
OpenShift Container Platform 4.14

Jenkins

Jenkins

Last Updated: 2026-02-19

OpenShift Container Platform 4.14 Jenkins

Jenkins

Legal Notice

Copyright © Red Hat.

Except as otherwise noted below, the text of and illustrations in this documentation are licensed by
Red Hat under the Creative Commons Attribution–Share Alike 3.0 Unported license . If you
distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, the Red Hat logo, JBoss, Hibernate, and RHCE are trademarks or registered trademarks of
Red Hat, LLC. or its subsidiaries in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

XFS is a trademark or registered trademark of Hewlett Packard Enterprise Development LP or its
subsidiaries in the United States and other countries.

The OpenStack ® Word Mark and OpenStack logo are trademarks or registered trademarks of the
Linux Foundation, used under license.

All other trademarks are the property of their respective owners.

Abstract

Jenkins for OpenShift Container Platform

. .

. .

. .

. .

Table of Contents

CHAPTER 1. CONFIGURING JENKINS IMAGES
1.1. CONFIGURATION AND CUSTOMIZATION

1.1.1. OpenShift Container Platform OAuth authentication
1.1.2. Jenkins authentication

1.2. JENKINS ENVIRONMENT VARIABLES
1.3. PROVIDING JENKINS CROSS PROJECT ACCESS
1.4. JENKINS CROSS VOLUME MOUNT POINTS
1.5. CUSTOMIZING THE JENKINS IMAGE THROUGH SOURCE-TO-IMAGE
1.6. CONFIGURING THE JENKINS KUBERNETES PLUGIN
1.7. JENKINS PERMISSIONS
1.8. CREATING A JENKINS SERVICE FROM A TEMPLATE
1.9. USING THE JENKINS KUBERNETES PLUGIN
1.10. JENKINS MEMORY REQUIREMENTS
1.11. ADDITIONAL RESOURCES

CHAPTER 2. JENKINS AGENT
2.1. JENKINS AGENT IMAGES
2.2. JENKINS AGENT ENVIRONMENT VARIABLES
2.3. JENKINS AGENT MEMORY REQUIREMENTS
2.4. JENKINS AGENT GRADLE BUILDS
2.5. JENKINS AGENT POD RETENTION

CHAPTER 3. MIGRATING FROM JENKINS TO OPENSHIFT PIPELINES OR TEKTON
3.1. COMPARISON OF JENKINS AND OPENSHIFT PIPELINES CONCEPTS

3.1.1. Jenkins terminology
3.1.2. OpenShift Pipelines terminology
3.1.3. Mapping of concepts

3.2. MIGRATING A SAMPLE PIPELINE FROM JENKINS TO OPENSHIFT PIPELINES
3.2.1. Jenkins pipeline
3.2.2. OpenShift Pipelines pipeline

3.3. MIGRATING FROM JENKINS PLUGINS TO TEKTON HUB TASKS
3.4. EXTENDING OPENSHIFT PIPELINES CAPABILITIES USING CUSTOM TASKS AND SCRIPTS
3.5. COMPARISON OF JENKINS AND OPENSHIFT PIPELINES EXECUTION MODELS
3.6. EXAMPLES OF COMMON USE CASES

3.6.1. Running a Maven pipeline in Jenkins and OpenShift Pipelines
3.6.2. Extending the core capabilities of Jenkins and OpenShift Pipelines by using plugins
3.6.3. Sharing reusable code in Jenkins and OpenShift Pipelines

3.7. ADDITIONAL RESOURCES

CHAPTER 4. IMPORTANT CHANGES TO OPENSHIFT JENKINS IMAGES
4.1. RELOCATION OF OPENSHIFT JENKINS IMAGES
4.2. CUSTOMIZING THE JENKINS IMAGE STREAM TAG
4.3. ABOUT THE OPENSHIFT CLI TOOL IN OPENSHIFT JENKINS IMAGES
4.4. OPENSHIFT JENKINS RELEASE COMPARED TO BUNDLED OC CLIENT VERSION TABLE
4.5. SPECIFYING A FIXED OC CLIENT VERSION FOR OPENSHIFT JENKINS IMAGES
4.6. ADDITIONAL RESOURCES

3
3
3
4
5
8
9
9

10
14
15
16
19
19

20
20
20
22
22
23

25
25
25
25
26
26
26
27
28
29
30
30
30
33
33
33

34
34
37
38
38
39
39

Table of Contents

1

OpenShift Container Platform 4.14 Jenkins

2

CHAPTER 1. CONFIGURING JENKINS IMAGES
OpenShift Container Platform provides a container image for running Jenkins. This image provides a
Jenkins server instance, which can be used to set up a basic flow for continuous testing, integration, and
delivery.

The image is based on the Red Hat Universal Base Images (UBI).

OpenShift Container Platform follows the LTS release of Jenkins. OpenShift Container Platform
provides an image that contains Jenkins 2.x.

The OpenShift Container Platform Jenkins images are available on Quay.io or registry.redhat.io.

For example:

To use these images, you can either access them directly from these registries or push them into your
OpenShift Container Platform container image registry. Additionally, you can create an image stream
that points to the image, either in your container image registry or at the external location. Your
OpenShift Container Platform resources can then reference the image stream.

But for convenience, OpenShift Container Platform provides image streams in the openshift
namespace for the core Jenkins image as well as the example Agent images provided for OpenShift
Container Platform integration with Jenkins.

1.1. CONFIGURATION AND CUSTOMIZATION

You can manage Jenkins authentication in two ways:

OpenShift Container Platform OAuth authentication provided by the OpenShift Container
Platform Login plugin.

Standard authentication provided by Jenkins.

1.1.1. OpenShift Container Platform OAuth authentication

OAuth authentication is activated by configuring options on the Configure Global Security panel in the
Jenkins UI, or by setting the OPENSHIFT_ENABLE_OAUTH environment variable on the Jenkins
Deployment configuration to anything other than false. This activates the OpenShift Container
Platform Login plugin, which retrieves the configuration information from pod data or by interacting
with the OpenShift Container Platform API server.

Valid credentials are controlled by the OpenShift Container Platform identity provider.

Jenkins supports both browser and non-browser access.

Valid users are automatically added to the Jenkins authorization matrix at log in, where OpenShift
Container Platform roles dictate the specific Jenkins permissions that users have. The roles used by
default are the predefined admin, edit, and view. The login plugin executes self-SAR requests against
those roles in the project or namespace that Jenkins is running in.

Users with the admin role have the traditional Jenkins administrative user permissions. Users with the
edit or view role have progressively fewer permissions.

The default OpenShift Container Platform admin, edit, and view roles and the Jenkins permissions

$ podman pull registry.redhat.io/ocp-tools-4/jenkins-rhel8:<image_tag>

CHAPTER 1. CONFIGURING JENKINS IMAGES

3

https://jenkins.io/changelog-stable/
https://quay.io
https://registry.redhat.io

The default OpenShift Container Platform admin, edit, and view roles and the Jenkins permissions
those roles are assigned in the Jenkins instance are configurable.

When running Jenkins in an OpenShift Container Platform pod, the login plugin looks for a config map
named openshift-jenkins-login-plugin-config in the namespace that Jenkins is running in.

If this plugin finds and can read in that config map, you can define the role to Jenkins Permission
mappings. Specifically:

The login plugin treats the key and value pairs in the config map as Jenkins permission to
OpenShift Container Platform role mappings.

The key is the Jenkins permission group short ID and the Jenkins permission short ID, with
those two separated by a hyphen character.

If you want to add the Overall Jenkins Administer permission to an OpenShift Container
Platform role, the key should be Overall-Administer.

To get a sense of which permission groups and permissions IDs are available, go to the matrix
authorization page in the Jenkins console and IDs for the groups and individual permissions in
the table they provide.

The value of the key and value pair is the list of OpenShift Container Platform roles the
permission should apply to, with each role separated by a comma.

If you want to add the Overall Jenkins Administer permission to both the default admin and
edit roles, as well as a new Jenkins role you have created, the value for the key Overall-
Administer would be admin,edit,jenkins.

NOTE

The admin user that is pre-populated in the OpenShift Container Platform Jenkins
image with administrative privileges is not given those privileges when OpenShift
Container Platform OAuth is used. To grant these permissions the OpenShift Container
Platform cluster administrator must explicitly define that user in the OpenShift Container
Platform identity provider and assigns the admin role to the user.

Jenkins users' permissions that are stored can be changed after the users are initially established. The
OpenShift Container Platform Login plugin polls the OpenShift Container Platform API server for
permissions and updates the permissions stored in Jenkins for each user with the permissions retrieved
from OpenShift Container Platform. If the Jenkins UI is used to update permissions for a Jenkins user,
the permission changes are overwritten the next time the plugin polls OpenShift Container Platform.

You can control how often the polling occurs with the OPENSHIFT_PERMISSIONS_POLL_INTERVAL
environment variable. The default polling interval is five minutes.

The easiest way to create a new Jenkins service using OAuth authentication is to use a template.

1.1.2. Jenkins authentication

Jenkins authentication is used by default if the image is run directly, without using a template.

The first time Jenkins starts, the configuration is created along with the administrator user and
password. The default user credentials are admin and password. Configure the default password by
setting the JENKINS_PASSWORD environment variable when using, and only when using, standard

OpenShift Container Platform 4.14 Jenkins

4

Jenkins authentication.

Procedure

Create a Jenkins application that uses standard Jenkins authentication:

1.2. JENKINS ENVIRONMENT VARIABLES

The Jenkins server can be configured with the following environment variables:

Variable Definition Example values and settings

OPENSHIFT_ENABLE_OAUT
H

Determines whether the
OpenShift Container Platform
Login plugin manages
authentication when logging in to
Jenkins. To enable, set to true.

Default: false

JENKINS_PASSWORD The password for the admin user
when using standard Jenkins
authentication. Not applicable
when
OPENSHIFT_ENABLE_OAUT
H is set to true.

Default: password

JAVA_MAX_HEAP_PARAM,
CONTAINER_HEAP_PERCEN
T,
JENKINS_MAX_HEAP_UPPE
R_BOUND_MB

These values control the
maximum heap size of the Jenkins
JVM. If
JAVA_MAX_HEAP_PARAM is
set, its value takes precedence.
Otherwise, the maximum heap
size is dynamically calculated as
CONTAINER_HEAP_PERCE
NT of the container memory limit,
optionally capped at
JENKINS_MAX_HEAP_UPPE
R_BOUND_MB MiB.

By default, the maximum heap
size of the Jenkins JVM is set to
50% of the container memory
limit with no cap.

JAVA_MAX_HEAP_PARAM
example setting: -Xmx512m

CONTAINER_HEAP_PERCE
NT default: 0.5, or 50%

JENKINS_MAX_HEAP_UPPE
R_BOUND_MB example
setting: 512 MiB

$ oc new-app -e \
 JENKINS_PASSWORD=<password> \
 ocp-tools-4/jenkins-rhel8

CHAPTER 1. CONFIGURING JENKINS IMAGES

5

JAVA_INITIAL_HEAP_PARA
M,
CONTAINER_INITIAL_PERC
ENT

These values control the initial
heap size of the Jenkins JVM. If
JAVA_INITIAL_HEAP_PARA
M is set, its value takes
precedence. Otherwise, the initial
heap size is dynamically calculated
as
CONTAINER_INITIAL_PERC
ENT of the dynamically
calculated maximum heap size.

By default, the JVM sets the
initial heap size.

JAVA_INITIAL_HEAP_PARA
M example setting: -Xms32m

CONTAINER_INITIAL_PERC
ENT example setting: 0.1, or 10%

CONTAINER_CORE_LIMIT If set, specifies an integer number
of cores used for sizing numbers
of internal JVM threads.

Example setting: 2

JAVA_TOOL_OPTIONS Specifies options to apply to all
JVMs running in this container. It
is not recommended to override
this value.

Default: -
XX:+UnlockExperimentalVM
Options -
XX:+UseCGroupMemoryLimi
tForHeap -
Dsun.zip.disableMemoryMap
ping=true

JAVA_GC_OPTS Specifies Jenkins JVM garbage
collection parameters. It is not
recommended to override this
value.

Default: -XX:+UseParallelGC -
XX:MinHeapFreeRatio=5 -
XX:MaxHeapFreeRatio=10 -
XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeigh
t=90

JENKINS_JAVA_OVERRIDES Specifies additional options for
the Jenkins JVM. These options
are appended to all other options,
including the Java options above,
and may be used to override any
of them if necessary. Separate
each additional option with a
space; if any option contains
space characters, escape them
with a backslash.

Example settings: -Dfoo -Dbar; -
Dfoo=first\ value -
Dbar=second\ value.

JENKINS_OPTS Specifies arguments to Jenkins.

Variable Definition Example values and settings

OpenShift Container Platform 4.14 Jenkins

6

INSTALL_PLUGINS Specifies additional Jenkins
plugins to install when the
container is first run or when
OVERRIDE_PV_PLUGINS_WI
TH_IMAGE_PLUGINS is set to
true. Plugins are specified as a
comma-delimited list of
name:version pairs.

Example setting:
git:3.7.0,subversion:2.10.2.

OPENSHIFT_PERMISSIONS_
POLL_INTERVAL

Specifies the interval in
milliseconds that the OpenShift
Container Platform Login plugin
polls OpenShift Container
Platform for the permissions that
are associated with each user that
is defined in Jenkins.

Default: 300000 - 5 minutes

OVERRIDE_PV_CONFIG_WIT
H_IMAGE_CONFIG

When running this image with an
OpenShift Container Platform
persistent volume (PV) for the
Jenkins configuration directory,
the transfer of configuration from
the image to the PV is performed
only the first time the image
starts because the PV is assigned
when the persistent volume claim
(PVC) is created. If you create a
custom image that extends this
image and updates the
configuration in the custom image
after the initial startup, the
configuration is not copied over
unless you set this environment
variable to true.

Default: false

OVERRIDE_PV_PLUGINS_WI
TH_IMAGE_PLUGINS

When running this image with an
OpenShift Container Platform PV
for the Jenkins configuration
directory, the transfer of plugins
from the image to the PV is
performed only the first time the
image starts because the PV is
assigned when the PVC is
created. If you create a custom
image that extends this image
and updates plugins in the custom
image after the initial startup, the
plugins are not copied over unless
you set this environment variable
to true.

Default: false

Variable Definition Example values and settings

CHAPTER 1. CONFIGURING JENKINS IMAGES

7

ENABLE_FATAL_ERROR_L
OG_FILE

When running this image with an
OpenShift Container Platform
PVC for the Jenkins configuration
directory, this environment
variable allows the fatal error log
file to persist when a fatal error
occurs. The fatal error file is saved
at /var/lib/jenkins/logs.

Default: false

AGENT_BASE_IMAGE Setting this value overrides the
image used for the jnlp container
in the sample Kubernetes plugin
pod templates provided with this
image. Otherwise, the image from
the jenkins-agent-base-
rhel8:latest image stream tag in
the openshift namespace is
used.

Default: image-
registry.openshift-image-
registry.svc:5000/openshift/j
enkins-agent-base-
rhel8:latest

JAVA_BUILDER_IMAGE Setting this value overrides the
image used for the java-builder
container in the java-builder
sample Kubernetes plugin pod
templates provided with this
image. Otherwise, the image from
the java:latest image stream tag
in the openshift namespace is
used.

Default: image-
registry.openshift-image-
registry.svc:5000/openshift/j
ava:latest

JAVA_FIPS_OPTIONS Setting this value controls how
the JVM operates when running
on a FIPS node. For more
information, see Configure
OpenJDK 11 in FIPS mode.

Default: -
Dcom.redhat.fips=false

Variable Definition Example values and settings

1.3. PROVIDING JENKINS CROSS PROJECT ACCESS

If you are going to run Jenkins somewhere other than your same project, you must provide an access
token to Jenkins to access your project.

Procedure

1. Identify the secret for the service account that has appropriate permissions to access the
project Jenkins must access:

Example output

$ oc describe serviceaccount jenkins

OpenShift Container Platform 4.14 Jenkins

8

https://access.redhat.com/documentation/en-us/openjdk/11/html-single/configuring_openjdk_11_on_rhel_with_fips/index#config-fips-in-openjdk

In this case the secret is named jenkins-token-uyswp.

2. Retrieve the token from the secret:

Example output

The token parameter contains the token value Jenkins requires to access the project.

1.4. JENKINS CROSS VOLUME MOUNT POINTS

The Jenkins image can be run with mounted volumes to enable persistent storage for the configuration:

/var/lib/jenkins is the data directory where Jenkins stores configuration files, including job
definitions.

1.5. CUSTOMIZING THE JENKINS IMAGE THROUGH SOURCE-TO-
IMAGE

To customize the official OpenShift Container Platform Jenkins image, you can use the image as a
source-to-image (S2I) builder.

You can use S2I to copy your custom Jenkins jobs definitions, add additional plugins, or replace the
provided config.xml file with your own, custom, configuration.

To include your modifications in the Jenkins image, you must have a Git repository with the following
directory structure:

plugins

This directory contains those binary Jenkins plugins you want to copy into Jenkins.

plugins.txt

This file lists the plugins you want to install using the following syntax:

pluginId:pluginVersion

Name: default
Labels: <none>
Secrets: { jenkins-token-uyswp }
 { jenkins-dockercfg-xcr3d }
Tokens: jenkins-token-izv1u
 jenkins-token-uyswp

$ oc describe secret <secret name from above>

Name: jenkins-token-uyswp
Labels: <none>
Annotations: kubernetes.io/service-account.name=jenkins,kubernetes.io/service-
account.uid=32f5b661-2a8f-11e5-9528-3c970e3bf0b7
Type: kubernetes.io/service-account-token
Data
====
ca.crt: 1066 bytes
token: eyJhbGc..<content cut>....wRA

CHAPTER 1. CONFIGURING JENKINS IMAGES

9

1

2

3

configuration/jobs

This directory contains the Jenkins job definitions.

configuration/config.xml

This file contains your custom Jenkins configuration.

The contents of the configuration/ directory is copied to the /var/lib/jenkins/ directory, so you can also
include additional files, such as credentials.xml, there.

Sample build configuration customizes the Jenkins image in OpenShift Container Platform

The source parameter defines the source Git repository with the layout described above.

The strategy parameter defines the original Jenkins image to use as a source image for the build.

The output parameter defines the resulting, customized Jenkins image that you can use in
deployment configurations instead of the official Jenkins image.

1.6. CONFIGURING THE JENKINS KUBERNETES PLUGIN

The OpenShift Jenkins image includes the preinstalled Kubernetes plugin for Jenkins so that Jenkins
agents can be dynamically provisioned on multiple container hosts using Kubernetes and OpenShift
Container Platform.

To use the Kubernetes plugin, OpenShift Container Platform provides an OpenShift Agent Base image
that is suitable for use as a Jenkins agent.

IMPORTANT

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: custom-jenkins-build
spec:
 source: 1
 git:
 uri: https://github.com/custom/repository
 type: Git
 strategy: 2
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: jenkins:2
 namespace: openshift
 type: Source
 output: 3
 to:
 kind: ImageStreamTag
 name: custom-jenkins:latest

OpenShift Container Platform 4.14 Jenkins

10

https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin

IMPORTANT

OpenShift Container Platform 4.11 moves the OpenShift Jenkins and OpenShift Agent
Base images to the ocp-tools-4 repository at registry.redhat.io so that Red Hat can
produce and update the images outside the OpenShift Container Platform lifecycle.
Previously, these images were in the OpenShift Container Platform install payload and
the openshift4 repository at registry.redhat.io.

The OpenShift Jenkins Maven and NodeJS Agent images were removed from the
OpenShift Container Platform 4.11 payload. Red Hat no longer produces these images,
and they are not available from the ocp-tools-4 repository at registry.redhat.io. Red Hat
maintains the 4.10 and earlier versions of these images for any significant bug fixes or
security CVEs, following the OpenShift Container Platform lifecycle policy .

For more information, see the "Important changes to OpenShift Jenkins images" link in
the following "Additional resources" section.

The Maven and Node.js agent images are automatically configured as Kubernetes pod template images
within the OpenShift Container Platform Jenkins image configuration for the Kubernetes plugin. That
configuration includes labels for each image that you can apply to any of your Jenkins jobs under their
Restrict where this project can be run setting. If the label is applied, jobs run under an OpenShift
Container Platform pod running the respective agent image.

IMPORTANT

In OpenShift Container Platform 4.10 and later, the recommended pattern for running
Jenkins agents using the Kubernetes plugin is to use pod templates with both jnlp and
sidecar containers. The jnlp container uses the OpenShift Container Platform Jenkins
Base agent image to facilitate launching a separate pod for your build. The sidecar
container image has the tools needed to build in a particular language within the separate
pod that was launched. Many container images from the Red Hat Container Catalog are
referenced in the sample image streams in the openshift namespace. The OpenShift
Container Platform Jenkins image has a pod template named java-build with sidecar
containers that demonstrate this approach. This pod template uses the latest Java
version provided by the java image stream in the openshift namespace.

The Jenkins image also provides auto-discovery and auto-configuration of additional agent images for
the Kubernetes plugin.

With the OpenShift Container Platform sync plugin, on Jenkins startup, the Jenkins image searches
within the project it is running, or the projects listed in the plugin’s configuration, for the following items:

Image streams with the role label set to jenkins-agent.

Image stream tags with the role annotation set to jenkins-agent.

Config maps with the role label set to jenkins-agent.

When the Jenkins image finds an image stream with the appropriate label, or an image stream tag with
the appropriate annotation, it generates the corresponding Kubernetes plugin configuration. This way,
you can assign your Jenkins jobs to run in a pod running the container image provided by the image
stream.

The name and image references of the image stream, or image stream tag, are mapped to the name
and image fields in the Kubernetes plugin pod template. You can control the label field of the

CHAPTER 1. CONFIGURING JENKINS IMAGES

11

https://access.redhat.com/support/policy/updates/openshift

Kubernetes plugin pod template by setting an annotation on the image stream, or image stream tag
object, with the key agent-label. Otherwise, the name is used as the label.

NOTE

Do not log in to the Jenkins console and change the pod template configuration. If you
do so after the pod template is created, and the OpenShift Container Platform Sync
plugin detects that the image associated with the image stream or image stream tag has
changed, it replaces the pod template and overwrites those configuration changes. You
cannot merge a new configuration with the existing configuration.

Consider the config map approach if you have more complex configuration needs.

When it finds a config map with the appropriate label, the Jenkins image assumes that any values in the
key-value data payload of the config map contain Extensible Markup Language (XML) consistent with
the configuration format for Jenkins and the Kubernetes plugin pod templates. One key advantage of
config maps over image streams and image stream tags is that you can control all the Kubernetes plugin
pod template parameters.

Sample config map for jenkins-agent

kind: ConfigMap
apiVersion: v1
metadata:
 name: jenkins-agent
 labels:
 role: jenkins-agent
data:
 template1: |-
 <org.csanchez.jenkins.plugins.kubernetes.PodTemplate>
 <inheritFrom></inheritFrom>
 <name>template1</name>
 <instanceCap>2147483647</instanceCap>
 <idleMinutes>0</idleMinutes>
 <label>template1</label>
 <serviceAccount>jenkins</serviceAccount>
 <nodeSelector></nodeSelector>
 <volumes/>
 <containers>
 <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <name>jnlp</name>
 
 <privileged>false</privileged>
 <alwaysPullImage>true</alwaysPullImage>
 <workingDir>/tmp</workingDir>
 <command></command>
 <args>${computer.jnlpmac} ${computer.name}</args>
 <ttyEnabled>false</ttyEnabled>
 <resourceRequestCpu></resourceRequestCpu>
 <resourceRequestMemory></resourceRequestMemory>
 <resourceLimitCpu></resourceLimitCpu>
 <resourceLimitMemory></resourceLimitMemory>
 <envVars/>
 </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 </containers>

OpenShift Container Platform 4.14 Jenkins

12

The following example shows two containers that reference image streams in the openshift
namespace. One container handles the JNLP contract for launching Pods as Jenkins Agents. The other
container uses an image with tools for building code in a particular coding language:

 <envVars/>
 <annotations/>
 <imagePullSecrets/>
 <nodeProperties/>
 </org.csanchez.jenkins.plugins.kubernetes.PodTemplate>

kind: ConfigMap
apiVersion: v1
metadata:
 name: jenkins-agent
 labels:
 role: jenkins-agent
data:
 template2: |-
 <org.csanchez.jenkins.plugins.kubernetes.PodTemplate>
 <inheritFrom></inheritFrom>
 <name>template2</name>
 <instanceCap>2147483647</instanceCap>
 <idleMinutes>0</idleMinutes>
 <label>template2</label>
 <serviceAccount>jenkins</serviceAccount>
 <nodeSelector></nodeSelector>
 <volumes/>
 <containers>
 <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <name>jnlp</name>
 
 <privileged>false</privileged>
 <alwaysPullImage>true</alwaysPullImage>
 <workingDir>/home/jenkins/agent</workingDir>
 <command></command>
 <args>\$(JENKINS_SECRET) \$(JENKINS_NAME)</args>
 <ttyEnabled>false</ttyEnabled>
 <resourceRequestCpu></resourceRequestCpu>
 <resourceRequestMemory></resourceRequestMemory>
 <resourceLimitCpu></resourceLimitCpu>
 <resourceLimitMemory></resourceLimitMemory>
 <envVars/>
 </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <name>java</name>
 
 <privileged>false</privileged>
 <alwaysPullImage>true</alwaysPullImage>
 <workingDir>/home/jenkins/agent</workingDir>
 <command>cat</command>
 <args></args>
 <ttyEnabled>true</ttyEnabled>
 <resourceRequestCpu></resourceRequestCpu>
 <resourceRequestMemory></resourceRequestMemory>
 <resourceLimitCpu></resourceLimitCpu>

CHAPTER 1. CONFIGURING JENKINS IMAGES

13

NOTE

Do not log in to the Jenkins console and change the pod template configuration. If you
do so after the pod template is created, and the OpenShift Container Platform Sync
plugin detects that the image associated with the image stream or image stream tag has
changed, it replaces the pod template and overwrites those configuration changes. You
cannot merge a new configuration with the existing configuration.

Consider the config map approach if you have more complex configuration needs.

After it is installed, the OpenShift Container Platform Sync plugin monitors the API server of OpenShift
Container Platform for updates to image streams, image stream tags, and config maps and adjusts the
configuration of the Kubernetes plugin.

The following rules apply:

Removing the label or annotation from the config map, image stream, or image stream tag
deletes any existing PodTemplate from the configuration of the Kubernetes plugin.

If those objects are removed, the corresponding configuration is removed from the Kubernetes
plugin.

If you create appropriately labeled or annotated ConfigMap, ImageStream, or
ImageStreamTag objects, or add labels after their initial creation, this results in the creation of a
PodTemplate in the Kubernetes-plugin configuration.

In the case of the PodTemplate by config map form, changes to the config map data for the
PodTemplate are applied to the PodTemplate settings in the Kubernetes plugin configuration.
The changes also override any changes that were made to the PodTemplate through the
Jenkins UI between changes to the config map.

To use a container image as a Jenkins agent, the image must run the agent as an entry point. For more
details, see the official Jenkins documentation.

Additional resources

Important changes to OpenShift Jenkins images

1.7. JENKINS PERMISSIONS

If in the config map the <serviceAccount> element of the pod template XML is the OpenShift
Container Platform service account used for the resulting pod, the service account credentials are
mounted into the pod. The permissions are associated with the service account and control which
operations against the OpenShift Container Platform master are allowed from the pod.

 <resourceLimitMemory></resourceLimitMemory>
 <envVars/>
 </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 </containers>
 <envVars/>
 <annotations/>
 <imagePullSecrets/>
 <nodeProperties/>
 </org.csanchez.jenkins.plugins.kubernetes.PodTemplate>

OpenShift Container Platform 4.14 Jenkins

14

https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds#Distributedbuilds-Launchslaveagentheadlessly

Consider the following scenario with service accounts used for the pod, which is launched by the
Kubernetes Plugin that runs in the OpenShift Container Platform Jenkins image.

If you use the example template for Jenkins that is provided by OpenShift Container Platform, the
jenkins service account is defined with the edit role for the project Jenkins runs in, and the master
Jenkins pod has that service account mounted.

The two default Maven and NodeJS pod templates that are injected into the Jenkins configuration are
also set to use the same service account as the Jenkins master.

Any pod templates that are automatically discovered by the OpenShift Container Platform sync
plugin because their image streams or image stream tags have the required label or
annotations are configured to use the Jenkins master service account as their service account.

For the other ways you can provide a pod template definition into Jenkins and the Kubernetes
plugin, you have to explicitly specify the service account to use. Those other ways include the
Jenkins console, the podTemplate pipeline DSL that is provided by the Kubernetes plugin, or
labeling a config map whose data is the XML configuration for a pod template.

If you do not specify a value for the service account, the default service account is used.

Ensure that whatever service account is used has the necessary permissions, roles, and so on
defined within OpenShift Container Platform to manipulate whatever projects you choose to
manipulate from the within the pod.

1.8. CREATING A JENKINS SERVICE FROM A TEMPLATE

Templates provide parameter fields to define all the environment variables with predefined default
values. OpenShift Container Platform provides templates to make creating a new Jenkins service easy.
The Jenkins templates should be registered in the default openshift project by your cluster
administrator during the initial cluster setup.

The two available templates both define deployment configuration and a service. The templates differ
in their storage strategy, which affects whether the Jenkins content persists across a pod restart.

NOTE

A pod might be restarted when it is moved to another node or when an update of the
deployment configuration triggers a redeployment.

jenkins-ephemeral uses ephemeral storage. On pod restart, all data is lost. This template is
only useful for development or testing.

jenkins-persistent uses a Persistent Volume (PV) store. Data survives a pod restart.

To use a PV store, the cluster administrator must define a PV pool in the OpenShift Container Platform
deployment.

After you select which template you want, you must instantiate the template to be able to use Jenkins.

Procedure

1. Create a new Jenkins application using one of the following methods:

A PV:

CHAPTER 1. CONFIGURING JENKINS IMAGES

15

Or an emptyDir type volume where configuration does not persist across pod restarts:

With both templates, you can run oc describe on them to see all the parameters available for overriding.

For example:

1.9. USING THE JENKINS KUBERNETES PLUGIN

In the following example, the openshift-jee-sample BuildConfig object causes a Jenkins Maven agent
pod to be dynamically provisioned. The pod clones some Java source code, builds a WAR file, and
causes a second BuildConfig, openshift-jee-sample-docker to run. The second BuildConfig layers the
new WAR file into a container image.

IMPORTANT

OpenShift Container Platform 4.11 removed the OpenShift Jenkins Maven and NodeJS
Agent images from its payload. Red Hat no longer produces these images, and they are
not available from the ocp-tools-4 repository at registry.redhat.io. Red Hat maintains
the 4.10 and earlier versions of these images for any significant bug fixes or security
CVEs, following the OpenShift Container Platform lifecycle policy .

For more information, see the "Important changes to OpenShift Jenkins images" link in
the following "Additional resources" section.

Sample BuildConfig that uses the Jenkins Kubernetes plugin

$ oc new-app jenkins-persistent

$ oc new-app jenkins-ephemeral

$ oc describe jenkins-ephemeral

kind: List
apiVersion: v1
items:
- kind: ImageStream
 apiVersion: image.openshift.io/v1
 metadata:
 name: openshift-jee-sample
- kind: BuildConfig
 apiVersion: build.openshift.io/v1
 metadata:
 name: openshift-jee-sample-docker
 spec:
 strategy:
 type: Docker
 source:
 type: Docker
 dockerfile: |-
 FROM openshift/wildfly-101-centos7:latest
 COPY ROOT.war /wildfly/standalone/deployments/ROOT.war
 CMD $STI_SCRIPTS_PATH/run
 binary:

OpenShift Container Platform 4.14 Jenkins

16

https://access.redhat.com/support/policy/updates/openshift

It is also possible to override the specification of the dynamically created Jenkins agent pod. The
following is a modification to the preceding example, which overrides the container memory and
specifies an environment variable.

Sample BuildConfig that uses the Jenkins Kubernetes plugin, specifying memory limit and
environment variable

 asFile: ROOT.war
 output:
 to:
 kind: ImageStreamTag
 name: openshift-jee-sample:latest
- kind: BuildConfig
 apiVersion: build.openshift.io/v1
 metadata:
 name: openshift-jee-sample
 spec:
 strategy:
 type: JenkinsPipeline
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node("maven") {
 sh "git clone https://github.com/openshift/openshift-jee-sample.git ."
 sh "mvn -B -Popenshift package"
 sh "oc start-build -F openshift-jee-sample-docker --from-file=target/ROOT.war"
 }
 triggers:
 - type: ConfigChange

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: openshift-jee-sample
spec:
 strategy:
 type: JenkinsPipeline
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 podTemplate(label: "mypod", 1
 cloud: "openshift", 2
 inheritFrom: "maven", 3
 containers: [
 containerTemplate(name: "jnlp", 4
 image: "openshift/jenkins-agent-maven-35-centos7:v3.10", 5
 resourceRequestMemory: "512Mi", 6
 resourceLimitMemory: "512Mi", 7
 envVars: [
 envVar(key: "CONTAINER_HEAP_PERCENT", value: "0.25") 8
])
]) {
 node("mypod") { 9
 sh "git clone https://github.com/openshift/openshift-jee-sample.git ."
 sh "mvn -B -Popenshift package"
 sh "oc start-build -F openshift-jee-sample-docker --from-file=target/ROOT.war"

CHAPTER 1. CONFIGURING JENKINS IMAGES

17

1

2

3

4

5

6

7

8

9

A new pod template called mypod is defined dynamically. The new pod template name is
referenced in the node stanza.

The cloud value must be set to openshift.

The new pod template can inherit its configuration from an existing pod template. In this case,
inherited from the Maven pod template that is pre-defined by OpenShift Container Platform.

This example overrides values in the pre-existing container, and must be specified by name. All
Jenkins agent images shipped with OpenShift Container Platform use the Container name jnlp.

Specify the container image name again. This is a known issue.

A memory request of 512 Mi is specified.

A memory limit of 512 Mi is specified.

An environment variable CONTAINER_HEAP_PERCENT, with value 0.25, is specified.

The node stanza references the name of the defined pod template.

By default, the pod is deleted when the build completes. This behavior can be modified with the plugin or
within a pipeline Jenkinsfile.

Upstream Jenkins has more recently introduced a YAML declarative format for defining a podTemplate
pipeline DSL in-line with your pipelines. An example of this format, using the sample java-builder pod
template that is defined in the OpenShift Container Platform Jenkins image:

 }
 }
 triggers:
 - type: ConfigChange

def nodeLabel = 'java-buidler'

pipeline {
 agent {
 kubernetes {
 cloud 'openshift'
 label nodeLabel
 yaml """
apiVersion: v1
kind: Pod
metadata:
 labels:
 worker: ${nodeLabel}
spec:
 containers:
 - name: jnlp
 image: image-registry.openshift-image-registry.svc:5000/openshift/jenkins-agent-base-rhel8:latest
 args: ['\$(JENKINS_SECRET)', '\$(JENKINS_NAME)']
 - name: java
 image: image-registry.openshift-image-registry.svc:5000/openshift/java:latest
 command:
 - cat

OpenShift Container Platform 4.14 Jenkins

18

Additional resources

Important changes to OpenShift Jenkins images

1.10. JENKINS MEMORY REQUIREMENTS

When deployed by the provided Jenkins Ephemeral or Jenkins Persistent templates, the default
memory limit is 1 Gi.

By default, all other process that run in the Jenkins container cannot use more than a total of 512 MiB
of memory. If they require more memory, the container halts. It is therefore highly recommended that
pipelines run external commands in an agent container wherever possible.

And if Project quotas allow for it, see recommendations from the Jenkins documentation on what a
Jenkins master should have from a memory perspective. Those recommendations proscribe to allocate
even more memory for the Jenkins master.

It is recommended to specify memory request and limit values on agent containers created by the
Jenkins Kubernetes plugin. Admin users can set default values on a per-agent image basis through the
Jenkins configuration. The memory request and limit parameters can also be overridden on a per-
container basis.

You can increase the amount of memory available to Jenkins by overriding the MEMORY_LIMIT
parameter when instantiating the Jenkins Ephemeral or Jenkins Persistent template.

1.11. ADDITIONAL RESOURCES

See Base image options for more information about the Red Hat Universal Base Images (UBI).

Important changes to OpenShift Jenkins images

 tty: true
"""
 }
 }

 options {
 timeout(time: 20, unit: 'MINUTES')
 }

 stages {
 stage('Build App') {
 steps {
 container("java") {
 sh "mvn --version"
 }
 }
 }
 }
}

CHAPTER 1. CONFIGURING JENKINS IMAGES

19

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/architecture/#base-image-options
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers/index#using_red_hat_base_container_images_standard_and_minimal

CHAPTER 2. JENKINS AGENT
OpenShift Container Platform provides a base image for use as a Jenkins agent.

The Base image for Jenkins agents does the following:

Pulls in both the required tools, headless Java, the Jenkins JNLP client, and the useful ones,
including git, tar, zip, and nss, among others.

Establishes the JNLP agent as the entry point.

Includes the oc client tool for invoking command-line operations from within Jenkins jobs.

Provides Dockerfiles for both Red Hat Enterprise Linux (RHEL) and localdev images.

IMPORTANT

Use a version of the agent image that is appropriate for your OpenShift Container
Platform release version. Embedding an oc client version that is not compatible with the
OpenShift Container Platform version can cause unexpected behavior.

The OpenShift Container Platform Jenkins image also defines the following sample java-builder pod
template to illustrate how you can use the agent image with the Jenkins Kubernetes plugin.

The java-builder pod template employs two containers: * A jnlp container that uses the OpenShift
Container Platform Base agent image and handles the JNLP contract for starting and stopping Jenkins
agents. * A java container that uses the java OpenShift Container Platform Sample ImageStream, which
contains the various Java binaries, including the Maven binary mvn, for building code.

2.1. JENKINS AGENT IMAGES

The OpenShift Container Platform Jenkins agent images are available on Quay.io or registry.redhat.io.

Jenkins images are available through the Red Hat Registry:

To use these images, you can either access them directly from Quay.io or registry.redhat.io or push them
into your OpenShift Container Platform container image registry.

2.2. JENKINS AGENT ENVIRONMENT VARIABLES

Each Jenkins agent container can be configured with the following environment variables.

$ docker pull registry.redhat.io/ocp-tools-4/jenkins-rhel8:<image_tag>

$ docker pull registry.redhat.io/ocp-tools-4/jenkins-agent-base-rhel8:<image_tag>

OpenShift Container Platform 4.14 Jenkins

20

https://quay.io
https://registry.redhat.io
https://quay.io
https://registry.redhat.io

Variable Definition Example values and settings

JAVA_MAX_HEAP_PARAM,
CONTAINER_HEAP_PERCEN
T,
JENKINS_MAX_HEAP_UPPE
R_BOUND_MB

These values control the
maximum heap size of the Jenkins
JVM. If
JAVA_MAX_HEAP_PARAM is
set, its value takes precedence.
Otherwise, the maximum heap
size is dynamically calculated as
CONTAINER_HEAP_PERCE
NT of the container memory limit,
optionally capped at
JENKINS_MAX_HEAP_UPPE
R_BOUND_MB MiB.

By default, the maximum heap
size of the Jenkins JVM is set to
50% of the container memory
limit with no cap.

JAVA_MAX_HEAP_PARAM
example setting: -Xmx512m

CONTAINER_HEAP_PERCE
NT default: 0.5, or 50%

JENKINS_MAX_HEAP_UPPE
R_BOUND_MB example
setting: 512 MiB

JAVA_INITIAL_HEAP_PARA
M,
CONTAINER_INITIAL_PERC
ENT

These values control the initial
heap size of the Jenkins JVM. If
JAVA_INITIAL_HEAP_PARA
M is set, its value takes
precedence. Otherwise, the initial
heap size is dynamically calculated
as
CONTAINER_INITIAL_PERC
ENT of the dynamically
calculated maximum heap size.

By default, the JVM sets the
initial heap size.

JAVA_INITIAL_HEAP_PARA
M example setting: -Xms32m

CONTAINER_INITIAL_PERC
ENT example setting: 0.1, or 10%

CONTAINER_CORE_LIMIT If set, specifies an integer number
of cores used for sizing numbers
of internal JVM threads.

Example setting: 2

JAVA_TOOL_OPTIONS Specifies options to apply to all
JVMs running in this container. It
is not recommended to override
this value.

Default: -
XX:+UnlockExperimentalVM
Options -
XX:+UseCGroupMemoryLimi
tForHeap -
Dsun.zip.disableMemoryMap
ping=true

CHAPTER 2. JENKINS AGENT

21

JAVA_GC_OPTS Specifies Jenkins JVM garbage
collection parameters. It is not
recommended to override this
value.

Default: -XX:+UseParallelGC -
XX:MinHeapFreeRatio=5 -
XX:MaxHeapFreeRatio=10 -
XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeigh
t=90

JENKINS_JAVA_OVERRIDES Specifies additional options for
the Jenkins JVM. These options
are appended to all other options,
including the Java options above,
and can be used to override any
of them, if necessary. Separate
each additional option with a
space and if any option contains
space characters, escape them
with a backslash.

Example settings: -Dfoo -Dbar; -
Dfoo=first\ value -
Dbar=second\ value

USE_JAVA_VERSION Specifies the version of Java
version to use to run the agent in
its container. The container base
image has two versions of java
installed: java-11 and java-1.8.0.
If you extend the container base
image, you can specify any
alternative version of java using
its associated suffix.

The default value is java-11.

Example setting: java-1.8.0

Variable Definition Example values and settings

2.3. JENKINS AGENT MEMORY REQUIREMENTS

A JVM is used in all Jenkins agents to host the Jenkins JNLP agent as well as to run any Java
applications such as javac, Maven, or Gradle.

By default, the Jenkins JNLP agent JVM uses 50% of the container memory limit for its heap. This value
can be modified by the CONTAINER_HEAP_PERCENT environment variable. It can also be capped at
an upper limit or overridden entirely.

By default, any other processes run in the Jenkins agent container, such as shell scripts or oc commands
run from pipelines, cannot use more than the remaining 50% memory limit without provoking an OOM
kill.

By default, each further JVM process that runs in a Jenkins agent container uses up to 25% of the
container memory limit for its heap. It might be necessary to tune this limit for many build workloads.

2.4. JENKINS AGENT GRADLE BUILDS

Hosting Gradle builds in the Jenkins agent on OpenShift Container Platform presents additional
complications because in addition to the Jenkins JNLP agent and Gradle JVMs, Gradle spawns a third
JVM to run tests if they are specified.

OpenShift Container Platform 4.14 Jenkins

22

1

The following settings are suggested as a starting point for running Gradle builds in a memory
constrained Jenkins agent on OpenShift Container Platform. You can modify these settings as required.

Ensure the long-lived Gradle daemon is disabled by adding org.gradle.daemon=false to the
gradle.properties file.

Disable parallel build execution by ensuring org.gradle.parallel=true is not set in the
gradle.properties file and that --parallel is not set as a command-line argument.

To prevent Java compilations running out-of-process, set java { options.fork = false } in the
build.gradle file.

Disable multiple additional test processes by ensuring test { maxParallelForks = 1 } is set in the
build.gradle file.

Override the Gradle JVM memory parameters by the GRADLE_OPTS, JAVA_OPTS or
JAVA_TOOL_OPTIONS environment variables.

Set the maximum heap size and JVM arguments for any Gradle test JVM by defining the
maxHeapSize and jvmArgs settings in build.gradle, or through the -Dorg.gradle.jvmargs
command-line argument.

2.5. JENKINS AGENT POD RETENTION

Jenkins agent pods, are deleted by default after the build completes or is stopped. This behavior can be
changed by the Kubernetes plugin pod retention setting. Pod retention can be set for all Jenkins builds,
with overrides for each pod template. The following behaviors are supported:

Always keeps the build pod regardless of build result.

Default uses the plugin value, which is the pod template only.

Never always deletes the pod.

On Failure keeps the pod if it fails during the build.

You can override pod retention in the pipeline Jenkinsfile:

Allowed values for podRetention are never(), onFailure(), always(), and default().

podTemplate(label: "mypod",
 cloud: "openshift",
 inheritFrom: "maven",
 podRetention: onFailure(), 1
 containers: [
 ...
]) {
 node("mypod") {
 ...
 }
}

CHAPTER 2. JENKINS AGENT

23

WARNING

Pods that are kept might continue to run and count against resource quotas.

OpenShift Container Platform 4.14 Jenkins

24

CHAPTER 3. MIGRATING FROM JENKINS TO OPENSHIFT
PIPELINES OR TEKTON

You can migrate your CI/CD workflows from Jenkins to Red Hat OpenShift Pipelines , a cloud-native
CI/CD experience based on the Tekton project.

3.1. COMPARISON OF JENKINS AND OPENSHIFT PIPELINES
CONCEPTS

You can review and compare the following equivalent terms used in Jenkins and OpenShift Pipelines.

3.1.1. Jenkins terminology

Jenkins offers declarative and scripted pipelines that are extensible using shared libraries and plugins.
Some basic terms in Jenkins are as follows:

Pipeline: Automates the entire process of building, testing, and deploying applications by using
Groovy syntax.

Node: A machine capable of either orchestrating or executing a scripted pipeline.

Stage: A conceptually distinct subset of tasks performed in a pipeline. Plugins or user interfaces
often use this block to display the status or progress of tasks.

Step: A single task that specifies the exact action to be taken, either by using a command or a
script.

3.1.2. OpenShift Pipelines terminology

OpenShift Pipelines uses YAML syntax for declarative pipelines and consists of tasks. Some basic terms
in OpenShift Pipelines are as follows:

Pipeline: A set of tasks in a series, in parallel, or both.

Task: A sequence of steps as commands, binaries, or scripts.

PipelineRun: Execution of a pipeline with one or more tasks.

TaskRun: Execution of a task with one or more steps.

NOTE

You can initiate a PipelineRun or a TaskRun with a set of inputs such as
parameters and workspaces, and the execution results in a set of outputs and
artifacts.

Workspace: In OpenShift Pipelines, workspaces are conceptual blocks that serve the following
purposes:

Storage of inputs, outputs, and build artifacts.

Common space to share data among tasks.

Mount points for credentials held in secrets, configurations held in config maps, and

CHAPTER 3. MIGRATING FROM JENKINS TO OPENSHIFT PIPELINES OR TEKTON

25

https://docs.openshift.com/pipelines/latest/about/understanding-openshift-pipelines.html
https://groovy-lang.org/
https://yaml.org/

Mount points for credentials held in secrets, configurations held in config maps, and
common tools shared by an organization.

NOTE

In Jenkins, there is no direct equivalent of OpenShift Pipelines workspaces. You
can think of the control node as a workspace, as it stores the cloned code
repository, build history, and artifacts. When a job is assigned to a different node,
the cloned code and the generated artifacts are stored in that node, but the
control node maintains the build history.

3.1.3. Mapping of concepts

The building blocks of Jenkins and OpenShift Pipelines are not equivalent, and a specific comparison
does not provide a technically accurate mapping. The following terms and concepts in Jenkins and
OpenShift Pipelines correlate in general:

Table 3.1. Jenkins and OpenShift Pipelines - basic comparison

Jenkins OpenShift Pipelines

Pipeline Pipeline and PipelineRun

Stage Task

Step A step in a task

3.2. MIGRATING A SAMPLE PIPELINE FROM JENKINS TO OPENSHIFT
PIPELINES

You can use the following equivalent examples to help migrate your build, test, and deploy pipelines
from Jenkins to OpenShift Pipelines.

3.2.1. Jenkins pipeline

Consider a Jenkins pipeline written in Groovy for building, testing, and deploying:

pipeline {
 agent any
 stages {
 stage('Build') {
 steps {
 sh 'make'
 }
 }
 stage('Test'){
 steps {
 sh 'make check'
 junit 'reports/**/*.xml'
 }
 }
 stage('Deploy') {

OpenShift Container Platform 4.14 Jenkins

26

3.2.2. OpenShift Pipelines pipeline

To create a pipeline in OpenShift Pipelines that is equivalent to the preceding Jenkins pipeline, you
create the following three tasks:

Example build task YAML definition file

Example test task YAML definition file

Example deploy task YAML definition file

 steps {
 sh 'make publish'
 }
 }
 }
}

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: myproject-build
spec:
 workspaces:
 - name: source
 steps:
 - image: my-ci-image
 command: ["make"]
 workingDir: $(workspaces.source.path)

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: myproject-test
spec:
 workspaces:
 - name: source
 steps:
 - image: my-ci-image
 command: ["make check"]
 workingDir: $(workspaces.source.path)
 - image: junit-report-image
 script: |
 #!/usr/bin/env bash
 junit-report reports/**/*.xml
 workingDir: $(workspaces.source.path)

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: myprojectd-deploy
spec:
 workspaces:
 - name: source

CHAPTER 3. MIGRATING FROM JENKINS TO OPENSHIFT PIPELINES OR TEKTON

27

You can combine the three tasks sequentially to form a pipeline in OpenShift Pipelines:

Example: OpenShift Pipelines pipeline for building, testing, and deployment

3.3. MIGRATING FROM JENKINS PLUGINS TO TEKTON HUB TASKS

You can extend the capability of Jenkins by using plugins. To achieve similar extensibility in OpenShift
Pipelines, use any of the tasks available from Tekton Hub.

For example, consider the git-clone task in Tekton Hub, which corresponds to the git plugin for Jenkins.

Example: git-clone task from Tekton Hub

 steps:
 - image: my-deploy-image
 command: ["make deploy"]
 workingDir: $(workspaces.source.path)

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: myproject-pipeline
spec:
 workspaces:
 - name: shared-dir
 tasks:
 - name: build
 taskRef:
 name: myproject-build
 workspaces:
 - name: source
 workspace: shared-dir
 - name: test
 taskRef:
 name: myproject-test
 workspaces:
 - name: source
 workspace: shared-dir
 - name: deploy
 taskRef:
 name: myproject-deploy
 workspaces:
 - name: source
 workspace: shared-dir

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: demo-pipeline
spec:
 params:
 - name: repo_url
 - name: revision
 workspaces:
 - name: source

OpenShift Container Platform 4.14 Jenkins

28

https://plugins.jenkinsci.org
https://hub.tekton.dev
https://hub.tekton.dev/tekton/task/git-clone
https://plugins.jenkins.io/git/

3.4. EXTENDING OPENSHIFT PIPELINES CAPABILITIES USING
CUSTOM TASKS AND SCRIPTS

In OpenShift Pipelines, if you do not find the right task in Tekton Hub, or need greater control over tasks,
you can create custom tasks and scripts to extend the capabilities of OpenShift Pipelines.

Example: A custom task for running the maven test command

Example: Run a custom shell script by providing its path

Example: Run a custom Python script by writing it in the YAML file

 tasks:
 - name: fetch-from-git
 taskRef:
 name: git-clone
 params:
 - name: url
 value: $(params.repo_url)
 - name: revision
 value: $(params.revision)
 workspaces:
 - name: output
 workspace: source

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: maven-test
spec:
 workspaces:
 - name: source
 steps:
 - image: my-maven-image
 command: ["mvn test"]
 workingDir: $(workspaces.source.path)

...
steps:
 image: ubuntu
 script: |
 #!/usr/bin/env bash
 /workspace/my-script.sh
...

...
steps:
 image: python
 script: |
 #!/usr/bin/env python3
 print(“hello from python!”)
...

CHAPTER 3. MIGRATING FROM JENKINS TO OPENSHIFT PIPELINES OR TEKTON

29

3.5. COMPARISON OF JENKINS AND OPENSHIFT PIPELINES
EXECUTION MODELS

Jenkins and OpenShift Pipelines offer similar functions but are different in architecture and execution.

Table 3.2. Comparison of execution models in Jenkins and OpenShift Pipelines

Jenkins OpenShift Pipelines

Jenkins has a controller node. Jenkins runs pipelines
and steps centrally, or orchestrates jobs running in
other nodes.

OpenShift Pipelines is serverless and distributed, and
there is no central dependency for execution.

Containers are launched by the Jenkins controller
node through the pipeline.

OpenShift Pipelines adopts a 'container-first'
approach, where every step runs as a container in a
pod (equivalent to nodes in Jenkins).

Extensibility is achieved by using plugins. Extensibility is achieved by using tasks in Tekton Hub
or by creating custom tasks and scripts.

3.6. EXAMPLES OF COMMON USE CASES

Both Jenkins and OpenShift Pipelines offer capabilities for common CI/CD use cases, such as:

Compiling, building, and deploying images using Apache Maven

Extending the core capabilities by using plugins

Reusing shareable libraries and custom scripts

3.6.1. Running a Maven pipeline in Jenkins and OpenShift Pipelines

You can use Maven in both Jenkins and OpenShift Pipelines workflows for compiling, building, and
deploying images. To map your existing Jenkins workflow to OpenShift Pipelines, consider the following
examples:

Example: Compile and build an image and deploy it to OpenShift using Maven in Jenkins

#!/usr/bin/groovy
node('maven') {
 stage 'Checkout'
 checkout scm

 stage 'Build'
 sh 'cd helloworld && mvn clean'
 sh 'cd helloworld && mvn compile'

 stage 'Run Unit Tests'
 sh 'cd helloworld && mvn test'

 stage 'Package'
 sh 'cd helloworld && mvn package'

OpenShift Container Platform 4.14 Jenkins

30

Example: Compile and build an image and deploy it to OpenShift using Maven in OpenShift
Pipelines.

 stage 'Archive artifact'
 sh 'mkdir -p artifacts/deployments && cp helloworld/target/*.war artifacts/deployments'
 archive 'helloworld/target/*.war'

 stage 'Create Image'
 sh 'oc login https://kubernetes.default -u admin -p admin --insecure-skip-tls-verify=true'
 sh 'oc new-project helloworldproject'
 sh 'oc project helloworldproject'
 sh 'oc process -f helloworld/jboss-eap70-binary-build.json | oc create -f -'
 sh 'oc start-build eap-helloworld-app --from-dir=artifacts/'

 stage 'Deploy'
 sh 'oc new-app helloworld/jboss-eap70-deploy.json' }

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: maven-pipeline
spec:
 workspaces:
 - name: shared-workspace
 - name: maven-settings
 - name: kubeconfig-dir
 optional: true
 params:
 - name: repo-url
 - name: revision
 - name: context-path
 tasks:
 - name: fetch-repo
 taskRef:
 name: git-clone
 workspaces:
 - name: output
 workspace: shared-workspace
 params:
 - name: url
 value: "$(params.repo-url)"
 - name: subdirectory
 value: ""
 - name: deleteExisting
 value: "true"
 - name: revision
 value: $(params.revision)
 - name: mvn-build
 taskRef:
 name: maven
 runAfter:
 - fetch-repo
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: maven-settings

CHAPTER 3. MIGRATING FROM JENKINS TO OPENSHIFT PIPELINES OR TEKTON

31

 workspace: maven-settings
 params:
 - name: CONTEXT_DIR
 value: "$(params.context-path)"
 - name: GOALS
 value: ["-DskipTests", "clean", "compile"]
 - name: mvn-tests
 taskRef:
 name: maven
 runAfter:
 - mvn-build
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: maven-settings
 workspace: maven-settings
 params:
 - name: CONTEXT_DIR
 value: "$(params.context-path)"
 - name: GOALS
 value: ["test"]
 - name: mvn-package
 taskRef:
 name: maven
 runAfter:
 - mvn-tests
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: maven-settings
 workspace: maven-settings
 params:
 - name: CONTEXT_DIR
 value: "$(params.context-path)"
 - name: GOALS
 value: ["package"]
 - name: create-image-and-deploy
 taskRef:
 name: openshift-client
 runAfter:
 - mvn-package
 workspaces:
 - name: manifest-dir
 workspace: shared-workspace
 - name: kubeconfig-dir
 workspace: kubeconfig-dir
 params:
 - name: SCRIPT
 value: |
 cd "$(params.context-path)"
 mkdir -p ./artifacts/deployments && cp ./target/*.war ./artifacts/deployments
 oc new-project helloworldproject
 oc project helloworldproject
 oc process -f jboss-eap70-binary-build.json | oc create -f -
 oc start-build eap-helloworld-app --from-dir=artifacts/
 oc new-app jboss-eap70-deploy.json

OpenShift Container Platform 4.14 Jenkins

32

3.6.2. Extending the core capabilities of Jenkins and OpenShift Pipelines by using
plugins

Jenkins has the advantage of a large ecosystem of numerous plugins developed over the years by its
extensive user base. You can search and browse the plugins in the Jenkins Plugin Index .

OpenShift Pipelines also has many tasks developed and contributed by the community and enterprise
users. A publicly available catalog of reusable OpenShift Pipelines tasks are available in the Tekton Hub.

In addition, OpenShift Pipelines incorporates many of the plugins of the Jenkins ecosystem within its
core capabilities. For example, authorization is a critical function in both Jenkins and OpenShift
Pipelines. While Jenkins ensures authorization using the Role-based Authorization Strategy plugin,
OpenShift Pipelines uses OpenShift’s built-in Role-based Access Control system.

3.6.3. Sharing reusable code in Jenkins and OpenShift Pipelines

Jenkins shared libraries provide reusable code for parts of Jenkins pipelines. The libraries are shared
between Jenkinsfiles to create highly modular pipelines without code repetition.

Although there is no direct equivalent of Jenkins shared libraries in OpenShift Pipelines, you can achieve
similar workflows by using tasks from the Tekton Hub in combination with custom tasks and scripts.

3.7. ADDITIONAL RESOURCES

Understanding OpenShift Pipelines

Role-based Access Control

CHAPTER 3. MIGRATING FROM JENKINS TO OPENSHIFT PIPELINES OR TEKTON

33

https://plugins.jenkins.io/
https://hub.tekton.dev/
https://plugins.jenkins.io/role-strategy/
https://www.jenkins.io/doc/book/pipeline/shared-libraries/
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://hub.tekton.dev/
https://docs.openshift.com/pipelines/latest/about/understanding-openshift-pipelines.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/authentication_and_authorization/#using-rbac

CHAPTER 4. IMPORTANT CHANGES TO OPENSHIFT JENKINS
IMAGES

IMPORTANT

Openshift Jenkins receives periodic updates from Jenkins LTS releases and associated
plugins. These updates may include bug fixes, security vulnerability patches, and
occasionally new features. However, Red Hat does not plan to introduce further
enhancements or major changes to the functionality or contents of the OpenShift
Jenkins container image, other than updates to its dependent plugins.

Additionally, the following three Red Hat-maintained Jenkins plugins are now in
maintenance mode. Only critical bug fixes will be addressed, and no new enhancements
or feature development are planned.

Jenkins Client Plugin

Jenkins Login Plugin

Jenkins Sync Plugin

OpenShift Container Platform 4.11 moves the OpenShift Jenkins and OpenShift Agent Base images to
the ocp-tools-4 repository at registry.redhat.io. It also removes the OpenShift Jenkins Maven and
NodeJS Agent images from its payload:

OpenShift Container Platform 4.11 moves the OpenShift Jenkins and OpenShift Agent Base
images to the ocp-tools-4 repository at registry.redhat.io so that Red Hat can produce and
update the images outside the OpenShift Container Platform lifecycle. Previously, these images
were in the OpenShift Container Platform install payload and the openshift4 repository at
registry.redhat.io.

OpenShift Container Platform 4.10 deprecated the OpenShift Jenkins Maven and NodeJS
Agent images. OpenShift Container Platform 4.11 removes these images from its payload. Red
Hat no longer produces these images, and they are not available from the ocp-tools-4
repository at registry.redhat.io. Red Hat maintains the 4.10 and earlier versions of these
images for any significant bug fixes or security CVEs, following the OpenShift Container
Platform lifecycle policy.

These changes support the OpenShift Container Platform 4.10 recommendation to use multiple
container Pod Templates with the Jenkins Kubernetes Plugin.

4.1. RELOCATION OF OPENSHIFT JENKINS IMAGES

OpenShift Container Platform 4.11 makes significant changes to the location and availability of specific
OpenShift Jenkins images. Additionally, you can configure when and how to update these images.

What stays the same with the OpenShift Jenkins images?

The Cluster Samples Operator manages the ImageStream and Template objects for operating
the OpenShift Jenkins images.

By default, the Jenkins DeploymentConfig object from the Jenkins pod template triggers a
redeployment when the Jenkins image changes. By default, this image is referenced by the

OpenShift Container Platform 4.14 Jenkins

34

https://access.redhat.com/support/policy/updates/openshift

jenkins:2 image stream tag of Jenkins image stream in the openshift namespace in the
ImageStream YAML file in the Samples Operator payload.

If you upgrade from OpenShift Container Platform 4.10 and earlier to 4.11, the deprecated
maven and nodejs pod templates are still in the default image configuration.

If you upgrade from OpenShift Container Platform 4.10 and earlier to 4.11, the jenkins-agent-
maven and jenkins-agent-nodejs image streams still exist in your cluster. To maintain these
image streams, see the following section, "What happens with the jenkins-agent-maven and
jenkins-agent-nodejs image streams in the openshift namespace?"

What changes in the support matrix of the OpenShift Jenkins image?

Each new image in the ocp-tools-4 repository in the registry.redhat.io registry supports multiple
versions of OpenShift Container Platform. When Red Hat updates one of these new images, it is
simultaneously available for all versions. This availability is ideal when Red Hat updates an image in
response to a security advisory. Initially, this change applies to OpenShift Container Platform 4.11 and
later. It is planned that this change will eventually apply to OpenShift Container Platform 4.9 and later.

Previously, each Jenkins image supported only one version of OpenShift Container Platform and
Red Hat might update those images sequentially over time.

What additions are there with the OpenShift Jenkins and Jenkins Agent Base ImageStream
and ImageStreamTag objects?

By moving from an in-payload image stream to an image stream that references non-payload images,
OpenShift Container Platform can define additional image stream tags. Red Hat has created a series of
new image stream tags to go along with the existing "value": "jenkins:2" and "value": "image-
registry.openshift-image-registry.svc:5000/openshift/jenkins-agent-base-rhel8:latest" image
stream tags present in OpenShift Container Platform 4.10 and earlier. These new image stream tags
address some requests to improve how the Jenkins-related image streams are maintained.

About the new image stream tags:

ocp-upgrade-redeploy

To update your Jenkins image when you upgrade OpenShift Container Platform, use this image
stream tag in your Jenkins deployment configuration. This image stream tag corresponds to the
existing 2 image stream tag of the jenkins image stream and the latest image stream tag of the
jenkins-agent-base-rhel8 image stream. It employs an image tag specific to only one SHA or image
digest. When the ocp-tools-4 image changes, such as for Jenkins security advisories, Red Hat
Engineering updates the Cluster Samples Operator payload.

user-maintained-upgrade-redeploy

To manually redeploy Jenkins after you upgrade OpenShift Container Platform, use this image
stream tag in your Jenkins deployment configuration. This image stream tag uses the least specific
image version indicator available. When you redeploy Jenkins, run the following command: $ oc
import-image jenkins:user-maintained-upgrade-redeploy -n openshift. When you issue this
command, the OpenShift Container Platform ImageStream controller accesses the
registry.redhat.io image registry and stores any updated images in the OpenShift image registry’s
slot for that Jenkins ImageStreamTag object. Otherwise, if you do not run this command, your
Jenkins deployment configuration does not trigger a redeployment.

scheduled-upgrade-redeploy

To automatically redeploy the latest version of the Jenkins image when it is released, use this image
stream tag in your Jenkins deployment configuration. This image stream tag uses the periodic
importing of image stream tags feature of the OpenShift Container Platform image stream

CHAPTER 4. IMPORTANT CHANGES TO OPENSHIFT JENKINS IMAGES

35

controller, which checks for changes in the backing image. If the image changes, for example, due to
a recent Jenkins security advisory, OpenShift Container Platform triggers a redeployment of your
Jenkins deployment configuration. See "Configuring periodic importing of image stream tags" in the
following "Additional resources."

What happens with the jenkins-agent-maven and jenkins-agent-nodejs image streams in the
openshift namespace?

The OpenShift Jenkins Maven and NodeJS Agent images for OpenShift Container Platform were
deprecated in 4.10, and are removed from the OpenShift Container Platform install payload in 4.11. They
do not have alternatives defined in the ocp-tools-4 repository. However, you can work around this by
using the sidecar pattern described in the "Jenkins agent" topic mentioned in the following "Additional
resources" section.

However, the Cluster Samples Operator does not delete the jenkins-agent-maven and jenkins-agent-
nodejs image streams created by prior releases, which point to the tags of the respective OpenShift
Container Platform payload images on registry.redhat.io. Therefore, you can pull updates to these
images by running the following commands:

What OpenShift Container Platform architectures and versions does OpenShift Jenkins
support?

Jenkins supports the following architectures across OpenShift Container Platform releases:

amd64

arm64

ppc64le

s390x

However, for OpenShift Container Platform Extended Update Support (EUS) releases, only the amd64
architecture is officially supported. As a result, OpenShift Jenkins images are shipped exclusively for
amd64 on these releases. This is because the OpenShift Container Platform platform itself supports
only the amd64 architecture for EUS releases. For more information, see Support Matrix for OpenShift
Jenkins releases.

When Red Hat updates Jenkins container images, are they available for all OpenShift
Container Platform versions simultaneously?

Yes, Jenkins container images are updated on a quarterly basis, and the updates are made available for
all supported Jenkins images across all supported OpenShift Container Platform releases.

How long are the released Jenkins images supported?

Red Hat supports only the latest Long-Term Support (LTS) version of the Jenkins core, as provided in
our latest container images. We do not support multiple core versions. Our policy is to align with the
latest Jenkins LTS version released by the upstream community.

Does the Jenkins release align with OpenShift Container Platform versions?

Yes. Our goal is to maintain platform alignment. This means that Jenkins controller and agent images

$ oc import-image jenkins-agent-nodejs -n openshift

$ oc import-image jenkins-agent-maven -n openshift

OpenShift Container Platform 4.14 Jenkins

36

https://access.redhat.com/articles/7115356

Yes. Our goal is to maintain platform alignment. This means that Jenkins controller and agent images
are built and tested for each supported OpenShift Container Platform releases.

Are Jenkins release timelines aligned with OpenShift Container Platform release cycles?

Jenkins is no longer part of the OpenShift Container Platform core payload. Releases are managed
separately. However, our intent is to publish updated OpenShift Jenkins images for newly released
OpenShift Container Platform releases within a few weeks of the OpenShift Container Platform GA
release.

Does Red Hat follow the upstream Jenkins lifecycle and LTS versions?

Yes. We align with the Jenkins upstream lifecycle and follow the LTS version. Red Hat typically ships
OpenShift Jenkins image updates quarterly unless a critical fix requires an out-of-cycle release.

To verify the current Jenkins LTS version: - Navigate to the Jenkins Catalog → Packages section -
Search for “Jenkins” - The result will show two packages, one of which is the Jenkins LTS package.

What is not supported?

Jenkins versions older than the current OpenShift Jenkins LTS are not supported.

Running Jenkins outside of OpenShift Container Platform is not supported.

Multiple core versions of Jenkins are not supported. Plugins bundled with our OpenShift
Jenkins images follow the same versioning across all supported OpenShift Container Platform
releases.

4.2. CUSTOMIZING THE JENKINS IMAGE STREAM TAG

To override the default upgrade behavior and control how the Jenkins image is upgraded, you set the
image stream tag value that your Jenkins deployment configurations use.

The default upgrade behavior is the behavior that existed when the Jenkins image was part of the install
payload. The image stream tag names, 2 and ocp-upgrade-redeploy, in the jenkins-rhel.json image
stream file use SHA-specific image references. Therefore, when those tags are updated with a new SHA,
the OpenShift Container Platform image change controller automatically redeploys the Jenkins
deployment configuration from the associated templates, such as jenkins-ephemeral.json or jenkins-
persistent.json.

For new deployments, to override that default value, you change the value of the
JENKINS_IMAGE_STREAM_TAG in the jenkins-ephemeral.json Jenkins template. For example,
replace the 2 in "value": "jenkins:2" with one of the following image stream tags:

ocp-upgrade-redeploy, the default value, updates your Jenkins image when you upgrade
OpenShift Container Platform.

user-maintained-upgrade-redeploy requires you to manually redeploy Jenkins by running $ oc
import-image jenkins:user-maintained-upgrade-redeploy -n openshift after upgrading
OpenShift Container Platform.

scheduled-upgrade-redeploy periodically checks the given <image>:<tag> combination for
changes and upgrades the image when it changes. The image change controller pulls the
changed image and redeploys the Jenkins deployment configuration provisioned by the
templates. For more information about this scheduled import policy, see the "Adding tags to
image streams" in the following "Additional resources."

CHAPTER 4. IMPORTANT CHANGES TO OPENSHIFT JENKINS IMAGES

37

NOTE

To override the current upgrade value for existing deployments, change the values of the
environment variables that correspond to those template parameters.

Prerequisites

You are running OpenShift Jenkins on OpenShift Container Platform 4.14.

You know the namespace where OpenShift Jenkins is deployed.

Procedure

Set the image stream tag value, replacing <namespace> with namespace where OpenShift
Jenkins is deployed and <image_stream_tag> with an image stream tag:

Example

TIP

Alternatively, to edit the Jenkins deployment configuration YAML, enter $ oc edit dc/jenkins -
n <namespace> and update the value: 'jenkins:<image_stream_tag>' line.

4.3. ABOUT THE OPENSHIFT CLI TOOL IN OPENSHIFT JENKINS
IMAGES

If your Jenkins pipelines require a specific OpenShift CLI (oc) version for compatibility or
reproducibility, you must explicitly configure the desired client version in the Jenkins pipeline DSL.

Starting with 4.12, the OpenShift Jenkins container images ship with the latest available version of the
oc CLI tool bundled inside the image, rather than the client version matching the cluster release.

If your Jenkins pipelines require a specific oc client version for compatibility or reproducibility, you must
explicitly configure the desired client version in the Jenkins pipeline DSL.

4.4. OPENSHIFT JENKINS RELEASE COMPARED TO BUNDLED OC

CLIENT VERSION TABLE

Use the following table to understand which version of OpenShift CLI (oc) is shipped with your
OpenShift Jenkins images.

OpenShift Jenkins release Default oc version Bundled oc version

4.12 4.13 4.12, 4.13

$ oc patch dc jenkins -p '{"spec":{"triggers":[{"type":"ImageChange","imageChangeParams":
{"automatic":true,"containerNames":["jenkins"],"from":
{"kind":"ImageStreamTag","namespace":"<namespace>","name":"jenkins:
<image_stream_tag>"}}}]}}'

OpenShift Container Platform 4.14 Jenkins

38

4.13 4.13 4.12, 4.13

4.14 4.15 4.14, 4.15

4.15 4.15 4.14, 4.15

4.16 4.20 4.16, 4.17, 4.18, 4.19, 4.20

4.17 4.20 4.16, 4.17, 4.18, 4.19, 4.20

4.18 4.20 4.16, 4.17, 4.18, 4.19, 4.20

4.19 4.20 4.16, 4.17, 4.18, 4.19, 4.20

4.20 4.20 4.16, 4.17, 4.18, 4.19, 4.20

OpenShift Jenkins release Default oc version Bundled oc version

4.5. SPECIFYING A FIXED OC CLIENT VERSION FOR OPENSHIFT
JENKINS IMAGES

You can ensure that your Jenkins pipeline uses your specified oc client version with the Jenkins
container image by configuring the version you require.

Procedure

Define the oc tool version explicitly in the pipeline configuration to use a specific OpenShift
client version in a Jenkins pipeline as shown in the following example:

Example pipeline configuration:

4.6. ADDITIONAL RESOURCES

pipeline {
 agent any

 tools {
 oc 'oc-4.14'
 }

 stages {
 stage('Version') {
 steps {
 sh 'oc version'
 }
 }
 }
}

CHAPTER 4. IMPORTANT CHANGES TO OPENSHIFT JENKINS IMAGES

39

Adding tags to image streams

Configuring periodic importing of image stream tags

Jenkins agent

Certified jenkins images

Certified jenkins-agent-base images

Certified jenkins-agent-maven images

Certified jenkins-agent-nodejs images

OpenShift Container Platform 4.14 Jenkins

40

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/images/#images-add-tags-to-imagestreams_tagging-images
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/images/#images-imagestream-import_image-streams-managing
https://catalog.redhat.com/software/containers/search?q=Jenkins 2&p=1
https://catalog.redhat.com/software/containers/search?q=Jenkins Agent Base&p=1
https://catalog.redhat.com/software/containers/search?q=jenkins-agent-maven&p=1
https://catalog.redhat.com/software/containers/search?q=jenkins-agent-nodejs&p=1

	Table of Contents
	CHAPTER 1. CONFIGURING JENKINS IMAGES
	1.1. CONFIGURATION AND CUSTOMIZATION
	1.1.1. OpenShift Container Platform OAuth authentication
	1.1.2. Jenkins authentication

	1.2. JENKINS ENVIRONMENT VARIABLES
	1.3. PROVIDING JENKINS CROSS PROJECT ACCESS
	1.4. JENKINS CROSS VOLUME MOUNT POINTS
	1.5. CUSTOMIZING THE JENKINS IMAGE THROUGH SOURCE-TO-IMAGE
	1.6. CONFIGURING THE JENKINS KUBERNETES PLUGIN
	1.7. JENKINS PERMISSIONS
	1.8. CREATING A JENKINS SERVICE FROM A TEMPLATE
	1.9. USING THE JENKINS KUBERNETES PLUGIN
	1.10. JENKINS MEMORY REQUIREMENTS
	1.11. ADDITIONAL RESOURCES

	CHAPTER 2. JENKINS AGENT
	2.1. JENKINS AGENT IMAGES
	2.2. JENKINS AGENT ENVIRONMENT VARIABLES
	2.3. JENKINS AGENT MEMORY REQUIREMENTS
	2.4. JENKINS AGENT GRADLE BUILDS
	2.5. JENKINS AGENT POD RETENTION

	CHAPTER 3. MIGRATING FROM JENKINS TO OPENSHIFT PIPELINES OR TEKTON
	3.1. COMPARISON OF JENKINS AND OPENSHIFT PIPELINES CONCEPTS
	3.1.1. Jenkins terminology
	3.1.2. OpenShift Pipelines terminology
	3.1.3. Mapping of concepts

	3.2. MIGRATING A SAMPLE PIPELINE FROM JENKINS TO OPENSHIFT PIPELINES
	3.2.1. Jenkins pipeline
	3.2.2. OpenShift Pipelines pipeline

	3.3. MIGRATING FROM JENKINS PLUGINS TO TEKTON HUB TASKS
	3.4. EXTENDING OPENSHIFT PIPELINES CAPABILITIES USING CUSTOM TASKS AND SCRIPTS
	3.5. COMPARISON OF JENKINS AND OPENSHIFT PIPELINES EXECUTION MODELS
	3.6. EXAMPLES OF COMMON USE CASES
	3.6.1. Running a Maven pipeline in Jenkins and OpenShift Pipelines
	3.6.2. Extending the core capabilities of Jenkins and OpenShift Pipelines by using plugins
	3.6.3. Sharing reusable code in Jenkins and OpenShift Pipelines

	3.7. ADDITIONAL RESOURCES

	CHAPTER 4. IMPORTANT CHANGES TO OPENSHIFT JENKINS IMAGES
	4.1. RELOCATION OF OPENSHIFT JENKINS IMAGES
	4.2. CUSTOMIZING THE JENKINS IMAGE STREAM TAG
	4.3. ABOUT THE OPENSHIFT CLI TOOL IN OPENSHIFT JENKINS IMAGES
	4.4. OPENSHIFT JENKINS RELEASE COMPARED TO BUNDLED OC CLIENT VERSION TABLE
	4.5. SPECIFYING A FIXED OC CLIENT VERSION FOR OPENSHIFT JENKINS IMAGES
	4.6. ADDITIONAL RESOURCES

