& RedHat

Red Hat OpenShift Pipelines 1.19

Creating CI/CD pipelines

Getting started with creating and running tasks and pipelines in OpenShift Pipelines

Last Updated: 2025-07-15

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

Getting started with creating and running tasks and pipelines in OpenShift Pipelines

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about creating and running tasks and pipelines in OpenShift
Pipelines.

Table of Contents

Table of Contents

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES 4
1.1. PREREQUISITES 4
1.2. CREATING A PROJECT AND CHECKING YOUR PIPELINE SERVICE ACCOUNT 4
1.3. CREATING PIPELINE TASKS 5
1.4. ASSEMBLING A PIPELINE 5
1.5. MIRRORING IMAGES TO RUN PIPELINES IN A RESTRICTED ENVIRONMENT 8
1.6. RUNNING A PIPELINE 11
1.7. ADDING TRIGGERS TO A PIPELINE 13
1.8. CONFIGURING EVENT LISTENERS TO SERVE MULTIPLE NAMESPACES 17
1.9. CREATING WEBHOOKS 19
110. TRIGGERING A PIPELINE RUN 20
1.11. ENABLING MONITORING OF EVENT LISTENERS FOR TRIGGERS FOR USER-DEFINED PROJECTS 21
112. CONFIGURING PULL REQUEST CAPABILITIES IN GITHUB INTERCEPTOR 22

1.12.1. Filtering pull requests using GitHub Interceptor 22
1.12.2. Validating pull requests using GitHub Interceptors 24
113. ADDITIONAL RESOURCES 25

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINESIN THEWEB CONSOLE 27

2.1. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE DEVELOPER PERSPECTIVE 27
Prerequisites 27
2.1.1. Constructing pipelines using the Pipeline builder 27
2.1.2. Creating OpenShift Pipelines along with applications 30
2.1.3. Adding a GitHub repository containing pipelines 30
2.1.4. Interacting with pipelines using the Developer perspective 33
2.1.5. Starting pipelines from Pipelines view 35
2.1.6. Starting pipelines from Topology view 37
2.1.7. Interacting with pipelines from Topology view 38
2.1.8. Editing pipelines 38
2.1.9. Deleting pipelines 39

2.2. ADDITIONAL RESOURCES 39

2.3. CREATING PIPELINE TEMPLATES IN THE ADMINISTRATOR PERSPECTIVE 39

2.4. PIPELINE EXECUTION STATISTICS IN THE WEB CONSOLE 40
2.4.1. Enabling the OpenShift Pipelines console plugin 40
2.4.2. Viewing the statistics for all pipelines together 41
2.4.3. Viewing the statistics for a specific pipeline 41

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS 43

3.1. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION FROM A TEKTON CATALOG 43
3.1.1. Configuring the hub resolver 44
3.1.2. Specifying a remote pipeline, task, or step action using the hub resolver 45

3.2. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION FROM A TEKTON BUNDLE 48
3.2.1. Configuring the bundles resolver 48
3.2.2. Specifying a remote pipeline, task, or step action using the bundles resolver 48

3.3. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION WITH ANONYMOUS GIT CLONING 51
3.3.1. Configuring the Git resolver for anonymous Git cloning 51
3.3.2. Specifying a remote pipeline, task, or step action by using the Git resolver for anonymous cloning 52

3.4. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION WITH AN AUTHENTICATED GIT API 54
3.4.1. Configuring the Git resolver for an authenticated API 54
3.4.2. Configuring multiple Git providers 56
3.4.3. Specifying a remote pipeline, task, or step action using the Git resolver with the authenticated SCM API

57
3.4.4. Specifying multiple Git providers 60

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

3.4.5. Specifying a remote pipeline or task by using the Git resolver with the authenticated SCM API overriding

the Git resolver configuration
3.5.SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION BY USING THE HTTP RESOLVER
3.5.1. Configuring the HTTP resolver
3.5.2. Specifying a remote pipeline, task, or step action with the HTTP Resolver
3.6. SPECIFYING A PIPELINE, TASK, OR STEP ACTION FROM THE SAME CLUSTER
3.6.1. Configuring the cluster resolver
3.6.2. Specifying a pipeline, task, or step action from the same cluster using the cluster resolver
3.7. TASKS PROVIDED IN THE OPENSHIFT PIPELINES NAMESPACE
buildah
git-cli
git-clone
kn
kn-apply
maven
openshift-client
s2i-dotnet
s2i-go
s2i-java
s2i-nodejs
s2i-perl
s2i-php
s2i-python
s2i-ruby
skopeo-copy
tkn
3.8. COMMUNITY TASKS PROVIDED IN THE OPENSHIFT PIPELINES NAMESPACE
argocd-task-sync-and-wait
helm-upgrade-from-repo
helm-upgrade-from-source
jib-maven
kubeconfig-creator
pull-request
trigger-jenkins-job
3.9. STEP ACTION DEFINITIONS PROVIDED WITH OPENSHIFT PIPELINES
git-clone
cache-upload and cache-fetch
3.10. ABOUT NON-VERSIONED AND VERSIONED TASKS AND STEP ACTIONS
3.11. ADDITIONAL RESOURCES

CHAPTER 4. USING MANUAL APPROVAL IN OPENSHIFTPIPELINEScciiiiiiiiiiiiiiiieennn
4.1. ENABLING THE MANUAL APPROVAL GATE CONTROLLER
4.2. SPECIFYING A MANUAL APPROVAL TASK
4.3. APPROVING A MANUAL APPROVAL TASK
4.3.1. Approving a manual approval task by using the web console
4.3.2. Approving a manual approval task by using the command line

CHAPTER 5. USING RED HAT ENTITLEMENTS INPIPELINES e
5.1. PREREQUISITES
5.2. USING RED HAT ENTITLEMENTS BY MANUALLY COPYING THE ETC-PKI-ENTITLEMENT SECRET

5.3. USING RED HAT ENTITLEMENTS BY SHARING THE SECRET USING THE SHARED RESOURCES CSI
DRIVER OPERATOR

5.4. ADDITIONAL RESOURCES

61
62
62
63
64
65
65
68
68
70
72
75
76
76
78
79
81
82
84
86
88
90
91
93
95
96
96
97
98
100
102
103
104
105
105
108

13

15

16
116
n7
18
18
19

121
121
122

123
126

Table of Contents

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR
APPLICATIONS USING OPENSHIFT PIPELINES

With Red Hat OpenShift Pipelines, you can create a customized Cl/CD solution to build, test, and deploy
your application.

To create a full-fledged, self-serving Cl/CD pipeline for an application, perform the following tasks:

Create custom tasks, or install existing reusable tasks.
Create and define the delivery pipeline for your application.

Provide a storage volume or filesystem that is attached to a workspace for the pipeline
execution, using one of the following approaches:

o Specify a volume claim template that creates a persistent volume claim
o Specify a persistent volume claim
Create a PipelineRun object to instantiate and invoke the pipeline.

Add triggers to capture events in the source repository.

This section uses the pipelines-tutorial example to demonstrate the preceding tasks. The example uses
a simple application which consists of:

A front-end interface, pipelines-vote-ui, with the source code in the pipelines-vote-ui Git
repository.

A back-end interface, pipelines-vote-api, with the source code in the pipelines-vote-api Git
repository.

The apply-manifests and update-deployment tasks in the pipelines-tutorial Git repository.

1.1. PREREQUISITES

You have access to an OpenShift Container Platform cluster.

You have installed OpenShift Pipelines using the Red Hat OpenShift Pipelines Operator listed in
the OpenShift OperatorHub. After it is installed, it is applicable to the entire cluster.

You have installed OpenShift Pipelines CLI.

You have forked the front-end pipelines-vote-ui and back-end pipelines-vote-api Git
repositories using your GitHub ID, and have administrator access to these repositories.

Optional: You have cloned the pipelines-tutorial Git repository.

1.2. CREATING A PROJECT AND CHECKING YOUR PIPELINE SERVICE
ACCOUNT

Procedure

1. Login to your OpenShift Container Platform cluster:

https://github.com/openshift/pipelines-vote-ui/tree/pipelines-1.19
https://github.com/openshift/pipelines-vote-api/tree/pipelines-1.19
https://github.com/openshift/pipelines-tutorial/tree/pipelines-1.19
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/installing_and_configuring/#installing-pipelines
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/pipelines_cli_tkn_reference/#installing-tkn
https://github.com/openshift/pipelines-vote-ui/tree/pipelines-1.19
https://github.com/openshift/pipelines-vote-api/tree/pipelines-1.19
https://github.com/openshift/pipelines-tutorial/tree/pipelines-1.19

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

I $ oc login -u <login> -p <password> https://openshift.example.com:6443

2. Create a project for the sample application. For this example workflow, create the pipelines-
tutorial project:

I $ oc new-project pipelines-tutorial

NOTE

If you create a project with a different name, be sure to update the resource
URLs used in the example with your project name.

3. View the pipeline service account:
Red Hat OpenShift Pipelines Operator adds and configures a service account named pipeline
that has sufficient permissions to build and push an image. This service account is used by the
PipelineRun object.

I $ oc get serviceaccount pipeline

1.3. CREATING PIPELINE TASKS

Procedure

1. Install the apply-manifests and update-deployment task resources from the pipelines-
tutorial repository, which contains a list of reusable tasks for pipelines:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/01_pipeline/01_apply_manifest_task.yaml

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/01_pipeline/02_update_deployment_task.yaml

2. Use the tkn task list command to list the tasks you created:
I $ tkn task list

The output verifies that the apply-manifests and update-deployment task resources were

created:
NAME DESCRIPTION AGE
apply-manifests 1 minute ago
update-deployment 48 seconds ago

1.4. ASSEMBLING A PIPELINE

A pipeline represents a Cl/CD flow and is defined by the tasks to be executed. It is designed to be
generic and reusable in multiple applications and environments.

A pipeline specifies how the tasks interact with each other and their order of execution using the from
and runAfter parameters. It uses the workspaces field to specify one or more volumes that each task in
the pipeline requires during execution.

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

In this section, you will create a pipeline that takes the source code of the application from GitHub, and
then builds and deploys it on OpenShift Container Platform.

The pipeline performs the following tasks for the back-end application pipelines-vote-api and front-
end application pipelines-vote-ui:

® Clones the source code of the application from the Git repository by referring to the git-url and
git-revision parameters.

® Builds the container image using the buildah task provided in the openshift-pipelines
namespace.

® Pushes the image to the OpenShift image registry by referring to the image parameter.

® Deploys the new image on OpenShift Container Platform by using the apply-manifests and
update-deployment tasks.

Procedure

1. Copy the contents of the following sample pipeline YAML file and save it:

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: build-and-deploy
spec:
workspaces:
- name: shared-workspace
params:
- name: deployment-name
type: string
description: name of the deployment to be patched
- name: git-url
type: string
description: url of the git repo for the code of deployment
- name: git-revision
type: string
description: revision to be used from repo of the code for deployment
default: "pipelines-1.19"
- name: IMAGE
type: string
description: image to be built from the code
tasks:
- name: fetch-repository
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: git-clone
- name: namespace
value: openshift-pipelines
workspaces:
- name: output
workspace: shared-workspace

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

params:
- name: URL
value: $(params.git-url)
- name: SUBDIRECTORY
value: "™
- name: DELETE_EXISTING
value: "true"
- name: REVISION
value: $(params.git-revision)
name: build-image
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: buildah
- name: namespace
value: openshift-pipelines
workspaces:
- name: source
workspace: shared-workspace
params:
- name: IMAGE
value: $(params.IMAGE)
runAfter:
- fetch-repository
name: apply-manifests
taskRef:
name: apply-manifests
workspaces:
- name: source
workspace: shared-workspace
runAfter:
- build-image
name: update-deployment
taskRef:
name: update-deployment
params:
- name: deployment
value: $(params.deployment-name)
- name: IMAGE
value: $(params.IMAGE)
runAfter:
- apply-manifests

The pipeline definition abstracts away the specifics of the Git source repository and image
registries. These details are added as params when a pipeline is triggered and executed.

2. Create the pipeline:
I $ oc create -f <pipeline-yaml-file-name.yaml>

Alternatively, you can also execute the YAML file directly from the Git repository:

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/01_pipeline/04_pipeline.yaml

3. Use the tkn pipeline list command to verify that the pipeline is added to the application:
I $ tkn pipeline list
The output verifies that the build-and-deploy pipeline was created:

NAME AGE LAST RUN STARTED DURATION STATUS
build-and-deploy 1 minute ago ---

1.5. MIRRORING IMAGES TO RUN PIPELINES IN ARESTRICTED
ENVIRONMENT

To run OpenShift Pipelines in a disconnected cluster or a cluster provisioned in a restricted
environment, ensure that either the Samples Operator is configured for a restricted network, or a cluster
administrator has created a cluster with a mirrored registry.

The following procedure uses the pipelines-tutorial example to create a pipeline for an applicationin a
restricted environment using a cluster with a mirrored registry. To ensure that the pipelines-tutorial
example works in a restricted environment, you must mirror the respective builder images from the
mirror registry for the front-end interface, pipelines-vote-ui; back-end interface, pipelines-vote-api;
and the cli.

Procedure
1. Mirror the builder image from the mirror registry for the front-end interface, pipelines-vote-ui.

a. Verify that the required images tag is not imported:

I $ oc describe imagestream python -n openshift
Example output

Name: python
Namespace: openshift

[..]

3.8-ubi9 (latest)
tagged from registry.redhat.io/ubi9/python-38:latest
prefer registry pullthrough when referencing this tag

Build and run Python 3.8 applications on UBI 8. For more information about using this
builder image, including OpenShift considerations, see https://github.com/sclorg/s2i-
python-container/blob/master/3.8/README.md.

Tags: builder, python

Supports: python:3.8, python

Example Repo: https://github.com/sclorg/django-ex.qgit

[..]

b. Mirror the supported image tag to the private registry:

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

$ oc image mirror registry.redhat.io/ubi9/python-39:latest <mirror-registry>:
<port>/ubi9/python-39

c. Import the image:
I $ oc tag <mirror-registry>:<port>/ubi9/python-39 python:latest --scheduled -n openshift

You must periodically re-import the image. The --scheduled flag enables automatic re-
import of the image.

d. Verify that the images with the given tag have been imported:

I $ oc describe imagestream python -n openshift
Example output

Name: python
Namespace: openshift

[..]

latest
updates automatically from registry <mirror-registry>:<port>/ubi9/python-39

* <mirror-registry>:<port>/ubi9/python-39@sha256:3ee...
[...]

2. Mirror the builder image from the mirror registry for the back-end interface, pipelines-vote-api.

a. Verify that the required images tag is not imported:

I $ oc describe imagestream golang -n openshift
Example output

Name: golang
Namespace: openshift

[..]

1.14.7-ubi8 (latest)
tagged from registry.redhat.io/ubi8/go-toolset:1.14.7
prefer registry pullthrough when referencing this tag

Build and run Go applications on UBI 8. For more information about using this builder
image, including OpenShift considerations, see https://github.com/sclorg/golang-
container/blob/master/README.md.

Tags: builder, golang, go

Supports: golang

Example Repo: https://github.com/sclorg/golang-ex.git

[..]

b. Mirror the supported image tag to the private registry:

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

$ oc image mirror registry.redhat.io/ubi9/go-toolset:latest <mirror-registry>:
<port>/ubi9/go-toolset

c. Import the image:
I $ oc tag <mirror-registry>:<port>/ubi9/go-toolset golang:latest --scheduled -n openshift

You must periodically re-import the image. The --scheduled flag enables automatic re-
import of the image.

d. Verify that the images with the given tag have been imported:

I $ oc describe imagestream golang -n openshift
Example output

Name: golang
Namespace: openshift

[..]

latest
updates automatically from registry <mirror-registry>:<port>/ubi9/go-toolset

* <mirror-registry>:<port>/ubi9/go-

toolset@sha256:59a74d581df3a2bd63ab55f7ac106677694bf612a1fe9e7e3e1487f55¢c421
b37

[..]

3. Mirror the builder image from the mirror registry for the cli.

a. Verify that the required images tag is not imported:

I $ oc describe imagestream cli -n openshift
Example output

Name: cli
Namespace: openshift

[--.]
latest

updates automatically from registry quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

* quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

[..]

b. Mirror the supported image tag to the private registry:

10

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

$ oc image mirror quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551
<mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-dev:latest

c. Import the image:

$ oc tag <mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-dev cli:latest --
scheduled -n openshift

You must periodically re-import the image. The --scheduled flag enables automatic re-
import of the image.

d. Verify that the images with the given tag have been imported:

I $ oc describe imagestream cli -n openshift

Example output

Name: cli
Namespace: openshift
[--.]
latest
updates automatically from registry <mirror-registry>:<port>/openshift-release-dev/ocp-
v4.0-art-dev

* <mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

[..]

Additional resources

® Configuring Samples Operator for a restricted cluster

® About disconnected installation mirroring

1.6. RUNNING A PIPELINE

A PipelineRun resource starts a pipeline and ties it to the Git and image resources that should be used
for the specific invocation. It automatically creates and starts the TaskRun resources for each task in
the pipeline.

Procedure

1. Start the pipeline for the back-end application:

$ tkn pipeline start build-and-deploy \

-w name=shared-
workspace,volumeClaimTemplateFile=https://raw.githubusercontent.com/openshift/pipelines-
tutorial/pipelines-1.19/01_pipeline/03_persistent_volume_claim.yaml \

-p deployment-name=pipelines-vote-api \

1

https://docs.openshift.com/container-platform/latest/openshift_images/configuring-samples-operator.html#samples-operator-restricted-network-install
https://docs.openshift.com/container-platform/4.17/disconnected/mirroring/index.html

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

12

-p git-url=https://github.com/openshift/pipelines-vote-api.git \

-p IMAGE='image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/pipelines-
vote-api'\

--use-param-defaults

The previous command uses a volume claim template, which creates a persistent volume claim
for the pipeline execution.

. To track the progress of the pipeline run, enter the following command::

I $ tkn pipelinerun logs <pipelinerun_id> -f

The <pipelinerun_id> in the above command is the ID for the PipelineRun that was returned in
the output of the previous command.

. Start the pipeline for the front-end application:

$ tkn pipeline start build-and-deploy \

-w name=shared-
workspace,volumeClaimTemplateFile=https://raw.githubusercontent.com/openshift/pipelines-
tutorial/pipelines-1.19/01_pipeline/03_persistent_volume_claim.yaml \

-p deployment-name=pipelines-vote-ui \

-p git-url=https://github.com/openshift/pipelines-vote-ui.git \

-p IMAGE='image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/pipelines-
vote-ui'\

--use-param-defaults

. To track the progress of the pipeline run, enter the following command:

I $ tkn pipelinerun logs <pipelinerun_id> -f

The <pipelinerun_id> in the above command is the ID for the PipelineRun that was returned in
the output of the previous command.

. After a few minutes, use tkn pipelinerun list command to verify that the pipeline ran

successfully by listing all the pipeline runs:
I $ tkn pipelinerun list

The output lists the pipeline runs:

NAME STARTED DURATION STATUS
build-and-deploy-run-xy7rw 1 hour ago 2 minutes Succeeded
build-and-deploy-run-z2rz8 1 hour ago 19 minutes Succeeded

. Get the application route:

I $ oc get route pipelines-vote-ui --template="http:/{{.spec.host}}'

Note the output of the previous command. You can access the application using this route.

. Torerun the last pipeline run, using the pipeline resources and service account of the previous

pipeline, run:

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

I $ tkn pipeline start build-and-deploy --last

Additional resources

® Authenticating pipelines with repositories using secrets

1.7. ADDING TRIGGERS TO A PIPELINE

Triggers enable pipelines to respond to external GitHub events, such as push events and pull requests.
After you assemble and start a pipeline for the application, add the TriggerBinding, TriggerTemplate,
Trigger, and EventListener resources to capture the GitHub events.

Procedure

1. Copy the content of the following sample TriggerBinding YAML file and save it:

apiVersion: triggers.tekton.dev/vibetat
kind: TriggerBinding
metadata:
name: vote-app
spec:
params:
- name: git-repo-url
value: $(body.repository.url)
- name: git-repo-name
value: $(body.repository.name)
- name: git-revision
value: $(body.head_commit.id)

2. Create the TriggerBinding resource:
I $ oc create -f <triggerbinding-yaml-file-name.yaml>

Alternatively, you can create the TriggerBinding resource directly from the pipelines-tutorial
Git repository:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/03_triggers/01_binding.yaml

3. Copy the content of the following sample TriggerTemplate YAML file and save it:

apiVersion: triggers.tekton.dev/vibetat
kind: TriggerTemplate
metadata:
name: vote-app
spec:
params:
- name: git-repo-url
description: The git repository url
- name: git-revision
description: The git revision
default: pipelines-1.19
- name: git-repo-name

13

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/securing_openshift_pipelines/#authenticating-pipelines-repos-using-secrets

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

description: The name of the deployment to be created / patched

resourcetemplates:
- apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
generateName: build-deploy-$(tt.params.git-repo-name)-
spec:
taskRunTemplate:
serviceAccountName: pipeline
pipelineRef:
name: build-and-deploy
params:
- name: deployment-name
value: $(tt.params.git-repo-name)
- name: git-url
value: $(tt.params.git-repo-url)
- name: git-revision
value: $(tt.params.git-revision)
- name: IMAGE
value: image-registry.openshift-image-registry.svc:5000/pipelines-
tutorial/$(tt.params.git-repo-name)
workspaces:
- name: shared-workspace
volumeClaimTemplate:
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 500Mi

The template specifies a volume claim template to create a persistent volume claim for defining
the storage volume for the workspace. Therefore, you do not need to create a persistent volume
claim to provide data storage.

4. Create the TriggerTemplate resource:
I $ oc create -f <triggertemplate-yaml-file-name.yaml>

Alternatively, you can create the TriggerTemplate resource directly from the pipelines-tutorial
Git repository:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/03_triggers/02_template.yaml

5. Copy the contents of the following sample Trigger YAML file and save it:

apiVersion: triggers.tekton.dev/vibetat
kind: Trigger
metadata:
name: vote-trigger
spec:
serviceAccountName: pipeline
bindings:

14

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

- ref: vote-app
template:
ref: vote-app

6. Create the Trigger resource:
I $ oc create -f <trigger-yaml-file-name.yam|>

Alternatively, you can create the Trigger resource directly from the pipelines-tutorial Git
repository:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/03_triggers/03_trigger.yaml

7. Copy the contents of the following sample EventListener YAML file and save it:

apiVersion: triggers.tekton.dev/vibetat
kind: EventListener
metadata:
name: vote-app
spec:
serviceAccountName: pipeline
triggers:
- triggerRef: vote-trigger

Alternatively, if you have not defined a trigger custom resource, add the binding and template
spec to the EventListener YAML file, instead of referring to the name of the trigger:

apiVersion: triggers.tekton.dev/vibetat
kind: EventListener
metadata:
name: vote-app
spec:
serviceAccountName: pipeline
triggers:
- bindings:
- ref: vote-app
template:
ref: vote-app

8. Create the EventListener resource by performing the following steps:
® To create an EventListener resource using a secure HTTPS connection:

a. Add alabel to enable the secure HTTPS connection to the Eventlistener resource:

I $ oc label namespace <ns-name> operator.tekton.dev/enable-annotation=enabled
b. Create the EventListener resource:

I $ oc create -f <eventlistener-yaml-file-name.yaml>

Alternatively, you can create the EvenListener resource directly from the pipelines-
tutorial Git repository:

15

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/03_triggers/04_event_listener.yaml

c. Create aroute with the re-encrypt TLS termination:

$ oc create route reencrypt --service=<svc-name> --cert=tls.crt --key=tls.key --ca-
cert=ca.crt --hostname=<hostname>

Alternatively, you can create a re-encrypt TLS termination YAML file to create a
secured route.

Example Re-encrypt TLS Termination YAML of the Secured Route

apiVersion: route.openshift.io/v1
kind: Route
metadata:
name: route-passthrough-secured ﬂ
spec:
host: <hostname>
to:
kind: Service
name: frontend 9
tls:
termination: reencrypt e
key: [as in edge termination]
certificate: [as in edge termination]
caCertificate: [as in edge termination]
destinationCACertificate: |-

wThe name of the object, which is limited to 63 characters.

9 The termination field is set to reencrypt. This is the only required tls field.

Q Required for re-encryption. destinationCACertificate specifies a CA certificate to
validate the endpoint certificate, securing the connection from the router to the
destination pods. If the service is using a service signing certificate, or the

administrator has specified a default CA certificate for the router and the service
has a certificate signed by that CA, this field can be omitted.

See oc create route reencrypt --help for more options.

® To create an EventListener resource using an insecure HTTP connection:

a. Create the EventListener resource.

b. Expose the EventListener service as an OpenShift Container Platform route to make it
publicly accessible:

I $ oc expose svc el-vote-app

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

1.8. CONFIGURING EVENT LISTENERS TO SERVE MULTIPLE
NAMESPACES

NOTE

You can skip this section if you want to create a basic Cl/CD pipeline. However, if your
deployment strategy involves multiple namespaces, you can configure event listeners to
serve multiple namespaces.

To increase reusability of EvenListener objects, cluster administrators can configure and deploy them
as multi-tenant event listeners that serve multiple namespaces.

Procedure
1. Configure cluster-wide fetch permission for the event listener.

a. Set aservice account name to be used in the ClusterRoleBinding and EventListener
objects. For example, el-sa.

Example ServiceAccount.yaml

apiVersion: vi
kind: ServiceAccount
metadata:

name: el-sa

b. In the rules section of the ClusterRole.yaml file, set appropriate permissions for every
event listener deployment to function cluster-wide.

Example ClusterRole.yaml

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: el-sel-clusterrole
rules:
- apiGroups: ["triggers.tekton.dev"]

resources: ["eventlisteners", "clustertriggerbindings”, "clusterinterceptors”,

"triggerbindings”, "triggertemplates”, "triggers"|
verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources: ["configmaps", "secrets"]
verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources: ["serviceaccounts"]
verbs: ["impersonate”]

c. Configure cluster role binding with the appropriate service account name and cluster role
name.

Example ClusterRoleBinding.yaml

17

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

18

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: el-mul-clusterrolebinding
subjects:
- kind: ServiceAccount
name: el-sa
namespace: default
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: el-sel-clusterrole

2. In the spec parameter of the event listener, add the service account name, for example el-sa.
Fill the namespaceSelector parameter with names of namespaces where event listener is
intended to serve.

Example EventListener.yaml

apiVersion: triggers.tekton.dev/vibetat
kind: EventListener
metadata:
name: namespace-selector-listener
spec:
taskRunTemplate:
serviceAccountName: el-sa
namespaceSelector:
matchNames:
- default
- foo

3. Create a service account with the necessary permissions, for example foo-trigger-sa. Use it for
role binding the triggers.

Example ServiceAccount.yaml

apiVersion: vi
kind: ServiceAccount
metadata:
name: foo-trigger-sa
namespace: foo

Example RoleBinding.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: triggercr-rolebinding
namespace: foo
subjects:
- kind: ServiceAccount

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

name: foo-trigger-sa
namespace: foo
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: tekton-triggers-eventlistener-roles

4. Create a trigger with the appropriate trigger template, trigger binding, and service account
name.

Example Trigger.yaml

apiVersion: triggers.tekton.dev/vibetat
kind: Trigger
metadata:
name: trigger
namespace: foo
spec:
taskRunTemplate:
serviceAccountName: foo-trigger-sa
interceptors:
- ref:
name: "github"
params:
- name: "secretRef"
value:
secretName: github-secret
secretKey: secretToken
- name: "eventTypes"
value: ["push"]
bindings:
- ref: vote-app
template:
ref: vote-app

1.9. CREATING WEBHOOKS

Webhooks are HTTP POST messages that are received by the event listeners whenever a configured
event occurs in your repository. The event payload is then mapped to trigger bindings, and processed by
trigger templates. The trigger templates eventually start one or more pipeline runs, leading to the
creation and deployment of Kubernetes resources.

In this section, you will configure a webhook URL on your forked Git repositories pipelines-vote-ui and
pipelines-vote-api. This URL points to the publicly accessible EventListener service route.

NOTE

Adding webhooks requires administrative privileges to the repository. If you do not have
administrative access to your repository, contact your system administrator for adding
webhooks.

Procedure

19

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

1. Get the webhook URL:

® Forasecure HTTPS connection:

I $ echo "URL: $(oc get route el-vote-app --template="https://{{.spec.host}}')"
® ForanHTTP (insecure) connection:

I $ echo "URL: $(oc get route el-vote-app --template="http://{{.spec.host}}')"

Note the URL obtained in the output.

2. Configure webhooks manually on the front-end repository:

a. Open the front-end Git repository pipelines-vote-ui in your browser.
b. Click Settings -» Webhooks - Add Webhook

c. On the Webhooks/Add Webhook page:

i. Enter the webhook URL from step 1in Payload URL field
ii. Select application/json for the Content type
ii. Specify the secretin the Secret field
iv. Ensure that the Just the push eventis selected
v. Select Active
vi. Click Add Webhook

3. Repeat step 2 for the back-end repository pipelines-vote-api.

1.10. TRIGGERING A PIPELINE RUN

Whenever a push event occurs in the Git repository, the configured webhook sends an event payload to
the publicly exposed EventListener service route. The EventListener service of the application
processes the payload, and passes it to the relevant TriggerBinding and TriggerTemplate resource
pairs. The TriggerBinding resource extracts the parameters, and the TriggerTemplate resource uses
these parameters and specifies the way the resources must be created. This may rebuild and redeploy
the application.

In this section, you push an empty commit to the front-end pipelines-vote-ui repository, which then
triggers the pipeline run.

Procedure

1. From the terminal, clone your forked Git repository pipelines-vote-ui:
I $ git clone git@github.com:<your GitHub ID>/pipelines-vote-ui.git -b pipelines-1.19
2. Push an empty commit:

I $ git commit -m "empty-commit" --allow-empty && git push origin pipelines-1.19

20

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

3. Check if the pipeline run was triggered:
I $ tkn pipelinerun list

Notice that a new pipeline run was initiated.

1.11. ENABLING MONITORING OF EVENT LISTENERS FOR TRIGGERS
FOR USER-DEFINED PROJECTS

As a cluster administrator, to gather event listener metrics for the Triggers service in a user-defined
project and display them in the OpenShift Container Platform web console, you can create a service
monitor for each event listener. On receiving an HTTP request, event listeners for the Triggers service
return three metrics — eventlistener_http_duration_seconds, eventlistener_event_count, and
eventlistener_triggered_resources.

Prerequisites
® You have logged in to the OpenShift Container Platform web console.
® You have installed the Red Hat OpenShift Pipelines Operator.

® You have enabled monitoring for user-defined projects.

Procedure

1. For each event listener, create a service monitor. For example, to view the metrics for the
github-listener event listener in the test namespace, create the following service monitor:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
labels:
app.kubernetes.io/managed-by: EventlListener
app.kubernetes.io/part-of: Triggers
eventlistener: github-listener
annotations:
networkoperator.openshift.io/ignore-errors: "™
name: el-monitor
namespace: test
spec:
endpoints:
- interval: 10s
port: http-metrics
jobLabel: name
namespaceSelector:
matchNames:
- test
selector:
matchLabels:
app.kubernetes.io/managed-by: EventListener
app.kubernetes.io/part-of: Triggers
eventlistener: github-listener

21

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

2. Test the service monitor by sending a request to the event listener. For example, push an empty
commit:

I $ git commit -m "empty-commit" --allow-empty && git push origin main

3. On the OpenShift Container Platform web console, navigate to Administrator - Observe —
Metrics.

4. To view a metric, search by its name. For example, to view the details of the
eventlistener_http_resources metric for the github-listener event listener, search using the
eventlistener_http_resources keyword.

Additional resources

® Enabling monitoring for user-defined projects

1.12. CONFIGURING PULL REQUEST CAPABILITIES IN GITHUB
INTERCEPTOR

With GitHub Interceptor, you can create logic that validates and filters GitHub webhooks. For example,
you can validate the webhook’s origin and filter incoming events based on specified criteria. When you
use GitHub Interceptor to filter event data, you can specify the event types that Interceptor can accept
in a field. In Red Hat OpenShift Pipelines, you can use the following capabilities of GitHub Interceptor:

® Filter pull request events based on the files that have been changed

e Validate pull requests based on configured GitHub owners

1.12.1. Filtering pull requests using GitHub Interceptor

You can filter GitHub events based on the files that have been changed for push and pull events. This
helps you to execute a pipeline for only relevant changes in your Git repository. GitHub Interceptor adds
a comma delimited list of all files that have been changed and uses the CEL Interceptor to filter
incoming events based on the changed files. The list of changed files is added to the changed_files
property of the event payload in the top-level extensions field.

Prerequisites

® You have installed the Red Hat OpenShift Pipelines Operator.

Procedure
1. Perform one of the following steps:

® Fora public GitHub repository, set the value of the addChangedFiles parameter to true in
the YAML configuration file shown below:

apiVersion: triggers.tekton.dev/vibetat
kind: EventListener
metadata:
name: github-add-changed-files-pr-listener
spec:
triggers:
- name: github-listener

22

https://docs.openshift.com/container-platform/latest/observability/monitoring/enabling-monitoring-for-user-defined-projects.html

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

interceptors:
- ref:
name: "github"
kind: Clusterinterceptor
apiVersion: triggers.tekton.dev
params:
- name: "secretRef"
value:
secretName: github-secret
secretKey: secretToken
- name: "eventTypes"
value: ["pull_request”, "push"]
- name: "addChangedFiles"
value:
enabled: true
- ref:
name: cel
params:
- name: filter
value: extensions.changed_files.matches('controllers/')

For a private GitHub repository, set the value of the addChangedFiles parameter to true
and provide the access token details, secretName and secretKey in the YAML
configuration file shown below:

apiVersion: triggers.tekton.dev/vibetat
kind: EventListener
metadata:
name: github-add-changed-files-pr-listener
spec:
triggers:
- name: github-listener
interceptors:
- ref:
name: "github"
kind: Clusterinterceptor
apiVersion: triggers.tekton.dev
params:
- name: "secretRef"
value:
secretName: github-secret
secretKey: secretToken
- name: "eventTypes"
value: ["pull_request”, "push"]
- name: "addChangedFiles"
value:
enabled: true
personalAccessToken:
secretName: github-pat
secretKey: token
- ref:
name: cel
params:

23

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

2

- name: filter
value: extensions.changed_files.matches('controllers/')

. Save the configuration file.

1.12.2. Validating pull requests using GitHub Interceptors

You can use GitHub Interceptor to validate the processing of pull requests based on the GitHub owners

config

ured for a repository. This validation helps you to prevent unnecessary execution of a

PipelineRun or TaskRun object. GitHub Interceptor processes a pull request only if the user name is
listed as an owner or if a configurable comment is issued by an owner of the repository. For example,
when you comment /ok-to-test on a pull request as an owner, a PipelineRun or TaskRun is triggered.

NOTE

Owners are configured in an OWNERS file at the root of the repository.

Prerequisites

® You have installed the Red Hat OpenShift Pipelines Operator.
Procedure
1. Create a secret string value.
2. Configure the GitHub webhook with that value.
3. Create a Kubernetes secret named secretRef that contains your secret value.
4. Pass the Kubernetes secret as a reference to your GitHub Interceptor.
5. Create an owners file and add the list of approvers into the approvers section.
6. Perform one of the following steps:

24

® Fora public GitHub repository, set the value of the githubOwners parameter to true in the
YAML configuration file shown below:

apiVersion: triggers.tekton.dev/vibetat
kind: EventListener
metadata:
name: github-owners-listener
spec:
triggers:
- name: github-listener
interceptors:
- ref:
name: "github"
kind: Clusterinterceptor
apiVersion: triggers.tekton.dev
params:
- name: "secretRef"
value:
secretName: github-secret

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

secretKey: secretToken
- name: "eventTypes"
value: ["pull_request", "issue_comment"]
- name: "githubOwners"
value:
enabled: true
checkType: none

® Fora private GitHub repository, set the value of the githubOwners parameter to true and
provide the access token details, secretName and secretKey in the YAML configuration
file shown below:

apiVersion: triggers.tekton.dev/vibetat
kind: EventListener
metadata:
name: github-owners-listener
spec:
triggers:
- name: github-listener
interceptors:
- ref:
name: "github"
kind: Clusterinterceptor
apiVersion: triggers.tekton.dev
params:
- name: "secretRef"
value:
secretName: github-secret
secretKey: secretToken
- name: "eventTypes"
value: ["pull_request", "issue_comment"]
- name: "githubOwners"
value:
enabled: true
personalAccessToken:
secretName: github-token
secretKey: secretToken
checkType: all

NOTE

The checkType parameter is used to specify the GitHub owners who need
- authentication. You can set its value to orgMembers, repoMembers, or all.

7. Save the configuration file.

1.13. ADDITIONAL RESOURCES

® Toinclude Pipelines as Code along with the application source code in the same repository, see
About Pipelines as Code.

25

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/pipelines_as_code/#about-pipelines-as-code

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

26

For more details on pipelines in the Developer perspective, see the Working with OpenShift
Pipelines in the web console section.

To learn more about Security Context Constraints (SCCs), see the Managing Security Context
Constraints section.

For more examples of reusable tasks, see the OpenShift Catalog repository. Additionally, you
can also see the Tekton Catalog in the Tekton project.

To install and deploy a custom instance of Tekton Hub for reusable tasks and pipelines, see
Using Tekton Hub with Red Hat OpenShift Pipelines .

For more details on re-encrypt TLS termination, see Re-encryption Termination.

For more details on secured routes, see the Secured routes section.

https://docs.openshift.com/container-platform/latest/authentication/managing-security-context-constraints.html
https://github.com/openshift/pipelines-catalog
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/custom_tekton_hub_instance/#using-tekton-hub-with-openshift-pipelines
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#re-encryption-termination
https://docs.openshift.com/container-platform/latest/networking/routes/secured-routes.html

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES
IN THE WEB CONSOLE

You can use the Administrator or Developer perspective to create and modify Pipeline, PipelineRun,
and Repository objects from the Pipelines page in the OpenShift Container Platform web console. You
can also use the +Add page in the Developer perspective of the web console to create CI/CD pipelines
for your software delivery process.

2.1. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE
DEVELOPER PERSPECTIVE

In the Developer perspective, you can access the following options for creating pipelines from the +Add
page:

® Use the +Add — Pipelines — Pipeline builder option to create customized pipelines for your
application.

® Use the +Add = From Gitoption to create pipelines using pipeline templates and resources
while creating an application.

After you create the pipelines for your application, you can view and visually interact with the deployed
pipelines in the Pipelines view. You can also use the Topology view to interact with the pipelines

created using the From Git option. You must apply custom labels to pipelines created using the
Pipeline builder to see them in the Topology view.

Prerequisites

® You have access to an OpenShift Container Platform cluster and have switched to the
Developer perspective.

® You have the OpenShift Pipelines Operator installed in your cluster.
® You are a cluster administrator or a user with create and edit permissions.

® You have created a project.

2.1.1. Constructing pipelines using the Pipeline builder

In the Developer perspective of the console, you can use the +Add — Pipeline = Pipeline builder
option to:

e Configure pipelines using either the Pipeline builder or the YAML view.
e Construct a pipeline flow using existing tasks. When you install the OpenShift Pipelines
Operator, it adds reusable pipeline tasks to your cluster that can be used with the cluster

resolver.

e Specify the type of resources required for the pipeline run, and if required, add additional
parameters to the pipeline.

e Reference these pipeline resources in each of the tasks in the pipeline as input and output
resources.

e |f required, reference any additional parameters added to the pipeline in the task. The
parameters for a task are prepopulated based on the specifications of the task.

27

https://docs.openshift.com/container-platform/latest/web_console/web-console-overview.html#about-developer-perspective_web-console-overview
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/installing_and_configuring/#installing-pipelines

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

® Use the Operator-installed, reusable snippets and samples to create detailed pipelines.

® Search and add tasks from your configured local Tekton Hub instance.

IMPORTANT

In the developer perspective, you can create a customized pipeline using your own set of
curated tasks. To search, install, and upgrade your tasks directly from the developer
console, your cluster administrator needs to install and deploy a local Tekton Hub
instance and link that hub to the OpenShift Container Platform cluster. For more details,
see Using Tekton Hub with OpenShift Pipelines in the Additional resources section. If you
do not deploy any local Tekton Hub instance, by default, you can only access namespace
tasks and public Tekton Hub tasks.

Procedure

1. In the +Add view of the Developer perspective, click the Pipeline tile to see the Pipeline
builder page.

2. Configure the pipeline using either the Pipeline builder view or the YAML view.

NOTE

The Pipeline builder view supports a limited number of fields whereas the YAML
view supports all available fields. Optionally, you can also use the Operator-
installed, reusable snippets and samples to create detailed pipelines.

Figure 2.1. YAML view

Pipeline builder

Configure via: Pipeline builder ~ ® YAML view

Pipeline

Samples Snippets

1. docker-build-and-deploy-pipeline
An example of docker build and deploy pipeline

BTt & Download YAML

2 s2i-build-and.

An example of s2i build and deploy pipeline using workspace

BTyt & Download YAML

3.simple-pipeline
An example of simple pipeline

RTryit & Download YAML

3. Configure your pipeline by using Pipeline builder.

a. Inthe Name field, enter a unique name for the pipeline.

b. In the Tasks section:

i. Click Add task.

ii. Search for a task using the quick search field and select the required task from the
displayed list.

28

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

iii. Click Add or Install and add In this example, use the s2i-nodejs task.

NOTE

The search list contains all the Tekton Hub tasks and tasks available in
the cluster. Also, if a task is already installed it will show Add to add the
task whereas it will show Install and addto install and add the task. It will
show Update and addwhen you add the same task with an updated
version.

® To add sequential tasks to the pipeline:

o Click the plusicon to the right or left of the task — click Add task.

o Search for a task using the quick search field and select the required task from
the displayed list.

o Click Add or Install and add.

Figure 2.2. Pipeline builder

Pipeline builder

Configurevia: @ Pipeline builder) YAML view

© szinodeid

Name * s2i-nodejs)
@ i et s2i-nodejs redhat

new-pipeline

s2i-nodejs-1-5-0 Add ol - @ Installed
Tasks - @ i e

clones a Git repository and builds and pushes a
e using S21 and a nodejs builder image.

Tags (s2i nodefs | workspace

Add task © Add finally task

Parameters
No parameters are associated with this pipeline.
© Add parameter

® To add a final task:

o Click the Add finally task - Click Add task.

o Search for a task using the quick search field and select the required task from
the displayed list.

o Click Add or Install and add
. In the Resources section, click Add Resources to specify the name and type of resources
for the pipeline run. These resources are then used by the tasks in the pipeline as inputs and

outputs. For this example:

i. Add aninput resource. In the Name field, enter Source, and then from the Resource
Type drop-down list, select Git.

ii. Add an output resource. In the Name field, enter Img, and then from the Resource
Type drop-down list, select Image.

NOTE

Ared icon appears next to the task if a resource is missing.

29

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

d. Optional: The Parameters for a task are pre-populated based on the specifications of the
task. If required, use the Add Parameters link in the Parameters section to add additional
parameters.

e. In the Workspaces section, click Add workspace and enter a unique workspace name in the
Name field. You can add multiple workspaces to the pipeline.

f. In the Tasks section, click the s2i-nodejs task to see the side panel with details for the task.
In the task side panel, specify the resources and parameters for the s2i-nodejs task:

i. If required, in the Parameters section, add more parameters to the default ones, by
using the $(params.<param-name>) syntax.

ii. Inthelmage section, enter Img as specified in the Resources section.
ii. Select a workspace from the source drop-down under Workspaces section.
g. Add resources, parameters, and workspaces to the openshift-client task.
4. Click Create to create and view the pipeline in the Pipeline Details page.
5. Click the Actions drop-down menu then click Start, to see the Start Pipeline page.
6. The Workspaces section lists the workspaces you created earlier. Use the respective drop-

down to specify the volume source for your workspace. You have the following options: Empty
Directory, Config Map, Secret, PersistentVolumeClaim, or VolumeClaimTemplate.

2.1.2. Creating OpenShift Pipelines along with applications

To create pipelines along with applications, use the From Git option in the Add+ view of the Developer
perspective. You can view all of your available pipelines and select the pipelines you want to use to
create applications while importing your code or deploying an image.

The Tekton Hub Integration is enabled by default and you can see tasks from the Tekton Hub that are
supported by your cluster. Administrators can opt out of the Tekton Hub Integration and the Tekton
Hub tasks will no longer be displayed. You can also check whether a webhook URL exists for a generated
pipeline. Default webhooks are added for the pipelines that are created using the +Add flow and the
URL is visible in the side panel of the selected resources in the Topology view.

For more information, see Creating applications using the Developer perspective .

2.1.3. Adding a GitHub repository containing pipelines
In the Developer perspective, you can add your GitHub repository containing pipelines to the OpenShift

Container Platform cluster. This allows you to run pipelines and tasks from your GitHub repository on
the cluster when relevant Git events, such as push or pull requests, are triggered.

NOTE

You can add both public and private GitHub repositories.

Prerequisites

® Ensure that your cluster administrator has configured the required GitHub applications in the
administrator perspective.

30

https://docs.openshift.com/container-platform/latest/applications/creating_applications/odc-creating-applications-using-developer-perspective.html#odc-importing-codebase-from-git-to-create-application_odc-creating-applications-using-developer-perspective

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

Procedure

1.

In the Developer perspective, choose the namespace or project in which you want to add your
GitHub repository.

Navigate to Pipelines using the left navigation pane.
Click Create — Repository on the right side of the Pipelines page.
Enter your Git Repo URL and the console automatically fetches the repository name.

Click Show configuration options. By default, you see only one option Setup a webhook. If you
have a GitHub application configured, you see two options:

® Use GitHub App: Select this option to install your GitHub application in your repository.
® Setup a webhook: Select this option to add a webhook to your GitHub application.
Set up a webhook using one of the following options in the Secret section:
® Setup a webhook using Git access token:
a. Enter your personal access token.

b. Click Generate corresponding to the Webhook secret field to generate a new
webhook secret.

Project: openshift-pipelines ~

Add Git Repository

Git Repo URL *

https://github.com/apps/pipelines-ci-clustername-ss-test

Name *

git-pipelines-ci-clustername-ss-test

v Hide cenfiguration options

Secret

® Git access token

ghp_Z9eb6iSLrR3cxEPTORge DR1lacZeaj3uNZ80

Use your GitHub Personal token. Use this link to create a token with repo, public_repo & admin:repo_hook scopes and give your
token an expiration, i.e 30d.

() Git access token secret

Webhook secret

64bdd2115bab0219c2acB82fcl3fbbact3da3dSbb L] Generate

*» See GitHub permissions

Read more about setting up webhook @

Add Cancel

31

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

NOTE

You can click the link below the Git access token field if you do not have
a personal access token and want to create a new one.

® Setup a webhook using Git access token secret

o Select a secret in your namespace from the dropdown list. Depending on the secret you
selected, a webhook secret is automatically generated.

Project: openshift-pipelines

Add Git Repository

Git Repo URL *

https://github.com/apps/pipelines-ci-clustername-ss-test

Name *

git-pipelines-ci-clustername-ss-test

v Hide configuration options

Secret

() Git access token

® Git access token secret

9 pipelines-as-code-secret -

Secret with the Git access token for pulling pipeline and tasks from your Git repository.

Webhook secret

64bdd2115bab0219c2ac82fc13fbbact3da3dSbb L] Generate

> See GitHub permissions

Read more about setting up webhook &

Add Cancel

7. Add the webhook secret details to your GitHub repository:

a. Copy the webhook URL and navigate to your GitHub repository settings.
b. Click Webhooks = Add webhook.

c. Copy the Webhook URL from the developer console and paste it in the Payload URL field
of the GitHub repository settings.

d. Select the Content type.

e. Copy the Webhook secret from the developer console and paste it in the Secret field of
the GitHub repository settings.

f. Select one of the SSL verification options.

g. Select the events to trigger this webhook.

32

8.

S.

10.

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

h. Click Add webhook.
Navigate back to the developer console and click Add.
Read the details of the steps that you have to perform and click Close.

View the details of the repository you just created.

NOTE

When importing an application using Import from Git and the Git repository has a .tekton
directory, you can configure pipelines-as-code for your application.

2.1.4. Interacting with pipelines using the Developer perspective

The Pipelines view in the Developer perspective lists all the pipelines in a project, along with the
following details:

The namespace in which the pipeline was created
The last pipeline run

The status of the tasks in the pipeline run

The status of the pipeline run

The creation time of the last pipeline run

Procedure

1. In the Pipelines view of the Developer perspective, select a project from the Project drop-

down list to see the pipelines in that project.

Click the required pipeline to see the Pipeline details page.

By default, the Details tab displays a visual representation of all the serial tasks, parallel tasks,
finally tasks, and when expressions in the pipeline. The tasks and the finally tasks are listed in
the lower right portion of the page.

To view the task details, click the listed Tasks and Finally tasks. In addition, you can do the
following:

® Use the zoom in, zoom out, fit to screen, and reset view features using the standard icons
displayed in the lower left corner of the Pipeline detailsvisualization.

® Change the zoom factor of the pipeline visualization using the mouse wheel.

® Hover over the tasks and see the task details.

33

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Figure 2.3. Pipeline details

Pipelines > Pipeline details

build-and-deploy

Details Metrics YAML PipelineRuns Parameters Resources

Pipeline details

Actions

Start
Add Trigger

Edit labels

Edit annotations

Edit Pipeline

Delete Pipeline

build-image ——————&#— apply

fetch-repository

Name

build-and-deploy

Namespace

@ i

Labels Edit ¢*

No labels

Tasks
@ o
@ build.

i
@ apply-manifests

h-repository)
)

Finally tasks
@ update-deployment

Workspaces
shared-workspace

Annotations

0annotations #*

3. Optional: On the Pipeline details page, click the Metrics tab to see the following information
about pipelines:

Pipeline Success Ratio
Number of Pipeline Runs
Pipeline Run Duration

Task Run Duration
You can use this information to improve the pipeline workflow and eliminate issues early in
the pipeline lifecycle.

4. Optional: Click the YAML tab to edit the YAML file for the pipeline.

5. Optional: Click the Pipeline Runstab to see the completed, running, or failed runs for the
pipeline.
The Pipeline Runstab provides details about the pipeline run, the status of the task, and a link

to debug failed pipeline runs. Use the Options menu

to stop a running pipeline, to rerun a

pipeline using the same parameters and resources as that of the previous pipeline execution, or
to delete a pipeline run.

® Click the required pipeline run to see the Pipeline Run detailspage. By default, the Details
tab displays a visual representation of all the serial tasks, parallel tasks, finally tasks, and
when expressions in the pipeline run. The results for successful runs are displayed under the

Pipeline Run results pane at the bottom of the page. Additionally, you would only be able
to see tasks from Tekton Hub which are supported by the cluster. While looking at a task,
you can click the link beside it to jump to the task documentation.

34

NOTE

The Details section of the Pipeline Run Details page displays a Log Snippet
of the failed pipeline run. Log Snippet provides a general error message and
a snippet of the log. A link to the Logs section provides quick access to the
details about the failed run.

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

® On the Pipeline Run detailspage, click the Task Runstab to see the completed, running,
and failed runs for the task.
The Task Runstab provides information about the task run along with the links to its task

and pod, and also the status and duration of the task run. Use the Options menu to
delete a task run.

NOTE
| The TaskRuns list page features a Manage columns button, which you can
also use to add a Duration column.

® Click the required task run to see the Task Run detailspage. The results for successful runs
are displayed under the Task Run results pane at the bottom of the page.

Y NOTE
: The Details section of the Task Run detailspage displays a Log Snippet of
the failed task run. Log Snippet provides a general error message and a

snippet of the log. A link to the Logs section provides quick access to the
details about the failed task run.

6. Click the Parameters tab to see the parameters defined in the pipeline. You can also add or edit
additional parameters, as required.

7. Click the Resources tab to see the resources defined in the pipeline. You can also add or edit
additional resources, as required.
2.1.5. Starting pipelines from Pipelines view

After you create a pipeline, you need to start it to execute the included tasks in the defined sequence.
You can start a pipeline from the Pipelines view, the Pipeline Details page, or the Topology view.

Procedure

To start a pipeline using the Pipelines view:

1. In the Pipelines view of the Developer perspective, click the Options menu adjoining a
pipeline, and select Start.

2. The Start Pipelinedialog box displays the Git Resources and the Image Resources based on
the pipeline definition.

NOTE

For pipelines created using the From Git option, the Start Pipeline dialog box
also displays an APP_NAME field in the Parameters section, and all the fields in
the dialog box are prepopulated by the pipeline template.

a. If you have resources in your namespace, the Git Resources and the Image Resources
fields are prepopulated with those resources. If required, use the drop-downs to select or
create the required resources and customize the pipeline run instance.

35

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

3. Optional: Modify the Advanced Options to add the credentials that authenticate the specified
private Git server or the image registry.
a. Under Advanced Options, click Show Credentials Optionsand select Add Secret.
b. In the Create Source Secretsection, specify the following:

i. Aunique Secret Name for the secret.

ii. Inthe Designated provider to be authenticatedsection, specify the provider to be
authenticated in the Access to field, and the base Server URL.

iii. Select the Authentication Type and provide the credentials:

e Forthe Authentication Type Image Registry Credentials, specify the Registry
Server Address that you want to authenticate, and provide your credentials in the
Username, Password, and Email fields.

Select Add Credentials if you want to specify an additional Registry Server
Address.

e For the Authentication Type Basic Authentication, specify the values for the
UserName and Password or Token fields.

® Forthe Authentication Type SSH Keys, specify the value of the SSH Private Key
field.

NOTE

For basic authentication and SSH authentication, you can use
annotations such as:

o tekton.dev/git-0: https://github.com

o tekton.dev/git-1: https://gitlab.com.

iv. Select the check mark to add the secret.
You can add multiple secrets based upon the number of resources in your pipeline.
4. Click Start to start the pipeline.

5. The PipelineRun details page displays the pipeline being executed. After the pipeline starts,
the tasks and steps within each task are executed. You can:

® Use the zoom in, zoom out, fit to screen, and reset view features using the standard icons,
which are in the lower left corner of the PipelineRun details page visualization.

® Change the zoom factor of the pipelinerun visualization using the mouse wheel. At specific
zoom factors, the background color of the tasks changes to indicate the error or warning

status.

® Hover over the tasks to see the details, such as the time taken to execute each step, task
name, and task status.

® Hover over the tasks badge to see the total number of tasks and tasks completed.

® Click on a task to see the logs for each step in the task.

36

https://github.com
https://gitlab.com

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

® Click the Logs tab to see the logs relating to the execution sequence of the tasks. You can
also expand the pane and download the logs individually or in bulk, by using the relevant
button.

® Click the Events tab to see the stream of events generated by a pipeline run.
You can use the Task Runs, Logs, and Events tabs to assist in debugging a failed pipeline
run or a failed task run.

Figure 2.4. Pipeline run details

PineineRuns > PipelinaRun details

django-ex-git-oylgln < rumixg Actions.

Details YAML TaskRuns Parameters Logs Events

PipelineRun details

<° fotch repository ¥1 ———— &3 buid o7z B degloy o

Name Status.

django-ex-git-cyigin £ Running

Pipeline
Namespace @B django o« git
@
Triggered by:
i g Kubciad
Labels ELY A
Workspace Resources
pvc 9996cfa22] (worspace)

appkuber ietesiofinstance-diango-es-git | | appkubenetesiofiame-djang

operatortekor. penshit-pipelines-ad: iftiof

pipelne. openshift iofn nfi =39-ubi8 || aipeline openshift ioftyr tek

Annotations

T nnotation &

Created at
@ 60ct2022, 1425

2.1.6. Starting pipelines from Topology view

For pipelines created using the From Git option, you can use the Topology view to interact with
pipelines after you start them:

NOTE

To see the pipelines created using Pipeline builderin the Topology view, customize the
pipeline labels to link the pipeline with the application workload.

-

Procedure

1. Click Topology in the left navigation panel.
2. Click the application to display Pipeline Runsin the side panel.
3. InPipeline Runs, click Start Last Runto start a new pipeline run with the same parameters and

resources as the previous one. This option is disabled if a pipeline run has not been initiated. You
can also start a pipeline run when you create it.

37

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Figure 2.5. Pipelines in Topology view

(WP oispiay options = Filter by resourcs v Y Name + Findbyname. /e

@ django-ex-git Actions ~
A Health checks x
Container djargo-ex-git daes not have healtn checks to ensure your asplication is
nnnn g correctly, Add health checks
Dctails Resourcez Chserve
Pods
@ diango-ex-git-6c64bb 76 p7dbl £ Running View lags
[
PipelineRuns
@ ciango-ax-git Start last run

django-ex-git-d55tbh (Just now) £ Running Viewlogs

diango-ex-ait-oylal (Just n: ® Succeeded Viewlogs

fjango-ex-git-fljviq (57 minutes agc) © Succeeded Viewlogs

Triggers

@ tigger templae django o git js23y
http:/'el-event-listener-mil404-vira,apps.rhoms-4.11-
Qa @ ®x o 100604 dev.opznshiftappsvcorg B B

on. dev-vibetai~PipelineRun/django-ex-git-ds5thh/logs

In the Topology page, hover to the left of the application to see the status of its pipeline run. After a
pipeline is added, a bottom left icon indicates that there is an associated pipeline.
2.1.7. Interacting with pipelines from Topology view

The side panel of the application node in the Topology page displays the status of a pipeline run and
you can interact with it.

e |f a pipeline run does not start automatically, the side panel displays a message that the pipeline
cannot be automatically started, hence it would need to be started manually.

® |f apipeline is created but the user has not started the pipeline, its status is not started. When
the user clicks the Not started status icon, the start dialog box opens in the Topology view.

® |f the pipeline has no build or build config, the Builds section is not visible. If there is a pipeline
and build config, the Builds section is visible.

® The side panel displays a Log Snippet when a pipeline run fails on a specific task run. You can
view the Log Snippetin the Pipeline Runssection, under the Resources tab. It provides a
general error message and a snippet of the log. A link to the Logs section provides quick access
to the details about the failed run.

2.1.8. Editing pipelines

You can edit the pipelines in your cluster using the Developer perspective of the web console:

Procedure

1. In the Pipelines view of the Developer perspective, select the pipeline you want to edit to see
the details of the pipeline. In the Pipeline Details page, click Actions and select Edit Pipeline.

2. On the Pipeline builder page, you can perform the following tasks:

® Add additional tasks, parameters, or resources to the pipeline.

38

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

® Click the task you want to modify to see the task details in the side panel and modify the
required task details, such as the display name, parameters, and resources.

® Alternatively, to delete the task, click the task, and in the side panel, click Actions and select
Remove Task

3. Click Save to save the modified pipeline.

2.1.9. Deleting pipelines

You can delete the pipelines in your cluster using the Developer perspective of the web console.

Procedure

1. In the Pipelines view of the Developer perspective, click the Options menu adjoining a
Pipeline, and select Delete Pipeline.

2. In the Delete Pipeline confirmation prompt, click Delete to confirm the deletion.

2.2. ADDITIONAL RESOURCES

® Using Tekton Hub with OpenShift Pipelines

2.3. CREATING PIPELINE TEMPLATES IN THE ADMINISTRATOR
PERSPECTIVE

As a cluster administrator, you can create pipeline templates that developers can reuse when they
create a pipeline on the cluster.

Prerequisites

® You have access to an OpenShift Container Platform cluster with cluster administrator
permissions, and have switched to the Administrator perspective.

® You have installed the OpenShift Pipelines Operator in your cluster.

Procedure

1. Navigate to the Pipelines page to view existing pipeline templates.

2. Click the icon to go to the Import YAML page.

3. Add the YAML for your pipeline template. The template must include the following information:

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
#...
namespace: openshift ﬂ
labels:

39

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/custom_tekton_hub_instance/#using-tekton-hub-with-openshift-pipelines

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

pipeline.openshift.io/runtime: <runtime> 9
pipeline.openshift.io/type: <pipeline-type> 6
#...

ﬂ The template must be created in the openshift namespace.

9 The template must contain the pipeline.openshift.io/runtime label. The accepted runtime
values for this label are nodejs, golang, dotnet, java, php, ruby, perl, python, nginx, and
httpd.

9 The template must contain the pipeline.openshift.io/type: label. The accepted type

values for this label are openshift, knative, and kubernetes.

4. Click Create. After the pipeline has been created, you are taken to the Pipeline detailspage,
where you can view information about or edit your pipeline.

2.4. PIPELINE EXECUTION STATISTICS IN THE WEB CONSOLE
You can view statistics related to execution of pipelines in the web console.
To view the statistic information, you must complete the following steps:

® |nstall Tekton Results. For more information about installing Tekton Results, see Using Tekton
Results for OpenShift Pipelines observability in the Additional resources section.

® Enable the OpenShift Pipelines console plugin.

Statistic information is available for all pipelines together and for each individual pipeline.

IMPORTANT

The OpenShift Pipelines Pipelines console plugin is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

Additonal resources

® Using Tekton Results for OpenShift Pipelines observability

2.4.1. Enabling the OpenShift Pipelines console plugin

To view the statistic information, you must first enable the OpenShift Pipelines console plugin.

Prerequisites

® You installed the Red Hat OpenShift Pipelines Operator in your cluster.

® You are logged on to the web console with cluster administrator permissions.

40

https://access.redhat.com/support/offerings/techpreview/
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/observability_in_openshift_pipelines/#using-tekton-results-for-openshift-pipelines-observability

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

IMPORTANT

The OpenShift Pipelines console plugin requires OpenShift Container Platform version
4.5 or a later version.

Procedure
1. In the Administrator perspective of the web console, select Operators — Installed Operators.
2. Click Red Hat OpenShift Pipelinesin the table of Operators.

3. Inthe right pane on the screen, check the status label under Console plugin. The label is either
Enabled or Disabled.

4. If the label is Disabled, click this label. In the window that displays, select Enable and then click
Save.

2.4.2. Viewing the statistics for all pipelines together

You can view consolidated statistic information related to all pipelines on the system.

Prerequisites

® You installed the Red Hat OpenShift Pipelines Operator in your cluster.

® You installed the OpenShift Pipelines web console plugin.

Procedure

1. In the Administrator perspective of the web console, select Pipelines - Overview.
A statistics overview displays. This overview includes the following information: A graph
reflecting the number and status of pipeline runs over a time period The total, average, and
maximum durations of pipeline execution over the same period. ** The total number of pipeline
runs over the same period.

A table of pipelines also displays. This table lists all pipelines that were run in the time period,
showing their duration and success rate.

2. Optional: Change the settings of the statistics display as necessary:

® Project: The project or namespace to display statistics for.
® Time range: The time period to display statistics for.

e Refresh interval How often Red Hat OpenShift Pipelines must update the data in the
window while you are viewing it.

2.4.3. Viewing the statistics for a specific pipeline

You can view statistic information related to a particular pipeline.

Prerequisites

® You installed the Red Hat OpenShift Pipelines Operator in your cluster.

41

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

® You installed the OpenShift Pipelines web console plugin.

Procedure

1. In the Administrator perspective of the web console, select Pipelines - Pipelines.
2. Click a pipeline in the list of pipelines. The Pipeline detailsview displays.

3. Click the Metrics tab.
A statistics overview displays. This overview includes the following information: A graph
reflecting the number and status of pipeline runs over a time period The total, average, and
maximum durations of pipeline execution over the same period. ** The total number of pipeline
runs over the same period.

4. Optional: Change the settings of the statistics display as necessary:

® Project: The project or namespace to display statistics for.
® Time range: The time period to display statistics for.

e Refresh interval How often Red Hat OpenShift Pipelines must update the data in the
window while you are viewing it.

42

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND
STEP ACTIONS USING RESOLVERS

Pipelines and tasks are reusable blocks for your Cl/CD processes. You can reuse pipelines or tasks that
you previously developed, or that were developed by others, without having to copy and paste their
definitions. These pipelines or tasks can be available from several types of sources, from other
namespaces on your cluster to public catalogs.

In a pipeline run resource, you can specify a pipeline from an existing source. In a pipeline resource or a
task run resource, you can specify a task from an existing source.

Step actions, defined in StepAction custom resources (CRs), are reusable actions that a single step
within a task completes. When specifying a step, you can reference a StepAction definition from an
existing source.

In these cases, the resolvers in Red Hat OpenShift Pipelines retrieve the pipeline, task, or StepAction
definition from the specified source at run time.

The following resolvers are available in a default installaton of Red Hat OpenShift Pipelines:

Hub resolver

Retrieves a task, pipeline, or StepAction definition from the Pipelines Catalog available on Artifact
Hub or Tekton Hub.

Bundles resolver

Retrieves a task, pipeline, or StepAction definition from a Tekton bundle, which is an OCl image
available from any OCI repository, such as an OpenShift container repository.

Git resolver

Retrieves a task, pipeline, or StepAction definition from a Git repository. You must specify the
repository, the branch, and the path.

HTTP resolver

Retrieves a task, pipeline, or StepAction definition from a remote HTTP or HTTPS URL. You must
specify the URL for authentication.

Cluster resolver

Retrieves a task, pipeline, or StepAction definition that is already created on the same OpenShift
Container Platform cluster in a specific namespace.

An OpenShift Pipelines installation includes a set of standard tasks that you can use in your pipelines.
These tasks are located in the OpenShift Pipelines installation namespace, which is normally the
openshift-pipelines namespace. You can use the cluster resolver to access the tasks.

OpenShift Pipelines also provides a standard StepAction definition. You can use the cluster resolver to
access this definition.

3.1. SPECIFYING A REMOTE PIPELINE, TASK, ORSTEP ACTION FROM
A TEKTON CATALOG

You can use the hub resolver to specify a remote pipeline, task, or StepAction definition that is defined
either in a public Tekton catalog of Artifact Hub or in an instance of Tekton Hub.

43

https://artifacthub.io/

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

IMPORTANT

The Artifact Hub project is not supported with Red Hat OpenShift Pipelines. Only the
configuration of Artifact Hub is supported.

3.1.1. Configuring the hub resolver

You can change the default hub for pulling a resource, and the default catalog settings, by configuring
the hub resolver.

Procedure

1. To edit the TektonConfig custom resource, enter the following command:

I $ oc edit TektonConfig config

2. In the TektonConfig custom resource, edit the pipeline.hub-resolver-config spec:

apiVersion: operator.tekton.dev/vialphat
kind: TektonConfig
metadata:
name: config
spec:
pipeline:
hub-resolver-config:
default-tekton-hub-catalog: Tekton ﬂ
default-artifact-hub-task-catalog: tekton-catalog-tasks 9
default-artifact-hub-pipeline-catalog: tekton-catalog-pipelines 6
defailt-kind: pipeline @)
default-type: tekton 9
tekton-hub-api: "https://my-custom-tekton-hub.example.com” G
artifact-hub-api: "https://my-custom-artifact-hub.example.com"

The default Tekton Hub catalog for pulling a resource.

The default Artifact Hub catalog for pulling a task resource.
The default Artifact Hub catalog for pulling a pipeline resource.
The default object kind for references.

The default hub for pulling a resource, either artifact for Artifact Hub or tekton for Tekton
Hub.

The Tekton Hub APl used, if the default-type option is set to tekton.

O 96006009

Optional: The Artifact Hub API used, if the default-type option is set to artifact.

44

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

IMPORTANT

If you set the default-type option to tekton, you must configure your own
instance of the Tekton Hub by setting the tekton-hub-api value.

If you set the default-type option to artifact then the resolver uses the public
hub API at https://artifacthub.io/ by default. You can configure your own Artifact
Hub API by setting the artifact-hub-api value.

3.1.2. Specifying a remote pipeline, task, or step action using the hub resolver

When creating a pipeline run, you can specify a remote pipeline from Artifact Hub or Tekton Hub. When
creating a pipeline or a task run, you can specify a remote task from Artifact Hub or Tekton Hub. When
creating a step within a task, you can reference a remote StepAction definition from Artifact Hub or
Tekton Hub.

Procedure

® To specify a remote pipeline, task, or StepAction definition from Artifact Hub or Tekton Hub,
use the following reference format in the pipelineRef, taskRef, or step.ref spec:

#...
resolver: hub
params:
- name: catalog
value: <catalog>
- name: type
value: <catalog_type>
- name: kind
value: [pipeline|task]
- name: name
value: <resource_name>
- name: version
value: <resource_version>
#...

Table 3.1. Supported parameters for the hub resolver

Parameter Description Example value

catalog The catalog for pulling the Default: tekton-catalog-
resource. tasks (for the task kind);
tekton-catalog-pipelines
(for the pipeline kind).

type The type of the catalog for Default: artifact
pulling the resource. Either
artifact for Artifact Hub or
tekton for Tekton Hub.

kind Either task or pipeline. Default: task

45

https://artifacthub.io/

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Parameter Description Example value

name The name of the task or golang-build
pipeline to fetch from the hub.

version The version of the task or "0.5.0"
pipeline to fetch from the hub.
You must use quotes (")
around the number.

If the pipeline or task requires additional parameters, specify values for these parameters in the
params section of the specification of the pipeline, pipeline run, or task run. The params
section of the pipelineRef or taskRef specification must contain only the parameters that the
resolver supports.

Examples

The following example pipeline run references a remote pipeline from a catalog:

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
name: hub-pipeline-reference-demo
spec:
pipelineRef:
resolver: hub
params:
- name: catalog
value: tekton-catalog-pipelines
- name: type
value: artifact
- name: kind
value: pipeline
- name: name
value: example-pipeline
- hame: version
value: "0.1"
params:
- name: sample-pipeline-parameter
value: test

The following example pipeline references a remote task from a catalog:

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: pipeline-with-hub-task-reference-demo
spec:
tasks:
- name: "cluster-task-reference-demo”
taskRef:
resolver: hub
params:
- name: catalog

46

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

value: tekton-catalog-tasks
- name: type
value: artifact
- name: kind
value: task
- name: name
value: example-task
- name: version
value: "0.6"
params:
- name: sample-task-parameter
value: test

The following example task run references a remote task from a catalog:

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
name: hub-task-reference-demo
spec:
taskRef:
resolver: hub
params:
- name: catalog
value: tekton-catalog-tasks
- name: type
value: artifact
- name: kind
value: task
- name: name
value: example-task
- name: version
value: "0.6"
params:
- name: sample-task-parameter
value: test

The following example task includes a step that references a StepAction definition from a catalog:

apiVersion: tekton.dev/v1
kind: Task
metadata:
name: hub-stepaction-reference-demo
spec:
steps:
- name: example-step
ref:
- resolver: hub
- params:
- name: catalog
value: tekton-catalog-stepactions
- name: type
value: artifact
- name: kind
value: StepAction

47

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

- name: name
value: example-stepaction
- hame: version
value: "0.6"
params:
- name: sample-stepaction-parameter
value: test

3.2. SPECIFYING A REMOTE PIPELINE, TASK, ORSTEP ACTION FROM
A TEKTON BUNDLE

You can use the bundles resolver to specify a remote pipeline, task, or StepAction definition from a
Tekton bundle. A Tekton bundle is an OCl image available from any OCl repository, such as an OpenShift
container repository.

3.2.1. Configuring the bundles resolver

You can change the default service account name and the default kind for pulling resources from a
Tekton bundle by configuring the bundles resolver.

Procedure

1. To edit the TektonConfig custom resource, enter the following command:

I $ oc edit TektonConfig config

2. In the TektonConfig custom resource, edit the pipeline.bundles-resolver-config spec:

apiVersion: operator.tekton.dev/vialphat
kind: TektonConfig
metadata:
name: config
spec:
pipeline:
bundles-resolver-config:
default-service-account: pipelines ﬂ
default-kind: task @)

ﬂ The default service account name to use for bundle requests.

9 The default layer kind in the bundle image.

3.2.2. Specifying a remote pipeline, task, or step action using the bundles resolver

When creating a pipeline run, you can specify a remote pipeline from a Tekton bundle. When creating a
pipeline or a task run, you can specify a remote task from a Tekton bundle. When creating a step within a
task, you can reference a remote StepAction definition from a Tekton bundle.

Procedure

® To specify a remote pipeline, task, or StepAction definition from a Tekton bundle, use the
following reference format in the pipelineRef, taskRef, or step.ref spec:

48

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

#...
resolver: bundles
params:
- name: bundle
value: <fully_qualified_image_name>
- name: name
value: <resource_name>
- name: kind
value: [pipeline|task]
#...

Table 3.2. Supported parameters for the bundles resolver

Parameter Description Example value

serviceAccount The name of the service default
account to use when
constructing registry

credentials.
bundle The bundle URL pointing atthe gcr.io/tekton-
image to fetch. releases/catalog/upstream
/golang-build:0.1
name The name of the resource to golang-build

pull out of the bundle.

kind The kind of the resource to pull task
out of the bundle.

If the pipeline or task requires additional parameters, specify values for these parameters in the
params section of the specification of the pipeline, pipeline run, or task run. The params
section of the pipelineRef or taskRef specification must contain only the parameters that the
resolver supports.

Examples

The following example pipeline run references a remote pipeline from a Tekton bundle:

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
name: bundle-pipeline-reference-demo
spec:
pipelineRef:
resolver: bundles
params:
- name: bundle
value: registry.example.com:5000/simple/pipeline:latest
- name: name
value: hello-pipeline
- name: kind
value: pipeline

49

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

params:

- name: sample-pipeline-parameter
value: test

- name: username
value: "pipelines”

The following example pipeline references a remote task from a Tekton bundle:

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: pipeline-with-bundle-task-reference-demo
spec:
tasks:
- name: "bundle-task-demo"
taskRef:
resolver: bundles
params:
- name: bundle
value: registry.example.com:5000/advanced/task:latest
- name: name
value: hello-world
- name: kind
value: task
params:
- name: sample-task-parameter
value: test

The following example task run references a remote task from a Tekton bundle:

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
name: bundle-task-reference-demo
spec:
taskRef:
resolver: bundles
params:
- name: bundle
value: registry.example.com:5000/simple/new_task:latest
- name: name
value: hello-world
- name: kind
value: task
params:
- name: sample-task-parameter
value: test

The following example task includes a step that references a StepAction definition from a Tekton
bundle:

apiVersion: tekton.dev/v1
kind: Task
metadata:
name: bundle-stepaction-reference-demo

50

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

spec:
steps:
- name: example-step
ref:
resolver: bundles
params:
- name: bundle
value: registry.example.com:5000/simple/new_task:latest
- name: name
value: hello-world-action
- name: kind
value: StepAction
params:
- name: sample-stepaction-parameter
value: test

3.3. SPECIFYING A REMOTE PIPELINE, TASK, ORSTEP ACTION WITH
ANONYMOUS GIT CLONING

You can use the Git resolver to access a remote pipeline, task, or StepAction definition from a Git
repository. The repository must include a YAML file that defines the pipeline or task. For anonymous
access, you can clone repositories with the resolver without needing authentication credentials.

3.3.1. Configuring the Git resolver for anonymous Git cloning

If you want to use anonymous Git cloning, you can configure the default Git revision, fetch timeout, and
default repository URL for pulling remote pipelines and tasks from a Git repository.

Procedure

1. To edit the TektonConfig custom resource, enter the following command:

I $ oc edit TektonConfig config

2. In the TektonConfig custom resource, edit the pipeline.git-resolver-config spec:

apiVersion: operator.tekton.dev/vialphat
kind: TektonConfig
metadata:
name: config
spec:
pipeline:
git-resolver-config:
default-revision: main
fetch-timeout: 1m g
default-url: https:/github.com/tektoncd/catalog.git 6

The default Git revision to use if none is specified.

The maximum time any single Git clone resolution may take, for example, 1m, 2s, 700ms.
Red Hat OpenShift Pipelines also enforces a global maximum timeout of 1 minute on all
resolution requests.

®9

51

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

g The default Git repository URL for anonymous cloning if none is specified.

3.3.2. Specifying a remote pipeline, task, or step action by using the Git resolver for
anonymous cloning

When creating a pipeline run, you can specify a remote pipeline from a Git repository by using
anonymous cloning. When creating a pipeline or a task run, you can specify a remote task from a Git
repository. When creating a step within a task, you can reference a remote StepAction definition from a
Git repository.

Procedure

® To specify a remote pipeline, task, or StepAction definition from a Git repository, use the
following reference format in the pipelineRef, taskRef, or step.ref spec:

#...
resolver: git
params:
- name: url
value: <git_repository_url>
- name: revision
value: <branch_name>
- name: pathinRepo
value: <path_in_repository>
#..

Table 3.3. Supported parameters for the Git resolver

Parameter Description Example value

url The URL of the repository, https://github.com/tektonc
when using anonymous d/catalog.git
cloning.

revision The Git revision in the aeb957601cf41c012be4628
repository. You can specify a 27053a21a420befca
branch name, a tag name, or a main
commit SHA hash. v0.38.2

pathinRepo The path name of the YAML task/golang-
file in the repository. build/0.3/golang-

build.yaml
NOTE

To clone and fetch the repository anonymously, use the url parameter. Do not
specify the url parameter and the repo parameter together.

If the pipeline or task requires additional parameters, provide these parameters in params.

Examples

52

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

The following example pipeline run references a remote pipeline from a Git repository:

apiVersion: tekton.dev/vibetai
kind: PipelineRun
metadata:
name: git-pipeline-reference-demo
spec:
pipelineRef:
resolver: git
params:
- name: url
value: https:/github.com/tektoncd/catalog.git
- hame: revision
value: main
- name: pathinRepo
value: pipeline/simple/0.1/simple.yaml
params:
- name: name
value: "testPipelineRun"
- name: sample-pipeline-parameter
value: test

The following example pipeline references a remote task from a Git repository:

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: pipeline-with-git-task-reference-demo
spec:
tasks:
- name: "git-task-reference-demo"
taskRef:
resolver: git
params:
- name: url
value: https://github.com/tektoncd/catalog.git
- nhame: revision
value: main
- name: pathInRepo
value: task/git-clone/0.6/git-clone.yaml
params:
- name: sample-task-parameter
value: test

The following example task run references a remote task from a Git repository:

apiVersion: tekton.dev/vibetai
kind: TaskRun
metadata:
name: git-task-reference-demo
spec:
taskRef:
resolver: git
params:
- name: url

53

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

value: https://github.com/tektoncd/catalog.git
- hame: revision
value: main
- name: pathinRepo
value: task/git-clone/0.6/git-clone.yaml
params:
- name: sample-task-parameter
value: test

The following example task includes a step that references a StepAction definition from a Git
repository:

apiVersion: tekton.dev/v1

kind: Task
metadata:
name: git-stepaction-reference-demo
spec:
steps:
- name: example-step
ref:
resolver: git
- name: url

value: https://github.com/openshift-pipelines/tektoncd-catalog.git
- hame: revision
value: p
- name: pathinRepo
value: stepactions/stepaction-git-clone/0.4.1/stepaction-git-clone.yaml
params:
- name: sample-stepaction-parameter
value: test

3.4.SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION WITH
AN AUTHENTICATED GIT API

You can specify a remote pipeline, task, or StepAction definition from a Git repository by using the Git

resolver. The repository must contain a YAML file that defines the pipeline or task. You can securely
access repositories by using an authenticated API, which supports user authentication.

3.4.1. Configuring the Git resolver for an authenticated API

For an authenticated Source Control Management (SCM) API, you must set the configuration for the
authenticated Git connection.

You can use Git repository providers that are supported by the go-scm library. Not all go-scm
implementations have been tested with the Git resolver, but the following providers are known to work:

e github.com and GitHub Enterprise
e gitlab.com and self-hosted Gitlab
® Gitea

® Bitbucket Data Center

® Bitbucket Cloud

54

Procedure

1. To

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

NOTE
® You can configure Git connections by using the authenticated SCM API. You can
provide a security token that enables all users on your cluster to access one
repository. Additionally, you can specify different SCM providers and tokens for
specific pipelines or tasks.

® |f you configure the Git resolver to use the authenticated SCM API, you can also
use anonymous Git clone references to retrieve pipelines and tasks.

edit the TektonConfig custom resource, enter the following command:

$ oc edit TektonConfig config

2. In the TektonConfig custom resource, edit the pipeline.git-resolver-config spec:

Q99® 606 09

apiVersion: operator.tekton.dev/vialphat
kind: TektonConfig
metadata:
name: config
spec:
pipeline:
git-resolver-config:
default-revision: main
fetch-timeout: 1m g
scm-type: github 6
server-url: api.internal-github.com ﬂ
api-token-secret-name: github-auth-secret 9
api-token-secret-key: github-auth-key G
api-token-secret-namespace: github-auth-namespace ﬂ
default-org: tektoncd 6

The default Git revision to use if none is specified.

The maximum time any single Git clone resolution may take, for example, 1m, 2s, 700ms.
Red Hat OpenShift Pipelines also enforces a global maximum timeout of 1 minute on all
resolution requests.

The SCM provider type.

The base URL for use with the authenticated SCM API. This setting is not required if you
are using github.com, gitlab.com, or Bitbucket Cloud.

The name of the secret that contains the SCM provider API token.
The key within the token secret that contains the token.
The namespace containing the token secret, if not default.

Optional: The default organization for the repository, when using the authenticated API.
This organization is used if you do not specify an organization in the resolver parameters.

55

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

NOTE

The scm-type, api-token-secret-name, and api-token-secret-key settings are required
to use the authenticated SCM API.

3.4.2. Configuring multiple Git providers

You can configure multiple Git providers, or you can add multiple configurations for the same Git
provider, to use in different task runs and pipeline runs.

Add details in the TektonConfig custom resource (CR) with your unique identifier key prefix.

Procedure

1. Edit the TektonConfig CR by running the following command:
I $ oc edit TektonConfig config

2. In the TektonConfig CR, edit the pipeline.git-resolver-config spec:

apiVersion: operator.tekton.dev/vialphat

kind: TektonConfig

metadata:

name: config
spec:
#...
pipeline:
git-resolver-config:

configuration 1
fetch-timeout: "1m"
default-url: "https://github.com/tektoncd/catalog.git"
default-revision: "main”
scm-type: "github"
server-url: "
api-token-secret-name: "
api-token-secret-key: "
api-token-secret-namespace: "default”
default-org: ™
configuration 2 9
test1.fetch-timeout: "5m"
test1.default-url: ™
test1.default-revision: "stable"
test1.scm-type: "github"
test1.server-url: "api.internal-github.com”
test1.api-token-secret-name: "test1-secret"
test1.api-token-secret-key: "token"
test1.api-token-secret-namespace: "test1"
test1.default-org: "tektoncd"
configuration 3 g
test2.fetch-timeout: "10m"
test2.default-url: "
test2.default-revision: "stable"
test2.scm-type: "gitlab"
test2.server-url: "api.internal-gitlab.com"
test2.api-token-secret-name: "test2-secret"”

56

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

test2.api-token-secret-key: "pat"
test2.api-token-secret-namespace: "test2"
test2.default-org: "tektoncd-infra"

with the default value.

‘ #
ﬂ The default configuration to use if no configKey key is provided or the key is provided
9 The configuration used if the configKey key is passed with the test1 value.

The configuration used if the configKey key is passed with the test2 value.

' WARNING
A configKey values with the . symbol are not supported. If you try to pass a

configKey value that contains the . symbol, the TaskRun or PipelineRun
resource where you passed the value fails to run.

3.4.3. Specifying a remote pipeline, task, or step action using the Git resolver with
the authenticated SCM API

When creating a pipeline run, you can specify a remote pipeline from a Git repository using the
authenticated SCM API. When creating a pipeline or a task run, you can specify a remote task from a Git
repository. When creating a step within a task, you can reference a remote StepAction definition from a
Git repository.

Prerequisites

e |f you want to use the authenticated SCM API, you must configure the authenticated Git
connection for the Git resolver.

Procedure

® To specify a remote pipeline, task, or StepAction definition from a Git repository, use the
following reference format in the pipelineRef, taskRef, or step.ref spec:

#...
resolver: git
params:
- name: org
value: <git_organization_name>
- name: repo
value: <git_repository_name>
- name: revision
value: <branch_name>
- name: pathinRepo
value: <path_in_repository>
#...

57

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Table 3.4. Supported parameters for the Git resolver

Parameter Description Example value

org The organization for the tektoncd
repository, when using the
authenticated SCM API.

repo The repository name, when test-infra
using the authenticated SCM
API.

revision The Git revision in the aeb957601cf41c012bed628
repository. You can specify a 27053a21a420befca
branch name, a tag name, or a main
commit SHA hash. v0.38.2

pathinRepo The path name of the YAML task/golang-
file in the repository. build/0.3/golang-

build.yaml
NOTE

To clone and fetch the repository anonymously, use the url parameter. To use
the authenticated SCM AP, use the repo parameter. Do not specify the url
parameter and the repo parameter together.

-

If the pipeline or task requires additional parameters, specify values for these parameters in the
params section of the specification of the pipeline, pipeline run, or task run. The params
section of the pipelineRef or taskRef specification must contain only the parameters that the
resolver supports.

Examples

The following example pipeline run references a remote pipeline from a Git repository:

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
name: git-pipeline-reference-demo
spec:
pipelineRef:
resolver: git
params:
- name: org
value: tektoncd
- name: repo
value: catalog
- hame: revision
value: main
- name: pathinRepo
value: pipeline/simple/0.1/simple.yaml
params:

58

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

- name: name
value: "testPipelineRun"

- name: sample-pipeline-parameter
value: test

The following example pipeline references a remote task from a Git repository:

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: pipeline-with-git-task-reference-demo
spec:
tasks:
- name: "git-task-reference-demo"
taskRef:
resolver: git
params:
- name: org
value: tektoncd
- name: repo
value: catalog
- hame: revision
value: main
- name: pathinRepo
value: task/git-clone/0.6/git-clone.yaml
params:
- name: sample-task-parameter
value: test

The following example task run references a remote task from a Git repository:

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
name: git-task-reference-demo
spec:
taskRef:
resolver: git
params:
- name: org
value: tektoncd
- name: repo
value: catalog
- hame: revision
value: main
- name: pathinRepo
value: task/git-clone/0.6/git-clone.yaml
params:
- name: sample-task-parameter
value: test

The following example task includes a step that references a StepAction definition from a Git
repository:

I apiVersion: tekton.dev/v1

59

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

kind: Task
metadata:
name: git-stepaction-reference-demo
spec:
steps:
- name: example-step
ref:
resolver: git
- name: org
value: openshift-pipelines
- name: repo
value: tektoncd-catalog
- hame: revision
value: p
- name: pathinRepo
value: stepactions/stepaction-git-clone/0.4.1/stepaction-git-clone.yaml
params:
- name: sample-stepaction-parameter
value: test

3.4.4. Specifying multiple Git providers

You can specify multiple Git providers by passing the unique configKey parameter when creating
TaskRun and PipelineRun resources.

If no configKey parameter is passed, the default configuration is used. You can also specify default
configuration by setting the configKey value to default.

WARNING
A configKey values with the . symbol are not supported. If you try to pass a

configKey value that contains the . symbol, the TaskRun or PipelineRun resource
where you passed the value fails to run.

Prerequisites
e Configure multiple Git providers through the Tektonconfig custom resource. For more
information, see "Configuring multiple Git providers".
Procedure

® To specify a Git provider, use the following reference format in the pipelineRef and taskRef
spec:

#...
resolver: git
params:
#...

60

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

- name: configKey
value: <your_unique_key> ﬂ
#...

ﬂ Your unique key that matches one of the configuration keys, for example, test1.

3.4.5. Specifying a remote pipeline or task by using the Git resolver with the
authenticated SCM API overriding the Git resolver configuration

You can override the initial configuration settings in specific pipeline runs or tasks to customize the
behavior according to different use cases. You can use this method to access an authenticated provider
that is not configured in the TektonConfig custom resource (CR).

The following example task run references a remote task from a Git repository that overrides the
previous resolver configuration:

apiVersion: tekton.dev/vibetai
kind: TaskRun
metadata:
name: git-task-reference-demo
spec:
taskRef:
resolver: git
params:
- name: org
value: tektoncd
- name: repo
value: catalog
- hame: revision
value: main
- name: pathinRepo
value: task/git-clone/0.6/git-clone.yaml
- name: token
value: my-secret-token
- name: tokenKey
value: token
- name: scmType
value: github
- name: serverURL
value: https://ghe.mycompany.com

Table 3.5. Supported parameters to override the Git resolver

Parameter Description Example value

org The organization for the tektoncd
repository.

repo The repository name. catalog

61

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Parameter Description Example value
revision The Git revision in the repository. main
You can specify a branch name, a
tag name, or a commit SHA hash.
pathinRepo The path name of the YAML filein task/git-clone/0.6/git-clone.yaml
the repository.
token The secret name used for my-secret-token
authentication.
tokenKey The key name for the token. token
scmType The type of SCM (Source Control github
Management) system.
serverURL The URL of the server hostingthe https://ghe.mycompany.com

repository.

3.5.SPECIFYING A REMOTE PIPELINE, TASK, ORSTEP ACTION BY
USING THE HTTP RESOLVER

You can specify a remote pipeline, task, or StepAction definition from an HTTP or HTTPS URL by using
the HTTP resolver. The URL must point to a YAML file that defines the pipeline, task, or step action.
3.5.1. Configuring the HTTP resolver

You can use the HTTP resolver to fetch pipelines or tasks from an HTTP or HTTPS URL. You can
configure the default values for the HTTP resolver by editing the TektonConfig custom resource (CR).

Procedure

1. Edit the TektonConfig CR by entering the following command:

I $ oc edit TektonConfig config

2. In the TektonConfig CR, edit the pipeline.http-resolver-config spec:

apiVersion: operator.tekton.dev/vialphat
kind: TektonConfig
metadata:
name: config
spec:
pipeline:
http-resolver-config:
fetch-timeout: "1m"

ﬂ The maximum amount of time the HTTP resolver waits for a response from the server.

62

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

3.5.2. Specifying a remote pipeline, task, or step action with the HTTP Resolver

When creating a pipeline run, you can specify a remote pipeline from an HTTP or HTTPS URL. When
creating a pipeline or a task run, you can specify a remote task from an HTTP or HTTPS URL. When
creating a step within a task, you can reference a remote StepAction definition from an HTTP or HTTPS
URL.

Procedure

® Specify aremote pipeline, task, or StepAction definition from an HTTP or HTTPS URL, using
the following format in the pipelineRef, taskRef, or step.ref spec:

#...
resolver: http
params:
- name: url
value: <fully_qualified_http_url>
..

Table 3.6. Supported parameters for the HTTP Resolver

Parameter Description Example Value
url The HTTP URL pointing to the https://raw.githubusercont
Tekton resource to fetch. ent.com/openshift-

pipelines/tektoncd-
catalog/p/tasks/task-git-
clone/0.4.1/task-git-
clone.yaml

Examples

The following example pipeline run references a remote pipeline from the same cluster:

apiVersion: tekton.dev/vibetai
kind: PipelineRun
metadata:
name: http-pipeline-reference-demo
spec:
pipelineRef:
resolver: http
params:
- name: url
value: https://raw.githubusercontent.com/tektoncd/catalog/main/pipeline/build-push-gke-
deploy/0.1/build-push-gke-deploy.yaml
params:
- name: sample-pipeline-parameter
value: test
- name: username
value: "pipelines”

The following example pipeline defines a task that references a remote task from an HTTPS URL:

I apiVersion: tekton.dev/vibetal

63

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

kind: Pipeline
metadata:
name: pipeline-with-http-task-reference-demo
spec:
tasks:
- name: "http-task-demo”
taskRef:
resolver: http
params:
- name: url
value: https://raw.githubusercontent.com/openshift-pipelines/tektoncd-catalog/p/tasks/task-git-
clone/0.4.1/task-git-clone.yaml
params:
- name: sample-task-parameter
value: test

The following example task run references a remote task from an HTTPS URL:

apiVersion: tekton.dev/vibetai
kind: TaskRun
metadata:
name: http-task-reference-demo
spec:
taskRef:
resolver: http
params:
- name: url
value: https://raw.githubusercontent.com/openshift-pipelines/tektoncd-catalog/p/tasks/task-git-
clone/0.4.1/task-git-clone.yaml
params:
- name: sample-task-parameter
value: test

The following example task includes a step that references a StepAction definition from an HTTPS URL:

apiVersion: tekton.dev/v1
kind: Task
metadata:
name: http-stepaction-reference-demo
spec:
steps:
- name: example-step
ref:
resolver: http
params:
- name: url
value: https://raw.githubusercontent.com/openshift-pipelines/tektoncd-
catalog/p/stepactions/stepaction-git-clone/0.4.1/stepaction-git-clone.yaml
params:
- name: sample-stepaction-parameter
value: test

3.6. SPECIFYING A PIPELINE, TASK, ORSTEP ACTION FROM THE
SAME CLUSTER

64

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

You can use the cluster resolver to specify a pipeline, task, or StepAction definition that is defined in a
namespace on the OpenShift Container Platform cluster where Red Hat OpenShift Pipelines is running.

In particular, you can use the cluster resolver to access tasks that OpenShift Pipelines provides in its
installation namespace, which is normally the openshift-pipelines namespace.

3.6.1. Configuring the cluster resolver

You can change the default kind and namespace for the cluster resolver, or limit the namespaces that
the cluster resolver can use.

Procedure

1. To edit the TektonConfig custom resource, enter the following command:

I $ oc edit TektonConfig config

2. In the TektonConfig custom resource, edit the pipeline.cluster-resolver-config spec:

apiVersion: operator.tekton.dev/vialphat
kind: TektonConfig
metadata:
name: config
spec:
pipeline:
cluster-resolver-config:
default-kind: pipeline ﬂ
default-namespace: namespace1 9
allowed-namespaces: namespacel, namespace2
blocked-namespaces: namespace3, namespace4

The default resource kind to fetch, if not specified in parameters.
The default namespace for fetching resources, if not specified in parameters.

A comma-separated list of namespaces that the resolver is allowed to access. If this key is
not defined, all namespaces are allowed.

An optional comma-separated list of namespaces which the resolver is blocked from
accessing. If this key is not defined, all namespaces are allowed.

o 009

3.6.2. Specifying a pipeline, task, or step action from the same cluster using the
cluster resolver

When creating a pipeline run, you can specify a pipeline that exists on the same cluster. When creating a

pipeline or a task run, you can specify a task that exists on the the same cluster. When creating a step
within a task, you can specify a StepAction definition that exists on the the same cluster.

Procedure

® To specify a pipeline, task, or StepAction definition from the same cluster, use the following
reference format in the pipelineRef, taskRef, or step.ref spec:

65

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

#...
resolver: cluster
params:
- name: name
value: <name>
- name: namespace
value: <namespace>
- name: kind
value: [pipeline|task|stepaction]
#...

Table 3.7. Supported parameters for the cluster resolver

Parameter Description Example value

name The name of the resource to some-pipeline
fetch.
namespace The namespace in the cluster other-namespace

containing the resource.

kind The kind of the resource to pipeline
fetch.
If the pipeline or task requires additional parameters, provide these parameters in params.
Examples

The following example pipeline run references a pipeline from the same cluster:

apiVersion: tekton.dev/v1
kind: PipelineRun

metadata:
name: cluster-pipeline-reference-demo
spec:
pipelineRef:
resolver: cluster
params:
- name: name

value: some-pipeline
- name: namespace
value: test-namespace
- name: kind
value: pipeline
params:
- name: sample-pipeline-parameter
value: test

The following example pipeline references a task from the same cluster:
apiVersion: tekton.dev/v1

kind: Pipeline
metadata:

66

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

name: pipeline-with-cluster-task-reference-demo
spec:
tasks:
- name: "cluster-task-reference-demo”
taskRef:
resolver: cluster
params:
- name: name
value: some-task
- name: namespace
value: test-namespace
- name: kind
value: task
params:
- name: sample-task-parameter
value: test

The following example task run references a task from the same cluster:

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
name: cluster-task-reference-demo
spec:
taskRef:
resolver: cluster
params:
- name: name
value: some-task
- name: namespace
value: test-namespace
- name: kind
value: task
params:
- name: sample-task-parameter
value: test

The following example task includes a step that references a StepAction definition from the same
cluster:

apiVersion: tekton.dev/v1
kind: Task
metadata:
name: cluster-stepaction-reference-demo
spec:
steps:
- name: example-step
ref:
resolver: cluster
params:
- name: name
value: some-step
- name: namespace
value: test-namespace
- name: kind

67

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

value: stepaction
params:
- name: sample-stepaction-parameter
value: test

3.7. TASKS PROVIDED IN THE OPENSHIFT PIPELINES NAMESPACE

An OpenShift Pipelines installation includes a set of standard tasks that you can use in your pipelines.
These tasks are located in the OpenShift Pipelines installation namespace, which is normally the
openshift-pipelines namespace. You can use the cluster resolver to access the tasks.

Until version 1.16, OpenShift Pipelines included ClusterTask functionality. Versions 1.17 and later no
longer include this functionality. If your pipelines use ClusterTask references, you can re-create them
with the tasks that are available from the OpenShift Pipelines installation namespace by using the
cluster resolver. However, certain changes are made in these tasks compared to the previously existing
ClusterTask definitions.

You cannot specify a custom execution image in any of the tasks available in the OpenShift Pipelines
installation namespace. These tasks do not support parameters such as BUILDER_IMAGE,
gitinitimage, or KN_IMAGE. If you want to use a custom execution image, create a copy of the task and
replace the image by editing the copy.

buildah
The buildah task builds a source code tree into a container image and then pushes the image to a
container registry.

Example usage of the buildah task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: build-and-deploy
spec:
#...
tasks:
#...
- name: build-image
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: buildah
- name: namespace
value: openshift-pipelines
params:
- name: IMAGE
value: $(params.IMAGE)
workspaces:
- name: source
workspace: shared-workspace
#...

Table 3.8. Supported parameters for thebuildah task

68

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Parameter

Description

Default value

IMAGE Fully qualified container image name to string
be built by Buildah.
DOCKERFILE Path to the Dockerfile (or string ./Dockerfile
Containerfile) relative to the source
workspace.
CONTEXT Path to the directory to use as the string
context.
STORAGE_DRI Set the Buildah storage driver to reflect string vis
VER the settings of the current cluster node
settings.
FORMAT The format of the container to build, string oci
either oci ordocker.
BUILD_EXTRA_ Extra parameters for the build command string
ARGS when building the image.
PUSH_EXTRA _ Extra parameters for the push command string
ARGS when pushing the image.
SKIP_PUSH Skip pushing the image to the container string false
registry.
TLS_VERIFY The TLS verification flag, normally true. string true
VERBOSE Turn on verbose logging; all commands string false

executed are added to the log.

Table 3.9. Supported workspaces for thebuildah task

Workspace Description

source Container build context, usually the application source code that includes a

Dockerfile or Containerfile file.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace

with the name config.json or.dockerconfigjson.

rhel-entitlement An optional workspace for providing the entitlement keys that Buildah uses to

access a Red Hat Enterprise Linux (RHEL) subscription. The mounted workspace
must contains the entitlement.pem and entitlement-key.pem files.

Table 3.10. Results that the buildah task returns

69

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Result Type Description
IMAGE_URL string The fully qualified name of the image that was built.
IMAGE_DIGEST string Digest of the image that was built.

Changes from thebuildah ClusterTask

® The VERBOSE parameter was added.
® The BUILDER_IMAGE parameter was removed.

git-cli

The git-cli task runs the git command-line utility. You can pass the full Git command or several
commands to run using the GIT_SCRIPT parameter. If the commands need authentication to a Git
repository, for example, in order to complete a push, you must supply the authentication credentials.

Example usage of the git-cli task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: update-repo
spec:
#...
tasks:
#...
- name: push-to-repo
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: git-cli
- name: namespace
value: openshift-pipelines
params:
- name: GIT_SCRIPT
value: "git push”
- name: GIT_USER_NAME
value: "Example Developer"
- name: GIT_USER_EMAIL
value: "developer@example.com”
workspaces:
- name: ssh-directory
workspace: ssh-workspace ﬂ
- name: source
workspace: shared-workspace
#...

In this example, ssh-workspace must contain the contents of the .ssh directory with a valid key
for authorization to the Git repository.

70

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Table 3.11. Supported parameters for thegit-cli task

Parameter

Description

Default value

CRT_FILENAME

HTTP_PROXY

HTTPS_PROXY

NO_PROXY

SUBDIRECTOR
Y

USER_HOME

DELETE_EXISTI
NG

VERBOSE

SSL_VERIFY

GIT_USER_NA
ME

GIT_USER_EMA
IL

GIT_SCRIPT

Certificate Authority (CA) bundle
filename in the ssl-ca-directory
workspace.

HTTP proxy server (non-TLS requests).

HTTPS proxy server (TLS requests).

Opt out of proxying HTTP/HTTPS
requests.

Relative path to the source workspace
where the git repository is present.

Absolute path to the Git user home
directory in the pod.

Erase any existing contents of the
source workspace before completing
the git operations.

Log all the executed commands.

The global http.sslVerify value. Do not
use false unless you trust the remote
repository.

Git user name for performing Git
operations.

Git user email for performing Git
operations.

The Git script to run.

Table 3.12. Supported workspaces for thegit-cli task

Workspace Description

ssh-directory

string

string

string

string

string

string

string

string

string

string

string

string

ca-bundle.crt

/home/git

true

false

true

git help

A .ssh directory with the private key,known_hosts, config, and other files as
necessary. If you provide this workspace, the task uses it for authentication to the
Git repository. Bind this workspace to a Secret resource for secure storage of

authentication information.

71

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Workspace Description

basic-auth A workspace containing a .gitconfig and .git-credentials files. If you provide
this workspace, the task uses it for authentication to the Git repository. Use a
ssh-directory workspace for authentication instead ofbasic-auth whenever
possible. Bind this workspace to a Secret resource for secure storage of
authentication information.

ssl-ca-directory A workspace containing CA certificates. If you provide this workspace, Git uses
these certificates to verify the peer when interacting with remote repositories
using HTTPS.

source A workspace that contains the fetched Git repository.

input An optional workspace that contains the files that need to be added to the Git

repository. You can access the workspace from your script using
$(workspaces.input.path), for example:

cp $(workspaces.input.path)/<file_that_i_want> .

git add <file_that_i_want>

Table 3.13. Results that the git-cli task returns

Result Type Description

COMMIT string The SHA digest of the commit that is at the HEAD of
the current branch in the cloned Git repository.

Changes from thegit-cli ClusterTask
® Several new parameters were added.
® The BASE_IMAGE parameter was removed.
® The ssl-ca-directory workspace was added.
® The default values for the USER_HOME and VERBOSE parameters were changed.
® The name of the result was changed from commit to COMMIT.
git-clone
The git-clone task uses Git to initialize and clone a remote repository on a workspace. You can use this

task at the start of a pipeline that builds or otherwise processes this source code.

Example usage of the git-clone task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:

72

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

name: build-source

spec:
#...
tasks:

- name: clone-repo

taskRef:

resolver: cluster

params:

- name: kind

value: task

- name: name

value: git-clone
- name: namespace
value: openshift-pipelines

params:
- name: URL

value: "https://github.com/example/repo.git"

workspaces:

- name: output

workspace: shared-workspace

Table 3.14. Supported parameters for thegit-clone task

Parameter

Description

Default value

CRT_FILENAME

HTTP_PROXY

HTTPS_PROXY

NO_PROXY

SUBDIRECTOR
Y

USER_HOME

DELETE_EXISTI
NG

VERBOSE

SSL_VERIFY

Certificate Authority (CA) bundle
filename in the ssl-ca-directory
workspace.

HTTP proxy server (non-TLS requests).

HTTPS proxy server (TLS requests).

Opt out of proxying HTTP/HTTPS
requests.

Relative path in the output workspace
where the task places the Git repository.

Absolute path to the Git user home
directory in the pod.

Delete the contents of the default
workspace, if they exist, before running
the Git operations.

Log the executed commands.

The global http.sslVerify value. Do not
set this parameter to to false unless you
trust the remote repository.

string

string

string

string

string

string

string

string

string

ca-bundle.crt

/home/git

true

false

true

73

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Parameter Description Default value

URL Git repository URL. string

REVISION The revision to check out, for example, a string main
branch or tag.

REFSPEC The refspec string for the repository that ~ string

the task fetches before checking out the

revision.
SUBMODULES Initialize and fetch Git submodules. string true
DEPTH Number of commits to fetch, a "shallow string 1

clone" is a single commit.

SPARSE_CHEC List of directory patterns, separated by string
KOUT_DIRECT commas, for performing a "sparse
ORIES checkout".

Table 3.15. Supported workspaces for thegit-clone task

Workspace Description

ssh-directory A .ssh directory with the private key,known_hosts, config, and other files as
necessary. If you provide this workspace, the task uses it for authentication to the
Git repository. Bind this workspace to a Secret resource for secure storage of
authentication information.

basic-auth A workspace containing a .gitconfig and .git-credentials files. If you provide
this workspace, the task uses it for authentication to the Git repository. Use a
ssh-directory workspace for authentication instead ofbasic-auth whenever
possible. Bind this workspace to a Secret resource for secure storage of
authentication information.

ssl-ca-directory A workspace containing CA certificates. If you provide this workspace, Git uses
these certificates to verify the peer when interacting with remote repositories
using HTTPS.

output A workspace that contains the fetched git repository, data will be placed on the
root of the workspace or on the relative path defined by the SUBDIRECTORY
parameter.

Table 3.16. Results that thegit-clone task returns

Result Type Description

74

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Result Type Description

COMMIT string The SHA digest of the commit that is at the HEAD of
the current branch in the cloned Git repository.

URL string The URL of the repository that was cloned.

COMMITTER_DATE string The epoch timestamp of the commit that is at the
HEAD of the current branch in the cloned Git
repository.

Changes from thegit-clone ClusterTask

® All parameter names were changed to uppercase.
® Allresult names were changed to uppercase.
® The gitlnitimage parameter was removed.

kn
The kn task uses the kn command-line utility to complete operations on Knative resources, such as
services, revisions, or routes.

Example usage of the kn task

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
name: kn-run
spec:
pipelineSpec:
tasks:
- name: kn-run
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: kn
- name: namespace
value: openshift-pipelines
params:
- name: ARGS
value: [version]

Table 3.17. Supported parameters for thekn task

Parameter Description Default value

ARGS The arguments for the kn utility. array - help

75

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Changes from thekn ClusterTask

® The KN_IMAGE parameter was removed.

kn-apply
The kn-apply task deploys a specified image to a Knative Service. This task uses the kn service apply
command to create or update the specified Knative service.

Example usage of the kn-apply task

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
name: kn-apply-run
spec:
pipelineSpec:
tasks:
- name: kn-apply-run
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: kn-apply
- name: namespace
value: openshift-pipelines
params:
- name: SERVICE
value: "hello"
- name: IMAGE
value: "gcr.io/knative-samples/helloworld-go:latest"

Table 3.18. Supported parameters for thekn-apply task

Parameter Description Type Default value
SERVICE The Knative service name. string
IMAGE The fully qualified name of the image to string

deploy.

Changes from thekn-apply ClusterTask

® The KN_IMAGE parameter was removed.

maven
The maven task runs a Maven build.

Example usage of the maven task

apiVersion: tekton.dev/v1
kind: Pipeline

76

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

metadata:
name: build-and-deploy
spec:
#...
tasks:
#...
- name: build-from-source
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: maven
- name: namespace
value: openshift-pipelines
workspaces:
- name: source
workspace: shared-workspace
#...

Table 3.19. Supported parameters for themaven task

Parameter Description Default value

GOALS The Maven goals to run. array - package
MAVEN_MIRRO The Maven repository mirror URL. string
R_URL
SUBDIRECTOR The subdirectory within the source string
Y workspace that the task runs the Maven
build on.

Table 3.20. Supported workspaces for themaven task

Workspace Description

source The workspace that contains the Maven project.

server_secret The workspace that contains the secrets for connecting to the Maven server, such
as the user name and password.

proxy_secret The workspace that contains the credentials for connecting to the proxy server,
such as the user name and password.

proxy_configmap The workspace that contains proxy configuration values, such as proxy_port,
proxy_host, proxy_protocol, proxy_non_proxy_hosts.

maven_settings The workspace that contains custom Maven settings.

77

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Changes from themaven ClusterTask

® The parameter name CONTEXT_DIR was changed to SUBDIRECTORY.
® The workspace name maven-settings was changed to maven_settings.

openshift-client
The openshift-client task runs commands using the o¢c command-line interface. You can use this task
to manage an OpenShift Container Platform cluster.

Example usage of the openshift-client task

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
name: openshift-client-run
spec:
pipelineSpec:
tasks:
- name: openshift-client-run
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: openshift-client
- name: namespace
value: openshift-pipelines
params:
- name: SCRIPT
value: "oc version"

Table 3.21. Supported parameters for theopenshift-client task

Parameter Description Type Default value
SCRIPT The oc CLI arguments to run. string oc help
VERSION The OpenShift Container Platform string latest

version to use.

Table 3.22. Supported workspaces for theopenshift-client task

Workspace Description

manifest_dir The workspace containing manifest files that you want to apply using the oc
utility.
kubeconfig_dir An optional workspace in which you can provide a .kube/config file that contains

credentials for accessing the cluster. Place this file at the root of the workspace
and name it kubeconfig.

78

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Workspace Description

Changes from theopenshift-client ClusterTask

® The workspace name manifest-dir was changed to manifest_dir.
® The workspace name kubeconfig-dir was changed to kubeconfig_dir.

s2i-dotnet

The s2i-dotnet task builds the source code using the Source to Image (S2I) dotnet builder image, which
is available from the OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/dotnet.

Example usage of the s2i-dotnet task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: build-and-deploy
spec:
#...
tasks:
#...
- name: build-s2i
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: s2i-dotnet
- name: namespace
value: openshift-pipelines
workspaces:
- name: source
workspace: shared-workspace
#...

Table 3.23. Supported parameters for thes2i-dotnet task

Parameter Description Default value

IMAGE The fully qualified name for the container string
image that the S2I process builds.

IMAGE_SCRIPT The URL containing the default assemble string image:///usr/libe
S _URL and run scripts for the builder image. xec/s2i

79

Parameter

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Description Default value

ENV_VARS

CONTEXT

STORAGE_DRI
VER

FORMAT

BUILD_EXTRA _
ARGS

PUSH_EXTRA _
ARGS

SKIP_PUSH

TLS_VERIFY

VERBOSE

VERSION

An array of values for environment array
variables to set in the build process, listed
in the KEY=VALUE format.

Path to the directory within the source string
workspace to use as the context.

Set the Buildah storage driver to reflect string vfs
the settings of the current cluster node

settings.

The format of the container to build, string oci

either oci ordocker.

Extra parameters for the build command string
when building the image.

Extra parameters for the push command string
when pushing the image.

Skip pushing the image to the container string false
registry.

The TLS verification flag, normally true. string true
Turn on verbose logging; all commands string false

executed are added to the log.

The tag of the image stream, which string latest
corresponds to the language version.

Table 3.24. Supported workspaces for thes2i-dotnet task

Workspace Description

source

dockerconfig

Result

The application source code, which is the build context for the S2I workflow.

An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or.dockerconfigjson.

Table 3.25. Results that the s2i-dotnet task returns

Type Description

IMAGE_URL

string The fully qualified name of the image that was built.

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Result Type Description
IMAGE_DIGEST string Digest of the image that was built.
s2i-go

The s2i-go task builds the source code using the S2I Golang builder image, which is available from the
OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/golang.

Example usage of the s2i-go task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: build-and-deploy
spec:
#...
tasks:
#...
- name: build-s2i
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: s2i-go
- name: namespace
value: openshift-pipelines
workspaces:
- name: source
workspace: shared-workspace
#...

Table 3.26. Supported parameters for thes2i-go task

Parameter Description Default value

IMAGE The fully qualified name for the container string
image that the S2I process builds.

IMAGE_SCRIPT The URL containing the default assemble string image:///usr/libe
S _URL and run scripts for the builder image. xec/s2i
ENV_VARS An array of values for environment array

variables to set in the build process, listed
in the KEY=VALUE format.

CONTEXT Path to the directory within the source string
workspace to use as the context.

81

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Parameter Description Default value

STORAGE_DRI Set the Buildah storage driver to reflect string vis
VER the settings of the current cluster node

settings.
FORMAT The format of the container to build, string oci

either oci ordocker.

BUILD_EXTRA_ Extra parameters for the build command string

ARGS when building the image.

PUSH_EXTRA _ Extra parameters for the push command string

ARGS when pushing the image.

SKIP_PUSH Skip pushing the image to the container string false
registry.

TLS_VERIFY The TLS verification flag, normally true. string true

VERBOSE Turn on verbose logging; all commands string false

executed are added to the log.

VERSION The tag of the image stream, which string latest
corresponds to the language version.

Table 3.27. Supported workspaces for thes2i-go task
Workspace Description
source The application source code, which is the build context for the S2I workflow.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or.dockerconfigjson.

Table 3.28. Results that the s2i-go task returns

Result Type Description
IMAGE_URL string The fully qualified name of the image that was built.
IMAGE_DIGEST string Digest of the image that was built.

s2i-java

The s2i-java task builds the source code using the S2I Java builder image, which is available from the
OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/java.

82

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Table 3.29. Supported parameters for thes2i-java task

Parameter

Description

Default value

IMAGE

IMAGE_SCRIPT
S_URL

ENV_VARS

CONTEXT

STORAGE_DRI
VER

FORMAT

BUILD_EXTRA _
ARGS

PUSH_EXTRA _
ARGS

SKIP_PUSH

TLS_VERIFY

VERBOSE

VERSION

The fully qualified name for the container
image that the S2I process builds.

The URL containing the default assemble
and run scripts for the builder image.

An array of values for environment
variables to set in the build process, listed
in the KEY=VALUE format.

Path to the directory within the source
workspace to use as the context.

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

The format of the container to build,
either oci ordocker.

Extra parameters for the build command
when building the image.

Extra parameters for the push command
when pushing the image.

Skip pushing the image to the container
registry.

The TLS verification flag, normally true.

Turn on verbose logging; all commands
executed are added to the log.

The tag of the image stream, which
corresponds to the language version.

Table 3.30. Supported workspaces for thes2i-java task

Workspace Description

source

string

string

array

string

string

string

string

string

string

string

string

string

image:///usr/libe
xec/s2i

vfs

oci

false

true

false

latest

The application source code, which is the build context for the S2I workflow.

83

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Workspace Description

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or.dockerconfigjson.

Table 3.31. Results that the s2i-java task returns

Result Type Description
IMAGE_URL string The fully qualified name of the image that was built.
IMAGE_DIGEST string Digest of the image that was built.

Changes from the s2i-java ClusterTask

® Several new parameters were added.

e The BUILDER_IMAGE, MAVEN_ARGS_APPEND, MAVEN_CLEAR_REPO, and
MAVEN_MIRROR_URL parameters were removed. You can pass the
MAVEN_ARGS_APPEND, MAVEN_CLEAR_REPO, and MAVEN_MIRROR_URL values as
environment variables.

® The parameter name PATH_CONTEXT was changed to CONTEXT.
® The parameter name TLS_VERIFY was changed to TLSVERIFY.

® The IMAGE_URL result was added.

s2i-nodejs

The s2i-nodejs task builds the source code using the S2I NodeJS builder image, which is available from
the OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/nodejs.

Example usage of the s2i-nodejs task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: build-and-deploy
spec:
#...
tasks:
#...
- name: build-s2i
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: s2i-nodejs

84

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

- name: namespace
value: openshift-pipelines

workspaces:

- name: source

workspace: shared-workspace

#...

Table 3.32. Supported parameters for thes2i-nodejs task

Parameter

Description

Default value

IMAGE

IMAGE_SCRIPT
S_URL

ENV_VARS

CONTEXT

STORAGE_DRI
VER

FORMAT

BUILD_EXTRA
ARGS

PUSH_EXTRA _
ARGS

SKIP_PUSH

TLS_VERIFY

VERBOSE

VERSION

The fully qualified name for the container
image that the S2I process builds.

The URL containing the default assemble
and run scripts for the builder image.

An array of values for environment
variables to set in the build process, listed
in the KEY=VALUE format.

Path to the directory within the source
workspace to use as the context.

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

The format of the container to build,
either oci ordocker.

Extra parameters for the build command
when building the image.

Extra parameters for the push command
when pushing the image.

Skip pushing the image to the container
registry.

The TLS verification flag, normally true.

Turn on verbose logging; all commands
executed are added to the log.

The tag of the image stream, which
corresponds to the language version.

Table 3.33. Supported workspaces for thes2i-nodejs task

string

string

array

string

string

string

string

string

string

string

string

string

image:///usr/libe
xec/s2i

vfs

oci

false

true

false

latest

85

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Workspace Description

source The application source code, which is the build context for the S2I workflow.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or.dockerconfigjson.

Table 3.34. Results that the s2i-nodejs task returns

Result Type Description
IMAGE_URL string The fully qualified name of the image that was built.
IMAGE_DIGEST string Digest of the image that was built.

s2i-perl

The s2i-perl task builds the source code using the S2I Perl builder image, which is available from the
OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/perl.

Example usage of the s2i-perl task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: build-and-deploy
spec:
#...
tasks:
#...
- name: build-s2i
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: s2i-perl
- name: namespace
value: openshift-pipelines
workspaces:
- name: source
workspace: shared-workspace
#...

Table 3.35. Supported parameters for thes2i-perl task

86

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Parameter

Description

Default value

IMAGE

IMAGE_SCRIPT
S_URL

ENV_VARS

CONTEXT

STORAGE_DRI
VER

FORMAT

BUILD_EXTRA _
ARGS

PUSH_EXTRA _
ARGS

SKIP_PUSH

TLS_VERIFY

VERBOSE

VERSION

The fully qualified name for the container
image that the S2I process builds.

The URL containing the default assemble
and run scripts for the builder image.

An array of values for environment
variables to set in the build process, listed
in the KEY=VALUE format.

Path to the directory within the source
workspace to use as the context.

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

The format of the container to build,
either oci ordocker.

Extra parameters for the build command
when building the image.

Extra parameters for the push command
when pushing the image.

Skip pushing the image to the container
registry.

The TLS verification flag, normally true.

Turn on verbose logging; all commands
executed are added to the log.

The tag of the image stream, which
corresponds to the language version.

Table 3.36. Supported workspaces for thes2i-perl task

Workspace Description

source

dockerconfig

string

string

array

string

string

string

string

string

string

string

string

string

image:///usr/libe
xec/s2i

vfs

oci

false

true

false

latest

The application source code, which is the build context for the S2I workflow.

An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace

with the name config.json or.dockerconfigjson.

87

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Workspace Description

Table 3.37. Results that the s2i-perl task returns

Result Type Description
IMAGE_URL string The fully qualified name of the image that was built.
IMAGE_DIGEST string Digest of the image that was built.

s2i-php

The s2i-php task builds the source code using the S2I PHP builder image, which is available from the
OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/php.

Example usage of the s2i-php task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: build-and-deploy
spec:
#...
tasks:
#...
- name: build-s2i
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: s2i-php
- name: namespace
value: openshift-pipelines
workspaces:
- name: source
workspace: shared-workspace
#...

Table 3.38. Supported parameters for thes2i-php task

Parameter Description Type Default value

IMAGE The fully qualified name for the container string
image that the S2I process builds.

88

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Parameter Description Type Default value
IMAGE_SCRIPT The URL containing the default assemble string image:///usr/libe
S URL and run scripts for the builder image. xec/s2i
ENV_VARS An array of values for environment array

variables to set in the build process, listed
in the KEY=VALUE format.

CONTEXT Path to the directory within the source string
workspace to use as the context.

STORAGE_DRI Set the Buildah storage driver to reflect string vis
VER the settings of the current cluster node

settings.
FORMAT The format of the container to build, string oci

either oci ordocker.

BUILD_EXTRA_ Extra parameters for the build command string

ARGS when building the image.

PUSH_EXTRA _ Extra parameters for the push command string

ARGS when pushing the image.

SKIP_PUSH Skip pushing the image to the container string false
registry.

TLS_VERIFY The TLS verification flag, normally true. string true

VERBOSE Turn on verbose logging; all commands string false

executed are added to the log.

VERSION The tag of the image stream, which string latest
corresponds to the language version.

Table 3.39. Supported workspaces for thes2i-php task

Workspace Description

source The application source code, which is the build context for the S2I workflow.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or.dockerconfigjson.

Table 3.40. Results that the s2i-php task returns

89

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Result Type Description
IMAGE_URL string The fully qualified name of the image that was built.
IMAGE_DIGEST string Digest of the image that was built.

s2i-python

The s2i-python task builds the source code using the S2I Python builder image, which is available from
the OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/python.

Example usage of the s2i-python task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: build-and-deploy
spec:
#...
tasks:
#...
- name: build-s2i
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: s2i-python
- name: namespace
value: openshift-pipelines
workspaces:
- name: source
workspace: shared-workspace
#...

Table 3.41. Supported parameters for thes2i-python task

Parameter Description Default value

IMAGE The fully qualified name for the container string
image that the S2I process builds.

IMAGE_SCRIPT The URL containing the default assemble string image:///usr/libe
S URL and run scripts for the builder image. xec/s2i
ENV_VARS An array of values for environment array

variables to set in the build process, listed
in the KEY=VALUE format.

90

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Parameter

Description

Default value

CONTEXT

STORAGE_DRI
VER

FORMAT

BUILD_EXTRA _
ARGS

PUSH_EXTRA _
ARGS

SKIP_PUSH

TLS_VERIFY

VERBOSE

VERSION

Path to the directory within the source
workspace to use as the context.

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

The format of the container to build,
either oci ordocker.

Extra parameters for the build command
when building the image.

Extra parameters for the push command
when pushing the image.

Skip pushing the image to the container
registry.

The TLS verification flag, normally true.

Turn on verbose logging; all commands
executed are added to the log.

The tag of the image stream, which
corresponds to the language version.

Table 3.42. Supported workspaces for thes2i-python task

Workspace Description

source

dockerconfig

string

string

string

string

string

string

string

string

string

vfs

false

true

false

latest

The application source code, which is the build context for the S2I workflow.

An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace

with the name config.json or.dockerconfigjson.

Table 3.43. Results that the s2i-python task returns

Result

IMAGE_URL

IMAGE_DIGEST

s2i-ruby

Type Description
string The fully qualified name of the image that was built.
string Digest of the image that was built.

o1

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

The s2i-ruby task builds the source code using the S2I Ruby builder image, which is available from the
OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/ruby.

Example usage of the s2i-ruby task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: build-and-deploy
spec:
#...
tasks:
#...
- name: build-s2i
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: s2i-ruby
- name: namespace
value: openshift-pipelines
workspaces:
- name: source
workspace: shared-workspace
#...

Table 3.44. Supported parameters for thes2i-ruby task

Parameter Description Type Default value

IMAGE The fully qualified name for the container string
image that the S2I process builds.

IMAGE_SCRIPT The URL containing the default assemble string image:///usr/libe
S URL and run scripts for the builder image. xec/s2i
ENV_VARS An array of values for environment array

variables to set in the build process, listed
in the KEY=VALUE format.

CONTEXT Path to the directory within the source string
workspace to use as the context.

STORAGE_DRI Set the Buildah storage driver to reflect string vis
VER the settings of the current cluster node

settings.
FORMAT The format of the container to build, string oci

either oci ordocker.

92

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Parameter Description Type Default value

BUILD_EXTRA_ Extra parameters for the build command string

ARGS when building the image.

PUSH_EXTRA _ Extra parameters for the push command string

ARGS when pushing the image.

SKIP_PUSH Skip pushing the image to the container string false
registry.

TLS_VERIFY The TLS verification flag, normally true. string true

VERBOSE Turn on verbose logging; all commands string false

executed are added to the log.

VERSION The tag of the image stream, which string latest
corresponds to the language version.

Table 3.45. Supported workspaces for thes2i-ruby task

Workspace Description

source The application source code, which is the build context for the S2I workflow.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or.dockerconfigjson.

Table 3.46. Results that the s2i-ruby task returns

Result Type Description
IMAGE_URL string The fully qualified name of the image that was built.
IMAGE_DIGEST string Digest of the image that was built.

skopeo-copy
The skopeo-copy task executes the skopeo copy command.

Skopeo is a command-line tool for working with remote container image registries, which does not
require a daemon or other infrastructure to load and run the images. The skopeo copy command
copies an image from one remote registry to another, for example, from an internal registry to a
production registry. Skopeo supports authorization on image registries using credentials that you
provide.

Example usage of the skopeo-copy task

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: build-deploy-image
spec:
#...
tasks:
- name: copy-image
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: skopeo-copy
- name: namespace
value: openshift-pipelines
params:
- name: SOURCE_IMAGE_URL
value: "docker://internal.registry/myimage:latest”
- name: DESTINATION_IMAGE_URL
value: "docker://production.registry/myimage:v1.0"
workspaces:
- name: output
workspace: shared-workspace

Table 3.47. Supported parameters for theskopeo-copy task

Parameter Description Default value

SOURCE_IMAG Fully qualified name, including tag, of the string
E_URL source container image.

DESTINATION_I Fully qualified name, including tag, of the string
MAGE_URL destination image to which Skopeo copies
the source image.

SRC_TLS_VERI The TLS verification flag for the source string true
FY registry, normally true.

DEST_TLS VER The TLS verification flag for the string true
IFY destination registry, normally true

VERBOSE Output debug information to the log. string false

Table 3.48. Supported workspaces for theskopeo-copy task

Workspace Description

images_url If you want to copy more than one image, use this workspace to provide the
image URLs.

94

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Table 3.49. Results that the skopeo-copy task returns

Result Type Description

SOURCE_DIGEST string The SHA256 digest of the source image.
DESTINATION_DIGE string The SHA256 digest of the destination image.
ST

Changes from the skopeo-copy ClusterTask

® All parameter names were changed to uppercase.

® The VERBOSE parameter was added.

® The workspace name was changed from images-url to images_url.

® The SOURCE_DIGEST and DESTINATION_DIGEST results were added.

tkn
The tkn task performs operations on Tekton resources using tkn.

Example usage of the tkn task

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
name: tkn-run
spec:
pipelineSpec:
tasks:
- name: tkn-run
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: tkn
- name: namespace
value: openshift-pipelines
params:
- name: ARGS

Table 3.50. Supported parameters for thetkn task

Parameter Description Type Default value
SCRIPT The tkn CLI script to execute. string tkn $@
ARGS The tkn CLI arguments to run. array - --help

95

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Table 3.51. Supported workspaces for thetkn task

Workspace Description

kubeconfig_dir An optional workspace in which you can provide a .kube/config file that contains
credentials for accessing the cluster. Place this file at the root of the workspace
and name it kubeconfig.

Changes from thetkn ClusterTask

® The TKN_IMAGE parameter was removed.

® The workspace name was changed from kubeconfig to kubeconfig_dir.

3.8. COMMUNITY TASKS PROVIDED IN THE OPENSHIFT PIPELINES
NAMESPACE

By default, an OpenShift Pipelines installation includes a set of community tasks that you can use in your
pipelines. These tasks are located in the OpenShift Pipelines installation namespace, which is normally
the openshift-pipelines namespace.

argocd-task-sync-and-wait
The argocd-task-sync-and-wait community task deploys an Argo CD application and waits for it to be
healthy.

To do so, it requires the following configurations: * The address of the Argo CD server configured in the
argocd-env-configmap config map. * The authentication information configured in the argocd-env-
secret secret.

Example config map with the address information

apiVersion: vi
kind: ConfigMap
metadata:
name: argocd-env-configmap
data:
ARGOCD_SERVER: https://argocd.example.com
#...

Example secret with the authentication information

apiVersion: v1i
kind: Secret
metadata:
name: argocd-env-secret
data:
Option 1
ARGOCD_USERNAME: example_username ﬂ
ARGOCD_PASSWORD: example_password
Option 2
ARGOCD_AUTH_TOKEN: exmaple_token

96

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

ﬂ Configure either a username and password or an authentication token.

Example usage of the argocd-task-sync-and-wait community task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: argocd-task-sync-and-wait
spec:
tasks:
- name: argocd-task-sync-and-wait
params:
- name: application-name
value: example_app_name
- hame: revision
value: HEAD
- name: flags
value: '--'
- name: argocd-version
value: v2.2.2
taskRef:
kind: Task
name: argocd-task-sync-and-wait

Table 3.52. Supported parameters for theargocd-task-sync-and-wait community task

Parameter Description Default value
application-name Name of the application to deploy.

revision Revision to deploy. HEAD

flags -
argocd-version Version of Argo CD. v2.2.2

helm-upgrade-from-repo
The helm-upgrade-from-repo community task installs or upgrades a Helm chart in your OpenShift
Container Platform cluster based on the given Helm repository and chart.

Example usage of the helm-upgrade-from-repo community task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:

name: helm-upgrade-from-repo
spec:

tasks:

- name: helm-upgrade-from-repo
params:
- name: helm_repo
value: example_helm_repository

97

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

- name: chart_name
value: example_chart_name
- name: release_version
value: v1.0.0
- name: release_name
value: helm-release
- name: release_namespace
value: "
- name: overwrite_values
value: "
- name: helm_image
value: 'docker.io/lachlanevenson/k8s-
helm@sha256:5¢792f299500388de24e7448d378881f68b3df73a7b30769a62a861061fd08ae’
taskRef:
kind: Task
name: helm-upgrade-from-repo

Table 3.53. Supported parameters for thehelm-upgrade-from-repo community task

Parameter Description Default value
helm_repo Helm repository.

chart_name Helm chart name to be deployed.

release_version Helm release version in semantic versioning format. v1.0.0
release_name Helm release name. helm-release

release_namespace Helm release namespace.

overwrite_values Configuration parameters to overwrite, comma
separated. For example:
autoscaling.enabled=true,replicas=1

helm_image Helm image to be used. docker.io/lachlaneve
nson/k8s-

helm@sha256:5¢792
f299500388de24e744
8d378881f68b3df73a
7b30769262a861061f
d08ae

helm-upgrade-from-source
The helm-upgrade-from-source community task installs and upgrades a Helm chart in your OpenShift

Container Platform cluster based on the given chart and source workspace.

Example usage of the helm-upgrade-from-source community task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:

98

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

name: helm-upgrade-from-source

spec:
tasks:

- name: helm-upgrade-from-source

params:

- name: charts_dir

value: example_directory_path
- name: release_version

value: v1.0.0

- name: release_name
value: helm-release
- name: release_namespace

value: "

- name: overwrite_values

value: "

- name: values_file
value: values.yaml

- name: helm_image
value: 'docker.io/lachlanevenson/k8s-

helm@sha256:5¢792f29950b388de24e7448d378881f68b3df73a7b30769a6aa861061fd08ae’

- name: upgrade_extra_params

value: "
taskRef:
kind: Task

name: helm-upgrade-from-source

workspaces:
- name: source

workspace: shared-workspace

#...

Table 3.54. Supported parameters for thehelm-upgrade-from-source community task

Parameter

charts_dir

release_version

release_name

release_namespace

overwrite_values

values_file

Description

Directory in the source workspace that contains the

Helm chart.

Helm release version in semantic versioning format.

Helm release name.
Helm release namespace.

Configuration parameters to overwrite, comma
separated. For example:
autoscaling.enabled=true,replicas=1

File with configuration parameters for Helm.

Default value

v1.0.0

helm-release

values.yaml

99

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Parameter Description Default value

helm_image Helm image to be used. docker.io/lachlaneve
nson/k8s-
helm@sha256:5¢792
f29950b388de24e744
8d378881f68b3df73a
7b30769a6aa861061f
d08ae

upgrade_extra_para Extra parameters passed for the Helm upgrade
ms command.

Table 3.55. Supported workspaces for thehelm-upgrade-from-source community task

Workspace Description

source The workspace that contains the Helm chart.

jib-maven
The jib-maven community task builds Java, Kotlin, Groovy, and Scala sources into a container image by
using the Jib tool for Maven projects.

Example usage of the jib-maven community task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: jib-maven
spec:
tasks:
- name: jib-maven
params:
- name: IMAGE
value: example_image
- name: MAVEN_IMAGE
value: 'registry.redhat.io/ubi9/openjdk-
17@sha256:78613bdf887530100efb6ddf92d2a17f6176542740ed83e509cdc19ee7c072d6'
- name: DIRECTORY
value: .
- name: CACHE
value: empty-dir-volume
- name: INSECUREREGISTRY
value: 'false’
- name: CACERTFILE
value: service-ca.crt
taskRef:
kind: Task
name: jib-maven

100

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

workspaces:
- name: source
workspace: shared-workspace
#...

Table 3.56. Supported parameters for thejib-maven community task

Parameter Description Default value

IMAGE Name of the image to build.

MAVEN_IMAGE Maven base image. registry.redhat.io/ubi
9/openjdk-
17@sha256:78613bd
f887530100efb6ddf9
2d2a17f6176542740e
d83e509cdc19ee7c07
2d6

DIRECTORY Directory containing the app, relative to the source

repository root.

CACHE Name of the volume for caching Maven artifacts and empty-dir-volume
base image layers.

INSECUREREGISTR Allow an insecure registry. false
Y
CACERTFILE Certificate authority (CA) bundle file name for an service-ca.crt

insecure registry service.

Table 3.57. Supported workspaces for thejib-maven community task

Workspace Description

source Workspace that contains the Maven project.

sslcertdir Optional workspace that contains SSL certificates.

Table 3.58. Results that the jib-maven task returns

Result Type Description

IMAGE_DIGEST string Digest of the image that was built.

Changes from thejib-maven community cluster task

® The default values for the IMAGE and MAVEN_IMAGE parameters were changed.

101

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

kubeconfig-creator
The kubeconfig-creator community task creates a kubeconfig file that other tasks in the pipeline can
use for accessing different clusters.

Example usage of the kubeconfig-creator community task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: kubeconfig-creator
spec:
tasks:
- name: kubeconfig-creator
params:
- name: name
value: example_cluster
- name: url
value: https://cluster.example.com
- name: username
value: example_username
- hame: password
value: example_password
- name: cadata
value: "
- name: clientKeyData
value: "
- name: clientCertificateData
value: "
- name: namespace
value: "
- name: token
value: "
- hame: insecure
value: 'false’
taskRef:
kind: Task
name: kubeconfig-creator
workspaces:
- name: output
workspace: shared-workspace
#...

Table 3.59. Supported parameters for thekubeconfig-creator community task

Parameter Description Default value
name Name of the cluster to access.

url Address of the cluster to access.

username Username for basic authentication to the cluster.

password Password for basic authentication to the cluster. "

102

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Parameter Description Default value
cadata PEM-encoded certificate authority (CA) certificates. """
clientKeyData PEM-encoded data from a client key file for TLS. "

clientCertificateData PEM-encoded data from a client certification file for "

TLS.
hamespace Default namespace to use on unspecified requests. "
token Bearer token for authentication to the cluster. "
insecure To indicate whether a server should be accessed false

without verifying the TLS certificate.

Table 3.60. Supported workspaces for thekubeconfig-creator community task

Workspace Description

output The workspace where the kubeconfig-creator task stores the kubeconfig file.

pull-request
You can use the pull-request community task to interact with a source control management (SCM)
system through an abstracted interface.

This community task works with both public SCM instances and self-hosted or enterprise GitHub or
GitLab instances.

In download mode, this task populates the pr workspace with the state of the existing pull request,
including the .MANIFEST file.

In upload mode, this task compares the contents of the pr workspace, including the .MANIFEST file,
with the content of the pull request and, if the content is different, updates the pull request to match the
pr workspace.

Example usage of the pull-request community task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: pull-request
spec:
spec:
tasks:
- name: pull-request
params:
- name: mode
value: upload
- name: url
value: https://github.com/example/pull/xxxxx

103

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

- name: provider
value: github
- name: secret-key-ref
value: example_secret
- name: insecure-skip-tls-verify
value: 'false’
taskRef:
kind: Task
name: pull-request
workspaces:
- name: pr
workspace: shared-workspace
#...

Table 3.61. Supported parameters for thepull-request community task
Parameter Description

mode If set to download, the state of the pull request at
url is fetched. If set toupload then the pull request
aturlis updated.

url URL of the pull request.

provider Type of the SCM system. The supported values are
github or gitlab.

secret-key-ref Name of a Secret object ofOpaque type that
contains a key called token with a base64 encoded
SCM token.

insecure-skip-tls- If set to true, the certificate validation is disabled.

verify

Table 3.62. Supported workspaces for thepull-request community task

Default value

Workspace Description

pr

trigger-jenkins-job

The workspace that contains the state of the pull request.

You can use the trigger-jenkins-job community task to trigger a Jenkins job by using a curl request.

Example usage of the trigger-jenkins-job community task

apiVersion: tekton.dev/v1

kind: Pipeline
metadata:

name: trigger-jenkins-job

spec:
tasks:

104

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

- name: trigger-jenkins-job
params:
- name: JENKINS_HOST_URL
value: example_host_URL
- name: JOB_NAME
value: example_job_name
- name: JENKINS_SECRETS
value: jenkins-credentials
- name: JOB_PARAMS
value:
- example_param
taskRef:
kind: Task
name: trigger-jenkins-job
workspaces:
- name: source
workspace: shared-workspace
#...

Table 3.63. Supported parameters for thetrigger-jenkins-job community task
Parameter Description Default value

JENKINS HOST_UR Server URL on which Jenkins is running.

L

JOB_NAME Jenkins Job which needs to be triggered.

JENKINS_SECRETS Jenkins secret containing credentials. jenkins-credentials
JOB_PARAMS Extra arguments to append as a part of the curl "

request.

Table 3.64. Supported workspaces for thetrigger-jenkins-job community task

Workspace Description

source The workspace which can be used to mount files which can be sent through the
curl request to the Jenkins job.

3.9.STEP ACTION DEFINITIONS PROVIDED WITH OPENSHIFT
PIPELINES

OpenShift Pipelines provides standard StepAction definitions that you can use in your tasks. Use the
cluster resolver to reference these definitions.

git-clone

The git-clone step action uses Git to initialize and clone a remote repository on a workspace. You can
use this step action to define a task that clones a repository at the start of a pipeline that builds or
otherwise processes this source code.

105

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Example usage of the git-clone step action in a task

apiVersion: tekton.dev/v1

kind: Task
metadata:
name: clone-repo-anon
spec:
#...
steps:
- name: clone-repo-step
ref:
resolver: cluster
params:
- name: name

value: git-clone
- name: namespace
value: openshift-pipelines
- name: kind
value: stepaction
params:
- name: URL
value: $(params.url)
- name: OUTPUT_PATH
value: $(workspaces.output.path)

Table 3.65. Supported parameters for thegit-clone step action

Parameter Description Type Default value

OUTPUT_PATH A directory for the fetched Git repository. string
Cloned repo data is placed in the root of

the directory or in the relative path
defined by the SUBDIRECTORY

parameter
SSH_DIRECTO A .ssh directory with the private key, string
RY_PATH known_hosts, config, and other files as

necessary. If you provide this directory,
the task uses it for authentication to the
Git repository. Bind the workspace
providing this directory to a Secret
resource for secure storage of
authentication information.

106

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Parameter

BASIC_AUTH_P
ATH

SSL_CA_DIREC
TORY_PATH

CRT_FILENAME

HTTP_PROXY

HTTPS_PROXY

NO_PROXY

SUBDIRECTOR

Y

USER_HOME

DELETE_EXISTI
NG

VERBOSE

SSL_VERIFY

URL

Description

A directory containing a .gitconfig and
.git-credentials files. If you provide this
directgory, the task uses it for
authentication to the Git repository. Use
a SSH_DIRECTORY_PATH directory
for authentication instead of
BASIC_AUTH_PATH whenever
possible. Bind the workspace providing
this directory to a Secret resource for
secure storage of authentication

information.

A workspace containing CA certificates. If
you provide this workspace, Git uses these
certificates to verify the peer when
interacting with remote repositories using

HTTPS.

Certificate authority (CA) bundle
filename in the ssl-ca-directory

workspace.

HTTP proxy server (non-TLS requests).

HTTPS proxy server (TLS requests).

Opt out of proxying HTTP/HTTPS

requests.

Relative path in the output workspace
where the task places the Git repository.

Absolute path to the Git user home

directory in the pod.

Delete the contents of the default
workspace, if they exist, before running

the Git operations.

Log the executed commands.

The global http.sslVerify value. Do not
set this parameter to to false unless you
trust the remote repository.

Git repository URL.

Type

string

string

string

string

string

string

string

string

string

string

string

string

Default value

ca-bundile.crt

/home/git

true

false

true

107

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Parameter Description Default value

REVISION The revision to check out, for example, a string main
branch or tag.

REFSPEC The refspec string for the repository that ~ string

the task fetches before checking out the

revision.
SUBMODULES Initialize and fetch Git submodules. string true
DEPTH Number of commits to fetch, a "shallow string 1

clone" is a single commit.

SPARSE_CHEC List of directory patterns, separated by string
KOUT_DIRECT commas, for performing a "sparse
ORIES checkout".

Table 3.66. Results that the git-clone step action returns

Result Type Description

COMMIT string The SHA digest of the commit that is at the HEAD of
the current branch in the cloned Git repository.

URL string The URL of the repository that was cloned.

COMMITTER_DATE string The epoch timestamp of the commit that is at the
HEAD of the current branch in the cloned Git
repository.

cache-upload and cache-fetch

IMPORTANT

Using the cache-upload and cache-fetch step actions is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

108

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Use the cache-upload and cache-fetch step actions to preserve the cache directory where a build
process keeps its dependencies, storing it in an Amazon Simple Storage Service (S3) bucket, Google
Cloud Services (GCS) bucket, or an Open Container Initiative (OCI) repository.

When you use the cache-upload step action, the step action calculates a hash based on certain files in
your build. You must provide a regular expression to select these files. The cache-upload step action
stores an image that contains the content of your cache directory, indexed with the hash.

When you use the cache-fetch step action, the step action calculates the same hash. Then it checks
whether a cached image for this hash is already available. If the image is available, the step action
populates your cache directory with the cached content. If the image is not available, the directory
remains as it was.

After using the cache-fetch step action, you can run the build process. If the cache is successfully
fetched, it includes the dependencies that the build process downloaded previously. If the cache was
not fetched, the build process downloads dependencies through its normal procedure.

The result of cache-fetch indicates whether a cached image was fetched. The subsequent cache-
upload step action can use the result and skip uploading a new cache image if the cache for the current
hash was already available.

The following example task retrieves the source from a repository, fetches the cache (if available), runs
a Maven build, and then, if the cache was not fetched, uploads the new cached image of the build
directory.

Example usage of the cache-fetch and cache-upload step actions in a task

apiVersion: tekton.dev/v1
kind: Task
metadata:
name: java-demo-task
spec:
workspaces:
- name: source
params:
- name: repo_url
type: string
default: https://github.com/sample-organization/sample-java-project.qgit
- name: revision
type: string
default: main
- name: registry
type: string
default: image-registry.openshift-image-registry.svc:5000/sample-project/mvn-cache
- name: image
type: string
default: openjdk:latest
- name: buildCommand
type: string
default: "maven -Dmaven.repo.local=${LOCAL_CACHE_REPOQ} install"
- name: cachePatterns
type: array
default: ["**pom.xml"]
- name: force-cache-upload
type: string
default: "false"

109

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

steps:
- name: create-repo
image: $(params.image)
script: |
mkdir -p $(workspaces.source.path)/repo
chmod 777 $(workspaces.source.path)/repo
- name: fetch-repo
ref:
resolver: cluster
params:
- name: name
value: git-clone
- name: namespace
value: openshift-pipelines
- name: kind
value: stepaction
params:
- name: OUTPUT_PATH
value: $(workspaces.source.path)/repo
- name: URL
value: $(params.repo_url)
- name: REVISION
value: $(params.revision)
- name: cache-fetch
ref:
resolver: cluster
params:
- name: name
value: cache-fetch
- name: namespace
value: openshift-pipelines
- name: kind
value: stepaction
params:
- name: PATTERNS
value: $(params.cachePatterns)
- name: SOURCE
value: oci://$(params.registry):{{hash}}
- name: CACHE_PATH
value: $(workspaces.source.path)/cache
- name: WORKING_DIR
value: $(workspaces.source.path)/repo
- name: run-build
image: $(params.image)
workingDir: $(workspaces.source.path)/repo
env:
- name: LOCAL_CACHE_REPO
value: $(workspaces.source.path)/cache/repo
script: |
set -X
$(params.buildCommand)
echo "Cache size is $(du -sh $(workspaces.source.path)/cache)"
- name: cache-upload
ref:
resolver: cluster
params:

110

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

- name: name
value: cache-upload
- name: namespace
value: openshift-pipelines
- name: kind
value: stepaction
params:
- name: PATTERNS
value: $(params.cachePatterns)
- name: TARGET
value: oci://$(params.registry):{{hash}}
- name: CACHE_PATH
value: $(workspaces.source.path)/cache
- name: WORKING_DIR
value: $(workspaces.source.path)/repo
- name: FORCE_CACHE_UPLOAD
value: $(params.force-cache-upload)

Table 3.67. Supported parameters for thecache-fetch step action

Parameter Description Type Default value

PATTERNS Regular expression for selecting files to array
compute the hash. For example, for a Go
project, you can use go.mod files to
compute the cache, and then the value of
this parameter is **/go.sum (where **
accounts for subdirectories of any depth).

SOURCE Source URI for fetching the cache; use string
{{hash}} to specify the cache hash. The
supported types are OCi (example:
oci://quay.io/example-user/go-
cache:{{hash}}) and s3 (example:
s3://example-bucket/{{hash}})

CACHE_PATH Path for extracting the cache content. string
Normally this path is in a workspace.

WORKING_DIR Path where the files for calculating the string
hash are located.

INSECURE If "true", use insecure mode for fetching string "false"
the cache.

GOOGLE_APPL The path where Google credentials are string

ICATION_CRED located. Ignored if empty.

ENTIALS

AWS CONFIG_ Path to the AWS configuration file. string

FILE Ignored if empty.

m

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Parameter Description Default value

AWS SHARED_ Path to the AWS credentials file. Ignored string
CREDENTIALS _ if empty.

FILE
BLOB_QUERY_ Blob query parameters for configuring string
PARAMS S3, GCS, or Azure. Use these optional

parameters for additional features such as
S3 acceleration, FIPS, or path-style
addressing.

Table 3.68. Results that the cache-fetch step action returns

Result Type Description

fetched string "true" if the step has fetched the cache or''false" if
the step has not fetched the cache.

Table 3.69. Supported parameters for thecache-upload step action

Parameter Description Default value

PATTERNS Regular expression for selecting files to array
compute the hash. For example, for a Go
project, you can use go.mod files to
compute the cache, and then the value of
this parameter is **/go.sum (where **
accounts for subdirectories of any depth).

TARGET Target URI for uploading the cache; use string
{{hash}} to specify the cache hash. The
supported types are OCi (example:
oci://quay.io/example-user/go-
cache:{{hash}}) and s3 (example:
s3://example-bucket/{{hash}})

CACHE_PATH Path for cache content, which the step string
packs into the image. Normally this path is
in a workspace.

WORKING_DIR Path where the files for calculating the string
hash are located.

INSECURE If "true", use insecure mode for string "false"
uploading the cache.

12

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Parameter Description Type Default value

FETCHED If "true", the cache for this hash was string "false"
already fetched.

FORCE_CACHE If "true", the step uploads the cache even string "false"
_UPLOAD if it was fetched previously.

GOOGLE_APPL The path where Google credentials are string

ICATION_CRED located. Ignored if empty.

ENTIALS

AWS CONFIG_ Path to the AWS configuration file. string

FILE Ignored if empty.

AWS SHARED_ Path to the AWS credentials file. Ignored string
CREDENTIALS _ if empty.

FILE
BLOB_QUERY_ Blob query parameters for configuring string
PARAMS 33, GCS, or Azure. Use these optional

parameters for additional features such as
S3 acceleration, FIPS, or path-style
addressing.

The cache-upload step action returns no results.

3.10. ABOUT NON-VERSIONED AND VERSIONED TASKS AND STEP
ACTIONS

The openshift-pipelines namespace includes versioned tasks and step actions alongside standard non-
versioned tasks and step actions. For example, installing the Red Hat OpenShift Pipelines Operator
version 1.18 creates the following items:

e buildah-1-18-0 versioned task

e buildah non-versioned task

e git-clone-1-18-0 versioned StepAction definition

e git-clone non-versioned StepAction definition
Non-versioned and versioned tasks and step actions have the same metadata, behavior, and
specifications, including params, workspaces, and steps. However, they behave differently when you

disable them or upgrade the Operator.

Before adopting non-versioned or versioned tasks and step actions as a standard in production
environments, cluster administrators might consider their advantages and disadvantages.

Table 3.70. Advantages and disadvantages of non-versioned and versioned tasks and step actions

13

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Advantages Disadvantages

Non-versioned tasks and step
actions

Versioned tasks and step
actions

If you prefer deploying
pipelines with the latest
updates and bug fixes,
use non-versioned tasks
and step actions.

Upgrading the Operator
upgrades the non-
versioned tasks and step
actions, which consumes
fewer resources than
multiple versioned tasks
and step actions.

If you prefer pipelines in
production that do not
change after a version
update, use versioned
tasks and step actions.

When you install a new
version of the Operator,
the versioned tasks and
step actions from the
current minor version
and the immediate
previous minor version
are retained.

If you deploy pipelines
that use non-versioned
tasks and step actions,
they might break after an
Operator upgrade if the
automatically upgraded
tasks and step actions
are not backward-
compatible.

If you continue using the
earlier versions, you
might miss the latest
features and critical
security updates.

After an upgrade, the
Operator cannot manage
the earlier versioned
tasks and step actions. If
you delete the earlier
versions manually, you
cannot restore them.

After an upgrade, the
Operator can delete
versioned tasks and step
actions from versions
earlier than the previous
minor release. When you
install a new version of
and the versioned tasks
or step actions from an
earlier version are
deleted, pipelines that
use the versioned tasks
from the earlier version
stop working.

Non-versioned and versioned tasks and step actions have different naming conventions, and the Red
Hat OpenShift Pipelines Operator upgrades them differently.

Table 3.71. Differences between non-versioned and versioned tasks and step actions

Nomenclature Upgrade

14

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

Nomenclature Upgrade

Non-versioned tasks and step
actions only contain the name of
the task or step action. For
example, the name of the non-
versioned task of Buildah installed
with Operator v1.18 is buildah.

Non-versioned tasks and step
actions

Versioned tasks and step actions
contain the name, followed by the
version as a suffix. For example,
the name of the versioned task of
Buildah installed with Operator
v1.18 is buildah-1-18-0.

Versioned tasks and step
actions

3.11. ADDITIONAL RESOURCES

® Using Tekton Hub with OpenShift Pipelines

When you upgrade the Operator,
it updates the non-versioned
tasks and step actions with the
latest changes. The name remains
unchanged.

Upgrading the Operator installs
the latest version of versioned
tasks and step actions, retains the
immediate previous version, and
deletes the earlier versions. The
latest version corresponds to the
upgraded Operator. For example,
installing Operator 1.18 installs the
buildah-1-18-0 task, retains the
buildah-1-17-0 task, and deletes
earlier versions such as buildah-
1-16-0.

115

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/custom_tekton_hub_instance/#using-tekton-hub-with-openshift-pipelines

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

CHAPTER 4. USING MANUAL APPROVAL IN OPENSHIFT
PIPELINES

You can specify a manual approval task in a pipeline. When the pipeline reaches this task, it pauses and
awaits approval from one or several OpenShift Container Platform users. If any of the users chooses to
rejects the task instead of approving it, the pipeline fails. The manual approval gate controller provides
this functionality.

IMPORTANT

The manual approval gate is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

4.1. ENABLING THE MANUAL APPROVAL GATE CONTROLLER

To use manual approval tasks, you must first enable the manual approval gate controller.

Prerequisites

® You installed the Red Hat OpenShift Pipelines Operator in your cluster.
® You are logged on to the cluster using the oc command-line utility.

® You have administrator permissions for the openshift-pipelines namespace.

Procedure

1. Create a file named manual-approval-gate-cr.yaml with the following manifest for the
ManualApprovalGate custom resource (CR):

apiVersion: operator.tekton.dev/vialphat
kind: ManualApprovalGate
metadata:
name: manual-approval-gate
spec:
targetNamespace: openshift-pipelines

2. Apply the ManualApprovalGate CR by entering the following command:
I $ oc apply -f manual-approval-gate-cr.yaml
3. Verify that the manual approval gate controller is running by entering the following command:

I $ oc get manualapprovalgates.operator.tekton.dev

Example output

16

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 4. USING MANUAL APPROVAL IN OPENSHIFT PIPELINES

NAME VERSION READY REASON
manual-approval-gate v0.1.0 True

Ensure that the READY status is True. If it is not True, wait for a few minutes and enter the
command again. The controller might take some time to reach a ready state.

4.2. SPECIFYING A MANUAL APPROVAL TASK

You can specify a manual approval task in your pipeline. When the execution of a pipeline run reaches
this task, the pipeline run stops and awaits approval from one or several users.

Prerequisites

® You enabled the manual approver gate controller.

® You created a YAML specification of a pipeline.

Procedure

e Specify an ApprovalTask in the pipeline, as shown in the following example:

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
name: example-manual-approval-pipeline
spec:
tasks:
#...
- name: example-manual-approval-task
taskRef:
apiVersion: openshift-pipelines.org/vialphat
kind: ApprovalTask
params:
- name: approvers
value:
- user1
- user2
- user3
- name: description
value: Example manual approval task - please approve or reject
- name: numberOfApprovalsRequired
value: 2'
- name: timeout
value: '60m'
#...

Table 4.1. Parameters for a manual approval task

Parameter Type Description

approvers array The OpenShift Container
Platform users who can
approve the task.

17

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

Parameter Type Description

description string Optional: The description of
the approval task. OpenShift
Pipelines displays the
description to the user who can
approve or reject the task.

numberOfApprovalsRequi string The number of approvals from

red different users that the task
requires.

timeout string Optional: The timeout period

for approval. If the task does
not receive the configured
number of approvals during
this period, the pipeline run
fails. The default timeoutis 1
hour.

4.3. APPROVING A MANUAL APPROVAL TASK

When you run a pipeline that includes an approval task and the execution reaches the approval task, the
pipeline run pauses and waits for user approval or rejection.

Users can approve or reject the task by using either the web console or the opc command line utility.

If any one of the approvers configured in the task rejects the task, the pipeline run fails.

If one user approves the task but the configured number of approvals is still not reached, the same user
can change to rejecting the task and the pipeline run fails

4.3.1. Approving a manual approval task by using the web console

You can approve or reject a manual approval task by using the OpenShift Container Platform web
console.

If you are listed as an approver in a manual approval task and a pipeline run reaches this task, the web
console displays a notification. You can view a list of tasks that require your approval and approve or
reject these tasks.

Prerequisites

® You enabled the OpenShift Pipelines console plugin.

Procedure
1. View a list of tasks that you can approve by completing one of the following actions:

® When a notification about a task requiring your approval displays, click Go to Approvals tab
in this notification.

18

CHAPTER 4. USING MANUAL APPROVAL IN OPENSHIFT PIPELINES

® |n the Administrator perspective menu, select Pipelines — Pipelines and then click the
Approvals tab.

® |nthe Developer perspective menu, select Pipelines and then click the Approvals tab.

® |n the PipelineRun details window, in the Details tab, click the rectangle that represents
the manual approval task. The list displays only the approval for this task.

® |n the PipelineRun details window, click the ApprovalTasks tab. The list displays only the
approval for this pipeline run.

2. Inthe list of approval tasks, in the line that represents the task that you want to approve, click

the icon and then select one of the following options:

® To approve the task, select Approve.
® Toreject the task, select Reject.
3. Enter a message in the Reason field.

4. Click Submit.

Additional resources

® Enabling the OpenShift Pipelines console plugin

4.3.2. Approving a manual approval task by using the command line

You can approve or reject a manual approval task by using the opc command-line utility. You can view a
list of tasks for which you are an approver and approve or reject the tasks that are pending approval.

Prerequisites

® You downloaded and installed the opc command-line utility. This utility is available in the same
package as the tkn command-line utility.

® You are logged on to the cluster using the oc command-line utility.

Procedure

1. View a list of manual approval tasks for which you are listed as an approver by entering the
following command:

I $ opc approvaltask list

Example output

NAME NumberOfApprovalsRequired PendingApprovals Rejected
STATUS

manual-approval-pipeline-01w6e1-task-2 2 0 0 Approved
manual-approval-pipeline-6ywv82-task-2 2 2 0 Rejected
manual-approval-pipeline-90gyki-task-2 2 2 0 Pending
manual-approval-pipeline-jyrkb3-task-2 2 1 1 Rejected

19

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

2. Optional: To view information about a manual approval task, including its name, namespace,
pipeline run name, list of approvers, and current status, enter the following command:

I $ opc approvaltask describe <approval_task_name>

3. Approve or reject a manual approval task as necessary:

® To approve a manual approval task, enter the following command:
I $ opc approvaltask approve <approval_task_name>
Optionally, you can specify a message for the approval by using the -m parameter:
I $ opc approvaltask approve <approval_task_name> -m <message>

® Toreject a manual approval task, enter the following command:
I $ opc approvaltask reject <approval_task_name>

Optionally, you can specify a message for the rejection by using the -m parameter:

I $ opc approvaltask reject <approval_task_name> -m <message>

Additional resources

® |nstalling tkn

120

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/pipelines_cli_tkn_reference/#installing-tkn

CHAPTER 5. USING RED HAT ENTITLEMENTS IN PIPELINES

CHAPTER 5. USING RED HAT ENTITLEMENTS IN PIPELINES

If you have Red Hat Enterprise Linux (RHEL) entitlements, you can use these entitlements to build
container images in your pipelines.

The Insight Operator automatically manages your entitlements after you import them into this operator
from Simple Common Access (SCA). This operator provides a secret named etc-pki-entitlement in the
openshift-config-managed namespace.

You can use Red Hat entitlements in your pipelines in one of the following two ways:

® Manually copy the secret into the namespace of the pipeline. This method is least complex if
you have a limited number of pipeline namespaces.

® Use the Shared Resources Container Storage Interface (CSI) Driver Operator to share the
secret between namespaces automatically.

5.1. PREREQUISITES

® Youlogged on to your OpenShift Container Platform cluster using the o¢ command line tool.

® You enabled the Insights Operator feature on your OpenShift Container Platform cluster. If you
want to use the Shared Resources CSI Driver operator to share the secret between
namespaces, you must also enable the Shared Resources CSl driver. For information about
enabling features, including the Insights Operator and Shared Resources CSI Driver, see
Enabling features using feature gates.

NOTE

After you enable the Insights Operator, you must wait for some time to ensure
that the cluster updates all the nodes with this operator. You can monitor the
status of all nodes by entering the following command:

I $ oc get nodes -w

To verify that the Insights Operator is active, check that the insights-operator
pod is running in the openshift-insights namespace by entering the following
command:

I $ oc get pods -n openshift-insights

® You configured the importing of your Red Hat entitlements into the Insights Operator. For
information about importing the entitlements, see Importing simple content access
entitlements with Insights Operator.

NOTE

To verify that the Insights Operator made your entitlements available, is active,
check that the etc-pki-entitlement secret is present in the openshift-config-
managed namespace by entering the following command:

I $ oc get secret etc-pki-entitlement -n openshift-config-managed

121

https://docs.openshift.com/container-platform/latest/nodes/clusters/nodes-cluster-enabling-features.html
https://docs.openshift.com/container-platform/latest/support/remote_health_monitoring/insights-operator-simple-access.html

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

5.2. USING RED HAT ENTITLEMENTS BY MANUALLY COPYING THE
ETC-PKI-ENTITLEMENT SECRET

You can copy the etc-pki-entitlement secret from the openshift-config-managed namespace into the
namespace of your pipeline. You can then configure your pipeline to use this secret for the Buildah task.

Prerequisites

® You installed the jg package on your system. This package is available in Red Hat Enterprise
Linux (RHEL).

Procedure

1. Copy the etc-pki-entitlement secret from the openshift-config-managed namespace into the
namespace of your pipeline by running the following command:

$ oc get secret etc-pki-entittement -n openshift-config-managed -o json |\
jq 'del(.metadata.resourceVersion)' | jq 'del(.metadata.creationTimestamp)' | \
jq 'del(.metadata.uid)' | jq 'del(.metadata.namespace)’ | \
oc -n <pipeline_namespace> create -f -

ﬂ Replace <pipeline_namespace> with the namespace of your pipeline.

2. Inyour Buildah task definition, use the buildah task provided in the openshift-pipelines
namespace or a copy of this task and define the rhel-entitlement workspace, as shown in the
following example.

3. Inyour task run or pipeline run that runs the Buildah task, assign the etc-pki-entitlement secret
to the rhel-entitlement workspace, as in the following example.

Example pipeline run definition, including the pipeline and task definitions, that uses Red
Hat entitlements

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
name: buildah-pr-test
spec:
workspaces:
- name: shared-workspace
volumeClaimTemplate:
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
- name: dockerconfig
secret:
secretName: regred
- name: rhel-entitlement
secret:
secretName: etc-pki-entitlement

122

CHAPTER 5. USING RED HAT ENTITLEMENTS IN PIPELINES

pipelineSpec:
workspaces:
- name: shared-workspace
- name: dockerconfig
- name: rhel-entitlement

tasks:
#...
- name: buildah
taskRef:
resolver: cluster
params:
- name: kind
value: task

- name: name

value: buildah
- name: namespace
value: openshift-pipelines
workspaces:
- name: source
workspace: shared-workspace
- name: dockerconfig
workspace: dockerconfig
- name: rhel-entitlement 6
workspace: rhel-entitlement
params:
- name: IMAGE
value: <image_where_you_want_to_push>

ﬂ The definition of the rhel-entitlement workspace in the pipeline run, assigning the etc-pki-
entitlement secret to the workspace

9 The definition of the rhel-entitlement workspace in the pipeline definition

g The definition of the rhel-entitlement workspace in the task definition

5.3. USING RED HAT ENTITLEMENTS BY SHARING THE SECRET
USING THE SHARED RESOURCES CSI DRIVER OPERATOR

You can set up sharing of the etc-pki-entitlement secret from the openshift-config-managed
namespace to other namespaces using the Shared Resources Container Storage Interface (CSI) Driver
Operator. You can then configure your pipeline to use this secret for the Buildah task.

Prerequisites

® You are logged on to your OpenShift Container Platform cluster using the o¢c command line
utility as a user with cluster administrator permissions.

® You enabled the Shared Resources CSI Driver operator on your OpenShift Container Platform
cluster.

Procedure

1. Create a SharedSecret custom resource (CR) for sharing the etc-pki-entitlement secret by
running the following command:

123

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

$ oc apply -f - <<EOF
apiVersion: sharedresource.openshift.io/vialphai
kind: SharedSecret
metadata:
name: shared-rhel-entitlement
spec:
secretRef:
name: etc-pki-entitlement
namespace: openshift-config-managed
EOF

2. Create an RBAC role that permits access to the shared secret by running the following
command:

$ oc apply -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: shared-resource-rhel-entitlement
namespace: <pipeline_namespace> ﬂ
rules:
- apiGroups:
- sharedresource.openshift.io
resources:
- sharedsecrets
resourceNames:
- shared-rhel-entitlement
verbs:
- use
EOF

ﬂ Replace <pipeline_namespace> with the namespace of your pipeline.

3. Assign the role to the pipeline service account by running the following command:

$ oc create rolebinding shared-resource-rhel-entitlement --role=shared-shared-resource-rhel-
entitlement \

--serviceaccount=<pipeline-namespace>:pipeline ﬂ

ﬂ Replace <pipeline-namespace> with the namespace of your pipeline.

NOTE

If you changed the default service account for OpenShift Pipelines or if you
define a custom service account in the pipeline run or task run, assign the role to
this account instead of the pipeline account.

4. Inyour Buildah task definition, use the buildah task provided in the openshift-pipelines
namespace or a copy of this task and define the rhel-entitlement workspace, as shown in the
following example.

124

CHAPTER 5. USING RED HAT ENTITLEMENTS IN PIPELINES

5. Inyour task run or pipeline run that runs the Buildah task, assign the shared secret to the rhel-
entitlement workspace, as in the following example.

Example pipeline run definition, including the pipeline and task definitions, that uses Red
Hat entitlements

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
name: buildah-pr-test-csi
spec:
workspaces:
- name: shared-workspace
volumeClaimTemplate:
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
- name: dockerconfig
secret:
secretName: regred
- name: rhel-entitlement
Csi:
readOnly: true
driver: csi.sharedresource.openshift.io
volumeAttributes:
sharedSecret: shared-rhel-entitlement
pipelineSpec:
workspaces:
- name: shared-workspace
- name: dockerconfig
- name: rhel-entitlement
tasks:
#...
- name: buildah
taskRef:
resolver: cluster
params:
- name: kind
value: task
- name: name
value: buildah
- name: namespace
value: openshift-pipelines
workspaces:
- name: source
workspace: shared-workspace
- name: dockerconfig
workspace: dockerconfig
- name: rhel-entitlement 6
workspace: rhel-entitlement
params:
- name: IMAGE
value: <image_where_you_want_to_push>

125

Red Hat OpenShift Pipelines 1.19 Creating Cl/CD pipelines

ﬂ The definition of the rhel-entitlement workspace in the pipeline run, assigning the shared-rhel-
entitlement CSl shared secret to the workspace

9 The definition of the rhel-entitlement workspace in the pipeline definition

g The definition of the rhel-entitlement workspace in the task definition

5.4. ADDITIONAL RESOURCES

® Simple content access

® Using Insights Operator

Importing simple content access entitlements with Insights Operator

Shared Resource CSI Driver Operator

Changing the default service account for OpenShift Pipelines

126

https://access.redhat.com/articles/simple-content-access
https://docs.openshift.com/container-platform/4.14/support/remote_health_monitoring/using-insights-operator.html
https://docs.openshift.com/container-platform/latest/support/remote_health_monitoring/insights-operator-simple-access.html
https://docs.openshift.com/container-platform/4.14/storage/container_storage_interface/ephemeral-storage-shared-resource-csi-driver-operator.html
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/installing_and_configuring/#op-changing-default-service-account_customizing-configurations-in-the-tektonconfig-cr

	Table of Contents
	CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES
	1.1. PREREQUISITES
	1.2. CREATING A PROJECT AND CHECKING YOUR PIPELINE SERVICE ACCOUNT
	1.3. CREATING PIPELINE TASKS
	1.4. ASSEMBLING A PIPELINE
	1.5. MIRRORING IMAGES TO RUN PIPELINES IN A RESTRICTED ENVIRONMENT
	1.6. RUNNING A PIPELINE
	1.7. ADDING TRIGGERS TO A PIPELINE
	1.8. CONFIGURING EVENT LISTENERS TO SERVE MULTIPLE NAMESPACES
	1.9. CREATING WEBHOOKS
	1.10. TRIGGERING A PIPELINE RUN
	1.11. ENABLING MONITORING OF EVENT LISTENERS FOR TRIGGERS FOR USER-DEFINED PROJECTS
	1.12. CONFIGURING PULL REQUEST CAPABILITIES IN GITHUB INTERCEPTOR
	1.12.1. Filtering pull requests using GitHub Interceptor
	1.12.2. Validating pull requests using GitHub Interceptors

	1.13. ADDITIONAL RESOURCES

	CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE
	2.1. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE DEVELOPER PERSPECTIVE
	Prerequisites
	2.1.1. Constructing pipelines using the Pipeline builder
	2.1.2. Creating OpenShift Pipelines along with applications
	2.1.3. Adding a GitHub repository containing pipelines
	2.1.4. Interacting with pipelines using the Developer perspective
	2.1.5. Starting pipelines from Pipelines view
	2.1.6. Starting pipelines from Topology view
	2.1.7. Interacting with pipelines from Topology view
	2.1.8. Editing pipelines
	2.1.9. Deleting pipelines

	2.2. ADDITIONAL RESOURCES
	2.3. CREATING PIPELINE TEMPLATES IN THE ADMINISTRATOR PERSPECTIVE
	2.4. PIPELINE EXECUTION STATISTICS IN THE WEB CONSOLE
	2.4.1. Enabling the OpenShift Pipelines console plugin
	2.4.2. Viewing the statistics for all pipelines together
	2.4.3. Viewing the statistics for a specific pipeline

	CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS
	3.1. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION FROM A TEKTON CATALOG
	3.1.1. Configuring the hub resolver
	3.1.2. Specifying a remote pipeline, task, or step action using the hub resolver

	3.2. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION FROM A TEKTON BUNDLE
	3.2.1. Configuring the bundles resolver
	3.2.2. Specifying a remote pipeline, task, or step action using the bundles resolver

	3.3. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION WITH ANONYMOUS GIT CLONING
	3.3.1. Configuring the Git resolver for anonymous Git cloning
	3.3.2. Specifying a remote pipeline, task, or step action by using the Git resolver for anonymous cloning

	3.4. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION WITH AN AUTHENTICATED GIT API
	3.4.1. Configuring the Git resolver for an authenticated API
	3.4.2. Configuring multiple Git providers
	3.4.3. Specifying a remote pipeline, task, or step action using the Git resolver with the authenticated SCM API
	3.4.4. Specifying multiple Git providers
	3.4.5. Specifying a remote pipeline or task by using the Git resolver with the authenticated SCM API overriding the Git resolver configuration

	3.5. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION BY USING THE HTTP RESOLVER
	3.5.1. Configuring the HTTP resolver
	3.5.2. Specifying a remote pipeline, task, or step action with the HTTP Resolver

	3.6. SPECIFYING A PIPELINE, TASK, OR STEP ACTION FROM THE SAME CLUSTER
	3.6.1. Configuring the cluster resolver
	3.6.2. Specifying a pipeline, task, or step action from the same cluster using the cluster resolver

	3.7. TASKS PROVIDED IN THE OPENSHIFT PIPELINES NAMESPACE
	buildah
	git-cli
	git-clone
	kn
	kn-apply
	maven
	openshift-client
	s2i-dotnet
	s2i-go
	s2i-java
	s2i-nodejs
	s2i-perl
	s2i-php
	s2i-python
	s2i-ruby
	skopeo-copy
	tkn

	3.8. COMMUNITY TASKS PROVIDED IN THE OPENSHIFT PIPELINES NAMESPACE
	argocd-task-sync-and-wait
	helm-upgrade-from-repo
	helm-upgrade-from-source
	jib-maven
	kubeconfig-creator
	pull-request
	trigger-jenkins-job

	3.9. STEP ACTION DEFINITIONS PROVIDED WITH OPENSHIFT PIPELINES
	git-clone
	cache-upload and cache-fetch

	3.10. ABOUT NON-VERSIONED AND VERSIONED TASKS AND STEP ACTIONS
	3.11. ADDITIONAL RESOURCES

	CHAPTER 4. USING MANUAL APPROVAL IN OPENSHIFT PIPELINES
	4.1. ENABLING THE MANUAL APPROVAL GATE CONTROLLER
	4.2. SPECIFYING A MANUAL APPROVAL TASK
	4.3. APPROVING A MANUAL APPROVAL TASK
	4.3.1. Approving a manual approval task by using the web console
	4.3.2. Approving a manual approval task by using the command line

	CHAPTER 5. USING RED HAT ENTITLEMENTS IN PIPELINES
	5.1. PREREQUISITES
	5.2. USING RED HAT ENTITLEMENTS BY MANUALLY COPYING THE ETC-PKI-ENTITLEMENT SECRET
	5.3. USING RED HAT ENTITLEMENTS BY SHARING THE SECRET USING THE SHARED RESOURCES CSI DRIVER OPERATOR
	5.4. ADDITIONAL RESOURCES

