
OpenShift Container Platform 3.10

スケーリングおよびパフォーマンスガイド

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

Last Updated: 2019-01-11

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガ
イド

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

法律上の通知

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要

実稼働環境でのクラスターのスケールアップおよびパフォーマンスのチューニング

. .

. .

. .

. .

. .

. .

. .

. .

目次

第1章 概要

第2章 推奨されるインストール方法
2.1. 依存関係の事前インストール
2.2. ANSIBLE インストールの最適化
2.3. ネットワークの留意事項

第3章 ホストの推奨プラクティス
3.1. OPENSHIFT CONTAINER PLATFORM マスターホストの推奨プラクティス
3.2. OPENSHIFT CONTAINER PLATFORM ノードホストの推奨プラクティス
3.3. OPENSHIFT CONTAINER PLATFORM ETCD ホストの推奨プラクティス

3.3.1. OpenStack で PCI パススルーを使用した etcd ノードへのストレージ提供
3.4. TUNED プロファイルを使用したホストのスケーリング

第4章 コンピュートリソースの最適化
4.1. オーバーコミット
4.2. イメージの留意事項

4.2.1. 事前デプロイ済みのイメージを使用した効率の強化
4.2.2. イメージの事前プル

4.3. RHEL ツールのコンテナーイメージを使用したデバッグ
4.4. ANSIBLE ベースのヘルスチェックを使用したデバッグ

第5章 永続ストレージの最適化
5.1. 概要
5.2. 一般的なストレージガイドライン
5.3. ストレージの推奨事項

5.3.1. 特定アプリケーションのストレージの推奨事項
5.3.1.1. レジストリー
5.3.1.2. スケーリングされたレジストリー
5.3.1.3. メトリクス
5.3.1.4. ロギング
5.3.1.5. アプリケーション

5.3.2. 特定のアプリケーションおよびストレージの他の推奨事項
5.4. グラフドライバーの選択

5.4.1. SELinux で OverlayFS または DeviceMapper を使用する利点
5.4.2. Overlay と Overlay2 のグラフドライバーの比較

第6章 一時ストレージの最適化
6.1. 概要
6.2. 一般的なストレージガイドライン

第7章 ネットワークの最適化
7.1. ネットワークパフォーマンスの最適化

7.1.1. ネットワークでの MTU の最適化
7.2. ネットワークサブネットの設定
7.3. IPSEC の最適化

第8章 ルーティングの最適化
8.1. OPENSHIFT CONTAINER PLATFORM HAPROXY ルーターのスケーリング

8.1.1. ベースラインのパフォーマンス
8.1.2. パフォーマンスの最適化

8.1.2.1. 最大接続数の設定
8.1.2.2. CPU および割り込みアフィニティー

4

5
5
5
6

7
7
7
9

13
14

16
16
16
16
16
17
17

19
19
19
20
21
21
22
22
22
23
23
23
27
27

28
28
28

30
30
30
31
31

33
33
33
34
34
34

目次

1

. .

. .

. .

. .

. .

. .

8.1.2.3. バッファー増加の影響
8.1.2.4. HAProxy 再読み込みの最適化

第9章 クラスターメトリクスのスケーリング
9.1. 概要
9.2. OPENSHIFT CONTAINER PLATFORM の推奨事項
9.3. クラスターメトリクスの容量計画
9.4. OPENSHIFT CONTAINER PLATFORM メトリクス POD のスケーリング

9.4.1. 前提条件
9.4.2. Cassandra コンポーネントのスケーリング

第10章 クラスターの制限
10.1. 概要
10.2. OPENSHIFT CONTAINER PLATFORM クラスターの制限
10.3. クラスターの制限に合わせた環境計画
10.4. アプリケーション要件に合わせた環境計画

第11章 クラスターローダーの使用
11.1. クラスターローダーの機能
11.2. クラスターローダーのインストール
11.3. クラスターローダーの実行
11.4. クラスターローダーの設定

11.4.1. 設定フィールド
11.4.2. クラスターローダー設定ファイルの例

11.5. 既知の問題

第12章 CPU マネージャーの使用
12.1. CPU マネージャーの機能
12.2. CPU マネージャーの設定

第13章 HUGE PAGE の管理
13.1. HUGE PAGE の機能
13.2. 前提条件
13.3. HUGE PAGE の消費

第14章 GLUSTERFS ストレージでの最適化
14.1. データベースのコンバージドモードに関するガイド
14.2. テスト済みのアプリケーション
14.3. サポート表
14.4. テスト結果

35
35

36
36
36
36
37
37
37

39
39
39
40
40

42
42
42
42
42
42
45
47

48
48
48

52
52
52
52

54
54
54
54
55

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

2

目次

3

第1章 概要
本ガイドは、OpenShift Container Platform クラスターのパフォーマンスを向上し、OpenShift
Container Platform プロダクションスタックの異なるレベルでスケーリングを行う方法についてその手
順や例を提供しています。また、本書には、OpenShift Container Platform クラスターのビルド、ス
ケーリング、チューニングの推奨プラクティスが説明されています。

チューニングの留意点は、クラスターの設定により異なり、本書に記載のパフォーマンスに関する推奨
事項を実行することで他の部分に影響が及ぶ可能性があるので注意してください。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

4

第2章 推奨されるインストール方法

2.1. 依存関係の事前インストール

ノードホストは、ネットワークにアクセスして、atomic-openshift-*、iptables および docker
などの RPM 依存関係をインストールします。これらの依存関係を事前にインストールすると、RPM が
インストール時にホストごとに何度もアクセスされるのではなく、必要な場合にのみにアクセスされる
ため、より効率的にインストールを実行できます。

また、この方法はセキュリティー上の理由でレジストリーにアクセスできないマシンにも役立ちます。

2.2. ANSIBLE インストールの最適化

OpenShift Container Platform のインストール手法では Ansible を使用します。Ansible は並行して実行
する操作に役立ち、迅速かつ効率的なインストールを促進します。ただし、これらの操作はチューニン
グオプションを追加してさらに強化することができます。利用可能な Ansible 設定オプションの一覧に
ついては、「Ansible の設定」を参照してください。

重要

並行動作は、イメージレジストリーや Red Hat Satellite サーバーなどのコンテンツソー
スに負荷をかける可能性があります。サーバーのインフラストラクチャー Pod やオペ
レーティングシステムのパッチを用準備することで、この問題の回避できる可能性があ
ります。

レイテンシーを最小限に抑えたコントロールノード (LAN 速度) からインストーラーを実行します。ワ
イドエリアネットワーク (WAN) での実行や、ネットワーク接続が途切れる可能性のある環境でのイン
ストールの実行は推奨しません。

Ansible では、RHEL 6.6 以降を使用して OpenSSH のバージョンが ControlPersist をサポートする
ことを確認することや、クラスター内のマシンから 実行せずに、クラスターと同じ LAN からインス
トーラーが実行されるようにするなどの、独自のパフォーマンスやスケーリングに関する指針が提供さ
れます。

以下は、Ansible で文書化されている推奨事項が組み込まれた、大規模なクラスターのインストールや
管理を行うための Ansible の設定例です。

cat /etc/ansible/ansible.cfg
config file for ansible -- http://ansible.com/
==
[defaults]

forks = 20 1
host_key_checking = False
remote_user = root
roles_path = roles/
gathering = smart
fact_caching = jsonfile
fact_caching_connection = $HOME/ansible/facts
fact_caching_timeout = 600
log_path = $HOME/ansible.log
nocows = 1
callback_whitelist = profile_tasks

第2章 推奨されるインストール方法

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#configuring-ansible
https://www.ansible.com/blog/ansible-performance-tuning

1

2

[privilege_escalation]
become = False

[ssh_connection]
ssh_args = -o ControlMaster=auto -o ControlPersist=600s -o
ServerAliveInterval=60
control_path = %(directory)s/%%h-%%r

pipelining = True 2
timeout = 10

フォークは 20 に設定することが理想です (フォークが多くなるとインストールに失敗する可能性
があるため)。

パイプラインは、コントロールノードとターゲットノードの間の接続数を減らし、インストーラー
のパフォーマンスを向上させます。

2.3. ネットワークの留意事項

ネットワークサブネットの変更はインストール後に実行できますが、これを容易に実行することはでき
ません。サイズを少なく見積もってしまうとクラスターを拡張する際に問題が発生する可能性があるの
で、ネットワークサブネットのサイズをインストール前に検討することにより作業を大幅に容易にする
ことができます。

ネットワークサブネットに関する推奨プラクティスは、「ネットワークの最適化」のトピックを参照し
てください。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

6

第3章 ホストの推奨プラクティス

3.1. OPENSHIFT CONTAINER PLATFORM マスターホストの推奨プラク
ティス

OpenShift Container Platform インフラストラクチャーで、Pod トラフィックの他に最も使用される
データパスは OpenShift Container Platform マスターホストと etcd 間のデータパスです。OpenShift
Container Platform API サーバー (マスターバイナリーの一部) は、ノードのステータス、ネットワーク
設定、シークレットなどについて etcd に確認します。

以下を実行してこのトラフィックパスを最適化します。

マスターホストと etcd サーバーを共存させる

マスターホスト間でレイテンシーが低く、混雑しない LAN 通信リンクを確保する

OpenShift Container Platform マスターは、CPU 負荷を軽減するためにデシリアライズされたバージョ
ンのリソースを積極的にキャッシュします。ただし、1000 Pod 未満の小規模なクラスターでは、この
キャッシュにより、無視できる程度の CPU 負荷を削減するために大量のメモリーが浪費される可能性
があります。デフォルトのキャッシュサイズは 50,000 エントリーですが、リソースのサイズによって
は 1 から 2 GB メモリーを占有する程度まで拡大する可能性があります。キャッシュのサイズ
は、/etc/origin/master/master-config.yaml で以下の設定を使用して縮小できます。

kubernetesMasterConfig:
 apiServerArguments:
 deserialization-cache-size:
 - "1000"

3.2. OPENSHIFT CONTAINER PLATFORM ノードホストの推奨プラクティ
ス

OpenShift Container Platform ノード設定ファイルには、iptables 同期期間、SDN ネットワークの
Maximum Transmission Unit (MTU)、プロキシーモードなどの重要なオプションが含まれます。ノード
を設定するには、適切な「ノード設定マップ」を変更します。

注記

node-config.yaml ファイルを直接編集しないでください。

ノード設定ファイルでは、kubelet (node) プロセスに引数を渡すことができます。kubelet --help を
実行すると、利用可能なオプション一覧を表示できます。

注記

kubelet オプションは、OpenShift Container Platform ですべてサポートされておらず、
アップストリームの Kubernetes ですべてが使用されている訳ではないので、オプション
によってはサポートに制限があります。

注記

OpenShift Container Platform の各バージョンでサポートされている最大の制限について
は、「クラスターの制限」のページを参照してください。

第3章 ホストの推奨プラクティス

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#modifying-nodes

/etc/origin/node/node-config.yaml ファイルでは、pods-per-core および max-pods の 2 つのパラ
メーターがノードにスケジュールできる Pod の最大数を制御します。オプションがどちらも使用され
ている場合には、2 つの内の低い値を使用して、ノードの Pod 数が制限されます。これらの値を超える
と、以下の状況が発生します。

OpenShift Container Platform と Docker の両方で CPU 使用率が上昇する。

Pod のスケジューリングの速度が遅くなる。

メモリー不足のシナリオが生じる可能性がある (ノードのメモリー量による)。

IP アドレスのプールを消費する。

リソースのオーバーコミットが起こり、アプリケーションのパフォーマンスが低下する。

注記

Kubernetes では、単一コンテナーを保持する Pod は実際には 2 つのコンテナーを使用
します。2 つ目のコンテナーは実際のコンテナーの起動前にネットワークを設定するた
めに使用されます。そのため、10 の Pod を実行するシステムでは、実際には 20 のコン
テナーが実行されていることになります。

pods-per-core は、ノードのプロセッサーコア数に基づいてノードが実行できる Pod 数を設定しま
す。たとえば、4 プロセッサーコアを搭載したノードで pods-per-core が 10 に設定される場合、こ
のノードで許可される Pod の最大数は 40 になります。

kubeletArguments:
 pods-per-core:
 - "10"

注記

pods-per-core を 0 に設定すると、この制限が無効になります。

max-pods は、ノードのプロパティーにかかわらず、ノードが実行できる Pod 数を固定値に設定しま
す。「クラスターの制限」では max-pods のサポートされる最大の値について説明しています。

kubeletArguments:
 max-pods:
 - "250"

上記の例では、pods-per-core のデフォルト値は 10 であり、max-pods のデフォルト値は 250 で
す。これは、ノードにあるコア数が 25 以上でない場合、デフォルトでは pods-per-core が制限を設
定する要素になります。

OpenShift Container Platform クラスターの推奨制限については、インストールドキュメントの「サイ
ジングに関する考慮事項」セクションを参照してください。推奨のサイズは、コンテナーのステータス
更新時の OpenShift Container Platform と Docker の連携が基になっています。このように連携される
ことで、大量のログデータの書き込みなど、マスターや Docker プロセスの CPU に負荷がかかりま
す。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#sizing

3.3. OPENSHIFT CONTAINER PLATFORM ETCD ホストの推奨プラクティ
ス

etcd は、OpenShift Container Platform が設定に使用するキーと値の分散ストアです。

OpenShift Container Platform の
バージョン

etcd のバージョン ストレージスキーマのバージョン

3.3 以前 2.x v2

3.4 および 3.5 3.x v2

3.6 3.x v2 (アップグレード)

3.6 3.x v3 (新規インストール)

etcd 3.x では、クラスターのサイズに拘わらず、CPU、メモリー、ネットワーク、ディスク要件を軽減
する、スケーラビリティーおよびパフォーマンスの重要な強化機能が導入されました。etcd 3.x は、on-
disk etcd データベースの 2 ステップ移行を簡素化する後方互換対応のストレージ API を実装します。
移行の目的で、OpenShift Container Platform 3.5 の etcd 3.x は v2 モードのままとなっています。
OpenShift Container Platform 3.6 以降では、新規インストールで v3 のストレージモードが使用されま
す。OpenShift Container Platform の以前のバージョンからアップグレードしても、v2 から v3 に自動
で 移行されません。提供されている Playbook を使用して、ドキュメントに記載のプロセスに従い、
データを移行する必要があります。

etcd バージョン 3 には、on-disk etcd データベースの 2 ステップ移行を簡素化する後方互換対応のスト
レージ API が実装されています。移行の目的で、OpenShift Container Platform 3.5 の etcd 3.x は v2
モードのままとなっています。OpenShift Container Platform 3.6 以降では、新規インストールで v3 の
ストレージモードが使用されます。お客様が etcd スキーマを v2 から v3 に移行する準備 (移行に関連
するダウンタイムや検証など含む) ができるように、OpenShift Container Platform 3.6 では強制的にこ
のアップグレードは実行されません。ただし、幅広いテストを行った結果、Red Hat は既存の
OpenShift Container Platform クラスターを etcd 3.x ストレージモード v3 に移行することを強く推奨し
ます。これは特に、大規模なクラスターを使用されている場合や、SSD ストレージを利用できないシ
ナリオなどが該当します。

重要

今後の OpenShift Container Platform のアップグレードでは、etcd スキーマの移行が必
要です。

新規インストールでストレージモードを v3 に変更するのに加え、OpenShift Container Platform 3.6
は、全 OpenShift Container Platform タイプに対して強制的に quorum reads を実行します。これは、
etcd に対するクエリーが古くなったデータを返さないようにするために実行されます。単一ノードの
etcd クラスターでは、古くなったデータが入っていても懸念はありませんが、実稼働クラスターで一般
的に使用される高可用性の etcd デプロイメントでは、quorum read はクエリーの結果が有効になるよ
うにします。quorum read は、データベース用語の 線形化可能性 (linearizable) と同じです。すべての
クライアントにクラスターが最新の状態に更新されたものが表示され、同じ順番の読み取りおよび書き
込みが表示されます。パフォーマンスの向上に関する情報は、etcd 3.1 の announcement を参照してく
ださい。

OpenShift Container Platform は、etcd を使用して Kubernetes 自体が必要な情報以外の追加情報を保存
する点を留意することが重要です。たとえば、Kubernetes 以外に OpenShift Container Platform が追加

第3章 ホストの推奨プラクティス

9

https://coreos.com/blog/etcd-3-1-announcement.html

する機能で必要になるので、OpenShift Container Platform は、etcd にイメージ、ビルド、他のコン
ポーネントの情報を保存します。最終的に、etcd ホストのパフォーマンスやサイジングに関する指針や
その他の推奨事項は、Kubernetes とは大幅に異なります。Red Hat は、OpenShift Container Platform
のユースケースやパラメーターを考慮に入れて etcd のスケーラビリティーやパフォーマンスをテスト
し、最も正確な推奨事項を提案できるようにしています。

パフォーマンスの向上は、cluster-loader ユーティリティーで 300 ノードの OpenShift Container
Platform 3.6 クラスターを使用して、定量化されています。etcd 3.x (ストレージモード v2) と etcd 3.x
(ストレージモード v3) を比較すると、以下の図に示されるようにパフォーマンスの向上が明確に確認で
きます。

負荷のある状態でのストレージ IOPS が大幅に減少している:

安定した状態でのストレージ IOPS が大幅に減少している:

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

10

https://github.com/openshift/svt/tree/master/openshift_scalability

同じ I/O データの表示。両モードでの平均 IOPS

API サーバー (マスター) と etcd プロセスの両方の CPU 使用率が減少している:

第3章 ホストの推奨プラクティス

11

API サーバー (マスター) と etcd プロセスの両方のメモリー使用率も減少している:

重要

OpenShift Container Platform で etcd をプロファイリングした後に、etcd は少量のスト
レージインプットおよびアウトプットを頻繁に実行しています。SSD など、少量の読み
取り/書き込み操作をすばやく処理するストレージで etcd を使用することを強く推奨しま
す。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

12

etcd 3.1 の 3 ノードクラスター (quorum reads を有効にしてストレージ v3 モードを使用) で実行したサ
イズ I/O 操作を確認してみると、読み取りサイズは以下のようになります。

また、書き込みサイズは以下のようになります。

注記

etcd プロセスは通常はメモリー集約型であり、マスター/ API サーバープロセスは CPU
集約型です。これらは、単一マシンや仮想マシン内で共同設置する上で有効なペアにな
ります。etcd とマスターホスト間の通信を最適化するには、同じホストにマスターと
etcd を共同設置するか、専用のネットワークを設定します。

3.3.1. OpenStack で PCI パススルーを使用した etcd ノードへのストレージ提供

大規模な環境で etcd を安定させるために etcd ノードにストレージをすばやく提供するには、NVMe
(Non-Volatile Memory express) デバイスを直接 etcd ノードに渡す PCI パススルーを使用します。これ
を Red Hat OpenStack 11 以降で設定するには、PCI デバイスが存在する OpenStack コンピュートノー
ドで以下を実行してください。

第3章 ホストの推奨プラクティス

13

1. Intel Vt-x が BIOS で有効化されているようにします。

2. IOMMU (Input-Output Memory Management Unit) を有効化します。/etc/sysconfig/grub ファ
イルで、GRUB_CMDLINX_LINUX の行末に、引用符で囲って intel_iommu=on iommu=pt を
追加します。

3. 以下を実行して /etc/grub2.cfg を再生成します。

$ grub2-mkconfig -o /etc/grub2.cfg

4. システムを再起動します。

5. コントローラーの /etc/nova.conf を以下のように設定します。

[filter_scheduler]

enabled_filters=RetryFilter,AvailabilityZoneFilter,RamFilter,DiskFil
ter,ComputeFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,Se
rverGroupAntiAffinityFilter,ServerGroupAffinityFilter,PciPassthrough
Filter

available_filters=nova.scheduler.filters.all_filters

[pci]

alias = { "vendor_id":"144d", "product_id":"a820",
"device_type":"type-PCI", "name":"nvme" }

6. コントローラーで nova-api と nova-scheduler を再起動します。

7. コンピュートノードの /etc/nova/nova.conf で以下のように設定します。

[pci]

passthrough_whitelist = { "address": "0000:06:00.0" }

alias = { "vendor_id":"144d", "product_id":"a820",
"device_type":"type-PCI", "name":"nvme" }

パススルーする NVMe デバイスの address、vendor_id および product_id の必須値を取
得するには、以下を実行します。

lspci -nn | grep devicename

8. コンピュートノードで nova-compute を再起動します。

9. 実行する OpenStack バージョンで NVMe を使用するように設定し、etcd ノードで起動しま
す。

3.4. TUNED プロファイルを使用したホストのスケーリング

Tuned は、Red Hat Enterprise Linux (RHEL) および他の Red Hat 製品で有効な Tuning プロファイルの
配信メカニズムです。Tuned は、sysctls、電源管理、カーネルコマンドラインオプションなどの Linux
の設定をカスタマイズして、異なるワークロードのパフォーマンスやスケーラビリティーの要件に対応

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

14

するために、オペレーティングシステムを最適化します。

OpenShift Container Platform は tuned デーモンを活用して、openshift、openshift-node および
openshift-control-plane と呼ばれる Tuned プロファイルを追加します。これらのプロファイル
は、カーネルで一般的に発生する垂直スケーリングの上限を安全に増やし、インストール時に自動的に
システムに適用されます。

Tuned プロファイルは、プロファイル間の継承や、プロファイルが仮想環境で使用されるかどうかによ
り、親プロファイルを選択する親の自動割り当て機能もサポートします。openshift プロファイル
は、openshift-node と openshift-control-plane プロファイルの親で、これらの両機能を使用
します。OpenShift Container Platform アプリケーションノードとコントロールプレーンノードの両方
に関連するチューニングが含まれます。openshift-node および openshift-control-plane プロ
ファイルは、アプリケーションおよびコントロールプレーンノードにそれぞれ設定されます。

openshift プロファイルがプロファイル階層の親である場合に、OpenShift Container Platform システ
ムに配信されるチューニングは、ベアメタルホスト向けの throughput-performance (RHEL のデ
フォルト) と、RHEL 向けの virtual-guest または RHEL Atomic Host ノード向けの atomic-guest
を組み合わせて作成されます。

お使いのシステムでどの Tuned プロファイルが有効になっているかを確認するには以下を実行しま
す。

tuned-adm active
Current active profile: openshift-node

Tuned に関する詳細情報は、『Red Hat Enterprise Linux パフォーマンスチューニングガイド』を参照
してください。

第3章 ホストの推奨プラクティス

15

https://access.redhat.com/documentation/ja-JP/Red_Hat_Enterprise_Linux/7/html-single/Performance_Tuning_Guide/index.html#chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Tuned

第4章 コンピュートリソースの最適化

4.1. オーバーコミット

CPU およびメモリーなどのリソースを必要とするクラスターの部分から、このようなリソースにアク
セスしやすくなるように、オーバーコミットの手順を使用します。

オーバーコミットすると、別のアプリケーションが必要としているリソースを必要な時にアクセスでき
なくなってしまうリスクがあり、結果的にパフォーマンスが低下しますが、パフォーマンスが低下する
代わりに、密度が高まり、コストが削減されるので、代償として妥当な範囲である場合もあります。た
とえば、開発、品質保証 (QA) またはテスト環境でオーバーコミットできても、実稼働環境ではできな
いなどです。

OpenShift Container Platform は、コンピュートリソースモデルやクォータシステムでリソース管理を
実装します。詳しい情報は、「OpenShift リソースモデル」を参照してください。

オーバーコミットに関する詳細情報およびストラテジーは、『クラスター管理ガイド』の「オーバーコ
ミット」を参照してください。

4.2. イメージの留意事項

4.2.1. 事前デプロイ済みのイメージを使用した効率の強化

効率の強化や全ノードホストでの設定の一貫性の維持、反復タスクの削減を図るため、複数のタスクを
組み込んだベースの OpenShift Container Platform イメージを作成できます。これは、事前デプロイ済
みのイメージとして知られています。

たとえば、Pod を実行するために、すべてのノードには ose-pod イメージが必要なので、各ノードは
定期的に Docker レジストリーに接続して最新のイメージをプルする必要があります。100 のノードが
同時にレジストリーに接続し、最新のイメージをプルしようとすると問題が発生する場合があり、イ
メージレジストリーでのリソースの競合や、ネットワーク帯域幅の無駄な使用、および Pod の起動に
かかる時間の増加などが生じる可能性があります。

事前にデプロイ済みのイメージをビルドするには、以下を実行します。

必要とされるタイプおよびサイズのインスタンスを作成します。

コンテナー用の永続ボリュームとは別に、専用のストレージデバイスが Docker のローカルイ
メージやコンテナーストレージで利用できるようにします。

システムを完全に更新すると共に、Docker がインストールされていることを確認します。

ホストがすべての yum リポジトリーにアクセスできるようにします。

シンプロビジョニングされた LVM ストレージを設定します。

一般的に使用するイメージ (rhel7 ベースイメージ) および OpenShift Container Platform インフ
ラストラクチャーコンテナーイメージ (ose-pod、ose-deployer など) を事前にデプロイ済み
のイメージに事前に設定します。

OpenStack または AWS で実行できるなど、事前デプロイ済みのイメージが適切なクラスター設定やそ
の他のクラスター設定用に設定されていることを確認します。

4.2.2. イメージの事前プル

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

16

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-compute-resources
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-overcommit
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/getting-started-with-containers/chapter-8-managing-storage-with-docker-formatted-containers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-openstack
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-aws

イメージを効率的に生成するには、全ノードホストに、必要とされるコンテナーイメージをすべての
ノードホストに事前にプルしておきます。これは、最初にイメージをプルする必要がないことを意味す
るため、サイズが大きくなる可能性のある S2I、メトリクス、ロギングなどのイメージの場合などに、
接続速度が遅いことが原因でパフォーマンスが低下することなく、時間を節約できます。

また、この方法はセキュリティー上の理由でレジストリーにアクセスできないマシンにも役立ちます。

または、指定したデフォルトレジストリーではなく、ローカルイメージを使用できます。このために
は、以下を実行します。

1. Pod 設定の imagePullPolicy パラメーターを IfNotPresent または Never に設定して、
ローカルイメージからプルします。

2. クラスターのすべてのノードで、同じイメージがローカルに保存されていることを確認しま
す。

注記

ノードの設定を制御できる場合は、ローカルレジストリーからプルすることが適切です
が、GCE など、自動的にノードを交換しないクラウドプロバイダーでは確実に機能しな
い場合があります。Google Container Engine (GKE) で実行している場合は、各ノード
に、Google Container Registry の認証情報が設定された .dockercfg ファイルが配置され
ています。

4.3. RHEL ツールのコンテナーイメージを使用したデバッグ

Red Hat は rhel-tools コンテナーイメージを配信します。これは、スケーリングがパフォーマンスの問
題のデバッグをサポートするパッケージツールです。このコンテナーイメージを使用すると、以下が可
能です。

ベースのディストリビューションからこのサポートコンテナーにパッケージを移動して、フッ
トプリントが最小のコンテナーホストをデプロイできます。

不変のパッケージツリーを含む Red Hat Enterprise Linux 7 Atomic Host 用のデバッグ機能が提
供されます。rhel-tools には、tcpdump、sosreport、git、gdb、perf など、多くの一般的なシス
テム管理ユーティリティーが含まれます。

以下を実行して rhel-tools コンテナーを使用します。

atomic run rhel7/rhel-tools

詳しい情報は、「RHEL ツールコンテナーのドキュメント」を参照してください。

4.4. ANSIBLE ベースのヘルスチェックを使用したデバッグ

追加のヘルスチェックは、OpenShift Container Platform クラスターのインストールおよび管理に使用
するAnsible ベースのツールで利用できます。このヘルスチェックでは、現行の OpenShift Container
Platform インストールによくあるデプロイメントの問題を報告します。

これらのチェックは、ansible-playbook コマンドの使用 (クラスターインストールで使用されるの
と同じ方式) によるか、または openshift-ansible の コンテナー化されたバージョンとして実行できま
す。ansible-playbook 方式については、チェックは atomic-openshift-utils RPM パッケージを
使って行われます。コンテナー化方式の場合は、openshift3/ose-ansible コンテナーイメージが Red
Hat Container Registry 経由で配布されます。

第4章 コンピュートリソースの最適化

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/creating_images/#creating-images-s2i
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/getting-started-with-containers/chapter-11-using-the-atomic-tools-container-image
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#install-planning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#install-running-installation-playbooks
https://github.com/openshift/openshift-ansible/blob/master/README_CONTAINER_IMAGE.md
https://registry.access.redhat.com

利用可能なヘルスチェックや使用例については、『クラスター管理ガイド』の「Ansible ベースのヘル
スチェック」を参照してください。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#ansible-based-tooling-health-checks

第5章 永続ストレージの最適化

5.1. 概要

ストレージを最適化すると、全リソースでストレージの使用を最小限に抑えることができます。管理者
は、ストレージを最適化することで、既存のストレージリソースが効率的に機能できるようにすること
ができます。

注記

本ガイドでは、永続ストレージの最適化に重点を置いています。Pod の有効期間に使用
されるデータ向けのローカルの一時ストレージのオプションは少なくなります。一時ス
トレージは、一時ストレージのテクノロジープレビューを有効化した場合のみ利用でき
ます。この機能はデフォルトでは無効になっています。詳細情報は、「一時ストレージ
の設定」を参照してください。

5.2. 一般的なストレージガイドライン

以下の表では、OpenShift Container Platform で利用可能な永続ストレージ技術を紹介します。

表5.1 利用可能なストレージオプション

ストレー
ジタイプ

説明 例

ブロック
ブロックデバイスとしてオペレーティング
システムに公開されます。

ストレージを完全に制御し、ファイルシス
テムをバイパスしてファイルの低いレベル
で操作する必要のあるアプリケーションに
適しています。

ストレージエリアネットワーク (SAN) とも
呼ばれます。

共有できません。一度に 1 つのクライアン
トだけがこのタイプのエンドポイントをマ
ウントできるという意味です。

コンバージドモード/インデペンデント

モード GlusterFS [a] iSCSI、Fibre
Channel、Ceph RBD、OpenStack

Cinder、AWS EBS [a]、Dell/EMC
Scale.IO、VMware vSphere Volume、

GCE 永続ディスク[a]、Azure Disk

ファイル
マウントされるファイルシステムのエクス
ポートとして、OS に公開されます。

ネットワークアタッチストレージ (NAS) と
も呼ばれます。

同時実行、レイテンシー、ファイルロック
のメカニズムその他の各種機能は、プロト
コルおよび実装、ベンダー、スケールに
よって大きく異なります。

コンバージドモード/インデペンデント

モード GlusterFS [a]、RHEL NFS、

NetApp NFS [b]、Azure File、Vendor

NFS、Vendor GlusterFS [c]、Azure
File、AWS EFS

第5章 永続ストレージの最適化

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-ephemeral-storage

オブジェ
クト REST API エンドポイント経由でアクセス

できます。

OpenShift Container Platform レジストリー
で使用するために設定できます。

アプリケーションは、ドライバーをアプリ
ケーションやコンテナーに組み込む必要が
あります。

コンバージドモード/インデペンデント

モード GlusterFS [a]、Ceph Object
Storage (RADOS Gateway)、
OpenStack Swift、Aliyun OSS、AWS
S3、Google Cloud Storage、Azure

Blob Storage、Vendor S3 [c]、Vendor

Swift [c]

[a] コンバージドモード/インデペンデントモード GlusterFS、Ceph RBD、OpenStack Cinder、AWS EBS、Azure Disk、
GCE 永続ディスク、および VMware vSphere は、OpenShift Container Platform で永続ボリューム (PV) の動的プロビジョ
ニングをネイティブにサポートします。

[b] NetApp NFS は Trident プラグインを使用する場合に動的 PV のプロビジョニングをサポートします。

[c] Vendor GlusterFS、Vendor S3 および Vendor Swift のサポート機能および設定機能は異なる場合があります。

ストレー
ジタイプ

説明 例

注記

OpenShift Container Platform 3.6.1 では、コンバージドモード GlusterFS (ハイパーコン
バージドまたはクラスターホストのストレージソリューション) およびインデペンデント
モード GlusterFS (外部ホストのストレージソリューション) を、OpenShift Container
Platform レジストリー、ロギング、メトリクス用のブロック、ファイルおよびオブジェ
クトストレージのインターフェースに使用できます。

5.3. ストレージの推奨事項

以下の表では、特定の OpenShift Container Platform クラスターアプリケーション向けに設定可能な推
奨のストレージ技術についてまとめています。

表5.2 設定可能な推奨のストレージ技術

ストレー
ジタイプ

ROX [a] RWX [b] レジスト
リー

スケーリ
ングされ
たレジス
トリー

メトリク
ス

ロギング アプリ

ブロック はい [c] いいえ 設定可能 設定不可 推奨 推奨 推奨

ファイル はい [c] はい 設定可能 設定可能 設定可能 設定可能 推奨

オブジェ
クト

はい はい 推奨 推奨 設定不可 設定不可 設定不可
[d]

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

20

[a] ReadOnlyMany

[b] ReadWriteMany

[c] これは、物理ディスク、VM 物理ディスク、VMDK、NFS 経由のループバック、AWS EBS および Azure Disk には該
当しません。

[d] オブジェクトストレージは、OpenShift Container Platform の PV/永続ボリューム要求 (PVC: Persistent Volume Claim)
で消費されません。アプリは、オブジェクトストレージの REST API と統合する必要があります。

ストレー
ジタイプ

ROX [a] RWX [b] レジスト
リー

スケーリ
ングされ
たレジス
トリー

メトリク
ス

ロギング アプリ

注記

スケーリングされたレジストリーとは、3 つ以上の Pod レプリカが稼働する OpenShift
Container Platform レジストリーのことです。

5.3.1. 特定アプリケーションのストレージの推奨事項

5.3.1.1. レジストリー

スケーリングなし/高可用性 (HA) ではない OpenShift Container Platform レジストリークラスターのデ
プロイメント:

推奨されるストレージ技術はオブジェクトストレージであり、次はブロックストレージです。
ストレージ技術は、RWX アクセスモードをサポートする必要はありません。

ストレージ技術は、リードアフターライト (Read-After-Write) の一貫性を確保する必要があり
ます。NAS ストレージ (オブジェクトストレージインターフェースを使用するのでコンバージ
ドモード/インデペンデントモード GlusterFS 以外) は、実稼働環境のワークロードがある
OpenShift Container Platform レジストリークラスターデプロイメントには推奨しません。

hostPath ボリュームは、スケーリングなし/非 HA の OpenShift Container Platform レジスト
リー用に設定可能ですが、クラスターデプロイメントには推奨しません。

警告

Red Hat のテスト時に、NFS (RHEL 上) をレジストリーのストレージバックエンド
として使用する場合の問題が確認されました。そのため、(RHEL 上で) NFS をレジ
ストリーのストレージバックエンドとして使用することは推奨していません。

市場で提供されている他の NFS の実装には Red Hat のテスト時に確認された問題
がない可能性があります。実施された可能性のあるテストに関する詳細情報は、個
別の NFS 実装ベンダーにお問い合わせください。



第5章 永続ストレージの最適化

21

5.3.1.2. スケーリングされたレジストリー

スケーリングされた/高可用性 (HA) の OpenShift Container Platform レジストリーのクラスターデプロ
イメント:

推奨されるストレージ技術はオブジェクトストレージです。ストレージ技術は、RWX アクセス
モードをサポートし、リードアフターライトの一貫性を確保する必要があります。

実稼働環境のワークロードを処理するスケーリングされた/HA の OpenShift Container Platform
レジストリークラスターのデプロイメントには、ファイルストレージやブロックストレージは
推奨しません。

すべての NAS ストレージ (オブジェクトストレージインターフェースを使用するので コンバー
ジドモード/インデペンデントモード GlusterFS 以外) は、実稼働環境のワークロードがある
OpenShift Container Platform レジストリーのクラスターデプロイメントには推奨しません。

警告

Red Hat のテスト時に、NFS (RHEL 上) をレジストリーのストレージバックエンド
として使用する場合の問題が確認されました。そのため、(RHEL 上で) NFS をレジ
ストリーのストレージバックエンドとして使用することは推奨していません。

市場で提供されている他の NFS の実装には Red Hat のテスト時に確認された問題
がない可能性があります。実施された可能性のあるテストに関する詳細情報は、個
別の NFS 実装ベンダーにお問い合わせください。

5.3.1.3. メトリクス

OpenShift Container Platform がホストするメトリクスのクラスターデプロイメント:

推奨されるストレージ技術はオブジェクトストレージです。

NAS ストレージ (iSCSI からのオブジェクトストレージインターフェースを使用するのでコン
バージドモード/インデペンデントモード GlusterFS 以外) は、実稼働環境のワークロードがあ
るホスト型のメトリクスクラスターデプロイメントには推奨しません。

警告

実稼働環境のワークロードを処理するホスト型のメトリクスを、NFS を使用して
バックアップすると、データが破損してしまう可能性があります。

5.3.1.4. ロギング

OpenShift Container がホストするロギングのクラスターデプロイメント:

推奨されるストレージ技術はオブジェクトストレージです。





OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

22

NAS ストレージ (iSCSI からのオブジェクトストレージインターフェースを使用するのでコン
バージドモード/インデペンデントモード GlusterFS 以外) は、実稼働環境のワークロードがあ
るホスト型のメトリクスクラスターデプロイメントには推奨しません。

警告

実稼働環境のワークロードを処理するホスト型のロギングを、NFS を使用してバッ
クアップすると、データが破損してしまう可能性があります。

5.3.1.5. アプリケーション

以下の例で説明されているように、アプリケーションのユースケースはアプリケーションごとに異なり
ます。

動的な PV プロビジョニングをサポートするストレージ技術は、マウント時のレイテンシーが
低く、ノードに関連付けられておらず、正常なクラスターをサポートします。

NFS はリードアフターライト (Read-After-Write) の一貫性を確保しないので、一貫性を確保す
る必要のあるアプリケーションには推奨していません。

同じ共有 NFS エクスポートに書き込みをする必要のあるアプリケーションは、実稼働環境の
ワークロードがかかると問題が発生する可能性があります。

5.3.2. 特定のアプリケーションおよびストレージの他の推奨事項

OpenShift Container Platform Internal etcd: etcd の信頼性を最も高く保つには、一貫してレイ
テンシーが最も低くなるストレージ技術が推奨されます。

OpenStack Cinder: OpenStack Cinder は ROX アクセスモードのユースケースで適切に機能す
る傾向にあります。

データベース: データベース (RDBMS、NoSQL DB など) は、専用のブロックストレージで最適
に機能する傾向にあります。

5.4. グラフドライバーの選択

コンテナーのランタイムは、イメージとコンテナーを DeviceMapper および OverlayFS などのグラフド
ライバー (プラグ可能なストレージ技術) に保存します。それぞれに長所と短所があります。

サポート内容や使用方法の注意点など、OverlayFS に関する詳しい情報は、『Red Hat Enterprise Linux
(RHEL) 7 リリースノート』を参照してください。

表5.3 グラフドライバーの比較

名前 説明 利点 制限



第5章 永続ストレージの最適化

23

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/?version=7

デバイスマッパー loop-
lvm

デバイスマッパーのシン
プロビジョニングモ
ジュール (dm-thin-pool)
を使用して、copy-on-
write (CoW) スナップ
ショットを実装します。
デバイスマッパーグラフ
の場所ごとに、2 つのブ
ロックデバイス (データ
とメタデータ用) をベー
スにシンプールが作成さ
れます。デフォルトで
は、これらのブロックデ
バイスは、自動作成され
るスパースファイルの
ループバックマウントを
使用して、自動的に作成
されます。

カスタマイズなしですぐ
に使用できるので、プロ
トタイプ化や開発の目的
で役立ちます。

Portable
Operating
System
Interface for
Unix (POSIX)
がすべて機能す
る訳ではありま
せん (例:
O_DIRECT)。
最も重要な点と
して、このモー
ドは実稼働環境
のワークロード
には対応してい
ません。

コンテナーおよ
びイメージはす
べて、同じ容量
のプールを共有
します。プール
を破棄または再
作成せずにサイ
ズを変更するこ
とはできませ
ん。

デバイスマッパーのシン
プロビジョニング

LVM、デバイスマッ
パー、dm-thinp カーネ
ルモジュールを使用しま
す。ループバックデバイ
スを削除して、ローパー
ティション (ファイルシ
ステムなし) に直接移動
する点が異なります。

中程度の負荷お
よび高密度でパ
フォーマンス関
連のいくつかの
利点を測定でき
ます。

容量においてコ
ンテナー別の制
限があります
(デフォルトは
10GB)。

専用のパーティ
ションが必要で
す。

Red Hat
Enterprise
Linux (RHEL)
ではデフォルト
設定されていま
せん。

コンテナーおよ
びイメージはす
べて、同じ容量
のプールを共有
します。プール
を破棄または再
作成せずにサイ
ズを変更するこ
とはできませ
ん。

名前 説明 利点 制限

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

24

OverlayFS 下層 (親) および上層
(子) のファイルシステム
と作業ディレクトリー
(子と同じファイルシス
テム) を組み合わせま
す。下層のファイルシス
テムはベースイメージ
で、新規コンテナーを作
成すると、差分が含まれ
る新しい上層ファイルシ
ステムが作成されます。

コンテナーの起
動および終了時
間はデバイス
マッパーよりも
短くなります。
デバイスマッ
パーと Overlay
の起動時間の違
いは、1 秒未満
です。

ページキャッ
シュの共有が可
能です。

POSIX に準拠しませ
ん。

名前 説明 利点 制限

サポート内容や使用方法の注意点など、OverlayFS に関する詳しい情報は、『Red Hat Enterprise Linux
(RHEL) 7 リリースノート』を参照してください。

実稼働環境の場合、コンテナーイメージやコンテナーの root ファイルシステムストレージには、通常の
ブロックデバイス (ループデバイス以外) の上層に、論理ボリューム管理 (LVM) シンプールを使用する
ことを推奨します。

注記

ループデバイスを使用すると、パフォーマンスに影響がある可能性があります。そのま
ま使用を継続できますが、以下の警告メッセージがログに記録されます。

devmapper: Usage of loopback devices is strongly discouraged
for production use.
Please use `--storage-opt dm.thinpooldev` or use `man docker`
to refer to
dm.thinpooldev section.

ストレージの設定を容易にするには、docker-storage-setup ユーティリティーを使用して、設定の
詳細の多くを自動化します。

1. Docker ストレージ専用に別のディスクドライブがある場合 (例: /dev/xvdb) には、以下を
/etc/sysconfig/docker-storage-setup ファイルに追加します。

DEVS=/dev/xvdb
VG=docker_vg

2. docker-storage-setup サービスを再起動します。

systemctl restart docker-storage-setup

再起動後に、docker-storage-setup で、docker_vg という名前のボリュームを設定し
て、シンプールの論理ボリュームを作成します。RHEL でのシンプロビジョニングに関するド
キュメントは、『LVM 管理ガイド』で確認できます。新規作成したボリュームは、lsblk コマ
ンドで表示します。

第5章 永続ストレージの最適化

25

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/?version=7
https://access.redhat.com/documentation/ja-jp/Red_Hat_Enterprise_Linux/7/html-single/Logical_Volume_Manager_Administration/index.html

lsblk /dev/xvdb
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
xvdb 202:16 0 20G 0 disk
└─xvdb1 202:17 0 10G 0 part
 ├─docker_vg-docker--pool_tmeta 253:0 0 12M 0 lvm
 │ └─docker_vg-docker--pool 253:2 0 6.9G 0 lvm
 └─docker_vg-docker--pool_tdata 253:1 0 6.9G 0 lvm
 └─docker_vg-docker--pool 253:2 0 6.9G 0 lvm

注記

シンプロビジョニングされたボリュームはマウントされず、ファイルシステムも
ないので (個別のコンテナーには XFS ファイルシステムがない)、df の出力には
表示されません。

3. Docker が LVM シンプールを使用していることを確認して、ディスク領域の使用状況をモニタ
リングするには、docker info コマンドを使用します。Pool Name
は、/etc/sysconfig/docker-storage-setup で指定した VG と同じです。

docker info | egrep -i 'storage|pool|space|filesystem'
Storage Driver: devicemapper
 Pool Name: docker_vg-docker--pool
 Pool Blocksize: 524.3 kB
 Backing Filesystem: xfs
 Data Space Used: 62.39 MB
 Data Space Total: 6.434 GB
 Data Space Available: 6.372 GB
 Metadata Space Used: 40.96 kB
 Metadata Space Total: 16.78 MB
 Metadata Space Available: 16.74 MB

デフォルトでは、シンプールは下層のブロックデバイスの 40% を使用するように設定されています。
ストレージを使用していくにつれ、LVM は自動的にプールを最大 100% まで拡張します。Data
Space Total の値が下層の LVM デバイスの古サイズに一致しないのは、この理由によります。この
自動拡張技術は、Red Hat Enterprise Linux と、単一パーティションのみを使用する Red Hat Atomic
Host の両方で使用するストレージのアプローチを統合するために使用されてきました。

開発において、Red Hat ディストリビューションの Docker はループバックマウントが実行されたス
パースファイルにデフォルト設定されています。お使いのシステムでループバックモードを使用してい
るかどうかを確認するには、以下を実行します。

docker info|grep loop0
 Data file: /dev/loop0

重要

Red Hat は、実稼働環境のワークロードを使用するシンプールモードでは DeviceMapper
ストレージドライバーを使用することを強く推奨します。

Overlay は、Red Hat Enterprise Linux 7.2 の時点で、コンテナーランタイムのユースケースについても
サポートされ、起動時間の加速化、ページキャッシュ共有が可能になるため、全体的なメモリー使用率
を下げて高密度化できる可能性があります。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

26

5.4.1. SELinux で OverlayFS または DeviceMapper を使用する利点

OverlayFS ファイルシステムの主な利点は、同じノードでイメージを共有するコンテナー間で Linux
ページキャッシュが共有される点です。OverlayFS のこの特性により、コンテナーの起動時の出入力
(I/O) が減り (数百ミリ秒単位でコンテナーの起動時間が短縮)、同様のイメージがノードで実行されてい
る場合にメモリーの使用率が減少します。これらはいずれも、(ビルドファームなど) コンテナーの
チャーンレートを高め、密度を最適化する場合や、イメージの内容に重複が多い環境などの多くの環境
で利点があります。

シンプロビジョニングのデバイスがコンテナーごとに割り当てられるので、DeviceMapper ではページ
キャッシュの共有はできません。

注記

DeviceMapper は、Red Hat Enterprise Linux のデフォルトの Docker ストレージ設定で
す。コンテナーストレージ技術としての OverlayFS の使用は評価中であり、今後のリ
リースで Red Hat Enterprise Linux を OverlayFS にデフォルトで移行することも検討中
です。

5.4.2. Overlay と Overlay2 のグラフドライバーの比較

OverlayFS はユニオンファイルシステムの 1 つです。ファイルシステムの上に別のファイルシステムを
重ねる (オーバーレイする) ことができます。変更は上層のファイルシステムに記録され、下層のファイ
ルシステムは未変更のままになります。コンテナーや DVD-ROM などのファイルシステムイメージを
複数のユーザーで共有でき、ベースのイメージは読み取り専用メディアに置かれます。

OverlayFS は、単一の Linux ホストで 2 つのディレクトリーに階層化し、それらを 1 つのディレクト
リーとして表示します。これらのディレクトリーは階層と呼ばれ、統合プロセスはユニオンプロセスと
呼ばれます。

OverlayFS は、2 つのグラフドライバー overlay または overlay2 のいずれかを使用します。Red Hat
Enterprise Linux 7.2 の時点では、overlay グラフドライバーがサポートされるようになりました。Red
Hat Enterprise Linux 7.4 時点で、overlay2 がサポートされるようになりました。Docker デーモン上の
SELinux は、Red Hat Enterprise Linux 7.4 でサポートされるようになりました。サポート内容やご利用
のヒントなど、お使いの RHEL バージョンでの OverlayFS の使用に関する情報は、『Red Hat
Enterprise Linux リリースノート』を参照してください。

overlay2 ドライバーは、最大 128 個の 下層にある OverlayFS 階層をネイティブでサポートします
が、overlay ドライバーは下層の OverlayFS 階層 1 つでしか機能しません。この機能が原因
で、overlay2 ドライバーの方が、docker build などの階層関連の Docker コマンドのパフォーマン
スが優れており、サポートするファイルシステムで使用する inode が少なくなります。

overlay ドライバーは、下層にある単一の OverlayFS 階層で機能するので、複数の OverlayFS 階層とし
て複数階層のイメージを実装できません。代わりに、各イメージ階層は、/var/lib/docker/overlay の配
下に独自のディレクトリーとして実装されます。下層にある階層と共有されるデータを参照する場合に
は、スペース効率が配慮された方法としてハードリンクが使用されます。

Docker は inode の使用において効率が良いので、overlay ドライバーではなく、OverlayFS のある
overlay2 ドライバーを使用することが推奨されています。

注記

RHEL または CentOS で Overlay2 を使用するには、バージョン 3.10.0-693 以降のバー
ジョンが必要です。

第5章 永続ストレージの最適化

27

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/7/html/7.2_release_notes/technology-preview-file_systems
https://access.redhat.com/solutions/2908851
https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/?version=7
https://docs.docker.com/storage/storagedriver/overlayfs-driver/

第6章 一時ストレージの最適化

6.1. 概要

注記

このトピックは、OpenShift Container Platform 3.10 で一時ストレージのテクノロジープ
レビューを有効化した場合にのみ適用されます。この機能は、デフォルトでは無効に
なっています。この機能を有効にするには、「一時ストレージの設定」を参照してくだ
さい。

注記

テクノロジープレビューリリースは、Red Hat 製品のサービスレベルアグリーメント
(SLA) ではサポートされておらず、機能的に完全でない可能性があり、Red Hat では実稼
働環境での使用を推奨しません。テクノロジープレビュー機能は、近々発表予定の製品
機能をリリースに先駆けてご提供することにより、お客様に機能性をテストしていただ
き、開発プロセス中にフィードバックをお寄せいただくことを目的としています。Red
Hat テクノロジープレビュー機能のサポート対象範囲に関する詳しい情報は、「テクノ
ロジプレビュー機能のサポート範囲」を参照してください。

Pod は、一時ファイルの保存などの内部操作に一時ストレージを使用します。この一時ストレージは、
個別の Pod の有効期間より長くなることはなく、一時ストレージは Pod 全体で共有できません。

OpenShift Container Platform 3.10 よりも前のバージョンでは、一時ローカルストレージは、コンテ
ナーの書き込み可能な階層、logs ディレクトリー、EmptyDir ボリュームを使用して Pod に公開されて
いました。ローカルストレージのアカウントや分離がないことに関連する問題として、以下の問題が含
まれます。

Pod は利用可能なローカルストレージのサイズを認識しない。

Pod がローカルストレージを要求しても確実に割り当てられない可能性がある。

ローカルストレージは Best Effort (ベストエフォート) のリソースである。

Pod は他の Pod でローカルストレージが一杯になるとエビクトされる可能性があり、十分なス
トレージが回収されるまで新しい Pod は許可されない。

一時ストレージは同様に Pod に公開されていますが、Pod の一時ストレージの使用に対する要求や制
限を実装する新たな方法が追加されています。

注記

CRI-O をコンテナーランタイムとして使用し、ファイルベースロギングをロギングに使
用している場合にのみ、コンテナーログの管理は該当します。

一時ストレージはシステム内の Pod すべてで共有され、OpenShift Container Platform には管理者およ
びユーザーが確立した要求や制限を超えるサービスを保証する仕組みはない点を理解することが重要で
す。たとえば、一時ストレージでは、スループット、秒ごとの I/O 操作またはストレージパフォーマン
スについての保証は一切ありません。

6.2. 一般的なストレージガイドライン

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-ephemeral-storage
https://access.redhat.com/ja/support/offerings/techpreview/

ノードのローカルストレージは、プライマリーパーティションとセカンダリーパーティションに分割で
きます。一時ローカルストレージには、プライマリーパーティションのみが使用できます。プライマ
リーパーティションでは、root とランタイムの 2 つがサポートされています。

Root
Root パーティションは、デフォルトで kubelet の root ディレクトリー /var/lib/kubelet/
と /var/log/ ディレクトリーを保持します。このパーティションを Pod、オペレーティング
システム、OpenShift Container Platform システムデーモンの間で共有できます。Pod は、
EmptyDir ボリューム、コンテナーログ、イメージ階層、コンテナーの書き込み可能階層を使用
してこのパーティションにアクセスできます。OpenShift Container Platform は、このパーティ
ションの共有アクセスと分離を管理します。

ランタイム
ランタイムパーティションは、オーバーレイファイルシステムに使用可能なオプションのパー
ティションです。OpenShift Container Platform は、このパーティションの分離および共有アク
セスを特定して提供します。このパーティションには、コンテナーイメージ階層と書き込み可
能な階層が含まれます。ランタイムパーティションが存在する場合は、root パーティションに
はイメージ階層も書き込み可能階層も含まれません。

第6章 一時ストレージの最適化

29

第7章 ネットワークの最適化

7.1. ネットワークパフォーマンスの最適化

OpenShift SDN は OpenvSwitch、VXLAN (Virtual extensible LAN) トンネル、OpenFlow ルール、
iptables を使用します。このネットワークは、ジャンボフレーム、ネットワークインターフェースカー
ド (NIC) のオフロード、マルチキュー、ethtool の設定を使用してチューニングが可能です。

VXLAN は、4096 から 1600 万以上にネットワーク数が増え、物理ネットワーク全体で階層 2 の接続が
追加されるなど、VLAN での利点が提供されます。これにより、異なるシステム上で実行されている場
合でも、サービスの背後にある Pod すべてが相互に通信できるようになります。

VXLAN は、User Datagram Protocol (UDP) パケットにトンネル化されたトラフィックをすべてカプセ
ル化しますが、CPU 使用率が上昇してしまいます。これらの外部および内部パケットは、移動中に
データが破損しないようにするために通常のチェックサムルールの対象になります。CPU パフォーマ
ンスによっては、このように処理オーバーヘッドが増えることで、従来のオーバーレイ以外のネット
ワークと比べると、スループットが少なくなり、レイテンシーが増します。

クラウド、仮想マシン、ベアメタルの CPU パフォーマンスでは、1 Gbps をはるかに超えるネットワー
クスループットを処理できます。10 または 40 Gbps などの高い帯域幅のリンクを使用する場合には、
パフォーマンスが低減する場合があります。これは、VXLAN ベースの環境では既知の問題で、コンテ
ナーや OpenShift Container Platform 固有の問題ではありません。VXLAN トンネルに依存するネット
ワークも、VXLAN 実装により同様のパフォーマンスになります。

1 Gbps 以上にするには、以下を実行してください。

ネイティブのコンテナールーティングの設定を使用する。このオプションには、ルーターでの
ルーティングテーブルの更新など、OpenShift SDN の使用時には存在しない重要な操作上の注
意事項があります。

Border Gateway Protocol (BGP) など、異なるルーティング技術を実装するネットワークプラグ
インを評価する。

VXLAN オフロード対応のネットワークアダプターを使用します。VXLAN オフロードは、パ
ケットのチェックサム計算と関連の CPU オーバーヘッドを、システムの CPU からネットワー
クアダプター上の専用のハードウェアに移動します。これにより、CPU サイクルが Pod やア
プリケーションで使用できるように解放され、ユーザーはネットワークインフラストラク
チャーの帯域幅全体を活用できるようになります。

VXLAN オフロードではレイテンシーは軽減されませんが、CPU 使用率はレイテンシーテストでも減少
します。

7.1.1. ネットワークでの MTU の最適化

重要な Maximum Transmission Unit (MTU) が 2 つあります (ネットワークインターフェースカード
(NIC) MTU と、SDN オーバーレイ MTU です)。

NIC MTU は、お使いのネットワークでサポートされる最大値以下でなければなりません。スループッ
トを最適化する場合は、最大の値を選択するようにしてください。最も低いレイテンシーにおいて最適
化するには、小さい値を選択します。

SDN オーバーレイの MTU は、最低でも NIC MTU より 50 バイト少なくなければなりません。これ
は、SDN オーバーレイのヘッダーに相当します。そのため、通常の Ethernet ネットワークでは、この
値を 1450 に設定してください。ジャンボフレームの Ethernet ネットワークの場合は、これを 8950 に
設定してください。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-native-container-routing

1

2

注記

50 バイトのオーバーレイヘッダーは OpenShift SDN に関連します。他の SDN ソリュー
ションの場合はこの値を若干変動させる必要があります。

MTU を設定するには、適切なノード設定マップを編集して、以下のセクションを変更します。

Pod オーバーレイネットワークの Maximum transmission unit (MTU)

ovs-subnet プラグインの場合は redhat/openshift-ovs-subnet に、ovs-multitenant プラ
グインの場合は redhat/openshift-ovs-multitenant に、ovs-networkpolicy プラグインの
場合は redhat/openshift-ovs-networkpolicy に設定します。これは、他の CNI 互換のプ
ラグインにも設定できます。

注記

OpenShift Container Platform SDN を構成するすべてのマスターおよび ノードで MTU サ
イズを変更する必要があります。また、tun0 インターフェースの MTU サイズはクラス
ターを構成するすべてのノードで同一である必要があります。

7.2. ネットワークサブネットの設定

OpenShift Container Platform は、Pod とサービスに対して IP アドレス管理を提供します。デフォルト
値の許容範囲は以下のとおりです。

最大のクラスターサイズは 1024 ノード

1024 ノードごとに、/23 を割り当てる (Pod で利用可能な IP は 510 個)

サービス用の IP アドレスは約 65,536 個

多くの場合、これらのネットワークはデプロイメント後に変更することができません。そのため、拡張
についての計画が必要になります。

ネットワークのサイズ変更に関する制限は、「SDN の設定」に記載されています。

より大規模な環境を計画する場合は、Ansible インベントリーファイルの [OSE3:vars] セクションに
以下の推奨値を設定するようにしてください。

[OSE3:vars]
osm_cluster_network_cidr=10.128.0.0/10

これにより、使用可能な IP アドレス 510 個が割り当てられる 8192 ノードが許可されます。

インストールしているソフトウェアバージョンのノード/Pod の上限については、OpenShift Container
Platform ドキュメントにあるサポートの制限について参照してください。

7.3. IPSEC の最適化

networkConfig:

 mtu: 1450 1

 networkPluginName: "redhat/openshift-ovs-subnet" 2

第7章 ネットワークの最適化

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#modifying-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#configuring-the-pod-network-on-masters

ノードホストの暗号化、復号化に CPU 機能が使用されるので、使用する IP セキュリティーシステムに
かかわらず、ノードのスループットおよび CPU 使用率の両方でのパフォーマンスに影響があります。

IPSec は、NIC に到達する前に IP ペイロードレベルでトラフィックを暗号化して、NIC オフロードに
使用されてしまう可能性のあるフィールドを保護します。つまり、IPSec が有効な場合には、NIC アク
セラレーション機能を使用できない場合があり、スループットの減少、CPU 使用率の上昇につながり
ます。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

32

第8章 ルーティングの最適化

8.1. OPENSHIFT CONTAINER PLATFORM HAPROXY ルーターのスケー
リング

8.1.1. ベースラインのパフォーマンス

OpenShift Container Platform「ルーター」は、宛て先が OpenShift Container Platform サービスの外部
トラフィックすべてに対する受信ポイントとなります。

1 秒に処理される HTTP 要求について、単一の HAProxy ルーターのパフォーマンスを評価する場合
に、パフォーマンスは、以下を含む多くの要因によって変動します。

HTTP keep-alive/close モード

ルートタイプ

TLS セッション再開のクライアントサポート

ターゲットルートごとの同時接続数

ターゲットルート数

バックエンドサーバーのページサイズ

基礎となるインフラストラクチャー (ネットワーク/SDN ソリューション、CPU など)

個別の環境でのパフォーマンスは異なりますが、ラボは、サイズが 4 vCPU/16GB RAM のパブリックク
ラウドインスタンスでテストします。単一の HAProxy ルーターは、ルート 100 個を処理し、1kB 静的
ページに対応するバックエンドで終端されますが、以下を処理できます。

HTTP keep-alive モードのシナリオの場合:

暗号化 秒ごとの HTTP(s) 要求

なし 22577

edge 11642

passthrough 33335

re-encrypt 11521

HTTP close (keep-alive なし) のシナリオの場合:

暗号化 秒ごとの HTTP(s) 要求

なし 5771

edge 1780

第8章 ルーティングの最適化

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-router-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#route-types

passthrough 3488

re-encrypt 1248

暗号化 秒ごとの HTTP(s) 要求

TLS セッション再開は、暗号化ルートに使用されていました。HTTP keep-alive の場合は、単一の
HAProxy ルーターがページサイズが 8kB でも、1 Gbit の NIC を飽和させることができます。

最新のプロセッサーが搭載されたベアメタルで実行する場合は、上記のパブリッククラウドインスタン
スのパフォーマンスの約 2 倍のパフォーマンスになることを予想できます。このオーバーヘッドは、パ
ブリッククラウドにある仮想化層により発生し、これは多くの場合、プライベートクラウドベースの仮
想化にも適用できます。以下の表は、ルーターの背後で使用するアプリケーション数についてのガイド
です。

アプリケーション数 アプリケーションタイプ

5-10 静的なファイル/Web サーバーまたはキャッシュプロキシー

100-1000 動的なコンテンツを生成するアプリケーション

通常、HAProxy は使用する技術によって異なりますが、約 5-1000 のアプリケーションでルートの負荷
分散を行うことができます。静的なコンテンツのみにサービスを提供するアプリケーションの場合は、
この数字は通常少なくなります。

アプリケーションに対して、より多くのルートを提供し、ルーティング層の水平スケーリングを図る場
合には、ルーターのシャード を使用する必要があります。

8.1.2. パフォーマンスの最適化

8.1.2.1. 最大接続数の設定

HAProxy のスケーラビリティーで最も重要でチューニング可能なパラメーターの 1 つに、maxconn パ
ラメーターがあります。このパラメーターは、プロセス別の最大同時接続数を特定の値に設定します。
このパラメーターを調節するには、OpenShift Container Platform HAProxy ルーターのデプロイメント
設定ファイルにある ROUTER_MAX_CONNECTIONS 環境変数を編集してください。

注記

接続にはフロントエンドおよび内部バックエンドが含まれます。これは 2 つの接続とし
てカウントされます。必ず ROUTER_MAX_CONNECTIONS の値を作成しようとしている接
続数の 2 倍以上になるように設定してください。

8.1.2.2. CPU および割り込みアフィニティー

OpenShift Container Platform では、HAProxy ルーターは単一のプロセスのとして実行されます。
OpenShift Container Platform HAProxy ルーターは通常、周波数が低く、数の多いコアを持つ対称型マ
ルチプロセッシング (SMP) よりも、周波数が高く、数の少ないコアが搭載されたシステムでより優れ
たパフォーマンスを実現します。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#concurrent-connections

HAProxy プロセスを 1 つの CPU コアに、また別の CPU コアにネットワーク割り込みをピニングする
と、ネットワークパフォーマンスが向上する傾向にあります。同じ Non-Uniform Memory Access
(NUMA) ノードにプロセスと割り込みを配置すると、共有 L3 キャッシュを確保してメモリーアクセス
を回避しやすくなります。ただし、このレベルの制御は、パブリッククラウド環境では一般的に不可能
です。ベアメタルホストでは、irqbalance は、割り込み要求線 (IRQ) があれば、自動的に PCI
(peripheral component interconnect) ローカリティーと NUMA アフィニティーを処理します。クラウド
環境では、このレベルの情報は一般的にオペレーティングシステムには提供されません。

CPU ピニングは taskset または HAProxy の cpu-map パラメーターを使用して実行されます。この
ディレクティブは、プロセス ID と CPU コア ID の 2 つの引数を取ります。たとえば、HAProxy プロセ
ス 1 を CPU コア 0 にピニングするには、以下の行を HAProxy の設定ファイルの Global セクションに
追加します。

 cpu-map 1 0

HAProxy 設定ファイルの変更については、「カスタマイズされた HAProxy ルーターのデプロイ」を参
照してください。

8.1.2.3. バッファー増加の影響

OpenShift Container Platform HAProxy ルーター要求のバッファー設定で、アプリケーションからの受
信要求や応答のヘッダーサイズを制限します。HAProxy パラメーター tune.bufsize を増やして、よ
り大きいヘッダーを処理し、多くのパブリッククラウドプロバイダーが提供するロードバランサーで許
可されるアプリケーションなど、非常に大きい cookie を使用するアプリケーションを機能させること
ができます。ただし、これにより、多数の接続が開放されている場合など、合計のメモリー使用率に影
響があります。非常に多くの接続が開かれている場合には、メモリー使用率は、このチューニング可能
なパラメーターの増加とほぼ比例します。

8.1.2.4. HAProxy 再読み込みの最適化

Websocket 接続などの長時間続く接続が、長いクライアント/サーバー HAProxy タイムアウトと短い
HAProxy 再読み込み間隔と組み合わされると、HAProxy プロセスが多数インスタンス化されてしまう
可能性があります。これらのプロセスは、HAProxy 設定が再読み込みされる前に開始されていた古い接
続を処理する必要があります。これらの数多くのプロセスは、システムに不必要な負荷がかかり、メモ
リー不足の状態などの問題につながる可能性があるために理想的とは言えません。

この動作に影響を与えるルーターの環境変数は、特に
ROUTER_DEFAULT_TUNNEL_TIMEOUT、ROUTER_DEFAULT_CLIENT_TIMEOUT、ROUTER_DEFAULT_
SERVER_TIMEOUT および RELOAD_INTERVAL などです。

第8章 ルーティングの最適化

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-router-customized-haproxy

第9章 クラスターメトリクスのスケーリング

9.1. 概要

OpenShift Container Platform は、Heapster で収集してバックエンドに保存可能なメトリクスを公開し
ます。OpenShift Container Platform の管理者は、1 つのユーザーインターフェースでコンテナーやコン
ポーネントメトリクスを表示できます。これらのメトリクスは、スケーリングのタイミングと方法を判
断するために、Horizontal Pod Autoscaler でも使用されます。

以下のトピックでは、メトリクスコンポーネントのスケーリングに関する情報を提供します。

注記

Hawkular および Heapster などのメトリクスコンポーネントの自動スケーリングは
OpenShift Container Platform ではサポートされていません。

9.2. OPENSHIFT CONTAINER PLATFORM の推奨事項

専用の OpenShift Container Platform インフラストラクチャーノード でメトリクス Pod を実行
する

メトリクスの設定時は永続ストレージを使用する。USE_PERSISTENT_STORAGE=true を設定
します。

OpenShift Container Platform メトリクスデプロイメントで METRICS_RESOLUTION=30 パラ
メーターを保持する。METRICS_RESOLUTION をデフォルト値の 30 よりも小さい値に設定す
ることは推奨していません。Ansible メトリクスのインストール手順を使用する場合は、このパ
ラメーターは openshift_metrics_resolution に置き換えてください。

ホストメトリクス Pod が指定された OpenShift Container Platform ノードを詳しくモニタリン
グして、ホストシステムの容量不足 (CPU およびメモリー) を早い段階で検出する。このような
容量不足により、メトリクス Pod で問題が発生する可能性があります。

OpenShift Container Platform バージョン 3.7 のテストでは、最大 Pod 数 25,000 のテストケー
スが OpenShift Container Platform クラスターでモニタリングされました。

9.3. クラスターメトリクスの容量計画

210 および 990 の OpenShift Container Platform ノードで実施したテストでは、10500 および 11000 の
Pod がそれぞれモニタリングされ、Cassandra データベースのサイズが、以下の表に記載の速度で増加
しました。

表9.1 クラスター内のノード数/Pod 数に基づく Cassandra データベースのストレージ要件

ノード数 Pod 数 Cassandra スト
レージの増加速度

1 日あたりの
Cassandra スト
レージの増加速度

1 週間あたりの
Cassandra スト
レージの増加速度

210 10500 1 時間に 500 MB 15 GB 75 GB

990 11000 1 時間に 1 GB 30 GB 210 GB

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

36

https://github.com/kubernetes/heapster
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-pod-autoscaling
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#infrastructure-nodes

上記の計算では、ストレージ要件が算出した値を超えないように、予想のサイズにオーバーヘッドとし
て約 20 % 追加しました。

METRICS_DURATION および METRICS_RESOLUTION の値がデフォルト (それぞれ 7 日と 15 秒) のま
まの場合は、上記の値にあるように、安全策として週ごとの Cassandra ストレージのサイズ要件を計
画することができます。

警告

OpenShift Container Platform メトリクスは、メトリクスデータのデータストアと
して Cassandra データベースを使用するので、メトリクス設定のプロセスで
USE_PERSISTENT_STORAGE=true に設定した場合には、NFS でネットワークス
トレージの上層に PV がデフォルトで配置されます。ただし、Cassandra ドキュメ
ントにあるように、ネットワークストレージと、Cassandra を組み合わせて使用す
ることは推奨していません。

9.4. OPENSHIFT CONTAINER PLATFORM メトリクス POD のスケーリン
グ

メトリクス Pod (Cassandra/Hawkular/Heapster) 1 セットでは、最低 25,000 の Pod をモニタリングで
きます。

注意

OpenShift Container Platform メトリクス Pod が実行されるノードのシステムの負荷に注意してくださ
い。この情報を使用して、OpenShift Container Platform メトリクス Pod の数をスケールアウトし、複
数の OpenShift Container Platform ノードに負荷を分散する必要があるかどうかを判断します。
OpenShift Container Platform メトリクス heapster Pod のスケーリングは推奨していません。

9.4.1. 前提条件

OpenShift Container Platform メトリクスのデプロイに永続ストレージを使用した場合には、OpenShift
Container Platform メトリクスの Cassandra Pod 数をスケーリングする前に、新規 Cassandra Pod が
使用されるように、永続ボリューム (PV) を作成する必要があります。ただし、動的にプロビジョニン
グされる PV を使用して Cassandra がデプロイされた場合には、この手順は必要ありません。

9.4.2. Cassandra コンポーネントのスケーリング

Cassandra ノードは永続ストレージを使用するので、レプリケーションコントローラーでスケールダウ
ンやスケールアップを実行することはできません。

Cassandra クラスターのスケーリングには、openshift_metrics_cassandra_replicas 変数を変
更して、デプロイメント を再実行する必要があります。デフォルトでは Cassandra クラスターは単一
ノードのクラスターとなっています。

OpenShift Container Platform メトリクスの hawkular pod を 2 つのレプリカにスケールアップするに
は、以下を実行します。

oc scale -n openshift-infra --replicas=2 rc hawkular-metrics



第9章 クラスターメトリクスのスケーリング

37

https://docs.datastax.com/en/landing_page/doc/landing_page/planning/planningAntiPatterns.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#deploying-the-metrics-components

または、インベントリーファイルを更新して、デプロイメントを再実行します。

注記

Cassandra クラスターに対して、新規ノードを追加したり、既存のノードを削除した場
合は、クラスターに保存したデータの負荷がクラスター全体で再度分散されます。

スケールダウンを実行するには、以下を実行します。

1. コンテナーにリモートからアクセスする場合は、削除する Cassandra ノードに対して以下を実
行します。

$ oc exec -it <hawkular-cassandra-pod> nodetool decommission

コンテナーにローカルでアクセスする場合には、代わりに以下を実行します。

$ oc rsh <hawkular-cassandra-pod> nodetool decommission

このコマンドは、データをクラスター全体にコピーするので、実行にしばらく時間がかかりま
す。停止の進捗状況は nodetool netstats -H でモニタリングできます。

2. 先のコマンドに成功すると、Cassandra インスタンスの rc を 0 にスケールダウンします。

oc scale -n openshift-infra --replicas=0 rc <hawkular-cassandra-
rc>

これで Cassandra Pod が削除されます。

重要

スケールダウンプロセスが完了し、既存の Cassandra ノードが予想どおりに機能する場
合には、この Cassandra インスタンスと対応する Persistent Volume Claim (PVC、永続
ボリューム要求) の rc も削除できます。PVC を削除すると、この Cassandra インスタ
ンスに関連付けられているデータが完全に削除されるので、スケールダウンが完全かつ
正常に完了しなかった場合に、失われたデータを復元することはできません。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#deploying-the-metrics-components

第10章 クラスターの制限

10.1. 概要

以下のトピックでは、OpenShift Container Platform のオブジェクトの制限についてまとめています。

多くの場合、これらのしきい値を超えると、全体的にパフォーマンスが低下します。必ずしも、クラス
ターに障害が発生するわけではありません。

このトピックで紹介している制限によっては、最大限のクラスターを対象にしているものもあります。
クラスターの規模が小さい場合には、制限も比例して少なくなります。

etcd バージョンやストレージデータ形式など、記載のしきい値に影響を与える要因は多数あります。

10.2. OPENSHIFT CONTAINER PLATFORM クラスターの制限

制限の種類 3.7 の制限 3.9 の制限 3.10 の制限

ノード数 [a] 2,000 2,000 2,000

Pod 数 [b] 120,000 120,000 150,000

ノードごとの Pod 数 250 250 250

コアごとの Pod 数 デフォルト値は 10 で
す。サポートしている最
大値は、ノードごとの
Pod 数と同じです。

デフォルト値は 10 で
す。サポートしている最
大値は、ノードごとの
Pod 数と同じです。

デフォルト値はありませ
ん。サポートしている最
大値は、ノードごとの
Pod 数と同じです。

namespaces 数 10,000 10,000 10,000

ビルド数: パイプライン
ストラテジー

該当なし 10,000 (デフォルトの
Pod: メモリー 512Mi)

10,000 (デフォルトの
Pod: メモリー 512Mi)

namespace ごとの Pod

数[c]
3,000 3,000 3,000

サービス数 [d] 10,000 10,000 10,000

namespace ごとのサー
ビス数

該当なし 該当なし 5,000

サービスごとのバックエ
ンド数

5,000 5,000 5,000

namespace ごとのデプ

ロイメント数[c]

2,000 2,000 2,000

第10章 クラスターの制限

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-max-pods-per-node
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-max-pods-per-node

[a] 記載の制限を超えるクラスターはサポートされません。複数のクラスターに分割することを検討してください。

[b] ここに記載の Pod 数は、テスト用の Pod 数です。実際の Pod 数は、アプリケーションのメモリー、CPU、ストレー
ジ要件により異なります。

[c] これは、状態の変更に対する対応として、特定の namespace にある全オブジェクトに対して反復する必要のある、シ
ステム内のコントロールループ数のことです。単一の namespace に特定タイプのオブジェクトの数が多くなると、ルー
プのコストが上昇し、特定の状態変更を処理する速度が低下します。

[d] iptables では、各サービスポートと各サービスのバックエンドに対応するエントリーが含まれます。特定のサービスの
バックエンド数は、エンドポイントのオブジェクトサイズに影響があり、その結果、システム全体に送信されるデータサ
イズにも影響を与えます。

制限の種類 3.7 の制限 3.9 の制限 3.10 の制限

10.3. クラスターの制限に合わせた環境計画

重要

ノードで物理リソースを過剰にサブスクライブすると、Kubernetes スケジューラーが
Pod の配置時に行うリソース保証に影響を与えます。Swap メモリーを無効にするため
に実行できる処置について確認してください。

環境の計画時に、ノードに配置できる Pod の数を判断します。

クラスターごとの最大 Pod 数 / ノードごとの予想 Pod 数 = ノード数合計

ノードで適合する Pod 数は、アプリケーション自体により異なります。アプリケーションのメモ
リー、CPU、ストレージ要件を検討してください。

シナリオ例

クラスターごとに 2200 の Pod を設定する場合に、ノードごとに最大 250 の Pod があることを前提と
して、最低でも 9 のノードが必要になります。

2200 / 250 = 8.8

ノード数を 20 に増やす場合には、ノード配分がノードごとに 110 の Pod に変わります。

2200 / 20 = 110

10.4. アプリケーション要件に合わせた環境計画

アプリケーション環境の例を考えてみましょう。

Pod タイプ Pod 数 最大メモリー CPU コア 永続ストレージ

apache 100 500MB 0.5 1 GB

node.js 200 1 GB 1 1 GB

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

40

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#disabling-swap-memory
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#install-planning

postgresql 100 1 GB 2 10GB

JBoss EAP 100 1 GB 1 1 GB

Pod タイプ Pod 数 最大メモリー CPU コア 永続ストレージ

推定要件: CPU コア 550 個、メモリー 450GB およびストレージ 1.4TB

ノードのインスタンスサイズは、希望に応じて増減を調整できます。ノードのリソースはオーバーコ
ミットされることが多く、デプロイメントシナリオでは、小さいノードで数を増やしたり、大きいノー
ドで数を減らしたりして、同じリソース量を提供することもできます。運用上の敏捷性やインスタンス
ごとのコストなどの要因を考慮する必要があります。

ノード種別 数量 CPU RAM (GB)

ノード (オプション 1) 100 4 16

ノード (オプション 2) 50 8 32

ノード (オプション 3) 25 16 64

アプリケーションによっては オーバーコミット の環境に適しているものもあれば、そうでないものも
あります。たとえば、Java アプリケーションや、大きいページを使用するアプリケーションの多く
は、オーバーコミットに対応できません。対象のメモリーは、他のアプリケーションに使用できませ
ん。上記の例では、環境は一般的な比率として約 30 % オーバーコミットされています。

第10章 クラスターの制限

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cluster_administration/#admin-guide-overcommit

1

第11章 クラスターローダーの使用

11.1. クラスターローダーの機能

クラスターローダーとは、クラスターに対してさまざまなオブジェクトを多数デプロイするツールであ
り、ユーザー定義のクラスターオブジェクトを作成します。クラスターローダーをビルド、設定、実行
して、さまざまなクラスターの状態にある OpenShift Container Platform デプロイメントのパフォーマ
ンスメトリクスを測定します。

11.2. クラスターローダーのインストール

クラスターローダーは atomic-openshift-tests パッケージに含まれます。これをインストールするに
は、以下を実行します。

$ yum install atomic-openshift-tests

インストールが終わると、テスト用の実行ファイル extended.test は /usr/libexec/atomic-
openshift/extended.test に配置されます。

11.3. クラスターローダーの実行

1. KUBECONFIG 変数は、管理者 kubeconfig の場所に設定します。

$ export KUBECONFIG=${KUBECONFIG-$HOME/.kube/config}

2. 組み込まれているテスト設定を使用してクラスターローダーを実行し、5 つのテンプレートビ
ルドをデプロイして、デプロイメントが完了するまで待ちます。

$ cd /usr/libexec/atomic-openshift/
./extended.test --ginkgo.focus="Load cluster"

または --viper-config のフラグを追加して、ユーザー定義の設定でクラスターローダーを
実行します。

$./extended.test --ginkgo.focus="Load cluster" --viper-

config=config/test 1

この例では、config/ というサブディレクトリーに test.yml ファイルが配置されていま
す。コマンドラインでは、ファイルタイプと拡張子はツールが自動的に判断するので、設
定ファイルを拡張子なしで実行します。

11.4. クラスターローダーの設定

複数のテンプレートや Pod を含む、namespaces (プロジェクト) を複数作成します。

クラスターローダーの設定ファイルを config/ サブディレクトリーに配置します。これらの設定ファイ
ルで参照される Pod ファイルとテンプレートファイルは、content/ サブディレクトリーにあります。

11.4.1. 設定フィールド

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

42

表11.1 クラスターローダーの最上位のフィールド

フィールド 説明

cleanup true または false に設定します。設定ごとに 1
つの定義を設定します。true に設定する
と、cleanup は、テストの最後にクラスターロー
ダーが作成した namespaces (プロジェクト) すべて
を削除します。

projects 1 つまたは多数の定義が指定されたサブオブジェク
ト。projects の配下に、作成する各 namespace
が定義され、projects には必須のサブヘッダーが
複数指定されています。

tuningset 設定ごとに 1 つの定義が指定されたサブオブジェク
ト。tuningset では、チューニングセットを定義
して、プロジェクトやオブジェクト作成に対して設
定可能なタイミングを追加することができます
(Pod、テンプレートなど)。

sync 設定ごとに 1 つの定義が指定されたオプションのサ
ブオブジェクト。オブジェクト作成時に同期できる
かどうかを追加します。

表11.2 projects の配下のフィールド

フィールド 説明

num 整数。作成するプロジェクト数の １つの定義。

basename 文字列。プロジェクトのベース名の定義。競合が発
生しないように、同一の namespaces の数が
Basename に追加されます。

tuning 文字列。オブジェクトに適用するチューニングセッ
トの 1 つの定義。これは対象の namespace にデプ
ロイします。

configmaps キーと値のペア一覧。キーは ConfigMap の名前で、
値はこの ConfigMap の作成元のファイルへのパスで
す。

secrets キーと値のペア一覧。キーはシークレットの名前
で、値はこのシークレットの作成元のファイルへの
パスです。

pods デプロイする Pod の 1 つまたは多数の定義を持つサ
ブオブジェクト

第11章 クラスターローダーの使用

43

templates デプロイするテンプレートの 1 つまたは多数の定義
を持つサブオブジェクト

フィールド 説明

表11.3 pods および templates のフィールド

フィールド 説明

total このフィールドは使用しません。

num 整数。デプロイする Pod またはテンプレート数。

image 文字列。プルが可能なリポジトリーに対する Docker
イメージの URL。

basename 文字列。作成するテンプレート (または Pod) のベー
ス名の 1 つの定義。

file 文字列。ローカルファイルへのパス。作成する
PodSpec またはテンプレートのいずれかです。

parameters キーと値のペア。parameters の配下で、Pod ま
たはテンプレートでオーバーライドする値の一覧を
指定できます。

表11.4 tuningset の配下のフィールド

フィールド 説明

name 文字列。チューニングセットの名前。プロジェクト
のチューニングを定義する時に指定した名前と一致
します。

pods Pod に適用される tuningset を識別するサブオブ
ジェクト

templates テンプレートに適用される tuningset を識別する
サブオブジェクト

表11.5 tuningset pods または tuningset templates の配下のフィールド

フィールド 説明

stepping サブオブジェクト。ステップ作成パターンでオブ
ジェクトを作成する場合に使用するステップ設定。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

44

rate_limit サブオブジェクト。オブジェクト作成速度を制限す
るための速度制限チューニングセットの設定。

フィールド 説明

表11.6 tuningset pods または tuningset templates、stepping の配下のフィールド

フィールド 説明

stepsize 整数。オブジェクト作成を一時停止するまでに作成
するオブジェクト数。

pause 整数。stepsize で定義したオブジェクト数を作成
後に一時停止する秒数。

timeout 整数。オブジェクト作成に成功しなかった場合に失
敗するまで待機する秒数。

delay 整数。次の作成要求まで待機する時間 (ミリ秒)。

表11.7 sync の配下のフィールド

フィールド 説明

server enabled および port フィールドを持つサブオブ
ジェクト。ブール値 enabled を指定すると、Pod
を同期するために HTTP サーバーを起動するかどう
か定義します。port の整数はリッスンする HTTP
サーバーポートを定義します (デフォルトでは
9090)。

running ブール値。selectors に一致するラベルが指定さ
れた Pod が Running の状態になるまで待機しま
す。

succeeded ブール値。selectors に一致するラベルが指定さ
れた Pod が Completed の状態になるまで待機し
ます。

selectors Running または Completed の状態の Pod に一
致するセレクター一覧

timeout 文字列。Running または Completed の状態の
Pod を待機してから同期をタイムアウトするまでの
時間。0 以外の値は、単位 [ns|us|ms|s|m|h] を使用
してください。

11.4.2. クラスターローダー設定ファイルの例

第11章 クラスターローダーの使用

45

1

2

クラスターローダーの設定ファイルは基本的な YAML ファイルです。

provider: local 1
ClusterLoader:
 cleanup: true
 projects:
 - num: 1
 basename: clusterloader-cakephp-mysql
 tuning: default
 templates:
 - num: 1
 file: ./examples/quickstarts/cakephp-mysql.json

 - num: 1
 basename: clusterloader-dancer-mysql
 tuning: default
 templates:
 - num: 1
 file: ./examples/quickstarts/dancer-mysql.json

 - num: 1
 basename: clusterloader-django-postgresql
 tuning: default
 templates:
 - num: 1
 file: ./examples/quickstarts/django-postgresql.json

 - num: 1
 basename: clusterloader-nodejs-mongodb
 tuning: default
 templates:
 - num: 1
 file: ./examples/quickstarts/nodejs-mongodb.json

 - num: 1
 basename: clusterloader-rails-postgresql
 tuning: default
 templates:
 - num: 1
 file: ./examples/quickstarts/rails-postgresql.json

 tuningset: 2
 - name: default
 pods:

 stepping: 3
 stepsize: 5
 pause: 0 s

 rate_limit: 4
 delay: 0 ms

エンドツーエンドテストのオプション設定。local に設定して、過剰に長いログメッセージを回
避します。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

46

3

4

このチューニングセットでは、速度制限やステップ設定、複数の Pod バッチ作成、セット間での
一時停止などが可能になります。クラスターローダーは、以前のステップが完了したことをモニタ

ステップでは、オブジェクトが N 個作成されてから、M 秒間一時停止します。

速度制限は、次のオブジェクトを作成するまで M ミリ秒間待機します。

11.5. 既知の問題

IDENTIFIER パラメーターがユーザーテンプレートで定義されていない場合には、テンプレートの作成
が error: unknown parameter name "IDENTIFIER" エラーで失敗します。テンプレートをデプ
ロイする場合は、このエラーが発生しないように、以下のパラメーターをテンプレートに追加してくだ
さい。

{
 "name": "IDENTIFIER",
 "description": "Number to append to the name of resources",
 "value": "1"
}

Pod をデプロイする場合は、このパラメーターを追加する必要はありません。

第11章 クラスターローダーの使用

47

1

第12章 CPU マネージャーの使用

12.1. CPU マネージャーの機能

CPU マネージャーは、CPU グループを管理して、ワークロードを特定の CPU に制限します。

CPU マネージャーは、以下のような属性が考慮されるワークロードに役立ちます。

できるだけ長い CPU 時間が必要な場合

プロセッサーのキャッシュミスの影響を受ける場合

レイテンシーが低いネットワークアプリケーションの場合

他のプロセスと連携し、単一のプロセッサーキャッシュを共有することに利点がある場合

12.2. CPU マネージャーの設定

CPU マネージャーを設定するには、以下を実行します。

1. オプションで、ノードにラベルを指定します。

oc label node perf-node.example.com cpumanager=true

2. ターゲットノードで CPU マネージャーのサポートを有効にします。

oc edit configmap <name> -n openshift-node

例:

oc edit cm node-config-compute -n openshift-node
...
kubeletArguments:
...
 feature-gates:
 - CPUManager=true
 cpu-manager-policy:
 - static
 cpu-manager-reconcile-period:
 - 5s

 kube-reserved: 1
 - cpu=500m

systemctl restart atomic-openshift-node

kube-reserved は必須の設定です。この値は、環境に合わせて調整する必要がありま
す。

3. コア 1 つまたは複数を要求する Pod を作成します。制限および要求の CPU の値は整数にする
必要があります。これは、対象の Pod 専用のコアの数になります。

cat cpumanager.yaml
apiVersion: v1

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

48

kind: Pod
metadata:
 generateName: cpumanager-
spec:
 containers:
 - name: cpumanager
 image: gcr.io/google_containers/pause-amd64:3.0
 resources:
 requests:
 cpu: 1
 memory: "1G"
 limits:
 cpu: 1
 memory: "1G"
 nodeSelector:
 cpumanager: "true"

4. Pod を作成します。

oc create -f cpumanager.yaml

5. Pod がラベル指定されたノードにスケジュールされていることを確認します。

oc describe pod cpumanager
Name: cpumanager-4gdtn
Namespace: test
Node: perf-node.example.com/172.31.62.105
...
 Limits:
 cpu: 1
 memory: 1G
 Requests:
 cpu: 1
 memory: 1G
...
QoS Class: Guaranteed
Node-Selectors: cpumanager=true
 region=primary

6. cgroups が正しく設定されていることを確認します。一時停止プロセスの PID を取得します。

systemd-cgls -l
├─1 /usr/lib/systemd/systemd --system --deserialize 20
├─kubepods.slice
│ ├─kubepods-pod0ec1ab8b_e1c4_11e7_bb22_027b30990a24.slice
│ │ ├─docker-
b24e29bc4021064057f941dc5f3538595c317d294f2c8e448b5e61a29c026d1c.sco
pe
│ │ │ └─44216 /pause

QoS 階層 Guaranteed の Pod は、kubepods.slice に配置されます。他の QoS の Pod
は、kubepods の子である cgroups に配置されます。

cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-

第12章 CPU マネージャーの使用

49

pod0ec1ab8b_e1c4_11e7_bb22_027b30990a24.slice/docker-
b24e29bc4021064057f941dc5f3538595c317d294f2c8e448b5e61a29c026d1c.sco
pe
for i in `ls cpuset.cpus tasks` ; do echo -n "$i "; cat $i ; done
cpuset.cpus 2
tasks 44216

7. 対象のタスクで許可される CPU 一覧を確認します。

grep ^Cpus_allowed_list /proc/44216/status
Cpus_allowed_list: 2

8. システム上の別の Pod (この場合は burstable QoS 階層にあるPod) が、Guaranteed Pod に
割り当てられたコアで実行できないことを確認します。

cat /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-
burstable.slice/kubepods-burstable-
podbe76ff22_dead_11e7_b99e_027b30990a24.slice/docker-
da621bea7569704fc39f84385a179923309ab9d832f6360cccbff102e73f9557.sco
pe/cpuset.cpus
0-1,3

oc describe node perf-node.example.com
...
Capacity:
 cpu: 4
 memory: 16266720Ki
 pods: 40
Allocatable:
 cpu: 3500m
 memory: 16164320Ki
 pods: 40

 Namespace Name CPU
Requests CPU Limits Memory Requests Memory Limits
 --------- ---- ----------
-- ---------- --------------- -------------
 test cpumanager-4gdtn 1 (28%)
1 (28%) 1G (6%) 1G (6%)
 test cpumanager-hczts 1 (28%)
1 (28%) 1G (6%) 1G (6%)
 test cpumanager-r9wrq 1 (28%)
1 (28%) 1G (6%) 1G (6%)
...
Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 CPU Requests CPU Limits Memory Requests Memory Limits
 ------------ ---------- --------------- -------------
 3 (85%) 3 (85%) 5437500k (32%) 9250M (55%)

この仮想マシンには、CPU コアが 4 基あります。kube-reserved を 500 ミリコアに設定し
て、Node Allocatable の数になるように、ノードの全容量からコア の半分を引きます。

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

50

Allocatable CPU が 3500 ミリコアであることを確認できます。これは、それぞれがコアを
1 つ受け入れるので、CPU マネージャー Pod の内 3 つを実行できるという意味になります。1
つのコア全体は、1000 ミリコアに相当します。

4 つ目の Pod をスケジュールしようとすると、システムは Pod を受け入れますが、スケジュー
ルはされません。

oc get pods --all-namespaces |grep test
test cpumanager-4gdtn 1/1 Running
0 8m
test cpumanager-hczts 1/1 Running
0 8m
test cpumanager-nb9d5 0/1 Pending
0 8m
test cpumanager-r9wrq 1/1 Running
0 8m

第12章 CPU マネージャーの使用

51

第13章 HUGE PAGE の管理

13.1. HUGE PAGE の機能

メモリーは、ページと呼ばれるブロックで管理されます。多くのシステムでは、1 ページは 4Ki です。
メモリー 1Mi は 256 ページに、メモリー 1Gi は 256,000 ページに相当します。CPU には、内蔵のメモ
リー管理ユニットがあり、ハードウェアでこのようなページリストを管理します。トランスレーション
ルックアサイドバッファー (TLB: Translation Lookaside Buffer) は、仮想から物理へのページマッピング
の小規模なハードウェアキャッシュのことです。ハードウェアの指示で渡された仮想アドレスが TLB
にあれば、マッピングをすばやく決定できます。そうでない場合には、TLB ミスが発生し、システムは
速度が遅く、ソフトウェアベースのアドレス変換にフォールバックされ、パフォーマンスの問題が発生
します。TLB のサイズが固定されているので、ページサイズを増やすしか、TLB ミスの割合を減らす方
法はありません。

Huge Page とは、4Ki より大きいメモリーページのことです。x86_64 アーキテクチャーでは、2Mi と
1Gi の 2 つが一般的な Huge Page サイズです。別のアーキテクチャーではサイズは異なります。Huge
Page を使用するには、アプリケーションが認識できるようにコードを書き込む必要があります。
Transparent Huge Pages (THP) は、アプリケーションによる認識なしに、Huge Page の管理を自動化
しようとしますが、制約があります。特に、ページサイズは 2Mi に制限されます。THP では、THP の
デフラグが原因で、メモリー使用率が高くなり、断片化が起こり、パフォーマンスの低下につながり、
メモリーページがロックされてしまう可能性があります。このような理由から、アプリケーションは
THP ではなく、事前割り当て済みの Huge Page を使用するように設計 (また推奨) される場合がありま
す。

OpenShift Container Platform では、Pod のアプリケーションが事前割り当て済みの Huge Page を割り
当て、消費できます。以下のトピックでは、その方法について説明します。

13.2. 前提条件

1. ノードは、Huge Page の容量をレポートできるように Huge Page を事前に割り当てる必要が
あります。ノードは、単一サイズの Huge Page のみを事前に割り当てることができます。

13.3. HUGE PAGE の消費

Huge Page は、リソース名の hugepages-<size> を使用してコンテナーレベルのリソース要件で消
費可能です。サイズは、特定のノードでサポートされる最もコンパクトなバイナリー表示 (整数値を使
用) に置き換えます。たとえば、ノードが 2048KiB のページサイズをサポートする場合は、スケジュー
ル可能なリソース hugepages-2Mi を公開します。CPU やメモリーとは異なり、Huge Page はオー
バーコミットをサポートしません。

kind: Pod
metadata:
 generateName: hugepages-volume-
spec:
 containers:
 - securityContext:
 privileged: true
 image: rhel7:latest
 command:
 - sleep
 - inf
 name: example
 volumeMounts:
 - mountPath: /hugepages

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

52

1

 name: hugepage
 resources:
 limits:

 hugepages-2Mi: 100Mi 1
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

hugepages のメモリー量は、実際に割り当てる量に指定します。この値は、ページサイズで乗算
した hugepages のメモリー量に指定しないでください。たとえば、Huge Page サイズが 2MB と
仮定し、アプリケーションに Huge Page でバックアップする RAM 100 MB を使用する場合には、
Huge Page は 50 に指定します。OpenShift Container Platform により、計算処理が実行されま
す。上記の例にあるように、100MB を直接指定できます。

プラットフォームによっては、複数の Huge Page サイズをサポートするものもあります。特定のサイ
ズの Huge Page を割り当てるには、Huge Page の起動コマンドパラメーターの前に、Huge Page サイ
ズの選択パラメーター hugepagesz=<size> を指定してください。<size> の値は、バイトで指定す
る必要があります。その際、オプションでスケールサフィックス [kKmMgG] を指定できます。デフォル
トの Huge Page サイズは、default_hugepagesz=<size> の起動パラメーターで定義できます。詳
しい情報は、「Huge Page および Transparent Huge Pages」を参照してください。

Huge Page 要求は制限と同じでなければなりません。制限が指定されているにもかかわらず、要求が指
定されていない場合には、これがデフォルトになります。

Huge Page は、Pod のスコープで分割されます。コンテナーの分割は、今後のバージョンで予定され
ています。

Huge Page がサポートする EmptyDir ボリュームは、Pod 要求よりも多くの Huge Page メモリーを消
費することはできません。

shmget() で SHM_HUGETLB を使用して Huge Page を消費するアプリケーション
は、proc/sys/vm/hugetlb_shm_group に一致する補助グループで実行する必要があります。

第13章 HUGE PAGE の管理

53

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-configuring_transparent_huge_pages

第14章 GLUSTERFS ストレージでの最適化

14.1. データベースのコンバージドモードに関するガイド

アプリケーションにコンバージドモードを使用する場合には、お使いのワークロードの種類によって、
gluster-block と GlusterFS モードを使い分けられるように、このトピックで説明されているガイドとベ
ストプラクティスに従うようにしてください。

14.2. テスト済みのアプリケーション

OpenShift Container Platform 3.10 では、これらの SQL データベースを使用する場合および使用しない
場合に関連して広範なテストが行われました。

Postgresql SQL v9.6

MongoDB noSQL v3.2

これらのデータベースのストレージは、コンバージドモードのストレージクラスターから取得していま
す。

Postgresql SQL ベンチマークについては、pgbench がデータベースのベンチマークに使用されていま
した。MongoDB noSQL ベンチマークについては、YCSB Yahoo! Cloud Serving Benchmark がベンチ
マークに使用され、workloada、workloadb、workloadf がテストされました。

14.3. サポート表

表14.1 表タイトル: GlusterFS

データベース ストレージバックエン
ド: GlusterFS

off にするパフォーマン
ス変換

on にするパフォーマン
ス変換

Postgresql SQL はい
performance.st
at-prefetch

performance.re
ad-ahead

performance.wr
ite-behind

performance.re
addir-ahead

performance.io-
cache

performance.qu
ick-read

performance.op
en-behind

performance.str
ict-o-direct

OpenShift Container Platform 3.10 スケーリングおよびパフォーマンスガイド

54

https://www.postgresql.org/docs/10/static/pgbench.html
https://github.com/brianfrankcooper/YCSB/tree/master/mongodb
https://github.com/brianfrankcooper/YCSB/tree/master/workloads

MongoDB noSQL はい
performance.st
at-prefetch

performance.re
ad-ahead

performance.wr
ite-behind

performance.re
addir-ahead

performance.io-
cache

performance.qu
ick-read

performance.op
en-behind

performance.str
ict-o-direct

表14.2 表タイトル: gluster-block

データベース ストレージバックエンド: gluster-block

Postgresql はい

MongoDB はい

上述のように GlusterFS のパフォーマンス変換は、コンバージドモードの最新イメージで提供される
データベースプロファイルにすでに含まれています。

14.4. テスト結果

Postgresql SQL データベースの場合は、GlusterFS と gluster-block のパフォーマンスはほぼ同じ結果と
なりました。MongoDB noSQL データベースの場合は、gluster-block のパフォーマンスの方が優れてい
たので、MongoDB noSQL データベースには、gluster-block ベースのストレージを使用してください。

第14章 GLUSTERFS ストレージでの最適化

55

	目次
	第1章 概要
	第2章 推奨されるインストール方法
	2.1. 依存関係の事前インストール
	2.2. ANSIBLE インストールの最適化
	2.3. ネットワークの留意事項

	第3章 ホストの推奨プラクティス
	3.1. OPENSHIFT CONTAINER PLATFORM マスターホストの推奨プラクティス
	3.2. OPENSHIFT CONTAINER PLATFORM ノードホストの推奨プラクティス
	3.3. OPENSHIFT CONTAINER PLATFORM ETCD ホストの推奨プラクティス
	3.3.1. OpenStack で PCI パススルーを使用した etcd ノードへのストレージ提供

	3.4. TUNED プロファイルを使用したホストのスケーリング

	第4章 コンピュートリソースの最適化
	4.1. オーバーコミット
	4.2. イメージの留意事項
	4.2.1. 事前デプロイ済みのイメージを使用した効率の強化
	4.2.2. イメージの事前プル

	4.3. RHEL ツールのコンテナーイメージを使用したデバッグ
	4.4. ANSIBLE ベースのヘルスチェックを使用したデバッグ

	第5章 永続ストレージの最適化
	5.1. 概要
	5.2. 一般的なストレージガイドライン
	5.3. ストレージの推奨事項
	5.3.1. 特定アプリケーションのストレージの推奨事項
	5.3.1.1. レジストリー
	5.3.1.2. スケーリングされたレジストリー
	5.3.1.3. メトリクス
	5.3.1.4. ロギング
	5.3.1.5. アプリケーション

	5.3.2. 特定のアプリケーションおよびストレージの他の推奨事項

	5.4. グラフドライバーの選択
	5.4.1. SELinux で OverlayFS または DeviceMapper を使用する利点
	5.4.2. Overlay と Overlay2 のグラフドライバーの比較

	第6章 一時ストレージの最適化
	6.1. 概要
	6.2. 一般的なストレージガイドライン

	第7章 ネットワークの最適化
	7.1. ネットワークパフォーマンスの最適化
	7.1.1. ネットワークでの MTU の最適化

	7.2. ネットワークサブネットの設定
	7.3. IPSEC の最適化

	第8章 ルーティングの最適化
	8.1. OPENSHIFT CONTAINER PLATFORM HAPROXY ルーターのスケーリング
	8.1.1. ベースラインのパフォーマンス
	8.1.2. パフォーマンスの最適化
	8.1.2.1. 最大接続数の設定
	8.1.2.2. CPU および割り込みアフィニティー
	8.1.2.3. バッファー増加の影響
	8.1.2.4. HAProxy 再読み込みの最適化

	第9章 クラスターメトリクスのスケーリング
	9.1. 概要
	9.2. OPENSHIFT CONTAINER PLATFORM の推奨事項
	9.3. クラスターメトリクスの容量計画
	9.4. OPENSHIFT CONTAINER PLATFORM メトリクス POD のスケーリング
	9.4.1. 前提条件
	9.4.2. Cassandra コンポーネントのスケーリング

	第10章 クラスターの制限
	10.1. 概要
	10.2. OPENSHIFT CONTAINER PLATFORM クラスターの制限
	10.3. クラスターの制限に合わせた環境計画
	10.4. アプリケーション要件に合わせた環境計画

	第11章 クラスターローダーの使用
	11.1. クラスターローダーの機能
	11.2. クラスターローダーのインストール
	11.3. クラスターローダーの実行
	11.4. クラスターローダーの設定
	11.4.1. 設定フィールド
	11.4.2. クラスターローダー設定ファイルの例

	11.5. 既知の問題

	第12章 CPU マネージャーの使用
	12.1. CPU マネージャーの機能
	12.2. CPU マネージャーの設定

	第13章 HUGE PAGE の管理
	13.1. HUGE PAGE の機能
	13.2. 前提条件
	13.3. HUGE PAGE の消費

	第14章 GLUSTERFS ストレージでの最適化
	14.1. データベースのコンバージドモードに関するガイド
	14.2. テスト済みのアプリケーション
	14.3. サポート表
	14.4. テスト結果

