
OpenShift Container Platform 3.9

クラスター管理

OpenShift Container Platform 3.9 Cluster Administration

Last Updated: 2021-05-10

OpenShift Container Platform 3.9 クラスター管理

OpenShift Container Platform 3.9 Cluster Administration

法律上の通知

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要

『OpenShift クラスター管理』では、OpenShift クラスターを管理するための通常のタスクや他の
詳細設定についてのトピックを扱います。

. .

. .

. .

. .

. .

目次

第1章 概要

第2章 MANAGING NODES
2.1. 概要
2.2. LISTING NODES
2.3. ADDING NODES
2.4. DELETING NODES
2.5. UPDATING LABELS ON NODES
2.6. LISTING PODS ON NODES
2.7. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE
2.8. EVACUATING PODS ON NODES
2.9. REBOOTING NODES

2.9.1. Infrastructure Nodes
2.9.2. Using Pod Anti-affinity
2.9.3. Handling Nodes Running Routers

2.10. ノードリソースの設定
2.10.1. Setting Maximum Pods Per Node

2.11. RESETTING DOCKER STORAGE
2.12. CHANGING NODE TRAFFIC INTERFACE

第3章 ユーザーの管理
3.1. 概要
3.2. ユーザーの作成
3.3. ユーザーおよび ID リストの表示
3.4. グループの作成
3.5. ユーザーおよびグループラベルの管理
3.6. ユーザーの削除

第4章 プロジェクトの管理
4.1. 概要
4.2. プロジェクトのセルフプロビジョニング

4.2.1. 新規プロジェクトのテンプレートの変更
4.2.2. セルフプロビジョニングの無効化

4.3. ノードセレクターの使用
4.3.1. クラスター全体でのデフォルトノードセレクターの設定
4.3.2. プロジェクト全体でのノードセレクターの設定
4.3.3. 開発者が指定するノードセレクター

4.4. ユーザーあたりのセルフプロビジョニングされたプロジェクト数の制限

第5章 POD の管理
5.1. 概要
5.2. 1 回実行 (RUN-ONCE) POD 期間の制限

5.2.1. RunOnceDuration プラグインの設定
5.2.2. プロジェクト別のカスタム期間の指定

5.2.2.1. Egress ルーター Pod のデプロイ
5.2.2.2. Egress ルーターサービスのデプロイ

5.2.3. Egress ファイアウォールでの Pod アクセスの制限
5.2.3.1. Pod アクセス制限の設定

5.3. POD で利用可能な帯域幅の制限
5.4. POD の DISRUPTION BUDGET (停止状態の予算) の設定
5.5. INJECTING INFORMATION INTO PODS USING POD PRESETS

11

12
12
12
13
13
14
14
14
15
15
16
16
17
17
18
19

20

22
22
22
22
23
24
24

25
25
25
25
26
26
26
27
28
28

30
30
30
30
30
31
32
32
33
34
35
36

目次

1

. .

. .

. .

. .

. .

第6章 ネットワークの管理
6.1. 概要
6.2. POD ネットワークの管理

6.2.1. プロジェクトネットワークへの参加
6.3. プロジェクトネットワークの分離

6.3.1. プロジェクトネットワークのグローバル化
6.4. ルートおよび INGRESS オブジェクトにおけるホスト名の競合防止の無効化
6.5. EGRESS トラフィックの制御

6.5.1. 外部リソースへのアクセスを制限するための Egress ファイアウォールの使用
6.5.2. 外部リソースから Pod トラフィックを認識可能にするための Egress ルーターの使用

6.5.2.1. リダイレクトモードでの Egress ルーター Pod のデプロイ
6.5.2.2. 複数の宛先へのリダイレクト
6.5.2.3. ConfigMap の使用による EGRESS_DESTINATION の指定
6.5.2.4. Egress ルーター HTTP プロキシー Pod のデプロイ
6.5.2.5. Egress ルーター Pod のフェイルオーバーの有効化

6.5.3. 外部リソースへのアクセスを制限するための iptables ルールの使用
6.6. 外部プロジェクトトラフィックの静的 IP の有効化
6.7. マルチキャストの有効化
6.8. NETWORKPOLICY の有効化

6.8.1. NetworkPolicy およびルーター
6.8.2. 新規プロジェクトのデフォルト NetworkPolicy の設定

6.9. HTTP STRICT TRANSPORT SECURITY の有効化
6.10. スループットの問題のトラブルシューティング

第7章 サービスアカウントの設定
7.1. 概要
7.2. ユーザー名およびグループ
7.3. サービスアカウントの管理
7.4. サービスアカウント認証の有効化
7.5. 管理サービスアカウント
7.6. インフラストラクチャーサービスアカウント
7.7. サービスアカウントおよびシークレット

第8章 ロールベースアクセス制御 (RBAC) の管理
8.1. 概要
8.2. VIEWING ROLES AND BINDINGS

8.2.1. Viewing Cluster Roles
8.2.2. Viewing Local Roles and Bindings

8.3. MANAGING ROLE BINDINGS
8.4. CREATING A LOCAL ROLE
8.5. CLUSTER AND LOCAL ROLE BINDINGS

第9章 イメージポリシー
9.1. 概要
9.2. インポート用に許可されるレジストリーの設定
9.3. IMAGEPOLICY 受付プラグインの設定
9.4. IMAGEPOLICY 受付プラグインのテスト

第10章 イメージの署名
10.1. 概要
10.2. ATOMIC CLI を使用したイメージの署名
10.3. OPENSHIFT CLI を使用したイメージ署名の検証
10.4. レジストリー API の使用によるイメージ署名へのアクセス

10.4.1. API 経由でのイメージ署名の書き込み

38
38
38
38
38
38
39
40
40
43
44
46
46
47
50
51
51
52
53
54
55
56
57

59
59
59
60
61
61

62
62

63
63
63
63
71
72
74
75

76
76
76
77
79

81
81
81

82
83
83

OpenShift Container Platform 3.9 クラスター管理

2

. .

. .

. .

. .

10.4.2. API 経由でのイメージ署名の読み取り
10.4.3. 署名ストアからのイメージ署名の自動インポート

第11章 スコープ付きトークン
11.1. 概要
11.2. 評価
11.3. ユーザースコープ
11.4. ロールスコープ

第12章 イメージのモニタリング
12.1. 概要
12.2. イメージ統計の表示
12.3. IMAGESTREAMS 統計の表示
12.4. イメージのプルーニング

第13章 SCC (SECURITY CONTEXT CONSTRAINTS) の管理
13.1. 概要
13.2. SCC (SECURITY CONTEXT CONSTRAINTS) の一覧表示
13.3. SCC (SECURITY CONTEXT CONSTRAINTS) オブジェクトの検査
13.4. 新規 SCC (SECURITY CONTEXT CONSTRAINTS) の作成
13.5. SCC (SECURITY CONTEXT CONSTRAINTS) の削除
13.6. SCC (SECURITY CONTEXT CONSTRAINTS) の更新

13.6.1. SCC (Security Context Constraints) 設定のサンプル
13.7. デフォルト SCC (SECURITY CONTEXT CONSTRAINTS) の更新
13.8. 使用方法

13.8.1. 特権付き SCC のアクセス付与
13.8.2. 特権付き SCC のサービスアカウントアクセスの付与
13.8.3. Dokerfile の USER によるイメージ実行の有効化
13.8.4. ルートを要求するコンテナーイメージの有効化
13.8.5. レジストリーでの --mount-host の使用
13.8.6. 追加機能の提供
13.8.7. クラスターのデフォルト動作の変更
13.8.8. hostPath ボリュームプラグインの使用
13.8.9. 受付を使用した特定 SCC の初回使用
13.8.10. SCC のユーザー、グループまたはプロジェクトへの追加

第14章 スケジューリング
14.1. 概要

14.1.1. 概要
14.1.2. デフォルトスケジューリング
14.1.3. 詳細スケジューリング
14.1.4. カスタムスケジューリング

14.2. デフォルトスケジューリング
14.2.1. 概要
14.2.2. 汎用スケジューラー
14.2.3. ノードのフィルター

14.2.3.1. フィルターされたノード一覧の優先順位付け
14.2.3.2. 最適ノードの選択

14.2.4. スケジューラーポリシー
14.2.4.1. スケジューラーポリシーの変更

14.2.5. 利用可能な述語
14.2.5.1. 静的な述語

14.2.5.1.1. デフォルトの述語
14.2.5.1.2. 他の静的な述語

83
84

86
86
86
86
86

87
87
87
87
88

89
89
89
89
90
91
91

92
92
93
93
94
94
94
95
95
95
96
96
96

98
98
98
98
98
98
98
98
98
99
99
99
99
101
102
102
102
103

目次

3

14.2.5.2. 汎用的な述語
汎用的な非クリティカル述語
汎用的なクリティカル述語

14.2.5.3. 設定可能な述語
14.2.6. 利用可能な優先度

14.2.6.1. 静的優先度
14.2.6.1.1. デフォルトの優先度
14.2.6.1.2. 他の静的優先度

14.2.6.2. 設定可能な優先度
14.2.7. 使用例

14.2.7.1. インフラストラクチャーのトポロジーレベル
14.2.7.2. アフィニティー
14.2.7.3. 非アフィニティー

14.2.8. ポリシー設定のサンプル
14.3. カスタムスケジューリング

14.3.1. 概要
14.3.2. Deploying the Scheduler

14.4. POD 配置の制御
14.4.1. 概要
14.4.2. ノード名の使用による Pod 配置の制約
14.4.3. ノードセレクターの使用による Pod 配置の制約
14.4.4. プロジェクト対する Pod 配置の制御

14.5. 詳細スケジューリング
14.5.1. 概要
14.5.2. 詳細スケジューリングの使用

14.6. 詳細スケジューリングおよびノードのアフィニティー
14.6.1. 概要
14.6.2. ノードのアフィニティーの設定

14.6.2.1. ノードアフィニティーの required (必須) ルールの設定
14.6.2.2. ノードアフィニティーの preferred (優先) ルールの設定

14.6.3. 例
14.6.3.1. 一致するラベルを持つノードのアフィニティー
14.6.3.2. 一致するラベルのないノードのアフィニティー

14.7. 詳細スケジューリングおよび POD のアフィニティーと非アフィニティー
14.7.1. 概要
14.7.2. Pod のアフィニティーおよび非アフィニティーの設定

14.7.2.1. アフィニティールールの設定
14.7.2.2. 非アフィニティールールの設定

14.7.3. 例
14.7.3.1. Pod のアフィニティー
14.7.3.2. Pod の非アフィニティー
14.7.3.3. 一致するラベルのない Pod のアフィニティー

14.8. 詳細スケジューリングおよびノードセレクター
14.8.1. 概要
14.8.2. ノードセレクターの設定

14.9. 詳細スケジューリングおよび容認
14.9.1. 概要
14.9.2. テイントおよび容認 (Toleration)

14.9.2.1. 複数テイントの使用
14.9.3. テイントの既存ノードへの追加
14.9.4. 容認の Pod への追加

14.9.4.1. Pod のエビクションを遅延させる容認期間 (秒数) の使用
14.9.4.1.1. 容認の秒数のデフォルト値の設定

104
104
104
105
107
107
107
108
108
110
110
110
110
111

113
113
114
115
115
115
116
117

120
120
121
121
121
122
124
125
125
125
126
127
127
127
129
130
131
131
132
133
133
133
134
135
135
135
137
137
138
138
139

OpenShift Container Platform 3.9 クラスター管理

4

. .

. .

. .

. .

14.9.5. Preventing Pod Eviction for Node Problems
14.9.6. Daemonset および容認
14.9.7. 例

14.9.7.1. ノードをユーザー専用にする
14.9.7.2. ユーザーのノードへのバインド
14.9.7.3. 特殊ハードウェアを持つノード

第15章 クォータの設定
15.1. 概要
15.2. クォータで管理されるリソース
15.3. クォータのスコープ
15.4. クォータの実施
15.5. REQUESTS VS LIMITS
15.6. リソースクォータ定義のサンプル
15.7. クォータの作成
15.8. クォータの表示
15.9. クォータの同期期間の設定
15.10. デプロイメント設定におけるクォータアカウンティング
15.11. リソース消費における明示的なクォータの要求

第16章 複数プロジェクトのクォータ設定
16.1. 概要
16.2. プロジェクトの選択
16.3. 適用可能な CLUSTERRESOURCEQUOTAS の表示
16.4. 選択における粒度

第17章 制限範囲の設定
17.1. 概要

17.1.1. コンテナーの制限
17.1.2. Pod の制限
17.1.3. イメージの制限
17.1.4. イメージストリームの制限

17.1.4.1. イメージ参照の数
17.1.5. PersistentVolumeClaim の制限

17.2. 制限範囲の作成
17.3. VIEWING LIMITS
17.4. DELETING LIMITS

第18章 PRUNING OBJECTS
18.1. 概要
18.2. BASIC PRUNE OPERATIONS
18.3. PRUNING DEPLOYMENTS
18.4. PRUNING BUILDS
18.5. イメージのプルーニング

18.5.1. Image Prune Conditions
18.5.2. Using Secure or Insecure Connections
18.5.3. Image Pruning Problems

Images Not Being Pruned
Using a Secure Connection Against Insecure Registry
18.5.3.1. Using an Insecure Connection Against a Secured Registry

Using the Wrong Certificate Authority
18.6. HARD PRUNING THE REGISTRY
18.7. CRON ジョブのプルーニング

140
141
141
141
141

142

143
143
143
144
145
145
146
149
149
150
150
150

152
152
152
153
154

155
155
156
157
158
159
159
159
160
160
161

162
162
162
162
163
164
166
167
168
168
169
169
169
169
172

目次

5

. .

. .

. .

. .

. .

. .

. .

第19章 EXTENDING THE KUBERNETES API WITH CUSTOM RESOURCES
19.1. CREATING CUSTOM RESOURCE DEFINITIONS
19.2. CREATE CUSTOM OBJECTS
19.3. MANAGE CUSTOM OBJECTS
19.4. FINALIZERS

第20章 ガベージコレクション
20.1. 概要
20.2. コンテナーのガベージコレクション

20.2.1. 削除するコンテナーの検出
20.3. イメージのガベージコレクション

20.3.1. 削除するイメージの検出

第21章 ノードリソースの割り当て
21.1. 概要
21.2. 割り当てられるリソースについてのノードの設定
21.3. 割り当てられるリソースの計算
21.4. VIEWING NODE ALLOCATABLE RESOURCES AND CAPACITY
21.5. ノードによって報告されるシステムリソース
21.6. NODE ENFORCEMENT
21.7. エビクションしきい値
21.8. SCHEDULER

第22章 OPAQUE INTEGER RESOURCES
22.1. 概要
22.2. CREATING OPAQUE INTEGER RESOURCES

第23章 オーバーコミット
23.1. 概要
23.2. 要求および制限

23.2.1. Buffer Chunk Limit の調整
23.3. コンピュートリソース

23.3.1. CPU
23.3.2. メモリー

23.4. QOS (QUALITY OF SERVICE) クラス
23.5. マスターでのオーバーコミットの設定
23.6. ノードでのオーバーコミットの設定

23.6.1. Quality of Service (QoS) 層でのメモリー予約
23.6.2. CPU 制限の実施
23.6.3. システムリソースのリソース予約
23.6.4. カーネルの調整可能なフラグ
23.6.5. swap メモリーの無効化

第24章 INGRESS トラフィックの固有の外部 IP の割り当て
24.1. 概要
24.2. 制限
24.3. 固有の外部 IP を使用するようクラスターを設定する

24.3.1. サービスの Ingress IP の設定
24.4. 開発またはテスト目的での INGRESS CIDR のルーティング

24.4.1. サービス externalIP

第25章 OUT OF RESOURCE (リソース不足) エラーの処理
25.1. 概要
25.2. エビクションポリシーの設定

25.2.1. ノード設定を使用したポリシーの作成

173
173
174
175
176

177
177
177
178
178
179

180
180
180
180
181
181

182
183
183

185
185
185

188
188
188
188
189
189
189
189
190
191
191

192
192
194
194

195
195
195
196
196
197
197

199
199
199

200

OpenShift Container Platform 3.9 クラスター管理

6

. .

. .

. .

. .

. .

25.2.2. エビクションシグナルについて
25.2.3. エビクションのしきい値について

25.2.3.1. ハードエビクションのしきい値について
25.2.3.1.1. デフォルトのハードエビクションしきい値

25.2.3.2. ソフトエビクションのしきい値について
25.3. スケジューリング用のリソース量の設定
25.4. ノードの状態変動の制御
25.5. ノードレベルのリソースの回収

Imagefs が設定されている場合
Imagefs が設定されていない場合

25.6. POD エビクションについて
25.6.1. QoS および Out of Memory Killer について

25.7. POD スケジューラーおよび OOR 状態について
25.8. シナリオ例
25.9. 推奨される対策

25.9.1. DaemonSets and Out of Resource Handling

第26章 ルーターのモニタリングおよびデバッグ
26.1. 概要
26.2. 統計の表示
26.3. 統計ビューの無効化
26.4. ログの表示
26.5. ルーター内部の表示

第27章 高可用性
27.1. 概要
27.2. IP フェイルオーバーの設定

27.2.1. 仮想 IP アドレス
27.2.2. チェックおよび通知スクリプト
27.2.3. VRRP プリエンプション
27.2.4. Keepalived マルチキャスト
27.2.5. コマンドラインオプションおよび環境変数
27.2.6. VRRP ID オフセット
27.2.7. 高可用サービスの設定

27.2.7.1. IP フェイルオーバー Pod のデプロイ
27.2.8. 高可用サービスの仮想 IP の動的更新

27.3. サービスの EXTERNALIP および NODEPORT の設定
27.4. INGRESSIP の高可用性

第28章 IPTABLES
28.1. 概要
28.2. IPTABLES
28.3. IPTABLES.SERVICE

第29章 ストラテジーによるビルドのセキュリティー保護
29.1. 概要
29.2. ビルドストラテジーのグローバルな無効化
29.3. ユーザーへのビルドストラテジーのグルーバルな制限
29.4. プロジェクト内でのユーザーへのビルドストラテジーの制限

第30章 SECCOMP を使用したアプリケーション機能の制限
30.1. 概要
30.2. SECCOMP の有効化
30.3. OPENSHIFT CONTAINER PLATFORM での SECCOMP の設定

201
203
204
204
204
205
206
206
206
207
207
207
208
208
210
210

211
211
211
211
211
212

213
213
214
215
215
217
218
219

220
220
222
222
223
223

225
225
225
225

227
227
227
228
228

230
230
230
230

目次

7

. .

. .

. .

. .

. .

30.4. OPENSHIFT CONTAINER PLATFORM でのカスタム SECCOMP プロファイルの設定

第31章 SYSCTL
31.1. 概要
31.2. UNDERSTANDING SYSCTLS
31.3. NAMESPACED VS NODE-LEVEL SYSCTLS
31.4. SAFE VS UNSAFE SYSCTLS
31.5. ENABLING UNSAFE SYSCTLS
31.6. SETTING SYSCTLS FOR A POD

第32章 データストア層でのデータの暗号化
32.1. 概要
32.2. 設定および暗号がすでに有効にされているかどうかの判別
32.3. 暗号化設定について

32.3.1. 利用可能なプロバイダー
32.4. データの暗号化
32.5. データが暗号化されていることの確認
32.6. すべてのシークレットが暗号化されていることの確認
32.7. 復号化キーのローテーション
32.8. データの復号化

第33章 ENCRYPTING HOSTS WITH IPSEC
33.1. 概要
33.2. ENCRYPTING HOSTS

33.2.1. 前提条件
33.2.2. 証明書での IPsec の設定
33.2.3. libreswan IPsec Policy

33.2.3.1. Opportunistic Group Configuration
33.2.3.2. Explicit Connection Configuration

33.3. IPSEC FIREWALL CONFIGURATION
33.4. STARTING AND ENABLING IPSEC
33.5. OPTIMIZING IPSEC
33.6. トラブルシューティング

第34章 依存関係ツリーのビルド
34.1. 概要
34.2. 使用法

第35章 BACKUP AND RESTORE
35.1. 概要
35.2. 前提条件
35.3. CLUSTER BACKUP

35.3.1. Master Backup
35.3.2. Etcd Backup
35.3.3. Registry Certificates Backup

35.4. CLUSTER RESTORE FOR SINGLE-MEMBER ETCD CLUSTERS
35.5. CLUSTER RESTORE FOR MULTIPLE-MEMBER ETCD CLUSTERS

35.5.1. Containerized etcd Deployments
35.5.2. Non-Containerized etcd Deployments
35.5.3. Adding Additional etcd Members

35.6. ADDING NEW ETCD HOSTS
35.7. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK ONLINE
35.8. PROJECT BACKUP

35.8.1. Role Bindings

231

232
232
232
232
233
233
234

235
235
235
235
236
237
238
238
239
239

241
241
241
241
241
242
242
243
244
244
245
245

246
246
246

247
247
247
248
248
248
249
249
250
250
251

252
254
258
258
258

OpenShift Container Platform 3.9 クラスター管理

8

. .

. .

. .

. .

35.8.2. Service Accounts
35.8.3. Secrets
35.8.4. Persistent Volume Claims

35.9. PROJECT RESTORE
35.10. APPLICATION DATA BACKUP
35.11. APPLICATION DATA RESTORE

第36章 OPENSHIFT SDN のトラブルシューティング
36.1. 概要
36.2. 用語
36.3. HTTP サービスへの外部アクセスのデバッグ
36.4. ルーターのデバッグ
36.5. サービスのデバッグ
36.6. ノード間通信のデバッグ
36.7. ローカルネットワークのデバッグ

36.7.1. ノードのインターフェース
36.7.2. ノード内の SDN フロー
36.7.3. デバッグ手順

36.7.3.1. IP 転送は有効にされているか?
36.7.3.2. ルートは正しく設定されているか?

36.7.4. Is the Open vSwitch configured correctly?
36.7.4.1. iptables 設定に誤りがないか?
36.7.4.2. 外部ネットワークは正しく設定されているか?

36.8. 仮想ネットワークのデバッグ
36.8.1. 仮想ネットワークのビルドに障害が発生している

36.9. POD の EGRESS のデバッグ
36.10. ログの読み取り
36.11. KUBERNETES のデバッグ
36.12. 診断ツールを使用したネットワークの問題の検出
36.13. その他の注意点

36.13.1. ingress についての追加情報
36.13.2. TLS ハンドシェイクのタイムアウト
36.13.3. デバッグについての他の注意点

第37章 診断ツール
37.1. 概要
37.2. 診断ツールの使用
37.3. サーバー環境における診断の実行
37.4. クライアント環境での診断の実行
37.5. ANSIBLE ベースのヘルスチェック

37.5.1. ansible-playbook によるヘルスチェックの実行
37.5.2. Docker CLI でのヘルスチェックの実行

第38章 アプリケーションのアイドリング
38.1. 概要
38.2. アプリケーションのアイドリング

38.2.1. 単一サービスのアイドリング
38.2.2. 複数サービスのアイドリング

38.3. アプリケーションのアイドリング解除

第39章 クラスター容量の分析
39.1. 概要
39.2. コマンドラインでのクラスター容量分析の実行
39.3. POD 内のジョブとしてのクラスター容量分析の実行

258
259
259
259
259
260

262
262
262
263
264
265
266
267
268
268
268
268
268
269
270
270
270
270
271
271
271

272
272
272
272
273

274
274
274
276
277
277
280
280

282
282
282
282
282
283

284
284
284
285

目次

9

OpenShift Container Platform 3.9 クラスター管理

10

第1章 概要

『OpenShift クラスター管理』では、OpenShift Container Platform クラスターを管理するための日常
的なタスクや他の詳細な設定についてのトピックを扱います。

第1章 概要

11

第2章 MANAGING NODES

2.1. 概要

You can manage nodes in your instance using the CLI.

When you perform node management operations, the CLI interacts with node objects that are
representations of actual node hosts. The master uses the information from node objects to validate
nodes with health checks.

2.2. LISTING NODES

マスターに認識されるすべてのノードを一覧表示するには、以下を実行します。

$ oc get nodes
NAME STATUS ROLES AGE VERSION
master.example.com Ready master 7h v1.9.1+a0ce1bc657
node1.example.com Ready compute 7h v1.9.1+a0ce1bc657
node2.example.com Ready compute 7h v1.9.1+a0ce1bc657

To only list information about a single node, replace <node> with the full node name:

$ oc get node <node>

これらのコマンドの出力にある STATUS 列には、ノードの以下の状態が表示されます。

表2.1 ノードの状態

条件 説明

Ready ノードは StatusOK を返し、マスターから実行されるヘルスチェックをパス
しています。

NotReady ノードはマスターから実行されるヘルスチェックをパスしていません。

SchedulingDisabled ノードへの Pod の配置をスケジュールできません。

注記

STATUS 列には、CLI でノードの状態を検索できない場合にノードについて Unknown
が表示されます。

現在の状態の理由を含む特定ノードについての詳細情報を取得するには、以下を実行します。

$ oc describe node <node>

例:

$ oc describe node node1.example.com
Name: node1.example.com

OpenShift Container Platform 3.9 クラスター管理

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#node-object-definition
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#node

Labels: kubernetes.io/hostname=node1.example.com
CreationTimestamp: Wed, 10 Jun 2015 17:22:34 +0000
Conditions:
 Type Status LastHeartbeatTime LastTransitionTime Reason Message
 Ready True Wed, 10 Jun 2015 19:56:16 +0000 Wed, 10 Jun 2015 17:22:34 +0000 kubelet is
posting ready status
Addresses: 127.0.0.1
Capacity:
 memory: 1017552Ki
 pods: 100
 cpu: 2
Version:
 Kernel Version: 3.17.4-301.fc21.x86_64
 OS Image: Fedora 21 (Twenty One)
 Container Runtime Version: docker://1.6.0
 Kubelet Version: v0.17.1-804-g496be63
 Kube-Proxy Version: v0.17.1-804-g496be63
ExternalID: node1.example.com
Pods: (2 in total)
 docker-registry-1-9yyw5
 router-1-maytv
No events.

2.3. ADDING NODES

To add nodes to your existing OpenShift Container Platform cluster, you can run an Ansible playbook
that handles installing the node components, generating the required certificates, and other important
steps. See the advanced installation method for instructions on running the playbook directly.

Alternatively, if you used the quick installation method, you can re-run the installer to add nodes , which
performs the same steps.

2.4. DELETING NODES

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist
on the node itself are not deleted. Any bare pods not backed by a replication controller would be
inaccessible to OpenShift Container Platform, pods backed by replication controllers would be
rescheduled to other available nodes, and local manifest pods would need to be manually deleted.

OpenShift Container Platform クラスターからノードを削除するには、以下を実行します。

1. 削除しようとしているノードからPod を退避します。

2. ノードオブジェクトを削除します。

$ oc delete node <node>

3. ノードがノード一覧から削除されていることを確認します。

$ oc get nodes

Pod は、Ready 状態にある残りのノードに対してのみスケジュールされます。

4. If you want to uninstall all OpenShift Container Platform content from the node host, including

第2章 MANAGING NODES

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#adding-nodes-advanced
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#adding-nodes-or-reinstalling-quick
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#node-configuration-files

all pods and containers, continue to Uninstalling Nodes and follow the procedure using the
uninstall.yml playbook. The procedure assumes general understanding of the advanced
installation method using Ansible.

2.5. UPDATING LABELS ON NODES

To add or update labels on a node:

$ oc label node <node> <key_1>=<value_1> ... <key_n>=<value_n>

詳細な使用法を表示するには、以下を実行します。

$ oc label -h

2.6. LISTING PODS ON NODES

1 つ以上のノードにすべてまたは選択した Pod を一覧表示するには、以下を実行します。

$ oc adm manage-node <node1> <node2> \
 --list-pods [--pod-selector=<pod_selector>] [-o json|yaml]

選択したノードのすべてまたは選択した Pod を一覧表示するには、以下を実行します。

$ oc adm manage-node --selector=<node_selector> \
 --list-pods [--pod-selector=<pod_selector>] [-o json|yaml]

2.7. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE

デフォルトで、Ready ステータスの正常なノードはスケジュール対象としてマークされます。つまり、
新規 Pod をこのノードに配置することができます。手動でノードをスケジュール対象外としてマーク
すると、新規 Pod のノードでのスケジュールがブロックされます。ノード上の既存 Pod には影響があ
りません。

1 つまたは複数のノードをスケジュール対象外としてマークするには、以下を実行します。

$ oc adm manage-node <node1> <node2> --schedulable=false

例:

$ oc adm manage-node node1.example.com --schedulable=false
NAME LABELS STATUS
node1.example.com kubernetes.io/hostname=node1.example.com Ready,SchedulingDisabled

現時点でスケジュール対象外のノードをスケジュール対象としてマークするには、以下を実行します。

$ oc adm manage-node <node1> <node2> --schedulable

または、特定のノード名 (例: <node1> <node2>) を指定する代わりに、--selector=<node_selector>
オプションを使用して選択したノードをスケジュール対象またはスケジュール対象外としてマークする
ことができます。

OpenShift Container Platform 3.9 クラスター管理

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#uninstalling-nodes-advanced
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-advanced-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#labels

2.8. EVACUATING PODS ON NODES

Evacuating pods allows you to migrate all or selected pods from a given node or nodes. Nodes must first
be marked unschedulable to perform pod evacuation.

Only pods backed by a replication controller can be evacuated; the replication controllers create new
pods on other nodes and remove the existing pods from the specified node(s). Bare pods, meaning
those not backed by a replication controller, are unaffected by default.

To evacuate all or selected pods on one or more nodes:

$ oc adm drain <node1> <node2> [--pod-selector=<pod_selector>]

--force オプションを使用すると、ベア Pod の削除を強制的に実行できます。 true に設定されると、
Pod がレプリケーションコントローラー、ReplicaSet、ジョブ、daemonset、または StatefulSet で管
理されていない場合でも削除が続行されます。

$ oc adm drain <node1> <node2> --force=true

You can use --grace-period to set a period of time in seconds for each pod to terminate gracefully. If
negative, the default value specified in the pod will be used:

$ oc adm drain <node1> <node2> --grace-period=-1

--ignore-daemonsets を使用し、これを true に設定すると、Deamonset で管理された Pod を無視で
きます。

$ oc adm drain <node1> <node2> --ignore-daemonset=true

--timeout を使用すると、中止する前の待機期間を設定できます。値 0 は無限の時間を設定します。

$ oc adm drain <node1> <node2> --timeout=5s

You can use --delete-local-data and set it to true to continue deletion even if there are pods using
emptyDir (local data that will be deleted when the node is drained):

$ oc adm drain <node1> <node2> --delete-local-data=true

退避を実行せずに移行するオブジェクトを一覧表示するには、--dry-run オプションを使用し、これを
true に設定します。

$ oc adm drain <node1> <node2> --dry-run=true

Instead of specifying specific node names (for example, <node1> <node2>), you can use the --
selector=<node_selector> option to evacuate pods on selected nodes.

2.9. REBOOTING NODES

プラットフォームで実行されるアプリケーションを停止せずにノードを再起動するには、まず Pod の
退避を実行する必要があります。ルーティング階層によって可用性が高くされている Pod について
は、何も実行する必要はありません。ストレージ (通常はデータベース) を必要とするその他の Pod に
ついては、それらが 1 つの Pod が一時的にオフラインになっても作動したままになることを確認する必

第2章 MANAGING NODES

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#replication-controllers

要があります。ステートフルな Pod の回復性はアプリケーションごとに異なりますが、いずれの場合
でも、ノードの非アフィニティー (node anti-affinity) を使用して Pod が使用可能なノード間に適切に
分散するようにスケジューラーを設定することが重要になります。

別の課題として、ルーターやレジストリーのような重要なインフラストラクチャーを実行しているノー
ドを処理する方法を検討する必要があります。同じノードの退避プロセスが適用されますが、一部の
エッジケースについて理解しておくことが重要です。

2.9.1. Infrastructure Nodes

インフラストラクチャーノードは、OpenShift Container Platform 環境の一部を実行するためにラベル
が付けられたノードです。現在、ノードの再起動を管理する最も簡単な方法として、インフラストラク
チャーを実行するために利用できる 3 つ以上のノードを確保することができます。以下のシナリオで
は、2 つのノードのみが利用可能な場合に OpenShift Container Platform で実行されるアプリケーショ
ンのサービスを中断しかねないよくある問題を示しています。

ノード A がスケジュール対象外としてマークされており、すべての Pod の退避が行われてい
る。

このノードで実行されているレジストリー Pod がノード B に再デプロイされる。これは、ノー
ド B が両方のレジストリー Pod を実行していることを意味します。

ノード B はスケジュール対象外としてマークされ、退避が行われる。

ノード B の 2 つの Pod エンドポイントを公開するサービスは、それらがノード A に再デプロ
イされるまでの短い期間すべてのエンドポイントを失う。

3 つのインフラストラクチャーノードを使用する同じプロセスではサービスの中断が生じません。しか
し、Pod のスケジューリングにより、退避してローテーションに戻された最後のノードはゼロ (0) レジ
ストリーを実行していることになり、他の 2 つのノードは 2 つのレジストリーと 1 つのレジストリーを
それぞれ実行します。最善の解決法として、Pod の非アフィニティーを使用できます。これは現在テス
ト目的で利用できる Kubernetes のアルファ機能ですが、実稼働ワークロードに対する使用はサポート
されていません。

2.9.2. Using Pod Anti-affinity

Pod の非アフィニティーは、ノードの非アフィニティーとは若干異なります。ノードの非アフィニ
ティーの場合、Pod のデプロイ先となる適切な場所がほかにない場合には違反が生じます。Pod の非ア
フィニティーの場合は required (必須) または preferred (優先) のいずれかに設定できます。

Using the docker-registry pod as an example, the first step in enabling this feature is to set the
scheduler.alpha.kubernetes.io/affinity on the pod. Since this pod uses a deployment configuration,
the most appropriate place to add the annotation is to the pod template’s metadata.

$ oc edit dc/docker-registry -o yaml

...
 template:
 metadata:
 annotations:
 scheduler.alpha.kubernetes.io/affinity: |
 {
 "podAntiAffinity": {
 "requiredDuringSchedulingIgnoredDuringExecution": [{
 "labelSelector": {
 "matchExpressions": [{

OpenShift Container Platform 3.9 クラスター管理

16

 "key": "docker-registry",
 "operator": "In",
 "values":["default"]
 }]
 },
 "topologyKey": "kubernetes.io/hostname"
 }]
 }
 }

重要

scheduler.alpha.kubernetes.io/affinity is internally stored as a string even though the
contents are JSON. The above example shows how this string can be added as an
annotation to a YAML deployment configuration.

This example assumes the Docker registry pod has a label of docker-registry=default. Pod anti-affinity
can use any Kubernetes match expression.

The last required step is to enable the MatchInterPodAffinity scheduler predicate in
/etc/origin/master/scheduler.json. With this in place, if only two infrastructure nodes are available and
one is rebooted, the Docker registry pod is prevented from running on the other node. oc get pods
reports the pod as unready until a suitable node is available. Once a node is available and all pods are
back in ready state, the next node can be restarted.

2.9.3. Handling Nodes Running Routers

ほとんどの場合、OpenShift Container Platform ルーターを実行する Pod はホストのポートを公開しま
す。PodFitsPorts スケジューラーの述語により、同じポートを使用するルーター Pod が同じノードで
実行されないようにし、Pod の非アフィニティーが適用されます。ルーターの高可用性を維持するため
に IP フェイルオーバー を利用している場合には、他に実行することはありません。高可用性を確保す
るために AWS Elastic Load Balancing などの外部サービスを使用するルーター Pod の場合は、そのよ
うな外部サービスがルーター Pod の再起動に対して対応します。

In rare cases, a router pod may not have a host port configured. In those cases, it is important to follow
the recommended restart process for infrastructure nodes.

2.10. ノードリソースの設定

You can configure node resources by adding kubelet arguments to the node configuration file
(/etc/origin/node/node-config.yaml). Add the kubeletArguments section and include any desired
options:

kubeletArguments:
 max-pods: 1
 - "40"
 resolv-conf: 2
 - "/etc/resolv.conf"
 image-gc-high-threshold: 3
 - "90"
 image-gc-low-threshold: 4
 - "80"

第2章 MANAGING NODES

17

1

2

3

4

この kubelet で実行できる Pod の最大数。

コンテナー DNS 解決設定のベースとして使用されるリゾルバーの設定ファイル。

イメージのガべージコレクションが常に実行される場合のディスク使用量のパーセント。デフォル
ト: 90%

イメージのガべージコレクションが一度も実行されない場合のディスク使用量のパーセント。デ
フォルト: 80%

利用可能なすべての kubelet オプションを表示するには、以下を実行します。

$ kubelet -h

This can also be set during an advanced installation using the openshift_node_kubelet_args variable.
For example:

openshift_node_kubelet_args={'max-pods': ['40'], 'resolv-conf': ['/etc/resolv.conf'], 'image-gc-high-
threshold': ['90'], 'image-gc-low-threshold': ['80']}

2.10.1. Setting Maximum Pods Per Node

注記

See the Cluster Limits page for the maximum supported limits for each version of
OpenShift Container Platform.

/etc/origin/node/node-config.yaml ファイルでは、 pods-per-core および max-pods の 2 つのパラ
メーターがノードにスケジュールできる Pod の最大数を制御します。いずれのオプションも使用され
ている場合、2 つの内の小さい方の値でノードの Pod 数が制限されます。これらの値を超えると、以下
の状況が発生します。

OpenShift Container Platform と Docker の両方で CPU 使用率が増加する。

Pod のスケジューリングの速度が遅くなる。

メモリー不足のシナリオが生じる可能性がある (ノードのメモリー量によって異なる)。

IP アドレスのプールを消費する。

リソースのオーバーコミット、およびこれによるアプリケーションのパフォーマンスの低下。

注記

Kubernetes では、単一コンテナーを保持する Pod は実際には 2 つのコンテナーを使用
します。2 つ目のコンテナーは実際のコンテナーの起動前にネットワークを設定するた
めに使用されます。そのため、10 の Pod を使用するシステムでは、実際には 20 のコン
テナーが実行されていることになります。

pods-per-core は、ノードのプロセッサーコア数に基づいてノードが実行できる Pod 数を設定しま
す。たとえば、4 プロセッサーコアを搭載したノードで pods-per-core が 10 に設定される場合、この
ノードで許可される Pod の最大数は 40 になります。

OpenShift Container Platform 3.9 クラスター管理

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/scaling_and_performance_guide/#scaling-performance-current-cluster-limits

kubeletArguments:
 pods-per-core:
 - "10"

注記

pods-per-core を 0 に設定すると、この制限が無効になります。

max-pods sets the number of pods the node can run to a fixed value, regardless of the properties of the
node. Cluster Limits documents maximum supported values for max-pods.

kubeletArguments:
 max-pods:
 - "250"

上記の例では、pods-per-core のデフォルト値は 10 であり、max-pods のデフォルト値は 250 です。
これは、ノードにあるコア数が 25 以上でない限り、デフォルトでは pods-per-core が制限を設定する
ことになります。

2.11. RESETTING DOCKER STORAGE

As you download Docker images and run and delete containers, Docker does not always free up mapped
disk space. As a result, over time you can run out of space on a node, which might prevent OpenShift
Container Platform from being able to create new pods or cause pod creation to take several minutes.

For example, the following shows pods that are still in the ContainerCreating state after six minutes
and the events log shows a FailedSync event.

この問題に対する 1 つの解決法として、Docker ストレージを再設定し、Docker で不要なアーティファ
クトを削除することができます。

Docker ストレージを再起動するノードで、以下を実行します。

1. 以下のコマンドを実行して、ノードをスケジュール対象外としてマークします。

$ oc get pod
NAME READY STATUS RESTARTS AGE
cakephp-mysql-persistent-1-build 0/1 ContainerCreating 0 6m
mysql-1-9767d 0/1 ContainerCreating 0 2m
mysql-1-deploy 0/1 ContainerCreating 0 6m

$ oc get events
LASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT
TYPE REASON SOURCE MESSAGE
6m 6m 1 cakephp-mysql-persistent-1-build Pod
Normal Scheduled default-scheduler Successfully assigned
cakephp-mysql-persistent-1-build to ip-172-31-71-195.us-east-2.compute.internal
2m 5m 4 cakephp-mysql-persistent-1-build Pod
Warning FailedSync kubelet, ip-172-31-71-195.us-east-2.compute.internal Error
syncing pod
2m 4m 4 cakephp-mysql-persistent-1-build Pod
Normal SandboxChanged kubelet, ip-172-31-71-195.us-east-2.compute.internal Pod
sandbox changed, it will be killed and re-created.

第2章 MANAGING NODES

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/scaling_and_performance_guide/#scaling-performance-current-cluster-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#events-reference

$ oc adm manage-node <node> --schedulable=false

2. 以下のコマンドを実行して Docker および atomic-openshift-node サービスをシャットダウン
します。

$ systemctl stop docker atomic-openshift-node

3. 以下のコマンドを実行してローカルのボリュームディレクトリーを削除します。

$ rm -rf /var/lib/origin/openshift.local.volumes

このコマンドは、ローカルイメージのキャッシュをクリアします。その結果、ose-* イメージ
を含むイメージが再度プルする必要があります。これにより、イメージストアは回復します
が、Pod の起動時間が遅くなる可能性があります。

4. /var/lib/docker ディレクトリーを削除します。

$ rm -rf /var/lib/docker

5. 以下のコマンドを実行して Docker ストレージを再設定します。

$ docker-storage-setup --reset

6. 以下のコマンドを実行して Docker ストレージを再作成します。

$ docker-storage-setup

7. /var/lib/docker ディレクトリーを再作成します。

$ mkdir /var/lib/docker

8. 以下のコマンドを実行して Docker および atomic-openshift-node サービスを再起動します。

$ systemctl start docker atomic-openshift-node

9. 以下のコマンドを実行してノードをスケジュール対象としてマークします。

$ oc adm manage-node <node> --schedulable=true

2.12. CHANGING NODE TRAFFIC INTERFACE

By default, DNS routes all node traffic. During node registration, the master receives the node IP
addresses from the DNS configuration, and therefore accessing nodes via DNS is the most flexible
solution for most deployments.

If your deployment is using a cloud provider, then the node gets the IP information from the cloud
provider. However, openshift-sdn attempts to determine the IP through a variety of methods, including
a DNS lookup on the nodeName (if set), or on the system hostname (if nodeName is not set).

However, you may need to change the node traffic interface. For example, where:

OpenShift Container Platform is installed in a cloud provider where internal hostnames are not

OpenShift Container Platform 3.9 クラスター管理

20

OpenShift Container Platform is installed in a cloud provider where internal hostnames are not
configured/resolvable by all hosts.

The node’s IP from the master’s perspective is not the same as the node’s IP from its own
perspective.

Configuring the openshift_set_node_ip Ansible variable forces node traffic through an interface other
than the default network interface.

To change the node traffic interface:

1. Set the openshift_set_node_ip Ansible variable to true.

2. Set the openshift_ip to the IP address for the node you want to configure.

注記

Although openshift_set_node_ip can be useful as a workaround for the cases stated in
this section, it is generally not suited for production environments. This is because the
node will no longer function properly if it receives a new IP address.

第2章 MANAGING NODES

21

第3章 ユーザーの管理

3.1. 概要

ユーザーとは、OpenShift Container Platform API と対話するエンティティーです。ユーザーは、アプ
リケーションを開発する開発者の場合もあれば、クラスターを管理する管理者の場合もあります。ユー
ザーは、グループのすべてのメンバーに適用されるパーミッションを設定するグループに割り当てるこ
とができます。たとえば、API アクセスをグループに付与して、そのグループのすべてのメンバーに
API アクセスを付与することができます。

This topic describes the management of user accounts, including how new user accounts are created in
OpenShift Container Platform and how they can be deleted.

3.2. ユーザーの作成

The process for creating a user depends on the configured identity provider. By default, OpenShift
Container Platform uses the DenyAll identity provider, which denies access for all user names and
passwords.

以下のプロセスでは、新規ユーザーを作成してからロールをそのユーザーに追加します。

1. Create the user account depending on your identity provider. This can depend on the
mappingmethod used as part of the identity provider configuration. See the Mapping Identities
to Users section for more information.

2. 新規ユーザーに必要なロールを付与します。

oc create clusterrolebinding <clusterrolebinding_name> /
 --clusterrole=<role> --user=<user>

ここで、--clusterrole オプションは必要なクラスターロールになります。たとえば、新規ユー
ザーに対して、クラスター内のすべてに対するアクセスを付与する cluster-admin 権限を付与
するには、以下を実行します。

oc create clusterrolebinding registry-controller /
 --clusterrole=cluster-admin --user=admin

For an explanation and list of roles, see the Cluster Roles and Local Roles section of the
Architecture Guide.

クラスター管理者は、各ユーザーのアクセスレベルの管理も実行できます。

注記

Depending on the identity provider, and on the defined group structure, some roles may
be given to users automatically. See the Synching groups with LDAP section for more
information.

3.3. ユーザーおよび ID リストの表示

OpenShift Container Platform のユーザー設定は、OpenShift Container Platform 内の複数の場所に保
存されます。アイデンティティープロバイダーの種類を問わず、OpenShift Container Platform はロー
ルベースのアクセス制御 (RBAC) 情報およびグループメンバーシップなどの詳細情報を内部に保存しま

OpenShift Container Platform 3.9 クラスター管理

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-projects-and-users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#identity-providers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#mapping-identities-to-users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-syncing-groups-with-ldap

す。ユーザー情報を完全に削除するには、ユーザーアカウントに加えてこのデータも削除する必要があ
ります。

OpenShift Container Platform では、2 つのオブジェクトタイプ (user および identity) に、アイデン
ティティープロバイダー外のユーザーデータが含まれます。

ユーザーの現在のリストを取得するには、以下を実行します。

$ oc get user
NAME UID FULL NAME IDENTITIES
demo 75e4b80c-dbf1-11e5-8dc6-0e81e52cc949 htpasswd_auth:demo

ID の現在のリストを取得するには、以下を実行します。

$ oc get identity
NAME IDP NAME IDP USER NAME USER NAME USER UID
htpasswd_auth:demo htpasswd_auth demo demo 75e4b80c-dbf1-11e5-8dc6-
0e81e52cc949

2 つのオブジェクトタイプ間で一致する UID があることに注意してください。OpenShift Container
Platform の使用を開始した後に認証プロバイダーの変更を試行する場合で重複するユーザー名がある場
合、そのユーザー名は、ID リストに古い認証方式を参照するエントリーがあるために機能しなくなりま
す。

3.4. グループの作成

ユーザーは OpenShift Container Platform に要求するエンティティーである一方で、ユーザーのセット
で構成される 1 つの以上のグループに編成することもできます。グループは、許可ポリシーなどの場合
のように数多くのユーザーを 1 度に管理する際や、パーミッションを複数のユーザーに 1 度に付与する
場合などに役立ちます。

If your organization is using LDAP, you can synchronize any LDAP records to OpenShift Container
Platform so that you can configure groups on one place. This presumes that information about your
users is in an MDAP server. See the Synching groups with LDAP section for more information. If you are
not using LDAP, you can use the following procedure to manually create groups.

新規グループを作成するには、以下を実行します。

oc adm groups new <group_name> <user1> <user2>

たとえば、west グループを作成し、そのグループ内に john および betty ユーザーを置くには、以下を
実行します。

oc adm groups new west john betty

グループが作成されたことを確認し、グループに関連付けられたユーザーを一覧表示するには、以下を
実行します。

oc get groups
NAME USERS
west john, betty

Next steps: * Managing role bindings

第3章 ユーザーの管理

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-syncing-groups-with-ldap

3.5. ユーザーおよびグループラベルの管理

ラベルをユーザーまたはグループに追加するには、以下を実行します。

$ oc label user/<user_name> <label_name>

たとえばユーザー名が theuser で、ラベルが level=gold の場合には、以下のようになります。

$ oc label user/theuser level=gold

ラベルを削除するには、以下を実行します。

$ oc label user/<user_name> <label_name>-

ユーザーまたはグループのラベルを表示するには、以下を実行します。

$ oc describe user/<user_name>

3.6. ユーザーの削除

ユーザーを削除するには、以下を実行します。

1. ユーザーレコードを削除します。

$ oc delete user demo
user "demo" deleted

2. ユーザー ID を削除します。
ユーザーの ID は使用するアイデンティティープロバイダーに関連付けられます。oc get user
でユーザーレコードからプロバイダー名を取得します。

この例では、アイデンティティープロバイダー名は htpasswd_auth です。コマンドは、以下の
ようになります。

oc delete identity htpasswd_auth:demo
identity "htpasswd_auth:demo" deleted

この手順を省略すると、ユーザーは再度ログインできなくなります。

上記の手順の完了後は、ユーザーが再びログインすると、新規のアカウントが OpenShift Container
Platform に作成されます。

ユーザーの再ログインを防ごうとする場合 (たとえば、ある社員が会社を退職し、そのアカウントを永
久に削除する必要がある場合)、そのユーザーを、設定されたアイデンティティープロバイダーの認証
バックエンド (htpasswd、kerberos その他) から削除することもできます。

たとえば htpasswd を使用している場合、該当のユーザー名とパスワードで OpenShift Container
Platform に設定された htpasswd ファイルのエントリーを削除します。

Lightweight Directory Access Protocol (LDAP) または Red Hat Identity Management (IdM) などの外部
ID管理については、ユーザー管理ツールを使用してユーザーエントリーを削除します。

OpenShift Container Platform 3.9 クラスター管理

24

第4章 プロジェクトの管理

4.1. 概要

OpenShift Container Platform では、プロジェクトは関連オブジェクトを分類し、分離するために使用
されます。管理者は、開発者に特定プロジェクトへのアクセスを付与し、開発者の独自プロジェクトの
作成を許可したり、個別プロジェクト内の管理者権限を付与したりできます。

4.2. プロジェクトのセルフプロビジョニング

You can allow developers to create their own projects. There is an endpoint that will provision a project
according to a template. The web console and oc new-project command use this endpoint when a
developer creates a new project .

4.2.1. 新規プロジェクトのテンプレートの変更

The API server automatically provisions projects based on the template that is identified by the
projectRequestTemplate parameter of the master-config.yaml file. If the parameter is not defined,
the API server creates a default template that creates a project with the requested name, and assigns
the requesting user to the "admin" role for that project.

独自のカスタムプロジェクトテンプレートを作成するには、以下を実行します。

1. 現在のデフォルトプロジェクトテンプレートを使って開始します。

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

2. オブジェクトを追加するか、または既存オブジェクトを変更することにより、テキストエディ
ターで template.yaml ファイルを変更します。

3. テンプレートを読み込みます。

$ oc create -f template.yaml -n default

4. 読み込まれたテンプレートを参照するよう master-config.yaml ファイルを変更します。

...
projectConfig:
 projectRequestTemplate: "default/project-request"
 ...

プロジェクト要求が送信されると、API はテンプレートで以下のパラメーターを置き換えます。

パラメーター 説明

PROJECT_NAME プロジェクトの名前。必須。

PROJECT_DISPLAYNAME プロジェクトの表示名。空にできます。

PROJECT_DESCRIPTION プロジェクトの説明。空にできます。

第4章 プロジェクトの管理

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#master-node-config-project-config

PROJECT_ADMIN_USER 管理ユーザーのユーザー名。

PROJECT_REQUESTING_USER 要求するユーザーのユーザー名。

パラメーター 説明

Access to the API is granted to developers with the self-provisioner role and the self-provisioners
cluster role binding. This role is available to all authenticated developers by default.

4.2.2. セルフプロビジョニングの無効化

Removing the self-provisionerscluster role from authenticated user groups will deny permissions for
self-provisioning any new projects.

$ oc adm policy remove-cluster-role-from-group self-provisioner system:authenticated
system:authenticated:oauth

When disabling self-provisioning, set the projectRequestMessage parameter in the master-
config.yaml file to instruct developers on how to request a new project. This parameter is a string that
will be presented to the developer in the web console and command line when they attempt to self-
provision a project. For example:

Contact your system administrator at projectname@example.com to request a project.

or:

To request a new project, fill out the project request form located at
https://internal.example.com/openshift-project-request.

サンプル YAML ファイル

...
projectConfig:
 ProjectRequestMessage: "message"
 ...

4.3. ノードセレクターの使用

ノードセレクターは、Pod の配置を制御するためにラベルが付けられたノードと併用されます。

注記

Labels can be assigned during an advanced installation , or added to a node after
installation.

4.3.1. クラスター全体でのデフォルトノードセレクターの設定

クラスター管理者は、クラスター全体でのノードセレクターを使用して Pod の配置を特定ノードに制
限することができます。

/etc/origin/master/master-config.yaml でマスター設定ファイルを編集し、デフォルトノードセレク

OpenShift Container Platform 3.9 クラスター管理

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-node-host-labels

/etc/origin/master/master-config.yaml でマスター設定ファイルを編集し、デフォルトノードセレク
ターの値を追加します。これは、指定された nodeSelector 値なしにすべてのプロジェクトで作成され
た Pod に適用されます。

...
projectConfig:
 defaultNodeSelector: "type=user-node,region=east"
...

変更を有効にするために OpenShift サービスを再起動します。

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

4.3.2. プロジェクト全体でのノードセレクターの設定

ノードセレクターを使って個々のプロジェクトを作成するには、プロジェクトの作成時に --node-
selector オプションを使用します。たとえば、複数のリージョンを含む OpenShift Container Platform
トポロジーがある場合、ノードセレクターを使用して、特定リージョンのノードにのみ Pod をデプロ
イするよう特定の OpenShift Container Platform プロジェクトを制限することができます。

以下では、myproject という名前の新規プロジェクトを作成し、Pod を user-node および east のラベ
ルが付けられたノードにデプロイするように指定します。

$ oc adm new-project myproject \
 --node-selector='type=user-node,region=east'

いったんこのコマンドが実行されると、これが指定プロジェクト内にあるすべての Pod に対して管理
者が設定するノードセレクターになります。

注記

new-project サブコマンドはクラスター管理者および開発者コマンドの oc adm と oc の
両方で利用できますが、oc adm コマンドのみがノードセレクターを使った新規プロ
ジェクトの作成に利用できます。new-project サブコマンドは、プロジェクトのセルフ
プロビジョニング時にプロジェクト開発者が利用することはできません。

oc adm new-project コマンドを使用すると、annotation セクションがプロジェクトに追加されます。
プロジェクトを編集し、デフォルトを上書きするように openshift.io/node-selector 値を編集できま
す。

...
metadata:
 annotations:
 openshift.io/node-selector: type=user-node,region=east
...

また、以下のコマンドを使用して既存プロジェクトの namespace のデフォルト値を上書きできます。

oc patch namespace myproject -p \
 '{"metadata":{"annotations":{"openshift.io/node-selector":"region=infra"}}}'

openshift.io/node-selector が空の文字列 (oc adm new-project --node-selector="") に設定される場
合、プロジェクトには、クラスター全体のデフォルトが設定されている場合でも管理者設定のノードセ

第4章 プロジェクトの管理

27

レクターはありません。これは、クラスター管理者はデフォルトを設定して開発者のプロジェクトを
ノードのサブセットに制限したり、インフラストラクチャーまたは他のプロジェクトでクラスター全体
をスケジュールしたりできることを意味します。

4.3.3. 開発者が指定するノードセレクター

OpenShift Container Platform developers can set a node selector on their pod configuration if they wish
to restrict nodes even further. This will be in addition to the project node selector, meaning that you can
still dictate node selector values for all projects that have a node selector value.

たとえば、プロジェクトが上記のアノテーションで作成 (openshift.io/node-selector: type=user-
node,region=east) されており、開発者が別のノードセレクターをそのプロジェクトの Pod に設定する
場合 (例: clearance=classified)、Pod はこれらの 3 つのラベル (type=user-node、region=east、およ
び clearance=classified) を持つノードにのみスケジュールされます。region=west が Pod に設定され
ている場合、Pod はラベル region=east および region=west を持つノードを要求しても成功しませ
ん。ラベルは 1 つの値にのみ設定できるため、Pod はスケジュールされません。

4.4. ユーザーあたりのセルフプロビジョニングされたプロジェクト数の制
限

The number of self-provisioned projects requested by a given user can be limited with the
ProjectRequestLimitadmission control plug-in .

重要

プロジェクトの要求テンプレートが、「新規プロジェクトのテンプレートの変更」で説
明されるプロセスを使用して OpenShift Container Platform 3.1 (またはそれ以前のバー
ジョン) で作成される場合、生成されるテンプレートには、ProjectRequestLimitConfig
に使用されるアノテーション openshift.io/requester:
${PROJECT_REQUESTING_USER} が含まれません。アノテーションは追加する必要
があります。

In order to specify limits for users, a configuration must be specified for the plug-in within the master
configuration file (/etc/origin/master/master-config.yaml). The plug-in configuration takes a list of
user label selectors and the associated maximum project requests.

セレクターは順番に評価されます。現在のユーザーに一致する最初のセレクターは、プロジェクトの最
大数を判別するために使用されます。セレクターが指定されていない場合、制限はすべてのユーザーに
適用されます。プロジェクトの最大数が指定されていない場合、無制限のプロジェクトが特定のセレク
ターに対して許可されます。

以下の設定は、ユーザーあたりのグローバル制限を 2 プロジェクトに設定し、ラベル level=advanced
を持つユーザーに対して 10 プロジェクト、ラベル level=admin を持つユーザーに対して無制限のプロ
ジェクトを許可します。

admissionConfig:
 pluginConfig:
 ProjectRequestLimit:
 configuration:
 apiVersion: v1
 kind: ProjectRequestLimitConfig
 limits:
 - selector:
 level: admin 1

OpenShift Container Platform 3.9 クラスター管理

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#assigning-pods-to-specific-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-admission-controllers

1

2

3

セレクター level=admin の場合、maxProjects は指定されません。これは、このラベルを持つ
ユーザーにはプロジェクト要求の最大数が設定されないことを意味します。

セレクター level=advanced の場合、最大数の 10 プロジェクトが許可されます。

3 つ目のエントリーにはセレクターが指定されていません。これは、セレクターが直前の 2 つの
ルールを満たさないユーザーに適用されることを意味します。ルールは順番に評価されるため、こ
のルールは最後に指定する必要があります。

注記

「ユーザーおよびグループラベルの管理」では、ユーザーおよびグループのラベルを追
加し、削除し、表示する方法について詳述しています。

変更を加えた後にそれらの変更を有効にするには、OpenShift Container Platform を再起動します。

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

 - selector:
 level: advanced 2
 maxProjects: 10
 - maxProjects: 2 3

第4章 プロジェクトの管理

29

1

1

第5章 POD の管理

5.1. 概要

This topic describes the management of pods, including limiting their run-once duration, and how much
bandwidth they can use.

5.2. 1 回実行 (RUN-ONCE) POD 期間の制限

OpenShift Container Platform は 1 回実行 (run-once) Pod を使用して Pod のデプロイやビルドの実行
などのタスクを実行します。1 回実行 (run-once) Pod は、RestartPolicy が Never または OnFailure の
Pod です。

クラスター管理者は RunOnceDuration の受付制御プラグインを使用し、1 回実行 (run-once) Pod の有
効期間の制限を強制的に実行できます。期限が切れると、クラスターはそれらの Pod をアクティブに
終了しようとします。このような制限を設ける主な理由は、ビルドなどのタスクが長い時間にわたって
実行されることを防ぐことにあります。

5.2.1. RunOnceDuration プラグインの設定

このプラグインの設定には、1 回実行 (run-once) Pod のデフォルト有効期限を含める必要があります。
この期限はグローバルに実施されますが、プロジェクト別の期限によって置き換えられることがありま
す。

1 回実行 (run-once) Pod のグローバルのデフォルト値 (秒単位) を指定します。

5.2.2. プロジェクト別のカスタム期間の指定

1 回実行 (run-once) Pod のグローバルな最長期間を設定することに加え、管理者はアノテーション
(openshift.io/active-deadline-seconds-override) を特定プロジェクトに追加し、グローバルのデフォ
ルト値を上書きすることができます。

1 回実行 (run-once) Pod のデフォルト有効期限 (秒単位) を 1000 秒に上書きします。上書きに使
用する値は、文字列形式で指定される必要があります。

kubernetesMasterConfig:
 admissionConfig:
 pluginConfig:
 RunOnceDuration:
 configuration:
 apiVersion: v1
 kind: RunOnceDurationConfig
 activeDeadlineSecondsOverride: 3600 1

apiVersion: v1
kind: Project
metadata:
 annotations:
 openshift.io/active-deadline-seconds-override: "1000" 1

OpenShift Container Platform 3.9 クラスター管理

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#pods

1

2

3

4

5.2.2.1. Egress ルーター Pod のデプロイ

例5.1 Egress ルーターの Pod 定義のサンプル

apiVersion: v1
kind: Pod
metadata:
 name: egress-1
 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true"
spec:
 containers:
 - name: egress-router
 image: openshift3/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 1
 value: 192.168.12.99
 - name: EGRESS_GATEWAY 2
 value: 192.168.12.1
 - name: EGRESS_DESTINATION 3
 value: 203.0.113.25
 nodeSelector:
 site: springfield-1 4

この Pod で使用するためにクラスター管理者が予約するノードサブセットの IP アドレス。

ノード自体で使用されるデフォルトゲートウェイと同じ値。

Pod の接続は 203.0.113.25 にリダイレクトされます。ソース IP アドレスは 192.168.12.99 で
す。

Pod はラベルサイトが springfield-1 のノードにのみデプロイされます。

pod.network.openshift.io/assign-macvlan annotation はプライマリーネットワークインターフェース
に Macvlan ネットワークインターフェースを作成してから、それを Pod のネットワーク namespace に
移行し、egress-router コンテナーを起動します。

注記

Preserve the the quotation marks around "true". Omitting them will result in errors.

Pod には openshift3/ose-egress-router イメージを使用する単一コンテナーが含まれ、そのコンテ
ナーは特権モードで実行されるので、Macvlan インターフェースを設定したり、iptables ルールをセッ
トアップしたりできます。

環境変数は egress-router イメージに対し、使用するアドレスを指示します。これ
は、EGRESS_SOURCE を IP アドレスとして、また EGRESS_GATEWAY をゲートウェイとして使用
するよう Macvlan を設定します。

NAT ルールが設定され、Pod のクラスター IP アドレスの TCP または UDP ポートへの接続が

第5章 POD の管理

31

NAT ルールが設定され、Pod のクラスター IP アドレスの TCP または UDP ポートへの接続が
EGRESS_DESTINATION の同じポートにリダイレクトされるようにします。

クラスター内の一部のノードのみが指定されたソース IP アドレスを要求でき、指定されたゲートウェ
イを使用できる場合、受け入れ可能なノードを示す nodeName または nodeSelector を指定すること
ができます。

5.2.2.2. Egress ルーターサービスのデプロイ

通常、egress ルーターを参照するサービスを作成する必要が生じる場合があります (ただし、これは必
ずしも必須ではありません)。

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: http
 port: 80
 - name: https
 port: 443
 type: ClusterIP
 selector:
 name: egress-1

Pod がこのサービスに接続できるようになります。これらの接続は、予約された egress IP アドレスを
使用して外部サーバーの対応するポートにリダイレクトされます。

5.2.3. Egress ファイアウォールでの Pod アクセスの制限

OpenShift Container Platform クラスター管理者は egress ポリシーを使用して、一部またはすべての
Pod がクラスターからアクセスできる外部アドレスを制限できます。これにより、以下が可能になりま
す。

Pod の対話を内部ホストに制限し、パブリックインターネットへの接続を開始できないように
する。
または

Pod の対話をパブリックインターネットに制限し、(クラスター外の) 内部ホストへの接続を開
始できないようにする。
または

Pod が接続する理由のない指定された内部サブネット/ホストに到達できないようにする。

プロジェクトは複数の異なる egress ポリシーで設定でき、たとえば指定された IP 範囲への <project
A> のアクセスを許可する一方で、同じアクセスを <project B> に対して拒否することができます。

注意

You must have the ovs-multitenant plug-in enabled in order to limit pod access via egress policy.

プロジェクト管理者は、EgressNetworkPolicy オブジェクトを作成することも、プロジェクトで作成

OpenShift Container Platform 3.9 クラスター管理

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-configuring-sdn

プロジェクト管理者は、EgressNetworkPolicy オブジェクトを作成することも、プロジェクトで作成
するオブジェクトを編集することもできません。また、EgressNetworkPolicy の作成に関連して他の
いくつかの制限があります。

1. デフォルトプロジェクト (および oc adm pod-network make-projects-global でグローバルに
されたその他のプロジェクト) には egress ポリシーを設定することができません。

2. (oc adm pod-network join-projects を使用して) 2 つのプロジェクトをマージする場合、マー
ジしたプロジェクトのいずれでも egress ポリシーを使用することはできません。

3. いずれのプロジェクトも複数の egress ポリシーオブジェクトを持つことができません。

上記の制限のいずれかに違反すると、プロジェクトの egress ポリシーに障害が発生し、すべての外部
ネットワークトラフィックがドロップされる可能性があります。

5.2.3.1. Pod アクセス制限の設定

Pod アクセス制限を設定するには、oc コマンドまたは REST API を使用する必要があります。 oc
[create|replace|delete] を使用すると、EgressNetworkPolicy オブジェクトを操作できま
す。api/swagger-spec/oapi-v1.json ファイルには、オブジェクトの機能方法についての API レベルの
詳細情報が含まれます。

Pod のアクセス制限を設定するには、以下を実行します。

1. 対象とするプロジェクトに移動します。

2. Pod の制限ポリシーについての JSON ファイルを作成します。

oc create -f <policy>.json

3. ポリシーの詳細情報を使って JSON ファイルを設定します。以下は例になります。

{
 "kind": "EgressNetworkPolicy",
 "apiVersion": "v1",
 "metadata": {
 "name": "default"
 },
 "spec": {
 "egress": [
 {
 "type": "Allow",
 "to": {
 "cidrSelector": "1.2.3.0/24"
 }
 },
 {
 "type": "Allow",
 "to": {
 "dnsName": "www.foo.com"
 }
 },
 {
 "type": "Deny",
 "to": {
 "cidrSelector": "0.0.0.0/0"

第5章 POD の管理

33

 }
 }
]
 }
}

上記のサンプルがプロジェクトに追加されると、IP 範囲 1.2.3.0/24 およびドメイン名
www.foo.com へのへのトラフィックは許可されますが、その他すべての外部 IP アドレスへの
アクセスは拒否されます (ポリシーが 外部 トラフィックにのみ適用されるので他の Pod へのト
ラフィックは影響を受けません)。

EgressNetworkPolicy のルールは順番にチェックされ、一致する最初のルールが実施されま
す。上記の例の 3 つの例を逆順に定義した場合、0.0.0.0/0 ルールが最初にチェックされ、すべ
てのトラフィックに一致し、それらすべてを拒否するため、1.2.3.0/24 および www.foo.com
へのトラフィックは許可されません。

ドメイン名の更新は 30 秒以内に反映されます。上記の例で www.foo.com は 10.11.12.13 に解
決されますが、20.21.22.23 に変更されたとします。OpenShift Container Platform では最長
30 秒後にこれらの DNS 更新に対応します。

5.3. POD で利用可能な帯域幅の制限

QoS (Quality-of-Service) トラフィックシェーピングを Pod に適用し、その利用可能な帯域幅を効果的
に制限することができます。(Pod からの) Egress トラフィックは、設定したレートを超えるパケット
を単純にドロップするポリシングによって処理されます。(Pod への) Ingress トラフィックは、データ
を効果的に処理できるようシェーピングでパケットをキューに入れて処理されます。Pod に設定する制
限は、他の Pod の帯域幅には影響を与えません。

Pod の帯域幅を制限するには、以下を実行します。

1. オブジェクト定義 JSON ファイルを作成し、kubernetes.io/ingress-bandwidth および
kubernetes.io/egress-bandwidth アノテーションを使用してデータトラフィックの速度を指定
します。たとえば、 Pod の egress および ingress の両方の帯域幅を 10M/s に制限するには、
以下を実行します。

例5.2 制限が設定された Pod オブジェクト定義

{
 "kind": "Pod",
 "spec": {
 "containers": [
 {
 "image": "nginx",
 "name": "nginx"
 }
]
 },
 "apiVersion": "v1",
 "metadata": {
 "name": "iperf-slow",
 "annotations": {
 "kubernetes.io/ingress-bandwidth": "10M",
 "kubernetes.io/egress-bandwidth": "10M"
 }
 }
}

OpenShift Container Platform 3.9 クラスター管理

34

1

2

3

2. オブジェクト定義を使用して Pod を作成します。

oc create -f <file_or_dir_path>

5.4. POD の DISRUPTION BUDGET (停止状態の予算) の設定

A pod disruption budget is part of the Kubernetes API, which can be managed with oc commands like
other object types. They allow the specification of safety constraints on pods during operations, such as
draining a node for maintenance.

注記

Starting in OpenShift Container Platform 3.6, pod disruption budgets are now fully
supported.

PodDisruptionBudget は、同時に起動している必要のあるレプリカの最小数またはパーセンテージを
指定する API オブジェクトです。これらをプロジェクトに設定することは、ノードのメンテナンス (ク
ラスターのスケールダウンまたはクラスターのアップグレードなどの実行) 時に役立ち、この設定は
(ノードの障害時ではなく) 自発的なエビクションの場合にのみ許可されます。

PodDisruptionBudget オブジェクトの設定は、以下の主要な部分で構成されています。

一連の Pod に対するラベルのクエリー機能であるラベルセレクター。

同期に利用可能にする必要のある Pod の最小数を指定する可用性レベル。

以下は、PodDisruptionBudget リソースのサンプルです。

PodDisruptionBudget は policy/v1beta1 API グループの一部です。

一連のリソースに対するラベルのクエリー。matchLabels と matchExpressions の結果は論理的
に結合されます。

同時に利用可能である必要のある Pod の最小数。これには、整数またはパーセンテージ (例: 20%)
を指定する文字列を使用できます。

上記のオブジェクト定義で YAML ファイルを作成した場合、これを以下のようにプロジェクトに追加す
ることができます。

$ oc create -f </path/to/file> -n <project_name>

apiVersion: policy/v1beta1 1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 selector: 2
 matchLabels:
 foo: bar
 minAvailable: 2 3

第5章 POD の管理

35

http://kubernetes.io/docs/admin/disruptions/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cli_reference/#object-types

以下を実行して、Pod の disruption budget をすべてのプロジェクトで確認することができます。

$ oc get poddisruptionbudget --all-namespaces

NAMESPACE NAME MIN-AVAILABLE SELECTOR
another-project another-pdb 4 bar=foo
test-project my-pdb 2 foo=bar

PodDisruptionBudget は、最低でも minAvailable の Pod がシステムで実行されている場合は正常で
あるとみなされます。この制限を超えるすべての Pod はエビクションの対象となります。

5.5. INJECTING INFORMATION INTO PODS USING POD PRESETS

A pod preset is an object that injects user-specified information into pods as they are created.

重要

Pod presets is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend to use them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

Red Hat のテクノロジープレビュー機能のサポートについての詳細
は、https://access.redhat.com/support/offerings/techpreview/ を参照してください。

Using pod preset objects you can inject:

secret objects

ConfigMap objects

storage volumes

container volume mounts

environment variables

Developers only need make sure the pod labels match the label selector on the PodPreset in order to
add all that information to the pod. The label on a pod associates the pod with one or more pod preset
objects that have a matching label selectors.

Using pod presets, a developer can provision pods without needing to know the details about the
services the pod will consume. An administrator can keep configuration items of a service invisible from
a developer without preventing the developer from deploying pods. For example, an administrator can
create a pod preset that provides the name, user name, and password for a database through a secret
and the database port through environment variables. The pod developer only needs to know the label
to use to include all the information in pods. A developer can also create pod presets and perform all the
same tasks. For example, the developer can create a preset that injects environment variable
automatically into multiple pods.

注記

The Pod Preset feature is available only if the Service Catalog has been installed.

OpenShift Container Platform 3.9 クラスター管理

36

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#consuming-configmap-in-pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-service-catalog

You can exclude specific pods from being injected using the
podpreset.admission.kubernetes.io/exclude: "true" parameter in the pod specification. See the
example pod specification.

For more information, see Injecting Information into Pods Using Pod Presets .

第5章 POD の管理

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#sample-pod-spec-exclude-preset
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-pod-presets

第6章 ネットワークの管理

6.1. 概要

This topic describes the management of the overall cluster network, including project isolation and
outbound traffic control.

Pod ごとの帯域幅の制限などの Pod レベルのネットワーク機能については、Pod の管理で説明されて
います。

6.2. POD ネットワークの管理

When your cluster is configured to use the ovs-multitenant SDN plugin , you can manage the separate
pod overlay networks for projects using the administrator CLI. See the Configuring the SDN section for
plug-in configuration steps, if necessary.

6.2.1. プロジェクトネットワークへの参加

プロジェクトを既存のプロジェクトネットワークに参加させるには、以下を実行します。

In the above example, all the pods and services in <project2> and <project3> can now access any pods
and services in <project1> and vice versa. Services can be accessed either by IP or fully-qualified DNS
name (<service>.<pod_namespace>.svc.cluster.local). For example, to access a service named db in
a project myproject, use db.myproject.svc.cluster.local.

または、特定のプロジェクト名を指定する代わりに --selector=<project_selector> オプションを使用
することもできます。

6.3. プロジェクトネットワークの分離

プロジェクトネットワークをクラスターから分離したり、その逆を実行するには、以下を実行します。

上記の例では、<project1> および <project2> のすべての Pod およびサービスは、クラスター内のグ
ローバル以外のプロジェクトの Pod およびサービスにアクセスできず、その逆も実行できません。

または、特定のプロジェクト名を指定する代わりに --selector=<project_selector> オプションを使用
することもできます。

6.3.1. プロジェクトネットワークのグローバル化

プロジェクトからクラスター内のすべての Pod およびサービスにアクセスできるようにするか、その
逆を可能にするには、以下を実行します。

上記の例では、<project1> および <project2> のすべての Pod およびサービスはクラスター内のすべ
ての Pod およびサービスにアクセスでき、その逆の場合も可能になります。

または、特定のプロジェクト名を指定する代わりに --selector=<project_selector> オプションを使用

$ oc adm pod-network join-projects --to=<project1> <project2> <project3>

$ oc adm pod-network isolate-projects <project1> <project2>

$ oc adm pod-network make-projects-global <project1> <project2>

OpenShift Container Platform 3.9 クラスター管理

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-networking
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-configuring-sdn

または、特定のプロジェクト名を指定する代わりに --selector=<project_selector> オプションを使用
することもできます。

6.4. ルートおよび INGRESS オブジェクトにおけるホスト名の競合防止の無
効化

OpenShift Container Platform では、ルートおよび ingress オブジェクトのホスト名の競合防止はデ
フォルトで有効にされています。これは、cluster-admin ロールのないユーザーは、作成時にのみルー
ターまたは ingress オブジェクトのホスト名を設定でき、その後は変更できなくなることを意味してい
ます。ただし、ルートおよび ingress オブジェクトのこの制限は、一部またはすべてのユーザーに対し
て緩和することができます。

警告

OpenShift Container Platform はオブジェクト作成のタイムスタンプを使用して特
定のホスト名の最も古いルートや ingress オブジェクトを判別するため、ルートま
たは ingress オブジェクトは、古いルートがそのホスト名を変更したり、ingress オ
ブジェクトが導入される場合に新規ルートのホスト名をハイジャックする可能性が
あります。

OpenShift Container Platform クラスター管理者は、作成後でもルートのホスト名を編集できます。ま
た、特定のユーザーがこれを実行できるようにロールを作成することもできます。

$ oc create clusterrole route-editor --verb=update --resource=routes.route.openshift.io/custom-host

次に、新規ロールをユーザーにバインドできます。

$ oc adm policy add-cluster-role-to-user route-editor user

ingress オブジェクトのホスト名の競合防止を無効にすることもできます。これを実行すること
で、cluster-admin ロールを持たないユーザーが作成後も ingress オブジェクトのホスト名を編集でき
るようになります。これは、ingress オブジェクトのホスト名の編集を許可する場合などに Kubernetes
の動作に依存する OpenShift Container Platform のインストールで役に立ちます。

1. 以下を master.yaml ファイルに追加します。

2. 変更を有効にするために、マスターサービスを再起動します。



admissionConfig:
 pluginConfig:
 openshift.io/IngressAdmission:
 configuration:
 apiVersion: v1
 allowHostnameChanges: true
 kind: IngressAdmissionConfig
 location: ""

$ systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

第6章 ネットワークの管理

39

6.5. EGRESS トラフィックの制御

クラスター管理者は、ホストレベルで数多くの静的 IP アドレスを特定ノードに割り当てることができ
ます。アプリケーション開発者がそれぞれのアプリケーションサービスに専用 IP アドレスを必要とす
る場合、ファイアウォールアクセスを要求するプロセスでこのアドレスを要求することができます。そ
の後、開発者はデプロイメント設定の nodeSelector を使用して、開発者のプロジェクトから egress
ルーターをデプロイし、静的 IP アドレスが事前に割り当てられたホストに Pod が到達することを確認
できます。

The egress pod’s deployment declares one of the source IPs, the destination IP of the protected
service, and a gateway IP to reach the destination. After the pod is deployed, you can create a service to
access the egress router pod, then add that source IP to the corporate firewall. The developer then has
access information to the egress router service that was created in their project, for example,
service.project.cluster.domainname.com.

開発者が外部の firewalled サービスにアクセスする必要がある場合、実際の保護されたサービス URL で
はなくアプリケーション (例: JDBC 接続情報) で、egress ルーター Pod のサービス
(service.project.cluster.domainname.com) に対して呼び出し実行することができます。

You can also assign static IP addresses to projects, ensuring that all outgoing external connections from
the specified project have recognizable origins. This is different from the default egress router, which is
used to send traffic to specific destinations. See the Enabling Fixed IPs for External Project Traffic
section for more information.

注記

The egress router is not available for OpenShift Dedicated.

OpenShift Container Platform クラスター管理者は、以下を使用して egress トラフィックを制御できま
す。

ファイアウォール

egress ファイアウォールを使用すると、受け入れ可能な発信トラフィックポリシーを実施し、特定
のエンドポイントまたは IP 範囲 (サブネット) のみを動的エンドポイント (OpenShift Container
Platform 内の Pod) が通信できる受け入れ可能なターゲットとすることができます。

ルーター

egress ルーターを使用することで、識別可能なサービスを作成し、トラフィックを特定の宛先に送
信できます。これにより、それらの外部の宛先はトラフィックを既知のソースから送られるものと
して処理します。これにより namespace の特定の Pod のみがトラフィックをデータベースにプロ
キシー送信するサービス (egress ルーター) と通信できるよう外部データベースが保護されるため、
セキュリティー対策として役立ちます。

iptables

上記の OpenShift Container Platform 内のソリューションのほかにも、発信トラフィックに適用さ
れる iptables ルールを作成することができます。これらのルールは、egress ファイアウォールより
も多くのオプションを許可しますが、特定のプロジェクトに制限することはできません。

6.5.1. 外部リソースへのアクセスを制限するための Egress ファイアウォールの使用

As an OpenShift Container Platform cluster administrator, you can use egress firewall policy to limit the
external addresses that some or all pods can access from within the cluster, so that:

Pod の対話を内部ホストに制限し、パブリックインターネットへの接続を開始できないように
する。

OpenShift Container Platform 3.9 クラスター管理

40

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-integrating-external-services

または

Pod の対話をパブリックインターネットに制限し、(クラスター外の) 内部ホストへの接続を開
始できないようにする。
または

Pod が接続する理由のない指定された内部サブネット/ホストに到達できないようにする。

You can configure projects to have different egress policies. For example, allowing <project A> access
to a specified IP range, but denying the same access to <project B>. Or restrict application developers
from updating from (Python) pip mirrors, and forcing updates to only come from desired sources.

注意

You must have the ovs-multitenant or ovs-networkpolicy plug-in enabled in order to limit pod access
via egress policy.

プロジェクト管理者は、EgressNetworkPolicy オブジェクトを作成することも、プロジェクトで作成
するオブジェクトを編集することもできません。また、EgressNetworkPolicy の作成に関連して他の
いくつかの制限があります。

デフォルトプロジェクト (および oc adm pod-network make-projects-global でグローバルに
されたその他のプロジェクト) には egress ポリシーを設定することができません。

(oc adm pod-network join-projects を使用して) 2 つのプロジェクトをマージする場合、マー
ジしたプロジェクトのいずれでも egress ポリシーを使用することはできません。

いずれのプロジェクトも複数の egress ポリシーオブジェクトを持つことができません。

上記の制限のいずれかに違反すると、プロジェクトの egress ポリシーに障害が発生し、すべての外部
ネットワークトラフィックがドロップされる可能性があります。

oc コマンドまたは REST API を使用して egress ポリシーを設定します。 oc [create|replace|delete] を
使用して EgressNetworkPolicy オブジェクトを操作できます。api/swagger-spec/oapi-v1.json ファ
イルには、オブジェクトを実際に機能させる方法についての API レベルの詳細情報が含まれます。

egress ポリシーを設定するには、以下を実行します。

1. 対象とするプロジェクトに移動します。

2. Create a JSON file with the desired policy details. For example:

{
 "kind": "EgressNetworkPolicy",
 "apiVersion": "v1",
 "metadata": {
 "name": "default"
 },
 "spec": {
 "egress": [
 {
 "type": "Allow",
 "to": {
 "cidrSelector": "1.2.3.0/24"
 }
 },

第6章 ネットワークの管理

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#migrating-between-sdn-plugins

上記のサンプルがプロジェクトに追加されると、IP 範囲 1.2.3.0/24 およびドメイン名
www.foo.com へのトラフィックが許可されますが、その他のすべての外部 IP アドレスへのア
クセスは拒否されます。このポリシーは外部トラフィックにのみ適用されるため、その他すべ
ての Pod へのトラフィックは影響を受けません。

EgressNetworkPolicy のルールは順番にチェックされ、一致する最初のルールが実施されま
す。上記の例の 3 つの例を逆順に定義した場合、0.0.0.0/0 ルールが最初にチェックされ、すべ
てのトラフィックに一致し、それらすべてを拒否するため、1.2.3.0/24 および www.foo.com
へのトラフィックは許可されません。

Domain name updates are polled based on the TTL (time to live) value of the domain of the
local non-authoritative server, or 30 minutes if the TTL is unable to be fetched. The pod should
also resolve the domain from the same local non-authoritative server when necessary, otherwise
the IP addresses for the domain perceived by the egress network policy controller and the pod
will be different, and the egress network policy may not be enforced as expected. In the above
example, suppose www.foo.com resolved to 10.11.12.13 and has a DNS TTL of one minute, but
was later changed to 20.21.22.23. OpenShift Container Platform will then take up to one minute
to adapt to these changes.

注記

The egress firewall always allows pods access to the external interface of the node the
pod is on for DNS resolution. If your DNS resolution is not handled by something on the
local node, then you will need to add egress firewall rules allowing access to the DNS
server’s IP addresses if you are using domain names in your pods. The default installer
sets up a local dnsmasq, so if you are using that setup you will not need to add extra rules.

1. JSON ファイルを使用して EgressNetworkPolicy オブジェクトを作成します。

注意

Exposing services by creating routes will ignore EgressNetworkPolicy. Egress network policy service
endpoint filtering is done at the node kubeproxy. When the router is involved, kubeproxy is bypassed
and egress network policy enforcement is not applied. Administrators can prevent this bypass by limiting
access to create routes.

 {
 "type": "Allow",
 "to": {
 "dnsName": "www.foo.com"
 }
 },
 {
 "type": "Deny",
 "to": {
 "cidrSelector": "0.0.0.0/0"
 }
 }
]
 }
}

$ oc create -f <policy>.json

OpenShift Container Platform 3.9 クラスター管理

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-quick-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#creating-routes

6.5.2. 外部リソースから Pod トラフィックを認識可能にするための Egress ルーターの
使用

OpenShift Container Platform egress ルーターは、他の用途で使用されていないプライベートソース IP
アドレスを使用して、指定されたリモートサーバーにトラフィックをリダイレクトするサービスを実行
します。このサービスにより、Pod はホワイトリスト IP アドレスからのアクセスのみを許可するよう
に設定されたサーバーと通信できるようになります。

重要

egress ルーターはすべての発信接続のために使用されることが意図されていません。多
数の egress ルーターを作成することで、ネットワークハードウェアの制限を引き上げる
可能性があります。たとえば、すべてのプロジェクトまたはアプリケーションに egress
ルーターを作成すると、ソフトウェアの MAC アドレスのフィルターにフォールバックす
る前にネットワークインターフェースが処理できるローカル MAC アドレス数の上限を超
えてしまう可能性があります。

重要

Currently, the egress router is not compatible with Amazon AWS due to AWS not being
compatible with macvlan traffic.

デプロイメントに関する考慮事項

Egressルーターは 2 つ目の IP アドレスおよび MAC アドレスをノードのプライマリーネットワークイン
ターフェースに追加します。OpenShift Container Platform をベアメタルで実行していない場合は、ハ
イパーバイザーまたはクラウドプロバイダーが追加のアドレスを許可するように設定する必要がありま
す。

Red Hat OpenStack Platform

OpenShift Container Platform を Red Hat OpenStack Platform を使ってデプロイしている場合、
OpenStack 環境で IP および MAC アドレスのホワイトリストを作成する必要があります。これを行
わないと、通信は失敗します。

neutron port-update $neutron_port_uuid \
 --allowed_address_pairs list=true \
 type=dict mac_address=<mac_address>,ip_address=<ip_address>

Red Hat Enterprise Virtualization

Red Hat Enterprise Virtualization を使用している場合、 EnableMACAntiSpoofingFilterRules を
false に設定している必要があります。

VMware vSphere

VMware vSphere を使用している場合は、vSphere 標準スイッチのセキュリティー保護についての
VMWare ドキュメントを参照してください。vSphere Web クライアントからホストの仮想スイッチ
を選択して、VMWare vSphere デフォルト設定を表示し、変更します。

とくに、以下が有効にされていることを確認します。

MAC アドレスの変更

偽装転送 (Forged Transit)

無作為別モード (Promiscuous Mode) 操作

第6章 ネットワークの管理

43

https://access.redhat.com/solutions/2803331
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Virtualization/3.2/html/Administration_Guide/Red_Hat_Enterprise_Virtualization_Manager_configuration_options_explanations_limitations_and_best_practices.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html

1

2

3

Egress ルーターモード

The egress router can run in two different modes: redirect mode and HTTP proxy mode. Redirect mode
works for all services except for HTTP and HTTPS. For HTTP and HTTPS services, use HTTP proxy
mode.

6.5.2.1. リダイレクトモードでの Egress ルーター Pod のデプロイ

リダイレクトモードでは、egress ルーターは、トラフィックを独自の IP アドレスから 1 つ以上の宛先
IP アドレスにリダイレクトするために iptables ルールをセットアップします。予約されたソース IP ア
ドレスを使用する必要のあるクライアント Pod は、宛先 IP に直接接続するのでなく、egress ルーター
に接続するように変更される必要があります。

1. 上記を使用して Pod 設定を作成します。

プライマリーネットワークインターフェースで Macvlan ネットワークインターフェースを
作成し、これを Pod のネットワークプロジェクトに移行してから egress-router コンテ
ナーを起動します。"true" の周りの引用符はそのまま残します。これらを省略すると、エ
ラーが発生します。プライマリーネットワークインターフェース以外のネットワークイン
ターフェースで Macvlan インターフェースを作成するには、アノテーションの値を該当イ
ンターフェースの名前に設定します。たとえば、 eth1 を使用します。

IP address from the physical network that the node is on and is reserved by the cluster
administrator for use by this pod.

ノードで使用されるデフォルトゲートウェイと同じ値です。

apiVersion: v1
kind: Pod
metadata:
 name: egress-1
 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:
 - name: egress-router
 image: registry.access.redhat.com/openshift3/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: 192.168.12.99
 - name: EGRESS_GATEWAY 3
 value: 192.168.12.1
 - name: EGRESS_DESTINATION 4
 value: 203.0.113.25
 - name: EGRESS_ROUTER_MODE 5
 value: init
 containers:
 - name: egress-router-wait
 image: registry.access.redhat.com/openshift3/ose-pod
 nodeSelector:
 site: springfield-1 6

OpenShift Container Platform 3.9 クラスター管理

44

4

5

6

トラフィックの送信先となる外部サーバー。この例では、Pod の接続は 203.0.113.25 にリ
ダイレクトされます。ソース IP アドレスは 192.168.12.99 です。

これは egress ルーターイメージに対して、これが「init コンテナー」としてデプロイされ
ていることを示しています。以前のバージョンの OpenShift Container Platform (および
egress ルーターイメージ) はこのモードをサポートしておらず、通常のコンテナーとして
実行される必要がありました。

Pod はラベル site=springfield-1 の設定されたノードにのみデプロイされます。

2. 上記の定義を使用して Pod を作成します。

Pod が作成されているかどうかを確認するには、以下を実行します。

3. egresss ルーターを参照するサービスを作成し、他の Pod が Pod の IP アドレスを見つけられ
るようにします。

Pod がこのサービスに接続できるようになります。これらの接続は、予約された egress IP ア
ドレスを使用して外部サーバーの対応するポートにリダイレクトされます。

egress ルーターのセットアップは、openshift3/ose-egress-router イメージで作成される「init コンテ
ナー」で実行され、このコンテナーは Macvlan インターフェースを設定し、iptables ルールをセット
アップできるように特権モード実行されます。iptables ルールのセットアップ終了後に、これは終了
し、openshift3/ose-pod コンテナーが Pod が強制終了されるまで (特定のタスクを実行しない) 実行
状態になります。

環境変数は egress-router イメージに対し、使用するアドレスを指示します。これ
は、EGRESS_SOURCE を IP アドレスとして、また EGRESS_GATEWAY をゲートウェイとして使用
するよう Macvlan を設定します。

NAT ルールが設定され、Pod のクラスター IP アドレスの TCP または UDP ポートへの接続が
EGRESS_DESTINATION の同じポートにリダイレクトされるようにします。

クラスター内の一部のノードのみが指定されたソース IP アドレスを要求でき、指定されたゲートウェ
イを使用できる場合、受け入れ可能なノードを示す nodeName または nodeSelector を指定すること
ができます。

$ oc create -f <pod_name>.json

$ oc get pod <pod_name>

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: http
 port: 80
 - name: https
 port: 443
 type: ClusterIP
 selector:
 name: egress-1

第6章 ネットワークの管理

45

1

6.5.2.2. 複数の宛先へのリダイレクト

前の例では、任意のポートでの egress Pod (またはその対応するサービス) への接続は単一の宛先 IP に
リダイレクトされます。ポートによっては複数の異なる宛先 IP を設定することもできます。

This uses the YAML syntax for a multi-line string; see below for details.

EGRESS_DESTINATION の各行は以下の 3 つのタイプのいずれかになります。

<port> <protocol> <IP address> - This says that incoming connections to the given <port>
should be redirected to the same port on the given <IP address>. <protocol> is either tcp or
udp. In the example above, the first line redirects traffic from local port 80 to port 80 on
203.0.113.25.

<port> <protocol> <IP address> <remote port> - As above, except that the connection is
redirected to a different <remote port> on <IP address>. In the example above, the second
and third lines redirect local ports 8080 and 8443 to remote ports 80 and 443 on 203.0.113.26.

<fallback IP address> - If the last line of EGRESS_DESTINATION is a single IP address, then
any connections on any other port will be redirected to the corresponding port on that IP
address (eg, 203.0.113.27 in the example above). If there is no fallback IP address then
connections on other ports would simply be rejected.)

6.5.2.3. ConfigMap の使用による EGRESS_DESTINATION の指定

apiVersion: v1
kind: Pod
metadata:
 name: egress-multi
 labels:
 name: egress-multi
 annotations:
 pod.network.openshift.io/assign-macvlan: "true"
spec:
 initContainers:
 - name: egress-router
 image: registry.access.redhat.com/openshift3/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE
 value: 192.168.12.99
 - name: EGRESS_GATEWAY
 value: 192.168.12.1
 - name: EGRESS_DESTINATION
 value: | 1
 80 tcp 203.0.113.25
 8080 tcp 203.0.113.26 80
 8443 tcp 203.0.113.26 443
 203.0.113.27
 - name: EGRESS_ROUTER_MODE
 value: init
 containers:
 - name: egress-router-wait
 image: registry.access.redhat.com/openshift3/ose-pod

OpenShift Container Platform 3.9 クラスター管理

46

宛先マッピングのセットのサイズが大きいか、またはこれが頻繁に変更される場合、ConfigMap を使用
して一覧を外部で維持し、egress ルーター Pod がそこから一覧を読み取れるようにすることができま
す。これには、プロジェクト管理者が ConfigMap を編集できるという利点がありますが、これには特
権付きコンテナーが含まれるため、管理者は Pod 定義を直接編集することはできません。

1. EGRESS_DESTINATION データを含むファイルを作成します。

空の行とコメントをこのファイルに追加できることに注意してください。

2. このファイルから ConfigMap オブジェクトを作成します。

ここで、egress-routes は作成される ConfigMap オブジェクトの名前で、my-egress-
destination.txt はデータの読み取り元のファイルの名前です。

3. 前述のように egress ルーター Pod 定義を作成しますが、ConfigMap を環境セクションの
EGRESS_DESTINATION に指定します。

注記

egress ルーターは、ConfigMap が変更されても自動的に更新されません。更新を取得す
るには Pod を再起動します。

6.5.2.4. Egress ルーター HTTP プロキシー Pod のデプロイ

HTTP プロキシーモードでは、egress ルーターはポート 8080 で HTTP プロキシーとして実行されま

$ cat my-egress-destination.txt
Egress routes for Project "Test", version 3

80 tcp 203.0.113.25

8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443

Fallback
203.0.113.27

$ oc delete configmap egress-routes --ignore-not-found
$ oc create configmap egress-routes \
 --from-file=destination=my-egress-destination.txt

 ...
 env:
 - name: EGRESS_SOURCE
 value: 192.168.12.99
 - name: EGRESS_GATEWAY
 value: 192.168.12.1
 - name: EGRESS_DESTINATION
 valueFrom:
 configMapKeyRef:
 name: egress-routes
 key: destination
 - name: EGRESS_ROUTER_MODE
 value: init
 ...

第6章 ネットワークの管理

47

1

2

3

4

5

す。これは、HTTP または HTTPS ベースのサービスと通信するクライアントの場合にのみ機能します
が、通常それらを機能させるのにクライアント Pod への多くの変更は不要です。環境変数を設定する
ことで、プログラムは HTTP プロキシーを使用するように指示されます。

1. 例として以下を使用して Pod を作成します。

プライマリーネットワークインターフェースで Macvlan ネットワークインターフェースを
作成してから、これを Pod のネットワークプロジェクトに移行し、egress-router コンテ
ナーを起動します。"true" の周りの引用符をそのまま残します。これらを省略すると、エ
ラーが発生します。

An IP address from the physical network that the node itself is on and is reserved by the
cluster administrator for use by this pod.

ノード自体で使用されるデフォルトゲートウェイと同じ値。

これは egress ルーターイメージに対し、これが HTTP プロキシーの一部としてデプロイ
されているため、iptables のリダイレクトルールを設定できないことを示します。

プロキシーの設定方法を指定する文字列または YAML の複数行文字列です。これは、init
コンテナーの他の環境変数ではなく、HTTP プロキシーコンテナーの環境変数として指定
されることに注意してください。

EGRESS_HTTP_PROXY_DESTINATION 値に以下のいずれかを指定できます。また、* を使用

apiVersion: v1
kind: Pod
metadata:
 name: egress-http-proxy
 labels:
 name: egress-http-proxy
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:
 - name: egress-router-setup
 image: registry.access.redhat.com/openshift3/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: 192.168.12.99
 - name: EGRESS_GATEWAY 3
 value: 192.168.12.1
 - name: EGRESS_ROUTER_MODE 4
 value: http-proxy
 containers:
 - name: egress-router-proxy
 image: registry.access.redhat.com/openshift3/ose-egress-http-proxy
 env:
 - name: EGRESS_HTTP_PROXY_DESTINATION 5
 value: |
 !*.example.com
 !192.168.1.0/24
 *

OpenShift Container Platform 3.9 クラスター管理

48

1

1

EGRESS_HTTP_PROXY_DESTINATION 値に以下のいずれかを指定できます。また、* を使用
することができます。これは「すべてのリモート宛先への接続を許可」することを意味しま
す。設定の各行には、許可または拒否する接続の 1 つのグループを指定します。

IP アドレス (例: 192.168.1.1) は該当する IP アドレスへの接続を許可します。

CIDR 範囲 (例: 192.168.1.0/24) は CIDR 範囲への接続を許可します。

ホスト名 (例: www.example.com) は該当ホストへのプロキシーを許可します。

*. が先に付けられるドメイン名 (例: *.example.com) は該当ドメインおよびそのサブドメイ
ンのすべてへのプロキシーを許可します。

上記のいずれかに ! を付けると、接続は許可されるのではなく、拒否されます。

最後の行が * の場合、拒否されていないすべてのものが許可されます。または、許可され
ていないすべてのものが拒否されます。

2. egresss ルーターを参照するサービスを作成し、他の Pod が Pod の IP アドレスを見つけられ
るようにします。

http ポートが常に 8080 に設定されていることを確認します。

3. http_proxy または https_proxy 変数を設定して、クライアント Pod (egress プロキシー Pod
ではない) を HTTP プロキシーを使用するように設定します。

手順 2 で作成されたサービス。

注記

すべてのセットアップに http_proxy および https_proxy 環境変数が必要になる
訳ではありません。上記を実行しても作業用セットアップが作成されない場合
は、Pod で実行しているツールまたはソフトウェアについてのドキュメントを参
照してください。

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: http-proxy
 port: 8080 1
 type: ClusterIP
 selector:
 name: egress-1

 ...
 env:
 - name: http_proxy
 value: http://egress-1:8080/ 1
 - name: https_proxy
 value: http://egress-1:8080/
 ...

第6章 ネットワークの管理

49

1

リダイレクトする egress ルーターの上記の例と同様に、ConfigMap を使用して
EGRESS_HTTP_PROXY_DESTINATION を指定することもできます。

6.5.2.5. Egress ルーター Pod のフェイルオーバーの有効化

レプリケーションコントローラーを使用し、ダウンタイムを防ぐために egress ルーター Pod の 1 つの
コピーを常に確保できるようにします。

1. 以下を使用してレプリケーションコントローラーの設定ファイルを作成します。

replicas が 1 に設定されていることを確認します。1 つの Pod のみが指定される
EGRESS_SOURCE 値を随時使用できるためです。これは、ルーターの単一コピーのみが
ラベル site=springfield-1 が設定されたノードで実行されることを意味します。

2. この定義を使用して Pod を作成します。

3. 検証するには、レプリケーションコントローラー Pod が作成されているかどうかを確認しま

apiVersion: v1
kind: ReplicationController
metadata:
 name: egress-demo-controller
spec:
 replicas: 1 1
 selector:
 name: egress-demo
 template:
 metadata:
 name: egress-demo
 labels:
 name: egress-demo
 annotations:
 pod.network.openshift.io/assign-macvlan: "true"
 spec:
 initContainers:
 - name: egress-demo-init
 image: registry.access.redhat.com/openshift3/ose-egress-router
 env:
 - name: EGRESS_SOURCE
 value: 192.168.12.99
 - name: EGRESS_GATEWAY
 value: 192.168.12.1
 - name: EGRESS_DESTINATION
 value: 203.0.113.25
 - name: EGRESS_ROUTER_MODE
 value: init
 securityContext:
 privileged: true
 containers:
 - name: egress-demo-wait
 image: registry.access.redhat.com/openshift3/ose-pod
 nodeSelector:
 site: springfield-1

$ oc create -f <replication_controller>.json

OpenShift Container Platform 3.9 クラスター管理

50

3. 検証するには、レプリケーションコントローラー Pod が作成されているかどうかを確認しま
す。

6.5.3. 外部リソースへのアクセスを制限するための iptables ルールの使用

クラスター管理者の中には、EgressNetworkPolicy のモデルや egress ルーターの対象外の発信トラ
フィックに対してアクションを実行する必要のある管理者がいる場合があります。この場合には、
iptables ルールを直接作成してこれを実行することができます。

たとえば、特定の宛先へのトラフィックをログに記録するルールを作成したり、1 秒ごとに設定される
特定数を超える発信接続を許可しないようにしたりできます。

OpenShift Container Platform はカスタム iptables ルールを自動的に追加する方法を提供していません
が、管理者がこのようなルールを手動で追加できる場所を提供します。各ノードは起動時に、filter
テーブルに OPENSHIFT-ADMIN-OUTPUT-RULES という空のチェーンを作成します (チェーンがすで
に存在していないと仮定します)。管理者がこのチェーンに追加するすべてのルールは、Pod からクラ
スター外にある宛先へのすべてのトラフィックに適用されます (それ以外のトラフィックには適用され
ません)。

この機能を使用する際には、注意すべきいくつかの点があります。

1. 各ノードにルールが作成されていることを確認するのは管理者のタスクになります。OpenShift
Container Platform はこれを自動的に確認する方法は提供しません。

2. ルールは egress ルーターによってクラスターを退出するトラフィックには適用されず、ルール
は EgressNetworkPolicy ルールが適用された後に実行されます (そのた
め、EgressNetworkPolicy で拒否されるトラフィックは表示されません)。

3. ノードには「外部」IP アドレスと「内部」SDN IP アドレスの両方があるため、Pod からノー
ドまたはノードからマスターへの接続の処理は複雑になります。そのため、一部の Pod とノー
ド間/Pod とマスター間のトラフィックはこのチェーンを通過しますが、他の Pod とノード
間/Pod とマスター間のトラフィックはこれをバイパスする場合があります。

6.6. 外部プロジェクトトラフィックの静的 IP の有効化

クラスター管理者は特定の静的 IP アドレスをプロジェクトに割り当て、トラフィックが外部から容易
に識別できるようにできます。これは、トラフィックを特定の宛先に送信するために使用されるデフォ
ルトの egress ルーターの場合とは異なります。

識別可能な IP トラフィックは起点を可視化することで、クラスターのセキュリティーを強化します。
これが有効にされると、指定されたプロジェクトからのすべての発信外部接続は同じ固定ソース IP を
共有します。つまり、すべての外部リソースがこのトラフィックを認識できるようになります。

egress ルーターの場合とは異なり、これは EgressNetworkPolicy ファイアウォールルールに基づいて
実行されます。

静的 IP を有効にするには、以下を実行します。

1. 必要な IP で NetNamespace を更新します。

たとえば、MyProject プロジェクトを IP アドレス 192.168.1.100 に割り当てるには、以下を実行

$ oc describe rc <replication_controller>

$ oc patch netnamespace <project_name> -p '{"egressIPs": ["<IP_address>"]}'

第6章 ネットワークの管理

51

たとえば、MyProject プロジェクトを IP アドレス 192.168.1.100 に割り当てるには、以下を実行
します。

The egressIPs field is an array, but must be set to a single IP address. If setting multiple IPs, the
other IPs will be ignored.

2. egress IP を必要なノードホストに手動で割り当てます。ノードホストの HostSubnet オブジェ
クトの egressIPs フィールドを設定します。そのノードホストに割り当てる必要のある任意の
数の IP を含めることができます。

たとえば node1 に egress IPs 192.168.1.100、192.168.1.101 および 192.168.1.102 が必要である場合
が、以下のようになります。

重要

Egress IPs are implemented as additional IP addresses on the primary network
interface, and must be in the same subnet as the node’s primary IP. Allowing
additional IP addresses on the primary network interface might require extra
configuration when using some cloud or VM solutions.

プロジェクトに対して上記が有効にされる場合、そのプロジェクトからのすべての egress トラフィッ
クはその egress IP をホストするノードにルーティングされ、(NAT を使用して) その IP アドレスに接
続されます。egressIPs が NetNamespace で設定されているものの、その egress IP をホストする
ノードがない場合、namespace からの egress トラフィックはドロップされます。

6.7. マルチキャストの有効化

重要

現時点で、マルチキャストは低帯域幅の調整またはサービスの検出での使用に最も適し
ており、高帯域幅のソリューションとしては適していません。

Multicast traffic between OpenShift Container Platform pods is disabled by default. You can enable
Multicast on a per-project basis by setting an annotation on the project’s corresponding netnamespace
object:

アノテーションを削除してマルチキャストを無効にします。

$ oc patch netnamespace MyProject -p '{"egressIPs": ["192.168.1.100"]}'

$ oc patch hostsubnet <node_name> -p \
 '{"egressIPs": ["<IP_address_1>", "<IP_address_2>"]}'

$ oc patch hostsubnet node1 -p \
 '{"egressIPs": ["192.168.1.100", "192.168.1.101", "192.168.1.102"]}'

$ oc annotate netnamespace <namespace> \
 netnamespace.network.openshift.io/multicast-enabled=true

$ oc annotate netnamespace <namespace> \
 netnamespace.network.openshift.io/multicast-enabled-

OpenShift Container Platform 3.9 クラスター管理

52

If you have joined networks together , you will need to enable Multicast in each projects' netnamespace
in order for it to take effect in any of the projects. To enable Multicast in the default project, you must
also enable it in the kube-service-catalog project and all other projects that have been made global .

注記

Multicast global projects are not "global", but instead communicate with only other global
projects via Multicast, not with all projects in the cluster, as is the case with unicast.

6.8. NETWORKPOLICY の有効化

The ovs-subnet and ovs-multitenant plugins have their own legacy models of network isolation, and
don’t support Kubernetes NetworkPolicy. However, NetworkPolicy support is available by using the
ovs-networkpolicy plug-in.

In a cluster configured to use the ovs-networkpolicy plugin, network isolation is controlled entirely by
NetworkPolicy objects. By default, all pods in a project are accessible from other pods and network
endpoints. To isolate one or more pods in a project, you can create NetworkPolicy objects in that
project to indicate the allowed incoming connections. Project administrators can create and delete
NetworkPolicy objects within their own project.

Pod を参照する NetworkPolicy オブジェクトを持たない Pod は完全にアクセスできますが、Pod を参
照する 1 つ以上の NetworkPolicy オブジェクトを持つ Pod は分離されます。これらの分離された Pod
は 1 つ以上の NetworkPolicy オブジェクトで許可される接続のみを受け入れます。

Following are a few sample NetworkPolicy object definitions supporting different scenrios:

すべてのトラフィックを拒否
プロジェクトに「deny by default (デフォルトで拒否)」を実行させるには、すべての Pod に一
致するが、トラフィックを一切許可しない NetworkPolicy オブジェクトを追加します。

プロジェクト内の Pod からの接続のみを許可
Pod が同じプロジェクト内の他の Pod からの接続を受け入れるが、他のプロジェクトの Pod
からの接続を拒否するように設定するには、以下を実行します。

Pod ラベルに基づいて HTTP および HTTPS トラフィックのみを許可

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector:
 ingress: []

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}

第6章 ネットワークの管理

53

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-configuring-sdn
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/network/network-policy.md

特定のラベル (以下の例の role=frontend) の付いた Pod への HTTP および HTTPS アクセスの
みを有効にするには、以下と同様の NetworkPolicy オブジェクトを追加します。

NetworkPolicy オブジェクトは加算されるものです。つまり、複数の NetworkPolicy オブジェクトを
組み合わせて複雑なネットワーク要件を満すことができます。

たとえば、先の例で定義された NetworkPolicy オブジェクトの場合、同じプロジェト内に allow-
same-namespace と allow-http-and-https ポリシーの両方を定義することができます。これにより、
ラベル role=frontend の付いた Pod は各ポリシーで許可されるすべての接続、つまり、同じ
namespace の Pod からのすべての接続、および すべて の namespace の Pod からのポート 80 443 で
の接続を受け入れます。

6.8.1. NetworkPolicy およびルーター

When using the ovs-multitenant plugin, traffic from the routers is automatically allowed into all
namespaces. This is because the routers are usually in the default namespace, and all namespaces allow
connections from pods in that namespace. With the ovs-networkpolicy plugin, this does not happen
automatically. Therefore, if you have a policy that isolates a namespace by default, you need to take
additional steps to allow routers to access it.

1 つのオプションとして、すべてのソースからのアクセスを許可する各サービスのポリシーを作成でき
ます。以下は例になります。

これにより、ルーターはサービスにアクセスできますが、同時に他のユーザーの namespace にある
Pod もこれにアクセスできます。これらの Pod は通常はパブリックルーターを使用してサービスにア
クセスできるため、これによって問題が発生することはないはずです。

Alternatively, you can create a policy allowing full access from the default namespace, as in the ovs-

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-http-and-https
spec:
 podSelector:
 matchLabels:
 role: frontend
 ingress:
 - ports:
 - protocol: TCP
 port: 80
 - protocol: TCP
 port: 443

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-to-database-service
spec:
 podSelector:
 matchLabels:
 role: database
 ingress:
 - ports:
 - protocol: TCP
 port: 5432

OpenShift Container Platform 3.9 クラスター管理

54

Alternatively, you can create a policy allowing full access from the default namespace, as in the ovs-
multitenant plugin:

1. ラベルをデフォルト namespace に追加します。

重要

You only need to do this once for the entire cluster. The cluster administrator role
is required to add labels to namesapces.

2. その namespace からの接続を許可するポリシーを作成します。

注記

Perform this step for each namespace you want to allow conntections into. Users
with the Project Administrator role can create policies.

6.8.2. 新規プロジェクトのデフォルト NetworkPolicy の設定

クラスター管理者は、新規プロジェクトの作成時に、デフォルトのプロジェクトテンプレートを変更し
てデフォルトの NetworkPolicy オブジェクト (1 つ以上) の自動作成を有効にできます。これを実行する
には、以下を行います。

1. Create a custom project template and configure the master to use it, as described in Modifying
the Template for New Projects.

2. 必要な NetworkPolicy オブジェクトを含むようにテンプレートを編集します。

注記

NetworkPolicy オブジェクトを既存テンプレートに含めるには、oc edit コマン
ドを使用します。現時点では、oc patch を使用してオブジェクトを Template
リソースに追加することはできません。

a. それぞれのデフォルトポリシーを objects 配列の要素として追加します。

$ oc label namespace default name=default

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-from-default-namespace
spec:
 podSelector:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 name: default

$ oc edit template project-request -n default

第6章 ネットワークの管理

55

6.9. HTTP STRICT TRANSPORT SECURITY の有効化

HTTP Strict Transport Security (HSTS) ポリシーは、ホストで HTTPS トラフィックのみを許可するセ
キュリティーの拡張機能です。デフォルトで、すべての HTTP 要求はドロップされます。これは、web
サイトとの対話の安全性を確保したり、ユーザーのためにセキュアなアプリケーションを提供するのに
役立ちます。

HSTS が有効にされると、HSTS はサイトから Strict Transport Security ヘッダーを HTTPS 応答に追加
します。リダイレクトするルートで insecureEdgeTerminationPolicy 値を使用し、HTTP を HTTPS
に送信するようにします。ただし、HSTS が有効にされている場合は、要求の送信前にクライアントが
すべての要求を HTTP URL から HTTPS に変更するためにリダイレクトの必要がなくなります。これは
クライアントでサポートされる必要はなく、max-age=0 を設定することで無効にできます。

重要

HSTS はセキュアなルート (edge termination または re-encrypt) でのみ機能します。こ
の設定は、HTTP またはパススルールートには適していません。

ルートに対して HSTS を有効にするには、haproxy.router.openshift.io/hsts_header 値を edge
termination または re-encrypt ルートに追加します。

重要

objects:
...
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-same-namespace
 spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-default-namespace
 spec:
 podSelector:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 name: default
...

apiVersion: v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=31536000;includeSubDomains;preload

OpenShift Container Platform 3.9 クラスター管理

56

1

重要

haproxy.router.openshift.io/hsts_header 値にパラメーターのスペースやその他の値が
入っていないことを確認します。max-age のみが必要になります。

必須の max-age パラメーターは、HSTS ポリシーの有効期間 (秒単位) を示します。クライアントは、
ホストから HSTS ヘッダーのある応答を受信する際には常に max-age を更新します。max-age がタイ
ムアウトになると、クライアントはポリシーを破棄します。

オプションの includeSubDomains パラメーターは、クライアントに対し、ホストのすべてのサブドメ
インがホストど同様に処理されるように指示します。

max-age が 0 より大きい場合、オプションの preload パラメーターは外部サービスがこのサイトをそ
れぞれの HSTS プリロードのリストに含めることを許可します。たとえば、Google などのサイトは
preload が設定されているサイトの一覧を作成します。ブラウザーはこれらのリストを使用し、サイト
と対話する前でも HTTPS 経由でのみ通信するサイトを判別できます。preload 設定がない場合、ブラ
ウザーはヘッダーを取得するために HTTPS 経由でサイトと通信している必要があります。

6.10. スループットの問題のトラブルシューティング

OpenShift Container Platform でデプロイされるアプリケーションでは、特定のサービス間で非常に長
い待ち時間が発生するなど、ネットワークのスループットの問題が生じることがあります。

Pod のログが問題の原因を指摘しない場合は、以下の方法を使用してパフォーマンスの問題を分析しま
す。

ping または tcpdump などのパケットアナライザーを使用して Pod とそのノード間のトラ
フィックを分析します。
たとえば、問題を生じさせる動作を再現している間に各ノードで tcpdump ツールを実行しま
す。両サイトでキャプチャーしたデータを確認し、送信および受信タイムスタンプを比較して
Pod への/からのトラフィックの待ち時間を分析します。待ち時間は、ノードのインターフェー
スが他の Pod やストレージデバイス、またはデータプレーンからのトラフィックでオーバー
ロードする場合に OpenShift Container Platform で発生する可能性があります。

$ tcpdump -s 0 -i any -w /tmp/dump.pcap host <podip 1> && host <podip 2> 1

podip は Pod の IP アドレスです。以下のコマンドを実行して Pod の IP アドレスを取得
します。

oc get pod <podname> -o wide

tcpdump は 2 つの Pod 間のすべてのトラフィックが含まれる /tmp/dump.pcap のファイルを
生成します。理想的には、ファイルサイズを最小限に抑えるために問題を再現するすぐ前と問
題を再現したすぐ後ににアナライザーを実行することが良いでしょう。以下のようにノード間
でパケットアナライザーを実行することもできます (式から SDN を排除する)。

tcpdump -s 0 -i any -w /tmp/dump.pcap port 4789

ストリーミングのスループットおよび UDP スループットを測定するために iperf などの帯域幅
測定ツールを使用します。ボトルネックの特定を試行するには、最初に Pod から、次にノード
からツールを実行します。iperf3 ツールは RHEL 7 の一部として組み込まれています。

iperf3 のインストールおよび使用についての詳細は、こちらの Red Hat ソリューションを参照してくだ

第6章 ネットワークの管理

57

http://www.tcpdump.org/

iperf3 のインストールおよび使用についての詳細は、こちらの Red Hat ソリューションを参照してくだ
さい。

OpenShift Container Platform 3.9 クラスター管理

58

https://access.redhat.com/solutions/33103

第7章 サービスアカウントの設定

7.1. 概要

ユーザーが OpenShift Container Platform CLI または web コンソールを使用する場合、API トークンは
ユーザーを OpenShift Container Platform API に対して認証します。ただし、一般ユーザーの認証情報
を利用できない場合、以下のようにコンポーネントが API 呼び出しを行うのが通例になります。

レプリケーションコントローラーが Pod を作成するか、または削除するために API 呼び出しを
実行する。

コンテナー内のアプリケーションが検出目的で API 呼び出しを実行する。

外部アプリケーションがモニターまたは統合目的で API 呼び出しを実行する。

サービスアカウントは、一般ユーザーの認証情報を共有せずに API アクセスをより柔軟に制御する方法
を提供します。

7.2. ユーザー名およびグループ

すべてのサービスアカウントには、一般ユーザーのようにロールを付与できるユーザー名が関連付けら
れています。ユーザー名はそのプロジェクトおよび名前から派生します。

system:serviceaccount:<project>:<name>

たとえば、view (表示) ロールを top-secret プロジェクトの robot サービスアカウントに追加するに
は、以下を実行します。

$ oc policy add-role-to-user view system:serviceaccount:top-secret:robot

重要

プロジェクトで特定のサービスアカウントにアクセスを付与する必要がある場合は、-z
フラグを使用できます。サービスアカウントが属するプロジェクトから -z フラグを使用
し、<serviceaccount_name> を指定します。これによりタイプミスの発生する可能性
が減り、アクセスを指定したサービスアカウントのみに付与できるため、この方法を使
用することを強くお勧めします。以下は例になります。

 $ oc policy add-role-to-user <role_name> -z <serviceaccount_name>

プロジェクトから実行しない場合は、以下の例に示すように -n オプションを使用してこ
れが適用されるプロジェクトの namespace を指定します。

すべてのサービスアカウントは以下の 2 つのグループのメンバーでもあります。

system:serviceaccount

システムのすべてのサービスアカウントが含まれます。

system:serviceaccount:<project>

指定されたプロジェクトのすべてのサービスアカウントが含まれます。

たとえば、すべてのプロジェクトのすべてのサービスアカウントが top-secret プロジェクトのリソー

第7章 サービスアカウントの設定

59

たとえば、すべてのプロジェクトのすべてのサービスアカウントが top-secret プロジェクトのリソー
スを表示できるようにするには、以下を実行します。

$ oc policy add-role-to-group view system:serviceaccount -n top-secret

managers プロジェクトのすべてのサービスアカウントが top-secret プロジェクトのリソースを編集
できるようにするには、以下を実行します。

$ oc policy add-role-to-group edit system:serviceaccount:managers -n top-secret

7.3. サービスアカウントの管理

サービスアカウントは、各プロジェクトに存在する API オブジェクトです。サービスアカウントを管理
するには、sa または serviceaccount オブジェクトタイプと共に oc コマンドを使用するか、または
web コンソールを使用することができます。

現在のプロジェクトの既存のサービスアカウントの一覧を取得するには、以下を実行します。

$ oc get sa
NAME SECRETS AGE
builder 2 2d
default 2 2d
deployer 2 2d

新規のサービスアカウントを作成するには、以下を実行します。

$ oc create sa robot
serviceaccount "robot" created

サービスアカウントの作成後すぐに、以下の 2 つのシークレットが自動的に追加されます。

API トークン

OpenShift Container レジストリーの認証情報

これらはサービスアカウントを記述すると表示できます。

$ oc describe sa robot
Name: robot
Namespace: project1
Labels: <none>
Annotations: <none>

Image pull secrets: robot-dockercfg-qzbhb

Mountable secrets: robot-token-f4khf
 robot-dockercfg-qzbhb

Tokens: robot-token-f4khf
 robot-token-z8h44

システムはサービスアカウントに API トークンとレジストリーの認証情報が常にあることを確認しま
す。

OpenShift Container Platform 3.9 クラスター管理

60

1

2

3

1

2

3

生成される API トークンとレジストリーの認証情報は期限切れになることはありませんが、シークレッ
トを削除することで取り消すことができます。シークレットが削除されると、新規のシークレットが自
動生成され、これに置き換わります。

7.4. サービスアカウント認証の有効化

サービスアカウントは、プライベート RSA キーで署名されるトークンを使用して API に対して認証さ
れます。認証層では一致するパブリック RSA キーを使用して署名を検証します。

サービスアカウントトークンの生成を有効にするには、マスターで /etc/origin/master/master-
config.yml ファイルの serviceAccountConfig スタンザを更新し、(署名 用に) privateKeyFile と
publicKeyFiles 一覧の一致するパブリックキーファイルを指定します。

serviceAccountConfig:
 ...
 masterCA: ca.crt 1
 privateKeyFile: serviceaccount.private.key 2
 publicKeyFiles:
 - serviceaccount.public.key 3
 - ...

API サーバーの提供する証明書を検証するために使用される CA ファイル。

プライベート RSA キーファイル (トークンの署名用)。

パブリック RSA キーファイル (トークンの検証用)。プライベートキーファイルが提供されている
場合、パブリックキーコンポーネントが使用されます。複数のパブリックキーファイルを使用で
き、トークンはパブリックキーのいずれかで検証できる場合に受け入れられます。これにより、署
名するキーのローテーションが可能となり、以前の署名者が生成したトークンは依然として受け入
れられます。

7.5. 管理サービスアカウント

サービスアカウントは、ビルド、デプロイメントおよびその他の Pod を実行するために各プロジェク
トで必要になります。マスターの /etc/origin/master/master-config.yml ファイルの
managedNames 設定は、すべてのプロジェクトに自動作成されるサービスアカウントを制御します。

serviceAccountConfig:
 ...
 managedNames: 1
 - builder 2
 - deployer 3
 - default 4
 - ...

すべてのプロジェクトで自動作成するサービスアカウントの一覧。

A builder service account in each project is required by build pods, and is given the system:image-
builder role, which allows pushing images to any image stream in the project using the internal
container registry.

各プロジェクトの deployer サービスアカウントはデプロイメント Pod で必要になり、レプリ
ケーションコントローラーおよびプロジェクトの Pod の表示および変更を可能にする
system:deployer ロールが付与されます。

第7章 サービスアカウントの設定

61

4

system:deployer ロールが付与されます。

デフォルトのサービスアカウントは、別のサービスアカウントが指定されない限り、他のすべての
Pod で使用されます。

All service accounts in a project are given the system:image-puller role, which allows pulling images
from any image stream in the project using the internal container registry.

7.6. インフラストラクチャーサービスアカウント

一部のインフラストラクチャーコントローラーは、サービスアカウント認証情報を使用して実行されま
す。以下のサービスアカウントは、サーバーの起動時に OpenShift Container Platform インフラストラ
クチャープロジェクト (openshift-infra) に作成され、クラスター全体で以下のロールが付与されま
す。

サービスアカウント 説明

replication-controller system:replication-controller ロールの割り当て

deployment-controller system:deployment-controller ロールの割り当て

build-controller system:build-controller ロールの割り当て。さらに、build-controller サービス
アカウントは、特権付きの ビルド Pod を作成するために特権付きセキュリティー
コンテキストに組み込まれます。

これらのサービスアカウントが作成されるプロジェクトを設定するには、マスターで
/etc/origin/master/master-config.yml ファイルの openshiftInfrastructureNamespace フィールド
を設定します。

policyConfig:
 ...
 openshiftInfrastructureNamespace: openshift-infra

7.7. サービスアカウントおよびシークレット

マスターで /etc/origin/master/master-config.yml ファイルの limitSecretReferences フィールドを
true に設定し、Pod のシークレット参照をサービスアカウントでホワイトリストに入れることが必要に
なるようにします。この値を false に設定すると、Pod がプロジェクトのすべてのシークレットを参照
できるようになります。

serviceAccountConfig:
 ...
 limitSecretReferences: false

OpenShift Container Platform 3.9 クラスター管理

62

第8章 ロールベースアクセス制御 (RBAC) の管理

8.1. 概要

You can use the CLI to view RBAC resources and the administrator CLI to manage the roles and
bindings.

8.2. VIEWING ROLES AND BINDINGS

Roles can be used to grant various levels of access both cluster-wide as well as at the project-scope.
Users and groups can be associated with, or bound to, multiple roles at the same time. You can view
details about the roles and their bindings using the oc describe command.

Users with the cluster-admindefault cluster role bound cluster-wide can perform any action on any
resource. Users with the admin default cluster role bound locally can manage roles and bindings in that
project.

注記

Review a full list of verbs in the Evaluating Authorization section.

8.2.1. Viewing Cluster Roles

クラスターロールおよびそれらの関連付けられたルールセットを表示するには、以下を実行します。

$ oc describe clusterrole.rbac

Viewing Cluster Roles

$ oc describe clusterrole.rbac
Name: admin
Labels: <none>
Annotations: openshift.io/description=A user that has edit rights within the project and can change the
project's membership.
 rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 appliedclusterresourcequotas [] [] [get list watch]
 appliedclusterresourcequotas.quota.openshift.io [] [] [get list watch]
 bindings [] [] [get list watch]
 buildconfigs [] [] [create delete deletecollection get list patch update watch]
 buildconfigs.build.openshift.io [] [] [create delete deletecollection get list patch update watch]
 buildconfigs/instantiate [] [] [create]
 buildconfigs.build.openshift.io/instantiate [] [] [create]
 buildconfigs/instantiatebinary [] [] [create]
 buildconfigs.build.openshift.io/instantiatebinary [] [] [create]
 buildconfigs/webhooks [] [] [create delete deletecollection get list patch update watch]
 buildconfigs.build.openshift.io/webhooks [] [] [create delete deletecollection get list patch update
watch]
 buildlogs [] [] [create delete deletecollection get list patch update watch]
 buildlogs.build.openshift.io [] [] [create delete deletecollection get list patch update watch]
 builds [] [] [create delete deletecollection get list patch update watch]

第8章 ロールベースアクセス制御 (RBAC) の管理

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#cluster-and-local-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#cluster-and-local-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#users-and-groups
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#evaluating-authorization

 builds.build.openshift.io [] [] [create delete deletecollection get list patch update watch]
 builds/clone [] [] [create]
 builds.build.openshift.io/clone [] [] [create]
 builds/details [] [] [update]
 builds.build.openshift.io/details [] [] [update]
 builds/log [] [] [get list watch]
 builds.build.openshift.io/log [] [] [get list watch]
 configmaps [] [] [create delete deletecollection get list patch update watch]
 cronjobs.batch [] [] [create delete deletecollection get list patch update watch]
 daemonsets.extensions [] [] [get list watch]
 deploymentconfigrollbacks [] [] [create]
 deploymentconfigrollbacks.apps.openshift.io [] [] [create]
 deploymentconfigs [] [] [create delete deletecollection get list patch update watch]
 deploymentconfigs.apps.openshift.io [] [] [create delete deletecollection get list patch update
watch]
 deploymentconfigs/instantiate [] [] [create]
 deploymentconfigs.apps.openshift.io/instantiate [] [] [create]
 deploymentconfigs/log [] [] [get list watch]
 deploymentconfigs.apps.openshift.io/log [] [] [get list watch]
 deploymentconfigs/rollback [] [] [create]
 deploymentconfigs.apps.openshift.io/rollback [] [] [create]
 deploymentconfigs/scale [] [] [create delete deletecollection get list patch update watch]
 deploymentconfigs.apps.openshift.io/scale [] [] [create delete deletecollection get list patch
update watch]
 deploymentconfigs/status [] [] [get list watch]
 deploymentconfigs.apps.openshift.io/status [] [] [get list watch]
 deployments.apps [] [] [create delete deletecollection get list patch update watch]
 deployments.extensions [] [] [create delete deletecollection get list patch update watch]
 deployments.extensions/rollback [] [] [create delete deletecollection get list patch update watch]
 deployments.apps/scale [] [] [create delete deletecollection get list patch update watch]
 deployments.extensions/scale [] [] [create delete deletecollection get list patch update watch]
 deployments.apps/status [] [] [create delete deletecollection get list patch update watch]
 endpoints [] [] [create delete deletecollection get list patch update watch]
 events [] [] [get list watch]
 horizontalpodautoscalers.autoscaling [] [] [create delete deletecollection get list patch update
watch]
 horizontalpodautoscalers.extensions [] [] [create delete deletecollection get list patch update
watch]
 imagestreamimages [] [] [create delete deletecollection get list patch update watch]
 imagestreamimages.image.openshift.io [] [] [create delete deletecollection get list patch update
watch]
 imagestreamimports [] [] [create]
 imagestreamimports.image.openshift.io [] [] [create]
 imagestreammappings [] [] [create delete deletecollection get list patch update watch]
 imagestreammappings.image.openshift.io [] [] [create delete deletecollection get list patch update
watch]
 imagestreams [] [] [create delete deletecollection get list patch update watch]
 imagestreams.image.openshift.io [] [] [create delete deletecollection get list patch update watch]
 imagestreams/layers [] [] [get update]
 imagestreams.image.openshift.io/layers [] [] [get update]
 imagestreams/secrets [] [] [create delete deletecollection get list patch update watch]
 imagestreams.image.openshift.io/secrets [] [] [create delete deletecollection get list patch update
watch]
 imagestreams/status [] [] [get list watch]
 imagestreams.image.openshift.io/status [] [] [get list watch]
 imagestreamtags [] [] [create delete deletecollection get list patch update watch]

OpenShift Container Platform 3.9 クラスター管理

64

 imagestreamtags.image.openshift.io [] [] [create delete deletecollection get list patch update
watch]
 jenkins.build.openshift.io [] [] [admin edit view]
 jobs.batch [] [] [create delete deletecollection get list patch update watch]
 limitranges [] [] [get list watch]
 localresourceaccessreviews [] [] [create]
 localresourceaccessreviews.authorization.openshift.io [] [] [create]
 localsubjectaccessreviews [] [] [create]
 localsubjectaccessreviews.authorization.k8s.io [] [] [create]
 localsubjectaccessreviews.authorization.openshift.io [] [] [create]
 namespaces [] [] [get list watch]
 namespaces/status [] [] [get list watch]
 networkpolicies.extensions [] [] [create delete deletecollection get list patch update watch]
 persistentvolumeclaims [] [] [create delete deletecollection get list patch update watch]
 pods [] [] [create delete deletecollection get list patch update watch]
 pods/attach [] [] [create delete deletecollection get list patch update watch]
 pods/exec [] [] [create delete deletecollection get list patch update watch]
 pods/log [] [] [get list watch]
 pods/portforward [] [] [create delete deletecollection get list patch update watch]
 pods/proxy [] [] [create delete deletecollection get list patch update watch]
 pods/status [] [] [get list watch]
 podsecuritypolicyreviews [] [] [create]
 podsecuritypolicyreviews.security.openshift.io [] [] [create]
 podsecuritypolicyselfsubjectreviews [] [] [create]
 podsecuritypolicyselfsubjectreviews.security.openshift.io [] [] [create]
 podsecuritypolicysubjectreviews [] [] [create]
 podsecuritypolicysubjectreviews.security.openshift.io [] [] [create]
 processedtemplates [] [] [create delete deletecollection get list patch update watch]
 processedtemplates.template.openshift.io [] [] [create delete deletecollection get list patch update
watch]
 projects [] [] [delete get patch update]
 projects.project.openshift.io [] [] [delete get patch update]
 replicasets.extensions [] [] [create delete deletecollection get list patch update watch]
 replicasets.extensions/scale [] [] [create delete deletecollection get list patch update watch]
 replicationcontrollers [] [] [create delete deletecollection get list patch update watch]
 replicationcontrollers/scale [] [] [create delete deletecollection get list patch update watch]
 replicationcontrollers.extensions/scale [] [] [create delete deletecollection get list patch update
watch]
 replicationcontrollers/status [] [] [get list watch]
 resourceaccessreviews [] [] [create]
 resourceaccessreviews.authorization.openshift.io [] [] [create]
 resourcequotas [] [] [get list watch]
 resourcequotas/status [] [] [get list watch]
 resourcequotausages [] [] [get list watch]
 rolebindingrestrictions [] [] [get list watch]
 rolebindingrestrictions.authorization.openshift.io [] [] [get list watch]
 rolebindings [] [] [create delete deletecollection get list patch update watch]
 rolebindings.authorization.openshift.io [] [] [create delete deletecollection get list patch update
watch]
 rolebindings.rbac.authorization.k8s.io [] [] [create delete deletecollection get list patch update
watch]
 roles [] [] [create delete deletecollection get list patch update watch]
 roles.authorization.openshift.io [] [] [create delete deletecollection get list patch update watch]
 roles.rbac.authorization.k8s.io [] [] [create delete deletecollection get list patch update watch]
 routes [] [] [create delete deletecollection get list patch update watch]
 routes.route.openshift.io [] [] [create delete deletecollection get list patch update watch]

第8章 ロールベースアクセス制御 (RBAC) の管理

65

 routes/custom-host [] [] [create]
 routes.route.openshift.io/custom-host [] [] [create]
 routes/status [] [] [get list watch update]
 routes.route.openshift.io/status [] [] [get list watch update]
 scheduledjobs.batch [] [] [create delete deletecollection get list patch update watch]
 secrets [] [] [create delete deletecollection get list patch update watch]
 serviceaccounts [] [] [create delete deletecollection get list patch update watch impersonate]
 services [] [] [create delete deletecollection get list patch update watch]
 services/proxy [] [] [create delete deletecollection get list patch update watch]
 statefulsets.apps [] [] [create delete deletecollection get list patch update watch]
 subjectaccessreviews [] [] [create]
 subjectaccessreviews.authorization.openshift.io [] [] [create]
 subjectrulesreviews [] [] [create]
 subjectrulesreviews.authorization.openshift.io [] [] [create]
 templateconfigs [] [] [create delete deletecollection get list patch update watch]
 templateconfigs.template.openshift.io [] [] [create delete deletecollection get list patch update
watch]
 templateinstances [] [] [create delete deletecollection get list patch update watch]
 templateinstances.template.openshift.io [] [] [create delete deletecollection get list patch update
watch]
 templates [] [] [create delete deletecollection get list patch update watch]
 templates.template.openshift.io [] [] [create delete deletecollection get list patch update watch]

Name: basic-user
Labels: <none>
Annotations: openshift.io/description=A user that can get basic information about projects.
 rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 clusterroles [] [] [get list]
 clusterroles.authorization.openshift.io [] [] [get list]
 clusterroles.rbac.authorization.k8s.io [] [] [get list watch]
 projectrequests [] [] [list]
 projectrequests.project.openshift.io [] [] [list]
 projects [] [] [list watch]
 projects.project.openshift.io [] [] [list watch]
 selfsubjectaccessreviews.authorization.k8s.io [] [] [create]
 selfsubjectrulesreviews [] [] [create]
 selfsubjectrulesreviews.authorization.openshift.io [] [] [create]
 storageclasses.storage.k8s.io [] [] [get list]
 users [] [~] [get]
 users.user.openshift.io [] [~] [get]

Name: cluster-admin
Labels: <none>
Annotations: authorization.openshift.io/system-only=true
 openshift.io/description=A super-user that can perform any action in the cluster. When granted to a
user within a project, they have full control over quota and membership and can perform every
action...
 rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----

OpenShift Container Platform 3.9 クラスター管理

66

 [*] [] [*]
 . [] [] [*]

Name: cluster-debugger
Labels: <none>
Annotations: authorization.openshift.io/system-only=true
 rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 [/debug/pprof] [] [get]
 [/debug/pprof/*] [] [get]
 [/metrics] [] [get]

Name: cluster-reader
Labels: <none>
Annotations: authorization.openshift.io/system-only=true
 rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 [*] [] [get]
 apiservices.apiregistration.k8s.io [] [] [get list watch]
 apiservices.apiregistration.k8s.io/status [] [] [get list watch]
 appliedclusterresourcequotas [] [] [get list watch]

...

各種のロールにバインドされたユーザーおよびグループを示す、クラスターのロールバインディングの
現在のセットを表示するには、以下を実行します。

$ oc describe clusterrolebinding.rbac

Viewing Cluster Role Bindings

$ oc describe clusterrolebinding.rbac
Name: admin
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount template-instance-controller openshift-infra

Name: basic-users
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole

第8章 ロールベースアクセス制御 (RBAC) の管理

67

 Name: basic-user
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated

Name: cluster-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: cluster-admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount pvinstaller default
 Group system:masters

Name: cluster-admins
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: cluster-admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:cluster-admins
 User system:admin

Name: cluster-readers
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: cluster-reader
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:cluster-readers

Name: cluster-status-binding
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: cluster-status
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated
 Group system:unauthenticated

OpenShift Container Platform 3.9 クラスター管理

68

Name: registry-registry-role
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: system:registry
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount registry default

Name: router-router-role
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: system:router
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount router default

Name: self-access-reviewers
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: self-access-reviewer
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated
 Group system:unauthenticated

Name: self-provisioners
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: self-provisioner
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated:oauth

Name: system:basic-user
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole

第8章 ロールベースアクセス制御 (RBAC) の管理

69

 Name: system:basic-user
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated
 Group system:unauthenticated

Name: system:build-strategy-docker-binding
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: system:build-strategy-docker
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated

Name: system:build-strategy-jenkinspipeline-binding
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: system:build-strategy-jenkinspipeline
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated

Name: system:build-strategy-source-binding
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: system:build-strategy-source
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated

Name: system:controller:attachdetach-controller
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: system:controller:attachdetach-controller
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount attachdetach-controller kube-system

OpenShift Container Platform 3.9 クラスター管理

70

Name: system:controller:certificate-controller
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: system:controller:certificate-controller
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount certificate-controller kube-system

Name: system:controller:cronjob-controller
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate=true

...

8.2.2. Viewing Local Roles and Bindings

All of the default cluster roles can be bound locally to users or groups.

カスタムローカルロールを作成できます。

ローカルのロールバインディングも表示することができます。

各種のロールにバインドされたユーザーおよびグループを示す、ローカルのロールバインディングの現
在のセットを表示するには、以下を実行します。

$ oc describe rolebinding.rbac

By default, the current project is used when viewing local role bindings. Alternatively, a project can be
specified with the -n flag. This is useful for viewing the local role bindings of another project, if the user
already has the admindefault cluster role in it.

Viewing Local Role Bindings

$ oc describe rolebinding.rbac -n joe-project
Name: admin
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 User joe

Name: system:deployers
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole

第8章 ロールベースアクセス制御 (RBAC) の管理

71

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles

 Name: system:deployer
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount deployer joe-project

Name: system:image-builders
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: system:image-builder
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount builder joe-project

Name: system:image-pullers
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: system:image-puller
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:serviceaccounts:joe-project

8.3. MANAGING ROLE BINDINGS

Adding, or binding, a role to users or groups gives the user or group the relevant access granted by the
role. You can add and remove roles to and from users and groups using oc adm policy commands.

以下の操作を使用し、ローカルのロールバインディングでのユーザーまたはグループの関連付けられた
ロールを管理する際に、プロジェクトは -n フラグで指定できます。これが指定されていない場合に
は、現在のプロジェクトが使用されます。

表8.1 Local Role Binding Operations

コマンド 説明

$ oc adm policy who-can <verb> <resource> リソースに対してアクションを実行できるユーザー
を示します。

$ oc adm policy add-role-to-user <role>
<username>

指定されたロールを現在のプロジェクトの指定ユー
ザーにバインドします。

$ oc adm policy remove-role-from-user
<role> <username>

現在のプロジェクトの指定ユーザーから指定された
ロールを削除します。

OpenShift Container Platform 3.9 クラスター管理

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#users-and-groups

$ oc adm policy remove-user <username> 現在のプロジェクトの指定ユーザーとそれらのロー
ルのすべてを削除します。

$ oc adm policy add-role-to-group <role>
<groupname>

指定されたロールを現在のプロジェクトの指定グ
ループにバインドします。

$ oc adm policy remove-role-from-group
<role> <groupname>

現在のプロジェクトの指定グループから指定された
ロールを削除します。

$ oc adm policy remove-group <groupname> 現在のプロジェクトの指定グループとそれらのロー
ルのすべてを削除します。

コマンド 説明

You can also manage cluster role bindings using the following operations. The -n flag is not used for
these operations because cluster role bindings uses non-namespaced resources.

表8.2 Cluster Role Binding Operations

コマンド 説明

$ oc adm policy add-cluster-role-to-user
<role> <username>

指定されたロールをクラスターのすべてのプロジェ
クトの指定ユーザーにバインドします。

$ oc adm policy remove-cluster-role-from-
user <role> <username>

指定されたロールをクラスターのすべてのプロジェ
クトの指定ユーザーから削除します。

$ oc adm policy add-cluster-role-to-group
<role> <groupname>

指定されたロールをクラスターのすべてのプロジェ
クトの指定グループにバインドします。

$ oc adm policy remove-cluster-role-from-
group <role> <groupname>

指定されたロールをクラスターのすべてのプロジェ
クトの指定グループから削除します。

たとえば、以下を実行して admin ロールを joe-project の alice ユーザーに追加できます。

$ oc adm policy add-role-to-user admin alice -n joe-project

次に、ローカルのロールバインディングを表示し、出力に追加されていることを確認します。

$ oc describe rolebinding.rbac -n joe-project
Name: admin
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 User joe

第8章 ロールベースアクセス制御 (RBAC) の管理

73

1

 User alice 1

Name: system:deployers
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: system:deployer
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount deployer joe-project

Name: system:image-builders
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: system:image-builder
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount builder joe-project

Name: system:image-pullers
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: system:image-puller
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:serviceaccounts:joe-project

The alice user has been added to the admins RoleBinding.

8.4. CREATING A LOCAL ROLE

プロジェクトのローカルロールを作成するには、以下のコマンドを実行します。

$ oc create role ...

The following excerpt from the help of this command describes its usage:

Create a role with single rule.

Usage:
 oc create role NAME --verb=verb --resource=resource.group/subresource [--resource-
name=resourcename] [--dry-run] [options]

OpenShift Container Platform 3.9 クラスター管理

74

Examples:
 # Create a Role named "pod-reader" that allows user to perform "get", "watch" and "list" on pods
 oc create role pod-reader --verb=get --verb=list --verb=watch --resource=pods

 # Create a Role named "pod-reader" with ResourceName specified
 oc create role pod-reader --verb=get,list,watch --resource=pods --resource-name=readablepod --
resource-name=anotherpod

 # Create a Role named "foo" with API Group specified
 oc create role foo --verb=get,list,watch --resource=rs.extensions

 # Create a Role named "foo" with SubResource specified
 oc create role foo --verb=get,list,watch --resource=pods,pods/status

Options:
 --dry-run=false: If true, only print the object that would be sent, without sending it.
 --resource=[]: resource that the rule applies to
 --resource-name=[]: resource in the white list that the rule applies to, repeat this flag for multiple
items
 --verb=[]: verb that applies to the resources contained in the rule

...

For example, to create a role that allows a user to view pods, run:

$ oc create role podview --verb=get --resource=pod -n bob-project

Optionally, annotate it with a description.

To bind the new role to a user, run:

$ oc adm policy add-role-to-user podview user2 --role-namespace=bob-project -n bob-project

8.5. CLUSTER AND LOCAL ROLE BINDINGS

A cluster role binding is a binding that exists at the cluster level. A role binding exists at the project level.
The cluster role view must be bound to a user using a local role binding for that user to view the project.
Local roles should only created if a cluster role does not provide the set of permissions needed for a
particular situation.

Some cluster role names are initially confusing. The cluster role clusteradmin can be bound to a user
using a local role binding, making it appear that this user has the privileges of a cluster administrator.
This is not the case. The clusteradmin cluster role bound to a certain project is more like a super
administrator for that project, granting the permissions of the cluster role admin, plus a few additional
permissions like the ability to edit rate limits. This can appear especially confusing via the web console
UI, which does not list cluster role bindings (which are bound to true cluster administrators). However, it
does list local role bindings (which could be used to locally bind clusteradmin).

第8章 ロールベースアクセス制御 (RBAC) の管理

75

1

2

3

第9章 イメージポリシー

9.1. 概要

インポートするイメージや、タグ付けしたり、クラスターで実行したりするイメージを制御することが
できます。この目的のために使用できる 2 つの機能があります。

Allowed Registries for import is an image policy configuration that allows to restrict image origins to
particular set of external registries. This set of rules is applied to any image being imported or tagged
into any image stream. Therefore any image referencing registry not matched by the rule set will be
rejected.

ImagePolicy 受付プラグイン を使用すると、クラスターでの実行を許可するイメージを指定できます。
これは現時点ではベータ機能と見なされています。この機能により、以下を制御することができます。

イメージソース: イメージのプルに使用できるレジストリーについての指定。

イメージの解決: イメージが再タグ付けによって変更されないよう Pod のイミュータブルなダ
イジェストでの実行を強制する。

コンテナーイメージラベルの制限: イメージのラベルを制限するか、または要求する。

Image annotation restrictions: limits or requires the annotations on an image in the integrated
container registry

9.2. インポート用に許可されるレジストリーの設定

You can configure registries allowed for import in master-config.yaml under
imagePolicyConfig:allowedRegistriesForImport section as demonstrated in the following example. If
the setting is not present, all images are allowed.

例9.1 インポート用に許可されるレジストリーの設定例

指定されたセキュアなレジストリーからのイメージを許可します。

mydomain.com の任意のサブドメインでホストされる非セキュアなレジストリーからのイ
メージを許可します。mydomain.com はホワイトリストに追加されません。

ポートが指定された指定レジストリーからのイメージを許可します。

各ルールは以下の属性で構成されています。

imagePolicyConfig:
 allowedRegistriesForImport:
 -
 domainName: registry.access.redhat.com 1
 -
 domainName: *.mydomain.com
 insecure: true 2
 -
 domainName: local.registry.corp:5000 3

OpenShift Container Platform 3.9 クラスター管理

76

domainName: ホスト名であり、オプションでその最後は :<port> サフィックスになり、ここ
で特殊なワイルドカード文字 (?、*) が認識されます。ワイルドカード文字は : 区切り文字の前
後の両方に置くことができます。ワイルドカードは区切り文字の前または後の部分に適用され
ます。

insecure: :<port> の部分が domainName にない場合、一致するポートを判別するために使用
されるブール値です。true の場合、domainName はインポート時に非セキュアなフラグが使用
されている限り、サフィックスが :80 のポートが設定されているか、またはポートが未指定の
レジストリーに一致します。false の場合、サフィックスが :443 のポートか、またはポートが
未指定のレジストリーが一致します。

ルールが同じドメインのセキュアなポートと非セキュアなポートの両方に一致する場合、ルールは 2 回
一覧表示されるはずです (1 回は insecure=true が設定され、もう 1 回は insecure=false が設定されま
す)。

修飾されていないイメージ参照は、ルールの評価前に docker.io に対して修飾されます。これらをホワ
イトリストに追加するには、domainName: docker.io を使用します。

domainName: * ルールは任意のレジストリーのホスト名に一致しますが、ポートは依然として 443 に
制限された状態になります。任意のポートで機能する任意のレジストリーに一致させるに
は、domainName: *:* を使用します。

インポート用に許可されるレジストリーの設定例で設定されるルールに基づいて、以下が実行されま
す。

oc tag --insecure reg.mydomain.com/app:v1 app:v1 は、mydomain.com ルールの処理に
よってホワイトリストに追加されます。

oc import-image --from reg1.mydomain.com:80/foo foo:latest もホワイトリストに追加され
ます。

oc tag local.registry.corp/bar bar:latest は、ポートが 3 番目のルールの 5000 に一致しないた
めに拒否されます。

拒否されたイメージのインポートにより、以下のテキストのようなエラーメッセージが生成されます。

The ImageStream "bar" is invalid:
* spec.tags[latest].from.name: Forbidden: registry "local.registry.corp" not allowed by whitelist:
"local.registry.corp:5000", "*.mydomain.com:80", "registry.access.redhat.com:443"
* status.tags[latest].items[0].dockerImageReference: Forbidden: registry "local.registry.corp" not
allowed by whitelist: "local.registry.corp:5000", "*.mydomain.com:80",
"registry.access.redhat.com:443"

9.3. IMAGEPOLICY 受付プラグインの設定

To enable this feature, configure the plug-in in master-config.yaml:

例9.2 アノテーション付きのサンプルファイル

admissionConfig:
 pluginConfig:
 openshift.io/ImagePolicy:
 configuration:
 kind: ImagePolicyConfig
 apiVersion: v1

第9章 イメージポリシー

77

1

2

3

4

5

6

7

イミュータブルなイメージダイジェストを使用してイメージを解決し、Pod でイメージのプル
仕様を更新します。

Array of rules to evaluate against incoming resources. If you only have reject==true rules, the
default is allow all. If you have any accept rule, the default is deny all.

ルールを実施するリソースを示します。何も指定されていない場合、デフォルトは pods にな
ります。

このルールが一致する場合、Pod は拒否されることを示します。

イメージオブジェクトのメタデータで一致するアノテーションの一覧。

イメージを解決できない場合に Pod は失敗しません。

Kubernetes リソースでのイメージストリームの使用を許可するルールの配列。デフォルト設定
は、pods、replicationcontrollers、replicasets、statefulsets、daemonsets、deployments およ
び jobs がイメージフィールドで同じプロジェクトイメージストリームのタグ参照を使用するこ
とを許可します。

このルールが適用されるグループおよびリソースを特定します。リソースが * の場合、この

 resolveImages: AttemptRewrite 1
 executionRules: 2
 - name: execution-denied
 # Reject all images that have the annotation images.openshift.io/deny-execution set to true.
 # This annotation may be set by infrastructure that wishes to flag particular images as
dangerous
 onResources: 3
 - resource: pods
 - resource: builds
 reject: true 4
 matchImageAnnotations: 5
 - key: images.openshift.io/deny-execution
 value: "true"
 skipOnResolutionFailure: true 6
 - name: allow-images-from-internal-registry
 # allows images from the internal registry and tries to resolve them
 onResources:
 - resource: pods
 - resource: builds
 matchIntegratedRegistry: true
 - name: allow-images-from-dockerhub
 onResources:
 - resource: pods
 - resource: builds
 matchRegistries:
 - docker.io
 resolutionRules: 7
 - targetResource:
 resource: pods
 localNames: true
 - targetResource: 8
 group: batch
 resource: jobs
 localNames: true 9

OpenShift Container Platform 3.9 クラスター管理

78

8

9

このルールが適用されるグループおよびリソースを特定します。リソースが * の場合、この
ルールはそのグループのすべてのリソースに適用されます。

LocalNames will allow single segment names (for example, ruby:2.4) to be interpreted as
namespace-local image stream tags, but only if the resource or target image stream has local
name resolution enabled.

注記

If you normally rely on infrastructure images being pulled using a default registry prefix
(such as docker.io or registry.access.redhat.com), those images will not match to any
matchRegistries value since they will have no registry prefix. To ensure infrastructure
images have a registry prefix that can match your image policy, set the
imageConfig.format value in your master-config.yaml file.

9.4. IMAGEPOLICY 受付プラグインのテスト

1. openshift/image-policy-check を使用して設定をテストします。
たとえば、上記の情報を使用して、以下のようにテストします。

oc import-image openshift/image-policy-check:latest --confirm

2. この YAML を使用して Pod を作成します。Pod が作成されるはずです。

apiVersion: v1
kind: Pod
metadata:
 generateName: test-pod
spec:
 containers:
 - image: docker.io/openshift/image-policy-check:latest
 name: first

3. 別のレジストリーを参照する別の Pod を作成します。Pod は拒否されます。

apiVersion: v1
kind: Pod
metadata:
 generateName: test-pod
spec:
 containers:
 - image: different-registry/openshift/image-policy-check:latest
 name: first

4. インポートされたイメージを使用して内部レジストリーを参照する Pod を作成します。Pod は
作成され、イメージ仕様を確認すると、タグの位置にダイジェストが表示されます。

apiVersion: v1
kind: Pod
metadata:
 generateName: test-pod

第9章 イメージポリシー

79

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#using-is-with-k8s
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#master-config-image-config

spec:
 containers:
 - image: <internal registry IP>:5000/<namespace>/image-policy-check:latest
 name: first

5. インポートされたイメージを使用して内部レジストリーを参照する Pod を作成します。Pod は
作成され、イメージ仕様を確認すると、タグが変更されていないことを確認できます。

apiVersion: v1
kind: Pod
metadata:
 generateName: test-pod
spec:
 containers:
 - image: <internal registry IP>:5000/<namespace>/image-policy-check:v1
 name: first

6. oc get istag/image-policy-check:latest からダイジェストを取得し、これを oc annotate
images/<digest> images.openshift.io/deny-execution=true に使用します。以下は例になり
ます。

$ oc annotate
images/sha256:09ce3d8b5b63595ffca6636c7daefb1a615a7c0e3f8ea68e5db044a9340d6ba8
images.openshift.io/deny-execution=true

7. この Pod を再作成します。Pod は拒否されます。

apiVersion: v1
kind: Pod
metadata:
 generateName: test-pod
spec:
 containers:
 - image: <internal registry IP>:5000/<namespace>/image-policy-check:latest
 name: first

OpenShift Container Platform 3.9 クラスター管理

80

第10章 イメージの署名

10.1. 概要

Red Hat Enterprise Linux (RHEL) システムでのコンテナーイメージの署名により、以下を実行できま
す。

コンテナーイメージの起点の検証

イメージが改ざんされていないことの確認

ホストにプルできる検証済みイメージを判別するポリシーの設定

RHEL システムでのコンテナーイメージの署名についてのアーキテクチャーの詳細は、「Container
Image Signing Integration Guide」を参照してください。

OpenShift Container レジストリーは、REST API 経由で署名を保存する機能を提供します。oc CLI を
使用して、検証済みのイメージを web コンソールまたは CLI に表示し、イメージの署名を検証するこ
とができます。

注記

Initial support for storing image signatures was added in OpenShift Container Platform
3.3. Initial support for verifying image signatures was added in OpenShift Container
Platform 3.6.

10.2. ATOMIC CLI を使用したイメージの署名

OpenShift Container Platform はイメージの署名を自動化しません。署名には、通常はワークステー
ションに安全に保存される開発者のプライベート GPG キーが必要になります。本書では、このワーク
フローについて説明します。

The atomic command line interface (CLI), version 1.12.5 or greater, provides commands for signing
container images, which can be pushed to an OpenShift Container Registry. The atomic CLI is available
on Red Hat-based distributions: RHEL, Centos, and Fedora. The atomic CLI is pre-installed on RHEL
Atomic Host systems. For information on installing the atomic package on a RHEL host, see Enabling
Image Signature Support.

重要

atomic CLI は、oc login で認証された証明書を使用します。atomic および oc コマンド
の両方で同じホストの同じユーザーを使用するようにしてください。たとえば、atomic
CLI を sudo として使用する場合、OpenShift Container Platform に sudo oc login を使
用してログインします。

署名をイメージに割り当てるには、ユーザーに image-signer クラスターロールがなければなりませ
ん。クラスター管理者は以下を使用してこれを追加できます。

$ oc adm policy add-cluster-role-to-user system:image-signer <user_name>

イメージにはプッシュ時に署名できます。

$ atomic push [--sign-by <gpg_key_id>] --type atomic <image>

第10章 イメージの署名

81

https://access.redhat.com/articles/2750891#architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#enabling-image-signature-support

Signatures are stored in OpenShift Container Platform when the atomic transport type argument is
specified. See Signature Transports for more information.

atomic CLI を使用してイメージをセットアップし、実行する方法についての詳細は、「RHEL Atomic
Host Managing Containers: Signing Container Images」ドキュメントか、または atomic push --help 出
力で引数の詳細を参照してください。

atomic CLI および OpenShift Container レジストリーの使用についてのワークフローの特定の例につい
ては、「Container Image Signing Integration Guide」で説明されています。

10.3. OPENSHIFT CLI を使用したイメージ署名の検証

oc adm verify-image-signature コマンドを使用して、OpenShift Container レジストリーにインポート
されたイメージの署名を検証できます。このコマンドは、イメージ署名に含まれるイメージ ID が信頼
できるかどうかを検証します。ここでは、パブリック GPG キーを使用して署名自体を検証し、提供さ
れる予想 ID と指定イメージの ID (プル仕様) のマッチングが行われます。

デフォルトで、このコマンドは通常 $GNUPGHOME/pubring.gpg にあるパブリック GPG キーリング
をパス ~/.gnupg で使用します。デフォルトで、このコマンドは検証結果をイメージオブジェクトに保
存し直すことはありません。これを実行するには、以下に示すように --save フラグを指定する必要が
あります。

注記

イメージの署名を検証するには、ユーザーに image-auditor クラスターロールがなけれ
ばなりません。クラスター管理者は、以下を使用してこれを追加できます。

$ oc adm policy add-cluster-role-to-user system:image-auditor <user_name>

Using the --save flag on already verified image together with invalid GPG key or invalid expected
identity causes the saved verification status to be removed, and the image will become unverified.

イメージ署名を検証するには、以下の形式を使用します。

$ oc adm verify-image-signature <image> --expected-identity=<pull_spec> [--save] [options]

The <pull_spec> can be found by describing the image stream. The <image> may be found by
describing the image stream tag. See the following example command output.

イメージ署名の検証例

$ oc describe is nodejs -n openshift
Name: nodejs
Namespace: openshift
Created: 2 weeks ago
Labels: <none>
Annotations: openshift.io/display-name=Node.js
 openshift.io/image.dockerRepositoryCheck=2017-07-05T18:24:01Z
Docker Pull Spec: 172.30.1.1:5000/openshift/nodejs
...

$ oc describe istag nodejs:latest -n openshift
Image Name: sha256:2bba968aedb7dd2aafe5fa8c7453f5ac36a0b9639f1bf5b03f95de325238b288
...

OpenShift Container Platform 3.9 クラスター管理

82

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/container_security_guide/#security-deployment-signature-transports
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/managing_containers/signing_container_images
https://access.redhat.com/articles/2750891#working-with-openshift-and-atomic-registry

$ oc adm verify-image-signature \
 sha256:2bba968aedb7dd2aafe5fa8c7453f5ac36a0b9639f1bf5b03f95de325238b288 \
 --expected-identity 172.30.1.1:5000/openshift/nodejs:latest \
 --public-key /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release \
 --save

10.4. レジストリー API の使用によるイメージ署名へのアクセス

The OpenShift Container Registry provides an extensions endpoint that allows you to write and read
image signatures. The image signatures are stored in the OpenShift Container Platform key-value store
via the Docker Registry API.

注記

This endpoint is experimental and not supported by the upstream Docker Registry
project. See the upstream API documentation for general information about the Docker
Registry API.

10.4.1. API 経由でのイメージ署名の書き込み

新規署名をイメージに追加するには、HTTP PUT メソッドを使用して JSON ペイロードを extensions
エンドポイントに送信できます。

PUT /extensions/v2/<namespace>/<name>/signatures/<digest>

$ curl -X PUT --data @signature.json http://<user>:
<token>@<registry_endpoint>:5000/extensions/v2/<namespace>/<name>/signatures/sha256:
<digest>

署名コンテンツを含む JSON ペイロードの構造は以下のようになります。

{
 "version": 2,
 "type": "atomic",
 "name":
"sha256:4028782c08eae4a8c9a28bf661c0a8d1c2fc8e19dbaae2b018b21011197e1484@cddeb7006d9
14716e2728000746a0b23",
 "content": "<cryptographic_signature>"
}

name フィールドには、<digest>@<name> 形式の一意の値であるイメージ署名の名前が含まれま
す。<digest> はイメージ名を表し、<name> は署名の名前になります。署名の名前には 32 文字の長さ
が必要です。<cryptographic_signature> は、コンテナー/イメージライブラリーで説明されている仕
様に従っている必要があります。

10.4.2. API 経由でのイメージ署名の読み取り

署名済みのイメージが OpenShift Container レジストリーにすでにプッシュされていることを仮定した
場合、以下のコマンドを使って署名を読み取ることができます。

GET /extensions/v2/<namespace>/<name>/signatures/<digest>

第10章 イメージの署名

83

https://docs.docker.com/registry/spec/api/
https://github.com/containers/image/blob/master/docs/atomic-signature.md#the-cryptographic-signature

1

$ curl http://<user>:
<token>@<registry_endpoint>:5000/extensions/v2/<namespace>/<name>/signatures/sha256:
<digest>

<namespace> は OpenShift Container Platform プロジェクト名またはレジストリーのリポジトリー名
を表し、<name> はイメージリポジトリーの名前を指します。digest はイメージの SHA-256 チェック
サムを表します。

指定されたイメージに署名データが含まれる場合、上記のコマンド出力により、以下の JSON 応答が生
成されます。

{
 "signatures": [
 {
 "version": 2,
 "type": "atomic",
 "name":
"sha256:4028782c08eae4a8c9a28bf661c0a8d1c2fc8e19dbaae2b018b21011197e1484@cddeb7006d9
14716e2728000746a0b23",
 "content": "<cryptographic_signature>"
 }
]
}

name フィールドには、<digest>@<name> 形式の一意の値であるイメージ署名の名前が含まれま
す。<digest> はイメージ名を表し、<name> は署名の名前になります。署名の名前には 32 文字の長さ
が必要です。<cryptographic_signature> は、コンテナー/イメージライブラリーで説明されている仕
様に従っている必要があります。

10.4.3. 署名ストアからのイメージ署名の自動インポート

OpenShift Container Platform は、署名ストアがすべての OpenShift Container Platform マスターノー
ドに設定されている場合に、レジストリー設定ディレクトリーを使用してイメージ署名を自動インポー
トします。

レジストリー設定ディレクトリーには、各種レジストリー (リモートコンテナーイメージを保存する
サーバー) およびそれらに保存されるコンテンツの設定が含まれます。この単一ディクトリーを使用す
ると、設定がコンテナー/イメージのすべてのユーザー間で共有されるように、各コマンドのコマンド
ラインオプションでその設定を指定する必要がありません。

デフォルトのレジストリー設定ディレクトリーは、/etc/containers/registries.d/default.yaml ファイ
ルにあります。

すべての Red Hat イメージについてイメージ署名の自動インポートを実行する設定例:

docker:
 registry.access.redhat.com:
 sigstore: https://access.redhat.com/webassets/docker/content/sigstore 1

署名ストアの URL を定義します。この URL は、既存署名の読み取りに使用されます。

注記

OpenShift Container Platform 3.9 クラスター管理

84

https://github.com/containers/image/blob/master/docs/atomic-signature.md#the-cryptographic-signature

注記

OpenShift Container Platform によって自動的にインポートされる署名は、デフォルトで
未検証 の状態になり、イメージ管理者による検証が必要になります。

For more details about the registries configuration directory, see Registries Configuration Directory .

第10章 イメージの署名

85

https://github.com/containers/image/blob/master/docs/registries.d.md

第11章 スコープ付きトークン

11.1. 概要

ユーザーは、他のエンティティーに対し、自らと同様に機能する権限を制限された方法で付与する必要
があるかもしれません。たとえば、プロジェクト管理者は Pod の作成権限を委任する必要があるかも
しれません。これを実行する方法の 1 つとして、スコープ付きトークンを作成することができます。

スコープ付きトークンは、指定されるユーザーを識別するが、そのスコープによって特定のアクション
に制限するトークンです。現時点で、cluster-admin のみがスコープ付きトークンを作成できます。

11.2. 評価

スコープは、トークンの一連のスコープを PolicyRules のセットに変換して評価されます。次に、要求
がそれらのルールに対してマッチングされます。要求属性は、追加の許可検査のために「標準」承認者
に渡せるよう、スコープルールのいずれかに一致している必要があります。

11.3. ユーザースコープ

ユーザースコープでは、指定されたユーザーについての情報を取得することにフォーカスが置かれま
す。それらはインテントベースであるため、ルールは自動的に作成されます。

user:full - Allows full read/write access to the API with all of the user’s permissions.

user:info - Allows read-only access to information about the user: name, groups, and so on.

user:check-access - Allows access to self-localsubjectaccessreviews and self-
subjectaccessreviews. These are the variables where you pass an empty user and groups in
your request object.

user:list-projects - Allows read-only access to list the projects the user has access to.

11.4. ロールスコープ

ロールスコープにより、 namespace でフィルターされる指定ロールと同じレベルのアクセスを持たせ
ることができます。

role:<cluster-role name>:<namespace or * for all>: 指定された namespace のみにあるクラス
ターロール (cluster-role) で指定されるルールにスコープを制限します。

注記

注意: これは、アクセスのエスカレートを防ぎます。ロールはシークレット、
ロールバインディング、およびロールなどのリソースへのアクセスを許可します
が、このスコープはそれらのリソースへのアクセスを制限するのに役立ちます。
これにより、予期しないエスカレーションを防ぐことができます。edit (編集)
などのロールはエスカレートされるロールと見なされないことが多いですが、
シークレットのアクセスを持つロールの場合はロールのエスカレーションが生じ
ます。

role:<cluster-role name>:<namespace or * for all>:!: bang (!) を含めることでこのスコープで
アクセスのエスカレートを許可されますが、それ以外には上記の例と同様になります。

OpenShift Container Platform 3.9 クラスター管理

86

第12章 イメージのモニタリング

12.1. 概要

You can monitor images in your instance using the CLI.

12.2. イメージ統計の表示

OpenShift Container Platform can display several usage statistics about all the images it manages. In
other words, all the images pushed to the internal registry either directly or through a build.

使用状況の統計を表示するには、以下を実行します。

$ oc adm top images
NAME IMAGESTREAMTAG PARENTS USAGE
METADATA STORAGE
sha256:80c985739a78b openshift/python (3.5) yes
303.12MiB
sha256:64461b5111fc7 openshift/ruby (2.2) yes
234.33MiB
sha256:0e19a0290ddc1 test/ruby-ex (latest) sha256:64461b5111fc71ec Deployment: ruby-ex-
1/test yes 150.65MiB
sha256:a968c61adad58 test/django-ex (latest) sha256:80c985739a78b760 Deployment: django-
ex-1/test yes 186.07MiB

コマンドにより、以下の情報が表示されます。

image ID

project, name, and tag of the accompanying ImageStreamTag

potential parents of the image, using their ID

information about where the image is being used

flag informing whether the image contains proper Docker metadata information

size of the image

12.3. IMAGESTREAMS 統計の表示

OpenShift Container Platform can display several usage statistics about all the ImageStreams.

使用状況の統計を表示するには、以下を実行します。

$ oc adm top imagestreams
NAME STORAGE IMAGES LAYERS
openshift/python 1.21GiB 4 36
openshift/ruby 717.76MiB 3 27
test/ruby-ex 150.65MiB 1 10
test/django-ex 186.07MiB 1 10

コマンドにより、以下の情報が表示されます。

第12章 イメージのモニタリング

87

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#access-pushing-and-pulling-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-how-builds-work

project and name of the ImageStream

size of the entire ImageStream stored in the internal Red Hat Container Registry

number of images this particular ImageStream is pointing to

number of layers ImageStream consists of

12.4. イメージのプルーニング

The information returned from the above commands is helpful when performing image pruning.

OpenShift Container Platform 3.9 クラスター管理

88

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-registry-overview

第13章 SCC (SECURITY CONTEXT CONSTRAINTS) の管理

13.1. 概要

Security context constraints allow administrators to control permissions for pods. To learn more about
this API type, see the security context constraints (SCCs) architecture documentation. You can manage
SCCs in your instance as normal API objects using the CLI.

注記

You must have cluster-admin privileges to manage SCCs.

重要

デフォルトの SCC を変更しないでください。デフォルトの SCC をカスタマイズする
と、アップグレード時に問題が生じる可能性があります。代わりに 新規 SCC を作成し
てください。

13.2. SCC (SECURITY CONTEXT CONSTRAINTS) の一覧表示

SCC の現在の一覧を取得するには、以下を実行します。

$ oc get scc

NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
PRIORITY READONLYROOTFS VOLUMES
anyuid false [] MustRunAs RunAsAny RunAsAny RunAsAny 10 false
[configMap downwardAPI emptyDir persistentVolumeClaim secret]
hostaccess false [] MustRunAs MustRunAsRange MustRunAs RunAsAny <none>
false [configMap downwardAPI emptyDir hostPath persistentVolumeClaim secret]
hostmount-anyuid false [] MustRunAs RunAsAny RunAsAny RunAsAny <none>
false [configMap downwardAPI emptyDir hostPath nfs persistentVolumeClaim secret]
hostnetwork false [] MustRunAs MustRunAsRange MustRunAs MustRunAs <none>
false [configMap downwardAPI emptyDir persistentVolumeClaim secret]
nonroot false [] MustRunAs MustRunAsNonRoot RunAsAny RunAsAny <none>
false [configMap downwardAPI emptyDir persistentVolumeClaim secret]
privileged true [*] RunAsAny RunAsAny RunAsAny RunAsAny <none>
false [*]
restricted false [] MustRunAs MustRunAsRange MustRunAs RunAsAny <none>
false [configMap downwardAPI emptyDir persistentVolumeClaim secret]

13.3. SCC (SECURITY CONTEXT CONSTRAINTS) オブジェクトの検査

To examine a particular SCC, use oc get, oc describe, oc export, or oc edit. For example, to examine
the restricted SCC:

$ oc describe scc restricted
Name: restricted
Priority: <none>
Access:
 Users: <none>
 Groups: system:authenticated

第13章 SCC (SECURITY CONTEXT CONSTRAINTS) の管理

89

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles

Settings:
 Allow Privileged: false
 Default Add Capabilities: <none>
 Required Drop Capabilities: KILL,MKNOD,SYS_CHROOT,SETUID,SETGID
 Allowed Capabilities: <none>
 Allowed Seccomp Profiles: <none>
 Allowed Volume Types:
configMap,downwardAPI,emptyDir,persistentVolumeClaim,projected,secret
 Allow Host Network: false
 Allow Host Ports: false
 Allow Host PID: false
 Allow Host IPC: false
 Read Only Root Filesystem: false
 Run As User Strategy: MustRunAsRange
 UID: <none>
 UID Range Min: <none>
 UID Range Max: <none>
 SELinux Context Strategy: MustRunAs
 User: <none>
 Role: <none>
 Type: <none>
 Level: <none>
 FSGroup Strategy: MustRunAs
 Ranges: <none>
 Supplemental Groups Strategy: RunAsAny
 Ranges: <none>

注記

アップグレード時にカスタマイズされた SCC を保持するには、優先順位、ユーザー、グ
ループ、ラベル、およびアノテーション以外にはデフォルトの SCC の設定を編集しない
でください。

13.4. 新規 SCC (SECURITY CONTEXT CONSTRAINTS) の作成

新規 SCC を作成するには、以下を実行します。

1. JSON または YAML ファイルで SCC を定義します。

SCC (Security Context Constraints) オブジェクトの定義

kind: SecurityContextConstraints
apiVersion: v1
metadata:
 name: scc-admin
allowPrivilegedContainer: true
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
users:

OpenShift Container Platform 3.9 クラスター管理

90

- my-admin-user
groups:
- my-admin-group

オプションとして、requiredDropCapabilities フィールドに必要な値を設定してドロップ機能
を SCC に追加することができます。指定された機能はコンテナーからドロップされることにな
ります。たとえば、SCC を KILL、MKNOD、および SYS_CHROOT の必要なドロップ機能を
使って作成するには、以下を SCC オブジェクトに追加します。

requiredDropCapabilities:
- KILL
- MKNOD
- SYS_CHROOT

使用できる値の一覧は、Docker ドキュメントで確認できます。

ヒント

機能は Docker に渡されるため、特殊な ALL 値を使用してすべての機能をドロップすることができま
す。

1. 次に、作成するファイルを渡して oc create を実行します。

$ oc create -f scc_admin.yaml
securitycontextconstraints "scc-admin" created

2. SCC が作成されていることを確認します。

$ oc get scc scc-admin
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
PRIORITY READONLYROOTFS VOLUMES
scc-admin true [] RunAsAny RunAsAny RunAsAny RunAsAny <none> false
[awsElasticBlockStore azureDisk azureFile cephFS cinder configMap downwardAPI
emptyDir fc flexVolume flocker gcePersistentDisk gitRepo glusterfs iscsi nfs
persistentVolumeClaim photonPersistentDisk quobyte rbd secret vsphere]

13.5. SCC (SECURITY CONTEXT CONSTRAINTS) の削除

SCC を削除するには、以下を実行します。

$ oc delete scc <scc_name>

注記

デフォルトの SCC を削除する場合、これは再起動時に再生成されます。

13.6. SCC (SECURITY CONTEXT CONSTRAINTS) の更新

既存 SCC を更新するには、以下を実行します。

$ oc edit scc <scc_name>

第13章 SCC (SECURITY CONTEXT CONSTRAINTS) の管理

91

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

1

1

注記

アップグレード時にカスタマイズされた SCC を保持するには、優先順位、ユーザー、グ
ループ以外にデフォルトの SCC の設定を編集しないでください。

13.6.1. SCC (Security Context Constraints) 設定のサンプル

明示的な runAsUser 設定がない場合

apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo
spec:
 securityContext: 1
 containers:
 - name: sec-ctx-demo
 image: gcr.io/google-samples/node-hello:1.0

When a container or pod does not request a user ID under which it should be run, the effective UID
depends on the SCC that emits this pod. Because restricted SCC is granted to all authenticated
users by default, it will be available to all users and service accounts and used in most cases. The
restricted SCC uses MustRunAsRange strategy for constraining and defaulting the possible
values of the securityContext.runAsUser field. The admission plug-in will look for the
openshift.io/sa.scc.uid-range annotation on the current project to populate range fields, as it
does not provide this range. In the end, a container will have runAsUser equal to the first value of
the range that is hard to predict because every project has different ranges. See Understanding
Pre-allocated Values and Security Context Constraints for more information.

明示的な runAsUser 設定がない場合

apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo
spec:
 securityContext:
 runAsUser: 1000 1
 containers:
 - name: sec-ctx-demo
 image: gcr.io/google-samples/node-hello:1.0

特定のユーザー ID を要求するコンテナーまたは Pod が OpenShift Container Platform によって受
け入れられるのは、サービスアカウントまたはユーザーにそのユーザー ID を許可する SCC へのア
クセスが付与されている場合のみです。SCC は、任意の ID や特定の範囲内にある ID、または要求
に固有のユーザー ID を許可します。

This works with SELinux, fsGroup, and Supplemental Groups. See Volume Security for more
information.

13.7. デフォルト SCC (SECURITY CONTEXT CONSTRAINTS) の更新

デフォルト SCC は、それらが見つからない場合にはマスターの起動時に作成されます。SCC をデフォ

OpenShift Container Platform 3.9 クラスター管理

92

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#understanding-pre-allocated-values-and-security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-pod-security-context

デフォルト SCC は、それらが見つからない場合にはマスターの起動時に作成されます。SCC をデフォ
ルトにリセットするか、またはアップグレード後に既存の SCC を新規のデフォルト定義に更新するに
は、以下を実行します。

1. リセットする SCC を削除し、マスターを再起動してその再作成を実行します。

2. oc adm policy reconcile-sccs コマンドを使用します。

oc adm policy reconcile-sccs コマンドは、すべての SCC ポリシーをデフォルト値に設定しますが、
すでに設定した可能性のある追加ユーザー、グループ、ラベル、アノテーションおよび優先順位を保持
します。変更される SCC を表示するには、オプションなしでコマンドを実行するか、または -o
<format> オプションで優先する出力を指定してコマンドを実行します。

確認後は、既存 SCC のバックアップを取ってから --confirm オプションを使用してデータを永続化し
ます。

注記

優先順位や許可をリセットする場合は、--additive-only=false オプションを使用しま
す。

注記

SCC に優先順位、ユーザー、グループ、ラベル、またはアノテーション以外のカスタマ
イズ設定がある場合、これらの設定は調整時に失われます。

13.8. 使用方法

以下では、SCC を使用する一般的なシナリオおよび手順について説明します。

13.8.1. 特権付き SCC のアクセス付与

管理者が管理者グループ外のユーザーまたはグループに対して 特権付き Pod を追加作成するためのア
クセスを付与することが必要になることがあります。これを実行するには、以下を行います。

1. SCC へのアクセスを付与するユーザーまたはグループを決定します。

警告

ユーザーへのアクセス付与は、ユーザーが Pod を直接作成する場合にのみ
可能です。ほとんどの場合、システム自体がユーザーの代わりに作成する
Pod については、関連するコントローラーの作動に使用される サービスア
カウントにアクセスを付与する必要があります。ユーザーの代わりに Pod
を作成するリソースの例として、Deployments、StatefulSets、
DaemonSets などが含まれます。

2. 以下を実行します。



第13章 SCC (SECURITY CONTEXT CONSTRAINTS) の管理

93

$ oc adm policy add-scc-to-user <scc_name> <user_name>
$ oc adm policy add-scc-to-group <scc_name> <group_name>

たとえば、e2e-user の 特権付き SCC へのアクセスを許可するには、以下を実行します。

$ oc adm policy add-scc-to-user privileged e2e-user

3. 特権モードを要求するようにコンテナーの SecurityContext を変更します。

13.8.2. 特権付き SCC のサービスアカウントアクセスの付与

First, create a service account . For example, to create service account mysvcacct in project myproject:

$ oc create serviceaccount mysvcacct -n myproject

次に、サービスアカウントを特権付き SCC に追加します。

$ oc adm policy add-scc-to-user privileged system:serviceaccount:myproject:mysvcacct

その後は、リソースがサービスアカウントの代わりに作成されていることを確認します。これを実行す
るには、spec.serviceAccountName フィールドをサービスアカウント名に設定します。サービスアカ
ウント名を空のままにすると、デフォルトのサービスアカウントが使用されます。

次に、少なくとも 1 つの Pod のコンテナーがセキュリティーコンテキストで特権モードを要求している
ことを確認します。

13.8.3. Dokerfile の USER によるイメージ実行の有効化

特権付き SCC へのアクセスをすべての人に与えることなく、イメージが事前割り当て UID で強制的に
実行されないようにクラスターのセキュリティーを緩和するには、以下を実行します。

1. すべての認証されたユーザーに anyuid SCC へのアクセスを付与します。

$ oc adm policy add-scc-to-group anyuid system:authenticated

警告

これにより、USER が Dockerfile に指定されていない場合は、イメージをルート
ID で実行することができます。

13.8.4. ルートを要求するコンテナーイメージの有効化

一部のコンテナーイメージ (例: postgres および redis) には root アクセスが必要であり、ボリュームの
保有方法についてのいくつかの予測が設定されています。これらのイメージについては、サービスアカ
ウントを anyuid SCC に追加します。

$ oc adm policy add-scc-to-user anyuid system:serviceaccount:myproject:mysvcacct



OpenShift Container Platform 3.9 クラスター管理

94

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-service-accounts

13.8.5. レジストリーでの --mount-host の使用

It is recommended that persistent storage using PersistentVolume and PersistentVolumeClaim
objects be used for registry deployments. If you are testing and would like to instead use the oc adm
registry command with the --mount-host option, you must first create a new service account for the
registry and add it to the privileged SCC. See the Administrator Guide for full instructions.

13.8.6. 追加機能の提供

場合によっては、Docker が追加設定なしの機能として提供していない機能がイメージで必要になるこ
とがあります。この場合、Pod 仕様で追加機能を要求することができ、これは SCC に対して検証され
ます。

重要

これによりイメージを昇格された機能を使って実行できますが、これは必要な場合にの
み実行する必要があります。追加機能を有効にするためにデフォルトの restricted SCC
を編集することはできません。

非 root ユーザーによって使用される場合、setcap コマンドを使用して、追加機能を要求するファイル
に該当する機能が付与されていることを確認する必要もあります。たとえば、イメージの Dockerfile
では、以下のようになります。

setcap cap_net_raw,cap_net_admin+p /usr/bin/ping

さらに機能が Docker のデフォルトとして提供されている場合には、これを要求するために Pod 仕様を
変更する必要はありません。たとえば、NET_RAW がデフォルトで指定されており、機能がすでに
ping で設定されている場合、ping を実行するのに特別な手順は必要ありません。

追加機能を提供するには、以下を実行します。

1. 新規 SCC を作成します。

2. allowedCapabilities フィールドを使用して許可された機能を追加します。

3. Pod の作成時に、securityContext.capabilities.add フィールドで機能を要求します。

13.8.7. クラスターのデフォルト動作の変更

To modify your cluster so that it does not pre-allocate UIDs, allows containers to run as any user, and
prevents privileged containers:

注記

アップグレード時にカスタマイズされた SCC を保持するには、優先順位、ユーザー、グ
ループ、ラベル、およびアノテーション以外にはデフォルトの SCC の設定を編集しない
でください。

1. Edit the restricted SCC:

 $ oc edit scc restricted

2. Change runAsUser.Type to RunAsAny.

第13章 SCC (SECURITY CONTEXT CONSTRAINTS) の管理

95

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-registry-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#storage-for-the-registry

3. Ensure allowPrivilegedContainer is set to false.

4. Save the changes.

To modify your cluster so that it does not pre-allocate UIDs and does not allow containers to run as root:

1. Edit the restricted SCC:

 $ oc edit scc restricted

2. Change runAsUser.Type to MustRunAsNonRoot.

3. Save the changes.

13.8.8. hostPath ボリュームプラグインの使用

To relax the security in your cluster so that pods are allowed to use the hostPath volume plug-in
without granting everyone access to the privileged SCC:

1. Edit the restricted SCC:

$ oc edit scc restricted

2. Add allowHostDirVolumePlugin: true.

3. Save the changes.

13.8.9. 受付を使用した特定 SCC の初回使用

You may control the sort ordering of SCCs in admission by setting the Priority field of the SCCs. See
the SCC Prioritization section for more information on sorting.

13.8.10. SCC のユーザー、グループまたはプロジェクトへの追加

Before adding an SCC to a user or group, you can first use the scc-review option to check if the user or
group can create a pod. See the Authorization topic for more information.

SCC はプロジェクトに直接付与されません。代わりに、サービスアカウントを SCC に追加し、Pod に
サービスアカウント名を指定するか、または指定されない場合は default サービスアカウントを使用し
て実行します。

SCC をユーザーに追加するには、以下を実行します。

$ oc adm policy add-scc-to-user <scc_name> <user_name>

SCC をサービスアカウントに追加するには、以下を実行します。

$ oc adm policy add-scc-to-user <scc_name> \
 system:serviceaccount:<serviceaccount_namespace>:<serviceaccount_name>

現在の場所がサービスアカウントが属するプロジェクトの場合、-z フラグを使用
し、<serviceaccount_name> のみを指定することができます。

$ oc adm policy add-scc-to-user <scc_name> -z <serviceaccount_name>

OpenShift Container Platform 3.9 クラスター管理

96

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#scc-prioritization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-authorization

重要

上記の -z フラグについては、誤字を防ぎ、アクセスが指定されたサービスアカウントの
みに付与されるため、その使用をを強く推奨します。プロジェクトにいない場合は、-n
オプションを使用して、それが適用されるプロジェクトの namespace を指定します。

SCC をグループに追加するには、以下を実行します。

$ oc adm policy add-scc-to-group <scc_name> <group_name>

SCC を namespace のすべてのサービスアカウントに追加するには、以下を実行します。

$ oc adm policy add-scc-to-group <scc_name> \
 system:serviceaccounts:<serviceaccount_namespace>

第13章 SCC (SECURITY CONTEXT CONSTRAINTS) の管理

97

第14章 スケジューリング

14.1. 概要

14.1.1. 概要

Pod のスケジューリングは、クラスター内のノードへの新規 Pod の配置を決定する内部プロセスで
す。

スケジューラーコードは、新規 Pod の作成時にそれらを確認し、それらをホストするのに最も適した
ノードを識別します。次に、マスター API を使用して Pod のバインディング (Pod とノードのバイン
ディング) を作成します。

14.1.2. デフォルトスケジューリング

OpenShift Container Platform には、ほとんどのユーザーのニーズに対応するデフォルトスケジュー
ラーが同梱されます。デフォルトスケジューラーは、Pod に最適なノードを判別するための固有のツー
ルおよびカスタマイズ可能なツールの両方を使用します。

デフォルトスケジューラーが Pod の配置と利用できるカスタマイズ可能なパラメーターを判別する方
法についての詳細は、「デフォルトスケジューリング」を参照してください。

14.1.3. 詳細スケジューリング

新規 Pod の配置場所に対する制御を強化する必要がある場合、OpenShift Container Platform の詳細ス
ケジューリング機能を使用すると、Pod が特定ノード上か、または特定の Pod と共に実行されること
を要求する (または実行されることが優先される) よう Pod を設定することができます。また詳細設定
により、Pod をノードに配置することや他の Pod と共に実行することを防ぐこともできます。

詳細スケジューリングについての詳細は、「詳細スケジューリング」を参照してください。

14.1.4. カスタムスケジューリング

OpenShift Container Platform では、Pod 仕様を編集してユーザー独自のスケジューラーまたはサード
パーティーのスケジューラーを使用することもできます。

詳細は、「カスタムスケジューラー」を参照してください。

14.2. デフォルトスケジューリング

14.2.1. 概要

OpenShift Container Platform のデフォルトの Pod スケジューラーは、クラスター内のノードにおける
新規 Pod の配置場所を判別します。スケジューラーは Pod からのデータを読み取り、設定されるポリ
シーに基づいて適切なノードを見つけようとします。これは完全に独立した機能であり、スタンドアロ
ン/プラグ可能ソリューションです。Pod を変更することはなく、Pod を特定ノードに関連付ける Pod
のバインディングのみを作成します。

14.2.2. 汎用スケジューラー

既存の汎用スケジューラーはプラットフォームで提供されるデフォルトのスケジューラー エンジン で
あり、Pod をホストするノードを 3 つの手順で選択します。

OpenShift Container Platform 3.9 クラスター管理

98

1. スケジューラーは 述語を使用して不適切なノードをフィルターに掛けて除外します。

2. スケジューラーは ノードのフィルターされた一覧の優先順位付けを行います。

3. スケジューラーは、Pod の最も優先順位の高い Pod を選択します。

14.2.3. ノードのフィルター

利用可能なノードは、指定される制約や要件に基づいてフィルターされます。フィルターは、各ノード
で 述語 というフィルター関数の一覧を使用して実行されます。

14.2.3.1. フィルターされたノード一覧の優先順位付け

優先順位付けは、各ノードに一連の優先度関数を実行することによって行われます。この関数は 0 -10
までのスコアをノードに割り当て、0 は不適切であることを示し、10 は Pod のホストに適しているこ
とを示します。スケジューラー設定は、それぞれの優先度関数について単純な 重み (正の数値) を取る
ことができます。各優先度関数で指定されるノードのスコアは重み (ほとんどの優先度のデフォルトの
重みは 1) で乗算され、すべての優先度で指定されるそれぞれのノードのスコアを追加して組み合わされ
ます。この重み属性は、一部の優先度により重きを置くようにするなどのために管理者によって使用さ
れます。

14.2.3.2. 最適ノードの選択

ノードの並び替えはそれらのスコアに基づいて行われ、最高のスコアを持つノードが Post をホストす
るように選択されます。複数のノードに同じ高スコアが付けられている場合、それらのいずれかがラン
ダムに選択されます。

14.2.4. スケジューラーポリシー

述語と優先度の選択によって、スケジューラーのポリシーが定義されます。

スケジューラー設定ファイルは、スケジューラーが反映する述語と優先度を指定する JSON ファイルで
す。

スケジューラーポリシーファイルがない場合、デフォルトの設定ファイル
/etc/origin/master/scheduler.json が適用されます。

重要

スケジューラー設定ファイルで定義される述語および優先度は、デフォルトのスケ
ジューラーポリシーを完全に上書きします。デフォルトの述語および優先度のいずれか
が必要な場合、スケジューラー設定ファイルにその関数を明示的に指定する必要があり
ます。

デフォルトのスケジューラー設定ファイル

{
 "apiVersion": "v1",
 "kind": "Policy",
 "predicates": [
 {
 "name": "NoVolumeZoneConflict"
 },
 {

第14章 スケジューリング

99

 "name": "MaxEBSVolumeCount"
 },
 {
 "name": "MaxGCEPDVolumeCount"
 },
 {
 "name": "MaxAzureDiskVolumeCount"
 },
 {
 "name": "MatchInterPodAffinity"
 },
 {
 "name": "NoDiskConflict"
 },
 {
 "name": "GeneralPredicates"
 },
 {
 "name": "PodToleratesNodeTaints"
 },
 {
 "name": "CheckNodeMemoryPressure"
 },
 {
 "name": "CheckNodeDiskPressure"
 },
 {
 "argument": {
 "serviceAffinity": {
 "labels": [
 "region"
]
 }
 },
 "name": "Region"

 }
],
 "priorities": [
 {
 "name": "SelectorSpreadPriority",
 "weight": 1
 },
 {
 "name": "InterPodAffinityPriority",
 "weight": 1
 },
 {
 "name": "LeastRequestedPriority",
 "weight": 1
 },
 {
 "name": "BalancedResourceAllocation",
 "weight": 1
 },
 {

OpenShift Container Platform 3.9 クラスター管理

100

14.2.4.1. スケジューラーポリシーの変更

The scheduler policy is defined in a file on the master, named /etc/origin/master/scheduler.json by
default, unless overridden by the kubernetesMasterConfig.schedulerConfigFile field in the master
configuration file.

変更されたスケジューラー設定ファイルのサンプル

 "name": "NodePreferAvoidPodsPriority",
 "weight": 10000
 },
 {
 "name": "NodeAffinityPriority",
 "weight": 1
 },
 {
 "name": "TaintTolerationPriority",
 "weight": 1
 },
 {
 "argument": {
 "serviceAntiAffinity": {
 "label": "zone"
 }
 },
 "name": "Zone",
 "weight": 2
 }
]
}

kind: "Policy"
version: "v1"
"predicates": [
 {
 "name": "PodFitsResources"
 },
 {
 "name": "NoDiskConflict"
 },
 {
 "name": "MatchNodeSelector"
 },
 {
 "name": "HostName"
 },
 {
 "argument": {
 "serviceAffinity": {
 "labels": [
 "region"
]
 }
 },
 "name": "Region"

第14章 スケジューリング

101

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#master-configuration-files

スケジューラーポリシーを変更するには、以下を実行します。

1. 必要なデフォルトの述語および優先度を設定するためにスケジューラー設定ファイルを編集し
ます。カスタム設定を作成したり、サンプルのポリシー設定のいずれかを使用または変更した
りすることができます。

2. 必要な設定可能な述語と設定可能な優先度を追加します。

3. 変更を有効にするために OpenShift Container Platform を再起動します。

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

14.2.5. 利用可能な述語

述語は、不適切なノードをフィルターに掛けるルールです。

OpenShift Container Platform には、デフォルトでいくつかの述語が提供されています。これらの述語
の一部は、特定のパラメーターを指定してカスタマイズできます。複数の述語を組み合わせてノードの
追加フィルターを指定できます。

14.2.5.1. 静的な述語

これらの述語はユーザーから設定パラメーターまたは入力を取りません。これらはそれぞれの正確な名
前を使用してスケジューラー設定に指定されます。

14.2.5.1.1. デフォルトの述語

デフォルトのスケジューラーポリシーには以下の述語が含まれます。

 }
],
 "priorities": [
 {
 "name": "LeastRequestedPriority",
 "weight": 1
 },
 {
 "name": "BalancedResourceAllocation",
 "weight": 1
 },
 {
 "name": "ServiceSpreadingPriority",
 "weight": 1
 },
 {
 "argument": {
 "serviceAntiAffinity": {
 "label": "zone"
 }
 },
 "name": "Zone",
 "weight": 2
 }
]

OpenShift Container Platform 3.9 クラスター管理

102

NoVolumeZoneConflict は Pod が要求するボリュームがゾーンで利用可能であることを確認します。

{"name" : "NoVolumeZoneConflict"}

MaxEBSVolumeCount は、AWS インスタンスに割り当てることのできるボリュームの最大数を確認し
ます。

{"name" : "MaxEBSVolumeCount"}

MaxGCEPDVolumeCount は、Google Compute Engine (GCE) 永続ディスク (PD) の最大数を確認し
ます。

{"name" : "MaxGCEPDVolumeCount"}

MatchInterPodAffinity は、Pod のアフィニティー/非アフィニティールールが Pod を許可するかどう
かを確認します。

{"name" : "MatchInterPodAffinity"}

NoDiskConflict は Pod が要求するボリュームが利用可能であるかどうかを確認します。

{"name" : "NoDiskConflict"}

PodToleratesNodeTaints は Pod がノードテイントを許容できるかどうかを確認します。

{"name" : "PodToleratesNodeTaints"}

CheckNodeMemoryPressure checks if a pod can be scheduled on a node with a memory pressure
condition.

{"name" : "CheckNodeMemoryPressure"}

14.2.5.1.2. 他の静的な述語

OpenShift Container Platform は以下の述語もサポートしています。

CheckNodeDiskPressure checks if a pod can be scheduled on a node with a disk pressure condition.

{"name" : "CheckNodeDiskPressure"}

CheckVolumeBinding は、バインドされている PVC とバインドされていない PVC の両方の場合に
Pod が要求するボリュームに基づいて適しているかどうかを評価します* バインドされている PVC に
ついては、述語は対応する PV のノードアフィニティーが指定ノードによって満たされていることを確
認します。* バインドされていない PVC については、述語は PVC 要件を満たす PV を検索し、PV の
ノードアフィニティーが指定ノードによって満たされていることを確認します。

述語は、すべてのバインドされる PVC にノードと互換性のある PV がある場合や、すべてのバインド
されていない PVC が利用可能なノードと互換性のある PV に一致する場合に true を返します。

{"name" : "CheckVolumeBinding"}

CheckVolumeBinding 述語は、デフォルト以外のスケジューラーで有効にする必要があります。

CheckNodeCondition は Pod をノードでスケジュールできるかどうかを確認し、out of disk (ディス

第14章 スケジューリング

103

CheckNodeCondition は Pod をノードでスケジュールできるかどうかを確認し、out of disk (ディス
ク不足)、network unavailable (ネットワークが使用不可)、または not ready (準備できていない) 状態
を報告します。

{"name" : "CheckNodeCondition"}

PodToleratesNodeNoExecuteTaints は、Pod がノードの NoExecute テイントを容認できるかどうか
を確認します。

{"name" : "PodToleratesNodeNoExecuteTaints"}

CheckNodeLabelPresence は、すべての指定されたラベルがノードに存在するかどうかを確認します
(その値が何であるかを問わない)。

{"name" : "CheckNodeLabelPresence"}

checkServiceAffinity は、ServiceAffinity ラベルがノードでスケジュールされる Pod について同種のも
のであることを確認します。

{"name" : "checkServiceAffinity"}

MaxAzureDiskVolumeCount は Azure ディスクボリュームの最大数を確認します。

{"name" : "MaxAzureDiskVolumeCount"}

14.2.5.2. 汎用的な述語

以下の汎用的な述語は、非クリティカル述語とクリティカル述語が渡されるかどうかを確認します。非
クリティカル述語は、非 Critical Pod のみが渡す必要のある述語であり、クリティカル述語はすべての
Pod が渡す必要のある述語です。

デフォルトのスケジューラーポリシーにはこの汎用的な述語が含まれます。

汎用的な非クリティカル述語
PodFitsResources は、リソースの可用性 (CPU、メモリー、GPU など) に基づいて適切な候補を判別
します。ノードはそれらのリソース容量を宣言し、Pod は要求するリソースを指定できます。使用され
るリソースではなく、要求されるリソースに基づいて適切な候補が判別されます。

{"name" : "PodFitsResources"}

汎用的なクリティカル述語
PodFitsHostPorts は、ノードに要求される Pod ポートの空きポートがある (ポートの競合がない) か
どうかを判別します。

{"name" : "PodFitsHostPorts"}

HostName は、ホストパラメーターの有無と文字列のホスト名との一致に基づいて適切なノードを判別
します。

{"name" : "HostName"}

MatchNodeSelector は、Pod で定義されるノードセレクター (nodeSelector)のクエリーに基づいて適

OpenShift Container Platform 3.9 クラスター管理

104

1

2

3

MatchNodeSelector は、Pod で定義されるノードセレクター (nodeSelector)のクエリーに基づいて適
したノードを判別します。

{"name" : "MatchNodeSelector"}

14.2.5.3. 設定可能な述語

これらの述語はスケジューラー設定 /etc/origin/master/scheduler.json (デフォルト) に設定し、述語
の機能に影響を与えるラベルを追加することができます。

これらは設定可能であるため、ユーザー定義の名前が異なる限り、同じタイプ (ただし設定パラメー
ターは異なる) の複数の述語を組み合わせることができます。

これらの優先度の使用方法についての情報は、「スケジューラーポリシーの変更」を参照してくださ
い。

ServiceAffinity は、Pod で実行されるサービスに基づいて Pod をノードに配置します。同じノードま
たは併置されているノードに同じサービスの複数の Pod を配置すると、効率が向上する可能性があり
ます。

この述語は ノードセレクターの特定ラベルを持つ Pod を同じラベルを持つノードに配置しようとしま
す。

Pod がノードセレクターでラベルを指定していない場合、最初の Pod は可用性に基づいて任意のノー
ドに配置され、該当サービスの後続のすべての Pod はそのノードと同じラベルの値を持つノードにス
ケジュールされます。

述語の名前を指定します。

Specify a weight from 1 (bad fit) to 10 (best fit).

Specify a label for matching. For example:

"predicates":[
 {
 "name":"<name>", 1
 "weight" : "1" 2
 "argument":{
 "serviceAffinity":{
 "labels":[
 "<label>" 3
]
 }
 }
 }
],

 "name":"ZoneAffinity",
 "weight" : "1"
 "argument":{
 "serviceAffinity":{
 "labels":[
 "rack"

第14章 スケジューリング

105

1

2

3

たとえば、ノードセレクター rack を持つサービスの最初の Pod がラベル region=rack を持つノードに
スケジュールされている場合、同じサービスに属するその他すべての後続の Pod は同じ region=rack
ラベルを持つノードにスケジュールされます。詳細は、「Pod 配置の制御」を参照してください。

複数レベルのラベルもサポートされています。ユーザーは同じリージョン内および (リージョン下の) 同
じゾーン内のノードでスケジュールされるようサービスのすべての Pod を指定することもできます。

LabelsPresence checks whether a particular node has a certain label defined or not, regardless of its
value. Matching by label can be useful, for example, where nodes have their physical location or status
defined by labels.

述語の名前を指定します。

Specify a weight from 1 (bad fit) to 10 (best fit).

Specify a label for matching.

Specify whether the labels are required.

presence:false の場合、要求されるラベルのいずれかがノードラベルにある場合、Pod を
スケジュールすることはできません。ラベルが存在しない場合は Pod をスケジュールでき
ます。

For presence:true, if all of the requested labels are present in the node labels, the pod can
be scheduled. If all of the lables are not present, the pod is not scheduled.

例:

"predicates":[
 {
 "name":"<name>", 1
 "weight" : "1" 2
 "argument":{
 "labelsPresence":{
 "labels":[
 "<label>" 3
 presence: true/false
]
 }
 }
 }
],

 "name":"RackPreferred",
 "weight" : "1"
 "argument":{
 "labelsPresence":{
 "labels":[
 "rack"
 "labelsPresence:"{
 "labels:"[
 - "region"
 presence: true

OpenShift Container Platform 3.9 クラスター管理

106

14.2.6. 利用可能な優先度

優先度は、設定に応じて残りのノードにランクを付けるルールです。

優先度のカスタムセットは、スケジューラーを設定するために指定できます。OpenShift Container
Platform ではデフォルトでいくつかの優先度があります。他の優先度は、特定のパラメーターを指定し
てカスタマイズできます。優先順位に影響を与えるために、複数の優先度を組み合わせ、異なる重みを
それぞれのノードに指定することができます。

14.2.6.1. 静的優先度

静的優先度は、重みを除き、ユーザーからいずれの設定パラメーターも取りません。重みは指定する必
要があり、0 または負の値にすることはできません。

これらはスケジューラー設定 /etc/origin/master/scheduler.json (デフォルト) に指定されます。

14.2.6.1.1. デフォルトの優先度

デフォルトのスケジューラーポリシーには、以下の優先度が含まれています。それぞれの優先度関数
は、重み 10000 を持つ NodePreferAvoidPodsPriority 以外は重み 1 を持ちます。

SelectorSpreadPriority は、Pod に一致するサービス、レプリケーションコントローラー (RC)、レプ
リケーションセット (RS)、およびステートフルなセットを検索し、次にそれらのセレクターに一致する
既存の Pod を検索します。スケジューラーは、一致する既存 Pod が少ないノードを優先し、Pod のス
ケジュール時にそれらのセレクターに一致する Pod 数の最も少ないノードで Pod をスケジュールしま
す。

{"name" : "SelectorSpreadPriority", "weight" : 1}

InterPodAffinityPriority は、ノードの対応する PodAffinityTerm が満たされている場合に
weightedPodAffinityTerm 要素を使った繰り返し処理や 重み の合計への追加によって合計を計算しま
す。合計値の最も高いノードが最も優先されます。

{"name" : "InterPodAffinityPriority", "weight" : 1}

LeastRequestedPriority は要求されたリソースの少ないノードを優先します。これは、ノードでスケ
ジュールされる Pod によって要求されるメモリーおよび CPU のパーセンテージを計算し、利用可能
な/残りの容量の値の最も高いノードを優先します。

{"name" : "LeastRequestedPriority", "weight" : 1}

BalancedResourceAllocation は、均衡が図られたリソース使用率に基づいてノードを優先します。こ
れは、容量の一部として消費済み CPU とメモリー間の差異を計算し、2 つのメトリクスがどの程度相
互に近似しているかに基づいてノードの優先度を決定します。これは常に LeastRequestedPriority と
併用する必要があります。

{"name" : "BalancedResourceAllocation", "weight" : 1}

NodePreferAvoidPodsPriority は、レプリケーションコントローラー以外のコントローラーによって
所有される Pod を無視します。

{"name" : "NodePreferAvoidPodsPriority", "weight" : 10000}

NodeAffinityPriority は、ノードアフィニティーのスケジューリング設定に応じてノードの優先順位を

第14章 スケジューリング

107

NodeAffinityPriority は、ノードアフィニティーのスケジューリング設定に応じてノードの優先順位を
決定します。

{"name" : "NodeAffinityPriority", "weight" : 1}

TaintTolerationPriority は、Pod についての 容認不可能な テイント数の少ないノードを優先します。
容認不可能なテイントとはキー PreferNoSchedule のあるテイントのことです。

{"name" : "TaintTolerationPriority", "weight" : 1}

14.2.6.1.2. 他の静的優先度

OpenShift Container Platform は以下の優先度もサポートしています。

EqualPriority は、優先度の設定が指定されていない場合に、すべてのノードに等しい重み 1 を指定し
ます。この優先順位はテスト環境にのみ使用することを推奨します。

{"name" : "EqualPriority", "weight" : 1}

MostRequestedPriority は、要求されたリソースの最も多いノードを優先します。これは、ノードスケ
ジュールされる Pod で要求されるメモリーおよび CPU のパーセンテージを計算し、容量に対して要求
される部分の平均の最大値に基づいて優先度を決定します。

{"name" : "MostRequestedPriority", "weight" : 1}

ImageLocalityPriority は、Pod コンテナーのイメージをすでに要求しているノードを優先します。

{"name" : "ImageLocalityPriority", "weight" : 1}

ServiceSpreadingPriority は、同じマシンに置かれる同じサービスに属する Pod 数を最小限にするこ
とにより Pod を分散します。

{"name" : "ServiceSpreadingPriority", "weight" : 1}

14.2.6.2. 設定可能な優先度

これらの優先度は、デフォルトでスケジューラー設定 /etc/origin/master/scheduler.json で設定し、
これらの優先度に影響を与えるラベルを追加できます。

優先度関数のタイプは、それらが取る引数によって識別されます。これらは設定可能なため、ユーザー
定義の名前が異なる場合に、同じタイプの (ただし設定パラメーターは異なる) 設定可能な複数の優先度
を組み合わせることができます。

これらの優先度の使用方法についての情報は、「スケジューラーポリシーの変更」を参照してくださ
い。

ServiceAntiAffinity はラベルを取り、ラベルの値に基づいてノードのグループ全体に同じサービスに属
する Pod を適正に分散します。これは、指定されたラベルの同じ値を持つすべてのノードに同じスコ
アを付与します。また Pod が最も集中していないグループ内のノードにより高いスコアを付与しま
す。

"priorities":[
 {

OpenShift Container Platform 3.9 クラスター管理

108

1

2

3

1

2

3

優先度の名前を指定します。

Specify a weight from 1 (bad fit) to 10 (best fit).

Specify a label for matching.

例:

LabelPreference prefers nodes that have a particular label defined, regardless of its value.

優先度の名前を指定します。

Specify a weight from 1 (bad fit) to 10 (best fit).

Specify a label for matching.

Specify whether the labels are required.

presence:false の場合、要求されるラベルのいずれかがノードラベルにある場合、Pod を

 "name":"<name>", 1
 "weight" : "1" 2
 "argument":{
 "serviceAntiAffinity":{
 "labels":[
 "<label>" 3
]
 }
 }
 }
]

 "name":"RackSpread",
 "weight" : "1"
 "argument":{
 "serviceAffinity":{
 "labels":[
 "rack"

"predicates":[
 {
 "name":"<name>", 1
 "weight" : "1" 2
 "argument":{
 "labelsPresence":{
 "labels":[
 "<label>" 3
 presence: true/false
]
 }
 }
 }
],

第14章 スケジューリング

109

presence:false の場合、要求されるラベルのいずれかがノードラベルにある場合、Pod を
スケジュールすることはできません。ラベルが存在しない場合は Pod をスケジュールでき
ます。

For presence:true, if all of the requested labels are present in the node labels, the pod can
be scheduled. If all of the lables are not present, the pod is not scheduled.

例:

14.2.7. 使用例

OpenShift Container Platform 内でのスケジューリングの重要な使用例として、柔軟なアフィニティー
と非アフィニティーポリシーのサポートを挙げることができます。

14.2.7.1. インフラストラクチャーのトポロジーレベル

管理者は、ノードのラベル (例: region=r1、zone=z1、rack=s1) を指定してインフラストラクチャーの
複数のトポロジーレベルを定義することができます。

これらのラベル名には特別な意味はなく、管理者はそれらのインフラストラクチャーラベルに任意の名
前 (例: 都市/建物/部屋) を付けることができます。さらに、管理者はインフラストラクチャートポロ
ジーに任意の数のレベルを定義できます。通常は、(regions → zones → racks などの) 3 つのレベルが
適切なサイズです。管理者はこれらのレベルのそれぞれにアフィニティーと非アフィニティールールを
任意の組み合わせで指定することができます。

14.2.7.2. アフィニティー

管理者は、任意のトポロジーレベルまたは複数のレベルでもアフィニティーを指定できるようにスケ
ジューラーを設定することができます。特定レベルのアフィニティーは、同じサービスに属するすべて
の Pod が同じレベルに属するノードにスケジュールされることを示します。これは、管理者がピア
Pod が地理的に離れ過ぎないようにすることでアプリケーションの待機時間の要件に対応します。同じ
アフィニティーグループ内で Pod をホストするために利用できるノードがない場合、Pod はスケ
ジュールされません。

Pod がスケジュールされる場所に対する制御を強化する必要がある場合は、「ノードアフィニティーの
使用」および「Pod のアフィニティーおよび非アフィニティーの使用」を参照してください。これらの
詳細スケジューリング機能により、管理者は Pod をスケジュールできるノードを指定し、他の Pod に
関連してスケジューリングを強制的に実行したり、拒否したりできます。

14.2.7.3. 非アフィニティー

管理者は、任意のトポロジーレベルまたは複数のレベルでも非アフィニティーを設定できるようスケ
ジューラーを設定することができます。特定レベルの非アフィニティー (または「分散」)は、同じサー
ビスに属するすべての Pod が該当レベルに属するノード全体に分散されることを示します。これによ
り、アプリケーションが高可用性の目的で適正に分散されます。スケジューラーは、可能な限り均等に
なるようにすべての適用可能なノード全体にサービス Pod を配置しようとします。

 "name":"RackPreferred",
 "weight" : "1"
 "argument":{
 "labelsPresence":{
 "labels":[
 "rack"

OpenShift Container Platform 3.9 クラスター管理

110

1

2

3

4

5

6

Pod がスケジュールされる場所に対する制御を強化する必要がある場合は、「ノードアフィニティーの
使用」および「Pod のアフィニティーおよび非アフィニティーの使用」を参照してください。これらの
詳細スケジューリング機能により、管理者は Pod をスケジュールできるノードを指定し、他の Pod に
関連してスケジューリングを強制的に実行したり、拒否したりできます。

14.2.8. ポリシー設定のサンプル

以下の設定は、スケジューラーポリシーファイルを使って指定される場合のデフォルトのスケジュー
ラー設定を示しています。

kind: "Policy"
version: "v1"
predicates:
...
 - name: "RegionZoneAffinity" 1
 argument:
 serviceAffinity: 2
 labels: 3
 - "region"
 - "zone"
priorities:
...
 - name: "RackSpread" 4
 weight: 1
 argument:
 serviceAntiAffinity: 5
 label: "rack" 6

述語の名前です。

述語のタイプです。

述語のラベルです。

優先度の名前です。

優先度のタイプです。

優先度のラベルです。

以下の設定例のいずれの場合も、述語と優先度関数の一覧は、指定された使用例に関連するもののみを
含むように切り捨てられます。実際には、完全な/分かりやすいスケジューラーポリシーには、上記の
デフォルトの述語および優先度のほとんど (すべてではなくても) が含まれるはずです。

以下の例は、region (affinity) → zone (affinity) → rack (anti-affinity) の 3 つのトポロジーレベルを定義
します。

kind: "Policy"
version: "v1"
predicates:
...
 - name: "RegionZoneAffinity"
 argument:
 serviceAffinity:

第14章 スケジューリング

111

以下の例は、city (affinity) → building (anti-affinity) → room (anti-affinity) の 3 つのトポロジーレベルを
定義します。

以下の例では、「region」ラベルが定義されたノードのみを使用し、「zone」ラベルが定義されたノー
ドを優先するポリシーを定義します。

 labels:
 - "region"
 - "zone"
priorities:
...
 - name: "RackSpread"
 weight: 1
 argument:
 serviceAntiAffinity:
 label: "rack"

kind: "Policy"
version: "v1"
predicates:
...
 - name: "CityAffinity"
 argument:
 serviceAffinity:
 labels:
 - "city"
priorities:
...
 - name: "BuildingSpread"
 weight: 1
 argument:
 serviceAntiAffinity:
 label: "building"
 - name: "RoomSpread"
 weight: 1
 argument:
 serviceAntiAffinity:
 label: "room"

kind: "Policy"
version: "v1"
predicates:
...
 - name: "RequireRegion"
 argument:
 labelsPresence:
 labels:
 - "region"
 presence: true
priorities:
...
 - name: "ZonePreferred"
 weight: 1
 argument:

OpenShift Container Platform 3.9 クラスター管理

112

以下の例では、静的および設定可能な述語および優先度を組み合わせています。

14.3. カスタムスケジューリング

14.3.1. 概要

デフォルトのスケジューラーと共に複数のカスタムスケジューラーを実行し、各 Pod に使用できるス
ケジューラーを設定できます。

特定のスケジューラーを使用して指定された Pod をスケジュールするには、Pod 仕様にスケジュー
ラーの名前を指定します。

 labelPreference:
 label: "zone"
 presence: true

kind: "Policy"
version: "v1"
predicates:
...
 - name: "RegionAffinity"
 argument:
 serviceAffinity:
 labels:
 - "region"
 - name: "RequireRegion"
 argument:
 labelsPresence:
 labels:
 - "region"
 presence: true
 - name: "BuildingNodesAvoid"
 argument:
 labelsPresence:
 labels:
 - "building"
 presence: false
 - name: "PodFitsPorts"
 - name: "MatchNodeSelector"
priorities:
...
 - name: "ZoneSpread"
 weight: 2
 argument:
 serviceAntiAffinity:
 label: "zone"
 - name: "ZonePreferred"
 weight: 1
 argument:
 labelPreference:
 label: "zone"
 presence: true
 - name: "ServiceSpreadingPriority"
 weight: 1

第14章 スケジューリング

113

1

14.3.2. Deploying the Scheduler

The steps below are the general process for deploying a scheduler into your cluster.

注記

Information on how to create/deploy a scheduler is outside the scope of this document.
For an example, see plugin/pkg/scheduler in the Kubernetes source directory .

1. Pod 設定を作成するか、または編集し、schedulerName パラメーターでスケジューラーの名
前を指定します。名前は一意である必要があります。

スケジューラーを含む Pod 仕様のサンプル

apiVersion: v1
kind: Pod
metadata:
 name: custom-scheduler
 labels:
 name: multischeduler-example
spec:
 schedulerName: custom-scheduler 1
 containers:
 - name: pod-with-second-annotation-container
 image: docker.io/ocpqe/hello-pod

使用するスケジューラーの名前です。スケジューラー名が指定されていない場合、Pod は
デフォルトのスケジューラーを使用して自動的にスケジュールされます。

2. 以下のコマンドを実行して Pod を作成します。

$ oc create -f scheduler.yaml

3. Run the following command to check that the pod was created with the custom scheduler:

$ oc get pod custom-scheduler -o yaml

4. Run the following command to check the status of the pod:

$ oc get pod

The pod should not be running.

NAME READY STATUS RESTARTS AGE
custom-scheduler 0/1 Pending 0 2m

5. Deploy the custom scheduler.

6. Run the following command to check the status of the pod:

$ oc get pod

OpenShift Container Platform 3.9 クラスター管理

114

https://github.com/kubernetes/kubernetes/tree/master/plugin/pkg/scheduler

The pod should be running.

NAME READY STATUS RESTARTS AGE
custom-scheduler 1/1 Running 0 4m

7. Run the following command to check that the scheduler was used:

$ oc describe pod custom-scheduler

以下の切り捨てられた出力に示されるように、スケジューラーの名前が一覧表示されます。

[...]
Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason Message
 --------- -------- ----- ---- ------------- -------- ------ -------
 1m 1m 1 my-scheduler Normal Scheduled Successfully assigned
custom-scheduler to <$node1>
[...]

14.4. POD 配置の制御

14.4.1. 概要

クラスター管理者は、特定のロールを持つアプリケーション開発者が Pod のスケジュール時に特定
ノードをターゲットとすることを防ぐポリシーを設定できます。

The Pod Node Constraints admission controller ensures that pods are deployed onto only specified
node hosts using labels] and prevents users without a specific role from using the nodeSelector field to
schedule pods.

14.4.2. ノード名の使用による Pod 配置の制約

Pod ノード制約の受付コントローラーを使用し、Pod にラベルを割り当て、これを Pod 設定の
nodeName 設定に指定することで、Pod が指定されたノードホストにのみデプロイされるようにしま
す。

1. 必要なラベル (詳細は、「ノードでのラベルの更新」を参照) およびノードセレクターが環境に
セットアップされていることを確認します。
たとえば、Pod 設定が必要なラベルを示す nodeName 値を持つことを確認します。

apiVersion: v1
kind: Pod
spec:
 nodeName: <value>

2. Modify the master configuration file (/etc/origin/master/master-config.yaml) in two places:

a. Add PodNodeConstraints to the admissionConfig section:

...
admissionConfig:
 pluginConfig:
 PodNodeConstraints:

第14章 スケジューリング

115

 configuration:
 apiversion: v1
 kind: PodNodeConstraintsConfig
...

b. Then, add the same to the kubernetesMasterConfig section:

...
kubernetesMasterConfig:
 admissionConfig:
 pluginConfig:
 PodNodeConstraints:
 configuration:
 apiVersion: v1
 kind: PodNodeConstraintsConfig
...

3. 変更を有効にするために OpenShift Container Platform を再起動します。

systemctl restart atomic-openshift-master

14.4.3. ノードセレクターの使用による Pod 配置の制約

ノードセレクターを使用して、Pod が特定のラベルを持つノードにのみ配置されるようにすることがで
きます。クラスター管理者は、Pod ノード制約の受付コントローラーを使用して、pods/binding パー
ミッションのないユーザーがノードセレクターを使用して Pod をスケジュールできないようにするポ
リシーを設定できます。

マスター設定ファイルの nodeSelectorLabelBlacklist フィールドを使用して、一部のロールが Pod 設
定の nodeSelector フィールドで指定できるラベルを制御できます。pods/binding パーミッショ
ンロールを持つユーザー、サービスアカウントおよびグループは任意のノードセレクターを指定できま
す。pods/binding パーミッションがない場合は、nodeSelectorLabelBlacklist に表示されるすべての
ラベルに nodeSelector を設定することは禁止されます。

For example, an OpenShift Container Platform cluster might consist of five data centers spread across
two regions. In the U.S., "us-east", "us-central", and "us-west"; and in the Asia-Pacific region (APAC),
"apac-east" and "apac-west". Each node in each geographical region is labeled accordingly. For example,
region: us-east.

注記

ラベルの割り当ての詳細は、「ノードでのラベルの更新」を参照してください。

クラスター管理者は、アプリケーション開発者が地理的に最も近い場所にあるノードにのみ Pod をデ
プロイできるインフラストラクチャーを作成できます。ノードセレクターを作成し、米国のデータセン
ターを superregion: us に、APAC のデータセンターを superregion: apac に分類できます。

データセンターごとのリソースの均等なロードを維持するには、必要な region をマスター設定の
nodeSelectorLabelBlacklist セクションに追加できます。その後は、米国の開発者が Pod を作成する
たびに、Pod は superregion: us ラベルの付いた地域のいずれかにあるノードにデプロイされます。開
発者が Pod に特定の region (地域) をターゲットに設定しようとすると (例: region: us-east)、エラー
が出されます。これを Pod にノードセレクターを設定せずに試行すると、ターゲットとした region (地

OpenShift Container Platform 3.9 クラスター管理

116

域) にデプロイすることができます。それは superregion: us がプロジェクトレベルのノードセレク
ターとして設定されており、region: us-east というラベルが付けられたノードには superregion: us
というラベルも付けられているためです。

1. 必要なラベル (詳細は、「ノードでのラベルの更新」を参照) およびノードセレクターが環境に
セットアップされていることを確認します。
たとえば、Pod 設定が必要なラベルを示す nodeSelector 値を持つことを確認します。

apiVersion: v1
kind: Pod
spec:
 nodeSelector:
 <key>: <value>
...

2. Modify the master configuration file (/etc/origin/master/master-config.yaml) in two places:

a. Add nodeSelectorLabelBlacklist to the admissionConfig section with the labels that are
assigned to the node hosts you want to deny pod placement:

...
admissionConfig:
 pluginConfig:
 PodNodeConstraints:
 configuration:
 apiversion: v1
 kind: PodNodeConstraintsConfig
 nodeSelectorLabelBlacklist:
 - kubernetes.io/hostname
 - <label>
...

b. Then, add the same to the kubernetesMasterConfig section to restrict direct pod creation:

...
kubernetesMasterConfig:
 admissionConfig:
 pluginConfig:
 PodNodeConstraints:
 configuration:
 apiVersion: v1
 kind: PodNodeConstraintsConfig
 nodeSelectorLabelBlacklist:
 - kubernetes.io/hostname
 - <label_1>
...

3. 変更を有効にするために OpenShift Container Platform を再起動します。

systemctl restart atomic-openshift-master

14.4.4. プロジェクト対する Pod 配置の制御

The Pod Node Selector admission controller allows you to force pods onto nodes associated with a

第14章 スケジューリング

117

1

2 3

The Pod Node Selector admission controller allows you to force pods onto nodes associated with a
specific project and prevent pods from being scheduled in those nodes.

The Pod Node Selector admission controller determines where a pod can be placed using labels on
projects and node selectors specified in pods. A new pod will be placed on a node associated with a
project only if the node selectors in the pod match the labels in the project.

Pod の作成後に、ノードセレクターは Pod にマージされ、Pod 仕様に元々含まれていたラベルとノー
ドセレクターの新規ラベルが含まれるようにします。以下の例は、マージの結果について示していま
す。

The Pod Node Selector admission controller also allows you to create a list of labels that are permitted
in a specific project. This list acts as a whitelist that lets developers know what labels are acceptable to
use in a project and gives administrators greater control over labeling in a cluster.

Pod ノードセレクター の受付コントローラーをアクティブにするには、以下を実行します。

1. 以下の方法のいずれかを使用して Pod ノードセレクター の受付コントローラーとホワイトリス
トを設定します。

Add the following to the master configuration file (/etc/origin/master/master-
config.yaml):

admissionConfig:
 pluginConfig:
 PodNodeSelector:
 configuration:
 podNodeSelectorPluginConfig: 1
 clusterDefaultNodeSelector: "k3=v3" 2
 ns1: region=west,env=test,infra=fedora,os=fedora 3

Pod ノードセレクター の受付コントローラープラグインを追加します。

すべてのノードのデフォルトラベルを作成します。

指定されたプロジェクトで許可されるラベルのホワイトリストを作成します。ここ
で、プロジェクトは ns1 で、ラベルはそれに続く key=value ペアになります。

受付コントローラーの情報を含むファイルを作成します。

podNodeSelectorPluginConfig:
 clusterDefaultNodeSelector: "k3=v3"
 ns1: region=west,env=test,infra=fedora,os=fedora

次に、マスター設定でファイルを参照します。

admissionConfig:
 pluginConfig:
 PodNodeSelector:
 location: <path-to-file>

注記

OpenShift Container Platform 3.9 クラスター管理

118

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#labels

1

注記

If a project does not have a node selectors specified, the pods
associated with that project will be merged using the default node
selector (clusterDefaultNodeSelector).

2. 変更を有効にするために OpenShift Container Platform を再起動します。

systemctl restart atomic-openshift-master

3. scheduler.alpha.kubernetes.io/node-selector アノテーションおよびラベルを含むプロジェク
トオブジェクトを作成します。

{
 "kind": "Namespace",
 "apiVersion": "v1",
 "metadata": {
 "name": "ns1",
 "annotations": {
 "scheduler.alpha.kubernetes.io/node-selector": "env=test,infra=fedora" 1
 }
 },
 "spec": {},
 "status": {}
}

プロジェクトのラベルセレクターに一致するラベルを作成するためのアノテーションで
す。ここで、キー/値のラベルは env=test および infra=fedora になります。

4. ノードセレクターにラベルを含む Pod 仕様を作成します。以下は例になります。

apiVersion: v1
kind: Pod
metadata:
 labels:
 name: hello-pod
 name: hello-pod
spec:
 containers:
 - image: "docker.io/ocpqe/hello-pod:latest"
 imagePullPolicy: IfNotPresent
 name: hello-pod
 ports:
 - containerPort: 8080
 protocol: TCP
 resources: {}
 securityContext:
 capabilities: {}
 privileged: false
 terminationMessagePath: /dev/termination-log
 dnsPolicy: ClusterFirst
 restartPolicy: Always
 nodeSelector: 1

第14章 スケジューリング

119

1

 env: test
 os: fedora
 serviceAccount: ""
status: {}

プロジェクトラベルに一致するノードセレクターです。

5. プロジェクトに Pod を作成します。

oc create -f pod.yaml --namespace=ns1

6. ノードセレクターのラベルが Pod 設定に追加されていることを確認します。

get pod pod1 --namespace=ns1 -o json

nodeSelector": {
 "env": "test",
 "infra": "fedora",
 "os": "fedora"
}

ノードセレクターは Pod にマージされ、Pod は適切なプロジェクトでスケジュールされます。

プロジェクト仕様で指定されていないラベルを使って Pod を作成する場合、Pod はノードでスケ
ジュールされません。

たとえば、ここでラベル env: production はにずれのプロジェクト仕様にもありません。

nodeSelector:
 "env: production"
 "infra": "fedora",
 "os": "fedora"

ノードセレクターのアノテーションのないノードがある場合は、Pod はそこにスケジュールされます。

14.5. 詳細スケジューリング

14.5.1. 概要

詳細スケジューリングには、Pod が特定ノードで実行されることを要求したり、Pod が特定ノードで実
行されることが優先されるように Pod を設定することが関係します。

通常、詳細スケジューリングは必要になりません。OpenShift Container Platform が Pod を合理的な方
法で自動的に配置するためです。たとえば、デフォルトスケジューラーは Pod をノード間で均等に分
散し、ノードの利用可能なリソースを考慮します。ただし、Pod を配置する場所についてはさらに制御
を強化する必要がある場合があります。

Pod をより高速なディスクが搭載されたマシンに配置する必要ある場合 (またはそのマシンに配置する
のを防ぐ場合)、または 2 つの異なるサービスの Pod が相互に通信できるように配置する必要がある場
合、詳細スケジューリングを使用してそれを可能にすることができます。

適切な新規 Pod を特定のノードグループにスケジュールし、その他の新規 Pod がそれらのノードでス
ケジュールされるのを防ぐには、必要に応じてこれらの方法を組み合わせることができます。

OpenShift Container Platform 3.9 クラスター管理

120

14.5.2. 詳細スケジューリングの使用

クラスターで詳細スケジューリングを起動する方法はいくつかあります。

Pod のアフィニティーおよび非アフィニティー

Pod のアフィニティーにより、Pod がその配置に使用できるアフィニティー (または非アフィニ
ティー) を、(セキュリティー上の理由によるアプリケーションの待機時間の要件などのために) Pod
のグループに対して指定できるようにします。ノード自体は配置に対する制御を行いません。
Pod のアフィニティーはノードのラベルと Pod のラベルセレクターを使用して Pod 配置のルールを
作成します。ルールは mandatory (必須) または best-effort (優先) のいずれかにすることができま
す。

「Pod のアフィニティーおよび非アフィニティーの使用」を参照してください。

ノードのアフィニティー

ノードのアフィニティーにより、Pod がその配置に使用できるアフィニティー (または非アフィニ
ティー) を、(高可用性のための特殊なハードウェア、場所、要件などにより) ノード のグループに
対して指定できるようにします。ノード自体は配置に対する制御を行いません。
ノードのアフィニティーはノードのラベルと Pod のラベルセレクターを使用して Pod 配置のルール
を作成します。ルールは mandatory (必須) または best-effort (優先) のいずれかにすることができ
ます。

「ノードアフィニティーの使用」を参照してください。

ノードセレクター

ノードセレクターは詳細スケジューリングの最も単純な形態です。ノードのアフィニティーのよう
に、ノードセレクターはノードのラベルと Pod のラベルセレクターを使用し、Pod がその配置に使
用する ノード を制御できるようにします。ただし、ノードセレクターにはノードのアフィニティー
が持つ required (必須) ルールまたは preferred (優先) ルールはありません。
「ノードセレクターの使用」を参照してください。

テイントおよび容認 (Toleration)

テイント/容認により、ノード はノード上でスケジュールする必要のある (またはスケジュールすべ
きでない) Pod を制御できます。テイントはノードのラベルであり、容認は Pod のラベルです。ス
ケジュールを可能にするには、Pod のラベルは ノードのラベル (テイント) に一致する (またはこれ
を許容する) 必要があります。
テイント/容認にはアフィニティーと比較して 1 つ利点があります。たとえばアフィニティーの場合
は、異なるラベルを持つノードの新規グループをクラスターに追加する場合、ノードにアクセスさ
せたい Pod とノードを使用させたくない Pod のそれぞれに対してアフィニティーを更新する必要が
ありますが、テイント/容認の場合には、新規ノードに到達させる必要のある Pod のみを更新すれ
ば、他の Pod は拒否されることになります。

「テイントおよび容認の使用」を参照してください。

14.6. 詳細スケジューリングおよびノードのアフィニティー

14.6.1. 概要

Node affinity is a set of rules used by the scheduler to determine where a pod can be placed. The rules
are defined using custom labels on nodes and label selectors specified in pods. Node affinity allows a

第14章 スケジューリング

121

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#labels

1

2

pod to specify an affinity (or anti-affinity) towards a group of nodes it can be placed on. The node does
not have control over the placement.

たとえば、Pod を特定の CPU を搭載したノードまたは特定のアベイラビリティーゾーンにあるノード
でのみ実行されるよう設定することができます。

ノードのアフィニティールールには、required (必須) および preferred (優先) の 2 つのタイプがあり
ます。

required (必須) ルールは、Pod をノードにスケジュールする前に 満たされている必要があります。一
方、preferred (優先) ルールは、ルールが満たされる場合にスケジューラーがルールの実施を試行しま
すが、その実施が必ずしも保証される訳ではありません。

注記

ランタイム時にノードのラベルに変更が生じ、その変更により Pod でのノードのアフィ
ニティールールを満たさなくなる状態が生じるでも、Pod はノードで引き続き実行され
ます。

14.6.2. ノードのアフィニティーの設定

ノードのアフィニティーは、Pod 仕様で設定することができます。required (必須) ルール、preferred
(優先) ルール のいずれかまたはその両方を指定することができます。両方を指定する場合、ノードは最
初に required (必須) ルールを満たす必要があり、その後に preferred (優先) ルールを満たそうとしま
す。

以下の例は、Pod をキーが e2e-az-NorthSouth で、その値が e2e-az-North または e2e-az-South のい
ずれかであるラベルの付いたノードに Pod を配置することを求めるルールが設定された Pod 仕様で
す。

ノードのアフィニティーの required (必須) ルールが設定された Pod 設定ファイルのサンプル

apiVersion: v1
kind: Pod
metadata:
 name: with-node-affinity
spec:
 affinity:
 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution: 2
 nodeSelectorTerms:
 - matchExpressions:
 - key: e2e-az-NorthSouth 3
 operator: In 4
 values:
 - e2e-az-North 5
 - e2e-az-South 6
 containers:
 - name: with-node-affinity
 image: docker.io/ocpqe/hello-pod

ノードのアフィニティーを設定するためのスタンザです。

required (必須) ルールを定義します。

OpenShift Container Platform 3.9 クラスター管理

122

3 5 6

4

1

2

3

4 6 7

5

ルールを適用するために一致している必要のあるキー/値のペア (ラベル) です。

演算子は、ノードのラベルと Pod 仕様の matchExpression パラメーターの値のセットの間の関
係を表します。この値は、In、NotIn、Exists、または DoesNotExist、Lt、または Gt にすること
ができます。

以下の例は、キーが e2e-az-EastWest で、その値が e2e-az-East または e2e-az-West のラベルが付い
たノードに Pod を配置すること優先する preferred (優先) ルールが設定されたノード仕様です。

ノードのアフィニティーの preferred (優先) ルールが設定された Pod 設定ファイルのサンプル

apiVersion: v1
kind: Pod
metadata:
 name: with-node-affinity
spec:
 affinity:
 nodeAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 1 3
 preference:
 matchExpressions:
 - key: e2e-az-EastWest 4
 operator: In 5
 values:
 - e2e-az-East 6
 - e2e-az-West 7
 containers:
 - name: with-node-affinity
 image: docker.io/ocpqe/hello-pod

ノードのアフィニティーを設定するためのスタンザです。

preferred (優先) ルールを定義します。

preferred (優先) ルールの重みを指定します。最も高い重みを持つノードが優先されます。

ルールを適用するために一致している必要のあるキー/値のペア (ラベル) です。

演算子は、ノードのラベルと Pod 仕様の matchExpression パラメーターの値のセットの間の関
係を表します。この値は、In、NotIn、Exists、または DoesNotExist、Lt、または Gt にすること
ができます。

ノードの非アフィニティー についての明示的な概念はありませんが、NotIn または DoesNotExist 演算
子を使用すると、動作が複製されます。

注記

第14章 スケジューリング

123

注記

同じ Pod 設定でノードのアフィニティーと ノードセレクターを使用している場合、以下
に注意してください。

nodeSelector と nodeAffinity の両方を設定する場合、Pod が候補ノードでスケ
ジュールされるにはどちらの条件も満たしている必要があります。

nodeAffinity タイプに関連付けられた複数の nodeSelectorTerms を指定する場
合、nodeSelectorTerms のいずれかが満たされている場合に Pod をノードにス
ケジュールすることができます。

nodeSelectorTerms に関連付けられた複数の matchExpressions を指定する場
合、すべての matchExpressions が満たされている場合にのみ Pod をノードに
スケジュールすることができます。

14.6.2.1. ノードアフィニティーの required (必須) ルールの設定

Pod がノードにスケジュールされる前に、required (必須) ルールを 満たしている必要があります。

以下の手順は、ノードとスケジューラーがノードに配置する必要のある Pod を作成する単純な設定を
示しています。

1. ノード設定を編集するか、または oc label node コマンドを使用してラベルをノードに追加し
ます。

$ oc label node node1 e2e-az-name=e2e-az1

2. Pod 仕様では、nodeAffinity スタンザを使用して
requiredDuringSchedulingIgnoredDuringExecution パラメーターを設定します。

a. 満たす必要のあるキーおよび値を指定します。新規 Pod を編集したノードにスケジュール
する必要がある場合、ノードのラベルと同じkey および value パラメーターを使用しま
す。

b. operator を指定します。演算子は In、NotIn、Exists、DoesNotExist、Lt、または Gt に
することができます。たとえば、演算子 In を使用してラベルがノードで必要になるように
します。

spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: e2e-az-name
 operator: In
 values:
 - e2e-az1
 - e2e-az2

3. Pod を作成します。

$ oc create -f e2e-az2.yaml

OpenShift Container Platform 3.9 クラスター管理

124

14.6.2.2. ノードアフィニティーの preferred (優先) ルールの設定

preferred (優先) ルールは、ルールを満たす場合に、スケジューラーはルールの実施を試行しますが、
その実施が必ずしも保証される訳ではありません。

以下の手順は、ノードとスケジューラーがノードに配置しようとする Pod を作成する単純な設定を示
しています。

1. ノード設定を編集するか、または oc label node コマンドを実行してラベルをノードに追加し
ます。

$ oc label node node1 e2e-az-name=e2e-az3

2. Pod 仕様では、nodeAffinity スタンザを使用して
preferredDuringSchedulingIgnoredDuringExecution パラメーターを設定します。

a. ノードの重みを数字の 1-100 で指定します。最も高い重みを持つノードが優先されます。

b. 満たす必要のあるキーおよび値を指定します。新規 Pod を編集したノードにスケジュール
する必要がある場合、ノードのラベルと同じkey および value パラメーターを使用しま
す。

 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: e2e-az-name
 operator: In
 values:
 - e2e-az3

3. operator を指定します。演算子は In、NotIn、Exists、DoesNotExist、Lt、または Gt にする
ことができます。たとえば、演算子 In を使用してラベルをノードで必要になるようにします。

4. Pod を作成します。

$ oc create -f e2e-az3.yaml

14.6.3. 例

以下の例は、ノードのアフィニティーを示しています。

14.6.3.1. 一致するラベルを持つノードのアフィニティー

以下の例は、一致するラベルを持つノードと Pod のノードのアフィニティーを示しています。

Node1 ノードにはラベル zone:us があります。

$ oc label node node1 zone=us

Pod pod-s1 にはノードアフィニティーの required (必須) ルールの下に zone と us のキー/値
のペアがあります。

$ cat pod-s1.yaml

第14章 スケジューリング

125

apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
spec:
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: "zone"
 operator: In
 values:
 - us

標準コマンドを使用して Pod を作成します。

$ oc create -f pod-s1.yaml
pod "pod-s1" created

Pod pod-s1 を Node1 にスケジュールできます。

 oc get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE
pod-s1 1/1 Running 0 4m IP1 node1

14.6.3.2. 一致するラベルのないノードのアフィニティー

以下の例は、一致するラベルを持たないノードと Pod のノードのアフィニティーを示しています。

Node1 ノードにはラベル zone:emea があります。

$ oc label node node1 zone=emea

Pod pod-s1 にはノードアフィニティーの required (必須) ルールの下に zone と us のキー/値
のペアがあります。

$ cat pod-s1.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
spec:
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:

OpenShift Container Platform 3.9 クラスター管理

126

 - key: "zone"
 operator: In
 values:
 - us

Pod pod-s1 は Node1 にスケジュールすることができません。

oc describe pod pod-s1
<---snip--->
Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason
 --------- -------- ----- ---- ------------- -------- ------
 1m 33s 8 default-scheduler Warning FailedScheduling No nodes are
available that match all of the following predicates:: MatchNodeSelector (1).

14.7. 詳細スケジューリングおよび POD のアフィニティーと非アフィニ
ティー

14.7.1. 概要

Pod affinity and pod anti-affinity allow you to specify rules about how pods should be placed relative
to other pods. The rules are defined using custom labels on nodes and label selectors specified in pods.
Pod affinity/anti-affinity allows a pod to specify an affinity (or anti-affinity) towards a group of pods it
can be placed with. The node does not have control over the placement.

たとえば、アフィニティールールを使用することで、サービス内で、または他のサービスの Pod との
関連で Pod を分散したり、パックしたりすることができます。非アフィニティールールにより、特定
のサービスの Pod がそののサービスの Pod のパフォーマンスに干渉すると見なされる別のサービスの
Pod と同じノードでスケジュールされることを防ぐことができます。または、関連する障害を減らすた
めに複数のノードまたはアベイラビリティーゾーン間でサービスの Pod を分散することもできます。

Pod affinity/anti-affinity allows you to constrain which nodes your pod is eligible to be scheduled on
based on the labels on other pods. A label is a key/value pair.

Pod のアフィニティーはスケジューラーに対し、新規 Pod のラベルセレクターが現在の Pod
のラベルに一致する場合に他の Pod と同じノードで新規 Pod を見つけるように指示します。

Pod の非アフィニティーは、新規 Pod のラベルセレクターが現在の Pod のラベルに一致する
場合に、同じラベルを持つ Pod と同じノードで新規 Pod を見つけることを禁止します。

Pod のアフィニティーには、required (必須) および preferred (優先) の 2 つのタイプがあります。

required (必須) ルールは、Pod をノードにスケジュールする前に 満たされている必要があります。一
方、preferred (優先) ルールは、ルールが満たされる場合にスケジューラーがルールの実施を試行しま
すが、その実施が必ずしも保証される訳ではありません。

14.7.2. Pod のアフィニティーおよび非アフィニティーの設定

Pod のアフィニティー/非アフィニティーは Pod 仕様ファイルで設定します。required (必須) ルー
ル、preferred (優先) ルールのいずれかまたはその両方を指定することができます。両方を指定する場
合、ノードは最初に required (必須) ルールを満たす必要があり、その後に preferred (優先) ルールを満
たそうとします。

以下の例は、Pod のアフィニティーおよび非アフィニティーに設定される Pod 仕様を示しています。

第14章 スケジューリング

127

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#labels

1

2

3 5

4

この例では、Pod のアフィニティールールは ノードにキー security と値 S1 を持つラベルの付いた 1 つ
以上の Pod がすでに実行されている場合にのみ Pod をノードにスケジュールできることを示していま
す。Pod の非アフィニティールールは、ノードがキー security と値 S2 を持つラベルが付いた Pod が
すでに実行されている場合は Pod をノードにスケジュールしないように設定することを示していま
す。

Pod のアフィニティーが設定された Pod 設定のサンプル

Pod のアフィニティーを設定するためのスタンザです。

required (必須) ルールを定義します。

ルールを適用するために一致している必要のあるキーと値 (ラベル) です。

演算子は、既存 Pod のラベルと新規 Pod の仕様の matchExpression パラメーターの値のセット
の間の関係を表します。これには In、NotIn、Exists、または DoesNotExist のいずれかを使用で
きます。

Pod の非アフィニティーが設定された Pod 設定のサンプル

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-affinity
spec:
 affinity:
 podAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution: 2
 - labelSelector:
 matchExpressions:
 - key: security 3
 operator: In 4
 values:
 - S1 5
 topologyKey: failure-domain.beta.kubernetes.io/zone
 containers:
 - name: with-pod-affinity
 image: docker.io/ocpqe/hello-pod

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-antiaffinity
spec:
 affinity:
 podAntiAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 100 3
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: security 4
 operator: In 5

OpenShift Container Platform 3.9 クラスター管理

128

1

2

3

4 6

5

Pod の非アフィニティーを設定するためのスタンザです。

preferred (優先) ルールを定義します。

Specifies a weight for a preferred rule. The node that with highest weight is preferred.

ルールを適用するために一致している必要のあるキーと値 (ラベル) です。

演算子は、既存 Pod のラベルと新規 Pod の仕様の matchExpression パラメーターの値のセット
の間の関係を表します。これには In、NotIn、Exists、または DoesNotExist のいずれかを使用で
きます。

注記

ノードのラベルに、Pod のノードのアフィニティールールを満たさなくなるような結果
になる変更がランタイム時に生じる場合も、Pod はノードで引き続き実行されます。

14.7.2.1. アフィニティールールの設定

以下の手順は、ラベルの付いた Pod と Pod のスケジュールを可能にするアフィニティーを使用する
Pod を作成する 2 つの Pod の単純な設定を示しています。

1. Pod 仕様の特定のラベルの付いた Pod を作成します。

2. 他の Pod の作成時に、以下のように Pod 仕様を編集します。

a. podAffinity スタンザを使用して、requiredDuringSchedulingIgnoredDuringExecution
パラメーターまたは preferredDuringSchedulingIgnoredDuringExecution パラメーター
を設定します。

b. 満たしている必要のあるキーおよび値を指定します。新規 Pod を他の Pod と共にスケ
ジュールする必要がある場合、最初の Pod のラベルと同じ key および value パラメーター
を使用します。

 values:
 - S2 6
 topologyKey: kubernetes.io/hostname
 containers:
 - name: with-pod-affinity
 image: docker.io/ocpqe/hello-pod

$ cat team4.yaml
apiVersion: v1
kind: Pod
metadata:
 name: security-s1
 labels:
 security: S1
spec:
 containers:
 - name: security-s1
 image: docker.io/ocpqe/hello-pod

 podAffinity:

第14章 スケジューリング

129

c. operator を指定します。演算子は In、NotIn、Exists、または DoesNotExist にすること
ができます。たとえば、演算子 In を使用してラベルをノードで必要になるようにします。

d. topologyKey を指定します。これは、システムがトポロジードメインを表すために使用す
る事前にデータが設定された Kubernetes ラベルです。

3. Pod を作成します。

$ oc create -f <pod-spec>.yaml

14.7.2.2. 非アフィニティールールの設定

以下の手順は、ラベルの付いた Pod と Pod のスケジュールの禁止を試行する非アフィニティーの
preferred (優先) ルールを使用する Pod を作成する 2 つの Pod の単純な設定を示しています。

1. Pod 仕様の特定のラベルの付いた Pod を作成します。

2. 他の Pod の作成時に、Pod 仕様を編集して以下のパラメーターを設定します。

3. podAffinity スタンザを使用して、requiredDuringSchedulingIgnoredDuringExecution パラ
メーターまたは preferredDuringSchedulingIgnoredDuringExecution パラメーターを設定し
ます。

a. ノードの重みを 1-100 で指定します。最も高い重みを持つノードが優先されます。

b. 満たしている必要のあるキーおよび値を指定します。新規 Pod を他の Pod と共にスケ
ジュールされないようにする必要がある場合、最初の Pod のラベルと同じ key および
value パラメーターを使用します。

 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - S1
 topologyKey: failure-domain.beta.kubernetes.io/zone

$ cat team4.yaml
apiVersion: v1
kind: Pod
metadata:
 name: security-s2
 labels:
 security: S2
spec:
 containers:
 - name: security-s2
 image: docker.io/ocpqe/hello-pod

 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:

OpenShift Container Platform 3.9 クラスター管理

130

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#interlude-built-in-node-labels

c. preferred (優先) ルールの場合、重みを 1-100 で指定します。

d. operator を指定します。演算子は In、NotIn、Exists、または DoesNotExist にすること
ができます。たとえば、演算子 In を使用してラベルをノードで必要になるようにします。

4. topologyKey を指定します。これは、システムがトポロジードメインを表すために使用する事
前にデータが設定された Kubernetes ラベルです。

5. Pod を作成します。

$ oc create -f <pod-spec>.yaml

14.7.3. 例

以下の例は、Pod のアフィニティーおよび非アフィニティーについて示しています。

14.7.3.1. Pod のアフィニティー

以下の例は、一致するラベルとラベルセレクターを持つ Pod についての Pod のアフィニティーを示し
ています。

Pod team4 にはラベル team:4 が付けられています。

Pod team4a には、podAffinity の下にラベルセレクター team:4 が付けられています。

 matchExpressions:
 - key: security
 operator: In
 values:
 - S2
 topologyKey: kubernetes.io/hostname

$ cat team4.yaml
apiVersion: v1
kind: Pod
metadata:
 name: team4
 labels:
 team: "4"
spec:
 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod

$ cat pod-team4a.yaml
apiVersion: v1
kind: Pod
metadata:
 name: team4a
spec:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:

第14章 スケジューリング

131

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#interlude-built-in-node-labels

team4a Pod は team4 Pod と同じノードにスケジュールされます。

14.7.3.2. Pod の非アフィニティー

以下の例は、一致するラベルとラベルセレクターを持つ Pod についての Pod の非アフィニティーを示
しています。

Pod pod-s1 にはラベル security:s1 が付けられています。

Pod pod-s2 には、podAntiAffinity の下にラベルセレクター security:s1 が付けられていま
す。

Pod pod-s2 は、security:s2 ラベルの付いた Pod を持つノードがない場合はスケジュールされ

 matchExpressions:
 - key: team
 operator: In
 values:
 - "4"
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-affinity
 image: docker.io/ocpqe/hello-pod

cat pod-s1.yaml
apiVersion: v1
kind: Pod
metadata:
 name: s1
 labels:
 security: s1
spec:
 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod

cat pod-s2.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s2
spec:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - s1
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-antiaffinity
 image: docker.io/ocpqe/hello-pod

OpenShift Container Platform 3.9 クラスター管理

132

Pod pod-s2 は、security:s2 ラベルの付いた Pod を持つノードがない場合はスケジュールされ
ません。そのラベルの付いた他の Pod がない場合、新規 Pod は保留状態のままになります。

NAME READY STATUS RESTARTS AGE IP NODE
pod-s2 0/1 Pending 0 32s <none>

14.7.3.3. 一致するラベルのない Pod のアフィニティー

以下の例は、一致するラベルとラベルセレクターのない Pod についての Pod のアフィニティーを示し
ています。

Pod pod-s1 にはラベル security:s1 が付けられています。

Pod pod-s2 にはラベルセレクター security:s2 があります。

Pod pod-s2 は pod-s1 と同じノードにスケジュールできません。

14.8. 詳細スケジューリングおよびノードセレクター

14.8.1. 概要

A node selector specifies a map of key-value pairs. The rules are defined using custom labels on nodes

$ cat pod-s1.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
 labels:
 security: s1
spec:
 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod

$ cat pod-s2.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s2
spec:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - s2
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-affinity
 image: docker.io/ocpqe/hello-pod

第14章 スケジューリング

133

A node selector specifies a map of key-value pairs. The rules are defined using custom labels on nodes
and selectors specified in pods.

Pod がノードで実行する要件を満たすには、Pod はノードのラベルとして示されるキーと値のペアを
持っている必要があります。

同じ Pod 設定でノードのアフィニティーと ノードセレクターを使用している場合は、以下の「重要な
考慮事項」を参照してください。

14.8.2. ノードセレクターの設定

Pod 設定で nodeSelector を使用することで、Pod を特定のラベルの付いたノードのみに配置すること
ができます。

1. 必要なラベル (詳細は、「ノードでのラベルの更新」を参照) およびノードセレクターが環境に
セットアップされていることを確認します。
たとえば、Pod 設定が必要なラベルを示す nodeSelector 値を持つことを確認します。

apiVersion: v1
kind: Pod
spec:
 nodeSelector:
 <key>: <value>
...

2. Modify the master configuration file (/etc/origin/master/master-config.yaml) in two places:

a. Add nodeSelectorLabelBlacklist to the admissionConfig section with the labels that are
assigned to the node hosts you want to deny pod placement:

...
admissionConfig:
 pluginConfig:
 PodNodeConstraints:
 configuration:
 apiversion: v1
 kind: PodNodeConstraintsConfig
 nodeSelectorLabelBlacklist:
 - kubernetes.io/hostname
 - <label>
...

b. Then, add the same to the kubernetesMasterConfig section to restrict direct pod creation:

...
kubernetesMasterConfig:
 admissionConfig:
 pluginConfig:
 PodNodeConstraints:
 configuration:
 apiVersion: v1
 kind: PodNodeConstraintsConfig
 nodeSelectorLabelBlacklist:

OpenShift Container Platform 3.9 クラスター管理

134

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#labels

 - kubernetes.io/hostname
 - <label_1>
...

3. 変更を有効にするために OpenShift Container Platform を再起動します。

systemctl restart atomic-openshift-master

注記

同じ Pod 設定でノードセレクターとノードのアフィニティーを使用している場合は、以
下に注意してください。

nodeSelector と nodeAffinity の両方を設定する場合、Pod が候補ノードでスケ
ジュールされるにはどちらの条件も満たしている必要があります。

nodeAffinity タイプに関連付けられた複数の nodeSelectorTerms を指定する場
合、nodeSelectorTerms のいずれかが満たされている場合に Pod をノードにス
ケジュールすることができます。

nodeSelectorTerms に関連付けられた複数の matchExpressions を指定する場
合、すべての matchExpressions が満たされている場合にのみ Pod をノードに
スケジュールすることができます。

14.9. 詳細スケジューリングおよび容認

14.9.1. 概要

テイントおよび容認により、ノード はノード上でスケジュールする必要のある (またはスケジュールす
べきでない) Pod を制御できます。

14.9.2. テイントおよび容認 (Toleration)

テイント により、ノードは Pod に一致する 容認 がない場合に Pod のスケジュールを拒否することが
できます。

テイントはノード仕様 (NodeSpec) でノードに適用され、容認は Pod 仕様 (PodSpec) で Pod に適用
されます。ノードのテイントはノードに対し、テイントを容認しないすべての Pod を拒否するよう指
示します。

テイントおよび容認は、key、value、および effect.で構成されています。演算子により、これらの 3 つ
のパラメーターのいずれかを空のままにすることができます。

表14.1 テイントおよび容認コンポーネント

パラメーター 説明

key key には、253 文字までの文字列を使用できます。キーは文字または数字で開
始する必要があり、文字、数字、ハイフン、ドットおよびアンダースコアを含
めることができます。

第14章 スケジューリング

135

value value には、63 文字までの文字列を使用できます。値は文字または数字で開
始する必要があり、文字、数字、ハイフン、ドットおよびアンダースコアを含
めることができます。

effect effect は以下のいずれかにすることができます。

NoSchedule
テイントに一致しない新規 Pod は
ノードにスケジュールされません。

ノードの既存 Pod はそのままになり
ます。

PreferNoSchedule
テイントに一致しない新規 Pod は
ノードにスケジュールされる可能性が
ありますが、スケジューラーはスケ
ジュールしないようにします。

ノードの既存 Pod はそのままになり
ます。

NoExecute
テイントに一致しない新規 Pod は
ノードにスケジュールできません。

一致する容認を持たないノードの既存
Pod は削除されます。

operator
Equal key/value/effect パラメーターは一致する必

要があります。これはデフォルトになります。

Exists key/effect パラメーターは一致する必要があ
ります。いずれかに一致する value パラメー
ターを空のままにする必要があります。

パラメーター 説明

容認はテイントと一致します。

operator パラメーターが Equal に設定されている場合:

key パラメーターは同じになります。

value パラメーターは同じになります。

effect パラメーターは同じになります。

operator パラメーターが Exists に設定されている場合:

key パラメーターは同じになります。

OpenShift Container Platform 3.9 クラスター管理

136

effect パラメーターは同じになります。

14.9.2.1. 複数テイントの使用

複数のテイントを同じノードに、複数の容認を同じ Pod に配置することができます。OpenShift
Container Platform は複数のテイントと容認を以下のように処理します。

1. Pod に一致する容認のあるテイントを処理します。

2. 残りの一致しないテイントは Pod について以下の effect を持ちます。

effect が NoSchedule の一致しないテイントが 1 つ以上ある場合、OpenShift Container
Platform は Pod をノードにスケジュールできません。

effect が NoSchedule の一致しないテイントがなく、effect が PreferNoSchedule の一致
しない テイントが 1 つ以上ある場合、OpenShift Container Platform は Pod のノードへの
スケジュールを試行しません。

effect が NoExecute のテイントが 1 つ以上ある場合、OpenShift Container Platform は
Pod をノードからエビクトするか (ノードですでに実行中の場合)、または Pod のそのノー
ドへのスケジュールが実行されません (ノードでまだ実行されていない場合)。

テイントを容認しない Pod はすぐにエビクトされます。

容認の仕様に tolerationSeconds を指定せずにテイントを容認する Pod は永久にバイ
ンドされたままになります。

指定された tolerationSeconds を持つテイントを容認する Pod は指定された期間バイ
ンドされます。

例:

ノードには以下のテイントがあります。

$ oc adm taint nodes node1 key1=value1:NoSchedule
$ oc adm taint nodes node1 key1=value1:NoExecute
$ oc adm taint nodes node1 key2=value2:NoSchedule

Pod には以下の容認があります。

この場合、3 つ目のテイントに一致する容認がないため、Pod はノードにスケジュールできません。
Pod はこのテイントの追加時にノードですでに実行されている場合は実行が継続されます。3 つ目のテ
イントは 3 つのテイントの中で Pod で容認されない唯一のテイントであるためです。

14.9.3. テイントの既存ノードへの追加

tolerations:
- key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"
- key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"

第14章 スケジューリング

137

1 2 3 4

5

テイントおよび容認コンポーネントの表で説明されているパラメーターと共に oc adm taint コマンド
を使用してテイントをノードに追加します。

$ oc adm taint nodes <node-name> <key>=<value>:<effect>

例:

$ oc adm taint nodes node1 key1=value1:NoSchedule

The example places a taint on node1 that has key key1, value value1, and taint effect NoSchedule.

14.9.4. 容認の Pod への追加

容認を Pod に追加するには、Pod 仕様を tolerations セクションを含めるように編集します。

Equal 演算子を含む Pod 設定ファイルのサンプル

テイントおよび容認コンポーネント の表で説明されている toleration パラメーターです。

tolerationSeconds パラメーターは、Pod がエビクトされる前にノードにバインドされる期間を
指定します。以下の「Pod エビクションを遅延させる容認期間 (秒数) の使用」を参照してくださ
い。

Exists 演算子を含む Pod 設定ファイルのサンプル

これらの容認のいずれも上記の oc adm taint コマンドで作成されるテイントに一致します。いずれか
の容認のある Pod は node1 にスケジュールできます。

14.9.4.1. Pod のエビクションを遅延させる容認期間 (秒数) の使用

Pod 仕様に tolerationSeconds パラメーターを指定して、Pod がエビクトされる前にノードにバイン
ドされる期間を指定できます。effect NoExecute のあるテイントがノードに追加される場合、テイン
トを容認しない Pod は即時にエビクトされます (テイントを容認する Pod はエビクトされません)。た
だし、エビクトされる Pod に tolerationSeconds パラメーターがある場合、Pod は期間切れになるま
でエビクトされません。

例:

tolerations:
- key: "key1" 1
 operator: "Equal" 2
 value: "value1" 3
 effect: "NoExecute" 4
 tolerationSeconds: 3600 5

tolerations:
- key: "key1"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 3600

tolerations:

OpenShift Container Platform 3.9 クラスター管理

138

ここで、この Pod が実行中であるものの、一致するテイントがない場合、Pod は 3,600 秒間バインド
されたままとなり、その後にエビクトされます。テイントが期限前に削除される場合、Pod はエビクト
されません。

14.9.4.1.1. 容認の秒数のデフォルト値の設定

This plug-in sets the default forgiveness toleration for pods, to tolerate the
node.alpha.kubernetes.io/notReady:NoExecute and
node.alpha.kubernetes.io/notReady:NoExecute taints for five minutes.

ユーザーが提供する Pod 設定にいずれかの容認がある場合、デフォルトは追加されません。

デフォルトの容認の秒数を有効にするには、以下を実行します。

1. マスター設定ファイル (/etc/origin/master/master-config.yaml) を変更して
DefaultTolerationSeconds を admissionConfig セクションに追加します。

2. 変更を有効にするために、OpenShift を再起動します。

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

3. デフォルトが追加されていることを確認します。

a. Pod を作成します。

$ oc create -f </path/to/file>

例:

$ oc create -f hello-pod.yaml
pod "hello-pod" created

b. Pod の容認を確認します。

$ oc describe pod <pod-name> |grep -i toleration

例:

$ oc describe pod hello-pod |grep -i toleration
Tolerations: node.alpha.kubernetes.io/notReady=:Exists:NoExecute for 300s

- key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"
 tolerationSeconds: 3600

admissionConfig:
 pluginConfig:
 DefaultTolerationSeconds:
 configuration:
 kind: DefaultAdmissionConfig
 apiVersion: v1
 disable: false

第14章 スケジューリング

139

14.9.5. Preventing Pod Eviction for Node Problems

OpenShift Container Platform は、node unreachable および node not ready 状態をテイントとして表
示するよう設定できます。これにより、デフォルトの 5 分を使用するのではなく、unreachable (到達不
能) または not ready (準備ができていない) 状態になるノードにバインドされたままになる期間を Pod
仕様ごとに指定することができます。

テイントベースのエビクション機能が有効にされた状態で、テイントはノードコントローラーによって
自動的に追加され、Pod を Ready ノードからエビクトするための通常のロジックは無効にされます。

If a node enters a not ready state, the node.alpha.kubernetes.io/notReady:NoExecute taint is
added and pods cannot be scheduled on the node. Existing pods remain for the toleration
seconds period.

If a node enters a not reachable state, the node.alpha.kubernetes.io/unreachable:NoExecute
taint is added and pods cannot be scheduled on the node. Existing pods remain for the
toleration seconds period.

テイントベースのエビクションを有効にするには、以下を実行します。

1. マスター設定ファイル (/etc/origin/master/master-config.yaml) を変更して以下を
kubernetesMasterConfig セクションに追加します。

kubernetesMasterConfig:
 controllerArguments:
 feature-gates:
 - "TaintBasedEvictions=true"

2. テイントがノードに追加されていることを確認します。

oc describe node $node | grep -i taint

Taints: node.alpha.kubernetes.io/notReady:NoExecute

3. 変更を有効にするために、OpenShift を再起動します。

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

4. 容認を Pod に追加します。

または、以下を実行します。

注記

tolerations:
- key: "node.alpha.kubernetes.io/unreachable"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 6000

tolerations:
- key: "node.alpha.kubernetes.io/notReady"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 6000

OpenShift Container Platform 3.9 クラスター管理

140

注記

ノードの問題の発生時に Pod エビクションの既存のレート制限の動作を維持するため
に、システムはテイントをレートが制限された方法で追加します。これにより、マス
ターがノードからパーティション化される場合などのシナリオで発生する大規模な Pod
エビクションを防ぐことができます。

14.9.6. Daemonset および容認

DaemonSet pods are created with NoExecute tolerations for node.alpha.kubernetes.io/unreachable
and node.alpha.kubernetes.io/notReady with no tolerationSeconds to ensure that DaemonSet pods
are never evicted due to these problems, even when the Default Toleration Seconds feature is disabled.

14.9.7. 例

テイントおよび容認は、Pod をノードから切り離し、ノードで実行されるべきでない Pod をエビクト
する柔軟性のある方法として使用できます。以下は典型的なシナリオのいくつかになります。

ノードをユーザー専用にする

ユーザーをノードにバインドする

特殊ハードウェアを持つノードを専用ノードにする

14.9.7.1. ノードをユーザー専用にする

ノードのセットを特定のユーザーセットが排他的に使用するように指定できます。

専用ノードを指定するには、以下を実行します。

1. テイントをそれらのノードに追加します。
例:

$ oc adm taint nodes node1 dedicated=groupName:NoSchedule

2. Add a corresponding toleration to the pods by writing a custom admission controller.
容認のある Pod のみが専用ノードを使用することを許可されます。

14.9.7.2. ユーザーのノードへのバインド

特定ユーザーが専用ノードのみを使用できるようにノードを設定することができます。

ノードをユーザーの使用可能な唯一のノードとして設定するには、以下を実行します。

1. テイントをそれらのノードに追加します。
例:

$ oc adm taint nodes node1 dedicated=groupName:NoSchedule

2. Add a corresponding toleration to the pods by writing a custom admission controller.
受付コントローラーは、Pod が key:value ラベル (dedicated=groupName) が付けられたノー
ドのみにスケジュールされるようにノードのアフィニティーを追加します。

3. テイントと同様のラベル (key:value ラベルなど) を専用ノードに追加します。

第14章 スケジューリング

141

https://kubernetes.io/docs/admin/node/#node-controller
https://kubernetes.io/docs/admin/daemons/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#master-config-admission-control-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#master-config-admission-control-config

14.9.7.3. 特殊ハードウェアを持つノード

ノードの小規模なサブセットが特殊ハードウェア(GPU など) を持つクラスターでは、テイントおよび
容認を使用して、特殊ハードウェアを必要としない Pod をそれらのノードから切り離し、特殊ハード
ウェアを必要とする Pod をそのままにすることができます。また、特殊ハードウェアを必要とする
Pod に対して特定のノードを使用することを要求することもできます。

Pod が特殊ハードウェアからブロックされるようにするには、以下を実行します。

1. 以下のコマンドのいずれかを使用して、特殊ハードウェアを持つノードにテイントを設定しま
す。

$ oc adm taint nodes <node-name> disktype=ssd:NoSchedule
$ oc adm taint nodes <node-name> disktype=ssd:PreferNoSchedule

2. Adding a corresponding toleration to pods that use the special hardware using an admission
controller.

たとえば受付コントローラーは容認を追加することで、Pod の一部の特徴を使用し、Pod が特殊ノード
を使用できるかどうかを判別できます。

Pod が特殊ハードウェアのみを使用できるようにするには、追加のメカニズムが必要です。たとえば、
特殊ハードウェアを持つノードにラベルを付け、ハードウェアを必要とする Pod でノードのアフィニ
ティーを使用できます。

OpenShift Container Platform 3.9 クラスター管理

142

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#master-config-admission-control-config

第15章 クォータの設定

15.1. 概要

ResourceQuota オブジェクトで定義されるリソースクォータは、プロジェクトごとにリソース消費量
の総計を制限する制約を指定します。これは、タイプ別にプロジェクトで作成できるオブジェクトの数
量を制限すると共に、そのプロジェクトのリソースが消費できるコンピュートリソースおよびストレー
ジの合計量を制限することができます。

注記

See the Developer Guide for more on compute resources.

15.2. クォータで管理されるリソース

以下では、クォータで管理できる一連のコンピュートリソースとオブジェクトタイプについて説明しま
す。

注記

status.phase in (Failed, Succeeded) が true の場合、Pod は終了状態にあります。

表15.1 クォータで管理されるコンピュートリソース

リソース名 説明

cpu 非終了状態のすべての Pod での CPU 要求の合計はこの値を超えることができ
ません。cpu および requests.cpu は同じ値で、交換可能なものとして使用
できます。

memory 非終了状態のすべての Pod でのメモリー要求の合計はこの値を超えることがで
きません memory および requests.memory は同じ値で、交換可能なものと
して使用できます。

requests.cpu 非終了状態のすべての Pod での CPU 要求の合計はこの値を超えることができ
ません。cpu および requests.cpu は同じ値で、交換可能なものとして使用
できます。

requests.memory 非終了状態のすべての Pod でのメモリー要求の合計はこの値を超えることがで
きません memory および requests.memory は同じ値で、交換可能なものと
して使用できます。

limits.cpu 非終了状態のすべての Pod での CPU 制限の合計はこの値を超えることができ
ません。

limits.memory 非終了状態のすべての Pod でのメモリー制限の合計はこの値を超えることがで
きません。

表15.2 クォータで管理されるストレージリソース

第15章 クォータの設定

143

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-compute-resources

リソース名 説明

requests.storage 任意の状態のすべての Persistent Volume Claim (永続ボリューム要求、PVC)
でのストレージ要求の合計はこの値を超えることができません。

persistentvolumeclaim
s

プロジェクトに存在できる Persistent Volume Claim (永続ボリューム要求、
PVC) の合計数です。

<storage-class-
name>.storageclass.st
orage.k8s.io/requests.
storage

一致するストレージクラスを持つ、任意の状態のすべての Persistent Volume
Claim (永続ボリューム要求、PVC) でのストレージ要求の合計はこの値を超え
ることができません。

<storage-class-
name>.storageclass.st
orage.k8s.io/persistent
volumeclaims

プロジェクトに存在できる、一致するストレージクラスを持つ Persistent
Volume Claim (永続ボリューム要求、PVC) の合計数です。

表15.3 クォータで管理されるオブジェクト数

リソース名 説明

pods プロジェクトに存在できる非終了状態の Pod の合計数です。

replicationcontrollers プロジェクトに存在できるレプリケーションコントローラーの合計数です。

resourcequotas プロジェクトに存在できるリソースクォータの合計数です。

services プロジェクトに存在できるサービスの合計数です。

secrets プロジェクトに存在できるシークレットの合計数です。

configmaps プロジェクトに存在できる ConfigMap オブジェクトの合計数です。

persistentvolumeclaim
s

プロジェクトに存在できる Persistent Volume Claim (永続ボリューム要求、
PVC) の合計数です。

openshift.io/imagestre
ams

プロジェクトに存在できるイメージストリームの合計数です。

15.3. クォータのスコープ

各クォータには スコープ のセットが関連付けられます。クォータは、列挙されたスコープの交差部分
に一致する場合にのみリソースの使用状況を測定します。

スコープをクォータに追加すると、クォータが適用されるリソースのセットを制限できます。許可され
るセット以外のリソースを設定すると、検証エラーが発生します。

OpenShift Container Platform 3.9 クラスター管理

144

スコープ 説明

Terminating spec.activeDeadlineSeconds >= 0 の Pod に一致します。

NotTerminating spec.activeDeadlineSeconds が nil の Pod に一致します。

BestEffort cpu または memory のいずれかの QoS (Quality of Service) が Best Effort の
Pod に一致します。コンピュートリソースのコミットについての詳細は、
「QoS (Quality of Service) クラス」を参照してください。

NotBestEffort cpu および memory の QoS (Quality of Service) が Best Effort でない Pod に
一致します。

BestEffort スコープは、以下のリソースを制限するようにクォータを制限します。

pods

Terminating、NotTerminating、および NotBestEffort スコープは、以下のリソースを追跡するよう
にクォータを制限します。

pods

memory

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

15.4. クォータの実施

プロジェクトのリソースクォータが最初に作成されると、プロジェクトは、更新された使用状況の統計
が計算されるまでクォータ制約の違反を引き起こす可能性のある新規リソースの作成機能を制限しま
す。

クォータが作成され、使用状況の統計が更新されると、プロジェクトは新規コンテンツの作成を許可し
ます。リソースを作成または変更する場合、クォータの使用量はリソースの作成または変更要求がある
とすぐに増分します。

リソースを削除する場合、クォータの使用量は、プロジェクトのクォータ統計の次回の完全な再計算時
に減分されます。設定可能な時間を指定して、クォータ使用量の統計値を現在確認されるシステム値ま
で下げるのに必要な時間を決定します。

プロジェクト変更がクォータ使用制限を超える場合、サーバーはそのアクションを拒否し、クォータ制
約を違反していること、およびシステムで現在確認される使用量の統計値を示す適切なエラーメッセー
ジがユーザーに返されます。

15.5. REQUESTS VS LIMITS

第15章 クォータの設定

145

1

2

3

4

5

1

When allocating compute resources, each container may specify a request and a limit value each for
CPU and memory. Quotas can restrict any of these values.

クォータに requests.cpu または requests.memory の値が指定されている場合、すべての着信コンテ
ナーがそれらのリソースを明示的に要求することが求められます。クォータに limits.cpu または
limits.memory の値が指定されている場合、すべての着信コンテナーがそれらのリソースの明示的な制
限を指定することが求められます。

15.6. リソースクォータ定義のサンプル

core-object-counts.yaml

プロジェクトに存在できる ConfigMap オブジェクトの合計数です。

プロジェクトに存在できる Persistent Volume Claim (永続ボリューム要求、PVC) の合計数です。

プロジェクトに存在できるレプリケーションコントローラーの合計数です。

プロジェクトに存在できるシークレットの合計数です。

プロジェクトに存在できるサービスの合計数です。

openshift-object-counts.yaml

プロジェクトに存在できるイメージストリームの合計数です。

compute-resources.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: core-object-counts
spec:
 hard:
 configmaps: "10" 1
 persistentvolumeclaims: "4" 2
 replicationcontrollers: "20" 3
 secrets: "10" 4
 services: "10" 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: openshift-object-counts
spec:
 hard:
 openshift.io/imagestreams: "10" 1

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources

OpenShift Container Platform 3.9 クラスター管理

146

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-compute-resources

1

2

3

4

5

1

2

1

プロジェクトに存在できる非終了状態の Pod の合計数です。

非終了状態のすべての Pod において、CPU 要求の合計は 1 コアを超えることができません。

非終了状態のすべての Pod において、メモリー要求の合計は 1 Gi を超えることができません。

非終了状態のすべての Pod において、CPU 制限の合計は 2 コアを超えることができません。

非終了状態のすべての Pod において、メモリー制限の合計は 2 Gi を超えることができません。

besteffort.yaml

プロジェクトに存在できる QoS (Quality of Service) が BestEffort の非終了状態の Pod の合計数
です

クォータを、メモリーまたは CPU のいずれかの QoS (Quality of Service) が BestEffort の一致す
る Pod のみに制限します。

compute-resources-long-running.yaml

非終了状態の Pod の合計数です。

spec:
 hard:
 pods: "4" 1
 requests.cpu: "1" 2
 requests.memory: 1Gi 3
 limits.cpu: "2" 4
 limits.memory: 2Gi 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:
 pods: "1" 1
 scopes:
 - BestEffort 2

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-long-running
spec:
 hard:
 pods: "4" 1
 limits.cpu: "4" 2
 limits.memory: "2Gi" 3
 scopes:
 - NotTerminating 4

第15章 クォータの設定

147

2

3

4

1

2

3

4

1

2

非終了状態のすべての Pod において、CPU 制限の合計はこの値を超えることができません。

非終了状態のすべての Pod において、メモリー制限の合計はこの値を超えることができません。

クォータをspec.activeDeadlineSeconds が nil に設定されている一致する Pod のみに制限しま
す。ビルド Pod は、RestartNever ポリシーが適用されない場合に NotTerminating になります。

compute-resources-time-bound.yaml

非終了状態の Pod の合計数です。

非終了状態のすべての Pod において、CPU 制限の合計はこの値を超えることができません。

非終了状態のすべての Pod において、メモリー制限の合計はこの値を超えることができません。

クォータをspec.activeDeadlineSeconds >=0 に設定されている一致する Pod のみに制限しま
す。たとえば、このクォータはビルド Pod またはデプロイヤー Pod に影響を与えますが、web
サーバーまたはデータベースなどの長時間実行されない Pod には影響を与えません。

storage-consumption.yaml

プロジェクト内の Persistent Volume Claim (永続ボリューム要求、PVC) の合計数です。

プロジェクトのすべての Persistent Volume Claim (永続ボリューム要求、PVC) において、要求さ
れるストレージの合計はこの値を超えることができません。

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-time-bound
spec:
 hard:
 pods: "2" 1
 limits.cpu: "1" 2
 limits.memory: "1Gi" 3
 scopes:
 - Terminating 4

apiVersion: v1
kind: ResourceQuota
metadata:
 name: storage-consumption
spec:
 hard:
 persistentvolumeclaims: "10" 1
 requests.storage: "50Gi" 2
 gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
 silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
 silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
 bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
 bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7

OpenShift Container Platform 3.9 クラスター管理

148

3

4

5

6

7

プロジェクトのすべての Persistent Volume Claim (永続ボリューム要求、PVC) において、gold ス
トレージクラスで要求されるストレージの合計はこの値を超えることができません。

プロジェクトのすべての Persistent Volume Claim (永続ボリューム要求、PVC) において、silver
ストレージクラスで要求されるストレージの合計はこの値を超えることができません。

プロジェクトのすべての Persistent Volume Claim (永続ボリューム要求、PVC) において、silver
ストレージクラスの要求の合計数はこの値を超えることができません。

プロジェクトのすべての Persistent Volume Claim (永続ボリューム要求、PVC) において、bronze
ストレージクラスで要求されるストレージの合計はこの値を超えることができません。これが 0
に設定される場合、bronze ストレージクラスはストレージを要求できないことを意味します。

プロジェクトのすべての Persistent Volume Claim (永続ボリューム要求、PVC) において、bronze
ストレージクラスで要求されるストレージの合計はこの値を超えることができません。これが 0
に設定される場合は、bronze ストレージクラスでは要求を作成できないことを意味します。

15.7. クォータの作成

To create a quota, first define the quota to your specifications in a file, for example as seen in Sample
Resource Quota Definitions. Then, create using that file to apply it to a project:

$ oc create -f <resource_quota_definition> [-n <project_name>]

例:

$ oc create -f resource-quota.json -n demoproject

15.8. クォータの表示

web コンソールでプロジェクトの Quota ページに移動し、プロジェクトのクォータで定義されるハー
ド制限に関連する使用状況の統計を表示できます。

CLI を使用してクォータの詳細を表示することもできます。

1. 最初に、プロジェクトで定義されたクォータの一覧を取得します。たとえば、demoproject と
いうプロジェクトの場合、以下を実行します。

$ oc get quota -n demoproject
NAME AGE
besteffort 11m
compute-resources 2m
core-object-counts 29m

2. 次に、関連するクォータについて記述します。たとえば、core-object-counts クォータの場
合、以下を実行します。

$ oc describe quota core-object-counts -n demoproject
Name: core-object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10

第15章 クォータの設定

149

persistentvolumeclaims 0 4
replicationcontrollers 3 20
secrets 9 10
services 2 10

15.9. クォータの同期期間の設定

リソースのセットが削除される際に、リソースの同期期間が /etc/origin/master/master-config.yaml
ファイルの resource-quota-sync-period 設定によって決定されます。

クォータの使用状況が復元される前に、ユーザーがリソースの再使用を試行すると問題が発生する場合
があります。resource-quota-sync-period 設定を変更して、リソースセットの再生成が所定の期間 (秒
単位) に実行され、リソースを再度利用可能にすることができます。

変更後に、マスターサービスを再起動してそれらの変更を適用します。

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

再生成時間の調整は、リソースの作成および自動化が使用される場合のリソース使用状況の判別に役立
ちます。

注記

resource-quota-sync-period 設定は、システムパフォーマンスのバランスを取るように
設計されています。同期期間を短縮すると、マスターに大きな負荷がかかる可能性があ
ります。

15.10. デプロイメント設定におけるクォータアカウンティング

If a quota has been defined for your project, see Deployment Resources for considerations on any
deployment configurations.

15.11. リソース消費における明示的なクォータの要求

リソースがクォータで管理されていない場合、ユーザーには消費できるリソース量の制限がありませ
ん。たとえば、gold ストレージクラスに関連するストレージのクォータがない場合、プロジェクトが作
成できる gold ストレージの容量はバインドされません。

高コストのコンピュートまたはストレージリソースの場合、管理者はリソースを消費するための明示的
なクォータの付与が必要となるようにする場合があります。たとえば、プロジェクトに gold ストレー
ジクラスに関連するストレージのクォータが明示的に付与されていない場合、そのプロジェクトのユー
ザーはこのタイプのストレージを作成することができません。

特定リソースの消費における明示的なクォータが必要となるようにするには、以下のスタンザを

kubernetesMasterConfig:
 apiLevels:
 - v1beta3
 - v1
 apiServerArguments: null
 controllerArguments:
 resource-quota-sync-period:
 - "10s"

OpenShift Container Platform 3.9 クラスター管理

150

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#deployment-resources

1

2

特定リソースの消費における明示的なクォータが必要となるようにするには、以下のスタンザを
master-config.yaml に追加する必要があります。

デフォルトで消費が制限されるグループ/リソースです。

デフォルトで制限対象となる、グループ/リソースに関連付けられたクォータで追跡されるリソー
スの名前です。

上記の例では、クォータシステムは PersistentVolumeClaim を作成するか、または更新するすべての
操作をインターセプトします。これは、クォータで認識されるリソースが消費されることを確認し、プ
ロジェクトのそれらのリソースのクォータがない場合に要求は拒否されます。この例ではユーザーが
gold ストレージクラスに関連付けられたストレージを使用する PersistentVolumeClaim を作成してお
り、プロジェクトに一致するクォータがない場合には要求が拒否されます。

admissionConfig:
 pluginConfig:
 ResourceQuota:
 configuration:
 apiVersion: resourcequota.admission.k8s.io/v1alpha1
 kind: Configuration
 limitedResources:
 - resource: persistentvolumeclaims 1
 matchContains:
 - gold.storageclass.storage.k8s.io/requests.storage 2

第15章 クォータの設定

151

1

第16章 複数プロジェクトのクォータ設定

16.1. 概要

ClusterResourceQuota オブジェクトで定義される複数プロジェクトのクォータは、クォータを複数プ
ロジェクト間で共有できるようにします。それぞれの選択されたプロジェクトで使用されるリソースは
集計され、その集計は選択したすべてのプロジェクトでリソースを制限するために使用されます。

16.2. プロジェクトの選択

プロジェクトは、アノテーションの選択またはラベルの選択のいずれか、またはその両方に基づいて選
択できます。たとえば、アノテーションに基づいてプロジェクトを選択するには、以下のコマンドを実
行します。

これは以下の ClusterResourceQuota オブジェクトを作成します。

選択したプロジェクトに対して実施される ResourceQuotaSpec オブジェクトです。

$ oc create clusterquota for-user \
 --project-annotation-selector openshift.io/requester=<user-name> \
 --hard pods=10 \
 --hard secrets=20

apiVersion: v1
kind: ClusterResourceQuota
metadata:
 name: for-user
spec:
 quota: 1
 hard:
 pods: "10"
 secrets: "20"
 selector:
 annotations: 2
 openshift.io/requester: <user-name>
 labels: null 3
status:
 namespaces: 4
 - namespace: ns-one
 status:
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"
 secrets: "9"
 total: 5
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"
 secrets: "9"

OpenShift Container Platform 3.9 クラスター管理

152

2

3

4

5

1

2

アノテーションの単純なキー/値のセレクターです。

プロジェクトを選択するために使用できるラベルセレクターです。

選択された各プロジェクトの現在のクォータの使用状況を記述する namespace ごとのマップで
す。

選択されたすべてのプロジェクトにおける使用量の総計です。

この複数プロジェクトのクォータの記述は、デフォルトのプロジェクト要求エンドポイントを使用して
<user-name> によって要求されるすべてのプロジェクトを制御します。ここでは、10 Pod および 20
シークレットに制限されます。

同様にラベルに基づいてプロジェクトを選択するには、以下のコマンドを実行します。

clusterresourcequota および clusterquota は同じコマンドのエイリアスです。for-name は
clusterresourcequota オブジェクトの名前です。

ラベル別にプロジェクトを選択するには、--project-label-selector=key=value 形式を使用して
キーと値のペアを指定します。

これは以下の ClusterResourceQuota オブジェクト定義を作成します。

16.3. 適用可能な CLUSTERRESOURCEQUOTAS の表示

プロジェクト管理者は、各自のプロジェクトを制限する複数プロジェクトのクォータを作成したり、変
更したりすることはできませんが、それぞれのプロジェクトに適用される複数プロジェクトのクォータ
を表示することはできます。プロジェクト管理者は、AppliedClusterResourceQuota リソースを使っ
てこれを実行できます。

以下が生成されます。

$ oc create clusterresourcequota for-name \ 1
 --project-label-selector=name=frontend \ 2
 --hard=pods=10 --hard=secrets=20

apiVersion: v1
kind: ClusterResourceQuota
metadata:
 creationTimestamp: null
 name: for-name
spec:
 quota:
 hard:
 pods: "10"
 secrets: "20"
 selector:
 annotations: null
 labels:
 matchLabels:
 name: frontend

$ oc describe AppliedClusterResourceQuota

第16章 複数プロジェクトのクォータ設定

153

16.4. 選択における粒度

クォータの割り当てを要求する際にロックに関して考慮する必要があるため、複数プロジェクトの
クォータで選択されるアクティブなプロジェクトの数は重要な考慮点になります。単一の複数プロジェ
クトクォータで 100 を超えるプロジェクトを選択すると、それらのプロジェクトの API サーバーの応答
に負の影響が及びます。

Name: for-user
Namespace: <none>
Created: 19 hours ago
Labels: <none>
Annotations: <none>
Label Selector: <null>
AnnotationSelector: map[openshift.io/requester:<user-name>]
Resource Used Hard
-------- ---- ----
pods 1 10
secrets 9 20

OpenShift Container Platform 3.9 クラスター管理

154

1

2

3

4

5

第17章 制限範囲の設定

17.1. 概要

A limit range, defined by a LimitRange object, enumerates compute resource constraints in a project at
the pod, container, image, image stream, and persistent volume claim level, and specifies the amount of
resources that a pod, container, image, image stream, or persistent volume claim can consume.

All resource create and modification requests are evaluated against each LimitRange object in the
project. If the resource violates any of the enumerated constraints, then the resource is rejected. If the
resource does not set an explicit value, and if the constraint supports a default value, then the default
value is applied to the resource.

コア Limit Range オブジェクトの定義

制限範囲オブジェクトの名前です。

すべてのコンテナーにおいて Pod がノードで要求できる CPU の最大量です。

すべてのコンテナーにおいて Pod がノードで要求できるメモリーの最大量です。

The minimum amount of CPU that a pod can request on a node across all containers.

The minimum amount of memory that a pod can request on a node across all containers.

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "core-resource-limits" 1
spec:
 limits:
 - type: "Pod"
 max:
 cpu: "2" 2
 memory: "1Gi" 3
 min:
 cpu: "200m" 4
 memory: "6Mi" 5
 - type: "Container"
 max:
 cpu: "2" 6
 memory: "1Gi" 7
 min:
 cpu: "100m" 8
 memory: "4Mi" 9
 default:
 cpu: "300m" 10
 memory: "200Mi" 11
 defaultRequest:
 cpu: "200m" 12
 memory: "100Mi" 13
 maxLimitRequestRatio:
 cpu: "10" 14

第17章 制限範囲の設定

155

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-compute-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-projects

6

7

8

9

10

11

12

13

14

1

2

3

Pod の単一コンテナーが要求できる CPU の最大量です。

Pod の単一コンテナーが要求できるメモリーの最大量です。

The minimum amount of CPU that a single container in a pod can request.

The minimum amount of memory that a single container in a pod can request.

The default amount of CPU that a container will be limited to use if not specified.

The default amount of memory that a container will be limited to use if not specified.

The default amount of CPU that a container will request to use if not specified.

The default amount of memory that a container will request to use if not specified.

The maximum amount of CPU burst that a container can make as a ratio of its limit over request.

For more information on how CPU and memory are measured, see Compute Resources.

OpenShift Container Platform の Limit Range オブジェクトの定義

内部レジストリーにプッシュできるイメージの最大サイズです。

The maximum number of unique image tags per image stream’s spec.

The maximum number of unique image references per image stream’s status.

Both core and OpenShift Container Platform resources can be specified in just one limit range object.
They are separated here into two examples for clarity.

17.1.1. コンテナーの制限

サポートされるリソース:

CPU

メモリー

サポートされる制約:

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "openshift-resource-limits"
spec:
 limits:
 - type: openshift.io/Image
 max:
 storage: 1Gi 1
 - type: openshift.io/ImageStream
 max:
 openshift.io/image-tags: 20 2
 openshift.io/images: 30 3

OpenShift Container Platform 3.9 クラスター管理

156

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-compute-resources

コンテナーごとに設定されます。指定される場合、以下を満たしている必要があります。

表17.1 コンテナー

制約 動作

Min Min[resource]: container.resources.requests[resource] (必須) または
container/resources.limits[resource] (オプション) 以下

If the configuration defines a min CPU, then the request value must be greater
than the CPU value. A limit value does not need to be specified.

Max container.resources.limits[resource] (必須): Max[resource] 以下

If the configuration defines a max CPU, then you do not need to define a
request value, but a limit value does need to be set that satisfies the maximum
CPU constraint.

MaxLimitRequestRatio MaxLimitRequestRatio[resource] less than or equal to (
container.resources.limits[resource] /
container.resources.requests[resource])

If a configuration defines a maxLimitRequestRatio value, then any new
containers must have both a request and limit value. Additionally, OpenShift
Container Platform calculates a limit to request ratio by dividing the limit by the
request.

For example, if a container has cpu: 500 in the limit value, and cpu: 100 in
the request value, then its limit to request ratio for cpu is 5. This ratio must be
less than or equal to the maxLimitRequestRatio.

サポートされるデフォルト:

Default[resource]

指定がない場合は container.resources.limit[resource] を所定の値にデフォルト設定します。

Default Requests[resource]

指定がない場合は、container.resources.requests[resource] を所定の値にデフォルト設定しま
す。

17.1.2. Pod の制限

サポートされるリソース:

CPU

メモリー

サポートされる制約:

Pod のすべてのコンテナーにおいて、以下を満たしている必要があります。

表17.2 Pod

第17章 制限範囲の設定

157

制約 実施される動作

Min Min[resource] less than or equal to
container.resources.requests[resource] (required) less than or equal to
container.resources.limits[resource] (optional)

Max container.resources.limits[resource] (必須): Max[resource] 以下

MaxLimitRequestRatio MaxLimitRequestRatio[resource] less than or equal to (
container.resources.limits[resource] /
container.resources.requests[resource])

17.1.3. イメージの制限

サポートされるリソース:

ストレージ

リソースタイプ名:

openshift.io/Image

イメージごとに設定されます。指定される場合、以下が一致している必要があります。

表17.3 イメージ

制約 動作

Max image.dockerimagemetadata.size: Max[resource] より小さいか等しい

注記

To prevent blobs exceeding the limit from being uploaded to the registry, the registry
must be configured to enforce quota. An environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ENFORCEQUOTA must be
set to true which is done by default for new deployments. To update older deployment
configuration, refer to Enforcing quota in the Registry .

警告

The image size is not always available in the manifest of an uploaded image. This is
especially the case for images built with Docker 1.10 or higher and pushed to a v2
registry. If such an image is pulled with an older Docker daemon, the image manifest
will be converted by the registry to schema v1 lacking all the size information. No
storage limit set on images will prevent it from being uploaded.

現在、この問題への対応が行われています。



OpenShift Container Platform 3.9 クラスター管理

158

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/upgrading_clusters/#enforcing-quota-in-the-registry
https://github.com/openshift/origin/issues/7706

17.1.4. イメージストリームの制限

サポートされるリソース:

openshift.io/image-tags

openshift.io/images

リソースタイプ名:

openshift.io/ImageStream

イメージストリームごとに設定されます。指定される場合、以下が一致している必要があります。

表17.4 ImageStream

制約 動作

Max[openshift.io/imag
e-tags]

length(uniqueimagetags(imagestream.spec.tags)):
Max[openshift.io/image-tags] より小さいか等しい

uniqueimagetags は、指定された仕様タグのイメージへの一意の参照を返し
ます。

Max[openshift.io/imag
es]

length(uniqueimages(imagestream.status.tags)):
Max[openshift.io/images] より小さいか等しい

uniqueimages returns unique image names found in status tags. The name
equals image’s digest.

17.1.4.1. イメージ参照の数

Resource openshift.io/image-tags represents unique image references. Possible references are an
ImageStreamTag, an ImageStreamImage and a DockerImage. They may be created using commands
oc tag and oc import-image or by using tag tracking. No distinction is made between internal and
external references. However, each unique reference tagged in the image stream’s specification is
counted just once. It does not restrict pushes to an internal container registry in any way, but is useful for
tag restriction.

Resource openshift.io/images represents unique image names recorded in image stream status. It
allows for restriction of a number of images that can be pushed to the internal registry. Internal and
external references are not distinguished.

17.1.5. PersistentVolumeClaim の制限

サポートされるリソース:

ストレージ

サポートされる制約:

プロジェクトのすべての Persistent Volume Claim (永続ボリューム要求、PVC) において、以下が一致
している必要があります。

表17.5 Pod

第17章 制限範囲の設定

159

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#referencing-images-in-image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#adding-tag

1

2

3

制約 実施される動作

Min Min[resource] ⇐ claim.spec.resources.requests[resource] (required)

Max claim.spec.resources.requests[resource] (required) ⇐ Max[resource]

Limit Range オブジェクトの定義

制限範囲オブジェクトの名前です。

The minimum amount of storage that can be requested in a persistent volume claim

The maximum amount of storage that can be requested in a persistent volume claim

17.2. 制限範囲の作成

To apply a limit range to a project, create a limit range object definition on your file system to your
desired specifications, then run:

$ oc create -f <limit_range_file> -n <project>

17.3. VIEWING LIMITS

You can view any limit ranges defined in a project by navigating in the web console to the project’s
Quota page.

You can also use the CLI to view limit range details:

1. First, get the list of limit ranges defined in the project. For example, for a project called
demoproject:

{
 "apiVersion": "v1",
 "kind": "LimitRange",
 "metadata": {
 "name": "pvcs" 1
 },
 "spec": {
 "limits": [{
 "type": "PersistentVolumeClaim",
 "min": {
 "storage": "2Gi" 2
 },
 "max": {
 "storage": "50Gi" 3
 }
 }
]
 }
}

OpenShift Container Platform 3.9 クラスター管理

160

$ oc get limits -n demoproject
NAME AGE
resource-limits 6d

2. Then, describe the limit range you are interested in, for example the resource-limits limit range:

$ oc describe limits resource-limits -n demoproject
Name: resource-limits
Namespace: demoproject
Type Resource Min Max Default Request Default Limit Max
Limit/Request Ratio
---- -------- --- --- --------------- ------------- -----------------------
Pod cpu 200m 2 - - -
Pod memory 6Mi 1Gi - - -
Container cpu 100m 2 200m 300m 10
Container memory 4Mi 1Gi 100Mi 200Mi -
openshift.io/Image storage - 1Gi - - -
openshift.io/ImageStream openshift.io/image - 12 - - -
openshift.io/ImageStream openshift.io/image-tags - 10 - - -

17.4. DELETING LIMITS

Remove any active limit range to no longer enforce the limits of a project:

$ oc delete limits <limit_name>

第17章 制限範囲の設定

161

第18章 PRUNING OBJECTS

18.1. 概要

Over time, API objects created in OpenShift Container Platform can accumulate in the etcd data store
through normal user operations, such as when building and deploying applications.

管理者は、不要になった古いバージョンのオブジェクトを OpenShift Container Platform インスタンス
から定期的にプルーニングできます。たとえば、イメージのプルーニングにより、使用されなくなった
ものの、ディスク領域を使用している古いイメージや層を削除できます。

18.2. BASIC PRUNE OPERATIONS

CLI は、共通の親コマンドでプルーニング操作を分類します。

$ oc adm prune <object_type> <options>

これにより、以下が指定されます。

The <object_type> to perform the action on, such as builds, deployments, or images.

オブジェクトタイプのプルーニングの実行においてサポートされる <options>。

18.3. PRUNING DEPLOYMENTS

使用年数やステータスによりシステムで不要となったデプロイメントをプルーニングするために、管理
者は以下のコマンドを実行できます。

$ oc adm prune deployments [<options>]

表18.1 Prune Deployments CLI Configuration Options

オプション 説明

--confirm ドライランの実行ではなく、プルーニングが実行されることを示しま
す。

--orphans デプロイメント設定が存在せず、ステータスが complete (完了) または
failed (失敗) で、レプリカ数がゼロであるすべてのデプロイメントをプ
ルーニングします。

--keep-complete=<N> デプロイメント設定に基づき、ステータスが complete (完了) で、レプ
リカ数がゼロである最後の N デプロイメントを保持します (デフォルト:
5)。

--keep-failed=<N> デプロイメント設定に基づき、ステータスが failed (失敗) で、レプリカ
数がゼロである最後の N デプロイメントを保持します (デフォルト: 1)。

OpenShift Container Platform 3.9 クラスター管理

162

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#master

--keep-younger-than=
<duration>

現在の時間との対比で <duration> 未満の新しいオブジェクトはプルー
ニングしません (デフォルト: 60m)。有効な測定単位には、ナノ秒
(ns)、マイクロ秒 (us)、ミリ秒 (ms)、秒 (s)、分 (m)、および時間 (h)
が含まれます。

オプション 説明

プルーニング操作によって削除されるものを確認するには、以下を実行します。

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

プルーニング操作を実際に実行するには、以下を実行します。

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

18.4. PRUNING BUILDS

使用年数やステータスによりシステムで不要となったビルドをプルーニングするために、管理者は以下
のコマンドを実行できます。

$ oc adm prune builds [<options>]

表18.2 Prune Builds CLI Configuration Options

オプション 説明

--confirm ドライランの実行ではなく、プルーニングが実行されることを示しま
す。

--orphans ビルド設定が存在せず、ステータスが complete (完了)、failed (失敗)、
error (エラー)、または canceled (中止) のすべてのビルドをプルーニン
グします。

--keep-complete=<N> ビルド設定に基づき、ステータスが complete (完了) の最後の N ビルド
を保持します (デフォルト: 5)。

--keep-failed=<N> ビルド設定に基づき、ステータスが failed (失敗)、error (エラー)、また
は canceled (中止) の最後の N ビルドを保持します (デフォルト: 1)。

--keep-younger-than=
<duration>

現在の時間との対比で <duration> 未満の新しいオブジェクトはプルー
ニングしません (デフォルト: 60m)。

プルーニング操作によって削除されるものを確認するには、以下を実行します。

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

第18章 PRUNING OBJECTS

163

プルーニング操作を実際に実行するには、以下を実行します。

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

注記

Developers can enable automatic build pruning by modifying their build configuration.

18.5. イメージのプルーニング

使用年数やステータスまたは制限の超過によりシステムで不要となったイメージをプルーニングするた
めに、管理者は以下のコマンドを実行できます。

$ oc adm prune images [<options>]

注記

Currently, to prune images you must first log in to the CLI as a user with an access token.
The user must also have the cluster rolesystem:image-pruner or greater (for example,
cluster-admin).

注記

Pruning images removes data from the integrated registry unless --prune-registry=false
is used. For this operation to work properly, ensure your registry is configured with
storage:delete:enabled set to true.

注記

--namespace フラグの付いたイメージをプルーニングしてもイメージは削除されず、イ
メージストリームのみが削除されます。イメージは namespace を使用しないリソースで
す。そのため、プルーニングを特定の namespace に制限すると、イメージの現在の使用
量を算出できなくなります。

デフォルトで、統合レジストリーは Blob メタデータをキャッシュしてストレージに対する要求数を減
らし、要求の処理速度を高めます。プルーニングによって統合レジストリーのキャッシュが更新される
ことはありません。プルーニング後にプッシュされる、プルーニングされた層を含むイメージは破損し
ます。キャッシュにメタデータを持つプルーニングされた層はプッシュされないためです。したがっ
て、プルーニング後はキャッシュをクリアする必要があります。これは、レジストリーの再デプロイに
よって実行できます。

$ oc rollout latest dc/docker-registry

If the integrated registry uses a redis cache, you need to clean the database manually.

If redeploying the registry after pruning is not an option, then you must permanently disable the cache .

表18.3 Prune Images CLI Configuration Options

OpenShift Container Platform 3.9 クラスター管理

164

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#build-pruning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cli_reference/#basic-setup-and-login
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#docker-registry-configuration-reference-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#docker-registry-configuration-reference-redis
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#docker-registry-configuration-reference-cache

オプション 説明

--all レジストリーにプッシュされていないものの、プルスルー (pullthrough)
でミラーリングされたイメージを組み込みます。これはデフォルトでオ
ンに設定されます。プルーニングを統合レジストリーにプッシュされた
イメージに制限するには、--all=false を渡します。

--certificate-authority OpenShift Container Platform で管理されるレジストリーと通信する際
に使用する認証局ファイルへのパスです。デフォルトは現行ユーザーの
設定ファイルの認証局データに設定されます。これが指定されている場
合、セキュアな通信が実行されます。

--confirm Indicate that pruning should occur, instead of performing a dry-run. This
requires a valid route to the integrated Docker registry. If this command
is run outside of the cluster network, the route needs to be provided
using --registry-url.

--force-insecure このオプションは注意して使用してください。 HTTP 経由でホストされ
ているか、または無効な HTTPS 証明書を持つ Docker レジストリーへの
非セキュアな接続を許可します。詳細は、「セキュアまたは非セキュア
な接続の使用」を参照してください。

--keep-tag-revisions=<N> それぞれのイメージストリームについては、タグごとに最大 N のイメー
ジリビジョンを保持します (デフォルト: 3)。

--keep-younger-than=
<duration>

現在の時間との対比で <duration> 未満の新しいイメージはプルーニン
グしません。現在の時間との対比で <duration> 未満の他のオブジェク
トで参照されるイメージはプルーニングしません (デフォルト: 60m)。

--prune-over-size-limit 同じプロジェクトに定義される最小の制限を超える各イメージをプルー
ニングします。このフラグは --keep-tag-revisions または --keep-
younger-than と共に使用することはできません。

--registry-url レジストリーと通信する際に使用するアドレスです。このコマンドは、
管理されるイメージおよびイメージストリームから判別されるクラス
ター内の URL の使用を試行します。これに失敗する (レジストリーを解
決できないか、これにアクセスできない) 場合、このフラグを使用して
他の機能するルートを指定する必要があります。レジストリーのホスト
名の前には、特定の接続プロトコルを実施する https:// または http://
を付けることができます。

--prune-registry 他のオプションで規定される条件と共に、このオプションは、
OpenShift Container Platform イメージ API オブジェクトに対応するレ
ジストリーのデータがプルーニングされるかどうかを制御します。デ
フォルトで、イメージのプルーニングは、イメージ API オブジェクトと
レジストリーの対応するデータの両方を処理します。このオプション
は、イメージオブジェクトの数を減らすなどの目的で etcd の内容のみ
を削除することを検討していて、レジストリーのストレージのクリーン
アップは検討していない場合や、レジストリーの適切なメンテナンス期
間中などに レジストリーのハードプルーニングによってこれを別途実行
しようとする場合に役立ちます。

第18章 PRUNING OBJECTS

165

18.5.1. Image Prune Conditions

--keep-younger-than 分前よりも後に作成され、現時点で以下によって参照されていない
「OpenShift Container Platform で管理される」イメージ (アノテーション
openshift.io/image.managed を持つイメージ) を削除します。

--keep-younger-than 分前よりも後に作成された Pod。

--keep-younger-than 分前よりも後に作成されたイメージストリーム。

実行中の Pod。

保留中の Pod。

レプリケーションコントローラー。

デプロイメント設定。

ビルド設定。

ビルド。

stream.status.tags[].items の --keep-tag-revisions の最新のアイテム。

同じプロジェクトで定義される最小の制限を超えており、現時点で以下によって参照されてい
ない「OpenShift Container Platform で管理される」イメージ (アノテーション
openshift.io/image.managed を持つイメージ) を削除します。

実行中の Pod。

保留中の Pod。

レプリケーションコントローラー。

デプロイメント設定。

ビルド設定。

ビルド。

外部レジストリーからのプルーニングはサポートされていません。

イメージがプルーニングされる際、イメージのすべての参照は status.tags にイメージの参照
を持つすべてのイメージストリームから削除されます。

イメージによって参照されなくなったイメージ層も削除されます。

注記

--prune-over-size-limit は --keep-tag-revisions または --keep-younger-than フラグと
共に使用することができません。これを実行すると、この操作が許可されないことを示
す情報が返されます。

注記

OpenShift Container Platform 3.9 クラスター管理

166

注記

--prune-registry=false とその後に レジストリーのハードプルーニング を実行すること
で、OpenShift Container Platform イメージ API オブジェクトの削除とイメージデータ
のレジストリーからの削除を分離することができます。これによりタイミングウィンド
ウが制限され、1 つのコマンドで両方をプルーニングする場合よりも安全に実行できるよ
うになります。ただし、タイミングウィンドウを完全に取り除くことはできません。

たとえばプルーニングの実行時にプルーニング対象のイメージを特定する場合も、その
イメージを参照する Pod を引き続き作成することができます。また、プルーニングの操
作時にイメージを参照している可能性のある API オブジェクトを追跡することもできま
す。これにより、削除されたコンテンツの参照に関連して発生する可能性のある問題を
軽減することができます。

また、--prune-registry オプションを指定しないか、または --prune-registry=true を指
定してプルーニングを再実行しても、--prune-registry=false を指定して以前にプルーニ
ングされたイメージの、イメージレジストリー内で関連付けられたストレージがプルー
ニングされる訳ではないことに注意してください。--prune-registry=false を指定してプ
ルーニングされたすべてのイメージは、レジストリーのハードプルーニングによっての
み削除できます。

プルーニング操作によって削除されるものを確認するには、以下を実行します。

1. 最高 3 つのタグリビジョンを保持し、6 分前よりも後に作成されたリソース (イメージ、イメー
ジストリームおよび Pod) を保持します。

$ oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m

2. 定義された制限を超えるすべてのイメージをプルーニングします。

$ oc adm prune images --prune-over-size-limit

前述のオプションでプルーニング操作を実際に実行するには、以下を実行します。

$ oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m --confirm

$ oc adm prune images --prune-over-size-limit --confirm

18.5.2. Using Secure or Insecure Connections

セキュアな通信の使用は優先され、推奨される方法です。これは、必須の証明書検証と共に HTTPS 経
由で実行されます。prune コマンドは、可能な場合は常にセキュアな通信の使用を試行します。これを
使用できない場合には、非セキュアな通信にフォールバックすることがあり、これには危険が伴いま
す。この場合、証明書検証は省略されるか、または単純な HTTP プロトコルが使用されます。

非セキュアな通信へのフォールバックは、--certificate-authority が指定されていない場合、以下の
ケースで可能になります。

1. prune コマンドが --force-insecure オプションと共に実行される。

2. 指定される registry-url の前に http:// スキームが付けられる。

3. 指定される registry-url がローカルリンクアドレスまたは localhost である。

4. 現行ユーザーの設定が非セキュアな接続を許可する。これは、ユーザーが --insecure-skip-tls-

第18章 PRUNING OBJECTS

167

4. 現行ユーザーの設定が非セキュアな接続を許可する。これは、ユーザーが --insecure-skip-tls-
verify を使用してログインするか、またはプロンプトが出される際に非セキュアな接続を選択
することによって生じる可能性があります。

重要

レジストリーのセキュリティーが、OpenShift Container Platform で使用されるものとは
異なる認証局で保護される場合、これを --certificate-authority フラグを使用して指定す
る必要があります。そうしないと、prune コマンドは、「正しくない認証局の使用」ま
たは「セキュリティーが保護されたレジストリーに対する非セキュアな接続の使用」で
一覧表示されているエラーと同様のエラーを出して失敗します。

18.5.3. Image Pruning Problems

Images Not Being Pruned
イメージが蓄積し続け、prune コマンドが予想よりも小規模な削除を実行する場合、プルーニング候補
のイメージについて満たすべき条件があることを確認します。

Especially ensure that images you want removed occur at higher positions in each tag history than your
chosen tag revisions threshold. For example, consider an old and obsolete image named sha:abz. By
running the following command in namespace N, where the image is tagged, you will see the image is
tagged three times in a single image stream named myapp:

$ image_name="sha:abz"
$ oc get is -n N -o go-template='{{range $isi, $is := .items}}{{range $ti, $tag := $is.status.tags}}'\
 '{{range $ii, $item := $tag.items}}{{if eq $item.image "'"${image_name}"\
 $'"}}{{$is.metadata.name}}:{{$tag.tag}} at position {{$ii}} out of {{len $tag.items}}\n'\
 '{{end}}{{end}}{{end}}{{end}}'
myapp:v2 at position 4 out of 5
myapp:v2.1 at position 2 out of 2
myapp:v2.1-may-2016 at position 0 out of 1

デフォルトオプションが使用される場合、イメージは myapp:v2.1-may-2016 タグの履歴の 0 の位置に
あるためプルーニングされません。イメージがプルーニングの対象と見なされるようにするには、管理
者は以下を実行する必要があります。

1. oc adm prune images コマンドで --keep-tag-revisions=0 を指定します。

注意

このアクションを実行すると、イメージが指定されたしきい値よりも新しいか、またはこれよ
りも新しいオブジェクトによって参照されていない限り、すべてのタグが基礎となるイメージ
と共にすべての namespace から削除されます。

2. Delete all the istags where the position is below the revision threshold, which means
myapp:v2.1 and myapp:v2.1-may-2016.

3. 同じ istag にプッシュする新規ビルドを実行するか、または他のイメージをタグ付けしてイ
メージを履歴内でさらに移動させます。ただし、これは古いリリースタグの場合には常に適切
な操作となる訳ではありません。

Tags having a date or time of a particular image’s build in their names should be avoided, unless the
image needs to be preserved for undefined amount of time. Such tags tend to have just one image in its
history, which effectively prevents them from ever being pruned. Learn more about istag naming.

OpenShift Container Platform 3.9 クラスター管理

168

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#image-stream-tag
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#image-stream-tag
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#tag-naming

Using a Secure Connection Against Insecure Registry
oc adm prune images の出力で以下のようなメッセージが表示される場合、レジストリーのセキュリ
ティーは保護されておらず、oc adm prune images クライアントがセキュアな接続の使用を試行する
ことを示しています。

error: error communicating with registry: Get https://172.30.30.30:5000/healthz: http: server gave
HTTP response to HTTPS client

1. The recommened solution is to secure the registry. If that is not desired, you can force the client
to use an insecure connection by appending --force-insecure to the command (not
recommended).

18.5.3.1. Using an Insecure Connection Against a Secured Registry

oc adm prune images コマンドの出力に以下のエラーのいずれかが表示される場合、レジストリーの
セキュリティー保護に使用されている認証局で署名された証明書が、接続の検証用に oc adm prune
images クライアントで使用されるものとは異なることを意味します。

error: error communicating with registry: Get http://172.30.30.30:5000/healthz: malformed HTTP
response "\x15\x03\x01\x00\x02\x02"
error: error communicating with registry: [Get https://172.30.30.30:5000/healthz: x509: certificate
signed by unknown authority, Get http://172.30.30.30:5000/healthz: malformed HTTP response
"\x15\x03\x01\x00\x02\x02"]

デフォルトでは、ユーザーの接続ファイルに保存されている認証局データが使用されます。これはマス
ター API との通信の場合も同様です。

Use the --certificate-authority option to provide the right certificate authority for the Docker registry
server.

Using the Wrong Certificate Authority
The following error means that the certificate authority used to sign the certificate of the secured
Docker registry is different than the authority used by the client.

error: error communicating with registry: Get https://172.30.30.30:5000/: x509: certificate signed by
unknown authority

フラグ --certificate-authority を使用して適切な認証局を指定します。

回避策として、--force-insecure フラグを代わりに追加することもできます (推奨される方法ではあり
ません)。

18.6. HARD PRUNING THE REGISTRY

OpenShift Container レジストリーは、OpenShift Container Platform クラスターの etcd で参照されな
い Blob を蓄積します。基本的なイメージプルーニングの手順はこれらに対応しません。これらの Blob
は 孤立した Blob と呼ばれています。

孤立した Blob は以下のシナリオで発生する可能性があります。

oc delete image <sha256:image-id> コマンドを使ってイメージを手動で削除すると、etcd の
イメージのみが削除され、レジストリーのストレージからは削除されない。

docker デーモンの障害によって生じるレジストリーへのプッシュにより、一部の Blob はアッ

第18章 PRUNING OBJECTS

169

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#securing-the-registry

docker デーモンの障害によって生じるレジストリーへのプッシュにより、一部の Blob はアッ
プロードされるものの、(最後のコンポーネントとしてアップロードされる) イメージマニフェ
スト はアップロードされない。固有のイメージ Blob すべては孤立する。

OpenShift Container Platform がクォータの制限によりイメージを拒否する。

標準のイメージプルーナーがイメージマニフェストを削除するが、関連する Blob を削除する前
に中断される。

対象の Blob を削除できないというレジストリープルーナーのバグにより、それらを参照するイ
メージオブジェクトは削除されるが、Blob は孤立する。

基本的なイメージプルーニングとは異なるレジストリーの ハードプルーニング により、孤立した Blob
を削除することができます。OpenShift Container レジストリーのストレージ領域が不足している場合
や、孤立した Blob があると思われる場合にはハードプルーニングを実行する必要があります。

これは何度も行う操作ではなく、多数の孤立した Blob が新たに作成されているという証拠がある場合
にのみ実行する必要があります。または、(作成されるイメージの数によって異なりますが) 1 日 1 回な
どの定期的な間隔で標準のイメージプルーニングを実行することもできます。

孤立した Blob をレジストリーからハードプルーニングするには、以下を実行します。

1. Log in: Log in using the CLI as a user with an access token.

2. 基本的なイメージプルーニングの実行: 基本的なイメージプルーニングにより、不要になった追
加のイメージが削除されます。ハードプルーニングによってイメージが削除される訳ではな
く、レジストリーストレージに保存された Blob のみが削除されます。したがって、ハードプ
ルーニングの実行前にこれを実行する必要があります。
手順については、「イメージのプルーニング」を参照してください。

3. レジストリーの読み取り専用モードへの切り替え: レジストリーが読み取り専用モードで実行さ
れていない場合、プルーニングと同時に実行されているプッシュの結果は以下のいずれかにな
ります。

失敗する。さらに孤立した Blob が新たに発生する。

成功する。ただし、(参照される Blob の一部が削除されたため) イメージをプルできない。

プッシュは、レジストリーが読み取り書き込みモードに戻されるまで成功しません。したがっ
て、ハードプルーニングは注意してスケジューリングする必要があります。

レジストリーを読み取り専用モードに切り換えるには、以下を実行します。

a. Set the following envirornment variable:

$ oc env -n default \
 dc/docker-registry \
 'REGISTRY_STORAGE_MAINTENANCE_READONLY={"enabled":true}'

b. デフォルトで、レジストリーは直前の手順が完了すると自動的に再デプロイするはずで
す。再デプロイが完了するのを待機してから次に進んでください。ただし、これらのトリ
ガーを無効にしている場合は、レジストリーを手動で再デプロイし、新規の環境変数が選
択されるようにする必要があります。

$ oc rollout -n default \
 latest dc/docker-registry

OpenShift Container Platform 3.9 クラスター管理

170

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cli_reference/#basic-setup-and-login
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#oauth

4. system:image-pruner ロールの追加: 一部のリソースを一覧表示するには、レジストリーインス
タンスの実行に使用するサービスアカウントに追加のパーミッションが必要になります。

a. サービスアカウント名を取得します。

$ service_account=$(oc get -n default \
 -o jsonpath=$'system:serviceaccount:{.metadata.namespace}:
{.spec.template.spec.serviceAccountName}\n' \
 dc/docker-registry)

b. system:image-pruner クラスターロールをサービスアカウントに追加します。

$ oc adm policy add-cluster-role-to-user \
 system:image-pruner \
 ${service_account}

5. (オプション) プルーナーのドライランモードでの実行 : 削除される Blob の数を確認するには、
ドライランモードでハードプルーナーを実行します。これにより変更が加えられることはあり
ません。

$ oc -n default \
 exec -i -t "$(oc -n default get pods -l deploymentconfig=docker-registry \
 -o jsonpath=$'{.items[0].metadata.name}\n')" \
 -- /usr/bin/dockerregistry -prune=check

または、プルーニング候補の実際のパスを取得するには、ロギングレベルを上げます。

$ oc -n default \
 exec "$(oc -n default get pods -l deploymentconfig=docker-registry \
 -o jsonpath=$'{.items[0].metadata.name}\n')" \
 -- /bin/sh \
 -c 'REGISTRY_LOG_LEVEL=info /usr/bin/dockerregistry -prune=check'

Sample Output (Truncated)

$ oc exec docker-registry-3-vhndw \
 -- /bin/sh -c 'REGISTRY_LOG_LEVEL=info /usr/bin/dockerregistry -prune=check'

time="2017-06-22T11:50:25.066156047Z" level=info msg="start prune (dry-run mode)"
distribution_version="v2.4.1+unknown" kubernetes_version=v1.6.1+$Format:%h$
openshift_version=unknown
time="2017-06-22T11:50:25.092257421Z" level=info msg="Would delete blob:
sha256:00043a2a5e384f6b59ab17e2c3d3a3d0a7de01b2cabeb606243e468acc663fa5"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:25.092395621Z" level=info msg="Would delete blob:
sha256:0022d49612807cb348cabc562c072ef34d756adfe0100a61952cbcb87ee6578a"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:25.092492183Z" level=info msg="Would delete blob:
sha256:0029dd4228961086707e53b881e25eba0564fa80033fbbb2e27847a28d16a37c"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.673946639Z" level=info msg="Would delete blob:
sha256:ff7664dfc213d6cc60fd5c5f5bb00a7bf4a687e18e1df12d349a1d07b2cf7663"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.674024531Z" level=info msg="Would delete blob:

第18章 PRUNING OBJECTS

171

sha256:ff7a933178ccd931f4b5f40f9f19a65be5eeeec207e4fad2a5bafd28afbef57e"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.674675469Z" level=info msg="Would delete blob:
sha256:ff9b8956794b426cc80bb49a604a0b24a1553aae96b930c6919a6675db3d5e06"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
...
Would delete 13374 blobs
Would free up 2.835 GiB of disk space
Use -prune=delete to actually delete the data

6. ハードプルーニングの実行: ハードプルーニングを実行するには、docker-registry Pod の実行
中インスタンスで以下のコマンドを実行します。

$ oc -n default \
 exec -i -t "$(oc -n default get pods -l deploymentconfig=docker-registry -o
jsonpath=$'{.items[0].metadata.name}\n')" \
 -- /usr/bin/dockerregistry -prune=delete

Sample Output

$ oc exec docker-registry-3-vhndw \
 -- /usr/bin/dockerregistry -prune=delete

Deleted 13374 blobs
Freed up 2.835 GiB of disk space

7. レジストリーを読み取り書き込みモードに戻す: プルーニングの終了後は、以下を実行してレジ
ストリーを読み取り書き込みモードに戻すことができます。

$ oc env -n default dc/docker-registry
REGISTRY_STORAGE_MAINTENANCE_READONLY-

18.7. CRON ジョブのプルーニング

重要

cron ジョブについては、現時点ではテクノロジープレビュー機能です。テクノロジープ
レビュー機能は Red Hat の実稼働環境でのサービスレベルアグリーメント (SLA) ではサ
ポートされていないため、Red Hat では実稼働環境での使用を推奨していません。これ
らの機能は、近々発表予定の製品機能をリリースに先駆けてご提供することにより、お
客様は機能性をテストし、開発プロセス中にフィードバックをお寄せいただくことがで
きます。

Red Hat のテクノロジープレビュー機能のサポートについての詳細
は、https://access.redhat.com/support/offerings/techpreview/ を参照してください。

Cron jobs can perform pruning of successful jobs, but might not handle properly, the failed jobs.
Therefore, cluster administrator should perform regular cleanup of jobs, manually. We also recommend
to restrict the access to cron jobs to a small group of trusted users and set appropriate quota to prevent
the cron job from creating too many jobs and pods.

OpenShift Container Platform 3.9 クラスター管理

172

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#cleaning-up-after-a-cron-job

1

2

3

4

第19章 EXTENDING THE KUBERNETES API WITH CUSTOM
RESOURCES

Kubernetes API では、リソースは特定の種類の API オブジェクトのコレクションを保管するエンドポ
イントです。たとえば、ビルトインされた Pod リソースには Pod オブジェクトのコレクションが含ま
れます。

カスタムリソースは、Kubernetes API を拡張するか、またはプロジェクトまたはクラスターに独自の
API を導入することを可能にするオブジェクトです。

カスタムリソース定義 (CRD) ファイルは、独自のオブジェクトの種類を定義し、API サーバーがライフ
サイクル全体を処理できるようにします。CRD をクラスターにデプロイすると、Kubernetes API サー
バーは指定されたカスタムリソースを提供し始めます。

新規のカスタムリソース定義 (CRD) の作成時に、Kubernetes API サーバーは、クラスター全体または
単一プロジェクト (namespace) でアクセスできる新規 RESTful リソースパスを作成することによって
応答します。既存のビルトインオブジェクトの場合のように、プロジェクトを削除すると、そのプロ
ジェクトのすべてのカスタムオブジェクトが削除されます。

19.1. CREATING CUSTOM RESOURCE DEFINITIONS

To create a CRD, open a YAML file and enter the fields in the following example.

Example YAML file for a Custom Resource Definition

apiextensions.k8s.io/v1beta1 API を使用します。

定義の名前を指定します。これは group および plural フィールドの値を使用する <plural-name>
<group> 形式である必要があります。

API のグループ名を指定します。API グループは、論理的に関連付けられるオブジェクトのコレク
ションです。たとえば、Job または ScheduledJob などのすべてのバッチオブジェクトはバッチ
API グループ (batch.api.example.com など) である可能性があります。組織の完全修飾ドメイン名
を使用することが奨励されます。

Specify a version name to be used in the URL. Each API Group can exist in multiple versions. For
example: v1alpha, vibeta, v1.

カスタムオブジェクトがクラスター (Cluster) の 1 つのプロジェクト (Namespaced) またはすべて

apiVersion: apiextensions.k8s.io/v1beta1 1
kind: CustomResourceDefinition
metadata:
 name: crontabs.stable.example.com 2
spec:
 group: stable.example.com 3
 version: v1 4
 scope: Namespaced 5
 names:
 plural: crontabs 6
 singular: crontab 7
 kind: CronTab 8
 shortNames:
 - ct 9

第19章 EXTENDING THE KUBERNETES API WITH CUSTOM RESOURCES

173

5

6

7

8

9

カスタムオブジェクトがクラスター (Cluster) の 1 つのプロジェクト (Namespaced) またはすべて
のプロジェクトで利用可能であるかどうかを指定します。

Specify the plural name to be used in the URL. The plural field is the same as a resource in an API
URL.

Specify a singular name to be used as an alias on the CLI and for display.

作成できるオブジェクトの種類を指定します。タイプは CamelCase にすることができます。

CLI でリソースに一致する短い文字列を指定します。

注記

デフォルトで、カスタムリソース定義のスコープはクラスターに設定され、すべてのプ
ロジェクトで利用可能です。

After configuring the definition file, create the object:

oc create -f <file-name>.yaml

新規の RESTful API エンドポイントは以下のように作成されます。

/apis/<spec:group>/<spec:version>/<scope>/*/<names-plural>/...

For example, using the example file, the following endpoint would be created:

/apis/stable.example.com/v1/namespaces/*/crontabs/...

This endpoint URL can then be used to create and manage custom objects. The kind of object is based
on the spec.kind field of the Custom Resource Definition object you created.

19.2. CREATE CUSTOM OBJECTS

After the custom resource definition object has been created, you can create custom objects.

Custom objects can contain custom fields. These fields can contain arbitrary JSON.

In the following example, the cronSpec and image custom fields are set in a custom object of kind
CronTab. The kind CronTab comes from the spec.kind field of the custom resource definition object
you created above.

Example YAML file for a Custom Object

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
spec: 4
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

OpenShift Container Platform 3.9 クラスター管理

174

1

2

3

4

カスタムリソース定義からグループ名および API バージョン (名前/バージョン) を指定します。

カスタムリソース定義のタイプを指定します。

オブジェクトの名前を指定します。

オブジェクトのタイプに固有の条件を指定します。

After configuring the object file, create the object:

oc create -f <file-name>.yaml

19.3. MANAGE CUSTOM OBJECTS

You can then manage your custom resources.

特定の種類のカスタムリソースについての情報を取得するには、以下を入力します。

oc get <kind>

例:

oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

リソース名では大文字と小文字が区別されず、CRD で定義される単数形または複数形のいずれか、お
よび任意の短縮名を指定できることに注意してください。以下は例になります。

oc get crontabs
oc get crontab
oc get ct

You can also view the raw JSON data:

oc get <kind> -o yaml

You should see that it contains the custom <1> cronSpec and <2> image fields from the YAML you used
to create it:

oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null

第19章 EXTENDING THE KUBERNETES API WITH CUSTOM RESOURCES

175

 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

19.4. FINALIZERS

Custom objects support finalizers, which allow controllers to implement conditions that must be
completed before the object can be deleted.

You can add a finalizer to a custom object like this:

The first delete request on an object with finalizers sets a value for the metadata.deletionTimestamp
field instead of deleting the object. This triggers controllers watching the object to execute any
finalizers they handle.

Each controller then removes the finalizer from the list and issues the delete request again. This request
deletes the object only if the list of finalizers is empty, meaning all finalizers are done.

apiVersion: "stable.example.com/v1"
kind: CronTab
metadata:
 finalizers:
 - finalizer.stable.example.com

OpenShift Container Platform 3.9 クラスター管理

176

第20章 ガベージコレクション

20.1. 概要

OpenShift Container Platform ノードは、2 種類のガベージコレクションを実行します。

Container garbage collection : Removes terminated containers.

Image garbage collection : Removes images not referenced by any running pods.

20.2. コンテナーのガベージコレクション

コンテナーのガベージコレクションはデフォルトで有効にされ、エビクションのしきい値に達すると自
動的に実行されます。ノードは Pod のコンテナーを API からアクセス可能な状態にしようとします。
Pod が削除された場合、コンテナーも削除されます。コンテナーは Pod が削除されておらず、エビク
ションのしきい値に達していない限り保持されます。ノードがディスク不足 (disk pressure) の状態にあ
る場合、コンテナーが削除され、それらのログは oc logs でアクセスできなくなります。

コンテナーのガベージコレクションのポリシーは 3 つのノード設定に基づいています。

設定 説明

minimum-container-
ttl-duration

コンテナーがガベージコレクションの対象となるのに必要な最小の年数です。デ
フォルトは 0 です。制限なしにするには 0 を使用します。この設定の値は、時間
の h、分の m、秒の s などの単位のサフィックスを使用して指定することができ
ます。

maximum-dead-
containers-per-
container

The number of instances to retain per pod container. The default is 1.

maximum-dead-
containers

ノードにある実行されないコンテナーの合計の最大数です。デフォルトは、無制
限を意味する -1 です。

競合が生じる場合、maximum-dead-containers 設定は maximum-dead-containers-per-container 設
定よりも優先されます。たとえば、maximum-dead-containers-per-container の数を保持することで
コンテナーの合計数が maximum-dead-containers より大きくなる場合、最も古いコンテナーが削除さ
れ、maximum-dead-containers の制限が満たされるようにします。

ノードが実行されていないコンテナーを削除すると、それらのコンテナーの内部にあるすべてのファイ
ルも削除されます。そのノードで作成されたコンテナーに対してのみガベージコレクションが実行され
ます。

You can specify values for these settings in the kubeletArguments section of the
/etc/origin/node/node-config.yaml file on node hosts. Add the section if it does not already exist:

コンテナーのガベージコレクション設定

kubeletArguments:
 minimum-container-ttl-duration:
 - "10s"
 maximum-dead-containers-per-container:

第20章 ガベージコレクション

177

20.2.1. 削除するコンテナーの検出

ガべージコレクターの各ループでは、以下の手順が実行されます。

1. Retrieve a list of available containers.

2. Filter out all containers that are running or are not alive longer than the minimum-container-ttl-
duration parameter.

3. Classify all remaining containers into equivalence classes based on pod and image name
membership.

4. Remove all unidentified containers (containers that are managed by kubelet but their name is
malformed).

5. For each class that contains more containers than the maximum-dead-containers-per-
container parameter, sort containers in the class by creation time.

6. Start removing containers from the oldest first until the maximum-dead-containers-per-
container parameter is met.

7. 依然として maximum-dead-containers パラメーターよりも多くのコンテナーが一覧にある場
合、コレクターは各クラスのコンテナーの削除を開始し、それぞれのクラスにあるコンテナー
数がクラスあたりのコンテナーの平均数、または
<all_remaining_containers>/<number_of_classes> よりも大きくならないようにします。

8. If this is still not enough, sort all containers in the list and start removing containers from the
oldest first until the maximum-dead-containers criterion is met.

重要

各種のニーズに合わせてデフォルト設定を更新してください。

ガべージコレクションは、関連付けられている Pod のないコンテナーのみを削除しま
す。

20.3. イメージのガベージコレクション

イメージのガべージコレクションでは、ノードの cAdvisor によって報告されるディスク使用量に基づ
いて、ノードから削除するイメージを決定します。この場合、以下の設定が考慮に入れられます。

設定 説明

image-gc-high-
threshold

The percent of disk usage (expressed as an integer) which triggers image garbage
collection. The default is 85.

image-gc-low-
threshold

The percent of disk usage (expressed as an integer) to which image garbage
collection attempts to free. Default is 80.

 - "2"
 maximum-dead-containers:
 - "240"

OpenShift Container Platform 3.9 クラスター管理

178

You can specify values for these settings in the kubeletArguments section of the
/etc/origin/node/node-config.yaml file on node hosts. Add the section if it does not already exist:

イメージのガベージコレクション設定

20.3.1. 削除するイメージの検出

以下の 2 つのイメージ一覧がそれぞれのガベージコレクターの実行で取得されます。

1. 1 つ以上の Pod で現在実行されているイメージの一覧

2. ホストで利用可能なイメージの一覧

新規コンテナーの実行時に新規のイメージが表示されます。すべてのイメージにはタイムスタンプの
マークが付けられます。イメージが実行中 (上記の最初の一覧) か、または新規に検出されている (上記
の 2 番目の一覧) 場合、これには現在の時間のマークが付けられます。残りのイメージには以前のタイ
ムスタンプのマークがすでに付けられています。すべてのイメージはタイムスタンプで並び替えられま
す。

コレクションが開始されると、停止条件を満たすまでイメージが最も古いものから順番に削除されま
す。

kubeletArguments:
 image-gc-high-threshold:
 - "85"
 image-gc-low-threshold:
 - "80"

第20章 ガベージコレクション

179

第21章 ノードリソースの割り当て

21.1. 概要

To provide more reliable scheduling and minimize node resource overcommitment, each node can
reserve a portion of its resources for use by all underlying node components (e.g., kubelet, kube-proxy,
Docker) and the remaining system components (e.g., sshd, NetworkManager) on the host. Once
specified, the scheduler has more information about the resources (e.g., memory, CPU) a node has
allocated for pods.

21.2. 割り当てられるリソースについてのノードの設定

Resources reserved for node components are based on two node settings:

設定 説明

kube-reserved Resources reserved for node components. Default is none.

system-reserved Resources reserved for the remaining system components. Default is
none.

You can set these in the kubeletArguments section of the node configuration file (the
/etc/origin/node/node-config.yaml file by default) using a set of <resource_type>=
<resource_quantity> pairs (e.g., cpu=200m,memory=512Mi). Add the section if it does not already
exist:

例21.1 Node Allocatable Resources Settings

Currently, the cpu and memory resource types are supported. For cpu, the resource quantity is
specified in units of cores (e.g., 200m, 0.5, 1). For memory, it is specified in units of bytes (e.g., 200Ki,
50Mi, 5Gi).

See Compute Resources for more details.

If a flag is not set, it defaults to 0. If none of the flags are set, the allocated resource is set to the node’s
capacity as it was before the introduction of allocatable resources.

21.3. 割り当てられるリソースの計算

リソースの割り当てられる量は以下の数式に基づいて計算されます。

[Allocatable] = [Node Capacity] - [kube-reserved] - [system-reserved] - [Hard-Eviction-Thresholds]

注記

kubeletArguments:
 kube-reserved:
 - "cpu=200m,memory=512Mi"
 system-reserved:
 - "cpu=200m,memory=512Mi"

OpenShift Container Platform 3.9 クラスター管理

180

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#node-configuration-files
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-compute-resources

注記

The withholding of Hard-Eviction-Thresholds from allocatable is a change in behavior to
improve system reliability now that allocatable is enforced for end-user pods at the node
level. The experimental-allocatable-ignore-eviction setting is available to preserve
legacy behavior, but it will be deprecated in a future release.

If [Allocatable] is negative, it is set to 0.

21.4. VIEWING NODE ALLOCATABLE RESOURCES AND CAPACITY

To see a node’s current capacity and allocatable resources, you can run:

$ oc get node/<node_name> -o yaml
...
status:
...
 allocatable:
 cpu: "4"
 memory: 8010948Ki
 pods: "110"
 capacity:
 cpu: "4"
 memory: 8010948Ki
 pods: "110"
...

21.5. ノードによって報告されるシステムリソース

Starting with OpenShift Container Platform 3.3, each node reports system resources utilized by the
container runtime and kubelet. To better aid your ability to configure --system-reserved and --kube-
reserved, you can introspect corresponding node’s resource usage using the node summary API, which
is accessible at <master>/api/v1/nodes/<node>/proxy/stats/summary.

For instance, to access the resources from cluster.node22 node, you can run:

$ curl <certificate details> https://<master>/api/v1/nodes/cluster.node22/proxy/stats/summary
{
 "node": {
 "nodeName": "cluster.node22",
 "systemContainers": [
 {
 "cpu": {
 "usageCoreNanoSeconds": 929684480915,
 "usageNanoCores": 190998084
 },
 "memory": {
 "rssBytes": 176726016,
 "usageBytes": 1397895168,
 "workingSetBytes": 1050509312
 },
 "name": "kubelet"
 },
 {

第21章 ノードリソースの割り当て

181

1 1

2 2

3

 "cpu": {
 "usageCoreNanoSeconds": 128521955903,
 "usageNanoCores": 5928600
 },
 "memory": {
 "rssBytes": 35958784,
 "usageBytes": 129671168,
 "workingSetBytes": 102416384
 },
 "name": "runtime"
 }
]
 }
}

See REST API Overview for more details about certificate details.

21.6. NODE ENFORCEMENT

The node is able to limit the total amount of resources that pods may consume based on the configured
allocatable value. This feature significantly improves the reliability of the node by preventing pods from
starving system services (for example: container runtime, node agent, etc.) for resources. It is strongly
encouraged that administrators reserve resources based on the desired node utilization target in order
to improve node reliability.

The node enforces resource constraints using a new cgroup hierarchy that enforces quality of service.
All pods are launched in a dedicated cgroup hierarchy separate from system daemons.

To configure this ability, the following kubelet arguments are provided.

例21.2 ノードの cgroup 設定

Enable or disable the new cgroup hierarchy managed by the node. Any change of this setting
requires a full drain of the node. This flag must be true to allow the node to enforce node
allocatable. We do not recommend users change this value.

The cgroup driver used by the node when managing cgroup hierarchies. This value must match
the driver associated with the container runtime. Valid values are systemd and cgroupfs. The
default is systemd.

A comma-delimited list of scopes for where the node should enforce node resource
constraints. Valid values are pods, system-reserved, and kube-reserved. The default is pods.
We do not recommend users change this value.

Optionally, the node can be made to enforce kube-reserved and system-reserved by specifying those

kubeletArguments:
 cgroups-per-qos:
 - "true" 1
 cgroup-driver:
 - "systemd" 2
 enforce-node-allocatable:
 - "pods" 3

OpenShift Container Platform 3.9 クラスター管理

182

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/rest_api_reference/#rest-api-index

tokens in the enforce-node-allocatable flag. If specified, the corresponding --kube-reserved-cgroup or
--system-reserved-cgroup needs to be provided. In future releases, the node and container runtime will
be packaged in a common cgroup separate from system.slice. Until that time, we do not recommend
users change the default value of enforce-node-allocatable flag.

Administrators should treat system daemons similar to Guaranteed pods. System daemons can burst
within their bounding control groups and this behavior needs to be managed as part of cluster
deployments. Enforcing system-reserved limits can lead to critical system services being CPU starved or
OOM killed on the node. The recommendation is to enforce system-reserved only if operators have
profiled their nodes exhaustively to determine precise estimates and are confident in their ability to
recover if any process in that group is OOM killed.

As a result, we strongly recommended that users only enforce node allocatable for pods by default, and
set aside appropriate reservations for system daemons to maintain overall node reliability.

21.7. エビクションしきい値

If a node is under memory pressure, it can impact the entire node and all pods running on it. If a system
daemon is using more than its reserved amount of memory, an OOM event may occur that can impact
the entire node and all pods running on it. To avoid (or reduce the probability of) system OOMs the
node provides Out Of Resource Handling .

By reserving some memory via the --eviction-hard flag, the node attempts to evict pods whenever
memory availability on the node drops below the absolute value or percentage. If system daemons did
not exist on a node, pods are limited to the memory capacity - eviction-hard. For this reason, resources
set aside as a buffer for eviction before reaching out of memory conditions are not available for pods.

Here is an example to illustrate the impact of node allocatable for memory:

Node capacity is 32Gi

--kube-reserved is 2Gi

--system-reserved is 1Gi

--eviction-hard is set to <100Mi.

For this node, the effective node allocatable value is 28.9Gi. If the node and system components use up
all their reservation, the memory available for pods is 28.9Gi, and kubelet will evict pods when it exceeds
this usage.

If we enforce node allocatable (28.9Gi) via top level cgroups, then pods can never exceed 28.9Gi.
Evictions would not be performed unless system daemons are consuming more than 3.1Gi of memory.

If system daemons do not use up all their reservation, with the above example, pods would face memcg
OOM kills from their bounding cgroup before node evictions kick in. To better enforce QoS under this
situation, the node applies the hard eviction thresholds to the top-level cgroup for all pods to be Node
Allocatable + Eviction Hard Thresholds.

If system daemons do not use up all their reservation, the node will evict pods whenever they consume
more than 28.9Gi of memory. If eviction does not occur in time, a pod will be OOM killed if pods
consume 29Gi of memory.

21.8. SCHEDULER

The scheduler now uses the value of node.Status.Allocatable instead of node.Status.Capacity to

第21章 ノードリソースの割り当て

183

The scheduler now uses the value of node.Status.Allocatable instead of node.Status.Capacity to
decide if a node will become a candidate for pod scheduling.

By default, the node will report its machine capacity as fully schedulable by the cluster.

OpenShift Container Platform 3.9 クラスター管理

184

第22章 OPAQUE INTEGER RESOURCES

22.1. 概要

Opaque integer resources allow cluster operators to provide new node-level resources that would be
otherwise unknown to the system. Users can consume these resources in pod specifications, similar to
CPU and memory. The scheduler performs resource accounting so that no more than the available
amount is simultaneously allocated to pods.

注記

Opaque integer resources are Alpha currently, and only resource accounting is
implemented. There is no resource quota or limit range support for these resources, and
they have no impact on QoS.

Opaque integer resources are called opaque because OpenShift Container Platform does not know
what the resource is, but will schedule a pod on a node only if enough of that resource is available. They
are called integer resources because they must be available, or advertised, in integer amounts. The
API server restricts quantities of these resources to whole numbers. Examples of valid quantities are 3,
3000m, and 3Ki.

Opaque integer resources can be used to allocate:

Last-level cache (LLC)

Graphics processing unit (GPU) devices

Field-programmable gate array (FPGA) devices

Slots for sharing bandwidth to a parallel file system.

For example, if a node has 800 GiB of a special kind of disk storage, you could create a name for the
special storage, such as opaque-int-resource-special-storage. You could advertise it in chunks of a
certain size, such as 100 GiB. In that case, your node would advertise that it has eight resources of type
opaque-int-resource-special-storage.

Opaque integer resource names must begin with the prefix pod.alpha.kubernetes.io/opaque-int-
resource-.

22.2. CREATING OPAQUE INTEGER RESOURCES

There are two steps required to use opaque integer resources. First, the cluster operator must name
and advertise a per-node opaque resource on one or more nodes. Second, application developer must
request the opaque resource in pods.

To make opaque integer resources available:

1. Allocate the resource and assign a name starting with pod.alpha.kubernetes.io/opaque-int-
resource-

2. Advertise a new opaque integer resource by submitting a PATCH HTTP request to the API
server that specifies the available quantity in the status.capacity for a node in the cluster.
For example, the following HTTP request advertises five foo resources on the openshift-node-
1 node.

第22章 OPAQUE INTEGER RESOURCES

185

PATCH /api/v1/nodes/openshift-node-1/status HTTP/1.1
Accept: application/json
Content-Type: application/json-patch+json
Host: openshift-master:8080

[
 {
 "op": "add",
 "path": "/status/capacity/pod.alpha.kubernetes.io~1opaque-int-resource-foo",
 "value": "5"
 }
]

注記

The ~1 in the path is the encoding for the character /. The operation path value in
the JSON-Patch is interpreted as a JSON-Pointer. For more details, refer to
IETF RFC 6901, section 3 .

After this operation, the node status.capacity includes a new resource. The status.allocatable
field is updated automatically with the new resource asynchronously.

注記

Since the scheduler uses the node status.allocatable value when evaluating pod
fitness, there might be a short delay between patching the node capacity with a
new resource and the first pod that requests the resource to be scheduled on
that node.

The application developer can then consume the opaque resources by editing the pod config to include
the name of the opaque resource as a key in the spec.containers[].resources.requests field.

For example: The following pod requests two CPUs and one foo (an opaque resource).

The pod will be scheduled only if all of the resource requests are satisfied (including CPU, memory, and
any opaque resources). The pod will remain in the PENDING state while the resource request cannot be
met by any node.

Conditions:
 Type Status

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: myimage
 resources:
 requests:
 cpu: 2
 pod.alpha.kubernetes.io/opaque-int-resource-foo: 1

OpenShift Container Platform 3.9 クラスター管理

186

https://tools.ietf.org/html/rfc6901#section-3

 PodScheduled False
...
Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason Message
 --------- -------- ----- ---- ------------- -------- ------ -------
 14s 0s 6 default-scheduler Warning FailedScheduling No nodes are available that match all of
the following predicates:: Insufficient pod.alpha.kubernetes.io/opaque-int-resource-foo (1).

This information can also be found in the Developer Guide under Quotas and Limit Ranges.

第22章 OPAQUE INTEGER RESOURCES

187

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#opaque-integer-resources-dev

第23章 オーバーコミット

23.1. 概要

Containers can specify compute resource requests and limits . Requests are used for scheduling your
container and provide a minimum service guarantee. Limits constrain the amount of compute resource
that may be consumed on your node.

scheduler は、クラスター内のすべてのノードにおけるコンピュートリソース使用の最適化を試行しま
す。これは Pod のコンピュートリソース要求とノードの利用可能な容量を考慮に入れて Pod を特定の
ノードに配置します。

要求および制限により、管理者はノードでのリソースのオーバーコミットを許可し、管理できます。こ
れは、保証されるパフォーマンスとキャパシティーのトレードオフが許容される開発環境において役立
ちます。

23.2. 要求および制限

各コンピュートリソースについて、コンテナーはリソース要求および制限を指定できます。スケジュー
リングの決定は要求に基づいて行われ、ノードに要求される値を満たす十分な容量があることが確認さ
れます。コンテナーが制限を指定するものの、要求を省略する場合、要求はデフォルトで制限値に設定
されます。コンテナーは、ノードの指定される制限を超えることはできません。

制限の実施方法は、コンピュートリソースのタイプによって異なります。コンテナーが要求または制限
を指定しない場合、コンテナーはリソース保証のない状態でノードにスケジュールされます。実際に、
コンテナーはローカルの最も低い優先順位で利用できる指定リソースを消費できます。リソースが不足
する状態では、リソース要求を指定しないコンテナーに最低レベルの QoS (Quality of Service) が設定
されます。

23.2.1. Buffer Chunk Limit の調整

Fluentd ロガーが多数のログを処理できない場合、メモリーの使用量を減らし、データ損失を防ぐため
にファイルバッファリングに切り換える必要があります。

Fluentd buffer_chunk_limit は、デフォルト値が 8m の環境変数 BUFFER_SIZE_LIMIT によって決定
されます。出力ごとのファイルのバッファーサイズは、デフォルト値が 256Mi の環境変数
FILE_BUFFER_LIMIT によって決定されます。永続的なボリュームサイズは、FILE_BUFFER_LIMIT
に出力を乗算した結果よりも大きくなければなりません。

Fluentd および Mux Pod では、永続ボリューム /var/lib/fluentd は PVC または hostmount などによっ
て作成される必要があります。その領域はファイルバッファーに使用されます。

buffer_type および buffer_path は、以下のように Fluentd 設定ファイルで設定されます。

$ egrep "buffer_type|buffer_path" *.conf
output-es-config.conf:
 buffer_type file
 buffer_path `/var/lib/fluentd/buffer-output-es-config`
output-es-ops-config.conf:
 buffer_type file
 buffer_path `/var/lib/fluentd/buffer-output-es-ops-config`
filter-pre-mux-client.conf:
 buffer_type file
 buffer_path `/var/lib/fluentd/buffer-mux-client`

OpenShift Container Platform 3.9 クラスター管理

188

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-compute-resources

The Fluentd buffer_queue_limit is 32.

23.3. コンピュートリソース

コンピュートリソースについてのノードで実施される動作は、リソースタイプによって異なります。

23.3.1. CPU

コンテナーには要求する CPU の量が保証され、さらにコンテナーで指定される任意の制限までノード
で利用可能な CPU を消費できます。複数のコンテナーが追加の CPU の使用を試行する場合、CPU 時
間が各コンテナーで要求される CPU の量に基づいて分配されます。

たとえば、あるコンテナーが 500m の CPU 時間を要求し、別のコンテナーが 250m の CPU 時間を要
求した場合、ノードで利用可能な追加の CPU 時間は 2:1 の比率でコンテナー間で分配されます。コンテ
ナーが制限を指定している場合、指定した制限を超えて CPU を使用しないようにスロットリングされ
ます。

CPU 要求は、Linux カーネルの CFS 共有サポートを使用して実施されます。デフォルトで、CPU 制限
は、Linux カーネルの CFS クォータサポートを使用して 100ms の測定間隔で 実施されます。ただ
し、これは無効にすることができます。

23.3.2. メモリー

A container is guaranteed the amount of memory it requests. A container may use more memory than
requested, but once it exceeds its requested amount, it could be killed in a low memory situation on the
node.

If a container uses less memory than requested, it will not be killed unless system tasks or daemons need
more memory than was accounted for in the node’s resource reservation. If a container specifies a limit
on memory, it is immediately killed if it exceeds the limit amount.

23.4. QOS (QUALITY OF SERVICE) クラス

ノードは、要求を指定しない Pod がスケジュールされている場合やノードのすべての Pod での制限の
合計が利用可能なマシンの容量を超える場合に オーバーコミット されます。

オーバーコミットされる環境では、ノード上の Pod がいずれかの時点で利用可能なコンピュートリ
ソースよりも多くの量の使用を試行することができます。これが生じると、ノードはそれぞれの Pod
に優先順位を指定する必要があります。この決定を行うために使用される機能は、QoS (Quality of
Service) クラスと呼ばれます。

各コンピュートリソースについて、コンテナーは 3 つの QoS クラスに分類されます (優先順位は降
順)。

表23.1 QoS (Quality of Service) クラス

優先順位 クラス名 説明

1 (最高) Guarantee
d

制限およびオプションの要求がすべてのリソースについて設定されている場
合 (0 と等しくない) でそれらの値が等しい場合、コンテナーは Guaranteed
として分類されます。

第23章 オーバーコミット

189

2 Burstable 制限およびオプションの要求がすべてのリソースについて設定されている場
合 (0 と等しくない) でそれらの値が等しくない場合、コンテナーは Burstable
として分類されます。

3 (最低) BestEffort 要求および制限がリソースのいずれについても設定されない場合、コンテ
ナーは BestEffort として分類されます。

優先順位 クラス名 説明

Memory is an incompressible resource, so in low memory situations, containers that have the lowest
priority are killed first:

Guaranteed containers are considered top priority, and are guaranteed to only be killed if they
exceed their limits, or if the system is under memory pressure and there are no lower priority
containers that can be evicted.

Burstable containers under system memory pressure are more likely to be killed once they
exceed their requests and no other BestEffort containers exist.

BestEffort containers are treated with the lowest priority. Processes in these containers are
first to be killed if the system runs out of memory.

23.5. マスターでのオーバーコミットの設定

スケジューリングは要求されるリソースに基づいて行われる一方で、クォータおよびハード制限はリ
ソース制限のことを指しており、これは要求されるリソースよりも高い値に設定できます。要求と制限
の間の差異は、オーバーコミットのレベルを定めるものとなります。たとえば、コンテナーに 1Gi のメ
モリー要求と 2Gi のメモリー制限が指定される場合、コンテナーのスケジューリングはノードで 1Gi を
利用可能とする要求に基づいて行われますが、 2Gi まで使用することができます。そのため、この場合
のオーバーコミットは 200% になります。

OpenShift Container Platform 管理者がオーバーコミットのレベルを制御し、ノードのコンテナー密度
を管理する必要がある場合、開発者コンテナーで設定された要求と制限の比率を上書きするようマス
ターを設定することができます。この設定を制限とデフォルトを指定する プロジェクトごとの
LimitRange と共に使用することで、オーバーコミットを必要なレベルに設定できるようコンテナーの
制限と要求を調整することができます。

これを実行するには、以下の例にあるように master-config.yaml で ClusterResourceOverride 受付
コントローラーを設定することが必要です (既存の設定ツリーが存在する場合はこれを再利用するか、
または必要に応じて存在しない要素を導入します)。

 admissionConfig:
 pluginConfig:
 ClusterResourceOverride: 1
 configuration:
 apiVersion: v1
 kind: ClusterResourceOverrideConfig
 memoryRequestToLimitPercent: 25 2
 cpuRequestToLimitPercent: 25 3
 limitCPUToMemoryPercent: 200 4

OpenShift Container Platform 3.9 クラスター管理

190

1

2

3

4

これはプラグイン名です。大文字/小文字の区別が必要であり、プラグインの完全に一致する名前
以外はすべて無視されます。

(オプション、1-100) コンテナーのメモリー制限が指定されているか、デフォルトに設定されてい
る場合、メモリー要求は制限のこのパーセンテージに対応して上書きされます。

(オプション、1-100) コンテナーの CPU 制限が指定されているか、またはデフォルトに設定されて
いる場合、CPU 要求は制限のこのパーセンテージに対応して上書きされます。

(オプション、正の整数) コンテナーのメモリー制限が指定されているか、デフォルトに設定されて
いる場合、CPU 制限はメモリー制限のパーセンテージに対応して上書きされます。この場合、1Gi
の RAM が 1 CPU コアと等しくなる場合に 100 パーセントになります。これは、CPU 要求を上書
きする前に処理されます (設定されている場合)。

マスター設定の変更後は、マスターの再起動が必要になります。

制限がコンテナーに設定されていない場合にはこれらの上書きは影響を与えないことに注意してくださ
い。(個別プロジェクトごとに、または プロジェクトテンプレート を使用して) デフォルトの制限で
LimitRange オブジェクトを作成し、上書きが適用されるようにします。

また、上書き後も、コンテナーの制限および要求がプロジェクトのいずれかの LimitRange オブジェク
トで依然として検証される必要があることにも注意してください。たとえば、開発者が最小限度に近い
制限を指定し、要求を最小限度よりも低い値に上書きすることで、Pod が禁止される可能性がありま
す。この最適でないユーザーエクスペリエンスについては、今後の作業で対応する必要がありますが、
現時点ではこの機能および LimitRanges を注意して設定してください。

上書きが設定されている場合に、プロジェクトを編集し、以下のアノテーションを追加することで、上
書きをプロジェクトごとに無効にすることができます (たとえば、インフラストラクチャーコンポーネ
ントの設定を上書きと切り離して実行できます)。

quota.openshift.io/cluster-resource-override-enabled: "false"

23.6. ノードでのオーバーコミットの設定

オーバーコミット環境では、最適なシステム動作を提供できるようにノードを適切に設定する必要があ
ります。

23.6.1. Quality of Service (QoS) 層でのメモリー予約

experimental-qos-reserved パラメーターを使用して、特定の QoS レベルの Pod で予約されるメモ
リーのパーセンテージを指定することができます。この機能は、最も低い OoS クラスの Pod が高い
QoS クラスの Pod で要求されるリソースを使用できないようにするために要求されたリソースの予約
を試行します。

高い QOS レベル用にリソースを予約することで、リソース制限を持たない Pod が高い QoS レベルの
Pod で要求されるリソースを侵害しないようにできます。

To configure experimental-qos-reserved, edit the /etc/origin/node/node-config.yaml file for the
node.

kubeletArguments:
 cgroups-per-qos:
 - true
 cgroup-driver:

第23章 オーバーコミット

191

1

 - 'systemd'
 cgroup-root:
 - '/'
 experimental-qos-reserved: 1
 - 'memory=50%'

Pod のリソース要求が QoS レベルでどのように予約されるかを指定します。

OpenShift Container Platform は、以下のように experimental-qos-reserved パラメーターを使用しま
す。

experimental-qos-reserved=memory=100% の値は、 Burstable および BestEffort QOS クラ
スが、これらより高い QoS クラスで要求されたメモリーを消費するのを防ぎます。これによ
り、Guaranteed および Burstable ワークロードのメモリーリソースの保証レベルを上げるこ
とが優先され、BestEffort および Burstable ワークロードでの OOM が発生するリスクが高ま
ります。

experimental-qos-reserved=memory=50% の値は、Burstable および BestEffort QOS クラ
スがこれらより高い QoS クラスによって要求されるメモリーの半分を消費することを許可しま
す。

experimental-qos-reserved=memory=0% の値は、Burstable および BestEffort QoS クラス
がノードの割り当て可能分を完全に消費することを許可しますが (利用可能な場合)、これによ
り、Guaranteed ワークロードが要求したメモリーにアクセスできなくなるリスクが高まりま
す。この状況により、この機能は無効にされています。

23.6.2. CPU 制限の実施

Nodes by default enforce specified CPU limits using the CPU CFS quota support in the Linux kernel. If
you do not want to enforce CPU limits on the node, you can disable its enforcement by modifying the
node configuration file (the node-config.yaml file) to include the following:

kubeletArguments:
 cpu-cfs-quota:
 - "false"

CPU 制限の実施が無効にされる場合、それがノードに与える影響を理解しておくことが重要になりま
す。

コンテナーが CPU の要求をする場合、これは Linux カーネルの CFS 共有によって引き続き実
施されます。

コンテナーが CPU の要求を明示的に指定しないものの、制限を指定する場合には、要求は指定
された制限にデフォルトで設定され、Linux カーネルの CFS 共有で実施されます。

コンテナーが CPU の要求と制限の両方を指定する場合、要求は Linux カーネルの CFS 共有で
実施され、制限はノードに影響を与えません。

23.6.3. システムリソースのリソース予約

スケジューラー は、Pod 要求に基づいてノード上のすべての Pod に十分なリソースがあることを確認
します。これは、ノード上のコンテナーの要求の合計がノード容量を上回らないことを確認します。こ
れには、ノードで起動されたすべてのコンテナーが含まれますが、クラスターの範囲外で起動されたコ
ンテナーやプロセスは含まれません。

ノード容量の一部を予約して、クラスターが機能できるようノードで実行する必要のあるシステムデー

OpenShift Container Platform 3.9 クラスター管理

192

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-master-node-configuration

1

2

1

ノード容量の一部を予約して、クラスターが機能できるようノードで実行する必要のあるシステムデー
モン用に確保することが推奨されます (sshd、docker など)。とくに、メモリーなどの圧縮できないリ
ソースのリソース予約を行うことが推奨されます。

Pod 以外のプロセスのリソースを明示的に予約する必要がある場合、以下の 2 つの方法でこれを実行で
きます。

優先される方法として、スケジューリングに利用できるリソースを指定してノードリソースを
割り当てることができます。詳細は、「ノードリソースの割り当て」を参照してください。

2 つ目の方法として resource-reserver Pod を作成できます。この Pod は、クラスターによる
スケジュールの対象外となるようノードで容量を確保します。以下は例になります。

例23.1 resource-reserver Pod の定義

apiVersion: v1
kind: Pod
metadata:
 name: resource-reserver
spec:
 containers:
 - name: sleep-forever
 image: gcr.io/google_containers/pause:0.8.0
 resources:
 limits:
 cpu: 100m 1
 memory: 150Mi 2

クラスターに認識されないホストレベルのデーモン用にノード上で確保する CPU の量
です。

クラスターに認識されないホストレベルのデーモン用にノード上で確保するメモリー
の量です。

定義は resource-reserver.yaml のようなファイルに保存し、ファイルを /etc/origin/node/ ま
たは別の指定がある場合は --config=<dir> などのノード設定ディレクトリーに置くことができ
ます。

Additionally, the node server needs to be configured to read the definition from the node
configuration directory, by naming the directory in the kubeletArguments.config field of the
node configuration file (usually named node-config.yaml):

kubeletArguments:
 config:
 - "/etc/origin/node" 1

--config=<dir> が指定されている場合、ここでは <dir> を使用します。

resource-reserver.yaml ファイルが有効な状態でノードサーバーを起動すると、sleep-forever
コンテナーも起動します。スケジューラーはノードの残りの容量も考慮し、クラスター Pod を
配置する場所を適宜調整します。

resource-reserver Pod を削除するには、ノード設定ディレクトリーから resource-

第23章 オーバーコミット

193

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-master-node-configuration

resource-reserver Pod を削除するには、ノード設定ディレクトリーから resource-
reserver.yaml ファイルを削除するか、またはこれを移動することができます。

23.6.4. カーネルの調整可能なフラグ

ノードが起動すると、メモリー管理用のカーネルの調整可能なフラグが適切に設定されます。カーネル
は、物理メモリーが不足しない限り、メモリーの割り当てに失敗するこはありません。

この動作を確認するために、ノードはカーネルに対し、常にメモリーのオーバーコミットを実行するよ
うに指示します。

$ sysctl -w vm.overcommit_memory=1

また、ノードはカーネルに対し、メモリーが不足する状況でもパニックにならないように指示します。
その代わりに、カーネルの OOM killer は優先順位に基づいてプロセスを強制終了します。

$ sysctl -w vm.panic_on_oom=0

注記

上記のフラグはノード上にすでに設定されているはずであるため、追加のアクションは
不要です。

23.6.5. swap メモリーの無効化

You can disable swap by default on your nodes in order to preserve quality of service guarantees.
Otherwise, physical resources on a node can oversubscribe, affecting the resource guarantees the
Kubernetes scheduler makes during pod placement.

For example, if two guaranteed pods have reached their memory limit, each container could start using
swap memory. Eventually, if there is not enough swap space, processes in the pods can be terminated
due to the system being oversubscribed.

To disable swap:

$ swapoff -a

Failing to disable swap results in nodes not recognizing that they are experiencing MemoryPressure,
resulting in pods not receiving the memory they made in their scheduling request. As a result, additional
pods are placed on the node to further increase memory pressure, ultimately increasing your risk of
experiencing a system out of memory (OOM) event.

重要

If swap is enabled, any out of resource handling eviction thresholds for available memory
will not work as expected. Take advantage of out of resource handling to allow pods to be
evicted from a node when it is under memory pressure, and rescheduled on an alternative
node that has no such pressure.

OpenShift Container Platform 3.9 クラスター管理

194

第24章 INGRESS トラフィックの固有の外部 IP の割り当て

24.1. 概要

外部トラフィックをクラスターにつなぐ方法の 1 つとして、ExternalIP または IngressIP アドレスを使
用することができます。

重要

この機能は、クラウド以外のデプロイメントでのみサポートされます。クラウド
(GCE、AWS、および OpenStack) デプロイメントの場合、ロードバランサーサービスを
使用し、クラウドの自動デプロイメントでサービスのエンドポイントをターゲットに設
定します。

OpenShift Container Platform は 2 つの IP アドレスのプールをサポートします。

IngressIP uses by the Loadbalancer when choosing an external IP address for the service.

ExternalIP は、ユーザーが設定されたプールから特定 IP を選択する場合に使用されます。

注記

これらはいずれも、ネットワークインターフェースコントローラー (NIC) または仮想
イーサネット、または外部ルーティングのいずれであっても、使用される OpenShift
Container Platform ホストのデバイスに設定される必要があります。この場合、
Ipfailover はホストを設定し、NIC を設定するため、これを使用することが推奨されま
す。

IngressIP および ExternalIP はいずれも外部トラフィックのクラスターへのアクセスを可能にし、適切
にルーティングされている場合に、外部トラフィックはサービスが公開する TCP/UDP ポート経由で
サービスのエンドポイントに到達できます。これは、外部 IP をサービスに手動で割り当てる際に、制
限された数の共有 IP アドレスのポート領域を管理しなくてはならない場合よりも単純になります。ま
たこれらのアドレスは、高可用性を設定する場合に仮想 IP (VIP) としても使用できます。

OpenShift Container Platform は IP アドレスの自動および手動割り当ての両方をサポートしており、そ
れぞれのアドレスは 1 つのサービスの最大数に割り当てられることが保証されます。これにより、各
サービスは、ポートが他のサービスで公開されているかによらず、自らの選択したポートを公開できま
す。

24.2. 制限

ExternalIP を使用するには、以下を実行できます。

Select an IP address from the externalIPNetworkCIDRs range.

Have an IP address assigned from the ingressIPNetworkCIDR pool in the master configuration
file. In this case, OpenShift Container Platform implements a non-cloud version of the load
balancer service type and assigns IP addresses to the services.

注意

割り当てた IP アドレスがクラスター内の 1 つ以上のノードで終了することを確認する必要があ
ります。既存の oc adm ipfailover を使用して外部 IP の可用性が高いことを確認します。

第24章 INGRESS トラフィックの固有の外部 IP の割り当て

195

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#master-node-config-network-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#master-node-config-network-config

手動で設定された外部 IP の場合、起こり得るポートのクラッシュについては 「first-come, first-served
(先着順)」で処理されます。ポートを要求する場合、その IP アドレスに割り当てられていない場合にの
み利用可能となります。以下は例になります。

手動で設定された外部 IP のポートのクラッシュ例

2 つのサービスが同じ外部 IP アドレス 172.7.7.7 で手動で設定されている。

MongoDB service A がポート 27017 を要求し、次に MongoDB service B が同じポートを要求する。
最初の要求がこのポートを取得します。

ただし、Ingress コントローラーが外部 IP を割り当てる場合、ポートのクラッシュは問題とはなりませ
ん。コントローラーが各サービスに固有のアドレスを割り当てるためです。

24.3. 固有の外部 IP を使用するようクラスターを設定する

In non-cloud clusters, ingressIPNetworkCIDR is set by default to 172.29.0.0/16. If your cluster
environment is not already using this private range, you can use the default. However, if you want to use
a different range, then you must set ingressIPNetworkCIDR in the /etc/origin/master/master-
config.yaml file before you assign an ingress IP. Then, restart the master service.

注意

LoadBalancer タイプのサービスに割り当てられる外部 IP は常に ingressIPNetworkCIDR の範囲にあ
ります。ingressIPNetworkCIDR が割り当てられた外部 IP がこの範囲内からなくなるように変更され
る場合、影響を受けるサービスには、新規の範囲と互換性のある新規の外部 IP が割り当てられます。

注記

高可用性を使用している場合、この範囲は 255 IP アドレスより少なくなければなりませ
ん。

/etc/origin/master/master-config.yaml のサンプル

24.3.1. サービスの Ingress IP の設定

Ingress IP を割り当てるには、以下を実行します。

1. loadBalancerIP 設定で特定の IP を要求する LoadBalancer サービスの YAML ファイルを作成
します。

LoadBalancer 設定サンプル

networkConfig:
 ingressIPNetworkCIDR: 172.29.0.0/16

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: db
 port: 3306

OpenShift Container Platform 3.9 クラスター管理

196

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#master-node-config-network-config

2. Pod に LoadBalancer サービスを作成します。

3. 外部 IP のサービスを確認します。たとえば、myservice という名前のサービスを確認します。

LoadBalancer タイプのサービスに外部 IP が割り当てられている場合、出力には IP が表示され
ます。

24.4. 開発またはテスト目的での INGRESS CIDR のルーティング

ingress CIDR のトラフィックをクラスターのノードに送信する静的ルートを追加します。以下は例にな
ります。

route add -net 172.29.0.0/16 gw 10.66.140.17 eth0

上記の例では、172.29.0.0/16 は ingressIPNetworkCIDR、10.66.140.17 はノード IP です。

24.4.1. サービス externalIP

クラスターの内部 IP アドレスに加えて、アプリケーション開発者はクラスターの外部にある IP アドレ
スを設定することができます。OpenShift Container Platform 管理者は、トラフィックがこの IP を持つ
ノードに到達することを確認する必要があります。

externalIP は、master-config.yaml ファイルで設定される externalIPNetworkCIDRs 範囲から管理者
によって選択される必要があります。master-config.yaml が変更される際に、マスターサービスは再
起動される必要があります。

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

externalIPNetworkCIDR /etc/origin/master/master-config.yaml のサンプル

サービス externalIP 定義 (JSON)

 loadBalancerIP: 172.29.0.1
 type: LoadBalancer
 selector:
 name: my-db-selector

$ oc create -f loadbalancer.yaml

$ oc get svc myservice

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
myservice 172.30.74.106 172.29.0.1 3306/TCP 30s

networkConfig:
 externalIPNetworkCIDR: 172.47.0.0/24

{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "my-service"

第24章 INGRESS トラフィックの固有の外部 IP の割り当て

197

1 ポート が公開される外部 IP アドレスの一覧です (これは内部 IP アドレス一覧に追加される一覧で
す)。

 },
 "spec": {
 "selector": {
 "app": "MyApp"
 },
 "ports": [
 {
 "name": "http",
 "protocol": "TCP",
 "port": 80,
 "targetPort": 9376
 }
],
 "externalIPs" : [
 "80.11.12.10" 1
]
 }
}

OpenShift Container Platform 3.9 クラスター管理

198

第25章 OUT OF RESOURCE (リソース不足) エラーの処理

25.1. 概要

このトピックでは、OpenShift Container Platform がメモリー不足 (OOM) やディスク領域不足の状況
を防ぐためのベストエフォートの取り組みについて説明します。

ノードは、利用可能なコンピュートリソースが少ない場合に安定性を維持する必要があります。これ
は、メモリーやディスクなどの圧縮不可能なリソースを扱う場合にとくに重要になります。どちらかの
リソースが消費されると、ノードは不安定になります。

管理者は、エビクションポリシーを使用してノードをプロアクティブにモニターし、ノードでコン
ピュートリソースおよびメモリーリソースが不足する状況を防ぐことができます。

このトピックでは、OpenShift Container Platform がリソース不足の状況に対処する方法についての情
報を提供し、シナリオ例や推奨される対策について説明します。

リソースの回収

Pod のエビクション

Pod のスケジューリング

リソース不足および Out of Memory Killer

警告

If swap memory is enabled for a node, that node cannot detect that it is under
MemoryPressure.

メモリーベースのエビクションを利用するには、オペレーターは swap を無効にす
る必要があります。

25.2. エビクションポリシーの設定

エビクションポリシー により、ノードが利用可能なリソースが少ない状況で実行されている場合に 1 つ
以上の Pod が失敗することを許可します。Pod の失敗により、ノードは必要なリソースを回収できま
す。

An eviciton policy is a combination of an eviction trigger signal with a specific eviction threshold value,
that is set in the node configuration file or through the command line. Evictions can be either hard,
where a node takes immediate action on a pod that exceeds a threshold, or soft, where a node allows a
grace period before taking action. See the sections below for important information the differences
between hard and soft evictions .

By using well-configured eviction policies, a node can proactively monitor for and prevent against total
starvation of a compute resource.

注記



第25章 OUT OF RESOURCE (リソース不足) エラーの処理

199

1

2

1

2

3

注記

When the node fails a pod, it terminates all containers in the pod, and the PodPhase is
transitioned to Failed.

25.2.1. ノード設定を使用したポリシーの作成

To configure an eviction policy, edit the node configuration file (the /etc/origin/node/node-
config.yaml file) to specify the eviction thresholds under the eviction-hard or eviction-soft
parameters.

例:

例25.1 Sample Node Configuration file for a hard eviction

kubeletArguments:
 eviction-hard: 1
 - memory.available<500Mi 2
 - nodefs.available<500Mi
 - nodefs.inodesFree<100Mi
 - imagefs.available<100Mi
 - imagefs.inodesFree<100Mi

エビクションのタイプ: ハードエビクションにこのパラメーターを使用します。

特定のエビクショントリガーシグナルに基づくエビクションのしきい値です。

例25.2 Sample Node Configuration file for a soft eviction

kubeletArguments:
 eviction-soft: 1
 - memory.available<500Mi 2
 - nodefs.available<500Mi
 - nodefs.inodesFree<100Mi
 - imagefs.available<100Mi
 - imagefs.inodesFree<100Mi
 eviction-soft-grace-period: 3
 - memory.available=1m30s
 - nodefs.available=1m30s
 - nodefs.inodesFree=1m30s
 - imagefs.available=1m30s
 - imagefs.inodesFree=1m30s

エビクションのタイプ: ソフトエビクションにこのパラメーターを使用します。

特定のエビクショントリガーシグナルに基づくエビクションのしきい値です。

ソフトエビクションの猶予期間です。パフォーマンスを最適化するためにデフォルト値のまま
にします。

OpenShift Container Platform 3.9 クラスター管理

200

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase

1. 変更を有効するために OpenShift Container Platform サービスを再起動します。

systemctl restart atomic-openshift-node

25.2.2. エビクションシグナルについて

以下の表にあるシグナルのいずれかに基づいてエビクションの意思決定をトリガーするようノードを設
定することができます。エビクションシグナルは、しきい値と共にエビクションのしきい値に追加でき
ます。

The value of each signal is described in the Description column based on the node summary API.

シグナルを表示するには、以下を実行します。

curl <certificate details> \
 https://<master>/api/v1/nodes/<node>/proxy/stats/summary

表25.1 サポートされるエビクションシグナル

ノードの
状態

エビクショ
ンシグナル

値 説明

MemoryP
ressure

memory.
available

memory.
available
=
node.sta
tus.capa
city[mem
ory] -
node.sta
ts.memo
ry.worki
ngSet

ノードの利用可能なメモリーがエビクションしきい値を超えてい
る。

DiskPres
sure

nodefs.a
vailable

nodefs.a
vailable =
node.sta
ts.fs.avai
lable

Available diskspace on either the node root file system or image
file system has exceeded an eviction threshold.

nodefs.in
odesFree

nodefs.i
nodesFr
ee =
node.sta
ts.fs.ino
desFree

第25章 OUT OF RESOURCE (リソース不足) エラーの処理

201

imagefs.
available

imagefs.
available
=
node.sta
ts.runtim
e.imagef
s.availab
le

imagefs.i
nodesFre
e

imagefs.i
nodesFr
ee =
node.sta
ts.runtim
e.imagef
s.inodes
Free

ノードの
状態

エビクショ
ンシグナル

値 説明

Each of the above signals supports either a literal or percentage-based value. The percentage-based
value is calculated relative to the total capacity associated with each signal.

スクリプトは kubelet が実行する一連の手順を使用し、cgroup から memory.available 値を派生させま
す。スクリプトは計算から非アクティブなファイルメモリー (つまり、非アクティブな LRU リストの
ファイルベースのメモリーのバイト数) を計算から除外します。非アクティブなファイルメモリーはリ
ソースの不足時に回収可能になることが想定されます。

注記

free -m はコンテナーで機能しないため、free -m のようなツールは使用しないでくださ
い。

The node supports the nodefs and imagefs file system partitions when detecting disk pressure, as
follows:

The nodefs file system that the node uses for local disk volumes, daemon logs, and so on (for
example, the file system that provides /).

The imagefs file system that the container runtime uses for storing images and individual
container writable layers.

OpenShift Container Platform はこれらのファイルシステムを 10 秒ごとにモニターします。

If you store volumes and logs in a dedicated file system, the node will not monitor that file system.

注記

OpenShift Container Platform 3.9 クラスター管理

202

注記

As of OpenShift Container Platform 3.4, the node supports the ability to trigger eviction
decisions based on disk pressure. Before evicting pods becuase of disk pressure, the
node also performs container and image garbage collection . In future releases, garbage
collection will be deprecated in favor of a pure disk-eviction based configuration.

25.2.3. エビクションのしきい値について

You can configure a node to specify eviction thresholds, which triggers the node to reclaim resources,
by adding a threshold to the node configuration file .

If an eviction threshold is met, independent of its associated grace period, the node reports a condition
indicating that the node is under memory or disk pressure. This prevents the scheduler from scheduling
any additional pods on the node while attempts to reclaim resources are made.

The node continues to report node status updates at the frequency specified by the node-status-
update-frequency argument, which defaults to 10s (ten seconds).

エビクションのしきい値は、しきい値に達する際にノードが即時にアクションを実行する場合にハード
となり、リソース回収前の猶予期間を許可する場合はソフトになります。

注記

Soft eviction usage is more common when you are targeting a certain level of utilization,
but can tolerate temporary spikes. We recommended setting the soft eviction threshold
lower than the hard eviction threshold, but the time period can be operator-specific. The
system reservation should also cover the soft eviction threshold.

ソフトエビクションのしきい値は高度な機能になります。ソフトエビクションのしきい
値の使用を試行する前にハードエビクションのしきい値を設定してください。

しきい値は以下の形式で設定されます。

<eviction_signal><operator><quantity>

the eviction-signal value can be any supported eviction signal .

the operator value is <.

the quantity value must match the quantity representation used by Kubernetes and can be
expressed as a percentage if it ends with the % token.

たとえば、オペレーターが 10Gi メモリーのあるノードを持つ場合で、オペレーターは利用可能なメモ
リーが 1Gi を下回る場合にエビクションを導入する必要がある場合、メモリーのエビクションしきい値
は以下のいずれかで指定することができます。

memory.available<1Gi
memory.available<10%

注記

ノードはエビクションしきい値の評価とモニターを 10 秒ごとに実行し、値を変更するこ
とはできません。これはハウスキープ処理の間隔になります。

第25章 OUT OF RESOURCE (リソース不足) エラーの処理

203

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/resources.md#resource-quantities

25.2.3.1. ハードエビクションのしきい値について

A hard eviction threshold has no grace period and, if observed, the node takes immediate action to
reclaim the associated starved resource. If a hard eviction threshold is met, the node kills the pod
immediately with no graceful termination.

ハードエビクションのしきい値を設定するには、「ポリシー作成のためのノード設定の使用」に示され
るように、エビクションしきい値を eviction-hard の下にあるノード設定ファイルに追加します。

Sample Node Configuration file with hard eviction thresholds

kubeletArguments:
 eviction-hard:
 - memory.available<500Mi
 - nodefs.available<500Mi
 - nodefs.inodesFree<100Mi
 - imagefs.available<100Mi
 - imagefs.inodesFree<100Mi

この例は一般的なガイドラインを示すためのもので、推奨される設定ではありません。

25.2.3.1.1. デフォルトのハードエビクションしきい値

OpenShift Container Platform は、eviction-hard の以下のデフォルト設定を使用します。

25.2.3.2. ソフトエビクションのしきい値について

A soft eviction threshold pairs an eviction threshold with a required administrator-specified grace period.
The node does not reclaim resources associated with the eviction signal until that grace period is
exceeded. If no grace period is provided in the node configuration the node errors on startup.

In addition, if a soft eviction threshold is met, an operator can specify a maximum allowed pod
termination grace period to use when evicting pods from the node. If eviction-max-pod-grace-period is
specified, the node uses the lesser value among the pod.Spec.TerminationGracePeriodSeconds and
the maximum-allowed grace period. If not specified, the node kills pods immediately with no graceful
termination.

ソフトエビクションのしきい値については、以下のフラグがサポートされています。

eviction-soft: a set of eviction thresholds (for example, memory.available<1.5Gi) that, if met
over a corresponding grace period, triggers a pod eviction.

eviction-soft-grace-period: a set of eviction grace periods (for example,
memory.available=1m30s) that correspond to how long a soft eviction threshold must hold
before triggering a pod eviction.

eviction-max-pod-grace-period: ソフトエビクションのしきい値に達する際の Pod の終了時に

...
kubeletArguments:
 eviction-hard:
 - memory.available<100Mi
 - nodefs.available<10%
 - nodefs.inodesFree<5%
 - imagefs.available<15%
...

OpenShift Container Platform 3.9 クラスター管理

204

1

eviction-max-pod-grace-period: ソフトエビクションのしきい値に達する際の Pod の終了時に
使用される最長で許可される猶予期間 (秒単位) です。

ソフトエビクションのしきい値を設定するには、「ポリシー作成のためのノード設定の使用」に示され
るように、エビクションのしきい値を eviction-soft の下にあるノード設定ファイルに追加します。

Sample Node Configuration files with soft eviction thresholds

kubeletArguments:
 eviction-soft:
 - memory.available<500Mi
 - nodefs.available<500Mi
 - nodefs.inodesFree<100Mi
 - imagefs.available<100Mi
 - imagefs.inodesFree<100Mi
 eviction-soft-grace-period:
 - memory.available=1m30s
 - nodefs.available=1m30s
 - nodefs.inodesFree=1m30s
 - imagefs.available=1m30s
 - imagefs.inodesFree=1m30s

この例は一般的なガイドラインを示すためのもので、推奨される設定ではありません。

25.3. スケジューリング用のリソース量の設定

スケジューラーがノードを完全に割り当て、エビクションを防止できるようにするために、スケジュー
リングで利用できるノードリソースの数量を制御できます。

Set system-reserved equal to the amount of resource you want available to the scheduler for deploying
pods and for system-daemons. Evictions should only occur if pods use more than their requested
amount of an allocatable resource.

ノードは 2 つの値を報告します。

Capacity: How much resource is on the machine

Allocatable: スケジューリング用に利用可能にされるリソースの量です。

To configure the amount of allocatable resources, edit the node configuration file (the
/etc/origin/node/node-config.yaml file) to add or modify the system-reserved parameter for
eviction-hard or eviction-soft.

+

kubeletArguments:
 eviction-hard: 1
 - "memory.available<500Mi"
 system-reserved:
 - "1.5Gi"

このしきい値は、eviction-hard または eviction-soft のいずれかにできます。

1. 変更を有効するために OpenShift Container Platform サービスを再起動します。

第25章 OUT OF RESOURCE (リソース不足) エラーの処理

205

systemctl restart atomic-openshift-node

25.4. ノードの状態変動の制御

If a node is oscillating above and below a soft eviction threshold, but not exceeding its associated grace
period, the corresponding node condition oscillates between true and false, which can cause problems
for the scheduler.

To prevent this oscillation, set the eviction-pressure-transition-period parameter to control how long
the node must wait before transitioning out of a pressure condition.

1. Edit or add the parameter to the kubeletArguments section of the node configuration file (the
/etc/origin/node/node-config.yaml) using a set of <resource_type>=<resource_quantity>
pairs.

kubeletArguments:
 eviction-pressure-transition-period="5m"

+ The node toggles the condition back to false when the node has not observed an eviction threshold
being met for the specified pressure condition for the specified period.

+

注記

Use the default value (5 minutes) before doing any adjustments. The default choice is
intended to allow the system to stabilize, and to prevent the scheduler from assigning
new pods to the node before it has settled.

1. 変更を有効するために OpenShift Container Platform サービスを再起動します。

systemctl restart atomic-openshift-node

25.5. ノードレベルのリソースの回収

If an eviction criteria is satisfied, the node initiates the process of reclaiming the pressured resource until
the signal goes below the defined threshold. During this time, the node does not support scheduling any
new pods.

The node attempts to reclaim node-level resources prior to evicting end-user pods, based on whether
the host system has a dedicated imagefs configured for the container runtime.

Imagefs が設定されている場合
ホストシステムに imagefs が設定されている場合:

If the nodefs file system meets eviction thresholds, the node frees up disk space in the
following order:

Delete dead pods/containers

If the imagefs file system meets eviction thresholds, the node frees up disk space in the
following order:

Delete all unused images

OpenShift Container Platform 3.9 クラスター管理

206

Imagefs が設定されていない場合
ホストシステムに imagefs がされていない場合:

If the nodefs file system meets eviction thresholds, the node frees up disk space in the
following order:

Delete dead pods/containers

Delete all unused images

25.6. POD エビクションについて

If an eviction threshold is met and the grace period is passed, the node initiates the process of evicting
pods until the signal goes below the defined threshold.

The node ranks pods for eviction by their quality of service, and, among those with the same quality of
service, by the consumption of the starved compute resource relative to the pod’s scheduling request.

Each QOS level has an OOM score, which the Linux out-of-memory tool (OOM killer) uses to determine
which pods to kill. See Understanding Quality of Service and Out of Memory Killer below.

The following table lists each QOS level and the associated OOM score.

表25.2 Quality of Service (QoS) レベル

QoS (Quality of Service) 説明

Guaranteed Pods that consume the highest amount of the starved resource relative to their
request are failed first. If no pod has exceeded its request, the strategy targets
the largest consumer of the starved resource.

Burstable Pods that consume the highest amount of the starved resource relative to their
request for that resource are failed first. If no pod has exceeded its request, the
strategy targets the largest consumer of the starved resource.

BestEffort Pods that consume the highest amount of the starved resource are failed first.

A Guaranteed pod will never be evicted because of another pod’s resource consumption unless a
system daemon (such as node, docker, journald) is consuming more resources than were reserved
using system-reserved, or kube-reserved allocations or if the node has only Guaranteed pods
remaining.

If the node has only Guaranteed pods remaining, the node evicts a Guaranteed pod that least impacts
node stability and limits the impact of the unexpected consumption to other Guaranteed pods.

Local disk is a BestEffort resource. If necessary, the node evicts pods one at a time to reclaim disk when
DiskPressure is encountered. The node ranks pods by quality of service. If the node is responding to
inode starvation, it will reclaim inodes by evicting pods with the lowest quality of service first. If the node
is responding to lack of available disk, it will rank pods within a quality of service that consumes the
largest amount of local disk, and evict those pods first.

25.6.1. QoS および Out of Memory Killer について

If the node experiences a system out of memory (OOM) event before it is able to reclaim memory, the

第25章 OUT OF RESOURCE (リソース不足) エラーの処理

207

If the node experiences a system out of memory (OOM) event before it is able to reclaim memory, the
node depends on the OOM killer to respond.

The node sets a oom_score_adj value for each container based on the quality of service for the pod.

表25.3 Quality of Service (QoS) レベル

QoS (Quality of Service) oom_score_adj 値

Guaranteed -998

Burstable min(max(2, 1000 - (1000 * memoryRequestBytes) /
machineMemoryCapacityBytes), 999)

BestEffort 1000

If the node is unable to reclaim memory prior to experiencing a system OOM event, the oom_killer
calculates an oom_score:

% of node memory a container is using + `oom_score_adj` = `oom_score`

The node then kills the container with the highest score.

Containers with the lowest quality of service that are consuming the largest amount of memory relative
to the scheduling request are failed first.

Unlike pod eviction, if a pod container is OOM failed, it can be restarted by the node based on the node
restart policy.

25.7. POD スケジューラーおよび OOR 状態について

The scheduler views node conditions when placing additional pods on the node. For example, if the node
has an eviction threshold like the following:

eviction-hard is "memory.available<500Mi"

and available memory falls below 500Mi, the node reports a value in Node.Status.Conditions as
MemoryPressure as true.

表25.4 ノードの状態およびスケジューラーの動作

ノードの状態 スケジューラーの動作

MemoryPressure If a node reports this condition, the scheduler will not place BestEffort pods on
that node.

DiskPressure If a node reports this condition, the scheduler will not place any additional pods
on that node.

25.8. シナリオ例

OpenShift Container Platform 3.9 クラスター管理

208

Consider the following scenario.

An opertator:

has a node with a memory capacity of 10Gi;

wants to reserve 10% of memory capacity for system daemons (kernel, node, etc.);

wants to evict pods at 95% memory utilization to reduce thrashing and incidence of system
OOM.

この設定から、system-reserved にはエビクションのしきい値でカバーされるメモリー量が含まれてい
ることを読み取ることができます。

To reach that capacity, either some pod is using more than its request, or the system is using more than
1Gi.

If a node has 10 Gi of capacity, and you want to reserve 10% of that capacity for the system daemons
(system-reserved), perform the following calculation:

capacity = 10 Gi
system-reserved = 10 Gi * .1 = 1 Gi

割り当て可能なリソースの量は以下のようになります。

allocatable = capacity - system-reserved = 9 Gi

これは、デフォルトでスケジューラーはノードに対し、9 Gi のメモリーを要求する Pod をスケジュー
ルすることを意味します。

If you want to turn on eviction so that eviction is triggered when the node observes that available
memory falls below 10% of capacity for 30 seconds, or immediately when it falls below 5% of capacity,
you need the scheduler to see allocatable as 8Gi. Therefore, ensure your system reservation covers the
greater of your eviction thresholds.

capacity = 10 Gi
eviction-threshold = 10 Gi * .1 = 1 Gi
system-reserved = (10Gi * .1) + eviction-threshold = 2 Gi
allocatable = capacity - system-reserved = 8 Gi

Enter the following in the node-config.yaml:

kubeletArguments:
 system-reserved:
 - "2Gi"
 eviction-hard:
 - memory.available<.5Gi
 eviction-soft:
 - memory.available<1Gi
 eviction-soft-grace-period:
 - memory.available=30s

This configuration ensures that the scheduler does not place pods on a node that immediately induce
memory pressure and trigger eviction assuming those pods use less than their configured request.

第25章 OUT OF RESOURCE (リソース不足) エラーの処理

209

25.9. 推奨される対策

25.9.1. DaemonSets and Out of Resource Handling

If a node evicts a pod that was created by a DaemonSet, the pod will immediately be recreated and
rescheduled back to the same node, because the node has no ability to distinguish a pod created from a
DaemonSet versus any other object.

In general, DaemonSets should not create BestEffort pods to avoid being identified as a candidate pod
for eviction. Instead DaemonSets should ideally launch Guaranteed pods.

OpenShift Container Platform 3.9 クラスター管理

210

第26章 ルーターのモニタリングおよびデバッグ

26.1. 概要

Depending on the underlying implementation, you can monitor a running router in multiple ways. This
topic discusses the HAProxy template router and the components to check to ensure its health.

26.2. 統計の表示

HAProxy ルーターは、HAProxy 統計の web リスナーを公開します。ルーターのパブリック IP アドレ
スと適切に設定されたポート (デフォルトは 1936) を入力して統計ページを表示し、プロンプトが出さ
れたら管理者パスワードを入力します。このパスワードおよびポートはルーターのインストール時に設
定されますが、それらはコンテナーの haproxy.config ファイルを表示して確認することができます。

26.3. 統計ビューの無効化

デフォルトで、HAProxy 表示はポート 1936 で公開されます (パスワードで保護されたアカウントを使
用する)。HAProxy 統計の公開を無効にするには、統計ポート番号として 0 を指定します。

$ oc adm router hap --service-account=router --stats-port=0

注: HAProxy は依然として統計を収集し、保存しますが、web リスナー経由での統計の 公開 が行われな
くなります。要求を HAProxy ルーターコンテナー内の HAProxy AF_UNIX ソケットに送信すれば、依然
として統計にアクセスできます。

$ cmd="echo 'show stat' | socat - UNIX-CONNECT:/var/lib/haproxy/run/haproxy.sock"
$ routerPod=$(oc get pods --selector="router=router" \
 --template="{{with index .items 0}}{{.metadata.name}}{{end}}")
$ oc exec $routerPod -- bash -c "$cmd"

重要

セキュリティー保護の理由により oc exec コマンドは、特権付きコンテナーにアクセス
する場合には機能しません。その代わりに、ノードホストに対して SSH を実行して必要
なコンテナーで docker exec コマンドを使用することができます。

26.4. ログの表示

ルーターのログを表示するには、Pod で oc logs コマンドを実行します。ルーターは基礎となる実装を
管理するプラグインプロセスとして実行されているため、このログは実際の HAProxy ログではなく、
プラグインのログになります。

HAProxy で生成されるログを表示するには、以下の環境変数を使用して syslog サーバーを起動し、そ
の位置情報をルーター Pod に渡します。

表26.1 ルーター Syslog 変数

環境変数 説明

ROUTER_SYSLOG_AD
DRESS

syslog サーバーの IP アドレスです。ポートが指定されていない場合、ポート
514 がデフォルトになります。

第26章 ルーターのモニタリングおよびデバッグ

211

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/errata/RHSA-2015:1650

ROUTER_LOG_LEVEL これはオプションであり、HAProxy ログレベルを変更する際に設定します。設
定されていない場合は、デフォルトのログレベルは warning になります。これ
は HAProxy がサポートするログレベルに変更することができます。

ROUTER_SYSLOG_FO
RMAT

これはオプションであり、カスタマイズされた HAProxy ログ形式を定義する
際に設定されます。これを HAProxy が受け入れるログ形式の文字列に変更で
きます。

環境変数 説明

メッセージを syslog サーバーに送信できるように実行中のルーター Pod を設定するには、以下を実行
します。

$ oc set env dc/router ROUTER_SYSLOG_ADDRESS=<dest_ip:dest_port>
ROUTER_LOG_LEVEL=<level>

たとえば、以下はデフォルトポート 514 で 127.0.0.1 にログを送信するよう HAProxy を設定し、ログレ
ベルを debug に変更します。

$ oc set env dc/router ROUTER_SYSLOG_ADDRESS=127.0.0.1 ROUTER_LOG_LEVEL=debug

26.5. ルーター内部の表示

routes.json

ルートは HAProxy ルーターで処理され、メモリー、ディスクおよび HAProxy 設定ファイルに保存され
ます。HAProxy 設定ファイルを生成するためにテンプレートに渡される内部ルート表示は
/var/lib/haproxy/router/routes.json ファイルで確認できます。ルーティングの問題のトラブルシュー
ティング時には、このファイルを表示して設定を有効にするために使用されているデータを確認できま
す。

HAProxy 設定

HAProxy 設定および特定ルート用に作成されたバックエンドは
/var/lib/haproxy/conf/haproxy.config ファイルで確認することができます。マッピングファイルは同
じディレクトリーにあります。ヘルパーのフロントエンドとバックエンドは、着信要求のバックエンド
へのマッピング時にマッピングファイルを使用します。

証明書

証明書は 2 つの場所に保存されます。

edge termination および re-encrypt 終端ルートの証明書は /var/lib/haproxy/router/certs
ディレクトリーに保存されます。

re-encrypt 終端ルートのバックエンドへの接続に使用される証明書は
/var/lib/haproxy/router/cacerts ディレクトリーに保存されます。

ファイルはルートの namespace および名前で指定されます。キー、証明書および CA 証明書は単一
ファイルに連結されます。OpenSSL を使用してこれらのファイルの内容を表示できます。

OpenShift Container Platform 3.9 クラスター管理

212

https://www.openssl.org/

第27章 高可用性

27.1. 概要

このトピックでは、OpenShift Container Platform クラスターの Pod およびサービスの高可用性の設定
について説明します。

IP フェイルオーバーは、ノードセットの仮想 IP (VIP) アドレスのプールを管理します。セットのすべて
の VIP はセットから選択されるノードによって提供されます。VIP は単一ノードが利用可能である限り
提供されます。ノード上で VIP を明示的に配布する方法がないため、VIP のないノードがある可能性
も、多数の VIP を持つノードがある可能性もあります。ノードが 1 つのみ存在する場合は、すべての
VIP がそのノードに配置されます。

注記

VIP はクラスター外からルーティングできる必要があります。

IP フェイルオーバーは各 VIP のポートをモニターし、ポートがノードで到達可能かどうかを判別しま
す。ポートが到達不能な場合、VIP はノードに割り当てられません。ポートが 0 に設定されている場
合、このチェックは抑制されます。check スクリプトは必要なテストを実行します。

IP フェイルオーバーは Keepalived を使用して一連のホストでの外部からアクセスできる VIP アドレス
のセットをホストします。各 VIP は 1 度に 1 つのホストによって提供されます。Keepalived は VRRP プ
ロトコルを使用して (一連のホストの) どのホストがどの VIP を提供するかを判別します。ホストが利
用不可の場合や Keepalived が監視しているサービスが応答しない場合は、VIP は一連のホストの内の
別のホストに切り換えられます。したがって、VIP はホストが利用可能である限り常に提供されます。

Keepalived を実行するホストが check スクリプトを渡す場合、ホストはプリエンプションストラテ
ジー に応じて、その優先順位および現在の MASTER の優先順位に基づいて MASTER 状態になりま
す。

管理者は、状態が変更されるたびに呼び出されるスクリプトを --notify-script= オプションを使用して
提供できます。Keepalived は VIP を提供する場合は MASTER 状態に、別のノードが VIP を提供する
場合は BACKUP 状態に、または check スクリプトが失敗する場合は FAULT 状態になります。notify
スクリプトは、状態が変更されるたびに新規の状態で呼び出されます。

OpenShift Container Platform は、oc adm ipfailover コマンドの実行による IP フェイルオーバーのデ
プロイメント設定の作成をサポートします。IP フェイルオーバーのデプロイメント設定は VIP アドレス
のセットを指定し、それらの提供先となるノードのセットを指定します。クラスターには複数の IP
フェイルオーバーのデプロイメント設定を持たせることができ、それぞれが固有な VIP アドレスの独自
のセットを管理します。IP フェイルオーバー設定の各ノードは IP フェイルオーバー Pod として実行さ
れ、この Pod は Keepalived を実行します。

VIP を使用してホストネットワーク (例: ルーター) を持つ Pod にアクセスする場合、アプリケーション
Pod は ipfailover Pod を実行しているすべてのノードで実行されている必要があります。これにより、
いずれの ipfailover ノードもマスターになり、必要時に VIP を提供することができます。アプリケー
ション Pod が ipfailover のすべてのノードで実行されていない場合、一部の ipfailoverノードが VIP を
提供できないか、または一部のアプリケーション Pod がトラフィックを受信できなくなります。この
不一致を防ぐために、ipfailover とアプリケーション Pod の両方に同じセレクターとレプリケーション
数を使用します。

VIP を使用してサービスにアクセスする場合には、いずれのノードもノードの ipfailover セットに入れ
ることができます。それは、(アプリケーション Pod が実行されている場所を問わず) サービスはすべ
てのノードで到達可能であるためです。ipfailover ノードのいずれもいつでもマスターにすることがで

第27章 高可用性

213

http://www.keepalived.org/

きます。サービスは外部 IP およびサービスポートを使用するか、または nodePort を使用することがで
きます。

サービス定義で外部 IP を使用する場合、VIP は外部 IP に設定され、ipfailover のモニターポートはサー
ビスポートに設定されます。nodePort はクラスターのすべてのノードで開かれ、サービスは VIP をサ
ポートしているいずれのノードからのトラフィックについても負荷分散を行います。この場合、
ipfailover のモニターノードはサービス定義で nodePort に設定されます。

重要

nodePort のセットアップは特権付きの操作で実行されます。

重要

サービス VIP の可用性が高い場合でも、パーマンスは依然として影響を受けま
す。keepalived はそれぞれの VIP が設定内のノードによって提供されるようにし、他の
ノードに VIP がない場合でも複数の VIP が同じノードに配置されることがあります。
ipfailover が複数の VIP を同じノードに配置する場合、外部から一連の VIP 間で負荷分散
を行う方法は失敗する可能性があります。

ingressIP を使用する場合は、ipfailover を ingressIP 範囲と同じ VIP 範囲を持つように設定できます。
また、モニターポートを無効にすることもできます。この場合、すべての VIP がクラスター内の同じ
ノードに表示されます。すべてのユーザーが ingressIP でサービスをセットアップし、これを高い可用
性のあるサービスにすることができます。

重要

クラスター内の VIP の最大数は 255 です。

27.2. IP フェイルオーバーの設定

oc adm ipfailover コマンドを適切なオプションと共に使用し、ipfailover デプロイメント設定を作成し
ます。

重要

現時点で、ipfailover はクラウドインフラストラクチャーと互換性がありません。AWS
の場合、AWS コンソールの使用により Elastic Load Balancer (ELB) で OpenShift
Container Platform の高可用性を維持することができます。

As an administrator, you can configure ipfailover on an entire cluster, or on a subset of nodes, as defined
by the label selector. You can also configure multiple IP failover deployment configurations in your
cluster, where each one is independent of the others. The oc adm ipfailover command creates an
ipfailover deployment configuration which ensures that a failover pod runs on each of the nodes
matching the constraints or the label used. This pod runs Keepalived which uses VRRP (Virtual Router
Redundancy Protocol) among all the Keepalived daemons to ensure that the service on the watched
port is available, and if it is not, Keepalived will automatically float the VIPs.

実稼働環境で使用する場合には、2 つ以上のノードで --selector=<label> を使用してノードを選択する
ようにします。また、指定のラベルが付けられたセレクターのノード数に一致する --replicas=<n> 値
を設定します。

oc adm ipfailover コマンドには、Keepalived を制御する環境変数を設定するコマンドラインオプショ

OpenShift Container Platform 3.9 クラスター管理

214

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-getting-started.html
http://www.keepalived.org/

oc adm ipfailover コマンドには、Keepalived を制御する環境変数を設定するコマンドラインオプショ
ンが含まれます。環境変数は OPENSHIFT_HA_* で開始され、必要に応じて変更できます。

たとえば、以下のコマンドは router=us-west-ha のラベルが付けられたノードのセレクションに対して
IP フェイルオーバー設定を作成します (7 仮想 IP を持つ 4 ノードで、ルータープロセスなどのポート
80 でリッスンするサービスをモニタリング)。

$ oc adm ipfailover --selector="router=us-west-ha" \
 --virtual-ips="1.2.3.4,10.1.1.100-104,5.6.7.8" \
 --watch-port=80 --replicas=4 --create

27.2.1. 仮想 IP アドレス

Keepalived manages a set of virtual IP addresses. The administrator must make sure that all these
addresses:

仮想 IP アドレスは設定されたホストでクラスター外からアクセスできる。

仮想 IP アドレスはクラスター内でこれ以外の目的で使用されていない。

各ノードの Keepalived は、必要とされるサービスが実行中であるかどうかを判別します。実行中の場
合、VIP がサポートされ、Keepalived はネゴシエーションに参加してそのノードが VIP を提供するか
を決定します。これに参加するノードについては、このサービスが VIP の監視 ポートでリッスンして
いる、またはチェックが無効にされている必要があります。

注記

セット内の各 VIP は最終的に別のノードによって提供される可能性があります。

27.2.2. チェックおよび通知スクリプト

Keepalived は、オプションのユーザー指定のチェックスクリプトを定期的に実行してアプリケーショ
ンの正常性をモニターします。たとえば、このスクリプトは要求を発行し、応答を検証することで web
サーバーをテストします。

スクリプトは oc adm ipfailover コマンドに --check-script=<script> オプションを指定して実行され
ます。このスクリプトは PASS の場合は 0 で終了するか、または FAIL の場合は 1 で終了する必要があ
ります。

デフォルトでチェックは 2 秒ごとに実行されますが、--check-interval=<seconds> オプションを使用
して頻度を変更することができます。

When a check script is not provided, a simple default script is run that tests the TCP connection. This
default test is suppressed when the monitor port is 0.

For each VIP, keepalived keeps the state of the node. The VIP on the node may be in MASTER,
BACKUP, or FAULT state. All VIPs on the node that are not in the FAULT state participate in the
negotiation to decide which will be MASTER for the VIP. All of the losers enter the BACKUP state.
When the check script on the MASTER fails, the VIP enters the FAULT state and triggers a
renegotiation. When the BACKUP fails, the VIP enters the FAULT state. When the check script passes
again on a VIP in the FAULT state, it exits FAULT and negotiates for MASTER. The resulting state is
either MASTER or BACKUP.

管理者はオプションの notify スクリプトを提供できます。このスクリプトは状態が変更されるたびに
呼び出されます。Keepalived は以下の 3 つのパラメーターをこのスクリプトに渡します。

第27章 高可用性

215

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#required-ports

$1 - "GROUP"|"INSTANCE"

$2: グループまたはインスタンスの名前です。

$3: 新規の状態 ("MASTER"|"BACKUP"|"FAULT") です。

These scripts run in the IP failover pod and use the pod’s file system, not the host file system. The
options require the full path to the script. The administrator must make the script available in the pod to
extract the results from running the notify script. The recommended approach for providing the scripts
is to use a ConfigMap.

check および notify スクリプトの完全パス名は、keepalived 設定ファイ
ル、/etc/keepalived/keepalived.conf に追加されます。これは keepalived が起動するたびに読み込
まれます。スクリプトは以下のように ConfigMap を使って Pod に追加できます。

1. 必要なスクリプトを作成し、これを保持する ConfigMap を作成します。スクリプトには入力引
数は指定されず、OK の場合は 0 を、FAIL の場合は 1 を返します。
check スクリプト mycheckscript.sh:

2. ConfigMap を作成します。

$ oc create configmap mycustomcheck --from-file=mycheckscript.sh

3. スクリプトを Pod に追加する方法として、oc コマンドの使用またはデプロイメント設定の編
集の 2 つの方法があります。どちらの場合も、マウントされた configMap ファイルの
defaultMode は実行を許可する必要があります。通常は、値 0755 (493、10 進数) が使用され
ます。

a. oc コマンドの使用:

b. ipf-ha-router デプロイメント設定の編集:

i. oc edit dc ipf-ha-router を使用し、テキストエディターでルーターデプロイメント設
定を編集します。

#!/bin/bash
 # Whatever tests are needed
 # E.g., send request and verify response
exit 0

$ oc env dc/ipf-ha-router \
 OPENSHIFT_HA_CHECK_SCRIPT=/etc/keepalive/mycheckscript.sh
$ oc volume dc/ipf-ha-router --add --overwrite \
 --name=config-volume \
 --mount-path=/etc/keepalive \
 --source='{"configMap": { "name": "mycustomcheck", "defaultMode": 493}}'

...
 spec:
 containers:
 - env:
 - name: OPENSHIFT_HA_CHECK_SCRIPT 1
 value: /etc/keepalive/mycheckscript.sh
...
 volumeMounts: 2

OpenShift Container Platform 3.9 クラスター管理

216

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#dev-guide-configmaps

1

2

3

4

spec.container.env フィールドで、マウントされたスクリプトファイルを参照す
る OPENSHIFT_HA_CHECK_SCRIPT 環境変数を追加します。

spec.container.volumeMounts フィールドを追加してマウントポイントを作成し
ます。

新規の spec.volumes フィールドを追加して ConfigMap に言及します。

これはファイルの実行パーミッションを設定します。読み取られる場合は 10 進数
(493) で表示されます。

ii. 変更を保存してエディターを終了します。これにより ipf-ha-router が再起動します。

27.2.3. VRRP プリエンプション

ホストが check スクリプトを渡すことで FAULT 状態を終了する場合、その新規ホストが現在の
MASTER 状態にあるホストよりも優先度が低い場合は BACKUP になります。ただしそのホストの優先
度が高い場合は、プリエンプションストラテジーがクラスター内でのそのロールを決定します。

nopreempt ストラテジーは MASTER を低優先度のホストから高優先度のホストに移行しません。デ
フォルトの preempt 300 の場合、keepalived は指定された 300 秒の間待機し、MASTER を優先度の
高いホストに移行します。

プリエンプションを指定するには、以下を実行します。

a. preemption-strategy を使用して ipfailover を作成します。

b. oc set env コマンドを使用して変数を設定します。

c. oc edit dc ipf-ha-router を使用してルーターデプロイメント設定を編集します。

 - mountPath: /etc/keepalive
 name: config-volume
 dnsPolicy: ClusterFirst
...
 volumes: 3
 - configMap:
 defaultMode: 0755 4
 name: customrouter
 name: config-volume
...

$ oc adm ipfailover --preempt-strategy=nopreempt \
 ...

$ oc set env dc/ipf-ha-router \
 --overwrite=true \
 OPENSHIFT_HA_PREEMPTION=nopreempt

...
 spec:
 containers:
 - env:

第27章 高可用性

217

27.2.4. Keepalived マルチキャスト

OpenShift Container Platform の IP フェイルオーバーは keepalived を内部で使用します。

重要

前述のラベルが付いたノードで multicast が有効にされており、それらが 224.0.0.18
(VRRP マルチキャスト IP アドレス) のネットワークトラフィックを許可することを確認
します。

keepalived デーモンを起動する前に、起動スクリプトは、マルチキャストトラフィックのフローを許
可する iptables ルールを検証します。このルールがない場合、起動スクリプトは新規ルールを作成
し、これを IP テーブル接続に追加します。この新規ルールが IP テーブルに追加される場所は --
iptables-chain= オプションによって異なります。--iptables-chain= オプションが指定される場合、
ルールはオプションで指定されるチェーンに追加されます。そうでない場合は、ルールは INPUT
チェーンに追加されます。

重要

iptables ルールは、1 つ以上の keepalived デーモンがノードで実行されている場合に存
在している必要があります。

iptables ルールは、最後の keepalived デーモンの終了後に削除できます。このルールは自動的に削除
されません。

各ノードで iptables ルールを手動で管理できます。(ipfailover が - -iptable-chain="" オプションで作成
されていない限り) 何も存在しない場合にこのルールが作成されます。

重要

手動で追加されたルールがシステム起動後も保持されることを確認する必要がありま
す。

すべての keepalived デーモンはマルチキャスト 224.0.0.18 で VRRP を使用してそのピ
アとネゴシエーションするので注意が必要です。それぞれの VIP に異なる VRRP-id
(0..255 の範囲) が設定されます。

$ for node in openshift-node-{5,6,7,8,9}; do ssh $node <<EOF

export interface=${interface:-"eth0"}
echo "Check multicast enabled ... ";
ip addr show $interface | grep -i MULTICAST

echo "Check multicast groups ... "
ip maddr show $interface | grep 224.0.0

EOF
done;

 - name: OPENSHIFT_HA_PREEMPTION 1
 value: nopreempt
...

OpenShift Container Platform 3.9 クラスター管理

218

27.2.5. コマンドラインオプションおよび環境変数

表27.1 コマンドラインオプションおよび環境変数

オプショ
ン

変数名 デフォル
ト

備考

--
watch-
port

OPENSHIFT_HA_MONITOR_
PORT

80 ipfailover Pod は、各 VIP のこのポートに対し
て TCP 接続を開こうとします。接続が設定さ
れると、サービスは実行中であると見なされ
ます。このポートが 0 に設定される場合、テ
ストは常にパスします。

--
interfac
e

OPENSHIFT_HA_NETWORK
_INTERFACE

 使用する ipfailover のインターフェース名で、
VRRP トラフィックを送信するために使用され
ます。デフォルトで eth0 が使用されます。

--
replica
s

OPENSHIFT_HA_REPLICA_C
OUNT

2 作成するレプリカの数です。これは、
ipfailover デプロイメント設定の
spec.replicas 値に一致している必要があり
ます。

--
virtual-
ips

OPENSHIFT_HA_VIRTUAL_I
PS

 複製する IP アドレス範囲の一覧です。これは
指定する必要があります (例: 1.2.3.4-
6,1.2.3.9.)。詳細については、こちらを参照し
てください。

--vrrp-
id-
offset

OPENSHIFT_HA_VRRP_ID_O
FFSET

0 詳細は、VRRP ID オフセットを参照してくだ
さい。

--
iptable
s-chain

OPENSHIFT_HA_IPTABLES_
CHAIN

INPUT iptables チェーンの名前であり、iptables
ルールを自動的に追加し、VRRP トラフィック
をオンにすることを許可するために使用され
ます。この値が設定されていない場
合、iptables ルールは追加されません。
チェーンが存在しない場合は作成されませ
ん。

--
check-
script

OPENSHIFT_HA_CHECK_SC
RIPT

 Pod のファイルシステム内の、アプリケー
ションの動作を確認するために定期的に実行
されるスクリプトの完全パス名です。詳細
は、こちらを参照してください。

--
check-
interval

OPENSHIFT_HA_CHECK_IN
TERVAL

2 check スクリプトが実行される期間 (秒単位)
です。

--
notify-
script

OPENSHIFT_HA_NOTIFY_SC
RIPT

 Pod ファイルシステム内の、状態が変更され
るたびに実行されるスクリプトの完全パス名
です。詳細は、こちらを参照してください。

第27章 高可用性

219

--
preemp
tion-
strateg
y

OPENSHIFT_HA_PREEMPTI
ON

preempt
300

新たな優先度の高いホストを処理するための
ストラテジーです。詳細は、「VRRP プリエン
プション」のセクションを参照してくださ
い。

オプショ
ン

変数名 デフォル
ト

備考

27.2.6. VRRP ID オフセット

Each ipfailover pod managed by the ipfailover deployment configuration (1 pod per node/replica) runs a
keepalived daemon. As more ipfailover deployment configurations are configured, more pods are
created and more daemons join into the common VRRP negotiation. This negotiation is done by all the
keepalived daemons and it determines which nodes will service which VIPs.

keepalived は内部で固有の vrrp-id を各 VIP に割り当てます。ネゴシエーションはこの vrrp-id セット
を使用し、決定後には優先される vrrp-id に対応する VIP が優先されるノードで提供されます。

したがって、ipfailover デプロイメント設定で定義されるすべての VIP について、ipfailover Pod は対応
する vrrp-id を割り当てます。これは、--vrrp-id-offsetから開始し、順序に従って vrrp-id を VIP の一覧
に割り当てることによって実行されます。vrrp-id には範囲 1..255 の値を設定できます。

複数の ipfailover デプロイメント設定がある場合、デプロイメント設定の VIP 数を増やす余地があるこ
とや vrrp-id 範囲のいずれも重複しないことを確認できるよう --vrrp-id-offset を注意して指定する必要
があります。

27.2.7. 高可用サービスの設定

以下の例では、ノードのセットに IP フェイルオーバーを指定して可用性の高い router および geo-
cache ネットワークサービスをセットアップする方法について説明します。

1. サービスに使用されるノードにラベルを付けます。の手順は、OpenShift Container Platform
クラスターのすべてのノードでサービスを実行し、クラスターのすべてのノード内で固定され
ない VIP を使用する場合はオプションになります。
以下の例では、地理的区分 US west でトラフィックを提供するノードのラベルを定義します
(ha-svc-nodes=geo-us-west)。

$ oc label nodes openshift-node-{5,6,7,8,9} "ha-svc-nodes=geo-us-west"

2. サービスアカウントを作成します。ipfailover を使用したり、(環境ポリシーによって異なる)
ルーターを使用する場合は事前に作成された router サービスアカウントか、または新規の
ipfailover サービスアカウントのいずれかを再利用できます。
以下の例は、デフォルト namespace で ipfailover という名前の新規サービスアカウントを作成
します。

$ oc create serviceaccount ipfailover -n default

3. デフォルト namespace の ipfailover サービスアカウントを privileged SCC に追加します。

$ oc adm policy add-scc-to-user privileged system:serviceaccount:default:ipfailover

OpenShift Container Platform 3.9 クラスター管理

220

4. router および geo-cache サービスを起動します。

重要

ipfailover は手順 1 のすべてのノードで実行されるため、手順 1 のすべてのノード
でルーター/サービスを実行することも推奨されます。

a. 最初の手順で使用されるラベルに一致するノードでルーターを起動します。以下の例で
は、ipfailover サービスアカウントを使用して 5 つのインスタンスを実行します。

$ oc adm router ha-router-us-west --replicas=5 \
 --selector="ha-svc-nodes=geo-us-west" \
 --labels="ha-svc-nodes=geo-us-west" \
 --service-account=ipfailover

b. Run the geo-cache service with a replica on each of the nodes. See an example
configuration for running a geo-cache service.

重要

Make sure that you replace the myimages/geo-cache Docker image
referenced in the file with your intended image. Change the number of
replicas to the number of nodes in the geo-cache label. Check that the label
matches the one used in the first step.

$ oc create -n <namespace> -f ./examples/geo-cache.json

5. router および geo-cache サービスの ipfailover を設定します。それぞれに独自の VIP があり、
いずれも最初の手順の ha-svc-nodes=geo-us-west のラベルが付けられた同じノードを使用し
ます。レプリカの数が最初の手順のラベル設定に一覧表示されているノード数と一致している
ことを確認してください。

重要

router、geo-cache および ipfailover はすべてデプロイメント設定を作成しま
す。それらの名前はすべて異なっている必要があります。

6. ipfailover が必要なインスタンスでモニターする必要のある VIP およびポート番号を指定しま
す。
router の ipfailover コマンド:

$ oc adm ipfailover ipf-ha-router-us-west \
 --replicas=5 --watch-port=80 \
 --selector="ha-svc-nodes=geo-us-west" \
 --virtual-ips="10.245.2.101-105" \
 --iptables-chain="INPUT" \
 --service-account=ipfailover --create

以下は、ポート 9736 でリッスンする geo-cache サービスの oc adm ipfailover コマンドで
す。2 つの ipfailover デプロイメント設定があるため、それぞれの VIP が独自のオフセットを
取得できるように --vrrp-id-offset を設定する必要があります。この場合 10 の値は、ipf-ha-

第27章 高可用性

221

https://raw.githubusercontent.com/openshift/openshift-docs/master/admin_guide/examples/geo-cache.json

1

geo-cache が 10 から開始するために ipf-ha-router-us-west には最大 10 の VIP (0-9)を持たせ
ることができることを意味します。

$ oc adm ipfailover ipf-ha-geo-cache \
 --replicas=5 --watch-port=9736 \
 --selector="ha-svc-nodes=geo-us-west" \
 --virtual-ips=10.245.3.101-105 \
 --vrrp-id-offset=10 \
 --service-account=ipfailover --create

上記のコマンドでは、各ノードに ipfailover、router、および geo-cache Pod があります。各
ipfailover 設定の VIP のセットは重複してなならず、外部またはクラウド環境の別の場所で使用
することはできません。それぞれの例の 5 つの VIP 10.245.{2,3}.101-105 は、2 つの ipfailover
デプロイメント設定で提供されます。IP フェイルオーバーはどのアドレスがどのノードで提供
されるかを動的に選択します。

管理者は、すべての router VIP が同じ router を参照し、すべての geo-cache VIP が同じ geo-
cache サービスを参照することを前提とした上で VIP アドレスを参照する外部 DNS をセット
アップします。1 つのノードが実行中である限り、すべての VIP アドレスが提供されます。

27.2.7.1. IP フェイルオーバー Pod のデプロイ

postgresql-ingress サービスの定義に基づいてノードポート 32439 および外部 IP アドレスでリッスン
する postgresql をモニターするために ipfailover ルーターをデプロイします。

$ oc adm ipfailover ipf-ha-postgresql \
 --replicas=1 <1> --selector="app-type=postgresql" <2> \
 --virtual-ips=10.9.54.100 <3> --watch-port=32439 <4> \
 --service-account=ipfailover --create

デプロイするインスタンスの数を指定します。

ipfailover がデプロイされる場所を制限します。

モニターする仮想 IP アドレスです。

各ノード上の ipfailover がモニターするポートです。

27.2.8. 高可用サービスの仮想 IP の動的更新

IP フェイルオーバーのデフォルトのデプロイメント方法として、デプロイメントを再作成します。高可
用のルーティングサービスの動的更新を最小限のダウンタイムまたはダウンタイムなしで実行するに
は、以下を実行する必要があります。

ローリングアップデート (Rolling Update) ストラテジーを使用するように IP フェイルオーバー
サービスデプロイメント設定を更新する。

仮想 IP アドレスの更新された一覧またはセットを使用して OPENSHIFT_HA_VIRTUAL_IPS
環境変数を更新します。

以下の例は、デプロイメントストラテジーおよび仮想 IP アドレスを動的に更新する方法について示し
ています。

1. 以下を使用して作成された IP フェイルオーバー設定を見てみましょう。

OpenShift Container Platform 3.9 クラスター管理

222

1

1

$ oc adm ipfailover ipf-ha-router-us-west \
 --replicas=5 --watch-port=80 \
 --selector="ha-svc-nodes=geo-us-west" \
 --virtual-ips="10.245.2.101-105" \
 --service-account=ipfailover --create

2. デプロイメント設定を編集します。

$ oc edit dc/ipf-ha-router-us-west

3. spec.strategy.type フィールドを Recreate から Rolling に更新します。

spec:
 replicas: 5
 selector:
 ha-svc-nodes: geo-us-west
 strategy:
 recreateParams:
 timeoutSeconds: 600
 resources: {}
 type: Rolling 1

Rolling に設定します。

4. 追加の仮想 IP アドレスを含めるように OPENSHIFT_HA_VIRTUAL_IPS 環境変数を更新しま
す。

- name: OPENSHIFT_HA_VIRTUAL_IPS
 value: 10.245.2.101-105,10.245.2.110,10.245.2.201-205 1

10.245.2.110,10.245.2.201-205 が一覧に追加されます。

5. VIP のセットに一致するよう外部 DNS を更新します。

27.3. サービスの EXTERNALIP および NODEPORT の設定

The user can assign VIPs as ExternalIPs in a service. Keepalived makes sure that each VIP is served on
some node in the ipfailover configuration. When a request arrives on the node, the service that is
running on all nodes in the cluster, load balances the request among the service’s endpoints.

The NodePorts can be set to the ipfailover watch port so that keepalived can check the application is
running. The NodePort is exposed on all nodes in the cluster, therefore it is available to keepalived on all
ipfailover nodes.

27.4. INGRESSIP の高可用性

In non-cloud clusters, ipfailover and ingressIP to a service can be combined. The result is high availability
services for users that create services using ingressIP.

この方法では、まず ingressIPNetworkCIDR 範囲を指定し、次に ipfailover 設定を作成する際に同じ範
囲を使用します。

第27章 高可用性

223

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#getting-traffic-into-cluster-ip
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#getting-traffic-into-cluster-nodeport
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#service-ingressip

ipfailover はクラスター全体に対して最大 255 の VIP をサポートするため、ingressIPNetworkCIDR は
/24 以下に設定する必要があります。

OpenShift Container Platform 3.9 クラスター管理

224

第28章 IPTABLES

28.1. 概要

システムコンポーネントには、OpenShift Container Platform、コンテナー、および適切なネットワー
ク操作のためにカーネルの iptables 設定に依存するファイアウォールポリシーを管理するソフトウェア
など、数多くのコンポーネントがあります。さらに、クラスター内のすべてのノードの iptables 設定は
ネットワークが機能するように正しくなければなりません。

すべてのコンポーネントは、他のコンポーネントが iptables をどのように使用するかを認識せずに 独立
して iptables を使用します。そのため、あるコンポーネントを別のコンポーネントの設定から分離する
ことが容易になります。さらに、OpenShift Container Platform および Docker サービスは、iptables が
それらがセットアップした時と全く同じ設定であると仮定します。それらは他のコンポーネントによっ
て導入される変更を検出しない場合がありますが、これらを検出する場合は修正の実装により一部の遅
れが生じる可能性があります。OpenShift Container Platform は問題をモニターし、解決しますが、
Docker サービスはこれを実行しません。

重要

ノード上の iptables 設定に対して加えるいかなる変更も OpenShift Container Platform
および Docker サービスの操作に影響を与えないものであることを確認してください。ま
た多くの場合、変更はクラスター内のすべてのノードに対して実行される必要がありま
す。iptables は複数の同時ユーザーを持つように設計されておらず、OpenShift
Container Platform および Docker ネットワークに障害が発生する可能性があるため、こ
れを変更する際には注意が必要です。

OpenShift Container Platform は複数のチェーンを提供しますが、それらの 1 つは、管理
者が独自の目的で使用することが意図されている OPENSHIFT-ADMIN-OUTPUT-
RULES です。

詳細は、「外部リソースへのアクセスを制限するための iptables ルールの使用」を参照
してください。

OpenShift Container Platform および Docker ネットワークが適性に機能するために、カーネル iptables
のチェーン、チェーンの順序、およびルールがクラスター内の各ノードに適切に設定される必要があり
ます。システム内には、カーネル iptables と対話し、OpenShift Container Platform および Docker
サービスに意図せずに影響を与える可能性のあるツールやサービスがシステムいくつかあります。

28.2. IPTABLES

iptables ツールは、Linux カーネルの IPv4 パケットフィルターのテーブルを設定し、維持し、検査する
ために使用できます。

Independent of other use, such as a firewall, OpenShift Container Platform and the the Docker service
manage chains in some of the tables. The chains are inserted in specific order and the rules are specific
to their needs.

注意

iptables --flush [chain] は、キーが必要な設定を削除できます。このコマンドを実行しないでくださ
い。

28.3. IPTABLES.SERVICE

第28章 IPTABLES

225

iptables サービスはローカルのネットワークファイアウォールをサポートします。これは、iptables 設
定を完全に制御することを想定します。これが起動すると、詳細な iptables 設定をフラッシュし、それ
を復元します。ルールはその設定ファイル /etc/sysconfig/iptables から復元されます。設定ファイル
は操作時に最新の状態に保たれないため、動的に追加されたルールは毎回の再起動時に失われます。

警告

iptables.service を停止し、起動することにより、OpenShift Container Platform お
よび Docker で必要な設定が破棄されます。OpenShift Container Platform および
Docker にはこの変更は通知されません。

systemctl disable iptables.service
systemctl mask iptables.service

iptables.service を実行する必要がある場合、制限された設定を設定ファイルに維持し、OpenShift
Container Platform および Docker を使用してそれらが必要とするルールをインストールするようにし
ます。

iptables.service 設定は以下から読み取られます。

/etc/sysconfig/iptables

ルールの永続的な変更を実行するには、このファイルで変更を編集します。Docker または OpenShift
Container Platform ルールは含めないようにしてください。

iptables.service がノードで起動または再起動した後は、Docker サービスおよび atomic-openshift-
node.service を再起動して、必要な iptables 設定を再構築する必要があります。

重要

Docker サービスの再起動により、ノードで実行されているすべてのコンテナーが停止
し、再起動されます。

systemctl restart iptables.service
systemctl restart docker
systemctl restart atomic-openshift-node.service



OpenShift Container Platform 3.9 クラスター管理

226

第29章 ストラテジーによるビルドのセキュリティー保護

29.1. 概要

Builds in OpenShift Container Platform are run in privileged containers that have access to the Docker
daemon socket. As a security measure, it is recommended to limit who can run builds and the strategy
that is used for those builds. Custom builds are inherently less safe than Source builds, given that they
can execute any code in the build with potentially full access to the node’s Docker socket, and as such
are disabled by default. Docker build permission should also be granted with caution as a vulnerability in
the Docker build logic could result in a privileges being granted on the host node.

By default, all users that can create builds are granted permission to use the Docker and Source-to-
Image build strategies. Users with cluster-admin privileges can enable the Custom build strategy, as
referenced in the Restricting Build Strategies to a User Globally section of this page.

You can control who can build with what build strategy using an authorization policy . Each build strategy
has a corresponding build subresource. A user must have permission to create a build and permission to
create on the build strategy subresource in order to create builds using that strategy. Default roles are
provided which grant the create permission on the build strategy subresource.

表29.1 ビルドストラテジーのサブリソースおよびロール

ストラテジー サブリソース ロール

Docker ビルド/docker system:build-strategy-docker

Source-to-Image ビルド/ソース system:build-strategy-source

カスタム ビルド/カスタム system:build-strategy-custom

JenkinsPipeline ビルド/jenkinspipeline system:build-strategy-
jenkinspipeline

29.2. ビルドストラテジーのグローバルな無効化

To prevent access to a particular build strategy globally, log in as a user with cluster-admin privileges
and remove the corresponding role from the system:authenticated group:

$ oc adm policy remove-cluster-role-from-group system:build-strategy-custom system:authenticated
$ oc adm policy remove-cluster-role-from-group system:build-strategy-docker system:authenticated
$ oc adm policy remove-cluster-role-from-group system:build-strategy-source system:authenticated
$ oc adm policy remove-cluster-role-from-group system:build-strategy-jenkinspipeline
system:authenticated

In versions prior to 3.2, the build strategy subresources were included in the admin and edit roles.
Ensure the build strategy subresources are also removed from these roles:

$ oc edit clusterrole admin
$ oc edit clusterrole edit

それぞれのロールについて、無効にするストラテジーのリソースに対応する行を削除します。

第29章 ストラテジーによるビルドのセキュリティー保護

227

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#security-warning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#custom-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#docker-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles

1

例29.1 admin の Docker ビルドストラテジーの無効化

kind: ClusterRole
metadata:
 name: admin
...
rules:
- resources:
 - builds/custom
 - builds/docker 1
 - builds/source
 ...
...

admin ロールを持つユーザーに対して Docker ビルドをグローバルに無効にするためにこの行
を削除します。

29.3. ユーザーへのビルドストラテジーのグルーバルな制限

一連の特定ユーザーのみが特定のストラテジーでビルドを作成できるようにするには、以下を実行しま
す。

1. ビルドストラテジーへのグローバルアクセスを無効にします。

2. ビルドストラテジーに対応するロールを特定ユーザーに割り当てます。たとえ
ば、system:build-strategy-docker クラスターロールをユーザー devuser に追加するには、以
下を実行します。

$ oc adm policy add-cluster-role-to-user system:build-strategy-docker devuser

警告

ユーザーに対して builds/docker サブリソースへのクラスターレベルでのアクセス
を付与することは、そのユーザーがビルドを作成できるすべてのプロジェクトにお
いて、Docker ストラテジーを使ってビルドを作成できることを意味します。

29.4. プロジェクト内でのユーザーへのビルドストラテジーの制限

ユーザーにビルドストラテジーをグローバルに付与するのと同様に、プロジェクト内の特定ユーザーの
セットのみが特定ストラテジーでビルドを作成できるようにするには、以下を実行します。

1. ビルドストラテジーへのグローバルアクセスを無効にします。

2. ビルドストラテジーに対応するロールをプロジェクト内の特定ユーザーに付与します。たとえ
ば、プロジェクト devproject 内の system:build-strategy-docker ロールをユーザー devuser
に追加するには、以下を実行します。

$ oc adm policy add-role-to-user system:build-strategy-docker devuser -n devproject



OpenShift Container Platform 3.9 クラスター管理

228

$ oc adm policy add-role-to-user system:build-strategy-docker devuser -n devproject

第29章 ストラテジーによるビルドのセキュリティー保護

229

第30章 SECCOMP を使用したアプリケーション機能の制限

30.1. 概要

seccomp (セキュアコンピューティングモード) は、アプリケーションが行うシステム呼び出しのセット
を制限し、クラスター管理者が OpenShift Container Platform で実行されるワークロードのセキュリ
ティーを強化するために使用されます。

seccomp サポートは Pod 設定の 2 つのアノテーションを使用して有効になります。

seccomp.security.alpha.kubernetes.io/pod: Pod のすべてのコンテナーに適用されるプロファ
イルです (上書きなし)。

container.seccomp.security.alpha.kubernetes.io/<container_name>: コンテナー固有のプロ
ファイルです (上書きあり)。

重要

デフォルトで、コンテナーは unconfined seccomp 設定で実行されます。

詳細な設計情報については、seccomp 設計についてのドキュメントを参照してください。

30.2. SECCOMP の有効化

seccomp は Linux カーネルの 1 つの機能です。seccomp がシステムで有効にされていることを確認する
には、以下を実行します。

$ cat /boot/config-`uname -r` | grep CONFIG_SECCOMP=
CONFIG_SECCOMP=y

30.3. OPENSHIFT CONTAINER PLATFORM での SECCOMP の設定

seccomp プロファイルは json ファイルであり、システムコールを提供し、システムコールの呼び出し
時に取るべき適切なアクションを実行します。

1. seccomp プロファイルを作成します。
多くの場合はデフォルトのプロファイルだけで十分ですが、クラスター管理者は個別システム
のセキュリティー制約を定義する必要があります。

独自のカスタムプロファイルを作成するには、seccomp-profile-root ディレクトリーですべて
のノードのファイルを作成します。

デフォルトの docker/default プロファイルを使用している場合は、これを作成する必要はあり
ません。

2. Configure your nodes to use the seccomp-profile-root where your profiles will be stored. In the
node-config.yaml via the kubeletArguments:

kubeletArguments:
 seccomp-profile-root:
 - "/your/path"

OpenShift Container Platform 3.9 クラスター管理

230

https://github.com/kubernetes/kubernetes/blob/release-1.4/docs/design/seccomp.md
https://github.com/docker/docker/blob/master/profiles/seccomp/default.json

3. 変更を適用するためにノードサービスを再起動します。

systemctl restart atomic-openshift-node

4. In order to control which profiles may be used, and to set the default profile, configure your SCC
via the seccompProfiles field. The first profile will be used as a default.
seccompProfiles フィールドで使用できる形式には以下が含まれます。

docker/default: コンテナーランタイムのデフォルトプロファイルです (いずれのプロファ
イルも不要です)。

unconfined: 拘束のないプロファイルで、seccomp を無効にします。

localhost/<profile-name>: ノードのローカル seccomp プロファイルの root にインストー
ルされるプロファイルです。
For example, if you are using the default docker/default profile, configure the restricted
SCC with:

seccompProfiles:
- docker/default

30.4. OPENSHIFT CONTAINER PLATFORM でのカスタム SECCOMP プ
ロファイルの設定

To ensure pods in your cluster run with a custom profile in the restricted SCC:

1. seccomp-profile-root に seccomp プロファイルを作成します。

2. seccomp-profile-root を設定します。

kubeletArguments:
 seccomp-profile-root:
 - "/your/path"

3. 変更を適用するためにノードサービスを再起動します。

systemctl restart atomic-openshift-node

4. Configure the restricted SCC:

seccompProfiles:
- localhost/<profile-name>

第30章 SECCOMP を使用したアプリケーション機能の制限

231

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#authorization-seccomp

第31章 SYSCTL

31.1. 概要

Sysctl settings are exposed via Kubernetes, allowing users to modify certain kernel parameters at
runtime for namespaces within a container. Only sysctls that are namespaced can be set independently
on pods; if a sysctl is not namespaced (called node-level), it cannot be set within OpenShift Container
Platform. Moreover, only those sysctls considered safe are whitelisted by default; other unsafe sysctls
can be manually enabled on the node to be available to the user.

31.2. UNDERSTANDING SYSCTLS

In Linux, the sysctl interface allows an administrator to modify kernel parameters at runtime. Parameters
are available via the /proc/sys/ virtual process file system. The parameters cover various subsystems
such as:

カーネル (共通のプレフィックス: kernel.)

ネットワーク (共通のプレフィックス: net.)

仮想メモリー (共通のプレフィックス: vm.)

MDADM (共通のプレフィックス: dev.)

追加のサブシステムについては、カーネルのドキュメントで説明されています。すてのパラメーターの
一覧を取得するには、以下を実行できます。

$ sudo sysctl -a

31.3. NAMESPACED VS NODE-LEVEL SYSCTLS

A number of sysctls are namespaced in today’s Linux kernels. This means that they can be set
independently for each pod on a node. Being namespaced is a requirement for sysctls to be accessible in
a pod context within Kubernetes.

以下の sysctl は namespace を使用するものとして知られている sysctl です。

kernel.shm*

kernel.msg*

kernel.sem

fs.mqueue.*

net.*

Sysctls that are not namespaced are called node-level and must be set manually by the cluster
administrator, either by means of the underlying Linux distribution of the nodes (e.g., via
/etc/sysctls.conf) or using a DaemonSet with privileged containers.

注記

OpenShift Container Platform 3.9 クラスター管理

232

https://www.kernel.org/doc/Documentation/sysctl/README

注記

Consider marking nodes with special sysctls as tainted. Only schedule pods onto them
that need those sysctl settings. Use the Kubernetes taints and toleration feature to
implement this.

31.4. SAFE VS UNSAFE SYSCTLS

Sysctls are grouped into safe and unsafe sysctls. In addition to proper namespacing, a safe sysctl must
be properly isolated between pods on the same node. This means that setting a safe sysctl for one pod:

must not have any influence on any other pod on the node,

must not allow to harm the node’s health, and

must not allow to gain CPU or memory resources outside of the resource limits of a pod.

namespace を使用した sysctl は必ずしも常に安全であると見なされる訳ではありません。

For OpenShift Container Platform 3.3.1, the following sysctls are supported (whitelisted) in the safe set:

kernel.shm_rmid_forced

net.ipv4.ip_local_port_range

This list will be extended in future versions when the kubelet supports better isolation mechanisms.

All safe sysctls are enabled by default. All unsafe sysctls are disabled by default and must be allowed
manually by the cluster administrator on a per-node basis. Pods with disabled unsafe sysctls will be
scheduled, but will fail to launch.

警告

安全でないという性質上、安全でない sysctl は各自の責任で使用されます。場合に
よっては、コンテナーの正しくない動作やリソース不足、またはノードの完全な破
損などの深刻な問題が生じる可能性があります。

31.5. ENABLING UNSAFE SYSCTLS

With the warning above in mind, the cluster administrator can allow certain unsafe sysctls for very
special situations, e.g., high-performance or real-time application tuning.

If you want to use unsafe sysctls, cluster administrators must enable them individually on nodes. Only
namespaced sysctls can be enabled this way.

1. Use the kubeletArguments field in the /etc/origin/node/node-config.yaml file, as described
in Configuring Node Resources, to set the desired unsafe sysctls:

kubeletArguments:
 experimental-allowed-unsafe-sysctls:
 - "kernel.msg*,net.ipv4.route.min_pmtu"



第31章 SYSCTL

233

http://kubernetes.io/docs/user-guide/kubectl/kubectl_taint/

2. 変更を適用するためにノードサービスを再起動します。

systemctl restart atomic-openshift-node

31.6. SETTING SYSCTLS FOR A POD

Sysctls are set on pods using annotations. They apply to all containers in the same pod.

Here is an example, with different annotations for safe and unsafe sysctls:

apiVersion: v1
kind: Pod
metadata:
 name: sysctl-example
 annotations:
 security.alpha.kubernetes.io/sysctls: kernel.shm_rmid_forced=1
 security.alpha.kubernetes.io/unsafe-sysctls: net.ipv4.route.min_pmtu=1000,kernel.msgmax=1 2 3
spec:
 ...

注記

A pod with the unsafe sysctls specified above will fail to launch on any node that has not
enabled those two unsafe sysctls explicitly. As with node-level sysctls, use the taints and
toleration feature or labels on nodes to schedule those pods onto the right nodes.

OpenShift Container Platform 3.9 クラスター管理

234

http://kubernetes.io/docs/user-guide/kubectl/kubectl_taint

第32章 データストア層でのデータの暗号化

32.1. 概要

このトピックでは、データストア層でシークレットデータの暗号化を有効にし、これを設定する方法に
ついて説明します。サンプルでは secrets リソースを使用していますが、configmaps などのすべての
リソースを暗号化することができます。

重要

この機能を使用するには、etcd v3 以降が必要になります。

32.2. 設定および暗号がすでに有効にされているかどうかの判別

データ暗号化をアクティブにするには、--experimental-encryption-provider-config 引数を
Kubernetes API サーバーに渡します。

master-config.yaml の抜粋

For more information about master-config.yaml and its format, see the Master Configuration Files
topic.

32.3. 暗号化設定について

すべての利用可能なプロバイダーを含む暗号化設定ファイル

kubernetesMasterConfig:
 apiServerArguments:
 experimental-encryption-provider-config:
 - /path/to/encryption-config.yaml

kind: EncryptionConfig
apiVersion: v1
resources: 1
 - resources: 2
 - secrets
 providers: 3
 - aescbc: 4
 keys:
 - name: key1 5
 secret: c2VjcmV0IGlzIHNlY3VyZQ== 6
 - name: key2
 secret: dGhpcyBpcyBwYXNzd29yZA==
 - secretbox:
 keys:
 - name: key1
 secret: YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXoxMjM0NTY=
 - aesgcm:
 keys:
 - name: key1
 secret: c2VjcmV0IGlzIHNlY3VyZQ==

第32章 データストア層でのデータの暗号化

235

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#master-configuration-files

1

2

3

4

5

6

resources のそれぞれの配列項目は分離した設定であり、詳細な設定が含まれます。

resources.resources フィールドは暗号化が必要な Kubernetes リソース名 (resource または
resource.group) の配列です。

providers 配列は、順序付けられた使用可能な暗号化プロバイダーの一覧です。エントリーごとに
1 つのプロバイダータイプ (identity または aescbc）のみを指定できますが、同じ項目に両方を指
定することはできません。

一覧の最初のプロバイダーがストレージに移動するリソースを暗号化するために使用されます。

シークレットの任意の名前です。

Base64 のエンコーディングされたランダムキーです。異なるプロバイダーが異なるキーの長さを
指定します。詳細は、「キーの生成方法」についての説明を参照してください。

ストレージからのリソースの読み取り時に、保存されたデータに一致する各プロバイダーはデータの復
号化を順番に試行します。情報またはシークレットキーの不一致により保存データを読み取れるプロバ
イダーがない場合にエラーが返され、クライアントがそのリソースにアクセスできなくなります。

重要

リソースが暗号化設定で読み取れない場合 (キーの変更により)、キーを基礎となる etcd
ディレクトリーから削除することのみが必要になります。そのリソースの読み取りを試
行する呼び出しは、キーが削除されるか、または有効な復号化キーが提供されない限り
失敗します。

32.3.1. 利用可能なプロバイダー

名前 暗号化 強度 速度 キーの長
さ

他の考慮事項

identity なし 該当なし 該当なし 該当なし 暗号化なしのそのままの状態で作成
されたリソースです。最初のプロバ
イダーとして設定される場合、リ
ソースは新規の値が書き込まれると
きに復号化されます。

aescbc PKCS#7
パディン
グが設定
された
AES-CBC

最も強い 高速 32 バイト 暗号化に推奨されるオプションです
が、secretbox よりも若干遅くなる
可能性があります。

secretbox XSalsa20
および
Poly1305

強い より高速 32 バイト より新しい標準であり、高レベルの
レビューが必要な環境では受け入れ
可能と見なされない可能性がありま
す。

 - name: key2
 secret: dGhpcyBpcyBwYXNzd29yZA==
 - identity: {}

OpenShift Container Platform 3.9 クラスター管理

236

aesgcm AES-GCM
およびラ
ンダム初
期化ベク
ター (IV)

200,000
回の書き
込みごと
にロー
テーショ
ンが必要
です。

最速 16、24、
または 32
バイト

自動化されたキーの回転スキームが
実行される場合以外には、使用する
ことが推奨されません。

名前 暗号化 強度 速度 キーの長
さ

他の考慮事項

各プロバイダーは複数のキーをサポートします。キーは復号化の順序で試行されます。プロバイダーが
最初のプロバイダーの場合、最初のキーが暗号化に使用されます。

注記

Kubernetes には適切な nonce ジェネレーターがないため、AES-GCM の nonce として
ランダム IV を使用します。AES-GCM では適切な nonce がセキュアな状態であることが
求められるため、AES-GCM は推奨されません。200,000 回の書き込み制限は nonce の
致命的な誤用の可能性を比較的低く抑えます。

32.4. データの暗号化

新規の暗号化設定ファイルを作成します。

新規シークレットを作成するには、以下を実行します。

1. 32 バイトのランダムキーを生成し、これを base64 でエンコーディングします。たとえば、
Linux および macOS では、以下を使用します。

$ head -c 32 /dev/urandom | base64

重要

暗号化キーは、/dev/urandom などの暗号で保護された乱数ジェネレーターで
生成する必要があります。Golang の math/random や Python の
random.random() などは適していません。

2. この値を secret フィールドに配置します。

kind: EncryptionConfig
apiVersion: v1
resources:
 - resources:
 - secrets
 providers:
 - aescbc:
 keys:
 - name: key1
 secret: <BASE 64 ENCODED SECRET>
 - identity: {}

第32章 データストア層でのデータの暗号化

237

3. API サーバーを再起動します。

systemctl restart atomic-openshift-master-api

重要

暗号化プロバイダー設定ファイルには、etcd の内容を復号化できるキーが含まれるた
め、マスター API サーバーを実行するユーザーのみがこれを読み取れるようにマスター
でパーミッションを適切に制限する必要があります。

32.5. データが暗号化されていることの確認

データは etcd に書き込まれる際に暗号化されます。API サーバーの再起動後、新たに作成されたか、
または更新されたシークレットは保存時に暗号化されます。これを確認するには、etcdctl コマンドラ
インプログラムを使用してシークレットの内容を検索できます。

1. default の namespace に、secret1 という新規シークレットを作成します。

$ oc create secret generic secret1 -n default --from-literal=mykey=mydata

2. etcdctl コマンドラインを使用し、etcd からシークレットを読み取ります。

$ ETCDCTL_API=3 etcdctl get /kubernetes.io/secrets/default/secret1 -w fields [...] | grep
Value

[… ​] には、etcd サーバーに接続するために追加の引数を指定する必要があります。

最終的なコマンドは以下と同様になります。

$ ETCDCTL_API=3 etcdctl get /kubernetes.io/secrets/default/secret1 -w fields \
--cacert=/var/lib/origin/openshift.local.config/master/ca.crt \
--key=/var/lib/origin/openshift.local.config/master/master.etcd-client.key \
--cert=/var/lib/origin/openshift.local.config/master/master.etcd-client.crt \
--endpoints 'https://127.0.0.1:4001' | grep Value

3. 上記のコマンド出力には、aescbc プロバイダーが結果として生成されるデータを暗号化したこ
とを示す k8s:enc:aescbc:v1: のプレフィックスが付けられます。

4. シークレットが API 経由で取得される場合は、正しく復号化されていることを確認します。

$ oc get secret secret1 -n default -o yaml | grep mykey

これは mykey: bXlkYXRh と一致するはずです。

32.6. すべてのシークレットが暗号化されていることの確認

シークレットは書き込み時に暗号化されるため、シークレットの更新を実行するとその内容は暗号化さ
れることになります。

$ oc adm migrate storage --include=secrets --confirm

このコマンドはすべてのシークレットを読み取り、次にサーバー側の暗号化を適用するようにそれらを

OpenShift Container Platform 3.9 クラスター管理

238

このコマンドはすべてのシークレットを読み取り、次にサーバー側の暗号化を適用するようにそれらを
更新します。書き込みの競合のためにエラーが発生する場合は、コマンドを再試行してください。

大規模クラスターの場合、シークレットを namespace 別に細分化するか、または更新をスクリプト化
することができます。

32.7. 復号化キーのローテーション

複数の API サーバーが実行されている高可用デプロイメントがある場合などに、ダウンタイムを発生さ
せずにシークレットを変更するには、複数の手順からなる操作が必要になります。

1. 新規キーを生成し、これをすべてのサーバーで同時プロバイダーの 2 つ目のキーエントリーと
して追加します。

2. すべての API サーバーを再起動し、各サーバーが新規キーを使用して復号化できるようにしま
す。

注記

単一 API サーバーを使用している場合は、この手順を省略できます。

systemctl restart atomic-openshift-master-api

3. 新規キーを keys 配列の最初のエントリーにし、これが設定で暗号化に使用されるようにしま
す。

4. すべての API サーバーを再起動し、各サーバーが新規キーを使用して暗号化できるようにしま
す。

systemctl restart atomic-openshift-master-api

5. 以下を実行し、新規キーですべての既存シークレットを暗号化します。

$ oc adm migrate storage --include=secrets --confirm

6. 新規キーを使用して etcd をバックアップし、すべてのシークレットを更新した後に、古い復号
化キーを設定から削除します。

32.8. データの復号化

データストア層で暗号化を無効にするには、以下を実行します。

1. identity プロバイダーを、設定の最初のエントリーとして配置します。

kind: EncryptionConfig
apiVersion: v1
resources:
 - resources:
 - secrets
 providers:
 - identity: {}
 - aescbc:

第32章 データストア層でのデータの暗号化

239

1. すべての API サーバーを再起動します。

systemctl restart atomic-openshift-master-api

2. 以下を実行し、すべてのシークレットの復号化を強制的に実行します。

$ oc adm migrate storage --include=secrets --confirm

 keys:
 - name: key1
 secret: <BASE 64 ENCODED SECRET>

OpenShift Container Platform 3.9 クラスター管理

240

第33章 ENCRYPTING HOSTS WITH IPSEC

33.1. 概要

IPsec は、インターネットプロトコル (IP) を使用して通信するすべてのマスターとノードホスト間の通
信を暗号化することによって OpenShift Container Platform クラスターのトラフィックを保護します。

このトピックでは、すべてのクラスター管理および Pod データトラフィックを含め、OpenShift
Container Platform ホストが IP アドレスを受信する IP サブセット全体の通信のセキュリティーを保護
する方法について説明します。

注記

OpenShift Container Platform 管理トラフィックは HTTPS を使用するため、IPsec の有
効化により 2 度目の管理トラフィックの暗号化が実行されることになります。

重要

This procedure should be repeated on each master host, then node host, in your cluster.
Hosts that do not have IPsec enabled will not be able to communicate with a host that
does.

33.2. ENCRYPTING HOSTS

33.2.1. 前提条件

Ensure that libreswan 3.15 or later is installed on cluster hosts. If opportunistic group
functionality is required, then libreswan version 3.19 or later is required.

See the Configure the pod network on nodes section for information on how to configure the
MTU to allow space for the IPSec header. This topic describes an IPSec configuration that
requires 62 bytes. If the cluster is operating on an Ethernet network with an MTU of 1500 then
the SDN MTU should be 1388, to allow for the overhead of IPSec and the SDN encapsulation.
After modifying the MTU in the OpenShift Container Platform configuration, the SDN must be
made aware of the change by removing the SDN interface and restarting the OpenShift
Container Platform node process.

systemctl stop atomic-openshift-node
ovs-vsctl del-br br0
systemctl start atomic-openshift-node

33.2.2. 証明書での IPsec の設定

By default, OpenShift Container Platform secures cluster management communication with mutually
authenticated HTTPS communication. This means that both the client (for example, an OpenShift
Container Platform node) and the server (for example, an OpenShift Container Platform api-server)
send each other their certificates, which are checked against a known certificate authority (CA). These
certificates are generated at cluster set up time and typically live on each host. These certificates can
also be used to secure pod communications with IPsec.

This procedure assumes you have the following on each host:

第33章 ENCRYPTING HOSTS WITH IPSEC

241

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-the-pod-network-on-nodes

Cluster CA file

Host client certificate file

Host private key file

1. Determine what the certificate’s nickname will be after it has been imported into the
libreswan certificate database. The nickname is taken directly from the certificate’s
subject’s Common Name (CN):

openssl x509 \
 -in /path/to/client-certificate -subject -noout | \
 sed -n 's/.*CN=\(.*\)/\1/p'

2. openssl を使用してクライアント証明書、CA 証明書、およびプライベートキーファイルを
PKCS#12 ファイルに追加します。これは、複数の証明書およびキーの共通ファイル形式で
す。

openssl pkcs12 -export \
 -in /path/to/client-certificate \
 -inkey /path/to/private-key \
 -certfile /path/to/certificate-authority \
 -passout pass: \
 -out certs.p12

3. Import the PKCS#12 file into the libreswan certificate database. The -W option is left
empty because no password is assigned to the PKCS#12 file, as it is only temporary.

ipsec initnss
pk12util -i certs.p12 -d sql:/etc/ipsec.d -W ""
rm certs.p12

33.2.3. libreswan IPsec Policy

必要な証明書が libreswan 証明書データベースにインポートされた後に、それらを使用してクラスター
内のホスト間の通信をセキュリティー保護するポリシーを作成します。

If you are using libreswan 3.19 or later, then opportunistic group configuration is recommended.
Otherwise, explicit connections are required.

33.2.3.1. Opportunistic Group Configuration

以下の設定は 2 つの libreswan 接続を作成します。最初の設定は OpenShift Container Platform 証明書
を使用してトラフィックを暗号化し、2 つ目の設定はクラスターの外部トラフィック用に暗号化に対す
る例外を作成します。

1. 以下を /etc/ipsec.d/openshift-cluster.conf ファイルに配置します。

conn private
 left=%defaultroute
 leftid=%fromcert
 # our certificate
 leftcert="NSS Certificate DB:<cert_nickname>" 1
 right=%opportunisticgroup

OpenShift Container Platform 3.9 クラスター管理

242

1

 rightid=%fromcert
 # their certificate transmitted via IKE
 rightca=%same
 ikev2=insist
 authby=rsasig
 failureshunt=drop
 negotiationshunt=hold
 auto=ondemand

conn clear
 left=%defaultroute
 right=%group
 authby=never
 type=passthrough
 auto=route
 priority=100

<cert_nickname> を、手順 1 の証明書ニックネームに置き換えます。

2. libreswan に対して、/etc/ipsec.d/policies/ のポリシーファイルを使用して各ポリシーを適用
する IP サブネットおよびホストを示します。このファイルでは、それぞれの設定された接続に
対応するポリシーファイルが設定されます。そのため、上記の例では、private および clear の
2 つの接続のそれぞれに /etc/ipsec.d/policies/ のファイルが設定されます。
/etc/ipsec.d/policies/private should contain the IP subnet of your cluster, which your hosts
receive IP addresses from. By default, this causes all communication between hosts in the
cluster subnet to be encrypted if the remote host’s client certificate authenticates against the
local host’s Certificate Authority certificate. If the remote host’s certificate does not
authenticate, all traffic between the two hosts will be blocked.

たとえば、すべてのホストが 172.16.0.0/16 アドレス空間のアドレスを使用するように設定され
る場合、private ポリシーファイルには 172.16.0.0/16 が含まれることになります。暗号化する
追加サブセットの任意の数がこのファイルに追加され、それらのサブネットへのすべてのトラ
フィックでも IPsec が使用されることになります。

3. トラフィックがクラスターに出入りすることを確認するためにすべてのホストとサブネット
ゲートウェイ間の通信の暗号化を解除します。ゲートウェイを /etc/ipsec.d/policies/clear
ファイルに追加します。

172.16.0.1/32

追加のホストおよびサブネットをこのファイルに追加できます。これにより、これらのホスト
およびサブネットへのすべてのトラフィックの暗号が解除されます。

33.2.3.2. Explicit Connection Configuration

In this configuration, each IPSec node configuration must explicitly list the configuration of every other
node in the cluster. Using a configuration management tool such as Ansible to generate this file on each
host is recommended.

1. This configuration also requires the full certificate subject of each node to be placed into the
configuration for every other node. To read this subject from the node’s certificate, use
openssl:

openssl x509 \
 -in /path/to/client-certificate -text | \

第33章 ENCRYPTING HOSTS WITH IPSEC

243

1

2 3

4

5

1

 grep "Subject:" | \
 sed 's/[[:blank:]]*Subject: //'

2. 以下の行を、クラスター内のその他のノード用に各ノードの /etc/ipsec.d/openshift-
cluster.conf ファイルに配置します。

conn <other_node_hostname>
 left=<this_node_ip> 1
 leftid="CN=<this_node_cert_nickname>" 2
 leftrsasigkey=%cert
 leftcert=<this_node_cert_nickname> 3
 right=<other_node_ip> 4
 rightid="<other_node_cert_full_subject>" 5
 rightrsasigkey=%cert
 auto=start
 keyingtries=%forever

<this_node_ip> をこのノードのクラスター IP アドレスに置き換えます。

<this_node_cert_nickname> を手順 1 のノードの証明書ニックネームに置き換えます。

<other_node_ip> を他のノードのクラスター IP アドレスに置き換えます。

<other_node_cert_full_subject> を上記の他のノードの証明書に置き換えます。たとえば、
"O=system:nodes,CN=openshift-node-45.example.com" のようになります。

3. 以下を各ノードの /etc/ipsec.d/openshift-cluster.secrets ファイルに配置します。

: RSA "<this_node_cert_nickname>" 1

<this_node_cert_nickname> を手順 1 のノードの証明書ニックネームに置き換えます。

33.3. IPSEC FIREWALL CONFIGURATION

All nodes within the cluster need to allow IPSec related network traffic. This includes IP protocol
numbers 50 and 51 as well as UDP port 500.

たとえば、クラスターノードがインターフェース eth0 で通信する場合、以下のようになります。

-A OS_FIREWALL_ALLOW -i eth0 -p 50 -j ACCEPT
-A OS_FIREWALL_ALLOW -i eth0 -p 51 -j ACCEPT
-A OS_FIREWALL_ALLOW -i eth0 -p udp --dport 500 -j ACCEPT

注記

IPSec also uses UDP port 4500 for NAT traversal, though this should not apply to normal
cluster deployments.

33.4. STARTING AND ENABLING IPSEC

1. ipsec サービスを開始し、新規の設定およびポリシーを読み込み、暗号化を開始します。

OpenShift Container Platform 3.9 クラスター管理

244

systemctl start ipsec

2. ipsec サービスを有効にして起動時に開始します。

systemctl enable ipsec

33.5. OPTIMIZING IPSEC

See the Scaling and Performance Guide for performance suggestions when encrypting with IPSec.

33.6. トラブルシューティング

2 つのノード間で認証を完了できない場合、すべてのトラフィックが拒否されるため、それらの間で
ping を行うことはできません。clear ポリシーが適切に設定されていない場合も、クラスター内の別の
ホストから SSH をホストに対して実行することはできません。

ipsec status コマンドを使用して clear および private ポリシーが読み込まれていることを確認できま
す。

第33章 ENCRYPTING HOSTS WITH IPSEC

245

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/scaling_and_performance_guide/#scaling-performance-optimizing-ipsec

第34章 依存関係ツリーのビルド

34.1. 概要

OpenShift Container Platform uses image change triggers in a BuildConfig to detect when an image
stream tag has been updated. You can use the oc adm build-chain command to build a dependency
tree that identifies which images would be affected by updating an image in a specified image stream.

The build-chain tool can determine which builds to trigger; it analyzes the output of those builds to
determine if they will in turn update another image stream tag. If they do, the tool continues to follow
the dependency tree. Lastly, it outputs a graph specifying the image stream tags that would be
impacted by an update to the top-level tag. The default output syntax for this tool is set to a human-
readable format; the DOT format is also supported.

34.2. 使用法

以下の表は、よく使用される build-chain の使用方法と一般的な構文について説明しています。

表34.1 よく使用される build-chain 操作

説明 構文

<image-stream> の 最新 タグの依存関係ツリーを
ビルドします。 $ oc adm build-chain <image-stream>

DOT 形式で v2 タグの依存関係ツリーをビルドし、
DOT ユーティリティーを使用してこれを可視化しま
す。

$ oc adm build-chain <image-stream>:v2 \
 -o dot \
 | dot -T svg -o deps.svg

test プロジェクトにある指定されたイメージスト
リームタグについての全プロジェクト間の依存関係
ツリーをビルドします。

$ oc adm build-chain <image-stream>:v1 \
 -n test --all

注記

graphviz パッケージをインストールして dot コマンドを使用する必要がある場合があり
ます。

OpenShift Container Platform 3.9 クラスター管理

246

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#image-change-triggers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#image-stream-tag
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#docker-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#image-stream-tag

第35章 BACKUP AND RESTORE

35.1. 概要

In OpenShift Container Platform, you can back up (saving state to separate storage) and restore
(recreating state from separate storage) at the cluster level. There is also some preliminary support for
per-project backup. The full state of a cluster installation includes:

etcd data on each master

API objects

registry storage

volume storage

This topic does not cover how to back up and restore persistent storage, as those topics are left to the
underlying storage provider. However, an example of how to perform a generic backup of application
data is provided.

重要

This topic only provides a generic way of backing up applications and the OpenShift
Container Platform cluster. It can not take into account custom requirements. Therefore,
you should create a full backup and restore procedure. To prevent data loss, necessary
precautions should be taken.

Note that the etcd backup still has all the references to the storage volumes. When you restore etcd,
OpenShift Container Platform starts launching the previous pods on nodes and reattaching the same
storage. This is really no different than the process of when you remove a node from the cluster and add
a new one back in its place. Anything attached to that node will be reattached to the pods on whatever
nodes they get rescheduled to.

重要

Backup and restore is not guaranteed. You are responsible for backing up your own data.

35.2. 前提条件

1. Because the restore procedure involves a complete reinstallation, save all the files used in the
initial installation. This may include:

~/.config/openshift/installer.cfg.yml (from the Quick Installation method)

Ansible playbooks and inventory files (from the Advanced Installation method)

/etc/yum.repos.d/ose.repo (from the Disconnected Installation method)

2. Backup the procedures for post-installation steps. Some installations may involve steps that are
not included in the installer. This may include changes to the services outside of the control of
OpenShift Container Platform or the installation of extra services like monitoring agents.
Additional configuration that is not supported yet by the advanced installer might also be
affected, for example when using multiple authentication providers.

第35章 BACKUP AND RESTORE

247

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-quick-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-advanced-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-disconnected-install

3. Install packages that provide various utility commands:

yum install etcd

4. If using a container-based installation, pull the etcd image instead:

docker pull rhel7/etcd

Note the location of the etcd data directory (or $ETCD_DATA_DIR in the following sections), which
depends on how etcd is deployed.

Deployment Type Data Directory

all-in-one cluster /var/lib/origin/openshift.local.etcd

external etcd (located either on a
master or another host)

/var/lib/etcd

警告

Embedded etcd is no longer supported starting with OpenShift Container Platform
3.7.

35.3. CLUSTER BACKUP

35.3.1. Master Backup

1. Save all the certificates and keys, on each master:

cd /etc/origin/master
tar cf /tmp/certs-and-keys-$(hostname).tar *.key *.crt

35.3.2. Etcd Backup

1. If etcd is running on more than one host, stop it on each host:

sudo systemctl stop etcd

Although this step is not strictly necessary, doing so ensures that the etcd data is fully
synchronized.

2. Create an etcd backup:

etcdctl backup \
 --data-dir $ETCD_DATA_DIR \
 --backup-dir $ETCD_DATA_DIR.bak



OpenShift Container Platform 3.9 クラスター管理

248

注記

If etcd is running on more than one host, the various instances regularly
synchronize their data, so creating a backup for one of them is sufficient.

注記

For a container-based installation, you must use docker exec to run etcdctl
inside the container.

3. Copy the db file over to the backup you created:

cp "$ETCD_DATA_DIR"/member/snap/db "$ETCD_DATA_DIR.bak"/member/snap/db

35.3.3. Registry Certificates Backup

1. Save all the registry certificates, on every master and node host.

cd /etc/docker/certs.d/
tar cf /tmp/docker-registry-certs-$(hostname).tar *

注記

When working with one or more external secured registry, any host required to
pull or push images must trust registry certificates in order to run pods.

35.4. CLUSTER RESTORE FOR SINGLE-MEMBER ETCD CLUSTERS

To restore the cluster:

1. Reinstall OpenShift Container Platform.
This should be done in the same way that OpenShift Container Platform was previously
installed.

2. Run all necessary post-installation steps.

3. Restore the certificates and keys, on each master:

cd /etc/origin/master
tar xvf /tmp/certs-and-keys-$(hostname).tar

4. Restore from the etcd backup:

mv $ETCD_DATA_DIR $ETCD_DATA_DIR.orig
cp -Rp $ETCD_DATA_DIR.bak $ETCD_DATA_DIR
chcon -R --reference $ETCD_DATA_DIR.orig $ETCD_DATA_DIR
chown -R etcd:etcd $ETCD_DATA_DIR

5. Create the new single node cluster using etcd’s --force-new-cluster option. You can do this
using the values from /etc/etcd/etcd.conf, or you can temporarily modify the systemd unit file
and start the service normally.
To do so, edit the /usr/lib/systemd/system/etcd.service file, and add --force-new-cluster:

第35章 BACKUP AND RESTORE

249

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#exposing-the-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#installation-methods

sed -i '/ExecStart/s/"$/ --force-new-cluster"/' /usr/lib/systemd/system/etcd.service
systemctl show etcd.service --property ExecStart --no-pager

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd --force-new-cluster"

Then, restart the etcd service:

systemctl daemon-reload
systemctl start etcd

6. Verify the etcd service started correctly, then re-edit the
/usr/lib/systemd/system/etcd.service file and remove the --force-new-cluster option:

sed -i '/ExecStart/s/ --force-new-cluster//' /usr/lib/systemd/system/etcd.service
systemctl show etcd.service --property ExecStart --no-pager

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd"

7. Restart the etcd service, then verify the etcd cluster is running correctly and displays OpenShift
Container Platform’s configuration:

systemctl daemon-reload
systemctl restart etcd

35.5. CLUSTER RESTORE FOR MULTIPLE-MEMBER ETCD CLUSTERS

If you want to deploy etcd on master hosts, then there is no need to create a new host. If you want to
deploy dedicated etcd out of master hosts, then you must create new hosts.

Choose a system to be the initial etcd member, and restore its etcd backup and configuration:

1. Run the following on the etcd host:

ETCD_DIR=/var/lib/etcd/
mv $ETCD_DIR /var/lib/etcd.orig
cp -Rp var/lib/etcd.orig/openshift-backup-pre-upgrade/ $ETCD_DIR
chcon -R --reference /var/lib/etcd.orig/ $ETCD_DIR
chown -R etcd:etcd $ETCD_DIR

2. Restore your /etc/etcd/etcd.conf file from backup or .rpmsave.

3. Depending on your environment, follow the instructions for Containerized etcd Deployments or
Non-Containerized etcd Deployments.

35.5.1. Containerized etcd Deployments

1. Create the new single node cluster using etcd’s --force-new-cluster option. You can do this
with a long, complex command using the values from /etc/etcd/etcd.conf, or you can
temporarily modify the systemd unit file and start the service normally.
To do so, edit the /etc/systemd/system/etcd_container.service file, and add --force-new-
cluster:

sed -i '/ExecStart=/s/$/ --force-new-cluster/' /etc/systemd/system/etcd_container.service

OpenShift Container Platform 3.9 クラスター管理

250

ExecStart=/usr/bin/docker run --name etcd --rm -v \
/var/lib/etcd:/var/lib/etcd:z -v /etc/etcd:/etc/etcd:ro --env-file=/etc/etcd/etcd.conf \
--net=host --entrypoint=/usr/bin/etcd rhel7/etcd:3.1.9 --force-new-cluster

Then, restart the etcd service:

systemctl daemon-reload
systemctl start etcd_container

2. Verify the etcd service started correctly, then re-edit the
/etc/systemd/system/etcd_container.service file and remove the --force-new-cluster
option:

sed -i '/ExecStart=/s/ --force-new-cluster//' /etc/systemd/system/etcd_container.service

ExecStart=/usr/bin/docker run --name etcd --rm -v /var/lib/etcd:/var/lib/etcd:z -v \
/etc/etcd:/etc/etcd:ro --env-file=/etc/etcd/etcd.conf --net=host \
--entrypoint=/usr/bin/etcd rhel7/etcd:3.1.9

3. Restart the etcd service, then verify the etcd cluster is running correctly and displays OpenShift
Container Platform’s configuration:

systemctl daemon-reload
systemctl restart etcd_container
etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \
 ls /

4. If you have additional etcd members to add to your cluster, continue to Adding Additional etcd
Members. Otherwise, if you only want a single node external etcd, continue to Bringing
OpenShift Container Platform Services Back Online.

35.5.2. Non-Containerized etcd Deployments

1. Create the new single node cluster using etcd’s --force-new-cluster option. You can do this
with a long, complex command using the values from /etc/etcd/etcd.conf, or you can
temporarily modify the systemd unit file and start the service normally.
To do so, edit the /usr/lib/systemd/system/etcd.service file, and add --force-new-cluster:

sed -i '/ExecStart/s/"$/ --force-new-cluster"/' /usr/lib/systemd/system/etcd.service
systemctl show etcd.service --property ExecStart --no-pager

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd --force-new-cluster"

Then restart the etcd service:

systemctl daemon-reload
systemctl start etcd

2. Verify the etcd service started correctly, then re-edit the

第35章 BACKUP AND RESTORE

251

2. Verify the etcd service started correctly, then re-edit the
/usr/lib/systemd/system/etcd.service file and remove the --force-new-cluster option:

sed -i '/ExecStart/s/ --force-new-cluster//' /usr/lib/systemd/system/etcd.service
systemctl show etcd.service --property ExecStart --no-pager

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd"

3. Restart the etcd service, then verify the etcd cluster is running correctly and displays OpenShift
Container Platform’s configuration:

systemctl daemon-reload
systemctl restart etcd
etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \
 ls /

4. If you have additional etcd members to add to your cluster, continue to Adding Additional etcd
Members. Otherwise, if you only want a single node external etcd, continue to Bringing
OpenShift Container Platform Services Back Online.

35.5.3. Adding Additional etcd Members

To add additional etcd members to the cluster, you must first adjust the default localhost peer in the
peerURLs value for the first member:

1. member list コマンドを使用して最初のメンバーのメンバー ID を取得します。

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https://172.18.0.75:2379" \
 member list

2. Update the value of peerURLs using the etcdctl member update command by passing the
member ID obtained from the previous step:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https://172.18.0.75:2379" \
 member update 511b7fb6cc0001 https://172.18.1.18:2380

Alternatively, you can use curl:

curl --cacert /etc/etcd/ca.crt \
 --cert /etc/etcd/peer.crt \
 --key /etc/etcd/peer.key \
 https://172.18.1.18:2379/v2/members/511b7fb6cc0001 \
 -XPUT -H "Content-Type: application/json" \
 -d '{"peerURLs":["https://172.18.1.18:2380"]}'

OpenShift Container Platform 3.9 クラスター管理

252

3. member list コマンドを再実行し、ピア URL に localhost が含まれなくなるようにします。

4. Now, add each additional member to the cluster one at a time.

警告

Each member must be fully added and brought online one at a time. When
adding each additional member to the cluster, the peerURLs list must be
correct for that point in time, so it will grow by one for each member added.
The etcdctl member add command will output the values that need to be
set in the etcd.conf file as you add each member, as described in the
following instructions.

a. For each member, add it to the cluster using the values that can be found in that system’s
etcd.conf file:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \
 member add 10.3.9.222 https://172.16.4.27:2380

Added member named 10.3.9.222 with ID 4e1db163a21d7651 to cluster

ETCD_NAME="10.3.9.222"
ETCD_INITIAL_CLUSTER="10.3.9.221=https://172.16.4.18:2380,10.3.9.222=https://172.1
6.4.27:2380"
ETCD_INITIAL_CLUSTER_STATE="existing"

b. Using the environment variables provided in the output of the above etcdctl member add
command, edit the /etc/etcd/etcd.conf file on the member system itself and ensure these
settings match.

c. Now start etcd on the new member:

rm -rf /var/lib/etcd/member
systemctl enable etcd
systemctl start etcd

d. Ensure the service starts correctly and the etcd cluster is now healthy:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \
 member list

51251b34b80001: name=10.3.9.221 peerURLs=https://172.16.4.18:2380
clientURLs=https://172.16.4.18:2379
d266df286a41a8a4: name=10.3.9.222 peerURLs=https://172.16.4.27:2380



第35章 BACKUP AND RESTORE

253

clientURLs=https://172.16.4.27:2379

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \
 cluster-health

cluster is healthy
member 51251b34b80001 is healthy
member d266df286a41a8a4 is healthy

e. Now repeat this process for the next member to add to the cluster.

5. After all additional etcd members have been added, continue to Bringing OpenShift Container
Platform Services Back Online.

35.6. ADDING NEW ETCD HOSTS

In cases where etcd members have failed and you still have a quorum of etcd cluster members running,
you can use the surviving members to add additional etcd members without downtime.

Suggested Cluster Size

Having a cluster with an odd number of etcd hosts can account for fault tolerance. Having an odd
number of etcd hosts does not change the number needed for a quorum, but increases the tolerance for
failure. For example, a cluster size of three members, quorum is two leaving a failure tolerance of one.
This ensures the cluster will continue to operate if two of the members are healthy.

3 つの etcd ホストで構成される実稼働クラスターの使用が推奨されます。

注記

The following presumes you have a backup of the /etc/etcd configuration for the etcd
hosts.

1. If the new etcd members will also be OpenShift Container Platform nodes, see Add the desired
number of hosts to the cluster. The rest of this procedure presumes you have added just one
host, but if adding multiple, perform all steps on each host.

2. Upgrade etcd and iptables on the surviving nodes:

yum update etcd iptables-services

Ensure version etcd-2.3.7-4.el7.x86_64 or greater is installed, and that the same version is
installed on each host.

3. Install etcd and iptables on the new host

yum install etcd iptables-services

Ensure version etcd-2.3.7-4.el7.x86_64 or greater is installed, and that the same version is
installed on the new host.

OpenShift Container Platform 3.9 クラスター管理

254

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-adding-hosts-to-cluster

4. Backup the etcd data store on surviving hosts before making any cluster configuration changes.

5. If replacing a failed etcd member, remove the failed member before adding the new member.

etcdctl -C https://<surviving host IP>:2379 \
 --ca-file=/etc/etcd/ca.crt \
 --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key cluster-health

etcdctl -C https://<surviving host IP>:2379 \
 --ca-file=/etc/etcd/ca.crt \
 --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key member remove <failed member identifier>

Stop the etcd service on the failed etcd member:

systemctl stop etcd

6. On the new host, add the appropriate iptables rules:

systemctl enable iptables.service --now
iptables -N OS_FIREWALL_ALLOW
iptables -t filter -I INPUT -j OS_FIREWALL_ALLOW
iptables -A OS_FIREWALL_ALLOW -p tcp -m state \
 --state NEW -m tcp --dport 2379 -j ACCEPT
iptables -A OS_FIREWALL_ALLOW -p tcp -m state \
 --state NEW -m tcp --dport 2380 -j ACCEPT
iptables-save > /etc/sysconfig/iptables

7. Generate the required certificates for the new host. On a surviving etcd host:

a. Make a backup of the /etc/etcd/ca/ directory.

b. Set the variables and working directory for the certificates, ensuring to create the PREFIX
directory if one has not been created:

cd /etc/etcd
export NEW_ETCD="<NEW_HOST_NAME>"

export CN=$NEW_ETCD
export SAN="IP:<NEW_HOST_IP>"
export PREFIX="./generated_certs/etcd-$CN/"

c. Create the $PREFIX directory:

$ mkdir -p $PREFIX

d. Create the server.csr and server.crt certificates:

openssl req -new -keyout ${PREFIX}server.key \
 -config ca/openssl.cnf \
 -out ${PREFIX}server.csr \
 -reqexts etcd_v3_req -batch -nodes \
 -subj /CN=$CN

第35章 BACKUP AND RESTORE

255

openssl ca -name etcd_ca -config ca/openssl.cnf \
 -out ${PREFIX}server.crt \
 -in ${PREFIX}server.csr \
 -extensions etcd_v3_ca_server -batch

e. Create the peer.csr and peer.crt certificates:

openssl req -new -keyout ${PREFIX}peer.key \
 -config ca/openssl.cnf \
 -out ${PREFIX}peer.csr \
 -reqexts etcd_v3_req -batch -nodes \
 -subj /CN=$CN

openssl ca -name etcd_ca -config ca/openssl.cnf \
 -out ${PREFIX}peer.crt \
 -in ${PREFIX}peer.csr \
 -extensions etcd_v3_ca_peer -batch

f. Copy the etcd.conf and ca.crt files, and archive the contents of the directory:

cp etcd.conf ${PREFIX}
cp ca.crt ${PREFIX}
tar -czvf ${PREFIX}${CN}.tgz -C ${PREFIX} .

g. Transfer the files to the new etcd hosts:

scp ${PREFIX}${CN}.tgz $CN:/etc/etcd/

8. While still on the surviving etcd host, add the new host to the cluster:

a. Add the new host to the cluster:

export ETCD_CA_HOST="<SURVIVING_ETCD_HOSTNAME>"
export NEW_ETCD="<NEW_ETCD_HOSTNAME>"
export NEW_ETCD_IP="<NEW_HOST_IP>"

etcdctl -C https://${ETCD_CA_HOST}:2379 \
 --ca-file=/etc/etcd/ca.crt \
 --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key member add ${NEW_ETCD}
https://${NEW_ETCD_IP}:2380

ETCD_NAME="<NEW_ETCD_HOSTNAME>"
ETCD_INITIAL_CLUSTER="
<NEW_ETCD_HOSTNAME>=https://<NEW_HOST_IP>:2380,
<SURVIVING_ETCD_HOST>=https:/<SURVIVING_HOST_IP>:2380
ETCD_INITIAL_CLUSTER_STATE="existing"

Copy the three environment variables in the etcdctl member add output. They will be used
later.

b. On the new host, extract the copied configuration data and set the permissions:

OpenShift Container Platform 3.9 クラスター管理

256

tar -xf /etc/etcd/<NEW_ETCD_HOSTNAME>.tgz -C /etc/etcd/ --overwrite
chown -R etcd:etcd /etc/etcd/*

c. On the new host, remove any etcd data:

rm -rf /var/lib/etcd/member
chown -R etcd:etcd /var/lib/etcd

9. On the new etcd host’s etcd.conf file:

a. Replace the following with the values generated in the previous step:

ETCD_NAME

ETCD_INITIAL_CLUSTER

ETCD_INITIAL_CLUSTER_STATE
Replace the IP address with the "NEW_ETCD" value for:

ETCD_LISTEN_PEER_URLS

ETCD_LISTEN_CLIENT_URLS

ETCD_INITIAL_ADVERTISE_PEER_URLS

ETCD_ADVERTISE_CLIENT_URLS
For replacing failed members, you will need to remove the failed hosts from the etcd
configuration.

10. 新規ホストで etcd を起動します。

systemctl enable etcd --now

11. To verify that the new member has been added successfully:

etcdctl -C https://${ETCD_CA_HOST}:2379 --ca-file=/etc/etcd/ca.crt \
 --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key cluster-health

12. Update the master configuration on all masters to point to the new etcd host

a. On every master in the cluster, edit /etc/origin/master/master-config.yaml

b. Find the etcdClientInfo section.

c. Add the new etcd host to the urls list.

d. If a failed etcd host was replaced, remove it from the list.

e. Restart the master API service.
On each master:

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

The procedure to add an etcd member is complete.

第35章 BACKUP AND RESTORE

257

35.7. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK
ONLINE

On each OpenShift Container Platform master, restore your master and node configuration from
backup and enable and restart all relevant services.

cp /etc/sysconfig/atomic-openshift-master-api.rpmsave /etc/sysconfig/atomic-openshift-master-api
cp /etc/sysconfig/atomic-openshift-master-controllers.rpmsave /etc/sysconfig/atomic-openshift-
master-controllers
cp /etc/origin/master/master-config.yaml.<timestamp> /etc/origin/master/master-config.yaml
cp /etc/origin/node/node-config.yaml.<timestamp> /etc/origin/node/node-config.yaml
cp /etc/origin/master/scheduler.json.<timestamp> /etc/origin/master/scheduler.json
systemctl enable atomic-openshift-master-api
systemctl enable atomic-openshift-master-controllers
systemctl enable atomic-openshift-node
systemctl start atomic-openshift-master-api
systemctl start atomic-openshift-master-controllers
systemctl start atomic-openshift-node

On each OpenShift Container Platform node, restore your node-config.yaml file from backup and
enable and restart the atomic-openshift-node service:

cp /etc/origin/node/node-config.yaml.<timestamp> /etc/origin/node/node-config.yaml
systemctl enable atomic-openshift-node
systemctl start atomic-openshift-node

Your OpenShift Container Platform cluster should now be back online.

35.8. PROJECT BACKUP

A future release of OpenShift Container Platform will feature specific support for per-project back up
and restore.

For now, to back up API objects at the project level, use oc export for each object to be saved. For
example, to save the deployment configuration frontend in YAML format:

$ oc export dc frontend -o yaml > dc-frontend.yaml

To back up all of the project (with the exception of cluster objects like namespaces and projects):

$ oc export all -o yaml > project.yaml

35.8.1. Role Bindings

Sometimes custom policy role bindings are used in a project. For example, a project administrator can
give another user a certain role in the project and grant that user project access.

These role bindings can be exported:

$ oc get rolebindings -o yaml --export=true > rolebindings.yaml

35.8.2. Service Accounts

OpenShift Container Platform 3.9 クラスター管理

258

If custom service accounts are created in a project, these need to be exported:

$ oc get serviceaccount -o yaml --export=true > serviceaccount.yaml

35.8.3. Secrets

Custom secrets like source control management secrets (SSH Public Keys, Username/Password) should
be exported if they are used:

$ oc get secret -o yaml --export=true > secret.yaml

35.8.4. Persistent Volume Claims

If the application within a project uses a persistent volume through a persistent volume claim (PVC),
these should be backed up:

$ oc get pvc -o yaml --export=true > pvc.yaml

35.9. PROJECT RESTORE

To restore a project, recreate the project and recreate all of the objects that were exported during the
backup:

$ oc new-project myproject
$ oc create -f project.yaml
$ oc create -f secret.yaml
$ oc create -f serviceaccount.yaml
$ oc create -f pvc.yaml
$ oc create -f rolebindings.yaml

注記

Some resources can fail to be created (for example, pods and default service accounts).

35.10. APPLICATION DATA BACKUP

In many cases, application data can be backed up using the oc rsync command, assuming rsync is
installed within the container image. The Red Hat rhel7 base image does contain rsync. Therefore, all
images that are based on rhel7 contain it as well. See Troubleshooting and Debugging CLI Operations -
rsync.

警告

This is a generic backup of application data and does not take into account
application-specific backup procedures, for example, special export/import
procedures for database systems.



第35章 BACKUP AND RESTORE

259

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cli_reference/#cli-operations-rsync

Other means of backup may exist depending on the type of the persistent volume (for example, Cinder,
NFS, Gluster, or others).

The paths to back up are also application specific. You can determine what path to back up by looking
at the mountPath for volumes in the deploymentconfig.

Example of Backing up a Jenkins Deployment’s Application Data

1. Get the application data mountPath from the deploymentconfig:

$ oc get dc/jenkins -o jsonpath='{ .spec.template.spec.containers[?
(@.name=="jenkins")].volumeMounts[?(@.name=="jenkins-data")].mountPath }'
/var/lib/jenkins

2. Get the name of the pod that is currently running:

$ oc get pod --selector=deploymentconfig=jenkins -o jsonpath='{ .metadata.name }'
jenkins-1-37nux

3. Use the oc rsync command to copy application data:

$ oc rsync jenkins-1-37nux:/var/lib/jenkins /tmp/

注記

This type of application data backup can only be performed while an application pod is
currently running.

35.11. APPLICATION DATA RESTORE

The process for restoring application data is similar to the application backup procedure using the oc
rsync tool. The same restrictions apply and the process of restoring application data requires a
persistent volume.

Example of Restoring a Jenkins Deployment’s Application Data

1. バックアップを確認します。

$ ls -la /tmp/jenkins-backup/
total 8
drwxrwxr-x. 3 user user 20 Sep 6 11:14 .
drwxrwxrwt. 17 root root 4096 Sep 6 11:16 ..
drwxrwsrwx. 12 user user 4096 Sep 6 11:14 jenkins

2. oc rsync ツールを使用してデータを実行中の Pod にコピーします。

$ oc rsync /tmp/jenkins-backup/jenkins jenkins-1-37nux:/var/lib

注記

アプリケーションによっては、アプリケーションを再起動する必要があります。

OpenShift Container Platform 3.9 クラスター管理

260

3. Restart the application with new data (optional):

$ oc delete pod jenkins-1-37nux

または、デプロイメントを 0 にスケールダウンしてから再びスケールアップします。

$ oc scale --replicas=0 dc/jenkins
$ oc scale --replicas=1 dc/jenkins

第35章 BACKUP AND RESTORE

261

第36章 OPENSHIFT SDN のトラブルシューティング

36.1. 概要

As described in the SDN documentation there are multiple layers of interfaces that are created to
correctly pass the traffic from one container to another. In order to debug connectivity issues, you have
to test the different layers of the stack to work out where the problem arises. This guide will help you dig
down through the layers to identify the problem and how to fix it.

問題の原因の一部は OpenShift Container Platform が複数の方法で設定でき、ネットワークが複数の異
なる場所で正しく設定されない可能性がある点にあります。本書では、いくつかのシナリオを使用しま
すが、これらのシナリオは大半のケースに対応していることが予想されます。実際に生じている問題が
これらのシナリオで扱われていない場合には、導入されている各種のツールおよび概念を使用してデ
バッグ作業を行うことができます。

36.2. 用語

クラスター

クラスター内の一連のマシンです。例: マスターおよびノード。

マスター

OpenShift Container Platform クラスターのコントローラーです。マスターはクラスター内のノード
ではない場合があり、そのため Pod への IP 接続がない場合があることに注意してください。

ノード

Pod をホストできる OpenShift Container Platform を実行するクラスター内のホストです。

Pod

OpenShift Container Platform によって管理される、ノード上で実行されるコンテナーのグループで
す。

Service

1 つ以上の Pod でサポートされる、統一ネットワークインターフェースを表す抽象化です。

ルーター

複数の URL とパスを OpenShift Container Platform サービスにマップし、外部トラフィックがクラ
スターに到達できるようにする web プロキシーです。

ノードアドレス

ノードの IP アドレスです。これはノードが割り当てられるネットワークの所有者によって割り当て
られ、管理されます。クラスター内の任意のノード (マスターおよびクライアント) からアクセスで
きる必要があります。

Pod アドレス

Pod の IP アドレスです。これらは OpenShift Container Platform によって割り当てられ、管理され
ます。デフォルトで、これらは 10.128.0.0/14 ネットワーク (または古いバージョンでは 10.1.0.0/16)
から割り当てられます。クライアントノードからのみアクセスできます。

サービスアドレス

サービスを表す IP アドレスで、内部で Pod アドレスにマップされます。これらは OpenShift
Container Platform によって割り当てられ、管理されます。デフォルトで、これらは 172.30.0.0/16
ネットワークから割り当てられます。クライアントノードからのみアクセスできます。

以下の図は、外部アクセスに関係するすべての構成部分を示しています。

OpenShift Container Platform 3.9 クラスター管理

262

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-sdn

36.3. HTTP サービスへの外部アクセスのデバッグ

If you are on an machine outside the cluster and are trying to access a resource provided by the cluster
there needs to be a process running in a pod that listens on a public IP address and "routes" that traffic
inside the cluster. The OpenShift Container Platform router serves that purpose for HTTP, HTTPS (with
SNI), WebSockets, or TLS (with SNI).

クラスター外より HTTP サービスにアクセスできないことを想定し、障害が発生しているマシンのコマ
ンドラインを使って問題を再現します。以下を実行します。

curl -kv http://foo.example.com:8000/bar # But replace the argument with your URL

成功する場合は、正しい場所からバグを再現しているかどうかを確認します。サービスに機能する Pod
と機能しない Pod が含まれる可能性もあります。したがって、「ルーターのデバッグ」 セクションを
参照してください。

失敗した場合は、IP アドレスに対して DNS 名を解決します (ないことを想定します)。

dig +short foo.example.com # But replace the hostname with yours

IP アドレスが返されない場合は、DNS をトラブルシューティングする必要がありますが、これについ
ては本書では扱いません。

重要

返される IP アドレスがルーターを実行するルーターであることを確認します。そうでな
い場合は、DNS を修正します。

次に ping -c address および tracepath address を使用して、ルーターホストに到達できることを確認
します。それらが ICMP パケットに応答しない場合もあり、この場合はそれらのテストは失敗します
が、ルーターマシンにはアクセスできる場合があります。この場合、コマンドを使ってルーターのポー
トに直接アクセスしてみます。

telnet 1.2.3.4 8000

以下が表示される場合があります。

第36章 OPENSHIFT SDN のトラブルシューティング

263

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-routes

Trying 1.2.3.4...
Connected to 1.2.3.4.
Escape character is '^]'.

この場合、IP アドレスのポートでリッスンしているものがあることを示しています。ctrl-] を押してか
ら enter キーを押し、close を入力して telnet を終了します。「ルーターのデバッグ」 セクションに
移行してルーターの他のものを確認します。

または、以下が表示される可能性があります。

Trying 1.2.3.4...
telnet: connect to address 1.2.3.4: Connection refused

これは、ルーターがそのポートでリッスンしていないことを示します。ルーターの設定方法における追
加のポイントについては、「ルーターのデバッグ」セクションを参照してください。

または、以下が表示される場合があります。

これは、IP アドレス上のいずれとも通信できないことを示します。ルーティング、ファイアウォールを
確認し、IP アドレスでリッスンしているルーターがあることを確認します。ルーターをデバッグするに
は、「ルーターのデバッグ」セクションを参照してください。IP ルーティングおよびファイアウォール
の問題については、本書では扱いません。

36.4. ルーターのデバッグ

IP アドレスを使用し、そのマシンに対して ssh を実行してルーターソフトウェアがそのマシン上で実
行されており、正しく設定されていることを確認する必要があります。ここで ssh を実行し、管理者の
OpenShift Container Platform 認証情報を取得します。

注記

If you have access to administrator credentials but are no longer logged in as the default
system user system:admin, you can log back in as this user at any time as long as the
credentials are still present in your CLI configuration file. The following command logs in
and switches to the default project:

$ oc login -u system:admin -n default

ルーターが実行されていることを確認します。

oc get endpoints --namespace=default --selector=router
NAMESPACE NAME ENDPOINTS
default router 10.128.0.4:80

このコマンドが失敗する場合、OpenShift Container Platform 設定は破損しています。この設定の修正
については、本書では扱われません。

1 つ以上のルーターエンドポイントが一覧表示されますが、エンドポイント IP アドレスはクラスター内
の Pod アドレスの 1 つであるため、それらが指定の外部 IP アドレスでマシン上で実行されているかど
うかを識別することはできません。ルーターホスト IP アドレスの一覧を取得するには、以下を実行し

Trying 1.2.3.4...
 telnet: connect to address 1.2.3.4: Connection timed out

OpenShift Container Platform 3.9 クラスター管理

264

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cli_reference/#cli-configuration-files

ます。

oc get pods --all-namespaces --selector=router --template='{{range .items}}HostIP:
{{.status.hostIP}} PodIP: {{.status.podIP}}{{end}}{{"\n"}}'
HostIP: 192.168.122.202 PodIP: 10.128.0.4

You should see the host IP that corresponds to your external address. If you do not, refer to the router
documentation to configure the router pod to run on the right node (by setting the affinity correctly) or
update your DNS to match the IP addresses where the routers are running.

(本書の) この時点では、ノードでルーター Pod を実行しても HTTP 要求を機能させることはできませ
ん。まず、ルーターが外部 URL を正しいサービスにマップしていること、またそれが機能している場
合は、そのサービスの詳細を調べてすべてのエンドポイントがアクセス可能であることを確認する必要
があります。

OpenShift Container Platform が認識するすべてのルートを一覧表示します。

oc get route --all-namespaces
NAME HOST/PORT PATH SERVICE LABELS TLS TERMINATION
route-unsecured www.example.com /test service-name

If the host name and path from your URL don’t match anything in the list of returned routes, then you
need to add a route. See the router documentation.

ルートが存在する場合、エンドポイントへのアクセスをデバッグする必要があります。これはサービス
に関する問題をデバッグしている場合と同様のプロセスです。そのため、次の 「サービスのデバッグ」
セクションに進んでください。

36.5. サービスのデバッグ

クラスター内からサービスと通信できない場合 (サービスが直接通信できないか、またはルーターを使
用していてクラスターに入るまですべてが正常に機能している場合)、サービスに関連付けられている
エンドポイントを判別し、それらをデバッグする必要があります。

最初にサービスを取得します。

oc get services --all-namespaces
NAMESPACE NAME LABELS SELECTOR IP(S)
PORT(S)
default docker-registry docker-registry=default docker-registry=default
172.30.243.225 5000/TCP
default kubernetes component=apiserver,provider=kubernetes <none> 172.30.0.1
443/TCP
default router router=router router=router 172.30.213.8 80/TCP

You should see your service in the list. If not, then you need to define your service.

サービス出力に一覧表示される IP アドレスは Kubernetes サービス IP アドレスであり、これは
Kubernetes がサービスをサポートする Pod のいずれかにマップするものです。このの IP アドレスと通
信できるはずですが、通信できたとしても、すべての Pod にアクセスできる訳ではありません。ま
た、通信できない場合もすべての Pod がアクセスできない訳ではありません。これは kubeproxy が接
続している 1 つ の IP アドレスのステータスのみを示しています。

サービスをテストします。ノードのいずれかより以下を実行します。

第36章 OPENSHIFT SDN のトラブルシューティング

265

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-pods-and-services

curl -kv http://172.30.243.225:5000/bar # Replace the argument with your service IP
address and port

次にサービスをサポートしている Pod を見つけます (docker-registry を破損したサービスの名前に置
き換えます)。

oc get endpoints --selector=docker-registry
NAME ENDPOINTS
docker-registry 10.128.2.2:5000

ここではエンドポイントは 1 つだけであることを確認できます。そのため、サービステストが成功し、
ルーターテストに成功した場合には、極めて稀なことが生じている可能性があります。ただし、複数の
エンドポイントがあるか、またはサービステストが失敗した場合には、それぞれの エンドポイントにつ
いて以下を試行します。機能していないエンドポイントを特定できたら、次のセクションに進みます。

最初に、それぞれのエンドポイントをテストします (適切なエンドポイント IP、ポートおよびパスを持
つように URL を変更します)。

curl -kv http://10.128.2.2:5000/bar

これが機能する場合は、次のエンドポイントをテストします。失敗した場合はその情報をメモしておき
ます。次のセクションでその原因を判別します。

すべてが失敗した場合は、ローカルノードが機能していない可能があります。その場合は、「ローカル
ネットワークのデバッグ」 セクションに移行してください。

すべてが機能する場合は、「Kubernetes のデバッグ」 セクションに移行してサービス IP アドレスが機
能しない理由を判別します。

36.6. ノード間通信のデバッグ

機能していないエンドポイントの一覧を使用して、ノードに対する接続をテストする必要があります。

1. すべてのノードに予想される IP アドレスがあることを確認します。

oc get hostsubnet
NAME HOST HOST IP SUBNET
rh71-os1.example.com rh71-os1.example.com 192.168.122.46 10.1.1.0/24
rh71-os2.example.com rh71-os2.example.com 192.168.122.18 10.1.2.0/24
rh71-os3.example.com rh71-os3.example.com 192.168.122.202 10.1.0.0/24

DHCP を使用している場合はそれらが変更されている可能性があります。ホスト名、IP アドレ
ス、およびサブネットが予想される内容に一致していることを確認します。ノードの詳細が変
更されている場合は、oc edit hostsubnet を使用してエントリーを訂正します。

2. ノードアドレスおよびホスト名が正しいことを確認した後に、エンドポイント IP およびノード
IP を一覧表示します。

oc get pods --selector=docker-registry \
 --template='{{range .items}}HostIP: {{.status.hostIP}} PodIP: {{.status.podIP}}{{end}}
{{"\n"}}'

HostIP: 192.168.122.202 PodIP: 10.128.0.4

3. 事前にメモしたエンドポイント IP アドレスを見つけ、これを PodIP エントリーを検索し、対

OpenShift Container Platform 3.9 クラスター管理

266

3. 事前にメモしたエンドポイント IP アドレスを見つけ、これを PodIP エントリーを検索し、対
応する HostIP アドレスを見つけます。次に、HostIP からのアドレスを使用してノードホスト
レベルで接続をテストします。

ping -c 3 <IP_address>: 応答がないことは、中間ルーターが ICMP トラフィックを消費し
ている可能性があることを意味しています。

tracepath <IP_address>: ICMP パケットがすべてのホップによって返される場合、ター
ゲットにつながる IP ルートを表示します。
tracepath と ping の両方が失敗する場合、ローカルまたは仮想ネットワークの接続の問題
を探します。

4. ローカルネットワークの場合は、以下を確認します。

追加設定なしの状態のパケットのターゲットアドレスへのルートを確認します。

ip route get 192.168.122.202
 192.168.122.202 dev ens3 src 192.168.122.46
 cache

上記の例では、ソースアドレスが 192.168.122.46 の ens3 という名前のインターフェース
からターゲットに直接つながります。これが予想される結果である場合は ip a show dev
ens3 を使用してインターフェースの詳細を取得し、このインターフェースが予想されるイ
ンターフェースであることを確認します。

または、結果が以下になる可能性もあります。

ip route get 192.168.122.202
 1.2.3.4 via 192.168.122.1 dev ens3 src 192.168.122.46

これは、正しくルーティングされるために via値をパススルーします。トラフィックが正し
くルーティングされていることを確認します。ルートトラフィックのデバッグについて
は、本書では扱われません。

ノード間ネットワークの他のデバッグオプションについては、以下を確認して解決できます。

どちらの側にもイーサネットリンクがあるか? ethtool <network_interface> で Link detected:
yes を検索します。

デュプレックス設定とイーサネット速度はどちらの側でも適切に設定されているか? ethtool
<network_interface> 情報の残りの部分を確認します。

ケーブルは適切にプラグインされているか? 正しいポートに接続されているか?

スイッチは適切に設定されているか?

ノード間設定が適切であることを確認した後は、両サイドで SDN 設定を確認する必要があります。

36.7. ローカルネットワークのデバッグ

ここで通信できないものの、ノード間通信が設定された 1 つ以上のエンドポイントの一覧が表示されま
す。それぞれのエンドポイントについて問題点を特定する必要がありますが、まずは SDN が複数の異
なる Pod についてノードでネットワークをどのように設定しているかについて理解する必要がありま
す。

第36章 OPENSHIFT SDN のトラブルシューティング

267

36.7.1. ノードのインターフェース

以下は OpenShift SDN が作成するインターフェースです。

br0: コンテナーが割り当てられる OVS ブリッジデバイスです。OpenShift SDN はこのブリッ
ジにサブネットに固有ではないフロールールのセットも設定します。

tun0: OVS 内部ポート (br0 のポート 2) です。これにはクラスターサブネットゲートウェイア
ドレスが割り当てられ、外部ネットワークアクセスに使用されます。OpenShift SDN はクラス
ターサブネットから NAT 経由で外部ネットワークにアクセスできるように netfilter および
ルートルールを設定します。

vxlan_sys_4789: OVS VXLAN デバイス (br0 のポート 1) です。これはリモートノードのコンテ
ナーへのアクセスを提供します。OVS ルールでは vxlan0 として参照されます。

vethX (メイン netns 内): Docker netns における eth0 の Linux 仮想イーサネットのピアです。
これは他のポートのいずれかの OVS ブリッジに割り当てられます。

36.7.2. ノード内の SDN フロー

アクセスしようとしているもの (またはアクセスされるもの) によってパスは異なります。SDN が (ノー
ド内に) で接続する場所は 4 カ所あります。それらには上記の図で赤のラベルが付けられています。

Pod: トラフィックは同じマシンのある Pod から別の Pod に移動します (1 から他の 1 へ)。

リモートノード (または Pod): トラフィックは同じクラスター内のローカル Pod からリモート
ノードまたは Pod に移動します (1 から 2 へ)。

外部マシン: トラフィックはローカル Pod からクラスター外に移動します (1 から 3 へ)。

当然のこととして、トラフィックはこれらと反対方向でも移動します。

36.7.3. デバッグ手順

36.7.3.1. IP 転送は有効にされているか?

sysctl net.ipv4.ip_forward が 1 に設定されていること (およびホストが仮想マシンであるかどうか) を
確認します。

36.7.3.2. ルートは正しく設定されているか?

ip route でルートテーブルを確認します。

ip route

OpenShift Container Platform 3.9 クラスター管理

268

default via 192.168.122.1 dev ens3
10.128.0.0/14 dev tun0 proto kernel scope link # This sends all pod traffic into OVS
10.128.2.0/23 dev tun0 proto kernel scope link src 10.128.2.1 # This is traffic going to local
pods, overriding the above
169.254.0.0/16 dev ens3 scope link metric 1002 # This is for Zeroconf (may not be
present)
172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.42.1 # Docker's private IPs... used
only by things directly configured by docker; not OpenShift
192.168.122.0/24 dev ens3 proto kernel scope link src 192.168.122.46 # The physical interface on
the local subnet

10.128.x.x 行が表示されるはずです (Pod ネットワークが設定内でデフォルト範囲に設定されていること
を前提とします)。これが表示されない場合は、OpenShift Container Platform ログを確認します (「ロ
グの読み取り」 セクションを参照してください)。

36.7.4. Is the Open vSwitch configured correctly?

Check the Open vSwitch bridges on both sides:

ovs-vsctl list-br
br0

This should be br0.

You can list all of the ports that ovs knows about:

ovs-ofctl -O OpenFlow13 dump-ports-desc br0
OFPST_PORT_DESC reply (OF1.3) (xid=0x2):
 1(vxlan0): addr:9e:f1:7d:4d:19:4f
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max
 2(tun0): addr:6a:ef:90:24:a3:11
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max
 8(vethe19c6ea): addr:1e:79:f3:a0:e8:8c
 config: 0
 state: 0
 current: 10GB-FD COPPER
 speed: 10000 Mbps now, 0 Mbps max
 LOCAL(br0): addr:0a:7f:b4:33:c2:43
 config: PORT_DOWN
 state: LINK_DOWN
 speed: 0 Mbps now, 0 Mbps max

とくにアクティブなすべての Pod の vethX デバイスがポートとして表示されるはずです。

次に、そのブリッジに設定されているフローを一覧表示します。

ovs-ofctl -O OpenFlow13 dump-flows br0

ovs-subnet または ovs-multitenant プラグインのどちらを使用しているかに応じて結果は若干異なり
ますが、以下のような一般的な設定を確認することができます。

1. すべてのリモートノードには tun_src=<node_IP_address> に一致するフロー (ノードからの

第36章 OPENSHIFT SDN のトラブルシューティング

269

1. すべてのリモートノードには tun_src=<node_IP_address> に一致するフロー (ノードからの
着信 VXLAN トラフィック) およびアクション set_field:<node_IP_address>->tun_dst を含む
別のフロー(ノードへの発信 VXLAN トラフィック) が設定されている必要があります。

2. すべてのローカル Pod には arp_spa=<pod_IP_address> および arp_tpa=<pod_IP_address>
に一致するフロー (Pod の着信および発信 ARP トラフィック) と、nw_src=
<pod_IP_address> および nw_dst=<pod_IP_address> に一致するフロー (Pod の着信および
発信 IP トラフィック) が設定されている必要があります。

フローがない場合は、「ログの読み取り」 セクションを参照してください。

36.7.4.1. iptables 設定に誤りがないか?

iptables-save の出力をチェックし、トラフィックにフィルターを掛けていないことを確認します。
OpenShift Container Platform は通常の操作時に iptables ルールを設定するため、ここにエントリーが
表示されていても不思議なことではありません。

36.7.4.2. 外部ネットワークは正しく設定されているか?

外部ファイアウォール (ある場合) を確認し、ターゲットアドレスへのトラフィックを許可するかどうか
を確認します (これはサイトごとに異なるため、本書では扱われません)。

36.8. 仮想ネットワークのデバッグ

36.8.1. 仮想ネットワークのビルドに障害が発生している

仮想ネットワーク (例: OpeStack) を使用して OpenShift Container Platform をインストールしている場
合で、ビルドに障害が発生している場合、ターゲットノードホストの最大伝送単位 (MTU: maximum
transmission unit) はプライマリーネットワークインターフェース (例: eth0) の MTU との互換性がない
可能性があります。

ビルドが正常に完了するには、データをノードホスト間で渡すために SDN の MTU が eth0 ネットワー
クの MTU よりも小さくなければなりません。

1. ip addr コマンドを実行してネットワークの MTU を確認します。

ip addr

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
qlen 1000
 link/ether fa:16:3e:56:4c:11 brd ff:ff:ff:ff:ff:ff
 inet 172.16.0.0/24 brd 172.16.0.0 scope global dynamic eth0
 valid_lft 168sec preferred_lft 168sec
 inet6 fe80::f816:3eff:fe56:4c11/64 scope link
 valid_lft forever preferred_lft forever

上記のネットワークの MTU は 1500 です。

2. ノード設定の MTU はネットワーク値よりも小さくなければなりません。ターゲットに設定さ
れたノードホストの mtu を確認します。

cat /etc/origin/node/node-config.yaml
...

OpenShift Container Platform 3.9 クラスター管理

270

networkConfig:
 mtu: 1450
 networkPluginName: company/openshift-ovs-subnet
...

上記のノード設定ファイルでは、mtu 値はネットワーク MTU よりも低くなるため、設定は不
要になります。mtu 値がこれより高くなる場合はファイルを編集して、値をプライマリーネッ
トワークインターフェースの MTU よりも少なくとも 50 単位分下げてノードサービスを再起動
します。これにより、より大きなパケットのデータをノード間で渡すことが可能になります。

36.9. POD の EGRESS のデバッグ

Pod から外部サービスへのアクセスを試行する場合、以下の例のようになります。

curl -kv github.com

DNS が適切に解決されていることを確認します。

dig +search +noall +answer github.com

That should return the IP address for the github server, but check that you got back the correct address.
If you get back no address, or the address of one of your machines, then you may be matching the
wildcard entry in yoir local DNS server.

これを修正するには、ワイルドカードエントリーを持つ DNS サーバーが /etc/resolv.conf の
nameserver として一覧表示されていないことを確認するか、または ワイルドカードドメインが
search 一覧に一覧表示されていないことを確認する必要があります。

正しい IP アドレスが返される場合、「ローカルネットワークのデバッグ」 の前述のデバッグに関する
アドバイスに従ってください。通常、トラフィックはポート 2 の Open vSwitch から iptables ルールお
よびルートテーブルを通過するはずです。

36.10. ログの読み取り

次を実行します: journalctl -u atomic-openshift-node.service --boot | less

Output of setup script: 行を検索します。'+' で始まるすべての行については、その下にスクリプト手順
が記述されます。この部分で明らかなエラーがあるかどうかを調べます。

スクリプトを追ってみると、Output of adding table=0 という行を見つけることができるはずです。こ
れは OVS ルールであり、エラーは存在しないはずです。

36.11. KUBERNETES のデバッグ

iptables -t nat -L を確認して、サービスがローカルマシンでkubeproxy の適切なポートに NAT されて
いることを確認します。

第36章 OPENSHIFT SDN のトラブルシューティング

271

警告

上記についてはまもなく全面的に変更されます…​ Kubeproxy は除去され、iptables
のみのソリューションに置き換わります。

36.12. 診断ツールを使用したネットワークの問題の検出

クラスター管理者として診断ツールを実行し、共通するネットワークの問題を診断します。

oc adm diagnostics NetworkCheck

診断ツールは、指定したコンポーネントのエラー状態をチェックする一連のチェックを実行します。詳
細は、「診断ツール」のセクションを参照してください。

注記

現時点で、診断ツールでは IP フェイルオーバーの問題を診断できません。回避策とし
て、スクリプトをマスターの https://raw.githubusercontent.com/openshift/openshift-
sdn/master/hack/ipf-debug.sh で (またはマスターへのアクセスのある別のマシンから)
実行して役に立つデバッグ情報を生成できます。ただし、このスクリプトはサポート対
象外です。

デフォルトで、 oc adm diagnostics NetworkCheck はエラーのログを /tmp/openshift/ に記録しま
す。これは --network-logdir オプションで設定できます。

oc adm diagnostics NetworkCheck --network-logdir=<path/to/directory>

36.13. その他の注意点

36.13.1. ingress についての追加情報

Kube: サービスを NodePort として宣言し、クラスター内のすべてのマシンでそのポートを要
求し、kube-proxy およびサポートする Pod にルーティングしま
す。https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport を参
照してください (一部のノードは外部からアクセスできる必要があります)。

Kube: LoadBalancer として宣言し、独自に 判別したオブジェクトが残りを実行します。

OS/AE: いずれもルーターを使用します。

36.13.2. TLS ハンドシェイクのタイムアウト

Pod がデプロイに失敗する場合、docker ログで TLS ハンドシェイクのタイムアウトを確認します。

$ docker log <container_id>
...
[...] couldn't get deployment [...] TLS handshake timeout
...



OpenShift Container Platform 3.9 クラスター管理

272

https://raw.githubusercontent.com/openshift/openshift-sdn/master/hack/ipf-debug.sh
https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport

この状態は通常はセキュアな接続を確立する際のエラーであり、このエラーは tun0 とプライマリーイ
ンターフェース (例: eth0) 間の MTU 値の大きな違い (例: tun0 MTU が 1500 に対し eth0 MTU が 9000
(ジャンボフレーム) である場合) によって引き起こされる可能性があります。

36.13.3. デバッグについての他の注意点

(Linux 仮想イーサネットペア) のピアインターフェースは ethtool -S ifname で判別できます。

ドライバータイプ: ethtool -i ifname

第36章 OPENSHIFT SDN のトラブルシューティング

273

第37章 診断ツール

37.1. 概要

oc adm diagnostics コマンドは一連のチェックを実行し、ホストまたはクラスターのエラーの状態に
ついてチェックします。とくに以下を実行します。

デフォルトのレジストリーおよびルーターが実行中であり、正しく設定されていることを確認
します。

ClusterRoleBindings および ClusterRoles で、ベースポリシーとの整合性を確認します。

すべてのクライアント設定コンテキストが有効で接続可能であることを確認します。

SkyDNS が適切に機能しており、Pod に SDN 接続があることを確認します。

ホストのマスターおよびノード設定を検証します。

ノードが実行中で、利用可能であることを確認します。

既知のエラーについてホストログを分析します。

systemd ユニットがホストに対して予想通りに設定されていることを確認します。

37.2. 診断ツールの使用

OpenShift Container Platform can be deployed in many ways: built from source, included in a VM image,
in a container image, or as enterprise RPMs. Each method implies a different configuration and
environment. To minimize environment assumptions, the diagnostics were added to the openshift
binary so that wherever there is an OpenShift Container Platform server or client, the diagnostics can
run in the exact same environment.

診断ツールを使用するには (マスターホスト上で使用するのが望ましい)、クラスター管理者として以下
を実行します。

$ oc adm diagnostics

This runs all available diagnostics, skipping any that do not apply.

You can run one or multiple specific diagnostics by name, or run specific diagnostics by name as you
work to address issues. For example:

$ oc adm diagnostics <name1> <name2>

The options mostly require working configuration files. For example, the NodeConfigCheck does not
run unless a node configuration is available.

Diagnostics look for configuration files in standard locations:

クライアント:

As indicated by the $KUBECONFIG environment variable variable

~/.kube/config file

OpenShift Container Platform 3.9 クラスター管理

274

マスター:

/etc/origin/master/master-config.yaml

ノード:

/etc/origin/node/node-config.yaml

Non-standard locations can be specified with flags (respectively, --config, --master-config, and --
node-config). If a configuration file is not found or specified, related diagnostics are skipped.

利用可能な診断には以下が含まれます。

診断名 目的

AggregatedLogging 集約されたログ統合を使用して適切な設定および操
作を確認します。

AnalyzeLogs systemd サービスログで問題の有無を確認します。
チェックの実行に設定ファイルは不要です。

ClusterRegistry Check that the cluster has a working Docker registry
for builds and image streams.

ClusterRoleBindings デフォルトのクラスターロールバインディングが存
在し、ベースポリシーに応じて予想されるサブジェ
クトが含まれることを確認します。

ClusterRoles クラスターロールが存在し、ベースポリシーに応じ
て予想されるパーミッションが含まれることを確認
します。

ClusterRouter クラスター内に有効なデフォルトルーターがあるこ
とを確認します。

ConfigContexts クライアント設定の各コンテキストが完成したもの
であり、その API サーバーへの接続があることを確
認します。

DiagnosticPod アプリケーションの観点で診断を実行する Pod を作
成します。これは Pod 内の DNS が予想通りに機能し
ており、デフォルトサービスアカウントの認証情報
がマスター API に対して正しく認証されることを確
認します。

EtcdWriteVolume 一定期間における etcd に対する書き込みのボリュー
ムを確認し、操作およびキー別にそれらを分類しま
す。この診断は他の診断と同じ速度で実行されず、
かつ etcd への負荷を増えることから、とくに要求さ
れる場合にのみ実行されます。

第37章 診断ツール

275

MasterConfigCheck このホストのマスター設定ファイルで問題の有無を
確認します。

MasterNode このホストで実行されているマスターがノードも実
行していることを確認し、それがクラスター SDN の
メンバーであることを確認します。

MetricsApiProxy 統合 Heapster メトリクスがクラスター API プロキ
シー経由でアクセス可能であることを確認します。

NetworkCheck Create diagnostic pods on multiple nodes to
diagnose common network issues from an application
standpoint. For example, this checks that pods can
connect to services, other pods, and the external
network.

エラーがある場合は、この診断は詳細な分析用とし
てローカルディレクトリー (デフォルトで
/tmp/openshift/) に結果および取得されたファイル
を保存します。ディレクトリーは --network-logdir
フラグで指定することができます。

NodeConfigCheck このホストのノード設定ファイルで問題の有無を確
認します。

NodeDefinitions マスター API で定義されたノードが利用可能な状態
にあり、Pod をスケジュールできることを確認しま
す。

RouteCertificateValidation すべてのルート証明書で、拡張される検証で拒否さ
れる可能性のあるものがあるかどうかを確認しま
す。

ServiceExternalIPs マスター設定に基づいて無効にされている外部 IP を
指定する既存サービスの有無を確認します。

UnitStatus OpenShift Container Platform に関連して、このホス
トでユニットについての systemd ステータスを確認
します。チェックの実行に設定ファイルは不要で
す。

診断名 目的

37.3. サーバー環境における診断の実行

Master and node diagnostics are most useful in an Ansible-deployed cluster. This provides some
diagnostic benefits:

マスターおよびノード設定は標準的な場所にある設定ファイルに基づく。

systemd ユニットがサーバーを管理するように設定される。

OpenShift Container Platform 3.9 クラスター管理

276

すべてのコンポーネントが journald に対してログを記録する。

Having configuration files where Ansible places them means that you will generally not need to specify
where to find them. Running oc adm diagnostics without flags will look for master and node
configurations in the standard locations and use them if found; this should make the Ansible-installed
use case as simple as possible. Also, it is easy to specify configuration files that are not in the expected
locations:

$ oc adm diagnostics --master-config=<file_path> --node-config=<file_path>

Systemd units and logs entries in journald are necessary for the current log diagnostic logic. For other
deployment types, logs may be going into files, to stdout, or may combine node and master. At this time,
for these situations, log diagnostics are not able to work properly and will be skipped.

37.4. クライアント環境での診断の実行

You may have access as an ordinary user, and/or as a cluster-admin user, and/or may be running on a
host where OpenShift Container Platform master or node servers are operating. The diagnostics
attempt to use as much access as the user has available.

A client with ordinary access should be able to diagnose its connection to the master and run a
diagnostic pod. If multiple users or masters are configured, connections will be tested for all, but the
diagnostic pod only runs against the current user, server, or project.

A client with cluster-admin access available (for any user, but only the current master) should be able to
diagnose the status of infrastructure such as nodes, registry, and router. In each case, running oc adm
diagnostics looks for the client configuration in its standard location and uses it if available.

37.5. ANSIBLE ベースのヘルスチェック

Additional diagnostic health checks are available through the Ansible-based tooling used to install and
manage OpenShift Container Platform clusters. They can report common deployment problems for the
current OpenShift Container Platform installation.

These checks can be run either using the ansible-playbook command (the same method used during
Advanced Installation) or as a containerized version of openshift-ansible. For the ansible-playbook
method, the checks are provided by the atomic-openshift-utils RPM package. For the containerized
method, the openshift3/ose-ansible container image is distributed via the Red Hat Container Registry .
Example usage for each method are provided in subsequent sections.

以下のヘルスチェックは、デプロイされた OpenShift Container Platform クラスターを対象に、指定さ
れた health.yml playbook を使用して Ansible インベントリーファイルに対して実行されることが意図
されている診断タスクのセットのこと指します。

第37章 診断ツール

277

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-advanced-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-advanced-install
https://github.com/openshift/openshift-ansible/blob/master/README_CONTAINER_IMAGE.md
https://registry.access.redhat.com

警告

Due to potential changes the health check playbooks could make to hosts, they
should only be used on clusters that have been deployed using Ansible and using the
same inventory file with which it was deployed. Changes mostly involve installing
dependencies so that the checks can gather required information, but it is possible
for certain system components (for example, docker or networking) to be altered if
their current state differs from the configuration in the inventory file. Only run these
health checks if you would not expect your inventory file to make any changes to
your current cluster configuration.

表37.1 正常性診断チェック

チェック名 目的

etcd_imagedata_size This check measures the total size of OpenShift
Container Platform image data in an etcd cluster.
The check fails if the calculated size exceeds a user-
defined limit. If no limit is specified, this check will fail
if the size of image data amounts to 50% or more of
the currently used space in the etcd cluster.

A failure from this check indicates that a significant
amount of space in etcd is being taken up by
OpenShift Container Platform image data, which can
eventually result in your etcd cluster crashing.

A user-defined limit may be set by passing the
etcd_max_image_data_size_bytes variable. For
example, setting
etcd_max_image_data_size_bytes=40000000
000 will cause the check to fail if the total size of
image data stored in etcd exceeds 40 GB.

etcd_traffic このチェックは、etcd ホストの通常よりも高いレベ
ルのトラフィックを検知します。etcd 期間の警告と
共に journalctl ログエントリーが見つかる場合に失
敗します。

For further information on improving etcd
performance, see Recommended Practices for
OpenShift Container Platform etcd Hosts and the
Red Hat Knowledgebase.



OpenShift Container Platform 3.9 クラスター管理

278

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/scaling_and_performance_guide/#scaling-performance-capacity-host-practices-etcd
https://access.redhat.com/solutions/2916381

etcd_volume このチェックにより、etcd クラスターのボリューム
使用がユーザー指定の最大しきい値を超えないよう
にできます。最大しきい値が指定されていない場
合、デフォルトは合計ボリュームサイズの 90% に設
定されます。

ユーザー定義の制限
は、etcd_device_usage_threshold_percent 変
数を渡すことで設定できます。

docker_storage docker デーモン (ノードおよびコンテナー化された
インストール) に依存するホストでのみ実行されま
す。docker の合計使用量がユーザー定義制限を超え
ないこと確認します。ユーザー定義の制限が設定さ
れていない場合、docker 使用量の最大しきい値のデ
フォルトは利用可能な合計サイズの 90% になりま
す。

The threshold limit for total percent usage can be set
with a variable in your inventory file, for example
max_thinpool_data_usage_percent=90.

This also checks that docker's storage is using a
supported configuration.

curator、elasticsearch、fluentd、kibana This set of checks verifies that Curator, Kibana,
Elasticsearch, and Fluentd pods have been deployed
and are in a running state, and that a connection
can be established between the control host and the
exposed Kibana URL. These checks will only run if the
openshift_logging_install_logging inventory
variable is set to true, to ensure that they are
executed in a deployment where cluster logging has
been enabled.

logging_index_time このチェックは、ロギングスタックデプロイメント
におけるログ作成から Elasticsearch によるログ集計
までの通常の時間差よりも値が高くなるケースを検
知します。新規のログエントリーがタイムアウト内
(デフォルトでは 30 秒内) に Elasticserach によって
クエリーされない場合に失敗します。このチェック
はロギングが有効にされている場合にのみ実行され
ます。

A user-defined timeout may be set by passing the
openshift_check_logging_index_timeout_se
conds variable. For example, setting
openshift_check_logging_index_timeout_se
conds=45 will cause the check to fail if a newly-
created log entry is not able to be queried via
Elasticsearch after 45 seconds.

チェック名 目的

第37章 診断ツール

279

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#storage-for-the-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-aggregate-logging

1

2

注記

A similar set of checks meant to run as part of the installation process can be found in
Configuring Cluster Pre-install Checks. Another set of checks for checking certificate
expiration can be found in Redeploying Certificates.

37.5.1. ansible-playbook によるヘルスチェックの実行

To run the openshift-ansible health checks using the ansible-playbook command, specify your
cluster’s inventory file and run the health.yml playbook:

ansible-playbook -i <inventory_file> \
 /usr/share/ansible/openshift-ansible/playbooks/openshift-checks/health.yml

コマンドラインに変数を設定するには、key=value 形式の必要な変数に -e フラグを組み込みます。以
下は例になります。

ansible-playbook -i <inventory_file> \
 /usr/share/ansible/openshift-ansible/playbooks/openshift-checks/health.yml
 -e openshift_check_logging_index_timeout_seconds=45
 -e etcd_max_image_data_size_bytes=40000000000

特定のチェックを無効にするには、Playbook を実行する前にインベントリーファイルのカンマ区切り
のチェック名の一覧と共に変数 openshift_disable_check を組み込みます。以下は例になります。

openshift_disable_check=etcd_traffic,etcd_volume

Alternatively, set any checks you want to disable as variables with -e openshift_disable_check=
<check1>,<check2> when running the ansible-playbook command.

37.5.2. Docker CLI でのヘルスチェックの実行

It is possible to run the openshift-ansible playbooks in a Docker container, avoiding the need for
installing and configuring Ansible, on any host that can run the ose-ansible image via the Docker CLI.

To do so, specify your cluster’s inventory file and the health.yml playbook when running the following
docker run command as a non-root user that has privileges to run containers:

docker run -u `id -u` \ 1
 -v $HOME/.ssh/id_rsa:/opt/app-root/src/.ssh/id_rsa:Z,ro \ 2
 -v /etc/ansible/hosts:/tmp/inventory:ro \ 3
 -e INVENTORY_FILE=/tmp/inventory \
 -e PLAYBOOK_FILE=playbooks/openshift-checks/health.yml \ 4
 -e OPTS="-v -e openshift_check_logging_index_timeout_seconds=45 -e
etcd_max_image_data_size_bytes=40000000000" \ 5
 openshift3/ose-ansible

これらのオプションにより、コンテナーは現行ユーザーと同じ UID で実行されます。これは SSH
キーをコンテナー内で読み取られるようにするようにパーミッションで必要になります (SSH プラ
イベートキーはその所有者によってのみ読み取り可能であることが予想されます)。

SSH キーは、コンテナーを非 root ユーザーとして実行するなどの通常の使用では /opt/app-
root/src/.ssh の下にマウントします。

OpenShift Container Platform 3.9 クラスター管理

280

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-cluster-pre-install-checks
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-redeploying-certificates

3

4

5

Change /etc/ansible/hosts to the location of your cluster’s inventory file, if different. This file will
be bind-mounted to /tmp/inventory, which is used according to the INVENTORY_FILE

PLAYBOOK_FILE 環境変数は、コンテナー内の /usr/share/ansible/openshift-ansible に関連し
て health.yml playbook の場所に設定されます。

-e key=value 形式で単一の実行に必要な変数を設定します。

In the above command, the SSH key is mounted with the :Z flag so that the container can read the SSH
key from its restricted SELinux context; this means that your original SSH key file will be relabeled to
something like system_u:object_r:container_file_t:s0:c113,c247. For more details about :Z, see the
docker-run(1) man page.

Keep this in mind for these volume mount specifications ​because it could have unexpected
consequences. For example, if you mount (and ​therefore relabel) your $HOME/.ssh directory, sshd will
become unable to access your public keys to allow remote login. To avoid altering the original file labels,
mounting a copy of the SSH key (or directory) is recommended.

You might want to mount an entire .ssh directory for various reasons. For example, this would allow you
to use an SSH configuration to match keys with hosts or modify other connection parameters. It would
also allow you to provide a known_hosts file and have SSH validate host keys, which is disabled by the
default configuration and can be re-enabled with an environment variable by adding -e
ANSIBLE_HOST_KEY_CHECKING=True to the docker command line.

第37章 診断ツール

281

第38章 アプリケーションのアイドリング

38.1. 概要

OpenShift Container Platform 管理者は、アプリケーションをアイドリング状態にしてリソース消費を
減らすことができます。これは、コストがリソース消費と関連付けられるパブリッククラウドにデプロ
イされている場合に役立ちます。

スケーラブルなリソースが使用されていない場合、OpenShift Container Platform はリソースを検出し
た後にそれらを 0 レプリカに設定してアイドリングします。ネットワークトラフィックがリソースに送
信される場合、レプリカをスケールアップしてアイドリング解除を実行し、操作を続行します。

アプリケーションは複数のサービスやデプロイメント設定などの他のスケーラブルななリソースで構成
されています。アプリケーションのアイドリングには、関連するすべてのリソースのアイドリングを実
行することが関係します。

38.2. アプリケーションのアイドリング

アプリケーションのアイドリングには、サービスに関連付けられたスケーラブルなリソース (デプロイ
メント設定、レプリケーションコントローラーなど) を検索することが必要です。アプリケーションの
アイドルリングには、サービスを検索してこれをアイドリング状態としてマークし、リソースを zero
レプリカにスケールダウンすることが関係します。

oc idle コマンドを実行して単一サービスのアイドリングを実行するか、または --resource-names-file
オプションを使用して複数サービスのアイドリングを実行できます。

38.2.1. 単一サービスのアイドリング

以下のコマンドを使用して単一サービスをアイドリングします。

$ oc idle <service>

38.2.2. 複数サービスのアイドリング

必要なサービスの一覧を作成し、--resource-names-file オプションを oc idle コマンドで使用すること
で複数サービスをアイドリングします。

これは、アプリケーションがプロジェクト内の一連のサービスにまたがる場合や、同じプロジェクト内
で複数のアプリケーションを一括してアイドリングするため、複数サービスをスクリプトを併用してア
イドリングする場合に役立ちます。

1. 複数サービスの一覧を含むテキストファイルを作成します (それぞれを各行に指定)。

2. --resource-names-file オプションを使用してサービスをアイドリングします。

$ oc idle --resource-names-file <filename>

注記

idle コマンドは単一プロジェクトに制限されます。クラスター全体でアプリケーション
をアイドリングするには、各プロジェクトに対して idle コマンドをそれぞれ実行しま
す。

OpenShift Container Platform 3.9 クラスター管理

282

38.3. アプリケーションのアイドリング解除

アプリケーションサービスは、ネットワークトラフィックを受信し、直前の状態に再びスケールアップ
すると再びアクティブになります。これには、サービスへのトラフィックとルートを通るトラフィック
の両方が含まれます。

アプリケーションのアイドリング解除はリソースをスケールアップすることで手動で実行できます。た
とえば、deploymentconfig をスケールアップするには、以下のコマンドを実行します。

$ oc scale --replicas=1 dc <deploymentconfig>

注記

現時点で、ルーターによる自動アイドルリング解除はデフォルトの HAProxy ルーターの
みでサポートされています。

第38章 アプリケーションのアイドリング

283

第39章 クラスター容量の分析

39.1. 概要

As a cluster administrator, you can use the cluster capacity tool to view the number of pods that can be
scheduled to increase the current resources before they become exhausted, and to ensure any future
pods can be scheduled. This capacity comes from an individual node host in a cluster, and includes CPU,
memory, disk space, and others.

The cluster capacity tool simulates a sequence of scheduling decisions to determine how many
instances of an input pod can be scheduled on the cluster before it is exhausted of resources to provide
a more accurate estimation.

注記

ノード間に分散しているすべてのリソースがカウントされないため、残りの割り当て可
能な容量は概算となります。残りのリソースのみが分析対象となり、クラスターでのス
ケジュール可能な所定要件を持つ Pod のインスタンス数という点から消費可能な容量を
見積もります。

Pod のスケジューリングはその選択およびアフィニティー条件に基づいて特定のノード
セットについてのみサポートされる可能性があります。そのため、クラスターでスケ
ジュール可能な残りの Pod 数を見積もることが困難になる場合があります。

You can run the cluster capacity analysis tool as a stand-alone utility from the command line, or as a job
in a pod inside an OpenShift Container Platform cluster. Running it as job inside of a pod enables you to
run it multiple times without intervention.

39.2. コマンドラインでのクラスター容量分析の実行

To run the tool on the command line:

$ cluster-capacity --kubeconfig <path-to-kubeconfig> \
 --podspec <path-to-pod-spec>

The --kubeconfig option indicates your Kubernetes configuration file, and the --podspec option
indicates a sample pod specification file, which the tool uses for estimating resource usage. The
podspec specifies its resource requirements as limits or requests. The cluster capacity tool takes the
pod’s resource requirements into account for its estimation analysis.

Pod 仕様入力の例は以下の通りです。

apiVersion: v1
kind: Pod
metadata:
 name: small-pod
 labels:
 app: guestbook
 tier: frontend
spec:
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v4

OpenShift Container Platform 3.9 クラスター管理

284

--verbose オプションを追加して、クラスター内の各ノードにスケジュールできる Pod 数についての詳
細説明を出力できます。

$ cluster-capacity --kubeconfig <path-to-kubeconfig> \
 --podspec <path-to-pod-spec> --verbose

出力は以下のようになります。

small-pod pod requirements:
 - CPU: 150m
 - Memory: 100Mi

The cluster can schedule 52 instance(s) of the pod small-pod.

Termination reason: Unschedulable: No nodes are available that match all of the
following predicates:: Insufficient cpu (2).

Pod distribution among nodes:
small-pod
 - 192.168.124.214: 26 instance(s)
 - 192.168.124.120: 26 instance(s)

上記の例では、クラスターにスケジュールできる Pod の見積り数は 52 です。

39.3. POD 内のジョブとしてのクラスター容量分析の実行

クラスター容量ツールを Pod 内のジョブとして実行すると、ユーザーの介入なしに複数回実行できる
という利点があります。クラスター容量ツールをジョブとして実行するには、ConfigMap を使用する
必要があります。

1. クラスターロールを作成します。

$ cat << EOF| oc create -f -
kind: ClusterRole
apiVersion: v1
metadata:
 name: cluster-capacity-role
rules:
- apiGroups: [""]
 resources: ["pods", "nodes", "persistentvolumeclaims", "persistentvolumes", "services"]
 verbs: ["get", "watch", "list"]
EOF

2. サービスアカウントを作成します。

 imagePullPolicy: Always
 resources:
 limits:
 cpu: 150m
 memory: 100Mi
 requests:
 cpu: 150m
 memory: 100Mi

第39章 クラスター容量の分析

285

$ oc create sa cluster-capacity-sa

3. ロールをサービスアカウントに追加します。

$ oc adm policy add-cluster-role-to-user cluster-capacity-role \
 system:serviceaccount:default:cluster-capacity-sa

4. Pod 仕様を定義し、作成します。

5. クラスター容量分析は、cluster-capacity-configmap という名前の ConfigMap を使用してボ
リュームにマウントされ、入力 Pod 仕様ファイル pod.yaml はパス /test-pod のボリューム
test-volume にマウントされます。
ConfigMap を作成していない場合は、ジョブの作成前にこれを作成します。

$ oc create configmap cluster-capacity-configmap \
 --from-file=pod.yaml=pod.yaml

6. ジョブ仕様ファイルの以下のサンプルを使用してジョブを作成します。

apiVersion: v1
kind: Pod
metadata:
 name: small-pod
 labels:
 app: guestbook
 tier: frontend
spec:
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v4
 imagePullPolicy: Always
 resources:
 limits:
 cpu: 150m
 memory: 100Mi
 requests:
 cpu: 150m
 memory: 100Mi

apiVersion: batch/v1
kind: Job
metadata:
 name: cluster-capacity-job
spec:
 parallelism: 1
 completions: 1
 template:
 metadata:
 name: cluster-capacity-pod
 spec:
 containers:
 - name: cluster-capacity
 image: openshift/origin-cluster-capacity
 imagePullPolicy: "Always"

OpenShift Container Platform 3.9 クラスター管理

286

1 クラスター容量ツールにクラスター内で Pod として実行されていることを認識させる環境
変数です。
ConfigMap の pod.yaml キーは Pod 仕様ファイル名と同じですが、これは必須ではあり
ません。これを実行することで、入力 Pod 仕様ファイルは /test-pod/pod.yaml として
Pod 内でアクセスできます。

7. クラスター容量イメージを Pod のジョブとして実行します。

$ oc create -f cluster-capacity-job.yaml

8. ジョブログを確認し、クラスター内でスケジュールできる Pod の数を確認します。

$ oc logs jobs/cluster-capacity-job
small-pod pod requirements:
 - CPU: 150m
 - Memory: 100Mi

The cluster can schedule 52 instance(s) of the pod small-pod.

Termination reason: Unschedulable: No nodes are available that match all of the
following predicates:: Insufficient cpu (2).

Pod distribution among nodes:
small-pod
 - 192.168.124.214: 26 instance(s)
 - 192.168.124.120: 26 instance(s)

 volumeMounts:
 - mountPath: /test-pod
 name: test-volume
 env:
 - name: CC_INCLUSTER 1
 value: "true"
 command:
 - "/bin/sh"
 - "-ec"
 - |
 /bin/cluster-capacity --podspec=/test-pod/pod.yaml --verbose
 restartPolicy: "Never"
 serviceAccountName: cluster-capacity-sa
 volumes:
 - name: test-volume
 configMap:
 name: cluster-capacity-configmap

第39章 クラスター容量の分析

287

	目次
	第1章 概要
	第2章 MANAGING NODES
	2.1. 概要
	2.2. LISTING NODES
	2.3. ADDING NODES
	2.4. DELETING NODES
	2.5. UPDATING LABELS ON NODES
	2.6. LISTING PODS ON NODES
	2.7. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE
	2.8. EVACUATING PODS ON NODES
	2.9. REBOOTING NODES
	2.9.1. Infrastructure Nodes
	2.9.2. Using Pod Anti-affinity
	2.9.3. Handling Nodes Running Routers

	2.10. ノードリソースの設定
	2.10.1. Setting Maximum Pods Per Node

	2.11. RESETTING DOCKER STORAGE
	2.12. CHANGING NODE TRAFFIC INTERFACE

	第3章 ユーザーの管理
	3.1. 概要
	3.2. ユーザーの作成
	3.3. ユーザーおよび ID リストの表示
	3.4. グループの作成
	3.5. ユーザーおよびグループラベルの管理
	3.6. ユーザーの削除

	第4章 プロジェクトの管理
	4.1. 概要
	4.2. プロジェクトのセルフプロビジョニング
	4.2.1. 新規プロジェクトのテンプレートの変更
	4.2.2. セルフプロビジョニングの無効化

	4.3. ノードセレクターの使用
	4.3.1. クラスター全体でのデフォルトノードセレクターの設定
	4.3.2. プロジェクト全体でのノードセレクターの設定
	4.3.3. 開発者が指定するノードセレクター

	4.4. ユーザーあたりのセルフプロビジョニングされたプロジェクト数の制限

	第5章 POD の管理
	5.1. 概要
	5.2. 1 回実行 (RUN-ONCE) POD 期間の制限
	5.2.1. RunOnceDuration プラグインの設定
	5.2.2. プロジェクト別のカスタム期間の指定
	5.2.2.1. Egress ルーター Pod のデプロイ
	5.2.2.2. Egress ルーターサービスのデプロイ

	5.2.3. Egress ファイアウォールでの Pod アクセスの制限
	5.2.3.1. Pod アクセス制限の設定

	5.3. POD で利用可能な帯域幅の制限
	5.4. POD の DISRUPTION BUDGET (停止状態の予算) の設定
	5.5. INJECTING INFORMATION INTO PODS USING POD PRESETS

	第6章 ネットワークの管理
	6.1. 概要
	6.2. POD ネットワークの管理
	6.2.1. プロジェクトネットワークへの参加

	6.3. プロジェクトネットワークの分離
	6.3.1. プロジェクトネットワークのグローバル化

	6.4. ルートおよび INGRESS オブジェクトにおけるホスト名の競合防止の無効化
	6.5. EGRESS トラフィックの制御
	6.5.1. 外部リソースへのアクセスを制限するための Egress ファイアウォールの使用
	6.5.2. 外部リソースから Pod トラフィックを認識可能にするための Egress ルーターの使用
	6.5.2.1. リダイレクトモードでの Egress ルーター Pod のデプロイ
	6.5.2.2. 複数の宛先へのリダイレクト
	6.5.2.3. ConfigMap の使用による EGRESS_DESTINATION の指定
	6.5.2.4. Egress ルーター HTTP プロキシー Pod のデプロイ
	6.5.2.5. Egress ルーター Pod のフェイルオーバーの有効化

	6.5.3. 外部リソースへのアクセスを制限するための iptables ルールの使用

	6.6. 外部プロジェクトトラフィックの静的 IP の有効化
	6.7. マルチキャストの有効化
	6.8. NETWORKPOLICY の有効化
	6.8.1. NetworkPolicy およびルーター
	6.8.2. 新規プロジェクトのデフォルト NetworkPolicy の設定

	6.9. HTTP STRICT TRANSPORT SECURITY の有効化
	6.10. スループットの問題のトラブルシューティング

	第7章 サービスアカウントの設定
	7.1. 概要
	7.2. ユーザー名およびグループ
	7.3. サービスアカウントの管理
	7.4. サービスアカウント認証の有効化
	7.5. 管理サービスアカウント
	7.6. インフラストラクチャーサービスアカウント
	7.7. サービスアカウントおよびシークレット

	第8章 ロールベースアクセス制御 (RBAC) の管理
	8.1. 概要
	8.2. VIEWING ROLES AND BINDINGS
	8.2.1. Viewing Cluster Roles
	8.2.2. Viewing Local Roles and Bindings

	8.3. MANAGING ROLE BINDINGS
	8.4. CREATING A LOCAL ROLE
	8.5. CLUSTER AND LOCAL ROLE BINDINGS

	第9章 イメージポリシー
	9.1. 概要
	9.2. インポート用に許可されるレジストリーの設定
	9.3. IMAGEPOLICY 受付プラグインの設定
	9.4. IMAGEPOLICY 受付プラグインのテスト

	第10章 イメージの署名
	10.1. 概要
	10.2. ATOMIC CLI を使用したイメージの署名
	10.3. OPENSHIFT CLI を使用したイメージ署名の検証
	10.4. レジストリー API の使用によるイメージ署名へのアクセス
	10.4.1. API 経由でのイメージ署名の書き込み
	10.4.2. API 経由でのイメージ署名の読み取り
	10.4.3. 署名ストアからのイメージ署名の自動インポート

	第11章 スコープ付きトークン
	11.1. 概要
	11.2. 評価
	11.3. ユーザースコープ
	11.4. ロールスコープ

	第12章 イメージのモニタリング
	12.1. 概要
	12.2. イメージ統計の表示
	12.3. IMAGESTREAMS 統計の表示
	12.4. イメージのプルーニング

	第13章 SCC (SECURITY CONTEXT CONSTRAINTS) の管理
	13.1. 概要
	13.2. SCC (SECURITY CONTEXT CONSTRAINTS) の一覧表示
	13.3. SCC (SECURITY CONTEXT CONSTRAINTS) オブジェクトの検査
	13.4. 新規 SCC (SECURITY CONTEXT CONSTRAINTS) の作成
	13.5. SCC (SECURITY CONTEXT CONSTRAINTS) の削除
	13.6. SCC (SECURITY CONTEXT CONSTRAINTS) の更新
	13.6.1. SCC (Security Context Constraints) 設定のサンプル

	13.7. デフォルト SCC (SECURITY CONTEXT CONSTRAINTS) の更新
	13.8. 使用方法
	13.8.1. 特権付き SCC のアクセス付与
	13.8.2. 特権付き SCC のサービスアカウントアクセスの付与
	13.8.3. Dokerfile の USER によるイメージ実行の有効化
	13.8.4. ルートを要求するコンテナーイメージの有効化
	13.8.5. レジストリーでの --mount-host の使用
	13.8.6. 追加機能の提供
	13.8.7. クラスターのデフォルト動作の変更
	13.8.8. hostPath ボリュームプラグインの使用
	13.8.9. 受付を使用した特定 SCC の初回使用
	13.8.10. SCC のユーザー、グループまたはプロジェクトへの追加

	第14章 スケジューリング
	14.1. 概要
	14.1.1. 概要
	14.1.2. デフォルトスケジューリング
	14.1.3. 詳細スケジューリング
	14.1.4. カスタムスケジューリング

	14.2. デフォルトスケジューリング
	14.2.1. 概要
	14.2.2. 汎用スケジューラー
	14.2.3. ノードのフィルター
	14.2.3.1. フィルターされたノード一覧の優先順位付け
	14.2.3.2. 最適ノードの選択

	14.2.4. スケジューラーポリシー
	14.2.4.1. スケジューラーポリシーの変更

	14.2.5. 利用可能な述語
	14.2.5.1. 静的な述語
	14.2.5.2. 汎用的な述語
	14.2.5.3. 設定可能な述語

	14.2.6. 利用可能な優先度
	14.2.6.1. 静的優先度
	14.2.6.2. 設定可能な優先度

	14.2.7. 使用例
	14.2.7.1. インフラストラクチャーのトポロジーレベル
	14.2.7.2. アフィニティー
	14.2.7.3. 非アフィニティー

	14.2.8. ポリシー設定のサンプル

	14.3. カスタムスケジューリング
	14.3.1. 概要
	14.3.2. Deploying the Scheduler

	14.4. POD 配置の制御
	14.4.1. 概要
	14.4.2. ノード名の使用による Pod 配置の制約
	14.4.3. ノードセレクターの使用による Pod 配置の制約
	14.4.4. プロジェクト対する Pod 配置の制御

	14.5. 詳細スケジューリング
	14.5.1. 概要
	14.5.2. 詳細スケジューリングの使用

	14.6. 詳細スケジューリングおよびノードのアフィニティー
	14.6.1. 概要
	14.6.2. ノードのアフィニティーの設定
	14.6.2.1. ノードアフィニティーの required (必須) ルールの設定
	14.6.2.2. ノードアフィニティーの preferred (優先) ルールの設定

	14.6.3. 例
	14.6.3.1. 一致するラベルを持つノードのアフィニティー
	14.6.3.2. 一致するラベルのないノードのアフィニティー

	14.7. 詳細スケジューリングおよび POD のアフィニティーと非アフィニティー
	14.7.1. 概要
	14.7.2. Pod のアフィニティーおよび非アフィニティーの設定
	14.7.2.1. アフィニティールールの設定
	14.7.2.2. 非アフィニティールールの設定

	14.7.3. 例
	14.7.3.1. Pod のアフィニティー
	14.7.3.2. Pod の非アフィニティー
	14.7.3.3. 一致するラベルのない Pod のアフィニティー

	14.8. 詳細スケジューリングおよびノードセレクター
	14.8.1. 概要
	14.8.2. ノードセレクターの設定

	14.9. 詳細スケジューリングおよび容認
	14.9.1. 概要
	14.9.2. テイントおよび容認 (Toleration)
	14.9.2.1. 複数テイントの使用

	14.9.3. テイントの既存ノードへの追加
	14.9.4. 容認の Pod への追加
	14.9.4.1. Pod のエビクションを遅延させる容認期間 (秒数) の使用

	14.9.5. Preventing Pod Eviction for Node Problems
	14.9.6. Daemonset および容認
	14.9.7. 例
	14.9.7.1. ノードをユーザー専用にする
	14.9.7.2. ユーザーのノードへのバインド
	14.9.7.3. 特殊ハードウェアを持つノード

	第15章 クォータの設定
	15.1. 概要
	15.2. クォータで管理されるリソース
	15.3. クォータのスコープ
	15.4. クォータの実施
	15.5. REQUESTS VS LIMITS
	15.6. リソースクォータ定義のサンプル
	15.7. クォータの作成
	15.8. クォータの表示
	15.9. クォータの同期期間の設定
	15.10. デプロイメント設定におけるクォータアカウンティング
	15.11. リソース消費における明示的なクォータの要求

	第16章 複数プロジェクトのクォータ設定
	16.1. 概要
	16.2. プロジェクトの選択
	16.3. 適用可能な CLUSTERRESOURCEQUOTAS の表示
	16.4. 選択における粒度

	第17章 制限範囲の設定
	17.1. 概要
	17.1.1. コンテナーの制限
	17.1.2. Pod の制限
	17.1.3. イメージの制限
	17.1.4. イメージストリームの制限
	17.1.4.1. イメージ参照の数

	17.1.5. PersistentVolumeClaim の制限

	17.2. 制限範囲の作成
	17.3. VIEWING LIMITS
	17.4. DELETING LIMITS

	第18章 PRUNING OBJECTS
	18.1. 概要
	18.2. BASIC PRUNE OPERATIONS
	18.3. PRUNING DEPLOYMENTS
	18.4. PRUNING BUILDS
	18.5. イメージのプルーニング
	18.5.1. Image Prune Conditions
	18.5.2. Using Secure or Insecure Connections
	18.5.3. Image Pruning Problems
	Images Not Being Pruned
	Using a Secure Connection Against Insecure Registry
	18.5.3.1. Using an Insecure Connection Against a Secured Registry

	18.6. HARD PRUNING THE REGISTRY
	18.7. CRON ジョブのプルーニング

	第19章 EXTENDING THE KUBERNETES API WITH CUSTOM RESOURCES
	19.1. CREATING CUSTOM RESOURCE DEFINITIONS
	19.2. CREATE CUSTOM OBJECTS
	19.3. MANAGE CUSTOM OBJECTS
	19.4. FINALIZERS

	第20章 ガベージコレクション
	20.1. 概要
	20.2. コンテナーのガベージコレクション
	20.2.1. 削除するコンテナーの検出

	20.3. イメージのガベージコレクション
	20.3.1. 削除するイメージの検出

	第21章 ノードリソースの割り当て
	21.1. 概要
	21.2. 割り当てられるリソースについてのノードの設定
	21.3. 割り当てられるリソースの計算
	21.4. VIEWING NODE ALLOCATABLE RESOURCES AND CAPACITY
	21.5. ノードによって報告されるシステムリソース
	21.6. NODE ENFORCEMENT
	21.7. エビクションしきい値
	21.8. SCHEDULER

	第22章 OPAQUE INTEGER RESOURCES
	22.1. 概要
	22.2. CREATING OPAQUE INTEGER RESOURCES

	第23章 オーバーコミット
	23.1. 概要
	23.2. 要求および制限
	23.2.1. Buffer Chunk Limit の調整

	23.3. コンピュートリソース
	23.3.1. CPU
	23.3.2. メモリー

	23.4. QOS (QUALITY OF SERVICE) クラス
	23.5. マスターでのオーバーコミットの設定
	23.6. ノードでのオーバーコミットの設定
	23.6.1. Quality of Service (QoS) 層でのメモリー予約
	23.6.2. CPU 制限の実施
	23.6.3. システムリソースのリソース予約
	23.6.4. カーネルの調整可能なフラグ
	23.6.5. swap メモリーの無効化

	第24章 INGRESS トラフィックの固有の外部 IP の割り当て
	24.1. 概要
	24.2. 制限
	24.3. 固有の外部 IP を使用するようクラスターを設定する
	24.3.1. サービスの Ingress IP の設定

	24.4. 開発またはテスト目的での INGRESS CIDR のルーティング
	24.4.1. サービス externalIP

	第25章 OUT OF RESOURCE (リソース不足) エラーの処理
	25.1. 概要
	25.2. エビクションポリシーの設定
	25.2.1. ノード設定を使用したポリシーの作成
	25.2.2. エビクションシグナルについて
	25.2.3. エビクションのしきい値について
	25.2.3.1. ハードエビクションのしきい値について
	25.2.3.2. ソフトエビクションのしきい値について

	25.3. スケジューリング用のリソース量の設定
	25.4. ノードの状態変動の制御
	25.5. ノードレベルのリソースの回収
	Imagefs が設定されている場合
	Imagefs が設定されていない場合

	25.6. POD エビクションについて
	25.6.1. QoS および Out of Memory Killer について

	25.7. POD スケジューラーおよび OOR 状態について
	25.8. シナリオ例
	25.9. 推奨される対策
	25.9.1. DaemonSets and Out of Resource Handling

	第26章 ルーターのモニタリングおよびデバッグ
	26.1. 概要
	26.2. 統計の表示
	26.3. 統計ビューの無効化
	26.4. ログの表示
	26.5. ルーター内部の表示

	第27章 高可用性
	27.1. 概要
	27.2. IP フェイルオーバーの設定
	27.2.1. 仮想 IP アドレス
	27.2.2. チェックおよび通知スクリプト
	27.2.3. VRRP プリエンプション
	27.2.4. Keepalived マルチキャスト
	27.2.5. コマンドラインオプションおよび環境変数
	27.2.6. VRRP ID オフセット
	27.2.7. 高可用サービスの設定
	27.2.7.1. IP フェイルオーバー Pod のデプロイ

	27.2.8. 高可用サービスの仮想 IP の動的更新

	27.3. サービスの EXTERNALIP および NODEPORT の設定
	27.4. INGRESSIP の高可用性

	第28章 IPTABLES
	28.1. 概要
	28.2. IPTABLES
	28.3. IPTABLES.SERVICE

	第29章 ストラテジーによるビルドのセキュリティー保護
	29.1. 概要
	29.2. ビルドストラテジーのグローバルな無効化
	29.3. ユーザーへのビルドストラテジーのグルーバルな制限
	29.4. プロジェクト内でのユーザーへのビルドストラテジーの制限

	第30章 SECCOMP を使用したアプリケーション機能の制限
	30.1. 概要
	30.2. SECCOMP の有効化
	30.3. OPENSHIFT CONTAINER PLATFORM での SECCOMP の設定
	30.4. OPENSHIFT CONTAINER PLATFORM でのカスタム SECCOMP プロファイルの設定

	第31章 SYSCTL
	31.1. 概要
	31.2. UNDERSTANDING SYSCTLS
	31.3. NAMESPACED VS NODE-LEVEL SYSCTLS
	31.4. SAFE VS UNSAFE SYSCTLS
	31.5. ENABLING UNSAFE SYSCTLS
	31.6. SETTING SYSCTLS FOR A POD

	第32章 データストア層でのデータの暗号化
	32.1. 概要
	32.2. 設定および暗号がすでに有効にされているかどうかの判別
	32.3. 暗号化設定について
	32.3.1. 利用可能なプロバイダー

	32.4. データの暗号化
	32.5. データが暗号化されていることの確認
	32.6. すべてのシークレットが暗号化されていることの確認
	32.7. 復号化キーのローテーション
	32.8. データの復号化

	第33章 ENCRYPTING HOSTS WITH IPSEC
	33.1. 概要
	33.2. ENCRYPTING HOSTS
	33.2.1. 前提条件
	33.2.2. 証明書での IPsec の設定
	33.2.3. libreswan IPsec Policy
	33.2.3.1. Opportunistic Group Configuration
	33.2.3.2. Explicit Connection Configuration

	33.3. IPSEC FIREWALL CONFIGURATION
	33.4. STARTING AND ENABLING IPSEC
	33.5. OPTIMIZING IPSEC
	33.6. トラブルシューティング

	第34章 依存関係ツリーのビルド
	34.1. 概要
	34.2. 使用法

	第35章 BACKUP AND RESTORE
	35.1. 概要
	35.2. 前提条件
	35.3. CLUSTER BACKUP
	35.3.1. Master Backup
	35.3.2. Etcd Backup
	35.3.3. Registry Certificates Backup

	35.4. CLUSTER RESTORE FOR SINGLE-MEMBER ETCD CLUSTERS
	35.5. CLUSTER RESTORE FOR MULTIPLE-MEMBER ETCD CLUSTERS
	35.5.1. Containerized etcd Deployments
	35.5.2. Non-Containerized etcd Deployments
	35.5.3. Adding Additional etcd Members

	35.6. ADDING NEW ETCD HOSTS
	35.7. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK ONLINE
	35.8. PROJECT BACKUP
	35.8.1. Role Bindings
	35.8.2. Service Accounts
	35.8.3. Secrets
	35.8.4. Persistent Volume Claims

	35.9. PROJECT RESTORE
	35.10. APPLICATION DATA BACKUP
	35.11. APPLICATION DATA RESTORE

	第36章 OPENSHIFT SDN のトラブルシューティング
	36.1. 概要
	36.2. 用語
	36.3. HTTP サービスへの外部アクセスのデバッグ
	36.4. ルーターのデバッグ
	36.5. サービスのデバッグ
	36.6. ノード間通信のデバッグ
	36.7. ローカルネットワークのデバッグ
	36.7.1. ノードのインターフェース
	36.7.2. ノード内の SDN フロー
	36.7.3. デバッグ手順
	36.7.3.1. IP 転送は有効にされているか?
	36.7.3.2. ルートは正しく設定されているか?

	36.7.4. Is the Open vSwitch configured correctly?
	36.7.4.1. iptables 設定に誤りがないか?
	36.7.4.2. 外部ネットワークは正しく設定されているか?

	36.8. 仮想ネットワークのデバッグ
	36.8.1. 仮想ネットワークのビルドに障害が発生している

	36.9. POD の EGRESS のデバッグ
	36.10. ログの読み取り
	36.11. KUBERNETES のデバッグ
	36.12. 診断ツールを使用したネットワークの問題の検出
	36.13. その他の注意点
	36.13.1. ingress についての追加情報
	36.13.2. TLS ハンドシェイクのタイムアウト
	36.13.3. デバッグについての他の注意点

	第37章 診断ツール
	37.1. 概要
	37.2. 診断ツールの使用
	37.3. サーバー環境における診断の実行
	37.4. クライアント環境での診断の実行
	37.5. ANSIBLE ベースのヘルスチェック
	37.5.1. ansible-playbook によるヘルスチェックの実行
	37.5.2. Docker CLI でのヘルスチェックの実行

	第38章 アプリケーションのアイドリング
	38.1. 概要
	38.2. アプリケーションのアイドリング
	38.2.1. 単一サービスのアイドリング
	38.2.2. 複数サービスのアイドリング

	38.3. アプリケーションのアイドリング解除

	第39章 クラスター容量の分析
	39.1. 概要
	39.2. コマンドラインでのクラスター容量分析の実行
	39.3. POD 内のジョブとしてのクラスター容量分析の実行

