
OpenShift Container Platform 4.19

Operators

Working with Operators in OpenShift Container Platform

Last Updated: 2026-01-15

OpenShift Container Platform 4.19 Operators

Working with Operators in OpenShift Container Platform

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information for working with Operators in OpenShift Container Platform.
This includes instructions for cluster administrators on how to install and manage Operators, as well
as information for developers on how to create applications from installed Operators. This also
contains guidance on building your own Operator using the Operator SDK.

. .

. .

Table of Contents

CHAPTER 1. OPERATORS OVERVIEW
1.1. FOR DEVELOPERS
1.2. FOR ADMINISTRATORS
1.3. NEXT STEPS

CHAPTER 2. UNDERSTANDING OPERATORS
2.1. WHAT ARE OPERATORS?

2.1.1. Why use Operators?
2.1.2. Operator Framework
2.1.3. Operator maturity model

2.2. OPERATOR FRAMEWORK PACKAGING FORMAT
2.2.1. Bundle format

2.2.1.1. Manifests
2.2.1.1.1. Additionally supported objects

2.2.1.2. Annotations
2.2.1.3. Dependencies
2.2.1.4. About the opm CLI

2.2.2. Highlights
2.2.2.1. Directory structure
2.2.2.2. Schemas

2.2.2.2.1. olm.package schema
2.2.2.2.2. olm.channel schema
2.2.2.2.3. olm.bundle schema
2.2.2.2.4. olm.deprecations schema

2.2.2.3. Properties
2.2.2.3.1. olm.package property
2.2.2.3.2. olm.gvk property
2.2.2.3.3. olm.package.required
2.2.2.3.4. olm.gvk.required

2.2.2.4. Example catalog
2.2.2.5. Guidelines

2.2.2.5.1. Immutable bundles
2.2.2.5.2. Source control

2.2.2.6. CLI usage
2.2.2.7. Automation

2.3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS
2.3.1. Bundle
2.3.2. Bundle image
2.3.3. Catalog source
2.3.4. Channel
2.3.5. Channel head
2.3.6. Cluster service version
2.3.7. Dependency
2.3.8. Extension
2.3.9. Index image
2.3.10. Install plan
2.3.11. Multitenancy
2.3.12. Operator
2.3.13. Operator group
2.3.14. Package
2.3.15. Registry

9
9
9

10

11
11
11
11

12
12
12
13
13
14
15
16
16
17
18
19

20
21
21
23
23
23
24
24
24
25
25
25
26
26
26
26
26
26
27
27
27
27
27
27
27
28
28
28
28
28

Table of Contents

1

2.3.16. Subscription
2.3.17. Update graph

2.4. OPERATOR LIFECYCLE MANAGER (OLM)
2.4.1. Operator Lifecycle Manager concepts and resources

2.4.1.1. What is Operator Lifecycle Manager (OLM) Classic?
2.4.1.2. OLM resources

2.4.1.2.1. Cluster service version
2.4.1.2.2. Catalog source

2.4.1.2.2.1. Image template for custom catalog sources
2.4.1.2.2.2. Catalog health requirements

2.4.1.2.3. Subscription
2.4.1.2.4. Install plan
2.4.1.2.5. Operator groups
2.4.1.2.6. Operator conditions

2.4.2. Operator Lifecycle Manager architecture
2.4.2.1. Component responsibilities
2.4.2.2. OLM Operator
2.4.2.3. Catalog Operator
2.4.2.4. Catalog Registry

2.4.3. Operator Lifecycle Manager workflow
2.4.3.1. Operator installation and upgrade workflow in OLM

2.4.3.1.1. Example upgrade path
2.4.3.1.2. Skipping upgrades
2.4.3.1.3. Replacing multiple Operators
2.4.3.1.4. Z-stream support

2.4.4. Operator Lifecycle Manager dependency resolution
2.4.4.1. About dependency resolution
2.4.4.2. Operator properties

2.4.4.2.1. Arbitrary properties
2.4.4.3. Operator dependencies
2.4.4.4. Generic constraints

2.4.4.4.1. Common Expression Language (CEL) constraints
2.4.4.4.2. Compound constraints (all, any, not)
2.4.4.4.3. Nested compound constraints

2.4.4.5. Dependency preferences
2.4.4.5.1. Catalog priority
2.4.4.5.2. Channel ordering
2.4.4.5.3. Order within a channel
2.4.4.5.4. Other constraints

2.4.4.5.4.1. Subscription constraint
2.4.4.5.4.2. Package constraint

2.4.4.5.5. Additional resources
2.4.4.6. CRD upgrades
2.4.4.7. Dependency best practices
2.4.4.8. Dependency caveats
2.4.4.9. Example dependency resolution scenarios

2.4.4.9.1. Example: Deprecating dependent APIs
2.4.4.9.2. Example: Version deadlock

2.4.5. Operator groups
2.4.5.1. About Operator groups
2.4.5.2. Operator group membership
2.4.5.3. Target namespace selection
2.4.5.4. Operator group CSV annotations

28
28
28
28
28
29
30
30
33
35
35
36
38
38
39
39
40
40
41
41
41

43
43
45
46
47
47
47
48
48
49
49
50
52
52
52
53
53
54
54
54
54
54
54
55
56
56
56
56
57
57
57
58

OpenShift Container Platform 4.19 Operators

2

. .

2.4.5.5. Provided APIs annotation
2.4.5.6. Role-based access control
2.4.5.7. Copied CSVs
2.4.5.8. Static Operator groups
2.4.5.9. Operator group intersection

2.4.5.9.1. Rules for intersection
2.4.5.10. Limitations for multitenant Operator management
2.4.5.11. Troubleshooting Operator groups

2.4.5.11.1. Membership
2.4.6. Multitenancy and Operator colocation

2.4.6.1. Colocation of Operators in a namespace
2.4.7. Operator conditions

2.4.7.1. About Operator conditions
2.4.7.2. Supported conditions

2.4.7.2.1. Upgradeable condition
2.4.7.3. Additional resources

2.4.8. Operator Lifecycle Manager metrics
2.4.8.1. Exposed metrics

2.4.9. Webhook management in Operator Lifecycle Manager
2.4.9.1. Additional resources

2.5. UNDERSTANDING OPERATORHUB
2.5.1. About OperatorHub
2.5.2. OperatorHub architecture

2.5.2.1. OperatorHub custom resource
2.5.3. Additional resources

2.6. RED HAT-PROVIDED OPERATOR CATALOGS
2.6.1. About Operator catalogs
2.6.2. About Red Hat-provided Operator catalogs

2.7. OPERATORS IN MULTITENANT CLUSTERS
2.7.1. Default Operator install modes and behavior
2.7.2. Recommended solution for multitenant clusters
2.7.3. Operator colocation and Operator groups

2.8. CRDS
2.8.1. Extending the Kubernetes API with custom resource definitions

2.8.1.1. Custom resource definitions
2.8.1.2. Creating a custom resource definition
2.8.1.3. Creating cluster roles for custom resource definitions
2.8.1.4. Creating custom resources from a file
2.8.1.5. Inspecting custom resources

2.8.2. Managing resources from custom resource definitions
2.8.2.1. Custom resource definitions
2.8.2.2. Creating custom resources from a file
2.8.2.3. Inspecting custom resources

CHAPTER 3. USER TASKS
3.1. CREATING APPLICATIONS FROM INSTALLED OPERATORS

3.1.1. Creating an etcd cluster using an Operator
3.2. INSTALLING OPERATORS IN YOUR NAMESPACE

3.2.1. Prerequisites
3.2.2. About Operator installation with OperatorHub
3.2.3. Installing from OperatorHub by using the web console
3.2.4. Installing from OperatorHub by using the CLI

59
59
63
63
64
64
65
66
66
66
66
67
67
68
68
69
69
69
70
70
70
70
71
71
71
71
72
73
73
74
74
75
76
76
76
76
78
79
80
82
82
82
83

85
85
85
86
86
86
87
89

Table of Contents

3

. .CHAPTER 4. ADMINISTRATOR TASKS
4.1. ADDING OPERATORS TO A CLUSTER

4.1.1. About Operator installation with OperatorHub
4.1.2. Installing from OperatorHub by using the web console
4.1.3. Installing from OperatorHub by using the CLI
4.1.4. Preparing for multiple instances of an Operator for multitenant clusters
4.1.5. Installing global Operators in custom namespaces
4.1.6. Pod placement of Operator workloads
4.1.7. Controlling where an Operator is installed

4.2. UPDATING INSTALLED OPERATORS
4.2.1. Preparing for an Operator update
4.2.2. Changing the update channel for an Operator
4.2.3. Manually approving a pending Operator update
4.2.4. Additional resources

4.3. DELETING OPERATORS FROM A CLUSTER
4.3.1. Deleting Operators from a cluster using the web console
4.3.2. Deleting Operators from a cluster using the CLI
4.3.3. Refreshing failing subscriptions

4.4. CONFIGURING OPERATOR LIFECYCLE MANAGER FEATURES
4.4.1. Disabling copied CSVs

4.5. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE MANAGER
4.5.1. Overriding proxy settings of an Operator
4.5.2. Injecting a custom CA certificate
4.5.3. Additional resources

4.6. VIEWING OPERATOR STATUS
4.6.1. Operator subscription condition types
4.6.2. Viewing Operator subscription status by using the CLI
4.6.3. Viewing Operator catalog source status by using the CLI

4.7. MANAGING OPERATOR CONDITIONS
4.7.1. Overriding Operator conditions
4.7.2. Updating your Operator to use Operator conditions

4.7.2.1. Setting defaults
4.7.3. Additional resources

4.8. ALLOWING NON-CLUSTER ADMINISTRATORS TO INSTALL OPERATORS
4.8.1. Understanding Operator installation policy

4.8.1.1. Installation scenarios
4.8.1.2. Installation workflow

4.8.2. Scoping Operator installations
4.8.2.1. Fine-grained permissions

4.8.3. Operator catalog access control
4.8.4. Troubleshooting permission failures

4.9. MANAGING CUSTOM CATALOGS
4.9.1. Prerequisites
4.9.2. File-based catalogs

4.9.2.1. Creating a file-based catalog image
4.9.2.2. Updating or filtering a file-based catalog image

4.9.3. SQLite-based catalogs
4.9.3.1. Creating a SQLite-based index image
4.9.3.2. Updating a SQLite-based index image
4.9.3.3. Filtering a SQLite-based index image

4.9.4. Catalog sources and pod security admission
4.9.4.1. Migrating SQLite database catalogs to the file-based catalog format
4.9.4.2. Rebuilding SQLite database catalog images

97
97
97
97

100
107
108
110
111

114
114
115
115
116
116
116
117
118
119
119
121
121
123
124
124
125
125
126
128
128
129
130
130
130
130
131
131
131

134
136
136
137
137
137
138
140
144
144
145
146
148
149
149

OpenShift Container Platform 4.19 Operators

4

. .

. .

4.9.4.3. Configuring catalogs to run with elevated permissions
4.9.5. Adding a catalog source to a cluster
4.9.6. Accessing images for Operators from private registries
4.9.7. Disabling the default OperatorHub catalog sources
4.9.8. Removing custom catalogs

4.10. USING OPERATOR LIFECYCLE MANAGER IN DISCONNECTED ENVIRONMENTS
4.11. CATALOG SOURCE POD SCHEDULING

4.11.1. Disabling default CatalogSource objects at a local level
4.11.2. Overriding the node selector for catalog source pods
4.11.3. Overriding the priority class name for catalog source pods
4.11.4. Overriding tolerations for catalog source pods

4.12. TROUBLESHOOTING OPERATOR ISSUES
4.12.1. Operator subscription condition types
4.12.2. Viewing Operator subscription status by using the CLI
4.12.3. Viewing Operator catalog source status by using the CLI
4.12.4. Querying Operator pod status
4.12.5. Gathering Operator logs
4.12.6. Disabling the Machine Config Operator from automatically rebooting

4.12.6.1. Disabling the Machine Config Operator from automatically rebooting by using the console
4.12.6.2. Disabling the Machine Config Operator from automatically rebooting by using the CLI

4.12.7. Refreshing failing subscriptions
4.12.8. Reinstalling Operators after failed uninstallation

CHAPTER 5. DEVELOPING OPERATORS
5.1. TOKEN AUTHENTICATION

5.1.1. Token authentication for Operators on cloud providers
5.1.2. CCO-based workflow for OLM-managed Operators with AWS STS

5.1.2.1. Enabling Operators to support CCO-based workflows with AWS STS
5.1.2.2. Role specification
5.1.2.3. Troubleshooting

5.1.2.3.1. Authentication failure
5.1.2.3.2. Secret not mounting correctly

5.1.2.4. Alternative method
5.1.3. CCO-based workflow for OLM-managed Operators with Microsoft Entra Workload ID

5.1.3.1. Enabling Operators to support CCO-based workflows with Microsoft Entra Workload ID
5.1.4. CCO-based workflow for OLM-managed Operators with GCP Workload Identity

5.1.4.1. Enabling Operators to support CCO-based workflows with GCP Workload Identity

CHAPTER 6. CLUSTER OPERATORS REFERENCE
6.1. CLUSTER BAREMETAL OPERATOR

6.1.1. Project
6.2. CLOUD CREDENTIAL OPERATOR

6.2.1. Project
6.2.2. CRDs
6.2.3. Configuration objects
6.2.4. Additional resources

6.3. CLUSTER AUTHENTICATION OPERATOR
6.3.1. Project

6.4. CLUSTER AUTOSCALER OPERATOR
6.4.1. Project
6.4.2. CRDs

6.5. CLOUD CONTROLLER MANAGER OPERATOR
6.5.1. Project

150
151

153
158
158
159
159
160
161
161

162
162
162
163
164
166
167
169
169
171

174
175

178
178
178
178
179
185
186
186
186
187
187
189
191

193

197
197
197
197
198
198
198
198
198
198
198
198
198
199
199

Table of Contents

5

6.6. CLUSTER CAPI OPERATOR
6.6.1. Project
6.6.2. CRDs

6.7. CLUSTER CONFIG OPERATOR
6.7.1. Project

6.8. CLUSTER CSI SNAPSHOT CONTROLLER OPERATOR
6.8.1. Project

6.9. CLUSTER IMAGE REGISTRY OPERATOR
6.9.1. Project

6.10. CLUSTER MACHINE APPROVER OPERATOR
6.10.1. Project

6.11. CLUSTER MONITORING OPERATOR
Project
CRDs
Configuration objects

6.12. CLUSTER NETWORK OPERATOR
6.13. CLUSTER SAMPLES OPERATOR

6.13.1. Project
6.14. CLUSTER STORAGE OPERATOR

6.14.1. Project
6.14.2. Configuration
6.14.3. Notes

6.15. CLUSTER VERSION OPERATOR
6.15.1. Project

6.16. CONSOLE OPERATOR
6.16.1. Project

6.17. CONTROL PLANE MACHINE SET OPERATOR
6.17.1. Project
6.17.2. CRDs
6.17.3. Additional resources

6.18. DNS OPERATOR
6.18.1. Project

6.19. ETCD CLUSTER OPERATOR
6.19.1. Project
6.19.2. CRDs
6.19.3. Configuration objects

6.20. INGRESS OPERATOR
6.20.1. Project
6.20.2. CRDs
6.20.3. Configuration objects
6.20.4. Notes

6.21. INSIGHTS OPERATOR
6.21.1. Project
6.21.2. Configuration
6.21.3. Notes

6.22. KUBERNETES API SERVER OPERATOR
6.22.1. Project
6.22.2. CRDs
6.22.3. Configuration objects

6.23. KUBERNETES CONTROLLER MANAGER OPERATOR
6.23.1. Project

6.24. KUBERNETES SCHEDULER OPERATOR
6.24.1. Project

199
199
199
201
201
201
201
201

202
202
202
202
202
202
203
203
203
204
204
204
204
204
205
205
205
205
205
206
206
206
206
206
206
206
206
207
207
207
207
207
207
208
208
208
208
208
208
209
209
209
209
209
210

OpenShift Container Platform 4.19 Operators

6

. .

6.24.2. Configuration
6.25. KUBERNETES STORAGE VERSION MIGRATOR OPERATOR

6.25.1. Project
6.26. MACHINE API OPERATOR

6.26.1. Project
6.26.2. CRDs

6.27. MACHINE CONFIG OPERATOR
6.27.1. Project

6.28. MARKETPLACE OPERATOR
6.28.1. Project

6.29. NODE TUNING OPERATOR
6.29.1. Project
6.29.2. Additional resources

6.30. OPENSHIFT API SERVER OPERATOR
6.30.1. Project
6.30.2. CRDs

6.31. OPENSHIFT CONTROLLER MANAGER OPERATOR
6.31.1. Project

6.32. OPERATOR LIFECYCLE MANAGER (OLM) CLASSIC OPERATORS
6.32.1. OLM Operator
6.32.2. Catalog Operator
6.32.3. Catalog Registry
6.32.4. CRDs
6.32.5. Cluster Operators
6.32.6. Additional resources

6.33. OPERATOR LIFECYCLE MANAGER (OLM) V1 OPERATOR
6.33.1. Components
6.33.2. CRDs
6.33.3. Project
6.33.4. Additional resources

6.34. OPENSHIFT SERVICE CA OPERATOR
6.34.1. Project

6.35. VSPHERE PROBLEM DETECTOR OPERATOR
6.35.1. Configuration
6.35.2. Notes

CHAPTER 7. OLM V1
7.1. ABOUT OPERATOR LIFECYCLE MANAGER V1

210
210
210
210
210
210
210
211
211
211
211
212
212
212
212
212
213
213
213
214
214
214
215
216
216
216
216
217
217
217
217
217
217
218
218

219
219

Table of Contents

7

OpenShift Container Platform 4.19 Operators

8

CHAPTER 1. OPERATORS OVERVIEW
Operators are among the most important components of OpenShift Container Platform. They are the
preferred method of packaging, deploying, and managing services on the control plane. They can also
provide advantages to applications that users run.

Operators integrate with Kubernetes APIs and CLI tools such as kubectl and the OpenShift CLI (oc).
They provide the means of monitoring applications, performing health checks, managing over-the-air
(OTA) updates, and ensuring that applications remain in your specified state.

Operators are designed specifically for Kubernetes-native applications to implement and automate
common Day 1 operations, such as installation and configuration. Operators can also automate Day 2
operations, such as autoscaling up or down and creating backups. All of these activities are directed by a
piece of software running on your cluster.

While both follow similar Operator concepts and goals, Operators in OpenShift Container Platform are
managed by two different systems, depending on their purpose:

Cluster Operators

Managed by the Cluster Version Operator (CVO) and installed by default to perform cluster
functions.

Optional add-on Operators

Managed by Operator Lifecycle Manager (OLM) and can be made accessible for users to run in their
applications. Also known as OLM-based Operators.

1.1. FOR DEVELOPERS

As an Operator author, you can perform the following development tasks for OLM-based Operators:

Install and subscribe an Operator to your namespace .

Create an application from an installed Operator through the web console .

Additional resources

Machine deletion lifecycle hook examples for Operator developers

1.2. FOR ADMINISTRATORS

As a cluster administrator, you can perform the following administrative tasks for OLM-based
Operators:

Manage custom catalogs .

Allow non-cluster administrators to install Operators .

Install an Operator from OperatorHub .

View Operator status.

Manage Operator conditions.

Upgrade installed Operators.

CHAPTER 1. OPERATORS OVERVIEW

9

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/machine_management/#machine-lifecycle-hook-deletion-uses_deleting-machine

Delete installed Operators.

Configure proxy support.

Using Operator Lifecycle Manager in disconnected environments .

For information about the cluster Operators that Red Hat provides, see Cluster Operators reference.

1.3. NEXT STEPS

What are Operators?

OpenShift Container Platform 4.19 Operators

10

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#olm-restricted-networks

CHAPTER 2. UNDERSTANDING OPERATORS

2.1. WHAT ARE OPERATORS?

Conceptually, Operators take human operational knowledge and encode it into software that is more
easily shared with consumers.

Operators are pieces of software that ease the operational complexity of running another piece of
software. They act like an extension of the software vendor’s engineering team, monitoring a Kubernetes
environment (such as OpenShift Container Platform) and using its current state to make decisions in
real time. Advanced Operators are designed to handle upgrades seamlessly, react to failures
automatically, and not take shortcuts, like skipping a software backup process to save time.

More technically, Operators are a method of packaging, deploying, and managing a Kubernetes
application.

A Kubernetes application is an app that is both deployed on Kubernetes and managed using the
Kubernetes APIs and kubectl or oc tooling. To be able to make the most of Kubernetes, you require a
set of cohesive APIs to extend in order to service and manage your apps that run on Kubernetes. Think
of Operators as the runtime that manages this type of app on Kubernetes.

2.1.1. Why use Operators?

Operators provide:

Repeatability of installation and upgrade.

Constant health checks of every system component.

Over-the-air (OTA) updates for OpenShift components and ISV content.

A place to encapsulate knowledge from field engineers and spread it to all users, not just one or
two.

Why deploy on Kubernetes?

Kubernetes (and by extension, OpenShift Container Platform) contains all of the primitives needed
to build complex distributed systems – secret handling, load balancing, service discovery, autoscaling
– that work across on-premise and cloud providers.

Why manage your app with Kubernetes APIs and kubectl tooling?

These APIs are feature rich, have clients for all platforms and plug into the cluster’s access
control/auditing. An Operator uses the Kubernetes extension mechanism, custom resource
definitions (CRDs), so your custom object, for example MongoDB, looks and acts just like the built-
in, native Kubernetes objects.

How do Operators compare with service brokers?

A service broker is a step towards programmatic discovery and deployment of an app. However,
because it is not a long running process, it cannot execute Day 2 operations like upgrade, failover, or
scaling. Customizations and parameterization of tunables are provided at install time, versus an
Operator that is constantly watching the current state of your cluster. Off-cluster services are a good
match for a service broker, although Operators exist for these as well.

2.1.2. Operator Framework

The Operator Framework is a family of tools and capabilities to deliver on the customer experience

CHAPTER 2. UNDERSTANDING OPERATORS

11

https://marketplace.redhat.com/en-us/products/mongodb-enterprise-advanced-from-ibm

described above. It is not just about writing code; testing, delivering, and updating Operators is just as
important. The Operator Framework components consist of open source tools to tackle these
problems:

Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access control
(RBAC) of Operators in a cluster. It is deployed by default in OpenShift Container Platform 4.19.

Operator Registry

The Operator Registry stores cluster service versions (CSVs) and custom resource definitions
(CRDs) for creation in a cluster and stores Operator metadata about packages and channels. It runs
in a Kubernetes or OpenShift cluster to provide this Operator catalog data to OLM.

OperatorHub

OperatorHub is a web console for cluster administrators to discover and select Operators to install
on their cluster. It is deployed by default in OpenShift Container Platform.

These tools are designed to be composable, so you can use any that are useful to you.

2.1.3. Operator maturity model

The level of sophistication of the management logic encapsulated within an Operator can vary. This
logic is also in general highly dependent on the type of the service represented by the Operator.

One can however generalize the scale of the maturity of the encapsulated operations of an Operator for
certain set of capabilities that most Operators can include. To this end, the following Operator maturity
model defines five phases of maturity for generic Day 2 operations of an Operator:

Figure 2.1. Operator maturity model

2.2. OPERATOR FRAMEWORK PACKAGING FORMAT

This guide outlines the packaging format for Operators supported by Operator Lifecycle Manager
(OLM) in OpenShift Container Platform.

2.2.1. Bundle format

The bundle format for Operators is a packaging format introduced by the Operator Framework. To

OpenShift Container Platform 4.19 Operators

12

The bundle format for Operators is a packaging format introduced by the Operator Framework. To
improve scalability and to better enable upstream users hosting their own catalogs, the bundle format
specification simplifies the distribution of Operator metadata.

An Operator bundle represents a single version of an Operator. On-disk bundle manifests are
containerized and shipped as a bundle image, which is a non-runnable container image that stores the
Kubernetes manifests and Operator metadata. Storage and distribution of the bundle image is then
managed using existing container tools like podman and docker and container registries such as Quay.

Operator metadata can include:

Information that identifies the Operator, for example its name and version.

Additional information that drives the UI, for example its icon and some example custom
resources (CRs).

Required and provided APIs.

Related images.

When loading manifests into the Operator Registry database, the following requirements are validated:

The bundle must have at least one channel defined in the annotations.

Every bundle has exactly one cluster service version (CSV).

If a CSV owns a custom resource definition (CRD), that CRD must exist in the bundle.

2.2.1.1. Manifests

Bundle manifests refer to a set of Kubernetes manifests that define the deployment and RBAC model of
the Operator.

A bundle includes one CSV per directory and typically the CRDs that define the owned APIs of the CSV
in its /manifests directory.

Example bundle format layout

2.2.1.1.1. Additionally supported objects

The following object types can also be optionally included in the /manifests directory of a bundle:

Supported optional object types

ClusterRole

etcd
├── manifests
│ ├── etcdcluster.crd.yaml
│ └── etcdoperator.clusterserviceversion.yaml
│ └── secret.yaml
│ └── configmap.yaml
└── metadata
 └── annotations.yaml
 └── dependencies.yaml

CHAPTER 2. UNDERSTANDING OPERATORS

13

ClusterRoleBinding

ConfigMap

ConsoleCLIDownload

ConsoleLink

ConsoleQuickStart

ConsoleYamlSample

PodDisruptionBudget

PriorityClass

PrometheusRule

Role

RoleBinding

Secret

Service

ServiceAccount

ServiceMonitor

VerticalPodAutoscaler

When these optional objects are included in a bundle, Operator Lifecycle Manager (OLM) can create
them from the bundle and manage their lifecycle along with the CSV:

Lifecycle for optional objects

When the CSV is deleted, OLM deletes the optional object.

When the CSV is upgraded:

If the name of the optional object is the same, OLM updates it in place.

If the name of the optional object has changed between versions, OLM deletes and
recreates it.

2.2.1.2. Annotations

A bundle also includes an annotations.yaml file in its /metadata directory. This file defines higher level
aggregate data that helps describe the format and package information about how the bundle should
be added into an index of bundles:

Example annotations.yaml

annotations:

OpenShift Container Platform 4.19 Operators

14

1

2

3

4

5

6

The media type or format of the Operator bundle. The registry+v1 format means it contains a
CSV and its associated Kubernetes objects.

The path in the image to the directory that contains the Operator manifests. This label is reserved
for future use and currently defaults to manifests/. The value manifests.v1 implies that the bundle
contains Operator manifests.

The path in the image to the directory that contains metadata files about the bundle. This label is
reserved for future use and currently defaults to metadata/. The value metadata.v1 implies that
this bundle has Operator metadata.

The package name of the bundle.

The list of channels the bundle is subscribing to when added into an Operator Registry.

The default channel an Operator should be subscribed to when installed from a registry.

NOTE

In case of a mismatch, the annotations.yaml file is authoritative because the on-cluster
Operator Registry that relies on these annotations only has access to this file.

2.2.1.3. Dependencies

The dependencies of an Operator are listed in a dependencies.yaml file in the metadata/ folder of a
bundle. This file is optional and currently only used to specify explicit Operator-version dependencies.

The dependency list contains a type field for each item to specify what kind of dependency this is. The
following types of Operator dependencies are supported:

olm.package

This type indicates a dependency for a specific Operator version. The dependency information must
include the package name and the version of the package in semver format. For example, you can
specify an exact version such as 0.5.2 or a range of versions such as >0.5.1.

olm.gvk

With this type, the author can specify a dependency with group/version/kind (GVK) information,
similar to existing CRD and API-based usage in a CSV. This is a path to enable Operator authors to
consolidate all dependencies, API or explicit versions, to be in the same place.

olm.constraint

This type declares generic constraints on arbitrary Operator properties.

In the following example, dependencies are specified for a Prometheus Operator and etcd CRDs:

Example dependencies.yaml file

 operators.operatorframework.io.bundle.mediatype.v1: "registry+v1" 1
 operators.operatorframework.io.bundle.manifests.v1: "manifests/" 2
 operators.operatorframework.io.bundle.metadata.v1: "metadata/" 3
 operators.operatorframework.io.bundle.package.v1: "test-operator" 4
 operators.operatorframework.io.bundle.channels.v1: "beta,stable" 5
 operators.operatorframework.io.bundle.channel.default.v1: "stable" 6

CHAPTER 2. UNDERSTANDING OPERATORS

15

Additional resources

Operator Lifecycle Manager dependency resolution

2.2.1.4. About the opm CLI

The opm CLI tool is provided by the Operator Framework for use with the Operator bundle format. This
tool allows you to create and maintain catalogs of Operators from a list of Operator bundles that are
similar to software repositories. The result is a container image which can be stored in a container
registry and then installed on a cluster.

A catalog contains a database of pointers to Operator manifest content that can be queried through an
included API that is served when the container image is run. On OpenShift Container Platform,
Operator Lifecycle Manager (OLM) can reference the image in a catalog source, defined by a
CatalogSource object, which polls the image at regular intervals to enable frequent updates to installed
Operators on the cluster.

See CLI tools for steps on installing the opm CLI.

2.2.2. Highlights

File-based catalogs are the latest iteration of the catalog format in Operator Lifecycle Manager (OLM).
It is a plain text-based (JSON or YAML) and declarative config evolution of the earlier SQLite database
format, and it is fully backwards compatible. The goal of this format is to enable Operator catalog
editing, composability, and extensibility.

Editing

With file-based catalogs, users interacting with the contents of a catalog are able to make direct
changes to the format and verify that their changes are valid. Because this format is plain text JSON
or YAML, catalog maintainers can easily manipulate catalog metadata by hand or with widely known
and supported JSON or YAML tooling, such as the jq CLI.
This editability enables the following features and user-defined extensions:

Promoting an existing bundle to a new channel

Changing the default channel of a package

Custom algorithms for adding, updating, and removing upgrade paths

Composability

File-based catalogs are stored in an arbitrary directory hierarchy, which enables catalog composition.
For example, consider two separate file-based catalog directories: catalogA and catalogB. A catalog
maintainer can create a new combined catalog by making a new directory catalogC and copying

dependencies:
 - type: olm.package
 value:
 packageName: prometheus
 version: ">0.27.0"
 - type: olm.gvk
 value:
 group: etcd.database.coreos.com
 kind: EtcdCluster
 version: v1beta2

OpenShift Container Platform 4.19 Operators

16

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#cli-opm-install

catalogA and catalogB into it.
This composability enables decentralized catalogs. The format permits Operator authors to maintain
Operator-specific catalogs, and it permits maintainers to trivially build a catalog composed of
individual Operator catalogs. File-based catalogs can be composed by combining multiple other
catalogs, by extracting subsets of one catalog, or a combination of both of these.

NOTE

Duplicate packages and duplicate bundles within a package are not permitted. The
opm validate command returns an error if any duplicates are found.

Because Operator authors are most familiar with their Operator, its dependencies, and its upgrade
compatibility, they are able to maintain their own Operator-specific catalog and have direct control
over its contents. With file-based catalogs, Operator authors own the task of building and
maintaining their packages in a catalog. Composite catalog maintainers, however, only own the task
of curating the packages in their catalog and publishing the catalog to users.

Extensibility

The file-based catalog specification is a low-level representation of a catalog. While it can be
maintained directly in its low-level form, catalog maintainers can build interesting extensions on top
that can be used by their own custom tooling to make any number of mutations.
For example, a tool could translate a high-level API, such as (mode=semver), down to the low-level,
file-based catalog format for upgrade paths. Or a catalog maintainer might need to customize all of
the bundle metadata by adding a new property to bundles that meet a certain criteria.

While this extensibility allows for additional official tooling to be developed on top of the low-level
APIs for future OpenShift Container Platform releases, the major benefit is that catalog maintainers
have this capability as well.

IMPORTANT

As of OpenShift Container Platform 4.11, the default Red Hat-provided Operator catalog
releases in the file-based catalog format. The default Red Hat-provided Operator
catalogs for OpenShift Container Platform 4.6 through 4.10 released in the deprecated
SQLite database format.

The opm subcommands, flags, and functionality related to the SQLite database format
are also deprecated and will be removed in a future release. The features are still
supported and must be used for catalogs that use the deprecated SQLite database
format.

Many of the opm subcommands and flags for working with the SQLite database format,
such as opm index prune, do not work with the file-based catalog format. For more
information about working with file-based catalogs, see Managing custom catalogs and
Mirroring images for a disconnected installation using the oc-mirror plugin .

2.2.2.1. Directory structure

File-based catalogs can be stored and loaded from directory-based file systems. The opm CLI loads
the catalog by walking the root directory and recursing into subdirectories. The CLI attempts to load
every file it finds and fails if any errors occur.

Non-catalog files can be ignored using .indexignore files, which have the same rules for patterns and

CHAPTER 2. UNDERSTANDING OPERATORS

17

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#installing-mirroring-disconnected

Non-catalog files can be ignored using .indexignore files, which have the same rules for patterns and
precedence as .gitignore files.

Example .indexignore file

Catalog maintainers have the flexibility to choose their desired layout, but it is recommended to store
each package’s file-based catalog blobs in separate subdirectories. Each individual file can be either
JSON or YAML; it is not necessary for every file in a catalog to use the same format.

Basic recommended structure

This recommended structure has the property that each subdirectory in the directory hierarchy is a self-
contained catalog, which makes catalog composition, discovery, and navigation trivial file system
operations. The catalog can also be included in a parent catalog by copying it into the parent catalog’s
root directory.

2.2.2.2. Schemas

File-based catalogs use a format, based on the CUE language specification, that can be extended with
arbitrary schemas. The following _Meta CUE schema defines the format that all file-based catalog blobs
must adhere to:

_Meta schema

Ignore everything except non-object .json and .yaml files
**/*
!*.json
!*.yaml
**/objects/*.json
**/objects/*.yaml

catalog
├── packageA
│ └── index.yaml
├── packageB
│ ├── .indexignore
│ ├── index.yaml
│ └── objects
│ └── packageB.v0.1.0.clusterserviceversion.yaml
└── packageC
 └── index.json
 └── deprecations.yaml

_Meta: {
 // schema is required and must be a non-empty string
 schema: string & !=""

 // package is optional, but if it's defined, it must be a non-empty string
 package?: string & !=""

 // properties is optional, but if it's defined, it must be a list of 0 or more properties
 properties?: [... #Property]
}

OpenShift Container Platform 4.19 Operators

18

https://cuelang.org/docs/references/spec/

NOTE

No CUE schemas listed in this specification should be considered exhaustive. The opm
validate command has additional validations that are difficult or impossible to express
concisely in CUE.

An Operator Lifecycle Manager (OLM) catalog currently uses three schemas (olm.package,
olm.channel, and olm.bundle), which correspond to OLM’s existing package and bundle concepts.

Each Operator package in a catalog requires exactly one olm.package blob, at least one olm.channel
blob, and one or more olm.bundle blobs.

NOTE

All olm.* schemas are reserved for OLM-defined schemas. Custom schemas must use a
unique prefix, such as a domain that you own.

2.2.2.2.1. olm.package schema

The olm.package schema defines package-level metadata for an Operator. This includes its name,
description, default channel, and icon.

Example 2.1. olm.package schema

#Property: {
 // type is required
 type: string & !=""

 // value is required, and it must not be null
 value: !=null
}

#Package: {
 schema: "olm.package"

 // Package name
 name: string & !=""

 // A description of the package
 description?: string

 // The package's default channel
 defaultChannel: string & !=""

 // An optional icon
 icon?: {
 base64data: string
 mediatype: string
 }
}

CHAPTER 2. UNDERSTANDING OPERATORS

19

2.2.2.2.2. olm.channel schema

The olm.channel schema defines a channel within a package, the bundle entries that are members of
the channel, and the upgrade paths for those bundles.

If a bundle entry represents an edge in multiple olm.channel blobs, it can only appear once per channel.

It is valid for an entry’s replaces value to reference another bundle name that cannot be found in this
catalog or another catalog. However, all other channel invariants must hold true, such as a channel not
having multiple heads.

Example 2.2. olm.channel schema

WARNING

When using the skipRange field, the skipped Operator versions are pruned from
the update graph and are longer installable by users with the spec.startingCSV
property of Subscription objects.

You can update an Operator incrementally while keeping previously installed
versions available to users for future installation by using both the skipRange and
replaces field. Ensure that the replaces field points to the immediate previous
version of the Operator version in question.

#Channel: {
 schema: "olm.channel"
 package: string & !=""
 name: string & !=""
 entries: [...#ChannelEntry]
}

#ChannelEntry: {
 // name is required. It is the name of an `olm.bundle` that
 // is present in the channel.
 name: string & !=""

 // replaces is optional. It is the name of bundle that is replaced
 // by this entry. It does not have to be present in the entry list.
 replaces?: string & !=""

 // skips is optional. It is a list of bundle names that are skipped by
 // this entry. The skipped bundles do not have to be present in the
 // entry list.
 skips?: [...string & !=""]

 // skipRange is optional. It is the semver range of bundle versions
 // that are skipped by this entry.
 skipRange?: string & !=""
}



OpenShift Container Platform 4.19 Operators

20

2.2.2.2.3. olm.bundle schema

Example 2.3. olm.bundle schema

2.2.2.2.4. olm.deprecations schema

The optional olm.deprecations schema defines deprecation information for packages, bundles, and
channels in a catalog. Operator authors can use this schema to provide relevant messages about their
Operators, such as support status and recommended upgrade paths, to users running those Operators
from a catalog.

When this schema is defined, the OpenShift Container Platform web console displays warning badges
for the affected elements of the Operator, including any custom deprecation messages, on both the
pre- and post-installation pages of the OperatorHub.

An olm.deprecations schema entry contains one or more of the following reference types, which
indicates the deprecation scope. After the Operator is installed, any specified messages can be viewed
as status conditions on the related Subscription object.

Table 2.1. Deprecation reference types

Type Scope Status condition

olm.package Represents the entire package PackageDeprecated

olm.channel Represents one channel ChannelDeprecated

#Bundle: {
 schema: "olm.bundle"
 package: string & !=""
 name: string & !=""
 image: string & !=""
 properties: [...#Property]
 relatedImages?: [...#RelatedImage]
}

#Property: {
 // type is required
 type: string & !=""

 // value is required, and it must not be null
 value: !=null
}

#RelatedImage: {
 // image is the image reference
 image: string & !=""

 // name is an optional descriptive name for an image that
 // helps identify its purpose in the context of the bundle
 name?: string & !=""
}

CHAPTER 2. UNDERSTANDING OPERATORS

21

1

2

3

4

5

olm.bundle Represents one bundle version BundleDeprecated

Type Scope Status condition

Each reference type has their own requirements, as detailed in the following example.

Example 2.4. Example olm.deprecations schema with each reference type

Each deprecation schema must have a package value, and that package reference must be
unique across the catalog. There must not be an associated name field.

The olm.package schema must not include a name field, because it is determined by the
package field defined earlier in the schema.

All message fields, for any reference type, must be a non-zero length and represented as an
opaque text blob.

The name field for the olm.channel schema is required.

The name field for the olm.bundle schema is required.

NOTE

The deprecation feature does not consider overlapping deprecation, for example
package versus channel versus bundle.

Operator authors can save olm.deprecations schema entries as a deprecations.yaml file in the same
directory as the package’s index.yaml file:

schema: olm.deprecations
package: my-operator 1
entries:
 - reference:
 schema: olm.package 2
 message: | 3
 The 'my-operator' package is end of life. Please use the
 'my-operator-new' package for support.
 - reference:
 schema: olm.channel
 name: alpha 4
 message: |
 The 'alpha' channel is no longer supported. Please switch to the
 'stable' channel.
 - reference:
 schema: olm.bundle
 name: my-operator.v1.68.0 5
 message: |
 my-operator.v1.68.0 is deprecated. Uninstall my-operator.v1.68.0 and
 install my-operator.v1.72.0 for support.

OpenShift Container Platform 4.19 Operators

22

Example directory structure for a catalog with deprecations

Additional resources

Updating or filtering a file-based catalog image

2.2.2.3. Properties

Properties are arbitrary pieces of metadata that can be attached to file-based catalog schemas. The
type field is a string that effectively specifies the semantic and syntactic meaning of the value field. The
value can be any arbitrary JSON or YAML.

OLM defines a handful of property types, again using the reserved olm.* prefix.

2.2.2.3.1. olm.package property

The olm.package property defines the package name and version. This is a required property on
bundles, and there must be exactly one of these properties. The packageName field must match the
bundle’s first-class package field, and the version field must be a valid semantic version.

Example 2.5. olm.package property

2.2.2.3.2. olm.gvk property

The olm.gvk property defines the group/version/kind (GVK) of a Kubernetes API that is provided by
this bundle. This property is used by OLM to resolve a bundle with this property as a dependency for
other bundles that list the same GVK as a required API. The GVK must adhere to Kubernetes GVK
validations.

Example 2.6. olm.gvk property

my-catalog
└── my-operator
 ├── index.yaml
 └── deprecations.yaml

#PropertyPackage: {
 type: "olm.package"
 value: {
 packageName: string & !=""
 version: string & !=""
 }
}

#PropertyGVK: {
 type: "olm.gvk"
 value: {
 group: string & !=""
 version: string & !=""
 kind: string & !=""
 }
}

CHAPTER 2. UNDERSTANDING OPERATORS

23

2.2.2.3.3. olm.package.required

The olm.package.required property defines the package name and version range of another package
that this bundle requires. For every required package property a bundle lists, OLM ensures there is an
Operator installed on the cluster for the listed package and in the required version range. The
versionRange field must be a valid semantic version (semver) range.

Example 2.7. olm.package.required property

2.2.2.3.4. olm.gvk.required

The olm.gvk.required property defines the group/version/kind (GVK) of a Kubernetes API that this
bundle requires. For every required GVK property a bundle lists, OLM ensures there is an Operator
installed on the cluster that provides it. The GVK must adhere to Kubernetes GVK validations.

Example 2.8. olm.gvk.required property

2.2.2.4. Example catalog

With file-based catalogs, catalog maintainers can focus on Operator curation and compatibility.
Because Operator authors have already produced Operator-specific catalogs for their Operators,
catalog maintainers can build their catalog by rendering each Operator catalog into a subdirectory of
the catalog’s root directory.

There are many possible ways to build a file-based catalog; the following steps outline a simple
approach:

1. Maintain a single configuration file for the catalog, containing image references for each
Operator in the catalog:

Example catalog configuration file

#PropertyPackageRequired: {
 type: "olm.package.required"
 value: {
 packageName: string & !=""
 versionRange: string & !=""
 }
}

#PropertyGVKRequired: {
 type: "olm.gvk.required"
 value: {
 group: string & !=""
 version: string & !=""
 kind: string & !=""
 }
}

OpenShift Container Platform 4.19 Operators

24

2. Run a script that parses the configuration file and creates a new catalog from its references:

Example script

2.2.2.5. Guidelines

Consider the following guidelines when maintaining file-based catalogs.

2.2.2.5.1. Immutable bundles

The general advice with Operator Lifecycle Manager (OLM) is that bundle images and their metadata
should be treated as immutable.

If a broken bundle has been pushed to a catalog, you must assume that at least one of your users has
upgraded to that bundle. Based on that assumption, you must release another bundle with an upgrade
path from the broken bundle to ensure users with the broken bundle installed receive an upgrade. OLM
will not reinstall an installed bundle if the contents of that bundle are updated in the catalog.

However, there are some cases where a change in the catalog metadata is preferred:

Channel promotion: If you already released a bundle and later decide that you would like to add
it to another channel, you can add an entry for your bundle in another olm.channel blob.

New upgrade paths: If you release a new 1.2.z bundle version, for example 1.2.4, but 1.3.0 is
already released, you can update the catalog metadata for 1.3.0 to skip 1.2.4.

2.2.2.5.2. Source control

name: community-operators
repo: quay.io/community-operators/catalog
tag: latest
references:
- name: etcd-operator
 image: quay.io/etcd-
operator/index@sha256:5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f
6be03
- name: prometheus-operator
 image: quay.io/prometheus-
operator/index@sha256:e258d248fda94c63753607f7c4494ee0fcbe92f1a76bfdac795c9d84101
eb317

name=$(yq eval '.name' catalog.yaml)
mkdir "$name"
yq eval '.name + "/" + .references[].name' catalog.yaml | xargs mkdir
for l in $(yq e '.name as $catalog | .references[] | .image + "|" + $catalog + "/" + .name +
"/index.yaml"' catalog.yaml); do
 image=$(echo $l | cut -d'|' -f1)
 file=$(echo $l | cut -d'|' -f2)
 opm render "$image" > "$file"
done
opm generate dockerfile "$name"
indexImage=$(yq eval '.repo + ":" + .tag' catalog.yaml)
docker build -t "$indexImage" -f "$name.Dockerfile" .
docker push "$indexImage"

CHAPTER 2. UNDERSTANDING OPERATORS

25

Catalog metadata should be stored in source control and treated as the source of truth. Updates to
catalog images should include the following steps:

1. Update the source-controlled catalog directory with a new commit.

2. Build and push the catalog image. Use a consistent tagging taxonomy, such as :latest or :
<target_cluster_version>, so that users can receive updates to a catalog as they become
available.

2.2.2.6. CLI usage

For instructions about creating file-based catalogs by using the opm CLI, see Managing custom
catalogs.

For reference documentation about the opm CLI commands related to managing file-based catalogs,
see CLI tools.

2.2.2.7. Automation

Operator authors and catalog maintainers are encouraged to automate their catalog maintenance with
CI/CD workflows. Catalog maintainers can further improve on this by building GitOps automation to
accomplish the following tasks:

Check that pull request (PR) authors are permitted to make the requested changes, for
example by updating their package’s image reference.

Check that the catalog updates pass the opm validate command.

Check that the updated bundle or catalog image references exist, the catalog images run
successfully in a cluster, and Operators from that package can be successfully installed.

Automatically merge PRs that pass the previous checks.

Automatically rebuild and republish the catalog image.

2.3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS

This topic provides a glossary of common terms related to the Operator Framework, including Operator
Lifecycle Manager (OLM).

2.3.1. Bundle

In the bundle format, a bundle is a collection of an Operator CSV, manifests, and metadata. Together,
they form a unique version of an Operator that can be installed onto the cluster.

2.3.2. Bundle image

In the bundle format, a bundle image is a container image that is built from Operator manifests and that
contains one bundle. Bundle images are stored and distributed by Open Container Initiative (OCI) spec
container registries, such as Quay.io or DockerHub.

2.3.3. Catalog source

A catalog source represents a store of metadata that OLM can query to discover and install Operators

OpenShift Container Platform 4.19 Operators

26

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#cli-opm-ref

A catalog source represents a store of metadata that OLM can query to discover and install Operators
and their dependencies.

2.3.4. Channel

A channel defines a stream of updates for an Operator and is used to roll out updates for subscribers.
The head points to the latest version of that channel. For example, a stable channel would have all
stable versions of an Operator arranged from the earliest to the latest.

An Operator can have several channels, and a subscription binding to a certain channel would only look
for updates in that channel.

2.3.5. Channel head

A channel head refers to the latest known update in a particular channel.

2.3.6. Cluster service version

A cluster service version (CSV) is a YAML manifest created from Operator metadata that assists OLM in
running the Operator in a cluster. It is the metadata that accompanies an Operator container image,
used to populate user interfaces with information such as its logo, description, and version.

It is also a source of technical information that is required to run the Operator, like the RBAC rules it
requires and which custom resources (CRs) it manages or depends on.

2.3.7. Dependency

An Operator may have a dependency on another Operator being present in the cluster. For example, the
Vault Operator has a dependency on the etcd Operator for its data persistence layer.

OLM resolves dependencies by ensuring that all specified versions of Operators and CRDs are installed
on the cluster during the installation phase. This dependency is resolved by finding and installing an
Operator in a catalog that satisfies the required CRD API, and is not related to packages or bundles.

2.3.8. Extension

Extensions enable cluster administrators to extend capabilities for users on their OpenShift Container
Platform cluster. Extensions are managed by Operator Lifecycle Manager (OLM) v1.

The ClusterExtension API streamlines management of installed extensions, which includes Operators
via the registry+v1 bundle format, by consolidating user-facing APIs into a single object. Administrators
and SREs can use the API to automate processes and define desired states by using GitOps principles.

2.3.9. Index image

In the bundle format, an index image refers to an image of a database (a database snapshot) that
contains information about Operator bundles including CSVs and CRDs of all versions. This index can
host a history of Operators on a cluster and be maintained by adding or removing Operators using the
opm CLI tool.

2.3.10. Install plan

An install plan is a calculated list of resources to be created to automatically install or upgrade a CSV.

CHAPTER 2. UNDERSTANDING OPERATORS

27

2.3.11. Multitenancy

A tenant in OpenShift Container Platform is a user or group of users that share common access and
privileges for a set of deployed workloads, typically represented by a namespace or project. You can use
tenants to provide a level of isolation between different groups or teams.

When a cluster is shared by multiple users or groups, it is considered a multitenant cluster.

2.3.12. Operator

Operators are a method of packaging, deploying, and managing a Kubernetes application. A Kubernetes
application is an app that is both deployed on Kubernetes and managed using the Kubernetes APIs and
kubectl or oc tooling.

In Operator Lifecycle Manager (OLM) v1, the ClusterExtension API streamlines management of
installed extensions, which includes Operators via the registry+v1 bundle format.

2.3.13. Operator group

An Operator group configures all Operators deployed in the same namespace as the OperatorGroup
object to watch for their CR in a list of namespaces or cluster-wide.

2.3.14. Package

In the bundle format, a package is a directory that encloses all released history of an Operator with each
version. A released version of an Operator is described in a CSV manifest alongside the CRDs.

2.3.15. Registry

A registry is a database that stores bundle images of Operators, each with all of its latest and historical
versions in all channels.

2.3.16. Subscription

A subscription keeps CSVs up to date by tracking a channel in a package.

2.3.17. Update graph

An update graph links versions of CSVs together, similar to the update graph of any other packaged
software. Operators can be installed sequentially, or certain versions can be skipped. The update graph
is expected to grow only at the head with newer versions being added.

Also known as update edges or update paths.

2.4. OPERATOR LIFECYCLE MANAGER (OLM)

2.4.1. Operator Lifecycle Manager concepts and resources

This guide provides an overview of the concepts that drive Operator Lifecycle Manager (OLM) in
OpenShift Container Platform.

2.4.1.1. What is Operator Lifecycle Manager (OLM) Classic?

OpenShift Container Platform 4.19 Operators

28

Operator Lifecycle Manager (OLM) Classic helps users install, update, and manage the lifecycle of
Kubernetes native applications (Operators) and their associated services running across their OpenShift
Container Platform clusters. It is part of the Operator Framework, an open source toolkit designed to
manage Operators in an effective, automated, and scalable way.

Figure 2.2. OLM (Classic) workflow

OLM runs by default in OpenShift Container Platform 4.19, which aids cluster administrators in installing,
upgrading, and granting access to Operators running on their cluster. The OpenShift Container
Platform web console provides management screens for cluster administrators to install Operators, as
well as grant specific projects access to use the catalog of Operators available on the cluster.

For developers, a self-service experience allows provisioning and configuring instances of databases,
monitoring, and big data services without having to be subject matter experts, because the Operator
has that knowledge baked into it.

2.4.1.2. OLM resources

The following custom resource definitions (CRDs) are defined and managed by Operator Lifecycle
Manager (OLM):

Table 2.2. CRDs managed by OLM and Catalog Operators

Resource Short name Description

ClusterServic
eVersion
(CSV)

csv Application metadata. For example: name, version, icon, required
resources.

CatalogSour
ce

catsrc A repository of CSVs, CRDs, and packages that define an application.

Subscription sub Keeps CSVs up to date by tracking a channel in a package.

InstallPlan ip Calculated list of resources to be created to automatically install or
upgrade a CSV.

OperatorGro
up

og Configures all Operators deployed in the same namespace as the
OperatorGroup object to watch for their custom resource (CR) in a
list of namespaces or cluster-wide.

CHAPTER 2. UNDERSTANDING OPERATORS

29

https://operatorframework.io/

OperatorCon
ditions

- Creates a communication channel between OLM and an Operator it
manages. Operators can write to the Status.Conditions array to
communicate complex states to OLM.

Resource Short name Description

2.4.1.2.1. Cluster service version

A cluster service version (CSV) represents a specific version of a running Operator on your OpenShift
Container Platform cluster. It is a YAML manifest created from Operator metadata that assists Operator
Lifecycle Manager (OLM) in running the Operator in the cluster.

OLM requires this metadata about an Operator to ensure that it can be kept running safely on a cluster,
and to provide information about how updates should be applied as new versions of the Operator are
published. This is similar to packaging software for a traditional operating system; think of the packaging
step for OLM as the stage at which you make your rpm, deb, or apk bundle.

A CSV includes the metadata that accompanies an Operator container image, used to populate user
interfaces with information such as its name, version, description, labels, repository link, and logo.

A CSV is also a source of technical information required to run the Operator, such as which custom
resources (CRs) it manages or depends on, RBAC rules, cluster requirements, and install strategies. This
information tells OLM how to create required resources and set up the Operator as a deployment.

2.4.1.2.2. Catalog source

A catalog source represents a store of metadata, typically by referencing an index image stored in a
container registry. Operator Lifecycle Manager (OLM) queries catalog sources to discover and install
Operators and their dependencies. OperatorHub in the OpenShift Container Platform web console also
displays the Operators provided by catalog sources.

TIP

Cluster administrators can view the full list of Operators provided by an enabled catalog source on a
cluster by using the Administration → Cluster Settings → Configuration → OperatorHub page in the
web console.

The spec of a CatalogSource object indicates how to construct a pod or how to communicate with a
service that serves the Operator Registry gRPC API.

Example 2.9. Example CatalogSource object

​apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 generation: 1
 name: example-catalog 1
 namespace: openshift-marketplace 2
 annotations:
 olm.catalogImageTemplate: 3
 "quay.io/example-org/example-catalog:v{kube_major_version}.{kube_minor_version}.

OpenShift Container Platform 4.19 Operators

30

1

2

3

4

5

Name for the CatalogSource object. This value is also used as part of the name for the related
pod that is created in the requested namespace.

Namespace to create the catalog in. To make the catalog available cluster-wide in all
namespaces, set this value to openshift-marketplace. The default Red Hat-provided catalog
sources also use the openshift-marketplace namespace. Otherwise, set the value to a specific
namespace to make the Operator only available in that namespace.

Optional: To avoid cluster upgrades potentially leaving Operator installations in an unsupported
state or without a continued update path, you can enable automatically changing your Operator
catalog’s index image version as part of cluster upgrades.

Set the olm.catalogImageTemplate annotation to your index image name and use one or more
of the Kubernetes cluster version variables as shown when constructing the template for the
image tag. The annotation overwrites the spec.image field at run time. See the "Image
template for custom catalog sources" section for more details.

Display name for the catalog in the web console and CLI.

Index image for the catalog. Optionally, can be omitted when using the
olm.catalogImageTemplate annotation, which sets the pull spec at run time.

{kube_patch_version}"
spec:
 displayName: Example Catalog 4
 image: quay.io/example-org/example-catalog:v1 5
 priority: -400 6
 publisher: Example Org
 sourceType: grpc 7
 grpcPodConfig:
 securityContextConfig: <security_mode> 8
 nodeSelector: 9
 custom_label: <label>
 priorityClassName: system-cluster-critical 10
 tolerations: 11
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"
 updateStrategy:
 registryPoll: 12
 interval: 30m0s
status:
 connectionState:
 address: example-catalog.openshift-marketplace.svc:50051
 lastConnect: 2021-08-26T18:14:31Z
 lastObservedState: READY 13
 latestImageRegistryPoll: 2021-08-26T18:46:25Z 14
 registryService: 15
 createdAt: 2021-08-26T16:16:37Z
 port: 50051
 protocol: grpc
 serviceName: example-catalog
 serviceNamespace: openshift-marketplace

CHAPTER 2. UNDERSTANDING OPERATORS

31

6

7

8

9

10

11

12

13

14

15

Weight for the catalog source. OLM uses the weight for prioritization during dependency
resolution. A higher weight indicates the catalog is preferred over lower-weighted catalogs.

Source types include the following:

grpc with an image reference: OLM pulls the image and runs the pod, which is
expected to serve a compliant API.

grpc with an address field: OLM attempts to contact the gRPC API at the given
address. This should not be used in most cases.

configmap: OLM parses config map data and runs a pod that can serve the gRPC API
over it.

Specify the value of legacy or restricted. If the field is not set, the default value is legacy. In a
future OpenShift Container Platform release, it is planned that the default value will be
restricted. If your catalog cannot run with restricted permissions, it is recommended that you
manually set this field to legacy.

Optional: For grpc type catalog sources, overrides the default node selector for the pod
serving the content in spec.image, if defined.

Optional: For grpc type catalog sources, overrides the default priority class name for the pod
serving the content in spec.image, if defined. Kubernetes provides system-cluster-critical and
system-node-critical priority classes by default. Setting the field to empty ("") assigns the pod
the default priority. Other priority classes can be defined manually.

Optional: For grpc type catalog sources, overrides the default tolerations for the pod serving
the content in spec.image, if defined.

Automatically check for new versions at a given interval to stay up-to-date.

Last observed state of the catalog connection. For example:

READY: A connection is successfully established.

CONNECTING: A connection is attempting to establish.

TRANSIENT_FAILURE: A temporary problem has occurred while attempting to
establish a connection, such as a timeout. The state will eventually switch back to
CONNECTING and try again.

See States of Connectivity in the gRPC documentation for more details.

Latest time the container registry storing the catalog image was polled to ensure the image is
up-to-date.

Status information for the catalog’s Operator Registry service.

Referencing the name of a CatalogSource object in a subscription instructs OLM where to search to
find a requested Operator:

Example 2.10. Example Subscription object referencing a catalog source

OpenShift Container Platform 4.19 Operators

32

https://grpc.github.io/grpc/core/md_doc_connectivity-semantics-and-api.html

Additional resources

Understanding OperatorHub

Red Hat-provided Operator catalogs

Adding a catalog source to a cluster

Catalog priority

Viewing Operator catalog source status by using the CLI

Understanding and managing pod security admission

Catalog source pod scheduling

2.4.1.2.2.1. Image template for custom catalog sources

Operator compatibility with the underlying cluster can be expressed by a catalog source in various ways.
One way, which is used for the default Red Hat-provided catalog sources, is to identify image tags for
index images that are specifically created for a particular platform release, for example OpenShift
Container Platform 4.19.

During a cluster upgrade, the index image tag for the default Red Hat-provided catalog sources are
updated automatically by the Cluster Version Operator (CVO) so that Operator Lifecycle Manager
(OLM) pulls the updated version of the catalog. For example during an upgrade from OpenShift
Container Platform 4.18 to 4.19, the spec.image field in the CatalogSource object for the redhat-
operators catalog is updated from:

to:

However, the CVO does not automatically update image tags for custom catalogs. To ensure users are
left with a compatible and supported Operator installation after a cluster upgrade, custom catalogs
should also be kept updated to reference an updated index image.

Starting in OpenShift Container Platform 4.9, cluster administrators can add the
olm.catalogImageTemplate annotation in the CatalogSource object for custom catalogs to an image
reference that includes a template. The following Kubernetes version variables are supported for use in

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: example-operator
 namespace: example-namespace
spec:
 channel: stable
 name: example-operator
 source: example-catalog
 sourceNamespace: openshift-marketplace

registry.redhat.io/redhat/redhat-operator-index:v4.19

registry.redhat.io/redhat/redhat-operator-index:v4.19

CHAPTER 2. UNDERSTANDING OPERATORS

33

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

the template:

kube_major_version

kube_minor_version

kube_patch_version

NOTE

You must specify the Kubernetes cluster version and not the OpenShift Container
Platform cluster version, as the latter is not currently available for templating.

Provided that you have created and pushed an index image with a tag specifying the updated
Kubernetes version, setting this annotation enables the index image versions in custom catalogs to be
automatically changed after a cluster upgrade. The annotation value is used to set or update the image
reference in the spec.image field of the CatalogSource object. This helps avoid cluster upgrades
leaving Operator installations in unsupported states or without a continued update path.

IMPORTANT

You must ensure that the index image with the updated tag, in whichever registry it is
stored in, is accessible by the cluster at the time of the cluster upgrade.

Example 2.11. Example catalog source with an image template

NOTE

If the spec.image field and the olm.catalogImageTemplate annotation are both set, the
spec.image field is overwritten by the resolved value from the annotation. If the
annotation does not resolve to a usable pull spec, the catalog source falls back to the set
spec.image value.

If the spec.image field is not set and the annotation does not resolve to a usable pull
spec, OLM stops reconciliation of the catalog source and sets it into a human-readable
error condition.

For an OpenShift Container Platform 4.19 cluster, which uses Kubernetes 1.33, the

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 generation: 1
 name: example-catalog
 namespace: openshift-marketplace
 annotations:
 olm.catalogImageTemplate:
 "quay.io/example-org/example-catalog:v{kube_major_version}.{kube_minor_version}"
spec:
 displayName: Example Catalog
 image: quay.io/example-org/example-catalog:v1.32
 priority: -400
 publisher: Example Org

OpenShift Container Platform 4.19 Operators

34

For an OpenShift Container Platform 4.19 cluster, which uses Kubernetes 1.33, the
olm.catalogImageTemplate annotation in the preceding example resolves to the following image
reference:

For future releases of OpenShift Container Platform, you can create updated index images for your
custom catalogs that target the later Kubernetes version that is used by the later OpenShift Container
Platform version. With the olm.catalogImageTemplate annotation set before the upgrade, upgrading
the cluster to the later OpenShift Container Platform version would then automatically update the
catalog’s index image as well.

2.4.1.2.2.2. Catalog health requirements

Operator catalogs on a cluster are interchangeable from the perspective of installation resolution; a
Subscription object might reference a specific catalog, but dependencies are resolved using all
catalogs on the cluster.

For example, if Catalog A is unhealthy, a subscription referencing Catalog A could resolve a dependency
in Catalog B, which the cluster administrator might not have been expecting, because B normally had a
lower catalog priority than A.

As a result, OLM requires that all catalogs with a given global namespace (for example, the default
openshift-marketplace namespace or a custom global namespace) are healthy. When a catalog is
unhealthy, all Operator installation or update operations within its shared global namespace will fail with
a CatalogSourcesUnhealthy condition. If these operations were permitted in an unhealthy state, OLM
might make resolution and installation decisions that were unexpected to the cluster administrator.

As a cluster administrator, if you observe an unhealthy catalog and want to consider the catalog as
invalid and resume Operator installations, see the "Removing custom catalogs" or "Disabling the default
OperatorHub catalog sources" sections for information about removing the unhealthy catalog.

Additional resources

Removing custom catalogs

Disabling the default OperatorHub catalog sources

2.4.1.2.3. Subscription

A subscription, defined by a Subscription object, represents an intention to install an Operator. It is the
custom resource that relates an Operator to a catalog source.

Subscriptions describe which channel of an Operator package to subscribe to, and whether to perform
updates automatically or manually. If set to automatic, the subscription ensures Operator Lifecycle
Manager (OLM) manages and upgrades the Operator to ensure that the latest version is always running
in the cluster.

Example Subscription object

quay.io/example-org/example-catalog:v1.32

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: example-operator
 namespace: example-namespace

CHAPTER 2. UNDERSTANDING OPERATORS

35

This Subscription object defines the name and namespace of the Operator, as well as the catalog from
which the Operator data can be found. The channel, such as alpha, beta, or stable, helps determine
which Operator stream should be installed from the catalog source.

The names of channels in a subscription can differ between Operators, but the naming scheme should
follow a common convention within a given Operator. For example, channel names might follow a minor
release update stream for the application provided by the Operator (1.2, 1.3) or a release frequency
(stable, fast).

In addition to being easily visible from the OpenShift Container Platform web console, it is possible to
identify when there is a newer version of an Operator available by inspecting the status of the related
subscription. The value associated with the currentCSV field is the newest version that is known to
OLM, and installedCSV is the version that is installed on the cluster.

Additional resources

Multitenancy and Operator colocation

Viewing Operator subscription status by using the CLI

2.4.1.2.4. Install plan

An install plan, defined by an InstallPlan object, describes a set of resources that Operator Lifecycle
Manager (OLM) creates to install or upgrade to a specific version of an Operator. The version is defined
by a cluster service version (CSV).

To install an Operator, a cluster administrator, or a user who has been granted Operator installation
permissions, must first create a Subscription object. A subscription represents the intent to subscribe
to a stream of available versions of an Operator from a catalog source. The subscription then creates an
InstallPlan object to facilitate the installation of the resources for the Operator.

The install plan must then be approved according to one of the following approval strategies:

If the subscription’s spec.installPlanApproval field is set to Automatic, the install plan is
approved automatically.

If the subscription’s spec.installPlanApproval field is set to Manual, the install plan must be
manually approved by a cluster administrator or user with proper permissions.

After the install plan is approved, OLM creates the specified resources and installs the Operator in the
namespace that is specified by the subscription.

Example 2.12. Example InstallPlan object

spec:
 channel: stable
 name: example-operator
 source: example-catalog
 sourceNamespace: openshift-marketplace

apiVersion: operators.coreos.com/v1alpha1
kind: InstallPlan
metadata:
 name: install-abcde
 namespace: operators

OpenShift Container Platform 4.19 Operators

36

spec:
 approval: Automatic
 approved: true
 clusterServiceVersionNames:
 - my-operator.v1.0.1
 generation: 1
status:
 ...
 catalogSources: []
 conditions:
 - lastTransitionTime: '2021-01-01T20:17:27Z'
 lastUpdateTime: '2021-01-01T20:17:27Z'
 status: 'True'
 type: Installed
 phase: Complete
 plan:
 - resolving: my-operator.v1.0.1
 resource:
 group: operators.coreos.com
 kind: ClusterServiceVersion
 manifest: >-
 ...
 name: my-operator.v1.0.1
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1alpha1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: apiextensions.k8s.io
 kind: CustomResourceDefinition
 manifest: >-
 ...
 name: webservers.web.servers.org
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1beta1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: ''
 kind: ServiceAccount
 manifest: >-
 ...
 name: my-operator
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: rbac.authorization.k8s.io
 kind: Role
 manifest: >-
 ...
 name: my-operator.v1.0.1-my-operator-6d7cbc6f57

CHAPTER 2. UNDERSTANDING OPERATORS

37

Additional resources

Multitenancy and Operator colocation

Allowing non-cluster administrators to install Operators

2.4.1.2.5. Operator groups

An Operator group, defined by the OperatorGroup resource, provides multitenant configuration to
OLM-installed Operators. An Operator group selects target namespaces in which to generate required
RBAC access for its member Operators.

The set of target namespaces is provided by a comma-delimited string stored in the
olm.targetNamespaces annotation of a cluster service version (CSV). This annotation is applied to the
CSV instances of member Operators and is projected into their deployments.

Additional resources

Operator groups

2.4.1.2.6. Operator conditions

As part of its role in managing the lifecycle of an Operator, Operator Lifecycle Manager (OLM) infers
the state of an Operator from the state of Kubernetes resources that define the Operator. While this
approach provides some level of assurance that an Operator is in a given state, there are many instances
where an Operator might need to communicate information to OLM that could not be inferred
otherwise. This information can then be used by OLM to better manage the lifecycle of the Operator.

OLM provides a custom resource definition (CRD) called OperatorCondition that allows Operators to
communicate conditions to OLM. There are a set of supported conditions that influence management
of the Operator by OLM when present in the Spec.Conditions array of an OperatorCondition
resource.

NOTE

 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: rbac.authorization.k8s.io
 kind: RoleBinding
 manifest: >-
 ...
 name: my-operator.v1.0.1-my-operator-6d7cbc6f57
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1
 status: Created
 ...

OpenShift Container Platform 4.19 Operators

38

NOTE

By default, the Spec.Conditions array is not present in an OperatorCondition object
until it is either added by a user or as a result of custom Operator logic.

Additional resources

Operator conditions

2.4.2. Operator Lifecycle Manager architecture

This guide outlines the component architecture of Operator Lifecycle Manager (OLM) in OpenShift
Container Platform.

2.4.2.1. Component responsibilities

Operator Lifecycle Manager (OLM) is composed of two Operators: the OLM Operator and the Catalog
Operator.

The OLM and Catalog Operators are responsible for managing the custom resource definitions (CRDs)
that are the basis for the OLM framework:

Table 2.3. CRDs managed by OLM and Catalog Operators

Resource Shor
t
nam
e

Own
er

Description

ClusterServic
eVersion
(CSV)

csv OLM Application metadata: name, version, icon, required resources,
installation, and so on.

InstallPlan ip Catal
og

Calculated list of resources to be created to automatically install or
upgrade a CSV.

CatalogSour
ce

cats
rc

Catal
og

A repository of CSVs, CRDs, and packages that define an application.

Subscription sub Catal
og

Used to keep CSVs up to date by tracking a channel in a package.

OperatorGro
up

og OLM Configures all Operators deployed in the same namespace as the
OperatorGroup object to watch for their custom resource (CR) in a list
of namespaces or cluster-wide.

Each of these Operators is also responsible for creating the following resources:

Table 2.4. Resources created by OLM and Catalog Operators

CHAPTER 2. UNDERSTANDING OPERATORS

39

Resource Owner

Deployments OLM

ServiceAccounts

(Cluster)Roles

(Cluster)RoleBindings

CustomResourceDefinitions (CRDs) Catalog

ClusterServiceVersions

2.4.2.2. OLM Operator

The OLM Operator is responsible for deploying applications defined by CSV resources after the
required resources specified in the CSV are present in the cluster.

The OLM Operator is not concerned with the creation of the required resources; you can choose to
manually create these resources using the CLI or using the Catalog Operator. This separation of concern
allows users incremental buy-in in terms of how much of the OLM framework they choose to leverage
for their application.

The OLM Operator uses the following workflow:

1. Watch for cluster service versions (CSVs) in a namespace and check that requirements are met.

2. If requirements are met, run the install strategy for the CSV.

NOTE

A CSV must be an active member of an Operator group for the install strategy to
run.

2.4.2.3. Catalog Operator

The Catalog Operator is responsible for resolving and installing cluster service versions (CSVs) and the
required resources they specify. It is also responsible for watching catalog sources for updates to
packages in channels and upgrading them, automatically if desired, to the latest available versions.

To track a package in a channel, you can create a Subscription object configuring the desired package,
channel, and the CatalogSource object you want to use for pulling updates. When updates are found,
an appropriate InstallPlan object is written into the namespace on behalf of the user.

The Catalog Operator uses the following workflow:

1. Connect to each catalog source in the cluster.

2. Watch for unresolved install plans created by a user, and if found:

a. Find the CSV matching the name requested and add the CSV as a resolved resource.

OpenShift Container Platform 4.19 Operators

40

b. For each managed or required CRD, add the CRD as a resolved resource.

c. For each required CRD, find the CSV that manages it.

3. Watch for resolved install plans and create all of the discovered resources for it, if approved by a
user or automatically.

4. Watch for catalog sources and subscriptions and create install plans based on them.

2.4.2.4. Catalog Registry

The Catalog Registry stores CSVs and CRDs for creation in a cluster and stores metadata about
packages and channels.

A package manifest is an entry in the Catalog Registry that associates a package identity with sets of
CSVs. Within a package, channels point to a particular CSV. Because CSVs explicitly reference the CSV
that they replace, a package manifest provides the Catalog Operator with all of the information that is
required to update a CSV to the latest version in a channel, stepping through each intermediate version.

2.4.3. Operator Lifecycle Manager workflow

This guide outlines the workflow of Operator Lifecycle Manager (OLM) in OpenShift Container
Platform.

2.4.3.1. Operator installation and upgrade workflow in OLM

In the Operator Lifecycle Manager (OLM) ecosystem, the following resources are used to resolve
Operator installations and upgrades:

ClusterServiceVersion (CSV)

CatalogSource

Subscription

Operator metadata, defined in CSVs, can be stored in a collection called a catalog source. OLM uses
catalog sources, which use the Operator Registry API, to query for available Operators as well as
upgrades for installed Operators.

Figure 2.3. Catalog source overview

Within a catalog source, Operators are organized into packages and streams of updates called channels,

CHAPTER 2. UNDERSTANDING OPERATORS

41

https://github.com/operator-framework/operator-registry

Within a catalog source, Operators are organized into packages and streams of updates called channels,
which should be a familiar update pattern from OpenShift Container Platform or other software on a
continuous release cycle like web browsers.

Figure 2.4. Packages and channels in a Catalog source

A user indicates a particular package and channel in a particular catalog source in a subscription, for
example an etcd package and its alpha channel. If a subscription is made to a package that has not yet
been installed in the namespace, the latest Operator for that package is installed.

NOTE

OLM deliberately avoids version comparisons, so the "latest" or "newest" Operator
available from a given catalog → channel → package path does not necessarily need to be
the highest version number. It should be thought of more as the head reference of a
channel, similar to a Git repository.

Each CSV has a replaces parameter that indicates which Operator it replaces. This builds a graph of
CSVs that can be queried by OLM, and updates can be shared between channels. Channels can be
thought of as entry points into the graph of updates:

Figure 2.5. OLM graph of available channel updates

OpenShift Container Platform 4.19 Operators

42

Figure 2.5. OLM graph of available channel updates

Example channels in a package

For OLM to successfully query for updates, given a catalog source, package, channel, and CSV, a catalog
must be able to return, unambiguously and deterministically, a single CSV that replaces the input CSV.

2.4.3.1.1. Example upgrade path

For an example upgrade scenario, consider an installed Operator corresponding to CSV version 0.1.1.
OLM queries the catalog source and detects an upgrade in the subscribed channel with new CSV
version 0.1.3 that replaces an older but not-installed CSV version 0.1.2, which in turn replaces the older
and installed CSV version 0.1.1.

OLM walks back from the channel head to previous versions via the replaces field specified in the CSVs
to determine the upgrade path 0.1.3 → 0.1.2 → 0.1.1; the direction of the arrow indicates that the
former replaces the latter. OLM upgrades the Operator one version at the time until it reaches the
channel head.

For this given scenario, OLM installs Operator version 0.1.2 to replace the existing Operator version
0.1.1. Then, it installs Operator version 0.1.3 to replace the previously installed Operator version 0.1.2. At
this point, the installed operator version 0.1.3 matches the channel head and the upgrade is completed.

2.4.3.1.2. Skipping upgrades

The basic path for upgrades in OLM is:

packageName: example
channels:
- name: alpha
 currentCSV: example.v0.1.2
- name: beta
 currentCSV: example.v0.1.3
defaultChannel: alpha

CHAPTER 2. UNDERSTANDING OPERATORS

43

A catalog source is updated with one or more updates to an Operator.

OLM traverses every version of the Operator until reaching the latest version the catalog
source contains.

However, sometimes this is not a safe operation to perform. There will be cases where a published
version of an Operator should never be installed on a cluster if it has not already, for example because a
version introduces a serious vulnerability.

In those cases, OLM must consider two cluster states and provide an update graph that supports both:

The "bad" intermediate Operator has been seen by the cluster and installed.

The "bad" intermediate Operator has not yet been installed onto the cluster.

By shipping a new catalog and adding a skipped release, OLM is ensured that it can always get a single
unique update regardless of the cluster state and whether it has seen the bad update yet.

Example CSV with skipped release

Consider the following example of Old CatalogSource and New CatalogSource.

Figure 2.6. Skipping updates

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: etcdoperator.v0.9.2
 namespace: placeholder
 annotations:
spec:
 displayName: etcd
 description: Etcd Operator
 replaces: etcdoperator.v0.9.0
 skips:
 - etcdoperator.v0.9.1

OpenShift Container Platform 4.19 Operators

44

Figure 2.6. Skipping updates

This graph maintains that:

Any Operator found in Old CatalogSource has a single replacement in New CatalogSource.

Any Operator found in New CatalogSource has a single replacement in New CatalogSource.

If the bad update has not yet been installed, it will never be.

2.4.3.1.3. Replacing multiple Operators

Creating New CatalogSource as described requires publishing CSVs that replace one Operator, but
can skip several. This can be accomplished using the skipRange annotation:

where <semver_range> has the version range format supported by the semver library.

When searching catalogs for updates, if the head of a channel has a skipRange annotation and the
currently installed Operator has a version field that falls in the range, OLM updates to the latest entry in
the channel.

The order of precedence is:

1. Channel head in the source specified by sourceName on the subscription, if the other criteria
for skipping are met.

2. The next Operator that replaces the current one, in the source specified by sourceName.

olm.skipRange: <semver_range>

CHAPTER 2. UNDERSTANDING OPERATORS

45

https://github.com/blang/semver#ranges

3. Channel head in another source that is visible to the subscription, if the other criteria for
skipping are met.

4. The next Operator that replaces the current one in any source visible to the subscription.

Example CSV with skipRange

2.4.3.1.4. Z-stream support

A z-stream, or patch release, must replace all previous z-stream releases for the same minor version.
OLM does not consider major, minor, or patch versions, it just needs to build the correct graph in a
catalog.

In other words, OLM must be able to take a graph as in Old CatalogSource and, similar to before,
generate a graph as in New CatalogSource:

Figure 2.7. Replacing several Operators

This graph maintains that:

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: elasticsearch-operator.v4.1.2
 namespace: <namespace>
 annotations:
 olm.skipRange: '>=4.1.0 <4.1.2'

OpenShift Container Platform 4.19 Operators

46

Any Operator found in Old CatalogSource has a single replacement in New CatalogSource.

Any Operator found in New CatalogSource has a single replacement in New CatalogSource.

Any z-stream release in Old CatalogSource will update to the latest z-stream release in New
CatalogSource.

Unavailable releases can be considered "virtual" graph nodes; their content does not need to
exist, the registry just needs to respond as if the graph looks like this.

2.4.4. Operator Lifecycle Manager dependency resolution

This guide outlines dependency resolution and custom resource definition (CRD) upgrade lifecycles with
Operator Lifecycle Manager (OLM) in OpenShift Container Platform.

2.4.4.1. About dependency resolution

Operator Lifecycle Manager (OLM) manages the dependency resolution and upgrade lifecycle of
running Operators. In many ways, the problems OLM faces are similar to other system or language
package managers, such as yum and rpm.

However, there is one constraint that similar systems do not generally have that OLM does: because
Operators are always running, OLM attempts to ensure that you are never left with a set of Operators
that do not work with each other.

As a result, OLM must never create the following scenarios:

Install a set of Operators that require APIs that cannot be provided

Update an Operator in a way that breaks another that depends upon it

This is made possible with two types of data:

Properties Typed metadata about the Operator that constitutes the public interface for it in the
dependency resolver. Examples include the group/version/kind (GVK) of the APIs provided
by the Operator and the semantic version (semver) of the Operator.

Constraints
or
dependencie
s

An Operator’s requirements that should be satisfied by other Operators that might or might
not have already been installed on the target cluster. These act as queries or filters over all
available Operators and constrain the selection during dependency resolution and
installation. Examples include requiring a specific API to be available on the cluster or
expecting a particular Operator with a particular version to be installed.

OLM converts these properties and constraints into a system of Boolean formulas and passes them to a
SAT solver, a program that establishes Boolean satisfiability, which does the work of determining what
Operators should be installed.

2.4.4.2. Operator properties

All Operators in a catalog have the following properties:

olm.package

Includes the name of the package and the version of the Operator

CHAPTER 2. UNDERSTANDING OPERATORS

47

olm.gvk

A single property for each provided API from the cluster service version (CSV)

Additional properties can also be directly declared by an Operator author by including a properties.yaml
file in the metadata/ directory of the Operator bundle.

Example arbitrary property

2.4.4.2.1. Arbitrary properties

Operator authors can declare arbitrary properties in a properties.yaml file in the metadata/ directory of
the Operator bundle. These properties are translated into a map data structure that is used as an input
to the Operator Lifecycle Manager (OLM) resolver at runtime.

These properties are opaque to the resolver as it does not understand the properties, but it can evaluate
the generic constraints against those properties to determine if the constraints can be satisfied given
the properties list.

Example arbitrary properties

This structure can be used to construct a Common Expression Language (CEL) expression for generic
constraints.

Additional resources

Common Expression Language (CEL) constraints

2.4.4.3. Operator dependencies

The dependencies of an Operator are listed in a dependencies.yaml file in the metadata/ folder of a
bundle. This file is optional and currently only used to specify explicit Operator-version dependencies.

The dependency list contains a type field for each item to specify what kind of dependency this is. The
following types of Operator dependencies are supported:

properties:
- type: olm.kubeversion
 value:
 version: "1.16.0"

properties:
 - property:
 type: color
 value: red
 - property:
 type: shape
 value: square
 - property:
 type: olm.gvk
 value:
 group: olm.coreos.io
 version: v1alpha1
 kind: myresource

OpenShift Container Platform 4.19 Operators

48

olm.package

This type indicates a dependency for a specific Operator version. The dependency information must
include the package name and the version of the package in semver format. For example, you can
specify an exact version such as 0.5.2 or a range of versions such as >0.5.1.

olm.gvk

With this type, the author can specify a dependency with group/version/kind (GVK) information,
similar to existing CRD and API-based usage in a CSV. This is a path to enable Operator authors to
consolidate all dependencies, API or explicit versions, to be in the same place.

olm.constraint

This type declares generic constraints on arbitrary Operator properties.

In the following example, dependencies are specified for a Prometheus Operator and etcd CRDs:

Example dependencies.yaml file

2.4.4.4. Generic constraints

An olm.constraint property declares a dependency constraint of a particular type, differentiating non-
constraint and constraint properties. Its value field is an object containing a failureMessage field
holding a string-representation of the constraint message. This message is surfaced as an informative
comment to users if the constraint is not satisfiable at runtime.

The following keys denote the available constraint types:

gvk

Type whose value and interpretation is identical to the olm.gvk type

package

Type whose value and interpretation is identical to the olm.package type

cel

A Common Expression Language (CEL) expression evaluated at runtime by the Operator Lifecycle
Manager (OLM) resolver over arbitrary bundle properties and cluster information

all, any, not

Conjunction, disjunction, and negation constraints, respectively, containing one or more concrete
constraints, such as gvk or a nested compound constraint

2.4.4.4.1. Common Expression Language (CEL) constraints

The cel constraint type supports Common Expression Language (CEL) as the expression language. The

dependencies:
 - type: olm.package
 value:
 packageName: prometheus
 version: ">0.27.0"
 - type: olm.gvk
 value:
 group: etcd.database.coreos.com
 kind: EtcdCluster
 version: v1beta2

CHAPTER 2. UNDERSTANDING OPERATORS

49

The cel constraint type supports Common Expression Language (CEL) as the expression language. The
cel struct has a rule field which contains the CEL expression string that is evaluated against Operator
properties at runtime to determine if the Operator satisfies the constraint.

Example cel constraint

The CEL syntax supports a wide range of logical operators, such as AND and OR. As a result, a single
CEL expression can have multiple rules for multiple conditions that are linked together by these logical
operators. These rules are evaluated against a dataset of multiple different properties from a bundle or
any given source, and the output is solved into a single bundle or Operator that satisfies all of those rules
within a single constraint.

Example cel constraint with multiple rules

2.4.4.4.2. Compound constraints (all, any, not)

Compound constraint types are evaluated following their logical definitions.

The following is an example of a conjunctive constraint (all) of two packages and one GVK. That is, they
must all be satisfied by installed bundles:

Example all constraint

The following is an example of a disjunctive constraint (any) of three versions of the same GVK. That is,

type: olm.constraint
value:
 failureMessage: 'require to have "certified"'
 cel:
 rule: 'properties.exists(p, p.type == "certified")'

type: olm.constraint
value:
 failureMessage: 'require to have "certified" and "stable" properties'
 cel:
 rule: 'properties.exists(p, p.type == "certified") && properties.exists(p, p.type == "stable")'

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 failureMessage: All are required for Red because...
 all:
 constraints:
 - failureMessage: Package blue is needed for...
 package:
 name: blue
 versionRange: '>=1.0.0'
 - failureMessage: GVK Green/v1 is needed for...
 gvk:
 group: greens.example.com
 version: v1
 kind: Green

OpenShift Container Platform 4.19 Operators

50

https://github.com/google/cel-go

The following is an example of a disjunctive constraint (any) of three versions of the same GVK. That is,
at least one must be satisfied by installed bundles:

Example any constraint

The following is an example of a negation constraint (not) of one version of a GVK. That is, this GVK
cannot be provided by any bundle in the result set:

Example not constraint

The negation semantics might appear unclear in the not constraint context. To clarify, the negation is
really instructing the resolver to remove any possible solution that includes a particular GVK, package at
a version, or satisfies some child compound constraint from the result set.

As a corollary, the not compound constraint should only be used within all or any constraints, because

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 failureMessage: Any are required for Red because...
 any:
 constraints:
 - gvk:
 group: blues.example.com
 version: v1beta1
 kind: Blue
 - gvk:
 group: blues.example.com
 version: v1beta2
 kind: Blue
 - gvk:
 group: blues.example.com
 version: v1
 kind: Blue

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 all:
 constraints:
 - failureMessage: Package blue is needed for...
 package:
 name: blue
 versionRange: '>=1.0.0'
 - failureMessage: Cannot be required for Red because...
 not:
 constraints:
 - gvk:
 group: greens.example.com
 version: v1alpha1
 kind: greens

CHAPTER 2. UNDERSTANDING OPERATORS

51

As a corollary, the not compound constraint should only be used within all or any constraints, because
negating without first selecting a possible set of dependencies does not make sense.

2.4.4.4.3. Nested compound constraints

A nested compound constraint, one that contains at least one child compound constraint along with zero
or more simple constraints, is evaluated from the bottom up following the procedures for each
previously described constraint type.

The following is an example of a disjunction of conjunctions, where one, the other, or both can satisfy
the constraint:

Example nested compound constraint

NOTE

The maximum raw size of an olm.constraint type is 64KB to limit resource exhaustion
attacks.

2.4.4.5. Dependency preferences

There can be many options that equally satisfy a dependency of an Operator. The dependency resolver
in Operator Lifecycle Manager (OLM) determines which option best fits the requirements of the
requested Operator. As an Operator author or user, it can be important to understand how these
choices are made so that dependency resolution is clear.

2.4.4.5.1. Catalog priority

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 failureMessage: Required for Red because...
 any:
 constraints:
 - all:
 constraints:
 - package:
 name: blue
 versionRange: '>=1.0.0'
 - gvk:
 group: blues.example.com
 version: v1
 kind: Blue
 - all:
 constraints:
 - package:
 name: blue
 versionRange: '<1.0.0'
 - gvk:
 group: blues.example.com
 version: v1beta1
 kind: Blue

OpenShift Container Platform 4.19 Operators

52

1

On OpenShift Container Platform clusters, OLM reads catalog sources to know which Operators are
available for installation.

Example CatalogSource object

Specify the value of legacy or restricted. If the field is not set, the default value is legacy. In a
future OpenShift Container Platform release, it is planned that the default value will be restricted.

NOTE

If your catalog cannot run with restricted permissions, it is recommended that you
manually set this field to legacy.

A CatalogSource object has a priority field, which is used by the resolver to know how to prefer options
for a dependency.

There are two rules that govern catalog preference:

Options in higher-priority catalogs are preferred to options in lower-priority catalogs.

Options in the same catalog as the dependent are preferred to any other catalogs.

2.4.4.5.2. Channel ordering

An Operator package in a catalog is a collection of update channels that a user can subscribe to in
OpenShift Container Platform clusters. Channels can be used to provide a particular stream of updates
for a minor release (1.2, 1.3) or a release frequency (stable, fast).

It is likely that a dependency might be satisfied by Operators in the same package, but different
channels. For example, version 1.2 of an Operator might exist in both the stable and fast channels.

Each package has a default channel, which is always preferred to non-default channels. If no option in
the default channel can satisfy a dependency, options are considered from the remaining channels in
lexicographic order of the channel name.

2.4.4.5.3. Order within a channel

There are almost always multiple options to satisfy a dependency within a single channel. For example,
Operators in one package and channel provide the same set of APIs.

apiVersion: "operators.coreos.com/v1alpha1"
kind: "CatalogSource"
metadata:
 name: "my-operators"
 namespace: "operators"
spec:
 sourceType: grpc
 grpcPodConfig:
 securityContextConfig: <security_mode> 1
 image: example.com/my/operator-index:v1
 displayName: "My Operators"
 priority: 100

CHAPTER 2. UNDERSTANDING OPERATORS

53

When a user creates a subscription, they indicate which channel to receive updates from. This
immediately reduces the search to just that one channel. But within the channel, it is likely that many
Operators satisfy a dependency.

Within a channel, newer Operators that are higher up in the update graph are preferred. If the head of a
channel satisfies a dependency, it will be tried first.

2.4.4.5.4. Other constraints

In addition to the constraints supplied by package dependencies, OLM includes additional constraints to
represent the desired user state and enforce resolution invariants.

2.4.4.5.4.1. Subscription constraint

A subscription constraint filters the set of Operators that can satisfy a subscription. Subscriptions are
user-supplied constraints for the dependency resolver. They declare the intent to either install a new
Operator if it is not already on the cluster, or to keep an existing Operator updated.

2.4.4.5.4.2. Package constraint

Within a namespace, no two Operators may come from the same package.

2.4.4.5.5. Additional resources

Catalog health requirements

2.4.4.6. CRD upgrades

OLM upgrades a custom resource definition (CRD) immediately if it is owned by a singular cluster
service version (CSV). If a CRD is owned by multiple CSVs, then the CRD is upgraded when it has
satisfied all of the following backward compatible conditions:

All existing serving versions in the current CRD are present in the new CRD.

All existing instances, or custom resources, that are associated with the serving versions of the
CRD are valid when validated against the validation schema of the new CRD.

2.4.4.7. Dependency best practices

When specifying dependencies, there are best practices you should consider.

Depend on APIs or a specific version range of Operators

Operators can add or remove APIs at any time; always specify an olm.gvk dependency on any APIs
your Operators requires. The exception to this is if you are specifying olm.package constraints
instead.

Set a minimum version

The Kubernetes documentation on API changes describes what changes are allowed for Kubernetes-
style Operators. These versioning conventions allow an Operator to update an API without bumping
the API version, as long as the API is backwards-compatible.
For Operator dependencies, this means that knowing the API version of a dependency might not be
enough to ensure the dependent Operator works as intended.

For example:

OpenShift Container Platform 4.19 Operators

54

TestOperator v1.0.0 provides v1alpha1 API version of the MyObject resource.

TestOperator v1.0.1 adds a new field spec.newfield to MyObject, but still at v1alpha1.

Your Operator might require the ability to write spec.newfield into the MyObject resource. An
olm.gvk constraint alone is not enough for OLM to determine that you need TestOperator v1.0.1 and
not TestOperator v1.0.0.

Whenever possible, if a specific Operator that provides an API is known ahead of time, specify an
additional olm.package constraint to set a minimum.

Omit a maximum version or allow a very wide range

Because Operators provide cluster-scoped resources such as API services and CRDs, an Operator
that specifies a small window for a dependency might unnecessarily constrain updates for other
consumers of that dependency.
Whenever possible, do not set a maximum version. Alternatively, set a very wide semantic range to
prevent conflicts with other Operators. For example, >1.0.0 <2.0.0.

Unlike with conventional package managers, Operator authors explicitly encode that updates are
safe through channels in OLM. If an update is available for an existing subscription, it is assumed that
the Operator author is indicating that it can update from the previous version. Setting a maximum
version for a dependency overrides the update stream of the author by unnecessarily truncating it at
a particular upper bound.

NOTE

Cluster administrators cannot override dependencies set by an Operator author.

However, maximum versions can and should be set if there are known incompatibilities that must be
avoided. Specific versions can be omitted with the version range syntax, for example > 1.0.0 !1.2.1.

Additional resources

Kubernetes documentation: Changing the API

2.4.4.8. Dependency caveats

When specifying dependencies, there are caveats you should consider.

No compound constraints (AND)

There is currently no method for specifying an AND relationship between constraints. In other words,
there is no way to specify that one Operator depends on another Operator that both provides a
given API and has version >1.1.0.
This means that when specifying a dependency such as:

dependencies:
- type: olm.package
 value:
 packageName: etcd
 version: ">3.1.0"
- type: olm.gvk
 value:

CHAPTER 2. UNDERSTANDING OPERATORS

55

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api_changes.md#readme

It would be possible for OLM to satisfy this with two Operators: one that provides EtcdCluster and
one that has version >3.1.0. Whether that happens, or whether an Operator is selected that satisfies
both constraints, depends on the ordering that potential options are visited. Dependency
preferences and ordering options are well-defined and can be reasoned about, but to exercise
caution, Operators should stick to one mechanism or the other.

Cross-namespace compatibility

OLM performs dependency resolution at the namespace scope. It is possible to get into an update
deadlock if updating an Operator in one namespace would be an issue for an Operator in another
namespace, and vice-versa.

2.4.4.9. Example dependency resolution scenarios

In the following examples, a provider is an Operator which "owns" a CRD or API service.

2.4.4.9.1. Example: Deprecating dependent APIs

A and B are APIs (CRDs):

The provider of A depends on B.

The provider of B has a subscription.

The provider of B updates to provide C but deprecates B.

This results in:

B no longer has a provider.

A no longer works.

This is a case OLM prevents with its upgrade strategy.

2.4.4.9.2. Example: Version deadlock

A and B are APIs:

The provider of A requires B.

The provider of B requires A.

The provider of A updates to (provide A2, require B2) and deprecate A.

The provider of B updates to (provide B2, require A2) and deprecate B.

If OLM attempts to update A without simultaneously updating B, or vice-versa, it is unable to progress
to new versions of the Operators, even though a new compatible set can be found.

This is another case OLM prevents with its upgrade strategy.

2.4.5. Operator groups

 group: etcd.database.coreos.com
 kind: EtcdCluster
 version: v1beta2

OpenShift Container Platform 4.19 Operators

56

This guide outlines the use of Operator groups with Operator Lifecycle Manager (OLM) in OpenShift
Container Platform.

2.4.5.1. About Operator groups

An Operator group, defined by the OperatorGroup resource, provides multitenant configuration to
OLM-installed Operators. An Operator group selects target namespaces in which to generate required
RBAC access for its member Operators.

The set of target namespaces is provided by a comma-delimited string stored in the
olm.targetNamespaces annotation of a cluster service version (CSV). This annotation is applied to the
CSV instances of member Operators and is projected into their deployments.

2.4.5.2. Operator group membership

An Operator is considered a member of an Operator group if the following conditions are true:

The CSV of the Operator exists in the same namespace as the Operator group.

The install modes in the CSV of the Operator support the set of namespaces targeted by the
Operator group.

An install mode in a CSV consists of an InstallModeType field and a boolean Supported field. The spec
of a CSV can contain a set of install modes of four distinct InstallModeTypes:

Table 2.5. Install modes and supported Operator groups

InstallModeType Description

OwnNamespace The Operator can be a member of an Operator group that selects its
own namespace.

SingleNamespace The Operator can be a member of an Operator group that selects one
namespace.

MultiNamespace The Operator can be a member of an Operator group that selects more
than one namespace.

AllNamespaces The Operator can be a member of an Operator group that selects all
namespaces (target namespace set is the empty string "").

NOTE

If the spec of a CSV omits an entry of InstallModeType, then that type is considered
unsupported unless support can be inferred by an existing entry that implicitly supports it.

2.4.5.3. Target namespace selection

You can explicitly name the target namespace for an Operator group using the
spec.targetNamespaces parameter:

apiVersion: operators.coreos.com/v1

CHAPTER 2. UNDERSTANDING OPERATORS

57

You can alternatively specify a namespace using a label selector with the spec.selector parameter:

IMPORTANT

Listing multiple namespaces via spec.targetNamespaces or use of a label selector via
spec.selector is not recommended, as the support for more than one target namespace
in an Operator group will likely be removed in a future release.

If both spec.targetNamespaces and spec.selector are defined, spec.selector is ignored.
Alternatively, you can omit both spec.selector and spec.targetNamespaces to specify a global
Operator group, which selects all namespaces:

The resolved set of selected namespaces is shown in the status.namespaces parameter of an Opeator
group. The status.namespace of a global Operator group contains the empty string (""), which signals
to a consuming Operator that it should watch all namespaces.

2.4.5.4. Operator group CSV annotations

Member CSVs of an Operator group have the following annotations:

Annotation Description

olm.operatorGroup=<group_name> Contains the name of the Operator group.

olm.operatorNamespace=
<group_namespace>

Contains the namespace of the Operator group.

kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
spec:
 targetNamespaces:
 - my-namespace

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
spec:
 selector:
 cool.io/prod: "true"

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace

OpenShift Container Platform 4.19 Operators

58

olm.targetNamespaces=
<target_namespaces>

Contains a comma-delimited string that lists the
target namespace selection of the Operator group.

Annotation Description

NOTE

All annotations except olm.targetNamespaces are included with copied CSVs. Omitting
the olm.targetNamespaces annotation on copied CSVs prevents the duplication of
target namespaces between tenants.

2.4.5.5. Provided APIs annotation

A group/version/kind (GVK) is a unique identifier for a Kubernetes API. Information about what GVKs are
provided by an Operator group are shown in an olm.providedAPIs annotation. The value of the
annotation is a string consisting of <kind>.<version>.<group> delimited with commas. The GVKs of
CRDs and API services provided by all active member CSVs of an Operator group are included.

Review the following example of an OperatorGroup object with a single active member CSV that
provides the PackageManifest resource:

2.4.5.6. Role-based access control

When an Operator group is created, three cluster roles are generated. When the cluster roles are
generated, they are automatically suffixed with a hash value to ensure that each cluster role is unique.
Each Operator group contains a single aggregation rule with a cluster role selector set to match a label,
as shown in the following table:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 annotations:
 olm.providedAPIs: PackageManifest.v1alpha1.packages.apps.redhat.com
 name: olm-operators
 namespace: local
 ...
spec:
 selector: {}
 serviceAccountName:
 metadata:
 creationTimestamp: null
 targetNamespaces:
 - local
status:
 lastUpdated: 2019-02-19T16:18:28Z
 namespaces:
 - local

CHAPTER 2. UNDERSTANDING OPERATORS

59

Cluster role Label to match

olm.og.<operatorgroup_name>-admin-
<hash_value>

olm.opgroup.permissions/aggregate-to-
admin: <operatorgroup_name>

olm.og.<operatorgroup_name>-edit-
<hash_value>

olm.opgroup.permissions/aggregate-to-edit:
<operatorgroup_name>

olm.og.<operatorgroup_name>-view-
<hash_value>

olm.opgroup.permissions/aggregate-to-view:
<operatorgroup_name>

NOTE

To use the cluster role of an Operator group to assign role-based access control (RBAC)
to a resource, get the full name of cluster role and hash value by running the following
command:

Because the hash value is generated when the Operator group is created, you must
create the Operator group before you can look up the complete name of the cluster role.

The following RBAC resources are generated when a CSV becomes an active member of an Operator
group, as long as the CSV is watching all namespaces with the AllNamespaces install mode and is not in
a failed state with reason InterOperatorGroupOwnerConflict:

Cluster roles for each API resource from a CRD

Cluster roles for each API resource from an API service

Additional roles and role bindings

Table 2.6. Cluster roles generated for each API resource from a CRD

Cluster role Settings

<kind>.<group>-<version>-admin Verbs on <kind>:

*

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

$ oc get clusterroles | grep <operatorgroup_name>

OpenShift Container Platform 4.19 Operators

60

<kind>.<group>-<version>-edit Verbs on <kind>:

create

update

patch

delete

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

<kind>.<group>-<version>-view Verbs on <kind>:

get

list

watch

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

<kind>.<group>-<version>-view-crdview Verbs on apiextensions.k8s.io
customresourcedefinitions <crd-name>:

get

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

Cluster role Settings

Table 2.7. Cluster roles generated for each API resource from an API service

CHAPTER 2. UNDERSTANDING OPERATORS

61

Cluster role Settings

<kind>.<group>-<version>-admin Verbs on <kind>:

*

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

<kind>.<group>-<version>-edit Verbs on <kind>:

create

update

patch

delete

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

<kind>.<group>-<version>-view Verbs on <kind>:

get

list

watch

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

Additional roles and role bindings

If the CSV defines exactly one target namespace that contains *, then a cluster role and
corresponding cluster role binding are generated for each permission defined in the
permissions field of the CSV. All resources generated are given the olm.owner: <csv_name>
and olm.owner.namespace: <csv_namespace> labels.

OpenShift Container Platform 4.19 Operators

62

If the CSV does not define exactly one target namespace that contains *, then all roles and role
bindings in the Operator namespace with the olm.owner: <csv_name> and
olm.owner.namespace: <csv_namespace> labels are copied into the target namespace.

2.4.5.7. Copied CSVs

OLM creates copies of all active member CSVs of an Operator group in each of the target namespaces
of that Operator group. The purpose of a copied CSV is to tell users of a target namespace that a
specific Operator is configured to watch resources created there.

Copied CSVs have a status reason Copied and are updated to match the status of their source CSV.
The olm.targetNamespaces annotation is stripped from copied CSVs before they are created on the
cluster. Omitting the target namespace selection avoids the duplication of target namespaces between
tenants.

Copied CSVs are deleted when their source CSV no longer exists or the Operator group that their
source CSV belongs to no longer targets the namespace of the copied CSV.

NOTE

By default, the disableCopiedCSVs field is disabled. After enabling a
disableCopiedCSVs field, the OLM deletes existing copied CSVs on a cluster. When a
disableCopiedCSVs field is disabled, the OLM adds copied CSVs again.

Disable the disableCopiedCSVs field:

Enable the disableCopiedCSVs field:

2.4.5.8. Static Operator groups

An Operator group is static if its spec.staticProvidedAPIs field is set to true. As a result, OLM does not
modify the olm.providedAPIs annotation of an Operator group, which means that it can be set in
advance. This is useful when a user wants to use an Operator group to prevent resource contention in a
set of namespaces but does not have active member CSVs that provide the APIs for those resources.

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:
 name: cluster
spec:
 features:
 disableCopiedCSVs: false
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:
 name: cluster
spec:
 features:
 disableCopiedCSVs: true
EOF

CHAPTER 2. UNDERSTANDING OPERATORS

63

Below is an example of an Operator group that protects Prometheus resources in all namespaces with
the something.cool.io/cluster-monitoring: "true" annotation:

2.4.5.9. Operator group intersection

Two Operator groups are said to have intersecting provided APIs if the intersection of their target
namespace sets is not an empty set and the intersection of their provided API sets, defined by
olm.providedAPIs annotations, is not an empty set.

A potential issue is that Operator groups with intersecting provided APIs can compete for the same
resources in the set of intersecting namespaces.

NOTE

When checking intersection rules, an Operator group namespace is always included as
part of its selected target namespaces.

2.4.5.9.1. Rules for intersection

Each time an active member CSV synchronizes, OLM queries the cluster for the set of intersecting
provided APIs between the Operator group of the CSV and all others. OLM then checks if that set is an
empty set:

If true and the CSV’s provided APIs are a subset of the Operator group’s:

Continue transitioning.

If true and the CSV’s provided APIs are not a subset of the Operator group’s:

If the Operator group is static:

Clean up any deployments that belong to the CSV.

Transition the CSV to a failed state with status reason
CannotModifyStaticOperatorGroupProvidedAPIs.

If the Operator group is not static:

Replace the Operator group’s olm.providedAPIs annotation with the union of itself
and the CSV’s provided APIs.

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: cluster-monitoring
 namespace: cluster-monitoring
 annotations:
 olm.providedAPIs:
Alertmanager.v1.monitoring.coreos.com,Prometheus.v1.monitoring.coreos.com,PrometheusRule.v1.mo
nitoring.coreos.com,ServiceMonitor.v1.monitoring.coreos.com
spec:
 staticProvidedAPIs: true
 selector:
 matchLabels:
 something.cool.io/cluster-monitoring: "true"

OpenShift Container Platform 4.19 Operators

64

If false and the CSV’s provided APIs are not a subset of the Operator group’s:

Clean up any deployments that belong to the CSV.

Transition the CSV to a failed state with status reason InterOperatorGroupOwnerConflict.

If false and the CSV’s provided APIs are a subset of the Operator group’s:

If the Operator group is static:

Clean up any deployments that belong to the CSV.

Transition the CSV to a failed state with status reason
CannotModifyStaticOperatorGroupProvidedAPIs.

If the Operator group is not static:

Replace the Operator group’s olm.providedAPIs annotation with the difference
between itself and the CSV’s provided APIs.

NOTE

Failure states caused by Operator groups are non-terminal.

The following actions are performed each time an Operator group synchronizes:

The set of provided APIs from active member CSVs is calculated from the cluster. Note that
copied CSVs are ignored.

The cluster set is compared to olm.providedAPIs, and if olm.providedAPIs contains any extra
APIs, then those APIs are pruned.

All CSVs that provide the same APIs across all namespaces are requeued. This notifies
conflicting CSVs in intersecting groups that their conflict has possibly been resolved, either
through resizing or through deletion of the conflicting CSV.

2.4.5.10. Limitations for multitenant Operator management

OpenShift Container Platform provides limited support for simultaneously installing different versions
of an Operator on the same cluster. Operator Lifecycle Manager (OLM) installs Operators multiple
times in different namespaces. One constraint of this is that the Operator’s API versions must be the
same.

Operators are control plane extensions due to their usage of CustomResourceDefinition objects
(CRDs), which are global resources in Kubernetes. Different major versions of an Operator often have
incompatible CRDs. This makes them incompatible to install simultaneously in different namespaces on
a cluster.

All tenants, or namespaces, share the same control plane of a cluster. Therefore, tenants in a multitenant
cluster also share global CRDs, which limits the scenarios in which different instances of the same
Operator can be used in parallel on the same cluster.

The supported scenarios include the following:

Operators of different versions that ship the exact same CRD definition (in case of versioned
CRDs, the exact same set of versions)

CHAPTER 2. UNDERSTANDING OPERATORS

65

Operators of different versions that do not ship a CRD, and instead have their CRD available in a
separate bundle on the OperatorHub

All other scenarios are not supported, because the integrity of the cluster data cannot be guaranteed if
there are multiple competing or overlapping CRDs from different Operator versions to be reconciled on
the same cluster.

Additional resources

Operator Lifecycle Manager (OLM) → Multitenancy and Operator colocation

Operators in multitenant clusters

Allowing non-cluster administrators to install Operators

2.4.5.11. Troubleshooting Operator groups

2.4.5.11.1. Membership

An install plan’s namespace must contain only one Operator group. When attempting to
generate a cluster service version (CSV) in a namespace, an install plan considers an Operator
group invalid in the following scenarios:

No Operator groups exist in the install plan’s namespace.

Multiple Operator groups exist in the install plan’s namespace.

An incorrect or non-existent service account name is specified in the Operator group.

If an install plan encounters an invalid Operator group, the CSV is not generated and the
InstallPlan resource continues to install with a relevant message. For example, the following
message is provided if more than one Operator group exists in the same namespace:

where count= specifies the number of Operator groups in the namespace.

If the install modes of a CSV do not support the target namespace selection of the Operator
group in its namespace, the CSV transitions to a failure state with the reason
UnsupportedOperatorGroup. CSVs in a failed state for this reason transition to pending after
either the target namespace selection of the Operator group changes to a supported
configuration, or the install modes of the CSV are modified to support the target namespace
selection.

2.4.6. Multitenancy and Operator colocation

This guide outlines multitenancy and Operator colocation in Operator Lifecycle Manager (OLM).

2.4.6.1. Colocation of Operators in a namespace

Operator Lifecycle Manager (OLM) handles OLM-managed Operators that are installed in the same
namespace, meaning their Subscription resources are colocated in the same namespace, as related
Operators. Even if they are not actually related, OLM considers their states, such as their version and
update policy, when any one of them is updated.

attenuated service account query failed - more than one operator group(s) are managing this
namespace count=2

OpenShift Container Platform 4.19 Operators

66

This default behavior manifests in two ways:

InstallPlan resources of pending updates include ClusterServiceVersion (CSV) resources of
all other Operators that are in the same namespace.

All Operators in the same namespace share the same update policy. For example, if one
Operator is set to manual updates, all other Operators' update policies are also set to manual.

These scenarios can lead to the following issues:

It becomes hard to reason about install plans for Operator updates, because there are many
more resources defined in them than just the updated Operator.

It becomes impossible to have some Operators in a namespace update automatically while other
are updated manually, which is a common desire for cluster administrators.

These issues usually surface because, when installing Operators with the OpenShift Container Platform
web console, the default behavior installs Operators that support the All namespaces install mode into
the default openshift-operators global namespace.

As a cluster administrator, you can bypass this default behavior manually by using the following
workflow:

1. Create a namespace for the installation of the Operator.

2. Create a custom global Operator group, which is an Operator group that watches all
namespaces. By associating this Operator group with the namespace you just created, it makes
the installation namespace a global namespace, which makes Operators installed there available
in all namespaces.

3. Install the desired Operator in the installation namespace.

If the Operator has dependencies, the dependencies are automatically installed in the pre-created
namespace. As a result, it is then valid for the dependency Operators to have the same update policy
and shared install plans. For a detailed procedure, see "Installing global Operators in custom
namespaces".

Additional resources

Installing global Operators in custom namespaces

Operators in multitenant clusters

2.4.7. Operator conditions

This guide outlines how Operator Lifecycle Manager (OLM) uses Operator conditions.

2.4.7.1. About Operator conditions

As part of its role in managing the lifecycle of an Operator, Operator Lifecycle Manager (OLM) infers
the state of an Operator from the state of Kubernetes resources that define the Operator. While this
approach provides some level of assurance that an Operator is in a given state, there are many instances
where an Operator might need to communicate information to OLM that could not be inferred
otherwise. This information can then be used by OLM to better manage the lifecycle of the Operator.

OLM provides a custom resource definition (CRD) called OperatorCondition that allows Operators to

CHAPTER 2. UNDERSTANDING OPERATORS

67

1

2

communicate conditions to OLM. There are a set of supported conditions that influence management
of the Operator by OLM when present in the Spec.Conditions array of an OperatorCondition
resource.

NOTE

By default, the Spec.Conditions array is not present in an OperatorCondition object
until it is either added by a user or as a result of custom Operator logic.

2.4.7.2. Supported conditions

Operator Lifecycle Manager (OLM) supports the following Operator conditions.

2.4.7.2.1. Upgradeable condition

The Upgradeable Operator condition prevents an existing cluster service version (CSV) from being
replaced by a newer version of the CSV. This condition is useful when:

An Operator is about to start a critical process and should not be upgraded until the process is
completed.

An Operator is performing a migration of custom resources (CRs) that must be completed
before the Operator is ready to be upgraded.

IMPORTANT

Setting the Upgradeable Operator condition to the False value does not avoid pod
disruption. If you must ensure your pods are not disrupted, see "Using pod disruption
budgets to specify the number of pods that must be up" and "Graceful termination" in
the "Additional resources" section.

Example Upgradeable Operator condition

Name of the condition.

A False value indicates the Operator is not ready to be upgraded. OLM prevents a CSV that
replaces the existing CSV of the Operator from leaving the Pending phase. A False value does not
block cluster upgrades.

apiVersion: operators.coreos.com/v1
kind: OperatorCondition
metadata:
 name: my-operator
 namespace: operators
spec:
 conditions:
 - type: Upgradeable 1
 status: "False" 2
 reason: "migration"
 message: "The Operator is performing a migration."
 lastTransitionTime: "2020-08-24T23:15:55Z"

OpenShift Container Platform 4.19 Operators

68

2.4.7.3. Additional resources

Managing Operator conditions

Using pod disruption budgets to specify the number of pods that must be up

Graceful termination

2.4.8. Operator Lifecycle Manager metrics

2.4.8.1. Exposed metrics

Operator Lifecycle Manager (OLM) exposes certain OLM-specific resources for use by the
Prometheus-based OpenShift Container Platform cluster monitoring stack.

Table 2.8. Metrics exposed by OLM

Name Description

catalog_source
_count

Number of catalog sources.

catalogsource_r
eady

State of a catalog source. The value 1 indicates that the catalog source is in a READY
state. The value of 0 indicates that the catalog source is not in a READY state.

csv_abnormal When reconciling a cluster service version (CSV), present whenever a CSV version is in
any state other than Succeeded, for example when it is not installed. Includes the
name, namespace, phase, reason, and version labels. A Prometheus alert is
created when this metric is present.

csv_count Number of CSVs successfully registered.

csv_succeeded When reconciling a CSV, represents whether a CSV version is in a Succeeded state
(value 1) or not (value 0). Includes the name, namespace, and version labels.

csv_upgrade_c
ount

Monotonic count of CSV upgrades.

install_plan_co
unt

Number of install plans.

installplan_war
nings_total

Monotonic count of warnings generated by resources, such as deprecated resources,
included in an install plan.

olm_resolution_
duration_secon
ds

The duration of a dependency resolution attempt.

subscription_co
unt

Number of subscriptions.

CHAPTER 2. UNDERSTANDING OPERATORS

69

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-pods-configuring-pod-distruption-about_nodes-pods-configuring
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/building_applications/#deployments-graceful-termination_route-based-deployment-strategies

subscription_sy
nc_total

Monotonic count of subscription syncs. Includes the channel, installed CSV, and
subscription name labels.

Name Description

2.4.9. Webhook management in Operator Lifecycle Manager

Webhooks allow Operator authors to intercept, modify, and accept or reject resources before they are
saved to the object store and handled by the Operator controller. Operator Lifecycle Manager (OLM)
can manage the lifecycle of these webhooks when they are shipped alongside your Operator.

2.4.9.1. Additional resources

Types of webhook admission plugins

Kubernetes documentation:

Validating admission webhooks

Mutating admission webhooks

Conversion webhooks

2.5. UNDERSTANDING OPERATORHUB

2.5.1. About OperatorHub

OperatorHub is the web console interface in OpenShift Container Platform that cluster administrators
use to discover and install Operators. With one click, an Operator can be pulled from its off-cluster
source, installed and subscribed on the cluster, and made ready for engineering teams to self-service
manage the product across deployment environments using Operator Lifecycle Manager (OLM).

Cluster administrators can choose from catalogs grouped into the following categories:

Category Description

Red Hat Operators Red Hat products packaged and shipped by Red Hat. Supported by Red Hat.

Certified
Operators

Products from leading independent software vendors (ISVs). Red Hat partners with
ISVs to package and ship. Supported by the ISV.

Community
Operators

Optionally-visible software maintained by relevant representatives in the redhat-
openshift-ecosystem/community-operators-prod/operators GitHub repository. No
official support.

Custom Operators Operators you add to the cluster yourself. If you have not added any custom Operators,
the Custom category does not appear in the web console on your OperatorHub.

Operators on OperatorHub are packaged to run on OLM. This includes a YAML file called a cluster

OpenShift Container Platform 4.19 Operators

70

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#admission-webhook-types_admission-plug-ins
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#webhook-conversion
https://github.com/redhat-openshift-ecosystem/community-operators-prod/tree/main/operators

1

2

service version (CSV) containing all of the CRDs, RBAC rules, deployments, and container images
required to install and securely run the Operator. It also contains user-visible information like a
description of its features and supported Kubernetes versions.

2.5.2. OperatorHub architecture

The OperatorHub UI component is driven by the Marketplace Operator by default on OpenShift
Container Platform in the openshift-marketplace namespace.

2.5.2.1. OperatorHub custom resource

The Marketplace Operator manages an OperatorHub custom resource (CR) named cluster that
manages the default CatalogSource objects provided with OperatorHub. You can modify this resource
to enable or disable the default catalogs, which is useful when configuring OpenShift Container Platform
in restricted network environments.

Example OperatorHub custom resource

disableAllDefaultSources is an override that controls availability of all default catalogs that are
configured by default during an OpenShift Container Platform installation.

Disable default catalogs individually by changing the disabled parameter value per source.

2.5.3. Additional resources

Catalog source

Operator installation and upgrade workflow in OLM

Red Hat Partner Connect

2.6. RED HAT-PROVIDED OPERATOR CATALOGS

Red Hat provides several Operator catalogs that are included with OpenShift Container Platform by
default.

IMPORTANT

apiVersion: config.openshift.io/v1
kind: OperatorHub
metadata:
 name: cluster
spec:
 disableAllDefaultSources: true 1
 sources: [2
 {
 name: "community-operators",
 disabled: false
 }
]

CHAPTER 2. UNDERSTANDING OPERATORS

71

https://connect.redhat.com

IMPORTANT

As of OpenShift Container Platform 4.11, the default Red Hat-provided Operator catalog
releases in the file-based catalog format. The default Red Hat-provided Operator
catalogs for OpenShift Container Platform 4.6 through 4.10 released in the deprecated
SQLite database format.

The opm subcommands, flags, and functionality related to the SQLite database format
are also deprecated and will be removed in a future release. The features are still
supported and must be used for catalogs that use the deprecated SQLite database
format.

Many of the opm subcommands and flags for working with the SQLite database format,
such as opm index prune, do not work with the file-based catalog format. For more
information about working with file-based catalogs, see Managing custom catalogs,
Operator Framework packaging format, and Mirroring images for a disconnected
installation using the oc-mirror plugin.

2.6.1. About Operator catalogs

An Operator catalog is a repository of metadata that Operator Lifecycle Manager (OLM) can query to
discover and install Operators and their dependencies on a cluster. OLM always installs Operators from
the latest version of a catalog.

An index image, based on the Operator bundle format, is a containerized snapshot of a catalog. It is an
immutable artifact that contains the database of pointers to a set of Operator manifest content. A
catalog can reference an index image to source its content for OLM on the cluster.

As catalogs are updated, the latest versions of Operators change, and older versions may be removed or
altered. In addition, when OLM runs on an OpenShift Container Platform cluster in a restricted network
environment, it is unable to access the catalogs directly from the internet to pull the latest content.

As a cluster administrator, you can create your own custom index image, either based on a Red Hat-
provided catalog or from scratch, which can be used to source the catalog content on the cluster.
Creating and updating your own index image provides a method for customizing the set of Operators
available on the cluster, while also avoiding the aforementioned restricted network environment issues.

IMPORTANT

Kubernetes periodically deprecates certain APIs that are removed in subsequent
releases. As a result, Operators are unable to use removed APIs starting with the version
of OpenShift Container Platform that uses the Kubernetes version that removed the API.

NOTE

Support for the legacy package manifest format for Operators, including custom catalogs
that were using the legacy format, is removed in OpenShift Container Platform 4.8 and
later.

When creating custom catalog images, previous versions of OpenShift Container
Platform 4 required using the oc adm catalog build command, which was deprecated
for several releases and is now removed. With the availability of Red Hat-provided index
images starting in OpenShift Container Platform 4.6, catalog builders must use the opm
index command to manage index images.

OpenShift Container Platform 4.19 Operators

72

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#installing-mirroring-disconnected

Additional resources

Managing custom catalogs

Packaging format

Using Operator Lifecycle Manager in disconnected environments

2.6.2. About Red Hat-provided Operator catalogs

The Red Hat-provided catalog sources are installed by default in the openshift-marketplace
namespace, which makes the catalogs available cluster-wide in all namespaces.

The following Operator catalogs are distributed by Red Hat:

Catalog Index image Description

redhat-
operators

registry.redhat.io/redhat/redhat-operator-
index:v4.19

Red Hat products
packaged and shipped
by Red Hat. Supported
by Red Hat.

certified-
operators

registry.redhat.io/redhat/certified-operator-
index:v4.19

Products from leading
independent software
vendors (ISVs). Red Hat
partners with ISVs to
package and ship.
Supported by the ISV.

community-
operators

registry.redhat.io/redhat/community-operator-
index:v4.19

Software maintained by
relevant representatives
in the redhat-openshift-
ecosystem/community-
operators-
prod/operators GitHub
repository. No official
support.

During a cluster upgrade, the index image tag for the default Red Hat-provided catalog sources are
updated automatically by the Cluster Version Operator (CVO) so that Operator Lifecycle Manager
(OLM) pulls the updated version of the catalog. For example during an upgrade from OpenShift
Container Platform 4.8 to 4.9, the spec.image field in the CatalogSource object for the redhat-
operators catalog is updated from:

to:

2.7. OPERATORS IN MULTITENANT CLUSTERS

registry.redhat.io/redhat/redhat-operator-index:v4.8

registry.redhat.io/redhat/redhat-operator-index:v4.9

CHAPTER 2. UNDERSTANDING OPERATORS

73

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#olm-restricted-networks
https://github.com/redhat-openshift-ecosystem/community-operators-prod/tree/main/operators

The default behavior for Operator Lifecycle Manager (OLM) aims to provide simplicity during Operator
installation. However, this behavior can lack flexibility, especially in multitenant clusters. In order for
multiple tenants on an OpenShift Container Platform cluster to use an Operator, the default behavior of
OLM requires that administrators install the Operator in All namespaces mode, which can be considered
to violate the principle of least privilege.

Consider the following scenarios to determine which Operator installation workflow works best for your
environment and requirements.

Additional resources

Common terms: Multitenant

Limitations for multitenant Operator management

2.7.1. Default Operator install modes and behavior

When installing Operators with the web console as an administrator, you typically have two choices for
the install mode, depending on the Operator’s capabilities:

Single namespace

Installs the Operator in the chosen single namespace, and makes all permissions that the Operator
requests available in that namespace.

All namespaces

Installs the Operator in the default openshift-operators namespace to watch and be made available
to all namespaces in the cluster. Makes all permissions that the Operator requests available in all
namespaces. In some cases, an Operator author can define metadata to give the user a second
option for that Operator’s suggested namespace.

This choice also means that users in the affected namespaces get access to the Operators APIs, which
can leverage the custom resources (CRs) they own, depending on their role in the namespace:

The namespace-admin and namespace-edit roles can read/write to the Operator APIs,
meaning they can use them.

The namespace-view role can read CR objects of that Operator.

For Single namespace mode, because the Operator itself installs in the chosen namespace, its pod and
service account are also located there. For All namespaces mode, the Operator’s privileges are all
automatically elevated to cluster roles, meaning the Operator has those permissions in all namespaces.

Additional resources

Adding Operators to a cluster

Install modes types

2.7.2. Recommended solution for multitenant clusters

While a Multinamespace install mode does exist, it is supported by very few Operators. As a middle
ground solution between the standard All namespaces and Single namespace install modes, you can
install multiple instances of the same Operator, one for each tenant, by using the following workflow:

1. Create a namespace for the tenant Operator that is separate from the tenant’s namespace.

OpenShift Container Platform 4.19 Operators

74

2. Create an Operator group for the tenant Operator scoped only to the tenant’s namespace.

3. Install the Operator in the tenant Operator namespace.

As a result, the Operator resides in the tenant Operator namespace and watches the tenant namespace,
but neither the Operator’s pod nor its service account are visible or usable by the tenant.

This solution provides better tenant separation, least privilege principle at the cost of resource usage,
and additional orchestration to ensure the constraints are met. For a detailed procedure, see "Preparing
for multiple instances of an Operator for multitenant clusters".

Limitations and considerations

This solution only works when the following constraints are met:

All instances of the same Operator must be the same version.

The Operator cannot have dependencies on other Operators.

The Operator cannot ship a CRD conversion webhook.

IMPORTANT

You cannot use different versions of the same Operator on the same cluster. Eventually,
the installation of another instance of the Operator would be blocked when it meets the
following conditions:

The instance is not the newest version of the Operator.

The instance ships an older revision of the CRDs that lack information or versions
that newer revisions have that are already in use on the cluster.

WARNING

As an administrator, use caution when allowing non-cluster administrators to install
Operators self-sufficiently, as explained in "Allowing non-cluster administrators to
install Operators". These tenants should only have access to a curated catalog of
Operators that are known to not have dependencies. These tenants must also be
forced to use the same version line of an Operator, to ensure the CRDs do not
change. This requires the use of namespace-scoped catalogs and likely disabling
the global default catalogs.

Additional resources

Preparing for multiple instances of an Operator for multitenant clusters

Allowing non-cluster administrators to install Operators

Disabling the default OperatorHub catalog sources

2.7.3. Operator colocation and Operator groups



CHAPTER 2. UNDERSTANDING OPERATORS

75

Operator Lifecycle Manager (OLM) handles OLM-managed Operators that are installed in the same
namespace, meaning their Subscription resources are colocated in the same namespace, as related
Operators. Even if they are not actually related, OLM considers their states, such as their version and
update policy, when any one of them is updated.

For more information on Operator colocation and using Operator groups effectively, see Operator
Lifecycle Manager (OLM) → Multitenancy and Operator colocation.

2.8. CRDS

2.8.1. Extending the Kubernetes API with custom resource definitions

Operators use the Kubernetes extension mechanism, custom resource definitions (CRDs), so that
custom objects managed by the Operator look and act just like the built-in, native Kubernetes objects.
This guide describes how cluster administrators can extend their OpenShift Container Platform cluster
by creating and managing CRDs.

2.8.1.1. Custom resource definitions

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A custom resource definition (CRD) object defines a new, unique object type, called a kind, in the cluster
and lets the Kubernetes API server handle its entire lifecycle.

Custom resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

When a cluster administrator adds a new CRD to the cluster, the Kubernetes API server reacts by
creating a new RESTful resource path that can be accessed by the entire cluster or a single project
(namespace) and begins serving the specified CR.

Cluster administrators that want to grant access to the CRD to other users can use cluster role
aggregation to grant access to users with the admin, edit, or view default cluster roles. Cluster role
aggregation allows the insertion of custom policy rules into these cluster roles. This behavior integrates
the new resource into the RBAC policy of the cluster as if it was a built-in resource.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other
software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of the
lifecycle of an Operator, making them available to all users.

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

2.8.1.2. Creating a custom resource definition

To create custom resource (CR) objects, cluster administrators must first create a custom resource
definition (CRD).

Prerequisites

Access to an OpenShift Container Platform cluster with cluster-admin user privileges.

OpenShift Container Platform 4.19 Operators

76

1

2

3

4

5

Procedure

To create a CRD:

1. Create a YAML file that contains the following field types:

Example YAML file for a CRD

Use the apiextensions.k8s.io/v1 API.

Specify a name for the definition. This must be in the <plural-name>.<group> format
using the values from the group and plural fields.

Specify a group name for the API. An API group is a collection of objects that are logically
related. For example, all batch objects like Job or ScheduledJob could be in the batch API
group (such as batch.api.example.com). A good practice is to use a fully-qualified-
domain name (FQDN) of your organization.

Specify a version name to be used in the URL. Each API group can exist in multiple
versions, for example v1alpha, v1beta, v1.

Specify whether the custom objects are available to a project (Namespaced) or all
projects in the cluster (Cluster).

apiVersion: apiextensions.k8s.io/v1 1
kind: CustomResourceDefinition
metadata:
 name: crontabs.stable.example.com 2
spec:
 group: stable.example.com 3
 versions:
 - name: v1 4
 served: true
 storage: true
 schema:
 openAPIV3Schema:
 type: object
 properties:
 spec:
 type: object
 properties:
 cronSpec:
 type: string
 image:
 type: string
 replicas:
 type: integer
 scope: Namespaced 5
 names:
 plural: crontabs 6
 singular: crontab 7
 kind: CronTab 8
 shortNames:
 - ct 9

CHAPTER 2. UNDERSTANDING OPERATORS

77

6

7

8

9

Specify the plural name to use in the URL. The plural field is the same as a resource in an
API URL.

Specify a singular name to use as an alias on the CLI and for display.

Specify the kind of objects that can be created. The type can be in CamelCase.

Specify a shorter string to match your resource on the CLI.

NOTE

By default, a CRD is cluster-scoped and available to all projects.

2. Create the CRD object:

A new RESTful API endpoint is created at:

For example, using the example file, the following endpoint is created:

You can now use this endpoint URL to create and manage CRs. The object kind is based on the
spec.kind field of the CRD object you created.

2.8.1.3. Creating cluster roles for custom resource definitions

Cluster administrators can grant permissions to existing cluster-scoped custom resource definitions
(CRDs). If you use the admin, edit, and view default cluster roles, you can take advantage of cluster role
aggregation for their rules.

IMPORTANT

You must explicitly assign permissions to each of these roles. The roles with more
permissions do not inherit rules from roles with fewer permissions. If you assign a rule to a
role, you must also assign that verb to roles that have more permissions. For example, if
you grant the get crontabs permission to the view role, you must also grant it to the edit
and admin roles. The admin or edit role is usually assigned to the user that created a
project through the project template.

Prerequisites

Create a CRD.

Procedure

1. Create a cluster role definition file for the CRD. The cluster role definition is a YAML file that
contains the rules that apply to each cluster role. An OpenShift Container Platform controller
adds the rules that you specify to the default cluster roles.

Example YAML file for a cluster role definition

$ oc create -f <file_name>.yaml

/apis/<spec:group>/<spec:version>/<scope>/*/<names-plural>/...

/apis/stable.example.com/v1/namespaces/*/crontabs/...

OpenShift Container Platform 4.19 Operators

78

1

2 8

3

4

5 11

6 12

7 13

9

10

Example YAML file for a cluster role definition

Use the rbac.authorization.k8s.io/v1 API.

Specify a name for the definition.

Specify this label to grant permissions to the admin default role.

Specify this label to grant permissions to the edit default role.

Specify the group name of the CRD.

Specify the plural name of the CRD that these rules apply to.

Specify the verbs that represent the permissions that are granted to the role. For example,
apply read and write permissions to the admin and edit roles and only read permission to
the view role.

Specify this label to grant permissions to the view default role.

Specify this label to grant permissions to the cluster-reader default role.

2. Create the cluster role:

2.8.1.4. Creating custom resources from a file

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1 1
metadata:
 name: aggregate-cron-tabs-admin-edit 2
 labels:
 rbac.authorization.k8s.io/aggregate-to-admin: "true" 3
 rbac.authorization.k8s.io/aggregate-to-edit: "true" 4
rules:
- apiGroups: ["stable.example.com"] 5
 resources: ["crontabs"] 6
 verbs: ["get", "list", "watch", "create", "update", "patch", "delete", "deletecollection"] 7

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: aggregate-cron-tabs-view 8
 labels:
 # Add these permissions to the "view" default role.
 rbac.authorization.k8s.io/aggregate-to-view: "true" 9
 rbac.authorization.k8s.io/aggregate-to-cluster-reader: "true" 10
rules:
- apiGroups: ["stable.example.com"] 11
 resources: ["crontabs"] 12
 verbs: ["get", "list", "watch"] 13

$ oc create -f <file_name>.yaml

CHAPTER 2. UNDERSTANDING OPERATORS

79

1

2

3

4

5

After a custom resource definition (CRD) has been added to the cluster, custom resources (CRs) can be
created with the CLI from a file using the CR specification.

Prerequisites

CRD added to the cluster by a cluster administrator.

Procedure

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object:

Example YAML file for a CR

Specify the group name and API version (name/version) from the CRD.

Specify the type in the CRD.

Specify a name for the object.

Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

Specify conditions specific to the type of object.

2. After you create the file, create the object:

2.8.1.5. Inspecting custom resources

You can inspect custom resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

A CR object exists in a namespace to which you have access.

Procedure

1. To get information on a specific kind of a CR, run:

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com
spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

$ oc create -f <file_name>.yaml

OpenShift Container Platform 4.19 Operators

80

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

1 2

For example:

Example output

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

2. You can also view the raw YAML data for a CR:

For example:

Example output

Custom data from the YAML that you used to create the object displays.

$ oc get <kind>

$ oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

$ oc get crontabs

$ oc get crontab

$ oc get ct

$ oc get <kind> -o yaml

$ oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

CHAPTER 2. UNDERSTANDING OPERATORS

81

1

2.8.2. Managing resources from custom resource definitions

This guide describes how developers can manage custom resources (CRs) that come from custom
resource definitions (CRDs).

2.8.2.1. Custom resource definitions

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A custom resource definition (CRD) object defines a new, unique object type, called a kind, in the cluster
and lets the Kubernetes API server handle its entire lifecycle.

Custom resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other
software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of the
lifecycle of an Operator, making them available to all users.

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

2.8.2.2. Creating custom resources from a file

After a custom resource definition (CRD) has been added to the cluster, custom resources (CRs) can be
created with the CLI from a file using the CR specification.

Prerequisites

CRD added to the cluster by a cluster administrator.

Procedure

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object:

Example YAML file for a CR

Specify the group name and API version (name/version) from the CRD.

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com
spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

OpenShift Container Platform 4.19 Operators

82

2

3

4

5

Specify the type in the CRD.

Specify a name for the object.

Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

Specify conditions specific to the type of object.

2. After you create the file, create the object:

2.8.2.3. Inspecting custom resources

You can inspect custom resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

A CR object exists in a namespace to which you have access.

Procedure

1. To get information on a specific kind of a CR, run:

For example:

Example output

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

2. You can also view the raw YAML data for a CR:

For example:

$ oc create -f <file_name>.yaml

$ oc get <kind>

$ oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

$ oc get crontabs

$ oc get crontab

$ oc get ct

$ oc get <kind> -o yaml

CHAPTER 2. UNDERSTANDING OPERATORS

83

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

1 2

Example output

Custom data from the YAML that you used to create the object displays.

$ oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

OpenShift Container Platform 4.19 Operators

84

CHAPTER 3. USER TASKS

3.1. CREATING APPLICATIONS FROM INSTALLED OPERATORS

This guide walks developers through an example of creating applications from an installed Operator
using the OpenShift Container Platform web console.

3.1.1. Creating an etcd cluster using an Operator

This procedure walks through creating a new etcd cluster using the etcd Operator, managed by
Operator Lifecycle Manager (OLM).

Prerequisites

Access to an OpenShift Container Platform 4.19 cluster.

The etcd Operator already installed cluster-wide by an administrator.

Procedure

1. Create a new project in the OpenShift Container Platform web console for this procedure. This
example uses a project called my-etcd.

2. Navigate to the Operators → Installed Operators page. The Operators that have been installed
to the cluster by the cluster administrator and are available for use are shown here as a list of
cluster service versions (CSVs). CSVs are used to launch and manage the software provided by
the Operator.

TIP

You can get this list from the CLI using:

3. On the Installed Operators page, click the etcd Operator to view more details and available
actions.
As shown under Provided APIs, this Operator makes available three new resource types,
including one for an etcd Cluster (the EtcdCluster resource). These objects work similar to the
built-in native Kubernetes ones, such as Deployment or ReplicaSet, but contain logic specific
to managing etcd.

4. Create a new etcd cluster:

a. In the etcd Cluster API box, click Create instance.

b. The next page allows you to make any modifications to the minimal starting template of an
EtcdCluster object, such as the size of the cluster. For now, click Create to finalize. This
triggers the Operator to start up the pods, services, and other components of the new etcd
cluster.

5. Click the example etcd cluster, then click the Resources tab to see that your project now
contains a number of resources created and configured automatically by the Operator.

Verify that a Kubernetes service has been created that allows you to access the database from

$ oc get csv

CHAPTER 3. USER TASKS

85

Verify that a Kubernetes service has been created that allows you to access the database from
other pods in your project.

6. All users with the edit role in a given project can create, manage, and delete application
instances (an etcd cluster, in this example) managed by Operators that have already been
created in the project, in a self-service manner, just like a cloud service. If you want to enable
additional users with this ability, project administrators can add the role using the following
command:

You now have an etcd cluster that will react to failures and rebalance data as pods become unhealthy or
are migrated between nodes in the cluster. Most importantly, cluster administrators or developers with
proper access can now easily use the database with their applications.

3.2. INSTALLING OPERATORS IN YOUR NAMESPACE

If a cluster administrator has delegated Operator installation permissions to your account, you can install
and subscribe an Operator to your namespace in a self-service manner.

3.2.1. Prerequisites

A cluster administrator must add certain permissions to your OpenShift Container Platform user
account to allow self-service Operator installation to a namespace. See Allowing non-cluster
administrators to install Operators for details.

3.2.2. About Operator installation with OperatorHub

OperatorHub is a user interface for discovering Operators; it works in conjunction with Operator
Lifecycle Manager (OLM), which installs and manages Operators on a cluster.

As a user with the proper permissions, you can install an Operator from OperatorHub by using the
OpenShift Container Platform web console or CLI.

During installation, you must determine the following initial settings for the Operator:

Installation Mode

Choose a specific namespace in which to install the Operator.

Update Channel

If an Operator is available through multiple channels, you can choose which channel you want to
subscribe to. For example, to deploy from the stable channel, if available, select it from the list.

Approval Strategy

You can choose automatic or manual updates.
If you choose automatic updates for an installed Operator, when a new version of that Operator is
available in the selected channel, Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without human intervention.

If you select manual updates, when a newer version of an Operator is available, OLM creates an
update request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

Understanding OperatorHub

$ oc policy add-role-to-user edit <user> -n <target_project>

OpenShift Container Platform 4.19 Operators

86

3.2.3. Installing from OperatorHub by using the web console

You can install and subscribe to an Operator from OperatorHub by using the OpenShift Container
Platform web console.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions.

Procedure

1. Navigate in the web console to the Operators → OperatorHub page.

2. Scroll or type a keyword into the Filter by keyword box to find the Operator you want. For
example, type advanced to find the Advanced Cluster Management for Kubernetes Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. Select the Operator to display additional information.

NOTE

Choosing a Community Operator warns that Red Hat does not certify
Community Operators; you must acknowledge the warning before continuing.

4. Read the information about the Operator and click Install.

5. On the Install Operator page, configure your Operator installation:

a. If you want to install a specific version of an Operator, select an Update channel and
Version from the lists. You can browse the various versions of an Operator across any
channels it might have, view the metadata for that channel and version, and select the exact
version you want to install.

NOTE

The version selection defaults to the latest version for the channel selected.
If the latest version for the channel is selected, the Automatic approval
strategy is enabled by default. Otherwise, Manual approval is required when
not installing the latest version for the selected channel.

Installing an Operator with Manual approval causes all Operators installed
within the namespace to function with the Manual approval strategy and all
Operators are updated together. If you want to update Operators
independently, install Operators into separate namespaces.

b. Choose a specific, single namespace in which to install the Operator. The Operator will only
watch and be made available for use in this single namespace.

c. For clusters on cloud providers with token authentication enabled:

If the cluster uses AWS Security Token Service (STS Mode in the web console), enter
the Amazon Resource Name (ARN) of the AWS IAM role of your service account in the

CHAPTER 3. USER TASKS

87

role ARN field. To create the role’s ARN, follow the procedure described in Preparing
AWS account.

If the cluster uses Microsoft Entra Workload ID (Workload Identity / Federated
Identity Mode in the web console), add the client ID, tenant ID, and subscription ID in
the appropriate fields.

If the cluster uses Google Cloud Platform Workload Identity (GCP Workload Identity /
Federated Identity Mode in the web console), add the project number, pool ID,
provider ID, and service account email in the appropriate fields.

d. For Update approval, select either the Automatic or Manual approval strategy.

IMPORTANT

If the web console shows that the cluster uses AWS STS, Microsoft Entra
Workload ID, or GCP Workload Identity, you must set Update approval to
Manual.

Subscriptions with automatic approvals for updates are not recommended
because there might be permission changes to make before updating.
Subscriptions with manual approvals for updates ensure that administrators
have the opportunity to verify the permissions of the later version, take any
necessary steps, and then update.

6. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster:

a. If you selected a Manual approval strategy, the upgrade status of the subscription remains
Upgrading until you review and approve the install plan.
After approving on the Install Plan page, the subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

Verification

After the upgrade status of the subscription is Up to date, select Operators → Installed
Operators to verify that the cluster service version (CSV) of the installed Operator eventually
shows up. The Status should eventually resolve to Succeeded in the relevant namespace.

NOTE

For the All namespaces…​ installation mode, the status resolves to Succeeded in
the openshift-operators namespace, but the status is Copied if you check in
other namespaces.

If it does not:

Check the logs in any pods in the openshift-operators project (or other relevant
namespace if A specific namespace…​ installation mode was selected) on the Workloads →
Pods page that are reporting issues to troubleshoot further.

When the Operator is installed, the metadata indicates which channel and version are installed.

OpenShift Container Platform 4.19 Operators

88

https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html/tutorials/cloud-experts-deploy-api-data-protection#prepare-aws-account_cloud-experts-deploy-api-data-protection

NOTE

The Channel and Version dropdown menus are still available for viewing other
version metadata in this catalog context.

3.2.4. Installing from OperatorHub by using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub by using the CLI. Use the oc command to create or update a Subscription object.

For SingleNamespace install mode, you must also ensure an appropriate Operator group exists in the
related namespace. An Operator group, defined by an OperatorGroup object, selects target
namespaces in which to generate required RBAC access for all Operators in the same namespace as the
Operator group.

TIP

In most cases, the web console method of this procedure is preferred because it automates tasks in the
background, such as handling the creation of OperatorGroup and Subscription objects automatically
when choosing SingleNamespace mode.

Prerequisites

Access to your OpenShift Container Platform cluster using an account with Operator
installation permissions.

You have installed the OpenShift CLI (oc).

Procedure

1. View the list of Operators available to the cluster from OperatorHub:

Example 3.1. Example output

Note the catalog for your desired Operator.

$ oc get packagemanifests -n openshift-marketplace

NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
advanced-cluster-management Red Hat Operators 91m
amq7-cert-manager Red Hat Operators 91m
...
couchbase-enterprise-certified Certified Operators 91m
crunchy-postgres-operator Certified Operators 91m
mongodb-enterprise Certified Operators 91m
...
etcd Community Operators 91m
jaeger Community Operators 91m
kubefed Community Operators 91m
...

CHAPTER 3. USER TASKS

89

1

2 3

4

2. Inspect your desired Operator to verify its supported install modes and available channels:

Example 3.2. Example output

Indicates which install modes are supported.

Example channel names.

The channel selected by default if one is not specified.

TIP

You can print an Operator’s version and channel information in YAML format by running the
following command:

3. If more than one catalog is installed in a namespace, run the following command to look up the
available versions and channels of an Operator from a specific catalog:

$ oc describe packagemanifests <operator_name> -n openshift-marketplace

...
Kind: PackageManifest
...
 Install Modes: 1
 Supported: true
 Type: OwnNamespace
 Supported: true
 Type: SingleNamespace
 Supported: false
 Type: MultiNamespace
 Supported: true
 Type: AllNamespaces
...
 Entries:
 Name: example-operator.v3.7.11
 Version: 3.7.11
 Name: example-operator.v3.7.10
 Version: 3.7.10
 Name: stable-3.7 2
...
 Entries:
 Name: example-operator.v3.8.5
 Version: 3.8.5
 Name: example-operator.v3.8.4
 Version: 3.8.4
 Name: stable-3.8 3
 Default Channel: stable-3.8 4

$ oc get packagemanifests <operator_name> -n <catalog_namespace> -o yaml

$ oc get packagemanifest \

OpenShift Container Platform 4.19 Operators

90

1 2

IMPORTANT

If you do not specify the Operator’s catalog, running the oc get
packagemanifest and oc describe packagemanifest commands might return a
package from an unexpected catalog if the following conditions are met:

Multiple catalogs are installed in the same namespace.

The catalogs contain the same Operators or Operators with the same name.

4. If the Operator you intend to install supports the AllNamespaces install mode, and you choose
to use this mode, skip this step, because the openshift-operators namespace already has an
appropriate Operator group in place by default, called global-operators.
If the Operator you intend to install supports the SingleNamespace install mode, and you
choose to use this mode, you must ensure an appropriate Operator group exists in the related
namespace. If one does not exist, you can create create one by following these steps:

IMPORTANT

You can only have one Operator group per namespace. For more information,
see "Operator groups".

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml, for
SingleNamespace install mode:

Example OperatorGroup object for SingleNamespace install mode

For SingleNamespace install mode, use the same <namespace> value for both the
metadata.namespace and spec.targetNamespaces fields.

b. Create the OperatorGroup object:

5. Create a Subscription object to subscribe a namespace to an Operator:

a. Create a YAML file for the Subscription object, for example subscription.yaml:

NOTE

 --selector=catalog=<catalogsource_name> \
 --field-selector metadata.name=<operator_name> \
 -n <catalog_namespace> -o yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: <operatorgroup_name>
 namespace: <namespace> 1
spec:
 targetNamespaces:
 - <namespace> 2

$ oc apply -f operatorgroup.yaml

CHAPTER 3. USER TASKS

91

1

2

NOTE

If you want to subscribe to a specific version of an Operator, set the
startingCSV field to the desired version and set the installPlanApproval
field to Manual to prevent the Operator from automatically upgrading if a
later version exists in the catalog. For details, see the following "Example
Subscription object with a specific starting Operator version".

Example 3.3. Example Subscription object

For default AllNamespaces install mode usage, specify the openshift-operators
namespace. Alternatively, you can specify a custom global namespace, if you have
created one. For SingleNamespace install mode usage, specify the relevant single
namespace.

Name of the channel to subscribe to.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: <subscription_name>
 namespace: <namespace_per_install_mode> 1
spec:
 channel: <channel_name> 2
 name: <operator_name> 3
 source: <catalog_name> 4
 sourceNamespace: <catalog_source_namespace> 5
 config:
 env: 6
 - name: ARGS
 value: "-v=10"
 envFrom: 7
 - secretRef:
 name: license-secret
 volumes: 8
 - name: <volume_name>
 configMap:
 name: <configmap_name>
 volumeMounts: 9
 - mountPath: <directory_name>
 name: <volume_name>
 tolerations: 10
 - operator: "Exists"
 resources: 11
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"
 nodeSelector: 12
 foo: bar

OpenShift Container Platform 4.19 Operators

92

3

4

5

6

7

8

9

10

11

12

1

2

Name of the Operator to subscribe to.

Name of the catalog source that provides the Operator.

Namespace of the catalog source. Use openshift-marketplace for the default
OperatorHub catalog sources.

The env parameter defines a list of environment variables that must exist in all
containers in the pod created by OLM.

The envFrom parameter defines a list of sources to populate environment
variables in the container.

The volumes parameter defines a list of volumes that must exist on the pod
created by OLM.

The volumeMounts parameter defines a list of volume mounts that must exist in all
containers in the pod created by OLM. If a volumeMount references a volume that
does not exist, OLM fails to deploy the Operator.

The tolerations parameter defines a list of tolerations for the pod created by OLM.

The resources parameter defines resource constraints for all the containers in the
pod created by OLM.

The nodeSelector parameter defines a NodeSelector for the pod created by
OLM.

Example 3.4. Example Subscription object with a specific starting Operator version

Set the approval strategy to Manual in case your specified version is superseded by
a later version in the catalog. This plan prevents an automatic upgrade to a later
version and requires manual approval before the starting CSV can complete the
installation.

Set a specific version of an Operator CSV.

b. For clusters on cloud providers with token authentication enabled, such as Amazon Web

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: example-operator
 namespace: example-operator
spec:
 channel: stable-3.7
 installPlanApproval: Manual 1
 name: example-operator
 source: custom-operators
 sourceNamespace: openshift-marketplace
 startingCSV: example-operator.v3.7.10 2

CHAPTER 3. USER TASKS

93

1

1

Services (AWS) Security Token Service (STS), Microsoft Entra Workload ID, or Google
Cloud Platform Workload Identity, configure your Subscription object by following these
steps:

i. Ensure the Subscription object is set to manual update approvals:

Example 3.5. Example Subscription object with manual update approvals

Subscriptions with automatic approvals for updates are not recommended
because there might be permission changes to make before updating.
Subscriptions with manual approvals for updates ensure that administrators
have the opportunity to verify the permissions of the later version, take any
necessary steps, and then update.

ii. Include the relevant cloud provider-specific fields in the Subscription object’s config
section:
If the cluster is in AWS STS mode, include the following fields:

Example 3.6. Example Subscription object with AWS STS variables

Include the role ARN details.

If the cluster is in Workload ID mode, include the following fields:

Example 3.7. Example Subscription object with Workload ID variables

kind: Subscription
...
spec:
 installPlanApproval: Manual 1

kind: Subscription
...
spec:
 config:
 env:
 - name: ROLEARN
 value: "<role_arn>" 1

kind: Subscription
...
spec:
 config:
 env:
 - name: CLIENTID
 value: "<client_id>" 1
 - name: TENANTID
 value: "<tenant_id>" 2
 - name: SUBSCRIPTIONID
 value: "<subscription_id>" 3

OpenShift Container Platform 4.19 Operators

94

1

2

3

Include the client ID.

Include the tenant ID.

Include the subscription ID.

If the cluster is in GCP Workload Identity mode, include the following fields:

Example 3.8. Example Subscription object with GCP Workload Identity variables

where:

<audience>

Created in Google Cloud by the administrator when they set up GCP Workload
Identity, the AUDIENCE value must be a preformatted URL in the following format:

<service_account_email>

The SERVICE_ACCOUNT_EMAIL value is a Google Cloud service account email
that is impersonated during Operator operation, for example:

c. Create the Subscription object by running the following command:

6. If you set the installPlanApproval field to Manual, manually approve the pending install plan to
complete the Operator installation. For more information, see "Manually approving a pending
Operator update".

At this point, OLM is now aware of the selected Operator. A cluster service version (CSV) for the
Operator should appear in the target namespace, and APIs provided by the Operator should be available
for creation.

Verification

kind: Subscription
...
spec:
 config:
 env:
 - name: AUDIENCE
 value: "<audience_url>" 1
 - name: SERVICE_ACCOUNT_EMAIL
 value: "<service_account_email>" 2

//iam.googleapis.com/projects/<project_number>/locations/global/workloadIdentityP
ools/<pool_id>/providers/<provider_id>

<service_account_name>@<project_id>.iam.gserviceaccount.com

$ oc apply -f subscription.yaml

CHAPTER 3. USER TASKS

95

1. Check the status of the Subscription object for your installed Operator by running the
following command:

2. If you created an Operator group for SingleNamespace install mode, check the status of the
OperatorGroup object by running the following command:

Additional resources

Operator groups

Channel names

Additional resources

Manually approving a pending Operator update

$ oc describe subscription <subscription_name> -n <namespace>

$ oc describe operatorgroup <operatorgroup_name> -n <namespace>

OpenShift Container Platform 4.19 Operators

96

CHAPTER 4. ADMINISTRATOR TASKS

4.1. ADDING OPERATORS TO A CLUSTER

Using Operator Lifecycle Manager (OLM), cluster administrators can install OLM-based Operators to
an OpenShift Container Platform cluster.

NOTE

For information on how OLM handles updates for installed Operators colocated in the
same namespace, as well as an alternative method for installing Operators with custom
global Operator groups, see Multitenancy and Operator colocation.

4.1.1. About Operator installation with OperatorHub

OperatorHub is a user interface for discovering Operators; it works in conjunction with Operator
Lifecycle Manager (OLM), which installs and manages Operators on a cluster.

As a cluster administrator, you can install an Operator from OperatorHub by using the OpenShift
Container Platform web console or CLI. Subscribing an Operator to one or more namespaces makes the
Operator available to developers on your cluster.

During installation, you must determine the following initial settings for the Operator:

Installation Mode

Choose All namespaces on the cluster (default) to have the Operator installed on all namespaces
or choose individual namespaces, if available, to only install the Operator on selected namespaces.
This example chooses All namespaces…​ to make the Operator available to all users and projects.

Update Channel

If an Operator is available through multiple channels, you can choose which channel you want to
subscribe to. For example, to deploy from the stable channel, if available, select it from the list.

Approval Strategy

You can choose automatic or manual updates.
If you choose automatic updates for an installed Operator, when a new version of that Operator is
available in the selected channel, Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without human intervention.

If you select manual updates, when a newer version of an Operator is available, OLM creates an
update request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

Additional resources

Understanding OperatorHub

4.1.2. Installing from OperatorHub by using the web console

You can install and subscribe to an Operator from OperatorHub by using the OpenShift Container
Platform web console.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin

CHAPTER 4. ADMINISTRATOR TASKS

97

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

1. Navigate in the web console to the Operators → OperatorHub page.

2. Scroll or type a keyword into the Filter by keyword box to find the Operator you want. For
example, type advanced to find the Advanced Cluster Management for Kubernetes Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. Select the Operator to display additional information.

NOTE

Choosing a Community Operator warns that Red Hat does not certify
Community Operators; you must acknowledge the warning before continuing.

4. Read the information about the Operator and click Install.

5. On the Install Operator page, configure your Operator installation:

a. If you want to install a specific version of an Operator, select an Update channel and
Version from the lists. You can browse the various versions of an Operator across any
channels it might have, view the metadata for that channel and version, and select the exact
version you want to install.

NOTE

The version selection defaults to the latest version for the channel selected.
If the latest version for the channel is selected, the Automatic approval
strategy is enabled by default. Otherwise, Manual approval is required when
not installing the latest version for the selected channel.

Installing an Operator with Manual approval causes all Operators installed
within the namespace to function with the Manual approval strategy and all
Operators are updated together. If you want to update Operators
independently, install Operators into separate namespaces.

b. Confirm the installation mode for the Operator:

All namespaces on the cluster (default) installs the Operator in the default openshift-
operators namespace to watch and be made available to all namespaces in the cluster.
This option is not always available.

A specific namespace on the cluster allows you to choose a specific, single namespace
in which to install the Operator. The Operator will only watch and be made available for
use in this single namespace.

c. For clusters on cloud providers with token authentication enabled:

If the cluster uses AWS Security Token Service (STS Mode in the web console), enter
the Amazon Resource Name (ARN) of the AWS IAM role of your service account in the

OpenShift Container Platform 4.19 Operators

98

role ARN field. To create the role’s ARN, follow the procedure described in Preparing
AWS account.

If the cluster uses Microsoft Entra Workload ID (Workload Identity / Federated
Identity Mode in the web console), add the client ID, tenant ID, and subscription ID in
the appropriate fields.

If the cluster uses Google Cloud Platform Workload Identity (GCP Workload Identity /
Federated Identity Mode in the web console), add the project number, pool ID,
provider ID, and service account email in the appropriate fields.

d. For Update approval, select either the Automatic or Manual approval strategy.

IMPORTANT

If the web console shows that the cluster uses AWS STS, Microsoft Entra
Workload ID, or GCP Workload Identity, you must set Update approval to
Manual.

Subscriptions with automatic approvals for updates are not recommended
because there might be permission changes to make before updating.
Subscriptions with manual approvals for updates ensure that administrators
have the opportunity to verify the permissions of the later version, take any
necessary steps, and then update.

6. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster:

a. If you selected a Manual approval strategy, the upgrade status of the subscription remains
Upgrading until you review and approve the install plan.
After approving on the Install Plan page, the subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

Verification

After the upgrade status of the subscription is Up to date, select Operators → Installed
Operators to verify that the cluster service version (CSV) of the installed Operator eventually
shows up. The Status should eventually resolve to Succeeded in the relevant namespace.

NOTE

For the All namespaces…​ installation mode, the status resolves to Succeeded in
the openshift-operators namespace, but the status is Copied if you check in
other namespaces.

If it does not:

Check the logs in any pods in the openshift-operators project (or other relevant
namespace if A specific namespace…​ installation mode was selected) on the Workloads →
Pods page that are reporting issues to troubleshoot further.

When the Operator is installed, the metadata indicates which channel and version are installed.

CHAPTER 4. ADMINISTRATOR TASKS

99

https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html/tutorials/cloud-experts-deploy-api-data-protection#prepare-aws-account_cloud-experts-deploy-api-data-protection

NOTE

The Channel and Version dropdown menus are still available for viewing other
version metadata in this catalog context.

Additional resources

Manually approving a pending Operator update

4.1.3. Installing from OperatorHub by using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub by using the CLI. Use the oc command to create or update a Subscription object.

For SingleNamespace install mode, you must also ensure an appropriate Operator group exists in the
related namespace. An Operator group, defined by an OperatorGroup object, selects target
namespaces in which to generate required RBAC access for all Operators in the same namespace as the
Operator group.

TIP

In most cases, the web console method of this procedure is preferred because it automates tasks in the
background, such as handling the creation of OperatorGroup and Subscription objects automatically
when choosing SingleNamespace mode.

Prerequisites

Access to your OpenShift Container Platform cluster using an account with cluster-admin
permissions.

You have installed the OpenShift CLI (oc).

Procedure

1. View the list of Operators available to the cluster from OperatorHub:

Example 4.1. Example output

$ oc get packagemanifests -n openshift-marketplace

NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
advanced-cluster-management Red Hat Operators 91m
amq7-cert-manager Red Hat Operators 91m
...
couchbase-enterprise-certified Certified Operators 91m
crunchy-postgres-operator Certified Operators 91m
mongodb-enterprise Certified Operators 91m
...
etcd Community Operators 91m
jaeger Community Operators 91m
kubefed Community Operators 91m
...

OpenShift Container Platform 4.19 Operators

100

1 1

2 2 3

4

Note the catalog for your desired Operator.

2. Inspect your desired Operator to verify its supported install modes and available channels:

Example 4.2. Example output

Indicates which install modes are supported.

Example channel names.

The channel selected by default if one is not specified.

TIP

You can print an Operator’s version and channel information in YAML format by running the
following command:

3. If more than one catalog is installed in a namespace, run the following command to look up the

$ oc describe packagemanifests <operator_name> -n openshift-marketplace

...
Kind: PackageManifest
...
 Install Modes: 1
 Supported: true
 Type: OwnNamespace
 Supported: true
 Type: SingleNamespace
 Supported: false
 Type: MultiNamespace
 Supported: true
 Type: AllNamespaces
...
 Entries:
 Name: example-operator.v3.7.11
 Version: 3.7.11
 Name: example-operator.v3.7.10
 Version: 3.7.10
 Name: stable-3.7 2
...
 Entries:
 Name: example-operator.v3.8.5
 Version: 3.8.5
 Name: example-operator.v3.8.4
 Version: 3.8.4
 Name: stable-3.8 3
 Default Channel: stable-3.8 4

$ oc get packagemanifests <operator_name> -n <catalog_namespace> -o yaml

CHAPTER 4. ADMINISTRATOR TASKS

101

1 2

3. If more than one catalog is installed in a namespace, run the following command to look up the
available versions and channels of an Operator from a specific catalog:

IMPORTANT

If you do not specify the Operator’s catalog, running the oc get
packagemanifest and oc describe packagemanifest commands might return a
package from an unexpected catalog if the following conditions are met:

Multiple catalogs are installed in the same namespace.

The catalogs contain the same Operators or Operators with the same name.

4. If the Operator you intend to install supports the AllNamespaces install mode, and you choose
to use this mode, skip this step, because the openshift-operators namespace already has an
appropriate Operator group in place by default, called global-operators.
If the Operator you intend to install supports the SingleNamespace install mode, and you
choose to use this mode, you must ensure an appropriate Operator group exists in the related
namespace. If one does not exist, you can create create one by following these steps:

IMPORTANT

You can only have one Operator group per namespace. For more information,
see "Operator groups".

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml, for
SingleNamespace install mode:

Example OperatorGroup object for SingleNamespace install mode

For SingleNamespace install mode, use the same <namespace> value for both the
metadata.namespace and spec.targetNamespaces fields.

b. Create the OperatorGroup object:

$ oc get packagemanifest \
 --selector=catalog=<catalogsource_name> \
 --field-selector metadata.name=<operator_name> \
 -n <catalog_namespace> -o yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: <operatorgroup_name>
 namespace: <namespace> 1
spec:
 targetNamespaces:
 - <namespace> 2

$ oc apply -f operatorgroup.yaml

OpenShift Container Platform 4.19 Operators

102

1

5. Create a Subscription object to subscribe a namespace to an Operator:

a. Create a YAML file for the Subscription object, for example subscription.yaml:

NOTE

If you want to subscribe to a specific version of an Operator, set the
startingCSV field to the desired version and set the installPlanApproval
field to Manual to prevent the Operator from automatically upgrading if a
later version exists in the catalog. For details, see the following "Example
Subscription object with a specific starting Operator version".

Example 4.3. Example Subscription object

For default AllNamespaces install mode usage, specify the openshift-operators
namespace. Alternatively, you can specify a custom global namespace, if you have
created one. For SingleNamespace install mode usage, specify the relevant single

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: <subscription_name>
 namespace: <namespace_per_install_mode> 1
spec:
 channel: <channel_name> 2
 name: <operator_name> 3
 source: <catalog_name> 4
 sourceNamespace: <catalog_source_namespace> 5
 config:
 env: 6
 - name: ARGS
 value: "-v=10"
 envFrom: 7
 - secretRef:
 name: license-secret
 volumes: 8
 - name: <volume_name>
 configMap:
 name: <configmap_name>
 volumeMounts: 9
 - mountPath: <directory_name>
 name: <volume_name>
 tolerations: 10
 - operator: "Exists"
 resources: 11
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"
 nodeSelector: 12
 foo: bar

CHAPTER 4. ADMINISTRATOR TASKS

103

2

3

4

5

6

7

8

9

10

11

12

1

2

namespace.

Name of the channel to subscribe to.

Name of the Operator to subscribe to.

Name of the catalog source that provides the Operator.

Namespace of the catalog source. Use openshift-marketplace for the default
OperatorHub catalog sources.

The env parameter defines a list of environment variables that must exist in all
containers in the pod created by OLM.

The envFrom parameter defines a list of sources to populate environment
variables in the container.

The volumes parameter defines a list of volumes that must exist on the pod
created by OLM.

The volumeMounts parameter defines a list of volume mounts that must exist in all
containers in the pod created by OLM. If a volumeMount references a volume that
does not exist, OLM fails to deploy the Operator.

The tolerations parameter defines a list of tolerations for the pod created by OLM.

The resources parameter defines resource constraints for all the containers in the
pod created by OLM.

The nodeSelector parameter defines a NodeSelector for the pod created by
OLM.

Example 4.4. Example Subscription object with a specific starting Operator version

Set the approval strategy to Manual in case your specified version is superseded by
a later version in the catalog. This plan prevents an automatic upgrade to a later
version and requires manual approval before the starting CSV can complete the
installation.

Set a specific version of an Operator CSV.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: example-operator
 namespace: example-operator
spec:
 channel: stable-3.7
 installPlanApproval: Manual 1
 name: example-operator
 source: custom-operators
 sourceNamespace: openshift-marketplace
 startingCSV: example-operator.v3.7.10 2

OpenShift Container Platform 4.19 Operators

104

1

1

b. For clusters on cloud providers with token authentication enabled, such as Amazon Web
Services (AWS) Security Token Service (STS), Microsoft Entra Workload ID, or Google
Cloud Platform Workload Identity, configure your Subscription object by following these
steps:

i. Ensure the Subscription object is set to manual update approvals:

Example 4.5. Example Subscription object with manual update approvals

Subscriptions with automatic approvals for updates are not recommended
because there might be permission changes to make before updating.
Subscriptions with manual approvals for updates ensure that administrators
have the opportunity to verify the permissions of the later version, take any
necessary steps, and then update.

ii. Include the relevant cloud provider-specific fields in the Subscription object’s config
section:
If the cluster is in AWS STS mode, include the following fields:

Example 4.6. Example Subscription object with AWS STS variables

Include the role ARN details.

If the cluster is in Workload ID mode, include the following fields:

Example 4.7. Example Subscription object with Workload ID variables

kind: Subscription
...
spec:
 installPlanApproval: Manual 1

kind: Subscription
...
spec:
 config:
 env:
 - name: ROLEARN
 value: "<role_arn>" 1

kind: Subscription
...
spec:
 config:
 env:
 - name: CLIENTID
 value: "<client_id>" 1
 - name: TENANTID

CHAPTER 4. ADMINISTRATOR TASKS

105

1

2

3

Include the client ID.

Include the tenant ID.

Include the subscription ID.

If the cluster is in GCP Workload Identity mode, include the following fields:

Example 4.8. Example Subscription object with GCP Workload Identity variables

where:

<audience>

Created in Google Cloud by the administrator when they set up GCP Workload
Identity, the AUDIENCE value must be a preformatted URL in the following format:

<service_account_email>

The SERVICE_ACCOUNT_EMAIL value is a Google Cloud service account email
that is impersonated during Operator operation, for example:

c. Create the Subscription object by running the following command:

6. If you set the installPlanApproval field to Manual, manually approve the pending install plan to
complete the Operator installation. For more information, see "Manually approving a pending
Operator update".

At this point, OLM is now aware of the selected Operator. A cluster service version (CSV) for the

 value: "<tenant_id>" 2
 - name: SUBSCRIPTIONID
 value: "<subscription_id>" 3

kind: Subscription
...
spec:
 config:
 env:
 - name: AUDIENCE
 value: "<audience_url>" 1
 - name: SERVICE_ACCOUNT_EMAIL
 value: "<service_account_email>" 2

//iam.googleapis.com/projects/<project_number>/locations/global/workloadIdentityP
ools/<pool_id>/providers/<provider_id>

<service_account_name>@<project_id>.iam.gserviceaccount.com

$ oc apply -f subscription.yaml

OpenShift Container Platform 4.19 Operators

106

At this point, OLM is now aware of the selected Operator. A cluster service version (CSV) for the
Operator should appear in the target namespace, and APIs provided by the Operator should be available
for creation.

Verification

1. Check the status of the Subscription object for your installed Operator by running the
following command:

2. If you created an Operator group for SingleNamespace install mode, check the status of the
OperatorGroup object by running the following command:

Additional resources

About Operator groups

Installing global Operators in custom namespaces

Manually approving a pending Operator update

4.1.4. Preparing for multiple instances of an Operator for multitenant clusters

As a cluster administrator, you can add multiple instances of an Operator for use in multitenant clusters.
This is an alternative solution to either using the standard All namespaces install mode, which can be
considered to violate the principle of least privilege, or the Multinamespace mode, which is not widely
adopted. For more information, see "Operators in multitenant clusters".

In the following procedure, the tenant is a user or group of users that share common access and
privileges for a set of deployed workloads. The tenant Operator is the instance of an Operator that is
intended for use by only that tenant.

Prerequisites

All instances of the Operator you want to install must be the same version across a given cluster.

IMPORTANT

For more information on this and other limitations, see "Operators in multitenant
clusters".

Procedure

1. Before installing the Operator, create a namespace for the tenant Operator that is separate
from the tenant’s namespace. For example, if the tenant’s namespace is team1, you might
create a team1-operator namespace:

a. Define a Namespace resource and save the YAML file, for example, team1-operator.yaml:

$ oc describe subscription <subscription_name> -n <namespace>

$ oc describe operatorgroup <operatorgroup_name> -n <namespace>

apiVersion: v1
kind: Namespace

CHAPTER 4. ADMINISTRATOR TASKS

107

1 1

b. Create the namespace by running the following command:

2. Create an Operator group for the tenant Operator scoped to the tenant’s namespace, with only
that one namespace entry in the spec.targetNamespaces list:

a. Define an OperatorGroup resource and save the YAML file, for example, team1-
operatorgroup.yaml:

Define only the tenant’s namespace in the spec.targetNamespaces list.

b. Create the Operator group by running the following command:

Next steps

Install the Operator in the tenant Operator namespace. This task is more easily performed by
using the OperatorHub in the web console instead of the CLI; for a detailed procedure,
"Installing from OperatorHub using the web console".

NOTE

After completing the Operator installation, the Operator resides in the tenant
Operator namespace and watches the tenant namespace, but neither the
Operator’s pod nor its service account are visible or usable by the tenant.

Additional resources

Operators in multitenant clusters

4.1.5. Installing global Operators in custom namespaces

When installing Operators with the OpenShift Container Platform web console, the default behavior
installs Operators that support the All namespaces install mode into the default openshift-operators
global namespace. This can cause issues related to shared install plans and update policies between all
Operators in the namespace. For more details on these limitations, see "Multitenancy and Operator
colocation".

As a cluster administrator, you can bypass this default behavior manually by creating a custom global

metadata:
 name: team1-operator

$ oc create -f team1-operator.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: team1-operatorgroup
 namespace: team1-operator
spec:
 targetNamespaces:
 - team1 1

$ oc create -f team1-operatorgroup.yaml

OpenShift Container Platform 4.19 Operators

108

As a cluster administrator, you can bypass this default behavior manually by creating a custom global
namespace and using that namespace to install your individual or scoped set of Operators and their
dependencies.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Before installing the Operator, create a namespace for the installation of your desired Operator.
This installation namespace will become the custom global namespace:

a. Define a Namespace resource and save the YAML file, for example, global-
operators.yaml:

b. Create the namespace by running the following command:

2. Create a custom global Operator group, which is an Operator group that watches all
namespaces:

a. Define an OperatorGroup resource and save the YAML file, for example, global-
operatorgroup.yaml. Omit both the spec.selector and spec.targetNamespaces fields to
make it a global Operator group, which selects all namespaces:

NOTE

The status.namespaces of a created global Operator group contains the
empty string (""), which signals to a consuming Operator that it should watch
all namespaces.

b. Create the Operator group by running the following command:

Next steps

Install the desired Operator in your custom global namespace. Because the web console does
not populate the Installed Namespace menu during Operator installation with custom global
namespaces, the install task can only be performed with the OpenShift CLI (oc). For a detailed

apiVersion: v1
kind: Namespace
metadata:
 name: global-operators

$ oc create -f global-operators.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: global-operatorgroup
 namespace: global-operators

$ oc create -f global-operatorgroup.yaml

CHAPTER 4. ADMINISTRATOR TASKS

109

installation procedure, see "Installing from OperatorHub by using the CLI".

NOTE

When you initiate the Operator installation, if the Operator has dependencies, the
dependencies are also automatically installed in the custom global namespace. As
a result, it is then valid for the dependency Operators to have the same update
policy and shared install plans.

Additional resources

Multitenancy and Operator colocation

4.1.6. Pod placement of Operator workloads

By default, Operator Lifecycle Manager (OLM) places pods on arbitrary worker nodes when installing an
Operator or deploying Operand workloads. As an administrator, you can use projects with a combination
of node selectors, taints, and tolerations to control the placement of Operators and Operands to
specific nodes.

Controlling pod placement of Operator and Operand workloads has the following prerequisites:

1. Determine a node or set of nodes to target for the pods per your requirements. If available, note
an existing label, such as node-role.kubernetes.io/app, that identifies the node or nodes.
Otherwise, add a label, such as myoperator, by using a compute machine set or editing the node
directly. You will use this label in a later step as the node selector on your project.

2. If you want to ensure that only pods with a certain label are allowed to run on the nodes, while
steering unrelated workloads to other nodes, add a taint to the node or nodes by using a
compute machine set or editing the node directly. Use an effect that ensures that new pods
that do not match the taint cannot be scheduled on the nodes. For example, a
myoperator:NoSchedule taint ensures that new pods that do not match the taint are not
scheduled onto that node, but existing pods on the node are allowed to remain.

3. Create a project that is configured with a default node selector and, if you added a taint, a
matching toleration.

At this point, the project you created can be used to steer pods towards the specified nodes in the
following scenarios:

For Operator pods

Administrators can create a Subscription object in the project as described in the following section.
As a result, the Operator pods are placed on the specified nodes.

For Operand pods

Using an installed Operator, users can create an application in the project, which places the custom
resource (CR) owned by the Operator in the project. As a result, the Operand pods are placed on the
specified nodes, unless the Operator is deploying cluster-wide objects or resources in other
namespaces, in which case this customized pod placement does not apply.

Additional resources

Adding taints and tolerations manually to nodes or with compute machine sets

Creating project-wide node selectors

OpenShift Container Platform 4.19 Operators

110

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-taints-tolerations-adding_nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-taints-tolerations-adding-machineset_nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-node-selectors-project_nodes-scheduler-node-selectors

1

Creating a project with a node selector and toleration

4.1.7. Controlling where an Operator is installed

By default, when you install an Operator, OpenShift Container Platform installs the Operator pod to one
of your worker nodes randomly. However, there might be situations where you want that pod scheduled
on a specific node or set of nodes.

The following examples describe situations where you might want to schedule an Operator pod to a
specific node or set of nodes:

If an Operator requires a particular platform, such as amd64 or arm64

If an Operator requires a particular operating system, such as Linux or Windows

If you want Operators that work together scheduled on the same host or on hosts located on
the same rack

If you want Operators dispersed throughout the infrastructure to avoid downtime due to
network or hardware issues

You can control where an Operator pod is installed by adding node affinity, pod affinity, or pod anti-
affinity constraints to the Operator’s Subscription object. Node affinity is a set of rules used by the
scheduler to determine where a pod can be placed. Pod affinity enables you to ensure that related pods
are scheduled to the same node. Pod anti-affinity allows you to prevent a pod from being scheduled on
a node.

The following examples show how to use node affinity or pod anti-affinity to install an instance of the
Custom Metrics Autoscaler Operator to a specific node in the cluster:

Node affinity example that places the Operator pod on a specific node

A node affinity that requires the Operator’s pod to be scheduled on a node named ip-10-0-163-
94.us-west-2.compute.internal.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-163-94.us-west-2.compute.internal
#...

CHAPTER 4. ADMINISTRATOR TASKS

111

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-taints-tolerations-projects_nodes-scheduler-taints-tolerations

1

Node affinity example that places the Operator pod on a node with a specific platform

A node affinity that requires the Operator’s pod to be scheduled on a node with the
kubernetes.io/arch=arm64 and kubernetes.io/os=linux labels.

Pod affinity example that places the Operator pod on one or more specific nodes

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/arch
 operator: In
 values:
 - arm64
 - key: kubernetes.io/os
 operator: In
 values:
 - linux
#...

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 podAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - test
 topologyKey: kubernetes.io/hostname
#...

OpenShift Container Platform 4.19 Operators

112

1

1

A pod affinity that places the Operator’s pod on a node that has pods with the app=test label.

Pod anti-affinity example that prevents the Operator pod from one or more specific nodes

A pod anti-affinity that prevents the Operator’s pod from being scheduled on a node that has pods
with the cpu=high label.

Procedure

To control the placement of an Operator pod, complete the following steps:

1. Install the Operator as usual.

2. If needed, ensure that your nodes are labeled to properly respond to the affinity.

3. Edit the Operator Subscription object to add an affinity:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 podAntiAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: cpu
 operator: In
 values:
 - high
 topologyKey: kubernetes.io/hostname
#...

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity: 1
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:

CHAPTER 4. ADMINISTRATOR TASKS

113

1 Add a nodeAffinity, podAffinity, or podAntiAffinity. See the Additional resources section
that follows for information about creating the affinity.

Verification

To ensure that the pod is deployed on the specific node, run the following command:

Example output

Additional resources

Understanding pod affinity

Understanding node affinity

Understanding how to update labels on nodes

4.2. UPDATING INSTALLED OPERATORS

As a cluster administrator, you can update Operators that have been previously installed using Operator
Lifecycle Manager (OLM) on your OpenShift Container Platform cluster.

NOTE

For information on how OLM handles updates for installed Operators colocated in the
same namespace, as well as an alternative method for installing Operators with custom
global Operator groups, see Multitenancy and Operator colocation.

4.2.1. Preparing for an Operator update

The subscription of an installed Operator specifies an update channel that tracks and receives updates
for the Operator. You can change the update channel to start tracking and receiving updates from a
newer channel.

The names of update channels in a subscription can differ between Operators, but the naming scheme
typically follows a common convention within a given Operator. For example, channel names might
follow a minor release update stream for the application provided by the Operator (1.2, 1.3) or a release
frequency (stable, fast).

NOTE

 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-185-229.ec2.internal
#...

$ oc get pods -o wide

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
custom-metrics-autoscaler-operator-5dcc45d656-bhshg 1/1 Running 0 50s
10.131.0.20 ip-10-0-185-229.ec2.internal <none> <none>

OpenShift Container Platform 4.19 Operators

114

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-pod-affinity-about_nodes-scheduler-pod-affinity
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-node-affinity-about_nodes-scheduler-node-affinity
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working

NOTE

You cannot change installed Operators to a channel that is older than the current
channel.

Red Hat Customer Portal Labs include the following application that helps administrators prepare to
update their Operators:

Red Hat OpenShift Container Platform Operator Update Information Checker

You can use the application to search for Operator Lifecycle Manager-based Operators and verify the
available Operator version per update channel across different versions of OpenShift Container
Platform. Cluster Version Operator-based Operators are not included.

4.2.2. Changing the update channel for an Operator

You can change the update channel for an Operator by using the OpenShift Container Platform web
console.

TIP

If the approval strategy in the subscription is set to Automatic, the update process initiates as soon as a
new Operator version is available in the selected channel. If the approval strategy is set to Manual, you
must manually approve pending updates.

Prerequisites

An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → Installed
Operators.

2. Click the name of the Operator you want to change the update channel for.

3. Click the Subscription tab.

4. Click the name of the update channel under Update channel.

5. Click the newer update channel that you want to change to, then click Save.

6. For subscriptions with an Automatic approval strategy, the update begins automatically.
Navigate back to the Operators → Installed Operators page to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.
For subscriptions with a Manual approval strategy, you can manually approve the update from
the Subscription tab.

4.2.3. Manually approving a pending Operator update

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are
released in its current update channel, the update must be manually approved before installation can
begin.

CHAPTER 4. ADMINISTRATOR TASKS

115

https://access.redhat.com/labs/ocpouic/

Prerequisites

An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Operators that have a pending update display a status with Upgrade available. Click the name
of the Operator you want to update.

3. Click the Subscription tab. Any updates requiring approval are displayed next to Upgrade
status. For example, it might display 1 requires approval.

4. Click 1 requires approval, then click Preview Install Plan.

5. Review the resources that are listed as available for update. When satisfied, click Approve.

6. Navigate back to the Operators → Installed Operators page to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.

4.2.4. Additional resources

Using Operator Lifecycle Manager in disconnected environments

4.3. DELETING OPERATORS FROM A CLUSTER

The following describes how to delete, or uninstall, Operators that were previously installed using
Operator Lifecycle Manager (OLM) on your OpenShift Container Platform cluster.

IMPORTANT

You must successfully and completely uninstall an Operator prior to attempting to
reinstall the same Operator. Failure to fully uninstall the Operator properly can leave
resources, such as a project or namespace, stuck in a "Terminating" state and cause "error
resolving resource" messages to be observed when trying to reinstall the Operator.

For more information, see Reinstalling Operators after failed uninstallation.

4.3.1. Deleting Operators from a cluster using the web console

Cluster administrators can delete installed Operators from a selected namespace by using the web
console.

Prerequisites

You have access to the OpenShift Container Platform cluster web console using an account
with cluster-admin permissions.

Procedure

1. Navigate to the Operators → Installed Operators page.

2. Scroll or enter a keyword into the Filter by name field to find the Operator that you want to

OpenShift Container Platform 4.19 Operators

116

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#olm-restricted-networks

2. Scroll or enter a keyword into the Filter by name field to find the Operator that you want to
remove. Then, click on it.

3. On the right side of the Operator Details page, select Uninstall Operator from the Actions list.
An Uninstall Operator? dialog box is displayed.

4. Select Uninstall to remove the Operator, Operator deployments, and pods. Following this
action, the Operator stops running and no longer receives updates.

NOTE

This action does not remove resources managed by the Operator, including
custom resource definitions (CRDs) and custom resources (CRs). Dashboards
and navigation items enabled by the web console and off-cluster resources that
continue to run might need manual clean up. To remove these after uninstalling
the Operator, you might need to manually delete the Operator CRDs.

4.3.2. Deleting Operators from a cluster using the CLI

Cluster administrators can delete installed Operators from a selected namespace by using the CLI.

Prerequisites

You have access to the OpenShift Container Platform cluster using an account with cluster-
admin permissions.

The OpenShift CLI (oc) is installed on your workstation.

Procedure

1. Ensure the latest version of the subscribed operator (for example, serverless-operator) is
identified in the currentCSV field.

Example output

2. Delete the subscription (for example, serverless-operator):

Example output

3. Delete the CSV for the Operator in the target namespace using the currentCSV value from the
previous step:

$ oc get subscription.operators.coreos.com serverless-operator -n openshift-serverless -o
yaml | grep currentCSV

 currentCSV: serverless-operator.v1.28.0

$ oc delete subscription.operators.coreos.com serverless-operator -n openshift-serverless

subscription.operators.coreos.com "serverless-operator" deleted

$ oc delete clusterserviceversion serverless-operator.v1.28.0 -n openshift-serverless

CHAPTER 4. ADMINISTRATOR TASKS

117

Example output

4.3.3. Refreshing failing subscriptions

In Operator Lifecycle Manager (OLM), if you subscribe to an Operator that references images that are
not accessible on your network, you can find jobs in the openshift-marketplace namespace that are
failing with the following errors:

Example output

Example output

As a result, the subscription is stuck in this failing state and the Operator is unable to install or upgrade.

You can refresh a failing subscription by deleting the subscription, cluster service version (CSV), and
other related objects. After recreating the subscription, OLM then reinstalls the correct version of the
Operator.

Prerequisites

You have a failing subscription that is unable to pull an inaccessible bundle image.

You have confirmed that the correct bundle image is accessible.

Procedure

1. Get the names of the Subscription and ClusterServiceVersion objects from the namespace
where the Operator is installed:

Example output

2. Delete the subscription:

clusterserviceversion.operators.coreos.com "serverless-operator.v1.28.0" deleted

ImagePullBackOff for
Back-off pulling image "example.com/openshift4/ose-elasticsearch-operator-
bundle@sha256:6d2587129c846ec28d384540322b40b05833e7e00b25cca584e004af9a1d292e"

rpc error: code = Unknown desc = error pinging docker registry example.com: Get
"https://example.com/v2/": dial tcp: lookup example.com on 10.0.0.1:53: no such host

$ oc get sub,csv -n <namespace>

NAME PACKAGE SOURCE CHANNEL
subscription.operators.coreos.com/elasticsearch-operator elasticsearch-operator redhat-
operators 5.0

NAME DISPLAY VERSION
REPLACES PHASE
clusterserviceversion.operators.coreos.com/elasticsearch-operator.5.0.0-65 OpenShift
Elasticsearch Operator 5.0.0-65 Succeeded

OpenShift Container Platform 4.19 Operators

118

3. Delete the cluster service version:

4. Get the names of any failing jobs and related config maps in the openshift-marketplace
namespace:

Example output

5. Delete the job:

This ensures pods that try to pull the inaccessible image are not recreated.

6. Delete the config map:

7. Reinstall the Operator using OperatorHub in the web console.

Verification

Check that the Operator has been reinstalled successfully:

4.4. CONFIGURING OPERATOR LIFECYCLE MANAGER FEATURES

The Operator Lifecycle Manager (OLM) controller is configured by an OLMConfig custom resource
(CR) named cluster. Cluster administrators can modify this resource to enable or disable certain
features.

This document outlines the features currently supported by OLM that are configured by the
OLMConfig resource.

4.4.1. Disabling copied CSVs

When an Operator is installed by Operator Lifecycle Manager (OLM), a simplified copy of its cluster
service version (CSV) is created by default in every namespace that the Operator is configured to

$ oc delete subscription <subscription_name> -n <namespace>

$ oc delete csv <csv_name> -n <namespace>

$ oc get job,configmap -n openshift-marketplace

NAME COMPLETIONS DURATION AGE
job.batch/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 1/1
26s 9m30s

NAME DATA AGE
configmap/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 3
9m30s

$ oc delete job <job_name> -n openshift-marketplace

$ oc delete configmap <configmap_name> -n openshift-marketplace

$ oc get sub,csv,installplan -n <namespace>

CHAPTER 4. ADMINISTRATOR TASKS

119

1

watch. These CSVs are known as copied CSVs and communicate to users which controllers are actively
reconciling resource events in a given namespace.

When an Operator is configured to use the AllNamespaces install mode, versus targeting a single or
specified set of namespaces, a copied CSV for the Operator is created in every namespace on the
cluster. On especially large clusters, with namespaces and installed Operators potentially in the
hundreds or thousands, copied CSVs consume an untenable amount of resources, such as OLM’s
memory usage, cluster etcd limits, and networking.

To support these larger clusters, cluster administrators can disable copied CSVs for Operators globally
installed with the AllNamespaces mode.

NOTE

If you disable copied CSVs, an Operator installed in AllNamespaces mode has their CSV
copied only to the openshift namespace, instead of every namespace on the cluster. In
disabled copied CSVs mode, the behavior differs between the web console and CLI:

In the web console, the default behavior is modified to show copied CSVs from
the openshift namespace in every namespace, even though the CSVs are not
actually copied to every namespace. This allows regular users to still be able to
view the details of these Operators in their namespaces and create related
custom resources (CRs).

In the OpenShift CLI (oc), regular users can view Operators installed directly in
their namespaces by using the oc get csvs command, but the copied CSVs from
the openshift namespace are not visible in their namespaces. Operators affected
by this limitation are still available and continue to reconcile events in the user’s
namespace.
To view a full list of installed global Operators, similar to the web console
behavior, all authenticated users can run the following command:

Procedure

Edit the OLMConfig object named cluster and set the spec.features.disableCopiedCSVs
field to true:

Disabled copied CSVs for AllNamespaces install mode Operators

Verification

When copied CSVs are disabled, OLM captures this information in an event in the Operator’s

$ oc get csvs -n openshift

$ oc apply -f - <<EOF
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:
 name: cluster
spec:
 features:
 disableCopiedCSVs: true 1
EOF

OpenShift Container Platform 4.19 Operators

120

When copied CSVs are disabled, OLM captures this information in an event in the Operator’s
namespace:

Example output

When the spec.features.disableCopiedCSVs field is missing or set to false, OLM recreates
the copied CSVs for all Operators installed with the AllNamespaces mode and deletes the
previously mentioned events.

Additional resources

Install modes

4.5. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE
MANAGER

If a global proxy is configured on your OpenShift Container Platform cluster, Operator Lifecycle
Manager (OLM) automatically configures Operators that it manages with the cluster-wide proxy.
However, you can also configure installed Operators to override the global proxy or inject a custom CA
certificate.

Additional resources

Configuring the cluster-wide proxy

Configuring a custom PKI (custom CA certificate)

4.5.1. Overriding proxy settings of an Operator

If a cluster-wide egress proxy is configured, Operators running with Operator Lifecycle Manager (OLM)
inherit the cluster-wide proxy settings on their deployments. Cluster administrators can also override
these proxy settings by configuring the subscription of an Operator.

IMPORTANT

Operators must handle setting environment variables for proxy settings in the pods for
any managed Operands.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

1. Navigate in the web console to the Operators → OperatorHub page.

$ oc get events

LAST SEEN TYPE REASON OBJECT MESSAGE
85s Warning DisabledCopiedCSVs clusterserviceversion/my-csv.v1.0.0 CSV
copying disabled for operators/my-csv.v1.0.0

CHAPTER 4. ADMINISTRATOR TASKS

121

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/configuring_network_settings/#enable-cluster-wide-proxy
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/configuring_network_settings/#configuring-a-custom-pki

2. Select the Operator and click Install.

3. On the Install Operator page, modify the Subscription object to include one or more of the
following environment variables in the spec section:

HTTP_PROXY

HTTPS_PROXY

NO_PROXY

For example:

Subscription object with proxy setting overrides

NOTE

These environment variables can also be unset using an empty value to remove
any previously set cluster-wide or custom proxy settings.

OLM handles these environment variables as a unit; if at least one of them is set, all three are
considered overridden and the cluster-wide defaults are not used for the deployments of the
subscribed Operator.

4. Click Install to make the Operator available to the selected namespaces.

5. After the CSV for the Operator appears in the relevant namespace, you can verify that custom
proxy environment variables are set in the deployment. For example, using the CLI:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: etcd-config-test
 namespace: openshift-operators
spec:
 config:
 env:
 - name: HTTP_PROXY
 value: test_http
 - name: HTTPS_PROXY
 value: test_https
 - name: NO_PROXY
 value: test
 channel: clusterwide-alpha
 installPlanApproval: Automatic
 name: etcd
 source: community-operators
 sourceNamespace: openshift-marketplace
 startingCSV: etcdoperator.v0.9.4-clusterwide

$ oc get deployment -n openshift-operators \
 etcd-operator -o yaml \
 | grep -i "PROXY" -A 2

OpenShift Container Platform 4.19 Operators

122

1

2

Example output

4.5.2. Injecting a custom CA certificate

When a cluster administrator adds a custom CA certificate to a cluster using a config map, the Cluster
Network Operator merges the user-provided certificates and system CA certificates into a single
bundle. You can inject this merged bundle into your Operator running on Operator Lifecycle Manager
(OLM), which is useful if you have a man-in-the-middle HTTPS proxy.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Custom CA certificate added to the cluster using a config map.

Desired Operator installed and running on OLM.

Procedure

1. Create an empty config map in the namespace where the subscription for your Operator exists
and include the following label:

Name of the config map.

Requests the Cluster Network Operator to inject the merged bundle.

After creating this config map, it is immediately populated with the certificate contents of the
merged bundle.

2. Update the Subscription object to include a spec.config section that mounts the trusted-ca
config map as a volume to each container within a pod that requires a custom CA:

 - name: HTTP_PROXY
 value: test_http
 - name: HTTPS_PROXY
 value: test_https
 - name: NO_PROXY
 value: test
 image: quay.io/coreos/etcd-
operator@sha256:66a37fd61a06a43969854ee6d3e21088a98b93838e284a6086b13917f96b0
d9c
...

apiVersion: v1
kind: ConfigMap
metadata:
 name: trusted-ca 1
 labels:
 config.openshift.io/inject-trusted-cabundle: "true" 2

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription

CHAPTER 4. ADMINISTRATOR TASKS

123

1

2

3

4

5

6

Add a config section if it does not exist.

Specify labels to match pods that are owned by the Operator.

Create a trusted-ca volume.

ca-bundle.crt is required as the config map key.

tls-ca-bundle.pem is required as the config map path.

Create a trusted-ca volume mount.

NOTE

Deployments of an Operator can fail to validate the authority and display a x509
certificate signed by unknown authority error. This error can occur even after
injecting a custom CA when using the subscription of an Operator. In this case,
you can set the mountPath as /etc/ssl/certs for trusted-ca by using the
subscription of an Operator.

4.5.3. Additional resources

Proxy certificates

Replacing the default ingress certificate

Updating the CA bundle

4.6. VIEWING OPERATOR STATUS

Understanding the state of the system in Operator Lifecycle Manager (OLM) is important for making
decisions about and debugging problems with installed Operators. OLM provides insight into

metadata:
 name: my-operator
spec:
 package: etcd
 channel: alpha
 config: 1
 selector:
 matchLabels:
 <labels_for_pods> 2
 volumes: 3
 - name: trusted-ca
 configMap:
 name: trusted-ca
 items:
 - key: ca-bundle.crt 4
 path: tls-ca-bundle.pem 5
 volumeMounts: 6
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 readOnly: true

OpenShift Container Platform 4.19 Operators

124

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#cert-types-proxy-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#replacing-default-ingress
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#updating-ca-bundle

subscriptions and related catalog sources regarding their state and actions performed. This helps users
better understand the healthiness of their Operators.

4.6.1. Operator subscription condition types

Subscriptions can report the following condition types:

Table 4.1. Subscription condition types

Condition Description

CatalogSourcesUnhealthy Some or all of the catalog sources to be used in resolution are
unhealthy.

InstallPlanMissing An install plan for a subscription is missing.

InstallPlanPending An install plan for a subscription is pending installation.

InstallPlanFailed An install plan for a subscription has failed.

ResolutionFailed The dependency resolution for a subscription has failed.

NOTE

Default OpenShift Container Platform cluster Operators are managed by the Cluster
Version Operator (CVO) and they do not have a Subscription object. Application
Operators are managed by Operator Lifecycle Manager (OLM) and they have a
Subscription object.

Additional resources

Refreshing failing subscriptions

4.6.2. Viewing Operator subscription status by using the CLI

You can view Operator subscription status by using the CLI.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. List Operator subscriptions:

2. Use the oc describe command to inspect a Subscription resource:

$ oc get subs -n <operator_namespace>

CHAPTER 4. ADMINISTRATOR TASKS

125

3. In the command output, find the Conditions section for the status of Operator subscription
condition types. In the following example, the CatalogSourcesUnhealthy condition type has a
status of false because all available catalog sources are healthy:

Example output

NOTE

Default OpenShift Container Platform cluster Operators are managed by the Cluster
Version Operator (CVO) and they do not have a Subscription object. Application
Operators are managed by Operator Lifecycle Manager (OLM) and they have a
Subscription object.

4.6.3. Viewing Operator catalog source status by using the CLI

You can view the status of an Operator catalog source by using the CLI.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. List the catalog sources in a namespace. For example, you can check the openshift-
marketplace namespace, which is used for cluster-wide catalog sources:

Example output

$ oc describe sub <subscription_name> -n <operator_namespace>

Name: cluster-logging
Namespace: openshift-logging
Labels: operators.coreos.com/cluster-logging.openshift-logging=
Annotations: <none>
API Version: operators.coreos.com/v1alpha1
Kind: Subscription
...
Conditions:
 Last Transition Time: 2019-07-29T13:42:57Z
 Message: all available catalogsources are healthy
 Reason: AllCatalogSourcesHealthy
 Status: False
 Type: CatalogSourcesUnhealthy
...

$ oc get catalogsources -n openshift-marketplace

NAME DISPLAY TYPE PUBLISHER AGE
certified-operators Certified Operators grpc Red Hat 55m
community-operators Community Operators grpc Red Hat 55m
example-catalog Example Catalog grpc Example Org 2m25s

OpenShift Container Platform 4.19 Operators

126

2. Use the oc describe command to get more details and status about a catalog source:

Example output

In the preceding example output, the last observed state is TRANSIENT_FAILURE. This state
indicates that there is a problem establishing a connection for the catalog source.

3. List the pods in the namespace where your catalog source was created:

Example output

When a catalog source is created in a namespace, a pod for the catalog source is created in that
namespace. In the preceding example output, the status for the example-catalog-bwt8z pod is
ImagePullBackOff. This status indicates that there is an issue pulling the catalog source’s index
image.

4. Use the oc describe command to inspect a pod for more detailed information:

redhat-operators Red Hat Operators grpc Red Hat 55m

$ oc describe catalogsource example-catalog -n openshift-marketplace

Name: example-catalog
Namespace: openshift-marketplace
Labels: <none>
Annotations: operatorframework.io/managed-by: marketplace-operator
 target.workload.openshift.io/management: {"effect": "PreferredDuringScheduling"}
API Version: operators.coreos.com/v1alpha1
Kind: CatalogSource
...
Status:
 Connection State:
 Address: example-catalog.openshift-marketplace.svc:50051
 Last Connect: 2021-09-09T17:07:35Z
 Last Observed State: TRANSIENT_FAILURE
 Registry Service:
 Created At: 2021-09-09T17:05:45Z
 Port: 50051
 Protocol: grpc
 Service Name: example-catalog
 Service Namespace: openshift-marketplace
...

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE
certified-operators-cv9nn 1/1 Running 0 36m
community-operators-6v8lp 1/1 Running 0 36m
marketplace-operator-86bfc75f9b-jkgbc 1/1 Running 0 42m
example-catalog-bwt8z 0/1 ImagePullBackOff 0 3m55s
redhat-operators-smxx8 1/1 Running 0 36m

$ oc describe pod example-catalog-bwt8z -n openshift-marketplace

CHAPTER 4. ADMINISTRATOR TASKS

127

Example output

In the preceding example output, the error messages indicate that the catalog source’s index
image is failing to pull successfully because of an authorization issue. For example, the index
image might be stored in a registry that requires login credentials.

Additional resources

Operator Lifecycle Manager concepts and resources → Catalog source

gRPC documentation: States of Connectivity

Accessing images for Operators from private registries

4.7. MANAGING OPERATOR CONDITIONS

As a cluster administrator, you can manage Operator conditions by using Operator Lifecycle Manager
(OLM).

4.7.1. Overriding Operator conditions

As a cluster administrator, you might want to ignore a supported Operator condition reported by an
Operator. When present, Operator conditions in the Spec.Overrides array override the conditions in the
Spec.Conditions array, allowing cluster administrators to deal with situations where an Operator is
incorrectly reporting a state to Operator Lifecycle Manager (OLM).

NOTE

By default, the Spec.Overrides array is not present in an OperatorCondition object until
it is added by a cluster administrator . The Spec.Conditions array is also not present until
it is either added by a user or as a result of custom Operator logic.

Name: example-catalog-bwt8z
Namespace: openshift-marketplace
Priority: 0
Node: ci-ln-jyryyg2-f76d1-ggdbq-worker-b-vsxjd/10.0.128.2
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 48s default-scheduler Successfully assigned openshift-
marketplace/example-catalog-bwt8z to ci-ln-jyryyf2-f76d1-fgdbq-worker-b-vsxjd
 Normal AddedInterface 47s multus Add eth0 [10.131.0.40/23] from
openshift-sdn
 Normal BackOff 20s (x2 over 46s) kubelet Back-off pulling image
"quay.io/example-org/example-catalog:v1"
 Warning Failed 20s (x2 over 46s) kubelet Error: ImagePullBackOff
 Normal Pulling 8s (x3 over 47s) kubelet Pulling image "quay.io/example-
org/example-catalog:v1"
 Warning Failed 8s (x3 over 47s) kubelet Failed to pull image
"quay.io/example-org/example-catalog:v1": rpc error: code = Unknown desc = reading
manifest v1 in quay.io/example-org/example-catalog: unauthorized: access to the requested
resource is not authorized
 Warning Failed 8s (x3 over 47s) kubelet Error: ErrImagePull

OpenShift Container Platform 4.19 Operators

128

https://grpc.github.io/grpc/core/md_doc_connectivity-semantics-and-api.html

1

For example, consider a known version of an Operator that always communicates that it is not
upgradeable. In this instance, you might want to upgrade the Operator despite the Operator
communicating that it is not upgradeable. This could be accomplished by overriding the Operator
condition by adding the condition type and status to the Spec.Overrides array in the
OperatorCondition object.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

An Operator with an OperatorCondition object, installed using OLM.

Procedure

1. Edit the OperatorCondition object for the Operator:

2. Add a Spec.Overrides array to the object:

Example Operator condition override

Allows the cluster administrator to change the upgrade readiness to True.

4.7.2. Updating your Operator to use Operator conditions

Operator Lifecycle Manager (OLM) automatically creates an OperatorCondition resource for each
ClusterServiceVersion resource that it reconciles. All service accounts in the CSV are granted the
RBAC to interact with the OperatorCondition owned by the Operator.

An Operator author can develop their Operator to use the operator-lib library such that, after the
Operator has been deployed by OLM, it can set its own conditions. For more resources about setting
Operator conditions as an Operator author, see the Enabling Operator conditions page.

$ oc edit operatorcondition <name>

apiVersion: operators.coreos.com/v2
kind: OperatorCondition
metadata:
 name: my-operator
 namespace: operators
spec:
 overrides:
 - type: Upgradeable 1
 status: "True"
 reason: "upgradeIsSafe"
 message: "This is a known issue with the Operator where it always reports that it cannot
be upgraded."
 conditions:
 - type: Upgradeable
 status: "False"
 reason: "migration"
 message: "The operator is performing a migration."
 lastTransitionTime: "2020-08-24T23:15:55Z"

CHAPTER 4. ADMINISTRATOR TASKS

129

https://docs.openshift.com/container-platform/4.12/operators/operator_sdk/osdk-generating-csvs.html#osdk-operatorconditions_osdk-generating-csvs

4.7.2.1. Setting defaults

In an effort to remain backwards compatible, OLM treats the absence of an OperatorCondition
resource as opting out of the condition. Therefore, an Operator that opts in to using Operator conditions
should set default conditions before the ready probe for the pod is set to true. This provides the
Operator with a grace period to update the condition to the correct state.

4.7.3. Additional resources

Operator conditions

4.8. ALLOWING NON-CLUSTER ADMINISTRATORS TO INSTALL
OPERATORS

Cluster administrators can use Operator groups to allow regular users to install Operators.

Additional resources

Operator groups

4.8.1. Understanding Operator installation policy

Operators can require wide privileges to run, and the required privileges can change between versions.
Operator Lifecycle Manager (OLM) runs with cluster-admin privileges. By default, Operator authors
can specify any set of permissions in the cluster service version (CSV), and OLM consequently grants it
to the Operator.

To ensure that an Operator cannot achieve cluster-scoped privileges and that users cannot escalate
privileges using OLM, Cluster administrators can manually audit Operators before they are added to the
cluster. Cluster administrators are also provided tools for determining and constraining which actions are
allowed during an Operator installation or upgrade using service accounts.

Cluster administrators can associate an Operator group with a service account that has a set of
privileges granted to it. The service account sets policy on Operators to ensure they only run within
predetermined boundaries by using role-based access control (RBAC) rules. As a result, the Operator is
unable to do anything that is not explicitly permitted by those rules.

By employing Operator groups, users with enough privileges can install Operators with a limited scope.
As a result, more of the Operator Framework tools can safely be made available to more users, providing
a richer experience for building applications with Operators.

NOTE

Role-based access control (RBAC) for Subscription objects is automatically granted to
every user with the edit or admin role in a namespace. However, RBAC does not exist on
OperatorGroup objects; this absence is what prevents regular users from installing
Operators. Preinstalling Operator groups is effectively what gives installation privileges.

Keep the following points in mind when associating an Operator group with a service account:

The APIService and CustomResourceDefinition resources are always created by OLM using
the cluster-admin role. A service account associated with an Operator group should never be
granted privileges to write these resources.

OpenShift Container Platform 4.19 Operators

130

Any Operator tied to this Operator group is now confined to the permissions granted to the
specified service account. If the Operator asks for permissions that are outside the scope of the
service account, the install fails with appropriate errors so the cluster administrator can
troubleshoot and resolve the issue.

4.8.1.1. Installation scenarios

When determining whether an Operator can be installed or upgraded on a cluster, Operator Lifecycle
Manager (OLM) considers the following scenarios:

A cluster administrator creates a new Operator group and specifies a service account. All
Operator(s) associated with this Operator group are installed and run against the privileges
granted to the service account.

A cluster administrator creates a new Operator group and does not specify any service account.
OpenShift Container Platform maintains backward compatibility, so the default behavior
remains and Operator installs and upgrades are permitted.

For existing Operator groups that do not specify a service account, the default behavior
remains and Operator installs and upgrades are permitted.

A cluster administrator updates an existing Operator group and specifies a service account.
OLM allows the existing Operator to continue to run with their current privileges. When such an
existing Operator is going through an upgrade, it is reinstalled and run against the privileges
granted to the service account like any new Operator.

A service account specified by an Operator group changes by adding or removing permissions,
or the existing service account is swapped with a new one. When existing Operators go through
an upgrade, it is reinstalled and run against the privileges granted to the updated service
account like any new Operator.

A cluster administrator removes the service account from an Operator group. The default
behavior remains and Operator installs and upgrades are permitted.

4.8.1.2. Installation workflow

When an Operator group is tied to a service account and an Operator is installed or upgraded, Operator
Lifecycle Manager (OLM) uses the following workflow:

1. The given Subscription object is picked up by OLM.

2. OLM fetches the Operator group tied to this subscription.

3. OLM determines that the Operator group has a service account specified.

4. OLM creates a client scoped to the service account and uses the scoped client to install the
Operator. This ensures that any permission requested by the Operator is always confined to
that of the service account in the Operator group.

5. OLM creates a new service account with the set of permissions specified in the CSV and assigns
it to the Operator. The Operator runs as the assigned service account.

4.8.2. Scoping Operator installations

To provide scoping rules to Operator installations and upgrades on Operator Lifecycle Manager (OLM),
associate a service account with an Operator group.

CHAPTER 4. ADMINISTRATOR TASKS

131

1

Using this example, a cluster administrator can confine a set of Operators to a designated namespace.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a new namespace:

Example 4.9. Example command that creates a Namespace object

2. Allocate permissions that you want the Operator(s) to be confined to. This involves creating a
new service account, relevant role(s), and role binding(s) in the newly created, designated
namespace:

a. Create a service account by running the following command:

Example 4.10. Example command that creates a ServiceAccount object

b. Create a secret by running the following command:

Example 4.11. Example command that creates a long-lived API token Secret object

The secret must be a long-lived API token, which is used by the service account.

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: scoped
EOF

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: ServiceAccount
metadata:
 name: scoped
 namespace: scoped
EOF

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: Secret
type: kubernetes.io/service-account-token 1
metadata:
 name: scoped
 namespace: scoped
 annotations:
 kubernetes.io/service-account.name: scoped
EOF

OpenShift Container Platform 4.19 Operators

132

c. Create a role by running the following command.

WARNING

In this example, the role grants the service account permissions to do
anything in the designated namespace for demonostration purposes
only. In a production environment, you should create a more fine-
grained set of permissions. For more information, see "Fine-grained
permissions".

Example 4.12. Example command that creates Role and RoleBinding objects

3. Create an OperatorGroup object in the designated namespace by running the following
command. This Operator group targets the designated namespace to ensure that its tenancy is
confined to it. In addition, Operator groups allow a user to specify a service account.

Example 4.13. Example command that creates an OperatorGroup object



$ cat <<EOF | oc create -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: scoped
 namespace: scoped
rules:
- apiGroups: ["*"]
 resources: ["*"]
 verbs: ["*"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: scoped-bindings
 namespace: scoped
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: scoped
subjects:
- kind: ServiceAccount
 name: scoped
 namespace: scoped
EOF

$ cat <<EOF | oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup

CHAPTER 4. ADMINISTRATOR TASKS

133

1

1

2

Specify the service account created in the previous step. Any Operator installed in the
designated namespace is tied to this Operator group and therefore to the service
account specified.

4. Create a Subscription object in the designated namespace to install an Operator:

Example 4.14. Example command that creates a Subscription object

Specify a catalog source that already exists in the designated namespace or one that is
in the global catalog namespace, for example redhat-operators.

Specify a namespace where the catalog source was created, for example openshift-
marketplace for the redhat-operators catalog.

Any Operator tied to this Operator group is confined to the permissions granted to the
specified service account. If the Operator requests permissions that are outside the scope of
the service account, the installation fails with relevant errors.

4.8.2.1. Fine-grained permissions

Operator Lifecycle Manager (OLM) uses the service account specified in an Operator group to create or
update the following resources related to the Operator being installed:

ClusterServiceVersion

Subscription

Secret

metadata:
 name: scoped
 namespace: scoped
spec:
 serviceAccountName: scoped 1
 targetNamespaces:
 - scoped
EOF

$ cat <<EOF | oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-cert-manager-operator
 namespace: scoped
spec:
 channel: stable-v1
 name: openshift-cert-manager-operator
 source: <catalog_source_name> 1
 sourceNamespace: <catalog_source_namespace> 2
EOF

OpenShift Container Platform 4.19 Operators

134

1 2

1

ServiceAccount

Service

ClusterRole and ClusterRoleBinding

Role and RoleBinding

To confine Operators to a designated namespace, cluster administrators can start by granting the
following permissions to the service account:

NOTE

The following role is a generic example and additional rules might be required based on
the specific Operator.

Add permissions to create other resources, such as deployments and pods shown here.

In addition, if any Operator specifies a pull secret, the following permissions must also be added:

Required to get the secret from the OLM namespace.

kind: Role
rules:
- apiGroups: ["operators.coreos.com"]
 resources: ["subscriptions", "clusterserviceversions"]
 verbs: ["get", "create", "update", "patch"]
- apiGroups: [""]
 resources: ["services", "serviceaccounts"]
 verbs: ["get", "create", "update", "patch"]
- apiGroups: ["rbac.authorization.k8s.io"]
 resources: ["roles", "rolebindings"]
 verbs: ["get", "create", "update", "patch"]
- apiGroups: ["apps"] 1
 resources: ["deployments"]
 verbs: ["list", "watch", "get", "create", "update", "patch", "delete"]
- apiGroups: [""] 2
 resources: ["pods"]
 verbs: ["list", "watch", "get", "create", "update", "patch", "delete"]

kind: ClusterRole 1
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["get"]

kind: Role
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["create", "update", "patch"]

CHAPTER 4. ADMINISTRATOR TASKS

135

4.8.3. Operator catalog access control

When an Operator catalog is created in the global catalog namespace openshift-marketplace, the
catalog’s Operators are made available cluster-wide to all namespaces. A catalog created in other
namespaces only makes its Operators available in that same namespace of the catalog.

On clusters where non-cluster administrator users have been delegated Operator installation privileges,
cluster administrators might want to further control or restrict the set of Operators those users are
allowed to install. This can be achieved with the following actions:

1. Disable all of the default global catalogs.

2. Enable custom, curated catalogs in the same namespace where the relevant Operator groups
have been preinstalled.

Additional resources

Disabling the default OperatorHub catalog sources

Adding a catalog source to a cluster

4.8.4. Troubleshooting permission failures

If an Operator installation fails due to lack of permissions, identify the errors using the following
procedure.

Procedure

1. Review the Subscription object. Its status has an object reference installPlanRef that points
to the InstallPlan object that attempted to create the necessary [Cluster]Role[Binding]
object(s) for the Operator:

2. Check the status of the InstallPlan object for any errors:

apiVersion: operators.coreos.com/v1
kind: Subscription
metadata:
 name: etcd
 namespace: scoped
status:
 installPlanRef:
 apiVersion: operators.coreos.com/v1
 kind: InstallPlan
 name: install-4plp8
 namespace: scoped
 resourceVersion: "117359"
 uid: 2c1df80e-afea-11e9-bce3-5254009c9c23

apiVersion: operators.coreos.com/v1
kind: InstallPlan
status:
 conditions:
 - lastTransitionTime: "2019-07-26T21:13:10Z"
 lastUpdateTime: "2019-07-26T21:13:10Z"
 message: 'error creating clusterrole etcdoperator.v0.9.4-clusterwide-dsfx4:

OpenShift Container Platform 4.19 Operators

136

The error message tells you:

The type of resource it failed to create, including the API group of the resource. In this case,
it was clusterroles in the rbac.authorization.k8s.io group.

The name of the resource.

The type of error: is forbidden tells you that the user does not have enough permission to
do the operation.

The name of the user who attempted to create or update the resource. In this case, it refers
to the service account specified in the Operator group.

The scope of the operation: cluster scope or not.
The user can add the missing permission to the service account and then iterate.

NOTE

Operator Lifecycle Manager (OLM) does not currently provide the complete
list of errors on the first try.

4.9. MANAGING CUSTOM CATALOGS

Cluster administrators and Operator catalog maintainers can create and manage custom catalogs
packaged using the bundle format on Operator Lifecycle Manager (OLM) in OpenShift Container
Platform.

IMPORTANT

Kubernetes periodically deprecates certain APIs that are removed in subsequent
releases. As a result, Operators are unable to use removed APIs starting with the version
of OpenShift Container Platform that uses the Kubernetes version that removed the API.

Additional resources

Red Hat-provided Operator catalogs

4.9.1. Prerequisites

You have installed the opm CLI.

4.9.2. File-based catalogs

File-based catalogs are the latest iteration of the catalog format in Operator Lifecycle Manager (OLM).
It is a plain text-based (JSON or YAML) and declarative config evolution of the earlier SQLite database
format, and it is fully backwards compatible.

clusterroles.rbac.authorization.k8s.io
 is forbidden: User "system:serviceaccount:scoped:scoped" cannot create resource
 "clusterroles" in API group "rbac.authorization.k8s.io" at the cluster scope'
 reason: InstallComponentFailed
 status: "False"
 type: Installed
 phase: Failed

CHAPTER 4. ADMINISTRATOR TASKS

137

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#cli-opm-install

1

IMPORTANT

As of OpenShift Container Platform 4.11, the default Red Hat-provided Operator catalog
releases in the file-based catalog format. The default Red Hat-provided Operator
catalogs for OpenShift Container Platform 4.6 through 4.10 released in the deprecated
SQLite database format.

The opm subcommands, flags, and functionality related to the SQLite database format
are also deprecated and will be removed in a future release. The features are still
supported and must be used for catalogs that use the deprecated SQLite database
format.

Many of the opm subcommands and flags for working with the SQLite database format,
such as opm index prune, do not work with the file-based catalog format. For more
information about working with file-based catalogs, see Operator Framework packaging
format and Mirroring images for a disconnected installation using the oc-mirror plugin .

4.9.2.1. Creating a file-based catalog image

You can use the opm CLI to create a catalog image that uses the plain text file-based catalog format
(JSON or YAML), which replaces the deprecated SQLite database format.

Prerequisites

You have installed the opm CLI.

You have podman version 1.9.3+.

A bundle image is built and pushed to a registry that supports Docker v2-2.

Procedure

1. Initialize the catalog:

a. Create a directory for the catalog by running the following command:

b. Generate a Dockerfile that can build a catalog image by running the opm generate
dockerfile command:

Specify the official Red Hat base image by using the -i flag, otherwise the Dockerfile
uses the default upstream image.

The Dockerfile must be in the same parent directory as the catalog directory that you
created in the previous step:

Example directory structure

$ mkdir <catalog_dir>

$ opm generate dockerfile <catalog_dir> \
 -i registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4.19 1

OpenShift Container Platform 4.19 Operators

138

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#installing-mirroring-disconnected
https://docs.docker.com/registry/spec/manifest-v2-2/

1

2

3

1

2

3

4

5

6

1

2

Parent directory

Catalog directory

Dockerfile generated by the opm generate dockerfile command

c. Populate the catalog with the package definition for your Operator by running the opm init
command:

Operator, or package, name

Channel that subscriptions default to if unspecified

Path to the Operator’s README.md or other documentation

Path to the Operator’s icon

Output format: JSON or YAML

Path for creating the catalog configuration file

This command generates an olm.package declarative config blob in the specified catalog
configuration file.

2. Add a bundle to the catalog by running the opm render command:

Pull spec for the bundle image

Path to the catalog configuration file

NOTE

Channels must contain at least one bundle.

3. Add a channel entry for the bundle. For example, modify the following example to your

. 1
├── <catalog_dir> 2
└── <catalog_dir>.Dockerfile 3

$ opm init <operator_name> \ 1
 --default-channel=preview \ 2
 --description=./README.md \ 3
 --icon=./operator-icon.svg \ 4
 --output yaml \ 5
 > <catalog_dir>/index.yaml 6

$ opm render <registry>/<namespace>/<bundle_image_name>:<tag> \ 1
 --output=yaml \
 >> <catalog_dir>/index.yaml 2

CHAPTER 4. ADMINISTRATOR TASKS

139

1

3. Add a channel entry for the bundle. For example, modify the following example to your
specifications, and add it to your <catalog_dir>/index.yaml file:

Example channel entry

Ensure that you include the period (.) after <operator_name> but before the v in the
version. Otherwise, the entry fails to pass the opm validate command.

4. Validate the file-based catalog:

a. Run the opm validate command against the catalog directory:

b. Check that the error code is 0:

Example output

5. Build the catalog image by running the podman build command:

6. Push the catalog image to a registry:

a. If required, authenticate with your target registry by running the podman login command:

b. Push the catalog image by running the podman push command:

Additional resources

opm CLI reference

4.9.2.2. Updating or filtering a file-based catalog image

You can use the opm CLI to update or filter a catalog image that uses the file-based catalog format. By

schema: olm.channel
package: <operator_name>
name: preview
entries:
 - name: <operator_name>.v0.1.0 1

$ opm validate <catalog_dir>

$ echo $?

0

$ podman build . \
 -f <catalog_dir>.Dockerfile \
 -t <registry>/<namespace>/<catalog_image_name>:<tag>

$ podman login <registry>

$ podman push <registry>/<namespace>/<catalog_image_name>:<tag>

OpenShift Container Platform 4.19 Operators

140

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#cli-opm-ref

You can use the opm CLI to update or filter a catalog image that uses the file-based catalog format. By
extracting the contents of an existing catalog image, you can modify the catalog as needed, for example:

Adding packages

Removing packages

Updating existing package entries

Detailing deprecation messages per package, channel, and bundle

You can then rebuild the image as an updated version of the catalog.

NOTE

Alternatively, if you already have a catalog image on a mirror registry, you can use the oc-
mirror CLI plugin to automatically prune any removed images from an updated source
version of that catalog image while mirroring it to the target registry.

For more information about the oc-mirror plugin and this use case, see the "Keeping your
mirror registry content updated" section, and specifically the "Pruning images"
subsection, of "Mirroring images for a disconnected installation using the oc-mirror
plugin".

Prerequisites

You have the following on your workstation:

The opm CLI.

podman version 1.9.3+.

A file-based catalog image.

A catalog directory structure recently initialized on your workstation related to this catalog.
If you do not have an initialized catalog directory, create the directory and generate the
Dockerfile. For more information, see the "Initialize the catalog" step from the "Creating a
file-based catalog image" procedure.

Procedure

1. Extract the contents of the catalog image in YAML format to an index.yaml file in your catalog
directory:

NOTE

Alternatively, you can use the -o json flag to output in JSON format.

2. Modify the contents of the resulting index.yaml file to your specifications:

IMPORTANT

$ opm render <registry>/<namespace>/<catalog_image_name>:<tag> \
 -o yaml > <catalog_dir>/index.yaml

CHAPTER 4. ADMINISTRATOR TASKS

141

IMPORTANT

After a bundle has been published in a catalog, assume that one of your users has
installed it. Ensure that all previously published bundles in a catalog have an
update path to the current or newer channel head to avoid stranding users that
have that version installed.

To add an Operator, follow the steps for creating package, bundle, and channel entries in
the "Creating a file-based catalog image" procedure.

To remove an Operator, delete the set of olm.package, olm.channel, and olm.bundle
blobs that relate to the package. The following example shows a set that must be deleted to
remove the example-operator package from the catalog:

Example 4.15. Example removed entries

defaultChannel: release-2.7
icon:
 base64data: <base64_string>
 mediatype: image/svg+xml
name: example-operator
schema: olm.package

entries:
- name: example-operator.v2.7.0
 skipRange: '>=2.6.0 <2.7.0'
- name: example-operator.v2.7.1
 replaces: example-operator.v2.7.0
 skipRange: '>=2.6.0 <2.7.1'
- name: example-operator.v2.7.2
 replaces: example-operator.v2.7.1
 skipRange: '>=2.6.0 <2.7.2'
- name: example-operator.v2.7.3
 replaces: example-operator.v2.7.2
 skipRange: '>=2.6.0 <2.7.3'
- name: example-operator.v2.7.4
 replaces: example-operator.v2.7.3
 skipRange: '>=2.6.0 <2.7.4'
name: release-2.7
package: example-operator
schema: olm.channel

image: example.com/example-inc/example-operator-bundle@sha256:<digest>
name: example-operator.v2.7.0
package: example-operator
properties:
- type: olm.gvk
 value:
 group: example-group.example.io
 kind: MyObject
 version: v1alpha1
- type: olm.gvk
 value:
 group: example-group.example.io
 kind: MyOtherObject

OpenShift Container Platform 4.19 Operators

142

To add or update deprecation messages for an Operator, ensure there is a
deprecations.yaml file in the same directory as the package’s index.yaml file. For
information on the deprecations.yaml file format, see "olm.deprecations schema".

3. Save your changes.

4. Validate the catalog:

5. Rebuild the catalog:

6. Push the updated catalog image to a registry:

Verification

1. In the web console, navigate to the OperatorHub configuration resource in the Administration
→ Cluster Settings → Configuration page.

2. Add the catalog source or update the existing catalog source to use the pull spec for your
updated catalog image.
For more information, see "Adding a catalog source to a cluster" in the "Additional resources" of
this section.

3. After the catalog source is in a READY state, navigate to the Operators → OperatorHub page
and check that the changes you made are reflected in the list of Operators.

Additional resources

Packaging format → Schemas → olm.deprecations schema

 version: v1beta1
- type: olm.package
 value:
 packageName: example-operator
 version: 2.7.0
- type: olm.bundle.object
 value:
 data: <base64_string>
- type: olm.bundle.object
 value:
 data: <base64_string>
relatedImages:
- image: example.com/example-inc/example-related-image@sha256:<digest>
 name: example-related-image
schema: olm.bundle

$ opm validate <catalog_dir>

$ podman build . \
 -f <catalog_dir>.Dockerfile \
 -t <registry>/<namespace>/<catalog_image_name>:<tag>

$ podman push <registry>/<namespace>/<catalog_image_name>:<tag>

CHAPTER 4. ADMINISTRATOR TASKS

143

1

2

3

Mirroring images for a disconnected installation using the oc-mirror plugin → Keeping your
mirror registry content updated

Adding a catalog source to a cluster

4.9.3. SQLite-based catalogs

IMPORTANT

The SQLite database format for Operator catalogs is a deprecated feature. Deprecated
functionality is still included in OpenShift Container Platform and continues to be
supported; however, it will be removed in a future release of this product and is not
recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

4.9.3.1. Creating a SQLite-based index image

You can create an index image based on the SQLite database format by using the opm CLI.

Prerequisites

You have installed the opm CLI.

You have podman version 1.9.3+.

A bundle image is built and pushed to a registry that supports Docker v2-2.

Procedure

1. Start a new index:

Comma-separated list of bundle images to add to the index.

The image tag that you want the index image to have.

Optional: An alternative registry base image to use for serving the catalog.

2. Push the index image to a registry.

a. If required, authenticate with your target registry:

b. Push the index image:

$ opm index add \
 --bundles <registry>/<namespace>/<bundle_image_name>:<tag> \ 1
 --tag <registry>/<namespace>/<index_image_name>:<tag> \ 2
 [--binary-image <registry_base_image>] 3

$ podman login <registry>

OpenShift Container Platform 4.19 Operators

144

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#updating-mirror-registry-content
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#olm-creating-catalog-from-index_olm-restricted-networks
https://docs.docker.com/registry/spec/manifest-v2-2/

1

2

3

4

4.9.3.2. Updating a SQLite-based index image

After configuring OperatorHub to use a catalog source that references a custom index image, cluster
administrators can keep the available Operators on their cluster up-to-date by adding bundle images to
the index image.

You can update an existing index image using the opm index add command.

Prerequisites

You have installed the opm CLI.

You have podman version 1.9.3+.

An index image is built and pushed to a registry.

You have an existing catalog source referencing the index image.

Procedure

1. Update the existing index by adding bundle images:

The --bundles flag specifies a comma-separated list of additional bundle images to add to
the index.

The --from-index flag specifies the previously pushed index.

The --tag flag specifies the image tag to apply to the updated index image.

The --pull-tool flag specifies the tool used to pull container images.

where:

<registry>

Specifies the hostname of the registry, such as quay.io or mirror.example.com.

<namespace>

Specifies the namespace of the registry, such as ocs-dev or abc.

<new_bundle_image>

Specifies the new bundle image to add to the registry, such as ocs-operator.

<digest>

Specifies the SHA image ID, or digest, of the bundle image, such as
c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a41.

$ podman push <registry>/<namespace>/<index_image_name>:<tag>

$ opm index add \
 --bundles <registry>/<namespace>/<new_bundle_image>@sha256:<digest> \ 1
 --from-index <registry>/<namespace>/<existing_index_image>:<existing_tag> \ 2
 --tag <registry>/<namespace>/<existing_index_image>:<updated_tag> \ 3
 --pull-tool podman 4

CHAPTER 4. ADMINISTRATOR TASKS

145

<existing_index_image>

Specifies the previously pushed image, such as abc-redhat-operator-index.

<existing_tag>

Specifies a previously pushed image tag, such as 4.19.

<updated_tag>

Specifies the image tag to apply to the updated index image, such as 4.19.1.

Example command

2. Push the updated index image:

3. After Operator Lifecycle Manager (OLM) automatically polls the index image referenced in the
catalog source at its regular interval, verify that the new packages are successfully added:

4.9.3.3. Filtering a SQLite-based index image

An index image, based on the Operator bundle format, is a containerized snapshot of an Operator
catalog. You can filter, or prune, an index of all but a specified list of packages, which creates a copy of
the source index containing only the Operators that you want.

Prerequisites

You have podman version 1.9.3+.

You have grpcurl (third-party command-line tool).

You have installed the opm CLI.

You have access to a registry that supports Docker v2-2.

Procedure

1. Authenticate with your target registry:

2. Determine the list of packages you want to include in your pruned index.

a. Run the source index image that you want to prune in a container. For example:

$ opm index add \
 --bundles quay.io/ocs-dev/ocs-
operator@sha256:c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a
41 \
 --from-index mirror.example.com/abc/abc-redhat-operator-index:4.19 \
 --tag mirror.example.com/abc/abc-redhat-operator-index:4.19.1 \
 --pull-tool podman

$ podman push <registry>/<namespace>/<existing_index_image>:<updated_tag>

$ oc get packagemanifests -n openshift-marketplace

$ podman login <target_registry>

OpenShift Container Platform 4.19 Operators

146

https://github.com/fullstorydev/grpcurl
https://docs.docker.com/registry/spec/manifest-v2-2/

1

2

3

Example output

b. In a separate terminal session, use the grpcurl command to get a list of the packages
provided by the index:

c. Inspect the packages.out file and identify which package names from this list you want to
keep in your pruned index. For example:

Example snippets of packages list

d. In the terminal session where you executed the podman run command, press Ctrl and C to
stop the container process.

3. Run the following command to prune the source index of all but the specified packages:

Index to prune.

Comma-separated list of packages to keep.

Required only for IBM Power® and IBM Z® images: Operator Registry base image with the

$ podman run -p50051:50051 \
 -it registry.redhat.io/redhat/redhat-operator-index:v4.19

Trying to pull registry.redhat.io/redhat/redhat-operator-index:v4.19...
Getting image source signatures
Copying blob ae8a0c23f5b1 done
...
INFO[0000] serving registry database=/database/index.db port=50051

$ grpcurl -plaintext localhost:50051 api.Registry/ListPackages > packages.out

...
{
 "name": "advanced-cluster-management"
}
...
{
 "name": "jaeger-product"
}
...
{
{
 "name": "quay-operator"
}
...

$ opm index prune \
 -f registry.redhat.io/redhat/redhat-operator-index:v4.19 \ 1
 -p advanced-cluster-management,jaeger-product,quay-operator \ 2
 [-i registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4.19] \ 3
 -t <target_registry>:<port>/<namespace>/redhat-operator-index:v4.19 4

CHAPTER 4. ADMINISTRATOR TASKS

147

4 Custom tag for new index image being built.

4. Run the following command to push the new index image to your target registry:

where <namespace> is any existing namespace on the registry.

4.9.4. Catalog sources and pod security admission

Pod security admission was introduced in OpenShift Container Platform 4.11 to ensure pod security
standards. Catalog sources built using the SQLite-based catalog format and a version of the opm CLI
tool released before OpenShift Container Platform 4.11 cannot run under restricted pod security
enforcement.

In OpenShift Container Platform 4.19, namespaces do not have restricted pod security enforcement by
default and the default catalog source security mode is set to legacy.

Default restricted enforcement for all namespaces is planned for inclusion in a future OpenShift
Container Platform release. When restricted enforcement occurs, the security context of the pod
specification for catalog source pods must match the restricted pod security standard. If your catalog
source image requires a different pod security standard, the pod security admissions label for the
namespace must be explicitly set.

NOTE

If you do not want to run your SQLite-based catalog source pods as restricted, you do
not need to update your catalog source in OpenShift Container Platform 4.19.

However, it is recommended that you take action now to ensure your catalog sources run
under restricted pod security enforcement. If you do not take action to ensure your
catalog sources run under restricted pod security enforcement, your catalog sources
might not run in future OpenShift Container Platform releases.

As a catalog author, you can enable compatibility with restricted pod security enforcement by
completing either of the following actions:

Migrate your catalog to the file-based catalog format.

Update your catalog image with a version of the opm CLI tool released with OpenShift
Container Platform 4.11 or later.

NOTE

The SQLite database catalog format is deprecated, but still supported by Red Hat. In a
future release, the SQLite database format will not be supported, and catalogs will need
to migrate to the file-based catalog format. As of OpenShift Container Platform 4.11, the
default Red Hat-provided Operator catalog is released in the file-based catalog format.
File-based catalogs are compatible with restricted pod security enforcement.

If you do not want to update your SQLite database catalog image or migrate your catalog to the file-
based catalog format, you can configure your catalog to run with elevated permissions.

$ podman push <target_registry>:<port>/<namespace>/redhat-operator-index:v4.19

OpenShift Container Platform 4.19 Operators

148

Additional resources

Understanding and managing pod security admission

4.9.4.1. Migrating SQLite database catalogs to the file-based catalog format

You can update your deprecated SQLite database format catalogs to the file-based catalog format.

Prerequisites

You have a SQLite database catalog source.

You have access to the cluster as a user with the cluster-admin role.

You have the latest version of the opm CLI tool released with OpenShift Container Platform
4.19 on your workstation.

Procedure

1. Migrate your SQLite database catalog to a file-based catalog by running the following
command:

2. Generate a Dockerfile for your file-based catalog by running the following command:

Next steps

The generated Dockerfile can be built, tagged, and pushed to your registry.

Additional resources

Adding a catalog source to a cluster

4.9.4.2. Rebuilding SQLite database catalog images

You can rebuild your SQLite database catalog image with the latest version of the opm CLI tool that is
released with your version of OpenShift Container Platform.

Prerequisites

You have a SQLite database catalog source.

You have access to the cluster as a user with the cluster-admin role.

You have the latest version of the opm CLI tool released with OpenShift Container Platform
4.19 on your workstation.

Procedure

$ opm migrate <registry_image> <fbc_directory>

$ opm generate dockerfile <fbc_directory> \
 --binary-image \
 registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4.19

CHAPTER 4. ADMINISTRATOR TASKS

149

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

Run the following command to rebuild your catalog with a more recent version of the opm CLI
tool:

4.9.4.3. Configuring catalogs to run with elevated permissions

If you do not want to update your SQLite database catalog image or migrate your catalog to the file-
based catalog format, you can perform the following actions to ensure your catalog source runs when
the default pod security enforcement changes to restricted:

Manually set the catalog security mode to legacy in your catalog source definition. This action
ensures your catalog runs with legacy permissions even if the default catalog security mode
changes to restricted.

Label the catalog source namespace for baseline or privileged pod security enforcement.

NOTE

The SQLite database catalog format is deprecated, but still supported by Red Hat. In a
future release, the SQLite database format will not be supported, and catalogs will need
to migrate to the file-based catalog format. File-based catalogs are compatible with
restricted pod security enforcement.

Prerequisites

You have a SQLite database catalog source.

You have access to the cluster as a user with the cluster-admin role.

You have a target namespace that supports running pods with the elevated pod security
admission standard of baseline or privileged.

Procedure

1. Edit the CatalogSource definition by setting the
spec.grpcPodConfig.securityContextConfig label to legacy, as shown in the following
example:

Example CatalogSource definition

$ opm index add --binary-image \
 registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4.19 \
 --from-index <your_registry_image> \
 --bundles "" -t \<your_registry_image>

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-catsrc
 namespace: my-ns
spec:
 sourceType: grpc
 grpcPodConfig:
 securityContextConfig: legacy
 image: my-image:latest

OpenShift Container Platform 4.19 Operators

150

1

2

TIP

In OpenShift Container Platform 4.19, the spec.grpcPodConfig.securityContextConfig field is
set to legacy by default. In a future release of OpenShift Container Platform, it is planned that
the default setting will change to restricted. If your catalog cannot run under restricted
enforcement, it is recommended that you manually set this field to legacy.

2. Edit your <namespace>.yaml file to add elevated pod security admission standards to your
catalog source namespace, as shown in the following example:

Example <namespace>.yaml file

Turn off pod security label synchronization by adding the
security.openshift.io/scc.podSecurityLabelSync=false label to the namespace.

Apply the pod security admission pod-security.kubernetes.io/enforce label. Set the label
to baseline or privileged. Use the baseline pod security profile unless other workloads in
the namespace require a privileged profile.

4.9.5. Adding a catalog source to a cluster

Adding a catalog source to an OpenShift Container Platform cluster enables the discovery and
installation of Operators for users. Cluster administrators can create a CatalogSource object that
references an index image. OperatorHub uses catalog sources to populate the user interface.

TIP

Alternatively, you can use the web console to manage catalog sources. From the Administration →
Cluster Settings → Configuration → OperatorHub page, click the Sources tab, where you can create,
update, delete, disable, and enable individual sources.

Prerequisites

You built and pushed an index image to a registry.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a CatalogSource object that references your index image.

a. Modify the following to your specifications and save it as a catalogSource.yaml file:

apiVersion: v1
kind: Namespace
metadata:
...
 labels:
 security.openshift.io/scc.podSecurityLabelSync: "false" 1
 openshift.io/cluster-monitoring: "true"
 pod-security.kubernetes.io/enforce: baseline 2
 name: "<namespace_name>"

CHAPTER 4. ADMINISTRATOR TASKS

151

1

2

3

4

5

6

If you want the catalog source to be available globally to users in all namespaces,
specify the openshift-marketplace namespace. Otherwise, you can specify a different
namespace for the catalog to be scoped and available only for that namespace.

Optional: Set the olm.catalogImageTemplate annotation to your index image name
and use one or more of the Kubernetes cluster version variables as shown when
constructing the template for the image tag.

Specify the value of legacy or restricted. If the field is not set, the default value is
legacy. In a future OpenShift Container Platform release, it is planned that the default
value will be restricted.

NOTE

If your catalog cannot run with restricted permissions, it is
recommended that you manually set this field to legacy.

Specify your index image. If you specify a tag after the image name, for example
:v4.19, the catalog source pod uses an image pull policy of Always, meaning the pod
always pulls the image prior to starting the container. If you specify a digest, for
example @sha256:<id>, the image pull policy is IfNotPresent, meaning the pod pulls
the image only if it does not already exist on the node.

Specify your name or an organization name publishing the catalog.

Catalog sources can automatically check for new versions to keep up to date.

b. Use the file to create the CatalogSource object:

2. Verify the following resources are created successfully.

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-operator-catalog
 namespace: openshift-marketplace 1
 annotations:
 olm.catalogImageTemplate: 2
 "<registry>/<namespace>/<index_image_name>:v{kube_major_version}.
{kube_minor_version}.{kube_patch_version}"
spec:
 sourceType: grpc
 grpcPodConfig:
 securityContextConfig: <security_mode> 3
 image: <registry>/<namespace>/<index_image_name>:<tag> 4
 displayName: My Operator Catalog
 publisher: <publisher_name> 5
 updateStrategy:
 registryPoll: 6
 interval: 30m

$ oc apply -f catalogSource.yaml

OpenShift Container Platform 4.19 Operators

152

a. Check the pods:

Example output

b. Check the catalog source:

Example output

c. Check the package manifest:

Example output

You can now install the Operators from the OperatorHub page on your OpenShift Container Platform
web console.

Additional resources

Operator Lifecycle Manager concepts and resources → Catalog source

Accessing images for Operators from private registries

Image pull policy

4.9.6. Accessing images for Operators from private registries

If certain images relevant to Operators managed by Operator Lifecycle Manager (OLM) are hosted in
an authenticated container image registry, also known as a private registry, OLM and OperatorHub are
unable to pull the images by default. To enable access, you can create a pull secret that contains the
authentication credentials for the registry. By referencing one or more pull secrets in a catalog source,
OLM can handle placing the secrets in the Operator and catalog namespace to allow installation.

Other images required by an Operator or its Operands might require access to private registries as well.
OLM does not handle placing the secrets in target tenant namespaces for this scenario, but
authentication credentials can be added to the global cluster pull secret or individual namespace service
accounts to enable the required access.

The following types of images should be considered when determining whether Operators managed by

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE
my-operator-catalog-6njx6 1/1 Running 0 28s
marketplace-operator-d9f549946-96sgr 1/1 Running 0 26h

$ oc get catalogsource -n openshift-marketplace

NAME DISPLAY TYPE PUBLISHER AGE
my-operator-catalog My Operator Catalog grpc 5s

$ oc get packagemanifest -n openshift-marketplace

NAME CATALOG AGE
jaeger-product My Operator Catalog 93s

CHAPTER 4. ADMINISTRATOR TASKS

153

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/images/#image-pull-policy

The following types of images should be considered when determining whether Operators managed by
OLM have appropriate pull access:

Index images

A CatalogSource object can reference an index image, which use the Operator bundle format and
are catalog sources packaged as container images hosted in images registries. If an index image is
hosted in a private registry, a secret can be used to enable pull access.

Bundle images

Operator bundle images are metadata and manifests packaged as container images that represent a
unique version of an Operator. If any bundle images referenced in a catalog source are hosted in one
or more private registries, a secret can be used to enable pull access.

Operator and Operand images

If an Operator installed from a catalog source uses a private image, either for the Operator image
itself or one of the Operand images it watches, the Operator will fail to install because the
deployment will not have access to the required registry authentication. Referencing secrets in a
catalog source does not enable OLM to place the secrets in target tenant namespaces in which
Operands are installed.
Instead, the authentication details can be added to the global cluster pull secret in the openshift-
config namespace, which provides access to all namespaces on the cluster. Alternatively, if providing
access to the entire cluster is not permissible, the pull secret can be added to the default service
accounts of the target tenant namespaces.

You can access images from Operator from private registries by creating a secret for your registry
credentials and adding the secret for use with relevant catalogs.

Prerequisites

You have at least one of the following hosted in a private registry:

An index image or catalog image.

An Operator bundle image.

An Operator or Operand image.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a secret for each required private registry.

a. Log in to the private registry to create or update your registry credentials file:

NOTE

The file path of your registry credentials can be different depending on the
container tool used to log in to the registry. For the podman CLI, the default
location is ${XDG_RUNTIME_DIR}/containers/auth.json. For the docker
CLI, the default location is /root/.docker/config.json.

b. It is recommended to include credentials for only one registry per secret, and manage

$ podman login <registry>:<port>

OpenShift Container Platform 4.19 Operators

154

b. It is recommended to include credentials for only one registry per secret, and manage
credentials for multiple registries in separate secrets. Multiple secrets can be included in a
CatalogSource object in later steps, and OpenShift Container Platform will merge the
secrets into a single virtual credentials file for use during an image pull.
A registry credentials file can, by default, store details for more than one registry or for
multiple repositories in one registry. Verify the current contents of your file. For example:

File storing credentials for multiple registries

Because this file is used to create secrets in later steps, ensure that you are storing details
for only one registry per file. This can be accomplished by using either of the following
methods:

Use the podman logout <registry> command to remove credentials for additional
registries until only the one registry you want remains.

Edit your registry credentials file and separate the registry details to be stored in
multiple files. For example:

File storing credentials for one registry

File storing credentials for another registry

{
 "auths": {
 "registry.redhat.io": {
 "auth": "FrNHNydQXdzclNqdg=="
 },
 "quay.io": {
 "auth": "fegdsRib21iMQ=="
 },
 "https://quay.io/my-namespace/my-user/my-image": {
 "auth": "eWfjwsDdfsa221=="
 },
 "https://quay.io/my-namespace/my-user": {
 "auth": "feFweDdscw34rR=="
 },
 "https://quay.io/my-namespace": {
 "auth": "frwEews4fescyq=="
 }
 }
}

{
 "auths": {
 "registry.redhat.io": {
 "auth": "FrNHNydQXdzclNqdg=="
 }
 }
}

{
 "auths": {
 "quay.io": {
 "auth": "Xd2lhdsbnRib21iMQ=="

CHAPTER 4. ADMINISTRATOR TASKS

155

1

2

c. Create a secret in the openshift-marketplace namespace that contains the authentication
credentials for a private registry:

Repeat this step to create additional secrets for any other required private registries,
updating the --from-file flag to specify another registry credentials file path.

2. Create or update an existing CatalogSource object to reference one or more secrets:

Add a spec.secrets section and specify any required secrets.

Specify the value of legacy or restricted. If the field is not set, the default value is legacy.
In a future OpenShift Container Platform release, it is planned that the default value will be
restricted.

NOTE

If your catalog cannot run with restricted permissions, it is recommended
that you manually set this field to legacy.

3. If any Operator or Operand images that are referenced by a subscribed Operator require access
to a private registry, you can either provide access to all namespaces in the cluster, or individual
target tenant namespaces.

To provide access to all namespaces in the cluster, add authentication details to the global
cluster pull secret in the openshift-config namespace.

 }
 }
}

$ oc create secret generic <secret_name> \
 -n openshift-marketplace \
 --from-file=.dockerconfigjson=<path/to/registry/credentials> \
 --type=kubernetes.io/dockerconfigjson

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-operator-catalog
 namespace: openshift-marketplace
spec:
 sourceType: grpc
 secrets: 1
 - "<secret_name_1>"
 - "<secret_name_2>"
 grpcPodConfig:
 securityContextConfig: <security_mode> 2
 image: <registry>:<port>/<namespace>/<image>:<tag>
 displayName: My Operator Catalog
 publisher: <publisher_name>
 updateStrategy:
 registryPoll:
 interval: 30m

OpenShift Container Platform 4.19 Operators

156

1

1

WARNING

Cluster resources must adjust to the new global pull secret, which can
temporarily limit the usability of the cluster.

a. Extract the .dockerconfigjson file from the global pull secret:

b. Update the .dockerconfigjson file with your authentication credentials for the
required private registry or registries and save it as a new file:

Replace <registry>:<port>/<namespace> with the private registry details and
<token> with your authentication credentials.

c. Update the global pull secret with the new file:

To update an individual namespace, add a pull secret to the service account for the
Operator that requires access in the target tenant namespace.

a. Recreate the secret that you created for the openshift-marketplace in the tenant
namespace:

b. Verify the name of the service account for the Operator by searching the tenant
namespace:

If the Operator was installed in an individual namespace, search that namespace. If
the Operator was installed for all namespaces, search the openshift-operators
namespace.

Example output



$ oc extract secret/pull-secret -n openshift-config --confirm

$ cat .dockerconfigjson | \
 jq --compact-output '.auths["<registry>:<port>/<namespace>/"] |= . + {"auth":"
<token>"}' \ 1
 > new_dockerconfigjson

$ oc set data secret/pull-secret -n openshift-config \
 --from-file=.dockerconfigjson=new_dockerconfigjson

$ oc create secret generic <secret_name> \
 -n <tenant_namespace> \
 --from-file=.dockerconfigjson=<path/to/registry/credentials> \
 --type=kubernetes.io/dockerconfigjson

$ oc get sa -n <tenant_namespace> 1

CHAPTER 4. ADMINISTRATOR TASKS

157

1 Service account for an installed etcd Operator.

c. Link the secret to the service account for the Operator:

Additional resources

See What is a secret? for more information on the types of secrets, including those used for
registry credentials.

See Updating the global cluster pull secret for more details on the impact of changing this
secret.

See Allowing pods to reference images from other secured registries for more details on linking
pull secrets to service accounts per namespace.

4.9.7. Disabling the default OperatorHub catalog sources

Operator catalogs that source content provided by Red Hat and community projects are configured for
OperatorHub by default during an OpenShift Container Platform installation. As a cluster administrator,
you can disable the set of default catalogs.

Procedure

Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the
OperatorHub object:

TIP

Alternatively, you can use the web console to manage catalog sources. From the Administration →
Cluster Settings → Configuration → OperatorHub page, click the Sources tab, where you can create,
update, delete, disable, and enable individual sources.

4.9.8. Removing custom catalogs

As a cluster administrator, you can remove custom Operator catalogs that have been previously added
to your cluster by deleting the related catalog source.

Prerequisites

NAME SECRETS AGE
builder 2 6m1s
default 2 6m1s
deployer 2 6m1s
etcd-operator 2 5m18s 1

$ oc secrets link <operator_sa> \
 -n <tenant_namespace> \
 <secret_name> \
 --for=pull

$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

OpenShift Container Platform 4.19 Operators

158

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/builds_using_buildconfig/#builds-secrets-overview_creating-build-inputs
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/images/#images-update-global-pull-secret_using-image-pull-secrets
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/images/#images-allow-pods-to-reference-images-from-secure-registries_using-image-pull-secrets

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the Administrator perspective of the web console, navigate to Administration → Cluster
Settings.

2. Click the Configuration tab, and then click OperatorHub.

3. Click the Sources tab.

4. Select the Options menu for the catalog that you want to remove, and then click Delete
CatalogSource.

4.10. USING OPERATOR LIFECYCLE MANAGER IN DISCONNECTED
ENVIRONMENTS

For OpenShift Container Platform clusters in disconnected environments, Operator Lifecycle Manager
(OLM) by default cannot access the Red Hat-provided OperatorHub sources hosted on remote
registries because those remote sources require full internet connectivity.

However, as a cluster administrator you can still enable your cluster to use OLM in a disconnected
environment if you have a workstation that has full internet access. The workstation, which requires full
internet access to pull the remote OperatorHub content, is used to prepare local mirrors of the remote
sources, and push the content to a mirror registry.

The mirror registry can be located on a bastion host, which requires connectivity to both your
workstation and the disconnected cluster, or a completely disconnected, or airgapped, host, which
requires removable media to physically move the mirrored content to the disconnected environment.

This guide describes the following process that is required to enable OLM in disconnected
environments:

Disable the default remote OperatorHub sources for OLM.

Use a workstation with full internet access to create and push local mirrors of the OperatorHub
content to a mirror registry.

Configure OLM to install and manage Operators from local sources on the mirror registry
instead of the default remote sources.

After enabling OLM in a disconnected environment, you can continue to use your unrestricted
workstation to keep your local OperatorHub sources updated as newer versions of Operators are
released.

For more information, see Using Operator Lifecycle Manager in disconnected environments in the
Disconnected environments section.

4.11. CATALOG SOURCE POD SCHEDULING

When an Operator Lifecycle Manager (OLM) catalog source of source type grpc defines a spec.image,
the Catalog Operator creates a pod that serves the defined image content. By default, this pod defines
the following in its specification:

CHAPTER 4. ADMINISTRATOR TASKS

159

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#olm-restricted-networks

Only the kubernetes.io/os=linux node selector.

The default priority class name: system-cluster-critical.

No tolerations.

As an administrator, you can override these values by modifying fields in the CatalogSource object’s
optional spec.grpcPodConfig section.

IMPORTANT

The Marketplace Operator, openshift-marketplace, manages the default OperatorHub
custom resource’s (CR). This CR manages CatalogSource objects. If you attempt to
modify fields in the CatalogSource object’s spec.grpcPodConfig section, the
Marketplace Operator automatically reverts these modifications. By default, if you modify
fields in the spec.grpcPodConfig section of the CatalogSource object, the Marketplace
Operator automatically reverts these changes.

To apply persistent changes to CatalogSource object, you must first disable a default
CatalogSource object.

Additional resources

OLM concepts and resources → Catalog source

4.11.1. Disabling default CatalogSource objects at a local level

You can apply persistent changes to a CatalogSource object, such as catalog source pods, at a local
level, by disabling a default CatalogSource object. Consider the default configuration in situations
where the default CatalogSource object’s configuration does not meet your organization’s needs. By
default, if you modify fields in the spec.grpcPodConfig section of the CatalogSource object, the
Marketplace Operator automatically reverts these changes.

The Marketplace Operator, openshift-marketplace, manages the default custom resources (CRs) of
the OperatorHub. The OperatorHub manages CatalogSource objects.

To apply persistent changes to CatalogSource object, you must first disable a default CatalogSource
object.

Procedure

To disable all the default CatalogSource objects at a local level, enter the following command:

NOTE

You can also configure the default OperatorHub CR to either disable all
CatalogSource objects or disable a specific object.

Additional resources

OperatorHub custom resource

$ oc patch operatorhub cluster -p '{"spec": {"disableAllDefaultSources": true}}' --type=merge

OpenShift Container Platform 4.19 Operators

160

Disabling the default OperatorHub catalog sources

4.11.2. Overriding the node selector for catalog source pods

Prerequisites

A CatalogSource object of source type grpc with spec.image is defined.

Procedure

Edit the CatalogSource object and add or modify the spec.grpcPodConfig section to include
the following:

where <label> is the label for the node selector that you want catalog source pods to use for
scheduling.

Additional resources

Placing pods on specific nodes using node selectors

4.11.3. Overriding the priority class name for catalog source pods

Prerequisites

A CatalogSource object of source type grpc with spec.image is defined.

Procedure

Edit the CatalogSource object and add or modify the spec.grpcPodConfig section to include
the following:

where <priority_class> is one of the following:

One of the default priority classes provided by Kubernetes: system-cluster-critical or
system-node-critical

An empty set ("") to assign the default priority

A pre-existing and custom defined priority class

NOTE

 grpcPodConfig:
 nodeSelector:
 custom_label: <label>

 grpcPodConfig:
 priorityClassName: <priority_class>

CHAPTER 4. ADMINISTRATOR TASKS

161

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#olm-restricted-networks-operatorhub_olm-restricted-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-node-selectors

NOTE

Previously, the only pod scheduling parameter that could be overriden was
priorityClassName. This was done by adding the operatorframework.io/priorityclass
annotation to the CatalogSource object. For example:

If a CatalogSource object defines both the annotation and
spec.grpcPodConfig.priorityClassName, the annotation takes precedence over the
configuration parameter.

Additional resources

Pod priority classes

4.11.4. Overriding tolerations for catalog source pods

Prerequisites

A CatalogSource object of source type grpc with spec.image is defined.

Procedure

Edit the CatalogSource object and add or modify the spec.grpcPodConfig section to include
the following:

Additional resources

Understanding taints and tolerations

4.12. TROUBLESHOOTING OPERATOR ISSUES

If you experience Operator issues, verify Operator subscription status. Check Operator pod health
across the cluster and gather Operator logs for diagnosis.

4.12.1. Operator subscription condition types

Subscriptions can report the following condition types:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: example-catalog
 namespace: openshift-marketplace
 annotations:
 operatorframework.io/priorityclass: system-cluster-critical

 grpcPodConfig:
 tolerations:
 - key: "<key_name>"
 operator: "<operator_type>"
 value: "<value>"
 effect: "<effect>"

OpenShift Container Platform 4.19 Operators

162

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#admin-guide-priority-preemption-priority-class_nodes-pods-priority
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations

Table 4.2. Subscription condition types

Condition Description

CatalogSourcesUnhealthy Some or all of the catalog sources to be used in resolution are
unhealthy.

InstallPlanMissing An install plan for a subscription is missing.

InstallPlanPending An install plan for a subscription is pending installation.

InstallPlanFailed An install plan for a subscription has failed.

ResolutionFailed The dependency resolution for a subscription has failed.

NOTE

Default OpenShift Container Platform cluster Operators are managed by the Cluster
Version Operator (CVO) and they do not have a Subscription object. Application
Operators are managed by Operator Lifecycle Manager (OLM) and they have a
Subscription object.

Additional resources

Catalog health requirements

4.12.2. Viewing Operator subscription status by using the CLI

You can view Operator subscription status by using the CLI.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. List Operator subscriptions:

2. Use the oc describe command to inspect a Subscription resource:

3. In the command output, find the Conditions section for the status of Operator subscription
condition types. In the following example, the CatalogSourcesUnhealthy condition type has a
status of false because all available catalog sources are healthy:

$ oc get subs -n <operator_namespace>

$ oc describe sub <subscription_name> -n <operator_namespace>

CHAPTER 4. ADMINISTRATOR TASKS

163

Example output

NOTE

Default OpenShift Container Platform cluster Operators are managed by the Cluster
Version Operator (CVO) and they do not have a Subscription object. Application
Operators are managed by Operator Lifecycle Manager (OLM) and they have a
Subscription object.

4.12.3. Viewing Operator catalog source status by using the CLI

You can view the status of an Operator catalog source by using the CLI.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. List the catalog sources in a namespace. For example, you can check the openshift-
marketplace namespace, which is used for cluster-wide catalog sources:

Example output

2. Use the oc describe command to get more details and status about a catalog source:

Name: cluster-logging
Namespace: openshift-logging
Labels: operators.coreos.com/cluster-logging.openshift-logging=
Annotations: <none>
API Version: operators.coreos.com/v1alpha1
Kind: Subscription
...
Conditions:
 Last Transition Time: 2019-07-29T13:42:57Z
 Message: all available catalogsources are healthy
 Reason: AllCatalogSourcesHealthy
 Status: False
 Type: CatalogSourcesUnhealthy
...

$ oc get catalogsources -n openshift-marketplace

NAME DISPLAY TYPE PUBLISHER AGE
certified-operators Certified Operators grpc Red Hat 55m
community-operators Community Operators grpc Red Hat 55m
example-catalog Example Catalog grpc Example Org 2m25s
redhat-operators Red Hat Operators grpc Red Hat 55m

$ oc describe catalogsource example-catalog -n openshift-marketplace

OpenShift Container Platform 4.19 Operators

164

Example output

In the preceding example output, the last observed state is TRANSIENT_FAILURE. This state
indicates that there is a problem establishing a connection for the catalog source.

3. List the pods in the namespace where your catalog source was created:

Example output

When a catalog source is created in a namespace, a pod for the catalog source is created in that
namespace. In the preceding example output, the status for the example-catalog-bwt8z pod is
ImagePullBackOff. This status indicates that there is an issue pulling the catalog source’s index
image.

4. Use the oc describe command to inspect a pod for more detailed information:

Example output

Name: example-catalog
Namespace: openshift-marketplace
Labels: <none>
Annotations: operatorframework.io/managed-by: marketplace-operator
 target.workload.openshift.io/management: {"effect": "PreferredDuringScheduling"}
API Version: operators.coreos.com/v1alpha1
Kind: CatalogSource
...
Status:
 Connection State:
 Address: example-catalog.openshift-marketplace.svc:50051
 Last Connect: 2021-09-09T17:07:35Z
 Last Observed State: TRANSIENT_FAILURE
 Registry Service:
 Created At: 2021-09-09T17:05:45Z
 Port: 50051
 Protocol: grpc
 Service Name: example-catalog
 Service Namespace: openshift-marketplace
...

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE
certified-operators-cv9nn 1/1 Running 0 36m
community-operators-6v8lp 1/1 Running 0 36m
marketplace-operator-86bfc75f9b-jkgbc 1/1 Running 0 42m
example-catalog-bwt8z 0/1 ImagePullBackOff 0 3m55s
redhat-operators-smxx8 1/1 Running 0 36m

$ oc describe pod example-catalog-bwt8z -n openshift-marketplace

Name: example-catalog-bwt8z
Namespace: openshift-marketplace
Priority: 0
Node: ci-ln-jyryyg2-f76d1-ggdbq-worker-b-vsxjd/10.0.128.2

CHAPTER 4. ADMINISTRATOR TASKS

165

In the preceding example output, the error messages indicate that the catalog source’s index
image is failing to pull successfully because of an authorization issue. For example, the index
image might be stored in a registry that requires login credentials.

Additional resources

Operator Lifecycle Manager concepts and resources → Catalog source

gRPC documentation: States of Connectivity

Accessing images for Operators from private registries

4.12.4. Querying Operator pod status

You can list Operator pods within a cluster and their status. You can also collect a detailed Operator pod
summary.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Your API service is still functional.

You have installed the OpenShift CLI (oc).

Procedure

1. List Operators running in the cluster. The output includes Operator version, availability, and up-
time information:

2. List Operator pods running in the Operator’s namespace, plus pod status, restarts, and age:

...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 48s default-scheduler Successfully assigned openshift-
marketplace/example-catalog-bwt8z to ci-ln-jyryyf2-f76d1-fgdbq-worker-b-vsxjd
 Normal AddedInterface 47s multus Add eth0 [10.131.0.40/23] from
openshift-sdn
 Normal BackOff 20s (x2 over 46s) kubelet Back-off pulling image
"quay.io/example-org/example-catalog:v1"
 Warning Failed 20s (x2 over 46s) kubelet Error: ImagePullBackOff
 Normal Pulling 8s (x3 over 47s) kubelet Pulling image "quay.io/example-
org/example-catalog:v1"
 Warning Failed 8s (x3 over 47s) kubelet Failed to pull image
"quay.io/example-org/example-catalog:v1": rpc error: code = Unknown desc = reading
manifest v1 in quay.io/example-org/example-catalog: unauthorized: access to the requested
resource is not authorized
 Warning Failed 8s (x3 over 47s) kubelet Error: ErrImagePull

$ oc get clusteroperators

$ oc get pod -n <operator_namespace>

OpenShift Container Platform 4.19 Operators

166

https://grpc.github.io/grpc/core/md_doc_connectivity-semantics-and-api.html

3. Output a detailed Operator pod summary:

4. If an Operator issue is node-specific, query Operator container status on that node.

a. Start a debug pod for the node:

b. Set /host as the root directory within the debug shell. The debug pod mounts the host’s
root file system in /host within the pod. By changing the root directory to /host, you can run
binaries contained in the host’s executable paths:

NOTE

OpenShift Container Platform 4.19 cluster nodes running Red Hat Enterprise
Linux CoreOS (RHCOS) are immutable and rely on Operators to apply
cluster changes. Accessing cluster nodes by using SSH is not recommended.
However, if the OpenShift Container Platform API is not available, or the
kubelet is not properly functioning on the target node, oc operations will be
impacted. In such situations, it is possible to access nodes using ssh
core@<node>.<cluster_name>.<base_domain> instead.

c. List details about the node’s containers, including state and associated pod IDs:

d. List information about a specific Operator container on the node. The following example
lists information about the network-operator container:

e. Exit from the debug shell.

4.12.5. Gathering Operator logs

If you experience Operator issues, you can gather detailed diagnostic information from Operator pod
logs.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Your API service is still functional.

You have installed the OpenShift CLI (oc).

You have the fully qualified domain names of the control plane or control plane machines.

Procedure

$ oc describe pod <operator_pod_name> -n <operator_namespace>

$ oc debug node/my-node

chroot /host

crictl ps

crictl ps --name network-operator

CHAPTER 4. ADMINISTRATOR TASKS

167

Procedure

1. List the Operator pods that are running in the Operator’s namespace, plus the pod status,
restarts, and age:

2. Review logs for an Operator pod:

If an Operator pod has multiple containers, the preceding command will produce an error that
includes the name of each container. Query logs from an individual container:

3. If the API is not functional, review Operator pod and container logs on each control plane node
by using SSH instead. Replace <master-node>.<cluster_name>.<base_domain> with
appropriate values.

a. List pods on each control plane node:

b. For any Operator pods not showing a Ready status, inspect the pod’s status in detail.
Replace <operator_pod_id> with the Operator pod’s ID listed in the output of the
preceding command:

c. List containers related to an Operator pod:

d. For any Operator container not showing a Ready status, inspect the container’s status in
detail. Replace <container_id> with a container ID listed in the output of the preceding
command:

e. Review the logs for any Operator containers not showing a Ready status. Replace
<container_id> with a container ID listed in the output of the preceding command:

NOTE

$ oc get pods -n <operator_namespace>

$ oc logs pod/<pod_name> -n <operator_namespace>

$ oc logs pod/<operator_pod_name> -c <container_name> -n <operator_namespace>

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl pods

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl inspectp
<operator_pod_id>

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl ps --pod=
<operator_pod_id>

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl inspect
<container_id>

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl logs -f
<container_id>

OpenShift Container Platform 4.19 Operators

168

NOTE

OpenShift Container Platform 4.19 cluster nodes running Red Hat Enterprise
Linux CoreOS (RHCOS) are immutable and rely on Operators to apply
cluster changes. Accessing cluster nodes by using SSH is not recommended.
Before attempting to collect diagnostic data over SSH, review whether the
data collected by running oc adm must gather and other oc commands is
sufficient instead. However, if the OpenShift Container Platform API is not
available, or the kubelet is not properly functioning on the target node, oc
operations will be impacted. In such situations, it is possible to access nodes
using ssh core@<node>.<cluster_name>.<base_domain>.

4.12.6. Disabling the Machine Config Operator from automatically rebooting

When configuration changes are made by the Machine Config Operator (MCO), Red Hat Enterprise
Linux CoreOS (RHCOS) must reboot for the changes to take effect. Whether the configuration change
is automatic or manual, an RHCOS node reboots automatically unless it is paused.

NOTE

When the MCO detects any of the following changes, it applies the update
without draining or rebooting the node:

Changes to the SSH key in the
spec.config.passwd.users.sshAuthorizedKeys parameter of a machine
config.

Changes to the global pull secret or pull secret in the openshift-config
namespace.

Automatic rotation of the /etc/kubernetes/kubelet-ca.crt certificate
authority (CA) by the Kubernetes API Server Operator.

When the MCO detects changes to the /etc/containers/registries.conf file, such
as editing an ImageDigestMirrorSet, ImageTagMirrorSet, or
ImageContentSourcePolicy object, it drains the corresponding nodes, applies
the changes, and uncordons the nodes. The node drain does not happen for the
following changes:

The addition of a registry with the pull-from-mirror = "digest-only"
parameter set for each mirror.

The addition of a mirror with the pull-from-mirror = "digest-only"
parameter set in a registry.

The addition of items to the unqualified-search-registries list.

To avoid unwanted disruptions, you can modify the machine config pool (MCP) to prevent automatic
rebooting after the Operator makes changes to the machine config.

4.12.6.1. Disabling the Machine Config Operator from automatically rebooting by using the
console

To avoid unwanted disruptions from changes made by the Machine Config Operator (MCO), you can
use the OpenShift Container Platform web console to modify the machine config pool (MCP) to

CHAPTER 4. ADMINISTRATOR TASKS

169

1

prevent the MCO from making any changes to nodes in that pool. This prevents any reboots that would
normally be part of the MCO update process.

NOTE

See second NOTE in Disabling the Machine Config Operator from automatically
rebooting.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

To pause or unpause automatic MCO update rebooting:

Pause the autoreboot process:

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin
role.

2. Click Compute → MachineConfigPools.

3. On the MachineConfigPools page, click either master or worker, depending upon which
nodes you want to pause rebooting for.

4. On the master or worker page, click YAML.

5. In the YAML, update the spec.paused field to true.

Sample MachineConfigPool object

Update the spec.paused field to true to pause rebooting.

6. To verify that the MCP is paused, return to the MachineConfigPools page.
On the MachineConfigPools page, the Paused column reports True for the MCP you
modified.

If the MCP has pending changes while paused, the Updated column is False and Updating
is False. When Updated is True and Updating is False, there are no pending changes.

IMPORTANT

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
...
spec:
...
 paused: true 1
...

OpenShift Container Platform 4.19 Operators

170

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#troubleshooting-disabling-autoreboot-mco_troubleshooting-operator-issues

1

IMPORTANT

If there are pending changes (where both the Updated and Updating
columns are False), it is recommended to schedule a maintenance window
for a reboot as early as possible. Use the following steps for unpausing the
autoreboot process to apply the changes that were queued since the last
reboot.

Unpause the autoreboot process:

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin
role.

2. Click Compute → MachineConfigPools.

3. On the MachineConfigPools page, click either master or worker, depending upon which
nodes you want to pause rebooting for.

4. On the master or worker page, click YAML.

5. In the YAML, update the spec.paused field to false.

Sample MachineConfigPool object

Update the spec.paused field to false to allow rebooting.

NOTE

By unpausing an MCP, the MCO applies all paused changes reboots Red Hat
Enterprise Linux CoreOS (RHCOS) as needed.

6. To verify that the MCP is paused, return to the MachineConfigPools page.
On the MachineConfigPools page, the Paused column reports False for the MCP you
modified.

If the MCP is applying any pending changes, the Updated column is False and the
Updating column is True. When Updated is True and Updating is False, there are no
further changes being made.

4.12.6.2. Disabling the Machine Config Operator from automatically rebooting by using the
CLI

To avoid unwanted disruptions from changes made by the Machine Config Operator (MCO), you can
modify the machine config pool (MCP) using the OpenShift CLI (oc) to prevent the MCO from making
any changes to nodes in that pool. This prevents any reboots that would normally be part of the MCO

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
...
spec:
...
 paused: false 1
...

CHAPTER 4. ADMINISTRATOR TASKS

171

update process.

NOTE

See second NOTE in Disabling the Machine Config Operator from automatically
rebooting.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

To pause or unpause automatic MCO update rebooting:

Pause the autoreboot process:

1. Update the MachineConfigPool custom resource to set the spec.paused field to true.

Control plane (master) nodes

Worker nodes

2. Verify that the MCP is paused:

Control plane (master) nodes

Worker nodes

Example output

The spec.paused field is true and the MCP is paused.

3. Determine if the MCP has pending changes:

Example output

$ oc patch --type=merge --patch='{"spec":{"paused":true}}' machineconfigpool/master

$ oc patch --type=merge --patch='{"spec":{"paused":true}}' machineconfigpool/worker

$ oc get machineconfigpool/master --template='{{.spec.paused}}'

$ oc get machineconfigpool/worker --template='{{.spec.paused}}'

true

oc get machineconfigpool

OpenShift Container Platform 4.19 Operators

172

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#troubleshooting-disabling-autoreboot-mco_troubleshooting-operator-issues

NAME CONFIG UPDATED UPDATING
master rendered-master-33cf0a1254318755d7b48002c597bf91 True False
worker rendered-worker-e405a5bdb0db1295acea08bcca33fa60 False False

If the UPDATED column is False and UPDATING is False, there are pending changes.
When UPDATED is True and UPDATING is False, there are no pending changes. In the
previous example, the worker node has pending changes. The control plane node does not
have any pending changes.

IMPORTANT

If there are pending changes (where both the Updated and Updating
columns are False), it is recommended to schedule a maintenance window
for a reboot as early as possible. Use the following steps for unpausing the
autoreboot process to apply the changes that were queued since the last
reboot.

Unpause the autoreboot process:

1. Update the MachineConfigPool custom resource to set the spec.paused field to false.

Control plane (master) nodes

Worker nodes

NOTE

By unpausing an MCP, the MCO applies all paused changes and reboots
Red Hat Enterprise Linux CoreOS (RHCOS) as needed.

2. Verify that the MCP is unpaused:

Control plane (master) nodes

Worker nodes

Example output

The spec.paused field is false and the MCP is unpaused.

3. Determine if the MCP has pending changes:

$ oc patch --type=merge --patch='{"spec":{"paused":false}}' machineconfigpool/master

$ oc patch --type=merge --patch='{"spec":{"paused":false}}' machineconfigpool/worker

$ oc get machineconfigpool/master --template='{{.spec.paused}}'

$ oc get machineconfigpool/worker --template='{{.spec.paused}}'

false

CHAPTER 4. ADMINISTRATOR TASKS

173

Example output

NAME CONFIG UPDATED UPDATING
master rendered-master-546383f80705bd5aeaba93 True False
worker rendered-worker-b4c51bb33ccaae6fc4a6a5 False True

If the MCP is applying any pending changes, the UPDATED column is False and the
UPDATING column is True. When UPDATED is True and UPDATING is False, there are no
further changes being made. In the previous example, the MCO is updating the worker
node.

4.12.7. Refreshing failing subscriptions

In Operator Lifecycle Manager (OLM), if you subscribe to an Operator that references images that are
not accessible on your network, you can find jobs in the openshift-marketplace namespace that are
failing with the following errors:

Example output

Example output

As a result, the subscription is stuck in this failing state and the Operator is unable to install or upgrade.

You can refresh a failing subscription by deleting the subscription, cluster service version (CSV), and
other related objects. After recreating the subscription, OLM then reinstalls the correct version of the
Operator.

Prerequisites

You have a failing subscription that is unable to pull an inaccessible bundle image.

You have confirmed that the correct bundle image is accessible.

Procedure

1. Get the names of the Subscription and ClusterServiceVersion objects from the namespace
where the Operator is installed:

Example output

$ oc get machineconfigpool

ImagePullBackOff for
Back-off pulling image "example.com/openshift4/ose-elasticsearch-operator-
bundle@sha256:6d2587129c846ec28d384540322b40b05833e7e00b25cca584e004af9a1d292e"

rpc error: code = Unknown desc = error pinging docker registry example.com: Get
"https://example.com/v2/": dial tcp: lookup example.com on 10.0.0.1:53: no such host

$ oc get sub,csv -n <namespace>

NAME PACKAGE SOURCE CHANNEL

OpenShift Container Platform 4.19 Operators

174

2. Delete the subscription:

3. Delete the cluster service version:

4. Get the names of any failing jobs and related config maps in the openshift-marketplace
namespace:

Example output

5. Delete the job:

This ensures pods that try to pull the inaccessible image are not recreated.

6. Delete the config map:

7. Reinstall the Operator using OperatorHub in the web console.

Verification

Check that the Operator has been reinstalled successfully:

4.12.8. Reinstalling Operators after failed uninstallation

You must successfully and completely uninstall an Operator prior to attempting to reinstall the same

subscription.operators.coreos.com/elasticsearch-operator elasticsearch-operator redhat-
operators 5.0

NAME DISPLAY VERSION
REPLACES PHASE
clusterserviceversion.operators.coreos.com/elasticsearch-operator.5.0.0-65 OpenShift
Elasticsearch Operator 5.0.0-65 Succeeded

$ oc delete subscription <subscription_name> -n <namespace>

$ oc delete csv <csv_name> -n <namespace>

$ oc get job,configmap -n openshift-marketplace

NAME COMPLETIONS DURATION AGE
job.batch/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 1/1
26s 9m30s

NAME DATA AGE
configmap/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 3
9m30s

$ oc delete job <job_name> -n openshift-marketplace

$ oc delete configmap <configmap_name> -n openshift-marketplace

$ oc get sub,csv,installplan -n <namespace>

CHAPTER 4. ADMINISTRATOR TASKS

175

You must successfully and completely uninstall an Operator prior to attempting to reinstall the same
Operator. Failure to fully uninstall the Operator properly can leave resources, such as a project or
namespace, stuck in a "Terminating" state and cause "error resolving resource" messages. For example:

Example Project resource description

...
 message: 'Failed to delete all resource types, 1 remaining: Internal error occurred:
 error resolving resource'
...

These types of issues can prevent an Operator from being reinstalled successfully.

WARNING

Forced deletion of a namespace is not likely to resolve "Terminating" state issues
and can lead to unstable or unpredictable cluster behavior, so it is better to try to
find related resources that might be preventing the namespace from being deleted.
For more information, see the Red Hat Knowledgebase Solution #4165791 , paying
careful attention to the cautions and warnings.

The following procedure shows how to troubleshoot when an Operator cannot be reinstalled because an
existing custom resource definition (CRD) from a previous installation of the Operator is preventing a
related namespace from deleting successfully.

Procedure

1. Check if there are any namespaces related to the Operator that are stuck in "Terminating" state:

Example output

operator-ns-1 Terminating

2. Check if there are any CRDs related to the Operator that are still present after the failed
uninstallation:

NOTE

CRDs are global cluster definitions; the actual custom resource (CR) instances
related to the CRDs could be in other namespaces or be global cluster instances.

3. If there are any CRDs that you know were provided or managed by the Operator and that should
have been deleted after uninstallation, delete the CRD:



$ oc get namespaces

$ oc get crds

OpenShift Container Platform 4.19 Operators

176

https://access.redhat.com/solutions/4165791

4. Check if there are any remaining CR instances related to the Operator that are still present after
uninstallation, and if so, delete the CRs:

a. The type of CRs to search for can be difficult to determine after uninstallation and can
require knowing what CRDs the Operator manages. For example, if you are troubleshooting
an uninstallation of the etcd Operator, which provides the EtcdCluster CRD, you can search
for remaining EtcdCluster CRs in a namespace:

Alternatively, you can search across all namespaces:

b. If there are any remaining CRs that should be removed, delete the instances:

5. Check that the namespace deletion has successfully resolved:

IMPORTANT

If the namespace or other Operator resources are still not uninstalled cleanly,
contact Red Hat Support.

6. Reinstall the Operator using OperatorHub in the web console.

Verification

Check that the Operator has been reinstalled successfully:

Additional resources

Deleting Operators from a cluster

Adding Operators to a cluster

$ oc delete crd <crd_name>

$ oc get EtcdCluster -n <namespace_name>

$ oc get EtcdCluster --all-namespaces

$ oc delete <cr_name> <cr_instance_name> -n <namespace_name>

$ oc get namespace <namespace_name>

$ oc get sub,csv,installplan -n <namespace>

CHAPTER 4. ADMINISTRATOR TASKS

177

CHAPTER 5. DEVELOPING OPERATORS

5.1. TOKEN AUTHENTICATION

5.1.1. Token authentication for Operators on cloud providers

Many cloud providers can enable authentication by using account tokens that provide short-term,
limited-privilege security credentials.

OpenShift Container Platform includes the Cloud Credential Operator (CCO) to manage cloud provider
credentials as custom resource definitions (CRDs). The CCO syncs on CredentialsRequest custom
resources (CRs) to allow OpenShift Container Platform components to request cloud provider
credentials with any specific permissions required.

Previously, on clusters where the CCO is in manual mode , Operators managed by Operator Lifecycle
Manager (OLM) often provided detailed instructions in the OperatorHub for how users could manually
provision any required cloud credentials.

Starting in OpenShift Container Platform 4.14, the CCO can detect when it is running on clusters
enabled to use short-term credentials on certain cloud providers. It can then semi-automate
provisioning certain credentials, provided that the Operator author has enabled their Operator to
support the updated CCO.

Additional resources

About the Cloud Credential Operator

CCO-based workflow for OLM-managed Operators with AWS STS

CCO-based workflow for OLM-managed Operators with Microsoft Entra Workload ID

CCO-based workflow for OLM-managed Operators with GCP Workload Identity

5.1.2. CCO-based workflow for OLM-managed Operators with AWS STS

When an OpenShift Container Platform cluster running on AWS is in Security Token Service (STS)
mode, it means the cluster is utilizing features of AWS and OpenShift Container Platform to use IAM
roles at an application level. STS enables applications to provide a JSON Web Token (JWT) that can
assume an IAM role.

The JWT includes an Amazon Resource Name (ARN) for the sts:AssumeRoleWithWebIdentity IAM
action to allow temporarily-granted permission for the service account. The JWT contains the signing
keys for the ProjectedServiceAccountToken that AWS IAM can validate. The service account token
itself, which is signed, is used as the JWT required for assuming the AWS role.

The Cloud Credential Operator (CCO) is a cluster Operator installed by default in OpenShift Container
Platform clusters running on cloud providers. For the purposes of STS, the CCO provides the following
functions:

Detects when it is running on an STS-enabled cluster

Checks the CredentialsRequest object for the presence of fields that provide the required
information for granting Operators access to AWS resources

The CCO performs this detection even when in manual mode. When properly configured, the CCO

OpenShift Container Platform 4.19 Operators

178

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#about-cloud-credential-operator

The CCO performs this detection even when in manual mode. When properly configured, the CCO
projects a Secret object with the required access information into the Operator namespace.

Starting in OpenShift Container Platform 4.14, the CCO can semi-automate this task through an
expanded use of CredentialsRequest objects, which can request the creation of Secrets that contain
the information required for STS workflows. Users can provide a role ARN when installing the Operator
from either the web console or CLI.

NOTE

Subscriptions with automatic approvals for updates are not recommended because there
might be permission changes to make before updating. Subscriptions with manual
approvals for updates ensure that administrators have the opportunity to verify the
permissions of the later version, take any necessary steps, and then update.

As an Operator author preparing an Operator for use alongside the updated CCO in OpenShift
Container Platform 4.14 or later, you should instruct users and add code to handle the divergence from
earlier CCO versions, in addition to handling STS token authentication (if your Operator is not already
STS-enabled). The recommended method is to provide a CredentialsRequest object with the correctly
filled STS fields and let the CCO create the Secret for you.

IMPORTANT

If you plan to support OpenShift Container Platform clusters earlier than version 4.14,
consider providing users with instructions on how to manually create a secret with the
STS-enabling information by using the CCO utility (ccoctl). Earlier CCO versions are
unaware of STS mode on the cluster and cannot create secrets for you.

Your code should check for secrets that never appear and warn users to follow the
fallback instructions you have provided. For more information, see the "Alternative
method" subsection.

Additional resources

OLM-managed Operator support for authentication with AWS STS

Installing from OperatorHub using the web console

Installing from OperatorHub using the CLI

5.1.2.1. Enabling Operators to support CCO-based workflows with AWS STS

As an Operator author designing your project to run on Operator Lifecycle Manager (OLM), you can
enable your Operator to authenticate against AWS on STS-enabled OpenShift Container Platform
clusters by customizing your project to support the Cloud Credential Operator (CCO).

With this method, the Operator is responsible for and requires RBAC permissions for creating the
CredentialsRequest object and reading the resulting Secret object.

NOTE

By default, pods related to the Operator deployment mount a serviceAccountToken
volume so that the service account token can be referenced in the resulting Secret
object.

CHAPTER 5. DEVELOPING OPERATORS

179

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#cco-short-term-creds-aws-olm_cco-short-term-creds

Prerequisities

OpenShift Container Platform 4.14 or later

Cluster in STS mode

OLM-based Operator project

Procedure

1. Update your Operator project’s ClusterServiceVersion (CSV) object:

a. Ensure your Operator has RBAC permission to create CredentialsRequests objects:

Example 5.1. Example clusterPermissions list

b. Add the following annotation to claim support for this method of CCO-based workflow with
AWS STS:

2. Update your Operator project code:

a. Get the role ARN from the environment variable set on the pod by the Subscription object.
For example:

b. Ensure you have a CredentialsRequest object ready to be patched and applied. For
example:

...
install:
 spec:
 clusterPermissions:
 - rules:
 - apiGroups:
 - "cloudcredential.openshift.io"
 resources:
 - credentialsrequests
 verbs:
 - create
 - delete
 - get
 - list
 - patch
 - update
 - watch

...
metadata:
 annotations:
 features.operators.openshift.io/token-auth-aws: "true"

// Get ENV var
roleARN := os.Getenv("ROLEARN")
setupLog.Info("getting role ARN", "role ARN = ", roleARN)
webIdentityTokenPath := "/var/run/secrets/openshift/serviceaccount/token"

OpenShift Container Platform 4.19 Operators

180

Example 5.2. Example CredentialsRequest object creation

Alternatively, if you are starting from a CredentialsRequest object in YAML form (for
example, as part of your Operator project code), you can handle it differently:

Example 5.3. Example CredentialsRequest object creation in YAML form

import (
 minterv1 "github.com/openshift/cloud-credential-
operator/pkg/apis/cloudcredential/v1"
 corev1 "k8s.io/api/core/v1"
 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
)

var in = minterv1.AWSProviderSpec{
 StatementEntries: []minterv1.StatementEntry{
 {
 Action: []string{
 "s3:*",
 },
 Effect: "Allow",
 Resource: "arn:aws:s3:*:*:*",
 },
 },
 STSIAMRoleARN: "<role_arn>",
}

var codec = minterv1.Codec
var ProviderSpec, _ = codec.EncodeProviderSpec(in.DeepCopyObject())

const (
 name = "<credential_request_name>"
 namespace = "<namespace_name>"
)

var CredentialsRequestTemplate = &minterv1.CredentialsRequest{
 ObjectMeta: metav1.ObjectMeta{
 Name: name,
 Namespace: "openshift-cloud-credential-operator",
 },
 Spec: minterv1.CredentialsRequestSpec{
 ProviderSpec: ProviderSpec,
 SecretRef: corev1.ObjectReference{
 Name: "<secret_name>",
 Namespace: namespace,
 },
 ServiceAccountNames: []string{
 "<service_account_name>",
 },
 CloudTokenPath: "",
 },
}

// CredentialsRequest is a struct that represents a request for credentials

CHAPTER 5. DEVELOPING OPERATORS

181

type CredentialsRequest struct {
 APIVersion string `yaml:"apiVersion"`
 Kind string `yaml:"kind"`
 Metadata struct {
 Name string `yaml:"name"`
 Namespace string `yaml:"namespace"`
 } `yaml:"metadata"`
 Spec struct {
 SecretRef struct {
 Name string `yaml:"name"`
 Namespace string `yaml:"namespace"`
 } `yaml:"secretRef"`
 ProviderSpec struct {
 APIVersion string `yaml:"apiVersion"`
 Kind string `yaml:"kind"`
 StatementEntries []struct {
 Effect string `yaml:"effect"`
 Action []string `yaml:"action"`
 Resource string `yaml:"resource"`
 } `yaml:"statementEntries"`
 STSIAMRoleARN string `yaml:"stsIAMRoleARN"`
 } `yaml:"providerSpec"`

 // added new field
 CloudTokenPath string `yaml:"cloudTokenPath"`
 } `yaml:"spec"`
}

// ConsumeCredsRequestAddingTokenInfo is a function that takes a YAML filename
and two strings as arguments
// It unmarshals the YAML file to a CredentialsRequest object and adds the token
information.
func ConsumeCredsRequestAddingTokenInfo(fileName, tokenString, tokenPath
string) (*CredentialsRequest, error) {
 // open a file containing YAML form of a CredentialsRequest
 file, err := os.Open(fileName)
 if err != nil {
 return nil, err
 }
 defer file.Close()

 // create a new CredentialsRequest object
 cr := &CredentialsRequest{}

 // decode the yaml file to the object
 decoder := yaml.NewDecoder(file)
 err = decoder.Decode(cr)
 if err != nil {
 return nil, err
 }

 // assign the string to the existing field in the object
 cr.Spec.CloudTokenPath = tokenPath

OpenShift Container Platform 4.19 Operators

182

NOTE

Adding a CredentialsRequest object to the Operator bundle is not currently
supported.

c. Add the role ARN and web identity token path to the credentials request and apply it during
Operator initialization:

Example 5.4. Example applying CredentialsRequest object during Operator
initialization

d. Ensure your Operator can wait for a Secret object to show up from the CCO, as shown in
the following example, which is called along with the other items you are reconciling in your
Operator:

Example 5.5. Example wait for Secret object

 // return the modified object
 return cr, nil
}

// apply CredentialsRequest on install
credReq := credreq.CredentialsRequestTemplate
credReq.Spec.CloudTokenPath = webIdentityTokenPath

c := mgr.GetClient()
if err := c.Create(context.TODO(), credReq); err != nil {
 if !errors.IsAlreadyExists(err) {
 setupLog.Error(err, "unable to create CredRequest")
 os.Exit(1)
 }
}

// WaitForSecret is a function that takes a Kubernetes client, a namespace, and a v1
"k8s.io/api/core/v1" name as arguments
// It waits until the secret object with the given name exists in the given namespace
// It returns the secret object or an error if the timeout is exceeded
func WaitForSecret(client kubernetes.Interface, namespace, name string)
(*v1.Secret, error) {
 // set a timeout of 10 minutes
 timeout := time.After(10 * time.Minute) 1

 // set a polling interval of 10 seconds
 ticker := time.NewTicker(10 * time.Second)

 // loop until the timeout or the secret is found
 for {
 select {
 case <-timeout:
 // timeout is exceeded, return an error
 return nil, fmt.Errorf("timed out waiting for secret %s in namespace %s", name,
namespace)
 // add to this error with a pointer to instructions for following a manual path to a

CHAPTER 5. DEVELOPING OPERATORS

183

1 The timeout value is based on an estimate of how fast the CCO might detect an
added CredentialsRequest object and generate a Secret object. You might
consider lowering the time or creating custom feedback for cluster administrators
that could be wondering why the Operator is not yet accessing the cloud resources.

e. Set up the AWS configuration by reading the secret created by the CCO from the
credentials request and creating the AWS config file containing the data from that secret:

Example 5.6. Example AWS configuration creation

IMPORTANT

Secret that will work on STS
 case <-ticker.C:
 // polling interval is reached, try to get the secret
 secret, err := client.CoreV1().Secrets(namespace).Get(context.Background(),
name, metav1.GetOptions{})
 if err != nil {
 if errors.IsNotFound(err) {
 // secret does not exist yet, continue waiting
 continue
 } else {
 // some other error occurred, return it
 return nil, err
 }
 } else {
 // secret is found, return it
 return secret, nil
 }
 }
 }
}

func SharedCredentialsFileFromSecret(secret *corev1.Secret) (string, error) {
 var data []byte
 switch {
 case len(secret.Data["credentials"]) > 0:
 data = secret.Data["credentials"]
 default:
 return "", errors.New("invalid secret for aws credentials")
 }

 f, err := ioutil.TempFile("", "aws-shared-credentials")
 if err != nil {
 return "", errors.Wrap(err, "failed to create file for shared credentials")
 }
 defer f.Close()
 if _, err := f.Write(data); err != nil {
 return "", errors.Wrapf(err, "failed to write credentials to %s", f.Name())
 }
 return f.Name(), nil
}

OpenShift Container Platform 4.19 Operators

184

IMPORTANT

The secret is assumed to exist, but your Operator code should wait and retry
when using this secret to give time to the CCO to create the secret.

Additionally, the wait period should eventually time out and warn users that
the OpenShift Container Platform cluster version, and therefore the CCO,
might be an earlier version that does not support the CredentialsRequest
object workflow with STS detection. In such cases, instruct users that they
must add a secret by using another method.

f. Configure the AWS SDK session, for example:

Example 5.7. Example AWS SDK session configuration

5.1.2.2. Role specification

The Operator description should contain the specifics of the role required to be created before
installation, ideally in the form of a script that the administrator can run. For example:

Example 5.8. Example role creation script

sharedCredentialsFile, err := SharedCredentialsFileFromSecret(secret)
if err != nil {
 // handle error
}
options := session.Options{
 SharedConfigState: session.SharedConfigEnable,
 SharedConfigFiles: []string{sharedCredentialsFile},
}

#!/bin/bash
set -x

AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query "Account" --output text)
OIDC_PROVIDER=$(oc get authentication cluster -ojson | jq -r .spec.serviceAccountIssuer | sed -
e "s/^https:\/\///")
NAMESPACE=my-namespace
SERVICE_ACCOUNT_NAME="my-service-account"
POLICY_ARN_STRINGS="arn:aws:iam::aws:policy/AmazonS3FullAccess"

read -r -d '' TRUST_RELATIONSHIP <<EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::${AWS_ACCOUNT_ID}:oidc-provider/${OIDC_PROVIDER}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {

CHAPTER 5. DEVELOPING OPERATORS

185

1

5.1.2.3. Troubleshooting

5.1.2.3.1. Authentication failure

If authentication was not successful, ensure you can assume the role with web identity by using the
token provided to the Operator.

Procedure

1. Extract the token from the pod:

2. Extract the role ARN from the pod:

Do not use root for the path.

3. Try assuming the role with the web identity token:

5.1.2.3.2. Secret not mounting correctly

 "${OIDC_PROVIDER}:sub":
"system:serviceaccount:${NAMESPACE}:${SERVICE_ACCOUNT_NAME}"
 }
 }
 }
]
}
EOF

echo "${TRUST_RELATIONSHIP}" > trust.json

aws iam create-role --role-name "$SERVICE_ACCOUNT_NAME" --assume-role-policy-document
file://trust.json --description "role for demo"

while IFS= read -r POLICY_ARN; do
 echo -n "Attaching $POLICY_ARN ... "
 aws iam attach-role-policy \
 --role-name "$SERVICE_ACCOUNT_NAME" \
 --policy-arn "${POLICY_ARN}"
 echo "ok."
done <<< "$POLICY_ARN_STRINGS"

$ oc exec operator-pod -n <namespace_name> \
 -- cat /var/run/secrets/openshift/serviceaccount/token

$ oc exec operator-pod -n <namespace_name> \
 -- cat /<path>/<to>/<secret_name> 1

$ aws sts assume-role-with-web-identity \
 --role-arn $ROLEARN \
 --role-session-name <session_name> \
 --web-identity-token $TOKEN

OpenShift Container Platform 4.19 Operators

186

Pods that run as non-root users cannot write to the /root directory where the AWS shared credentials
file is expected to exist by default. If the secret is not mounting correctly to the AWS credentials file
path, consider mounting the secret to a different location and enabling the shared credentials file option
in the AWS SDK.

5.1.2.4. Alternative method

As an alternative method for Operator authors, you can indicate that the user is responsible for creating
the CredentialsRequest object for the Cloud Credential Operator (CCO) before installing the
Operator.

The Operator instructions must indicate the following to users:

Provide a YAML version of a CredentialsRequest object, either by providing the YAML inline in
the instructions or pointing users to a download location

Instruct the user to create the CredentialsRequest object

In OpenShift Container Platform 4.14 and later, after the CredentialsRequest object appears on the
cluster with the appropriate STS information added, the Operator can then read the CCO-generated
Secret or mount it, having defined the mount in the cluster service version (CSV).

For earlier versions of OpenShift Container Platform, the Operator instructions must also indicate the
following to users:

Use the CCO utility (ccoctl) to generate the Secret YAML object from the
CredentialsRequest object

Apply the Secret object to the cluster in the appropriate namespace

The Operator still must be able to consume the resulting secret to communicate with cloud APIs.
Because in this case the secret is created by the user before the Operator is installed, the Operator can
do either of the following:

Define an explicit mount in the Deployment object within the CSV

Programmatically read the Secret object from the API server, as shown in the recommended
"Enabling Operators to support CCO-based workflows with AWS STS" method

5.1.3. CCO-based workflow for OLM-managed Operators with Microsoft Entra
Workload ID

When an OpenShift Container Platform cluster running on Azure is in Workload Identity / Federated
Identity mode, it means the cluster is utilizing features of Azure and OpenShift Container Platform to
apply user-assigned managed identities or app registrations in Microsoft Entra Workload ID at an
application level.

The Cloud Credential Operator (CCO) is a cluster Operator installed by default in OpenShift Container
Platform clusters running on cloud providers. Starting in OpenShift Container Platform 4.14.8, the CCO
supports workflows for OLM-managed Operators with Workload ID.

For the purposes of Workload ID, the CCO provides the following functions:

Detects when it is running on an Workload ID-enabled cluster

Checks the CredentialsRequest object for the presence of fields that provide the required

CHAPTER 5. DEVELOPING OPERATORS

187

Checks the CredentialsRequest object for the presence of fields that provide the required
information for granting Operators access to Azure resources

The CCO can semi-automate this process through an expanded use of CredentialsRequest objects,
which can request the creation of Secrets that contain the information required for Workload ID
workflows.

NOTE

Subscriptions with automatic approvals for updates are not recommended because there
might be permission changes to make before updating. Subscriptions with manual
approvals for updates ensure that administrators have the opportunity to verify the
permissions of the later version, take any necessary steps, and then update.

As an Operator author preparing an Operator for use alongside the updated CCO in OpenShift
Container Platform 4.14 and later, you should instruct users and add code to handle the divergence from
earlier CCO versions, in addition to handling Workload ID token authentication (if your Operator is not
already enabled). The recommended method is to provide a CredentialsRequest object with the
correctly filled Workload ID fields and let the CCO create the Secret object for you.

IMPORTANT

If you plan to support OpenShift Container Platform clusters earlier than version 4.14,
consider providing users with instructions on how to manually create a secret with the
Workload ID-enabling information by using the CCO utility (ccoctl). Earlier CCO versions
are unaware of Workload ID mode on the cluster and cannot create secrets for you.

Your code should check for secrets that never appear and warn users to follow the
fallback instructions you have provided.

Authentication with Workload ID requires the following information:

azure_client_id

azure_tenant_id

azure_region

azure_subscription_id

azure_federated_token_file

The Install Operator page in the web console allows cluster administrators to provide this information
at installation time. This information is then propagated to the Subscription object as environment
variables on the Operator pod.

Additional resources

OLM-managed Operator support for authentication with Microsoft Entra Workload ID

Installing from OperatorHub using the web console

Installing from OperatorHub using the CLI

OpenShift Container Platform 4.19 Operators

188

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#cco-short-term-creds-azure-olm_cco-short-term-creds

5.1.3.1. Enabling Operators to support CCO-based workflows with Microsoft Entra
Workload ID

As an Operator author designing your project to run on Operator Lifecycle Manager (OLM), you can
enable your Operator to authenticate against Microsoft Entra Workload ID-enabled OpenShift
Container Platform clusters by customizing your project to support the Cloud Credential Operator
(CCO).

With this method, the Operator is responsible for and requires RBAC permissions for creating the
CredentialsRequest object and reading the resulting Secret object.

NOTE

By default, pods related to the Operator deployment mount a serviceAccountToken
volume so that the service account token can be referenced in the resulting Secret
object.

Prerequisities

OpenShift Container Platform 4.14 or later

Cluster in Workload ID mode

OLM-based Operator project

Procedure

1. Update your Operator project’s ClusterServiceVersion (CSV) object:

a. Ensure your Operator has RBAC permission to create CredentialsRequests objects:

Example 5.9. Example clusterPermissions list

b. Add the following annotation to claim support for this method of CCO-based workflow with
Workload ID:

...
install:
 spec:
 clusterPermissions:
 - rules:
 - apiGroups:
 - "cloudcredential.openshift.io"
 resources:
 - credentialsrequests
 verbs:
 - create
 - delete
 - get
 - list
 - patch
 - update
 - watch

CHAPTER 5. DEVELOPING OPERATORS

189

2. Update your Operator project code:

a. Get the client ID, tenant ID, and subscription ID from the environment variables set on the
pod by the Subscription object. For example:

b. Ensure you have a CredentialsRequest object ready to be patched and applied.

NOTE

Adding a CredentialsRequest object to the Operator bundle is not currently
supported.

c. Add the Azure credentials information and web identity token path to the credentials
request and apply it during Operator initialization:

Example 5.10. Example applying CredentialsRequest object during Operator
initialization

d. Ensure your Operator can wait for a Secret object to show up from the CCO, as shown in
the following example, which is called along with the other items you are reconciling in your
Operator:

Example 5.11. Example wait for Secret object

...
metadata:
 annotations:
 features.operators.openshift.io/token-auth-azure: "true"

// Get ENV var
clientID := os.Getenv("CLIENTID")
tenantID := os.Getenv("TENANTID")
subscriptionID := os.Getenv("SUBSCRIPTIONID")
azureFederatedTokenFile := "/var/run/secrets/openshift/serviceaccount/token"

// apply CredentialsRequest on install
credReqTemplate.Spec.AzureProviderSpec.AzureClientID = clientID
credReqTemplate.Spec.AzureProviderSpec.AzureTenantID = tenantID
credReqTemplate.Spec.AzureProviderSpec.AzureRegion = "centralus"
credReqTemplate.Spec.AzureProviderSpec.AzureSubscriptionID = subscriptionID
credReqTemplate.CloudTokenPath = azureFederatedTokenFile

c := mgr.GetClient()
if err := c.Create(context.TODO(), credReq); err != nil {
 if !errors.IsAlreadyExists(err) {
 setupLog.Error(err, "unable to create CredRequest")
 os.Exit(1)
 }
}

// WaitForSecret is a function that takes a Kubernetes client, a namespace, and a v1
"k8s.io/api/core/v1" name as arguments
// It waits until the secret object with the given name exists in the given namespace
// It returns the secret object or an error if the timeout is exceeded

OpenShift Container Platform 4.19 Operators

190

1 The timeout value is based on an estimate of how fast the CCO might detect an
added CredentialsRequest object and generate a Secret object. You might
consider lowering the time or creating custom feedback for cluster administrators
that could be wondering why the Operator is not yet accessing the cloud resources.

e. Read the secret created by the CCO from the CredentialsRequest object to authenticate
with Azure and receive the necessary credentials.

5.1.4. CCO-based workflow for OLM-managed Operators with GCP Workload
Identity

When an OpenShift Container Platform cluster running on Google Cloud is in GCP Workload Identity /
Federated Identity mode, it means the cluster is utilizing features of Google Cloud and OpenShift
Container Platform to apply permissions in GCP Workload Identity at an application level.

The Cloud Credential Operator (CCO) is a cluster Operator installed by default in OpenShift Container

func WaitForSecret(client kubernetes.Interface, namespace, name string)
(*v1.Secret, error) {
 // set a timeout of 10 minutes
 timeout := time.After(10 * time.Minute) 1

 // set a polling interval of 10 seconds
 ticker := time.NewTicker(10 * time.Second)

 // loop until the timeout or the secret is found
 for {
 select {
 case <-timeout:
 // timeout is exceeded, return an error
 return nil, fmt.Errorf("timed out waiting for secret %s in namespace %s", name,
namespace)
 // add to this error with a pointer to instructions for following a manual path to a
Secret that will work on STS
 case <-ticker.C:
 // polling interval is reached, try to get the secret
 secret, err := client.CoreV1().Secrets(namespace).Get(context.Background(),
name, metav1.GetOptions{})
 if err != nil {
 if errors.IsNotFound(err) {
 // secret does not exist yet, continue waiting
 continue
 } else {
 // some other error occurred, return it
 return nil, err
 }
 } else {
 // secret is found, return it
 return secret, nil
 }
 }
 }
}

CHAPTER 5. DEVELOPING OPERATORS

191

The Cloud Credential Operator (CCO) is a cluster Operator installed by default in OpenShift Container
Platform clusters running on cloud providers. Starting in OpenShift Container Platform 4.17, the CCO
supports workflows for OLM-managed Operators with GCP Workload Identity.

For the purposes of GCP Workload Identity, the CCO provides the following functions:

Detects when it is running on an GCP Workload Identity-enabled cluster

Checks the CredentialsRequest object for the presence of fields that provide the required
information for granting Operators access to Google Cloud resources

The CCO can semi-automate this process through an expanded use of CredentialsRequest objects,
which can request the creation of Secrets that contain the information required for GCP Workload
Identity workflows.

NOTE

Subscriptions with automatic approvals for updates are not recommended because there
might be permission changes to make before updating. Subscriptions with manual
approvals for updates ensure that administrators have the opportunity to verify the
permissions of the later version, take any necessary steps, and then update.

As an Operator author preparing an Operator for use alongside the updated CCO in OpenShift
Container Platform 4.17 and later, you should instruct users and add code to handle the divergence from
earlier CCO versions, in addition to handling GCP Workload Identity token authentication (if your
Operator is not already enabled). The recommended method is to provide a CredentialsRequest object
with the correctly filled GCP Workload Identity fields and let the CCO create the Secret object for you.

IMPORTANT

If you plan to support OpenShift Container Platform clusters earlier than version 4.17,
consider providing users with instructions on how to manually create a secret with the
GCP Workload Identity-enabling information by using the CCO utility (ccoctl). Earlier
CCO versions are unaware of GCP Workload Identity mode on the cluster and cannot
create secrets for you.

Your code should check for secrets that never appear and warn users to follow the
fallback instructions you have provided.

To authenticate with Google Cloud using short-lived tokens via Google Cloud Platform Workload
Identity, Operators must provide the following information:

AUDIENCE

Created in Google Cloud by the administrator when they set up GCP Workload Identity, the
AUDIENCE value must be a preformatted URL in the following format:

SERVICE_ACCOUNT_EMAIL

The SERVICE_ACCOUNT_EMAIL value is a Google Cloud service account email that is
impersonated during Operator operation, for example:

//iam.googleapis.com/projects/<project_number>/locations/global/workloadIdentityPools/<pool_id>/pr
oviders/<provider_id>

OpenShift Container Platform 4.19 Operators

192

The Install Operator page in the web console allows cluster administrators to provide this information
at installation time. This information is then propagated to the Subscription object as environment
variables on the Operator pod.

Additional resources

OLM-managed Operator support for authentication with GCP Workload Identity

Installing from OperatorHub using the web console

Installing from OperatorHub using the CLI

5.1.4.1. Enabling Operators to support CCO-based workflows with GCP Workload Identity

As an Operator author designing your project to run on Operator Lifecycle Manager (OLM), you can
enable your Operator to authenticate against Google Cloud Platform Workload Identity on OpenShift
Container Platform clusters by customizing your project to support the Cloud Credential Operator
(CCO).

With this method, the Operator is responsible for and requires RBAC permissions for creating the
CredentialsRequest object and reading the resulting Secret object.

NOTE

By default, pods related to the Operator deployment mount a serviceAccountToken
volume so that the service account token can be referenced in the resulting Secret
object.

Prerequisities

OpenShift Container Platform 4.17 or later

Cluster in GCP Workload Identity / Federated Identity mode

OLM-based Operator project

Procedure

1. Update your Operator project’s ClusterServiceVersion (CSV) object:

a. Ensure Operator deployment in the CSV has the following volumeMounts and volumes
fields so that the Operator can assume the role with web identity:

Example 5.12. Example volumeMounts and volumes fields

<service_account_name>@<project_id>.iam.gserviceaccount.com

...
 volumeMounts:

 - name: bound-sa-token
 mountPath: /var/run/secrets/openshift/serviceaccount
 readOnly: true
 volumes:

CHAPTER 5. DEVELOPING OPERATORS

193

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#cco-short-term-creds-gcp-olm_cco-short-term-creds

b. Ensure your Operator has RBAC permission to create CredentialsRequests objects:

Example 5.13. Example clusterPermissions list

c. Add the following annotation to claim support for this method of CCO-based workflow with
GCP Workload Identity:

2. Update your Operator project code:

a. Get the audience and the serviceAccountEmail values from the environment variables
set on the pod by the subscription config:

b. Ensure you have a CredentialsRequest object ready to be patched and applied.

NOTE

 # This service account token can be used to provide identity outside the cluster.
 - name: bound-sa-token
 projected:
 sources:
 - serviceAccountToken:
 path: token
 audience: openshift

...
install:
 spec:
 clusterPermissions:
 - rules:
 - apiGroups:
 - "cloudcredential.openshift.io"
 resources:
 - credentialsrequests
 verbs:
 - create
 - delete
 - get
 - list
 - patch
 - update
 - watch

...
metadata:
 annotations:
 features.operators.openshift.io/token-auth-gcp: "true"

 // Get ENV var
 audience := os.Getenv("AUDIENCE")
 serviceAccountEmail := os.Getenv("SERVICE_ACCOUNT_EMAIL")
 gcpIdentityTokenFile := "/var/run/secrets/openshift/serviceaccount/token"

OpenShift Container Platform 4.19 Operators

194

NOTE

Adding a CredentialsRequest object to the Operator bundle is not currently
supported.

c. Add the GCP Workload Identity variables to the credentials request and apply it during
Operator initialization:

Example 5.14. Example applying CredentialsRequest object during Operator
initialization

d. Ensure your Operator can wait for a Secret object to show up from the CCO, as shown in
the following example, which is called along with the other items you are reconciling in your
Operator:

Example 5.15. Example wait for Secret object

// apply CredentialsRequest on install
 credReqTemplate.Spec.GCPProviderSpec.Audience = audience
 credReqTemplate.Spec.GCPProviderSpec.ServiceAccountEmail =
serviceAccountEmail
 credReqTemplate.CloudTokenPath = gcpIdentityTokenFile

 c := mgr.GetClient()
 if err := c.Create(context.TODO(), credReq); err != nil {
 if !errors.IsAlreadyExists(err) {
 setupLog.Error(err, "unable to create CredRequest")
 os.Exit(1)
 }
 }

// WaitForSecret is a function that takes a Kubernetes client, a namespace, and a v1
"k8s.io/api/core/v1" name as arguments
// It waits until the secret object with the given name exists in the given namespace
// It returns the secret object or an error if the timeout is exceeded
func WaitForSecret(client kubernetes.Interface, namespace, name string)
(*v1.Secret, error) {
 // set a timeout of 10 minutes
 timeout := time.After(10 * time.Minute) 1

 // set a polling interval of 10 seconds
 ticker := time.NewTicker(10 * time.Second)

 // loop until the timeout or the secret is found
 for {
 select {
 case <-timeout:
 // timeout is exceeded, return an error
 return nil, fmt.Errorf("timed out waiting for secret %s in namespace %s", name,
namespace)
// add to this error with a pointer to instructions for following a manual path to a Secret
that will work
 case <-ticker.C:
 // polling interval is reached, try to get the secret

CHAPTER 5. DEVELOPING OPERATORS

195

1 The timeout value is based on an estimate of how fast the CCO might detect an
added CredentialsRequest object and generate a Secret object. You might
consider lowering the time or creating custom feedback for cluster administrators
that could be wondering why the Operator is not yet accessing the cloud resources.

e. Read the service_account.json field from the secret and use it to authenticate your
Google Cloud client:

 secret, err := client.CoreV1().Secrets(namespace).Get(context.Background(),
name, metav1.GetOptions{})
 if err != nil {
 if errors.IsNotFound(err) {
 // secret does not exist yet, continue waiting
 continue
 } else {
 // some other error occurred, return it
 return nil, err
 }
 } else {
 // secret is found, return it
 return secret, nil
 }
 }
 }
}

service_account_json := secret.StringData["service_account.json"]

OpenShift Container Platform 4.19 Operators

196

CHAPTER 6. CLUSTER OPERATORS REFERENCE
This reference guide indexes the cluster Operators shipped by Red Hat that serve as the architectural
foundation for OpenShift Container Platform. Cluster Operators are installed by default, unless
otherwise noted, and are managed by the Cluster Version Operator (CVO). For more details on the
control plane architecture, see Operators in OpenShift Container Platform .

Cluster administrators can view cluster Operators in the OpenShift Container Platform web console
from the Administration → Cluster Settings page.

NOTE

Cluster Operators are not managed by Operator Lifecycle Manager (OLM) and
OperatorHub. OLM and OperatorHub are part of the Operator Framework used in
OpenShift Container Platform for installing and running optional add-on Operators.

Some of the following cluster Operators can be disabled prior to installation. For more information see
cluster capabilities.

6.1. CLUSTER BAREMETAL OPERATOR

NOTE

The Cluster Baremetal Operator is an optional cluster capability that can be disabled by
cluster administrators during installation. For more information about optional cluster
capabilities, see "Cluster capabilities" in Installing.

The Cluster Baremetal Operator (CBO) deploys all the components necessary to take a bare-metal
server to a fully functioning worker node ready to run OpenShift Container Platform compute nodes.
The CBO ensures that the metal3 deployment, which consists of the Bare Metal Operator (BMO) and
Ironic containers, runs on one of the control plane nodes within the OpenShift Container Platform
cluster. The CBO also listens for OpenShift Container Platform updates to resources that it watches
and takes appropriate action.

6.1.1. Project

cluster-baremetal-operator

Additional resources

Bare-metal capability

6.2. CLOUD CREDENTIAL OPERATOR

The Cloud Credential Operator (CCO) manages cloud provider credentials as Kubernetes custom
resource definitions (CRDs). The CCO syncs on CredentialsRequest custom resources (CRs) to allow
OpenShift Container Platform components to request cloud provider credentials with the specific
permissions that are required for the cluster to run.

By setting different values for the credentialsMode parameter in the install-config.yaml file, the CCO
can be configured to operate in several different modes. If no mode is specified, or the
credentialsMode parameter is set to an empty string (""), the CCO operates in its default mode.

CHAPTER 6. CLUSTER OPERATORS REFERENCE

197

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#operators-overview_control-plane
https://operatorframework.io/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#olm-operators_control-plane
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#cluster-capabilities
https://github.com/openshift/cluster-baremetal-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#cluster-bare-metal-operator_cluster-capabilities

6.2.1. Project

openshift-cloud-credential-operator

6.2.2. CRDs

credentialsrequests.cloudcredential.openshift.io

Scope: Namespaced

CR: CredentialsRequest

Validation: Yes

6.2.3. Configuration objects

No configuration required.

6.2.4. Additional resources

About the Cloud Credential Operator

CredentialsRequest custom resource

6.3. CLUSTER AUTHENTICATION OPERATOR

The Cluster Authentication Operator installs and maintains the Authentication custom resource in a
cluster and can be viewed with:

6.3.1. Project

cluster-authentication-operator

6.4. CLUSTER AUTOSCALER OPERATOR

The Cluster Autoscaler Operator manages deployments of the OpenShift Cluster Autoscaler using the
cluster-api provider.

6.4.1. Project

cluster-autoscaler-operator

6.4.2. CRDs

ClusterAutoscaler: This is a singleton resource, which controls the configuration autoscaler
instance for the cluster. The Operator only responds to the ClusterAutoscaler resource named
default in the managed namespace, the value of the WATCH_NAMESPACE environment
variable.

MachineAutoscaler: This resource targets a node group and manages the annotations to

$ oc get clusteroperator authentication -o yaml

OpenShift Container Platform 4.19 Operators

198

https://github.com/openshift/cloud-credential-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#about-cloud-credential-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_apis/#credentialsrequest-cloudcredential-openshift-io-v1
https://github.com/openshift/cluster-authentication-operator
https://github.com/openshift/cluster-autoscaler-operator

MachineAutoscaler: This resource targets a node group and manages the annotations to
enable and configure autoscaling for that group, the min and max size. Currently only
MachineSet objects can be targeted.

6.5. CLOUD CONTROLLER MANAGER OPERATOR

NOTE

The status of this Operator is General Availability for Amazon Web Services (AWS),
Google Cloud, IBM Cloud®, global Microsoft Azure, Microsoft Azure Stack Hub, Nutanix,
Red Hat OpenStack Platform (RHOSP), and VMware vSphere.

The Operator is available as a Technology Preview for IBM Power® Virtual Server.

The Cloud Controller Manager Operator manages and updates the cloud controller managers deployed
on top of OpenShift Container Platform. The Operator is based on the Kubebuilder framework and
controller-runtime libraries. You can install the Cloud Controller Manager Operator by using the Cluster
Version Operator (CVO).

The Cloud Controller Manager Operator includes the following components:

Operator

Cloud configuration observer

By default, the Operator exposes Prometheus metrics through the metrics service.

6.5.1. Project

cluster-cloud-controller-manager-operator

6.6. CLUSTER CAPI OPERATOR

The Cluster CAPI Operator maintains the lifecycle of Cluster API resources. This Operator is responsible
for all administrative tasks related to deploying the Cluster API project within an OpenShift Container
Platform cluster.

NOTE

This Operator is available as a Technology Preview for Amazon Web Services (AWS),
Google Cloud, Microsoft Azure, Red Hat OpenStack Platform (RHOSP), and VMware
vSphere clusters.

6.6.1. Project

cluster-capi-operator

6.6.2. CRDs

awsmachines.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CHAPTER 6. CLUSTER OPERATORS REFERENCE

199

https://access.redhat.com/support/offerings/techpreview
https://github.com/openshift/cluster-cloud-controller-manager-operator
https://access.redhat.com/support/offerings/techpreview
https://github.com/openshift/cluster-capi-operator

CR: awsmachine

gcpmachines.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: gcpmachine

azuremachines.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: azuremachine

openstackmachines.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: openstackmachine

vspheremachines.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: vspheremachine

metal3machines.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: metal3machine

awsmachinetemplates.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: awsmachinetemplate

gcpmachinetemplates.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: gcpmachinetemplate

azuremachinetemplates.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: azuremachinetemplate

openstackmachinetemplates.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: openstackmachinetemplate

vspheremachinetemplates.infrastructure.cluster.x-k8s.io

OpenShift Container Platform 4.19 Operators

200

Scope: Namespaced

CR: vspheremachinetemplate

metal3machinetemplates.infrastructure.cluster.x-k8s.io

Scope: Namespaced

CR: metal3machinetemplate

6.7. CLUSTER CONFIG OPERATOR

The Cluster Config Operator performs the following tasks related to config.openshift.io:

Creates CRDs.

Renders the initial custom resources.

Handles migrations.

6.7.1. Project

cluster-config-operator

6.8. CLUSTER CSI SNAPSHOT CONTROLLER OPERATOR

NOTE

The Cluster CSI Snapshot Controller Operator is an optional cluster capability that can be
disabled by cluster administrators during installation. For more information about optional
cluster capabilities, see "Cluster capabilities" in Installing.

The Cluster CSI Snapshot Controller Operator installs and maintains the CSI Snapshot Controller. The
CSI Snapshot Controller is responsible for watching the VolumeSnapshot CRD objects and manages
the creation and deletion lifecycle of volume snapshots.

6.8.1. Project

cluster-csi-snapshot-controller-operator

Additional resources

CSI snapshot controller capability

6.9. CLUSTER IMAGE REGISTRY OPERATOR

The Cluster Image Registry Operator manages a singleton instance of the OpenShift image registry. It
manages all configuration of the registry, including creating storage.

On initial start up, the Operator creates a default image-registry resource instance based on the
configuration detected in the cluster. This indicates what cloud storage type to use based on the cloud
provider.

CHAPTER 6. CLUSTER OPERATORS REFERENCE

201

https://github.com/openshift/cluster-config-operator
https://github.com/openshift/cluster-csi-snapshot-controller-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#cluster-csi-snapshot-controller-operator_cluster-capabilities

If insufficient information is available to define a complete image-registry resource, then an incomplete
resource is defined and the Operator updates the resource status with information about what is
missing.

The Cluster Image Registry Operator runs in the openshift-image-registry namespace and it also
manages the registry instance in that location. All configuration and workload resources for the registry
reside in that namespace.

6.9.1. Project

cluster-image-registry-operator

6.10. CLUSTER MACHINE APPROVER OPERATOR

The Cluster Machine Approver Operator automatically approves the CSRs requested for a new worker
node after cluster installation.

NOTE

For the control plane node, the approve-csr service on the bootstrap node automatically
approves all CSRs during the cluster bootstrapping phase.

6.10.1. Project

cluster-machine-approver-operator

6.11. CLUSTER MONITORING OPERATOR

The Cluster Monitoring Operator (CMO) manages and updates the Prometheus-based cluster
monitoring stack deployed on top of OpenShift Container Platform.

Project
openshift-monitoring

CRDs

alertmanagers.monitoring.coreos.com

Scope: Namespaced

CR: alertmanager

Validation: Yes

prometheuses.monitoring.coreos.com

Scope: Namespaced

CR: prometheus

Validation: Yes

prometheusrules.monitoring.coreos.com

Scope: Namespaced

OpenShift Container Platform 4.19 Operators

202

https://github.com/openshift/cluster-image-registry-operator
https://github.com/openshift/cluster-machine-approver
https://github.com/openshift/cluster-monitoring-operator

CR: prometheusrule

Validation: Yes

servicemonitors.monitoring.coreos.com

Scope: Namespaced

CR: servicemonitor

Validation: Yes

Configuration objects

6.12. CLUSTER NETWORK OPERATOR

The Cluster Network Operator installs and upgrades the networking components on an OpenShift
Container Platform cluster.

6.13. CLUSTER SAMPLES OPERATOR

NOTE

The Cluster Samples Operator is an optional cluster capability that can be disabled by
cluster administrators during installation. For more information about optional cluster
capabilities, see "Cluster capabilities" in Installing.

The Cluster Samples Operator manages the sample image streams and templates stored in the
openshift namespace.

On initial start up, the Operator creates the default samples configuration resource to initiate the
creation of the image streams and templates. The configuration object is a cluster scoped object with
the key cluster and type configs.samples.

The image streams are the Red Hat Enterprise Linux CoreOS (RHCOS)-based OpenShift Container
Platform image streams pointing to images on registry.redhat.io. Similarly, the templates are those
categorized as OpenShift Container Platform templates.

The Cluster Samples Operator deployment is contained within the openshift-cluster-samples-
operator namespace. On start up, the install pull secret is used by the image stream import logic in the
OpenShift image registry and API server to authenticate with registry.redhat.io. An administrator can
create any additional secrets in the openshift namespace if they change the registry used for the
sample image streams. If created, those secrets contain the content of a config.json for docker
needed to facilitate image import.

The image for the Cluster Samples Operator contains image stream and template definitions for the
associated OpenShift Container Platform release. After the Cluster Samples Operator creates a sample,
it adds an annotation that denotes the OpenShift Container Platform version that it is compatible with.
The Operator uses this annotation to ensure that each sample matches the compatible release version.
Samples outside of its inventory are ignored, as are skipped samples.

Modifications to any samples that are managed by the Operator are allowed as long as the version

$ oc -n openshift-monitoring edit cm cluster-monitoring-config

CHAPTER 6. CLUSTER OPERATORS REFERENCE

203

Modifications to any samples that are managed by the Operator are allowed as long as the version
annotation is not modified or deleted. However, on an upgrade, as the version annotation will change,
those modifications can get replaced as the sample will be updated with the newer version. The Jenkins
images are part of the image payload from the installation and are tagged into the image streams
directly.

The samples resource includes a finalizer, which cleans up the following upon its deletion:

Operator-managed image streams

Operator-managed templates

Operator-generated configuration resources

Cluster status resources

Upon deletion of the samples resource, the Cluster Samples Operator recreates the resource using the
default configuration.

6.13.1. Project

cluster-samples-operator

Additional resources

OpenShift samples capability

6.14. CLUSTER STORAGE OPERATOR

NOTE

The Cluster Storage Operator is an optional cluster capability that can be disabled by
cluster administrators during installation. For more information about optional cluster
capabilities, see "Cluster capabilities" in Installing.

The Cluster Storage Operator sets OpenShift Container Platform cluster-wide storage defaults. It
ensures a default storageclass exists for OpenShift Container Platform clusters. It also installs
Container Storage Interface (CSI) drivers which enable your cluster to use various storage backends.

6.14.1. Project

cluster-storage-operator

6.14.2. Configuration

No configuration is required.

6.14.3. Notes

The storage class that the Operator creates can be made non-default by editing its annotation,
but this storage class cannot be deleted as long as the Operator runs.

Additional resources

OpenShift Container Platform 4.19 Operators

204

https://github.com/openshift/cluster-samples-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#cluster-samples-operator_cluster-capabilities
https://github.com/openshift/cluster-storage-operator

Storage capability

6.15. CLUSTER VERSION OPERATOR

Cluster Operators manage specific areas of cluster functionality. The Cluster Version Operator (CVO)
manages the lifecycle of cluster Operators, many of which are installed in OpenShift Container Platform
by default.

The CVO also checks with the OpenShift Update Service to see the valid updates and update paths
based on current component versions and information in the graph by collecting the status of both the
cluster version and its cluster Operators. This status includes the condition type, which informs you of
the health and current state of the OpenShift Container Platform cluster.

For more information regarding cluster version condition types, see "Understanding cluster version
condition types".

6.15.1. Project

cluster-version-operator

Additional resources

Understanding cluster version condition types

6.16. CONSOLE OPERATOR

NOTE

The Console Operator is an optional cluster capability that can be disabled by cluster
administrators during installation. If you disable the Console Operator at installation, your
cluster is still supported and upgradable. For more information about optional cluster
capabilities, see "Cluster capabilities" in Installing.

The Console Operator installs and maintains the OpenShift Container Platform web console on a
cluster. The Console Operator is installed by default and automatically maintains a console.

6.16.1. Project

console-operator

Additional resources

Web console capability

6.17. CONTROL PLANE MACHINE SET OPERATOR

The Control Plane Machine Set Operator automates the management of control plane machine
resources within an OpenShift Container Platform cluster.

NOTE

CHAPTER 6. CLUSTER OPERATORS REFERENCE

205

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#cluster-storage-operator_cluster-capabilities
https://github.com/openshift/cluster-version-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/updating_clusters/#understanding-clusterversion-conditiontypes_understanding-openshift-updates
https://github.com/openshift/console-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#console-operator_cluster-capabilities

NOTE

This Operator is available for Amazon Web Services (AWS), Google Cloud, Microsoft
Azure, Nutanix, and VMware vSphere.

6.17.1. Project

cluster-control-plane-machine-set-operator

6.17.2. CRDs

controlplanemachineset.machine.openshift.io

Scope: Namespaced

CR: ControlPlaneMachineSet

Validation: Yes

6.17.3. Additional resources

About control plane machine sets

ControlPlaneMachineSet custom resource

6.18. DNS OPERATOR

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods that
enables DNS-based Kubernetes Service discovery in OpenShift Container Platform.

The Operator creates a working default deployment based on the cluster’s configuration.

The default cluster domain is cluster.local.

Configuration of the CoreDNS Corefile or Kubernetes plugin is not yet supported.

The DNS Operator manages CoreDNS as a Kubernetes daemon set exposed as a service with a static IP.
CoreDNS runs on all nodes in the cluster.

6.18.1. Project

cluster-dns-operator

6.19. ETCD CLUSTER OPERATOR

The etcd cluster Operator automates etcd cluster scaling, enables etcd monitoring and metrics, and
simplifies disaster recovery procedures.

6.19.1. Project

cluster-etcd-operator

6.19.2. CRDs

OpenShift Container Platform 4.19 Operators

206

https://github.com/openshift/cluster-control-plane-machine-set-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/machine_management/#cpmso-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/machine_apis/#controlplanemachineset-machine-openshift-io-v1
https://github.com/openshift/cluster-dns-operator
https://github.com/openshift/cluster-etcd-operator/

etcds.operator.openshift.io

Scope: Cluster

CR: etcd

Validation: Yes

6.19.3. Configuration objects

6.20. INGRESS OPERATOR

The Ingress Operator configures and manages the OpenShift Container Platform router.

6.20.1. Project

openshift-ingress-operator

6.20.2. CRDs

clusteringresses.ingress.openshift.io

Scope: Namespaced

CR: clusteringresses

Validation: No

6.20.3. Configuration objects

Cluster config

Type Name: clusteringresses.ingress.openshift.io

Instance Name: default

View Command:

6.20.4. Notes

The Ingress Operator sets up the router in the openshift-ingress project and creates the deployment
for the router:

The Ingress Operator uses the clusterNetwork[].cidr from the network/cluster status to determine
what mode (IPv4, IPv6, or dual stack) the managed Ingress Controller (router) should operate in. For
example, if clusterNetwork contains only a v6 cidr, then the Ingress Controller operates in IPv6-only

$ oc edit etcd cluster

$ oc get clusteringresses.ingress.openshift.io -n openshift-ingress-operator default -o
yaml

$ oc get deployment -n openshift-ingress

CHAPTER 6. CLUSTER OPERATORS REFERENCE

207

https://github.com/openshift/cluster-ingress-operator

mode.

In the following example, Ingress Controllers managed by the Ingress Operator will run in IPv4-only
mode because only one cluster network exists and the network is an IPv4 cidr:

Example output

6.21. INSIGHTS OPERATOR

NOTE

The Insights Operator is an optional cluster capability that can be disabled by cluster
administrators during installation. For more information about optional cluster
capabilities, see "Cluster capabilities" in Installing.

The Insights Operator gathers OpenShift Container Platform configuration data and sends it to Red
Hat. The data is used to produce proactive insights recommendations about potential issues that a
cluster might be exposed to. These insights are communicated to cluster administrators through the
Insights advisor service on console.redhat.com.

6.21.1. Project

insights-operator

6.21.2. Configuration

No configuration is required.

6.21.3. Notes

Insights Operator complements OpenShift Container Platform Telemetry.

Additional resources

Insights capability

About remote health monitoring

6.22. KUBERNETES API SERVER OPERATOR

The Kubernetes API Server Operator manages and updates the Kubernetes API server deployed on top
of OpenShift Container Platform. The Operator is based on the OpenShift Container Platform library-
go framework and it is installed using the Cluster Version Operator (CVO).

6.22.1. Project

openshift-kube-apiserver-operator

$ oc get network/cluster -o jsonpath='{.status.clusterNetwork[*]}'

map[cidr:10.128.0.0/14 hostPrefix:23]

OpenShift Container Platform 4.19 Operators

208

https://console.redhat.com/
https://github.com/openshift/insights-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#insights-operator_cluster-capabilities
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#about-remote-health-monitoring
https://github.com/openshift/cluster-kube-apiserver-operator

6.22.2. CRDs

kubeapiservers.operator.openshift.io

Scope: Cluster

CR: kubeapiserver

Validation: Yes

6.22.3. Configuration objects

6.23. KUBERNETES CONTROLLER MANAGER OPERATOR

The Kubernetes Controller Manager Operator manages and updates the Kubernetes Controller
Manager deployed on top of OpenShift Container Platform. The Operator is based on OpenShift
Container Platform library-go framework and it is installed via the Cluster Version Operator (CVO).

It contains the following components:

Operator

Bootstrap manifest renderer

Installer based on static pods

Configuration observer

By default, the Operator exposes Prometheus metrics through the metrics service.

6.23.1. Project

cluster-kube-controller-manager-operator

6.24. KUBERNETES SCHEDULER OPERATOR

The Kubernetes Scheduler Operator manages and updates the Kubernetes Scheduler deployed on top
of OpenShift Container Platform. The Operator is based on the OpenShift Container Platform library-
go framework and it is installed with the Cluster Version Operator (CVO).

The Kubernetes Scheduler Operator contains the following components:

Operator

Bootstrap manifest renderer

Installer based on static pods

Configuration observer

By default, the Operator exposes Prometheus metrics through the metrics service.

$ oc edit kubeapiserver

CHAPTER 6. CLUSTER OPERATORS REFERENCE

209

https://github.com/openshift/cluster-kube-controller-manager-operator

6.24.1. Project

cluster-kube-scheduler-operator

6.24.2. Configuration

The configuration for the Kubernetes Scheduler is the result of merging:

a default configuration.

an observed configuration from the spec schedulers.config.openshift.io.

All of these are sparse configurations, invalidated JSON snippets which are merged to form a valid
configuration at the end.

6.25. KUBERNETES STORAGE VERSION MIGRATOR OPERATOR

The Kubernetes Storage Version Migrator Operator detects changes of the default storage version,
creates migration requests for resource types when the storage version changes, and processes
migration requests.

6.25.1. Project

cluster-kube-storage-version-migrator-operator

6.26. MACHINE API OPERATOR

The Machine API Operator manages the lifecycle of specific purpose custom resource definitions
(CRD), controllers, and RBAC objects that extend the Kubernetes API. This declares the desired state of
machines in a cluster.

6.26.1. Project

machine-api-operator

6.26.2. CRDs

MachineSet

Machine

MachineHealthCheck

6.27. MACHINE CONFIG OPERATOR

The Machine Config Operator manages and applies configuration and updates of the base operating
system and container runtime, including everything between the kernel and kubelet.

There are four components:

machine-config-server: Provides Ignition configuration to new machines joining the cluster.

machine-config-controller: Coordinates the upgrade of machines to the desired

OpenShift Container Platform 4.19 Operators

210

https://github.com/openshift/cluster-kube-scheduler-operator
https://github.com/openshift/cluster-kube-storage-version-migrator-operator
https://github.com/openshift/machine-api-operator

machine-config-controller: Coordinates the upgrade of machines to the desired
configurations defined by a MachineConfig object. Options are provided to control the
upgrade for sets of machines individually.

machine-config-daemon: Applies new machine configuration during update. Validates and
verifies the state of the machine to the requested machine configuration.

machine-config: Provides a complete source of machine configuration at installation, first start
up, and updates for a machine.

IMPORTANT

Currently, there is no supported way to block or restrict the machine config server
endpoint. The machine config server must be exposed to the network so that newly-
provisioned machines, which have no existing configuration or state, are able to fetch
their configuration. In this model, the root of trust is the certificate signing requests
(CSR) endpoint, which is where the kubelet sends its certificate signing request for
approval to join the cluster. Because of this, machine configs should not be used to
distribute sensitive information, such as secrets and certificates.

To ensure that the machine config server endpoints, ports 22623 and 22624, are secured
in bare metal scenarios, customers must configure proper network policies.

6.27.1. Project

openshift-machine-config-operator

6.28. MARKETPLACE OPERATOR

NOTE

The Marketplace Operator is an optional cluster capability that can be disabled by cluster
administrators if it is not needed. For more information about optional cluster capabilities,
see "Cluster capabilities" in Installing.

The Marketplace Operator simplifies the process for bringing off-cluster Operators to your cluster by
using a set of default Operator Lifecycle Manager (OLM) catalogs on the cluster. When the
Marketplace Operator is installed, it creates the openshift-marketplace namespace. OLM ensures
catalog sources installed in the openshift-marketplace namespace are available for all namespaces on
the cluster.

6.28.1. Project

operator-marketplace

Additional resources

Marketplace capability

6.29. NODE TUNING OPERATOR

The Node Tuning Operator helps you manage node-level tuning by orchestrating the TuneD daemon
and achieves low latency performance by using the Performance Profile controller. The majority of high-

CHAPTER 6. CLUSTER OPERATORS REFERENCE

211

https://github.com/openshift/machine-config-operator
https://github.com/operator-framework/operator-marketplace
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#marketplace-operator_cluster-capabilities

performance applications require some level of kernel tuning. The Node Tuning Operator provides a
unified management interface to users of node-level sysctls and more flexibility to add custom tuning
specified by user needs.

The Operator manages the containerized TuneD daemon for OpenShift Container Platform as a
Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized TuneD
daemons running in the cluster in the format that the daemons understand. The daemons run on all
nodes in the cluster, one per node.

Node-level settings applied by the containerized TuneD daemon are rolled back on an event that
triggers a profile change or when the containerized TuneD daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator uses the Performance Profile controller to implement automatic tuning to
achieve low latency performance for OpenShift Container Platform applications.

The cluster administrator configures a performance profile to define node-level settings such as the
following:

Updating the kernel to kernel-rt.

Choosing CPUs for housekeeping.

Choosing CPUs for running workloads.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for
OpenShift applications. In OpenShift Container Platform 4.11 and later, this functionality
is part of the Node Tuning Operator.

6.29.1. Project

cluster-node-tuning-operator

6.29.2. Additional resources

About low latency

6.30. OPENSHIFT API SERVER OPERATOR

The OpenShift API Server Operator installs and maintains the openshift-apiserver on a cluster.

6.30.1. Project

openshift-apiserver-operator

6.30.2. CRDs

openshiftapiservers.operator.openshift.io

Scope: Cluster

OpenShift Container Platform 4.19 Operators

212

https://github.com/openshift/cluster-node-tuning-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/scalability_and_performance/#cnf-understanding-low-latency_cnf-understanding-low-latency
https://github.com/openshift/cluster-openshift-apiserver-operator

Scope: Cluster

CR: openshiftapiserver

Validation: Yes

6.31. OPENSHIFT CONTROLLER MANAGER OPERATOR

The OpenShift Controller Manager Operator installs and maintains the OpenShiftControllerManager
custom resource in a cluster and can be viewed with:

The custom resource definition (CRD) openshiftcontrollermanagers.operator.openshift.io can be
viewed in a cluster with:

6.31.1. Project

cluster-openshift-controller-manager-operator

6.32. OPERATOR LIFECYCLE MANAGER (OLM) CLASSIC OPERATORS

NOTE

The following sections pertain to Operator Lifecycle Manager (OLM) Classic that has
been included with OpenShift Container Platform 4 since its initial release. For OLM v1,
see Operator Lifecycle Manager (OLM) v1 Operators .

Operator Lifecycle Manager (OLM) Classic helps users install, update, and manage the lifecycle of
Kubernetes native applications (Operators) and their associated services running across their OpenShift
Container Platform clusters. It is part of the Operator Framework, an open source toolkit designed to
manage Operators in an effective, automated, and scalable way.

Figure 6.1. OLM (Classic) workflow

OLM runs by default in OpenShift Container Platform 4.19, which aids cluster administrators in installing,
upgrading, and granting access to Operators running on their cluster. The OpenShift Container
Platform web console provides management screens for cluster administrators to install Operators, as

$ oc get clusteroperator openshift-controller-manager -o yaml

$ oc get crd openshiftcontrollermanagers.operator.openshift.io -o yaml

CHAPTER 6. CLUSTER OPERATORS REFERENCE

213

https://github.com/openshift/cluster-openshift-controller-manager-operator
https://operatorframework.io/

well as grant specific projects access to use the catalog of Operators available on the cluster.

For developers, a self-service experience allows provisioning and configuring instances of databases,
monitoring, and big data services without having to be subject matter experts, because the Operator
has that knowledge baked into it.

6.32.1. OLM Operator

The OLM Operator is responsible for deploying applications defined by CSV resources after the
required resources specified in the CSV are present in the cluster.

The OLM Operator is not concerned with the creation of the required resources; you can choose to
manually create these resources using the CLI or using the Catalog Operator. This separation of concern
allows users incremental buy-in in terms of how much of the OLM framework they choose to leverage
for their application.

The OLM Operator uses the following workflow:

1. Watch for cluster service versions (CSVs) in a namespace and check that requirements are met.

2. If requirements are met, run the install strategy for the CSV.

NOTE

A CSV must be an active member of an Operator group for the install strategy to
run.

6.32.2. Catalog Operator

The Catalog Operator is responsible for resolving and installing cluster service versions (CSVs) and the
required resources they specify. It is also responsible for watching catalog sources for updates to
packages in channels and upgrading them, automatically if desired, to the latest available versions.

To track a package in a channel, you can create a Subscription object configuring the desired package,
channel, and the CatalogSource object you want to use for pulling updates. When updates are found,
an appropriate InstallPlan object is written into the namespace on behalf of the user.

The Catalog Operator uses the following workflow:

1. Connect to each catalog source in the cluster.

2. Watch for unresolved install plans created by a user, and if found:

a. Find the CSV matching the name requested and add the CSV as a resolved resource.

b. For each managed or required CRD, add the CRD as a resolved resource.

c. For each required CRD, find the CSV that manages it.

3. Watch for resolved install plans and create all of the discovered resources for it, if approved by a
user or automatically.

4. Watch for catalog sources and subscriptions and create install plans based on them.

6.32.3. Catalog Registry

OpenShift Container Platform 4.19 Operators

214

The Catalog Registry stores CSVs and CRDs for creation in a cluster and stores metadata about
packages and channels.

A package manifest is an entry in the Catalog Registry that associates a package identity with sets of
CSVs. Within a package, channels point to a particular CSV. Because CSVs explicitly reference the CSV
that they replace, a package manifest provides the Catalog Operator with all of the information that is
required to update a CSV to the latest version in a channel, stepping through each intermediate version.

6.32.4. CRDs

The OLM and Catalog Operators are responsible for managing the custom resource definitions (CRDs)
that are the basis for the OLM framework:

Table 6.1. CRDs managed by OLM and Catalog Operators

Resource Shor
t
nam
e

Own
er

Description

ClusterServic
eVersion
(CSV)

csv OLM Application metadata: name, version, icon, required resources,
installation, and so on.

InstallPlan ip Catal
og

Calculated list of resources to be created to automatically install or
upgrade a CSV.

CatalogSour
ce

cats
rc

Catal
og

A repository of CSVs, CRDs, and packages that define an application.

Subscription sub Catal
og

Used to keep CSVs up to date by tracking a channel in a package.

OperatorGro
up

og OLM Configures all Operators deployed in the same namespace as the
OperatorGroup object to watch for their custom resource (CR) in a list
of namespaces or cluster-wide.

Each of these Operators is also responsible for creating the following resources:

Table 6.2. Resources created by OLM and Catalog Operators

Resource Owner

Deployments OLM

ServiceAccounts

(Cluster)Roles

(Cluster)RoleBindings

CHAPTER 6. CLUSTER OPERATORS REFERENCE

215

CustomResourceDefinitions (CRDs) Catalog

ClusterServiceVersions

Resource Owner

6.32.5. Cluster Operators

In OpenShift Container Platform, OLM functionality is provided across a set of cluster Operators:

operator-lifecycle-manager

Provides the OLM Operator. Also informs cluster administrators if there are any installed Operators
blocking cluster upgrade, based on their olm.maxOpenShiftVersion properties. For more
information, see "Controlling Operator compatibility with OpenShift Container Platform versions".

operator-lifecycle-manager-catalog

Provides the Catalog Operator.

operator-lifecycle-manager-packageserver

Represents an API extension server responsible for collecting metadata from all catalogs on the
cluster and serves the user-facing PackageManifest API.

6.32.6. Additional resources

Understanding Operator Lifecycle Manager (OLM)

6.33. OPERATOR LIFECYCLE MANAGER (OLM) V1 OPERATOR

Starting in OpenShift Container Platform 4.18, OLM v1 is enabled by default alongside OLM (Classic).
This next-generation iteration provides an updated framework that evolves many of OLM (Classic)
concepts that enable cluster administrators to extend capabilities for their users.

OLM v1 manages the lifecycle of the new ClusterExtension object, which includes Operators via the
registry+v1 bundle format, and controls installation, upgrade, and role-based access control (RBAC) of
extensions within a cluster.

In OpenShift Container Platform, OLM v1 is provided by the olm cluster Operator.

NOTE

The olm cluster Operator informs cluster administrators if there are any installed
extensions blocking cluster upgrade, based on their olm.maxOpenShiftVersion
properties. For more information, see "Compatibility with OpenShift Container Platform
versions".

6.33.1. Components

Operator Lifecycle Manager (OLM) v1 comprises the following component projects:

Operator Controller

The central component of OLM v1 that extends Kubernetes with an API through which users can

OpenShift Container Platform 4.19 Operators

216

The central component of OLM v1 that extends Kubernetes with an API through which users can
install and manage the lifecycle of Operators and extensions. It consumes information from catalogd.

Catalogd

A Kubernetes extension that unpacks file-based catalog (FBC) content packaged and shipped in
container images for consumption by on-cluster clients. As a component of the OLM v1
microservices architecture, catalogd hosts metadata for Kubernetes extensions packaged by the
authors of the extensions, and as a result helps users discover installable content.

6.33.2. CRDs

clusterextension.olm.operatorframework.io

Scope: Cluster

CR: ClusterExtension

clustercatalog.olm.operatorframework.io

Scope: Cluster

CR: ClusterCatalog

6.33.3. Project

operator-framework/operator-controller

operator-framework/catalogd

6.33.4. Additional resources

Extensions overview

Compatibility with OpenShift Container Platform versions

6.34. OPENSHIFT SERVICE CA OPERATOR

The OpenShift Service CA Operator mints and manages serving certificates for Kubernetes services.

6.34.1. Project

openshift-service-ca-operator

6.35. VSPHERE PROBLEM DETECTOR OPERATOR

The vSphere Problem Detector Operator checks clusters that are deployed on vSphere for common
installation and misconfiguration issues that are related to storage.

NOTE

The vSphere Problem Detector Operator is only started by the Cluster Storage Operator
when the Cluster Storage Operator detects that the cluster is deployed on vSphere.

CHAPTER 6. CLUSTER OPERATORS REFERENCE

217

https://github.com/operator-framework/operator-controller
https://github.com/operator-framework/catalogd
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/extensions/#extensions-overview
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/extensions/#olmv1-ocp-compat_update-paths
https://github.com/openshift/service-ca-operator

6.35.1. Configuration

No configuration is required.

6.35.2. Notes

The Operator supports OpenShift Container Platform installations on vSphere.

The Operator uses the vsphere-cloud-credentials to communicate with vSphere.

The Operator performs checks that are related to storage.

Additional resources

Using the vSphere Problem Detector Operator

OpenShift Container Platform 4.19 Operators

218

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installing_on_vmware_vsphere/#using-vsphere-problem-detector-operator

CHAPTER 7. OLM V1

7.1. ABOUT OPERATOR LIFECYCLE MANAGER V1

Operator Lifecycle Manager (OLM) has been included with OpenShift Container Platform 4 since its
initial release. OpenShift Container Platform 4.18 includes components for a next-generation iteration
of OLM as a Generally Available (GA) feature, known during this phase as OLM v1 . This updated
framework evolves many of the concepts that have been part of previous versions of OLM and adds
new capabilities.

Starting in OpenShift Container Platform 4.17, documentation for OLM v1 has been moved to the
following new guide:

Extensions (OLM v1)

CHAPTER 7. OLM V1

219

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/extensions/#extensions-overview

	Table of Contents
	CHAPTER 1. OPERATORS OVERVIEW
	1.1. FOR DEVELOPERS
	1.2. FOR ADMINISTRATORS
	1.3. NEXT STEPS

	CHAPTER 2. UNDERSTANDING OPERATORS
	2.1. WHAT ARE OPERATORS?
	2.1.1. Why use Operators?
	2.1.2. Operator Framework
	2.1.3. Operator maturity model

	2.2. OPERATOR FRAMEWORK PACKAGING FORMAT
	2.2.1. Bundle format
	2.2.1.1. Manifests
	2.2.1.2. Annotations
	2.2.1.3. Dependencies
	2.2.1.4. About the opm CLI

	2.2.2. Highlights
	2.2.2.1. Directory structure
	2.2.2.2. Schemas
	2.2.2.3. Properties
	2.2.2.4. Example catalog
	2.2.2.5. Guidelines
	2.2.2.6. CLI usage
	2.2.2.7. Automation

	2.3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS
	2.3.1. Bundle
	2.3.2. Bundle image
	2.3.3. Catalog source
	2.3.4. Channel
	2.3.5. Channel head
	2.3.6. Cluster service version
	2.3.7. Dependency
	2.3.8. Extension
	2.3.9. Index image
	2.3.10. Install plan
	2.3.11. Multitenancy
	2.3.12. Operator
	2.3.13. Operator group
	2.3.14. Package
	2.3.15. Registry
	2.3.16. Subscription
	2.3.17. Update graph

	2.4. OPERATOR LIFECYCLE MANAGER (OLM)
	2.4.1. Operator Lifecycle Manager concepts and resources
	2.4.1.1. What is Operator Lifecycle Manager (OLM) Classic?
	2.4.1.2. OLM resources

	2.4.2. Operator Lifecycle Manager architecture
	2.4.2.1. Component responsibilities
	2.4.2.2. OLM Operator
	2.4.2.3. Catalog Operator
	2.4.2.4. Catalog Registry

	2.4.3. Operator Lifecycle Manager workflow
	2.4.3.1. Operator installation and upgrade workflow in OLM

	2.4.4. Operator Lifecycle Manager dependency resolution
	2.4.4.1. About dependency resolution
	2.4.4.2. Operator properties
	2.4.4.3. Operator dependencies
	2.4.4.4. Generic constraints
	2.4.4.5. Dependency preferences
	2.4.4.6. CRD upgrades
	2.4.4.7. Dependency best practices
	2.4.4.8. Dependency caveats
	2.4.4.9. Example dependency resolution scenarios

	2.4.5. Operator groups
	2.4.5.1. About Operator groups
	2.4.5.2. Operator group membership
	2.4.5.3. Target namespace selection
	2.4.5.4. Operator group CSV annotations
	2.4.5.5. Provided APIs annotation
	2.4.5.6. Role-based access control
	2.4.5.7. Copied CSVs
	2.4.5.8. Static Operator groups
	2.4.5.9. Operator group intersection
	2.4.5.10. Limitations for multitenant Operator management
	2.4.5.11. Troubleshooting Operator groups

	2.4.6. Multitenancy and Operator colocation
	2.4.6.1. Colocation of Operators in a namespace

	2.4.7. Operator conditions
	2.4.7.1. About Operator conditions
	2.4.7.2. Supported conditions
	2.4.7.3. Additional resources

	2.4.8. Operator Lifecycle Manager metrics
	2.4.8.1. Exposed metrics

	2.4.9. Webhook management in Operator Lifecycle Manager
	2.4.9.1. Additional resources

	2.5. UNDERSTANDING OPERATORHUB
	2.5.1. About OperatorHub
	2.5.2. OperatorHub architecture
	2.5.2.1. OperatorHub custom resource

	2.5.3. Additional resources

	2.6. RED HAT-PROVIDED OPERATOR CATALOGS
	2.6.1. About Operator catalogs
	2.6.2. About Red Hat-provided Operator catalogs

	2.7. OPERATORS IN MULTITENANT CLUSTERS
	2.7.1. Default Operator install modes and behavior
	2.7.2. Recommended solution for multitenant clusters
	2.7.3. Operator colocation and Operator groups

	2.8. CRDS
	2.8.1. Extending the Kubernetes API with custom resource definitions
	2.8.1.1. Custom resource definitions
	2.8.1.2. Creating a custom resource definition
	2.8.1.3. Creating cluster roles for custom resource definitions
	2.8.1.4. Creating custom resources from a file
	2.8.1.5. Inspecting custom resources

	2.8.2. Managing resources from custom resource definitions
	2.8.2.1. Custom resource definitions
	2.8.2.2. Creating custom resources from a file
	2.8.2.3. Inspecting custom resources

	CHAPTER 3. USER TASKS
	3.1. CREATING APPLICATIONS FROM INSTALLED OPERATORS
	3.1.1. Creating an etcd cluster using an Operator

	3.2. INSTALLING OPERATORS IN YOUR NAMESPACE
	3.2.1. Prerequisites
	3.2.2. About Operator installation with OperatorHub
	3.2.3. Installing from OperatorHub by using the web console
	3.2.4. Installing from OperatorHub by using the CLI

	CHAPTER 4. ADMINISTRATOR TASKS
	4.1. ADDING OPERATORS TO A CLUSTER
	4.1.1. About Operator installation with OperatorHub
	4.1.2. Installing from OperatorHub by using the web console
	4.1.3. Installing from OperatorHub by using the CLI
	4.1.4. Preparing for multiple instances of an Operator for multitenant clusters
	4.1.5. Installing global Operators in custom namespaces
	4.1.6. Pod placement of Operator workloads
	4.1.7. Controlling where an Operator is installed

	4.2. UPDATING INSTALLED OPERATORS
	4.2.1. Preparing for an Operator update
	4.2.2. Changing the update channel for an Operator
	4.2.3. Manually approving a pending Operator update
	4.2.4. Additional resources

	4.3. DELETING OPERATORS FROM A CLUSTER
	4.3.1. Deleting Operators from a cluster using the web console
	4.3.2. Deleting Operators from a cluster using the CLI
	4.3.3. Refreshing failing subscriptions

	4.4. CONFIGURING OPERATOR LIFECYCLE MANAGER FEATURES
	4.4.1. Disabling copied CSVs

	4.5. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE MANAGER
	4.5.1. Overriding proxy settings of an Operator
	4.5.2. Injecting a custom CA certificate
	4.5.3. Additional resources

	4.6. VIEWING OPERATOR STATUS
	4.6.1. Operator subscription condition types
	4.6.2. Viewing Operator subscription status by using the CLI
	4.6.3. Viewing Operator catalog source status by using the CLI

	4.7. MANAGING OPERATOR CONDITIONS
	4.7.1. Overriding Operator conditions
	4.7.2. Updating your Operator to use Operator conditions
	4.7.2.1. Setting defaults

	4.7.3. Additional resources

	4.8. ALLOWING NON-CLUSTER ADMINISTRATORS TO INSTALL OPERATORS
	4.8.1. Understanding Operator installation policy
	4.8.1.1. Installation scenarios
	4.8.1.2. Installation workflow

	4.8.2. Scoping Operator installations
	4.8.2.1. Fine-grained permissions

	4.8.3. Operator catalog access control
	4.8.4. Troubleshooting permission failures

	4.9. MANAGING CUSTOM CATALOGS
	4.9.1. Prerequisites
	4.9.2. File-based catalogs
	4.9.2.1. Creating a file-based catalog image
	4.9.2.2. Updating or filtering a file-based catalog image

	4.9.3. SQLite-based catalogs
	4.9.3.1. Creating a SQLite-based index image
	4.9.3.2. Updating a SQLite-based index image
	4.9.3.3. Filtering a SQLite-based index image

	4.9.4. Catalog sources and pod security admission
	4.9.4.1. Migrating SQLite database catalogs to the file-based catalog format
	4.9.4.2. Rebuilding SQLite database catalog images
	4.9.4.3. Configuring catalogs to run with elevated permissions

	4.9.5. Adding a catalog source to a cluster
	4.9.6. Accessing images for Operators from private registries
	4.9.7. Disabling the default OperatorHub catalog sources
	4.9.8. Removing custom catalogs

	4.10. USING OPERATOR LIFECYCLE MANAGER IN DISCONNECTED ENVIRONMENTS
	4.11. CATALOG SOURCE POD SCHEDULING
	4.11.1. Disabling default CatalogSource objects at a local level
	4.11.2. Overriding the node selector for catalog source pods
	4.11.3. Overriding the priority class name for catalog source pods
	4.11.4. Overriding tolerations for catalog source pods

	4.12. TROUBLESHOOTING OPERATOR ISSUES
	4.12.1. Operator subscription condition types
	4.12.2. Viewing Operator subscription status by using the CLI
	4.12.3. Viewing Operator catalog source status by using the CLI
	4.12.4. Querying Operator pod status
	4.12.5. Gathering Operator logs
	4.12.6. Disabling the Machine Config Operator from automatically rebooting
	4.12.6.1. Disabling the Machine Config Operator from automatically rebooting by using the console
	4.12.6.2. Disabling the Machine Config Operator from automatically rebooting by using the CLI

	4.12.7. Refreshing failing subscriptions
	4.12.8. Reinstalling Operators after failed uninstallation

	CHAPTER 5. DEVELOPING OPERATORS
	5.1. TOKEN AUTHENTICATION
	5.1.1. Token authentication for Operators on cloud providers
	5.1.2. CCO-based workflow for OLM-managed Operators with AWS STS
	5.1.2.1. Enabling Operators to support CCO-based workflows with AWS STS
	5.1.2.2. Role specification
	5.1.2.3. Troubleshooting
	5.1.2.4. Alternative method

	5.1.3. CCO-based workflow for OLM-managed Operators with Microsoft Entra Workload ID
	5.1.3.1. Enabling Operators to support CCO-based workflows with Microsoft Entra Workload ID

	5.1.4. CCO-based workflow for OLM-managed Operators with GCP Workload Identity
	5.1.4.1. Enabling Operators to support CCO-based workflows with GCP Workload Identity

	CHAPTER 6. CLUSTER OPERATORS REFERENCE
	6.1. CLUSTER BAREMETAL OPERATOR
	6.1.1. Project

	6.2. CLOUD CREDENTIAL OPERATOR
	6.2.1. Project
	6.2.2. CRDs
	6.2.3. Configuration objects
	6.2.4. Additional resources

	6.3. CLUSTER AUTHENTICATION OPERATOR
	6.3.1. Project

	6.4. CLUSTER AUTOSCALER OPERATOR
	6.4.1. Project
	6.4.2. CRDs

	6.5. CLOUD CONTROLLER MANAGER OPERATOR
	6.5.1. Project

	6.6. CLUSTER CAPI OPERATOR
	6.6.1. Project
	6.6.2. CRDs

	6.7. CLUSTER CONFIG OPERATOR
	6.7.1. Project

	6.8. CLUSTER CSI SNAPSHOT CONTROLLER OPERATOR
	6.8.1. Project

	6.9. CLUSTER IMAGE REGISTRY OPERATOR
	6.9.1. Project

	6.10. CLUSTER MACHINE APPROVER OPERATOR
	6.10.1. Project

	6.11. CLUSTER MONITORING OPERATOR
	Project
	CRDs
	Configuration objects

	6.12. CLUSTER NETWORK OPERATOR
	6.13. CLUSTER SAMPLES OPERATOR
	6.13.1. Project

	6.14. CLUSTER STORAGE OPERATOR
	6.14.1. Project
	6.14.2. Configuration
	6.14.3. Notes

	6.15. CLUSTER VERSION OPERATOR
	6.15.1. Project

	6.16. CONSOLE OPERATOR
	6.16.1. Project

	6.17. CONTROL PLANE MACHINE SET OPERATOR
	6.17.1. Project
	6.17.2. CRDs
	6.17.3. Additional resources

	6.18. DNS OPERATOR
	6.18.1. Project

	6.19. ETCD CLUSTER OPERATOR
	6.19.1. Project
	6.19.2. CRDs
	6.19.3. Configuration objects

	6.20. INGRESS OPERATOR
	6.20.1. Project
	6.20.2. CRDs
	6.20.3. Configuration objects
	6.20.4. Notes

	6.21. INSIGHTS OPERATOR
	6.21.1. Project
	6.21.2. Configuration
	6.21.3. Notes

	6.22. KUBERNETES API SERVER OPERATOR
	6.22.1. Project
	6.22.2. CRDs
	6.22.3. Configuration objects

	6.23. KUBERNETES CONTROLLER MANAGER OPERATOR
	6.23.1. Project

	6.24. KUBERNETES SCHEDULER OPERATOR
	6.24.1. Project
	6.24.2. Configuration

	6.25. KUBERNETES STORAGE VERSION MIGRATOR OPERATOR
	6.25.1. Project

	6.26. MACHINE API OPERATOR
	6.26.1. Project
	6.26.2. CRDs

	6.27. MACHINE CONFIG OPERATOR
	6.27.1. Project

	6.28. MARKETPLACE OPERATOR
	6.28.1. Project

	6.29. NODE TUNING OPERATOR
	6.29.1. Project
	6.29.2. Additional resources

	6.30. OPENSHIFT API SERVER OPERATOR
	6.30.1. Project
	6.30.2. CRDs

	6.31. OPENSHIFT CONTROLLER MANAGER OPERATOR
	6.31.1. Project

	6.32. OPERATOR LIFECYCLE MANAGER (OLM) CLASSIC OPERATORS
	6.32.1. OLM Operator
	6.32.2. Catalog Operator
	6.32.3. Catalog Registry
	6.32.4. CRDs
	6.32.5. Cluster Operators
	6.32.6. Additional resources

	6.33. OPERATOR LIFECYCLE MANAGER (OLM) V1 OPERATOR
	6.33.1. Components
	6.33.2. CRDs
	6.33.3. Project
	6.33.4. Additional resources

	6.34. OPENSHIFT SERVICE CA OPERATOR
	6.34.1. Project

	6.35. VSPHERE PROBLEM DETECTOR OPERATOR
	6.35.1. Configuration
	6.35.2. Notes

	CHAPTER 7. OLM V1
	7.1. ABOUT OPERATOR LIFECYCLE MANAGER V1

