
OpenShift Container Platform
3.10

イメージの使用

OpenShift Container Platform 3.10 でのイメージの使用ガイド

Last Updated: 2019-01-22

OpenShift Container Platform 3.10 イメージの使用
OpenShift Container Platform 3.10 でのイメージの使用ガイド

法律上の通知

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative
Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of
CC-BY-SA is available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it,
you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to
assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the
Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the
United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European
Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally
related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered
trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in
the United States and other countries and are used with the OpenStack Foundation's
permission. We are not affiliated with, endorsed or sponsored by the OpenStack
Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要

以下のトピックを使用して、OpenShift Container Platform 3.10 でユーザーに提供されてい
る、さまざまな S2I (Source-to-Image)、データベース、Docker イメージについて確認してくだ
さい。

. .

. .

目次

第1章 概要

第2章 SOURCE-TO-IMAGE (S2I)
2.1. 概要
2.2. .NET CORE

2.2.1. .NET Core を使用する利点
2.2.2. サポートされているバージョン
2.2.3. イメージ
2.2.4. ビルドプロセス
2.2.5. 環境変数
2.2.6. .NET Core ソースからのアプリケーションのクイックデプロイ
2.2.7. .NET Core テンプレート

2.3. NODE.JS
2.3.1. 概要
2.3.2. バージョン
2.3.3. イメージ
2.3.4. ビルドプロセス
2.3.5. 設定
2.3.6. ホットデプロイ

2.4. PERL
2.4.1. 概要
2.4.2. バージョン
2.4.3. イメージ
2.4.4. ビルドプロセス
2.4.5. 設定
2.4.6. ログへのアクセス
2.4.7. ホットデプロイ

2.5. PHP
2.5.1. 概要
2.5.2. バージョン
2.5.3. イメージ
2.5.4. ビルドプロセス
2.5.5. 設定

2.5.5.1. Apache 設定
2.5.6. ログへのアクセス
2.5.7. ホットデプロイ

2.6. PYTHON
2.6.1. 概要
2.6.2. バージョン
2.6.3. イメージ
2.6.4. ビルドプロセス
2.6.5. 設定
2.6.6. ホットデプロイ

2.7. RUBY
2.7.1. 概要
2.7.2. バージョン
2.7.3. イメージ
2.7.4. ビルドプロセス
2.7.5. 設定
2.7.6. ホットデプロイ

2.8. S2I イメージのカスタマイズ

5

6
6
6
6
6
6
7
7
9
9

10
10
10
10
11
11
12
12
12
12
13
13
13
14
14
15
15
15
15
16
16
18
18
18
18
18
19
19
19
20
21
21
21
21
22
22
22
24
24

目次

1

. .

2.8.1. 概要
2.8.2. イメージに埋め込まれたスクリプトの呼び出し

第3章 データベースイメージ
3.1. 概要
3.2. MYSQL

3.2.1. 概要
3.2.2. バージョン
3.2.3. イメージ
3.2.4. 設定および用途

3.2.4.1. データベースの初期化
3.2.4.2. コンテナーでの MySQL コマンドの実行
3.2.4.3. 環境変数
3.2.4.4. ボリュームのマウントポイント
3.2.4.5. パスワードの変更

3.2.5. テンプレートからのデータベースサービスの作成
3.2.6. MySQL のレプリケーションの使用

3.2.6.1. MySQL マスターのデプロイメント設定の作成
3.2.6.2. ヘッドレスサービスの作成
3.2.6.3. MySQL スレーブのスケーリング

3.2.7. トラブルシューティング
3.2.7.1. Linux ネイティブの AIO の障害

3.3. POSTGRESQL
3.3.1. 概要
3.3.2. バージョン
3.3.3. イメージ
3.3.4. 設定および用途

3.3.4.1. データベースの初期化
3.3.4.2. コンテナーでの PostgreSQL コマンドの実行
3.3.4.3. 環境変数
3.3.4.4. ボリュームのマウントポイント
3.3.4.5. パスワードの変更

3.3.5. テンプレートからのデータベースサービスの作成
3.4. MONGODB

3.4.1. 概要
3.4.2. バージョン
3.4.3. イメージ
3.4.4. 設定および用途

3.4.4.1. データベースの初期化
3.4.4.2. コンテナーでの MongoDB コマンドの実行
3.4.4.3. 環境変数
3.4.4.4. ボリュームのマウントポイント
3.4.4.5. パスワードの変更

3.4.5. テンプレートからのデータベースサービスの作成
3.4.6. MongoDB レプリケーション

3.4.6.1. 制限
3.4.6.2. サンプルテンプレートの使用
3.4.6.3. スケールアップ
3.4.6.4. スケールダウン

3.5. MARIADB
3.5.1. 概要
3.5.2. バージョン
3.5.3. イメージ

24
25

27
27
27
27
27
27
28
28
28
29
31
31
32
33
33
36
37
37
37
38
38
38
38
39
39
39
40
41
41
42
43
43
43
43
43
43
44
44
45
46
47
47
48
49
50
50
51
51
51
51

OpenShift Container Platform 3.10 イメージの使用

2

. .

. .

3.5.4. 設定および用途
3.5.4.1. データベースの初期化
3.5.4.2. コンテナーでの MariaDB コマンドの実行
3.5.4.3. 環境変数
3.5.4.4. ボリュームのマウントポイント
3.5.4.5. パスワードの変更

3.5.5. テンプレートからのデータベースサービスの作成
3.5.6. トラブルシューティング

3.5.6.1. Linux ネイティブの AIO の障害

第4章 他のイメージ
4.1. 概要
4.2. JENKINS

4.2.1. 概要
4.2.2. イメージ
4.2.3. 設定およびカスタマイズ

4.2.3.1. 認証
4.2.3.1.1. OpenShift Container Platform OAuth 認証
4.2.3.1.2. Jenkins 標準認証

4.2.3.2. 環境変数
4.2.3.3. プロジェクト間のアクセス
4.2.3.4. ボリュームのマウントポイント
4.2.3.5. Source-To-Image での Jenkins イメージのカスタマイズ
4.2.3.6. Jenkins Kubernetes プラグインの設定

4.2.3.6.1. パーミッションの留意事項
4.2.4. 使用法

4.2.4.1. テンプレートからの Jenkins サービスの作成
4.2.4.2. Jenkins Kubernetes プラグインの使用
4.2.4.3. メモリーの要件

4.2.5. Jenkins プラグイン
4.2.5.1. OpenShift Container Platform Client プラグイン
4.2.5.2. OpenShift Container Platform Pipeline プラグイン
4.2.5.3. OpenShift Container Platform Sync プラグイン
4.2.5.4. Kubernetes プラグイン

4.3. JENKINS エージェント
4.3.1. 概要
4.3.2. イメージ
4.3.3. 設定およびカスタマイズ

4.3.3.1. 環境変数
4.3.4. 使用法

4.3.4.1. メモリーの要件
4.3.4.1.1. Gradle ビルド

4.4. 他のコンテナーイメージ

第5章 XPAAS ミドルウェアイメージ
5.1. 概要

51
51
52
52
55
55
56
57
57

59
59
59
59
59
59
59
60
60
61
62
63
63
64
66
67
67
67
69
70
70
70
71
71
71
71
72
73
73
74
74
74
75

76
76

目次

3

OpenShift Container Platform 3.10 イメージの使用

4

第1章 概要
以下のトピックを使用して、OpenShift Container Platform ユーザーに提供されているさまざまな
Source-to-Image (S2I)、データベース、他のコンテナーイメージについて確認してください。

Red Hat の公式コンテナーイメージは、registry.access.redhat.com の Red Hat レジストリーで提
供されています。OpenShift Container Platform がサポートする S2I、データベース、Jenkins イ
メージは Red Hat レジストリーのopenshift3 リポジトリー にあります。たとえば、Atomic
OpenShift Application Platform イメージは registry.access.redhat.com/openshift3/ose
にあります。

xPaaS ミドルウェアイメージは、Red Hat レジストリーの適切な製品リポジトリーで提供されていま
すが、サフィックスとして -openshift が付いています。たとえば、JBoss EAP イメージの場合
は、registry.access.redhat.com/jboss-eap-6/eap64-openshift です。

本書で説明する Red Hat がサポートするイメージはすべて Red Hat Container Catalog に記載され
ています。各イメージの全バージョンに関するコンテンツや用途の詳細が分かります。興味のあるイ
メージを参照または検索してください。

重要

コンテナーイメージの新しいバージョンは、OpenShift Container Platform の以前の
バージョンとは互換性がありません。お使いの OpenShift Container Platform のバー
ジョンに基づいて、正しいバージョンのコンテナーイメージを確認、使用するようにし
てください。

第1章 概要

5

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#source-build
https://registry.access.redhat.com
https://access.redhat.com/containers/?tab=security&start=10#/product/RedHatOpenshiftContainerPlatform
https://access.redhat.com/containers

第2章 SOURCE-TO-IMAGE (S2I)

2.1. 概要
以下のトピックには、OpenShift Container Platform のユーザーに提供される、さまざまな S2I
(Source-to-Image) 対応のイメージに関する情報が含まれます。

2.2. .NET CORE

2.2.1. .NET Core を使用する利点
.NET Core は、自動メモリー管理および最新のプログラム言語が搭載された、汎用の開発プラット
フォームです。.NET Core では、効率的に高品質のアプリケーションをビルドできます。.NET Core
は、認定済みのコンテナー経由で Red Hat Enterprise Linux (RHEL 7) および OpenShift Container
Platform から利用できます。.NET Core は以下の機能を提供します。

マイクロサービスベースのアプローチに従う機能。この機能では、.NET でビルドされているコ
ンポーネントと、Java でビルドされているコンポーネントがありますが、Red Hat
Enterprise Linux や OpenShift Container Platform でサポートされている一般的なプラッ
トフォームにおいてすべて実行可能です。

Windows で新しい .NET Core ワークロードをより簡単に開発する機能。Red Hat
Enterprise Linux または Windows Server のいずれかでデプロイおよび実行が可能です。

基礎となるインフラストラクチャーが Windows Server のみに依存することなしに、.NET ア
プリケーションを実行できる異種のデータセンター。

OpenShift Container Platform から .NET、Java、Ruby および Python などの一般的な開発
フレームワークの多くにアクセスできる機能。

2.2.2. サポートされているバージョン
.NET Core バージョン 2.1

.NET Core バージョン 2.0

.NET Core バージョン 1.1

.NET Core バージョン 1.0

Red Hat Enterprise Linux (RHEL) 7 および OpenShift Container Platform バージョン 3.3
以降でサポートされています。

.NET Core バージョン 2.1 関連のリリースの詳細は、『Release Notes for Containers』を参照して
ください。

バージョン 1.1 および 1.0 (rh-dotnetcore11 および rh-dotnetcore10) には project.json ビル
ドシステム (1.0.0-preview2 SDK) が同梱されています。RHEL システム以外にこの SDK をインス
トールする方法については、『version 1.1 Release Notes』の既知の問題についての章を参照してく
ださい。

2.2.3. イメージ
RHEL 7 イメージは、Red Hat レジストリーから入手できます。

OpenShift Container Platform 3.10 イメージの使用

6

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#source-build
http://developers.redhat.com/dotnet/
https://access.redhat.com/documentation/en-us/net_core/2.1/html/release_notes_for_containers/
https://access.redhat.com/documentation/en/net-core/1.1/paged/release-notes/

$ docker pull registry.access.redhat.com/dotnet/dotnet-21-rhel7
$ docker pull registry.access.redhat.com/dotnet/dotnet-20-rhel7
$ docker pull registry.access.redhat.com/dotnet/dotnetcore-11-rhel7
$ docker pull registry.access.redhat.com/dotnet/dotnetcore-10-rhel7

RHEL S2I イメージ上の .NET Core 向けのイメージストリーム定義は、OpenShift Container
Platform のインストール時に追加されるようになりました。

2.2.4. ビルドプロセス
S2I は、ソースコードをコンテナーに挿入し、コンテナーにソースコードの実行を準備をさせること
で、実行準備が整ったイメージを生成します。S2I では、以下の手順を実行します。

1. ビルダーイメージからコンテナーを起動します。

2. アプリケーションソースをダウンロードします。

3. ビルダーイメージコンテナーにスクリプトとアプリケーションソースをストリーミングしま
す。

4. (ビルダーイメージから) assemble スクリプトを実行します。

5. 最終的なイメージを保存します。

ビルドプロセスの詳細の説明については、「S2I ビルドプロセス」を参照してください。

2.2.5. 環境変数
.NET Core イメージは、複数の環境変数をサポートします。この環境変数を設定して、.NET Core ア
プリケーションのビルド動作を制御することができます。

注記

S2I ビルド設定または .s2i/environment ファイルに、ビルドの動作を制御する環境
変数を設定して、ビルドの手順で利用できるようにする必要があります。

表2.1 NET Core 環境変数

変数名 説明 デフォルト

DOTNET_STARTUP_P
ROJECT

実行するプロジェクトを選択します。
これは、プロジェクトファイル (例:
csproj または fsproj) か、単一のプ
ロジェクトファイルを含むフォルダー
でなければなりません。

.

DOTNET_SDK_VERSI
ON

ビルド時のデフォルトの SDK バー
ジョンを選択します。ソースリポジト
リーに global.json ファイルがある
場合には、これが優先されま
す。latest に設定した場合は、イ
メージの最新の SDK が使用されま
す。

イメージで利用可能な、一番古い SDK
バージョン

第2章 SOURCE-TO-IMAGE (S2I)

7

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/creating_images/#build-process

DOTNET_ASSEMBLY_
NAME

実行するアセンブリーを選択します。
これには、.dll の拡張子を 含めない
でください。これは、csproj で指定
した出力アセンブリー名に設定します
(PropertyGroup/AssemblyName
)。

csproj ファイルの名前

DOTNET_RESTORE_S
OURCES

復元操作時に使用する NuGet パッ
ケージソースをスペース区切りの一覧
で指定します。これ
は、NuGet.config ファイルで指定
したすべてのソースよりも優先されま
す。

DOTNET_TOOLS アプリケーションをビルドする前にイ
ンストールする .NET ツールの一覧を
指定します。固有のバージョンをイン
ストールするには、パッケージ名の最
後に @<version> を追加します。

DOTNET_NPM_TOOLS アプリケーションをビルドする前にイ
ンストールする NPM パッケージの一
覧を指定します。

DOTNET_TEST_PROJ
ECTS

テストするテストプロジェクトの一覧
を指定します。これは、プロジェクト
ファイルか、または単一のプロジェク
トファイルを含むフォルダーでなけれ
ばなりません。dotnet test はア
イテムごとに呼び出されます。

DOTNET_CONFIGURA
TION

Debug または Release モードでア
プリケーションを実行します。この値
は、Release または Debug のいず
れかに指定する必要があります。

Release

DOTNET_VERBOSITY dotnet ビルドコマンドの詳細レベル
を指定します。これを設定した場合に
は、環境変数がビルドの開始時に出力
されます。変数は、msbuild の詳細値
(q[uiet]、m[inimal],
n[ormal]、d[etailed] および
diag[nostic]) の 1 つに設定でき
ます。

HTTP_PROXY、HTTPS
_PROXY

アプリケーションのビルド時および実
行時に使用する HTTP/HTTPS プロキ
シーを設定します。

変数名 説明 デフォルト

OpenShift Container Platform 3.10 イメージの使用

8

NPM_MIRROR ビルドプロセス中にパッケージをダウ
ンロードするカスタムの NPM レジス
トリーミラーを使用します。

ASPNETCORE_URLS この変数を http://*:8080 に設定
して ASP.NET Core がイメージが公
開するポートを使用するように設定し
ます。この値の変更は推奨 していませ
ん。

http://*:8080

変数名 説明 デフォルト

2.2.6. .NET Core ソースからのアプリケーションのクイックデプロイ

重要

.NET イメージストリーム は最初にインストールする必要があります。標準インストー
ルを実行した場合には、イメージストリームは存在します。

サンプルのリポジトリーに対して oc new-app を実行すると、イメージを使用してアプリケーション
をビルドできます。

$ oc new-app registry.access.redhat.com/dotnet/dotnet-21-
rhel7~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnetcore-2.1
--context-dir=app
$ oc new-app registry.access.redhat.com/dotnet/dotnet-20-
rhel7~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnetcore-2.0
--context-dir=app
$ oc new-app registry.access.redhat.com/dotnet/dotnetcore-11-
rhel7~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnetcore-1.1
--context-dir=app
$ oc new-app registry.access.redhat.com/dotnet/dotnetcore-10-
rhel7~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnetcore-1.0
--context-dir=app

注記

oc new-app コマンドは、OpenShift Container Platform 3.3 より .NET Core ソース
を検出できます。

2.2.7. .NET Core テンプレート

第2章 SOURCE-TO-IMAGE (S2I)

9

https://github.com/redhat-developer/s2i-dotnetcore/blob/master/dotnet_imagestreams.json
https://access.redhat.com/documentation/en-us/net_core/2.1/html-single/getting_started_guide/#install_imagestreams

重要

.NET イメージテンプレート および .NET イメージストリームは先に インストールする
必要があります。標準インストールを実行した場合にはテンプレートとイメージスト
リームは存在します。これは、以下のコマンドで確認できます。

$ (oc get -n openshift templates; oc get -n openshift is) |
grep dotnet

OpenShift Container Platform には .NET Core イメージのテンプレートが含まれており、サンプル
アプリケーションを簡単にデプロイしやすくなります。

dotnet/dotnet-21-rhel7 で実行する .NET Core のサンプルアプリケーション は、以下のコマンド
でデプロイ可能です。

$ oc new-app --template dotnet-example -p
DOTNET_IMAGE_STREAM_TAG=dotnet:2.1 -p SOURCE_REPOSITORY_REF=dotnetcore-2.1

dotnet/dotnetcore-10-rhel7 で実行する .NET Core のサンプルアプリケーション は以下のコマ
ンドでデプロイ可能です。

$ oc new-app --template dotnet-example

PostgreSQL をデータベースとして使用した .NET Core MusicStore アプリケーション は、以下のコ
マンドでデプロイ可能です。

$ oc new-app --template=dotnet-pgsql-persistent

2.3. NODE.JS

2.3.1. 概要
OpenShift Container Platform には 、Node.js アプリケーションのビルドおよび実行用に S2I が有
効な Node.js イメージが含まれています。Node.js S2I ビルダーイメージは、必要な依存関係を使用し
てアプリケーションソースをアセンブルし、Node.js アプリケーションを含む新規イメージを作成しま
す。このように作成されるイメージは、OpenShift Container Platform または Docker で実行可能で
す。

2.3.2. バージョン
現在、OpenShift Container Platform では、Node.js のバージョン 0.10、4 および 6 を提供してい
ます。

2.3.3. イメージ
これらのイメージには 2 つのフレーバーがあり、ニーズに合わせて選択できます。

RHEL 7

CentOS 7

RHEL 7 ベースのイメージ

OpenShift Container Platform 3.10 イメージの使用

10

https://github.com/redhat-developer/s2i-dotnetcore/blob/master/templates
https://github.com/redhat-developer/s2i-dotnetcore#openshift-templates
https://github.com/redhat-developer/s2i-dotnetcore-ex
https://github.com/redhat-developer/s2i-dotnetcore-ex
https://github.com/aspnet/MusicStore
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#source-build
https://github.com/openshift/sti-nodejs/tree/master/0.10
https://github.com/sclorg/s2i-nodejs-container/tree/master/4
https://github.com/sclorg/s2i-nodejs-container/tree/master/6

RHEL 7 イメージは、Red Hat レジストリーから入手できます。

$ docker pull registry.access.redhat.com/openshift3/nodejs-010-rhel7
$ docker pull registry.access.redhat.com/rhscl/nodejs-4-rhel7

CentOS 7 ベースのイメージ

このイメージは、Docker Hub で入手できます。

$ docker pull openshift/nodejs-010-centos7

これらのイメージを使用するには、イメージレジストリーから直接アクセスするか、ご自身の
OpenShift Container Platform Docker レジストリーにプッシュしてください。さらに、Docker レ
ジストリーまたは外部の場所に、対象イメージを参照するイメージストリームを作成することもでき、
OpenShift Container Platform リソースがこのイメージストリームを参照できるようになります。提
供されている全 OpenShift Container Platform イメージについてイメージストリームの定義例があり
ます。

2.3.4. ビルドプロセス
S2I は、ソースコードをコンテナーに挿入し、コンテナーにソースコードの実行を準備をさせること
で、実行準備が整ったイメージを生成します。S2I では、以下の手順を実行します。

1. ビルダーイメージからコンテナーを起動します。

2. アプリケーションソースをダウンロードします。

3. ビルダーイメージコンテナーにスクリプトとアプリケーションソースをストリーミングしま
す。

4. (ビルダーイメージから) assemble スクリプトを実行します。

5. 最終的なイメージを保存します。

ビルドプロセスの詳細の説明については、「S2I ビルドプロセス」を参照してください。

2.3.5. 設定
Node.js イメージは、環境変数を複数サポートし、環境変数を設定することで Node.js のラインタイム
の設定や動作を制御できます。

イメージの一部としてこれらの環境変数を設定するには、ソースコードリポジトリーの中にある
.s2i/environment ファイルに配置するか、ビルド設定の sourceStrategy 定義の環境セクショ
ンに定義します。

また、新規アプリケーションの作成時に既存のイメージを使用するか、デプロイメント設定などの既存
のオブジェクトの環境変数を更新して環境変数を設定できます。

注記

ビルドの動作を制御する環境変数は、s2i ビルド設定または .s2i/environment ファ
イルの一部として設定して、ビルドの手順で利用できるようにする必要があります。

表2.2 開発モードの環境変数

第2章 SOURCE-TO-IMAGE (S2I)

11

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/creating_images/#build-process
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#set-environment-variables

変数名 説明

DEV_MODE true に設定されている場合には、ホットデプロイを有効にし、デバッ
グポートを開きます。さらに、ツールに対して、イメージが開発モード
であることを指定します。デフォルトは false です。

DEBUG_PORT デバッグポート。DEV_MODE が true に設定されている場合のみ有効で
す。デフォルトは 5858 です。

NPM_MIRROR カスタムの NPM レジストリーのミラー URL。全 NPM パッケージはビ
ルドプロセス中にミラーリンクからダウンロードされます。

2.3.6. ホットデプロイ
ホットデプロイでは、新しい S2I ビルドを生成する必要なしに、アプリケーションに変更をすばやく加
え、デプロイすることができます。アプリケーションのソースコードに加えられた変更を即座に検出す
るには、環境変数を DEV_MODE=true に指定してビルドイメージを実行する必要があります。

新規アプリケーションの作成時または既存オブジェクトの環境変数の更新時に、新しい環境変数を設定
できます。

警告

DEV_MODE=true の環境変数は、開発時またはデバッグ時にのみ使用するようにし
てください。この変数の実稼働環境での使用は推奨されていません。

実行中の Pod のソースコードを変更するには、コンテナーにしてリモートシェルを開きます。

$ oc rsh <pod_id>

実行中のコンテナーに入ると、現在のディレクトリーは、ソースコードが配置されている /opt/app-
root/src に変わります。

2.4. PERL

2.4.1. 概要
OpenShift Container Platform には 、Perl アプリケーションのビルドおよび実行用に S2I が有効な
Perl イメージが含まれています。Perl S2I ビルダーイメージは、必要な依存関係を使用してアプリケー
ションソースをアセンブルし、Perl アプリケーションを含む新規イメージを作成します。このように作
成されたイメージは、OpenShift Container Platform または Docker のいずれかで実行可能です。

2.4.2. バージョン
現時点で、OpenShift Container Platform は Perl バージョン 5.16、5.20 および 5.24 をサポートし
ています。



OpenShift Container Platform 3.10 イメージの使用

12

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#source-build
https://github.com/openshift/sti-perl/tree/master/5.16
https://github.com/openshift/sti-perl/tree/master/5.20
https://github.com/openshift/sti-perl/tree/master/5.24

2.4.3. イメージ
イメージには 2 つのフレーバーがあり、ニーズに合わせて選択できます。

RHEL 7

CentOS 7

RHEL 7 ベースのイメージ

RHEL 7 イメージは、Red Hat レジストリーから入手できます。

$ docker pull registry.access.redhat.com/openshift3/perl-516-rhel7
$ docker pull registry.access.redhat.com/rhscl/perl-520-rhel7
$ docker pull registry.access.redhat.com/rhscl/perl-524-rhel7

CentOS 7 ベースのイメージ

Perl 5.16 の CentOS イメージは、Docker Hub で入手できます。

$ docker pull openshift/perl-516-centos7

これらのイメージを使用するには、イメージレジストリーから直接アクセスするか、ご自身の
OpenShift Container Platform Docker レジストリーにプッシュしてください。さらに、Docker レ
ジストリーまたは外部の場所に、対象イメージを参照するイメージストリームを作成することもでき、
OpenShift Container Platform リソースがこのイメージストリームを参照できるようになります。提
供されている全 OpenShift Container Platform イメージについてのイメージストリームの定義例があ
ります。

2.4.4. ビルドプロセス
S2I は、ソースコードをコンテナーに挿入し、コンテナーにソースコードの実行を準備をさせること
で、実行準備が整ったイメージを生成します。S2I では、以下の手順を実行します。

1. ビルダーイメージからコンテナーを起動します。

2. アプリケーションソースをダウンロードします。

3. ビルダーイメージコンテナーにスクリプトとアプリケーションソースをストリーミングしま
す。

4. (ビルダーイメージから) assemble スクリプトを実行します。

5. 最終的なイメージを保存します。

ビルドプロセスの詳細の説明については、「S2I ビルドプロセス」を参照してください。

2.4.5. 設定
Perl イメージは多数の環境変数を複数サポートし、環境変数を設定することで Perl のラインタイムの
設定や動作を制御できます。

イメージの一部としてこれらの環境変数を設定するには、ソースコードリポジトリーの中にある
.s2i/environment ファイルに配置するか、ビルド設定の sourceStrategy 定義の環境セクショ
ンに定義します。

第2章 SOURCE-TO-IMAGE (S2I)

13

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/creating_images/#build-process
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#buildconfig-environment

また、新規アプリケーションの作成時に既存のイメージを使用するか、デプロイメント設定などの既存
のオブジェクトの環境変数を更新して環境変数を設定できます。

注記

ビルドの動作を制御する環境変数は、s2i ビルド設定または .s2i/environment ファ
イルの一部として設定して、ビルドの手順で利用できるようにする必要があります。

表2.3 Perl 環境変数

変数名 説明

ENABLE_CPAN_TEST true に設定している場合は、この変数は全 cpan モジュール
をインストールして、そのテストを実行します。デフォルトで
は、モジュールのテストはオフになっています。

CPAN_MIRROR この変数は、cpanminus が依存関係のインストールに使用す
るミラーの URL を指定します。デフォルトではこの URL は指
定されていません。

PERL_APACHE2_RELOAD これを true に設定すると、変更した Perl モジュールの自動再
読み込みが有効になります。デフォルトでは、自動再読み込み
はオフになっています。

HTTPD_START_SERVERS StartServers ディレクティブは、起動時に作成される子サー
バープロセスの数を設定します。デフォルトは 8 です。

HTTPD_MAX_REQUEST_WORKERS Apache により処理される同時要求の数。デフォルトは 256 で
すが、メモリーに制限がある場合は自動的に数値が下がりま
す。

2.4.6. ログへのアクセス
アクセスログは、標準出力にストリーミングされるので、oc logsコマンドを使用して表示可能です。
エラーログは /tmp/error_log ファイルに保存されているので、コンテナーにアクセスする oc
rshコマンドを使用して表示できます。

2.4.7. ホットデプロイ
ホットデプロイでは、新しい S2I ビルドを生成する必要なしに、アプリケーションに変更をすばやく加
え、デプロイすることができます。このイメージでホットデプロイを有効化するに
は、PERL_APACHE2_RELOAD 環境変数を true に設定する必要があります。たとえば、oc new-app
コマンドを参照してください。oc set env コマンドを使用して、既存オブジェクトの環境変数を更新
できます。

OpenShift Container Platform 3.10 イメージの使用

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#set-environment-variables
https://httpd.apache.org/docs/2.4/mod/mpm_common.html#startservers
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#set-environment-variables

警告

このオプションは、開発またはデバッグの時にだけ使用するようにしてください。
実稼働環境でこの設定をオンにすることは推奨しません。

実行中の Pod でソースコードを変更するには、oc rsh コマンドを使用して、コンテナーに入ります。

$ oc rsh <pod_id>

実行中のコンテナーに入った後に、現在のディレクトリーを、ソースコードが配置されている
/opt/app-root/src に設定します。

2.5. PHP

2.5.1. 概要
OpenShift Container Platform には 、PHP アプリケーションのビルドおよび実行用に S2I が有効な
PHP イメージが含まれています。PHP S2I ビルダーイメージは、必要な依存関係を使用してアプリ
ケーションソースをアセンブルし、PHP アプリケーションを含む新規イメージを作成します。このよう
に作成されたイメージは、OpenShift Container Platform または Docker のいずれかで実行可能で
す。

2.5.2. バージョン
現時点で、OpenShift Container Platform では、PHP のバージョン 5.5、5.6 および 7.0 を提供して
います。

2.5.3. イメージ
これらのイメージには 2 つのフレーバーがあり、ニーズに合わせて選択できます。

RHEL 7

CentOS 7

RHEL 7 ベースのイメージ

RHEL 7 イメージは、Red Hat レジストリーから入手できます。

$ docker pull registry.access.redhat.com/openshift3/php-55-rhel7
$ docker pull registry.access.redhat.com/rhscl/php-56-rhel7
$ docker pull registry.access.redhat.com/rhscl/php-70-rhel7

CentOS 7 ベースのイメージ

PHP 5.5 および 5.6 の CentOS イメージは、Docker Hub で入手できます。

$ docker pull openshift/php-55-centos7
$ docker pull openshift/php-56-centos7



第2章 SOURCE-TO-IMAGE (S2I)

15

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#source-build
https://github.com/openshift/sti-php/tree/master/5.5
https://github.com/sclorg/s2i-php-container/tree/master/5.6
https://github.com/sclorg/s2i-php-container/tree/master/7.0

これらのイメージを使用するには、イメージレジストリーから直接アクセスするか、ご自身の
OpenShift Container Platform Docker レジストリーにプッシュしてください。さらに、Docker レ
ジストリーまたは外部の場所に、対象イメージを参照するイメージストリームを作成することもでき、
OpenShift Container Platform リソースがこのイメージストリームを参照できるようになります。

提供される全 OpenShift Container Platform イメージに対して イメージストリームの定義例 があり
ます。

2.5.4. ビルドプロセス
S2I は、ソースコードをコンテナーに挿入し、コンテナーにソースコードの実行を準備をさせること
で、実行準備が整ったイメージを生成します。S2I では、以下の手順を実行します。

1. ビルダーイメージからコンテナーを起動します。

2. アプリケーションソースをダウンロードします。

3. ビルダーイメージコンテナーにスクリプトとアプリケーションソースをストリーミングしま
す。

4. (ビルダーイメージから) assemble スクリプトを実行します。

5. 最終的なイメージを保存します。

ビルドプロセスの詳細の説明については、「S2I ビルドプロセス」を参照してください。

2.5.5. 設定
PHP イメージは数多くの環境変数を複数サポートし、環境変数を設定することで PHP のラインタイム
の設定や動作を制御できます。

イメージの一部としてこれらの環境変数を設定するには、ソースコードリポジトリーの中にある
.s2i/environment ファイルに配置するか、ビルド設定の sourceStrategy 定義の環境セクショ
ンに定義します。

また、新規アプリケーションの作成時に既存のイメージを使用するか、デプロイメント設定などの既存
のオブジェクトの環境変数を更新して環境変数を設定できます。

注記

ビルドの動作を制御する環境変数は、s2i ビルド設定または .s2i/environment ファ
イルの一部として設定して、ビルドの手順で利用できるようにする必要があります。

以下の環境変数は、php.ini ファイルに同等のプロパティー値を設定します。

表2.4 PHP 環境変数

変数名 説明 デフォルト

ERROR_REPORTING PHP で対応する必要のあるエラー、警
告、注意を PHP に通知します。

E_ALL & ~E_NOTICE

OpenShift Container Platform 3.10 イメージの使用

16

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/creating_images/#build-process
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#set-environment-variables

DISPLAY_ERRORS PHP がエラー、注意、警告を出力する
かどうか、さらに出力先を制御しま
す。

ON

DISPLAY_STARTUP_
ERRORS

PHP の起動シーケンス時に発生した表
示エラーを通常の表示エラーとは別に
処理するようにします。

OFF

TRACK_ERRORS $php_errormsg (boolean) に最後
のエラー/警告メッセージを保存しま
す。

OFF

HTML_ERRORS 対象のエラーに関連するドキュメント
にエラーをリンクします。

ON

INCLUDE_PATH PHP ソースファイルへのパス .:/opt/openshift/src:/opt/rh/ph
p55/root/usr/share/pear

SESSION_PATH セッションデータファイルの場所 /tmp/sessions

DOCUMENTROOT アプリケーションのドキュメントルー
トを定義するパス (例: /public)

/

変数名 説明 デフォルト

以下の環境変数は、opcche.ini ファイルに同等のプロパティー値を設定します。

表2.5 PHP の他の設定

変数名 説明 デフォ
ルト

OPCACHE_MEMORY_CONSU
MPTION

OPcache 共有メモリーのストレージサイズ 16M

OPCACHE_REVALIDATE_F
REQ

更新のスクリプトタイムスタンプをどの頻度で確認するかを秒
単位で指定します。0 に指定すると、OPcache はすべての要求
の更新を確認します。

2

以下を設定して PHP 設定の読み込みに使用するディレクトリー全体を上書きすることも可能です。

表2.6 PHP の他の設定

変数名 説明

PHPRC php.ini ファイルにパスを設定します。

PHP_INI_SCAN_DIR 追加の .ini 設定ファイルのスキャンへのパス

第2章 SOURCE-TO-IMAGE (S2I)

17

http://php.net/manual/en/book.opcache.php
http://php.net/manual/en/book.opcache.php

デフォルトの 'packagist.org' ではなく、カスタムの Composer リポジトリーのミラー URL を使用し
て、パッケージをダウンロードできます。

表2.7 Composer 環境変数

変数名 説明 COMPOSER_MIRROR

2.5.5.1. Apache 設定

アプリケーションの DocumentRoot がソースディレクトリーの /opt/openshift/src にネストされて
いる場合には、独自の .htaccess ファイルで、デフォルトの Apache の動作を置き換え、アプリケー
ションの要求の処理方法を指定することができます。.htaccess ファイルは、アプリケーションソー
スのルートに配置する必要があります。

2.5.6. ログへのアクセス
アクセスログは、標準出力にストリーミングされるので、oc logs コマンドを使用して表示可能で
す。エラーログは /tmp/error_log ファイルに保存されているので、コンテナーにアクセスする oc
rshコマンドを使用して表示できます。

2.5.7. ホットデプロイ
ホットデプロイでは、新しい S2I ビルドを生成する必要なしに、アプリケーションに変更をすばやく加
え、デプロイすることができます。アプリケーションのソースコードに加えられた変更を即座に検出す
るには、環境変数を OPCACHE_REVALIDATE_FREQ=0 に指定してビルドイメージを実行する必要があ
ります。

たとえば、oc new-app コマンドを参照してください。oc env コマンドを使用して、既存オブジェク
トの環境変数を更新できます。

警告

このオプションは、開発またはデバッグの時にだけ使用するようにしてください。
実稼働環境でこの設定をオンにすることは推奨しません。

実行中の Pod でソースコードを変更するには、oc rsh コマンドを使用して、コンテナーに入ります。

$ oc rsh <pod_id>

実行中のコンテナーに入った後に、現在のディレクトリーを、ソースコードが配置されている
/opt/app-root/src に設定します。

2.6. PYTHON

2.6.1. 概要
OpenShift Container Platform には 、Python アプリケーションのビルドおよび実行用に S2I が有効
な Python イメージが含まれています。Python S2I ビルダーイメージは、必要な依存関係を使用して



OpenShift Container Platform 3.10 イメージの使用

18

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#source-build

アプリケーションソースをアセンブルし、Python アプリケーションを含む新規イメージを作成しま
す。このように作成されたイメージは、OpenShift Container Platform または Docker で実行可能で
す。

2.6.2. バージョン
現時点では、OpenShift Container Platform では、Python のバージョン 2.7、3.3、3.4 および 3.5
を提供しています。

2.6.3. イメージ
これらのイメージには 2 つのフレーバーがあり、ニーズに合わせて選択できます。

RHEL 7

CentOS 7

RHEL 7 ベースのイメージ

RHEL 7 イメージは、Red Hat レジストリーから入手できます。

$ docker pull registry.access.redhat.com/rhscl/python-27-rhel7
$ docker pull registry.access.redhat.com/openshift3/python-33-rhel7
$ docker pull registry.access.redhat.com/rhscl/python-34-rhel7
$ docker pull registry.access.redhat.com/rhscl/python-35-rhel7

CentOS 7 ベースのイメージ

これらのイメージは、Docker Hub で入手できます。

$ docker pull centos/python-27-centos7
$ docker pull openshift/python-33-centos7
$ docker pull centos/python-34-centos7
$ docker pull centos/python-35-centos7

これらのイメージを使用するには、イメージレジストリーから直接アクセスするか、ご自身の
OpenShift Container Platform Docker レジストリーにプッシュしてください。さらに、Docker レ
ジストリーまたは外部の場所に、対象イメージを参照する イメージストリームを作成することもでき、
OpenShift Container Platform リソースがこのイメージストリームを参照できるようになります。提
供されている全 OpenShift Container Platform イメージについてイメージストリームの定義例 があ
ります。

2.6.4. ビルドプロセス
S2I は、ソースコードをコンテナーに挿入し、コンテナーにソースコードの実行を準備をさせること
で、実行準備が整ったイメージを生成します。S2I では、以下の手順を実行します。

1. ビルダーイメージからコンテナーを起動します。

2. アプリケーションソースをダウンロードします。

3. ビルダーイメージコンテナーにスクリプトとアプリケーションソースをストリーミングしま
す。

4. (ビルダーイメージから) assemble スクリプトを実行します。

第2章 SOURCE-TO-IMAGE (S2I)

19

https://github.com/openshift/sti-python/tree/master/2.7
https://github.com/openshift/sti-python/tree/master/3.3
https://github.com/openshift/sti-python/tree/master/3.4
https://github.com/openshift/sti-python/tree/master/3.5
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams

5. 最終的なイメージを保存します。

ビルドプロセスの詳細の説明については、「S2I ビルドプロセス」を参照してください。

2.6.5. 設定
Python イメージは多数の環境変数を複数サポートし、環境変数を設定することで Python のラインタ
イムの設定や動作を制御できます。

イメージの一部としてこれらの環境変数を設定するには、ソースコードリポジトリーの中にある
.s2i/environment ファイルに配置するか、ビルド設定の sourceStrategy 定義の環境セクショ
ンに定義します。

また、新規アプリケーションの作成時に既存のイメージを使用するか、デプロイメント設定などの既存
のオブジェクトの環境変数を更新して環境変数を設定できます。

注記

ビルドの動作を制御する環境変数は、s2i ビルド設定または .s2i/environment ファ
イルの一部として設定して、ビルドの手順で利用できるようにする必要があります。

表2.8 Python 環境変数

変数名 説明

APP_FILE この変数は、アプリケーションを起動する Python インタープ
リターに渡すファイル名を指定します。デフォルトでは、この
変数は app.py に設定されています。

APP_MODULE この変数は WSGI 呼び出し可能なオブジェクトを指定します。
この変数のパターンは
$(MODULE_NAME):$(VARIABLE_NAME) で、モジュール
名はドットのフルパスに指定し、変数名は指定のモジュール内
の関数を参照します。アプリケーションのインストールに
setup.py を使用した場合に、モジュール名はファイルから読
み込むことができ、変数は デフォルトで application に設
定されます。setup-test-app の利用可能なサンプルがありま
す。

APP_CONFIG この変数は、gunicorn 設定 で有効な Python ファイルへのパ
スを指定します。

DISABLE_COLLECTSTATIC 空でない値に設定して、ビルド時に manage.py
collectstatic が実行されないようにします。これは
Django プロジェクトに対してのみ影響があります。

DISABLE_MIGRATE 空でない値に設定して、生成されたイメージの実行時に
manage.py migrate が実行されないようにします。これは
Django プロジェクトに対してのみ影響があります。

OpenShift Container Platform 3.10 イメージの使用

20

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/creating_images/#build-process
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#set-environment-variables
https://github.com/openshift/sti-python/tree/master/3.3/test/setup-test-app
http://docs.gunicorn.org/en/latest/configure.html

PIP_INDEX_URL ビルドプロセス時に必要なパッケージをダウンロードするため
の、カスタムのインデックス URL またはミラーを使用するよう
に、この変数を設定します。これは、requirements.txt
ファイルに記載のパッケージにのみ影響があります。

WEB_CONCURRENCY これを設定して、ワーカー 数のデフォルト設定を変更します。
デフォルトでは、これは利用可能なコアに 4 をかけた数字に設
定されています。

変数名 説明

2.6.6. ホットデプロイ
ホットデプロイでは、新しい S2I ビルドを生成する必要なしに、アプリケーションに変更をすばやく加
え、デプロイすることができます。Django を使用する場合は、ホットデプロイメントはカスタマイズ
なしに使用できます。

Gunicorn を使用したホットデプロイメントを有効にするには、reload オプション を true に設定し
て、リポジトリーに Gunicorn 設定ファイルが配置されているようにします。設定ファイル
は、APP_CONFIG 環境変数を使用して指定します。たとえば、oc new-app コマンドを参照してくだ
さい。oc set env コマンドを使用して、既存オブジェクトの環境変数を更新できます。

警告

このオプションは、開発またはデバッグの時にだけ使用するようにしてください。
実稼働環境でこの設定をオンにすることは推奨しません。

実行中の Pod でソースコードを変更するには、oc rsh コマンドを使用して、コンテナーに入ります。

$ oc rsh <pod_id>

実行中のコンテナーに入った後に、現在のディレクトリーを、ソースコードが配置されている
/opt/app-root/src に設定します。

2.7. RUBY

2.7.1. 概要
OpenShift Container Platform には 、Ruby アプリケーションのビルドおよび実行用に S2I が有効な
Ruby イメージが含まれています。Ruby S2I ビルダーイメージは、必要な依存関係を使用してアプリ
ケーションソースをアセンブルし、Ruby アプリケーションを含む新規イメージを作成します。このよ
うに作成されたイメージは、OpenShift Container Platform または Docker で実行可能です。

2.7.2. バージョン
現時点で、OpenShift Container Platform では、Ruby のバージョン 2.0、2.2 および 2.3 を提供し
ています。



第2章 SOURCE-TO-IMAGE (S2I)

21

http://docs.gunicorn.org/en/stable/settings.html#workers
https://gunicorn-docs.readthedocs.org/en/latest/settings.html#reload
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/?/openshift_container_platform/3.10/html-single/architecture/#source-build
https://github.com/openshift/sti-ruby/tree/master/2.0
https://github.com/openshift/sti-ruby/tree/master/2.2
https://github.com/openshift/sti-ruby/tree/master/2.3

2.7.3. イメージ
これらのイメージには 2 つのフレーバーがあり、ニーズに合わせて選択できます。

RHEL 7

CentOS 7

RHEL 7 ベースのイメージ

RHEL 7 イメージは、Red Hat レジストリーから入手できます。

$ docker pull registry.access.redhat.com/openshift3/ruby-20-rhel7
$ docker pull registry.access.redhat.com/rhscl/ruby-22-rhel7
$ docker pull registry.access.redhat.com/rhscl/ruby-23-rhel7

CentOS 7 ベースのイメージ

これらのイメージは、Docker Hub で入手できます。

$ docker pull openshift/ruby-20-centos7
$ docker pull openshift/ruby-22-centos7
$ docker pull centos/ruby-23-centos7

これらのイメージを使用するには、イメージレジストリーから直接アクセスするか、ご自身の
OpenShift Container Platform Docker レジストリーにプッシュしてください。さらに、Docker レ
ジストリーまたは外部の場所に、対象イメージを参照する イメージストリームを作成することもでき、
OpenShift Container Platform リソースがこのイメージストリームを参照できるようになります。提
供されている全 OpenShift Container Platform イメージについてイメージストリームの定義例 があ
ります。

2.7.4. ビルドプロセス
S2I は、ソースコードをコンテナーに挿入し、コンテナーにソースコードの実行を準備をさせること
で、実行準備が整ったイメージを生成します。S2I では、以下の手順を実行します。

1. ビルダーイメージからコンテナーを起動します。

2. アプリケーションソースをダウンロードします。

3. ビルダーイメージコンテナーにスクリプトとアプリケーションソースをストリーミングしま
す。

4. (ビルダーイメージから) assemble スクリプトを実行します。

5. 最終的なイメージを保存します。

ビルドプロセスの詳細の説明については、「S2I ビルドプロセス」を参照してください。

2.7.5. 設定
Ruby イメージは多数の環境変数を複数サポートし、環境変数を設定することで Ruby のラインタイム
の設定や動作を制御できます。

OpenShift Container Platform 3.10 イメージの使用

22

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#architecture-infrastructure-components-image-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/creating_images/#build-process

イメージの一部としてこれらの環境変数を設定するには、ソースコードリポジトリーの中にある
.s2i/environment ファイルに配置するか、ビルド設定の sourceStrategy 定義の環境セクショ
ンに定義します。

また、新規アプリケーションの作成時に既存のイメージを使用するか、デプロイメント設定などの既存
のオブジェクトの環境変数を更新して環境変数を設定できます。

注記

ビルドの動作を制御する環境変数は、s2i ビルド設定または .s2i/environment ファ
イルの一部として設定して、ビルドの手順で利用できるようにする必要があります。

表2.9 Ruby 環境変数

変数名 説明

RACK_ENV この変数は、Ruby アプリケーションがデプロイされる環境を
指定します。たとえば production、development または
test などです。ロギングの詳細レベル、エラーページ、Ruby
gem インストールなど、レベルごとに動作が異なります。アプ
リケーションのアセットは、RACK_ENV が production に
設定されている場合にのみコンパイルされます。デフォルト値
は production です。

RAILS_ENV この変数は、Ruby on Rails アプリケーションがデプロイされ
る環境を指定します。たとえば
production、development または test などです。ロギ
ングの詳細レベル、エラーページ、Ruby gem インストールな
ど、レベルごとに動作が異なります。アプリケーションのア
セットは、RAILS_ENV が production に設定されている場
合にのみコンパイルされます。デフォルトではこの変数は
${RACK_ENV} に設定されています。

DISABLE_ASSET_COMPILATION この変数は true に設定されている場合には、アセットのコン
パイルプロセスを無効にします。アセットのコンパイルは、ア
プリケーションが実稼働環境で実行されている場合にのみ行わ
れます。そのため、アセットがコンパイル済みの場合は、この
変数を使用できます。

PUMA_MIN_THREADS、PUMA_MAX_T
HREADS

この変数は、Puma のスレッドプールで利用可能な最小および
最大スレッド数を指定します。

PUMA_WORKERS この変数は、Puma の クラスターモード で起動されるワーカー
プロセスの数を示します (Puma が 3 つ以上のプロセスを実行
する場合)。明示的に設定されていない場合には、デフォルトの
動作で PUMA_WORKERS が、コンテナーで利用可能なメモリー
や、ホスト上のコア数に適した値に設定されます。

RUBYGEM_MIRROR ビルドプロセス時に必要な gem パッケージをダウンロードす
るための、カスタムの RubyGems ミラー URL を使用するよう
にこの変数を設定します。注意: この環境変数は、Ruby 2.2+
イメージでのみ利用可能です。

第2章 SOURCE-TO-IMAGE (S2I)

23

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#environment-files
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#buildconfig-environment
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#set-environment-variables
https://github.com/puma/puma
https://github.com/puma/puma#clustered-mode

2.7.6. ホットデプロイ
ホットデプロイでは、新しい S2I ビルドを生成する必要なしに、アプリケーションに変更をすばやく加
え、デプロイすることができます。このイメージでホットデプロイメントを有効にする方法は、アプリ
ケーションの種類により異なります。

Ruby on Rails アプリケーション

Ruby on Rails アプリケーションの場合は、RAILS_ENV=development 環境変数を実行中の Pod に
渡して、ビルド済みの Rails アプリケーションを実行します。既存のデプロイメント設定では、oc
set envコマンドを使用できます。

$ oc set env dc/rails-app RAILS_ENV=development

他のタイプの Ruby アプリケーション (Sinatra、Padrino など)

他のタイプの Ruby アプリケーションでは、アプリケーションは実行中のコンテナー内でソースコード
が変更されるたびに、サーバーを再読み込みできる gem でビルドする必要があります。

Shotgun

Rerun

Rack-livereload

開発モードでアプリケーションを実行できるようにするには、選択した gem で Web サーバーを起動
し、ソースコードへの変更の有無を確認するように、S2I run スクリプトを変更する必要があります。

S2I run スクリプトでアプリケーションイメージをビルドした後に、RACK_ENV=development 環境変
数でイメージを実行します。たとえば、oc new-app コマンドを確認します。oc set env コマンド
を使用して、既存オブジェクトの環境変数を更新することができます。

警告

このオプションは、開発またはデバッグの時にだけ使用するようにしてください。
実稼働環境でこの設定をオンにすることは推奨しません。

実行中の Pod でソースコードを変更するには、oc rsh コマンドを使用して、コンテナーに入ります。

$ oc rsh <pod_id>

実行中のコンテナーに入った後に、現在のディレクトリーを、ソースコードが配置されている
/opt/app-root/src に設定します。

2.8. S2I イメージのカスタマイズ

2.8.1. 概要



OpenShift Container Platform 3.10 イメージの使用

24

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#set-environment-variables
https://github.com/rtomayko/shotgun
https://github.com/alexch/rerun
https://github.com/johnbintz/rack-livereload
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/creating_images/#s2i-scripts
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/creating_images/#s2i-scripts
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#specifying-environment-variables
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#set-environment-variables
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations

S2I ビルダーイメージには通常、assemble と run スクリプトが含まれていますが、これらのスクリ
プトのデフォルトの動作はすべてのユーザーに適さない場合があります。以下のトピックでは、デフォ
ルトのスクリプトなど、S2I ビルダーの動作をカスタマイズするいくつかの方法について説明します。

2.8.2. イメージに埋め込まれたスクリプトの呼び出し
一般的に、ビルダーイメージでは、最も一般的なユースケースを含む、独自の S2I スクリプトが提供さ
れます。これらのスクリプトで各自のニーズが満たされない場合に向け、S2I には .s2i/bin ディレク
トリーにカスタムのスクリプトを追加して上書きできる手段があります。ただし、カスタムのスクリプ
トを追加すると、標準のスクリプトを完全に置き換えられます。これは許容範囲の場合もありますが、
シナリオによっては、イメージに含まれるスクリプトのロジックを保持しつつ、スクリプトの前 (また
は後) にコマンドをいくつか実行する必要がある場合があります。そのような場合には、カスタムのロ
ジックを実行し、イメージ内のデフォルトのスクリプトに追加のタスクを委譲するラッパースクリプト
を作成できます。

ビルダーイメージ内のスクリプトの場所を判断するには、io.openshift.s2i.scripts-url ラベル
の値を確認します。以下のように docker inspect を使用してください。

$ docker inspect --format='{{ index .Config.Labels
"io.openshift.s2i.scripts-url" }}' openshift/wildfly-100-centos7
image:///usr/libexec/s2i

openshift/wildfly-100-centos7 ビルダーイメージを確認し、対象のスクリプトが
/usr/libexec/s2i ディレクトリーにあることを確認できます。

この情報を基にして、呼び出しをラップし、独自のスクリプトからこれらのスクリプトを呼び出しま
す。

例2.1 .s2i/bin/assemble スクリプト

#!/bin/bash
echo "Before assembling"

/usr/libexec/s2i/assemble
rc=$?

if [$rc -eq 0]; then
 echo "After successful assembling"
else
 echo "After failed assembling"
fi

exit $rc

以下の例では、メッセージを出力するカスタムの assemble スクリプトを表示し、イメージから標準
の assemble スクリプトを実行して、assemble スクリプトの終了コードに応じて別のメッセージ
を出力します。

run スクリプトをラップする場合には、スクリプトの呼び出しに exec を実行して、シグナルが正しく
処理されるようにする必要があります。残念ながら、exec を使用すると、デフォルトのイメージ実行
スクリプトを呼び出した後に追加でコマンドを実行できなくなります。

例2.2 .s2i/bin/run スクリプト

第2章 SOURCE-TO-IMAGE (S2I)

25

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/creating_images/#s2i-scripts
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/creating_images/#s2i-scripts
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/creating_images/#general-container-image-guidelines

#!/bin/bash
echo "Before running application"
exec /usr/libexec/s2i/run

OpenShift Container Platform 3.10 イメージの使用

26

第3章 データベースイメージ

3.1. 概要
以下のトピックには、OpenShift Container Platform ユーザーに提供される、さまざまなデータベー
スイメージに関する情報が含まれます。

注記

現在、テクノロジープレビューとして、データベースイメージ用にクラスター化を有効
にできますが、この機能は実稼働環境での使用を目的としていません。

3.2. MYSQL

3.2.1. 概要
OpenShift Container Platform には、MySQL の実行用のコンテナーイメージがあります。このイ
メージでは、設定で指定されるユーザー名、パスワード、データベース名に基づいてデータベースサー
ビスが提供されます。

3.2.2. バージョン
現時点で、OpenShift Container Platform では、MySQL のバージョン 5.6 および 5.7 を提供してい
ます。

3.2.3. イメージ
イメージには 2 つのフレーバーがあり、ニーズに合わせて選択できます。

RHEL 7

CentOS 7

RHEL 7 ベースのイメージ

RHEL 7 イメージは、Red Hat レジストリーから入手できます。

$ docker pull registry.access.redhat.com/rhscl/mysql-56-rhel7
$ docker pull registry.access.redhat.com/rhscl/mysql-57-rhel7

CentOS 7 ベースのイメージ

MySQL 5.6 および 5.7 の CentOS イメージは、Docker Hub で入手できます。

$ docker pull centos/mysql-56-centos7
$ docker pull centos/mysql-57-centos7

これらのイメージを使用するには、イメージレジストリーから直接アクセスするか、ご自身の
OpenShift Container Platform Docker レジストリーにプッシュしてください。さらに、Docker レ
ジストリーまたは外部の場所に、対象イメージを参照する ImageStream を作成することもでき、

第3章 データベースイメージ

27

https://github.com/openshift/mysql/tree/master/5.6
https://github.com/openshift/mysql/tree/master/5.7

OpenShift Container Platform リソースがこの ImageStream を参照できるようになります。提供
されているすべての OpenShift Container Platform イメージについて ImageStream の 定義例 があ
ります。

3.2.4. 設定および用途

3.2.4.1. データベースの初期化

共有ボリュームを初めて使用する場合には、データベース、データベースの管理ユーザー、MySQL
root ユーザー (MYSQL_ROOT_PASSWORD 環境変数を指定した場合) が作成され、次に MySQL デーモ
ンが起動します。別のコンテナーにボリュームを再アタッチする場合には、データベース、データベー
スユーザー、管理者ユーザーは作成されず、MySQL デーモンが開始されます。

以下のコマンドは、新しいデータベースのPod を作成し、さらにコンテナー内で MySQL を実行しま
す。

$ oc new-app \
 -e MYSQL_USER=<username> \
 -e MYSQL_PASSWORD=<password> \
 -e MYSQL_DATABASE=<database_name> \
 registry.access.redhat.com/rhscl/mysql-56-rhel7

3.2.4.2. コンテナーでの MySQL コマンドの実行

OpenShift Container Platform は Software Collections (SCL) を使用して、MySQL をインストー
ル、起動します。(デバッグ用に) 実行中のコンテナー内で MySQL コマンドを実行する場合には bash
を使用して呼び出す必要があります。

これを実行するには、まず Pod 名を特定します。たとえば、現在のプロジェクトで Pod の一覧を表示
できます。

$ oc get pods

次に、Pod に対してリモートシェルセッションを開始します。

$ oc rsh <pod>

コンテナーに入ると、必要な SCL が自動的に有効になります。

Bash シェルから mysql コマンドを実行し、MySQL の対話セッションを開始して通常の MySQL 操
作が実行できるようになりました。たとえば、データベースユーザーとして認証するには、以下を実行
します。

bash-4.2$ mysql -u $MYSQL_USER -p$MYSQL_PASSWORD -h $HOSTNAME
$MYSQL_DATABASE
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.6.37 MySQL Community Server (GPL)
...
mysql>

完了したら、quit または exit を入力して MySQL セッションを終了します。

OpenShift Container Platform 3.10 イメージの使用

28

https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#pods
https://www.softwarecollections.org/

3.2.4.3. 環境変数

MySQL ユーザー名、パスワード、データベース名は、以下の環境変数で設定する必要があります。

表3.1 MySQL 環境変数

変数名 説明

MYSQL_USER アプリケーションで使用するために作成されたデータベース
ユーザーのユーザー名を指定します。

MYSQL_PASSWORD MYSQL_USER のパスワード

MYSQL_DATABASE MYSQL_USER が完全な権限を持つデータベースの名前

MYSQL_ROOT_PASSWORD root ユーザーの任意のパスワード。これが設定されていない場
合には、root アカウントにリモートログインできません。コン
テナーからはいつでも、パスワードなしにローカル接続が可能
です。

MYSQL_SERVICE_HOST Kubernetes が自動作成したサービスホストの変数

MYSQL_SERVICE_PORT Kubernetes が自動作成したサービスポートの変数

警告

ユーザー名、パスワード、データベース名を指定する必要があります。この 3 つす
べてを指定しない場合には、Pod は起動に失敗し、OpenShift Container
Platform は Pod の再起動を継続的に試行します。

MySQL 設定は、以下の環境変数で設定できます。

表3.2 MySQL の他の設定

変数名 説明 デフォ
ルト

MYSQL_LOWER_CASE_TAB
LE_NAMES

テーブル名の保存および比較方法を設定します。 0

MYSQL_MAX_CONNECTION
S

クライアントが同時に接続可能な最大数 151

MYSQL_MAX_ALLOWED_PA
CKET

生成された文字列/中間文字列または 1 つのパケットの最大サイ
ズ

200M



第3章 データベースイメージ

29

MYSQL_FT_MIN_WORD_LE
N

FULLTEXT インデックスに含める文字の最小長 4

MYSQL_FT_MAX_WORD_LE
N

FULLTEXT インデックスに含める文字の最大長 20

MYSQL_AIO ネイティブの AIO が壊れている場合に
innodb_use_native_aio の設定値を制御します。

1

MYSQL_TABLE_OPEN_CAC
HE

全スレッド用に開くテーブル数 400

MYSQL_KEY_BUFFER_SIZ
E

インデックスブロックに使用するバッファーサイズ 32M
(また
は利用
可能な
メモ
リーの
10%)

MYSQL_SORT_BUFFER_SI
ZE

分類に使用するバッファーサイズ 256K

MYSQL_READ_BUFFER_SI
ZE

シーケンススキャンに使用するバッファーサイズ 8M (ま
たは利
用可能
メモ
リーの
5%)

MYSQL_INNODB_BUFFER_
POOL_SIZE

InnoDB がテーブルやインデックスデータをキャッシュする
バッファープールのサイズ

32M
(また
は利用
可能な
メモ
リーの
50%)

MYSQL_INNODB_LOG_FIL
E_SIZE

ロググループにある各ログファイルのサイズ 8M (ま
たは利
用可能
メモ
リーの
15%)

変数名 説明 デフォ
ルト

OpenShift Container Platform 3.10 イメージの使用

30

MYSQL_INNODB_LOG_BUF
FER_SIZE

InnoDB がディスクのログファイルへの書き込みに使用する
バッファーサイズ

8M (ま
たは利
用可能
メモ
リーの
15%)

変数名 説明 デフォ
ルト

メモリー関連のパラメーターによっては、デフォルト値が 2 つあるものもあります。コンテナーにメモ
リーの制限が割り当てられていない場合には、固定値が使用されます。他の値は、コンテナーの起動中
に利用可能なメモリーを基に動的に計算されます。

3.2.4.4. ボリュームのマウントポイント

MySQL イメージは、マウントしたボリュームで実行して、データベース用に永続ストレージを有効化
できます。

/var/lib/mysql/data: これは、MySQL がデータベースのファイルを保存するデータディレ
クトリーです。

3.2.4.5. パスワードの変更

パスワードはイメージ設定の一部であるため、データベースユーザー (MYSQL_USER) と root ユーザー
のパスワードを変更する唯一のサポートされている方法として、環境変数 MYSQL_PASSWORD と
MYSQL_ROOT_PASSWORD をそれぞれ変更することができます。

現在のパスワードは、Pod またはデプロイメント設定を Web コンソールで表示するか、CLI で環境変
数を表示して、確認できます。

$ oc set env pod <pod_name> --list

MYSQL_ROOT_PASSWORD が設定されている場合は常に、root ユーザーに特定のパスワードを指定し
てリモートアクセスを有効にできます。また、設定されていない場合には、root ユーザーのリモート
アクセスが無効になります。これは、一般ユーザー MYSQL_USER には影響なく、常にリモートからア
クセスできます。また、root ユーザーのローカルアクセスにも影響なく、localhost でパスワードな
しにいつでもログインできます。

SQL ステートメントや、前述した環境変数以外の方法でデータベースのパスワードを変更すると、変数
に保存されている値と、実際のパスワードが一致しなくなる可能性があります。データベースコンテ
ナーが起動するたびに、パスワードは環境変数に保存されている値にリセットされます。

これらのパスワードを変更するには、oc set env コマンドを使用して、関連するデプロイメント設定
の任意の環境変数 1 つまたは両方を更新します。たとえば、テンプレートからアプリケーションを作成
する場合など、複数のデプロイメント設定がこれらの環境変数を使用する場合には、デプロイメント設
定ごとに変数を更新し、パスワードがどこでも同期されるようにします。これは、すべて同じコマンド
で実行できます。

$ oc set env dc <dc_name> [<dc_name_2> ...] \
 MYSQL_PASSWORD=<new_password> \
 MYSQL_ROOT_PASSWORD=<new_root_password>

第3章 データベースイメージ

31

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#memory-limits

重要

アプリケーションによっては、アプリケーションの他の場所にあるパスワードの他の環
境変数を更新して一致させる必要があるものもあります。たとえば、フロントエンド
Pod のより一般的な DATABASE_USER 変数などは、データベースユーザーのパスワード
と一致する必要がある場合があります。必要とされる環境変数すべてにおいて、パス
ワードがアプリケーションごとに一致しているようにしてください。一致しない場合に
は、トリガーされた時点で、Pod の再デプロイメントが失敗する場合があります。

設定変更トリガーが設定されている場合には、環境変数を更新すると、データベースサーバーの再デプ
ロイメントがトリガーされます。設定されていない場合には、新しいデプロイメントを手動で起動し
て、パスワードの変更を適用する必要があります。

新規パスワードが有効になっていることを確認するには、まず実行中の MySQL Pod に対してリモート
シェルセッションを開きます。

$ oc rsh <pod>

Bash シェルから、データベースユーザーの新規パスワードを確認します。

bash-4.2$ mysql -u $MYSQL_USER -p<new_password> -h $HOSTNAME
$MYSQL_DATABASE -te "SELECT * FROM (SELECT database()) db CROSS JOIN
(SELECT user()) u"

パスワードが正しく変更された場合には、以下のような表が表示されるはずです。

+------------+---------------------+
| database() | user() |
+------------+---------------------+
| sampledb | user0PG@172.17.42.1 |
+------------+---------------------+

root ユーザーの新規パスワードを確認するには、以下を実行します。

bash-4.2$ mysql -u root -p<new_root_password> -h $HOSTNAME $MYSQL_DATABASE
-te "SELECT * FROM (SELECT database()) db CROSS JOIN (SELECT user()) u"

パスワードが正しく変更された場合には、以下のような表が表示されるはずです。

+------------+------------------+
| database() | user() |
+------------+------------------+
| sampledb | root@172.17.42.1 |
+------------+------------------+

3.2.5. テンプレートからのデータベースサービスの作成
OpenShift Container Platform には、新規データベースサービスの作成を容易にするテンプレートが
含まれています。テンプレートには、必須の環境変数をすべて定義するパラメーターフィールドがあり
(ユーザー、パスワード、データベース名など)、自動生成されたパスワード値など、事前定義済みのデ
フォルト値が設定されます。また、テンプレートは デプロイメント設定およびサービスの両方を定義し
ます。

OpenShift Container Platform 3.10 イメージの使用

32

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#config-change-trigger
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#services

MySQL テンプレートは、クラスターの初期設定時にクラスター管理者により、デフォルトの
openshift プロジェクトに登録されている必要があります。詳細については、随時「デフォルトのイ
メージストリームおよびテンプレートの読み込み」を参照してください。

利用可能なテンプレートは以下の 2 種類です。

mysql-ephemeral は、データベースのコンテンツ用に一時ストレージを使用するので、開発
またはテスト目的にのみ使用します。つまり、Pod が別の Pod に移動されたり、デプロイメン
ト設定が更新され、再デプロイがトリガーされたりなど、データベース Pod が何らかの理由で
再起動された場合には、データはすべて失われます。

mysql-persistent は、データベースのデータ用に永続ボリュームストアを使用するので、
データは Pod が再起動されても残ります。永続ボリュームを使用する場合には、OpenShift
Container Platform デプロイメントで定義された永続ボリュームプールが必要です。プール
の設定に関するクラスター管理者向けの説明は、こちらを参照してください。

この「説明」に従い、テンプレートをインスタンス化できます。

サービスをインスタンス化したら、データベースにアクセスする予定のある別のコンポーネントのデプ
ロイメント設定に、ユーザー名、パスワード、データベース名の環境変数をコピーできます。このコン
ポーネントは、定義したサービスを使用してこのデータベースにアクセスできます。

3.2.6. MySQL のレプリケーションの使用

注記

現在、テクノロジープレビューとして、データベースイメージ用にクラスター化を有効
にできますが、この機能は実稼働環境での使用を目的としていません。

Red Hat は、MySQL のマスター-スレーブのレプリケーション (クラスタリング) 用に概念実証テンプ
レートを提供します。GitHub からサンプルテンプレート を入手できます。

現在のプロジェクトのテンプレートライブラリーにテンプレートのサンプルをアップロードするには、
以下を実行します。

$ oc create -f \
 https://raw.githubusercontent.com/sclorg/mysql-
container/master/examples/replica/mysql_replica.json

以下のセクションでは、サンプルのテンプレートに定義されているオブジェクト、およびそれらのオブ
ジェクトが連携してマスターとスレーブのレプリケーションを実装する MySQL サーバークラスターを
どのように起動するのかを詳しく説明します。これは、MySQL 向けに推奨されるレプリケーションス
トラテジーです。

3.2.6.1. MySQL マスターのデプロイメント設定の作成

MySQL レプリケーションを設定するには、デプロイメント設定を、レプリケーションコントロー
ラーを定義するテンプレートサンプルに定義します。MySQL のマスターとスレーブレプリケーション
には、デプロイメント設定が 2 つ必要です。1 つ目のデプロイメント設定では、MySQL マスター サー
バーを、2 つ目で MySQL スレーブ サーバーを定義します。

MySQL サーバーに対してマスターとして機能するように指示するには、デプロイメント設定のコンテ
ナー定義にある command フィールドに、run-mysqld-master を設定する必要があります。このス
クリプトは、MySQL イメージの別のエントリーポイントとして機能し、MySQL サーバーがレプリ
ケーションのマスターとして実行するように設定します。

第3章 データベースイメージ

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-imagestreams-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates
https://github.com/sclorg/mysql-container/tree/master/examples/replica
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#replication-controllers

MySQL レプリケーションでは、マスターとスレーブ間のデータをリレーする特別ユーザーが必要で
す。この目的で使用できるように、以下の環境変数をテンプレートに定義します。

変数名 説明 デフォ
ルト

MYSQL_MASTER_USER レプリケーションユーザーのユーザー名 mast
er

MYSQL_MASTER_PASSWOR
D

レプリケーションユーザーのパスワード gener
ated

例3.1 サンプルテンプレートでの MySQL マスターデプロイメント設定のオブジェクト定義

kind: "DeploymentConfig"
apiVersion: "v1"
metadata:
 name: "mysql-master"
spec:
 strategy:
 type: "Recreate"
 triggers:
 - type: "ConfigChange"
 replicas: 1
 selector:
 name: "mysql-master"
 template:
 metadata:
 labels:
 name: "mysql-master"
 spec:
 volumes:
 - name: "mysql-master-data"
 persistentVolumeClaim:
 claimName: "mysql-master"
 containers:
 - name: "server"
 image: "openshift/mysql-56-centos7"
 command:
 - "run-mysqld-master"
 ports:
 - containerPort: 3306
 protocol: "TCP"
 env:
 - name: "MYSQL_MASTER_USER"
 value: "${MYSQL_MASTER_USER}"
 - name: "MYSQL_MASTER_PASSWORD"
 value: "${MYSQL_MASTER_PASSWORD}"
 - name: "MYSQL_USER"
 value: "${MYSQL_USER}"
 - name: "MYSQL_PASSWORD"
 value: "${MYSQL_PASSWORD}"
 - name: "MYSQL_DATABASE"
 value: "${MYSQL_DATABASE}"

OpenShift Container Platform 3.10 イメージの使用

34

デプロイメント設定で永続ボリュームを要求し、MySQL マスターサーバー用に全データを永続化した
ため、ストレージを要求できる永続ボリュームを作成するように、クラスター管理者に依頼する必要が
あります。

デプロイメント設定を作成し、MySQL マスターサーバーが指定された Pod を起動した後に
は、MYSQL_DATABASE で定義されたデータベースが作成され、このデータベースをスレーブに複製す
るようにサーバーが設定されます。

提供されているサンプルでは、MySQL マスターサーバーのレプリカ 1 つのみが定義されているため、
OpenShift Container Platform はサーバーの 1 つのインスタンスのみを起動します。複数のインスタ
ンス (マルチマスター) はサポートされていないため、このレプリケーションコントローラーはスケー
リングできません。

テンプレートにデプロイメント設定を定義して、MySQL マスターで作成したデータベースを複製しま
す。このデプロイメント設定は、command フィールドが run-mysqld-slave に設定されている、
MySQL イメージを起動するレプリケーションコントローラーを作成します。このもう 1 つのエント
リーポイントでは、データベースの初期化をスキップし、MySQL サーバーが mysql-master サービ
スに接続するように設定します。これについても、サンプルのテンプレートに定義されています。

例3.2 サンプルテンプレートでの MySQL スレーブデプロイメント設定のオブジェクト定義

 - name: "MYSQL_ROOT_PASSWORD"
 value: "${MYSQL_ROOT_PASSWORD}"
 volumeMounts:
 - name: "mysql-master-data"
 mountPath: "/var/lib/mysql/data"
 resources: {}
 terminationMessagePath: "/dev/termination-log"
 imagePullPolicy: "IfNotPresent"
 securityContext:
 capabilities: {}
 privileged: false
 restartPolicy: "Always"
 dnsPolicy: "ClusterFirst"

kind: "DeploymentConfig"
apiVersion: "v1"
metadata:
 name: "mysql-slave"
spec:
 strategy:
 type: "Recreate"
 triggers:
 - type: "ConfigChange"
 replicas: 1
 selector:
 name: "mysql-slave"
 template:
 metadata:
 labels:
 name: "mysql-slave"
 spec:
 containers:
 - name: "server"

第3章 データベースイメージ

35

このデプロイメント設定のサンプルでは、最初のレプリカ数を 1 に設定して、レプリケーションコント
ローラーを開始します。アカウントのリソース容量に達するまで、両方向にこのレプリケーションコン
トローラーをスケーリングできます。

3.2.6.2. ヘッドレスサービスの作成

MySQL スレーブのレプリケーションコントローラーで作成した Pod は、レプリケーションを登録する
ために、MySQL マスターサーバーに到達する必要があります。この目的のために、サンプルテンプ
レートでは、mysql-master と呼ばれるヘッドレスサービスを定義します。このサービスは、レプリ
ケーションだけに使用するのではなく、クライアントは MySQL ホストとして mysql-master:3306
にクエリーも送信します。

ヘッドレスサービスを含めるには、サービス定義の portalIP パラメーターを None に設定します。
このように設定すると、DNS クエリーを使用して、このサービスの現在のエンドポイントを表す Pod
の IP アドレス一覧を取得できるようになります。

例3.3 サンプルテンプレートでのヘッドレスサービスのオブジェクト定義

 image: "openshift/mysql-56-centos7"
 command:
 - "run-mysqld-slave"
 ports:
 - containerPort: 3306
 protocol: "TCP"
 env:
 - name: "MYSQL_MASTER_USER"
 value: "${MYSQL_MASTER_USER}"
 - name: "MYSQL_MASTER_PASSWORD"
 value: "${MYSQL_MASTER_PASSWORD}"
 - name: "MYSQL_DATABASE"
 value: "${MYSQL_DATABASE}"
 resources: {}
 terminationMessagePath: "/dev/termination-log"
 imagePullPolicy: "IfNotPresent"
 securityContext:
 capabilities: {}
 privileged: false
 restartPolicy: "Always"
 dnsPolicy: "ClusterFirst"

kind: "Service"
apiVersion: "v1"
metadata:
 name: "mysql-master"
 labels:
 name: "mysql-master"
spec:
 ports:
 - protocol: "TCP"
 port: 3306
 targetPort: 3306
 nodePort: 0
 selector:
 name: "mysql-master"

OpenShift Container Platform 3.10 イメージの使用

36

3.2.6.3. MySQL スレーブのスケーリング

クラスターの メンバー数を増やすには、以下を実行します。

$ oc scale rc mysql-slave-1 --replicas=<number>

このコマンドは、レプリケーションコントローラーに対して、新しい MySQL スレーブ Pod を作成す
るように指示します。新しいスレーブが作成されると、スレーブのエントリーポイントが最初に
mysql-master サービスに問い合わせして、レプリケーションセットに登録しようとします。これが
完了すると、MySQL マスターサーバーはスレーブに複製されたデータベースを送信します。

スケールダウン時には、MySQL スレーブがシャットダウンされ、スレーブに永続ストレージが定義さ
れていないので、スレーブ上の全データが失われます。MySQL マスターサーバーは、スレーブに到達
できないことを検出し、自動的にレプリケーションからそのスレーブを取り除きます。

3.2.7. トラブルシューティング
以下のセクションでは、発生する可能性のある問題と、考えられる解決策を説明します。

3.2.7.1. Linux ネイティブの AIO の障害

現象

MySQL コンテナーが起動に失敗し、以下のようなログを出力します。

151113 5:06:56 InnoDB: Using Linux native AIO
151113 5:06:56 InnoDB: Warning: io_setup() failed with EAGAIN. Will make
5 attempts before giving up.
InnoDB: Warning: io_setup() attempt 1 failed.
InnoDB: Warning: io_setup() attempt 2 failed.
Waiting for MySQL to start ...
InnoDB: Warning: io_setup() attempt 3 failed.
InnoDB: Warning: io_setup() attempt 4 failed.
Waiting for MySQL to start ...
InnoDB: Warning: io_setup() attempt 5 failed.
151113 5:06:59 InnoDB: Error: io_setup() failed with EAGAIN after 5
attempts.
InnoDB: You can disable Linux Native AIO by setting innodb_use_native_aio
= 0 in my.cnf
151113 5:06:59 InnoDB: Fatal error: cannot initialize AIO sub-system
151113 5:06:59 [ERROR] Plugin 'InnoDB' init function returned error.
151113 5:06:59 [ERROR] Plugin 'InnoDB' registration as a STORAGE ENGINE
failed.
151113 5:06:59 [ERROR] Unknown/unsupported storage engine: InnoDB
151113 5:06:59 [ERROR] Aborting

説明

 portalIP: "None"
 type: "ClusterIP"
 sessionAffinity: "None"
status:
 loadBalancer: {}

第3章 データベースイメージ

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#scaling

MySQL のストレージエンジンは、リソース制限が原因で、カーネルの AIO (非同期 I/O) 機能を使用で
きませんでした。

解決策

環境変数 MYSQL_AIO の値を 0 に設定して、AIO の使用を完全に停止します。今後のデプロイメントで
は、この設定により MySQL の設定変数 innodb_use_native_aio の値が 0 に指定されます。

または aio-max-nr カーネルリソースを増やします。以下の例では、現在の aio-max-nr の値を検証
して、この値を 2 倍にします。

$ sysctl fs.aio-max-nr
fs.aio-max-nr = 1048576
sysctl -w fs.aio-max-nr=2097152

これはノードごとの解決策であるため、次にノードが再起動されるまで有効です。

3.3. POSTGRESQL

3.3.1. 概要
OpenShift Container Platform には、PostgreSQL の実行用のコンテナーイメージがあります。この
イメージでは、設定で指定されるユーザー名、パスワード、データベース名を基にデータベースサービ
スが提供されます。

3.3.2. バージョン
現時点で、OpenShift Container Platform は PostgreSQL バージョン 9.4 および 9.5 をサポートし
ます。

3.3.3. イメージ
これらのイメージには 2 つのフレーバーがあり、ニーズに合わせて選択できます。

RHEL 7

CentOS 7

RHEL 7 ベースのイメージ

RHEL 7 イメージは、Red Hat レジストリーから入手できます。

$ docker pull registry.access.redhat.com/rhscl/postgresql-94-rhel7
$ docker pull registry.access.redhat.com/rhscl/postgresql-95-rhel7

CentOS 7 ベースのイメージ

これらのイメージは、Docker Hub で入手できます。

$ docker pull centos/postgresql-94-centos7
$ docker pull centos/postgresql-95-centos7

これらのイメージを使用するには、イメージレジストリーから直接アクセスするか、ご自身の
OpenShift Container Platform Docker レジストリーにプッシュしてください。さらに、Docker レ

OpenShift Container Platform 3.10 イメージの使用

38

https://github.com/sclorg/rhscl-dockerfiles/tree/master/rhel7.rh-postgresql94
https://github.com/sclorg/postgresql-container/tree/generated/9.5

ジストリーまたは外部の場所に、対象イメージを参照する ImageStream を作成することもでき、
OpenShift Container Platform リソースがこの ImageStream を参照できるようになります。提供
されているすべての OpenShift Container Platform イメージについて ImageStream の 定義例 があ
ります。

3.3.4. 設定および用途

3.3.4.1. データベースの初期化

共有ボリュームを初めて使用する場合には、データベース、データベースの管理ユーザー、
PostgreSQL root ユーザー (POSTGRESQL_ADMIN_PASSWORD 環境変数を指定した場合) が作成され、
次に PostgreSQL デーモンが起動します。別のコンテナーにボリュームを再アタッチする場合には、
データベース、データベースユーザー、管理者ユーザーは作成されず、PostgreSQL デーモンが起動し
ます。

以下のコマンドは、新しいデータベースの Pod を作成し、さらにコンテナー内で PostgreSQL を実行
します。

$ oc new-app \
 -e POSTGRESQL_USER=<username> \
 -e POSTGRESQL_PASSWORD=<password> \
 -e POSTGRESQL_DATABASE=<database_name> \
 registry.access.redhat.com/rhscl/postgresql-95-rhel7

3.3.4.2. コンテナーでの PostgreSQL コマンドの実行

OpenShift Container Platform は Software Collections (SCL) を使用して、PostgreSQL をインス
トール、起動します。(デバッグ用に) 実行中のコンテナー内で PostgreSQL コマンドを実行する場合
には bash を使用して呼び出す必要があります。

これには、まず、実行中の PostgreSQL Pod の名前を特定します。たとえば、現在のプロジェクトで
Pod の一覧を表示できます。

$ oc get pods

次に、任意の Pod に対してリモートシェルセッションを開きます。

$ oc rsh <pod>

コンテナーに入ると、必要な SCL が自動的に有効になります。

Bash シェルから psql コマンドを実行し、PostgreSQL の対話セッションを開始して通常の
PostgreSQL 操作が実行できるようになりました。たとえば、データベースユーザーとして認証するに
は、以下を実行します。

bash-4.2$ PGPASSWORD=$POSTGRESQL_PASSWORD psql -h postgresql
$POSTGRESQL_DATABASE $POSTGRESQL_USER
psql (9.5.16)
Type "help" for help.

default=>

完了したら、\q と入力して PostgreSQL セッションを終了します。

第3章 データベースイメージ

39

https://github.com/openshift/origin/tree/master/examples/image-streams
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#pods
https://www.softwarecollections.org/

3.3.4.3. 環境変数

PostgreSQL ユーザー名、パスワード、データベース名は、以下の環境変数で設定する必要がありま
す。

表3.3 PostgreSQL 環境変数

変数名 説明

POSTGRESQL_USER 作成予定の PostgreSQL アカウントのユーザー名。このユー
ザーには、対象のデータベースに対する完全な権限がありま
す。

POSTGRESQL_PASSWORD ユーザーアカウントのパスワード

POSTGRESQL_DATABASE データベース名

POSTGRESQL_ADMIN_PASSWORD postgres 管理ユーザーの任意パスワード。これが設定されて
いない場合には、postgres アカウントにリモートからログイ
ンができません。コンテナーからはいつでも、パスワードなし
にローカル接続が可能です。

警告

ユーザー名、パスワード、データベース名を指定する必要があります。この 3 つす
べてを指定しない場合には、Pod は起動に失敗し、OpenShift Container
Platform は Pod の再起動を継続的に試行します。

PostgreSQL 設定は、以下の環境変数で設定できます。

表3.4 PostgreSQL の他の設定

変数名 説明 デフォ
ルト

POSTGRESQL_MAX_CONNE
CTIONS

許容範囲の最大クライアント接続数 100

POSTGRESQL_MAX_PREPA
RED_TRANSACTIONS

「準備」状態にすることのできる最大トランザクション数。準
備状態のトランザクションを使用する場合には、値は
POSTGRESQL_MAX_CONNECTIONS 以上に指定する必要があ
ります。

0

POSTGRESQL_SHARED_BU
FFERS

データのキャッシュ用に PostgreSQL 専用に割り当てられたメ
モリー量

32M



OpenShift Container Platform 3.10 イメージの使用

40

POSTGRESQL_EFFECTIVE
_CACHE_SIZE

オペレーティングシステム別または PostgreSQL 自体で、ディ
スクキャッシュに利用可能な予想メモリー量

128M

変数名 説明 デフォ
ルト

3.3.4.4. ボリュームのマウントポイント

PostgreSQL イメージは、マウントしたボリュームで実行して、データベース用に永続ストレージを有
効化できます。

/var/lib/pgsql/data: これは、PostgreSQL がデータベースファイルを保存するデータベー
スクラスターのディレクトリーです。

3.3.4.5. パスワードの変更

パスワードはイメージ設定の一部であるため、データベースユーザー (POSTGRESQL_USER) と
postgres 管理者ユーザーのパスワードを変更する唯一のサポートされている方法として、環境変数
POSTGRESQL_PASSWORD と POSTGRESQL_ADMIN_PASSWORD をそれぞれ変更することができます。

現在のパスワードは、Pod またはデプロイメント設定を Web コンソールで表示するか、CLI で環境変
数を表示して、確認できます。

$ oc set env pod <pod_name> --list

SQL ステートメントや、前述した環境変数以外の方法でデータベースのパスワードを変更すると、変数
に保存されている値と、実際のパスワードが一致しなくなる可能性があります。データベースコンテ
ナーが起動するたびに、パスワードは環境変数に保存されている値にリセットされます。

これらのパスワードを変更するには、oc set env コマンドを使用して、関連するデプロイメント設定
の任意の環境変数 1 つまたは両方を更新します。たとえば、テンプレートからアプリケーションを作成
する場合など、複数のデプロイメント設定がこれらの環境変数を使用する場合には、デプロイメント設
定ごとに変数を更新し、パスワードがどこでも同期されるようにします。これは、すべて同じコマンド
で実行できます。

$ oc set env dc <dc_name> [<dc_name_2> ...] \
 POSTGRESQL_PASSWORD=<new_password> \
 POSTGRESQL_ADMIN_PASSWORD=<new_admin_password>

重要

アプリケーションによっては、アプリケーションの他の場所にあるパスワードの他の環
境変数を更新して一致させる必要があるものもあります。たとえば、フロントエンド
Pod のより一般的な DATABASE_USER 変数などは、データベースユーザーのパスワード
と一致する必要がある場合があります。必要とされる環境変数すべてにおいて、パス
ワードがアプリケーションごとに一致しているようにしてください。一致しない場合に
は、トリガーされた時点で、Pod の再デプロイメントが失敗する場合があります。

設定変更トリガーが設定されている場合には、環境変数を更新すると、データベースサーバーの再デプ
ロイメントがトリガーされます。設定されていない場合には、新しいデプロイメントを手動で起動し
て、パスワードの変更を適用する必要があります。

第3章 データベースイメージ

41

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#config-change-trigger

新規パスワードが有効になっていることを確認するには、まず、実行中の PostgreSQL Pod に対して
リモートシェルセッションを開きます。

$ oc rsh <pod>

Bash シェルから、データベースユーザーの新規パスワードを確認します。

bash-4.2$ PGPASSWORD=<new_password> psql -h postgresql
$POSTGRESQL_DATABASE $POSTGRESQL_USER -c "SELECT * FROM (SELECT
current_database()) cdb CROSS JOIN (SELECT current_user) cu"

パスワードが正しく変更された場合には、以下のような表が表示されるはずです。

 current_database | current_user
------------------+--------------
 default | django
(1 row)

Bash シェルから postgres 管理者ユーザーの新規パスワードを検証します。

bash-4.2$ PGPASSWORD=<new_admin_password> psql -h postgresql
$POSTGRESQL_DATABASE postgres -c "SELECT * FROM (SELECT
current_database()) cdb CROSS JOIN (SELECT current_user) cu"

パスワードが正しく変更された場合には、以下のような表が表示されるはずです。

 current_database | current_user
------------------+--------------
 default | postgres
(1 row)

3.3.5. テンプレートからのデータベースサービスの作成
OpenShift Container Platform には、新規データベースサービスの作成を容易にするテンプレートが
含まれています。テンプレートには、必須の環境変数をすべて定義するパラメーターフィールドがあり
(ユーザー、パスワード、データベース名など)、自動生成されたパスワード値など、事前定義済みのデ
フォルト値が設定されます。また、テンプレートは デプロイメント設定およびサービスの両方を定義し
ます。

PostgreSQL テンプレートは、クラスターの初期設定時にクラスター管理者により、デフォルトの
openshift プロジェクトに登録されている必要があります。詳細については、随時「デフォルトのイ
メージストリームおよびテンプレートの読み込み」を参照してください。

利用可能なテンプレートは以下の 2 種類です。

PostgreSQL-ephemeral は、データベースのコンテンツ用に一時ストレージを使用するの
で、開発またはテスト目的にのみ使用します。つまり、Pod が別の Pod に移動されたり、デプ
ロイメント設定が更新され、再デプロイがトリガーされたりなど、データベース Pod が何らか
の理由で再起動された場合には、データはすべて失われます。

PostgreSQL-persistent は、データベースのデータ用に永続ボリュームストアを使用する
ので、データは Pod が再起動されても残ります。永続ボリュームを使用する場合には、
OpenShift Container Platform デプロイメントで定義された永続ボリュームプールが必要で
す。プールの設定に関するクラスター管理者向けの説明は、こちらを参照してください。

OpenShift Container Platform 3.10 イメージの使用

42

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-imagestreams-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-nfs

この「説明」に従い、テンプレートをインスタンス化できます。

サービスをインスタンス化したら、データベースにアクセスする予定のある別のコンポーネントのデプ
ロイメント設定に、ユーザー名、パスワード、データベース名の環境変数をコピーできます。このコン
ポーネントは、定義したサービスを使用してこのデータベースにアクセスできます。

3.4. MONGODB

3.4.1. 概要
OpenShift Container Platform には、MongoDB の実行用のコンテナーイメージがあります。このイ
メージでは、設定で指定されるユーザー名、パスワード、データベース名に基づくデータベースサービ
スが提供されます。

3.4.2. バージョン
現時点で、OpenShift Container Platform では、MongoDB のバージョン 2.6、3.2 および 3.4 を提
供しています。

3.4.3. イメージ
これらのイメージには 2 つのフレーバーがあり、ニーズに合わせて選択できます。

RHEL 7

CentOS 7

RHEL 7 ベースのイメージ

RHEL 7 イメージは、Red Hat レジストリーから入手できます。

$ docker pull registry.access.redhat.com/rhscl/mongodb-26-rhel7
$ docker pull registry.access.redhat.com/rhscl/mongodb-32-rhel7
$ docker pull registry.access.redhat.com/rhscl/mongodb-34-rhel7

CentOS 7 ベースのイメージ

これらのイメージは、Docker Hub で入手できます。

$ docker pull centos/mongodb-26-centos7
$ docker pull centos/mongodb-32-centos7
$ docker pull centos/mongodb-34-centos7

これらのイメージを使用するには、イメージレジストリーから直接アクセスするか、ご自身の
OpenShift Container Platform Docker レジストリーにプッシュしてください。さらに、Docker レ
ジストリーまたは外部の場所に、対象イメージを参照する ImageStream を作成することもでき、
OpenShift Container Platform リソースがこの ImageStream を参照できるようになります。提供
されているすべての OpenShift Container Platform イメージについて ImageStream の 定義例 があ
ります。

3.4.4. 設定および用途

3.4.4.1. データベースの初期化

第3章 データベースイメージ

43

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates
https://github.com/openshift/mongodb/tree/master/2.6
https://github.com/openshift/mongodb/tree/master/3.2
https://github.com/openshift/mongodb/tree/master/3.4
https://github.com/openshift/origin/tree/master/examples/image-streams

MongoDB は、一時ボリュームまたは永続ボリュームで設定できます。ボリュームを初めて使用する場
合には、データベースとデータベースの管理ユーザーが作成され、次に MongoDB デーモンが起動し
ます。別のコンテナーにボリュームを再アタッチする場合には、データベース、データベースユー
ザー、管理者ユーザーは作成されず、MongoDB デーモンが起動します。

以下のコマンドは、新しいデータベースの Pod を作成し、さらに一時ボリュームが含まれるコンテ
ナー内で MongoDB を実行します。

$ oc new-app \
 -e MONGODB_USER=<username> \
 -e MONGODB_PASSWORD=<password> \
 -e MONGODB_DATABASE=<database_name> \
 -e MONGODB_ADMIN_PASSWORD=<admin_password> \
 registry.access.redhat.com/rhscl/mongodb-26-rhel7

3.4.4.2. コンテナーでの MongoDB コマンドの実行

OpenShift Container Platform は Software Collections (SCL) を使用して、MongoDB をインス
トールし、起動します。(デバッグ用に) 実行中のコンテナー内で MongoDB コマンドを実行する場合
には bash を使用して呼び出す必要があります。

これを実行するには、まず 実行中の MongoDB Pod の名前を特定します。たとえば、現在のプロジェ
クトで Pod の一覧を表示できます。

$ oc get pods

次に、任意の Pod に対してリモートシェルセッションを開きます。

$ oc rsh <pod>

コンテナーに入ると、必要な SCL が自動的に有効になります。

Bash シェルから mongo コマンドを実行し、MongoDB の対話セッションを開始して通常の
MongoDB 操作が実行できるようになりました。たとえば、sampledb データベースに切り替えて
データベースユーザーとして認証するには、以下を実行します。

bash-4.2$ mongo -u $MONGODB_USER -p $MONGODB_PASSWORD $MONGODB_DATABASE
MongoDB shell version: 2.6.9
connecting to: sampledb
>

完了したら、CTRL+D を押して、MongoDB セッションを終了します。

3.4.4.3. 環境変数

MongoDB ユーザー名、パスワード、データベース名および admin のパスワードは、以下の環境変数
で設定する必要があります。

表3.5 MongoDB 環境変数

変数名 説明

MONGODB_USER 作成する MongoDB アカウントのユーザー名

OpenShift Container Platform 3.10 イメージの使用

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#pods
https://www.softwarecollections.org/

MONGODB_PASSWORD ユーザーアカウントのパスワード

MONGODB_DATABASE データベース名

MONGODB_ADMIN_PASSWORD admin ユーザーのパスワード

変数名 説明

警告

ユーザー名、パスワード、データベース名および admin パスワードを指定する必
要があります。この 4 つすべてを指定しない場合には、Pod は起動できず、
OpenShift Container Platform は継続して Pod の再起動を試行します。

注記

管理者のユーザー名は admin に設定されます。admin のパスワード
は、MONGODB_ADMIN_PASSWORD 環境変数で設定する必要があります。このプロセス
は、データベースの初期化の実行時に行います。

MongoDB 設定は、以下の環境変数で設定できます。

表3.6 MongoDB の他の設定

変数名 説明 デフォ
ルト

MONGODB_NOPREALLOC データファイルの事前割り当てを無効にします。 true

MONGODB_SMALLFILES MongoDB がより小さなデータファイルサイズを使用するよう
にデフォルト設定します。

true

MONGODB_QUIET MongoDB を Quiet モードで実行して、出力量を制限しようと
します。

true

注記

テキスト検索は、MongoDB バージョン 2.6 以降ではデフォルトで有効になっているの
で、設定可能なパラメーターはありません。

3.4.4.4. ボリュームのマウントポイント

MongoDB イメージはマウントしたボリュームで実行して、データベース用に永続ストレージを有効化
できます。

/var/lib/mongodb/data: これは、MongoDB がデータベースファイルを保存するデータ



第3章 データベースイメージ

45

ベースのディレクトリーです。

3.4.4.5. パスワードの変更

パスワードはイメージ設定の一部であるため、データベースユーザー (MONGODB_USER) と admin
ユーザーのパスワードを変更するための唯一のサポートされている方法とし、環境変数
MONGODB_PASSWORD と MONGODB_ADMIN_PASSWORD をそれぞれ変更することができます。

現在のパスワードは、Pod またはデプロイメント設定を Web コンソールで表示するか、CLI で環境変
数を表示して、確認できます。

$ oc set env pod <pod_name> --list

MongoDB で直接データベースのパスワードを変更すると、変数に保存されている値と実際のパスワー
ドが一致しなくなる可能性があります。データベースコンテナーが起動するたびに、パスワードは環境
変数に保存されている値にリセットされます。

これらのパスワードを変更するには、oc set env コマンドを使用して、関連するデプロイメント設定
の任意の環境変数 1 つまたは両方を更新します。たとえば、テンプレートからアプリケーションを作成
する場合など、複数のデプロイメント設定がこれらの環境変数を使用する場合には、デプロイメント設
定ごとに変数を更新し、パスワードがどこでも同期されるようにします。これは、すべて同じコマンド
で実行できます。

$ oc set env dc <dc_name> [<dc_name_2> ...] \
 MONGODB_PASSWORD=<new_password> \
 MONGODB_ADMIN_PASSWORD=<new_admin_password>

重要

アプリケーションによっては、アプリケーションの他の場所にあるパスワードの他の環
境変数を更新して一致させる必要があるものもあります。たとえば、フロントエンド
Pod のより一般的な DATABASE_USER 変数などは、データベースユーザーのパスワード
と一致する必要がある場合があります。必要とされる環境変数すべてにおいて、パス
ワードがアプリケーションごとに一致しているようにしてください。一致しない場合に
は、トリガーされた時点で、Pod の再デプロイメントが失敗する場合があります。

設定変更トリガーが設定されている場合には、環境変数を更新すると、データベースサーバーの再デプ
ロイメントがトリガーされます。設定されていない場合には、新しいデプロイメントを手動で起動し
て、パスワードの変更を適用する必要があります。

新規パスワードが有効になっていることを確認するには、まず、実行中の MongoDB Pod に対してリ
モートシェルセッションを開きます。

$ oc rsh <pod>

Bash シェルから、データベースユーザーの新規パスワードを確認します。

bash-4.2$ mongo -u $MONGODB_USER -p <new_password> $MONGODB_DATABASE --
eval "db.version()"

パスワードが正しく変更された場合には、以下のような出力が表示されるはずです。

OpenShift Container Platform 3.10 イメージの使用

46

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#config-change-trigger

MongoDB shell version: 2.6.9
connecting to: sampledb
2.6.9

admin ユーザーの新規パスワードを確認するには、以下を実行します。

bash-4.2$ mongo -u admin -p <new_admin_password> admin --eval
"db.version()"

パスワードが正しく変更された場合には、以下のような出力が表示されるはずです。

MongoDB shell version: 2.6.9
connecting to: admin
2.6.9

3.4.5. テンプレートからのデータベースサービスの作成
OpenShift Container Platform には、新規データベースサービスの作成を容易にするテンプレートが
含まれています。テンプレートには、必須の環境変数をすべて定義するパラメーターフィールドがあり
(ユーザー、パスワード、データベース名など)、自動生成されたパスワード値など、事前定義済みのデ
フォルト値が設定されます。また、テンプレートは デプロイメント設定およびサービスの両方を定義し
ます。

MongoDB テンプレートは、クラスターの初期設定時にクラスター管理者により、デフォルトの
openshift プロジェクトに登録されている必要があります。詳細については、随時「デフォルトのイ
メージストリームおよびテンプレートの読み込み」を参照してください。

利用可能なテンプレートは以下の 2 種類です。

mongodb-ephemeral は、データベースのコンテンツ用に一時ストレージを使用するので、開
発またはテスト目的にのみ使用します。つまり、Pod が別の Pod に移動されたり、デプロイメ
ント設定が更新され、再デプロイがトリガーされたりなど、データベース Pod が何らかの理由
で再起動された場合には、データはすべて失われます。

mongodb-persistent は、データベースのデータ用に永続ボリュームストアを使用するの
で、データは Pod が再起動されても残ります。永続ボリュームを使用する場合には、
OpenShift Container Platform デプロイメントで定義された永続ボリュームプールが必要で
す。プールの設定に関するクラスター管理者向けの説明は、こちらを参照してください。

この「説明」に従い、テンプレートをインスタンス化できます。

サービスをインスタンス化したら、データベースにアクセスする予定のある別のコンポーネントのデプ
ロイメント設定に、ユーザー名、パスワード、データベース名の環境変数をコピーできます。このコン
ポーネントは、定義したサービスを使用してこのデータベースにアクセスできます。

3.4.6. MongoDB レプリケーション

注記

現在、テクノロジープレビューとして、データベースイメージ用にクラスター化を有効
にできますが、この機能は実稼働環境での使用を目的としていません。

第3章 データベースイメージ

47

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-imagestreams-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates

Red Hat は、StatefulSet を使用した MongoDB のレプリケーション (クラスタリング) 用に、概念実
証 テンプレートを提供します。GitHub からサンプルテンプレート を入手できます。

たとえば、現在のプロジェクトのテンプレートライブラリーにテンプレートのサンプルをアップロード
するには、以下を実行します。

$ oc create -f \
 https://raw.githubusercontent.com/sclorg/mongodb-
container/master/examples/petset/mongodb-petset-persistent.yaml

重要

以下のテンプレートサンプルでは、永続ストレージを使用します。このテンプレートを
使用するには、クラスターで永続ボリュームが利用できるようにする必要があります。

OpenShift Container Platform は正常でない Pod (コンテナー) を自動的に再起動するので、レプリ
カセットのメンバーの 1 つまたは複数で、クラッシュまたは障害が発生すると、レプリカセットメン
バーは再起動されます。

レプリカセットのメンバーがダウンまたは再起動している場合に考えられるシナリオは以下のいずれか
です。

1. プライマリーメンバーがダウンしている:
このような場合には、他の 2 つのメンバーが新しいプライマリーを選択します。新しいプライ
マリーが選択されるまで、読み取りには影響はありませんが、書き込みが失敗してしまいま
す。正常に選択された後には、書き込みおよび読み取りは通常通りに処理されます。

2. セカンダリーメンバーの 1 つがダウンしている:
読み取りおよび書き込みには影響はありません。oplogSize 設定と書き込み速度によって、3
番目のメンバーがレプリカセットへの参加に失敗する可能性があるため、手動の介入により
データベースのコピーをもう一度同期する必要があります。

3. 2 つのメンバーがダウンしている:
3 つのメンバーで構成されるレプリカセットメンバーが他のメンバーに到達できない場合に
は、プライマリーロールが指定されていれば、そのロールが取り消されます。このような場合
には、読み取りはセカンダリーメンバーが行い、書き込みに失敗します。他のメンバーが 1 つ
でも起動したらすぐに、新しいプライマリーメンバーが選択され、読み取りおよび書き込みが
通常通りに処理されます。

4. 全メンバーがダウンしている:
このように極端な場合は、読み取りおよび書き込み両方に失敗します。2 つ以上のメンバーが
起動してくると、レプリカセットメンバーにプライマリーとセカンダリーメンバーが含まれる
ように選択が行われ、その後に読み取りと書き込みが通常通りに処理されます。

これが MongoDB の推奨のレプリケーションストラテジーです。

注記

実稼働環境の場合には、できるだけメンバー間の分離を確保する必要があります。
StatefulSet Pod を異なるノードにスケジューリングするノード選択機能を 1 つまたは
複数使用し、個別のボリュームでサポートされるストレージを提供することを推奨しま
す。

3.4.6.1. 制限

OpenShift Container Platform 3.10 イメージの使用

48

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates
https://github.com/sclorg/mongodb-container/tree/master/examples/petset

MongoDB 3.2 のみがサポートされます。

スケールダウンする場合には、レプリカセットの設定は手動で更新する必要があります。

ユーザーおよび管理者のパスワードの変更は手動のプロセスで行います。以下を実行する必要
があります。

StatefulSet 設定の環境変数の値を更新する

データベースのパスワードを変更する

順次 Pod をすべて再起動する

3.4.6.2. サンプルテンプレートの使用

事前作成されている永続ボリューム 3 つあり、永続ボリュームのプロビジョニングが設定されているこ
とを前提とします。

1. MongoDB クラスターを作成する新規プロジェクトを作成します。

2. サンプルテンプレートを使用して新規アプリケーションを作成します。

このコマンドでは、3 つのレプリカセットメンバーを含む MongoDB クラスターが作成されま
した。

3. 新規の MongoDB Pod のステータスを確認します。

サンプルのテンプレートからクラスターを作成すると、3 つのメンバーを含むレプリカセットが作成さ
れます。Pod が実行されると、以下のようにこれらの Pod でさまざまなアクションを実行できます。

Pod の 1 つのログを確認します。

Pod にログインします。

MongoDB インスタンスにログインします。

$ oc new-project mongodb-cluster-example

$ oc new-app https://raw.githubusercontent.com/sclorg/mongodb-
container/master/examples/petset/mongodb-petset-persistent.yaml

$ oc get pods
NAME READY STATUS RESTARTS AGE
mongodb-0 1/1 Running 0 50s
mongodb-1 1/1 Running 0 50s
mongodb-2 1/1 Running 0 49s

$ oc logs mongodb-0

$ oc rsh mongodb-0
sh-4.2$

sh-4.2$ mongo $MONGODB_DATABASE -u $MONGODB_USER -p$MONGODB_PASSWORD
MongoDB shell version: 3.2.6
connecting to: sampledb

第3章 データベースイメージ

49

3.4.6.3. スケールアップ

MongoDB は、レプリカセット内に奇数の数のメンバーを指定することを推奨します。永続ボリューム
が十分に存在し、動的ストレージプロビジョナーがある場合には、oc scale を使用してスケールアッ
プを行います。

これにより、レプリカセットと接続する新規 Pod が作成され、設定が更新されます。

注記

oplogSize 設定よりもデータベースのサイズが大きい場合には、既存のデータベースは
手動でスケールアップする必要があります。このような場合には、新規メンバーの初回
同期を手動で行う必要があります。詳しい情報は、「Check the Size of the Oplog」
および「MongoDB Replication」ドキュメントを参照してください。

3.4.6.4. スケールダウン

レプリカセットをスケールダウンするには、メンバー数を 5 つから 3 つ、または 3 つから 1 つのみに
変更することができます。

前提条件 (ストレージの空き容量、既存のデータベースのサイズ、oplogSize) を満たす場合には、手
動での介入なしにスケールアップができますが、スケールダウンは常に手動での介入が必要です。

スケールダウンを実行するには、以下を実行します。

1. oc scale コマンドを使用して、新しいレプリカ数を設定します。

新しいレプリカ数が以前の数の過半数を占める場合には、削除された Pod の 1 つに、プライマ
リーメンバーロールを指定されていた時のために、レプリカセットにより新しいプライマリー
が選択される場合があります。たとえば、メンバーを 5 から 3 にスケールダウンする場合など
です。

また、少ない数にスケールダウンすると一時的に、レプリカセットに含まれるのがセカンダ
リーメンバーだけで、読み取り専用モードとなることがあります。たとえば、メンバーを 5 か
ら 1 にスケールダウンする場合などです。

2. 存在しなくなったメンバーを削除するように、レプリカセットの設定を更新します。
これは、レプリカ数の検査 (downward API 経由で公開) や StatefulSet から削除された Pod
を判断する PreStop Pod フックを設定し、それ以外の理由で再起動されないようにする実装
など、今後改善される可能性があります。

rs0:PRIMARY>

$ oc scale --replicas=5 statefulsets/mongodb

$ oc get pods
NAME READY STATUS RESTARTS AGE
mongodb-0 1/1 Running 0 9m
mongodb-1 1/1 Running 0 8m
mongodb-2 1/1 Running 0 8m
mongodb-3 1/1 Running 0 1m
mongodb-4 1/1 Running 0 57s

$ oc scale --replicas=3 statefulsets/mongodb

OpenShift Container Platform 3.10 イメージの使用

50

https://docs.mongodb.com/manual/tutorial/troubleshoot-replica-sets/#replica-set-troubleshooting-check-oplog-size
https://docs.mongodb.com/manual/replication/

3. 無効になった Pod が使用するボリュームを消去します。

3.5. MARIADB

3.5.1. 概要
OpenShift Container Platform には、MariaDB の実行用のコンテナーイメージがあります。このイ
メージでは、設定ファイルで指定されるユーザー名、パスワード、データベース名の設定に基づいて
データベースサービスが提供されます。

3.5.2. バージョン
現時点では、OpenShift Container Platform は MariaDB のバージョン 10.0 および 10.1 をサポート
します。

3.5.3. イメージ
これらのイメージには 2 つのフレーバーがあり、ニーズに合わせて選択できます。

RHEL 7

CentOS 7

RHEL 7 ベースのイメージ

RHEL 7 イメージは、Red Hat レジストリーから入手できます。

$ docker pull registry.access.redhat.com/rhscl/mariadb-100-rhel7
$ docker pull registry.access.redhat.com/rhscl/mariadb-101-rhel7

CentOS 7 ベースのイメージ

これらのイメージは、Docker Hub で入手できます。

$ docker pull openshift/mariadb-100-centos7
$ docker pull centos/mariadb-101-centos7

これらのイメージを使用するには、イメージレジストリーから直接アクセスするか、ご自身の
OpenShift Container Platform Docker レジストリーにプッシュしてください。さらに、Docker レ
ジストリーまたは外部の場所に、対象イメージを参照する ImageStream を作成することもでき、
OpenShift Container Platform リソースがこの ImageStream を参照できるようになります。提供
されているすべての OpenShift Container Platform イメージについて ImageStream の 定義例 があ
ります。

3.5.4. 設定および用途

3.5.4.1. データベースの初期化

共有ボリュームを初めて使用する場合には、データベース、データベースの管理ユーザー、MariaDB
root ユーザー (MYSQL_ROOT_PASSWORD 環境変数を指定した場合) が作成され、次に MariaDB デーモ
ンが起動します。別のコンテナーにボリュームを再アタッチする場合には、データベース、データベー
スユーザー、管理者ユーザーは作成されず、MariaDB デーモンが起動します。

第3章 データベースイメージ

51

https://github.com/sclorg/mariadb-container/tree/master/10.0
https://github.com/sclorg/mariadb-container/tree/master/10.1
https://github.com/openshift/origin/tree/master/examples/image-streams

以下のコマンドは、新しいデータベースの Pod を作成し、さらにコンテナー内で MariaDB を実行しま
す。

$ oc new-app \
 -e MYSQL_USER=<username> \
 -e MYSQL_PASSWORD=<password> \
 -e MYSQL_DATABASE=<database_name> \
 registry.access.redhat.com/rhscl/mariadb-101-rhel7

3.5.4.2. コンテナーでの MariaDB コマンドの実行

OpenShift Container Platform は Software Collections (SCL) を使用して、MariaDB をインス
トール、起動します。(デバッグ用に) 実行中のコンテナー内で MariaDB コマンドを実行する場合には
bash を使用して呼び出す必要があります。

これを実行するには、まず、実行中の MariaDB Pod の名前を特定します。たとえば、現在のプロジェ
クトで Pod の一覧を表示できます。

$ oc get pods

次に、Pod に対してリモートシェルセッションを開始します。

$ oc rsh <pod>

コンテナーに入ると、必要な SCL が自動的に有効になります。

Bash シェルから mysql コマンドを実行し、MariaDB の対話セッションを開始して通常の MariaDB
操作が実行できるようになりました。たとえば、データベースユーザーとして認証するには、以下を実
行します。

bash-4.2$ mysql -u $MYSQL_USER -p$MYSQL_PASSWORD -h $HOSTNAME
$MYSQL_DATABASE
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.5.37 MySQL Community Server (GPL)
...
mysql>

完了したら、quit または exit を入力して MySQL セッションを終了します。

3.5.4.3. 環境変数

MariaDB ユーザー名、パスワード、データベース名は、以下の環境変数で設定する必要があります。

表3.7 MariaDB 環境変数

変数名 説明

MYSQL_USER 作成する MySQL アカウントのユーザー名

MYSQL_PASSWORD ユーザーアカウントのパスワード

OpenShift Container Platform 3.10 イメージの使用

52

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#pods
https://www.softwarecollections.org/

MYSQL_DATABASE データベース名

MYSQL_ROOT_PASSWORD root ユーザーのパスワード (オプション)

変数名 説明

警告

ユーザー名、パスワード、データベース名を指定する必要があります。この 3 つす
べてを指定しない場合には、Pod は起動に失敗し、OpenShift Container
Platform は Pod の再起動を継続的に試行します。

MariaDB 設定は、以下の環境変数で設定できます。

表3.8 MariaDB の他の設定

変数名 説明 デフォ
ルト

MYSQL_LOWER_CASE_TAB
LE_NAMES

テーブル名の保存および比較方法を設定します。 0

MYSQL_MAX_CONNECTION
S

クライアントが同時に接続可能な最大数 151

MYSQL_MAX_ALLOWED_PA
CKET

生成された文字列/中間文字列または 1 つのパケットの最大サイ
ズ

200M

MYSQL_FT_MIN_WORD_LE
N

FULLTEXT インデックスに含める文字の最小長 4

MYSQL_FT_MAX_WORD_LE
N

FULLTEXT インデックスに含める文字の最大長 20

MYSQL_AIO ネイティブの AIO が壊れている場合に
innodb_use_native_aio の設定値を制御します。

1

MYSQL_TABLE_OPEN_CAC
HE

全スレッド用に開くテーブル数 400



第3章 データベースイメージ

53

MYSQL_KEY_BUFFER_SIZ
E

インデックスブロックに使用するバッファーサイズ 32M
(また
は利用
可能な
メモ
リーの
10%)

MYSQL_SORT_BUFFER_SI
ZE

分類に使用するバッファーサイズ 256K

MYSQL_READ_BUFFER_SI
ZE

シーケンススキャンに使用するバッファーサイズ 8M (ま
たは利
用可能
メモ
リーの
5%)

MYSQL_INNODB_BUFFER_
POOL_SIZE

InnoDB がテーブルやインデックスデータをキャッシュする
バッファープールのサイズ

32M
(また
は利用
可能な
メモ
リーの
50%)

MYSQL_INNODB_LOG_FIL
E_SIZE

ロググループにある各ログファイルのサイズ 8M (ま
たは利
用可能
メモ
リーの
15%)

MYSQL_INNODB_LOG_BUF
FER_SIZE

InnoDB がディスクのログファイルへの書き込みに使用する
バッファーサイズ

8M (ま
たは利
用可能
メモ
リーの
15%)

MYSQL_DEFAULTS_FILE 別の設定ファイルを参照します。 /etc/m
y.cnf

MYSQL_BINLOG_FORMAT binlog 形式で設定します。サポートされる値は、row および
statement です。

state
ment

変数名 説明 デフォ
ルト

OpenShift Container Platform 3.10 イメージの使用

54

3.5.4.4. ボリュームのマウントポイント

MariaDB イメージは、マウントしたボリュームで実行して、データベース用に永続ストレージを有効
化できます。

/var/lib/mysql/data: MySQL のデータディレクトリーは、MariaDB がデータベースファイ
ルを保存する場所にあります。

注記

ホストからコンテナーにディレクトリーをマウントする場合には、マウントしたディレ
クトリーに適切なパーミッションが設定されていることを確認してください。また、
ディレクトリーの所有者とグループが、コンテナー内で実行中のユーザー名と一致する
ことを確認します。

3.5.4.5. パスワードの変更

パスワードはイメージ設定の一部であるため、データベースユーザー (MYSQL_USER) と admin ユー
ザーのパスワードを変更するための唯一のサポートされる方法とし、環境変数 MYSQL_PASSWORD と
MYSQL_ROOT_PASSWORD をそれぞれ変更することができます。

現在のパスワードは、Pod またはデプロイメント設定を Web コンソールで表示するか、CLI で環境変
数を表示して、確認できます。

$ oc set env pod <pod_name> --list

SQL ステートメントや、前述した環境変数以外の方法でデータベースのパスワードを変更すると、変数
に保存されている値と、実際のパスワードが一致しなくなる可能性があります。データベースコンテ
ナーが起動するたびに、パスワードは環境変数に保存されている値にリセットされます。

これらのパスワードを変更するには、oc set env コマンドを使用して、関連するデプロイメント設定
の任意の環境変数 1 つまたは両方を更新します。たとえば、テンプレートからアプリケーションを作成
する場合など、複数のデプロイメント設定がこれらの環境変数を使用する場合には、デプロイメント設
定ごとに変数を更新し、パスワードがどこでも同期されるようにします。これは、すべて同じコマンド
で実行できます。

$ oc set env dc <dc_name> [<dc_name_2> ...] \
 MYSQL_PASSWORD=<new_password> \
 MYSQL_ROOT_PASSWORD=<new_root_password>

重要

アプリケーションによっては、アプリケーションの他の場所にあるパスワードの他の環
境変数を更新して合致させる必要があるものもあります。たとえば、フロントエンド
Pod のより一般的な DATABASE_USER 変数などは、データベースユーザーのパスワード
と合致する必要があります。必要とされる環境変数すべてにおいて、パスワードがアプ
リケーションごとに合致しているようにしてください。一致しない場合には、トリガー
された時点で、Pod の再デプロイメントに失敗する場合があります。

設定変更トリガーが設定されている場合には、環境変数を更新すると、データベースサーバーの再デプ
ロイメントがトリガーされます。設定されていない場合には、新しいデプロイメントを手動で起動し
て、パスワードの変更を適用する必要があります。

第3章 データベースイメージ

55

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#config-change-trigger

新規パスワードが有効になっていることを確認するには、まず、実行中の MariaDB Pod へのリモート
シェルセッションを開始します。

$ oc rsh <pod>

Bash シェルから、データベースユーザーの新規パスワードを確認します。

bash-4.2$ mysql -u $MYSQL_USER -p<new_password> -h $HOSTNAME
$MYSQL_DATABASE -te "SELECT * FROM (SELECT database()) db CROSS JOIN
(SELECT user()) u"

パスワードが正しく変更された場合には、以下のような表が表示されるはずです。

+------------+---------------------+
| database() | user() |
+------------+---------------------+
| sampledb | user0PG@172.17.42.1 |
+------------+---------------------+

root ユーザーの新規パスワードを確認するには、以下を実行します。

bash-4.2$ mysql -u root -p<new_root_password> -h $HOSTNAME $MYSQL_DATABASE
-te "SELECT * FROM (SELECT database()) db CROSS JOIN (SELECT user()) u"

パスワードが正しく変更された場合には、以下のような表が表示されるはずです。

+------------+------------------+
| database() | user() |
+------------+------------------+
| sampledb | root@172.17.42.1 |
+------------+------------------+

3.5.5. テンプレートからのデータベースサービスの作成
OpenShift Container Platform には、新規データベースサービスの作成を容易にするテンプレートが
含まれています。テンプレートには、必須の環境変数をすべて定義するパラメーターフィールドがあり
(ユーザー、パスワード、データベース名など)、自動生成されたパスワード値など、事前定義済みのデ
フォルト値が設定されます。また、テンプレートは デプロイメント設定およびサービスの両方を定義し
ます。

MariaDB テンプレートは、クラスターの初期設定時にクラスター管理者により、デフォルトの
openshift プロジェクトに登録しておく必要があります。詳細については、必要に応じて、「デフォ
ルトのイメージストリームおよびテンプレートの読み込み」を参照してください。

利用可能なテンプレートは以下の 2 種類です。

mariadb-ephemeral は、データベースのコンテンツ用に一時ストレージを使用するので、開
発またはテスト目的にのみ使用します。つまり、Pod が別の Pod に移動されたり、デプロイメ
ント設定が更新され、再デプロイがトリガーされたりなど、データベース Pod が何らかの理由
で再起動された場合には、データはすべて失われます。

mariadb-persistent は、データベースのデータ用に永続ボリュームストアを使用するの
で、データは Pod が再起動されても残ります。永続ボリュームを使用する場合には、
OpenShift Container Platform デプロイメントで定義された永続ボリュームプールが必要で

OpenShift Container Platform 3.10 イメージの使用

56

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-imagestreams-templates

す。プールの設定に関するクラスター管理者向けの説明は、こちらを参照してください。

この「説明」に従い、テンプレートをインスタンス化できます。

サービスをインスタンス化したら、データベースにアクセスする予定のある別のコンポーネントのデプ
ロイメント設定に、ユーザー名、パスワード、データベース名の環境変数をコピーできます。このコン
ポーネントは、定義したサービスを使用してこのデータベースにアクセスできます。

3.5.6. トラブルシューティング
以下のセクションでは、発生する可能性のある問題と、考えられる解決策を説明します。

3.5.6.1. Linux ネイティブの AIO の障害

現象

MySQL コンテナーが起動に失敗し、以下のようなログを出力します。

151113 5:06:56 InnoDB: Using Linux native AIO
151113 5:06:56 InnoDB: Warning: io_setup() failed with EAGAIN. Will make
5 attempts before giving up.
InnoDB: Warning: io_setup() attempt 1 failed.
InnoDB: Warning: io_setup() attempt 2 failed.
Waiting for MySQL to start ...
InnoDB: Warning: io_setup() attempt 3 failed.
InnoDB: Warning: io_setup() attempt 4 failed.
Waiting for MySQL to start ...
InnoDB: Warning: io_setup() attempt 5 failed.
151113 5:06:59 InnoDB: Error: io_setup() failed with EAGAIN after 5
attempts.
InnoDB: You can disable Linux Native AIO by setting innodb_use_native_aio
= 0 in my.cnf
151113 5:06:59 InnoDB: Fatal error: cannot initialize AIO sub-system
151113 5:06:59 [ERROR] Plugin 'InnoDB' init function returned error.
151113 5:06:59 [ERROR] Plugin 'InnoDB' registration as a STORAGE ENGINE
failed.
151113 5:06:59 [ERROR] Unknown/unsupported storage engine: InnoDB
151113 5:06:59 [ERROR] Aborting

説明

MariaDB のストレージエンジンは、リソース制限が原因で、カーネルの AIO (非同期 I/O) 機能を使用
できませんでした。

解決策

環境変数 MYSQL_AIO の値を 0 に設定して、AIO の使用を完全に停止します。今後のデプロイメントで
は、この設定により MySQL の設定変数 innodb_use_native_aio の値が 0 に指定されます。

または aio-max-nr カーネルリソースを増やします。以下の例では、現在の aio-max-nr の値を検証
して、この値を 2 倍にします。

$ sysctl fs.aio-max-nr
fs.aio-max-nr = 1048576
sysctl -w fs.aio-max-nr=2097152

第3章 データベースイメージ

57

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates

これはノードごとの解決策であるため、次にノードが再起動されるまで有効です。

OpenShift Container Platform 3.10 イメージの使用

58

第4章 他のイメージ

4.1. 概要
以下のトピックには、OpenShift Container Platform ユーザーに提供される、さまざまなコンテナー
イメージに関する情報が含まれます。

4.2. JENKINS

4.2.1. 概要
OpenShift Container Platform には、Jenkins 実行用のコンテナーイメージがあります。このイメー
ジには、Jenkins サーバーインスタンスが含まれており、このインスタンスを使用して継続的なテス
ト、統合、デリバリーの基本フローを設定することができます。

このイメージにはサンプルの Jenkins ジョブが含まれており、OpenShift Container Platform で定義
した BuildConfig の新しいビルドをトリガーし、そのビルドの出力をテストします。ビルドに成功す
ると、この出力に再度タグ付けして、ビルドが実稼働環境での使用準備ができたことを示します。詳細
情報は、README を参照してください。

OpenShift Container Platform は、Jenkins の LTS リリースに従います。OpenShift Container
Platform には、Jenkins 2.x を含むイメージを提供します。Jenkins 1.x の別のイメージが以前は提供
されていましたが、このイメージに対するメンテナンスは終了しました。

4.2.2. イメージ
OpenShift Container Platform Jenkins イメージのフレーバーは 2 種類あります。

RHEL 7 ベースのイメージ

RHEL 7 イメージは、Red Hat レジストリーから入手できます。

$ docker pull registry.access.redhat.com/openshift3/jenkins-2-rhel7

CentOS 7 ベースのイメージ

このイメージは、Docker Hub で入手できます。

$ docker pull openshift/jenkins-2-centos7

これらのイメージを使用するには、イメージレジストリーから直接アクセスするか、ご自身の
OpenShift Container Platform Docker レジストリーにプッシュしてください。さらに、Docker レ
ジストリーまたは外部の場所に、対象イメージを参照する ImageStream を作成することもでき、
OpenShift Container Platform リソースがこの ImageStream を参照できるようになります。提供
されているすべての OpenShift Container Platform イメージについて ImageStream の 定義例 があ
ります。

4.2.3. 設定およびカスタマイズ

4.2.3.1. 認証

Jenkins 認証は、以下の 2 つの方法で管理できます。

第4章 他のイメージ

59

https://github.com/openshift/origin/blob/master/examples/jenkins/README.md
https://jenkins.io/changelog-stable/
https://github.com/openshift/origin/tree/master/examples/image-streams

OpenShift ログインプラグインが提供する OpenShift Container Platform OAuth 認証

Jenkins が提供する標準認証

4.2.3.1.1. OpenShift Container Platform OAuth 認証

OAuth 認証 は、Jenkins UI の Configure Global Security パネルで設定するか、Jenkins デプロ
イメント設定 の OPENSHIFT_ENABLE_OAUTH 環境変数を false 以外に設定して、有効化します。こ
れにより、OpenShift ログインプラグインが有効になり、Pod データからまたは、OpenShift
Container Platform API サーバーと対話して設定情報を取得します。

有効な認証情報は、OpenShift Container Platform アイデンティティープロバイダーが制御します。
たとえば、Allow All がデフォルトのアイデンティティープロバイダーの場合には、ユーザー名とパ
スワードの両方に、空でなければどのような文字列でも指定できます。

Jenkins は ブラウザー および ブラウザー以外 のアクセスをサポートします。

OpenShift Container Platform ロール で、ユーザーに割り当てられる固有の Jenkins パーミッショ
ンが指定されている場合には、有効なユーザーは、ログイン時に自動的に Jenkins 認証マトリックスに
追加されます。

admin ロールが割り当てられたユーザーは、従来の Jenkins 管理ユーザー権限が割り当てられま
す。edit または view ロールを持つユーザーのパーミッションは徐々に少なくなります。Jenkins
パーミッションと OpenShift ロールのマッピングに関する具体的な情報については、Jenkins image
source repository README を参照してください。

注記

OpenShift Container Platform OAuth を使用する場合には、OpenShift Container
Platform クラスター管理者が明示的に OpenShift Container Platform アイデンティ
ティープロバイダーでそのユーザーを定義し、admin ロールを割り当てない限り、
OpenShift Container Platform Jenkins イメージ内で管理者権限で事前に生成された
admin ユーザーには、これらの権限は割り当てられません。

Jenkins のユーザーパーミッションは、最初にユーザー作成してから変更できます。OpenShift ログイ
ンプラグインは、OpenShift Container Platform API サーバーをポーリングしてパーミッションを取
得し、ユーザーごとに Jenkins に保存されているパーミッションを、OpenShift Container Platform
から取得したパーミッションに更新します。Jenkins UI を使用して Jenkins ユーザーのパーミッショ
ンを更新する場合には、プラグインが次回に OpenShift Container Platform をポーリングするタイミ
ングで、パーミッションの変更が上書きされます。

ポーリングの頻度は OPENSHIFT_PERMISSIONS_POLL_INTERVAL 環境変数で制御できます。デフォ
ルトのポーリングの間隔は 5 分です。

OAuth 認証を使用して最も簡単に Jenkins サービスを作成する方法は、以下の説明のようにテンプ
レートを使用する方法です。

4.2.3.1.2. Jenkins 標準認証

テンプレートを使用せず、イメージが直接実行される場合には、デフォルトで Jenkins 認証が使用され
ます。

Jenkins の初回起動時には、設定、管理ユーザーおよびパスワードが作成されます。デフォルトのユー
ザー認証は、admin および password です。標準の Jenkins 認証を使用する場合 (のみ)、デフォルト
のパスワードは、JENKINS_PASSWORD 環境変数で設定します。

OpenShift Container Platform 3.10 イメージの使用

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#oauth
https://github.com/openshift/jenkins-openshift-login-plugin/blob/master/README.md#browser-access
https://github.com/openshift/jenkins-openshift-login-plugin/blob/master/README.md#non-browser-access
https://github.com/openshift/jenkins#jenkins-admin-user

標準の Jenkins 認証を使用して、新しい Jenkins アプリケーションを作成するには以下を実行しま
す。

$ oc new-app -e \
 JENKINS_PASSWORD=<password> \
 openshift/jenkins-2-centos7

4.2.3.2. 環境変数

Jenkins サーバーは、以下の環境変数で設定できます。

OPENSHIFT_ENABLE_OAUTH (デフォルト: false)
Jenkins へのログイン時に OpenShift ログインプラグインが認証を管理するかどうかを決定し
ます。有効にするには、true に設定します。

JENKINS_PASSWORD (デフォルト: password)
標準の Jenkins 認証を使用時の admin ユーザーのパスワード。OPENSHIFT_ENABLE_OAUTH
が true に設定されている場合には該当しません。

OPENSHIFT_JENKINS_JVM_ARCH
x86_64 または i386 に設定して、Jenkins のホストに使用する JVM を上書きします。メモ
リー効率を確保するため、メモリー制限が 2 GiB 以下のコンテナーで実行される場合には、
Jenkins イメージはデフォルトで 32 ビットの JVM を動的に使用します。

JAVA_MAX_HEAP_PARAM
CONTAINER_HEAP_PERCENT (デフォルト: 0.5 または 50%)
JENKINS_MAX_HEAP_UPPER_BOUND_MB
これらの値は Jenkins JVM の最大ヒープサイズを制御します。JAVA_MAX_HEAP_PARAM が設
定されている場合には (設定例: -Xmx512m)、この値が優先されます。設定されていない場合に
は、最大ヒープサイズは動的に、コンテナーメモリー制限の CONTAINER_HEAP_PERCENT%
(設定例: 0.5 または 50%) として計算され、オプションで
JENKINS_MAX_HEAP_UPPER_BOUND_MB MiB (設定例: 512) を上限とします。

デフォルトでは Jenkins JVM の最大ヒープサイズは、上限なしでコンテナーメモリー制限の
50% に設定されます。

JAVA_INITIAL_HEAP_PARAM
CONTAINER_INITIAL_PERCENT
これらの値は Jenkins JVM の初期ヒープサイズを制御します。JAVA_INITIAL_HEAP_PARAM
が設定されている場合には (設定例: -Xmx32m)、この値が優先されます。設定されていない場
合には、初期ヒープサイズは動的に、コンテナーメモリー制限の
CONTAINER_INITIAL_PERCENT% (設定例: 0.1 または 10%) として計算されます。

デフォルトでは、初期のヒープサイズは JVM に依存します。

CONTAINER_CORE_LIMIT
設定されている場合には、内部の JVM スレッドのサイジング数に使用するコアの数を整数で指
定します。設定例: 2

JAVA_TOOL_OPTIONS (デフォルト: -XX:+UnlockExperimentalVMOptions -
XX:+UseCGroupMemoryLimitForHeap -Dsun.zip.disableMemoryMapping=true)
対象のコンテナーで実行中のすべての JVM が従うオプションを指定します。この値の上書きは
推奨していません。

JAVA_GC_OPTS (デフォルト: -XX:+UseParallelGC -XX:MinHeapFreeRatio=5 -
XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4 -

第4章 他のイメージ

61

XX:AdaptiveSizePolicyWeight=90)
Jenkins JVM ガーベッジコレクションのパラメーターを指定します。この値の上書きは推奨し
ていません。

JENKINS_JAVA_OVERRIDES
Jenkins JVM の追加オプションを指定します。これらのオプションは、上記の Java オプショ
ンなどその他すべてのオプションに追加され、必要に応じてそれらの値のいずれかを上書きす
るのに使用できます。追加オプションがある場合には、スペースで区切ります。オプションに
スペース文字が含まれる場合には、バックスラッシュでエスケープしてください。設定例: -
Dfoo -Dbar; -Dfoo=first\ value -Dbar=second\ value

JENKINS_OPTS
Jenkins への引数を指定します。

INSTALL_PLUGINS
コンテナーが初めて実行された場合や、OVERRIDE_PV_PLUGINS_WITH_IMAGE_PLUGINS が
true に設定されている場合 (以下参照) に、追加の Jenkins プラグインを指定します。プラグ
インは、名前:バージョンのペアをコンマ区切りの一覧して指定します。設定例:
git:3.7.0,subversion:2.10.2

OPENSHIFT_PERMISSIONS_POLL_INTERVAL (デフォルト: 300000 - 5 分)
OpenShift ログインプラグインが Jenkins に定義されているユーザーごとに関連付けられた
パーミッションを取得するために OpenShift Container Platform をポーリングする頻度をミ
リ秒単位で指定します。

OVERRIDE_PV_CONFIG_WITH_IMAGE_CONFIG (デフォルト: false)
Jenkins 設定ディレクトリー用に OpenShift Container Platform 永続ボリュームを使用して
このイメージを実行する場合に、永続ボリューム要求の作成により永続ボリュームが割り当て
られるので、イメージから永続ボリュームに設定が移行されるのは、イメージの初回起動時だ
けです。このイメージを拡張するカスタムイメージを作成して、初回起動後にそのカスタムイ
メージの設定を更新する場合には、デフォルトで、この環境変数を true に設定していない限
りコピーされません。

OVERRIDE_PV_PLUGINS_WITH_IMAGE_PLUGINS (デフォルト: false)
Jenkins 設定ディレクトリー用に OpenShift Container Platform 永続ボリュームを使用して
このイメージを実行する場合に、永続ボリューム要求の作成により永続ボリュームが割り当て
られるので、イメージから永続ボリュームにプラグインが移行されるのは、イメージの初回起
動時だけです。このイメージを拡張するカスタムイメージを作成して、初回起動後にそのカス
タムイメージの設定を更新する場合には、デフォルトで、この環境変数を true に設定してい
ない限りコピーされません。

4.2.3.3. プロジェクト間のアクセス

同じプロジェクト内のデプロイメントとしてではなく、別の場所で Jenkins を実行する場合には、プロ
ジェクトにアクセスするために、Jenkins にアクセストークンを提供する必要があります。

1. Jenkins がアクセスするのに必要なプロジェクトへの適切なパーミッションが指定されている
サービスアカウントのシークレットを特定します。

$ oc describe serviceaccount jenkins
Name: default
Labels: <none>
Secrets: { jenkins-token-uyswp }
 { jenkins-dockercfg-xcr3d }
Tokens: jenkins-token-izv1u
 jenkins-token-uyswp

OpenShift Container Platform 3.10 イメージの使用

62

今回の場合は、対象のシークレットは jenkins-token-uyswp という名前です。

2. シークレットからトークンを取得します。

$ oc describe secret <secret name from above> # for example,
jenkins-token-uyswp
Name: jenkins-token-uyswp
Labels: <none>
Annotations: kubernetes.io/service-
account.name=jenkins,kubernetes.io/service-account.uid=32f5b661-
2a8f-11e5-9528-3c970e3bf0b7
Type: kubernetes.io/service-account-token
Data
====
ca.crt: 1066 bytes
token: eyJhbGc..<content cut>....wRA

トークンフィールドには、Jenkins がプロジェクトへのアクセスに必要とするトークンの値が含まれま
す。

4.2.3.4. ボリュームのマウントポイント

Jenkins イメージは、マウントしたボリュームで実行して、設定用に永続ストレージを有効化できま
す。

/var/lib/jenkins: これは、Jenkins がジョブの定義などの設定ファイルを保存するデータ
ディレクトリーです。

4.2.3.5. Source-To-Image での Jenkins イメージのカスタマイズ

正式な OpenShift Container Platform Jenkins イメージをカスタマイズするには、以下の 2 つのオ
プションがあります。

Docker のレイヤリングを使用する

ここに記載されているように Source-To-Image としてイメージを使用する

「S2I」を使用して、カスタムの Jenkins ジョブ定義、追加のプラグインをコピーしたり、同梱の
config.xml ファイルを独自のカスタムの設定に置き換えたりできます。

Jenkins イメージに変更を追加するには、以下のディレクトリー構造の Git リポジトリーが必要です。

plugins
このディレクトリーには、Jenkins にコピーするバイナリーの Jenkins プラグインを含めます。

plugins.txt
このファイルには、インストールするプラグインを記載します。

pluginId:pluginVersion

configuration/jobs
このディレクトリーには、Jenkins ジョブ定義を含めます。

configuration/config.xml

第4章 他のイメージ

63

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/architecture/#source-build

1

2

3

このファイルには、カスタムの Jenkins 設定を含めます。

configuration/ ディレクトリーのコンテンツは /var/lib/jenkins/ ディレクトリーにコピーされる
ので、このディレクトリーに credentials.xml などのファイルをさらに追加することもできます。

以下は、OpenShift Container Platform で Jenkins イメージをカスタマイズするビルド設定例です。

source フィールドでは、上記のレイアウトでソースの Git リポジトリーを定義します。

strategy フィールドでは、ビルドのソースイメージとして使用するための元の Jenkins イメー
ジを定義します。

output フィールドは、公式の Jenkins イメージの代わりにデプロイメント設定で使用できる、
カスタマイズして作成された Jenkins イメージを定義します。

4.2.3.6. Jenkins Kubernetes プラグインの設定

OpenShift Container Platform Jenkins イメージには、事前にインストール済みの Kubernetes プラ
グイン があり、Kubernetes および OpenShift Container Platform を使用して、Jenkins スレーブ
を動的に複数のコンテナーホストでプロビジョニングできるようにします。

OpenShift Container Platform は、Kubernetes プラグインを使用するために、Jenkins スレーブと
して使用するのに適したイメージを 3 つ (Base、Maven および Node.js) 提供します。詳しい情報
は、「Jenkins スレーブ」を参照してください。

Maven および Node.js のスレーブイメージは、Kubernetes プラグイン用の OpenShift Container
Platform Jenkins イメージの設定内で、自動的に Kubernetes Pod テンプレートイメージとして構成
されます。この設定には、イメージごとのラベルが含まれており、"Restrict where this project can
be run" に設定されている Jenkins ジョブのいずれかに適用できます。ラベルが適用されると、適切な
スレーブイメージを実行する OpenShift Container Platform Pod で指定のジョブが実行されます。

Jenkins イメージは、Kubernetes プラグインの追加のスレーブイメージを自動検出および自動設定し
ます。OpenShift 同期プラグイン では、Jenkins の起動時に Jenkins イメージが実行中のプロジェク
トまたは、プラグインの設定に具体的に記載されているプロジェクト内で、以下がないか検索します。

apiVersion: v1
kind: BuildConfig
metadata:
 name: custom-jenkins-build
spec:
 source: 1
 git:
 uri: https://github.com/custom/repository
 type: Git
 strategy: 2
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: jenkins:latest
 namespace: openshift
 type: Source
 output: 3
 to:
 kind: ImageStreamTag
 name: custom-jenkins:latest

OpenShift Container Platform 3.10 イメージの使用

64

https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin
https://github.com/openshift/jenkins-sync-plugin

ラベル role が jenkins-slave に設定されているイメージストリーム

アノテーション role が jenkins-slave に設定されているイメージストリーム

ラベル role が jenkins-slave に設定されている ConfigMap

適切なラベルまたは、適切なアノテーションが付いたイメージストリームタグが見つかると、適切な
Kubernetes プラグイン設定が生成され、イメージストリーム提供のコンテナーイメージを実行する
Pod で、Jenkins ジョブを実行するように割り当てることができます。

イメージストリームまたはイメージストリームタグのイメージ参照および名前が、Kubernetes プラグ
インの Pod テンプレートにある名前およびイメージフィールドにマッピングされます。Kubernetes
プラグインの Pod テンプレートのラベルフィールドは、イメージストリームにアノテーションを設定
するか、イメージストリームタグオブジェクトに slave-label キーを設定して制御できます。これら
を使用しない場合には、名前をラベルとして使用します。

適切なラベルが指定された ConfigMap が見つかった場合には、ConfigMap のキーおよび値のデータ
ペイロードに Jenkins および Kubernetes プラグインの Pod テンプレートの設定形式に準拠する
XML が含まれることを前提とします。ConfigMap を使用時に注意すべき主な違いは、イメージスト
リームまたはイメージストリームタグではなく、Kubernetes プラグインの Pod テンプレートの各種
フィールドすべてを制御できます。

以下は ConfigMap の例です。

kind: ConfigMap
apiVersion: v1
metadata:
 name: jenkins-slave
 labels:
 role: jenkins-slave
data:
 template1: |-
 <org.csanchez.jenkins.plugins.kubernetes.PodTemplate>
 <inheritFrom></inheritFrom>
 <name>template1</name>
 <instanceCap>2147483647</instanceCap>
 <idleMinutes>0</idleMinutes>
 <label>template1</label>
 <serviceAccount>jenkins</serviceAccount>
 <nodeSelector></nodeSelector>
 <volumes/>
 <containers>
 <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <name>jnlp</name>
 
 <privileged>false</privileged>
 <alwaysPullImage>true</alwaysPullImage>
 <workingDir>/tmp</workingDir>
 <command></command>
 <args>${computer.jnlpmac} ${computer.name}</args>
 <ttyEnabled>false</ttyEnabled>
 <resourceRequestCpu></resourceRequestCpu>
 <resourceRequestMemory></resourceRequestMemory>
 <resourceLimitCpu></resourceLimitCpu>
 <resourceLimitMemory></resourceLimitMemory>
 <envVars/>

第4章 他のイメージ

65

起動後に OpenShift 同期プラグイン は、ImageStreams、ImageStreamTags および ConfigMaps
に更新がないか、OpenShift Container Platform の API サーバーをモニタリングして、Kubernetes
プラグインの設定を調節します。

特に以下のルールが適用されます。

ConfigMap、ImageStream または ImageStreamTag からラベルまたはアノテーションを削
除すると、既存の PodTemplate が Kubernetes プラグインの設定から削除されてしまいま
す。

同様に、これらのオブジェクトが削除されると、該当の設定が Kubernetes プラグインから削
除されます。

それとは逆に、適切なラベルおよびアノテーションが付いた ConfigMap、ImageStream また
は ImageStreamTag オブジェクトを作成するか、初回作成後にラベルを追加すると、
Kubernetes プラグイン設定に PodTemplate が作成されてしまいます。

ConfigMap フォームを使用した PodTemplate の場合には、PodTemplate の ConfigMap
データへの変更は、Kubernetes プラグイン設定の PodTemplate 設定に適用さ
れ、ConfigMap に変更を加えてから次に変更を加えるまでの間に、Jenkins UI で加えた
PodTemplate の変更は上書きされます。

Jenkins スレーブとしてコンテナーイメージを使用するには、イメージは、スレーブエージェントをエ
ントリーポイントとして実行する必要があります。これに関する詳細情報は、公式の Jenkins ドキュメ
ント を参照してください。

4.2.3.6.1. パーミッションの留意事項

以前の ConfigMap の例では、Pod テンプレート XML の <serviceAccount> 要素は、作成される
Pod で使用する OpenShift Container Platform サービスアカウントとなっています。Pod にマウン
トされたサービスアカウントの認証情報と、そのサービスアカウントに関連付けられたパーミッション
で、どの OpenShift Container Platform マスターが Pod からアクセスできるかを制御します。

OpenShift Container Platform Jenkins イメージで実行される Kubernetes プラグインで起動される
Pod で使用されるサービスアカウントでは、以下を考慮してください。

OpenShift Container Platform で提供される Jenkins のテンプレートサンプルを使用する場
合には、jenkins サービスアカウントが、Jenkins が実行されているプロジェクトの edit
ロールで定義され、マスター Jenkins Pod にサービスアカウントがマウントされます。

Jenkins 設定に挿入される、2 つのデフォルトの Maven および NodeJS Pod テンプレート
は、マスターと同じサービスアカウンを使用するように設定されます。

イメージストリームやイメージストリームタグに必須のラベルやアノテーションが指定されて
いる結果として、OpenShift Sync プラグイン が自動検出した Pod テンプレートには、マス
ターのサービスアカウントがそのサービスアカウントとして設定されます。

Pod テンプレートの定義を Jenkins と Kubernetes プラグインにわたす他の方法ですが、使用
するサービスアカウントを明示的に指定します。

 </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 </containers>
 <envVars/>
 <annotations/>
 <imagePullSecrets/>
 <nodeProperties/>
 </org.csanchez.jenkins.plugins.kubernetes.PodTemplate>

OpenShift Container Platform 3.10 イメージの使用

66

https://github.com/openshift/jenkins-sync-plugin
https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds#Distributedbuilds-Launchslaveagentheadlessly
https://github.com/openshift/jenkins-sync-plugin

他の方法には、Jenkins コンソール、Kubernetes プラグインで提供される podTemplate パ
イプライン DSL または Pod テンプレートのXML 設定をデータとする ConfigMap のラベル付
けなどが含まれます。

サービスアカウントの値を指定しない場合には、default のサービスアカウントが使用されま
す。

使用するサービスアカウントが何であっても、必要なパーミッション、ロールなどを
OpenShift Container Platform で定義して、Pod から操作することにしたプロジェクトをす
べて操作できるようにする必要があります。

4.2.4. 使用法

4.2.4.1. テンプレートからの Jenkins サービスの作成

テンプレート には各種パラメーターフィールドがあり、事前定義されたデフォルト値で全環境変数 (パ
スワード) を定義できます。OpenShift Container Platform では、新規の Jenkins サービスを簡単に
作成できるようにテンプレートが提供されています。クラスター管理者は、初期のクラスター設定時
に、Jenkins テンプレートをデフォルトの openshift プロジェクトに登録しておく必要があります。
詳細は、必要に応じて、「デフォルトのイメージストリームとテンプレートの読み込み」を参照してく
ださい。

デプロイメント設定およびサービス。

注記

Pod は、別のノードに移動時、またはデプロイメント設定の更新で再デプロイメントが
トリガーされた時に再起動される可能性があります。

jenkins-persistent は永続ボリュームストアを使用します。データは Pod が再起動されて
も保持されます。

テンプレートをインスタンス化して、Jenkins を使用できるようにします。

4.2.4.2. Jenkins Kubernetes プラグインの使用

新規 Jenkins サービスの作成

以下の例では、openshift-jee-sample BuildConfig により、Jenkins maven スレーブ Pod が動的に
プロビジョニングされます。この Pod は Java ソースのクローン作成、WAR ファイルのビルドを行
い、次に 2 番目の BuildConfig (openshift-jee-sample-docker) を実行して、新規作成した WAR
ファイルの層を Docker イメージに対して作成します。

同様のタスクを実行する、より詳細にわたる例は こちらで確認できます。

例4.1 Jenkins Kubernetes プラグインを使用した BuildConfig の例

kind: List
apiVersion: v1
items:
- kind: ImageStream
 apiVersion: v1
 metadata:
 name: openshift-jee-sample
- kind: BuildConfig

第4章 他のイメージ

67

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-imagestreams-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates
https://github.com/openshift/origin/blob/master/examples/jenkins/pipeline/maven-pipeline.yaml

動的に作成された Jenkins スレーブ Pod の仕様を上書きすることも可能です。以下は、コンテナーメ
モリーを上書きして、環境変数を指定するように、上記の例を変更しています。

例4.2 Jenkins Kubernetes プラグインを使用した BuildConfig の例 (メモリー制限および環
境変数の指定)

 apiVersion: v1
 metadata:
 name: openshift-jee-sample-docker
 spec:
 strategy:
 type: Docker
 source:
 type: Docker
 dockerfile: |-
 FROM openshift/wildfly-101-centos7:latest
 COPY ROOT.war /wildfly/standalone/deployments/ROOT.war
 CMD $STI_SCRIPTS_PATH/run
 binary:
 asFile: ROOT.war
 output:
 to:
 kind: ImageStreamTag
 name: openshift-jee-sample:latest
- kind: BuildConfig
 apiVersion: v1
 metadata:
 name: openshift-jee-sample
 spec:
 strategy:
 type: JenkinsPipeline
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node("maven") {
 sh "git clone https://github.com/openshift/openshift-jee-
sample.git ."
 sh "mvn -B -Popenshift package"
 sh "oc start-build -F openshift-jee-sample-docker --from-
file=target/ROOT.war"
 }
 triggers:
 - type: ConfigChange

kind: BuildConfig
apiVersion: v1
metadata:
 name: openshift-jee-sample
spec:
 strategy:
 type: JenkinsPipeline
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 podTemplate(label: "mypod", 1
 cloud: "openshift", 2

OpenShift Container Platform 3.10 イメージの使用

68

1

2

3

4

5

6

7

8

9

「mypod」と呼ばれる新規 Pod テンプレートがその場で定義されます。この新しい Pod テン
プレート名は、以下のノードスタンザで参照されます。

「cloud」の値は「openshift」に設定する必要があります。

新しい Pod テンプレートは、既存の Pod テンプレートから設定を継承できます。今回の例で
は、OpenShift Container Platform で事前定義された「maven」Pod テンプレートを継承し
ます。

既存のコンテナーの値を上書きするので、名前で指定する必要があります。OpenShift
Container Platform に含まれる Jenkins スレーブイメージはすべて、コンテナー名として
「jnlp」を使用します。

コンテナーイメージは、再度指定する必要があります。これは既知の問題です。

512Mi のメモリー要求を指定します。

512Mi のメモリー制限を指定します。

環境変数 CONTAINER_HEAP_PERCENT に「0.25」の値を指定します。

ノードスタンザは、上記で新たに定義した Pod テンプレート名を参照します。

Kubernetes プラグインの設定に関する詳細は、Kubernetes プラグインのドキュメントを参照してく
ださい。

4.2.4.3. メモリーの要件

提供される Jenkins の一時また永続テンプレートでデプロイする場合にはデフォルトのメモリー制限は
512MiB です。

 inheritFrom: "maven", 3
 containers: [
 containerTemplate(name: "jnlp", 4
 image: "openshift/jenkins-slave-maven-
centos7:v3.9", 5
 resourceRequestMemory: "512Mi", 6
 resourceLimitMemory: "512Mi", 7
 envVars: [
 envVar(key: "CONTAINER_HEAP_PERCENT", value: "0.25") 8
])
]) {
 node("mypod") { 9
 sh "git clone https://github.com/openshift/openshift-jee-
sample.git ."
 sh "mvn -B -Popenshift package"
 sh "oc start-build -F openshift-jee-sample-docker --from-
file=target/ROOT.war"
 }
 }
 triggers:
 - type: ConfigChange

第4章 他のイメージ

69

https://github.com/jenkinsci/kubernetes-plugin

Jenkins が使用する JVM のチューニングに関する参考情報は 「OpenShift Container Platform での
OpenJDK のサイジング」を参照してください。

メモリー効率に関して、メモリー制限が 2 GiB 以下に指定されたコンテナーで実行中の場合には、デ
フォルトで Jenkins イメージが動的に 32 ビットの JVMを使用します。この動作
は、OPENSHIFT_JENKINS_JVM_ARCH 環境変数で上書きできます。

デフォルトでは、Jenkins JVM はヒープにコンテナーメモリー制限の 50% を使用します。この値
は、CONTAINER_HEAP_PERCENT の環境変数で変更可能です。また、上限を指定することも、すべて
上書きすることも可能です。詳しい情報は、「環境変数」を参照してください。

デフォルトでは、パイプラインからローカルで実行されるシェルスクリプトや oc コマンドなど、
Jenkins コンテナーで実行される他の全プロセスでは、OOM kill を呼び出さずに、残りの 256MiB 以
上のメモリーを組み合わせて使用できる可能性が低い点を考慮してください。そのため、パイプライン
は、できる限りスレーブコンテナーで外部のコマンドを実行することを強く推奨します。

Jenkins Kubernetes プラグインを作成したスレーブコンテナーで、メモリー要求および制限の値を指
定することを推奨します。管理者は、Jenkins 設定を使用して、デフォルトをスレーブのイメージごと
に設定できます。メモリー要求および制限は、上記 のようにコンテナーベースでも上書きできます。

Jenkins で利用可能なメモリー量を増やすには、Jenkins 一時または永続テンプレートをインスタンス
化する時に、MEMORY_LIMIT パラメーターを上書きします。

4.2.5. Jenkins プラグイン
以下のプラグインは、Jenkins と OpenShift Container Platform の統合用に提供されています。これ
らのプラグインは、デフォルトで Jenkins イメージに含まれています。

4.2.5.1. OpenShift Container Platform Client プラグイン

OpenShift Container Platform クライアントプラグインは、OpenShift Container Platform と強力
な対話を行うために、信頼性があり、簡潔で包括的な、流れるような (fluent) Jenkins Pipeline 構文
を提供することが目的です。このプラグインは oc バイナリーを活用しますが、このバイナリーは、ス
クリプトを実行するノードで利用できるようにしておく必要があります。

このプラグインは、Jenkins イメージで完全にサポートされており、イメージに含まれています。この
プラグインでは以下が提供されます。

Jenkins Pipeline で使用するための流れるような構文

oc で利用可能なオプションでの使用および公開

Jenkins の認証情報およびクラスターとの統合

従来の Jenkins Freestyle ジョブに対する継続的なサポート

詳しい情報は、「OpenShift Pipeline ビルドのチュートリアル」および プラグインの README を参
照してください。

4.2.5.2. OpenShift Container Platform Pipeline プラグイン

OpenShift Container Platform Pipeline プラグインは、Jenkins と OpenShift Container Platform
が統合する前のプラグインで、OpenShift Container Platform クライアントプラグインよりも機能が
少なくなっています。このプラグインは依然として利用でき、サポートが提供されます。

詳しい情報は、プラグインの READMEを参照してください。

OpenShift Container Platform 3.10 イメージの使用

70

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#sizing-openjdk
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#
https://github.com/openshift/jenkins-client-plugin
https://github.com/openshift/jenkins-plugin

4.2.5.3. OpenShift Container Platform Sync プラグイン

OpenShift Container Platform Pipeline ビルドストラテジーが Jenkins と OpenShift Container
Platform をスムーズに統合できるように、OpenShift Sync プラグイン は OpenShift Container
Platform の API サーバーをモニタリングして、Pipeline ストラテジーを採用する BuildConfigs と
Builds に更新がないか確認し、Jenkins Pipeline プロジェクトを作成するか (BuildConfig の作成
時) または、作成されたプロジェクトでジョブを開始します (Build の起動時)。

「Jenkins Kubernetes プラグインの設定」で記載されているように、このプラグインは、OpenShift
Container Platform に定義済みで具体的に引用された ImageStream、ImageStreamTag または
ConfigMap オブジェクトをベースに、Kubernetes プラグインの PodTemplate 設定を作成できま
す。

このプラグインは、credential.sync.jenkins.openshift.io のラベルキーと、true のラベル
の値が指定された Secret オブジェクトを受け入れて Jenkins 認証情報を構築し、Jenkins 認証情報階
層内のデフォルトのグローバルドメインに配置できるようになりました。認証情報の ID は、Secret
が定義されている namespace、ハイフン (-)、その後の Secret の名前で構成されます。

PodTemplates の ConfigMaps の処理と同様に、OpenShift Container Platform で定義された
Secret オブジェクトは、マスター設定とみなされます。OpenShift Container Platform のオブジェ
クトのその後の更新は、Jenkins 認証情報に適用されます (その間に認証情報に加えられた変更を上書
きします)。

credential.sync.jenkins.openshift.io プロパティーを削除したり、このプロパティーを
true 以外に設定したり、OpenShift Container Platform から Secret を削除したりすると、
Jenkins の関連の認証情報が削除されます。

シークレットのタイプは、以下のように Jenkins 認証情報タイプにマッピングされます。

Opaque タイプの Secret オブジェクトの場合には、プラグインは data セクション内で
username および password を検索し、Jenkins UsernamePasswordCredentials 認証情報
を構築します。OpenShift Container Platform では、password フィールドには、実際のパ
スワードまたはユーザーの一意のトークンを指定できることを忘れないでください。これらが
指定されていない場合には、ssh-privatekey フィールドを検索し、Jenkins
BasicSSHUserPrivateKey の認証情報を作成します。

kubernetes.io/basic-auth タイプの `Secret` オブジェクトの場合は、プラグインは
Jenkins UsernamePasswordCredentials の認証情報を作成します。

kubernetes.io/ssh-auth タイプの Secret オブジェクトの場合には、プラグインは
Jenkins BasicSSHUserPrivateKey 認証情報を作成します。

4.2.5.4. Kubernetes プラグイン

Kubernetes プラグインは、クラスターの Pod として Jenkins スレーブを実行するために使用されま
す。Kubernetes プラグインの自動設定については、「Jenkins Kubernetes プラグインの使用」で説
明されています。

4.3. JENKINS エージェント

4.3.1. 概要
OpenShift Container Platform では、Jenkins エージェントとして使用するのに適したイメージを 3
つ (Base、Maven および Node.js) 提供します。

第4章 他のイメージ

71

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#pipeline-strategy-options
https://github.com/openshift/jenkins-sync-plugin

注記

以下のイメージは OpenShift Container Platform 3.10 で非推奨になります。

jenkins-slave-maven-*
jenkins-slave-nodejs-*

アプリケーションを新しいイメージに移行できるように、このイメージはしばらく存在
します。

jenkins-agent-maven-*
jenkins-agent-nodejs-*

最初は、Jenkins エージェントの ベースイメージです。

必須のツール (ヘッドレス Java、Jenkins JNLP クライアント) および役立つツール (git、tar、
zip、nss など) の両方を取り入れます。

JNLP エージェントをエントリーポイントとして確立します。

Jenkins ジョブ内からコマンドラインの操作を呼び出す oc クライアントツールが含まれます。

CentOS および RHEL イメージ両方に対して Dockerfile を提供します。

ベースイメージを拡張するイメージがさらに 2 つ提供されます。

Maven

Node.js

Maven および Node.js Jenkins エージェントイメージには、CentOS および RHEL 両方用の
Dockerfiles が含まれており、新規エージェントイメージをビルドする場合に参照できます。ま
た、contrib および contrib/bin サブディレクトリーにも注目してください。このサブディレクト
リーでは、イメージについての設定ファイルや実行可能なスクリプトの挿入が可能です。

重要

使用する OpenShift Container Platform バージョンに適したエージェントイメージ
バージョンを使用し、継承するようにしてください。エージェントイメージに埋め込ま
れた oc クライアントバージョンが OpenShift Container Platform バージョンと互換
性がない場合には、予期せぬ動作が発生する可能性があります。詳細情報は、
「versioning policy」を参照してください。

4.3.2. イメージ
OpenShift Container Platform Jenkins エージェントイメージのフレーバーは 2 種類あります。

RHEL 7 ベースのイメージ

RHEL 7 イメージは、Red Hat レジストリーから入手できます。

$ docker pull registry.access.redhat.com/openshift3/jenkins-slave-base-
rhel7
$ docker pull registry.access.redhat.com/openshift3/jenkins-slave-maven-

OpenShift Container Platform 3.10 イメージの使用

72

https://github.com/openshift/jenkins/tree/master/slave-base
https://github.com/openshift/jenkins/tree/master/slave-maven
https://github.com/openshift/jenkins/tree/master/slave-nodejs
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/release_notes/#release-versioning-policy

rhel7
$ docker pull registry.access.redhat.com/openshift3/jenkins-slave-nodejs-
rhel7

CentOS 7 ベースのイメージ

これらのイメージは、Docker Hub で入手できます。

$ docker pull openshift/jenkins-slave-base-centos7
$ docker pull openshift/jenkins-slave-maven-centos7
$ docker pull openshift/jenkins-slave-nodejs-centos7

これらのイメージを使用するには、イメージレジストリーから直接アクセスするか、ご自身の
OpenShift Container Platform Docker レジストリーにプッシュしてください。

4.3.3. 設定およびカスタマイズ

4.3.3.1. 環境変数

各 Jenkins エージェントコンテナーは、以下の環境変数で設定できます。

OPENSHIFT_JENKINS_JVM_ARCH
x86_64 または i386 に設定して、Jenkins エージェントのホストに使用する JVM を上書きし
ます。メモリー効率を確保するため、メモリー制限が 2 GiB 以下のコンテナーで実行される場
合には、Jenkins エージェントイメージはデフォルトで 32 ビットの JVM を動的に使用しま
す。

JAVA_MAX_HEAP_PARAM
CONTAINER_HEAP_PERCENT (デフォルト: 0.5、50%)
JNLP_MAX_HEAP_UPPER_BOUND_MB
これらの値は Jenkins エージェントの JVM の最大ヒープサイズを制御しま
す。JAVA_MAX_HEAP_PARAM が設定されている場合には (設定例: -Xmx512m)、この値が優先
されます。設定されていない場合には、最大ヒープサイズは動的に、コンテナーメモリー制限
の CONTAINER_HEAP_PERCENT% (設定例: 0.5、50%) として計算され、オプションで
JNLP_MAX_HEAP_UPPER_BOUND_MB MiB (設定例: 512) を上限とします。

デフォルトでは Jenkins エージェントの JVM の最大ヒープサイズは、上限なしで、コンテナー
メモリー制限の 50% に設定されます。

JAVA_INITIAL_HEAP_PARAM
CONTAINER_INITIAL_PERCENT
これらの値は Jenkins エージェントの JVM の初期ヒープサイズを制御しま
す。JAVA_INITIAL_HEAP_PARAM が設定されている場合には (設定例: -Xmx32m)、この値が
優先されます。設定されていない場合には、初期ヒープサイズは動的に、コンテナーメモリー
制限の CONTAINER_INITIAL_PERCENT% (設定例: 0.1、10%) として計算されます。

デフォルトでは、初期のヒープサイズは JVM に依存します。

CONTAINER_CORE_LIMIT
設定されている場合には、内部の JVM スレッドのサイジング数に使用するコアの数を整数で指
定します。設定例: 2

JAVA_TOOL_OPTIONS (デフォルト: -XX:+UnlockExperimentalVMOptions -
XX:+UseCGroupMemoryLimitForHeap -Dsun.zip.disableMemoryMapping=true)

第4章 他のイメージ

73

対象のコンテナーで実行中のすべての JVM が従うオプションを指定します。この値の上書きは
推奨していません。

JAVA_GC_OPTS (デフォルト: -XX:+UseParallelGC -XX:MinHeapFreeRatio=5 -
XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeight=90)
Jenkins エージェントの JVM ガーベッジコレクションのパラメーターを指定します。この値の
上書きは推奨していません。

JNLP_JAVA_OVERRIDES
Jenkins エージェントの JVM の追加オプションを指定します。これらのオプションは、上記の
Java オプションなどその他すべてのオプションに追加され、必要に応じてそれらの値のいずれ
かを上書きするのに使用できます。追加オプションがある場合には、スペースで区切ります。
オプションにスペース文字が含まれる場合には、バックスラッシュでエスケープしてくださ
い。設定例: -Dfoo -Dbar; -Dfoo=first\ value -Dbar=second\ value

4.3.4. 使用法

4.3.4.1. メモリーの要件

Jenkins JNLP エージェントのホストや、Java アプリケーション (例: javac、Maven または Gradle)
の実行に、Jenkins すべてにおいて JVM を使用します。Jenkins エージェントが使用する JVM の
チューニングに関する参考情報は、「OpenShift Container Platform での OpenJDK のサイジング」
を参照してください。

メモリー効率に関して、メモリー制限が 2 GiB 以下指定されたコンテナーで実行中の場合には、デフォ
ルトで Jenkins イメージが動的に 32 ビットの JVMを使用します。この動作
は、OPENSHIFT_JENKINS_JVM_ARCH 環境変数で上書きできます。JVM の選択は、デフォルトでエー
ジェントコンテナー内の Jenkins JNLP エージェントおよび、他の Java プロセスの両方に適用されま
す。

デフォルトでは、Jenkins JNLP エージェント JVM はヒープにコンテナーメモリー制限の 50% を使用
します。この値は、CONTAINER_HEAP_PERCENT の環境変数で変更可能です。また、上限を指定する
ことも、すべて上書きすることも可能です。詳しい情報は、「環境変数」を参照してください。

デフォルトでは、パイプラインから実行されるシェルスクリプトや oc コマンドなど、Jenkins エー
ジェントコンテナーで実行される他の全プロセスでは、OOM kill を呼び出さずに、メモリー制限の残
り 50% を超えたメモリーを使用できる可能性が低い点を考慮してください。

デフォルトでは、Jenkins エージェントコンテナーで実行される他の JVM プロセスは、最大でコンテ
ナーメモリー制限の 25% をヒープに使用します。これは、多くのビルドワークロード用にチューニン
グする必要がある場合があります。詳細情報は、「OpenShift Container Platform での OpenJDK の
サイジング」を参照してください。

Jenkins エージェントコンテナーのメモリー要求や制限の指定に関する情報は、Jenkins ドキュメン
トを参照してください。

4.3.4.1.1. Gradle ビルド

OpenShift の Jenkins エージェントで Gradle ビルドをホストすると、Jenkins JNLP エージェントお
よび Gradle JVM に加え、Gradle が 3 番目の JVM を起動してテストを実行するので、複雑性が増し
ます。

OpenShift での JVM のチューニングに関する参考情報は、「OpenShift Container Platform での
OpenJDK のサイジング」を参照してください。

OpenShift Container Platform 3.10 イメージの使用

74

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#sizing-openjdk
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#sizing-openjdk
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#sizing-openjdk

以下の設定は、OpenShift 上のメモリーに制約がある Jenkins エージェントで Gradle ビルドを実行
する場合の開始点として推奨されます。必要に応じて、後で設定を緩和することができます。

gradle.properties ファイルに org.gradle.daemon=false を追加して、long-lived gradle
デーモンを無効にするようにします。

gradle.properties ファイルで org.gradle.parallel=true が設定されていないこと、ま
た、コマンドラインの引数として --parallel が指定されていないことを確認して、並行ビル
ドの実行を無効にします。

build.gradle ファイルでの java { options.fork = false } を設定して、プロセス以外
で Java がコンパイルされないようにします。

build.gradle ファイルで test { maxParallelForks = 1 } が設定されていることを確認
して、複数の追加テストプロセスを無効にします。

「OpenShift Container Platform での OpenJDK のサイジング」に従い、GRADLE_OPTS、
JAVA_OPTS または JAVA_TOOL_OPTIONS の環境変数で、gradle JVM メモリーパラメーター
を上書きします。

buile.gradle の maxHeapSize および jvmArgs の設定、または -Dorg.gradle.jvmargs
コマンドラインの引数で、Gradle テスト JVM に最大ヒープサイズおよび JVM の引数を設定し
ます。

4.4. 他のコンテナーイメージ

Red Hat Container Catalog に含まれていないコンテナーイメージを使用する場合には、Docker
Hub にある他の任意のコンテナーイメージを OpenShift Container Platform インスタンスで使用で
きます。

任意の割り当てられたユーザー ID を使用してコンテナーを実行する場合の OpenShift Container
Platform 固有のガイドラインについては、『イメージの作成』ガイドの「任意の ID のサポート」を参
照してください。

重要

サポートの詳細については、「OpenShift Enterprise サポートポリシー」で定義されて
いる製品サポートの対象範囲を参照してください。

「システム及び環境要件」のセキュリティー警告も参照してください。

第4章 他のイメージ

75

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/developer_guide/#sizing-openjdk
https://access.redhat.com/containers/
https://registry.hub.docker.com/
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.10/html-single/creating_images/#use-uid
https://access.redhat.com/ja/support/policy/updates/openshift/policies
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#security-warning

第5章 XPAAS ミドルウェアイメージ

5.1. 概要
Red Hat は、OpenShift Container Platform 用に設計されたミドルウェア製品のホストとして使用で
きるように、コンテナー化された xPaaS イメージを提供します。OpenShift Container Platform の
3.2 リリースについては、これらのイメージに関するドキュメントは、Red Hat カスタマーポータル
で参照できます。

OpenShift Container Platform 3.10 イメージの使用

76

https://access.redhat.com/documentation/en/red-hat-jboss-middleware-for-openshift/

	目次
	第1章 概要
	第2章 SOURCE-TO-IMAGE (S2I)
	2.1. 概要
	2.2. .NET CORE
	2.2.1. .NET Core を使用する利点
	2.2.2. サポートされているバージョン
	2.2.3. イメージ
	2.2.4. ビルドプロセス
	2.2.5. 環境変数
	2.2.6. .NET Core ソースからのアプリケーションのクイックデプロイ
	2.2.7. .NET Core テンプレート

	2.3. NODE.JS
	2.3.1. 概要
	2.3.2. バージョン
	2.3.3. イメージ
	2.3.4. ビルドプロセス
	2.3.5. 設定
	2.3.6. ホットデプロイ

	2.4. PERL
	2.4.1. 概要
	2.4.2. バージョン
	2.4.3. イメージ
	2.4.4. ビルドプロセス
	2.4.5. 設定
	2.4.6. ログへのアクセス
	2.4.7. ホットデプロイ

	2.5. PHP
	2.5.1. 概要
	2.5.2. バージョン
	2.5.3. イメージ
	2.5.4. ビルドプロセス
	2.5.5. 設定
	2.5.5.1. Apache 設定

	2.5.6. ログへのアクセス
	2.5.7. ホットデプロイ

	2.6. PYTHON
	2.6.1. 概要
	2.6.2. バージョン
	2.6.3. イメージ
	2.6.4. ビルドプロセス
	2.6.5. 設定
	2.6.6. ホットデプロイ

	2.7. RUBY
	2.7.1. 概要
	2.7.2. バージョン
	2.7.3. イメージ
	2.7.4. ビルドプロセス
	2.7.5. 設定
	2.7.6. ホットデプロイ

	2.8. S2I イメージのカスタマイズ
	2.8.1. 概要
	2.8.2. イメージに埋め込まれたスクリプトの呼び出し

	第3章 データベースイメージ
	3.1. 概要
	3.2. MYSQL
	3.2.1. 概要
	3.2.2. バージョン
	3.2.3. イメージ
	3.2.4. 設定および用途
	3.2.4.1. データベースの初期化
	3.2.4.2. コンテナーでの MySQL コマンドの実行
	3.2.4.3. 環境変数
	3.2.4.4. ボリュームのマウントポイント
	3.2.4.5. パスワードの変更

	3.2.5. テンプレートからのデータベースサービスの作成
	3.2.6. MySQL のレプリケーションの使用
	3.2.6.1. MySQL マスターのデプロイメント設定の作成
	3.2.6.2. ヘッドレスサービスの作成
	3.2.6.3. MySQL スレーブのスケーリング

	3.2.7. トラブルシューティング
	3.2.7.1. Linux ネイティブの AIO の障害

	3.3. POSTGRESQL
	3.3.1. 概要
	3.3.2. バージョン
	3.3.3. イメージ
	3.3.4. 設定および用途
	3.3.4.1. データベースの初期化
	3.3.4.2. コンテナーでの PostgreSQL コマンドの実行
	3.3.4.3. 環境変数
	3.3.4.4. ボリュームのマウントポイント
	3.3.4.5. パスワードの変更

	3.3.5. テンプレートからのデータベースサービスの作成

	3.4. MONGODB
	3.4.1. 概要
	3.4.2. バージョン
	3.4.3. イメージ
	3.4.4. 設定および用途
	3.4.4.1. データベースの初期化
	3.4.4.2. コンテナーでの MongoDB コマンドの実行
	3.4.4.3. 環境変数
	3.4.4.4. ボリュームのマウントポイント
	3.4.4.5. パスワードの変更

	3.4.5. テンプレートからのデータベースサービスの作成
	3.4.6. MongoDB レプリケーション
	3.4.6.1. 制限
	3.4.6.2. サンプルテンプレートの使用
	3.4.6.3. スケールアップ
	3.4.6.4. スケールダウン

	3.5. MARIADB
	3.5.1. 概要
	3.5.2. バージョン
	3.5.3. イメージ
	3.5.4. 設定および用途
	3.5.4.1. データベースの初期化
	3.5.4.2. コンテナーでの MariaDB コマンドの実行
	3.5.4.3. 環境変数
	3.5.4.4. ボリュームのマウントポイント
	3.5.4.5. パスワードの変更

	3.5.5. テンプレートからのデータベースサービスの作成
	3.5.6. トラブルシューティング
	3.5.6.1. Linux ネイティブの AIO の障害

	第4章 他のイメージ
	4.1. 概要
	4.2. JENKINS
	4.2.1. 概要
	4.2.2. イメージ
	4.2.3. 設定およびカスタマイズ
	4.2.3.1. 認証
	4.2.3.2. 環境変数
	4.2.3.3. プロジェクト間のアクセス
	4.2.3.4. ボリュームのマウントポイント
	4.2.3.5. Source-To-Image での Jenkins イメージのカスタマイズ
	4.2.3.6. Jenkins Kubernetes プラグインの設定

	4.2.4. 使用法
	4.2.4.1. テンプレートからの Jenkins サービスの作成
	4.2.4.2. Jenkins Kubernetes プラグインの使用
	4.2.4.3. メモリーの要件

	4.2.5. Jenkins プラグイン
	4.2.5.1. OpenShift Container Platform Client プラグイン
	4.2.5.2. OpenShift Container Platform Pipeline プラグイン
	4.2.5.3. OpenShift Container Platform Sync プラグイン
	4.2.5.4. Kubernetes プラグイン

	4.3. JENKINS エージェント
	4.3.1. 概要
	4.3.2. イメージ
	4.3.3. 設定およびカスタマイズ
	4.3.3.1. 環境変数

	4.3.4. 使用法
	4.3.4.1. メモリーの要件

	4.4. 他のコンテナーイメージ

	第5章 XPAAS ミドルウェアイメージ
	5.1. 概要

