
Red Hat OpenShift Pipelines 1.19

Creating CI/CD pipelines

Getting started with creating and running tasks and pipelines in OpenShift Pipelines

Last Updated: 2025-07-15

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

Getting started with creating and running tasks and pipelines in OpenShift Pipelines

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about creating and running tasks and pipelines in OpenShift
Pipelines.

. .

. .

. .

Table of Contents

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES
1.1. PREREQUISITES
1.2. CREATING A PROJECT AND CHECKING YOUR PIPELINE SERVICE ACCOUNT
1.3. CREATING PIPELINE TASKS
1.4. ASSEMBLING A PIPELINE
1.5. MIRRORING IMAGES TO RUN PIPELINES IN A RESTRICTED ENVIRONMENT
1.6. RUNNING A PIPELINE
1.7. ADDING TRIGGERS TO A PIPELINE
1.8. CONFIGURING EVENT LISTENERS TO SERVE MULTIPLE NAMESPACES
1.9. CREATING WEBHOOKS
1.10. TRIGGERING A PIPELINE RUN
1.11. ENABLING MONITORING OF EVENT LISTENERS FOR TRIGGERS FOR USER-DEFINED PROJECTS
1.12. CONFIGURING PULL REQUEST CAPABILITIES IN GITHUB INTERCEPTOR

1.12.1. Filtering pull requests using GitHub Interceptor
1.12.2. Validating pull requests using GitHub Interceptors

1.13. ADDITIONAL RESOURCES

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE
2.1. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE DEVELOPER PERSPECTIVE

Prerequisites
2.1.1. Constructing pipelines using the Pipeline builder
2.1.2. Creating OpenShift Pipelines along with applications
2.1.3. Adding a GitHub repository containing pipelines
2.1.4. Interacting with pipelines using the Developer perspective
2.1.5. Starting pipelines from Pipelines view
2.1.6. Starting pipelines from Topology view
2.1.7. Interacting with pipelines from Topology view
2.1.8. Editing pipelines
2.1.9. Deleting pipelines

2.2. ADDITIONAL RESOURCES
2.3. CREATING PIPELINE TEMPLATES IN THE ADMINISTRATOR PERSPECTIVE
2.4. PIPELINE EXECUTION STATISTICS IN THE WEB CONSOLE

2.4.1. Enabling the OpenShift Pipelines console plugin
2.4.2. Viewing the statistics for all pipelines together
2.4.3. Viewing the statistics for a specific pipeline

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS
3.1. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION FROM A TEKTON CATALOG

3.1.1. Configuring the hub resolver
3.1.2. Specifying a remote pipeline, task, or step action using the hub resolver

3.2. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION FROM A TEKTON BUNDLE
3.2.1. Configuring the bundles resolver
3.2.2. Specifying a remote pipeline, task, or step action using the bundles resolver

3.3. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION WITH ANONYMOUS GIT CLONING
3.3.1. Configuring the Git resolver for anonymous Git cloning
3.3.2. Specifying a remote pipeline, task, or step action by using the Git resolver for anonymous cloning

3.4. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION WITH AN AUTHENTICATED GIT API
3.4.1. Configuring the Git resolver for an authenticated API
3.4.2. Configuring multiple Git providers
3.4.3. Specifying a remote pipeline, task, or step action using the Git resolver with the authenticated SCM API

3.4.4. Specifying multiple Git providers

4
4
4
5
5
8
11

13
17
19

20
21
22
22
24
25

27
27
27
27
30
30
33
35
37
38
38
39
39
39
40
40
41
41

43
43
44
45
48
48
48
51
51
52
54
54
56

57
60

Table of Contents

1

. .

. .

3.4.5. Specifying a remote pipeline or task by using the Git resolver with the authenticated SCM API overriding
the Git resolver configuration

3.5. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION BY USING THE HTTP RESOLVER
3.5.1. Configuring the HTTP resolver
3.5.2. Specifying a remote pipeline, task, or step action with the HTTP Resolver

3.6. SPECIFYING A PIPELINE, TASK, OR STEP ACTION FROM THE SAME CLUSTER
3.6.1. Configuring the cluster resolver
3.6.2. Specifying a pipeline, task, or step action from the same cluster using the cluster resolver

3.7. TASKS PROVIDED IN THE OPENSHIFT PIPELINES NAMESPACE
buildah
git-cli
git-clone
kn
kn-apply
maven
openshift-client
s2i-dotnet
s2i-go
s2i-java
s2i-nodejs
s2i-perl
s2i-php
s2i-python
s2i-ruby
skopeo-copy
tkn

3.8. COMMUNITY TASKS PROVIDED IN THE OPENSHIFT PIPELINES NAMESPACE
argocd-task-sync-and-wait
helm-upgrade-from-repo
helm-upgrade-from-source
jib-maven
kubeconfig-creator
pull-request
trigger-jenkins-job

3.9. STEP ACTION DEFINITIONS PROVIDED WITH OPENSHIFT PIPELINES
git-clone
cache-upload and cache-fetch

3.10. ABOUT NON-VERSIONED AND VERSIONED TASKS AND STEP ACTIONS
3.11. ADDITIONAL RESOURCES

CHAPTER 4. USING MANUAL APPROVAL IN OPENSHIFT PIPELINES
4.1. ENABLING THE MANUAL APPROVAL GATE CONTROLLER
4.2. SPECIFYING A MANUAL APPROVAL TASK
4.3. APPROVING A MANUAL APPROVAL TASK

4.3.1. Approving a manual approval task by using the web console
4.3.2. Approving a manual approval task by using the command line

CHAPTER 5. USING RED HAT ENTITLEMENTS IN PIPELINES
5.1. PREREQUISITES
5.2. USING RED HAT ENTITLEMENTS BY MANUALLY COPYING THE ETC-PKI-ENTITLEMENT SECRET
5.3. USING RED HAT ENTITLEMENTS BY SHARING THE SECRET USING THE SHARED RESOURCES CSI
DRIVER OPERATOR
5.4. ADDITIONAL RESOURCES

61
62
62
63
64
65
65
68
68
70
72
75
76
76
78
79
81

82
84
86
88
90
91

93
95
96
96
97
98

100
102
103
104
105
105
108
113
115

116
116
117
118
118
119

121
121
122

123
126

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

2

Table of Contents

3

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR
APPLICATIONS USING OPENSHIFT PIPELINES

With Red Hat OpenShift Pipelines, you can create a customized CI/CD solution to build, test, and deploy
your application.

To create a full-fledged, self-serving CI/CD pipeline for an application, perform the following tasks:

Create custom tasks, or install existing reusable tasks.

Create and define the delivery pipeline for your application.

Provide a storage volume or filesystem that is attached to a workspace for the pipeline
execution, using one of the following approaches:

Specify a volume claim template that creates a persistent volume claim

Specify a persistent volume claim

Create a PipelineRun object to instantiate and invoke the pipeline.

Add triggers to capture events in the source repository.

This section uses the pipelines-tutorial example to demonstrate the preceding tasks. The example uses
a simple application which consists of:

A front-end interface, pipelines-vote-ui, with the source code in the pipelines-vote-ui Git
repository.

A back-end interface, pipelines-vote-api, with the source code in the pipelines-vote-api Git
repository.

The apply-manifests and update-deployment tasks in the pipelines-tutorial Git repository.

1.1. PREREQUISITES

You have access to an OpenShift Container Platform cluster.

You have installed OpenShift Pipelines using the Red Hat OpenShift Pipelines Operator listed in
the OpenShift OperatorHub. After it is installed, it is applicable to the entire cluster.

You have installed OpenShift Pipelines CLI.

You have forked the front-end pipelines-vote-ui and back-end pipelines-vote-api Git
repositories using your GitHub ID, and have administrator access to these repositories.

Optional: You have cloned the pipelines-tutorial Git repository.

1.2. CREATING A PROJECT AND CHECKING YOUR PIPELINE SERVICE
ACCOUNT

Procedure

1. Log in to your OpenShift Container Platform cluster:

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

4

https://github.com/openshift/pipelines-vote-ui/tree/pipelines-1.19
https://github.com/openshift/pipelines-vote-api/tree/pipelines-1.19
https://github.com/openshift/pipelines-tutorial/tree/pipelines-1.19
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/installing_and_configuring/#installing-pipelines
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/pipelines_cli_tkn_reference/#installing-tkn
https://github.com/openshift/pipelines-vote-ui/tree/pipelines-1.19
https://github.com/openshift/pipelines-vote-api/tree/pipelines-1.19
https://github.com/openshift/pipelines-tutorial/tree/pipelines-1.19

$ oc login -u <login> -p <password> https://openshift.example.com:6443

2. Create a project for the sample application. For this example workflow, create the pipelines-
tutorial project:

$ oc new-project pipelines-tutorial

NOTE

If you create a project with a different name, be sure to update the resource
URLs used in the example with your project name.

3. View the pipeline service account:
Red Hat OpenShift Pipelines Operator adds and configures a service account named pipeline
that has sufficient permissions to build and push an image. This service account is used by the
PipelineRun object.

$ oc get serviceaccount pipeline

1.3. CREATING PIPELINE TASKS

Procedure

1. Install the apply-manifests and update-deployment task resources from the pipelines-
tutorial repository, which contains a list of reusable tasks for pipelines:

2. Use the tkn task list command to list the tasks you created:

The output verifies that the apply-manifests and update-deployment task resources were
created:

1.4. ASSEMBLING A PIPELINE

A pipeline represents a CI/CD flow and is defined by the tasks to be executed. It is designed to be
generic and reusable in multiple applications and environments.

A pipeline specifies how the tasks interact with each other and their order of execution using the from
and runAfter parameters. It uses the workspaces field to specify one or more volumes that each task in
the pipeline requires during execution.

In this section, you will create a pipeline that takes the source code of the application from GitHub, and

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/01_pipeline/01_apply_manifest_task.yaml
$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/01_pipeline/02_update_deployment_task.yaml

$ tkn task list

NAME DESCRIPTION AGE
apply-manifests 1 minute ago
update-deployment 48 seconds ago

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

5

In this section, you will create a pipeline that takes the source code of the application from GitHub, and
then builds and deploys it on OpenShift Container Platform.

The pipeline performs the following tasks for the back-end application pipelines-vote-api and front-
end application pipelines-vote-ui:

Clones the source code of the application from the Git repository by referring to the git-url and
git-revision parameters.

Builds the container image using the buildah task provided in the openshift-pipelines
namespace.

Pushes the image to the OpenShift image registry by referring to the image parameter.

Deploys the new image on OpenShift Container Platform by using the apply-manifests and
update-deployment tasks.

Procedure

1. Copy the contents of the following sample pipeline YAML file and save it:

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
 workspaces:
 - name: shared-workspace
 params:
 - name: deployment-name
 type: string
 description: name of the deployment to be patched
 - name: git-url
 type: string
 description: url of the git repo for the code of deployment
 - name: git-revision
 type: string
 description: revision to be used from repo of the code for deployment
 default: "pipelines-1.19"
 - name: IMAGE
 type: string
 description: image to be built from the code
 tasks:
 - name: fetch-repository
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: git-clone
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: output
 workspace: shared-workspace

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

6

The pipeline definition abstracts away the specifics of the Git source repository and image
registries. These details are added as params when a pipeline is triggered and executed.

2. Create the pipeline:

$ oc create -f <pipeline-yaml-file-name.yaml>

Alternatively, you can also execute the YAML file directly from the Git repository:

 params:
 - name: URL
 value: $(params.git-url)
 - name: SUBDIRECTORY
 value: ""
 - name: DELETE_EXISTING
 value: "true"
 - name: REVISION
 value: $(params.git-revision)
 - name: build-image
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: buildah
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
 params:
 - name: IMAGE
 value: $(params.IMAGE)
 runAfter:
 - fetch-repository
 - name: apply-manifests
 taskRef:
 name: apply-manifests
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter:
 - build-image
 - name: update-deployment
 taskRef:
 name: update-deployment
 params:
 - name: deployment
 value: $(params.deployment-name)
 - name: IMAGE
 value: $(params.IMAGE)
 runAfter:
 - apply-manifests

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

7

3. Use the tkn pipeline list command to verify that the pipeline is added to the application:

$ tkn pipeline list

The output verifies that the build-and-deploy pipeline was created:

NAME AGE LAST RUN STARTED DURATION STATUS
build-and-deploy 1 minute ago --- --- --- ---

1.5. MIRRORING IMAGES TO RUN PIPELINES IN A RESTRICTED
ENVIRONMENT

To run OpenShift Pipelines in a disconnected cluster or a cluster provisioned in a restricted
environment, ensure that either the Samples Operator is configured for a restricted network, or a cluster
administrator has created a cluster with a mirrored registry.

The following procedure uses the pipelines-tutorial example to create a pipeline for an application in a
restricted environment using a cluster with a mirrored registry. To ensure that the pipelines-tutorial
example works in a restricted environment, you must mirror the respective builder images from the
mirror registry for the front-end interface, pipelines-vote-ui; back-end interface, pipelines-vote-api;
and the cli.

Procedure

1. Mirror the builder image from the mirror registry for the front-end interface, pipelines-vote-ui.

a. Verify that the required images tag is not imported:

Example output

b. Mirror the supported image tag to the private registry:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/01_pipeline/04_pipeline.yaml

$ oc describe imagestream python -n openshift

Name: python
Namespace: openshift
[...]

3.8-ubi9 (latest)
 tagged from registry.redhat.io/ubi9/python-38:latest
 prefer registry pullthrough when referencing this tag

 Build and run Python 3.8 applications on UBI 8. For more information about using this
builder image, including OpenShift considerations, see https://github.com/sclorg/s2i-
python-container/blob/master/3.8/README.md.
 Tags: builder, python
 Supports: python:3.8, python
 Example Repo: https://github.com/sclorg/django-ex.git

[...]

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

8

c. Import the image:

You must periodically re-import the image. The --scheduled flag enables automatic re-
import of the image.

d. Verify that the images with the given tag have been imported:

Example output

2. Mirror the builder image from the mirror registry for the back-end interface, pipelines-vote-api.

a. Verify that the required images tag is not imported:

Example output

b. Mirror the supported image tag to the private registry:

$ oc image mirror registry.redhat.io/ubi9/python-39:latest <mirror-registry>:
<port>/ubi9/python-39

$ oc tag <mirror-registry>:<port>/ubi9/python-39 python:latest --scheduled -n openshift

$ oc describe imagestream python -n openshift

Name: python
Namespace: openshift
[...]

latest
 updates automatically from registry <mirror-registry>:<port>/ubi9/python-39

 * <mirror-registry>:<port>/ubi9/python-39@sha256:3ee...

[...]

$ oc describe imagestream golang -n openshift

Name: golang
Namespace: openshift
[...]

1.14.7-ubi8 (latest)
 tagged from registry.redhat.io/ubi8/go-toolset:1.14.7
 prefer registry pullthrough when referencing this tag

 Build and run Go applications on UBI 8. For more information about using this builder
image, including OpenShift considerations, see https://github.com/sclorg/golang-
container/blob/master/README.md.
 Tags: builder, golang, go
 Supports: golang
 Example Repo: https://github.com/sclorg/golang-ex.git

[...]

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

9

c. Import the image:

You must periodically re-import the image. The --scheduled flag enables automatic re-
import of the image.

d. Verify that the images with the given tag have been imported:

Example output

3. Mirror the builder image from the mirror registry for the cli.

a. Verify that the required images tag is not imported:

Example output

b. Mirror the supported image tag to the private registry:

$ oc image mirror registry.redhat.io/ubi9/go-toolset:latest <mirror-registry>:
<port>/ubi9/go-toolset

$ oc tag <mirror-registry>:<port>/ubi9/go-toolset golang:latest --scheduled -n openshift

$ oc describe imagestream golang -n openshift

Name: golang
Namespace: openshift
[...]

latest
 updates automatically from registry <mirror-registry>:<port>/ubi9/go-toolset

 * <mirror-registry>:<port>/ubi9/go-
toolset@sha256:59a74d581df3a2bd63ab55f7ac106677694bf612a1fe9e7e3e1487f55c421
b37

[...]

$ oc describe imagestream cli -n openshift

Name: cli
Namespace: openshift
[...]

latest
 updates automatically from registry quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

 * quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

[...]

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

10

c. Import the image:

You must periodically re-import the image. The --scheduled flag enables automatic re-
import of the image.

d. Verify that the images with the given tag have been imported:

Example output

Additional resources

Configuring Samples Operator for a restricted cluster

About disconnected installation mirroring

1.6. RUNNING A PIPELINE

A PipelineRun resource starts a pipeline and ties it to the Git and image resources that should be used
for the specific invocation. It automatically creates and starts the TaskRun resources for each task in
the pipeline.

Procedure

1. Start the pipeline for the back-end application:

$ oc image mirror quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551
<mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-dev:latest

$ oc tag <mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-dev cli:latest --
scheduled -n openshift

$ oc describe imagestream cli -n openshift

Name: cli
Namespace: openshift
[...]

latest
 updates automatically from registry <mirror-registry>:<port>/openshift-release-dev/ocp-
v4.0-art-dev

 * <mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

[...]

$ tkn pipeline start build-and-deploy \
 -w name=shared-
workspace,volumeClaimTemplateFile=https://raw.githubusercontent.com/openshift/pipelines-
tutorial/pipelines-1.19/01_pipeline/03_persistent_volume_claim.yaml \
 -p deployment-name=pipelines-vote-api \

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

11

https://docs.openshift.com/container-platform/latest/openshift_images/configuring-samples-operator.html#samples-operator-restricted-network-install
https://docs.openshift.com/container-platform/4.17/disconnected/mirroring/index.html

The previous command uses a volume claim template, which creates a persistent volume claim
for the pipeline execution.

2. To track the progress of the pipeline run, enter the following command::

The <pipelinerun_id> in the above command is the ID for the PipelineRun that was returned in
the output of the previous command.

3. Start the pipeline for the front-end application:

4. To track the progress of the pipeline run, enter the following command:

The <pipelinerun_id> in the above command is the ID for the PipelineRun that was returned in
the output of the previous command.

5. After a few minutes, use tkn pipelinerun list command to verify that the pipeline ran
successfully by listing all the pipeline runs:

The output lists the pipeline runs:

6. Get the application route:

Note the output of the previous command. You can access the application using this route.

7. To rerun the last pipeline run, using the pipeline resources and service account of the previous
pipeline, run:

 -p git-url=https://github.com/openshift/pipelines-vote-api.git \
 -p IMAGE='image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/pipelines-
vote-api' \
 --use-param-defaults

$ tkn pipelinerun logs <pipelinerun_id> -f

$ tkn pipeline start build-and-deploy \
 -w name=shared-
workspace,volumeClaimTemplateFile=https://raw.githubusercontent.com/openshift/pipelines-
tutorial/pipelines-1.19/01_pipeline/03_persistent_volume_claim.yaml \
 -p deployment-name=pipelines-vote-ui \
 -p git-url=https://github.com/openshift/pipelines-vote-ui.git \
 -p IMAGE='image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/pipelines-
vote-ui' \
 --use-param-defaults

$ tkn pipelinerun logs <pipelinerun_id> -f

$ tkn pipelinerun list

 NAME STARTED DURATION STATUS
 build-and-deploy-run-xy7rw 1 hour ago 2 minutes Succeeded
 build-and-deploy-run-z2rz8 1 hour ago 19 minutes Succeeded

$ oc get route pipelines-vote-ui --template='http://{{.spec.host}}'

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

12

Additional resources

Authenticating pipelines with repositories using secrets

1.7. ADDING TRIGGERS TO A PIPELINE

Triggers enable pipelines to respond to external GitHub events, such as push events and pull requests.
After you assemble and start a pipeline for the application, add the TriggerBinding, TriggerTemplate,
Trigger, and EventListener resources to capture the GitHub events.

Procedure

1. Copy the content of the following sample TriggerBinding YAML file and save it:

2. Create the TriggerBinding resource:

Alternatively, you can create the TriggerBinding resource directly from the pipelines-tutorial
Git repository:

3. Copy the content of the following sample TriggerTemplate YAML file and save it:

$ tkn pipeline start build-and-deploy --last

apiVersion: triggers.tekton.dev/v1beta1
kind: TriggerBinding
metadata:
 name: vote-app
spec:
 params:
 - name: git-repo-url
 value: $(body.repository.url)
 - name: git-repo-name
 value: $(body.repository.name)
 - name: git-revision
 value: $(body.head_commit.id)

$ oc create -f <triggerbinding-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/03_triggers/01_binding.yaml

apiVersion: triggers.tekton.dev/v1beta1
kind: TriggerTemplate
metadata:
 name: vote-app
spec:
 params:
 - name: git-repo-url
 description: The git repository url
 - name: git-revision
 description: The git revision
 default: pipelines-1.19
 - name: git-repo-name

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

13

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/securing_openshift_pipelines/#authenticating-pipelines-repos-using-secrets

The template specifies a volume claim template to create a persistent volume claim for defining
the storage volume for the workspace. Therefore, you do not need to create a persistent volume
claim to provide data storage.

4. Create the TriggerTemplate resource:

Alternatively, you can create the TriggerTemplate resource directly from the pipelines-tutorial
Git repository:

5. Copy the contents of the following sample Trigger YAML file and save it:

 description: The name of the deployment to be created / patched

 resourcetemplates:
 - apiVersion: tekton.dev/v1
 kind: PipelineRun
 metadata:
 generateName: build-deploy-$(tt.params.git-repo-name)-
 spec:
 taskRunTemplate:
 serviceAccountName: pipeline
 pipelineRef:
 name: build-and-deploy
 params:
 - name: deployment-name
 value: $(tt.params.git-repo-name)
 - name: git-url
 value: $(tt.params.git-repo-url)
 - name: git-revision
 value: $(tt.params.git-revision)
 - name: IMAGE
 value: image-registry.openshift-image-registry.svc:5000/pipelines-
tutorial/$(tt.params.git-repo-name)
 workspaces:
 - name: shared-workspace
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

$ oc create -f <triggertemplate-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/03_triggers/02_template.yaml

apiVersion: triggers.tekton.dev/v1beta1
kind: Trigger
metadata:
 name: vote-trigger
spec:
 serviceAccountName: pipeline
 bindings:

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

14

6. Create the Trigger resource:

Alternatively, you can create the Trigger resource directly from the pipelines-tutorial Git
repository:

7. Copy the contents of the following sample EventListener YAML file and save it:

Alternatively, if you have not defined a trigger custom resource, add the binding and template
spec to the EventListener YAML file, instead of referring to the name of the trigger:

8. Create the EventListener resource by performing the following steps:

To create an EventListener resource using a secure HTTPS connection:

a. Add a label to enable the secure HTTPS connection to the Eventlistener resource:

b. Create the EventListener resource:

Alternatively, you can create the EvenListener resource directly from the pipelines-
tutorial Git repository:

 - ref: vote-app
 template:
 ref: vote-app

$ oc create -f <trigger-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/03_triggers/03_trigger.yaml

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: vote-app
spec:
 serviceAccountName: pipeline
 triggers:
 - triggerRef: vote-trigger

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: vote-app
spec:
 serviceAccountName: pipeline
 triggers:
 - bindings:
 - ref: vote-app
 template:
 ref: vote-app

$ oc label namespace <ns-name> operator.tekton.dev/enable-annotation=enabled

$ oc create -f <eventlistener-yaml-file-name.yaml>

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

15

1 2

3

4

c. Create a route with the re-encrypt TLS termination:

Alternatively, you can create a re-encrypt TLS termination YAML file to create a
secured route.

Example Re-encrypt TLS Termination YAML of the Secured Route

The name of the object, which is limited to 63 characters.

The termination field is set to reencrypt. This is the only required tls field.

Required for re-encryption. destinationCACertificate specifies a CA certificate to
validate the endpoint certificate, securing the connection from the router to the
destination pods. If the service is using a service signing certificate, or the
administrator has specified a default CA certificate for the router and the service
has a certificate signed by that CA, this field can be omitted.

See oc create route reencrypt --help for more options.

To create an EventListener resource using an insecure HTTP connection:

a. Create the EventListener resource.

b. Expose the EventListener service as an OpenShift Container Platform route to make it
publicly accessible:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/03_triggers/04_event_listener.yaml

$ oc create route reencrypt --service=<svc-name> --cert=tls.crt --key=tls.key --ca-
cert=ca.crt --hostname=<hostname>

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-passthrough-secured 1
spec:
 host: <hostname>
 to:
 kind: Service
 name: frontend 2
 tls:
 termination: reencrypt 3
 key: [as in edge termination]
 certificate: [as in edge termination]
 caCertificate: [as in edge termination]
 destinationCACertificate: |- 4
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

$ oc expose svc el-vote-app

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

16

1.8. CONFIGURING EVENT LISTENERS TO SERVE MULTIPLE
NAMESPACES

NOTE

You can skip this section if you want to create a basic CI/CD pipeline. However, if your
deployment strategy involves multiple namespaces, you can configure event listeners to
serve multiple namespaces.

To increase reusability of EvenListener objects, cluster administrators can configure and deploy them
as multi-tenant event listeners that serve multiple namespaces.

Procedure

1. Configure cluster-wide fetch permission for the event listener.

a. Set a service account name to be used in the ClusterRoleBinding and EventListener
objects. For example, el-sa.

Example ServiceAccount.yaml

b. In the rules section of the ClusterRole.yaml file, set appropriate permissions for every
event listener deployment to function cluster-wide.

Example ClusterRole.yaml

c. Configure cluster role binding with the appropriate service account name and cluster role
name.

Example ClusterRoleBinding.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 name: el-sa

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: el-sel-clusterrole
rules:
- apiGroups: ["triggers.tekton.dev"]
 resources: ["eventlisteners", "clustertriggerbindings", "clusterinterceptors",
"triggerbindings", "triggertemplates", "triggers"]
 verbs: ["get", "list", "watch"]
- apiGroups: [""]
 resources: ["configmaps", "secrets"]
 verbs: ["get", "list", "watch"]
- apiGroups: [""]
 resources: ["serviceaccounts"]
 verbs: ["impersonate"]
...

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

17

2. In the spec parameter of the event listener, add the service account name, for example el-sa.
Fill the namespaceSelector parameter with names of namespaces where event listener is
intended to serve.

Example EventListener.yaml

3. Create a service account with the necessary permissions, for example foo-trigger-sa. Use it for
role binding the triggers.

Example ServiceAccount.yaml

Example RoleBinding.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: el-mul-clusterrolebinding
subjects:
- kind: ServiceAccount
 name: el-sa
 namespace: default
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: el-sel-clusterrole
...

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: namespace-selector-listener
spec:
 taskRunTemplate:
 serviceAccountName: el-sa
 namespaceSelector:
 matchNames:
 - default
 - foo
...

apiVersion: v1
kind: ServiceAccount
metadata:
 name: foo-trigger-sa
 namespace: foo
...

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: triggercr-rolebinding
 namespace: foo
subjects:
- kind: ServiceAccount

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

18

4. Create a trigger with the appropriate trigger template, trigger binding, and service account
name.

Example Trigger.yaml

1.9. CREATING WEBHOOKS

Webhooks are HTTP POST messages that are received by the event listeners whenever a configured
event occurs in your repository. The event payload is then mapped to trigger bindings, and processed by
trigger templates. The trigger templates eventually start one or more pipeline runs, leading to the
creation and deployment of Kubernetes resources.

In this section, you will configure a webhook URL on your forked Git repositories pipelines-vote-ui and
pipelines-vote-api. This URL points to the publicly accessible EventListener service route.

NOTE

Adding webhooks requires administrative privileges to the repository. If you do not have
administrative access to your repository, contact your system administrator for adding
webhooks.

Procedure

 name: foo-trigger-sa
 namespace: foo
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: tekton-triggers-eventlistener-roles
...

apiVersion: triggers.tekton.dev/v1beta1
kind: Trigger
metadata:
 name: trigger
 namespace: foo
spec:
 taskRunTemplate:
 serviceAccountName: foo-trigger-sa
 interceptors:
 - ref:
 name: "github"
 params:
 - name: "secretRef"
 value:
 secretName: github-secret
 secretKey: secretToken
 - name: "eventTypes"
 value: ["push"]
 bindings:
 - ref: vote-app
 template:
 ref: vote-app
...

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

19

1. Get the webhook URL:

For a secure HTTPS connection:

$ echo "URL: $(oc get route el-vote-app --template='https://{{.spec.host}}')"

For an HTTP (insecure) connection:

$ echo "URL: $(oc get route el-vote-app --template='http://{{.spec.host}}')"

Note the URL obtained in the output.

2. Configure webhooks manually on the front-end repository:

a. Open the front-end Git repository pipelines-vote-ui in your browser.

b. Click Settings → Webhooks → Add Webhook

c. On the Webhooks/Add Webhook page:

i. Enter the webhook URL from step 1 in Payload URL field

ii. Select application/json for the Content type

iii. Specify the secret in the Secret field

iv. Ensure that the Just the push event is selected

v. Select Active

vi. Click Add Webhook

3. Repeat step 2 for the back-end repository pipelines-vote-api.

1.10. TRIGGERING A PIPELINE RUN

Whenever a push event occurs in the Git repository, the configured webhook sends an event payload to
the publicly exposed EventListener service route. The EventListener service of the application
processes the payload, and passes it to the relevant TriggerBinding and TriggerTemplate resource
pairs. The TriggerBinding resource extracts the parameters, and the TriggerTemplate resource uses
these parameters and specifies the way the resources must be created. This may rebuild and redeploy
the application.

In this section, you push an empty commit to the front-end pipelines-vote-ui repository, which then
triggers the pipeline run.

Procedure

1. From the terminal, clone your forked Git repository pipelines-vote-ui:

2. Push an empty commit:

$ git clone git@github.com:<your GitHub ID>/pipelines-vote-ui.git -b pipelines-1.19

$ git commit -m "empty-commit" --allow-empty && git push origin pipelines-1.19

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

20

3. Check if the pipeline run was triggered:

$ tkn pipelinerun list

Notice that a new pipeline run was initiated.

1.11. ENABLING MONITORING OF EVENT LISTENERS FOR TRIGGERS
FOR USER-DEFINED PROJECTS

As a cluster administrator, to gather event listener metrics for the Triggers service in a user-defined
project and display them in the OpenShift Container Platform web console, you can create a service
monitor for each event listener. On receiving an HTTP request, event listeners for the Triggers service
return three metrics — eventlistener_http_duration_seconds, eventlistener_event_count, and
eventlistener_triggered_resources.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

You have installed the Red Hat OpenShift Pipelines Operator.

You have enabled monitoring for user-defined projects.

Procedure

1. For each event listener, create a service monitor. For example, to view the metrics for the
github-listener event listener in the test namespace, create the following service monitor:

2. Test the service monitor by sending a request to the event listener. For example, push an empty

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 app.kubernetes.io/managed-by: EventListener
 app.kubernetes.io/part-of: Triggers
 eventlistener: github-listener
 annotations:
 networkoperator.openshift.io/ignore-errors: ""
 name: el-monitor
 namespace: test
spec:
 endpoints:
 - interval: 10s
 port: http-metrics
 jobLabel: name
 namespaceSelector:
 matchNames:
 - test
 selector:
 matchLabels:
 app.kubernetes.io/managed-by: EventListener
 app.kubernetes.io/part-of: Triggers
 eventlistener: github-listener
...

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

21

2. Test the service monitor by sending a request to the event listener. For example, push an empty
commit:

3. On the OpenShift Container Platform web console, navigate to Administrator → Observe →
Metrics.

4. To view a metric, search by its name. For example, to view the details of the
eventlistener_http_resources metric for the github-listener event listener, search using the
eventlistener_http_resources keyword.

Additional resources

Enabling monitoring for user-defined projects

1.12. CONFIGURING PULL REQUEST CAPABILITIES IN GITHUB
INTERCEPTOR

With GitHub Interceptor, you can create logic that validates and filters GitHub webhooks. For example,
you can validate the webhook’s origin and filter incoming events based on specified criteria. When you
use GitHub Interceptor to filter event data, you can specify the event types that Interceptor can accept
in a field. In Red Hat OpenShift Pipelines, you can use the following capabilities of GitHub Interceptor:

Filter pull request events based on the files that have been changed

Validate pull requests based on configured GitHub owners

1.12.1. Filtering pull requests using GitHub Interceptor

You can filter GitHub events based on the files that have been changed for push and pull events. This
helps you to execute a pipeline for only relevant changes in your Git repository. GitHub Interceptor adds
a comma delimited list of all files that have been changed and uses the CEL Interceptor to filter
incoming events based on the changed files. The list of changed files is added to the changed_files
property of the event payload in the top-level extensions field.

Prerequisites

You have installed the Red Hat OpenShift Pipelines Operator.

Procedure

1. Perform one of the following steps:

For a public GitHub repository, set the value of the addChangedFiles parameter to true in
the YAML configuration file shown below:

$ git commit -m "empty-commit" --allow-empty && git push origin main

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: github-add-changed-files-pr-listener
spec:
 triggers:
 - name: github-listener

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

22

https://docs.openshift.com/container-platform/latest/observability/monitoring/enabling-monitoring-for-user-defined-projects.html

For a private GitHub repository, set the value of the addChangedFiles parameter to true
and provide the access token details, secretName and secretKey in the YAML
configuration file shown below:

 interceptors:
 - ref:
 name: "github"
 kind: ClusterInterceptor
 apiVersion: triggers.tekton.dev
 params:
 - name: "secretRef"
 value:
 secretName: github-secret
 secretKey: secretToken
 - name: "eventTypes"
 value: ["pull_request", "push"]
 - name: "addChangedFiles"
 value:
 enabled: true
 - ref:
 name: cel
 params:
 - name: filter
 value: extensions.changed_files.matches('controllers/')
...

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: github-add-changed-files-pr-listener
spec:
 triggers:
 - name: github-listener
 interceptors:
 - ref:
 name: "github"
 kind: ClusterInterceptor
 apiVersion: triggers.tekton.dev
 params:
 - name: "secretRef"
 value:
 secretName: github-secret
 secretKey: secretToken
 - name: "eventTypes"
 value: ["pull_request", "push"]
 - name: "addChangedFiles"
 value:
 enabled: true
 personalAccessToken:
 secretName: github-pat
 secretKey: token
 - ref:
 name: cel
 params:

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

23

2. Save the configuration file.

1.12.2. Validating pull requests using GitHub Interceptors

You can use GitHub Interceptor to validate the processing of pull requests based on the GitHub owners
configured for a repository. This validation helps you to prevent unnecessary execution of a
PipelineRun or TaskRun object. GitHub Interceptor processes a pull request only if the user name is
listed as an owner or if a configurable comment is issued by an owner of the repository. For example,
when you comment /ok-to-test on a pull request as an owner, a PipelineRun or TaskRun is triggered.

NOTE

Owners are configured in an OWNERS file at the root of the repository.

Prerequisites

You have installed the Red Hat OpenShift Pipelines Operator.

Procedure

1. Create a secret string value.

2. Configure the GitHub webhook with that value.

3. Create a Kubernetes secret named secretRef that contains your secret value.

4. Pass the Kubernetes secret as a reference to your GitHub Interceptor.

5. Create an owners file and add the list of approvers into the approvers section.

6. Perform one of the following steps:

For a public GitHub repository, set the value of the githubOwners parameter to true in the
YAML configuration file shown below:

 - name: filter
 value: extensions.changed_files.matches('controllers/')
...

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: github-owners-listener
spec:
 triggers:
 - name: github-listener
 interceptors:
 - ref:
 name: "github"
 kind: ClusterInterceptor
 apiVersion: triggers.tekton.dev
 params:
 - name: "secretRef"
 value:
 secretName: github-secret

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

24

For a private GitHub repository, set the value of the githubOwners parameter to true and
provide the access token details, secretName and secretKey in the YAML configuration
file shown below:

NOTE

The checkType parameter is used to specify the GitHub owners who need
authentication. You can set its value to orgMembers, repoMembers, or all.

7. Save the configuration file.

1.13. ADDITIONAL RESOURCES

To include Pipelines as Code along with the application source code in the same repository, see
About Pipelines as Code.

For more details on pipelines in the Developer perspective, see the Working with OpenShift

 secretKey: secretToken
 - name: "eventTypes"
 value: ["pull_request", "issue_comment"]
 - name: "githubOwners"
 value:
 enabled: true
 checkType: none
...

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: github-owners-listener
spec:
 triggers:
 - name: github-listener
 interceptors:
 - ref:
 name: "github"
 kind: ClusterInterceptor
 apiVersion: triggers.tekton.dev
 params:
 - name: "secretRef"
 value:
 secretName: github-secret
 secretKey: secretToken
 - name: "eventTypes"
 value: ["pull_request", "issue_comment"]
 - name: "githubOwners"
 value:
 enabled: true
 personalAccessToken:
 secretName: github-token
 secretKey: secretToken
 checkType: all
...

CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

25

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/pipelines_as_code/#about-pipelines-as-code

For more details on pipelines in the Developer perspective, see the Working with OpenShift
Pipelines in the web console section.

To learn more about Security Context Constraints (SCCs), see the Managing Security Context
Constraints section.

For more examples of reusable tasks, see the OpenShift Catalog repository. Additionally, you
can also see the Tekton Catalog in the Tekton project.

To install and deploy a custom instance of Tekton Hub for reusable tasks and pipelines, see
Using Tekton Hub with Red Hat OpenShift Pipelines .

For more details on re-encrypt TLS termination, see Re-encryption Termination.

For more details on secured routes, see the Secured routes section.

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

26

https://docs.openshift.com/container-platform/latest/authentication/managing-security-context-constraints.html
https://github.com/openshift/pipelines-catalog
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/custom_tekton_hub_instance/#using-tekton-hub-with-openshift-pipelines
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#re-encryption-termination
https://docs.openshift.com/container-platform/latest/networking/routes/secured-routes.html

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES
IN THE WEB CONSOLE

You can use the Administrator or Developer perspective to create and modify Pipeline, PipelineRun,
and Repository objects from the Pipelines page in the OpenShift Container Platform web console. You
can also use the +Add page in the Developer perspective of the web console to create CI/CD pipelines
for your software delivery process.

2.1. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE
DEVELOPER PERSPECTIVE

In the Developer perspective, you can access the following options for creating pipelines from the +Add
page:

Use the +Add → Pipelines → Pipeline builder option to create customized pipelines for your
application.

Use the +Add → From Git option to create pipelines using pipeline templates and resources
while creating an application.

After you create the pipelines for your application, you can view and visually interact with the deployed
pipelines in the Pipelines view. You can also use the Topology view to interact with the pipelines
created using the From Git option. You must apply custom labels to pipelines created using the
Pipeline builder to see them in the Topology view.

Prerequisites

You have access to an OpenShift Container Platform cluster and have switched to the
Developer perspective.

You have the OpenShift Pipelines Operator installed in your cluster.

You are a cluster administrator or a user with create and edit permissions.

You have created a project.

2.1.1. Constructing pipelines using the Pipeline builder

In the Developer perspective of the console, you can use the +Add → Pipeline → Pipeline builder
option to:

Configure pipelines using either the Pipeline builder or the YAML view.

Construct a pipeline flow using existing tasks. When you install the OpenShift Pipelines
Operator, it adds reusable pipeline tasks to your cluster that can be used with the cluster
resolver.

Specify the type of resources required for the pipeline run, and if required, add additional
parameters to the pipeline.

Reference these pipeline resources in each of the tasks in the pipeline as input and output
resources.

If required, reference any additional parameters added to the pipeline in the task. The
parameters for a task are prepopulated based on the specifications of the task.

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

27

https://docs.openshift.com/container-platform/latest/web_console/web-console-overview.html#about-developer-perspective_web-console-overview
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/installing_and_configuring/#installing-pipelines

Use the Operator-installed, reusable snippets and samples to create detailed pipelines.

Search and add tasks from your configured local Tekton Hub instance.

IMPORTANT

In the developer perspective, you can create a customized pipeline using your own set of
curated tasks. To search, install, and upgrade your tasks directly from the developer
console, your cluster administrator needs to install and deploy a local Tekton Hub
instance and link that hub to the OpenShift Container Platform cluster. For more details,
see Using Tekton Hub with OpenShift Pipelines in the Additional resources section. If you
do not deploy any local Tekton Hub instance, by default, you can only access namespace
tasks and public Tekton Hub tasks.

Procedure

1. In the +Add view of the Developer perspective, click the Pipeline tile to see the Pipeline
builder page.

2. Configure the pipeline using either the Pipeline builder view or the YAML view.

NOTE

The Pipeline builder view supports a limited number of fields whereas the YAML
view supports all available fields. Optionally, you can also use the Operator-
installed, reusable snippets and samples to create detailed pipelines.

Figure 2.1. YAML view

3. Configure your pipeline by using Pipeline builder:

a. In the Name field, enter a unique name for the pipeline.

b. In the Tasks section:

i. Click Add task.

ii. Search for a task using the quick search field and select the required task from the
displayed list.

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

28

iii. Click Add or Install and add. In this example, use the s2i-nodejs task.

NOTE

The search list contains all the Tekton Hub tasks and tasks available in
the cluster. Also, if a task is already installed it will show Add to add the
task whereas it will show Install and add to install and add the task. It will
show Update and add when you add the same task with an updated
version.

To add sequential tasks to the pipeline:

Click the plus icon to the right or left of the task → click Add task.

Search for a task using the quick search field and select the required task from
the displayed list.

Click Add or Install and add.

Figure 2.2. Pipeline builder

To add a final task:

Click the Add finally task → Click Add task.

Search for a task using the quick search field and select the required task from
the displayed list.

Click Add or Install and add.

c. In the Resources section, click Add Resources to specify the name and type of resources
for the pipeline run. These resources are then used by the tasks in the pipeline as inputs and
outputs. For this example:

i. Add an input resource. In the Name field, enter Source, and then from the Resource
Type drop-down list, select Git.

ii. Add an output resource. In the Name field, enter Img, and then from the Resource
Type drop-down list, select Image.

NOTE

A red icon appears next to the task if a resource is missing.

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

29

d. Optional: The Parameters for a task are pre-populated based on the specifications of the
task. If required, use the Add Parameters link in the Parameters section to add additional
parameters.

e. In the Workspaces section, click Add workspace and enter a unique workspace name in the
Name field. You can add multiple workspaces to the pipeline.

f. In the Tasks section, click the s2i-nodejs task to see the side panel with details for the task.
In the task side panel, specify the resources and parameters for the s2i-nodejs task:

i. If required, in the Parameters section, add more parameters to the default ones, by
using the $(params.<param-name>) syntax.

ii. In the Image section, enter Img as specified in the Resources section.

iii. Select a workspace from the source drop-down under Workspaces section.

g. Add resources, parameters, and workspaces to the openshift-client task.

4. Click Create to create and view the pipeline in the Pipeline Details page.

5. Click the Actions drop-down menu then click Start, to see the Start Pipeline page.

6. The Workspaces section lists the workspaces you created earlier. Use the respective drop-
down to specify the volume source for your workspace. You have the following options: Empty
Directory, Config Map, Secret, PersistentVolumeClaim, or VolumeClaimTemplate.

2.1.2. Creating OpenShift Pipelines along with applications

To create pipelines along with applications, use the From Git option in the Add+ view of the Developer
perspective. You can view all of your available pipelines and select the pipelines you want to use to
create applications while importing your code or deploying an image.

The Tekton Hub Integration is enabled by default and you can see tasks from the Tekton Hub that are
supported by your cluster. Administrators can opt out of the Tekton Hub Integration and the Tekton
Hub tasks will no longer be displayed. You can also check whether a webhook URL exists for a generated
pipeline. Default webhooks are added for the pipelines that are created using the +Add flow and the
URL is visible in the side panel of the selected resources in the Topology view.

For more information, see Creating applications using the Developer perspective .

2.1.3. Adding a GitHub repository containing pipelines

In the Developer perspective, you can add your GitHub repository containing pipelines to the OpenShift
Container Platform cluster. This allows you to run pipelines and tasks from your GitHub repository on
the cluster when relevant Git events, such as push or pull requests, are triggered.

NOTE

You can add both public and private GitHub repositories.

Prerequisites

Ensure that your cluster administrator has configured the required GitHub applications in the
administrator perspective.

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

30

https://docs.openshift.com/container-platform/latest/applications/creating_applications/odc-creating-applications-using-developer-perspective.html#odc-importing-codebase-from-git-to-create-application_odc-creating-applications-using-developer-perspective

Procedure

1. In the Developer perspective, choose the namespace or project in which you want to add your
GitHub repository.

2. Navigate to Pipelines using the left navigation pane.

3. Click Create → Repository on the right side of the Pipelines page.

4. Enter your Git Repo URL and the console automatically fetches the repository name.

5. Click Show configuration options. By default, you see only one option Setup a webhook. If you
have a GitHub application configured, you see two options:

Use GitHub App: Select this option to install your GitHub application in your repository.

Setup a webhook: Select this option to add a webhook to your GitHub application.

6. Set up a webhook using one of the following options in the Secret section:

Setup a webhook using Git access token:

a. Enter your personal access token.

b. Click Generate corresponding to the Webhook secret field to generate a new
webhook secret.

NOTE

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

31

NOTE

You can click the link below the Git access token field if you do not have
a personal access token and want to create a new one.

Setup a webhook using Git access token secret:

Select a secret in your namespace from the dropdown list. Depending on the secret you
selected, a webhook secret is automatically generated.

7. Add the webhook secret details to your GitHub repository:

a. Copy the webhook URL and navigate to your GitHub repository settings.

b. Click Webhooks → Add webhook.

c. Copy the Webhook URL from the developer console and paste it in the Payload URL field
of the GitHub repository settings.

d. Select the Content type.

e. Copy the Webhook secret from the developer console and paste it in the Secret field of
the GitHub repository settings.

f. Select one of the SSL verification options.

g. Select the events to trigger this webhook.

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

32

h. Click Add webhook.

8. Navigate back to the developer console and click Add.

9. Read the details of the steps that you have to perform and click Close.

10. View the details of the repository you just created.

NOTE

When importing an application using Import from Git and the Git repository has a .tekton
directory, you can configure pipelines-as-code for your application.

2.1.4. Interacting with pipelines using the Developer perspective

The Pipelines view in the Developer perspective lists all the pipelines in a project, along with the
following details:

The namespace in which the pipeline was created

The last pipeline run

The status of the tasks in the pipeline run

The status of the pipeline run

The creation time of the last pipeline run

Procedure

1. In the Pipelines view of the Developer perspective, select a project from the Project drop-
down list to see the pipelines in that project.

2. Click the required pipeline to see the Pipeline details page.
By default, the Details tab displays a visual representation of all the serial tasks, parallel tasks,
finally tasks, and when expressions in the pipeline. The tasks and the finally tasks are listed in
the lower right portion of the page.

To view the task details, click the listed Tasks and Finally tasks. In addition, you can do the
following:

Use the zoom in, zoom out, fit to screen, and reset view features using the standard icons
displayed in the lower left corner of the Pipeline details visualization.

Change the zoom factor of the pipeline visualization using the mouse wheel.

Hover over the tasks and see the task details.

Figure 2.3. Pipeline details

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

33

Figure 2.3. Pipeline details

3. Optional: On the Pipeline details page, click the Metrics tab to see the following information
about pipelines:

Pipeline Success Ratio

Number of Pipeline Runs

Pipeline Run Duration

Task Run Duration
You can use this information to improve the pipeline workflow and eliminate issues early in
the pipeline lifecycle.

4. Optional: Click the YAML tab to edit the YAML file for the pipeline.

5. Optional: Click the Pipeline Runs tab to see the completed, running, or failed runs for the
pipeline.
The Pipeline Runs tab provides details about the pipeline run, the status of the task, and a link

to debug failed pipeline runs. Use the Options menu to stop a running pipeline, to rerun a
pipeline using the same parameters and resources as that of the previous pipeline execution, or
to delete a pipeline run.

Click the required pipeline run to see the Pipeline Run details page. By default, the Details
tab displays a visual representation of all the serial tasks, parallel tasks, finally tasks, and
when expressions in the pipeline run. The results for successful runs are displayed under the
Pipeline Run results pane at the bottom of the page. Additionally, you would only be able
to see tasks from Tekton Hub which are supported by the cluster. While looking at a task,
you can click the link beside it to jump to the task documentation.

NOTE

The Details section of the Pipeline Run Details page displays a Log Snippet
of the failed pipeline run. Log Snippet provides a general error message and
a snippet of the log. A link to the Logs section provides quick access to the
details about the failed run.

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

34

On the Pipeline Run details page, click the Task Runs tab to see the completed, running,
and failed runs for the task.
The Task Runs tab provides information about the task run along with the links to its task

and pod, and also the status and duration of the task run. Use the Options menu to
delete a task run.

NOTE

The TaskRuns list page features a Manage columns button, which you can
also use to add a Duration column.

Click the required task run to see the Task Run details page. The results for successful runs
are displayed under the Task Run results pane at the bottom of the page.

NOTE

The Details section of the Task Run details page displays a Log Snippet of
the failed task run. Log Snippet provides a general error message and a
snippet of the log. A link to the Logs section provides quick access to the
details about the failed task run.

6. Click the Parameters tab to see the parameters defined in the pipeline. You can also add or edit
additional parameters, as required.

7. Click the Resources tab to see the resources defined in the pipeline. You can also add or edit
additional resources, as required.

2.1.5. Starting pipelines from Pipelines view

After you create a pipeline, you need to start it to execute the included tasks in the defined sequence.
You can start a pipeline from the Pipelines view, the Pipeline Details page, or the Topology view.

Procedure

To start a pipeline using the Pipelines view:

1. In the Pipelines view of the Developer perspective, click the Options menu adjoining a
pipeline, and select Start.

2. The Start Pipeline dialog box displays the Git Resources and the Image Resources based on
the pipeline definition.

NOTE

For pipelines created using the From Git option, the Start Pipeline dialog box
also displays an APP_NAME field in the Parameters section, and all the fields in
the dialog box are prepopulated by the pipeline template.

a. If you have resources in your namespace, the Git Resources and the Image Resources
fields are prepopulated with those resources. If required, use the drop-downs to select or
create the required resources and customize the pipeline run instance.

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

35

3. Optional: Modify the Advanced Options to add the credentials that authenticate the specified
private Git server or the image registry.

a. Under Advanced Options, click Show Credentials Options and select Add Secret.

b. In the Create Source Secret section, specify the following:

i. A unique Secret Name for the secret.

ii. In the Designated provider to be authenticated section, specify the provider to be
authenticated in the Access to field, and the base Server URL.

iii. Select the Authentication Type and provide the credentials:

For the Authentication Type Image Registry Credentials, specify the Registry
Server Address that you want to authenticate, and provide your credentials in the
Username, Password, and Email fields.
Select Add Credentials if you want to specify an additional Registry Server
Address.

For the Authentication Type Basic Authentication, specify the values for the
UserName and Password or Token fields.

For the Authentication Type SSH Keys, specify the value of the SSH Private Key
field.

NOTE

For basic authentication and SSH authentication, you can use
annotations such as:

tekton.dev/git-0: https://github.com

tekton.dev/git-1: https://gitlab.com.

iv. Select the check mark to add the secret.

You can add multiple secrets based upon the number of resources in your pipeline.

4. Click Start to start the pipeline.

5. The PipelineRun details page displays the pipeline being executed. After the pipeline starts,
the tasks and steps within each task are executed. You can:

Use the zoom in, zoom out, fit to screen, and reset view features using the standard icons,
which are in the lower left corner of the PipelineRun details page visualization.

Change the zoom factor of the pipelinerun visualization using the mouse wheel. At specific
zoom factors, the background color of the tasks changes to indicate the error or warning
status.

Hover over the tasks to see the details, such as the time taken to execute each step, task
name, and task status.

Hover over the tasks badge to see the total number of tasks and tasks completed.

Click on a task to see the logs for each step in the task.

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

36

https://github.com
https://gitlab.com

Click the Logs tab to see the logs relating to the execution sequence of the tasks. You can
also expand the pane and download the logs individually or in bulk, by using the relevant
button.

Click the Events tab to see the stream of events generated by a pipeline run.
You can use the Task Runs, Logs, and Events tabs to assist in debugging a failed pipeline
run or a failed task run.

Figure 2.4. Pipeline run details

2.1.6. Starting pipelines from Topology view

For pipelines created using the From Git option, you can use the Topology view to interact with
pipelines after you start them:

NOTE

To see the pipelines created using Pipeline builder in the Topology view, customize the
pipeline labels to link the pipeline with the application workload.

Procedure

1. Click Topology in the left navigation panel.

2. Click the application to display Pipeline Runs in the side panel.

3. In Pipeline Runs, click Start Last Run to start a new pipeline run with the same parameters and
resources as the previous one. This option is disabled if a pipeline run has not been initiated. You
can also start a pipeline run when you create it.

Figure 2.5. Pipelines in Topology view

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

37

Figure 2.5. Pipelines in Topology view

In the Topology page, hover to the left of the application to see the status of its pipeline run. After a
pipeline is added, a bottom left icon indicates that there is an associated pipeline.

2.1.7. Interacting with pipelines from Topology view

The side panel of the application node in the Topology page displays the status of a pipeline run and
you can interact with it.

If a pipeline run does not start automatically, the side panel displays a message that the pipeline
cannot be automatically started, hence it would need to be started manually.

If a pipeline is created but the user has not started the pipeline, its status is not started. When
the user clicks the Not started status icon, the start dialog box opens in the Topology view.

If the pipeline has no build or build config, the Builds section is not visible. If there is a pipeline
and build config, the Builds section is visible.

The side panel displays a Log Snippet when a pipeline run fails on a specific task run. You can
view the Log Snippet in the Pipeline Runs section, under the Resources tab. It provides a
general error message and a snippet of the log. A link to the Logs section provides quick access
to the details about the failed run.

2.1.8. Editing pipelines

You can edit the pipelines in your cluster using the Developer perspective of the web console:

Procedure

1. In the Pipelines view of the Developer perspective, select the pipeline you want to edit to see
the details of the pipeline. In the Pipeline Details page, click Actions and select Edit Pipeline.

2. On the Pipeline builder page, you can perform the following tasks:

Add additional tasks, parameters, or resources to the pipeline.

Click the task you want to modify to see the task details in the side panel and modify the

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

38

Click the task you want to modify to see the task details in the side panel and modify the
required task details, such as the display name, parameters, and resources.

Alternatively, to delete the task, click the task, and in the side panel, click Actions and select
Remove Task.

3. Click Save to save the modified pipeline.

2.1.9. Deleting pipelines

You can delete the pipelines in your cluster using the Developer perspective of the web console.

Procedure

1. In the Pipelines view of the Developer perspective, click the Options menu adjoining a
Pipeline, and select Delete Pipeline.

2. In the Delete Pipeline confirmation prompt, click Delete to confirm the deletion.

2.2. ADDITIONAL RESOURCES

Using Tekton Hub with OpenShift Pipelines

2.3. CREATING PIPELINE TEMPLATES IN THE ADMINISTRATOR
PERSPECTIVE

As a cluster administrator, you can create pipeline templates that developers can reuse when they
create a pipeline on the cluster.

Prerequisites

You have access to an OpenShift Container Platform cluster with cluster administrator
permissions, and have switched to the Administrator perspective.

You have installed the OpenShift Pipelines Operator in your cluster.

Procedure

1. Navigate to the Pipelines page to view existing pipeline templates.

2. Click the icon to go to the Import YAML page.

3. Add the YAML for your pipeline template. The template must include the following information:

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
...
 namespace: openshift 1
 labels:

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

39

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/custom_tekton_hub_instance/#using-tekton-hub-with-openshift-pipelines

1

2

3

The template must be created in the openshift namespace.

The template must contain the pipeline.openshift.io/runtime label. The accepted runtime
values for this label are nodejs, golang, dotnet, java, php, ruby, perl, python, nginx, and
httpd.

The template must contain the pipeline.openshift.io/type: label. The accepted type
values for this label are openshift, knative, and kubernetes.

4. Click Create. After the pipeline has been created, you are taken to the Pipeline details page,
where you can view information about or edit your pipeline.

2.4. PIPELINE EXECUTION STATISTICS IN THE WEB CONSOLE

You can view statistics related to execution of pipelines in the web console.

To view the statistic information, you must complete the following steps:

Install Tekton Results. For more information about installing Tekton Results, see Using Tekton
Results for OpenShift Pipelines observability in the Additional resources section.

Enable the OpenShift Pipelines console plugin.

Statistic information is available for all pipelines together and for each individual pipeline.

IMPORTANT

The OpenShift Pipelines Pipelines console plugin is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Additonal resources

Using Tekton Results for OpenShift Pipelines observability

2.4.1. Enabling the OpenShift Pipelines console plugin

To view the statistic information, you must first enable the OpenShift Pipelines console plugin.

Prerequisites

You installed the Red Hat OpenShift Pipelines Operator in your cluster.

You are logged on to the web console with cluster administrator permissions.

 pipeline.openshift.io/runtime: <runtime> 2
 pipeline.openshift.io/type: <pipeline-type> 3
...

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

40

https://access.redhat.com/support/offerings/techpreview/
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/observability_in_openshift_pipelines/#using-tekton-results-for-openshift-pipelines-observability

IMPORTANT

The OpenShift Pipelines console plugin requires OpenShift Container Platform version
4.15 or a later version.

Procedure

1. In the Administrator perspective of the web console, select Operators → Installed Operators.

2. Click Red Hat OpenShift Pipelines in the table of Operators.

3. In the right pane on the screen, check the status label under Console plugin. The label is either
Enabled or Disabled.

4. If the label is Disabled, click this label. In the window that displays, select Enable and then click
Save.

2.4.2. Viewing the statistics for all pipelines together

You can view consolidated statistic information related to all pipelines on the system.

Prerequisites

You installed the Red Hat OpenShift Pipelines Operator in your cluster.

You installed the OpenShift Pipelines web console plugin.

Procedure

1. In the Administrator perspective of the web console, select Pipelines → Overview.
A statistics overview displays. This overview includes the following information: A graph
reflecting the number and status of pipeline runs over a time period The total, average, and
maximum durations of pipeline execution over the same period. ** The total number of pipeline
runs over the same period.

A table of pipelines also displays. This table lists all pipelines that were run in the time period,
showing their duration and success rate.

2. Optional: Change the settings of the statistics display as necessary:

Project: The project or namespace to display statistics for.

Time range: The time period to display statistics for.

Refresh interval: How often Red Hat OpenShift Pipelines must update the data in the
window while you are viewing it.

2.4.3. Viewing the statistics for a specific pipeline

You can view statistic information related to a particular pipeline.

Prerequisites

You installed the Red Hat OpenShift Pipelines Operator in your cluster.

CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE

41

You installed the OpenShift Pipelines web console plugin.

Procedure

1. In the Administrator perspective of the web console, select Pipelines → Pipelines.

2. Click a pipeline in the list of pipelines. The Pipeline details view displays.

3. Click the Metrics tab.
A statistics overview displays. This overview includes the following information: A graph
reflecting the number and status of pipeline runs over a time period The total, average, and
maximum durations of pipeline execution over the same period. ** The total number of pipeline
runs over the same period.

4. Optional: Change the settings of the statistics display as necessary:

Project: The project or namespace to display statistics for.

Time range: The time period to display statistics for.

Refresh interval: How often Red Hat OpenShift Pipelines must update the data in the
window while you are viewing it.

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

42

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND
STEP ACTIONS USING RESOLVERS

Pipelines and tasks are reusable blocks for your CI/CD processes. You can reuse pipelines or tasks that
you previously developed, or that were developed by others, without having to copy and paste their
definitions. These pipelines or tasks can be available from several types of sources, from other
namespaces on your cluster to public catalogs.

In a pipeline run resource, you can specify a pipeline from an existing source. In a pipeline resource or a
task run resource, you can specify a task from an existing source.

Step actions, defined in StepAction custom resources (CRs), are reusable actions that a single step
within a task completes. When specifying a step, you can reference a StepAction definition from an
existing source.

In these cases, the resolvers in Red Hat OpenShift Pipelines retrieve the pipeline, task, or StepAction
definition from the specified source at run time.

The following resolvers are available in a default installaton of Red Hat OpenShift Pipelines:

Hub resolver

Retrieves a task, pipeline, or StepAction definition from the Pipelines Catalog available on Artifact
Hub or Tekton Hub.

Bundles resolver

Retrieves a task, pipeline, or StepAction definition from a Tekton bundle, which is an OCI image
available from any OCI repository, such as an OpenShift container repository.

Git resolver

Retrieves a task, pipeline, or StepAction definition from a Git repository. You must specify the
repository, the branch, and the path.

HTTP resolver

Retrieves a task, pipeline, or StepAction definition from a remote HTTP or HTTPS URL. You must
specify the URL for authentication.

Cluster resolver

Retrieves a task, pipeline, or StepAction definition that is already created on the same OpenShift
Container Platform cluster in a specific namespace.

An OpenShift Pipelines installation includes a set of standard tasks that you can use in your pipelines.
These tasks are located in the OpenShift Pipelines installation namespace, which is normally the
openshift-pipelines namespace. You can use the cluster resolver to access the tasks.

OpenShift Pipelines also provides a standard StepAction definition. You can use the cluster resolver to
access this definition.

3.1. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION FROM
A TEKTON CATALOG

You can use the hub resolver to specify a remote pipeline, task, or StepAction definition that is defined
either in a public Tekton catalog of Artifact Hub or in an instance of Tekton Hub.

IMPORTANT

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

43

https://artifacthub.io/

1

2

3

4

5

6

7

IMPORTANT

The Artifact Hub project is not supported with Red Hat OpenShift Pipelines. Only the
configuration of Artifact Hub is supported.

3.1.1. Configuring the hub resolver

You can change the default hub for pulling a resource, and the default catalog settings, by configuring
the hub resolver.

Procedure

1. To edit the TektonConfig custom resource, enter the following command:

2. In the TektonConfig custom resource, edit the pipeline.hub-resolver-config spec:

The default Tekton Hub catalog for pulling a resource.

The default Artifact Hub catalog for pulling a task resource.

The default Artifact Hub catalog for pulling a pipeline resource.

The default object kind for references.

The default hub for pulling a resource, either artifact for Artifact Hub or tekton for Tekton
Hub.

The Tekton Hub API used, if the default-type option is set to tekton.

Optional: The Artifact Hub API used, if the default-type option is set to artifact.

IMPORTANT

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 pipeline:
 hub-resolver-config:
 default-tekton-hub-catalog: Tekton 1
 default-artifact-hub-task-catalog: tekton-catalog-tasks 2
 default-artifact-hub-pipeline-catalog: tekton-catalog-pipelines 3
 defailt-kind: pipeline 4
 default-type: tekton 5
 tekton-hub-api: "https://my-custom-tekton-hub.example.com" 6
 artifact-hub-api: "https://my-custom-artifact-hub.example.com" 7

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

44

IMPORTANT

If you set the default-type option to tekton, you must configure your own
instance of the Tekton Hub by setting the tekton-hub-api value.

If you set the default-type option to artifact then the resolver uses the public
hub API at https://artifacthub.io/ by default. You can configure your own Artifact
Hub API by setting the artifact-hub-api value.

3.1.2. Specifying a remote pipeline, task, or step action using the hub resolver

When creating a pipeline run, you can specify a remote pipeline from Artifact Hub or Tekton Hub. When
creating a pipeline or a task run, you can specify a remote task from Artifact Hub or Tekton Hub. When
creating a step within a task, you can reference a remote StepAction definition from Artifact Hub or
Tekton Hub.

Procedure

To specify a remote pipeline, task, or StepAction definition from Artifact Hub or Tekton Hub,
use the following reference format in the pipelineRef, taskRef, or step.ref spec:

Table 3.1. Supported parameters for the hub resolver

Parameter Description Example value

catalog The catalog for pulling the
resource.

Default: tekton-catalog-
tasks (for the task kind);
tekton-catalog-pipelines
(for the pipeline kind).

type The type of the catalog for
pulling the resource. Either
artifact for Artifact Hub or
tekton for Tekton Hub.

Default: artifact

kind Either task or pipeline. Default: task

...
 resolver: hub
 params:
 - name: catalog
 value: <catalog>
 - name: type
 value: <catalog_type>
 - name: kind
 value: [pipeline|task]
 - name: name
 value: <resource_name>
 - name: version
 value: <resource_version>
...

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

45

https://artifacthub.io/

name The name of the task or
pipeline to fetch from the hub.

golang-build

version The version of the task or
pipeline to fetch from the hub.
You must use quotes (")
around the number.

"0.5.0"

Parameter Description Example value

If the pipeline or task requires additional parameters, specify values for these parameters in the
params section of the specification of the pipeline, pipeline run, or task run. The params
section of the pipelineRef or taskRef specification must contain only the parameters that the
resolver supports.

Examples

The following example pipeline run references a remote pipeline from a catalog:

The following example pipeline references a remote task from a catalog:

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: hub-pipeline-reference-demo
spec:
 pipelineRef:
 resolver: hub
 params:
 - name: catalog
 value: tekton-catalog-pipelines
 - name: type
 value: artifact
 - name: kind
 value: pipeline
 - name: name
 value: example-pipeline
 - name: version
 value: "0.1"
 params:
 - name: sample-pipeline-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: pipeline-with-hub-task-reference-demo
spec:
 tasks:
 - name: "cluster-task-reference-demo"
 taskRef:
 resolver: hub
 params:
 - name: catalog

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

46

The following example task run references a remote task from a catalog:

The following example task includes a step that references a StepAction definition from a catalog:

 value: tekton-catalog-tasks
 - name: type
 value: artifact
 - name: kind
 value: task
 - name: name
 value: example-task
 - name: version
 value: "0.6"
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
 name: hub-task-reference-demo
spec:
 taskRef:
 resolver: hub
 params:
 - name: catalog
 value: tekton-catalog-tasks
 - name: type
 value: artifact
 - name: kind
 value: task
 - name: name
 value: example-task
 - name: version
 value: "0.6"
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: hub-stepaction-reference-demo
spec:
 steps:
 - name: example-step
 ref:
 - resolver: hub
 - params:
 - name: catalog
 value: tekton-catalog-stepactions
 - name: type
 value: artifact
 - name: kind
 value: StepAction

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

47

1

2

3.2. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION FROM
A TEKTON BUNDLE

You can use the bundles resolver to specify a remote pipeline, task, or StepAction definition from a
Tekton bundle. A Tekton bundle is an OCI image available from any OCI repository, such as an OpenShift
container repository.

3.2.1. Configuring the bundles resolver

You can change the default service account name and the default kind for pulling resources from a
Tekton bundle by configuring the bundles resolver.

Procedure

1. To edit the TektonConfig custom resource, enter the following command:

2. In the TektonConfig custom resource, edit the pipeline.bundles-resolver-config spec:

The default service account name to use for bundle requests.

The default layer kind in the bundle image.

3.2.2. Specifying a remote pipeline, task, or step action using the bundles resolver

When creating a pipeline run, you can specify a remote pipeline from a Tekton bundle. When creating a
pipeline or a task run, you can specify a remote task from a Tekton bundle. When creating a step within a
task, you can reference a remote StepAction definition from a Tekton bundle.

Procedure

To specify a remote pipeline, task, or StepAction definition from a Tekton bundle, use the
following reference format in the pipelineRef, taskRef, or step.ref spec:

 - name: name
 value: example-stepaction
 - name: version
 value: "0.6"
 params:
 - name: sample-stepaction-parameter
 value: test

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 pipeline:
 bundles-resolver-config:
 default-service-account: pipelines 1
 default-kind: task 2

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

48

Table 3.2. Supported parameters for the bundles resolver

Parameter Description Example value

serviceAccount The name of the service
account to use when
constructing registry
credentials.

default

bundle The bundle URL pointing at the
image to fetch.

gcr.io/tekton-
releases/catalog/upstream
/golang-build:0.1

name The name of the resource to
pull out of the bundle.

golang-build

kind The kind of the resource to pull
out of the bundle.

task

If the pipeline or task requires additional parameters, specify values for these parameters in the
params section of the specification of the pipeline, pipeline run, or task run. The params
section of the pipelineRef or taskRef specification must contain only the parameters that the
resolver supports.

Examples

The following example pipeline run references a remote pipeline from a Tekton bundle:

...
 resolver: bundles
 params:
 - name: bundle
 value: <fully_qualified_image_name>
 - name: name
 value: <resource_name>
 - name: kind
 value: [pipeline|task]
...

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: bundle-pipeline-reference-demo
spec:
 pipelineRef:
 resolver: bundles
 params:
 - name: bundle
 value: registry.example.com:5000/simple/pipeline:latest
 - name: name
 value: hello-pipeline
 - name: kind
 value: pipeline

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

49

The following example pipeline references a remote task from a Tekton bundle:

The following example task run references a remote task from a Tekton bundle:

The following example task includes a step that references a StepAction definition from a Tekton
bundle:

 params:
 - name: sample-pipeline-parameter
 value: test
 - name: username
 value: "pipelines"

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: pipeline-with-bundle-task-reference-demo
spec:
 tasks:
 - name: "bundle-task-demo"
 taskRef:
 resolver: bundles
 params:
 - name: bundle
 value: registry.example.com:5000/advanced/task:latest
 - name: name
 value: hello-world
 - name: kind
 value: task
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
 name: bundle-task-reference-demo
spec:
 taskRef:
 resolver: bundles
 params:
 - name: bundle
 value: registry.example.com:5000/simple/new_task:latest
 - name: name
 value: hello-world
 - name: kind
 value: task
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: bundle-stepaction-reference-demo

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

50

1

2

3.3. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION WITH
ANONYMOUS GIT CLONING

You can use the Git resolver to access a remote pipeline, task, or StepAction definition from a Git
repository. The repository must include a YAML file that defines the pipeline or task. For anonymous
access, you can clone repositories with the resolver without needing authentication credentials.

3.3.1. Configuring the Git resolver for anonymous Git cloning

If you want to use anonymous Git cloning, you can configure the default Git revision, fetch timeout, and
default repository URL for pulling remote pipelines and tasks from a Git repository.

Procedure

1. To edit the TektonConfig custom resource, enter the following command:

2. In the TektonConfig custom resource, edit the pipeline.git-resolver-config spec:

The default Git revision to use if none is specified.

The maximum time any single Git clone resolution may take, for example, 1m, 2s, 700ms.
Red Hat OpenShift Pipelines also enforces a global maximum timeout of 1 minute on all
resolution requests.

spec:
 steps:
 - name: example-step
 ref:
 resolver: bundles
 params:
 - name: bundle
 value: registry.example.com:5000/simple/new_task:latest
 - name: name
 value: hello-world-action
 - name: kind
 value: StepAction
 params:
 - name: sample-stepaction-parameter
 value: test

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 pipeline:
 git-resolver-config:
 default-revision: main 1
 fetch-timeout: 1m 2
 default-url: https://github.com/tektoncd/catalog.git 3

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

51

3 The default Git repository URL for anonymous cloning if none is specified.

3.3.2. Specifying a remote pipeline, task, or step action by using the Git resolver for
anonymous cloning

When creating a pipeline run, you can specify a remote pipeline from a Git repository by using
anonymous cloning. When creating a pipeline or a task run, you can specify a remote task from a Git
repository. When creating a step within a task, you can reference a remote StepAction definition from a
Git repository.

Procedure

To specify a remote pipeline, task, or StepAction definition from a Git repository, use the
following reference format in the pipelineRef, taskRef, or step.ref spec:

Table 3.3. Supported parameters for the Git resolver

Parameter Description Example value

url The URL of the repository,
when using anonymous
cloning.

https://github.com/tektonc
d/catalog.git

revision The Git revision in the
repository. You can specify a
branch name, a tag name, or a
commit SHA hash.

aeb957601cf41c012be4628
27053a21a420befca
main
v0.38.2

pathInRepo The path name of the YAML
file in the repository.

task/golang-
build/0.3/golang-
build.yaml

NOTE

To clone and fetch the repository anonymously, use the url parameter. Do not
specify the url parameter and the repo parameter together.

If the pipeline or task requires additional parameters, provide these parameters in params.

Examples

...
 resolver: git
 params:
 - name: url
 value: <git_repository_url>
 - name: revision
 value: <branch_name>
 - name: pathInRepo
 value: <path_in_repository>
...

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

52

The following example pipeline run references a remote pipeline from a Git repository:

The following example pipeline references a remote task from a Git repository:

The following example task run references a remote task from a Git repository:

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 name: git-pipeline-reference-demo
spec:
 pipelineRef:
 resolver: git
 params:
 - name: url
 value: https://github.com/tektoncd/catalog.git
 - name: revision
 value: main
 - name: pathInRepo
 value: pipeline/simple/0.1/simple.yaml
 params:
 - name: name
 value: "testPipelineRun"
 - name: sample-pipeline-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: pipeline-with-git-task-reference-demo
spec:
 tasks:
 - name: "git-task-reference-demo"
 taskRef:
 resolver: git
 params:
 - name: url
 value: https://github.com/tektoncd/catalog.git
 - name: revision
 value: main
 - name: pathInRepo
 value: task/git-clone/0.6/git-clone.yaml
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
 name: git-task-reference-demo
spec:
 taskRef:
 resolver: git
 params:
 - name: url

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

53

The following example task includes a step that references a StepAction definition from a Git
repository:

3.4. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION WITH
AN AUTHENTICATED GIT API

You can specify a remote pipeline, task, or StepAction definition from a Git repository by using the Git
resolver. The repository must contain a YAML file that defines the pipeline or task. You can securely
access repositories by using an authenticated API, which supports user authentication.

3.4.1. Configuring the Git resolver for an authenticated API

For an authenticated Source Control Management (SCM) API, you must set the configuration for the
authenticated Git connection.

You can use Git repository providers that are supported by the go-scm library. Not all go-scm
implementations have been tested with the Git resolver, but the following providers are known to work:

github.com and GitHub Enterprise

gitlab.com and self-hosted Gitlab

Gitea

Bitbucket Data Center

Bitbucket Cloud

 value: https://github.com/tektoncd/catalog.git
 - name: revision
 value: main
 - name: pathInRepo
 value: task/git-clone/0.6/git-clone.yaml
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: git-stepaction-reference-demo
spec:
 steps:
 - name: example-step
 ref:
 resolver: git
 - name: url
 value: https://github.com/openshift-pipelines/tektoncd-catalog.git
 - name: revision
 value: p
 - name: pathInRepo
 value: stepactions/stepaction-git-clone/0.4.1/stepaction-git-clone.yaml
 params:
 - name: sample-stepaction-parameter
 value: test

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

54

1

2

3

4

5

6

7

8

NOTE

You can configure Git connections by using the authenticated SCM API. You can
provide a security token that enables all users on your cluster to access one
repository. Additionally, you can specify different SCM providers and tokens for
specific pipelines or tasks.

If you configure the Git resolver to use the authenticated SCM API, you can also
use anonymous Git clone references to retrieve pipelines and tasks.

Procedure

1. To edit the TektonConfig custom resource, enter the following command:

2. In the TektonConfig custom resource, edit the pipeline.git-resolver-config spec:

The default Git revision to use if none is specified.

The maximum time any single Git clone resolution may take, for example, 1m, 2s, 700ms.
Red Hat OpenShift Pipelines also enforces a global maximum timeout of 1 minute on all
resolution requests.

The SCM provider type.

The base URL for use with the authenticated SCM API. This setting is not required if you
are using github.com, gitlab.com, or Bitbucket Cloud.

The name of the secret that contains the SCM provider API token.

The key within the token secret that contains the token.

The namespace containing the token secret, if not default.

Optional: The default organization for the repository, when using the authenticated API.
This organization is used if you do not specify an organization in the resolver parameters.

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 pipeline:
 git-resolver-config:
 default-revision: main 1
 fetch-timeout: 1m 2
 scm-type: github 3
 server-url: api.internal-github.com 4
 api-token-secret-name: github-auth-secret 5
 api-token-secret-key: github-auth-key 6
 api-token-secret-namespace: github-auth-namespace 7
 default-org: tektoncd 8

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

55

NOTE

The scm-type, api-token-secret-name, and api-token-secret-key settings are required
to use the authenticated SCM API.

3.4.2. Configuring multiple Git providers

You can configure multiple Git providers, or you can add multiple configurations for the same Git
provider, to use in different task runs and pipeline runs.

Add details in the TektonConfig custom resource (CR) with your unique identifier key prefix.

Procedure

1. Edit the TektonConfig CR by running the following command:

2. In the TektonConfig CR, edit the pipeline.git-resolver-config spec:

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
...
 pipeline:
 git-resolver-config:
 # configuration 1 1
 fetch-timeout: "1m"
 default-url: "https://github.com/tektoncd/catalog.git"
 default-revision: "main"
 scm-type: "github"
 server-url: ""
 api-token-secret-name: ""
 api-token-secret-key: ""
 api-token-secret-namespace: "default"
 default-org: ""
 # configuration 2 2
 test1.fetch-timeout: "5m"
 test1.default-url: ""
 test1.default-revision: "stable"
 test1.scm-type: "github"
 test1.server-url: "api.internal-github.com"
 test1.api-token-secret-name: "test1-secret"
 test1.api-token-secret-key: "token"
 test1.api-token-secret-namespace: "test1"
 test1.default-org: "tektoncd"
 # configuration 3 3
 test2.fetch-timeout: "10m"
 test2.default-url: ""
 test2.default-revision: "stable"
 test2.scm-type: "gitlab"
 test2.server-url: "api.internal-gitlab.com"
 test2.api-token-secret-name: "test2-secret"

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

56

1

2

3

The default configuration to use if no configKey key is provided or the key is provided
with the default value.

The configuration used if the configKey key is passed with the test1 value.

The configuration used if the configKey key is passed with the test2 value.

WARNING

configKey values with the . symbol are not supported. If you try to pass a
configKey value that contains the . symbol, the TaskRun or PipelineRun
resource where you passed the value fails to run.

3.4.3. Specifying a remote pipeline, task, or step action using the Git resolver with
the authenticated SCM API

When creating a pipeline run, you can specify a remote pipeline from a Git repository using the
authenticated SCM API. When creating a pipeline or a task run, you can specify a remote task from a Git
repository. When creating a step within a task, you can reference a remote StepAction definition from a
Git repository.

Prerequisites

If you want to use the authenticated SCM API, you must configure the authenticated Git
connection for the Git resolver.

Procedure

To specify a remote pipeline, task, or StepAction definition from a Git repository, use the
following reference format in the pipelineRef, taskRef, or step.ref spec:

 test2.api-token-secret-key: "pat"
 test2.api-token-secret-namespace: "test2"
 test2.default-org: "tektoncd-infra"
...



...
 resolver: git
 params:
 - name: org
 value: <git_organization_name>
 - name: repo
 value: <git_repository_name>
 - name: revision
 value: <branch_name>
 - name: pathInRepo
 value: <path_in_repository>
...

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

57

Table 3.4. Supported parameters for the Git resolver

Parameter Description Example value

org The organization for the
repository, when using the
authenticated SCM API.

tektoncd

repo The repository name, when
using the authenticated SCM
API.

test-infra

revision The Git revision in the
repository. You can specify a
branch name, a tag name, or a
commit SHA hash.

aeb957601cf41c012be4628
27053a21a420befca
main
v0.38.2

pathInRepo The path name of the YAML
file in the repository.

task/golang-
build/0.3/golang-
build.yaml

NOTE

To clone and fetch the repository anonymously, use the url parameter. To use
the authenticated SCM API, use the repo parameter. Do not specify the url
parameter and the repo parameter together.

If the pipeline or task requires additional parameters, specify values for these parameters in the
params section of the specification of the pipeline, pipeline run, or task run. The params
section of the pipelineRef or taskRef specification must contain only the parameters that the
resolver supports.

Examples

The following example pipeline run references a remote pipeline from a Git repository:

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: git-pipeline-reference-demo
spec:
 pipelineRef:
 resolver: git
 params:
 - name: org
 value: tektoncd
 - name: repo
 value: catalog
 - name: revision
 value: main
 - name: pathInRepo
 value: pipeline/simple/0.1/simple.yaml
 params:

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

58

The following example pipeline references a remote task from a Git repository:

The following example task run references a remote task from a Git repository:

The following example task includes a step that references a StepAction definition from a Git
repository:

 - name: name
 value: "testPipelineRun"
 - name: sample-pipeline-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: pipeline-with-git-task-reference-demo
spec:
 tasks:
 - name: "git-task-reference-demo"
 taskRef:
 resolver: git
 params:
 - name: org
 value: tektoncd
 - name: repo
 value: catalog
 - name: revision
 value: main
 - name: pathInRepo
 value: task/git-clone/0.6/git-clone.yaml
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
 name: git-task-reference-demo
spec:
 taskRef:
 resolver: git
 params:
 - name: org
 value: tektoncd
 - name: repo
 value: catalog
 - name: revision
 value: main
 - name: pathInRepo
 value: task/git-clone/0.6/git-clone.yaml
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

59

3.4.4. Specifying multiple Git providers

You can specify multiple Git providers by passing the unique configKey parameter when creating
TaskRun and PipelineRun resources.

If no configKey parameter is passed, the default configuration is used. You can also specify default
configuration by setting the configKey value to default.

WARNING

configKey values with the . symbol are not supported. If you try to pass a
configKey value that contains the . symbol, the TaskRun or PipelineRun resource
where you passed the value fails to run.

Prerequisites

Configure multiple Git providers through the Tektonconfig custom resource. For more
information, see "Configuring multiple Git providers".

Procedure

To specify a Git provider, use the following reference format in the pipelineRef and taskRef
spec:

kind: Task
metadata:
 name: git-stepaction-reference-demo
spec:
 steps:
 - name: example-step
 ref:
 resolver: git
 - name: org
 value: openshift-pipelines
 - name: repo
 value: tektoncd-catalog
 - name: revision
 value: p
 - name: pathInRepo
 value: stepactions/stepaction-git-clone/0.4.1/stepaction-git-clone.yaml
 params:
 - name: sample-stepaction-parameter
 value: test



...
 resolver: git
 params:
 # ...

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

60

1 Your unique key that matches one of the configuration keys, for example, test1.

3.4.5. Specifying a remote pipeline or task by using the Git resolver with the
authenticated SCM API overriding the Git resolver configuration

You can override the initial configuration settings in specific pipeline runs or tasks to customize the
behavior according to different use cases. You can use this method to access an authenticated provider
that is not configured in the TektonConfig custom resource (CR).

The following example task run references a remote task from a Git repository that overrides the
previous resolver configuration:

Table 3.5. Supported parameters to override the Git resolver

Parameter Description Example value

org The organization for the
repository.

tektoncd

repo The repository name. catalog

 - name: configKey
 value: <your_unique_key> 1
...

apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
 name: git-task-reference-demo
spec:
 taskRef:
 resolver: git
 params:
 - name: org
 value: tektoncd
 - name: repo
 value: catalog
 - name: revision
 value: main
 - name: pathInRepo
 value: task/git-clone/0.6/git-clone.yaml
 - name: token
 value: my-secret-token
 - name: tokenKey
 value: token
 - name: scmType
 value: github
 - name: serverURL
 value: https://ghe.mycompany.com

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

61

1

revision The Git revision in the repository.
You can specify a branch name, a
tag name, or a commit SHA hash.

main

pathInRepo The path name of the YAML file in
the repository.

task/git-clone/0.6/git-clone.yaml

token The secret name used for
authentication.

my-secret-token

tokenKey The key name for the token. token

scmType The type of SCM (Source Control
Management) system.

github

serverURL The URL of the server hosting the
repository.

https://ghe.mycompany.com

Parameter Description Example value

3.5. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION BY
USING THE HTTP RESOLVER

You can specify a remote pipeline, task, or StepAction definition from an HTTP or HTTPS URL by using
the HTTP resolver. The URL must point to a YAML file that defines the pipeline, task, or step action.

3.5.1. Configuring the HTTP resolver

You can use the HTTP resolver to fetch pipelines or tasks from an HTTP or HTTPS URL. You can
configure the default values for the HTTP resolver by editing the TektonConfig custom resource (CR).

Procedure

1. Edit the TektonConfig CR by entering the following command:

2. In the TektonConfig CR, edit the pipeline.http-resolver-config spec:

The maximum amount of time the HTTP resolver waits for a response from the server.

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 pipeline:
 http-resolver-config:
 fetch-timeout: "1m" 1

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

62

3.5.2. Specifying a remote pipeline, task, or step action with the HTTP Resolver

When creating a pipeline run, you can specify a remote pipeline from an HTTP or HTTPS URL. When
creating a pipeline or a task run, you can specify a remote task from an HTTP or HTTPS URL. When
creating a step within a task, you can reference a remote StepAction definition from an HTTP or HTTPS
URL.

Procedure

Specify a remote pipeline, task, or StepAction definition from an HTTP or HTTPS URL, using
the following format in the pipelineRef, taskRef, or step.ref spec:

Table 3.6. Supported parameters for the HTTP Resolver

Parameter Description Example Value

url The HTTP URL pointing to the
Tekton resource to fetch.

https://raw.githubusercont
ent.com/openshift-
pipelines/tektoncd-
catalog/p/tasks/task-git-
clone/0.4.1/task-git-
clone.yaml

Examples

The following example pipeline run references a remote pipeline from the same cluster:

The following example pipeline defines a task that references a remote task from an HTTPS URL:

...
 resolver: http
 params:
 - name: url
 value: <fully_qualified_http_url>
...

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 name: http-pipeline-reference-demo
spec:
 pipelineRef:
 resolver: http
 params:
 - name: url
 value: https://raw.githubusercontent.com/tektoncd/catalog/main/pipeline/build-push-gke-
deploy/0.1/build-push-gke-deploy.yaml
 params:
 - name: sample-pipeline-parameter
 value: test
 - name: username
 value: "pipelines"

apiVersion: tekton.dev/v1beta1

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

63

The following example task run references a remote task from an HTTPS URL:

The following example task includes a step that references a StepAction definition from an HTTPS URL:

3.6. SPECIFYING A PIPELINE, TASK, OR STEP ACTION FROM THE
SAME CLUSTER

kind: Pipeline
metadata:
 name: pipeline-with-http-task-reference-demo
spec:
 tasks:
 - name: "http-task-demo"
 taskRef:
 resolver: http
 params:
 - name: url
 value: https://raw.githubusercontent.com/openshift-pipelines/tektoncd-catalog/p/tasks/task-git-
clone/0.4.1/task-git-clone.yaml
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
 name: http-task-reference-demo
spec:
 taskRef:
 resolver: http
 params:
 - name: url
 value: https://raw.githubusercontent.com/openshift-pipelines/tektoncd-catalog/p/tasks/task-git-
clone/0.4.1/task-git-clone.yaml
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: http-stepaction-reference-demo
spec:
 steps:
 - name: example-step
 ref:
 resolver: http
 params:
 - name: url
 value: https://raw.githubusercontent.com/openshift-pipelines/tektoncd-
catalog/p/stepactions/stepaction-git-clone/0.4.1/stepaction-git-clone.yaml
 params:
 - name: sample-stepaction-parameter
 value: test

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

64

1

2

3

4

You can use the cluster resolver to specify a pipeline, task, or StepAction definition that is defined in a
namespace on the OpenShift Container Platform cluster where Red Hat OpenShift Pipelines is running.

In particular, you can use the cluster resolver to access tasks that OpenShift Pipelines provides in its
installation namespace, which is normally the openshift-pipelines namespace.

3.6.1. Configuring the cluster resolver

You can change the default kind and namespace for the cluster resolver, or limit the namespaces that
the cluster resolver can use.

Procedure

1. To edit the TektonConfig custom resource, enter the following command:

2. In the TektonConfig custom resource, edit the pipeline.cluster-resolver-config spec:

The default resource kind to fetch, if not specified in parameters.

The default namespace for fetching resources, if not specified in parameters.

A comma-separated list of namespaces that the resolver is allowed to access. If this key is
not defined, all namespaces are allowed.

An optional comma-separated list of namespaces which the resolver is blocked from
accessing. If this key is not defined, all namespaces are allowed.

3.6.2. Specifying a pipeline, task, or step action from the same cluster using the
cluster resolver

When creating a pipeline run, you can specify a pipeline that exists on the same cluster. When creating a
pipeline or a task run, you can specify a task that exists on the the same cluster. When creating a step
within a task, you can specify a StepAction definition that exists on the the same cluster.

Procedure

To specify a pipeline, task, or StepAction definition from the same cluster, use the following
reference format in the pipelineRef, taskRef, or step.ref spec:

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 pipeline:
 cluster-resolver-config:
 default-kind: pipeline 1
 default-namespace: namespace1 2
 allowed-namespaces: namespace1, namespace2 3
 blocked-namespaces: namespace3, namespace4 4

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

65

Table 3.7. Supported parameters for the cluster resolver

Parameter Description Example value

name The name of the resource to
fetch.

some-pipeline

namespace The namespace in the cluster
containing the resource.

other-namespace

kind The kind of the resource to
fetch.

pipeline

If the pipeline or task requires additional parameters, provide these parameters in params.

Examples

The following example pipeline run references a pipeline from the same cluster:

The following example pipeline references a task from the same cluster:

...
 resolver: cluster
 params:
 - name: name
 value: <name>
 - name: namespace
 value: <namespace>
 - name: kind
 value: [pipeline|task|stepaction]
...

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: cluster-pipeline-reference-demo
spec:
 pipelineRef:
 resolver: cluster
 params:
 - name: name
 value: some-pipeline
 - name: namespace
 value: test-namespace
 - name: kind
 value: pipeline
 params:
 - name: sample-pipeline-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

66

The following example task run references a task from the same cluster:

The following example task includes a step that references a StepAction definition from the same
cluster:

 name: pipeline-with-cluster-task-reference-demo
spec:
 tasks:
 - name: "cluster-task-reference-demo"
 taskRef:
 resolver: cluster
 params:
 - name: name
 value: some-task
 - name: namespace
 value: test-namespace
 - name: kind
 value: task
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
 name: cluster-task-reference-demo
spec:
 taskRef:
 resolver: cluster
 params:
 - name: name
 value: some-task
 - name: namespace
 value: test-namespace
 - name: kind
 value: task
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: cluster-stepaction-reference-demo
spec:
 steps:
 - name: example-step
 ref:
 resolver: cluster
 params:
 - name: name
 value: some-step
 - name: namespace
 value: test-namespace
 - name: kind

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

67

3.7. TASKS PROVIDED IN THE OPENSHIFT PIPELINES NAMESPACE

An OpenShift Pipelines installation includes a set of standard tasks that you can use in your pipelines.
These tasks are located in the OpenShift Pipelines installation namespace, which is normally the
openshift-pipelines namespace. You can use the cluster resolver to access the tasks.

Until version 1.16, OpenShift Pipelines included ClusterTask functionality. Versions 1.17 and later no
longer include this functionality. If your pipelines use ClusterTask references, you can re-create them
with the tasks that are available from the OpenShift Pipelines installation namespace by using the
cluster resolver. However, certain changes are made in these tasks compared to the previously existing
ClusterTask definitions.

You cannot specify a custom execution image in any of the tasks available in the OpenShift Pipelines
installation namespace. These tasks do not support parameters such as BUILDER_IMAGE,
gitInitImage, or KN_IMAGE. If you want to use a custom execution image, create a copy of the task and
replace the image by editing the copy.

buildah
The buildah task builds a source code tree into a container image and then pushes the image to a
container registry.

Example usage of the buildah task

Table 3.8. Supported parameters for the buildah task

 value: stepaction
 params:
 - name: sample-stepaction-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-image
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: buildah
 - name: namespace
 value: openshift-pipelines
 params:
 - name: IMAGE
 value: $(params.IMAGE)
 workspaces:
 - name: source
 workspace: shared-workspace
...

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

68

Parameter Description Type Default value

IMAGE Fully qualified container image name to
be built by Buildah.

string

DOCKERFILE Path to the Dockerfile (or
Containerfile) relative to the source
workspace.

string ./Dockerfile

CONTEXT Path to the directory to use as the
context.

string .

STORAGE_DRI
VER

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

string vfs

FORMAT The format of the container to build,
either oci or docker.

string oci

BUILD_EXTRA_
ARGS

Extra parameters for the build command
when building the image.

string

PUSH_EXTRA_
ARGS

Extra parameters for the push command
when pushing the image.

string

SKIP_PUSH Skip pushing the image to the container
registry.

string false

TLS_VERIFY The TLS verification flag, normally true. string true

VERBOSE Turn on verbose logging; all commands
executed are added to the log.

string false

Table 3.9. Supported workspaces for the buildah task

Workspace Description

source Container build context, usually the application source code that includes a
Dockerfile or Containerfile file.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or .dockerconfigjson.

rhel-entitlement An optional workspace for providing the entitlement keys that Buildah uses to
access a Red Hat Enterprise Linux (RHEL) subscription. The mounted workspace
must contains the entitlement.pem and entitlement-key.pem files.

Table 3.10. Results that the buildah task returns

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

69

1

Result Type Description

IMAGE_URL string The fully qualified name of the image that was built.

IMAGE_DIGEST string Digest of the image that was built.

Changes from the buildah ClusterTask

The VERBOSE parameter was added.

The BUILDER_IMAGE parameter was removed.

git-cli
The git-cli task runs the git command-line utility. You can pass the full Git command or several
commands to run using the GIT_SCRIPT parameter. If the commands need authentication to a Git
repository, for example, in order to complete a push, you must supply the authentication credentials.

Example usage of the git-cli task

In this example, ssh-workspace must contain the contents of the .ssh directory with a valid key
for authorization to the Git repository.

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: update-repo
spec:
...
 tasks:
...
 - name: push-to-repo
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: git-cli
 - name: namespace
 value: openshift-pipelines
 params:
 - name: GIT_SCRIPT
 value: "git push"
 - name: GIT_USER_NAME
 value: "Example Developer"
 - name: GIT_USER_EMAIL
 value: "developer@example.com"
 workspaces:
 - name: ssh-directory
 workspace: ssh-workspace 1
 - name: source
 workspace: shared-workspace
...

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

70

Table 3.11. Supported parameters for the git-cli task

Parameter Description Type Default value

CRT_FILENAME Certificate Authority (CA) bundle
filename in the ssl-ca-directory
workspace.

string ca-bundle.crt

HTTP_PROXY HTTP proxy server (non-TLS requests). string

HTTPS_PROXY HTTPS proxy server (TLS requests). string

NO_PROXY Opt out of proxying HTTP/HTTPS
requests.

string

SUBDIRECTOR
Y

Relative path to the source workspace
where the git repository is present.

string

USER_HOME Absolute path to the Git user home
directory in the pod.

string /home/git

DELETE_EXISTI
NG

Erase any existing contents of the
source workspace before completing
the git operations.

string true

VERBOSE Log all the executed commands. string false

SSL_VERIFY The global http.sslVerify value. Do not
use false unless you trust the remote
repository.

string true

GIT_USER_NA
ME

Git user name for performing Git
operations.

string

GIT_USER_EMA
IL

Git user email for performing Git
operations.

string

GIT_SCRIPT The Git script to run. string git help

Table 3.12. Supported workspaces for the git-cli task

Workspace Description

ssh-directory A .ssh directory with the private key, known_hosts, config, and other files as
necessary. If you provide this workspace, the task uses it for authentication to the
Git repository. Bind this workspace to a Secret resource for secure storage of
authentication information.

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

71

basic-auth A workspace containing a .gitconfig and .git-credentials files. If you provide
this workspace, the task uses it for authentication to the Git repository. Use a
ssh-directory workspace for authentication instead of basic-auth whenever
possible. Bind this workspace to a Secret resource for secure storage of
authentication information.

ssl-ca-directory A workspace containing CA certificates. If you provide this workspace, Git uses
these certificates to verify the peer when interacting with remote repositories
using HTTPS.

source A workspace that contains the fetched Git repository.

input An optional workspace that contains the files that need to be added to the Git
repository. You can access the workspace from your script using
$(workspaces.input.path), for example:

cp $(workspaces.input.path)/<file_that_i_want> .
git add <file_that_i_want>

Workspace Description

Table 3.13. Results that the git-cli task returns

Result Type Description

COMMIT string The SHA digest of the commit that is at the HEAD of
the current branch in the cloned Git repository.

Changes from the git-cli ClusterTask

Several new parameters were added.

The BASE_IMAGE parameter was removed.

The ssl-ca-directory workspace was added.

The default values for the USER_HOME and VERBOSE parameters were changed.

The name of the result was changed from commit to COMMIT.

git-clone
The git-clone task uses Git to initialize and clone a remote repository on a workspace. You can use this
task at the start of a pipeline that builds or otherwise processes this source code.

Example usage of the git-clone task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

72

Table 3.14. Supported parameters for the git-clone task

Parameter Description Type Default value

CRT_FILENAME Certificate Authority (CA) bundle
filename in the ssl-ca-directory
workspace.

string ca-bundle.crt

HTTP_PROXY HTTP proxy server (non-TLS requests). string

HTTPS_PROXY HTTPS proxy server (TLS requests). string

NO_PROXY Opt out of proxying HTTP/HTTPS
requests.

string

SUBDIRECTOR
Y

Relative path in the output workspace
where the task places the Git repository.

string

USER_HOME Absolute path to the Git user home
directory in the pod.

string /home/git

DELETE_EXISTI
NG

Delete the contents of the default
workspace, if they exist, before running
the Git operations.

string true

VERBOSE Log the executed commands. string false

SSL_VERIFY The global http.sslVerify value. Do not
set this parameter to to false unless you
trust the remote repository.

string true

 name: build-source
spec:
...
 tasks:
 - name: clone-repo
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: git-clone
 - name: namespace
 value: openshift-pipelines
 params:
 - name: URL
 value: "https://github.com/example/repo.git"
 workspaces:
 - name: output
 workspace: shared-workspace

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

73

URL Git repository URL. string

REVISION The revision to check out, for example, a
branch or tag.

string main

REFSPEC The refspec string for the repository that
the task fetches before checking out the
revision.

string

SUBMODULES Initialize and fetch Git submodules. string true

DEPTH Number of commits to fetch, a "shallow
clone" is a single commit.

string 1

SPARSE_CHEC
KOUT_DIRECT
ORIES

List of directory patterns, separated by
commas, for performing a "sparse
checkout".

string

Parameter Description Type Default value

Table 3.15. Supported workspaces for the git-clone task

Workspace Description

ssh-directory A .ssh directory with the private key, known_hosts, config, and other files as
necessary. If you provide this workspace, the task uses it for authentication to the
Git repository. Bind this workspace to a Secret resource for secure storage of
authentication information.

basic-auth A workspace containing a .gitconfig and .git-credentials files. If you provide
this workspace, the task uses it for authentication to the Git repository. Use a
ssh-directory workspace for authentication instead of basic-auth whenever
possible. Bind this workspace to a Secret resource for secure storage of
authentication information.

ssl-ca-directory A workspace containing CA certificates. If you provide this workspace, Git uses
these certificates to verify the peer when interacting with remote repositories
using HTTPS.

output A workspace that contains the fetched git repository, data will be placed on the
root of the workspace or on the relative path defined by the SUBDIRECTORY
parameter.

Table 3.16. Results that the git-clone task returns

Result Type Description

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

74

COMMIT string The SHA digest of the commit that is at the HEAD of
the current branch in the cloned Git repository.

URL string The URL of the repository that was cloned.

COMMITTER_DATE string The epoch timestamp of the commit that is at the
HEAD of the current branch in the cloned Git
repository.

Result Type Description

Changes from the git-clone ClusterTask

All parameter names were changed to uppercase.

All result names were changed to uppercase.

The gitInitImage parameter was removed.

kn
The kn task uses the kn command-line utility to complete operations on Knative resources, such as
services, revisions, or routes.

Example usage of the kn task

Table 3.17. Supported parameters for the kn task

Parameter Description Type Default value

ARGS The arguments for the kn utility. array - help

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: kn-run
spec:
 pipelineSpec:
 tasks:
 - name: kn-run
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: kn
 - name: namespace
 value: openshift-pipelines
 params:
 - name: ARGS
 value: [version]

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

75

Changes from the kn ClusterTask

The KN_IMAGE parameter was removed.

kn-apply
The kn-apply task deploys a specified image to a Knative Service. This task uses the kn service apply
command to create or update the specified Knative service.

Example usage of the kn-apply task

Table 3.18. Supported parameters for the kn-apply task

Parameter Description Type Default value

SERVICE The Knative service name. string

IMAGE The fully qualified name of the image to
deploy.

string

Changes from the kn-apply ClusterTask

The KN_IMAGE parameter was removed.

maven
The maven task runs a Maven build.

Example usage of the maven task

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: kn-apply-run
spec:
 pipelineSpec:
 tasks:
 - name: kn-apply-run
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: kn-apply
 - name: namespace
 value: openshift-pipelines
 params:
 - name: SERVICE
 value: "hello"
 - name: IMAGE
 value: "gcr.io/knative-samples/helloworld-go:latest"

apiVersion: tekton.dev/v1
kind: Pipeline

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

76

Table 3.19. Supported parameters for the maven task

Parameter Description Type Default value

GOALS The Maven goals to run. array - package

MAVEN_MIRRO
R_URL

The Maven repository mirror URL. string

SUBDIRECTOR
Y

The subdirectory within the source
workspace that the task runs the Maven
build on.

string .

Table 3.20. Supported workspaces for the maven task

Workspace Description

source The workspace that contains the Maven project.

server_secret The workspace that contains the secrets for connecting to the Maven server, such
as the user name and password.

proxy_secret The workspace that contains the credentials for connecting to the proxy server,
such as the user name and password.

proxy_configmap The workspace that contains proxy configuration values, such as proxy_port,
proxy_host, proxy_protocol, proxy_non_proxy_hosts.

maven_settings The workspace that contains custom Maven settings.

metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-from-source
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: maven
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

77

Changes from the maven ClusterTask

The parameter name CONTEXT_DIR was changed to SUBDIRECTORY.

The workspace name maven-settings was changed to maven_settings.

openshift-client
The openshift-client task runs commands using the oc command-line interface. You can use this task
to manage an OpenShift Container Platform cluster.

Example usage of the openshift-client task

Table 3.21. Supported parameters for the openshift-client task

Parameter Description Type Default value

SCRIPT The oc CLI arguments to run. string oc help

VERSION The OpenShift Container Platform
version to use.

string latest

Table 3.22. Supported workspaces for the openshift-client task

Workspace Description

manifest_dir The workspace containing manifest files that you want to apply using the oc
utility.

kubeconfig_dir An optional workspace in which you can provide a .kube/config file that contains
credentials for accessing the cluster. Place this file at the root of the workspace
and name it kubeconfig.

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: openshift-client-run
spec:
 pipelineSpec:
 tasks:
 - name: openshift-client-run
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: openshift-client
 - name: namespace
 value: openshift-pipelines
 params:
 - name: SCRIPT
 value: "oc version"

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

78

Workspace Description

Changes from the openshift-client ClusterTask

The workspace name manifest-dir was changed to manifest_dir.

The workspace name kubeconfig-dir was changed to kubeconfig_dir.

s2i-dotnet
The s2i-dotnet task builds the source code using the Source to Image (S2I) dotnet builder image, which
is available from the OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/dotnet.

Example usage of the s2i-dotnet task

Table 3.23. Supported parameters for the s2i-dotnet task

Parameter Description Type Default value

IMAGE The fully qualified name for the container
image that the S2I process builds.

string

IMAGE_SCRIPT
S_URL

The URL containing the default assemble
and run scripts for the builder image.

string image:///usr/libe
xec/s2i

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-dotnet
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

79

ENV_VARS An array of values for environment
variables to set in the build process, listed
in the KEY=VALUE format.

array

CONTEXT Path to the directory within the source
workspace to use as the context.

string .

STORAGE_DRI
VER

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

string vfs

FORMAT The format of the container to build,
either oci or docker.

string oci

BUILD_EXTRA_
ARGS

Extra parameters for the build command
when building the image.

string

PUSH_EXTRA_
ARGS

Extra parameters for the push command
when pushing the image.

string

SKIP_PUSH Skip pushing the image to the container
registry.

string false

TLS_VERIFY The TLS verification flag, normally true. string true

VERBOSE Turn on verbose logging; all commands
executed are added to the log.

string false

VERSION The tag of the image stream, which
corresponds to the language version.

string latest

Parameter Description Type Default value

Table 3.24. Supported workspaces for the s2i-dotnet task

Workspace Description

source The application source code, which is the build context for the S2I workflow.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or .dockerconfigjson.

Table 3.25. Results that the s2i-dotnet task returns

Result Type Description

IMAGE_URL string The fully qualified name of the image that was built.

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

80

IMAGE_DIGEST string Digest of the image that was built.

Result Type Description

s2i-go
The s2i-go task builds the source code using the S2I Golang builder image, which is available from the
OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/golang.

Example usage of the s2i-go task

Table 3.26. Supported parameters for the s2i-go task

Parameter Description Type Default value

IMAGE The fully qualified name for the container
image that the S2I process builds.

string

IMAGE_SCRIPT
S_URL

The URL containing the default assemble
and run scripts for the builder image.

string image:///usr/libe
xec/s2i

ENV_VARS An array of values for environment
variables to set in the build process, listed
in the KEY=VALUE format.

array

CONTEXT Path to the directory within the source
workspace to use as the context.

string .

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-go
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

81

STORAGE_DRI
VER

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

string vfs

FORMAT The format of the container to build,
either oci or docker.

string oci

BUILD_EXTRA_
ARGS

Extra parameters for the build command
when building the image.

string

PUSH_EXTRA_
ARGS

Extra parameters for the push command
when pushing the image.

string

SKIP_PUSH Skip pushing the image to the container
registry.

string false

TLS_VERIFY The TLS verification flag, normally true. string true

VERBOSE Turn on verbose logging; all commands
executed are added to the log.

string false

VERSION The tag of the image stream, which
corresponds to the language version.

string latest

Parameter Description Type Default value

Table 3.27. Supported workspaces for the s2i-go task

Workspace Description

source The application source code, which is the build context for the S2I workflow.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or .dockerconfigjson.

Table 3.28. Results that the s2i-go task returns

Result Type Description

IMAGE_URL string The fully qualified name of the image that was built.

IMAGE_DIGEST string Digest of the image that was built.

s2i-java
The s2i-java task builds the source code using the S2I Java builder image, which is available from the
OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/java.

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

82

Table 3.29. Supported parameters for the s2i-java task

Parameter Description Type Default value

IMAGE The fully qualified name for the container
image that the S2I process builds.

string

IMAGE_SCRIPT
S_URL

The URL containing the default assemble
and run scripts for the builder image.

string image:///usr/libe
xec/s2i

ENV_VARS An array of values for environment
variables to set in the build process, listed
in the KEY=VALUE format.

array

CONTEXT Path to the directory within the source
workspace to use as the context.

string .

STORAGE_DRI
VER

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

string vfs

FORMAT The format of the container to build,
either oci or docker.

string oci

BUILD_EXTRA_
ARGS

Extra parameters for the build command
when building the image.

string

PUSH_EXTRA_
ARGS

Extra parameters for the push command
when pushing the image.

string

SKIP_PUSH Skip pushing the image to the container
registry.

string false

TLS_VERIFY The TLS verification flag, normally true. string true

VERBOSE Turn on verbose logging; all commands
executed are added to the log.

string false

VERSION The tag of the image stream, which
corresponds to the language version.

string latest

Table 3.30. Supported workspaces for the s2i-java task

Workspace Description

source The application source code, which is the build context for the S2I workflow.

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

83

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or .dockerconfigjson.

Workspace Description

Table 3.31. Results that the s2i-java task returns

Result Type Description

IMAGE_URL string The fully qualified name of the image that was built.

IMAGE_DIGEST string Digest of the image that was built.

Changes from the s2i-java ClusterTask

Several new parameters were added.

The BUILDER_IMAGE, MAVEN_ARGS_APPEND, MAVEN_CLEAR_REPO, and
MAVEN_MIRROR_URL parameters were removed. You can pass the
MAVEN_ARGS_APPEND, MAVEN_CLEAR_REPO, and MAVEN_MIRROR_URL values as
environment variables.

The parameter name PATH_CONTEXT was changed to CONTEXT.

The parameter name TLS_VERIFY was changed to TLSVERIFY.

The IMAGE_URL result was added.

s2i-nodejs
The s2i-nodejs task builds the source code using the S2I NodeJS builder image, which is available from
the OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/nodejs.

Example usage of the s2i-nodejs task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-nodejs

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

84

Table 3.32. Supported parameters for the s2i-nodejs task

Parameter Description Type Default value

IMAGE The fully qualified name for the container
image that the S2I process builds.

string

IMAGE_SCRIPT
S_URL

The URL containing the default assemble
and run scripts for the builder image.

string image:///usr/libe
xec/s2i

ENV_VARS An array of values for environment
variables to set in the build process, listed
in the KEY=VALUE format.

array

CONTEXT Path to the directory within the source
workspace to use as the context.

string .

STORAGE_DRI
VER

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

string vfs

FORMAT The format of the container to build,
either oci or docker.

string oci

BUILD_EXTRA_
ARGS

Extra parameters for the build command
when building the image.

string

PUSH_EXTRA_
ARGS

Extra parameters for the push command
when pushing the image.

string

SKIP_PUSH Skip pushing the image to the container
registry.

string false

TLS_VERIFY The TLS verification flag, normally true. string true

VERBOSE Turn on verbose logging; all commands
executed are added to the log.

string false

VERSION The tag of the image stream, which
corresponds to the language version.

string latest

Table 3.33. Supported workspaces for the s2i-nodejs task

 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

85

Workspace Description

source The application source code, which is the build context for the S2I workflow.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or .dockerconfigjson.

Table 3.34. Results that the s2i-nodejs task returns

Result Type Description

IMAGE_URL string The fully qualified name of the image that was built.

IMAGE_DIGEST string Digest of the image that was built.

s2i-perl
The s2i-perl task builds the source code using the S2I Perl builder image, which is available from the
OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/perl.

Example usage of the s2i-perl task

Table 3.35. Supported parameters for the s2i-perl task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-perl
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

86

Parameter Description Type Default value

IMAGE The fully qualified name for the container
image that the S2I process builds.

string

IMAGE_SCRIPT
S_URL

The URL containing the default assemble
and run scripts for the builder image.

string image:///usr/libe
xec/s2i

ENV_VARS An array of values for environment
variables to set in the build process, listed
in the KEY=VALUE format.

array

CONTEXT Path to the directory within the source
workspace to use as the context.

string .

STORAGE_DRI
VER

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

string vfs

FORMAT The format of the container to build,
either oci or docker.

string oci

BUILD_EXTRA_
ARGS

Extra parameters for the build command
when building the image.

string

PUSH_EXTRA_
ARGS

Extra parameters for the push command
when pushing the image.

string

SKIP_PUSH Skip pushing the image to the container
registry.

string false

TLS_VERIFY The TLS verification flag, normally true. string true

VERBOSE Turn on verbose logging; all commands
executed are added to the log.

string false

VERSION The tag of the image stream, which
corresponds to the language version.

string latest

Table 3.36. Supported workspaces for the s2i-perl task

Workspace Description

source The application source code, which is the build context for the S2I workflow.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or .dockerconfigjson.

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

87

Workspace Description

Table 3.37. Results that the s2i-perl task returns

Result Type Description

IMAGE_URL string The fully qualified name of the image that was built.

IMAGE_DIGEST string Digest of the image that was built.

s2i-php
The s2i-php task builds the source code using the S2I PHP builder image, which is available from the
OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/php.

Example usage of the s2i-php task

Table 3.38. Supported parameters for the s2i-php task

Parameter Description Type Default value

IMAGE The fully qualified name for the container
image that the S2I process builds.

string

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-php
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

88

IMAGE_SCRIPT
S_URL

The URL containing the default assemble
and run scripts for the builder image.

string image:///usr/libe
xec/s2i

ENV_VARS An array of values for environment
variables to set in the build process, listed
in the KEY=VALUE format.

array

CONTEXT Path to the directory within the source
workspace to use as the context.

string .

STORAGE_DRI
VER

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

string vfs

FORMAT The format of the container to build,
either oci or docker.

string oci

BUILD_EXTRA_
ARGS

Extra parameters for the build command
when building the image.

string

PUSH_EXTRA_
ARGS

Extra parameters for the push command
when pushing the image.

string

SKIP_PUSH Skip pushing the image to the container
registry.

string false

TLS_VERIFY The TLS verification flag, normally true. string true

VERBOSE Turn on verbose logging; all commands
executed are added to the log.

string false

VERSION The tag of the image stream, which
corresponds to the language version.

string latest

Parameter Description Type Default value

Table 3.39. Supported workspaces for the s2i-php task

Workspace Description

source The application source code, which is the build context for the S2I workflow.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or .dockerconfigjson.

Table 3.40. Results that the s2i-php task returns

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

89

Result Type Description

IMAGE_URL string The fully qualified name of the image that was built.

IMAGE_DIGEST string Digest of the image that was built.

s2i-python
The s2i-python task builds the source code using the S2I Python builder image, which is available from
the OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/python.

Example usage of the s2i-python task

Table 3.41. Supported parameters for the s2i-python task

Parameter Description Type Default value

IMAGE The fully qualified name for the container
image that the S2I process builds.

string

IMAGE_SCRIPT
S_URL

The URL containing the default assemble
and run scripts for the builder image.

string image:///usr/libe
xec/s2i

ENV_VARS An array of values for environment
variables to set in the build process, listed
in the KEY=VALUE format.

array

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-python
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

90

CONTEXT Path to the directory within the source
workspace to use as the context.

string .

STORAGE_DRI
VER

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

string vfs

FORMAT The format of the container to build,
either oci or docker.

string oci

BUILD_EXTRA_
ARGS

Extra parameters for the build command
when building the image.

string

PUSH_EXTRA_
ARGS

Extra parameters for the push command
when pushing the image.

string

SKIP_PUSH Skip pushing the image to the container
registry.

string false

TLS_VERIFY The TLS verification flag, normally true. string true

VERBOSE Turn on verbose logging; all commands
executed are added to the log.

string false

VERSION The tag of the image stream, which
corresponds to the language version.

string latest

Parameter Description Type Default value

Table 3.42. Supported workspaces for the s2i-python task

Workspace Description

source The application source code, which is the build context for the S2I workflow.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or .dockerconfigjson.

Table 3.43. Results that the s2i-python task returns

Result Type Description

IMAGE_URL string The fully qualified name of the image that was built.

IMAGE_DIGEST string Digest of the image that was built.

s2i-ruby

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

91

The s2i-ruby task builds the source code using the S2I Ruby builder image, which is available from the
OpenShift Container Platform registry as image-registry.openshift-image-
registry.svc:5000/openshift/ruby.

Example usage of the s2i-ruby task

Table 3.44. Supported parameters for the s2i-ruby task

Parameter Description Type Default value

IMAGE The fully qualified name for the container
image that the S2I process builds.

string

IMAGE_SCRIPT
S_URL

The URL containing the default assemble
and run scripts for the builder image.

string image:///usr/libe
xec/s2i

ENV_VARS An array of values for environment
variables to set in the build process, listed
in the KEY=VALUE format.

array

CONTEXT Path to the directory within the source
workspace to use as the context.

string .

STORAGE_DRI
VER

Set the Buildah storage driver to reflect
the settings of the current cluster node
settings.

string vfs

FORMAT The format of the container to build,
either oci or docker.

string oci

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-ruby
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

92

BUILD_EXTRA_
ARGS

Extra parameters for the build command
when building the image.

string

PUSH_EXTRA_
ARGS

Extra parameters for the push command
when pushing the image.

string

SKIP_PUSH Skip pushing the image to the container
registry.

string false

TLS_VERIFY The TLS verification flag, normally true. string true

VERBOSE Turn on verbose logging; all commands
executed are added to the log.

string false

VERSION The tag of the image stream, which
corresponds to the language version.

string latest

Parameter Description Type Default value

Table 3.45. Supported workspaces for the s2i-ruby task

Workspace Description

source The application source code, which is the build context for the S2I workflow.

dockerconfig An optional workspace for providing a .docker/config.json file that Buildah
uses to access the container registry. Place the file at the root of the workspace
with the name config.json or .dockerconfigjson.

Table 3.46. Results that the s2i-ruby task returns

Result Type Description

IMAGE_URL string The fully qualified name of the image that was built.

IMAGE_DIGEST string Digest of the image that was built.

skopeo-copy
The skopeo-copy task executes the skopeo copy command.

Skopeo is a command-line tool for working with remote container image registries, which does not
require a daemon or other infrastructure to load and run the images. The skopeo copy command
copies an image from one remote registry to another, for example, from an internal registry to a
production registry. Skopeo supports authorization on image registries using credentials that you
provide.

Example usage of the skopeo-copy task

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

93

Table 3.47. Supported parameters for the skopeo-copy task

Parameter Description Type Default value

SOURCE_IMAG
E_URL

Fully qualified name, including tag, of the
source container image.

string

DESTINATION_I
MAGE_URL

Fully qualified name, including tag, of the
destination image to which Skopeo copies
the source image.

string

SRC_TLS_VERI
FY

The TLS verification flag for the source
registry, normally true.

string true

DEST_TLS_VER
IFY

The TLS verification flag for the
destination registry, normally true

string true

VERBOSE Output debug information to the log. string false

Table 3.48. Supported workspaces for the skopeo-copy task

Workspace Description

images_url If you want to copy more than one image, use this workspace to provide the
image URLs.

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-deploy-image
spec:
...
 tasks:
 - name: copy-image
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: skopeo-copy
 - name: namespace
 value: openshift-pipelines
 params:
 - name: SOURCE_IMAGE_URL
 value: "docker://internal.registry/myimage:latest"
 - name: DESTINATION_IMAGE_URL
 value: "docker://production.registry/myimage:v1.0"
 workspaces:
 - name: output
 workspace: shared-workspace

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

94

Table 3.49. Results that the skopeo-copy task returns

Result Type Description

SOURCE_DIGEST string The SHA256 digest of the source image.

DESTINATION_DIGE
ST

string The SHA256 digest of the destination image.

Changes from the skopeo-copy ClusterTask

All parameter names were changed to uppercase.

The VERBOSE parameter was added.

The workspace name was changed from images-url to images_url.

The SOURCE_DIGEST and DESTINATION_DIGEST results were added.

tkn
The tkn task performs operations on Tekton resources using tkn.

Example usage of the tkn task

Table 3.50. Supported parameters for the tkn task

Parameter Description Type Default value

SCRIPT The tkn CLI script to execute. string tkn $@

ARGS The tkn CLI arguments to run. array - --help

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: tkn-run
spec:
 pipelineSpec:
 tasks:
 - name: tkn-run
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: tkn
 - name: namespace
 value: openshift-pipelines
 params:
 - name: ARGS

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

95

Table 3.51. Supported workspaces for the tkn task

Workspace Description

kubeconfig_dir An optional workspace in which you can provide a .kube/config file that contains
credentials for accessing the cluster. Place this file at the root of the workspace
and name it kubeconfig.

Changes from the tkn ClusterTask

The TKN_IMAGE parameter was removed.

The workspace name was changed from kubeconfig to kubeconfig_dir.

3.8. COMMUNITY TASKS PROVIDED IN THE OPENSHIFT PIPELINES
NAMESPACE

By default, an OpenShift Pipelines installation includes a set of community tasks that you can use in your
pipelines. These tasks are located in the OpenShift Pipelines installation namespace, which is normally
the openshift-pipelines namespace.

argocd-task-sync-and-wait
The argocd-task-sync-and-wait community task deploys an Argo CD application and waits for it to be
healthy.

To do so, it requires the following configurations: * The address of the Argo CD server configured in the
argocd-env-configmap config map. * The authentication information configured in the argocd-env-
secret secret.

Example config map with the address information

Example secret with the authentication information

apiVersion: v1
kind: ConfigMap
metadata:
 name: argocd-env-configmap
data:
 ARGOCD_SERVER: https://argocd.example.com
...

apiVersion: v1
kind: Secret
metadata:
 name: argocd-env-secret
data:
 # Option 1
 ARGOCD_USERNAME: example_username 1
 ARGOCD_PASSWORD: example_password
 # Option 2
 ARGOCD_AUTH_TOKEN: exmaple_token

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

96

1 Configure either a username and password or an authentication token.

Example usage of the argocd-task-sync-and-wait community task

Table 3.52. Supported parameters for the argocd-task-sync-and-wait community task

Parameter Description Default value

application-name Name of the application to deploy.

revision Revision to deploy. HEAD

flags --

argocd-version Version of Argo CD. v2.2.2

helm-upgrade-from-repo
The helm-upgrade-from-repo community task installs or upgrades a Helm chart in your OpenShift
Container Platform cluster based on the given Helm repository and chart.

Example usage of the helm-upgrade-from-repo community task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: argocd-task-sync-and-wait
spec:
 tasks:
 - name: argocd-task-sync-and-wait
 params:
 - name: application-name
 value: example_app_name
 - name: revision
 value: HEAD
 - name: flags
 value: '--'
 - name: argocd-version
 value: v2.2.2
 taskRef:
 kind: Task
 name: argocd-task-sync-and-wait

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: helm-upgrade-from-repo
spec:
 tasks:
 - name: helm-upgrade-from-repo
 params:
 - name: helm_repo
 value: example_helm_repository

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

97

Table 3.53. Supported parameters for the helm-upgrade-from-repo community task

Parameter Description Default value

helm_repo Helm repository.

chart_name Helm chart name to be deployed.

release_version Helm release version in semantic versioning format. v1.0.0

release_name Helm release name. helm-release

release_namespace Helm release namespace. ""

overwrite_values Configuration parameters to overwrite, comma
separated. For example:
autoscaling.enabled=true,replicas=1

""

helm_image Helm image to be used. docker.io/lachlaneve
nson/k8s-
helm@sha256:5c792
f29950b388de24e744
8d378881f68b3df73a
7b30769a6aa861061f
d08ae

helm-upgrade-from-source
The helm-upgrade-from-source community task installs and upgrades a Helm chart in your OpenShift
Container Platform cluster based on the given chart and source workspace.

Example usage of the helm-upgrade-from-source community task

 - name: chart_name
 value: example_chart_name
 - name: release_version
 value: v1.0.0
 - name: release_name
 value: helm-release
 - name: release_namespace
 value: ''
 - name: overwrite_values
 value: ''
 - name: helm_image
 value: 'docker.io/lachlanevenson/k8s-
helm@sha256:5c792f29950b388de24e7448d378881f68b3df73a7b30769a6aa861061fd08ae'
 taskRef:
 kind: Task
 name: helm-upgrade-from-repo

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

98

Table 3.54. Supported parameters for the helm-upgrade-from-source community task

Parameter Description Default value

charts_dir Directory in the source workspace that contains the
Helm chart.

release_version Helm release version in semantic versioning format. v1.0.0

release_name Helm release name. helm-release

release_namespace Helm release namespace. ""

overwrite_values Configuration parameters to overwrite, comma
separated. For example:
autoscaling.enabled=true,replicas=1

""

values_file File with configuration parameters for Helm. values.yaml

 name: helm-upgrade-from-source
spec:
 tasks:
 - name: helm-upgrade-from-source
 params:
 - name: charts_dir
 value: example_directory_path
 - name: release_version
 value: v1.0.0
 - name: release_name
 value: helm-release
 - name: release_namespace
 value: ''
 - name: overwrite_values
 value: ''
 - name: values_file
 value: values.yaml
 - name: helm_image
 value: 'docker.io/lachlanevenson/k8s-
helm@sha256:5c792f29950b388de24e7448d378881f68b3df73a7b30769a6aa861061fd08ae'
 - name: upgrade_extra_params
 value: ''
 taskRef:
 kind: Task
 name: helm-upgrade-from-source
 workspaces:
 - name: source
 workspace: shared-workspace
 #...

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

99

helm_image Helm image to be used. docker.io/lachlaneve
nson/k8s-
helm@sha256:5c792
f29950b388de24e744
8d378881f68b3df73a
7b30769a6aa861061f
d08ae

upgrade_extra_para
ms

Extra parameters passed for the Helm upgrade
command.

""

Parameter Description Default value

Table 3.55. Supported workspaces for the helm-upgrade-from-source community task

Workspace Description

source The workspace that contains the Helm chart.

jib-maven
The jib-maven community task builds Java, Kotlin, Groovy, and Scala sources into a container image by
using the Jib tool for Maven projects.

Example usage of the jib-maven community task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: jib-maven
spec:
 tasks:
 - name: jib-maven
 params:
 - name: IMAGE
 value: example_image
 - name: MAVEN_IMAGE
 value: 'registry.redhat.io/ubi9/openjdk-
17@sha256:78613bdf887530100efb6ddf92d2a17f6176542740ed83e509cdc19ee7c072d6'
 - name: DIRECTORY
 value: .
 - name: CACHE
 value: empty-dir-volume
 - name: INSECUREREGISTRY
 value: 'false'
 - name: CACERTFILE
 value: service-ca.crt
 taskRef:
 kind: Task
 name: jib-maven

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

100

Table 3.56. Supported parameters for the jib-maven community task

Parameter Description Default value

IMAGE Name of the image to build.

MAVEN_IMAGE Maven base image. registry.redhat.io/ubi
9/openjdk-
17@sha256:78613bd
f887530100efb6ddf9
2d2a17f6176542740e
d83e509cdc19ee7c07
2d6

DIRECTORY Directory containing the app, relative to the source
repository root.

.

CACHE Name of the volume for caching Maven artifacts and
base image layers.

empty-dir-volume

INSECUREREGISTR
Y

Allow an insecure registry. false

CACERTFILE Certificate authority (CA) bundle file name for an
insecure registry service.

service-ca.crt

Table 3.57. Supported workspaces for the jib-maven community task

Workspace Description

source Workspace that contains the Maven project.

sslcertdir Optional workspace that contains SSL certificates.

Table 3.58. Results that the jib-maven task returns

Result Type Description

IMAGE_DIGEST string Digest of the image that was built.

Changes from the jib-maven community cluster task

The default values for the IMAGE and MAVEN_IMAGE parameters were changed.

 workspaces:
 - name: source
 workspace: shared-workspace
 #...

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

101

kubeconfig-creator
The kubeconfig-creator community task creates a kubeconfig file that other tasks in the pipeline can
use for accessing different clusters.

Example usage of the kubeconfig-creator community task

Table 3.59. Supported parameters for the kubeconfig-creator community task

Parameter Description Default value

name Name of the cluster to access.

url Address of the cluster to access.

username Username for basic authentication to the cluster.

password Password for basic authentication to the cluster. ""

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: kubeconfig-creator
spec:
 tasks:
 - name: kubeconfig-creator
 params:
 - name: name
 value: example_cluster
 - name: url
 value: https://cluster.example.com
 - name: username
 value: example_username
 - name: password
 value: example_password
 - name: cadata
 value: ''
 - name: clientKeyData
 value: ''
 - name: clientCertificateData
 value: ''
 - name: namespace
 value: ''
 - name: token
 value: ''
 - name: insecure
 value: 'false'
 taskRef:
 kind: Task
 name: kubeconfig-creator
 workspaces:
 - name: output
 workspace: shared-workspace
 #...

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

102

cadata PEM-encoded certificate authority (CA) certificates. ""

clientKeyData PEM-encoded data from a client key file for TLS. ""

clientCertificateData PEM-encoded data from a client certification file for
TLS.

""

namespace Default namespace to use on unspecified requests. ""

token Bearer token for authentication to the cluster. ""

insecure To indicate whether a server should be accessed
without verifying the TLS certificate.

false

Parameter Description Default value

Table 3.60. Supported workspaces for the kubeconfig-creator community task

Workspace Description

output The workspace where the kubeconfig-creator task stores the kubeconfig file.

pull-request
You can use the pull-request community task to interact with a source control management (SCM)
system through an abstracted interface.

This community task works with both public SCM instances and self-hosted or enterprise GitHub or
GitLab instances.

In download mode, this task populates the pr workspace with the state of the existing pull request,
including the .MANIFEST file.

In upload mode, this task compares the contents of the pr workspace, including the .MANIFEST file,
with the content of the pull request and, if the content is different, updates the pull request to match the
pr workspace.

Example usage of the pull-request community task

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: pull-request
spec:
spec:
 tasks:
 - name: pull-request
 params:
 - name: mode
 value: upload
 - name: url
 value: https://github.com/example/pull/xxxxx

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

103

Table 3.61. Supported parameters for the pull-request community task

Parameter Description Default value

mode If set to download, the state of the pull request at
url is fetched. If set to upload then the pull request
at url is updated.

url URL of the pull request.

provider Type of the SCM system. The supported values are
github or gitlab.

secret-key-ref Name of a Secret object of Opaque type that
contains a key called token with a base64 encoded
SCM token.

insecure-skip-tls-
verify

If set to true, the certificate validation is disabled. false

Table 3.62. Supported workspaces for the pull-request community task

Workspace Description

pr The workspace that contains the state of the pull request.

trigger-jenkins-job
You can use the trigger-jenkins-job community task to trigger a Jenkins job by using a curl request.

Example usage of the trigger-jenkins-job community task

 - name: provider
 value: github
 - name: secret-key-ref
 value: example_secret
 - name: insecure-skip-tls-verify
 value: 'false'
 taskRef:
 kind: Task
 name: pull-request
 workspaces:
 - name: pr
 workspace: shared-workspace
 #...

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: trigger-jenkins-job
spec:
 tasks:

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

104

Table 3.63. Supported parameters for the trigger-jenkins-job community task

Parameter Description Default value

JENKINS_HOST_UR
L

Server URL on which Jenkins is running.

JOB_NAME Jenkins Job which needs to be triggered.

JENKINS_SECRETS Jenkins secret containing credentials. jenkins-credentials

JOB_PARAMS Extra arguments to append as a part of the curl
request.

""

Table 3.64. Supported workspaces for the trigger-jenkins-job community task

Workspace Description

source The workspace which can be used to mount files which can be sent through the
curl request to the Jenkins job.

3.9. STEP ACTION DEFINITIONS PROVIDED WITH OPENSHIFT
PIPELINES

OpenShift Pipelines provides standard StepAction definitions that you can use in your tasks. Use the
cluster resolver to reference these definitions.

git-clone
The git-clone step action uses Git to initialize and clone a remote repository on a workspace. You can
use this step action to define a task that clones a repository at the start of a pipeline that builds or
otherwise processes this source code.

 - name: trigger-jenkins-job
 params:
 - name: JENKINS_HOST_URL
 value: example_host_URL
 - name: JOB_NAME
 value: example_job_name
 - name: JENKINS_SECRETS
 value: jenkins-credentials
 - name: JOB_PARAMS
 value:
 - example_param
 taskRef:
 kind: Task
 name: trigger-jenkins-job
 workspaces:
 - name: source
 workspace: shared-workspace
 # ...

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

105

Example usage of the git-clone step action in a task

Table 3.65. Supported parameters for the git-clone step action

Parameter Description Type Default value

OUTPUT_PATH A directory for the fetched Git repository.
Cloned repo data is placed in the root of
the directory or in the relative path
defined by the SUBDIRECTORY
parameter

string

SSH_DIRECTO
RY_PATH

A .ssh directory with the private key,
known_hosts, config, and other files as
necessary. If you provide this directory,
the task uses it for authentication to the
Git repository. Bind the workspace
providing this directory to a Secret
resource for secure storage of
authentication information.

string

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: clone-repo-anon
spec:
...
 steps:
 - name: clone-repo-step
 ref:
 resolver: cluster
 params:
 - name: name
 value: git-clone
 - name: namespace
 value: openshift-pipelines
 - name: kind
 value: stepaction
 params:
 - name: URL
 value: $(params.url)
 - name: OUTPUT_PATH
 value: $(workspaces.output.path)

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

106

BASIC_AUTH_P
ATH

A directory containing a .gitconfig and
.git-credentials files. If you provide this
directgory, the task uses it for
authentication to the Git repository. Use
a SSH_DIRECTORY_PATH directory
for authentication instead of
BASIC_AUTH_PATH whenever
possible. Bind the workspace providing
this directory to a Secret resource for
secure storage of authentication
information.

string

SSL_CA_DIREC
TORY_PATH

A workspace containing CA certificates. If
you provide this workspace, Git uses these
certificates to verify the peer when
interacting with remote repositories using
HTTPS.

string

CRT_FILENAME Certificate authority (CA) bundle
filename in the ssl-ca-directory
workspace.

string ca-bundle.crt

HTTP_PROXY HTTP proxy server (non-TLS requests). string

HTTPS_PROXY HTTPS proxy server (TLS requests). string

NO_PROXY Opt out of proxying HTTP/HTTPS
requests.

string

SUBDIRECTOR
Y

Relative path in the output workspace
where the task places the Git repository.

string

USER_HOME Absolute path to the Git user home
directory in the pod.

string /home/git

DELETE_EXISTI
NG

Delete the contents of the default
workspace, if they exist, before running
the Git operations.

string true

VERBOSE Log the executed commands. string false

SSL_VERIFY The global http.sslVerify value. Do not
set this parameter to to false unless you
trust the remote repository.

string true

URL Git repository URL. string

Parameter Description Type Default value

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

107

REVISION The revision to check out, for example, a
branch or tag.

string main

REFSPEC The refspec string for the repository that
the task fetches before checking out the
revision.

string

SUBMODULES Initialize and fetch Git submodules. string true

DEPTH Number of commits to fetch, a "shallow
clone" is a single commit.

string 1

SPARSE_CHEC
KOUT_DIRECT
ORIES

List of directory patterns, separated by
commas, for performing a "sparse
checkout".

string

Parameter Description Type Default value

Table 3.66. Results that the git-clone step action returns

Result Type Description

COMMIT string The SHA digest of the commit that is at the HEAD of
the current branch in the cloned Git repository.

URL string The URL of the repository that was cloned.

COMMITTER_DATE string The epoch timestamp of the commit that is at the
HEAD of the current branch in the cloned Git
repository.

cache-upload and cache-fetch

IMPORTANT

Using the cache-upload and cache-fetch step actions is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Use the cache-upload and cache-fetch step actions to preserve the cache directory where a build

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

108

https://access.redhat.com/support/offerings/techpreview/

Use the cache-upload and cache-fetch step actions to preserve the cache directory where a build
process keeps its dependencies, storing it in an Amazon Simple Storage Service (S3) bucket, Google
Cloud Services (GCS) bucket, or an Open Container Initiative (OCI) repository.

When you use the cache-upload step action, the step action calculates a hash based on certain files in
your build. You must provide a regular expression to select these files. The cache-upload step action
stores an image that contains the content of your cache directory, indexed with the hash.

When you use the cache-fetch step action, the step action calculates the same hash. Then it checks
whether a cached image for this hash is already available. If the image is available, the step action
populates your cache directory with the cached content. If the image is not available, the directory
remains as it was.

After using the cache-fetch step action, you can run the build process. If the cache is successfully
fetched, it includes the dependencies that the build process downloaded previously. If the cache was
not fetched, the build process downloads dependencies through its normal procedure.

The result of cache-fetch indicates whether a cached image was fetched. The subsequent cache-
upload step action can use the result and skip uploading a new cache image if the cache for the current
hash was already available.

The following example task retrieves the source from a repository, fetches the cache (if available), runs
a Maven build, and then, if the cache was not fetched, uploads the new cached image of the build
directory.

Example usage of the cache-fetch and cache-upload step actions in a task

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: java-demo-task
spec:
 workspaces:
 - name: source
 params:
 - name: repo_url
 type: string
 default: https://github.com/sample-organization/sample-java-project.git
 - name: revision
 type: string
 default: main
 - name: registry
 type: string
 default: image-registry.openshift-image-registry.svc:5000/sample-project/mvn-cache
 - name: image
 type: string
 default: openjdk:latest
 - name: buildCommand
 type: string
 default: "maven -Dmaven.repo.local=${LOCAL_CACHE_REPO} install"
 - name: cachePatterns
 type: array
 default: ["**pom.xml"]
 - name: force-cache-upload
 type: string
 default: "false"

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

109

 steps:
 - name: create-repo
 image: $(params.image)
 script: |
 mkdir -p $(workspaces.source.path)/repo
 chmod 777 $(workspaces.source.path)/repo
 - name: fetch-repo
 ref:
 resolver: cluster
 params:
 - name: name
 value: git-clone
 - name: namespace
 value: openshift-pipelines
 - name: kind
 value: stepaction
 params:
 - name: OUTPUT_PATH
 value: $(workspaces.source.path)/repo
 - name: URL
 value: $(params.repo_url)
 - name: REVISION
 value: $(params.revision)
 - name: cache-fetch
 ref:
 resolver: cluster
 params:
 - name: name
 value: cache-fetch
 - name: namespace
 value: openshift-pipelines
 - name: kind
 value: stepaction
 params:
 - name: PATTERNS
 value: $(params.cachePatterns)
 - name: SOURCE
 value: oci://$(params.registry):{{hash}}
 - name: CACHE_PATH
 value: $(workspaces.source.path)/cache
 - name: WORKING_DIR
 value: $(workspaces.source.path)/repo
 - name: run-build
 image: $(params.image)
 workingDir: $(workspaces.source.path)/repo
 env:
 - name: LOCAL_CACHE_REPO
 value: $(workspaces.source.path)/cache/repo
 script: |
 set -x
 $(params.buildCommand)
 echo "Cache size is $(du -sh $(workspaces.source.path)/cache)"
 - name: cache-upload
 ref:
 resolver: cluster
 params:

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

110

Table 3.67. Supported parameters for the cache-fetch step action

Parameter Description Type Default value

PATTERNS Regular expression for selecting files to
compute the hash. For example, for a Go
project, you can use go.mod files to
compute the cache, and then the value of
this parameter is **/go.sum (where **
accounts for subdirectories of any depth).

array

SOURCE Source URI for fetching the cache; use
{{hash}} to specify the cache hash. The
supported types are oci (example:
oci://quay.io/example-user/go-
cache:{{hash}}) and s3 (example:
s3://example-bucket/{{hash}})

string

CACHE_PATH Path for extracting the cache content.
Normally this path is in a workspace.

string

WORKING_DIR Path where the files for calculating the
hash are located.

string

INSECURE If "true", use insecure mode for fetching
the cache.

string "false"

GOOGLE_APPL
ICATION_CRED
ENTIALS

The path where Google credentials are
located. Ignored if empty.

string

AWS_CONFIG_
FILE

Path to the AWS configuration file.
Ignored if empty.

string

 - name: name
 value: cache-upload
 - name: namespace
 value: openshift-pipelines
 - name: kind
 value: stepaction
 params:
 - name: PATTERNS
 value: $(params.cachePatterns)
 - name: TARGET
 value: oci://$(params.registry):{{hash}}
 - name: CACHE_PATH
 value: $(workspaces.source.path)/cache
 - name: WORKING_DIR
 value: $(workspaces.source.path)/repo
 - name: FORCE_CACHE_UPLOAD
 value: $(params.force-cache-upload)

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

111

AWS_SHARED_
CREDENTIALS_
FILE

Path to the AWS credentials file. Ignored
if empty.

string

BLOB_QUERY_
PARAMS

Blob query parameters for configuring
S3, GCS, or Azure. Use these optional
parameters for additional features such as
S3 acceleration, FIPS, or path-style
addressing.

string

Parameter Description Type Default value

Table 3.68. Results that the cache-fetch step action returns

Result Type Description

fetched string "true" if the step has fetched the cache or "false" if
the step has not fetched the cache.

Table 3.69. Supported parameters for the cache-upload step action

Parameter Description Type Default value

PATTERNS Regular expression for selecting files to
compute the hash. For example, for a Go
project, you can use go.mod files to
compute the cache, and then the value of
this parameter is **/go.sum (where **
accounts for subdirectories of any depth).

array

TARGET Target URI for uploading the cache; use
{{hash}} to specify the cache hash. The
supported types are oci (example:
oci://quay.io/example-user/go-
cache:{{hash}}) and s3 (example:
s3://example-bucket/{{hash}})

string

CACHE_PATH Path for cache content, which the step
packs into the image. Normally this path is
in a workspace.

string

WORKING_DIR Path where the files for calculating the
hash are located.

string

INSECURE If "true", use insecure mode for
uploading the cache.

string "false"

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

112

FETCHED If "true", the cache for this hash was
already fetched.

string "false"

FORCE_CACHE
_UPLOAD

If "true", the step uploads the cache even
if it was fetched previously.

string "false"

GOOGLE_APPL
ICATION_CRED
ENTIALS

The path where Google credentials are
located. Ignored if empty.

string

AWS_CONFIG_
FILE

Path to the AWS configuration file.
Ignored if empty.

string

AWS_SHARED_
CREDENTIALS_
FILE

Path to the AWS credentials file. Ignored
if empty.

string

BLOB_QUERY_
PARAMS

Blob query parameters for configuring
S3, GCS, or Azure. Use these optional
parameters for additional features such as
S3 acceleration, FIPS, or path-style
addressing.

string

Parameter Description Type Default value

The cache-upload step action returns no results.

3.10. ABOUT NON-VERSIONED AND VERSIONED TASKS AND STEP
ACTIONS

The openshift-pipelines namespace includes versioned tasks and step actions alongside standard non-
versioned tasks and step actions. For example, installing the Red Hat OpenShift Pipelines Operator
version 1.18 creates the following items:

buildah-1-18-0 versioned task

buildah non-versioned task

git-clone-1-18-0 versioned StepAction definition

git-clone non-versioned StepAction definition

Non-versioned and versioned tasks and step actions have the same metadata, behavior, and
specifications, including params, workspaces, and steps. However, they behave differently when you
disable them or upgrade the Operator.

Before adopting non-versioned or versioned tasks and step actions as a standard in production
environments, cluster administrators might consider their advantages and disadvantages.

Table 3.70. Advantages and disadvantages of non-versioned and versioned tasks and step actions

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

113

 Advantages Disadvantages

Non-versioned tasks and step
actions If you prefer deploying

pipelines with the latest
updates and bug fixes,
use non-versioned tasks
and step actions.

Upgrading the Operator
upgrades the non-
versioned tasks and step
actions, which consumes
fewer resources than
multiple versioned tasks
and step actions.

If you deploy pipelines
that use non-versioned
tasks and step actions,
they might break after an
Operator upgrade if the
automatically upgraded
tasks and step actions
are not backward-
compatible.

Versioned tasks and step
actions If you prefer pipelines in

production that do not
change after a version
update, use versioned
tasks and step actions.

When you install a new
version of the Operator,
the versioned tasks and
step actions from the
current minor version
and the immediate
previous minor version
are retained.

If you continue using the
earlier versions, you
might miss the latest
features and critical
security updates.

After an upgrade, the
Operator cannot manage
the earlier versioned
tasks and step actions. If
you delete the earlier
versions manually, you
cannot restore them.

After an upgrade, the
Operator can delete
versioned tasks and step
actions from versions
earlier than the previous
minor release. When you
install a new version of
and the versioned tasks
or step actions from an
earlier version are
deleted, pipelines that
use the versioned tasks
from the earlier version
stop working.

Non-versioned and versioned tasks and step actions have different naming conventions, and the Red
Hat OpenShift Pipelines Operator upgrades them differently.

Table 3.71. Differences between non-versioned and versioned tasks and step actions

 Nomenclature Upgrade

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

114

Non-versioned tasks and step
actions

Non-versioned tasks and step
actions only contain the name of
the task or step action. For
example, the name of the non-
versioned task of Buildah installed
with Operator v1.18 is buildah.

When you upgrade the Operator,
it updates the non-versioned
tasks and step actions with the
latest changes. The name remains
unchanged.

Versioned tasks and step
actions

Versioned tasks and step actions
contain the name, followed by the
version as a suffix. For example,
the name of the versioned task of
Buildah installed with Operator
v1.18 is buildah-1-18-0.

Upgrading the Operator installs
the latest version of versioned
tasks and step actions, retains the
immediate previous version, and
deletes the earlier versions. The
latest version corresponds to the
upgraded Operator. For example,
installing Operator 1.18 installs the
buildah-1-18-0 task, retains the
buildah-1-17-0 task, and deletes
earlier versions such as buildah-
1-16-0.

 Nomenclature Upgrade

3.11. ADDITIONAL RESOURCES

Using Tekton Hub with OpenShift Pipelines

CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS

115

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/custom_tekton_hub_instance/#using-tekton-hub-with-openshift-pipelines

CHAPTER 4. USING MANUAL APPROVAL IN OPENSHIFT
PIPELINES

You can specify a manual approval task in a pipeline. When the pipeline reaches this task, it pauses and
awaits approval from one or several OpenShift Container Platform users. If any of the users chooses to
rejects the task instead of approving it, the pipeline fails. The manual approval gate controller provides
this functionality.

IMPORTANT

The manual approval gate is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

4.1. ENABLING THE MANUAL APPROVAL GATE CONTROLLER

To use manual approval tasks, you must first enable the manual approval gate controller.

Prerequisites

You installed the Red Hat OpenShift Pipelines Operator in your cluster.

You are logged on to the cluster using the oc command-line utility.

You have administrator permissions for the openshift-pipelines namespace.

Procedure

1. Create a file named manual-approval-gate-cr.yaml with the following manifest for the
ManualApprovalGate custom resource (CR):

2. Apply the ManualApprovalGate CR by entering the following command:

3. Verify that the manual approval gate controller is running by entering the following command:

Example output

apiVersion: operator.tekton.dev/v1alpha1
kind: ManualApprovalGate
metadata:
 name: manual-approval-gate
spec:
 targetNamespace: openshift-pipelines

$ oc apply -f manual-approval-gate-cr.yaml

$ oc get manualapprovalgates.operator.tekton.dev

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

116

https://access.redhat.com/support/offerings/techpreview/

Ensure that the READY status is True. If it is not True, wait for a few minutes and enter the
command again. The controller might take some time to reach a ready state.

4.2. SPECIFYING A MANUAL APPROVAL TASK

You can specify a manual approval task in your pipeline. When the execution of a pipeline run reaches
this task, the pipeline run stops and awaits approval from one or several users.

Prerequisites

You enabled the manual approver gate controller.

You created a YAML specification of a pipeline.

Procedure

Specify an ApprovalTask in the pipeline, as shown in the following example:

Table 4.1. Parameters for a manual approval task

Parameter Type Description

approvers array The OpenShift Container
Platform users who can
approve the task.

NAME VERSION READY REASON
manual-approval-gate v0.1.0 True

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: example-manual-approval-pipeline
spec:
 tasks:
...
 - name: example-manual-approval-task
 taskRef:
 apiVersion: openshift-pipelines.org/v1alpha1
 kind: ApprovalTask
 params:
 - name: approvers
 value:
 - user1
 - user2
 - user3
 - name: description
 value: Example manual approval task - please approve or reject
 - name: numberOfApprovalsRequired
 value: '2'
 - name: timeout
 value: '60m'
...

CHAPTER 4. USING MANUAL APPROVAL IN OPENSHIFT PIPELINES

117

description string Optional: The description of
the approval task. OpenShift
Pipelines displays the
description to the user who can
approve or reject the task.

numberOfApprovalsRequi
red

string The number of approvals from
different users that the task
requires.

timeout string Optional: The timeout period
for approval. If the task does
not receive the configured
number of approvals during
this period, the pipeline run
fails. The default timeout is 1
hour.

Parameter Type Description

4.3. APPROVING A MANUAL APPROVAL TASK

When you run a pipeline that includes an approval task and the execution reaches the approval task, the
pipeline run pauses and waits for user approval or rejection.

Users can approve or reject the task by using either the web console or the opc command line utility.

If any one of the approvers configured in the task rejects the task, the pipeline run fails.

If one user approves the task but the configured number of approvals is still not reached, the same user
can change to rejecting the task and the pipeline run fails

4.3.1. Approving a manual approval task by using the web console

You can approve or reject a manual approval task by using the OpenShift Container Platform web
console.

If you are listed as an approver in a manual approval task and a pipeline run reaches this task, the web
console displays a notification. You can view a list of tasks that require your approval and approve or
reject these tasks.

Prerequisites

You enabled the OpenShift Pipelines console plugin.

Procedure

1. View a list of tasks that you can approve by completing one of the following actions:

When a notification about a task requiring your approval displays, click Go to Approvals tab
in this notification.

In the Administrator perspective menu, select Pipelines → Pipelines and then click the

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

118

In the Administrator perspective menu, select Pipelines → Pipelines and then click the
Approvals tab.

In the Developer perspective menu, select Pipelines and then click the Approvals tab.

In the PipelineRun details window, in the Details tab, click the rectangle that represents
the manual approval task. The list displays only the approval for this task.

In the PipelineRun details window, click the ApprovalTasks tab. The list displays only the
approval for this pipeline run.

2. In the list of approval tasks, in the line that represents the task that you want to approve, click

the icon and then select one of the following options:

To approve the task, select Approve.

To reject the task, select Reject.

3. Enter a message in the Reason field.

4. Click Submit.

Additional resources

Enabling the OpenShift Pipelines console plugin

4.3.2. Approving a manual approval task by using the command line

You can approve or reject a manual approval task by using the opc command-line utility. You can view a
list of tasks for which you are an approver and approve or reject the tasks that are pending approval.

Prerequisites

You downloaded and installed the opc command-line utility. This utility is available in the same
package as the tkn command-line utility.

You are logged on to the cluster using the oc command-line utility.

Procedure

1. View a list of manual approval tasks for which you are listed as an approver by entering the
following command:

Example output

$ opc approvaltask list

NAME NumberOfApprovalsRequired PendingApprovals Rejected
STATUS
manual-approval-pipeline-01w6e1-task-2 2 0 0 Approved
manual-approval-pipeline-6ywv82-task-2 2 2 0 Rejected
manual-approval-pipeline-90gyki-task-2 2 2 0 Pending
manual-approval-pipeline-jyrkb3-task-2 2 1 1 Rejected

CHAPTER 4. USING MANUAL APPROVAL IN OPENSHIFT PIPELINES

119

2. Optional: To view information about a manual approval task, including its name, namespace,
pipeline run name, list of approvers, and current status, enter the following command:

3. Approve or reject a manual approval task as necessary:

To approve a manual approval task, enter the following command:

Optionally, you can specify a message for the approval by using the -m parameter:

To reject a manual approval task, enter the following command:

Optionally, you can specify a message for the rejection by using the -m parameter:

Additional resources

Installing tkn

$ opc approvaltask describe <approval_task_name>

$ opc approvaltask approve <approval_task_name>

$ opc approvaltask approve <approval_task_name> -m <message>

$ opc approvaltask reject <approval_task_name>

$ opc approvaltask reject <approval_task_name> -m <message>

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

120

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/pipelines_cli_tkn_reference/#installing-tkn

CHAPTER 5. USING RED HAT ENTITLEMENTS IN PIPELINES
If you have Red Hat Enterprise Linux (RHEL) entitlements, you can use these entitlements to build
container images in your pipelines.

The Insight Operator automatically manages your entitlements after you import them into this operator
from Simple Common Access (SCA). This operator provides a secret named etc-pki-entitlement in the
openshift-config-managed namespace.

You can use Red Hat entitlements in your pipelines in one of the following two ways:

Manually copy the secret into the namespace of the pipeline. This method is least complex if
you have a limited number of pipeline namespaces.

Use the Shared Resources Container Storage Interface (CSI) Driver Operator to share the
secret between namespaces automatically.

5.1. PREREQUISITES

You logged on to your OpenShift Container Platform cluster using the oc command line tool.

You enabled the Insights Operator feature on your OpenShift Container Platform cluster. If you
want to use the Shared Resources CSI Driver operator to share the secret between
namespaces, you must also enable the Shared Resources CSI driver. For information about
enabling features, including the Insights Operator and Shared Resources CSI Driver, see
Enabling features using feature gates.

NOTE

After you enable the Insights Operator, you must wait for some time to ensure
that the cluster updates all the nodes with this operator. You can monitor the
status of all nodes by entering the following command:

To verify that the Insights Operator is active, check that the insights-operator
pod is running in the openshift-insights namespace by entering the following
command:

You configured the importing of your Red Hat entitlements into the Insights Operator. For
information about importing the entitlements, see Importing simple content access
entitlements with Insights Operator.

NOTE

To verify that the Insights Operator made your entitlements available, is active,
check that the etc-pki-entitlement secret is present in the openshift-config-
managed namespace by entering the following command:

$ oc get nodes -w

$ oc get pods -n openshift-insights

$ oc get secret etc-pki-entitlement -n openshift-config-managed

CHAPTER 5. USING RED HAT ENTITLEMENTS IN PIPELINES

121

https://docs.openshift.com/container-platform/latest/nodes/clusters/nodes-cluster-enabling-features.html
https://docs.openshift.com/container-platform/latest/support/remote_health_monitoring/insights-operator-simple-access.html

1

5.2. USING RED HAT ENTITLEMENTS BY MANUALLY COPYING THE
ETC-PKI-ENTITLEMENT SECRET

You can copy the etc-pki-entitlement secret from the openshift-config-managed namespace into the
namespace of your pipeline. You can then configure your pipeline to use this secret for the Buildah task.

Prerequisites

You installed the jq package on your system. This package is available in Red Hat Enterprise
Linux (RHEL).

Procedure

1. Copy the etc-pki-entitlement secret from the openshift-config-managed namespace into the
namespace of your pipeline by running the following command:

Replace <pipeline_namespace> with the namespace of your pipeline.

2. In your Buildah task definition, use the buildah task provided in the openshift-pipelines
namespace or a copy of this task and define the rhel-entitlement workspace, as shown in the
following example.

3. In your task run or pipeline run that runs the Buildah task, assign the etc-pki-entitlement secret
to the rhel-entitlement workspace, as in the following example.

Example pipeline run definition, including the pipeline and task definitions, that uses Red
Hat entitlements

$ oc get secret etc-pki-entitlement -n openshift-config-managed -o json | \
 jq 'del(.metadata.resourceVersion)' | jq 'del(.metadata.creationTimestamp)' | \
 jq 'del(.metadata.uid)' | jq 'del(.metadata.namespace)' | \
 oc -n <pipeline_namespace> create -f - 1

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: buildah-pr-test
spec:
 workspaces:
 - name: shared-workspace
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 - name: dockerconfig
 secret:
 secretName: regred
 - name: rhel-entitlement 1
 secret:
 secretName: etc-pki-entitlement

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

122

1

2

3

The definition of the rhel-entitlement workspace in the pipeline run, assigning the etc-pki-
entitlement secret to the workspace

The definition of the rhel-entitlement workspace in the pipeline definition

The definition of the rhel-entitlement workspace in the task definition

5.3. USING RED HAT ENTITLEMENTS BY SHARING THE SECRET
USING THE SHARED RESOURCES CSI DRIVER OPERATOR

You can set up sharing of the etc-pki-entitlement secret from the openshift-config-managed
namespace to other namespaces using the Shared Resources Container Storage Interface (CSI) Driver
Operator. You can then configure your pipeline to use this secret for the Buildah task.

Prerequisites

You are logged on to your OpenShift Container Platform cluster using the oc command line
utility as a user with cluster administrator permissions.

You enabled the Shared Resources CSI Driver operator on your OpenShift Container Platform
cluster.

Procedure

1. Create a SharedSecret custom resource (CR) for sharing the etc-pki-entitlement secret by
running the following command:

 pipelineSpec:
 workspaces:
 - name: shared-workspace
 - name: dockerconfig
 - name: rhel-entitlement 2
 tasks:
...
 - name: buildah
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: buildah
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: dockerconfig
 workspace: dockerconfig
 - name: rhel-entitlement 3
 workspace: rhel-entitlement
 params:
 - name: IMAGE
 value: <image_where_you_want_to_push>

CHAPTER 5. USING RED HAT ENTITLEMENTS IN PIPELINES

123

1

1

2. Create an RBAC role that permits access to the shared secret by running the following
command:

Replace <pipeline_namespace> with the namespace of your pipeline.

3. Assign the role to the pipeline service account by running the following command:

Replace <pipeline-namespace> with the namespace of your pipeline.

NOTE

If you changed the default service account for OpenShift Pipelines or if you
define a custom service account in the pipeline run or task run, assign the role to
this account instead of the pipeline account.

4. In your Buildah task definition, use the buildah task provided in the openshift-pipelines
namespace or a copy of this task and define the rhel-entitlement workspace, as shown in the
following example.

5. In your task run or pipeline run that runs the Buildah task, assign the shared secret to the rhel-

$ oc apply -f - <<EOF
apiVersion: sharedresource.openshift.io/v1alpha1
kind: SharedSecret
metadata:
 name: shared-rhel-entitlement
spec:
 secretRef:
 name: etc-pki-entitlement
 namespace: openshift-config-managed
EOF

$ oc apply -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: shared-resource-rhel-entitlement
 namespace: <pipeline_namespace> 1
rules:
 - apiGroups:
 - sharedresource.openshift.io
 resources:
 - sharedsecrets
 resourceNames:
 - shared-rhel-entitlement
 verbs:
 - use
EOF

$ oc create rolebinding shared-resource-rhel-entitlement --role=shared-shared-resource-rhel-
entitlement \
 --serviceaccount=<pipeline-namespace>:pipeline 1

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

124

5. In your task run or pipeline run that runs the Buildah task, assign the shared secret to the rhel-
entitlement workspace, as in the following example.

Example pipeline run definition, including the pipeline and task definitions, that uses Red
Hat entitlements

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: buildah-pr-test-csi
spec:
 workspaces:
 - name: shared-workspace
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 - name: dockerconfig
 secret:
 secretName: regred
 - name: rhel-entitlement 1
 csi:
 readOnly: true
 driver: csi.sharedresource.openshift.io
 volumeAttributes:
 sharedSecret: shared-rhel-entitlement
 pipelineSpec:
 workspaces:
 - name: shared-workspace
 - name: dockerconfig
 - name: rhel-entitlement 2
 tasks:
...
 - name: buildah
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: buildah
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: dockerconfig
 workspace: dockerconfig
 - name: rhel-entitlement 3
 workspace: rhel-entitlement
 params:
 - name: IMAGE
 value: <image_where_you_want_to_push>

CHAPTER 5. USING RED HAT ENTITLEMENTS IN PIPELINES

125

1

2

3

The definition of the rhel-entitlement workspace in the pipeline run, assigning the shared-rhel-
entitlement CSI shared secret to the workspace

The definition of the rhel-entitlement workspace in the pipeline definition

The definition of the rhel-entitlement workspace in the task definition

5.4. ADDITIONAL RESOURCES

Simple content access

Using Insights Operator

Importing simple content access entitlements with Insights Operator

Shared Resource CSI Driver Operator

Changing the default service account for OpenShift Pipelines

Red Hat OpenShift Pipelines 1.19 Creating CI/CD pipelines

126

https://access.redhat.com/articles/simple-content-access
https://docs.openshift.com/container-platform/4.14/support/remote_health_monitoring/using-insights-operator.html
https://docs.openshift.com/container-platform/latest/support/remote_health_monitoring/insights-operator-simple-access.html
https://docs.openshift.com/container-platform/4.14/storage/container_storage_interface/ephemeral-storage-shared-resource-csi-driver-operator.html
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/installing_and_configuring/#op-changing-default-service-account_customizing-configurations-in-the-tektonconfig-cr

	Table of Contents
	CHAPTER 1. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES
	1.1. PREREQUISITES
	1.2. CREATING A PROJECT AND CHECKING YOUR PIPELINE SERVICE ACCOUNT
	1.3. CREATING PIPELINE TASKS
	1.4. ASSEMBLING A PIPELINE
	1.5. MIRRORING IMAGES TO RUN PIPELINES IN A RESTRICTED ENVIRONMENT
	1.6. RUNNING A PIPELINE
	1.7. ADDING TRIGGERS TO A PIPELINE
	1.8. CONFIGURING EVENT LISTENERS TO SERVE MULTIPLE NAMESPACES
	1.9. CREATING WEBHOOKS
	1.10. TRIGGERING A PIPELINE RUN
	1.11. ENABLING MONITORING OF EVENT LISTENERS FOR TRIGGERS FOR USER-DEFINED PROJECTS
	1.12. CONFIGURING PULL REQUEST CAPABILITIES IN GITHUB INTERCEPTOR
	1.12.1. Filtering pull requests using GitHub Interceptor
	1.12.2. Validating pull requests using GitHub Interceptors

	1.13. ADDITIONAL RESOURCES

	CHAPTER 2. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE WEB CONSOLE
	2.1. WORKING WITH RED HAT OPENSHIFT PIPELINES IN THE DEVELOPER PERSPECTIVE
	Prerequisites
	2.1.1. Constructing pipelines using the Pipeline builder
	2.1.2. Creating OpenShift Pipelines along with applications
	2.1.3. Adding a GitHub repository containing pipelines
	2.1.4. Interacting with pipelines using the Developer perspective
	2.1.5. Starting pipelines from Pipelines view
	2.1.6. Starting pipelines from Topology view
	2.1.7. Interacting with pipelines from Topology view
	2.1.8. Editing pipelines
	2.1.9. Deleting pipelines

	2.2. ADDITIONAL RESOURCES
	2.3. CREATING PIPELINE TEMPLATES IN THE ADMINISTRATOR PERSPECTIVE
	2.4. PIPELINE EXECUTION STATISTICS IN THE WEB CONSOLE
	2.4.1. Enabling the OpenShift Pipelines console plugin
	2.4.2. Viewing the statistics for all pipelines together
	2.4.3. Viewing the statistics for a specific pipeline

	CHAPTER 3. SPECIFYING REMOTE PIPELINES, TASKS, AND STEP ACTIONS USING RESOLVERS
	3.1. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION FROM A TEKTON CATALOG
	3.1.1. Configuring the hub resolver
	3.1.2. Specifying a remote pipeline, task, or step action using the hub resolver

	3.2. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION FROM A TEKTON BUNDLE
	3.2.1. Configuring the bundles resolver
	3.2.2. Specifying a remote pipeline, task, or step action using the bundles resolver

	3.3. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION WITH ANONYMOUS GIT CLONING
	3.3.1. Configuring the Git resolver for anonymous Git cloning
	3.3.2. Specifying a remote pipeline, task, or step action by using the Git resolver for anonymous cloning

	3.4. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION WITH AN AUTHENTICATED GIT API
	3.4.1. Configuring the Git resolver for an authenticated API
	3.4.2. Configuring multiple Git providers
	3.4.3. Specifying a remote pipeline, task, or step action using the Git resolver with the authenticated SCM API
	3.4.4. Specifying multiple Git providers
	3.4.5. Specifying a remote pipeline or task by using the Git resolver with the authenticated SCM API overriding the Git resolver configuration

	3.5. SPECIFYING A REMOTE PIPELINE, TASK, OR STEP ACTION BY USING THE HTTP RESOLVER
	3.5.1. Configuring the HTTP resolver
	3.5.2. Specifying a remote pipeline, task, or step action with the HTTP Resolver

	3.6. SPECIFYING A PIPELINE, TASK, OR STEP ACTION FROM THE SAME CLUSTER
	3.6.1. Configuring the cluster resolver
	3.6.2. Specifying a pipeline, task, or step action from the same cluster using the cluster resolver

	3.7. TASKS PROVIDED IN THE OPENSHIFT PIPELINES NAMESPACE
	buildah
	git-cli
	git-clone
	kn
	kn-apply
	maven
	openshift-client
	s2i-dotnet
	s2i-go
	s2i-java
	s2i-nodejs
	s2i-perl
	s2i-php
	s2i-python
	s2i-ruby
	skopeo-copy
	tkn

	3.8. COMMUNITY TASKS PROVIDED IN THE OPENSHIFT PIPELINES NAMESPACE
	argocd-task-sync-and-wait
	helm-upgrade-from-repo
	helm-upgrade-from-source
	jib-maven
	kubeconfig-creator
	pull-request
	trigger-jenkins-job

	3.9. STEP ACTION DEFINITIONS PROVIDED WITH OPENSHIFT PIPELINES
	git-clone
	cache-upload and cache-fetch

	3.10. ABOUT NON-VERSIONED AND VERSIONED TASKS AND STEP ACTIONS
	3.11. ADDITIONAL RESOURCES

	CHAPTER 4. USING MANUAL APPROVAL IN OPENSHIFT PIPELINES
	4.1. ENABLING THE MANUAL APPROVAL GATE CONTROLLER
	4.2. SPECIFYING A MANUAL APPROVAL TASK
	4.3. APPROVING A MANUAL APPROVAL TASK
	4.3.1. Approving a manual approval task by using the web console
	4.3.2. Approving a manual approval task by using the command line

	CHAPTER 5. USING RED HAT ENTITLEMENTS IN PIPELINES
	5.1. PREREQUISITES
	5.2. USING RED HAT ENTITLEMENTS BY MANUALLY COPYING THE ETC-PKI-ENTITLEMENT SECRET
	5.3. USING RED HAT ENTITLEMENTS BY SHARING THE SECRET USING THE SHARED RESOURCES CSI DRIVER OPERATOR
	5.4. ADDITIONAL RESOURCES

