& RedHat

Red Hat build of Keycloak 26.0

Upgrading Guide

Last Updated: 2025-10-16

Red Hat build of Keycloak 26.0 Upgrading Guide

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book is a guide to upgrading Red Hat build of Keycloak from 24.0.x to 26.0.16.

Table of Contents

Table of Contents

CHAPTER 1. UPGRADING RED HAT BUILD OF KEYCLOAK . .tttitttitttieeeieeentenaneennneennn, 4
CHAPTER 2. RELEASE-SPECIFIC CHANGES ... ittt ittt et e e e et e eaneennneanns 5
2.1. SERVER CONFIGURATION CHANGES 5
2.1.1. New Hostname options 5
2.1.1.1. Examples 6
2.1.2. kcadm and kcreg changes 6
2.1.3. Escaping slashes in group paths 6
2.1.4. --import-realm option can import the master realm 7
2.1.5. Additional validations on the --optimized startup option 7
2.1.6. Specify cache options at runtime 7
2.1.7. Limiting memory usage when consuming HTTP responses 7
2.1.8. kc.sh/bat import placeholder replacement 7
2.2. HOSTNAME VERIFICATION POLICY 7
2.3. PERSISTENT USER SESSIONS 8
2.3.1. Enabling persistent user sessions 8
2.3.2. Signing out existing users 8
2.3.3. Restricting the size of session caches 9
2.4. METRICS AND HEALTH ENDPOINTS 9
2.4.1. Metrics for embedded caches enabled by default 9
2.4.2. Metrics for HTTP endpoints enabled by default 9
2.4.3. Management port for metrics and health endpoints 9
2.5. XA CHANGES 10
2.5.1. XA Transaction Changes 10
2.5.2. Additional datasources now require using XA 10
2.6. OPERATOR CHANGES 10
2.6.1. Operator no longer defaults to proxy=passthrough 10
2.6.2. Operator scheduling defaults 10
2.6.3. Operator's default CPU and memory limits/requests 10
2.7. API CHANGES 10
2.7.1. New method in ClusterProvider API 10
2.7.2. New Java API to search realms by name 1
2.8. EVENT CHANGES 1
2.8.1. Group-related events no longer fired when removing a realm 1
2.8.2. Changed userld for events related to refresh token 1
2.9. KEYCLOAK JS 1
2.9.1. The library is no longer served statically from the server n
2.9.2. Keycloak instance configuration is now required 12
2.9.3. Methods for login are now async 12
2.9.4. Stricter startup behavior for build-time options 13
2.9.5. New default client scope basic 13
2.9.5.1. sub claim is added to access token via protocol mapper 13
2.9.5.2. Nonce claim is only added to the ID token 14
2.9.5.3. Using older javascript adapter 14
2.10. IDENTITY PROVIDERS CHANGES 14
2.10.1. Identity Providers no longer available from the realm representation 14
2.10.2. Improving performance for selection of identity providers 15
2.11. OTHER CHANGES 15
2.11.1. Argon2 password hashing 15
2.11.2. Default http-pool-max-threads reduced 15
2.11.3. Improved performance of findGrantedResources and findGrantedOwnerResources queries 15

Red Hat build of Keycloak 26.0 Upgrading Guide

2.11.4. Method getExp added to SingleUseObjectKeyModel
2.11.5. Concurrent login requests are blocked by default when brute force is enabled
2.11.6. Changes in redirect URI verification when using wildcards
2.11.7. Infinispan marshalling changes

2.11.8. Automatic redirect from root to relative path

2.11.9. Consistent usage of UTF-8 charset for URL encoding
2.11.10. Configuring the LDAP Connection Pool

2.11.11. Persisting revoked access tokens across restarts

2.1112. Highly available multi-site deployments

2.11.13. Required actions improvements

2.11.14. Keystore and trust store default format change

2.11.15. Paths for common theme resources have changed
2.11.16. BouncyCastle FIPS updated

CHAPTER 3. UPGRADING THE RED HAT BUILD OF KEYCLOAKSERVER ...,

3.1. PREPARING FOR UPGRADING
3.2. DOWNLOADING THE RED HAT BUILD OF KEYCLOAK SERVER
3.3. MIGRATING THE DATABASE
3.3.1. Automatic relational database migration
3.3.2. Manual relational database migration
3.4. MIGRATING THEMES
3.4.1. Migrating templates
3.4.2. Migrating messages
3.4.3. Migrating styles

CHAPTER 4. UPGRADING RED HAT BUILD OF KEYCLOAK ADAPTERS

4.1. UPGRADING THE JBOSS EAP SAML ADAPTER

4.2. UPGRADING THE JBOSS EAP OPENID CONNECT ADAPTER
4.3. UPGRADING THE JAVASCRIPT ADAPTER

4.4. UPGRADING THE NODE.JS ADAPTER

CHAPTER 5. UPGRADING THE RED HAT BUILD OF KEYCLOAK CLIENT LIBRARIES

21
21
21
22
22
22
22
23
24
24

25
25
25
26
26

Table of Contents

Red Hat build of Keycloak 26.0 Upgrading Guide

CHAPTER 1. UPGRADING RED HAT BUILD OF KEYCLOAK

This guide describes how to upgrade Red Hat build of Keycloak from version 24.0.x to version 26.0.16.
Use the following procedures in this order:

1. Review the release-specific changes from the previous version of Red Hat build of Keycloak.
2. Upgrade the Red Hat build of Keycloak server.

3. Upgrade the Red Hat build of Keycloak adapters.

4. Upgrade the Red Hat build of Keycloak Admin Client.

If you want to upgrade from Red Hat build of Keycloak 22.x, review all the changes in the version 24.0
Upgrading Guide. Then, you can perform the upgrade procedures described in this guide.

For Red Hat Single Sign-On 7.6 customers, use the Migration Guide instead of this guide.

https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/24.0/html/upgrading_guide/index
https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.0/html-single/migration_guide/

CHAPTER 2. RELEASE-SPECIFIC CHANGES

CHAPTER 2. RELEASE-SPECIFIC CHANGES

2.1. SERVER CONFIGURATION CHANGES

2.1.1. New Hosthame options

Hostname v2 options are supported by default, as the old hostname options were removed.

List of necessary migrations:

Old options New options

hostname <hosthame> hosthame <hostname/url>
hostname-url <url>

hosthame-path <path>

hostname-port <port>

hostname-admin <hostname> hosthname-admin <url>
hosthame-admin-url <url>

hostname-strict-backchannel <true/false> hosthame-backchannel-dynamic <true/false>

As you can see, the *-url suffixes were removed for hostname and hosthname-admin options. Option
hosthame accepts both hostname and URL, but hosthame-admin accepts only full URL now.

Additionally, there is no way to set path or port separately. You can achieve it by providing the full URL
for the hostname and hostname-admin options.

If the port is not part of the URL, it is dynamically resolved from the incoming request headers.

HTTPS is no longer enforced unless it is part of hostname and hosthame-admin URLs. If not specified,
the used protocol (http/https) is dynamically resolved from the incoming request. The hostname-strict-
https option is removed.

Removed options

hostname-url
hostname-admin-url
hostname-path
hostname-port
hostname-strict-backchannel

hostname-strict-https

Red Hat build of Keycloak 26.0 Upgrading Guide

2.1.1.1. Examples

Simplified notation

Hostname v1
bin/kc.[sh|bat] start --hostname=mykeycloak.org --https-port=8543 --hostname-path=/auth --
hostname-strict-https=true

Hostname v2
bin/kc.[sh|bat] start --hostname=https://mykeycloak.org:8543/auth

As you can see in the example, all the parts of a URL can be now specified by using a single hosthame
option, which simplifies the hostname setup process. Notice that HTTPS is not enforced by the
hostname-strict-https option, but by specifying it in the hostname URL.

Backchannel setting

Hostname v1
bin/kc.[sh|bat] start --hosthame=mykeycloak.org --hostname-strict-backchannel=true

Hostname v2
bin/kc.[sh|bat] start --hostname=mykeycloak.org --hostname-backchannel-dynamic=false

Be aware that there is a change in behavior if the same URL is to be used for both backend and frontend
endpoints. Previously, in hostname v1, the backchannel URL was dynamically resolved from request
headers. Therefore, to achieve the required results, you had to specify the hostname-strict-
backchannel=true.

For hostname v2, the backchannel URLs are already the same as the frontend ones. In order to
dynamically resolve it from request headers, you need to set the hostname-backchannel-
dynamic=true and provide a full URL for the hostname option.

For more details and more comprehensive scenarios, see Configuring the hostname (v2).

2.1.2. kcadm and kcreg changes

How kcadm and kcreg parse and handle options and parameters has changed. Error messages from
usage errors, the wrong option or parameter, may be slightly different than previous versions. Also usage
errors will have an exit code of 2 instead of 1.

2.1.3. Escaping slashes in group paths

Red Hat build of Keycloak has never escaped slashes in the group paths. Because of that, a group
named group/slash child of top uses the full path /top/group/slash, which is clearly misleading. Starting
with this version, the server can be started to perform escaping of those slashes in the name:

I bin/kc.[sh|bat] start --spi-group-jpa-escape-slashes-in-group-path=true

The escape char is the tilde character ~. The previous example results in the path /top/group~/slash.
The escape marks the last slash as part of the name and not a hierarchy separator.

The escaping is currently disabled by default because it represents a change in behavior. Nevertheless
enabling escaping is recommended and it can be the default in future versions.

https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.0/html-single/server_configuration_guide/#hostname-

CHAPTER 2. RELEASE-SPECIFIC CHANGES

2.1.4. -import-realm option can import the master realm

When running a start or start-dev command with the --import-realm option before the master realm
exists, it will be imported if it exists in the import material. The previous behavior was that the master
realm was created first, then its import skipped.

2.1.5. Additional validations on the --optimized startup option

The --optimized startup option now requires the optimized server image to be built first. This can be
achieved either by running ke.shibat build first or by any other server commands (such as start, export,
import) without the --optimized flag.

2.1.6. Specify cache options at runtime

Options cache, cache-stack, and cache-config-file are no longer build options, and they can be
specified only during runtime. This eliminates the need to execute the build phase and rebuild your
image due to them. Be aware that they will not be recognized during the build phase, so you need to
remove them from the build phase and add them to the runtime phase. If you do not add your current
caching options to the runtime phase, Red Hat build of Keycloak will fall back to the default caching
settings.

2.1.7. Limiting memory usage when consuming HTTP responses

In some scenarios, such as brokering, Red Hat build of Keycloak uses HTTP to talk to external servers. To
avoid a denial of service when those providers send too much data, Red Hat build of Keycloak now
restricts responses to 10 MB by default.

Users can configure this limit by setting the provider configuration option spi-connections-http-client-
default-max-consumed-response-size:

Restricting the consumed responses to 1 MB

I bin/kc.[sh|bat] --spi-connections-http-client-default-max-consumed-response-size=1000000

2.1.8. kc.sh/bat import placeholder replacement

The ke.[sh|bat] import command now has placeholder replacement enabled. Previously placeholder
replacement was only enabled for realm import at startup.

If you wish to disable placeholder replacement for the import command, add the system property -
Dkeycloak.migration.replace-placeholders=false

2.2. HOSTNAME VERIFICATION POLICY

The default for spi-truststore-file-hostname-verification-policy and the new tls-hostname-verifier
option is now DEFAULT, rather than WILDCARD. The WILDCARD and STRICT option values have been
deprecated. You should simply rely upon DEFAULT instead.

Behavior supported by WILDCARD, that is not supported by DEFAULT: * allows wildcards in subdomain
names (for example, *.foo.com) to match anything, including multiple levels (for example, a.b.foo.com). *
allows matching against well known public suffixes - for example, foo.co.gl may match *.co.gl

Red Hat build of Keycloak 26.0 Upgrading Guide

Behavior supported by STRICT, that is not supported by DEFAULT: * STRICT uses a small exclusion list
for 2 or 3 letter domain names ending in a 2 letter top level (* XXX.YY) when determining if a wildcard
matches. Instead DEFAULT uses a more complete list of public suffix rules and exclusions from
https://publicsuffix.org/list/

It is not expected that you should be relying upon these behaviors from the WILDCARD or STRICT
options.

2.3. PERSISTENT USER SESSIONS

The new feature, persistent-user-sessions, stores online user sessions and online client sessions in the
database. This change allows a user to stay logged in even if all instances of Red Hat build of Keycloak
are restarted or upgraded.

Previous versions of Red Hat build of Keycloak stored only offline user and offline client sessions in the
databases. This behavior is identical to previous versions of Red Hat build of Keycloak.

NOTE

When migrating to this version, all existing online user sessions and online client sessions
are cleared and the users are logged out. Offline user sessions and offline client sessions
are not affected.

2.3.1. Enabling persistent user sessions

In Red Hat build of Keycloak 26, all user sessions are persisted in the database by default. It is possible to
revert this behavior to the previous state by disabling the feature. Use the Volatile user sessions
procedure in the Configuring distributed caches guide.

With persistent sessions enabled, the in-memory caches for online user sessions, offline user sessions,
online client sessions and offline client sessions are limited to 10000 entries per node by default, which
will reduce the overall memory usage of Keycloak for larger installations. ltems which are evicted from
memory will be loaded on-demand from the database when needed. Once this feature is enabled,
expect a reduced memory usage and an increased database utilization on each login, logout and refresh
token request.

To configure the cache size in an external Data Grid in a Red Hat build of Keycloak multi-site setup, see
Deploy Data Grid for HA with the Data Grid Operator.

With this feature enabled, the options spi-user-sessions-infinispan-offline-session-cache-entry-
lifespan-override and spi-user-sessions-infinispan-offline-client-session-cache-entry-lifespan-
override are no longer available, as they were previously used to override the time offline sessions were
keptin-memory.

2.3.2. Signing out existing users

To sign out all online users sessions of a realm when persistent-user-sessions is enabled, perform
these steps:

1. Login to the Admin Console.
2. Select the menu entry Sessions.

3. Select the action Sign out all active sessions.

https://publicsuffix.org/list/
https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.0/html-single/server_configuration_guide/#caching-
https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.0/html-single/high_availability_guide/#deploy-infinispan-kubernetes-crossdc-

CHAPTER 2. RELEASE-SPECIFIC CHANGES

2.3.3. Restricting the size of session caches

Since the database is now the source of truth for user sessions, it is possible to restrict the size of the
session caches to reduce memory usage. If you use the default conf/cache-ispn.xml file, the caches for
storing user and client sessions are by default configured to store only 10000 sessions and one owner
for each entry.

Update the size of the caches using the options cache-embedded-sessions-max-count, cache-
embedded-client-sessions-max-count, cache-embedded-offline-sessions-max-count and cache-
embedded-offline-client-sessions-max-count.

For details about the updated resource requirements, see Concepts for sizing CPU and memory
resources.

2.4. METRICS AND HEALTH ENDPOINTS

2.4.1. Metrics for embedded caches enabled by default

Metrics for the embedded caches are now enabled by default. To enable histograms for latencies, set
the option cache-metrics-histograms-enabled to true.

2.4.2. Metrics for HTTP endpoints enabled by default

The metrics provided by Red Hat build of Keycloak now include HTTP server metrics starting with
http_server. See below for some examples.

http_server_active_requests 1.0
http_server_requests_seconds_count{method="GET",outcome="SUCCESS",status="200",uri="/realms/
{realm}/protocol/{protocol}/auth"} 1.0
http_server_requests_seconds_sum{method="GET",outcome="SUCCESS",status="200",uri="/realms/{r
ealm}/protocol/{protocol}/auth"} 0.048717142

Use the new options http-metrics-histograms-enabled and http-metrics-slos to enable default
histogram buckets or specific buckets for service level objectives (SLOs). Read more about histograms
in the Prometheus documentation about histograms on how to use the additional metrics series
provided in http_server_requests_seconds_bucket.

2.4.3. Management port for metrics and health endpoints

The /health and /metrics endpoints are accessible on the management port 9000, which is turned on by

default. That means these endpoints are no longer exposed to the standard Red Hat build of Keycloak
ports 8080 and 8443.

In order to reflect the old behavior, use the property --legacy-observability-interface=true, which will
not expose these endpoints on the management port. However, this property is deprecated and will be
removed in future releases, so it is recommended not to use it.

The management interface uses a different HTTP server than the default Red Hat build of Keycloak
HTTP server, and it is possible to configure them separately. Beware, if no values are supplied for the
management interface properties, they are inherited from the default Red Hat build of Keycloak HTTP
server.

For more details, see Configuring the Management Interface.

https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.0/html-single/high_availability_guide//#concepts-memory-and-cpu-sizing-
https://prometheus.io/docs/concepts/metric_types/#histogram
https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.0/html-single/server_configuration_guide/#management-interface-

Red Hat build of Keycloak 26.0 Upgrading Guide

2.5. XA CHANGES

2.5.1. XA Transaction Changes

® The option transaction-xa-enabled will default to false, rather than true. If you want XA
transaction support you will now need to explicitly set this option to true.

e XA Transaction recovery support is enabled by default if transaction-xa-enabled is true.
Transaction logs will be stored at KEYCLOAK_HOME/data/transaction-logs.
2.5.2. Additional datasources now require using XA

Red Hat build of Keycloak by default does not use XA datasources. However, this is considered unsafe if
more than one datasource is used. Starting with this release, you need to use XA datasources if you are
adding additional datasources to Red Hat build of Keycloak. If the default datasource supports XA, you
can do this by setting the --transaction-xa-enabled=true option. For additional datasources, you need
to use the quarkus.datasource.<your-datasource-names.jdbc.transactions=xa option in your
quarkus.properties file. At most one datasource can be non-XA. Recovery isn't supported when you
don’t have persistent storage for the transaction store.

2.6. OPERATOR CHANGES

2.6.1. Operator no longer defaults to proxy=passthrough

The proxy option has been removed from the server.

2.6.2. Operator scheduling defaults

Red Hat build of Keycloak Pods will now have default affinities to prevent multiple instances from the
same CR from being deployed on the same node, and all Pods from the same CR will prefer to be in the
same zone to prevent stretch cache clusters.

2.6.3. Operator’s default CPU and memory limits/requests

In order to follow the best practices, the default CPU and memory limits/requests for the Operator were
introduced. It affects both non-OLM and OLM installs. To override the default values for the OLM
install, edit the resources section in the operator’s subscription.

2.7. API CHANGES

2.7.1. New method in ClusterProvider API
The following method was added to org.keycloak.cluster.ClusterProvider:

e void notify(String taskKey, Collection<? extends ClusterEvent> events, boolean
ignoreSender, DCNotify dcNotify)

When multiple events are sent to the same taskKey, this method batches events and just perform a
single network call. This is an optimization to reduce traffic and network related resources.

10

https://github.com/operator-framework/operator-lifecycle-manager/blob/master/doc/design/subscription-config.md#resources

CHAPTER 2. RELEASE-SPECIFIC CHANGES

In Red Hat build of Keycloak 26, the new method has a default implementation to keep backward
compatibility with custom implementation. The default implementation performs a single network call
per an event, and it will be removed in a future version of Red Hat build of Keycloak.

2.7.2. New Java API to search realms by name

The RealmProvider Java API now contains a new method Stream<RealmModel>
getRealmsStream(String search) which allows searching for a realm by name. While there is a default
implementation which filters the stream after loading it from the provider, implementations are
encouraged to provide this with more efficient implementation.

2.8. EVENT CHANGES

2.8.1. Group-related events no longer fired when removing a realm

With the goal of improving the scalability of groups, they are now removed directly from the database
when removing a realm. As a consequence, group-related events such as the GroupRemovedEvent are
no longer fired when removing a realm.

If you have extensions handling any group-related event when a realm is removed, make sure to use the
RealmRemovedEvent instead to perform any cleanup or custom processing when a realm, and their
groups, are removed.

The GroupProvider interface is also updated with a new preRemove(RealmModel) method to force
implementations to properly handle the removal of groups when a realm is removed.
2.8.2. Changed userld for events related to refresh token

The userld in the REFRESH_TOKEN event is now always taken from the user session instead of sub
claim in the refresh token. The userld in the REFRESH_TOKEN_ERROR event is now always null. The
reason for this change is that the value of the sub claim in the refresh token may be null with the
introduction of the optional sub claim or even different from the real user id when using pairwise subject
identifiers or other ways to override the sub claim.

However a refresh_token_sub detail is now added as backwards compatibility to have info about the
user in the case of missing userld in the REFRESH_TOKEN_ERROR event.

2.9. KEYCLOAK JS

This release includes several changes to Keycloak JS library that should be taken into account. The main
motivation for these changes is to de-couple the library from the Red Hat build of Keycloak server, so
that it can be refactored independently, simplifing the code and making it easier to maintain in the
future. The changes are as follows:

2.9.1. The library is no longer served statically from the server

The Keycloak JS library is no longer served statically from the Red Hat build of Keycloak server. This
means that the following URLs are no longer available:

o /js/keycloak-authz.js

e /js/keycloak-authz.min.js

1

Red Hat build of Keycloak 26.0 Upgrading Guide

o /js/keycloak.js

® /js/keycloak.min.js

e /js/{version}/keycloak-authz.js

e /js/{version}/keycloak-authz.min.js
e /js/{version}/keycloak.js

® /js/{version}/keycloak.min.js

Additionally, the keycloakdsUrl property that linked to the library on these URLs has been removed
from the Admin Console theme. If your custom theme was using this property to include the library, you
should update your theme to include the library using a different method.

You should now include the library in your project using a package manager such as NPM. The library is
available on the NPM registry as keycloak-js. You can install it using the following command:

I npm install keycloak-js

Alternatively, the distribution of the server includes a copy of the library in the keycloak-js-26.0.0.tgz
archive. You can copy the library from there into your project. If you are using the library directly in the
browser without a build, you'll need to host the library yourself. A package manager is still the
recommended way to include the library in your project, as it will make it easier to update the library in
the future.

2.9.2. Keycloak instance configuration is now required

Previously it was possible to construct a Keycloak instance without passing any configuration. The
configuration would then automatically be loaded from the server from a keycloak.json file based on
the path of the included keycloak.js script. Since the library is no longer statically served from the
server this feature has been removed. You now need to pass the configuration explicitly when
constructing a Keycloak instance:

// Before
const keycloak = new Keycloak();

// After
const keycloak = new Keycloak({
url: "http://keycloak-server",
realm: "my-realm",
clientld: "my-app"

h;

// Alternatively, you can pass a URL to a "keycloak.json" file.

// Note this is not reccomended as it creates additional network requests, and is prone to change in
the future.

const keycloak = new Keycloak('http://keycloak-server/path/to/keycloak.json’);

2.9.3. Methods for login are now async

12

https://nodejs.org/en/learn/getting-started/an-introduction-to-the-npm-package-manager
https://www.npmjs.com/package/keycloak-js

CHAPTER 2. RELEASE-SPECIFIC CHANGES

Keycloak JS now utilizes the Web Crypto API to calculate the SHA-256 digests needed to support
PKCE. Due to the asynchronous nature of this API the following public methods will now always return a
Promise:

e |ogin()

e createLoginUrl()

o createRegisterUrl()

Make sure to update your code to await these methods:

// Before

keycloak.login();

const loginUrl = keycloak.createLoginUrl();
const registerUrl = keycloak.createRegisterUrl();
// After

await keycloak.login();

const loginUrl = await keycloak.createLoginUrl();
const registerUrl = await keycloak.createRegisterUrl();

Make sure to update your code to await these methods.

2.9.4. Stricter startup behavior for build-time options

When the provided build-time options differ at startup from the values persisted in the server image
during the last optimized Red Hat build of Keycloak build, Red Hat build of Keycloak will now fail to start.
Previously, a warning message was displayed in such cases.

2.9.5. New default client scope basic

The new client scope named basic is added as a realm "default” client scope and hence will be added to
all newly created clients. The client scope is also automatically added to all existing clients during
migration.

This scope contains preconfigured protocol mappers for the following claims:
® sub (See the details below in the dedicated section)
e auth_time

This provides additional help to reduce the number of claims in a lightweight access token, but also gives
the chance to configure claims that were always added automatically.

2.9.5.1. sub claim is added to access token via protocol mapper

The sub claim, which was always added to the access token, is now added by default but using a new
Subject (sub) protocol mapper.

The Subject (sub) mapper is configured by default in the basic client scope. Therefore, no extra
configuration is required after upgrading to this version.

If you are using the Pairwise subject identifier mapper to map a sub claim for an access token, you can

13

Red Hat build of Keycloak 26.0 Upgrading Guide

consider disabling or removing the Subject (sub) mapper, however it is not strictly needed as the
Subject (sub) protocol mapper is executed before the Pairwise subject identifier mapper and hence
the pairwise value will override the value added by Subject (sub) mapper. This may apply also to other
custom protocol mapper implementations, which override the sub claim, as the Subject (sub) mapper is
currently executed as the first protocol mapper.

You can use the Subject (sub) mapper to configure the sub claim only for access token, lightweight
access token, and introspection response. IDToken and Userinfo always contain sub claim.

The mapper has no effects for service accounts, because no user session exists, and the sub claim is
always added to the access token.

2.9.5.2. Nonce claim is only added to the ID token

The nonce claim is now only added to the ID token strictly following the OpenID Connect Core 1.0
specification. As indicated in the specification, the claim is compulsory inside the ID token when the
same parameter was sent in the authorization request. The specification also recommends against
adding the nonce after a refresh request. Previously, the claim was set to all the tokens (Access, Refresh
and ID) in all the responses (refresh included).

A new Nonce backwards compatible mapper is also included in the software that can be assigned to
client scopes to revert to the old behavior. For example, the JS adapter checked the returned nonce
claim in all the tokens before fixing issue #26651in version 24.0.0. Therefore, if an old version of the JS
adapter is used, the mapper should be added to the required clients by using client scopes.

2.9.5.3. Using older javascript adapter

If you use the latest Red Hat build of Keycloak server with older versions of the javascript adapter in your
applications, you may be affected by the token changes mentioned above as previous versions of
javascript adapter rely on the claims, which were added by Red Hat build of Keycloak, but not supported
by the OIDC specification. This includes:

® Adding the Session State (session_state) mapper in case of using the Red Hat build of
Keycloak Javascript adapter 24.0.3 or older

e Adding the Nonce backwards compatible mapper in case of using a Red Hat build of Keycloak
Javascript adapter that is older than Red Hat build of Keycloak 24

You can add the protocol mappers directly to the corresponding client or to some client scope, which
can be used by your client applications relying on older versions of the Red Hat build of Keycloak
Javascript adapter. Some more details are in the previous sections dedicated to session_state and
nonce claims.

2.10. IDENTITY PROVIDERS CHANGES

2.10.1. Identity Providers no longer available from the realm representation

As part of the improvements around the scalability of realms and organizations when they have many
identity providers, the realm representation no longer holds the list of identity providers. However, they
are still available from the realm representation when exporting a realm.

To obtain the query the identity providers in a realm, prefer using the /realms/{realm}/identity-
provider/instances endpoint. This endpoint supports filters and pagination.

14

https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://openid.net/specs/openid-connect-core-1_0.html#RefreshTokenResponse
https://github.com/keycloak/keycloak/issues/26651

CHAPTER 2. RELEASE-SPECIFIC CHANG

2.10.2. Improving performance for selection of identity providers

New indexes were added to the IDENTITY_PROVIDER table to improve the performance of queries

that fetch the IDPs associated with an organization, and fetch IDPs that are available for login (those
that are enabled, not link_only, not marked as hide_on_login).

If the table currently contains more than 300,000 entries, Red Hat build of Keycloak will skip the
creation of the indexes by default during the automatic schema migration, and will instead log the SQL
statements on the console during migration. In this case, the statements must be run manually in the DB
after Red Hat build of Keycloak’s startup.

Also, the ke.org and hideOnLoginPage configuration attributes were migrated to the identity provider
itself, to allow for more efficient queries when searching for providers. As such, API clients should use
the getOrganizationld/setOrganizationld and isHideOnLogin/setHideOnLogin methods in the
IdentityProviderRepresentation, and avoid setting these properties using the legacy config attributes
that are now deprecated.

2.11. OTHER CHANGES

2.11.1. Argon2 password hashing

Argon2 is now the default password hashing algorithm used by Red Hat build of Keycloak in a non-FIPS
environment.

Argon2 was the winner of the 2015 password hashing competition and is the recommended hashing
algorithm by OWASP.

In Red Hat build of Keycloak 24 the default hashing iterations for PBKDF2 were increased from 27.5K to
210K, resulting in a more than 10 times increase in the amount of CPU time required to generate a
password hash. With Argon2, you can achieve better security, with almost the same CPU time as
previous releases of Red Hat build of Keycloak. One downside is Argon2 requires more memory, which is
a requirement to be resistant against GPU attacks. The defaults for Argon2 in Red Hat build of Keycloak
requires 7MB per-hashing request.

To prevent excessive memory and CPU usage, the parallel computation of hashes by Argon2 is by
default limited to the number of cores available to the JVM. To support the memory intensive nature of
Argon2, we have updated the default GC from ParallelGC to GIGC for a better heap utilization.

Note that Argon2 is not compliant with FIPS 140-2. So if you are in the FIPS environment, the default
algorithm will be still PBKDF 2. Also note that if you are on non-FIPS environment and you plan to
migrate to the FIPS environment, consider changing the password policy to a FIPS compliant algorithm
such as pbkdf2-sha512 at the outset. Otherwise, users will not be able to log in after they switch to the
FIPS environment.

2.11.2. Default http-pool-max-threads reduced

http-pool-max-threads if left unset will default to the greater of 50 or 4 x (available processors).
Previously it defaulted to the greater of 200 or 8 x (available processors). Reducing the number or task
threads for most usage scenarios will result in slightly higher performance due to less context switching
among active threads.

2.11.3. Improved performance of findGrantedResources and findGrantedOwnerResources
queries

ES

15

https://en.wikipedia.org/wiki/Password_Hashing_Competition
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#argon2id

Red Hat build of Keycloak 26.0 Upgrading Guide

These queries performed poorly when the RESOURCE_SERVER_RESOURCE and
RESOURCE_SERVER_PERM_TICKET tables had over 100k entries and users were granted access to
over Tk resources. The queries were simplified and new indexes for the requester and owner columns
were introduced.

The new indexes are both applied to the RESOURCE_SERVER_PERM_TICKET table. If the table
currently contains more than 300,000 entries, Red Hat build of Keycloak will skip the creation of the
indexes by default during the automatic schema migration, and will instead log the SQL statements on
the console during migration. In this case, the statements must be run manually in the DB after Red Hat
build of Keycloak's startup.

2.11.4. Method getExp added to SingleUseObjectKeyModel

As a consequence of the removal of deprecated methods from AccessToken, IDToken, and
JsonWebToken, the SingleUseObjectKeyModel also changed to keep consistency with the method
names related to expiration values.

The previous getExpiration method is now deprecated and you should prefer using new newly
introduced getExp method to avoid overflow after 2038.

2.11.5. Concurrent login requests are blocked by default when brute force is enabled

If an attacker launched many login attempts in parallel then the attacker could have more guesses at a
password than the brute force protection configuration permits. This was due to the brute force check
occurring before the brute force protector has locked the user. To prevent this race the Brute Force

Protector now rejects all login attempts that occur while another login is in progress in the same server.

If you prefer to disable this feature, use this command:

bin/kc.[sh|bat] start --spi-brute-force-protector-default-brute-force-detector-allow-concurrent-
requests=true

2.11.6. Changes in redirect URI verification when using wildcards

Because of security concerns, the redirect URI verification now performs an exact string matching (no
wildcard involved) if the passed redirect uri contains a userinfo part or its path accesses the parent
directory (/../).

The full wildcard * can still be used as a valid redirect in development for http(s) URIs with those
characteristics. In production environments, configure an exact valid redirect URI without wildcard needs
for any URI of that type.

Note that wildcard valid redirect URIs are not recommended for production and not covered by the
OAuth 2.0 specification.

2.11.7. Infinispan marshalling changes

Marshalling is the process of converting Java objects into bytes to send them across the network
between Red Hat build of Keycloak servers. With Red Hat build of Keycloak 26, the marshalling library
has changed from JBoss Marshalling to Infinispan Protostream. The libraries are not compatible
between each other and, it requires some steps to ensure the session data is not lost.

16

CHAPTER 2. RELEASE-SPECIFIC CHANGES

WARNING
JBoss Marshalling and Infinispan Protostream are not compatible with each other

and incorrect usage may lead to data loss. Consequently, all caches are cleared
when upgrading to this version. All existing online user and client sessions are
cleared. Offline user and client sessions are not affected.

2.11.8. Automatic redirect from root to relative path

The user is automatically redirected to the path where Red Hat build of Keycloak is hosted when the
http-relative-path property is specified. It means when the relative path is set to /auth, and the user
accesses localhost:8080/, the page is redirected to localhost:8080/auth.

The same change applies to the management interface when the http-management-relative-path or
http-relative-path property is specified. This change improves user experience. Users no longer need to
set the relative path to the URL explicitly.

2.11.9. Consistent usage of UTF-8 charset for URL encoding

org.keycloak.common.util.Encode now always uses the UTF-8 charset for URL encoding instead
relying implicitly on the file.encoding system property.

2.11.10. Configuring the LDAP Connection Pool

In this release, the LDAP connection pool configuration relies solely on system properties. The main
reason is that the LDAP connection pool configuration is a JVM-level configuration rather than specific
to an individual realm or LDAP provider instance.
Compared to previous releases, any realm configuration related to the LDAP connection pool will be
ignored. If you are migrating from previous versions where any of the following settings are set to your
LDAP provider(s), consider using system properties instead:

e connectionPoolingAuthentication

e connectionPoolinglnitSize

e connectionPoolingMaxSize

e connectionPoolingPrefSize

e connectionPoolingTimeout

e connectionPoolingProtocol

e connectionPoolingDebug

For more details, see Configuring the connection pool.

2.11.11. Persisting revoked access tokens across restarts

17

https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.0/html-single/server_administration_guide/#ldap_connection_pool

Red Hat build of Keycloak 26.0 Upgrading Guide

In this release, revoked access tokens are written to the database and reloaded when the cluster is
restarted by default when using the embedded caches.

To disable this behavior, use the SPI option spi-single-use-object-infinispan-persist-revoked-tokens
as outlined in All provider configuration.

The SPI behavior of SingleUseObjectProvider has changed that for revoked tokens only the methods
put and contains must be used. This is enforced by default, and can be disabled using the SPI option
spi-single-use-object-infinispan-persist-revoked-tokens.

2.11.12. Highly available multi-site deployments

Red Hat build of Keycloak 26 introduces significant improvements to the recommended high availability
multi-site architecture, most notably:

Red Hat build of Keycloak deployments are now able to handle user requests simultaneously in
both sites. Previous load balancer configurations handling requests only in one site at a time will
continue to work.

Active monitoring of the connectivity between the sites is now required to re-configure the
replication between the sites in case of a failure. The blueprints describe a setup with
Alertmanager and AWS Lambda.

The loadbalancer blueprint has been updated to use the AWS Global Accelerator as this avoids
prolonged fail-over times caused by DNS caching by clients.

Persistent user sessions are now a requirement of the architecture. Consequently, user sessions
will be kept on Red Hat build of Keycloak or Data Grid upgrades.

External Data Grid request handling has been improved to reduce memory usage and request
latency.

As a consequence of the above changes, the following changes are required to your existing Red Hat
build of Keycloak deployments.

1.

18

distributed-cache definitions provided by a cache configuration file are ignored when the multi-
site feature is enabled, so you must configure the connection to the external Data Grid
deployment via the cache-remote-* command line arguments or Keycloak CR as outlined in the
blueprints. All remote-store configurations must be removed from the cache configuration file.

Review your current cache configurations in the external Data Grid and update them with those
outlined in the latest version of the Red Hat build of Keycloak's documentation. While previous
versions of the cache configurations only logged warnings when the backup replication between
sites failed, the new configurations ensure that the state in both sites stays in sync: When the
transfer between the two sites fails, the caller will see an error. Due to that, you need to set up
monitoring to disconnect the two sites in case of a site failure. The High Availability Guide
contains a blueprint on how to set this up.

While previous load balancer configurations will continue to work with Red Hat build of Keycloak,
consider upgrading an existing Route53 configuration to avoid prolonged failover times due to
client side DNS caching.

If you have updated your cache configuration XML file with remote-store configurations, those
will no longer work. Instead, enable the multi-site feature and use the cache-remove-* options.

https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.0/html-single/server_configuration_guide/#all-provider-config-
https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.0/html-single/high_availability_guide/

CHAPTER 2. RELEASE-SPECIFIC CHANGES

2.11.13. Required actions improvements

The required action provider name is now returned via the kc_action parameter when redirecting back
from an application initiated required action execution. This eases the detection of which required
action was executed for a client. The outcome of the execution can be determined via the
kc_action_status parameter.

Note: This feature required changes to the Keycloak JS adapter, therefore it is recommended to
upgrade to the latest version of the adapter if you want to make use of this feature.

2.11.14. Keystore and trust store default format change

Red Hat build of Keycloak now determines the format of the keystore and trust store based on the file
extension. If the file extension is .p12, .pkes12 or .pfx, the format is PKCS12. If the file extension is .jks,
.keystore or .truststore, the format is JKS. If the file extension is .pem, .crt or .key, the format is PEM.

You can still override automatic detection by specifying the https-key-store-type and https-trust-
store-type explicitly. The same applies to the management interface and its https-management-key-
store-type. Restrictions for the FIPS strict mode stay unchanged.

NOTE

The spi-truststore-file-* options and the truststore related options https-trust-store-*
are deprecated, we strongly recommend to use System Truststore. For more details refer
to the relevant guide.

2.11.15. Paths for common theme resources have changed

Some of the paths for the common resources of the keycloak theme have changed, specifically the
resources for third-party libraries. Make sure to update your custom themes accordingly:

® node_modules/patternfly/dist is now vendor/patternfly-v3
e node_modules/@patternfly/patternfly is now vendor/patternfly-v4
e node_modules/@patternfly-v5/patternfly is now vendor/patternfly-v5
e node_modules/rfc4648/lib is now vendor/rfc4648
Additionally, the following resources have been removed from the common theme:
e node_modules/alpinejs
e node_modules/jquery

If you previously used any of the removed resources in your theme, make sure to add them to your own
theme resources instead.

2.11.16. BouncyCastle FIPS updated

Our FIPS 140-2 integration is now tested and supported with version 2 of BouncyCastle FIPS libraries.
This version is certified with Java 21. If you use FIPS 140-2 integration, it is recommended to upgrade
BouncyCastle FIPS library to the versions mentioned in the latest documentation.

19

https://docs.redhat.com/en/documentation/red_hat_build_of_keycloak/26.0/html-single/server_configuration_guide/#keycloak-truststore-

Red Hat build of Keycloak 26.0 Upgrading Guide

The BouncyCastle FIPS version 2 is certified with FIPS 140-3. So Red Hat build of Keycloak can be FIPS
140-3 compliant as long as it is used on the FIPS 140-3 compliant system. This might be the RHEL 9

based system, which itself is compliant with the FIPS 140-3. But note that RHEL 8 based system is only
certified for the FIPS 140-2.

20

CHAPTER 3. UPGRADING THE RED HAT BUILD OF KEYCLOAK SERVEF

CHAPTER 3. UPGRADING THE RED HAT BUILD OF KEYCLOAK
SERVER

You upgrade the server before you upgrade the adapters.

3.1. PREPARING FOR UPGRADING

Perform the following steps before you upgrade the server.

Procedure

1. Shutdown Red Hat build of Keycloak.
2. Back up the old installation, such as configuration, themes, and so on.

3. If XA transaction is enabled, handle any open transactions and delete the data/transaction-
logs/ transaction directory.

4. Back up the database using instructions in the documentation for your relational database.
The database will no longer be compatible with the old server after you upgrade the server. If
you need to revert the upgrade, first restore the old installation, and then restore the database
from the backup copy.

NOTE

In case the feature persistent-user-sessions is disabled in your current setup and the
server is upgraded, all user sessions will be lost except for offline user sessions. Users
owning these sessions will have to log in again. Note the feature persistent-user-

sessions is disabled by default in the Red Hat build of Keycloak server releases prior to
26.0.0.

WARNING
Information about failed logins for the brute force detection and currently ongoing

authentication flows is only stored in the internal caches that are cleared when Red
Hat build of Keycloak is shut down. Users currently authenticating, changing their
passwords or resetting their password will need to restart the authentication flow
once Red Hat build of Keycloak is up and running again.

3.2. DOWNLOADING THE RED HAT BUILD OF KEYCLOAK SERVER

Once you have prepared for the upgrade, you can download the server.

Procedure

1. Download and extract rhbk-26.0.16.zip from the Red Hat build of Keycloak website.
After extracting this file, you should have a directory that is named rhbk-26.0.16.

21

https://access.redhat.com/products/red-hat-build-of-keycloak/

Red Hat build of Keycloak 26.0 Upgrading Guide

2. Move this directory to the desired location.

3. Copy conf/, providers/ and themes/ from the previous installation to the new installation.

3.3. MIGRATING THE DATABASE

Red Hat build of Keycloak can automatically migrate the database schema, or you can choose to do it
manually. By default the database is automatically migrated when you start the new installation for the
first time.

3.3.1. Automatic relational database migration

To perform an automatic migration, start the server connected to the desired database. If the database
schema has changed for the new server version, the migration starts automatically unless the database
has too many records.

For example, creating an index on tables with millions of records can be time-consuming and cause a
major service disruption. Therefore, a threshold of 300000 records exists for automatic migration. If the
number of records exceeds this threshold, the index is not created. Instead, you find a warning in the
server logs with the SQL commands that you can apply manually.

To change the threshold, set the index-creation-threshold property, value for the connections-
liquibase provider:

I kc.[sh|bat] start --spi-connections-liquibase-quarkus-index-creation-threshold=300000

3.3.2. Manual relational database migration

To enable manual upgrading of the database schema, set the migration-strategy property value to
"manual” for the default connections-jpa provider:

I kc.[sh|bat] start --spi-connections-jpa-quarkus-migration-strategy=manual

When you start the server with this configuration, the server checks if the database needs to be
migrated. The required changes are written to the bin/keycloak-database-update.sql SQL file that you
can review and manually run against the database.

To change the path and name of the exported SQL file, set the migration-export property for the
default connections-jpa provider:

I kc.[sh|bat] start --spi-connections-jpa-quarkus-migration-export=<path>/<file.sql>

For further details on how to apply this file to the database, see the documentation for your relational
database. After the changes have been written to the file, the server exits.

3.4. MIGRATING THEMES

If you created custom themes, those themes must be migrated to the new server. Also, any changes to
the built-in themes might need to be reflected in your custom themes, depending on which aspects you
customized.

Procedure

22

CHAPTER 3. UPGRADING THE RED HAT BUILD OF KEYCLOAK SERVEF

1. Copy your custom themes from the old server themes directory to the new server themes

directory.

2. Use the following sections to migrate templates, messages, and styles.

® |f you customized any of the updated templates listed in Migration Changes, compare the
template from the base theme to check for any changes you need to apply.

e |f you customized messages, you might need to change the key or value or to add additional

messages.

e |f you customized any styles and you are extending the Red Hat build of Keycloak themes,
review the changes to the styles. If you are extending the base theme, you can skip this

step.

3.4.1. Migrating templates

If you customized any template, review the new version to decide about updating your customized
template. If you made minor changes, you could compare the updated template to your customized
template. However, if you made many changes, consider comparing the new template to your
customized template. This comparison will show you what changes you need to make.

You can use a diff tool to compare the templates. The following screenshot compares the info.ftl
template from the Login theme and an example custom theme:

Updated version of a Login theme template versus a custom Login theme template

<@layout.registrationLayout displayMessage=false; section>
<#if section = "title">
S{message.summary}
<#elself section = "header"s>
S{message.summary}
<#elself section = "form">
<div id="kc-info-message">
<p class="instruction">${message.summary}</p>
<#if skipLink??>
<#else>
<#1f pageRedirectUri??>

-
<p>5{msg("back

<#elseif client.baseUrl??>
<p>${msq("backl
<[#if=
<[#if=>
</div>
<[#if>

<@layout.registrationLayout displayMessage=false; section>

<h1>Hello world!!</h1>

<#if section = "title"s
${message.summary}
<ttelseif section = "header"s
S${message.summary}
<#elseilf section = "form"=
<div id="kc-info-message">
<p class="instruction"=${message.summary}</p=
<#if skipLink??>
<#else>
<#if client.baseUrl??>
<p>${msg(" "backl
<[#if=
< [#if>
</div>

This comparison shows that the first change (Hello world!!) is a customization, while the second change
(if pageRedirectUri) is a change to the base theme. By copying the second change to your custom
template, you have successfully updated your customized template.

In an alternative approach, the following screenshot compares the info.ftl template from the old
installation with the updated info.ftl template from the new installation:

Login theme template from the old installation versus the updated Login theme template

<@layout.registrationLayout displayMessage=false; section>
<#if section = "title"=
S{message.summary}
<#elseif section = "header"s
S${message.summary}
<f#elseif section = "form"=
<div id="kc-info-message">
<p class="instruction">${message.summary}</p>
<#if skipLink??>
<#else>
<#if client.baseuUrl??>

x
<p>${msg(" "backl

<[#if=
< [#if>
</div=
<[#if=
</@layout.registrationLayout>

<@layout.registrationLayout displayMessage=false; section>

<#if section = "title"s
S{message.summary}
<#telself section = "header"s
${message.summary}
<f#elseilf section = "form"=
<div id="kc-info-message">
<p class="instruction">5{message.summary}</p=
<#if skipLink??>
<#else>
<#if pageRedirectUri??>
<p>5{msg("bacl
=#elseif client.baseUrl??=
<p=5{msg("back’
<[#if=
<[#if=
</div>

23

Red Hat build of Keycloak 26.0 Upgrading Guide

This comparison shows what has been changed in the base template. You can then manually make the
same changes to your modified template. Since this approach is more complex, use this approach only if
the first approach is not feasible.

3.4.2. Migrating messages
If you added support for another language, you need to apply all the changes listed above. If you have

not added support for another language, you might not need to change anything. You need to make
changes only if you have changed an affected message in your theme.

Procedure

1. For added values, review the value of the message in the base theme to determine if you need
to customize that message.

2. Forrenamed keys, rename the key in your custom theme.

3. For changed values, check the value in the base theme to determine if you need to make
changes to your custom theme.

3.4.3. Migrating styles
You might need to update your custom styles to reflect changes made to the styles from the built-in
themes. Consider using a diff tool to compare the changes to stylesheets between the old server

installation and the new server installation.

For example:

$ diff RHSSO_HOME_OLD/themes/keycloak/login/resources/css/login.css \
RHSSO_HOME_NEW/themes/keycloak/login/resources/css/login.css

Review the changes and determine if they affect your custom styling.

24

CHAPTER 4. UPGRADING RED HAT BUILD OF KEYCLOAK ADAPTERS

CHAPTER 4. UPGRADING RED HAT BUILD OF KEYCLOAK
ADAPTERS

After upgrading the Red Hat build of Keycloak server, you upgrade the adapters. Versions of adapters
and Red Hat build of Keycloak are now decoupled, meaning that they are released on different
schedules. Therefore, use these rules to determine which adapters you upgrade:

® Earlier versions of an adapter might work with later versions of the Red Hat build of Keycloak
server.

® Earlier versions of the Red Hat build of Keycloak server might not work with later versions of an
adapter.

Each adapter upgrade section provides details on supported adapter versions.

4.1. UPGRADING THE JBOSS EAP SAML ADAPTER

As of Red Hat build of Keycloak 26.0, the JBoss EAP SAML adapter is no longer released with Red Hat
build of Keycloak. If you deployed an application with version 6.x or 7.x of that adapter, it is not
supported by Red Hat build of Keycloak. Those versions of the adapter are only supported to be used in
combination with Red Hat Single Sign-On 7.6.

The fully supported adapter for SAML is the Keycloak SAML Adapter feature pack or RPM for JBoss
EAP 8.0.

To upgrade a JBoss EAP SAML adapter that has been copied to your web application, perform the
following procedure.

Procedure

1. Remove the previous adapter modules by deleting the EAP_HOME/modules/system/add-
ons/keycloak/ directory.

2. Install the new version of the adapter. For full details, see Installing JBoss EAP by using the RPM
installation method.

4.2. UPGRADING THE JBOSS EAP OPENID CONNECT ADAPTER

As of Red Hat build of Keycloak 26.0, the JBoss EAP OpenlD connect (OIDC) adapter is no longer
released with Red Hat build of Keycloak. This adapter has reached end of life and it is only supported to
be used in combination with Red Hat Single Sign-On 7.6. The supported adapter for OIDC is supplied by
JBoss EAP 8.0.

To upgrade a JBoss EAP OIDC adapter that has been copied to your web application, perform the
following procedure.

Procedure

1. Remove the previous adapter modules by deleting the EAP_HOME/modules/system/add-
ons/keycloak/ directory.

2. Install the OIDC client supplied by JBoss EAP 8.0. For details, see Securing Applications with
OIDC.

25

https://docs.redhat.com/en/documentation/red_hat_jboss_enterprise_application_platform/8.0/html-single/red_hat_jboss_enterprise_application_platform_installation_methods/index#proc_uninstalling-jboss-eap-archive-installation_default
https://docs.redhat.com/pt-br/documentation/red_hat_jboss_enterprise_application_platform/8.0/html/using_single_sign-on_with_jboss_eap/securing-applications-deployed-on-server-with-single-sign-on_default#assembly_using-openid-connect-to-authenticate-application-users_securing-applications-deployed-on-server-with-single-sign-on

Red Hat build of Keycloak 26.0 Upgrading Guide

4.3. UPGRADING THE JAVASCRIPT ADAPTER
For this release of Red Hat build of Keycloak, the supported version of this adapter is 26.0.12.

To upgrade a JavaScript adapter that has been copied to your web application, perform the following
procedure.

Procedure

1. Remove the previous version of the JavaScript adapter.

2. Use these NPM commands to install the 26.0.12 version of the adapter:

npm config set @redhat:registry https://npm.registry.redhat.com
install: npm install @redhat/keycloak-js@latest

4.4, UPGRADING THE NODE.JS ADAPTER
For this release of Red Hat build of Keycloak, the supported version of this adapter is 26.0.11.

To upgrade a Node.js adapter that has been copied to your web application, perform the following
procedure.

Procedure

1. Remove the previous version of the Node.js adapter.

2. Use these NPM commands to install the 26.0.11 version of the Node.js adapter:

npm config set @redhat:registry https://npm.registry.redhat.com
npm install @redhat/keycloak-connect@Ilatest

3. Change the dependency for keycloak-connect in the package.json of your application.

26

CHAPTER 5. UPGRADING THE RED HAT BUILD OF KEYCLOAK CLIENT LIBRARIES

CHAPTER 5. UPGRADING THE RED HAT BUILD OF KEYCLOAK
CLIENT LIBRARIES

The client libraries are those artifacts:

® Java admin client - Maven artifact org.keycloak:keycloak-admin-client

® Java authorization client - Maven artifact org.keycloak:keycloak-authz-client

® Java policy enforcer - Maven artifact org.keycloak:keycloak-policy-enforcer
The client libraries are supported with all the supported Red Hat build of Keycloak server versions. The
fact that client libraries are supported with more server versions makes the update easier, so you may

not need to update the server at the same time when you update client libraries of your application.

It is possible that client libraries may work even with the older releases of the Red Hat build of Keycloak
server, but it is not guaranteed and officially supported.

It may be needed to consult the javadoc of the client libraries like Java admin-client to see what
endpoints and parameters are supported with which Red Hat build of Keycloak server version.

27

	Table of Contents
	CHAPTER 1. UPGRADING RED HAT BUILD OF KEYCLOAK
	CHAPTER 2. RELEASE-SPECIFIC CHANGES
	2.1. SERVER CONFIGURATION CHANGES
	2.1.1. New Hostname options
	2.1.1.1. Examples

	2.1.2. kcadm and kcreg changes
	2.1.3. Escaping slashes in group paths
	2.1.4. --import-realm option can import the master realm
	2.1.5. Additional validations on the --optimized startup option
	2.1.6. Specify cache options at runtime
	2.1.7. Limiting memory usage when consuming HTTP responses
	2.1.8. kc.sh/bat import placeholder replacement

	2.2. HOSTNAME VERIFICATION POLICY
	2.3. PERSISTENT USER SESSIONS
	2.3.1. Enabling persistent user sessions
	2.3.2. Signing out existing users
	2.3.3. Restricting the size of session caches

	2.4. METRICS AND HEALTH ENDPOINTS
	2.4.1. Metrics for embedded caches enabled by default
	2.4.2. Metrics for HTTP endpoints enabled by default
	2.4.3. Management port for metrics and health endpoints

	2.5. XA CHANGES
	2.5.1. XA Transaction Changes
	2.5.2. Additional datasources now require using XA

	2.6. OPERATOR CHANGES
	2.6.1. Operator no longer defaults to proxy=passthrough
	2.6.2. Operator scheduling defaults
	2.6.3. Operator’s default CPU and memory limits/requests

	2.7. API CHANGES
	2.7.1. New method in ClusterProvider API
	2.7.2. New Java API to search realms by name

	2.8. EVENT CHANGES
	2.8.1. Group-related events no longer fired when removing a realm
	2.8.2. Changed userId for events related to refresh token

	2.9. KEYCLOAK JS
	2.9.1. The library is no longer served statically from the server
	2.9.2. Keycloak instance configuration is now required
	2.9.3. Methods for login are now async
	2.9.4. Stricter startup behavior for build-time options
	2.9.5. New default client scope basic
	2.9.5.1. sub claim is added to access token via protocol mapper
	2.9.5.2. Nonce claim is only added to the ID token
	2.9.5.3. Using older javascript adapter

	2.10. IDENTITY PROVIDERS CHANGES
	2.10.1. Identity Providers no longer available from the realm representation
	2.10.2. Improving performance for selection of identity providers

	2.11. OTHER CHANGES
	2.11.1. Argon2 password hashing
	2.11.2. Default http-pool-max-threads reduced
	2.11.3. Improved performance of findGrantedResources and findGrantedOwnerResources queries
	2.11.4. Method getExp added to SingleUseObjectKeyModel
	2.11.5. Concurrent login requests are blocked by default when brute force is enabled
	2.11.6. Changes in redirect URI verification when using wildcards
	2.11.7. Infinispan marshalling changes
	2.11.8. Automatic redirect from root to relative path
	2.11.9. Consistent usage of UTF-8 charset for URL encoding
	2.11.10. Configuring the LDAP Connection Pool
	2.11.11. Persisting revoked access tokens across restarts
	2.11.12. Highly available multi-site deployments
	2.11.13. Required actions improvements
	2.11.14. Keystore and trust store default format change
	2.11.15. Paths for common theme resources have changed
	2.11.16. BouncyCastle FIPS updated

	CHAPTER 3. UPGRADING THE RED HAT BUILD OF KEYCLOAK SERVER
	3.1. PREPARING FOR UPGRADING
	3.2. DOWNLOADING THE RED HAT BUILD OF KEYCLOAK SERVER
	3.3. MIGRATING THE DATABASE
	3.3.1. Automatic relational database migration
	3.3.2. Manual relational database migration

	3.4. MIGRATING THEMES
	3.4.1. Migrating templates
	3.4.2. Migrating messages
	3.4.3. Migrating styles

	CHAPTER 4. UPGRADING RED HAT BUILD OF KEYCLOAK ADAPTERS
	4.1. UPGRADING THE JBOSS EAP SAML ADAPTER
	4.2. UPGRADING THE JBOSS EAP OPENID CONNECT ADAPTER
	4.3. UPGRADING THE JAVASCRIPT ADAPTER
	4.4. UPGRADING THE NODE.JS ADAPTER

	CHAPTER 5. UPGRADING THE RED HAT BUILD OF KEYCLOAK CLIENT LIBRARIES

