set to nodes you specify and manage in the firewall configurations. To deploy the daemon set,
you create an IngressNodeFirewallConfig custom resource (CR). The Operator applies the
IngressNodeFirewallConfig CR to create ingress node firewall daemon set daemon, which run on all
nodes that match the nodeSelector.

You configure rules of the IngressNodeFirewall CR and apply them to clusters using the
nodeSelector and setting values to "true".

IMPORTANT

The Ingress Node Firewall Operator supports only stateless firewall rules.

Network interface controllers (NICs) that do not support native XDP drivers will run at a
lower performance.

For OpenShift Container Platform 4.14 or later, you must run Ingress Node Firewall
Operator on RHEL 9.0 or later.

9.2. INSTALLING THE INGRESS NODE FIREWALL OPERATOR

As a cluster administrator, you can install the Ingress Node Firewall Operator by using the OpenShift
Container Platform CLI or the web console.

9.2.1. Installing the Ingress Node Firewall Operator using the CLI

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have an account with administrator privileges.

Procedure

1. To create the openshift-ingress-node-firewall namespace, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 labels:
 pod-security.kubernetes.io/enforce: privileged

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM

161

2. To create an OperatorGroup CR, enter the following command:

3. Subscribe to the Ingress Node Firewall Operator.

To create a Subscription CR for the Ingress Node Firewall Operator, enter the following
command:

4. To verify that the Operator is installed, enter the following command:

Example output

5. To verify the version of the Operator, enter the following command:

Example output

 pod-security.kubernetes.io/enforce-version: v1.24
 name: openshift-ingress-node-firewall
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: ingress-node-firewall-operators
 namespace: openshift-ingress-node-firewall
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ingress-node-firewall-sub
 namespace: openshift-ingress-node-firewall
spec:
 name: ingress-node-firewall
 channel: stable
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get ip -n openshift-ingress-node-firewall

NAME CSV APPROVAL APPROVED
install-5cvnz ingress-node-firewall.4.19.0-202211122336 Automatic true

$ oc get csv -n openshift-ingress-node-firewall

NAME DISPLAY VERSION REPLACES
PHASE
ingress-node-firewall.4.19.0-202211122336 Ingress Node Firewall Operator 4.19.0-
202211122336 ingress-node-firewall.4.19.0-202211102047 Succeeded

OpenShift Container Platform 4.19 Networking Operators

162

9.2.2. Installing the Ingress Node Firewall Operator using the web console

As a cluster administrator, you can install the Operator using the web console.

Prerequisites

You have installed the OpenShift CLI (oc).

You have an account with administrator privileges.

Procedure

1. Install the Ingress Node Firewall Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Select Ingress Node Firewall Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, under Installed Namespace, select Operator
recommended Namespace.

d. Click Install.

2. Verify that the Ingress Node Firewall Operator is installed successfully:

a. Navigate to the Operators → Installed Operators page.

b. Ensure that Ingress Node Firewall Operator is listed in the openshift-ingress-node-
firewall project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not have a Status of InstallSucceeded, troubleshoot using the
following steps:

Inspect the Operator Subscriptions and Install Plans tabs for any failures or errors
under Status.

Navigate to the Workloads → Pods page and check the logs for pods in the openshift-
ingress-node-firewall project.

Check the namespace of the YAML file. If the annotation is missing, you can add the
annotation workload.openshift.io/allowed=management to the Operator namespace
with the following command:

NOTE

$ oc annotate ns/openshift-ingress-node-firewall
workload.openshift.io/allowed=management

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM

163

NOTE

For single-node OpenShift clusters, the openshift-ingress-node-
firewall namespace requires the
workload.openshift.io/allowed=management annotation.

9.3. DEPLOYING INGRESS NODE FIREWALL OPERATOR

Prerequisite

The Ingress Node Firewall Operator is installed.

Procedure

To deploy the Ingress Node Firewall Operator, create a IngressNodeFirewallConfig custom resource
that will deploy the Operator’s daemon set. You can deploy one or multiple IngressNodeFirewall CRDs
to nodes by applying firewall rules.

1. Create the IngressNodeFirewallConfig inside the openshift-ingress-node-firewall
namespace named ingressnodefirewallconfig.

2. Run the following command to deploy Ingress Node Firewall Operator rules:

9.3.1. Ingress Node Firewall configuration object

The fields for the Ingress Node Firewall configuration object are described in the following table:

Table 9.1. Ingress Node Firewall Configuration object

Field Type Description

metadata.name string The name of the CR object. The name of the firewall rules object
must be ingressnodefirewallconfig.

metadata.name
space

string Namespace for the Ingress Firewall Operator CR object. The
IngressNodeFirewallConfig CR must be created inside the
openshift-ingress-node-firewall namespace.

$ oc apply -f rule.yaml

OpenShift Container Platform 4.19 Networking Operators

164

spec.nodeSelec
tor

string A node selection constraint used to target nodes through
specified node labels. For example:

NOTE

One label used in nodeSelector must match a
label on the nodes in order for the daemon set
to start. For example, if the node labels node-
role.kubernetes.io/worker and node-
type.kubernetes.io/vm are applied to a node,
then at least one label must be set using
nodeSelector for the daemon set to start.

spec.ebpfProgr
amManagerMod
e

boolean Specifies if the Node Ingress Firewall Operator uses the eBPF
Manager Operator or not to manage eBPF programs. This
capability is a Technology Preview feature.

For more information about the support scope of Red Hat
Technology Preview features, see Technology Preview Features
Support Scope.

Field Type Description

NOTE

The Operator consumes the CR and creates an ingress node firewall daemon set on all
the nodes that match the nodeSelector.

9.3.2. Ingress Node Firewall Operator example configuration

A complete Ingress Node Firewall Configuration is specified in the following example:

Example of how to create an Ingress Node Firewall Configuration object

spec:
 nodeSelector:
 node-role.kubernetes.io/worker: ""

$ cat << EOF | oc create -f -
apiVersion: ingressnodefirewall.openshift.io/v1alpha1
kind: IngressNodeFirewallConfig
metadata:
 name: ingressnodefirewallconfig
 namespace: openshift-ingress-node-firewall
spec:

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM

165

https://access.redhat.com/support/offerings/techpreview/

NOTE

The Operator consumes the CR object and creates an ingress node firewall daemon set
on all the nodes that match the nodeSelector.

9.3.3. Ingress Node Firewall rules object

The fields for the Ingress Node Firewall rules object are described in the following table:

Table 9.2. Ingress Node Firewall rules object

Field Type Description

metadata.name string The name of the CR object.

interfaces array The fields for this object specify the interfaces to apply the
firewall rules to. For example, - en0 and - en1.

nodeSelector array You can use nodeSelector to select the nodes to apply the
firewall rules to. Set the value of your named nodeselector
labels to true to apply the rule.

ingress object ingress allows you to configure the rules that allow outside
access to the services on your cluster.

9.3.3.1. Ingress object configuration

The values for the ingress object are defined in the following table:

Table 9.3. ingress object

Field Type Description

sourceCIDRs array Allows you to set the CIDR block. You can configure
multiple CIDRs from different address families.

NOTE

Different CIDRs allow you to use the
same order rule. In the case that
there are multiple
IngressNodeFirewall objects for
the same nodes and interfaces with
overlapping CIDRs, the order field
will specify which rule is applied first.
Rules are applied in ascending order.

 nodeSelector:
 node-role.kubernetes.io/worker: ""
EOF

OpenShift Container Platform 4.19 Networking Operators

166

rules array Ingress firewall rules.order objects are ordered
starting at 1 for each source.CIDR with up to 100
rules per CIDR. Lower order rules are executed first.

rules.protocolConfig.protocol supports the
following protocols: TCP, UDP, SCTP, ICMP and
ICMPv6. ICMP and ICMPv6 rules can match against
ICMP and ICMPv6 types or codes. TCP, UDP, and
SCTP rules can match against a single destination
port or a range of ports using <start : end-1>
format.

Set rules.action to allow to apply the rule or deny
to disallow the rule.

NOTE

Ingress firewall rules are verified
using a verification webhook that
blocks any invalid configuration. The
verification webhook prevents you
from blocking any critical cluster
services such as the API server.

Field Type Description

9.3.3.2. Ingress Node Firewall rules object example

A complete Ingress Node Firewall configuration is specified in the following example:

Example Ingress Node Firewall configuration

apiVersion: ingressnodefirewall.openshift.io/v1alpha1
kind: IngressNodeFirewall
metadata:
 name: ingressnodefirewall
spec:
 interfaces:
 - eth0
 nodeSelector:
 matchLabels:
 <ingress_firewall_label_name>: <label_value> 1
 ingress:
 - sourceCIDRs:
 - 172.16.0.0/12
 rules:
 - order: 10
 protocolConfig:
 protocol: ICMP
 icmp:
 icmpType: 8 #ICMP Echo request
 action: Deny
 - order: 20

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM

167

1 A <label_name> and a <label_value> must exist on the node and must match the nodeselector label
and value applied to the nodes you want the ingressfirewallconfig CR to run on. The <label_value>
can be true or false. By using nodeSelector labels, you can target separate groups of nodes to
apply different rules to using the ingressfirewallconfig CR.

9.3.3.3. Zero trust Ingress Node Firewall rules object example

Zero trust Ingress Node Firewall rules can provide additional security to multi-interface clusters. For
example, you can use zero trust Ingress Node Firewall rules to drop all traffic on a specific interface
except for SSH.

A complete configuration of a zero trust Ingress Node Firewall rule set is specified in the following
example:

IMPORTANT

Users need to add all ports their application will use to their allowlist in the following case
to ensure proper functionality.

Example zero trust Ingress Node Firewall rules

 protocolConfig:
 protocol: TCP
 tcp:
 ports: "8000-9000"
 action: Deny
 - sourceCIDRs:
 - fc00:f853:ccd:e793::0/64
 rules:
 - order: 10
 protocolConfig:
 protocol: ICMPv6
 icmpv6:
 icmpType: 128 #ICMPV6 Echo request
 action: Deny

apiVersion: ingressnodefirewall.openshift.io/v1alpha1
kind: IngressNodeFirewall
metadata:
 name: ingressnodefirewall-zero-trust
spec:
 interfaces:
 - eth1 1
 nodeSelector:
 matchLabels:
 <ingress_firewall_label_name>: <label_value> 2
 ingress:
 - sourceCIDRs:
 - 0.0.0.0/0 3
 rules:
 - order: 10
 protocolConfig:
 protocol: TCP

OpenShift Container Platform 4.19 Networking Operators

168

1

2

3

4

Network-interface cluster

The <label_name> and <label_value> needs to match the nodeSelector label and value applied to
the specific nodes with which you wish to apply the ingressfirewallconfig CR.

0.0.0.0/0 set to match any CIDR

action set to Deny

IMPORTANT

eBPF Manager Operator integration is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

9.4. INGRESS NODE FIREWALL OPERATOR INTEGRATION

The Ingress Node Firewall uses eBPF programs to implement some of its key firewall functionality. By
default these eBPF programs are loaded into the kernel using a mechanism specific to the Ingress Node
Firewall. You can configure the Ingress Node Firewall Operator to use the eBPF Manager Operator for
loading and managing these programs instead.

When this integration is enabled, the following limitations apply:

The Ingress Node Firewall Operator uses TCX if XDP is not available and TCX is incompatible
with bpfman.

The Ingress Node Firewall Operator daemon set pods remain in the ContainerCreating state
until the firewall rules are applied.

The Ingress Node Firewall Operator daemon set pods run as privileged.

9.5. CONFIGURING INGRESS NODE FIREWALL OPERATOR TO USE
THE EBPF MANAGER OPERATOR

The Ingress Node Firewall uses eBPF programs to implement some of its key firewall functionality. By
default these eBPF programs are loaded into the kernel using a mechanism specific to the Ingress Node
Firewall.

As a cluster administrator, you can configure the Ingress Node Firewall Operator to use the eBPF

 tcp:
 ports: 22
 action: Allow
 - order: 20
 action: Deny 4

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM

169

https://access.redhat.com/support/offerings/techpreview/
https://www.kernel.org/doc/html/latest/bpf/index.html
https://www.kernel.org/doc/html/latest/bpf/index.html

As a cluster administrator, you can configure the Ingress Node Firewall Operator to use the eBPF
Manager Operator for loading and managing these programs instead, adding additional security and
observability functionality.

Prerequisites

You have installed the OpenShift CLI (oc).

You have an account with administrator privileges.

You installed the Ingress Node Firewall Operator.

You have installed the eBPF Manager Operator.

Procedure

1. Apply the following labels to the ingress-node-firewall-system namespace:

2. Edit the IngressNodeFirewallConfig object named ingressnodefirewallconfig and set the
ebpfProgramManagerMode field:

Ingress Node Firewall Operator configuration object

where:

<ebpf_mode>: Specifies whether or not the Ingress Node Firewall Operator uses the eBPF
Manager Operator to manage eBPF programs. Must be either true or false. If unset, eBPF
Manager is not used.

9.6. VIEWING INGRESS NODE FIREWALL OPERATOR RULES

Procedure

1. Run the following command to view all current rules :

2. Choose one of the returned <resource> names and run the following command to view the
rules or configs:

$ oc label namespace openshift-ingress-node-firewall \
 pod-security.kubernetes.io/enforce=privileged \
 pod-security.kubernetes.io/warn=privileged --overwrite

apiVersion: ingressnodefirewall.openshift.io/v1alpha1
kind: IngressNodeFirewallConfig
metadata:
 name: ingressnodefirewallconfig
 namespace: openshift-ingress-node-firewall
spec:
 nodeSelector:
 node-role.kubernetes.io/worker: ""
 ebpfProgramManagerMode: <ebpf_mode>

$ oc get ingressnodefirewall

OpenShift Container Platform 4.19 Networking Operators

170

9.7. TROUBLESHOOTING THE INGRESS NODE FIREWALL OPERATOR

Run the following command to list installed Ingress Node Firewall custom resource definitions
(CRD):

Example output

Run the following command to view the state of the Ingress Node Firewall Operator:

Example output

The following fields provide information about the status of the Operator: READY, STATUS,
AGE, and RESTARTS. The STATUS field is Running when the Ingress Node Firewall Operator
is deploying a daemon set to the assigned nodes.

Run the following command to collect all ingress firewall node pods' logs:

The logs are available in the sos node’s report containing eBPF bpftool outputs at
/sos_commands/ebpf. These reports include lookup tables used or updated as the ingress
firewall XDP handles packet processing, updates statistics, and emits events.

9.8. ADDITIONAL RESOURCES

About the eBPF Manager Operator

$ oc get <resource> <name> -o yaml

$ oc get crds | grep ingressnodefirewall

NAME READY UP-TO-DATE AVAILABLE AGE
ingressnodefirewallconfigs.ingressnodefirewall.openshift.io 2022-08-25T10:03:01Z
ingressnodefirewallnodestates.ingressnodefirewall.openshift.io 2022-08-25T10:03:00Z
ingressnodefirewalls.ingressnodefirewall.openshift.io 2022-08-25T10:03:00Z

$ oc get pods -n openshift-ingress-node-firewall

NAME READY STATUS RESTARTS AGE
ingress-node-firewall-controller-manager 2/2 Running 0 5d21h
ingress-node-firewall-daemon-pqx56 3/3 Running 0 5d21h

$ oc adm must-gather – gather_ingress_node_firewall

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM

171

CHAPTER 10. SR-IOV OPERATOR

10.1. INSTALLING THE SR-IOV NETWORK OPERATOR

You can install the Single Root I/O Virtualization (SR-IOV) Network Operator on your cluster to manage
SR-IOV network devices and network attachments.

10.1.1. Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Single Root I/O Virtualization (SR-IOV) Network Operator
by using the OpenShift Container Platform CLI or the web console.

10.1.1.1. CLI: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. Create the openshift-sriov-network-operator namespace by entering the following command:

2. Create an OperatorGroup custom resource (CR) by entering the following command:

3. Create a Subscription CR for the SR-IOV Network Operator by entering the following
command:

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sriov-network-operator
 annotations:
 workload.openshift.io/allowed: management
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sriov-network-operators
 namespace: openshift-sriov-network-operator
spec:
 targetNamespaces:
 - openshift-sriov-network-operator
EOF

OpenShift Container Platform 4.19 Networking Operators

172

4. Create an SriovoperatorConfig resource by entering the following command:

Verification

To verify that the Operator is installed, enter the following command and then check that
output shows Succeeded for the Operator:

10.1.1.2. Web console: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the web console.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. Install the SR-IOV Network Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.
b. Select SR-IOV Network Operator from the list of available Operators, and then click

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sriov-network-operator-subscription
 namespace: openshift-sriov-network-operator
spec:
 channel: stable
 name: sriov-network-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ cat <<EOF | oc create -f -
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 enableInjector: true
 enableOperatorWebhook: true
 logLevel: 2
 disableDrain: false
EOF

$ oc get csv -n openshift-sriov-network-operator \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

CHAPTER 10. SR-IOV OPERATOR

173

b. Select SR-IOV Network Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, under Installed Namespace, select Operator
recommended Namespace.

d. Click Install.

2. Verify that the SR-IOV Network Operator is installed successfully:

a. Navigate to the Operators → Installed Operators page.

b. Ensure that SR-IOV Network Operator is listed in the openshift-sriov-network-operator
project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

Inspect the Operator Subscriptions and Install Plans tabs for any failure or errors
under Status.

Navigate to the Workloads → Pods page and check the logs for pods in the openshift-
sriov-network-operator project.

Check the namespace of the YAML file. If the annotation is missing, you can add the
annotation workload.openshift.io/allowed=management to the Operator namespace
with the following command:

NOTE

For single-node OpenShift clusters, the annotation
workload.openshift.io/allowed=management is required for the
namespace.

10.1.2. Next steps

Configuring the SR-IOV Network Operator

10.2. CONFIGURING THE SR-IOV NETWORK OPERATOR

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network devices
and network attachments in your cluster.

10.2.1. Configuring the SR-IOV Network Operator

Create a SriovOperatorConfig custom resource (CR) to deploy all the SR-IOV Operator

$ oc annotate ns/openshift-sriov-network-operator
workload.openshift.io/allowed=management

OpenShift Container Platform 4.19 Networking Operators

174

1

2

3

Create a SriovOperatorConfig custom resource (CR) to deploy all the SR-IOV Operator
components:

a. Create a file named sriovOperatorConfig.yaml using the following YAML:

The only valid name for the SriovOperatorConfig resource is default and it must be in
the namespace where the Operator is deployed.

The enableInjector field, if not specified in the CR or explicitly set to true, defaults to
false or <none>, preventing any network-resources-injector pod from running in the
namespace. The recommended setting is true.

The enableOperatorWebhook field, if not specified in the CR or explicitly set to true,
defaults to false or <none>, preventing any operator-webhook pod from running in
the namespace. The recommended setting is true.

b. Create the resource by running the following command:

10.2.1.1. SR-IOV Network Operator config custom resource

The fields for the sriovoperatorconfig custom resource are described in the following table:

Table 10.1. SR-IOV Network Operator config custom resource

Field Type Description

metadata.name string Specifies the name of the SR-IOV Network Operator instance.
The default value is default. Do not set a different value.

metadata.name
space

string Specifies the namespace of the SR-IOV Network Operator
instance. The default value is openshift-sriov-network-
operator. Do not set a different value.

spec.configDae
monNodeSelect
or

string Specifies the node selection to control scheduling the SR-IOV
Network Config Daemon on selected nodes. By default, this field
is not set and the Operator deploys the SR-IOV Network Config
daemon set on worker nodes.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default 1
 namespace: openshift-sriov-network-operator
spec:
 disableDrain: false
 enableInjector: true 2
 enableOperatorWebhook: true 3
 logLevel: 2
 featureGates:
 metricsExporter: false

$ oc apply -f sriovOperatorConfig.yaml

CHAPTER 10. SR-IOV OPERATOR

175

spec.disableDra
in

boolean Specifies whether to disable the node draining process or enable
the node draining process when you apply a new policy to
configure the NIC on a node. Setting this field to true facilitates
software development and installing OpenShift Container
Platform on a single node. By default, this field is not set.

For single-node clusters, set this field to true after installing the
Operator. This field must remain set to true.

spec.enableInje
ctor

boolean Specifies whether to enable or disable the Network Resources
Injector daemon set.

spec.enableOpe
ratorWebhook

boolean Specifies whether to enable or disable the Operator Admission
Controller webhook daemon set.

spec.logLevel integer Specifies the log verbosity level of the Operator. By default, this
field is set to 0, which shows only basic logs. Set to 2 to show all
the available logs.

spec.featureGat
es

map[string]bool Specifies whether to enable or disable the optional features. For
example, metricsExporter.

spec.featureGat
es.metricsExpor
ter

boolean Specifies whether to enable or disable the SR-IOV Network
Operator metrics. By default, this field is set to false.

Field Type Description

OpenShift Container Platform 4.19 Networking Operators

176

spec.featureGat
es.mellanoxFir
mwareReset

boolean Specifies whether to reset the firmware on virtual function (VF)
changes in the SR-IOV Network Operator. Some chipsets, such
as the Intel C740 Series, do not completely power off the PCI-E
devices, which is required to configure VFs on NVIDIA/Mellanox
NICs. By default, this field is set to false.

IMPORTANT

The
spec.featureGates.mellanoxFirmwareRes
et parameter is a Technology Preview feature
only. Technology Preview features are not
supported with Red Hat production service level
agreements (SLAs) and might not be
functionally complete. Red Hat does not
recommend using them in production. These
features provide early access to upcoming
product features, enabling customers to test
functionality and provide feedback during the
development process.

For more information about the support scope
of Red Hat Technology Preview features, see
Technology Preview Features Support Scope.

Field Type Description

10.2.1.2. About the Network Resources Injector

The Network Resources Injector is a Kubernetes Dynamic Admission Controller application, which
provides the following capabilities:

Mutation of resource requests and limits in a pod specification to add an SR-IOV resource name
according to an SR-IOV network attachment definition annotation.

Mutation of a pod specification with a Downward API volume to expose pod annotations, labels,
and huge pages requests and limits. Containers that run in the pod can access the exposed
information as files under the /etc/podnetinfo path.

The Network Resources Injector is enabled by the SR-IOV Network Operator when the enableInjector is
set to true in the SriovOperatorConfig CR. The network-resources-injector pod runs as a daemon set
on all control plane nodes. The following is an example of Network Resources Injector pods running in a
cluster with three control plane nodes:

Example output

By default, the failurePolicy field in the Network Resources Injector webhook is set to Ignore. This

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
network-resources-injector-5cz5p 1/1 Running 0 10m
network-resources-injector-dwqpx 1/1 Running 0 10m
network-resources-injector-lktz5 1/1 Running 0 10m

CHAPTER 10. SR-IOV OPERATOR

177

https://access.redhat.com/support/offerings/techpreview/

By default, the failurePolicy field in the Network Resources Injector webhook is set to Ignore. This
default setting prevents pod creation from being blocked if the webhook is unavailable.

If you set the failurePolicy field to Fail, and the Network Resources Injector webhook is unavailable, the
webhook attempts to mutate all pod creation and update requests. This behavior can block pod creation
and disrupt normal cluster operations. To prevent such issues, you can enable the
featureGates.resourceInjectorMatchCondition feature in the SriovOperatorConfig object to limit the
scope of the Network Resources Injector webhook. If this feature is enabled, the webhook applies only to
pods with the secondary network annotation k8s.v1.cni.cncf.io/networks.

If you set the failurePolicy field to Fail after enabling the resourceInjectorMatchCondition feature,
the webhook applies only to pods with the secondary network annotation k8s.v1.cni.cncf.io/networks.
If the webhook is unavailable, pods without this annotation are still deployed, preventing unnecessary
disruptions to cluster operations.

The featureGates.resourceInjectorMatchCondition feature is disabled by default. To enable this
feature, set the featureGates.resourceInjectorMatchCondition field to true in the
SriovOperatorConfig object.

Example SriovOperatorConfig object configuration

10.2.1.3. Disabling or enabling the Network Resources Injector

To disable or enable the Network Resources Injector, complete the following procedure.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

Procedure

Set the enableInjector field. Replace <value> with false to disable the feature or true to
enable the feature.

TIP

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: sriov-network-operator
spec:
...
 featureGates:
 resourceInjectorMatchCondition: true
...

$ oc patch sriovoperatorconfig default \
 --type=merge -n openshift-sriov-network-operator \
 --patch '{ "spec": { "enableInjector": <value> } }'

OpenShift Container Platform 4.19 Networking Operators

178

TIP

You can alternatively apply the following YAML to update the Operator:

10.2.1.4. About the SR-IOV Network Operator admission controller webhook

The SR-IOV Network Operator Admission Controller webhook is a Kubernetes Dynamic Admission
Controller application. It provides the following capabilities:

Validation of the SriovNetworkNodePolicy CR when it is created or updated.

Mutation of the SriovNetworkNodePolicy CR by setting the default value for the priority and
deviceType fields when the CR is created or updated.

The SR-IOV Network Operator Admission Controller webhook is enabled by the Operator when the
enableOperatorWebhook is set to true in the SriovOperatorConfig CR. The operator-webhook pod
runs as a daemon set on all control plane nodes.

NOTE

Use caution when disabling the SR-IOV Network Operator Admission Controller
webhook. You can disable the webhook under specific circumstances, such as
troubleshooting, or if you want to use unsupported devices. For information about
configuring unsupported devices, see Configuring the SR-IOV Network Operator to use
an unsupported NIC.

The following is an example of the Operator Admission Controller webhook pods running in a cluster
with three control plane nodes:

Example output

10.2.1.5. Disabling or enabling the SR-IOV Network Operator admission controller webhook

To disable or enable the admission controller webhook, complete the following procedure.

Prerequisites

Install the OpenShift CLI (oc).

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 enableInjector: <value>

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
operator-webhook-9jkw6 1/1 Running 0 16m
operator-webhook-kbr5p 1/1 Running 0 16m
operator-webhook-rpfrl 1/1 Running 0 16m

CHAPTER 10. SR-IOV OPERATOR

179

https://access.redhat.com/articles/7010183

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

Procedure

Set the enableOperatorWebhook field. Replace <value> with false to disable the feature or
true to enable it:

TIP

You can alternatively apply the following YAML to update the Operator:

10.2.1.6. About custom node selectors

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

10.2.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

To specify the nodes where the SR-IOV Network Config daemon is deployed, complete the following
procedure.

IMPORTANT

When you update the configDaemonNodeSelector field, the SR-IOV Network Config
daemon is recreated on each selected node. While the daemon is recreated, cluster users
are unable to apply any new SR-IOV Network node policy or create new SR-IOV pods.

Procedure

To update the node selector for the operator, enter the following command:

$ oc patch sriovoperatorconfig default --type=merge \
 -n openshift-sriov-network-operator \
 --patch '{ "spec": { "enableOperatorWebhook": <value> } }'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 enableOperatorWebhook: <value>

$ oc patch sriovoperatorconfig default --type=json \
 -n openshift-sriov-network-operator \
 --patch '[{

OpenShift Container Platform 4.19 Networking Operators

180

Replace <node_label> with a label to apply as in the following example: "node-
role.kubernetes.io/worker": "".

TIP

You can alternatively apply the following YAML to update the Operator:

10.2.1.8. Configuring the SR-IOV Network Operator for single node installations

By default, the SR-IOV Network Operator drains workloads from a node before every policy change.
The Operator performs this action to ensure that there no workloads using the virtual functions before
the reconfiguration.

For installations on a single node, there are no other nodes to receive the workloads. As a result, the
Operator must be configured not to drain the workloads from the single node.

IMPORTANT

After performing the following procedure to disable draining workloads, you must remove
any workload that uses an SR-IOV network interface before you change any SR-IOV
network node policy.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

Procedure

To set the disableDrain field to true and the configDaemonNodeSelector field to node-
role.kubernetes.io/master: "", enter the following command:

TIP

 "op": "replace",
 "path": "/spec/configDaemonNodeSelector",
 "value": {<node_label>}
 }]'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 configDaemonNodeSelector:
 <node_label>

$ oc patch sriovoperatorconfig default --type=merge -n openshift-sriov-network-operator --
patch '{ "spec": { "disableDrain": true, "configDaemonNodeSelector": { "node-
role.kubernetes.io/master": "" } } }'

CHAPTER 10. SR-IOV OPERATOR

181

TIP

You can alternatively apply the following YAML to update the Operator:

10.2.1.9. Deploying the SR-IOV Operator for hosted control planes

After you configure and deploy your hosting service cluster, you can create a subscription to the SR-IOV
Operator on a hosted cluster. The SR-IOV pod runs on worker machines rather than the control plane.

Prerequisites

You must configure and deploy the hosted cluster on AWS.

Procedure

1. Create a namespace and an Operator group:

2. Create a subscription to the SR-IOV Operator:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 disableDrain: true
 configDaemonNodeSelector:
 node-role.kubernetes.io/master: ""

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sriov-network-operator

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sriov-network-operators
 namespace: openshift-sriov-network-operator
spec:
 targetNamespaces:
 - openshift-sriov-network-operator

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sriov-network-operator-subsription
 namespace: openshift-sriov-network-operator
spec:
 channel: stable
 name: sriov-network-operator
 config:
 nodeSelector:

OpenShift Container Platform 4.19 Networking Operators

182

Verification

1. To verify that the SR-IOV Operator is ready, run the following command and view the resulting
output:

Example output

2. To verify that the SR-IOV pods are deployed, run the following command:

10.2.2. About the SR-IOV network metrics exporter

The Single Root I/O Virtualization (SR-IOV) network metrics exporter reads the metrics for SR-IOV
virtual functions (VFs) and exposes these VF metrics in Prometheus format. When the SR-IOV network
metrics exporter is enabled, you can query the SR-IOV VF metrics by using the OpenShift Container
Platform web console to monitor the networking activity of the SR-IOV pods.

When you query the SR-IOV VF metrics by using the web console, the SR-IOV network metrics exporter
fetches and returns the VF network statistics along with the name and namespace of the pod that the
VF is attached to.

The SR-IOV VF metrics that the metrics exporter reads and exposes in Prometheus format are
described in the following table:

Table 10.2. SR-IOV VF metrics

Metric Description Example PromQL query to
examine the VF metric

sriov_vf_rx_bytes Received bytes per virtual
function.

sriov_vf_rx_bytes * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

sriov_vf_tx_bytes Transmitted bytes per virtual
function.

sriov_vf_tx_bytes * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

 node-role.kubernetes.io/worker: ""
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc get csv -n openshift-sriov-network-operator

NAME DISPLAY VERSION REPLACES
PHASE
sriov-network-operator.4.19.0-202211021237 SR-IOV Network Operator 4.19.0-
202211021237 sriov-network-operator.4.19.0-202210290517 Succeeded

$ oc get pods -n openshift-sriov-network-operator

CHAPTER 10. SR-IOV OPERATOR

183

sriov_vf_rx_packets Received packets per virtual
function.

sriov_vf_rx_packets * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

sriov_vf_tx_packets Transmitted packets per virtual
function.

sriov_vf_tx_packets * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

sriov_vf_rx_dropped Dropped packets upon receipt
per virtual function.

sriov_vf_rx_dropped * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

sriov_vf_tx_dropped Dropped packets during
transmission per virtual function.

sriov_vf_tx_dropped * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

sriov_vf_rx_multicast Received multicast packets per
virtual function.

sriov_vf_rx_multicast * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

sriov_vf_rx_broadcast Received broadcast packets per
virtual function.

sriov_vf_rx_broadcast * on
(pciAddr,node)
group_left(pod,namespace,d
ev_type)
sriov_kubepoddevice

sriov_kubepoddevice Virtual functions linked to active
pods.

-

Metric Description Example PromQL query to
examine the VF metric

You can also combine these queries with the kube-state-metrics to get more information about the SR-
IOV pods. For example, you can use the following query to get the VF network statistics along with the
application name from the standard Kubernetes pod label:

(sriov_vf_tx_packets * on (pciAddr,node) group_left(pod,namespace) sriov_kubepoddevice) * on
(pod,namespace) group_left (label_app_kubernetes_io_name) kube_pod_labels

OpenShift Container Platform 4.19 Networking Operators

184

10.2.2.1. Enabling the SR-IOV network metrics exporter

The Single Root I/O Virtualization (SR-IOV) network metrics exporter is disabled by default. To enable
the metrics exporter, you must set the spec.featureGates.metricsExporter field to true.

IMPORTANT

When the metrics exporter is enabled, the SR-IOV Network Operator deploys the metrics
exporter only on nodes with SR-IOV capabilities.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have installed the SR-IOV Network Operator.

Procedure

1. Enable cluster monitoring by running the following command:

To enable cluster monitoring, you must add the openshift.io/cluster-monitoring=true label in
the namespace where you have installed the SR-IOV Network Operator.

2. Set the spec.featureGates.metricsExporter field to true by running the following command:

Verification

1. Check that the SR-IOV network metrics exporter is enabled by running the following command:

Example output

The sriov-network-metrics-exporter pod must be in the READY state.

2. Optional: Examine the SR-IOV virtual function (VF) metrics by using the OpenShift Container
Platform web console. For more information, see "Querying metrics".

Additional resources

$ oc label ns/openshift-sriov-network-operator openshift.io/cluster-monitoring=true

$ oc patch -n openshift-sriov-network-operator sriovoperatorconfig/default \
 --type='merge' -p='{"spec": {"featureGates": {"metricsExporter": true}}}'

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
operator-webhook-hzfg4 1/1 Running 0 5d22h
sriov-network-config-daemon-tr54m 1/1 Running 0 5d22h
sriov-network-metrics-exporter-z5d7t 1/1 Running 0 10s
sriov-network-operator-cc6fd88bc-9bsmt 1/1 Running 0 5d22h

CHAPTER 10. SR-IOV OPERATOR

185

Querying metrics for all projects with the monitoring dashboard

Querying metrics for user-defined projects as a developer

10.2.3. Next steps

Configuring an SR-IOV network device

Optional: Uninstalling the SR-IOV Network Operator

10.3. UNINSTALLING THE SR-IOV NETWORK OPERATOR

To uninstall the SR-IOV Network Operator, you must delete any running SR-IOV workloads, uninstall the
Operator, and delete the webhooks that the Operator used.

10.3.1. Uninstalling the SR-IOV Network Operator

As a cluster administrator, you can uninstall the SR-IOV Network Operator.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have the SR-IOV Network Operator installed.

Procedure

1. Delete all SR-IOV custom resources (CRs):

2. Follow the instructions in the "Deleting Operators from a cluster" section to remove the SR-IOV
Network Operator from your cluster.

3. Delete the SR-IOV custom resource definitions that remain in the cluster after the SR-IOV
Network Operator is uninstalled:

$ oc delete sriovnetwork -n openshift-sriov-network-operator --all

$ oc delete sriovnetworknodepolicy -n openshift-sriov-network-operator --all

$ oc delete sriovibnetwork -n openshift-sriov-network-operator --all

$ oc delete sriovoperatorconfigs -n openshift-sriov-network-operator --all

$ oc delete crd sriovibnetworks.sriovnetwork.openshift.io

$ oc delete crd sriovnetworknodepolicies.sriovnetwork.openshift.io

$ oc delete crd sriovnetworknodestates.sriovnetwork.openshift.io

$ oc delete crd sriovnetworkpoolconfigs.sriovnetwork.openshift.io

OpenShift Container Platform 4.19 Networking Operators

186

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.19/html/accessing_metrics/accessing-metrics-as-an-administrator#querying-metrics-for-all-projects-with-mon-dashboard_accessing-metrics-as-an-administrator
https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.19/html/accessing_metrics/accessing-metrics-as-a-developer#querying-metrics-for-user-defined-projects-with-mon-dashboard_accessing-metrics-as-a-developer
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/hardware_networks/#configuring-sriov-device

4. Delete the SR-IOV Network Operator namespace:

Additional resources

Deleting Operators from a cluster

$ oc delete crd sriovnetworks.sriovnetwork.openshift.io

$ oc delete crd sriovoperatorconfigs.sriovnetwork.openshift.io

$ oc delete namespace openshift-sriov-network-operator

CHAPTER 10. SR-IOV OPERATOR

187

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operators/#olm-deleting-operators-from-a-cluster

CHAPTER 11. DPU OPERATOR

11.1. ABOUT DPU AND THE DPU OPERATOR

As a cluster administrator, you can add the DPU Operator to your cluster to manage DPU devices and
network attachments.

IMPORTANT

The DPU Operator is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

11.1.1. Orchestrating DPUs with the DPU Operator

A Data Processing Unit (DPU) is a type of programmable processor that is considered one of the three
fundamental pillars of computing, alongside CPUs and GPUs. While CPUs handle general computing
tasks and GPUs accelerate specific workloads, the primary role of the DPU is to offload and accelerate
data-centric workloads, such as networking, storage, and security functions.

DPUs are typically used in data centers and cloud environments to improve performance, reduce
latency, and enhance security by offloading these tasks from the CPU. DPUs can also be used to create
a more efficient and flexible infrastructure by enabling the deployment of specialized workloads closer
to the data source.

The DPU Operator is responsible for managing the DPU devices and network attachments. The DPU
Operator deploys the DPU daemon onto OpenShift Container Platform compute nodes that interface
through an API controlling the DPU daemon running on the DPU. The DPU Operator is responsible for
the life-cycle management of the ovn-kube components and the necessary host network initialization
on the DPU.

The currently supported DPU device is described in the following table.

Table 11.1. Supported device

Vendor Device Firmware Description

Intel IPU E2100 Version 2.0.0.11126
or later

A DPU designed to offload networking,
storage, and security tasks from host
CPUs in data centers, improving
efficiency and performance. For
instructions on deploying a full end-to-
end solution, see the Red Hat
Knowledgebase solution Accelerating
Confidential AI on OpenShift with the
Intel E2100 IPU, DPU Operator, and F5
NGINX.

OpenShift Container Platform 4.19 Networking Operators

188

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/articles/7120276

11.2. INSTALLING THE DPU OPERATOR

You can install the Data Processing Unit (DPU) Operator on your cluster to manage DPU devices and
network attachments. Install the DPU Operator on both the host cluster and all the DPU clusters. The
DPU Operator manages the lifecycle of all the supported DPUs.

As a cluster administrator, you can install the DPU Operator by using the OpenShift Container Platform
CLI or the web console.

NOTE

You need to install the DPU Operator on the host cluster and each of the DPU clusters.

11.2.1. Installing the DPU Operator by using the CLI

As a cluster administrator, you can install the DPU Operator by using the CLI.

NOTE

The CLI must be used to install the DPU Operator on the DPU cluster.

Prerequisites

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. Create the openshift-dpu-operator namespace by entering the following command:

2. Create an OperatorGroup custom resource (CR) by entering the following command:

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: openshift-dpu-operator
 annotations:
 workload.openshift.io/allowed: management
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: dpu-operators
 namespace: openshift-dpu-operator
spec:
 targetNamespaces:
 - openshift-dpu-operator
EOF

CHAPTER 11. DPU OPERATOR

189

3. Create a Subscription CR for the DPU Operator by entering the following command:

Verification

1. To verify that the Operator is installed, enter the following command and then check that
output shows Succeeded for the Operator:

2. Change to the openshift-dpu-operator project:

3. Verify the DPU Operator is running by entering the following command:

Example output

11.2.2. Installing the DPU Operator using the web console

As a cluster administrator, you can install the DPU Operator by using the web console.

Prerequisites

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Select DPU Operator from the list of available Operators, and then click Install.

3. On the Install Operator page, under Installed Namespace, the Operator recommended

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-dpu-operator-subscription
 namespace: openshift-dpu-operator
spec:
 channel: stable
 name: dpu-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-dpu-operator \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

$ oc project openshift-dpu-operator

$ oc get pods -n openshift-dpu-operator

NAME READY STATUS RESTARTS AGE
dpu-operator-controller-manager-6b7bbb5db8-7lvkj 2/2 Running 0 2m9s

OpenShift Container Platform 4.19 Networking Operators

190

3. On the Install Operator page, under Installed Namespace, the Operator recommended
Namespace option is preselected by default. No action is required.

a. Click Install.

Verification

1. Navigate to the Operators → Installed Operators page.

2. Ensure that DPU Operator is listed in the openshift-dpu-operator project with a Status of
InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the installation
later succeeds with an InstallSucceeded message, you can ignore the Failed
message.

Troubleshooting

Inspect the Operator Subscriptions and Install Plans tabs for any failure or errors under
Status.

Navigate to the Workloads → Pods page and check the logs for pods in the openshift-dpu-
operator project.

Check the namespace of the YAML file. If the annotation is missing, you can add the annotation
workload.openshift.io/allowed=management to the Operator namespace with the following
command:

NOTE

For single-node OpenShift clusters, the annotation
workload.openshift.io/allowed=management is required for the namespace.

11.2.3. Next steps

Configuring the DPU Operator

11.3. CONFIGURING THE DPU OPERATOR

You can configure the DPU Operator to manage the DPU devices and network attachments in your
cluster.

11.3.1. Configuring the DPU Operator

To configure the DPU Operator follow these steps:

Procedure

1. Create a DpuOperatorConfig custom resource (CR) on both the host cluster and on each of

$ oc annotate ns/openshift-dpu-operator workload.openshift.io/allowed=management

CHAPTER 11. DPU OPERATOR

191

1

2

1. Create a DpuOperatorConfig custom resource (CR) on both the host cluster and on each of
the DPU clusters. The DPU Operator in each cluster is activated after this CR is created.

2. Create a file named dpu-operator-host-config.yaml by using the following YAML:

The name of the custom resource must be dpu-operator-config.

Set the value to host on the host cluster. On each DPU cluster, which runs a single
MicroShift cluster per DPU, set the value to dpu.

3. Create the resource by running the following command:

4. You must label all nodes that either have an attached DPU or are functioning as a DPU. On the
host cluster, this means labeling all compute nodes assuming each node has an attached DPU
with dpu=true. On the DPU, where each MicroShift cluster consists of a single node, label that
single node in each cluster with dpu=true. You can apply this label by running the following
command:

where:

node_name

Refers to the name of your node, such as worker-1.

11.4. RUNNING A WORKLOAD ON THE DPU

Running workloads on a DPU enables offloading specialized infrastructure tasks such as networking,
security, and storage to a dedicated processing unit. This improves performance, enforces a stronger
security boundary between infrastructure and application workloads, and frees up host CPU resources.

11.4.1. Running a workload on the DPU

Follow these steps to deploy a workload on the DPU.

Prerequisites

The OpenShift CLI (oc) is installed.

An account with cluster-admin privileges is available.

The DPU Operator is installed.

apiVersion: config.openshift.io/v1
kind: DpuOperatorConfig
metadata:
 name: dpu-operator-config 1
spec:
 mode: host 2

$ oc apply -f dpu-operator-host-config.yaml

$ oc label node <node_name> dpu=true

OpenShift Container Platform 4.19 Networking Operators

192

1

Procedure

1. Create a sample workload on the host side by using the following YAML, save the file as
workload-host.yaml:

The name of the node where the workload is deployed.

2. Create the workload by running the following command:

11.4.2. Creating a service function chain on the DPU

Network service chaining, also known as service function chaining (SFC) is a capability that uses
software-defined networking (SDN) capabilities to create a chain of connected network services, such
as L4-7 services like firewalls, network address translation (NAT), and intrusion protection.

Follow this procedure on the DPU to create the network function my-network-function in the service
function chain.

Prerequisites

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Install the DPU Operator.

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: default-sriov-net
spec:
 nodeSelector:
 kubernetes.io/hostname: worker-237 1
 containers:
 - name: appcntr1
 image: registry.access.redhat.com/ubi9/ubi:latest
 command: ['/bin/sh', '-c', 'sleep infinity']
 imagePullPolicy: Always
 securityContext:
 priviledged: true
 runAsNonRoot: false
 runAsUser: 0
 seccompProfile:
 type: RuntimeDefault
 resources:
 requests:
 openshift.io/dpu: '1'
 limits:
 openshift.io/dpu: '1'

$ oc apply -f workload-host.yaml

CHAPTER 11. DPU OPERATOR

193

1

2

Procedure

1. Save the following YAML file example as sfc.yaml:

The name of the network function. This name is used to identify the network function in
the service function chain.

The URL to the container image that contains the network function. The image must be
accessible from the DPU.

2. Create the chain by running the following command on the DPU nodes:

11.5. UNINSTALLING THE DPU OPERATOR

To uninstall the DPU Operator, you must first delete any running DPU workloads. Follow this procedure
to uninstall the DPU Operator.

11.5.1. Uninstalling the DPU Operator

As a cluster administrator, you can uninstall the DPU Operator.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have the DPU Operator installed.

Procedure

1. Delete the DpuOperatorConfig CR that was created by running the following command

2. Delete the subscription that was used to install the DPU Operator by running the following
command:

3. Remove the OperatorGroup resource that was created by running the following command:

apiVersion: config.openshift.io/v1
kind: ServiceFunctionChain
metadata:
 name: sfc
 namespace: openshift-dpu-operator
spec:
 networkFunctions:
 - name: my-network-function 1
 image: quay.io/example-org/my-network-function:latest 2

$ oc apply -f sfc.yaml

$ oc delete DpuOperatorConfig dpu-operator-config

$ oc delete Subscription openshift-dpu-operator-subscription -n openshift-dpu-operator

OpenShift Container Platform 4.19 Networking Operators

194

4. Uninstall the DPU Operator as follows:

a. Check the installed Operators by running the following command:

Example output

b. Delete the DPU Operator by running the following command:

5. Delete the namespace that was created for the DPU Operator by running the following
command:

Verification

1. Verify that the DPU Operator is uninstalled by running the following command. An example of
succesful command output is No resources found in openshift-dpu-operator namespace.

Additional resources

Deleting Operators from a cluster

$ oc delete OperatorGroup dpu-operators -n openshift-dpu-operator

$ oc get csv -n openshift-dpu-operator

NAME DISPLAY VERSION REPLACES PHASE
dpu-operator.v4.19.0-202503130333 DPU Operator 4.19.0-202503130333
Failed

$ oc delete csv dpu-operator.v4.19.0-202503130333 -n openshift-dpu-operator

$ oc delete namespace openshift-dpu-operator

$ oc get csv -n openshift-dpu-operator

CHAPTER 11. DPU OPERATOR

195

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operators/#olm-deleting-operators-from-a-cluster

	Table of Contents
	CHAPTER 1. KUBERNETES NMSTATE OPERATOR
	1.1. INSTALLING THE KUBERNETES NMSTATE OPERATOR
	1.1.1. Installing the Kubernetes NMState Operator by using the web console
	1.1.2. Installing the Kubernetes NMState Operator by using the CLI
	1.1.3. Viewing metrics collected by the Kubernetes NMState Operator

	1.2. UNINSTALLING THE KUBERNETES NMSTATE OPERATOR
	1.3. ADDITIONAL RESOURCES

	CHAPTER 2. AWS LOAD BALANCER OPERATOR
	2.1. AWS LOAD BALANCER OPERATOR RELEASE NOTES
	2.1.1. AWS Load Balancer Operator 1.2.0
	2.1.1.1. Notable changes

	2.1.2. AWS Load Balancer Operator 1.1.1
	2.1.3. AWS Load Balancer Operator 1.1.0
	2.1.3.1. Notable changes
	2.1.3.2. New features
	2.1.3.3. Bug fixes

	2.1.4. AWS Load Balancer Operator 1.0.1
	2.1.5. AWS Load Balancer Operator 1.0.0
	2.1.5.1. Notable changes
	2.1.5.2. Bug fixes

	2.1.6. Earlier versions

	2.2. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	2.2.1. AWS Load Balancer Operator considerations
	2.2.2. AWS Load Balancer Operator
	2.2.3. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into an Outpost

	2.3. PREPARING AN AWS STS CLUSTER FOR THE AWS LOAD BALANCER OPERATOR
	2.3.1. Prerequisites
	2.3.2. Creating an IAM role for the AWS Load Balancer Operator
	2.3.2.1. Creating an AWS IAM role by using the Cloud Credential Operator utility
	2.3.2.2. Creating an AWS IAM role by using the AWS CLI

	2.3.3. Configuring the ARN role for the AWS Load Balancer Operator
	2.3.4. Creating an IAM role for the AWS Load Balancer Controller
	2.3.4.1. Creating an AWS IAM role for the controller by using the Cloud Credential Operator utility
	2.3.4.2. Creating an AWS IAM role for the controller by using the AWS CLI

	2.3.5. Additional resources

	2.4. INSTALLING THE AWS LOAD BALANCER OPERATOR
	2.4.1. Installing the AWS Load Balancer Operator by using the web console
	2.4.2. Installing the AWS Load Balancer Operator by using the CLI
	2.4.3. Creating the AWS Load Balancer Controller

	2.5. CONFIGURING THE AWS LOAD BALANCER OPERATOR
	2.5.1. Trusting the certificate authority of the cluster-wide proxy
	2.5.2. Adding TLS termination on the AWS Load Balancer
	2.5.3. Creating multiple ingress resources through a single AWS Load Balancer
	2.5.4. AWS Load Balancer Operator logs

	CHAPTER 3. EBPF MANAGER OPERATOR
	3.1. ABOUT THE EBPF MANAGER OPERATOR
	3.1.1. About Extended Berkeley Packet Filter (eBPF)
	3.1.2. About the eBPF Manager Operator
	3.1.3. Additional resources
	3.1.4. Next steps

	3.2. INSTALLING THE EBPF MANAGER OPERATOR
	3.2.1. Installing the eBPF Manager Operator using the CLI
	3.2.2. Installing the eBPF Manager Operator using the web console
	3.2.3. Next steps

	3.3. DEPLOYING AN EBPF PROGRAM
	3.3.1. Deploying a containerized eBPF program

	CHAPTER 4. EXTERNAL DNS OPERATOR
	4.1. EXTERNAL DNS OPERATOR RELEASE NOTES
	4.1.1. External DNS Operator 1.3.2
	4.1.2. External DNS Operator 1.3.1
	4.1.3. External DNS Operator 1.3.0
	4.1.3.1. Bug fixes

	4.1.4. External DNS Operator 1.2.0
	4.1.4.1. New features
	4.1.4.2. Bug fixes

	4.1.5. External DNS Operator 1.1.1
	4.1.6. External DNS Operator 1.1.0
	4.1.6.1. Bug fixes

	4.1.7. External DNS Operator 1.0.1
	4.1.8. External DNS Operator 1.0.0
	4.1.8.1. Bug fixes

	4.2. UNDERSTANDING THE EXTERNAL DNS OPERATOR
	4.2.1. External DNS Operator
	4.2.2. Viewing External DNS Operator logs
	4.2.2.1. External DNS Operator domain name limitations

	4.3. INSTALLING THE EXTERNAL DNS OPERATOR
	4.3.1. Installing the External DNS Operator with OperatorHub
	4.3.2. Installing the External DNS Operator by using the CLI

	4.4. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS
	4.4.1. External DNS Operator configuration parameters

	4.5. CREATING DNS RECORDS ON AWS
	4.5.1. Creating DNS records on an public hosted zone for AWS by using Red Hat External DNS Operator
	4.5.2. Creating DNS records in a different AWS Account using a shared VPC

	4.6. CREATING DNS RECORDS ON AZURE
	4.6.1. Creating DNS records on an Azure DNS zone

	4.7. CREATING DNS RECORDS ON GOOGLE CLOUD
	4.7.1. Creating DNS records on a public managed zone for Google Cloud

	4.8. CREATING DNS RECORDS ON INFOBLOX
	4.8.1. Creating DNS records on a public DNS zone on Infoblox

	4.9. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL DNS OPERATOR
	4.9.1. Trusting the certificate authority of the cluster-wide proxy

	CHAPTER 5. METALLB OPERATOR
	5.1. ABOUT METALLB AND THE METALLB OPERATOR
	5.1.1. When to use MetalLB
	5.1.2. MetalLB Operator custom resources
	5.1.3. MetalLB software components
	5.1.4. MetalLB and external traffic policy
	5.1.5. MetalLB concepts for layer 2 mode
	5.1.6. MetalLB concepts for BGP mode
	5.1.7. Limitations and restrictions
	5.1.7.1. Infrastructure considerations for MetalLB
	5.1.7.2. Limitations for layer 2 mode
	5.1.7.3. Limitations for BGP mode

	5.1.8. Additional resources

	5.2. INSTALLING THE METALLB OPERATOR
	5.2.1. Installing the MetalLB Operator from the OperatorHub by using the web console
	5.2.2. Installing from OperatorHub using the CLI
	5.2.3. Starting MetalLB on your cluster
	5.2.4. Deployment specifications for MetalLB
	5.2.4.1. Limit speaker pods to specific nodes
	5.2.4.2. Configuring pod priority and pod affinity in a MetalLB deployment
	5.2.4.3. Configuring pod CPU limits in a MetalLB deployment

	5.2.5. Additional resources
	5.2.6. Next steps

	5.3. UPGRADING THE METALLB OPERATOR
	5.3.1. Manually upgrading the MetalLB Operator
	5.3.2. Additional resources

	CHAPTER 6. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	6.1. CLUSTER NETWORK OPERATOR
	6.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
	6.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
	6.4. ENABLING IP FORWARDING GLOBALLY
	6.5. VIEWING CLUSTER NETWORK OPERATOR LOGS
	6.6. CLUSTER NETWORK OPERATOR CONFIGURATION
	6.6.1. Cluster Network Operator configuration object
	6.6.1.1. defaultNetwork object configuration

	6.6.2. Cluster Network Operator example configuration

	6.7. ADDITIONAL RESOURCES

	CHAPTER 7. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	7.1. CHECKING THE STATUS OF THE DNS OPERATOR
	7.2. VIEW THE DEFAULT DNS
	7.3. USING DNS FORWARDING
	7.4. CHECKING DNS OPERATOR STATUS
	7.5. VIEWING DNS OPERATOR LOGS
	7.6. SETTING THE COREDNS LOG LEVEL
	7.7. VIEWING THE COREDNS LOGS
	7.8. SETTING THE COREDNS OPERATOR LOG LEVEL
	7.9. TUNING THE COREDNS CACHE
	7.10. ADVANCED TASKS
	7.10.1. Changing the DNS Operator managementState
	7.10.2. Controlling DNS pod placement
	7.10.3. Configuring DNS forwarding with TLS

	CHAPTER 8. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	8.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
	8.2. THE INGRESS CONFIGURATION ASSET
	8.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS
	8.3.1. Ingress Controller TLS security profiles
	8.3.1.1. Understanding TLS security profiles
	8.3.1.2. Configuring the TLS security profile for the Ingress Controller
	8.3.1.3. Configuring mutual TLS authentication

	8.4. VIEW THE DEFAULT INGRESS CONTROLLER
	8.5. VIEW INGRESS OPERATOR STATUS
	8.6. VIEW INGRESS CONTROLLER LOGS
	8.7. VIEW INGRESS CONTROLLER STATUS
	8.8. CREATING A CUSTOM INGRESS CONTROLLER
	8.9. CONFIGURING THE INGRESS CONTROLLER
	8.9.1. Setting a custom default certificate
	8.9.2. Removing a custom default certificate
	8.9.3. Autoscaling an Ingress Controller
	8.9.4. Scaling an Ingress Controller
	8.9.5. Configuring Ingress access logging
	8.9.6. Setting Ingress Controller thread count
	8.9.7. Configuring an Ingress Controller to use an internal load balancer
	8.9.8. Configuring global access for an Ingress Controller on Google Cloud
	8.9.9. Setting the Ingress Controller health check interval
	8.9.10. Configuring the default Ingress Controller for your cluster to be internal
	8.9.11. Configuring the route admission policy
	8.9.12. Using wildcard routes
	8.9.13. HTTP header configuration
	8.9.13.1. Order of precedence
	8.9.13.2. Special case headers

	8.9.14. Setting or deleting HTTP request and response headers in an Ingress Controller
	8.9.15. Using X-Forwarded headers
	8.9.15.1. Example use cases

	8.9.16. Enable or disable HTTP/2 on Ingress Controllers
	8.9.16.1. Enabling HTTP/2
	8.9.16.2. Disabling HTTP/2

	8.9.17. Configuring the PROXY protocol for an Ingress Controller
	8.9.18. Specifying an alternative cluster domain using the appsDomain option
	8.9.19. Converting HTTP header case
	8.9.20. Using router compression
	8.9.21. Exposing router metrics
	8.9.22. Customizing HAProxy error code response pages
	8.9.23. Setting the Ingress Controller maximum connections

	8.10. ADDITIONAL RESOURCES

	CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	9.1. INGRESS NODE FIREWALL OPERATOR
	9.2. INSTALLING THE INGRESS NODE FIREWALL OPERATOR
	9.2.1. Installing the Ingress Node Firewall Operator using the CLI
	9.2.2. Installing the Ingress Node Firewall Operator using the web console

	9.3. DEPLOYING INGRESS NODE FIREWALL OPERATOR
	9.3.1. Ingress Node Firewall configuration object
	9.3.2. Ingress Node Firewall Operator example configuration
	9.3.3. Ingress Node Firewall rules object
	9.3.3.1. Ingress object configuration
	9.3.3.2. Ingress Node Firewall rules object example
	9.3.3.3. Zero trust Ingress Node Firewall rules object example

	9.4. INGRESS NODE FIREWALL OPERATOR INTEGRATION
	9.5. CONFIGURING INGRESS NODE FIREWALL OPERATOR TO USE THE EBPF MANAGER OPERATOR
	9.6. VIEWING INGRESS NODE FIREWALL OPERATOR RULES
	9.7. TROUBLESHOOTING THE INGRESS NODE FIREWALL OPERATOR
	9.8. ADDITIONAL RESOURCES

	CHAPTER 10. SR-IOV OPERATOR
	10.1. INSTALLING THE SR-IOV NETWORK OPERATOR
	10.1.1. Installing the SR-IOV Network Operator
	10.1.1.1. CLI: Installing the SR-IOV Network Operator
	10.1.1.2. Web console: Installing the SR-IOV Network Operator

	10.1.2. Next steps

	10.2. CONFIGURING THE SR-IOV NETWORK OPERATOR
	10.2.1. Configuring the SR-IOV Network Operator
	10.2.1.1. SR-IOV Network Operator config custom resource
	10.2.1.2. About the Network Resources Injector
	10.2.1.3. Disabling or enabling the Network Resources Injector
	10.2.1.4. About the SR-IOV Network Operator admission controller webhook
	10.2.1.5. Disabling or enabling the SR-IOV Network Operator admission controller webhook
	10.2.1.6. About custom node selectors
	10.2.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon
	10.2.1.8. Configuring the SR-IOV Network Operator for single node installations
	10.2.1.9. Deploying the SR-IOV Operator for hosted control planes

	10.2.2. About the SR-IOV network metrics exporter
	10.2.2.1. Enabling the SR-IOV network metrics exporter

	10.2.3. Next steps

	10.3. UNINSTALLING THE SR-IOV NETWORK OPERATOR
	10.3.1. Uninstalling the SR-IOV Network Operator

	CHAPTER 11. DPU OPERATOR
	11.1. ABOUT DPU AND THE DPU OPERATOR
	11.1.1. Orchestrating DPUs with the DPU Operator

	11.2. INSTALLING THE DPU OPERATOR
	11.2.1. Installing the DPU Operator by using the CLI
	11.2.2. Installing the DPU Operator using the web console
	11.2.3. Next steps

	11.3. CONFIGURING THE DPU OPERATOR
	11.3.1. Configuring the DPU Operator

	11.4. RUNNING A WORKLOAD ON THE DPU
	11.4.1. Running a workload on the DPU
	11.4.2. Creating a service function chain on the DPU

	11.5. UNINSTALLING THE DPU OPERATOR
	11.5.1. Uninstalling the DPU Operator

