
Red Hat OpenShift Service on AWS 4

Tutorials

Red Hat OpenShift Service on AWS tutorials

Last Updated: 2026-01-15

Red Hat OpenShift Service on AWS 4 Tutorials

Red Hat OpenShift Service on AWS tutorials

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Tutorials on creating your first Red Hat OpenShift Service on AWS (ROSA) cluster.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. TUTORIALS OVERVIEW

CHAPTER 2. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS ACTIVATION AND ACCOUNT LINKING
2.1. PREREQUISITES
2.2. SUBSCRIPTION ENABLEMENT AND AWS ACCOUNT SETUP
2.3. AWS AND RED HAT ACCOUNT AND SUBSCRIPTION LINKING
2.4. SELECTING THE AWS BILLING ACCOUNT FOR RED HAT OPENSHIFT SERVICE ON AWS DURING
CLUSTER DEPLOYMENT USING THE CLI
2.5. SELECTING THE AWS BILLING ACCOUNT FOR RED HAT OPENSHIFT SERVICE ON AWS DURING
CLUSTER DEPLOYMENT USING THE WEB CONSOLE

CHAPTER 3. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS PRIVATE OFFER ACCEPTANCE AND
SHARING

3.1. ACCEPTING A PRIVATE OFFER
3.2. SHARING A PRIVATE OFFER
3.3. AWS BILLING ACCOUNT SELECTION
3.4. TROUBLESHOOTING

3.4.1. Accessing a private offer using a different AWS account
3.4.2. The private offer cannot be accepted because of active subscription
3.4.3. The AWS account is already linked to a different Red Hat account
3.4.4. My team members belong to different Red Hat organizations
3.4.5. Incorrect AWS billing account was selected when creating a cluster

CHAPTER 4. TUTORIAL: DEPLOYING RED HAT OPENSHIFT SERVICE ON AWS WITH A CUSTOM DNS
RESOLVER

4.1. PREREQUISITES
4.2. SETTING UP YOUR ENVIRONMENT
4.3. CREATE AN AMAZON ROUTE 53 INBOUND RESOLVER
4.4. CONFIGURE YOUR DNS SERVER

4.4.1. Red Hat OpenShift Service on AWS

CHAPTER 5. TUTORIAL: USING AWS WAF AND AMAZON CLOUDFRONT TO PROTECT RED HAT
OPENSHIFT SERVICE ON AWS WORKLOADS

5.1. PREREQUISITES
5.1.1. Environment setup

5.2. SETTING UP THE SECONDARY INGRESS CONTROLLER
5.2.1. Configure the AWS WAF

5.3. CONFIGURE AMAZON CLOUDFRONT
5.4. DEPLOY A SAMPLE APPLICATION
5.5. TEST THE WAF
5.6. ADDITIONAL RESOURCES

CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO PROTECT RED HAT OPENSHIFT SERVICE ON
AWS WORKLOADS

6.1. PREREQUISITES
6.1.1. Environment setup
6.1.2. AWS VPC and subnets

6.2. DEPLOY THE AWS LOAD BALANCER OPERATOR
6.3. DEPLOY A SAMPLE APPLICATION

6.3.1. Configure the AWS WAF
6.4. ADDITIONAL RESOURCES

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A RED HAT OPENSHIFT
SERVICE ON AWS CLUSTER

5

6
6
6
9

14

16

19
19

24
25
26
26
27
27
28
28

29
29
29
29
31
31

34
34
34
35
36
37
39
39
40

41
41
41
41

42
45
46
48

49

Table of Contents

1

. .

. .

. .

. .

. .

7.1. PREPARE AWS ACCOUNT
7.2. DEPLOY OADP ON THE CLUSTER
7.3. PERFORM A BACKUP
7.4. CLEANUP

CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR ON RED HAT OPENSHIFT SERVICE ON AWS

8.1. PREREQUISITES
8.1.1. Environment
8.1.2. AWS VPC and subnets

8.2. INSTALLATION
8.3. VALIDATING THE DEPLOYMENT
8.4. CLEANING UP

CHAPTER 9. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY)
AS AN IDENTITY PROVIDER

9.1. PREREQUISITES
9.2. REGISTERING A NEW APPLICATION IN ENTRA ID FOR AUTHENTICATION
9.3. CONFIGURING THE APPLICATION REGISTRATION IN ENTRA ID TO INCLUDE OPTIONAL AND GROUP
CLAIMS

9.3.1. Configuring optional claims
9.3.2. Configuring group claims (optional)

9.4. CONFIGURING THE RED HAT OPENSHIFT SERVICE ON AWS CLUSTER TO USE ENTRA ID AS THE
IDENTITY PROVIDER
9.5. GRANTING ADDITIONAL PERMISSIONS TO INDIVIDUAL USERS AND GROUPS

9.5.1. Granting additional permissions to individual users
9.5.2. Granting additional permissions to individual groups

9.6. ADDITIONAL RESOURCES

CHAPTER 10. TUTORIAL: USING AWS SECRETS MANAGER CSI ON RED HAT OPENSHIFT SERVICE ON AWS
WITH STS

10.1. PREREQUISITES
10.1.1. Additional environment requirements

10.2. DEPLOYING THE AWS SECRETS AND CONFIGURATION PROVIDER
10.3. CREATING A SECRET AND IAM ACCESS POLICIES
10.4. CREATE AN APPLICATION TO USE THIS SECRET
10.5. CLEAN UP

CHAPTER 11. TUTORIAL: USING AWS CONTROLLERS FOR KUBERNETES ON RED HAT OPENSHIFT SERVICE
ON AWS

11.1. PREREQUISITES
11.2. SETTING UP YOUR ENVIRONMENT
11.3. PREPARING YOUR AWS ACCOUNT
11.4. INSTALLING THE ACK S3 CONTROLLER
11.5. VALIDATING THE DEPLOYMENT
11.6. CLEANING UP

CHAPTER 12. TUTORIAL: ASSIGNING A CONSISTENT EGRESS IP FOR EXTERNAL TRAFFIC
12.1. SETTING YOUR ENVIRONMENT VARIABLES
12.2. ENSURING CAPACITY
12.3. CREATING THE EGRESS IP RULES
12.4. ASSIGNING AN EGRESS IP TO A NAMESPACE
12.5. ASSIGNING AN EGRESS IP TO A POD

12.5.1. Labeling the nodes
12.5.2. Reviewing the egress IPs

49
51
55
57

59
59
60
60
61

63
65

66
66
66

70
71
73

74
75
75
76
76

77
77
77
78
78
80
81

82
82
82
82
83
85
85

86
86
86
87
87
88
88
89

Red Hat OpenShift Service on AWS 4 Tutorials

2

12.6. VERIFICATION
12.6.1. Deploying a sample application
12.6.2. Testing the namespace egress
12.6.3. Testing the pod egress
12.6.4. Optional: Testing blocked egress

12.7. CLEANING UP YOUR CLUSTER

89
89
90
91

92
92

Table of Contents

3

Red Hat OpenShift Service on AWS 4 Tutorials

4

CHAPTER 1. TUTORIALS OVERVIEW
Use the step-by-step tutorials from Red Hat experts to get the most out of your Managed OpenShift
cluster.

IMPORTANT

This content is authored by Red Hat experts but has not yet been tested on every
supported configuration.

CHAPTER 1. TUTORIALS OVERVIEW

5

CHAPTER 2. TUTORIAL: RED HAT OPENSHIFT SERVICE ON
AWS ACTIVATION AND ACCOUNT LINKING

This tutorial describes the process for activating Red Hat OpenShift Service on AWS and linking to an
AWS account, before deploying the first cluster.

IMPORTANT

If you have received a private offer for the product, make sure to proceed according to
the instructions provided with the private offer before following this tutorial. The private
offer is designed either for a case when the product is already activated, which replaces
an active subscription, or for first time activations.

2.1. PREREQUISITES

Log in to the Red Hat account that you want to associate with the AWS account that will
activate the Red Hat OpenShift Service on AWS product subscription.

The AWS account used for service billing can only be associated with a single Red Hat account.
Typically an AWS payer account is the one that is used to subscribe to Red Hat OpenShift
Service on AWS and used for account linking and billing.

All team members belonging to the same Red Hat organization can use the linked AWS account
for service billing while creating Red Hat OpenShift Service on AWS clusters.

2.2. SUBSCRIPTION ENABLEMENT AND AWS ACCOUNT SETUP

1. Activate the Red Hat OpenShift Service on AWS product at the AWS console page by clicking
the Get started button:

Figure 2.1. Get started

If you have activated Red Hat OpenShift Service on AWS before but did not complete the
process, you can click the button and complete the account linking as described in the following
steps.

2. Confirm that you want your contact information to be shared with Red Hat and enable the
service:

Red Hat OpenShift Service on AWS 4 Tutorials

6

https://console.aws.amazon.com/rosa/home

Figure 2.2. Enable Red Hat OpenShift Service on AWS

You will not be charged by enabling the service in this step. The connection is made for
billing and metering that will take place only after you deploy your first cluster. This could
take a few minutes.

3. After the process is completed, you will see a confirmation:

Figure 2.3. Red Hat OpenShift Service on AWS enablement confirmation

4. Other sections on this verification page show the status of additional prerequisites. In case any

CHAPTER 2. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS ACTIVATION AND ACCOUNT LINKING

7

4. Other sections on this verification page show the status of additional prerequisites. In case any
of these prerequisites are not met, a corresponding message is shown. Here is an example of
insufficient quotas in the selected region:

Figure 2.4. Service quotas

a. Click the Increase service quotas button or use the Learn more link to get more
information about the about how to manage service quotas. In the case of insufficient
quotas, note that quotas are region-specific. You can use the region switcher in the upper
right corner of the web console to re-run the quota check for any region you are interested
in and then submit service quota increase requests as needed.

5. If all the prerequisites are met, the page will look like this:

Figure 2.5. Verify Red Hat OpenShift Service on AWS prerequisites

Red Hat OpenShift Service on AWS 4 Tutorials

8

Figure 2.5. Verify Red Hat OpenShift Service on AWS prerequisites

The ELB service-linked role is created for you automatically. You can click any of the small Info
blue links to get contextual help and resources.

2.3. AWS AND RED HAT ACCOUNT AND SUBSCRIPTION LINKING

1. Click the orange Continue to Red Hat button to proceed with account linking:

Figure 2.6. Continue to Red Hat

CHAPTER 2. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS ACTIVATION AND ACCOUNT LINKING

9

Figure 2.6. Continue to Red Hat

2. If you are not already logged in to your Red Hat account in your current browser’s session, you
will be asked to log in to your account:

NOTE

Your AWS account must be linked to a single Red Hat organization.

Figure 2.7. Log in to your Red Hat account

Red Hat OpenShift Service on AWS 4 Tutorials

10

Figure 2.7. Log in to your Red Hat account

You can also register for a new Red Hat account or reset your password on this page.

Log in to the Red Hat account that you want to associate with the AWS account that has
activated the Red Hat OpenShift Service on AWS product subscription.

The AWS account used for service billing can only be associated with a single Red Hat
account. Typically an AWS payer account is the one that is used to subscribe to Red Hat
OpenShift Service on AWS and used for account linking and billing.

All team members belonging to the same Red Hat organization can use the linked AWS
account for service billing while creating Red Hat OpenShift Service on AWS clusters.

3. Complete the Red Hat account linking after reviewing the terms and conditions:

NOTE

CHAPTER 2. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS ACTIVATION AND ACCOUNT LINKING

11

NOTE

This step is available only if the AWS account was not linked to any Red Hat
account before.

This step is skipped if the AWS account is already linked to the user’s logged in
Red Hat account.

If the AWS account is linked to a different Red Hat account, an error will be
displayed. See Correcting Billing Account Information for HCP clusters for
troubleshooting.

Figure 2.8. Complete your account connection

Both the Red Hat and AWS account numbers are shown on this screen.

4. Click the Connect accounts button if you agree with the service terms.
If this is the first time you are using the Red Hat Hybrid Cloud Console, you will be asked to
agree with the general managed services terms and conditions before being able to create the
first cluster:

Figure 2.9. Terms and conditions

Red Hat OpenShift Service on AWS 4 Tutorials

12

https://access.redhat.com/articles/7066995

Figure 2.9. Terms and conditions

Additional terms that need to be reviewed and accepted are shown after clicking the View
Terms and Conditions button:

Figure 2.10. Red Hat terms and conditions

Submit your agreement once you have reviewed any additional terms when prompted at this
time.

5. The Hybrid Cloud Console provides a confirmation that AWS account setup was completed and
lists the prerequisites for cluster deployment:

Figure 2.11. Complete Red Hat OpenShift Service on AWS prerequisites

CHAPTER 2. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS ACTIVATION AND ACCOUNT LINKING

13

Figure 2.11. Complete Red Hat OpenShift Service on AWS prerequisites

The last section of this page shows cluster deployment options, either using the rosa CLI or
through the web console:

Figure 2.12. Deploy the cluster and set up access

2.4. SELECTING THE AWS BILLING ACCOUNT FOR RED HAT
OPENSHIFT SERVICE ON AWS DURING CLUSTER DEPLOYMENT
USING THE CLI

IMPORTANT

Make sure that you have the most recent ROSA command-line interface (CLI) and AWS
CLI installed and have completed the Red Hat OpenShift Service on AWS prerequisites
covered in the previous section. See Help with ROSA CLI setup and Instructions to install
the AWS CLI for more information.

1. Initiate the cluster deployment using the rosa create cluster command. You can click the copy
button on the Set up Red Hat OpenShift Service on AWS (ROSA) console page and paste the
command in your terminal. This launches the cluster creation process in interactive mode:

Figure 2.13. Deploy the cluster and set up access

Red Hat OpenShift Service on AWS 4 Tutorials

14

https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html-single/cli_tools/#rosa-get-started-cli
https://aws.amazon.com/cli/
https://console.redhat.com/openshift/create/rosa/getstarted

Figure 2.13. Deploy the cluster and set up access

2. To use a custom AWS profile, one of the non-default profiles specified in your
~/.aws/credentials, you can add the –profile <profile_name> selector to the rosa create
cluster command so that the command looks like rosa create cluster –profile stage. If no AWS
CLI profile is specified using this option, the default AWS CLI profile will determine the AWS
infrastructure profile into which the cluster is deployed. The billing AWS profile is selected in one
of the following steps.

3. When deploying a Red Hat OpenShift Service on AWS cluster, the billing AWS account needs to
be specified:

Figure 2.14. Specify the Billing Account

Only AWS accounts that are linked to the user’s logged in Red Hat account are shown.

The specified AWS account is charged for using the Red Hat OpenShift Service on AWS
service.

An indicator shows if the Red Hat OpenShift Service on AWS contract is enabled or not
enabled for a given AWS billing account.

If you select an AWS billing account that shows the Contract enabled label, on-demand
consumption rates are charged only after the capacity of your pre-paid contract is
consumed.

AWS accounts without the Contract enabled label are charged the applicable on-
demand consumption rates.

Additional resources

The detailed cluster deployment steps are beyond the scope of this tutorial. See Creating Red

CHAPTER 2. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS ACTIVATION AND ACCOUNT LINKING

15

The detailed cluster deployment steps are beyond the scope of this tutorial. See Creating Red
Hat OpenShift Service on AWS clusters using the default options for more details about how to
complete the Red Hat OpenShift Service on AWS cluster deployment using the CLI.

2.5. SELECTING THE AWS BILLING ACCOUNT FOR RED HAT
OPENSHIFT SERVICE ON AWS DURING CLUSTER DEPLOYMENT
USING THE WEB CONSOLE

1. A cluster can be created using the web console by selecting the second option in the bottom
section of the introductory Set up Red Hat OpenShift Service on AWS page:

Figure 2.15. Deploy with web interface

NOTE

Complete the prerequisites before starting the web console deployment process.

The rosa CLI is required for certain tasks, such as creating the account roles. If
you are deploying Red Hat OpenShift Service on AWS for the first time, follow
this the CLI steps until running the rosa whoami command, before starting the
web console deployment steps.

2. The first step when creating a Red Hat OpenShift Service on AWS cluster using the web console
is the control plane selection. Make sure the Hosted option is selected before clicking the Next
button:

Figure 2.16. Select hosted option

Red Hat OpenShift Service on AWS 4 Tutorials

16

https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html-single/install_clusters/#rosa-hcp-sts-creating-a-cluster-quickly

Figure 2.16. Select hosted option

3. The next step Accounts and roles allows you specifying the infrastructure AWS account, into
which the Red Hat OpenShift Service on AWS cluster is deployed and where the resources are
consumed and managed:

Figure 2.17. AWS infrastructure account

Click the How to associate a new AWS account, if you don not see the account into which
you want to deploy the Red Hat OpenShift Service on AWS cluster for detailed information
on how to create or link account roles for this association.

The rosa CLI is used for this.

If you are using multiple AWS accounts and have their profiles configured for the AWS CLI,
you can use the --profile selector to specify the AWS profile when working with the rosa
CLI commands.

4. The billing AWS account is selected in the immediately following section:

Figure 2.18. AWS billing account

CHAPTER 2. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS ACTIVATION AND ACCOUNT LINKING

17

Figure 2.18. AWS billing account

Only AWS accounts that are linked to the user’s logged in Red Hat account are shown.

The specified AWS account is charged for using the Red Hat OpenShift Service on AWS
service.

An indicator shows if the Red Hat OpenShift Service on AWS contract is enabled or not
enabled for a given AWS billing account.

If you select an AWS billing account that shows the Contract enabled label, on-demand
consumption rates are charged only after the capacity of your pre-paid contract is
consumed.

AWS accounts without the Contract enabled label are charged the applicable on-
demand consumption rates.

The following steps past the billing AWS account selection are beyond the scope of this tutorial.

Additional resources

For information on using the CLI to create a cluster, see Creating a Red Hat OpenShift Service
on AWS cluster using the CLI.

See this learning path for more details on how to complete cluster deployment using the web
console.

Red Hat OpenShift Service on AWS 4 Tutorials

18

https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html-single/install_clusters/#rosa-hcp-sts-creating-a-cluster-cli_rosa-hcp-sts-creating-a-cluster-quickly
https://cloud.redhat.com/learning/learn:getting-started-red-hat-openshift-service-aws-rosa/resource/resources:how-deploy-cluster-red-hat-openshift-service-aws-using-console-ui

CHAPTER 3. TUTORIAL: RED HAT OPENSHIFT SERVICE ON
AWS PRIVATE OFFER ACCEPTANCE AND SHARING

This guide describes how to accept a private offer for Red Hat OpenShift Service on AWS and how to
ensure that all team members can use the private offer for the clusters they provision.

Red Hat OpenShift Service on AWS costs are composed of the AWS infrastructure costs and the Red
Hat OpenShift Service on AWS service costs. AWS infrastructure costs, such as the EC2 instances that
are running the needed workloads, are charged to the AWS account where the infrastructure is
deployed. Red Hat OpenShift Service on AWS service costs are charged to the AWS account specified
as the "AWS billing account" when deploying a cluster.

The cost components can be billed to different AWS accounts. Detailed description of how the Red Hat
OpenShift Service on AWS service cost and AWS infrastructure costs are calculated can be found on
the Red Hat OpenShift Service on AWS Pricing page .

3.1. ACCEPTING A PRIVATE OFFER

1. When you get a private offer for Red Hat OpenShift Service on AWS, you are provided with a
unique URL that is accessible only by a specific AWS account ID that was specified by the seller.

NOTE

Verify that you are logged in using the AWS account that was specified as the
buyer. Attempting to access the offer using another AWS account produces a
"page not found" error message as shown in Figure 11 in the troubleshooting
section below.

a. You can see the offer selection drop down menu with a regular private offer pre-selected in
Figure 1. This type of offer can be accepted only if the Red Hat OpenShift Service on AWS
was not activated before using the public offer or another private offer.

Figure 3.1. Regular private offer

b. You can see a private offer that was created for an AWS account that previously activated
Red Hat OpenShift Service on AWS using the public offer, showing the product name and
the selected private offer labeled as "Upgrade", that replaces the currently running contract
for Red Hat OpenShift Service on AWS in Figure 2.

Figure 3.2. Private offer selection selection screen

CHAPTER 3. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS PRIVATE OFFER ACCEPTANCE AND SHARING

19

https://aws.amazon.com/rosa/pricing/

Figure 3.2. Private offer selection selection screen

c. The drop down menu allows selecting between multiple offers, if available. The previously
activated public offer is shown together with the newly provided agreement based offer
that is labeled as "Upgrade" in Figure 3.

Figure 3.3. Private offer selection dropdown

2. Verify that your offer configuration is selected. Figure 4 shows the bottom part of the offer
page with the offer details.

NOTE

The contract end date, the number of units included with the offer, and the
payment schedule. In this example, 1 cluster and up to 3 nodes utilizing 4 vCPUs
are included.

Figure 3.4. Private offer details

Red Hat OpenShift Service on AWS 4 Tutorials

20

Figure 3.4. Private offer details

3. Optional: you can add your own purchase order (PO) number to the subscription that is being
purchased, so it is included on your subsequent AWS invoices. Also, check the "Additional usage
fees" that are charged for any usage above the scope of the "New offer configuration details".

NOTE

CHAPTER 3. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS PRIVATE OFFER ACCEPTANCE AND SHARING

21

https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-purchase-orders.html

NOTE

Private offers have several available configurations.

It is possible that the private offer you are accepting is set up with a fixed
future start date.

If you do not have another active Red Hat OpenShift Service on AWS
subscription at the time of accepting the private offer, a public offer or an
older private offer entitlement, accept the private offer itself and continue
with the account linking and cluster deployment steps after the specified
service start date.

You must have an active Red Hat OpenShift Service on AWS entitlement to
complete these steps. Service start dates are always reported in the UTC time
zone

4. Create or upgrade your contract.

a. For private offers accepted by an AWS account that does not have Red Hat OpenShift
Service on AWS activated yet and is creating the first contract for this service, click the
Create contract button.

Figure 3.5. Create contract button

b. For agreement-based offers, click the Upgrade current contract button shown in Figures 4
and 6.

Figure 3.6. Upgrade contract button

5. Click Confirm.

Figure 3.7. Private offer acceptance confirmation window

Red Hat OpenShift Service on AWS 4 Tutorials

22

Figure 3.7. Private offer acceptance confirmation window

6. If the accepted private offer service start date is set to be immediately following the offer
acceptance, click the Set up your account button in the confirmation modal window.

Figure 3.8. Subscription confirmation

7. If the accepted private offer has a future start date specified, return to the private offer page
after the service start date, and click the Setup your account button to proceed with the
Red Hat and AWS account linking.

NOTE

CHAPTER 3. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS PRIVATE OFFER ACCEPTANCE AND SHARING

23

NOTE

With no agreement active, the account linking described below is not triggered,
the "Account setup" process can be done only after the "Service start date".

These are always in UTC time zone.

3.2. SHARING A PRIVATE OFFER

1. Clicking the Set up your account button in the previous step takes you to the AWS and
Red Hat account linking step. At this time, you are already logged in with the AWS account that
accepted the offer. If you are not logged in with a Red Hat account, you will be prompted to do
so.
Red Hat OpenShift Service on AWS entitlement is shared with other team members through
your Red Hat organization account. All existing users in the same Red Hat organization are able
to select the billing AWS account that accepted the private offer by following the above
described steps. You can manage users in your Red Hat organization , when logged in as the
Red Hat organization administrator, and invite or create new users.

NOTE

Red Hat OpenShift Service on AWS private offer cannot be shared with AWS
linked accounts through the AWS License Manager.

2. Add any users that you want to deploy Red Hat OpenShift Service on AWS clusters. Check this
user management FAQ for more details about Red Hat account user management tasks.

3. Verify that the already logged in Red Hat account includes all users that are meant to be Red
Hat OpenShift Service on AWS cluster deployers benefiting from the accepted private offer.

4. Verify that the Red Hat account number and the AWS account ID are the desired accounts that
are to be linked. This linking is unique and a Red Hat account can be connected only with a
single AWS (billing) account.

Figure 3.9. AWS and Red Hat accounts connection

Red Hat OpenShift Service on AWS 4 Tutorials

24

https://www.redhat.com/wapps/ugc/protected/usermgt/userList.html
https://access.redhat.com/customer-service-users

Figure 3.9. AWS and Red Hat accounts connection

5. If you want to link the AWS account with another Red Hat account than is shown on this page in
Figure 9, log out from the Red Hat Hybrid Cloud Console before connecting the accounts and
repeat the step of setting the account by returning to the private offer URL that is already
accepted.
An AWS account can be connected with a single Red Hat account only. Once Red Hat and AWS
accounts are connected, this cannot be changed by the user. If a change is needed, the user
must create a support ticket.

6. Agree to the terms and conditions and then click Connect accounts.

3.3. AWS BILLING ACCOUNT SELECTION

When deploying Red Hat OpenShift Service on AWS clusters, verify that end users select the
AWS billing account that accepted the private offer.

When using the web interface for deploying Red Hat OpenShift Service on AWS, the Associated
AWS infrastructure account" is typically set to the AWS account ID used by the administrator of
the cluster that is being created.

This can be the same AWS account as the billing AWS account.

AWS resources are deployed into this account and all the billing associated with those
resources are processed accordingly.

Figure 3.10. Infrastructure and billing AWS account selection during Red Hat OpenShift

CHAPTER 3. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS PRIVATE OFFER ACCEPTANCE AND SHARING

25

Figure 3.10. Infrastructure and billing AWS account selection during Red Hat OpenShift
Service on AWS cluster deployment

The drop-down for the AWS billing account on the screenshot above should be set to the
AWS account that accepted the private offer, providing the purchased quota is intended to
be used by the cluster that is being created. If different AWS accounts are selected in the
infrastructure and billing "roles", the blue informative note visible in Figure 10 is shown.

3.4. TROUBLESHOOTING

The most frequent issues associated with private offer acceptance and Red Hat account linking.

3.4.1. Accessing a private offer using a different AWS account

If you try accessing the private offer when logged in under AWS account ID that is not defined in
the offer, and see the message shown in Figure 11, then verify that you are logged in as the
desired AWS billing account.

Figure 3.11. HTTP 404 error when using the private offer URL

Red Hat OpenShift Service on AWS 4 Tutorials

26

Figure 3.11. HTTP 404 error when using the private offer URL

Contact the seller if you need the private offer to be extended to another AWS account.

3.4.2. The private offer cannot be accepted because of active subscription

If you try accessing a private offer that was created for the first time Red Hat OpenShift Service
on AWS activation, while you already have Red Hat OpenShift Service on AWS activated using
another public or private offer, and see the following notice, then contact the seller who
provided you with the offer.
The seller can provide you with a new offer that will seamlessly replace your current agreement,
without a need to cancel your previous subscription.

Figure 3.12. Existing subscription preventing private offer acceptance

3.4.3. The AWS account is already linked to a different Red Hat account

If you see the error message "AWS account is already linked to a different Red Hat account"
when you try to connect the AWS account that accepted the private offer with a presently
logged-in Red Hat user, then the AWS account is already connected to another Red Hat user.

Figure 3.13. AWS account is already linked to a different Red Hat account

CHAPTER 3. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS PRIVATE OFFER ACCEPTANCE AND SHARING

27

Figure 3.13. AWS account is already linked to a different Red Hat account

You can either log in using another Red Hat account or another AWS account.

However, since this guide pertains to private offers, the assumption is that you are logged in
with the AWS account that was specified as the buyer and already accepted the private
offer so it is intended to be used as the billing account. Logging in as another AWS account
is not expected after a private offer was accepted.

You can still log in with another Red Hat user which is already connected to the AWS account
that accepted the private offer. Other Red Hat users belonging to the same Red Hat
organization are able to use the linked AWS account as the Red Hat OpenShift Service on AWS
AWS billing account when creating clusters as seen in Figure 10.

If you believe that the existing account linking might not be correct, see the "My team members
belong to different Red Hat organizations" question below for tips on how you can proceed.

3.4.4. My team members belong to different Red Hat organizations

An AWS account can be connected to a single Red Hat account only. Any user that wants to
create a cluster and benefit from the private offer granted to this AWS account needs to be in
the same Red Hat account. This can be achieved by inviting the user to the same Red Hat
account and creating a new Red Hat user.

3.4.5. Incorrect AWS billing account was selected when creating a cluster

If the user selected an incorrect AWS billing account, the fastest way to fix this is to delete the
cluster and create a new one, while selecting the correct AWS billing account.

If this is a production cluster that cannot be easily deleted, please contact Red Hat support to
change the billing account for an existing cluster. Expect some turnaround time for this to be
resolved.

Red Hat OpenShift Service on AWS 4 Tutorials

28

1

2

3

CHAPTER 4. TUTORIAL: DEPLOYING RED HAT OPENSHIFT
SERVICE ON AWS WITH A CUSTOM DNS RESOLVER

A custom DHCP option set enables you to customize your VPC with your own DNS server, domain name,
and more. Red Hat OpenShift Service on AWS clusters support using custom DHCP option sets. By
default, Red Hat OpenShift Service on AWS clusters require setting the "domain name servers" option
to AmazonProvidedDNS to ensure successful cluster creation and operation. Customers who want to
use custom DNS servers for DNS resolution must do additional configuration to ensure successful Red
Hat OpenShift Service on AWS cluster creation and operation.

In this tutorial, we will configure our DNS server to forward DNS lookups for specific DNS zones (further
detailed below) to an Amazon Route 53 Inbound Resolver .

NOTE

This tutorial uses the open-source BIND DNS server (named) to demonstrate the
configuration necessary to forward DNS lookups to an Amazon Route 53 Inbound
Resolver located in the VPC you plan to deploy a Red Hat OpenShift Service on AWS
cluster into. Refer to the documentation of your preferred DNS server for how to
configure zone forwarding.

4.1. PREREQUISITES

ROSA CLI (rosa)

AWS CLI (aws)

A manually created AWS VPC

A DHCP option set configured to point to a custom DNS server and set as the default for your
VPC

4.2. SETTING UP YOUR ENVIRONMENT

1. Configure the following environment variables:

Replace <vpc_ID> with the ID of the VPC you want to install your cluster into.

Replace <region> with the AWS region you want to install your cluster into.

Replace <vpc_CIDR> with the CIDR range of your VPC.

2. Ensure all fields output correctly before moving to the next section:

4.3. CREATE AN AMAZON ROUTE 53 INBOUND RESOLVER

$ export VPC_ID=<vpc_ID> 1
$ export REGION=<region> 2
$ export VPC_CIDR=<vpc_CIDR> 3

$ echo "VPC ID: ${VPC_ID}, VPC CIDR Range: ${VPC_CIDR}, Region: ${REGION}"

CHAPTER 4. TUTORIAL: DEPLOYING RED HAT OPENSHIFT SERVICE ON AWS WITH A CUSTOM DNS RESOLVER

29

https://docs.aws.amazon.com/vpc/latest/userguide/DHCPOptionSet.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver.html
https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html-single/install_clusters/#rosa-hcp-creating-vpc_rosa-hcp-sts-creating-a-cluster-quickly

Use the following procedure to deploy an Amazon Route 53 Inbound Resolver in the VPC we plan to
deploy the cluster into.

WARNING

In this example, we deploy the Amazon Route 53 Inbound Resolver into the same
VPC the cluster will use. If you want to deploy it into a separate VPC, you must
manually associate the private hosted zone(s) detailed below once cluster creation
is started. You cannot associate the zone before the cluster creation process
begins. Failure to associate the private hosted zone during the cluster creation
process will result in cluster creation failures.

1. Create a security group and allow access to ports 53/tcp and 53/udp from the VPC:

2. Create an Amazon Route 53 Inbound Resolver in your VPC:

NOTE



$ SG_ID=$(aws ec2 create-security-group --group-name rosa-inbound-resolver --description
"Security group for ROSA inbound resolver" --vpc-id ${VPC_ID} --region ${REGION} --
output text)
$ aws ec2 authorize-security-group-ingress --group-id ${SG_ID} --protocol tcp --port 53 --cidr
${VPC_CIDR} --region ${REGION}
$ aws ec2 authorize-security-group-ingress --group-id ${SG_ID} --protocol udp --port 53 --
cidr ${VPC_CIDR} --region ${REGION}

$ RESOLVER_ID=$(aws route53resolver create-resolver-endpoint \
 --name rosa-inbound-resolver \
 --creator-request-id rosa-$(date '+%Y-%m-%d') \
 --security-group-ids ${SG_ID} \
 --direction INBOUND \
 --ip-addresses $(aws ec2 describe-subnets --filter Name=vpc-id,Values=${VPC_ID} --
region ${REGION} | jq -jr '.Subnets | map("SubnetId=\(.SubnetId) ") | .[]') \
 --region ${REGION} \
 --output text \
 --query 'ResolverEndpoint.Id')

Red Hat OpenShift Service on AWS 4 Tutorials

30

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver.html

1

NOTE

The above command attaches Amazon Route 53 Inbound Resolver endpoints to
all subnets in the provided VPC using dynamically allocated IP addresses. If you
prefer to manually specify the subnets and/or IP addresses, run the following
command instead:

Replace <subnet_ID> with the subnet IDs and <endpoint_IP> with the
static IP addresses you want inbound resolver endpoints added to.

3. Get the IP addresses of your inbound resolver endpoints to configure in your DNS server
configuration:

Example output

4.4. CONFIGURE YOUR DNS SERVER

Use the following procedure to configure your DNS server to forward the necessary private hosted
zones to your Amazon Route 53 Inbound Resolver.

4.4.1. Red Hat OpenShift Service on AWS

Red Hat OpenShift Service on AWS clusters require you to configure DNS forwarding for two private
hosted zones:

<cluster-name>.hypershift.local

rosa.<domain-prefix>.<unique-ID>.p3.openshiftapps.com

These Amazon Route 53 private hosted zones are created during cluster creation. The cluster-name
and domain-prefix are customer-specified values, but the unique-ID is randomly generated during

$ RESOLVER_ID=$(aws route53resolver create-resolver-endpoint \
 --name rosa-inbound-resolver \
 --creator-request-id rosa-$(date '+%Y-%m-%d') \
 --security-group-ids ${SG_ID} \
 --direction INBOUND \
 --ip-addresses SubnetId=<subnet_ID>,Ip=<endpoint_IP> SubnetId=
<subnet_ID>,Ip=<endpoint_IP> \ 1
 --region ${REGION} \
 --output text \
 --query 'ResolverEndpoint.Id')

$ aws route53resolver list-resolver-endpoint-ip-addresses \
 --resolver-endpoint-id ${RESOLVER_ID} \
 --region=${REGION} \
 --query 'IpAddresses[*].Ip'

[
 "10.0.45.253",
 "10.0.23.131",
 "10.0.148.159"
]

CHAPTER 4. TUTORIAL: DEPLOYING RED HAT OPENSHIFT SERVICE ON AWS WITH A CUSTOM DNS RESOLVER

31

1

2

cluster creation and cannot be preselected. As such, you must wait for the cluster creation process to
begin before configuring forwarding for the p3.openshiftapps.com private hosted zone.

1. Before the cluster is created, configure your DNS server to forward all DNS requests for
<cluster-name>.hypershift.local to your Amazon Route 53 Inbound Resolver endpoints. For
BIND DNS servers, edit your /etc/named.conf file in your favorite text editor and add a new
zone using the below example:

Example

Replace <cluster-name> with your Red Hat OpenShift Service on AWS cluster name.

Replace with the IP addresses of your inbound resolver endpoints collected above,
ensuring that following each IP address there is a ;.

2. Create your cluster.

3. Once your cluster has begun the creation process, locate the newly created private hosted
zone:

Example output

NOTE

It may take a few minutes for the cluster creation process to create the private
hosted zones in Route 53. If you do not see an p3.openshiftapps.com domain,
wait a few minutes and run the command again.

4. Once you know the unique ID of the cluster domain, configure your DNS server to forward all

zone "<cluster-name>.hypershift.local" { 1
 type forward;
 forward only;
 forwarders { 2
 10.0.45.253;
 10.0.23.131;
 10.0.148.159;
 };
};

$ aws route53 list-hosted-zones-by-vpc \
 --vpc-id ${VPC_ID} \
 --vpc-region ${REGION} \
 --query 'HostedZoneSummaries[*].Name' \
 --output table

--
| ListHostedZonesByVPC |
+--+
| rosa.domain-prefix.lkmb.p3.openshiftapps.com. |
| cluster-name.hypershift.local. |
+--+

Red Hat OpenShift Service on AWS 4 Tutorials

32

https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html-single/install_clusters/#rosa-hcp-sts-creating-a-cluster-quickly

1

2

DNS requests for rosa.<domain-prefix>.<unique-ID>.p3.openshiftapps.com to your Amazon
Route 53 Inbound Resolver endpoints. For BIND DNS servers, edit your /etc/named.conf file in
your favorite text editor and add a new zone using the below example:

Example

Replace <domain-prefix> with your cluster domain prefix and <unique-ID> with your
unique ID collected above.

Replace with the IP addresses of your inbound resolver endpoints collected above,
ensuring that following each IP address there is a ;.

zone "rosa.<domain-prefix>.<unique-ID>.p3.openshiftapps.com" { 1
 type forward;
 forward only;
 forwarders { 2
 10.0.45.253;
 10.0.23.131;
 10.0.148.159;
 };
};

CHAPTER 4. TUTORIAL: DEPLOYING RED HAT OPENSHIFT SERVICE ON AWS WITH A CUSTOM DNS RESOLVER

33

1

CHAPTER 5. TUTORIAL: USING AWS WAF AND AMAZON
CLOUDFRONT TO PROTECT RED HAT OPENSHIFT SERVICE

ON AWS WORKLOADS
AWS WAF is a web application firewall that lets you monitor the HTTP and HTTPS requests that are
forwarded to your protected web application resources.

You can use an Amazon CloudFront to add a Web Application Firewall (WAF) to your Red Hat OpenShift
Service on AWS workloads. Using an external solution protects Red Hat OpenShift Service on AWS
resources from experiencing denial of service due to handling the WAF.

NOTE

WAFv1, WAF classic, is no longer supported. Use WAFv2.

5.1. PREREQUISITES

A Red Hat OpenShift Service on AWS cluster.

You have access to the OpenShift CLI (oc).

You have access to the AWS CLI (aws).

5.1.1. Environment setup

Prepare the environment variables:

Replace with the custom domain you want to use for the IngressController.

NOTE

The "Cluster" output from the previous command might be the name of your
cluster, the internal ID of your cluster, or the cluster’s domain prefix. If you prefer
to use another identifier, you can manually set this value by running the following
command:

$ export DOMAIN=apps.example.com 1
$ export AWS_PAGER=""
$ export CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export REGION=$(oc get infrastructure cluster -o=jsonpath="
{.status.platformStatus.aws.region}")
$ export AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
$ export SCRATCH="/tmp/${CLUSTER}/cloudfront-waf"
$ mkdir -p ${SCRATCH}
$ echo "Cluster: ${CLUSTER}, Region: ${REGION}, AWS Account ID:
${AWS_ACCOUNT_ID}"

$ export CLUSTER=my-custom-value

Red Hat OpenShift Service on AWS 4 Tutorials

34

5.2. SETTING UP THE SECONDARY INGRESS CONTROLLER

It is necessary to configure a secondary ingress controller to segment your external WAF-protected
traffic from your standard (and default) cluster ingress controller.

Prerequisites

A publicly trusted SAN or wildcard certificate for your custom domain, such as
CN=*.apps.example.com

IMPORTANT

Amazon CloudFront uses HTTPS to communicate with your cluster’s secondary
ingress controller. As explained in the Amazon CloudFront documentation, you
cannot use a self-signed certificate for HTTPS communication between
CloudFront and your cluster. Amazon CloudFront verifies that the certificate was
issued by a trusted certificate authority.

Procedure

1. Create a new TLS secret from a private key and a public certificate, where fullchain.pem is your
full wildcard certificate chain (including any intermediaries) and privkey.pem is your wildcard
certificate’s private key.

Example

2. Create a new IngressController resource:

Example waf-ingress-controller.yaml

$ oc -n openshift-ingress create secret tls waf-tls --cert=fullchain.pem --key=privkey.pem

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: cloudfront-waf
 namespace: openshift-ingress-operator
spec:
 domain: apps.example.com 1
 defaultCertificate:
 name: waf-tls
 endpointPublishingStrategy:
 loadBalancer:
 dnsManagementPolicy: Unmanaged
 providerParameters:
 aws:
 type: NLB
 type: AWS
 scope: External
 type: LoadBalancerService
 routeSelector: 2
 matchLabels:
 route: waf

CHAPTER 5. TUTORIAL: USING AWS WAF AND AMAZON CLOUDFRONT TO PROTECT RED HAT OPENSHIFT SERVICE ON AWS WORKLOADS

35

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-custom-origin.html

1

2

Replace with the custom domain you want to use for the IngressController.

Filters the set of routes serviced by the Ingress Controller. In this tutorial, we will use the
waf route selector, but if no value was to be provided, no filtering would occur.

3. Apply the IngressController:

Example

4. Verify that your IngressController has successfully created an external load balancer:

Example output

5.2.1. Configure the AWS WAF

The AWS WAF service is a web application firewall that lets you monitor, protect, and control the HTTP
and HTTPS requests that are forwarded to your protected web application resources, like Red Hat
OpenShift Service on AWS.

1. Create a AWS WAF rules file to apply to our web ACL:

$ oc apply -f waf-ingress-controller.yaml

$ oc -n openshift-ingress get service/router-cloudfront-waf

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
router-cloudfront-waf LoadBalancer 172.30.16.141
a68a838a7f26440bf8647809b61c4bc8-4225395f488830bd.elb.us-east-1.amazonaws.com
80:30606/TCP,443:31065/TCP 2m19s

$ cat << EOF > ${SCRATCH}/waf-rules.json
[
 {
 "Name": "AWS-AWSManagedRulesCommonRuleSet",
 "Priority": 0,
 "Statement": {
 "ManagedRuleGroupStatement": {
 "VendorName": "AWS",
 "Name": "AWSManagedRulesCommonRuleSet"
 }
 },
 "OverrideAction": {
 "None": {}
 },
 "VisibilityConfig": {
 "SampledRequestsEnabled": true,
 "CloudWatchMetricsEnabled": true,
 "MetricName": "AWS-AWSManagedRulesCommonRuleSet"
 }
 },
 {
 "Name": "AWS-AWSManagedRulesSQLiRuleSet",

Red Hat OpenShift Service on AWS 4 Tutorials

36

https://aws.amazon.com/waf/

This will enable the Core (Common) and SQL AWS Managed Rule Sets.

2. Create an AWS WAF Web ACL using the rules we specified above:

5.3. CONFIGURE AMAZON CLOUDFRONT

1. Retrieve the newly created custom ingress controller’s NLB hostname:

2. Import your certificate into Amazon Certificate Manager, where cert.pem is your wildcard
certificate, fullchain.pem is your wildcard certificate’s chain and privkey.pem is your wildcard
certificate’s private key.

NOTE

Regardless of what region your cluster is deployed, you must import this
certificate to us-east-1 as Amazon CloudFront is a global AWS service.

Example

 "Priority": 1,
 "Statement": {
 "ManagedRuleGroupStatement": {
 "VendorName": "AWS",
 "Name": "AWSManagedRulesSQLiRuleSet"
 }
 },
 "OverrideAction": {
 "None": {}
 },
 "VisibilityConfig": {
 "SampledRequestsEnabled": true,
 "CloudWatchMetricsEnabled": true,
 "MetricName": "AWS-AWSManagedRulesSQLiRuleSet"
 }
 }
]
EOF

$ WAF_WACL=$(aws wafv2 create-web-acl \
 --name cloudfront-waf \
 --region ${REGION} \
 --default-action Allow={} \
 --scope CLOUDFRONT \
 --visibility-config
SampledRequestsEnabled=true,CloudWatchMetricsEnabled=true,MetricName=${CLUSTER}-
waf-metrics \
 --rules file://${SCRATCH}/waf-rules.json \
 --query 'Summary.Name' \
 --output text)

$ NLB=$(oc -n openshift-ingress get service router-cloudfront-waf \
 -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')

CHAPTER 5. TUTORIAL: USING AWS WAF AND AMAZON CLOUDFRONT TO PROTECT RED HAT OPENSHIFT SERVICE ON AWS WORKLOADS

37

3. Log into the AWS console to create a CloudFront distribution.

4. Configure the CloudFront distribution by using the following information:

NOTE

If an option is not specified in the table below, leave them the default (which may
be blank).

Option Value

Origin domain Output from the previous command [1]

Name rosa-waf-ingress [2]

Viewer protocol policy Redirect HTTP to HTTPS

Allowed HTTP methods GET, HEAD, OPTIONS, PUT, POST, PATCH,
DELETE

Cache policy CachingDisabled

Origin request policy AllViewer

Web Application Firewall (WAF) Enable security protections

Use existing WAF configuration true

Choose a web ACL cloudfront-waf

Alternate domain name (CNAME) *.apps.example.com [3]

Custom SSL certificate Select the certificate you imported from the

step above [4]

1. Run echo ${NLB} to get the origin domain.

2. If you have multiple clusters, ensure the origin name is unique.

3. This should match the wildcard domain you used to create the custom ingress controller.

4. This should match the alternate domain name entered above.

5. Retrieve the Amazon CloudFront Distribution endpoint:

$ aws acm import-certificate --certificate file://cert.pem \
 --certificate-chain file://fullchain.pem \
 --private-key file://privkey.pem \
 --region us-east-1

Red Hat OpenShift Service on AWS 4 Tutorials

38

https://us-east-1.console.aws.amazon.com/cloudfront/v3/home#/distributions/create

6. Update the DNS of your custom wildcard domain with a CNAME to the Amazon CloudFront
Distribution endpoint from the step above.

Example

5.4. DEPLOY A SAMPLE APPLICATION

1. Create a new project for your sample application by running the following command:

2. Deploy a hello world application:

3. Create a route for the application specifying your custom domain name:

Example

4. Label the route to admit it to your custom ingress controller:

5.5. TEST THE WAF

1. Test that the app is accessible behind Amazon CloudFront:

Example

Example output

2. Test that the WAF denies a bad request:

Example

$ aws cloudfront list-distributions --query "DistributionList.Items[?Origins.Items[?
DomainName=='${NLB}']].DomainName" --output text

*.apps.example.com CNAME d1b2c3d4e5f6g7.cloudfront.net

$ oc new-project hello-world

$ oc -n hello-world new-app --image=docker.io/openshift/hello-openshift

$ oc -n hello-world create route edge --service=hello-openshift hello-openshift-tls \
--hostname hello-openshift.${DOMAIN}

$ oc -n hello-world label route.route.openshift.io/hello-openshift-tls route=waf

$ curl "https://hello-openshift.${DOMAIN}"

Hello OpenShift!

$ curl -X POST "https://hello-openshift.${DOMAIN}" \
 -F "user='<script><alert>Hello></alert></script>'"

CHAPTER 5. TUTORIAL: USING AWS WAF AND AMAZON CLOUDFRONT TO PROTECT RED HAT OPENSHIFT SERVICE ON AWS WORKLOADS

39

Example output

The expected result is a 403 ERROR, which means the AWS WAF is protecting your application.

5.6. ADDITIONAL RESOURCES

Adding Extra Security with AWS WAF, CloudFront and ROSA | Amazon Web Services on
YouTube

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<HTML><HEAD><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-
8859-1">
<TITLE>ERROR: The request could not be satisfied</TITLE>
</HEAD><BODY>
<H1>403 ERROR</H1>
<H2>The request could not be satisfied.</H2>
<HR noshade size="1px">
Request blocked.
We can't connect to the server for this app or website at this time. There might be too much
traffic or a configuration error. Try again later, or contact the app or website owner.
<BR clear="all">
If you provide content to customers through CloudFront, you can find steps to troubleshoot
and help prevent this error by reviewing the CloudFront documentation.
<BR clear="all">
<HR noshade size="1px">
<PRE>
Generated by cloudfront (CloudFront)
Request ID: nFk9q2yB8jddI6FZOTjdliexzx-FwZtr8xUQUNT75HThPlrALDxbag==
</PRE>
<ADDRESS>
</ADDRESS>
</BODY></HTML>

Red Hat OpenShift Service on AWS 4 Tutorials

40

https://youtu.be/-HorEsl2ho4

CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO
PROTECT RED HAT OPENSHIFT SERVICE ON AWS

WORKLOADS
AWS WAF is a web application firewall that lets you monitor the HTTP and HTTPS requests that are
forwarded to your protected web application resources.

You can use an AWS Application Load Balancer (ALB) to add a Web Application Firewall (WAF) to your
Red Hat OpenShift Service on AWS workloads. Using an external solution protects Red Hat OpenShift
Service on AWS resources from experiencing denial of service due to handling the WAF.

IMPORTANT

It is recommended that you use the more flexible CloudFront method unless you
absolutely must use an ALB based solution.

6.1. PREREQUISITES

Multiple availability zone (AZ) Red Hat OpenShift Service on AWS cluster.

NOTE

AWS ALBs require at least two public subnets across AZs, per the AWS
documentation. For this reason, only multiple AZ Red Hat OpenShift Service on
AWS clusters can be used with ALBs.

You have access to the OpenShift CLI (oc).

You have access to the AWS CLI (aws).

6.1.1. Environment setup

Prepare the environment variables:

6.1.2. AWS VPC and subnets

NOTE

$ export AWS_PAGER=""
$ export CLUSTER=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}")
$ export REGION=$(oc get infrastructure cluster -o=jsonpath="
{.status.platformStatus.aws.region}")
$ export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster -o
jsonpath='{.spec.serviceAccountIssuer}' | sed 's|^https://||')
$ export AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
$ export SCRATCH="/tmp/${CLUSTER}/alb-waf"
$ mkdir -p ${SCRATCH}
$ echo "Cluster: $(echo ${CLUSTER} | sed 's/-[a-z0-9]\{5\}$//'), Region: ${REGION}, OIDC
Endpoint: ${OIDC_ENDPOINT}, AWS Account ID: ${AWS_ACCOUNT_ID}"

CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO PROTECT RED HAT OPENSHIFT SERVICE ON AWS WORKLOADS

41

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/application-load-balancers.html#availability-zones

1

2

3

NOTE

This section only applies to clusters that were deployed into existing VPCs. If you did not
deploy your cluster into an existing VPC, skip this section and proceed to the installation
section below.

1. Set the below variables to the proper values for your Red Hat OpenShift Service on AWS
deployment:

Replace with the VPC ID of the cluster, for example: export VPC_ID=vpc-
04c429b7dbc4680ba.

Replace with a space-separated list of the private subnet IDs of the cluster, making sure to
preserve the (). For example: export PUBLIC_SUBNET_IDS=(subnet-
056fd6861ad332ba2 subnet-08ce3b4ec753fe74c subnet-071aa28228664972f).

Replace with a space-separated list of the private subnet IDs of the cluster, making sure to
preserve the (). For example: export PRIVATE_SUBNET_IDS=(subnet-
0b933d72a8d72c36a subnet-0817eb72070f1d3c2 subnet-0806e64159b66665a).

2. Add a tag to your cluster’s VPC with the cluster identifier:

3. Add a tag to your public subnets:

4. Add a tag to your private subnets:

6.2. DEPLOY THE AWS LOAD BALANCER OPERATOR

The AWS Load Balancer Operator is used to used to install, manage and configure an instance of aws-
load-balancer-controller in a Red Hat OpenShift Service on AWS cluster. To deploy ALBs in Red Hat
OpenShift Service on AWS, we need to first deploy the AWS Load Balancer Operator.

1. Create a new project to deploy the AWS Load Balancer Operator into by running the following

$ export VPC_ID=<vpc-id> 1
$ export PUBLIC_SUBNET_IDS=(<space-separated-list-of-ids>) 2
$ export PRIVATE_SUBNET_IDS=(<space-separated-list-of-ids>) 3

$ aws ec2 create-tags --resources ${VPC_ID} \
 --tags Key=kubernetes.io/cluster/${CLUSTER},Value=shared --region ${REGION}

$ aws ec2 create-tags \
 --resources ${PUBLIC_SUBNET_IDS} \
 --tags Key=kubernetes.io/role/elb,Value='1' \
 Key=kubernetes.io/cluster/${CLUSTER},Value=shared \
 --region ${REGION}

$ aws ec2 create-tags \
 --resources ${PRIVATE_SUBNET_IDS} \
 --tags Key=kubernetes.io/role/internal-elb,Value='1' \
 Key=kubernetes.io/cluster/${CLUSTER},Value=shared \
 --region ${REGION}

Red Hat OpenShift Service on AWS 4 Tutorials

42

https://github.com/openshift/aws-load-balancer-operator

1. Create a new project to deploy the AWS Load Balancer Operator into by running the following
command:

2. Create an AWS IAM policy for the AWS Load Balancer Controller if one does not already exist
by running the following command:

NOTE

The policy is sourced from the upstream AWS Load Balancer Controller policy .
This is required by the operator to function.

3. Create an AWS IAM trust policy for AWS Load Balancer Operator:

4. Create an AWS IAM role for the AWS Load Balancer Operator:

$ oc new-project aws-load-balancer-operator

$ POLICY_ARN=$(aws iam list-policies --query \
 "Policies[?PolicyName=='aws-load-balancer-operator-policy'].{ARN:Arn}" \
 --output text)

$ if [[-z "${POLICY_ARN}"]]; then
 wget -O "${SCRATCH}/load-balancer-operator-policy.json" \
 https://raw.githubusercontent.com/kubernetes-sigs/aws-load-balancer-
controller/main/docs/install/iam_policy.json
 POLICY_ARN=$(aws --region "$REGION" --query Policy.Arn \
 --output text iam create-policy \
 --policy-name aws-load-balancer-operator-policy \
 --policy-document "file://${SCRATCH}/load-balancer-operator-policy.json")
fi

$ cat <<EOF > "${SCRATCH}/trust-policy.json"
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Condition": {
 "StringEquals" : {
 "${OIDC_ENDPOINT}:sub": ["system:serviceaccount:aws-load-balancer-operator:aws-
load-balancer-operator-controller-manager", "system:serviceaccount:aws-load-balancer-
operator:aws-load-balancer-controller-cluster"]
 }
 },
 "Principal": {
 "Federated": "arn:aws:iam::$AWS_ACCOUNT_ID:oidc-provider/${OIDC_ENDPOINT}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity"
 }
]
}
EOF

$ ROLE_ARN=$(aws iam create-role --role-name "${CLUSTER}-alb-operator" \

CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO PROTECT RED HAT OPENSHIFT SERVICE ON AWS WORKLOADS

43

https://raw.githubusercontent.com/kubernetes-sigs/aws-load-balancer-controller/main/docs/install/iam_policy.json

5. Attach the AWS Load Balancer Operator policy to the IAM role we created previously by
running the following command:

6. Create a secret for the AWS Load Balancer Operator to assume our newly created AWS IAM
role:

7. Install the AWS Load Balancer Operator:

8. Deploy an instance of the AWS Load Balancer Controller using the operator:

NOTE

 --assume-role-policy-document "file://${SCRATCH}/trust-policy.json" \
 --query Role.Arn --output text)

$ aws iam attach-role-policy --role-name "${CLUSTER}-alb-operator" \
 --policy-arn ${POLICY_ARN}

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Secret
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
stringData:
 credentials: |
 [default]
 role_arn = ${ROLE_ARN}
 web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
spec:
 upgradeStrategy: Default

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
spec:
 channel: stable-v1.0
 installPlanApproval: Automatic
 name: aws-load-balancer-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: aws-load-balancer-operator.v1.0.0
EOF

Red Hat OpenShift Service on AWS 4 Tutorials

44

NOTE

If you get an error here wait a minute and try again, it means the Operator has not
completed installing yet.

9. Check the that the operator and controller pods are both running:

You should see the following, if not wait a moment and retry:

6.3. DEPLOY A SAMPLE APPLICATION

1. Create a new project for our sample application:

2. Deploy a hello world application:

3. Convert the pre-created service resource to a NodePort service type:

4. Deploy an AWS ALB using the AWS Load Balancer Operator:

$ cat << EOF | oc apply -f -
apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:
 name: cluster
spec:
 credentials:
 name: aws-load-balancer-operator
 enabledAddons:
 - AWSWAFv2
EOF

$ oc -n aws-load-balancer-operator get pods

NAME READY STATUS RESTARTS AGE
aws-load-balancer-controller-cluster-6ddf658785-pdp5d 1/1 Running 0 99s
aws-load-balancer-operator-controller-manager-577d9ffcb9-w6zqn 2/2 Running 0
2m4s

$ oc new-project hello-world

$ oc new-app -n hello-world --image=docker.io/openshift/hello-openshift

$ oc -n hello-world patch service hello-openshift -p '{"spec":{"type":"NodePort"}}'

$ cat << EOF | oc apply -f -
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: hello-openshift-alb
 namespace: hello-world
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing

CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO PROTECT RED HAT OPENSHIFT SERVICE ON AWS WORKLOADS

45

5. Curl the AWS ALB Ingress endpoint to verify the hello world application is accessible:

NOTE

AWS ALB provisioning takes a few minutes. If you receive an error that says curl:
(6) Could not resolve host, please wait and try again.

Example output

6.3.1. Configure the AWS WAF

The AWS WAF service is a web application firewall that lets you monitor, protect, and control the HTTP
and HTTPS requests that are forwarded to your protected web application resources, like Red Hat
OpenShift Service on AWS.

1. Create a AWS WAF rules file to apply to our web ACL:

spec:
 ingressClassName: alb
 rules:
 - http:
 paths:
 - path: /
 pathType: Exact
 backend:
 service:
 name: hello-openshift
 port:
 number: 8080
EOF

$ INGRESS=$(oc -n hello-world get ingress hello-openshift-alb -o
jsonpath='{.status.loadBalancer.ingress[0].hostname}')
$ curl "http://${INGRESS}"

Hello OpenShift!

$ cat << EOF > ${SCRATCH}/waf-rules.json
[
 {
 "Name": "AWS-AWSManagedRulesCommonRuleSet",
 "Priority": 0,
 "Statement": {
 "ManagedRuleGroupStatement": {
 "VendorName": "AWS",
 "Name": "AWSManagedRulesCommonRuleSet"
 }
 },
 "OverrideAction": {
 "None": {}
 },
 "VisibilityConfig": {
 "SampledRequestsEnabled": true,

Red Hat OpenShift Service on AWS 4 Tutorials

46

https://aws.amazon.com/waf/

This will enable the Core (Common) and SQL AWS Managed Rule Sets.

2. Create an AWS WAF Web ACL using the rules we specified above:

3. Annotate the Ingress resource with the AWS WAF Web ACL ARN:

4. Wait for 10 seconds for the rules to propagate and test that the app still works:

Example output

 "CloudWatchMetricsEnabled": true,
 "MetricName": "AWS-AWSManagedRulesCommonRuleSet"
 }
 },
 {
 "Name": "AWS-AWSManagedRulesSQLiRuleSet",
 "Priority": 1,
 "Statement": {
 "ManagedRuleGroupStatement": {
 "VendorName": "AWS",
 "Name": "AWSManagedRulesSQLiRuleSet"
 }
 },
 "OverrideAction": {
 "None": {}
 },
 "VisibilityConfig": {
 "SampledRequestsEnabled": true,
 "CloudWatchMetricsEnabled": true,
 "MetricName": "AWS-AWSManagedRulesSQLiRuleSet"
 }
 }
]
EOF

$ WAF_ARN=$(aws wafv2 create-web-acl \
 --name ${CLUSTER}-waf \
 --region ${REGION} \
 --default-action Allow={} \
 --scope REGIONAL \
 --visibility-config
SampledRequestsEnabled=true,CloudWatchMetricsEnabled=true,MetricName=${CLUSTER}-
waf-metrics \
 --rules file://${SCRATCH}/waf-rules.json \
 --query 'Summary.ARN' \
 --output text)

$ oc annotate -n hello-world ingress.networking.k8s.io/hello-openshift-alb \
 alb.ingress.kubernetes.io/wafv2-acl-arn=${WAF_ARN}

$ curl "http://${INGRESS}"

Hello OpenShift!

CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO PROTECT RED HAT OPENSHIFT SERVICE ON AWS WORKLOADS

47

5. Test that the WAF denies a bad request:

Example output

NOTE

Activation of the AWS WAF integration can sometimes take several minutes. If
you do not receive a 403 Forbidden error, please wait a few seconds and try
again.

The expected result is a 403 Forbidden error, which means the AWS WAF is protecting your
application.

6.4. ADDITIONAL RESOURCES

Adding Extra Security with AWS WAF, CloudFront and ROSA | Amazon Web Services on
YouTube

$ curl -X POST "http://${INGRESS}" \
 -F "user='<script><alert>Hello></alert></script>'"

<html>
<head><title>403 Forbidden</title></head>
<body>
<center><h1>403 Forbidden</h1></center>
</body>
</html

Red Hat OpenShift Service on AWS 4 Tutorials

48

https://youtu.be/-HorEsl2ho4

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR
DATA PROTECTION ON A RED HAT OPENSHIFT SERVICE ON

AWS CLUSTER

IMPORTANT

This content is authored by Red Hat experts, but has not yet been tested on every
supported configuration.

Prerequisites

A Red Hat OpenShift Service on AWS cluster

Environment

Prepare the environment variables:

NOTE

Change the cluster name to match your Red Hat OpenShift Service on AWS
cluster and ensure you are logged into the cluster as an Administrator. Ensure all
fields are outputted correctly before moving on.

7.1. PREPARE AWS ACCOUNT

1. Create an IAM Policy to allow for S3 Access:

$ export CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export ROSA_CLUSTER_ID=$(rosa describe cluster -c ${CLUSTER_NAME} --output json
| jq -r .id)
$ export REGION=$(rosa describe cluster -c ${CLUSTER_NAME} --output json | jq -r
.region.id)
$ export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster -o
jsonpath='{.spec.serviceAccountIssuer}' | sed 's|^https://||')
$ export AWS_ACCOUNT_ID=`aws sts get-caller-identity --query Account --output text`
$ export CLUSTER_VERSION=`rosa describe cluster -c ${CLUSTER_NAME} -o json | jq -r
.version.raw_id | cut -f -2 -d '.'`
$ export ROLE_NAME="${CLUSTER_NAME}-openshift-oadp-aws-cloud-credentials"
$ export AWS_PAGER=""
$ export SCRATCH="/tmp/${CLUSTER_NAME}/oadp"
$ mkdir -p ${SCRATCH}
$ echo "Cluster ID: ${ROSA_CLUSTER_ID}, Region: ${REGION}, OIDC Endpoint:
${OIDC_ENDPOINT}, AWS Account ID: ${AWS_ACCOUNT_ID}"

$ POLICY_ARN=$(aws iam list-policies --query "Policies[?PolicyName=='RosaOadpVer1'].
{ARN:Arn}" --output text)
if [[-z "${POLICY_ARN}"]]; then
$ cat << EOF > ${SCRATCH}/policy.json
{
"Version": "2012-10-17",
"Statement": [

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A RED HAT OPENSHIFT SERVICE ON AWS CLUSTER

49

https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html-single/install_clusters/#rosa-hcp-sts-creating-a-cluster-quickly

2. Create an IAM Role trust policy for the cluster:

 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:DeleteBucket",
 "s3:PutBucketTagging",
 "s3:GetBucketTagging",
 "s3:PutEncryptionConfiguration",
 "s3:GetEncryptionConfiguration",
 "s3:PutLifecycleConfiguration",
 "s3:GetLifecycleConfiguration",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "s3:ListBucketMultipartUploads",
 "s3:AbortMultipartUpload",
 "s3:ListMultipartUploadParts",
 "ec2:DescribeSnapshots",
 "ec2:DescribeVolumes",
 "ec2:DescribeVolumeAttribute",
 "ec2:DescribeVolumesModifications",
 "ec2:DescribeVolumeStatus",
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:CreateSnapshot",
 "ec2:DeleteSnapshot"
],
 "Resource": "*"
 }
]}
EOF
$ POLICY_ARN=$(aws iam create-policy --policy-name "RosaOadpVer1" \
--policy-document file:///${SCRATCH}/policy.json --query Policy.Arn \
--tags Key=rosa_openshift_version,Value=${CLUSTER_VERSION}
Key=rosa_role_prefix,Value=ManagedOpenShift
Key=operator_namespace,Value=openshift-oadp Key=operator_name,Value=openshift-oadp
\
--output text)
fi
$ echo ${POLICY_ARN}

$ cat <<EOF > ${SCRATCH}/trust-policy.json
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::${AWS_ACCOUNT_ID}:oidc-provider/${OIDC_ENDPOINT}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {

Red Hat OpenShift Service on AWS 4 Tutorials

50

1

3. Attach the IAM Policy to the IAM Role:

7.2. DEPLOY OADP ON THE CLUSTER

1. Create a namespace for OADP:

2. Create a credentials secret:

Replace <aws_region> with the AWS region to use for the Security Token Service (STS)
endpoint.

3. Deploy the OADP Operator:

NOTE

There is currently an issue with version 1.1 of the Operator with backups that have
a PartiallyFailed status. This does not seem to affect the backup and restore
process, but it should be noted as there are issues with it.

 "${OIDC_ENDPOINT}:sub": [
 "system:serviceaccount:openshift-adp:openshift-adp-controller-manager",
 "system:serviceaccount:openshift-adp:velero"]
 }
 }
 }]
}
EOF
$ ROLE_ARN=$(aws iam create-role --role-name \
 "${ROLE_NAME}" \
 --assume-role-policy-document file://${SCRATCH}/trust-policy.json \
 --tags Key=rosa_cluster_id,Value=${ROSA_CLUSTER_ID}
Key=rosa_openshift_version,Value=${CLUSTER_VERSION}
Key=rosa_role_prefix,Value=ManagedOpenShift
Key=operator_namespace,Value=openshift-adp Key=operator_name,Value=openshift-oadp \
 --query Role.Arn --output text)

$ echo ${ROLE_ARN}

$ aws iam attach-role-policy --role-name "${ROLE_NAME}" \
 --policy-arn ${POLICY_ARN}

$ oc create namespace openshift-adp

$ cat <<EOF > ${SCRATCH}/credentials
[default]
role_arn = ${ROLE_ARN}
web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
region=<aws_region> 1
EOF
$ oc -n openshift-adp create secret generic cloud-credentials \
 --from-file=${SCRATCH}/credentials

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A RED HAT OPENSHIFT SERVICE ON AWS CLUSTER

51

4. Wait for the Operator to be ready:

Example output

5. Create Cloud Storage:

6. Check your application’s storage default storage class:

$ cat << EOF | oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 generateName: openshift-adp-
 namespace: openshift-adp
 name: oadp
spec:
 targetNamespaces:
 - openshift-adp

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: redhat-oadp-operator
 namespace: openshift-adp
spec:
 channel: stable-1.2
 installPlanApproval: Automatic
 name: redhat-oadp-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ watch oc -n openshift-adp get pods

NAME READY STATUS RESTARTS AGE
openshift-adp-controller-manager-546684844f-qqjhn 1/1 Running 0 22s

$ cat << EOF | oc create -f -
apiVersion: oadp.openshift.io/v1alpha1
kind: CloudStorage
metadata:
 name: ${CLUSTER_NAME}-oadp
 namespace: openshift-adp
spec:
 creationSecret:
 key: credentials
 name: cloud-credentials
 enableSharedConfig: true
 name: ${CLUSTER_NAME}-oadp
 provider: aws
 region: $REGION
EOF

$ oc get pvc -n <namespace> 1

Red Hat OpenShift Service on AWS 4 Tutorials

52

1 Enter your application’s namespace.

Example output

Example output

Using either gp3-csi, gp2-csi, gp3 or gp2 will work. If the application(s) that are being backed up
are all using PV’s with CSI, include the CSI plugin in the OADP DPA configuration.

7. CSI only: Deploy a Data Protection Application:

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
applog Bound pvc-351791ae-b6ab-4e8b-88a4-30f73caf5ef8 1Gi RWO gp3-
csi 4d19h
mysql Bound pvc-16b8e009-a20a-4379-accc-bc81fedd0621 1Gi RWO gp3-
csi 4d19h

$ oc get storageclass

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE
gp2 kubernetes.io/aws-ebs Delete WaitForFirstConsumer true
4d21h
gp2-csi ebs.csi.aws.com Delete WaitForFirstConsumer true
4d21h
gp3 ebs.csi.aws.com Delete WaitForFirstConsumer true
4d21h
gp3-csi (default) ebs.csi.aws.com Delete WaitForFirstConsumer true
4d21h

$ cat << EOF | oc create -f -
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: ${CLUSTER_NAME}-dpa
 namespace: openshift-adp
spec:
 backupImages: true
 features:
 dataMover:
 enable: false
 backupLocations:
 - bucket:
 cloudStorageRef:
 name: ${CLUSTER_NAME}-oadp
 credential:
 key: credentials
 name: cloud-credentials
 prefix: velero
 default: true
 config:
 region: ${REGION}

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A RED HAT OPENSHIFT SERVICE ON AWS CLUSTER

53

NOTE

If you run this command for CSI volumes, you can skip the next step.

8. Non-CSI volumes: Deploy a Data Protection Application:

 configuration:
 velero:
 defaultPlugins:
 - openshift
 - aws
 - csi
 restic:
 enable: false
EOF

$ cat << EOF | oc create -f -
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: ${CLUSTER_NAME}-dpa
 namespace: openshift-adp
spec:
 backupImages: true
 features:
 dataMover:
 enable: false
 backupLocations:
 - bucket:
 cloudStorageRef:
 name: ${CLUSTER_NAME}-oadp
 credential:
 key: credentials
 name: cloud-credentials
 prefix: velero
 default: true
 config:
 region: ${REGION}
 configuration:
 velero:
 defaultPlugins:
 - openshift
 - aws
 restic:
 enable: false
 snapshotLocations:
 - velero:
 config:
 credentialsFile: /tmp/credentials/openshift-adp/cloud-credentials-credentials
 enableSharedConfig: 'true'
 profile: default
 region: ${REGION}
 provider: aws
EOF

Red Hat OpenShift Service on AWS 4 Tutorials

54

NOTE

In OADP 1.1.x Red Hat OpenShift Service on AWS STS environments, the
container image backup and restore (spec.backupImages) value must be set to
false as it is not supported.

The Restic feature (restic.enable=false) is disabled and not supported in Red
Hat OpenShift Service on AWS STS environments.

The DataMover feature (dataMover.enable=false) is disabled and not
supported in Red Hat OpenShift Service on AWS STS environments.

7.3. PERFORM A BACKUP

NOTE

The following sample hello-world application has no attached persistent volumes. Either
DPA configuration will work.

1. Create a workload to back up:

2. Expose the route:

3. Check that the application is working:

Example output

4. Back up the workload:

5. Wait until the backup is done:

$ oc create namespace hello-world
$ oc new-app -n hello-world --image=docker.io/openshift/hello-openshift

$ oc expose service/hello-openshift -n hello-world

$ curl `oc get route/hello-openshift -n hello-world -o jsonpath='{.spec.host}'`

Hello OpenShift!

$ cat << EOF | oc create -f -
apiVersion: velero.io/v1
kind: Backup
metadata:
 name: hello-world
 namespace: openshift-adp
spec:
 includedNamespaces:
 - hello-world
 storageLocation: ${CLUSTER_NAME}-dpa-1
 ttl: 720h0m0s
EOF

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A RED HAT OPENSHIFT SERVICE ON AWS CLUSTER

55

Example output

6. Delete the demo workload:

7. Restore from the backup:

8. Wait for the Restore to finish:

Example output

9. Check that the workload is restored:

$ watch "oc -n openshift-adp get backup hello-world -o json | jq .status"

{
 "completionTimestamp": "2022-09-07T22:20:44Z",
 "expiration": "2022-10-07T22:20:22Z",
 "formatVersion": "1.1.0",
 "phase": "Completed",
 "progress": {
 "itemsBackedUp": 58,
 "totalItems": 58
 },
 "startTimestamp": "2022-09-07T22:20:22Z",
 "version": 1
}

$ oc delete ns hello-world

$ cat << EOF | oc create -f -
apiVersion: velero.io/v1
kind: Restore
metadata:
 name: hello-world
 namespace: openshift-adp
spec:
 backupName: hello-world
EOF

$ watch "oc -n openshift-adp get restore hello-world -o json | jq .status"

{
 "completionTimestamp": "2022-09-07T22:25:47Z",
 "phase": "Completed",
 "progress": {
 "itemsRestored": 38,
 "totalItems": 38
 },
 "startTimestamp": "2022-09-07T22:25:28Z",
 "warnings": 9
}

$ oc -n hello-world get pods

Red Hat OpenShift Service on AWS 4 Tutorials

56

Example output

Example output

10. For troubleshooting tips please refer to the OADP team’s troubleshooting documentation

11. Additional sample applications can be found in the OADP team’s sample applications directory

7.4. CLEANUP

1. Delete the workload:

2. Remove the backup and restore resources from the cluster if they are no longer required:

3. To delete the backup/restore and remote objects in s3:

4. Delete the Data Protection Application:

5. Delete the Cloud Storage:

WARNING

If this command hangs, you might need to delete the finalizer:

NAME READY STATUS RESTARTS AGE
hello-openshift-9f885f7c6-kdjpj 1/1 Running 0 90s

$ curl `oc get route/hello-openshift -n hello-world -o jsonpath='{.spec.host}'`

Hello OpenShift!

$ oc delete ns hello-world

$ oc delete backups.velero.io hello-world
$ oc delete restores.velero.io hello-world

$ velero backup delete hello-world
$ velero restore delete hello-world

$ oc -n openshift-adp delete dpa ${CLUSTER_NAME}-dpa

$ oc -n openshift-adp delete cloudstorage ${CLUSTER_NAME}-oadp


$ oc -n openshift-adp patch cloudstorage ${CLUSTER_NAME}-oadp -p
'{"metadata":{"finalizers":null}}' --type=merge

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A RED HAT OPENSHIFT SERVICE ON AWS CLUSTER

57

https://github.com/openshift/oadp-operator/blob/master/docs/TROUBLESHOOTING.md
https://github.com/openshift/oadp-operator/tree/master/tests/e2e/sample-applications

6. Remove the Operator if it is no longer required:

7. Remove the namespace for the Operator:

8. Remove the Custom Resource Definitions from the cluster if you no longer wish to have them:

9. Delete the AWS S3 Bucket:

10. Detach the Policy from the role:

11. Delete the role:

$ oc -n openshift-adp delete subscription oadp-operator

$ oc delete ns redhat-openshift-adp

$ for CRD in `oc get crds | grep velero | awk '{print $1}'`; do oc delete crd $CRD; done
$ for CRD in `oc get crds | grep -i oadp | awk '{print $1}'`; do oc delete crd $CRD; done

$ aws s3 rm s3://${CLUSTER_NAME}-oadp --recursive
$ aws s3api delete-bucket --bucket ${CLUSTER_NAME}-oadp

$ aws iam detach-role-policy --role-name "${ROLE_NAME}" \
 --policy-arn "${POLICY_ARN}"

$ aws iam delete-role --role-name "${ROLE_NAME}"

Red Hat OpenShift Service on AWS 4 Tutorials

58

CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR
ON RED HAT OPENSHIFT SERVICE ON AWS

IMPORTANT

This content is authored by Red Hat experts, but has not yet been tested on every
supported configuration.

TIP

Load Balancers created by the AWS Load Balancer Operator cannot be used for OpenShift Routes, and
should only be used for individual services or ingress resources that do not need the full layer 7
capabilities of an OpenShift Route.

The AWS Load Balancer Controller manages AWS Elastic Load Balancers for a Red Hat OpenShift
Service on AWS cluster. The controller provisions AWS Application Load Balancers (ALB) when you
create Kubernetes Ingress resources and AWS Network Load Balancers (NLB) when implementing
Kubernetes Service resources with a type of LoadBalancer.

Compared with the default AWS in-tree load balancer provider, this controller is developed with
advanced annotations for both ALBs and NLBs. Some advanced use cases are:

Using native Kubernetes Ingress objects with ALBs

Integrate ALBs with the AWS Web Application Firewall (WAF) service

NOTE

WAFv1, WAF classic, is no longer supported. Use WAFv2.

Specify custom NLB source IP ranges

Specify custom NLB internal IP addresses

The AWS Load Balancer Operator is used to used to install, manage and configure an instance of aws-
load-balancer-controller in a Red Hat OpenShift Service on AWS cluster.

8.1. PREREQUISITES

NOTE

AWS ALBs require a multi-AZ cluster, as well as three public subnets split across three
AZs in the same VPC as the cluster. This makes ALBs unsuitable for many PrivateLink
clusters. AWS NLBs do not have this restriction.

A multi-AZ Red Hat OpenShift Service on AWS cluster

BYO VPC cluster

AWS CLI

OC CLI

CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR ON RED HAT OPENSHIFT SERVICE ON AWS

59

https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html-single/ingress_and_load_balancing/#route-configuration
https://kubernetes-sigs.github.io/aws-load-balancer-controller/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html
https://github.com/openshift/aws-load-balancer-operator
https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html-single/install_clusters/#rosa-hcp-sts-creating-a-cluster-quickly

8.1.1. Environment

Prepare the environment variables:

8.1.2. AWS VPC and subnets

NOTE

This section only applies to clusters that were deployed into existing VPCs. If you did not
deploy your cluster into an existing VPC, skip this section and proceed to the installation
section below.

1. Set the below variables to the proper values for your cluster deployment:

2. Add a tag to your cluster’s VPC with the cluster name:

3. Add a tag to your public subnets:

4. Add a tag to your private subnets:

$ export AWS_PAGER=""
$ export ROSA_CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export REGION=$(oc get infrastructure cluster -o=jsonpath="
{.status.platformStatus.aws.region}")
$ export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster -o
jsonpath='{.spec.serviceAccountIssuer}' | sed 's|^https://||')
$ export AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
$ export SCRATCH="/tmp/${ROSA_CLUSTER_NAME}/alb-operator"
$ mkdir -p ${SCRATCH}
$ echo "Cluster: ${ROSA_CLUSTER_NAME}, Region: ${REGION}, OIDC Endpoint:
${OIDC_ENDPOINT}, AWS Account ID: ${AWS_ACCOUNT_ID}"

$ export VPC_ID=<vpc-id>
$ export PUBLIC_SUBNET_IDS=<public-subnets>
$ export PRIVATE_SUBNET_IDS=<private-subnets>
$ export CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}")

$ aws ec2 create-tags --resources ${VPC_ID} --tags
Key=kubernetes.io/cluster/${CLUSTER_NAME},Value=owned --region ${REGION}

$ aws ec2 create-tags \
 --resources ${PUBLIC_SUBNET_IDS} \
 --tags Key=kubernetes.io/role/elb,Value='' \
 --region ${REGION}

$ aws ec2 create-tags \
 --resources "${PRIVATE_SUBNET_IDS}" \
 --tags Key=kubernetes.io/role/internal-elb,Value='' \
 --region ${REGION}

Red Hat OpenShift Service on AWS 4 Tutorials

60

8.2. INSTALLATION

1. Create an AWS IAM policy for the AWS Load Balancer Controller:

NOTE

The policy is sourced from the upstream AWS Load Balancer Controller policy
plus permission to create tags on subnets. This is required by the Operator to
function.

2. Create an AWS IAM trust policy for AWS Load Balancer Operator:

3. Create an AWS IAM role for the AWS Load Balancer Operator:

$ oc new-project aws-load-balancer-operator
$ POLICY_ARN=$(aws iam list-policies --query \
 "Policies[?PolicyName=='aws-load-balancer-operator-policy'].{ARN:Arn}" \
 --output text)
$ if [[-z "${POLICY_ARN}"]]; then
 wget -O "${SCRATCH}/load-balancer-operator-policy.json" \
 https://raw.githubusercontent.com/rh-mobb/documentation/main/content/rosa/aws-load-
balancer-operator/load-balancer-operator-policy.json
 POLICY_ARN=$(aws --region "$REGION" --query Policy.Arn \
 --output text iam create-policy \
 --policy-name aws-load-balancer-operator-policy \
 --policy-document "file://${SCRATCH}/load-balancer-operator-policy.json")
fi
$ echo $POLICY_ARN

$ cat <<EOF > "${SCRATCH}/trust-policy.json"
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Condition": {
 "StringEquals" : {
 "${OIDC_ENDPOINT}:sub": ["system:serviceaccount:aws-load-balancer-operator:aws-
load-balancer-operator-controller-manager", "system:serviceaccount:aws-load-balancer-
operator:aws-load-balancer-controller-cluster"]
 }
 },
 "Principal": {
 "Federated": "arn:aws:iam::$AWS_ACCOUNT_ID:oidc-provider/${OIDC_ENDPOINT}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity"
 }
]
}
EOF

$ ROLE_ARN=$(aws iam create-role --role-name "${ROSA_CLUSTER_NAME}-alb-operator"
\
 --assume-role-policy-document "file://${SCRATCH}/trust-policy.json" \

CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR ON RED HAT OPENSHIFT SERVICE ON AWS

61

https://raw.githubusercontent.com/kubernetes-sigs/aws-load-balancer-controller/v2.4.4/docs/install/iam_policy.json

4. Create a secret for the AWS Load Balancer Operator to assume our newly created AWS IAM
role:

5. Install the AWS Load Balancer Operator:

6. Deploy an instance of the AWS Load Balancer Controller using the Operator:

NOTE

If you get an error here wait a minute and try again, it means the Operator has not
completed installing yet.

 --query Role.Arn --output text)
$ echo $ROLE_ARN

$ aws iam attach-role-policy --role-name "${ROSA_CLUSTER_NAME}-alb-operator" \
 --policy-arn $POLICY_ARN

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Secret
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
stringData:
 credentials: |
 [default]
 role_arn = $ROLE_ARN
 web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
spec:
 upgradeStrategy: Default

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
spec:
 channel: stable-v1.0
 installPlanApproval: Automatic
 name: aws-load-balancer-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: aws-load-balancer-operator.v1.0.0
EOF

Red Hat OpenShift Service on AWS 4 Tutorials

62

7. Check the that the Operator and controller pods are both running:

You should see the following, if not wait a moment and retry:

8.3. VALIDATING THE DEPLOYMENT

1. Create a new project:

2. Deploy a hello world application:

3. Configure a NodePort service for the AWS ALB to connect to:

4. Deploy an AWS ALB using the AWS Load Balancer Operator:

$ cat << EOF | oc apply -f -
apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:
 name: cluster
spec:
 credentials:
 name: aws-load-balancer-operator
EOF

$ oc -n aws-load-balancer-operator get pods

NAME READY STATUS RESTARTS AGE
aws-load-balancer-controller-cluster-6ddf658785-pdp5d 1/1 Running 0 99s
aws-load-balancer-operator-controller-manager-577d9ffcb9-w6zqn 2/2 Running 0
2m4s

$ oc new-project hello-world

$ oc new-app -n hello-world --image=docker.io/openshift/hello-openshift

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Service
metadata:
 name: hello-openshift-nodeport
 namespace: hello-world
spec:
 ports:
 - port: 80
 targetPort: 8080
 protocol: TCP
 type: NodePort
 selector:
 deployment: hello-openshift
EOF

$ cat << EOF | oc apply -f -
apiVersion: networking.k8s.io/v1

CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR ON RED HAT OPENSHIFT SERVICE ON AWS

63

5. Curl the AWS ALB Ingress endpoint to verify the hello world application is accessible:

NOTE

AWS ALB provisioning takes a few minutes. If you receive an error that says curl:
(6) Could not resolve host, please wait and try again.

Example output

6. Deploy an AWS NLB for your hello world application:

kind: Ingress
metadata:
 name: hello-openshift-alb
 namespace: hello-world
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing
spec:
 ingressClassName: alb
 rules:
 - http:
 paths:
 - path: /
 pathType: Exact
 backend:
 service:
 name: hello-openshift-nodeport
 port:
 number: 80
EOF

$ INGRESS=$(oc -n hello-world get ingress hello-openshift-alb \
 -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
$ curl "http://${INGRESS}"

Hello OpenShift!

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Service
metadata:
 name: hello-openshift-nlb
 namespace: hello-world
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-type: external
 service.beta.kubernetes.io/aws-load-balancer-nlb-target-type: instance
 service.beta.kubernetes.io/aws-load-balancer-scheme: internet-facing
spec:
 ports:
 - port: 80
 targetPort: 8080
 protocol: TCP
 type: LoadBalancer

Red Hat OpenShift Service on AWS 4 Tutorials

64

7. Test the AWS NLB endpoint:

NOTE

NLB provisioning takes a few minutes. If you receive an error that says curl: (6)
Could not resolve host, please wait and try again.

Example output

8.4. CLEANING UP

1. Delete the hello world application namespace (and all the resources in the namespace):

2. Delete the AWS Load Balancer Operator and the AWS IAM roles:

3. Delete the AWS IAM policy:

 selector:
 deployment: hello-openshift
EOF

$ NLB=$(oc -n hello-world get service hello-openshift-nlb \
 -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
$ curl "http://${NLB}"

Hello OpenShift!

$ oc delete project hello-world

$ oc delete subscription aws-load-balancer-operator -n aws-load-balancer-operator
$ aws iam detach-role-policy \
 --role-name "${ROSA_CLUSTER_NAME}-alb-operator" \
 --policy-arn $POLICY_ARN
$ aws iam delete-role \
 --role-name "${ROSA_CLUSTER_NAME}-alb-operator"

$ aws iam delete-policy --policy-arn $POLICY_ARN

CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR ON RED HAT OPENSHIFT SERVICE ON AWS

65

CHAPTER 9. TUTORIAL: CONFIGURING MICROSOFT ENTRA
ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY

PROVIDER
You can configure Microsoft Entra ID (formerly Azure Active Directory) as the cluster identity provider
in Red Hat OpenShift Service on AWS.

This tutorial guides you to complete the following tasks:

1. Register a new application in Entra ID for authentication.

2. Configure the application registration in Entra ID to include optional and group claims in tokens.

3. Configure the Red Hat OpenShift Service on AWS cluster to use Entra ID as the identity
provider.

4. Grant additional permissions to individual groups.

9.1. PREREQUISITES

You created a set of security groups and assigned users by following the Microsoft
documentation.

9.2. REGISTERING A NEW APPLICATION IN ENTRA ID FOR
AUTHENTICATION

To register your application in Entra ID, first create the OAuth callback URL, then register your
application.

Procedure

1. Create the cluster’s OAuth callback URL by changing the specified variables and running the
following command:

NOTE

Remember to save this callback URL; it will be required later in the process.

The "AAD" directory at the end of the OAuth callback URL must match the OAuth identity
provider name that you will set up later in this process.

2. Create the Entra ID application by logging in to the Azure portal, and select the App
registrations blade. Then, select New registration to create a new application.

$ domain=$(rosa describe cluster -c <cluster_name> | grep "DNS" | grep -oE
'\S+.openshiftapps.com')
echo "OAuth callback URL: https://oauth.${domain}/oauth2callback/AAD"

Red Hat OpenShift Service on AWS 4 Tutorials

66

https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/how-to-manage-groups
https://portal.azure.com/#blade/Microsoft_AAD_RegisteredApps/ApplicationsListBlade

3. Name the application, for example openshift-auth.

4. Select Web from the Redirect URI dropdown and enter the value of the OAuth callback URL you
retrieved in the previous step.

5. After providing the required information, click Register to create the application.

CHAPTER 9. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER

67

6. Select the Certificates & secrets sub-blade and select New client secret.

Red Hat OpenShift Service on AWS 4 Tutorials

68

7. Complete the requested details and store the generated client secret value. This secret is
required later in this process.

IMPORTANT

After initial setup, you cannot see the client secret. If you did not record the client
secret, you must generate a new one.

CHAPTER 9. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER

69

8. Select the Overview sub-blade and note the Application (client) ID and Directory (tenant) ID.
You will need these values in a future step.

9.3. CONFIGURING THE APPLICATION REGISTRATION IN ENTRA ID
TO INCLUDE OPTIONAL AND GROUP CLAIMS

So that Red Hat OpenShift Service on AWS has enough information to create the user’s account, you
must configure Entra ID to give two optional claims: email and preferred_username. For more
information about optional claims in Entra ID, see the Microsoft documentation.

In addition to individual user authentication, Red Hat OpenShift Service on AWS provides group claim
functionality. This functionality allows an OpenID Connect (OIDC) identity provider, such as Entra ID, to
offer a user’s group membership for use within Red Hat OpenShift Service on AWS.

Red Hat OpenShift Service on AWS 4 Tutorials

70

https://learn.microsoft.com/en-us/azure/active-directory/develop/optional-claims

9.3.1. Configuring optional claims

You can configure the optional claims in Entra ID.

1. Click the Token configuration sub-blade and select the Add optional claim button.

2. Select the ID radio button.

3. Select the email claim checkbox.

CHAPTER 9. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER

71

4. Select the preferred_username claim checkbox. Then, click Add to configure the email and
preferred_username claims your Entra ID application.

5. A dialog box appears at the top of the page. Follow the prompt to enable the necessary
Microsoft Graph permissions.

Red Hat OpenShift Service on AWS 4 Tutorials

72

9.3.2. Configuring group claims (optional)

Configure Entra ID to offer a groups claim.

Procedure

1. From the Token configuration sub-blade, click Add groups claim.

2. To configure group claims for your Entra ID application, select Security groups and then click
the Add.

NOTE

CHAPTER 9. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER

73

1

2

NOTE

In this example, the group claim includes all of the security groups that a user is a
member of. In a real production environment, ensure that the groups that the
group claim only includes groups that apply to Red Hat OpenShift Service on
AWS.

9.4. CONFIGURING THE RED HAT OPENSHIFT SERVICE ON AWS
CLUSTER TO USE ENTRA ID AS THE IDENTITY PROVIDER

You must configure Red Hat OpenShift Service on AWS to use Entra ID as its identity provider.

Although Red Hat OpenShift Service on AWS offers the ability to configure identity providers by using
OpenShift Cluster Manager, use the ROSA CLI to configure the cluster’s OAuth provider to use Entra ID
as its identity provider. Before configuring the identity provider, set the necessary variables for the
identity provider configuration.

Procedure

1. Create the variables by running the following command:

Replace this with the name of your cluster.

Replace this value with the name you used in the OAuth callback URL that you generated
earlier in this process.

$ CLUSTER_NAME=example-cluster 1
$ IDP_NAME=AAD 2
$ APP_ID=yyyyyyyy-yyyy-yyyy-yyyy-yyyyyyyyyyyy 3
$ CLIENT_SECRET=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx 4
$ TENANT_ID=zzzzzzzz-zzzz-zzzz-zzzz-zzzzzzzzzzzz 5

Red Hat OpenShift Service on AWS 4 Tutorials

74

3

4

5

Replace this with the Application (client) ID.

Replace this with the Client Secret.

Replace this with the Directory (tenant) ID.

2. Configure the cluster’s OAuth provider by running the following command. If you enabled group
claims, ensure that you use the --group-claims groups argument.

If you enabled group claims, run the following command:

If you did not enable group claims, run the following command:

After a few minutes, the cluster authentication Operator reconciles your changes, and you can log in to
the cluster by using Entra ID.

9.5. GRANTING ADDITIONAL PERMISSIONS TO INDIVIDUAL USERS
AND GROUPS

When your first log in, you might notice that you have very limited permissions. By default, Red Hat
OpenShift Service on AWS only grants you the ability to create new projects, or namespaces, in the
cluster. Other projects are restricted from view.

You must grant these additional abilities to individual users and groups.

9.5.1. Granting additional permissions to individual users

Red Hat OpenShift Service on AWS includes a significant number of preconfigured roles, including the

$ rosa create idp \
--cluster ${CLUSTER_NAME} \
--type openid \
--name ${IDP_NAME} \
--client-id ${APP_ID} \
--client-secret ${CLIENT_SECRET} \
--issuer-url https://login.microsoftonline.com/${TENANT_ID}/v2.0 \
--email-claims email \
--name-claims name \
--username-claims preferred_username \
--extra-scopes email,profile \
--groups-claims groups

$ rosa create idp \
--cluster ${CLUSTER_NAME} \
--type openid \
--name ${IDP_NAME} \
--client-id ${APP_ID} \
--client-secret ${CLIENT_SECRET} \
--issuer-url https://login.microsoftonline.com/${TENANT_ID}/v2.0 \
--email-claims email \
--name-claims name \
--username-claims preferred_username \
--extra-scopes email,profile

CHAPTER 9. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER

75

1

1

Red Hat OpenShift Service on AWS includes a significant number of preconfigured roles, including the
cluster-admin role that grants full access and control over the cluster.

Procedure

Grant a user access to the cluster-admin role by running the following command:

Provide the Entra ID username that you want to have cluster admin permissions.

9.5.2. Granting additional permissions to individual groups

If you opted to enable group claims, the cluster OAuth provider automatically creates or updates the
user’s group memberships by using the group ID. The cluster OAuth provider does not automatically
create RoleBindings and ClusterRoleBindings for the groups that are created; you are responsible
for creating those bindings by using your own processes.

To grant an automatically generated group access to the cluster-admin role, you must create a
ClusterRoleBinding to the group ID.

Procedure

Create the ClusterRoleBinding by running the following command:

Provide the Entra ID group ID that you want to have cluster admin permissions.

Now, any user in the specified group automatically receives cluster-admin access.

9.6. ADDITIONAL RESOURCES

For more information about how to use RBAC to define and apply permissions in Red Hat OpenShift
Service on AWS, see the Red Hat OpenShift Service on AWS documentation .

$ rosa grant user cluster-admin \
 --user=<USERNAME> 1
 --cluster=${CLUSTER_NAME}

$ oc create clusterrolebinding cluster-admin-group \
--clusterrole=cluster-admin \
--group=<GROUP_ID> 1

Red Hat OpenShift Service on AWS 4 Tutorials

76

https://docs.openshift.com/container-platform/latest/authentication/using-rbac.html

CHAPTER 10. TUTORIAL: USING AWS SECRETS MANAGER CSI
ON RED HAT OPENSHIFT SERVICE ON AWS WITH STS

The AWS Secrets and Configuration Provider (ASCP) provides a way to expose AWS Secrets as
Kubernetes storage volumes. With the ASCP, you can store and manage your secrets in Secrets
Manager and then retrieve them through your workloads running on Red Hat OpenShift Service on
AWS.

10.1. PREREQUISITES

Ensure that you have the following resources and tools before starting this process:

A Red Hat OpenShift Service on AWS cluster deployed with STS

Helm 3

aws CLI

oc CLI

jq CLI

10.1.1. Additional environment requirements

1. Log in to your Red Hat OpenShift Service on AWS cluster by running the following command:

You can find your login token by accessing your cluster in pull secret from Red Hat OpenShift
Cluster Manager.

2. Validate that your cluster has STS by running the following command:

Example output

If your output is different, do not proceed. See Red Hat documentation on creating an STS
cluster before continuing this process.

3. Set the SecurityContextConstraints permission to allow the CSI driver to run by running the
following command:

4. Create environment variables to use later in this process by running the following command:

$ oc login --token=<your-token> --server=<your-server-url>

$ oc get authentication.config.openshift.io cluster -o json \
 | jq .spec.serviceAccountIssuer

"https://xxxxx.cloudfront.net/xxxxx"

$ oc new-project csi-secrets-store
$ oc adm policy add-scc-to-user privileged \
 system:serviceaccount:csi-secrets-store:secrets-store-csi-driver
$ oc adm policy add-scc-to-user privileged \
 system:serviceaccount:csi-secrets-store:csi-secrets-store-provider-aws

CHAPTER 10. TUTORIAL: USING AWS SECRETS MANAGER CSI ON RED HAT OPENSHIFT SERVICE ON AWS WITH STS

77

https://console.redhat.com/openshift/install/pull-secret
https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html-single/install_clusters/#rosa-hcp-sts-creating-a-cluster-quickly

10.2. DEPLOYING THE AWS SECRETS AND CONFIGURATION
PROVIDER

1. Use Helm to register the secrets store CSI driver by running the following command:

2. Update your Helm repositories by running the following command:

3. Install the secrets store CSI driver by running the following command:

4. Deploy the AWS provider by running the following command:

5. Check that both Daemonsets are running by running the following command:

6. Label the Secrets Store CSI Driver to allow use with the restricted pod security profile by
running the following command:

10.3. CREATING A SECRET AND IAM ACCESS POLICIES

1. Create a secret in Secrets Manager by running the following command:

$ export REGION=$(oc get infrastructure cluster -o=jsonpath="
{.status.platformStatus.aws.region}")
$ export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster \
 -o jsonpath='{.spec.serviceAccountIssuer}' | sed 's|^https://||')
$ export AWS_ACCOUNT_ID=`aws sts get-caller-identity --query Account --output text`
$ export AWS_PAGER=""

$ helm repo add secrets-store-csi-driver \
 https://kubernetes-sigs.github.io/secrets-store-csi-driver/charts

$ helm repo update

$ helm upgrade --install -n csi-secrets-store \
 csi-secrets-store-driver secrets-store-csi-driver/secrets-store-csi-driver

$ oc -n csi-secrets-store apply -f \
 https://raw.githubusercontent.com/rh-mobb/documentation/main/content/misc/secrets-
store-csi/aws-provider-installer.yaml

$ oc -n csi-secrets-store get ds \
 csi-secrets-store-provider-aws \
 csi-secrets-store-driver-secrets-store-csi-driver

$ oc label csidriver.storage.k8s.io/secrets-store.csi.k8s.io security.openshift.io/csi-ephemeral-
volume-profile=restricted

$ SECRET_ARN=$(aws --region "$REGION" secretsmanager create-secret \
 --name MySecret --secret-string \
 '{"username":"shadowman", "password":"hunter2"}' \
 --query ARN --output text); echo $SECRET_ARN

Red Hat OpenShift Service on AWS 4 Tutorials

78

2. Create an IAM Access Policy document by running the following command:

3. Create an IAM Access Policy by running the following command:

4. Create an IAM Role trust policy document by running the following command:

NOTE

The trust policy is locked down to the default service account of a namespace
you create later in this process.

5. Create an IAM role by running the following command:

$ cat << EOF > policy.json
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"
],
 "Resource": ["$SECRET_ARN"]
 }]
}
EOF

$ POLICY_ARN=$(aws --region "$REGION" --query Policy.Arn \
--output text iam create-policy \
--policy-name openshift-access-to-mysecret-policy \
--policy-document file://policy.json); echo $POLICY_ARN

$ cat <<EOF > trust-policy.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Condition": {
 "StringEquals" : {
 "${OIDC_ENDPOINT}:sub": ["system:serviceaccount:my-application:default"]
 }
 },
 "Principal": {
 "Federated": "arn:aws:iam::$AWS_ACCOUNT_ID:oidc-provider/${OIDC_ENDPOINT}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity"
 }
]
}
EOF

CHAPTER 10. TUTORIAL: USING AWS SECRETS MANAGER CSI ON RED HAT OPENSHIFT SERVICE ON AWS WITH STS

79

6. Attach the role to the policy by running the following command:

10.4. CREATE AN APPLICATION TO USE THIS SECRET

1. Create an OpenShift project by running the following command:

2. Annotate the default service account to use the STS Role by running the following command:

3. Create a secret provider class to access our secret by running the following command:

4. Create a deployment by using our secret in the following command:

$ ROLE_ARN=$(aws iam create-role --role-name openshift-access-to-mysecret \
--assume-role-policy-document file://trust-policy.json \
--query Role.Arn --output text); echo $ROLE_ARN

$ aws iam attach-role-policy --role-name openshift-access-to-mysecret \
 --policy-arn $POLICY_ARN

$ oc new-project my-application

$ oc annotate -n my-application serviceaccount default \
 eks.amazonaws.com/role-arn=$ROLE_ARN

$ cat << EOF | oc apply -f -
apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
 name: my-application-aws-secrets
spec:
 provider: aws
 parameters:
 objects: |
 - objectName: "MySecret"
 objectType: "secretsmanager"
EOF

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Pod
metadata:
 name: my-application
 labels:
 app: my-application
spec:
 volumes:
 - name: secrets-store-inline
 csi:
 driver: secrets-store.csi.k8s.io
 readOnly: true
 volumeAttributes:
 secretProviderClass: "my-application-aws-secrets"
 containers:

Red Hat OpenShift Service on AWS 4 Tutorials

80

5. Verify the pod has the secret mounted by running the following command:

10.5. CLEAN UP

1. Delete the application by running the following command:

2. Delete the secrets store csi driver by running the following command:

3. Delete the security context constraints by running the following command:

4. Delete the AWS provider by running the following command:

5. Delete AWS Roles and Policies by running the following command:

6. Delete the Secrets Manager secret by running the following command:

 - name: my-application-deployment
 image: k8s.gcr.io/e2e-test-images/busybox:1.29
 command:
 - "/bin/sleep"
 - "10000"
 volumeMounts:
 - name: secrets-store-inline
 mountPath: "/mnt/secrets-store"
 readOnly: true
EOF

$ oc exec -it my-application -- cat /mnt/secrets-store/MySecret

$ oc delete project my-application

$ helm delete -n csi-secrets-store csi-secrets-store-driver

$ oc adm policy remove-scc-from-user privileged \
 system:serviceaccount:csi-secrets-store:secrets-store-csi-driver; oc adm policy remove-
scc-from-user privileged \
 system:serviceaccount:csi-secrets-store:csi-secrets-store-provider-aws

$ oc -n csi-secrets-store delete -f \
https://raw.githubusercontent.com/rh-mobb/documentation/main/content/misc/secrets-store-
csi/aws-provider-installer.yaml

$ aws iam detach-role-policy --role-name openshift-access-to-mysecret \
 --policy-arn $POLICY_ARN; aws iam delete-role --role-name openshift-access-to-
mysecret; aws iam delete-policy --policy-arn $POLICY_ARN

$ aws secretsmanager --region $REGION delete-secret --secret-id $SECRET_ARN

CHAPTER 10. TUTORIAL: USING AWS SECRETS MANAGER CSI ON RED HAT OPENSHIFT SERVICE ON AWS WITH STS

81

CHAPTER 11. TUTORIAL: USING AWS CONTROLLERS FOR
KUBERNETES ON RED HAT OPENSHIFT SERVICE ON AWS

AWS Controllers for Kubernetes (ACK) lets you define and use AWS service resources directly from Red
Hat OpenShift Service on AWS. With ACK, you can take advantage of AWS-managed services for your
applications without needing to define resources outside of the cluster or run services that provide
supporting capabilities such as databases or message queues within the cluster.

You can install various ACK Operators directly from the software catalog. This makes it easy to get
started and use the Operators with your applications. This controller is a component of the AWS
Controller for Kubernetes project, which is currently in developer preview.

Use this tutorial to deploy the ACK S3 Operator. You can also adapt it for any other ACK Operator in the
software catalog of your cluster.

11.1. PREREQUISITES

A Red Hat OpenShift Service on AWS cluster

A user account with cluster-admin privileges

The OpenShift CLI (oc)

The Amazon Web Services (AWS) CLI (aws)

11.2. SETTING UP YOUR ENVIRONMENT

1. Configure the following environment variables, changing the cluster name to suit your cluster:

2. Ensure all fields output correctly before moving to the next section:

11.3. PREPARING YOUR AWS ACCOUNT

1. Create an AWS Identity Access Management (IAM) trust policy for the ACK Operator:

$ export CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export REGION=$(rosa describe cluster -c ${ROSA_CLUSTER_NAME} --output json | jq -r
.region.id)
$ export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster -o json | jq -r
.spec.serviceAccountIssuer | sed 's|^https://||')
$ export AWS_ACCOUNT_ID=`aws sts get-caller-identity --query Account --output text`
$ export ACK_SERVICE=s3
$ export ACK_SERVICE_ACCOUNT=ack-${ACK_SERVICE}-controller
$ export POLICY_ARN=arn:aws:iam::aws:policy/AmazonS3FullAccess
$ export AWS_PAGER=""
$ export SCRATCH="/tmp/${ROSA_CLUSTER_NAME}/ack"
$ mkdir -p ${SCRATCH}

$ echo "Cluster: ${ROSA_CLUSTER_NAME}, Region: ${REGION}, OIDC Endpoint:
${OIDC_ENDPOINT}, AWS Account ID: ${AWS_ACCOUNT_ID}"

$ cat <<EOF > "${SCRATCH}/trust-policy.json"

Red Hat OpenShift Service on AWS 4 Tutorials

82

https://aws-controllers-k8s.github.io/community/

2. Create an AWS IAM role for the ACK Operator to assume with the AmazonS3FullAccess
policy attached:

NOTE

You can find the recommended policy in each project’s GitHub repository, for
example https://github.com/aws-controllers-k8s/s3-
controller/blob/main/config/iam/recommended-policy-arn.

11.4. INSTALLING THE ACK S3 CONTROLLER

1. Create a project to install the ACK S3 Operator into:

2. Create a file with the ACK S3 Operator configuration:

NOTE

ACK_WATCH_NAMESPACE is purposefully left blank so the controller can
properly watch all namespaces in the cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Condition": {
 "StringEquals" : {
 "${OIDC_ENDPOINT}:sub": "system:serviceaccount:ack-
system:${ACK_SERVICE_ACCOUNT}"
 }
 },
 "Principal": {
 "Federated": "arn:aws:iam::$AWS_ACCOUNT_ID:oidc-provider/${OIDC_ENDPOINT}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity"
 }
]
}
EOF

$ ROLE_ARN=$(aws iam create-role --role-name "ack-${ACK_SERVICE}-controller" \
 --assume-role-policy-document "file://${SCRATCH}/trust-policy.json" \
 --query Role.Arn --output text)
$ echo $ROLE_ARN

$ aws iam attach-role-policy --role-name "ack-${ACK_SERVICE}-controller" \
 --policy-arn ${POLICY_ARN}

$ oc new-project ack-system

$ cat << EOF "${SCRATCH}/config.txt"
ACK_ENABLE_DEVELOPMENT_LOGGING=true

CHAPTER 11. TUTORIAL: USING AWS CONTROLLERS FOR KUBERNETES ON RED HAT OPENSHIFT SERVICE ON AWS

83

https://github.com/aws-controllers-k8s/s3-controller/blob/main/config/iam/recommended-policy-arn

3. Use the file from the previous step to create a ConfigMap:

4. Install the ACK S3 Operator from the software catalog:

5. Annotate the ACK S3 Operator service account with the AWS IAM role to assume and restart
the deployment:

6. Verify that the ACK S3 Operator is running:

Example output

ACK_LOG_LEVEL=debug
ACK_WATCH_NAMESPACE=
AWS_REGION=${REGION}
AWS_ENDPOINT_URL=
ACK_RESOURCE_TAGS=${CLUSTER_NAME}
ENABLE_LEADER_ELECTION=true
LEADER_ELECTION_NAMESPACE=
RECONCILE_DEFAULT_MAX_CONCURRENT_SYNCS=1
FEATURE_FLAGS=
FEATURE_GATES=
EOF

$ oc -n ack-system create configmap \
 --from-env-file=${SCRATCH}/config.txt ack-${ACK_SERVICE}-user-config

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: ack-${ACK_SERVICE}-controller
 namespace: ack-system
spec:
 upgradeStrategy: Default

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ack-${ACK_SERVICE}-controller
 namespace: ack-system
spec:
 channel: alpha
 installPlanApproval: Automatic
 name: ack-${ACK_SERVICE}-controller
 source: community-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc -n ack-system annotate serviceaccount ${ACK_SERVICE_ACCOUNT} \
 eks.amazonaws.com/role-arn=${ROLE_ARN} && \
 oc -n ack-system rollout restart deployment ack-${ACK_SERVICE}-controller

$ oc -n ack-system get pods

Red Hat OpenShift Service on AWS 4 Tutorials

84

11.5. VALIDATING THE DEPLOYMENT

1. Deploy an S3 bucket resource:

2. Verify the S3 bucket was created in AWS:

Example output

11.6. CLEANING UP

1. Delete the S3 bucket resource:

2. Delete the ACK S3 Operator and the AWS IAM roles:

3. Delete the ack-system project:

NAME READY STATUS RESTARTS AGE
ack-s3-controller-585f6775db-s4lfz 1/1 Running 0 51s

$ cat << EOF | oc apply -f -
apiVersion: s3.services.k8s.aws/v1alpha1
kind: Bucket
metadata:
 name: ${CLUSTER-NAME}-bucket
 namespace: ack-system
spec:
 name: ${CLUSTER-NAME}-bucket
EOF

$ aws s3 ls | grep ${CLUSTER_NAME}-bucket

2023-10-04 14:51:45 mrmc-test-maz-bucket

$ oc -n ack-system delete bucket.s3.services.k8s.aws/${CLUSTER-NAME}-bucket

$ oc -n ack-system delete subscription ack-${ACK_SERVICE}-controller
$ aws iam detach-role-policy \
 --role-name "ack-${ACK_SERVICE}-controller" \
 --policy-arn ${POLICY_ARN}
$ aws iam delete-role \
 --role-name "ack-${ACK_SERVICE}-controller"

$ oc delete project ack-system

CHAPTER 11. TUTORIAL: USING AWS CONTROLLERS FOR KUBERNETES ON RED HAT OPENSHIFT SERVICE ON AWS

85

CHAPTER 12. TUTORIAL: ASSIGNING A CONSISTENT EGRESS
IP FOR EXTERNAL TRAFFIC

You can assign a consistent IP address for traffic that leaves your cluster such as security groups which
require an IP-based configuration to meet security standards.

By default, Red Hat OpenShift Service on AWS uses the OVN-Kubernetes container network interface
(CNI) to assign random IP addresses from a pool. This can make configuring security lockdowns
unpredictable or open.

See Configuring an egress IP address for more information.

Objectives

Learn how to configure a set of predictable IP addresses for egress cluster traffic.

Prerequisites

A Red Hat OpenShift Service on AWS cluster deployed with OVN-Kubernetes

The OpenShift CLI (oc)

The ROSA CLI (rosa)

jq

12.1. SETTING YOUR ENVIRONMENT VARIABLES

Set your environment variables by running the following command:

NOTE

Replace the value of the ROSA_MACHINE_POOL_NAME variable to target a
different machine pool.

12.2. ENSURING CAPACITY

The number of IP addresses assigned to each node is limited for each public cloud provider.

Verify sufficient capacity by running the following command:

$ export ROSA_CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export ROSA_MACHINE_POOL_NAME=worker

$ oc get node -o json | \
 jq '.items[] |
 {
 "name": .metadata.name,
 "ips": (.status.addresses | map(select(.type == "InternalIP") | .address)),

Red Hat OpenShift Service on AWS 4 Tutorials

86

https://docs.openshift.com/rosa/networking/ovn_kubernetes_network_provider/configuring-egress-ips-ovn.html
https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html-single/cli_tools/#cli-getting-started
https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html-single/cli_tools/#rosa-get-started-cli
https://stedolan.github.io/jq/

Example output

12.3. CREATING THE EGRESS IP RULES

1. Before creating the egress IP rules, identify which egress IPs you will use.

NOTE

The egress IPs that you select should exist as a part of the subnets in which the
worker nodes are provisioned.

2. Optional: Reserve the egress IPs that you requested to avoid conflicts with the AWS Virtual
Private Cloud (VPC) Dynamic Host Configuration Protocol (DHCP) service.
Request explicit IP reservations on the AWS documentation for CIDR reservations page.

12.4. ASSIGNING AN EGRESS IP TO A NAMESPACE

1. Create a new project by running the following command:

2. Create the egress rule for all pods within the namespace by running the following command:

 "capacity": (.metadata.annotations."cloud.network.openshift.io/egress-ipconfig" |
fromjson[] | .capacity.ipv4)
 }'

{
 "name": "ip-10-10-145-88.ec2.internal",
 "ips": [
 "10.10.145.88"
],
 "capacity": 14
}
{
 "name": "ip-10-10-154-175.ec2.internal",
 "ips": [
 "10.10.154.175"
],
 "capacity": 14
}

$ oc new-project demo-egress-ns

$ cat <<EOF | oc apply -f -
apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: demo-egress-ns
spec:
 # NOTE: these egress IPs are within the subnet range(s) in which my worker nodes
 # are deployed.
 egressIPs:

CHAPTER 12. TUTORIAL: ASSIGNING A CONSISTENT EGRESS IP FOR EXTERNAL TRAFFIC

87

https://docs.aws.amazon.com/vpc/latest/userguide/subnet-cidr-reservation.html

12.5. ASSIGNING AN EGRESS IP TO A POD

1. Create a new project by running the following command:

2. Create the egress rule for the pod by running the following command:

NOTE

spec.namespaceSelector is a mandatory field.

12.5.1. Labeling the nodes

1. Obtain your pending egress IP assignments by running the following command:

Example output

The egress IP rule that you created only applies to nodes with the k8s.ovn.org/egress-

 - 10.10.100.253
 - 10.10.150.253
 - 10.10.200.253
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: demo-egress-ns
EOF

$ oc new-project demo-egress-pod

$ cat <<EOF | oc apply -f -
apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: demo-egress-pod
spec:
 # NOTE: these egress IPs are within the subnet range(s) in which my worker nodes
 # are deployed.
 egressIPs:
 - 10.10.100.254
 - 10.10.150.254
 - 10.10.200.254
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: demo-egress-pod
 podSelector:
 matchLabels:
 run: demo-egress-pod
EOF

$ oc get egressips

NAME EGRESSIPS ASSIGNED NODE ASSIGNED EGRESSIPS
demo-egress-ns 10.10.100.253
demo-egress-pod 10.10.100.254

Red Hat OpenShift Service on AWS 4 Tutorials

88

The egress IP rule that you created only applies to nodes with the k8s.ovn.org/egress-
assignable label. Make sure that the label is only on a specific machine pool.

2. Assign the label to your machine pool using the following command:

WARNING

If you rely on node labels for your machine pool, this command will replace
those labels. Be sure to input your desired labels into the --labels field to
ensure your node labels remain.

12.5.2. Reviewing the egress IPs

Review the egress IP assignments by running the following command:

Example output

12.6. VERIFICATION

12.6.1. Deploying a sample application

To test the egress IP rule, create a service that is restricted to the egress IP addresses which we have
specified. This simulates an external service that is expecting a small subset of IP addresses.

1. Run the echoserver command to replicate a request:

2. Expose the pod as a service and limit the ingress to the egress IP addresses you specified by
running the following command:



$ rosa update machinepool ${ROSA_MACHINE_POOL_NAME} \
 --cluster="${ROSA_CLUSTER_NAME}" \
 --labels "k8s.ovn.org/egress-assignable="

$ oc get egressips

NAME EGRESSIPS ASSIGNED NODE ASSIGNED EGRESSIPS
demo-egress-ns 10.10.100.253 ip-10-10-156-122.ec2.internal 10.10.150.253
demo-egress-pod 10.10.100.254 ip-10-10-156-122.ec2.internal 10.10.150.254

$ oc -n default run demo-service --image=gcr.io/google_containers/echoserver:1.4

$ cat <<EOF | oc apply -f -
apiVersion: v1
kind: Service
metadata:
 name: demo-service
 namespace: default

CHAPTER 12. TUTORIAL: ASSIGNING A CONSISTENT EGRESS IP FOR EXTERNAL TRAFFIC

89

3. Retrieve the load balancer hostname and save it as an environment variable by running the
following command:

12.6.2. Testing the namespace egress

1. Start an interactive shell to test the namespace egress rule:

2. Send a request to the load balancer and ensure that you can successfully connect:

3. Check the output for a successful connection:

NOTE

The client_address is the internal IP address of the load balancer not your
egress IP. You can verify that you have configured the client address correctly by
connecting with your service limited to .spec.loadBalancerSourceRanges.

 annotations:
 service.beta.kubernetes.io/aws-load-balancer-scheme: "internal"
 service.beta.kubernetes.io/aws-load-balancer-internal: "true"
spec:
 selector:
 run: demo-service
 ports:
 - port: 80
 targetPort: 8080
 type: LoadBalancer
 externalTrafficPolicy: Local
 # NOTE: this limits the source IPs that are allowed to connect to our service. It
 # is being used as part of this demo, restricting connectivity to our egress
 # IP addresses only.
 # NOTE: these egress IPs are within the subnet range(s) in which my worker nodes
 # are deployed.
 loadBalancerSourceRanges:
 - 10.10.100.254/32
 - 10.10.150.254/32
 - 10.10.200.254/32
 - 10.10.100.253/32
 - 10.10.150.253/32
 - 10.10.200.253/32
EOF

$ export LOAD_BALANCER_HOSTNAME=$(oc get svc -n default demo-service -o json | jq -
r '.status.loadBalancer.ingress[].hostname')

$ oc run \
 demo-egress-ns \
 -it \
 --namespace=demo-egress-ns \
 --env=LOAD_BALANCER_HOSTNAME=$LOAD_BALANCER_HOSTNAME \
 --image=registry.access.redhat.com/ubi9/ubi -- \
 bash

$ curl -s http://$LOAD_BALANCER_HOSTNAME

Red Hat OpenShift Service on AWS 4 Tutorials

90

Example output

4. Exit the pod by running the following command:

12.6.3. Testing the pod egress

1. Start an interactive shell to test the pod egress rule:

2. Send a request to the load balancer by running the following command:

3. Check the output for a successful connection:

NOTE

The client_address is the internal IP address of the load balancer not your
egress IP. You can verify that you have configured the client address correctly by
connecting with your service limited to .spec.loadBalancerSourceRanges.

Example output

CLIENT VALUES:
client_address=10.10.207.247
command=GET
real path=/
query=nil
request_version=1.1
request_uri=http://internal-a3e61de18bfca4a53a94a208752b7263-148284314.us-east-
1.elb.amazonaws.com:8080/

SERVER VALUES:
server_version=nginx: 1.10.0 - lua: 10001

HEADERS RECEIVED:
accept=*/*
host=internal-a3e61de18bfca4a53a94a208752b7263-148284314.us-east-
1.elb.amazonaws.com
user-agent=curl/7.76.1
BODY:
-no body in request-

$ exit

$ oc run \
 demo-egress-pod \
 -it \
 --namespace=demo-egress-pod \
 --env=LOAD_BALANCER_HOSTNAME=$LOAD_BALANCER_HOSTNAME \
 --image=registry.access.redhat.com/ubi9/ubi -- \
 bash

$ curl -s http://$LOAD_BALANCER_HOSTNAME

CLIENT VALUES:

CHAPTER 12. TUTORIAL: ASSIGNING A CONSISTENT EGRESS IP FOR EXTERNAL TRAFFIC

91

4. Exit the pod by running the following command:

12.6.4. Optional: Testing blocked egress

1. Optional: Test that the traffic is successfully blocked when the egress rules do not apply by
running the following command:

2. Send a request to the load balancer by running the following command:

3. If the command is unsuccessful, egress is successfully blocked.

4. Exit the pod by running the following command:

12.7. CLEANING UP YOUR CLUSTER

1. Clean up your cluster by running the following commands:

client_address=10.10.207.247
command=GET
real path=/
query=nil
request_version=1.1
request_uri=http://internal-a3e61de18bfca4a53a94a208752b7263-148284314.us-east-
1.elb.amazonaws.com:8080/

SERVER VALUES:
server_version=nginx: 1.10.0 - lua: 10001

HEADERS RECEIVED:
accept=*/*
host=internal-a3e61de18bfca4a53a94a208752b7263-148284314.us-east-
1.elb.amazonaws.com
user-agent=curl/7.76.1
BODY:
-no body in request-

$ exit

$ oc run \
 demo-egress-pod-fail \
 -it \
 --namespace=demo-egress-pod \
 --env=LOAD_BALANCER_HOSTNAME=$LOAD_BALANCER_HOSTNAME \
 --image=registry.access.redhat.com/ubi9/ubi -- \
 bash

$ curl -s http://$LOAD_BALANCER_HOSTNAME

$ exit

$ oc delete svc demo-service -n default; \
$ oc delete pod demo-service -n default; \
$ oc delete project demo-egress-ns; \

Red Hat OpenShift Service on AWS 4 Tutorials

92

2. Clean up the assigned node labels by running the following command:

WARNING

If you rely on node labels for your machine pool, this command replaces
those labels. Input your desired labels into the --labels field to ensure your
node labels remain.

$ oc delete project demo-egress-pod; \
$ oc delete egressip demo-egress-ns; \
$ oc delete egressip demo-egress-pod



$ rosa update machinepool ${ROSA_MACHINE_POOL_NAME} \
 --cluster="${ROSA_CLUSTER_NAME}" \
 --labels ""

CHAPTER 12. TUTORIAL: ASSIGNING A CONSISTENT EGRESS IP FOR EXTERNAL TRAFFIC

93

	Table of Contents
	CHAPTER 1. TUTORIALS OVERVIEW
	CHAPTER 2. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS ACTIVATION AND ACCOUNT LINKING
	2.1. PREREQUISITES
	2.2. SUBSCRIPTION ENABLEMENT AND AWS ACCOUNT SETUP
	2.3. AWS AND RED HAT ACCOUNT AND SUBSCRIPTION LINKING
	2.4. SELECTING THE AWS BILLING ACCOUNT FOR RED HAT OPENSHIFT SERVICE ON AWS DURING CLUSTER DEPLOYMENT USING THE CLI
	2.5. SELECTING THE AWS BILLING ACCOUNT FOR RED HAT OPENSHIFT SERVICE ON AWS DURING CLUSTER DEPLOYMENT USING THE WEB CONSOLE

	CHAPTER 3. TUTORIAL: RED HAT OPENSHIFT SERVICE ON AWS PRIVATE OFFER ACCEPTANCE AND SHARING
	3.1. ACCEPTING A PRIVATE OFFER
	3.2. SHARING A PRIVATE OFFER
	3.3. AWS BILLING ACCOUNT SELECTION
	3.4. TROUBLESHOOTING
	3.4.1. Accessing a private offer using a different AWS account
	3.4.2. The private offer cannot be accepted because of active subscription
	3.4.3. The AWS account is already linked to a different Red Hat account
	3.4.4. My team members belong to different Red Hat organizations
	3.4.5. Incorrect AWS billing account was selected when creating a cluster

	CHAPTER 4. TUTORIAL: DEPLOYING RED HAT OPENSHIFT SERVICE ON AWS WITH A CUSTOM DNS RESOLVER
	4.1. PREREQUISITES
	4.2. SETTING UP YOUR ENVIRONMENT
	4.3. CREATE AN AMAZON ROUTE 53 INBOUND RESOLVER
	4.4. CONFIGURE YOUR DNS SERVER
	4.4.1. Red Hat OpenShift Service on AWS

	CHAPTER 5. TUTORIAL: USING AWS WAF AND AMAZON CLOUDFRONT TO PROTECT RED HAT OPENSHIFT SERVICE ON AWS WORKLOADS
	5.1. PREREQUISITES
	5.1.1. Environment setup

	5.2. SETTING UP THE SECONDARY INGRESS CONTROLLER
	5.2.1. Configure the AWS WAF

	5.3. CONFIGURE AMAZON CLOUDFRONT
	5.4. DEPLOY A SAMPLE APPLICATION
	5.5. TEST THE WAF
	5.6. ADDITIONAL RESOURCES

	CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO PROTECT RED HAT OPENSHIFT SERVICE ON AWS WORKLOADS
	6.1. PREREQUISITES
	6.1.1. Environment setup
	6.1.2. AWS VPC and subnets

	6.2. DEPLOY THE AWS LOAD BALANCER OPERATOR
	6.3. DEPLOY A SAMPLE APPLICATION
	6.3.1. Configure the AWS WAF

	6.4. ADDITIONAL RESOURCES

	CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A RED HAT OPENSHIFT SERVICE ON AWS CLUSTER
	7.1. PREPARE AWS ACCOUNT
	7.2. DEPLOY OADP ON THE CLUSTER
	7.3. PERFORM A BACKUP
	7.4. CLEANUP

	CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR ON RED HAT OPENSHIFT SERVICE ON AWS
	8.1. PREREQUISITES
	8.1.1. Environment
	8.1.2. AWS VPC and subnets

	8.2. INSTALLATION
	8.3. VALIDATING THE DEPLOYMENT
	8.4. CLEANING UP

	CHAPTER 9. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER
	9.1. PREREQUISITES
	9.2. REGISTERING A NEW APPLICATION IN ENTRA ID FOR AUTHENTICATION
	9.3. CONFIGURING THE APPLICATION REGISTRATION IN ENTRA ID TO INCLUDE OPTIONAL AND GROUP CLAIMS
	9.3.1. Configuring optional claims
	9.3.2. Configuring group claims (optional)

	9.4. CONFIGURING THE RED HAT OPENSHIFT SERVICE ON AWS CLUSTER TO USE ENTRA ID AS THE IDENTITY PROVIDER
	9.5. GRANTING ADDITIONAL PERMISSIONS TO INDIVIDUAL USERS AND GROUPS
	9.5.1. Granting additional permissions to individual users
	9.5.2. Granting additional permissions to individual groups

	9.6. ADDITIONAL RESOURCES

	CHAPTER 10. TUTORIAL: USING AWS SECRETS MANAGER CSI ON RED HAT OPENSHIFT SERVICE ON AWS WITH STS
	10.1. PREREQUISITES
	10.1.1. Additional environment requirements

	10.2. DEPLOYING THE AWS SECRETS AND CONFIGURATION PROVIDER
	10.3. CREATING A SECRET AND IAM ACCESS POLICIES
	10.4. CREATE AN APPLICATION TO USE THIS SECRET
	10.5. CLEAN UP

	CHAPTER 11. TUTORIAL: USING AWS CONTROLLERS FOR KUBERNETES ON RED HAT OPENSHIFT SERVICE ON AWS
	11.1. PREREQUISITES
	11.2. SETTING UP YOUR ENVIRONMENT
	11.3. PREPARING YOUR AWS ACCOUNT
	11.4. INSTALLING THE ACK S3 CONTROLLER
	11.5. VALIDATING THE DEPLOYMENT
	11.6. CLEANING UP

	CHAPTER 12. TUTORIAL: ASSIGNING A CONSISTENT EGRESS IP FOR EXTERNAL TRAFFIC
	12.1. SETTING YOUR ENVIRONMENT VARIABLES
	12.2. ENSURING CAPACITY
	12.3. CREATING THE EGRESS IP RULES
	12.4. ASSIGNING AN EGRESS IP TO A NAMESPACE
	12.5. ASSIGNING AN EGRESS IP TO A POD
	12.5.1. Labeling the nodes
	12.5.2. Reviewing the egress IPs

	12.6. VERIFICATION
	12.6.1. Deploying a sample application
	12.6.2. Testing the namespace egress
	12.6.3. Testing the pod egress
	12.6.4. Optional: Testing blocked egress

	12.7. CLEANING UP YOUR CLUSTER

