
OpenShift Container Platform 4.19

Installing on AWS

Installing OpenShift Container Platform on Amazon Web Services

Last Updated: 2026-01-15

OpenShift Container Platform 4.19 Installing on AWS

Installing OpenShift Container Platform on Amazon Web Services

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to install OpenShift Container Platform on Amazon Web Services.

. .

. .

. .

Table of Contents

CHAPTER 1. INSTALLATION METHODS
1.1. INSTALLING A CLUSTER ON INSTALLER-PROVISIONED INFRASTRUCTURE
1.2. INSTALLING A CLUSTER ON USER-PROVISIONED INFRASTRUCTURE
1.3. INSTALLING A CLUSTER ON A SINGLE NODE
1.4. ADDITIONAL RESOURCES

CHAPTER 2. CONFIGURING AN AWS ACCOUNT
2.1. CONFIGURING ROUTE 53

2.1.1. Ingress Operator endpoint configuration for AWS Route 53
2.2. AWS ACCOUNT LIMITS
2.3. REQUIRED AWS PERMISSIONS FOR THE IAM USER
2.4. CREATING AN IAM USER
2.5. IAM POLICIES AND AWS AUTHENTICATION

2.5.1. Default permissions for IAM instance profiles
2.5.2. Specifying an existing IAM role

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE
3.1. PREPARING TO INSTALL A CLUSTER ON AWS

3.1.1. Internet access for OpenShift Container Platform
3.1.2. Obtaining the installation program
3.1.3. Installing the OpenShift CLI on Linux
3.1.4. Installing the OpenShift CLI on Windows
3.1.5. Installing the OpenShift CLI on macOS
3.1.6. Generating a key pair for cluster node SSH access
3.1.7. Telemetry access for OpenShift Container Platform

3.2. INSTALLING A CLUSTER ON AWS
3.2.1. Prerequisites
3.2.2. Deploying the cluster
3.2.3. Logging in to the cluster by using the CLI
3.2.4. Logging in to the cluster by using the web console
3.2.5. Next steps

3.3. INSTALLING A CLUSTER ON AWS WITH CUSTOMIZATIONS
3.3.1. Prerequisites
3.3.2. Obtaining an AWS Marketplace image
3.3.3. Creating the installation configuration file

3.3.3.1. Minimum resource requirements for cluster installation
3.3.3.2. Tested instance types for AWS
3.3.3.3. Tested instance types for AWS on 64-bit ARM infrastructures
3.3.3.4. Sample customized install-config.yaml file for AWS
3.3.3.5. Configuring the cluster-wide proxy during installation

3.3.4. Alternatives to storing administrator-level secrets in the kube-system project
3.3.4.1. Manually creating long-term credentials
3.3.4.2. Configuring an AWS cluster to use short-term credentials

3.3.4.2.1. Configuring the Cloud Credential Operator utility
3.3.4.2.2. Creating AWS resources with the Cloud Credential Operator utility

3.3.4.2.2.1. Creating AWS resources with a single command
3.3.4.2.2.2. Creating AWS resources individually

3.3.4.2.3. Incorporating the Cloud Credential Operator utility manifests
3.3.5. Deploying the cluster
3.3.6. Logging in to the cluster by using the CLI
3.3.7. Logging in to the cluster by using the web console

12
12
12
13
13

14
14
14
15
17

26
27
28
30

32
32
32
33
34
34
35
36
38
38
38
38
41
41

42
43
43
43
44
46
47
47
48
49
51
51

53
53
57
57
59
62
63
64
65

Table of Contents

1

3.3.8. Next steps
3.4. INSTALLING A CLUSTER ON AWS WITH NETWORK CUSTOMIZATIONS

3.4.1. Prerequisites
3.4.2. Network configuration phases
3.4.3. Creating the installation configuration file

3.4.3.1. Minimum resource requirements for cluster installation
3.4.3.2. Tested instance types for AWS
3.4.3.3. Tested instance types for AWS on 64-bit ARM infrastructures
3.4.3.4. Sample customized install-config.yaml file for AWS
3.4.3.5. Configuring the cluster-wide proxy during installation

3.4.4. Alternatives to storing administrator-level secrets in the kube-system project
3.4.4.1. Manually creating long-term credentials
3.4.4.2. Configuring an AWS cluster to use short-term credentials

3.4.4.2.1. Configuring the Cloud Credential Operator utility
3.4.4.2.2. Creating AWS resources with the Cloud Credential Operator utility

3.4.4.2.2.1. Creating AWS resources with a single command
3.4.4.2.2.2. Creating AWS resources individually

3.4.4.2.3. Incorporating the Cloud Credential Operator utility manifests
3.4.5. Cluster Network Operator configuration

3.4.5.1. Cluster Network Operator configuration object
3.4.5.1.1. defaultNetwork object configuration

3.4.5.1.1.1. Configuration for the OVN-Kubernetes network plugin
3.4.6. Specifying advanced network configuration
3.4.7. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster
3.4.8. Configuring hybrid networking with OVN-Kubernetes
3.4.9. Deploying the cluster
3.4.10. Logging in to the cluster by using the CLI
3.4.11. Logging in to the cluster by using the web console
3.4.12. Next steps

3.5. INSTALLING A CLUSTER ON AWS IN A DISCONNECTED ENVIRONMENT
3.5.1. Prerequisites
3.5.2. About installations in restricted networks

3.5.2.1. Additional limits
3.5.3. About using a custom VPC

3.5.3.1. Requirements for using your VPC
3.5.3.1.1. Option 1: Create VPC endpoints
3.5.3.1.2. Option 2: Create a proxy without VPC endpoints
3.5.3.1.3. Option 3: Create a proxy with VPC endpoints

3.5.3.2. VPC validation
3.5.3.3. Division of permissions
3.5.3.4. Isolation between clusters

3.5.4. Creating the installation configuration file
3.5.4.1. Minimum resource requirements for cluster installation
3.5.4.2. Sample customized install-config.yaml file for AWS
3.5.4.3. Configuring the cluster-wide proxy during installation

3.5.5. Alternatives to storing administrator-level secrets in the kube-system project
3.5.5.1. Manually creating long-term credentials
3.5.5.2. Configuring an AWS cluster to use short-term credentials

3.5.5.2.1. Configuring the Cloud Credential Operator utility
3.5.5.2.2. Creating AWS resources with the Cloud Credential Operator utility

3.5.5.2.2.1. Creating AWS resources with a single command
3.5.5.2.2.2. Creating AWS resources individually

3.5.5.2.3. Incorporating the Cloud Credential Operator utility manifests

66
66
66
66
67
68
69
70
71
72
74
74
76
76
79
80
82
84
85
86
87
87
93
94
95
97
98
99

100
100
100
101
101
102
102
103
103
103
105
105
106
106
108
109
110
112
112
114
114
118
118

120
123

OpenShift Container Platform 4.19 Installing on AWS

2

3.5.6. Deploying the cluster
3.5.7. Logging in to the cluster by using the CLI
3.5.8. Disabling the default OperatorHub catalog sources
3.5.9. Next steps

3.6. INSTALLING A CLUSTER ON AWS INTO AN EXISTING VPC
3.6.1. Prerequisites
3.6.2. About using a custom VPC

3.6.2.1. Requirements for using your VPC
3.6.2.1.1. Option 1: Create VPC endpoints
3.6.2.1.2. Option 2: Create a proxy without VPC endpoints
3.6.2.1.3. Option 3: Create a proxy with VPC endpoints

3.6.2.2. VPC validation
3.6.2.3. Division of permissions
3.6.2.4. Isolation between clusters
3.6.2.5. Optional: AWS security groups
3.6.2.6. Modifying trust policy when installing into a shared VPC

3.6.3. Creating the installation configuration file
3.6.3.1. Minimum resource requirements for cluster installation
3.6.3.2. Tested instance types for AWS
3.6.3.3. Tested instance types for AWS on 64-bit ARM infrastructures
3.6.3.4. Sample customized install-config.yaml file for AWS
3.6.3.5. Configuring the cluster-wide proxy during installation
3.6.3.6. Applying existing AWS security groups to the cluster

3.6.4. Alternatives to storing administrator-level secrets in the kube-system project
3.6.4.1. Manually creating long-term credentials
3.6.4.2. Configuring an AWS cluster to use short-term credentials

3.6.4.2.1. Configuring the Cloud Credential Operator utility
3.6.4.2.2. Creating AWS resources with the Cloud Credential Operator utility

3.6.4.2.2.1. Creating AWS resources with a single command
3.6.4.2.2.2. Creating AWS resources individually

3.6.4.2.3. Incorporating the Cloud Credential Operator utility manifests
3.6.5. Deploying the cluster
3.6.6. Logging in to the cluster by using the CLI
3.6.7. Logging in to the cluster by using the web console
3.6.8. Next steps

3.7. INSTALLING A PRIVATE CLUSTER ON AWS
3.7.1. Prerequisites
3.7.2. Private clusters

3.7.2.1. Private clusters in AWS
3.7.2.1.1. Limitations

3.7.3. About using a custom VPC
3.7.3.1. Requirements for using your VPC

3.7.3.1.1. Option 1: Create VPC endpoints
3.7.3.1.2. Option 2: Create a proxy without VPC endpoints
3.7.3.1.3. Option 3: Create a proxy with VPC endpoints

3.7.3.2. VPC validation
3.7.3.3. Division of permissions
3.7.3.4. Isolation between clusters
3.7.3.5. Optional: AWS security groups

3.7.4. Manually creating the installation configuration file
3.7.4.1. Minimum resource requirements for cluster installation
3.7.4.2. Tested instance types for AWS
3.7.4.3. Tested instance types for AWS on 64-bit ARM infrastructures

124
125
126
126
127
127
127
127
129
129
129
131
131
132
132
132
133
134
135
136
136
137
139
140
141

143
143
146
146
148
151
152
154
154
155
156
156
156
157
157
157
158
159
159
159
161
161
161

162
162
163
164
165

Table of Contents

3

3.7.4.4. Sample customized install-config.yaml file for AWS
3.7.4.5. Configuring the cluster-wide proxy during installation
3.7.4.6. Applying existing AWS security groups to the cluster

3.7.5. Alternatives to storing administrator-level secrets in the kube-system project
3.7.5.1. Manually creating long-term credentials
3.7.5.2. Configuring an AWS cluster to use short-term credentials

3.7.5.2.1. Configuring the Cloud Credential Operator utility
3.7.5.2.2. Creating AWS resources with the Cloud Credential Operator utility

3.7.5.2.2.1. Creating AWS resources with a single command
3.7.5.2.2.2. Creating AWS resources individually

3.7.5.2.3. Incorporating the Cloud Credential Operator utility manifests
3.7.6. Deploying the cluster
3.7.7. Logging in to the cluster by using the CLI
3.7.8. Logging in to the cluster by using the web console
3.7.9. Next steps

3.8. INSTALLING A CLUSTER ON AWS INTO A GOVERNMENT REGION
3.8.1. Prerequisites
3.8.2. AWS government regions
3.8.3. Installation requirements
3.8.4. Private clusters

3.8.4.1. Private clusters in AWS
3.8.4.1.1. Limitations

3.8.5. About using a custom VPC
3.8.5.1. Requirements for using your VPC

3.8.5.1.1. Option 1: Create VPC endpoints
3.8.5.1.2. Option 2: Create a proxy without VPC endpoints
3.8.5.1.3. Option 3: Create a proxy with VPC endpoints

3.8.5.2. VPC validation
3.8.5.3. Division of permissions
3.8.5.4. Isolation between clusters
3.8.5.5. Optional: AWS security groups

3.8.6. Obtaining an AWS Marketplace image
3.8.7. Manually creating the installation configuration file

3.8.7.1. Minimum resource requirements for cluster installation
3.8.7.2. Tested instance types for AWS
3.8.7.3. Tested instance types for AWS on 64-bit ARM infrastructures
3.8.7.4. Sample customized install-config.yaml file for AWS
3.8.7.5. Configuring the cluster-wide proxy during installation
3.8.7.6. Applying existing AWS security groups to the cluster

3.8.8. Alternatives to storing administrator-level secrets in the kube-system project
3.8.8.1. Manually creating long-term credentials
3.8.8.2. Configuring an AWS cluster to use short-term credentials

3.8.8.2.1. Configuring the Cloud Credential Operator utility
3.8.8.2.2. Creating AWS resources with the Cloud Credential Operator utility

3.8.8.2.2.1. Creating AWS resources with a single command
3.8.8.2.2.2. Creating AWS resources individually

3.8.8.2.3. Incorporating the Cloud Credential Operator utility manifests
3.8.9. Deploying the cluster
3.8.10. Logging in to the cluster by using the CLI
3.8.11. Logging in to the cluster by using the web console
3.8.12. Next steps

3.9. INSTALLING A CLUSTER ON AWS INTO A SECRET OR TOP SECRET REGION
3.9.1. Prerequisites

165
166
168
169
169
172
172
175
175
177
180
181

183
183
184
184
184
185
185
185
186
186
186
187
188
188
188
190
190
190
191
191

192
193
194
195
195
196
198
199

200
202
202
205
205
207
210
211
213
213
214
215
215

OpenShift Container Platform 4.19 Installing on AWS

4

3.9.2. AWS secret regions
3.9.3. Installation requirements
3.9.4. Private clusters

3.9.4.1. Private clusters in AWS
3.9.4.1.1. Limitations

3.9.5. About using a custom VPC
3.9.5.1. Requirements for using your VPC

3.9.5.1.1. Option 1: Create VPC endpoints
3.9.5.1.2. Option 2: Create a proxy without VPC endpoints
3.9.5.1.3. Option 3: Create a proxy with VPC endpoints

3.9.5.2. VPC validation
3.9.5.3. Division of permissions
3.9.5.4. Isolation between clusters
3.9.5.5. Optional: AWS security groups

3.9.6. Uploading a custom RHCOS AMI in AWS
3.9.7. Manually creating the installation configuration file

3.9.7.1. Tested instance types for AWS
3.9.7.2. Sample customized install-config.yaml file for AWS
3.9.7.3. Configuring the cluster-wide proxy during installation
3.9.7.4. Applying existing AWS security groups to the cluster

3.9.8. Alternatives to storing administrator-level secrets in the kube-system project
3.9.8.1. Manually creating long-term credentials
3.9.8.2. Configuring an AWS cluster to use short-term credentials

3.9.8.2.1. Configuring the Cloud Credential Operator utility
3.9.8.2.2. Creating AWS resources with the Cloud Credential Operator utility

3.9.8.2.2.1. Creating AWS resources with a single command
3.9.8.2.2.2. Creating AWS resources individually

3.9.8.2.3. Incorporating the Cloud Credential Operator utility manifests
3.9.9. Deploying the cluster
3.9.10. Logging in to the cluster by using the CLI
3.9.11. Logging in to the cluster by using the web console
3.9.12. Next steps

3.10. INSTALLING A CLUSTER ON AWS CHINA
3.10.1. Prerequisites
3.10.2. Installation requirements
3.10.3. Private clusters

3.10.3.1. Private clusters in AWS
3.10.3.1.1. Limitations

3.10.4. About using a custom VPC
3.10.4.1. Requirements for using your VPC

3.10.4.1.1. Option 1: Create VPC endpoints
3.10.4.1.2. Option 2: Create a proxy without VPC endpoints
3.10.4.1.3. Option 3: Create a proxy with VPC endpoints

3.10.4.2. VPC validation
3.10.4.3. Division of permissions
3.10.4.4. Isolation between clusters
3.10.4.5. Optional: AWS security groups

3.10.5. Uploading a custom RHCOS AMI in AWS
3.10.6. Manually creating the installation configuration file

3.10.6.1. Sample customized install-config.yaml file for AWS
3.10.6.2. Minimum resource requirements for cluster installation
3.10.6.3. Tested instance types for AWS
3.10.6.4. Tested instance types for AWS on 64-bit ARM infrastructures

215
216
216
217
217
218
218
219
219
219
221
222
222
222
223
225
226
226
227
229
230
231

233
233
236
236
238
241
242
244
244
245
245
246
246
246
247
247
248
248
249
249
249
251
251

252
252
252
255
255
257
258
258

Table of Contents

5

3.10.6.5. Configuring the cluster-wide proxy during installation
3.10.6.6. Applying existing AWS security groups to the cluster

3.10.7. Alternatives to storing administrator-level secrets in the kube-system project
3.10.7.1. Manually creating long-term credentials
3.10.7.2. Configuring an AWS cluster to use short-term credentials

3.10.7.2.1. Configuring the Cloud Credential Operator utility
3.10.7.2.2. Creating AWS resources with the Cloud Credential Operator utility

3.10.7.2.2.1. Creating AWS resources with a single command
3.10.7.2.2.2. Creating AWS resources individually

3.10.7.2.3. Incorporating the Cloud Credential Operator utility manifests
3.10.8. Deploying the cluster
3.10.9. Logging in to the cluster by using the CLI
3.10.10. Logging in to the cluster by using the web console
3.10.11. Next steps

3.11. INSTALLING A CLUSTER WITH COMPUTE NODES ON AWS LOCAL ZONES
3.11.1. Infrastructure prerequisites
3.11.2. About AWS Local Zones and edge compute pool

3.11.2.1. Cluster limitations in AWS Local Zones
3.11.2.2. About edge compute pools

3.11.3. Installation prerequisites
3.11.3.1. Opting in to an AWS Local Zones
3.11.3.2. Obtaining an AWS Marketplace image

3.11.4. Preparing for the installation
3.11.4.1. Minimum resource requirements for cluster installation
3.11.4.2. Tested instance types for AWS
3.11.4.3. Creating the installation configuration file
3.11.4.4. Examples of installation configuration files with edge compute pools
3.11.4.5. Customizing the cluster network MTU

3.11.5. Cluster installation options for an AWS Local Zones environment
3.11.6. Install a cluster quickly in AWS Local Zones

3.11.6.1. Modifying an installation configuration file to use AWS Local Zones
3.11.7. Installing a cluster in an existing VPC that has Local Zone subnets

3.11.7.1. Creating a VPC in AWS
3.11.7.2. CloudFormation template for the VPC
3.11.7.3. Creating subnets in Local Zones
3.11.7.4. CloudFormation template for the VPC subnet
3.11.7.5. Modifying an installation configuration file to use AWS Local Zones subnets

3.11.8. Optional: AWS security groups
3.11.9. Optional: Assign public IP addresses to edge compute nodes
3.11.10. Deploying the cluster
3.11.11. Verifying the status of the deployed cluster

3.11.11.1. Logging in to the cluster by using the CLI
3.11.11.2. Logging in to the cluster by using the web console
3.11.11.3. Verifying nodes that were created with edge compute pool

3.12. INSTALLING A CLUSTER WITH COMPUTE NODES ON AWS WAVELENGTH ZONES
3.12.1. Infrastructure prerequisites
3.12.2. About AWS Wavelength Zones and edge compute pool

3.12.2.1. Cluster limitations in AWS Wavelength Zones
3.12.2.2. About edge compute pools

3.12.3. Installation prerequisites
3.12.3.1. Opting in to an AWS Wavelength Zones
3.12.3.2. Obtaining an AWS Marketplace image

3.12.4. Preparing for the installation

259
261
262
262
264
264
268
268
270
273
274
275
276
277
277
277
278
278
279
280
280
281
282
282
283
284
285
286
287
288
288
289
290
292
298
299
301
302
302
303
305
305
306
307
308
308
309
309
310
311
311
312
313

OpenShift Container Platform 4.19 Installing on AWS

6

. .

3.12.4.1. Minimum resource requirements for cluster installation
3.12.4.2. Tested instance types for AWS
3.12.4.3. Creating the installation configuration file
3.12.4.4. Examples of installation configuration files with edge compute pools

3.12.5. Cluster installation options for an AWS Wavelength Zones environment
3.12.6. Install a cluster quickly in AWS Wavelength Zones

3.12.6.1. Modifying an installation configuration file to use AWS Wavelength Zones
3.12.7. Installing a cluster in an existing VPC that has Wavelength Zone subnets

3.12.7.1. Creating a VPC in AWS
3.12.7.2. CloudFormation template for the VPC
3.12.7.3. Creating a VPC carrier gateway
3.12.7.4. CloudFormation template for the VPC Carrier Gateway
3.12.7.5. Creating subnets in Wavelength Zones
3.12.7.6. CloudFormation template for the VPC subnet
3.12.7.7. Modifying an installation configuration file to use AWS Wavelength Zones subnets

3.12.8. Optional: Assign public IP addresses to edge compute nodes
3.12.9. Deploying the cluster
3.12.10. Verifying the status of the deployed cluster

3.12.10.1. Logging in to the cluster by using the CLI
3.12.10.2. Logging in to the cluster by using the web console
3.12.10.3. Verifying nodes that were created with edge compute pool

3.13. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST
3.13.1. AWS Outposts on OpenShift Container Platform requirements and limitations
3.13.2. Obtaining information about your environment

3.13.2.1. Obtaining information from your OpenShift Container Platform cluster
3.13.2.2. Obtaining information from your AWS account

3.13.3. Configuring your network for your Outpost
3.13.3.1. Changing the cluster network MTU to support AWS Outposts

3.13.3.1.1. Checking the current cluster MTU value
3.13.3.1.2. Beginning the MTU migration
3.13.3.1.3. Verifying the machine configuration
3.13.3.1.4. Finalizing the MTU migration

3.13.3.2. Creating subnets for AWS edge compute services
3.13.3.3. CloudFormation template for the VPC subnet

3.13.4. Creating a compute machine set that deploys edge compute machines on an Outpost
3.13.5. Creating user workloads in an Outpost
3.13.6. Scheduling workloads on edge and cloud-based AWS compute resources

3.13.6.1. Using AWS Classic Load Balancers in an AWS VPC cluster extended into an Outpost
3.13.6.2. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into an Outpost

3.13.7. Additional resources
3.14. INSTALLING A CLUSTER WITH THE SUPPORT FOR CONFIGURING MULTI-ARCHITECTURE COMPUTE
MACHINES

3.14.1. Installing a cluster with multi-architecture support

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE
4.1. PREPARING TO INSTALL A CLUSTER ON AWS

4.1.1. Internet access for OpenShift Container Platform
4.1.2. Obtaining the installation program
4.1.3. Installing the OpenShift CLI on Linux
4.1.4. Installing the OpenShift CLI on Windows
4.1.5. Installing the OpenShift CLI on macOS
4.1.6. Generating a key pair for cluster node SSH access
4.1.7. Telemetry access for OpenShift Container Platform

314
314
315
316
317
318
318
319

320
322
328
330
331

333
335
335
337
338
338
339
340
341
341

342
342
343
344
344
345
345
346
347
348
350
352
356
358
359
361

362

362
363

365
365
365
366
367
367
368
369
371

Table of Contents

7

4.2. INSTALLATION REQUIREMENTS FOR USER-PROVISIONED INFRASTRUCTURE ON AWS
4.2.1. Required machines for cluster installation

4.2.1.1. Minimum resource requirements for cluster installation
4.2.1.2. Tested instance types for AWS
4.2.1.3. Tested instance types for AWS on 64-bit ARM infrastructures

4.2.2. Certificate signing requests management
4.2.3. Required AWS infrastructure components

4.2.3.1. Other infrastructure components
4.2.3.1.1. Option 1: Create VPC endpoints
4.2.3.1.2. Option 2: Create a proxy without VPC endpoints
4.2.3.1.3. Option 3: Create a proxy with VPC endpoints

4.2.3.2. Cluster machines
4.2.4. Required AWS permissions for the IAM user
4.2.5. Obtaining an AWS Marketplace image

4.3. INSTALLING A CLUSTER ON USER-PROVISIONED INFRASTRUCTURE IN AWS BY USING
CLOUDFORMATION TEMPLATES

4.3.1. Prerequisites
4.3.2. Creating the installation files for AWS

4.3.2.1. Optional: Creating a separate /var partition
4.3.2.2. Creating the installation configuration file
4.3.2.3. Configuring the cluster-wide proxy during installation
4.3.2.4. Creating the Kubernetes manifest and Ignition config files

4.3.3. Extracting the infrastructure name
4.3.4. Creating a VPC in AWS

4.3.4.1. CloudFormation template for the VPC
4.3.5. Creating networking and load balancing components in AWS

4.3.5.1. CloudFormation template for the network and load balancers
4.3.6. Creating security group and roles in AWS

4.3.6.1. CloudFormation template for security objects
4.3.7. Accessing RHCOS AMIs with stream metadata
4.3.8. RHCOS AMIs for the AWS infrastructure

4.3.8.1. AWS regions without a published RHCOS AMI
4.3.8.2. Uploading a custom RHCOS AMI in AWS

4.3.9. Creating the bootstrap node in AWS
4.3.9.1. CloudFormation template for the bootstrap machine

4.3.10. Creating the control plane machines in AWS
4.3.10.1. CloudFormation template for control plane machines

4.3.11. Creating the worker nodes in AWS
4.3.11.1. CloudFormation template for compute machines
4.3.11.2. Creating the CloudFormation stack for compute machines

4.3.12. Initializing the bootstrap sequence on AWS with user-provisioned infrastructure
4.3.13. Logging in to the cluster by using the CLI
4.3.14. Approving the certificate signing requests for your machines
4.3.15. Initial Operator configuration

4.3.15.1. Image registry storage configuration
4.3.15.1.1. Configuring registry storage for AWS with user-provisioned infrastructure
4.3.15.1.2. Configuring storage for the image registry in non-production clusters

4.3.16. Deleting the bootstrap resources
4.3.17. Creating the Ingress DNS Records
4.3.18. Completing an AWS installation on user-provisioned infrastructure
4.3.19. Logging in to the cluster by using the web console
4.3.20. Additional resources
4.3.21. Next steps

371
371
372
373
374
374
374
375
375
375
376
383
384
393

393
393
394
394
397
398
400
402
403
405

411
415

423
425
436
437
441
441

443
448
452
457
462
466
468
469
470
470
473
474
475
475
476
476
479
480
481
481

OpenShift Container Platform 4.19 Installing on AWS

8

. .

. .

4.4. INSTALLING A CLUSTER ON AWS IN A DISCONNECTED ENVIRONMENT WITH USER-PROVISIONED
INFRASTRUCTURE

4.4.1. Prerequisites
4.4.2. About installations in restricted networks

4.4.2.1. Additional limits
4.4.3. Creating the installation files for AWS

4.4.3.1. Optional: Creating a separate /var partition
4.4.3.2. Creating the installation configuration file
4.4.3.3. Configuring the cluster-wide proxy during installation
4.4.3.4. Creating the Kubernetes manifest and Ignition config files

4.4.4. Extracting the infrastructure name
4.4.5. Creating a VPC in AWS

4.4.5.1. CloudFormation template for the VPC
4.4.6. Creating networking and load balancing components in AWS

4.4.6.1. CloudFormation template for the network and load balancers
4.4.7. Creating security group and roles in AWS

4.4.7.1. CloudFormation template for security objects
4.4.8. Accessing RHCOS AMIs with stream metadata
4.4.9. RHCOS AMIs for the AWS infrastructure
4.4.10. Creating the bootstrap node in AWS

4.4.10.1. CloudFormation template for the bootstrap machine
4.4.10.2. Creating the control plane machines in AWS
4.4.10.3. CloudFormation template for control plane machines

4.4.11. Creating the worker nodes in AWS
4.4.11.1. CloudFormation template for compute machines
4.4.11.2. Creating the CloudFormation stack for compute machines

4.4.12. Initializing the bootstrap sequence on AWS with user-provisioned infrastructure
4.4.13. Approving the certificate signing requests for your machines
4.4.14. Initial Operator configuration

4.4.14.1. Disabling the default OperatorHub catalog sources
4.4.14.2. Image registry storage configuration

4.4.14.2.1. Configuring registry storage for AWS with user-provisioned infrastructure
4.4.14.2.2. Configuring storage for the image registry in non-production clusters

4.4.15. Deleting the bootstrap resources
4.4.16. Creating the Ingress DNS Records
4.4.17. Completing an AWS installation on user-provisioned infrastructure
4.4.18. Logging in to the cluster by using the CLI
4.4.19. Logging in to the cluster by using the web console
4.4.20. Additional resources
4.4.21. Next steps

4.5. INSTALLING A CLUSTER WITH THE SUPPORT FOR CONFIGURING MULTI-ARCHITECTURE COMPUTE
MACHINES

4.5.1. Installing a cluster with multi-architecture support

CHAPTER 5. INSTALLING A THREE-NODE CLUSTER ON AWS
5.1. CONFIGURING A THREE-NODE CLUSTER
5.2. ADDITIONAL RESOURCES

CHAPTER 6. UNINSTALLING A CLUSTER ON AWS
6.1. REMOVING A CLUSTER THAT USES INSTALLER-PROVISIONED INFRASTRUCTURE
6.2. DELETING AMAZON WEB SERVICES RESOURCES WITH THE CLOUD CREDENTIAL OPERATOR UTILITY

6.3. DELETING A CLUSTER WITH A CONFIGURED AWS LOCAL ZONE INFRASTRUCTURE
6.4. ADDITIONAL RESOURCES

481
482
483
483
483
483
486
488
490
492
493
495
501

504
512
515

526
527
530
535
539
543
549
552
555
555
556
559
560
560
561
562
562
562
565
566
567
568
568

568
569

571
571

572

573
573

573
575
576

Table of Contents

9

. .

. .

CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS FOR AWS
7.1. AVAILABLE INSTALLATION CONFIGURATION PARAMETERS FOR AWS

7.1.1. Required configuration parameters
7.1.2. Network configuration parameters
7.1.3. Optional configuration parameters
7.1.4. Optional AWS configuration parameters

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS
8.1. EXTEND EXISTING CLUSTERS TO USE AWS LOCAL ZONES OR WAVELENGTH ZONES

8.1.1. About edge compute pools
8.2. CHANGING THE CLUSTER NETWORK MTU TO SUPPORT LOCAL ZONES OR WAVELENGTH ZONES

8.2.1. About the cluster MTU
8.2.1.1. Service interruption considerations
8.2.1.2. MTU value selection
8.2.1.3. How the migration process works

8.2.2. Changing the cluster network MTU
8.2.2.1. Checking the current cluster MTU value
8.2.2.2. Beginning the MTU migration
8.2.2.3. Verifying the machine configuration
8.2.2.4. Finalizing the MTU migration

8.2.3. Opting in to AWS Local Zones or Wavelength Zones
8.2.4. Create network requirements in an existing VPC that uses AWS Local Zones or Wavelength Zones
8.2.5. Wavelength Zones only: Creating a VPC carrier gateway
8.2.6. Wavelength Zones only: CloudFormation template for the VPC Carrier Gateway
8.2.7. Creating subnets for AWS edge compute services
8.2.8. CloudFormation template for the VPC subnet
8.2.9. Creating a machine set manifest for an AWS Local Zones or Wavelength Zones node

8.2.9.1. Sample YAML for a compute machine set custom resource on AWS
8.2.9.2. Creating a compute machine set

8.3. CREATING USER WORKLOADS IN AWS LOCAL ZONES OR WAVELENGTH ZONES
8.4. NEXT STEPS

577
577
577
578
581
587

596
596
597

598
598
599
599
599
600
601
601
602
603
604
605
605
607
609

611
612
614
616
618
621

OpenShift Container Platform 4.19 Installing on AWS

10

Table of Contents

11

CHAPTER 1. INSTALLATION METHODS
You can install OpenShift Container Platform on Amazon Web Services using installer-provisioned,
user-provisioned infrastructure, or on a single node, depending on the needs of your use case.

The default installation type uses installer-provisioned infrastructure, where the installation program
provisions the underlying infrastructure for the cluster.

You can also install OpenShift Container Platform on infrastructure that you provision. If you do not use
infrastructure that the installation program provisions, you must manage and maintain the cluster
resources yourself.

You can also install OpenShift Container Platform on a single node, which is a specialized installation
method that is ideal for edge computing environments.

1.1. INSTALLING A CLUSTER ON INSTALLER-PROVISIONED
INFRASTRUCTURE

You can install a cluster on AWS infrastructure that is provisioned by the OpenShift Container Platform
installation program, by using one of the following methods:

You can install OpenShift Container Platform on AWS infrastructure that is provisioned by the
OpenShift Container Platform installation program. You can install a cluster quickly by using the default
configuration options.

You can install a customized cluster on AWS infrastructure that the installation program provisions. You
can also customize your OpenShift Container Platform network configuration during installation, so that
your cluster can coexist with your existing IP address allocations and adhere to your network
requirements. The installation program allows for some customization to be applied at the installation
stage. Many other customization options are available post-installation.

You can install OpenShift Container Platform on AWS on installer-provisioned infrastructure by using an
internal mirror of the installation release content. You can use this method to install a cluster that does
not require an active internet connection to obtain the software components.

You can install OpenShift Container Platform on an existing AWS Virtual Private Cloud (VPC). You can
use this installation method if you have constraints set by the guidelines of your company, such as limits
when creating new accounts or infrastructure.

You can install a private cluster on an existing AWS VPC. You can use this method to deploy OpenShift
Container Platform on an internal network that is not visible to the internet.

OpenShift Container Platform can be deployed into AWS regions that are specifically designed for US
government agencies at the federal, state, and local level, as well as contractors, educational
institutions, and other US customers that must run sensitive workloads in the cloud.

1.2. INSTALLING A CLUSTER ON USER-PROVISIONED
INFRASTRUCTURE

You can install a cluster on AWS in one of two ways: on infrastructure that you provide or infrastructure
that you provide by using an internal mirror of the installation release content.

To install OpenShift Container Platform on AWS infrastructure that you provide, you can use the
provided CloudFormation templates to create stacks of AWS resources that represent each of the
components required for an OpenShift Container Platform installation.

OpenShift Container Platform 4.19 Installing on AWS

12

To install a cluster that does not require an active internet connection to obtain the software
components, install OpenShift Container Platform on AWS infrastructure that you provide by using an
internal mirror of the installation release content. You can also use this installation method to ensure
that your clusters only use container images that satisfy your organizational controls on external
content. While you can install OpenShift Container Platform by using the mirrored content, your cluster
still requires internet access to use the AWS APIs.

1.3. INSTALLING A CLUSTER ON A SINGLE NODE

Installing OpenShift Container Platform on a single node alleviates some of the requirements for high
availability and large scale clusters. However, you must address requirements for installing on a single
node, and the additional requirements for installing single-node OpenShift on a cloud provider.

After addressing the requirements for single node installation, use the installing a customized cluster on
AWS procedure to install the cluster. The installing single-node OpenShift manually section contains an
exemplary install-config.yaml file when installing an OpenShift Container Platform cluster on a single
node.

1.4. ADDITIONAL RESOURCES

Installing a cluster quickly on AWS

Installing a customized cluster on AWS

Post-installation

Installing a cluster on AWS in a restricted network

Installing a cluster on an existing Virtual Private Cloud

Installing a private cluster on an existing VPC

Installing a cluster on AWS infrastructure that you provide

Installing a cluster on AWS in a restricted network with user-provisioned infrastructure

Installation process

CHAPTER 1. INSTALLATION METHODS

13

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#post-install-cluster-tasks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#installation-process_architecture-installation

CHAPTER 2. CONFIGURING AN AWS ACCOUNT
Before you can install OpenShift Container Platform, you must configure an Amazon Web Services
(AWS) account.

2.1. CONFIGURING ROUTE 53

To install OpenShift Container Platform, the Amazon Web Services (AWS) account you use must have a
dedicated public hosted zone in your Route 53 service. This zone must be authoritative for the domain.
The Route 53 service provides cluster DNS resolution and name lookup for external connections to the
cluster.

Procedure

1. Identify your domain, or subdomain, and registrar. You can transfer an existing domain and
registrar or obtain a new one through AWS or another source.

NOTE

If you purchase a new domain through AWS, it takes time for the relevant DNS
changes to propagate. For more information about purchasing domains through
AWS, see Registering Domain Names Using Amazon Route 53 in the AWS
documentation.

2. If you are using an existing domain and registrar, migrate its DNS to AWS. See Making Amazon
Route 53 the DNS Service for an Existing Domain in the AWS documentation.

3. Create a public hosted zone for your domain or subdomain. See Creating a Public Hosted Zone
in the AWS documentation.
Use an appropriate root domain, such as openshiftcorp.com, or subdomain, such as
clusters.openshiftcorp.com.

4. Extract the new authoritative name servers from the hosted zone records. See Getting the
Name Servers for a Public Hosted Zone in the AWS documentation.

5. Update the registrar records for the AWS Route 53 name servers that your domain uses. For
example, if you registered your domain to a Route 53 service in a different accounts, see the
following topic in the AWS documentation: Adding or Changing Name Servers or Glue Records.

6. If you are using a subdomain, add its delegation records to the parent domain. This gives
Amazon Route 53 responsibility for the subdomain. Follow the delegation procedure outlined by
the DNS provider of the parent domain. See Creating a subdomain that uses Amazon Route 53
as the DNS service without migrating the parent domain in the AWS documentation for an
example high level procedure.

2.1.1. Ingress Operator endpoint configuration for AWS Route 53

Configure Ingress Operator endpoints for OpenShift Container Platform clusters in Amazon Web
Services (AWS) GovCloud (US) regions. Verifying these settings helps to ensure that your cluster
connects to the correct API endpoints.

If you install in either AWS GovCloud (US) US-West or US-East region, the Ingress Operator uses us-
gov-west-1 region for Route53 and tagging API clients.

The Ingress Operator uses https://tagging.us-gov-west-1.amazonaws.com as the tagging API

OpenShift Container Platform 4.19 Installing on AWS

14

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/registrar.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/MigratingDNS.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/CreatingHostedZone.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/GetInfoAboutHostedZone.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-name-servers-glue-records.html#domain-name-servers-glue-records-procedure
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/CreatingNewSubdomain.html

The Ingress Operator uses https://tagging.us-gov-west-1.amazonaws.com as the tagging API
endpoint if a tagging custom endpoint is configured that includes the string 'us-gov-east-1'.

For more information on AWS GovCloud (US) endpoints, see the Service Endpoints in the AWS
documentation about GovCloud (US).

IMPORTANT

Private, disconnected installations are not supported for AWS GovCloud when you install
in the us-gov-east-1 region.

Example Route 53 configuration

where:

https://route53.us-gov.amazonaws.com

Defaults to https://route53.us-gov.amazonaws.com for both AWS GovCloud (US) regions.

https://tagging.us-gov-west-1.amazonaws.com

Only the US-West region has endpoints for tagging. Omit this parameter if your cluster is in another
region.

2.2. AWS ACCOUNT LIMITS

The OpenShift Container Platform cluster uses several Amazon Web Services (AWS) components, and
the default Service Limits affect your ability to install OpenShift Container Platform clusters.

If you use certain cluster configurations, deploy your cluster in certain AWS regions, or run multiple
clusters from your account, you might need to request additional resources for your AWS account.

The following table summarizes the AWS components whose limits can impact your ability to install and
run OpenShift Container Platform clusters.

Compone
nt

Number of
clusters
available by
default

Default AWS
limit

Description

platform:
 aws:
 region: us-gov-west-1
 serviceEndpoints:
 - name: ec2
 url: https://ec2.us-gov-west-1.amazonaws.com
 - name: elasticloadbalancing
 url: https://elasticloadbalancing.us-gov-west-1.amazonaws.com
 - name: route53
 url: https://route53.us-gov.amazonaws.com
 - name: tagging
 url: https://tagging.us-gov-west-1.amazonaws.com

CHAPTER 2. CONFIGURING AN AWS ACCOUNT

15

https://tagging.us-gov-west-1.amazonaws.com
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/using-govcloud-endpoints.html
https://route53.us-gov.amazonaws.com
https://route53.us-gov.amazonaws.com
https://tagging.us-gov-west-1.amazonaws.com
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Instance
Limits

Varies Varies By default, each cluster creates the following
instances:

One bootstrap machine, which is removed
after installation

Three control plane nodes

Three worker nodes

These instance type counts are within a new
account’s default limit. To deploy more worker
nodes, enable autoscaling, deploy large workloads,
or use a different instance type, review your account
limits to ensure that your cluster can deploy the
machines that you need.

In most regions, the worker machines use an
m6i.large instance and the bootstrap and control
plane machines use m6i.xlarge instances. In some
regions, including all regions that do not support
these instance types, m5.large and m5.xlarge
instances are used instead.

Elastic IPs
(EIPs)

0 to 1 5 EIPs per
account

To provision the cluster in a highly available
configuration, the installation program creates a
public and private subnet for each availability zone
within a region. Each private subnet requires a NAT
Gateway, and each NAT gateway requires a
separate elastic IP. Review the AWS region map to
determine how many availability zones are in each
region. To take advantage of the default high
availability, install the cluster in a region with at least
three availability zones. To install a cluster in a
region with more than five availability zones, you
must increase the EIP limit.

IMPORTANT

To use the us-east-1 region, you
must increase the EIP limit for your
account.

Virtual
Private
Clouds
(VPCs)

5 5 VPCs per
region

Each cluster creates its own VPC.

Compone
nt

Number of
clusters
available by
default

Default AWS
limit

Description

OpenShift Container Platform 4.19 Installing on AWS

16

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://aws.amazon.com/about-aws/global-infrastructure/

Elastic
Load
Balancing
(ELB/NLB
)

3 20 per region By default, each cluster creates internal and
external network load balancers for the master API
server and a single Classic Load Balancer for the
router. Deploying more Kubernetes Service objects
with type LoadBalancer will create additional load
balancers.

NAT
Gateways

5 5 per availability
zone

The cluster deploys one NAT gateway in each
availability zone.

Elastic
Network
Interfaces
(ENIs)

At least 12 350 per region The default installation creates 21 ENIs and an ENI
for each availability zone in your region. For
example, the us-east-1 region contains six
availability zones, so a cluster that is deployed in
that zone uses 27 ENIs. Review the AWS region map
to determine how many availability zones are in each
region.

Additional ENIs are created for additional machines
and ELB load balancers that are created by cluster
usage and deployed workloads.

VPC
Gateway

20 20 per account Each cluster creates a single VPC Gateway for S3
access.

S3 buckets 99 100 buckets per
account

Because the installation process creates a
temporary bucket and the registry component in
each cluster creates a bucket, you can create only
99 OpenShift Container Platform clusters per AWS
account.

Security
Groups

250 2,500 per
account

Each cluster creates 10 distinct security groups.

Compone
nt

Number of
clusters
available by
default

Default AWS
limit

Description

2.3. REQUIRED AWS PERMISSIONS FOR THE IAM USER

To deploy all components of an OpenShift Container Platform cluster, you must grant the all the
required permissions to the IAM user that you create in Amazon Web Services (AWS).

NOTE

Your IAM user must have the permission tag:GetResources in the region us-east-1 to
delete the base cluster resources. As part of the AWS API requirement, the OpenShift
Container Platform installation program performs various actions in this region.

When you attach the AdministratorAccess policy to the IAM user that you create in Amazon Web

CHAPTER 2. CONFIGURING AN AWS ACCOUNT

17

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/about-aws/global-infrastructure/

When you attach the AdministratorAccess policy to the IAM user that you create in Amazon Web
Services (AWS), you grant that user all of the required permissions. To deploy all components of an
OpenShift Container Platform cluster, the IAM user requires the following permissions:

Example 2.1. Required EC2 permissions for installation

ec2:AttachNetworkInterface

ec2:AuthorizeSecurityGroupEgress

ec2:AuthorizeSecurityGroupIngress

ec2:CopyImage

ec2:CreateNetworkInterface

ec2:CreateSecurityGroup

ec2:CreateTags

ec2:CreateVolume

ec2:DeleteSecurityGroup

ec2:DeleteSnapshot

ec2:DeleteTags

ec2:DeregisterImage

ec2:DescribeAccountAttributes

ec2:DescribeAddresses

ec2:DescribeAvailabilityZones

ec2:DescribeDhcpOptions

ec2:DescribeImages

ec2:DescribeInstanceAttribute

ec2:DescribeInstanceCreditSpecifications

ec2:DescribeInstances

ec2:DescribeInstanceTypes

ec2:DescribeInstanceTypeOfferings

ec2:DescribeInternetGateways

ec2:DescribeKeyPairs

ec2:DescribeNatGateways

OpenShift Container Platform 4.19 Installing on AWS

18

ec2:DescribeNetworkAcls

ec2:DescribeNetworkInterfaces

ec2:DescribePrefixLists

ec2:DescribePublicIpv4Pools (only required if publicIpv4Pool is specified in install-
config.yaml)

ec2:DescribeRegions

ec2:DescribeRouteTables

ec2:DescribeSecurityGroupRules

ec2:DescribeSecurityGroups

ec2:DescribeSubnets

ec2:DescribeTags

ec2:DescribeVolumes

ec2:DescribeVpcAttribute

ec2:DescribeVpcClassicLink

ec2:DescribeVpcClassicLinkDnsSupport

ec2:DescribeVpcEndpoints

ec2:DescribeVpcs

ec2:DisassociateAddress (only required if publicIpv4Pool is specified in install-
config.yaml)

ec2:GetEbsDefaultKmsKeyId

ec2:ModifyInstanceAttribute

ec2:ModifyNetworkInterfaceAttribute

ec2:RevokeSecurityGroupEgress

ec2:RevokeSecurityGroupIngress

ec2:RunInstances

ec2:TerminateInstances

Example 2.2. Required permissions for creating network resources during installation

ec2:AllocateAddress

ec2:AssociateAddress

CHAPTER 2. CONFIGURING AN AWS ACCOUNT

19

ec2:AssociateDhcpOptions

ec2:AssociateRouteTable

ec2:AttachInternetGateway

ec2:CreateDhcpOptions

ec2:CreateInternetGateway

ec2:CreateNatGateway

ec2:CreateRoute

ec2:CreateRouteTable

ec2:CreateSubnet

ec2:CreateVpc

ec2:CreateVpcEndpoint

ec2:ModifySubnetAttribute

ec2:ModifyVpcAttribute

NOTE

If you use an existing Virtual Private Cloud (VPC), your account does not require these
permissions for creating network resources.

Example 2.3. Required Elastic Load Balancing permissions (ELB) for installation

elasticloadbalancing:AddTags

elasticloadbalancing:ApplySecurityGroupsToLoadBalancer

elasticloadbalancing:AttachLoadBalancerToSubnets

elasticloadbalancing:ConfigureHealthCheck

elasticloadbalancing:CreateListener

elasticloadbalancing:CreateLoadBalancer

elasticloadbalancing:CreateLoadBalancerListeners

elasticloadbalancing:CreateTargetGroup

elasticloadbalancing:DeleteLoadBalancer

elasticloadbalancing:DeregisterInstancesFromLoadBalancer

elasticloadbalancing:DeregisterTargets

OpenShift Container Platform 4.19 Installing on AWS

20

elasticloadbalancing:DescribeInstanceHealth

elasticloadbalancing:DescribeListeners

elasticloadbalancing:DescribeLoadBalancerAttributes

elasticloadbalancing:DescribeLoadBalancers

elasticloadbalancing:DescribeTags

elasticloadbalancing:DescribeTargetGroupAttributes

elasticloadbalancing:DescribeTargetHealth

elasticloadbalancing:ModifyLoadBalancerAttributes

elasticloadbalancing:ModifyTargetGroup

elasticloadbalancing:ModifyTargetGroupAttributes

elasticloadbalancing:RegisterInstancesWithLoadBalancer

elasticloadbalancing:RegisterTargets

elasticloadbalancing:SetLoadBalancerPoliciesOfListener

elasticloadbalancing:SetSecurityGroups

IMPORTANT

OpenShift Container Platform uses both the ELB and ELBv2 API services to provision
load balancers. The permission list shows permissions required by both services. A
known issue exists in the AWS web console where both services use the same
elasticloadbalancing action prefix but do not recognize the same actions. You can
ignore the warnings about the service not recognizing certain elasticloadbalancing
actions.

Example 2.4. Required IAM permissions for installation

iam:AddRoleToInstanceProfile

iam:CreateInstanceProfile

iam:CreateRole

iam:DeleteInstanceProfile

iam:DeleteRole

iam:DeleteRolePolicy

iam:GetInstanceProfile

iam:GetRole

CHAPTER 2. CONFIGURING AN AWS ACCOUNT

21

iam:GetRolePolicy

iam:GetUser

iam:ListInstanceProfilesForRole

iam:ListRoles

iam:ListUsers

iam:PassRole

iam:PutRolePolicy

iam:RemoveRoleFromInstanceProfile

iam:SimulatePrincipalPolicy

iam:TagInstanceProfile

iam:TagRole

NOTE

If you specify an existing IAM role in the install-config.yaml file, the following
IAM permissions are not required: iam:CreateRole,iam:DeleteRole,
iam:DeleteRolePolicy, and iam:PutRolePolicy.

If you have not created a load balancer in your AWS account, the IAM user
also requires the iam:CreateServiceLinkedRole permission.

Example 2.5. Required Route 53 permissions for installation

route53:ChangeResourceRecordSets

route53:ChangeTagsForResource

route53:CreateHostedZone

route53:DeleteHostedZone

route53:GetChange

route53:GetHostedZone

route53:ListHostedZones

route53:ListHostedZonesByName

route53:ListResourceRecordSets

route53:ListTagsForResource

route53:UpdateHostedZoneComment

OpenShift Container Platform 4.19 Installing on AWS

22

Example 2.6. Required Amazon Simple Storage Service (S3) permissions for installation

s3:CreateBucket

s3:DeleteBucket

s3:GetAccelerateConfiguration

s3:GetBucketAcl

s3:GetBucketCors

s3:GetBucketLocation

s3:GetBucketLogging

s3:GetBucketObjectLockConfiguration

s3:GetBucketPolicy

s3:GetBucketRequestPayment

s3:GetBucketTagging

s3:GetBucketVersioning

s3:GetBucketWebsite

s3:GetEncryptionConfiguration

s3:GetLifecycleConfiguration

s3:GetReplicationConfiguration

s3:ListBucket

s3:PutBucketAcl

s3:PutBucketPolicy

s3:PutBucketTagging

s3:PutEncryptionConfiguration

Example 2.7. S3 permissions that cluster Operators require

s3:DeleteObject

s3:GetObject

s3:GetObjectAcl

CHAPTER 2. CONFIGURING AN AWS ACCOUNT

23

s3:GetObjectTagging

s3:GetObjectVersion

s3:PutObject

s3:PutObjectAcl

s3:PutObjectTagging

Example 2.8. Required permissions to delete base cluster resources

autoscaling:DescribeAutoScalingGroups

ec2:DeleteNetworkInterface

ec2:DeletePlacementGroup

ec2:DeleteVolume

elasticloadbalancing:DeleteTargetGroup

elasticloadbalancing:DescribeTargetGroups

iam:DeleteAccessKey

iam:DeleteUser

iam:DeleteUserPolicy

iam:ListAttachedRolePolicies

iam:ListInstanceProfiles

iam:ListRolePolicies

iam:ListUserPolicies

s3:DeleteObject

s3:ListBucketVersions

tag:GetResources

Example 2.9. Required permissions to delete network resources

ec2:DeleteDhcpOptions

ec2:DeleteInternetGateway

ec2:DeleteNatGateway

ec2:DeleteRoute

OpenShift Container Platform 4.19 Installing on AWS

24

ec2:DeleteRouteTable

ec2:DeleteSubnet

ec2:DeleteVpc

ec2:DeleteVpcEndpoints

ec2:DetachInternetGateway

ec2:DisassociateRouteTable

ec2:ReleaseAddress

ec2:ReplaceRouteTableAssociation

NOTE

If you use an existing VPC, your account does not require these permissions to delete
network resources. Instead, your account only requires the tag:UntagResources
permission to delete network resources.

Example 2.10. Optional permissions for installing a cluster with a custom Key Management
Service (KMS) key

kms:CreateGrant

kms:Decrypt

kms:DescribeKey

kms:Encrypt

kms:GenerateDataKey

kms:GenerateDataKeyWithoutPlainText

kms:ListGrants

kms:RevokeGrant

Example 2.11. Required permissions to delete a cluster with shared instance roles

iam:UntagRole

Example 2.12. Required permissions to delete a cluster with shared instance profiles

tag:UntagResources

CHAPTER 2. CONFIGURING AN AWS ACCOUNT

25

Example 2.13. Additional IAM and S3 permissions that are required to create manifests

iam:GetUserPolicy

iam:ListAccessKeys

iam:PutUserPolicy

iam:TagUser

s3:AbortMultipartUpload

s3:GetBucketPublicAccessBlock

s3:ListBucket

s3:ListBucketMultipartUploads

s3:PutBucketPublicAccessBlock

s3:PutLifecycleConfiguration

NOTE

If you are managing your cloud provider credentials with mint mode, the IAM user also
requires the iam:CreateAccessKey and iam:CreateUser permissions.

Example 2.14. Optional permissions for instance and quota checks for installation

servicequotas:ListAWSDefaultServiceQuotas

Example 2.15. Optional permissions for the cluster owner account when installing a cluster on a
shared VPC

sts:AssumeRole

Example 2.16. Required permissions for enabling Bring your own public IPv4 addresses (BYOIP)
feature for installation

ec2:DescribePublicIpv4Pools

ec2:DisassociateAddress

2.4. CREATING AN IAM USER

Before you install OpenShift Container Platform, you must create a secondary IAM administrative user
and assign permissions to create the cluster.

Each Amazon Web Services (AWS) account contains a root user account that is based on the email

OpenShift Container Platform 4.19 Installing on AWS

26

Each Amazon Web Services (AWS) account contains a root user account that is based on the email
address you used to create the account.

IMPORTANT

This is a highly-privileged account, and it is recommended to use it for only initial account
and billing configuration, creating an initial set of users, and securing the account.

As you complete the Creating an IAM User in Your AWS Account procedure in the Amazon Web Services
(AWS) documentation, set the following options:

Procedure

1. Specify the IAM user name and select Programmatic access.

2. Attach the AdministratorAccess policy to ensure that the account has sufficient permission to
create the cluster. This policy provides the cluster with the ability to grant credentials to each
OpenShift Container Platform component. The cluster grants the components only the
credentials that they require.

NOTE

While it is possible to create a policy that grants the all of the required AWS
permissions and attach it to the user, this is not the preferred option. The cluster
will not have the ability to grant additional credentials to individual components,
so the same credentials are used by all components.

3. Optional: Add metadata to the user by attaching tags.

4. Confirm that the user name that you specified is granted the AdministratorAccess policy.

5. Record the access key ID and secret access key values. You must use these values when you
configure your local machine to run the installation program.

IMPORTANT

You cannot use a temporary session token that you generated while using a
multi-factor authentication device to authenticate to AWS when you deploy a
cluster. The cluster continues to use your current AWS credentials to create AWS
resources for the entire life of the cluster, so you must use key-based, long-term
credentials.

2.5. IAM POLICIES AND AWS AUTHENTICATION

You can specify your own IAM roles if required. By default, the installation program creates instance
profiles for the bootstrap, control plane, and compute instances with the necessary permissions for the
cluster to operate.

NOTE

CHAPTER 2. CONFIGURING AN AWS ACCOUNT

27

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

NOTE

To enable pulling images from the Amazon Elastic Container Registry (ECR) as a
postinstallation task in a single-node OpenShift cluster, you must add the
AmazonEC2ContainerRegistryReadOnly policy to the IAM role associated with the
cluster’s control plane role.

However, you can create your own IAM roles and specify them as part of the installation process. You
might need to specify your own roles to deploy the cluster or to manage the cluster after installation.
For example:

Your organization’s security policies require that you use a more restrictive set of permissions to
install the cluster.

After the installation, the cluster is configured with an Operator that requires access to
additional services.

If you choose to specify your own IAM roles, you can take the following steps:

Begin with the default policies and adapt as required. For more information, see "Default
permissions for IAM instance profiles".

To create a policy template that is based on the cluster’s activity, see "Using AWS IAM Analyzer
to create policy templates".

2.5.1. Default permissions for IAM instance profiles

To ensure your cluster operates with the correct security permissions in OpenShift Container Platform,
review the default IAM instance profiles created by the installation program.

By default, the installation program creates IAM instance profiles for the bootstrap, control plane, and
compute instances with the necessary permissions for the cluster to operate.

The following lists specify the default permissions for control plane and compute machines:

Default IAM role permissions for control plane instance profiles

ec2:AttachVolume

ec2:AuthorizeSecurityGroupIngress

ec2:CreateSecurityGroup

ec2:CreateTags

ec2:CreateVolume

ec2:DeleteSecurityGroup

ec2:DeleteVolume

ec2:Describe*

ec2:DetachVolume

ec2:ModifyInstanceAttribute

OpenShift Container Platform 4.19 Installing on AWS

28

ec2:ModifyVolume

ec2:RevokeSecurityGroupIngress

elasticloadbalancing:AddTags

elasticloadbalancing:AttachLoadBalancerToSubnets

elasticloadbalancing:ApplySecurityGroupsToLoadBalancer

elasticloadbalancing:CreateListener

elasticloadbalancing:CreateLoadBalancer

elasticloadbalancing:CreateLoadBalancerPolicy

elasticloadbalancing:CreateLoadBalancerListeners

elasticloadbalancing:CreateTargetGroup

elasticloadbalancing:ConfigureHealthCheck

elasticloadbalancing:DeleteListener

elasticloadbalancing:DeleteLoadBalancer

elasticloadbalancing:DeleteLoadBalancerListeners

elasticloadbalancing:DeleteTargetGroup

elasticloadbalancing:DeregisterInstancesFromLoadBalancer

elasticloadbalancing:DeregisterTargets

elasticloadbalancing:Describe*

elasticloadbalancing:DetachLoadBalancerFromSubnets

elasticloadbalancing:ModifyListener

elasticloadbalancing:ModifyLoadBalancerAttributes

elasticloadbalancing:ModifyTargetGroup

elasticloadbalancing:ModifyTargetGroupAttributes

elasticloadbalancing:RegisterInstancesWithLoadBalancer

elasticloadbalancing:RegisterTargets

elasticloadbalancing:SetLoadBalancerPoliciesForBackendServer

elasticloadbalancing:SetLoadBalancerPoliciesOfListener

kms:DescribeKey

CHAPTER 2. CONFIGURING AN AWS ACCOUNT

29

Default IAM role permissions for compute instance profiles

ec2:DescribeInstances

ec2:DescribeRegions

2.5.2. Specifying an existing IAM role

Instead of allowing the installation program to create IAM instance profiles with the default permissions,
you can use the install-config.yaml file to specify an existing IAM role for control plane and compute
instances.

Prerequisites

You have an existing install-config.yaml file.

Procedure

1. Update compute.platform.aws.iamRole with an existing role for the compute machines.

Sample install-config.yaml file with an IAM role for compute instances

2. Update controlPlane.platform.aws.iamRole with an existing role for the control plane
machines.

Sample install-config.yaml file with an IAM role for control plane instances

3. Save the file and reference it when installing the OpenShift Container Platform cluster.

NOTE

To change or update an IAM account after the cluster has been installed, see
RHOCP 4 AWS cloud-credentials access key is expired (Red Hat
Knowledgebase).

Additional resources

Quickly install a cluster

compute:
- hyperthreading: Enabled
 name: worker
 platform:
 aws:
 iamRole: ExampleRole

controlPlane:
 hyperthreading: Enabled
 name: master
 platform:
 aws:
 iamRole: ExampleRole

OpenShift Container Platform 4.19 Installing on AWS

30

https://access.redhat.com/solutions/4284011

Install a cluster with cloud customizations on installer-provisioned infrastructure

Installing a cluster on user-provisioned infrastructure in AWS by using CloudFormation
templates

CHAPTER 2. CONFIGURING AN AWS ACCOUNT

31

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

3.1. PREPARING TO INSTALL A CLUSTER ON AWS

To install an OpenShift Container Platform cluster on Amazon Web Services (AWS), you must verify
your internet connectivity, download the installation program, install the OpenShift CLI (oc), and
generate an SSH key pair.

If required, you also need to manually create long-term credentials for AWS or configure an AWS cluster
to use short-term credentials with Amazon Web Services Security Token Service (AWS STS).

The following list outlines in detail the steps to prepare to install an OpenShift Container Platform
cluster on AWS:

Verifying internet connectivity for your cluster.

Configuring an AWS account .

Downloading the installation program.

NOTE

If you are installing in a disconnected environment, you extract the installation
program from the mirrored content. For more information, see Mirroring images
for a disconnected installation.

Installing the OpenShift CLI (oc).

NOTE

If you are installing in a disconnected environment, install oc to the mirror host.

Generating an SSH key pair. You can use this key pair to authenticate into the OpenShift
Container Platform cluster’s nodes after it is deployed.

If the cloud identity and access management (IAM) APIs are not accessible in your environment,
or if you do not want to store an administrator-level credential secret in the kube-system
namespace, manually creating long-term credentials for AWS or configuring an AWS cluster to
use short-term credentials with (AWS STS).

3.1.1. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.19, you require access to the internet to install your cluster.

You must have internet access to perform the following actions:

Access OpenShift Cluster Manager to download the installation program and perform
subscription management. If the cluster has internet access and you do not disable Telemetry,
that service automatically entitles your cluster.

Access Quay.io to obtain the packages that are required to install your cluster.

Obtain the packages that are required to perform cluster updates.

IMPORTANT

OpenShift Container Platform 4.19 Installing on AWS

32

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#installing-mirroring-installation-images
https://console.redhat.com/openshift
http://quay.io

IMPORTANT

If your cluster cannot have direct internet access, you can perform a restricted network
installation on some types of infrastructure that you provision. During that process, you
download the required content and use it to populate a mirror registry with the
installation packages. With some installation types, the environment that you install your
cluster in will not require internet access. Before you update the cluster, you update the
content of the mirror registry.

3.1.2. Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on the host you are using
for installation.

Prerequisites

You have a computer that runs Linux or macOS, with 500 MB of local disk space.

Procedure

1. Go to the Cluster Type page on the Red Hat Hybrid Cloud Console. If you have a Red Hat
account, log in with your credentials. If you do not, create an account.

TIP

You can also download the binaries for a specific OpenShift Container Platform release .

2. Select your infrastructure provider from the Run it yourself section of the page.

3. Select your host operating system and architecture from the dropdown menus under
OpenShift Installer and click Download Installer.

4. Place the downloaded file in the directory where you want to store the installation configuration
files.

IMPORTANT

The installation program creates several files on the computer that you use
to install your cluster. You must keep the installation program and the files
that the installation program creates after you finish installing the cluster.
Both of the files are required to delete the cluster.

Deleting the files created by the installation program does not remove your
cluster, even if the cluster failed during installation. To remove your cluster,
complete the OpenShift Container Platform uninstallation procedures for
your specific cloud provider.

5. Extract the installation program. For example, on a computer that uses a Linux operating
system, run the following command:

6. Download your installation pull secret from Red Hat OpenShift Cluster Manager . This pull secret
allows you to authenticate with the services that are provided by the included authorities,

$ tar -xvf openshift-install-linux.tar.gz

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

33

https://console.redhat.com/openshift/install
https://mirror.openshift.com/pub/openshift-v4/clients/ocp/
https://console.redhat.com/openshift/install/pull-secret

including Quay.io, which serves the container images for OpenShift Container Platform
components.

TIP

Alternatively, you can retrieve the installation program from the Red Hat Customer Portal ,
where you can specify a version of the installation program to download. However, you must
have an active subscription to access this page.

3.1.3. Installing the OpenShift CLI on Linux

To manage your cluster and deploy applications from the command line, install the OpenShift CLI (oc)
binary on Linux.

IMPORTANT

If you installed an earlier version of oc, you cannot use it to complete all of the commands
in OpenShift Container Platform.

Download and install the new version of oc.

Procedure

1. Navigate to the Download OpenShift Container Platform page on the Red Hat Customer Portal.

2. Select the architecture from the Product Variant list.

3. Select the appropriate version from the Version list.

4. Click Download Now next to the OpenShift v4.19 Linux Clients entry and save the file.

5. Unpack the archive:

6. Place the oc binary in a directory that is on your PATH.
To check your PATH, execute the following command:

Verification

After you install the OpenShift CLI, it is available using the oc command:

3.1.4. Installing the OpenShift CLI on Windows

To manage your cluster and deploy applications from the command line, install OpenShift CLI (oc)
binary on Windows.

IMPORTANT

$ tar xvf <file>

$ echo $PATH

$ oc <command>

OpenShift Container Platform 4.19 Installing on AWS

34

https://access.redhat.com/downloads/content/290/
https://access.redhat.com/downloads/content/290

IMPORTANT

If you installed an earlier version of oc, you cannot use it to complete all of the commands
in OpenShift Container Platform.

Download and install the new version of oc.

Procedure

1. Navigate to the Download OpenShift Container Platform page on the Red Hat Customer Portal.

2. Select the appropriate version from the Version list.

3. Click Download Now next to the OpenShift v4.19 Windows Client entry and save the file.

4. Extract the archive with a ZIP program.

5. Move the oc binary to a directory that is on your PATH variable.
To check your PATH variable, open the command prompt and execute the following command:

Verification

After you install the OpenShift CLI, it is available using the oc command:

3.1.5. Installing the OpenShift CLI on macOS

To manage your cluster and deploy applications from the command line, install the OpenShift CLI (oc)
binary on macOS.

IMPORTANT

If you installed an earlier version of oc, you cannot use it to complete all of the commands
in OpenShift Container Platform.

Download and install the new version of oc.

Procedure

1. Navigate to the Download OpenShift Container Platform page on the Red Hat Customer Portal.

2. Select the architecture from the Product Variant list.

3. Select the appropriate version from the Version list.

4. Click Download Now next to the OpenShift v4.19 macOS Clients entry and save the file.

NOTE

For macOS arm64, choose the OpenShift v4.19 macOS arm64 Client entry.

C:\> path

C:\> oc <command>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

35

https://access.redhat.com/downloads/content/290
https://access.redhat.com/downloads/content/290

5. Unpack and unzip the archive.

6. Move the oc binary to a directory on your PATH variable.
To check your PATH variable, open a terminal and execute the following command:

Verification

Verify your installation by using an oc command:

3.1.6. Generating a key pair for cluster node SSH access

To enable secure, passwordless SSH access to your cluster nodes, provide an SSH public key during the
OpenShift Container Platform installation. This ensures that the installation program automatically
configures the Red Hat Enterprise Linux CoreOS (RHCOS) nodes for remote authentication through
the core user.

The SSH public key gets added to the ~/.ssh/authorized_keys list for the core user on each node.
After the key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition
config files, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the
nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you
must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.

IMPORTANT

Do not skip this procedure in production environments, where disaster recovery and
debugging is required.

NOTE

You must use a local key, not one that you configured with platform-specific approaches.

Procedure

1. If you do not have an existing SSH key pair on your local machine to use for authentication onto
your cluster nodes, create one. For example, on a computer that uses a Linux operating system,
run the following command:

Specifies the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an
existing key pair, ensure your public key is in the your ~/.ssh directory.

NOTE

$ echo $PATH

$ oc <command>

$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name>

OpenShift Container Platform 4.19 Installing on AWS

36

NOTE

If you plan to install an OpenShift Container Platform cluster that uses the RHEL
cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3
Validation on only the x86_64, ppc64le, and s390x architectures, do not create a
key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or
ecdsa algorithm.

2. View the public SSH key:

For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been
added. SSH agent management of the key is required for password-less SSH authentication
onto your cluster nodes, or if you want to use the ./openshift-install gather command.

NOTE

On some distributions, default SSH private key identities such as ~/.ssh/id_rsa
and ~/.ssh/id_dsa are managed automatically.

a. If the ssh-agent process is not already running for your local user, start it as a background
task:

Example output

NOTE

If your cluster is in FIPS mode, only use FIPS-compliant algorithms to
generate the SSH key. The key must be either RSA or ECDSA.

4. Add your SSH private key to the ssh-agent:

Specifies the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

Example output

Next steps

$ cat <path>/<file_name>.pub

$ cat ~/.ssh/id_ed25519.pub

$ eval "$(ssh-agent -s)"

Agent pid 31874

$ ssh-add <path>/<file_name>

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

37

When you install OpenShift Container Platform, provide the SSH public key to the installation
program.

3.1.7. Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.19, the Telemetry service, which runs by default to provide metrics
about cluster health and the success of updates, requires internet access. If your cluster is connected to
the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained
automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to
track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

See About remote health monitoring for more information about the Telemetry service

3.2. INSTALLING A CLUSTER ON AWS

In OpenShift Container Platform version 4.19, you can install a cluster on Amazon Web Services (AWS)
that uses the default configuration options.

3.2.1. Prerequisites

You reviewed details about the OpenShift Container Platform installation and update
processes.

You read the documentation on selecting a cluster installation method and preparing it for
users.

You configured an AWS account to host the cluster.

IMPORTANT

If you have an AWS profile stored on your computer, it must not use a temporary
session token that you generated while using a multi-factor authentication
device. The cluster continues to use your current AWS credentials to create AWS
resources for the entire life of the cluster, so you must use key-based, long-term
credentials. To generate appropriate keys, see Managing Access Keys for IAM
Users in the AWS documentation. You can supply the keys when you run the
installation program.

If you use a firewall, you configured it to allow the sites that your cluster requires access to.

3.2.2. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

IMPORTANT

You can run the create cluster command of the installation program only once, during
initial installation.

OpenShift Container Platform 4.19 Installing on AWS

38

https://console.redhat.com/openshift
https://console.redhat.com/openshift
https://access.redhat.com/documentation/en-us/subscription_central/2020-04/html/getting_started_with_subscription_watch/con-how-to-select-datacollection-tool_assembly-requirements-and-your-responsibilities-ctxt#red_hat_openshift
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#about-remote-health-monitoring
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall

1

2

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

You have verified that the cloud provider account on your host has the correct permissions to
deploy the cluster. An account with incorrect permissions causes the installation process to fail
with an error message that displays the missing permissions.

Procedure

1. In the directory that contains the installation program, initialize the cluster deployment by
running the following command:

For <installation_directory>, specify the directory name to store the files that the
installation program creates.

To view different installation details, specify warn, debug, or error instead of info.

When specifying the directory:

Verify that the directory has the execute permission. This permission is required to run
Terraform binaries under the installation directory.

Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have
short expiration intervals, therefore you must not reuse an installation directory. If you want
to reuse individual files from another cluster installation, you can copy them into your
directory. However, the file names for the installation assets might change between
releases. Use caution when copying installation files from an earlier OpenShift Container
Platform version.

2. Provide values at the prompts:

a. Optional: Select an SSH key to use to access your cluster machines.

NOTE

For production OpenShift Container Platform clusters on which you want to
perform installation debugging or disaster recovery, specify an SSH key that
your ssh-agent process uses.

b. Select aws as the platform to target.

c. If you do not have an Amazon Web Services (AWS) profile stored on your computer, enter
the AWS access key ID and secret access key for the user that you configured to run the
installation program.

NOTE

$./openshift-install create cluster --dir <installation_directory> \ 1
 --log-level=info 2

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

39

NOTE

The AWS access key ID and secret access key are stored in
~/.aws/credentials in the home directory of the current user on the
installation host. You are prompted for the credentials by the installation
program if the credentials for the exported profile are not present in the file.
Any credentials that you provide to the installation program are stored in the
file.

d. Select the AWS region to deploy the cluster to.

e. Select the base domain for the Route 53 service that you configured for your cluster.

f. Enter a descriptive name for your cluster.

g. Paste the pull secret from Red Hat OpenShift Cluster Manager .

3. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you
used to install the cluster.

NOTE

The elevated permissions provided by the AdministratorAccess policy are
required only during installation.

Verification

When the cluster deployment completes successfully:

The terminal displays directions for accessing your cluster, including a link to the web console
and credentials for the kubeadmin user.

Credential information also outputs to <installation_directory>/.openshift_install.log.

IMPORTANT

Do not delete the installation program or the files that the installation program creates.
Both are required to delete the cluster.

Example output

IMPORTANT

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

OpenShift Container Platform 4.19 Installing on AWS

40

https://console.redhat.com/openshift/install/pull-secret

1

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

Additional resources

Configuration and credential file settings (AWS documentation)

3.2.3. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

Procedure

1. Export the kubeadmin credentials by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

Example output

3.2.4. Logging in to the cluster by using the web console

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

$ oc whoami

system:admin

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

41

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in
to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

You have access to the installation host.

You completed a cluster installation and all cluster Operators are available.

Procedure

1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the
installation host:

NOTE

Alternatively, you can obtain the kubeadmin password from the
<installation_directory>/.openshift_install.log log file on the installation host.

2. List the OpenShift Container Platform web console route:

NOTE

Alternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log log file on the installation host.

Example output

3. Navigate to the route detailed in the output of the preceding command in a web browser and
log in as the kubeadmin user.

Additional resources

Accessing the web console

3.2.5. Next steps

Validating an installation.

Customize your cluster.

If necessary, you can Remote health reporting .

If necessary, you can remove cloud provider credentials .

$ cat <installation_directory>/auth/kubeadmin-password

$ oc get routes -n openshift-console | grep 'console-openshift'

console console-openshift-console.apps.<cluster_name>.<base_domain> console
https reencrypt/Redirect None

OpenShift Container Platform 4.19 Installing on AWS

42

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#available_cluster_customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#manually-removing-cloud-creds_changing-cloud-credentials-configuration

3.3. INSTALLING A CLUSTER ON AWS WITH CUSTOMIZATIONS

In OpenShift Container Platform version 4.19, you can install a customized cluster on infrastructure that
the installation program provisions on Amazon Web Services (AWS). To customize the installation, you
modify parameters in the install-config.yaml file before you install the cluster.

NOTE

The scope of the OpenShift Container Platform installation configurations is intentionally
narrow. It is designed for simplicity and ensured success. You can complete many more
OpenShift Container Platform configuration tasks after an installation completes.

3.3.1. Prerequisites

You reviewed details about the OpenShift Container Platform installation and update
processes.

You read the documentation on selecting a cluster installation method and preparing it for
users.

You configured an AWS account to host the cluster.

IMPORTANT

If you have an AWS profile stored on your computer, it must not use a temporary
session token that you generated while using a multi-factor authentication
device. The cluster continues to use your current AWS credentials to create AWS
resources for the entire life of the cluster, so you must use long-term credentials.
To generate appropriate keys, see Managing Access Keys for IAM Users in the
AWS documentation. You can supply the keys when you run the installation
program.

If you use a firewall, you configured it to allow the sites that your cluster requires access to.

3.3.2. Obtaining an AWS Marketplace image

If you are deploying an OpenShift Container Platform cluster using an AWS Marketplace image, you
must first subscribe through AWS. Subscribing to the offer provides you with the AMI ID that the
installation program uses to deploy compute nodes.

NOTE

You should only modify the RHCOS image for compute machines to use an AWS
Marketplace image. Control plane machines and infrastructure nodes do not require an
OpenShift Container Platform subscription and use the public RHCOS default image by
default, which does not incur subscription costs on your AWS bill. Therefore, you should
not modify the cluster default boot image or the control plane boot images. Applying the
AWS Marketplace image to them will incur additional licensing costs that cannot be
recovered.

Prerequisites

You have an AWS account to purchase the offer. This account does not have to be the same
account that is used to install the cluster.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

43

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall

1

2

Procedure

1. Complete the OpenShift Container Platform subscription from the AWS Marketplace.

2. Record the AMI ID for your specific AWS Region. As part of the installation process, you must
update the install-config.yaml file with this value before deploying the cluster.

Sample install-config.yaml file with AWS Marketplace compute nodes

The AMI ID from your AWS Marketplace subscription.

Your AMI ID is associated with a specific AWS Region. When creating the installation
configuration file, ensure that you select the same AWS Region that you specified when
configuring your subscription.

3.3.3. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Amazon Web Services
(AWS).

Prerequisites

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

Procedure

1. Create the install-config.yaml file.

a. Change to the directory that contains the installation program and run the following
command:

<installation_directory>: For <installation_directory>, specify the directory name to

apiVersion: v1
baseDomain: example.com
compute:
- hyperthreading: Enabled
 name: worker
 platform:
 aws:
 amiID: ami-06c4d345f7c207239 1
 type: m5.4xlarge
 replicas: 3
metadata:
 name: test-cluster
platform:
 aws:
 region: us-east-2 2
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'

$./openshift-install create install-config --dir <installation_directory>

OpenShift Container Platform 4.19 Installing on AWS

44

https://aws.amazon.com/marketplace/fulfillment?productId=59ead7de-2540-4653-a8b0-fa7926d5c845

<installation_directory>: For <installation_directory>, specify the directory name to
store the files that the installation program creates.
When specifying the directory:

Verify that the directory has the execute permission. This permission is required to run
Terraform binaries under the installation directory.

Use an empty directory. Some installation assets, such as bootstrap X.509 certificates,
have short expiration intervals, therefore you must not reuse an installation directory. If
you want to reuse individual files from another cluster installation, you can copy them
into your directory. However, the file names for the installation assets might change
between releases. Use caution when copying installation files from an earlier OpenShift
Container Platform version.

b. At the prompts, provide the configuration details for your cloud:

i. Optional: Select an SSH key to use to access your cluster machines.

NOTE

For production OpenShift Container Platform clusters on which you want
to perform installation debugging or disaster recovery, specify an SSH
key that your ssh-agent process uses.

ii. Select AWS as the platform to target.

iii. If you do not have an Amazon Web Services (AWS) profile stored on your computer,
enter the AWS access key ID and secret access key for the user that you configured to
run the installation program.

iv. Select the AWS region to deploy the cluster to.

v. Select the base domain for the Route 53 service that you configured for your cluster.

vi. Enter a descriptive name for your cluster.

2. Modify the install-config.yaml file. You can find more information about the available
parameters in the "Installation configuration parameters" section.

NOTE

If you are installing a three-node cluster, be sure to set the compute.replicas
parameter to 0. This ensures that the cluster’s control planes are schedulable. For
more information, see "Installing a three-node cluster on AWS".

3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

IMPORTANT

The install-config.yaml file is consumed during the installation process. If you
want to reuse the file, you must back it up now.

Additional resources

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

45

Installation configuration parameters for AWS

3.3.3.1. Minimum resource requirements for cluster installation

Each created cluster must meet minimum requirements so that the cluster runs as expected.

Table 3.1. Minimum resource requirements

Machine Operating
System

vCPU [1] Virtual RAM Storage Input/Output
Per Second
(IOPS)[2]

Bootstrap RHCOS 4 16 GB 100 GB 300

Control plane RHCOS 4 16 GB 100 GB 300

Compute RHCOS, RHEL
8.6 and later
[3]

2 8 GB 100 GB 300

1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the
corresponding ratio: (threads per core × cores) × sockets = vCPUs.

2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster
storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms
p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so
you might need to over-allocate storage volume to obtain sufficient performance.

3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your
cluster, you take responsibility for all operating system life cycle management and maintenance,
including performing system updates, applying patches, and completing all other required tasks.
Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container
Platform 4.10 and later.

NOTE

For OpenShift Container Platform version 4.19, RHCOS is based on RHEL version 9.6,
which updates the micro-architecture requirements. The following list contains the
minimum instruction set architectures (ISA) that each architecture requires:

x86-64 architecture requires x86-64-v2 ISA

ARM64 architecture requires ARMv8.0-A ISA

IBM Power architecture requires Power 9 ISA

s390x architecture requires z14 ISA

For more information, see Architectures (RHEL documentation).

If an instance type for your platform meets the minimum requirements for cluster machines, it is
supported to use in OpenShift Container Platform.

OpenShift Container Platform 4.19 Installing on AWS

46

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.2_release_notes/index#architectures

Additional resources

Optimizing storage

3.3.3.2. Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container
Platform.

NOTE

Use the machine types included in the following charts for your AWS instances. If you use
an instance type that is not listed in the chart, ensure that the instance size you use
matches the minimum resource requirements that are listed in the section named
"Minimum resource requirements for cluster installation".

Example 3.1. Machine types based on 64-bit x86 architecture

c4.*

c5.*

c5a.*

i3.*

m4.*

m5.*

m5a.*

m6a.*

m6i.*

r4.*

r5.*

r5a.*

r6i.*

t3.*

t3a.*

3.3.3.3. Tested instance types for AWS on 64-bit ARM infrastructures

The following Amazon Web Services (AWS) 64-bit ARM instance types have been tested with
OpenShift Container Platform.

NOTE

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

47

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/scalability_and_performance/#optimizing-storage

NOTE

Use the machine types included in the following charts for your AWS ARM instances. If
you use an instance type that is not listed in the chart, ensure that the instance size you
use matches the minimum resource requirements that are listed in "Minimum resource
requirements for cluster installation".

Example 3.2. Machine types based on 64-bit ARM architecture

c6g.*

c7g.*

m6g.*

m7g.*

r8g.*

3.3.3.4. Sample customized install-config.yaml file for AWS

You can customize the installation configuration file (install-config.yaml) to specify more details about
your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

IMPORTANT

This sample YAML file is provided for reference only. You must obtain your install-
config.yaml file by using the installation program and modify it. For a full list and
description of all installation configuration parameters, see Installation configuration
parameters for AWS.

Sample install-config.yaml file for AWS

apiVersion: v1 1
baseDomain: example.com
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'
metadata:
 name: example-cluster
controlPlane: 2
 name: master
 platform:
 aws:
 type: m6i.xlarge
 replicas: 3
compute: 3
- name: worker
 platform:
 aws:
 type: c5.4xlarge
 replicas: 3
networking: 4

OpenShift Container Platform 4.19 Installing on AWS

48

1

2

3

4

5

Parameters at the first level of indentation apply to the cluster globally.

The controlPlane stanza applies to control plane machines.

The compute stanza applies to compute machines.

The networking stanza applies to the cluster networking configuration. If you do not provide
networking values, the installation program provides default values.

The platform stanza applies to the infrastructure platform that hosts the cluster.

Additional resources

Installation configuration parameters for AWS

3.3.3.5. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud, Microsoft
Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
platform: 5
 aws:
 region: us-west-2

apiVersion: v1

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

49

1

2

3

4

5

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC
endpoints to your VPC, you must add these endpoints to the noProxy field.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle config map that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the
trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

Optional: The policy to determine the configuration of the Proxy object to reference the
user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and
Always. Use Proxyonly to reference the user-ca-bundle config map only when
http/https proxy is configured. Use Always to always reference the user-ca-bundle
config map. The default value is Proxyonly.

NOTE

The installation program does not support the proxy readinessEndpoints field.

NOTE

If the installer times out, restart and then complete the deployment by using the
wait-for command of the installer. For example:

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings

baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.
<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5

$./openshift-install wait-for install-complete --log-level debug

OpenShift Container Platform 4.19 Installing on AWS

50

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

3.3.4. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the
credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the
following alternatives:

To manage long-term cloud credentials manually, follow the procedure in Manually creating
long-term credentials.

To implement short-term credentials that are managed outside the cluster for individual
components, follow the procedures in Configuring an AWS cluster to use short-term
credentials.

3.3.4.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in
environments where the cloud identity and access management (IAM) APIs are not reachable, or the
administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

51

1

2

3

4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container
Platform release image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

This command creates a YAML file for each CredentialsRequest object.

Sample CredentialsRequest object

5. Create YAML files for secrets in the openshift-install manifests directory that you generated
previously. The secrets must be stored using the namespace and secret name defined in the
spec.secretRef for each CredentialsRequest object.

Sample CredentialsRequest object with secrets

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - iam:GetUser
 - iam:GetUserPolicy
 - iam:ListAccessKeys
 resource: "*"
 ...

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...

OpenShift Container Platform 4.19 Installing on AWS

52

Sample Secret object

IMPORTANT

Before upgrading a cluster that uses manually maintained credentials, you must ensure
that the CCO is in an upgradeable state.

3.3.4.2. Configuring an AWS cluster to use short-term credentials

To install a cluster that is configured to use the AWS Security Token Service (STS), you must configure
the CCO utility and create the required AWS resources for your cluster.

3.3.4.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential
Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

NOTE

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift CLI (oc).

You have created an AWS account for the ccoctl utility to use with the following permissions:

spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - s3:CreateBucket
 - s3:DeleteBucket
 resource: "*"
 ...
 secretRef:
 name: <component_secret>
 namespace: <component_namespace>
 ...

apiVersion: v1
kind: Secret
metadata:
 name: <component_secret>
 namespace: <component_namespace>
data:
 aws_access_key_id: <base64_encoded_aws_access_key_id>
 aws_secret_access_key: <base64_encoded_aws_secret_access_key>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

53

Required iam permissions

iam:CreateOpenIDConnectProvider

iam:CreateRole

iam:DeleteOpenIDConnectProvider

iam:DeleteRole

iam:DeleteRolePolicy

iam:GetOpenIDConnectProvider

iam:GetRole

iam:GetUser

iam:ListOpenIDConnectProviders

iam:ListRolePolicies

iam:ListRoles

iam:PutRolePolicy

iam:TagOpenIDConnectProvider

iam:TagRole

Required s3 permissions

s3:CreateBucket

s3:DeleteBucket

s3:DeleteObject

s3:GetBucketAcl

s3:GetBucketTagging

s3:GetObject

s3:GetObjectAcl

s3:GetObjectTagging

s3:ListBucket

s3:PutBucketAcl

s3:PutBucketPolicy

s3:PutBucketPublicAccessBlock

OpenShift Container Platform 4.19 Installing on AWS

54

s3:PutBucketTagging

s3:PutObject

s3:PutObjectAcl

s3:PutObjectTagging

Required cloudfront permissions

cloudfront:ListCloudFrontOriginAccessIdentities

cloudfront:ListDistributions

cloudfront:ListTagsForResource

If you plan to store the OIDC configuration in a private S3 bucket that is accessed by the IAM
identity provider through a public CloudFront distribution URL, the AWS account that runs the
ccoctl utility requires the following additional permissions:

cloudfront:CreateCloudFrontOriginAccessIdentity

cloudfront:CreateDistribution

cloudfront:DeleteCloudFrontOriginAccessIdentity

cloudfront:DeleteDistribution

cloudfront:GetCloudFrontOriginAccessIdentity

cloudfront:GetCloudFrontOriginAccessIdentityConfig

cloudfront:GetDistribution

cloudfront:TagResource

cloudfront:UpdateDistribution

NOTE

These additional permissions support the use of the --create-private-s3-bucket
option when processing credentials requests with the ccoctl aws create-all
command.

Procedure

1. Set a variable for the OpenShift Container Platform release image by running the following
command:

2. Obtain the CCO container image from the OpenShift Container Platform release image by
running the following command:

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

55

1

NOTE

Ensure that the architecture of the $RELEASE_IMAGE matches the
architecture of the environment in which you will use the ccoctl tool.

3. Extract the ccoctl binary from the CCO container image within the OpenShift Container
Platform release image by running the following command:

For <rhel_version>, specify the value that corresponds to the version of Red Hat
Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by
default. The following values are valid:

rhel8: Specify this value for hosts that use RHEL 8.

rhel9: Specify this value for hosts that use RHEL 9.

NOTE

The ccoctl binary is created in the directory from where you executed the
command and not in /usr/bin/. You must rename the directory or move the
ccoctl.<rhel_version> binary to ccoctl.

4. Change the permissions to make ccoctl executable by running the following command:

Verification

To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run
the command, for example:

Example output

$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator'
$RELEASE_IMAGE -a ~/.pull-secret)

$ oc image extract $CCO_IMAGE \
 --file="/usr/bin/ccoctl.<rhel_version>" \ 1
 -a ~/.pull-secret

$ chmod 775 ccoctl

$./ccoctl

OpenShift credentials provisioning tool

Usage:
 ccoctl [command]

Available Commands:
 aws Manage credentials objects for AWS cloud
 azure Manage credentials objects for Azure

OpenShift Container Platform 4.19 Installing on AWS

56

3.3.4.2.2. Creating AWS resources with the Cloud Credential Operator utility

You have the following options when creating AWS resources:

You can use the ccoctl aws create-all command to create the AWS resources automatically.
This is the quickest way to create the resources. See Creating AWS resources with a single
command.

If you need to review the JSON files that the ccoctl tool creates before modifying AWS
resources, or if the process the ccoctl tool uses to create AWS resources automatically does
not meet the requirements of your organization, you can create the AWS resources individually.
See Creating AWS resources individually .

3.3.4.2.2.1. Creating AWS resources with a single command

If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of
your organization, you can use the ccoctl aws create-all command to automate the creation of AWS
resources.

Otherwise, you can create the AWS resources individually. For more information, see "Creating AWS
resources individually".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

Extracted and prepared the ccoctl binary.

Procedure

1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release
image by running the following command:

 gcp Manage credentials objects for Google cloud
 help Help about any command
 ibmcloud Manage credentials objects for {ibm-cloud-title}
 nutanix Manage credentials objects for Nutanix

Flags:
 -h, --help help for ccoctl

Use "ccoctl [command] --help" for more information about a command.

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

57

1

2

3

1

2

3

4

5

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

NOTE

This command might take a few moments to run.

3. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

Specify the name used to tag any cloud resources that are created for tracking.

Specify the AWS region in which cloud resources will be created.

Specify the directory containing the files for the component CredentialsRequest objects.

Optional: Specify the directory in which you want the ccoctl utility to create objects. By
default, the utility creates objects in the directory in which the commands are run.

Optional: By default, the ccoctl utility stores the OpenID Connect (OIDC) configuration
files in a public S3 bucket and uses the S3 URL as the public OIDC endpoint. To store the
OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider
through a public CloudFront distribution URL instead, use the --create-private-s3-bucket
parameter.

NOTE

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

Verification

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

$ ccoctl aws create-all \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --credentials-requests-dir=<path_to_credentials_requests_directory> \ 3
 --output-dir=<path_to_ccoctl_output_dir> \ 4
 --create-private-s3-bucket 5

OpenShift Container Platform 4.19 Installing on AWS

58

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.3.4.2.2.2. Creating AWS resources individually

You can use the ccoctl tool to create AWS resources individually. This option might be useful for an
organization that shares the responsibility for creating these resources among different users or
departments.

Otherwise, you can use the ccoctl aws create-all command to create the AWS resources automatically.
For more information, see "Creating AWS resources with a single command".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Some ccoctl commands make AWS API calls to create or modify AWS resources. You
can use the --dry-run flag to avoid making API calls. Using this flag creates JSON files on
the local file system instead. You can review and modify the JSON files and then apply
them with the AWS CLI tool using the --cli-input-json parameters.

Prerequisites

Extract and prepare the ccoctl binary.

Procedure

1. Generate the public and private RSA key files that are used to set up the OpenID Connect
provider for the cluster by running the following command:

Example output

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

$ ccoctl aws create-key-pair

2021/04/13 11:01:02 Generating RSA keypair

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

59

1

2

3

where serviceaccount-signer.private and serviceaccount-signer.public are the generated
key files.

This command also creates a private key that the cluster requires during installation in
/<path_to_ccoctl_output_dir>/tls/bound-service-account-signing-key.key.

2. Create an OpenID Connect identity provider and S3 bucket on AWS by running the following
command:

<name> is the name used to tag any cloud resources that are created for tracking.

<aws-region> is the AWS region in which cloud resources will be created.

<path_to_ccoctl_output_dir> is the path to the public key file that the ccoctl aws
create-key-pair command generated.

Example output

where openid-configuration is a discovery document and keys.json is a JSON web key set file.

This command also creates a YAML configuration file in
/<path_to_ccoctl_output_dir>/manifests/cluster-authentication-02-config.yaml. This file
sets the issuer URL field for the service account tokens that the cluster generates, so that the
AWS IAM identity provider trusts the tokens.

3. Create IAM roles for each component in the cluster:

a. Set a $RELEASE_IMAGE variable with the release image from your installation file by
running the following command:

b. Extract the list of CredentialsRequest objects from the OpenShift Container Platform

2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.private
2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.public
2021/04/13 11:01:03 Copying signing key for use by installer

$ ccoctl aws create-identity-provider \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public 3

2021/04/13 11:16:09 Bucket <name>-oidc created
2021/04/13 11:16:10 OpenID Connect discovery document in the S3 bucket <name>-oidc at
.well-known/openid-configuration updated
2021/04/13 11:16:10 Reading public key
2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json
updated
2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::
<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

OpenShift Container Platform 4.19 Installing on AWS

60

1

2

3

b. Extract the list of CredentialsRequest objects from the OpenShift Container Platform
release image:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

c. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

NOTE

For AWS environments that use alternative IAM API endpoints, such as
GovCloud, you must also specify your region with the --region parameter.

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

For each CredentialsRequest object, ccoctl creates an IAM role with a trust policy that is
tied to the specified OIDC identity provider, and a permissions policy as defined in each
CredentialsRequest object from the OpenShift Container Platform release image.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \
2

 --to=<path_to_directory_for_credentials_requests> 3

$ ccoctl aws create-iam-roles \
 --name=<name> \
 --region=<aws_region> \
 --credentials-requests-dir=<path_to_credentials_requests_directory> \
 --identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.
<aws_region>.amazonaws.com

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

61

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.3.4.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components,
you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the
correct directories for the installation program.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have configured the Cloud Credential Operator utility (ccoctl).

You have created the cloud provider resources that are required for your cluster with the ccoctl
utility.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Copy the manifests that the ccoctl utility generated to the manifests directory that the
installation program created by running the following command:

4. Copy the tls directory that contains the private key to the installation directory:

openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/

$ cp -a /<path_to_ccoctl_output_dir>/tls .

OpenShift Container Platform 4.19 Installing on AWS

62

1

2

3.3.5. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

IMPORTANT

You can run the create cluster command of the installation program only once, during
initial installation.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

You have verified that the cloud provider account on your host has the correct permissions to
deploy the cluster. An account with incorrect permissions causes the installation process to fail
with an error message that displays the missing permissions.

Procedure

1. In the directory that contains the installation program, initialize the cluster deployment by
running the following command:

For <installation_directory>, specify the location of your customized ./install-
config.yaml file.

To view different installation details, specify warn, debug, or error instead of info.

2. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you
used to install the cluster.

NOTE

The elevated permissions provided by the AdministratorAccess policy are
required only during installation.

Verification

When the cluster deployment completes successfully:

The terminal displays directions for accessing your cluster, including a link to the web console
and credentials for the kubeadmin user.

Credential information also outputs to <installation_directory>/.openshift_install.log.

IMPORTANT

$./openshift-install create cluster --dir <installation_directory> \ 1
 --log-level=info 2

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

63

1

IMPORTANT

Do not delete the installation program or the files that the installation program creates.
Both are required to delete the cluster.

Example output

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

3.3.6. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

Procedure

1. Export the kubeadmin credentials by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

OpenShift Container Platform 4.19 Installing on AWS

64

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

Example output

3.3.7. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in
to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

You have access to the installation host.

You completed a cluster installation and all cluster Operators are available.

Procedure

1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the
installation host:

NOTE

Alternatively, you can obtain the kubeadmin password from the
<installation_directory>/.openshift_install.log log file on the installation host.

2. List the OpenShift Container Platform web console route:

NOTE

Alternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log log file on the installation host.

Example output

3. Navigate to the route detailed in the output of the preceding command in a web browser and
log in as the kubeadmin user.

Additional resources

$ oc whoami

system:admin

$ cat <installation_directory>/auth/kubeadmin-password

$ oc get routes -n openshift-console | grep 'console-openshift'

console console-openshift-console.apps.<cluster_name>.<base_domain> console
https reencrypt/Redirect None

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

65

Accessing the web console

3.3.8. Next steps

Validating an installation.

Customize your cluster.

If necessary, you can Remote health reporting .

If necessary, you can remove cloud provider credentials .

3.4. INSTALLING A CLUSTER ON AWS WITH NETWORK
CUSTOMIZATIONS

In OpenShift Container Platform version 4.19, you can install a cluster on Amazon Web Services (AWS)
with customized network configuration options. By customizing your network configuration, your cluster
can coexist with existing IP address allocations in your environment and integrate with existing MTU and
VXLAN configurations.

You must set most of the network configuration parameters during installation, and you can modify only
kubeProxy configuration parameters in a running cluster.

3.4.1. Prerequisites

You reviewed details about the OpenShift Container Platform installation and update
processes.

You read the documentation on selecting a cluster installation method and preparing it for
users.

You configured an AWS account to host the cluster.

IMPORTANT

If you have an AWS profile stored on your computer, it must not use a temporary
session token that you generated while using a multi-factor authentication
device. The cluster continues to use your current AWS credentials to create AWS
resources for the entire life of the cluster, so you must use key-based, long-term
credentials. To generate appropriate keys, see Managing Access Keys for IAM
Users in the AWS documentation. You can supply the keys when you run the
installation program.

If you use a firewall, you configured it to allow the sites that your cluster requires access to.

3.4.2. Network configuration phases

There are two phases prior to OpenShift Container Platform installation where you can customize the
network configuration.

Phase 1

You can customize the following network-related fields in the install-config.yaml file before you
create the manifest files:

OpenShift Container Platform 4.19 Installing on AWS

66

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#available_cluster_customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#manually-removing-cloud-creds_changing-cloud-credentials-configuration
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall

networking.networkType

networking.clusterNetwork

networking.serviceNetwork

networking.machineNetwork

nodeNetworking
For more information, see "Installation configuration parameters".

NOTE

Set the networking.machineNetwork to match the Classless Inter-Domain
Routing (CIDR) where the preferred subnet is located.

IMPORTANT

The CIDR range 172.17.0.0/16 is reserved by libVirt. You cannot use any
other CIDR range that overlaps with the 172.17.0.0/16 CIDR range for
networks in your cluster.

Phase 2

After creating the manifest files by running openshift-install create manifests, you can define a
customized Cluster Network Operator manifest with only the fields you want to modify. You can use
the manifest to specify an advanced network configuration.

During phase 2, you cannot override the values that you specified in phase 1 in the install-config.yaml
file. However, you can customize the network plugin during phase 2.

3.4.3. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Amazon Web Services
(AWS).

Prerequisites

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

Procedure

1. Create the install-config.yaml file.

a. Change to the directory that contains the installation program and run the following
command:

<installation_directory>: For <installation_directory>, specify the directory name to
store the files that the installation program creates.
When specifying the directory:

Verify that the directory has the execute permission. This permission is required to run

$./openshift-install create install-config --dir <installation_directory>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

67

Verify that the directory has the execute permission. This permission is required to run
Terraform binaries under the installation directory.

Use an empty directory. Some installation assets, such as bootstrap X.509 certificates,
have short expiration intervals, therefore you must not reuse an installation directory. If
you want to reuse individual files from another cluster installation, you can copy them
into your directory. However, the file names for the installation assets might change
between releases. Use caution when copying installation files from an earlier OpenShift
Container Platform version.

b. At the prompts, provide the configuration details for your cloud:

i. Optional: Select an SSH key to use to access your cluster machines.

NOTE

For production OpenShift Container Platform clusters on which you want
to perform installation debugging or disaster recovery, specify an SSH
key that your ssh-agent process uses.

ii. Select AWS as the platform to target.

iii. If you do not have an Amazon Web Services (AWS) profile stored on your computer,
enter the AWS access key ID and secret access key for the user that you configured to
run the installation program.

iv. Select the AWS region to deploy the cluster to.

v. Select the base domain for the Route 53 service that you configured for your cluster.

vi. Enter a descriptive name for your cluster.

2. Modify the install-config.yaml file. You can find more information about the available
parameters in the "Installation configuration parameters" section.

3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

IMPORTANT

The install-config.yaml file is consumed during the installation process. If you
want to reuse the file, you must back it up now.

Additional resources

Installation configuration parameters for AWS

3.4.3.1. Minimum resource requirements for cluster installation

Each created cluster must meet minimum requirements so that the cluster runs as expected.

Table 3.2. Minimum resource requirements

OpenShift Container Platform 4.19 Installing on AWS

68

Machine Operating
System

vCPU [1] Virtual RAM Storage Input/Output
Per Second
(IOPS)[2]

Bootstrap RHCOS 4 16 GB 100 GB 300

Control plane RHCOS 4 16 GB 100 GB 300

Compute RHCOS, RHEL
8.6 and later
[3]

2 8 GB 100 GB 300

1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the
corresponding ratio: (threads per core × cores) × sockets = vCPUs.

2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster
storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms
p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so
you might need to over-allocate storage volume to obtain sufficient performance.

3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your
cluster, you take responsibility for all operating system life cycle management and maintenance,
including performing system updates, applying patches, and completing all other required tasks.
Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container
Platform 4.10 and later.

NOTE

For OpenShift Container Platform version 4.19, RHCOS is based on RHEL version 9.6,
which updates the micro-architecture requirements. The following list contains the
minimum instruction set architectures (ISA) that each architecture requires:

x86-64 architecture requires x86-64-v2 ISA

ARM64 architecture requires ARMv8.0-A ISA

IBM Power architecture requires Power 9 ISA

s390x architecture requires z14 ISA

For more information, see Architectures (RHEL documentation).

If an instance type for your platform meets the minimum requirements for cluster machines, it is
supported to use in OpenShift Container Platform.

Additional resources

Optimizing storage

3.4.3.2. Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

69

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.2_release_notes/index#architectures
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/scalability_and_performance/#optimizing-storage

The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container
Platform.

NOTE

Use the machine types included in the following charts for your AWS instances. If you use
an instance type that is not listed in the chart, ensure that the instance size you use
matches the minimum resource requirements that are listed in the section named
"Minimum resource requirements for cluster installation".

Example 3.3. Machine types based on 64-bit x86 architecture

c4.*

c5.*

c5a.*

i3.*

m4.*

m5.*

m5a.*

m6a.*

m6i.*

r4.*

r5.*

r5a.*

r6i.*

t3.*

t3a.*

3.4.3.3. Tested instance types for AWS on 64-bit ARM infrastructures

The following Amazon Web Services (AWS) 64-bit ARM instance types have been tested with
OpenShift Container Platform.

NOTE

Use the machine types included in the following charts for your AWS ARM instances. If
you use an instance type that is not listed in the chart, ensure that the instance size you
use matches the minimum resource requirements that are listed in "Minimum resource
requirements for cluster installation".

OpenShift Container Platform 4.19 Installing on AWS

70

Example 3.4. Machine types based on 64-bit ARM architecture

c6g.*

c7g.*

m6g.*

m7g.*

r8g.*

3.4.3.4. Sample customized install-config.yaml file for AWS

You can customize the installation configuration file (install-config.yaml) to specify more details about
your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

IMPORTANT

This sample YAML file is provided for reference only. You must obtain your install-
config.yaml file by using the installation program and modify it. For a full list and
description of all installation configuration parameters, see Installation configuration
parameters for AWS.

Sample install-config.yaml file for AWS

apiVersion: v1 1
baseDomain: example.com
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'
metadata:
 name: example-cluster
controlPlane: 2
 name: master
 platform:
 aws:
 type: m6i.xlarge
 replicas: 3
compute: 3
- name: worker
 platform:
 aws:
 type: c5.4xlarge
 replicas: 3
networking: 4
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
platform: 5
 aws:
 region: us-west-2

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

71

1

2

3

4

5

Parameters at the first level of indentation apply to the cluster globally.

The controlPlane stanza applies to control plane machines.

The compute stanza applies to compute machines.

The networking stanza applies to the cluster networking configuration. If you do not provide
networking values, the installation program provides default values.

The platform stanza applies to the infrastructure platform that hosts the cluster.

Additional resources

Installation configuration parameters for AWS

3.4.3.5. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud, Microsoft
Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.
<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com 3
additionalTrustBundle: | 4

OpenShift Container Platform 4.19 Installing on AWS

72

1

2

3

4

5

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC
endpoints to your VPC, you must add these endpoints to the noProxy field.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle config map that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the
trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

Optional: The policy to determine the configuration of the Proxy object to reference the
user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and
Always. Use Proxyonly to reference the user-ca-bundle config map only when
http/https proxy is configured. Use Always to always reference the user-ca-bundle
config map. The default value is Proxyonly.

NOTE

The installation program does not support the proxy readinessEndpoints field.

NOTE

If the installer times out, restart and then complete the deployment by using the
wait-for command of the installer. For example:

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5

$./openshift-install wait-for install-complete --log-level debug

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

73

3.4.4. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the
credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the
following alternatives:

To manage long-term cloud credentials manually, follow the procedure in Manually creating
long-term credentials.

To implement short-term credentials that are managed outside the cluster for individual
components, follow the procedures in Configuring an AWS cluster to use short-term
credentials.

3.4.4.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in
environments where the cloud identity and access management (IAM) APIs are not reachable, or the
administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container
Platform release image by running the following command:

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

OpenShift Container Platform 4.19 Installing on AWS

74

1

2

3

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

This command creates a YAML file for each CredentialsRequest object.

Sample CredentialsRequest object

5. Create YAML files for secrets in the openshift-install manifests directory that you generated
previously. The secrets must be stored using the namespace and secret name defined in the
spec.secretRef for each CredentialsRequest object.

Sample CredentialsRequest object with secrets

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - iam:GetUser
 - iam:GetUserPolicy
 - iam:ListAccessKeys
 resource: "*"
 ...

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - s3:CreateBucket
 - s3:DeleteBucket
 resource: "*"
 ...

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

75

Sample Secret object

IMPORTANT

Before upgrading a cluster that uses manually maintained credentials, you must ensure
that the CCO is in an upgradeable state.

3.4.4.2. Configuring an AWS cluster to use short-term credentials

To install a cluster that is configured to use the AWS Security Token Service (STS), you must configure
the CCO utility and create the required AWS resources for your cluster.

3.4.4.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential
Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

NOTE

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift CLI (oc).

You have created an AWS account for the ccoctl utility to use with the following permissions:
Required iam permissions

iam:CreateOpenIDConnectProvider

iam:CreateRole

iam:DeleteOpenIDConnectProvider

iam:DeleteRole

iam:DeleteRolePolicy

 secretRef:
 name: <component_secret>
 namespace: <component_namespace>
 ...

apiVersion: v1
kind: Secret
metadata:
 name: <component_secret>
 namespace: <component_namespace>
data:
 aws_access_key_id: <base64_encoded_aws_access_key_id>
 aws_secret_access_key: <base64_encoded_aws_secret_access_key>

OpenShift Container Platform 4.19 Installing on AWS

76

iam:GetOpenIDConnectProvider

iam:GetRole

iam:GetUser

iam:ListOpenIDConnectProviders

iam:ListRolePolicies

iam:ListRoles

iam:PutRolePolicy

iam:TagOpenIDConnectProvider

iam:TagRole

Required s3 permissions

s3:CreateBucket

s3:DeleteBucket

s3:DeleteObject

s3:GetBucketAcl

s3:GetBucketTagging

s3:GetObject

s3:GetObjectAcl

s3:GetObjectTagging

s3:ListBucket

s3:PutBucketAcl

s3:PutBucketPolicy

s3:PutBucketPublicAccessBlock

s3:PutBucketTagging

s3:PutObject

s3:PutObjectAcl

s3:PutObjectTagging

Required cloudfront permissions

cloudfront:ListCloudFrontOriginAccessIdentities

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

77

cloudfront:ListDistributions

cloudfront:ListTagsForResource

If you plan to store the OIDC configuration in a private S3 bucket that is accessed by the IAM
identity provider through a public CloudFront distribution URL, the AWS account that runs the
ccoctl utility requires the following additional permissions:

cloudfront:CreateCloudFrontOriginAccessIdentity

cloudfront:CreateDistribution

cloudfront:DeleteCloudFrontOriginAccessIdentity

cloudfront:DeleteDistribution

cloudfront:GetCloudFrontOriginAccessIdentity

cloudfront:GetCloudFrontOriginAccessIdentityConfig

cloudfront:GetDistribution

cloudfront:TagResource

cloudfront:UpdateDistribution

NOTE

These additional permissions support the use of the --create-private-s3-bucket
option when processing credentials requests with the ccoctl aws create-all
command.

Procedure

1. Set a variable for the OpenShift Container Platform release image by running the following
command:

2. Obtain the CCO container image from the OpenShift Container Platform release image by
running the following command:

NOTE

Ensure that the architecture of the $RELEASE_IMAGE matches the
architecture of the environment in which you will use the ccoctl tool.

3. Extract the ccoctl binary from the CCO container image within the OpenShift Container
Platform release image by running the following command:

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator'
$RELEASE_IMAGE -a ~/.pull-secret)

$ oc image extract $CCO_IMAGE \

OpenShift Container Platform 4.19 Installing on AWS

78

1 For <rhel_version>, specify the value that corresponds to the version of Red Hat
Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by
default. The following values are valid:

rhel8: Specify this value for hosts that use RHEL 8.

rhel9: Specify this value for hosts that use RHEL 9.

NOTE

The ccoctl binary is created in the directory from where you executed the
command and not in /usr/bin/. You must rename the directory or move the
ccoctl.<rhel_version> binary to ccoctl.

4. Change the permissions to make ccoctl executable by running the following command:

Verification

To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run
the command, for example:

Example output

3.4.4.2.2. Creating AWS resources with the Cloud Credential Operator utility

You have the following options when creating AWS resources:

 --file="/usr/bin/ccoctl.<rhel_version>" \ 1
 -a ~/.pull-secret

$ chmod 775 ccoctl

$./ccoctl

OpenShift credentials provisioning tool

Usage:
 ccoctl [command]

Available Commands:
 aws Manage credentials objects for AWS cloud
 azure Manage credentials objects for Azure
 gcp Manage credentials objects for Google cloud
 help Help about any command
 ibmcloud Manage credentials objects for {ibm-cloud-title}
 nutanix Manage credentials objects for Nutanix

Flags:
 -h, --help help for ccoctl

Use "ccoctl [command] --help" for more information about a command.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

79

1

2

3

You can use the ccoctl aws create-all command to create the AWS resources automatically.
This is the quickest way to create the resources. See Creating AWS resources with a single
command.

If you need to review the JSON files that the ccoctl tool creates before modifying AWS
resources, or if the process the ccoctl tool uses to create AWS resources automatically does
not meet the requirements of your organization, you can create the AWS resources individually.
See Creating AWS resources individually .

3.4.4.2.2.1. Creating AWS resources with a single command

If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of
your organization, you can use the ccoctl aws create-all command to automate the creation of AWS
resources.

Otherwise, you can create the AWS resources individually. For more information, see "Creating AWS
resources individually".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

Extracted and prepared the ccoctl binary.

Procedure

1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release
image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

OpenShift Container Platform 4.19 Installing on AWS

80

1

2

3

4

5

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

NOTE

This command might take a few moments to run.

3. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

Specify the name used to tag any cloud resources that are created for tracking.

Specify the AWS region in which cloud resources will be created.

Specify the directory containing the files for the component CredentialsRequest objects.

Optional: Specify the directory in which you want the ccoctl utility to create objects. By
default, the utility creates objects in the directory in which the commands are run.

Optional: By default, the ccoctl utility stores the OpenID Connect (OIDC) configuration
files in a public S3 bucket and uses the S3 URL as the public OIDC endpoint. To store the
OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider
through a public CloudFront distribution URL instead, use the --create-private-s3-bucket
parameter.

NOTE

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

$ ccoctl aws create-all \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --credentials-requests-dir=<path_to_credentials_requests_directory> \ 3
 --output-dir=<path_to_ccoctl_output_dir> \ 4
 --create-private-s3-bucket 5

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

81

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.4.4.2.2.2. Creating AWS resources individually

You can use the ccoctl tool to create AWS resources individually. This option might be useful for an
organization that shares the responsibility for creating these resources among different users or
departments.

Otherwise, you can use the ccoctl aws create-all command to create the AWS resources automatically.
For more information, see "Creating AWS resources with a single command".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Some ccoctl commands make AWS API calls to create or modify AWS resources. You
can use the --dry-run flag to avoid making API calls. Using this flag creates JSON files on
the local file system instead. You can review and modify the JSON files and then apply
them with the AWS CLI tool using the --cli-input-json parameters.

Prerequisites

Extract and prepare the ccoctl binary.

Procedure

1. Generate the public and private RSA key files that are used to set up the OpenID Connect
provider for the cluster by running the following command:

Example output

where serviceaccount-signer.private and serviceaccount-signer.public are the generated
key files.

This command also creates a private key that the cluster requires during installation in
/<path_to_ccoctl_output_dir>/tls/bound-service-account-signing-key.key.

openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

$ ccoctl aws create-key-pair

2021/04/13 11:01:02 Generating RSA keypair
2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.private
2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.public
2021/04/13 11:01:03 Copying signing key for use by installer

OpenShift Container Platform 4.19 Installing on AWS

82

1

2

3

1

2. Create an OpenID Connect identity provider and S3 bucket on AWS by running the following
command:

<name> is the name used to tag any cloud resources that are created for tracking.

<aws-region> is the AWS region in which cloud resources will be created.

<path_to_ccoctl_output_dir> is the path to the public key file that the ccoctl aws
create-key-pair command generated.

Example output

where openid-configuration is a discovery document and keys.json is a JSON web key set file.

This command also creates a YAML configuration file in
/<path_to_ccoctl_output_dir>/manifests/cluster-authentication-02-config.yaml. This file
sets the issuer URL field for the service account tokens that the cluster generates, so that the
AWS IAM identity provider trusts the tokens.

3. Create IAM roles for each component in the cluster:

a. Set a $RELEASE_IMAGE variable with the release image from your installation file by
running the following command:

b. Extract the list of CredentialsRequest objects from the OpenShift Container Platform
release image:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

$ ccoctl aws create-identity-provider \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public 3

2021/04/13 11:16:09 Bucket <name>-oidc created
2021/04/13 11:16:10 OpenID Connect discovery document in the S3 bucket <name>-oidc at
.well-known/openid-configuration updated
2021/04/13 11:16:10 Reading public key
2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json
updated
2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::
<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \
2

 --to=<path_to_directory_for_credentials_requests> 3

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

83

2

3

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

c. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

NOTE

For AWS environments that use alternative IAM API endpoints, such as
GovCloud, you must also specify your region with the --region parameter.

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

For each CredentialsRequest object, ccoctl creates an IAM role with a trust policy that is
tied to the specified OIDC identity provider, and a permissions policy as defined in each
CredentialsRequest object from the OpenShift Container Platform release image.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.4.4.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components,

$ ccoctl aws create-iam-roles \
 --name=<name> \
 --region=<aws_region> \
 --credentials-requests-dir=<path_to_credentials_requests_directory> \
 --identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.
<aws_region>.amazonaws.com

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

OpenShift Container Platform 4.19 Installing on AWS

84

To implement short-term security credentials managed outside the cluster for individual components,
you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the
correct directories for the installation program.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have configured the Cloud Credential Operator utility (ccoctl).

You have created the cloud provider resources that are required for your cluster with the ccoctl
utility.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Copy the manifests that the ccoctl utility generated to the manifests directory that the
installation program created by running the following command:

4. Copy the tls directory that contains the private key to the installation directory:

3.4.5. Cluster Network Operator configuration

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO)
configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the
fields for the Network API in the operator.openshift.io API group.

The CNO configuration inherits the following fields during cluster installation from the Network API in
the Network.config.openshift.io API group:

clusterNetwork

IP address pools from which pod IP addresses are allocated.

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/

$ cp -a /<path_to_ccoctl_output_dir>/tls .

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

85

serviceNetwork

IP address pool for services.

defaultNetwork.type

Cluster network plugin. OVNKubernetes is the only supported plugin during installation.

You can specify the cluster network plugin configuration for your cluster by setting the fields for the
defaultNetwork object in the CNO object named cluster.

3.4.5.1. Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 3.3. Cluster Network Operator configuration object

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.

spec.clusterNet
work

array A list specifying the blocks of IP addresses from which pod IP
addresses are allocated and the subnet prefix length assigned to
each individual node in the cluster. For example:

spec.serviceNet
work

array A block of IP addresses for services. The OVN-Kubernetes
network plugin supports only a single IP address block for the
service network. For example:

You can customize this field only in the install-config.yaml file
before you create the manifests. The value is read-only in the
manifest file.

spec.defaultNet
work

object Configures the network plugin for the cluster network.

spec:
 clusterNetwork:
 - cidr: 10.128.0.0/19
 hostPrefix: 23
 - cidr: 10.128.32.0/19
 hostPrefix: 23

spec:
 serviceNetwork:
 - 172.30.0.0/14

OpenShift Container Platform 4.19 Installing on AWS

86

spec.additional
RoutingCapabili
ties.providers

array This setting enables a dynamic routing provider. The FRR routing
capability provider is required for the route advertisement
feature. The only supported value is FRR.

FRR: The FRR routing provider

Field Type Description

IMPORTANT

For a cluster that needs to deploy objects across multiple networks, ensure that you
specify the same value for the clusterNetwork.hostPrefix parameter for each network
type that is defined in the install-config.yaml file. Setting a different value for each
clusterNetwork.hostPrefix parameter can impact the OVN-Kubernetes network plugin,
where the plugin cannot effectively route object traffic among different nodes.

3.4.5.1.1. defaultNetwork object configuration

The values for the defaultNetwork object are defined in the following table:

Table 3.4. defaultNetwork object

Field Type Description

type string OVNKubernetes. The Red Hat OpenShift
Networking network plugin is selected during
installation. This value cannot be changed after
cluster installation.

NOTE

OpenShift Container Platform uses
the OVN-Kubernetes network plugin
by default.

ovnKubernetesConfig object This object is only valid for the OVN-Kubernetes
network plugin.

3.4.5.1.1.1. Configuration for the OVN-Kubernetes network plugin

The following table describes the configuration fields for the OVN-Kubernetes network plugin:

Table 3.5. ovnKubernetesConfig object

spec:
 additionalRoutingCapabilities:
 providers:
 - FRR

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

87

Field Type Description

mtu integer The maximum transmission unit (MTU) for the Geneve (Generic
Network Virtualization Encapsulation) overlay network. This is
detected automatically based on the MTU of the primary
network interface. You do not normally need to override the
detected MTU.

If the auto-detected value is not what you expect it to be,
confirm that the MTU on the primary network interface on your
nodes is correct. You cannot use this option to change the MTU
value of the primary network interface on the nodes.

If your cluster requires different MTU values for different nodes,
you must set this value to 100 less than the lowest MTU value in
your cluster. For example, if some nodes in your cluster have an
MTU of 9001, and some have an MTU of 1500, you must set this
value to 1400.

genevePort integer The port to use for all Geneve packets. The default value is
6081. This value cannot be changed after cluster installation.

ipsecConfig object Specify a configuration object for customizing the IPsec
configuration.

ipv4 object Specifies a configuration object for IPv4 settings.

ipv6 object Specifies a configuration object for IPv6 settings.

policyAuditConf
ig

object Specify a configuration object for customizing network policy
audit logging. If unset, the defaults audit log settings are used.

routeAdvertise
ments

string Specifies whether to advertise cluster network routes. The
default value is Disabled.

Enabled: Import routes to the cluster network and
advertise cluster network routes as configured in
RouteAdvertisements objects.

Disabled: Do not import routes to the cluster network
or advertise cluster network routes.

OpenShift Container Platform 4.19 Installing on AWS

88

gatewayConfig object Optional: Specify a configuration object for customizing how
egress traffic is sent to the node gateway. Valid values are
Shared and Local. The default value is Shared. In the default
setting, the Open vSwitch (OVS) outputs traffic directly to the
node IP interface. In the Local setting, it traverses the host
network; consequently, it gets applied to the routing table of the
host.

NOTE

While migrating egress traffic, you can expect
some disruption to workloads and service traffic
until the Cluster Network Operator (CNO)
successfully rolls out the changes.

Field Type Description

Table 3.6. ovnKubernetesConfig.ipv4 object

Field Type Description

internalTransitS
witchSubnet

string If your existing network infrastructure overlaps with the
100.88.0.0/16 IPv4 subnet, you can specify a different IP
address range for internal use by OVN-Kubernetes. The subnet
for the distributed transit switch that enables east-west traffic.
This subnet cannot overlap with any other subnets used by
OVN-Kubernetes or on the host itself. It must be large enough
to accommodate one IP address per node in your cluster.

The default value is 100.88.0.0/16.

internalJoinSub
net

string If your existing network infrastructure overlaps with the
100.64.0.0/16 IPv4 subnet, you can specify a different IP
address range for internal use by OVN-Kubernetes. You must
ensure that the IP address range does not overlap with any other
subnet used by your OpenShift Container Platform installation.
The IP address range must be larger than the maximum number
of nodes that can be added to the cluster. For example, if the
clusterNetwork.cidr value is 10.128.0.0/14 and the
clusterNetwork.hostPrefix value is /23, then the maximum
number of nodes is 2^(23-14)=512.

The default value is 100.64.0.0/16.

Table 3.7. ovnKubernetesConfig.ipv6 object

Field Type Description

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

89

internalTransitS
witchSubnet

string If your existing network infrastructure overlaps with the
fd97::/64 IPv6 subnet, you can specify a different IP address
range for internal use by OVN-Kubernetes. The subnet for the
distributed transit switch that enables east-west traffic. This
subnet cannot overlap with any other subnets used by OVN-
Kubernetes or on the host itself. It must be large enough to
accommodate one IP address per node in your cluster.

The default value is fd97::/64.

internalJoinSub
net

string If your existing network infrastructure overlaps with the
fd98::/64 IPv6 subnet, you can specify a different IP address
range for internal use by OVN-Kubernetes. You must ensure
that the IP address range does not overlap with any other subnet
used by your OpenShift Container Platform installation. The IP
address range must be larger than the maximum number of
nodes that can be added to the cluster.

The default value is fd98::/64.

Field Type Description

Table 3.8. policyAuditConfig object

Field Type Description

rateLimit integer The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

maxFileSize integer The maximum size for the audit log in bytes. The default value is
50000000 or 50 MB.

maxLogFiles integer The maximum number of log files that are retained.

destination string One of the following additional audit log targets:

libc
The libc syslog() function of the journald process on the
host.

udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>
A Unix Domain Socket file specified by <file>.

null
Do not send the audit logs to any additional target.

syslogFacility string The syslog facility, such as kern, as defined by RFC5424. The
default value is local0.

OpenShift Container Platform 4.19 Installing on AWS

90

Table 3.9. gatewayConfig object

Field Type Description

routingViaHost boolean Set this field to true to send egress traffic from pods to the
host networking stack. For highly-specialized installations and
applications that rely on manually configured routes in the
kernel routing table, you might want to route egress traffic to
the host networking stack. By default, egress traffic is processed
in OVN to exit the cluster and is not affected by specialized
routes in the kernel routing table. The default value is false.

This field has an interaction with the Open vSwitch hardware
offloading feature. If you set this field to true, you do not
receive the performance benefits of the offloading because
egress traffic is processed by the host networking stack.

ipForwarding object You can control IP forwarding for all traffic on OVN-Kubernetes
managed interfaces by using the ipForwarding specification in
the Network resource. Specify Restricted to only allow IP
forwarding for Kubernetes related traffic. Specify Global to
allow forwarding of all IP traffic. For new installations, the default
is Restricted. For updates to OpenShift Container Platform
4.14 or later, the default is Global.

NOTE

The default value of Restricted sets the IP
forwarding to drop.

ipv4 object Optional: Specify an object to configure the internal OVN-
Kubernetes masquerade address for host to service traffic for
IPv4 addresses.

ipv6 object Optional: Specify an object to configure the internal OVN-
Kubernetes masquerade address for host to service traffic for
IPv6 addresses.

Table 3.10. gatewayConfig.ipv4 object

Field Type Description

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

91

internalMasquer
adeSubnet

string The masquerade IPv4 addresses that are used internally to
enable host to service traffic. The host is configured with these
IP addresses as well as the shared gateway bridge interface. The
default value is 169.254.169.0/29.

IMPORTANT

For OpenShift Container Platform 4.17 and later
versions, clusters use 169.254.0.0/17 as the
default masquerade subnet. For upgraded
clusters, there is no change to the default
masquerade subnet.

Field Type Description

Table 3.11. gatewayConfig.ipv6 object

Field Type Description

internalMasquer
adeSubnet

string The masquerade IPv6 addresses that are used internally to
enable host to service traffic. The host is configured with these
IP addresses as well as the shared gateway bridge interface. The
default value is fd69::/125.

IMPORTANT

For OpenShift Container Platform 4.17 and later
versions, clusters use fd69::/112 as the default
masquerade subnet. For upgraded clusters,
there is no change to the default masquerade
subnet.

Table 3.12. ipsecConfig object

Field Type Description

mode string Specifies the behavior of the IPsec implementation. Must be
one of the following values:

Disabled: IPsec is not enabled on cluster nodes.

External: IPsec is enabled for network traffic with
external hosts.

Full: IPsec is enabled for pod traffic and network
traffic with external hosts.

OpenShift Container Platform 4.19 Installing on AWS

92

1

Example OVN-Kubernetes configuration with IPSec enabled

3.4.6. Specifying advanced network configuration

You can use advanced network configuration for your network plugin to integrate your cluster into your
existing network environment.

You can specify advanced network configuration only before you install the cluster.

IMPORTANT

Customizing your network configuration by modifying the OpenShift Container Platform
manifest files created by the installation program is not supported. Applying a manifest
file that you create, as in the following procedure, is supported.

Prerequisites

You have created the install-config.yaml file and completed any modifications to it.

Procedure

1. Change to the directory that contains the installation program and create the manifests:

<installation_directory> specifies the name of the directory that contains the install-
config.yaml file for your cluster.

2. Create a stub manifest file for the advanced network configuration that is named cluster-
network-03-config.yml in the <installation_directory>/manifests/ directory:

3. Specify the advanced network configuration for your cluster in the cluster-network-03-
config.yml file, such as in the following example:

Enable IPsec for the OVN-Kubernetes network provider

defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 mtu: 1400
 genevePort: 6081
 ipsecConfig:
 mode: Full

$./openshift-install create manifests --dir <installation_directory> 1

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:

apiVersion: operator.openshift.io/v1
kind: Network

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

93

4. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program
consumes the manifests/ directory when you create the Ignition config files.

5. Remove the Kubernetes manifest files that define the control plane machines and compute
MachineSets:

Because you create and manage these resources yourself, you do not have to initialize them.

You can preserve the MachineSet files to create compute machines by using the machine
API, but you must update references to them to match your environment.

NOTE

For more information on using a Network Load Balancer (NLB) on AWS, see Configuring
Ingress cluster traffic on AWS using a Network Load Balancer.

3.4.7. Configuring an Ingress Controller Network Load Balancer on a new AWS
cluster

You can create an Ingress Controller backed by an Amazon Web Services Network Load Balancer (NLB)
on a new cluster in situations where you need more transparent networking capabilities.

Prerequisites

Create and edit the install-config.yaml file. For instructions, see "Creating the installation
configuration file" in the Additonal resources section.

Procedure

1. Change to the directory that contains the installation program and create the manifests:

For <installation_directory>, specify the name of the directory that contains the install-
config.yaml file for your cluster.

2. Create a file that is named cluster-ingress-default-ingresscontroller.yaml in the
<installation_directory>/manifests/ directory:

<installation_directory>

metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 ipsecConfig:
 mode: Full

$ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-
cluster-api_worker-machineset-*.yaml

$./openshift-install create manifests --dir <installation_directory>

$ touch <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml

OpenShift Container Platform 4.19 Installing on AWS

94

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ingress_and_load_balancing/#nw-configuring-ingress-cluster-traffic-aws-network-load-balancer_configuring-ingress-cluster-traffic-aws

Specifies the directory name that contains the manifests/ directory for your cluster.

3. Check the several network configuration files that exist in the manifests/ directory by entering
the following command:

Example output

4. Open the cluster-ingress-default-ingresscontroller.yaml file in an editor and enter a custom
resource (CR) that describes the Operator configuration you want:

5. Save the cluster-ingress-default-ingresscontroller.yaml file and quit the text editor.

6. Optional: Back up the manifests/cluster-ingress-default-ingresscontroller.yaml file because
the installation program deletes the manifests/ directory during cluster creation.

3.4.8. Configuring hybrid networking with OVN-Kubernetes

You can configure your cluster to use hybrid networking with the OVN-Kubernetes network plugin. This
allows a hybrid cluster that supports different node networking configurations.

NOTE

This configuration is necessary to run both Linux and Windows nodes in the same cluster.

Prerequisites

You defined OVNKubernetes for the networking.networkType parameter in the install-
config.yaml file. See the installation documentation for configuring OpenShift Container
Platform network customizations on your chosen cloud provider for more information.

Procedure

1. Change to the directory that contains the installation program and create the manifests:

$ ls <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml

cluster-ingress-default-ingresscontroller.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

95

1

2

where:

<installation_directory>

Specifies the name of the directory that contains the install-config.yaml file for your
cluster.

2. Create a stub manifest file for the advanced network configuration that is named cluster-
network-03-config.yml in the <installation_directory>/manifests/ directory:

where:

<installation_directory>

Specifies the directory name that contains the manifests/ directory for your cluster.

3. Open the cluster-network-03-config.yml file in an editor and configure OVN-Kubernetes with
hybrid networking, as in the following example:

Specify a hybrid networking configuration

Specify the CIDR configuration used for nodes on the additional overlay network. The
hybridClusterNetwork CIDR must not overlap with the clusterNetwork CIDR.

Specify a custom VXLAN port for the additional overlay network. This is required for
running Windows nodes in a cluster installed on vSphere, and must not be configured for
any other cloud provider. The custom port can be any open port excluding the default 6081
port. For more information on this requirement, see Pod-to-pod connectivity between
hosts is broken in the Microsoft documentation.

NOTE

$./openshift-install create manifests --dir <installation_directory>

$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
EOF

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 hybridOverlayConfig:
 hybridClusterNetwork: 1
 - cidr: 10.132.0.0/14
 hostPrefix: 23
 hybridOverlayVXLANPort: 9898 2

OpenShift Container Platform 4.19 Installing on AWS

96

https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/common-problems#pod-to-pod-connectivity-between-hosts-is-broken-on-my-kubernetes-cluster-running-on-vsphere

1

2

NOTE

Windows Server Long-Term Servicing Channel (LTSC): Windows Server
2019 is not supported on clusters with a custom hybridOverlayVXLANPort
value because this Windows server version does not support selecting a
custom VXLAN port.

4. Save the cluster-network-03-config.yml file and quit the text editor.

5. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program
deletes the manifests/ directory when creating the cluster.

NOTE

For more information about using Linux and Windows nodes in the same cluster, see
Understanding Windows container workloads .

3.4.9. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

IMPORTANT

You can run the create cluster command of the installation program only once, during
initial installation.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

You have verified that the cloud provider account on your host has the correct permissions to
deploy the cluster. An account with incorrect permissions causes the installation process to fail
with an error message that displays the missing permissions.

Procedure

1. In the directory that contains the installation program, initialize the cluster deployment by
running the following command:

For <installation_directory>, specify the location of your customized ./install-
config.yaml file.

To view different installation details, specify warn, debug, or error instead of info.

2. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you
used to install the cluster.

$./openshift-install create cluster --dir <installation_directory> \ 1
 --log-level=info 2

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

97

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/windows_container_support_for_openshift/#understanding-windows-container-workloads

NOTE

The elevated permissions provided by the AdministratorAccess policy are
required only during installation.

Verification

When the cluster deployment completes successfully:

The terminal displays directions for accessing your cluster, including a link to the web console
and credentials for the kubeadmin user.

Credential information also outputs to <installation_directory>/.openshift_install.log.

IMPORTANT

Do not delete the installation program or the files that the installation program creates.
Both are required to delete the cluster.

Example output

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

3.4.10. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

OpenShift Container Platform 4.19 Installing on AWS

98

1

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

Procedure

1. Export the kubeadmin credentials by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

Example output

3.4.11. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in
to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

You have access to the installation host.

You completed a cluster installation and all cluster Operators are available.

Procedure

1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the
installation host:

NOTE

Alternatively, you can obtain the kubeadmin password from the
<installation_directory>/.openshift_install.log log file on the installation host.

2. List the OpenShift Container Platform web console route:

NOTE

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

$ oc whoami

system:admin

$ cat <installation_directory>/auth/kubeadmin-password

$ oc get routes -n openshift-console | grep 'console-openshift'

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

99

NOTE

Alternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log log file on the installation host.

Example output

3. Navigate to the route detailed in the output of the preceding command in a web browser and
log in as the kubeadmin user.

Additional resources

See Accessing the web console for more details about accessing and understanding the
OpenShift Container Platform web console.

3.4.12. Next steps

Validating an installation.

Customize your cluster.

If necessary, you can Remote health reporting .

If necessary, you can remove cloud provider credentials .

3.5. INSTALLING A CLUSTER ON AWS IN A DISCONNECTED
ENVIRONMENT

In OpenShift Container Platform version 4.19, you can install a cluster on Amazon Web Services (AWS) in
a restricted network by creating an internal mirror of the installation release content on an existing
Amazon Virtual Private Cloud (VPC).

3.5.1. Prerequisites

You reviewed details about the OpenShift Container Platform installation and update
processes.

You read the documentation on selecting a cluster installation method and preparing it for
users.

You mirrored the images for a disconnected installation to your registry and obtained the
imageContentSources data for your version of OpenShift Container Platform.

IMPORTANT

Because the installation media is on the mirror host, you can use that computer
to complete all installation steps.

You have an existing VPC in AWS. When installing to a restricted network using installer-

console console-openshift-console.apps.<cluster_name>.<base_domain> console
https reencrypt/Redirect None

OpenShift Container Platform 4.19 Installing on AWS

100

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#available_cluster_customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#manually-removing-cloud-creds_changing-cloud-credentials-configuration
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#installation-about-mirror-registry_installing-mirroring-installation-images

You have an existing VPC in AWS. When installing to a restricted network using installer-
provisioned infrastructure, you cannot use the installer-provisioned VPC. You must use a user-
provisioned VPC that satisfies one of the following requirements:

Contains the mirror registry

Has firewall rules or a peering connection to access the mirror registry hosted elsewhere

You configured an AWS account to host the cluster.

IMPORTANT

If you have an AWS profile stored on your computer, it must not use a temporary
session token that you generated while using a multi-factor authentication
device. The cluster continues to use your current AWS credentials to create AWS
resources for the entire life of the cluster, so you must use key-based, long-term
credentials. To generate appropriate keys, see Managing Access Keys for IAM
Users in the AWS documentation. You can supply the keys when you run the
installation program.

You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using
the Bundled Installer (Linux, macOS, or UNIX) in the AWS documentation.

If you use a firewall and plan to use the Telemetry service, you configured the firewall to allow
the sites that your cluster requires access to.

NOTE

If you are configuring a proxy, be sure to also review this site list.

3.5.2. About installations in restricted networks

In OpenShift Container Platform 4.19, you can perform an installation that does not require an active
connection to the internet to obtain software components. Restricted network installations can be
completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on
the cloud platform to which you are installing the cluster.

If you choose to perform a restricted network installation on a cloud platform, you still require access to
its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require
internet access. Depending on your network, you might require less internet access for an installation on
bare metal hardware, Nutanix, or on VMware vSphere.

To complete a restricted network installation, you must create a registry that mirrors the contents of the
OpenShift image registry and contains the installation media. You can create this registry on a mirror
host, which can access both the internet and your closed network, or by using other methods that meet
your restrictions.

3.5.2.1. Additional limits

Clusters in restricted networks have the following additional limitations and restrictions:

The ClusterVersion status includes an Unable to retrieve available updates error.

By default, you cannot use the contents of the Developer Catalog because you cannot access
the required image stream tags.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

101

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/cli/latest/userguide/install-bundle.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall

3.5.3. About using a custom VPC

In OpenShift Container Platform 4.19, you can deploy a cluster into existing subnets in an existing
Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OpenShift
Container Platform into an existing AWS VPC, you might be able to avoid limit constraints in new
accounts or more easily abide by the operational constraints that your company’s guidelines set. If you
cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use
this installation option.

Because the installation program cannot know what other components are also in your existing subnets,
it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the
subnets that you install your cluster to yourself.

3.5.3.1. Requirements for using your VPC

The installation program no longer creates the following components:

Internet gateways

NAT gateways

Subnets

Route tables

VPCs

VPC DHCP options

VPC endpoints

NOTE

The installation program requires that you use the cloud-provided DNS server. Using a
custom DNS server is not supported and causes the installation to fail.

If you use a custom VPC, you must correctly configure it and its subnets for the installation program and
the cluster to use. See Create a VPC in the Amazon Web Services documentation for more information
about AWS VPC console wizard configurations and creating and managing an AWS VPC.

The installation program cannot:

Subdivide network ranges for the cluster to use.

Set route tables for the subnets.

Set VPC options like DHCP.

You must complete these tasks before you install the cluster. See VPC networking components and
Route tables for your VPC for more information on configuring networking in an AWS VPC.

Your VPC must meet the following characteristics:

The VPC must not use the kubernetes.io/cluster/.*: owned, Name, and openshift.io/cluster
tags.
The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared

OpenShift Container Platform 4.19 Installing on AWS

102

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Networking.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html

tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in
the AWS documentation to confirm that the installation program can add a tag to each subnet
that you specify. You cannot use a Name tag, because it overlaps with the EC2 Name field and
the installation fails.

If you want to extend your OpenShift Container Platform cluster into an AWS Outpost and have
an existing Outpost subnet, the existing subnet must use the
kubernetes.io/cluster/unmanaged: true tag. If you do not apply this tag, the installation might
fail due to the Cloud Controller Manager creating a service load balancer in the Outpost subnet,
which is an unsupported configuration.

You must enable the enableDnsSupport and enableDnsHostnames attributes in your VPC, so
that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s
internal DNS records. See DNS Support in Your VPC in the AWS documentation.
If you prefer to use your own Route 53 hosted private zone, you must associate the existing
hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using
the platform.aws.hostedZone and platform.aws.hostedZoneRole fields in the install-
config.yaml file. You can use a private hosted zone from another account by sharing it with the
account where you install the cluster. If you use a private hosted zone from another account, you
must use the Passthrough or Manual credentials mode.

If you are working in a disconnected environment, you are unable to reach the public IP addresses for
EC2, ELB, and S3 endpoints. Depending on the level to which you want to restrict internet traffic during
the installation, the following configuration options are available:

3.5.3.1.1. Option 1: Create VPC endpoints

Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

ec2.<aws_region>.amazonaws.com

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com

With this option, network traffic remains private between your VPC and the required AWS services.

3.5.3.1.2. Option 2: Create a proxy without VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet
traffic goes through the proxy to reach the required AWS services.

3.5.3.1.3. Option 3: Create a proxy with VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints.
Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

ec2.<aws_region>.amazonaws.com

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

103

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support

When configuring the proxy in the install-config.yaml file, add these endpoints to the noProxy field.
With this option, the proxy prevents the cluster from accessing the internet directly. However, network
traffic remains private between your VPC and the required AWS services.

Required VPC components

You must provide a suitable VPC and subnets that allow communication to your machines.

Compone
nt

AWS type Description

VPC
AWS::EC2::VPC

AWS::EC2::VPCEndpoint

You must provide a public VPC for the
cluster to use. The VPC uses an endpoint
that references the route tables for each
subnet to improve communication with
the registry that is hosted in S3.

Public
subnets AWS::EC2::Subnet

AWS::EC2::SubnetNetworkAclAss
ociation

Your VPC must have public subnets for
between 1 and 3 availability zones and
associate them with appropriate Ingress
rules.

Internet
gateway AWS::EC2::InternetGateway

AWS::EC2::VPCGatewayAttachme
nt

AWS::EC2::RouteTable

AWS::EC2::Route

AWS::EC2::SubnetRouteTableAss
ociation

AWS::EC2::NatGateway

AWS::EC2::EIP

You must have a public internet gateway,
with public routes, attached to the VPC.
In the provided templates, each public
subnet has a NAT gateway with an EIP
address. These NAT gateways allow
cluster resources, like private subnet
instances, to reach the internet and are
not required for some restricted network
or proxy scenarios.

Network
access
control

AWS::EC2::NetworkAcl

AWS::EC2::NetworkAclEntry

You must allow the VPC to access the
following ports:

Port Reason

80 Inbound HTTP
traffic

443 Inbound HTTPS
traffic

22 Inbound SSH
traffic

OpenShift Container Platform 4.19 Installing on AWS

104

1024 - 65535 Inbound
ephemeral traffic

0 - 65535 Outbound
ephemeral traffic

Private
subnets AWS::EC2::Subnet

AWS::EC2::RouteTable

AWS::EC2::SubnetRouteTableAss
ociation

Your VPC can have private subnets. The
provided CloudFormation templates can
create private subnets for between 1 and
3 availability zones. If you use private
subnets, you must provide appropriate
routes and tables for them.

Compone
nt

AWS type Description

3.5.3.2. VPC validation

To ensure that the subnets that you provide are suitable, the installation program confirms the following
data:

All the subnets that you specify exist.

You provide private subnets.

The subnet CIDRs belong to the machine CIDR that you specified.

You provide subnets for each availability zone. Each availability zone contains no more than one
public and one private subnet. If you use a private cluster, provide only a private subnet for each
availability zone. Otherwise, provide exactly one public and private subnet for each availability
zone.

You provide a public subnet for each private subnet availability zone. Machines are not
provisioned in availability zones that you do not provide private subnets for.

If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the
OpenShift Container Platform cluster from a VPC, the kubernetes.io/cluster/.*: shared tag is removed
from the subnets that it used.

3.5.3.3. Division of permissions

Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required
for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics
the division of permissions that you might have at your company: some individuals can create different
resource in your clouds than others. For example, you might be able to create application-specific items,
like instances, buckets, and load balancers, but not networking-related components such as VPCs,
subnets, or ingress rules.

The AWS credentials that you use when you create your cluster do not need the networking permissions
that are required to make VPCs and core networking components within the VPC, such as subnets,
routing tables, internet gateways, NAT, and VPN. You still need permission to make the application
resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and
nodes.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

105

3.5.3.4. Isolation between clusters

If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is
reduced in the following ways:

You can install multiple OpenShift Container Platform clusters in the same VPC.

ICMP ingress is allowed from the entire network.

TCP 22 ingress (SSH) is allowed to the entire network.

Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.

Control plane TCP 22623 ingress (MCS) is allowed to the entire network.

3.5.4. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Amazon Web Services
(AWS).

Prerequisites

You have the OpenShift Container Platform installation program and the pull secret for your
cluster. For a restricted network installation, these files are on your mirror host.

You have the imageContentSources values that were generated during mirror registry
creation.

You have obtained the contents of the certificate for your mirror registry.

Procedure

1. Create the install-config.yaml file.

a. Change to the directory that contains the installation program and run the following
command:

<installation_directory>: For <installation_directory>, specify the directory name to
store the files that the installation program creates.
When specifying the directory:

Verify that the directory has the execute permission. This permission is required to run
Terraform binaries under the installation directory.

Use an empty directory. Some installation assets, such as bootstrap X.509 certificates,
have short expiration intervals, therefore you must not reuse an installation directory. If
you want to reuse individual files from another cluster installation, you can copy them
into your directory. However, the file names for the installation assets might change
between releases. Use caution when copying installation files from an earlier OpenShift
Container Platform version.

b. At the prompts, provide the configuration details for your cloud:

i. Optional: Select an SSH key to use to access your cluster machines.

NOTE

$./openshift-install create install-config --dir <installation_directory>

OpenShift Container Platform 4.19 Installing on AWS

106

NOTE

For production OpenShift Container Platform clusters on which you want
to perform installation debugging or disaster recovery, specify an SSH
key that your ssh-agent process uses.

ii. Select AWS as the platform to target.

iii. If you do not have an Amazon Web Services (AWS) profile stored on your computer,
enter the AWS access key ID and secret access key for the user that you configured to
run the installation program.

iv. Select the AWS region to deploy the cluster to.

v. Select the base domain for the Route 53 service that you configured for your cluster.

vi. Enter a descriptive name for your cluster.

2. Edit the install-config.yaml file to give the additional information that is required for an
installation in a restricted network.

a. Update the pullSecret value to contain the authentication information for your registry:

For <mirror_host_name>, specify the registry domain name that you specified in the
certificate for your mirror registry, and for <credentials>, specify the base64-encoded user
name and password for your mirror registry.

b. Add the additionalTrustBundle parameter and value.

The value must be the contents of the certificate file that you used for your mirror registry.
The certificate file can be an existing, trusted certificate authority, or the self-signed
certificate that you generated for the mirror registry.

c. Define the subnets for the VPC to install the cluster in, as in the following example:

d. Add the image content resources, which resemble the following YAML excerpt:

pullSecret: '{"auths":{"<mirror_host_name>:5000": {"auth": "<credentials>","email":
"you@example.com"}}}'

additionalTrustBundle: |
 -----BEGIN CERTIFICATE-----

ZZ
 -----END CERTIFICATE-----

platform:
 aws:
 vpc:
 subnets:
 - id: subnet-<id_1>
 - id: subnet-<id_2>
 - id: subnet-<id_3>

imageContentSources:

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

107

For these values, use the imageContentSources that you recorded during mirror registry
creation.

e. Set the publishing strategy to Internal:

By setting this option, you create an internal Ingress Controller and a private load balancer.

3. Make any other modifications to the install-config.yaml file that you require.
For more information about the parameters, see "Installation configuration parameters".

4. Back up the install-config.yaml file so that you can use it to install multiple clusters.

IMPORTANT

The install-config.yaml file is consumed during the installation process. If you
want to reuse the file, you must back it up now.

Additional resources

Installation configuration parameters for AWS

3.5.4.1. Minimum resource requirements for cluster installation

Each created cluster must meet minimum requirements so that the cluster runs as expected.

Table 3.13. Minimum resource requirements

Machine Operating
System

vCPU [1] Virtual RAM Storage Input/Output
Per Second
(IOPS)[2]

Bootstrap RHCOS 4 16 GB 100 GB 300

Control plane RHCOS 4 16 GB 100 GB 300

Compute RHCOS, RHEL
8.6 and later
[3]

2 8 GB 100 GB 300

1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the
corresponding ratio: (threads per core × cores) × sockets = vCPUs.

2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster

- mirrors:
 - <mirror_host_name>:5000/<repo_name>/release
 source: quay.io/openshift-release-dev/ocp-release
- mirrors:
 - <mirror_host_name>:5000/<repo_name>/release
 source: registry.redhat.io/ocp/release

publish: Internal

OpenShift Container Platform 4.19 Installing on AWS

108

2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster
storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms
p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so
you might need to over-allocate storage volume to obtain sufficient performance.

3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your
cluster, you take responsibility for all operating system life cycle management and maintenance,
including performing system updates, applying patches, and completing all other required tasks.
Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container
Platform 4.10 and later.

NOTE

For OpenShift Container Platform version 4.19, RHCOS is based on RHEL version 9.6,
which updates the micro-architecture requirements. The following list contains the
minimum instruction set architectures (ISA) that each architecture requires:

x86-64 architecture requires x86-64-v2 ISA

ARM64 architecture requires ARMv8.0-A ISA

IBM Power architecture requires Power 9 ISA

s390x architecture requires z14 ISA

For more information, see Architectures (RHEL documentation).

If an instance type for your platform meets the minimum requirements for cluster machines, it is
supported to use in OpenShift Container Platform.

Additional resources

Optimizing storage

3.5.4.2. Sample customized install-config.yaml file for AWS

You can customize the installation configuration file (install-config.yaml) to specify more details about
your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

IMPORTANT

This sample YAML file is provided for reference only. You must obtain your install-
config.yaml file by using the installation program and modify it. For a full list and
description of all installation configuration parameters, see Installation configuration
parameters for AWS.

Sample install-config.yaml file for AWS

apiVersion: v1 1
baseDomain: example.com
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'
metadata:
 name: example-cluster

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

109

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.2_release_notes/index#architectures
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/scalability_and_performance/#optimizing-storage

1

2

3

4

5

Parameters at the first level of indentation apply to the cluster globally.

The controlPlane stanza applies to control plane machines.

The compute stanza applies to compute machines.

The networking stanza applies to the cluster networking configuration. If you do not provide
networking values, the installation program provides default values.

The platform stanza applies to the infrastructure platform that hosts the cluster.

Additional resources

Installation configuration parameters for AWS

3.5.4.3. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

controlPlane: 2
 name: master
 platform:
 aws:
 type: m6i.xlarge
 replicas: 3
compute: 3
- name: worker
 platform:
 aws:
 type: c5.4xlarge
 replicas: 3
networking: 4
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
platform: 5
 aws:
 region: us-west-2

OpenShift Container Platform 4.19 Installing on AWS

110

1

2

3

4

5

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud, Microsoft
Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC
endpoints to your VPC, you must add these endpoints to the noProxy field.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle config map that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the
trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

Optional: The policy to determine the configuration of the Proxy object to reference the
user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and
Always. Use Proxyonly to reference the user-ca-bundle config map only when
http/https proxy is configured. Use Always to always reference the user-ca-bundle
config map. The default value is Proxyonly.

NOTE

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.
<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

111

NOTE

The installation program does not support the proxy readinessEndpoints field.

NOTE

If the installer times out, restart and then complete the deployment by using the
wait-for command of the installer. For example:

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

3.5.5. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the
credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the
following alternatives:

To manage long-term cloud credentials manually, follow the procedure in Manually creating
long-term credentials.

To implement short-term credentials that are managed outside the cluster for individual
components, follow the procedures in Configuring an AWS cluster to use short-term
credentials.

3.5.5.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in
environments where the cloud identity and access management (IAM) APIs are not reachable, or the
administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

$./openshift-install wait-for install-complete --log-level debug

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

OpenShift Container Platform 4.19 Installing on AWS

112

1

2

3

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container
Platform release image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

This command creates a YAML file for each CredentialsRequest object.

Sample CredentialsRequest object

$ openshift-install create manifests --dir <installation_directory>

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - iam:GetUser
 - iam:GetUserPolicy
 - iam:ListAccessKeys
 resource: "*"
 ...

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

113

5. Create YAML files for secrets in the openshift-install manifests directory that you generated
previously. The secrets must be stored using the namespace and secret name defined in the
spec.secretRef for each CredentialsRequest object.

Sample CredentialsRequest object with secrets

Sample Secret object

IMPORTANT

Before upgrading a cluster that uses manually maintained credentials, you must ensure
that the CCO is in an upgradeable state.

3.5.5.2. Configuring an AWS cluster to use short-term credentials

To install a cluster that is configured to use the AWS Security Token Service (STS), you must configure
the CCO utility and create the required AWS resources for your cluster.

3.5.5.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential
Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

NOTE

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - s3:CreateBucket
 - s3:DeleteBucket
 resource: "*"
 ...
 secretRef:
 name: <component_secret>
 namespace: <component_namespace>
 ...

apiVersion: v1
kind: Secret
metadata:
 name: <component_secret>
 namespace: <component_namespace>
data:
 aws_access_key_id: <base64_encoded_aws_access_key_id>
 aws_secret_access_key: <base64_encoded_aws_secret_access_key>

OpenShift Container Platform 4.19 Installing on AWS

114

NOTE

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift CLI (oc).

You have created an AWS account for the ccoctl utility to use with the following permissions:
Required iam permissions

iam:CreateOpenIDConnectProvider

iam:CreateRole

iam:DeleteOpenIDConnectProvider

iam:DeleteRole

iam:DeleteRolePolicy

iam:GetOpenIDConnectProvider

iam:GetRole

iam:GetUser

iam:ListOpenIDConnectProviders

iam:ListRolePolicies

iam:ListRoles

iam:PutRolePolicy

iam:TagOpenIDConnectProvider

iam:TagRole

Required s3 permissions

s3:CreateBucket

s3:DeleteBucket

s3:DeleteObject

s3:GetBucketAcl

s3:GetBucketTagging

s3:GetObject

s3:GetObjectAcl

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

115

s3:GetObjectTagging

s3:ListBucket

s3:PutBucketAcl

s3:PutBucketPolicy

s3:PutBucketPublicAccessBlock

s3:PutBucketTagging

s3:PutObject

s3:PutObjectAcl

s3:PutObjectTagging

Required cloudfront permissions

cloudfront:ListCloudFrontOriginAccessIdentities

cloudfront:ListDistributions

cloudfront:ListTagsForResource

If you plan to store the OIDC configuration in a private S3 bucket that is accessed by the IAM
identity provider through a public CloudFront distribution URL, the AWS account that runs the
ccoctl utility requires the following additional permissions:

cloudfront:CreateCloudFrontOriginAccessIdentity

cloudfront:CreateDistribution

cloudfront:DeleteCloudFrontOriginAccessIdentity

cloudfront:DeleteDistribution

cloudfront:GetCloudFrontOriginAccessIdentity

cloudfront:GetCloudFrontOriginAccessIdentityConfig

cloudfront:GetDistribution

cloudfront:TagResource

cloudfront:UpdateDistribution

NOTE

These additional permissions support the use of the --create-private-s3-bucket
option when processing credentials requests with the ccoctl aws create-all
command.

Procedure

OpenShift Container Platform 4.19 Installing on AWS

116

1

1. Set a variable for the OpenShift Container Platform release image by running the following
command:

2. Obtain the CCO container image from the OpenShift Container Platform release image by
running the following command:

NOTE

Ensure that the architecture of the $RELEASE_IMAGE matches the
architecture of the environment in which you will use the ccoctl tool.

3. Extract the ccoctl binary from the CCO container image within the OpenShift Container
Platform release image by running the following command:

For <rhel_version>, specify the value that corresponds to the version of Red Hat
Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by
default. The following values are valid:

rhel8: Specify this value for hosts that use RHEL 8.

rhel9: Specify this value for hosts that use RHEL 9.

NOTE

The ccoctl binary is created in the directory from where you executed the
command and not in /usr/bin/. You must rename the directory or move the
ccoctl.<rhel_version> binary to ccoctl.

4. Change the permissions to make ccoctl executable by running the following command:

Verification

To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run
the command, for example:

Example output

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator'
$RELEASE_IMAGE -a ~/.pull-secret)

$ oc image extract $CCO_IMAGE \
 --file="/usr/bin/ccoctl.<rhel_version>" \ 1
 -a ~/.pull-secret

$ chmod 775 ccoctl

$./ccoctl

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

117

3.5.5.2.2. Creating AWS resources with the Cloud Credential Operator utility

You have the following options when creating AWS resources:

You can use the ccoctl aws create-all command to create the AWS resources automatically.
This is the quickest way to create the resources. See Creating AWS resources with a single
command.

If you need to review the JSON files that the ccoctl tool creates before modifying AWS
resources, or if the process the ccoctl tool uses to create AWS resources automatically does
not meet the requirements of your organization, you can create the AWS resources individually.
See Creating AWS resources individually .

3.5.5.2.2.1. Creating AWS resources with a single command

If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of
your organization, you can use the ccoctl aws create-all command to automate the creation of AWS
resources.

Otherwise, you can create the AWS resources individually. For more information, see "Creating AWS
resources individually".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

Extracted and prepared the ccoctl binary.

Procedure

1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running

OpenShift credentials provisioning tool

Usage:
 ccoctl [command]

Available Commands:
 aws Manage credentials objects for AWS cloud
 azure Manage credentials objects for Azure
 gcp Manage credentials objects for Google cloud
 help Help about any command
 ibmcloud Manage credentials objects for {ibm-cloud-title}
 nutanix Manage credentials objects for Nutanix

Flags:
 -h, --help help for ccoctl

Use "ccoctl [command] --help" for more information about a command.

OpenShift Container Platform 4.19 Installing on AWS

118

1

2

3

1

2

3

4

5

1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release
image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

NOTE

This command might take a few moments to run.

3. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

Specify the name used to tag any cloud resources that are created for tracking.

Specify the AWS region in which cloud resources will be created.

Specify the directory containing the files for the component CredentialsRequest objects.

Optional: Specify the directory in which you want the ccoctl utility to create objects. By
default, the utility creates objects in the directory in which the commands are run.

Optional: By default, the ccoctl utility stores the OpenID Connect (OIDC) configuration
files in a public S3 bucket and uses the S3 URL as the public OIDC endpoint. To store the
OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider
through a public CloudFront distribution URL instead, use the --create-private-s3-bucket
parameter.

NOTE

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

$ ccoctl aws create-all \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --credentials-requests-dir=<path_to_credentials_requests_directory> \ 3
 --output-dir=<path_to_ccoctl_output_dir> \ 4
 --create-private-s3-bucket 5

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

119

NOTE

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.5.5.2.2.2. Creating AWS resources individually

You can use the ccoctl tool to create AWS resources individually. This option might be useful for an
organization that shares the responsibility for creating these resources among different users or
departments.

Otherwise, you can use the ccoctl aws create-all command to create the AWS resources automatically.
For more information, see "Creating AWS resources with a single command".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Some ccoctl commands make AWS API calls to create or modify AWS resources. You
can use the --dry-run flag to avoid making API calls. Using this flag creates JSON files on
the local file system instead. You can review and modify the JSON files and then apply
them with the AWS CLI tool using the --cli-input-json parameters.

Prerequisites

Extract and prepare the ccoctl binary.

Procedure

1. Generate the public and private RSA key files that are used to set up the OpenID Connect

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

OpenShift Container Platform 4.19 Installing on AWS

120

1

2

3

1. Generate the public and private RSA key files that are used to set up the OpenID Connect
provider for the cluster by running the following command:

Example output

where serviceaccount-signer.private and serviceaccount-signer.public are the generated
key files.

This command also creates a private key that the cluster requires during installation in
/<path_to_ccoctl_output_dir>/tls/bound-service-account-signing-key.key.

2. Create an OpenID Connect identity provider and S3 bucket on AWS by running the following
command:

<name> is the name used to tag any cloud resources that are created for tracking.

<aws-region> is the AWS region in which cloud resources will be created.

<path_to_ccoctl_output_dir> is the path to the public key file that the ccoctl aws
create-key-pair command generated.

Example output

where openid-configuration is a discovery document and keys.json is a JSON web key set file.

This command also creates a YAML configuration file in
/<path_to_ccoctl_output_dir>/manifests/cluster-authentication-02-config.yaml. This file
sets the issuer URL field for the service account tokens that the cluster generates, so that the
AWS IAM identity provider trusts the tokens.

$ ccoctl aws create-key-pair

2021/04/13 11:01:02 Generating RSA keypair
2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.private
2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.public
2021/04/13 11:01:03 Copying signing key for use by installer

$ ccoctl aws create-identity-provider \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public 3

2021/04/13 11:16:09 Bucket <name>-oidc created
2021/04/13 11:16:10 OpenID Connect discovery document in the S3 bucket <name>-oidc at
.well-known/openid-configuration updated
2021/04/13 11:16:10 Reading public key
2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json
updated
2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::
<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

121

1

2

3

3. Create IAM roles for each component in the cluster:

a. Set a $RELEASE_IMAGE variable with the release image from your installation file by
running the following command:

b. Extract the list of CredentialsRequest objects from the OpenShift Container Platform
release image:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

c. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

NOTE

For AWS environments that use alternative IAM API endpoints, such as
GovCloud, you must also specify your region with the --region parameter.

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

For each CredentialsRequest object, ccoctl creates an IAM role with a trust policy that is
tied to the specified OIDC identity provider, and a permissions policy as defined in each
CredentialsRequest object from the OpenShift Container Platform release image.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \
2

 --to=<path_to_directory_for_credentials_requests> 3

$ ccoctl aws create-iam-roles \
 --name=<name> \
 --region=<aws_region> \
 --credentials-requests-dir=<path_to_credentials_requests_directory> \
 --identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.
<aws_region>.amazonaws.com

OpenShift Container Platform 4.19 Installing on AWS

122

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.5.5.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components,
you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the
correct directories for the installation program.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have configured the Cloud Credential Operator utility (ccoctl).

You have created the cloud provider resources that are required for your cluster with the ccoctl
utility.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Copy the manifests that the ccoctl utility generated to the manifests directory that the

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

123

1

2

3. Copy the manifests that the ccoctl utility generated to the manifests directory that the
installation program created by running the following command:

4. Copy the tls directory that contains the private key to the installation directory:

3.5.6. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

IMPORTANT

You can run the create cluster command of the installation program only once, during
initial installation.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

You have verified that the cloud provider account on your host has the correct permissions to
deploy the cluster. An account with incorrect permissions causes the installation process to fail
with an error message that displays the missing permissions.

Procedure

1. In the directory that contains the installation program, initialize the cluster deployment by
running the following command:

For <installation_directory>, specify the location of your customized ./install-
config.yaml file.

To view different installation details, specify warn, debug, or error instead of info.

2. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you
used to install the cluster.

NOTE

The elevated permissions provided by the AdministratorAccess policy are
required only during installation.

Verification

$ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/

$ cp -a /<path_to_ccoctl_output_dir>/tls .

$./openshift-install create cluster --dir <installation_directory> \ 1
 --log-level=info 2

OpenShift Container Platform 4.19 Installing on AWS

124

When the cluster deployment completes successfully:

The terminal displays directions for accessing your cluster, including a link to the web console
and credentials for the kubeadmin user.

Credential information also outputs to <installation_directory>/.openshift_install.log.

IMPORTANT

Do not delete the installation program or the files that the installation program creates.
Both are required to delete the cluster.

Example output

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

3.5.7. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

Procedure

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

125

1

1. Export the kubeadmin credentials by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

Example output

3.5.8. Disabling the default OperatorHub catalog sources

Operator catalogs that source content provided by Red Hat and community projects are configured for
OperatorHub by default during an OpenShift Container Platform installation. In a restricted network
environment, you must disable the default catalogs as a cluster administrator.

Procedure

Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the
OperatorHub object:

TIP

Alternatively, you can use the web console to manage catalog sources. From the Administration →
Cluster Settings → Configuration → OperatorHub page, click the Sources tab, where you can create,
update, delete, disable, and enable individual sources.

3.5.9. Next steps

Validate an installation.

Customize your cluster.

Configure image streams for the Cluster Samples Operator and the must-gather tool.

Learn how to use Operator Lifecycle Manager in disconnected environments .

If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by
configuring additional trust stores.

If necessary, you can Remote health reporting .

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

$ oc whoami

system:admin

$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

OpenShift Container Platform 4.19 Installing on AWS

126

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#available_cluster_customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#post-install-must-gather-disconnected
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#olm-restricted-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/images/#images-configuration-cas_image-configuration
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting

3.6. INSTALLING A CLUSTER ON AWS INTO AN EXISTING VPC

In OpenShift Container Platform version 4.19, you can install a cluster into an existing Amazon Virtual
Private Cloud (VPC) on Amazon Web Services (AWS). The installation program provisions the rest of
the required infrastructure, which you can further customize. To customize the installation, you modify
parameters in the install-config.yaml file before you install the cluster.

3.6.1. Prerequisites

You reviewed details about the OpenShift Container Platform installation and update
processes.

You read the documentation on selecting a cluster installation method and preparing it for
users.

You configured an AWS account to host the cluster.

If the existing VPC is owned by a different account than the cluster, you shared the VPC
between accounts.

IMPORTANT

If you have an AWS profile stored on your computer, it must not use a temporary
session token that you generated while using a multi-factor authentication
device. The cluster continues to use your current AWS credentials to create AWS
resources for the entire life of the cluster, so you must use long-term credentials.
To generate appropriate keys, see Managing Access Keys for IAM Users in the
AWS documentation. You can supply the keys when you run the installation
program.

If you use a firewall, you configured it to allow the sites that your cluster requires access to.

3.6.2. About using a custom VPC

In OpenShift Container Platform 4.19, you can deploy a cluster into existing subnets in an existing
Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OpenShift
Container Platform into an existing AWS VPC, you might be able to avoid limit constraints in new
accounts or more easily abide by the operational constraints that your company’s guidelines set. If you
cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use
this installation option.

Because the installation program cannot know what other components are also in your existing subnets,
it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the
subnets that you install your cluster to yourself.

3.6.2.1. Requirements for using your VPC

The installation program no longer creates the following components:

Internet gateways

NAT gateways

Subnets

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

127

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall

Route tables

VPCs

VPC DHCP options

VPC endpoints

NOTE

The installation program requires that you use the cloud-provided DNS server. Using a
custom DNS server is not supported and causes the installation to fail.

If you use a custom VPC, you must correctly configure it and its subnets for the installation program and
the cluster to use. See Create a VPC in the Amazon Web Services documentation for more information
about AWS VPC console wizard configurations and creating and managing an AWS VPC.

The installation program cannot:

Subdivide network ranges for the cluster to use.

Set route tables for the subnets.

Set VPC options like DHCP.

You must complete these tasks before you install the cluster. See VPC networking components and
Route tables for your VPC for more information on configuring networking in an AWS VPC.

Your VPC must meet the following characteristics:

Create a public and private subnet for each availability zone that your cluster uses. Each
availability zone can contain no more than one public and one private subnet. For an example of
this type of configuration, see VPC with public and private subnets (NAT) in the AWS
documentation.
Record each subnet ID. Completing the installation requires that you enter these values in the
platform section of the install-config.yaml file. See Finding a subnet ID in the AWS
documentation.

The VPC’s CIDR block must contain the Networking.MachineCIDR range, which is the IP
address pool for cluster machines. The subnet CIDR blocks must belong to the machine CIDR
that you specify.

The VPC must have a public internet gateway attached to it. For each availability zone:

The public subnet requires a route to the internet gateway.

The public subnet requires a NAT gateway with an EIP address.

The private subnet requires a route to the NAT gateway in public subnet.

The VPC must not use the kubernetes.io/cluster/.*: owned, Name, and openshift.io/cluster
tags.
The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared
tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in
the AWS documentation to confirm that the installation program can add a tag to each subnet

OpenShift Container Platform 4.19 Installing on AWS

128

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Networking.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
https://docs.aws.amazon.com/managedservices/latest/userguide/find-subnet.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions

that you specify. You cannot use a Name tag, because it overlaps with the EC2 Name field and
the installation fails.

If you want to extend your OpenShift Container Platform cluster into an AWS Outpost and have
an existing Outpost subnet, the existing subnet must use the
kubernetes.io/cluster/unmanaged: true tag. If you do not apply this tag, the installation might
fail due to the Cloud Controller Manager creating a service load balancer in the Outpost subnet,
which is an unsupported configuration.

You must enable the enableDnsSupport and enableDnsHostnames attributes in your VPC, so
that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s
internal DNS records. See DNS Support in Your VPC in the AWS documentation.
If you prefer to use your own Route 53 hosted private zone, you must associate the existing
hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using
the platform.aws.hostedZone and platform.aws.hostedZoneRole fields in the install-
config.yaml file. You can use a private hosted zone from another account by sharing it with the
account where you install the cluster. If you use a private hosted zone from another account, you
must use the Passthrough or Manual credentials mode.

If you are working in a disconnected environment, you are unable to reach the public IP addresses for
EC2, ELB, and S3 endpoints. Depending on the level to which you want to restrict internet traffic during
the installation, the following configuration options are available:

3.6.2.1.1. Option 1: Create VPC endpoints

Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

ec2.<aws_region>.amazonaws.com

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com

With this option, network traffic remains private between your VPC and the required AWS services.

3.6.2.1.2. Option 2: Create a proxy without VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet
traffic goes through the proxy to reach the required AWS services.

3.6.2.1.3. Option 3: Create a proxy with VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints.
Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

ec2.<aws_region>.amazonaws.com

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com

When configuring the proxy in the install-config.yaml file, add these endpoints to the noProxy field.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

129

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support

When configuring the proxy in the install-config.yaml file, add these endpoints to the noProxy field.
With this option, the proxy prevents the cluster from accessing the internet directly. However, network
traffic remains private between your VPC and the required AWS services.

Required VPC components

You must provide a suitable VPC and subnets that allow communication to your machines.

Compone
nt

AWS type Description

VPC
AWS::EC2::VPC

AWS::EC2::VPCEndpoint

You must provide a public VPC for the
cluster to use. The VPC uses an endpoint
that references the route tables for each
subnet to improve communication with
the registry that is hosted in S3.

Public
subnets AWS::EC2::Subnet

AWS::EC2::SubnetNetworkAclAss
ociation

Your VPC must have public subnets for
between 1 and 3 availability zones and
associate them with appropriate Ingress
rules.

Internet
gateway AWS::EC2::InternetGateway

AWS::EC2::VPCGatewayAttachme
nt

AWS::EC2::RouteTable

AWS::EC2::Route

AWS::EC2::SubnetRouteTableAss
ociation

AWS::EC2::NatGateway

AWS::EC2::EIP

You must have a public internet gateway,
with public routes, attached to the VPC.
In the provided templates, each public
subnet has a NAT gateway with an EIP
address. These NAT gateways allow
cluster resources, like private subnet
instances, to reach the internet and are
not required for some restricted network
or proxy scenarios.

Network
access
control

AWS::EC2::NetworkAcl

AWS::EC2::NetworkAclEntry

You must allow the VPC to access the
following ports:

Port Reason

80 Inbound HTTP
traffic

443 Inbound HTTPS
traffic

22 Inbound SSH
traffic

OpenShift Container Platform 4.19 Installing on AWS

130

1024 - 65535 Inbound
ephemeral traffic

0 - 65535 Outbound
ephemeral traffic

Private
subnets AWS::EC2::Subnet

AWS::EC2::RouteTable

AWS::EC2::SubnetRouteTableAss
ociation

Your VPC can have private subnets. The
provided CloudFormation templates can
create private subnets for between 1 and
3 availability zones. If you use private
subnets, you must provide appropriate
routes and tables for them.

Compone
nt

AWS type Description

3.6.2.2. VPC validation

To ensure that the subnets that you provide are suitable, the installation program confirms the following
data:

All the subnets that you specify exist.

You provide private subnets.

The subnet CIDRs belong to the machine CIDR that you specified.

You provide subnets for each availability zone. Each availability zone contains no more than one
public and one private subnet. If you use a private cluster, provide only a private subnet for each
availability zone. Otherwise, provide exactly one public and private subnet for each availability
zone.

You provide a public subnet for each private subnet availability zone. Machines are not
provisioned in availability zones that you do not provide private subnets for.

If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the
OpenShift Container Platform cluster from a VPC, the kubernetes.io/cluster/.*: shared tag is removed
from the subnets that it used.

3.6.2.3. Division of permissions

Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required
for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics
the division of permissions that you might have at your company: some individuals can create different
resource in your clouds than others. For example, you might be able to create application-specific items,
like instances, buckets, and load balancers, but not networking-related components such as VPCs,
subnets, or ingress rules.

The AWS credentials that you use when you create your cluster do not need the networking permissions
that are required to make VPCs and core networking components within the VPC, such as subnets,
routing tables, internet gateways, NAT, and VPN. You still need permission to make the application
resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and
nodes.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

131

3.6.2.4. Isolation between clusters

If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is
reduced in the following ways:

You can install multiple OpenShift Container Platform clusters in the same VPC.

ICMP ingress is allowed from the entire network.

TCP 22 ingress (SSH) is allowed to the entire network.

Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.

Control plane TCP 22623 ingress (MCS) is allowed to the entire network.

3.6.2.5. Optional: AWS security groups

By default, the installation program creates and attaches security groups to control plane and compute
machines. The rules associated with the default security groups cannot be modified.

However, you can apply additional existing AWS security groups, which are associated with your existing
VPC, to control plane and compute machines. Applying custom security groups can help you meet the
security needs of your organization, in such cases where you need to control the incoming or outgoing
traffic of these machines.

As part of the installation process, you apply custom security groups by modifying the install-
config.yaml file before deploying the cluster.

For more information, see "Applying existing AWS security groups to the cluster".

3.6.2.6. Modifying trust policy when installing into a shared VPC

If you install your cluster using a shared VPC, you can use the Passthrough or Manual credentials
mode. You must add the IAM role used to install the cluster as a principal in the trust policy of the
account that owns the VPC.

If you use Passthrough mode, add the Amazon Resource Name (ARN) of the account that creates the
cluster, such as arn:aws:iam::123456789012:user/clustercreator, to the trust policy as a principal.

If you use Manual mode, add the ARN of the account that creates the cluster as well as the ARN of the
ingress operator role in the cluster owner account, such as arn:aws:iam::123456789012:role/<cluster-
name>-openshift-ingress-operator-cloud-credentials, to the trust policy as principals.

You must add the following actions to the policy:

Example 3.5. Required actions for shared VPC installation

route53:ChangeResourceRecordSets

route53:ListHostedZones

route53:ListHostedZonesByName

route53:ListResourceRecordSets

route53:ChangeTagsForResource

OpenShift Container Platform 4.19 Installing on AWS

132

route53:GetAccountLimit

route53:GetChange

route53:GetHostedZone

route53:ListTagsForResource

route53:UpdateHostedZoneComment

tag:GetResources

tag:UntagResources

3.6.3. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Amazon Web Services
(AWS).

Prerequisites

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

Procedure

1. Create the install-config.yaml file.

a. Change to the directory that contains the installation program and run the following
command:

<installation_directory>: For <installation_directory>, specify the directory name to
store the files that the installation program creates.
When specifying the directory:

Verify that the directory has the execute permission. This permission is required to run
Terraform binaries under the installation directory.

Use an empty directory. Some installation assets, such as bootstrap X.509 certificates,
have short expiration intervals, therefore you must not reuse an installation directory. If
you want to reuse individual files from another cluster installation, you can copy them
into your directory. However, the file names for the installation assets might change
between releases. Use caution when copying installation files from an earlier OpenShift
Container Platform version.

b. At the prompts, provide the configuration details for your cloud:

i. Optional: Select an SSH key to use to access your cluster machines.

NOTE

$./openshift-install create install-config --dir <installation_directory>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

133

NOTE

For production OpenShift Container Platform clusters on which you want
to perform installation debugging or disaster recovery, specify an SSH
key that your ssh-agent process uses.

ii. Select AWS as the platform to target.

iii. If you do not have an Amazon Web Services (AWS) profile stored on your computer,
enter the AWS access key ID and secret access key for the user that you configured to
run the installation program.

iv. Select the AWS region to deploy the cluster to.

v. Select the base domain for the Route 53 service that you configured for your cluster.

vi. Enter a descriptive name for your cluster.

2. Modify the install-config.yaml file. You can find more information about the available
parameters in the "Installation configuration parameters" section.

3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

IMPORTANT

The install-config.yaml file is consumed during the installation process. If you
want to reuse the file, you must back it up now.

Additional resources

Installation configuration parameters for AWS

3.6.3.1. Minimum resource requirements for cluster installation

Each created cluster must meet minimum requirements so that the cluster runs as expected.

Table 3.14. Minimum resource requirements

Machine Operating
System

vCPU [1] Virtual RAM Storage Input/Output
Per Second
(IOPS)[2]

Bootstrap RHCOS 4 16 GB 100 GB 300

Control plane RHCOS 4 16 GB 100 GB 300

Compute RHCOS, RHEL
8.6 and later
[3]

2 8 GB 100 GB 300

1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the
corresponding ratio: (threads per core × cores) × sockets = vCPUs.

OpenShift Container Platform 4.19 Installing on AWS

134

2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster
storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms
p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so
you might need to over-allocate storage volume to obtain sufficient performance.

3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your
cluster, you take responsibility for all operating system life cycle management and maintenance,
including performing system updates, applying patches, and completing all other required tasks.
Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container
Platform 4.10 and later.

NOTE

For OpenShift Container Platform version 4.19, RHCOS is based on RHEL version 9.6,
which updates the micro-architecture requirements. The following list contains the
minimum instruction set architectures (ISA) that each architecture requires:

x86-64 architecture requires x86-64-v2 ISA

ARM64 architecture requires ARMv8.0-A ISA

IBM Power architecture requires Power 9 ISA

s390x architecture requires z14 ISA

For more information, see Architectures (RHEL documentation).

If an instance type for your platform meets the minimum requirements for cluster machines, it is
supported to use in OpenShift Container Platform.

Additional resources

Optimizing storage

3.6.3.2. Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container
Platform.

NOTE

Use the machine types included in the following charts for your AWS instances. If you use
an instance type that is not listed in the chart, ensure that the instance size you use
matches the minimum resource requirements that are listed in the section named
"Minimum resource requirements for cluster installation".

Example 3.6. Machine types based on 64-bit x86 architecture

c4.*

c5.*

c5a.*

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

135

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.2_release_notes/index#architectures
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/scalability_and_performance/#optimizing-storage

i3.*

m4.*

m5.*

m5a.*

m6a.*

m6i.*

r4.*

r5.*

r5a.*

r6i.*

t3.*

t3a.*

3.6.3.3. Tested instance types for AWS on 64-bit ARM infrastructures

The following Amazon Web Services (AWS) 64-bit ARM instance types have been tested with
OpenShift Container Platform.

NOTE

Use the machine types included in the following charts for your AWS ARM instances. If
you use an instance type that is not listed in the chart, ensure that the instance size you
use matches the minimum resource requirements that are listed in "Minimum resource
requirements for cluster installation".

Example 3.7. Machine types based on 64-bit ARM architecture

c6g.*

c7g.*

m6g.*

m7g.*

r8g.*

3.6.3.4. Sample customized install-config.yaml file for AWS

You can customize the installation configuration file (install-config.yaml) to specify more details about
your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

IMPORTANT

OpenShift Container Platform 4.19 Installing on AWS

136

1

2

3

4

5

IMPORTANT

This sample YAML file is provided for reference only. You must obtain your install-
config.yaml file by using the installation program and modify it. For a full list and
description of all installation configuration parameters, see Installation configuration
parameters for AWS.

Sample install-config.yaml file for AWS

Parameters at the first level of indentation apply to the cluster globally.

The controlPlane stanza applies to control plane machines.

The compute stanza applies to compute machines.

The networking stanza applies to the cluster networking configuration. If you do not provide
networking values, the installation program provides default values.

The platform stanza applies to the infrastructure platform that hosts the cluster.

Additional resources

Installation configuration parameters for AWS

3.6.3.5. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS

apiVersion: v1 1
baseDomain: example.com
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'
metadata:
 name: example-cluster
controlPlane: 2
 name: master
 platform:
 aws:
 type: m6i.xlarge
 replicas: 3
compute: 3
- name: worker
 platform:
 aws:
 type: c5.4xlarge
 replicas: 3
networking: 4
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
platform: 5
 aws:
 region: us-west-2

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

137

1

2

3

4

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud, Microsoft
Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC
endpoints to your VPC, you must add these endpoints to the noProxy field.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.
<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5

OpenShift Container Platform 4.19 Installing on AWS

138

5

that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle config map that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the
trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

Optional: The policy to determine the configuration of the Proxy object to reference the
user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and
Always. Use Proxyonly to reference the user-ca-bundle config map only when
http/https proxy is configured. Use Always to always reference the user-ca-bundle
config map. The default value is Proxyonly.

NOTE

The installation program does not support the proxy readinessEndpoints field.

NOTE

If the installer times out, restart and then complete the deployment by using the
wait-for command of the installer. For example:

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

3.6.3.6. Applying existing AWS security groups to the cluster

Applying existing AWS security groups to your control plane and compute machines can help you meet
the security needs of your organization, in such cases where you need to control the incoming or
outgoing traffic of these machines.

Prerequisites

You have created the security groups in AWS. For more information, see the AWS
documentation about working with security groups.

The security groups must be associated with the existing VPC that you are deploying the cluster
to. The security groups cannot be associated with another VPC.

You have an existing install-config.yaml file.

Procedure

$./openshift-install wait-for install-complete --log-level debug

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

139

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html

1

2

1. In the install-config.yaml file, edit the compute.platform.aws.additionalSecurityGroupIDs
parameter to specify one or more custom security groups for your compute machines.

2. Edit the controlPlane.platform.aws.additionalSecurityGroupIDs parameter to specify one or
more custom security groups for your control plane machines.

3. Save the file and reference it when deploying the cluster.

Sample install-config.yaml file that specifies custom security groups

Specify the name of the security group as it appears in the Amazon EC2 console, including the sg
prefix.

Specify subnets for each availability zone that your cluster uses.

3.6.4. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the
credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the
following alternatives:

To manage long-term cloud credentials manually, follow the procedure in Manually creating
long-term credentials.

To implement short-term credentials that are managed outside the cluster for individual
components, follow the procedures in Configuring an AWS cluster to use short-term
credentials.

...
compute:
- hyperthreading: Enabled
 name: worker
 platform:
 aws:
 additionalSecurityGroupIDs:
 - sg-1 1
 - sg-2
 replicas: 3
controlPlane:
 hyperthreading: Enabled
 name: master
 platform:
 aws:
 additionalSecurityGroupIDs:
 - sg-3
 - sg-4
 replicas: 3
platform:
 aws:
 region: us-east-1
 subnets: 2
 - subnet-1
 - subnet-2
 - subnet-3

OpenShift Container Platform 4.19 Installing on AWS

140

1

2

3

3.6.4.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in
environments where the cloud identity and access management (IAM) APIs are not reachable, or the
administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container
Platform release image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

This command creates a YAML file for each CredentialsRequest object.

Sample CredentialsRequest object

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

141

5. Create YAML files for secrets in the openshift-install manifests directory that you generated
previously. The secrets must be stored using the namespace and secret name defined in the
spec.secretRef for each CredentialsRequest object.

Sample CredentialsRequest object with secrets

Sample Secret object

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - iam:GetUser
 - iam:GetUserPolicy
 - iam:ListAccessKeys
 resource: "*"
 ...

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - s3:CreateBucket
 - s3:DeleteBucket
 resource: "*"
 ...
 secretRef:
 name: <component_secret>
 namespace: <component_namespace>
 ...

apiVersion: v1
kind: Secret
metadata:
 name: <component_secret>
 namespace: <component_namespace>
data:

OpenShift Container Platform 4.19 Installing on AWS

142

IMPORTANT

Before upgrading a cluster that uses manually maintained credentials, you must ensure
that the CCO is in an upgradeable state.

3.6.4.2. Configuring an AWS cluster to use short-term credentials

To install a cluster that is configured to use the AWS Security Token Service (STS), you must configure
the CCO utility and create the required AWS resources for your cluster.

3.6.4.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential
Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

NOTE

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift CLI (oc).

You have created an AWS account for the ccoctl utility to use with the following permissions:
Required iam permissions

iam:CreateOpenIDConnectProvider

iam:CreateRole

iam:DeleteOpenIDConnectProvider

iam:DeleteRole

iam:DeleteRolePolicy

iam:GetOpenIDConnectProvider

iam:GetRole

iam:GetUser

iam:ListOpenIDConnectProviders

iam:ListRolePolicies

iam:ListRoles

iam:PutRolePolicy

 aws_access_key_id: <base64_encoded_aws_access_key_id>
 aws_secret_access_key: <base64_encoded_aws_secret_access_key>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

143

iam:TagOpenIDConnectProvider

iam:TagRole

Required s3 permissions

s3:CreateBucket

s3:DeleteBucket

s3:DeleteObject

s3:GetBucketAcl

s3:GetBucketTagging

s3:GetObject

s3:GetObjectAcl

s3:GetObjectTagging

s3:ListBucket

s3:PutBucketAcl

s3:PutBucketPolicy

s3:PutBucketPublicAccessBlock

s3:PutBucketTagging

s3:PutObject

s3:PutObjectAcl

s3:PutObjectTagging

Required cloudfront permissions

cloudfront:ListCloudFrontOriginAccessIdentities

cloudfront:ListDistributions

cloudfront:ListTagsForResource

If you plan to store the OIDC configuration in a private S3 bucket that is accessed by the IAM
identity provider through a public CloudFront distribution URL, the AWS account that runs the
ccoctl utility requires the following additional permissions:

cloudfront:CreateCloudFrontOriginAccessIdentity

cloudfront:CreateDistribution

cloudfront:DeleteCloudFrontOriginAccessIdentity

OpenShift Container Platform 4.19 Installing on AWS

144

1

cloudfront:DeleteDistribution

cloudfront:GetCloudFrontOriginAccessIdentity

cloudfront:GetCloudFrontOriginAccessIdentityConfig

cloudfront:GetDistribution

cloudfront:TagResource

cloudfront:UpdateDistribution

NOTE

These additional permissions support the use of the --create-private-s3-bucket
option when processing credentials requests with the ccoctl aws create-all
command.

Procedure

1. Set a variable for the OpenShift Container Platform release image by running the following
command:

2. Obtain the CCO container image from the OpenShift Container Platform release image by
running the following command:

NOTE

Ensure that the architecture of the $RELEASE_IMAGE matches the
architecture of the environment in which you will use the ccoctl tool.

3. Extract the ccoctl binary from the CCO container image within the OpenShift Container
Platform release image by running the following command:

For <rhel_version>, specify the value that corresponds to the version of Red Hat
Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by
default. The following values are valid:

rhel8: Specify this value for hosts that use RHEL 8.

rhel9: Specify this value for hosts that use RHEL 9.

NOTE

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator'
$RELEASE_IMAGE -a ~/.pull-secret)

$ oc image extract $CCO_IMAGE \
 --file="/usr/bin/ccoctl.<rhel_version>" \ 1
 -a ~/.pull-secret

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

145

NOTE

The ccoctl binary is created in the directory from where you executed the
command and not in /usr/bin/. You must rename the directory or move the
ccoctl.<rhel_version> binary to ccoctl.

4. Change the permissions to make ccoctl executable by running the following command:

Verification

To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run
the command, for example:

Example output

3.6.4.2.2. Creating AWS resources with the Cloud Credential Operator utility

You have the following options when creating AWS resources:

You can use the ccoctl aws create-all command to create the AWS resources automatically.
This is the quickest way to create the resources. See Creating AWS resources with a single
command.

If you need to review the JSON files that the ccoctl tool creates before modifying AWS
resources, or if the process the ccoctl tool uses to create AWS resources automatically does
not meet the requirements of your organization, you can create the AWS resources individually.
See Creating AWS resources individually .

3.6.4.2.2.1. Creating AWS resources with a single command

If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of

$ chmod 775 ccoctl

$./ccoctl

OpenShift credentials provisioning tool

Usage:
 ccoctl [command]

Available Commands:
 aws Manage credentials objects for AWS cloud
 azure Manage credentials objects for Azure
 gcp Manage credentials objects for Google cloud
 help Help about any command
 ibmcloud Manage credentials objects for {ibm-cloud-title}
 nutanix Manage credentials objects for Nutanix

Flags:
 -h, --help help for ccoctl

Use "ccoctl [command] --help" for more information about a command.

OpenShift Container Platform 4.19 Installing on AWS

146

1

2

3

If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of
your organization, you can use the ccoctl aws create-all command to automate the creation of AWS
resources.

Otherwise, you can create the AWS resources individually. For more information, see "Creating AWS
resources individually".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

Extracted and prepared the ccoctl binary.

Procedure

1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release
image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

NOTE

This command might take a few moments to run.

3. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

$ ccoctl aws create-all \

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

147

1

2

3

4

5

Specify the name used to tag any cloud resources that are created for tracking.

Specify the AWS region in which cloud resources will be created.

Specify the directory containing the files for the component CredentialsRequest objects.

Optional: Specify the directory in which you want the ccoctl utility to create objects. By
default, the utility creates objects in the directory in which the commands are run.

Optional: By default, the ccoctl utility stores the OpenID Connect (OIDC) configuration
files in a public S3 bucket and uses the S3 URL as the public OIDC endpoint. To store the
OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider
through a public CloudFront distribution URL instead, use the --create-private-s3-bucket
parameter.

NOTE

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.6.4.2.2.2. Creating AWS resources individually

You can use the ccoctl tool to create AWS resources individually. This option might be useful for an

 --name=<name> \ 1
 --region=<aws_region> \ 2
 --credentials-requests-dir=<path_to_credentials_requests_directory> \ 3
 --output-dir=<path_to_ccoctl_output_dir> \ 4
 --create-private-s3-bucket 5

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

OpenShift Container Platform 4.19 Installing on AWS

148

1

You can use the ccoctl tool to create AWS resources individually. This option might be useful for an
organization that shares the responsibility for creating these resources among different users or
departments.

Otherwise, you can use the ccoctl aws create-all command to create the AWS resources automatically.
For more information, see "Creating AWS resources with a single command".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Some ccoctl commands make AWS API calls to create or modify AWS resources. You
can use the --dry-run flag to avoid making API calls. Using this flag creates JSON files on
the local file system instead. You can review and modify the JSON files and then apply
them with the AWS CLI tool using the --cli-input-json parameters.

Prerequisites

Extract and prepare the ccoctl binary.

Procedure

1. Generate the public and private RSA key files that are used to set up the OpenID Connect
provider for the cluster by running the following command:

Example output

where serviceaccount-signer.private and serviceaccount-signer.public are the generated
key files.

This command also creates a private key that the cluster requires during installation in
/<path_to_ccoctl_output_dir>/tls/bound-service-account-signing-key.key.

2. Create an OpenID Connect identity provider and S3 bucket on AWS by running the following
command:

<name> is the name used to tag any cloud resources that are created for tracking.

$ ccoctl aws create-key-pair

2021/04/13 11:01:02 Generating RSA keypair
2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.private
2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.public
2021/04/13 11:01:03 Copying signing key for use by installer

$ ccoctl aws create-identity-provider \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public 3

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

149

2

3

1

2

3

<aws-region> is the AWS region in which cloud resources will be created.

<path_to_ccoctl_output_dir> is the path to the public key file that the ccoctl aws
create-key-pair command generated.

Example output

where openid-configuration is a discovery document and keys.json is a JSON web key set file.

This command also creates a YAML configuration file in
/<path_to_ccoctl_output_dir>/manifests/cluster-authentication-02-config.yaml. This file
sets the issuer URL field for the service account tokens that the cluster generates, so that the
AWS IAM identity provider trusts the tokens.

3. Create IAM roles for each component in the cluster:

a. Set a $RELEASE_IMAGE variable with the release image from your installation file by
running the following command:

b. Extract the list of CredentialsRequest objects from the OpenShift Container Platform
release image:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

c. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

2021/04/13 11:16:09 Bucket <name>-oidc created
2021/04/13 11:16:10 OpenID Connect discovery document in the S3 bucket <name>-oidc at
.well-known/openid-configuration updated
2021/04/13 11:16:10 Reading public key
2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json
updated
2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::
<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \
2

 --to=<path_to_directory_for_credentials_requests> 3

OpenShift Container Platform 4.19 Installing on AWS

150

NOTE

For AWS environments that use alternative IAM API endpoints, such as
GovCloud, you must also specify your region with the --region parameter.

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

For each CredentialsRequest object, ccoctl creates an IAM role with a trust policy that is
tied to the specified OIDC identity provider, and a permissions policy as defined in each
CredentialsRequest object from the OpenShift Container Platform release image.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.6.4.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components,
you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the
correct directories for the installation program.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have configured the Cloud Credential Operator utility (ccoctl).

$ ccoctl aws create-iam-roles \
 --name=<name> \
 --region=<aws_region> \
 --credentials-requests-dir=<path_to_credentials_requests_directory> \
 --identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.
<aws_region>.amazonaws.com

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

151

You have created the cloud provider resources that are required for your cluster with the ccoctl
utility.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Copy the manifests that the ccoctl utility generated to the manifests directory that the
installation program created by running the following command:

4. Copy the tls directory that contains the private key to the installation directory:

3.6.5. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

IMPORTANT

You can run the create cluster command of the installation program only once, during
initial installation.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

You have verified that the cloud provider account on your host has the correct permissions to
deploy the cluster. An account with incorrect permissions causes the installation process to fail
with an error message that displays the missing permissions.

Procedure

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/

$ cp -a /<path_to_ccoctl_output_dir>/tls .

OpenShift Container Platform 4.19 Installing on AWS

152

1

2

1. In the directory that contains the installation program, initialize the cluster deployment by
running the following command:

For <installation_directory>, specify the location of your customized ./install-
config.yaml file.

To view different installation details, specify warn, debug, or error instead of info.

2. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you
used to install the cluster.

NOTE

The elevated permissions provided by the AdministratorAccess policy are
required only during installation.

Verification

When the cluster deployment completes successfully:

The terminal displays directions for accessing your cluster, including a link to the web console
and credentials for the kubeadmin user.

Credential information also outputs to <installation_directory>/.openshift_install.log.

IMPORTANT

Do not delete the installation program or the files that the installation program creates.
Both are required to delete the cluster.

Example output

IMPORTANT

$./openshift-install create cluster --dir <installation_directory> \ 1
 --log-level=info 2

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

153

1

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

3.6.6. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

Procedure

1. Export the kubeadmin credentials by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

Example output

3.6.7. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in
to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

$ oc whoami

system:admin

OpenShift Container Platform 4.19 Installing on AWS

154

Prerequisites

You have access to the installation host.

You completed a cluster installation and all cluster Operators are available.

Procedure

1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the
installation host:

NOTE

Alternatively, you can obtain the kubeadmin password from the
<installation_directory>/.openshift_install.log log file on the installation host.

2. List the OpenShift Container Platform web console route:

NOTE

Alternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log log file on the installation host.

Example output

3. Navigate to the route detailed in the output of the preceding command in a web browser and
log in as the kubeadmin user.

Additional resources

Accessing the web console

3.6.8. Next steps

Validating an installation.

Customize your cluster.

If necessary, you can Remote health reporting .

If necessary, you can remove cloud provider credentials .

After installing a cluster on AWS into an existing VPC, you can extend the AWS VPC cluster into
an AWS Outpost.

$ cat <installation_directory>/auth/kubeadmin-password

$ oc get routes -n openshift-console | grep 'console-openshift'

console console-openshift-console.apps.<cluster_name>.<base_domain> console
https reencrypt/Redirect None

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

155

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#available_cluster_customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#manually-removing-cloud-creds_changing-cloud-credentials-configuration

3.7. INSTALLING A PRIVATE CLUSTER ON AWS

In OpenShift Container Platform version 4.19, you can install a private cluster into an existing VPC on
Amazon Web Services (AWS). The installation program provisions the rest of the required
infrastructure, which you can further customize. To customize the installation, you modify parameters in
the install-config.yaml file before you install the cluster.

3.7.1. Prerequisites

You reviewed details about the OpenShift Container Platform installation and update
processes.

You read the documentation on selecting a cluster installation method and preparing it for
users.

You configured an AWS account to host the cluster.

IMPORTANT

If you have an AWS profile stored on your computer, it must not use a temporary
session token that you generated while using a multi-factor authentication
device. The cluster continues to use your current AWS credentials to create AWS
resources for the entire life of the cluster, so you must use long-term credentials.
To generate appropriate keys, see Managing Access Keys for IAM Users in the
AWS documentation. You can supply the keys when you run the installation
program.

If you use a firewall, you configured it to allow the sites that your cluster requires access to.

3.7.2. Private clusters

You can deploy a private OpenShift Container Platform cluster that does not expose external
endpoints. Private clusters are accessible from only an internal network and are not visible to the
internet.

By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints.
A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your
cluster. This means that the cluster resources are only accessible from your internal network and are not
visible to the internet.

IMPORTANT

If the cluster has any public subnets, load balancer services created by administrators
might be publicly accessible. To ensure cluster security, verify that these services are
explicitly annotated as private.

To deploy a private cluster, you must:

Use existing networking that meets your requirements. Your cluster resources might be shared
between other clusters on the network.

Deploy from a machine that has access to:

The API services for the cloud to which you provision.

OpenShift Container Platform 4.19 Installing on AWS

156

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall

The hosts on the network that you provision.

The internet to obtain installation media.

You can use any machine that meets these access requirements and follows your company’s guidelines.
For example, this machine can be a bastion host on your cloud network or a machine that has access to
the network through a VPN.

3.7.2.1. Private clusters in AWS

To create a private cluster on Amazon Web Services (AWS), you must provide an existing private VPC
and subnets to host the cluster. The installation program must also be able to resolve the DNS records
that the cluster requires. The installation program configures the Ingress Operator and API server for
access from only the private network.

The cluster still requires access to internet to access the AWS APIs.

The following items are not required or created when you install a private cluster:

Public subnets

Public load balancers, which support public ingress

A public Route 53 zone that matches the baseDomain for the cluster

The installation program does use the baseDomain that you specify to create a private Route 53 zone
and the required records for the cluster. The cluster is configured so that the Operators do not create
public records for the cluster and all cluster machines are placed in the private subnets that you specify.

3.7.2.1.1. Limitations

The ability to add public functionality to a private cluster is limited.

You cannot make the Kubernetes API endpoints public after installation without taking
additional actions, including creating public subnets in the VPC for each availability zone in use,
creating a public load balancer, and configuring the control plane security groups to allow traffic
from the internet on 6443 (Kubernetes API port).

If you use a public Service type load balancer, you must tag a public subnet in each availability
zone with kubernetes.io/cluster/<cluster-infra-id>: shared so that AWS can use them to
create public load balancers.

3.7.3. About using a custom VPC

In OpenShift Container Platform 4.19, you can deploy a cluster into existing subnets in an existing
Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OpenShift
Container Platform into an existing AWS VPC, you might be able to avoid limit constraints in new
accounts or more easily abide by the operational constraints that your company’s guidelines set. If you
cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use
this installation option.

Because the installation program cannot know what other components are also in your existing subnets,
it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the
subnets that you install your cluster to yourself.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

157

3.7.3.1. Requirements for using your VPC

The installation program no longer creates the following components:

Internet gateways

NAT gateways

Subnets

Route tables

VPCs

VPC DHCP options

VPC endpoints

NOTE

The installation program requires that you use the cloud-provided DNS server. Using a
custom DNS server is not supported and causes the installation to fail.

If you use a custom VPC, you must correctly configure it and its subnets for the installation program and
the cluster to use. See Create a VPC in the Amazon Web Services documentation for more information
about AWS VPC console wizard configurations and creating and managing an AWS VPC.

The installation program cannot:

Subdivide network ranges for the cluster to use.

Set route tables for the subnets.

Set VPC options like DHCP.

You must complete these tasks before you install the cluster. See VPC networking components and
Route tables for your VPC for more information on configuring networking in an AWS VPC.

Your VPC must meet the following characteristics:

The VPC must not use the kubernetes.io/cluster/.*: owned, Name, and openshift.io/cluster
tags.
The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared
tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in
the AWS documentation to confirm that the installation program can add a tag to each subnet
that you specify. You cannot use a Name tag, because it overlaps with the EC2 Name field and
the installation fails.

If you want to extend your OpenShift Container Platform cluster into an AWS Outpost and have
an existing Outpost subnet, the existing subnet must use the
kubernetes.io/cluster/unmanaged: true tag. If you do not apply this tag, the installation might
fail due to the Cloud Controller Manager creating a service load balancer in the Outpost subnet,
which is an unsupported configuration.

You must enable the enableDnsSupport and enableDnsHostnames attributes in your VPC, so

OpenShift Container Platform 4.19 Installing on AWS

158

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Networking.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions

You must enable the enableDnsSupport and enableDnsHostnames attributes in your VPC, so
that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s
internal DNS records. See DNS Support in Your VPC in the AWS documentation.
If you prefer to use your own Route 53 hosted private zone, you must associate the existing
hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using
the platform.aws.hostedZone and platform.aws.hostedZoneRole fields in the install-
config.yaml file. You can use a private hosted zone from another account by sharing it with the
account where you install the cluster. If you use a private hosted zone from another account, you
must use the Passthrough or Manual credentials mode.

If you are working in a disconnected environment, you are unable to reach the public IP addresses for
EC2, ELB, and S3 endpoints. Depending on the level to which you want to restrict internet traffic during
the installation, the following configuration options are available:

3.7.3.1.1. Option 1: Create VPC endpoints

Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

ec2.<aws_region>.amazonaws.com

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com

With this option, network traffic remains private between your VPC and the required AWS services.

3.7.3.1.2. Option 2: Create a proxy without VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet
traffic goes through the proxy to reach the required AWS services.

3.7.3.1.3. Option 3: Create a proxy with VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints.
Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

ec2.<aws_region>.amazonaws.com

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com

When configuring the proxy in the install-config.yaml file, add these endpoints to the noProxy field.
With this option, the proxy prevents the cluster from accessing the internet directly. However, network
traffic remains private between your VPC and the required AWS services.

Required VPC components

You must provide a suitable VPC and subnets that allow communication to your machines.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

159

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support

Compone
nt

AWS type Description

VPC
AWS::EC2::VPC

AWS::EC2::VPCEndpoint

You must provide a public VPC for the
cluster to use. The VPC uses an endpoint
that references the route tables for each
subnet to improve communication with
the registry that is hosted in S3.

Public
subnets AWS::EC2::Subnet

AWS::EC2::SubnetNetworkAclAss
ociation

Your VPC must have public subnets for
between 1 and 3 availability zones and
associate them with appropriate Ingress
rules.

Internet
gateway AWS::EC2::InternetGateway

AWS::EC2::VPCGatewayAttachme
nt

AWS::EC2::RouteTable

AWS::EC2::Route

AWS::EC2::SubnetRouteTableAss
ociation

AWS::EC2::NatGateway

AWS::EC2::EIP

You must have a public internet gateway,
with public routes, attached to the VPC.
In the provided templates, each public
subnet has a NAT gateway with an EIP
address. These NAT gateways allow
cluster resources, like private subnet
instances, to reach the internet and are
not required for some restricted network
or proxy scenarios.

Network
access
control

AWS::EC2::NetworkAcl

AWS::EC2::NetworkAclEntry

You must allow the VPC to access the
following ports:

Port Reason

80 Inbound HTTP
traffic

443 Inbound HTTPS
traffic

22 Inbound SSH
traffic

1024 - 65535 Inbound
ephemeral traffic

0 - 65535 Outbound
ephemeral traffic

OpenShift Container Platform 4.19 Installing on AWS

160

Private
subnets AWS::EC2::Subnet

AWS::EC2::RouteTable

AWS::EC2::SubnetRouteTableAss
ociation

Your VPC can have private subnets. The
provided CloudFormation templates can
create private subnets for between 1 and
3 availability zones. If you use private
subnets, you must provide appropriate
routes and tables for them.

Compone
nt

AWS type Description

3.7.3.2. VPC validation

To ensure that the subnets that you provide are suitable, the installation program confirms the following
data:

All the subnets that you specify exist.

You provide private subnets.

The subnet CIDRs belong to the machine CIDR that you specified.

You provide subnets for each availability zone. Each availability zone contains no more than one
public and one private subnet. If you use a private cluster, provide only a private subnet for each
availability zone. Otherwise, provide exactly one public and private subnet for each availability
zone.

You provide a public subnet for each private subnet availability zone. Machines are not
provisioned in availability zones that you do not provide private subnets for.

If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the
OpenShift Container Platform cluster from a VPC, the kubernetes.io/cluster/.*: shared tag is removed
from the subnets that it used.

3.7.3.3. Division of permissions

Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required
for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics
the division of permissions that you might have at your company: some individuals can create different
resource in your clouds than others. For example, you might be able to create application-specific items,
like instances, buckets, and load balancers, but not networking-related components such as VPCs,
subnets, or ingress rules.

The AWS credentials that you use when you create your cluster do not need the networking permissions
that are required to make VPCs and core networking components within the VPC, such as subnets,
routing tables, internet gateways, NAT, and VPN. You still need permission to make the application
resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and
nodes.

3.7.3.4. Isolation between clusters

If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is
reduced in the following ways:

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

161

You can install multiple OpenShift Container Platform clusters in the same VPC.

ICMP ingress is allowed from the entire network.

TCP 22 ingress (SSH) is allowed to the entire network.

Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.

Control plane TCP 22623 ingress (MCS) is allowed to the entire network.

3.7.3.5. Optional: AWS security groups

By default, the installation program creates and attaches security groups to control plane and compute
machines. The rules associated with the default security groups cannot be modified.

However, you can apply additional existing AWS security groups, which are associated with your existing
VPC, to control plane and compute machines. Applying custom security groups can help you meet the
security needs of your organization, in such cases where you need to control the incoming or outgoing
traffic of these machines.

As part of the installation process, you apply custom security groups by modifying the install-
config.yaml file before deploying the cluster.

For more information, see "Applying existing AWS security groups to the cluster".

3.7.4. Manually creating the installation configuration file

To customise your OpenShift Container Platform deployment and meet specific network requirements,
manually create the installation configuration file. This ensures that the installation program uses your
tailored settings rather than default values during the setup process.

Prerequisites

You have an SSH public key on your local machine for use with the installation program. You can
use the key for SSH authentication onto your cluster nodes for debugging and disaster
recovery.

You have obtained the OpenShift Container Platform installation program and the pull secret
for your cluster.

Procedure

1. Create an installation directory to store your required installation assets in:

IMPORTANT

You must create a directory. Some installation assets, such as bootstrap X.509
certificates have short expiration intervals, so you must not reuse an installation
directory. If you want to reuse individual files from another cluster installation,
you can copy them into your directory. However, the file names for the
installation assets might change between releases. Use caution when copying
installation files from an earlier OpenShift Container Platform version.

$ mkdir <installation_directory>

OpenShift Container Platform 4.19 Installing on AWS

162

2. Customize the provided sample install-config.yaml file template and save the file in the
<installation_directory>.

NOTE

You must name this configuration file install-config.yaml.

3. Back up the install-config.yaml file so that you can use it to install many clusters.

IMPORTANT

Back up the install-config.yaml file now, because the installation process
consumes the file in the next step.

Additional resources

Installation configuration parameters for AWS

3.7.4.1. Minimum resource requirements for cluster installation

Each created cluster must meet minimum requirements so that the cluster runs as expected.

Table 3.15. Minimum resource requirements

Machine Operating
System

vCPU [1] Virtual RAM Storage Input/Output
Per Second
(IOPS)[2]

Bootstrap RHCOS 4 16 GB 100 GB 300

Control plane RHCOS 4 16 GB 100 GB 300

Compute RHCOS, RHEL
8.6 and later
[3]

2 8 GB 100 GB 300

1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the
corresponding ratio: (threads per core × cores) × sockets = vCPUs.

2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster
storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms
p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so
you might need to over-allocate storage volume to obtain sufficient performance.

3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your
cluster, you take responsibility for all operating system life cycle management and maintenance,
including performing system updates, applying patches, and completing all other required tasks.
Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container
Platform 4.10 and later.

NOTE

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

163

NOTE

For OpenShift Container Platform version 4.19, RHCOS is based on RHEL version 9.6,
which updates the micro-architecture requirements. The following list contains the
minimum instruction set architectures (ISA) that each architecture requires:

x86-64 architecture requires x86-64-v2 ISA

ARM64 architecture requires ARMv8.0-A ISA

IBM Power architecture requires Power 9 ISA

s390x architecture requires z14 ISA

For more information, see Architectures (RHEL documentation).

If an instance type for your platform meets the minimum requirements for cluster machines, it is
supported to use in OpenShift Container Platform.

Additional resources

Optimizing storage

3.7.4.2. Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container
Platform.

NOTE

Use the machine types included in the following charts for your AWS instances. If you use
an instance type that is not listed in the chart, ensure that the instance size you use
matches the minimum resource requirements that are listed in the section named
"Minimum resource requirements for cluster installation".

Example 3.8. Machine types based on 64-bit x86 architecture

c4.*

c5.*

c5a.*

i3.*

m4.*

m5.*

m5a.*

m6a.*

m6i.*

OpenShift Container Platform 4.19 Installing on AWS

164

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.2_release_notes/index#architectures
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/scalability_and_performance/#optimizing-storage

r4.*

r5.*

r5a.*

r6i.*

t3.*

t3a.*

3.7.4.3. Tested instance types for AWS on 64-bit ARM infrastructures

The following Amazon Web Services (AWS) 64-bit ARM instance types have been tested with
OpenShift Container Platform.

NOTE

Use the machine types included in the following charts for your AWS ARM instances. If
you use an instance type that is not listed in the chart, ensure that the instance size you
use matches the minimum resource requirements that are listed in "Minimum resource
requirements for cluster installation".

Example 3.9. Machine types based on 64-bit ARM architecture

c6g.*

c7g.*

m6g.*

m7g.*

r8g.*

3.7.4.4. Sample customized install-config.yaml file for AWS

You can customize the installation configuration file (install-config.yaml) to specify more details about
your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

IMPORTANT

This sample YAML file is provided for reference only. You must obtain your install-
config.yaml file by using the installation program and modify it. For a full list and
description of all installation configuration parameters, see Installation configuration
parameters for AWS.

Sample install-config.yaml file for AWS

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

165

1

2

3

4

5

Parameters at the first level of indentation apply to the cluster globally.

The controlPlane stanza applies to control plane machines.

The compute stanza applies to compute machines.

The networking stanza applies to the cluster networking configuration. If you do not provide
networking values, the installation program provides default values.

The platform stanza applies to the infrastructure platform that hosts the cluster.

Additional resources

Installation configuration parameters for AWS

3.7.4.5. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to

apiVersion: v1 1
baseDomain: example.com
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'
metadata:
 name: example-cluster
controlPlane: 2
 name: master
 platform:
 aws:
 type: m6i.xlarge
 replicas: 3
compute: 3
- name: worker
 platform:
 aws:
 type: c5.4xlarge
 replicas: 3
networking: 4
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
platform: 5
 aws:
 region: us-west-2

OpenShift Container Platform 4.19 Installing on AWS

166

1

2

3

4

5

hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud, Microsoft
Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC
endpoints to your VPC, you must add these endpoints to the noProxy field.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle config map that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the
trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

Optional: The policy to determine the configuration of the Proxy object to reference the
user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and
Always. Use Proxyonly to reference the user-ca-bundle config map only when

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.
<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

167

http/https proxy is configured. Use Always to always reference the user-ca-bundle
config map. The default value is Proxyonly.

NOTE

The installation program does not support the proxy readinessEndpoints field.

NOTE

If the installer times out, restart and then complete the deployment by using the
wait-for command of the installer. For example:

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

3.7.4.6. Applying existing AWS security groups to the cluster

Applying existing AWS security groups to your control plane and compute machines can help you meet
the security needs of your organization, in such cases where you need to control the incoming or
outgoing traffic of these machines.

Prerequisites

You have created the security groups in AWS. For more information, see the AWS
documentation about working with security groups.

The security groups must be associated with the existing VPC that you are deploying the cluster
to. The security groups cannot be associated with another VPC.

You have an existing install-config.yaml file.

Procedure

1. In the install-config.yaml file, edit the compute.platform.aws.additionalSecurityGroupIDs
parameter to specify one or more custom security groups for your compute machines.

2. Edit the controlPlane.platform.aws.additionalSecurityGroupIDs parameter to specify one or
more custom security groups for your control plane machines.

3. Save the file and reference it when deploying the cluster.

Sample install-config.yaml file that specifies custom security groups

$./openshift-install wait-for install-complete --log-level debug

OpenShift Container Platform 4.19 Installing on AWS

168

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html

1

2

Specify the name of the security group as it appears in the Amazon EC2 console, including the sg
prefix.

Specify subnets for each availability zone that your cluster uses.

3.7.5. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the
credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the
following alternatives:

To manage long-term cloud credentials manually, follow the procedure in Manually creating
long-term credentials.

To implement short-term credentials that are managed outside the cluster for individual
components, follow the procedures in Configuring an AWS cluster to use short-term
credentials.

3.7.5.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in
environments where the cloud identity and access management (IAM) APIs are not reachable, or the
administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file

...
compute:
- hyperthreading: Enabled
 name: worker
 platform:
 aws:
 additionalSecurityGroupIDs:
 - sg-1 1
 - sg-2
 replicas: 3
controlPlane:
 hyperthreading: Enabled
 name: master
 platform:
 aws:
 additionalSecurityGroupIDs:
 - sg-3
 - sg-4
 replicas: 3
platform:
 aws:
 region: us-east-1
 subnets: 2
 - subnet-1
 - subnet-2
 - subnet-3

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

169

1

2

3

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container
Platform release image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

This command creates a YAML file for each CredentialsRequest object.

Sample CredentialsRequest object

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1

OpenShift Container Platform 4.19 Installing on AWS

170

5. Create YAML files for secrets in the openshift-install manifests directory that you generated
previously. The secrets must be stored using the namespace and secret name defined in the
spec.secretRef for each CredentialsRequest object.

Sample CredentialsRequest object with secrets

Sample Secret object

IMPORTANT

Before upgrading a cluster that uses manually maintained credentials, you must ensure
that the CCO is in an upgradeable state.

 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - iam:GetUser
 - iam:GetUserPolicy
 - iam:ListAccessKeys
 resource: "*"
 ...

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - s3:CreateBucket
 - s3:DeleteBucket
 resource: "*"
 ...
 secretRef:
 name: <component_secret>
 namespace: <component_namespace>
 ...

apiVersion: v1
kind: Secret
metadata:
 name: <component_secret>
 namespace: <component_namespace>
data:
 aws_access_key_id: <base64_encoded_aws_access_key_id>
 aws_secret_access_key: <base64_encoded_aws_secret_access_key>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

171

3.7.5.2. Configuring an AWS cluster to use short-term credentials

To install a cluster that is configured to use the AWS Security Token Service (STS), you must configure
the CCO utility and create the required AWS resources for your cluster.

3.7.5.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential
Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

NOTE

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift CLI (oc).

You have created an AWS account for the ccoctl utility to use with the following permissions:
Required iam permissions

iam:CreateOpenIDConnectProvider

iam:CreateRole

iam:DeleteOpenIDConnectProvider

iam:DeleteRole

iam:DeleteRolePolicy

iam:GetOpenIDConnectProvider

iam:GetRole

iam:GetUser

iam:ListOpenIDConnectProviders

iam:ListRolePolicies

iam:ListRoles

iam:PutRolePolicy

iam:TagOpenIDConnectProvider

iam:TagRole

Required s3 permissions

s3:CreateBucket

OpenShift Container Platform 4.19 Installing on AWS

172

s3:DeleteBucket

s3:DeleteObject

s3:GetBucketAcl

s3:GetBucketTagging

s3:GetObject

s3:GetObjectAcl

s3:GetObjectTagging

s3:ListBucket

s3:PutBucketAcl

s3:PutBucketPolicy

s3:PutBucketPublicAccessBlock

s3:PutBucketTagging

s3:PutObject

s3:PutObjectAcl

s3:PutObjectTagging

Required cloudfront permissions

cloudfront:ListCloudFrontOriginAccessIdentities

cloudfront:ListDistributions

cloudfront:ListTagsForResource

If you plan to store the OIDC configuration in a private S3 bucket that is accessed by the IAM
identity provider through a public CloudFront distribution URL, the AWS account that runs the
ccoctl utility requires the following additional permissions:

cloudfront:CreateCloudFrontOriginAccessIdentity

cloudfront:CreateDistribution

cloudfront:DeleteCloudFrontOriginAccessIdentity

cloudfront:DeleteDistribution

cloudfront:GetCloudFrontOriginAccessIdentity

cloudfront:GetCloudFrontOriginAccessIdentityConfig

cloudfront:GetDistribution

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

173

1

cloudfront:TagResource

cloudfront:UpdateDistribution

NOTE

These additional permissions support the use of the --create-private-s3-bucket
option when processing credentials requests with the ccoctl aws create-all
command.

Procedure

1. Set a variable for the OpenShift Container Platform release image by running the following
command:

2. Obtain the CCO container image from the OpenShift Container Platform release image by
running the following command:

NOTE

Ensure that the architecture of the $RELEASE_IMAGE matches the
architecture of the environment in which you will use the ccoctl tool.

3. Extract the ccoctl binary from the CCO container image within the OpenShift Container
Platform release image by running the following command:

For <rhel_version>, specify the value that corresponds to the version of Red Hat
Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by
default. The following values are valid:

rhel8: Specify this value for hosts that use RHEL 8.

rhel9: Specify this value for hosts that use RHEL 9.

NOTE

The ccoctl binary is created in the directory from where you executed the
command and not in /usr/bin/. You must rename the directory or move the
ccoctl.<rhel_version> binary to ccoctl.

4. Change the permissions to make ccoctl executable by running the following command:

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator'
$RELEASE_IMAGE -a ~/.pull-secret)

$ oc image extract $CCO_IMAGE \
 --file="/usr/bin/ccoctl.<rhel_version>" \ 1
 -a ~/.pull-secret

OpenShift Container Platform 4.19 Installing on AWS

174

Verification

To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run
the command, for example:

Example output

3.7.5.2.2. Creating AWS resources with the Cloud Credential Operator utility

You have the following options when creating AWS resources:

You can use the ccoctl aws create-all command to create the AWS resources automatically.
This is the quickest way to create the resources. See Creating AWS resources with a single
command.

If you need to review the JSON files that the ccoctl tool creates before modifying AWS
resources, or if the process the ccoctl tool uses to create AWS resources automatically does
not meet the requirements of your organization, you can create the AWS resources individually.
See Creating AWS resources individually .

3.7.5.2.2.1. Creating AWS resources with a single command

If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of
your organization, you can use the ccoctl aws create-all command to automate the creation of AWS
resources.

Otherwise, you can create the AWS resources individually. For more information, see "Creating AWS
resources individually".

NOTE

$ chmod 775 ccoctl

$./ccoctl

OpenShift credentials provisioning tool

Usage:
 ccoctl [command]

Available Commands:
 aws Manage credentials objects for AWS cloud
 azure Manage credentials objects for Azure
 gcp Manage credentials objects for Google cloud
 help Help about any command
 ibmcloud Manage credentials objects for {ibm-cloud-title}
 nutanix Manage credentials objects for Nutanix

Flags:
 -h, --help help for ccoctl

Use "ccoctl [command] --help" for more information about a command.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

175

1

2

3

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

Extracted and prepared the ccoctl binary.

Procedure

1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release
image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

NOTE

This command might take a few moments to run.

3. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

$ ccoctl aws create-all \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --credentials-requests-dir=<path_to_credentials_requests_directory> \ 3
 --output-dir=<path_to_ccoctl_output_dir> \ 4
 --create-private-s3-bucket 5

OpenShift Container Platform 4.19 Installing on AWS

176

1

2

3

4

5

Specify the name used to tag any cloud resources that are created for tracking.

Specify the AWS region in which cloud resources will be created.

Specify the directory containing the files for the component CredentialsRequest objects.

Optional: Specify the directory in which you want the ccoctl utility to create objects. By
default, the utility creates objects in the directory in which the commands are run.

Optional: By default, the ccoctl utility stores the OpenID Connect (OIDC) configuration
files in a public S3 bucket and uses the S3 URL as the public OIDC endpoint. To store the
OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider
through a public CloudFront distribution URL instead, use the --create-private-s3-bucket
parameter.

NOTE

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.7.5.2.2.2. Creating AWS resources individually

You can use the ccoctl tool to create AWS resources individually. This option might be useful for an
organization that shares the responsibility for creating these resources among different users or
departments.

Otherwise, you can use the ccoctl aws create-all command to create the AWS resources automatically.
For more information, see "Creating AWS resources with a single command".

NOTE

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

177

1

2

3

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Some ccoctl commands make AWS API calls to create or modify AWS resources. You
can use the --dry-run flag to avoid making API calls. Using this flag creates JSON files on
the local file system instead. You can review and modify the JSON files and then apply
them with the AWS CLI tool using the --cli-input-json parameters.

Prerequisites

Extract and prepare the ccoctl binary.

Procedure

1. Generate the public and private RSA key files that are used to set up the OpenID Connect
provider for the cluster by running the following command:

Example output

where serviceaccount-signer.private and serviceaccount-signer.public are the generated
key files.

This command also creates a private key that the cluster requires during installation in
/<path_to_ccoctl_output_dir>/tls/bound-service-account-signing-key.key.

2. Create an OpenID Connect identity provider and S3 bucket on AWS by running the following
command:

<name> is the name used to tag any cloud resources that are created for tracking.

<aws-region> is the AWS region in which cloud resources will be created.

<path_to_ccoctl_output_dir> is the path to the public key file that the ccoctl aws
create-key-pair command generated.

Example output

$ ccoctl aws create-key-pair

2021/04/13 11:01:02 Generating RSA keypair
2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.private
2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.public
2021/04/13 11:01:03 Copying signing key for use by installer

$ ccoctl aws create-identity-provider \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public 3

OpenShift Container Platform 4.19 Installing on AWS

178

1

2

3

where openid-configuration is a discovery document and keys.json is a JSON web key set file.

This command also creates a YAML configuration file in
/<path_to_ccoctl_output_dir>/manifests/cluster-authentication-02-config.yaml. This file
sets the issuer URL field for the service account tokens that the cluster generates, so that the
AWS IAM identity provider trusts the tokens.

3. Create IAM roles for each component in the cluster:

a. Set a $RELEASE_IMAGE variable with the release image from your installation file by
running the following command:

b. Extract the list of CredentialsRequest objects from the OpenShift Container Platform
release image:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

c. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

NOTE

2021/04/13 11:16:09 Bucket <name>-oidc created
2021/04/13 11:16:10 OpenID Connect discovery document in the S3 bucket <name>-oidc at
.well-known/openid-configuration updated
2021/04/13 11:16:10 Reading public key
2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json
updated
2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::
<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \
2

 --to=<path_to_directory_for_credentials_requests> 3

$ ccoctl aws create-iam-roles \
 --name=<name> \
 --region=<aws_region> \
 --credentials-requests-dir=<path_to_credentials_requests_directory> \
 --identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.
<aws_region>.amazonaws.com

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

179

NOTE

For AWS environments that use alternative IAM API endpoints, such as
GovCloud, you must also specify your region with the --region parameter.

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

For each CredentialsRequest object, ccoctl creates an IAM role with a trust policy that is
tied to the specified OIDC identity provider, and a permissions policy as defined in each
CredentialsRequest object from the OpenShift Container Platform release image.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.7.5.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components,
you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the
correct directories for the installation program.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have configured the Cloud Credential Operator utility (ccoctl).

You have created the cloud provider resources that are required for your cluster with the ccoctl
utility.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

OpenShift Container Platform 4.19 Installing on AWS

180

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Copy the manifests that the ccoctl utility generated to the manifests directory that the
installation program created by running the following command:

4. Copy the tls directory that contains the private key to the installation directory:

3.7.6. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

IMPORTANT

You can run the create cluster command of the installation program only once, during
initial installation.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

You have verified that the cloud provider account on your host has the correct permissions to
deploy the cluster. An account with incorrect permissions causes the installation process to fail
with an error message that displays the missing permissions.

Procedure

1. In the directory that contains the installation program, initialize the cluster deployment by
running the following command:

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/

$ cp -a /<path_to_ccoctl_output_dir>/tls .

$./openshift-install create cluster --dir <installation_directory> \ 1
 --log-level=info 2

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

181

1

2

For <installation_directory>, specify the location of your customized ./install-
config.yaml file.

To view different installation details, specify warn, debug, or error instead of info.

2. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you
used to install the cluster.

NOTE

The elevated permissions provided by the AdministratorAccess policy are
required only during installation.

Verification

When the cluster deployment completes successfully:

The terminal displays directions for accessing your cluster, including a link to the web console
and credentials for the kubeadmin user.

Credential information also outputs to <installation_directory>/.openshift_install.log.

IMPORTANT

Do not delete the installation program or the files that the installation program creates.
Both are required to delete the cluster.

Example output

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

OpenShift Container Platform 4.19 Installing on AWS

182

1

3.7.7. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

Procedure

1. Export the kubeadmin credentials by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

Example output

3.7.8. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in
to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

You have access to the installation host.

You completed a cluster installation and all cluster Operators are available.

Procedure

1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the
installation host:

NOTE

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

$ oc whoami

system:admin

$ cat <installation_directory>/auth/kubeadmin-password

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

183

NOTE

Alternatively, you can obtain the kubeadmin password from the
<installation_directory>/.openshift_install.log log file on the installation host.

2. List the OpenShift Container Platform web console route:

NOTE

Alternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log log file on the installation host.

Example output

3. Navigate to the route detailed in the output of the preceding command in a web browser and
log in as the kubeadmin user.

Additional resources

Accessing the web console

3.7.9. Next steps

Validating an installation.

Customize your cluster.

If necessary, you can Remote health reporting .

If necessary, you can remove cloud provider credentials .

3.8. INSTALLING A CLUSTER ON AWS INTO A GOVERNMENT REGION

In OpenShift Container Platform version 4.19, you can install a cluster on Amazon Web Services (AWS)
into a government region. To configure the region, modify parameters in the install-config.yaml file
before you install the cluster.

3.8.1. Prerequisites

You reviewed details about the OpenShift Container Platform installation and update
processes.

You read the documentation on selecting a cluster installation method and preparing it for
users.

You configured an AWS account to host the cluster.

IMPORTANT

$ oc get routes -n openshift-console | grep 'console-openshift'

console console-openshift-console.apps.<cluster_name>.<base_domain> console
https reencrypt/Redirect None

OpenShift Container Platform 4.19 Installing on AWS

184

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#available_cluster_customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#manually-removing-cloud-creds_changing-cloud-credentials-configuration
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing

IMPORTANT

If you have an AWS profile stored on your computer, it must not use a temporary
session token that you generated while using a multi-factor authentication
device. The cluster continues to use your current AWS credentials to create AWS
resources for the entire life of the cluster, so you must use long-term credentials.
To generate appropriate keys, see Managing Access Keys for IAM Users in the
AWS documentation. You can supply the keys when you run the installation
program.

If you use a firewall, you configured it to allow the sites that your cluster requires access to.

3.8.2. AWS government regions

OpenShift Container Platform supports deploying a cluster to an AWS GovCloud (US) region.

The following AWS GovCloud partitions are supported:

us-gov-east-1

us-gov-west-1

3.8.3. Installation requirements

Before you can install the cluster, you must:

Provide an existing private AWS VPC and subnets to host the cluster.
Public zones are not supported in Route 53 in AWS GovCloud. As a result, clusters must be
private when you deploy to an AWS government region.

Manually create the installation configuration file (install-config.yaml).

3.8.4. Private clusters

You can deploy a private OpenShift Container Platform cluster that does not expose external
endpoints. Private clusters are accessible from only an internal network and are not visible to the
internet.

NOTE

Public zones are not supported in Route 53 in an AWS GovCloud Region. Therefore,
clusters must be private if they are deployed to an AWS GovCloud Region.

By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints.
A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your
cluster. This means that the cluster resources are only accessible from your internal network and are not
visible to the internet.

IMPORTANT

If the cluster has any public subnets, load balancer services created by administrators
might be publicly accessible. To ensure cluster security, verify that these services are
explicitly annotated as private.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

185

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall
https://aws.amazon.com/govcloud-us

To deploy a private cluster, you must:

Use existing networking that meets your requirements. Your cluster resources might be shared
between other clusters on the network.

Deploy from a machine that has access to:

The API services for the cloud to which you provision.

The hosts on the network that you provision.

The internet to obtain installation media.

You can use any machine that meets these access requirements and follows your company’s guidelines.
For example, this machine can be a bastion host on your cloud network or a machine that has access to
the network through a VPN.

3.8.4.1. Private clusters in AWS

To create a private cluster on Amazon Web Services (AWS), you must provide an existing private VPC
and subnets to host the cluster. The installation program must also be able to resolve the DNS records
that the cluster requires. The installation program configures the Ingress Operator and API server for
access from only the private network.

The cluster still requires access to internet to access the AWS APIs.

The following items are not required or created when you install a private cluster:

Public subnets

Public load balancers, which support public ingress

A public Route 53 zone that matches the baseDomain for the cluster

The installation program does use the baseDomain that you specify to create a private Route 53 zone
and the required records for the cluster. The cluster is configured so that the Operators do not create
public records for the cluster and all cluster machines are placed in the private subnets that you specify.

3.8.4.1.1. Limitations

The ability to add public functionality to a private cluster is limited.

You cannot make the Kubernetes API endpoints public after installation without taking
additional actions, including creating public subnets in the VPC for each availability zone in use,
creating a public load balancer, and configuring the control plane security groups to allow traffic
from the internet on 6443 (Kubernetes API port).

If you use a public Service type load balancer, you must tag a public subnet in each availability
zone with kubernetes.io/cluster/<cluster-infra-id>: shared so that AWS can use them to
create public load balancers.

3.8.5. About using a custom VPC

In OpenShift Container Platform 4.19, you can deploy a cluster into existing subnets in an existing
Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OpenShift
Container Platform into an existing AWS VPC, you might be able to avoid limit constraints in new

OpenShift Container Platform 4.19 Installing on AWS

186

accounts or more easily abide by the operational constraints that your company’s guidelines set. If you
cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use
this installation option.

Because the installation program cannot know what other components are also in your existing subnets,
it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the
subnets that you install your cluster to yourself.

3.8.5.1. Requirements for using your VPC

The installation program no longer creates the following components:

Internet gateways

NAT gateways

Subnets

Route tables

VPCs

VPC DHCP options

VPC endpoints

NOTE

The installation program requires that you use the cloud-provided DNS server. Using a
custom DNS server is not supported and causes the installation to fail.

If you use a custom VPC, you must correctly configure it and its subnets for the installation program and
the cluster to use. See Create a VPC in the Amazon Web Services documentation for more information
about AWS VPC console wizard configurations and creating and managing an AWS VPC.

The installation program cannot:

Subdivide network ranges for the cluster to use.

Set route tables for the subnets.

Set VPC options like DHCP.

You must complete these tasks before you install the cluster. See VPC networking components and
Route tables for your VPC for more information on configuring networking in an AWS VPC.

Your VPC must meet the following characteristics:

The VPC must not use the kubernetes.io/cluster/.*: owned, Name, and openshift.io/cluster
tags.
The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared
tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in
the AWS documentation to confirm that the installation program can add a tag to each subnet
that you specify. You cannot use a Name tag, because it overlaps with the EC2 Name field and
the installation fails.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

187

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Networking.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions

If you want to extend your OpenShift Container Platform cluster into an AWS Outpost and have
an existing Outpost subnet, the existing subnet must use the
kubernetes.io/cluster/unmanaged: true tag. If you do not apply this tag, the installation might
fail due to the Cloud Controller Manager creating a service load balancer in the Outpost subnet,
which is an unsupported configuration.

You must enable the enableDnsSupport and enableDnsHostnames attributes in your VPC, so
that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s
internal DNS records. See DNS Support in Your VPC in the AWS documentation.
If you prefer to use your own Route 53 hosted private zone, you must associate the existing
hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using
the platform.aws.hostedZone and platform.aws.hostedZoneRole fields in the install-
config.yaml file. You can use a private hosted zone from another account by sharing it with the
account where you install the cluster. If you use a private hosted zone from another account, you
must use the Passthrough or Manual credentials mode.

If you are working in a disconnected environment, you are unable to reach the public IP addresses for
EC2, ELB, and S3 endpoints. Depending on the level to which you want to restrict internet traffic during
the installation, the following configuration options are available:

3.8.5.1.1. Option 1: Create VPC endpoints

Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

ec2.<aws_region>.amazonaws.com

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com

With this option, network traffic remains private between your VPC and the required AWS services.

3.8.5.1.2. Option 2: Create a proxy without VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet
traffic goes through the proxy to reach the required AWS services.

3.8.5.1.3. Option 3: Create a proxy with VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints.
Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

ec2.<aws_region>.amazonaws.com

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com

When configuring the proxy in the install-config.yaml file, add these endpoints to the noProxy field.
With this option, the proxy prevents the cluster from accessing the internet directly. However, network
traffic remains private between your VPC and the required AWS services.

Required VPC components

OpenShift Container Platform 4.19 Installing on AWS

188

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support

You must provide a suitable VPC and subnets that allow communication to your machines.

Compone
nt

AWS type Description

VPC
AWS::EC2::VPC

AWS::EC2::VPCEndpoint

You must provide a public VPC for the
cluster to use. The VPC uses an endpoint
that references the route tables for each
subnet to improve communication with
the registry that is hosted in S3.

Public
subnets AWS::EC2::Subnet

AWS::EC2::SubnetNetworkAclAss
ociation

Your VPC must have public subnets for
between 1 and 3 availability zones and
associate them with appropriate Ingress
rules.

Internet
gateway AWS::EC2::InternetGateway

AWS::EC2::VPCGatewayAttachme
nt

AWS::EC2::RouteTable

AWS::EC2::Route

AWS::EC2::SubnetRouteTableAss
ociation

AWS::EC2::NatGateway

AWS::EC2::EIP

You must have a public internet gateway,
with public routes, attached to the VPC.
In the provided templates, each public
subnet has a NAT gateway with an EIP
address. These NAT gateways allow
cluster resources, like private subnet
instances, to reach the internet and are
not required for some restricted network
or proxy scenarios.

Network
access
control

AWS::EC2::NetworkAcl

AWS::EC2::NetworkAclEntry

You must allow the VPC to access the
following ports:

Port Reason

80 Inbound HTTP
traffic

443 Inbound HTTPS
traffic

22 Inbound SSH
traffic

1024 - 65535 Inbound
ephemeral traffic

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

189

0 - 65535 Outbound
ephemeral traffic

Private
subnets AWS::EC2::Subnet

AWS::EC2::RouteTable

AWS::EC2::SubnetRouteTableAss
ociation

Your VPC can have private subnets. The
provided CloudFormation templates can
create private subnets for between 1 and
3 availability zones. If you use private
subnets, you must provide appropriate
routes and tables for them.

Compone
nt

AWS type Description

3.8.5.2. VPC validation

To ensure that the subnets that you provide are suitable, the installation program confirms the following
data:

All the subnets that you specify exist.

You provide private subnets.

The subnet CIDRs belong to the machine CIDR that you specified.

You provide subnets for each availability zone. Each availability zone contains no more than one
public and one private subnet. If you use a private cluster, provide only a private subnet for each
availability zone. Otherwise, provide exactly one public and private subnet for each availability
zone.

You provide a public subnet for each private subnet availability zone. Machines are not
provisioned in availability zones that you do not provide private subnets for.

If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the
OpenShift Container Platform cluster from a VPC, the kubernetes.io/cluster/.*: shared tag is removed
from the subnets that it used.

3.8.5.3. Division of permissions

Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required
for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics
the division of permissions that you might have at your company: some individuals can create different
resource in your clouds than others. For example, you might be able to create application-specific items,
like instances, buckets, and load balancers, but not networking-related components such as VPCs,
subnets, or ingress rules.

The AWS credentials that you use when you create your cluster do not need the networking permissions
that are required to make VPCs and core networking components within the VPC, such as subnets,
routing tables, internet gateways, NAT, and VPN. You still need permission to make the application
resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and
nodes.

3.8.5.4. Isolation between clusters

OpenShift Container Platform 4.19 Installing on AWS

190

If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is
reduced in the following ways:

You can install multiple OpenShift Container Platform clusters in the same VPC.

ICMP ingress is allowed from the entire network.

TCP 22 ingress (SSH) is allowed to the entire network.

Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.

Control plane TCP 22623 ingress (MCS) is allowed to the entire network.

3.8.5.5. Optional: AWS security groups

By default, the installation program creates and attaches security groups to control plane and compute
machines. The rules associated with the default security groups cannot be modified.

However, you can apply additional existing AWS security groups, which are associated with your existing
VPC, to control plane and compute machines. Applying custom security groups can help you meet the
security needs of your organization, in such cases where you need to control the incoming or outgoing
traffic of these machines.

As part of the installation process, you apply custom security groups by modifying the install-
config.yaml file before deploying the cluster.

For more information, see "Applying existing AWS security groups to the cluster".

3.8.6. Obtaining an AWS Marketplace image

If you are deploying an OpenShift Container Platform cluster using an AWS Marketplace image, you
must first subscribe through AWS. Subscribing to the offer provides you with the AMI ID that the
installation program uses to deploy compute nodes.

NOTE

You should only modify the RHCOS image for compute machines to use an AWS
Marketplace image. Control plane machines and infrastructure nodes do not require an
OpenShift Container Platform subscription and use the public RHCOS default image by
default, which does not incur subscription costs on your AWS bill. Therefore, you should
not modify the cluster default boot image or the control plane boot images. Applying the
AWS Marketplace image to them will incur additional licensing costs that cannot be
recovered.

Prerequisites

You have an AWS account to purchase the offer. This account does not have to be the same
account that is used to install the cluster.

Procedure

1. Complete the OpenShift Container Platform subscription from the AWS Marketplace.

2. Record the AMI ID for your specific AWS Region. As part of the installation process, you must
update the install-config.yaml file with this value before deploying the cluster.

Sample install-config.yaml file with AWS Marketplace compute nodes

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

191

https://aws.amazon.com/marketplace/fulfillment?productId=59ead7de-2540-4653-a8b0-fa7926d5c845

1

2

Sample install-config.yaml file with AWS Marketplace compute nodes

The AMI ID from your AWS Marketplace subscription.

Your AMI ID is associated with a specific AWS Region. When creating the installation
configuration file, ensure that you select the same AWS Region that you specified when
configuring your subscription.

3.8.7. Manually creating the installation configuration file

To customise your OpenShift Container Platform deployment and meet specific network requirements,
manually create the installation configuration file. This ensures that the installation program uses your
tailored settings rather than default values during the setup process.

Prerequisites

You have an SSH public key on your local machine for use with the installation program. You can
use the key for SSH authentication onto your cluster nodes for debugging and disaster
recovery.

You have obtained the OpenShift Container Platform installation program and the pull secret
for your cluster.

Procedure

1. Create an installation directory to store your required installation assets in:

IMPORTANT

apiVersion: v1
baseDomain: example.com
compute:
- hyperthreading: Enabled
 name: worker
 platform:
 aws:
 amiID: ami-06c4d345f7c207239 1
 type: m5.4xlarge
 replicas: 3
metadata:
 name: test-cluster
platform:
 aws:
 region: us-east-2 2
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'

$ mkdir <installation_directory>

OpenShift Container Platform 4.19 Installing on AWS

192

IMPORTANT

You must create a directory. Some installation assets, such as bootstrap X.509
certificates have short expiration intervals, so you must not reuse an installation
directory. If you want to reuse individual files from another cluster installation,
you can copy them into your directory. However, the file names for the
installation assets might change between releases. Use caution when copying
installation files from an earlier OpenShift Container Platform version.

2. Customize the provided sample install-config.yaml file template and save the file in the
<installation_directory>.

NOTE

You must name this configuration file install-config.yaml.

3. Back up the install-config.yaml file so that you can use it to install many clusters.

IMPORTANT

Back up the install-config.yaml file now, because the installation process
consumes the file in the next step.

Additional resources

Installation configuration parameters for AWS

3.8.7.1. Minimum resource requirements for cluster installation

Each created cluster must meet minimum requirements so that the cluster runs as expected.

Table 3.16. Minimum resource requirements

Machine Operating
System

vCPU [1] Virtual RAM Storage Input/Output
Per Second
(IOPS)[2]

Bootstrap RHCOS 4 16 GB 100 GB 300

Control plane RHCOS 4 16 GB 100 GB 300

Compute RHCOS, RHEL
8.6 and later
[3]

2 8 GB 100 GB 300

1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the
corresponding ratio: (threads per core × cores) × sockets = vCPUs.

2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster
storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

193

p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so
you might need to over-allocate storage volume to obtain sufficient performance.

3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your
cluster, you take responsibility for all operating system life cycle management and maintenance,
including performing system updates, applying patches, and completing all other required tasks.
Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container
Platform 4.10 and later.

NOTE

For OpenShift Container Platform version 4.19, RHCOS is based on RHEL version 9.6,
which updates the micro-architecture requirements. The following list contains the
minimum instruction set architectures (ISA) that each architecture requires:

x86-64 architecture requires x86-64-v2 ISA

ARM64 architecture requires ARMv8.0-A ISA

IBM Power architecture requires Power 9 ISA

s390x architecture requires z14 ISA

For more information, see Architectures (RHEL documentation).

If an instance type for your platform meets the minimum requirements for cluster machines, it is
supported to use in OpenShift Container Platform.

Additional resources

Optimizing storage

3.8.7.2. Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container
Platform.

NOTE

Use the machine types included in the following charts for your AWS instances. If you use
an instance type that is not listed in the chart, ensure that the instance size you use
matches the minimum resource requirements that are listed in the section named
"Minimum resource requirements for cluster installation".

Example 3.10. Machine types based on 64-bit x86 architecture

c4.*

c5.*

c5a.*

i3.*

OpenShift Container Platform 4.19 Installing on AWS

194

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.2_release_notes/index#architectures
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/scalability_and_performance/#optimizing-storage

m4.*

m5.*

m5a.*

m6a.*

m6i.*

r4.*

r5.*

r5a.*

r6i.*

t3.*

t3a.*

3.8.7.3. Tested instance types for AWS on 64-bit ARM infrastructures

The following Amazon Web Services (AWS) 64-bit ARM instance types have been tested with
OpenShift Container Platform.

NOTE

Use the machine types included in the following charts for your AWS ARM instances. If
you use an instance type that is not listed in the chart, ensure that the instance size you
use matches the minimum resource requirements that are listed in "Minimum resource
requirements for cluster installation".

Example 3.11. Machine types based on 64-bit ARM architecture

c6g.*

c7g.*

m6g.*

m7g.*

r8g.*

3.8.7.4. Sample customized install-config.yaml file for AWS

You can customize the installation configuration file (install-config.yaml) to specify more details about
your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

IMPORTANT

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

195

1

2

3

4

5

IMPORTANT

This sample YAML file is provided for reference only. You must obtain your install-
config.yaml file by using the installation program and modify it. For a full list and
description of all installation configuration parameters, see Installation configuration
parameters for AWS.

Sample install-config.yaml file for AWS

Parameters at the first level of indentation apply to the cluster globally.

The controlPlane stanza applies to control plane machines.

The compute stanza applies to compute machines.

The networking stanza applies to the cluster networking configuration. If you do not provide
networking values, the installation program provides default values.

The platform stanza applies to the infrastructure platform that hosts the cluster.

Additional resources

Installation configuration parameters for AWS

3.8.7.5. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS

apiVersion: v1 1
baseDomain: example.com
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'
metadata:
 name: example-cluster
controlPlane: 2
 name: master
 platform:
 aws:
 type: m6i.xlarge
 replicas: 3
compute: 3
- name: worker
 platform:
 aws:
 type: c5.4xlarge
 replicas: 3
networking: 4
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
platform: 5
 aws:
 region: us-west-2

OpenShift Container Platform 4.19 Installing on AWS

196

1

2

3

4

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud, Microsoft
Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC
endpoints to your VPC, you must add these endpoints to the noProxy field.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.
<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

197

5

that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle config map that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the
trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

Optional: The policy to determine the configuration of the Proxy object to reference the
user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and
Always. Use Proxyonly to reference the user-ca-bundle config map only when
http/https proxy is configured. Use Always to always reference the user-ca-bundle
config map. The default value is Proxyonly.

NOTE

The installation program does not support the proxy readinessEndpoints field.

NOTE

If the installer times out, restart and then complete the deployment by using the
wait-for command of the installer. For example:

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

3.8.7.6. Applying existing AWS security groups to the cluster

Applying existing AWS security groups to your control plane and compute machines can help you meet
the security needs of your organization, in such cases where you need to control the incoming or
outgoing traffic of these machines.

Prerequisites

You have created the security groups in AWS. For more information, see the AWS
documentation about working with security groups.

The security groups must be associated with the existing VPC that you are deploying the cluster
to. The security groups cannot be associated with another VPC.

You have an existing install-config.yaml file.

Procedure

$./openshift-install wait-for install-complete --log-level debug

OpenShift Container Platform 4.19 Installing on AWS

198

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html

1

2

1. In the install-config.yaml file, edit the compute.platform.aws.additionalSecurityGroupIDs
parameter to specify one or more custom security groups for your compute machines.

2. Edit the controlPlane.platform.aws.additionalSecurityGroupIDs parameter to specify one or
more custom security groups for your control plane machines.

3. Save the file and reference it when deploying the cluster.

Sample install-config.yaml file that specifies custom security groups

Specify the name of the security group as it appears in the Amazon EC2 console, including the sg
prefix.

Specify subnets for each availability zone that your cluster uses.

3.8.8. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the
credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the
following alternatives:

To manage long-term cloud credentials manually, follow the procedure in Manually creating
long-term credentials.

To implement short-term credentials that are managed outside the cluster for individual
components, follow the procedures in Incorporating the Cloud Credential Operator utility
manifests.

...
compute:
- hyperthreading: Enabled
 name: worker
 platform:
 aws:
 additionalSecurityGroupIDs:
 - sg-1 1
 - sg-2
 replicas: 3
controlPlane:
 hyperthreading: Enabled
 name: master
 platform:
 aws:
 additionalSecurityGroupIDs:
 - sg-3
 - sg-4
 replicas: 3
platform:
 aws:
 region: us-east-1
 subnets: 2
 - subnet-1
 - subnet-2
 - subnet-3

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

199

1

2

3

3.8.8.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in
environments where the cloud identity and access management (IAM) APIs are not reachable, or the
administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container
Platform release image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

This command creates a YAML file for each CredentialsRequest object.

Sample CredentialsRequest object

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

OpenShift Container Platform 4.19 Installing on AWS

200

5. Create YAML files for secrets in the openshift-install manifests directory that you generated
previously. The secrets must be stored using the namespace and secret name defined in the
spec.secretRef for each CredentialsRequest object.

Sample CredentialsRequest object with secrets

Sample Secret object

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - iam:GetUser
 - iam:GetUserPolicy
 - iam:ListAccessKeys
 resource: "*"
 ...

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - s3:CreateBucket
 - s3:DeleteBucket
 resource: "*"
 ...
 secretRef:
 name: <component_secret>
 namespace: <component_namespace>
 ...

apiVersion: v1
kind: Secret
metadata:
 name: <component_secret>
 namespace: <component_namespace>
data:

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

201

IMPORTANT

Before upgrading a cluster that uses manually maintained credentials, you must ensure
that the CCO is in an upgradeable state.

3.8.8.2. Configuring an AWS cluster to use short-term credentials

To install a cluster that is configured to use the AWS Security Token Service (STS), you must configure
the CCO utility and create the required AWS resources for your cluster.

3.8.8.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential
Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

NOTE

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift CLI (oc).

You have created an AWS account for the ccoctl utility to use with the following permissions:
Required iam permissions

iam:CreateOpenIDConnectProvider

iam:CreateRole

iam:DeleteOpenIDConnectProvider

iam:DeleteRole

iam:DeleteRolePolicy

iam:GetOpenIDConnectProvider

iam:GetRole

iam:GetUser

iam:ListOpenIDConnectProviders

iam:ListRolePolicies

iam:ListRoles

iam:PutRolePolicy

 aws_access_key_id: <base64_encoded_aws_access_key_id>
 aws_secret_access_key: <base64_encoded_aws_secret_access_key>

OpenShift Container Platform 4.19 Installing on AWS

202

iam:TagOpenIDConnectProvider

iam:TagRole

Required s3 permissions

s3:CreateBucket

s3:DeleteBucket

s3:DeleteObject

s3:GetBucketAcl

s3:GetBucketTagging

s3:GetObject

s3:GetObjectAcl

s3:GetObjectTagging

s3:ListBucket

s3:PutBucketAcl

s3:PutBucketPolicy

s3:PutBucketPublicAccessBlock

s3:PutBucketTagging

s3:PutObject

s3:PutObjectAcl

s3:PutObjectTagging

Required cloudfront permissions

cloudfront:ListCloudFrontOriginAccessIdentities

cloudfront:ListDistributions

cloudfront:ListTagsForResource

If you plan to store the OIDC configuration in a private S3 bucket that is accessed by the IAM
identity provider through a public CloudFront distribution URL, the AWS account that runs the
ccoctl utility requires the following additional permissions:

cloudfront:CreateCloudFrontOriginAccessIdentity

cloudfront:CreateDistribution

cloudfront:DeleteCloudFrontOriginAccessIdentity

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

203

1

cloudfront:DeleteDistribution

cloudfront:GetCloudFrontOriginAccessIdentity

cloudfront:GetCloudFrontOriginAccessIdentityConfig

cloudfront:GetDistribution

cloudfront:TagResource

cloudfront:UpdateDistribution

NOTE

These additional permissions support the use of the --create-private-s3-bucket
option when processing credentials requests with the ccoctl aws create-all
command.

Procedure

1. Set a variable for the OpenShift Container Platform release image by running the following
command:

2. Obtain the CCO container image from the OpenShift Container Platform release image by
running the following command:

NOTE

Ensure that the architecture of the $RELEASE_IMAGE matches the
architecture of the environment in which you will use the ccoctl tool.

3. Extract the ccoctl binary from the CCO container image within the OpenShift Container
Platform release image by running the following command:

For <rhel_version>, specify the value that corresponds to the version of Red Hat
Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by
default. The following values are valid:

rhel8: Specify this value for hosts that use RHEL 8.

rhel9: Specify this value for hosts that use RHEL 9.

NOTE

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator'
$RELEASE_IMAGE -a ~/.pull-secret)

$ oc image extract $CCO_IMAGE \
 --file="/usr/bin/ccoctl.<rhel_version>" \ 1
 -a ~/.pull-secret

OpenShift Container Platform 4.19 Installing on AWS

204

NOTE

The ccoctl binary is created in the directory from where you executed the
command and not in /usr/bin/. You must rename the directory or move the
ccoctl.<rhel_version> binary to ccoctl.

4. Change the permissions to make ccoctl executable by running the following command:

Verification

To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run
the command, for example:

Example output

3.8.8.2.2. Creating AWS resources with the Cloud Credential Operator utility

You have the following options when creating AWS resources:

You can use the ccoctl aws create-all command to create the AWS resources automatically.
This is the quickest way to create the resources. See Creating AWS resources with a single
command.

If you need to review the JSON files that the ccoctl tool creates before modifying AWS
resources, or if the process the ccoctl tool uses to create AWS resources automatically does
not meet the requirements of your organization, you can create the AWS resources individually.
See Creating AWS resources individually .

3.8.8.2.2.1. Creating AWS resources with a single command

If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of

$ chmod 775 ccoctl

$./ccoctl

OpenShift credentials provisioning tool

Usage:
 ccoctl [command]

Available Commands:
 aws Manage credentials objects for AWS cloud
 azure Manage credentials objects for Azure
 gcp Manage credentials objects for Google cloud
 help Help about any command
 ibmcloud Manage credentials objects for {ibm-cloud-title}
 nutanix Manage credentials objects for Nutanix

Flags:
 -h, --help help for ccoctl

Use "ccoctl [command] --help" for more information about a command.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

205

1

2

3

If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of
your organization, you can use the ccoctl aws create-all command to automate the creation of AWS
resources.

Otherwise, you can create the AWS resources individually. For more information, see "Creating AWS
resources individually".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

Extracted and prepared the ccoctl binary.

Procedure

1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release
image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

NOTE

This command might take a few moments to run.

3. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

$ ccoctl aws create-all \

OpenShift Container Platform 4.19 Installing on AWS

206

1

2

3

4

5

Specify the name used to tag any cloud resources that are created for tracking.

Specify the AWS region in which cloud resources will be created.

Specify the directory containing the files for the component CredentialsRequest objects.

Optional: Specify the directory in which you want the ccoctl utility to create objects. By
default, the utility creates objects in the directory in which the commands are run.

Optional: By default, the ccoctl utility stores the OpenID Connect (OIDC) configuration
files in a public S3 bucket and uses the S3 URL as the public OIDC endpoint. To store the
OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider
through a public CloudFront distribution URL instead, use the --create-private-s3-bucket
parameter.

NOTE

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.8.8.2.2.2. Creating AWS resources individually

You can use the ccoctl tool to create AWS resources individually. This option might be useful for an

 --name=<name> \ 1
 --region=<aws_region> \ 2
 --credentials-requests-dir=<path_to_credentials_requests_directory> \ 3
 --output-dir=<path_to_ccoctl_output_dir> \ 4
 --create-private-s3-bucket 5

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

207

1

You can use the ccoctl tool to create AWS resources individually. This option might be useful for an
organization that shares the responsibility for creating these resources among different users or
departments.

Otherwise, you can use the ccoctl aws create-all command to create the AWS resources automatically.
For more information, see "Creating AWS resources with a single command".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Some ccoctl commands make AWS API calls to create or modify AWS resources. You
can use the --dry-run flag to avoid making API calls. Using this flag creates JSON files on
the local file system instead. You can review and modify the JSON files and then apply
them with the AWS CLI tool using the --cli-input-json parameters.

Prerequisites

Extract and prepare the ccoctl binary.

Procedure

1. Generate the public and private RSA key files that are used to set up the OpenID Connect
provider for the cluster by running the following command:

Example output

where serviceaccount-signer.private and serviceaccount-signer.public are the generated
key files.

This command also creates a private key that the cluster requires during installation in
/<path_to_ccoctl_output_dir>/tls/bound-service-account-signing-key.key.

2. Create an OpenID Connect identity provider and S3 bucket on AWS by running the following
command:

<name> is the name used to tag any cloud resources that are created for tracking.

$ ccoctl aws create-key-pair

2021/04/13 11:01:02 Generating RSA keypair
2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.private
2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.public
2021/04/13 11:01:03 Copying signing key for use by installer

$ ccoctl aws create-identity-provider \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public 3

OpenShift Container Platform 4.19 Installing on AWS

208

2

3

1

2

3

<aws-region> is the AWS region in which cloud resources will be created.

<path_to_ccoctl_output_dir> is the path to the public key file that the ccoctl aws
create-key-pair command generated.

Example output

where openid-configuration is a discovery document and keys.json is a JSON web key set file.

This command also creates a YAML configuration file in
/<path_to_ccoctl_output_dir>/manifests/cluster-authentication-02-config.yaml. This file
sets the issuer URL field for the service account tokens that the cluster generates, so that the
AWS IAM identity provider trusts the tokens.

3. Create IAM roles for each component in the cluster:

a. Set a $RELEASE_IMAGE variable with the release image from your installation file by
running the following command:

b. Extract the list of CredentialsRequest objects from the OpenShift Container Platform
release image:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

c. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

2021/04/13 11:16:09 Bucket <name>-oidc created
2021/04/13 11:16:10 OpenID Connect discovery document in the S3 bucket <name>-oidc at
.well-known/openid-configuration updated
2021/04/13 11:16:10 Reading public key
2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json
updated
2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::
<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \
2

 --to=<path_to_directory_for_credentials_requests> 3

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

209

NOTE

For AWS environments that use alternative IAM API endpoints, such as
GovCloud, you must also specify your region with the --region parameter.

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

For each CredentialsRequest object, ccoctl creates an IAM role with a trust policy that is
tied to the specified OIDC identity provider, and a permissions policy as defined in each
CredentialsRequest object from the OpenShift Container Platform release image.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.8.8.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components,
you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the
correct directories for the installation program.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have configured the Cloud Credential Operator utility (ccoctl).

$ ccoctl aws create-iam-roles \
 --name=<name> \
 --region=<aws_region> \
 --credentials-requests-dir=<path_to_credentials_requests_directory> \
 --identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.
<aws_region>.amazonaws.com

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

OpenShift Container Platform 4.19 Installing on AWS

210

You have created the cloud provider resources that are required for your cluster with the ccoctl
utility.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Copy the manifests that the ccoctl utility generated to the manifests directory that the
installation program created by running the following command:

4. Copy the tls directory that contains the private key to the installation directory:

3.8.9. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

IMPORTANT

You can run the create cluster command of the installation program only once, during
initial installation.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

You have verified that the cloud provider account on your host has the correct permissions to
deploy the cluster. An account with incorrect permissions causes the installation process to fail
with an error message that displays the missing permissions.

Procedure

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/

$ cp -a /<path_to_ccoctl_output_dir>/tls .

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

211

1

2

1. In the directory that contains the installation program, initialize the cluster deployment by
running the following command:

For <installation_directory>, specify the location of your customized ./install-
config.yaml file.

To view different installation details, specify warn, debug, or error instead of info.

2. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you
used to install the cluster.

NOTE

The elevated permissions provided by the AdministratorAccess policy are
required only during installation.

Verification

When the cluster deployment completes successfully:

The terminal displays directions for accessing your cluster, including a link to the web console
and credentials for the kubeadmin user.

Credential information also outputs to <installation_directory>/.openshift_install.log.

IMPORTANT

Do not delete the installation program or the files that the installation program creates.
Both are required to delete the cluster.

Example output

IMPORTANT

$./openshift-install create cluster --dir <installation_directory> \ 1
 --log-level=info 2

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

OpenShift Container Platform 4.19 Installing on AWS

212

1

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

3.8.10. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

Procedure

1. Export the kubeadmin credentials by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

Example output

3.8.11. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in
to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

$ oc whoami

system:admin

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

213

Prerequisites

You have access to the installation host.

You completed a cluster installation and all cluster Operators are available.

Procedure

1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the
installation host:

NOTE

Alternatively, you can obtain the kubeadmin password from the
<installation_directory>/.openshift_install.log log file on the installation host.

2. List the OpenShift Container Platform web console route:

NOTE

Alternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log log file on the installation host.

Example output

3. Navigate to the route detailed in the output of the preceding command in a web browser and
log in as the kubeadmin user.

Additional resources

See Accessing the web console for more details about accessing and understanding the
OpenShift Container Platform web console.

3.8.12. Next steps

Validating an installation.

Customize your cluster.

Remote health reporting .

Remove cloud provider credentials .

3.9. INSTALLING A CLUSTER ON AWS INTO A SECRET OR TOP

$ cat <installation_directory>/auth/kubeadmin-password

$ oc get routes -n openshift-console | grep 'console-openshift'

console console-openshift-console.apps.<cluster_name>.<base_domain> console
https reencrypt/Redirect None

OpenShift Container Platform 4.19 Installing on AWS

214

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#available_cluster_customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#manually-removing-cloud-creds_changing-cloud-credentials-configuration

3.9. INSTALLING A CLUSTER ON AWS INTO A SECRET OR TOP
SECRET REGION

In OpenShift Container Platform version 4.19, you can install a cluster on Amazon Web Services (AWS)
into the following secret regions:

Secret Commercial Cloud Services (SC2S)

Commercial Cloud Services (C2S)

To configure a cluster in either region, you change parameters in the install config.yaml file before you
install the cluster.

WARNING

In OpenShift Container Platform 4.19, the installation program uses Cluster API
instead of Terraform to provision cluster infrastructure during installations on AWS.
Installing a cluster on AWS into a secret or top-secret region by using the Cluster
API implementation has not been tested as of the release of OpenShift Container
Platform 4.19. This document will be updated when installation into a secret region
has been tested.

There is a known issue with Network Load Balancers' support for security groups in
secret or top secret regions that causes installations in these regions to fail. For
more information, see OCPBUGS-33311.

3.9.1. Prerequisites

You reviewed details about the OpenShift Container Platform installation and update
processes.

You read the documentation on selecting a cluster installation method and preparing it for
users.

You configured an AWS account to host the cluster.

IMPORTANT

If you have an AWS profile stored on your computer, it must not use a temporary
session token that you generated while using a multifactor authentication device.
The cluster continues to use your current AWS credentials to create AWS
resources for the entire life of the cluster, so you must use long-term credentials.
To generate appropriate keys, see Managing Access Keys for IAM Users in the
AWS documentation. You can supply the keys when you run the installation
program.

If you use a firewall, you configured it to allow the sites that your cluster requires access to.

3.9.2. AWS secret regions



CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

215

https://issues.redhat.com/browse/OCPBUGS-33311
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall

The following AWS secret partitions are supported:

us-isob-east-1 (SC2S)

us-iso-east-1 (C2S)

NOTE

The maximum supported MTU in an AWS SC2S and C2S Regions is not the same as AWS
commercial. For more information about configuring MTU during installation, see the
Cluster Network Operator configuration object section in Installing a cluster on AWS with
network customizations

3.9.3. Installation requirements

Red Hat does not publish a Red Hat Enterprise Linux CoreOS (RHCOS) Amzaon Machine Image for the
AWS Secret and Top Secret Regions.

Before you can install the cluster, you must:

Upload a custom RHCOS AMI.

Manually create the installation configuration file (install-config.yaml).

Specify the AWS region, and the accompanying custom AMI, in the installation configuration
file.

You cannot use the OpenShift Container Platform installation program to create the installation
configuration file. The installer does not list an AWS region without native support for an RHCOS AMI.

IMPORTANT

You must also define a custom CA certificate in the additionalTrustBundle field of the
install-config.yaml file because the AWS API requires a custom CA trust bundle. To
allow the installation program to access the AWS API, the CA certificates must also be
defined on the machine that runs the installation program. You must add the CA bundle
to the trust store on the machine, use the AWS_CA_BUNDLE environment variable, or
define the CA bundle in the ca_bundle field of the AWS config file.

3.9.4. Private clusters

You can deploy a private OpenShift Container Platform cluster that does not expose external
endpoints. Private clusters are accessible from only an internal network and are not visible to the
internet.

NOTE

Public zones are not supported in Route 53 in an AWS Top Secret Region. Therefore,
clusters must be private if they are deployed to an AWS Top Secret Region.

By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints.
A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your
cluster. This means that the cluster resources are only accessible from your internal network and are not
visible to the internet.

IMPORTANT

OpenShift Container Platform 4.19 Installing on AWS

216

https://docs.aws.amazon.com/credref/latest/refdocs/setting-global-ca_bundle.html

IMPORTANT

If the cluster has any public subnets, load balancer services created by administrators
might be publicly accessible. To ensure cluster security, verify that these services are
explicitly annotated as private.

To deploy a private cluster, you must:

Use existing networking that meets your requirements. Your cluster resources might be shared
between other clusters on the network.

Deploy from a machine that has access to:

The API services for the cloud to which you provision.

The hosts on the network that you provision.

The internet to obtain installation media.

You can use any machine that meets these access requirements and follows your company’s guidelines.
For example, this machine can be a bastion host on your cloud network or a machine that has access to
the network through a VPN.

3.9.4.1. Private clusters in AWS

To create a private cluster on Amazon Web Services (AWS), you must provide an existing private VPC
and subnets to host the cluster. The installation program must also be able to resolve the DNS records
that the cluster requires. The installation program configures the Ingress Operator and API server for
access from only the private network.

The cluster still requires access to internet to access the AWS APIs.

The following items are not required or created when you install a private cluster:

Public subnets

Public load balancers, which support public ingress

A public Route 53 zone that matches the baseDomain for the cluster

The installation program does use the baseDomain that you specify to create a private Route 53 zone
and the required records for the cluster. The cluster is configured so that the Operators do not create
public records for the cluster and all cluster machines are placed in the private subnets that you specify.

3.9.4.1.1. Limitations

The ability to add public functionality to a private cluster is limited.

You cannot make the Kubernetes API endpoints public after installation without taking
additional actions, including creating public subnets in the VPC for each availability zone in use,
creating a public load balancer, and configuring the control plane security groups to allow traffic
from the internet on 6443 (Kubernetes API port).

If you use a public Service type load balancer, you must tag a public subnet in each availability
zone with kubernetes.io/cluster/<cluster-infra-id>: shared so that AWS can use them to
create public load balancers.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

217

3.9.5. About using a custom VPC

In OpenShift Container Platform 4.19, you can deploy a cluster into existing subnets in an existing
Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OpenShift
Container Platform into an existing AWS VPC, you might be able to avoid limit constraints in new
accounts or more easily abide by the operational constraints that your company’s guidelines set. If you
cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use
this installation option.

Because the installation program cannot know what other components are also in your existing subnets,
it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the
subnets that you install your cluster to yourself.

3.9.5.1. Requirements for using your VPC

The installation program no longer creates the following components:

Internet gateways

NAT gateways

Subnets

Route tables

VPCs

VPC DHCP options

VPC endpoints

NOTE

The installation program requires that you use the cloud-provided DNS server. Using a
custom DNS server is not supported and causes the installation to fail.

If you use a custom VPC, you must correctly configure it and its subnets for the installation program and
the cluster to use. See Create a VPC in the Amazon Web Services documentation for more information
about AWS VPC console wizard configurations and creating and managing an AWS VPC.

The installation program cannot:

Subdivide network ranges for the cluster to use.

Set route tables for the subnets.

Set VPC options like DHCP.

You must complete these tasks before you install the cluster. See VPC networking components and
Route tables for your VPC for more information on configuring networking in an AWS VPC.

Your VPC must meet the following characteristics:

The VPC must not use the kubernetes.io/cluster/.*: owned, Name, and openshift.io/cluster
tags.
The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared

OpenShift Container Platform 4.19 Installing on AWS

218

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Networking.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html

tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in
the AWS documentation to confirm that the installation program can add a tag to each subnet
that you specify. You cannot use a Name tag, because it overlaps with the EC2 Name field and
the installation fails.

If you want to extend your OpenShift Container Platform cluster into an AWS Outpost and have
an existing Outpost subnet, the existing subnet must use the
kubernetes.io/cluster/unmanaged: true tag. If you do not apply this tag, the installation might
fail due to the Cloud Controller Manager creating a service load balancer in the Outpost subnet,
which is an unsupported configuration.

You must enable the enableDnsSupport and enableDnsHostnames attributes in your VPC, so
that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s
internal DNS records. See DNS Support in Your VPC in the AWS documentation.
If you prefer to use your own Route 53 hosted private zone, you must associate the existing
hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using
the platform.aws.hostedZone and platform.aws.hostedZoneRole fields in the install-
config.yaml file. You can use a private hosted zone from another account by sharing it with the
account where you install the cluster. If you use a private hosted zone from another account, you
must use the Passthrough or Manual credentials mode.

A cluster in an SC2S or C2S Region is unable to reach the public IP addresses for the EC2, ELB, and S3
endpoints. Depending on the level to which you want to restrict internet traffic during the installation,
the following configuration options are available:

3.9.5.1.1. Option 1: Create VPC endpoints

Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

SC2S

elasticloadbalancing.<aws_region>.sc2s.sgov.gov

ec2.<aws_region>.sc2s.sgov.gov

s3.<aws_region>.sc2s.sgov.gov

C2S

elasticloadbalancing.<aws_region>.c2s.ic.gov

ec2.<aws_region>.c2s.ic.gov

s3.<aws_region>.c2s.ic.gov

With this option, network traffic remains private between your VPC and the required AWS services.

3.9.5.1.2. Option 2: Create a proxy without VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet
traffic goes through the proxy to reach the required AWS services.

3.9.5.1.3. Option 3: Create a proxy with VPC endpoints

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

219

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support

As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints.
Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

SC2S

elasticloadbalancing.<aws_region>.sc2s.sgov.gov

ec2.<aws_region>.sc2s.sgov.gov

s3.<aws_region>.sc2s.sgov.gov

C2S

elasticloadbalancing.<aws_region>.c2s.ic.gov

ec2.<aws_region>.c2s.ic.gov

s3.<aws_region>.c2s.ic.gov

When configuring the proxy in the install-config.yaml file, add these endpoints to the noProxy field.
With this option, the proxy prevents the cluster from accessing the internet directly. However, network
traffic remains private between your VPC and the required AWS services.

Required VPC components

You must provide a suitable VPC and subnets that allow communication to your machines.

Compone
nt

AWS type Description

VPC
AWS::EC2::VPC

AWS::EC2::VPCEndpoint

You must provide a public VPC for the
cluster to use. The VPC uses an endpoint
that references the route tables for each
subnet to improve communication with
the registry that is hosted in S3.

Public
subnets AWS::EC2::Subnet

AWS::EC2::SubnetNetworkAclAss
ociation

Your VPC must have public subnets for
between 1 and 3 availability zones and
associate them with appropriate Ingress
rules.

OpenShift Container Platform 4.19 Installing on AWS

220

Internet
gateway AWS::EC2::InternetGateway

AWS::EC2::VPCGatewayAttachme
nt

AWS::EC2::RouteTable

AWS::EC2::Route

AWS::EC2::SubnetRouteTableAss
ociation

AWS::EC2::NatGateway

AWS::EC2::EIP

You must have a public internet gateway,
with public routes, attached to the VPC.
In the provided templates, each public
subnet has a NAT gateway with an EIP
address. These NAT gateways allow
cluster resources, like private subnet
instances, to reach the internet and are
not required for some restricted network
or proxy scenarios.

Network
access
control

AWS::EC2::NetworkAcl

AWS::EC2::NetworkAclEntry

You must allow the VPC to access the
following ports:

Port Reason

80 Inbound HTTP
traffic

443 Inbound HTTPS
traffic

22 Inbound SSH
traffic

1024 - 65535 Inbound
ephemeral traffic

0 - 65535 Outbound
ephemeral traffic

Private
subnets AWS::EC2::Subnet

AWS::EC2::RouteTable

AWS::EC2::SubnetRouteTableAss
ociation

Your VPC can have private subnets. The
provided CloudFormation templates can
create private subnets for between 1 and
3 availability zones. If you use private
subnets, you must provide appropriate
routes and tables for them.

Compone
nt

AWS type Description

3.9.5.2. VPC validation

To ensure that the subnets that you provide are suitable, the installation program confirms the following
data:

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

221

All the subnets that you specify exist.

You provide private subnets.

The subnet CIDRs belong to the machine CIDR that you specified.

You provide subnets for each availability zone. Each availability zone contains no more than one
public and one private subnet. If you use a private cluster, provide only a private subnet for each
availability zone. Otherwise, provide exactly one public and private subnet for each availability
zone.

You provide a public subnet for each private subnet availability zone. Machines are not
provisioned in availability zones that you do not provide private subnets for.

If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the
OpenShift Container Platform cluster from a VPC, the kubernetes.io/cluster/.*: shared tag is removed
from the subnets that it used.

3.9.5.3. Division of permissions

Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required
for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics
the division of permissions that you might have at your company: some individuals can create different
resource in your clouds than others. For example, you might be able to create application-specific items,
like instances, buckets, and load balancers, but not networking-related components such as VPCs,
subnets, or ingress rules.

The AWS credentials that you use when you create your cluster do not need the networking permissions
that are required to make VPCs and core networking components within the VPC, such as subnets,
routing tables, internet gateways, NAT, and VPN. You still need permission to make the application
resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and
nodes.

3.9.5.4. Isolation between clusters

If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is
reduced in the following ways:

You can install multiple OpenShift Container Platform clusters in the same VPC.

ICMP ingress is allowed from the entire network.

TCP 22 ingress (SSH) is allowed to the entire network.

Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.

Control plane TCP 22623 ingress (MCS) is allowed to the entire network.

3.9.5.5. Optional: AWS security groups

By default, the installation program creates and attaches security groups to control plane and compute
machines. The rules associated with the default security groups cannot be modified.

However, you can apply additional existing AWS security groups, which are associated with your existing
VPC, to control plane and compute machines. Applying custom security groups can help you meet the
security needs of your organization, in such cases where you need to control the incoming or outgoing

OpenShift Container Platform 4.19 Installing on AWS

222

1 1 1

traffic of these machines.

As part of the installation process, you apply custom security groups by modifying the install-
config.yaml file before deploying the cluster.

For more information, see "Applying existing AWS security groups to the cluster".

3.9.6. Uploading a custom RHCOS AMI in AWS

If you are deploying to a custom Amazon Web Services (AWS) region, you must upload a custom
Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI) that belongs to that region.

Prerequisites

You configured an AWS account.

You created an Amazon S3 bucket with the required IAM service role.

You uploaded your RHCOS VMDK file to Amazon S3. The RHCOS VMDK file must be the
highest version that is less than or equal to the OpenShift Container Platform version you are
installing.

You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using
the Bundled Installer.

Procedure

1. Export your AWS profile as an environment variable:

2. Export the region to associate with your custom AMI as an environment variable:

3. Export the version of RHCOS you uploaded to Amazon S3 as an environment variable:

The RHCOS VMDK version, like 4.19.0.

4. Export the Amazon S3 bucket name as an environment variable:

5. Create the containers.json file and define your RHCOS VMDK file:

$ export AWS_PROFILE=<aws_profile> 1

$ export AWS_DEFAULT_REGION=<aws_region> 1

$ export RHCOS_VERSION=<version> 1

$ export VMIMPORT_BUCKET_NAME=<s3_bucket_name>

$ cat <<EOF > containers.json
{
 "Description": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64",
 "Format": "vmdk",
 "UserBucket": {
 "S3Bucket": "${VMIMPORT_BUCKET_NAME}",

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

223

https://docs.aws.amazon.com/vm-import/latest/userguide/vmie_prereqs.html#vmimport-role
https://docs.aws.amazon.com/cli/latest/userguide/install-bundle.html

1

2

6. Import the RHCOS disk as an Amazon EBS snapshot:

The description of your RHCOS disk being imported, like rhcos-${RHCOS_VERSION}-
x86_64-aws.x86_64.

The file path to the JSON file describing your RHCOS disk. The JSON file should contain
your Amazon S3 bucket name and key.

7. Check the status of the image import:

Example output

Copy the SnapshotId to register the image.

8. Create a custom RHCOS AMI from the RHCOS snapshot:

 "S3Key": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64.vmdk"
 }
}
EOF

$ aws ec2 import-snapshot --region ${AWS_DEFAULT_REGION} \
 --description "<description>" \ 1
 --disk-container "file://<file_path>/containers.json" 2

$ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION}

{
 "ImportSnapshotTasks": [
 {
 "Description": "rhcos-4.7.0-x86_64-aws.x86_64",
 "ImportTaskId": "import-snap-fh6i8uil",
 "SnapshotTaskDetail": {
 "Description": "rhcos-4.7.0-x86_64-aws.x86_64",
 "DiskImageSize": 819056640.0,
 "Format": "VMDK",
 "SnapshotId": "snap-06331325870076318",
 "Status": "completed",
 "UserBucket": {
 "S3Bucket": "external-images",
 "S3Key": "rhcos-4.7.0-x86_64-aws.x86_64.vmdk"
 }
 }
 }
]
}

$ aws ec2 register-image \
 --region ${AWS_DEFAULT_REGION} \
 --architecture x86_64 \ 1
 --description "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ 2
 --ena-support \
 --name "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ 3

OpenShift Container Platform 4.19 Installing on AWS

224

1

2

3

4

The RHCOS VMDK architecture type, like x86_64, aarch64, s390x, or ppc64le.

The Description from the imported snapshot.

The name of the RHCOS AMI.

The SnapshotID from the imported snapshot.

To learn more about these APIs, see the AWS documentation for importing snapshots and creating
EBS-backed AMIs.

3.9.7. Manually creating the installation configuration file

To customise your OpenShift Container Platform deployment and meet specific network requirements,
manually create the installation configuration file. This ensures that the installation program uses your
tailored settings rather than default values during the setup process.

Prerequisites

You have uploaded a custom RHCOS AMI.

You have an SSH public key on your local machine for use with the installation program. You can
use the key for SSH authentication onto your cluster nodes for debugging and disaster
recovery.

You have obtained the OpenShift Container Platform installation program and the pull secret
for your cluster.

Procedure

1. Create an installation directory to store your required installation assets in:

IMPORTANT

You must create a directory. Some installation assets, such as bootstrap X.509
certificates have short expiration intervals, so you must not reuse an installation
directory. If you want to reuse individual files from another cluster installation,
you can copy them into your directory. However, the file names for the
installation assets might change between releases. Use caution when copying
installation files from an earlier OpenShift Container Platform version.

2. Customize the provided sample install-config.yaml file template and save the file in the
<installation_directory>.

NOTE

 --virtualization-type hvm \
 --root-device-name '/dev/xvda' \
 --block-device-mappings 'DeviceName=/dev/xvda,Ebs=
{DeleteOnTermination=true,SnapshotId=<snapshot_ID>}' 4

$ mkdir <installation_directory>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

225

https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-import-snapshot.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami-ebs.html#creating-launching-ami-from-snapshot

NOTE

You must name this configuration file install-config.yaml.

3. Back up the install-config.yaml file so that you can use it to install many clusters.

IMPORTANT

Back up the install-config.yaml file now, because the installation process
consumes the file in the next step.

Additional resources

Installation configuration parameters for AWS

3.9.7.1. Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container
Platform.

NOTE

Use the machine types included in the following charts for your AWS instances. If you use
an instance type that is not listed in the chart, ensure that the instance size you use
matches the minimum resource requirements that are listed in the section named
"Minimum resource requirements for cluster installation".

Example 3.12. Machine types based on 64-bit x86 architecture for secret regions

c4.*

c5.*

i3.*

m4.*

m5.*

r4.*

r5.*

t3.*

3.9.7.2. Sample customized install-config.yaml file for AWS

You can customize the installation configuration file (install-config.yaml) to specify more details about
your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

IMPORTANT

OpenShift Container Platform 4.19 Installing on AWS

226

1

2

3

4

5

IMPORTANT

This sample YAML file is provided for reference only. You must obtain your install-
config.yaml file by using the installation program and modify it. For a full list and
description of all installation configuration parameters, see Installation configuration
parameters for AWS.

Sample install-config.yaml file for AWS

Parameters at the first level of indentation apply to the cluster globally.

The controlPlane stanza applies to control plane machines.

The compute stanza applies to compute machines.

The networking stanza applies to the cluster networking configuration. If you do not provide
networking values, the installation program provides default values.

The platform stanza applies to the infrastructure platform that hosts the cluster.

Additional resources

Installation configuration parameters for AWS

3.9.7.3. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS

apiVersion: v1 1
baseDomain: example.com
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'
metadata:
 name: example-cluster
controlPlane: 2
 name: master
 platform:
 aws:
 type: m6i.xlarge
 replicas: 3
compute: 3
- name: worker
 platform:
 aws:
 type: c5.4xlarge
 replicas: 3
networking: 4
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
platform: 5
 aws:
 region: us-west-2

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

227

1

2

3

4

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud, Microsoft
Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC
endpoints to your VPC, you must add these endpoints to the noProxy field.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.
<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5

OpenShift Container Platform 4.19 Installing on AWS

228

5

that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle config map that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the
trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

Optional: The policy to determine the configuration of the Proxy object to reference the
user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and
Always. Use Proxyonly to reference the user-ca-bundle config map only when
http/https proxy is configured. Use Always to always reference the user-ca-bundle
config map. The default value is Proxyonly.

NOTE

The installation program does not support the proxy readinessEndpoints field.

NOTE

If the installer times out, restart and then complete the deployment by using the
wait-for command of the installer. For example:

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

3.9.7.4. Applying existing AWS security groups to the cluster

Applying existing AWS security groups to your control plane and compute machines can help you meet
the security needs of your organization, in such cases where you need to control the incoming or
outgoing traffic of these machines.

Prerequisites

You have created the security groups in AWS. For more information, see the AWS
documentation about working with security groups.

The security groups must be associated with the existing VPC that you are deploying the cluster
to. The security groups cannot be associated with another VPC.

You have an existing install-config.yaml file.

Procedure

$./openshift-install wait-for install-complete --log-level debug

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

229

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html

1

2

1. In the install-config.yaml file, edit the compute.platform.aws.additionalSecurityGroupIDs
parameter to specify one or more custom security groups for your compute machines.

2. Edit the controlPlane.platform.aws.additionalSecurityGroupIDs parameter to specify one or
more custom security groups for your control plane machines.

3. Save the file and reference it when deploying the cluster.

Sample install-config.yaml file that specifies custom security groups

Specify the name of the security group as it appears in the Amazon EC2 console, including the sg
prefix.

Specify subnets for each availability zone that your cluster uses.

3.9.8. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the
credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the
following alternatives:

To manage long-term cloud credentials manually, follow the procedure in Manually creating
long-term credentials.

To implement short-term credentials that are managed outside the cluster for individual
components, follow the procedures in Configuring an AWS cluster to use short-term
credentials.

...
compute:
- hyperthreading: Enabled
 name: worker
 platform:
 aws:
 additionalSecurityGroupIDs:
 - sg-1 1
 - sg-2
 replicas: 3
controlPlane:
 hyperthreading: Enabled
 name: master
 platform:
 aws:
 additionalSecurityGroupIDs:
 - sg-3
 - sg-4
 replicas: 3
platform:
 aws:
 region: us-east-1
 subnets: 2
 - subnet-1
 - subnet-2
 - subnet-3

OpenShift Container Platform 4.19 Installing on AWS

230

1

2

3

3.9.8.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in
environments where the cloud identity and access management (IAM) APIs are not reachable, or the
administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container
Platform release image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

This command creates a YAML file for each CredentialsRequest object.

Sample CredentialsRequest object

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

231

5. Create YAML files for secrets in the openshift-install manifests directory that you generated
previously. The secrets must be stored using the namespace and secret name defined in the
spec.secretRef for each CredentialsRequest object.

Sample CredentialsRequest object with secrets

Sample Secret object

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - iam:GetUser
 - iam:GetUserPolicy
 - iam:ListAccessKeys
 resource: "*"
 ...

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - s3:CreateBucket
 - s3:DeleteBucket
 resource: "*"
 ...
 secretRef:
 name: <component_secret>
 namespace: <component_namespace>
 ...

apiVersion: v1
kind: Secret
metadata:
 name: <component_secret>
 namespace: <component_namespace>
data:

OpenShift Container Platform 4.19 Installing on AWS

232

IMPORTANT

Before upgrading a cluster that uses manually maintained credentials, you must ensure
that the CCO is in an upgradeable state.

3.9.8.2. Configuring an AWS cluster to use short-term credentials

To install a cluster that is configured to use the AWS Security Token Service (STS), you must configure
the CCO utility and create the required AWS resources for your cluster.

3.9.8.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential
Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

NOTE

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift CLI (oc).

You have created an AWS account for the ccoctl utility to use with the following permissions:
Required iam permissions

iam:CreateOpenIDConnectProvider

iam:CreateRole

iam:DeleteOpenIDConnectProvider

iam:DeleteRole

iam:DeleteRolePolicy

iam:GetOpenIDConnectProvider

iam:GetRole

iam:GetUser

iam:ListOpenIDConnectProviders

iam:ListRolePolicies

iam:ListRoles

iam:PutRolePolicy

 aws_access_key_id: <base64_encoded_aws_access_key_id>
 aws_secret_access_key: <base64_encoded_aws_secret_access_key>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

233

iam:TagOpenIDConnectProvider

iam:TagRole

Required s3 permissions

s3:CreateBucket

s3:DeleteBucket

s3:DeleteObject

s3:GetBucketAcl

s3:GetBucketTagging

s3:GetObject

s3:GetObjectAcl

s3:GetObjectTagging

s3:ListBucket

s3:PutBucketAcl

s3:PutBucketPolicy

s3:PutBucketPublicAccessBlock

s3:PutBucketTagging

s3:PutObject

s3:PutObjectAcl

s3:PutObjectTagging

Required cloudfront permissions

cloudfront:ListCloudFrontOriginAccessIdentities

cloudfront:ListDistributions

cloudfront:ListTagsForResource

If you plan to store the OIDC configuration in a private S3 bucket that is accessed by the IAM
identity provider through a public CloudFront distribution URL, the AWS account that runs the
ccoctl utility requires the following additional permissions:

cloudfront:CreateCloudFrontOriginAccessIdentity

cloudfront:CreateDistribution

cloudfront:DeleteCloudFrontOriginAccessIdentity

OpenShift Container Platform 4.19 Installing on AWS

234

1

cloudfront:DeleteDistribution

cloudfront:GetCloudFrontOriginAccessIdentity

cloudfront:GetCloudFrontOriginAccessIdentityConfig

cloudfront:GetDistribution

cloudfront:TagResource

cloudfront:UpdateDistribution

NOTE

These additional permissions support the use of the --create-private-s3-bucket
option when processing credentials requests with the ccoctl aws create-all
command.

Procedure

1. Set a variable for the OpenShift Container Platform release image by running the following
command:

2. Obtain the CCO container image from the OpenShift Container Platform release image by
running the following command:

NOTE

Ensure that the architecture of the $RELEASE_IMAGE matches the
architecture of the environment in which you will use the ccoctl tool.

3. Extract the ccoctl binary from the CCO container image within the OpenShift Container
Platform release image by running the following command:

For <rhel_version>, specify the value that corresponds to the version of Red Hat
Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by
default. The following values are valid:

rhel8: Specify this value for hosts that use RHEL 8.

rhel9: Specify this value for hosts that use RHEL 9.

NOTE

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator'
$RELEASE_IMAGE -a ~/.pull-secret)

$ oc image extract $CCO_IMAGE \
 --file="/usr/bin/ccoctl.<rhel_version>" \ 1
 -a ~/.pull-secret

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

235

NOTE

The ccoctl binary is created in the directory from where you executed the
command and not in /usr/bin/. You must rename the directory or move the
ccoctl.<rhel_version> binary to ccoctl.

4. Change the permissions to make ccoctl executable by running the following command:

Verification

To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run
the command, for example:

Example output

3.9.8.2.2. Creating AWS resources with the Cloud Credential Operator utility

You have the following options when creating AWS resources:

You can use the ccoctl aws create-all command to create the AWS resources automatically.
This is the quickest way to create the resources. See Creating AWS resources with a single
command.

If you need to review the JSON files that the ccoctl tool creates before modifying AWS
resources, or if the process the ccoctl tool uses to create AWS resources automatically does
not meet the requirements of your organization, you can create the AWS resources individually.
See Creating AWS resources individually .

3.9.8.2.2.1. Creating AWS resources with a single command

If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of

$ chmod 775 ccoctl

$./ccoctl

OpenShift credentials provisioning tool

Usage:
 ccoctl [command]

Available Commands:
 aws Manage credentials objects for AWS cloud
 azure Manage credentials objects for Azure
 gcp Manage credentials objects for Google cloud
 help Help about any command
 ibmcloud Manage credentials objects for {ibm-cloud-title}
 nutanix Manage credentials objects for Nutanix

Flags:
 -h, --help help for ccoctl

Use "ccoctl [command] --help" for more information about a command.

OpenShift Container Platform 4.19 Installing on AWS

236

1

2

3

If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of
your organization, you can use the ccoctl aws create-all command to automate the creation of AWS
resources.

Otherwise, you can create the AWS resources individually. For more information, see "Creating AWS
resources individually".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

Extracted and prepared the ccoctl binary.

Procedure

1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release
image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

NOTE

This command might take a few moments to run.

3. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

$ ccoctl aws create-all \

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

237

1

2

3

4

5

Specify the name used to tag any cloud resources that are created for tracking.

Specify the AWS region in which cloud resources will be created.

Specify the directory containing the files for the component CredentialsRequest objects.

Optional: Specify the directory in which you want the ccoctl utility to create objects. By
default, the utility creates objects in the directory in which the commands are run.

Optional: By default, the ccoctl utility stores the OpenID Connect (OIDC) configuration
files in a public S3 bucket and uses the S3 URL as the public OIDC endpoint. To store the
OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider
through a public CloudFront distribution URL instead, use the --create-private-s3-bucket
parameter.

NOTE

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.9.8.2.2.2. Creating AWS resources individually

You can use the ccoctl tool to create AWS resources individually. This option might be useful for an

 --name=<name> \ 1
 --region=<aws_region> \ 2
 --credentials-requests-dir=<path_to_credentials_requests_directory> \ 3
 --output-dir=<path_to_ccoctl_output_dir> \ 4
 --create-private-s3-bucket 5

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

OpenShift Container Platform 4.19 Installing on AWS

238

1

You can use the ccoctl tool to create AWS resources individually. This option might be useful for an
organization that shares the responsibility for creating these resources among different users or
departments.

Otherwise, you can use the ccoctl aws create-all command to create the AWS resources automatically.
For more information, see "Creating AWS resources with a single command".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Some ccoctl commands make AWS API calls to create or modify AWS resources. You
can use the --dry-run flag to avoid making API calls. Using this flag creates JSON files on
the local file system instead. You can review and modify the JSON files and then apply
them with the AWS CLI tool using the --cli-input-json parameters.

Prerequisites

Extract and prepare the ccoctl binary.

Procedure

1. Generate the public and private RSA key files that are used to set up the OpenID Connect
provider for the cluster by running the following command:

Example output

where serviceaccount-signer.private and serviceaccount-signer.public are the generated
key files.

This command also creates a private key that the cluster requires during installation in
/<path_to_ccoctl_output_dir>/tls/bound-service-account-signing-key.key.

2. Create an OpenID Connect identity provider and S3 bucket on AWS by running the following
command:

<name> is the name used to tag any cloud resources that are created for tracking.

$ ccoctl aws create-key-pair

2021/04/13 11:01:02 Generating RSA keypair
2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.private
2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.public
2021/04/13 11:01:03 Copying signing key for use by installer

$ ccoctl aws create-identity-provider \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public 3

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

239

2

3

1

2

3

<aws-region> is the AWS region in which cloud resources will be created.

<path_to_ccoctl_output_dir> is the path to the public key file that the ccoctl aws
create-key-pair command generated.

Example output

where openid-configuration is a discovery document and keys.json is a JSON web key set file.

This command also creates a YAML configuration file in
/<path_to_ccoctl_output_dir>/manifests/cluster-authentication-02-config.yaml. This file
sets the issuer URL field for the service account tokens that the cluster generates, so that the
AWS IAM identity provider trusts the tokens.

3. Create IAM roles for each component in the cluster:

a. Set a $RELEASE_IMAGE variable with the release image from your installation file by
running the following command:

b. Extract the list of CredentialsRequest objects from the OpenShift Container Platform
release image:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

c. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

2021/04/13 11:16:09 Bucket <name>-oidc created
2021/04/13 11:16:10 OpenID Connect discovery document in the S3 bucket <name>-oidc at
.well-known/openid-configuration updated
2021/04/13 11:16:10 Reading public key
2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json
updated
2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::
<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \
2

 --to=<path_to_directory_for_credentials_requests> 3

OpenShift Container Platform 4.19 Installing on AWS

240

NOTE

For AWS environments that use alternative IAM API endpoints, such as
GovCloud, you must also specify your region with the --region parameter.

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

For each CredentialsRequest object, ccoctl creates an IAM role with a trust policy that is
tied to the specified OIDC identity provider, and a permissions policy as defined in each
CredentialsRequest object from the OpenShift Container Platform release image.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.9.8.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components,
you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the
correct directories for the installation program.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have configured the Cloud Credential Operator utility (ccoctl).

$ ccoctl aws create-iam-roles \
 --name=<name> \
 --region=<aws_region> \
 --credentials-requests-dir=<path_to_credentials_requests_directory> \
 --identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.
<aws_region>.amazonaws.com

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

241

You have created the cloud provider resources that are required for your cluster with the ccoctl
utility.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Copy the manifests that the ccoctl utility generated to the manifests directory that the
installation program created by running the following command:

4. Copy the tls directory that contains the private key to the installation directory:

3.9.9. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

IMPORTANT

You can run the create cluster command of the installation program only once, during
initial installation.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

You have verified that the cloud provider account on your host has the correct permissions to
deploy the cluster. An account with incorrect permissions causes the installation process to fail
with an error message that displays the missing permissions.

Procedure

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/

$ cp -a /<path_to_ccoctl_output_dir>/tls .

OpenShift Container Platform 4.19 Installing on AWS

242

1

2

1. In the directory that contains the installation program, initialize the cluster deployment by
running the following command:

For <installation_directory>, specify the location of your customized ./install-
config.yaml file.

To view different installation details, specify warn, debug, or error instead of info.

2. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you
used to install the cluster.

NOTE

The elevated permissions provided by the AdministratorAccess policy are
required only during installation.

Verification

When the cluster deployment completes successfully:

The terminal displays directions for accessing your cluster, including a link to the web console
and credentials for the kubeadmin user.

Credential information also outputs to <installation_directory>/.openshift_install.log.

IMPORTANT

Do not delete the installation program or the files that the installation program creates.
Both are required to delete the cluster.

Example output

IMPORTANT

$./openshift-install create cluster --dir <installation_directory> \ 1
 --log-level=info 2

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

243

1

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

3.9.10. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

Procedure

1. Export the kubeadmin credentials by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

Example output

3.9.11. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in
to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

$ oc whoami

system:admin

OpenShift Container Platform 4.19 Installing on AWS

244

Prerequisites

You have access to the installation host.

You completed a cluster installation and all cluster Operators are available.

Procedure

1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the
installation host:

NOTE

Alternatively, you can obtain the kubeadmin password from the
<installation_directory>/.openshift_install.log log file on the installation host.

2. List the OpenShift Container Platform web console route:

NOTE

Alternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log log file on the installation host.

Example output

3. Navigate to the route detailed in the output of the preceding command in a web browser and
log in as the kubeadmin user.

Additional resources

Accessing the web console

3.9.12. Next steps

Validating an installation.

Customize your cluster.

Remote health reporting .

Remove cloud provider credentials .

3.10. INSTALLING A CLUSTER ON AWS CHINA

In OpenShift Container Platform version 4.19, you can install a cluster to the following Amazon Web

$ cat <installation_directory>/auth/kubeadmin-password

$ oc get routes -n openshift-console | grep 'console-openshift'

console console-openshift-console.apps.<cluster_name>.<base_domain> console
https reencrypt/Redirect None

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

245

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#available_cluster_customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#manually-removing-cloud-creds_changing-cloud-credentials-configuration

In OpenShift Container Platform version 4.19, you can install a cluster to the following Amazon Web
Services (AWS) China regions:

cn-north-1 (Beijing)

cn-northwest-1 (Ningxia)

3.10.1. Prerequisites

You have an Internet Content Provider (ICP) license.

You reviewed details about the OpenShift Container Platform installation and update
processes.

You read the documentation on selecting a cluster installation method and preparing it for
users.

You configured an AWS account to host the cluster.

If you use a firewall, you configured it to allow the sites that your cluster requires access to.

IMPORTANT

If you have an AWS profile stored on your computer, it must not use a temporary session
token that you generated while using a multi-factor authentication device. The cluster
continues to use your current AWS credentials to create AWS resources for the entire life
of the cluster, so you must use long-term credentials. To generate appropriate keys, see
Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys
when you run the installation program.

3.10.2. Installation requirements

Red Hat does not publish a Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI)
for the AWS China regions.

Before you can install the cluster, you must:

Upload a custom RHCOS AMI.

Manually create the installation configuration file (install-config.yaml).

Specify the AWS region, and the accompanying custom AMI, in the installation configuration
file.

You cannot use the OpenShift Container Platform installation program to create the installation
configuration file. The installer does not list an AWS region without native support for an RHCOS AMI.

3.10.3. Private clusters

You can deploy a private OpenShift Container Platform cluster that does not expose external
endpoints. Private clusters are accessible from only an internal network and are not visible to the
internet.

By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints.
A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your
cluster. This means that the cluster resources are only accessible from your internal network and are not

OpenShift Container Platform 4.19 Installing on AWS

246

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

visible to the internet.

IMPORTANT

If the cluster has any public subnets, load balancer services created by administrators
might be publicly accessible. To ensure cluster security, verify that these services are
explicitly annotated as private.

To deploy a private cluster, you must:

Use existing networking that meets your requirements. Your cluster resources might be shared
between other clusters on the network.

Deploy from a machine that has access to:

The API services for the cloud to which you provision.

The hosts on the network that you provision.

The internet to obtain installation media.

You can use any machine that meets these access requirements and follows your company’s guidelines.
For example, this machine can be a bastion host on your cloud network.

NOTE

AWS China does not support a VPN connection between the VPC and your network. For
more information about the Amazon VPC service in the Beijing and Ningxia regions, see
Amazon Virtual Private Cloud in the AWS China documentation.

3.10.3.1. Private clusters in AWS

To create a private cluster on Amazon Web Services (AWS), you must provide an existing private VPC
and subnets to host the cluster. The installation program must also be able to resolve the DNS records
that the cluster requires. The installation program configures the Ingress Operator and API server for
access from only the private network.

The cluster still requires access to internet to access the AWS APIs.

The following items are not required or created when you install a private cluster:

Public subnets

Public load balancers, which support public ingress

A public Route 53 zone that matches the baseDomain for the cluster

The installation program does use the baseDomain that you specify to create a private Route 53 zone
and the required records for the cluster. The cluster is configured so that the Operators do not create
public records for the cluster and all cluster machines are placed in the private subnets that you specify.

3.10.3.1.1. Limitations

The ability to add public functionality to a private cluster is limited.

You cannot make the Kubernetes API endpoints public after installation without taking

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

247

https://docs.amazonaws.cn/en_us/aws/latest/userguide/vpc.html

You cannot make the Kubernetes API endpoints public after installation without taking
additional actions, including creating public subnets in the VPC for each availability zone in use,
creating a public load balancer, and configuring the control plane security groups to allow traffic
from the internet on 6443 (Kubernetes API port).

If you use a public Service type load balancer, you must tag a public subnet in each availability
zone with kubernetes.io/cluster/<cluster-infra-id>: shared so that AWS can use them to
create public load balancers.

3.10.4. About using a custom VPC

In OpenShift Container Platform 4.19, you can deploy a cluster into existing subnets in an existing
Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OpenShift
Container Platform into an existing AWS VPC, you might be able to avoid limit constraints in new
accounts or more easily abide by the operational constraints that your company’s guidelines set. If you
cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use
this installation option.

Because the installation program cannot know what other components are also in your existing subnets,
it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the
subnets that you install your cluster to yourself.

3.10.4.1. Requirements for using your VPC

The installation program no longer creates the following components:

Internet gateways

NAT gateways

Subnets

Route tables

VPCs

VPC DHCP options

VPC endpoints

NOTE

The installation program requires that you use the cloud-provided DNS server. Using a
custom DNS server is not supported and causes the installation to fail.

If you use a custom VPC, you must correctly configure it and its subnets for the installation program and
the cluster to use. See Create a VPC in the Amazon Web Services documentation for more information
about AWS VPC console wizard configurations and creating and managing an AWS VPC.

The installation program cannot:

Subdivide network ranges for the cluster to use.

Set route tables for the subnets.

Set VPC options like DHCP.

OpenShift Container Platform 4.19 Installing on AWS

248

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html

You must complete these tasks before you install the cluster. See VPC networking components and
Route tables for your VPC for more information on configuring networking in an AWS VPC.

Your VPC must meet the following characteristics:

The VPC must not use the kubernetes.io/cluster/.*: owned, Name, and openshift.io/cluster
tags.
The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared
tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in
the AWS documentation to confirm that the installation program can add a tag to each subnet
that you specify. You cannot use a Name tag, because it overlaps with the EC2 Name field and
the installation fails.

If you want to extend your OpenShift Container Platform cluster into an AWS Outpost and have
an existing Outpost subnet, the existing subnet must use the
kubernetes.io/cluster/unmanaged: true tag. If you do not apply this tag, the installation might
fail due to the Cloud Controller Manager creating a service load balancer in the Outpost subnet,
which is an unsupported configuration.

You must enable the enableDnsSupport and enableDnsHostnames attributes in your VPC, so
that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s
internal DNS records. See DNS Support in Your VPC in the AWS documentation.
If you prefer to use your own Route 53 hosted private zone, you must associate the existing
hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using
the platform.aws.hostedZone and platform.aws.hostedZoneRole fields in the install-
config.yaml file. You can use a private hosted zone from another account by sharing it with the
account where you install the cluster. If you use a private hosted zone from another account, you
must use the Passthrough or Manual credentials mode.

If you are working in a disconnected environment, you are unable to reach the public IP addresses for
EC2, ELB, and S3 endpoints. Depending on the level to which you want to restrict internet traffic during
the installation, the following configuration options are available:

3.10.4.1.1. Option 1: Create VPC endpoints

Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

ec2.<aws_region>.amazonaws.com.cn

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com

With this option, network traffic remains private between your VPC and the required AWS services.

3.10.4.1.2. Option 2: Create a proxy without VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet
traffic goes through the proxy to reach the required AWS services.

3.10.4.1.3. Option 3: Create a proxy with VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

249

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Networking.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support

As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints.
Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

ec2.<aws_region>.amazonaws.com.cn

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com

When configuring the proxy in the install-config.yaml file, add these endpoints to the noProxy field.
With this option, the proxy prevents the cluster from accessing the internet directly. However, network
traffic remains private between your VPC and the required AWS services.

Required VPC components

You must provide a suitable VPC and subnets that allow communication to your machines.

Compone
nt

AWS type Description

VPC
AWS::EC2::VPC

AWS::EC2::VPCEndpoint

You must provide a public VPC for the
cluster to use. The VPC uses an endpoint
that references the route tables for each
subnet to improve communication with
the registry that is hosted in S3.

Public
subnets AWS::EC2::Subnet

AWS::EC2::SubnetNetworkAclAss
ociation

Your VPC must have public subnets for
between 1 and 3 availability zones and
associate them with appropriate Ingress
rules.

Internet
gateway AWS::EC2::InternetGateway

AWS::EC2::VPCGatewayAttachme
nt

AWS::EC2::RouteTable

AWS::EC2::Route

AWS::EC2::SubnetRouteTableAss
ociation

AWS::EC2::NatGateway

AWS::EC2::EIP

You must have a public internet gateway,
with public routes, attached to the VPC.
In the provided templates, each public
subnet has a NAT gateway with an EIP
address. These NAT gateways allow
cluster resources, like private subnet
instances, to reach the internet and are
not required for some restricted network
or proxy scenarios.

Network
access
control

AWS::EC2::NetworkAcl

AWS::EC2::NetworkAclEntry

You must allow the VPC to access the
following ports:

Port Reason

OpenShift Container Platform 4.19 Installing on AWS

250

80 Inbound HTTP
traffic

443 Inbound HTTPS
traffic

22 Inbound SSH
traffic

1024 - 65535 Inbound
ephemeral traffic

0 - 65535 Outbound
ephemeral traffic

Private
subnets AWS::EC2::Subnet

AWS::EC2::RouteTable

AWS::EC2::SubnetRouteTableAss
ociation

Your VPC can have private subnets. The
provided CloudFormation templates can
create private subnets for between 1 and
3 availability zones. If you use private
subnets, you must provide appropriate
routes and tables for them.

Compone
nt

AWS type Description

3.10.4.2. VPC validation

To ensure that the subnets that you provide are suitable, the installation program confirms the following
data:

All the subnets that you specify exist.

You provide private subnets.

The subnet CIDRs belong to the machine CIDR that you specified.

You provide subnets for each availability zone. Each availability zone contains no more than one
public and one private subnet. If you use a private cluster, provide only a private subnet for each
availability zone. Otherwise, provide exactly one public and private subnet for each availability
zone.

You provide a public subnet for each private subnet availability zone. Machines are not
provisioned in availability zones that you do not provide private subnets for.

If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the
OpenShift Container Platform cluster from a VPC, the kubernetes.io/cluster/.*: shared tag is removed
from the subnets that it used.

3.10.4.3. Division of permissions

Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

251

for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics
the division of permissions that you might have at your company: some individuals can create different
resource in your clouds than others. For example, you might be able to create application-specific items,
like instances, buckets, and load balancers, but not networking-related components such as VPCs,
subnets, or ingress rules.

The AWS credentials that you use when you create your cluster do not need the networking permissions
that are required to make VPCs and core networking components within the VPC, such as subnets,
routing tables, internet gateways, NAT, and VPN. You still need permission to make the application
resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and
nodes.

3.10.4.4. Isolation between clusters

If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is
reduced in the following ways:

You can install multiple OpenShift Container Platform clusters in the same VPC.

ICMP ingress is allowed from the entire network.

TCP 22 ingress (SSH) is allowed to the entire network.

Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.

Control plane TCP 22623 ingress (MCS) is allowed to the entire network.

3.10.4.5. Optional: AWS security groups

By default, the installation program creates and attaches security groups to control plane and compute
machines. The rules associated with the default security groups cannot be modified.

However, you can apply additional existing AWS security groups, which are associated with your existing
VPC, to control plane and compute machines. Applying custom security groups can help you meet the
security needs of your organization, in such cases where you need to control the incoming or outgoing
traffic of these machines.

As part of the installation process, you apply custom security groups by modifying the install-
config.yaml file before deploying the cluster.

For more information, see "Applying existing AWS security groups to the cluster".

3.10.5. Uploading a custom RHCOS AMI in AWS

If you are deploying to a custom Amazon Web Services (AWS) region, you must upload a custom
Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI) that belongs to that region.

Prerequisites

You configured an AWS account.

You created an Amazon S3 bucket with the required IAM service role.

You uploaded your RHCOS VMDK file to Amazon S3. The RHCOS VMDK file must be the
highest version that is less than or equal to the OpenShift Container Platform version you are
installing.

OpenShift Container Platform 4.19 Installing on AWS

252

https://docs.aws.amazon.com/vm-import/latest/userguide/vmie_prereqs.html#vmimport-role

1

1

1

1

2

You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using
the Bundled Installer.

Procedure

1. Export your AWS profile as an environment variable:

The AWS profile name that holds your AWS credentials, like beijingadmin.

2. Export the region to associate with your custom AMI as an environment variable:

The AWS region, like cn-north-1.

3. Export the version of RHCOS you uploaded to Amazon S3 as an environment variable:

The RHCOS VMDK version, like 4.19.0.

4. Export the Amazon S3 bucket name as an environment variable:

5. Create the containers.json file and define your RHCOS VMDK file:

6. Import the RHCOS disk as an Amazon EBS snapshot:

The description of your RHCOS disk being imported, like rhcos-${RHCOS_VERSION}-
x86_64-aws.x86_64.

The file path to the JSON file describing your RHCOS disk. The JSON file should contain
your Amazon S3 bucket name and key.

$ export AWS_PROFILE=<aws_profile> 1

$ export AWS_DEFAULT_REGION=<aws_region> 1

$ export RHCOS_VERSION=<version> 1

$ export VMIMPORT_BUCKET_NAME=<s3_bucket_name>

$ cat <<EOF > containers.json
{
 "Description": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64",
 "Format": "vmdk",
 "UserBucket": {
 "S3Bucket": "${VMIMPORT_BUCKET_NAME}",
 "S3Key": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64.vmdk"
 }
}
EOF

$ aws ec2 import-snapshot --region ${AWS_DEFAULT_REGION} \
 --description "<description>" \ 1
 --disk-container "file://<file_path>/containers.json" 2

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

253

https://docs.aws.amazon.com/cli/latest/userguide/install-bundle.html

1

2

3

4

your Amazon S3 bucket name and key.

7. Check the status of the image import:

Example output

Copy the SnapshotId to register the image.

8. Create a custom RHCOS AMI from the RHCOS snapshot:

The RHCOS VMDK architecture type, like x86_64, aarch64, s390x, or ppc64le.

The Description from the imported snapshot.

The name of the RHCOS AMI.

The SnapshotID from the imported snapshot.

To learn more about these APIs, see the AWS documentation for importing snapshots and creating
EBS-backed AMIs.

$ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION}

{
 "ImportSnapshotTasks": [
 {
 "Description": "rhcos-4.7.0-x86_64-aws.x86_64",
 "ImportTaskId": "import-snap-fh6i8uil",
 "SnapshotTaskDetail": {
 "Description": "rhcos-4.7.0-x86_64-aws.x86_64",
 "DiskImageSize": 819056640.0,
 "Format": "VMDK",
 "SnapshotId": "snap-06331325870076318",
 "Status": "completed",
 "UserBucket": {
 "S3Bucket": "external-images",
 "S3Key": "rhcos-4.7.0-x86_64-aws.x86_64.vmdk"
 }
 }
 }
]
}

$ aws ec2 register-image \
 --region ${AWS_DEFAULT_REGION} \
 --architecture x86_64 \ 1
 --description "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ 2
 --ena-support \
 --name "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ 3
 --virtualization-type hvm \
 --root-device-name '/dev/xvda' \
 --block-device-mappings 'DeviceName=/dev/xvda,Ebs=
{DeleteOnTermination=true,SnapshotId=<snapshot_ID>}' 4

OpenShift Container Platform 4.19 Installing on AWS

254

https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-import-snapshot.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami-ebs.html#creating-launching-ami-from-snapshot

3.10.6. Manually creating the installation configuration file

To customise your OpenShift Container Platform deployment and meet specific network requirements,
manually create the installation configuration file. This ensures that the installation program uses your
tailored settings rather than default values during the setup process.

Prerequisites

You have uploaded a custom RHCOS AMI.

You have an SSH public key on your local machine for use with the installation program. You can
use the key for SSH authentication onto your cluster nodes for debugging and disaster
recovery.

You have obtained the OpenShift Container Platform installation program and the pull secret
for your cluster.

Procedure

1. Create an installation directory to store your required installation assets in:

IMPORTANT

You must create a directory. Some installation assets, such as bootstrap X.509
certificates have short expiration intervals, so you must not reuse an installation
directory. If you want to reuse individual files from another cluster installation,
you can copy them into your directory. However, the file names for the
installation assets might change between releases. Use caution when copying
installation files from an earlier OpenShift Container Platform version.

2. Customize the provided sample install-config.yaml file template and save the file in the
<installation_directory>.

NOTE

You must name this configuration file install-config.yaml.

3. Back up the install-config.yaml file so that you can use it to install many clusters.

IMPORTANT

Back up the install-config.yaml file now, because the installation process
consumes the file in the next step.

Additional resources

Installation configuration parameters for AWS

3.10.6.1. Sample customized install-config.yaml file for AWS

You can customize the installation configuration file (install-config.yaml) to specify more details about

$ mkdir <installation_directory>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

255

1

2

3

4

5

You can customize the installation configuration file (install-config.yaml) to specify more details about
your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

IMPORTANT

This sample YAML file is provided for reference only. You must obtain your install-
config.yaml file by using the installation program and modify it. For a full list and
description of all installation configuration parameters, see Installation configuration
parameters for AWS.

Sample install-config.yaml file for AWS

Parameters at the first level of indentation apply to the cluster globally.

The controlPlane stanza applies to control plane machines.

The compute stanza applies to compute machines.

The networking stanza applies to the cluster networking configuration. If you do not provide
networking values, the installation program provides default values.

The platform stanza applies to the infrastructure platform that hosts the cluster.

Additional resources

Installation configuration parameters for AWS

apiVersion: v1 1
baseDomain: example.com
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'
metadata:
 name: example-cluster
controlPlane: 2
 name: master
 platform:
 aws:
 type: m6i.xlarge
 replicas: 3
compute: 3
- name: worker
 platform:
 aws:
 type: c5.4xlarge
 replicas: 3
networking: 4
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
platform: 5
 aws:
 region: us-west-2

OpenShift Container Platform 4.19 Installing on AWS

256

3.10.6.2. Minimum resource requirements for cluster installation

Each created cluster must meet minimum requirements so that the cluster runs as expected.

Table 3.17. Minimum resource requirements

Machine Operating
System

vCPU [1] Virtual RAM Storage Input/Output
Per Second
(IOPS)[2]

Bootstrap RHCOS 4 16 GB 100 GB 300

Control plane RHCOS 4 16 GB 100 GB 300

Compute RHCOS, RHEL
8.6 and later
[3]

2 8 GB 100 GB 300

1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the
corresponding ratio: (threads per core × cores) × sockets = vCPUs.

2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster
storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms
p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so
you might need to over-allocate storage volume to obtain sufficient performance.

3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your
cluster, you take responsibility for all operating system life cycle management and maintenance,
including performing system updates, applying patches, and completing all other required tasks.
Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container
Platform 4.10 and later.

NOTE

For OpenShift Container Platform version 4.19, RHCOS is based on RHEL version 9.6,
which updates the micro-architecture requirements. The following list contains the
minimum instruction set architectures (ISA) that each architecture requires:

x86-64 architecture requires x86-64-v2 ISA

ARM64 architecture requires ARMv8.0-A ISA

IBM Power architecture requires Power 9 ISA

s390x architecture requires z14 ISA

For more information, see Architectures (RHEL documentation).

If an instance type for your platform meets the minimum requirements for cluster machines, it is
supported to use in OpenShift Container Platform.

Additional resources

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

257

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.2_release_notes/index#architectures

Optimizing storage

3.10.6.3. Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container
Platform.

NOTE

Use the machine types included in the following charts for your AWS instances. If you use
an instance type that is not listed in the chart, ensure that the instance size you use
matches the minimum resource requirements that are listed in the section named
"Minimum resource requirements for cluster installation".

Example 3.13. Machine types based on 64-bit x86 architecture

c4.*

c5.*

c5a.*

i3.*

m4.*

m5.*

m5a.*

m6a.*

m6i.*

r4.*

r5.*

r5a.*

r6i.*

t3.*

t3a.*

3.10.6.4. Tested instance types for AWS on 64-bit ARM infrastructures

The following Amazon Web Services (AWS) 64-bit ARM instance types have been tested with
OpenShift Container Platform.

NOTE

OpenShift Container Platform 4.19 Installing on AWS

258

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/scalability_and_performance/#optimizing-storage

NOTE

Use the machine types included in the following charts for your AWS ARM instances. If
you use an instance type that is not listed in the chart, ensure that the instance size you
use matches the minimum resource requirements that are listed in "Minimum resource
requirements for cluster installation".

Example 3.14. Machine types based on 64-bit ARM architecture

c6g.*

c7g.*

m6g.*

m7g.*

r8g.*

3.10.6.5. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud, Microsoft
Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

apiVersion: v1
baseDomain: my.domain.com
proxy:

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

259

1

2

3

4

5

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC
endpoints to your VPC, you must add these endpoints to the noProxy field.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle config map that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the
trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

Optional: The policy to determine the configuration of the Proxy object to reference the
user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and
Always. Use Proxyonly to reference the user-ca-bundle config map only when
http/https proxy is configured. Use Always to always reference the user-ca-bundle
config map. The default value is Proxyonly.

NOTE

The installation program does not support the proxy readinessEndpoints field.

NOTE

If the installer times out, restart and then complete the deployment by using the
wait-for command of the installer. For example:

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.
<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5

$./openshift-install wait-for install-complete --log-level debug

OpenShift Container Platform 4.19 Installing on AWS

260

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

3.10.6.6. Applying existing AWS security groups to the cluster

Applying existing AWS security groups to your control plane and compute machines can help you meet
the security needs of your organization, in such cases where you need to control the incoming or
outgoing traffic of these machines.

Prerequisites

You have created the security groups in AWS. For more information, see the AWS
documentation about working with security groups.

The security groups must be associated with the existing VPC that you are deploying the cluster
to. The security groups cannot be associated with another VPC.

You have an existing install-config.yaml file.

Procedure

1. In the install-config.yaml file, edit the compute.platform.aws.additionalSecurityGroupIDs
parameter to specify one or more custom security groups for your compute machines.

2. Edit the controlPlane.platform.aws.additionalSecurityGroupIDs parameter to specify one or
more custom security groups for your control plane machines.

3. Save the file and reference it when deploying the cluster.

Sample install-config.yaml file that specifies custom security groups

...
compute:
- hyperthreading: Enabled
 name: worker
 platform:
 aws:
 additionalSecurityGroupIDs:
 - sg-1 1
 - sg-2
 replicas: 3
controlPlane:
 hyperthreading: Enabled
 name: master
 platform:
 aws:
 additionalSecurityGroupIDs:
 - sg-3
 - sg-4
 replicas: 3
platform:
 aws:
 region: us-east-1

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

261

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html

1

2

Specify the name of the security group as it appears in the Amazon EC2 console, including the sg
prefix.

Specify subnets for each availability zone that your cluster uses.

3.10.7. Alternatives to storing administrator-level secrets in the kube-system
project

By default, administrator secrets are stored in the kube-system project. If you configured the
credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the
following alternatives:

To manage long-term cloud credentials manually, follow the procedure in Manually creating
long-term credentials.

To implement short-term credentials that are managed outside the cluster for individual
components, follow the procedures in Configuring an AWS cluster to use short-term
credentials.

3.10.7.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in
environments where the cloud identity and access management (IAM) APIs are not reachable, or the
administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

 subnets: 2
 - subnet-1
 - subnet-2
 - subnet-3

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

OpenShift Container Platform 4.19 Installing on AWS

262

1

2

3

4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container
Platform release image by running the following command:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

This command creates a YAML file for each CredentialsRequest object.

Sample CredentialsRequest object

5. Create YAML files for secrets in the openshift-install manifests directory that you generated
previously. The secrets must be stored using the namespace and secret name defined in the
spec.secretRef for each CredentialsRequest object.

Sample CredentialsRequest object with secrets

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>
 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - iam:GetUser
 - iam:GetUserPolicy
 - iam:ListAccessKeys
 resource: "*"
 ...

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
 name: <component_credentials_request>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

263

Sample Secret object

IMPORTANT

Before upgrading a cluster that uses manually maintained credentials, you must ensure
that the CCO is in an upgradeable state.

3.10.7.2. Configuring an AWS cluster to use short-term credentials

To install a cluster that is configured to use the AWS Security Token Service (STS), you must configure
the CCO utility and create the required AWS resources for your cluster.

3.10.7.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential
Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

NOTE

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift CLI (oc).

 namespace: openshift-cloud-credential-operator
 ...
spec:
 providerSpec:
 apiVersion: cloudcredential.openshift.io/v1
 kind: AWSProviderSpec
 statementEntries:
 - effect: Allow
 action:
 - s3:CreateBucket
 - s3:DeleteBucket
 resource: "*"
 ...
 secretRef:
 name: <component_secret>
 namespace: <component_namespace>
 ...

apiVersion: v1
kind: Secret
metadata:
 name: <component_secret>
 namespace: <component_namespace>
data:
 aws_access_key_id: <base64_encoded_aws_access_key_id>
 aws_secret_access_key: <base64_encoded_aws_secret_access_key>

OpenShift Container Platform 4.19 Installing on AWS

264

You have created an AWS account for the ccoctl utility to use with the following permissions:
Required iam permissions

iam:CreateOpenIDConnectProvider

iam:CreateRole

iam:DeleteOpenIDConnectProvider

iam:DeleteRole

iam:DeleteRolePolicy

iam:GetOpenIDConnectProvider

iam:GetRole

iam:GetUser

iam:ListOpenIDConnectProviders

iam:ListRolePolicies

iam:ListRoles

iam:PutRolePolicy

iam:TagOpenIDConnectProvider

iam:TagRole

Required s3 permissions

s3:CreateBucket

s3:DeleteBucket

s3:DeleteObject

s3:GetBucketAcl

s3:GetBucketTagging

s3:GetObject

s3:GetObjectAcl

s3:GetObjectTagging

s3:ListBucket

s3:PutBucketAcl

s3:PutBucketPolicy

s3:PutBucketPublicAccessBlock

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

265

s3:PutBucketTagging

s3:PutObject

s3:PutObjectAcl

s3:PutObjectTagging

Required cloudfront permissions

cloudfront:ListCloudFrontOriginAccessIdentities

cloudfront:ListDistributions

cloudfront:ListTagsForResource

If you plan to store the OIDC configuration in a private S3 bucket that is accessed by the IAM
identity provider through a public CloudFront distribution URL, the AWS account that runs the
ccoctl utility requires the following additional permissions:

cloudfront:CreateCloudFrontOriginAccessIdentity

cloudfront:CreateDistribution

cloudfront:DeleteCloudFrontOriginAccessIdentity

cloudfront:DeleteDistribution

cloudfront:GetCloudFrontOriginAccessIdentity

cloudfront:GetCloudFrontOriginAccessIdentityConfig

cloudfront:GetDistribution

cloudfront:TagResource

cloudfront:UpdateDistribution

NOTE

These additional permissions support the use of the --create-private-s3-bucket
option when processing credentials requests with the ccoctl aws create-all
command.

Procedure

1. Set a variable for the OpenShift Container Platform release image by running the following
command:

2. Obtain the CCO container image from the OpenShift Container Platform release image by
running the following command:

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

OpenShift Container Platform 4.19 Installing on AWS

266

1

NOTE

Ensure that the architecture of the $RELEASE_IMAGE matches the
architecture of the environment in which you will use the ccoctl tool.

3. Extract the ccoctl binary from the CCO container image within the OpenShift Container
Platform release image by running the following command:

For <rhel_version>, specify the value that corresponds to the version of Red Hat
Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by
default. The following values are valid:

rhel8: Specify this value for hosts that use RHEL 8.

rhel9: Specify this value for hosts that use RHEL 9.

NOTE

The ccoctl binary is created in the directory from where you executed the
command and not in /usr/bin/. You must rename the directory or move the
ccoctl.<rhel_version> binary to ccoctl.

4. Change the permissions to make ccoctl executable by running the following command:

Verification

To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run
the command, for example:

Example output

$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator'
$RELEASE_IMAGE -a ~/.pull-secret)

$ oc image extract $CCO_IMAGE \
 --file="/usr/bin/ccoctl.<rhel_version>" \ 1
 -a ~/.pull-secret

$ chmod 775 ccoctl

$./ccoctl

OpenShift credentials provisioning tool

Usage:
 ccoctl [command]

Available Commands:
 aws Manage credentials objects for AWS cloud
 azure Manage credentials objects for Azure

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

267

3.10.7.2.2. Creating AWS resources with the Cloud Credential Operator utility

You have the following options when creating AWS resources:

You can use the ccoctl aws create-all command to create the AWS resources automatically.
This is the quickest way to create the resources. See Creating AWS resources with a single
command.

If you need to review the JSON files that the ccoctl tool creates before modifying AWS
resources, or if the process the ccoctl tool uses to create AWS resources automatically does
not meet the requirements of your organization, you can create the AWS resources individually.
See Creating AWS resources individually .

3.10.7.2.2.1. Creating AWS resources with a single command

If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of
your organization, you can use the ccoctl aws create-all command to automate the creation of AWS
resources.

Otherwise, you can create the AWS resources individually. For more information, see "Creating AWS
resources individually".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

Extracted and prepared the ccoctl binary.

Procedure

1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running
the following command:

2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release
image by running the following command:

 gcp Manage credentials objects for Google cloud
 help Help about any command
 ibmcloud Manage credentials objects for {ibm-cloud-title}
 nutanix Manage credentials objects for Nutanix

Flags:
 -h, --help help for ccoctl

Use "ccoctl [command] --help" for more information about a command.

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

OpenShift Container Platform 4.19 Installing on AWS

268

1

2

3

1

2

3

4

5

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

NOTE

This command might take a few moments to run.

3. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

Specify the name used to tag any cloud resources that are created for tracking.

Specify the AWS region in which cloud resources will be created.

Specify the directory containing the files for the component CredentialsRequest objects.

Optional: Specify the directory in which you want the ccoctl utility to create objects. By
default, the utility creates objects in the directory in which the commands are run.

Optional: By default, the ccoctl utility stores the OpenID Connect (OIDC) configuration
files in a public S3 bucket and uses the S3 URL as the public OIDC endpoint. To store the
OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider
through a public CloudFront distribution URL instead, use the --create-private-s3-bucket
parameter.

NOTE

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

Verification

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \ 2
 --to=<path_to_directory_for_credentials_requests> 3

$ ccoctl aws create-all \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --credentials-requests-dir=<path_to_credentials_requests_directory> \ 3
 --output-dir=<path_to_ccoctl_output_dir> \ 4
 --create-private-s3-bucket 5

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

269

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.10.7.2.2.2. Creating AWS resources individually

You can use the ccoctl tool to create AWS resources individually. This option might be useful for an
organization that shares the responsibility for creating these resources among different users or
departments.

Otherwise, you can use the ccoctl aws create-all command to create the AWS resources automatically.
For more information, see "Creating AWS resources with a single command".

NOTE

By default, ccoctl creates objects in the directory in which the commands are run. To
create the objects in a different directory, use the --output-dir flag. This procedure uses
<path_to_ccoctl_output_dir> to refer to this directory.

Some ccoctl commands make AWS API calls to create or modify AWS resources. You
can use the --dry-run flag to avoid making API calls. Using this flag creates JSON files on
the local file system instead. You can review and modify the JSON files and then apply
them with the AWS CLI tool using the --cli-input-json parameters.

Prerequisites

Extract and prepare the ccoctl binary.

Procedure

1. Generate the public and private RSA key files that are used to set up the OpenID Connect
provider for the cluster by running the following command:

Example output

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

$ ccoctl aws create-key-pair

2021/04/13 11:01:02 Generating RSA keypair

OpenShift Container Platform 4.19 Installing on AWS

270

1

2

3

where serviceaccount-signer.private and serviceaccount-signer.public are the generated
key files.

This command also creates a private key that the cluster requires during installation in
/<path_to_ccoctl_output_dir>/tls/bound-service-account-signing-key.key.

2. Create an OpenID Connect identity provider and S3 bucket on AWS by running the following
command:

<name> is the name used to tag any cloud resources that are created for tracking.

<aws-region> is the AWS region in which cloud resources will be created.

<path_to_ccoctl_output_dir> is the path to the public key file that the ccoctl aws
create-key-pair command generated.

Example output

where openid-configuration is a discovery document and keys.json is a JSON web key set file.

This command also creates a YAML configuration file in
/<path_to_ccoctl_output_dir>/manifests/cluster-authentication-02-config.yaml. This file
sets the issuer URL field for the service account tokens that the cluster generates, so that the
AWS IAM identity provider trusts the tokens.

3. Create IAM roles for each component in the cluster:

a. Set a $RELEASE_IMAGE variable with the release image from your installation file by
running the following command:

b. Extract the list of CredentialsRequest objects from the OpenShift Container Platform

2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.private
2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-
signer.public
2021/04/13 11:01:03 Copying signing key for use by installer

$ ccoctl aws create-identity-provider \
 --name=<name> \ 1
 --region=<aws_region> \ 2
 --public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public 3

2021/04/13 11:16:09 Bucket <name>-oidc created
2021/04/13 11:16:10 OpenID Connect discovery document in the S3 bucket <name>-oidc at
.well-known/openid-configuration updated
2021/04/13 11:16:10 Reading public key
2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json
updated
2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::
<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com

$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

271

1

2

3

b. Extract the list of CredentialsRequest objects from the OpenShift Container Platform
release image:

The --included parameter includes only the manifests that your specific cluster
configuration requires.

Specify the location of the install-config.yaml file.

Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.

c. Use the ccoctl tool to process all CredentialsRequest objects by running the following
command:

NOTE

For AWS environments that use alternative IAM API endpoints, such as
GovCloud, you must also specify your region with the --region parameter.

If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade feature set, you must include the --enable-tech-
preview parameter.

For each CredentialsRequest object, ccoctl creates an IAM role with a trust policy that is
tied to the specified OIDC identity provider, and a permissions policy as defined in each
CredentialsRequest object from the OpenShift Container Platform release image.

Verification

To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests directory:

Example output

$ oc adm release extract \
 --from=$RELEASE_IMAGE \
 --credentials-requests \
 --included \ 1
 --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \
2

 --to=<path_to_directory_for_credentials_requests> 3

$ ccoctl aws create-iam-roles \
 --name=<name> \
 --region=<aws_region> \
 --credentials-requests-dir=<path_to_credentials_requests_directory> \
 --identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.
<aws_region>.amazonaws.com

$ ls <path_to_ccoctl_output_dir>/manifests

cluster-authentication-02-config.yaml

OpenShift Container Platform 4.19 Installing on AWS

272

You can verify that the IAM roles are created by querying AWS. For more information, refer to
AWS documentation on listing IAM roles.

3.10.7.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components,
you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the
correct directories for the installation program.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have configured the Cloud Credential Operator utility (ccoctl).

You have created the cloud provider resources that are required for your cluster with the ccoctl
utility.

Procedure

1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file
to Manual, modify the value as shown:

Sample configuration file snippet

2. If you have not previously created installation manifest files, do so by running the following
command:

where <installation_directory> is the directory in which the installation program creates files.

3. Copy the manifests that the ccoctl utility generated to the manifests directory that the
installation program created by running the following command:

4. Copy the tls directory that contains the private key to the installation directory:

openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml

apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
...

$ openshift-install create manifests --dir <installation_directory>

$ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/

$ cp -a /<path_to_ccoctl_output_dir>/tls .

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

273

1

2

3.10.8. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

IMPORTANT

You can run the create cluster command of the installation program only once, during
initial installation.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

You have verified that the cloud provider account on your host has the correct permissions to
deploy the cluster. An account with incorrect permissions causes the installation process to fail
with an error message that displays the missing permissions.

Procedure

1. In the directory that contains the installation program, initialize the cluster deployment by
running the following command:

For <installation_directory>, specify the location of your customized ./install-
config.yaml file.

To view different installation details, specify warn, debug, or error instead of info.

2. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you
used to install the cluster.

NOTE

The elevated permissions provided by the AdministratorAccess policy are
required only during installation.

Verification

When the cluster deployment completes successfully:

The terminal displays directions for accessing your cluster, including a link to the web console
and credentials for the kubeadmin user.

Credential information also outputs to <installation_directory>/.openshift_install.log.

IMPORTANT

$./openshift-install create cluster --dir <installation_directory> \ 1
 --log-level=info 2

OpenShift Container Platform 4.19 Installing on AWS

274

1

IMPORTANT

Do not delete the installation program or the files that the installation program creates.
Both are required to delete the cluster.

Example output

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

3.10.9. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

Procedure

1. Export the kubeadmin credentials by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

275

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

Example output

3.10.10. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in
to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

You have access to the installation host.

You completed a cluster installation and all cluster Operators are available.

Procedure

1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the
installation host:

NOTE

Alternatively, you can obtain the kubeadmin password from the
<installation_directory>/.openshift_install.log log file on the installation host.

2. List the OpenShift Container Platform web console route:

NOTE

Alternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log log file on the installation host.

Example output

3. Navigate to the route detailed in the output of the preceding command in a web browser and
log in as the kubeadmin user.

Additional resources

$ oc whoami

system:admin

$ cat <installation_directory>/auth/kubeadmin-password

$ oc get routes -n openshift-console | grep 'console-openshift'

console console-openshift-console.apps.<cluster_name>.<base_domain> console
https reencrypt/Redirect None

OpenShift Container Platform 4.19 Installing on AWS

276

Accessing the web console

3.10.11. Next steps

Validating an installation.

Customize your cluster.

If necessary, you can Remote health reporting .

If necessary, you can remove cloud provider credentials .

3.11. INSTALLING A CLUSTER WITH COMPUTE NODES ON AWS LOCAL
ZONES

You can quickly install an OpenShift Container Platform cluster on Amazon Web Services (AWS) Local
Zones by setting the zone names in the edge compute pool of the install-config.yaml file, or install a
cluster in an existing Amazon Virtual Private Cloud (VPC) with Local Zone subnets.

AWS Local Zones is an infrastructure that place Cloud Resources close to metropolitan regions. For
more information, see the AWS Local Zones Documentation .

3.11.1. Infrastructure prerequisites

You reviewed details about OpenShift Container Platform installation and update processes.

You are familiar with Selecting a cluster installation method and preparing it for users .

You configured an AWS account to host the cluster.

WARNING

If you have an AWS profile stored on your computer, it must not use a
temporary session token that you generated while using a multifactor
authentication device. The cluster continues to use your current AWS
credentials to create AWS resources for the entire life of the cluster, so you
must use key-based, long-term credentials. To generate appropriate keys,
see Managing Access Keys for IAM Users in the AWS documentation. You
can supply the keys when you run the installation program.

You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using
the Bundled Installer (Linux, macOS, or UNIX) in the AWS documentation.

If you use a firewall, you configured it to allow the sites that your cluster must access.

You noted the region and supported AWS Local Zones locations to create the network
resources in.

You read the AWS Local Zones features in the AWS documentation.

You added permissions for creating network resources that support AWS Local Zones to the



CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

277

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#available_cluster_customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#manually-removing-cloud-creds_changing-cloud-credentials-configuration
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-local-zones
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/cli/latest/userguide/install-bundle.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall
https://aws.amazon.com/about-aws/global-infrastructure/localzones/locations
https://aws.amazon.com/about-aws/global-infrastructure/localzones/features/

You added permissions for creating network resources that support AWS Local Zones to the
Identity and Access Management (IAM) user or role. The following example enables a zone
group that can give a user or role access for creating network resources that support AWS
Local Zones.

Example of an additional IAM policy with the ec2:ModifyAvailabilityZoneGroup
permission attached to an IAM user or role.

3.11.2. About AWS Local Zones and edge compute pool

Read the following sections to understand infrastructure behaviors and cluster limitations in an AWS
Local Zones environment.

3.11.2.1. Cluster limitations in AWS Local Zones

Some limitations exist when you try to deploy a cluster with a default installation configuration in an
Amazon Web Services (AWS) Local Zone.

IMPORTANT

The following list details limitations when deploying a cluster in a pre-configured AWS
zone:

The maximum transmission unit (MTU) between an Amazon EC2 instance in a
zone and an Amazon EC2 instance in the Region is 1300. This causes the cluster-
wide network MTU to change according to the network plugin that is used with
the deployment.

Network resources such as Network Load Balancer (NLB), Classic Load
Balancer, and Network Address Translation (NAT) Gateways are not globally
supported.

For an OpenShift Container Platform cluster on AWS, the AWS Elastic Block
Storage (EBS) gp3 type volume is the default for node volumes and the default
for the storage class. This volume type is not globally available on zone locations.
By default, the nodes running in zones are deployed with the gp2 EBS volume.
The gp2-csi StorageClass parameter must be set when creating workloads on
zone nodes.

If you want the installation program to automatically create Local Zone subnets for your OpenShift
Container Platform cluster, specific configuration limitations apply with this method.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:ModifyAvailabilityZoneGroup"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

OpenShift Container Platform 4.19 Installing on AWS

278

IMPORTANT

The following configuration limitation applies when you set the installation program to
automatically create subnets for your OpenShift Container Platform cluster:

When the installation program creates private subnets in AWS Local Zones, the
program associates each subnet with the route table of its parent zone. This
operation ensures that each private subnet can route egress traffic to the
internet by way of NAT Gateways in an AWS Region.

If the parent-zone route table does not exist during cluster installation, the
installation program associates any private subnet with the first available private
route table in the Amazon Virtual Private Cloud (VPC). This approach is valid only
for AWS Local Zones subnets in an OpenShift Container Platform cluster.

3.11.2.2. About edge compute pools

Edge compute nodes are tainted compute nodes that run in AWS Local Zones locations.

When deploying a cluster that uses Local Zones, consider the following points:

Amazon EC2 instances in the Local Zones are more expensive than Amazon EC2 instances in
the Availability Zones.

The latency is lower between the applications running in AWS Local Zones and the end user. A
latency impact exists for some workloads if, for example, ingress traffic is mixed between Local
Zones and Availability Zones.

IMPORTANT

Generally, the maximum transmission unit (MTU) between an Amazon EC2 instance in a
Local Zones and an Amazon EC2 instance in the Region is 1300. The cluster network MTU
must be always less than the EC2 MTU to account for the overhead. The specific
overhead is determined by the network plugin. For example: OVN-Kubernetes has an
overhead of 100 bytes.

The network plugin can provide additional features, such as IPsec, that also affect the
MTU sizing.

For more information, see How Local Zones work in the AWS documentation.

OpenShift Container Platform 4.12 introduced a new compute pool, edge, that is designed for use in
remote zones. The edge compute pool configuration is common between AWS Local Zones locations.
Because of the type and size limitations of resources like EC2 and EBS on Local Zones resources, the
default instance type can vary from the traditional compute pool.

The default Elastic Block Store (EBS) for Local Zones locations is gp2, which differs from the non-edge
compute pool. The instance type used for each Local Zones on an edge compute pool also might differ
from other compute pools, depending on the instance offerings on the zone.

The edge compute pool creates new labels that developers can use to deploy applications onto AWS
Local Zones nodes. The new labels are:

node-role.kubernetes.io/edge=''

machine.openshift.io/zone-type=local-zone

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

279

https://docs.aws.amazon.com/local-zones/latest/ug/how-local-zones-work.html

machine.openshift.io/zone-group=$ZONE_GROUP_NAME

By default, the machine sets for the edge compute pool define the taint of NoSchedule to prevent
other workloads from spreading on Local Zones instances. Users can only run user workloads if they
define tolerations in the pod specification.

Additional resources

MTU value selection

Changing the MTU for the cluster network

Understanding taints and tolerations

Storage classes

Ingress Controller sharding

3.11.3. Installation prerequisites

Before you install a cluster in an AWS Local Zones environment, you must configure your infrastructure
so that it can adopt Local Zone capabilities.

3.11.3.1. Opting in to an AWS Local Zones

If you plan to create subnets in AWS Local Zones, you must opt in to each zone group separately.

Prerequisites

You have installed the AWS CLI.

You have determined an AWS Region for where you want to deploy your OpenShift Container
Platform cluster.

You have attached a permissive IAM policy to a user or role account that opts in to the zone
group.

Procedure

1. List the zones that are available in your AWS Region by running the following command:

Example command for listing available AWS Local Zones in an AWS Region

Depending on the AWS Region, the list of available zones might be long. The command returns
the following fields:

ZoneName

The name of the Local Zones.

$ aws --region "<value_of_AWS_Region>" ec2 describe-availability-zones \
 --query 'AvailabilityZones[].[{ZoneName: ZoneName, GroupName: GroupName, Status:
OptInStatus}]' \
 --filters Name=zone-type,Values=local-zone \
 --all-availability-zones

OpenShift Container Platform 4.19 Installing on AWS

280

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/advanced_networking/#mtu-value-selection_changing-cluster-network-mtu
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/advanced_networking/#nw-ovn-ipsec-enable_configuring-ipsec-ovn
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/storage/#pvc-storage-class_understanding-persistent-storage
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ingress_and_load_balancing/#nw-ingress-sharding_configuring-ingress-cluster-traffic-ingress-controller

1

GroupName

The group that comprises the zone. To opt in to the Region, save the name.

Status

The status of the Local Zones group. If the status is not-opted-in, you must opt in the
GroupName as described in the next step.

2. Opt in to the zone group on your AWS account by running the following command:

Replace <value_of_GroupName> with the name of the group of the Local Zones where
you want to create subnets. For example, specify us-east-1-nyc-1 to use the zone us-
east-1-nyc-1a (US East New York).

3.11.3.2. Obtaining an AWS Marketplace image

If you are deploying an OpenShift Container Platform cluster using an AWS Marketplace image, you
must first subscribe through AWS. Subscribing to the offer provides you with the AMI ID that the
installation program uses to deploy compute nodes.

NOTE

You should only modify the RHCOS image for compute machines to use an AWS
Marketplace image. Control plane machines and infrastructure nodes do not require an
OpenShift Container Platform subscription and use the public RHCOS default image by
default, which does not incur subscription costs on your AWS bill. Therefore, you should
not modify the cluster default boot image or the control plane boot images. Applying the
AWS Marketplace image to them will incur additional licensing costs that cannot be
recovered.

Prerequisites

You have an AWS account to purchase the offer. This account does not have to be the same
account that is used to install the cluster.

Procedure

1. Complete the OpenShift Container Platform subscription from the AWS Marketplace.

2. Record the AMI ID for your specific AWS Region. As part of the installation process, you must
update the install-config.yaml file with this value before deploying the cluster.

Sample install-config.yaml file with AWS Marketplace compute nodes

$ aws ec2 modify-availability-zone-group \
 --group-name "<value_of_GroupName>" \ 1
 --opt-in-status opted-in

apiVersion: v1
baseDomain: example.com
compute:
- hyperthreading: Enabled
 name: worker
 platform:

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

281

https://aws.amazon.com/marketplace/fulfillment?productId=59ead7de-2540-4653-a8b0-fa7926d5c845

1

2

The AMI ID from your AWS Marketplace subscription.

Your AMI ID is associated with a specific AWS Region. When creating the installation
configuration file, ensure that you select the same AWS Region that you specified when
configuring your subscription.

3.11.4. Preparing for the installation

Before you extend nodes to Local Zones, you must prepare certain resources for the cluster installation
environment.

3.11.4.1. Minimum resource requirements for cluster installation

Each created cluster must meet minimum requirements so that the cluster runs as expected.

Table 3.18. Minimum resource requirements

Machine Operating
System

vCPU [1] Virtual RAM Storage Input/Output
Per Second
(IOPS)[2]

Bootstrap RHCOS 4 16 GB 100 GB 300

Control plane RHCOS 4 16 GB 100 GB 300

Compute RHCOS, RHEL
8.6 and later
[3]

2 8 GB 100 GB 300

1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the
corresponding ratio: (threads per core × cores) × sockets = vCPUs.

2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster
storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms
p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so
you might need to over-allocate storage volume to obtain sufficient performance.

3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your
cluster, you take responsibility for all operating system life cycle management and maintenance,

 aws:
 amiID: ami-06c4d345f7c207239 1
 type: m5.4xlarge
 replicas: 3
metadata:
 name: test-cluster
platform:
 aws:
 region: us-east-2 2
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'

OpenShift Container Platform 4.19 Installing on AWS

282

including performing system updates, applying patches, and completing all other required tasks.
Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container
Platform 4.10 and later.

NOTE

For OpenShift Container Platform version 4.19, RHCOS is based on RHEL version 9.6,
which updates the micro-architecture requirements. The following list contains the
minimum instruction set architectures (ISA) that each architecture requires:

x86-64 architecture requires x86-64-v2 ISA

ARM64 architecture requires ARMv8.0-A ISA

IBM Power architecture requires Power 9 ISA

s390x architecture requires z14 ISA

For more information, see Architectures (RHEL documentation).

If an instance type for your platform meets the minimum requirements for cluster machines, it is
supported to use in OpenShift Container Platform.

3.11.4.2. Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container
Platform for use with AWS Local Zones.

NOTE

Use the machine types included in the following charts for your AWS instances. If you use
an instance type that is not listed in the chart, ensure that the instance size you use
matches the minimum resource requirements that are listed in the section named
"Minimum resource requirements for cluster installation".

Example 3.15. Machine types based on 64-bit x86 architecture for AWS Local Zones

c5.*

c5d.*

m6i.*

m5.*

r5.*

t3.*

Additional resources

AWS Local Zones features (AWS documentation)

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

283

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.2_release_notes/index#architectures
https://aws.amazon.com/about-aws/global-infrastructure/localzones/features/

1

3.11.4.3. Creating the installation configuration file

Generate and customize the installation configuration file that the installation program needs to deploy
your cluster.

Prerequisites

You obtained the OpenShift Container Platform installation program for user-provisioned
infrastructure and the pull secret for your cluster.

You checked that you are deploying your cluster to an AWS Region with an accompanying
Red Hat Enterprise Linux CoreOS (RHCOS) AMI published by Red Hat. If you are deploying to
an AWS Region that requires a custom AMI, such as an AWS GovCloud Region, you must create
the install-config.yaml file manually.

Procedure

1. Create the install-config.yaml file.

a. Change to the directory that contains the installation program and run the following
command:

For <installation_directory>, specify the directory name to store the files that the
installation program creates.

IMPORTANT

Specify an empty directory. Some installation assets, like bootstrap X.509
certificates have short expiration intervals, so you must not reuse an
installation directory. If you want to reuse individual files from another cluster
installation, you can copy them into your directory. However, the file names
for the installation assets might change between releases. Use caution when
copying installation files from an earlier OpenShift Container Platform
version.

b. At the prompts, provide the configuration details for your cloud:

i. Optional: Select an SSH key to use to access your cluster machines.

NOTE

For production OpenShift Container Platform clusters on which you want
to perform installation debugging or disaster recovery, specify an SSH
key that your ssh-agent process uses.

ii. Select aws as the platform to target.

iii. If you do not have an AWS profile stored on your computer, enter the AWS access key
ID and secret access key for the user that you configured to run the installation
program.

NOTE

$./openshift-install create install-config --dir <installation_directory> 1

OpenShift Container Platform 4.19 Installing on AWS

284

NOTE

The AWS access key ID and secret access key are stored in
~/.aws/credentials in the home directory of the current user on the
installation host. You are prompted for the credentials by the installation
program if the credentials for the exported profile are not present in the
file. Any credentials that you provide to the installation program are
stored in the file.

iv. Select the AWS Region to deploy the cluster to.

v. Select the base domain for the Route 53 service that you configured for your cluster.

vi. Enter a descriptive name for your cluster.

vii. Paste the pull secret from Red Hat OpenShift Cluster Manager .

2. Optional: Back up the install-config.yaml file.

IMPORTANT

The install-config.yaml file is consumed during the installation process. If you
want to reuse the file, you must back it up now.

3.11.4.4. Examples of installation configuration files with edge compute pools

The following examples show install-config.yaml files that contain an edge machine pool configuration.

Configuration that uses an edge pool with a custom instance type

Instance types differ between locations. To verify availability in the Local Zones in which the cluster
runs, see the AWS documentation.

Configuration that uses an edge pool with a custom Amazon Elastic Block Store (EBS) type

apiVersion: v1
baseDomain: devcluster.openshift.com
metadata:
 name: ipi-edgezone
compute:
- name: edge
 platform:
 aws:
 type: r5.2xlarge
platform:
 aws:
 region: us-west-2
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...

apiVersion: v1
baseDomain: devcluster.openshift.com
metadata:
 name: ipi-edgezone

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

285

https://console.redhat.com/openshift/install/pull-secret

1

Elastic Block Storage (EBS) types differ between locations. Check the AWS documentation to verify
availability in the Local Zones in which the cluster runs.

Configuration that uses an edge pool with custom security groups

Specify the name of the security group as it is displayed on the Amazon EC2 console. Ensure that
you include the sg prefix.

3.11.4.5. Customizing the cluster network MTU

Before you deploy a cluster on AWS, you can customize the cluster network maximum transmission unit
(MTU) for your cluster network to meet the needs of your infrastructure.

By default, when you install a cluster with supported Local Zones capabilities, the MTU value for the
cluster network is automatically adjusted to the lowest value that the network plugin accepts.

IMPORTANT

Setting an unsupported MTU value for EC2 instances that operate in the Local Zones
infrastructure can cause issues for your OpenShift Container Platform cluster.

compute:
- name: edge
 platform:
 aws:
 zones:
 - us-west-2-lax-1a
 - us-west-2-lax-1b
 - us-west-2-phx-2a
 rootVolume:
 type: gp3
 size: 120
platform:
 aws:
 region: us-west-2
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...

apiVersion: v1
baseDomain: devcluster.openshift.com
metadata:
 name: ipi-edgezone
compute:
- name: edge
 platform:
 aws:
 additionalSecurityGroupIDs:
 - sg-1 1
 - sg-2
platform:
 aws:
 region: us-west-2
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...

OpenShift Container Platform 4.19 Installing on AWS

286

If the Local Zone supports higher MTU values in between EC2 instances in the Local Zone and the AWS
Region, you can manually configure the higher value to increase the network performance of the cluster
network.

You can customize the MTU for a cluster by specifying the networking.clusterNetworkMTU parameter
in the install-config.yaml configuration file.

IMPORTANT

All subnets in Local Zones must support the higher MTU value, so that each node in that
zone can successfully communicate with services in the AWS Region and deploy your
workloads.

Example of overwriting the default MTU value

Additional resources

For more information about the maximum supported maximum transmission unit (MTU) value,
see AWS resources supported in Local Zones in the AWS documentation.

3.11.5. Cluster installation options for an AWS Local Zones environment

Choose one of the following installation options to install an OpenShift Container Platform cluster on
AWS with edge compute nodes defined in Local Zones:

Fully automated option: Installing a cluster to quickly extend compute nodes to edge compute
pools, where the installation program automatically creates infrastructure resources for the
OpenShift Container Platform cluster.

Existing VPC option: Installing a cluster on AWS into an existing VPC, where you supply Local
Zones subnets to the install-config.yaml file.

Next steps

Choose one of the following options to install an OpenShift Container Platform cluster in an AWS Local

apiVersion: v1
baseDomain: devcluster.openshift.com
metadata:
 name: edge-zone
networking:
 clusterNetworkMTU: 8901
compute:
- name: edge
 platform:
 aws:
 zones:
 - us-west-2-lax-1a
 - us-west-2-lax-1b
platform:
 aws:
 region: us-west-2
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

287

https://docs.aws.amazon.com/local-zones/latest/ug/how-local-zones-work.html#considerations

1

2

Choose one of the following options to install an OpenShift Container Platform cluster in an AWS Local
Zones environment:

Installing a cluster quickly in AWS Local Zones

Installing a cluster in an existing VPC with defined AWS Local Zone subnets

3.11.6. Install a cluster quickly in AWS Local Zones

For OpenShift Container Platform 4.19, you can quickly install a cluster on Amazon Web Services (AWS)
to extend compute nodes to Local Zones locations. By using this installation route, the installation
program automatically creates network resources and Local Zones subnets for each zone that you
defined in your configuration file. To customize the installation, you must modify parameters in the
install-config.yaml file before you deploy the cluster.

3.11.6.1. Modifying an installation configuration file to use AWS Local Zones

Modify an install-config.yaml file to include AWS Local Zones.

Prerequisites

You have configured an AWS account.

You added your AWS keys and AWS Region to your local AWS profile by running aws
configure.

You are familiar with the configuration limitations that apply when you specify the installation
program to automatically create subnets for your OpenShift Container Platform cluster.

You opted in to the Local Zones group for each zone.

You created an install-config.yaml file by using the procedure "Creating the installation
configuration file".

Procedure

1. Modify the install-config.yaml file by specifying Local Zones names in the platform.aws.zones
property of the edge compute pool.

The AWS Region name.

The list of Local Zones names that you use must exist in the same AWS Region specified in
the platform.aws.region field.

...
platform:
 aws:
 region: <region_name> 1
compute:
- name: edge
 platform:
 aws:
 zones: 2
 - <local_zone_name>
#...

OpenShift Container Platform 4.19 Installing on AWS

288

Example of a configuration to install a cluster in the us-west-2 AWS Region that
extends edge nodes to Local Zones in Los Angeles and Las Vegas locations

2. Deploy your cluster.

Additional resources

Creating the installation configuration file

Cluster limitations in AWS Local Zones

Next steps

Deploying the cluster

3.11.7. Installing a cluster in an existing VPC that has Local Zone subnets

You can install a cluster into an existing Amazon Virtual Private Cloud (VPC) on Amazon Web Services
(AWS). The installation program provisions the rest of the required infrastructure, which you can further
customize. To customize the installation, change parameters in the install-config.yaml file before you
install the cluster.

Installing a cluster on AWS into an existing VPC requires extending compute nodes to the edge of the
Cloud Infrastructure by using AWS Local Zones.

Local Zone subnets extend regular compute nodes to edge networks. Each edge compute nodes runs a
user workload. After you create an Amazon Web Service (AWS) Local Zone environment, and you deploy
your cluster, you can use edge compute nodes to create user workloads in Local Zone subnets.

NOTE

If you want to create private subnets, you must either change the provided
CloudFormation template or create your own template.

You can use a provided CloudFormation template to create network resources. Additionally, you can

apiVersion: v1
baseDomain: example.com
metadata:
 name: cluster-name
platform:
 aws:
 region: us-west-2
compute:
- name: edge
 platform:
 aws:
 zones:
 - us-west-2-lax-1a
 - us-west-2-lax-1b
 - us-west-2-las-1a
pullSecret: '{"auths": ...}'
sshKey: 'ssh-ed25519 AAAA...'
#...

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

289

You can use a provided CloudFormation template to create network resources. Additionally, you can
change a template to customize your infrastructure or use the information that they contain to create
AWS resources according to your company’s policies.

IMPORTANT

The documentation provides the steps for performing an installer-provisioned
infrastructure installation for example purposes only. Installing a cluster in an existing VPC
requires that you have knowledge of the cloud provider and the installation process of
OpenShift Container Platform. You can use a CloudFormation template to assist you with
completing these steps or to help model your own cluster installation. Instead of using the
CloudFormation template to create resources, you can decide to use other methods for
generating these resources.

3.11.7.1. Creating a VPC in AWS

You can create a Virtual Private Cloud (VPC), and subnets for all Local Zones locations, in Amazon Web
Services (AWS) for your OpenShift Container Platform cluster to extend compute nodes to edge
locations. You can further customize your VPC to meet your requirements, including a VPN and route
tables. You can also add new Local Zones subnets not included at initial deployment.

You can use the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources that represent the VPC.

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and AWS Region to your local AWS profile by running aws
configure.

You opted in to the AWS Local Zones on your AWS account.

Procedure

1. Create a JSON file that contains the parameter values that the CloudFormation template
requires:

[
 {
 "ParameterKey": "VpcCidr", 1
 "ParameterValue": "10.0.0.0/16" 2
 },
 {
 "ParameterKey": "AvailabilityZoneCount", 3
 "ParameterValue": "3" 4
 },

OpenShift Container Platform 4.19 Installing on AWS

290

1

2

3

4

5

6

1

2

3

The CIDR block for the VPC.

Specify a CIDR block in the format x.x.x.x/16-24.

The number of availability zones to deploy the VPC in.

Specify an integer between 1 and 3.

The size of each subnet in each availability zone.

Specify an integer between 5 and 13, where 5 is /27 and 13 is /19.

2. Go to the section of the documentation named "CloudFormation template for the VPC", and
then copy the syntax from the provided template. Save the copied template syntax as a YAML
file on your local system. This template describes the VPC that your cluster requires.

3. Launch the CloudFormation template to create a stack of AWS resources that represent the
VPC by running the following command:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-vpc. You need the
name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path and the name of the CloudFormation parameters JSON
file.

Example output

4. Confirm that the template components exist by running the following command:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the

 {
 "ParameterKey": "SubnetBits", 5
 "ParameterValue": "12" 6
 }
]

$ aws cloudformation create-stack --stack-name <name> \ 1
 --template-body file://<template>.yaml \ 2
 --parameters file://<parameters>.json 3

arn:aws:cloudformation:us-east-1:123456789012:stack/cluster-vpc/dbedae40-2fd3-11eb-
820e-12a48460849f

$ aws cloudformation describe-stacks --stack-name <name>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

291

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters. You must provide these parameter values to the other CloudFormation
templates that you run to create your cluster.

VpcId The ID of your VPC.

PublicSub
netIds

The IDs of the new public subnets.

PrivateSu
bnetIds

The IDs of the new private subnets.

PublicRou
teTableId

The ID of the new public route table ID.

3.11.7.2. CloudFormation template for the VPC

You can use the following CloudFormation template to deploy the VPC that you need for your
OpenShift Container Platform cluster.

Example 3.16. CloudFormation template for the VPC

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice VPC with 1-3 AZs

Parameters:
 VpcCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.0.0/16
 Description: CIDR block for VPC.
 Type: String
 AvailabilityZoneCount:
 ConstraintDescription: "The number of availability zones. (Min: 1, Max: 3)"
 MinValue: 1
 MaxValue: 3
 Default: 1
 Description: "How many AZs to create VPC subnets for. (Min: 1, Max: 3)"
 Type: Number
 SubnetBits:
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/19-27.
 MinValue: 5
 MaxValue: 13
 Default: 12
 Description: "Size of each subnet to create within the availability zones. (Min: 5 = /27, Max: 13 =
/19)"
 Type: Number

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:

OpenShift Container Platform 4.19 Installing on AWS

292

 default: "Network Configuration"
 Parameters:
 - VpcCidr
 - SubnetBits
 - Label:
 default: "Availability Zones"
 Parameters:
 - AvailabilityZoneCount
 ParameterLabels:
 AvailabilityZoneCount:
 default: "Availability Zone Count"
 VpcCidr:
 default: "VPC CIDR"
 SubnetBits:
 default: "Bits Per Subnet"

Conditions:
 DoAz3: !Equals [3, !Ref AvailabilityZoneCount]
 DoAz2: !Or [!Equals [2, !Ref AvailabilityZoneCount], Condition: DoAz3]

Resources:
 VPC:
 Type: "AWS::EC2::VPC"
 Properties:
 EnableDnsSupport: "true"
 EnableDnsHostnames: "true"
 CidrBlock: !Ref VpcCidr
 PublicSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [0, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 0
 - Fn::GetAZs: !Ref "AWS::Region"
 PublicSubnet2:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [1, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 1
 - Fn::GetAZs: !Ref "AWS::Region"
 PublicSubnet3:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [2, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 2
 - Fn::GetAZs: !Ref "AWS::Region"
 InternetGateway:
 Type: "AWS::EC2::InternetGateway"
 GatewayToInternet:

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

293

 Type: "AWS::EC2::VPCGatewayAttachment"
 Properties:
 VpcId: !Ref VPC
 InternetGatewayId: !Ref InternetGateway
 PublicRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VPC
 PublicRoute:
 Type: "AWS::EC2::Route"
 DependsOn: GatewayToInternet
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 GatewayId: !Ref InternetGateway
 PublicSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetRouteTableAssociation2:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz2
 Properties:
 SubnetId: !Ref PublicSubnet2
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetRouteTableAssociation3:
 Condition: DoAz3
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet3
 RouteTableId: !Ref PublicRouteTable
 PrivateSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [3, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 0
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PrivateSubnet
 RouteTableId: !Ref PrivateRouteTable
 NAT:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Properties:
 AllocationId:
 "Fn::GetAtt":

OpenShift Container Platform 4.19 Installing on AWS

294

 - EIP
 - AllocationId
 SubnetId: !Ref PublicSubnet
 EIP:
 Type: "AWS::EC2::EIP"
 Properties:
 Domain: vpc
 Route:
 Type: "AWS::EC2::Route"
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT
 PrivateSubnet2:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [4, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 1
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable2:
 Type: "AWS::EC2::RouteTable"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation2:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz2
 Properties:
 SubnetId: !Ref PrivateSubnet2
 RouteTableId: !Ref PrivateRouteTable2
 NAT2:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Condition: DoAz2
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP2
 - AllocationId
 SubnetId: !Ref PublicSubnet2
 EIP2:
 Type: "AWS::EC2::EIP"
 Condition: DoAz2
 Properties:
 Domain: vpc
 Route2:
 Type: "AWS::EC2::Route"
 Condition: DoAz2
 Properties:
 RouteTableId:

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

295

 Ref: PrivateRouteTable2
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT2
 PrivateSubnet3:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [5, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 2
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable3:
 Type: "AWS::EC2::RouteTable"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation3:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz3
 Properties:
 SubnetId: !Ref PrivateSubnet3
 RouteTableId: !Ref PrivateRouteTable3
 NAT3:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Condition: DoAz3
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP3
 - AllocationId
 SubnetId: !Ref PublicSubnet3
 EIP3:
 Type: "AWS::EC2::EIP"
 Condition: DoAz3
 Properties:
 Domain: vpc
 Route3:
 Type: "AWS::EC2::Route"
 Condition: DoAz3
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable3
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT3
 S3Endpoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow

OpenShift Container Platform 4.19 Installing on AWS

296

 Principal: '*'
 Action:
 - '*'
 Resource:
 - '*'
 RouteTableIds:
 - !Ref PublicRouteTable
 - !Ref PrivateRouteTable
 - !If [DoAz2, !Ref PrivateRouteTable2, !Ref "AWS::NoValue"]
 - !If [DoAz3, !Ref PrivateRouteTable3, !Ref "AWS::NoValue"]
 ServiceName: !Join
 - ''
 - - com.amazonaws.
 - !Ref 'AWS::Region'
 - .s3
 VpcId: !Ref VPC

Outputs:
 VpcId:
 Description: ID of the new VPC.
 Value: !Ref VPC
 PublicSubnetIds:
 Description: Subnet IDs of the public subnets.
 Value:
 !Join [
 ",",
 [!Ref PublicSubnet, !If [DoAz2, !Ref PublicSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref
PublicSubnet3, !Ref "AWS::NoValue"]]
]
 PrivateSubnetIds:
 Description: Subnet IDs of the private subnets.
 Value:
 !Join [
 ",",
 [!Ref PrivateSubnet, !If [DoAz2, !Ref PrivateSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref
PrivateSubnet3, !Ref "AWS::NoValue"]]
]
 PublicRouteTableId:
 Description: Public Route table ID
 Value: !Ref PublicRouteTable
 PrivateRouteTableIds:
 Description: Private Route table IDs
 Value:
 !Join [
 ",",
 [
 !Join ["=", [
 !Select [0, "Fn::GetAZs": !Ref "AWS::Region"],
 !Ref PrivateRouteTable
]],
 !If [DoAz2,
 !Join ["=", [!Select [1, "Fn::GetAZs": !Ref "AWS::Region"], !Ref PrivateRouteTable2]],
 !Ref "AWS::NoValue"
],
 !If [DoAz3,
 !Join ["=", [!Select [2, "Fn::GetAZs": !Ref "AWS::Region"], !Ref PrivateRouteTable3]],

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

297

1

3.11.7.3. Creating subnets in Local Zones

Before you configure a machine set for edge compute nodes in your OpenShift Container Platform
cluster, you must create the subnets in Local Zones. Complete the following procedure for each Local
Zone that you want to deploy compute nodes to.

You can use the provided CloudFormation template and create a CloudFormation stack. You can then
use this stack to custom provision a subnet.

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You opted in to the Local Zones group.

Procedure

1. Go to the section of the documentation named "CloudFormation template for the VPC subnet",
and copy the syntax from the template. Save the copied template syntax as a YAML file on your
local system. This template describes the VPC that your cluster requires.

2. Run the following command to deploy the CloudFormation template, which creates a stack of
AWS resources that represent the VPC:

<stack_name> is the name for the CloudFormation stack, such as cluster-wl-
<local_zone_shortname>. You need the name of this stack if you remove the cluster.

 !Ref "AWS::NoValue"
]
]
]

$ aws cloudformation create-stack --stack-name <stack_name> \ 1
 --region ${CLUSTER_REGION} \
 --template-body file://<template>.yaml \ 2
 --parameters \
 ParameterKey=VpcId,ParameterValue="${VPC_ID}" \ 3
 ParameterKey=ClusterName,ParameterValue="${CLUSTER_NAME}" \ 4
 ParameterKey=ZoneName,ParameterValue="${ZONE_NAME}" \ 5
 ParameterKey=PublicRouteTableId,ParameterValue="${ROUTE_TABLE_PUB}" \ 6
 ParameterKey=PublicSubnetCidr,ParameterValue="${SUBNET_CIDR_PUB}" \ 7
 ParameterKey=PrivateRouteTableId,ParameterValue="${ROUTE_TABLE_PVT}" \ 8
 ParameterKey=PrivateSubnetCidr,ParameterValue="${SUBNET_CIDR_PVT}" 9

OpenShift Container Platform 4.19 Installing on AWS

298

2

3

4

5

6

7

8

<template> is the relative path and the name of the CloudFormation template YAML file
that you saved.

${VPC_ID} is the VPC ID, which is the value VpcID in the output of the CloudFormation
template for the VPC.

${ZONE_NAME} is the value of Local Zones name to create the subnets.

${CLUSTER_NAME} is the value of ClusterName to be used as a prefix of the new AWS
resource names.

${SUBNET_CIDR_PUB} is a valid CIDR block that is used to create the public subnet. This
block must be part of the VPC CIDR block VpcCidr.

${ROUTE_TABLE_PVT} is the PrivateRouteTableId extracted from the output of the
VPC’s CloudFormation stack.

${SUBNET_CIDR_PVT} is a valid CIDR block that is used to create the private subnet. This
block must be part of the VPC CIDR block VpcCidr.

Example output

Verification

Confirm that the template components exist by running the following command:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters. Ensure that you provide these parameter values to the other
CloudFormation templates that you run to create for your cluster.

PublicSub
netId

The IDs of the public subnet created by the CloudFormation stack.

PrivateSu
bnetId

The IDs of the private subnet created by the CloudFormation stack.

3.11.7.4. CloudFormation template for the VPC subnet

You can use the following CloudFormation template to deploy the private and public subnets in a zone
on Local Zones infrastructure.

Example 3.17. CloudFormation template for VPC subnets

arn:aws:cloudformation:us-east-1:123456789012:stack/<stack_name>/dbedae40-820e-11eb-2fd3-
12a48460849f

$ aws cloudformation describe-stacks --stack-name <stack_name>

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice Subnets (Public and Private)

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

299

Parameters:
 VpcId:
 Description: VPC ID that comprises all the target subnets.
 Type: String
 AllowedPattern: ^(?:(?:vpc)(?:-[a-zA-Z0-9]+)?\b|(?:[0-9]{1,3}\.){3}[0-9]{1,3})$
 ConstraintDescription: VPC ID must be with valid name, starting with vpc-.*.
 ClusterName:
 Description: Cluster name or prefix name to prepend the Name tag for each subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: ClusterName parameter must be specified.
 ZoneName:
 Description: Zone Name to create the subnets, such as us-west-2-lax-1a.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: ZoneName parameter must be specified.
 PublicRouteTableId:
 Description: Public Route Table ID to associate the public subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: PublicRouteTableId parameter must be specified.
 PublicSubnetCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.128.0/20
 Description: CIDR block for public subnet.
 Type: String
 PrivateRouteTableId:
 Description: Private Route Table ID to associate the private subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: PrivateRouteTableId parameter must be specified.
 PrivateSubnetCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.128.0/20
 Description: CIDR block for private subnet.
 Type: String

Resources:
 PublicSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VpcId
 CidrBlock: !Ref PublicSubnetCidr
 AvailabilityZone: !Ref ZoneName
 Tags:
 - Key: Name
 Value: !Join ['-', [!Ref ClusterName, "public", !Ref ZoneName]]

 PublicSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:

OpenShift Container Platform 4.19 Installing on AWS

300

Additional resources

You can view details about the CloudFormation stacks that you create by navigating to the AWS
CloudFormation console.

3.11.7.5. Modifying an installation configuration file to use AWS Local Zones subnets

Modify your install-config.yaml file to include Local Zones subnets.

Prerequisites

You created subnets by using the procedure "Creating subnets in Local Zones".

You created an install-config.yaml file by using the procedure "Creating the installation
configuration file".

Procedure

Modify the install-config.yaml configuration file by specifying Local Zones subnets in the
platform.aws.subnets parameter.

Example installation configuration file with Local Zones subnets

 SubnetId: !Ref PublicSubnet
 RouteTableId: !Ref PublicRouteTableId

 PrivateSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VpcId
 CidrBlock: !Ref PrivateSubnetCidr
 AvailabilityZone: !Ref ZoneName
 Tags:
 - Key: Name
 Value: !Join ['-', [!Ref ClusterName, "private", !Ref ZoneName]]

 PrivateSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PrivateSubnet
 RouteTableId: !Ref PrivateRouteTableId

Outputs:
 PublicSubnetId:
 Description: Subnet ID of the public subnets.
 Value:
 !Join ["", [!Ref PublicSubnet]]

 PrivateSubnetId:
 Description: Subnet ID of the private subnets.
 Value:
 !Join ["", [!Ref PrivateSubnet]]

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

301

https://console.aws.amazon.com/cloudformation/

1 List of subnet IDs created in the zones: Availability and Local Zones.

Additional resources

For more information about viewing the CloudFormation stacks that you created, see AWS
CloudFormation console.

For more information about AWS profile and credential configuration, see Configuration and
credential file settings in the AWS documentation.

Next steps

Deploying the cluster

3.11.8. Optional: AWS security groups

By default, the installation program creates and attaches security groups to control plane and compute
machines. The rules associated with the default security groups cannot be modified.

However, you can apply additional existing AWS security groups, which are associated with your existing
VPC, to control plane and compute machines. Applying custom security groups can help you meet the
security needs of your organization, in such cases where you need to control the incoming or outgoing
traffic of these machines.

As part of the installation process, you apply custom security groups by modifying the install-
config.yaml file before deploying the cluster.

For more information, see "Edge compute pools and AWS Local Zones".

3.11.9. Optional: Assign public IP addresses to edge compute nodes

If your workload requires deploying the edge compute nodes in public subnets on Local Zones
infrastructure, you can configure the machine set manifests when installing a cluster.

AWS Local Zones infrastructure accesses the network traffic in a specified zone, so applications can
take advantage of lower latency when serving end users that are closer to that zone.

The default setting that deploys compute nodes in private subnets might not meet your needs, so
consider creating edge compute nodes in public subnets when you want to apply more customization to
your infrastructure.

...
platform:
 aws:
 region: us-west-2
 subnets: 1
 - publicSubnetId-1
 - publicSubnetId-2
 - publicSubnetId-3
 - privateSubnetId-1
 - privateSubnetId-2
 - privateSubnetId-3
 - publicSubnetId-LocalZone-1
...

OpenShift Container Platform 4.19 Installing on AWS

302

https://console.aws.amazon.com/cloudformation
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

IMPORTANT

By default, OpenShift Container Platform deploy the compute nodes in private subnets.
For best performance, consider placing compute nodes in subnets that have their Public
IP addresses attached to the subnets.

You must create additional security groups, but ensure that you only open the groups'
rules over the internet when you really need to.

Procedure

1. Change to the directory that contains the installation program and generate the manifest files.
Ensure that the installation manifests get created at the openshift and manifests directory
level.

2. Edit the machine set manifest that the installation program generates for the Local Zones, so
that the manifest gets deployed in public subnets. Specify true for the
spec.template.spec.providerSpec.value.publicIP parameter.

Example machine set manifest configuration for installing a cluster quickly in Local
Zones

Example machine set manifest configuration for installing a cluster in an existing
VPC that has Local Zones subnets

3.11.10. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

$./openshift-install create manifests --dir <installation_directory>

spec:
 template:
 spec:
 providerSpec:
 value:
 publicIp: true
 subnet:
 filters:
 - name: tag:Name
 values:
 - ${INFRA_ID}-public-${ZONE_NAME}

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <infrastructure_id>-edge-<zone>
 namespace: openshift-machine-api
spec:
 template:
 spec:
 providerSpec:
 value:
 publicIp: true

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

303

1

2

IMPORTANT

You can run the create cluster command of the installation program only once, during
initial installation.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

You have verified that the cloud provider account on your host has the correct permissions to
deploy the cluster. An account with incorrect permissions causes the installation process to fail
with an error message that displays the missing permissions.

Procedure

1. In the directory that contains the installation program, initialize the cluster deployment by
running the following command:

For <installation_directory>, specify the location of your customized ./install-
config.yaml file.

To view different installation details, specify warn, debug, or error instead of info.

2. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you
used to install the cluster.

NOTE

The elevated permissions provided by the AdministratorAccess policy are
required only during installation.

Verification

When the cluster deployment completes successfully:

The terminal displays directions for accessing your cluster, including a link to the web console
and credentials for the kubeadmin user.

Credential information also outputs to <installation_directory>/.openshift_install.log.

IMPORTANT

Do not delete the installation program or the files that the installation program creates.
Both are required to delete the cluster.

Example output

$./openshift-install create cluster --dir <installation_directory> \ 1
 --log-level=info 2

OpenShift Container Platform 4.19 Installing on AWS

304

1

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

3.11.11. Verifying the status of the deployed cluster

Verify that your OpenShift Container Platform successfully deployed on AWS Local Zones.

3.11.11.1. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

Procedure

1. Export the kubeadmin credentials by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

305

Example output

3.11.11.2. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in
to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

You have access to the installation host.

You completed a cluster installation and all cluster Operators are available.

Procedure

1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the
installation host:

NOTE

Alternatively, you can obtain the kubeadmin password from the
<installation_directory>/.openshift_install.log log file on the installation host.

2. List the OpenShift Container Platform web console route:

NOTE

Alternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log log file on the installation host.

Example output

3. Navigate to the route detailed in the output of the preceding command in a web browser and
log in as the kubeadmin user.

Additional resources

Accessing the web console

$ oc whoami

system:admin

$ cat <installation_directory>/auth/kubeadmin-password

$ oc get routes -n openshift-console | grep 'console-openshift'

console console-openshift-console.apps.<cluster_name>.<base_domain> console
https reencrypt/Redirect None

OpenShift Container Platform 4.19 Installing on AWS

306

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console

3.11.11.3. Verifying nodes that were created with edge compute pool

After you install a cluster that uses AWS Local Zones infrastructure, check the status of the machine
that was created by the machine set manifests created during installation.

1. To check the machine sets created from the subnet you added to the install-config.yaml file,
run the following command:

Example output

2. To check the machines that were created from the machine sets, run the following command:

Example output

NAME PHASE TYPE REGION ZONE AGE
cluster-7xw5g-edge-us-east-1-nyc-1a-wbclh Running c5d.2xlarge us-east-1 us-east-1-
nyc-1a 3h
cluster-7xw5g-master-0 Running m6i.xlarge us-east-1 us-east-1a 3h4m
cluster-7xw5g-master-1 Running m6i.xlarge us-east-1 us-east-1b 3h4m
cluster-7xw5g-master-2 Running m6i.xlarge us-east-1 us-east-1c 3h4m
cluster-7xw5g-worker-us-east-1a-rtp45 Running m6i.xlarge us-east-1 us-east-1a
3h
cluster-7xw5g-worker-us-east-1b-glm7c Running m6i.xlarge us-east-1 us-east-1b
3h
cluster-7xw5g-worker-us-east-1c-qfvz4 Running m6i.xlarge us-east-1 us-east-1c
3h

3. To check nodes with edge roles, run the following command:

Example output

Next steps

Validating an installation.

If necessary, you can Remote health reporting .

3.12. INSTALLING A CLUSTER WITH COMPUTE NODES ON AWS

$ oc get machineset -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
cluster-7xw5g-edge-us-east-1-nyc-1a 1 1 1 1 3h4m
cluster-7xw5g-worker-us-east-1a 1 1 1 1 3h4m
cluster-7xw5g-worker-us-east-1b 1 1 1 1 3h4m
cluster-7xw5g-worker-us-east-1c 1 1 1 1 3h4m

$ oc get machines -n openshift-machine-api

$ oc get nodes -l node-role.kubernetes.io/edge

NAME STATUS ROLES AGE VERSION
ip-10-0-207-188.ec2.internal Ready edge,worker 172m v1.25.2+d2e245f

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

307

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting

3.12. INSTALLING A CLUSTER WITH COMPUTE NODES ON AWS
WAVELENGTH ZONES

You can quickly install an OpenShift Container Platform cluster on Amazon Web Services (AWS)
Wavelength Zones by setting the zone names in the edge compute pool of the install-config.yaml file,
or install a cluster in an existing Amazon Virtual Private Cloud (VPC) with Wavelength Zone subnets.

AWS Wavelength Zones is an infrastructure that AWS configured for mobile edge computing (MEC)
applications.

A Wavelength Zone embeds AWS compute and storage services within the 5G network of a
communication service provider (CSP). By placing application servers in a Wavelength Zone, the
application traffic from your 5G devices can stay in the 5G network. The application traffic of the device
reaches the target server directly, making latency a non-issue.

Additional resources

Wavelength Zones(AWS documentation)

3.12.1. Infrastructure prerequisites

You reviewed details about OpenShift Container Platform installation and update processes.

You are familiar with Selecting a cluster installation method and preparing it for users .

You configured an AWS account to host the cluster.

WARNING

If you have an AWS profile stored on your computer, it must not use a
temporary session token that you generated while using a multi-factor
authentication device. The cluster continues to use your current AWS
credentials to create AWS resources for the entire life of the cluster, so you
must use key-based, long-term credentials. To generate appropriate keys,
see Managing Access Keys for IAM Users in the AWS documentation. You
can supply the keys when you run the installation program.

You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using
the Bundled Installer (Linux, macOS, or UNIX) in the AWS documentation.

If you use a firewall, you configured it to allow the sites that your cluster must access.

You noted the region and supported AWS Wavelength Zone locations to create the network
resources in.

You read AWS Wavelength features in the AWS documentation.

You read the Quotas and considerations for Wavelength Zones in the AWS documentation.

You added permissions for creating network resources that support AWS Wavelength Zones to



OpenShift Container Platform 4.19 Installing on AWS

308

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-wavelength-zones
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/cli/latest/userguide/install-bundle.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall
https://aws.amazon.com/wavelength/locations
https://aws.amazon.com/about-aws/global-infrastructure/localzones/features/
https://docs.aws.amazon.com/wavelength/latest/developerguide/wavelength-quotas.html

You added permissions for creating network resources that support AWS Wavelength Zones to
the Identity and Access Management (IAM) user or role. For example:

Example of an additional IAM policy that attached ec2:ModifyAvailabilityZoneGroup,
ec2:CreateCarrierGateway, and ec2:DeleteCarrierGateway permissions to a user or role

3.12.2. About AWS Wavelength Zones and edge compute pool

Read the following sections to understand infrastructure behaviors and cluster limitations in an AWS
Wavelength Zones environment.

3.12.2.1. Cluster limitations in AWS Wavelength Zones

Some limitations exist when you try to deploy a cluster with a default installation configuration in an
Amazon Web Services (AWS) Wavelength Zone.

IMPORTANT

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DeleteCarrierGateway",
 "ec2:CreateCarrierGateway"
],
 "Resource": "*"
 },
 {
 "Action": [
 "ec2:ModifyAvailabilityZoneGroup"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

309

IMPORTANT

The following list details limitations when deploying a cluster in a pre-configured AWS
zone:

The maximum transmission unit (MTU) between an Amazon EC2 instance in a
zone and an Amazon EC2 instance in the Region is 1300. This causes the cluster-
wide network MTU to change according to the network plugin that is used with
the deployment.

Network resources such as Network Load Balancer (NLB), Classic Load
Balancer, and Network Address Translation (NAT) Gateways are not globally
supported.

For an OpenShift Container Platform cluster on AWS, the AWS Elastic Block
Storage (EBS) gp3 type volume is the default for node volumes and the default
for the storage class. This volume type is not globally available on zone locations.
By default, the nodes running in zones are deployed with the gp2 EBS volume.
The gp2-csi StorageClass parameter must be set when creating workloads on
zone nodes.

If you want the installation program to automatically create Wavelength Zone subnets for your
OpenShift Container Platform cluster, specific configuration limitations apply with this method. The
following note details some of these limitations. For other limitations, ensure that you read the "Quotas
and considerations for Wavelength Zones" document that Red Hat provides in the "Infrastructure
prerequisites" section.

IMPORTANT

The following configuration limitation applies when you set the installation program to
automatically create subnets for your OpenShift Container Platform cluster:

When the installation program creates private subnets in AWS Wavelength
Zones, the program associates each subnet with the route table of its parent
zone. This operation ensures that each private subnet can route egress traffic to
the internet by way of NAT Gateways in an AWS Region.

If the parent-zone route table does not exist during cluster installation, the
installation program associates any private subnet with the first available private
route table in the Amazon Virtual Private Cloud (VPC). This approach is valid only
for AWS Wavelength Zones subnets in an OpenShift Container Platform cluster.

3.12.2.2. About edge compute pools

Edge compute nodes are tainted compute nodes that run in AWS Wavelength Zones locations.

When deploying a cluster that uses Wavelength Zones, consider the following points:

Amazon EC2 instances in the Wavelength Zones are more expensive than Amazon EC2
instances in the Availability Zones.

The latency is lower between the applications running in AWS Wavelength Zones and the end
user. A latency impact exists for some workloads if, for example, ingress traffic is mixed between
Wavelength Zones and Availability Zones.

IMPORTANT

OpenShift Container Platform 4.19 Installing on AWS

310

IMPORTANT

Generally, the maximum transmission unit (MTU) between an Amazon EC2 instance in a
Wavelength Zones and an Amazon EC2 instance in the Region is 1300. The cluster
network MTU must be always less than the EC2 MTU to account for the overhead. The
specific overhead is determined by the network plugin. For example: OVN-Kubernetes
has an overhead of 100 bytes.

The network plugin can provide additional features, such as IPsec, that also affect the
MTU sizing.

For more information, see How AWS Wavelength work in the AWS documentation.

OpenShift Container Platform 4.12 introduced a new compute pool, edge, that is designed for use in
remote zones. The edge compute pool configuration is common between AWS Wavelength Zones
locations. Because of the type and size limitations of resources like EC2 and EBS on Wavelength Zones
resources, the default instance type can vary from the traditional compute pool.

The default Elastic Block Store (EBS) for Wavelength Zones locations is gp2, which differs from the
non-edge compute pool. The instance type used for each Wavelength Zones on an edge compute pool
also might differ from other compute pools, depending on the instance offerings on the zone.

The edge compute pool creates new labels that developers can use to deploy applications onto AWS
Wavelength Zones nodes. The new labels are:

node-role.kubernetes.io/edge=''

machine.openshift.io/zone-type=wavelength-zone

machine.openshift.io/zone-group=$ZONE_GROUP_NAME

By default, the machine sets for the edge compute pool define the taint of NoSchedule to prevent
other workloads from spreading on Wavelength Zones instances. Users can only run user workloads if
they define tolerations in the pod specification.

Additional resources

MTU value selection

Changing the MTU for the cluster network

Understanding taints and tolerations

Storage classes

Ingress Controller sharding

3.12.3. Installation prerequisites

Before you install a cluster in an AWS Wavelength Zones environment, you must configure your
infrastructure so that it can adopt Wavelength Zone capabilities.

3.12.3.1. Opting in to an AWS Wavelength Zones

If you plan to create subnets in AWS Wavelength Zones, you must opt in to each zone group separately.

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

311

https://docs.aws.amazon.com/wavelength/latest/developerguide/how-wavelengths-work.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/advanced_networking/#mtu-value-selection_changing-cluster-network-mtu
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/advanced_networking/#nw-ovn-ipsec-enable_configuring-ipsec-ovn
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/storage/#pvc-storage-class_understanding-persistent-storage
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ingress_and_load_balancing/#nw-ingress-sharding_configuring-ingress-cluster-traffic-ingress-controller

1

Prerequisites

You have installed the AWS CLI.

You have determined an AWS Region for where you want to deploy your OpenShift Container
Platform cluster.

You have attached a permissive IAM policy to a user or role account that opts in to the zone
group.

Procedure

1. List the zones that are available in your AWS Region by running the following command:

Example command for listing available AWS Wavelength Zones in an AWS Region

Depending on the AWS Region, the list of available zones might be long. The command returns
the following fields:

ZoneName

The name of the Wavelength Zones.

GroupName

The group that comprises the zone. To opt in to the Region, save the name.

Status

The status of the Wavelength Zones group. If the status is not-opted-in, you must opt in the
GroupName as described in the next step.

2. Opt in to the zone group on your AWS account by running the following command:

Replace <value_of_GroupName> with the name of the group of the Wavelength Zones
where you want to create subnets. As an example for Wavelength Zones, specify us-east-
1-wl1 to use the zone us-east-1-wl1-nyc-wlz-1 (US East New York).

3.12.3.2. Obtaining an AWS Marketplace image

If you are deploying an OpenShift Container Platform cluster using an AWS Marketplace image, you
must first subscribe through AWS. Subscribing to the offer provides you with the AMI ID that the
installation program uses to deploy compute nodes.

NOTE

$ aws --region "<value_of_AWS_Region>" ec2 describe-availability-zones \
 --query 'AvailabilityZones[].[{ZoneName: ZoneName, GroupName: GroupName, Status:
OptInStatus}]' \
 --filters Name=zone-type,Values=wavelength-zone \
 --all-availability-zones

$ aws ec2 modify-availability-zone-group \
 --group-name "<value_of_GroupName>" \ 1
 --opt-in-status opted-in

OpenShift Container Platform 4.19 Installing on AWS

312

1

2

NOTE

You should only modify the RHCOS image for compute machines to use an AWS
Marketplace image. Control plane machines and infrastructure nodes do not require an
OpenShift Container Platform subscription and use the public RHCOS default image by
default, which does not incur subscription costs on your AWS bill. Therefore, you should
not modify the cluster default boot image or the control plane boot images. Applying the
AWS Marketplace image to them will incur additional licensing costs that cannot be
recovered.

Prerequisites

You have an AWS account to purchase the offer. This account does not have to be the same
account that is used to install the cluster.

Procedure

1. Complete the OpenShift Container Platform subscription from the AWS Marketplace.

2. Record the AMI ID for your specific AWS Region. As part of the installation process, you must
update the install-config.yaml file with this value before deploying the cluster.

Sample install-config.yaml file with AWS Marketplace compute nodes

The AMI ID from your AWS Marketplace subscription.

Your AMI ID is associated with a specific AWS Region. When creating the installation
configuration file, ensure that you select the same AWS Region that you specified when
configuring your subscription.

3.12.4. Preparing for the installation

Before you extend nodes to Wavelength Zones, you must prepare certain resources for the cluster
installation environment.

apiVersion: v1
baseDomain: example.com
compute:
- hyperthreading: Enabled
 name: worker
 platform:
 aws:
 amiID: ami-06c4d345f7c207239 1
 type: m5.4xlarge
 replicas: 3
metadata:
 name: test-cluster
platform:
 aws:
 region: us-east-2 2
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

313

https://aws.amazon.com/marketplace/fulfillment?productId=59ead7de-2540-4653-a8b0-fa7926d5c845

3.12.4.1. Minimum resource requirements for cluster installation

Each created cluster must meet minimum requirements so that the cluster runs as expected.

Table 3.19. Minimum resource requirements

Machine Operating
System

vCPU [1] Virtual RAM Storage Input/Output
Per Second
(IOPS)[2]

Bootstrap RHCOS 4 16 GB 100 GB 300

Control plane RHCOS 4 16 GB 100 GB 300

Compute RHCOS, RHEL
8.6 and later
[3]

2 8 GB 100 GB 300

1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the
corresponding ratio: (threads per core × cores) × sockets = vCPUs.

2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster
storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms
p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so
you might need to over-allocate storage volume to obtain sufficient performance.

3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your
cluster, you take responsibility for all operating system life cycle management and maintenance,
including performing system updates, applying patches, and completing all other required tasks.
Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container
Platform 4.10 and later.

NOTE

For OpenShift Container Platform version 4.19, RHCOS is based on RHEL version 9.6,
which updates the micro-architecture requirements. The following list contains the
minimum instruction set architectures (ISA) that each architecture requires:

x86-64 architecture requires x86-64-v2 ISA

ARM64 architecture requires ARMv8.0-A ISA

IBM Power architecture requires Power 9 ISA

s390x architecture requires z14 ISA

For more information, see Architectures (RHEL documentation).

If an instance type for your platform meets the minimum requirements for cluster machines, it is
supported to use in OpenShift Container Platform.

3.12.4.2. Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container

OpenShift Container Platform 4.19 Installing on AWS

314

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.2_release_notes/index#architectures

1

The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container
Platform for use with AWS Wavelength Zones.

NOTE

Use the machine types included in the following charts for your AWS instances. If you use
an instance type that is not listed in the chart, ensure that the instance size you use
matches the minimum resource requirements that are listed in the section named
"Minimum resource requirements for cluster installation".

Example 3.18. Machine types based on 64-bit x86 architecture for AWS Wavelength Zones

r5.*

t3.*

Additional resources

AWS Wavelength features(AWS documentation)

3.12.4.3. Creating the installation configuration file

Generate and customize the installation configuration file that the installation program needs to deploy
your cluster.

Prerequisites

You obtained the OpenShift Container Platform installation program and the pull secret for
your cluster.

You checked that you are deploying your cluster to an AWS Region with an accompanying
Red Hat Enterprise Linux CoreOS (RHCOS) AMI published by Red Hat. If you are deploying to
an AWS Region that requires a custom AMI, such as an AWS GovCloud Region, you must create
the install-config.yaml file manually.

Procedure

1. Create the install-config.yaml file.

a. Change to the directory that contains the installation program and run the following
command:

For <installation_directory>, specify the directory name to store the files that the
installation program creates.

IMPORTANT

$./openshift-install create install-config --dir <installation_directory> 1

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

315

https://aws.amazon.com/wavelength/features/

IMPORTANT

Specify an empty directory. Some installation assets, like bootstrap X.509
certificates have short expiration intervals, so you must not reuse an
installation directory. If you want to reuse individual files from another cluster
installation, you can copy them into your directory. However, the file names
for the installation assets might change between releases. Use caution when
copying installation files from an earlier OpenShift Container Platform
version.

b. At the prompts, provide the configuration details for your cloud:

i. Optional: Select an SSH key to use to access your cluster machines.

NOTE

For production OpenShift Container Platform clusters on which you want
to perform installation debugging or disaster recovery, specify an SSH
key that your ssh-agent process uses.

ii. Select aws as the platform to target.

iii. If you do not have an AWS profile stored on your computer, enter the AWS access key
ID and secret access key for the user that you configured to run the installation
program.

NOTE

The AWS access key ID and secret access key are stored in
~/.aws/credentials in the home directory of the current user on the
installation host. You are prompted for the credentials by the installation
program if the credentials for the exported profile are not present in the
file. Any credentials that you provide to the installation program are
stored in the file.

iv. Select the AWS Region to deploy the cluster to.

v. Select the base domain for the Route 53 service that you configured for your cluster.

vi. Enter a descriptive name for your cluster.

vii. Paste the pull secret from Red Hat OpenShift Cluster Manager .

2. Optional: Back up the install-config.yaml file.

IMPORTANT

The install-config.yaml file is consumed during the installation process. If you
want to reuse the file, you must back it up now.

3.12.4.4. Examples of installation configuration files with edge compute pools

The following examples show install-config.yaml files that contain an edge machine pool configuration.

OpenShift Container Platform 4.19 Installing on AWS

316

https://console.redhat.com/openshift/install/pull-secret

1

Configuration that uses an edge pool with a custom instance type

Instance types differ between locations. To verify availability in the Wavelength Zones in which the
cluster runs, see the AWS documentation.

Configuration that uses an edge pool with custom security groups

Specify the name of the security group as it is displayed on the Amazon EC2 console. Ensure that
you include the sg prefix.

3.12.5. Cluster installation options for an AWS Wavelength Zones environment

Choose one of the following installation options to install an OpenShift Container Platform cluster on
AWS with edge compute nodes defined in Wavelength Zones:

Fully automated option: Installing a cluster to quickly extend compute nodes to edge compute
pools, where the installation program automatically creates infrastructure resources for the
OpenShift Container Platform cluster.

Existing VPC option: Installing a cluster on AWS into an existing VPC, where you supply
Wavelength Zones subnets to the install-config.yaml file.

apiVersion: v1
baseDomain: devcluster.openshift.com
metadata:
 name: ipi-edgezone
compute:
- name: edge
 platform:
 aws:
 type: r5.2xlarge
platform:
 aws:
 region: us-west-2
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...

apiVersion: v1
baseDomain: devcluster.openshift.com
metadata:
 name: ipi-edgezone
compute:
- name: edge
 platform:
 aws:
 additionalSecurityGroupIDs:
 - sg-1 1
 - sg-2
platform:
 aws:
 region: us-west-2
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

317

1

Next steps

Choose one of the following options to install an OpenShift Container Platform cluster in an AWS
Wavelength Zones environment:

Installing a cluster quickly in AWS Wavelength Zones

Modifying an installation configuration file to use AWS Wavelength Zones

3.12.6. Install a cluster quickly in AWS Wavelength Zones

For OpenShift Container Platform 4.19, you can quickly install a cluster on Amazon Web Services (AWS)
to extend compute nodes to Wavelength Zones locations. By using this installation route, the
installation program automatically creates network resources and Wavelength Zones subnets for each
zone that you defined in your configuration file. To customize the installation, you must modify
parameters in the install-config.yaml file before you deploy the cluster.

3.12.6.1. Modifying an installation configuration file to use AWS Wavelength Zones

Modify an install-config.yaml file to include AWS Wavelength Zones.

Prerequisites

You have configured an AWS account.

You added your AWS keys and AWS Region to your local AWS profile by running aws
configure.

You are familiar with the configuration limitations that apply when you specify the installation
program to automatically create subnets for your OpenShift Container Platform cluster.

You opted in to the Wavelength Zones group for each zone.

You created an install-config.yaml file by using the procedure "Creating the installation
configuration file".

Procedure

1. Modify the install-config.yaml file by specifying Wavelength Zones names in the
platform.aws.zones property of the edge compute pool.

The AWS Region name.

The list of Wavelength Zones names that you use must exist in the same AWS Region

...
platform:
 aws:
 region: <region_name> 1
compute:
- name: edge
 platform:
 aws:
 zones: 2
 - <wavelength_zone_name>
#...

OpenShift Container Platform 4.19 Installing on AWS

318

2 The list of Wavelength Zones names that you use must exist in the same AWS Region
specified in the platform.aws.region field.

Example of a configuration to install a cluster in the us-west-2 AWS Region that
extends edge nodes to Wavelength Zones in Los Angeles and Las Vegas locations

2. Deploy your cluster.

Additional resources

Creating the installation configuration file

Cluster limitations in AWS Wavelength Zones

Next steps

Deploying the cluster

3.12.7. Installing a cluster in an existing VPC that has Wavelength Zone subnets

You can install a cluster into an existing Amazon Virtual Private Cloud (VPC) on Amazon Web Services
(AWS). The installation program provisions the rest of the required infrastructure, which you can further
customize. To customize the installation, modify parameters in the install-config.yaml file before you
install the cluster.

Installing a cluster on AWS into an existing VPC requires extending compute nodes to the edge of the
Cloud Infrastructure by using AWS Wavelength Zones.

You can use a provided CloudFormation template to create network resources. Additionally, you can
modify a template to customize your infrastructure or use the information that they contain to create
AWS resources according to your company’s policies.

IMPORTANT

apiVersion: v1
baseDomain: example.com
metadata:
 name: cluster-name
platform:
 aws:
 region: us-west-2
compute:
- name: edge
 platform:
 aws:
 zones:
 - us-west-2-wl1-lax-wlz-1
 - us-west-2-wl1-las-wlz-1
pullSecret: '{"auths": ...}'
sshKey: 'ssh-ed25519 AAAA...'
#...

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

319

IMPORTANT

The steps for performing an installer-provisioned infrastructure installation are provided
for example purposes only. Installing a cluster in an existing VPC requires that you have
knowledge of the cloud provider and the installation process of OpenShift Container
Platform. You can use a CloudFormation template to assist you with completing these
steps or to help model your own cluster installation. Instead of using the CloudFormation
template to create resources, you can decide to use other methods for generating these
resources.

3.12.7.1. Creating a VPC in AWS

You can create a Virtual Private Cloud (VPC), and subnets for all Wavelength Zones locations, in
Amazon Web Services (AWS) for your OpenShift Container Platform cluster to extend compute nodes
to edge locations. You can further customize your VPC to meet your requirements, including a VPN and
route tables. You can also add new Wavelength Zones subnets not included at initial deployment.

You can use the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources that represent the VPC.

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and AWS Region to your local AWS profile by running aws
configure.

You opted in to the AWS Wavelength Zones on your AWS account.

Procedure

1. Create a JSON file that contains the parameter values that the CloudFormation template
requires:

[
 {
 "ParameterKey": "VpcCidr", 1
 "ParameterValue": "10.0.0.0/16" 2
 },
 {
 "ParameterKey": "AvailabilityZoneCount", 3
 "ParameterValue": "3" 4
 },
 {
 "ParameterKey": "SubnetBits", 5

OpenShift Container Platform 4.19 Installing on AWS

320

1

2

3

4

5

6

1

2

3

The CIDR block for the VPC.

Specify a CIDR block in the format x.x.x.x/16-24.

The number of availability zones to deploy the VPC in.

Specify an integer between 1 and 3.

The size of each subnet in each availability zone.

Specify an integer between 5 and 13, where 5 is /27 and 13 is /19.

2. Go to the section of the documentation named "CloudFormation template for the VPC", and
then copy the syntax from the provided template. Save the copied template syntax as a YAML
file on your local system. This template describes the VPC that your cluster requires.

3. Launch the CloudFormation template to create a stack of AWS resources that represent the
VPC by running the following command:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-vpc. You need the
name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path and the name of the CloudFormation parameters JSON
file.

Example output

4. Confirm that the template components exist by running the following command:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters. You must provide these parameter values to the other CloudFormation
templates that you run to create your cluster.

 "ParameterValue": "12" 6
 }
]

$ aws cloudformation create-stack --stack-name <name> \ 1
 --template-body file://<template>.yaml \ 2
 --parameters file://<parameters>.json 3

arn:aws:cloudformation:us-east-1:123456789012:stack/cluster-vpc/dbedae40-2fd3-11eb-
820e-12a48460849f

$ aws cloudformation describe-stacks --stack-name <name>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

321

VpcId The ID of your VPC.

PublicSub
netIds

The IDs of the new public subnets.

PrivateSu
bnetIds

The IDs of the new private subnets.

PublicRou
teTableId

The ID of the new public route table ID.

3.12.7.2. CloudFormation template for the VPC

You can use the following CloudFormation template to deploy the VPC that you need for your
OpenShift Container Platform cluster.

Example 3.19. CloudFormation template for the VPC

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice VPC with 1-3 AZs

Parameters:
 VpcCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.0.0/16
 Description: CIDR block for VPC.
 Type: String
 AvailabilityZoneCount:
 ConstraintDescription: "The number of availability zones. (Min: 1, Max: 3)"
 MinValue: 1
 MaxValue: 3
 Default: 1
 Description: "How many AZs to create VPC subnets for. (Min: 1, Max: 3)"
 Type: Number
 SubnetBits:
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/19-27.
 MinValue: 5
 MaxValue: 13
 Default: 12
 Description: "Size of each subnet to create within the availability zones. (Min: 5 = /27, Max: 13 =
/19)"
 Type: Number

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcCidr
 - SubnetBits

OpenShift Container Platform 4.19 Installing on AWS

322

 - Label:
 default: "Availability Zones"
 Parameters:
 - AvailabilityZoneCount
 ParameterLabels:
 AvailabilityZoneCount:
 default: "Availability Zone Count"
 VpcCidr:
 default: "VPC CIDR"
 SubnetBits:
 default: "Bits Per Subnet"

Conditions:
 DoAz3: !Equals [3, !Ref AvailabilityZoneCount]
 DoAz2: !Or [!Equals [2, !Ref AvailabilityZoneCount], Condition: DoAz3]

Resources:
 VPC:
 Type: "AWS::EC2::VPC"
 Properties:
 EnableDnsSupport: "true"
 EnableDnsHostnames: "true"
 CidrBlock: !Ref VpcCidr
 PublicSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [0, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 0
 - Fn::GetAZs: !Ref "AWS::Region"
 PublicSubnet2:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [1, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 1
 - Fn::GetAZs: !Ref "AWS::Region"
 PublicSubnet3:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [2, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 2
 - Fn::GetAZs: !Ref "AWS::Region"
 InternetGateway:
 Type: "AWS::EC2::InternetGateway"
 GatewayToInternet:
 Type: "AWS::EC2::VPCGatewayAttachment"
 Properties:
 VpcId: !Ref VPC
 InternetGatewayId: !Ref InternetGateway

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

323

 PublicRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VPC
 PublicRoute:
 Type: "AWS::EC2::Route"
 DependsOn: GatewayToInternet
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 GatewayId: !Ref InternetGateway
 PublicSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetRouteTableAssociation2:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz2
 Properties:
 SubnetId: !Ref PublicSubnet2
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetRouteTableAssociation3:
 Condition: DoAz3
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet3
 RouteTableId: !Ref PublicRouteTable
 PrivateSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [3, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 0
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PrivateSubnet
 RouteTableId: !Ref PrivateRouteTable
 NAT:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP
 - AllocationId
 SubnetId: !Ref PublicSubnet
 EIP:

OpenShift Container Platform 4.19 Installing on AWS

324

 Type: "AWS::EC2::EIP"
 Properties:
 Domain: vpc
 Route:
 Type: "AWS::EC2::Route"
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT
 PrivateSubnet2:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [4, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 1
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable2:
 Type: "AWS::EC2::RouteTable"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation2:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz2
 Properties:
 SubnetId: !Ref PrivateSubnet2
 RouteTableId: !Ref PrivateRouteTable2
 NAT2:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Condition: DoAz2
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP2
 - AllocationId
 SubnetId: !Ref PublicSubnet2
 EIP2:
 Type: "AWS::EC2::EIP"
 Condition: DoAz2
 Properties:
 Domain: vpc
 Route2:
 Type: "AWS::EC2::Route"
 Condition: DoAz2
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable2
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT2

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

325

 PrivateSubnet3:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [5, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 2
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable3:
 Type: "AWS::EC2::RouteTable"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation3:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz3
 Properties:
 SubnetId: !Ref PrivateSubnet3
 RouteTableId: !Ref PrivateRouteTable3
 NAT3:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Condition: DoAz3
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP3
 - AllocationId
 SubnetId: !Ref PublicSubnet3
 EIP3:
 Type: "AWS::EC2::EIP"
 Condition: DoAz3
 Properties:
 Domain: vpc
 Route3:
 Type: "AWS::EC2::Route"
 Condition: DoAz3
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable3
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT3
 S3Endpoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Principal: '*'
 Action:
 - '*'
 Resource:

OpenShift Container Platform 4.19 Installing on AWS

326

 - '*'
 RouteTableIds:
 - !Ref PublicRouteTable
 - !Ref PrivateRouteTable
 - !If [DoAz2, !Ref PrivateRouteTable2, !Ref "AWS::NoValue"]
 - !If [DoAz3, !Ref PrivateRouteTable3, !Ref "AWS::NoValue"]
 ServiceName: !Join
 - ''
 - - com.amazonaws.
 - !Ref 'AWS::Region'
 - .s3
 VpcId: !Ref VPC

Outputs:
 VpcId:
 Description: ID of the new VPC.
 Value: !Ref VPC
 PublicSubnetIds:
 Description: Subnet IDs of the public subnets.
 Value:
 !Join [
 ",",
 [!Ref PublicSubnet, !If [DoAz2, !Ref PublicSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref
PublicSubnet3, !Ref "AWS::NoValue"]]
]
 PrivateSubnetIds:
 Description: Subnet IDs of the private subnets.
 Value:
 !Join [
 ",",
 [!Ref PrivateSubnet, !If [DoAz2, !Ref PrivateSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref
PrivateSubnet3, !Ref "AWS::NoValue"]]
]
 PublicRouteTableId:
 Description: Public Route table ID
 Value: !Ref PublicRouteTable
 PrivateRouteTableIds:
 Description: Private Route table IDs
 Value:
 !Join [
 ",",
 [
 !Join ["=", [
 !Select [0, "Fn::GetAZs": !Ref "AWS::Region"],
 !Ref PrivateRouteTable
]],
 !If [DoAz2,
 !Join ["=", [!Select [1, "Fn::GetAZs": !Ref "AWS::Region"], !Ref PrivateRouteTable2]],
 !Ref "AWS::NoValue"
],
 !If [DoAz3,
 !Join ["=", [!Select [2, "Fn::GetAZs": !Ref "AWS::Region"], !Ref PrivateRouteTable3]],
 !Ref "AWS::NoValue"
]
]
]

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

327

3.12.7.3. Creating a VPC carrier gateway

To use public subnets in your OpenShift Container Platform cluster that runs on Wavelength Zones, you
must create the carrier gateway and associate the carrier gateway to the VPC. Subnets are useful for
deploying load balancers or edge compute nodes.

To create edge nodes or internet-facing load balancers in Wavelength Zones locations for your
OpenShift Container Platform cluster, you must create the following required network components:

A carrier gateway that associates to the existing VPC.

A carrier route table that lists route entries.

A subnet that associates to the carrier route table.

Carrier gateways exist for VPCs that only contain subnets in a Wavelength Zone.

The following list explains the functions of a carrier gateway in the context of an AWS Wavelength Zones
location:

Provides connectivity between your Wavelength Zone and the carrier network, which includes
any available devices from the carrier network.

Performs Network Address Translation (NAT) functions, such as translating IP addresses that
are public IP addresses stored in a network border group, from Wavelength Zones to carrier IP
addresses. These translation functions apply to inbound and outbound traffic.

Authorizes inbound traffic from a carrier network that is located in a specific location.

Authorizes outbound traffic to a carrier network and the internet.

NOTE

No inbound connection configuration exists from the internet to a Wavelength Zone
through the carrier gateway.

You can use the provided CloudFormation template to create a stack of the following AWS resources:

One carrier gateway that associates to the VPC ID in the template.

One public route table for the Wavelength Zone named as <ClusterName>-public-carrier.

Default IPv4 route entry in the new route table that targets the carrier gateway.

VPC gateway endpoint for an AWS Simple Storage Service (S3).

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

OpenShift Container Platform 4.19 Installing on AWS

328

1

2

3

4

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

Procedure

1. Go to the next section of the documentation named "CloudFormation template for the VPC
Carrier Gateway", and then copy the syntax from the CloudFormation template for VPC
Carrier Gateway template. Save the copied template syntax as a YAML file on your local
system. This template describes the VPC that your cluster requires.

2. Run the following command to deploy the CloudFormation template, which creates a stack of
AWS resources that represent the VPC:

<stack_name> is the name for the CloudFormation stack, such as clusterName-vpc-
carrier-gw. You need the name of this stack if you remove the cluster.

<template> is the relative path and the name of the CloudFormation template YAML file
that you saved.

<VpcId> is the VPC ID extracted from the CloudFormation stack output created in the
section named "Creating a VPC in AWS".

<ClusterName> is a custom value that prefixes to resources that the CloudFormation
stack creates. You can use the same name that is defined in the metadata.name section
of the install-config.yaml configuration file.

Example output

Verification

Confirm that the CloudFormation template components exist by running the following
command:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameter. Ensure that you provide the parameter value to the other CloudFormation
templates that you run to create for your cluster.

$ aws cloudformation create-stack --stack-name <stack_name> \ 1
 --region ${CLUSTER_REGION} \
 --template-body file://<template>.yaml \ 2
 --parameters \//
 ParameterKey=VpcId,ParameterValue="${VpcId}" \ 3
 ParameterKey=ClusterName,ParameterValue="${ClusterName}" 4

arn:aws:cloudformation:us-east-1:123456789012:stack/<stack_name>/dbedae40-2fd3-11eb-
820e-12a48460849f

$ aws cloudformation describe-stacks --stack-name <stack_name>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

329

PublicRou
teTableId

The ID of the Route Table in the Carrier infrastructure.

Additional resources

See Amazon S3 in the AWS documentation.

3.12.7.4. CloudFormation template for the VPC Carrier Gateway

You can use the following CloudFormation template to deploy the Carrier Gateway on AWS Wavelength
infrastructure.

Example 3.20. CloudFormation template for VPC Carrier Gateway

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Creating Wavelength Zone Gateway (Carrier Gateway).

Parameters:
 VpcId:
 Description: VPC ID to associate the Carrier Gateway.
 Type: String
 AllowedPattern: ^(?:(?:vpc)(?:-[a-zA-Z0-9]+)?\b|(?:[0-9]{1,3}\.){3}[0-9]{1,3})$
 ConstraintDescription: VPC ID must be with valid name, starting with vpc-.*.
 ClusterName:
 Description: Cluster Name or Prefix name to prepend the tag Name for each subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: ClusterName parameter must be specified.

Resources:
 CarrierGateway:
 Type: "AWS::EC2::CarrierGateway"
 Properties:
 VpcId: !Ref VpcId
 Tags:
 - Key: Name
 Value: !Join ['-', [!Ref ClusterName, "cagw"]]

 PublicRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VpcId
 Tags:
 - Key: Name
 Value: !Join ['-', [!Ref ClusterName, "public-carrier"]]

 PublicRoute:
 Type: "AWS::EC2::Route"
 DependsOn: CarrierGateway
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 CarrierGatewayId: !Ref CarrierGateway

OpenShift Container Platform 4.19 Installing on AWS

330

https://aws.amazon.com/s3/

3.12.7.5. Creating subnets in Wavelength Zones

Before you configure a machine set for edge compute nodes in your OpenShift Container Platform
cluster, you must create the subnets in Wavelength Zones. Complete the following procedure for each
Wavelength Zone that you want to deploy compute nodes to.

You can use the provided CloudFormation template and create a CloudFormation stack. You can then
use this stack to custom provision a subnet.

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You opted in to the Wavelength Zones group.

Procedure

1. Go to the section of the documentation named "CloudFormation template for the VPC subnet",

 S3Endpoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Principal: '*'
 Action:
 - '*'
 Resource:
 - '*'
 RouteTableIds:
 - !Ref PublicRouteTable
 ServiceName: !Join
 - ''
 - - com.amazonaws.
 - !Ref 'AWS::Region'
 - .s3
 VpcId: !Ref VpcId

Outputs:
 PublicRouteTableId:
 Description: Public Route table ID
 Value: !Ref PublicRouteTable

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

331

1

2

3

4

5

6

7

8

9

1. Go to the section of the documentation named "CloudFormation template for the VPC subnet",
and copy the syntax from the template. Save the copied template syntax as a YAML file on your
local system. This template describes the VPC that your cluster requires.

2. Run the following command to deploy the CloudFormation template, which creates a stack of
AWS resources that represent the VPC:

<stack_name> is the name for the CloudFormation stack, such as cluster-wl-
<wavelength_zone_shortname>. You need the name of this stack if you remove the
cluster.

<template> is the relative path and the name of the CloudFormation template YAML file
that you saved.

${VPC_ID} is the VPC ID, which is the value VpcID in the output of the CloudFormation
template for the VPC.

${ZONE_NAME} is the value of Wavelength Zones name to create the subnets.

${CLUSTER_NAME} is the value of ClusterName to be used as a prefix of the new AWS
resource names.

${ROUTE_TABLE_PUB} is the PublicRouteTableId extracted from the output of the
VPC’s carrier gateway CloudFormation stack.

${SUBNET_CIDR_PUB} is a valid CIDR block that is used to create the public subnet. This
block must be part of the VPC CIDR block VpcCidr.

${ROUTE_TABLE_PVT} is the PrivateRouteTableId extracted from the output of the
VPC’s CloudFormation stack.

${SUBNET_CIDR_PVT} is a valid CIDR block that is used to create the private subnet. This
block must be part of the VPC CIDR block VpcCidr.

Example output

Verification

$ aws cloudformation create-stack --stack-name <stack_name> \ 1
 --region ${CLUSTER_REGION} \
 --template-body file://<template>.yaml \ 2
 --parameters \
 ParameterKey=VpcId,ParameterValue="${VPC_ID}" \ 3
 ParameterKey=ClusterName,ParameterValue="${CLUSTER_NAME}" \ 4
 ParameterKey=ZoneName,ParameterValue="${ZONE_NAME}" \ 5
 ParameterKey=PublicRouteTableId,ParameterValue="${ROUTE_TABLE_PUB}" \ 6
 ParameterKey=PublicSubnetCidr,ParameterValue="${SUBNET_CIDR_PUB}" \ 7
 ParameterKey=PrivateRouteTableId,ParameterValue="${ROUTE_TABLE_PVT}" \ 8
 ParameterKey=PrivateSubnetCidr,ParameterValue="${SUBNET_CIDR_PVT}" 9

arn:aws:cloudformation:us-east-1:123456789012:stack/<stack_name>/dbedae40-820e-11eb-2fd3-
12a48460849f

OpenShift Container Platform 4.19 Installing on AWS

332

Confirm that the template components exist by running the following command:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters. Ensure that you provide these parameter values to the other
CloudFormation templates that you run to create for your cluster.

PublicSub
netId

The IDs of the public subnet created by the CloudFormation stack.

PrivateSu
bnetId

The IDs of the private subnet created by the CloudFormation stack.

3.12.7.6. CloudFormation template for the VPC subnet

You can use the following CloudFormation template to deploy the private and public subnets in a zone
on Wavelength Zones infrastructure.

Example 3.21. CloudFormation template for VPC subnets

$ aws cloudformation describe-stacks --stack-name <stack_name>

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice Subnets (Public and Private)

Parameters:
 VpcId:
 Description: VPC ID that comprises all the target subnets.
 Type: String
 AllowedPattern: ^(?:(?:vpc)(?:-[a-zA-Z0-9]+)?\b|(?:[0-9]{1,3}\.){3}[0-9]{1,3})$
 ConstraintDescription: VPC ID must be with valid name, starting with vpc-.*.
 ClusterName:
 Description: Cluster name or prefix name to prepend the Name tag for each subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: ClusterName parameter must be specified.
 ZoneName:
 Description: Zone Name to create the subnets, such as us-west-2-lax-1a.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: ZoneName parameter must be specified.
 PublicRouteTableId:
 Description: Public Route Table ID to associate the public subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: PublicRouteTableId parameter must be specified.
 PublicSubnetCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.128.0/20
 Description: CIDR block for public subnet.
 Type: String
 PrivateRouteTableId:

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

333

 Description: Private Route Table ID to associate the private subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: PrivateRouteTableId parameter must be specified.
 PrivateSubnetCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.128.0/20
 Description: CIDR block for private subnet.
 Type: String

Resources:
 PublicSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VpcId
 CidrBlock: !Ref PublicSubnetCidr
 AvailabilityZone: !Ref ZoneName
 Tags:
 - Key: Name
 Value: !Join ['-', [!Ref ClusterName, "public", !Ref ZoneName]]

 PublicSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet
 RouteTableId: !Ref PublicRouteTableId

 PrivateSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VpcId
 CidrBlock: !Ref PrivateSubnetCidr
 AvailabilityZone: !Ref ZoneName
 Tags:
 - Key: Name
 Value: !Join ['-', [!Ref ClusterName, "private", !Ref ZoneName]]

 PrivateSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PrivateSubnet
 RouteTableId: !Ref PrivateRouteTableId

Outputs:
 PublicSubnetId:
 Description: Subnet ID of the public subnets.
 Value:
 !Join ["", [!Ref PublicSubnet]]

 PrivateSubnetId:
 Description: Subnet ID of the private subnets.
 Value:
 !Join ["", [!Ref PrivateSubnet]]

OpenShift Container Platform 4.19 Installing on AWS

334

1

3.12.7.7. Modifying an installation configuration file to use AWS Wavelength Zones subnets

Modify your install-config.yaml file to include Wavelength Zones subnets.

Prerequisites

You created subnets by using the procedure "Creating subnets in Wavelength Zones".

You created an install-config.yaml file by using the procedure "Creating the installation
configuration file".

Procedure

Modify the install-config.yaml configuration file by specifying Wavelength Zones subnets in
the platform.aws.subnets parameter.

Example installation configuration file with Wavelength Zones subnets

List of subnet IDs created in the zones: Availability and Wavelength Zones.

Additional resources

For more information about viewing the CloudFormation stacks that you created, see AWS
CloudFormation console.

For more information about AWS profile and credential configuration, see Configuration and
credential file settings in the AWS documentation.

Next steps

Deploying the cluster

3.12.8. Optional: Assign public IP addresses to edge compute nodes

If your workload requires deploying the edge compute nodes in public subnets on Wavelength Zones
infrastructure, you can configure the machine set manifests when installing a cluster.

AWS Wavelength Zones infrastructure accesses the network traffic in a specified zone, so applications

...
platform:
 aws:
 region: us-west-2
 subnets: 1
 - publicSubnetId-1
 - publicSubnetId-2
 - publicSubnetId-3
 - privateSubnetId-1
 - privateSubnetId-2
 - privateSubnetId-3
 - publicOrPrivateSubnetID-Wavelength-1
...

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

335

https://console.aws.amazon.com/cloudformation
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

AWS Wavelength Zones infrastructure accesses the network traffic in a specified zone, so applications
can take advantage of lower latency when serving end users that are closer to that zone.

The default setting that deploys compute nodes in private subnets might not meet your needs, so
consider creating edge compute nodes in public subnets when you want to apply more customization to
your infrastructure.

IMPORTANT

By default, OpenShift Container Platform deploy the compute nodes in private subnets.
For best performance, consider placing compute nodes in subnets that have their Public
IP addresses attached to the subnets.

You must create additional security groups, but ensure that you only open the groups'
rules over the internet when you really need to.

Procedure

1. Change to the directory that contains the installation program and generate the manifest files.
Ensure that the installation manifests get created at the openshift and manifests directory
level.

2. Edit the machine set manifest that the installation program generates for the Wavelength
Zones, so that the manifest gets deployed in public subnets. Specify true for the
spec.template.spec.providerSpec.value.publicIP parameter.

Example machine set manifest configuration for installing a cluster quickly in
Wavelength Zones

Example machine set manifest configuration for installing a cluster in an existing
VPC that has Wavelength Zones subnets

$./openshift-install create manifests --dir <installation_directory>

spec:
 template:
 spec:
 providerSpec:
 value:
 publicIp: true
 subnet:
 filters:
 - name: tag:Name
 values:
 - ${INFRA_ID}-public-${ZONE_NAME}

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <infrastructure_id>-edge-<zone>
 namespace: openshift-machine-api
spec:
 template:
 spec:

OpenShift Container Platform 4.19 Installing on AWS

336

1

2

3.12.9. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

IMPORTANT

You can run the create cluster command of the installation program only once, during
initial installation.

Prerequisites

You have configured an account with the cloud platform that hosts your cluster.

You have the OpenShift Container Platform installation program and the pull secret for your
cluster.

You have verified that the cloud provider account on your host has the correct permissions to
deploy the cluster. An account with incorrect permissions causes the installation process to fail
with an error message that displays the missing permissions.

Procedure

1. In the directory that contains the installation program, initialize the cluster deployment by
running the following command:

For <installation_directory>, specify the location of your customized ./install-
config.yaml file.

To view different installation details, specify warn, debug, or error instead of info.

2. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you
used to install the cluster.

NOTE

The elevated permissions provided by the AdministratorAccess policy are
required only during installation.

Verification

When the cluster deployment completes successfully:

The terminal displays directions for accessing your cluster, including a link to the web console
and credentials for the kubeadmin user.

Credential information also outputs to <installation_directory>/.openshift_install.log.

 providerSpec:
 value:
 publicIp: true

$./openshift-install create cluster --dir <installation_directory> \ 1
 --log-level=info 2

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

337

IMPORTANT

Do not delete the installation program or the files that the installation program creates.
Both are required to delete the cluster.

Example output

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

3.12.10. Verifying the status of the deployed cluster

Verify that your OpenShift Container Platform successfully deployed on AWS Wavelength Zones.

3.12.10.1. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

Procedure

1. Export the kubeadmin credentials by running the following command:

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

OpenShift Container Platform 4.19 Installing on AWS

338

1 For <installation_directory>, specify the path to the directory that you stored the
installation files in.

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

Example output

3.12.10.2. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in
to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

You have access to the installation host.

You completed a cluster installation and all cluster Operators are available.

Procedure

1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the
installation host:

NOTE

Alternatively, you can obtain the kubeadmin password from the
<installation_directory>/.openshift_install.log log file on the installation host.

2. List the OpenShift Container Platform web console route:

NOTE

Alternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log log file on the installation host.

Example output

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

$ oc whoami

system:admin

$ cat <installation_directory>/auth/kubeadmin-password

$ oc get routes -n openshift-console | grep 'console-openshift'

console console-openshift-console.apps.<cluster_name>.<base_domain> console
https reencrypt/Redirect None

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

339

3. Navigate to the route detailed in the output of the preceding command in a web browser and
log in as the kubeadmin user.

Additional resources

Accessing the web console

3.12.10.3. Verifying nodes that were created with edge compute pool

After you install a cluster that uses AWS Wavelength Zones infrastructure, check the status of the
machine that was created by the machine set manifests created during installation.

1. To check the machine sets created from the subnet you added to the install-config.yaml file,
run the following command:

Example output

2. To check the machines that were created from the machine sets, run the following command:

Example output

NAME PHASE TYPE REGION ZONE AGE
cluster-7xw5g-edge-us-east-1-wl1-nyc-wlz-1-wbclh Running c5d.2xlarge us-east-1 us-
east-1-wl1-nyc-wlz-1 3h
cluster-7xw5g-master-0 Running m6i.xlarge us-east-1 us-east-1a
3h4m
cluster-7xw5g-master-1 Running m6i.xlarge us-east-1 us-east-1b
3h4m
cluster-7xw5g-master-2 Running m6i.xlarge us-east-1 us-east-1c
3h4m
cluster-7xw5g-worker-us-east-1a-rtp45 Running m6i.xlarge us-east-1 us-east-1a
3h
cluster-7xw5g-worker-us-east-1b-glm7c Running m6i.xlarge us-east-1 us-east-1b
3h
cluster-7xw5g-worker-us-east-1c-qfvz4 Running m6i.xlarge us-east-1 us-east-1c
3h

3. To check nodes with edge roles, run the following command:

Example output

$ oc get machineset -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
cluster-7xw5g-edge-us-east-1-wl1-nyc-wlz-1 1 1 1 1 3h4m
cluster-7xw5g-worker-us-east-1a 1 1 1 1 3h4m
cluster-7xw5g-worker-us-east-1b 1 1 1 1 3h4m
cluster-7xw5g-worker-us-east-1c 1 1 1 1 3h4m

$ oc get machines -n openshift-machine-api

$ oc get nodes -l node-role.kubernetes.io/edge

OpenShift Container Platform 4.19 Installing on AWS

340

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console

Next steps

Validating an installation.

If necessary, you can Remote health reporting .

3.13. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST

In OpenShift Container Platform version 4.14, you could install a cluster on Amazon Web Services (AWS)
with compute nodes running in AWS Outposts as a Technology Preview. As of OpenShift Container
Platform version 4.15, this installation method is no longer supported. Instead, you can install a cluster on
AWS into an existing VPC, and provision compute nodes on AWS Outposts as a postinstallation
configuration task.

After installing a cluster on Amazon Web Services (AWS) into an existing Amazon Virtual Private Cloud
(VPC), you can create a compute machine set that deploys compute machines in AWS Outposts. AWS
Outposts is an AWS edge compute service that enables using many features of a cloud-based AWS
deployment with the reduced latency of an on-premise environment. For more information, see the
AWS Outposts documentation.

3.13.1. AWS Outposts on OpenShift Container Platform requirements and
limitations

You can manage the resources on your AWS Outpost similarly to those on a cloud-based AWS cluster if
you configure your OpenShift Container Platform cluster to accommodate the following requirements
and limitations:

To extend an OpenShift Container Platform cluster on AWS into an Outpost, you must have
installed the cluster into an existing Amazon Virtual Private Cloud (VPC).

The infrastructure of an Outpost is tied to an availability zone in an AWS region and uses a
dedicated subnet. Edge compute machines deployed into an Outpost must use the Outpost
subnet and the availability zone that the Outpost is tied to.

When the AWS Kubernetes cloud controller manager discovers an Outpost subnet, it attempts
to create service load balancers in the Outpost subnet. AWS Outposts do not support running
service load balancers. To prevent the cloud controller manager from creating unsupported
services in the Outpost subnet, you must include the kubernetes.io/cluster/unmanaged tag in
the Outpost subnet configuration. This requirement is a workaround in OpenShift Container
Platform version 4.19. For more information, see OCPBUGS-30041.

OpenShift Container Platform clusters on AWS include the gp3-csi and gp2-csi storage
classes. These classes correspond to Amazon Elastic Block Store (EBS) gp3 and gp2 volumes.
OpenShift Container Platform clusters use the gp3-csi storage class by default, but AWS
Outposts does not support EBS gp3 volumes.

This implementation uses the node-role.kubernetes.io/outposts taint to prevent spreading
regular cluster workloads to the Outpost nodes. To schedule user workloads in the Outpost, you
must specify a corresponding toleration in the Deployment resource for your application.
Reserving the AWS Outpost infrastructure for user workloads avoids additional configuration
requirements, such as updating the default CSI to gp2-csi so that it is compatible.

NAME STATUS ROLES AGE VERSION
ip-10-0-207-188.ec2.internal Ready edge,worker 172m v1.25.2+d2e245f

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

341

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting
https://docs.aws.amazon.com/outposts/
https://issues.redhat.com/browse/OCPBUGS-30041

To create a volume in the Outpost, the CSI driver requires the Outpost Amazon Resource Name
(ARN). The driver uses the topology keys stored on the CSINode objects to determine the
Outpost ARN. To ensure that the driver uses the correct topology values, you must set the
volume binding mode to WaitForConsumer and avoid setting allowed topologies on any new
storage classes that you create.

When you extend an AWS VPC cluster into an Outpost, you have two types of compute
resources. The Outpost has edge compute nodes, while the VPC has cloud-based compute
nodes. The cloud-based AWS Elastic Block volume cannot attach to Outpost edge compute
nodes, and the Outpost volumes cannot attach to cloud-based compute nodes.
As a result, you cannot use CSI snapshots to migrate applications that use persistent storage
from cloud-based compute nodes to edge compute nodes or directly use the original
persistent volume. To migrate persistent storage data for applications, you must perform a
manual backup and restore operation.

AWS Outposts does not support AWS Network Load Balancers or AWS Classic Load Balancers.
You must use AWS Application Load Balancers to enable load balancing for edge compute
resources in the AWS Outposts environment.
To provision an Application Load Balancer, you must use an Ingress resource and install the
AWS Load Balancer Operator. If your cluster contains both edge and cloud-based compute
instances that share workloads, additional configuration is required.

For more information, see "Using the AWS Load Balancer Operator in an AWS VPC cluster
extended into an Outpost".

Additional resources

Using the AWS Load Balancer Operator in an AWS VPC cluster extended into an Outpost

3.13.2. Obtaining information about your environment

To extend an AWS VPC cluster to your Outpost, you must provide information about your OpenShift
Container Platform cluster and your Outpost environment. You use this information to complete
network configuration tasks and configure a compute machine set that creates compute machines in
your Outpost. You can use command-line tools to gather the required details.

3.13.2.1. Obtaining information from your OpenShift Container Platform cluster

You can use the OpenShift CLI (oc) to obtain information from your OpenShift Container Platform
cluster.

TIP

You might find it convenient to store some or all of these values as environment variables by using the
export command.

Prerequisites

You have installed an OpenShift Container Platform cluster into a custom VPC on AWS.

You have access to the cluster using an account with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

OpenShift Container Platform 4.19 Installing on AWS

342

Procedure

1. List the infrastructure ID for the cluster by running the following command. Retain this value.

2. Obtain details about the compute machine sets that the installation program created by
running the following commands:

a. List the compute machine sets on your cluster:

Example output

b. Display the Amazon Machine Image (AMI) ID for one of the listed compute machine sets.
Retain this value.

c. Display the subnet ID for the AWS VPC cluster. Retain this value.

3.13.2.2. Obtaining information from your AWS account

You can use the AWS CLI (aws) to obtain information from your AWS account.

TIP

You might find it convenient to store some or all of these values as environment variables by using the
export command.

Prerequisites

You have an AWS Outposts site with the required hardware setup complete.

Your Outpost is connected to your AWS account.

You have access to your AWS account by using the AWS CLI (aws) as a user with permissions to
perform the required tasks.

Procedure

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructures.config.openshift.io
cluster

$ oc get machinesets.machine.openshift.io -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
<compute_machine_set_name_1> 1 1 1 1 55m
<compute_machine_set_name_2> 1 1 1 1 55m

$ oc get machinesets.machine.openshift.io <compute_machine_set_name_1> \
 -n openshift-machine-api \
 -o jsonpath='{.spec.template.spec.providerSpec.value.ami.id}'

$ oc get machinesets.machine.openshift.io <compute_machine_set_name_1> \
 -n openshift-machine-api \
 -o jsonpath='{.spec.template.spec.providerSpec.value.subnet.id}'

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

343

1. List the Outposts that are connected to your AWS account by running the following command:

2. Retain the following values from the output of the aws outposts list-outposts command:

The Outpost ID.

The Amazon Resource Name (ARN) for the Outpost.

The Outpost availability zone.

NOTE

The output of the aws outposts list-outposts command includes two values
related to the availability zone: AvailabilityZone and AvailabilityZoneId.
You use the AvailablilityZone value to configure a compute machine set
that creates compute machines in your Outpost.

3. Using the value of the Outpost ID, show the instance types that are available in your Outpost by
running the following command. Retain the values of the available instance types.

4. Using the value of the Outpost ARN, show the subnet ID for the Outpost by running the
following command. Retain this value.

3.13.3. Configuring your network for your Outpost

To extend your VPC cluster into an Outpost, you must complete the following network configuration
tasks:

Change the Cluster Network MTU.

Create a subnet in your Outpost.

3.13.3.1. Changing the cluster network MTU to support AWS Outposts

During installation, the maximum transmission unit (MTU) for the cluster network is detected
automatically based on the MTU of the primary network interface of nodes in the cluster. You might
need to decrease the MTU value for the cluster network to support an AWS Outposts subnet.

IMPORTANT

You cannot roll back an MTU value for nodes during the MTU migration process, but you
can roll back the value after the MTU migration process completes.

The migration is disruptive and nodes in your cluster might be temporarily unavailable as
the MTU update takes effect.

$ aws outposts list-outposts

$ aws outposts get-outpost-instance-types \
 --outpost-id <outpost_id_value>

$ aws ec2 describe-subnets \
 --filters Name=outpost-arn,Values=<outpost_arn_value>

OpenShift Container Platform 4.19 Installing on AWS

344

For more details about the migration process, including important service interruption considerations,
see "Changing the MTU for the cluster network" in the additional resources for this procedure.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster using an account with cluster-admin permissions.

You have identified the target MTU for your cluster. The MTU for the OVN-Kubernetes network
plugin must be set to 100 less than the lowest hardware MTU value in your cluster.

If your nodes are physical machines, ensure that the cluster network and the connected network
switches support jumbo frames.

If your nodes are virtual machines (VMs), ensure that the hypervisor and the connected network
switches support jumbo frames.

3.13.3.1.1. Checking the current cluster MTU value

Use the following procedure to obtain the current maximum transmission unit (MTU) for the cluster
network.

Procedure

To obtain the current MTU for the cluster network, enter the following command:

Example output

3.13.3.1.2. Beginning the MTU migration

Use the following procedure to start the MTU migration.

Procedure

1. To begin the MTU migration, specify the migration configuration by entering the following
command. The Machine Config Operator performs a rolling reboot of the nodes in the cluster in
preparation for the MTU change.

$ oc describe network.config cluster

...
Status:
 Cluster Network:
 Cidr: 10.217.0.0/22
 Host Prefix: 23
 Cluster Network MTU: 1400
 Network Type: OVNKubernetes
 Service Network:
 10.217.4.0/23
...

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

345

where:

<overlay_from>

Specifies the current cluster network MTU value.

<overlay_to>

Specifies the target MTU for the cluster network. This value is set relative to the value of
<machine_to>. For OVN-Kubernetes, this value must be 100 less than the value of
<machine_to>.

<machine_to>

Specifies the MTU for the primary network interface on the underlying host network.

2. As the Machine Config Operator updates machines in each machine config pool, the Operator
reboots each node one by one. You must wait until all the nodes are updated. Check the
machine config pool status by entering the following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED=false.

NOTE

By default, the Machine Config Operator updates one machine per pool at a
time, causing the total time the migration takes to increase with the size of the
cluster.

3.13.3.1.3. Verifying the machine configuration

Use the following procedure to verify the machine configuration.

Procedure

Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
 '{"spec": { "migration": { "mtu": { "network": { "from": <overlay_from>, "to": <overlay_to> } ,
"machine": { "to" : <machine_to> } } } } }'

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
 '{"spec": { "migration": { "mtu": { "network": { "from": 1400, "to": 1000 } , "machine": { "to" :
1100} } } } }'

$ oc get machineconfigpools

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-

OpenShift Container Platform 4.19 Installing on AWS

346

b. Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

c. To confirm that the machine config is correct, enter the following command:

where:

<config_name>

Specifies the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

The machine config must include the following update to the systemd configuration:

3.13.3.1.4. Finalizing the MTU migration

Use the following procedure to finalize the MTU migration.

Procedure

1. To finalize the MTU migration, enter the following command for the OVN-Kubernetes network
plugin:

where:

<mtu>

Specifies the new cluster network MTU that you specified with <overlay_to>.

2. After finalizing the MTU migration, each machine config pool node is rebooted one by one. You
must wait until all the nodes are updated. Check the machine config pool status by entering the
following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED=false.

Verification

c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml | grep ExecStart

ExecStart=/usr/local/bin/mtu-migration.sh

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
 '{"spec": { "migration": null, "defaultNetwork":{ "ovnKubernetesConfig": { "mtu": <mtu> }}}}'

$ oc get machineconfigpools

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

347

Verification

Verify that the node in your cluster uses the MTU that you specified by entering the following
command:

Additional resources

Changing the MTU for the cluster network

3.13.3.2. Creating subnets for AWS edge compute services

Before you configure a machine set for edge compute nodes in your OpenShift Container Platform
cluster, you must create a subnet in AWS Outposts.

You can use the provided CloudFormation template and create a CloudFormation stack. You can then
use this stack to custom provision a subnet.

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You have obtained the required information about your environment from your OpenShift
Container Platform cluster, Outpost, and AWS account.

Procedure

1. Go to the section of the documentation named "CloudFormation template for the VPC subnet",
and copy the syntax from the template. Save the copied template syntax as a YAML file on your
local system. This template describes the VPC that your cluster requires.

2. Run the following command to deploy the CloudFormation template, which creates a stack of
AWS resources that represent the VPC:

$ oc describe network.config cluster

$ aws cloudformation create-stack --stack-name <stack_name> \ 1
 --region ${CLUSTER_REGION} \
 --template-body file://<template>.yaml \ 2
 --parameters \
 ParameterKey=VpcId,ParameterValue="${VPC_ID}" \ 3
 ParameterKey=ClusterName,ParameterValue="${CLUSTER_NAME}" \ 4
 ParameterKey=ZoneName,ParameterValue="${ZONE_NAME}" \ 5
 ParameterKey=PublicRouteTableId,ParameterValue="${ROUTE_TABLE_PUB}" \ 6
 ParameterKey=PublicSubnetCidr,ParameterValue="${SUBNET_CIDR_PUB}" \ 7
 ParameterKey=PrivateRouteTableId,ParameterValue="${ROUTE_TABLE_PVT}" \ 8

OpenShift Container Platform 4.19 Installing on AWS

348

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/advanced_networking/#changing-cluster-network-mtu

1

2

3

4

5

6

7

8

9

10

<stack_name> is the name for the CloudFormation stack, such as cluster-
<outpost_name>.

<template> is the relative path and the name of the CloudFormation template YAML file
that you saved.

${VPC_ID} is the VPC ID, which is the value VpcID in the output of the CloudFormation
template for the VPC.

${CLUSTER_NAME} is the value of ClusterName to be used as a prefix of the new AWS
resource names.

${ZONE_NAME} is the value of AWS Outposts name to create the subnets.

${ROUTE_TABLE_PUB} is the Public Route Table ID created in the ${VPC_ID} used to
associate the public subnets on Outposts. Specify the public route table to associate the
Outpost subnet created by this stack.

${SUBNET_CIDR_PUB} is a valid CIDR block that is used to create the public subnet. This
block must be part of the VPC CIDR block VpcCidr.

${ROUTE_TABLE_PVT} is the Private Route Table ID created in the ${VPC_ID} used to
associate the private subnets on Outposts. Specify the private route table to associate the
Outpost subnet created by this stack.

${SUBNET_CIDR_PVT} is a valid CIDR block that is used to create the private subnet. This
block must be part of the VPC CIDR block VpcCidr.

${OUTPOST_ARN} is the Amazon Resource Name (ARN) for the Outpost.

Example output

Verification

Confirm that the template components exist by running the following command:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters:

PublicSub
netId

The IDs of the public subnet created by the CloudFormation stack.

 ParameterKey=PrivateSubnetCidr,ParameterValue="${SUBNET_CIDR_PVT}" \ 9
 ParameterKey=PrivateSubnetLabel,ParameterValue="private-outpost" \
 ParameterKey=PublicSubnetLabel,ParameterValue="public-outpost" \
 ParameterKey=OutpostArn,ParameterValue="${OUTPOST_ARN}" 10

arn:aws:cloudformation:us-east-1:123456789012:stack/<stack_name>/dbedae40-820e-
11eb-2fd3-12a48460849f

$ aws cloudformation describe-stacks --stack-name <stack_name>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

349

PrivateSu
bnetId

The IDs of the private subnet created by the CloudFormation stack.

Ensure that you provide these parameter values to the other CloudFormation templates that
you run to create for your cluster.

3.13.3.3. CloudFormation template for the VPC subnet

You can use the following CloudFormation template to deploy the Outpost subnet.

Example 3.22. CloudFormation template for VPC subnets

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice Subnets (Public and Private)

Parameters:
 VpcId:
 Description: VPC ID that comprises all the target subnets.
 Type: String
 AllowedPattern: ^(?:(?:vpc)(?:-[a-zA-Z0-9]+)?\b|(?:[0-9]{1,3}\.){3}[0-9]{1,3})$
 ConstraintDescription: VPC ID must be with valid name, starting with vpc-.*.
 ClusterName:
 Description: Cluster name or prefix name to prepend the Name tag for each subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: ClusterName parameter must be specified.
 ZoneName:
 Description: Zone Name to create the subnets, such as us-west-2-lax-1a.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: ZoneName parameter must be specified.
 PublicRouteTableId:
 Description: Public Route Table ID to associate the public subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: PublicRouteTableId parameter must be specified.
 PublicSubnetCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.128.0/20
 Description: CIDR block for public subnet.
 Type: String
 PrivateRouteTableId:
 Description: Private Route Table ID to associate the private subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: PrivateRouteTableId parameter must be specified.
 PrivateSubnetCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.128.0/20

OpenShift Container Platform 4.19 Installing on AWS

350

 Description: CIDR block for private subnet.
 Type: String
 PrivateSubnetLabel:
 Default: "private"
 Description: Subnet label to be added when building the subnet name.
 Type: String
 PublicSubnetLabel:
 Default: "public"
 Description: Subnet label to be added when building the subnet name.
 Type: String
 OutpostArn:
 Default: ""
 Description: OutpostArn when creating subnets on AWS Outpost.
 Type: String

Conditions:
 OutpostEnabled: !Not [!Equals [!Ref "OutpostArn", ""]]

Resources:
 PublicSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VpcId
 CidrBlock: !Ref PublicSubnetCidr
 AvailabilityZone: !Ref ZoneName
 OutpostArn: !If [OutpostEnabled, !Ref OutpostArn, !Ref "AWS::NoValue"]
 Tags:
 - Key: Name
 Value: !Join ['-', [!Ref ClusterName, !Ref PublicSubnetLabel, !Ref ZoneName]]
 - Key: kubernetes.io/cluster/unmanaged 1
 Value: true

 PublicSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet
 RouteTableId: !Ref PublicRouteTableId

 PrivateSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VpcId
 CidrBlock: !Ref PrivateSubnetCidr
 AvailabilityZone: !Ref ZoneName
 OutpostArn: !If [OutpostEnabled, !Ref OutpostArn, !Ref "AWS::NoValue"]
 Tags:
 - Key: Name
 Value: !Join ['-', [!Ref ClusterName, !Ref PrivateSubnetLabel, !Ref ZoneName]]
 - Key: kubernetes.io/cluster/unmanaged 2
 Value: true

 PrivateSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PrivateSubnet
 RouteTableId: !Ref PrivateRouteTableId

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

351

1

2

You must include the kubernetes.io/cluster/unmanaged tag in the public subnet configuration
for AWS Outposts.

You must include the kubernetes.io/cluster/unmanaged tag in the private subnet
configuration for AWS Outposts.

3.13.4. Creating a compute machine set that deploys edge compute machines on an
Outpost

To create edge compute machines on AWS Outposts, you must create a new compute machine set with
a compatible configuration.

Prerequisites

You have an AWS Outposts site.

You have installed an OpenShift Container Platform cluster into a custom VPC on AWS.

You have access to the cluster using an account with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

Procedure

1. List the compute machine sets in your cluster by running the following command:

Example output

2. Record the names of the existing compute machine sets.

3. Create a YAML file that contains the values for a new compute machine set custom resource
(CR) by using one of the following methods:

Copy an existing compute machine set configuration into a new file by running the following

Outputs:
 PublicSubnetId:
 Description: Subnet ID of the public subnets.
 Value:
 !Join ["", [!Ref PublicSubnet]]

 PrivateSubnetId:
 Description: Subnet ID of the private subnets.
 Value:
 !Join ["", [!Ref PrivateSubnet]]

$ oc get machinesets.machine.openshift.io -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
<original_machine_set_name_1> 1 1 1 1 55m
<original_machine_set_name_2> 1 1 1 1 55m

OpenShift Container Platform 4.19 Installing on AWS

352

1

2

3

Copy an existing compute machine set configuration into a new file by running the following
command:

You can edit this YAML file with your preferred text editor.

Create an empty YAML file named <new_machine_set_name_1>.yaml with your
preferred text editor and include the required values for your new compute machine set.
If you are not sure which value to set for a specific field, you can view values of an existing
compute machine set CR by running the following command:

Example output

The cluster infrastructure ID.

A default node label. For AWS Outposts, you use the outposts role.

The omitted providerSpec section includes values that must be configured for your
Outpost.

4. Configure the new compute machine set to create edge compute machines in the Outpost by
editing the <new_machine_set_name_1>.yaml file:

$ oc get machinesets.machine.openshift.io <original_machine_set_name_1> \
 -n openshift-machine-api -o yaml > <new_machine_set_name_1>.yaml

$ oc get machinesets.machine.openshift.io <original_machine_set_name_1> \
 -n openshift-machine-api -o yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-<role>-<availability_zone> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>-
<availability_zone>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: <role>
 machine.openshift.io/cluster-api-machine-type: <role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>-
<availability_zone>
 spec:
 providerSpec: 3
...

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

353

Example compute machine set for AWS Outposts

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-outposts-<availability_zone> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-outposts-
<availability_zone>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: outposts
 machine.openshift.io/cluster-api-machine-type: outposts
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-outposts-
<availability_zone>
 spec:
 metadata:
 labels:
 node-role.kubernetes.io/outposts: ""
 location: outposts
 providerSpec:
 value:
 ami:
 id: <ami_id> 3
 apiVersion: machine.openshift.io/v1beta1
 blockDevices:
 - ebs:
 volumeSize: 120
 volumeType: gp2 4
 credentialsSecret:
 name: aws-cloud-credentials
 deviceIndex: 0
 iamInstanceProfile:
 id: <infrastructure_id>-worker-profile
 instanceType: m5.xlarge 5
 kind: AWSMachineProviderConfig
 placement:
 availabilityZone: <availability_zone>
 region: <region> 6
 securityGroups:
 - filters:
 - name: tag:Name
 values:
 - <infrastructure_id>-worker-sg
 subnet:
 id: <subnet_id> 7

OpenShift Container Platform 4.19 Installing on AWS

354

1

2

3

4

5

6

7

8

Specifies the cluster infrastructure ID.

Specifies the name of the compute machine set. The name is composed of the cluster
infrastructure ID, the outposts role name, and the Outpost availability zone.

Specifies the Amazon Machine Image (AMI) ID.

Specifies the EBS volume type. AWS Outposts requires gp2 volumes.

Specifies the AWS instance type. You must use an instance type that is configured in your
Outpost.

Specifies the AWS region in which the Outpost availability zone exists.

Specifies the dedicated subnet for your Outpost.

Specifies a taint to prevent workloads from being scheduled on nodes that have the node-
role.kubernetes.io/outposts label. To schedule user workloads in the Outpost, you must
specify a corresponding toleration in the Deployment resource for your application.

5. Save your changes.

6. Create a compute machine set CR by running the following command:

Verification

To verify that the compute machine set is created, list the compute machine sets in your cluster
by running the following command:

Example output

To list the machines that are managed by the new compute machine set, run the following
command:

 tags:
 - name: kubernetes.io/cluster/<infrastructure_id>
 value: owned
 userDataSecret:
 name: worker-user-data
 taints: 8
 - key: node-role.kubernetes.io/outposts
 effect: NoSchedule

$ oc create -f <new_machine_set_name_1>.yaml

$ oc get machinesets.machine.openshift.io -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
<new_machine_set_name_1> 1 1 1 1 4m12s
<original_machine_set_name_1> 1 1 1 1 55m
<original_machine_set_name_2> 1 1 1 1 55m

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

355

Example output

To verify that a machine created by the new compute machine set has the correct
configuration, examine the relevant fields in the CR for one of the new machines by running the
following command:

3.13.5. Creating user workloads in an Outpost

After you extend an OpenShift Container Platform in an AWS VPC cluster into an Outpost, you can use
edge compute nodes with the label node-role.kubernetes.io/outposts to create user workloads in the
Outpost.

Prerequisites

You have extended an AWS VPC cluster into an Outpost.

You have access to the cluster using an account with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

You have created a compute machine set that deploys edge compute machines compatible
with the Outpost environment.

Procedure

1. Configure a Deployment resource file for an application that you want to deploy to the edge
compute node in the edge subnet.

Example Deployment manifest

$ oc get -n openshift-machine-api machines.machine.openshift.io \
 -l machine.openshift.io/cluster-api-machineset=<new_machine_set_name_1>

NAME PHASE TYPE REGION ZONE AGE
<machine_from_new_1> Provisioned m5.xlarge us-east-1 us-east-1a 25s
<machine_from_new_2> Provisioning m5.xlarge us-east-1 us-east-1a 25s

$ oc describe machine <machine_from_new_1> -n openshift-machine-api

kind: Namespace
apiVersion: v1
metadata:
 name: <application_name> 1

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: <application_name>
 namespace: <application_namespace> 2
spec:
 accessModes:
 - ReadWriteOnce
 resources:

OpenShift Container Platform 4.19 Installing on AWS

356

1

2

Specify a name for your application.

Specify a namespace for your application. The application namespace can be the same as
the application name.

 requests:
 storage: 10Gi
 storageClassName: gp2-csi 3
 volumeMode: Filesystem

apiVersion: apps/v1
kind: Deployment
metadata:
 name: <application_name>
 namespace: <application_namespace>
spec:
 selector:
 matchLabels:
 app: <application_name>
 replicas: 1
 template:
 metadata:
 labels:
 app: <application_name>
 location: outposts 4
 spec:
 securityContext:
 seccompProfile:
 type: RuntimeDefault
 nodeSelector: 5
 node-role.kubernetes.io/outpost: ''
 tolerations: 6
 - key: "node-role.kubernetes.io/outposts"
 operator: "Equal"
 value: ""
 effect: "NoSchedule"
 containers:
 - image: openshift/origin-node
 command:
 - "/bin/socat"
 args:
 - TCP4-LISTEN:8080,reuseaddr,fork
 - EXEC:'/bin/bash -c \"printf \\\"HTTP/1.0 200 OK\r\n\r\n\\\"; sed -e \\\"/^\r/q\\\"\"'
 imagePullPolicy: Always
 name: <application_name>
 ports:
 - containerPort: 8080
 volumeMounts:
 - mountPath: "/mnt/storage"
 name: data
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: <application_name>

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

357

3

4

5

6

1

2

Specify the storage class name. For an edge compute configuration, you must use the
gp2-csi storage class.

Specify a label to identify workloads deployed in the Outpost.

Specify the node selector label that targets edge compute nodes.

Specify tolerations that match the key and effects taints in the compute machine set for
your edge compute machines. Set the value and operator tolerations as shown.

2. Create the Deployment resource by running the following command:

3. Configure a Service object that exposes a pod from a targeted edge compute node to services
that run inside your edge network.

Example Service manifest

Defines the service resource.

Specify the label type to apply to managed pods.

4. Create the Service CR by running the following command:

3.13.6. Scheduling workloads on edge and cloud-based AWS compute resources

When you extend an AWS VPC cluster into an Outpost, the Outpost uses edge compute nodes and the
VPC uses cloud-based compute nodes. The following load balancer considerations apply to an AWS
VPC cluster extended into an Outpost:

Outposts cannot run AWS Network Load Balancers or AWS Classic Load Balancers, but a
Classic Load Balancer for a VPC cluster extended into an Outpost can attach to the Outpost
edge compute nodes. For more information, see Using AWS Classic Load Balancers in an AWS
VPC cluster extended into an Outpost.

To run a load balancer on an Outpost instance, you must use an AWS Application Load

$ oc create -f <application_deployment>.yaml

apiVersion: v1
kind: Service 1
metadata:
 name: <application_name>
 namespace: <application_namespace>
spec:
 ports:
 - port: 80
 targetPort: 8080
 protocol: TCP
 type: NodePort
 selector: 2
 app: <application_name>

$ oc create -f <application_service>.yaml

OpenShift Container Platform 4.19 Installing on AWS

358

To run a load balancer on an Outpost instance, you must use an AWS Application Load
Balancer. You can use the AWS Load Balancer Operator to deploy an instance of the AWS Load
Balancer Controller. The controller provisions AWS Application Load Balancers for Kubernetes
Ingress resources. For more information, see Using the AWS Load Balancer Operator in an AWS
VPC cluster extended into an Outpost.

3.13.6.1. Using AWS Classic Load Balancers in an AWS VPC cluster extended into an
Outpost

AWS Outposts infrastructure cannot run AWS Classic Load Balancers, but Classic Load Balancers in the
AWS VPC cluster can target edge compute nodes in the Outpost if edge and cloud-based subnets are
in the same availability zone. As a result, Classic Load Balancers on the VPC cluster might schedule
pods on either of these node types.

Scheduling the workloads on edge compute nodes and cloud-based compute nodes can introduce
latency. If you want to prevent a Classic Load Balancer in the VPC cluster from targeting Outpost edge
compute nodes, you can apply labels to the cloud-based compute nodes and configure the Classic
Load Balancer to only schedule on nodes with the applied labels.

NOTE

If you do not need to prevent a Classic Load Balancer in the VPC cluster from targeting
Outpost edge compute nodes, you do not need to complete these steps.

Prerequisites

You have extended an AWS VPC cluster into an Outpost.

You have access to the cluster using an account with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

You have created a user workload in the Outpost with tolerations that match the taints for your
edge compute machines.

Procedure

1. Optional: Verify that the edge compute nodes have the location=outposts label by running the
following command and verifying that the output includes only the edge compute nodes in your
Outpost:

2. Label the cloud-based compute nodes in the VPC cluster with a key-value pair by running the
following command:

where <key_name>=<value> is the label you want to use to distinguish cloud-based compute
nodes.

Example output

$ oc get nodes -l location=outposts

$ for NODE in $(oc get node -l node-role.kubernetes.io/worker --no-headers | grep -v
outposts | awk '{print$1}'); do oc label node $NODE <key_name>=<value>; done

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

359

1

2

3. Optional: Verify that the cloud-based compute nodes have the specified label by running the
following command and confirming that the output includes all cloud-based compute nodes in
your VPC cluster:

Example output

4. Configure the Classic Load Balancer service by adding the cloud-based subnet information to
the annotations field of the Service manifest:

Example service configuration

Specify the subnet ID for the AWS VPC cluster.

Specify the key-value pair that matches the pair in the node label.

5. Create the Service CR by running the following command:

Verification

1. Verify the status of the service resource to show the host of the provisioned Classic Load

node1.example.com labeled
node2.example.com labeled
node3.example.com labeled

$ oc get nodes -l <key_name>=<value>

NAME STATUS ROLES AGE VERSION
node1.example.com Ready worker 7h v1.32.3
node2.example.com Ready worker 7h v1.32.3
node3.example.com Ready worker 7h v1.32.3

apiVersion: v1
kind: Service
metadata:
 labels:
 app: <application_name>
 name: <application_name>
 namespace: <application_namespace>
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-subnets: <aws_subnet> 1
 service.beta.kubernetes.io/aws-load-balancer-target-node-labels: <key_name>=<value>
2

spec:
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: 8080
 selector:
 app: <application_name>
 type: LoadBalancer

$ oc create -f <file_name>.yaml

OpenShift Container Platform 4.19 Installing on AWS

360

1. Verify the status of the service resource to show the host of the provisioned Classic Load
Balancer by running the following command:

2. Verify the status of the provisioned Classic Load Balancer host by running the following
command:

3. In the AWS console, verify that only the labeled instances appear as the targeted instances for
the load balancer.

3.13.6.2. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into an
Outpost

You can configure the AWS Load Balancer Operator to provision an AWS Application Load Balancer in
an AWS VPC cluster extended into an Outpost. AWS Outposts does not support AWS Network Load
Balancers. As a result, the AWS Load Balancer Operator cannot provision Network Load Balancers in an
Outpost.

You can create an AWS Application Load Balancer either in the cloud subnet or in the Outpost subnet.
An Application Load Balancer in the cloud can attach to cloud-based compute nodes and an Application
Load Balancer in the Outpost can attach to edge compute nodes. You must annotate Ingress resources
with the Outpost subnet or the VPC subnet, but not both.

Prerequisites

You have extended an AWS VPC cluster into an Outpost.

You have installed the OpenShift CLI (oc).

You have installed the AWS Load Balancer Operator and created the AWS Load Balancer
Controller.

Procedure

Configure the Ingress resource to use a specified subnet:

Example Ingress resource configuration

$ HOST=$(oc get service <application_name> -n <application_namespace> --
template='{{(index .status.loadBalancer.ingress 0).hostname}}')

$ curl $HOST

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: <application_name>
 annotations:
 alb.ingress.kubernetes.io/subnets: <subnet_id> 1
spec:
 ingressClassName: alb
 rules:
 - http:
 paths:
 - path: /

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

361

1 Specifies the subnet to use.

To use the Application Load Balancer in an Outpost, specify the Outpost subnet ID.

To use the Application Load Balancer in the cloud, you must specify at least two
subnets in different availability zones.

Additional resources

Creating the AWS Load Balancer Controller

3.13.7. Additional resources

Installing a cluster on AWS into an existing VPC

3.14. INSTALLING A CLUSTER WITH THE SUPPORT FOR
CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES

An OpenShift Container Platform cluster with multi-architecture compute machines supports compute
machines with different architectures.

NOTE

When you have nodes with multiple architectures in your cluster, the architecture of your
image must be consistent with the architecture of the node. You must ensure that the
pod is assigned to the node with the appropriate architecture and that it matches the
image architecture. For more information on assigning pods to nodes, Scheduling
workloads on clusters with multi-architecture compute machines.

You can install an Amazon Web Services (AWS) cluster with the support for configuring multi-
architecture compute machines. After installing the cluster, you can add multi-architecture compute
machines to the cluster in the following ways:

Adding 64-bit x86 compute machines to a cluster that uses 64-bit ARM control plane machines
and already includes 64-bit ARM compute machines. In this case, 64-bit x86 is considered the
secondary architecture.

Adding 64-bit ARM compute machines to a cluster that uses 64-bit x86 control plane machines
and already includes 64-bit x86 compute machines. In this case, 64-bit ARM is considered the
secondary architecture.

NOTE

 pathType: Exact
 backend:
 service:
 name: <application_name>
 port:
 number: 80

OpenShift Container Platform 4.19 Installing on AWS

362

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/networking_operators/#nw-creating-instance-aws-load-balancer-controller_aws-load-balancer-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#scheduling-workloads-on-clusters-with-multi-architecture-compute-machines

NOTE

Before adding a secondary architecture node to your cluster, it is recommended to install
the Multiarch Tuning Operator, and deploy a ClusterPodPlacementConfig custom
resource. For more information, see "Managing workloads on multi-architecture clusters
by using the Multiarch Tuning Operator".

3.14.1. Installing a cluster with multi-architecture support

You can install a cluster with the support for configuring multi-architecture compute machines.

Prerequisites

You installed the OpenShift CLI (oc).

You have the OpenShift Container Platform installation program.

You downloaded the pull secret for your cluster.

Procedure

1. Check that the openshift-install binary is using the multi payload by running the following
command:

Example output

The output must contain release architecture multi to indicate that the openshift-install
binary is using the multi payload.

2. Update the install-config.yaml file to configure the architecture for the nodes.

Sample install-config.yaml file with multi-architecture configuration

$./openshift-install version

./openshift-install 4.19.0
built from commit abc123etc
release image quay.io/openshift-release-dev/ocp-release@sha256:abc123wxyzetc
release architecture multi
default architecture amd64

apiVersion: v1
baseDomain: example.openshift.com
compute:
- architecture: amd64 1
 hyperthreading: Enabled
 name: worker
 platform: {}
 replicas: 3
controlPlane:
 architecture: arm64 2
 name: master
 platform: {}
 replicas: 3

CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE

363

1

2

Specify the architecture of the worker node. You can set this field to either arm64 or
amd64.

Specify the control plane node architecture. You can set this field to either arm64 or
amd64.

Next steps

Deploying the cluster

Additional resources

Managing workloads on multi-architecture clusters by using the Multiarch Tuning Operator

...

OpenShift Container Platform 4.19 Installing on AWS

364

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#multiarch-tuning-operator

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

4.1. PREPARING TO INSTALL A CLUSTER ON AWS

You prepare to install an OpenShift Container Platform cluster on AWS by completing the following
steps:

Verifying internet connectivity for your cluster.

Configuring an AWS account .

Downloading the installation program.

NOTE

If you are installing in a disconnected environment, you extract the installation
program from the mirrored content. For more information, see Mirroring images
for a disconnected installation.

Installing the OpenShift CLI (oc).

NOTE

If you are installing in a disconnected environment, install oc to the mirror host.

Generating an SSH key pair. You can use this key pair to authenticate into the OpenShift
Container Platform cluster’s nodes after it is deployed.

Preparing the user-provisioned infrastructure.

If the cloud identity and access management (IAM) APIs are not accessible in your environment,
or if you do not want to store an administrator-level credential secret in the kube-system
namespace, manually creating long-term credentials for AWS or configuring an AWS cluster to
use short-term credentials with Amazon Web Services Security Token Service (AWS STS).

4.1.1. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.19, you require access to the internet to install your cluster.

You must have internet access to perform the following actions:

Access OpenShift Cluster Manager to download the installation program and perform
subscription management. If the cluster has internet access and you do not disable Telemetry,
that service automatically entitles your cluster.

Access Quay.io to obtain the packages that are required to install your cluster.

Obtain the packages that are required to perform cluster updates.

IMPORTANT

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

365

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#installing-mirroring-installation-images
https://console.redhat.com/openshift
http://quay.io

IMPORTANT

If your cluster cannot have direct internet access, you can perform a restricted network
installation on some types of infrastructure that you provision. During that process, you
download the required content and use it to populate a mirror registry with the
installation packages. With some installation types, the environment that you install your
cluster in will not require internet access. Before you update the cluster, you update the
content of the mirror registry.

4.1.2. Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on the host you are using
for installation.

Prerequisites

You have a computer that runs Linux or macOS, with 500 MB of local disk space.

Procedure

1. Go to the Cluster Type page on the Red Hat Hybrid Cloud Console. If you have a Red Hat
account, log in with your credentials. If you do not, create an account.

TIP

You can also download the binaries for a specific OpenShift Container Platform release .

2. Select your infrastructure provider from the Run it yourself section of the page.

3. Select your host operating system and architecture from the dropdown menus under
OpenShift Installer and click Download Installer.

4. Place the downloaded file in the directory where you want to store the installation configuration
files.

IMPORTANT

The installation program creates several files on the computer that you use
to install your cluster. You must keep the installation program and the files
that the installation program creates after you finish installing the cluster.
Both of the files are required to delete the cluster.

Deleting the files created by the installation program does not remove your
cluster, even if the cluster failed during installation. To remove your cluster,
complete the OpenShift Container Platform uninstallation procedures for
your specific cloud provider.

5. Extract the installation program. For example, on a computer that uses a Linux operating
system, run the following command:

6. Download your installation pull secret from Red Hat OpenShift Cluster Manager . This pull secret
allows you to authenticate with the services that are provided by the included authorities,

$ tar -xvf openshift-install-linux.tar.gz

OpenShift Container Platform 4.19 Installing on AWS

366

https://console.redhat.com/openshift/install
https://mirror.openshift.com/pub/openshift-v4/clients/ocp/
https://console.redhat.com/openshift/install/pull-secret

including Quay.io, which serves the container images for OpenShift Container Platform
components.

TIP

Alternatively, you can retrieve the installation program from the Red Hat Customer Portal ,
where you can specify a version of the installation program to download. However, you must
have an active subscription to access this page.

4.1.3. Installing the OpenShift CLI on Linux

To manage your cluster and deploy applications from the command line, install the OpenShift CLI (oc)
binary on Linux.

IMPORTANT

If you installed an earlier version of oc, you cannot use it to complete all of the commands
in OpenShift Container Platform.

Download and install the new version of oc.

Procedure

1. Navigate to the Download OpenShift Container Platform page on the Red Hat Customer Portal.

2. Select the architecture from the Product Variant list.

3. Select the appropriate version from the Version list.

4. Click Download Now next to the OpenShift v4.19 Linux Clients entry and save the file.

5. Unpack the archive:

6. Place the oc binary in a directory that is on your PATH.
To check your PATH, execute the following command:

Verification

After you install the OpenShift CLI, it is available using the oc command:

4.1.4. Installing the OpenShift CLI on Windows

To manage your cluster and deploy applications from the command line, install OpenShift CLI (oc)
binary on Windows.

IMPORTANT

$ tar xvf <file>

$ echo $PATH

$ oc <command>

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

367

https://access.redhat.com/downloads/content/290/
https://access.redhat.com/downloads/content/290

IMPORTANT

If you installed an earlier version of oc, you cannot use it to complete all of the commands
in OpenShift Container Platform.

Download and install the new version of oc.

Procedure

1. Navigate to the Download OpenShift Container Platform page on the Red Hat Customer Portal.

2. Select the appropriate version from the Version list.

3. Click Download Now next to the OpenShift v4.19 Windows Client entry and save the file.

4. Extract the archive with a ZIP program.

5. Move the oc binary to a directory that is on your PATH variable.
To check your PATH variable, open the command prompt and execute the following command:

Verification

After you install the OpenShift CLI, it is available using the oc command:

4.1.5. Installing the OpenShift CLI on macOS

To manage your cluster and deploy applications from the command line, install the OpenShift CLI (oc)
binary on macOS.

IMPORTANT

If you installed an earlier version of oc, you cannot use it to complete all of the commands
in OpenShift Container Platform.

Download and install the new version of oc.

Procedure

1. Navigate to the Download OpenShift Container Platform page on the Red Hat Customer Portal.

2. Select the architecture from the Product Variant list.

3. Select the appropriate version from the Version list.

4. Click Download Now next to the OpenShift v4.19 macOS Clients entry and save the file.

NOTE

For macOS arm64, choose the OpenShift v4.19 macOS arm64 Client entry.

C:\> path

C:\> oc <command>

OpenShift Container Platform 4.19 Installing on AWS

368

https://access.redhat.com/downloads/content/290
https://access.redhat.com/downloads/content/290

5. Unpack and unzip the archive.

6. Move the oc binary to a directory on your PATH variable.
To check your PATH variable, open a terminal and execute the following command:

Verification

Verify your installation by using an oc command:

4.1.6. Generating a key pair for cluster node SSH access

To enable secure, passwordless SSH access to your cluster nodes, provide an SSH public key during the
OpenShift Container Platform installation. This ensures that the installation program automatically
configures the Red Hat Enterprise Linux CoreOS (RHCOS) nodes for remote authentication through
the core user.

The SSH public key gets added to the ~/.ssh/authorized_keys list for the core user on each node.
After the key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition
config files, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the
nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you
must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.

IMPORTANT

Do not skip this procedure in production environments, where disaster recovery and
debugging is required.

NOTE

You must use a local key, not one that you configured with platform-specific approaches.

Procedure

1. If you do not have an existing SSH key pair on your local machine to use for authentication onto
your cluster nodes, create one. For example, on a computer that uses a Linux operating system,
run the following command:

Specifies the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an
existing key pair, ensure your public key is in the your ~/.ssh directory.

NOTE

$ echo $PATH

$ oc <command>

$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name>

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

369

NOTE

If you plan to install an OpenShift Container Platform cluster that uses the RHEL
cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3
Validation on only the x86_64, ppc64le, and s390x architectures, do not create a
key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or
ecdsa algorithm.

2. View the public SSH key:

For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been
added. SSH agent management of the key is required for password-less SSH authentication
onto your cluster nodes, or if you want to use the ./openshift-install gather command.

NOTE

On some distributions, default SSH private key identities such as ~/.ssh/id_rsa
and ~/.ssh/id_dsa are managed automatically.

a. If the ssh-agent process is not already running for your local user, start it as a background
task:

Example output

NOTE

If your cluster is in FIPS mode, only use FIPS-compliant algorithms to
generate the SSH key. The key must be either RSA or ECDSA.

4. Add your SSH private key to the ssh-agent:

Specifies the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

Example output

Next steps

$ cat <path>/<file_name>.pub

$ cat ~/.ssh/id_ed25519.pub

$ eval "$(ssh-agent -s)"

Agent pid 31874

$ ssh-add <path>/<file_name>

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

OpenShift Container Platform 4.19 Installing on AWS

370

When you install OpenShift Container Platform, provide the SSH public key to the installation
program.

4.1.7. Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.19, the Telemetry service, which runs by default to provide metrics
about cluster health and the success of updates, requires internet access. If your cluster is connected to
the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained
automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to
track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

See About remote health monitoring for more information about the Telemetry service.

4.2. INSTALLATION REQUIREMENTS FOR USER-PROVISIONED
INFRASTRUCTURE ON AWS

Before you begin an installation on infrastructure that you provision, be sure that your AWS environment
meets the following installation requirements.

For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.

4.2.1. Required machines for cluster installation

You must specify the minimum required machines or hosts for your cluster so that your cluster remains
stable if a node fails.

The smallest OpenShift Container Platform clusters require the following hosts:

IMPORTANT

For a cluster that contains user-provisioned infrastructure, you must deploy all of the
required machines.

Table 4.1. Minimum required hosts

Hosts Description

One temporary bootstrap machine The cluster requires the bootstrap machine to deploy
the OpenShift Container Platform cluster on the
three control plane machines. You can remove the
bootstrap machine after you install the cluster.

Three control plane machines The control plane machines run the Kubernetes and
OpenShift Container Platform services that form the
control plane.

At least two compute machines, which are also
known as worker machines.

The workloads requested by OpenShift Container
Platform users run on the compute machines.

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

371

https://console.redhat.com/openshift
https://console.redhat.com/openshift
https://access.redhat.com/documentation/en-us/subscription_central/2020-04/html/getting_started_with_subscription_watch/con-how-to-select-datacollection-tool_assembly-requirements-and-your-responsibilities-ctxt#red_hat_openshift
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#about-remote-health-monitoring

IMPORTANT

To maintain high availability of your cluster, use separate physical hosts for these cluster
machines.

The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the
operating system. However, the compute machines can choose between Red Hat Enterprise Linux
CoreOS (RHCOS), Red Hat Enterprise Linux (RHEL) 8.6 and later.

Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 9.2 and inherits all of its hardware
certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits .

4.2.1.1. Minimum resource requirements for cluster installation

Each created cluster must meet minimum requirements so that the cluster runs as expected.

Table 4.2. Minimum resource requirements

Machine Operating
System

vCPU [1] Virtual RAM Storage Input/Output
Per Second
(IOPS)[2]

Bootstrap RHCOS 4 16 GB 100 GB 300

Control plane RHCOS 4 16 GB 100 GB 300

Compute RHCOS, RHEL
8.6 and later
[3]

2 8 GB 100 GB 300

1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the
corresponding ratio: (threads per core × cores) × sockets = vCPUs.

2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster
storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms
p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so
you might need to over-allocate storage volume to obtain sufficient performance.

3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your
cluster, you take responsibility for all operating system life cycle management and maintenance,
including performing system updates, applying patches, and completing all other required tasks.
Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container
Platform 4.10 and later.

NOTE

OpenShift Container Platform 4.19 Installing on AWS

372

https://access.redhat.com/articles/rhel-limits

NOTE

For OpenShift Container Platform version 4.19, RHCOS is based on RHEL version 9.6,
which updates the micro-architecture requirements. The following list contains the
minimum instruction set architectures (ISA) that each architecture requires:

x86-64 architecture requires x86-64-v2 ISA

ARM64 architecture requires ARMv8.0-A ISA

IBM Power architecture requires Power 9 ISA

s390x architecture requires z14 ISA

For more information, see Architectures (RHEL documentation).

If an instance type for your platform meets the minimum requirements for cluster machines, it is
supported to use in OpenShift Container Platform.

Additional resources

Optimizing storage

4.2.1.2. Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container
Platform.

NOTE

Use the machine types included in the following charts for your AWS instances. If you use
an instance type that is not listed in the chart, ensure that the instance size you use
matches the minimum resource requirements that are listed in the section named
"Minimum resource requirements for cluster installation".

Example 4.1. Machine types based on 64-bit x86 architecture

c4.*

c5.*

c5a.*

i3.*

m4.*

m5.*

m5a.*

m6a.*

m6i.*

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

373

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.2_release_notes/index#architectures
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/scalability_and_performance/#optimizing-storage

r4.*

r5.*

r5a.*

r6i.*

t3.*

t3a.*

4.2.1.3. Tested instance types for AWS on 64-bit ARM infrastructures

The following Amazon Web Services (AWS) 64-bit ARM instance types have been tested with
OpenShift Container Platform.

NOTE

Use the machine types included in the following charts for your AWS ARM instances. If
you use an instance type that is not listed in the chart, ensure that the instance size you
use matches the minimum resource requirements that are listed in "Minimum resource
requirements for cluster installation".

Example 4.2. Machine types based on 64-bit ARM architecture

c6g.*

c7g.*

m6g.*

m7g.*

r8g.*

4.2.2. Certificate signing requests management

On user-provisioned infrastructure, you must provide a mechanism for approving cluster certificate
signing requests (CSRs) after installation when your cluster has limited access to automatic machine
management.

The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot
guarantee the validity of a serving certificate that is requested by using kubelet credentials because it
cannot confirm that the correct machine issued the request. You must determine and implement a
method of verifying the validity of the kubelet serving certificate requests and approving them.

4.2.3. Required AWS infrastructure components

To install OpenShift Container Platform on user-provisioned infrastructure in Amazon Web Services
(AWS), you must manually create both the machines and their supporting infrastructure.

OpenShift Container Platform 4.19 Installing on AWS

374

For more information about the integration testing for different platforms, see the OpenShift Container
Platform 4.x Tested Integrations page.

By using the provided CloudFormation templates, you can create stacks of AWS resources that
represent the following components:

An AWS Virtual Private Cloud (VPC)

Networking and load balancing components

Security groups and roles

An OpenShift Container Platform bootstrap node

OpenShift Container Platform control plane nodes

An OpenShift Container Platform compute node

Alternatively, you can manually create the components or you can reuse existing infrastructure that
meets the cluster requirements. Review the CloudFormation templates for more details about how the
components interrelate.

4.2.3.1. Other infrastructure components

A VPC

DNS entries

Load balancers (classic or network) and listeners

A public and a private Route 53 zone

Security groups

IAM roles

S3 buckets

If you are working in a disconnected environment, you are unable to reach the public IP addresses for
EC2, ELB, and S3 endpoints. Depending on the level to which you want to restrict internet traffic during
the installation, the following configuration options are available:

4.2.3.1.1. Option 1: Create VPC endpoints

Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

ec2.<aws_region>.amazonaws.com

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com

With this option, network traffic remains private between your VPC and the required AWS services.

4.2.3.1.2. Option 2: Create a proxy without VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

375

https://access.redhat.com/articles/4128421

As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet
traffic goes through the proxy to reach the required AWS services.

4.2.3.1.3. Option 3: Create a proxy with VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints.
Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as
follows:

ec2.<aws_region>.amazonaws.com

elasticloadbalancing.<aws_region>.amazonaws.com

s3.<aws_region>.amazonaws.com

When configuring the proxy in the install-config.yaml file, add these endpoints to the noProxy field.
With this option, the proxy prevents the cluster from accessing the internet directly. However, network
traffic remains private between your VPC and the required AWS services.

Required VPC components

You must provide a suitable VPC and subnets that allow communication to your machines.

Compone
nt

AWS type Description

VPC
AWS::EC2::VPC

AWS::EC2::VPCEndpoint

You must provide a public VPC for the
cluster to use. The VPC uses an endpoint
that references the route tables for each
subnet to improve communication with
the registry that is hosted in S3.

Public
subnets AWS::EC2::Subnet

AWS::EC2::SubnetNetworkAclAss
ociation

Your VPC must have public subnets for
between 1 and 3 availability zones and
associate them with appropriate Ingress
rules.

Internet
gateway AWS::EC2::InternetGateway

AWS::EC2::VPCGatewayAttachme
nt

AWS::EC2::RouteTable

AWS::EC2::Route

AWS::EC2::SubnetRouteTableAss
ociation

AWS::EC2::NatGateway

AWS::EC2::EIP

You must have a public internet gateway,
with public routes, attached to the VPC.
In the provided templates, each public
subnet has a NAT gateway with an EIP
address. These NAT gateways allow
cluster resources, like private subnet
instances, to reach the internet and are
not required for some restricted network
or proxy scenarios.

OpenShift Container Platform 4.19 Installing on AWS

376

Network
access
control

AWS::EC2::NetworkAcl

AWS::EC2::NetworkAclEntry

You must allow the VPC to access the
following ports:

Port Reason

80 Inbound HTTP
traffic

443 Inbound HTTPS
traffic

22 Inbound SSH
traffic

1024 - 65535 Inbound
ephemeral traffic

0 - 65535 Outbound
ephemeral traffic

Private
subnets AWS::EC2::Subnet

AWS::EC2::RouteTable

AWS::EC2::SubnetRouteTableAss
ociation

Your VPC can have private subnets. The
provided CloudFormation templates can
create private subnets for between 1 and
3 availability zones. If you use private
subnets, you must provide appropriate
routes and tables for them.

Compone
nt

AWS type Description

Required DNS and load balancing components

Your DNS and load balancer configuration needs to use a public hosted zone and can use a private
hosted zone similar to the one that the installation program uses if it provisions the cluster’s
infrastructure. You must create a DNS entry that resolves to your load balancer. An entry for api.
<cluster_name>.<domain> must point to the external load balancer, and an entry for api-int.
<cluster_name>.<domain> must point to the internal load balancer.

The cluster also requires load balancers and listeners for port 6443, which are required for the
Kubernetes API and its extensions, and port 22623, which are required for the Ignition config files for
new machines. The targets will be the control plane nodes. Port 6443 must be accessible to both clients
external to the cluster and nodes within the cluster. Port 22623 must be accessible to nodes within the
cluster.

Component AWS type Description

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

377

DNS AWS::Route
53::HostedZ
one

The hosted zone for your internal DNS.

Public load
balancer

AWS::Elastic
LoadBalanci
ngV2::LoadB
alancer

The load balancer for your public subnets.

External API
server record

AWS::Route
53::RecordS
etGroup

Alias records for the external API server.

External
listener

AWS::Elastic
LoadBalanci
ngV2::Listen
er

A listener on port 6443 for the external load balancer.

External target
group

AWS::Elastic
LoadBalanci
ngV2::Target
Group

The target group for the external load balancer.

Private load
balancer

AWS::Elastic
LoadBalanci
ngV2::LoadB
alancer

The load balancer for your private subnets.

Internal API
server record

AWS::Route
53::RecordS
etGroup

Alias records for the internal API server.

Internal listener AWS::Elastic
LoadBalanci
ngV2::Listen
er

A listener on port 22623 for the internal load balancer.

Internal target
group

AWS::Elastic
LoadBalanci
ngV2::Target
Group

The target group for the internal load balancer.

Internal listener AWS::Elastic
LoadBalanci
ngV2::Listen
er

A listener on port 6443 for the internal load balancer.

Component AWS type Description

OpenShift Container Platform 4.19 Installing on AWS

378

Internal target
group

AWS::Elastic
LoadBalanci
ngV2::Target
Group

The target group for the internal load balancer.

Component AWS type Description

Security groups

The control plane and worker machines require access to the following ports:

Group Type IP Protocol Port range

MasterSecurityGrou
p

AWS::EC2::Security
Group

icmp 0

tcp 22

tcp 6443

tcp 22623

WorkerSecurityGrou
p

AWS::EC2::Security
Group

icmp 0

tcp 22

BootstrapSecurityGr
oup

AWS::EC2::Security
Group

tcp 22

tcp 19531

Control plane Ingress

The control plane machines require the following Ingress groups. Each Ingress group is a
AWS::EC2::SecurityGroupIngress resource.

Ingress group Description IP protocol Port range

MasterIngress
Etcd

etcd tcp 2379- 2380

MasterIngress
Vxlan

Vxlan packets udp 6081

MasterIngress
WorkerVxlan

Vxlan packets udp 6081

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

379

MasterIngress
Internal

Internal cluster communication and Kubernetes
proxy metrics

tcp 9000 - 9999

MasterIngress
WorkerInterna
l

Internal cluster communication tcp 9000 - 9999

MasterIngress
Kube

Kubernetes kubelet, scheduler and controller
manager

tcp 10250 - 10259

MasterIngress
WorkerKube

Kubernetes kubelet, scheduler and controller
manager

tcp 10250 - 10259

MasterIngress
IngressServic
es

Kubernetes Ingress services tcp 30000 - 32767

MasterIngress
WorkerIngress
Services

Kubernetes Ingress services tcp 30000 - 32767

MasterIngress
Geneve

Geneve packets udp 6081

MasterIngress
WorkerGenev
e

Geneve packets udp 6081

MasterIngress
IpsecIke

IPsec IKE packets udp 500

MasterIngress
WorkerIpsecIk
e

IPsec IKE packets udp 500

MasterIngress
IpsecNat

IPsec NAT-T packets udp 4500

MasterIngress
WorkerIpsecN
at

IPsec NAT-T packets udp 4500

MasterIngress
IpsecEsp

IPsec ESP packets 50 All

Ingress group Description IP protocol Port range

OpenShift Container Platform 4.19 Installing on AWS

380

MasterIngress
WorkerIpsecE
sp

IPsec ESP packets 50 All

MasterIngress
InternalUDP

Internal cluster communication udp 9000 - 9999

MasterIngress
WorkerInterna
lUDP

Internal cluster communication udp 9000 - 9999

MasterIngress
IngressServic
esUDP

Kubernetes Ingress services udp 30000 - 32767

MasterIngress
WorkerIngress
ServicesUDP

Kubernetes Ingress services udp 30000 - 32767

Ingress group Description IP protocol Port range

Worker Ingress

The worker machines require the following Ingress groups. Each Ingress group is a
AWS::EC2::SecurityGroupIngress resource.

Ingress group Description IP protocol Port range

WorkerIngress
Vxlan

Vxlan packets udp 6081

WorkerIngress
WorkerVxlan

Vxlan packets udp 6081

WorkerIngress
Internal

Internal cluster communication tcp 9000 - 9999

WorkerIngress
WorkerInterna
l

Internal cluster communication tcp 9000 - 9999

WorkerIngress
Kube

Kubernetes kubelet, scheduler, and controller
manager

tcp 10250

WorkerIngress
WorkerKube

Kubernetes kubelet, scheduler, and controller
manager

tcp 10250

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

381

WorkerIngress
IngressServic
es

Kubernetes Ingress services tcp 30000 - 32767

WorkerIngress
WorkerIngress
Services

Kubernetes Ingress services tcp 30000 - 32767

WorkerIngress
Geneve

Geneve packets udp 6081

WorkerIngress
MasterGeneve

Geneve packets udp 6081

WorkerIngress
IpsecIke

IPsec IKE packets udp 500

WorkerIngress
MasterIpsecIk
e

IPsec IKE packets udp 500

WorkerIngress
IpsecNat

IPsec NAT-T packets udp 4500

WorkerIngress
MasterIpsecN
at

IPsec NAT-T packets udp 4500

WorkerIngress
IpsecEsp

IPsec ESP packets 50 All

WorkerIngress
MasterIpsecEs
p

IPsec ESP packets 50 All

WorkerIngress
InternalUDP

Internal cluster communication udp 9000 - 9999

WorkerIngress
MasterInternal
UDP

Internal cluster communication udp 9000 - 9999

Ingress group Description IP protocol Port range

OpenShift Container Platform 4.19 Installing on AWS

382

WorkerIngress
IngressServic
esUDP

Kubernetes Ingress services udp 30000 - 32767

WorkerIngress
MasterIngress
ServicesUDP

Kubernetes Ingress services udp 30000 - 32767

Ingress group Description IP protocol Port range

Roles and instance profiles

You must grant the machines permissions in AWS. The provided CloudFormation templates grant the
machines Allow permissions for the following AWS::IAM::Role objects and provide a
AWS::IAM::InstanceProfile for each set of roles. If you do not use the templates, you can grant the
machines the following broad permissions or the following individual permissions.

Role Effect Action Resource

Master Allow ec2:* *

Allow elasticloadbalancing
:*

*

Allow iam:PassRole *

Allow s3:GetObject *

Worker Allow ec2:Describe* *

Bootstrap Allow ec2:Describe* *

Allow ec2:AttachVolume *

Allow ec2:DetachVolume *

4.2.3.2. Cluster machines

You need AWS::EC2::Instance objects for the following machines:

A bootstrap machine. This machine is required during installation, but you can remove it after
your cluster deploys.

Three control plane machines. The control plane machines are not governed by a control plane
machine set.

Compute machines. You must create at least two compute machines, which are also known as
worker machines, during installation. These machines are not governed by a compute machine
set.

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

383

4.2.4. Required AWS permissions for the IAM user

To deploy all components of an OpenShift Container Platform cluster, you must grant the all the
required permissions to the IAM user that you create in Amazon Web Services (AWS).

NOTE

Your IAM user must have the permission tag:GetResources in the region us-east-1 to
delete the base cluster resources. As part of the AWS API requirement, the OpenShift
Container Platform installation program performs various actions in this region.

When you attach the AdministratorAccess policy to the IAM user that you create in Amazon Web
Services (AWS), you grant that user all of the required permissions. To deploy all components of an
OpenShift Container Platform cluster, the IAM user requires the following permissions:

Example 4.3. Required EC2 permissions for installation

ec2:AttachNetworkInterface

ec2:AuthorizeSecurityGroupEgress

ec2:AuthorizeSecurityGroupIngress

ec2:CopyImage

ec2:CreateNetworkInterface

ec2:CreateSecurityGroup

ec2:CreateTags

ec2:CreateVolume

ec2:DeleteSecurityGroup

ec2:DeleteSnapshot

ec2:DeleteTags

ec2:DeregisterImage

ec2:DescribeAccountAttributes

ec2:DescribeAddresses

ec2:DescribeAvailabilityZones

ec2:DescribeDhcpOptions

ec2:DescribeImages

ec2:DescribeInstanceAttribute

ec2:DescribeInstanceCreditSpecifications

OpenShift Container Platform 4.19 Installing on AWS

384

ec2:DescribeInstances

ec2:DescribeInstanceTypes

ec2:DescribeInstanceTypeOfferings

ec2:DescribeInternetGateways

ec2:DescribeKeyPairs

ec2:DescribeNatGateways

ec2:DescribeNetworkAcls

ec2:DescribeNetworkInterfaces

ec2:DescribePrefixLists

ec2:DescribePublicIpv4Pools (only required if publicIpv4Pool is specified in install-
config.yaml)

ec2:DescribeRegions

ec2:DescribeRouteTables

ec2:DescribeSecurityGroupRules

ec2:DescribeSecurityGroups

ec2:DescribeSubnets

ec2:DescribeTags

ec2:DescribeVolumes

ec2:DescribeVpcAttribute

ec2:DescribeVpcClassicLink

ec2:DescribeVpcClassicLinkDnsSupport

ec2:DescribeVpcEndpoints

ec2:DescribeVpcs

ec2:DisassociateAddress (only required if publicIpv4Pool is specified in install-
config.yaml)

ec2:GetEbsDefaultKmsKeyId

ec2:ModifyInstanceAttribute

ec2:ModifyNetworkInterfaceAttribute

ec2:RevokeSecurityGroupEgress

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

385

ec2:RevokeSecurityGroupIngress

ec2:RunInstances

ec2:TerminateInstances

Example 4.4. Required permissions for creating network resources during installation

ec2:AllocateAddress

ec2:AssociateAddress

ec2:AssociateDhcpOptions

ec2:AssociateRouteTable

ec2:AttachInternetGateway

ec2:CreateDhcpOptions

ec2:CreateInternetGateway

ec2:CreateNatGateway

ec2:CreateRoute

ec2:CreateRouteTable

ec2:CreateSubnet

ec2:CreateVpc

ec2:CreateVpcEndpoint

ec2:ModifySubnetAttribute

ec2:ModifyVpcAttribute

NOTE

If you use an existing Virtual Private Cloud (VPC), your account does not require these
permissions for creating network resources.

Example 4.5. Required Elastic Load Balancing permissions (ELB) for installation

elasticloadbalancing:AddTags

elasticloadbalancing:ApplySecurityGroupsToLoadBalancer

elasticloadbalancing:AttachLoadBalancerToSubnets

elasticloadbalancing:ConfigureHealthCheck

OpenShift Container Platform 4.19 Installing on AWS

386

elasticloadbalancing:CreateListener

elasticloadbalancing:CreateLoadBalancer

elasticloadbalancing:CreateLoadBalancerListeners

elasticloadbalancing:CreateTargetGroup

elasticloadbalancing:DeleteLoadBalancer

elasticloadbalancing:DeregisterInstancesFromLoadBalancer

elasticloadbalancing:DeregisterTargets

elasticloadbalancing:DescribeInstanceHealth

elasticloadbalancing:DescribeListeners

elasticloadbalancing:DescribeLoadBalancerAttributes

elasticloadbalancing:DescribeLoadBalancers

elasticloadbalancing:DescribeTags

elasticloadbalancing:DescribeTargetGroupAttributes

elasticloadbalancing:DescribeTargetHealth

elasticloadbalancing:ModifyLoadBalancerAttributes

elasticloadbalancing:ModifyTargetGroup

elasticloadbalancing:ModifyTargetGroupAttributes

elasticloadbalancing:RegisterInstancesWithLoadBalancer

elasticloadbalancing:RegisterTargets

elasticloadbalancing:SetLoadBalancerPoliciesOfListener

elasticloadbalancing:SetSecurityGroups

IMPORTANT

OpenShift Container Platform uses both the ELB and ELBv2 API services to provision
load balancers. The permission list shows permissions required by both services. A
known issue exists in the AWS web console where both services use the same
elasticloadbalancing action prefix but do not recognize the same actions. You can
ignore the warnings about the service not recognizing certain elasticloadbalancing
actions.

Example 4.6. Required IAM permissions for installation

iam:AddRoleToInstanceProfile

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

387

iam:CreateInstanceProfile

iam:CreateRole

iam:DeleteInstanceProfile

iam:DeleteRole

iam:DeleteRolePolicy

iam:GetInstanceProfile

iam:GetRole

iam:GetRolePolicy

iam:GetUser

iam:ListInstanceProfilesForRole

iam:ListRoles

iam:ListUsers

iam:PassRole

iam:PutRolePolicy

iam:RemoveRoleFromInstanceProfile

iam:SimulatePrincipalPolicy

iam:TagInstanceProfile

iam:TagRole

NOTE

If you specify an existing IAM role in the install-config.yaml file, the following
IAM permissions are not required: iam:CreateRole,iam:DeleteRole,
iam:DeleteRolePolicy, and iam:PutRolePolicy.

If you have not created a load balancer in your AWS account, the IAM user
also requires the iam:CreateServiceLinkedRole permission.

Example 4.7. Required Route 53 permissions for installation

route53:ChangeResourceRecordSets

route53:ChangeTagsForResource

route53:CreateHostedZone

route53:DeleteHostedZone

OpenShift Container Platform 4.19 Installing on AWS

388

route53:GetChange

route53:GetHostedZone

route53:ListHostedZones

route53:ListHostedZonesByName

route53:ListResourceRecordSets

route53:ListTagsForResource

route53:UpdateHostedZoneComment

Example 4.8. Required Amazon Simple Storage Service (S3) permissions for installation

s3:CreateBucket

s3:DeleteBucket

s3:GetAccelerateConfiguration

s3:GetBucketAcl

s3:GetBucketCors

s3:GetBucketLocation

s3:GetBucketLogging

s3:GetBucketObjectLockConfiguration

s3:GetBucketPolicy

s3:GetBucketRequestPayment

s3:GetBucketTagging

s3:GetBucketVersioning

s3:GetBucketWebsite

s3:GetEncryptionConfiguration

s3:GetLifecycleConfiguration

s3:GetReplicationConfiguration

s3:ListBucket

s3:PutBucketAcl

s3:PutBucketPolicy

s3:PutBucketTagging

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

389

s3:PutEncryptionConfiguration

Example 4.9. S3 permissions that cluster Operators require

s3:DeleteObject

s3:GetObject

s3:GetObjectAcl

s3:GetObjectTagging

s3:GetObjectVersion

s3:PutObject

s3:PutObjectAcl

s3:PutObjectTagging

Example 4.10. Required permissions to delete base cluster resources

autoscaling:DescribeAutoScalingGroups

ec2:DeleteNetworkInterface

ec2:DeletePlacementGroup

ec2:DeleteVolume

elasticloadbalancing:DeleteTargetGroup

elasticloadbalancing:DescribeTargetGroups

iam:DeleteAccessKey

iam:DeleteUser

iam:DeleteUserPolicy

iam:ListAttachedRolePolicies

iam:ListInstanceProfiles

iam:ListRolePolicies

iam:ListUserPolicies

s3:DeleteObject

s3:ListBucketVersions

tag:GetResources

OpenShift Container Platform 4.19 Installing on AWS

390

Example 4.11. Required permissions to delete network resources

ec2:DeleteDhcpOptions

ec2:DeleteInternetGateway

ec2:DeleteNatGateway

ec2:DeleteRoute

ec2:DeleteRouteTable

ec2:DeleteSubnet

ec2:DeleteVpc

ec2:DeleteVpcEndpoints

ec2:DetachInternetGateway

ec2:DisassociateRouteTable

ec2:ReleaseAddress

ec2:ReplaceRouteTableAssociation

NOTE

If you use an existing VPC, your account does not require these permissions to delete
network resources. Instead, your account only requires the tag:UntagResources
permission to delete network resources.

Example 4.12. Optional permissions for installing a cluster with a custom Key Management
Service (KMS) key

kms:CreateGrant

kms:Decrypt

kms:DescribeKey

kms:Encrypt

kms:GenerateDataKey

kms:GenerateDataKeyWithoutPlainText

kms:ListGrants

kms:RevokeGrant

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

391

Example 4.13. Required permissions to delete a cluster with shared instance roles

iam:UntagRole

Example 4.14. Required permissions to delete a cluster with shared instance profiles

tag:UntagResources

Example 4.15. Additional IAM and S3 permissions that are required to create manifests

iam:GetUserPolicy

iam:ListAccessKeys

iam:PutUserPolicy

iam:TagUser

s3:AbortMultipartUpload

s3:GetBucketPublicAccessBlock

s3:ListBucket

s3:ListBucketMultipartUploads

s3:PutBucketPublicAccessBlock

s3:PutLifecycleConfiguration

NOTE

If you are managing your cloud provider credentials with mint mode, the IAM user also
requires the iam:CreateAccessKey and iam:CreateUser permissions.

Example 4.16. Optional permissions for instance and quota checks for installation

servicequotas:ListAWSDefaultServiceQuotas

Example 4.17. Optional permissions for the cluster owner account when installing a cluster on a
shared VPC

sts:AssumeRole

Example 4.18. Required permissions for enabling Bring your own public IPv4 addresses (BYOIP)
feature for installation

ec2:DescribePublicIpv4Pools

OpenShift Container Platform 4.19 Installing on AWS

392

ec2:DisassociateAddress

4.2.5. Obtaining an AWS Marketplace image

If you are deploying an OpenShift Container Platform cluster using an AWS Marketplace image, you
must first subscribe through AWS. Subscribing to the offer provides you with the AMI ID that the
installation program uses to deploy compute nodes.

NOTE

You should only modify the RHCOS image for compute machines to use an AWS
Marketplace image. Control plane machines and infrastructure nodes do not require an
OpenShift Container Platform subscription and use the public RHCOS default image by
default, which does not incur subscription costs on your AWS bill. Therefore, you should
not modify the cluster default boot image or the control plane boot images. Applying the
AWS Marketplace image to them will incur additional licensing costs that cannot be
recovered.

Prerequisites

You have an AWS account to purchase the offer. This account does not have to be the same
account that is used to install the cluster.

Procedure

1. Complete the OpenShift Container Platform subscription from the AWS Marketplace.

4.3. INSTALLING A CLUSTER ON USER-PROVISIONED
INFRASTRUCTURE IN AWS BY USING CLOUDFORMATION
TEMPLATES

In OpenShift Container Platform version 4.19, you can install a cluster on Amazon Web Services (AWS)
that uses infrastructure that you provide.

One way to create this infrastructure is to use the provided CloudFormation templates. You can modify
the templates to customize your infrastructure or use the information that they contain to create AWS
objects according to your company’s policies.

IMPORTANT

The steps for performing a user-provisioned infrastructure installation are provided as an
example only. Installing a cluster with infrastructure you provide requires knowledge of
the cloud provider and the installation process of OpenShift Container Platform. Several
CloudFormation templates are provided to assist in completing these steps or to help
model your own. You are also free to create the required resources through other
methods; the templates are just an example.

4.3.1. Prerequisites

You reviewed details about the OpenShift Container Platform installation and update
processes.

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

393

https://aws.amazon.com/marketplace/fulfillment?productId=59ead7de-2540-4653-a8b0-fa7926d5c845
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation

You read the documentation on selecting a cluster installation method and preparing it for
users.

You configured an AWS account to host the cluster.

IMPORTANT

If you have an AWS profile stored on your computer, it must not use a temporary
session token that you generated while using a multi-factor authentication
device. The cluster continues to use your current AWS credentials to create AWS
resources for the entire life of the cluster, so you must use key-based, long-term
credentials. To generate appropriate keys, see Managing Access Keys for IAM
Users in the AWS documentation. You can supply the keys when you run the
installation program.

You prepared the user-provisioned infrastructure.

You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using
the Bundled Installer (Linux, macOS, or UNIX) in the AWS documentation.

If you use a firewall, you configured it to allow the sites that your cluster requires access to.

NOTE

Be sure to also review this site list if you are configuring a proxy.

If the cloud identity and access management (IAM) APIs are not accessible in your environment,
or if you do not want to store an administrator-level credential secret in the kube-system
namespace, you can manually create and maintain long-term credentials .

4.3.2. Creating the installation files for AWS

To install OpenShift Container Platform on Amazon Web Services using user-provisioned infrastructure,
you must generate the files that the installation program needs to deploy your cluster and modify them
so that the cluster creates only the machines that it will use. You generate and customize the install-
config.yaml file, Kubernetes manifests, and Ignition config files. You also have the option to first set up
a separate var partition during the preparation phases of installation.

4.3.2.1. Optional: Creating a separate /var partition

It is recommended that disk partitioning for OpenShift Container Platform be left to the installer.
However, there are cases where you might want to create separate partitions in a part of the filesystem
that you expect to grow.

OpenShift Container Platform supports the addition of a single partition to attach storage to either the
/var partition or a subdirectory of /var. For example:

/var/lib/containers: Holds container-related content that can grow as more images and
containers are added to a system.

/var/lib/etcd: Holds data that you might want to keep separate for purposes such as
performance optimization of etcd storage.

/var: Holds data that you might want to keep separate for purposes such as auditing.

OpenShift Container Platform 4.19 Installing on AWS

394

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/cli/latest/userguide/install-bundle.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall

Storing the contents of a /var directory separately makes it easier to grow storage for those areas as
needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this
method, you will not have to pull all your containers again, nor will you have to copy massive log files
when you update systems.

Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS),
the following procedure sets up the separate /var partition by creating a machine config manifest that is
inserted during the openshift-install preparation phases of an OpenShift Container Platform
installation.

IMPORTANT

If you follow the steps to create a separate /var partition in this procedure, it is not
necessary to create the Kubernetes manifest and Ignition config files again as described
later in this section.

Procedure

1. Create a directory to hold the OpenShift Container Platform installation files:

2. Run openshift-install to create a set of files in the manifest and openshift subdirectories.
Answer the system questions as you are prompted:

Example output

3. Optional: Confirm that the installation program created manifests in the
clusterconfig/openshift directory:

Example output

4. Create a Butane config that configures the additional partition. For example, name the file
$HOME/clusterconfig/98-var-partition.bu, change the disk device name to the name of the
storage device on the worker systems, and set the storage size as appropriate. This example
places the /var directory on a separate partition:

$ mkdir $HOME/clusterconfig

$ openshift-install create manifests --dir $HOME/clusterconfig

? SSH Public Key ...
INFO Credentials loaded from the "myprofile" profile in file "/home/myuser/.aws/credentials"
INFO Consuming Install Config from target directory
INFO Manifests created in: $HOME/clusterconfig/manifests and
$HOME/clusterconfig/openshift

$ ls $HOME/clusterconfig/openshift/

99_kubeadmin-password-secret.yaml
99_openshift-cluster-api_master-machines-0.yaml
99_openshift-cluster-api_master-machines-1.yaml
99_openshift-cluster-api_master-machines-2.yaml
...

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

395

1

2

3

4

The storage device name of the disk that you want to partition.

When adding a data partition to the boot disk, a minimum value of 25000 MiB (Mebibytes)
is recommended. The root file system is automatically resized to fill all available space up
to the specified offset. If no value is specified, or if the specified value is smaller than the
recommended minimum, the resulting root file system will be too small, and future
reinstalls of RHCOS might overwrite the beginning of the data partition.

The size of the data partition in mebibytes.

The prjquota mount option must be enabled for filesystems used for container storage.

NOTE

When creating a separate /var partition, you cannot use different instance types
for worker nodes, if the different instance types do not have the same device
name.

5. Create a manifest from the Butane config and save it to the clusterconfig/openshift directory.
For example, run the following command:

6. Run openshift-install again to create Ignition configs from a set of files in the manifest and
openshift subdirectories:

variant: openshift
version: 4.19.0
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
storage:
 disks:
 - device: /dev/disk/by-id/<device_name> 1
 partitions:
 - label: var
 start_mib: <partition_start_offset> 2
 size_mib: <partition_size> 3
 number: 5
 filesystems:
 - device: /dev/disk/by-partlabel/var
 path: /var
 format: xfs
 mount_options: [defaults, prjquota] 4
 with_mount_unit: true

$ butane $HOME/clusterconfig/98-var-partition.bu -o $HOME/clusterconfig/openshift/98-var-
partition.yaml

$ openshift-install create ignition-configs --dir $HOME/clusterconfig

$ ls $HOME/clusterconfig/
auth bootstrap.ign master.ign metadata.json worker.ign

OpenShift Container Platform 4.19 Installing on AWS

396

1

You can now use the Ignition config files as input to the installation procedures to install
Red Hat Enterprise Linux CoreOS (RHCOS) systems.

4.3.2.2. Creating the installation configuration file

Generate and customize the installation configuration file that the installation program needs to deploy
your cluster.

Prerequisites

You obtained the OpenShift Container Platform installation program for user-provisioned
infrastructure and the pull secret for your cluster.

You checked that you are deploying your cluster to an AWS Region with an accompanying
Red Hat Enterprise Linux CoreOS (RHCOS) AMI published by Red Hat. If you are deploying to
an AWS Region that requires a custom AMI, such as an AWS GovCloud Region, you must create
the install-config.yaml file manually.

Procedure

1. Create the install-config.yaml file.

a. Change to the directory that contains the installation program and run the following
command:

For <installation_directory>, specify the directory name to store the files that the
installation program creates.

IMPORTANT

Specify an empty directory. Some installation assets, like bootstrap X.509
certificates have short expiration intervals, so you must not reuse an
installation directory. If you want to reuse individual files from another cluster
installation, you can copy them into your directory. However, the file names
for the installation assets might change between releases. Use caution when
copying installation files from an earlier OpenShift Container Platform
version.

b. At the prompts, provide the configuration details for your cloud:

i. Optional: Select an SSH key to use to access your cluster machines.

NOTE

For production OpenShift Container Platform clusters on which you want
to perform installation debugging or disaster recovery, specify an SSH
key that your ssh-agent process uses.

ii. Select aws as the platform to target.

iii. If you do not have an AWS profile stored on your computer, enter the AWS access key

$./openshift-install create install-config --dir <installation_directory> 1

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

397

iii. If you do not have an AWS profile stored on your computer, enter the AWS access key
ID and secret access key for the user that you configured to run the installation
program.

NOTE

The AWS access key ID and secret access key are stored in
~/.aws/credentials in the home directory of the current user on the
installation host. You are prompted for the credentials by the installation
program if the credentials for the exported profile are not present in the
file. Any credentials that you provide to the installation program are
stored in the file.

iv. Select the AWS Region to deploy the cluster to.

v. Select the base domain for the Route 53 service that you configured for your cluster.

vi. Enter a descriptive name for your cluster.

vii. Paste the pull secret from Red Hat OpenShift Cluster Manager .

2. If you are installing a three-node cluster, modify the install-config.yaml file by setting the
compute.replicas parameter to 0. This ensures that the cluster’s control planes are schedulable.
For more information, see "Installing a three-node cluster on AWS".

3. Optional: Back up the install-config.yaml file.

IMPORTANT

The install-config.yaml file is consumed during the installation process. If you
want to reuse the file, you must back it up now.

Additional resources

See Configuration and credential file settings in the AWS documentation for more information
about AWS profile and credential configuration.

4.3.2.3. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

OpenShift Container Platform 4.19 Installing on AWS

398

https://console.redhat.com/openshift/install/pull-secret
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

1

2

3

4

5

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud, Microsoft
Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC
endpoints to your VPC, you must add these endpoints to the noProxy field.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle config map that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the
trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

Optional: The policy to determine the configuration of the Proxy object to reference the
user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and
Always. Use Proxyonly to reference the user-ca-bundle config map only when
http/https proxy is configured. Use Always to always reference the user-ca-bundle
config map. The default value is Proxyonly.

NOTE

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.
<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

399

NOTE

The installation program does not support the proxy readinessEndpoints field.

NOTE

If the installer times out, restart and then complete the deployment by using the
wait-for command of the installer. For example:

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

4.3.2.4. Creating the Kubernetes manifest and Ignition config files

Because you must modify some cluster definition files and manually start the cluster machines, you must
generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the
machines.

The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the
Ignition configuration files, which are later used to configure the cluster machines.

IMPORTANT

The Ignition config files that the OpenShift Container Platform installation
program generates contain certificates that expire after 24 hours, which are then
renewed at that time. If the cluster is shut down before renewing the certificates
and the cluster is later restarted after the 24 hours have elapsed, the cluster
automatically recovers the expired certificates. The exception is that you must
manually approve the pending node-bootstrapper certificate signing requests
(CSRs) to recover kubelet certificates. See the documentation for Recovering
from expired control plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

Prerequisites

You obtained the OpenShift Container Platform installation program.

You created the install-config.yaml installation configuration file.

$./openshift-install wait-for install-complete --log-level debug

OpenShift Container Platform 4.19 Installing on AWS

400

1

Procedure

1. Change to the directory that contains the OpenShift Container Platform installation program
and generate the Kubernetes manifests for the cluster:

For <installation_directory>, specify the installation directory that contains the install-
config.yaml file you created.

2. Remove the Kubernetes manifest files that define the control plane machines:

By removing these files, you prevent the cluster from automatically generating control plane
machines.

3. Remove the Kubernetes manifest files that define the control plane machine set:

4. Remove the Kubernetes manifest files that define the worker machines:

IMPORTANT

If you disabled the MachineAPI capability when installing a cluster on user-
provisioned infrastructure, you must remove the Kubernetes manifest files that
define the worker machines. Otherwise, your cluster fails to install.

Because you create and manage the worker machines yourself, you do not need to initialize
these machines.

WARNING

If you are installing a three-node cluster, skip the following step to allow the
control plane nodes to be schedulable.

IMPORTANT

When you configure control plane nodes from the default unschedulable to
schedulable, additional subscriptions are required. This is because control plane
nodes then become compute nodes.

5. Check that the mastersSchedulable parameter in the

$./openshift-install create manifests --dir <installation_directory> 1

$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml

$ rm -f <installation_directory>/openshift/99_openshift-machine-api_master-control-plane-
machine-set.yaml

$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml



CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

401

1 2

1

<installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest
file is set to false. This setting prevents pods from being scheduled on the control plane
machines:

a. Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.

b. Locate the mastersSchedulable parameter and ensure that it is set to false.

c. Save and exit the file.

6. Optional: If you do not want the Ingress Operator to create DNS records on your behalf, remove
the privateZone and publicZone sections from the
<installation_directory>/manifests/cluster-dns-02-config.yml DNS configuration file:

Remove this section completely.

If you do so, you must add ingress DNS records manually in a later step.

7. To create the Ignition configuration files, run the following command from the directory that
contains the installation program:

For <installation_directory>, specify the same installation directory.

Ignition config files are created for the bootstrap, control plane, and compute nodes in the
installation directory. The kubeadmin-password and kubeconfig files are created in the
./<installation_directory>/auth directory:

.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

4.3.3. Extracting the infrastructure name

apiVersion: config.openshift.io/v1
kind: DNS
metadata:
 creationTimestamp: null
 name: cluster
spec:
 baseDomain: example.openshift.com
 privateZone: 1
 id: mycluster-100419-private-zone
 publicZone: 2
 id: example.openshift.com
status: {}

$./openshift-install create ignition-configs --dir <installation_directory> 1

OpenShift Container Platform 4.19 Installing on AWS

402

https://github.com/openshift/cluster-ingress-operator

1

1

The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your
cluster in Amazon Web Services. The infrastructure name is also used to locate the appropriate AWS
resources during an OpenShift Container Platform installation. The provided CloudFormation templates
contain references to this infrastructure name, so you must extract it.

Prerequisites

You obtained the OpenShift Container Platform installation program and the pull secret for
your cluster.

You generated the Ignition config files for your cluster.

You installed the jq package.

Procedure

To extract and view the infrastructure name from the Ignition config file metadata, run the
following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

Example output

The output of this command is your cluster name and a random string.

4.3.4. Creating a VPC in AWS

You must create a Virtual Private Cloud (VPC) in Amazon Web Services (AWS) for your OpenShift
Container Platform cluster to use. You can customize the VPC to meet your requirements, including
VPN and route tables.

You can use the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources that represent the VPC.

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

$ jq -r .infraID <installation_directory>/metadata.json 1

openshift-vw9j6 1

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

403

1

2

3

4

5

6

1

2

You generated the Ignition config files for your cluster.

Procedure

1. Create a JSON file that contains the parameter values that the template requires:

The CIDR block for the VPC.

Specify a CIDR block in the format x.x.x.x/16-24.

The number of availability zones to deploy the VPC in.

Specify an integer between 1 and 3.

The size of each subnet in each availability zone.

Specify an integer between 5 and 13, where 5 is /27 and 13 is /19.

2. Copy the template from the CloudFormation template for the VPC section of this topic and
save it as a YAML file on your computer. This template describes the VPC that your cluster
requires.

3. Launch the CloudFormation template to create a stack of AWS resources that represent the
VPC:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-vpc. You need the
name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file

[
 {
 "ParameterKey": "VpcCidr", 1
 "ParameterValue": "10.0.0.0/16" 2
 },
 {
 "ParameterKey": "AvailabilityZoneCount", 3
 "ParameterValue": "1" 4
 },
 {
 "ParameterKey": "SubnetBits", 5
 "ParameterValue": "12" 6
 }
]

$ aws cloudformation create-stack --stack-name <name> 1
 --template-body file://<template>.yaml 2
 --parameters file://<parameters>.json 3

OpenShift Container Platform 4.19 Installing on AWS

404

3

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters JSON
file.

Example output

4. Confirm that the template components exist:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters. You must provide these parameter values to the other CloudFormation
templates that you run to create your cluster:

VpcId The ID of your VPC.

PublicSub
netIds

The IDs of the new public subnets.

PrivateSu
bnetIds

The IDs of the new private subnets.

4.3.4.1. CloudFormation template for the VPC

You can use the following CloudFormation template to deploy the VPC that you need for your
OpenShift Container Platform cluster.

Example 4.19. CloudFormation template for the VPC

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-vpc/dbedae40-2fd3-11eb-
820e-12a48460849f

$ aws cloudformation describe-stacks --stack-name <name>

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice VPC with 1-3 AZs

Parameters:
 VpcCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.0.0/16
 Description: CIDR block for VPC.
 Type: String
 AvailabilityZoneCount:
 ConstraintDescription: "The number of availability zones. (Min: 1, Max: 3)"
 MinValue: 1
 MaxValue: 3
 Default: 1
 Description: "How many AZs to create VPC subnets for. (Min: 1, Max: 3)"

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

405

 Type: Number
 SubnetBits:
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/19-27.
 MinValue: 5
 MaxValue: 13
 Default: 12
 Description: "Size of each subnet to create within the availability zones. (Min: 5 = /27, Max: 13 =
/19)"
 Type: Number

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcCidr
 - SubnetBits
 - Label:
 default: "Availability Zones"
 Parameters:
 - AvailabilityZoneCount
 ParameterLabels:
 AvailabilityZoneCount:
 default: "Availability Zone Count"
 VpcCidr:
 default: "VPC CIDR"
 SubnetBits:
 default: "Bits Per Subnet"

Conditions:
 DoAz3: !Equals [3, !Ref AvailabilityZoneCount]
 DoAz2: !Or [!Equals [2, !Ref AvailabilityZoneCount], Condition: DoAz3]

Resources:
 VPC:
 Type: "AWS::EC2::VPC"
 Properties:
 EnableDnsSupport: "true"
 EnableDnsHostnames: "true"
 CidrBlock: !Ref VpcCidr
 PublicSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [0, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 0
 - Fn::GetAZs: !Ref "AWS::Region"
 PublicSubnet2:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [1, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select

OpenShift Container Platform 4.19 Installing on AWS

406

 - 1
 - Fn::GetAZs: !Ref "AWS::Region"
 PublicSubnet3:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [2, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 2
 - Fn::GetAZs: !Ref "AWS::Region"
 InternetGateway:
 Type: "AWS::EC2::InternetGateway"
 GatewayToInternet:
 Type: "AWS::EC2::VPCGatewayAttachment"
 Properties:
 VpcId: !Ref VPC
 InternetGatewayId: !Ref InternetGateway
 PublicRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VPC
 PublicRoute:
 Type: "AWS::EC2::Route"
 DependsOn: GatewayToInternet
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 GatewayId: !Ref InternetGateway
 PublicSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetRouteTableAssociation2:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz2
 Properties:
 SubnetId: !Ref PublicSubnet2
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetRouteTableAssociation3:
 Condition: DoAz3
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet3
 RouteTableId: !Ref PublicRouteTable
 PrivateSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [3, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 0
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable:
 Type: "AWS::EC2::RouteTable"

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

407

 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PrivateSubnet
 RouteTableId: !Ref PrivateRouteTable
 NAT:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP
 - AllocationId
 SubnetId: !Ref PublicSubnet
 EIP:
 Type: "AWS::EC2::EIP"
 Properties:
 Domain: vpc
 Route:
 Type: "AWS::EC2::Route"
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT
 PrivateSubnet2:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [4, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 1
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable2:
 Type: "AWS::EC2::RouteTable"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation2:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz2
 Properties:
 SubnetId: !Ref PrivateSubnet2
 RouteTableId: !Ref PrivateRouteTable2
 NAT2:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Condition: DoAz2
 Properties:
 AllocationId:

OpenShift Container Platform 4.19 Installing on AWS

408

 "Fn::GetAtt":
 - EIP2
 - AllocationId
 SubnetId: !Ref PublicSubnet2
 EIP2:
 Type: "AWS::EC2::EIP"
 Condition: DoAz2
 Properties:
 Domain: vpc
 Route2:
 Type: "AWS::EC2::Route"
 Condition: DoAz2
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable2
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT2
 PrivateSubnet3:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [5, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 2
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable3:
 Type: "AWS::EC2::RouteTable"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation3:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz3
 Properties:
 SubnetId: !Ref PrivateSubnet3
 RouteTableId: !Ref PrivateRouteTable3
 NAT3:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Condition: DoAz3
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP3
 - AllocationId
 SubnetId: !Ref PublicSubnet3
 EIP3:
 Type: "AWS::EC2::EIP"
 Condition: DoAz3
 Properties:
 Domain: vpc
 Route3:
 Type: "AWS::EC2::Route"

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

409

 Condition: DoAz3
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable3
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT3
 S3Endpoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Principal: '*'
 Action:
 - '*'
 Resource:
 - '*'
 RouteTableIds:
 - !Ref PublicRouteTable
 - !Ref PrivateRouteTable
 - !If [DoAz2, !Ref PrivateRouteTable2, !Ref "AWS::NoValue"]
 - !If [DoAz3, !Ref PrivateRouteTable3, !Ref "AWS::NoValue"]
 ServiceName: !Join
 - ''
 - - com.amazonaws.
 - !Ref 'AWS::Region'
 - .s3
 VpcId: !Ref VPC

Outputs:
 VpcId:
 Description: ID of the new VPC.
 Value: !Ref VPC
 PublicSubnetIds:
 Description: Subnet IDs of the public subnets.
 Value:
 !Join [
 ",",
 [!Ref PublicSubnet, !If [DoAz2, !Ref PublicSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref
PublicSubnet3, !Ref "AWS::NoValue"]]
]
 PrivateSubnetIds:
 Description: Subnet IDs of the private subnets.
 Value:
 !Join [
 ",",
 [!Ref PrivateSubnet, !If [DoAz2, !Ref PrivateSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref
PrivateSubnet3, !Ref "AWS::NoValue"]]
]
 PublicRouteTableId:
 Description: Public Route table ID
 Value: !Ref PublicRouteTable
 PrivateRouteTableIds:
 Description: Private Route table IDs

OpenShift Container Platform 4.19 Installing on AWS

410

Additional resources

You can view details about the CloudFormation stacks that you create by navigating to the AWS
CloudFormation console.

4.3.5. Creating networking and load balancing components in AWS

You must configure networking and classic or network load balancing in Amazon Web Services (AWS)
that your OpenShift Container Platform cluster can use.

You can use the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources. The stack represents the networking and load balancing components that your
OpenShift Container Platform cluster requires. The template also creates a hosted zone and subnet
tags.

You can run the template multiple times within a single Virtual Private Cloud (VPC).

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You generated the Ignition config files for your cluster.

You created and configured a VPC and associated subnets in AWS.

 Value:
 !Join [
 ",",
 [
 !Join ["=", [
 !Select [0, "Fn::GetAZs": !Ref "AWS::Region"],
 !Ref PrivateRouteTable
]],
 !If [DoAz2,
 !Join ["=", [!Select [1, "Fn::GetAZs": !Ref "AWS::Region"], !Ref PrivateRouteTable2]],
 !Ref "AWS::NoValue"
],
 !If [DoAz3,
 !Join ["=", [!Select [2, "Fn::GetAZs": !Ref "AWS::Region"], !Ref PrivateRouteTable3]],
 !Ref "AWS::NoValue"
]
]
]

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

411

https://console.aws.amazon.com/cloudformation/

1

Procedure

1. Obtain the hosted zone ID for the Route 53 base domain that you specified in the install-
config.yaml file for your cluster. You can obtain details about your hosted zone by running the
following command:

For the <route53_domain>, specify the Route 53 base domain that you used when you
generated the install-config.yaml file for the cluster.

Example output

In the example output, the hosted zone ID is Z21IXYZABCZ2A4.

2. Create a JSON file that contains the parameter values that the template requires:

$ aws route53 list-hosted-zones-by-name --dns-name <route53_domain> 1

mycluster.example.com. False 100
HOSTEDZONES 65F8F38E-2268-B835-E15C-AB55336FCBFA
/hostedzone/Z21IXYZABCZ2A4 mycluster.example.com. 10

[
 {
 "ParameterKey": "ClusterName", 1
 "ParameterValue": "mycluster" 2
 },
 {
 "ParameterKey": "InfrastructureName", 3
 "ParameterValue": "mycluster-<random_string>" 4
 },
 {
 "ParameterKey": "HostedZoneId", 5
 "ParameterValue": "<random_string>" 6
 },
 {
 "ParameterKey": "HostedZoneName", 7
 "ParameterValue": "example.com" 8
 },
 {
 "ParameterKey": "PublicSubnets", 9
 "ParameterValue": "subnet-<random_string>" 10
 },
 {
 "ParameterKey": "PrivateSubnets", 11
 "ParameterValue": "subnet-<random_string>" 12
 },
 {
 "ParameterKey": "VpcId", 13
 "ParameterValue": "vpc-<random_string>" 14
 }
]

OpenShift Container Platform 4.19 Installing on AWS

412

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A short, representative cluster name to use for hostnames, etc.

Specify the cluster name that you used when you generated the install-config.yaml file
for the cluster.

The name for your cluster infrastructure that is encoded in your Ignition config files for the
cluster.

Specify the infrastructure name that you extracted from the Ignition config file metadata,
which has the format <cluster-name>-<random-string>.

The Route 53 public zone ID to register the targets with.

Specify the Route 53 public zone ID, which as a format similar to Z21IXYZABCZ2A4. You
can obtain this value from the AWS console.

The Route 53 zone to register the targets with.

Specify the Route 53 base domain that you used when you generated the install-
config.yaml file for the cluster. Do not include the trailing period (.) that is displayed in the
AWS console.

The public subnets that you created for your VPC.

Specify the PublicSubnetIds value from the output of the CloudFormation template for
the VPC.

The private subnets that you created for your VPC.

Specify the PrivateSubnetIds value from the output of the CloudFormation template for
the VPC.

The VPC that you created for the cluster.

Specify the VpcId value from the output of the CloudFormation template for the VPC.

3. Copy the template from the CloudFormation template for the network and load balancers
section of this topic and save it as a YAML file on your computer. This template describes the
networking and load balancing objects that your cluster requires.

IMPORTANT

If you are deploying your cluster to an AWS government or secret region, you
must update the InternalApiServerRecord in the CloudFormation template to
use CNAME records. Records of type ALIAS are not supported for AWS
government regions.

4. Launch the CloudFormation template to create a stack of AWS resources that provide the
networking and load balancing components:

IMPORTANT

You must enter the command on a single line.

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

413

1

2

3

4

<name> is the name for the CloudFormation stack, such as cluster-dns. You need the
name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters JSON
file.

You must explicitly declare the CAPABILITY_NAMED_IAM capability because the
provided template creates some AWS::IAM::Role resources.

Example output

5. Confirm that the template components exist:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters. You must provide these parameter values to the other CloudFormation
templates that you run to create your cluster:

PrivateHo
stedZoneI
d

Hosted zone ID for the private DNS.

ExternalA
piLoadBal
ancerNam
e

Full name of the external API load balancer.

InternalAp
iLoadBala
ncerName

Full name of the internal API load balancer.

ApiServer
DnsName

Full hostname of the API server.

RegisterN
lbIpTarget
sLambda

Lambda ARN useful to help register/deregister IP targets for these load balancers.

$ aws cloudformation create-stack --stack-name <name> 1
 --template-body file://<template>.yaml 2
 --parameters file://<parameters>.json 3
 --capabilities CAPABILITY_NAMED_IAM 4

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-dns/cd3e5de0-2fd4-11eb-
5cf0-12be5c33a183

$ aws cloudformation describe-stacks --stack-name <name>

OpenShift Container Platform 4.19 Installing on AWS

414

ExternalA
piTargetG
roupArn

ARN of external API target group.

InternalAp
iTargetGr
oupArn

ARN of internal API target group.

InternalSe
rviceTarg
etGroupA
rn

ARN of internal service target group.

4.3.5.1. CloudFormation template for the network and load balancers

You can use the following CloudFormation template to deploy the networking objects and load
balancers that you need for your OpenShift Container Platform cluster.

Example 4.20. CloudFormation template for the network and load balancers

AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Network Elements (Route53 & LBs)

Parameters:
 ClusterName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Cluster name must be alphanumeric, start with a letter, and have a
maximum of 27 characters.
 Description: A short, representative cluster name to use for host names and other identifying
names.
 Type: String
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a
maximum of 27 characters.
 Description: A short, unique cluster ID used to tag cloud resources and identify items owned or
used by the cluster.
 Type: String
 HostedZoneId:
 Description: The Route53 public zone ID to register the targets with, such as
Z21IXYZABCZ2A4.
 Type: String
 HostedZoneName:
 Description: The Route53 zone to register the targets with, such as example.com. Omit the
trailing period.
 Type: String
 Default: "example.com"

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

415

 PublicSubnets:
 Description: The internet-facing subnets.
 Type: List<AWS::EC2::Subnet::Id>
 PrivateSubnets:
 Description: The internal subnets.
 Type: List<AWS::EC2::Subnet::Id>
 VpcId:
 Description: The VPC-scoped resources will belong to this VPC.
 Type: AWS::EC2::VPC::Id

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - ClusterName
 - InfrastructureName
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - PublicSubnets
 - PrivateSubnets
 - Label:
 default: "DNS"
 Parameters:
 - HostedZoneName
 - HostedZoneId
 ParameterLabels:
 ClusterName:
 default: "Cluster Name"
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 PublicSubnets:
 default: "Public Subnets"
 PrivateSubnets:
 default: "Private Subnets"
 HostedZoneName:
 default: "Public Hosted Zone Name"
 HostedZoneId:
 default: "Public Hosted Zone ID"

Resources:
 ExtApiElb:
 Type: AWS::ElasticLoadBalancingV2::LoadBalancer
 Properties:
 Name: !Join ["-", [!Ref InfrastructureName, "ext"]]
 IpAddressType: ipv4
 Subnets: !Ref PublicSubnets
 Type: network

 IntApiElb:
 Type: AWS::ElasticLoadBalancingV2::LoadBalancer

OpenShift Container Platform 4.19 Installing on AWS

416

 Properties:
 Name: !Join ["-", [!Ref InfrastructureName, "int"]]
 Scheme: internal
 IpAddressType: ipv4
 Subnets: !Ref PrivateSubnets
 Type: network

 IntDns:
 Type: "AWS::Route53::HostedZone"
 Properties:
 HostedZoneConfig:
 Comment: "Managed by CloudFormation"
 Name: !Join [".", [!Ref ClusterName, !Ref HostedZoneName]]
 HostedZoneTags:
 - Key: Name
 Value: !Join ["-", [!Ref InfrastructureName, "int"]]
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "owned"
 VPCs:
 - VPCId: !Ref VpcId
 VPCRegion: !Ref "AWS::Region"

 ExternalApiServerRecord:
 Type: AWS::Route53::RecordSetGroup
 Properties:
 Comment: Alias record for the API server
 HostedZoneId: !Ref HostedZoneId
 RecordSets:
 - Name:
 !Join [
 ".",
 ["api", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
]
 Type: A
 AliasTarget:
 HostedZoneId: !GetAtt ExtApiElb.CanonicalHostedZoneID
 DNSName: !GetAtt ExtApiElb.DNSName

 InternalApiServerRecord:
 Type: AWS::Route53::RecordSetGroup
 Properties:
 Comment: Alias record for the API server
 HostedZoneId: !Ref IntDns
 RecordSets:
 - Name:
 !Join [
 ".",
 ["api", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
]
 Type: A
 AliasTarget:
 HostedZoneId: !GetAtt IntApiElb.CanonicalHostedZoneID
 DNSName: !GetAtt IntApiElb.DNSName
 - Name:
 !Join [
 ".",

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

417

 ["api-int", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
]
 Type: A
 AliasTarget:
 HostedZoneId: !GetAtt IntApiElb.CanonicalHostedZoneID
 DNSName: !GetAtt IntApiElb.DNSName

 ExternalApiListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: ExternalApiTargetGroup
 LoadBalancerArn:
 Ref: ExtApiElb
 Port: 6443
 Protocol: TCP

 ExternalApiTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 HealthCheckIntervalSeconds: 10
 HealthCheckPath: "/readyz"
 HealthCheckPort: 6443
 HealthCheckProtocol: HTTPS
 HealthyThresholdCount: 2
 UnhealthyThresholdCount: 2
 Port: 6443
 Protocol: TCP
 TargetType: ip
 VpcId:
 Ref: VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 60

 InternalApiListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: InternalApiTargetGroup
 LoadBalancerArn:
 Ref: IntApiElb
 Port: 6443
 Protocol: TCP

 InternalApiTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 HealthCheckIntervalSeconds: 10
 HealthCheckPath: "/readyz"
 HealthCheckPort: 6443
 HealthCheckProtocol: HTTPS

OpenShift Container Platform 4.19 Installing on AWS

418

 HealthyThresholdCount: 2
 UnhealthyThresholdCount: 2
 Port: 6443
 Protocol: TCP
 TargetType: ip
 VpcId:
 Ref: VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 60

 InternalServiceInternalListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: InternalServiceTargetGroup
 LoadBalancerArn:
 Ref: IntApiElb
 Port: 22623
 Protocol: TCP

 InternalServiceTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 HealthCheckIntervalSeconds: 10
 HealthCheckPath: "/healthz"
 HealthCheckPort: 22623
 HealthCheckProtocol: HTTPS
 HealthyThresholdCount: 2
 UnhealthyThresholdCount: 2
 Port: 22623
 Protocol: TCP
 TargetType: ip
 VpcId:
 Ref: VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 60

 RegisterTargetLambdaIamRole:
 Type: AWS::IAM::Role
 Properties:
 RoleName: !Join ["-", [!Ref InfrastructureName, "nlb", "lambda", "role"]]
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "lambda.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

419

 - PolicyName: !Join ["-", [!Ref InfrastructureName, "master", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets",
]
 Resource: !Ref InternalApiTargetGroup
 - Effect: "Allow"
 Action:
 [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets",
]
 Resource: !Ref InternalServiceTargetGroup
 - Effect: "Allow"
 Action:
 [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets",
]
 Resource: !Ref ExternalApiTargetGroup

 RegisterNlbIpTargets:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.handler"
 Role:
 Fn::GetAtt:
 - "RegisterTargetLambdaIamRole"
 - "Arn"
 Code:
 ZipFile: |
 import json
 import boto3
 import cfnresponse
 def handler(event, context):
 elb = boto3.client('elbv2')
 if event['RequestType'] == 'Delete':
 elb.deregister_targets(TargetGroupArn=event['ResourceProperties']
['TargetArn'],Targets=[{'Id': event['ResourceProperties']['TargetIp']}])
 elif event['RequestType'] == 'Create':
 elb.register_targets(TargetGroupArn=event['ResourceProperties']['TargetArn'],Targets=
[{'Id': event['ResourceProperties']['TargetIp']}])
 responseData = {}
 cfnresponse.send(event, context, cfnresponse.SUCCESS, responseData,
event['ResourceProperties']['TargetArn']+event['ResourceProperties']['TargetIp'])
 Runtime: "python3.11"
 Timeout: 120

 RegisterSubnetTagsLambdaIamRole:
 Type: AWS::IAM::Role
 Properties:

OpenShift Container Platform 4.19 Installing on AWS

420

 RoleName: !Join ["-", [!Ref InfrastructureName, "subnet-tags-lambda-role"]]
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "lambda.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "subnet-tagging-policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 [
 "ec2:DeleteTags",
 "ec2:CreateTags"
]
 Resource: "arn:aws:ec2:*:*:subnet/*"
 - Effect: "Allow"
 Action:
 [
 "ec2:DescribeSubnets",
 "ec2:DescribeTags"
]
 Resource: "*"

 RegisterSubnetTags:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.handler"
 Role:
 Fn::GetAtt:
 - "RegisterSubnetTagsLambdaIamRole"
 - "Arn"
 Code:
 ZipFile: |
 import json
 import boto3
 import cfnresponse
 def handler(event, context):
 ec2_client = boto3.client('ec2')
 if event['RequestType'] == 'Delete':
 for subnet_id in event['ResourceProperties']['Subnets']:
 ec2_client.delete_tags(Resources=[subnet_id], Tags=[{'Key': 'kubernetes.io/cluster/' +
event['ResourceProperties']['InfrastructureName']}]);
 elif event['RequestType'] == 'Create':
 for subnet_id in event['ResourceProperties']['Subnets']:
 ec2_client.create_tags(Resources=[subnet_id], Tags=[{'Key': 'kubernetes.io/cluster/' +
event['ResourceProperties']['InfrastructureName'], 'Value': 'shared'}]);
 responseData = {}
 cfnresponse.send(event, context, cfnresponse.SUCCESS, responseData,

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

421

IMPORTANT

event['ResourceProperties']['InfrastructureName']+event['ResourceProperties']['Subnets'][0])
 Runtime: "python3.11"
 Timeout: 120

 RegisterPublicSubnetTags:
 Type: Custom::SubnetRegister
 Properties:
 ServiceToken: !GetAtt RegisterSubnetTags.Arn
 InfrastructureName: !Ref InfrastructureName
 Subnets: !Ref PublicSubnets

 RegisterPrivateSubnetTags:
 Type: Custom::SubnetRegister
 Properties:
 ServiceToken: !GetAtt RegisterSubnetTags.Arn
 InfrastructureName: !Ref InfrastructureName
 Subnets: !Ref PrivateSubnets

Outputs:
 PrivateHostedZoneId:
 Description: Hosted zone ID for the private DNS, which is required for private records.
 Value: !Ref IntDns
 ExternalApiLoadBalancerName:
 Description: Full name of the external API load balancer.
 Value: !GetAtt ExtApiElb.LoadBalancerFullName
 InternalApiLoadBalancerName:
 Description: Full name of the internal API load balancer.
 Value: !GetAtt IntApiElb.LoadBalancerFullName
 ApiServerDnsName:
 Description: Full hostname of the API server, which is required for the Ignition config files.
 Value: !Join [".", ["api-int", !Ref ClusterName, !Ref HostedZoneName]]
 RegisterNlbIpTargetsLambda:
 Description: Lambda ARN useful to help register or deregister IP targets for these load
balancers.
 Value: !GetAtt RegisterNlbIpTargets.Arn
 ExternalApiTargetGroupArn:
 Description: ARN of the external API target group.
 Value: !Ref ExternalApiTargetGroup
 InternalApiTargetGroupArn:
 Description: ARN of the internal API target group.
 Value: !Ref InternalApiTargetGroup
 InternalServiceTargetGroupArn:
 Description: ARN of the internal service target group.
 Value: !Ref InternalServiceTargetGroup

OpenShift Container Platform 4.19 Installing on AWS

422

IMPORTANT

If you are deploying your cluster to an AWS government or secret region, you must
update the InternalApiServerRecord to use CNAME records. Records of type ALIAS
are not supported for AWS government regions. For example:

Additional resources

You can view details about the CloudFormation stacks that you create by navigating to the AWS
CloudFormation console.

You can view details about your hosted zones by navigating to the AWS Route 53 console .

Listing public hosted zones(AWS documentation)

4.3.6. Creating security group and roles in AWS

You must create security groups and roles in Amazon Web Services (AWS) for your OpenShift Container
Platform cluster to use.

You can use the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources. The stack represents the security groups and roles that your OpenShift Container
Platform cluster requires.

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You generated the Ignition config files for your cluster.

You created and configured a VPC and associated subnets in AWS.

Procedure

1. Create a JSON file that contains the parameter values that the template requires:

Type: CNAME
TTL: 10
ResourceRecords:
- !GetAtt IntApiElb.DNSName

[
 {
 "ParameterKey": "InfrastructureName", 1
 "ParameterValue": "mycluster-<random_string>" 2

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

423

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/route53/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ListInfoOnHostedZone.html

1

2

3

4

5

6

7

8

1

The name for your cluster infrastructure that is encoded in your Ignition config files for the
cluster.

Specify the infrastructure name that you extracted from the Ignition config file metadata,
which has the format <cluster-name>-<random-string>.

The CIDR block for the VPC.

Specify the CIDR block parameter that you used for the VPC that you defined in the form
x.x.x.x/16-24.

The private subnets that you created for your VPC.

Specify the PrivateSubnetIds value from the output of the CloudFormation template for
the VPC.

The VPC that you created for the cluster.

Specify the VpcId value from the output of the CloudFormation template for the VPC.

2. Copy the template from the CloudFormation template for security objects section of this
topic and save it as a YAML file on your computer. This template describes the security groups
and roles that your cluster requires.

3. Launch the CloudFormation template to create a stack of AWS resources that represent the
security groups and roles:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-sec. You need the
name of this stack if you remove the cluster.

 },
 {
 "ParameterKey": "VpcCidr", 3
 "ParameterValue": "10.0.0.0/16" 4
 },
 {
 "ParameterKey": "PrivateSubnets", 5
 "ParameterValue": "subnet-<random_string>" 6
 },
 {
 "ParameterKey": "VpcId", 7
 "ParameterValue": "vpc-<random_string>" 8
 }
]

$ aws cloudformation create-stack --stack-name <name> 1
 --template-body file://<template>.yaml 2
 --parameters file://<parameters>.json 3
 --capabilities CAPABILITY_NAMED_IAM 4

OpenShift Container Platform 4.19 Installing on AWS

424

2

3

4

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters JSON
file.

You must explicitly declare the CAPABILITY_NAMED_IAM capability because the
provided template creates some AWS::IAM::Role and AWS::IAM::InstanceProfile
resources.

Example output

4. Confirm that the template components exist:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters. You must provide these parameter values to the other CloudFormation
templates that you run to create your cluster:

MasterSec
urityGrou
pId

Master Security Group ID

WorkerSe
curityGro
upId

Worker Security Group ID

MasterIns
tanceProfi
le

Master IAM Instance Profile

WorkerIns
tanceProfi
le

Worker IAM Instance Profile

4.3.6.1. CloudFormation template for security objects

You can use the following CloudFormation template to deploy the security objects that you need for
your OpenShift Container Platform cluster.

Example 4.21. CloudFormation template for security objects

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-sec/03bd4210-2ed7-11eb-
6d7a-13fc0b61e9db

$ aws cloudformation describe-stacks --stack-name <name>

AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Security Elements (Security Groups & IAM)

Parameters:

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

425

 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a
maximum of 27 characters.
 Description: A short, unique cluster ID used to tag cloud resources and identify items owned or
used by the cluster.
 Type: String
 VpcCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.0.0/16
 Description: CIDR block for VPC.
 Type: String
 VpcId:
 Description: The VPC-scoped resources will belong to this VPC.
 Type: AWS::EC2::VPC::Id
 PrivateSubnets:
 Description: The internal subnets.
 Type: List<AWS::EC2::Subnet::Id>

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - VpcCidr
 - PrivateSubnets
 ParameterLabels:
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 VpcCidr:
 default: "VPC CIDR"
 PrivateSubnets:
 default: "Private Subnets"

Resources:
 MasterSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster Master Security Group
 SecurityGroupIngress:
 - IpProtocol: icmp
 FromPort: 0
 ToPort: 0
 CidrIp: !Ref VpcCidr

OpenShift Container Platform 4.19 Installing on AWS

426

 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 ToPort: 6443
 FromPort: 6443
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 FromPort: 22623
 ToPort: 22623
 CidrIp: !Ref VpcCidr
 VpcId: !Ref VpcId

 WorkerSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster Worker Security Group
 SecurityGroupIngress:
 - IpProtocol: icmp
 FromPort: 0
 ToPort: 0
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: !Ref VpcCidr
 VpcId: !Ref VpcId

 MasterIngressEtcd:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: etcd
 FromPort: 2379
 ToPort: 2380
 IpProtocol: tcp

 MasterIngressVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 MasterIngressWorkerVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

427

 ToPort: 4789
 IpProtocol: udp

 MasterIngressGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 MasterIngressWorkerGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 MasterIngressIpsecIke:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: IPsec IKE packets
 FromPort: 500
 ToPort: 500
 IpProtocol: udp

 MasterIngressIpsecNat:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: IPsec NAT-T packets
 FromPort: 4500
 ToPort: 4500
 IpProtocol: udp

 MasterIngressIpsecEsp:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: IPsec ESP packets
 IpProtocol: 50

 MasterIngressWorkerIpsecIke:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId

OpenShift Container Platform 4.19 Installing on AWS

428

 Description: IPsec IKE packets
 FromPort: 500
 ToPort: 500
 IpProtocol: udp

 MasterIngressWorkerIpsecNat:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: IPsec NAT-T packets
 FromPort: 4500
 ToPort: 4500
 IpProtocol: udp

 MasterIngressWorkerIpsecEsp:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: IPsec ESP packets
 IpProtocol: 50

 MasterIngressInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 MasterIngressWorkerInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 MasterIngressInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 MasterIngressWorkerInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

429

 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 MasterIngressKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes kubelet, scheduler and controller manager
 FromPort: 10250
 ToPort: 10259
 IpProtocol: tcp

 MasterIngressWorkerKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes kubelet, scheduler and controller manager
 FromPort: 10250
 ToPort: 10259
 IpProtocol: tcp

 MasterIngressIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 MasterIngressWorkerIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 MasterIngressIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

OpenShift Container Platform 4.19 Installing on AWS

430

 MasterIngressWorkerIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 WorkerIngressVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 WorkerIngressMasterVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 WorkerIngressGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 WorkerIngressMasterGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 WorkerIngressIpsecIke:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

431

 Description: IPsec IKE packets
 FromPort: 500
 ToPort: 500
 IpProtocol: udp

 WorkerIngressIpsecNat:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: IPsec NAT-T packets
 FromPort: 4500
 ToPort: 4500
 IpProtocol: udp

 WorkerIngressIpsecEsp:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: IPsec ESP packets
 IpProtocol: 50

 WorkerIngressMasterIpsecIke:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: IPsec IKE packets
 FromPort: 500
 ToPort: 500
 IpProtocol: udp

 WorkerIngressMasterIpsecNat:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: IPsec NAT-T packets
 FromPort: 4500
 ToPort: 4500
 IpProtocol: udp

 WorkerIngressMasterIpsecEsp:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: IPsec ESP packets
 IpProtocol: 50

 WorkerIngressInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId

OpenShift Container Platform 4.19 Installing on AWS

432

 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 WorkerIngressMasterInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 WorkerIngressInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 WorkerIngressMasterInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 WorkerIngressKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes secure kubelet port
 FromPort: 10250
 ToPort: 10250
 IpProtocol: tcp

 WorkerIngressWorkerKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal Kubernetes communication
 FromPort: 10250
 ToPort: 10250
 IpProtocol: tcp

 WorkerIngressIngressServices:

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

433

 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 WorkerIngressMasterIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 WorkerIngressIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 WorkerIngressMasterIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 MasterIamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "ec2.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "master", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:

OpenShift Container Platform 4.19 Installing on AWS

434

 - Effect: "Allow"
 Action:
 - "ec2:AttachVolume"
 - "ec2:AuthorizeSecurityGroupIngress"
 - "ec2:CreateSecurityGroup"
 - "ec2:CreateTags"
 - "ec2:CreateVolume"
 - "ec2:DeleteSecurityGroup"
 - "ec2:DeleteVolume"
 - "ec2:Describe*"
 - "ec2:DetachVolume"
 - "ec2:ModifyInstanceAttribute"
 - "ec2:ModifyVolume"
 - "ec2:RevokeSecurityGroupIngress"
 - "elasticloadbalancing:AddTags"
 - "elasticloadbalancing:AttachLoadBalancerToSubnets"
 - "elasticloadbalancing:ApplySecurityGroupsToLoadBalancer"
 - "elasticloadbalancing:CreateListener"
 - "elasticloadbalancing:CreateLoadBalancer"
 - "elasticloadbalancing:CreateLoadBalancerPolicy"
 - "elasticloadbalancing:CreateLoadBalancerListeners"
 - "elasticloadbalancing:CreateTargetGroup"
 - "elasticloadbalancing:ConfigureHealthCheck"
 - "elasticloadbalancing:DeleteListener"
 - "elasticloadbalancing:DeleteLoadBalancer"
 - "elasticloadbalancing:DeleteLoadBalancerListeners"
 - "elasticloadbalancing:DeleteTargetGroup"
 - "elasticloadbalancing:DeregisterInstancesFromLoadBalancer"
 - "elasticloadbalancing:DeregisterTargets"
 - "elasticloadbalancing:Describe*"
 - "elasticloadbalancing:DetachLoadBalancerFromSubnets"
 - "elasticloadbalancing:ModifyListener"
 - "elasticloadbalancing:ModifyLoadBalancerAttributes"
 - "elasticloadbalancing:ModifyTargetGroup"
 - "elasticloadbalancing:ModifyTargetGroupAttributes"
 - "elasticloadbalancing:RegisterInstancesWithLoadBalancer"
 - "elasticloadbalancing:RegisterTargets"
 - "elasticloadbalancing:SetLoadBalancerPoliciesForBackendServer"
 - "elasticloadbalancing:SetLoadBalancerPoliciesOfListener"
 - "kms:DescribeKey"
 Resource: "*"

 MasterInstanceProfile:
 Type: "AWS::IAM::InstanceProfile"
 Properties:
 Roles:
 - Ref: "MasterIamRole"

 WorkerIamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

435

Additional resources

You can view details about the CloudFormation stacks that you create by navigating to the AWS
CloudFormation console.

4.3.7. Accessing RHCOS AMIs with stream metadata

In OpenShift Container Platform, stream metadata provides standardized metadata about RHCOS in
the JSON format and injects the metadata into the cluster. Stream metadata is a stable format that
supports multiple architectures and is intended to be self-documenting for maintaining automation.

You can use the coreos print-stream-json sub-command of openshift-install to access information
about the boot images in the stream metadata format. This command provides a method for printing
stream metadata in a scriptable, machine-readable format.

For user-provisioned installations, the openshift-install binary contains references to the version of

 Service:
 - "ec2.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "worker", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 - "ec2:DescribeInstances"
 - "ec2:DescribeRegions"
 Resource: "*"

 WorkerInstanceProfile:
 Type: "AWS::IAM::InstanceProfile"
 Properties:
 Roles:
 - Ref: "WorkerIamRole"

Outputs:
 MasterSecurityGroupId:
 Description: Master Security Group ID
 Value: !GetAtt MasterSecurityGroup.GroupId

 WorkerSecurityGroupId:
 Description: Worker Security Group ID
 Value: !GetAtt WorkerSecurityGroup.GroupId

 MasterInstanceProfile:
 Description: Master IAM Instance Profile
 Value: !Ref MasterInstanceProfile

 WorkerInstanceProfile:
 Description: Worker IAM Instance Profile
 Value: !Ref WorkerInstanceProfile

OpenShift Container Platform 4.19 Installing on AWS

436

https://console.aws.amazon.com/cloudformation/

For user-provisioned installations, the openshift-install binary contains references to the version of
RHCOS boot images that are tested for use with OpenShift Container Platform, such as the AWS AMI.

Procedure

To parse the stream metadata, use one of the following methods:

From a Go program, use the official stream-metadata-go library at
https://github.com/coreos/stream-metadata-go. You can also view example code in the library.

From another programming language, such as Python or Ruby, use the JSON library of your
preferred programming language.

From a command-line utility that handles JSON data, such as jq:

Print the current x86_64 or aarch64 AMI for an AWS region, such as us-west-1:

For x86_64

Example output

For aarch64

Example output

The output of this command is the AWS AMI ID for your designated architecture and the us-
west-1 region. The AMI must belong to the same region as the cluster.

4.3.8. RHCOS AMIs for the AWS infrastructure

Red Hat provides Red Hat Enterprise Linux CoreOS (RHCOS) AMIs that are valid for the various AWS
regions and instance architectures that you can manually specify for your OpenShift Container Platform
nodes.

NOTE

By importing your own AMI, you can also install to regions that do not have a published
RHCOS AMI.

Table 4.3. x86_64 RHCOS AMIs

$ openshift-install coreos print-stream-json | jq -r
'.architectures.x86_64.images.aws.regions["us-west-1"].image'

ami-0d3e625f84626bbda

$ openshift-install coreos print-stream-json | jq -r
'.architectures.aarch64.images.aws.regions["us-west-1"].image'

ami-0af1d3b7fa5be2131

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

437

https://github.com/coreos/stream-metadata-go

AWS zone AWS AMI

af-south-1 ami-0163621ea085783d8

ap-east-1 ami-033db3b659641feea

ap-northeast-1 ami-0baf16f8c6bd53f63

ap-northeast-2 ami-01a92be7f419359cc

ap-northeast-3 ami-0f16895f6f50e656e

ap-south-1 ami-0272be2f6528576f3

ap-south-2 ami-0311119df2ebc0bbc

ap-southeast-1 ami-0637678b0ad540477

ap-southeast-2 ami-0b67b492c091ac746

ap-southeast-3 ami-0a9e63bf1df36a936

ap-southeast-4 ami-0f153b95673592039

ap-southeast-5 ami-025944207bb28ae8f

ap-southeast-7 ami-0b5e29c2ae4aaa66d

ca-central-1 ami-03263f0cfdfa8bbdb

ca-west-1 ami-0254620c2dc7dcacc

eu-central-1 ami-0a0a87862b24395d8

eu-central-2 ami-015c8ca32f5d8300a

eu-north-1 ami-0c4404a6ae5921a1b

eu-south-1 ami-0e0724943dd915bb2

eu-south-2 ami-0e6cac787a21b221d

eu-west-1 ami-0355d4c968e466965

eu-west-2 ami-0e079f8742280b034

OpenShift Container Platform 4.19 Installing on AWS

438

eu-west-3 ami-06702aad076acda7b

il-central-1 ami-0094ac2722d41c18c

me-central-1 ami-03680a3dcecfbe79d

me-south-1 ami-04e14a3c4be812ac7

mx-central-1 ami-0eac1c8d4154a417f

sa-east-1 ami-07abd63bb465f89b6

us-east-1 ami-0e8fd9094e487d1ff

us-east-2 ami-0d4a7b7677c0c883f

us-gov-east-1 ami-0b67e7ffd11a17645

us-gov-west-1 ami-041e18a76f42c752c

us-west-1 ami-0167f257577d883cc

us-west-2 ami-0b29d41f2ed6b8c94

AWS zone AWS AMI

Table 4.4. aarch64 RHCOS AMIs

AWS zone AWS AMI

af-south-1 ami-009231bfc2490c6f9

ap-east-1 ami-0a23fad8fb25f5bb7

ap-northeast-1 ami-0754a269f165f227c

ap-northeast-2 ami-0d81f596571ce27d8

ap-northeast-3 ami-01eb2f8b176229523

ap-south-1 ami-0be3b34441044e437

ap-south-2 ami-02a86359661950bb0

ap-southeast-1 ami-0c70d35c9b5b190be

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

439

ap-southeast-2 ami-0310f2acbeca636ed

ap-southeast-3 ami-04db4055063382442

ap-southeast-4 ami-0e2e40cc31633d7d6

ap-southeast-5 ami-0cf0c9ee9f324f763

ap-southeast-7 ami-04cdafcdc85bf9040

ca-central-1 ami-0aee20271a9396925

ca-west-1 ami-03ca778cd4265aad9

eu-central-1 ami-0281dddee0884d9f0

eu-central-2 ami-00fc4e5e3926530af

eu-north-1 ami-0696b5b31d326ccc6

eu-south-1 ami-04090792b7bdb9e0f

eu-south-2 ami-0d45a2586055d5daa

eu-west-1 ami-02f08479c3613ed0e

eu-west-2 ami-0ef2fc25f02a2d475

eu-west-3 ami-0ba5d0a0e5d796da8

il-central-1 ami-0e5b8f3b8e71961e7

me-central-1 ami-0d13d6a91da2ba547

me-south-1 ami-0183dab9f96845e3f

mx-central-1 ami-072535d81a5de8e76

sa-east-1 ami-0977fa46dff272ba9

us-east-1 ami-083de3282c55be3f7

us-east-2 ami-02f30107e3441227b

AWS zone AWS AMI

OpenShift Container Platform 4.19 Installing on AWS

440

us-gov-east-1 ami-0abaadf7322cfc258

us-gov-west-1 ami-0ca27128d77d732aa

us-west-1 ami-05a9426ae7c35740c

us-west-2 ami-0cd6ec50e0480b3a3

AWS zone AWS AMI

4.3.8.1. AWS regions without a published RHCOS AMI

You can deploy an OpenShift Container Platform cluster to Amazon Web Services (AWS) regions
without native support for a Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI)
or the AWS software development kit (SDK). If a published AMI is not available for an AWS region, you
can upload a custom AMI prior to installing the cluster.

If you are deploying to a region not supported by the AWS SDK and you do not specify a custom AMI,
the installation program copies the us-east-1 AMI to the user account automatically. Then the
installation program creates the control plane machines with encrypted EBS volumes using the default
or user-specified Key Management Service (KMS) key. This allows the AMI to follow the same process
workflow as published RHCOS AMIs.

A region without native support for an RHCOS AMI is not available to select from the terminal during
cluster creation because it is not published. However, you can install to this region by configuring the
custom AMI in the install-config.yaml file.

4.3.8.2. Uploading a custom RHCOS AMI in AWS

If you are deploying to a custom Amazon Web Services (AWS) region, you must upload a custom
Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI) that belongs to that region.

Prerequisites

You configured an AWS account.

You created an Amazon S3 bucket with the required IAM service role.

You uploaded your RHCOS VMDK file to Amazon S3. The RHCOS VMDK file must be the
highest version that is less than or equal to the OpenShift Container Platform version you are
installing.

You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using
the Bundled Installer.

Procedure

1. Export your AWS profile as an environment variable:

$ export AWS_PROFILE=<aws_profile> 1

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

441

https://docs.aws.amazon.com/vm-import/latest/userguide/vmie_prereqs.html#vmimport-role
https://docs.aws.amazon.com/cli/latest/userguide/install-bundle.html

1 1 1

1

2

2. Export the region to associate with your custom AMI as an environment variable:

3. Export the version of RHCOS you uploaded to Amazon S3 as an environment variable:

The RHCOS VMDK version, like 4.19.0.

4. Export the Amazon S3 bucket name as an environment variable:

5. Create the containers.json file and define your RHCOS VMDK file:

6. Import the RHCOS disk as an Amazon EBS snapshot:

The description of your RHCOS disk being imported, like rhcos-${RHCOS_VERSION}-
x86_64-aws.x86_64.

The file path to the JSON file describing your RHCOS disk. The JSON file should contain
your Amazon S3 bucket name and key.

7. Check the status of the image import:

Example output

$ export AWS_DEFAULT_REGION=<aws_region> 1

$ export RHCOS_VERSION=<version> 1

$ export VMIMPORT_BUCKET_NAME=<s3_bucket_name>

$ cat <<EOF > containers.json
{
 "Description": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64",
 "Format": "vmdk",
 "UserBucket": {
 "S3Bucket": "${VMIMPORT_BUCKET_NAME}",
 "S3Key": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64.vmdk"
 }
}
EOF

$ aws ec2 import-snapshot --region ${AWS_DEFAULT_REGION} \
 --description "<description>" \ 1
 --disk-container "file://<file_path>/containers.json" 2

$ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION}

{
 "ImportSnapshotTasks": [
 {
 "Description": "rhcos-4.7.0-x86_64-aws.x86_64",
 "ImportTaskId": "import-snap-fh6i8uil",
 "SnapshotTaskDetail": {

OpenShift Container Platform 4.19 Installing on AWS

442

1

2

3

4

Copy the SnapshotId to register the image.

8. Create a custom RHCOS AMI from the RHCOS snapshot:

The RHCOS VMDK architecture type, like x86_64, aarch64, s390x, or ppc64le.

The Description from the imported snapshot.

The name of the RHCOS AMI.

The SnapshotID from the imported snapshot.

To learn more about these APIs, see the AWS documentation for importing snapshots and creating
EBS-backed AMIs.

4.3.9. Creating the bootstrap node in AWS

You must create the bootstrap node in Amazon Web Services (AWS) to use during OpenShift Container
Platform cluster initialization. You do this by:

Providing a location to serve the bootstrap.ign Ignition config file to your cluster. This file is
located in your installation directory. The provided CloudFormation Template assumes that the
Ignition config files for your cluster are served from an S3 bucket. If you choose to serve the
files from another location, you must modify the templates.

Using the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources. The stack represents the bootstrap node that your OpenShift Container
Platform installation requires.

NOTE

 "Description": "rhcos-4.7.0-x86_64-aws.x86_64",
 "DiskImageSize": 819056640.0,
 "Format": "VMDK",
 "SnapshotId": "snap-06331325870076318",
 "Status": "completed",
 "UserBucket": {
 "S3Bucket": "external-images",
 "S3Key": "rhcos-4.7.0-x86_64-aws.x86_64.vmdk"
 }
 }
 }
]
}

$ aws ec2 register-image \
 --region ${AWS_DEFAULT_REGION} \
 --architecture x86_64 \ 1
 --description "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ 2
 --ena-support \
 --name "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ 3
 --virtualization-type hvm \
 --root-device-name '/dev/xvda' \
 --block-device-mappings 'DeviceName=/dev/xvda,Ebs=
{DeleteOnTermination=true,SnapshotId=<snapshot_ID>}' 4

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

443

https://docs.aws.amazon.com/vm-import/latest/userguide/vmimport-import-snapshot.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami-ebs.html#creating-launching-ami-from-snapshot

1

1

NOTE

If you do not use the provided CloudFormation template to create your bootstrap node,
you must review the provided information and manually create the infrastructure. If your
cluster does not initialize correctly, you might have to contact Red Hat support with your
installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You generated the Ignition config files for your cluster.

You created and configured a VPC and associated subnets in AWS.

You created and configured DNS, load balancers, and listeners in AWS.

You created the security groups and roles required for your cluster in AWS.

Procedure

1. Create the bucket by running the following command:

<cluster-name>-infra is the bucket name. When creating the install-config.yaml file,
replace <cluster-name> with the name specified for the cluster.

You must use a presigned URL for your S3 bucket, instead of the s3:// schema, if you are:

Deploying to a region that has endpoints that differ from the AWS SDK.

Deploying a proxy.

Providing your own custom endpoints.

2. Upload the bootstrap.ign Ignition config file to the bucket by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

3. Verify that the file uploaded by running the following command:

Example output

NOTE

$ aws s3 mb s3://<cluster-name>-infra 1

$ aws s3 cp <installation_directory>/bootstrap.ign s3://<cluster-name>-infra/bootstrap.ign 1

$ aws s3 ls s3://<cluster-name>-infra/

2019-04-03 16:15:16 314878 bootstrap.ign

OpenShift Container Platform 4.19 Installing on AWS

444

NOTE

The bootstrap Ignition config file does contain secrets, like X.509 keys. The
following steps provide basic security for the S3 bucket. To provide additional
security, you can enable an S3 bucket policy to allow only certain users, such as
the OpenShift IAM user, to access objects that the bucket contains. You can
avoid S3 entirely and serve your bootstrap Ignition config file from any address
that the bootstrap machine can reach.

4. Create a JSON file that contains the parameter values that the template requires:

[
 {
 "ParameterKey": "InfrastructureName", 1
 "ParameterValue": "mycluster-<random_string>" 2
 },
 {
 "ParameterKey": "RhcosAmi", 3
 "ParameterValue": "ami-<random_string>" 4
 },
 {
 "ParameterKey": "AllowedBootstrapSshCidr", 5
 "ParameterValue": "0.0.0.0/0" 6
 },
 {
 "ParameterKey": "PublicSubnet", 7
 "ParameterValue": "subnet-<random_string>" 8
 },
 {
 "ParameterKey": "MasterSecurityGroupId", 9
 "ParameterValue": "sg-<random_string>" 10
 },
 {
 "ParameterKey": "VpcId", 11
 "ParameterValue": "vpc-<random_string>" 12
 },
 {
 "ParameterKey": "BootstrapIgnitionLocation", 13
 "ParameterValue": "s3://<bucket_name>/bootstrap.ign" 14
 },
 {
 "ParameterKey": "AutoRegisterELB", 15
 "ParameterValue": "yes" 16
 },
 {
 "ParameterKey": "RegisterNlbIpTargetsLambdaArn", 17
 "ParameterValue": "arn:aws:lambda:<aws_region>:<account_number>:function:
<dns_stack_name>-RegisterNlbIpTargets-<random_string>" 18
 },
 {
 "ParameterKey": "ExternalApiTargetGroupArn", 19
 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:
<account_number>:targetgroup/<dns_stack_name>-Exter-<random_string>" 20

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

445

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

The name for your cluster infrastructure that is encoded in your Ignition config files for the
cluster.

Specify the infrastructure name that you extracted from the Ignition config file metadata,
which has the format <cluster-name>-<random-string>.

Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the bootstrap node
based on your selected architecture.

Specify a valid AWS::EC2::Image::Id value.

CIDR block to allow SSH access to the bootstrap node.

Specify a CIDR block in the format x.x.x.x/16-24.

The public subnet that is associated with your VPC to launch the bootstrap node into.

Specify the PublicSubnetIds value from the output of the CloudFormation template for
the VPC.

The master security group ID (for registering temporary rules)

Specify the MasterSecurityGroupId value from the output of the CloudFormation
template for the security group and roles.

The VPC created resources will belong to.

Specify the VpcId value from the output of the CloudFormation template for the VPC.

Location to fetch bootstrap Ignition config file from.

Specify the S3 bucket and file name in the form s3://<bucket_name>/bootstrap.ign.

Whether or not to register a network load balancer (NLB).

Specify yes or no. If you specify yes, you must provide a Lambda Amazon Resource Name
(ARN) value.

The ARN for NLB IP target registration lambda group.

Specify the RegisterNlbIpTargetsLambda value from the output of the CloudFormation
template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an
AWS GovCloud region.

 },
 {
 "ParameterKey": "InternalApiTargetGroupArn", 21
 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:
<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" 22
 },
 {
 "ParameterKey": "InternalServiceTargetGroupArn", 23
 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:
<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" 24
 }
]

OpenShift Container Platform 4.19 Installing on AWS

446

19

20

21

22

23

24

1

2

3

4

The ARN for external API load balancer target group.

Specify the ExternalApiTargetGroupArn value from the output of the CloudFormation
template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an
AWS GovCloud region.

The ARN for internal API load balancer target group.

Specify the InternalApiTargetGroupArn value from the output of the CloudFormation
template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an
AWS GovCloud region.

The ARN for internal service load balancer target group.

Specify the InternalServiceTargetGroupArn value from the output of the
CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying
the cluster to an AWS GovCloud region.

5. Copy the template from the CloudFormation template for the bootstrap machine section of
this topic and save it as a YAML file on your computer. This template describes the bootstrap
machine that your cluster requires.

6. Optional: If you are deploying the cluster with a proxy, you must update the ignition in the
template to add the ignition.config.proxy fields. Additionally, If you have added the Amazon
EC2, Elastic Load Balancing, and S3 VPC endpoints to your VPC, you must add these endpoints
to the noProxy field.

7. Launch the CloudFormation template to create a stack of AWS resources that represent the
bootstrap node:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-bootstrap. You need
the name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters JSON
file.

You must explicitly declare the CAPABILITY_NAMED_IAM capability because the
provided template creates some AWS::IAM::Role and AWS::IAM::InstanceProfile
resources.

$ aws cloudformation create-stack --stack-name <name> 1
 --template-body file://<template>.yaml 2
 --parameters file://<parameters>.json 3
 --capabilities CAPABILITY_NAMED_IAM 4

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

447

Example output

8. Confirm that the template components exist:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters. You must provide these parameter values to the other CloudFormation
templates that you run to create your cluster:

Bootstrap
InstanceId

The bootstrap Instance ID.

Bootstrap
PublicIp

The bootstrap node public IP address.

Bootstrap
PrivateIp

The bootstrap node private IP address.

4.3.9.1. CloudFormation template for the bootstrap machine

You can use the following CloudFormation template to deploy the bootstrap machine that you need for
your OpenShift Container Platform cluster.

Example 4.22. CloudFormation template for the bootstrap machine

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-bootstrap/12944486-2add-
11eb-9dee-12dace8e3a83

$ aws cloudformation describe-stacks --stack-name <name>

AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Bootstrap (EC2 Instance, Security Groups and IAM)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a
maximum of 27 characters.
 Description: A short, unique cluster ID used to tag cloud resources and identify items owned or
used by the cluster.
 Type: String
 RhcosAmi:
 Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
 Type: AWS::EC2::Image::Id
 AllowedBootstrapSshCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/([0-9]|1[0-9]|2[0-9]|3[0-2]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/0-32.
 Default: 0.0.0.0/0
 Description: CIDR block to allow SSH access to the bootstrap node.
 Type: String

OpenShift Container Platform 4.19 Installing on AWS

448

 PublicSubnet:
 Description: The public subnet to launch the bootstrap node into.
 Type: AWS::EC2::Subnet::Id
 MasterSecurityGroupId:
 Description: The master security group ID for registering temporary rules.
 Type: AWS::EC2::SecurityGroup::Id
 VpcId:
 Description: The VPC-scoped resources will belong to this VPC.
 Type: AWS::EC2::VPC::Id
 BootstrapIgnitionLocation:
 Default: s3://my-s3-bucket/bootstrap.ign
 Description: Ignition config file location.
 Type: String
 AutoRegisterELB:
 Default: "yes"
 AllowedValues:
 - "yes"
 - "no"
 Description: Do you want to invoke NLB registration, which requires a Lambda ARN parameter?
 Type: String
 RegisterNlbIpTargetsLambdaArn:
 Description: ARN for NLB IP target registration lambda.
 Type: String
 ExternalApiTargetGroupArn:
 Description: ARN for external API load balancer target group.
 Type: String
 InternalApiTargetGroupArn:
 Description: ARN for internal API load balancer target group.
 Type: String
 InternalServiceTargetGroupArn:
 Description: ARN for internal service load balancer target group.
 Type: String
 BootstrapInstanceType:
 Description: Instance type for the bootstrap EC2 instance
 Default: "i3.large"
 Type: String

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Host Information"
 Parameters:
 - RhcosAmi
 - BootstrapIgnitionLocation
 - MasterSecurityGroupId
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - AllowedBootstrapSshCidr
 - PublicSubnet

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

449

 - Label:
 default: "Load Balancer Automation"
 Parameters:
 - AutoRegisterELB
 - RegisterNlbIpTargetsLambdaArn
 - ExternalApiTargetGroupArn
 - InternalApiTargetGroupArn
 - InternalServiceTargetGroupArn
 ParameterLabels:
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 AllowedBootstrapSshCidr:
 default: "Allowed SSH Source"
 PublicSubnet:
 default: "Public Subnet"
 RhcosAmi:
 default: "Red Hat Enterprise Linux CoreOS AMI ID"
 BootstrapIgnitionLocation:
 default: "Bootstrap Ignition Source"
 MasterSecurityGroupId:
 default: "Master Security Group ID"
 AutoRegisterELB:
 default: "Use Provided ELB Automation"

Conditions:
 DoRegistration: !Equals ["yes", !Ref AutoRegisterELB]

Resources:
 BootstrapIamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "ec2.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "bootstrap", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action: "ec2:Describe*"
 Resource: "*"
 - Effect: "Allow"
 Action: "ec2:AttachVolume"
 Resource: "*"
 - Effect: "Allow"
 Action: "ec2:DetachVolume"

OpenShift Container Platform 4.19 Installing on AWS

450

 Resource: "*"
 - Effect: "Allow"
 Action: "s3:GetObject"
 Resource: "*"

 BootstrapInstanceProfile:
 Type: "AWS::IAM::InstanceProfile"
 Properties:
 Path: "/"
 Roles:
 - Ref: "BootstrapIamRole"

 BootstrapSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster Bootstrap Security Group
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: !Ref AllowedBootstrapSshCidr
 - IpProtocol: tcp
 ToPort: 19531
 FromPort: 19531
 CidrIp: 0.0.0.0/0
 VpcId: !Ref VpcId

 BootstrapInstance:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 IamInstanceProfile: !Ref BootstrapInstanceProfile
 InstanceType: !Ref BootstrapInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "true"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "BootstrapSecurityGroup"
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "PublicSubnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"replace":{"source":"${S3Loc}"}},"version":"3.1.0"}}'
 - {
 S3Loc: !Ref BootstrapIgnitionLocation
 }

 RegisterBootstrapApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt BootstrapInstance.PrivateIp

 RegisterBootstrapInternalApiTarget:

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

451

Additional resources

You can view details about the CloudFormation stacks that you create by navigating to the AWS
CloudFormation console.

RHCOS AMIs for the AWS infrastructure

4.3.10. Creating the control plane machines in AWS

You must create the control plane machines in Amazon Web Services (AWS) that your cluster will use.

You can use the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources that represent the control plane nodes.

IMPORTANT

The CloudFormation template creates a stack that represents three control plane nodes.

NOTE

If you do not use the provided CloudFormation template to create your control plane
nodes, you must review the provided information and manually create the infrastructure.
If your cluster does not initialize correctly, you might have to contact Red Hat support
with your installation logs.

 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt BootstrapInstance.PrivateIp

 RegisterBootstrapInternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt BootstrapInstance.PrivateIp

Outputs:
 BootstrapInstanceId:
 Description: Bootstrap Instance ID.
 Value: !Ref BootstrapInstance

 BootstrapPublicIp:
 Description: The bootstrap node public IP address.
 Value: !GetAtt BootstrapInstance.PublicIp

 BootstrapPrivateIp:
 Description: The bootstrap node private IP address.
 Value: !GetAtt BootstrapInstance.PrivateIp

OpenShift Container Platform 4.19 Installing on AWS

452

https://console.aws.amazon.com/cloudformation/

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You generated the Ignition config files for your cluster.

You created and configured a VPC and associated subnets in AWS.

You created and configured DNS, load balancers, and listeners in AWS.

You created the security groups and roles required for your cluster in AWS.

You created the bootstrap machine.

Procedure

1. Create a JSON file that contains the parameter values that the template requires:

[
 {
 "ParameterKey": "InfrastructureName", 1
 "ParameterValue": "mycluster-<random_string>" 2
 },
 {
 "ParameterKey": "RhcosAmi", 3
 "ParameterValue": "ami-<random_string>" 4
 },
 {
 "ParameterKey": "AutoRegisterDNS", 5
 "ParameterValue": "yes" 6
 },
 {
 "ParameterKey": "PrivateHostedZoneId", 7
 "ParameterValue": "<random_string>" 8
 },
 {
 "ParameterKey": "PrivateHostedZoneName", 9
 "ParameterValue": "mycluster.example.com" 10
 },
 {
 "ParameterKey": "Master0Subnet", 11
 "ParameterValue": "subnet-<random_string>" 12
 },
 {
 "ParameterKey": "Master1Subnet", 13
 "ParameterValue": "subnet-<random_string>" 14
 },
 {
 "ParameterKey": "Master2Subnet", 15
 "ParameterValue": "subnet-<random_string>" 16
 },
 {

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

453

1

2

3

The name for your cluster infrastructure that is encoded in your Ignition config files for the
cluster.

Specify the infrastructure name that you extracted from the Ignition config file metadata,
which has the format <cluster-name>-<random-string>.

Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the control plane
machines based on your selected architecture.

 "ParameterKey": "MasterSecurityGroupId", 17
 "ParameterValue": "sg-<random_string>" 18
 },
 {
 "ParameterKey": "IgnitionLocation", 19
 "ParameterValue": "https://api-int.<cluster_name>.<domain_name>:22623/config/master"
20
 },
 {
 "ParameterKey": "CertificateAuthorities", 21
 "ParameterValue": "data:text/plain;charset=utf-8;base64,ABC...xYz==" 22
 },
 {
 "ParameterKey": "MasterInstanceProfileName", 23
 "ParameterValue": "<roles_stack>-MasterInstanceProfile-<random_string>" 24
 },
 {
 "ParameterKey": "MasterInstanceType", 25
 "ParameterValue": "" 26
 },
 {
 "ParameterKey": "AutoRegisterELB", 27
 "ParameterValue": "yes" 28
 },
 {
 "ParameterKey": "RegisterNlbIpTargetsLambdaArn", 29
 "ParameterValue": "arn:aws:lambda:<aws_region>:<account_number>:function:
<dns_stack_name>-RegisterNlbIpTargets-<random_string>" 30
 },
 {
 "ParameterKey": "ExternalApiTargetGroupArn", 31
 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:
<account_number>:targetgroup/<dns_stack_name>-Exter-<random_string>" 32
 },
 {
 "ParameterKey": "InternalApiTargetGroupArn", 33
 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:
<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" 34
 },
 {
 "ParameterKey": "InternalServiceTargetGroupArn", 35
 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:
<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" 36
 }
]

OpenShift Container Platform 4.19 Installing on AWS

454

4

5

6

7

8

9

10

11 13 15

12 14 16

17

18

19

20

21

22

23

24

25

26

27

28

29

machines based on your selected architecture.

Specify an AWS::EC2::Image::Id value.

Whether or not to perform DNS etcd registration.

Specify yes or no. If you specify yes, you must provide hosted zone information.

The Route 53 private zone ID to register the etcd targets with.

Specify the PrivateHostedZoneId value from the output of the CloudFormation template
for DNS and load balancing.

The Route 53 zone to register the targets with.

Specify <cluster_name>.<domain_name> where <domain_name> is the Route 53 base
domain that you used when you generated install-config.yaml file for the cluster. Do not
include the trailing period (.) that is displayed in the AWS console.

A subnet, preferably private, to launch the control plane machines on.

Specify a subnet from the PrivateSubnets value from the output of the
CloudFormation template for DNS and load balancing.

The master security group ID to associate with control plane nodes.

Specify the MasterSecurityGroupId value from the output of the CloudFormation
template for the security group and roles.

The location to fetch control plane Ignition config file from.

Specify the generated Ignition config file location, https://api-int.<cluster_name>.
<domain_name>:22623/config/master.

The base64 encoded certificate authority string to use.

Specify the value from the master.ign file that is in the installation directory. This value is
the long string with the format data:text/plain;charset=utf-8;base64,ABC… ​xYz==.

The IAM profile to associate with control plane nodes.

Specify the MasterInstanceProfile parameter value from the output of the
CloudFormation template for the security group and roles.

The type of AWS instance to use for the control plane machines based on your selected
architecture.

The instance type value corresponds to the minimum resource requirements for control
plane machines. For example m6i.xlarge is a type for AMD64 and m6g.xlarge is a type for
ARM64.

Whether or not to register a network load balancer (NLB).

Specify yes or no. If you specify yes, you must provide a Lambda Amazon Resource Name
(ARN) value.

The ARN for NLB IP target registration lambda group.

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

455

https://:22623/config/master

30

31

32

33

34

35

36

1

2

3

Specify the RegisterNlbIpTargetsLambda value from the output of the CloudFormation
template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an

The ARN for external API load balancer target group.

Specify the ExternalApiTargetGroupArn value from the output of the CloudFormation
template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an
AWS GovCloud region.

The ARN for internal API load balancer target group.

Specify the InternalApiTargetGroupArn value from the output of the CloudFormation
template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an
AWS GovCloud region.

The ARN for internal service load balancer target group.

Specify the InternalServiceTargetGroupArn value from the output of the
CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying
the cluster to an AWS GovCloud region.

2. Copy the template from the CloudFormation template for control plane machines section of
this topic and save it as a YAML file on your computer. This template describes the control plane
machines that your cluster requires.

3. If you specified an m5 instance type as the value for MasterInstanceType, add that instance
type to the MasterInstanceType.AllowedValues parameter in the CloudFormation template.

4. Launch the CloudFormation template to create a stack of AWS resources that represent the
control plane nodes:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-control-plane. You
need the name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters JSON
file.

Example output

$ aws cloudformation create-stack --stack-name <name> 1
 --template-body file://<template>.yaml 2
 --parameters file://<parameters>.json 3

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-control-plane/21c7e2b0-2ee2-
11eb-c6f6-0aa34627df4b

OpenShift Container Platform 4.19 Installing on AWS

456

NOTE

The CloudFormation template creates a stack that represents three control plane
nodes.

5. Confirm that the template components exist:

4.3.10.1. CloudFormation template for control plane machines

You can use the following CloudFormation template to deploy the control plane machines that you need
for your OpenShift Container Platform cluster.

Example 4.23. CloudFormation template for control plane machines

$ aws cloudformation describe-stacks --stack-name <name>

AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Node Launch (EC2 master instances)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a
maximum of 27 characters.
 Description: A short, unique cluster ID used to tag nodes for the kubelet cloud provider.
 Type: String
 RhcosAmi:
 Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
 Type: AWS::EC2::Image::Id
 AutoRegisterDNS:
 Default: ""
 Description: unused
 Type: String
 PrivateHostedZoneId:
 Default: ""
 Description: unused
 Type: String
 PrivateHostedZoneName:
 Default: ""
 Description: unused
 Type: String
 Master0Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 Master1Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 Master2Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 MasterSecurityGroupId:
 Description: The master security group ID to associate with master nodes.
 Type: AWS::EC2::SecurityGroup::Id

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

457

 IgnitionLocation:
 Default: https://api-int.$CLUSTER_NAME.$DOMAIN:22623/config/master
 Description: Ignition config file location.
 Type: String
 CertificateAuthorities:
 Default: data:text/plain;charset=utf-8;base64,ABC...xYz==
 Description: Base64 encoded certificate authority string to use.
 Type: String
 MasterInstanceProfileName:
 Description: IAM profile to associate with master nodes.
 Type: String
 MasterInstanceType:
 Default: m5.xlarge
 Type: String

 AutoRegisterELB:
 Default: "yes"
 AllowedValues:
 - "yes"
 - "no"
 Description: Do you want to invoke NLB registration, which requires a Lambda ARN parameter?
 Type: String
 RegisterNlbIpTargetsLambdaArn:
 Description: ARN for NLB IP target registration lambda. Supply the value from the cluster
infrastructure or select "no" for AutoRegisterELB.
 Type: String
 ExternalApiTargetGroupArn:
 Description: ARN for external API load balancer target group. Supply the value from the cluster
infrastructure or select "no" for AutoRegisterELB.
 Type: String
 InternalApiTargetGroupArn:
 Description: ARN for internal API load balancer target group. Supply the value from the cluster
infrastructure or select "no" for AutoRegisterELB.
 Type: String
 InternalServiceTargetGroupArn:
 Description: ARN for internal service load balancer target group. Supply the value from the
cluster infrastructure or select "no" for AutoRegisterELB.
 Type: String

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Host Information"
 Parameters:
 - MasterInstanceType
 - RhcosAmi
 - IgnitionLocation
 - CertificateAuthorities
 - MasterSecurityGroupId
 - MasterInstanceProfileName
 - Label:

OpenShift Container Platform 4.19 Installing on AWS

458

 default: "Network Configuration"
 Parameters:
 - VpcId
 - AllowedBootstrapSshCidr
 - Master0Subnet
 - Master1Subnet
 - Master2Subnet
 - Label:
 default: "Load Balancer Automation"
 Parameters:
 - AutoRegisterELB
 - RegisterNlbIpTargetsLambdaArn
 - ExternalApiTargetGroupArn
 - InternalApiTargetGroupArn
 - InternalServiceTargetGroupArn
 ParameterLabels:
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 Master0Subnet:
 default: "Master-0 Subnet"
 Master1Subnet:
 default: "Master-1 Subnet"
 Master2Subnet:
 default: "Master-2 Subnet"
 MasterInstanceType:
 default: "Master Instance Type"
 MasterInstanceProfileName:
 default: "Master Instance Profile Name"
 RhcosAmi:
 default: "Red Hat Enterprise Linux CoreOS AMI ID"
 BootstrapIgnitionLocation:
 default: "Master Ignition Source"
 CertificateAuthorities:
 default: "Ignition CA String"
 MasterSecurityGroupId:
 default: "Master Security Group ID"
 AutoRegisterELB:
 default: "Use Provided ELB Automation"

Conditions:
 DoRegistration: !Equals ["yes", !Ref AutoRegisterELB]

Resources:
 Master0:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref MasterInstanceProfileName
 InstanceType: !Ref MasterInstanceType

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

459

 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "Master0Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":
{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

 RegisterMaster0:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt Master0.PrivateIp

 RegisterMaster0InternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt Master0.PrivateIp

 RegisterMaster0InternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt Master0.PrivateIp

 Master1:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref MasterInstanceProfileName
 InstanceType: !Ref MasterInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"

OpenShift Container Platform 4.19 Installing on AWS

460

 GroupSet:
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "Master1Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":
{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

 RegisterMaster1:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt Master1.PrivateIp

 RegisterMaster1InternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt Master1.PrivateIp

 RegisterMaster1InternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt Master1.PrivateIp

 Master2:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref MasterInstanceProfileName
 InstanceType: !Ref MasterInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "Master2Subnet"

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

461

Additional resources

You can view details about the CloudFormation stacks that you create by navigating to the AWS
CloudFormation console.

4.3.11. Creating the worker nodes in AWS

You can create worker nodes in Amazon Web Services (AWS) for your cluster to use.

NOTE

 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":
{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

 RegisterMaster2:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt Master2.PrivateIp

 RegisterMaster2InternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt Master2.PrivateIp

 RegisterMaster2InternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt Master2.PrivateIp

Outputs:
 PrivateIPs:
 Description: The control-plane node private IP addresses.
 Value:
 !Join [
 ",",
 [!GetAtt Master0.PrivateIp, !GetAtt Master1.PrivateIp, !GetAtt Master2.PrivateIp]
]

OpenShift Container Platform 4.19 Installing on AWS

462

https://console.aws.amazon.com/cloudformation/

NOTE

If you are installing a three-node cluster, skip this step. A three-node cluster consists of
three control plane machines, which also act as compute machines.

You can use the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources that represent a worker node.

IMPORTANT

The CloudFormation template creates a stack that represents one worker node. You
must create a stack for each worker node.

NOTE

If you do not use the provided CloudFormation template to create your worker nodes,
you must review the provided information and manually create the infrastructure. If your
cluster does not initialize correctly, you might have to contact Red Hat support with your
installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You generated the Ignition config files for your cluster.

You created and configured a VPC and associated subnets in AWS.

You created and configured DNS, load balancers, and listeners in AWS.

You created the security groups and roles required for your cluster in AWS.

You created the bootstrap machine.

You created the control plane machines.

Procedure

1. Create a JSON file that contains the parameter values that the CloudFormation template
requires:

[
 {
 "ParameterKey": "InfrastructureName", 1
 "ParameterValue": "mycluster-<random_string>" 2
 },
 {
 "ParameterKey": "RhcosAmi", 3
 "ParameterValue": "ami-<random_string>" 4
 },
 {
 "ParameterKey": "Subnet", 5

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

463

1

2

3

4

5

6

7

8

9

10

11

12

The name for your cluster infrastructure that is encoded in your Ignition config files for the
cluster.

Specify the infrastructure name that you extracted from the Ignition config file metadata,
which has the format <cluster-name>-<random-string>.

Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the worker nodes
based on your selected architecture.

Specify an AWS::EC2::Image::Id value.

A subnet, preferably private, to start the worker nodes on.

Specify a subnet from the PrivateSubnets value from the output of the CloudFormation
template for DNS and load balancing.

The worker security group ID to associate with worker nodes.

Specify the WorkerSecurityGroupId value from the output of the CloudFormation
template for the security group and roles.

The location to fetch the bootstrap Ignition config file from.

Specify the generated Ignition config location, https://api-int.<cluster_name>.
<domain_name>:22623/config/worker.

Base64 encoded certificate authority string to use.

Specify the value from the worker.ign file that is in the installation directory. This value is
the long string with the format data:text/plain;charset=utf-8;base64,ABC… ​xYz==.

 "ParameterValue": "subnet-<random_string>" 6
 },
 {
 "ParameterKey": "WorkerSecurityGroupId", 7
 "ParameterValue": "sg-<random_string>" 8
 },
 {
 "ParameterKey": "IgnitionLocation", 9
 "ParameterValue": "https://api-int.<cluster_name>.<domain_name>:22623/config/worker"
10
 },
 {
 "ParameterKey": "CertificateAuthorities", 11
 "ParameterValue": "data:text/plain;charset=utf-8;base64,ABC...xYz==" 12
 },
 {
 "ParameterKey": "WorkerInstanceProfileName", 13
 "ParameterValue": "<roles_stack>-WorkerInstanceProfile-<random_string>" 14
 },
 {
 "ParameterKey": "WorkerInstanceType", 15
 "ParameterValue": "" 16
 }
]

OpenShift Container Platform 4.19 Installing on AWS

464

https://:22623/config/worker

13

14

15

16

1

2

3

The IAM profile to associate with worker nodes.

Specify the WorkerInstanceProfile parameter value from the output of the
CloudFormation template for the security group and roles.

The type of AWS instance to use for the compute machines based on your selected
architecture.

The instance type value corresponds to the minimum resource requirements for compute
machines. For example m6i.large is a type for AMD64 and m6g.large is a type for ARM64.

2. Copy the template from the CloudFormation template for worker machines section of this
topic and save it as a YAML file on your computer. This template describes the networking
objects and load balancers that your cluster requires.

3. Optional: If you specified an m5 instance type as the value for WorkerInstanceType, add that
instance type to the WorkerInstanceType.AllowedValues parameter in the CloudFormation
template.

4. Optional: If you are deploying with an AWS Marketplace image, update the
Worker0.type.properties.ImageID parameter with the AMI ID that you obtained from your
subscription.

5. Use the CloudFormation template to create a stack of AWS resources that represent a worker
node:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-worker-1. You need
the name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters JSON
file.

Example output

NOTE

The CloudFormation template creates a stack that represents one worker node.

$ aws cloudformation create-stack --stack-name <name> 1
 --template-body file://<template>.yaml \ 2
 --parameters file://<parameters>.json 3

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-worker-1/729ee301-1c2a-
11eb-348f-sd9888c65b59

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

465

6. Confirm that the template components exist:

7. Continue to create worker stacks until you have created enough worker machines for your
cluster. You can create additional worker stacks by referencing the same template and
parameter files and specifying a different stack name.

IMPORTANT

You must create at least two worker machines, so you must create at least two
stacks that use this CloudFormation template.

4.3.11.1. CloudFormation template for compute machines

You can deploy the compute machines that you need for your OpenShift Container Platform cluster by
using the following CloudFormation template.

Example 4.24. CloudFormation template for compute machines

$ aws cloudformation describe-stacks --stack-name <name>

AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Node Launch (EC2 worker instance)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a
maximum of 27 characters.
 Description: A short, unique cluster ID used to tag nodes for the kubelet cloud provider.
 Type: String
 RhcosAmi:
 Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
 Type: AWS::EC2::Image::Id
 Subnet:
 Description: The subnets, recommend private, to launch the worker nodes into.
 Type: AWS::EC2::Subnet::Id
 WorkerSecurityGroupId:
 Description: The worker security group ID to associate with worker nodes.
 Type: AWS::EC2::SecurityGroup::Id
 IgnitionLocation:
 Default: https://api-int.$CLUSTER_NAME.$DOMAIN:22623/config/worker
 Description: Ignition config file location.
 Type: String
 CertificateAuthorities:
 Default: data:text/plain;charset=utf-8;base64,ABC...xYz==
 Description: Base64 encoded certificate authority string to use.
 Type: String
 WorkerInstanceProfileName:
 Description: IAM profile to associate with worker nodes.
 Type: String
 WorkerInstanceType:
 Default: m5.large
 Type: String

OpenShift Container Platform 4.19 Installing on AWS

466

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Host Information"
 Parameters:
 - WorkerInstanceType
 - RhcosAmi
 - IgnitionLocation
 - CertificateAuthorities
 - WorkerSecurityGroupId
 - WorkerInstanceProfileName
 - Label:
 default: "Network Configuration"
 Parameters:
 - Subnet
 ParameterLabels:
 Subnet:
 default: "Subnet"
 InfrastructureName:
 default: "Infrastructure Name"
 WorkerInstanceType:
 default: "Worker Instance Type"
 WorkerInstanceProfileName:
 default: "Worker Instance Profile Name"
 RhcosAmi:
 default: "Red Hat Enterprise Linux CoreOS AMI ID"
 IgnitionLocation:
 default: "Worker Ignition Source"
 CertificateAuthorities:
 default: "Ignition CA String"
 WorkerSecurityGroupId:
 default: "Worker Security Group ID"

Resources:
 Worker0:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref WorkerInstanceProfileName
 InstanceType: !Ref WorkerInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "WorkerSecurityGroupId"

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

467

1

2

3

Additional resources

You can view details about the CloudFormation stacks that you create by navigating to the AWS
CloudFormation console.

4.3.11.2. Creating the CloudFormation stack for compute machines

You can create a stack of AWS resources for the compute machines by using the CloudFormation
template that was previously shared.

IMPORTANT

When you use the CloudFormation template for the control plane machines, the template
provisions all three control plane machines with a single stack; however, when you use the
CloudFormation template to deploy the compute machines, you must create the number
of stacks based on the number that you defined in the install-config.yaml file. Each stack
is provisioned once for each machine. To provision a new compute machine, you must
change the stack name.

Procedure

To create the CloudFormation stack for compute machines, run the following command:

Specify the <name> with the name for the CloudFormation stack, such as cluster-worker-
1. You need the name of this stack if you remove the cluster.

Specify the relative path and the name of the CloudFormation template YAML file that
you saved.

Specify the relative path and the name of the JSON file for the CloudFormation
parameters.

 SubnetId: !Ref "Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":
{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

Outputs:
 PrivateIP:
 Description: The compute node private IP address.
 Value: !GetAtt Worker0.PrivateIp

$ aws cloudformation create-stack --stack-name <name> \ 1
 --template-body file://<template>.yaml \ 2
 --parameters file://<parameters>.json 3

OpenShift Container Platform 4.19 Installing on AWS

468

https://console.aws.amazon.com/cloudformation/

1

2

Example output

4.3.12. Initializing the bootstrap sequence on AWS with user-provisioned
infrastructure

After you create all of the required infrastructure in Amazon Web Services (AWS), you can start the
bootstrap sequence that initializes the OpenShift Container Platform control plane.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You generated the Ignition config files for your cluster.

You created and configured a VPC and associated subnets in AWS.

You created and configured DNS, load balancers, and listeners in AWS.

You created the security groups and roles required for your cluster in AWS.

You created the bootstrap machine.

You created the control plane machines.

You created the worker nodes.

Procedure

1. Change to the directory that contains the installation program and start the bootstrap process
that initializes the OpenShift Container Platform control plane:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

To view different installation details, specify warn, debug, or error instead of info.

Example output

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-worker-1/729ee301-1c2a-
11eb-348f-sd9888c65b59

$./openshift-install wait-for bootstrap-complete --dir <installation_directory> \ 1
 --log-level=info 2

INFO Waiting up to 20m0s for the Kubernetes API at
https://api.mycluster.example.com:6443...
INFO API v1.32.3 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources
INFO Time elapsed: 1s

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

469

1

If the command exits without a FATAL warning, your OpenShift Container Platform control
plane has initialized.

NOTE

After the control plane initializes, it sets up the compute nodes and installs
additional services in the form of Operators.

Additional resources

See Monitoring installation progress for details about monitoring the installation, bootstrap, and
control plane logs as an OpenShift Container Platform installation progresses.

See Gathering bootstrap node diagnostic data for information about troubleshooting issues
related to the bootstrap process.

You can view details about the running instances that are created by using the AWS EC2
console.

4.3.13. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

Procedure

1. Export the kubeadmin credentials by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

Example output

4.3.14. Approving the certificate signing requests for your machines

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

$ oc whoami

system:admin

OpenShift Container Platform 4.19 Installing on AWS

470

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#monitoring-installation-progress_troubleshooting-installations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#gathering-bootstrap-diagnostic-data_troubleshooting-installations
https://console.aws.amazon.com/ec2

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending status, approve the CSRs for your cluster machines:

NOTE

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.32.3
master-1 Ready master 63m v1.32.3
master-2 Ready master 64m v1.32.3

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
...

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

471

1

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal
Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal
Pending
...

OpenShift Container Platform 4.19 Installing on AWS

472

1

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

Certificate Signing Requests

4.3.15. Initial Operator configuration

After the control plane initializes, you must immediately configure some Operators so that they all
become available.

Prerequisites

Your control plane has initialized.

Procedure

1. Watch the cluster components come online:

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.32.3
master-1 Ready master 73m v1.32.3
master-2 Ready master 74m v1.32.3
worker-0 Ready worker 11m v1.32.3
worker-1 Ready worker 11m v1.32.3

$ watch -n5 oc get clusteroperators

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

473

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/

Example output

2. Configure the Operators that are not available.

4.3.15.1. Image registry storage configuration

Amazon Web Services provides default storage, which means the Image Registry Operator is available
after installation. However, if the Registry Operator cannot create an S3 bucket and automatically
configure storage, you must manually configure registry storage.

Instructions are shown for configuring a persistent volume, which is required for production clusters.
Where applicable, instructions are shown for configuring an empty directory as the storage location,
which is available for only non-production clusters.

Additional instructions are provided for allowing the image registry to use block storage types by using
the Recreate rollout strategy during upgrades.

You can configure registry storage for user-provisioned infrastructure in AWS to deploy OpenShift
Container Platform to hidden regions. See Configuring the registry for AWS user-provisioned
infrastructure for more information.

NAME VERSION AVAILABLE PROGRESSING DEGRADED
SINCE
authentication 4.19.0 True False False 19m
baremetal 4.19.0 True False False 37m
cloud-credential 4.19.0 True False False 40m
cluster-autoscaler 4.19.0 True False False 37m
config-operator 4.19.0 True False False 38m
console 4.19.0 True False False 26m
csi-snapshot-controller 4.19.0 True False False 37m
dns 4.19.0 True False False 37m
etcd 4.19.0 True False False 36m
image-registry 4.19.0 True False False 31m
ingress 4.19.0 True False False 30m
insights 4.19.0 True False False 31m
kube-apiserver 4.19.0 True False False 26m
kube-controller-manager 4.19.0 True False False 36m
kube-scheduler 4.19.0 True False False 36m
kube-storage-version-migrator 4.19.0 True False False 37m
machine-api 4.19.0 True False False 29m
machine-approver 4.19.0 True False False 37m
machine-config 4.19.0 True False False 36m
marketplace 4.19.0 True False False 37m
monitoring 4.19.0 True False False 29m
network 4.19.0 True False False 38m
node-tuning 4.19.0 True False False 37m
openshift-apiserver 4.19.0 True False False 32m
openshift-controller-manager 4.19.0 True False False 30m
openshift-samples 4.19.0 True False False 32m
operator-lifecycle-manager 4.19.0 True False False 37m
operator-lifecycle-manager-catalog 4.19.0 True False False 37m
operator-lifecycle-manager-packageserver 4.19.0 True False False 32m
service-ca 4.19.0 True False False 38m
storage 4.19.0 True False False 37m

OpenShift Container Platform 4.19 Installing on AWS

474

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/registry/#configuring-registry-storage-aws-user-infrastructure

4.3.15.1.1. Configuring registry storage for AWS with user-provisioned infrastructure

During installation, your cloud credentials are sufficient to create an Amazon S3 bucket and the Registry
Operator will automatically configure storage.

If the Registry Operator cannot create an S3 bucket and automatically configure storage, you can
create an S3 bucket and configure storage with the following procedure.

WARNING

To secure your registry images in AWS, block public access to the S3 bucket.

Prerequisites

You have a cluster on AWS with user-provisioned infrastructure.

For Amazon S3 storage, the secret is expected to contain two keys:

REGISTRY_STORAGE_S3_ACCESSKEY

REGISTRY_STORAGE_S3_SECRETKEY

Procedure

1. Set up a Bucket Lifecycle Policy to abort incomplete multipart uploads that are one day old.

2. Fill in the storage configuration in configs.imageregistry.operator.openshift.io/cluster:

Example configuration

4.3.15.1.2. Configuring storage for the image registry in non-production clusters

You must configure storage for the Image Registry Operator. For non-production clusters, you can set
the image registry to an empty directory. If you do so, all images are lost if you restart the registry.

Procedure

To set the image registry storage to an empty directory:



$ oc edit configs.imageregistry.operator.openshift.io/cluster

apiVersion: imageregistry.operator.openshift.io/v1
kind: Config
metadata:
 name: cluster
spec:
 storage:
 s3:
 bucket: <bucket_name>
 region: <region_name>

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

475

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-s3-bucket-publicaccessblockconfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html#mpu-abort-incomplete-mpu-lifecycle-config

1

WARNING

Configure this option for only non-production clusters.

If you run this command before the Image Registry Operator initializes its components, the oc
patch command fails with the following error:

Wait a few minutes and run the command again.

4.3.16. Deleting the bootstrap resources

After you complete the initial Operator configuration for the cluster, remove the bootstrap resources
from Amazon Web Services (AWS).

Prerequisites

You completed the initial Operator configuration for your cluster.

Procedure

1. Delete the bootstrap resources. If you used the CloudFormation template, delete its stack:

Delete the stack by using the AWS CLI:

<name> is the name of your bootstrap stack.

Delete the stack by using the AWS CloudFormation console.

4.3.17. Creating the Ingress DNS Records

If you removed the DNS Zone configuration, manually create DNS records that point to the Ingress load
balancer. You can create either a wildcard record or specific records. While the following procedure uses
A records, you can use other record types that you require, such as CNAME or alias.

Prerequisites

You deployed an OpenShift Container Platform cluster on Amazon Web Services (AWS) that
uses infrastructure that you provisioned.

You installed the OpenShift CLI (oc).

$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"storage":{"emptyDir":{}}}}'



Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

$ aws cloudformation delete-stack --stack-name <name> 1

OpenShift Container Platform 4.19 Installing on AWS

476

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://console.aws.amazon.com/cloudformation/

1

You installed the jq package.

You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using
the Bundled Installer (Linux, macOS, or Unix).

Procedure

1. Determine the routes to create.

To create a wildcard record, use *.apps.<cluster_name>.<domain_name>, where
<cluster_name> is your cluster name, and <domain_name> is the Route 53 base domain
for your OpenShift Container Platform cluster.

To create specific records, you must create a record for each route that your cluster uses, as
shown in the output of the following command:

Example output

2. Retrieve the Ingress Operator load balancer status and note the value of the external IP address
that it uses, which is shown in the EXTERNAL-IP column:

Example output

3. Locate the hosted zone ID for the load balancer:

For <external_ip>, specify the value of the external IP address of the Ingress Operator
load balancer that you obtained.

Example output

The output of this command is the load balancer hosted zone ID.

$ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}
{"\n"}{end}{end}' routes

oauth-openshift.apps.<cluster_name>.<domain_name>
console-openshift-console.apps.<cluster_name>.<domain_name>
downloads-openshift-console.apps.<cluster_name>.<domain_name>
alertmanager-main-openshift-monitoring.apps.<cluster_name>.<domain_name>
prometheus-k8s-openshift-monitoring.apps.<cluster_name>.<domain_name>

$ oc -n openshift-ingress get service router-default

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
router-default LoadBalancer 172.30.62.215 ab3...28.us-east-2.elb.amazonaws.com
80:31499/TCP,443:30693/TCP 5m

$ aws elb describe-load-balancers | jq -r '.LoadBalancerDescriptions[] | select(.DNSName ==
"<external_ip>").CanonicalHostedZoneNameID' 1

Z3AADJGX6KTTL2

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

477

https://docs.aws.amazon.com/cli/latest/userguide/install-bundle.html

1 2

1

2

3

4

4. Obtain the public hosted zone ID for your cluster’s domain:

For <domain_name>, specify the Route 53 base domain for your OpenShift Container
Platform cluster.

Example output

The public hosted zone ID for your domain is shown in the command output. In this example, it is
Z3URY6TWQ91KVV.

5. Add the alias records to your private zone:

For <private_hosted_zone_id>, specify the value from the output of the CloudFormation
template for DNS and load balancing.

For <cluster_domain>, specify the domain or subdomain that you use with your
OpenShift Container Platform cluster.

For <hosted_zone_id>, specify the public hosted zone ID for the load balancer that you
obtained.

For <external_ip>, specify the value of the external IP address of the Ingress Operator
load balancer. Ensure that you include the trailing period (.) in this parameter value.

6. Add the records to your public zone:

$ aws route53 list-hosted-zones-by-name \
 --dns-name "<domain_name>" \ 1
 --query 'HostedZones[? Config.PrivateZone != `true` && Name ==
`<domain_name>.`].Id' 2
 --output text

/hostedzone/Z3URY6TWQ91KVV

$ aws route53 change-resource-record-sets --hosted-zone-id "<private_hosted_zone_id>" --
change-batch '{ 1
> "Changes": [
> {
> "Action": "CREATE",
> "ResourceRecordSet": {
> "Name": "\\052.apps.<cluster_domain>", 2
> "Type": "A",
> "AliasTarget":{
> "HostedZoneId": "<hosted_zone_id>", 3
> "DNSName": "<external_ip>.", 4
> "EvaluateTargetHealth": false
> }
> }
> }
>]
> }'

OpenShift Container Platform 4.19 Installing on AWS

478

1

2

3

4

1

For <public_hosted_zone_id>, specify the public hosted zone for your domain.

For <cluster_domain>, specify the domain or subdomain that you use with your
OpenShift Container Platform cluster.

For <hosted_zone_id>, specify the public hosted zone ID for the load balancer that you
obtained.

For <external_ip>, specify the value of the external IP address of the Ingress Operator
load balancer. Ensure that you include the trailing period (.) in this parameter value.

4.3.18. Completing an AWS installation on user-provisioned infrastructure

After you start the OpenShift Container Platform installation on Amazon Web Service (AWS) user-
provisioned infrastructure, monitor the deployment to completion.

Prerequisites

You removed the bootstrap node for an OpenShift Container Platform cluster on user-
provisioned AWS infrastructure.

You installed the oc CLI.

Procedure

From the directory that contains the installation program, complete the cluster installation:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

Example output

$ aws route53 change-resource-record-sets --hosted-zone-id "<public_hosted_zone_id>"" --
change-batch '{ 1
> "Changes": [
> {
> "Action": "CREATE",
> "ResourceRecordSet": {
> "Name": "\\052.apps.<cluster_domain>", 2
> "Type": "A",
> "AliasTarget":{
> "HostedZoneId": "<hosted_zone_id>", 3
> "DNSName": "<external_ip>.", 4
> "EvaluateTargetHealth": false
> }
> }
> }
>]
> }'

$./openshift-install --dir <installation_directory> wait-for install-complete 1

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

479

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If
the cluster is shut down before renewing the certificates and the cluster is
later restarted after the 24 hours have elapsed, the cluster automatically
recovers the expired certificates. The exception is that you must manually
approve the pending node-bootstrapper certificate signing requests (CSRs)
to recover kubelet certificates. See the documentation for Recovering from
expired control plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they
are generated because the 24-hour certificate rotates from 16 to 22 hours
after the cluster is installed. By using the Ignition config files within 12 hours,
you can avoid installation failure if the certificate update runs during
installation.

4.3.19. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in
to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

You have access to the installation host.

You completed a cluster installation and all cluster Operators are available.

Procedure

1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the
installation host:

NOTE

Alternatively, you can obtain the kubeadmin password from the
<installation_directory>/.openshift_install.log log file on the installation host.

2. List the OpenShift Container Platform web console route:

INFO Waiting up to 40m0s for the cluster at https://api.mycluster.example.com:6443 to
initialize...
INFO Waiting up to 10m0s for the openshift-console route to be created...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 1s

$ cat <installation_directory>/auth/kubeadmin-password

OpenShift Container Platform 4.19 Installing on AWS

480

NOTE

Alternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log log file on the installation host.

Example output

3. Navigate to the route detailed in the output of the preceding command in a web browser and
log in as the kubeadmin user.

Additional resources

Accessing the web console

4.3.20. Additional resources

Working with stacks(AWS documentation)

4.3.21. Next steps

Validating an installation.

Customize your cluster.

If necessary, you can Remote health reporting .

If necessary, you can remove cloud provider credentials .

4.4. INSTALLING A CLUSTER ON AWS IN A DISCONNECTED
ENVIRONMENT WITH USER-PROVISIONED INFRASTRUCTURE

In OpenShift Container Platform version 4.19, you can install a cluster on Amazon Web Services (AWS)
using infrastructure that you provide and an internal mirror of the installation release content.

IMPORTANT

While you can install an OpenShift Container Platform cluster by using mirrored
installation release content, your cluster still requires internet access to use the AWS
APIs.

One way to create this infrastructure is to use the provided CloudFormation templates. You can modify
the templates to customize your infrastructure or use the information that they contain to create AWS
objects according to your company’s policies.

IMPORTANT

$ oc get routes -n openshift-console | grep 'console-openshift'

console console-openshift-console.apps.<cluster_name>.<base_domain> console
https reencrypt/Redirect None

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

481

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#available_cluster_customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#manually-removing-cloud-creds_changing-cloud-credentials-configuration

IMPORTANT

The steps for performing a user-provisioned infrastructure installation are provided as an
example only. Installing a cluster with infrastructure you provide requires knowledge of
the cloud provider and the installation process of OpenShift Container Platform. Several
CloudFormation templates are provided to assist in completing these steps or to help
model your own. You are also free to create the required resources through other
methods; the templates are just an example.

4.4.1. Prerequisites

You reviewed details about the OpenShift Container Platform installation and update
processes.

You read the documentation on selecting a cluster installation method and preparing it for
users.

You created a mirror registry on your mirror host and obtained the imageContentSources data
for your version of OpenShift Container Platform.

IMPORTANT

Because the installation media is on the mirror host, you can use that computer
to complete all installation steps.

You configured an AWS account to host the cluster.

IMPORTANT

If you have an AWS profile stored on your computer, it must not use a temporary
session token that you generated while using a multi-factor authentication
device. The cluster continues to use your current AWS credentials to create AWS
resources for the entire life of the cluster, so you must use key-based, long-term
credentials. To generate appropriate keys, see Managing Access Keys for IAM
Users in the AWS documentation. You can supply the keys when you run the
installation program.

You prepared the user-provisioned infrastructure.

You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using
the Bundled Installer (Linux, macOS, or UNIX) in the AWS documentation.

If you use a firewall and plan to use the Telemetry service, you configured the firewall to allow
the sites that your cluster requires access to.

NOTE

Be sure to also review this site list if you are configuring a proxy.

If the cloud identity and access management (IAM) APIs are not accessible in your environment,
or if you do not want to store an administrator-level credential secret in the kube-system
namespace, you can manually create and maintain long-term credentials .

OpenShift Container Platform 4.19 Installing on AWS

482

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/architecture/#architecture-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#installing-preparing
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#installing-mirroring-installation-images
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/cli/latest/userguide/install-bundle.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#configuring-firewall

4.4.2. About installations in restricted networks

In OpenShift Container Platform 4.19, you can perform an installation that does not require an active
connection to the internet to obtain software components. Restricted network installations can be
completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on
the cloud platform to which you are installing the cluster.

If you choose to perform a restricted network installation on a cloud platform, you still require access to
its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require
internet access. Depending on your network, you might require less internet access for an installation on
bare metal hardware, Nutanix, or on VMware vSphere.

To complete a restricted network installation, you must create a registry that mirrors the contents of the
OpenShift image registry and contains the installation media. You can create this registry on a mirror
host, which can access both the internet and your closed network, or by using other methods that meet
your restrictions.

IMPORTANT

Because of the complexity of the configuration for user-provisioned installations,
consider completing a standard user-provisioned infrastructure installation before you
attempt a restricted network installation using user-provisioned infrastructure.
Completing this test installation might make it easier to isolate and troubleshoot any
issues that might arise during your installation in a restricted network.

4.4.2.1. Additional limits

Clusters in restricted networks have the following additional limitations and restrictions:

The ClusterVersion status includes an Unable to retrieve available updates error.

By default, you cannot use the contents of the Developer Catalog because you cannot access
the required image stream tags.

4.4.3. Creating the installation files for AWS

To install OpenShift Container Platform on Amazon Web Services using user-provisioned infrastructure,
you must generate the files that the installation program needs to deploy your cluster and modify them
so that the cluster creates only the machines that it will use. You generate and customize the install-
config.yaml file, Kubernetes manifests, and Ignition config files. You also have the option to first set up
a separate var partition during the preparation phases of installation.

4.4.3.1. Optional: Creating a separate /var partition

It is recommended that disk partitioning for OpenShift Container Platform be left to the installer.
However, there are cases where you might want to create separate partitions in a part of the filesystem
that you expect to grow.

OpenShift Container Platform supports the addition of a single partition to attach storage to either the
/var partition or a subdirectory of /var. For example:

/var/lib/containers: Holds container-related content that can grow as more images and
containers are added to a system.

/var/lib/etcd: Holds data that you might want to keep separate for purposes such as

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

483

/var/lib/etcd: Holds data that you might want to keep separate for purposes such as
performance optimization of etcd storage.

/var: Holds data that you might want to keep separate for purposes such as auditing.

Storing the contents of a /var directory separately makes it easier to grow storage for those areas as
needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this
method, you will not have to pull all your containers again, nor will you have to copy massive log files
when you update systems.

Because /var must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS),
the following procedure sets up the separate /var partition by creating a machine config manifest that is
inserted during the openshift-install preparation phases of an OpenShift Container Platform
installation.

IMPORTANT

If you follow the steps to create a separate /var partition in this procedure, it is not
necessary to create the Kubernetes manifest and Ignition config files again as described
later in this section.

Procedure

1. Create a directory to hold the OpenShift Container Platform installation files:

2. Run openshift-install to create a set of files in the manifest and openshift subdirectories.
Answer the system questions as you are prompted:

Example output

3. Optional: Confirm that the installation program created manifests in the
clusterconfig/openshift directory:

Example output

4. Create a Butane config that configures the additional partition. For example, name the file

$ mkdir $HOME/clusterconfig

$ openshift-install create manifests --dir $HOME/clusterconfig

? SSH Public Key ...
INFO Credentials loaded from the "myprofile" profile in file "/home/myuser/.aws/credentials"
INFO Consuming Install Config from target directory
INFO Manifests created in: $HOME/clusterconfig/manifests and
$HOME/clusterconfig/openshift

$ ls $HOME/clusterconfig/openshift/

99_kubeadmin-password-secret.yaml
99_openshift-cluster-api_master-machines-0.yaml
99_openshift-cluster-api_master-machines-1.yaml
99_openshift-cluster-api_master-machines-2.yaml
...

OpenShift Container Platform 4.19 Installing on AWS

484

1

2

3

4

4. Create a Butane config that configures the additional partition. For example, name the file
$HOME/clusterconfig/98-var-partition.bu, change the disk device name to the name of the
storage device on the worker systems, and set the storage size as appropriate. This example
places the /var directory on a separate partition:

The storage device name of the disk that you want to partition.

When adding a data partition to the boot disk, a minimum value of 25000 MiB (Mebibytes)
is recommended. The root file system is automatically resized to fill all available space up
to the specified offset. If no value is specified, or if the specified value is smaller than the
recommended minimum, the resulting root file system will be too small, and future
reinstalls of RHCOS might overwrite the beginning of the data partition.

The size of the data partition in mebibytes.

The prjquota mount option must be enabled for filesystems used for container storage.

NOTE

When creating a separate /var partition, you cannot use different instance types
for worker nodes, if the different instance types do not have the same device
name.

5. Create a manifest from the Butane config and save it to the clusterconfig/openshift directory.
For example, run the following command:

6. Run openshift-install again to create Ignition configs from a set of files in the manifest and
openshift subdirectories:

variant: openshift
version: 4.19.0
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
storage:
 disks:
 - device: /dev/disk/by-id/<device_name> 1
 partitions:
 - label: var
 start_mib: <partition_start_offset> 2
 size_mib: <partition_size> 3
 number: 5
 filesystems:
 - device: /dev/disk/by-partlabel/var
 path: /var
 format: xfs
 mount_options: [defaults, prjquota] 4
 with_mount_unit: true

$ butane $HOME/clusterconfig/98-var-partition.bu -o $HOME/clusterconfig/openshift/98-var-
partition.yaml

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

485

1

You can now use the Ignition config files as input to the installation procedures to install
Red Hat Enterprise Linux CoreOS (RHCOS) systems.

4.4.3.2. Creating the installation configuration file

Generate and customize the installation configuration file that the installation program needs to deploy
your cluster.

Prerequisites

You obtained the OpenShift Container Platform installation program for user-provisioned
infrastructure and the pull secret for your cluster. For a restricted network installation, these
files are on your mirror host.

You checked that you are deploying your cluster to an AWS Region with an accompanying
Red Hat Enterprise Linux CoreOS (RHCOS) AMI published by Red Hat. If you are deploying to
an AWS Region that requires a custom AMI, such as an AWS GovCloud Region, you must create
the install-config.yaml file manually.

Procedure

1. Create the install-config.yaml file.

a. Change to the directory that contains the installation program and run the following
command:

For <installation_directory>, specify the directory name to store the files that the
installation program creates.

IMPORTANT

Specify an empty directory. Some installation assets, like bootstrap X.509
certificates have short expiration intervals, so you must not reuse an
installation directory. If you want to reuse individual files from another cluster
installation, you can copy them into your directory. However, the file names
for the installation assets might change between releases. Use caution when
copying installation files from an earlier OpenShift Container Platform
version.

b. At the prompts, provide the configuration details for your cloud:

i. Optional: Select an SSH key to use to access your cluster machines.

NOTE

$ openshift-install create ignition-configs --dir $HOME/clusterconfig

$ ls $HOME/clusterconfig/
auth bootstrap.ign master.ign metadata.json worker.ign

$./openshift-install create install-config --dir <installation_directory> 1

OpenShift Container Platform 4.19 Installing on AWS

486

NOTE

For production OpenShift Container Platform clusters on which you want
to perform installation debugging or disaster recovery, specify an SSH
key that your ssh-agent process uses.

ii. Select aws as the platform to target.

iii. If you do not have an AWS profile stored on your computer, enter the AWS access key
ID and secret access key for the user that you configured to run the installation
program.

NOTE

The AWS access key ID and secret access key are stored in
~/.aws/credentials in the home directory of the current user on the
installation host. You are prompted for the credentials by the installation
program if the credentials for the exported profile are not present in the
file. Any credentials that you provide to the installation program are
stored in the file.

iv. Select the AWS Region to deploy the cluster to.

v. Select the base domain for the Route 53 service that you configured for your cluster.

vi. Enter a descriptive name for your cluster.

vii. Paste the pull secret from Red Hat OpenShift Cluster Manager .

2. Edit the install-config.yaml file to give the additional information that is required for an
installation in a restricted network.

a. Update the pullSecret value to contain the authentication information for your registry:

For <local_registry>, specify the registry domain name, and optionally the port, that your
mirror registry uses to serve content. For example registry.example.com or
registry.example.com:5000. For <credentials>, specify the base64-encoded user name
and password for your mirror registry.

b. Add the additionalTrustBundle parameter and value. The value must be the contents of
the certificate file that you used for your mirror registry. The certificate file can be an
existing, trusted certificate authority or the self-signed certificate that you generated for
the mirror registry.

c. Add the image content resources:

pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email":
"you@example.com"}}}'

additionalTrustBundle: |
 -----BEGIN CERTIFICATE-----

ZZ
 -----END CERTIFICATE-----

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

487

https://console.redhat.com/openshift/install/pull-secret

Use the imageContentSources section from the output of the command to mirror the
repository or the values that you used when you mirrored the content from the media that
you brought into your restricted network.

d. Optional: Set the publishing strategy to Internal:

By setting this option, you create an internal Ingress Controller and a private load balancer.

3. Optional: Back up the install-config.yaml file.

IMPORTANT

The install-config.yaml file is consumed during the installation process. If you
want to reuse the file, you must back it up now.

Additional resources

See Configuration and credential file settings in the AWS documentation for more information
about AWS profile and credential configuration.

4.4.3.3. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

imageContentSources:
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-release
- mirrors:
 - <local_registry>/<local_repository_name>/release
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev

publish: Internal

OpenShift Container Platform 4.19 Installing on AWS

488

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

1

2

3

4

5

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud, Microsoft
Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC
endpoints to your VPC, you must add these endpoints to the noProxy field.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle config map that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the
trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

Optional: The policy to determine the configuration of the Proxy object to reference the
user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and
Always. Use Proxyonly to reference the user-ca-bundle config map only when
http/https proxy is configured. Use Always to always reference the user-ca-bundle
config map. The default value is Proxyonly.

NOTE

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.
<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

489

NOTE

The installation program does not support the proxy readinessEndpoints field.

NOTE

If the installer times out, restart and then complete the deployment by using the
wait-for command of the installer. For example:

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

4.4.3.4. Creating the Kubernetes manifest and Ignition config files

Because you must modify some cluster definition files and manually start the cluster machines, you must
generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the
machines.

The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the
Ignition configuration files, which are later used to configure the cluster machines.

IMPORTANT

The Ignition config files that the OpenShift Container Platform installation
program generates contain certificates that expire after 24 hours, which are then
renewed at that time. If the cluster is shut down before renewing the certificates
and the cluster is later restarted after the 24 hours have elapsed, the cluster
automatically recovers the expired certificates. The exception is that you must
manually approve the pending node-bootstrapper certificate signing requests
(CSRs) to recover kubelet certificates. See the documentation for Recovering
from expired control plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

Prerequisites

You obtained the OpenShift Container Platform installation program. For a restricted network
installation, these files are on your mirror host.

You created the install-config.yaml installation configuration file.

$./openshift-install wait-for install-complete --log-level debug

OpenShift Container Platform 4.19 Installing on AWS

490

1

Procedure

1. Change to the directory that contains the OpenShift Container Platform installation program
and generate the Kubernetes manifests for the cluster:

For <installation_directory>, specify the installation directory that contains the install-
config.yaml file you created.

2. Remove the Kubernetes manifest files that define the control plane machines:

By removing these files, you prevent the cluster from automatically generating control plane
machines.

3. Remove the Kubernetes manifest files that define the control plane machine set:

4. Remove the Kubernetes manifest files that define the worker machines:

IMPORTANT

If you disabled the MachineAPI capability when installing a cluster on user-
provisioned infrastructure, you must remove the Kubernetes manifest files that
define the worker machines. Otherwise, your cluster fails to install.

Because you create and manage the worker machines yourself, you do not need to initialize
these machines.

5. Check that the mastersSchedulable parameter in the
<installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest
file is set to false. This setting prevents pods from being scheduled on the control plane
machines:

a. Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.

b. Locate the mastersSchedulable parameter and ensure that it is set to false.

c. Save and exit the file.

6. Optional: If you do not want the Ingress Operator to create DNS records on your behalf, remove
the privateZone and publicZone sections from the
<installation_directory>/manifests/cluster-dns-02-config.yml DNS configuration file:

$./openshift-install create manifests --dir <installation_directory> 1

$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml

$ rm -f <installation_directory>/openshift/99_openshift-machine-api_master-control-plane-
machine-set.yaml

$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml

apiVersion: config.openshift.io/v1
kind: DNS
metadata:

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

491

https://github.com/openshift/cluster-ingress-operator

1 2

1

Remove this section completely.

If you do so, you must add ingress DNS records manually in a later step.

7. To create the Ignition configuration files, run the following command from the directory that
contains the installation program:

For <installation_directory>, specify the same installation directory.

Ignition config files are created for the bootstrap, control plane, and compute nodes in the
installation directory. The kubeadmin-password and kubeconfig files are created in the
./<installation_directory>/auth directory:

.
├── auth
│ ├── kubeadmin-password
│ └── kubeconfig
├── bootstrap.ign
├── master.ign
├── metadata.json
└── worker.ign

Additional resources

Manually creating long-term credentials

4.4.4. Extracting the infrastructure name

The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your
cluster in Amazon Web Services. The infrastructure name is also used to locate the appropriate AWS
resources during an OpenShift Container Platform installation. The provided CloudFormation templates
contain references to this infrastructure name, so you must extract it.

Prerequisites

You obtained the OpenShift Container Platform installation program and the pull secret for
your cluster.

You generated the Ignition config files for your cluster.

You installed the jq package.

 creationTimestamp: null
 name: cluster
spec:
 baseDomain: example.openshift.com
 privateZone: 1
 id: mycluster-100419-private-zone
 publicZone: 2
 id: example.openshift.com
status: {}

$./openshift-install create ignition-configs --dir <installation_directory> 1

OpenShift Container Platform 4.19 Installing on AWS

492

1

1

Procedure

To extract and view the infrastructure name from the Ignition config file metadata, run the
following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

Example output

The output of this command is your cluster name and a random string.

4.4.5. Creating a VPC in AWS

You must create a Virtual Private Cloud (VPC) in Amazon Web Services (AWS) for your OpenShift
Container Platform cluster to use. You can customize the VPC to meet your requirements, including
VPN and route tables.

You can use the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources that represent the VPC.

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You generated the Ignition config files for your cluster.

Procedure

1. Create a JSON file that contains the parameter values that the template requires:

$ jq -r .infraID <installation_directory>/metadata.json 1

openshift-vw9j6 1

[
 {
 "ParameterKey": "VpcCidr", 1
 "ParameterValue": "10.0.0.0/16" 2
 },
 {
 "ParameterKey": "AvailabilityZoneCount", 3
 "ParameterValue": "1" 4

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

493

1

2

3

4

5

6

1

2

3

The CIDR block for the VPC.

Specify a CIDR block in the format x.x.x.x/16-24.

The number of availability zones to deploy the VPC in.

Specify an integer between 1 and 3.

The size of each subnet in each availability zone.

Specify an integer between 5 and 13, where 5 is /27 and 13 is /19.

2. Copy the template from the CloudFormation template for the VPC section of this topic and
save it as a YAML file on your computer. This template describes the VPC that your cluster
requires.

3. Launch the CloudFormation template to create a stack of AWS resources that represent the
VPC:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-vpc. You need the
name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters JSON
file.

Example output

4. Confirm that the template components exist:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the

 },
 {
 "ParameterKey": "SubnetBits", 5
 "ParameterValue": "12" 6
 }
]

$ aws cloudformation create-stack --stack-name <name> 1
 --template-body file://<template>.yaml 2
 --parameters file://<parameters>.json 3

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-vpc/dbedae40-2fd3-11eb-
820e-12a48460849f

$ aws cloudformation describe-stacks --stack-name <name>

OpenShift Container Platform 4.19 Installing on AWS

494

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters. You must provide these parameter values to the other CloudFormation
templates that you run to create your cluster:

VpcId The ID of your VPC.

PublicSub
netIds

The IDs of the new public subnets.

PrivateSu
bnetIds

The IDs of the new private subnets.

4.4.5.1. CloudFormation template for the VPC

You can use the following CloudFormation template to deploy the VPC that you need for your
OpenShift Container Platform cluster.

Example 4.25. CloudFormation template for the VPC

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice VPC with 1-3 AZs

Parameters:
 VpcCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.0.0/16
 Description: CIDR block for VPC.
 Type: String
 AvailabilityZoneCount:
 ConstraintDescription: "The number of availability zones. (Min: 1, Max: 3)"
 MinValue: 1
 MaxValue: 3
 Default: 1
 Description: "How many AZs to create VPC subnets for. (Min: 1, Max: 3)"
 Type: Number
 SubnetBits:
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/19-27.
 MinValue: 5
 MaxValue: 13
 Default: 12
 Description: "Size of each subnet to create within the availability zones. (Min: 5 = /27, Max: 13 =
/19)"
 Type: Number

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcCidr

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

495

 - SubnetBits
 - Label:
 default: "Availability Zones"
 Parameters:
 - AvailabilityZoneCount
 ParameterLabels:
 AvailabilityZoneCount:
 default: "Availability Zone Count"
 VpcCidr:
 default: "VPC CIDR"
 SubnetBits:
 default: "Bits Per Subnet"

Conditions:
 DoAz3: !Equals [3, !Ref AvailabilityZoneCount]
 DoAz2: !Or [!Equals [2, !Ref AvailabilityZoneCount], Condition: DoAz3]

Resources:
 VPC:
 Type: "AWS::EC2::VPC"
 Properties:
 EnableDnsSupport: "true"
 EnableDnsHostnames: "true"
 CidrBlock: !Ref VpcCidr
 PublicSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [0, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 0
 - Fn::GetAZs: !Ref "AWS::Region"
 PublicSubnet2:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [1, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 1
 - Fn::GetAZs: !Ref "AWS::Region"
 PublicSubnet3:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [2, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 2
 - Fn::GetAZs: !Ref "AWS::Region"
 InternetGateway:
 Type: "AWS::EC2::InternetGateway"
 GatewayToInternet:
 Type: "AWS::EC2::VPCGatewayAttachment"
 Properties:
 VpcId: !Ref VPC

OpenShift Container Platform 4.19 Installing on AWS

496

 InternetGatewayId: !Ref InternetGateway
 PublicRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VPC
 PublicRoute:
 Type: "AWS::EC2::Route"
 DependsOn: GatewayToInternet
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 GatewayId: !Ref InternetGateway
 PublicSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetRouteTableAssociation2:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz2
 Properties:
 SubnetId: !Ref PublicSubnet2
 RouteTableId: !Ref PublicRouteTable
 PublicSubnetRouteTableAssociation3:
 Condition: DoAz3
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet3
 RouteTableId: !Ref PublicRouteTable
 PrivateSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [3, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 0
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PrivateSubnet
 RouteTableId: !Ref PrivateRouteTable
 NAT:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP
 - AllocationId
 SubnetId: !Ref PublicSubnet

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

497

 EIP:
 Type: "AWS::EC2::EIP"
 Properties:
 Domain: vpc
 Route:
 Type: "AWS::EC2::Route"
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT
 PrivateSubnet2:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [4, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 1
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable2:
 Type: "AWS::EC2::RouteTable"
 Condition: DoAz2
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation2:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz2
 Properties:
 SubnetId: !Ref PrivateSubnet2
 RouteTableId: !Ref PrivateRouteTable2
 NAT2:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Condition: DoAz2
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP2
 - AllocationId
 SubnetId: !Ref PublicSubnet2
 EIP2:
 Type: "AWS::EC2::EIP"
 Condition: DoAz2
 Properties:
 Domain: vpc
 Route2:
 Type: "AWS::EC2::Route"
 Condition: DoAz2
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable2
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:

OpenShift Container Platform 4.19 Installing on AWS

498

 Ref: NAT2
 PrivateSubnet3:
 Type: "AWS::EC2::Subnet"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 CidrBlock: !Select [5, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
 AvailabilityZone: !Select
 - 2
 - Fn::GetAZs: !Ref "AWS::Region"
 PrivateRouteTable3:
 Type: "AWS::EC2::RouteTable"
 Condition: DoAz3
 Properties:
 VpcId: !Ref VPC
 PrivateSubnetRouteTableAssociation3:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Condition: DoAz3
 Properties:
 SubnetId: !Ref PrivateSubnet3
 RouteTableId: !Ref PrivateRouteTable3
 NAT3:
 DependsOn:
 - GatewayToInternet
 Type: "AWS::EC2::NatGateway"
 Condition: DoAz3
 Properties:
 AllocationId:
 "Fn::GetAtt":
 - EIP3
 - AllocationId
 SubnetId: !Ref PublicSubnet3
 EIP3:
 Type: "AWS::EC2::EIP"
 Condition: DoAz3
 Properties:
 Domain: vpc
 Route3:
 Type: "AWS::EC2::Route"
 Condition: DoAz3
 Properties:
 RouteTableId:
 Ref: PrivateRouteTable3
 DestinationCidrBlock: 0.0.0.0/0
 NatGatewayId:
 Ref: NAT3
 S3Endpoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Principal: '*'
 Action:
 - '*'

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

499

 Resource:
 - '*'
 RouteTableIds:
 - !Ref PublicRouteTable
 - !Ref PrivateRouteTable
 - !If [DoAz2, !Ref PrivateRouteTable2, !Ref "AWS::NoValue"]
 - !If [DoAz3, !Ref PrivateRouteTable3, !Ref "AWS::NoValue"]
 ServiceName: !Join
 - ''
 - - com.amazonaws.
 - !Ref 'AWS::Region'
 - .s3
 VpcId: !Ref VPC

Outputs:
 VpcId:
 Description: ID of the new VPC.
 Value: !Ref VPC
 PublicSubnetIds:
 Description: Subnet IDs of the public subnets.
 Value:
 !Join [
 ",",
 [!Ref PublicSubnet, !If [DoAz2, !Ref PublicSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref
PublicSubnet3, !Ref "AWS::NoValue"]]
]
 PrivateSubnetIds:
 Description: Subnet IDs of the private subnets.
 Value:
 !Join [
 ",",
 [!Ref PrivateSubnet, !If [DoAz2, !Ref PrivateSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref
PrivateSubnet3, !Ref "AWS::NoValue"]]
]
 PublicRouteTableId:
 Description: Public Route table ID
 Value: !Ref PublicRouteTable
 PrivateRouteTableIds:
 Description: Private Route table IDs
 Value:
 !Join [
 ",",
 [
 !Join ["=", [
 !Select [0, "Fn::GetAZs": !Ref "AWS::Region"],
 !Ref PrivateRouteTable
]],
 !If [DoAz2,
 !Join ["=", [!Select [1, "Fn::GetAZs": !Ref "AWS::Region"], !Ref PrivateRouteTable2]],
 !Ref "AWS::NoValue"
],
 !If [DoAz3,
 !Join ["=", [!Select [2, "Fn::GetAZs": !Ref "AWS::Region"], !Ref PrivateRouteTable3]],
 !Ref "AWS::NoValue"

OpenShift Container Platform 4.19 Installing on AWS

500

1

4.4.6. Creating networking and load balancing components in AWS

You must configure networking and classic or network load balancing in Amazon Web Services (AWS)
that your OpenShift Container Platform cluster can use.

You can use the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources. The stack represents the networking and load balancing components that your
OpenShift Container Platform cluster requires. The template also creates a hosted zone and subnet
tags.

You can run the template multiple times within a single Virtual Private Cloud (VPC).

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You generated the Ignition config files for your cluster.

You created and configured a VPC and associated subnets in AWS.

Procedure

1. Obtain the hosted zone ID for the Route 53 base domain that you specified in the install-
config.yaml file for your cluster. You can obtain details about your hosted zone by running the
following command:

For the <route53_domain>, specify the Route 53 base domain that you used when you
generated the install-config.yaml file for the cluster.

Example output

In the example output, the hosted zone ID is Z21IXYZABCZ2A4.

]
]
]

$ aws route53 list-hosted-zones-by-name --dns-name <route53_domain> 1

mycluster.example.com. False 100
HOSTEDZONES 65F8F38E-2268-B835-E15C-AB55336FCBFA
/hostedzone/Z21IXYZABCZ2A4 mycluster.example.com. 10

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

501

1

2

3

4

5

6

7

8

2. Create a JSON file that contains the parameter values that the template requires:

A short, representative cluster name to use for hostnames, etc.

Specify the cluster name that you used when you generated the install-config.yaml file
for the cluster.

The name for your cluster infrastructure that is encoded in your Ignition config files for the
cluster.

Specify the infrastructure name that you extracted from the Ignition config file metadata,
which has the format <cluster-name>-<random-string>.

The Route 53 public zone ID to register the targets with.

Specify the Route 53 public zone ID, which as a format similar to Z21IXYZABCZ2A4. You
can obtain this value from the AWS console.

The Route 53 zone to register the targets with.

Specify the Route 53 base domain that you used when you generated the install-
config.yaml file for the cluster. Do not include the trailing period (.) that is displayed in the
AWS console.

[
 {
 "ParameterKey": "ClusterName", 1
 "ParameterValue": "mycluster" 2
 },
 {
 "ParameterKey": "InfrastructureName", 3
 "ParameterValue": "mycluster-<random_string>" 4
 },
 {
 "ParameterKey": "HostedZoneId", 5
 "ParameterValue": "<random_string>" 6
 },
 {
 "ParameterKey": "HostedZoneName", 7
 "ParameterValue": "example.com" 8
 },
 {
 "ParameterKey": "PublicSubnets", 9
 "ParameterValue": "subnet-<random_string>" 10
 },
 {
 "ParameterKey": "PrivateSubnets", 11
 "ParameterValue": "subnet-<random_string>" 12
 },
 {
 "ParameterKey": "VpcId", 13
 "ParameterValue": "vpc-<random_string>" 14
 }
]

OpenShift Container Platform 4.19 Installing on AWS

502

9

10

11

12

13

14

1

2

3

4

The public subnets that you created for your VPC.

Specify the PublicSubnetIds value from the output of the CloudFormation template for
the VPC.

The private subnets that you created for your VPC.

Specify the PrivateSubnetIds value from the output of the CloudFormation template for
the VPC.

The VPC that you created for the cluster.

Specify the VpcId value from the output of the CloudFormation template for the VPC.

3. Copy the template from the CloudFormation template for the network and load balancers
section of this topic and save it as a YAML file on your computer. This template describes the
networking and load balancing objects that your cluster requires.

IMPORTANT

If you are deploying your cluster to an AWS government or secret region, you
must update the InternalApiServerRecord in the CloudFormation template to
use CNAME records. Records of type ALIAS are not supported for AWS
government regions.

4. Launch the CloudFormation template to create a stack of AWS resources that provide the
networking and load balancing components:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-dns. You need the
name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters JSON
file.

You must explicitly declare the CAPABILITY_NAMED_IAM capability because the
provided template creates some AWS::IAM::Role resources.

Example output

$ aws cloudformation create-stack --stack-name <name> 1
 --template-body file://<template>.yaml 2
 --parameters file://<parameters>.json 3
 --capabilities CAPABILITY_NAMED_IAM 4

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

503

5. Confirm that the template components exist:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters. You must provide these parameter values to the other CloudFormation
templates that you run to create your cluster:

PrivateHo
stedZoneI
d

Hosted zone ID for the private DNS.

ExternalA
piLoadBal
ancerNam
e

Full name of the external API load balancer.

InternalAp
iLoadBala
ncerName

Full name of the internal API load balancer.

ApiServer
DnsName

Full hostname of the API server.

RegisterN
lbIpTarget
sLambda

Lambda ARN useful to help register/deregister IP targets for these load balancers.

ExternalA
piTargetG
roupArn

ARN of external API target group.

InternalAp
iTargetGr
oupArn

ARN of internal API target group.

InternalSe
rviceTarg
etGroupA
rn

ARN of internal service target group.

4.4.6.1. CloudFormation template for the network and load balancers

You can use the following CloudFormation template to deploy the networking objects and load
balancers that you need for your OpenShift Container Platform cluster.

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-dns/cd3e5de0-2fd4-11eb-
5cf0-12be5c33a183

$ aws cloudformation describe-stacks --stack-name <name>

OpenShift Container Platform 4.19 Installing on AWS

504

Example 4.26. CloudFormation template for the network and load balancers

AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Network Elements (Route53 & LBs)

Parameters:
 ClusterName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Cluster name must be alphanumeric, start with a letter, and have a
maximum of 27 characters.
 Description: A short, representative cluster name to use for host names and other identifying
names.
 Type: String
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a
maximum of 27 characters.
 Description: A short, unique cluster ID used to tag cloud resources and identify items owned or
used by the cluster.
 Type: String
 HostedZoneId:
 Description: The Route53 public zone ID to register the targets with, such as
Z21IXYZABCZ2A4.
 Type: String
 HostedZoneName:
 Description: The Route53 zone to register the targets with, such as example.com. Omit the
trailing period.
 Type: String
 Default: "example.com"
 PublicSubnets:
 Description: The internet-facing subnets.
 Type: List<AWS::EC2::Subnet::Id>
 PrivateSubnets:
 Description: The internal subnets.
 Type: List<AWS::EC2::Subnet::Id>
 VpcId:
 Description: The VPC-scoped resources will belong to this VPC.
 Type: AWS::EC2::VPC::Id

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - ClusterName
 - InfrastructureName
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - PublicSubnets

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

505

 - PrivateSubnets
 - Label:
 default: "DNS"
 Parameters:
 - HostedZoneName
 - HostedZoneId
 ParameterLabels:
 ClusterName:
 default: "Cluster Name"
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 PublicSubnets:
 default: "Public Subnets"
 PrivateSubnets:
 default: "Private Subnets"
 HostedZoneName:
 default: "Public Hosted Zone Name"
 HostedZoneId:
 default: "Public Hosted Zone ID"

Resources:
 ExtApiElb:
 Type: AWS::ElasticLoadBalancingV2::LoadBalancer
 Properties:
 Name: !Join ["-", [!Ref InfrastructureName, "ext"]]
 IpAddressType: ipv4
 Subnets: !Ref PublicSubnets
 Type: network

 IntApiElb:
 Type: AWS::ElasticLoadBalancingV2::LoadBalancer
 Properties:
 Name: !Join ["-", [!Ref InfrastructureName, "int"]]
 Scheme: internal
 IpAddressType: ipv4
 Subnets: !Ref PrivateSubnets
 Type: network

 IntDns:
 Type: "AWS::Route53::HostedZone"
 Properties:
 HostedZoneConfig:
 Comment: "Managed by CloudFormation"
 Name: !Join [".", [!Ref ClusterName, !Ref HostedZoneName]]
 HostedZoneTags:
 - Key: Name
 Value: !Join ["-", [!Ref InfrastructureName, "int"]]
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "owned"
 VPCs:
 - VPCId: !Ref VpcId
 VPCRegion: !Ref "AWS::Region"

 ExternalApiServerRecord:

OpenShift Container Platform 4.19 Installing on AWS

506

 Type: AWS::Route53::RecordSetGroup
 Properties:
 Comment: Alias record for the API server
 HostedZoneId: !Ref HostedZoneId
 RecordSets:
 - Name:
 !Join [
 ".",
 ["api", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
]
 Type: A
 AliasTarget:
 HostedZoneId: !GetAtt ExtApiElb.CanonicalHostedZoneID
 DNSName: !GetAtt ExtApiElb.DNSName

 InternalApiServerRecord:
 Type: AWS::Route53::RecordSetGroup
 Properties:
 Comment: Alias record for the API server
 HostedZoneId: !Ref IntDns
 RecordSets:
 - Name:
 !Join [
 ".",
 ["api", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
]
 Type: A
 AliasTarget:
 HostedZoneId: !GetAtt IntApiElb.CanonicalHostedZoneID
 DNSName: !GetAtt IntApiElb.DNSName
 - Name:
 !Join [
 ".",
 ["api-int", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
]
 Type: A
 AliasTarget:
 HostedZoneId: !GetAtt IntApiElb.CanonicalHostedZoneID
 DNSName: !GetAtt IntApiElb.DNSName

 ExternalApiListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: ExternalApiTargetGroup
 LoadBalancerArn:
 Ref: ExtApiElb
 Port: 6443
 Protocol: TCP

 ExternalApiTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 HealthCheckIntervalSeconds: 10

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

507

 HealthCheckPath: "/readyz"
 HealthCheckPort: 6443
 HealthCheckProtocol: HTTPS
 HealthyThresholdCount: 2
 UnhealthyThresholdCount: 2
 Port: 6443
 Protocol: TCP
 TargetType: ip
 VpcId:
 Ref: VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 60

 InternalApiListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: InternalApiTargetGroup
 LoadBalancerArn:
 Ref: IntApiElb
 Port: 6443
 Protocol: TCP

 InternalApiTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 HealthCheckIntervalSeconds: 10
 HealthCheckPath: "/readyz"
 HealthCheckPort: 6443
 HealthCheckProtocol: HTTPS
 HealthyThresholdCount: 2
 UnhealthyThresholdCount: 2
 Port: 6443
 Protocol: TCP
 TargetType: ip
 VpcId:
 Ref: VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 60

 InternalServiceInternalListener:
 Type: AWS::ElasticLoadBalancingV2::Listener
 Properties:
 DefaultActions:
 - Type: forward
 TargetGroupArn:
 Ref: InternalServiceTargetGroup
 LoadBalancerArn:
 Ref: IntApiElb
 Port: 22623
 Protocol: TCP

OpenShift Container Platform 4.19 Installing on AWS

508

 InternalServiceTargetGroup:
 Type: AWS::ElasticLoadBalancingV2::TargetGroup
 Properties:
 HealthCheckIntervalSeconds: 10
 HealthCheckPath: "/healthz"
 HealthCheckPort: 22623
 HealthCheckProtocol: HTTPS
 HealthyThresholdCount: 2
 UnhealthyThresholdCount: 2
 Port: 22623
 Protocol: TCP
 TargetType: ip
 VpcId:
 Ref: VpcId
 TargetGroupAttributes:
 - Key: deregistration_delay.timeout_seconds
 Value: 60

 RegisterTargetLambdaIamRole:
 Type: AWS::IAM::Role
 Properties:
 RoleName: !Join ["-", [!Ref InfrastructureName, "nlb", "lambda", "role"]]
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "lambda.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "master", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets",
]
 Resource: !Ref InternalApiTargetGroup
 - Effect: "Allow"
 Action:
 [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets",
]
 Resource: !Ref InternalServiceTargetGroup
 - Effect: "Allow"
 Action:
 [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets",

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

509

]
 Resource: !Ref ExternalApiTargetGroup

 RegisterNlbIpTargets:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.handler"
 Role:
 Fn::GetAtt:
 - "RegisterTargetLambdaIamRole"
 - "Arn"
 Code:
 ZipFile: |
 import json
 import boto3
 import cfnresponse
 def handler(event, context):
 elb = boto3.client('elbv2')
 if event['RequestType'] == 'Delete':
 elb.deregister_targets(TargetGroupArn=event['ResourceProperties']
['TargetArn'],Targets=[{'Id': event['ResourceProperties']['TargetIp']}])
 elif event['RequestType'] == 'Create':
 elb.register_targets(TargetGroupArn=event['ResourceProperties']['TargetArn'],Targets=
[{'Id': event['ResourceProperties']['TargetIp']}])
 responseData = {}
 cfnresponse.send(event, context, cfnresponse.SUCCESS, responseData,
event['ResourceProperties']['TargetArn']+event['ResourceProperties']['TargetIp'])
 Runtime: "python3.11"
 Timeout: 120

 RegisterSubnetTagsLambdaIamRole:
 Type: AWS::IAM::Role
 Properties:
 RoleName: !Join ["-", [!Ref InfrastructureName, "subnet-tags-lambda-role"]]
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "lambda.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "subnet-tagging-policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 [
 "ec2:DeleteTags",
 "ec2:CreateTags"
]
 Resource: "arn:aws:ec2:*:*:subnet/*"

OpenShift Container Platform 4.19 Installing on AWS

510

 - Effect: "Allow"
 Action:
 [
 "ec2:DescribeSubnets",
 "ec2:DescribeTags"
]
 Resource: "*"

 RegisterSubnetTags:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.handler"
 Role:
 Fn::GetAtt:
 - "RegisterSubnetTagsLambdaIamRole"
 - "Arn"
 Code:
 ZipFile: |
 import json
 import boto3
 import cfnresponse
 def handler(event, context):
 ec2_client = boto3.client('ec2')
 if event['RequestType'] == 'Delete':
 for subnet_id in event['ResourceProperties']['Subnets']:
 ec2_client.delete_tags(Resources=[subnet_id], Tags=[{'Key': 'kubernetes.io/cluster/' +
event['ResourceProperties']['InfrastructureName']}]);
 elif event['RequestType'] == 'Create':
 for subnet_id in event['ResourceProperties']['Subnets']:
 ec2_client.create_tags(Resources=[subnet_id], Tags=[{'Key': 'kubernetes.io/cluster/' +
event['ResourceProperties']['InfrastructureName'], 'Value': 'shared'}]);
 responseData = {}
 cfnresponse.send(event, context, cfnresponse.SUCCESS, responseData,
event['ResourceProperties']['InfrastructureName']+event['ResourceProperties']['Subnets'][0])
 Runtime: "python3.11"
 Timeout: 120

 RegisterPublicSubnetTags:
 Type: Custom::SubnetRegister
 Properties:
 ServiceToken: !GetAtt RegisterSubnetTags.Arn
 InfrastructureName: !Ref InfrastructureName
 Subnets: !Ref PublicSubnets

 RegisterPrivateSubnetTags:
 Type: Custom::SubnetRegister
 Properties:
 ServiceToken: !GetAtt RegisterSubnetTags.Arn
 InfrastructureName: !Ref InfrastructureName
 Subnets: !Ref PrivateSubnets

Outputs:
 PrivateHostedZoneId:
 Description: Hosted zone ID for the private DNS, which is required for private records.
 Value: !Ref IntDns
 ExternalApiLoadBalancerName:

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

511

IMPORTANT

If you are deploying your cluster to an AWS government or secret region, you must
update the InternalApiServerRecord to use CNAME records. Records of type ALIAS
are not supported for AWS government regions. For example:

Additional resources

Listing public hosted zones(AWS documentation)

4.4.7. Creating security group and roles in AWS

You must create security groups and roles in Amazon Web Services (AWS) for your OpenShift Container
Platform cluster to use.

You can use the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources. The stack represents the security groups and roles that your OpenShift Container
Platform cluster requires.

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

 Description: Full name of the external API load balancer.
 Value: !GetAtt ExtApiElb.LoadBalancerFullName
 InternalApiLoadBalancerName:
 Description: Full name of the internal API load balancer.
 Value: !GetAtt IntApiElb.LoadBalancerFullName
 ApiServerDnsName:
 Description: Full hostname of the API server, which is required for the Ignition config files.
 Value: !Join [".", ["api-int", !Ref ClusterName, !Ref HostedZoneName]]
 RegisterNlbIpTargetsLambda:
 Description: Lambda ARN useful to help register or deregister IP targets for these load
balancers.
 Value: !GetAtt RegisterNlbIpTargets.Arn
 ExternalApiTargetGroupArn:
 Description: ARN of the external API target group.
 Value: !Ref ExternalApiTargetGroup
 InternalApiTargetGroupArn:
 Description: ARN of the internal API target group.
 Value: !Ref InternalApiTargetGroup
 InternalServiceTargetGroupArn:
 Description: ARN of the internal service target group.
 Value: !Ref InternalServiceTargetGroup

Type: CNAME
TTL: 10
ResourceRecords:
- !GetAtt IntApiElb.DNSName

OpenShift Container Platform 4.19 Installing on AWS

512

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ListInfoOnHostedZone.html

1

2

3

4

5

6

7

8

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You generated the Ignition config files for your cluster.

You created and configured a VPC and associated subnets in AWS.

Procedure

1. Create a JSON file that contains the parameter values that the template requires:

The name for your cluster infrastructure that is encoded in your Ignition config files for the
cluster.

Specify the infrastructure name that you extracted from the Ignition config file metadata,
which has the format <cluster-name>-<random-string>.

The CIDR block for the VPC.

Specify the CIDR block parameter that you used for the VPC that you defined in the form
x.x.x.x/16-24.

The private subnets that you created for your VPC.

Specify the PrivateSubnetIds value from the output of the CloudFormation template for
the VPC.

The VPC that you created for the cluster.

Specify the VpcId value from the output of the CloudFormation template for the VPC.

2. Copy the template from the CloudFormation template for security objects section of this

[
 {
 "ParameterKey": "InfrastructureName", 1
 "ParameterValue": "mycluster-<random_string>" 2
 },
 {
 "ParameterKey": "VpcCidr", 3
 "ParameterValue": "10.0.0.0/16" 4
 },
 {
 "ParameterKey": "PrivateSubnets", 5
 "ParameterValue": "subnet-<random_string>" 6
 },
 {
 "ParameterKey": "VpcId", 7
 "ParameterValue": "vpc-<random_string>" 8
 }
]

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

513

1

2

3

4

2. Copy the template from the CloudFormation template for security objects section of this
topic and save it as a YAML file on your computer. This template describes the security groups
and roles that your cluster requires.

3. Launch the CloudFormation template to create a stack of AWS resources that represent the
security groups and roles:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-sec. You need the
name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters JSON
file.

You must explicitly declare the CAPABILITY_NAMED_IAM capability because the
provided template creates some AWS::IAM::Role and AWS::IAM::InstanceProfile
resources.

Example output

4. Confirm that the template components exist:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters. You must provide these parameter values to the other CloudFormation
templates that you run to create your cluster:

MasterSec
urityGrou
pId

Master Security Group ID

WorkerSe
curityGro
upId

Worker Security Group ID

$ aws cloudformation create-stack --stack-name <name> 1
 --template-body file://<template>.yaml 2
 --parameters file://<parameters>.json 3
 --capabilities CAPABILITY_NAMED_IAM 4

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-sec/03bd4210-2ed7-11eb-
6d7a-13fc0b61e9db

$ aws cloudformation describe-stacks --stack-name <name>

OpenShift Container Platform 4.19 Installing on AWS

514

MasterIns
tanceProfi
le

Master IAM Instance Profile

WorkerIns
tanceProfi
le

Worker IAM Instance Profile

4.4.7.1. CloudFormation template for security objects

You can use the following CloudFormation template to deploy the security objects that you need for
your OpenShift Container Platform cluster.

Example 4.27. CloudFormation template for security objects

AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Security Elements (Security Groups & IAM)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a
maximum of 27 characters.
 Description: A short, unique cluster ID used to tag cloud resources and identify items owned or
used by the cluster.
 Type: String
 VpcCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.0.0/16
 Description: CIDR block for VPC.
 Type: String
 VpcId:
 Description: The VPC-scoped resources will belong to this VPC.
 Type: AWS::EC2::VPC::Id
 PrivateSubnets:
 Description: The internal subnets.
 Type: List<AWS::EC2::Subnet::Id>

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Network Configuration"
 Parameters:

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

515

 - VpcId
 - VpcCidr
 - PrivateSubnets
 ParameterLabels:
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 VpcCidr:
 default: "VPC CIDR"
 PrivateSubnets:
 default: "Private Subnets"

Resources:
 MasterSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster Master Security Group
 SecurityGroupIngress:
 - IpProtocol: icmp
 FromPort: 0
 ToPort: 0
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 ToPort: 6443
 FromPort: 6443
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 FromPort: 22623
 ToPort: 22623
 CidrIp: !Ref VpcCidr
 VpcId: !Ref VpcId

 WorkerSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster Worker Security Group
 SecurityGroupIngress:
 - IpProtocol: icmp
 FromPort: 0
 ToPort: 0
 CidrIp: !Ref VpcCidr
 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: !Ref VpcCidr
 VpcId: !Ref VpcId

 MasterIngressEtcd:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId

OpenShift Container Platform 4.19 Installing on AWS

516

 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: etcd
 FromPort: 2379
 ToPort: 2380
 IpProtocol: tcp

 MasterIngressVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 MasterIngressWorkerVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 MasterIngressGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 MasterIngressWorkerGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 MasterIngressIpsecIke:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: IPsec IKE packets
 FromPort: 500
 ToPort: 500
 IpProtocol: udp

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

517

 MasterIngressIpsecNat:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: IPsec NAT-T packets
 FromPort: 4500
 ToPort: 4500
 IpProtocol: udp

 MasterIngressIpsecEsp:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: IPsec ESP packets
 IpProtocol: 50

 MasterIngressWorkerIpsecIke:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: IPsec IKE packets
 FromPort: 500
 ToPort: 500
 IpProtocol: udp

 MasterIngressWorkerIpsecNat:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: IPsec NAT-T packets
 FromPort: 4500
 ToPort: 4500
 IpProtocol: udp

 MasterIngressWorkerIpsecEsp:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: IPsec ESP packets
 IpProtocol: 50

 MasterIngressInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

OpenShift Container Platform 4.19 Installing on AWS

518

 MasterIngressWorkerInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 MasterIngressInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 MasterIngressWorkerInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 MasterIngressKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes kubelet, scheduler and controller manager
 FromPort: 10250
 ToPort: 10259
 IpProtocol: tcp

 MasterIngressWorkerKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes kubelet, scheduler and controller manager
 FromPort: 10250
 ToPort: 10259
 IpProtocol: tcp

 MasterIngressIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

519

 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 MasterIngressWorkerIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 MasterIngressIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 MasterIngressWorkerIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt MasterSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 WorkerIngressVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 WorkerIngressMasterVxlan:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Vxlan packets
 FromPort: 4789
 ToPort: 4789
 IpProtocol: udp

 WorkerIngressGeneve:
 Type: AWS::EC2::SecurityGroupIngress

OpenShift Container Platform 4.19 Installing on AWS

520

 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 WorkerIngressMasterGeneve:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Geneve packets
 FromPort: 6081
 ToPort: 6081
 IpProtocol: udp

 WorkerIngressIpsecIke:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: IPsec IKE packets
 FromPort: 500
 ToPort: 500
 IpProtocol: udp

 WorkerIngressIpsecNat:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: IPsec NAT-T packets
 FromPort: 4500
 ToPort: 4500
 IpProtocol: udp

 WorkerIngressIpsecEsp:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: IPsec ESP packets
 IpProtocol: 50

 WorkerIngressMasterIpsecIke:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: IPsec IKE packets
 FromPort: 500
 ToPort: 500
 IpProtocol: udp

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

521

 WorkerIngressMasterIpsecNat:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: IPsec NAT-T packets
 FromPort: 4500
 ToPort: 4500
 IpProtocol: udp

 WorkerIngressMasterIpsecEsp:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: IPsec ESP packets
 IpProtocol: 50

 WorkerIngressInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 WorkerIngressMasterInternal:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: tcp

 WorkerIngressInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999
 IpProtocol: udp

 WorkerIngressMasterInternalUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal cluster communication
 FromPort: 9000
 ToPort: 9999

OpenShift Container Platform 4.19 Installing on AWS

522

 IpProtocol: udp

 WorkerIngressKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes secure kubelet port
 FromPort: 10250
 ToPort: 10250
 IpProtocol: tcp

 WorkerIngressWorkerKube:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Internal Kubernetes communication
 FromPort: 10250
 ToPort: 10250
 IpProtocol: tcp

 WorkerIngressIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 WorkerIngressMasterIngressServices:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: tcp

 WorkerIngressIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId
 SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 WorkerIngressMasterIngressServicesUDP:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: !GetAtt WorkerSecurityGroup.GroupId

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

523

 SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
 Description: Kubernetes ingress services
 FromPort: 30000
 ToPort: 32767
 IpProtocol: udp

 MasterIamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "ec2.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "master", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 - "ec2:AttachVolume"
 - "ec2:AuthorizeSecurityGroupIngress"
 - "ec2:CreateSecurityGroup"
 - "ec2:CreateTags"
 - "ec2:CreateVolume"
 - "ec2:DeleteSecurityGroup"
 - "ec2:DeleteVolume"
 - "ec2:Describe*"
 - "ec2:DetachVolume"
 - "ec2:ModifyInstanceAttribute"
 - "ec2:ModifyVolume"
 - "ec2:RevokeSecurityGroupIngress"
 - "elasticloadbalancing:AddTags"
 - "elasticloadbalancing:AttachLoadBalancerToSubnets"
 - "elasticloadbalancing:ApplySecurityGroupsToLoadBalancer"
 - "elasticloadbalancing:CreateListener"
 - "elasticloadbalancing:CreateLoadBalancer"
 - "elasticloadbalancing:CreateLoadBalancerPolicy"
 - "elasticloadbalancing:CreateLoadBalancerListeners"
 - "elasticloadbalancing:CreateTargetGroup"
 - "elasticloadbalancing:ConfigureHealthCheck"
 - "elasticloadbalancing:DeleteListener"
 - "elasticloadbalancing:DeleteLoadBalancer"
 - "elasticloadbalancing:DeleteLoadBalancerListeners"
 - "elasticloadbalancing:DeleteTargetGroup"
 - "elasticloadbalancing:DeregisterInstancesFromLoadBalancer"
 - "elasticloadbalancing:DeregisterTargets"
 - "elasticloadbalancing:Describe*"
 - "elasticloadbalancing:DetachLoadBalancerFromSubnets"
 - "elasticloadbalancing:ModifyListener"
 - "elasticloadbalancing:ModifyLoadBalancerAttributes"

OpenShift Container Platform 4.19 Installing on AWS

524

 - "elasticloadbalancing:ModifyTargetGroup"
 - "elasticloadbalancing:ModifyTargetGroupAttributes"
 - "elasticloadbalancing:RegisterInstancesWithLoadBalancer"
 - "elasticloadbalancing:RegisterTargets"
 - "elasticloadbalancing:SetLoadBalancerPoliciesForBackendServer"
 - "elasticloadbalancing:SetLoadBalancerPoliciesOfListener"
 - "kms:DescribeKey"
 Resource: "*"

 MasterInstanceProfile:
 Type: "AWS::IAM::InstanceProfile"
 Properties:
 Roles:
 - Ref: "MasterIamRole"

 WorkerIamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "ec2.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "worker", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 - "ec2:DescribeInstances"
 - "ec2:DescribeRegions"
 Resource: "*"

 WorkerInstanceProfile:
 Type: "AWS::IAM::InstanceProfile"
 Properties:
 Roles:
 - Ref: "WorkerIamRole"

Outputs:
 MasterSecurityGroupId:
 Description: Master Security Group ID
 Value: !GetAtt MasterSecurityGroup.GroupId

 WorkerSecurityGroupId:
 Description: Worker Security Group ID
 Value: !GetAtt WorkerSecurityGroup.GroupId

 MasterInstanceProfile:
 Description: Master IAM Instance Profile
 Value: !Ref MasterInstanceProfile

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

525

4.4.8. Accessing RHCOS AMIs with stream metadata

In OpenShift Container Platform, stream metadata provides standardized metadata about RHCOS in
the JSON format and injects the metadata into the cluster. Stream metadata is a stable format that
supports multiple architectures and is intended to be self-documenting for maintaining automation.

You can use the coreos print-stream-json sub-command of openshift-install to access information
about the boot images in the stream metadata format. This command provides a method for printing
stream metadata in a scriptable, machine-readable format.

For user-provisioned installations, the openshift-install binary contains references to the version of
RHCOS boot images that are tested for use with OpenShift Container Platform, such as the AWS AMI.

Procedure

To parse the stream metadata, use one of the following methods:

From a Go program, use the official stream-metadata-go library at
https://github.com/coreos/stream-metadata-go. You can also view example code in the library.

From another programming language, such as Python or Ruby, use the JSON library of your
preferred programming language.

From a command-line utility that handles JSON data, such as jq:

Print the current x86_64 or aarch64 AMI for an AWS region, such as us-west-1:

For x86_64

Example output

For aarch64

Example output

The output of this command is the AWS AMI ID for your designated architecture and the us-
west-1 region. The AMI must belong to the same region as the cluster.

 WorkerInstanceProfile:
 Description: Worker IAM Instance Profile
 Value: !Ref WorkerInstanceProfile

$ openshift-install coreos print-stream-json | jq -r
'.architectures.x86_64.images.aws.regions["us-west-1"].image'

ami-0d3e625f84626bbda

$ openshift-install coreos print-stream-json | jq -r
'.architectures.aarch64.images.aws.regions["us-west-1"].image'

ami-0af1d3b7fa5be2131

OpenShift Container Platform 4.19 Installing on AWS

526

https://github.com/coreos/stream-metadata-go

4.4.9. RHCOS AMIs for the AWS infrastructure

Red Hat provides Red Hat Enterprise Linux CoreOS (RHCOS) AMIs that are valid for the various AWS
regions and instance architectures that you can manually specify for your OpenShift Container Platform
nodes.

NOTE

By importing your own AMI, you can also install to regions that do not have a published
RHCOS AMI.

Table 4.5. x86_64 RHCOS AMIs

AWS zone AWS AMI

af-south-1 ami-0163621ea085783d8

ap-east-1 ami-033db3b659641feea

ap-northeast-1 ami-0baf16f8c6bd53f63

ap-northeast-2 ami-01a92be7f419359cc

ap-northeast-3 ami-0f16895f6f50e656e

ap-south-1 ami-0272be2f6528576f3

ap-south-2 ami-0311119df2ebc0bbc

ap-southeast-1 ami-0637678b0ad540477

ap-southeast-2 ami-0b67b492c091ac746

ap-southeast-3 ami-0a9e63bf1df36a936

ap-southeast-4 ami-0f153b95673592039

ap-southeast-5 ami-025944207bb28ae8f

ap-southeast-7 ami-0b5e29c2ae4aaa66d

ca-central-1 ami-03263f0cfdfa8bbdb

ca-west-1 ami-0254620c2dc7dcacc

eu-central-1 ami-0a0a87862b24395d8

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

527

eu-central-2 ami-015c8ca32f5d8300a

eu-north-1 ami-0c4404a6ae5921a1b

eu-south-1 ami-0e0724943dd915bb2

eu-south-2 ami-0e6cac787a21b221d

eu-west-1 ami-0355d4c968e466965

eu-west-2 ami-0e079f8742280b034

eu-west-3 ami-06702aad076acda7b

il-central-1 ami-0094ac2722d41c18c

me-central-1 ami-03680a3dcecfbe79d

me-south-1 ami-04e14a3c4be812ac7

mx-central-1 ami-0eac1c8d4154a417f

sa-east-1 ami-07abd63bb465f89b6

us-east-1 ami-0e8fd9094e487d1ff

us-east-2 ami-0d4a7b7677c0c883f

us-gov-east-1 ami-0b67e7ffd11a17645

us-gov-west-1 ami-041e18a76f42c752c

us-west-1 ami-0167f257577d883cc

us-west-2 ami-0b29d41f2ed6b8c94

AWS zone AWS AMI

Table 4.6. aarch64 RHCOS AMIs

AWS zone AWS AMI

af-south-1 ami-009231bfc2490c6f9

ap-east-1 ami-0a23fad8fb25f5bb7

OpenShift Container Platform 4.19 Installing on AWS

528

ap-northeast-1 ami-0754a269f165f227c

ap-northeast-2 ami-0d81f596571ce27d8

ap-northeast-3 ami-01eb2f8b176229523

ap-south-1 ami-0be3b34441044e437

ap-south-2 ami-02a86359661950bb0

ap-southeast-1 ami-0c70d35c9b5b190be

ap-southeast-2 ami-0310f2acbeca636ed

ap-southeast-3 ami-04db4055063382442

ap-southeast-4 ami-0e2e40cc31633d7d6

ap-southeast-5 ami-0cf0c9ee9f324f763

ap-southeast-7 ami-04cdafcdc85bf9040

ca-central-1 ami-0aee20271a9396925

ca-west-1 ami-03ca778cd4265aad9

eu-central-1 ami-0281dddee0884d9f0

eu-central-2 ami-00fc4e5e3926530af

eu-north-1 ami-0696b5b31d326ccc6

eu-south-1 ami-04090792b7bdb9e0f

eu-south-2 ami-0d45a2586055d5daa

eu-west-1 ami-02f08479c3613ed0e

eu-west-2 ami-0ef2fc25f02a2d475

eu-west-3 ami-0ba5d0a0e5d796da8

il-central-1 ami-0e5b8f3b8e71961e7

AWS zone AWS AMI

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

529

me-central-1 ami-0d13d6a91da2ba547

me-south-1 ami-0183dab9f96845e3f

mx-central-1 ami-072535d81a5de8e76

sa-east-1 ami-0977fa46dff272ba9

us-east-1 ami-083de3282c55be3f7

us-east-2 ami-02f30107e3441227b

us-gov-east-1 ami-0abaadf7322cfc258

us-gov-west-1 ami-0ca27128d77d732aa

us-west-1 ami-05a9426ae7c35740c

us-west-2 ami-0cd6ec50e0480b3a3

AWS zone AWS AMI

4.4.10. Creating the bootstrap node in AWS

You must create the bootstrap node in Amazon Web Services (AWS) to use during OpenShift Container
Platform cluster initialization. You do this by:

Providing a location to serve the bootstrap.ign Ignition config file to your cluster. This file is
located in your installation directory. The provided CloudFormation Template assumes that the
Ignition config files for your cluster are served from an S3 bucket. If you choose to serve the
files from another location, you must modify the templates.

Using the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources. The stack represents the bootstrap node that your OpenShift Container
Platform installation requires.

NOTE

If you do not use the provided CloudFormation template to create your bootstrap node,
you must review the provided information and manually create the infrastructure. If your
cluster does not initialize correctly, you might have to contact Red Hat support with your
installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

OpenShift Container Platform 4.19 Installing on AWS

530

1

1

You generated the Ignition config files for your cluster.

You created and configured a VPC and associated subnets in AWS.

You created and configured DNS, load balancers, and listeners in AWS.

You created the security groups and roles required for your cluster in AWS.

Procedure

1. Create the bucket by running the following command:

<cluster-name>-infra is the bucket name. When creating the install-config.yaml file,
replace <cluster-name> with the name specified for the cluster.

You must use a presigned URL for your S3 bucket, instead of the s3:// schema, if you are:

Deploying to a region that has endpoints that differ from the AWS SDK.

Deploying a proxy.

Providing your own custom endpoints.

2. Upload the bootstrap.ign Ignition config file to the bucket by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

3. Verify that the file uploaded by running the following command:

Example output

NOTE

The bootstrap Ignition config file does contain secrets, like X.509 keys. The
following steps provide basic security for the S3 bucket. To provide additional
security, you can enable an S3 bucket policy to allow only certain users, such as
the OpenShift IAM user, to access objects that the bucket contains. You can
avoid S3 entirely and serve your bootstrap Ignition config file from any address
that the bootstrap machine can reach.

4. Create a JSON file that contains the parameter values that the template requires:

$ aws s3 mb s3://<cluster-name>-infra 1

$ aws s3 cp <installation_directory>/bootstrap.ign s3://<cluster-name>-infra/bootstrap.ign 1

$ aws s3 ls s3://<cluster-name>-infra/

2019-04-03 16:15:16 314878 bootstrap.ign

[

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

531

 {
 "ParameterKey": "InfrastructureName", 1
 "ParameterValue": "mycluster-<random_string>" 2
 },
 {
 "ParameterKey": "RhcosAmi", 3
 "ParameterValue": "ami-<random_string>" 4
 },
 {
 "ParameterKey": "AllowedBootstrapSshCidr", 5
 "ParameterValue": "0.0.0.0/0" 6
 },
 {
 "ParameterKey": "PublicSubnet", 7
 "ParameterValue": "subnet-<random_string>" 8
 },
 {
 "ParameterKey": "MasterSecurityGroupId", 9
 "ParameterValue": "sg-<random_string>" 10
 },
 {
 "ParameterKey": "VpcId", 11
 "ParameterValue": "vpc-<random_string>" 12
 },
 {
 "ParameterKey": "BootstrapIgnitionLocation", 13
 "ParameterValue": "s3://<bucket_name>/bootstrap.ign" 14
 },
 {
 "ParameterKey": "AutoRegisterELB", 15
 "ParameterValue": "yes" 16
 },
 {
 "ParameterKey": "RegisterNlbIpTargetsLambdaArn", 17
 "ParameterValue": "arn:aws:lambda:<aws_region>:<account_number>:function:
<dns_stack_name>-RegisterNlbIpTargets-<random_string>" 18
 },
 {
 "ParameterKey": "ExternalApiTargetGroupArn", 19
 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:
<account_number>:targetgroup/<dns_stack_name>-Exter-<random_string>" 20
 },
 {
 "ParameterKey": "InternalApiTargetGroupArn", 21
 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:
<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" 22
 },
 {
 "ParameterKey": "InternalServiceTargetGroupArn", 23
 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:
<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" 24
 }
]

OpenShift Container Platform 4.19 Installing on AWS

532

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

The name for your cluster infrastructure that is encoded in your Ignition config files for the
cluster.

Specify the infrastructure name that you extracted from the Ignition config file metadata,
which has the format <cluster-name>-<random-string>.

Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the bootstrap node
based on your selected architecture.

Specify a valid AWS::EC2::Image::Id value.

CIDR block to allow SSH access to the bootstrap node.

Specify a CIDR block in the format x.x.x.x/16-24.

The public subnet that is associated with your VPC to launch the bootstrap node into.

Specify the PublicSubnetIds value from the output of the CloudFormation template for
the VPC.

The master security group ID (for registering temporary rules)

Specify the MasterSecurityGroupId value from the output of the CloudFormation
template for the security group and roles.

The VPC created resources will belong to.

Specify the VpcId value from the output of the CloudFormation template for the VPC.

Location to fetch bootstrap Ignition config file from.

Specify the S3 bucket and file name in the form s3://<bucket_name>/bootstrap.ign.

Whether or not to register a network load balancer (NLB).

Specify yes or no. If you specify yes, you must provide a Lambda Amazon Resource Name
(ARN) value.

The ARN for NLB IP target registration lambda group.

Specify the RegisterNlbIpTargetsLambda value from the output of the CloudFormation
template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an
AWS GovCloud region.

The ARN for external API load balancer target group.

Specify the ExternalApiTargetGroupArn value from the output of the CloudFormation
template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an
AWS GovCloud region.

The ARN for internal API load balancer target group.

Specify the InternalApiTargetGroupArn value from the output of the CloudFormation
template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an
AWS GovCloud region.

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

533

23

24

1

2

3

4

The ARN for internal service load balancer target group.

Specify the InternalServiceTargetGroupArn value from the output of the
CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying
the cluster to an AWS GovCloud region.

5. Copy the template from the CloudFormation template for the bootstrap machine section of
this topic and save it as a YAML file on your computer. This template describes the bootstrap
machine that your cluster requires.

6. Optional: If you are deploying the cluster with a proxy, you must update the ignition in the
template to add the ignition.config.proxy fields. Additionally, If you have added the Amazon
EC2, Elastic Load Balancing, and S3 VPC endpoints to your VPC, you must add these endpoints
to the noProxy field.

7. Launch the CloudFormation template to create a stack of AWS resources that represent the
bootstrap node:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-bootstrap. You need
the name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters JSON
file.

You must explicitly declare the CAPABILITY_NAMED_IAM capability because the
provided template creates some AWS::IAM::Role and AWS::IAM::InstanceProfile
resources.

Example output

8. Confirm that the template components exist:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the

$ aws cloudformation create-stack --stack-name <name> 1
 --template-body file://<template>.yaml 2
 --parameters file://<parameters>.json 3
 --capabilities CAPABILITY_NAMED_IAM 4

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-bootstrap/12944486-2add-
11eb-9dee-12dace8e3a83

$ aws cloudformation describe-stacks --stack-name <name>

OpenShift Container Platform 4.19 Installing on AWS

534

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters. You must provide these parameter values to the other CloudFormation
templates that you run to create your cluster:

Bootstrap
InstanceId

The bootstrap Instance ID.

Bootstrap
PublicIp

The bootstrap node public IP address.

Bootstrap
PrivateIp

The bootstrap node private IP address.

4.4.10.1. CloudFormation template for the bootstrap machine

You can use the following CloudFormation template to deploy the bootstrap machine that you need for
your OpenShift Container Platform cluster.

Example 4.28. CloudFormation template for the bootstrap machine

AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Bootstrap (EC2 Instance, Security Groups and IAM)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a
maximum of 27 characters.
 Description: A short, unique cluster ID used to tag cloud resources and identify items owned or
used by the cluster.
 Type: String
 RhcosAmi:
 Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
 Type: AWS::EC2::Image::Id
 AllowedBootstrapSshCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/([0-9]|1[0-9]|2[0-9]|3[0-2]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/0-32.
 Default: 0.0.0.0/0
 Description: CIDR block to allow SSH access to the bootstrap node.
 Type: String
 PublicSubnet:
 Description: The public subnet to launch the bootstrap node into.
 Type: AWS::EC2::Subnet::Id
 MasterSecurityGroupId:
 Description: The master security group ID for registering temporary rules.
 Type: AWS::EC2::SecurityGroup::Id
 VpcId:
 Description: The VPC-scoped resources will belong to this VPC.
 Type: AWS::EC2::VPC::Id
 BootstrapIgnitionLocation:

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

535

 Default: s3://my-s3-bucket/bootstrap.ign
 Description: Ignition config file location.
 Type: String
 AutoRegisterELB:
 Default: "yes"
 AllowedValues:
 - "yes"
 - "no"
 Description: Do you want to invoke NLB registration, which requires a Lambda ARN parameter?
 Type: String
 RegisterNlbIpTargetsLambdaArn:
 Description: ARN for NLB IP target registration lambda.
 Type: String
 ExternalApiTargetGroupArn:
 Description: ARN for external API load balancer target group.
 Type: String
 InternalApiTargetGroupArn:
 Description: ARN for internal API load balancer target group.
 Type: String
 InternalServiceTargetGroupArn:
 Description: ARN for internal service load balancer target group.
 Type: String
 BootstrapInstanceType:
 Description: Instance type for the bootstrap EC2 instance
 Default: "i3.large"
 Type: String

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Host Information"
 Parameters:
 - RhcosAmi
 - BootstrapIgnitionLocation
 - MasterSecurityGroupId
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - AllowedBootstrapSshCidr
 - PublicSubnet
 - Label:
 default: "Load Balancer Automation"
 Parameters:
 - AutoRegisterELB
 - RegisterNlbIpTargetsLambdaArn
 - ExternalApiTargetGroupArn
 - InternalApiTargetGroupArn
 - InternalServiceTargetGroupArn
 ParameterLabels:
 InfrastructureName:

OpenShift Container Platform 4.19 Installing on AWS

536

 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 AllowedBootstrapSshCidr:
 default: "Allowed SSH Source"
 PublicSubnet:
 default: "Public Subnet"
 RhcosAmi:
 default: "Red Hat Enterprise Linux CoreOS AMI ID"
 BootstrapIgnitionLocation:
 default: "Bootstrap Ignition Source"
 MasterSecurityGroupId:
 default: "Master Security Group ID"
 AutoRegisterELB:
 default: "Use Provided ELB Automation"

Conditions:
 DoRegistration: !Equals ["yes", !Ref AutoRegisterELB]

Resources:
 BootstrapIamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "ec2.amazonaws.com"
 Action:
 - "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: !Join ["-", [!Ref InfrastructureName, "bootstrap", "policy"]]
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action: "ec2:Describe*"
 Resource: "*"
 - Effect: "Allow"
 Action: "ec2:AttachVolume"
 Resource: "*"
 - Effect: "Allow"
 Action: "ec2:DetachVolume"
 Resource: "*"
 - Effect: "Allow"
 Action: "s3:GetObject"
 Resource: "*"

 BootstrapInstanceProfile:
 Type: "AWS::IAM::InstanceProfile"
 Properties:
 Path: "/"
 Roles:

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

537

 - Ref: "BootstrapIamRole"

 BootstrapSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster Bootstrap Security Group
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: !Ref AllowedBootstrapSshCidr
 - IpProtocol: tcp
 ToPort: 19531
 FromPort: 19531
 CidrIp: 0.0.0.0/0
 VpcId: !Ref VpcId

 BootstrapInstance:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 IamInstanceProfile: !Ref BootstrapInstanceProfile
 InstanceType: !Ref BootstrapInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "true"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "BootstrapSecurityGroup"
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "PublicSubnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"replace":{"source":"${S3Loc}"}},"version":"3.1.0"}}'
 - {
 S3Loc: !Ref BootstrapIgnitionLocation
 }

 RegisterBootstrapApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt BootstrapInstance.PrivateIp

 RegisterBootstrapInternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt BootstrapInstance.PrivateIp

 RegisterBootstrapInternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister

OpenShift Container Platform 4.19 Installing on AWS

538

Additional resources

RHCOS AMIs for the AWS infrastructure(AWS documentation)

4.4.10.2. Creating the control plane machines in AWS

You must create the control plane machines in Amazon Web Services (AWS) that your cluster will use.

You can use the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources that represent the control plane nodes.

IMPORTANT

The CloudFormation template creates a stack that represents three control plane nodes.

NOTE

If you do not use the provided CloudFormation template to create your control plane
nodes, you must review the provided information and manually create the infrastructure.
If your cluster does not initialize correctly, you might have to contact Red Hat support
with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You generated the Ignition config files for your cluster.

You created and configured a VPC and associated subnets in AWS.

You created and configured DNS, load balancers, and listeners in AWS.

You created the security groups and roles required for your cluster in AWS.

 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt BootstrapInstance.PrivateIp

Outputs:
 BootstrapInstanceId:
 Description: Bootstrap Instance ID.
 Value: !Ref BootstrapInstance

 BootstrapPublicIp:
 Description: The bootstrap node public IP address.
 Value: !GetAtt BootstrapInstance.PublicIp

 BootstrapPrivateIp:
 Description: The bootstrap node private IP address.
 Value: !GetAtt BootstrapInstance.PrivateIp

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

539

You created the bootstrap machine.

Procedure

1. Create a JSON file that contains the parameter values that the template requires:

[
 {
 "ParameterKey": "InfrastructureName", 1
 "ParameterValue": "mycluster-<random_string>" 2
 },
 {
 "ParameterKey": "RhcosAmi", 3
 "ParameterValue": "ami-<random_string>" 4
 },
 {
 "ParameterKey": "AutoRegisterDNS", 5
 "ParameterValue": "yes" 6
 },
 {
 "ParameterKey": "PrivateHostedZoneId", 7
 "ParameterValue": "<random_string>" 8
 },
 {
 "ParameterKey": "PrivateHostedZoneName", 9
 "ParameterValue": "mycluster.example.com" 10
 },
 {
 "ParameterKey": "Master0Subnet", 11
 "ParameterValue": "subnet-<random_string>" 12
 },
 {
 "ParameterKey": "Master1Subnet", 13
 "ParameterValue": "subnet-<random_string>" 14
 },
 {
 "ParameterKey": "Master2Subnet", 15
 "ParameterValue": "subnet-<random_string>" 16
 },
 {
 "ParameterKey": "MasterSecurityGroupId", 17
 "ParameterValue": "sg-<random_string>" 18
 },
 {
 "ParameterKey": "IgnitionLocation", 19
 "ParameterValue": "https://api-int.<cluster_name>.<domain_name>:22623/config/master"
20
 },
 {
 "ParameterKey": "CertificateAuthorities", 21
 "ParameterValue": "data:text/plain;charset=utf-8;base64,ABC...xYz==" 22
 },
 {

OpenShift Container Platform 4.19 Installing on AWS

540

1

2

3

4

5

6

7

8

9

The name for your cluster infrastructure that is encoded in your Ignition config files for the
cluster.

Specify the infrastructure name that you extracted from the Ignition config file metadata,
which has the format <cluster-name>-<random-string>.

Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the control plane
machines based on your selected architecture.

Specify an AWS::EC2::Image::Id value.

Whether or not to perform DNS etcd registration.

Specify yes or no. If you specify yes, you must provide hosted zone information.

The Route 53 private zone ID to register the etcd targets with.

Specify the PrivateHostedZoneId value from the output of the CloudFormation template
for DNS and load balancing.

The Route 53 zone to register the targets with.

 "ParameterKey": "MasterInstanceProfileName", 23
 "ParameterValue": "<roles_stack>-MasterInstanceProfile-<random_string>" 24
 },
 {
 "ParameterKey": "MasterInstanceType", 25
 "ParameterValue": "" 26
 },
 {
 "ParameterKey": "AutoRegisterELB", 27
 "ParameterValue": "yes" 28
 },
 {
 "ParameterKey": "RegisterNlbIpTargetsLambdaArn", 29
 "ParameterValue": "arn:aws:lambda:<aws_region>:<account_number>:function:
<dns_stack_name>-RegisterNlbIpTargets-<random_string>" 30
 },
 {
 "ParameterKey": "ExternalApiTargetGroupArn", 31
 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:
<account_number>:targetgroup/<dns_stack_name>-Exter-<random_string>" 32
 },
 {
 "ParameterKey": "InternalApiTargetGroupArn", 33
 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:
<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" 34
 },
 {
 "ParameterKey": "InternalServiceTargetGroupArn", 35
 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:
<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" 36
 }
]

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

541

10

11 13 15

12 14 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Specify <cluster_name>.<domain_name> where <domain_name> is the Route 53 base
domain that you used when you generated install-config.yaml file for the cluster. Do not

A subnet, preferably private, to launch the control plane machines on.

Specify a subnet from the PrivateSubnets value from the output of the
CloudFormation template for DNS and load balancing.

The master security group ID to associate with control plane nodes.

Specify the MasterSecurityGroupId value from the output of the CloudFormation
template for the security group and roles.

The location to fetch control plane Ignition config file from.

Specify the generated Ignition config file location, https://api-int.<cluster_name>.
<domain_name>:22623/config/master.

The base64 encoded certificate authority string to use.

Specify the value from the master.ign file that is in the installation directory. This value is
the long string with the format data:text/plain;charset=utf-8;base64,ABC… ​xYz==.

The IAM profile to associate with control plane nodes.

Specify the MasterInstanceProfile parameter value from the output of the
CloudFormation template for the security group and roles.

The type of AWS instance to use for the control plane machines based on your selected
architecture.

The instance type value corresponds to the minimum resource requirements for control
plane machines. For example m6i.xlarge is a type for AMD64 and m6g.xlarge is a type for
ARM64.

Whether or not to register a network load balancer (NLB).

Specify yes or no. If you specify yes, you must provide a Lambda Amazon Resource Name
(ARN) value.

The ARN for NLB IP target registration lambda group.

Specify the RegisterNlbIpTargetsLambda value from the output of the CloudFormation
template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an
AWS GovCloud region.

The ARN for external API load balancer target group.

Specify the ExternalApiTargetGroupArn value from the output of the CloudFormation
template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an
AWS GovCloud region.

The ARN for internal API load balancer target group.

Specify the InternalApiTargetGroupArn value from the output of the CloudFormation

OpenShift Container Platform 4.19 Installing on AWS

542

https://:22623/config/master

35

36

1

2

3

The ARN for internal service load balancer target group.

Specify the InternalServiceTargetGroupArn value from the output of the
CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying
the cluster to an AWS GovCloud region.

2. Copy the template from the CloudFormation template for control plane machines section of
this topic and save it as a YAML file on your computer. This template describes the control plane
machines that your cluster requires.

3. If you specified an m5 instance type as the value for MasterInstanceType, add that instance
type to the MasterInstanceType.AllowedValues parameter in the CloudFormation template.

4. Launch the CloudFormation template to create a stack of AWS resources that represent the
control plane nodes:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-control-plane. You
need the name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters JSON
file.

Example output

NOTE

The CloudFormation template creates a stack that represents three control plane
nodes.

5. Confirm that the template components exist:

4.4.10.3. CloudFormation template for control plane machines

You can use the following CloudFormation template to deploy the control plane machines that you need

$ aws cloudformation create-stack --stack-name <name> 1
 --template-body file://<template>.yaml 2
 --parameters file://<parameters>.json 3

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-control-plane/21c7e2b0-2ee2-
11eb-c6f6-0aa34627df4b

$ aws cloudformation describe-stacks --stack-name <name>

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

543

You can use the following CloudFormation template to deploy the control plane machines that you need
for your OpenShift Container Platform cluster.

Example 4.29. CloudFormation template for control plane machines

AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Node Launch (EC2 master instances)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a
maximum of 27 characters.
 Description: A short, unique cluster ID used to tag nodes for the kubelet cloud provider.
 Type: String
 RhcosAmi:
 Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
 Type: AWS::EC2::Image::Id
 AutoRegisterDNS:
 Default: ""
 Description: unused
 Type: String
 PrivateHostedZoneId:
 Default: ""
 Description: unused
 Type: String
 PrivateHostedZoneName:
 Default: ""
 Description: unused
 Type: String
 Master0Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 Master1Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 Master2Subnet:
 Description: The subnets, recommend private, to launch the master nodes into.
 Type: AWS::EC2::Subnet::Id
 MasterSecurityGroupId:
 Description: The master security group ID to associate with master nodes.
 Type: AWS::EC2::SecurityGroup::Id
 IgnitionLocation:
 Default: https://api-int.$CLUSTER_NAME.$DOMAIN:22623/config/master
 Description: Ignition config file location.
 Type: String
 CertificateAuthorities:
 Default: data:text/plain;charset=utf-8;base64,ABC...xYz==
 Description: Base64 encoded certificate authority string to use.
 Type: String
 MasterInstanceProfileName:
 Description: IAM profile to associate with master nodes.
 Type: String
 MasterInstanceType:

OpenShift Container Platform 4.19 Installing on AWS

544

 Default: m5.xlarge
 Type: String

 AutoRegisterELB:
 Default: "yes"
 AllowedValues:
 - "yes"
 - "no"
 Description: Do you want to invoke NLB registration, which requires a Lambda ARN parameter?
 Type: String
 RegisterNlbIpTargetsLambdaArn:
 Description: ARN for NLB IP target registration lambda. Supply the value from the cluster
infrastructure or select "no" for AutoRegisterELB.
 Type: String
 ExternalApiTargetGroupArn:
 Description: ARN for external API load balancer target group. Supply the value from the cluster
infrastructure or select "no" for AutoRegisterELB.
 Type: String
 InternalApiTargetGroupArn:
 Description: ARN for internal API load balancer target group. Supply the value from the cluster
infrastructure or select "no" for AutoRegisterELB.
 Type: String
 InternalServiceTargetGroupArn:
 Description: ARN for internal service load balancer target group. Supply the value from the
cluster infrastructure or select "no" for AutoRegisterELB.
 Type: String

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Host Information"
 Parameters:
 - MasterInstanceType
 - RhcosAmi
 - IgnitionLocation
 - CertificateAuthorities
 - MasterSecurityGroupId
 - MasterInstanceProfileName
 - Label:
 default: "Network Configuration"
 Parameters:
 - VpcId
 - AllowedBootstrapSshCidr
 - Master0Subnet
 - Master1Subnet
 - Master2Subnet
 - Label:
 default: "Load Balancer Automation"
 Parameters:
 - AutoRegisterELB
 - RegisterNlbIpTargetsLambdaArn

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

545

 - ExternalApiTargetGroupArn
 - InternalApiTargetGroupArn
 - InternalServiceTargetGroupArn
 ParameterLabels:
 InfrastructureName:
 default: "Infrastructure Name"
 VpcId:
 default: "VPC ID"
 Master0Subnet:
 default: "Master-0 Subnet"
 Master1Subnet:
 default: "Master-1 Subnet"
 Master2Subnet:
 default: "Master-2 Subnet"
 MasterInstanceType:
 default: "Master Instance Type"
 MasterInstanceProfileName:
 default: "Master Instance Profile Name"
 RhcosAmi:
 default: "Red Hat Enterprise Linux CoreOS AMI ID"
 BootstrapIgnitionLocation:
 default: "Master Ignition Source"
 CertificateAuthorities:
 default: "Ignition CA String"
 MasterSecurityGroupId:
 default: "Master Security Group ID"
 AutoRegisterELB:
 default: "Use Provided ELB Automation"

Conditions:
 DoRegistration: !Equals ["yes", !Ref AutoRegisterELB]

Resources:
 Master0:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref MasterInstanceProfileName
 InstanceType: !Ref MasterInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "Master0Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":
{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,

OpenShift Container Platform 4.19 Installing on AWS

546

 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

 RegisterMaster0:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt Master0.PrivateIp

 RegisterMaster0InternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt Master0.PrivateIp

 RegisterMaster0InternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt Master0.PrivateIp

 Master1:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref MasterInstanceProfileName
 InstanceType: !Ref MasterInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "Master1Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":
{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

547

 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

 RegisterMaster1:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt Master1.PrivateIp

 RegisterMaster1InternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt Master1.PrivateIp

 RegisterMaster1InternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt Master1.PrivateIp

 Master2:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref MasterInstanceProfileName
 InstanceType: !Ref MasterInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "MasterSecurityGroupId"
 SubnetId: !Ref "Master2Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":
{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

OpenShift Container Platform 4.19 Installing on AWS

548

4.4.11. Creating the worker nodes in AWS

You can create worker nodes in Amazon Web Services (AWS) for your cluster to use.

You can use the provided CloudFormation template and a custom parameter file to create a stack of
AWS resources that represent a worker node.

IMPORTANT

The CloudFormation template creates a stack that represents one worker node. You
must create a stack for each worker node.

NOTE

If you do not use the provided CloudFormation template to create your worker nodes,
you must review the provided information and manually create the infrastructure. If your
cluster does not initialize correctly, you might have to contact Red Hat support with your
installation logs.

Prerequisites

 RegisterMaster2:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref ExternalApiTargetGroupArn
 TargetIp: !GetAtt Master2.PrivateIp

 RegisterMaster2InternalApiTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalApiTargetGroupArn
 TargetIp: !GetAtt Master2.PrivateIp

 RegisterMaster2InternalServiceTarget:
 Condition: DoRegistration
 Type: Custom::NLBRegister
 Properties:
 ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
 TargetArn: !Ref InternalServiceTargetGroupArn
 TargetIp: !GetAtt Master2.PrivateIp

Outputs:
 PrivateIPs:
 Description: The control-plane node private IP addresses.
 Value:
 !Join [
 ",",
 [!GetAtt Master0.PrivateIp, !GetAtt Master1.PrivateIp, !GetAtt Master2.PrivateIp]
]

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

549

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You generated the Ignition config files for your cluster.

You created and configured a VPC and associated subnets in AWS.

You created and configured DNS, load balancers, and listeners in AWS.

You created the security groups and roles required for your cluster in AWS.

You created the bootstrap machine.

You created the control plane machines.

Procedure

1. Create a JSON file that contains the parameter values that the CloudFormation template
requires:

[
 {
 "ParameterKey": "InfrastructureName", 1
 "ParameterValue": "mycluster-<random_string>" 2
 },
 {
 "ParameterKey": "RhcosAmi", 3
 "ParameterValue": "ami-<random_string>" 4
 },
 {
 "ParameterKey": "Subnet", 5
 "ParameterValue": "subnet-<random_string>" 6
 },
 {
 "ParameterKey": "WorkerSecurityGroupId", 7
 "ParameterValue": "sg-<random_string>" 8
 },
 {
 "ParameterKey": "IgnitionLocation", 9
 "ParameterValue": "https://api-int.<cluster_name>.<domain_name>:22623/config/worker"
10
 },
 {
 "ParameterKey": "CertificateAuthorities", 11
 "ParameterValue": "data:text/plain;charset=utf-8;base64,ABC...xYz==" 12
 },
 {
 "ParameterKey": "WorkerInstanceProfileName", 13
 "ParameterValue": "<roles_stack>-WorkerInstanceProfile-<random_string>" 14
 },
 {
 "ParameterKey": "WorkerInstanceType", 15

OpenShift Container Platform 4.19 Installing on AWS

550

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

The name for your cluster infrastructure that is encoded in your Ignition config files for the
cluster.

Specify the infrastructure name that you extracted from the Ignition config file metadata,
which has the format <cluster-name>-<random-string>.

Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the worker nodes
based on your selected architecture.

Specify an AWS::EC2::Image::Id value.

A subnet, preferably private, to start the worker nodes on.

Specify a subnet from the PrivateSubnets value from the output of the CloudFormation
template for DNS and load balancing.

The worker security group ID to associate with worker nodes.

Specify the WorkerSecurityGroupId value from the output of the CloudFormation
template for the security group and roles.

The location to fetch the bootstrap Ignition config file from.

Specify the generated Ignition config location, https://api-int.<cluster_name>.
<domain_name>:22623/config/worker.

Base64 encoded certificate authority string to use.

Specify the value from the worker.ign file that is in the installation directory. This value is
the long string with the format data:text/plain;charset=utf-8;base64,ABC… ​xYz==.

The IAM profile to associate with worker nodes.

Specify the WorkerInstanceProfile parameter value from the output of the
CloudFormation template for the security group and roles.

The type of AWS instance to use for the compute machines based on your selected
architecture.

The instance type value corresponds to the minimum resource requirements for compute
machines. For example m6i.large is a type for AMD64 and m6g.large is a type for ARM64.

2. Copy the template from the CloudFormation template for worker machines section of this
topic and save it as a YAML file on your computer. This template describes the networking
objects and load balancers that your cluster requires.

3. Optional: If you specified an m5 instance type as the value for WorkerInstanceType, add that
instance type to the WorkerInstanceType.AllowedValues parameter in the CloudFormation
template.

4. Optional: If you are deploying with an AWS Marketplace image, update the

 "ParameterValue": "" 16
 }
]

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

551

https://:22623/config/worker

1

2

3

4. Optional: If you are deploying with an AWS Marketplace image, update the
Worker0.type.properties.ImageID parameter with the AMI ID that you obtained from your
subscription.

5. Use the CloudFormation template to create a stack of AWS resources that represent a worker
node:

IMPORTANT

You must enter the command on a single line.

<name> is the name for the CloudFormation stack, such as cluster-worker-1. You need
the name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML file
that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters JSON
file.

Example output

NOTE

The CloudFormation template creates a stack that represents one worker node.

6. Confirm that the template components exist:

7. Continue to create worker stacks until you have created enough worker machines for your
cluster. You can create additional worker stacks by referencing the same template and
parameter files and specifying a different stack name.

IMPORTANT

You must create at least two worker machines, so you must create at least two
stacks that use this CloudFormation template.

4.4.11.1. CloudFormation template for compute machines

You can deploy the compute machines that you need for your OpenShift Container Platform cluster by
using the following CloudFormation template.

$ aws cloudformation create-stack --stack-name <name> 1
 --template-body file://<template>.yaml \ 2
 --parameters file://<parameters>.json 3

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-worker-1/729ee301-1c2a-
11eb-348f-sd9888c65b59

$ aws cloudformation describe-stacks --stack-name <name>

OpenShift Container Platform 4.19 Installing on AWS

552

Example 4.30. CloudFormation template for compute machines

AWSTemplateFormatVersion: 2010-09-09
Description: Template for OpenShift Cluster Node Launch (EC2 worker instance)

Parameters:
 InfrastructureName:
 AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
 MaxLength: 27
 MinLength: 1
 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a
maximum of 27 characters.
 Description: A short, unique cluster ID used to tag nodes for the kubelet cloud provider.
 Type: String
 RhcosAmi:
 Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
 Type: AWS::EC2::Image::Id
 Subnet:
 Description: The subnets, recommend private, to launch the worker nodes into.
 Type: AWS::EC2::Subnet::Id
 WorkerSecurityGroupId:
 Description: The worker security group ID to associate with worker nodes.
 Type: AWS::EC2::SecurityGroup::Id
 IgnitionLocation:
 Default: https://api-int.$CLUSTER_NAME.$DOMAIN:22623/config/worker
 Description: Ignition config file location.
 Type: String
 CertificateAuthorities:
 Default: data:text/plain;charset=utf-8;base64,ABC...xYz==
 Description: Base64 encoded certificate authority string to use.
 Type: String
 WorkerInstanceProfileName:
 Description: IAM profile to associate with worker nodes.
 Type: String
 WorkerInstanceType:
 Default: m5.large
 Type: String

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: "Cluster Information"
 Parameters:
 - InfrastructureName
 - Label:
 default: "Host Information"
 Parameters:
 - WorkerInstanceType
 - RhcosAmi
 - IgnitionLocation
 - CertificateAuthorities
 - WorkerSecurityGroupId
 - WorkerInstanceProfileName
 - Label:
 default: "Network Configuration"

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

553

 Parameters:
 - Subnet
 ParameterLabels:
 Subnet:
 default: "Subnet"
 InfrastructureName:
 default: "Infrastructure Name"
 WorkerInstanceType:
 default: "Worker Instance Type"
 WorkerInstanceProfileName:
 default: "Worker Instance Profile Name"
 RhcosAmi:
 default: "Red Hat Enterprise Linux CoreOS AMI ID"
 IgnitionLocation:
 default: "Worker Ignition Source"
 CertificateAuthorities:
 default: "Ignition CA String"
 WorkerSecurityGroupId:
 default: "Worker Security Group ID"

Resources:
 Worker0:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: !Ref RhcosAmi
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: "120"
 VolumeType: "gp2"
 IamInstanceProfile: !Ref WorkerInstanceProfileName
 InstanceType: !Ref WorkerInstanceType
 NetworkInterfaces:
 - AssociatePublicIpAddress: "false"
 DeviceIndex: "0"
 GroupSet:
 - !Ref "WorkerSecurityGroupId"
 SubnetId: !Ref "Subnet"
 UserData:
 Fn::Base64: !Sub
 - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":
{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
 - {
 SOURCE: !Ref IgnitionLocation,
 CA_BUNDLE: !Ref CertificateAuthorities,
 }
 Tags:
 - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
 Value: "shared"

Outputs:
 PrivateIP:
 Description: The compute node private IP address.
 Value: !GetAtt Worker0.PrivateIp

OpenShift Container Platform 4.19 Installing on AWS

554

1

2

3

4.4.11.2. Creating the CloudFormation stack for compute machines

You can create a stack of AWS resources for the compute machines by using the CloudFormation
template that was previously shared.

IMPORTANT

When you use the CloudFormation template for the control plane machines, the template
provisions all three control plane machines with a single stack; however, when you use the
CloudFormation template to deploy the compute machines, you must create the number
of stacks based on the number that you defined in the install-config.yaml file. Each stack
is provisioned once for each machine. To provision a new compute machine, you must
change the stack name.

Procedure

To create the CloudFormation stack for compute machines, run the following command:

Specify the <name> with the name for the CloudFormation stack, such as cluster-worker-
1. You need the name of this stack if you remove the cluster.

Specify the relative path and the name of the CloudFormation template YAML file that
you saved.

Specify the relative path and the name of the JSON file for the CloudFormation
parameters.

Example output

4.4.12. Initializing the bootstrap sequence on AWS with user-provisioned
infrastructure

After you create all of the required infrastructure in Amazon Web Services (AWS), you can start the
bootstrap sequence that initializes the OpenShift Container Platform control plane.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You generated the Ignition config files for your cluster.

You created and configured a VPC and associated subnets in AWS.

You created and configured DNS, load balancers, and listeners in AWS.

$ aws cloudformation create-stack --stack-name <name> \ 1
 --template-body file://<template>.yaml \ 2
 --parameters file://<parameters>.json 3

arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-worker-1/729ee301-1c2a-
11eb-348f-sd9888c65b59

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

555

1

2

You created the security groups and roles required for your cluster in AWS.

You created the bootstrap machine.

You created the control plane machines.

You created the worker nodes.

Procedure

1. Change to the directory that contains the installation program and start the bootstrap process
that initializes the OpenShift Container Platform control plane:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

To view different installation details, specify warn, debug, or error instead of info.

Example output

If the command exits without a FATAL warning, your OpenShift Container Platform control
plane has initialized.

NOTE

After the control plane initializes, it sets up the compute nodes and installs
additional services in the form of Operators.

Additional resources

See Monitoring installation progress for details about monitoring the installation, bootstrap, and
control plane logs as an OpenShift Container Platform installation progresses.

See Gathering bootstrap node diagnostic data for information about troubleshooting issues
related to the bootstrap process.

4.4.13. Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

$./openshift-install wait-for bootstrap-complete --dir <installation_directory> \ 1
 --log-level=info 2

INFO Waiting up to 20m0s for the Kubernetes API at
https://api.mycluster.example.com:6443...
INFO API v1.32.3 up
INFO Waiting up to 30m0s for bootstrapping to complete...
INFO It is now safe to remove the bootstrap resources
INFO Time elapsed: 1s

OpenShift Container Platform 4.19 Installing on AWS

556

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#monitoring-installation-progress_troubleshooting-installations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#gathering-bootstrap-diagnostic-data_troubleshooting-installations

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as
worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. After the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 63m v1.32.3
master-1 Ready master 63m v1.32.3
master-2 Ready master 64m v1.32.3

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper Pending
...

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

557

1

1

NOTE

For clusters running on platforms that are not machine API enabled, such as bare
metal and other user-provisioned infrastructure, you must implement a method
of automatically approving the kubelet serving certificate requests (CSRs). If a
request is not approved, then the oc exec, oc rsh, and oc logs commands
cannot succeed, because a serving certificate is required when the API server
connects to the kubelet. Any operation that contacts the Kubelet endpoint
requires this certificate approval to be in place. The method must watch for new
CSRs, confirm that the CSR was submitted by the node-bootstrapper service
account in the system:node or system:admin groups, and confirm the identity
of the node.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal
Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal
Pending
...

$ oc adm certificate approve <csr_name> 1

OpenShift Container Platform 4.19 Installing on AWS

558

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

Certificate Signing Requests

4.4.14. Initial Operator configuration

After the control plane initializes, you must immediately configure some Operators so that they all
become available.

Prerequisites

Your control plane has initialized.

Procedure

1. Watch the cluster components come online:

Example output

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.32.3
master-1 Ready master 73m v1.32.3
master-2 Ready master 74m v1.32.3
worker-0 Ready worker 11m v1.32.3
worker-1 Ready worker 11m v1.32.3

$ watch -n5 oc get clusteroperators

NAME VERSION AVAILABLE PROGRESSING DEGRADED
SINCE
authentication 4.19.0 True False False 19m
baremetal 4.19.0 True False False 37m
cloud-credential 4.19.0 True False False 40m
cluster-autoscaler 4.19.0 True False False 37m
config-operator 4.19.0 True False False 38m

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

559

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/

2. Configure the Operators that are not available.

4.4.14.1. Disabling the default OperatorHub catalog sources

Operator catalogs that source content provided by Red Hat and community projects are configured for
OperatorHub by default during an OpenShift Container Platform installation. In a restricted network
environment, you must disable the default catalogs as a cluster administrator.

Procedure

Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the
OperatorHub object:

TIP

Alternatively, you can use the web console to manage catalog sources. From the Administration →
Cluster Settings → Configuration → OperatorHub page, click the Sources tab, where you can create,
update, delete, disable, and enable individual sources.

4.4.14.2. Image registry storage configuration

Amazon Web Services provides default storage, which means the Image Registry Operator is available
after installation. However, if the Registry Operator cannot create an S3 bucket and automatically
configure storage, you must manually configure registry storage.

console 4.19.0 True False False 26m
csi-snapshot-controller 4.19.0 True False False 37m
dns 4.19.0 True False False 37m
etcd 4.19.0 True False False 36m
image-registry 4.19.0 True False False 31m
ingress 4.19.0 True False False 30m
insights 4.19.0 True False False 31m
kube-apiserver 4.19.0 True False False 26m
kube-controller-manager 4.19.0 True False False 36m
kube-scheduler 4.19.0 True False False 36m
kube-storage-version-migrator 4.19.0 True False False 37m
machine-api 4.19.0 True False False 29m
machine-approver 4.19.0 True False False 37m
machine-config 4.19.0 True False False 36m
marketplace 4.19.0 True False False 37m
monitoring 4.19.0 True False False 29m
network 4.19.0 True False False 38m
node-tuning 4.19.0 True False False 37m
openshift-apiserver 4.19.0 True False False 32m
openshift-controller-manager 4.19.0 True False False 30m
openshift-samples 4.19.0 True False False 32m
operator-lifecycle-manager 4.19.0 True False False 37m
operator-lifecycle-manager-catalog 4.19.0 True False False 37m
operator-lifecycle-manager-packageserver 4.19.0 True False False 32m
service-ca 4.19.0 True False False 38m
storage 4.19.0 True False False 37m

$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

OpenShift Container Platform 4.19 Installing on AWS

560

Instructions are shown for configuring a persistent volume, which is required for production clusters.
Where applicable, instructions are shown for configuring an empty directory as the storage location,
which is available for only non-production clusters.

Additional instructions are provided for allowing the image registry to use block storage types by using
the Recreate rollout strategy during upgrades.

4.4.14.2.1. Configuring registry storage for AWS with user-provisioned infrastructure

During installation, your cloud credentials are sufficient to create an Amazon S3 bucket and the Registry
Operator will automatically configure storage.

If the Registry Operator cannot create an S3 bucket and automatically configure storage, you can
create an S3 bucket and configure storage with the following procedure.

WARNING

To secure your registry images in AWS, block public access to the S3 bucket.

Prerequisites

You have a cluster on AWS with user-provisioned infrastructure.

For Amazon S3 storage, the secret is expected to contain two keys:

REGISTRY_STORAGE_S3_ACCESSKEY

REGISTRY_STORAGE_S3_SECRETKEY

Procedure

1. Set up a Bucket Lifecycle Policy to abort incomplete multipart uploads that are one day old.

2. Fill in the storage configuration in configs.imageregistry.operator.openshift.io/cluster:

Example configuration



$ oc edit configs.imageregistry.operator.openshift.io/cluster

apiVersion: imageregistry.operator.openshift.io/v1
kind: Config
metadata:
 name: cluster
spec:
 storage:
 s3:
 bucket: <bucket_name>
 region: <region_name>

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

561

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-s3-bucket-publicaccessblockconfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html#mpu-abort-incomplete-mpu-lifecycle-config

1

4.4.14.2.2. Configuring storage for the image registry in non-production clusters

You must configure storage for the Image Registry Operator. For non-production clusters, you can set
the image registry to an empty directory. If you do so, all images are lost if you restart the registry.

Procedure

To set the image registry storage to an empty directory:

WARNING

Configure this option for only non-production clusters.

If you run this command before the Image Registry Operator initializes its components, the oc
patch command fails with the following error:

Wait a few minutes and run the command again.

4.4.15. Deleting the bootstrap resources

After you complete the initial Operator configuration for the cluster, remove the bootstrap resources
from Amazon Web Services (AWS).

Prerequisites

You completed the initial Operator configuration for your cluster.

Procedure

1. Delete the bootstrap resources. If you used the CloudFormation template, delete its stack:

Delete the stack by using the AWS CLI:

<name> is the name of your bootstrap stack.

Delete the stack by using the AWS CloudFormation console.

4.4.16. Creating the Ingress DNS Records

If you removed the DNS Zone configuration, manually create DNS records that point to the Ingress load

$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"storage":{"emptyDir":{}}}}'



Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

$ aws cloudformation delete-stack --stack-name <name> 1

OpenShift Container Platform 4.19 Installing on AWS

562

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://console.aws.amazon.com/cloudformation/

If you removed the DNS Zone configuration, manually create DNS records that point to the Ingress load
balancer. You can create either a wildcard record or specific records. While the following procedure uses
A records, you can use other record types that you require, such as CNAME or alias.

Prerequisites

You deployed an OpenShift Container Platform cluster on Amazon Web Services (AWS) that
uses infrastructure that you provisioned.

You installed the OpenShift CLI (oc).

You installed the jq package.

You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using
the Bundled Installer (Linux, macOS, or Unix).

Procedure

1. Determine the routes to create.

To create a wildcard record, use *.apps.<cluster_name>.<domain_name>, where
<cluster_name> is your cluster name, and <domain_name> is the Route 53 base domain
for your OpenShift Container Platform cluster.

To create specific records, you must create a record for each route that your cluster uses, as
shown in the output of the following command:

Example output

2. Retrieve the Ingress Operator load balancer status and note the value of the external IP address
that it uses, which is shown in the EXTERNAL-IP column:

Example output

3. Locate the hosted zone ID for the load balancer:

$ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}
{"\n"}{end}{end}' routes

oauth-openshift.apps.<cluster_name>.<domain_name>
console-openshift-console.apps.<cluster_name>.<domain_name>
downloads-openshift-console.apps.<cluster_name>.<domain_name>
alertmanager-main-openshift-monitoring.apps.<cluster_name>.<domain_name>
prometheus-k8s-openshift-monitoring.apps.<cluster_name>.<domain_name>

$ oc -n openshift-ingress get service router-default

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
router-default LoadBalancer 172.30.62.215 ab3...28.us-east-2.elb.amazonaws.com
80:31499/TCP,443:30693/TCP 5m

$ aws elb describe-load-balancers | jq -r '.LoadBalancerDescriptions[] | select(.DNSName ==
"<external_ip>").CanonicalHostedZoneNameID' 1

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

563

https://docs.aws.amazon.com/cli/latest/userguide/install-bundle.html

1

1 2

1

2

For <external_ip>, specify the value of the external IP address of the Ingress Operator
load balancer that you obtained.

Example output

The output of this command is the load balancer hosted zone ID.

4. Obtain the public hosted zone ID for your cluster’s domain:

For <domain_name>, specify the Route 53 base domain for your OpenShift Container
Platform cluster.

Example output

The public hosted zone ID for your domain is shown in the command output. In this example, it is
Z3URY6TWQ91KVV.

5. Add the alias records to your private zone:

For <private_hosted_zone_id>, specify the value from the output of the CloudFormation
template for DNS and load balancing.

For <cluster_domain>, specify the domain or subdomain that you use with your

Z3AADJGX6KTTL2

$ aws route53 list-hosted-zones-by-name \
 --dns-name "<domain_name>" \ 1
 --query 'HostedZones[? Config.PrivateZone != `true` && Name ==
`<domain_name>.`].Id' 2
 --output text

/hostedzone/Z3URY6TWQ91KVV

$ aws route53 change-resource-record-sets --hosted-zone-id "<private_hosted_zone_id>" --
change-batch '{ 1
> "Changes": [
> {
> "Action": "CREATE",
> "ResourceRecordSet": {
> "Name": "\\052.apps.<cluster_domain>", 2
> "Type": "A",
> "AliasTarget":{
> "HostedZoneId": "<hosted_zone_id>", 3
> "DNSName": "<external_ip>.", 4
> "EvaluateTargetHealth": false
> }
> }
> }
>]
> }'

OpenShift Container Platform 4.19 Installing on AWS

564

3

4

1

2

3

4

For <cluster_domain>, specify the domain or subdomain that you use with your
OpenShift Container Platform cluster.

For <hosted_zone_id>, specify the public hosted zone ID for the load balancer that you
obtained.

For <external_ip>, specify the value of the external IP address of the Ingress Operator
load balancer. Ensure that you include the trailing period (.) in this parameter value.

6. Add the records to your public zone:

For <public_hosted_zone_id>, specify the public hosted zone for your domain.

For <cluster_domain>, specify the domain or subdomain that you use with your
OpenShift Container Platform cluster.

For <hosted_zone_id>, specify the public hosted zone ID for the load balancer that you
obtained.

For <external_ip>, specify the value of the external IP address of the Ingress Operator
load balancer. Ensure that you include the trailing period (.) in this parameter value.

4.4.17. Completing an AWS installation on user-provisioned infrastructure

After you start the OpenShift Container Platform installation on Amazon Web Service (AWS) user-
provisioned infrastructure, monitor the deployment to completion.

Prerequisites

You removed the bootstrap node for an OpenShift Container Platform cluster on user-
provisioned AWS infrastructure.

You installed the oc CLI.

$ aws route53 change-resource-record-sets --hosted-zone-id "<public_hosted_zone_id>"" --
change-batch '{ 1
> "Changes": [
> {
> "Action": "CREATE",
> "ResourceRecordSet": {
> "Name": "\\052.apps.<cluster_domain>", 2
> "Type": "A",
> "AliasTarget":{
> "HostedZoneId": "<hosted_zone_id>", 3
> "DNSName": "<external_ip>.", 4
> "EvaluateTargetHealth": false
> }
> }
> }
>]
> }'

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

565

1

Procedure

1. From the directory that contains the installation program, complete the cluster installation:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

Example output

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If
the cluster is shut down before renewing the certificates and the cluster is
later restarted after the 24 hours have elapsed, the cluster automatically
recovers the expired certificates. The exception is that you must manually
approve the pending node-bootstrapper certificate signing requests (CSRs)
to recover kubelet certificates. See the documentation for Recovering from
expired control plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they
are generated because the 24-hour certificate rotates from 16 to 22 hours
after the cluster is installed. By using the Ignition config files within 12 hours,
you can avoid installation failure if the certificate update runs during
installation.

2. Register your cluster on the Cluster registration page.

4.4.18. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The
kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the
correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container
Platform installation.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

$./openshift-install --dir <installation_directory> wait-for install-complete 1

INFO Waiting up to 40m0s for the cluster at https://api.mycluster.example.com:6443 to
initialize...
INFO Waiting up to 10m0s for the openshift-console route to be created...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 1s

OpenShift Container Platform 4.19 Installing on AWS

566

https://console.redhat.com/openshift/register

1

Procedure

1. Export the kubeadmin credentials by running the following command:

For <installation_directory>, specify the path to the directory that you stored the
installation files in.

2. Verify you can run oc commands successfully using the exported configuration by running the
following command:

Example output

4.4.19. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in
to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

You have access to the installation host.

You completed a cluster installation and all cluster Operators are available.

Procedure

1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the
installation host:

NOTE

Alternatively, you can obtain the kubeadmin password from the
<installation_directory>/.openshift_install.log log file on the installation host.

2. List the OpenShift Container Platform web console route:

NOTE

Alternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log log file on the installation host.

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1

$ oc whoami

system:admin

$ cat <installation_directory>/auth/kubeadmin-password

$ oc get routes -n openshift-console | grep 'console-openshift'

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

567

Example output

3. Navigate to the route detailed in the output of the preceding command in a web browser and
log in as the kubeadmin user.

Additional resources

Accessing the web console

Additional resources

See About remote health monitoring for more information about the Telemetry service

4.4.20. Additional resources

Working with stacks (AWS documentation)

4.4.21. Next steps

Validate an installation.

Customize your cluster.

Configure image streams for the Cluster Samples Operator and the must-gather tool.

Learn how to use Operator Lifecycle Manager in disconnected environments .

If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by
configuring additional trust stores.

If necessary, you can Remote health reporting .

If necessary, see Registering your disconnected cluster

If necessary, you can remove cloud provider credentials .

4.5. INSTALLING A CLUSTER WITH THE SUPPORT FOR CONFIGURING
MULTI-ARCHITECTURE COMPUTE MACHINES

An OpenShift Container Platform cluster with multi-architecture compute machines supports compute
machines with different architectures.

NOTE

When you have nodes with multiple architectures in your cluster, the architecture of your
image must be consistent with the architecture of the node. You must ensure that the
pod is assigned to the node with the appropriate architecture and that it matches the
image architecture. For more information on assigning pods to nodes, see Scheduling
workloads on clusters with multi-architecture compute machines.

You can install an AWS cluster with the support for configuring multi-architecture compute machines.

console console-openshift-console.apps.<cluster_name>.<base_domain> console
https reencrypt/Redirect None

OpenShift Container Platform 4.19 Installing on AWS

568

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#about-remote-health-monitoring
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/validation_and_troubleshooting/#validating-an-installation
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#available_cluster_customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#post-install-must-gather-disconnected
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/disconnected_environments/#olm-restricted-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/images/#images-configuration-cas_image-configuration
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#remote-health-reporting
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/support/#insights-operator-register-disconnected-cluster_remote-health-reporting
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#manually-removing-cloud-creds_changing-cloud-credentials-configuration
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#scheduling-workloads-on-clusters-with-multi-architecture-compute-machines

You can install an AWS cluster with the support for configuring multi-architecture compute machines.
After installing the AWS cluster, you can add multi-architecture compute machines to the cluster in the
following ways:

Adding 64-bit x86 compute machines to a cluster that uses 64-bit ARM control plane machines
and already includes 64-bit ARM compute machines. In this case, 64-bit x86 is considered the
secondary architecture.

Adding 64-bit ARM compute machines to a cluster that uses 64-bit x86 control plane machines
and already includes 64-bit x86 compute machines. In this case, 64-bit ARM is considered the
secondary architecture.

NOTE

Before adding a secondary architecture node to your cluster, it is recommended to install
the Multiarch Tuning Operator, and deploy a ClusterPodPlacementConfig custom
resource. For more information, see "Managing workloads on multi-architecture clusters
by using the Multiarch Tuning Operator".

4.5.1. Installing a cluster with multi-architecture support

You can install a cluster with the support for configuring multi-architecture compute machines.

Prerequisites

You installed the OpenShift CLI (oc).

You have the OpenShift Container Platform installation program.

You downloaded the pull secret for your cluster.

Procedure

1. Check that the openshift-install binary is using the multi payload by running the following
command:

Example output

The output must contain release architecture multi to indicate that the openshift-install
binary is using the multi payload.

2. Update the install-config.yaml file to configure the architecture for the nodes.

Sample install-config.yaml file with multi-architecture configuration

$./openshift-install version

./openshift-install 4.19.0
built from commit abc123etc
release image quay.io/openshift-release-dev/ocp-release@sha256:abc123wxyzetc
release architecture multi
default architecture amd64

apiVersion: v1

CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE

569

1

2

Specify the architecture of the worker node. You can set this field to either arm64 or
amd64.

Specify the control plane node architecture. You can set this field to either arm64 or
amd64.

Next steps

Deploying the cluster

Additional resources

Managing workloads on multi-architecture clusters by using the Multiarch Tuning Operator

baseDomain: example.openshift.com
compute:
- architecture: amd64 1
 hyperthreading: Enabled
 name: worker
 platform: {}
 replicas: 3
controlPlane:
 architecture: arm64 2
 name: master
 platform: {}
 replicas: 3
...

OpenShift Container Platform 4.19 Installing on AWS

570

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#multiarch-tuning-operator

CHAPTER 5. INSTALLING A THREE-NODE CLUSTER ON AWS
In OpenShift Container Platform version 4.19, you can install a three-node cluster on Amazon Web
Services (AWS). A three-node cluster consists of three control plane machines, which also act as
compute machines.

This type of cluster provides a smaller, more resource efficient cluster, for cluster administrators and
developers to use for testing, development, and production.

You can install a three-node cluster using either installer-provisioned or user-provisioned infrastructure.

NOTE

Deploying a three-node cluster using an AWS Marketplace image is not supported.

5.1. CONFIGURING A THREE-NODE CLUSTER

To configure a three-node cluster, set the number of worker nodes to 0 in the install-config.yaml file
before you deploy the cluster.

Setting the number of worker nodes to 0 ensures that the control plane machines are schedulable. This
allows application workloads to be scheduled to run from the control plane nodes.

NOTE

Because application workloads run from control plane nodes, additional subscriptions are
required, as the control plane nodes are considered to be compute nodes.

Prerequisites

You have an existing install-config.yaml file.

Procedure

1. Set the number of compute replicas to 0 in your install-config.yaml file, as shown in the
following compute stanza:

Example install-config.yaml file for a three-node cluster

2. If you are deploying a cluster with user-provisioned infrastructure:

After you create the Kubernetes manifest files, make sure that the
spec.mastersSchedulable parameter is set to true in cluster-scheduler-02-config.yml
file. You can locate this file in <installation_directory>/manifests. For more information,

apiVersion: v1
baseDomain: example.com
compute:
- name: worker
 platform: {}
 replicas: 0
...

CHAPTER 5. INSTALLING A THREE-NODE CLUSTER ON AWS

571

see "Creating the Kubernetes manifest and Ignition config files" in "Installing a cluster on
user-provisioned infrastructure in AWS by using CloudFormation templates".

Do not create additional worker nodes.

Example cluster-scheduler-02-config.yml file for a three-node cluster

5.2. ADDITIONAL RESOURCES

Installing a cluster on AWS with customizations

Installing a cluster on user-provisioned infrastructure in AWS by using CloudFormation
templates

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 creationTimestamp: null
 name: cluster
spec:
 mastersSchedulable: true
 policy:
 name: ""
status: {}

OpenShift Container Platform 4.19 Installing on AWS

572

CHAPTER 6. UNINSTALLING A CLUSTER ON AWS
You can remove a cluster that you deployed to Amazon Web Services (AWS).

6.1. REMOVING A CLUSTER THAT USES INSTALLER-PROVISIONED
INFRASTRUCTURE

You can remove a cluster that uses installer-provisioned infrastructure that you provisioned from your
cloud platform.

NOTE

After uninstallation, check your cloud provider for any resources that were not removed
properly, especially with user-provisioned infrastructure clusters. Some resources might
exist because either the installation program did not create the resource or could not
access the resource.

Prerequisites

You have a copy of the installation program that you used to deploy the cluster.

You have the files that the installation program generated when you created your cluster.

Procedure

1. From the directory that has the installation program on the computer that you used to install
the cluster, run the following command:

where:

<installation_directory>

Specify the path to the directory that you stored the installation files in.

--log-level info

To view different details, specify warn, debug, or error instead of info.

NOTE

You must specify the directory that includes the cluster definition files for
your cluster. The installation program requires the metadata.json file in this
directory to delete the cluster.

2. Optional: Delete the <installation_directory> directory and the OpenShift Container Platform
installation program.

6.2. DELETING AMAZON WEB SERVICES RESOURCES WITH THE
CLOUD CREDENTIAL OPERATOR UTILITY

After uninstalling an OpenShift Container Platform cluster that uses short-term credentials managed

$./openshift-install destroy cluster \
--dir <installation_directory> --log-level info

CHAPTER 6. UNINSTALLING A CLUSTER ON AWS

573

After uninstalling an OpenShift Container Platform cluster that uses short-term credentials managed
outside the cluster, you can use the CCO utility (ccoctl) to remove the Amazon Web Services resources
that ccoctl created during installation.

Prerequisites

Extract and prepare the ccoctl binary.

Uninstall an OpenShift Container Platform cluster on AWS that uses short-term credentials.

Procedure

Delete the AWS resources that ccoctl created by running the following command:

where:

<name>

Matches the name that was originally used to create and tag the cloud resources.

<aws_region>

is the AWS region in which to delete cloud resources.

Example output

$ ccoctl aws delete \
 --name=<name> \
ifdef::aws-sts
[--region=<aws_region>]

2021/04/08 17:50:41 Identity Provider object .well-known/openid-configuration deleted
from the bucket <name>-oidc
2021/04/08 17:50:42 Identity Provider object keys.json deleted from the bucket <name>-
oidc
2021/04/08 17:50:43 Identity Provider bucket <name>-oidc deleted
2021/04/08 17:51:05 Policy <name>-openshift-cloud-credential-operator-cloud-credential-
o associated with IAM Role <name>-openshift-cloud-credential-operator-cloud-credential-
o deleted
2021/04/08 17:51:05 IAM Role <name>-openshift-cloud-credential-operator-cloud-
credential-o deleted
2021/04/08 17:51:07 Policy <name>-openshift-cluster-csi-drivers-ebs-cloud-credentials
associated with IAM Role <name>-openshift-cluster-csi-drivers-ebs-cloud-credentials
deleted
2021/04/08 17:51:07 IAM Role <name>-openshift-cluster-csi-drivers-ebs-cloud-
credentials deleted
2021/04/08 17:51:08 Policy <name>-openshift-image-registry-installer-cloud-credentials
associated with IAM Role <name>-openshift-image-registry-installer-cloud-credentials
deleted
2021/04/08 17:51:08 IAM Role <name>-openshift-image-registry-installer-cloud-
credentials deleted
2021/04/08 17:51:09 Policy <name>-openshift-ingress-operator-cloud-credentials
associated with IAM Role <name>-openshift-ingress-operator-cloud-credentials deleted
2021/04/08 17:51:10 IAM Role <name>-openshift-ingress-operator-cloud-credentials
deleted
2021/04/08 17:51:11 Policy <name>-openshift-machine-api-aws-cloud-credentials
associated with IAM Role <name>-openshift-machine-api-aws-cloud-credentials deleted

OpenShift Container Platform 4.19 Installing on AWS

574

Verification

To verify that the resources are deleted, query AWS. For more information, refer to AWS
documentation.

6.3. DELETING A CLUSTER WITH A CONFIGURED AWS LOCAL ZONE
INFRASTRUCTURE

After you install a cluster on Amazon Web Services (AWS) into an existing Virtual Private Cloud (VPC),
and you set subnets for each Local Zone location, you can delete the cluster and any AWS resources
associated with it.

The example in the procedure assumes that you created a VPC and its subnets by using a
CloudFormation template.

Prerequisites

You know the name of the CloudFormation stacks, <local_zone_stack_name> and
<vpc_stack_name>, that were used during the creation of the network. You need the name of
the stack to delete the cluster.

You have access rights to the directory that contains the installation files that were created by
the installation program.

Your account includes a policy that provides you with permissions to delete the CloudFormation
stack.

Procedure

1. Change to the directory that contains the stored installation program, and delete the cluster by
using the destroy cluster command:

where:

<installation_directory>

Specify the directory that stored any files created by the installation program.

--log-level=debug

To view different log details, specify error, info, or warn instead of debug.

2. Delete the CloudFormation stack for the Local Zone subnet:

3. Delete the stack of resources that represent the VPC:

2021/04/08 17:51:11 IAM Role <name>-openshift-machine-api-aws-cloud-credentials
deleted
2021/04/08 17:51:39 Identity Provider with ARN arn:aws:iam::<aws_account_id>:oidc-
provider/<name>-oidc.s3.<aws_region>.amazonaws.com deleted

$./openshift-install destroy cluster --dir <installation_directory> \
 --log-level=debug

$ aws cloudformation delete-stack --stack-name <local_zone_stack_name>

CHAPTER 6. UNINSTALLING A CLUSTER ON AWS

575

Verification

Check that you removed the stack resources by issuing the following commands in the AWS CLI.
The AWS CLI outputs that no template component exists.

6.4. ADDITIONAL RESOURCES

Working with stacks(AWS documentation)

Opt into AWS Local Zones(AWS documentation)

AWS Local Zones available locations(AWS documentation)

AWS Local Zones features(AWS documentation)

$ aws cloudformation delete-stack --stack-name <vpc_stack_name>

$ aws cloudformation describe-stacks --stack-name <local_zone_stack_name>

$ aws cloudformation describe-stacks --stack-name <vpc_stack_name>

OpenShift Container Platform 4.19 Installing on AWS

576

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#opt-in-local-zone
https://aws.amazon.com/about-aws/global-infrastructure/localzones/locations
https://aws.amazon.com/about-aws/global-infrastructure/localzones/features

CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS
FOR AWS

Before you deploy an OpenShift Container Platform cluster on AWS, you provide parameters to
customize your cluster and the platform that hosts it. When you create the install-config.yaml file, you
provide values for the required parameters through the command line. You can then modify the install-
config.yaml file to customize your cluster further.

7.1. AVAILABLE INSTALLATION CONFIGURATION PARAMETERS FOR
AWS

The following tables specify the required, optional, and AWS-specific installation configuration
parameters that you can set as part of the installation process.

IMPORTANT

After installation, you cannot change these parameters in the install-config.yaml file.

7.1.1. Required configuration parameters

Required installation configuration parameters are described in the following table:

Table 7.1. Required parameters

Parameter Description

apiVersion:
The API version for the install-config.yaml
content. The current version is v1. The installation
program might also support older API versions.

Value: String

baseDomain:
The base domain of your cloud provider. The base
domain is used to create routes to your OpenShift
Container Platform cluster components. The full
DNS name for your cluster is a combination of the
baseDomain and metadata.name parameter
values that uses the <metadata.name>.
<baseDomain> format.

Value: A fully-qualified domain or subdomain name,
such as example.com.

metadata:
Kubernetes resource ObjectMeta, from which only
the name parameter is consumed.

Value: Object

CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS FOR AWS

577

metadata:
 name:

The name of the cluster. DNS records for the cluster
are all subdomains of {{.metadata.name}}.
{{.baseDomain}}.

Value: String of lowercase letters, hyphens (-), and
periods (.), such as dev.

platform:
The configuration for the specific platform upon
which to perform the installation: aws, baremetal,
azure, gcp, ibmcloud, nutanix, openstack,
powervs, vsphere, or {}. For additional information
about platform.<platform> parameters, consult
the table for your specific platform that follows.

Value: Object

pullSecret:
Get a pull secret from Red Hat OpenShift Cluster
Manager to authenticate downloading container
images for OpenShift Container Platform
components from services such as Quay.io.

Value:

Parameter Description

7.1.2. Network configuration parameters

You can customize your installation configuration based on the requirements of your existing network
infrastructure. For example, you can expand the IP address block for the cluster network or configure
different IP address blocks than the defaults.

Only IPv4 addresses are supported.

Table 7.2. Network parameters

{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

OpenShift Container Platform 4.19 Installing on AWS

578

https://console.redhat.com/openshift/install/pull-secret

Parameter Description

networking:
The configuration for the cluster network.

Value: Object

NOTE

You cannot change parameters
specified by the networking object
after installation.

networking:
 networkType:

The Red Hat OpenShift Networking network plugin
to install.

Value:OVNKubernetes. OVNKubernetes is a
Container Network Interface (CNI) plugin for Linux
networks and hybrid networks that contain both
Linux and Windows servers. The default value is
OVNKubernetes.

networking:
 clusterNetwork:

The IP address blocks for pods.

The default value is 10.128.0.0/14 with a host prefix
of /23.

If you specify multiple IP address blocks, the blocks
must not overlap.

Value: An array of objects. For example:

networking:
 clusterNetwork:
 cidr:

Required if you use networking.clusterNetwork.
An IP address block.

An IPv4 network.

Value: An IP address block in Classless Inter-Domain
Routing (CIDR) notation. The prefix length for an
IPv4 block is between 0 and 32.

networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23

CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS FOR AWS

579

networking:
 clusterNetwork:
 hostPrefix:

The subnet prefix length to assign to each individual
node. For example, if hostPrefix is set to 23 then
each node is assigned a /23 subnet out of the given
cidr. A hostPrefix value of 23 provides 510 (2^(32
- 23) - 2) pod IP addresses.

Value: A subnet prefix.

The default value is 23.

networking:
 serviceNetwork:

The IP address block for services. The default value is
172.30.0.0/16.

The OVN-Kubernetes network plugins supports only
a single IP address block for the service network.

Value: An array with an IP address block in CIDR
format. For example:

networking:
 machineNetwork:

The IP address blocks for machines.

If you specify multiple IP address blocks, the blocks
must not overlap.

Value: An array of objects. For example:

Parameter Description

networking:
 serviceNetwork:
 - 172.30.0.0/16

networking:
 machineNetwork:
 - cidr: 10.0.0.0/16

OpenShift Container Platform 4.19 Installing on AWS

580

networking:
 machineNetwork:
 cidr:

Required if you use
networking.machineNetwork. An IP address
block. The default value is 10.0.0.0/16 for all
platforms other than libvirt and IBM Power® Virtual
Server. For libvirt, the default value is
192.168.126.0/24. For IBM Power® Virtual Server,
the default value is 192.168.0.0/24.

Value: An IP network block in CIDR notation.

For example, 10.0.0.0/16.

NOTE

Set the
networking.machineNetwork to
match the CIDR that the preferred
NIC resides in.

networking:
 ovnKubernetesConfig:
 ipv4:
 internalJoinSubnet:

Configures the IPv4 join subnet that is used internally
by ovn-kubernetes. This subnet must not overlap
with any other subnet that OpenShift Container
Platform is using, including the node network. The
size of the subnet must be larger than the number of
nodes. You cannot change the value after installation.

Value: An IP network block in CIDR notation. The
default value is 100.64.0.0/16.

Parameter Description

7.1.3. Optional configuration parameters

Optional installation configuration parameters are described in the following table:

Table 7.3. Optional parameters

Parameter Description

additionalTrustBundle:
A PEM-encoded X.509 certificate bundle that is
added to the nodes' trusted certificate store. This
trust bundle might also be used when a proxy has
been configured.

Value: String

CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS FOR AWS

581

capabilities:
Controls the installation of optional core cluster
components. You can reduce the footprint of your
OpenShift Container Platform cluster by disabling
optional components. For more information, see the
"Cluster capabilities" page in Installing.

Value: String array

capabilities:
 baselineCapabilitySet:

Selects an initial set of optional capabilities to enable.
Valid values are None, v4.11, v4.12 and vCurrent.
The default value is vCurrent.

Value: String

capabilities:
 additionalEnabledCapabilities:

Extends the set of optional capabilities beyond what
you specify in baselineCapabilitySet. You can
specify multiple capabilities in this parameter.

Value: String array

cpuPartitioningMode:
Enables workload partitioning, which isolates
OpenShift Container Platform services, cluster
management workloads, and infrastructure pods to
run on a reserved set of CPUs. You can only enable
workload partitioning during installation. You cannot
disable it after installation. While this field enables
workload partitioning, it does not configure workloads
to use specific CPUs. For more information, see the
Workload partitioning page in the Scalability and
Performance section.

Value: None or AllNodes. None is the default
value.

compute:
The configuration for the machines that comprise the
compute nodes.

Value: Array of MachinePool objects.

Parameter Description

OpenShift Container Platform 4.19 Installing on AWS

582

compute:
 architecture:

Determines the instruction set architecture of the
machines in the pool. Currently, clusters with varied
architectures are not supported. All pools must
specify the same architecture. Valid values are
amd64 and arm64.

Not all installation options support the 64-bit ARM
architecture. To verify if your installation option is
supported on your platform, see Supported
installation methods for different platforms in
Selecting a cluster installation method and preparing
it for users.

Value: String

compute:
 hyperthreading:

Whether to enable or disable simultaneous
multithreading, or hyperthreading, on compute
machines. By default, simultaneous multithreading is
enabled to increase the performance of your
machines' cores.

IMPORTANT

If you disable simultaneous
multithreading, ensure that your
capacity planning accounts for the
dramatically decreased machine
performance.

Value: Enabled or Disabled

compute:
 name:

Required if you use compute. The name of the
machine pool.

Value: worker

compute:
 platform:

Required if you use compute. Use this parameter to
specify the cloud provider to host the worker
machines. This parameter value must match the
controlPlane.platform parameter value.

Value:aws, azure, gcp, ibmcloud, nutanix,
openstack, powervs, vsphere, or {}

compute:
 replicas:

The number of compute machines, which are also
known as worker machines, to provision.

Value: A positive integer greater than or equal to 2.
The default value is 3.

Parameter Description

CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS FOR AWS

583

featureSet:
Enables the cluster for a feature set. A feature set is
a collection of OpenShift Container Platform
features that are not enabled by default. For more
information about enabling a feature set during
installation, see "Enabling features using feature
gates".

Value: String. The name of the feature set to enable,
such as TechPreviewNoUpgrade.

controlPlane:
The configuration for the machines that form the
control plane.

Value: Array of MachinePool objects.

controlPlane:
 architecture:

Determines the instruction set architecture of the
machines in the pool. Currently, clusters with varied
architectures are not supported. All pools must
specify the same architecture. Valid values are
amd64 and arm64.

Not all installation options support the 64-bit ARM
architecture. To verify if your installation option is
supported on your platform, see Supported
installation methods for different platforms in
Selecting a cluster installation method and preparing
it for users.

Value: String

controlPlane:
 hyperthreading:

Whether to enable or disable simultaneous
multithreading, or hyperthreading, on control
plane machines. By default, simultaneous
multithreading is enabled to increase the
performance of your machines' cores.

IMPORTANT

If you disable simultaneous
multithreading, ensure that your
capacity planning accounts for the
dramatically decreased machine
performance.

Value: Enabled or Disabled

controlPlane:
 name:

Required if you use controlPlane. The name of the
machine pool.

Value: master

Parameter Description

OpenShift Container Platform 4.19 Installing on AWS

584

controlPlane:
 platform:

Required if you use controlPlane. Use this
parameter to specify the cloud provider that hosts
the control plane machines. This parameter value
must match the compute.platform parameter
value.

Value:aws, azure, gcp, ibmcloud, nutanix,
openstack, powervs, vsphere, or {}

controlPlane:
 replicas:

The number of control plane machines to provision.

Value: Supported values are 3, or 1 when deploying
single-node OpenShift.

credentialsMode:
The Cloud Credential Operator (CCO) mode. If no
mode is specified, the CCO dynamically tries to
determine the capabilities of the provided
credentials, with a preference for mint mode on the
platforms where multiple modes are supported.

NOTE

Not all CCO modes are supported
for all cloud providers. For more
information about CCO modes, see
the "Managing cloud provider
credentials" entry in the
Authentication and authorization
content.

Value: Mint, Passthrough, Manual or an empty
string ("").

Parameter Description

CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS FOR AWS

585

fips:
Enable or disable FIPS mode. The default is false
(disabled). If you enable FIPS mode, the Red Hat
Enterprise Linux CoreOS (RHCOS) machines that
OpenShift Container Platform runs on bypass the
default Kubernetes cryptography suite and use the
cryptography modules that RHCOS provides instead.

IMPORTANT

To enable FIPS mode for your
cluster, you must run the installation
program from a Red Hat Enterprise
Linux (RHEL) computer configured
to operate in FIPS mode. For more
information about configuring FIPS
mode on RHEL, see Switching RHEL
to FIPS mode.

When running Red Hat Enterprise
Linux (RHEL) or Red Hat Enterprise
Linux CoreOS (RHCOS) booted in
FIPS mode, OpenShift Container
Platform core components use the
RHEL cryptographic libraries that
have been submitted to NIST for
FIPS 140-2/140-3 Validation on only
the x86_64, ppc64le, and s390x
architectures.

IMPORTANT

If you are using Azure File storage,
you cannot enable FIPS mode.

Value: false or true

imageContentSources:
Sources and repositories for the release-image
content.

Value: Array of objects. Includes a source and,
optionally, mirrors, as described in the following
rows of this table.

imageContentSources:
 source:

Required if you use imageContentSources.
Specify the repository that users refer to, for
example, in image pull specifications.

Value: String

imageContentSources:
 mirrors:

Specify one or more repositories that might also
contain the same images.

Value: Array of strings

Parameter Description

OpenShift Container Platform 4.19 Installing on AWS

586

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/security_hardening/switching-rhel-to-fips-mode_security-hardening

platform:
 aws:
 lbType:

Required to set the NLB load balancer type in AWS.
Valid values are Classic or NLB. If no value is
specified, the installation program defaults to
Classic. The installation program sets the value
provided here in the ingress cluster configuration
object. If you do not specify a load balancer type for
other Ingress Controllers, they use the type set in this
parameter.

Value: Classic or NLB. The default value is
Classic.

publish:
How to publish or expose the user-facing endpoints
of your cluster, such as the Kubernetes API,
OpenShift routes.

Value:Internal or External. To deploy a private
cluster that cannot be accessed from the internet,
set the publish parameter to Internal. The default
value is External.

sshKey:
The SSH key to authenticate access to your cluster
machines.

NOTE

For production OpenShift Container
Platform clusters on which you want
to perform installation debugging or
disaster recovery, specify an SSH
key that your ssh-agent process
uses.

Value: For example, sshKey: ssh-ed25519
AAAA...

Parameter Description

NOTE

If your AWS account has service control policies (SCP) enabled, you must configure the
credentialsMode parameter to Mint, Passthrough, or Manual.

IMPORTANT

Setting this parameter to Manual enables alternatives to storing administrator-level
secrets in the kube-system project, which require additional configuration steps. For
more information, see "Alternatives to storing administrator-level secrets in the kube-
system project".

7.1.4. Optional AWS configuration parameters

CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS FOR AWS

587

Optional AWS configuration parameters are described in the following table:

Table 7.4. Optional AWS parameters

Parameter Description

compute:
 platform:
 aws:
 amiID:

The AWS AMI used to boot compute machines for
the cluster. This is required for regions that require a
custom RHCOS AMI.

Value: Any published or custom RHCOS AMI that
belongs to the set AWS region. See RHCOS AMIs for
AWS infrastructure for available AMI IDs.

compute:
 platform:
 aws:
 iamProfile:

The name of the IAM instance profile that you use for
the machine. If you want the installation program to
create the IAM instance profile for you, do not use
the iamProfile parameter. You can specify either
the iamProfile or iamRole parameter, but you
cannot specify both.

Value: String

compute:
 platform:
 aws:
 iamRole:

The name of the IAM instance role that you use for
the machine. When you specify an IAM role, the
installation program creates an instance profile. If
you want the installation program to create the IAM
instance role for you, do not select the iamRole
parameter. You can specify either the iamRole or
iamProfile parameter, but you cannot specify both.

Value: String

compute:
 platform:
 aws:
 rootVolume:
 iops:

The Input/Output Operations Per Second (IOPS)
that is reserved for the root volume.

Value: Integer, for example 4000.

compute:
 platform:
 aws:
 rootVolume:
 size:

The size in GiB of the root volume.

Value: Integer, for example 500.

OpenShift Container Platform 4.19 Installing on AWS

588

compute:
 platform:
 aws:
 rootVolume:
 type:

The type of the root volume.

Value: Valid AWS EBS volume type, such as io1.

compute:
 platform:
 aws:
 rootVolume:
 kmsKeyARN:

The Amazon Resource Name (key ARN) of a KMS
key. This is required to encrypt operating system
volumes of worker nodes with a specific KMS key.

Value: Valid key ID or the key ARN.

compute:
 platform:
 aws:
 type:

The EC2 instance type for the compute machines.

Value: Valid AWS instance type, such as
m4.2xlarge. See the "Tested instance types for
AWS" table on the "Installing a cluster on AWS with
customizations" page.

compute:
 platform:
 aws:
 zones:

The availability zones where the installation program
creates machines for the compute machine pool. If
you provide your own VPC, you must provide a
subnet in that availability zone.

Value: A list of valid AWS availability zones, such as
us-east-1c, in a YAML sequence.

controlPlane:
 platform:
 aws:
 amiID:

The AWS AMI used to boot control plane machines
for the cluster. This is required for regions that
require a custom RHCOS AMI.

Value: Any published or custom RHCOS AMI that
belongs to the set AWS region. See RHCOS AMIs for
AWS infrastructure for available AMI IDs.

controlPlane:
 platform:
 aws:
 iamProfile:

The name of the IAM instance profile that you use for
the machine. If you want the installation program to
create the IAM instance profile for you, do not use
the iamProfile parameter. You can specify either
the iamProfile or iamRole parameter, but you
cannot specify both.

Value: String

Parameter Description

CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS FOR AWS

589

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/kms/latest/developerguide/find-cmk-id-arn.html
https://yaml.org/spec/1.2/spec.html#sequence//

controlPlane:
 platform:
 aws:
 iamRole:

The name of the IAM instance role that you use for
the machine. When you specify an IAM role, the
installation program creates an instance profile. If
you want the installation program to create the IAM
instance role for you, do not use the iamRole
parameter. You can specify either the iamRole or
iamProfile parameter, but you cannot specify both.

Value: String

controlPlane:
 platform:
 aws:
 rootVolume:
 iops:

The Input/Output Operations Per Second (IOPS)
that is reserved for the root volume on control plane
machines.

Value: Integer, for example 4000.

controlPlane:
 platform:
 aws:
 rootVolume:
 size:

The size in GiB of the root volume for control plane
machines.

Value: Integer, for example 500.

controlPlane:
 platform:
 aws:
 rootVolume:
 type:

The type of the root volume for control plane
machines.

Value: Valid AWS EBS volume type, such as io1.

controlPlane:
 platform:
 aws:
 rootVolume:
 kmsKeyARN:

The Amazon Resource Name (key ARN) of a KMS
key. This is required to encrypt operating system
volumes of control plane nodes with a specific KMS
key.

Value: Valid key ID and the key ARN.

controlPlane:
 platform:
 aws:
 type:

The EC2 instance type for the control plane
machines.

Value: Valid AWS instance type, such as m6i.xlarge.
See the "Tested instance types for AWS" table on the
"Installing a cluster on AWS with customizations"
page.

Parameter Description

OpenShift Container Platform 4.19 Installing on AWS

590

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/kms/latest/developerguide/find-cmk-id-arn.html

controlPlane:
 platform:
 aws:
 zones:

The availability zones where the installation program
creates machines for the control plane machine pool.

Value: A list of valid AWS availability zones, such as
us-east-1c, in a YAML sequence.

platform:
 aws:
 amiID:

The AWS AMI used to boot all machines for the
cluster. If set, the AMI must belong to the same
region as the cluster. This is required for regions that
require a custom RHCOS AMI.

Value: Any published or custom RHCOS AMI that
belongs to the set AWS region. See RHCOS AMIs for
AWS infrastructure for available AMI IDs.

platform:
 aws:
 hostedZone:

An existing Route 53 private hosted zone for the
cluster. You can only use a pre-existing hosted zone
when also supplying your own VPC. The hosted zone
must already be associated with the user-provided
VPC before installation. Also, the domain of the
hosted zone must be the cluster domain or a parent
of the cluster domain. If undefined, the installation
program creates a new hosted zone.

Value: String, for example Z3URY6TWQ91KVV.

platform:
 aws:
 hostedZoneRole:

An Amazon Resource Name (ARN) for an existing
IAM role in the account containing the specified
hosted zone. The installation program and cluster
operators assume this role when performing
operations on the hosted zone. Use this parameter
only when you are installing a cluster into a shared
VPC.

Value: String, for example
arn:aws:iam::1234567890:role/shared-vpc-
role.

Parameter Description

CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS FOR AWS

591

https://yaml.org/spec/1.2/spec.html#sequence//

platform:
 aws:
 region:

The AWS region that the installation program creates
all cluster resources in.

Value: Any valid AWS region, such as us-east-1. You
can use the AWS CLI to access the regions available
based on your selected instance type by running the
following command:

IMPORTANT

When running on ARM based AWS
instances, ensure that you enter a
region where AWS Graviton
processors are available. See Global
availability map in the AWS
documentation. Currently, AWS
Graviton3 processors are only
available in some regions.

platform:
 aws:
 serviceEndpoints:
 - name:
 url:

The AWS service endpoint name and URL. Custom
endpoints are only required for cases where
alternative AWS endpoints, such as FIPS, must be
used. Custom API endpoints can be specified for
EC2, S3, IAM, Elastic Load Balancing, Tagging, Route
53, and STS AWS services.

Value: Valid AWS service endpoint name and valid
AWS service endpoint URL.

platform:
 aws:
 userTags:

A map of keys and values that the installation
program adds as tags to all resources that it creates.

Value: Any valid YAML map, such as key value pairs
in the <key>: <value> format. For more
information about AWS tags, see Tagging Your
Amazon EC2 Resources in the AWS documentation.

NOTE

You can add up to 25 user-defined
tags during installation. The
remaining 25 tags are reserved for
OpenShift Container Platform.

Parameter Description

$ aws ec2 describe-instance-type-offerings --
filters Name=instance-
type,Values=c7g.xlarge

OpenShift Container Platform 4.19 Installing on AWS

592

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/ec2/graviton/#Global_availability
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html

platform:
 aws:
 propagateUserTags:

A flag that directs in-cluster Operators to include the
specified user tags in the tags of the AWS resources
that the Operators create.

Value: Boolean values, for example true or false.

platform:
 aws:
 publicIpv4Pool:

The public IPv4 pool ID that is used to allocate
Elastic IPs (EIPs) when publish is set to External.
You must provision and advertise the pool in the
same AWS account and region of the cluster. You
must ensure that you have 2n + 1 IPv4 addresses
available in the pool where n is the total number of
AWS zones used to deploy the Network Load
Balancer (NLB) for API, NAT gateways, and
bootstrap node. For more information about bring
your own IP addresses (BYOIP) in AWS, see Onboard
your BYOIP.

Value: A valid public IPv4 pool id

NOTE

You can enable BYOIP only for
customized installations that do not
have any network restrictions.

platform:
 aws:
 preserveBootstrapIgnition:

Prevents the S3 bucket from being deleted after
completion of bootstrapping.

Value: true or false. The default value is false,
which results in the S3 bucket being deleted.

Parameter Description

CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS FOR AWS

593

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-byoip.html#byoip-onboard
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-public-ipv4-pools.html

platform:
 aws:
 vpc:
 subnets:

A list of subnets in an existing VPC to be used in
place of automatically created subnets. You specify a
subnet by providing the subnet ID and an optional list
of roles that apply to that subnet. If you specify
subnet IDs but do not specify roles for any subnet,
the subnets' roles are decided automatically. If you
do not specify any roles, you must ensure that any
other subnets in your VPC have the
kubernetes.io/cluster/.: . or
kubernetes.io/cluster/unmanaged: true tags.

The subnets must be part of the same
machineNetwork[].cidr ranges that you specify.

For a public cluster, specify a public and a private
subnet for each availability zone.

For a private cluster, specify a private subnet for
each availability zone.

For clusters that use AWS Local Zones, you must add
AWS Local Zone subnets to this list to ensure edge
machine pool creation.

Value: List of pairs of id and roles parameters.

platform:
 aws:
 vpc:
 subnets:
 - id:

The ID of an existing subnet to be used in place of a
subnet created by the installation program.

Value: String. The subnet ID must be a unique ID
containing only alphanumeric characters, beginning
with "subnet-". The ID must be exactly 24 characters
long.

Parameter Description

OpenShift Container Platform 4.19 Installing on AWS

594

platform:
 aws:
 vpc:
 subnets:
 - id:
 roles:
 - type:

One or more roles that apply to the subnet specified
by platform.aws.vpc.subnets.id. If you specify a
role for any subnet, each subnet must have at least
one assigned role, and the ClusterNode,
IngressControllerLB,
ControlPlaneExternalLB, BootstrapNode, and
ControlPlaneInternalLB roles must be assigned
to at least one subnet. However, if the cluster scope
is internal, then the ControlPlaneExternalLB role
is not required.

You can only assign the EdgeNode role to subnets
in AWS Local Zones.

Value: List of one or more role types. Valid values
include ClusterNode, EdgeNode,
BootstrapNode, IngressControllerLB,
ControlPlaneExternalLB, and
ControlPlaneInternalLB.

Parameter Description

CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS FOR AWS

595

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE
TASKS

After installing OpenShift Container Platform on Amazon Web Services (AWS), you can further
configure AWS Local Zones or Wavelength Zones and an edge compute pool.

8.1. EXTEND EXISTING CLUSTERS TO USE AWS LOCAL ZONES OR
WAVELENGTH ZONES

As a post-installation task, you can extend an existing OpenShift Container Platform cluster on Amazon
Web Services (AWS) to use AWS Local Zones or Wavelength Zones.

Extending nodes to Local Zones or Wavelength Zones locations comprises the following steps:

Adjusting the cluster-network maximum transmission unit (MTU).

Opting in the Local Zones or Wavelength Zones group to AWS Local Zones or Wavelength
Zones.

Creating a subnet in the existing VPC for a Local Zones or Wavelength Zones location.

IMPORTANT

Before you extend an existing OpenShift Container Platform cluster on AWS to
use Local Zones or Wavelength Zones, check that the existing VPC contains
available Classless Inter-Domain Routing (CIDR) blocks. These blocks are
needed for creating the subnets.

Creating the machine set manifest, and then creating a node in each Local Zone or Wavelength
Zone location.

Local Zones only: Adding the permission ec2:ModifyAvailabilityZoneGroup to the Identity and
Access Management (IAM) user or role, so that the required network resources can be created.
For example:

Example of an additional IAM policy for AWS Local Zones deployments

Wavelength Zone only: Adding the permissions ec2:ModifyAvailabilityZoneGroup,
ec2:CreateCarrierGateway, and ec2:DeleteCarrierGateway to the Identity and Access
Management (IAM) user or role, so that the required network resources can be created. For

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:ModifyAvailabilityZoneGroup"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

OpenShift Container Platform 4.19 Installing on AWS

596

example:

Example of an additional IAM policy for AWS Wavelength Zones deployments

Additional resources

AWS Local Zones features (AWS documentation)

AWS Wavelength features (AWS documentation)

8.1.1. About edge compute pools

Edge compute nodes are tainted compute nodes that run in AWS Local Zones or Wavelength Zones
locations.

When deploying a cluster that uses Local Zones or Wavelength Zones, consider the following points:

Amazon EC2 instances in the Local Zones or Wavelength Zones are more expensive than
Amazon EC2 instances in the Availability Zones.

The latency is lower between the applications running in AWS Local Zones or Wavelength Zones
and the end user. A latency impact exists for some workloads if, for example, ingress traffic is
mixed between Local Zones or Wavelength Zones and Availability Zones.

IMPORTANT

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DeleteCarrierGateway",
 "ec2:CreateCarrierGateway"
],
 "Resource": "*"
 },
 {
 "Action": [
 "ec2:ModifyAvailabilityZoneGroup"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

597

https://aws.amazon.com/about-aws/global-infrastructure/localzones/features/
https://aws.amazon.com/wavelength/features/

IMPORTANT

Generally, the maximum transmission unit (MTU) between an Amazon EC2 instance in a
Local Zones or Wavelength Zones and an Amazon EC2 instance in the Region is 1300.
The cluster network MTU must be always less than the EC2 MTU to account for the
overhead. The specific overhead is determined by the network plugin. For example:
OVN-Kubernetes has an overhead of 100 bytes.

The network plugin can provide additional features, such as IPsec, that also affect the
MTU sizing.

You can access the following resources to learn more about a respective zone type:

See How Local Zones work in the AWS documentation.

See How AWS Wavelength work in the AWS documentation.

OpenShift Container Platform 4.12 introduced a new compute pool, edge, that is designed for use in
remote zones. The edge compute pool configuration is common between AWS Local Zones or
Wavelength Zones locations. Because of the type and size limitations of resources like EC2 and EBS on
Local Zones or Wavelength Zones resources, the default instance type can vary from the traditional
compute pool.

The default Elastic Block Store (EBS) for Local Zones or Wavelength Zones locations is gp2, which
differs from the non-edge compute pool. The instance type used for each Local Zones or Wavelength
Zones on an edge compute pool also might differ from other compute pools, depending on the instance
offerings on the zone.

The edge compute pool creates new labels that developers can use to deploy applications onto AWS
Local Zones or Wavelength Zones nodes. The new labels are:

node-role.kubernetes.io/edge=''

Local Zones only: machine.openshift.io/zone-type=local-zone

Wavelength Zones only: machine.openshift.io/zone-type=wavelength-zone

machine.openshift.io/zone-group=$ZONE_GROUP_NAME

By default, the machine sets for the edge compute pool define the taint of NoSchedule to prevent
other workloads from spreading on Local Zones or Wavelength Zones instances. Users can only run user
workloads if they define tolerations in the pod specification.

8.2. CHANGING THE CLUSTER NETWORK MTU TO SUPPORT LOCAL
ZONES OR WAVELENGTH ZONES

You might need to change the maximum transmission unit (MTU) value for the cluster network so that
your cluster infrastructure can support Local Zones or Wavelength Zones subnets.

8.2.1. About the cluster MTU

During installation, the cluster network MTU is set automatically based on the primary network interface
MTU of cluster nodes. You do not usually need to override the detected MTU.

You might want to change the MTU of the cluster network for one of the following reasons:

OpenShift Container Platform 4.19 Installing on AWS

598

https://docs.aws.amazon.com/local-zones/latest/ug/how-local-zones-work.html
https://docs.aws.amazon.com/wavelength/latest/developerguide/how-wavelengths-work.html

The MTU detected during cluster installation is not correct for your infrastructure.

Your cluster infrastructure now requires a different MTU, such as from the addition of nodes
that need a different MTU for optimal performance.

Only the OVN-Kubernetes network plugin supports changing the MTU value.

8.2.1.1. Service interruption considerations

When you initiate a maximum transmission unit (MTU) change on your cluster the following effects
might impact service availability:

At least two rolling reboots are required to complete the migration to a new MTU. During this
time, some nodes are not available as they restart.

Specific applications deployed to the cluster with shorter timeout intervals than the absolute
TCP timeout interval might experience disruption during the MTU change.

8.2.1.2. MTU value selection

When planning your maximum transmission unit (MTU) migration there are two related but distinct MTU
values to consider.

Hardware MTU: This MTU value is set based on the specifics of your network infrastructure.

Cluster network MTU: This MTU value is always less than your hardware MTU to account for
the cluster network overlay overhead. The specific overhead is determined by your network
plugin. For OVN-Kubernetes, the overhead is 100 bytes.

If your cluster requires different MTU values for different nodes, you must subtract the overhead value
for your network plugin from the lowest MTU value that is used by any node in your cluster. For example,
if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this
value to 1400.

IMPORTANT

To avoid selecting an MTU value that is not acceptable by a node, verify the maximum
MTU value (maxmtu) that is accepted by the network interface by using the ip -d link
command.

8.2.1.3. How the migration process works

The following table summarizes the migration process by segmenting between the user-initiated steps
in the process and the actions that the migration performs in response.

Table 8.1. Live migration of the cluster MTU

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

599

User-initiated steps OpenShift Container Platform activity

Set the following values in the Cluster Network
Operator configuration:

spec.migration.mtu.machine.to

spec.migration.mtu.network.from

spec.migration.mtu.network.to

Cluster Network Operator (CNO): Confirms that
each field is set to a valid value.

The mtu.machine.to must be set to either
the new hardware MTU or to the current
hardware MTU if the MTU for the hardware
is not changing. This value is transient and is
used as part of the migration process. If you
set a hardware MTU different from the
current value, you must manually configure
it to persist. Use methods such as a machine
config, DHCP setting, or kernel command
line.

The mtu.network.from field must equal
the
network.status.clusterNetworkMTU
field, which is the current MTU of the cluster
network.

The mtu.network.to field must be set to
the target cluster network MTU. It must be
lower than the hardware MTU to allow for
the overlay overhead of the network plugin.
For OVN-Kubernetes, the overhead is 100
bytes.

If the values provided are valid, the CNO writes out a
new temporary configuration with the MTU for the
cluster network set to the value of the
mtu.network.to field.

Machine Config Operator (MCO): Performs a
rolling reboot of each node in the cluster.

Reconfigure the MTU of the primary network
interface for the nodes on the cluster. You can use
one of the following methods to accomplish this:

Deploying a new NetworkManager
connection profile with the MTU change

Changing the MTU through a DHCP server
setting

Changing the MTU through boot
parameters

N/A

Set the mtu value in the CNO configuration for the
network plugin and set spec.migration to null.

Machine Config Operator (MCO): Performs a
rolling reboot of each node in the cluster with the
new MTU configuration.

8.2.2. Changing the cluster network MTU

As a cluster administrator, you can increase or decrease the maximum transmission unit (MTU) for your

OpenShift Container Platform 4.19 Installing on AWS

600

As a cluster administrator, you can increase or decrease the maximum transmission unit (MTU) for your
cluster.

IMPORTANT

You cannot roll back an MTU value for nodes during the MTU migration process, but you
can roll back the value after the MTU migration process completes.

The migration is disruptive and nodes in your cluster might be temporarily unavailable as
the MTU update takes effect.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster using an account with cluster-admin permissions.

You have identified the target MTU for your cluster. The MTU for the OVN-Kubernetes network
plugin must be set to 100 less than the lowest hardware MTU value in your cluster.

If your nodes are physical machines, ensure that the cluster network and the connected network
switches support jumbo frames.

If your nodes are virtual machines (VMs), ensure that the hypervisor and the connected network
switches support jumbo frames.

8.2.2.1. Checking the current cluster MTU value

Use the following procedure to obtain the current maximum transmission unit (MTU) for the cluster
network.

Procedure

To obtain the current MTU for the cluster network, enter the following command:

Example output

8.2.2.2. Beginning the MTU migration

Use the following procedure to start the MTU migration.

$ oc describe network.config cluster

...
Status:
 Cluster Network:
 Cidr: 10.217.0.0/22
 Host Prefix: 23
 Cluster Network MTU: 1400
 Network Type: OVNKubernetes
 Service Network:
 10.217.4.0/23
...

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

601

Procedure

1. To begin the MTU migration, specify the migration configuration by entering the following
command. The Machine Config Operator performs a rolling reboot of the nodes in the cluster in
preparation for the MTU change.

where:

<overlay_from>

Specifies the current cluster network MTU value.

<overlay_to>

Specifies the target MTU for the cluster network. This value is set relative to the value of
<machine_to>. For OVN-Kubernetes, this value must be 100 less than the value of
<machine_to>.

<machine_to>

Specifies the MTU for the primary network interface on the underlying host network.

2. As the Machine Config Operator updates machines in each machine config pool, the Operator
reboots each node one by one. You must wait until all the nodes are updated. Check the
machine config pool status by entering the following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED=false.

NOTE

By default, the Machine Config Operator updates one machine per pool at a
time, causing the total time the migration takes to increase with the size of the
cluster.

8.2.2.3. Verifying the machine configuration

Use the following procedure to verify the machine configuration.

Procedure

Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
 '{"spec": { "migration": { "mtu": { "network": { "from": <overlay_from>, "to": <overlay_to> } ,
"machine": { "to" : <machine_to> } } } } }'

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
 '{"spec": { "migration": { "mtu": { "network": { "from": 1400, "to": 9000 } , "machine": { "to" :
9100} } } } }'

$ oc get machineconfigpools

$ oc describe node | egrep "hostname|machineconfig"

OpenShift Container Platform 4.19 Installing on AWS

602

Example output

b. Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

c. To confirm that the machine config is correct, enter the following command:

where:

<config_name>

Specifies the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

The machine config must include the following update to the systemd configuration:

8.2.2.4. Finalizing the MTU migration

Use the following procedure to finalize the MTU migration.

Procedure

1. To finalize the MTU migration, enter the following command for the OVN-Kubernetes network
plugin:

where:

<mtu>

Specifies the new cluster network MTU that you specified with <overlay_to>.

2. After finalizing the MTU migration, each machine config pool node is rebooted one by one. You
must wait until all the nodes are updated. Check the machine config pool status by entering the
following command:

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml | grep ExecStart

ExecStart=/usr/local/bin/mtu-migration.sh

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
 '{"spec": { "migration": null, "defaultNetwork":{ "ovnKubernetesConfig": { "mtu": <mtu> }}}}'

$ oc get machineconfigpools

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

603

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED=false.

Verification

Verify that the node in your cluster uses the MTU that you specified by entering the following
command:

8.2.3. Opting in to AWS Local Zones or Wavelength Zones

If you plan to create subnets in AWS Local Zones or Wavelength Zones, you must opt in to each zone
group separately.

Prerequisites

You have installed the AWS CLI.

You have determined an AWS Region for where you want to deploy your OpenShift Container
Platform cluster.

You have attached a permissive IAM policy to a user or role account that opts in to the zone
group.

Procedure

1. List the zones that are available in your AWS Region by running the following command:

Example command for listing available AWS Local Zones in an AWS Region

Example command for listing available AWS Wavelength Zones in an AWS Region

Depending on the AWS Region, the list of available zones might be long. The command returns
the following fields:

ZoneName

The name of the Local Zones or Wavelength Zones.

GroupName

The group that comprises the zone. To opt in to the Region, save the name.

$ oc describe network.config cluster

$ aws --region "<value_of_AWS_Region>" ec2 describe-availability-zones \
 --query 'AvailabilityZones[].[{ZoneName: ZoneName, GroupName: GroupName, Status:
OptInStatus}]' \
 --filters Name=zone-type,Values=local-zone \
 --all-availability-zones

$ aws --region "<value_of_AWS_Region>" ec2 describe-availability-zones \
 --query 'AvailabilityZones[].[{ZoneName: ZoneName, GroupName: GroupName, Status:
OptInStatus}]' \
 --filters Name=zone-type,Values=wavelength-zone \
 --all-availability-zones

OpenShift Container Platform 4.19 Installing on AWS

604

1

Status

The status of the Local Zones or Wavelength Zones group. If the status is not-opted-in, you
must opt in the GroupName as described in the next step.

2. Opt in to the zone group on your AWS account by running the following command:

Replace <value_of_GroupName> with the name of the group of the Local Zones or
Wavelength Zones where you want to create subnets.

8.2.4. Create network requirements in an existing VPC that uses AWS Local Zones
or Wavelength Zones

If you want a Machine API to create an Amazon EC2 instance in a remote zone location, you must create
a subnet in a Local Zones or Wavelength Zones location. You can use any provisioning tool, such as
Ansible or Terraform, to create subnets in the existing Virtual Private Cloud (VPC).

You can configure the CloudFormation template to meet your requirements. The following subsections
include steps that use CloudFormation templates to create the network requirements that extend an
existing VPC to use an AWS Local Zones or Wavelength Zones.

Extending nodes to Local Zones requires that you create the following resources:

2 VPC Subnets: public and private. The public subnet associates to the public route table for the
regular Availability Zones in the Region. The private subnet associates to the provided route
table ID.

Extending nodes to Wavelength Zones requires that you create the following resources:

1 VPC Carrier Gateway associated to the provided VPC ID.

1 VPC Route Table for Wavelength Zones with a default route entry to VPC Carrier Gateway.

2 VPC Subnets: public and private. The public subnet associates to the public route table for an
AWS Wavelength Zone. The private subnet associates to the provided route table ID.

IMPORTANT

Considering the limitation of NAT Gateways in Wavelength Zones, the provided
CloudFormation templates support only associating the private subnets with the
provided route table ID. A route table ID is attached to a valid NAT Gateway in the AWS
Region.

8.2.5. Wavelength Zones only: Creating a VPC carrier gateway

To use public subnets in your OpenShift Container Platform cluster that runs on Wavelength Zones, you
must create the carrier gateway and associate the carrier gateway to the VPC. Subnets are useful for
deploying load balancers or edge compute nodes.

To create edge nodes or internet-facing load balancers in Wavelength Zones locations for your
OpenShift Container Platform cluster, you must create the following required network components:

$ aws ec2 modify-availability-zone-group \
 --group-name "<value_of_GroupName>" \ 1
 --opt-in-status opted-in

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

605

A carrier gateway that associates to the existing VPC.

A carrier route table that lists route entries.

A subnet that associates to the carrier route table.

Carrier gateways exist for VPCs that only contain subnets in a Wavelength Zone.

The following list explains the functions of a carrier gateway in the context of an AWS Wavelength Zones
location:

Provides connectivity between your Wavelength Zone and the carrier network, which includes
any available devices from the carrier network.

Performs Network Address Translation (NAT) functions, such as translating IP addresses that
are public IP addresses stored in a network border group, from Wavelength Zones to carrier IP
addresses. These translation functions apply to inbound and outbound traffic.

Authorizes inbound traffic from a carrier network that is located in a specific location.

Authorizes outbound traffic to a carrier network and the internet.

NOTE

No inbound connection configuration exists from the internet to a Wavelength Zone
through the carrier gateway.

You can use the provided CloudFormation template to create a stack of the following AWS resources:

One carrier gateway that associates to the VPC ID in the template.

One public route table for the Wavelength Zone named as <ClusterName>-public-carrier.

Default IPv4 route entry in the new route table that targets the carrier gateway.

VPC gateway endpoint for an AWS Simple Storage Service (S3).

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

Procedure

1. Go to the next section of the documentation named "CloudFormation template for the VPC
Carrier Gateway", and then copy the syntax from the CloudFormation template for VPC
Carrier Gateway template. Save the copied template syntax as a YAML file on your local

OpenShift Container Platform 4.19 Installing on AWS

606

1

2

3

4

system. This template describes the VPC that your cluster requires.

2. Run the following command to deploy the CloudFormation template, which creates a stack of
AWS resources that represent the VPC:

<stack_name> is the name for the CloudFormation stack, such as clusterName-vpc-
carrier-gw. You need the name of this stack if you remove the cluster.

<template> is the relative path and the name of the CloudFormation template YAML file
that you saved.

<VpcId> is the VPC ID extracted from the CloudFormation stack output created in the
section named "Creating a VPC in AWS".

<ClusterName> is a custom value that prefixes to resources that the CloudFormation
stack creates. You can use the same name that is defined in the metadata.name section
of the install-config.yaml configuration file.

Example output

Verification

Confirm that the CloudFormation template components exist by running the following
command:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameter. Ensure that you provide the parameter value to the other CloudFormation
templates that you run to create for your cluster.

PublicRou
teTableId

The ID of the Route Table in the Carrier infrastructure.

8.2.6. Wavelength Zones only: CloudFormation template for the VPC Carrier
Gateway

You can use the following CloudFormation template to deploy the Carrier Gateway on AWS Wavelength
infrastructure.

Example 8.1. CloudFormation template for VPC Carrier Gateway

$ aws cloudformation create-stack --stack-name <stack_name> \ 1
 --region ${CLUSTER_REGION} \
 --template-body file://<template>.yaml \ 2
 --parameters \//
 ParameterKey=VpcId,ParameterValue="${VpcId}" \ 3
 ParameterKey=ClusterName,ParameterValue="${ClusterName}" 4

arn:aws:cloudformation:us-east-1:123456789012:stack/<stack_name>/dbedae40-2fd3-11eb-
820e-12a48460849f

$ aws cloudformation describe-stacks --stack-name <stack_name>

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

607

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Creating Wavelength Zone Gateway (Carrier Gateway).

Parameters:
 VpcId:
 Description: VPC ID to associate the Carrier Gateway.
 Type: String
 AllowedPattern: ^(?:(?:vpc)(?:-[a-zA-Z0-9]+)?\b|(?:[0-9]{1,3}\.){3}[0-9]{1,3})$
 ConstraintDescription: VPC ID must be with valid name, starting with vpc-.*.
 ClusterName:
 Description: Cluster Name or Prefix name to prepend the tag Name for each subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: ClusterName parameter must be specified.

Resources:
 CarrierGateway:
 Type: "AWS::EC2::CarrierGateway"
 Properties:
 VpcId: !Ref VpcId
 Tags:
 - Key: Name
 Value: !Join ['-', [!Ref ClusterName, "cagw"]]

 PublicRouteTable:
 Type: "AWS::EC2::RouteTable"
 Properties:
 VpcId: !Ref VpcId
 Tags:
 - Key: Name
 Value: !Join ['-', [!Ref ClusterName, "public-carrier"]]

 PublicRoute:
 Type: "AWS::EC2::Route"
 DependsOn: CarrierGateway
 Properties:
 RouteTableId: !Ref PublicRouteTable
 DestinationCidrBlock: 0.0.0.0/0
 CarrierGatewayId: !Ref CarrierGateway

 S3Endpoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Principal: '*'
 Action:
 - '*'
 Resource:
 - '*'
 RouteTableIds:
 - !Ref PublicRouteTable
 ServiceName: !Join
 - ''

OpenShift Container Platform 4.19 Installing on AWS

608

8.2.7. Creating subnets for AWS edge compute services

Before you configure a machine set for edge compute nodes in your OpenShift Container Platform
cluster, you must create a subnet in Local Zones or Wavelength Zones. Complete the following
procedure for each Wavelength Zone that you want to deploy compute nodes to.

You can use the provided CloudFormation template and create a CloudFormation stack. You can then
use this stack to custom provision a subnet.

NOTE

If you do not use the provided CloudFormation template to create your AWS
infrastructure, you must review the provided information and manually create the
infrastructure. If your cluster does not initialize correctly, you might have to contact Red
Hat support with your installation logs.

Prerequisites

You configured an AWS account.

You added your AWS keys and region to your local AWS profile by running aws configure.

You opted in to the Local Zones or Wavelength Zones group.

Procedure

1. Go to the section of the documentation named "CloudFormation template for the VPC subnet",
and copy the syntax from the template. Save the copied template syntax as a YAML file on your
local system. This template describes the VPC that your cluster requires.

2. Run the following command to deploy the CloudFormation template, which creates a stack of
AWS resources that represent the VPC:

 - - com.amazonaws.
 - !Ref 'AWS::Region'
 - .s3
 VpcId: !Ref VpcId

Outputs:
 PublicRouteTableId:
 Description: Public Route table ID
 Value: !Ref PublicRouteTable

$ aws cloudformation create-stack --stack-name <stack_name> \ 1
 --region ${CLUSTER_REGION} \
 --template-body file://<template>.yaml \ 2
 --parameters \
 ParameterKey=VpcId,ParameterValue="${VPC_ID}" \ 3
 ParameterKey=ClusterName,ParameterValue="${CLUSTER_NAME}" \ 4
 ParameterKey=ZoneName,ParameterValue="${ZONE_NAME}" \ 5
 ParameterKey=PublicRouteTableId,ParameterValue="${ROUTE_TABLE_PUB}" \ 6

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

609

1

2

3

4

5

6

7

8

9

<stack_name> is the name for the CloudFormation stack, such as cluster-wl-
<local_zone_shortname> for Local Zones and cluster-wl-
<wavelength_zone_shortname> for Wavelength Zones. You need the name of this stack
if you remove the cluster.

<template> is the relative path and the name of the CloudFormation template YAML file
that you saved.

${VPC_ID} is the VPC ID, which is the value VpcID in the output of the CloudFormation
template for the VPC.

${CLUSTER_NAME} is the value of ClusterName to be used as a prefix of the new AWS
resource names.

${ZONE_NAME} is the value of Local Zones or Wavelength Zones name to create the
subnets.

${ROUTE_TABLE_PUB} is the Public Route Table Id extracted from the CloudFormation
template. For Local Zones, the public route table is extracted from the VPC
CloudFormation Stack. For Wavelength Zones, the value must be extracted from the
output of the VPC’s carrier gateway CloudFormation stack.

${SUBNET_CIDR_PUB} is a valid CIDR block that is used to create the public subnet. This
block must be part of the VPC CIDR block VpcCidr.

${ROUTE_TABLE_PVT} is the PrivateRouteTableId extracted from the output of the
VPC’s CloudFormation stack.

${SUBNET_CIDR_PVT} is a valid CIDR block that is used to create the private subnet. This
block must be part of the VPC CIDR block VpcCidr.

Example output

Verification

Confirm that the template components exist by running the following command:

After the StackStatus displays CREATE_COMPLETE, the output displays values for the
following parameters:

PublicSub
netId

The IDs of the public subnet created by the CloudFormation stack.

 ParameterKey=PublicSubnetCidr,ParameterValue="${SUBNET_CIDR_PUB}" \ 7
 ParameterKey=PrivateRouteTableId,ParameterValue="${ROUTE_TABLE_PVT}" \ 8
 ParameterKey=PrivateSubnetCidr,ParameterValue="${SUBNET_CIDR_PVT}" 9

arn:aws:cloudformation:us-east-1:123456789012:stack/<stack_name>/dbedae40-820e-
11eb-2fd3-12a48460849f

$ aws cloudformation describe-stacks --stack-name <stack_name>

OpenShift Container Platform 4.19 Installing on AWS

610

PrivateSu
bnetId

The IDs of the private subnet created by the CloudFormation stack.

Ensure that you provide these parameter values to the other CloudFormation templates that
you run to create for your cluster.

8.2.8. CloudFormation template for the VPC subnet

You can use the following CloudFormation template to deploy the private and public subnets in a zone
on Local Zones or Wavelength Zones infrastructure.

Example 8.2. CloudFormation template for VPC subnets

AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice Subnets (Public and Private)

Parameters:
 VpcId:
 Description: VPC ID that comprises all the target subnets.
 Type: String
 AllowedPattern: ^(?:(?:vpc)(?:-[a-zA-Z0-9]+)?\b|(?:[0-9]{1,3}\.){3}[0-9]{1,3})$
 ConstraintDescription: VPC ID must be with valid name, starting with vpc-.*.
 ClusterName:
 Description: Cluster name or prefix name to prepend the Name tag for each subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: ClusterName parameter must be specified.
 ZoneName:
 Description: Zone Name to create the subnets, such as us-west-2-lax-1a.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: ZoneName parameter must be specified.
 PublicRouteTableId:
 Description: Public Route Table ID to associate the public subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: PublicRouteTableId parameter must be specified.
 PublicSubnetCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.128.0/20
 Description: CIDR block for public subnet.
 Type: String
 PrivateRouteTableId:
 Description: Private Route Table ID to associate the private subnet.
 Type: String
 AllowedPattern: ".+"
 ConstraintDescription: PrivateRouteTableId parameter must be specified.
 PrivateSubnetCidr:
 AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-
4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
 ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
 Default: 10.0.128.0/20

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

611

8.2.9. Creating a machine set manifest for an AWS Local Zones or Wavelength
Zones node

After you create subnets in AWS Local Zones or Wavelength Zones, you can create a machine set
manifest.

The installation program sets the following labels for the edge machine pools at cluster installation

 Description: CIDR block for private subnet.
 Type: String

Resources:
 PublicSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VpcId
 CidrBlock: !Ref PublicSubnetCidr
 AvailabilityZone: !Ref ZoneName
 Tags:
 - Key: Name
 Value: !Join ['-', [!Ref ClusterName, "public", !Ref ZoneName]]

 PublicSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PublicSubnet
 RouteTableId: !Ref PublicRouteTableId

 PrivateSubnet:
 Type: "AWS::EC2::Subnet"
 Properties:
 VpcId: !Ref VpcId
 CidrBlock: !Ref PrivateSubnetCidr
 AvailabilityZone: !Ref ZoneName
 Tags:
 - Key: Name
 Value: !Join ['-', [!Ref ClusterName, "private", !Ref ZoneName]]

 PrivateSubnetRouteTableAssociation:
 Type: "AWS::EC2::SubnetRouteTableAssociation"
 Properties:
 SubnetId: !Ref PrivateSubnet
 RouteTableId: !Ref PrivateRouteTableId

Outputs:
 PublicSubnetId:
 Description: Subnet ID of the public subnets.
 Value:
 !Join ["", [!Ref PublicSubnet]]

 PrivateSubnetId:
 Description: Subnet ID of the private subnets.
 Value:
 !Join ["", [!Ref PrivateSubnet]]

OpenShift Container Platform 4.19 Installing on AWS

612

1

2

The installation program sets the following labels for the edge machine pools at cluster installation
time:

machine.openshift.io/parent-zone-name: <value_of_ParentZoneName>

machine.openshift.io/zone-group: <value_of_ZoneGroup>

machine.openshift.io/zone-type: <value_of_ZoneType>

The following procedure details how you can create a machine set configuraton that matches the edge
compute pool configuration.

Prerequisites

You have created subnets in AWS Local Zones or Wavelength Zones.

Procedure

Manually preserve edge machine pool labels when creating the machine set manifest by
gathering the AWS API. To complete this action, enter the following command in your
command-line interface (CLI):

For <value_of_Region>, specify the name of the region for the zone.

For <value_of_ZoneName>, specify the name of the Local Zones or Wavelength Zones.

Example output for Local Zone us-east-1-nyc-1a

Example output for Wavelength Zone us-east-1-wl1

$ aws ec2 describe-availability-zones --region <value_of_Region> \ 1
 --query 'AvailabilityZones[].{
 ZoneName: ZoneName,
 ParentZoneName: ParentZoneName,
 GroupName: GroupName,
 ZoneType: ZoneType}' \
 --filters Name=zone-name,Values=<value_of_ZoneName> \ 2
 --all-availability-zones

[
 {
 "ZoneName": "us-east-1-nyc-1a",
 "ParentZoneName": "us-east-1f",
 "GroupName": "us-east-1-nyc-1",
 "ZoneType": "local-zone"
 }
]

[
 {
 "ZoneName": "us-east-1-wl1-bos-wlz-1",
 "ParentZoneName": "us-east-1a",
 "GroupName": "us-east-1-wl1",

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

613

8.2.9.1. Sample YAML for a compute machine set custom resource on AWS

This sample YAML defines a compute machine set that runs in the us-east-1-nyc-1a Amazon Web
Services (AWS) zone and creates nodes that are labeled with node-role.kubernetes.io/edge: "".

NOTE

If you want to reference the sample YAML file in the context of Wavelength Zones,
ensure that you replace the AWS Region and zone information with supported
Wavelength Zone values.

In this sample, <infrastructure_id> is the infrastructure ID label that is based on the cluster ID that you
set when you provisioned the cluster, and <edge> is the node label to add.

 "ZoneType": "wavelength-zone"
 }
]

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-edge-<zone> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-edge-<zone>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: edge 3
 machine.openshift.io/cluster-api-machine-type: edge
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-edge-<zone>
 spec:
 metadata:
 labels:
 machine.openshift.io/parent-zone-name: <value_of_ParentZoneName>
 machine.openshift.io/zone-group: <value_of_GroupName>
 machine.openshift.io/zone-type: <value_of_ZoneType>
 node-role.kubernetes.io/edge: ""
 providerSpec:
 value:
 ami:
 id: ami-046fe691f52a953f9 4
 apiVersion: machine.openshift.io/v1beta1
 blockDevices:
 - ebs:
 iops: 0
 volumeSize: 120

OpenShift Container Platform 4.19 Installing on AWS

614

1

2

3

4

5

Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned the
cluster. If you have the OpenShift CLI installed, you can obtain the infrastructure ID by running the
following command:

Specify the infrastructure ID, edge role node label, and zone name.

Specify the edge role node label.

Specify a valid Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI) for your
AWS zone for your OpenShift Container Platform nodes. If you want to use an AWS Marketplace
image, you must complete the OpenShift Container Platform subscription from the AWS
Marketplace to obtain an AMI ID for your region.

Specify the zone name, for example, us-east-1-nyc-1a.

 volumeType: gp2
 credentialsSecret:
 name: aws-cloud-credentials
 deviceIndex: 0
 iamInstanceProfile:
 id: <infrastructure_id>-worker-profile
 instanceType: m6i.large
 kind: AWSMachineProviderConfig
 placement:
 availabilityZone: <zone> 5
 region: <region> 6
 securityGroups:
 - filters:
 - name: tag:Name
 values:
 - <infrastructure_id>-node
 - filters:
 - name: tag:Name
 values:
 - <infrastructure_id>-lb
 subnet:
 id: <value_of_PublicSubnetIds> 7
 publicIp: true
 tags:
 - name: kubernetes.io/cluster/<infrastructure_id>
 value: owned
 - name: <custom_tag_name> 8
 value: <custom_tag_value>
 userDataSecret:
 name: worker-user-data
 taints: 9
 - key: node-role.kubernetes.io/edge
 effect: NoSchedule

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

$ oc -n openshift-machine-api \
 -o jsonpath='{.spec.template.spec.providerSpec.value.ami.id}{"\n"}' \
 get machineset/<infrastructure_id>-<role>-<zone>

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

615

https://aws.amazon.com/marketplace/fulfillment?productId=59ead7de-2540-4653-a8b0-fa7926d5c845

6

7

8

9

Specify the region, for example, us-east-1.

The ID of the public subnet that you created in AWS Local Zones or Wavelength Zones. You
created this public subnet ID when you finished the procedure for "Creating a subnet in an AWS
zone".

Optional: Specify custom tag data for your cluster. For example, you might add an admin contact
email address by specifying a name:value pair of Email:admin-email@example.com.

NOTE

Custom tags can also be specified during installation in the install-config.yml file. If
the install-config.yml file and the machine set include a tag with the same name
data, the value for the tag from the machine set takes priority over the value for the
tag in the install-config.yml file.

Specify a taint to prevent user workloads from being scheduled on edge nodes.

NOTE

After adding the NoSchedule taint on the infrastructure node, existing DNS pods
running on that node are marked as misscheduled. You must either delete or add
toleration on misscheduled DNS pods.

8.2.9.2. Creating a compute machine set

In addition to the compute machine sets created by the installation program, you can create your own to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. Create a new YAML file that contains the compute machine set custom resource (CR) sample
and is named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

2. Optional: If you are not sure which value to set for a specific field, you can check an existing
compute machine set from your cluster.

a. To list the compute machine sets in your cluster, run the following command:

Example output

$ oc get machinesets -n openshift-machine-api

OpenShift Container Platform 4.19 Installing on AWS

616

https://access.redhat.com/solutions/6592171

1

2

3

b. To view values of a specific compute machine set custom resource (CR), run the following
command:

Example output

The cluster infrastructure ID.

A default node label.

NOTE

For clusters that have user-provisioned infrastructure, a compute
machine set can only create worker and infra type machines.

The values in the <providerSpec> section of the compute machine set CR are
platform-specific. For more information about <providerSpec> parameters in the CR,
see the sample compute machine set CR configuration for your provider.

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

$ oc get machineset <machineset_name> \
 -n openshift-machine-api -o yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-<role> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: <role>
 machine.openshift.io/cluster-api-machine-type: <role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 spec:
 providerSpec: 3
 ...

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

617

3. Create a MachineSet CR by running the following command:

Verification

View the list of compute machine sets by running the following command:

Example output

When the new compute machine set is available, the DESIRED and CURRENT values match. If
the compute machine set is not available, wait a few minutes and run the command again.

Optional: To check nodes that were created by the edge machine, run the following command:

Example output

Additional resources

Installing a cluster on AWS with compute nodes on AWS Local Zones

Installing a cluster on AWS with compute nodes on AWS Wavelength Zones

8.3. CREATING USER WORKLOADS IN AWS LOCAL ZONES OR
WAVELENGTH ZONES

After you create an Amazon Web Service (AWS) Local Zones or Wavelength Zones infrastructure and
deploy your cluster, you can use edge compute nodes to create user workloads in Local Zones or
Wavelength Zones subnets.

When you use the installation program to create a cluster, the installation program automatically
specifies a taint effect of NoSchedule to each edge compute node. This means that a scheduler does
not add a new pod, or deployment, to a node if the pod does not match the specified tolerations for a
taint. You can modify the taint for better control over how nodes create workloads in each Local Zones
or Wavelength Zones subnet.

The installation program creates the compute machine set manifests file with node-

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-edge-us-east-1-nyc-1a 1 1 1 1 11m
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

$ oc get nodes -l node-role.kubernetes.io/edge

NAME STATUS ROLES AGE VERSION
ip-10-0-207-188.ec2.internal Ready edge,worker 172m v1.25.2+d2e245f

OpenShift Container Platform 4.19 Installing on AWS

618

The installation program creates the compute machine set manifests file with node-
role.kubernetes.io/edge and node-role.kubernetes.io/worker labels applied to each edge compute
node that is located in a Local Zones or Wavelength Zones subnet.

NOTE

The examples in the procedure are for a Local Zones infrastructure. If you are working
with a Wavelength Zones infrastructure, ensure you adapt the examples to what is
supported in this infrastructure.

Prerequisites

You have access to the OpenShift CLI (oc).

You deployed your cluster in a Virtual Private Cloud (VPC) with defined Local Zones or
Wavelength Zones subnets.

You ensured that the compute machine set for the edge compute nodes on Local Zones or
Wavelength Zones subnets specifies the taints for node-role.kubernetes.io/edge.

Procedure

1. Create a deployment resource YAML file for an example application to be deployed in the edge
compute node that operates in a Local Zones subnet. Ensure that you specify the correct
tolerations that match the taints for the edge compute node.

Example of a configured deployment resource for an edge compute node that
operates in a Local Zone subnet

kind: Namespace
apiVersion: v1
metadata:
 name: <local_zone_application_namespace>

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: <pvc_name>
 namespace: <local_zone_application_namespace>
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: gp2-csi 1
 volumeMode: Filesystem

apiVersion: apps/v1
kind: Deployment 2
metadata:
 name: <local_zone_application> 3
 namespace: <local_zone_application_namespace> 4
spec:

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

619

1

2

3

4

5

6

7

storageClassName: For the Local Zone configuration, you must specify gp2-csi.

kind: Defines the deployment resource.

name: Specifies the name of your Local Zone application. For example, local-zone-demo-
app-nyc-1.

namespace: Defines the namespace for the AWS Local Zone where you want to run the
user workload. For example: local-zone-app-nyc-1a.

zone-group: Defines the group to where a zone belongs. For example, us-east-1-iah-1.

nodeSelector: Targets edge compute nodes that match the specified labels.

tolerations: Sets the values that match with the taints defined on the MachineSet
manifest for the Local Zone node.

 selector:
 matchLabels:
 app: <local_zone_application>
 replicas: 1
 template:
 metadata:
 labels:
 app: <local_zone_application>
 zone-group: ${ZONE_GROUP_NAME} 5
 spec:
 securityContext:
 seccompProfile:
 type: RuntimeDefault
 nodeSelector: 6
 machine.openshift.io/zone-group: ${ZONE_GROUP_NAME}
 tolerations: 7
 - key: "node-role.kubernetes.io/edge"
 operator: "Equal"
 value: ""
 effect: "NoSchedule"
 containers:
 - image: openshift/origin-node
 command:
 - "/bin/socat"
 args:
 - TCP4-LISTEN:8080,reuseaddr,fork
 - EXEC:'/bin/bash -c \"printf \\\"HTTP/1.0 200 OK\r\n\r\n\\\"; sed -e \\\"/^\r/q\\\"\"'
 imagePullPolicy: Always
 name: echoserver
 ports:
 - containerPort: 8080
 volumeMounts:
 - mountPath: "/mnt/storage"
 name: data
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: <pvc_name>

OpenShift Container Platform 4.19 Installing on AWS

620

1

2

2. Create a service resource YAML file for the node. This resource exposes a pod from a targeted
edge compute node to services that run inside your Local Zone network.

Example of a configured service resource for an edge compute node that operates
in a Local Zone subnet

kind: Defines the service resource.

selector: Specifies the label type applied to managed pods.

Additional resources

Installing a cluster on AWS with compute nodes on AWS Local Zones

Installing a cluster on AWS with compute nodes on AWS Wavelength Zones

Understanding taints and tolerations

8.4. NEXT STEPS

Optional: Use the AWS Load Balancer (ALB) Operator to expose a pod from a targeted edge
compute node to services that run inside of a Local Zones or Wavelength Zones subnet from a
public network. See Installing the AWS Load Balancer Operator .

apiVersion: v1
kind: Service 1
metadata:
 name: <local_zone_application>
 namespace: <local_zone_application_namespace>
spec:
 ports:
 - port: 80
 targetPort: 8080
 protocol: TCP
 type: NodePort
 selector: 2
 app: <local_zone_application>

CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS

621

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/networking_operators/#install-aws-load-balancer-operator_install-aws-load-balancer-operator

	Table of Contents
	CHAPTER 1. INSTALLATION METHODS
	1.1. INSTALLING A CLUSTER ON INSTALLER-PROVISIONED INFRASTRUCTURE
	1.2. INSTALLING A CLUSTER ON USER-PROVISIONED INFRASTRUCTURE
	1.3. INSTALLING A CLUSTER ON A SINGLE NODE
	1.4. ADDITIONAL RESOURCES

	CHAPTER 2. CONFIGURING AN AWS ACCOUNT
	2.1. CONFIGURING ROUTE 53
	2.1.1. Ingress Operator endpoint configuration for AWS Route 53

	2.2. AWS ACCOUNT LIMITS
	2.3. REQUIRED AWS PERMISSIONS FOR THE IAM USER
	2.4. CREATING AN IAM USER
	2.5. IAM POLICIES AND AWS AUTHENTICATION
	2.5.1. Default permissions for IAM instance profiles
	2.5.2. Specifying an existing IAM role

	CHAPTER 3. INSTALLER-PROVISIONED INFRASTRUCTURE
	3.1. PREPARING TO INSTALL A CLUSTER ON AWS
	3.1.1. Internet access for OpenShift Container Platform
	3.1.2. Obtaining the installation program
	3.1.3. Installing the OpenShift CLI on Linux
	3.1.4. Installing the OpenShift CLI on Windows
	3.1.5. Installing the OpenShift CLI on macOS
	3.1.6. Generating a key pair for cluster node SSH access
	3.1.7. Telemetry access for OpenShift Container Platform

	3.2. INSTALLING A CLUSTER ON AWS
	3.2.1. Prerequisites
	3.2.2. Deploying the cluster
	3.2.3. Logging in to the cluster by using the CLI
	3.2.4. Logging in to the cluster by using the web console
	3.2.5. Next steps

	3.3. INSTALLING A CLUSTER ON AWS WITH CUSTOMIZATIONS
	3.3.1. Prerequisites
	3.3.2. Obtaining an AWS Marketplace image
	3.3.3. Creating the installation configuration file
	3.3.3.1. Minimum resource requirements for cluster installation
	3.3.3.2. Tested instance types for AWS
	3.3.3.3. Tested instance types for AWS on 64-bit ARM infrastructures
	3.3.3.4. Sample customized install-config.yaml file for AWS
	3.3.3.5. Configuring the cluster-wide proxy during installation

	3.3.4. Alternatives to storing administrator-level secrets in the kube-system project
	3.3.4.1. Manually creating long-term credentials
	3.3.4.2. Configuring an AWS cluster to use short-term credentials

	3.3.5. Deploying the cluster
	3.3.6. Logging in to the cluster by using the CLI
	3.3.7. Logging in to the cluster by using the web console
	3.3.8. Next steps

	3.4. INSTALLING A CLUSTER ON AWS WITH NETWORK CUSTOMIZATIONS
	3.4.1. Prerequisites
	3.4.2. Network configuration phases
	3.4.3. Creating the installation configuration file
	3.4.3.1. Minimum resource requirements for cluster installation
	3.4.3.2. Tested instance types for AWS
	3.4.3.3. Tested instance types for AWS on 64-bit ARM infrastructures
	3.4.3.4. Sample customized install-config.yaml file for AWS
	3.4.3.5. Configuring the cluster-wide proxy during installation

	3.4.4. Alternatives to storing administrator-level secrets in the kube-system project
	3.4.4.1. Manually creating long-term credentials
	3.4.4.2. Configuring an AWS cluster to use short-term credentials

	3.4.5. Cluster Network Operator configuration
	3.4.5.1. Cluster Network Operator configuration object

	3.4.6. Specifying advanced network configuration
	3.4.7. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster
	3.4.8. Configuring hybrid networking with OVN-Kubernetes
	3.4.9. Deploying the cluster
	3.4.10. Logging in to the cluster by using the CLI
	3.4.11. Logging in to the cluster by using the web console
	3.4.12. Next steps

	3.5. INSTALLING A CLUSTER ON AWS IN A DISCONNECTED ENVIRONMENT
	3.5.1. Prerequisites
	3.5.2. About installations in restricted networks
	3.5.2.1. Additional limits

	3.5.3. About using a custom VPC
	3.5.3.1. Requirements for using your VPC
	3.5.3.2. VPC validation
	3.5.3.3. Division of permissions
	3.5.3.4. Isolation between clusters

	3.5.4. Creating the installation configuration file
	3.5.4.1. Minimum resource requirements for cluster installation
	3.5.4.2. Sample customized install-config.yaml file for AWS
	3.5.4.3. Configuring the cluster-wide proxy during installation

	3.5.5. Alternatives to storing administrator-level secrets in the kube-system project
	3.5.5.1. Manually creating long-term credentials
	3.5.5.2. Configuring an AWS cluster to use short-term credentials

	3.5.6. Deploying the cluster
	3.5.7. Logging in to the cluster by using the CLI
	3.5.8. Disabling the default OperatorHub catalog sources
	3.5.9. Next steps

	3.6. INSTALLING A CLUSTER ON AWS INTO AN EXISTING VPC
	3.6.1. Prerequisites
	3.6.2. About using a custom VPC
	3.6.2.1. Requirements for using your VPC
	3.6.2.2. VPC validation
	3.6.2.3. Division of permissions
	3.6.2.4. Isolation between clusters
	3.6.2.5. Optional: AWS security groups
	3.6.2.6. Modifying trust policy when installing into a shared VPC

	3.6.3. Creating the installation configuration file
	3.6.3.1. Minimum resource requirements for cluster installation
	3.6.3.2. Tested instance types for AWS
	3.6.3.3. Tested instance types for AWS on 64-bit ARM infrastructures
	3.6.3.4. Sample customized install-config.yaml file for AWS
	3.6.3.5. Configuring the cluster-wide proxy during installation
	3.6.3.6. Applying existing AWS security groups to the cluster

	3.6.4. Alternatives to storing administrator-level secrets in the kube-system project
	3.6.4.1. Manually creating long-term credentials
	3.6.4.2. Configuring an AWS cluster to use short-term credentials

	3.6.5. Deploying the cluster
	3.6.6. Logging in to the cluster by using the CLI
	3.6.7. Logging in to the cluster by using the web console
	3.6.8. Next steps

	3.7. INSTALLING A PRIVATE CLUSTER ON AWS
	3.7.1. Prerequisites
	3.7.2. Private clusters
	3.7.2.1. Private clusters in AWS

	3.7.3. About using a custom VPC
	3.7.3.1. Requirements for using your VPC
	3.7.3.2. VPC validation
	3.7.3.3. Division of permissions
	3.7.3.4. Isolation between clusters
	3.7.3.5. Optional: AWS security groups

	3.7.4. Manually creating the installation configuration file
	3.7.4.1. Minimum resource requirements for cluster installation
	3.7.4.2. Tested instance types for AWS
	3.7.4.3. Tested instance types for AWS on 64-bit ARM infrastructures
	3.7.4.4. Sample customized install-config.yaml file for AWS
	3.7.4.5. Configuring the cluster-wide proxy during installation
	3.7.4.6. Applying existing AWS security groups to the cluster

	3.7.5. Alternatives to storing administrator-level secrets in the kube-system project
	3.7.5.1. Manually creating long-term credentials
	3.7.5.2. Configuring an AWS cluster to use short-term credentials

	3.7.6. Deploying the cluster
	3.7.7. Logging in to the cluster by using the CLI
	3.7.8. Logging in to the cluster by using the web console
	3.7.9. Next steps

	3.8. INSTALLING A CLUSTER ON AWS INTO A GOVERNMENT REGION
	3.8.1. Prerequisites
	3.8.2. AWS government regions
	3.8.3. Installation requirements
	3.8.4. Private clusters
	3.8.4.1. Private clusters in AWS

	3.8.5. About using a custom VPC
	3.8.5.1. Requirements for using your VPC
	3.8.5.2. VPC validation
	3.8.5.3. Division of permissions
	3.8.5.4. Isolation between clusters
	3.8.5.5. Optional: AWS security groups

	3.8.6. Obtaining an AWS Marketplace image
	3.8.7. Manually creating the installation configuration file
	3.8.7.1. Minimum resource requirements for cluster installation
	3.8.7.2. Tested instance types for AWS
	3.8.7.3. Tested instance types for AWS on 64-bit ARM infrastructures
	3.8.7.4. Sample customized install-config.yaml file for AWS
	3.8.7.5. Configuring the cluster-wide proxy during installation
	3.8.7.6. Applying existing AWS security groups to the cluster

	3.8.8. Alternatives to storing administrator-level secrets in the kube-system project
	3.8.8.1. Manually creating long-term credentials
	3.8.8.2. Configuring an AWS cluster to use short-term credentials

	3.8.9. Deploying the cluster
	3.8.10. Logging in to the cluster by using the CLI
	3.8.11. Logging in to the cluster by using the web console
	3.8.12. Next steps

	3.9. INSTALLING A CLUSTER ON AWS INTO A SECRET OR TOP SECRET REGION
	3.9.1. Prerequisites
	3.9.2. AWS secret regions
	3.9.3. Installation requirements
	3.9.4. Private clusters
	3.9.4.1. Private clusters in AWS

	3.9.5. About using a custom VPC
	3.9.5.1. Requirements for using your VPC
	3.9.5.2. VPC validation
	3.9.5.3. Division of permissions
	3.9.5.4. Isolation between clusters
	3.9.5.5. Optional: AWS security groups

	3.9.6. Uploading a custom RHCOS AMI in AWS
	3.9.7. Manually creating the installation configuration file
	3.9.7.1. Tested instance types for AWS
	3.9.7.2. Sample customized install-config.yaml file for AWS
	3.9.7.3. Configuring the cluster-wide proxy during installation
	3.9.7.4. Applying existing AWS security groups to the cluster

	3.9.8. Alternatives to storing administrator-level secrets in the kube-system project
	3.9.8.1. Manually creating long-term credentials
	3.9.8.2. Configuring an AWS cluster to use short-term credentials

	3.9.9. Deploying the cluster
	3.9.10. Logging in to the cluster by using the CLI
	3.9.11. Logging in to the cluster by using the web console
	3.9.12. Next steps

	3.10. INSTALLING A CLUSTER ON AWS CHINA
	3.10.1. Prerequisites
	3.10.2. Installation requirements
	3.10.3. Private clusters
	3.10.3.1. Private clusters in AWS

	3.10.4. About using a custom VPC
	3.10.4.1. Requirements for using your VPC
	3.10.4.2. VPC validation
	3.10.4.3. Division of permissions
	3.10.4.4. Isolation between clusters
	3.10.4.5. Optional: AWS security groups

	3.10.5. Uploading a custom RHCOS AMI in AWS
	3.10.6. Manually creating the installation configuration file
	3.10.6.1. Sample customized install-config.yaml file for AWS
	3.10.6.2. Minimum resource requirements for cluster installation
	3.10.6.3. Tested instance types for AWS
	3.10.6.4. Tested instance types for AWS on 64-bit ARM infrastructures
	3.10.6.5. Configuring the cluster-wide proxy during installation
	3.10.6.6. Applying existing AWS security groups to the cluster

	3.10.7. Alternatives to storing administrator-level secrets in the kube-system project
	3.10.7.1. Manually creating long-term credentials
	3.10.7.2. Configuring an AWS cluster to use short-term credentials

	3.10.8. Deploying the cluster
	3.10.9. Logging in to the cluster by using the CLI
	3.10.10. Logging in to the cluster by using the web console
	3.10.11. Next steps

	3.11. INSTALLING A CLUSTER WITH COMPUTE NODES ON AWS LOCAL ZONES
	3.11.1. Infrastructure prerequisites
	3.11.2. About AWS Local Zones and edge compute pool
	3.11.2.1. Cluster limitations in AWS Local Zones
	3.11.2.2. About edge compute pools

	3.11.3. Installation prerequisites
	3.11.3.1. Opting in to an AWS Local Zones
	3.11.3.2. Obtaining an AWS Marketplace image

	3.11.4. Preparing for the installation
	3.11.4.1. Minimum resource requirements for cluster installation
	3.11.4.2. Tested instance types for AWS
	3.11.4.3. Creating the installation configuration file
	3.11.4.4. Examples of installation configuration files with edge compute pools
	3.11.4.5. Customizing the cluster network MTU

	3.11.5. Cluster installation options for an AWS Local Zones environment
	3.11.6. Install a cluster quickly in AWS Local Zones
	3.11.6.1. Modifying an installation configuration file to use AWS Local Zones

	3.11.7. Installing a cluster in an existing VPC that has Local Zone subnets
	3.11.7.1. Creating a VPC in AWS
	3.11.7.2. CloudFormation template for the VPC
	3.11.7.3. Creating subnets in Local Zones
	3.11.7.4. CloudFormation template for the VPC subnet
	3.11.7.5. Modifying an installation configuration file to use AWS Local Zones subnets

	3.11.8. Optional: AWS security groups
	3.11.9. Optional: Assign public IP addresses to edge compute nodes
	3.11.10. Deploying the cluster
	3.11.11. Verifying the status of the deployed cluster
	3.11.11.1. Logging in to the cluster by using the CLI
	3.11.11.2. Logging in to the cluster by using the web console
	3.11.11.3. Verifying nodes that were created with edge compute pool

	3.12. INSTALLING A CLUSTER WITH COMPUTE NODES ON AWS WAVELENGTH ZONES
	3.12.1. Infrastructure prerequisites
	3.12.2. About AWS Wavelength Zones and edge compute pool
	3.12.2.1. Cluster limitations in AWS Wavelength Zones
	3.12.2.2. About edge compute pools

	3.12.3. Installation prerequisites
	3.12.3.1. Opting in to an AWS Wavelength Zones
	3.12.3.2. Obtaining an AWS Marketplace image

	3.12.4. Preparing for the installation
	3.12.4.1. Minimum resource requirements for cluster installation
	3.12.4.2. Tested instance types for AWS
	3.12.4.3. Creating the installation configuration file
	3.12.4.4. Examples of installation configuration files with edge compute pools

	3.12.5. Cluster installation options for an AWS Wavelength Zones environment
	3.12.6. Install a cluster quickly in AWS Wavelength Zones
	3.12.6.1. Modifying an installation configuration file to use AWS Wavelength Zones

	3.12.7. Installing a cluster in an existing VPC that has Wavelength Zone subnets
	3.12.7.1. Creating a VPC in AWS
	3.12.7.2. CloudFormation template for the VPC
	3.12.7.3. Creating a VPC carrier gateway
	3.12.7.4. CloudFormation template for the VPC Carrier Gateway
	3.12.7.5. Creating subnets in Wavelength Zones
	3.12.7.6. CloudFormation template for the VPC subnet
	3.12.7.7. Modifying an installation configuration file to use AWS Wavelength Zones subnets

	3.12.8. Optional: Assign public IP addresses to edge compute nodes
	3.12.9. Deploying the cluster
	3.12.10. Verifying the status of the deployed cluster
	3.12.10.1. Logging in to the cluster by using the CLI
	3.12.10.2. Logging in to the cluster by using the web console
	3.12.10.3. Verifying nodes that were created with edge compute pool

	3.13. EXTENDING AN AWS VPC CLUSTER INTO AN AWS OUTPOST
	3.13.1. AWS Outposts on OpenShift Container Platform requirements and limitations
	3.13.2. Obtaining information about your environment
	3.13.2.1. Obtaining information from your OpenShift Container Platform cluster
	3.13.2.2. Obtaining information from your AWS account

	3.13.3. Configuring your network for your Outpost
	3.13.3.1. Changing the cluster network MTU to support AWS Outposts
	3.13.3.2. Creating subnets for AWS edge compute services
	3.13.3.3. CloudFormation template for the VPC subnet

	3.13.4. Creating a compute machine set that deploys edge compute machines on an Outpost
	3.13.5. Creating user workloads in an Outpost
	3.13.6. Scheduling workloads on edge and cloud-based AWS compute resources
	3.13.6.1. Using AWS Classic Load Balancers in an AWS VPC cluster extended into an Outpost
	3.13.6.2. Using the AWS Load Balancer Operator in an AWS VPC cluster extended into an Outpost

	3.13.7. Additional resources

	3.14. INSTALLING A CLUSTER WITH THE SUPPORT FOR CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES
	3.14.1. Installing a cluster with multi-architecture support

	CHAPTER 4. USER-PROVISIONED INFRASTRUCTURE
	4.1. PREPARING TO INSTALL A CLUSTER ON AWS
	4.1.1. Internet access for OpenShift Container Platform
	4.1.2. Obtaining the installation program
	4.1.3. Installing the OpenShift CLI on Linux
	4.1.4. Installing the OpenShift CLI on Windows
	4.1.5. Installing the OpenShift CLI on macOS
	4.1.6. Generating a key pair for cluster node SSH access
	4.1.7. Telemetry access for OpenShift Container Platform

	4.2. INSTALLATION REQUIREMENTS FOR USER-PROVISIONED INFRASTRUCTURE ON AWS
	4.2.1. Required machines for cluster installation
	4.2.1.1. Minimum resource requirements for cluster installation
	4.2.1.2. Tested instance types for AWS
	4.2.1.3. Tested instance types for AWS on 64-bit ARM infrastructures

	4.2.2. Certificate signing requests management
	4.2.3. Required AWS infrastructure components
	4.2.3.1. Other infrastructure components
	4.2.3.2. Cluster machines

	4.2.4. Required AWS permissions for the IAM user
	4.2.5. Obtaining an AWS Marketplace image

	4.3. INSTALLING A CLUSTER ON USER-PROVISIONED INFRASTRUCTURE IN AWS BY USING CLOUDFORMATION TEMPLATES
	4.3.1. Prerequisites
	4.3.2. Creating the installation files for AWS
	4.3.2.1. Optional: Creating a separate /var partition
	4.3.2.2. Creating the installation configuration file
	4.3.2.3. Configuring the cluster-wide proxy during installation
	4.3.2.4. Creating the Kubernetes manifest and Ignition config files

	4.3.3. Extracting the infrastructure name
	4.3.4. Creating a VPC in AWS
	4.3.4.1. CloudFormation template for the VPC

	4.3.5. Creating networking and load balancing components in AWS
	4.3.5.1. CloudFormation template for the network and load balancers

	4.3.6. Creating security group and roles in AWS
	4.3.6.1. CloudFormation template for security objects

	4.3.7. Accessing RHCOS AMIs with stream metadata
	4.3.8. RHCOS AMIs for the AWS infrastructure
	4.3.8.1. AWS regions without a published RHCOS AMI
	4.3.8.2. Uploading a custom RHCOS AMI in AWS

	4.3.9. Creating the bootstrap node in AWS
	4.3.9.1. CloudFormation template for the bootstrap machine

	4.3.10. Creating the control plane machines in AWS
	4.3.10.1. CloudFormation template for control plane machines

	4.3.11. Creating the worker nodes in AWS
	4.3.11.1. CloudFormation template for compute machines
	4.3.11.2. Creating the CloudFormation stack for compute machines

	4.3.12. Initializing the bootstrap sequence on AWS with user-provisioned infrastructure
	4.3.13. Logging in to the cluster by using the CLI
	4.3.14. Approving the certificate signing requests for your machines
	4.3.15. Initial Operator configuration
	4.3.15.1. Image registry storage configuration

	4.3.16. Deleting the bootstrap resources
	4.3.17. Creating the Ingress DNS Records
	4.3.18. Completing an AWS installation on user-provisioned infrastructure
	4.3.19. Logging in to the cluster by using the web console
	4.3.20. Additional resources
	4.3.21. Next steps

	4.4. INSTALLING A CLUSTER ON AWS IN A DISCONNECTED ENVIRONMENT WITH USER-PROVISIONED INFRASTRUCTURE
	4.4.1. Prerequisites
	4.4.2. About installations in restricted networks
	4.4.2.1. Additional limits

	4.4.3. Creating the installation files for AWS
	4.4.3.1. Optional: Creating a separate /var partition
	4.4.3.2. Creating the installation configuration file
	4.4.3.3. Configuring the cluster-wide proxy during installation
	4.4.3.4. Creating the Kubernetes manifest and Ignition config files

	4.4.4. Extracting the infrastructure name
	4.4.5. Creating a VPC in AWS
	4.4.5.1. CloudFormation template for the VPC

	4.4.6. Creating networking and load balancing components in AWS
	4.4.6.1. CloudFormation template for the network and load balancers

	4.4.7. Creating security group and roles in AWS
	4.4.7.1. CloudFormation template for security objects

	4.4.8. Accessing RHCOS AMIs with stream metadata
	4.4.9. RHCOS AMIs for the AWS infrastructure
	4.4.10. Creating the bootstrap node in AWS
	4.4.10.1. CloudFormation template for the bootstrap machine
	4.4.10.2. Creating the control plane machines in AWS
	4.4.10.3. CloudFormation template for control plane machines

	4.4.11. Creating the worker nodes in AWS
	4.4.11.1. CloudFormation template for compute machines
	4.4.11.2. Creating the CloudFormation stack for compute machines

	4.4.12. Initializing the bootstrap sequence on AWS with user-provisioned infrastructure
	4.4.13. Approving the certificate signing requests for your machines
	4.4.14. Initial Operator configuration
	4.4.14.1. Disabling the default OperatorHub catalog sources
	4.4.14.2. Image registry storage configuration

	4.4.15. Deleting the bootstrap resources
	4.4.16. Creating the Ingress DNS Records
	4.4.17. Completing an AWS installation on user-provisioned infrastructure
	4.4.18. Logging in to the cluster by using the CLI
	4.4.19. Logging in to the cluster by using the web console
	4.4.20. Additional resources
	4.4.21. Next steps

	4.5. INSTALLING A CLUSTER WITH THE SUPPORT FOR CONFIGURING MULTI-ARCHITECTURE COMPUTE MACHINES
	4.5.1. Installing a cluster with multi-architecture support

	CHAPTER 5. INSTALLING A THREE-NODE CLUSTER ON AWS
	5.1. CONFIGURING A THREE-NODE CLUSTER
	5.2. ADDITIONAL RESOURCES

	CHAPTER 6. UNINSTALLING A CLUSTER ON AWS
	6.1. REMOVING A CLUSTER THAT USES INSTALLER-PROVISIONED INFRASTRUCTURE
	6.2. DELETING AMAZON WEB SERVICES RESOURCES WITH THE CLOUD CREDENTIAL OPERATOR UTILITY
	6.3. DELETING A CLUSTER WITH A CONFIGURED AWS LOCAL ZONE INFRASTRUCTURE
	6.4. ADDITIONAL RESOURCES

	CHAPTER 7. INSTALLATION CONFIGURATION PARAMETERS FOR AWS
	7.1. AVAILABLE INSTALLATION CONFIGURATION PARAMETERS FOR AWS
	7.1.1. Required configuration parameters
	7.1.2. Network configuration parameters
	7.1.3. Optional configuration parameters
	7.1.4. Optional AWS configuration parameters

	CHAPTER 8. AWS LOCAL ZONE OR WAVELENGTH ZONE TASKS
	8.1. EXTEND EXISTING CLUSTERS TO USE AWS LOCAL ZONES OR WAVELENGTH ZONES
	8.1.1. About edge compute pools

	8.2. CHANGING THE CLUSTER NETWORK MTU TO SUPPORT LOCAL ZONES OR WAVELENGTH ZONES
	8.2.1. About the cluster MTU
	8.2.1.1. Service interruption considerations
	8.2.1.2. MTU value selection
	8.2.1.3. How the migration process works

	8.2.2. Changing the cluster network MTU
	8.2.2.1. Checking the current cluster MTU value
	8.2.2.2. Beginning the MTU migration
	8.2.2.3. Verifying the machine configuration
	8.2.2.4. Finalizing the MTU migration

	8.2.3. Opting in to AWS Local Zones or Wavelength Zones
	8.2.4. Create network requirements in an existing VPC that uses AWS Local Zones or Wavelength Zones
	8.2.5. Wavelength Zones only: Creating a VPC carrier gateway
	8.2.6. Wavelength Zones only: CloudFormation template for the VPC Carrier Gateway
	8.2.7. Creating subnets for AWS edge compute services
	8.2.8. CloudFormation template for the VPC subnet
	8.2.9. Creating a machine set manifest for an AWS Local Zones or Wavelength Zones node
	8.2.9.1. Sample YAML for a compute machine set custom resource on AWS
	8.2.9.2. Creating a compute machine set

	8.3. CREATING USER WORKLOADS IN AWS LOCAL ZONES OR WAVELENGTH ZONES
	8.4. NEXT STEPS

