
OpenShift Dedicated 4

Nodes

OpenShift Dedicated Nodes

Last Updated: 2026-02-16

OpenShift Dedicated 4 Nodes

OpenShift Dedicated Nodes

Legal Notice

Copyright © Red Hat.

Except as otherwise noted below, the text of and illustrations in this documentation are licensed by
Red Hat under the Creative Commons Attribution–Share Alike 3.0 Unported license . If you
distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, the Red Hat logo, JBoss, Hibernate, and RHCE are trademarks or registered trademarks of
Red Hat, LLC. or its subsidiaries in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

XFS is a trademark or registered trademark of Hewlett Packard Enterprise Development LP or its
subsidiaries in the United States and other countries.

The OpenStack ® Word Mark and OpenStack logo are trademarks or registered trademarks of the
Linux Foundation, used under license.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing the nodes, Pods, and containers
in your cluster. It also provides information on configuring Pod scheduling and placement, using
jobs and DaemonSets to automate tasks, and other tasks to ensure an efficient cluster.

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW OF NODES
1.1. ABOUT NODES

1.1.1. Read operations
1.1.2. Enhancement operations

1.2. ABOUT PODS
1.2.1. Read operations
1.2.2. Management operations
1.2.3. Enhancement operations

1.3. ABOUT CONTAINERS
1.4. GLOSSARY OF COMMON TERMS FOR OPENSHIFT DEDICATED NODES

CHAPTER 2. WORKING WITH PODS
2.1. USING PODS

2.1.1. Understanding pods
2.1.2. Example pod configurations
2.1.3. Understanding resource requests and limits
2.1.4. Additional resources

2.2. VIEWING PODS
2.2.1. Viewing pods in a project
2.2.2. Describing a pod
2.2.3. Viewing pod usage statistics
2.2.4. Viewing resource logs

2.2.4.1. Viewing resource logs by using the web console
2.2.4.2. Viewing resource logs by using the CLI

2.3. CONFIGURING AN OPENSHIFT DEDICATED CLUSTER FOR PODS
2.3.1. Configuring how pods behave after restart
2.3.2. Limiting the bandwidth available to pods
2.3.3. Understanding how to use pod disruption budgets to specify the number of pods that must be up

2.3.3.1. Specifying the number of pods that must be up with pod disruption budgets
2.4. PROVIDING SENSITIVE DATA TO PODS BY USING SECRETS

2.4.1. Understanding secrets
2.4.1.1. Types of secrets
2.4.1.2. Secret data keys
2.4.1.3. Automatically generated image pull secrets

2.4.2. Understanding how to create secrets
2.4.2.1. Secret creation restrictions
2.4.2.2. Creating an opaque secret
2.4.2.3. Creating a legacy service account token secret
2.4.2.4. Creating a basic authentication secret
2.4.2.5. Creating an SSH authentication secret
2.4.2.6. Creating a Docker configuration secret
2.4.2.7. Creating a secret using the web console

2.4.3. Understanding how to update secrets
2.4.4. Creating and using secrets
2.4.5. About using signed certificates with secrets

2.4.5.1. Generating signed certificates for use with secrets
2.4.6. Troubleshooting secrets

2.5. CREATING AND USING CONFIG MAPS
2.5.1. Understanding config maps

2.5.1.1. Config map restrictions
2.5.2. Creating a config map in the OpenShift Dedicated web console

8
8
9
9
9
9
9

10
10
10

12
12
12
12
14
15
15
15
16
16
17
17
17
18
18
19

20
21
22
23
24
24
24
25
27
28
29
30
31
32
33
34
34
35
36
38
38
39
40
40

Table of Contents

1

. .

2.5.3. Creating a config map by using the CLI
2.5.3.1. Creating a config map from a directory
2.5.3.2. Creating a config map from a file
2.5.3.3. Creating a config map from literal values

2.5.4. Use cases: Consuming config maps in pods
2.5.4.1. Populating environment variables in containers by using config maps
2.5.4.2. Setting command-line arguments for container commands with config maps
2.5.4.3. Injecting content into a volume by using config maps

2.6. INCLUDING POD PRIORITY IN POD SCHEDULING DECISIONS
2.6.1. Understanding pod priority

2.6.1.1. Pod priority classes
2.6.1.2. Pod priority names

2.6.2. Understanding pod preemption
2.6.2.1. Non-preempting priority classes
2.6.2.2. Pod preemption and other scheduler settings
2.6.2.3. Graceful termination of preempted pods

2.6.3. Configuring priority and preemption
2.7. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

2.7.1. Using node selectors to control pod placement

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

3.1. RELEASE NOTES
3.1.1. Custom Metrics Autoscaler Operator release notes

3.1.1.1. Supported versions
3.1.1.2. Custom Metrics Autoscaler Operator 2.18.1-2 release notes

3.1.2. Release notes for past releases of the Custom Metrics Autoscaler Operator
3.1.2.1. Custom Metrics Autoscaler Operator 2.18.1-1 release notes

3.1.2.1.1. New features and enhancements
3.1.2.1.1.1. Forced activation
3.1.2.1.1.2. Excluding labels from being propagated to the HPA
3.1.2.1.1.3. Pause in scaling down
3.1.2.1.1.4. Pause in scaling up
3.1.2.1.1.5. Support for the s390x architecture
3.1.2.1.1.6. Fallback for triggers of Value metric type
3.1.2.1.1.7. Support for even distribution of Kafka partitions
3.1.2.1.1.8. The Zap logger has replaced the Kubernetes logger

3.1.2.1.2. Deprecated and removed features
3.1.2.1.3. Bug fixes

3.1.2.2. Custom Metrics Autoscaler Operator 2.17.2-2 release notes
3.1.2.3. Custom Metrics Autoscaler Operator 2.17.2 release notes

3.1.2.3.1. New features and enhancements
3.1.2.3.1.1. The KEDA controller is automatically created during installation
3.1.2.3.1.2. Support for the Kubernetes workload trigger
3.1.2.3.1.3. Support for bound service account tokens

3.1.2.3.2. Bug fixes
3.1.2.4. Custom Metrics Autoscaler Operator 2.15.1-4 release notes

3.1.2.4.1. New features and enhancements
3.1.2.4.1.1. CMA multi-arch builds

3.1.2.5. Custom Metrics Autoscaler Operator 2.14.1-467 release notes
3.1.2.5.1. Bug fixes

3.1.2.6. Custom Metrics Autoscaler Operator 2.14.1-454 release notes
3.1.2.6.1. New features and enhancements

40
40
42
45
45
45
47
49
50
50
51
52
52
52
53
53
53
54
54

57
57
57
57
58
58
58
58
58
58
58
59
59
59
59
59
59
59
60
60
60
60
61
61
61
61
61
61
61

62
62
62

OpenShift Dedicated 4 Nodes

2

3.1.2.6.1.1. Support for the Cron trigger with the Custom Metrics Autoscaler Operator
3.1.2.6.2. Bug fixes

3.1.2.7. Custom Metrics Autoscaler Operator 2.13.1 release notes
3.1.2.7.1. New features and enhancements

3.1.2.7.1.1. Support for custom certificates with the Custom Metrics Autoscaler Operator
3.1.2.7.2. Bug fixes

3.1.2.8. Custom Metrics Autoscaler Operator 2.12.1-394 release notes
3.1.2.8.1. Bug fixes

3.1.2.9. Custom Metrics Autoscaler Operator 2.12.1-384 release notes
3.1.2.9.1. Bug fixes

3.1.2.10. Custom Metrics Autoscaler Operator 2.12.1-376 release notes
3.1.2.10.1. Bug fixes

3.1.2.11. Custom Metrics Autoscaler Operator 2.11.2-322 release notes
3.1.2.11.1. Bug fixes

3.1.2.12. Custom Metrics Autoscaler Operator 2.11.2-311 release notes
3.1.2.12.1. New features and enhancements

3.1.2.12.1.1. Red Hat OpenShift Service on AWS and OpenShift Dedicated are now supported
3.1.2.12.2. Bug fixes

3.1.2.13. Custom Metrics Autoscaler Operator 2.10.1-267 release notes
3.1.2.13.1. Bug fixes

3.1.2.14. Custom Metrics Autoscaler Operator 2.10.1 release notes
3.1.2.14.1. New features and enhancements

3.1.2.14.1.1. Custom Metrics Autoscaler Operator general availability
3.1.2.14.1.2. Performance metrics
3.1.2.14.1.3. Pausing the custom metrics autoscaling for scaled objects
3.1.2.14.1.4. Replica fall back for scaled objects
3.1.2.14.1.5. Customizable HPA naming for scaled objects
3.1.2.14.1.6. Activation and scaling thresholds

3.1.2.15. Custom Metrics Autoscaler Operator 2.8.2-174 release notes
3.1.2.15.1. New features and enhancements

3.1.2.15.1.1. Operator upgrade support
3.1.2.15.1.2. must-gather support

3.1.2.16. Custom Metrics Autoscaler Operator 2.8.2 release notes
3.1.2.16.1. New features and enhancements

3.1.2.16.1.1. Audit Logging
3.1.2.16.1.2. Scale applications based on Apache Kafka metrics
3.1.2.16.1.3. Scale applications based on CPU metrics
3.1.2.16.1.4. Scale applications based on memory metrics

3.2. CUSTOM METRICS AUTOSCALER OPERATOR OVERVIEW
3.2.1. Custom CA certificates for the Custom Metrics Autoscaler

3.3. INSTALLING THE CUSTOM METRICS AUTOSCALER
3.3.1. Installing the custom metrics autoscaler
3.3.2. Editing the Keda Controller CR

3.4. UNDERSTANDING CUSTOM METRICS AUTOSCALER TRIGGERS
3.4.1. Understanding the Prometheus trigger

3.4.1.1. Configuring GPU-based autoscaling with Prometheus and DCGM metrics
3.4.1.2. Configuring the custom metrics autoscaler to use OpenShift Dedicated monitoring

3.4.2. Understanding the CPU trigger
3.4.3. Understanding the memory trigger
3.4.4. Understanding the Kafka trigger
3.4.5. Understanding the Cron trigger
3.4.6. Understanding the Kubernetes workload trigger

3.5. UNDERSTANDING CUSTOM METRICS AUTOSCALER TRIGGER AUTHENTICATIONS

62
62
62
63
63
63
63
63
64
64
64
65
65
65
65
65
65
66
66
66
67
67
67
67
67
67
67
67
68
68
68
68
68
68
68
68
69
69
69
71
71
71
73
74
75
76
77
80
81

82
84
85
86

Table of Contents

3

. .

3.5.1. Using trigger authentications
3.6. UNDERSTANDING HOW TO ADD CUSTOM METRICS AUTOSCALERS

3.6.1. Adding a custom metrics autoscaler to a workload
3.6.2. Additional resources

3.7. PAUSING THE CUSTOM METRICS AUTOSCALER FOR A SCALED OBJECT
3.7.1. Pausing a custom metrics autoscaler
3.7.2. Restarting the custom metrics autoscaler for a scaled object

3.8. GATHERING AUDIT LOGS
3.8.1. Configuring audit logging

3.9. GATHERING DEBUGGING DATA
3.9.1. Gathering debugging data

3.10. VIEWING OPERATOR METRICS
3.10.1. Accessing performance metrics

3.10.1.1. Provided Operator metrics
3.11. REMOVING THE CUSTOM METRICS AUTOSCALER OPERATOR

3.11.1. Uninstalling the Custom Metrics Autoscaler Operator

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)
4.1. CONTROLLING POD PLACEMENT USING THE SCHEDULER

4.1.1. About the default scheduler
4.1.1.1. Understanding default scheduling

4.1.2. Scheduler use cases
4.1.2.1. Affinity
4.1.2.2. Anti-affinity

4.2. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND ANTI-AFFINITY RULES
4.2.1. Understanding pod affinity
4.2.2. Configuring a pod affinity rule
4.2.3. Configuring a pod anti-affinity rule
4.2.4. Sample pod affinity and anti-affinity rules

4.2.4.1. Pod Affinity
4.2.4.2. Pod Anti-affinity
4.2.4.3. Pod Affinity with no Matching Labels

4.3. CONTROLLING POD PLACEMENT ON NODES USING NODE AFFINITY RULES
4.3.1. Understanding node affinity
4.3.2. Configuring a required node affinity rule
4.3.3. Configuring a preferred node affinity rule
4.3.4. Sample node affinity rules

4.3.4.1. Node affinity with matching labels
4.3.4.2. Node affinity with no matching labels

4.4. PLACING PODS ONTO OVERCOMMITED NODES
4.4.1. Understanding overcommitment
4.4.2. Understanding nodes overcommitment

4.5. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS
4.5.1. About node selectors
4.5.2. Using node selectors to control pod placement

4.6. CONTROLLING POD PLACEMENT BY USING POD TOPOLOGY SPREAD CONSTRAINTS
4.6.1. Example use cases
4.6.2. Important considerations
4.6.3. Understanding skew and maxSkew

4.6.3.1. Example skew calculation
4.6.3.2. The maxSkew parameter

4.6.4. Example configurations for pod topology spread constraints

90
93
93
98
98
98
99
99

100
103
103
106
106
106
107
107

110
110
110
110
111
111
111
111
111

114
115
117
117
118
119

120
121
123
124
125
125
126
128
128
128
129
129
133
135
136
136
136
136
136
137

OpenShift Dedicated 4 Nodes

4

. .

. .

. .

CHAPTER 5. USING JOBS AND DAEMON SETS
5.1. RUNNING BACKGROUND TASKS ON NODES AUTOMATICALLY WITH DAEMON SETS

5.1.1. Scheduled by default scheduler
5.1.2. Creating daemonsets

5.2. RUNNING TASKS IN PODS USING JOBS
5.2.1. Understanding jobs and cron jobs

5.2.1.1. Understanding how to create jobs
5.2.1.2. Understanding how to set a maximum duration for jobs
5.2.1.3. Understanding how to set a job back off policy for pod failure
5.2.1.4. Understanding how to configure a cron job to remove artifacts
5.2.1.5. Known limitations

5.2.2. Creating jobs
5.2.3. Creating cron jobs

CHAPTER 6. WORKING WITH NODES
6.1. VIEWING AND LISTING THE NODES IN YOUR OPENSHIFT DEDICATED CLUSTER

6.1.1. About listing all the nodes in a cluster
6.1.2. Listing pods on a node in your cluster
6.1.3. Viewing memory and CPU usage statistics on your nodes

6.2. USING THE NODE TUNING OPERATOR
6.2.1. Accessing an example Node Tuning Operator specification
6.2.2. Custom tuning specification
6.2.3. Default profiles set on a cluster
6.2.4. Supported TuneD daemon plugins

6.3. REMEDIATING, FENCING, AND MAINTAINING NODES

CHAPTER 7. WORKING WITH CONTAINERS
7.1. UNDERSTANDING CONTAINERS

7.1.1. About containers and RHEL kernel memory
7.1.2. About the container engine and container runtime

7.2. USING INIT CONTAINERS TO PERFORM TASKS BEFORE A POD IS DEPLOYED
7.2.1. Understanding Init Containers
7.2.2. Creating Init Containers

7.3. USING VOLUMES TO PERSIST CONTAINER DATA
7.3.1. Understanding volumes
7.3.2. Working with volumes using the OpenShift Dedicated CLI
7.3.3. Listing volumes and volume mounts in a pod
7.3.4. Adding volumes to a pod
7.3.5. Updating volumes and volume mounts in a pod
7.3.6. Removing volumes and volume mounts from a pod
7.3.7. Configuring volumes for multiple uses in a pod

7.4. MAPPING VOLUMES USING PROJECTED VOLUMES
7.4.1. Understanding projected volumes

7.4.1.1. Example Pod specs
7.4.1.2. Pathing Considerations

7.4.2. Configuring a Projected Volume for a Pod
7.5. ALLOWING CONTAINERS TO CONSUME API OBJECTS

7.5.1. Expose pod information to Containers using the Downward API
7.5.2. Understanding how to consume container values using the downward API

7.5.2.1. Consuming container values using environment variables
7.5.2.2. Consuming container values using a volume plugin

7.5.3. Understanding how to consume container resources using the Downward API
7.5.3.1. Consuming container resources using environment variables

140
140
140
141

143
144
145
145
145
146
146
146
147

150
150
150
154
155
156
156
157
162
162
163

164
164
164
164
165
165
165
168
168
168
169
170
174
177
178
179
180
181

183
184
187
187
188
188
190
191
191

Table of Contents

5

. .

7.5.3.2. Consuming container resources using a volume plugin
7.5.4. Consuming secrets using the Downward API
7.5.5. Consuming configuration maps using the Downward API
7.5.6. Referencing environment variables
7.5.7. Escaping environment variable references

7.6. COPYING FILES TO OR FROM OPENSHIFT DEDICATED CONTAINERS
7.6.1. Understanding how to copy files

7.6.1.1. Requirements
7.6.2. Copying files to and from containers
7.6.3. Using advanced Rsync features

7.7. EXECUTING REMOTE COMMANDS IN AN OPENSHIFT DEDICATED CONTAINER
7.7.1. Executing remote commands in containers
7.7.2. Protocol for initiating a remote command from a client

7.8. USING PORT FORWARDING TO ACCESS APPLICATIONS IN A CONTAINER
7.8.1. Understanding port forwarding
7.8.2. Using port forwarding
7.8.3. Protocol for initiating port forwarding from a client

CHAPTER 8. WORKING WITH CLUSTERS
8.1. VIEWING SYSTEM EVENT INFORMATION IN OPENSHIFT DEDICATED CLUSTERS

8.1.1. Understanding events
8.1.2. Viewing events using the CLI
8.1.3. List of events

8.2. ESTIMATING THE NUMBER OF PODS YOUR OPENSHIFT DEDICATED NODES CAN HOLD
8.2.1. Understanding the OpenShift Cluster Capacity Tool
8.2.2. Running the OpenShift Cluster Capacity Tool on the command line
8.2.3. Running the OpenShift Cluster Capacity Tool as a job inside a pod
8.2.4. Additional resources

8.3. RESTRICT RESOURCE CONSUMPTION WITH LIMIT RANGES
8.3.1. About limit ranges
8.3.2. About component limits
8.3.3. Creating a Limit Range
8.3.4. Viewing a limit
8.3.5. Deleting a Limit Range

8.4. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER MEMORY AND RISK REQUIREMENTS
8.4.1. Understanding how to manage application memory
8.4.2. Understanding OpenJDK settings for OpenShift Dedicated
8.4.3. Finding the memory request and limit from within a pod
8.4.4. Understanding OOM kill policy
8.4.5. Understanding pod eviction

8.5. CONFIGURING YOUR CLUSTER TO PLACE PODS ON OVERCOMMITTED NODES
8.5.1. Project-level limits

8.5.1.1. Disabling overcommitment for a project
8.5.2. Additional resources

192
194
195
196
197
198
198
198
199
199

200
200
200
201
201

202
203

204
204
204
204
205
213
213
214
216
219
219
219

220
225
227
228
228
228
230
231

233
235
235
236
236
237

OpenShift Dedicated 4 Nodes

6

Table of Contents

7

CHAPTER 1. OVERVIEW OF NODES

1.1. ABOUT NODES

A node is a virtual or bare-metal machine in a Kubernetes cluster. Worker nodes host your application
containers, grouped as pods. The control plane nodes run services that are required to control the
Kubernetes cluster. In OpenShift Dedicated, the control plane nodes contain more than just the
Kubernetes services for managing the OpenShift Dedicated cluster.

Having stable and healthy nodes in a cluster is fundamental to the smooth functioning of your hosted
application. In OpenShift Dedicated, you can access, manage, and monitor a node through the Node
object representing the node. Using the OpenShift CLI (oc) or the web console, you can perform the
following operations on a node.

The following components of a node are responsible for maintaining the running of pods and providing
the Kubernetes runtime environment.

Container runtime

The container runtime is responsible for running containers. OpenShift Dedicated deploys the CRI-O
container runtime on each of the Red Hat Enterprise Linux CoreOS (RHCOS) nodes in your cluster.
The Windows Machine Config Operator (WMCO) deploys the containerd runtime on its Windows
nodes.

Kubelet

Kubelet runs on nodes and reads the container manifests. It ensures that the defined containers
have started and are running. The kubelet process maintains the state of work and the node server.
Kubelet manages network rules and port forwarding. The kubelet manages containers that are
created by Kubernetes only.

DNS

Cluster DNS is a DNS server which serves DNS records for Kubernetes services. Containers started
by Kubernetes automatically include this DNS server in their DNS searches.

OpenShift Dedicated 4 Nodes

8

1.1.1. Read operations

The read operations allow an administrator or a developer to get information about nodes in an
OpenShift Dedicated cluster.

List all the nodes in a cluster .

Get information about a node, such as memory and CPU usage, health, status, and age.

List pods running on a node .

1.1.2. Enhancement operations

OpenShift Dedicated allows you to do more than just access and manage nodes; as an administrator,
you can perform the following tasks on nodes to make the cluster more efficient, application-friendly,
and to provide a better environment for your developers.

Manage node-level tuning for high-performance applications that require some level of kernel
tuning by using the Node Tuning Operator .

Run background tasks on nodes automatically with daemon sets . You can create and use
daemon sets to create shared storage, run a logging pod on every node, or deploy a monitoring
agent on all nodes.

1.2. ABOUT PODS

A pod is one or more containers deployed together on a node. As a cluster administrator, you can define
a pod, assign it to run on a healthy node that is ready for scheduling, and manage. A pod runs as long as
the containers are running. You cannot change a pod once it is defined and is running. Some operations
you can perform when working with pods are:

1.2.1. Read operations

As an administrator, you can get information about pods in a project through the following tasks:

List pods associated with a project , including information such as the number of replicas and
restarts, current status, and age.

View pod usage statistics such as CPU, memory, and storage consumption.

1.2.2. Management operations

The following list of tasks provides an overview of how an administrator can manage pods in an
OpenShift Dedicated cluster.

Control scheduling of pods using the advanced scheduling features available in OpenShift
Dedicated:

Node-to-pod binding rules such as pod affinity, node affinity, and anti-affinity.

Node labels and selectors .

Pod topology spread constraints .

Configure how pods behave after a restart using pod controllers and restart policies .

CHAPTER 1. OVERVIEW OF NODES

9

Limit both egress and ingress traffic on a pod .

Add and remove volumes to and from any object that has a pod template . A volume is a
mounted file system available to all the containers in a pod. Container storage is ephemeral; you
can use volumes to persist container data.

1.2.3. Enhancement operations

You can work with pods more easily and efficiently with the help of various tools and features available
in OpenShift Dedicated. The following operations involve using those tools and features to better
manage pods.

Secrets: Some applications need sensitive information, such as passwords and usernames. An
administrator can use the Secret object to provide sensitive data to pods using the Secret
object.

1.3. ABOUT CONTAINERS

A container is the basic unit of an OpenShift Dedicated application, which comprises the application
code packaged along with its dependencies, libraries, and binaries. Containers provide consistency
across environments and multiple deployment targets: physical servers, virtual machines (VMs), and
private or public cloud.

Linux container technologies are lightweight mechanisms for isolating running processes and limiting
access to only designated resources. As an administrator, You can perform various tasks on a Linux
container, such as:

Copy files to and from a container .

Allow containers to consume API objects .

Execute remote commands in a container .

Use port forwarding to access applications in a container .

OpenShift Dedicated provides specialized containers called Init containers. Init containers run before
application containers and can contain utilities or setup scripts not present in an application image. You
can use an Init container to perform tasks before the rest of a pod is deployed.

Apart from performing specific tasks on nodes, pods, and containers, you can work with the overall
OpenShift Dedicated cluster to keep the cluster efficient and the application pods highly available.

1.4. GLOSSARY OF COMMON TERMS FOR OPENSHIFT DEDICATED
NODES

This glossary defines common terms that are used in the node content.

Container

It is a lightweight and executable image that comprises software and all its dependencies. Containers
virtualize the operating system, as a result, you can run containers anywhere from a data center to a
public or private cloud to even a developer’s laptop.

Daemon set

Ensures that a replica of the pod runs on eligible nodes in an OpenShift Dedicated cluster.

OpenShift Dedicated 4 Nodes

10

egress

The process of data sharing externally through a network’s outbound traffic from a pod.

garbage collection

The process of cleaning up cluster resources, such as terminated containers and images that are not
referenced by any running pods.

Ingress

Incoming traffic to a pod.

Job

A process that runs to completion. A job creates one or more pod objects and ensures that the
specified pods are successfully completed.

Labels

You can use labels, which are key-value pairs, to organise and select subsets of objects, such as a
pod.

Node

A worker machine in the OpenShift Dedicated cluster. A node can be either be a virtual machine
(VM) or a physical machine.

Node Tuning Operator

You can use the Node Tuning Operator to manage node-level tuning by using the TuneD daemon. It
ensures custom tuning specifications are passed to all containerized TuneD daemons running in the
cluster in the format that the daemons understand. The daemons run on all nodes in the cluster, one
per node.

Self Node Remediation Operator

The Operator runs on the cluster nodes and identifies and reboots nodes that are unhealthy.

Pod

One or more containers with shared resources, such as volume and IP addresses, running in your
OpenShift Dedicated cluster. A pod is the smallest compute unit defined, deployed, and managed.

Toleration

Indicates that the pod is allowed (but not required) to be scheduled on nodes or node groups with
matching taints. You can use tolerations to enable the scheduler to schedule pods with matching
taints.

Taint

A core object that comprises a key, value, and effect. Taints and tolerations work together to ensure
that pods are not scheduled on irrelevant nodes.

CHAPTER 1. OVERVIEW OF NODES

11

CHAPTER 2. WORKING WITH PODS

2.1. USING PODS

A pod is one or more containers deployed together on one host, and the smallest compute unit that can
be defined, deployed, and managed.

2.1.1. Understanding pods

Pods are the rough equivalent of a machine instance (physical or virtual) to a Container. Each pod is
allocated its own internal IP address, therefore owning its entire port space, and containers within pods
can share their local storage and networking.

Pods have a lifecycle; they are defined, then they are assigned to run on a node, then they run until their
container(s) exit or they are removed for some other reason. Pods, depending on policy and exit code,
might be removed after exiting, or can be retained to enable access to the logs of their containers.

OpenShift Dedicated treats pods as largely immutable; changes cannot be made to a pod definition
while it is running. OpenShift Dedicated implements changes by terminating an existing pod and
recreating it with modified configuration, base image(s), or both. Pods are also treated as expendable,
and do not maintain state when recreated. Therefore pods should usually be managed by higher-level
controllers, rather than directly by users.

WARNING

Bare pods that are not managed by a replication controller will be not rescheduled
upon node disruption.

2.1.2. Example pod configurations

OpenShift Dedicated leverages the Kubernetes concept of a pod, which is one or more containers
deployed together on one host, and the smallest compute unit that can be defined, deployed, and
managed.

The following is an example definition of a pod. It demonstrates many features of pods, most of which
are discussed in other topics and thus only briefly mentioned here:

Pod object definition (YAML)



kind: Pod
apiVersion: v1
metadata:
 name: example
 labels:
 environment: production
 app: abc 1
spec:
 restartPolicy: Always 2
 securityContext: 3

OpenShift Dedicated 4 Nodes

12

1

2

3

4

5

6

7

8

Pods can be "tagged" with one or more labels, which can then be used to select and manage
groups of pods in a single operation. The labels are stored in key/value format in the metadata
hash.

The pod restart policy with possible values Always, OnFailure, and Never. The default value is
Always.

OpenShift Dedicated defines a security context for containers which specifies whether they are
allowed to run as privileged containers, run as a user of their choice, and more. The default context
is very restrictive but administrators can modify this as needed.

containers specifies an array of one or more container definitions.

The container specifies where external storage volumes are mounted within the container.

Specify the volumes to provide for the pod. Volumes mount at the specified path. Do not mount to
the container root, /, or any path that is the same in the host and the container. This can corrupt
your host system if the container is sufficiently privileged, such as the host /dev/pts files. It is safe
to mount the host by using /host.

Each container in the pod is instantiated from its own container image.

The pod defines storage volumes that are available to its container(s) to use.

If you attach persistent volumes that have high file counts to pods, those pods can fail or can take a
long time to start. For more information, see When using Persistent Volumes with high file counts

 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers: 4
 - name: abc
 args:
 - sleep
 - "1000000"
 volumeMounts: 5
 - name: cache-volume
 mountPath: /cache 6
 image: registry.access.redhat.com/ubi7/ubi-init:latest 7
 securityContext:
 allowPrivilegeEscalation: false
 runAsNonRoot: true
 capabilities:
 drop: ["ALL"]
 resources:
 limits:
 memory: "100Mi"
 cpu: "1"
 requests:
 memory: "100Mi"
 cpu: "1"
 volumes: 8
 - name: cache-volume
 emptyDir:
 sizeLimit: 500Mi

CHAPTER 2. WORKING WITH PODS

13

in OpenShift, why do pods fail to start or take an excessive amount of time to achieve "Ready"
state?.

NOTE

This pod definition does not include attributes that are filled by OpenShift Dedicated
automatically after the pod is created and its lifecycle begins. The Kubernetes pod
documentation has details about the functionality and purpose of pods.

2.1.3. Understanding resource requests and limits

You can specify CPU and memory requests and limits for pods by using a pod spec, as shown in
"Example pod configurations", or the specification for the controlling object of the pod.

CPU and memory requests specify the minimum amount of a resource that a pod needs to run, helping
OpenShift Dedicated to schedule pods on nodes with sufficient resources.

CPU and memory limits define the maximum amount of a resource that a pod can consume, preventing
the pod from consuming excessive resources and potentially impacting other pods on the same node.

CPU and memory requests and limits are processed by using the following principles:

CPU limits are enforced by using CPU throttling. When a container approaches its CPU limit, the
kernel restricts access to the CPU specified as the container’s limit. As such, a CPU limit is a
hard limit that the kernel enforces. OpenShift Dedicated can allow a container to exceed its
CPU limit for extended periods of time. However, container runtimes do not terminate pods or
containers for excessive CPU usage.
CPU limits and requests are measured in CPU units. One CPU unit is equivalent to 1 physical
CPU core or 1 virtual core, depending on whether the node is a physical host or a virtual machine
running inside a physical machine. Fractional requests are allowed. For example, when you define
a container with a CPU request of 0.5, you are requesting half as much CPU time than if you
asked for 1.0 CPU. For CPU units, 0.1 is equivalent to the 100m, which can be read as one
hundred millicpu or one hundred millicores. A CPU resource is always an absolute amount of
resource, and is never a relative amount.

NOTE

By default, the smallest amount of CPU that can be allocated to a pod is 10
mCPU. You can request resource limits lower than 10 mCPU in a pod spec.
However, the pod would still be allocated 10 mCPU.

Memory limits are enforced by the kernel by using out of memory (OOM) kills. When a container
uses more than its memory limit, the kernel can terminate that container. However, terminations
happen only when the kernel detects memory pressure. As such, a container that over allocates
memory might not be immediately killed. This means memory limits are enforced reactively. A
container can use more memory than its memory limit. If it does, the container can get killed.
You can express memory as a plain integer or as a fixed-point number by using one of these
quantity suffixes: E, P, T, G, M, or k. You can also use the power-of-two equivalents: Ei, Pi, Ti, Gi,
Mi, or Ki.

If the node where a pod is running has enough of a resource available, it is possible for a container to use
more CPU or memory resources than it requested. However, the container cannot exceed the
corresponding limit. For example, if you set a container memory request of 256 MiB, and that container

OpenShift Dedicated 4 Nodes

14

https://access.redhat.com/solutions/6221251
https://kubernetes.io/docs/concepts/workloads/pods/pod/

is in a pod scheduled to a node with 8GiB of memory and no other pods, the container can try to use
more memory than the requested 256 MiB.

This behavior does not apply to CPU and memory limits. These limits are applied by the kubelet and the
container runtime, and are enforced by the kernel. On Linux nodes, the kernel enforces limits by using
cgroups.

2.1.4. Additional resources

For more information on pods and storage see Understanding persistent storage and
Understanding ephemeral storage .

Example pod configurations

2.2. VIEWING PODS

As an administrator, you can view cluster pods, check their health, and evaluate the overall health of the
cluster. You can also view a list of pods associated with a specific project or view usage statistics about
pods. Regularly viewing pods can help you detect problems early, track resource usage, and ensure
cluster stability.

2.2.1. Viewing pods in a project

You can display pod usage statistics, such as CPU, memory, and storage consumption, to monitor
container runtime environments and ensure efficient resource use.

Procedure

1. Change to the project by entering the following command:

2. Obtain a list of pods by entering the following command:

Example output

3. Optional: Add the -o wide flags to view the pod IP address and the node where the pod is
located. For example:

Example output

$ oc project <project_name>

$ oc get pods

NAME READY STATUS RESTARTS AGE
console-698d866b78-bnshf 1/1 Running 2 165m
console-698d866b78-m87pm 1/1 Running 2 165m

$ oc get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE
console-698d866b78-bnshf 1/1 Running 2 166m 10.128.0.24 ip-10-0-152-

CHAPTER 2. WORKING WITH PODS

15

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/storage/#understanding-persistent-storage
https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/storage/#understanding-ephemeral-storage

2.2.2. Describing a pod

To troubleshoot pod issues and view detailed information about a pod in OpenShift Dedicated, you can
describe a pod using the oc describe pod command. The Events section in the output provides
detailed information about the pod and the containers inside of it.

Procedure

Describe a pod by running the following command:

Example output

Additional resources

oc describe

2.2.3. Viewing pod usage statistics

You can display usage statistics about pods, which provide the runtime environments for containers.
These usage statistics include CPU, memory, and storage consumption.

Prerequisites

You must have cluster-reader permission to view the usage statistics.

Metrics must be installed to view the usage statistics.

Procedure

71.ec2.internal <none>
console-698d866b78-m87pm 1/1 Running 2 166m 10.129.0.23 ip-10-0-173-
237.ec2.internal <none>

$ oc describe pod -n <namespace> busybox-1

Name: busybox-1
Namespace: busy
Priority: 0
Service Account: default
Node: worker-3/192.168.0.0
Start Time: Mon, 27 Nov 2023 14:41:25 -0500
Labels: app=busybox
 pod-template-hash=<hash>
Annotations: k8s.ovn.org/pod-networks:
…
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Pulled 41m (x170 over 7d1h) kubelet Container image
"quay.io/quay/busybox:latest" already present on machine
 Normal Created 41m (x170 over 7d1h) kubelet Created container busybox
 Normal Started 41m (x170 over 7d1h) kubelet Started container busybox

OpenShift Dedicated 4 Nodes

16

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/cli_tools/#oc-describe

1. View the usage statistics by entering the following command:

Example output

2. Optional: Add the --selector='' label to view usage statistics for pods with labels. Note that you
must choose the label query to filter on, such as =, ==, or !=. For example:

2.2.4. Viewing resource logs

You can view logs for resources in the OpenShift CLI (oc) or web console. Logs display from the end (or
tail) by default. Viewing logs for resources can help you troubleshoot issues and monitor resource
behavior.

2.2.4.1. Viewing resource logs by using the web console

Use the following procedure to view resource logs by using the OpenShift Dedicated web console.

Procedure

1. In the OpenShift Dedicated console, navigate to Workloads → Pods or navigate to the pod
through the resource you want to investigate.

NOTE

Some resources, such as builds, do not have pods to query directly. In such
instances, you can locate the Logs link on the Details page for the resource.

2. Select a project from the drop-down menu.

3. Click the name of the pod you want to investigate.

4. Click Logs.

2.2.4.2. Viewing resource logs by using the CLI

Use the following procedure to view resource logs by using the command-line interface (CLI).

Prerequisites

Access to the OpenShift CLI (oc).

Procedure

$ oc adm top pods -n <namespace>

NAME CPU(cores) MEMORY(bytes)
console-7f58c69899-q8c8k 0m 22Mi
console-7f58c69899-xhbgg 0m 25Mi
downloads-594fcccf94-bcxk8 3m 18Mi
downloads-594fcccf94-kv4p6 2m 15Mi

$ oc adm top pod --selector='<pod_name>'

CHAPTER 2. WORKING WITH PODS

17

View the log for a specific pod by entering the following command:

where:

-f

Optional: Specifies that the output follows what is being written into the logs.

<pod_name>

Specifies the name of the pod.

<container_name>

Optional: Specifies the name of a container. When a pod has more than one container, you
must specify the container name.

For example:

View the log for a specific resource by entering the following command:

For example:

2.3. CONFIGURING AN OPENSHIFT DEDICATED CLUSTER FOR PODS

As an administrator, you can create and maintain an efficient cluster for pods.

By keeping your cluster efficient, you can provide a better environment for your developers using such
tools as what a pod does when it exits, ensuring that the required number of pods is always running,
when to restart pods designed to run only once, limit the bandwidth available to pods, and how to keep
pods running during disruptions.

2.3.1. Configuring how pods behave after restart

A pod restart policy determines how OpenShift Dedicated responds when Containers in that pod exit.
The policy applies to all Containers in that pod.

The possible values are:

Always - Tries restarting a successfully exited Container on the pod continuously, with an
exponential back-off delay (10s, 20s, 40s) capped at 5 minutes. The default is Always.

OnFailure - Tries restarting a failed Container on the pod with an exponential back-off delay
(10s, 20s, 40s) capped at 5 minutes.

Never - Does not try to restart exited or failed Containers on the pod. Pods immediately fail and
exit.

After the pod is bound to a node, the pod will never be bound to another node. This means that a

$ oc logs -f <pod_name> -c <container_name>

$ oc logs -f ruby-57f7f4855b-znl92 -c ruby

$ oc logs <object_type>/<resource_name>

$ oc logs deployment/ruby

OpenShift Dedicated 4 Nodes

18

After the pod is bound to a node, the pod will never be bound to another node. This means that a
controller is necessary in order for a pod to survive node failure:

Condition Controller Type Restart Policy

Pods that are expected to
terminate (such as batch
computations)

Job OnFailure or Never

Pods that are expected to not
terminate (such as web servers)

Replication controller Always.

Pods that must run one-per-
machine

Daemon set Any

If a Container on a pod fails and the restart policy is set to OnFailure, the pod stays on the node and the
Container is restarted. If you do not want the Container to restart, use a restart policy of Never.

If an entire pod fails, OpenShift Dedicated starts a new pod. Developers must address the possibility
that applications might be restarted in a new pod. In particular, applications must handle temporary files,
locks, incomplete output, and so forth caused by previous runs.

NOTE

Kubernetes architecture expects reliable endpoints from cloud providers. When a cloud
provider is down, the kubelet prevents OpenShift Dedicated from restarting.

If the underlying cloud provider endpoints are not reliable, do not install a cluster using
cloud provider integration. Install the cluster as if it was in a no-cloud environment. It is
not recommended to toggle cloud provider integration on or off in an installed cluster.

For details on how OpenShift Dedicated uses restart policy with failed Containers, see the Example
States in the Kubernetes documentation.

2.3.2. Limiting the bandwidth available to pods

You can apply quality-of-service traffic shaping to a pod and effectively limit its available bandwidth.
Egress traffic (from the pod) is handled by policing, which simply drops packets in excess of the
configured rate. Ingress traffic (to the pod) is handled by shaping queued packets to effectively handle
data. The limits you place on a pod do not affect the bandwidth of other pods.

Procedure

To limit the bandwidth on a pod:

1. Write an object definition JSON file, and specify the data traffic speed using
kubernetes.io/ingress-bandwidth and kubernetes.io/egress-bandwidth annotations. For
example, to limit both pod egress and ingress bandwidth to 10M/s:

Limited Pod object definition

{
 "kind": "Pod",

CHAPTER 2. WORKING WITH PODS

19

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#example-states

2. Create the pod using the object definition:

2.3.3. Understanding how to use pod disruption budgets to specify the number of
pods that must be up

A pod disruption budget allows the specification of safety constraints on pods during operations, such as
draining a node for maintenance.

PodDisruptionBudget is an API object that specifies the minimum number or percentage of replicas
that must be up at a time. Setting these in projects can be helpful during node maintenance (such as
scaling a cluster down or a cluster upgrade) and is only honored on voluntary evictions (not on node
failures).

A PodDisruptionBudget object’s configuration consists of the following key parts:

A label selector, which is a label query over a set of pods.

An availability level, which specifies the minimum number of pods that must be available
simultaneously, either:

minAvailable is the number of pods must always be available, even during a disruption.

maxUnavailable is the number of pods can be unavailable during a disruption.

NOTE

Available refers to the number of pods that has condition Ready=True. Ready=True
refers to the pod that is able to serve requests and should be added to the load balancing
pools of all matching services.

A maxUnavailable of 0% or 0 or a minAvailable of 100% or equal to the number of
replicas is permitted but can block nodes from being drained.

 "spec": {
 "containers": [
 {
 "image": "openshift/hello-openshift",
 "name": "hello-openshift"
 }
]
 },
 "apiVersion": "v1",
 "metadata": {
 "name": "iperf-slow",
 "annotations": {
 "kubernetes.io/ingress-bandwidth": "10M",
 "kubernetes.io/egress-bandwidth": "10M"
 }
 }
}

$ oc create -f <file_or_dir_path>

OpenShift Dedicated 4 Nodes

20

WARNING

The default setting for maxUnavailable is 1 for all the machine config pools in
OpenShift Dedicated. It is recommended to not change this value and update one
control plane node at a time. Do not change this value to 3 for the control plane
pool.

You can check for pod disruption budgets across all projects with the following:

NOTE

The following example contains some values that are specific to OpenShift Dedicated on
AWS.

Example output

The PodDisruptionBudget is considered healthy when there are at least minAvailable pods running in
the system. Every pod above that limit can be evicted.

NOTE

Depending on your pod priority and preemption settings, lower-priority pods might be
removed despite their pod disruption budget requirements.

2.3.3.1. Specifying the number of pods that must be up with pod disruption budgets

You can use a PodDisruptionBudget object to specify the minimum number or percentage of replicas
that must be up at a time.



$ oc get poddisruptionbudget --all-namespaces

NAMESPACE NAME MIN AVAILABLE MAX UNAVAILABLE
ALLOWED DISRUPTIONS AGE
openshift-apiserver openshift-apiserver-pdb N/A 1 1
121m
openshift-cloud-controller-manager aws-cloud-controller-manager 1 N/A 1
125m
openshift-cloud-credential-operator pod-identity-webhook 1 N/A 1
117m
openshift-cluster-csi-drivers aws-ebs-csi-driver-controller-pdb N/A 1 1
121m
openshift-cluster-storage-operator csi-snapshot-controller-pdb N/A 1 1
122m
openshift-cluster-storage-operator csi-snapshot-webhook-pdb N/A 1 1
122m
openshift-console console N/A 1 1
116m
#...

CHAPTER 2. WORKING WITH PODS

21

1

2

3

1

2

3

Procedure

To configure a pod disruption budget:

1. Create a YAML file with the an object definition similar to the following:

PodDisruptionBudget is part of the policy/v1 API group.

The minimum number of pods that must be available simultaneously. This can be either an
integer or a string specifying a percentage, for example, 20%.

A label query over a set of resources. The result of matchLabels and matchExpressions
are logically conjoined. Leave this parameter blank, for example selector {}, to select all
pods in the project.

Or:

PodDisruptionBudget is part of the policy/v1 API group.

The maximum number of pods that can be unavailable simultaneously. This can be either
an integer or a string specifying a percentage, for example, 20%.

A label query over a set of resources. The result of matchLabels and matchExpressions
are logically conjoined. Leave this parameter blank, for example selector {}, to select all
pods in the project.

2. Run the following command to add the object to project:

2.4. PROVIDING SENSITIVE DATA TO PODS BY USING SECRETS

apiVersion: policy/v1 1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 minAvailable: 2 2
 selector: 3
 matchLabels:
 name: my-pod

apiVersion: policy/v1 1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 maxUnavailable: 25% 2
 selector: 3
 matchLabels:
 name: my-pod

$ oc create -f </path/to/file> -n <project_name>

OpenShift Dedicated 4 Nodes

22

1

2

3

4

5

Additional resources

Some applications need sensitive information, such as passwords and user names, that you do not want
developers to have.

As an administrator, you can use Secret objects to provide this information without exposing that
information in clear text.

2.4.1. Understanding secrets

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Dedicated client configuration files, private source repository credentials, and so on. Secrets
decouple sensitive content from the pods. You can mount secrets into containers using a volume plugin
or the system can use secrets to perform actions on behalf of a pod.

Key properties include:

Secret data can be referenced independently from its definition.

Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to
rest on a node.

Secret data can be shared within a namespace.

YAML Secret object definition

Indicates the structure of the secret’s key names and values.

The allowable format for the keys in the data field must meet the guidelines in the
DNS_SUBDOMAIN value in the Kubernetes identifiers glossary.

The value associated with keys in the data map must be base64 encoded.

Entries in the stringData map are converted to base64 and the entry will then be moved to the
data map automatically. This field is write-only; the value will only be returned via the data field.

The value associated with keys in the stringData map is made up of plain text strings.

You must create a secret before creating the pods that depend on that secret.

When creating secrets:

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace
type: Opaque 1
data: 2
 username: <username> 3
 password: <password>
stringData: 4
 hostname: myapp.mydomain.com 5

CHAPTER 2. WORKING WITH PODS

23

https://github.com/kubernetes/kubernetes/blob/v1.0.0/docs/design/identifiers.md

Create a secret object with secret data.

Update the pod’s service account to allow the reference to the secret.

Create a pod, which consumes the secret as an environment variable or as a file (using a secret
volume).

2.4.1.1. Types of secrets

The value in the type field indicates the structure of the secret’s key names and values. The type can be
used to enforce the presence of user names and keys in the secret object. If you do not want validation,
use the opaque type, which is the default.

Specify one of the following types to trigger minimal server-side validation to ensure the presence of
specific key names in the secret data:

kubernetes.io/basic-auth: Use with Basic authentication

kubernetes.io/dockercfg: Use as an image pull secret

kubernetes.io/dockerconfigjson: Use as an image pull secret

kubernetes.io/service-account-token: Use to obtain a legacy service account API token

kubernetes.io/ssh-auth: Use with SSH key authentication

kubernetes.io/tls: Use with TLS certificate authorities

Specify type: Opaque if you do not want validation, which means the secret does not claim to conform
to any convention for key names or values. An opaque secret, allows for unstructured key:value pairs
that can contain arbitrary values.

NOTE

You can specify other arbitrary types, such as example.com/my-secret-type. These
types are not enforced server-side, but indicate that the creator of the secret intended to
conform to the key/value requirements of that type.

For examples of creating different types of secrets, see Understanding how to create secrets .

2.4.1.2. Secret data keys

Secret keys must be in a DNS subdomain.

2.4.1.3. Automatically generated image pull secrets

By default, OpenShift Dedicated creates an image pull secret for each service account.

NOTE

OpenShift Dedicated 4 Nodes

24

1

2

3

NOTE

Prior to OpenShift Dedicated 4.16, a long-lived service account API token secret was also
generated for each service account that was created. Starting with OpenShift Dedicated
4.16, this service account API token secret is no longer created.

After upgrading to 4, any existing long-lived service account API token secrets are not
deleted and will continue to function. For information about detecting long-lived API
tokens that are in use in your cluster or deleting them if they are not needed, see the Red
Hat Knowledgebase article Long-lived service account API tokens in OpenShift
Container Platform.

This image pull secret is necessary to integrate the OpenShift image registry into the cluster’s user
authentication and authorization system.

However, if you do not enable the ImageRegistry capability or if you disable the integrated OpenShift
image registry in the Cluster Image Registry Operator’s configuration, an image pull secret is not
generated for each service account.

When the integrated OpenShift image registry is disabled on a cluster that previously had it enabled, the
previously generated image pull secrets are deleted automatically.

2.4.2. Understanding how to create secrets

As an administrator you must create a secret before developers can create the pods that depend on
that secret.

When creating secrets:

1. Create a secret object that contains the data you want to keep secret. The specific data
required for each secret type is descibed in the following sections.

Example YAML object that creates an opaque secret

Specifies the type of secret.

Specifies encoded string and data.

Specifies decoded string and data.

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
type: Opaque 1
data: 2
 username: <username>
 password: <password>
stringData: 3
 hostname: myapp.mydomain.com
 secret.properties: |
 property1=valueA
 property2=valueB

CHAPTER 2. WORKING WITH PODS

25

https://access.redhat.com/articles/7058801

1

2

3

4

Use either the data or stringdata fields, not both.

2. Update the pod’s service account to reference the secret:

YAML of a service account that uses a secret

3. Create a pod, which consumes the secret as an environment variable or as a file (using a secret
volume):

YAML of a pod populating files in a volume with secret data

Add a volumeMounts field to each container that needs the secret.

Specifies an unused directory name where you would like the secret to appear. Each key in
the secret data map becomes the filename under mountPath.

Set to true. If true, this instructs the driver to provide a read-only volume.

Specifies the name of the secret.

apiVersion: v1
kind: ServiceAccount
 ...
secrets:
- name: test-secret

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts: 1
 - name: secret-volume
 mountPath: /etc/secret-volume 2
 readOnly: true 3
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret 4
 restartPolicy: Never

OpenShift Dedicated 4 Nodes

26

1

1

YAML of a pod populating environment variables with secret data

Specifies the environment variable that consumes the secret key.

YAML of a build config populating environment variables with secret data

Specifies the environment variable that consumes the secret key.

2.4.2.1. Secret creation restrictions

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "export"]
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef: 1
 name: test-secret
 key: username
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef: 1
 name: test-secret
 key: username
 from:
 kind: ImageStreamTag
 namespace: openshift
 name: 'cli:latest'

CHAPTER 2. WORKING WITH PODS

27

1

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:

To populate environment variables for containers.

As files in a volume mounted on one or more of its containers.

By kubelet when pulling images for the pod.

Volume type secrets write data into the container as a file using the volume mechanism. Image pull
secrets use service accounts for the automatic injection of the secret into all pods in a namespace.

When a template contains a secret definition, the only way for the template to use the provided secret is
to ensure that the secret volume sources are validated and that the specified object reference actually
points to a Secret object. Therefore, a secret needs to be created before any pods that depend on it.
The most effective way to ensure this is to have it get injected automatically through the use of a service
account.

Secret API objects reside in a namespace. They can only be referenced by pods in that same
namespace.

Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that could
exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also
exhaust memory.

2.4.2.2. Creating an opaque secret

As an administrator, you can create an opaque secret, which allows you to store unstructured key:value
pairs that can contain arbitrary values.

Procedure

1. Create a Secret object in a YAML file.
For example:

Specifies an opaque secret.

2. Use the following command to create a Secret object:

3. To use the secret in a pod:

a. Update the pod’s service account to reference the secret, as shown in the "Understanding
how to create secrets" section.

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque 1
data:
 username: <username>
 password: <password>

$ oc create -f <filename>.yaml

OpenShift Dedicated 4 Nodes

28

b. Create the pod, which consumes the secret as an environment variable or as a file (using a
secret volume), as shown in the "Understanding how to create secrets" section.

Additional resources

Understanding how to create secrets

2.4.2.3. Creating a legacy service account token secret

As an administrator, you can create a legacy service account token secret, which allows you to distribute
a service account token to applications that must authenticate to the API.

WARNING

It is recommended to obtain bound service account tokens using the TokenRequest
API instead of using legacy service account token secrets. You should create a
service account token secret only if you cannot use the TokenRequest API and if
the security exposure of a nonexpiring token in a readable API object is acceptable
to you.

Bound service account tokens are more secure than service account token secrets
for the following reasons:

Bound service account tokens have a bounded lifetime.

Bound service account tokens contain audiences.

Bound service account tokens can be bound to pods or secrets and the
bound tokens are invalidated when the bound object is removed.

Workloads are automatically injected with a projected volume to obtain a bound
service account token. If your workload needs an additional service account token,
add an additional projected volume in your workload manifest.

For more information, see "Configuring bound service account tokens using volume
projection".

Procedure

1. Create a Secret object in a YAML file:

Example Secret object



apiVersion: v1
kind: Secret
metadata:
 name: secret-sa-sample
 annotations:
 kubernetes.io/service-account.name: "sa-name" 1
type: kubernetes.io/service-account-token 2

CHAPTER 2. WORKING WITH PODS

29

1

2

1

Specifies an existing service account name. If you are creating both the ServiceAccount
and the Secret objects, create the ServiceAccount object first.

Specifies a service account token secret.

2. Use the following command to create the Secret object:

3. To use the secret in a pod:

a. Update the pod’s service account to reference the secret, as shown in the "Understanding
how to create secrets" section.

b. Create the pod, which consumes the secret as an environment variable or as a file (using a
secret volume), as shown in the "Understanding how to create secrets" section.

Additional resources

Understanding how to create secrets

2.4.2.4. Creating a basic authentication secret

As an administrator, you can create a basic authentication secret, which allows you to store the
credentials needed for basic authentication. When using this secret type, the data parameter of the
Secret object must contain the following keys encoded in the base64 format:

username: the user name for authentication

password: the password or token for authentication

NOTE

You can use the stringData parameter to use clear text content.

Procedure

1. Create a Secret object in a YAML file:

Example secret object

Specifies a basic authentication secret.

$ oc create -f <filename>.yaml

apiVersion: v1
kind: Secret
metadata:
 name: secret-basic-auth
type: kubernetes.io/basic-auth 1
data:
stringData: 2
 username: admin
 password: <password>

OpenShift Dedicated 4 Nodes

30

2

1

2

Specifies the basic authentication values to use.

2. Use the following command to create the Secret object:

3. To use the secret in a pod:

a. Update the pod’s service account to reference the secret, as shown in the "Understanding
how to create secrets" section.

b. Create the pod, which consumes the secret as an environment variable or as a file (using a
secret volume), as shown in the "Understanding how to create secrets" section.

Additional resources

Understanding how to create secrets

2.4.2.5. Creating an SSH authentication secret

As an administrator, you can create an SSH authentication secret, which allows you to store data used
for SSH authentication. When using this secret type, the data parameter of the Secret object must
contain the SSH credential to use.

Procedure

1. Create a Secret object in a YAML file on a control plane node:

Example secret object

Specifies an SSH authentication secret.

Specifies the SSH key/value pair as the SSH credentials to use.

2. Use the following command to create the Secret object:

3. To use the secret in a pod:

a. Update the pod’s service account to reference the secret, as shown in the "Understanding
how to create secrets" section.

$ oc create -f <filename>.yaml

apiVersion: v1
kind: Secret
metadata:
 name: secret-ssh-auth
type: kubernetes.io/ssh-auth 1
data:
 ssh-privatekey: | 2
 MIIEpQIBAAKCAQEAulqb/Y ...

$ oc create -f <filename>.yaml

CHAPTER 2. WORKING WITH PODS

31

1

2

b. Create the pod, which consumes the secret as an environment variable or as a file (using a
secret volume), as shown in the "Understanding how to create secrets" section.

Additional resources

Understanding how to create secrets

2.4.2.6. Creating a Docker configuration secret

As an administrator, you can create a Docker configuration secret, which allows you to store the
credentials for accessing a container image registry.

kubernetes.io/dockercfg. Use this secret type to store your local Docker configuration file. The
data parameter of the secret object must contain the contents of a .dockercfg file encoded in
the base64 format.

kubernetes.io/dockerconfigjson. Use this secret type to store your local Docker configuration
JSON file. The data parameter of the secret object must contain the contents of a
.docker/config.json file encoded in the base64 format.

Procedure

1. Create a Secret object in a YAML file.

Example Docker configuration secret object

Specifies that the secret is using a Docker configuration file.

The output of a base64-encoded Docker configuration file

Example Docker configuration JSON secret object

apiVersion: v1
kind: Secret
metadata:
 name: secret-docker-cfg
 namespace: my-project
type: kubernetes.io/dockerconfig 1
data:

.dockerconfig:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV
0aCBrZXlzCg== 2

apiVersion: v1
kind: Secret
metadata:
 name: secret-docker-json
 namespace: my-project
type: kubernetes.io/dockerconfig 1
data:

.dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cg
YXV0aCBrZXlzCg== 2

OpenShift Dedicated 4 Nodes

32

1

2

1

2

Specifies that the secret is using a Docker configuration JSONfile.

The output of a base64-encoded Docker configuration JSON file

2. Use the following command to create the Secret object

3. To use the secret in a pod:

a. Update the pod’s service account to reference the secret, as shown in the "Understanding
how to create secrets" section.

b. Create the pod, which consumes the secret as an environment variable or as a file (using a
secret volume), as shown in the "Understanding how to create secrets" section.

Additional resources

Understanding how to create secrets

2.4.2.7. Creating a secret using the web console

You can create secrets using the web console.

Procedure

1. Navigate to Workloads → Secrets.

2. Click Create → From YAML.

a. Edit the YAML manually to your specifications, or drag and drop a file into the YAML editor.
For example:

This example specifies an opaque secret; however, you may see other secret types
such as service account token secret, basic authentication secret, SSH authentication
secret, or a secret that uses Docker configuration.

Entries in the stringData map are converted to base64 and the entry will then be
moved to the data map automatically. This field is write-only; the value will only be
returned via the data field.

$ oc create -f <filename>.yaml

apiVersion: v1
kind: Secret
metadata:
 name: example
 namespace: <namespace>
type: Opaque 1
data:
 username: <base64 encoded username>
 password: <base64 encoded password>
stringData: 2
 hostname: myapp.mydomain.com

CHAPTER 2. WORKING WITH PODS

33

1

2

3. Click Create.

4. Click Add Secret to workload.

a. From the drop-down menu, select the workload to add.

b. Click Save.

2.4.3. Understanding how to update secrets

When you modify the value of a secret, the value (used by an already running pod) will not dynamically
change. To change a secret, you must delete the original pod and create a new pod (perhaps with an
identical PodSpec).

Updating a secret follows the same workflow as deploying a new Container image. You can use the
kubectl rolling-update command.

The resourceVersion value in a secret is not specified when it is referenced. Therefore, if a secret is
updated at the same time as pods are starting, the version of the secret that is used for the pod is not
defined.

NOTE

Currently, it is not possible to check the resource version of a secret object that was used
when a pod was created. It is planned that pods will report this information, so that a
controller could restart ones using an old resourceVersion. In the interim, do not update
the data of existing secrets, but create new ones with distinct names.

2.4.4. Creating and using secrets

As an administrator, you can create a service account token secret. This allows you to distribute a service
account token to applications that must authenticate to the API.

Procedure

1. Create a service account in your namespace by running the following command:

2. Save the following YAML example to a file named service-account-token-secret.yaml. The
example includes a Secret object configuration that you can use to generate a service account
token:

Replace <secret_name> with the name of your service token secret.

Specifies an existing service account name. If you are creating both the ServiceAccount

$ oc create sa <service_account_name> -n <your_namespace>

apiVersion: v1
kind: Secret
metadata:
 name: <secret_name> 1
 annotations:
 kubernetes.io/service-account.name: "sa-name" 2
type: kubernetes.io/service-account-token 3

OpenShift Dedicated 4 Nodes

34

3

1

1

2

Specifies an existing service account name. If you are creating both the ServiceAccount
and the Secret objects, create the ServiceAccount object first.

Specifies a service account token secret type.

3. Generate the service account token by applying the file:

4. Get the service account token from the secret by running the following command:

Example output

Replace <sa_token_secret> with the name of your service token secret.

5. Use your service account token to authenticate with the API of your cluster:

Replace <openshift_cluster_api> with the OpenShift cluster API.

Replace <token> with the service account token that is output in the preceding command.

2.4.5. About using signed certificates with secrets

To secure communication to your service, you can configure OpenShift Dedicated to generate a signed
serving certificate/key pair that you can add into a secret in a project.

A service serving certificate secret is intended to support complex middleware applications that need
out-of-the-box certificates. It has the same settings as the server certificates generated by the
administrator tooling for nodes and masters.

Service Pod spec configured for a service serving certificates secret.

$ oc apply -f service-account-token-secret.yaml

$ oc get secret <sa_token_secret> -o jsonpath='{.data.token}' | base64 --decode 1

ayJhbGciOiJSUzI1NiIsImtpZCI6IklOb2dtck1qZ3hCSWpoNnh5YnZhSE9QMkk3YnRZMVZoclFf
QTZfRFp1YlUifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5
pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlcy5pby9zZX
J2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6ImJ1aWxkZXItdG9rZW4tdHZrbnIiLCJrdWJlcm5l
dGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiYnVpbGRlciIsImt1
YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjNmZGU
2MGZmLTA1NGYtNDkyZi04YzhjLTNlZjE0NDk3MmFmNyIsInN1YiI6InN5c3RlbTpzZXJ2aWNl
YWNjb3VudDpkZWZhdWx0OmJ1aWxkZXIifQ.OmqFTDuMHC_lYvvEUrjr1x453hlEEHYcxS9VK
SzmRkP1SiVZWPNPkTWlfNRp6bIUZD3U6aN3N7dMSN0eI5hu36xPgpKTdvuckKLTCnelMx6c
xOdAbrcw1mCmOClNscwjS1KO1kzMtYnnq8rXHiMJELsNlhnRyyIXRTtNBsy4t64T3283s3SLsa
ncyx0gy0ujx-Ch3uKAKdZi5iT-I8jnnQ-ds5THDs2h65RJhgglQEmSxpHrLGZFmyHAQI-
_SjvmHZPXEc482x3SkaQHNLqpmrpJorNqh1M8ZHKzlujhZgVooMvJmWPXTb2vnvi3DGn2XI-
hZxl1yD2yGH1RBpYUHA

$ curl -X GET <openshift_cluster_api> --header "Authorization: Bearer <token>" 1 2

apiVersion: v1

CHAPTER 2. WORKING WITH PODS

35

1

1

Specify the name for the certificate

Other pods can trust cluster-created certificates (which are only signed for internal DNS names), by
using the CA bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt file that is
automatically mounted in their pod.

The signature algorithm for this feature is x509.SHA256WithRSA. To manually rotate, delete the
generated secret. A new certificate is created.

2.4.5.1. Generating signed certificates for use with secrets

To use a signed serving certificate/key pair with a pod, create or edit the service to add the
service.beta.openshift.io/serving-cert-secret-name annotation, then add the secret to the pod.

Procedure

To create a service serving certificate secret :

1. Edit the Pod spec for your service.

2. Add the service.beta.openshift.io/serving-cert-secret-name annotation with the name you
want to use for your secret.

The certificate and key are in PEM format, stored in tls.crt and tls.key respectively.

3. Create the service:

4. View the secret to make sure it was created:

a. View a list of all secrets:

kind: Service
metadata:
 name: registry
 annotations:
 service.beta.openshift.io/serving-cert-secret-name: registry-cert 1
...

kind: Service
apiVersion: v1
metadata:
 name: my-service
 annotations:
 service.beta.openshift.io/serving-cert-secret-name: my-cert 1
spec:
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

$ oc create -f <file-name>.yaml

OpenShift Dedicated 4 Nodes

36

Example output

b. View details on your secret:

Example output

5. Edit your Pod spec with that secret.

$ oc get secrets

NAME TYPE DATA AGE
my-cert kubernetes.io/tls 2 9m

$ oc describe secret my-cert

Name: my-cert
Namespace: openshift-console
Labels: <none>
Annotations: service.beta.openshift.io/expiry: 2023-03-08T23:22:40Z
 service.beta.openshift.io/originating-service-name: my-service
 service.beta.openshift.io/originating-service-uid: 640f0ec3-afc2-4380-bf31-
a8c784846a11
 service.beta.openshift.io/expiry: 2023-03-08T23:22:40Z

Type: kubernetes.io/tls

Data
====
tls.key: 1679 bytes
tls.crt: 2595 bytes

apiVersion: v1
kind: Pod
metadata:
 name: my-service-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: my-container
 mountPath: "/etc/my-path"
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: my-volume
 secret:
 secretName: my-cert

CHAPTER 2. WORKING WITH PODS

37

When it is available, your pod will run. The certificate will be good for the internal service DNS
name, <service.name>.<service.namespace>.svc.

The certificate/key pair is automatically replaced when it gets close to expiration. View the
expiration date in the service.beta.openshift.io/expiry annotation on the secret, which is in
RFC3339 format.

NOTE

In most cases, the service DNS name <service.name>.
<service.namespace>.svc is not externally routable. The primary use of
<service.name>.<service.namespace>.svc is for intracluster or intraservice
communication, and with re-encrypt routes.

2.4.6. Troubleshooting secrets

If a service certificate generation fails with (service’s service.beta.openshift.io/serving-cert-
generation-error annotation contains):

The service that generated the certificate no longer exists, or has a different serviceUID. You must
force certificates regeneration by removing the old secret, and clearing the following annotations on the
service service.beta.openshift.io/serving-cert-generation-error, service.beta.openshift.io/serving-
cert-generation-error-num:

1. Delete the secret:

2. Clear the annotations:

NOTE

The command removing annotation has a - after the annotation name to be removed.

2.5. CREATING AND USING CONFIG MAPS

The following sections define config maps and how to create and use them.

 items:
 - key: username
 path: my-group/my-username
 mode: 511

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not
match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

$ oc delete secret <secret_name>

$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-
error-

$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-
error-num-

OpenShift Dedicated 4 Nodes

38

1

2

2.5.1. Understanding config maps

Many applications require configuration by using some combination of configuration files, command-line
arguments, and environment variables. In OpenShift Dedicated, these configuration artifacts are
decoupled from image content to keep containerized applications portable.

The ConfigMap object provides mechanisms to inject containers with configuration data while keeping
containers agnostic of OpenShift Dedicated. A config map can be used to store fine-grained
information like individual properties or coarse-grained information like entire configuration files or
JSON blobs.

The ConfigMap object holds key-value pairs of configuration data that can be consumed in pods or
used to store configuration data for system components such as controllers. For example:

ConfigMap Object Definition

Contains the configuration data.

Points to a file that contains non-UTF8 data, for example, a binary Java keystore file. Enter the file
data in Base 64.

NOTE

You can use the binaryData field when you create a config map from a binary file, such as
an image.

Configuration data can be consumed in pods in a variety of ways. A config map can be used to:

Populate environment variable values in containers

Set command-line arguments in a container

Populate configuration files in a volume

Users and system components can store configuration data in a config map.

A config map is similar to a secret, but designed to more conveniently support working with strings that
do not contain sensitive information.

kind: ConfigMap
apiVersion: v1
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: example-config
 namespace: my-namespace
data: 1
 example.property.1: hello
 example.property.2: world
 example.property.file: |-
 property.1=value-1
 property.2=value-2
 property.3=value-3
binaryData:
 bar: L3Jvb3QvMTAw 2

CHAPTER 2. WORKING WITH PODS

39

2.5.1.1. Config map restrictions

A config map must be created before its contents can be consumed in pods.

Controllers can be written to tolerate missing configuration data. Consult individual components
configured by using config maps on a case-by-case basis.

ConfigMap objects reside in a project.

They can only be referenced by pods in the same project.

The Kubelet only supports the use of a config map for pods it gets from the API server.

This includes any pods created by using the CLI, or indirectly from a replication controller. It does not
include pods created by using the OpenShift Dedicated node’s --manifest-url flag, its --config flag, or
its REST API because these are not common ways to create pods.

2.5.2. Creating a config map in the OpenShift Dedicated web console

You can create a config map in the OpenShift Dedicated web console.

Procedure

To create a config map as a cluster administrator:

1. In the Administrator perspective, select Workloads → Config Maps.

2. At the top right side of the page, select Create Config Map.

3. Enter the contents of your config map.

4. Select Create.

To create a config map as a developer:

1. In the Developer perspective, select Config Maps.

2. At the top right side of the page, select Create Config Map.

3. Enter the contents of your config map.

4. Select Create.

2.5.3. Creating a config map by using the CLI

You can use the following command to create a config map from directories, specific files, or literal
values.

Procedure

Create a config map:

2.5.3.1. Creating a config map from a directory

$ oc create configmap <configmap_name> [options]

OpenShift Dedicated 4 Nodes

40

You can create a config map from a directory by using the --from-file flag. This method allows you to
use multiple files within a directory to create a config map.

Each file in the directory is used to populate a key in the config map, where the name of the key is the
file name, and the value of the key is the content of the file.

For example, the following command creates a config map with the contents of the example-files
directory:

View the keys in the config map:

Example output

You can see that the two keys in the map are created from the file names in the directory specified in
the command. The content of those keys might be large, so the output of oc describe only shows the
names of the keys and their sizes.

Prerequisite

You must have a directory with files that contain the data you want to populate a config map
with.
The following procedure uses these example files: game.properties and ui.properties:

Example output

Example output

$ oc create configmap game-config --from-file=example-files/

$ oc describe configmaps game-config

Name: game-config
Namespace: default
Labels: <none>
Annotations: <none>

Data

game.properties: 158 bytes
ui.properties: 83 bytes

$ cat example-files/game.properties

enemies=aliens
lives=3
enemies.cheat=true
enemies.cheat.level=noGoodRotten
secret.code.passphrase=UUDDLRLRBABAS
secret.code.allowed=true
secret.code.lives=30

$ cat example-files/ui.properties

CHAPTER 2. WORKING WITH PODS

41

Procedure

Create a config map holding the content of each file in this directory by entering the following
command:

Verification

Enter the oc get command for the object with the -o option to see the values of the keys:

Example output

2.5.3.2. Creating a config map from a file

You can create a config map from a file by using the --from-file flag. You can pass the --from-file option
multiple times to the CLI.

You can also specify the key to set in a config map for content imported from a file by passing a
key=value expression to the --from-file option. For example:

color.good=purple
color.bad=yellow
allow.textmode=true
how.nice.to.look=fairlyNice

$ oc create configmap game-config \
 --from-file=example-files/

$ oc get configmaps game-config -o yaml

apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:34:05Z
 name: game-config
 namespace: default
 resourceVersion: "407"
 selflink: /api/v1/namespaces/default/configmaps/game-config
 uid: 30944725-d66e-11e5-8cd0-68f728db1985

OpenShift Dedicated 4 Nodes

42

NOTE

If you create a config map from a file, you can include files containing non-UTF8 data
that are placed in this field without corrupting the non-UTF8 data. OpenShift Dedicated
detects binary files and transparently encodes the file as MIME. On the server, the MIME
payload is decoded and stored without corrupting the data.

Prerequisite

You must have a directory with files that contain the data you want to populate a config map
with.
The following procedure uses these example files: game.properties and ui.properties:

Example output

Example output

Procedure

Create a config map by specifying a specific file:

Create a config map by specifying a key-value pair:

Verification

$ oc create configmap game-config-3 --from-file=game-special-key=example-files/game.properties

$ cat example-files/game.properties

enemies=aliens
lives=3
enemies.cheat=true
enemies.cheat.level=noGoodRotten
secret.code.passphrase=UUDDLRLRBABAS
secret.code.allowed=true
secret.code.lives=30

$ cat example-files/ui.properties

color.good=purple
color.bad=yellow
allow.textmode=true
how.nice.to.look=fairlyNice

$ oc create configmap game-config-2 \
 --from-file=example-files/game.properties \
 --from-file=example-files/ui.properties

$ oc create configmap game-config-3 \
 --from-file=game-special-key=example-files/game.properties

CHAPTER 2. WORKING WITH PODS

43

Enter the oc get command for the object with the -o option to see the values of the keys from
the file:

Example output

Enter the oc get command for the object with the -o option to see the values of the keys from
the key-value pair:

Example output

$ oc get configmaps game-config-2 -o yaml

apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:52:05Z
 name: game-config-2
 namespace: default
 resourceVersion: "516"
 selflink: /api/v1/namespaces/default/configmaps/game-config-2
 uid: b4952dc3-d670-11e5-8cd0-68f728db1985

$ oc get configmaps game-config-3 -o yaml

apiVersion: v1
data:
 game-special-key: |- 1
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:54:22Z
 name: game-config-3
 namespace: default

OpenShift Dedicated 4 Nodes

44

1 This is the key that you set in the preceding step.

2.5.3.3. Creating a config map from literal values

You can supply literal values for a config map.

The --from-literal option takes a key=value syntax, which allows literal values to be supplied directly on
the command line.

Procedure

Create a config map by specifying a literal value:

Verification

Enter the oc get command for the object with the -o option to see the values of the keys:

Example output

2.5.4. Use cases: Consuming config maps in pods

The following sections describe some uses cases when consuming ConfigMap objects in pods.

2.5.4.1. Populating environment variables in containers by using config maps

You can use config maps to populate individual environment variables in containers or to populate
environment variables in containers from all keys that form valid environment variable names.

As an example, consider the following config map:

 resourceVersion: "530"
 selflink: /api/v1/namespaces/default/configmaps/game-config-3
 uid: 05f8da22-d671-11e5-8cd0-68f728db1985

$ oc create configmap special-config \
 --from-literal=special.how=very \
 --from-literal=special.type=charm

$ oc get configmaps special-config -o yaml

apiVersion: v1
data:
 special.how: very
 special.type: charm
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: special-config
 namespace: default
 resourceVersion: "651"
 selflink: /api/v1/namespaces/default/configmaps/special-config
 uid: dadce046-d673-11e5-8cd0-68f728db1985

CHAPTER 2. WORKING WITH PODS

45

1

2

3 4

1

2

ConfigMap with two environment variables

Name of the config map.

The project in which the config map resides. Config maps can only be referenced by pods in the
same project.

Environment variables to inject.

ConfigMap with one environment variable

Name of the config map.

Environment variable to inject.

Procedure

You can consume the keys of this ConfigMap in a pod using configMapKeyRef sections.

Sample Pod specification configured to inject specific environment variables

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config 1
 namespace: default 2
data:
 special.how: very 3
 special.type: charm 4

apiVersion: v1
kind: ConfigMap
metadata:
 name: env-config 1
 namespace: default
data:
 log_level: INFO 2

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]

OpenShift Dedicated 4 Nodes

46

1

2

3 5

4 6

7

8

9

Stanza to pull the specified environment variables from a ConfigMap.

Name of a pod environment variable that you are injecting a key’s value into.

Name of the ConfigMap to pull specific environment variables from.

Environment variable to pull from the ConfigMap.

Makes the environment variable optional. As optional, the pod will be started even if the
specified ConfigMap and keys do not exist.

Stanza to pull all environment variables from a ConfigMap.

Name of the ConfigMap to pull all environment variables from.

When this pod is run, the pod logs will include the following output:

SPECIAL_LEVEL_KEY=very
log_level=INFO

NOTE

SPECIAL_TYPE_KEY=charm is not listed in the example output because optional: true
is set.

2.5.4.2. Setting command-line arguments for container commands with config maps

You can use a config map to set the value of the commands or arguments in a container by using the
Kubernetes substitution syntax $(VAR_NAME).

As an example, consider the following config map:

 env: 1
 - name: SPECIAL_LEVEL_KEY 2
 valueFrom:
 configMapKeyRef:
 name: special-config 3
 key: special.how 4
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config 5
 key: special.type 6
 optional: true 7
 envFrom: 8
 - configMapRef:
 name: env-config 9
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never

CHAPTER 2. WORKING WITH PODS

47

1

Procedure

To inject values into a command in a container, you must consume the keys you want to use as
environment variables. Then you can refer to them in a container’s command using the
$(VAR_NAME) syntax.

Sample pod specification configured to inject specific environment variables

Inject the values into a command in a container using the keys you want to use as
environment variables.

When this pod is run, the output from the echo command run in the test-container container is
as follows:

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)"]
1

 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.how
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.type
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never

OpenShift Dedicated 4 Nodes

48

1

very charm

2.5.4.3. Injecting content into a volume by using config maps

You can inject content into a volume by using config maps.

Example ConfigMap custom resource (CR)

Procedure

You have a couple different options for injecting content into a volume by using config maps.

The most basic way to inject content into a volume by using a config map is to populate the
volume with files where the key is the file name and the content of the file is the value of the
key:

File containing key.

When this pod is run, the output of the cat command will be:

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "cat", "/etc/config/special.how"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: config-volume
 configMap:
 name: special-config 1
 restartPolicy: Never

CHAPTER 2. WORKING WITH PODS

49

1

very

You can also control the paths within the volume where config map keys are projected:

Path to config map key.

When this pod is run, the output of the cat command will be:

very

2.6. INCLUDING POD PRIORITY IN POD SCHEDULING DECISIONS

You can enable pod priority and preemption in your cluster. Pod priority indicates the importance of a
pod relative to other pods and queues the pods based on that priority. pod preemption allows the
cluster to evict, or preempt, lower-priority pods so that higher-priority pods can be scheduled if there is
no available space on a suitable node pod priority also affects the scheduling order of pods and out-of-
resource eviction ordering on the node.

To use priority and preemption, reference a priority class in the pod specification to apply that weight
for scheduling.

2.6.1. Understanding pod priority

When you use the Pod Priority and Preemption feature, the scheduler orders pending pods by their

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "cat", "/etc/config/path/to/special-key"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 items:
 - key: special.how
 path: path/to/special-key 1
 restartPolicy: Never

OpenShift Dedicated 4 Nodes

50

priority, and a pending pod is placed ahead of other pending pods with lower priority in the scheduling
queue. As a result, the higher priority pod might be scheduled sooner than pods with lower priority if its
scheduling requirements are met. If a pod cannot be scheduled, scheduler continues to schedule other
lower priority pods.

2.6.1.1. Pod priority classes

You can assign pods a priority class, which is a non-namespaced object that defines a mapping from a
name to the integer value of the priority. The higher the value, the higher the priority.

A priority class object can take any 32-bit integer value smaller than or equal to 1000000000 (one
billion). Reserve numbers larger than or equal to one billion for critical pods that must not be preempted
or evicted. By default, OpenShift Dedicated has two reserved priority classes for critical system pods to
have guaranteed scheduling.

Example output

system-node-critical - This priority class has a value of 2000001000 and is used for all pods
that should never be evicted from a node. Examples of pods that have this priority class are
ovnkube-node, and so forth. A number of critical components include the system-node-
critical priority class by default, for example:

master-api

master-controller

master-etcd

ovn-kubernetes

sync

system-cluster-critical - This priority class has a value of 2000000000 (two billion) and is
used with pods that are important for the cluster. Pods with this priority class can be evicted
from a node in certain circumstances. For example, pods configured with the system-node-
critical priority class can take priority. However, this priority class does ensure guaranteed
scheduling. Examples of pods that can have this priority class are fluentd, add-on components
like descheduler, and so forth. A number of critical components include the system-cluster-
critical priority class by default, for example:

fluentd

metrics-server

descheduler

openshift-user-critical - You can use the priorityClassName field with important pods that

$ oc get priorityclasses

NAME VALUE GLOBAL-DEFAULT AGE
system-node-critical 2000001000 false 72m
system-cluster-critical 2000000000 false 72m
openshift-user-critical 1000000000 false 3d13h
cluster-logging 1000000 false 29s

CHAPTER 2. WORKING WITH PODS

51

cannot bind their resource consumption and do not have predictable resource consumption
behavior. Prometheus pods under the openshift-monitoring and openshift-user-workload-
monitoring namespaces use the openshift-user-critical priorityClassName. Monitoring
workloads use system-critical as their first priorityClass, but this causes problems when
monitoring uses excessive memory and the nodes cannot evict them. As a result, monitoring
drops priority to give the scheduler flexibility, moving heavy workloads around to keep critical
nodes operating.

cluster-logging - This priority is used by Fluentd to make sure Fluentd pods are scheduled to
nodes over other apps.

2.6.1.2. Pod priority names

After you have one or more priority classes, you can create pods that specify a priority class name in a
Pod spec. The priority admission controller uses the priority class name field to populate the integer
value of the priority. If the named priority class is not found, the pod is rejected.

2.6.2. Understanding pod preemption

When a developer creates a pod, the pod goes into a queue. If the developer configured the pod for pod
priority or preemption, the scheduler picks a pod from the queue and tries to schedule the pod on a
node. If the scheduler cannot find space on an appropriate node that satisfies all the specified
requirements of the pod, preemption logic is triggered for the pending pod.

When the scheduler preempts one or more pods on a node, the nominatedNodeName field of higher-
priority Pod spec is set to the name of the node, along with the nodename field. The scheduler uses the
nominatedNodeName field to keep track of the resources reserved for pods and also provides
information to the user about preemptions in the clusters.

After the scheduler preempts a lower-priority pod, the scheduler honors the graceful termination period
of the pod. If another node becomes available while scheduler is waiting for the lower-priority pod to
terminate, the scheduler can schedule the higher-priority pod on that node. As a result, the
nominatedNodeName field and nodeName field of the Pod spec might be different.

Also, if the scheduler preempts pods on a node and is waiting for termination, and a pod with a higher-
priority pod than the pending pod needs to be scheduled, the scheduler can schedule the higher-priority
pod instead. In such a case, the scheduler clears the nominatedNodeName of the pending pod, making
the pod eligible for another node.

Preemption does not necessarily remove all lower-priority pods from a node. The scheduler can
schedule a pending pod by removing a portion of the lower-priority pods.

The scheduler considers a node for pod preemption only if the pending pod can be scheduled on the
node.

2.6.2.1. Non-preempting priority classes

Pods with the preemption policy set to Never are placed in the scheduling queue ahead of lower-priority
pods, but they cannot preempt other pods. A non-preempting pod waiting to be scheduled stays in the
scheduling queue until sufficient resources are free and it can be scheduled. Non-preempting pods, like
other pods, are subject to scheduler back-off. This means that if the scheduler tries unsuccessfully to
schedule these pods, they are retried with lower frequency, allowing other pods with lower priority to be
scheduled before them.

Non-preempting pods can still be preempted by other, high-priority pods.

OpenShift Dedicated 4 Nodes

52

2.6.2.2. Pod preemption and other scheduler settings

If you enable pod priority and preemption, consider your other scheduler settings:

Pod priority and pod disruption budget

A pod disruption budget specifies the minimum number or percentage of replicas that must be up at
a time. If you specify pod disruption budgets, OpenShift Dedicated respects them when preempting
pods at a best effort level. The scheduler attempts to preempt pods without violating the pod
disruption budget. If no such pods are found, lower-priority pods might be preempted despite their
pod disruption budget requirements.

Pod priority and pod affinity

Pod affinity requires a new pod to be scheduled on the same node as other pods with the same label.

If a pending pod has inter-pod affinity with one or more of the lower-priority pods on a node, the
scheduler cannot preempt the lower-priority pods without violating the affinity requirements. In this
case, the scheduler looks for another node to schedule the pending pod. However, there is no guarantee
that the scheduler can find an appropriate node and pending pod might not be scheduled.

To prevent this situation, carefully configure pod affinity with equal-priority pods.

2.6.2.3. Graceful termination of preempted pods

When preempting a pod, the scheduler waits for the pod graceful termination period to expire, allowing
the pod to finish working and exit. If the pod does not exit after the period, the scheduler kills the pod.
This graceful termination period creates a time gap between the point that the scheduler preempts the
pod and the time when the pending pod can be scheduled on the node.

To minimize this gap, configure a small graceful termination period for lower-priority pods.

2.6.3. Configuring priority and preemption

You apply pod priority and preemption by creating a priority class object and associating pods to the
priority by using the priorityClassName in your pod specs.

NOTE

You cannot add a priority class directly to an existing scheduled pod.

Procedure

To configure your cluster to use priority and preemption:

1. Define a pod spec to include the name of a priority class by creating a YAML file similar to the
following:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx

CHAPTER 2. WORKING WITH PODS

53

1 Specify the priority class to use with this pod.

2. Create the pod:

You can add the priority name directly to the pod configuration or to a pod template.

2.7. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

A node selector specifies a map of key-value pairs. The rules are defined using custom labels on nodes
and selectors specified in pods.

For the pod to be eligible to run on a node, the pod must have the indicated key-value pairs as the label
on the node.

If you are using node affinity and node selectors in the same pod configuration, see the important
considerations below.

2.7.1. Using node selectors to control pod placement

You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With
node selectors, OpenShift Dedicated schedules the pods on nodes that contain matching labels.

You add labels to a node, a compute machine set, or a machine config. Adding the label to the compute
machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to
a node or machine config do not persist if the node or machine goes down.

To add node selectors to an existing pod, add a node selector to the controlling object for that pod, such
as a ReplicaSet object, DaemonSet object, StatefulSet object, Deployment object, or
DeploymentConfig object. Any existing pods under that controlling object are recreated on a node with
a matching label. If you are creating a new pod, you can add the node selector directly to the pod spec. If
the pod does not have a controlling object, you must delete the pod, edit the pod spec, and recreate the
pod.

NOTE

You cannot add a node selector directly to an existing scheduled pod.

Prerequisites

To add a node selector to existing pods, determine the controlling object for that pod. For example, the
router-default-66d5cf9464-m2g75 pod is controlled by the router-default-66d5cf9464 replica set:

Example output

 image: nginx
 imagePullPolicy: IfNotPresent
 priorityClassName: system-cluster-critical 1

$ oc create -f <file-name>.yaml

$ oc describe pod router-default-66d5cf9464-7pwkc

kind: Pod

OpenShift Dedicated 4 Nodes

54

The web console lists the controlling object under ownerReferences in the pod YAML:

Procedure

Add the matching node selector to a pod:

To add a node selector to existing and future pods, add a node selector to the controlling
object for the pods:

Example ReplicaSet object with labels

apiVersion: v1
metadata:
...
Name: router-default-66d5cf9464-7pwkc
Namespace: openshift-ingress
...
Controlled By: ReplicaSet/router-default-66d5cf9464
...

apiVersion: v1
kind: Pod
metadata:
 name: router-default-66d5cf9464-7pwkc
...
 ownerReferences:
 - apiVersion: apps/v1
 kind: ReplicaSet
 name: router-default-66d5cf9464
 uid: d81dd094-da26-11e9-a48a-128e7edf0312
 controller: true
 blockOwnerDeletion: true
...

kind: ReplicaSet
apiVersion: apps/v1
metadata:
 name: hello-node-6fbccf8d9
...
spec:
...
 template:
 metadata:
 creationTimestamp: null
 labels:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 pod-template-hash: 66d5cf9464
 spec:
 nodeSelector:
 kubernetes.io/os: linux
 node-role.kubernetes.io/worker: ''
 type: user-node 1
...

CHAPTER 2. WORKING WITH PODS

55

1 Add the node selector.

To add a node selector to a specific, new pod, add the selector to the Pod object directly:

Example Pod object with a node selector

NOTE

You cannot add a node selector directly to an existing scheduled pod.

apiVersion: v1
kind: Pod
metadata:
 name: hello-node-6fbccf8d9
...
spec:
 nodeSelector:
 region: east
 type: user-node
...

OpenShift Dedicated 4 Nodes

56

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE
CUSTOM METRICS AUTOSCALER OPERATOR

3.1. RELEASE NOTES

3.1.1. Custom Metrics Autoscaler Operator release notes

You can review the following release notes to learn about changes in the Custom Metrics Autoscaler
Operator version 2.18.1-2. The release notes for the Custom Metrics Autoscaler Operator for Red Hat
OpenShift describe new features and enhancements, deprecated features, and known issues.

The Custom Metrics Autoscaler Operator uses the Kubernetes-based Event Driven Autoscaler (KEDA)
and is built on top of the OpenShift Dedicated horizontal pod autoscaler (HPA).

NOTE

The Custom Metrics Autoscaler Operator for Red Hat OpenShift is provided as an
installable component, with a distinct release cycle from the core OpenShift Dedicated.
The Red Hat OpenShift Container Platform Life Cycle Policy outlines release
compatibility.

3.1.1.1. Supported versions

The following table defines the Custom Metrics Autoscaler Operator versions for each OpenShift
Dedicated version.

Version OpenShift Dedicated version General availability

2.18.1-2 4.21 General availability

2.18.1-2 4.20 General availability

2.18.1-2 4.19 General availability

2.18.1-2 4.18 General availability

2.18.1-2 4.17 General availability

2.18.1-2 4.16 General availability

2.18.1-2 4.15 General availability

2.18.1-2 4.14 General availability

2.18.1-2 4.13 General availability

2.18.1-2 4.12 General availability

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

57

https://access.redhat.com/support/policy/updates/openshift#cma

3.1.1.2. Custom Metrics Autoscaler Operator 2.18.1-2 release notes

Issued: 09 February 2026

This release of the Custom Metrics Autoscaler Operator 2.18.1-2 addresses Common Vulnerabilities and
Exposures (CVEs). The following advisory is available for the Custom Metrics Autoscaler Operator:

RHSA-2026:2368

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
Kubernetes-based Event Driven Autoscaler (KEDA).

3.1.2. Release notes for past releases of the Custom Metrics Autoscaler Operator

You can review the following release notes to learn about changes in previous versions of the Custom
Metrics Autoscaler Operator.

For the current version, see Custom Metrics Autoscaler Operator release notes .

3.1.2.1. Custom Metrics Autoscaler Operator 2.18.1-1 release notes

Issued: 15 January 2026

This release of the Custom Metrics Autoscaler Operator 2.18.1-1 provides new features and
enhancements, deprecated features, and bug fixes for running the Operator in an OpenShift Dedicated
cluster. The following advisory is available for the Custom Metrics Autoscaler Operator:

RHBA-2026:0730

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
Kubernetes-based Event Driven Autoscaler (KEDA).

3.1.2.1.1. New features and enhancements

3.1.2.1.1.1. Forced activation

You can now temporarily force the activation of a scale target by adding the
autoscaling.keda.sh/force-activation: "true" annotation to the ScaledObject custom resource (CR).
(KEDA issue 6903)

3.1.2.1.1.2. Excluding labels from being propagated to the HPA

You can now exclude specific labels from being propagated to a Horizontal Pod Autoscaler (HPA) by
using the scaledobject.keda.sh/hpa-excluded-labels annotation to the ScaledObject or ScaledJob
CR. (KEDA issue 6849)

3.1.2.1.1.3. Pause in scaling down

You can now pause the scaling down of an object without preventing the object from scaling up. (KEDA

OpenShift Dedicated 4 Nodes

58

https://access.redhat.com/errata/RHSA-2026:2368
https://access.redhat.com/errata/RHBA-2026:0730
https://github.com/kedacore/keda/issues/6903
https://github.com/kedacore/keda/issues/6849

You can now pause the scaling down of an object without preventing the object from scaling up. (KEDA
issue 6902)

3.1.2.1.1.4. Pause in scaling up

You can now pause the scaling up for an object without preventing the object from scaling down. (KEDA
issue 7022)

3.1.2.1.1.5. Support for the s390x architecture

The Operator can now run on s390x architecture. Previously it ran on amd64, ppc64le, or arm64.
(KEDA issue 6543)

3.1.2.1.1.6. Fallback for triggers of Value metric type

Fallback is now supported for triggers that use the Value metric type. Previously, fallback was supported
for only the AverageValue metric type. (KEDA issue 6655)

3.1.2.1.1.7. Support for even distribution of Kafka partitions

You can now configure a Kafka scaler to scale Kafka consumers by partition count on the topic. This
ensures that the partitions are evenly spread across all consumers. (KEDA issue 2581)

3.1.2.1.1.8. The Zap logger has replaced the Kubernetes logger

The Operator now uses the Zap logging library to emit logs. (KEDA issue 5732)

3.1.2.1.2. Deprecated and removed features

For the CPU and Memory triggers, the type setting, deprecated in an earlier version, is
removed. You must use metricType instead. (KEDA bug 6698)

3.1.2.1.3. Bug fixes

Before this update, a bug in the pending-pod-condition detection logic caused duplicate jobs to
be created for scaled jobs that have slow-starting containers. This fix changes the logic to
properly evaluate each pod individually and correctly identify when a job is no longer pending.
(KEDA bug 6698)

Before this update, if a deployment object contained an envFrom parameter that included a
prefix setting, the prefix was ignored and the environment variable keys were added to the
scaler configuration without the prefix. With this fix, the prefix is now added to the environment
variable key. (KEDA bug 6728)

Before this update, a scale client was not initialized when creating a new scale handler. This was
due to a segmentation fault that occurred when accessing an uninitialized scale client in the
scale handler during non-static fallback modes for specific scale target types. This fix corrects
this issue. (KEDA bug 6992)

Before this update, if a user created a scaled object, the object had the Paused status
condition of Unknown. This fix properly sets the Paused condition to false. (KEDA bug 7011)

Before this update, after removing the autoscaling.keda.sh/paused-replicas from a scaled

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

59

https://github.com/kedacore/keda/issues/6902
https://github.com/kedacore/keda/issues/7022
https://github.com/kedacore/keda/issues/6543
https://github.com/kedacore/keda/pull/6655
https://github.com/kedacore/keda/issues/2581
https://github.com/kedacore/keda/issues/5732
https://github.com/kedacore/keda/pull/6698
https://github.com/kedacore/keda/pull/6698
https://github.com/kedacore/keda/issues/6728
https://github.com/kedacore/keda/pull/6992
https://github.com/kedacore/keda/pull/7011

Before this update, after removing the autoscaling.keda.sh/paused-replicas from a scaled
object CR, the object could still have the Paused status condition of true. This issue has been
resolved and the object reports the pause status correctly. (KEDA bug 6982)

Before this update, when creating a scaled object with the scaledobject.keda.sh/transfer-hpa-
ownership annotation, the object status might not list the name of the HPA that is taking
ownership of the object. With this fix, the HPA name is reported correctly. (KEDA bug 6336)

Before this update, a cron trigger incorrectly prevented scaling the replicas to 0 even if the cron
schedule was inactive and the minReplicaCount value is 0. This happened because the trigger
always reported a metric value of 1 during its inactive periods. With this fix, the cron trigger is
now able to return a metric of 0, allowing an object to scale to 0. (KEDA bug 6886)

Before this update, in a Kafka trigger, specifying sasl:none resulted in an error, despite none
being the default value for sasl. With this fix, you can now configure sasl:none in a Kafka
trigger. (KEDA bug 7061)

Before this update, when scaling to 0, the Operator might not check if all scalers are not active.
As a result, the Operator could scale an object to 0 even though there were active scalers. This
fix corrects this issue. (KEDA issue 6986)

3.1.2.2. Custom Metrics Autoscaler Operator 2.17.2-2 release notes

Issued: 21 October 2025

This release of the Custom Metrics Autoscaler Operator 2.17.2-2 is a rebuild of the 2.17.2 version of the
Custom Metrics Autoscaler Operator using a newer base image and Go compiler. There are no code
changes to the Custom Metrics Autoscaler Operator. The following advisory is available for the Custom
Metrics Autoscaler Operator:

RHBA-2025:18914

3.1.2.3. Custom Metrics Autoscaler Operator 2.17.2 release notes

Issued: 25 September 2025

This release of the Custom Metrics Autoscaler Operator 2.17.2 addresses Common Vulnerabilities and
Exposures (CVEs). The following advisory is available for the Custom Metrics Autoscaler Operator:

RHSA-2025:16124

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
Kubernetes-based Event Driven Autoscaler (KEDA).

3.1.2.3.1. New features and enhancements

3.1.2.3.1.1. The KEDA controller is automatically created during installation

The KEDA controller is now automatically created when you install the Custom Metrics Autoscaler
Operator. Previously, you needed to manually create the KEDA controller. You can edit the
automatically-created KEDA controller, as needed.

OpenShift Dedicated 4 Nodes

60

https://github.com/kedacore/keda/pull/6982
https://github.com/kedacore/keda/pull/6336
https://github.com/kedacore/keda/pull/6886
https://github.com/kedacore/keda/pull/7061
https://github.com/kedacore/keda/issues/6986
https://access.redhat.com/errata/RHBA-2025:18914
https://access.redhat.com/errata/RHSA-2025:16124

3.1.2.3.1.2. Support for the Kubernetes workload trigger

The Cluster Metrics Autoscaler Operator now supports using the Kubernetes workload trigger to scale
pods based on the number of pods matching a specific label selector.

3.1.2.3.1.3. Support for bound service account tokens

The Cluster Metrics Autoscaler Operator now supports bound service account tokens. Previously, the
Operator supported only legacy service account tokens, which are being phased out in favor of bound
service account tokens for security reasons.

3.1.2.3.2. Bug fixes

Previously, the KEDA controller did not support volume mounts. As a result, you could not use
Kerberos with the Kafka scaler. With this fix, the KEDA controller now supports volume mounts.
(OCPBUGS-42559)

Previously, the KEDA version in the keda-operator deployment object log reported that the
Custom Metrics Autoscaler Operator was based on an incorrect KEDA version. With this fix, the
correct KEDA version is reported in the log. (OCPBUGS-58129)

Additional resources

Editing the Keda Controller CR

Understanding the Kubernetes workload trigger

Understanding custom metrics autoscaler trigger authentications

3.1.2.4. Custom Metrics Autoscaler Operator 2.15.1-4 release notes

Issued: 31 March 2025

This release of the Custom Metrics Autoscaler Operator 2.15.1-4 addresses Common Vulnerabilities and
Exposures (CVEs). The following advisory is available for the Custom Metrics Autoscaler Operator:

RHSA-2025:3501

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
Kubernetes-based Event Driven Autoscaler (KEDA).

3.1.2.4.1. New features and enhancements

3.1.2.4.1.1. CMA multi-arch builds

With this version of the Custom Metrics Autoscaler Operator, you can now install and run the Operator
on an ARM64 OpenShift Dedicated cluster.

3.1.2.5. Custom Metrics Autoscaler Operator 2.14.1-467 release notes

This release of the Custom Metrics Autoscaler Operator 2.14.1-467 provides a CVE and a bug fix for

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

61

https://issues.redhat.com/browse/OCPBUGS-42559
https://issues.redhat.com/browse/OCPBUGS-58129
https://access.redhat.com/errata/RHSA-2025:3501

This release of the Custom Metrics Autoscaler Operator 2.14.1-467 provides a CVE and a bug fix for
running the Operator in an OpenShift Dedicated cluster. The following advisory is available for the
RHSA-2024:7348.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
Kubernetes-based Event Driven Autoscaler (KEDA).

3.1.2.5.1. Bug fixes

Previously, the root file system of the Custom Metrics Autoscaler Operator pod was writable,
which is unnecessary and could present security issues. This update makes the pod root file
system read-only, which addresses the potential security issue. (OCPBUGS-37989)

3.1.2.6. Custom Metrics Autoscaler Operator 2.14.1-454 release notes

This release of the Custom Metrics Autoscaler Operator 2.14.1-454 provides a CVE, a new feature, and
bug fixes for running the Operator in an OpenShift Dedicated cluster. The following advisory is available
for the RHBA-2024:5865.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
Kubernetes-based Event Driven Autoscaler (KEDA).

3.1.2.6.1. New features and enhancements

3.1.2.6.1.1. Support for the Cron trigger with the Custom Metrics Autoscaler Operator

The Custom Metrics Autoscaler Operator can now use the Cron trigger to scale pods based on an hourly
schedule. When your specified time frame starts, the Custom Metrics Autoscaler Operator scales pods
to your desired amount. When the time frame ends, the Operator scales back down to the previous
level.

For more information, see Understanding the Cron trigger.

3.1.2.6.2. Bug fixes

Previously, if you made changes to audit configuration parameters in the KedaController
custom resource, the keda-metrics-server-audit-policy config map would not get updated. As
a consequence, you could not change the audit configuration parameters after the initial
deployment of the Custom Metrics Autoscaler. With this fix, changes to the audit configuration
now render properly in the config map, allowing you to change the audit configuration any time
after installation. (OCPBUGS-32521)

3.1.2.7. Custom Metrics Autoscaler Operator 2.13.1 release notes

This release of the Custom Metrics Autoscaler Operator 2.13.1-421 provides a new feature and a bug fix
for running the Operator in an OpenShift Dedicated cluster. The following advisory is available for the
RHBA-2024:4837.

IMPORTANT

OpenShift Dedicated 4 Nodes

62

https://access.redhat.com/errata/RHSA-2024:7348
https://issues.redhat.com/browse/OCPBUGS-37989
https://access.redhat.com/errata/RHBA-2024:5865
https://issues.redhat.com/browse/OCPBUGS-32521
https://access.redhat.com/errata/RHBA-2024:4837

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
Kubernetes-based Event Driven Autoscaler (KEDA).

3.1.2.7.1. New features and enhancements

3.1.2.7.1.1. Support for custom certificates with the Custom Metrics Autoscaler Operator

The Custom Metrics Autoscaler Operator can now use custom service CA certificates to connect
securely to TLS-enabled metrics sources, such as an external Kafka cluster or an external Prometheus
service. By default, the Operator uses automatically-generated service certificates to connect to on-
cluster services only. There is a new field in the KedaController object that allows you to load custom
server CA certificates for connecting to external services by using config maps.

For more information, see Custom CA certificates for the Custom Metrics Autoscaler .

3.1.2.7.2. Bug fixes

Previously, the custom-metrics-autoscaler and custom-metrics-autoscaler-adapter images
were missing time zone information. As a consequence, scaled objects with cron triggers failed
to work because the controllers were unable to find time zone information. With this fix, the
image builds are updated to include time zone information. As a result, scaled objects
containing cron triggers now function properly. Scaled objects containing cron triggers are
currently not supported for the custom metrics autoscaler. (OCPBUGS-34018)

3.1.2.8. Custom Metrics Autoscaler Operator 2.12.1-394 release notes

This release of the Custom Metrics Autoscaler Operator 2.12.1-394 provides a bug fix for running the
Operator in an OpenShift Dedicated cluster. The following advisory is available for the RHSA-
2024:2901.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
Kubernetes-based Event Driven Autoscaler (KEDA).

3.1.2.8.1. Bug fixes

Previously, the protojson.Unmarshal function entered into an infinite loop when unmarshaling
certain forms of invalid JSON. This condition could occur when unmarshaling into a message
that contains a google.protobuf.Any value or when the UnmarshalOptions.DiscardUnknown
option is set. This release fixes this issue. (OCPBUGS-30305)

Previously, when parsing a multipart form, either explicitly with the
Request.ParseMultipartForm method or implicitly with the Request.FormValue,
Request.PostFormValue, or Request.FormFile method, the limits on the total size of the
parsed form were not applied to the memory consumed. This could cause memory exhaustion.
With this fix, the parsing process now correctly limits the maximum size of form lines while
reading a single form line. (OCPBUGS-30360)

Previously, when following an HTTP redirect to a domain that is not on a matching subdomain or

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

63

https://issues.redhat.com/browse/OCPBUGS-34018
https://access.redhat.com/errata/RHSA-2024:2901
https://issues.redhat.com/browse/OCPBUGS-30305
https://issues.redhat.com/browse/OCPBUGS-30360

on an exact match of the initial domain, an HTTP client would not forward sensitive headers,
such as Authorization or Cookie. For example, a redirect from example.com to
www.example.com would forward the Authorization header, but a redirect to
www.example.org would not forward the header. This release fixes this issue. (OCPBUGS-
30365)

Previously, verifying a certificate chain that contains a certificate with an unknown public key
algorithm caused the certificate verification process to panic. This condition affected all crypto
and Transport Layer Security (TLS) clients and servers that set the Config.ClientAuth
parameter to the VerifyClientCertIfGiven or RequireAndVerifyClientCert value. The default
behavior is for TLS servers to not verify client certificates. This release fixes this issue.
(OCPBUGS-30370)

Previously, if errors returned from the MarshalJSON method contained user-controlled data,
an attacker could have used the data to break the contextual auto-escaping behavior of the
HTML template package. This condition would allow for subsequent actions to inject
unexpected content into the templates. This release fixes this issue. (OCPBUGS-30397)

Previously, the net/http and golang.org/x/net/http2 Go packages did not limit the number of
CONTINUATION frames for an HTTP/2 request. This condition could result in excessive CPU
consumption. This release fixes this issue. (OCPBUGS-30894)

3.1.2.9. Custom Metrics Autoscaler Operator 2.12.1-384 release notes

This release of the Custom Metrics Autoscaler Operator 2.12.1-384 provides a bug fix for running the
Operator in an OpenShift Dedicated cluster. The following advisory is available for the RHBA-
2024:2043.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
KEDA.

3.1.2.9.1. Bug fixes

Previously, the custom-metrics-autoscaler and custom-metrics-autoscaler-adapter images
were missing time zone information. As a consequence, scaled objects with cron triggers failed
to work because the controllers were unable to find time zone information. With this fix, the
image builds are updated to include time zone information. As a result, scaled objects
containing cron triggers now function properly. (OCPBUGS-32395)

3.1.2.10. Custom Metrics Autoscaler Operator 2.12.1-376 release notes

This release of the Custom Metrics Autoscaler Operator 2.12.1-376 provides security updates and bug
fixes for running the Operator in an OpenShift Dedicated cluster. The following advisory is available for
the RHSA-2024:1812.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
KEDA.

OpenShift Dedicated 4 Nodes

64

https://issues.redhat.com/browse/OCPBUGS-30365
https://issues.redhat.com/browse/OCPBUGS-30370
https://issues.redhat.com/browse/OCPBUGS-30397
https://issues.redhat.com/browse/OCPBUGS-30894
https://access.redhat.com/errata/RHBA-2024:2043
https://issues.redhat.com/browse/OCPBUGS-32395
https://access.redhat.com/errata/RHSA-2024:1812

3.1.2.10.1. Bug fixes

Previously, if invalid values such as nonexistent namespaces were specified in scaled object
metadata, the underlying scaler clients would not free, or close, their client descriptors, resulting
in a slow memory leak. This fix properly closes the underlying client descriptors when there are
errors, preventing memory from leaking. (OCPBUGS-30145)

Previously the ServiceMonitor custom resource (CR) for the keda-metrics-apiserver pod was
not functioning, because the CR referenced an incorrect metrics port name of http. This fix
corrects the ServiceMonitor CR to reference the proper port name of metrics. As a result, the
Service Monitor functions properly. (OCPBUGS-25806)

3.1.2.11. Custom Metrics Autoscaler Operator 2.11.2-322 release notes

This release of the Custom Metrics Autoscaler Operator 2.11.2-322 provides security updates and bug
fixes for running the Operator in an OpenShift Dedicated cluster. The following advisory is available for
the RHSA-2023:6144.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
KEDA.

3.1.2.11.1. Bug fixes

Because the Custom Metrics Autoscaler Operator version 3.11.2-311 was released without a
required volume mount in the Operator deployment, the Custom Metrics Autoscaler Operator
pod would restart every 15 minutes. This fix adds the required volume mount to the Operator
deployment. As a result, the Operator no longer restarts every 15 minutes. (OCPBUGS-22361)

3.1.2.12. Custom Metrics Autoscaler Operator 2.11.2-311 release notes

This release of the Custom Metrics Autoscaler Operator 2.11.2-311 provides new features and bug fixes
for running the Operator in an OpenShift Dedicated cluster. The components of the Custom Metrics
Autoscaler Operator 2.11.2-311 were released in RHBA-2023:5981.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
KEDA.

3.1.2.12.1. New features and enhancements

3.1.2.12.1.1. Red Hat OpenShift Service on AWS and OpenShift Dedicated are now supported

The Custom Metrics Autoscaler Operator 2.11.2-311 can be installed on Red Hat OpenShift Service on
AWS and OpenShift Dedicated managed clusters. Previous versions of the Custom Metrics Autoscaler
Operator could be installed only in the openshift-keda namespace. This prevented the Operator from
being installed on Red Hat OpenShift Service on AWS and OpenShift Dedicated clusters. This version of
Custom Metrics Autoscaler allows installation to other namespaces such as openshift-operators or
keda, enabling installation into Red Hat OpenShift Service on AWS and OpenShift Dedicated clusters.

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

65

https://issues.redhat.com/browse/OCPBUGS-30145
https://issues.redhat.com/browse/OCPBUGS-25806
https://access.redhat.com/errata/RHSA-2023:6144
https://issues.redhat.com/browse/OCPBUGS-22361
https://access.redhat.com/errata/RHBA-2023:5981

3.1.2.12.2. Bug fixes

Previously, if the Custom Metrics Autoscaler Operator was installed and configured, but not in
use, the OpenShift CLI reported the couldn’t get resource list for
external.metrics.k8s.io/v1beta1: Got empty response for: external.metrics.k8s.io/v1beta1
error after any oc command was entered. The message, although harmless, could have caused
confusion. With this fix, the Got empty response for: external.metrics… ​ error no longer
appears inappropriately. (OCPBUGS-15779)

Previously, any annotation or label change to objects managed by the Custom Metrics
Autoscaler were reverted by Custom Metrics Autoscaler Operator any time the Keda Controller
was modified, for example after a configuration change. This caused continuous changing of
labels in your objects. The Custom Metrics Autoscaler now uses its own annotation to manage
labels and annotations, and annotation or label are no longer inappropriately reverted.
(OCPBUGS-15590)

3.1.2.13. Custom Metrics Autoscaler Operator 2.10.1-267 release notes

This release of the Custom Metrics Autoscaler Operator 2.10.1-267 provides new features and bug fixes
for running the Operator in an OpenShift Dedicated cluster. The components of the Custom Metrics
Autoscaler Operator 2.10.1-267 were released in RHBA-2023:4089.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
KEDA.

3.1.2.13.1. Bug fixes

Previously, the custom-metrics-autoscaler and custom-metrics-autoscaler-adapter images
did not contain time zone information. Because of this, scaled objects with cron triggers failed
to work because the controllers were unable to find time zone information. With this fix, the
image builds now include time zone information. As a result, scaled objects containing cron
triggers now function properly. (OCPBUGS-15264)

Previously, the Custom Metrics Autoscaler Operator would attempt to take ownership of all
managed objects, including objects in other namespaces and cluster-scoped objects. Because
of this, the Custom Metrics Autoscaler Operator was unable to create the role binding for
reading the credentials necessary to be an API server. This caused errors in the kube-system
namespace. With this fix, the Custom Metrics Autoscaler Operator skips adding the
ownerReference field to any object in another namespace or any cluster-scoped object. As a
result, the role binding is now created without any errors. (OCPBUGS-15038)

Previously, the Custom Metrics Autoscaler Operator added an ownerReferences field to the
openshift-keda namespace. While this did not cause functionality problems, the presence of
this field could have caused confusion for cluster administrators. With this fix, the Custom
Metrics Autoscaler Operator does not add the ownerReference field to the openshift-keda
namespace. As a result, the openshift-keda namespace no longer has a superfluous
ownerReference field. (OCPBUGS-15293)

Previously, if you used a Prometheus trigger configured with authentication method other than
pod identity, and the podIdentity parameter was set to none, the trigger would fail to scale.
With this fix, the Custom Metrics Autoscaler for OpenShift now properly handles the none pod

OpenShift Dedicated 4 Nodes

66

https://issues.redhat.com/browse/OCPBUGS-15779
https://issues.redhat.com/browse/OCPBUGS-15590
https://access.redhat.com/errata/RHBA-2023:4089
https://issues.redhat.com/browse/OCPBUGS-15264
https://issues.redhat.com/browse/OCPBUGS-15038
https://issues.redhat.com/browse/OCPBUGS-15293

identity provider type. As a result, a Prometheus trigger configured with authentication method
other than pod identity, and the podIdentity parameter sset to none now properly scales.
(OCPBUGS-15274)

3.1.2.14. Custom Metrics Autoscaler Operator 2.10.1 release notes

This release of the Custom Metrics Autoscaler Operator 2.10.1 provides new features and bug fixes for
running the Operator in an OpenShift Dedicated cluster. The components of the Custom Metrics
Autoscaler Operator 2.10.1 were released in RHEA-2023:3199.

IMPORTANT

Before installing this version of the Custom Metrics Autoscaler Operator, remove any
previously installed Technology Preview versions or the community-supported version of
KEDA.

3.1.2.14.1. New features and enhancements

3.1.2.14.1.1. Custom Metrics Autoscaler Operator general availability

The Custom Metrics Autoscaler Operator is now generally available as of Custom Metrics Autoscaler
Operator version 2.10.1.

IMPORTANT

Scaling by using a scaled job is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

3.1.2.14.1.2. Performance metrics

You can now use the Prometheus Query Language (PromQL) to query metrics on the Custom Metrics
Autoscaler Operator.

3.1.2.14.1.3. Pausing the custom metrics autoscaling for scaled objects

You can now pause the autoscaling of a scaled object, as needed, and resume autoscaling when ready.

3.1.2.14.1.4. Replica fall back for scaled objects

You can now specify the number of replicas to fall back to if a scaled object fails to get metrics from the
source.

3.1.2.14.1.5. Customizable HPA naming for scaled objects

You can now specify a custom name for the horizontal pod autoscaler in scaled objects.

3.1.2.14.1.6. Activation and scaling thresholds

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

67

https://issues.redhat.com/browse/OCPBUGS-15274
https://access.redhat.com/errata/RHEA-2023:3199
https://access.redhat.com/support/offerings/techpreview/

Because the horizontal pod autoscaler (HPA) cannot scale to or from 0 replicas, the Custom Metrics
Autoscaler Operator does that scaling, after which the HPA performs the scaling. You can now specify
when the HPA takes over autoscaling, based on the number of replicas. This allows for more flexibility
with your scaling policies.

3.1.2.15. Custom Metrics Autoscaler Operator 2.8.2-174 release notes

This release of the Custom Metrics Autoscaler Operator 2.8.2-174 provides new features and bug fixes
for running the Operator in an OpenShift Dedicated cluster. The components of the Custom Metrics
Autoscaler Operator 2.8.2-174 were released in RHEA-2023:1683.

IMPORTANT

The Custom Metrics Autoscaler Operator version 2.8.2-174 is a Technology Preview
feature.

3.1.2.15.1. New features and enhancements

3.1.2.15.1.1. Operator upgrade support

You can now upgrade from a prior version of the Custom Metrics Autoscaler Operator. See "Changing
the update channel for an Operator" in the "Additional resources" for information on upgrading an
Operator.

3.1.2.15.1.2. must-gather support

You can now collect data about the Custom Metrics Autoscaler Operator and its components by using
the OpenShift Dedicated must-gather tool. Currently, the process for using the must-gather tool with
the Custom Metrics Autoscaler is different than for other operators. See "Gathering debugging data in
the "Additional resources" for more information.

3.1.2.16. Custom Metrics Autoscaler Operator 2.8.2 release notes

This release of the Custom Metrics Autoscaler Operator 2.8.2 provides new features and bug fixes for
running the Operator in an OpenShift Dedicated cluster. The components of the Custom Metrics
Autoscaler Operator 2.8.2 were released in RHSA-2023:1042.

IMPORTANT

The Custom Metrics Autoscaler Operator version 2.8.2 is a Technology Preview feature.

3.1.2.16.1. New features and enhancements

3.1.2.16.1.1. Audit Logging

You can now gather and view audit logs for the Custom Metrics Autoscaler Operator and its associated
components. Audit logs are security-relevant chronological sets of records that document the sequence
of activities that have affected the system by individual users, administrators, or other components of
the system.

3.1.2.16.1.2. Scale applications based on Apache Kafka metrics

You can now use the KEDA Apache kafka trigger/scaler to scale deployments based on an Apache Kafka

OpenShift Dedicated 4 Nodes

68

https://access.redhat.com/errata/RHEA-2023:1683
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/errata/RHSA-2023:1042
https://access.redhat.com/support/offerings/techpreview/

You can now use the KEDA Apache kafka trigger/scaler to scale deployments based on an Apache Kafka
topic.

3.1.2.16.1.3. Scale applications based on CPU metrics

You can now use the KEDA CPU trigger/scaler to scale deployments based on CPU metrics.

3.1.2.16.1.4. Scale applications based on memory metrics

You can now use the KEDA memory trigger/scaler to scale deployments based on memory metrics.

3.2. CUSTOM METRICS AUTOSCALER OPERATOR OVERVIEW

As a developer, you can use Custom Metrics Autoscaler Operator for Red Hat OpenShift to specify how
OpenShift Dedicated should automatically increase or decrease the number of pods for a deployment,
stateful set, custom resource, or job based on custom metrics that are not based only on CPU or
memory.

The Custom Metrics Autoscaler Operator is an optional Operator, based on the Kubernetes Event
Driven Autoscaler (KEDA), that allows workloads to be scaled using additional metrics sources other
than pod metrics.

The custom metrics autoscaler currently supports only the Prometheus, CPU, memory, and Apache
Kafka metrics.

The Custom Metrics Autoscaler Operator scales your pods up and down based on custom, external
metrics from specific applications. Your other applications continue to use other scaling methods. You
configure triggers, also known as scalers, which are the source of events and metrics that the custom
metrics autoscaler uses to determine how to scale. The custom metrics autoscaler uses a metrics API to
convert the external metrics to a form that OpenShift Dedicated can use. The custom metrics
autoscaler creates a horizontal pod autoscaler (HPA) that performs the actual scaling.

To use the custom metrics autoscaler, you create a ScaledObject or ScaledJob object for a workload,
which is a custom resource (CR) that defines the scaling metadata. You specify the deployment or job
to scale, the source of the metrics to scale on (trigger), and other parameters such as the minimum and
maximum replica counts allowed.

NOTE

You can create only one scaled object or scaled job for each workload that you want to
scale. Also, you cannot use a scaled object or scaled job and the horizontal pod
autoscaler (HPA) on the same workload.

The custom metrics autoscaler, unlike the HPA, can scale to zero. If you set the minReplicaCount value
in the custom metrics autoscaler CR to 0, the custom metrics autoscaler scales the workload down from
1 to 0 replicas to or up from 0 replicas to 1. This is known as the activation phase. After scaling up to 1
replica, the HPA takes control of the scaling. This is known as the scaling phase .

Some triggers allow you to change the number of replicas that are scaled by the cluster metrics
autoscaler. In all cases, the parameter to configure the activation phase always uses the same phrase,
prefixed with activation. For example, if the threshold parameter configures scaling,
activationThreshold would configure activation. Configuring the activation and scaling phases allows
you more flexibility with your scaling policies. For example, you can configure a higher activation phase
to prevent scaling up or down if the metric is particularly low.

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

69

The activation value has more priority than the scaling value in case of different decisions for each. For
example, if the threshold is set to 10, and the activationThreshold is 50, if the metric reports 40, the
scaler is not active and the pods are scaled to zero even if the HPA requires 4 instances.

Figure 3.1. Custom metrics autoscaler workflow

1. You create or modify a scaled object custom resource for a workload on a cluster. The object
contains the scaling configuration for that workload. Prior to accepting the new object, the
OpenShift API server sends it to the custom metrics autoscaler admission webhooks process to
ensure that the object is valid. If validation succeeds, the API server persists the object.

2. The custom metrics autoscaler controller watches for new or modified scaled objects. When the
OpenShift API server notifies the controller of a change, the controller monitors any external
trigger sources, also known as data sources, that are specified in the object for changes to the
metrics data. One or more scalers request scaling data from the external trigger source. For
example, for a Kafka trigger type, the controller uses the Kafka scaler to communicate with a
Kafka instance to obtain the data requested by the trigger.

3. The controller creates a horizontal pod autoscaler object for the scaled object. As a result, the
Horizontal Pod Autoscaler (HPA) Operator starts monitoring the scaling data associated with
the trigger. The HPA requests scaling data from the cluster OpenShift API server endpoint.

4. The OpenShift API server endpoint is served by the custom metrics autoscaler metrics adapter.
When the metrics adapter receives a request for custom metrics, it uses a GRPC connection to
the controller to request it for the most recent trigger data received from the scaler.

5. The HPA makes scaling decisions based upon the data received from the metrics adapter and
scales the workload up or down by increasing or decreasing the replicas.

6. As a it operates, a workload can affect the scaling metrics. For example, if a workload is scaled
up to handle work in a Kafka queue, the queue size decreases after the workload processes all
the work. As a result, the workload is scaled down.

OpenShift Dedicated 4 Nodes

70

7. If the metrics are in a range specified by the minReplicaCount value, the custom metrics
autoscaler controller disables all scaling, and leaves the replica count at a fixed level. If the
metrics exceed that range, the custom metrics autoscaler controller enables scaling and allows
the HPA to scale the workload. While scaling is disabled, the HPA does not take any action.

3.2.1. Custom CA certificates for the Custom Metrics Autoscaler

By default, the Custom Metrics Autoscaler Operator uses automatically-generated service CA
certificates to connect to on-cluster services.

If you want to use off-cluster services that require custom CA certificates, you can add the required
certificates to a config map. Then, add the config map to the KedaController custom resource as
described in Installing the custom metrics autoscaler. The Operator loads those certificates on start-up
and registers them as trusted by the Operator.

The config maps can contain one or more certificate files that contain one or more PEM-encoded CA
certificates. Or, you can use separate config maps for each certificate file.

NOTE

If you later update the config map to add additional certificates, you must restart the
keda-operator-* pod for the changes to take effect.

3.3. INSTALLING THE CUSTOM METRICS AUTOSCALER

You can use the OpenShift Dedicated web console to install the Custom Metrics Autoscaler Operator.

The installation creates the following five CRDs:

ClusterTriggerAuthentication

KedaController

ScaledJob

ScaledObject

TriggerAuthentication

The installation process also creates the KedaController custom resource (CR). You can modify the
default KedaController CR, if needed. For more information, see "Editing the Keda Controller CR".

NOTE

If you are installing a Custom Metrics Autoscaler Operator version lower than 2.17.2, you
must manually create the Keda Controller CR. You can use the procedure described in
"Editing the Keda Controller CR" to create the CR.

3.3.1. Installing the custom metrics autoscaler

You can use the following procedure to install the Custom Metrics Autoscaler Operator.

Prerequisites

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

71

You have access to the cluster as a user with the cluster-admin role.
If your OpenShift Dedicated cluster is in a cloud account that is owned by Red Hat (non-CCS),
you must request cluster-admin privileges.

Remove any previously-installed Technology Preview versions of the Cluster Metrics Autoscaler
Operator.

Remove any versions of the community-based KEDA.
Also, remove the KEDA 1.x custom resource definitions by running the following commands:

Ensure that the keda namespace exists. If not, you must manaully create the keda namespace.

Optional: If you need the Custom Metrics Autoscaler Operator to connect to off-cluster
services, such as an external Kafka cluster or an external Prometheus service, put any required
service CA certificates into a config map. The config map must exist in the same namespace
where the Operator is installed. For example:

Procedure

1. In the OpenShift Dedicated web console, click Ecosystem → Software Catalog.

2. Choose Custom Metrics Autoscaler from the list of available Operators, and click Install.

3. On the Install Operator page, ensure that the A specific namespace on the cluster option is
selected for Installation Mode.

4. For Installed Namespace, click Select a namespace.

5. Click Select Project:

If the keda namespace exists, select keda from the list.

If the keda namespace does not exist:

a. Select Create Project to open the Create Project window.

b. In the Name field, enter keda.

c. In the Display Name field, enter a descriptive name, such as keda.

d. Optional: In the Display Name field, add a description for the namespace.

e. Click Create.

6. Click Install.

7. Verify the installation by listing the Custom Metrics Autoscaler Operator components:

a. Navigate to Workloads → Pods.

b. Select the keda project from the drop-down menu and verify that the custom-metrics-

$ oc delete crd scaledobjects.keda.k8s.io

$ oc delete crd triggerauthentications.keda.k8s.io

$ oc create configmap -n openshift-keda thanos-cert --from-file=ca-cert.pem

OpenShift Dedicated 4 Nodes

72

b. Select the keda project from the drop-down menu and verify that the custom-metrics-
autoscaler-operator-* pod is running.

c. Navigate to Workloads → Deployments to verify that the custom-metrics-autoscaler-
operator deployment is running.

8. Optional: Verify the installation in the OpenShift CLI using the following command:

The output appears similar to the following:

Example output

3.3.2. Editing the Keda Controller CR

You can use the following procedure to modify the KedaController custom resource (CR), which is
automatically installed during the installation of the Custom Metrics Autoscaler Operator.

Procedure

1. In the OpenShift Dedicated web console, click Ecosystem → Installed Operators.

2. Click Custom Metrics Autoscaler.

3. On the Operator Details page, click the KedaController tab.

4. On the KedaController tab, click Create KedaController and edit the file.

$ oc get all -n keda

NAME READY STATUS RESTARTS AGE
pod/custom-metrics-autoscaler-operator-5fd8d9ffd8-xt4xp 1/1 Running 0 18m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/custom-metrics-autoscaler-operator 1/1 1 1 18m

NAME DESIRED CURRENT READY AGE
replicaset.apps/custom-metrics-autoscaler-operator-5fd8d9ffd8 1 1 1 18m

kind: KedaController
apiVersion: keda.sh/v1alpha1
metadata:
 name: keda
 namespace: openshift-keda
spec:
 watchNamespace: '' 1
 operator:
 logLevel: info 2
 logEncoder: console 3
 caConfigMaps: 4
 - thanos-cert
 - kafka-cert
 volumeMounts: 5
 - mountPath: /<path_to_directory>
 name: <name>

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

73

1

2

3

4

5

6

7

8

Specifies a single namespace in which the Custom Metrics Autoscaler Operator scales
applications. Leave it blank or leave it empty to scale applications in all namespaces. This
field should have a namespace or be empty. The default value is empty.

Specifies the level of verbosity for the Custom Metrics Autoscaler Operator log messages.
The allowed values are debug, info, error. The default is info.

Specifies the logging format for the Custom Metrics Autoscaler Operator log messages.
The allowed values are console or json. The default is console.

Optional: Specifies one or more config maps with CA certificates, which the Custom
Metrics Autoscaler Operator can use to connect securely to TLS-enabled metrics sources.

Optional: Add the container mount path.

Optional: Add a volumes block to list each projected volume source.

Specifies the logging level for the Custom Metrics Autoscaler Metrics Server. The allowed
values are 0 for info and 4 for debug. The default is 0.

Activates audit logging for the Custom Metrics Autoscaler Operator and specifies the audit
policy to use, as described in the "Configuring audit logging" section.

5. Click Save to save the changes.

3.4. UNDERSTANDING CUSTOM METRICS AUTOSCALER TRIGGERS

Triggers, also known as scalers, provide the metrics that the Custom Metrics Autoscaler Operator uses
to scale your pods.

The custom metrics autoscaler currently supports the Prometheus, CPU, memory, Apache Kafka, and
cron triggers.

You use a ScaledObject or ScaledJob custom resource to configure triggers for specific objects, as

 volumes: 6
 - name: <volume_name>
 emptyDir:
 medium: Memory
 metricsServer:
 logLevel: '0' 7
 auditConfig: 8
 logFormat: "json"
 logOutputVolumeClaim: "persistentVolumeClaimName"
 policy:
 rules:
 - level: Metadata
 omitStages: ["RequestReceived"]
 omitManagedFields: false
 lifetime:
 maxAge: "2"
 maxBackup: "1"
 maxSize: "50"
 serviceAccount: {}

OpenShift Dedicated 4 Nodes

74

1

2

3

4

You use a ScaledObject or ScaledJob custom resource to configure triggers for specific objects, as
described in the sections that follow.

You can configure a certificate authority to use with your scaled objects or for all scalers in the cluster .

3.4.1. Understanding the Prometheus trigger

You can scale pods based on Prometheus metrics, which can use the installed OpenShift Dedicated
monitoring or an external Prometheus server as the metrics source. See "Configuring the custom
metrics autoscaler to use OpenShift Dedicated monitoring" for information on the configurations
required to use the OpenShift Dedicated monitoring as a source for metrics.

NOTE

If Prometheus is collecting metrics from the application that the custom metrics
autoscaler is scaling, do not set the minimum replicas to 0 in the custom resource. If there
are no application pods, the custom metrics autoscaler does not have any metrics to scale
on.

Example scaled object with a Prometheus target

Specifies Prometheus as the trigger type.

Specifies the address of the Prometheus server. This example uses OpenShift Dedicated
monitoring.

Optional: Specifies the namespace of the object you want to scale. This parameter is mandatory if
using OpenShift Dedicated monitoring as a source for the metrics.

Specifies the name to identify the metric in the external.metrics.k8s.io API. If you are using more
than one trigger, all metric names must be unique.

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: prom-scaledobject
 namespace: my-namespace
spec:
...
 triggers:
 - type: prometheus 1
 metadata:
 serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092 2
 namespace: kedatest 3
 metricName: http_requests_total 4
 threshold: '5' 5
 query: sum(rate(http_requests_total{job="test-app"}[1m])) 6
 authModes: basic 7
 cortexOrgID: my-org 8
 ignoreNullValues: "false" 9
 unsafeSsl: "false" 10
 timeout: 1000 11

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

75

5

6

7

8

9

10

11

Specifies the value that triggers scaling. Must be specified as a quoted string value.

Specifies the Prometheus query to use.

Specifies the authentication method to use. Prometheus scalers support bearer authentication
(bearer), basic authentication (basic), or TLS authentication (tls). You configure the specific
authentication parameters in a trigger authentication, as discussed in a following section. As
needed, you can also use a secret.

Optional: Passes the X-Scope-OrgID header to multi-tenant Cortex or Mimir storage for
Prometheus. This parameter is required only with multi-tenant Prometheus storage, to indicate
which data Prometheus should return.

Optional: Specifies how the trigger should proceed if the Prometheus target is lost.

If true, the trigger continues to operate if the Prometheus target is lost. This is the default
behavior.

If false, the trigger returns an error if the Prometheus target is lost.

Optional: Specifies whether the certificate check should be skipped. For example, you might skip
the check if you are running in a test environment and using self-signed certificates at the
Prometheus endpoint.

If false, the certificate check is performed. This is the default behavior.

If true, the certificate check is not performed.

IMPORTANT

Skipping the check is not recommended.

Optional: Specifies an HTTP request timeout in milliseconds for the HTTP client used by this
Prometheus trigger. This value overrides any global timeout setting.

3.4.1.1. Configuring GPU-based autoscaling with Prometheus and DCGM metrics

You can use the Custom Metrics Autoscaler with NVIDIA Data Center GPU Manager (DCGM) metrics to
scale workloads based on GPU utilization. This is particularly useful for AI and machine learning
workloads that require GPU resources.

Example scaled object with a Prometheus target for GPU-based autoscaling

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: gpu-scaledobject
 namespace: my-namespace
spec:
 scaleTargetRef:
 kind: Deployment
 name: gpu-deployment
 minReplicaCount: 1 1
 maxReplicaCount: 5 2

OpenShift Dedicated 4 Nodes

76

https://cortexmetrics.io/
https://grafana.com/oss/mimir/

1

2

3

4

Specifies the minimum number of replicas to maintain. For GPU workloads, this should not be set to
0 to ensure that metrics continue to be collected.

Specifies the maximum number of replicas allowed during scale-up operations.

Specifies the GPU utilization percentage threshold that triggers scaling. When the average GPU
utilization exceeds 90%, the autoscaler scales up the deployment.

Specifies a Prometheus query using NVIDIA DCGM metrics to monitor GPU utilization across all
GPU devices. The DCGM_FI_DEV_GPU_UTIL metric provides GPU utilization percentages.

3.4.1.2. Configuring the custom metrics autoscaler to use OpenShift Dedicated monitoring

You can use the installed OpenShift Dedicated Prometheus monitoring as a source for the metrics used
by the custom metrics autoscaler. However, there are some additional configurations you must perform.

For your scaled objects to be able to read the OpenShift Dedicated Prometheus metrics, you must use a
trigger authentication or a cluster trigger authentication in order to provide the authentication
information required. The following procedure differs depending on which trigger authentication
method you use. For more information on trigger authentications, see "Understanding custom metrics
autoscaler trigger authentications".

NOTE

These steps are not required for an external Prometheus source.

You must perform the following tasks, as described in this section:

Create a service account.

Create the trigger authentication.

Create a role.

Add that role to the service account.

Reference the token in the trigger authentication object used by Prometheus.

Prerequisites

OpenShift Dedicated monitoring must be installed.

 triggers:
 - type: prometheus
 metadata:
 serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
 namespace: my-namespace
 metricName: gpu_utilization
 threshold: '90' 3
 query: SUM(DCGM_FI_DEV_GPU_UTIL{instance=~".+", gpu=~".+"}) 4
 authModes: bearer
 authenticationRef:
 name: keda-trigger-auth-prometheus

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

77

1

1

1

2

3

Monitoring of user-defined workloads must be enabled in OpenShift Dedicated monitoring, as
described in the Creating a user-defined workload monitoring config map section.

The Custom Metrics Autoscaler Operator must be installed.

Procedure

1. Change to the appropriate project:

Specifies one of the following projects:

If you are using a trigger authentication, specify the project with the object you want to
scale.

If you are using a cluster trigger authentication, specify the openshift-keda project.

2. Create a service account if your cluster does not have one:

a. Create a service account object by using the following command:

Specifies the name of the service account.

3. Create a trigger authentication with the service account token:

a. Create a YAML file similar to the following:

Specifies one of the following trigger authentication methods:

If you are using a trigger authentication, specify TriggerAuthentication. This
example configures a trigger authentication.

If you are using a cluster trigger authentication, specify
ClusterTriggerAuthentication.

Specifies that this trigger authentication uses a bound service account token for
authorization when connecting to the metrics endpoint.

Specifies the authentication parameter to supply by using the token. Here, the
example uses bearer authentication.

$ oc project <project_name> 1

$ oc create serviceaccount thanos 1

apiVersion: keda.sh/v1alpha1
kind: <authentication_method> 1
metadata:
 name: keda-trigger-auth-prometheus
spec:
 boundServiceAccountToken: 2
 - parameter: bearerToken 3
 serviceAccountName: thanos 4

OpenShift Dedicated 4 Nodes

78

4 Specifies the name of the service account to use.

b. Create the CR object:

4. Create a role for reading Thanos metrics:

a. Create a YAML file with the following parameters:

b. Create the CR object:

5. Create a role binding for reading Thanos metrics:

a. Create a YAML file similar to the following:

$ oc create -f <file-name>.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: thanos-metrics-reader
rules:
- apiGroups:
 - ""
 resources:
 - pods
 verbs:
 - get
- apiGroups:
 - metrics.k8s.io
 resources:
 - pods
 - nodes
 verbs:
 - get
 - list
 - watch

$ oc create -f <file-name>.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: <binding_type> 1
metadata:
 name: thanos-metrics-reader 2
 namespace: my-project 3
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: thanos-metrics-reader
subjects:
- kind: ServiceAccount
 name: thanos 4
 namespace: <namespace_name> 5

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

79

1

2

3

4

5

Specifies one of the following object types:

If you are using a trigger authentication, specify RoleBinding.

If you are using a cluster trigger authentication, specify ClusterRoleBinding.

Specifies the name of the role you created.

Specifies one of the following projects:

If you are using a trigger authentication, specify the project with the object you
want to scale.

If you are using a cluster trigger authentication, specify the openshift-keda
project.

Specifies the name of the service account to bind to the role.

Specifies the project where you previously created the service account.

b. Create the CR object:

You can now deploy a scaled object or scaled job to enable autoscaling for your application, as
described in "Understanding how to add custom metrics autoscalers". To use OpenShift Dedicated
monitoring as the source, in the trigger, or scaler, you must include the following parameters:

triggers.type must be prometheus

triggers.metadata.serverAddress must be https://thanos-querier.openshift-
monitoring.svc.cluster.local:9092

triggers.metadata.authModes must be bearer

triggers.metadata.namespace must be set to the namespace of the object to scale

triggers.authenticationRef must point to the trigger authentication resource specified in the
previous step

Additional resources

Understanding custom metrics autoscaler trigger authentications

3.4.2. Understanding the CPU trigger

You can scale pods based on CPU metrics. This trigger uses cluster metrics as the source for metrics.

The custom metrics autoscaler scales the pods associated with an object to maintain the CPU usage
that you specify. The autoscaler increases or decreases the number of replicas between the minimum
and maximum numbers to maintain the specified CPU utilization across all pods. The memory trigger
considers the memory utilization of the entire pod. If the pod has multiple containers, the memory
trigger considers the total memory utilization of all containers in the pod.

NOTE

$ oc create -f <file-name>.yaml

OpenShift Dedicated 4 Nodes

80

1

2

3

4

NOTE

This trigger cannot be used with the ScaledJob custom resource.

When using a memory trigger to scale an object, the object does not scale to 0,
even if you are using multiple triggers.

Example scaled object with a CPU target

Specifies CPU as the trigger type.

Specifies the type of metric to use, either Utilization or AverageValue.

Specifies the value that triggers scaling. Must be specified as a quoted string value.

When using Utilization, the target value is the average of the resource metrics across all
relevant pods, represented as a percentage of the requested value of the resource for the
pods.

When using AverageValue, the target value is the average of the metrics across all
relevant pods.

Specifies the minimum number of replicas when scaling down. For a CPU trigger, enter a value of 1
or greater, because the HPA cannot scale to zero if you are using only CPU metrics.

3.4.3. Understanding the memory trigger

You can scale pods based on memory metrics. This trigger uses cluster metrics as the source for
metrics.

The custom metrics autoscaler scales the pods associated with an object to maintain the average
memory usage that you specify. The autoscaler increases and decreases the number of replicas
between the minimum and maximum numbers to maintain the specified memory utilization across all
pods. The memory trigger considers the memory utilization of entire pod. If the pod has multiple
containers, the memory utilization is the sum of all of the containers.

NOTE

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: cpu-scaledobject
 namespace: my-namespace
spec:
...
 triggers:
 - type: cpu 1
 metricType: Utilization 2
 metadata:
 value: '60' 3
 minReplicaCount: 1 4

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

81

1

2

3

4

NOTE

This trigger cannot be used with the ScaledJob custom resource.

When using a memory trigger to scale an object, the object does not scale to 0,
even if you are using multiple triggers.

Example scaled object with a memory target

Specifies memory as the trigger type.

Specifies the type of metric to use, either Utilization or AverageValue.

Specifies the value that triggers scaling. Must be specified as a quoted string value.

When using Utilization, the target value is the average of the resource metrics across all
relevant pods, represented as a percentage of the requested value of the resource for the
pods.

When using AverageValue, the target value is the average of the metrics across all
relevant pods.

Optional: Specifies an individual container to scale, based on the memory utilization of only that
container, rather than the entire pod. In this example, only the container named api is to be scaled.

3.4.4. Understanding the Kafka trigger

You can scale pods based on an Apache Kafka topic or other services that support the Kafka protocol.
The custom metrics autoscaler does not scale higher than the number of Kafka partitions, unless you set
the allowIdleConsumers parameter to true in the scaled object or scaled job.

NOTE

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: memory-scaledobject
 namespace: my-namespace
spec:
...
 triggers:
 - type: memory 1
 metricType: Utilization 2
 metadata:
 value: '60' 3
 containerName: api 4

OpenShift Dedicated 4 Nodes

82

1

2

3

4

5

6

NOTE

If the number of consumer groups exceeds the number of partitions in a topic, the extra
consumer groups remain idle. To avoid this, by default the number of replicas does not
exceed:

The number of partitions on a topic, if a topic is specified

The number of partitions of all topics in the consumer group, if no topic is
specified

The maxReplicaCount specified in scaled object or scaled job CR

You can use the allowIdleConsumers parameter to disable these default behaviors.

Example scaled object with a Kafka target

Specifies Kafka as the trigger type.

Specifies the name of the Kafka topic on which Kafka is processing the offset lag.

Specifies a comma-separated list of Kafka brokers to connect to.

Specifies the name of the Kafka consumer group used for checking the offset on the topic and
processing the related lag.

Optional: Specifies the average target value that triggers scaling. Must be specified as a quoted
string value. The default is 5.

Optional: Specifies the target value for the activation phase. Must be specified as a quoted string
value.

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: kafka-scaledobject
 namespace: my-namespace
spec:
...
 triggers:
 - type: kafka 1
 metadata:
 topic: my-topic 2
 bootstrapServers: my-cluster-kafka-bootstrap.openshift-operators.svc:9092 3
 consumerGroup: my-group 4
 lagThreshold: '10' 5
 activationLagThreshold: '5' 6
 offsetResetPolicy: latest 7
 allowIdleConsumers: true 8
 scaleToZeroOnInvalidOffset: false 9
 excludePersistentLag: false 10
 version: '1.0.0' 11
 partitionLimitation: '1,2,10-20,31' 12
 tls: enable 13

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

83

7

8

9

10

11

12

13

Optional: Specifies the Kafka offset reset policy for the Kafka consumer. The available values are:
latest and earliest. The default is latest.

Optional: Specifies whether the number of Kafka replicas can exceed the number of partitions on a
topic.

If true, the number of Kafka replicas can exceed the number of partitions on a topic. This
allows for idle Kafka consumers.

If false, the number of Kafka replicas cannot exceed the number of partitions on a topic.
This is the default.

Specifies how the trigger behaves when a Kafka partition does not have a valid offset.

If true, the consumers are scaled to zero for that partition.

If false, the scaler keeps a single consumer for that partition. This is the default.

Optional: Specifies whether the trigger includes or excludes partition lag for partitions whose
current offset is the same as the current offset of the previous polling cycle.

If true, the scaler excludes partition lag in these partitions.

If false, the trigger includes all consumer lag in all partitions. This is the default.

Optional: Specifies the version of your Kafka brokers. Must be specified as a quoted string value.
The default is 1.0.0.

Optional: Specifies a comma-separated list of partition IDs to scope the scaling on. If set, only the
listed IDs are considered when calculating lag. Must be specified as a quoted string value. The
default is to consider all partitions.

Optional: Specifies whether to use TSL client authentication for Kafka. The default is disable. For
information on configuring TLS, see "Understanding custom metrics autoscaler trigger
authentications".

3.4.5. Understanding the Cron trigger

You can scale pods based on a time range.

When the time range starts, the custom metrics autoscaler scales the pods associated with an object
from the configured minimum number of pods to the specified number of desired pods. At the end of
the time range, the pods are scaled back to the configured minimum. The time period must be
configured in cron format.

The following example scales the pods associated with this scaled object from 0 to 100 from 6:00 AM to
6:30 PM India Standard Time.

Example scaled object with a Cron trigger

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: cron-scaledobject
 namespace: default

OpenShift Dedicated 4 Nodes

84

https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#writing-a-cronjob-spec

1

2

3

4

5

6

7

Specifies the minimum number of pods to scale down to at the end of the time frame.

Specifies the maximum number of replicas when scaling up. This value should be the same as
desiredReplicas. The default is 100.

Specifies a Cron trigger.

Specifies the timezone for the time frame. This value must be from the IANA Time Zone Database.

Specifies the start of the time frame.

Specifies the end of the time frame.

Specifies the number of pods to scale to between the start and end of the time frame. This value
should be the same as maxReplicaCount.

3.4.6. Understanding the Kubernetes workload trigger

You can scale pods based on the number of pods matching a specific label selector.

The Custom Metrics Autoscaler Operator tracks the number of pods with a specific label that are in the
same namespace, then calculates a relation based on the number of labeled pods to the pods for the
scaled object. Using this relation, the Custom Metrics Autoscaler Operator scales the object according
to the scaling policy in the ScaledObject or ScaledJob specification.

The pod counts includes pods with a Succeeded or Failed phase.

For example, if you have a frontend deployment and a backend deployment. You can use a
kubernetes-workload trigger to scale the backend deployment based on the number of frontend
pods. If number of frontend pods goes up, the Operator would scale the backend pods to maintain the
specified ratio. In this example, if there are 10 pods with the app=frontend pod selector, the Operator
scales the backend pods to 5 in order to maintain the 0.5 ratio set in the scaled object.

Example scaled object with a Kubernetes workload trigger

spec:
 scaleTargetRef:
 name: my-deployment
 minReplicaCount: 0 1
 maxReplicaCount: 100 2
 cooldownPeriod: 300
 triggers:
 - type: cron 3
 metadata:
 timezone: Asia/Kolkata 4
 start: "0 6 * * *" 5
 end: "30 18 * * *" 6
 desiredReplicas: "100" 7

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: workload-scaledobject
 namespace: my-namespace

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

85

https://data.iana.org/time-zones/tzdb-2021a/zone1970.tab

1

2

3

4

1

Specifies a Kubernetes workload trigger.

Specifies one or more pod selectors and/or set-based selectors, separated with commas, to use to
get the pod count.

Specifies the target relation between the scaled workload and the number of pods that match the
selector. The relation is calculated following the following formula:

relation = (pods that match the selector) / (scaled workload pods)

Optional: Specifies the target value for scaler activation phase. The default is 0.

3.5. UNDERSTANDING CUSTOM METRICS AUTOSCALER TRIGGER
AUTHENTICATIONS

A trigger authentication allows you to include authentication information in a scaled object or a scaled
job that can be used by the associated containers. You can use trigger authentications to pass
OpenShift Dedicated secrets, platform-native pod authentication mechanisms, environment variables,
and so on.

You define a TriggerAuthentication object in the same namespace as the object that you want to
scale. That trigger authentication can be used only by objects in that namespace.

Alternatively, to share credentials between objects in multiple namespaces, you can create a
ClusterTriggerAuthentication object that can be used across all namespaces.

Trigger authentications and cluster trigger authentication use the same configuration. However, a
cluster trigger authentication requires an additional kind parameter in the authentication reference of
the scaled object.

Example trigger authentication that uses a bound service account token

Specifies the namespace of the object you want to scale.

Specifies that this trigger authentication uses a bound service account token for authorization

spec:
 triggers:
 - type: kubernetes-workload 1
 metadata:
 podSelector: 'app=frontend' 2
 value: '0.5' 3
 activationValue: '3.1' 4

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
 name: secret-triggerauthentication
 namespace: my-namespace 1
spec:
 boundServiceAccountToken: 2
 - parameter: bearerToken
 serviceAccountName: thanos 3

OpenShift Dedicated 4 Nodes

86

2

3

1

2

3

1

2

3

4

5

Specifies that this trigger authentication uses a bound service account token for authorization
when connecting to the metrics endpoint.

Specifies the name of the service account to use.

Example cluster trigger authentication that uses a bound service account token

Specifies the namespace of the object you want to scale.

Specifies that this cluster trigger authentication uses a bound service account token for
authorization when connecting to the metrics endpoint.

Specifies the name of the service account to use.

Example trigger authentication that uses a secret for Basic authentication

Specifies the namespace of the object you want to scale.

Specifies that this trigger authentication uses a secret for authorization when connecting to the
metrics endpoint.

Specifies the authentication parameter to supply by using the secret.

Specifies the name of the secret to use. See the following example secret for Basic authentication.

Specifies the key in the secret to use with the specified parameter.

Example secret for Basic authentication

kind: ClusterTriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
 name: bound-service-account-token-triggerauthentication 1
spec:
 boundServiceAccountToken: 2
 - parameter: bearerToken
 serviceAccountName: thanos 3

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
 name: secret-triggerauthentication
 namespace: my-namespace 1
spec:
 secretTargetRef: 2
 - parameter: username 3
 name: my-basic-secret 4
 key: username 5
 - parameter: password
 name: my-basic-secret
 key: password

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

87

1

1

2

3

4

5

6

7

8

User name and password to supply to the trigger authentication. The values in the data stanza
must be base-64 encoded.

Example trigger authentication that uses a secret for CA details

Specifies the namespace of the object you want to scale.

Specifies that this trigger authentication uses a secret for authorization when connecting to the
metrics endpoint.

Specifies the type of authentication to use.

Specifies the name of the secret to use.

Specifies the key in the secret to use with the specified parameter.

Specifies the authentication parameter for a custom CA when connecting to the metrics endpoint.

Specifies the name of the secret to use. See the following example secret with certificate authority
(CA) details.

Specifies the key in the secret to use with the specified parameter.

Example secret with certificate authority (CA) details

apiVersion: v1
kind: Secret
metadata:
 name: my-basic-secret
 namespace: default
data:
 username: "dXNlcm5hbWU=" 1
 password: "cGFzc3dvcmQ="

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
 name: secret-triggerauthentication
 namespace: my-namespace 1
spec:
 secretTargetRef: 2
 - parameter: key 3
 name: my-secret 4
 key: client-key.pem 5
 - parameter: ca 6
 name: my-secret 7
 key: ca-cert.pem 8

apiVersion: v1
kind: Secret
metadata:
 name: my-secret

OpenShift Dedicated 4 Nodes

88

1

2

1

2

3

4

5

1

Specifies the TLS CA Certificate for authentication of the metrics endpoint. The value must be
base-64 encoded.

Specifies the TLS certificates and key for TLS client authentication. The values must be base-64
encoded.

Example trigger authentication that uses a bearer token

Specifies the namespace of the object you want to scale.

Specifies that this trigger authentication uses a secret for authorization when connecting to the
metrics endpoint.

Specifies the type of authentication to use.

Specifies the name of the secret to use. See the following example secret for a bearer token.

Specifies the key in the token to use with the specified parameter.

Example secret for a bearer token

Specifies a bearer token to use with bearer authentication. The value must be base-64 encoded.

Example trigger authentication that uses an environment variable

 namespace: my-namespace
data:
 ca-cert.pem: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0... 1
 client-cert.pem: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0... 2
 client-key.pem: LS0tLS1CRUdJTiBQUklWQVRFIEtFWS0t...

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
 name: token-triggerauthentication
 namespace: my-namespace 1
spec:
 secretTargetRef: 2
 - parameter: bearerToken 3
 name: my-secret 4
 key: bearerToken 5

apiVersion: v1
kind: Secret
metadata:
 name: my-secret
 namespace: my-namespace
data:
 bearerToken: "<bearer_token>" 1

kind: TriggerAuthentication

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

89

1

2

3

4

5

1

2

3

Specifies the namespace of the object you want to scale.

Specifies that this trigger authentication uses environment variables for authorization when
connecting to the metrics endpoint.

Specify the parameter to set with this variable.

Specify the name of the environment variable.

Optional: Specify a container that requires authentication. The container must be in the same
resource as referenced by scaleTargetRef in the scaled object.

Example trigger authentication that uses pod authentication providers

Specifies the namespace of the object you want to scale.

Specifies that this trigger authentication uses a platform-native pod authentication when
connecting to the metrics endpoint.

Specifies a pod identity. Supported values are none, azure, gcp, aws-eks, or aws-kiam. The
default is none.

Additional resources

Understanding and creating service accounts

Providing sensitive data to pods .

3.5.1. Using trigger authentications

You use trigger authentications and cluster trigger authentications by using a custom resource to create
the authentication, then add a reference to a scaled object or scaled job.

Prerequisites

apiVersion: keda.sh/v1alpha1
metadata:
 name: env-var-triggerauthentication
 namespace: my-namespace 1
spec:
 env: 2
 - parameter: access_key 3
 name: ACCESS_KEY 4
 containerName: my-container 5

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
 name: pod-id-triggerauthentication
 namespace: my-namespace 1
spec:
 podIdentity: 2
 provider: aws-eks 3

OpenShift Dedicated 4 Nodes

90

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/authentication_and_authorization/#understanding-service-accounts

1

2

3

Prerequisites

The Custom Metrics Autoscaler Operator must be installed.

If you are using a bound service account token, the service account must exist.

If you are using a bound service account token, a role-based access control (RBAC) object that
enables the Custom Metrics Autoscaler Operator to request service account tokens from the
service account must exist.

Specifies the namespace of the service account.

Specifies the name of the service account.

Specifies the namespace of the service account.

If you are using a secret, the Secret object must exist.

Procedure

1. Create the TriggerAuthentication or ClusterTriggerAuthentication object.

a. Create a YAML file that defines the object:

Example trigger authentication with a bound service account token

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: keda-operator-token-creator
 namespace: <namespace_name> 1
rules:
- apiGroups:
 - ""
 resources:
 - serviceaccounts/token
 verbs:
 - create
 resourceNames:
 - thanos 2

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: keda-operator-token-creator-binding
 namespace: <namespace_name> 3
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: keda-operator-token-creator
subjects:
- kind: ServiceAccount
 name: keda-operator
 namespace: openshift-keda

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

91

1

2

3

1

Specifies the namespace of the object you want to scale.

Specifies that this trigger authentication uses a bound service account token for
authorization when connecting to the metrics endpoint.

Specifies the name of the service account to use.

b. Create the TriggerAuthentication object:

2. Create or edit a ScaledObject YAML file that uses the trigger authentication:

a. Create a YAML file that defines the object by running the following command:

Example scaled object with a trigger authentication

Specify the name of your trigger authentication object.

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
 name: prom-triggerauthentication
 namespace: my-namespace 1
 spec:
 boundServiceAccountToken: 2
 - parameter: token
 serviceAccountName: thanos 3

$ oc create -f <filename>.yaml

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: scaledobject
 namespace: my-namespace
spec:
 scaleTargetRef:
 name: example-deployment
 maxReplicaCount: 100
 minReplicaCount: 0
 pollingInterval: 30
 triggers:
 - type: prometheus
 metadata:
 serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
 namespace: kedatest # replace <NAMESPACE>
 metricName: http_requests_total
 threshold: '5'
 query: sum(rate(http_requests_total{job="test-app"}[1m]))
 authModes: "basic"
 authenticationRef:
 name: prom-triggerauthentication 1
 kind: TriggerAuthentication 2

OpenShift Dedicated 4 Nodes

92

2

1

2

Specify TriggerAuthentication. TriggerAuthentication is the default.

Example scaled object with a cluster trigger authentication

Specify the name of your trigger authentication object.

Specify ClusterTriggerAuthentication.

b. Create the scaled object by running the following command:

3.6. UNDERSTANDING HOW TO ADD CUSTOM METRICS
AUTOSCALERS

To add a custom metrics autoscaler, create a ScaledObject custom resource for a deployment, stateful
set, or custom resource. Create a ScaledJob custom resource for a job.

You can create only one scaled object for each workload that you want to scale. Also, you cannot use a
scaled object and the horizontal pod autoscaler (HPA) on the same workload.

3.6.1. Adding a custom metrics autoscaler to a workload

You can create a custom metrics autoscaler for a workload that is created by a Deployment,
StatefulSet, or custom resource object.

Prerequisites

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: scaledobject
 namespace: my-namespace
spec:
 scaleTargetRef:
 name: example-deployment
 maxReplicaCount: 100
 minReplicaCount: 0
 pollingInterval: 30
 triggers:
 - type: prometheus
 metadata:
 serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
 namespace: kedatest # replace <NAMESPACE>
 metricName: http_requests_total
 threshold: '5'
 query: sum(rate(http_requests_total{job="test-app"}[1m]))
 authModes: "basic"
 authenticationRef:
 name: prom-cluster-triggerauthentication 1
 kind: ClusterTriggerAuthentication 2

$ oc apply -f <filename>

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

93

The Custom Metrics Autoscaler Operator must be installed.

If you use a custom metrics autoscaler for scaling based on CPU or memory:

Your cluster administrator must have properly configured cluster metrics. You can use the
oc describe PodMetrics <pod-name> command to determine if metrics are configured. If
metrics are configured, the output appears similar to the following, with CPU and Memory
displayed under Usage.

Example output

The pods associated with the object you want to scale must include specified memory and
CPU limits. For example:

Example pod spec

Procedure

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
 Name: wait-for-host-port
 Usage:
 Memory: 0
 Name: scheduler
 Usage:
 Cpu: 8m
 Memory: 45440Ki
Kind: PodMetrics
Metadata:
 Creation Timestamp: 2019-05-23T18:47:56Z
 Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-
scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp: 2019-05-23T18:47:56Z
Window: 1m0s
Events: <none>

apiVersion: v1
kind: Pod
...
spec:
 containers:
 - name: app
 image: images.my-company.example/app:v4
 resources:
 limits:
 memory: "128Mi"
 cpu: "500m"
...

OpenShift Dedicated 4 Nodes

94

1. Create a YAML file similar to the following. Only the name <2>, object name <4>, and object
kind <5> are required:

Example scaled object

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 annotations:
 autoscaling.keda.sh/paused-replicas: "0" 1
 name: scaledobject 2
 namespace: my-namespace
spec:
 scaleTargetRef:
 apiVersion: apps/v1 3
 name: example-deployment 4
 kind: Deployment 5
 envSourceContainerName: .spec.template.spec.containers[0] 6
 cooldownPeriod: 200 7
 maxReplicaCount: 100 8
 minReplicaCount: 0 9
 metricsServer: 10
 auditConfig:
 logFormat: "json"
 logOutputVolumeClaim: "persistentVolumeClaimName"
 policy:
 rules:
 - level: Metadata
 omitStages: "RequestReceived"
 omitManagedFields: false
 lifetime:
 maxAge: "2"
 maxBackup: "1"
 maxSize: "50"
 fallback: 11
 failureThreshold: 3
 replicas: 6
 behavior: static 12
 pollingInterval: 30 13
 advanced:
 restoreToOriginalReplicaCount: false 14
 horizontalPodAutoscalerConfig:
 name: keda-hpa-scale-down 15
 behavior: 16
 scaleDown:
 stabilizationWindowSeconds: 300
 policies:
 - type: Percent
 value: 100
 periodSeconds: 15
 triggers:
 - type: prometheus 17
 metadata:

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

95

1

2

3

4

5

6

7

8

9

10

11

12

Optional: Specifies that the Custom Metrics Autoscaler Operator is to scale the replicas to
the specified value and stop autoscaling, as described in the "Pausing the custom metrics
autoscaler for a workload" section.

Specifies a name for this custom metrics autoscaler.

Optional: Specifies the API version of the target resource. The default is apps/v1.

Specifies the name of the object that you want to scale.

Specifies the kind as Deployment, StatefulSet or CustomResource.

Optional: Specifies the name of the container in the target resource, from which the
custom metrics autoscaler gets environment variables holding secrets and so forth. The
default is .spec.template.spec.containers[0].

Optional. Specifies the period in seconds to wait after the last trigger is reported before
scaling the deployment back to 0 if the minReplicaCount is set to 0. The default is 300.

Optional: Specifies the maximum number of replicas when scaling up. The default is 100.

Optional: Specifies the minimum number of replicas when scaling down.

Optional: Specifies the parameters for audit logs. as described in the "Configuring audit
logging" section.

Optional: Specifies the number of replicas to fall back to if a scaler fails to get metrics from
the source for the number of times defined by the failureThreshold parameter. For more
information on fallback behavior, see the KEDA documentation.

Optional: Specifies the replica count to be used if a fallback occurs. Enter one of the
following options or omit the parameter:

Enter static to use the number of replicas specified by the fallback.replicas
parameter. This is the default.

Enter currentReplicas to maintain the current number of replicas.

Enter currentReplicasIfHigher to maintain the current number of replicas, if that
number is higher than the fallback.replicas parameter. If the current number of
replicas is lower than the fallback.replicas parameter, use the fallback.replicas value.

Enter currentReplicasIfLower to maintain the current number of replicas, if that
number is lower than the fallback.replicas parameter. If the current number of replicas
is higher than the fallback.replicas parameter, use the fallback.replicas value.

 serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
 namespace: kedatest
 metricName: http_requests_total
 threshold: '5'
 query: sum(rate(http_requests_total{job="test-app"}[1m]))
 authModes: basic
 authenticationRef: 18
 name: prom-triggerauthentication
 kind: TriggerAuthentication

OpenShift Dedicated 4 Nodes

96

https://keda.sh/docs/latest/reference/scaledobject-spec/#fallback

13

14

15

16

17

18

Optional: Specifies the interval in seconds to check each trigger on. The default is 30.

Optional: Specifies whether to scale back the target resource to the original replica count
after the scaled object is deleted. The default is false, which keeps the replica count as it is
when the scaled object is deleted.

Optional: Specifies a name for the horizontal pod autoscaler. The default is keda-hpa-
{scaled-object-name}.

Optional: Specifies a scaling policy to use to control the rate to scale pods up or down, as
described in the "Scaling policies" section.

Specifies the trigger to use as the basis for scaling, as described in the "Understanding the
custom metrics autoscaler triggers" section. This example uses OpenShift Dedicated
monitoring.

Optional: Specifies a trigger authentication or a cluster trigger authentication. For more
information, see Understanding the custom metrics autoscaler trigger authentication in the
Additional resources section.

Enter TriggerAuthentication to use a trigger authentication. This is the default.

Enter ClusterTriggerAuthentication to use a cluster trigger authentication.

2. Create the custom metrics autoscaler by running the following command:

Verification

View the command output to verify that the custom metrics autoscaler was created:

Example output

Note the following fields in the output:

TRIGGERS: Indicates the trigger, or scaler, that is being used.

AUTHENTICATION: Indicates the name of any trigger authentication being used.

READY: Indicates whether the scaled object is ready to start scaling:

If True, the scaled object is ready.

If False, the scaled object is not ready because of a problem in one or more of the
objects you created.

$ oc create -f <filename>.yaml

$ oc get scaledobject <scaled_object_name>

NAME SCALETARGETKIND SCALETARGETNAME MIN MAX TRIGGERS
AUTHENTICATION READY ACTIVE FALLBACK AGE
scaledobject apps/v1.Deployment example-deployment 0 50 prometheus prom-
triggerauthentication True True True 17s

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

97

ACTIVE: Indicates whether scaling is taking place:

If True, scaling is taking place.

If False, scaling is not taking place because there are no metrics or there is a problem in
one or more of the objects you created.

FALLBACK: Indicates whether the custom metrics autoscaler is able to get metrics from
the source

If False, the custom metrics autoscaler is getting metrics.

If True, the custom metrics autoscaler is getting metrics because there are no metrics
or there is a problem in one or more of the objects you created.

3.6.2. Additional resources

Understanding custom metrics autoscaler trigger authentications

3.7. PAUSING THE CUSTOM METRICS AUTOSCALER FOR A SCALED
OBJECT

You can pause and restart the autoscaling of a workload, as needed.

For example, you might want to pause autoscaling before performing cluster maintenance or to avoid
resource starvation by removing non-mission-critical workloads.

3.7.1. Pausing a custom metrics autoscaler

You can pause the autoscaling of a scaled object by adding the autoscaling.keda.sh/paused-replicas
annotation to the custom metrics autoscaler for that scaled object. The custom metrics autoscaler
scales the replicas for that workload to the specified value and pauses autoscaling until the annotation is
removed.

Procedure

1. Use the following command to edit the ScaledObject CR for your workload:

2. Add the autoscaling.keda.sh/paused-replicas annotation with any value:

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 annotations:
 autoscaling.keda.sh/paused-replicas: "4"
...

$ oc edit ScaledObject scaledobject

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 annotations:

OpenShift Dedicated 4 Nodes

98

1

1

Specifies that the Custom Metrics Autoscaler Operator is to scale the replicas to the
specified value and stop autoscaling.

3.7.2. Restarting the custom metrics autoscaler for a scaled object

You can restart a paused custom metrics autoscaler by removing the autoscaling.keda.sh/paused-
replicas annotation for that ScaledObject.

Procedure

1. Use the following command to edit the ScaledObject CR for your workload:

2. Remove the autoscaling.keda.sh/paused-replicas annotation.

Remove this annotation to restart a paused custom metrics autoscaler.

3.8. GATHERING AUDIT LOGS

You can gather audit logs, which are a security-relevant chronological set of records documenting the
sequence of activities that have affected the system by individual users, administrators, or other
components of the system.

For example, audit logs can help you understand where an autoscaling request is coming from. This is

 autoscaling.keda.sh/paused-replicas: "4" 1
 creationTimestamp: "2023-02-08T14:41:01Z"
 generation: 1
 name: scaledobject
 namespace: my-project
 resourceVersion: '65729'
 uid: f5aec682-acdf-4232-a783-58b5b82f5dd0

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 annotations:
 autoscaling.keda.sh/paused-replicas: "4"
...

$ oc edit ScaledObject scaledobject

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 annotations:
 autoscaling.keda.sh/paused-replicas: "4" 1
 creationTimestamp: "2023-02-08T14:41:01Z"
 generation: 1
 name: scaledobject
 namespace: my-project
 resourceVersion: '65729'
 uid: f5aec682-acdf-4232-a783-58b5b82f5dd0

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

99

1

2

3

For example, audit logs can help you understand where an autoscaling request is coming from. This is
key information when backends are getting overloaded by autoscaling requests made by user
applications and you need to determine which is the troublesome application.

3.8.1. Configuring audit logging

You can configure auditing for the Custom Metrics Autoscaler Operator by editing the KedaController
custom resource. The logs are sent to an audit log file on a volume that is secured by using a persistent
volume claim in the KedaController CR.

Prerequisites

The Custom Metrics Autoscaler Operator must be installed.

Procedure

1. Edit the KedaController custom resource to add the auditConfig stanza:

Specifies the output format of the audit log, either legacy or json.

Specifies an existing persistent volume claim for storing the log data. All requests coming
to the API server are logged to this persistent volume claim. If you leave this field empty,
the log data is sent to stdout.

Specifies which events should be recorded and what data they should include:

None: Do not log events.

Metadata: Log only the metadata for the request, such as user, timestamp, and so
forth. Do not log the request text and the response text. This is the default.

Request: Log only the metadata and the request text but not the response text. This

kind: KedaController
apiVersion: keda.sh/v1alpha1
metadata:
 name: keda
 namespace: keda
spec:
...
 metricsServer:
...
 auditConfig:
 logFormat: "json" 1
 logOutputVolumeClaim: "pvc-audit-log" 2
 policy:
 rules: 3
 - level: Metadata
 omitStages: "RequestReceived" 4
 omitManagedFields: false 5
 lifetime: 6
 maxAge: "2"
 maxBackup: "1"
 maxSize: "50"

OpenShift Dedicated 4 Nodes

100

4

5

6

1

Request: Log only the metadata and the request text but not the response text. This
option does not apply for non-resource requests.

RequestResponse: Log event metadata, request text, and response text. This option
does not apply for non-resource requests.

Specifies stages for which no event is created.

Specifies whether to omit the managed fields of the request and response bodies from
being written to the API audit log, either true to omit the fields or false to include the
fields.

Specifies the size and lifespan of the audit logs.

maxAge: The maximum number of days to retain audit log files, based on the
timestamp encoded in their filename.

maxBackup: The maximum number of audit log files to retain. Set to 0 to retain all
audit log files.

maxSize: The maximum size in megabytes of an audit log file before it gets rotated.

Verification

1. View the audit log file directly:

a. Obtain the name of the keda-metrics-apiserver-* pod:

Example output

b. View the log data by using a command similar to the following:

Optional: You can use the grep command to specify the log level to display: Metadata,
Request, RequestResponse.

For example:

Example output

oc get pod -n keda

NAME READY STATUS RESTARTS AGE
custom-metrics-autoscaler-operator-5cb44cd75d-9v4lv 1/1 Running 0 8m20s
keda-metrics-apiserver-65c7cc44fd-rrl4r 1/1 Running 0 2m55s
keda-operator-776cbb6768-zpj5b 1/1 Running 0 2m55s

$ oc logs keda-metrics-apiserver-<hash>|grep -i metadata 1

$ oc logs keda-metrics-apiserver-65c7cc44fd-rrl4r|grep -i metadata

 ...
{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"4c81d41b-

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

101

1

2. Alternatively, you can view a specific log:

a. Use a command similar to the following to log into the keda-metrics-apiserver-* pod:

For example:

b. Change to the /var/audit-policy/ directory:

c. List the available logs:

Example output

d. View the log, as needed:

Optional: You can use the grep command to specify the log level to display: Metadata,
Request, RequestResponse.

For example:

Example output

 ...
{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Request","auditID":"63e7f68c-04ec-
4f4d-8749-
bf1656572a41","stage":"ResponseComplete","requestURI":"/openapi/v2","verb":"get","user
":{"username":"system:aggregator","groups":["system:authenticated"]},"sourceIPs":
["10.128.0.1"],"responseStatus":{"metadata":
{},"code":304},"requestReceivedTimestamp":"2023-02-

3dab-4675-90ce-
20b87ce24013","stage":"ResponseComplete","requestURI":"/healthz","verb":"get","user":
{"username":"system:anonymous","groups":["system:unauthenticated"]},"sourceIPs":
["10.131.0.1"],"userAgent":"kube-probe/1.28","responseStatus":{"metadata":
{},"code":200},"requestReceivedTimestamp":"2023-02-
16T13:00:03.554567Z","stageTimestamp":"2023-02-
16T13:00:03.555032Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":""}}
 ...

$ oc rsh pod/keda-metrics-apiserver-<hash> -n keda

$ oc rsh pod/keda-metrics-apiserver-65c7cc44fd-rrl4r -n keda

sh-4.4$ cd /var/audit-policy/

sh-4.4$ ls

log-2023.02.17-14:50 policy.yaml

sh-4.4$ cat <log_name>/<pvc_name>|grep -i <log_level> 1

sh-4.4$ cat log-2023.02.17-14:50/pvc-audit-log|grep -i Request

OpenShift Dedicated 4 Nodes

102

17T13:12:55.035478Z","stageTimestamp":"2023-02-
17T13:12:55.038346Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by
ClusterRoleBinding \"system:discovery\" of ClusterRole \"system:discovery\" to Group
\"system:authenticated\""}}
 ...

3.9. GATHERING DEBUGGING DATA

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

To help troubleshoot your issue, provide the following information:

Data gathered using the must-gather tool.

The unique cluster ID.

You can use the must-gather tool to collect data about the Custom Metrics Autoscaler Operator and its
components, including the following items:

The keda namespace and its child objects.

The Custom Metric Autoscaler Operator installation objects.

The Custom Metric Autoscaler Operator CRD objects.

3.9.1. Gathering debugging data

The following command runs the must-gather tool for the Custom Metrics Autoscaler Operator:

NOTE

The standard OpenShift Dedicated must-gather command, oc adm must-gather, does
not collect Custom Metrics Autoscaler Operator data.

Prerequisites

You are logged in to OpenShift Dedicated as a user with the dedicated-admin role.

The OpenShift Dedicated CLI (oc) installed.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Perform one of the following:

To get only the Custom Metrics Autoscaler Operator must-gather data, use the following

$ oc adm must-gather --image="$(oc get packagemanifests openshift-custom-metrics-autoscaler-
operator \
-n openshift-marketplace \
-o jsonpath='{.status.channels[?
(@.name=="stable")].currentCSVDesc.annotations.containerImage}')"

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

103

To get only the Custom Metrics Autoscaler Operator must-gather data, use the following
command:

The custom image for the must-gather command is pulled directly from the Operator
package manifests, so that it works on any cluster where the Custom Metric Autoscaler
Operator is available.

To gather the default must-gather data in addition to the Custom Metric Autoscaler
Operator information:

a. Use the following command to obtain the Custom Metrics Autoscaler Operator image
and set it as an environment variable:

b. Use the oc adm must-gather with the Custom Metrics Autoscaler Operator image:

Example 3.1. Example must-gather output for the Custom Metric Autoscaler

$ oc adm must-gather --image="$(oc get packagemanifests openshift-custom-metrics-
autoscaler-operator \
-n openshift-marketplace \
-o jsonpath='{.status.channels[?
(@.name=="stable")].currentCSVDesc.annotations.containerImage}')"

$ IMAGE="$(oc get packagemanifests openshift-custom-metrics-autoscaler-operator
\
 -n openshift-marketplace \
 -o jsonpath='{.status.channels[?
(@.name=="stable")].currentCSVDesc.annotations.containerImage}')"

$ oc adm must-gather --image-stream=openshift/must-gather --image=${IMAGE}

└── keda
 ├── apps
 │ ├── daemonsets.yaml
 │ ├── deployments.yaml
 │ ├── replicasets.yaml
 │ └── statefulsets.yaml
 ├── apps.openshift.io
 │ └── deploymentconfigs.yaml
 ├── autoscaling
 │ └── horizontalpodautoscalers.yaml
 ├── batch
 │ ├── cronjobs.yaml
 │ └── jobs.yaml
 ├── build.openshift.io
 │ ├── buildconfigs.yaml
 │ └── builds.yaml
 ├── core
 │ ├── configmaps.yaml
 │ ├── endpoints.yaml
 │ ├── events.yaml
 │ ├── persistentvolumeclaims.yaml
 │ ├── pods.yaml
 │ ├── replicationcontrollers.yaml
 │ ├── secrets.yaml

OpenShift Dedicated 4 Nodes

104

3. Create a compressed file from the must-gather directory that was created in your working

 │ └── services.yaml
 ├── discovery.k8s.io
 │ └── endpointslices.yaml
 ├── image.openshift.io
 │ └── imagestreams.yaml
 ├── k8s.ovn.org
 │ ├── egressfirewalls.yaml
 │ └── egressqoses.yaml
 ├── keda.sh
 │ ├── kedacontrollers
 │ │ └── keda.yaml
 │ ├── scaledobjects
 │ │ └── example-scaledobject.yaml
 │ └── triggerauthentications
 │ └── example-triggerauthentication.yaml
 ├── monitoring.coreos.com
 │ └── servicemonitors.yaml
 ├── networking.k8s.io
 │ └── networkpolicies.yaml
 ├── keda.yaml
 ├── pods
 │ ├── custom-metrics-autoscaler-operator-58bd9f458-ptgwx
 │ │ ├── custom-metrics-autoscaler-operator
 │ │ │ └── custom-metrics-autoscaler-operator
 │ │ │ └── logs
 │ │ │ ├── current.log
 │ │ │ ├── previous.insecure.log
 │ │ │ └── previous.log
 │ │ └── custom-metrics-autoscaler-operator-58bd9f458-ptgwx.yaml
 │ ├── custom-metrics-autoscaler-operator-58bd9f458-thbsh
 │ │ └── custom-metrics-autoscaler-operator
 │ │ └── custom-metrics-autoscaler-operator
 │ │ └── logs
 │ ├── keda-metrics-apiserver-65c7cc44fd-6wq4g
 │ │ ├── keda-metrics-apiserver
 │ │ │ └── keda-metrics-apiserver
 │ │ │ └── logs
 │ │ │ ├── current.log
 │ │ │ ├── previous.insecure.log
 │ │ │ └── previous.log
 │ │ └── keda-metrics-apiserver-65c7cc44fd-6wq4g.yaml
 │ └── keda-operator-776cbb6768-fb6m5
 │ ├── keda-operator
 │ │ └── keda-operator
 │ │ └── logs
 │ │ ├── current.log
 │ │ ├── previous.insecure.log
 │ │ └── previous.log
 │ └── keda-operator-776cbb6768-fb6m5.yaml
 ├── policy
 │ └── poddisruptionbudgets.yaml
 └── route.openshift.io
 └── routes.yaml

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

105

1

3. Create a compressed file from the must-gather directory that was created in your working
directory. For example, on a computer that uses a Linux operating system, run the following
command:

Replace must-gather-local.5421342344627712289/ with the actual directory name.

4. Attach the compressed file to your support case on the Red Hat Customer Portal .

3.10. VIEWING OPERATOR METRICS

The Custom Metrics Autoscaler Operator exposes ready-to-use metrics that it pulls from the on-cluster
monitoring component. You can query the metrics by using the Prometheus Query Language (PromQL)
to analyze and diagnose issues. All metrics are reset when the controller pod restarts.

3.10.1. Accessing performance metrics

You can access the metrics and run queries by using the OpenShift Dedicated web console.

Procedure

1. Select the Administrator perspective in the OpenShift Dedicated web console.

2. Select Observe → Metrics.

3. To create a custom query, add your PromQL query to the Expression field.

4. To add multiple queries, select Add Query.

3.10.1.1. Provided Operator metrics

The Custom Metrics Autoscaler Operator exposes the following metrics, which you can view by using the
OpenShift Dedicated web console.

Table 3.1. Custom Metric Autoscaler Operator metrics

Metric name Description

keda_scaler_activity Whether the particular scaler is active or inactive. A value of 1 indicates the
scaler is active; a value of 0 indicates the scaler is inactive.

keda_scaler_metrics_valu
e

The current value for each scaler’s metric, which is used by the Horizontal
Pod Autoscaler (HPA) in computing the target average.

keda_scaler_metrics_late
ncy

The latency of retrieving the current metric from each scaler.

keda_scaler_errors The number of errors that have occurred for each scaler.

keda_scaler_errors_total The total number of errors encountered for all scalers.

$ tar cvaf must-gather.tar.gz must-gather.local.5421342344627712289/ 1

OpenShift Dedicated 4 Nodes

106

https://access.redhat.com

keda_scaled_object_error
s

The number of errors that have occurred for each scaled obejct.

keda_resource_totals The total number of Custom Metrics Autoscaler custom resources in each
namespace for each custom resource type.

keda_trigger_totals The total number of triggers by trigger type.

Metric name Description

Custom Metrics Autoscaler Admission webhook metrics

The Custom Metrics Autoscaler Admission webhook also exposes the following Prometheus metrics.

Metric name Description

keda_scaled_object_valid
ation_total

The number of scaled object validations.

keda_scaled_object_valid
ation_errors

The number of validation errors.

3.11. REMOVING THE CUSTOM METRICS AUTOSCALER OPERATOR

You can remove the custom metrics autoscaler from your OpenShift Dedicated cluster. After removing
the Custom Metrics Autoscaler Operator, remove other components associated with the Operator to
avoid potential issues.

NOTE

Delete the KedaController custom resource (CR) first. If you do not delete the
KedaController CR, OpenShift Dedicated can hang when you delete the keda project. If
you delete the Custom Metrics Autoscaler Operator before deleting the CR, you are not
able to delete the CR.

3.11.1. Uninstalling the Custom Metrics Autoscaler Operator

Use the following procedure to remove the custom metrics autoscaler from your OpenShift Dedicated
cluster.

Prerequisites

The Custom Metrics Autoscaler Operator must be installed.

Procedure

1. In the OpenShift Dedicated web console, click Ecosystem → Installed Operators.

2. Switch to the keda project.

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

107

3. Remove the KedaController custom resource.

a. Find the CustomMetricsAutoscaler Operator and click the KedaController tab.

b. Find the custom resource, and then click Delete KedaController.

c. Click Uninstall.

4. Remove the Custom Metrics Autoscaler Operator:

a. Click Ecosystem → Installed Operators.

b. Find the CustomMetricsAutoscaler Operator and click the Options menu and select
Uninstall Operator.

c. Click Uninstall.

5. Optional: Use the OpenShift CLI to remove the custom metrics autoscaler components:

a. Delete the custom metrics autoscaler CRDs:

clustertriggerauthentications.keda.sh

kedacontrollers.keda.sh

scaledjobs.keda.sh

scaledobjects.keda.sh

triggerauthentications.keda.sh

Deleting the CRDs removes the associated roles, cluster roles, and role bindings. However,
there might be a few cluster roles that must be manually deleted.

b. List any custom metrics autoscaler cluster roles:

c. Delete the listed custom metrics autoscaler cluster roles. For example:

d. List any custom metrics autoscaler cluster role bindings:

e. Delete the listed custom metrics autoscaler cluster role bindings. For example:

$ oc delete crd clustertriggerauthentications.keda.sh kedacontrollers.keda.sh
scaledjobs.keda.sh scaledobjects.keda.sh triggerauthentications.keda.sh

$ oc get clusterrole | grep keda.sh

$ oc delete clusterrole.keda.sh-v1alpha1-admin

$ oc get clusterrolebinding | grep keda.sh

$ oc delete clusterrolebinding.keda.sh-v1alpha1-admin

OpenShift Dedicated 4 Nodes

108

6. Delete the custom metrics autoscaler project:

7. Delete the Cluster Metric Autoscaler Operator:

$ oc delete project keda

$ oc delete operator/openshift-custom-metrics-autoscaler-operator.keda

CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR

109

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES
(SCHEDULING)

4.1. CONTROLLING POD PLACEMENT USING THE SCHEDULER

Pod scheduling is an internal process that determines placement of new pods onto nodes within the
cluster.

The scheduler code has a clean separation that watches new pods as they get created and identifies the
most suitable node to host them. It then creates bindings (pod to node bindings) for the pods using the
master API.

Default pod scheduling

OpenShift Dedicated comes with a default scheduler that serves the needs of most users. The
default scheduler uses both inherent and customization tools to determine the best fit for a pod.

Advanced pod scheduling

In situations where you might want more control over where new pods are placed, the OpenShift
Dedicated advanced scheduling features allow you to configure a pod so that the pod is required or
has a preference to run on a particular node or alongside a specific pod.
You can control pod placement by using the following scheduling features:

Pod affinity and anti-affinity rules

Node affinity

Node selectors

Node overcommitment

4.1.1. About the default scheduler

The default OpenShift Dedicated pod scheduler is responsible for determining the placement of new
pods onto nodes within the cluster. It reads data from the pod and finds a node that is a good fit based
on configured profiles. It is completely independent and exists as a standalone solution. It does not
modify the pod; it creates a binding for the pod that ties the pod to the particular node.

4.1.1.1. Understanding default scheduling

The existing generic scheduler is the default platform-provided scheduler engine that selects a node to
host the pod in a three-step operation:

Filters the nodes

The available nodes are filtered based on the constraints or requirements specified. This is done by
running each node through the list of filter functions called predicates, or filters.

Prioritizes the filtered list of nodes

This is achieved by passing each node through a series of priority, or scoring, functions that assign it a
score between 0 - 10, with 0 indicating a bad fit and 10 indicating a good fit to host the pod. The
scheduler configuration can also take in a simple weight (positive numeric value) for each scoring
function. The node score provided by each scoring function is multiplied by the weight (default

OpenShift Dedicated 4 Nodes

110

weight for most scores is 1) and then combined by adding the scores for each node provided by all
the scores. This weight attribute can be used by administrators to give higher importance to some
scores.

Selects the best fit node

The nodes are sorted based on their scores and the node with the highest score is selected to host
the pod. If multiple nodes have the same high score, then one of them is selected at random.

4.1.2. Scheduler use cases

One of the important use cases for scheduling within OpenShift Dedicated is to support flexible affinity
and anti-affinity policies.

4.1.2.1. Affinity

Administrators should be able to configure the scheduler to specify affinity at any topological level, or
even at multiple levels. Affinity at a particular level indicates that all pods that belong to the same
service are scheduled onto nodes that belong to the same level. This handles any latency requirements
of applications by allowing administrators to ensure that peer pods do not end up being too
geographically separated. If no node is available within the same affinity group to host the pod, then the
pod is not scheduled.

If you need greater control over where the pods are scheduled, see Controlling pod placement on nodes
using node affinity rules and Placing pods relative to other pods using affinity and anti-affinity rules .

These advanced scheduling features allow administrators to specify which node a pod can be scheduled
on and to force or reject scheduling relative to other pods.

4.1.2.2. Anti-affinity

Administrators should be able to configure the scheduler to specify anti-affinity at any topological level,
or even at multiple levels. Anti-affinity (or 'spread') at a particular level indicates that all pods that
belong to the same service are spread across nodes that belong to that level. This ensures that the
application is well spread for high availability purposes. The scheduler tries to balance the service pods
across all applicable nodes as evenly as possible.

If you need greater control over where the pods are scheduled, see Controlling pod placement on nodes
using node affinity rules and Placing pods relative to other pods using affinity and anti-affinity rules .

These advanced scheduling features allow administrators to specify which node a pod can be scheduled
on and to force or reject scheduling relative to other pods.

4.2. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND
ANTI-AFFINITY RULES

Affinity is a property of pods that controls the nodes on which they prefer to be scheduled. Anti-affinity
is a property of pods that prevents a pod from being scheduled on a node.

In OpenShift Dedicated, pod affinity and pod anti-affinity allow you to constrain which nodes your pod is
eligible to be scheduled on based on the key-value labels on other pods.

4.2.1. Understanding pod affinity

Pod affinity and pod anti-affinity allow you to constrain which nodes your pod is eligible to be scheduled
on based on the key/value labels on other pods.

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

111

Pod affinity can tell the scheduler to locate a new pod on the same node as other pods if the
label selector on the new pod matches the label on the current pod.

Pod anti-affinity can prevent the scheduler from locating a new pod on the same node as pods
with the same labels if the label selector on the new pod matches the label on the current pod.

For example, using affinity rules, you could spread or pack pods within a service or relative to pods in
other services. Anti-affinity rules allow you to prevent pods of a particular service from scheduling on the
same nodes as pods of another service that are known to interfere with the performance of the pods of
the first service. Or, you could spread the pods of a service across nodes, availability zones, or availability
sets to reduce correlated failures.

NOTE

A label selector might match pods with multiple pod deployments. Use unique
combinations of labels when configuring anti-affinity rules to avoid matching pods.

There are two types of pod affinity rules: required and preferred.

Required rules must be met before a pod can be scheduled on a node. Preferred rules specify that, if
the rule is met, the scheduler tries to enforce the rules, but does not guarantee enforcement.

NOTE

Depending on your pod priority and preemption settings, the scheduler might not be able
to find an appropriate node for a pod without violating affinity requirements. If so, a pod
might not be scheduled.

To prevent this situation, carefully configure pod affinity with equal-priority pods.

You configure pod affinity/anti-affinity through the Pod spec files. You can specify a required rule, a
preferred rule, or both. If you specify both, the node must first meet the required rule, then attempts to
meet the preferred rule.

The following example shows a Pod spec configured for pod affinity and anti-affinity.

In this example, the pod affinity rule indicates that the pod can schedule onto a node only if that node
has at least one already-running pod with a label that has the key security and value S1. The pod anti-
affinity rule says that the pod prefers to not schedule onto a node if that node is already running a pod
with label having key security and value S2.

Sample Pod config file with pod affinity

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-affinity
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 podAffinity: 1

OpenShift Dedicated 4 Nodes

112

1

2

3 5

4

Stanza to configure pod affinity.

Defines a required rule.

The key and value (label) that must be matched to apply the rule.

The operator represents the relationship between the label on the existing pod and the set of
values in the matchExpression parameters in the specification for the new pod. Can be In, NotIn,
Exists, or DoesNotExist.

Sample Pod config file with pod anti-affinity

 requiredDuringSchedulingIgnoredDuringExecution: 2
 - labelSelector:
 matchExpressions:
 - key: security 3
 operator: In 4
 values:
 - S1 5
 topologyKey: topology.kubernetes.io/zone
 containers:
 - name: with-pod-affinity
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-antiaffinity
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 podAntiAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 100 3
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: security 4
 operator: In 5
 values:
 - S2
 topologyKey: kubernetes.io/hostname
 containers:
 - name: with-pod-affinity
 image: docker.io/ocpqe/hello-pod
 securityContext:

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

113

1

2

3

4

5

Stanza to configure pod anti-affinity.

Defines a preferred rule.

Specifies a weight for a preferred rule. The node with the highest weight is preferred.

Description of the pod label that determines when the anti-affinity rule applies. Specify a key and
value for the label.

The operator represents the relationship between the label on the existing pod and the set of
values in the matchExpression parameters in the specification for the new pod. Can be In, NotIn,
Exists, or DoesNotExist.

NOTE

If labels on a node change at runtime such that the affinity rules on a pod are no longer
met, the pod continues to run on the node.

4.2.2. Configuring a pod affinity rule

The following steps demonstrate a simple two-pod configuration that creates pod with a label and a pod
that uses affinity to allow scheduling with that pod.

NOTE

You cannot add an affinity directly to a scheduled pod.

Procedure

1. Create a pod with a specific label in the pod spec:

a. Create a YAML file with the following content:

 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

apiVersion: v1
kind: Pod
metadata:
 name: security-s1
 labels:
 security: S1
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: security-s1
 image: docker.io/ocpqe/hello-pod
 securityContext:

OpenShift Dedicated 4 Nodes

114

1

2

3

4

5

b. Create the pod.

2. When creating other pods, configure the following parameters to add the affinity:

a. Create a YAML file with the following content:

Adds a pod affinity.

Configures the requiredDuringSchedulingIgnoredDuringExecution parameter or
the preferredDuringSchedulingIgnoredDuringExecution parameter.

Specifies the key and values that must be met. If you want the new pod to be
scheduled with the other pod, use the same key and values parameters as the label on
the first pod.

Specifies an operator. The operator can be In, NotIn, Exists, or DoesNotExist. For
example, use the operator In to require the label to be in the node.

Specify a topologyKey, which is a prepopulated Kubernetes label that the system
uses to denote such a topology domain.

b. Create the pod.

4.2.3. Configuring a pod anti-affinity rule

The following steps demonstrate a simple two-pod configuration that creates pod with a label and a pod
that uses an anti-affinity preferred rule to attempt to prevent scheduling with that pod.

 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault

$ oc create -f <pod-spec>.yaml

apiVersion: v1
kind: Pod
metadata:
 name: security-s1-east
...
spec:
 affinity: 1
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution: 2
 - labelSelector:
 matchExpressions:
 - key: security 3
 values:
 - S1
 operator: In 4
 topologyKey: topology.kubernetes.io/zone 5
...

$ oc create -f <pod-spec>.yaml

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

115

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#interlude-built-in-node-labels

NOTE

You cannot add an affinity directly to a scheduled pod.

Procedure

1. Create a pod with a specific label in the pod spec:

a. Create a YAML file with the following content:

b. Create the pod.

2. When creating other pods, configure the following parameters:

a. Create a YAML file with the following content:

apiVersion: v1
kind: Pod
metadata:
 name: security-s1
 labels:
 security: S1
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: security-s1
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

$ oc create -f <pod-spec>.yaml

apiVersion: v1
kind: Pod
metadata:
 name: security-s2-east
...
spec:
...
 affinity: 1
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 100 3
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: security 4
 values:
 - S1

OpenShift Dedicated 4 Nodes

116

1

2

3

4

5

6

Adds a pod anti-affinity.

Configures the requiredDuringSchedulingIgnoredDuringExecution parameter or
the preferredDuringSchedulingIgnoredDuringExecution parameter.

For a preferred rule, specifies a weight for the node, 1-100. The node that with highest
weight is preferred.

Specifies the key and values that must be met. If you want the new pod to not be
scheduled with the other pod, use the same key and values parameters as the label on
the first pod.

Specifies an operator. The operator can be In, NotIn, Exists, or DoesNotExist. For
example, use the operator In to require the label to be in the node.

Specifies a topologyKey, which is a prepopulated Kubernetes label that the system
uses to denote such a topology domain.

b. Create the pod.

4.2.4. Sample pod affinity and anti-affinity rules

The following examples demonstrate pod affinity and pod anti-affinity.

4.2.4.1. Pod Affinity

The following example demonstrates pod affinity for pods with matching labels and label selectors.

The pod team4 has the label team:4.

 operator: In 5
 topologyKey: kubernetes.io/hostname 6
...

$ oc create -f <pod-spec>.yaml

apiVersion: v1
kind: Pod
metadata:
 name: team4
 labels:
 team: "4"
...
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

117

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#interlude-built-in-node-labels

The pod team4a has the label selector team:4 under podAffinity.

The team4a pod is scheduled on the same node as the team4 pod.

4.2.4.2. Pod Anti-affinity

The following example demonstrates pod anti-affinity for pods with matching labels and label selectors.

The pod pod-s1 has the label security:s1.

 drop: [ALL]
...

apiVersion: v1
kind: Pod
metadata:
 name: team4a
...
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: team
 operator: In
 values:
 - "4"
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-affinity
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
 labels:
 security: s1
...
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:

OpenShift Dedicated 4 Nodes

118

The pod pod-s2 has the label selector security:s1 under podAntiAffinity.

The pod pod-s2 cannot be scheduled on the same node as pod-s1.

4.2.4.3. Pod Affinity with no Matching Labels

The following example demonstrates pod affinity for pods without matching labels and label selectors.

The pod pod-s1 has the label security:s1.

 - name: ocp
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

apiVersion: v1
kind: Pod
metadata:
 name: pod-s2
...
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - s1
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-antiaffinity
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
 labels:
 security: s1
...
spec:

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

119

The pod pod-s2 has the label selector security:s2.

The pod pod-s2 is not scheduled unless there is a node with a pod that has the security:s2
label. If there is no other pod with that label, the new pod remains in a pending state:

Example output

4.3. CONTROLLING POD PLACEMENT ON NODES USING NODE
AFFINITY RULES

 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

apiVersion: v1
kind: Pod
metadata:
 name: pod-s2
...
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - s2
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-affinity
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

NAME READY STATUS RESTARTS AGE IP NODE
pod-s2 0/1 Pending 0 32s <none>

OpenShift Dedicated 4 Nodes

120

Affinity is a property of pods that controls the nodes on which they prefer to be scheduled.

In OpenShift Dedicated node affinity is a set of rules used by the scheduler to determine where a pod
can be placed. The rules are defined using custom labels on the nodes and label selectors specified in
pods.

4.3.1. Understanding node affinity

Node affinity allows a pod to specify an affinity towards a group of nodes it can be placed on. The node
does not have control over the placement.

For example, you could configure a pod to only run on a node with a specific CPU or in a specific
availability zone.

There are two types of node affinity rules: required and preferred.

Required rules must be met before a pod can be scheduled on a node. Preferred rules specify that, if
the rule is met, the scheduler tries to enforce the rules, but does not guarantee enforcement.

NOTE

If labels on a node change at runtime that results in an node affinity rule on a pod no
longer being met, the pod continues to run on the node.

You configure node affinity through the Pod spec file. You can specify a required rule, a preferred rule,
or both. If you specify both, the node must first meet the required rule, then attempts to meet the
preferred rule.

The following example is a Pod spec with a rule that requires the pod be placed on a node with a label
whose key is e2e-az-NorthSouth and whose value is either e2e-az-North or e2e-az-South:

Example pod configuration file with a node affinity required rule

apiVersion: v1
kind: Pod
metadata:
 name: with-node-affinity
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution: 2
 nodeSelectorTerms:
 - matchExpressions:
 - key: e2e-az-NorthSouth 3
 operator: In 4
 values:
 - e2e-az-North 5
 - e2e-az-South 6
 containers:
 - name: with-node-affinity

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

121

1

2

3 5 6

4

1

2

The stanza to configure node affinity.

Defines a required rule.

The key/value pair (label) that must be matched to apply the rule.

The operator represents the relationship between the label on the node and the set of values in
the matchExpression parameters in the Pod spec. This value can be In, NotIn, Exists, or
DoesNotExist, Lt, or Gt.

The following example is a node specification with a preferred rule that a node with a label whose key is
e2e-az-EastWest and whose value is either e2e-az-East or e2e-az-West is preferred for the pod:

Example pod configuration file with a node affinity preferred rule

The stanza to configure node affinity.

Defines a preferred rule.

 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

apiVersion: v1
kind: Pod
metadata:
 name: with-node-affinity
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 affinity:
 nodeAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 1 3
 preference:
 matchExpressions:
 - key: e2e-az-EastWest 4
 operator: In 5
 values:
 - e2e-az-East 6
 - e2e-az-West 7
 containers:
 - name: with-node-affinity
 image: docker.io/ocpqe/hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
...

OpenShift Dedicated 4 Nodes

122

3

4 6 7

5

Specifies a weight for a preferred rule. The node with highest weight is preferred.

The key/value pair (label) that must be matched to apply the rule.

The operator represents the relationship between the label on the node and the set of values in
the matchExpression parameters in the Pod spec. This value can be In, NotIn, Exists, or
DoesNotExist, Lt, or Gt.

There is no explicit node anti-affinity concept, but using the NotIn or DoesNotExist operator replicates
that behavior.

NOTE

If you are using node affinity and node selectors in the same pod configuration, note the
following:

If you configure both nodeSelector and nodeAffinity, both conditions must be
satisfied for the pod to be scheduled onto a candidate node.

If you specify multiple nodeSelectorTerms associated with nodeAffinity types,
then the pod can be scheduled onto a node if one of the nodeSelectorTerms is
satisfied.

If you specify multiple matchExpressions associated with nodeSelectorTerms,
then the pod can be scheduled onto a node only if all matchExpressions are
satisfied.

4.3.2. Configuring a required node affinity rule

Required rules must be met before a pod can be scheduled on a node.

Procedure

The following steps demonstrate a simple configuration that creates a node and a pod that the
scheduler is required to place on the node.

1. Create a pod with a specific label in the pod spec:

a. Create a YAML file with the following content:

NOTE

You cannot add an affinity directly to a scheduled pod.

Example output

apiVersion: v1
kind: Pod
metadata:
 name: s1
spec:
 affinity: 1
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution: 2

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

123

1

2

3

4

Adds a pod affinity.

Configures the requiredDuringSchedulingIgnoredDuringExecution parameter.

Specifies the key and values that must be met. If you want the new pod to be
scheduled on the node you edited, use the same key and values parameters as the
label in the node.

Specifies an operator. The operator can be In, NotIn, Exists, or DoesNotExist. For
example, use the operator In to require the label to be in the node.

b. Create the pod:

4.3.3. Configuring a preferred node affinity rule

Preferred rules specify that, if the rule is met, the scheduler tries to enforce the rules, but does not
guarantee enforcement.

Procedure

The following steps demonstrate a simple configuration that creates a node and a pod that the
scheduler tries to place on the node.

1. Create a pod with a specific label:

a. Create a YAML file with the following content:

NOTE

You cannot add an affinity directly to a scheduled pod.

 nodeSelectorTerms:
 - matchExpressions:
 - key: e2e-az-name 3
 values:
 - e2e-az1
 - e2e-az2
 operator: In 4
#...

$ oc create -f <file-name>.yaml

apiVersion: v1
kind: Pod
metadata:
 name: s1
spec:
 affinity: 1
 nodeAffinity:
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 3
 preference:
 matchExpressions:

OpenShift Dedicated 4 Nodes

124

1

2

3

4

5

Adds a pod affinity.

Configures the preferredDuringSchedulingIgnoredDuringExecution parameter.

Specifies a weight for the node, as a number 1-100. The node with highest weight is
preferred.

Specifies the key and values that must be met. If you want the new pod to be
scheduled on the node you edited, use the same key and values parameters as the
label in the node.

Specifies an operator. The operator can be In, NotIn, Exists, or DoesNotExist. For
example, use the operator In to require the label to be in the node.

b. Create the pod.

4.3.4. Sample node affinity rules

The following examples demonstrate node affinity.

4.3.4.1. Node affinity with matching labels

The following example demonstrates node affinity for a node and pod with matching labels:

The Node1 node has the label zone:us:

TIP

You can alternatively apply the following YAML to add the label:

The pod-s1 pod has the zone and us key/value pair under a required node affinity rule:

 - key: e2e-az-name 4
 values:
 - e2e-az3
 operator: In 5
#...

$ oc create -f <file-name>.yaml

$ oc label node node1 zone=us

kind: Node
apiVersion: v1
metadata:
 name: <node_name>
 labels:
 zone: us
#...

$ cat pod-s1.yaml

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

125

Example output

The pod-s1 pod can be scheduled on Node1:

Example output

4.3.4.2. Node affinity with no matching labels

The following example demonstrates node affinity for a node and pod without matching labels:

The Node1 node has the label zone:emea:

TIP

apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: "zone"
 operator: In
 values:
 - us
#...

$ oc get pod -o wide

NAME READY STATUS RESTARTS AGE IP NODE
pod-s1 1/1 Running 0 4m IP1 node1

$ oc label node node1 zone=emea

OpenShift Dedicated 4 Nodes

126

TIP

You can alternatively apply the following YAML to add the label:

The pod-s1 pod has the zone and us key/value pair under a required node affinity rule:

Example output

The pod-s1 pod cannot be scheduled on Node1:

Example output

kind: Node
apiVersion: v1
metadata:
 name: <node_name>
 labels:
 zone: emea
#...

$ cat pod-s1.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: "zone"
 operator: In
 values:
 - us
#...

$ oc describe pod pod-s1

...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

127

4.4. PLACING PODS ONTO OVERCOMMITED NODES

In an overcommited state, the sum of the container compute resource requests and limits exceeds the
resources available on the system. Overcommitment might be desirable in development environments
where a trade-off of guaranteed performance for capacity is acceptable.

Requests and limits enable administrators to allow and manage the overcommitment of resources on a
node. The scheduler uses requests for scheduling your container and providing a minimum service
guarantee. Limits constrain the amount of compute resource that may be consumed on your node.

4.4.1. Understanding overcommitment

Requests and limits enable administrators to allow and manage the overcommitment of resources on a
node. The scheduler uses requests for scheduling your container and providing a minimum service
guarantee. Limits constrain the amount of compute resource that may be consumed on your node.

OpenShift Dedicated administrators can control the level of overcommit and manage container density
on nodes by configuring masters to override the ratio between request and limit set on developer
containers. In conjunction with a per-project LimitRange object specifying limits and defaults, this
adjusts the container limit and request to achieve the desired level of overcommit.

NOTE

That these overrides have no effect if no limits have been set on containers. Create a
LimitRange object with default limits, per individual project, or in the project template, to
ensure that the overrides apply.

After these overrides, the container limits and requests must still be validated by any LimitRange object
in the project. It is possible, for example, for developers to specify a limit close to the minimum limit, and
have the request then be overridden below the minimum limit, causing the pod to be forbidden. This
unfortunate user experience should be addressed with future work, but for now, configure this capability
and LimitRange objects with caution.

4.4.2. Understanding nodes overcommitment

To maintain optimal system performance and stability in an overcommitted environment in OpenShift
Dedicated, configure your nodes to manage resource contention effectively.

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.

To ensure this behavior, OpenShift Dedicated configures the kernel to always overcommit memory by
setting the vm.overcommit_memory parameter to 1, overriding the default operating system setting.

OpenShift Dedicated also configures the kernel to not panic when it runs out of memory by setting the
vm.panic_on_oom parameter to 0. A setting of 0 instructs the kernel to call the OOM killer in an Out of
Memory (OOM) condition, which kills processes based on priority.

Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason
 --------- -------- ----- ---- ------------- -------- ------
 1m 33s 8 default-scheduler Warning FailedScheduling No nodes are
available that match all of the following predicates:: MatchNodeSelector (1).

OpenShift Dedicated 4 Nodes

128

You can view the current setting by running the following commands on your nodes:

Example output

Example output

NOTE

The previous commands should already be set on nodes, so no further action is required.

You can also perform the following configurations for each node:

Disable or enforce CPU limits using CPU CFS quotas

Reserve resources for system processes

Reserve memory across quality of service tiers

4.5. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

A node selector specifies a map of key/value pairs that are defined using custom labels on nodes and
selectors specified in pods.

For the pod to be eligible to run on a node, the pod must have the same key/value node selector as the
label on the node.

4.5.1. About node selectors

You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With
node selectors, OpenShift Dedicated schedules the pods on nodes that contain matching labels.

You can use a node selector to place specific pods on specific nodes, cluster-wide node selectors to
place new pods on specific nodes anywhere in the cluster, and project node selectors to place new pods
in a project on specific nodes.

For example, as a cluster administrator, you can create an infrastructure where application developers
can deploy pods only onto the nodes closest to their geographical location by including a node selector
in every pod they create. In this example, the cluster consists of five data centers spread across two

$ sysctl -a |grep commit

#...
vm.overcommit_memory = 0
#...

$ sysctl -a |grep panic

#...
vm.panic_on_oom = 0
#...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

129

regions. In the U.S., label the nodes as us-east, us-central, or us-west. In the Asia-Pacific region
(APAC), label the nodes as apac-east or apac-west. The developers can add a node selector to the
pods they create to ensure the pods get scheduled on those nodes.

A pod is not scheduled if the Pod object contains a node selector, but no node has a matching label.

IMPORTANT

If you are using node selectors and node affinity in the same pod configuration, the
following rules control pod placement onto nodes:

If you configure both nodeSelector and nodeAffinity, both conditions must be
satisfied for the pod to be scheduled onto a candidate node.

If you specify multiple nodeSelectorTerms associated with nodeAffinity types,
then the pod can be scheduled onto a node if one of the nodeSelectorTerms is
satisfied.

If you specify multiple matchExpressions associated with nodeSelectorTerms,
then the pod can be scheduled onto a node only if all matchExpressions are
satisfied.

Node selectors on specific pods and nodes

You can control which node a specific pod is scheduled on by using node selectors and labels.
To use node selectors and labels, first label the node to avoid pods being descheduled, then add the
node selector to the pod.

NOTE

You cannot add a node selector directly to an existing scheduled pod. You must label
the object that controls the pod, such as deployment config.

For example, the following Node object has the region: east label:

Sample Node object with a label

kind: Node
apiVersion: v1
metadata:
 name: ip-10-0-131-14.ec2.internal
 selfLink: /api/v1/nodes/ip-10-0-131-14.ec2.internal
 uid: 7bc2580a-8b8e-11e9-8e01-021ab4174c74
 resourceVersion: '478704'
 creationTimestamp: '2019-06-10T14:46:08Z'
 labels:
 kubernetes.io/os: linux
 topology.kubernetes.io/zone: us-east-1a
 node.openshift.io/os_version: '4.5'
 node-role.kubernetes.io/worker: ''
 topology.kubernetes.io/region: us-east-1
 node.openshift.io/os_id: rhcos
 node.kubernetes.io/instance-type: m4.large
 kubernetes.io/hostname: ip-10-0-131-14

OpenShift Dedicated 4 Nodes

130

1

1

Labels to match the pod node selector.

A pod has the type: user-node,region: east node selector:

Sample Pod object with node selectors

Node selectors to match the node label. The node must have a label for each node selector.

When you create the pod using the example pod spec, it can be scheduled on the example node.

Default cluster-wide node selectors

With default cluster-wide node selectors, when you create a pod in that cluster, OpenShift
Dedicated adds the default node selectors to the pod and schedules the pod on nodes with
matching labels.
For example, the following Scheduler object has the default cluster-wide region=east and
type=user-node node selectors:

Example Scheduler Operator Custom Resource

A node in that cluster has the type=user-node,region=east labels:

Example Node object

 kubernetes.io/arch: amd64
 region: east 1
 type: user-node
#...

apiVersion: v1
kind: Pod
metadata:
 name: s1
#...
spec:
 nodeSelector: 1
 region: east
 type: user-node
#...

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 name: cluster
#...
spec:
 defaultNodeSelector: type=user-node,region=east
#...

apiVersion: v1
kind: Node
metadata:
 name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

131

Example Pod object with a node selector

When you create the pod using the example pod spec in the example cluster, the pod is created with
the cluster-wide node selector and is scheduled on the labeled node:

Example pod list with the pod on the labeled node

NOTE

If the project where you create the pod has a project node selector, that selector
takes preference over a cluster-wide node selector. Your pod is not created or
scheduled if the pod does not have the project node selector.

Project node selectors

With project node selectors, when you create a pod in this project, OpenShift Dedicated adds the
node selectors to the pod and schedules the pods on a node with matching labels. If there is a
cluster-wide default node selector, a project node selector takes preference.
For example, the following project has the region=east node selector:

Example Namespace object

The following node has the type=user-node,region=east labels:

#...
 labels:
 region: east
 type: user-node
#...

apiVersion: v1
kind: Pod
metadata:
 name: s1
#...
spec:
 nodeSelector:
 region: east
#...

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
<none> <none>

apiVersion: v1
kind: Namespace
metadata:
 name: east-region
 annotations:
 openshift.io/node-selector: "region=east"
#...

OpenShift Dedicated 4 Nodes

132

Example Node object

When you create the pod using the example pod spec in this example project, the pod is created with
the project node selectors and is scheduled on the labeled node:

Example Pod object

Example pod list with the pod on the labeled node

A pod in the project is not created or scheduled if the pod contains different node selectors. For
example, if you deploy the following pod into the example project, it is not created:

Example Pod object with an invalid node selector

4.5.2. Using node selectors to control pod placement

apiVersion: v1
kind: Node
metadata:
 name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
#...
 labels:
 region: east
 type: user-node
#...

apiVersion: v1
kind: Pod
metadata:
 namespace: east-region
#...
spec:
 nodeSelector:
 region: east
 type: user-node
#...

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
<none> <none>

apiVersion: v1
kind: Pod
metadata:
 name: west-region
#...
spec:
 nodeSelector:
 region: west
#...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

133

You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With
node selectors, OpenShift Dedicated schedules the pods on nodes that contain matching labels.

You add labels to a node, a compute machine set, or a machine config. Adding the label to the compute
machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to
a node or machine config do not persist if the node or machine goes down.

To add node selectors to an existing pod, add a node selector to the controlling object for that pod, such
as a ReplicaSet object, DaemonSet object, StatefulSet object, Deployment object, or
DeploymentConfig object. Any existing pods under that controlling object are recreated on a node with
a matching label. If you are creating a new pod, you can add the node selector directly to the pod spec. If
the pod does not have a controlling object, you must delete the pod, edit the pod spec, and recreate the
pod.

NOTE

You cannot add a node selector directly to an existing scheduled pod.

Prerequisites

To add a node selector to existing pods, determine the controlling object for that pod. For example, the
router-default-66d5cf9464-m2g75 pod is controlled by the router-default-66d5cf9464 replica set:

Example output

The web console lists the controlling object under ownerReferences in the pod YAML:

$ oc describe pod router-default-66d5cf9464-7pwkc

kind: Pod
apiVersion: v1
metadata:
...
Name: router-default-66d5cf9464-7pwkc
Namespace: openshift-ingress
...
Controlled By: ReplicaSet/router-default-66d5cf9464
...

apiVersion: v1
kind: Pod
metadata:
 name: router-default-66d5cf9464-7pwkc
...
 ownerReferences:
 - apiVersion: apps/v1
 kind: ReplicaSet
 name: router-default-66d5cf9464
 uid: d81dd094-da26-11e9-a48a-128e7edf0312
 controller: true
 blockOwnerDeletion: true
...

OpenShift Dedicated 4 Nodes

134

1

Procedure

Add the matching node selector to a pod:

To add a node selector to existing and future pods, add a node selector to the controlling
object for the pods:

Example ReplicaSet object with labels

Add the node selector.

To add a node selector to a specific, new pod, add the selector to the Pod object directly:

Example Pod object with a node selector

NOTE

You cannot add a node selector directly to an existing scheduled pod.

4.6. CONTROLLING POD PLACEMENT BY USING POD TOPOLOGY
SPREAD CONSTRAINTS

kind: ReplicaSet
apiVersion: apps/v1
metadata:
 name: hello-node-6fbccf8d9
...
spec:
...
 template:
 metadata:
 creationTimestamp: null
 labels:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 pod-template-hash: 66d5cf9464
 spec:
 nodeSelector:
 kubernetes.io/os: linux
 node-role.kubernetes.io/worker: ''
 type: user-node 1
...

apiVersion: v1
kind: Pod
metadata:
 name: hello-node-6fbccf8d9
...
spec:
 nodeSelector:
 region: east
 type: user-node
...

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

135

You can use pod topology spread constraints to provide fine-grained control over the placement of
your pods across nodes, zones, regions, or other user-defined topology domains. Distributing pods
across failure domains can help to achieve high availability and more efficient resource utilization.

4.6.1. Example use cases

As an administrator, I want my workload to automatically scale between two to fifteen pods. I
want to ensure that when there are only two pods, they are not placed on the same node, to
avoid a single point of failure.

As an administrator, I want to distribute my pods evenly across multiple infrastructure zones to
reduce latency and network costs. I want to ensure that my cluster can self-heal if issues arise.

4.6.2. Important considerations

Pods in an OpenShift Dedicated cluster are managed by workload controllers such as
deployments, stateful sets, or daemon sets. These controllers define the desired state for a
group of pods, including how they are distributed and scaled across the nodes in the cluster. You
should set the same pod topology spread constraints on all pods in a group to avoid confusion.
When using a workload controller, such as a deployment, the pod template typically handles this
for you.

Mixing different pod topology spread constraints can make OpenShift Dedicated behavior
confusing and troubleshooting more difficult. You can avoid this by ensuring that all nodes in a
topology domain are consistently labeled. OpenShift Dedicated automatically populates well-
known labels, such as kubernetes.io/hostname. This helps avoid the need for manual labeling
of nodes. These labels provide essential topology information, ensuring consistent node
labeling across the cluster.

Only pods within the same namespace are matched and grouped together when spreading due
to a constraint.

You can specify multiple pod topology spread constraints, but you must ensure that they do not
conflict with each other. All pod topology spread constraints must be satisfied for a pod to be
placed.

4.6.3. Understanding skew and maxSkew

Skew refers to the difference in the number of pods that match a specified label selector across
different topology domains, such as zones or nodes.

The skew is calculated for each domain by taking the absolute difference between the number of pods
in that domain and the number of pods in the domain with the lowest amount of pods scheduled.
Setting a maxSkew value guides the scheduler to maintain a balanced pod distribution.

4.6.3.1. Example skew calculation

You have three zones (A, B, and C), and you want to distribute your pods evenly across these zones. If
zone A has 5 pods, zone B has 3 pods, and zone C has 2 pods, to find the skew, you can subtract the
number of pods in the domain with the lowest amount of pods scheduled from the number of pods
currently in each zone. This means that the skew for zone A is 3, the skew for zone B is 1, and the skew
for zone C is 0.

4.6.3.2. The maxSkew parameter

The maxSkew parameter defines the maximum allowable difference, or skew, in the number of pods

OpenShift Dedicated 4 Nodes

136

1

2

3

The maxSkew parameter defines the maximum allowable difference, or skew, in the number of pods
between any two topology domains. If maxSkew is set to 1, the number of pods in any topology domain
should not differ by more than 1 from any other domain. If the skew exceeds maxSkew, the scheduler
attempts to place new pods in a way that reduces the skew, adhering to the constraints.

Using the previous example skew calculation, the skew values exceed the default maxSkew value of 1.
The scheduler places new pods in zone B and zone C to reduce the skew and achieve a more balanced
distribution, ensuring that no topology domain exceeds the skew of 1.

4.6.4. Example configurations for pod topology spread constraints

You can specify which pods to group together, which topology domains they are spread among, and the
acceptable skew.

The following examples demonstrate pod topology spread constraint configurations.

Example to distribute pods that match the specified labels based on their zone

The maximum difference in number of pods between any two topology domains. The default is 1,
and you cannot specify a value of 0.

The key of a node label. Nodes with this key and identical value are considered to be in the same
topology.

How to handle a pod if it does not satisfy the spread constraint. The default is DoNotSchedule,
which tells the scheduler not to schedule the pod. Set to ScheduleAnyway to still schedule the
pod, but the scheduler prioritizes honoring the skew to not make the cluster more imbalanced.

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
 labels:
 region: us-east
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 topologySpreadConstraints:
 - maxSkew: 1 1
 topologyKey: topology.kubernetes.io/zone 2
 whenUnsatisfiable: DoNotSchedule 3
 labelSelector: 4
 matchLabels:
 region: us-east 5
 matchLabelKeys:
 - my-pod-label 6
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

137

4

5

6

pod, but the scheduler prioritizes honoring the skew to not make the cluster more imbalanced.

Pods that match this label selector are counted and recognized as a group when spreading to
satisfy the constraint. Be sure to specify a label selector, otherwise no pods can be matched.

Be sure that this Pod spec also sets its labels to match this label selector if you want it to be
counted properly in the future.

A list of pod label keys to select which pods to calculate spreading over.

Example demonstrating a single pod topology spread constraint

The previous example defines a Pod spec with a one pod topology spread constraint. It matches on
pods labeled region: us-east, distributes among zones, specifies a skew of 1, and does not schedule the
pod if it does not meet these requirements.

Example demonstrating multiple pod topology spread constraints

kind: Pod
apiVersion: v1
metadata:
 name: my-pod
 labels:
 region: us-east
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: topology.kubernetes.io/zone
 whenUnsatisfiable: DoNotSchedule
 labelSelector:
 matchLabels:
 region: us-east
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

kind: Pod
apiVersion: v1
metadata:
 name: my-pod-2
 labels:
 region: us-east
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault

OpenShift Dedicated 4 Nodes

138

The previous example defines a Pod spec with two pod topology spread constraints. Both match on
pods labeled region: us-east, specify a skew of 1, and do not schedule the pod if it does not meet these
requirements.

The first constraint distributes pods based on a user-defined label node, and the second constraint
distributes pods based on a user-defined label rack. Both constraints must be met for the pod to be
scheduled.

 topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: node
 whenUnsatisfiable: DoNotSchedule
 labelSelector:
 matchLabels:
 region: us-east
 - maxSkew: 1
 topologyKey: rack
 whenUnsatisfiable: DoNotSchedule
 labelSelector:
 matchLabels:
 region: us-east
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

139

CHAPTER 5. USING JOBS AND DAEMON SETS

5.1. RUNNING BACKGROUND TASKS ON NODES AUTOMATICALLY
WITH DAEMON SETS

As an administrator, you can create and use daemon sets to run replicas of a pod on specific or all nodes
in an OpenShift Dedicated cluster.

A daemon set ensures that all (or some) nodes run a copy of a pod. As nodes are added to the cluster,
pods are added to the cluster. As nodes are removed from the cluster, those pods are removed through
garbage collection. Deleting a daemon set will clean up the pods it created.

You can use daemon sets to create shared storage, run a logging pod on every node in your cluster, or
deploy a monitoring agent on every node.

For security reasons, the cluster administrators and the project administrators can create daemon sets.

For more information on daemon sets, see the Kubernetes documentation.

IMPORTANT

Daemon set scheduling is incompatible with project’s default node selector. If you fail to
disable it, the daemon set gets restricted by merging with the default node selector. This
results in frequent pod recreates on the nodes that got unselected by the merged node
selector, which in turn puts unwanted load on the cluster.

5.1.1. Scheduled by default scheduler

A daemon set ensures that all eligible nodes run a copy of a pod. Normally, the node that a pod runs on
is selected by the Kubernetes scheduler. However, daemon set pods are created and scheduled by the
daemon set controller. That introduces the following issues:

Inconsistent pod behavior: Normal pods waiting to be scheduled are created and in Pending
state, but daemon set pods are not created in Pending state. This is confusing to the user.

Pod preemption is handled by default scheduler. When preemption is enabled, the daemon set
controller will make scheduling decisions without considering pod priority and preemption.

The ScheduleDaemonSetPods feature, enabled by default in OpenShift Dedicated, lets you schedule
daemon sets using the default scheduler instead of the daemon set controller, by adding the
NodeAffinity term to the daemon set pods, instead of the spec.nodeName term. The default scheduler
is then used to bind the pod to the target host. If node affinity of the daemon set pod already exists, it is
replaced. The daemon set controller only performs these operations when creating or modifying
daemon set pods, and no changes are made to the spec.template of the daemon set.

kind: Pod
apiVersion: v1
metadata:
 name: hello-node-6fbccf8d9-9tmzr
#...
spec:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:

OpenShift Dedicated 4 Nodes

140

http://kubernetes.io/docs/admin/daemons/

In addition, a node.kubernetes.io/unschedulable:NoSchedule toleration is added automatically to
daemon set pods. The default scheduler ignores unschedulable Nodes when scheduling daemon set
pods.

5.1.2. Creating daemonsets

When creating daemon sets, the nodeSelector field is used to indicate the nodes on which the daemon
set should deploy replicas.

Prerequisites

Before you start using daemon sets, disable the default project-wide node selector in your
namespace, by setting the namespace annotation openshift.io/node-selector to an empty
string:

TIP

You can alternatively apply the following YAML to disable the default project-wide node
selector for a namespace:

Procedure

To create a daemon set:

1. Define the daemon set yaml file:

 - matchFields:
 - key: metadata.name
 operator: In
 values:
 - target-host-name
#...

$ oc patch namespace myproject -p \
 '{"metadata": {"annotations": {"openshift.io/node-selector": ""}}}'

apiVersion: v1
kind: Namespace
metadata:
 name: <namespace>
 annotations:
 openshift.io/node-selector: ''
#...

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: hello-daemonset
spec:
 selector:
 matchLabels:
 name: hello-daemonset 1
 template:
 metadata:

CHAPTER 5. USING JOBS AND DAEMON SETS

141

1

2

3

The label selector that determines which pods belong to the daemon set.

The pod template’s label selector. Must match the label selector above.

The node selector that determines on which nodes pod replicas should be deployed. A
matching label must be present on the node.

2. Create the daemon set object:

3. To verify that the pods were created, and that each node has a pod replica:

a. Find the daemonset pods:

Example output

b. View the pods to verify the pod has been placed onto the node:

Example output

Example output

 labels:
 name: hello-daemonset 2
 spec:
 nodeSelector: 3
 role: worker
 containers:
 - image: openshift/hello-openshift
 imagePullPolicy: Always
 name: registry
 ports:
 - containerPort: 80
 protocol: TCP
 resources: {}
 terminationMessagePath: /dev/termination-log
 serviceAccount: default
 terminationGracePeriodSeconds: 10
#...

$ oc create -f daemonset.yaml

$ oc get pods

hello-daemonset-cx6md 1/1 Running 0 2m
hello-daemonset-e3md9 1/1 Running 0 2m

$ oc describe pod/hello-daemonset-cx6md|grep Node

Node: openshift-node01.hostname.com/10.14.20.134

$ oc describe pod/hello-daemonset-e3md9|grep Node

OpenShift Dedicated 4 Nodes

142

1

2

3

IMPORTANT

If you update a daemon set pod template, the existing pod replicas are not
affected.

If you delete a daemon set and then create a new daemon set with a different
template but the same label selector, it recognizes any existing pod replicas as
having matching labels and thus does not update them or create new replicas
despite a mismatch in the pod template.

If you change node labels, the daemon set adds pods to nodes that match the
new labels and deletes pods from nodes that do not match the new labels.

To update a daemon set, force new pod replicas to be created by deleting the old replicas
or nodes.

5.2. RUNNING TASKS IN PODS USING JOBS

A job executes a task in your OpenShift Dedicated cluster.

A job tracks the overall progress of a task and updates its status with information about active,
succeeded, and failed pods. Deleting a job will clean up any pod replicas it created. Jobs are part of the
Kubernetes API, which can be managed with oc commands like other object types.

Sample Job specification

The pod replicas a job should run in parallel.

Successful pod completions are needed to mark a job completed.

The maximum duration the job can run.

Node: openshift-node02.hostname.com/10.14.20.137

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 parallelism: 1 1
 completions: 1 2
 activeDeadlineSeconds: 1800 3
 backoffLimit: 6 4
 template: 5
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 6
#...

CHAPTER 5. USING JOBS AND DAEMON SETS

143

4

5

6

The number of retries for a job.

The template for the pod the controller creates.

The restart policy of the pod.

Additional resources

Jobs (Kubernetes documentation)

5.2.1. Understanding jobs and cron jobs

A job tracks the overall progress of a task and updates its status with information about active,
succeeded, and failed pods. Deleting a job cleans up any pods it created. Jobs are part of the
Kubernetes API, which can be managed with oc commands like other object types.

There are two possible resource types that allow creating run-once objects in OpenShift Dedicated:

Job

A regular job is a run-once object that creates a task and ensures the job finishes.
There are three main types of task suitable to run as a job:

Non-parallel jobs:

A job that starts only one pod, unless the pod fails.

The job is complete as soon as its pod terminates successfully.

Parallel jobs with a fixed completion count:

a job that starts multiple pods.

The job represents the overall task and is complete when there is one successful pod for
each value in the range 1 to the completions value.

Parallel jobs with a work queue:

A job with multiple parallel worker processes in a given pod.

OpenShift Dedicated coordinates pods to determine what each should work on or use
an external queue service.

Each pod is independently capable of determining whether or not all peer pods are
complete and that the entire job is done.

When any pod from the job terminates with success, no new pods are created.

When at least one pod has terminated with success and all pods are terminated, the job
is successfully completed.

When any pod has exited with success, no other pod should be doing any work for this
task or writing any output. Pods should all be in the process of exiting.
For more information about how to make use of the different types of job, see Job
Patterns in the Kubernetes documentation.

OpenShift Dedicated 4 Nodes

144

https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/#job-patterns

Cron job

A job can be scheduled to run multiple times, using a cron job.
A cron job builds on a regular job by allowing you to specify how the job should be run. Cron jobs are
part of the Kubernetes API, which can be managed with oc commands like other object types.

Cron jobs are useful for creating periodic and recurring tasks, like running backups or sending emails.
Cron jobs can also schedule individual tasks for a specific time, such as if you want to schedule a job
for a low activity period. A cron job creates a Job object based on the timezone configured on the
control plane node that runs the cronjob controller.

WARNING

A cron job creates a Job object approximately once per execution time of its
schedule, but there are circumstances in which it fails to create a job or two jobs
might be created. Therefore, jobs must be idempotent and you must configure
history limits.

5.2.1.1. Understanding how to create jobs

Both resource types require a job configuration that consists of the following key parts:

A pod template, which describes the pod that OpenShift Dedicated creates.

The parallelism parameter, which specifies how many pods running in parallel at any point in
time should execute a job.

For non-parallel jobs, leave unset. When unset, defaults to 1.

The completions parameter, specifying how many successful pod completions are needed to
finish a job.

For non-parallel jobs, leave unset. When unset, defaults to 1.

For parallel jobs with a fixed completion count, specify a value.

For parallel jobs with a work queue, leave unset. When unset defaults to the parallelism
value.

5.2.1.2. Understanding how to set a maximum duration for jobs

When defining a job, you can define its maximum duration by setting the activeDeadlineSeconds field.
It is specified in seconds and is not set by default. When not set, there is no maximum duration enforced.

The maximum duration is counted from the time when a first pod gets scheduled in the system, and
defines how long a job can be active. It tracks overall time of an execution. After reaching the specified
timeout, the job is terminated by OpenShift Dedicated.

5.2.1.3. Understanding how to set a job back off policy for pod failure



CHAPTER 5. USING JOBS AND DAEMON SETS

145

http://kubernetes.io/docs/user-guide/cron-jobs

A job can be considered failed, after a set amount of retries due to a logical error in configuration or
other similar reasons. Failed pods associated with the job are recreated by the controller with an
exponential back off delay (10s, 20s, 40s …) capped at six minutes. The limit is reset if no new failed
pods appear between controller checks.

Use the spec.backoffLimit parameter to set the number of retries for a job.

5.2.1.4. Understanding how to configure a cron job to remove artifacts

Cron jobs can leave behind artifact resources such as jobs or pods. As a user it is important to configure
history limits so that old jobs and their pods are properly cleaned. There are two fields within cron job’s
spec responsible for that:

.spec.successfulJobsHistoryLimit. The number of successful finished jobs to retain (defaults
to 3).

.spec.failedJobsHistoryLimit. The number of failed finished jobs to retain (defaults to 1).

5.2.1.5. Known limitations

The job specification restart policy only applies to the pods, and not the job controller. However, the job
controller is hard-coded to keep retrying jobs to completion.

As such, restartPolicy: Never or --restart=Never results in the same behavior as restartPolicy:
OnFailure or --restart=OnFailure. That is, when a job fails it is restarted automatically until it succeeds
(or is manually discarded). The policy only sets which subsystem performs the restart.

With the Never policy, the job controller performs the restart. With each attempt, the job controller
increments the number of failures in the job status and create new pods. This means that with each
failed attempt, the number of pods increases.

With the OnFailure policy, kubelet performs the restart. Each attempt does not increment the number
of failures in the job status. In addition, kubelet will retry failed jobs starting pods on the same nodes.

5.2.2. Creating jobs

You create a job in OpenShift Dedicated by creating a job object.

Procedure

To create a job:

1. Create a YAML file similar to the following:

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 parallelism: 1 1
 completions: 1 2
 activeDeadlineSeconds: 1800 3
 backoffLimit: 6 4
 template: 5
 metadata:

OpenShift Dedicated 4 Nodes

146

1

2

3

4

5

6

Optional: Specify how many pod replicas a job should run in parallel; defaults to 1.

For non-parallel jobs, leave unset. When unset, defaults to 1.

Optional: Specify how many successful pod completions are needed to mark a job
completed.

For non-parallel jobs, leave unset. When unset, defaults to 1.

For parallel jobs with a fixed completion count, specify the number of completions.

For parallel jobs with a work queue, leave unset. When unset defaults to the
parallelism value.

Optional: Specify the maximum duration the job can run.

Optional: Specify the number of retries for a job. This field defaults to six.

Specify the template for the pod the controller creates.

Specify the restart policy of the pod:

Never. Do not restart the job.

OnFailure. Restart the job only if it fails.

Always. Always restart the job.
For details on how OpenShift Dedicated uses restart policy with failed containers, see
the Example States in the Kubernetes documentation.

2. Create the job:

NOTE

You can also create and launch a job from a single command using oc create job. The
following command creates and launches a job similar to the one specified in the previous
example:

5.2.3. Creating cron jobs

 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 6
#...

$ oc create -f <file-name>.yaml

$ oc create job pi --image=perl -- perl -Mbignum=bpi -wle 'print bpi(2000)'

CHAPTER 5. USING JOBS AND DAEMON SETS

147

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#example-states

1

2

3

4

5

6

You create a cron job in OpenShift Dedicated by creating a job object.

Procedure

To create a cron job:

1. Create a YAML file similar to the following:

Schedule for the job specified in cron format. In this example, the job will run every minute.

An optional concurrency policy, specifying how to treat concurrent jobs within a cron job.
Only one of the following concurrent policies may be specified. If not specified, this
defaults to allowing concurrent executions.

Allow allows cron jobs to run concurrently.

Forbid forbids concurrent runs, skipping the next run if the previous has not finished
yet.

Replace cancels the currently running job and replaces it with a new one.

An optional deadline (in seconds) for starting the job if it misses its scheduled time for any
reason. Missed jobs executions will be counted as failed ones. If not specified, there is no
deadline.

An optional flag allowing the suspension of a cron job. If set to true, all subsequent
executions will be suspended.

The number of successful finished jobs to retain (defaults to 3).

The number of failed finished jobs to retain (defaults to 1).

apiVersion: batch/v1
kind: CronJob
metadata:
 name: pi
spec:
 schedule: "*/1 * * * *" 1
 concurrencyPolicy: "Replace" 2
 startingDeadlineSeconds: 200 3
 suspend: true 4
 successfulJobsHistoryLimit: 3 5
 failedJobsHistoryLimit: 1 6
 jobTemplate: 7
 spec:
 template:
 metadata:
 labels: 8
 parent: "cronjobpi"
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 9

OpenShift Dedicated 4 Nodes

148

https://en.wikipedia.org/wiki/Cron

7

8

9

Job template. This is similar to the job example.

Sets a label for jobs spawned by this cron job.

The restart policy of the pod. This does not apply to the job controller.

NOTE

The .spec.successfulJobsHistoryLimit and
.spec.failedJobsHistoryLimit fields are optional. These fields specify how
many completed and failed jobs should be kept. By default, they are set to 3
and 1 respectively. Setting a limit to 0 corresponds to keeping none of the
corresponding kind of jobs after they finish.

2. Create the cron job:

NOTE

You can also create and launch a cron job from a single command using oc create
cronjob. The following command creates and launches a cron job similar to the one
specified in the previous example:

With oc create cronjob, the --schedule option accepts schedules in cron format.

$ oc create -f <file-name>.yaml

$ oc create cronjob pi --image=perl --schedule='*/1 * * * *' -- perl -Mbignum=bpi -wle
'print bpi(2000)'

CHAPTER 5. USING JOBS AND DAEMON SETS

149

https://en.wikipedia.org/wiki/Cron

CHAPTER 6. WORKING WITH NODES

6.1. VIEWING AND LISTING THE NODES IN YOUR OPENSHIFT
DEDICATED CLUSTER

You can list all the nodes in your cluster to obtain information such as status, age, memory usage, and
details about the nodes.

When you perform node management operations, the CLI interacts with node objects that are
representations of actual node hosts. The master uses the information from node objects to validate
nodes with health checks.

6.1.1. About listing all the nodes in a cluster

You can get detailed information on the nodes in the cluster.

The following command lists all nodes:

The following example is a cluster with healthy nodes:

Example output

The following example is a cluster with one unhealthy node:

Example output

The conditions that trigger a NotReady status are shown later in this section.

The -o wide option provides additional information on nodes.

Example output

$ oc get nodes

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master.example.com Ready master 7h v1.34.2
node1.example.com Ready worker 7h v1.34.2
node2.example.com Ready worker 7h v1.34.2

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master.example.com Ready master 7h v1.34.2
node1.example.com NotReady,SchedulingDisabled worker 7h v1.34.2
node2.example.com Ready worker 7h v1.34.2

$ oc get nodes -o wide

NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP

OpenShift Dedicated 4 Nodes

150

The following command lists information about a single node:

For example:

Example output

The following command provides more detailed information about a specific node, including the
reason for the current condition:

For example:

NOTE

The following example contains some values that are specific to OpenShift
Dedicated on AWS.

Example output

OS-IMAGE KERNEL-VERSION CONTAINER-
RUNTIME
master.example.com Ready master 171m v1.34.2 10.0.129.108 <none> Red Hat
Enterprise Linux CoreOS 48.83.202103210901-0 (Ootpa) 4.21.0-240.15.1.el8_3.x86_64
cri-o://1.34.2-30.rhaos4.10.gitf2f339d.el8-dev
node1.example.com Ready worker 72m v1.34.2 10.0.129.222 <none> Red Hat
Enterprise Linux CoreOS 48.83.202103210901-0 (Ootpa) 4.21.0-240.15.1.el8_3.x86_64
cri-o://1.34.2-30.rhaos4.10.gitf2f339d.el8-dev
node2.example.com Ready worker 164m v1.34.2 10.0.142.150 <none> Red Hat
Enterprise Linux CoreOS 48.83.202103210901-0 (Ootpa) 4.21.0-240.15.1.el8_3.x86_64
cri-o://1.34.2-30.rhaos4.10.gitf2f339d.el8-dev

$ oc get node <node>

$ oc get node node1.example.com

NAME STATUS ROLES AGE VERSION
node1.example.com Ready worker 7h v1.34.2

$ oc describe node <node>

$ oc describe node node1.example.com

Name: node1.example.com 1
Roles: worker 2
Labels: kubernetes.io/os=linux
 kubernetes.io/hostname=ip-10-0-131-14
 kubernetes.io/arch=amd64 3
 node-role.kubernetes.io/worker=
 node.kubernetes.io/instance-type=m4.large
 node.openshift.io/os_id=rhcos
 node.openshift.io/os_version=4.5
 region=east
 topology.kubernetes.io/region=us-east-1

CHAPTER 6. WORKING WITH NODES

151

 topology.kubernetes.io/zone=us-east-1a
Annotations: cluster.k8s.io/machine: openshift-machine-api/ahardin-worker-us-east-2a-
q5dzc 4
 machineconfiguration.openshift.io/currentConfig: worker-
309c228e8b3a92e2235edd544c62fea8
 machineconfiguration.openshift.io/desiredConfig: worker-
309c228e8b3a92e2235edd544c62fea8
 machineconfiguration.openshift.io/state: Done
 volumes.kubernetes.io/controller-managed-attach-detach: true
CreationTimestamp: Wed, 13 Feb 2019 11:05:57 -0500
Taints: <none> 5
Unschedulable: false
Conditions: 6
 Type Status LastHeartbeatTime LastTransitionTime Reason
Message
 ---- ------ ----------------- ------------------ ------ -------
 OutOfDisk False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasSufficientDisk kubelet has sufficient disk space available
 MemoryPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57
-0500 KubeletHasSufficientMemory kubelet has sufficient memory available
 DiskPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasNoDiskPressure kubelet has no disk pressure
 PIDPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasSufficientPID kubelet has sufficient PID available
 Ready True Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:07:09 -0500
KubeletReady kubelet is posting ready status
Addresses: 7
 InternalIP: 10.0.140.16
 InternalDNS: ip-10-0-140-16.us-east-2.compute.internal
 Hostname: ip-10-0-140-16.us-east-2.compute.internal
Capacity: 8
 attachable-volumes-aws-ebs: 39
 cpu: 2
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 8172516Ki
 pods: 250
Allocatable:
 attachable-volumes-aws-ebs: 39
 cpu: 1500m
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 7558116Ki
 pods: 250
System Info: 9
 Machine ID: 63787c9534c24fde9a0cde35c13f1f66
 System UUID: EC22BF97-A006-4A58-6AF8-0A38DEEA122A
 Boot ID: f24ad37d-2594-46b4-8830-7f7555918325
 Kernel Version: 3.10.0-957.5.1.el7.x86_64
 OS Image: Red Hat Enterprise Linux CoreOS 410.8.20190520.0 (Ootpa)
 Operating System: linux
 Architecture: amd64
 Container Runtime Version: cri-o://1.34.2-0.6.dev.rhaos4.3.git9ad059b.el8-rc2
 Kubelet Version: v1.34.2
 Kube-Proxy Version: v1.34.2
PodCIDR: 10.128.4.0/24

OpenShift Dedicated 4 Nodes

152

1 The name of the node.

ProviderID: aws:///us-east-2a/i-04e87b31dc6b3e171
Non-terminated Pods: (12 in total) 10
 Namespace Name CPU Requests CPU Limits
Memory Requests Memory Limits
 --------- ---- ------------ ---------- --------------- -------

 openshift-cluster-node-tuning-operator tuned-hdl5q 0 (0%) 0 (0%) 0
(0%) 0 (0%)
 openshift-dns dns-default-l69zr 0 (0%) 0 (0%) 0 (0%)
0 (0%)
 openshift-image-registry node-ca-9hmcg 0 (0%) 0 (0%) 0
(0%) 0 (0%)
 openshift-ingress router-default-76455c45c-c5ptv 0 (0%) 0 (0%) 0
(0%) 0 (0%)
 openshift-machine-config-operator machine-config-daemon-cvqw9 20m (1%) 0
(0%) 50Mi (0%) 0 (0%)
 openshift-marketplace community-operators-f67fh 0 (0%) 0 (0%)
0 (0%) 0 (0%)
 openshift-monitoring alertmanager-main-0 50m (3%) 50m (3%)
210Mi (2%) 10Mi (0%)
 openshift-monitoring node-exporter-l7q8d 10m (0%) 20m (1%)
20Mi (0%) 40Mi (0%)
 openshift-monitoring prometheus-adapter-75d769c874-hvb85 0 (0%) 0
(0%) 0 (0%) 0 (0%)
 openshift-multus multus-kw8w5 0 (0%) 0 (0%) 0 (0%)
0 (0%)
 openshift-ovn-kubernetes ovnkube-node-t4dsn 80m (0%)
0 (0%) 1630Mi (0%) 0 (0%)
Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 380m (25%) 270m (18%)
 memory 880Mi (11%) 250Mi (3%)
 attachable-volumes-aws-ebs 0 0
Events: 11
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal NodeHasSufficientPID 6d (x5 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientPID
 Normal NodeAllocatableEnforced 6d kubelet, m01.example.com Updated Node
Allocatable limit across pods
 Normal NodeHasSufficientMemory 6d (x6 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientMemory
 Normal NodeHasNoDiskPressure 6d (x6 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasNoDiskPressure
 Normal NodeHasSufficientDisk 6d (x6 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientDisk
 Normal NodeHasSufficientPID 6d kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientPID
 Normal Starting 6d kubelet, m01.example.com Starting kubelet.
#...

CHAPTER 6. WORKING WITH NODES

153

2

3

4

5

6

7

8

9

10

11

The role of the node, either master or worker.

The labels applied to the node.

The annotations applied to the node.

The taints applied to the node.

The node conditions and status. The conditions stanza lists the Ready, PIDPressure,
MemoryPressure, DiskPressure and OutOfDisk status. These condition are described
later in this section.

The IP address and hostname of the node.

The pod resources and allocatable resources.

Information about the node host.

The pods on the node.

The events reported by the node.

Among the information shown for nodes, the following node conditions appear in the output of
the commands shown in this section:

Table 6.1. Node Conditions

Condition Description

Ready If true, the node is healthy and ready to accept pods. If false, the node is not
healthy and is not accepting pods. If unknown, the node controller has not
received a heartbeat from the node for the node-monitor-grace-period
(the default is 40 seconds).

DiskPressure If true, the disk capacity is low.

MemoryPressure If true, the node memory is low.

PIDPressure If true, there are too many processes on the node.

OutOfDisk If true, the node has insufficient free space on the node for adding new pods.

NetworkUnavailable If true, the network for the node is not correctly configured.

NotReady If true, one of the underlying components, such as the container runtime or
network, is experiencing issues or is not yet configured.

SchedulingDisabled Pods cannot be scheduled for placement on the node.

6.1.2. Listing pods on a node in your cluster

OpenShift Dedicated 4 Nodes

154

You can list all the pods on a specific node.

Procedure

To list all or selected pods on selected nodes:

Or:

To list all pods on a specific node, including terminated pods:

6.1.3. Viewing memory and CPU usage statistics on your nodes

You can display usage statistics about nodes, which provide the runtime environments for containers.
These usage statistics include CPU, memory, and storage consumption.

Prerequisites

You must have cluster-reader permission to view the usage statistics.

Metrics must be installed to view the usage statistics.

Procedure

To view the usage statistics:

Example output

To view the usage statistics for nodes with labels:

$ oc get pod --selector=<nodeSelector>

$ oc get pod --selector=kubernetes.io/os

$ oc get pod -l=<nodeSelector>

$ oc get pod -l kubernetes.io/os=linux

$ oc get pod --all-namespaces --field-selector=spec.nodeName=<nodename>

$ oc adm top nodes

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
ip-10-0-12-143.ec2.compute.internal 1503m 100% 4533Mi 61%
ip-10-0-132-16.ec2.compute.internal 76m 5% 1391Mi 18%
ip-10-0-140-137.ec2.compute.internal 398m 26% 2473Mi 33%
ip-10-0-142-44.ec2.compute.internal 656m 43% 6119Mi 82%
ip-10-0-146-165.ec2.compute.internal 188m 12% 3367Mi 45%
ip-10-0-19-62.ec2.compute.internal 896m 59% 5754Mi 77%
ip-10-0-44-193.ec2.compute.internal 632m 42% 5349Mi 72%

$ oc adm top node --selector=''

CHAPTER 6. WORKING WITH NODES

155

You must choose the selector (label query) to filter on. Supports =, ==, and !=.

6.2. USING THE NODE TUNING OPERATOR

Additional resources

Learn about the Node Tuning Operator and how you can use it to manage node-level tuning by
orchestrating the tuned daemon.

The Node Tuning Operator helps you manage node-level tuning by orchestrating the TuneD daemon
and achieves low latency performance by using the Performance Profile controller. The majority of high-
performance applications require some level of kernel tuning. The Node Tuning Operator provides a
unified management interface to users of node-level sysctls and more flexibility to add custom tuning
specified by user needs.

The Operator manages the containerized TuneD daemon for OpenShift Dedicated as a Kubernetes
daemon set. It ensures the custom tuning specification is passed to all containerized TuneD daemons
running in the cluster in the format that the daemons understand. The daemons run on all nodes in the
cluster, one per node.

Node-level settings applied by the containerized TuneD daemon are rolled back on an event that
triggers a profile change or when the containerized TuneD daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator uses the Performance Profile controller to implement automatic tuning to
achieve low latency performance for OpenShift Dedicated applications.

The cluster administrator configures a performance profile to define node-level settings such as the
following:

Updating the kernel to kernel-rt.

Choosing CPUs for housekeeping.

Choosing CPUs for running workloads.

The Node Tuning Operator is part of a standard OpenShift Dedicated installation in version 4.1 and later.

NOTE

In earlier versions of OpenShift Dedicated, the Performance Addon Operator was used to
implement automatic tuning to achieve low latency performance for OpenShift
applications. In OpenShift Dedicated 4.11 and later, this functionality is part of the Node
Tuning Operator.

6.2.1. Accessing an example Node Tuning Operator specification

Use this process to access an example Node Tuning Operator specification.

Procedure

Run the following command to access an example Node Tuning Operator specification:

The default CR is meant for delivering standard node-level tuning for the OpenShift Dedicated

oc get tuned.tuned.openshift.io/default -o yaml -n openshift-cluster-node-tuning-operator

OpenShift Dedicated 4 Nodes

156

The default CR is meant for delivering standard node-level tuning for the OpenShift Dedicated
platform and it can only be modified to set the Operator Management state. Any other custom changes
to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs.
Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift
Dedicated nodes based on node or pod labels and profile priorities.

WARNING

While in certain situations the support for pod labels can be a convenient way of
automatically delivering required tuning, this practice is discouraged and strongly
advised against, especially in large-scale clusters. The default Tuned CR ships
without pod label matching. If a custom profile is created with pod label matching,
then the functionality will be enabled at that time. The pod label functionality will be
deprecated in future versions of the Node Tuning Operator.

6.2.2. Custom tuning specification

The custom resource (CR) for the Operator has two major sections. The first section, profile:, is a list of
TuneD profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The
existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning
specifications are merged and appropriate objects for the containerized TuneD daemons are updated.

Management state

The Operator Management state is set by adjusting the default Tuned CR. By default, the Operator is in
the Managed state and the spec.managementState field is not present in the default Tuned CR. Valid
values for the Operator Management state are as follows:

Managed: the Operator will update its operands as configuration resources are updated

Unmanaged: the Operator will ignore changes to the configuration resources

Removed: the Operator will remove its operands and resources the Operator provisioned

Profile data

The profile: section lists TuneD profiles and their names.



profile:
- name: tuned_profile_1
 data: |
 # TuneD profile specification
 [main]
 summary=Description of tuned_profile_1 profile

 [sysctl]
 net.ipv4.ip_forward=1
 # ... other sysctl's or other TuneD daemon plugins supported by the containerized TuneD

CHAPTER 6. WORKING WITH NODES

157

1

2

3

4

5

6

7

8

9

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR. The recommend: section
is a list of items to recommend the profiles based on a selection criteria.

The individual items of the list:

Optional.

A dictionary of key/value MachineConfig labels. The keys must be unique.

If omitted, profile match is assumed unless a profile with a higher priority matches first or
machineConfigLabels is set.

An optional list.

Profile ordering priority. Lower numbers mean higher priority (0 is the highest priority).

A TuneD profile to apply on a match. For example tuned_profile_1.

Optional operand configuration.

Turn debugging on or off for the TuneD daemon. Options are true for on or false for off. The
default is false.

Turn reapply_sysctl functionality on or off for the TuneD daemon. Options are true for on and
false for off.

...

- name: tuned_profile_n
 data: |
 # TuneD profile specification
 [main]
 summary=Description of tuned_profile_n profile

 # tuned_profile_n profile settings

recommend:
<recommend-item-1>
...
<recommend-item-n>

- machineConfigLabels: 1
 <mcLabels> 2
 match: 3
 <match> 4
 priority: <priority> 5
 profile: <tuned_profile_name> 6
 operand: 7
 debug: <bool> 8
 tunedConfig:
 reapply_sysctl: <bool> 9

OpenShift Dedicated 4 Nodes

158

1

2

3

4

<match> is an optional list recursively defined as follows:

Node or pod label name.

Optional node or pod label value. If omitted, the presence of <label_name> is enough to match.

Optional object type (node or pod). If omitted, node is assumed.

An optional <match> list.

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is
assumed and the profile with the respective <match> section will not be applied or recommended.
Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item
of the <match> list matches, the entire <match> list evaluates to true. Therefore, the list acts as logical
OR operator.

If machineConfigLabels is defined, machine config pool based matching is turned on for the given
recommend: list item. <mcLabels> specifies the labels for a machine config. The machine config is
created automatically to apply host settings, such as kernel boot parameters, for the profile
<tuned_profile_name>. This involves finding all machine config pools with machine config selector
matching <mcLabels> and setting the profile <tuned_profile_name> on all nodes that are assigned
the found machine config pools. To target nodes that have both master and worker roles, you must use
the master role.

The list items match and machineConfigLabels are connected by the logical OR operator. The match
item is evaluated first in a short-circuit manner. Therefore, if it evaluates to true, the
machineConfigLabels item is not considered.

IMPORTANT

When using machine config pool based matching, it is advised to group nodes with the
same hardware configuration into the same machine config pool. Not following this
practice might result in TuneD operands calculating conflicting kernel parameters for two
or more nodes sharing the same machine config pool.

Example: Node or pod label based matching

- label: <label_name> 1
 value: <label_value> 2
 type: <label_type> 3
 <match> 4

- match:
 - label: tuned.openshift.io/elasticsearch
 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 type: pod
 priority: 10
 profile: openshift-control-plane-es
- match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra

CHAPTER 6. WORKING WITH NODES

159

The CR above is translated for the containerized TuneD daemon into its recommend.conf file based on
the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and,
therefore, it is considered first. The containerized TuneD daemon running on a given node looks to see if
there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the
entire <match> section evaluates as false. If there is such a pod with the label, in order for the <match>
section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and
no other profile is considered. If the node/pod label combination did not match, the second highest
priority profile (openshift-control-plane) is considered. This profile is applied if the containerized
TuneD pod runs on a node with labels node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and,
therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile
with higher priority matches on a given node.

Example: Machine config pool based matching

 priority: 20
 profile: openshift-control-plane
- priority: 30
 profile: openshift-node

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:

OpenShift Dedicated 4 Nodes

160

To minimize node reboots, label the target nodes with a label the machine config pool’s node selector
will match, then create the Tuned CR above and finally create the custom machine config pool itself.

Cloud provider-specific TuneD profiles

With this functionality, all Cloud provider-specific nodes can conveniently be assigned a TuneD profile
specifically tailored to a given Cloud provider on a OpenShift Dedicated cluster. This can be
accomplished without adding additional node labels or grouping nodes into machine config pools.

This functionality takes advantage of spec.providerID node object values in the form of <cloud-
provider>://<cloud-provider-specific-id> and writes the file /var/lib/ocp-tuned/provider with the
value <cloud-provider> in NTO operand containers. The content of this file is then used by TuneD to
load provider-<cloud-provider> profile if such profile exists.

The openshift profile that both openshift-control-plane and openshift-node profiles inherit settings
from is now updated to use this functionality through the use of conditional profile loading. Neither NTO
nor TuneD currently include any Cloud provider-specific profiles. However, it is possible to create a
custom profile provider-<cloud-provider> that will be applied to all Cloud provider-specific cluster
nodes.

Example GCE Cloud provider profile

NOTE

 name: openshift-node-custom
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom OpenShift node profile with an additional kernel parameter
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_custom=+skew_tick=1
 name: openshift-node-custom

 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: "worker-custom"
 priority: 20
 profile: openshift-node-custom

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: provider-gce
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=GCE Cloud provider-specific profile
 # Your tuning for GCE Cloud provider goes here.
 name: provider-gce

CHAPTER 6. WORKING WITH NODES

161

NOTE

Due to profile inheritance, any setting specified in the provider-<cloud-provider> profile
will be overwritten by the openshift profile and its child profiles.

6.2.3. Default profiles set on a cluster

The following are the default profiles set on a cluster.

Starting with OpenShift Dedicated 4.9, all OpenShift TuneD profiles are shipped with the TuneD
package. You can use the oc exec command to view the contents of these profiles:

6.2.4. Supported TuneD daemon plugins

Excluding the [main] section, the following TuneD plugins are supported when using custom profiles
defined in the profile: section of the Tuned CR:

audio

cpu

disk

eeepc_she

modules

mounts

net

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: default
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Optimize systems running OpenShift (provider specific parent profile)
 include=-provider-${f:exec:cat:/var/lib/ocp-tuned/provider},openshift
 name: openshift
 recommend:
 - profile: openshift-control-plane
 priority: 30
 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 - profile: openshift-node
 priority: 40

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/openshift{,-
control-plane,-node} -name tuned.conf -exec grep -H ^ {} \;

OpenShift Dedicated 4 Nodes

162

scheduler

scsi_host

selinux

sysctl

sysfs

usb

video

vm

bootloader

There is some dynamic tuning functionality provided by some of these plugins that is not supported. The
following TuneD plugins are currently not supported:

script

systemd

NOTE

The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS)
worker nodes.

Additional resources

Available TuneD Plugins

Getting Started with TuneD

6.3. REMEDIATING, FENCING, AND MAINTAINING NODES

When node-level failures occur, such as the kernel hangs or network interface controllers (NICs) fail, the
work required from the cluster does not decrease, and workloads from affected nodes need to be
restarted somewhere. Failures affecting these workloads risk data loss, corruption, or both. It is
important to isolate the node, known as fencing, before initiating recovery of the workload, known as
remediation, and recovery of the node.

For more information on remediation, fencing, and maintaining nodes, see the Workload Availability for
Red Hat OpenShift documentation.

CHAPTER 6. WORKING WITH NODES

163

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance#available-tuned-plug-ins_customizing-tuned-profiles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/workload_availability_for_red_hat_openshift

CHAPTER 7. WORKING WITH CONTAINERS

7.1. UNDERSTANDING CONTAINERS

The basic units of OpenShift Dedicated applications are called containers. Linux container technologies
are lightweight mechanisms for isolating running processes so that they are limited to interacting with
only their designated resources.

Many application instances can be running in containers on a single host without visibility into each
others' processes, files, network, and so on. Typically, each container provides a single service (often
called a "micro-service"), such as a web server or a database, though containers can be used for arbitrary
workloads.

The Linux kernel has been incorporating capabilities for container technologies for years. OpenShift
Dedicated and Kubernetes add the ability to orchestrate containers across multi-host installations.

7.1.1. About containers and RHEL kernel memory

Due to Red Hat Enterprise Linux (RHEL) behavior, a container on a node with high CPU usage might
seem to consume more memory than expected. The higher memory consumption could be caused by
the kmem_cache in the RHEL kernel. The RHEL kernel creates a kmem_cache for each cgroup. For
added performance, the kmem_cache contains a cpu_cache, and a node cache for any NUMA nodes.
These caches all consume kernel memory.

The amount of memory stored in those caches is proportional to the number of CPUs that the system
uses. As a result, a higher number of CPUs results in a greater amount of kernel memory being held in
these caches. Higher amounts of kernel memory in these caches can cause OpenShift Dedicated
containers to exceed the configured memory limits, resulting in the container being killed.

To avoid losing containers due to kernel memory issues, ensure that the containers request sufficient
memory. You can use the following formula to estimate the amount of memory consumed by the
kmem_cache, where nproc is the number of processing units available that are reported by the nproc
command. The lower limit of container requests should be this value plus the container memory
requirements:

7.1.2. About the container engine and container runtime

A container engine is a piece of software that processes user requests, including command-line options
and image pulls. The container engine uses a container runtime, also called a lower-level container
runtime, to run and manage the components required to deploy and operate containers. You likely will
not need to interact with the container engine or container runtime.

NOTE

The OpenShift Dedicated documentation uses the term container runtime to refer to the
lower-level container runtime. Other documentation can refer to the container engine as
the container runtime.

OpenShift Dedicated uses CRI-O as the container engine and crun or runC as the container runtime.
The default container runtime is crun.

$(nproc) X 1/2 MiB

OpenShift Dedicated 4 Nodes

164

https://www.redhat.com/en/topics/containers#overview

7.2. USING INIT CONTAINERS TO PERFORM TASKS BEFORE A POD IS
DEPLOYED

OpenShift Dedicated provides init containers, which are specialized containers that run before
application containers and can contain utilities or setup scripts not present in an app image.

7.2.1. Understanding Init Containers

You can use an Init Container resource to perform tasks before the rest of a pod is deployed.

A pod can have Init Containers in addition to application containers. Init containers allow you to
reorganize setup scripts and binding code.

An Init Container can:

Contain and run utilities that are not desirable to include in the app Container image for security
reasons.

Contain utilities or custom code for setup that is not present in an app image. For example,
there is no requirement to make an image FROM another image just to use a tool like sed, awk,
python, or dig during setup.

Use Linux namespaces so that they have different filesystem views from app containers, such as
access to secrets that application containers are not able to access.

Each Init Container must complete successfully before the next one is started. So, Init Containers
provide an easy way to block or delay the startup of app containers until some set of preconditions are
met.

For example, the following are some ways you can use Init Containers:

Wait for a service to be created with a shell command like:

Register this pod with a remote server from the downward API with a command like:

Wait for some time before starting the app Container with a command like sleep 60.

Clone a git repository into a volume.

Place values into a configuration file and run a template tool to dynamically generate a
configuration file for the main app Container. For example, place the POD_IP value in a
configuration and generate the main app configuration file using Jinja.

See the Kubernetes documentation for more information.

7.2.2. Creating Init Containers

The following example outlines a simple pod which has two Init Containers. The first waits for myservice
and the second waits for mydb. After both containers complete, the pod begins.

for i in {1..100}; do sleep 1; if dig myservice; then exit 0; fi; done; exit 1

$ curl -X POST
http://$MANAGEMENT_SERVICE_HOST:$MANAGEMENT_SERVICE_PORT/register -d
‘instance=$()&ip=$()’

CHAPTER 7. WORKING WITH CONTAINERS

165

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Procedure

1. Create the pod for the Init Container:

a. Create a YAML file similar to the following:

b. Create the pod:

c. View the status of the pod:

Example output

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: myapp-container
 image: registry.access.redhat.com/ubi9/ubi:latest
 command: ['sh', '-c', 'echo The app is running! && sleep 3600']
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 initContainers:
 - name: init-myservice
 image: registry.access.redhat.com/ubi9/ubi:latest
 command: ['sh', '-c', 'until getent hosts myservice; do echo waiting for myservice; sleep
2; done;']
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 - name: init-mydb
 image: registry.access.redhat.com/ubi9/ubi:latest
 command: ['sh', '-c', 'until getent hosts mydb; do echo waiting for mydb; sleep 2;
done;']
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

$ oc create -f myapp.yaml

$ oc get pods

NAME READY STATUS RESTARTS AGE
myapp-pod 0/1 Init:0/2 0 5s

OpenShift Dedicated 4 Nodes

166

The pod status, Init:0/2, indicates it is waiting for the two services.

2. Create the myservice service.

a. Create a YAML file similar to the following:

b. Create the pod:

c. View the status of the pod:

Example output

The pod status, Init:1/2, indicates it is waiting for one service, in this case the mydb service.

3. Create the mydb service:

a. Create a YAML file similar to the following:

b. Create the pod:

c. View the status of the pod:

kind: Service
apiVersion: v1
metadata:
 name: myservice
spec:
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

$ oc create -f myservice.yaml

$ oc get pods

NAME READY STATUS RESTARTS AGE
myapp-pod 0/1 Init:1/2 0 5s

kind: Service
apiVersion: v1
metadata:
 name: mydb
spec:
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9377

$ oc create -f mydb.yaml

$ oc get pods

CHAPTER 7. WORKING WITH CONTAINERS

167

Example output

The pod status indicated that it is no longer waiting for the services and is running.

7.3. USING VOLUMES TO PERSIST CONTAINER DATA

Files in a container are ephemeral. As such, when a container crashes or stops, the data is lost. You can
use volumes to persist the data used by the containers in a pod. A volume is directory, accessible to the
Containers in a pod, where data is stored for the life of the pod.

7.3.1. Understanding volumes

Volumes are mounted file systems available to pods and their containers which may be backed by a
number of host-local or network attached storage endpoints. Containers are not persistent by default;
on restart, their contents are cleared.

To ensure that the file system on the volume contains no errors and, if errors are present, to repair them
when possible, OpenShift Dedicated invokes the fsck utility prior to the mount utility. This occurs when
either adding a volume or updating an existing volume.

The simplest volume type is emptyDir, which is a temporary directory on a single machine.
Administrators may also allow you to request a persistent volume that is automatically attached to your
pods.

NOTE

emptyDir volume storage may be restricted by a quota based on the pod’s FSGroup, if
the FSGroup parameter is enabled by your cluster administrator.

7.3.2. Working with volumes using the OpenShift Dedicated CLI

You can use the CLI command oc set volume to add and remove volumes and volume mounts for any
object that has a pod template like replication controllers or deployment configs. You can also list
volumes in pods or any object that has a pod template.

The oc set volume command uses the following general syntax:

Object selection

Specify one of the following for the object_selection parameter in the oc set volume command:

Table 7.1. Object Selection

Syntax Description Example

<object_type> <name> Selects <name> of type
<object_type>.

deploymentConfig registry

NAME READY STATUS RESTARTS AGE
myapp-pod 1/1 Running 0 2m

$ oc set volume <object_selection> <operation> <mandatory_parameters> <options>

OpenShift Dedicated 4 Nodes

168

<object_type>/<name> Selects <name> of type
<object_type>.

deploymentConfig/registry

<object_type>--
selector=<object_label_selec
tor>

Selects resources of type
<object_type> that matched
the given label selector.

deploymentConfig--
selector="name=registry"

<object_type> --all Selects all resources of type
<object_type>.

deploymentConfig --all

-f or --filename=<file_name> File name, directory, or URL to file
to use to edit the resource.

-f registry-deployment-
config.json

Syntax Description Example

Operation

Specify --add or --remove for the operation parameter in the oc set volume command.

Mandatory parameters

Any mandatory parameters are specific to the selected operation and are discussed in later sections.

Options

Any options are specific to the selected operation and are discussed in later sections.

7.3.3. Listing volumes and volume mounts in a pod

You can list volumes and volume mounts in pods or pod templates:

Procedure

To list volumes:

List volume supported options:

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

For example:

To list all volumes for pod p1:

$ oc set volume <object_type>/<name> [options]

$ oc set volume pod/p1

CHAPTER 7. WORKING WITH CONTAINERS

169

To list volume v1 defined on all deployment configs:

7.3.4. Adding volumes to a pod

You can add volumes and volume mounts to a pod.

Procedure

To add a volume, a volume mount, or both to pod templates:

Table 7.2. Supported Options for Adding Volumes

Option Description Default

--name Name of the volume. Automatically generated, if not
specified.

-t, --type Name of the volume source.
Supported values: emptyDir,
hostPath, secret, configmap,
persistentVolumeClaim or
projected.

emptyDir

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

-m, --mount-path Mount path inside the selected
containers. Do not mount to the
container root, /, or any path that
is the same in the host and the
container. This can corrupt your
host system if the container is
sufficiently privileged, such as the
host /dev/pts files. It is safe to
mount the host by using /host.

--path Host path. Mandatory parameter
for --type=hostPath. Do not
mount to the container root, /, or
any path that is the same in the
host and the container. This can
corrupt your host system if the
container is sufficiently privileged,
such as the host /dev/pts files. It
is safe to mount the host by using
/host.

$ oc set volume dc --all --name=v1

$ oc set volume <object_type>/<name> --add [options]

OpenShift Dedicated 4 Nodes

170

--secret-name Name of the secret. Mandatory
parameter for --type=secret.

--configmap-name Name of the configmap.
Mandatory parameter for --
type=configmap.

--claim-name Name of the persistent volume
claim. Mandatory parameter for --
type=persistentVolumeClaim
.

--source Details of volume source as a
JSON string. Recommended if
the desired volume source is not
supported by --type.

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

Option Description Default

For example:

To add a new volume source emptyDir to the registry DeploymentConfig object:

TIP

$ oc set volume dc/registry --add

CHAPTER 7. WORKING WITH CONTAINERS

171

1

TIP

You can alternatively apply the following YAML to add the volume:

Example 7.1. Sample deployment config with an added volume

Add the volume source emptyDir.

To add volume v1 with secret secret1 for replication controller r1 and mount inside the
containers at /data:

TIP

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: registry
 namespace: registry
spec:
 replicas: 3
 selector:
 app: httpd
 template:
 metadata:
 labels:
 app: httpd
 spec:
 volumes: 1
 - name: volume-pppsw
 emptyDir: {}
 containers:
 - name: httpd
 image: >-
 image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest
 ports:
 - containerPort: 8080
 protocol: TCP

$ oc set volume rc/r1 --add --name=v1 --type=secret --secret-name='secret1' --mount-
path=/data

OpenShift Dedicated 4 Nodes

172

1
2

TIP

You can alternatively apply the following YAML to add the volume:

Example 7.2. Sample replication controller with added volume and secret

Add the volume and secret.
Add the container mount path.

To add existing persistent volume v1 with claim name pvc1 to deployment configuration dc.json
on disk, mount the volume on container c1 at /data, and update the DeploymentConfig object
on the server:

TIP

kind: ReplicationController
apiVersion: v1
metadata:
 name: example-1
 namespace: example
spec:
 replicas: 0
 selector:
 app: httpd
 deployment: example-1
 deploymentconfig: example
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: httpd
 deployment: example-1
 deploymentconfig: example
 spec:
 volumes: 1
 - name: v1
 secret:
 secretName: secret1
 defaultMode: 420
 containers:
 - name: httpd
 image: >-
 image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest
 volumeMounts: 2
 - name: v1
 mountPath: /data

$ oc set volume -f dc.json --add --name=v1 --type=persistentVolumeClaim \
 --claim-name=pvc1 --mount-path=/data --containers=c1

CHAPTER 7. WORKING WITH CONTAINERS

173

1
2

TIP

You can alternatively apply the following YAML to add the volume:

Example 7.3. Sample deployment config with persistent volume added

Add the persistent volume claim named `pvc1.
Add the container mount path.

To add a volume v1 based on Git repository https://github.com/namespace1/project1 with
revision 5125c45f9f563 for all replication controllers:

7.3.5. Updating volumes and volume mounts in a pod

You can modify the volumes and volume mounts in a pod.

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example
 namespace: example
spec:
 replicas: 3
 selector:
 app: httpd
 template:
 metadata:
 labels:
 app: httpd
 spec:
 volumes:
 - name: volume-pppsw
 emptyDir: {}
 - name: v1 1
 persistentVolumeClaim:
 claimName: pvc1
 containers:
 - name: httpd
 image: >-
 image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest
 ports:
 - containerPort: 8080
 protocol: TCP
 volumeMounts: 2
 - name: v1
 mountPath: /data

$ oc set volume rc --all --add --name=v1 \
 --source='{"gitRepo": {
 "repository": "https://github.com/namespace1/project1",
 "revision": "5125c45f9f563"
 }}'

OpenShift Dedicated 4 Nodes

174

Procedure

Updating existing volumes using the --overwrite option:

For example:

To replace existing volume v1 for replication controller r1 with existing persistent volume claim
pvc1:

TIP

$ oc set volume <object_type>/<name> --add --overwrite [options]

$ oc set volume rc/r1 --add --overwrite --name=v1 --type=persistentVolumeClaim --claim-
name=pvc1

CHAPTER 7. WORKING WITH CONTAINERS

175

1

TIP

You can alternatively apply the following YAML to replace the volume:

Example 7.4. Sample replication controller with persistent volume claim named pvc1

Set persistent volume claim to pvc1.

To change the DeploymentConfig object d1 mount point to /opt for volume v1:

TIP

kind: ReplicationController
apiVersion: v1
metadata:
 name: example-1
 namespace: example
spec:
 replicas: 0
 selector:
 app: httpd
 deployment: example-1
 deploymentconfig: example
 template:
 metadata:
 labels:
 app: httpd
 deployment: example-1
 deploymentconfig: example
 spec:
 volumes:
 - name: v1 1
 persistentVolumeClaim:
 claimName: pvc1
 containers:
 - name: httpd
 image: >-
 image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest
 ports:
 - containerPort: 8080
 protocol: TCP
 volumeMounts:
 - name: v1
 mountPath: /data

$ oc set volume dc/d1 --add --overwrite --name=v1 --mount-path=/opt

OpenShift Dedicated 4 Nodes

176

1

TIP

You can alternatively apply the following YAML to change the mount point:

Example 7.5. Sample deployment config with mount point set to opt.

Set the mount point to /opt.

7.3.6. Removing volumes and volume mounts from a pod

You can remove a volume or volume mount from a pod.

Procedure

To remove a volume from pod templates:

Table 7.3. Supported options for removing volumes

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example
 namespace: example
spec:
 replicas: 3
 selector:
 app: httpd
 template:
 metadata:
 labels:
 app: httpd
 spec:
 volumes:
 - name: volume-pppsw
 emptyDir: {}
 - name: v2
 persistentVolumeClaim:
 claimName: pvc1
 - name: v1
 persistentVolumeClaim:
 claimName: pvc1
 containers:
 - name: httpd
 image: >-
 image-registry.openshift-image-registry.svc:5000/openshift/httpd:latest
 ports:
 - containerPort: 8080
 protocol: TCP
 volumeMounts: 1
 - name: v1
 mountPath: /opt

$ oc set volume <object_type>/<name> --remove [options]

CHAPTER 7. WORKING WITH CONTAINERS

177

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

--confirm Indicate that you want to remove
multiple volumes at once.

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

For example:

To remove a volume v1 from the DeploymentConfig object d1:

To unmount volume v1 from container c1 for the DeploymentConfig object d1 and remove the
volume v1 if it is not referenced by any containers on d1:

To remove all volumes for replication controller r1:

7.3.7. Configuring volumes for multiple uses in a pod

You can configure a volume to share one volume for multiple uses in a single pod using the
volumeMounts.subPath property to specify a subPath value inside a volume instead of the volume’s
root.

NOTE

You cannot add a subPath parameter to an existing scheduled pod.

Procedure

1. To view the list of files in the volume, run the oc rsh command:

$ oc set volume dc/d1 --remove --name=v1

$ oc set volume dc/d1 --remove --name=v1 --containers=c1

$ oc set volume rc/r1 --remove --confirm

$ oc rsh <pod>

OpenShift Dedicated 4 Nodes

178

1

2

Example output

2. Specify the subPath:

Example Pod spec with subPath parameter

Databases are stored in the mysql folder.

HTML content is stored in the html folder.

7.4. MAPPING VOLUMES USING PROJECTED VOLUMES

A projected volume maps several existing volume sources into the same directory.

The following types of volume sources can be projected:

sh-4.2$ ls /path/to/volume/subpath/mount
example_file1 example_file2 example_file3

apiVersion: v1
kind: Pod
metadata:
 name: my-site
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: mysql
 image: mysql
 volumeMounts:
 - mountPath: /var/lib/mysql
 name: site-data
 subPath: mysql 1
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 - name: php
 image: php
 volumeMounts:
 - mountPath: /var/www/html
 name: site-data
 subPath: html 2
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: site-data
 persistentVolumeClaim:
 claimName: my-site-data

CHAPTER 7. WORKING WITH CONTAINERS

179

Secrets

Config Maps

Downward API

NOTE

All sources are required to be in the same namespace as the pod.

7.4.1. Understanding projected volumes

Projected volumes can map any combination of these volume sources into a single directory, allowing
the user to:

automatically populate a single volume with the keys from multiple secrets, config maps, and
with downward API information, so that I can synthesize a single directory with various sources
of information;

populate a single volume with the keys from multiple secrets, config maps, and with downward
API information, explicitly specifying paths for each item, so that I can have full control over the
contents of that volume.

IMPORTANT

When the RunAsUser permission is set in the security context of a Linux-based pod, the
projected files have the correct permissions set, including container user ownership.
However, when the Windows equivalent RunAsUsername permission is set in a Windows
pod, the kubelet is unable to correctly set ownership on the files in the projected volume.

Therefore, the RunAsUsername permission set in the security context of a Windows pod
is not honored for Windows projected volumes running in OpenShift Dedicated.

The following general scenarios show how you can use projected volumes.

Config map, secrets, Downward API.

Projected volumes allow you to deploy containers with configuration data that includes passwords.
An application using these resources could be deploying Red Hat OpenStack Platform (RHOSP) on
Kubernetes. The configuration data might have to be assembled differently depending on if the
services are going to be used for production or for testing. If a pod is labeled with production or
testing, the downward API selector metadata.labels can be used to produce the correct RHOSP
configs.

Config map + secrets.

Projected volumes allow you to deploy containers involving configuration data and passwords. For
example, you might execute a config map with some sensitive encrypted tasks that are decrypted
using a vault password file.

ConfigMap + Downward API.

Projected volumes allow you to generate a config including the pod name (available via the
metadata.name selector). This application can then pass the pod name along with requests to easily
determine the source without using IP tracking.

Secrets + Downward API.

Projected volumes allow you to use a secret as a public key to encrypt the namespace of the pod

OpenShift Dedicated 4 Nodes

180

Projected volumes allow you to use a secret as a public key to encrypt the namespace of the pod
(available via the metadata.namespace selector). This example allows the Operator to use the
application to deliver the namespace information securely without using an encrypted transport.

7.4.1.1. Example Pod specs

The following are examples of Pod specs for creating projected volumes.

Pod with a secret, a Downward API, and a config map

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: container-test
 image: busybox
 volumeMounts: 1
 - name: all-in-one
 mountPath: "/projected-volume" 2
 readOnly: true 3
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes: 4
 - name: all-in-one 5
 projected:
 defaultMode: 0400 6
 sources:
 - secret:
 name: mysecret 7
 items:
 - key: username
 path: my-group/my-username 8
 - downwardAPI: 9
 items:
 - path: "labels"
 fieldRef:
 fieldPath: metadata.labels
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: container-test
 resource: limits.cpu
 - configMap: 10
 name: myconfigmap
 items:

CHAPTER 7. WORKING WITH CONTAINERS

181

1

2

3

4

5

6

7

8

9

10

11

Add a volumeMounts section for each container that needs the secret.

Specify a path to an unused directory where the secret will appear.

Set readOnly to true.

Add a volumes block to list each projected volume source.

Specify any name for the volume.

Set the execute permission on the files.

Add a secret. Enter the name of the secret object. Each secret you want to use must be listed.

Specify the path to the secrets file under the mountPath. Here, the secrets file is in /projected-
volume/my-group/my-username.

Add a Downward API source.

Add a ConfigMap source.

Set the mode for the specific projection

NOTE

If there are multiple containers in the pod, each container needs a volumeMounts
section, but only one volumes section is needed.

Pod with multiple secrets with a non-default permission mode set

 - key: config
 path: my-group/my-config
 mode: 0777 11

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: container-test
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

OpenShift Dedicated 4 Nodes

182

NOTE

The defaultMode can only be specified at the projected level and not for each volume
source. However, as illustrated above, you can explicitly set the mode for each individual
projection.

7.4.1.2. Pathing Considerations

Collisions Between Keys when Configured Paths are Identical

If you configure any keys with the same path, the pod spec will not be accepted as valid. In the
following example, the specified path for mysecret and myconfigmap are the same:

 volumes:
 - name: all-in-one
 projected:
 defaultMode: 0755
 sources:
 - secret:
 name: mysecret
 items:
 - key: username
 path: my-group/my-username
 - secret:
 name: mysecret2
 items:
 - key: password
 path: my-group/my-password
 mode: 511

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: container-test
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: mysecret

CHAPTER 7. WORKING WITH CONTAINERS

183

Consider the following situations related to the volume file paths.

Collisions Between Keys without Configured Paths

The only run-time validation that can occur is when all the paths are known at pod creation, similar to
the above scenario. Otherwise, when a conflict occurs the most recent specified resource will
overwrite anything preceding it (this is true for resources that are updated after pod creation as
well).

Collisions when One Path is Explicit and the Other is Automatically Projected

In the event that there is a collision due to a user specified path matching data that is automatically
projected, the latter resource will overwrite anything preceding it as before

7.4.2. Configuring a Projected Volume for a Pod

When creating projected volumes, consider the volume file path situations described in Understanding
projected volumes.

The following example shows how to use a projected volume to mount an existing secret volume source.
The steps can be used to create a user name and password secrets from local files. You then create a
pod that runs one container, using a projected volume to mount the secrets into the same shared
directory.

The user name and password values can be any valid string that is base64 encoded.

The following example shows admin in base64:

Example output

The following example shows the password 1f2d1e2e67df in base64:

Example output

Procedure

To use a projected volume to mount an existing secret volume source.

 items:
 - key: username
 path: my-group/data
 - configMap:
 name: myconfigmap
 items:
 - key: config
 path: my-group/data

$ echo -n "admin" | base64

YWRtaW4=

$ echo -n "1f2d1e2e67df" | base64

MWYyZDFlMmU2N2Rm

OpenShift Dedicated 4 Nodes

184

1. Create the secret:

a. Create a YAML file similar to the following, replacing the password and user information as
appropriate:

b. Use the following command to create the secret:

For example:

Example output

c. You can check that the secret was created using the following commands:

For example:

Example output

For example:

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
data:
 pass: MWYyZDFlMmU2N2Rm
 user: YWRtaW4=

$ oc create -f <secrets-filename>

$ oc create -f secret.yaml

secret "mysecret" created

$ oc get secret <secret-name>

$ oc get secret mysecret

NAME TYPE DATA AGE
mysecret Opaque 2 17h

$ oc get secret <secret-name> -o yaml

$ oc get secret mysecret -o yaml

apiVersion: v1
data:
 pass: MWYyZDFlMmU2N2Rm
 user: YWRtaW4=
kind: Secret
metadata:
 creationTimestamp: 2017-05-30T20:21:38Z

CHAPTER 7. WORKING WITH CONTAINERS

185

1

2. Create a pod with a projected volume.

a. Create a YAML file similar to the following, including a volumes section:

The name of the secret you created.

b. Create the pod from the configuration file:

For example:

Example output

 name: mysecret
 namespace: default
 resourceVersion: "2107"
 selfLink: /api/v1/namespaces/default/secrets/mysecret
 uid: 959e0424-4575-11e7-9f97-fa163e4bd54c
type: Opaque

kind: Pod
metadata:
 name: test-projected-volume
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-projected-volume
 image: busybox
 args:
 - sleep
 - "86400"
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: mysecret 1

$ oc create -f <your_yaml_file>.yaml

$ oc create -f secret-pod.yaml

pod "test-projected-volume" created

OpenShift Dedicated 4 Nodes

186

3. Verify that the pod container is running, and then watch for changes to the pod:

For example:

The output should appear similar to the following:

Example output

4. In another terminal, use the oc exec command to open a shell to the running container:

For example:

5. In your shell, verify that the projected-volumes directory contains your projected sources:

Example output

7.5. ALLOWING CONTAINERS TO CONSUME API OBJECTS

The Downward API is a mechanism that allows containers to consume information about API objects
without coupling to OpenShift Dedicated. Such information includes the pod’s name, namespace, and
resource values. Containers can consume information from the downward API using environment
variables or a volume plugin.

7.5.1. Expose pod information to Containers using the Downward API

The Downward API contains such information as the pod’s name, project, and resource values.
Containers can consume information from the downward API using environment variables or a volume
plugin.

Fields within the pod are selected using the FieldRef API type. FieldRef has two fields:

$ oc get pod <name>

$ oc get pod test-projected-volume

NAME READY STATUS RESTARTS AGE
test-projected-volume 1/1 Running 0 14s

$ oc exec -it <pod> <command>

$ oc exec -it test-projected-volume -- /bin/sh

/ # ls

bin home root tmp
dev proc run usr
etc projected-volume sys var

CHAPTER 7. WORKING WITH CONTAINERS

187

Field Description

fieldPath The path of the field to select, relative to the pod.

apiVersion The API version to interpret the fieldPath selector
within.

Currently, the valid selectors in the v1 API include:

Selector Description

metadata.name The pod’s name. This is supported in both
environment variables and volumes.

metadata.namespace The pod’s namespace.This is supported in both
environment variables and volumes.

metadata.labels The pod’s labels. This is only supported in volumes
and not in environment variables.

metadata.annotations The pod’s annotations. This is only supported in
volumes and not in environment variables.

status.podIP The pod’s IP. This is only supported in environment
variables and not volumes.

The apiVersion field, if not specified, defaults to the API version of the enclosing pod template.

7.5.2. Understanding how to consume container values using the downward API

You containers can consume API values using environment variables or a volume plugin. Depending on
the method you choose, containers can consume:

Pod name

Pod project/namespace

Pod annotations

Pod labels

Annotations and labels are available using only a volume plugin.

7.5.2.1. Consuming container values using environment variables

When using a container’s environment variables, use the EnvVar type’s valueFrom field (of type
EnvVarSource) to specify that the variable’s value should come from a FieldRef source instead of the
literal value specified by the value field.

Only constant attributes of the pod can be consumed this way, as environment variables cannot be

OpenShift Dedicated 4 Nodes

188

Only constant attributes of the pod can be consumed this way, as environment variables cannot be
updated once a process is started in a way that allows the process to be notified that the value of a
variable has changed. The fields supported using environment variables are:

Pod name

Pod project/namespace

Procedure

1. Create a new pod spec that contains the environment variables you want the container to
consume:

a. Create a pod.yaml file similar to the following:

b. Create the pod from the pod.yaml file:

Verification

Check the container’s logs for the MY_POD_NAME and MY_POD_NAMESPACE values:

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: MY_POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never
...

$ oc create -f pod.yaml

$ oc logs -p dapi-env-test-pod

CHAPTER 7. WORKING WITH CONTAINERS

189

7.5.2.2. Consuming container values using a volume plugin

You containers can consume API values using a volume plugin.

Containers can consume:

Pod name

Pod project/namespace

Pod annotations

Pod labels

Procedure

To use the volume plugin:

1. Create a new pod spec that contains the environment variables you want the container to
consume:

a. Create a volume-pod.yaml file similar to the following:

kind: Pod
apiVersion: v1
metadata:
 labels:
 zone: us-east-coast
 cluster: downward-api-test-cluster1
 rack: rack-123
 name: dapi-volume-test-pod
 annotations:
 annotation1: "345"
 annotation2: "456"
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: volume-test-container
 image: gcr.io/google_containers/busybox
 command: ["sh", "-c", "cat /tmp/etc/pod_labels /tmp/etc/pod_annotations"]
 volumeMounts:
 - name: podinfo
 mountPath: /tmp/etc
 readOnly: false
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: podinfo
 downwardAPI:
 defaultMode: 420
 items:
 - fieldRef:

OpenShift Dedicated 4 Nodes

190

b. Create the pod from the volume-pod.yaml file:

Verification

Check the container’s logs and verify the presence of the configured fields:

Example output

7.5.3. Understanding how to consume container resources using the Downward API

When creating pods, you can use the Downward API to inject information about computing resource
requests and limits so that image and application authors can correctly create an image for specific
environments.

You can do this using environment variable or a volume plugin.

7.5.3.1. Consuming container resources using environment variables

When creating pods, you can use the Downward API to inject information about computing resource
requests and limits using environment variables.

When creating the pod configuration, specify environment variables that correspond to the contents of
the resources field in the spec.container field.

NOTE

If the resource limits are not included in the container configuration, the downward API
defaults to the node’s CPU and memory allocatable values.

 fieldPath: metadata.name
 path: pod_name
 - fieldRef:
 fieldPath: metadata.namespace
 path: pod_namespace
 - fieldRef:
 fieldPath: metadata.labels
 path: pod_labels
 - fieldRef:
 fieldPath: metadata.annotations
 path: pod_annotations
 restartPolicy: Never
...

$ oc create -f volume-pod.yaml

$ oc logs -p dapi-volume-test-pod

cluster=downward-api-test-cluster1
rack=rack-123
zone=us-east-coast
annotation1=345
annotation2=456
kubernetes.io/config.source=api

CHAPTER 7. WORKING WITH CONTAINERS

191

Procedure

1. Create a new pod spec that contains the resources you want to inject:

a. Create a pod.yaml file similar to the following:

b. Create the pod from the pod.yaml file:

7.5.3.2. Consuming container resources using a volume plugin

When creating pods, you can use the Downward API to inject information about computing resource
requests and limits using a volume plugin.

When creating the pod configuration, use the spec.volumes.downwardAPI.items field to describe the
desired resources that correspond to the spec.resources field.

NOTE

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["/bin/sh", "-c", "env"]
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"
 env:
 - name: MY_CPU_REQUEST
 valueFrom:
 resourceFieldRef:
 resource: requests.cpu
 - name: MY_CPU_LIMIT
 valueFrom:
 resourceFieldRef:
 resource: limits.cpu
 - name: MY_MEM_REQUEST
 valueFrom:
 resourceFieldRef:
 resource: requests.memory
 - name: MY_MEM_LIMIT
 valueFrom:
 resourceFieldRef:
 resource: limits.memory
...

$ oc create -f pod.yaml

OpenShift Dedicated 4 Nodes

192

NOTE

If the resource limits are not included in the container configuration, the Downward API
defaults to the node’s CPU and memory allocatable values.

Procedure

1. Create a new pod spec that contains the resources you want to inject:

a. Create a pod.yaml file similar to the following:

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: client-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["sh", "-c", "while true; do echo; if [[-e /etc/cpu_limit]]; then cat
/etc/cpu_limit; fi; if [[-e /etc/cpu_request]]; then cat /etc/cpu_request; fi; if [[-e
/etc/mem_limit]]; then cat /etc/mem_limit; fi; if [[-e /etc/mem_request]]; then cat
/etc/mem_request; fi; sleep 5; done"]
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"
 volumeMounts:
 - name: podinfo
 mountPath: /etc
 readOnly: false
 volumes:
 - name: podinfo
 downwardAPI:
 items:
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: client-container
 resource: limits.cpu
 - path: "cpu_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.cpu
 - path: "mem_limit"
 resourceFieldRef:
 containerName: client-container
 resource: limits.memory
 - path: "mem_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.memory
...

CHAPTER 7. WORKING WITH CONTAINERS

193

b. Create the pod from the volume-pod.yaml file:

7.5.4. Consuming secrets using the Downward API

When creating pods, you can use the downward API to inject secrets so image and application authors
can create an image for specific environments.

Procedure

1. Create a secret to inject:

a. Create a secret.yaml file similar to the following:

b. Create the secret object from the secret.yaml file:

2. Create a pod that references the username field from the above Secret object:

a. Create a pod.yaml file similar to the following:

$ oc create -f volume-pod.yaml

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
data:
 password: <password>
 username: <username>
type: kubernetes.io/basic-auth

$ oc create -f secret.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: username
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:

OpenShift Dedicated 4 Nodes

194

b. Create the pod from the pod.yaml file:

Verification

Check the container’s logs for the MY_SECRET_USERNAME value:

7.5.5. Consuming configuration maps using the Downward API

When creating pods, you can use the Downward API to inject configuration map values so image and
application authors can create an image for specific environments.

Procedure

1. Create a config map with the values to inject:

a. Create a configmap.yaml file similar to the following:

b. Create the config map from the configmap.yaml file:

2. Create a pod that references the above config map:

a. Create a pod.yaml file similar to the following:

 drop: [ALL]
 restartPolicy: Never
...

$ oc create -f pod.yaml

$ oc logs -p dapi-env-test-pod

apiVersion: v1
kind: ConfigMap
metadata:
 name: myconfigmap
data:
 mykey: myvalue

$ oc create -f configmap.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]

CHAPTER 7. WORKING WITH CONTAINERS

195

b. Create the pod from the pod.yaml file:

Verification

Check the container’s logs for the MY_CONFIGMAP_VALUE value:

7.5.6. Referencing environment variables

When creating pods, you can reference the value of a previously defined environment variable by using
the $() syntax. If the environment variable reference can not be resolved, the value will be left as the
provided string.

Procedure

1. Create a pod that references an existing environment variable:

a. Create a pod.yaml file similar to the following:

 env:
 - name: MY_CONFIGMAP_VALUE
 valueFrom:
 configMapKeyRef:
 name: myconfigmap
 key: mykey
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Always
...

$ oc create -f pod.yaml

$ oc logs -p dapi-env-test-pod

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_EXISTING_ENV
 value: my_value
 - name: MY_ENV_VAR_REF_ENV
 value: $(MY_EXISTING_ENV)
 securityContext:

OpenShift Dedicated 4 Nodes

196

b. Create the pod from the pod.yaml file:

Verification

Check the container’s logs for the MY_ENV_VAR_REF_ENV value:

7.5.7. Escaping environment variable references

When creating a pod, you can escape an environment variable reference by using a double dollar sign.
The value will then be set to a single dollar sign version of the provided value.

Procedure

1. Create a pod that references an existing environment variable:

a. Create a pod.yaml file similar to the following:

b. Create the pod from the pod.yaml file:

 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never
...

$ oc create -f pod.yaml

$ oc logs -p dapi-env-test-pod

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_NEW_ENV
 value: $$(SOME_OTHER_ENV)
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never
...

$ oc create -f pod.yaml

CHAPTER 7. WORKING WITH CONTAINERS

197

Verification

Check the container’s logs for the MY_NEW_ENV value:

7.6. COPYING FILES TO OR FROM OPENSHIFT DEDICATED
CONTAINERS

You can use the CLI to copy local files to or from a remote directory in a container using the rsync
command.

7.6.1. Understanding how to copy files

The oc rsync command, or remote sync, is a useful tool for copying database archives to and from your
pods for backup and restore purposes. You can also use oc rsync to copy source code changes into a
running pod for development debugging, when the running pod supports hot reload of source files.

7.6.1.1. Requirements

Specifying the Copy Source

The source argument of the oc rsync command must point to either a local directory or a pod
directory. Individual files are not supported.
When specifying a pod directory the directory name must be prefixed with the pod name:

If the directory name ends in a path separator (/), only the contents of the directory are copied to the
destination. Otherwise, the directory and its contents are copied to the destination.

Specifying the Copy Destination

The destination argument of the oc rsync command must point to a directory. If the directory does
not exist, but rsync is used for copy, the directory is created for you.

Deleting Files at the Destination

The --delete flag may be used to delete any files in the remote directory that are not in the local
directory.

Continuous Syncing on File Change

Using the --watch option causes the command to monitor the source path for any file system
changes, and synchronizes changes when they occur. With this argument, the command runs forever.
Synchronization occurs after short quiet periods to ensure a rapidly changing file system does not
result in continuous synchronization calls.

When using the --watch option, the behavior is effectively the same as manually invoking oc rsync
repeatedly, including any arguments normally passed to oc rsync. Therefore, you can control the
behavior via the same flags used with manual invocations of oc rsync, such as --delete.

$ oc logs -p dapi-env-test-pod

$ oc rsync <source> <destination> [-c <container>]

<pod name>:<dir>

OpenShift Dedicated 4 Nodes

198

7.6.2. Copying files to and from containers

Support for copying local files to or from a container is built into the CLI.

Prerequisites

When working with oc rsync, note the following:

rsync must be installed. The oc rsync command uses the local rsync tool, if present on the
client machine and the remote container.
If rsync is not found locally or in the remote container, a tar archive is created locally and sent
to the container where the tar utility is used to extract the files. If tar is not available in the
remote container, the copy will fail.

The tar copy method does not provide the same functionality as oc rsync. For example, oc
rsync creates the destination directory if it does not exist and only sends files that are different
between the source and the destination.

NOTE

In Windows, the cwRsync client should be installed and added to the PATH for
use with the oc rsync command.

Procedure

To copy a local directory to a pod directory:

For example:

To copy a pod directory to a local directory:

Example output

7.6.3. Using advanced Rsync features

The oc rsync command exposes fewer command-line options than standard rsync. In the case that you
want to use a standard rsync command-line option that is not available in oc rsync, for example the --
exclude-from=FILE option, it might be possible to use standard rsync 's --rsh (-e) option or
RSYNC_RSH environment variable as a workaround, as follows:

or:

Export the RSYNC_RSH variable:

$ oc rsync <local-dir> <pod-name>:/<remote-dir> -c <container-name>

$ oc rsync /home/user/source devpod1234:/src -c user-container

$ oc rsync devpod1234:/src /home/user/source

$ oc rsync devpod1234:/src/status.txt /home/user/

$ rsync --rsh='oc rsh' --exclude-from=<file_name> <local-dir> <pod-name>:/<remote-dir>

CHAPTER 7. WORKING WITH CONTAINERS

199

Then, run the rsync command:

Both of the above examples configure standard rsync to use oc rsh as its remote shell program to
enable it to connect to the remote pod, and are an alternative to running oc rsync.

7.7. EXECUTING REMOTE COMMANDS IN AN OPENSHIFT DEDICATED
CONTAINER

You can use the CLI to execute remote commands in OpenShift Dedicated containers.

7.7.1. Executing remote commands in containers

Support for remote container command execution is built into the CLI.

Procedure

To run a command in a container:

For example:

Example output

IMPORTANT

For security purposes, the oc exec command does not work when accessing privileged
containers except when the command is executed by a cluster-admin user.

7.7.2. Protocol for initiating a remote command from a client

Clients initiate the execution of a remote command in a container by issuing a request to the Kubernetes
API server:

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the project of the target pod.

<pod> is the name of the target pod.

$ export RSYNC_RSH='oc rsh'

$ rsync --exclude-from=<file_name> <local-dir> <pod-name>:/<remote-dir>

$ oc exec <pod> [-c <container>] -- <command> [<arg_1> ... <arg_n>]

$ oc exec mypod date

Thu Apr 9 02:21:53 UTC 2015

/proxy/nodes/<node_name>/exec/<namespace>/<pod>/<container>?command=<command>

OpenShift Dedicated 4 Nodes

200

https://access.redhat.com/errata/RHSA-2015:1650

<container> is the name of the target container.

<command> is the desired command to be executed.

For example:

Additionally, the client can add parameters to the request to indicate if:

the client should send input to the remote container’s command (stdin).

the client’s terminal is a TTY.

the remote container’s command should send output from stdout to the client.

the remote container’s command should send output from stderr to the client.

After sending an exec request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses HTTP/2.

The client creates one stream each for stdin, stdout, and stderr. To distinguish among the streams, the
client sets the streamType header on the stream to one of stdin, stdout, or stderr.

The client closes all streams, the upgraded connection, and the underlying connection when it is finished
with the remote command execution request.

7.8. USING PORT FORWARDING TO ACCESS APPLICATIONS IN A
CONTAINER

OpenShift Dedicated supports port forwarding to pods.

7.8.1. Understanding port forwarding

You can use the CLI to forward one or more local ports to a pod. This allows you to listen on a given or
random port locally, and have data forwarded to and from given ports in the pod.

Support for port forwarding is built into the CLI:

The CLI listens on each local port specified by the user, forwarding using the protocol described below.

Ports may be specified using the following formats:

5000 The client listens on port 5000 locally and forwards to 5000 in the pod.

6000:5000 The client listens on port 6000 locally and forwards to 5000 in the pod.

:5000 or
0:5000

The client selects a free local port and forwards to 5000 in the pod.

OpenShift Dedicated handles port-forward requests from clients. Upon receiving a request, OpenShift

/proxy/nodes/node123.openshift.com/exec/myns/mypod/mycontainer?command=date

$ oc port-forward <pod> [<local_port>:]<remote_port> [...[<local_port_n>:]<remote_port_n>]

CHAPTER 7. WORKING WITH CONTAINERS

201

OpenShift Dedicated handles port-forward requests from clients. Upon receiving a request, OpenShift
Dedicated upgrades the response and waits for the client to create port-forwarding streams. When
OpenShift Dedicated receives a new stream, it copies data between the stream and the pod’s port.

Architecturally, there are options for forwarding to a pod’s port. The supported OpenShift Dedicated
implementation invokes nsenter directly on the node host to enter the pod’s network namespace, then
invokes socat to copy data between the stream and the pod’s port. However, a custom implementation
could include running a helper pod that then runs nsenter and socat, so that those binaries are not
required to be installed on the host.

7.8.2. Using port forwarding

You can use the CLI to port-forward one or more local ports to a pod.

Procedure

Use the following command to listen on the specified port in a pod:

For example:

Use the following command to listen on ports 5000 and 6000 locally and forward data to and
from ports 5000 and 6000 in the pod:

Example output

Use the following command to listen on port 8888 locally and forward to 5000 in the pod:

Example output

Use the following command to listen on a free port locally and forward to 5000 in the pod:

Example output

$ oc port-forward <pod> [<local_port>:]<remote_port> [...[<local_port_n>:]<remote_port_n>]

$ oc port-forward <pod> 5000 6000

Forwarding from 127.0.0.1:5000 -> 5000
Forwarding from [::1]:5000 -> 5000
Forwarding from 127.0.0.1:6000 -> 6000
Forwarding from [::1]:6000 -> 6000

$ oc port-forward <pod> 8888:5000

Forwarding from 127.0.0.1:8888 -> 5000
Forwarding from [::1]:8888 -> 5000

$ oc port-forward <pod> :5000

Forwarding from 127.0.0.1:42390 -> 5000
Forwarding from [::1]:42390 -> 5000

OpenShift Dedicated 4 Nodes

202

Or:

7.8.3. Protocol for initiating port forwarding from a client

Clients initiate port forwarding to a pod by issuing a request to the Kubernetes API server:

/proxy/nodes/<node_name>/portForward/<namespace>/<pod>

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the namespace of the target pod.

<pod> is the name of the target pod.

For example:

/proxy/nodes/node123.openshift.com/portForward/myns/mypod

After sending a port forward request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses Hyptertext Transfer Protocol Version
2 (HTTP/2).

The client creates a stream with the port header containing the target port in the pod. All data written to
the stream is delivered via the kubelet to the target pod and port. Similarly, all data sent from the pod
for that forwarded connection is delivered back to the same stream in the client.

The client closes all streams, the upgraded connection, and the underlying connection when it is finished
with the port forwarding request.

$ oc port-forward <pod> 0:5000

CHAPTER 7. WORKING WITH CONTAINERS

203

https://httpwg.org/specs/rfc7540.html

CHAPTER 8. WORKING WITH CLUSTERS

8.1. VIEWING SYSTEM EVENT INFORMATION IN OPENSHIFT
DEDICATED CLUSTERS

You can view events in OpenShift Dedicated, which are based on events that happen to API objects in
an OpenShift Dedicated cluster.

8.1.1. Understanding events

Review the following information to learn how OpenShift Dedicated uses events to record information
about real-world events in a resource-agnostic manner. Events also allow developers and administrators
to consume information about system components in a unified way.

8.1.2. Viewing events using the CLI

You can get a list of events in a given project by using the CLI.

Procedure

View events in a project by using a command similar to the following:

where:

project

Specifies the name of the project.

For example:

Example output

$ oc get events [-n <project>]

$ oc get events -n openshift-config

LAST SEEN TYPE REASON OBJECT MESSAGE
97m Normal Scheduled pod/dapi-env-test-pod Successfully assigned
openshift-config/dapi-env-test-pod to ip-10-0-171-202.ec2.internal
97m Normal Pulling pod/dapi-env-test-pod pulling image
"gcr.io/google_containers/busybox"
97m Normal Pulled pod/dapi-env-test-pod Successfully pulled image
"gcr.io/google_containers/busybox"
97m Normal Created pod/dapi-env-test-pod Created container
9m5s Warning FailedCreatePodSandBox pod/dapi-volume-test-pod Failed create
pod sandbox: rpc error: code = Unknown desc = failed to create pod network sandbox
k8s_dapi-volume-test-pod_openshift-config_6bc60c1f-452e-11e9-9140-
0eec59c23068_0(748c7a40db3d08c07fb4f9eba774bd5effe5f0d5090a242432a73eee66ba9e22
): Multus: Err adding pod to network "ovn-kubernetes": cannot set "ovn-kubernetes" ifname to
"eth0": no netns: failed to Statfs "/proc/33366/ns/net": no such file or directory
8m31s Normal Scheduled pod/dapi-volume-test-pod Successfully assigned
openshift-config/dapi-volume-test-pod to ip-10-0-171-202.ec2.internal
#...

OpenShift Dedicated 4 Nodes

204

View events in your project from the OpenShift Dedicated console:

1. Launch the OpenShift Dedicated console.

2. Click Home → Events and select your project.

3. Move to resource that you want to see events. For example: Home → Projects → <project-
name> → <resource-name>.
Many objects, such as pods and deployments, also have an Events tab, which shows events
related to that object.

8.1.3. List of events

Review the information in this section to learn about OpenShift Dedicated events.

Table 8.1. Configuration events

Name Description

FailedValidation Failed pod configuration validation.

Table 8.2. Container events

Name Description

BackOff Back-off restarting failed the container.

Created Container created.

Failed Pull/Create/Start failed.

Killing Killing the container.

Started Container started.

Preempting Preempting other pods.

ExceededGrace
Period

Container runtime did not stop the pod within specified grace period.

Table 8.3. Health events

Name Description

Unhealthy Container is unhealthy.

Table 8.4. Image events

CHAPTER 8. WORKING WITH CLUSTERS

205

Name Description

BackOff Back off Ctr Start, image pull.

ErrImageNeverP
ull

The image’s NeverPull Policy is violated.

Failed Failed to pull the image.

InspectFailed Failed to inspect the image.

Pulled Successfully pulled the image or the container image is already present on the machine.

Pulling Pulling the image.

Table 8.5. Image Manager events

Name Description

FreeDiskSpaceF
ailed

Free disk space failed.

InvalidDiskCapa
city

Invalid disk capacity.

Table 8.6. Node events

Name Description

FailedMount Volume mount failed.

HostNetworkNo
tSupported

Host network not supported.

HostPortConflic
t

Host/port conflict.

KubeletSetupFa
iled

Kubelet setup failed.

NilShaper Undefined shaper.

NodeNotReady Node is not ready.

NodeNotSched
ulable

Node is not schedulable.

OpenShift Dedicated 4 Nodes

206

NodeReady Node is ready.

NodeSchedulab
le

Node is schedulable.

NodeSelectorMi
smatching

Node selector mismatch.

OutOfDisk Out of disk.

Rebooted Node rebooted.

Starting Starting kubelet.

FailedAttachVol
ume

Failed to attach volume.

FailedDetachVol
ume

Failed to detach volume.

VolumeResizeF
ailed

Failed to expand/reduce volume.

VolumeResizeS
uccessful

Successfully expanded/reduced volume.

FileSystemResi
zeFailed

Failed to expand/reduce file system.

FileSystemResi
zeSuccessful

Successfully expanded/reduced file system.

FailedUnMount Failed to unmount volume.

FailedMapVolu
me

Failed to map a volume.

FailedUnmapDe
vice

Failed unmaped device.

AlreadyMounte
dVolume

Volume is already mounted.

SuccessfulDeta
chVolume

Volume is successfully detached.

Name Description

CHAPTER 8. WORKING WITH CLUSTERS

207

SuccessfulMou
ntVolume

Volume is successfully mounted.

SuccessfulUnM
ountVolume

Volume is successfully unmounted.

ContainerGCFai
led

Container garbage collection failed.

ImageGCFailed Image garbage collection failed.

FailedNodeAllo
catableEnforce
ment

Failed to enforce System Reserved Cgroup limit.

NodeAllocatabl
eEnforced

Enforced System Reserved Cgroup limit.

UnsupportedMo
untOption

Unsupported mount option.

SandboxChang
ed

Pod sandbox changed.

FailedCreatePo
dSandBox

Failed to create pod sandbox.

FailedPodSand
BoxStatus

Failed pod sandbox status.

Name Description

Table 8.7. Pod worker events

Name Description

FailedSync Pod sync failed.

Table 8.8. System Events

Name Description

SystemOOM There is an OOM (out of memory) situation on the cluster.

OpenShift Dedicated 4 Nodes

208

Table 8.9. Pod events

Name Description

FailedKillPod Failed to stop a pod.

FailedCreatePo
dContainer

Failed to create a pod container.

Failed Failed to make pod data directories.

NetworkNotRea
dy

Network is not ready.

FailedCreate Error creating: <error-msg>.

SuccessfulCrea
te

Created pod: <pod-name>.

FailedDelete Error deleting: <error-msg>.

SuccessfulDelet
e

Deleted pod: <pod-id>.

Table 8.10. Horizontal Pod AutoScaler events

Name Description

SelectorRequired Selector is required.

InvalidSelector Could not convert selector into a corresponding internal selector object.

FailedGetObject
Metric

HPA was unable to compute the replica count.

InvalidMetricSo
urceType

Unknown metric source type.

ValidMetricFoun
d

HPA was able to successfully calculate a replica count.

FailedConvertH
PA

Failed to convert the given HPA.

FailedGetScale HPA controller was unable to get the target’s current scale.

CHAPTER 8. WORKING WITH CLUSTERS

209

SucceededGetS
cale

HPA controller was able to get the target’s current scale.

FailedCompute
MetricsReplicas

Failed to compute desired number of replicas based on listed metrics.

FailedRescale New size: <size>; reason: <msg>; error: <error-msg>.

SuccessfulResc
ale

New size: <size>; reason: <msg>.

FailedUpdateSt
atus

Failed to update status.

Name Description

Table 8.11. Volume events

Name Description

FailedBinding There are no persistent volumes available and no storage class is set.

VolumeMismatc
h

Volume size or class is different from what is requested in claim.

VolumeFailedRe
cycle

Error creating recycler pod.

VolumeRecycle
d

Occurs when volume is recycled.

RecyclerPod Occurs when pod is recycled.

VolumeDelete Occurs when volume is deleted.

VolumeFailedDe
lete

Error when deleting the volume.

ExternalProvisi
oning

Occurs when volume for the claim is provisioned either manually or via external
software.

ProvisioningFail
ed

Failed to provision volume.

OpenShift Dedicated 4 Nodes

210

ProvisioningCle
anupFailed

Error cleaning provisioned volume.

ProvisioningSu
cceeded

Occurs when the volume is provisioned successfully.

WaitForFirstCo
nsumer

Delay binding until pod scheduling.

Name Description

Table 8.12. Lifecycle hooks

Name Description

FailedPostStart
Hook

Handler failed for pod start.

FailedPreStopH
ook

Handler failed for pre-stop.

UnfinishedPreSt
opHook

Pre-stop hook unfinished.

Table 8.13. Deployments

Name Description

DeploymentCan
cellationFailed

Failed to cancel deployment.

DeploymentCan
celled

Canceled deployment.

DeploymentCre
ated

Created new replication controller.

IngressIPRange
Full

No available Ingress IP to allocate to service.

Table 8.14. Scheduler events

CHAPTER 8. WORKING WITH CLUSTERS

211

Name Description

FailedSchedulin
g

Failed to schedule pod: <pod-namespace>/<pod-name>. This event is raised for
multiple reasons, for example: AssumePodVolumes failed, Binding rejected etc.

Preempted By <preemptor-namespace>/<preemptor-name> on node <node-name>.

Scheduled Successfully assigned <pod-name> to <node-name>.

Table 8.15. Daemon set events

Name Description

SelectingAll This daemon set is selecting all pods. A non-empty selector is required.

FailedPlacemen
t

Failed to place pod on <node-name>.

FailedDaemonP
od

Found failed daemon pod <pod-name> on node <node-name>, will try to kill it.

Table 8.16. LoadBalancer service events

Name Description

CreatingLoadBa
lancerFailed

Error creating load balancer.

DeletingLoadBa
lancer

Deleting load balancer.

EnsuringLoadB
alancer

Ensuring load balancer.

EnsuredLoadBa
lancer

Ensured load balancer.

UnAvailableLoa
dBalancer

There are no available nodes for LoadBalancer service.

LoadBalancerS
ourceRanges

Lists the new LoadBalancerSourceRanges. For example, <old-source-range>
→ <new-source-range>.

LoadbalancerIP Lists the new IP address. For example, <old-ip> → <new-ip>.

OpenShift Dedicated 4 Nodes

212

ExternalIP Lists external IP address. For example, Added: <external-ip>.

UID Lists the new UID. For example, <old-service-uid> → <new-service-uid>.

ExternalTrafficP
olicy

Lists the new ExternalTrafficPolicy. For example, <old-policy> → <new-policy>.

HealthCheckNo
dePort

Lists the new HealthCheckNodePort. For example, <old-node-port> → new-
node-port>.

UpdatedLoadBa
lancer

Updated load balancer with new hosts.

LoadBalancerU
pdateFailed

Error updating load balancer with new hosts.

DeletingLoadBa
lancer

Deleting load balancer.

DeletingLoadBa
lancerFailed

Error deleting load balancer.

DeletedLoadBal
ancer

Deleted load balancer.

Name Description

8.2. ESTIMATING THE NUMBER OF PODS YOUR OPENSHIFT
DEDICATED NODES CAN HOLD

As a cluster administrator, you can use the OpenShift Cluster Capacity Tool to view the number of pods
that can be scheduled in your cluster. This allows you to increase the current resources before they
become exhausted and to ensure any future pods can be scheduled. This capacity comes from an
individual node host in a cluster, and includes CPU, memory, disk space, and others.

8.2.1. Understanding the OpenShift Cluster Capacity Tool

Review the following information to learn how to use the OpenShift Cluster Capacity Tool to simulate a
sequence of scheduling decisions that determine how many instances of an input pod can be scheduled
on the cluster before the cluster is exhausted of resources.

NOTE

CHAPTER 8. WORKING WITH CLUSTERS

213

NOTE

The remaining allocatable capacity is a rough estimation, because it does not count all of
the resources being distributed among nodes. It analyzes only the remaining resources
and estimates the available capacity that is still consumable in terms of the number of
instances of a pod with given requirements that can be scheduled in a cluster.

Also, pods might only have scheduling support on particular sets of nodes based on its
selection and affinity criteria. As a result, the estimation of which remaining pods a cluster
can schedule can be difficult.

You can run the OpenShift Cluster Capacity Tool as a stand-alone utility from the command line, or as a
job in a pod inside an OpenShift Dedicated cluster. Running the tool as job inside of a pod enables you to
run it multiple times without intervention.

8.2.2. Running the OpenShift Cluster Capacity Tool on the command line

You can run the OpenShift Cluster Capacity Tool from the command line to estimate the number of
pods that can be scheduled onto your cluster.

You create a sample pod spec file, which the tool uses for estimating resource usage. The pod spec
specifies its resource requirements as limits or requests. The cluster capacity tool takes the pod’s
resource requirements into account for its estimation analysis.

Prerequisites

1. Run the OpenShift Cluster Capacity Tool, which is available as a container image from the Red
Hat Ecosystem Catalog. See the link in the "Additional resources" section.

2. Create a sample pod spec file:

a. Create a YAML file similar to the following:

apiVersion: v1
kind: Pod
metadata:
 name: small-pod
 labels:
 app: guestbook
 tier: frontend
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v4
 imagePullPolicy: Always
 resources:
 limits:
 cpu: 150m
 memory: 100Mi
 requests:
 cpu: 150m
 memory: 100Mi

OpenShift Dedicated 4 Nodes

214

b. Create the cluster role:

For example:

Procedure

1. From the terminal, log in to the Red Hat Registry:

2. Pull the cluster capacity tool image:

3. Run the cluster capacity tool:

where:

<pod_spec>.yaml

Specifies the pod spec to use.

verbose

Outputs a detailed description of how many pods can be scheduled on each node in the
cluster.

Example output

 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

$ oc create -f <file_name>.yaml

$ oc create -f pod-spec.yaml

$ podman login registry.redhat.io

$ podman pull registry.redhat.io/openshift4/ose-cluster-capacity

$ podman run -v $HOME/.kube:/kube:Z -v $(pwd):/cc:Z ose-cluster-capacity \
/bin/cluster-capacity --kubeconfig /kube/config --<pod_spec>.yaml /cc/<pod_spec>.yaml \
--verbose

small-pod pod requirements:
 - CPU: 150m
 - Memory: 100Mi

The cluster can schedule 88 instance(s) of the pod small-pod.

Termination reason: Unschedulable: 0/5 nodes are available: 2 Insufficient cpu,
3 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't
tolerate.

Pod distribution among nodes:

CHAPTER 8. WORKING WITH CLUSTERS

215

In the above example, the number of estimated pods that can be scheduled onto the cluster is
88.

8.2.3. Running the OpenShift Cluster Capacity Tool as a job inside a pod

You can run the OpenShift Cluster Capacity Tool as a job inside of a pod by using a ConfigMap object.
This allows you to run the tool multiple times without needing user intervention.

Prerequisites

Download and install the OpenShift Cluster Capacity Tool from the cluster-capacity
repository. See the link in the "Additional resources" section.

Procedure

1. Create the cluster role:

a. Create a YAML file similar to the following:

b. Create the cluster role by running the following command:

For example:

2. Create the service account:

small-pod
 - 192.168.124.214: 45 instance(s)
 - 192.168.124.120: 43 instance(s)

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: cluster-capacity-role
rules:
- apiGroups: [""]
 resources: ["pods", "nodes", "persistentvolumeclaims", "persistentvolumes", "services",
"replicationcontrollers"]
 verbs: ["get", "watch", "list"]
- apiGroups: ["apps"]
 resources: ["replicasets", "statefulsets"]
 verbs: ["get", "watch", "list"]
- apiGroups: ["policy"]
 resources: ["poddisruptionbudgets"]
 verbs: ["get", "watch", "list"]
- apiGroups: ["storage.k8s.io"]
 resources: ["storageclasses"]
 verbs: ["get", "watch", "list"]

$ oc create -f <file_name>.yaml

$ oc create sa cluster-capacity-sa

$ oc create sa cluster-capacity-sa -n default

OpenShift Dedicated 4 Nodes

216

3. Add the role to the service account:

where:

<namespace>

Specifies the namespace where the pod is located.

4. Define and create the pod spec:

a. Create a YAML file similar to the following:

b. Create the pod by running the following command:

For example:

5. Created a config map object by running the following command:

The cluster capacity analysis is mounted in a volume using a config map object named cluster-

$ oc adm policy add-cluster-role-to-user cluster-capacity-role \
 system:serviceaccount:<namespace>:cluster-capacity-sa

apiVersion: v1
kind: Pod
metadata:
 name: small-pod
 labels:
 app: guestbook
 tier: frontend
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v4
 imagePullPolicy: Always
 resources:
 limits:
 cpu: 150m
 memory: 100Mi
 requests:
 cpu: 150m
 memory: 100Mi
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

$ oc create -f <file_name>.yaml

$ oc create -f pod.yaml

$ oc create configmap cluster-capacity-configmap \
 --from-file=pod.yaml=pod.yaml

CHAPTER 8. WORKING WITH CLUSTERS

217

The cluster capacity analysis is mounted in a volume using a config map object named cluster-
capacity-configmap to mount the input pod spec file pod.yaml into a volume test-volume at
the path /test-pod.

6. Create the job using the below example of a job specification file:

a. Create a YAML file similar to the following:

where:

spec.template.spec.containers.env

Specifies a required environment variable that indicates the Cluster Capacity Tool is
running inside a cluster as a pod.
The pod.yaml key of the ConfigMap object is the same as the Pod spec file name,
though it is not required. By doing this, the input pod spec file can be accessed inside the
pod as /test-pod/pod.yaml.

b. Run the cluster capacity image as a job in a pod by running the following command:

Verification

apiVersion: batch/v1
kind: Job
metadata:
 name: cluster-capacity-job
spec:
 parallelism: 1
 completions: 1
 template:
 metadata:
 name: cluster-capacity-pod
 spec:
 containers:
 - name: cluster-capacity
 image: openshift/origin-cluster-capacity
 imagePullPolicy: "Always"
 volumeMounts:
 - mountPath: /test-pod
 name: test-volume
 env:
 - name: CC_INCLUSTER
 value: "true"
 command:
 - "/bin/sh"
 - "-ec"
 - |
 /bin/cluster-capacity --podspec=/test-pod/pod.yaml --verbose
 restartPolicy: "Never"
 serviceAccountName: cluster-capacity-sa
 volumes:
 - name: test-volume
 configMap:
 name: cluster-capacity-configmap

$ oc create -f cluster-capacity-job.yaml

OpenShift Dedicated 4 Nodes

218

1. Check the job logs to find the number of pods that can be scheduled in the cluster:

Example output

8.2.4. Additional resources

OpenShift Cluster Capacity Tool

cluster-capacity repository

8.3. RESTRICT RESOURCE CONSUMPTION WITH LIMIT RANGES

You can use limit ranges to restrict resource consumption for specific objects in a project.

By default, containers run with unbounded compute resources on an OpenShift Dedicated cluster.

You can configure resource consumption for the following objects:

pods and containers: You can set minimum and maximum requirements for CPU and memory
for pods and their containers.

Image streams: You can set limits on the number of images and tags in an ImageStream object.

Images: You can limit the size of images that can be pushed to an internal registry.

Persistent volume claims (PVC): You can restrict the size of the PVCs that can be requested.

If a pod does not meet the constraints imposed by the limit range, the pod cannot be created in the
namespace.

8.3.1. About limit ranges

You can set specific resource limits for a pod, container, image, image stream, or persistent volume
claim (PVC) in a specific project by defining a LimitRange object. A limit range allows you to restrict
resource consumption in that project.

All requests to create and modify resources are evaluated against each LimitRange object in the
project. If the resource violates any of the enumerated constraints, the resource is rejected.

$ oc logs jobs/cluster-capacity-job

small-pod pod requirements:
 - CPU: 150m
 - Memory: 100Mi

The cluster can schedule 52 instance(s) of the pod small-pod.

Termination reason: Unschedulable: No nodes are available that match all of the
following predicates:: Insufficient cpu (2).

Pod distribution among nodes:
small-pod
 - 192.168.124.214: 26 instance(s)
 - 192.168.124.120: 26 instance(s)

CHAPTER 8. WORKING WITH CLUSTERS

219

https://catalog.redhat.com/software/containers/openshift4/ose-cluster-capacity/5cca0324d70cc57c44ae8eb6?container-tabs=overview
https://github.com/openshift/cluster-capacity

The following shows a limit range object for all components: pod, container, image, image stream, or
PVC. You can configure limits for any or all of these components in the same object. You create a
different limit range object for each project where you want to control resources.

Sample limit range object for a container

8.3.2. About component limits

Review the following examples to learn the limit range parameters for each component for when you
create or edit a LimitRange object.

The examples are broken out for clarity. You can create a single LimitRange object for any or all
components as necessary.

Container limits

A limit range allows you to specify the minimum and maximum CPU and memory that each container
in a pod can request for a specific project. If a container is created in the project, the container CPU
and memory requests in the Pod spec must comply with the values set in the LimitRange object. If
not, the pod does not get created. The following requirements must hold true:

The container CPU or memory request and limit must be greater than or equal to the min
resource constraint for containers that are specified in the LimitRange object.

The container CPU or memory request and limit must be less than or equal to the max
resource constraint for containers that are specified in the LimitRange object.

If the LimitRange object defines a max CPU, you do not need to define a CPU request value in the
Pod spec. But you must specify a CPU limit value that satisfies the maximum CPU constraint
specified in the limit range. The following requirements must hold true:

The ratio of the container limits to requests must be less than or equal to the
maxLimitRequestRatio value for containers that is specified in the LimitRange object.

If the LimitRange object defines a maxLimitRequestRatio constraint, any new containers

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits"
spec:
 limits:
 - type: "Container"
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "100m"
 memory: "4Mi"
 default:
 cpu: "300m"
 memory: "200Mi"
 defaultRequest:
 cpu: "200m"
 memory: "100Mi"
 maxLimitRequestRatio:
 cpu: "10"

OpenShift Dedicated 4 Nodes

220

If the LimitRange object defines a maxLimitRequestRatio constraint, any new containers
must have both a request and a limit value. OpenShift Dedicated calculates the limit-to-
request ratio by dividing the limit by the request. This value should be a non-negative
integer greater than 1.

For example, if a container has cpu: 500 in the limit value, and cpu: 100 in the request
value, the limit-to-request ratio for cpu is 5. This ratio must be less than or equal to the
maxLimitRequestRatio.

If the Pod spec does not specify a container resource memory or limit, the default or
defaultRequest CPU and memory values for containers specified in the limit range object are
assigned to the container.

Container LimitRange object definition

where:

metadata.name

Specifies the name of the limit range object.

spec.limit.max.cpu

Specifies the maximum amount of CPU that a single container in a pod can request.

spec.limit.max.memory

Specifies the maximum amount of memory that a single container in a pod can request.

spec.limit.min.cpu

Specifies the minimum amount of CPU that a single container in a pod can request.

spec.limit.min.memory

Specifies the minimum amount of memory that a single container in a pod can request.

spec.limit.default.cpu

Specifies the default amount of CPU that a container can use if not specified in the Pod spec.

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits"
spec:
 limits:
 - type: "Container"
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "100m"
 memory: "4Mi"
 default:
 cpu: "300m"
 memory: "200Mi"
 defaultRequest:
 cpu: "200m"
 memory: "100Mi"
 maxLimitRequestRatio:
 cpu: "10"

CHAPTER 8. WORKING WITH CLUSTERS

221

spec.limit.default.memory

Specifies the default amount of memory that a container can use if not specified in the Pod spec.

spec.limit.defaultRequest.cpu

Specifies the default amount of CPU that a container can request if not specified in the Pod
spec.

spec.limit.defaultRequest.memory

Specifies the default amount of memory that a container can request if not specified in the Pod
spec.

spec.limit.maxLimitRequestRatio.cpu

Specifies the maximum limit-to-request ratio for a container.

Pod limits

A limit range allows you to specify the minimum and maximum CPU and memory limits for all
containers across a pod in a given project. To create a container in the project, the container CPU
and memory requests in the Pod spec must comply with the values set in the LimitRange object. If
not, the pod does not get created.
If the Pod spec does not specify a container resource memory or limit, the default or
defaultRequest CPU and memory values for containers specified in the limit range object are
assigned to the container.

Across all containers in a pod, the following requirements must hold true:

The container CPU or memory request and limit must be greater than or equal to the min
resource constraints for pods that are specified in the LimitRange object.

The container CPU or memory request and limit must be less than or equal to the max
resource constraints for pods that are specified in the LimitRange object.

The ratio of the container limits to requests must be less than or equal to the
maxLimitRequestRatio constraint specified in the LimitRange object.

Pod LimitRange object definition

where:

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits"
spec:
 limits:
 - type: "Pod"
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "200m"
 memory: "6Mi"
 maxLimitRequestRatio:
 cpu: "10"

OpenShift Dedicated 4 Nodes

222

metadata.name

Specifies the name of the limit range object.

spec.limit.max.cpu

Specifies the maximum amount of CPU that a pod can request across all containers.

spec.limit.max.memory

Specifies the maximum amount of memory that a pod can request across all containers.

spec.limit.min.cpu

Specifies the minimum amount of CPU that a pod can request across all containers.

spec.limit.min.memory

Specifies the minimum amount of memory that a pod can request across all containers.

spec.limit.maxLimitRequestRatio.cpu

Specifies the maximum limit-to-request ratio for a container.

Image limits

A limit range allows you to specify the maximum size of an image that can be pushed to an OpenShift
image registry.
When pushing images to an OpenShift image registry, the following requirement must hold true:

The size of the image must be less than or equal to the max size for images that is specified
in the LimitRange object.

Image LimitRange object definition

where:

metadata.name

Specifies the name of the limit range object.

spec.limit.max.storage

Specifies the maximum size of an image that can be pushed to an OpenShift image registry.

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits"
spec:
 limits:
 - type: openshift.io/Image
 max:
 storage: 1Gi

CHAPTER 8. WORKING WITH CLUSTERS

223

WARNING

The image size is not always available in the manifest of an uploaded image. This
is especially the case for images built with Docker 1.10 or higher and pushed to a
v2 registry. If such an image is pulled with an older Docker daemon, the image
manifest is converted by the registry to schema v1 lacking all the size
information. No storage limit set on images prevent it from being uploaded.

The issue is being addressed.

Image stream limits

A limit range allows you to specify limits for image streams.
For each image stream, the following requirements must hold true:

The number of image tags in an ImageStream specification must be less than or equal to the
openshift.io/image-tags constraint in the LimitRange object.

The number of unique references to images in an ImageStream specification must be less
than or equal to the openshift.io/images constraint in the limit range object.

Imagestream LimitRange object definition

where

metadata.name

Specifies the name of the LimitRange object.

spec.limit.max.openshift.io/image-tags

Specifies the maximum number of unique image tags in the imagestream.spec.tags parameter
in imagestream spec.

spec.limit.max.openshift.io/images

Specifies the maximum number of unique image references in the imagestream.status.tags
parameter in the imagestream spec.

The openshift.io/image-tags resource represents unique image references. Possible references are
an ImageStreamTag, an ImageStreamImage and a DockerImage. Tags can be created using the oc
tag and oc import-image commands. No distinction is made between internal and external



apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits"
spec:
 limits:
 - type: openshift.io/ImageStream
 max:
 openshift.io/image-tags: 20
 openshift.io/images: 30

OpenShift Dedicated 4 Nodes

224

https://github.com/openshift/origin/issues/7706

references. However, each unique reference tagged in an ImageStream specification is counted just
once. It does not restrict pushes to an internal container image registry in any way, but is useful for
tag restriction.

The openshift.io/images resource represents unique image names recorded in image stream status.
It allows for restriction of a specific number of images that can be pushed to the OpenShift image
registry. Internal and external references are not distinguished.

Persistent volume claim limits

A limit range allows you to restrict the storage requested in a persistent volume claim (PVC).
Across all persistent volume claims in a project, the following requirements must hold true:

The resource request in a persistent volume claim (PVC) must be greater than or equal the
min constraint for PVCs that is specified in the LimitRange object.

The resource request in a persistent volume claim (PVC) must be less than or equal the max
constraint for PVCs that is specified in the LimitRange object.

PVC LimitRange object definition

where:

metadata.name

Specifies the name of the LimitRange object.

spec.limit.min.storage

Specifies the minimum amount of storage that can be requested in a persistent volume claim.

spec.limit.max.storage

Specifies the maximum amount of storage that can be requested in a persistent volume claim.

8.3.3. Creating a Limit Range

You can define LimitRange objects to set specific resource limits for a pod, container, image, image
stream, or persistent volume claim (PVC) in a specific project. A limit range allows you to restrict
resource consumption in that project.

Procedure

1. Create a LimitRange object with your required specifications:

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits"
spec:
 limits:
 - type: "PersistentVolumeClaim"
 min:
 storage: "2Gi"
 max:
 storage: "50Gi"

CHAPTER 8. WORKING WITH CLUSTERS

225

where:

metadata.name

Specifies a name for the LimitRange object.

spec.limit.type.Pod

Specifies limits for a pod, specify the minimum and maximum CPU and memory requests as
needed.

spec.limit.type.Container

Specifies limits for a container, specify the minimum and maximum CPU and memory
requests as needed.

spec.limit.type.default

For a container, specifies the default amount of CPU or memory that a container can use, if

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits"
spec:
 limits:
 - type: "Pod"
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "200m"
 memory: "6Mi"
 - type: "Container"
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "100m"
 memory: "4Mi"
 default:
 cpu: "300m"
 memory: "200Mi"
 defaultRequest:
 cpu: "200m"
 memory: "100Mi"
 maxLimitRequestRatio:
 cpu: "10"
 - type: openshift.io/Image
 max:
 storage: 1Gi
 - type: openshift.io/ImageStream
 max:
 openshift.io/image-tags: 20
 openshift.io/images: 30
 - type: "PersistentVolumeClaim"
 min:
 storage: "2Gi"
 max:
 storage: "50Gi"

OpenShift Dedicated 4 Nodes

226

For a container, specifies the default amount of CPU or memory that a container can use, if
not specified in the Pod spec. This parameter is optional.

spec.limit.type.defaultRequest

For a container, specifies the default amount of CPU or memory that a container can
request, if not specified in the Pod spec. This parameter is optional.

spec.limit.type.maxLimitRequestRatio

For a container, specifies the maximum limit-to-request ratio that can be specified in the
Pod spec. This parameter is optional.

spec.limit.type.openshift.io/Image

Specifies limits for an image object. Set the maximum size of an image that can be pushed to
an OpenShift image registry.

spec.limit.type.openshift.io/ImageStream

Specifies limits for an image stream. Set the maximum number of image tags and references
that can be in the ImageStream object file, as needed.

spec.limit.type.openshift.io/PersistentVolueClaim

Specifies limits for a persistent volume claim. Set the minimum and maximum amount of
storage that can be requested.

2. Create the object:

where:

<limit_range_file>

Specifies the name of the YAML file you created.

<project>

Specifies the project where you want the limits to apply.

8.3.4. Viewing a limit

You can view the limits defined in a project by navigating in the web console to the project’s Quota
page. This allows you to see details about each of the limit ranges in a project.

You can also use the CLI to view limit range details:

Procedure

1. Get the list of LimitRange objects defined in the project. For example, for a project called
demoproject:

2. Describe the LimitRange object you are interested in, for example the resource-limits limit
range:

$ oc create -f <limit_range_file> -n <project>

$ oc get limits -n demoproject

NAME CREATED AT
resource-limits 2020-07-15T17:14:23Z

CHAPTER 8. WORKING WITH CLUSTERS

227

8.3.5. Deleting a Limit Range

You can remove any active LimitRange object so that it no longer enforces the limits in a project.

Procedure

Run the following command:

8.4. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER
MEMORY AND RISK REQUIREMENTS

As a cluster administrator, you can manage application memory usage to help your clusters operate
more efficiently.

You can perform any of the following tasks to manage application memory:

Determine the memory and risk requirements of a containerized application component and
configuring the container memory parameters to suit those requirements.

Configure containerized application runtimes (for example, OpenJDK) to adhere optimally to
the configured container memory parameters.

Diagnose and resolve memory-related error conditions associated with running in a container.

8.4.1. Understanding how to manage application memory

You can review the following concepts to learn how OpenShift Dedicated manages compute resources
so that you can lean how to keep your cluster running efficiently.

For each kind of resource (memory, CPU, storage), OpenShift Dedicated allows optional request and
limit values to be placed on each container in a pod.

Note the following information about memory requests and memory limits:

Memory request

$ oc describe limits resource-limits -n demoproject

Name: resource-limits
Namespace: demoproject
Type Resource Min Max Default Request Default Limit Max
Limit/Request Ratio
---- -------- --- --- --------------- ------------- -----------------------
Pod cpu 200m 2 - - -
Pod memory 6Mi 1Gi - - -
Container cpu 100m 2 200m 300m 10
Container memory 4Mi 1Gi 100Mi 200Mi -
openshift.io/Image storage - 1Gi - - -
openshift.io/ImageStream openshift.io/image - 12 - - -
openshift.io/ImageStream openshift.io/image-tags - 10 - - -
PersistentVolumeClaim storage - 50Gi - - -

$ oc delete limits <limit_name>

OpenShift Dedicated 4 Nodes

228

The memory request value, if specified, influences the OpenShift Dedicated scheduler. The
scheduler considers the memory request when scheduling a container to a node, then
fences off the requested memory on the chosen node for the use of the container.

If a node’s memory is exhausted, OpenShift Dedicated prioritizes evicting its containers
whose memory usage most exceeds their memory request. In serious cases of memory
exhaustion, the node OOM killer might select and kill a process in a container based on a
similar metric.

The cluster administrator can assign quota or assign default values for the memory request
value.

The cluster administrator can override the memory request values that a developer
specifies, to manage cluster overcommit.

Memory limit

The memory limit value, if specified, provides a hard limit on the memory that can be
allocated across all the processes in a container.

If the memory allocated by all of the processes in a container exceeds the memory limit, the
node Out of Memory (OOM) killer immediately selects and kills a process in the container.

If both memory request and limit are specified, the memory limit value must be greater than
or equal to the memory request.

The cluster administrator can assign quota or assign default values for the memory limit
value.

The minimum memory limit is 12 MB. If a container fails to start due to a Cannot allocate
memory pod event, the memory limit is too low. Either increase or remove the memory
limit. Removing the limit allows pods to consume unbounded node resources.

The steps for sizing application memory on OpenShift Dedicated are as follows:

1. Determine expected container memory usage
Determine expected mean and peak container memory usage. For example, you could perform
separate load testing. Remember to consider all the processes that could potentially run in
parallel in the container, such as any ancillary scripts that might be spawned by the main
application.

2. Determine risk appetite
Determine risk appetite for eviction. If the risk appetite is low, the container should request
memory according to the expected peak usage plus a percentage safety margin. If the risk
appetite is higher, it might be more appropriate to request memory according to the expected
mean usage.

3. Set container memory request
Set the container memory request based on the above. The request should represent the
application memory usage as accurately as possible. If the request is too high, cluster and quota
usage will be inefficient. If the request is too low, the chances of application eviction increase.

4. Set container memory limit, if required
Set the container memory limit, if required. Setting a limit has the effect of immediately killing a
container process if the combined memory usage of all processes in the container exceeds the
limit. Setting a limit might make unanticipated excess memory usage obvious early (fail fast).
However, setting a limit also terminates processes abruptly.

CHAPTER 8. WORKING WITH CLUSTERS

229

Note that some OpenShift Dedicated clusters might require a limit value to be set; some might
override the request based on the limit; and some application images rely on a limit value being
set as this is easier to detect than a request value.

If the memory limit is set, it should not be set to less than the expected peak container memory
usage plus a percentage safety margin.

5. Ensure applications are tuned
Ensure your applications are tuned with respect to configured request and limit values, if
appropriate. This step is particularly relevant to applications which pool memory, such as the
JVM. The rest of this page discusses this.

8.4.2. Understanding OpenJDK settings for OpenShift Dedicated

You can review the following concepts to learn about how to deploy OpenJDK applications in your
cluster effectively.

The default OpenJDK settings do not work well with containerized environments. As a result, some
additional Java memory settings must always be provided whenever running the OpenJDK in a
container.

The JVM memory layout is complex, version dependent, and describing it in detail is beyond the scope
of this documentation. However, as a starting point for running OpenJDK in a container, at least the
following three memory-related tasks are key:

Overriding the JVM maximum heap size

OpenJDK defaults to using a maximum of 25% of available memory (recognizing any container
memory limits in place) for heap memory. This default value is conservative, and, in a properly-
configured container environment, would result in 75% of the memory assigned to a container being
mostly unused. A much higher percentage for the JVM to use for heap memory, such as 80%, is
more suitable in a container context where memory limits are imposed on the container level.
Most of the Red Hat containers include a startup script that replaces the OpenJDK default by
setting updated values when the JVM launches.

For example, the Red Hat build of OpenJDK containers have a default value of 80%. This value can
be set to a different percentage by defining the JAVA_MAX_RAM_RATIO environment variable.

For other OpenJDK deployements, the default value of 25% can be changed using the following
command:

Example

Encouraging the JVM to release unused memory to the operating system, if appropriate

By default, the OpenJDK does not aggressively return unused memory to the operating system. This
could be appropriate for many containerized Java workloads, but notable exceptions include
workloads where additional active processes co-exist with a JVM within a container, whether those
additional processes are native, additional JVMs, or a combination of the two.
Java-based agents can use the following JVM arguments to encourage the JVM to release unused
memory to the operating system:

$ java -XX:MaxRAMPercentage=80.0

OpenShift Dedicated 4 Nodes

230

These arguments are intended to return heap memory to the operating system whenever allocated
memory exceeds 110% of in-use memory (-XX:MaxHeapFreeRatio), spending up to 20% of CPU
time in the garbage collector (-XX:GCTimeRatio). At no time will the application heap allocation be
less than the initial heap allocation (overridden by -XX:InitialHeapSize / -Xms). Detailed additional
information is available Tuning Java’s footprint in OpenShift (Part 1) , Tuning Java’s footprint in
OpenShift (Part 2), and at OpenJDK and Containers.

Ensuring all JVM processes within a container are appropriately configured

In the case that multiple JVMs run in the same container, it is essential to ensure that they are all
configured appropriately. For many workloads it will be necessary to grant each JVM a percentage
memory budget, leaving a perhaps substantial additional safety margin.
Many Java tools use different environment variables (JAVA_OPTS, GRADLE_OPTS, and so on) to
configure their JVMs and it can be challenging to ensure that the right settings are being passed to
the right JVM.

The JAVA_TOOL_OPTIONS environment variable is always respected by the OpenJDK, and values
specified in JAVA_TOOL_OPTIONS will be overridden by other options specified on the JVM
command line. By default, to ensure that these options are used by default for all JVM workloads run
in the Java-based agent image, the OpenShift Dedicated Jenkins Maven agent image sets the
following variable:

This does not guarantee that additional options are not required, but is intended to be a helpful starting
point. Optimally tuning JVM workloads for running in a container is beyond the scope of this
documentation, and may involve setting multiple additional JVM options.

8.4.3. Finding the memory request and limit from within a pod

You can configure your container to use the Downward API to dynamically discover its memory request
and limit from within a pod. This allows your applications to better manage these resources without
needing to use the API server.

Procedure

Configure the pod to add the MEMORY_REQUEST and MEMORY_LIMIT stanzas:

a. Create a YAML file similar to the following:

-XX:+UseParallelGC
-XX:MinHeapFreeRatio=5 -XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4
-XX:AdaptiveSizePolicyWeight=90

JAVA_TOOL_OPTIONS="-Dsun.zip.disableMemoryMapping=true"

apiVersion: v1
kind: Pod
metadata:
 name: test
spec:
 securityContext:
 runAsNonRoot: false
 seccompProfile:
 type: RuntimeDefault
 containers:

CHAPTER 8. WORKING WITH CLUSTERS

231

https://developers.redhat.com/blog/2014/07/15/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-1/
https://developers.redhat.com/blog/2014/07/22/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-2/
https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/

where:

spec.consinters.env.name.MEMORY_REQUEST

This stanza discovers the application memory request value.

spec.consinters.env.name.MEMORY_LIMIT

This stanza discovers the application memory limit value.

b. Create the pod by running the following command:

Verification

1. Access the pod using a remote shell:

2. Check that the requested values were applied:

Example output

NOTE

 - name: test
 image: fedora:latest
 command:
 - sleep
 - "3600"
 env:
 - name: MEMORY_REQUEST
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: requests.memory
 - name: MEMORY_LIMIT
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: limits.memory
 resources:
 requests:
 memory: 384Mi
 limits:
 memory: 512Mi
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

$ oc create -f <file_name>.yaml

$ oc rsh test

$ env | grep MEMORY | sort

MEMORY_LIMIT=536870912
MEMORY_REQUEST=402653184

OpenShift Dedicated 4 Nodes

232

NOTE

The memory limit value can also be read from inside the container by the
/sys/fs/cgroup/memory/memory.limit_in_bytes file.

8.4.4. Understanding OOM kill policy

OpenShift Dedicated can kill a process in a container if the total memory usage of all the processes in
the container exceeds the memory limit, or in serious cases of node memory exhaustion.

If a process is Out of Memory (OOM) killed, the container could exit immediately. If the container PID 1
process receives the SIGKILL, the container does exit immediately. Otherwise, the container behavior is
dependent on the behavior of the other processes.

For example, a container process exited with code 137, indicating it received a SIGKILL signal.

If the container does not exit immediately, use the following stepts to detect if an OOM kill occurred.

Procedure

1. Access the pod using a remote shell:

2. Run the following command to see the current OOM kill count in
/sys/fs/cgroup/memory/memory.oom_control:

Example output

3. Run the following command to provoke an OOM kill:

Example output

4. Run the following command to see that the OOM kill counter in
/sys/fs/cgroup/memory/memory.oom_control incremented:

Example output

If one or more processes in a pod are OOM killed, when the pod subsequently exits, whether
immediately or not, it will have phase Failed and reason OOMKilled. An OOM-killed pod might

oc rsh <pod name>

$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control

oom_kill 0

$ sed -e '' </dev/zero

Killed

$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control

oom_kill 1

CHAPTER 8. WORKING WITH CLUSTERS

233

be restarted depending on the value of restartPolicy. If not restarted, controllers such as the
replication controller will notice the pod’s failed status and create a new pod to replace the old
one.

Use the following command to get the pod status:

Example output

If the pod has not restarted, run the following command to view the pod:

Example output

If restarted, run the following command to view the pod:

Example output

$ oc get pod test

NAME READY STATUS RESTARTS AGE
test 0/1 OOMKilled 0 1m

$ oc get pod test -o yaml

apiVersion: v1
kind: Pod
metadata:
 name: test
...
status:
 containerStatuses:
 - name: test
 ready: false
 restartCount: 0
 state:
 terminated:
 exitCode: 137
 reason: OOMKilled
 phase: Failed

$ oc get pod test -o yaml

apiVersion: v1
kind: Pod
metadata:
 name: test
...
status:
 containerStatuses:
 - name: test
 ready: true
 restartCount: 1
 lastState:
 terminated:

OpenShift Dedicated 4 Nodes

234

8.4.5. Understanding pod eviction

You can review the following concepts to learn the OpenShift Dedicated pod eviction policy.

OpenShift Dedicated can evict a pod from its node when the node’s memory is exhausted. Depending
on the extent of memory exhaustion, the eviction might or might not be graceful. Graceful eviction
implies the main process (PID 1) of each container receiving a SIGTERM signal, then some time later a
SIGKILL signal if the process has not exited already. Non-graceful eviction implies the main process of
each container immediately receiving a SIGKILL signal.

An evicted pod has phase Failed and reason Evicted. It is not restarted, regardless of the value of
restartPolicy. However, controllers such as the replication controller will notice the pod’s failed status
and create a new pod to replace the old one.

Example output

Example output

8.5. CONFIGURING YOUR CLUSTER TO PLACE PODS ON
OVERCOMMITTED NODES

OpenShift Dedicated administrators can manage container density on nodes by configuring pod
placement behavior and per-project resource limits that overcommit cannot exceed.

Alternatively, administrators can disable project-level resource overcommitment on customer-created
namespaces that are not managed by Red Hat.

For more information about container resource management, see Additional resources.

In an overcommitted state, the sum of the container compute resource requestsand limits exceeds the

 exitCode: 137
 reason: OOMKilled
 state:
 running:
 phase: Running

$ oc get pod test

NAME READY STATUS RESTARTS AGE
test 0/1 Evicted 0 1m

$ oc get pod test -o yaml

apiVersion: v1
kind: Pod
metadata:
 name: test
...
status:
 message: 'Pod The node was low on resource: [MemoryPressure].'
 phase: Failed
 reason: Evicted

CHAPTER 8. WORKING WITH CLUSTERS

235

In an overcommitted state, the sum of the container compute resource requestsand limits exceeds the
resources available on the system. For example, you might want to use overcommitment in development
environments where a trade-off of guaranteed performance for capacity is acceptable.

Containers can specify compute resource requests and limits. Requests are used for scheduling your
container and provide a minimum service guarantee. Limits constrain the amount of compute resource
that can be consumed on your node.

The scheduler attempts to optimize the compute resource use across all nodes in your cluster. It places
pods onto specific nodes, taking the pods' compute resource requests and nodes' available capacity
into consideration.

8.5.1. Project-level limits

In OpenShift Dedicated, because overcommitment of project-level resources is enabled by default, if
required by your use case, you can disable overcommitment on projects that are not managed by Red
Hat.

For the list of projects that are managed by Red Hat and cannot be modified, see "Red Hat Managed
resources" in Support.

8.5.1.1. Disabling overcommitment for a project

If required by your use case, you can disable overcommitment on any project that is not managed by Red
Hat. For a list of projects that cannot be modified, see "Red Hat Managed resources" in Support.

Prerequisites

You are logged in to the cluster using an account with cluster administrator or cluster editor
permissions.

Procedure

1. Edit the namespace object file:

a. If you are using the web console:

i. Click Administration → Namespaces and click the namespace for the project.

ii. In the Annotations section, click the Edit button.

iii. Click Add more and enter a new annotation that uses a Key of
quota.openshift.io/cluster-resource-override-enabled and a Value of false.

iv. Click Save.

b. If you are using the OpenShift CLI (oc):

i. Edit the namespace:

ii. Add the following annotation:

$ oc edit namespace/<project_name>

apiVersion: v1
kind: Namespace

OpenShift Dedicated 4 Nodes

236

where:

metadata.annotations.quota.openshift.io/cluster-resource-override-enabled.false

Specifies that overcommit is disabled for this namespace.

8.5.2. Additional resources

Restrict resource consumption with limit ranges

metadata:
 annotations:
 quota.openshift.io/cluster-resource-override-enabled: "false"
...

CHAPTER 8. WORKING WITH CLUSTERS

237

	Table of Contents
	CHAPTER 1. OVERVIEW OF NODES
	1.1. ABOUT NODES
	1.1.1. Read operations
	1.1.2. Enhancement operations

	1.2. ABOUT PODS
	1.2.1. Read operations
	1.2.2. Management operations
	1.2.3. Enhancement operations

	1.3. ABOUT CONTAINERS
	1.4. GLOSSARY OF COMMON TERMS FOR OPENSHIFT DEDICATED NODES

	CHAPTER 2. WORKING WITH PODS
	2.1. USING PODS
	2.1.1. Understanding pods
	2.1.2. Example pod configurations
	2.1.3. Understanding resource requests and limits
	2.1.4. Additional resources

	2.2. VIEWING PODS
	2.2.1. Viewing pods in a project
	2.2.2. Describing a pod
	2.2.3. Viewing pod usage statistics
	2.2.4. Viewing resource logs
	2.2.4.1. Viewing resource logs by using the web console
	2.2.4.2. Viewing resource logs by using the CLI

	2.3. CONFIGURING AN OPENSHIFT DEDICATED CLUSTER FOR PODS
	2.3.1. Configuring how pods behave after restart
	2.3.2. Limiting the bandwidth available to pods
	2.3.3. Understanding how to use pod disruption budgets to specify the number of pods that must be up
	2.3.3.1. Specifying the number of pods that must be up with pod disruption budgets

	2.4. PROVIDING SENSITIVE DATA TO PODS BY USING SECRETS
	2.4.1. Understanding secrets
	2.4.1.1. Types of secrets
	2.4.1.2. Secret data keys
	2.4.1.3. Automatically generated image pull secrets

	2.4.2. Understanding how to create secrets
	2.4.2.1. Secret creation restrictions
	2.4.2.2. Creating an opaque secret
	2.4.2.3. Creating a legacy service account token secret
	2.4.2.4. Creating a basic authentication secret
	2.4.2.5. Creating an SSH authentication secret
	2.4.2.6. Creating a Docker configuration secret
	2.4.2.7. Creating a secret using the web console

	2.4.3. Understanding how to update secrets
	2.4.4. Creating and using secrets
	2.4.5. About using signed certificates with secrets
	2.4.5.1. Generating signed certificates for use with secrets

	2.4.6. Troubleshooting secrets

	2.5. CREATING AND USING CONFIG MAPS
	2.5.1. Understanding config maps
	2.5.1.1. Config map restrictions

	2.5.2. Creating a config map in the OpenShift Dedicated web console
	2.5.3. Creating a config map by using the CLI
	2.5.3.1. Creating a config map from a directory
	2.5.3.2. Creating a config map from a file
	2.5.3.3. Creating a config map from literal values

	2.5.4. Use cases: Consuming config maps in pods
	2.5.4.1. Populating environment variables in containers by using config maps
	2.5.4.2. Setting command-line arguments for container commands with config maps
	2.5.4.3. Injecting content into a volume by using config maps

	2.6. INCLUDING POD PRIORITY IN POD SCHEDULING DECISIONS
	2.6.1. Understanding pod priority
	2.6.1.1. Pod priority classes
	2.6.1.2. Pod priority names

	2.6.2. Understanding pod preemption
	2.6.2.1. Non-preempting priority classes
	2.6.2.2. Pod preemption and other scheduler settings
	2.6.2.3. Graceful termination of preempted pods

	2.6.3. Configuring priority and preemption

	2.7. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS
	2.7.1. Using node selectors to control pod placement

	CHAPTER 3. AUTOMATICALLY SCALING PODS WITH THE CUSTOM METRICS AUTOSCALER OPERATOR
	3.1. RELEASE NOTES
	3.1.1. Custom Metrics Autoscaler Operator release notes
	3.1.1.1. Supported versions
	3.1.1.2. Custom Metrics Autoscaler Operator 2.18.1-2 release notes

	3.1.2. Release notes for past releases of the Custom Metrics Autoscaler Operator
	3.1.2.1. Custom Metrics Autoscaler Operator 2.18.1-1 release notes
	3.1.2.2. Custom Metrics Autoscaler Operator 2.17.2-2 release notes
	3.1.2.3. Custom Metrics Autoscaler Operator 2.17.2 release notes
	3.1.2.4. Custom Metrics Autoscaler Operator 2.15.1-4 release notes
	3.1.2.5. Custom Metrics Autoscaler Operator 2.14.1-467 release notes
	3.1.2.6. Custom Metrics Autoscaler Operator 2.14.1-454 release notes
	3.1.2.7. Custom Metrics Autoscaler Operator 2.13.1 release notes
	3.1.2.8. Custom Metrics Autoscaler Operator 2.12.1-394 release notes
	3.1.2.9. Custom Metrics Autoscaler Operator 2.12.1-384 release notes
	3.1.2.10. Custom Metrics Autoscaler Operator 2.12.1-376 release notes
	3.1.2.11. Custom Metrics Autoscaler Operator 2.11.2-322 release notes
	3.1.2.12. Custom Metrics Autoscaler Operator 2.11.2-311 release notes
	3.1.2.13. Custom Metrics Autoscaler Operator 2.10.1-267 release notes
	3.1.2.14. Custom Metrics Autoscaler Operator 2.10.1 release notes
	3.1.2.15. Custom Metrics Autoscaler Operator 2.8.2-174 release notes
	3.1.2.16. Custom Metrics Autoscaler Operator 2.8.2 release notes

	3.2. CUSTOM METRICS AUTOSCALER OPERATOR OVERVIEW
	3.2.1. Custom CA certificates for the Custom Metrics Autoscaler

	3.3. INSTALLING THE CUSTOM METRICS AUTOSCALER
	3.3.1. Installing the custom metrics autoscaler
	3.3.2. Editing the Keda Controller CR

	3.4. UNDERSTANDING CUSTOM METRICS AUTOSCALER TRIGGERS
	3.4.1. Understanding the Prometheus trigger
	3.4.1.1. Configuring GPU-based autoscaling with Prometheus and DCGM metrics
	3.4.1.2. Configuring the custom metrics autoscaler to use OpenShift Dedicated monitoring

	3.4.2. Understanding the CPU trigger
	3.4.3. Understanding the memory trigger
	3.4.4. Understanding the Kafka trigger
	3.4.5. Understanding the Cron trigger
	3.4.6. Understanding the Kubernetes workload trigger

	3.5. UNDERSTANDING CUSTOM METRICS AUTOSCALER TRIGGER AUTHENTICATIONS
	3.5.1. Using trigger authentications

	3.6. UNDERSTANDING HOW TO ADD CUSTOM METRICS AUTOSCALERS
	3.6.1. Adding a custom metrics autoscaler to a workload
	3.6.2. Additional resources

	3.7. PAUSING THE CUSTOM METRICS AUTOSCALER FOR A SCALED OBJECT
	3.7.1. Pausing a custom metrics autoscaler
	3.7.2. Restarting the custom metrics autoscaler for a scaled object

	3.8. GATHERING AUDIT LOGS
	3.8.1. Configuring audit logging

	3.9. GATHERING DEBUGGING DATA
	3.9.1. Gathering debugging data

	3.10. VIEWING OPERATOR METRICS
	3.10.1. Accessing performance metrics
	3.10.1.1. Provided Operator metrics

	3.11. REMOVING THE CUSTOM METRICS AUTOSCALER OPERATOR
	3.11.1. Uninstalling the Custom Metrics Autoscaler Operator

	CHAPTER 4. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)
	4.1. CONTROLLING POD PLACEMENT USING THE SCHEDULER
	4.1.1. About the default scheduler
	4.1.1.1. Understanding default scheduling

	4.1.2. Scheduler use cases
	4.1.2.1. Affinity
	4.1.2.2. Anti-affinity

	4.2. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND ANTI-AFFINITY RULES
	4.2.1. Understanding pod affinity
	4.2.2. Configuring a pod affinity rule
	4.2.3. Configuring a pod anti-affinity rule
	4.2.4. Sample pod affinity and anti-affinity rules
	4.2.4.1. Pod Affinity
	4.2.4.2. Pod Anti-affinity
	4.2.4.3. Pod Affinity with no Matching Labels

	4.3. CONTROLLING POD PLACEMENT ON NODES USING NODE AFFINITY RULES
	4.3.1. Understanding node affinity
	4.3.2. Configuring a required node affinity rule
	4.3.3. Configuring a preferred node affinity rule
	4.3.4. Sample node affinity rules
	4.3.4.1. Node affinity with matching labels
	4.3.4.2. Node affinity with no matching labels

	4.4. PLACING PODS ONTO OVERCOMMITED NODES
	4.4.1. Understanding overcommitment
	4.4.2. Understanding nodes overcommitment

	4.5. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS
	4.5.1. About node selectors
	4.5.2. Using node selectors to control pod placement

	4.6. CONTROLLING POD PLACEMENT BY USING POD TOPOLOGY SPREAD CONSTRAINTS
	4.6.1. Example use cases
	4.6.2. Important considerations
	4.6.3. Understanding skew and maxSkew
	4.6.3.1. Example skew calculation
	4.6.3.2. The maxSkew parameter

	4.6.4. Example configurations for pod topology spread constraints

	CHAPTER 5. USING JOBS AND DAEMON SETS
	5.1. RUNNING BACKGROUND TASKS ON NODES AUTOMATICALLY WITH DAEMON SETS
	5.1.1. Scheduled by default scheduler
	5.1.2. Creating daemonsets

	5.2. RUNNING TASKS IN PODS USING JOBS
	5.2.1. Understanding jobs and cron jobs
	5.2.1.1. Understanding how to create jobs
	5.2.1.2. Understanding how to set a maximum duration for jobs
	5.2.1.3. Understanding how to set a job back off policy for pod failure
	5.2.1.4. Understanding how to configure a cron job to remove artifacts
	5.2.1.5. Known limitations

	5.2.2. Creating jobs
	5.2.3. Creating cron jobs

	CHAPTER 6. WORKING WITH NODES
	6.1. VIEWING AND LISTING THE NODES IN YOUR OPENSHIFT DEDICATED CLUSTER
	6.1.1. About listing all the nodes in a cluster
	6.1.2. Listing pods on a node in your cluster
	6.1.3. Viewing memory and CPU usage statistics on your nodes

	6.2. USING THE NODE TUNING OPERATOR
	6.2.1. Accessing an example Node Tuning Operator specification
	6.2.2. Custom tuning specification
	6.2.3. Default profiles set on a cluster
	6.2.4. Supported TuneD daemon plugins

	6.3. REMEDIATING, FENCING, AND MAINTAINING NODES

	CHAPTER 7. WORKING WITH CONTAINERS
	7.1. UNDERSTANDING CONTAINERS
	7.1.1. About containers and RHEL kernel memory
	7.1.2. About the container engine and container runtime

	7.2. USING INIT CONTAINERS TO PERFORM TASKS BEFORE A POD IS DEPLOYED
	7.2.1. Understanding Init Containers
	7.2.2. Creating Init Containers

	7.3. USING VOLUMES TO PERSIST CONTAINER DATA
	7.3.1. Understanding volumes
	7.3.2. Working with volumes using the OpenShift Dedicated CLI
	7.3.3. Listing volumes and volume mounts in a pod
	7.3.4. Adding volumes to a pod
	7.3.5. Updating volumes and volume mounts in a pod
	7.3.6. Removing volumes and volume mounts from a pod
	7.3.7. Configuring volumes for multiple uses in a pod

	7.4. MAPPING VOLUMES USING PROJECTED VOLUMES
	7.4.1. Understanding projected volumes
	7.4.1.1. Example Pod specs
	7.4.1.2. Pathing Considerations

	7.4.2. Configuring a Projected Volume for a Pod

	7.5. ALLOWING CONTAINERS TO CONSUME API OBJECTS
	7.5.1. Expose pod information to Containers using the Downward API
	7.5.2. Understanding how to consume container values using the downward API
	7.5.2.1. Consuming container values using environment variables
	7.5.2.2. Consuming container values using a volume plugin

	7.5.3. Understanding how to consume container resources using the Downward API
	7.5.3.1. Consuming container resources using environment variables
	7.5.3.2. Consuming container resources using a volume plugin

	7.5.4. Consuming secrets using the Downward API
	7.5.5. Consuming configuration maps using the Downward API
	7.5.6. Referencing environment variables
	7.5.7. Escaping environment variable references

	7.6. COPYING FILES TO OR FROM OPENSHIFT DEDICATED CONTAINERS
	7.6.1. Understanding how to copy files
	7.6.1.1. Requirements

	7.6.2. Copying files to and from containers
	7.6.3. Using advanced Rsync features

	7.7. EXECUTING REMOTE COMMANDS IN AN OPENSHIFT DEDICATED CONTAINER
	7.7.1. Executing remote commands in containers
	7.7.2. Protocol for initiating a remote command from a client

	7.8. USING PORT FORWARDING TO ACCESS APPLICATIONS IN A CONTAINER
	7.8.1. Understanding port forwarding
	7.8.2. Using port forwarding
	7.8.3. Protocol for initiating port forwarding from a client

	CHAPTER 8. WORKING WITH CLUSTERS
	8.1. VIEWING SYSTEM EVENT INFORMATION IN OPENSHIFT DEDICATED CLUSTERS
	8.1.1. Understanding events
	8.1.2. Viewing events using the CLI
	8.1.3. List of events

	8.2. ESTIMATING THE NUMBER OF PODS YOUR OPENSHIFT DEDICATED NODES CAN HOLD
	8.2.1. Understanding the OpenShift Cluster Capacity Tool
	8.2.2. Running the OpenShift Cluster Capacity Tool on the command line
	8.2.3. Running the OpenShift Cluster Capacity Tool as a job inside a pod
	8.2.4. Additional resources

	8.3. RESTRICT RESOURCE CONSUMPTION WITH LIMIT RANGES
	8.3.1. About limit ranges
	8.3.2. About component limits
	8.3.3. Creating a Limit Range
	8.3.4. Viewing a limit
	8.3.5. Deleting a Limit Range

	8.4. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER MEMORY AND RISK REQUIREMENTS
	8.4.1. Understanding how to manage application memory
	8.4.2. Understanding OpenJDK settings for OpenShift Dedicated
	8.4.3. Finding the memory request and limit from within a pod
	8.4.4. Understanding OOM kill policy
	8.4.5. Understanding pod eviction

	8.5. CONFIGURING YOUR CLUSTER TO PLACE PODS ON OVERCOMMITTED NODES
	8.5.1. Project-level limits
	8.5.1.1. Disabling overcommitment for a project

	8.5.2. Additional resources

