
OpenShift Container Platform 3.9

開発者ガイド

OpenShift Container Platform 3.9 開発者リファレンス

Last Updated: 2022-04-22

OpenShift Container Platform 3.9 開発者ガイド

OpenShift Container Platform 3.9 開発者リファレンス

Enter your first name here. Enter your surname here.
Enter your organisation's name here. Enter your organisational division here.
Enter your email address here.

法律上の通知

Copyright © 2022 | You need to change the HOLDER entity in the en-US/Developer_Guide.ent file
|.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要

これらのトピックは、開発者がワークステーションを設定および構成して、コマンドラインイン
ターフェイス（CLI）を使用して OpenShift Container Platformクラウド環境でアプリケーションを
開発およびデプロイするのに役立ちます。本書では、開発者向けの詳しい手順と例を紹介します。
これは、開発者によるプロジェクトのモニター、Web コンソールの設定および参照、
templatesManage ビルドおよび WebhookDefine を使用して CLIGenerate 設定を活用して
deploymentIntegrate 外部サービス（データベース、SaaS エンドポイント）の統合を支援しま
す。

. .

. .

. .

目次

第1章 概要

第2章 アプリケーションライフサイクル管理
2.1. 開発プロセスの計画

2.1.1. 概要
2.1.2. 開発環境としての OpenShift Container Platform の使用
2.1.3. アプリケーションの OpenShift Container Platform へのデプロイ

2.2. 新規アプリケーションの作成
2.2.1. 概要
2.2.2. CLI を使用したアプリケーションの作成

2.2.2.1. ソースコードからのアプリケーションの作成
2.2.2.2. イメージからアプリケーションを作成する方法
2.2.2.3. テンプレートからのアプリケーションの作成
2.2.2.4. アプリケーション作成における追加修正

2.2.2.4.1. 環境変数の指定
2.2.2.4.2. ビルド環境変数の指定
2.2.2.4.3. ラベルの指定
2.2.2.4.4. 作成前の出力の表示
2.2.2.4.5. 別名でのオブジェクトの作成
2.2.2.4.6. 別のプロジェクトでのオブジェクトの作成
2.2.2.4.7. 複数のオブジェクトの作成
2.2.2.4.8. 単一 Pod でのイメージとソースのグループ化
2.2.2.4.9. イメージ、テンプレート、および他の入力の検索

2.2.3. Web コンソールを使用したアプリケーションの作成
2.3. 環境全体におけるアプリケーションのプロモート

2.3.1. 概要
2.3.2. アプリケーションコンポーネント

2.3.2.1. API オブジェクト
2.3.2.2. イメージ
2.3.2.3. 概要

2.3.3. デプロイメント環境
2.3.3.1. 留意事項
2.3.3.2. 概要

2.3.4. 方法およびツール
2.3.4.1. API オブジェクトの管理

2.3.4.1.1. API オブジェクトステートのエクスポート
2.3.4.1.2. API オブジェクトステートのインポート

2.3.4.2. イメージおよびイメージストリームの管理
2.3.4.2.1. イメージの移動
2.3.4.2.2. デプロイ
2.3.4.2.3. Jenkins でのプロモーションフローの自動化
2.3.4.2.4. プロモーションについての注意事項

2.3.4.3. 概要
2.3.5. シナリオおよび実例

2.3.5.1. プロモーションのセットアップ
2.3.5.2. 繰り返し可能なプロモーションプロセス
2.3.5.3. Jenkins を使用した反復可能なプロモーションプロセス

第3章 認証
3.1. WEB コンソール認証
3.2. CLI 認証

15

16
16
16
16
17
18
18
18
18

20
21
22
22
23
23
23
24
24
24
24
25
25
27
27
28
28
29
30
30
30
31
31
31
31
32
33
33
33
34
34
35
36
36
37
39

41
41
41

目次

1

. .

. .

. .

第4章 承認
4.1. 概要
4.2. ユーザーの POD 作成権限の有無の確認
4.3. 認証済みのユーザーとして何が実行できるのかを判断する方法

第5章 プロジェクト
5.1. 概要
5.2. プロジェクトの作成

5.2.1. Web コンソールの使用
5.2.2. CLI の使用

5.3. プロジェクトの表示
5.4. プロジェクトステータスの確認
5.5. ラベル別の絞り込み
5.6. ページの状態のブックマーク
5.7. プロジェクトの削除

第6章 アプリケーションの移行
6.1. 概要
6.2. データベースアプリケーションの移行

6.2.1. 概要
6.2.2. サポートされているデータベース
6.2.3. MySQL
6.2.4. PostgreSQL
6.2.5. MongoDB

6.3. WEB フレームワークアプリケーションの移行
6.3.1. 概要
6.3.2. Python
6.3.3. Ruby
6.3.4. PHP
6.3.5. Perl
6.3.6. Node.js
6.3.7. WordPress
6.3.8. Ghost
6.3.9. JBoss EAP
6.3.10. JBoss WS (Tomcat)
6.3.11. JBoss AS (Wildfly 10)
6.3.12. サポート対象の JBoss バージョン

6.4. クイックスタートの例
6.4.1. 概要
6.4.2. ワークフロー

6.5. 継続的インテグレーションまたは継続的デプロイ (CI/CD)
6.5.1. 概要
6.5.2. Jenkins

6.6. WEBHOOK およびアクションフック
6.6.1. 概要
6.6.2. Webhook
6.6.3. アクションフック

6.7. S2I ツール
6.7.1. 概要
6.7.2. コンテナーイメージの作成

6.8. サポートガイド
6.8.1. 概要
6.8.2. サポートされているデータベース

43
43
43
43

45
45
45
45
46
46
47
48
49
49

51
51
52
52
52
52
54
56
58
58
58
59
60
60
61

62
62
63
63
63
64
65
65
66
67
67
67
67
67
67
68
68
69
69
69
69
69

OpenShift Container Platform 3.9 開発者ガイド

2

. .

. .

6.8.3. サポート言語
6.8.4. サポート対象のフレームワーク
6.8.5. サポート対象のマーカー
6.8.6. サポート対象の環境変数

第7章 チュートリアル
7.1. 概要
7.2. クイックスタートのテンプレート

7.2.1. 概要
7.2.2. Web フレームワーククイックスタートのテンプレート

7.3. RUBY ON RAILS
7.3.1. 概要
7.3.2. ローカルのワークステーション設定

7.3.2.1. データベースの設定
7.3.3. アプリケーションの作成

7.3.3.1. Welcome ページの作成
7.3.3.2. OpenShift Container Platform のアプリケーションの設定
7.3.3.3. アプリケーションの Git への保存

7.3.4. アプリケーションの OpenShift Container Platform へのデプロイ
7.3.4.1. データベースサービスの作成
7.3.4.2. フロントエンドサービスの作成
7.3.4.3. アプリケーションのルートの作成

7.4. MAVEN 用の NEXUS ミラーリングの設定
7.4.1. はじめに
7.4.2. Nexus の設定

7.4.2.1. プローブを使用した正常な実行の確認
7.4.2.2. Nexus への永続性の追加

7.4.3. Nexus への接続
7.4.4. 正常な実行の確認
7.4.5. その他のリソース

7.5. OPENSHIFT PIPELINE ビルド
7.5.1. はじめに
7.5.2. Jenkins Master の作成
7.5.3. Pipeline のビルド設定
7.5.4. Jenkinsfile
7.5.5. パイプラインの作成
7.5.6. パイプラインの起動
7.5.7. OpenShift Pipeline の詳細オプション

7.6. バイナリービルド
7.6.1. はじめに

7.6.1.1. 使用例
7.6.1.2. 制限

7.6.2. チュートリアルの概要
7.6.2.1. チュートリアル: ローカルコードの変更のビルド
7.6.2.2. チュートリアル: プライベートコードのビルド
7.6.2.3. チュートリアル: パイプラインからのバイナリーアーティファクト

第8章 ビルド
8.1. ビルドの仕組み

8.1.1. ビルドの概要
8.1.2. BuildConfig の概要

8.2. 基本的なビルド操作
8.2.1. ビルドの開始

70
70
70
72

73
73
73
73
73
74
74
74
74
75
76
76
77
78
78
79
80
80
80
81
81

82
82
83
83
83
83
83
84
84
87
87
88
88
88
89
89
89
89
90
91

94
94
94
94
96
96

目次

3

8.2.2. ビルドの中止
8.2.3. BuildConfig の削除
8.2.4. ビルドの詳細表示
8.2.5. ビルドログへのアクセス

8.3. ビルド入力
8.3.1. ビルド入力の仕組み
8.3.2. Dockerfile ソース
8.3.3. イメージソース
8.3.4. Git ソース

8.3.4.1. プロキシーの使用
8.3.4.2. ソースクローンのシークレット

8.3.4.2.1. ソースクローンシークレットのビルド設定への自動追加
8.3.4.2.2. ソースクローンシークレットの手動による追加
8.3.4.2.3. .gitconfig ファイル
8.3.4.2.4. セキュアな git 用の .gitconfig ファイル
8.3.4.2.5. Basic 認証
8.3.4.2.6. SSH キー認証
8.3.4.2.7. 信頼された認証局
8.3.4.2.8. 組み合わせ

8.3.5. バイナリー (ローカル) ソース
8.3.6. 入力シークレット

8.3.6.1. 入力シークレットの追加
8.3.6.2. Source-to-Image ストラテジー
8.3.6.3. Docker ストラテジー
8.3.6.4. カスタムストラテジー

8.3.7. 外部アーティファクトの使用
8.3.8. プライベートレジストリーでの Docker 認証情報の使用

8.4. ビルドの出力
8.4.1. ビルド出力の概要
8.4.2. アウトプットイメージの環境変数
8.4.3. アウトプットイメージのラベル
8.4.4. アウトプットイメージのダイジェスト
8.4.5. プライベートレジストリーでの docker 認証情報の使用

8.5. ビルドストラテジーのオプション
8.5.1. Source-to-Image ストラテジーのオプション

8.5.1.1. 強制プル
8.5.1.2. 増分ビルド
8.5.1.3. ビルダーイメージのスクリプトの上書き
8.5.1.4. 環境変数

8.5.1.4.1. 環境ファイル
8.5.1.4.2. BuildConfig 環境

8.5.1.5. Web コンソールを使用したシークレットの追加
8.5.1.5.1. プルおよびプッシュの有効化

8.5.1.6. ソースファイルの無視
8.5.2. Docker ストラテジーのオプション

8.5.2.1. FROM イメージ
8.5.2.2. Dockerfile パス
8.5.2.3. キャッシュなし
8.5.2.4. 強制プル
8.5.2.5. 環境変数
8.5.2.6. Web コンソールを使用したシークレットの追加
8.5.2.7. Docker ビルド引数

8.5.2.7.1. プルおよびプッシュの有効化

97
97
97
98
99
99

100
100
101
102
103
103
105
105
106
106
107
107
108
109
110
110
111
111

112
112
113
115
115
115
116
117
117
117
117
117
118
118
119
119
119
119

120
120
120
120
120
120
121
121
121
122
122

OpenShift Container Platform 3.9 開発者ガイド

4

. .

8.5.3. カスタムストラテジーのオプション
8.5.3.1. FROM イメージ
8.5.3.2. Docker ソケットの公開
8.5.3.3. Secret

8.5.3.3.1. Web コンソールを使用したシークレットの追加
8.5.3.3.2. プルおよびプッシュの有効化

8.5.3.4. 強制プル
8.5.3.5. 環境変数

8.5.4. パイプラインストラテジーのオプション
8.5.4.1. Jenkinsfile の提供
8.5.4.2. 環境変数

8.5.4.2.1. BuildConfig 環境変数と Jenkins ジョブパラメーター間のマッピング
8.6. ビルド環境

8.6.1. 概要
8.6.2. 環境変数としてのビルドフィールドの使用
8.6.3. 環境変数としてのコンテナーリソースの使用
8.6.4. 環境変数としてのシークレットの使用

8.7. ビルドのトリガー
8.7.1. ビルドトリガーの概要
8.7.2. Webhook のトリガー

8.7.2.1. GitHub Webhooks
8.7.2.2. GitLab Webhooks
8.7.2.3. Bitbucket Webhook
8.7.2.4. Generic Webhook
8.7.2.5. Webhook URL の表示

8.7.3. イメージ変更のトリガー
8.7.4. 設定変更のトリガー

8.7.4.1. トリガーの手動設定
8.8. ビルドフック

8.8.1. ビルドフックの概要
8.8.2. コミット後のビルドフックの設定

8.8.2.1. CLI の使用
8.9. ビルド実行ポリシー

8.9.1. ビルド実行ポリシーの概要
8.9.2. 順次実行ポリシー
8.9.3. SerialLatestOnly 実行ポリシー
8.9.4. 並列実行ポリシー

8.10. 高度なビルド操作
8.10.1. ビルドリソースの設定
8.10.2. 最長期間の設定
8.10.3. 特定のノードへのビルドの割り当て
8.10.4. チェーンビルド
8.10.5. ビルドのプルーニング

8.11. ビルドのトラブルシューティング
8.11.1. 拒否されたリソースへのアクセス要求

第9章 デプロイメント
9.1. デプロイメントの仕組み

9.1.1. デプロイメントの概要
9.1.2. デプロイメント設定の作成

9.2. 基本のデプロイメント操作
9.2.1. デプロイメントの開始
9.2.2. デプロイメントの表示

122
122
122
122
123
123
123
124
124
124
125
125
126
126
126
126
126
127
127
127
128
129
130
130
132
132
134
134
134
134
135
136
136
136
137
137
137
138
138
139
139
140
142
142
142

144
144
144
145
146
146
146

目次

5

. .

9.2.3. デプロイメントのロールバック
9.2.4. コンテナー内でのコマンドの実行
9.2.5. デプロイメントログの表示
9.2.6. デプロイメントトリガーの設定

9.2.6.1. 設定変更トリガー
9.2.6.2. ImageChange Trigger

9.2.6.2.1. コマンドラインの使用するには、以下を行います。
9.2.7. デプロイメントリソースの設定
9.2.8. 手動のスケーリング
9.2.9. 特定のノードへの Pod の割り当て
9.2.10. 異なるサービスアカウントでの Pod の実行
9.2.11. Web コンソールを使用してデプロイメント設定にシークレットを追加する手順

9.3. デプロイメントストラテジー
9.3.1. デプロイメントストラテジーの概要
9.3.2. ローリングストラテジー

9.3.2.1. カナリアデプロイメント
9.3.2.2. ローリングデプロイメントの使用のタイミング
9.3.2.3. ローリングの例

9.3.3. 再作成ストラテジー
9.3.3.1. 再作成デプロイメントの使用のタイミング

9.3.4. カスタムストラテジー
9.3.5. ライフサイクルフック

9.3.5.1. Pod ベースのライフサイクルフック
9.3.5.2. コマンドラインの使用するには、以下を行います。

9.4. 高度なデプロイメントストラテジー
9.4.1. 高度なデプロイメントストラテジー
9.4.2. Blue-Green デプロイメント

9.4.2.1. Blue-Green デプロイメントの使用
ルートと 2 つのサービスの使用

9.4.3. A/B デプロイメント
9.4.3.1. A/B テスト用の負荷分散

9.4.3.1.1. Web コンソールを使用した重みの管理
9.4.3.1.2. CLI を使用した重みの管理
9.4.3.1.3. 1 サービス、複数のデプロイメント設定

9.4.4. プロキシーシャード/トラフィックスプリッター
9.4.5. N-1 互換性
9.4.6. 正常な終了

9.5. KUBERNETES デプロイメントサポート
9.5.1. デプロイメントオブジェクトタイプ
9.5.2. Kubernetes デプロイメント 対 デプロイメント設定

9.5.2.1. デプロイメント設定固有の機能
9.5.2.1.1. 自動ロールバック
9.5.2.1.2. トリガー
9.5.2.1.3. ライフサイクルフック
9.5.2.1.4. カスタムストラテジー
9.5.2.1.5. カナリアデプロイメント
9.5.2.1.6. テストデプロイメント

9.5.2.2. Kubernetes デプロイメント固有の機能
9.5.2.2.1. ロールオーバー
9.5.2.2.2. 比例スケーリング
9.5.2.2.3. ロールアウト中の一時停止

第10章 TEMPLATES (テンプレート)

146
147
148
148
148
149
149
149
150
151
151
152
152
152
153
153
154
155
156
156
157
158
158
160
160
160
160
160
160
161

162
164
165
166
167
167
168
168
168
169
169
169
170
170
170
170
170
170
170
170
171

172

OpenShift Container Platform 3.9 開発者ガイド

6

. .

. .

. .

10.1. 概要
10.2. テンプレートのアップロード
10.3. WEB コンソールを使用してテンプレートから作成する手順
10.4. CLI を使用してテンプレートから作成する手順

10.4.1. ラベル
10.4.2. パラメーター
10.4.3. オブジェクト一覧の生成

10.5. アップロードしたテンプレートの変更
10.6. インスタントアプリおよびクイックスタートテンプレートの使用
10.7. テンプレートの記述

10.7.1. 詳細
10.7.2. ラベル
10.7.3. パラメーター
10.7.4. オブジェクト一覧
10.7.5. バインド可能なテンプレートの作成
10.7.6. オブジェクトフィールドの公開
10.7.7. テンプレートの準備ができるまで待機
10.7.8. その他の推奨事項
10.7.9. 既存オブジェクトからのテンプレートの作成

第11章 コンテナーへのリモートシェルを開く
11.1. 概要
11.2. セキュアなシェルセッションの開始
11.3. セキュアなシェルセッションのヘルプ

第12章 サービスアカウント
12.1. 概要
12.2. ユーザー名およびグループ
12.3. デフォルトのサービスアカウントおよびロール
12.4. サービスアカウントの管理
12.5. サービスアカウント認証の有効化
12.6. 管理サービスアカウント
12.7. インフラストラクチャーサービスアカウント
12.8. サービスアカウントおよびシークレット
12.9. 許可されたシークレットの管理
12.10. コンテナー内でのサービスアカウントの認証情報の使用
12.11. サービスアカウントの認証情報の外部での使用

第13章 イメージの管理
13.1. 概要
13.2. イメージのタグ付け

13.2.1. タグのイメージストリームへの追加
13.2.2. 推奨されるタグ付け規則
13.2.3. タグのイメージストリームからの削除
13.2.4. イメージストリームでのイメージの参照

13.3. KUBERNETES リソースでのイメージストリームの使用
13.4. イメージプルポリシー
13.5. 内部レジストリーへのアクセス
13.6. イメージプルシークレットの使用

13.6.1. Pod が複数のプロジェクト間でのイメージを参照できるようにする設定
13.6.2. Pod による他のセキュアなレジストリーからのイメージの参照を許可する

13.6.2.1. 委任された認証を使用したプライベートレジストリーからのプル
13.7. タグおよびイメージメタデータのインポート

13.7.1. 非セキュアなレジストリーからのイメージのインポート

172
172
172
172
172
173
173
175
175
175
176
177
178
180
181
181

183
185
185

186
186
186
186

187
187
187
188
188
189
190
190
191
191

192
193

194
194
194
194
195
196
196
199

200
201

202
202
202
203
204
206

目次

7

. .

. .

. .

13.7.1.1. イメージストリームタグのポリシー
13.7.1.1.1. 非セキュアなタグのインポートポリシー
13.7.1.1.2. 参照ポリシー

13.7.2. プライベートレジストリーからのイメージのインポート
13.7.3. 外部レジストリーの信頼される証明書の追加
13.7.4. 複数のプロジェクト間でのイメージのインポート
13.7.5. イメージの手動プッシュによるイメージストリームの作成

13.8. イメージストリーム変更時の更新のトリガー
13.8.1. OpenShift リソース
13.8.2. Kubernetes リソース

13.9. イメージストリーム定義の記述

第14章 クォータおよび制限範囲
14.1. 概要
14.2. クォータ

14.2.1. クォータの表示
14.2.2. クォータで管理されるリソース
14.2.3. クォータのスコープ
14.2.4. クォータの実施
14.2.5. 要求 vs 制限

14.3. 制限範囲
14.3.1. 制限範囲の表示
14.3.2. コンテナーの制限
14.3.3. Pod の制限

14.4. コンピュートリソース
14.4.1. CPU 要求
14.4.2. コンピュートリソースの表示
14.4.3. CPU 制限
14.4.4. メモリー要求
14.4.5. メモリー制限
14.4.6. QoS (Quality of Service) 層
14.4.7. CLI でのコンピュートリソースの指定
14.4.8. 不透明な整数リソース

14.5. プロジェクトごとのリソース制限

第15章 POD の PRESET (プリセット) を使用した情報の POD への挿入
15.1. 概要
15.2. POD の PRESET の作成
15.3. 複数の POD の PRESET の使用
15.4. POD の PRESET の削除

第16章 クラスターへのトラフィックの送信
16.1. クラスターへのトラフィックの送信
16.2. ルーターを使用したトラフィックのクラスターへの送信

16.2.1. 概要
16.2.2. 管理者の前提条件

16.2.2.1. パブリック IP 範囲の定義
16.2.3. プロジェクトおよびサービスの作成
16.2.4. サービスを公開し、ルートを作成する
16.2.5. ルーターの設定
16.2.6. VIP を使用した IP フェイルオーバーの設定

16.3. ロードバランサーを使用したトラフィックのクラスターへの送信
16.3.1. 概要
16.3.2. 管理者の前提条件

207
207
207
208
208
209
209
210
210
210
211

214
214
214
214
218
219

220
220
221
221

223
224
224
225
225
226
226
226
226
227
227
228

229
229
232
234
236

237
237
237
237
238
238
239
240
240
241
241
241
242

OpenShift Container Platform 3.9 開発者ガイド

8

. .

. .

. .

. .

. .

16.3.2.1. パブリック IP 範囲の定義
16.3.3. プロジェクトおよびサービスの作成
16.3.4. サービスを公開し、ルートを作成する
16.3.5. ロードバランサーサービスの作成
16.3.6. ネットワークの設定
16.3.7. VIP を使用した IP フェイルオーバーの設定

16.4. サービスの外部 IP を使用したトラフィックのクラスターへの送信
16.4.1. 概要
16.4.2. 管理者の前提条件

16.4.2.1. パブリック IP 範囲の定義
16.4.3. プロジェクトおよびサービスの作成
16.4.4. サービスを公開し、ルートを作成する
16.4.5. IP アドレスのサービスへの割り当て
16.4.6. ネットワークの設定
16.4.7. VIP を使用した IP フェイルオーバーの設定

16.5. NODEPORT を使用したトラフィックのクラスターへの送信
16.5.1. 概要
16.5.2. 管理者の前提条件
16.5.3. サービスの設定

第17章 ルート
17.1. 概要
17.2. ルートの作成
17.3. ルートエンドポイントによる COOKIE 名の制御の許可

第18章 外部サービスの統合
18.1. 概要
18.2. 外部データベースのサービスの定義

18.2.1. 手順 1: サービスの定義
18.2.1.1. IP アドレスの使用
18.2.1.2. 外部ドメイン名の使用

18.2.2. 手順 2: サービスの消費
18.3. 外部 SAAS プロバイダー

18.3.1. IP アドレスおよびエンドポイントの使用
18.3.2. 外部ドメイン名の使用

第19章 デバイスマネージャーの使用
19.1. デバイスマネージャーの機能

19.1.1. 登録
19.1.2. デバイスの検出および正常性のモニタリング
19.1.3. デバイスの割り当て

19.2. デバイスマネージャーの有効化

第20章 デバイスプラグインの使用
20.1. デバイスプラグインの機能

20.1.1. 外部デバイスプラグイン
20.2. デバイスプラグインのデプロイ方法

第21章 シークレット
21.1. シークレットの使用

21.1.1. シークレットのプロパティー
21.1.2. シークレットの作成
21.1.3. シークレットの種類
21.1.4. シークレットの更新

242
243
244
245
246
247
248
248
249
249
250
250
251

252
255
256
256
256
256

258
258
258
261

262
262
262
262
262
263
264
265
266
268

269
269
269
269
269
270

271
271
271

272

273
273
274
274
275
275

目次

9

. .

. .

. .

. .

. .

21.2. ボリュームおよび環境変数のシークレット
21.3. イメージプルのシークレット
21.4. ソースクローンのシークレット
21.5. サービス提供証明書のシークレット
21.6. 制限

21.6.1. シークレットデータキー
21.7. 例
21.8. トラブルシューティング

第22章 CONFIGMAP
22.1. 概要
22.2. CONFIGMAP の作成

22.2.1. ディレクトリーからの作成
22.2.2. ファイルからの作成
22.2.3. リテラル値からの作成

22.3. ユースケース: POD での CONFIGMAP の使用
22.3.1. 環境変数での使用
22.3.2. コマンドライン引数の設定
22.3.3. ボリュームでの使用

22.4. REDIS の設定例
22.5. 制約

第23章 DOWNWARD API
23.1. 概要
23.2. フィールドの選択
23.3. DOWNWARD API を使用したコンテナー値の使用

23.3.1. 環境変数の使用
23.3.2. ボリュームプラグインの使用

23.4. DOWNWARD API を使用したコンテナーリソースの使用
23.4.1. 環境変数の使用
23.4.2. ボリュームプラグインの使用

23.5. DOWNWARD API を使用したシークレットの使用
23.5.1. 環境変数の使用

23.6. DOWNWARD API を使用した CONFIGMAP の使用
23.6.1. 環境変数の使用

23.7. 環境変数の参照
23.7.1. 環境変数の参照の使用
23.7.2. 環境変数の参照のエスケープ

第24章 PROJECTED ボリューム
24.1. 概要
24.2. シナリオ例
24.3. POD 仕様の例
24.4. パスについての留意事項
24.5. POD の PROJECTED ボリュームの設定

第25章 DAEMONSET の使用
25.1. 概要
25.2. DAEMONSET の作成

第26章 POD の自動スケーリング
26.1. 概要
26.2. HORIZONTAL POD AUTOSCALER の要件
26.3. サポートされるメトリクス

276
276
276
276
277
277
277
279

280
280
280
281
282
283
284
284
286
286
288
289

290
290
290
290
290
291

293
293
294
295
295
296
296
297
297
297

299
299
299
300
302
302

306
306
306

309
309
309
309

OpenShift Container Platform 3.9 開発者ガイド

10

. .

. .

. .

. .

. .

. .

. .

26.4. 自動スケーリング
26.5. CPU 使用率の自動スケーリング
26.6. メモリー使用率の自動スケーリング
26.7. HORIZONTAL POD AUTOSCALER の表示

26.7.1. Horizontal Pod Autoscaler の状況条件の表示

第27章 ボリュームの管理
27.1. 概要
27.2. 一般的な CLI の使用方法
27.3. ボリュームの追加
例

27.4. ボリュームの更新
例

27.5. ボリュームの削除
例

27.6. ボリュームの一覧表示
例

27.7. サブパスの指定

第28章 永続ボリュームの使用
28.1. 概要
28.2. ストレージの要求
28.3. ボリュームと要求のバインディング
28.4. POD のボリュームとしての要求
28.5. ボリュームと要求の事前バインディング

第29章 永続ボリュームの拡張
29.1. PERSISTENT VOLUME CLAIM (永続ボリューム要求、PVC) の拡張を有効化
29.2. GLUSTERFS ベースの PERSISTENT VOLUME CLAIM (永続ボリューム要求、PVC) の拡張
29.3. ファイルシステムを搭載した PERSISTENT VOLUME CLAIM (永続ボリューム要求、PVC) の拡張
29.4. ボリューム拡張時に障害からの復旧

第30章 リモートコマンドの実行
30.1. 概要
30.2. 基本的な使用方法
30.3. プロトコル

第31章 ファイルのコンテナーから/へのコピー
31.1. 概要
31.2. 基本的な使用方法
31.3. データベースのバックアップおよび復元
31.4. 要件
31.5. COPY SOURCE の指定
31.6. COPY DESTINATION の指定
31.7. 宛先でのファイルの削除
31.8. ファイル変更についての継続的な同期
31.9. 高度な RSYNC 機能

第32章 ポート転送
32.1. 概要
32.2. 基本的な使用方法
32.3. プロトコル

第33章 共有メモリー
33.1. 概要

309
310
311

313
314

317
317
317
318
319

320
320
320
320
321
321
321

323
323
323
323
324
324

327
327
328
328
328

330
330
330
330

332
332
332
332
333
333
334
334
334
334

335
335
335
335

337
337

目次

11

. .

. .

. .

. .

. .

. .

. .

. .

33.2. POSIX 共有メモリー

第34章 アプリケーションの正常性
34.1. 概要
34.2. プローブを使用したコンテナーのヘルスチェック

第35章 イベント
35.1. 概要
35.2. CLI によるイベントの表示
35.3. コンソールでのイベントの表示
35.4. 総合的なイベント一覧

第36章 環境変数の管理
36.1. 環境変数の設定および設定解除
36.2. 環境変数の一覧表示
36.3. 環境変数の設定

36.3.1. 自動的に追加された環境変数
36.4. 環境変数の設定解除

第37章 ジョブ
37.1. 概要
37.2. ジョブの作成

37.2.1. 既知の制限事項
37.3. ジョブのスケーリング
37.4. 最長期間の設定
37.5. ジョブ失敗のバックオフポリシー

第38章 OPENSHIFT PIPELINE
38.1. 概要
38.2. OPENSHIFT JENKINS クライアントプラグイン

38.2.1. OpenShift DSL
38.3. JENKINS PIPELINE ストラテジー
38.4. JENKINSFILE
38.5. チュートリアル
38.6. 詳細トピック

38.6.1. Jenkins 自動プロビジョニングの無効化
38.6.2. スレーブ Pod の設定

第39章 CRON ジョブ
39.1. 概要
39.2. CRON ジョブの作成
39.3. CRON ジョブ後のクリーンアップ

第40章 CREATE FROM URL
40.1. 概要
40.2. イメージストリームおよびイメージタグの使用

40.2.1. クエリー文字列パラメーター
40.2.1.1. 例

40.3. テンプレートの使用
40.3.1. クエリー文字列パラメーター

40.3.1.1. 例

第41章 カスタムリソース定義からのオブジェクトの作成
41.1. KUBERNETES カスタムリソース定義
41.2. CRD からのカスタムオブジェクトの作成

337

339
339
339

342
342
342
342
342

351
351
351
351
352
352

353
353
353
354
354
354
355

356
356
356
356
356
357
357
357
357
357

358
358
358
359

361
361
361
361

362
362
362
363

364
364
364

OpenShift Container Platform 3.9 開発者ガイド

12

. .

前提条件
手順

41.3. カスタムオブジェクトの管理
前提条件
手順

第42章 アプリケーションメモリーのサイジング
42.1. 概要
42.2. 背景情報
42.3. ストラテジー
42.4. OPENSHIFT CONTAINER PLATFORM での OPENJDK のサイジング

42.4.1. JVM 最大ヒープサイズの上書き
42.4.2. JVM が未使用メモリーをオペレーティングシステムに解放するよう促す
42.4.3. コンテナー内のすべての JVM プロセスが適切に設定されていることを確認する

42.5. POD 内でのメモリー要求および制限の検索
42.6. OOM による強制終了の診断
42.7. エビクトされた POD の診断

364
364
365
365
365

367
367
367
368
368
369
369
369
370
371
372

目次

13

OpenShift Container Platform 3.9 開発者ガイド

14

第1章 概要
本書はアプリケーション開発者を対象としており、OpenShift Container Platform クラウド環境でアプ
リケーションを開発およびデプロイするためにワークステーションを設定して構成する方法を説明しま
す。また本書には、詳細な手順と例が含まれ、開発者が以下を実行するのに役立ちます。

1. 新規アプリケーションの作成

2. プロジェクトのモニターおよび設定

3. テンプレートを使用した設定の生成

4. ビルドストラテジーオプションおよび Webhook を含むビルドの管理

5. デプロイメントストラテジーを含むデプロイメントの定義

6. ルートの作成および管理

7. シークレットの作成および設定

8. データベースおよび SaaS エンドポイントなどの外部サービスの統合

9. プローブを使用したアプリケーションのヘルスチェック

第1章 概要

15

第2章 アプリケーションライフサイクル管理

2.1. 開発プロセスの計画

2.1.1. 概要

OpenShift Container Platform はアプリケーションのビルドおよびデプロイするために設計されていま
す。OpenShift Container Platform を開発プロセスにどの程度組み込むかに応じて、以下から選択でき
ます。

OpenShift Container Platformプロジェクト内で開発に集中し、そのプロジェクトを使用してア
プリケーションをゼロから構築し、そのライフサイクルを継続的に開発および管理する。

別の環境ですでに開発したアプリケーション（例： バイナリー、コンテナーイメージ、ソース
コード）を用意して OpenShift Container Platform にデプロイする。

2.1.2. 開発環境としての OpenShift Container Platform の使用

OpenShift Container Platform を直接使用してアプリケーションの開発をゼロから行うことができま
す。この種の開発プロセスを計画する場合には、以下の手順を考慮してください。

初期計画

アプリケーションにはどのような機能があるか？

どのプログラミング言語を使用して開発するか？

OpenShift Container Platform へのアクセス

この時点で、ご自身または組織内の管理者が OpenShift Container Platform をインストールす
る必要があります。

開発

任意のエディターまたは IDE を使用して、アプリケーションの基本的なスケルトンを作成しま
す。OpenShift Container Platform で アプリケーションがどのようなタイプのものでるか を認
識できるように適切に開発されている必要があります。

コードを Git リポジトリーにプッシュします。

生成

oc new-app コマンドを使用して 基本的なアプリケーションを作成します。OpenShift
Container Platform はビルドおよびデプロイメント設定を生成します。

管理

アプリケーションコードの開発を開始します。

アプリケーションが正常にビルドされることを確認します。

OpenShift Container Platform 3.9 開発者ガイド

16

引き続きコードをローカルで開発し、コードを改良します。

コードを Git リポジトリーにプッシュします。

追加の設定が必要かどうかを確認します。追加のオプションについて 『開発者ガイド』 で確認
してください。

検証

アプリケーションはさまざまな方法で検証できます。変更をアプリケーションの Git リポジト
リーにプッシュし、OpenShift Container Platform を使用してアプリケーションの再ビルドお
よび再デプロイを行うことができます。または、rsync を使用してホットデプロイを実行し、
コードを変更中の Pod に同期できます。

2.1.3. アプリケーションの OpenShift Container Platform へのデプロイ

アプリケーション開発ストラテジーの別の可能性として、ローカルで開発してから OpenShift
Container Platform を使用して完全に開発されたアプリケーションをデプロイする方法があります。ア
プリケーションコードを先に準備してからビルドし、完了後に OpenShift Container Platform インス
トールにデプロイする場合は、以下の手順を使用します。

初期計画

アプリケーションにはどのような機能があるか？

どのプログラミング言語を使用して開発するか？

開発

任意のエディターまたは IDE を使用してアプリケーションコードを開発します。

アプリケーションコードをローカルでビルドしてテストします。

コードを Git リポジトリーにプッシュします。

OpenShift Container Platform へのアクセス

この時点で、ご自身または組織内の管理者が OpenShift Container Platform をインストールす
る必要があります。

生成

oc new-app コマンドを使用して 基本的なアプリケーションを作成します。OpenShift
Container Platform はビルドおよびデプロイメント設定を生成します。

検証

前述の生成手順においてビルドおよびデプロイしたアプリケーションが OpenShift Container
Platform で正常に実行されていることを確認します。

管理

第2章 アプリケーションライフサイクル管理

17

結果に満足するまで、アプリケーションコードの開発を続けます。

新たにプッシュされたコードを受け入れるには、アプリケーションを OpenShift Container
Platform で再ビルドします。

追加の設定が必要かどうかを確認します。追加のオプションについて 『開発者ガイド』 で確認
してください。

2.2. 新規アプリケーションの作成

2.2.1. 概要

OpenShift CLI または Web コンソールのいずれかを使用して、ソースまたはバイナリーコード、イメー
ジおよびテンプレート（あるいは両方）を含むコンポーネントから新規の OpenShift Container
Platform アプリケーションを作成できます。

2.2.2. CLI を使用したアプリケーションの作成

2.2.2.1. ソースコードからのアプリケーションの作成

new-app コマンドを使用して、ローカルまたはリモート Git リポジトリーのソースコードからアプリ
ケーションを作成できます。

ローカルディレクトリーの Git リポジトリーを使用してアプリケーションを作成するには、以下を実行
します。

$ oc new-app /path/to/source/code

注記

ローカル Git リポジトリーを使用する場合には、リポジトリーで OpenShift Container
Platform クラスターがアクセス可能な URL を参照する origin という名前のリモートリ
ポジトリーが必要です。認識されているリモートがない場合は、new-app により バイナ
リービルド が作成されます。

リモート Git リポジトリーを使用してアプリケーションを作成するには、以下を実行します。

$ oc new-app https://github.com/sclorg/cakephp-ex

プライベートのリモート Git リポジトリーを使用してアプリケーションを作成するには、以下を実行し
ます。

$ oc new-app https://github.com/youruser/yourprivaterepo --source-secret=yoursecret

注記

プライベートリモート Git リポジトリーを使用する場合には、--source-secret フラグを
使用して、既存のソースクローンのシークレットを指定できます。このシークレット
は、BuildConfig に挿入され、リポジトリーにアクセスできるようになります。

--context-dir フラグを指定することで、ソースコードリポジトリーのサブディレクトリーを使用できま

OpenShift Container Platform 3.9 開発者ガイド

18

--context-dir フラグを指定することで、ソースコードリポジトリーのサブディレクトリーを使用できま
す。リモート Git リポジトリーおよびコンテキストサブディレクトリーを使用してアプリケーションを
作成する場合は、以下を実行します。

$ oc new-app https://github.com/sclorg/s2i-ruby-container.git \
 --context-dir=2.0/test/puma-test-app

また、リモート URL を指定する場合は、以下のように URL の最後に #<branch_name> を追加するこ
とで、使用する Git ブランチを指定できます。

$ oc new-app https://github.com/openshift/ruby-hello-world.git#beta4

new-app コマンドは、ビルド設定を作成し、これはソースコードから新規のアプリケーションイメー
ジを作成します。new-app コマンドは通常、デプロイメント設定を作成して新規のイメージをデプロ
イするほか、サービス を作成してイメージを実行するデプロイメントへの負荷分散したアクセスを提供
します。

OpenShift Container Platform は Docker、Pipeline または Source ビルドストラテジー のいずれを使
用すべきかを自動的に 検出 します。 また、Source ビルドの場合は、適切な言語のビルダーイメージ
を検出します。

ビルドストラテジーの検出

新規アプリケーションの作成時に Jenkinsfile がソースリポジトリーのルートまたは指定されたコンテ
キストディレクトリーに存在する場合に、OpenShift Container Platform は Pipeline ビルドストラテ
ジーを生成します。または、Dockerfile がある場合、OpenShift Container Platform は Docker ビルド
ストラテジー を生成します。それ以外の場合は、Sourceビルドストラテジーが生成されます。

ビルドストラテジーを上書きするには、--strategy フラグを docker、pipeline または sourceのいずれ
かに設定します。

$ oc new-app /home/user/code/myapp --strategy=docker

注記

oc コマンドを使用するには、ビルドソースを含むファイルがリモートの git リポジト
リーで利用可能である必要があります。ソースのすべてのビルドには、git remote -v を
使用する必要があります。

言語の検出

ソース ビルドストラテジーを使用する場合に、new-app はリポジトリーのルート または指定したコン
テキストディレクトリーに特定のファイルが存在するかどうかで、使用する言語ビルダーを判別しよう
とします。

表2.1 new-app が検出する言語

言語 ファイル

dotnet project.json、*.csproj

jee pom.xml

第2章 アプリケーションライフサイクル管理

19

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-streams
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#services
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#builds
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#pipeline-build
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#docker-build
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#source-build

nodejs app.json、package.json

perl cpanfile、index.pl

php composer.json、index.php

python requirements.txt、setup.py

ruby Gemfile、Rakefile、config.ru

scala build.sbt

golang Godeps、main.go

言語 ファイル

言語の検出後、new-app は OpenShift Container Platform サーバーで、検出言語と一致して supports
アノテーションが指定されたイメージストリームタグか、または検出された言語の名前に一致するイ
メージストリームの有無を検索します。一致するものが見つからない場合には、new-app は Docker
Hub レジストリー で名前をベースにした検出言語と一致するイメージの検索を行います。

~ をセパレーターとして使用し、イメージ (イメージストリームまたはコンテナーの仕様) とリポジト
リーを指定して、ビルダーが特定のソースリポジトリーを使用するようにイメージを上書きすることが
できます。この方法を使用すると、ビルドストラテジーの検出および言語の検出は実行されない点に留
意してください。

たとえば、リモートリポジトリーのソースを使用して myproject/my-ruby イメージストリームを作成
する場合は、以下を実行します。

$ oc new-app myproject/my-ruby~https://github.com/openshift/ruby-hello-world.git

ローカルリポジトリーのソースを使用して openshift/ruby-20-centos7:latest コンテナーのイメージ
ストリームを作成するには、以下を実行します。

$ oc new-app openshift/ruby-20-centos7:latest~/home/user/code/my-ruby-app

2.2.2.2. イメージからアプリケーションを作成する方法

既存のイメージからアプリケーションのデプロイが可能です。イメージは、OpenShift Container
Platform サーバー内のイメージストリーム、指定したレジストリー内のイメージ、Docker Hub レジス
トリー、またはローカルの Docker サーバー内のイメージから取得できます。

new-app コマンドは、渡された引数に指定されたイメージの種類を判断しようとします。ただし、イ
メージが (--docker-image 引数を使用した) Docker イメージなのか、または (-i|--image 引数) を使用
したイメージストリームなのかを new-app に明示的に指示できます。

注記

ローカル Docker リポジトリーからイメージを指定した場合、同じイメージが OpenShift
Container Platform のクラスターノードでも利用できることを確認する必要がありま
す。

OpenShift Container Platform 3.9 開発者ガイド

20

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-streams
https://registry.hub.docker.com
https://registry.hub.docker.com

たとえば、DockerHub MySQL イメージからアプリケーションを作成するには、以下を実行します。

$ oc new-app mysql

プライベートのレジストリーのイメージを使用してアプリケーションを作成する場合には、Docker イ
メージの仕様全体を以下のように指定します。

$ oc new-app myregistry:5000/example/myimage

注記

イメージを含むレジストリーが SSL でセキュリティー保護されていない場合には、クラ
スター管理者は、OpenShift Container Platform ノードホストの Docker デーモンが、対
象のレジストリーを参照する --insecure-registry フラグを指定して実行されていること
を確認する必要があります。また --insecure-registry フラグを指定して、セキュアでな
いレジストリーからイメージが取得されていることを new-app に指定する必要がありま
す。

既存のイメージストリームおよび任意のイメージストリームタグでアプリケーションを作成します。

$ oc new-app my-stream:v1

2.2.2.3. テンプレートからのアプリケーションの作成

テンプレート名を引数として指定することで、事前に保存したテンプレートまたはテンプレートファイ
ルからアプリケーションを作成することができます。たとえば、サンプルアプリケーションテンプレー
トを保存し、これを利用してアプリケーションを作成できます。

保存したテンプレートからアプリケーションを作成するには、以下を実行します。

$ oc create -f examples/sample-app/application-template-stibuild.json
$ oc new-app ruby-helloworld-sample

事前に OpenShift Container Platform に保存することなく、ローカルファイルシステムでテンプレート
を直接使用するには、-f|--file 引数を使用します。

$ oc new-app -f examples/sample-app/application-template-stibuild.json

テンプレートパラメーター

テンプレート をベースとするアプリケーションを作成する場合、以下の -p|--param 引数を使用してテ
ンプレートで定義したパラメーター値を設定します。

$ oc new-app ruby-helloworld-sample \
 -p ADMIN_USERNAME=admin -p ADMIN_PASSWORD=mypassword

パラメーターをファイルに保存しておいて、--param-file を指定して、テンプレートをインスタンス化
する時にこのファイルを使用することができます。標準入力からパラメーターを読み込む場合は、以下
のように--param-file=- を使用します。

$ cat helloworld.params
ADMIN_USERNAME=admin

第2章 アプリケーションライフサイクル管理

21

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#securing-the-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-streams
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-stream-tag
https://github.com/openshift/origin/tree/master/examples/sample-app

ADMIN_PASSWORD=mypassword
$ oc new-app ruby-helloworld-sample --param-file=helloworld.params
$ cat helloworld.params | oc new-app ruby-helloworld-sample --param-file=-

2.2.2.4. アプリケーション作成における追加修正

new-app コマンドは、OpenShift Container Platform オブジェクトを生成します。このオブジェクトに
より、作成されるアプリケーションがビルドされ、デプロイされ、実行されます。通常、これらのオブ
ジェクトは、入力ソースリポジトリーまたはインプットイメージから派生する名前を使用して現在のプ
ロジェクトに作成されます。ただし new-app を使用すると、この動作を修正できます。

new-app で作成したオブジェクトのセットは、ソースリポジトリー、イメージまたはテンプレートな
どのインプットとして渡されるアーティファクトによって異なります。

表2.2 new-app 出力オブジェクト

オブジェクト 説明

BuildConfig BuildConfig は、コマンドラインで指定された各ソースリポジトリーに作成されま
す。BuildConfig は使用するストラテジー、ソースのロケーション、およびビルドの
出力ロケーションを指定します。

ImageStreams BuildConfig では、通常 2 つの ImageStreams が作成されます。1 つ目は、インプッ
トイメージを表します。Source ビルドの場合、これはビルダーイメージで
す。Docker ビルドでは、これは FROM イメージです。2 つ目は、アウトプットイ
メージを表します。コンテナーイメージが new-app にインプットとして指定された場
合、このイメージに対してもイメージストリームが作成されます。

DeploymentCon
fig

DeploymentConfig は、ビルドの出力または指定されたイメージのいずれかをデプ
ロイするために作成されます。new-app コマンドは、結果として生成される
DeploymentConfig に含まれるコンテナーに指定されるすべての Docker ボリューム
に emptyDir ボリュームを作成します。

Service new-app コマンドは、インプットイメージで公開ポートを検出しようと試みます。公
開されたポートで数値が最も低いものを使用して、そのポートを公開するサービスを
生成します。new-app 完了後に別のポートを公開するには、単に oc expose コマン
ドを使用し、追加のサービスを生成するだけです。

その他 テンプレートのインスタンスを作成する際に、他のオブジェクトをテンプレートに基
づいて生成できます。

2.2.2.4.1. 環境変数の指定

テンプレート、ソースまたはイメージからアプリケーションを生成する場合、-e|--env 引数を使用し、
ランタイムに環境変数をアプリケーションコンテナーに渡すことができます。

$ oc new-app openshift/postgresql-92-centos7 \
 -e POSTGRESQL_USER=user \
 -e POSTGRESQL_DATABASE=db \
 -e POSTGRESQL_PASSWORD=password

変数は、--env-file 引数を使用してファイルから読み取ることもできます。

OpenShift Container Platform 3.9 開発者ガイド

22

$ cat postgresql.env
POSTGRESQL_USER=user
POSTGRESQL_DATABASE=db
POSTGRESQL_PASSWORD=password
$ oc new-app openshift/postgresql-92-centos7 --env-file=postgresql.env

さらに --env-file=- を使用することで、標準入力で環境変数を指定することもできます。

$ cat postgresql.env | oc new-app openshift/postgresql-92-centos7 --env-file=-

詳細は、「環境変数の管理」を参照してください。

注記

-e|--env または --env-file 引数で渡される環境変数では、new-app 処理の一環として作
成される BuildConfig オブジェクトは更新されません。

2.2.2.4.2. ビルド環境変数の指定

テンプレート、ソースまたはイメージからアプリケーションを生成する場合、--build-env 引数を使用
し、ランタイムに環境変数をビルドコンテナーに渡すことができます。

$ oc new-app openshift/ruby-23-centos7 \
 --build-env HTTP_PROXY=http://myproxy.net:1337/ \
 --build-env GEM_HOME=~/.gem

変数は、--build-env-file 引数を使用してファイルから読み取ることもできます。

$ cat ruby.env
HTTP_PROXY=http://myproxy.net:1337/
GEM_HOME=~/.gem
$ oc new-app openshift/ruby-23-centos7 --build-env-file=ruby.env

さらに --build-env-file=- を使用して、環境変数を標準入力で指定することもできます。

$ cat ruby.env | oc new-app openshift/ruby-23-centos7 --build-env-file=-

2.2.2.4.3. ラベルの指定

ソース、イメージ、またはテンプレートからアプリケーションを生成する場合、-l|--label 引数を使用
し、作成されたオブジェクトにラベルを追加できます。ラベルを使用すると、アプリケーションに関連
するオブジェクトを一括で選択、設定、削除することが簡単になります。

$ oc new-app https://github.com/openshift/ruby-hello-world -l name=hello-world

2.2.2.4.4. 作成前の出力の表示

new-app が作成する内容についてのドライランを確認するには、yaml または jsonの値と共に -o|--
output 引数を使用できます。次にこの出力を使用して、作成されるオブジェクトのプレビューまたは
編集可能なファイルへのリダイレクトを実行できます。問題がなければ、oc create を使用して
OpenShift Container Platform オブジェクトを作成できます。

第2章 アプリケーションライフサイクル管理

23

new-app アーティファクトをファイルに出力するには、これらを編集し、作成します。

$ oc new-app https://github.com/openshift/ruby-hello-world \
 -o yaml > myapp.yaml
$ vi myapp.yaml
$ oc create -f myapp.yaml

2.2.2.4.5. 別名でのオブジェクトの作成

通常 new-app で作成されるオブジェクトの名前はソースリポジトリーまたは生成に使用されたイメー
ジに基づいて付けられます。コマンドに --name フラグを追加することで、生成されたオブジェクトの
名前を設定できます。

$ oc new-app https://github.com/openshift/ruby-hello-world --name=myapp

2.2.2.4.6. 別のプロジェクトでのオブジェクトの作成

通常 new-app は現在のプロジェクトにオブジェクトを作成します。ただし、-n|--namespace 引数を使
用して、アクセスできる別のプロジェクトにオブジェクトを作成することができます。

$ oc new-app https://github.com/openshift/ruby-hello-world -n myproject

2.2.2.4.7. 複数のオブジェクトの作成

new-app コマンドは、複数のパラメーターを new-app に指定して複数のアプリケーションを作成でき
ます。コマンドラインで指定するラベルは、単一コマンドで作成されるすべてのオブジェクトに適用さ
れます。環境変数は、ソースまたはイメージから作成されたすべてのコンポーネントに適用されます。

ソースリポジトリーおよび Docker Hub イメージからアプリケーションを作成するには、以下を実行し
ます。

$ oc new-app https://github.com/openshift/ruby-hello-world mysql

注記

ソースコードリポジトリーおよびビルダーイメージが別個の引数として指定されている
場合、new-app はソースコードリポジトリーのビルダーとしてそのビルダーイメージを
使用します。これを意図していない場合は、~ セパレーターを使用してソースに必要な
ビルダーイメージを指定します。

2.2.2.4.8. 単一 Pod でのイメージとソースのグループ化

new-app コマンドにより、単一 Pod に複数のイメージをまとめてデプロイできます。イメージのグ
ループ化を指定するには + セパレーターを使用します。--group コマンドライン引数をグループ化する
必要のあるイメージを指定する際に使用することもできます。ソースリポジトリーからビルドされたイ
メージを別のイメージと共にグループ化するには、そのビルダーイメージをグループで指定します。

$ oc new-app ruby+mysql

ソースからビルドされたイメージと外部のイメージをまとめてデプロイするには、以下を実行します。

$ oc new-app \

OpenShift Container Platform 3.9 開発者ガイド

24

 ruby~https://github.com/openshift/ruby-hello-world \
 mysql \
 --group=ruby+mysql

2.2.2.4.9. イメージ、テンプレート、および他の入力の検索

イメージ、テンプレート、および oc new-app コマンドの他の入力内容を検索するには、--search フラ
グおよび --list フラグを追加します。たとえば、PHP を含むすべてのイメージまたはテンプレートを検
索するには、以下を実行します。

$ oc new-app --search php

2.2.3. Web コンソールを使用したアプリケーションの作成

1. 必要なプロジェクトで Add to Project をクリックします。

2. プロジェクト内にあるイメージの一覧またはサービスカタログからビルダーイメージを選択し
ます。

第2章 アプリケーションライフサイクル管理

25

1

注記

以下に示すように、builder タグがアノテーションに一覧表示されている イメー
ジストリームタグ のみが一覧に表示されます。

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby"
 creationTimestamp: null
spec:
 dockerImageRepository: "registry.access.redhat.com/openshift3/ruby-20-rhel7"
 tags:
 -
 name: "2.0"
 annotations:
 description: "Build and run Ruby 2.0 applications"
 iconClass: "icon-ruby"
 tags: "builder,ruby" 1
 supports: "ruby:2.0,ruby"
 version: "2.0"

ここに builder を含めると、この ImageStreamTag がビルダーとして Web コンソールに
表示されます。

3. 新規アプリケーション画面で設定を変更し、オブジェクトをアプリケーションをサポートする
ように設定します。

OpenShift Container Platform 3.9 開発者ガイド

26

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-streams

2.3. 環境全体におけるアプリケーションのプロモート

2.3.1. 概要

アプリケーションのプロモーションとは、さまざまなランタイム環境でのアプリケーションの移動を意
味し、通常、移動すると成熟度が増します。たとえば、あるアプリケーションが開発環境から開始さ
れ、ステージング環境へとプロモートされたあとに、さらなるテストが行われ、最後に実稼働環境へと
プロモートされます。アプリケーションに変更が加えられると、変更が開発環境に加えられ、ステージ
ング環境および実稼働環境へとプロモートされます。

「アプリケーション」は Java、Perl、Python などで記述された単なるソースコードではありません。
これは、アプリケーションの言語固有のランタイムに関する静的Webコンテンツ、統合スクリプト、ま
たは関連の設定を超えたものになっています。これは、言語固有のランタイムによって使用されるアプ
リケーション固有のアーカイブ以上のものです。

OpenShift Container Platform および Kubernetes と Docker を統合した基盤のコンテキストでは、追加
のアプリケーションのアーティファクトには以下が含まれます。

メタデータと関連ツールの豊富なセットを含む Docker コンテナーイメージ。

アプリケーションでの使用向けにコンテナーに挿入される 環境変数。

OpenShift Container Platform の API オブジェクト （リソース定義としても知られています。
「Core Concepts」を参照してください)。

アプリケーションで使用できるようにコンテナーに挿入されます。

OpenShift Container Platform のコンテナーおよび Pod の管理方法を指定します。

OpenShift Container Platform でのアプリケーションのプロモート方法を検証するにあたり、以下の内

第2章 アプリケーションライフサイクル管理

27

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-index

OpenShift Container Platform でのアプリケーションのプロモート方法を検証するにあたり、以下の内
容を説明します。

アプリケーション定義に導入される新規アーティファクトについて説明する。

アプリケーションのプロモーションパイプラインの各種環境を区別する方法を説明する。

新規アーティファクトを管理する方法およびツールについて説明する。

各種の概念、構成、方法およびツール、アプリケーションのプロモートなど内容に該当する実
例を紹介する。

2.3.2. アプリケーションコンポーネント

2.3.2.1. API オブジェクト

OpenShift Container Platform および Kubernetes リソース定義（アプリケーションインベントリーに
新規に導入された項目）に関連して、アプリケーションのプロモートについて検討する場合に API オブ
ジェクトの設計ポイントで留意しておくべき 2 つの主要な点があります。

1 つ目の点として、すべての API オブジェクトは、OpenShift Container Platform ドキュメント全体で
強調されているように JSON または YAML のいずれかで表現できるので、これらのリソース定義は従
来のソースコントロールおよびスクリプトを使用して容易に管理できます。

また、API オブジェクトは、システムの必要な状態を指定するオブジェクトの部分とシステムのステー
タスまたは現在の状態を反映する部分で構成されるように設計されています。これはインプットおよび
アウトプットとして考えることができます。インプット部分は JSON または YAML で表現され、ソー
スコントロール管理(SCM)のアーティファクトとして適合します。

注記

API オブジェクトのインプット部分または仕様部分は、インスタンス化のタイミングで
テンプレート処理による変数置換 が可能であるため、完全に静的または動的に機能する
点に留意してください。

API オブジェクトに関する上記の点により、JSON または YAML ファイルの表現を使ってアプリケー
ションの設定をコードとして処理できます。

ほぼすべての API オブジェクトについて、組織はこれらをアプリケーションのアーティファクトとみな
すことができます。以下は、アプリケーションのデプロイおよび管理に最も関連するオブジェクトで
す。

BuildConfigs

これはアプリケーションのプロモーションのコンテキストにおける特殊なリソースで
す。BuildConfig はとくに開発者の観点ではアプリケーションの一部ではありますが、BuildConfig
は通常パイプラインでプロモートされません。これはパイプラインで（他のアイテムと共に）プロ
モートされる イメージ を作成します。

テンプレート

アプリケーションのプロモーションの観点では、Templates はとくにパラメーター化機能を使って
リソースを所定のステージング環境でセットアップするための開始点として機能します。ただしア
プリケーションがプロモーションのパイプラインを通過する場合でも、インスタンス化の後に追加
の変更が生じる可能性が高くなります。詳細は、「シナリオおよび実例」を参照してください。

ルート

OpenShift Container Platform 3.9 開発者ガイド

28

ルートは、最も一般的なリソースで、アプリケーションのさまざまなステージに対するテスと
は、Route を使用してアプリケーションにアクセスするので、アプリケーションのプロモーション
パイプラインのステージごとに異なります。また、ホスト名だけでなく Route の HTTP レベルのセ
キュリティーに関しても、手動指定や自動生成のオプションがある点に留意してください。

サービス

初期ステージでの個々の開発者の便宜を考慮する場合など、所定のアプリケーションプロモーショ
ンステージで ルーター および ルート を避ける理由がある場合には、アプリケーションは クラス
ター の IP アドレスおよびポート経由でアクセスできます。これらを使用した場合、ステージ間のア
ドレスおよびポートの管理の一部が必要となる可能性があります。

Endpoints (エンドポイント)

アプリケーションレベルのサービス（多くの企業によっては、データベースのインスタンスなど）
は OpenShift Container Platform で管理されない場合があります。そのような場合に、独自に エン
ドポイント を作成して、関連する サービス （サービス のセレクターフィールドを省略）に必要な
修正を加えると、（環境をどのようにプランニングするかにより異なりますが）アクティビティー
がステージ間で重複または共有されます。

シークレット

シークレット でカプセル化された機密情報は、その情報関連の対応するエンティティー
（OpenShift Container Platform が管理する サービス または OpenShift Container Platform 外で管
理する外部サービス）が共有されると、ステージ環境間で共有されます。このエンティティーの異
なるバージョンがアプリケーションのプロモーションパイプラインの各ステージにある場合には、
パイプラインの各ステージで固有の Secret を維持するか、パイプラインを通過する際に変更を加え
る必要がある場合があります。また Secret を SCM に JSON または YAML として保存する場合に
は、機密情報を保護するための暗号化フォームが必要となる場合があります。

DeploymentConfigs

このオブジェクトは、アプリケーションの起動方法を制御するため、所定のアプリケーションのプ
ロモーションパイプラインステージの環境を定義し、そのスコープを設定する時の最も重要なリ
ソースになります。各種ステージ間で共通する部分がありますが、アプリケーションプロモーショ
ンパイプラインの移動に伴い、このオブジェクトには当然変更が加えられます。この変更には、各
ステージの環境の違いを反映させるための修正や、アプリケーションがサポートする必要のある各
種シナリオのテストを容易にするためのシステム動作の変更が含まれます。

ImageStreams, ImageStreamTags、および ImageStreamImage

イメージ および Image Streams の各セクションで説明されているように、これらのオブジェクト
は、コンテナーイメージの管理に関連して OpenShift Container Platform の追加要素の中核となり
ます。

ServiceAccounts および RoleBindings

アプリケーション管理において、OpenShift Container Platform や外部サービスでの他の API オブ
ジェクトに対するパーミッション管理は必要不可欠です。Secrets と同様に、ServiceAccounts お
よび RoleBindings オブジェクトのアプリケーションプロモーションパイプラインのステージ間で
の共有方法は、各種環境を共有または分離する必要性によって異なる可能性があります。

PersistentVolumeClaims

データベースのようなステートフルなサービスに関連して、どの程度異なるアプリケーションプロ
モーションステージ間で共有されるかは、組織がアプリケーションデータのコピーを共有または分
離する方法に直接関係します。

ConfigMap

Pod 設定の Pod 自体から分離（環境変数スタイルの設定など）するのに便利です。これらは Pod
の動作に一貫性をもたせる必要がある場合などに各種のステージング環境で共有することができま
す。また、これらはステージ間で変更して Pod 動作を修正することもできます（通常はアプリケー
ションのさまざまな側面はステージごとに検証されます）。

2.3.2.2. イメージ

前述のように、コンテナーイメージはアプリケーションのアーティファクトです。実際、新しいアプリ

第2章 アプリケーションライフサイクル管理

29

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-streams

前述のように、コンテナーイメージはアプリケーションのアーティファクトです。実際、新しいアプリ
ケーションのアーティファクト、イメージ、およびイメージの管理は、アプリケーションのプロモー
ションに関する主要な要素です。場合によっては、イメージがアプリケーションの全体をカプセル化
し、アプリケーションプロモーションフローがイメージの管理のみで構成されることがあります。

通常イメージは SCM システムでは管理されません (アプリケーションのバイナリーが以前のシステム
で管理されていなかったのと同様です)。ただしバイナリーと同様に、インストール可能なアーティ
ファクトおよび対応するリポジトリー (RPM、RPM リポジトリー、Nexus など) は SCM と同様のセマ
ンティクスで生成されるので、SCM に似たイメージ管理の構成および専門用語が導入されました。

Image registry == SCM server

Image repository == SCM repository

イメージはレジストリーに存在するので、アプリケーションプロモーションでは、適切なイメージがレ
ジストリーに存在し、そのイメージで表されるアプリケーションを実行する必要のある環境からアクセ
スできるようにします。

イメージを直接参照するよりも、アプリケーションの定義は通常イメージストリームに参照を抽象化し
ます。これは、イメージストリームがアプリケーションコンポーネントを構成する別の API オブジェク
トになることを意味します。イメージストリームの詳細は、「Core Concepts」を参照してください。

2.3.2.3. 概要

これまでノート、イメージ、および API オブジェクトのアプリケーションのアーティファクトについて
OpenShift Container Platform 内のアプリケーションプロモーションのコンテキストで説明しました。
次は、アプリケーションをプロモーションパイプラインの各種ステージの どこで 実行するのかを見て
いきます。

2.3.3. デプロイメント環境

このコンテキストでのデプロイメント環境は、CI/CD パイプラインの特定ステージでアプリケーション
が実行される固有のスペースを表します。通常の環境には、開発、テスト、ステージング および 実稼
働環境 などが含まれます。環境の境界については、以下のように様々な方法で定義できます。

単一プロジェクト内のラベルおよび独自の名前を使用する

クラスター内の固有のプロジェクトを使用する

固有のクラスターを使用する

上記の 3 つ方法すべてを利用できることが想定されます。

2.3.3.1. 留意事項

通常デプロイメント環境の構成を検討する際は、以下のヒューリスティックな側面について検討しま
す。

プロモーションフローの各種ステージで許可するリソース共有の度合い

プロモーションフローの各種ステージで必要な分離の度合い

プロモーションフローの各種ステージの中心からの位置 (またはどの程度地理的に分散している
か)

さらに OpenShift Container Platform のクラスターおよびプロジェクトがイメージレジストリーにどの

OpenShift Container Platform 3.9 開発者ガイド

30

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-streams

さらに OpenShift Container Platform のクラスターおよびプロジェクトがイメージレジストリーにどの
ように関係するかについて以下の重要な点に留意してください。

同一クラスター内の複数のプロジェクトは同一のイメージストリームにアクセスできる。

複数のクラスターが同一の外部レジストリーにアクセスできる。

OpenShift Container Platform の内部イメージレジストリーがルート経由で公開される場合、
クラスターはレジストリーのみを共有できる。

2.3.3.2. 概要

デプロイメント環境が定義された後、パイプライン内のステージの記述を含むプロモーションフローを
実装できます。以下では、これらのプロモーションフローの実装を構成する方法およびツールについて
説明します。

2.3.4. 方法およびツール

基本的にアプリケーションのプロモートとは、前述のアプリケーションのコンポーネントをある環境か
ら別の環境に移動するプロセスのことです。アプリケーションのプロモートの自動化に関する全体的な
ソリューションを検討する前に、各種コンポーネントを手動で移動する場合に使用できるツールの概要
について以下のサブセクションで見ていきましょう。

注記

ビルドおよびデプロイメントの両方のプロセスにおいて多数の挿入ポイントを利用でき
ます。これらは BuildConfig および DeploymentConfig API オブジェクトで定義されま
す。これらのフックにより、データベースなどのデプロイされたコンポーネントおよび
OpenShift Container Platform クラスター自体と対話できるカスタムスクリプトの呼び出
しが可能となります。

したがって、フック内からイメージタグ操作を実行するなど、このようなフックを使用
して、アプリケーションを環境間で効果的に移動するコンポーネント管理操作を実行で
きます。ただし、これらのフックポイントの使用は、環境間でアプリケーションコン
ポーネントを移動する場合よりも、所定の環境でアプリケーションのライフサイクル管
理を行う場合に適しています (アプリケーションの新バージョンがデプロイされる際の
データベーススキーマの移行に使用するなど)。

2.3.4.1. API オブジェクトの管理

1 つの環境で定義されるリソースは、新しい環境へのインポートに備えて JSON または YAML ファイル
の内容としてエクスポートされます。したがって JSON または YAML としての API オブジェクトの表
現は、アプリケーションパイプラインで API オブジェクトをプロモートする際の作業単位として機能し
ます。このコンテンツのエクスポートやインポートには oc CLI を使用します。

ヒント

OpenShift Container Platform のプロモーションフローには必要ないですが、JSON または YAML は
ファイルに保存されるので、SCM システムを使用したコンテンツの保存や取得について検討すること
ができます。これにより、ブランチの作成、バージョンに関連する各種ラベルやタグの割り当てやクエ
リーなど、SCM のバージョン関連の機能を活用できるようになります。

2.3.4.1.1. API オブジェクトステートのエクスポート

API オブジェクトの仕様は、oc export で取り込む必要があります。この操作は、オブジェクト定義か

第2章 アプリケーションライフサイクル管理

31

ら環境に固有のデータを取り除き (現在の namespace または割り当てられた IP アドレスなど)、異なる
環境で再作成できるようにします (オブジェクトのフィルターされていないステートを出力する oc get
操作とは異なります)。

oc label を使用すると、API オブジェクトに対するラベルの追加、変更、または削除が可能になり、ラ
ベルがあれば、操作 1 回で Pod のグループの選択や管理ができるので、プロモーションフロー用に収集
されたオブジェクトを整理するのに有用であることが分かります。oc label を使用すると、適切なオブ
ジェクトをエクスポートするのが簡単になります。 また、オブジェクトが新しい環境で作成された場合
にラベルが継承されるので、各環境のアプリケーションコンポーネントの管理も簡素化されます。

注記

API オブジェクトには、Secret を参照する DeploymentConfig などの参照が含まれるこ
とがよくあります。API オブジェクトをある環境から別の環境へと移動する際、これら
の参照も新しい環境へと移動することを確認する必要があります。

同様に DeploymentConfig などの API オブジェクトには、外部レジストリーを参照する
ImageStreams の参照が含まれることがよくあります。API オブジェクトをある環境か
ら別の環境へと移動する際、このような参照が新しい環境内で解決可能であることを確
認する必要があります。つまり、参照が解決可能であり、ImageStream は新しい環境で
アクセス可能なレジストリーを参照できる必要があります。詳細については、「イメー
ジの移動」および「プロモートの注意事項」を参照してください。

2.3.4.1.2. API オブジェクトステートのインポート

2.3.4.1.2.1. 初期作成

アプリケーションを新しい環境に初めて導入する場合は、API オブジェクトの仕様を表現する JSON ま
たは YAML を使用し、oc create を実行して適切な環境で作成するだけで十分です。oc create を使用
する場合、--save-config オプションに留意してください。アノテーション一覧にオブジェクトの設定
要素を保存しておくことで、後の oc apply を使用したオブジェクトの変更が容易になります。

2.3.4.1.2.2. 反復修正

各種のステージング環境が最初に確立されると、プロモートサイクルが開始し、アプリケーションがス
テージからステージへと移動します。アプリケーションの更新には、アプリケーションの一部である
API オブジェクトの修正を含めることができます。API オブジェクトはOpenShift Container Platform
システムの設定を表すことから、それらの変更が想定されます。 それらの変更の目的として以下のケー
スが想定されます。

ステージング環境間における環境の違いについて説明する。

アプリケーションがサポートする各種シナリオを検証する。

oc CLI を使用することで、API オブジェクトの次のステージ環境への移行が実行されます。API オブ
ジェクトを変更する oc コマンドセットは充実していますが、本トピックではオブジェクト間の差分を
計算し、適用する oc apply に焦点を当てます。

とりわけ oc apply は既存のオブジェクト定義と共にファイルまたは標準入力 (stdin) を入力として取る
3 方向マージと見ることができます。以下の間で 3 方向マージを実行します。

1. コマンドへの入力

2. オブジェクトの現行バージョン

3. 現行オブジェクトにアノテーションとして保存された最新のユーザー指定オブジェクト定義

OpenShift Container Platform 3.9 開発者ガイド

32

その後に既存のオブジェクトは結果と共に更新されます。

オブジェクトがソース環境とターゲット環境間で同一であることが予期されていない場合など、API オ
ブジェクトの追加のカスタマイズが必要な場合に、oc set などの oc コマンドは、アップストリーム環
境から最新のオブジェクト定義を適用した後に、オブジェクトを変更するために使用できます。

使用方法についての詳細は、「シナリオおよび実例」を参照してください。

2.3.4.2. イメージおよびイメージストリームの管理

OpenShift Container Platform のイメージも一連の API オブジェクトで管理されます。ただし、イメー
ジの管理はアプリケーションのプロモートにおける非常に中心的な部分であるため、イメージに最も直
接的に関係するツールおよび API オブジェクトについては別途扱います。イメージのプロモートの管理
には、手動および自動の方法を使用できます (パイプラインによるイメージの伝搬) 。

2.3.4.2.1. イメージの移動

注記

イメージの管理に関する注意事項すべての詳細については、「イメージの管理」のト
ピックを参照してください。

2.3.4.2.1.1. ステージング環境がレジストリーを共有する場合

ステージング環境が同じ OpenShift Container Platform レジストリーを共有する場合 (すべてが同じ
OpenShift Container Platform クラスター上にある場合など)、アプリケーションのプロモートパイプラ
インのステージ間でイメージを 移動する 基本的な方法として、以下の 2 つ操作を実行できます。

1. 1 つ目は、 docker tag および git tag と類似する oc tag コマンドにより、OpenShift Container
Platform のイメージストリームを特定のイメージへの参照で更新できます。また、あるイメー
ジストリームから別のイメージストリームへとイメージの特定のバージョンへの参照をコピー
することも可能で、クラスター内の複数の異なるプロジェクト全体でもコピーが可能です。

2. 2 つ目として、oc import-image は外部レジストリーとイメージストリーム間の橋渡しの機能
を持ちます。レジストリーから所定のイメージのメタデータをインポートし、これを イメージ
ストリームタグ としてイメージストリームに保存します。プロジェクトの各種の
BuildConfigs および DeploymentConfigs がこれらの特定のイメージを参照できます。

2.3.4.2.1.2. ステージング環境が異なるレジストリーを使用する場合

ステージング環境が異なる OpenShift Container Platform レジストリーを活用している場合、より高度
な使用方法が見られます。内部レジストリーへのアクセス で、手順を詳細に説明していますが、まとめ
ると以下のようになります。

1. OpenShift Container Platform のアクセストークンの取得と関連して docker コマンドを使用
し、docker login コマンドに指定します。

2. OpenShift Container Platform レジストリーにログインした後、docker pull、docker tag およ
び docker push を使用してイメージを移行します。

3. イメージがパイプラインの次の環境のレジストリーで利用可能になってから、必要に応じて oc
tag を使用してイメージストリームを設定します。

2.3.4.2.2. デプロイ

第2章 アプリケーションライフサイクル管理

33

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-stream-tag

変更対象が基礎となるアプリケーションイメージであるか、アプリケーションを設定する API オブジェ
クトであるかを問わず、プロモートされた変更を認識するにはデプロイメントが通常必要になります。
アプリケーションのイメージが変更される場合 (アップストリームからのイメージのプロモートの一環
としての oc tag 操作または docker push の実行による場合など)、DeploymentConfig の
ImageChangeTriggers が新規デプロイメントをトリガーできます。同様に DeploymentConfig API オ
ブジェクト自体が変更されている場合、API オブジェクトがプロモーション手順によって更新されると
(例: oc apply)、ConfigChangeTrigger がデプロイメントを開始できます。

それ以外の場合に、手動のデプロイメントを容易にする oc コマンドには以下が含まれます。

oc rollout: デプロイメント管理の新しいアプローチです (停止と再開のセマンティクスおよび履
歴管理に関する充実した機能を含む)。

oc rollback: 以前のデプロイメントに戻すことができます。 プロモーションのシナリオでは、
新しいバージョンのテストで問題が発生した場合には、以前のバージョンで問題がないかどう
かを確認する必要がある場合があります。

2.3.4.2.3. Jenkins でのプロモーションフローの自動化

アプリケーションをプロモートする際に環境間での移動が必要なアプリケーションのコンポーネントを
理解し、コンポーネントを移動する際に必要な手順を理解した後に、ワークフローのオーケストレー
ションおよび自動化を開始できます。OpenShift Container Platform は、このプロセスで役立つ
Jenkins イメージおよびプラグインを提供しています。

OpenShift Container Platform Jenkins のイメージについては、Using Images で詳細に説明されていま
す。これには Jenkins と Jenkins パイプラインの統合を容易にする OpenShift Container Platform プラ
グインのセットも含まれます。また、パイプラインビルドストラテジー により、Jenkins Pipeline と
OpenShift Container Platform との統合が容易になります。また、パイプラインビルドストラテジー に
より、Jenkins Pipeline と OpenShift Container Platform との統合が容易になります。 これらすべては
アプリケーションのプロモートを含む、CI/CD の様々な側面の有効化に焦点を当てています。

アプリケーションのプロモート手順の手動による実行から自動へと切り替える際には、以下の
OpenShift Container Platform が提供する Jenkins 関連の機能に留意してください。

OpenShift Container Platform は、OpenShift Container Platform クラスターでのデプロイメン
トを非常に容易なものとするために高度にカスタマイズされた Jenkins のイメージを提供しま
す。

Jenkins イメージには OpenShift Pipeline プラグインが含まれます。これはプロモーション
ワークフローを実装する構成要素を提供します。 これらの構成要素には、イメージストリーム
の変更に伴う Jenkins ジョブのトリガーやそれらのジョブ内でのビルドおよびデプロイメント
のトリガーも含まれます。

OpenShift Container Platform の Jenkins Pipeline のビルドストラテジーを使用する
BuildConfigs により、Jenkinsfile ベースの Jenkins Pipeline ジョブの実行が可能になります。
パイプラインジョブは Jenkins における複雑なプロモーションフロー用の戦略を構成するもの
であり、OpenShift Pipeline プラグインにより提供される手順を利用できます。

2.3.4.2.4. プロモーションについての注意事項

2.3.4.2.4.1. API オブジェクト参照

API オブジェクトは他のオブジェクトを参照することができます。この一般的な使用方法として、イ
メージストリームを参照するDeploymentConfig を設定します (他の参照関係も存在する場合がありま
す)。

OpenShift Container Platform 3.9 開発者ガイド

34

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#using-images-other-images-jenkins

ある環境から別の環境へと API オブジェクトをコピーする場合、すべての参照がターゲット環境内で解
決できることが重要となります。以下のような参照のシナリオを見てみましょう。

プロジェクトに「ローカル」から参照している場合。この場合、参照オブジェクトは、プロ
ジェクトを参照しているオブジェクトと同じプロジェクトに存在します。通常の方法として、
参照しているオブジェクトと同じプロジェクト内にあるターゲット環境に参照オブジェクトを
コピーできることを確認します。

他のプロジェクトのオブジェクトを参照する場合。これは、共有プロジェクトのイメージスト
リームが複数のアプリケーションプロジェクトによって使用されている場合によくあるケース
です (「イメージの管理」を参照してください)。この場合、参照するオブジェクトを新しい環
境にコピーする際、ターゲット環境内で解決できるように参照を随時更新しなければなりませ
ん。以下が必要になる場合があります。

共有されるプロジェクトの名前がターゲット環境では異なる場合、参照先のプロジェクト
を変更する。

参照されるオブジェクトを共有プロジェクトからターゲット環境のローカルプロジェクト
へと移動し、主要オブジェクトをターゲット環境へと移動する際に参照をローカルルプロ
ジェクトをポイントするよう更新する。

参照されるオブジェクトのターゲット環境へのコピーおよびその参照の更新の他の組み合
わせ。

通常は、新しい環境にコピーされるオブジェクトによって参照されるオブジェクトを確認し、参照が
ターゲット環境で解決可能であることを確認することをお勧めします。それ以外には、参照の修正を行
うための適切なアクションを取り、ターゲット環境で参照されるオブジェクトを利用可能にすることが
できます。

2.3.4.2.4.2. イメージレジストリー参照

イメージストリームはイメージレポジトリーを参照してそれらが表すイメージのソースを示唆します。
イメージストリームがある環境から別の環境へと移動する場合、レジストリーおよびレポジトリーの参
照も変更すべきかどうかを検討することが重要です。

テスト環境と実稼働環境間の分離をアサートするために異なるイメージレジストリーが使用さ
れている場合。

テスト環境および実稼働環境に対応したイメージを分離するために異なるイメージレポジト
リーが使用されている場合。

上記のいずれかが該当する場合、イメージストリームはソース環境からターゲット環境にコピーされる
際に、適切なイメージに対して解決されるよう変更される必要があります。これは、あるレジストリー
およびレポジトリーから別のレジストリーおよびレポジトリーへとイメージをコピーするという シナリ
オおよび実例に説明されている手順の追加として行われます。

2.3.4.3. 概要

現時点で、以下が定義されています。

デプロイされたアプリケーションを構成する新規アプリケーションアーティファクト。

アプリケーションのプロモーションアクティビティーと OpenShift Container Platform によっ
て提供されるツールおよびコンセプトとの相関関係。

OpenShift Container Platform と CI/CD パイプラインエンジン Jenkins との統合。

第2章 アプリケーションライフサイクル管理

35

このトピックにおける残りの部分では、OpenShift Container Platform 内のアプリケーションのプロ
モーションフローのいくつかの例について扱います。

2.3.5. シナリオおよび実例

Docker、Kubernetes および OpenShift Container Platform のエコシステムにより導入された新規アプ
リケーションアーティファクトのコンポーネントを定義した上に、このセクションでは OpenShift
Container Platform によって提供される方法およびツールを使用してこれらのコンポーネントを環境間
でプロモートする方法を説明します。

アプリケーションを構成するコンポーネントにおいて、イメージは主要なアーティファクトです。これ
を前提とし、かつアプリケーションのプロモーションに当てはめると、中心的なアプリケーションのプ
ロモーションパターンとなるのがイメージのプロモーションであり、この場合にイメージが作業単位と
なります。ほとんどのアプリケーションプロモーションシナリオでは、プロモーションパイプラインを
使用したイメージの管理および伝搬が行われます。

単純なシナリオでは、パイプラインを使用したイメージの管理および伝搬のみを扱います。プロモー
ションシナリオの対象範囲が広がるにつれ、API オブジェクトを筆頭とする他のアプリケーションアー
ティファクトがパイプラインで管理および伝搬されるアイテムのインベントリーに含まれます。

このトピックでは、手動および自動の両方のアプローチを使用して、イメージおよび API オブジェクト
のプロモートに関する特定の実例をいくつか紹介します。最初にアプリケーションのプロモーションパ
イプラインの環境のセットアップに関して、以下の点に留意してください。

2.3.5.1. プロモーションのセットアップ

アプリケーションの初期リビジョンの開発が完了すると、次の手順として、プロモーションパイプライ
ンのステージング環境に移行できるようにアプリケーションのコンテンツをパッケージ化します。

1. 最初に、表示されるすべての API オブジェクトを移行可能なものとしてグループ化し、共通の
label を適用します。

labels:
 promotion-group: <application_name>

前述のように oc label コマンドは、さまざまな API オブジェクトのラベルの管理を容易にしま
す。

ヒント

OpenShift Container Platform テンプレートに API オブジェクトを最初に定義する場合、プロ
モート用にエクスポートする際にクエリーに使用する共通のラベルがすべての関連するオブ
ジェクトにあることを簡単に確認できます。

2. このラベルは後続のクエリーで使用できます。たとえば、アプリケーションの API オブジェク
トの移行を行う以下の oc コマンドセットの呼び出しについて検討しましょう。

$ oc login <source_environment>
$ oc project <source_project>
$ oc export dc,is,svc,route,secret,sa -l promotion-group=<application_name> -o yaml >
export.yaml
$ oc login <target_environment>
$ oc new-project <target_project> 1
$ oc create -f export.yaml

OpenShift Container Platform 3.9 開発者ガイド

36

1 または、すでに存在している場合は oc project <target_project> を実行します。

注記

oc export コマンドでは、イメージストリーム用に is タイプを含めるかどうか
は、パイプライン内の異なる環境全体でイメージ、イメージストリーム、および
レジストリーの管理方法をどのように選択するかによって変わってきます。この
点に関する注意事項を以下で説明しています。イメージの管理 のトピックも参
照してください。

3. プロモーションパイプラインの各種のステージング環境で使用されるそれぞれのレジストリー
に対して機能するトークンを取得する必要があります。各環境について以下を実行します。

a. 環境にログインします。

$ oc login <each_environment_with_a_unique_registry>

b. 以下を実行してアクセストークンを取得します。

$ oc whoami -t

c. 次回に使用できるようにトークン値をコピーアンドペーストします。

2.3.5.2. 繰り返し可能なプロモーションプロセス

パイプラインの異なるステージング環境での初回のセットアップ後に、プロモーションパイプラインを
使用したアプリケーションの反復を検証する繰り返し可能な手順のセットを開始できます。これらの基
本的な手順は、ソース環境のイメージまたは API オブジェクトが変更されるたびに実行されます。

更新後のイメージの移動→更新後の API オブジェクトの移動→環境固有のカスタマイズの適用

1. 通常、最初の手順ではアプリケーションに関連するイメージの更新をパイプラインの次のス
テージにプロモートします。前述のように、ステージング環境間で OpenShift Container
Platform レジストリーが共有されるかどうかが、イメージをプロモートする上での主要な差別
化要因となります。

a. レジストリーが共有されている場合、単に oc tag を使用します。

$ oc tag <project_for_stage_N>/<imagestream_name_for_stage_N>:<tag_for_stage_N>
<project_for_stage_N+1>/<imagestream_name_for_stage_N+1>:<tag_for_stage_N+1>

b. レジストリーが共有されていない場合、ソースおよび宛先の両方のレジストリーにログイ
ンする際、各プロモーションパイプラインレジストリーに対してアクセストークンを使用
でき、アプリケーションイメージのプル、タグ付け、およびプッシュを随時実行できま
す。

i. ソース環境レジストリーにログインします。

$ docker login -u <username> -e <any_email_address> -p <token_value>
<src_env_registry_ip>:<port>

ii. アプリケーションのイメージをプルします。

第2章 アプリケーションライフサイクル管理

37

$ docker pull <src_env_registry_ip>:<port>/<namespace>/<image name>:<tag>

iii. アプリケーションのイメージを宛先レジストリーの場所にタグ付けし、宛先ステージン
グ環境と一致するように namespace、名前、タグを随時更新します。

$ docker tag <src_env_registry_ip>:<port>/<namespace>/<image name>:<tag>
<dest_env_registry_ip>:<port>/<namespace>/<image name>:<tag>

iv. 宛先ステージング環境レジストリーにログインします。

$ docker login -u <username> -e <any_email_address> -p <token_value>
<dest_env_registry_ip>:<port>

v. イメージを宛先にプッシュします。

$ docker push <dest_env_registry_ip>:<port>/<namespace>/<image name>:<tag>

ヒント

外部レジストリーからイメージの新バージョンを自動的にインポートするために、oc
tag コマンドで --scheduled オプションを使用できます。これを使用する場
合、ImageStreamTag が参照するイメージは、イメージをホストするレジストリーか
ら定期的にプルされます。

2. 次に、アプリケーションの変化によってアプリケーションを構成する API オブジェクトの根本
的な変更や API オブジェクトセットへの追加と削除が必要となるケースがあります。アプリ
ケーションの API オブジェクトにこのような変化が生じると、OpenShift Container Platform
CLI はあるステージング環境から次の環境へと変更を移行するための広範囲のオプションを提
供します。

a. プロモーションパイプラインの初回セットアップ時と同じ方法で開始します。

$ oc login <source_environment>
$ oc project <source_project>
$ oc export dc,is,svc,route,secret,sa -l promotion-group=<application_name> -o yaml >
export.yaml
$ oc login <target_environment>
$ oc <target_project>

b. 単に新しい環境でリソースを作成するのではなく、それらを更新します。これを実行する
ための方法がいくつかあります。

i. より保守的なアプローチとして、oc apply を使用し、ターゲット環境内の各 API オブ
ジェクトに新しい変更をマージできます。これを実行することにより、--dry-run=true
オプションを実行し、オブジェクトを実際に変更する前に結果として得られるオブジェ
クトを確認することができます。

$ oc apply -f export.yaml --dry-run=true

問題がなければ、apply コマンドを実際に実行します。

$ oc apply -f export.yaml

apply コマンドはより複雑なシナリオで役立つ追加の引数をオプションで取ります。詳

OpenShift Container Platform 3.9 開発者ガイド

38

apply コマンドはより複雑なシナリオで役立つ追加の引数をオプションで取ります。詳
細については oc apply --help を参照してください。

ii. または、よりシンプルで積極的なアプローチとして、oc replace を使用できます。こ
の更新および置換についてはドライランは利用できません。最も基本的な形式として、
以下を実行できます。

$ oc replace -f export.yaml

apply と同様に、replace はより高度な動作については他の引数をオプションで取りま
す。詳細は、oc replace --help を参照してください。

3. 直前の手順では、導入された新しい API オブジェクトは自動的に処理されますが、API オブ
ジェクトがソースの環境から削除された場合には、 oc delete を使用してこれらをターゲット
の環境から手動で削除する必要があります。

4. ステージング環境ごとに必要な値が異なる可能性があるため、API オブジェクトで引用された
環境変数を調整する必要がある場合があります。この場合は oc set env を使用します。

$ oc set env <api_object_type>/<api_object_ID> <env_var_name>=<env_var_value>

5. 最後に、oc rollout コマンドまたは、上記の「デプロイメント」のセクションで説明した他の
メカニズムを使用して、更新したアプリケーションの新規デプロイメントをトリガーします。

2.3.5.3. Jenkins を使用した反復可能なプロモーションプロセス

OpenShift Container Platform の Jenkins Docker イメージ で定義された OpenShift サンプル ジョブ
は、Jenkins 構成ベースの OpenShift Container Platform でのイメージのプロモーションの例です。こ
のサンプルのセットアップは OpenShift Origin ソースリポジトリー にあります。

このサンプルには以下が含まれます。

CI/CD エンジンとして Jenkins の使用。

OpenShift Pipeline plug-in for Jenkins の使用。このプラグインでは、Jenkins Freestyle およ
び DSL Job ステップとしてパッケージされた OpenShift Container Platform の oc CLI が提供
する機能サブセットを提供します。oc バイナリーは、OpenShift Container Platform 用の
Jenkins Docker イメージにも含まれており、Jenkins ジョブで OpenShift Container Platform
と対話するために使用することも可能です。

OpenShift Container Platform が提供する Jenkins のテンプレート。一時ストレージおよび永
続ストレージの両方のテンプレートがあります。

サンプルアプリケーション: OpenShift Origin ソースリポジトリー で定義されます。 このアプ
リケーションは ImageStreams、ImageChangeTriggers、ImageStreamTags、BuildConfigs
およびプロモーションパイプラインの各種ステージに対応した別個の DeploymentConfigs と
Services を利用します。

以下では、OpenShift のサンプルジョブを詳細に検証していきます。

1. 最初のステップ は、oc scale dc frontend --replicas=0 の呼び出しと同じです。この手順は、
実行されている可能性のあるアプリケーションイメージの以前のバージョンを終了させるため
に実行されます。

2. 2 番目のステップ は oc start-build frontend の呼び出しと同じです。

第2章 アプリケーションライフサイクル管理

39

https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml
https://github.com/openshift/jenkins
https://github.com/openshift/origin/blob/master/examples/jenkins/README.md
https://github.com/openshift/origin/blob/master/examples/jenkins/application-template.json
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L15-L21
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L23-L29

3. 3 番目のステップ は oc rollout latest dc/frontend の呼び出しと同じです。

4. 4 番目のステップ は、このサンプルの「テスト」を行います。このステップでは、アプリケー
ションに関連するサービスがネットワークからアクセス可能であることを確認します。背後
で、OpenShift Container Platform サービスに関連する IP アドレスやポートにソケット接続を
試みます。当然のこととして別のテストを追加することも可能です (OpenShift Pipepline plug-
in ステップを使用しない場合は、Jenkins Shell ステップを使用して、OS レベルのコマンドと
スクリプトを使用してアプリケーションをテストします)。

5. 5 番目のステップ は、アプリケーションがテストに合格したことを前提としているため、イ
メージは「Ready (使用準備完了)」としてマークされます。このステップでは、新規の prod タ
グが 最新の イメージをベースにしたアプリケーションイメージ用に作成されます。フロントエ
ンド の DeploymentConfig でそのタグに対して ImageChangeTrigger が 定義されている場合
には、対応する「実稼働」デプロイメントが起動されます。

6. 6 番目と最後のステップ は検証のステップで、プラグインは OpenShift Container Platform が
「実稼働」デプロイメントの必要な数のレプリカを起動したことを確認します。

OpenShift Container Platform 3.9 開発者ガイド

40

https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L31-L39
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L41-47
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L49-L61
https://github.com/openshift/origin/blob/master/examples/jenkins/application-template.json#L75-L87
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L63-L73

第3章 認証

3.1. WEB コンソール認証

ブラウザーで <master_public_addr>:8443 のWeb コンソール にアクセスすると、自動的にログイン
ページにリダイレクトされます。

ブラウザーのバージョンとオペレーティングシステム を使用して、Web コンソールにアクセスできる
ことを確認します。

このページでログイン認証情報を入力して、API 呼び出しを行うためのトークンを取得します。ログイ
ン後、Webコンソールを使用してプロジェクトをナビゲートできます。

3.2. CLI 認証

CLI コマンドの oc login を使用して、コマンドラインで認証することができます。オプションなしにこ
のコマンドを実行して、CLI の使用を開始できます。

$ oc login

このコマンドの対話式フローでは、指定の認証情報を使用して OpenShift Container Platform サーバー
へのセッションを確立することができます。OpenShift Container Platform サーバーに正常にログイン
するための情報がない場合には、コマンドにより、必要に応じてユーザー入力を求めるプロンプトが出
されます。設定は自動的に保存され、その後のコマンドすべてに使用されます。

oc login コマンドのすべての設定オプションは oc login --help コマンドの出力で表示されますが、オ
プションの指定は任意です。以下の例では、一般的なオプションの使用方法を紹介します。

$ oc login [-u=<username>] \
 [-p=<password>] \
 [-s=<server>] \
 [-n=<project>] \
 [--certificate-authority=</path/to/file.crt>|--insecure-skip-tls-verify]

以下の表では、一般的なオプションを紹介しています。

表3.1 一般的な CLI 設定オプション

オプショ
ン

構文 説明

-s, --
server $ oc login -s=

<server>

OpenShift Container Platform サーバーのホスト名を指定します。
サーバーがこのフラグで指定されている場合には、このコマンドで
はホスト名は対話的に確認されません。また、このフラグは、CLI
設定ファイルがある場合や、ログインして別のサーバーに切り替え
る場合に使用できます。

第3章 認証

41

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#browser-requirements
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#cli-reference-get-started-cli
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#cli-configuration-files

-u, --
userna
me およ
び -p, --
passwo
rd

$ oc login -u=
<username> -p=
<password>

OpenShift Container Platform サーバーにログインするための認証
情報を指定できます。これらのフラグを指定してユーザー名または
パスワードを入力した場合は、このコマンドでは、ユーザー名やパ
スワードが対話的に確認されません。設定ファイルでセッション
トークンを確立し、ログインしてから別のユーザー名に切り替える
場合に、これらのフラグを使用することができます。

-n, --
namesp
ace

$ oc login -u=
<username> -p=
<password> -n=
<project>

oc login と合わせて使用する場合は、グローバル CLI オプション
は、指定のユーザーとしてログインしている場合に、切り替え後の
プロジェクトを指定することができます。

--
certifica
te-
authorit
y

$ oc login --
certificate-
authority=
<path/to/file.crt>

HTTPS を使用する OpenShift Container Platform サーバーで正常
かつセキュアに認証します。認証局ファイルへのパスは指定する必
要があります。

--
insecur
e-skip-
tls-
verify

$ oc login --
insecure-skip-tls-
verify

HTTPS サーバーとの対話を可能にして、サーバーの証明書チェッ
クを省略します。ただし、これはセキュリティーが確保されない点
に注意してください。 有効な証明書を提示しない HTTPS サーバー
に oc login を試行する際に、これかまたは --certificate-
authority フラグを指定しない場合に、oc login は接続がセキュア
でないこと確認するユーザー入力 (y/N の入力形式) を求めるプロン
プトを出します。

オプショ
ン

構文 説明

CLI構成ファイルを使用すると、複数のCLIプロファイルを簡単に管理できます。

注記

管理者の認証情報がある場合でも デフォルトシステムユーザー の system:admin として
ログインしていない場合は、認証情報が CLI 設定ファイル にある限り、いつでもこの
ユーザーとしてログインし直すことができます。以下のコマンドはログインを実行
し、デフォルト のプロジェクトに切り替えます。

$ oc login -u system:admin -n default

OpenShift Container Platform 3.9 開発者ガイド

42

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#cli-reference-manage-cli-profiles
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#users
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#cli-configuration-files

第4章 承認

4.1. 概要

以下のトピックでは、アプリケーション開発者向けの 認証タスク と、クラスター管理者が指定する認
証機能について紹介します。

4.2. ユーザーの POD 作成権限の有無の確認

scc-review と scc-subject-review オプションを使用することで、個別ユーザーまたは特定のサービス
アカウントのユーザーが Pod を作成または更新可能かどうかを確認できます。

scc-review オプションを使用すると、サービスアカウントが Pod を作成または更新可能かどうかを確
認できます。このコマンドは、リソースを許可する SCC (Security Context Constraints) について出力
します。

たとえば、system:serviceaccount:projectname:default サービスアカウントのユーザーが Pod を作
成可能かどうかを確認するには、以下を実行します。

$ oc policy scc-review -z system:serviceaccount:projectname:default -f my_resource.yaml

scc-subject-review オプションを使用して、特定のユーザーが Pod を作成または更新できるかどうか
を確認することも可能です。

$ oc policy scc-subject-review -u <username> -f my_resource.yaml

特定のグループに所属するユーザーが特定のファイルで Pod を作成できるかどうかを確認するには、
以下を実行します。

$ oc policy scc-subject-review -u <username> -g <groupname> -f my_resource.yaml

4.3. 認証済みのユーザーとして何が実行できるのかを判断する方法

OpenShift Container Platform プロジェクト内で、namespace でスコープ設定されたすべてのリソース
(サードパーティーのリソースを含む) に対して実行できる動詞を判別します。

can-i コマンドオプションは、ユーザーとロール関連のスコープをテストします。

$ oc policy can-i --list --loglevel=8

この出力で、情報収集のために呼び出す API 要求を判断しやすくなります。

ユーザーが判読可能な形式で情報を取得し直すには、以下を実行します。

$ oc policy can-i --list

この出力では、完全な一覧が表示されます。

特定の verb (動詞) を実行可能かどうかを判断するには、以下を実行します。

$ oc policy can-i <verb> <resource>

第4章 承認

43

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#evaluating-authorization

User scopesは、指定のスコープに関する詳細情報を提供します。以下に例を示します。

$ oc policy can-i <verb> <resource> --scopes=user:info

OpenShift Container Platform 3.9 開発者ガイド

44

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#admin-guide-scoped-tokens-user-scopes

第5章 プロジェクト

5.1. 概要

プロジェクト を使用することにより、あるユーザーコミュニティーは、他のコミュニティーと切り離さ
れた状態で独自のコンテンツを整理し、管理することができます。

5.2. プロジェクトの作成

クラスター管理者が 許可した場合は、CLI または Web コンソール を使用して新規プロジェクトを作成
することができます。

5.2.1. Web コンソールの使用

Web コンソールを使用して新規プロジェクトを作成するには、Project パネルまたは Project ページの
Create Project ボタンをクリックします。

Create Project ボタンはデフォルトで表示されていますが、オプションで非表示にしたり、カスタマイ
ズしたりすることができます。

第5章 プロジェクト

45

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-projects-and-users
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#selfprovisioning-projects
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-infrastructure-components-web-console

5.2.2. CLI の使用

CLI を使用して新規プロジェクトを作成するには、以下を実行します。

$ oc new-project <project_name> \
 --description="<description>" --display-name="<display_name>"

以下に例を示します。

$ oc new-project hello-openshift \
 --description="This is an example project to demonstrate OpenShift v3" \
 --display-name="Hello OpenShift"

注記

作成できるプロジェクトの数は、システム管理者によって制限される場合があります。
上限に達すると、既存のプロジェクトを削除してからでないと、新しいプロジェクトは
作成できません。

5.3. プロジェクトの表示

プロジェクトを表示する際は、認証ポリシーに基づいて、表示アクセスのあるプロジェクトだけを表示
できるように制限されます。

プロジェクトの一覧を表示します。

$ oc get projects

CLI 操作について現在のプロジェクトから別のプロジェクトに切り換えることができます。その後の操
作についてはすべて指定のプロジェクトが使用され、プロジェクトスコープのコンテンツの操作が実行
されます。

$ oc project <project_name>

また、Web コンソールを使用してプロジェクト間の表示や切り替えが可能です。認証してログインする
と、アクセスのあるプロジェクト一覧が表示されます。

サービスカタログの右側のパネルでは、最近アクセスしたプロジェクト (最大 5 個) へのクィックアク
セスが可能です。プロジェクトの詳細一覧については、右パネルの上部にある View All リンクを使用し
ます。

OpenShift Container Platform 3.9 開発者ガイド

46

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#limit-projects-per-user
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-infrastructure-components-web-console

CLI を使用して 新規プロジェクト を作成する場合は、ブラウザーでページを更新して、新規プロジェ
クトを表示することができます。

プロジェクトを選択すると、そのプロジェクトの プロジェクトの概要が表示されます。

特定プロジェクトの kebab (ケバブ) メニューをクリックすると、以下のオプションが表示されます。

5.4. プロジェクトステータスの確認

oc status コマンドは、コンポーネントと関係を含む現在のコンポーネントの概要を示します。このコ
マンドには引数は指定できません。

第5章 プロジェクト

47

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#cli-reference-get-started-cli
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#project-overviews

$ oc status

5.5. ラベル別の絞り込み

リソースの ラベルを使用して Web コンソールのプロジェクトページのコンテンツを絞り込むことがで
きます。提案されたラベル名や値から選択することも、独自の内容を入力することも可能です。また、
複数のフィルターを指定することもできます。複数のフィルターが適用される場合には、リソースはす
べてのフィルターと一致しないと表示されなくなります。

ラベル別で絞り込むには以下を実行します。

1. ラベルタイプを選択します。

2. 以下のいずれかを選択します。

exists ラベル名が存在することを確認するだけで、値は無視します。

does not
exist

ラベル名が存在しないことを確認してこの値を無視します。

in ラベル名が存在し、選択した値の 1 つと同じであることを確認します。

OpenShift Container Platform 3.9 開発者ガイド

48

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#labels
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-infrastructure-components-web-console

not in ラベル名が存在しない、または選択した値に該当しないことを確認します。

a. in または not in を選択した場合には、値セットを選択してから、Filter を選択し
ます。

3. フィルターの追加後に、Clear all filters を選択するか、削除するフィルターをそれぞれクリッ
クして、絞り込みを停止します。

5.6. ページの状態のブックマーク

OpenShift Container Platform Web コンソール では、ページの状態をブックマークできるようになり、
ラベルのフィルターや他の設定を保存する際に役立ちます。

タブ間の切り替えなど、ページの状態を変更する作業を行った場合には、ブラウザーのナビゲーション
バーの URL が自動的に更新されます。

5.7. プロジェクトの削除

プロジェクトを削除する際に、サーバーはプロジェクトのステータスを Active から Terminating に更新
します。次にサーバーは、Terminating の状態のプロジェクトからコンテンツをすべて削除してから、
プロジェクトを最終的に削除します。プロジェクトが Terminating のステータスの間は、ユーザーはそ
のプロジェクトに新規コンテンツを追加できません。プロジェクトは CLI または Web コンソールから
削除できます。

CLI を使用してプロジェクトを削除するには以下を実行します。

第5章 プロジェクト

49

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-infrastructure-components-web-console

$ oc delete project <project_name>

OpenShift Container Platform 3.9 開発者ガイド

50

第6章 アプリケーションの移行

6.1. 概要

以下のトピックでは、OpenShift version 2 (v2) アプリケーションから OpenShift version 3 (v3) に移行
する手順を説明します。

注記

以下のトピックでは、OpenShift v2 に固有の用語を使用します。「Comparing
OpenShift Enterprise 2 and OpenShift Enterprise 3」では、これら 2 つのバージョン
や、使用する用語の違いについて詳しく説明しています。

OpenShift v2 アプリケーションから OpenShift Container Platform v3 に移行するには、各 v2 カート
リッジは OpenShift Container Platform v3 の対応のイメージまたはテンプレートと同等であり、個別
に移行する必要があるので、v2 アプリケーションのすべてのカートリッジを記録する必要がありま
す。またそれぞれのカートリッジについて、すべての依存関係または必要なパッケージは v3 イメージ
に含める必要があるため、それらを記録する必要もあります。

一般的な移行手順は以下のとおりです。

1. v2 アプリケーションをバックアップします。

Web カートリッジ: ソースコードは、GitHub のリポジトリーにプッシュするなど、Git リ
ポジトリーにバックアップすることができます。

データベースカートリッジ: データベースは、dump コマンドを使用してバックアップする
ことができます (mongodump、mysqldump、pg_dump)。

Web およびデータベースカートリッジ: rhc クライアントツールには、複数のカートリッジ
をバックアップするスナップショットの機能があります。

$ rhc snapshot save <app_name>

スナップショットは展開可能な tar ファイルであり、このファイルには、アプリケーション
のソースコードとデータベースのダンプが含まれます。

2. アプリケーションにデータベースカートリッジが含まれる場合には、v3 データベースアプリ
ケーションを作成し、データベースダンプを新しい v3 データベースアプリケーションの Pod
に同期してから、データベースの復元コマンドを使用して v3 データベースアプリケーションに
v2 データベースを復元します。

3. Web フレームワークアプリケーションの場合には、v3 と互換性を持たせるようにアプリケー
ションのソースコードを編集します。次に、Git リポジトリーの適切なファイルに必要な依存関
係またはパッケージを追加します。v2 環境変数を対応する v3 環境変数に変換します。

4. ソース (Git リポジトリー) または Git URL のクイックスタートから v3 アプリケーションを作成
します。また、データベースのサービスパラメーターを新規アプリケーションに追加して、
データベースアプリケーションと Web アプリケーションをリンクします。

5. v2 には統合 git 環境があり、アプリケーションは v2 git リポジトリーに変更がプッシュされる
たびに自動的に再ビルドされ、再起動されます。v3 では、ビルドがパブリックの git リポジト
リーにプッシュされるソースコードの変更で自動的にトリガーされるようにするために、v3 の
初期ビルドの完了後に webhook を設定する必要があります。

第6章 アプリケーションの移行

51

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/release_notes/#release-notes-v2-vs-v3

6.2. データベースアプリケーションの移行

6.2.1. 概要

以下のトピックでは、MySQL、PostgreSQL および MongoDB データベースアプリケーションを
OpenShift バージョン 2 (v2) から OpenShift version 3 (v3) に移行する方法を確認します。

6.2.2. サポートされているデータベース

v2 v3

MongoDB: 2.4 MongoDB: 2.4, 2.6

MySQL: 5.5 MySQL: 5.5, 5.6

PostgreSQL: 9.2 PostgreSQL: 9.2, 9.4

6.2.3. MySQL

1. すべてのデータベースをダンプファイルにエクスポートして、これをローカルマシン (現在の
ディレクトリー) にコピーします

$ rhc ssh <v2_application_name>
$ mysqldump --skip-lock-tables -h $OPENSHIFT_MYSQL_DB_HOST -P
${OPENSHIFT_MYSQL_DB_PORT:-3306} -u ${OPENSHIFT_MYSQL_DB_USERNAME:-
'admin'} \
 --password="$OPENSHIFT_MYSQL_DB_PASSWORD" --all-databases > ~/app-
root/data/all.sql
$ exit

2. dbdump をローカルマシンにダウンロードします。

$ mkdir mysqldumpdir
$ rhc scp -a <v2_application_name> download mysqldumpdir app-root/data/all.sql

3. テンプレートから v3 mysql-persistent Pod を作成します。

$ oc new-app mysql-persistent -p \
 MYSQL_USER=<your_V2_mysql_username> -p \
 MYSQL_PASSWORD=<your_v2_mysql_password> -p MYSQL_DATABASE=
<your_v2_database_name>

4. Pod の使用準備ができているかどうかを確認します。

$ oc get pods

5. Pod の実行中に、データベースのアーカイブファイルを v3 MySQL Pod にコピーします。

$ oc rsync /local/mysqldumpdir <mysql_pod_name>:/var/lib/mysql/data

OpenShift Container Platform 3.9 開発者ガイド

52

6. v3 の実行中の Pod に、データベースを復元します。

$ oc rsh <mysql_pod>
$ cd /var/lib/mysql/data/mysqldumpdir

v3 では、データベースを復元するには、root ユーザーとして MySQL にアクセスする必要があ
ります。

v2 では、$OPENSHIFT_MYSQL_DB_USERNAME には全データベースに対する完全な権限が
ありました。v3 では、権限をデータベースごとに $MYSQL_USER に割り当てる必要がありま
す。

$ mysql -u root
$ source all.sql

<dbname> のすべての権限を <your_v2_username>@localhost に割り当ててから、権限をフ
ラッシュします。

7. Pod からダンプディレクトリーを削除します。

$ cd ../; rm -rf /var/lib/mysql/data/mysqldumpdir

サポート対象の MySQL 環境変数

v2 v3

OPENSHIFT_MYSQL_DB_HOST [service_name]_SERVICE_HOST

OPENSHIFT_MYSQL_DB_PORT [service_name]_SERVICE_PORT

OPENSHIFT_MYSQL_DB_USERNAME MYSQL_USER

OPENSHIFT_MYSQL_DB_PASSWORD MYSQL_PASSWORD

OPENSHIFT_MYSQL_DB_URL

OPENSHIFT_MYSQL_DB_LOG_DIR

OPENSHIFT_MYSQL_VERSION

OPENSHIFT_MYSQL_DIR

OPENSHIFT_MYSQL_DB_SOCKET

OPENSHIFT_MYSQL_IDENT

OPENSHIFT_MYSQL_AIO MYSQL_AIO

OPENSHIFT_MYSQL_MAX_ALLOWED_PACK
ET

MYSQL_MAX_ALLOWED_PACKET

第6章 アプリケーションの移行

53

OPENSHIFT_MYSQL_TABLE_OPEN_CACHE MYSQL_TABLE_OPEN_CACHE

OPENSHIFT_MYSQL_SORT_BUFFER_SIZE MYSQL_SORT_BUFFER_SIZE

OPENSHIFT_MYSQL_LOWER_CASE_TABLE
_NAMES

MYSQL_LOWER_CASE_TABLE_NAMES

OPENSHIFT_MYSQL_MAX_CONNECTIONS MYSQL_MAX_CONNECTIONS

OPENSHIFT_MYSQL_FT_MIN_WORD_LEN MYSQL_FT_MIN_WORD_LEN

OPENSHIFT_MYSQL_FT_MAX_WORD_LEN MYSQL_FT_MAX_WORD_LEN

OPENSHIFT_MYSQL_DEFAULT_STORAGE_
ENGINE

OPENSHIFT_MYSQL_TIMEZONE

 MYSQL_DATABASE

 MYSQL_ROOT_PASSWORD

 MYSQL_MASTER_USER

 MYSQL_MASTER_PASSWORD

v2 v3

6.2.4. PostgreSQL

1. ギアから v2 PostgreSQL データベースをバックアップします。

$ rhc ssh -a <v2-application_name>
$ mkdir ~/app-root/data/tmp
$ pg_dump <database_name> | gzip > ~/app-root/data/tmp/<database_name>.gz

2. ローカルマシンに、バックアップファイルを展開します。

$ rhc scp -a <v2_application_name> download <local_dest> app-root/data/tmp/<db-
name>.gz
$ gzip -d <database-name>.gz

注記

手順 4 とは別のフォルダーにバックアップファイルを保存します。

3. 新規サービスを作成するための v2 アプリケーションのデータベース名、ユーザー名、パスワー
ドを使用して PostgreSQL サービスを作成します。

OpenShift Container Platform 3.9 開発者ガイド

54

$ oc new-app postgresql-persistent -p POSTGRESQL_DATABASE=dbname -p
POSTGRESQL_PASSWORD=password -p POSTGRESQL_USER=username

4. Pod の使用準備ができているかどうかを確認します。

$ oc get pods

5. Pod を実行中に、バックアップディレクトリーを Pod に同期します。

$ oc rsync /local/path/to/dir <postgresql_pod_name>:/var/lib/pgsql/data

6. Pod にリモートからアクセスします。

$ oc rsh <pod_name>

7. データベースを復元します。

psql dbname < /var/lib/pgsql/data/<database_backup_file>

8. 必要のなくなったバックアップファイルをすべて削除します。

$ rm /var/lib/pgsql/data/<database-backup-file>

サポート対象の PostgreSQL 環境変数

v2 v3

OPENSHIFT_POSTGRESQL_DB_HOST [service_name]_SERVICE_HOST

OPENSHIFT_POSTGRESQL_DB_PORT [service_name]_SERVICE_PORT

OPENSHIFT_POSTGRESQL_DB_USERNAME POSTGRESQL_USER

OPENSHIFT_POSTGRESQL_DB_PASSWOR
D

POSTGRESQL_PASSWORD

OPENSHIFT_POSTGRESQL_DB_LOG_DIR

OPENSHIFT_POSTGRESQL_DB_PID

OPENSHIFT_POSTGRESQL_DB_SOCKET_DI
R

OPENSHIFT_POSTGRESQL_DB_URL

OPENSHIFT_POSTGRESQL_VERSION

OPENSHIFT_POSTGRESQL_SHARED_BUFF
ERS

第6章 アプリケーションの移行

55

OPENSHIFT_POSTGRESQL_MAX_CONNECT
IONS

OPENSHIFT_POSTGRESQL_MAX_PREPARE
D_TRANSACTIONS

OPENSHIFT_POSTGRESQL_DATESTYLE

OPENSHIFT_POSTGRESQL_LOCALE

OPENSHIFT_POSTGRESQL_CONFIG

OPENSHIFT_POSTGRESQL_SSL_ENABLED

 POSTGRESQL_DATABASE

 POSTGRESQL_ADMIN_PASSWORD

v2 v3

6.2.5. MongoDB

注記

OpenShift v3 の場合: MongoDB シェルバージョン 3.2.6

OpenShift v2 の場合: MongoDB シェルバージョン 2.4.9

1. ssh コマンドを使用して、v2 アプリケーションにリモートからアクセスします。

$ rhc ssh <v2_application_name>

2. -d <database_name> -c <collections> で単一のデータベースを指定して、mongodump を実
行します。このオプションがないと、データベースはすべてダンプされます。各データベース
は、独自のディレクトリーにダンプされます。

$ mongodump -h $OPENSHIFT_MONGODB_DB_HOST -o app-root/repo/mydbdump -u
'admin' -p $OPENSHIFT_MONGODB_DB_PASSWORD
$ cd app-root/repo/mydbdump/<database_name>; tar -cvzf dbname.tar.gz
$ exit

3. dbdump を mongodump ディレクトリーのローカルマシンにダウンロードします。

$ mkdir mongodump
$ rhc scp -a <v2 appname> download mongodump \
 app-root/repo/mydbdump/<dbname>/dbname.tar.gz

4. v3 で MongoDB Pod を実行します。最新のイメージ (3.2.6) には mongo-tools が含まれないの
で、mongorestore または mongoimport コマンドを使用するには、デフォルトの mongodb-

OpenShift Container Platform 3.9 開発者ガイド

56

persistent テンプレートを編集して、mongo-tools, “mongodb:2.4” を含むイメージタグを指
定します。このため、以下の oc export コマンドを使用して、編集することが必要です。

$ oc export template mongodb-persistent -n openshift -o json > mongodb-24persistent.json

mongodb-24persistent.json の L80 を編集します。 mongodb:latest は mongodb:2.4 に置き
換えてください。

$ oc new-app --template=mongodb-persistent -n <project-name-that-template-was-created-
in> \
 MONGODB_USER=user_from_v2_app -p \
 MONGODB_PASSWORD=password_from_v2_db -p \
 MONGODB_DATABASE=v2_dbname -p \
 MONGODB_ADMIN_PASSWORD=password_from_v2_db
$ oc get pods

5. mongodb Pod の実行中に、データベースのアーカイブファイルを v3 MongoDB Pod にコピー
します。

$ oc rsync local/path/to/mongodump <mongodb_pod_name>:/var/lib/mongodb/data
$ oc rsh <mongodb_pod>

6. MongoDB Pod で、復元する各データベースについて以下を実行します。

$ cd /var/lib/mongodb/data/mongodump
$ tar -xzvf dbname.tar.gz
$ mongorestore -u $MONGODB_USER -p $MONGODB_PASSWORD -d dbname -v
/var/lib/mongodb/data/mongodump

7. データベースが復元されたかどうかを確認します。

$ mongo admin -u $MONGODB_USER -p $MONGODB_ADMIN_PASSWORD
$ use dbname
$ show collections
$ exit

8. Pod から mongodump ディレクトリーを削除します。

$ rm -rf /var/lib/mongodb/data/mongodump

サポート対象の MongoDB 環境変数

v2 v3

OPENSHIFT_MONGODB_DB_HOST [service_name]_SERVICE_HOST

OPENSHIFT_MONGODB_DB_PORT [service_name]_SERVICE_PORT

OPENSHIFT_MONGODB_DB_USERNAME MONGODB_USER

OPENSHIFT_MONGODB_DB_PASSWORD MONGODB_PASSWORD

第6章 アプリケーションの移行

57

OPENSHIFT_MONGODB_DB_URL

OPENSHIFT_MONGODB_DB_LOG_DIR

 MONGODB_DATABASE

 MONGODB_ADMIN_PASSWORD

 MONGODB_NOPREALLOC

 MONGODB_SMALLFILES

 MONGODB_QUIET

 MONGODB_REPLICA_NAME

 MONGODB_KEYFILE_VALUE

v2 v3

6.3. WEB フレームワークアプリケーションの移行

6.3.1. 概要

以下のトピックでは、Python、Ruby、PHP、Perl、Node.js、WordPress、Ghost、JBoss EAP、JBoss
WS (Tomcat) および Wildfly 10 (JBoss AS) の Web フレームワークアプリケーションを OpenShift
version 2 (v2) から OpenShift version 3 (v3) に移行する方法を確認します。

6.3.2. Python

1. 新しい GitHub リポジトリーを設定して、そのリポジトリーをリモートのブランチとして現在
のローカル v2 Git リポジトリーに追加します。

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>.git

2. ローカルの v2 ソースコードを新規リポジトリーにプッシュします。

$ git push -u <remote-name> master

3. setup.py、wsgi.py、requirements.txt および etc などの重要なファイルがすべて新規リポジ
トリーにプッシュされていることを確認します。

アプリケーションに必要なパッケージがすべて requirements.txt に含まれていることを確
認します。

4. oc コマンドを使用して、ビルダーイメージとソースコードから新規の Python アプリケーショ
ンを起動します。

OpenShift Container Platform 3.9 開発者ガイド

58

$ oc new-app --strategy=source
python:3.3~https://github.com/<github-id>/<repo-name> --name=<app-name> -e
<ENV_VAR_NAME>=<env_var_value>

サポート対象の Python バージョン

v2 v3

Python: 2.6, 2.7, 3.3 サポート対象のコンテナーイメージ

Django Django-psql-example (quickstart)

6.3.3. Ruby

1. 新しい GitHub リポジトリーを設定して、そのリポジトリーをリモートのブランチとして現在
のローカル v2 Git リポジトリーに追加します。

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>.git

2. ローカルの v2 ソースコードを新規リポジトリーにプッシュします。

$ git push -u <remote-name> master

3. Gemfile がなく、単純な rack アプリケーションを実行している場合には、この Gemfile ファイ
ルをソースの root にコピーします。

https://github.com/sclorg/ruby-ex/blob/master/Gemfile

注記

Ruby 2.0 がサポートする rack gem の最新バージョンは 1.6.4 であるため、
Gemfile は gem 'rack', “1.6.4” に変更する必要があります。

Ruby 2.2 以降の場合は、rack gem 2.0 以降を使用してください。

4. oc コマンドを使用して、ビルダーイメージとソースコードから新規の Ruby アプリケーション
を起動します。

$ oc new-app --strategy=source
ruby:2.0~https://github.com/<github-id>/<repo-name>.git

サポート対象の Ruby バージョン

v2 v3

Ruby: 1.8, 1.9, 2.0 サポート対象のコンテナーイメージ

Ruby on Rails: 3, 4 Rails-postgresql-example (quickstart)

第6章 アプリケーションの移行

59

https://access.redhat.com/articles/2176281
https://access.redhat.com/articles/2176281

Sinatra

v2 v3

6.3.4. PHP

1. 新しい GitHub リポジトリーを設定して、そのリポジトリーをリモートのブランチとして現在
のローカル v2 Git リポジトリーに追加します。

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>

2. ローカルの v2 ソースコードを新規リポジトリーにプッシュします。

$ git push -u <remote-name> master

3. oc コマンドを使用して、ビルダーイメージとソースコードから新規の PHP アプリケーション
を起動します。

$ oc new-app https://github.com/<github-id>/<repo-name>.git
--name=<app-name> -e <ENV_VAR_NAME>=<env_var_value>

サポート対象の PHP バージョン

v2 v3

PHP: 5.3, 5.4 サポート対象のコンテナーイメージ

PHP 5.4 with Zend Server 6.1

CodeIgniter 2

HHVM

Laravel 5.0

 cakephp-mysql-example (quickstart)

6.3.5. Perl

1. 新しい GitHub リポジトリーを設定して、そのリポジトリーをリモートのブランチとして現在
のローカル v2 Git リポジトリーに追加します。

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>

2. ローカルの v2 ソースコードを新規リポジトリーにプッシュします。

$ git push -u <remote-name> master

OpenShift Container Platform 3.9 開発者ガイド

60

https://access.redhat.com/articles/2176281

3. ローカルの Git リポジトリーを編集して、変更をアップストリームにプッシュして、v3 との互
換性を確保します。

a. v2 では、CPAN モジュールは .openshift/cpan.txt にあります。v3 では、s2i ビルダー
は、ソースのルートディレクトリーで cpanfile という名前のファイルを検索します。

$ cd <local-git-repository>
$ mv .openshift/cpan.txt cpanfile

cpanfile の形式が若干異なるので、これを編集します。

cpanfile の形式 cpan.txt の形式

‘cpan::mod’ が必要 cpan::mod

requires ‘Dancer’; Dancer

requires ‘YAML’; YAML

b. .openshift ディレクトリーを削除します。

注記

v3 では、action_hooks および cron タスクは同じようにサポートされませ
ん。詳細情報は、「アクションフック」を参照してください。

4. oc コマンドを使用して、ビルダーイメージとソースコードから新規の Perl アプリケーション
を起動します。

$ oc new-app https://github.com/<github-id>/<repo-name>.git

サポート対象の Perl バージョン

v2 v3

Perl: 5.10 サポート対象のコンテナーイメージ

 Dancer-mysql-example (quickstart)

6.3.6. Node.js

1. 新しい GitHub リポジトリーを設定して、そのリポジトリーをリモートのブランチとして現在
のローカル Git リポジトリーに追加します。

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>

2. ローカルの v2 ソースコードを新規リポジトリーにプッシュします。

$ git push -u <remote-name> master

第6章 アプリケーションの移行

61

https://access.redhat.com/articles/2176281

3. ローカルの Git リポジトリーを編集して、変更をアップストリームにプッシュして、v3 との互
換性を確保します。

a. .openshift ディレクトリーを削除します。

注記

v3 では、action_hooks および cron タスクは同じようにサポートされませ
ん。詳細情報は、「アクションフック」を参照してください。

b. server.js を編集します。

L116 server.js: 'self.app = express();'

L25 server.js: self.ipaddress = '0.0.0.0';

L26 server.js: self.port = 8080;

注記

Lines(L) は V2 カートリッジの server.js から取得されます。

4. oc コマンドを使用して、ビルダーイメージとソースコードから新規の Node.js アプリケーショ
ンを起動します。

$ oc new-app https://github.com/<github-id>/<repo-name>.git
--name=<app-name> -e <ENV_VAR_NAME>=<env_var_value>

サポート対象の Node.js バージョン

v2 v3

Node.js 0.10 サポート対象のコンテナーイメージ

 Nodejs-mongodb-example。このクイックスタート
テンプレートは Node.js バージョン 6 のみをサポー
トします。

6.3.7. WordPress

重要

現時点で WordPress アプリケーションの移行はコミュニティーによるサポートのみで、
Red hat のサポートはありません。

WordPress アプリケーションの OpenShift Container Platform v3 への移行に関する情報は、
「OpenShift ブログ」を参照してください。

6.3.8. Ghost

重要

OpenShift Container Platform 3.9 開発者ガイド

62

https://access.redhat.com/articles/2176281
https://blog.openshift.com/migrating-wordpress-openshift-3/

重要

現時点で Ghost アプリケーションの移行はコミュニティーによるサポートのみで、Red
hat のサポートはありません。

Ghost アプリケーションの OpenShift Container Platform v3 への移行に関する情報は、「OpenShift ブ
ログ」を参照してください。

6.3.9. JBoss EAP

1. 新しい GitHub リポジトリーを設定して、そのリポジトリーをリモートのブランチとして現在
のローカル Git リポジトリーに追加します。

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>

2. ローカルの v2 ソースコードを新規リポジトリーにプッシュします。

$ git push -u <remote-name> master

3. リポジトリーに事前にビルドされた .war ファイルが含まれている場合には、それらをリポジト
リーの root ディレクトリー内の deployments ディレクトリーに置く必要があります。

4. JBoss EAP 7 ビルダーイメージ (jboss-eap70-openshift) と GitHub からのソースコードリポジ
トリーを使用して新規アプリケーションを作成します。

$ oc new-app --strategy=source jboss-eap70-openshift:1.6~https://github.com/<github-
id>/<repo-name>.git

6.3.10. JBoss WS (Tomcat)

1. 新しい GitHub リポジトリーを設定して、そのリポジトリーをリモートのブランチとして現在
のローカル Git リポジトリーに追加します。

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>

2. ローカルの v2 ソースコードを新規リポジトリーにプッシュします。

$ git push -u <remote-name> master

3. リポジトリーに事前にビルドされた .war ファイルが含まれている場合には、それらをリポジト
リーの root ディレクトリー内の deployments ディレクトリーに置く必要があります。

4. JBoss Web Server 3 (Tomcat 7) ビルダーイメージ (jboss-webserver30-tomcat7) と GitHub か
らのソースコードリポジトリーを使用して新規アプリケーションを作成します。

$ oc new-app --strategy=source
jboss-webserver30-tomcat7-openshift~https://github.com/<github-id>/<repo-name>.git
--name=<app-name> -e <ENV_VAR_NAME>=<env_var_value>

6.3.11. JBoss AS (Wildfly 10)

1. 新しい GitHub リポジトリーを設定して、そのリポジトリーをリモートのブランチとして現在

第6章 アプリケーションの移行

63

http://blog.openshift.com/migrating-ghost-app-openshift-3/

1. 新しい GitHub リポジトリーを設定して、そのリポジトリーをリモートのブランチとして現在
のローカル Git リポジトリーに追加します。

$ git remote add <remote-name> https://github.com/<github-id>/<repo-name>

2. ローカルの v2 ソースコードを新規リポジトリーにプッシュします。

$ git push -u <remote-name> master

3. ローカルの Git リポジトリーを編集して、変更をアップストリームにプッシュして v3 との互換
性を確保します。

a. .openshift ディレクトリーを削除します。

注記

v3 では、action_hooks および cron タスクは同じようにサポートされませ
ん。詳細情報は、「アクションフック」を参照してください。

b. deployments ディレクトリーをソースリポジトリーの root に追加します。 .war ファイル
をこの「deployments」ディレクトリーに移動します。

4. oc コマンドを使用して、ビルダーイメージとソースコードから新規の Wildfly アプリケーショ
ンを起動します。

$ oc new-app https://github.com/<github-id>/<repo-name>.git
 --image-stream=”openshift/wildfly:10.0" --name=<app-name> -e
 <ENV_VAR_NAME>=<env_var_value>

注記

引数 --name はアプリケーション名を指定するためのオプションの引数です。ま
た、-e は OPENSHIFT_PYTHON_DIR などのビルドやデプロイメントプロセス
に必要な環境変数を追加するためのオプションの引数です。

6.3.12. サポート対象の JBoss バージョン

v2 v3

JBoss App Server 7

Tomcat 6 (JBoss EWS 1.0) サポート対象のコンテナーイメージ

Tomcat 7 (JBoss EWS 2.0) サポート対象のコンテナーイメージ

Vert.x 2.1

WildFly App Server 10

WildFly App Server 8.2.1.Final

OpenShift Container Platform 3.9 開発者ガイド

64

https://access.redhat.com/articles/2176281
https://access.redhat.com/articles/2176281

WildFly App Server 9

CapeDwarf

JBoss Data Virtualization 6 サポート対象のコンテナーイメージ

JBoss Enterprise App Platform (EAP) 6 サポート対象のコンテナーイメージ

JBoss Unified Push Server 1.0.0.Beta1, Beta2

JBoss BPM Suite サポート対象のコンテナーイメージ

JBoss BRMS サポート対象のコンテナーイメージ

 jboss-eap70-openshift: 1.3-Beta

 eap64-https-s2i

 eap64-mongodb-persistent-s2i

 eap64-mysql-persistent-s2i

 eap64-psql-persistent-s2i

v2 v3

6.4. クイックスタートの例

6.4.1. 概要

v2 クイックスタートから v3 クイックスタートへの明確な移行パスはありませんが、v3 では以下のク
イックスタートを利用できます。データベースを含むアプリケーションがある場合には、oc new-app
でアプリケーションを作成してから、もう一度 oc new-app を実行して別のデータベースサービスを起
動し、これら 2 つを共通の環境変数を使用してリンクするのではなく、以下のいずれかを使用し、ソー
スコードを含む GitHub リポジトリーからリンクしたアプリケーションとデータベースを一度にインス
タンス化できます。oc get templates -n openshift で利用可能なテンプレートをすべて表示することが
できます。

CakePHP MySQL https://github.com/sclorg/cakephp-ex

テンプレート: cakephp-mysql-example

Node.js MongoDB https://github.com/sclorg/nodejs-ex

テンプレート: nodejs-mongodb-example

Django PosgreSQL https://github.com/sclorg/django-ex

テンプレート: django-psql-example

第6章 アプリケーションの移行

65

https://access.redhat.com/articles/2176281
https://access.redhat.com/articles/2176281
https://access.redhat.com/articles/2176281
https://access.redhat.com/articles/2176281
https://github.com/sclorg/cakephp-ex
https://github.com/sclorg/nodejs-ex
https://github.com/sclorg/django-ex

1

Dancer MySQL https://github.com/sclorg/dancer-ex

テンプレート: dancer-mysql-example

Rails PostgreSQL https://github.com/sclorg/rails-ex

テンプレート: rails-postgresql-example

6.4.2. ワークフロー

上記のテンプレート URL のいずれかに対して git clone をローカルで実行します。アプリケーションの
ソースコードを追加し、コミットし、GitHub リポジトリーにプッシュしてから、上記のテンプレート
のいずれかで v3 クイックスタートアプリケーションを起動します。

1. アプリケーション用の GitHub リポジトリーを作成します。

2. クイックスタートテンプレートのクローンを作成して、GitHub リポジトリーをリモートとして
追加します。

$ git clone <one-of-the-template-URLs-listed-above>
$ cd <your local git repository>
$ git remote add upstream <https://github.com/<git-id>/<quickstart-repo>.git>
$ git push -u upstream master

3. ソースコードを GitHub にコミットし、プッシュします。

$ cd <your local repository>
$ git commit -am “added code for my app”
$ git push origin master

4. v3 で新規アプリケーションを作成します。

$ oc new-app --template=<template> \
-p SOURCE_REPOSITORY_URL=<https://github.com/<git-id>/<quickstart_repo>.git> \
-p DATABASE_USER=<your_db_user> \
-p DATABASE_NAME=<your_db_name> \
-p DATABASE_PASSWORD=<your_db_password> \
-p DATABASE_ADMIN_PASSWORD=<your_db_admin_password> 1

MongoDB にのみ該当します。

web フレームワーク Pod とデータベース Pod の 2 つの Pod が実行されます。Web フレーム
ワーク Pod 環境は、データベース Pod 環境と一致しているはずです。環境変数は、oc set env
pod/<pod_name> --list で一覧表示できます。

DATABASE_NAME は <DB_SERVICE>_DATABASE になります。

DATABASE_USER は <DB_SERVICE>_USER になります。

DATABASE_PASSWORDは <DB_SERVICE>_PASSWORD になります。

DATABASE_ADMIN_PASSWORD は MONGODB_ADMIN_PASSWORD になります
(MongoDB のみに該当します)。

SOURCE_REPOSITORY_URL が指定されていない場合、テンプレートはソースリポジト

OpenShift Container Platform 3.9 開発者ガイド

66

https://github.com/sclorg/dancer-ex
https://github.com/sclorg/rails-ex

SOURCE_REPOSITORY_URL が指定されていない場合、テンプレートはソースリポジト
リーとして上記のテンプレート URL (https://github.com/openshift/<quickstart>-ex) を
使用して、hello-welcome アプリケーションが起動します。

5. データベースを移行する場合は、データベースをダンプファイルにエクスポートして、新しい
v3 データベース Pod にデータベースを復元します。「データベースアプリケーション」に記
載の手順を参照してください。ただし、データベース Pod はすでに実行中であるため、oc
new-app の手順は省略してください。

6.5. 継続的インテグレーションまたは継続的デプロイ (CI/CD)

6.5.1. 概要

以下のトピックでは、OpenShift バージョン 2 (v2) と OpenShift バージョン 3 (v3) 間の継続的インテ
グレーションおよびデプロイメント (CI/CD) アプリケーションの相違点と、これらのアプリケーション
を v3 環境に移行する方法を確認します。

6.5.2. Jenkins

Jenkins アプリケーションは、アーキテクチャーの根本的な違いにより OpenShift バージョン 2 (v2) と
OpenShift バージョン 3 (v3) では異なる方法で設定されます。たとえば、v2 ではアプリケーションは
ギアでホストされる統合型の Git リポジトリーを使用してソースコードを保存します。v3 では、ソース
コードは Pod の外部でホストされるパブリックまたはプライベート Git リポジトリーに置かれます。

さらに OpenShift v3 では、Jenkins ジョブは、ソースコードの変更だけでなく、ソースコードと共にア
プリケーションをビルドするために使用されるイメージの変更である ImageStream の変更によっても
トリガーされます。そのため、v3 で新しい Jenkins アプリケーションを作成してから、OpenShift v3
環境に適した設定でジョブを作成し直して Jenkins アプリケーションを手動で移行することを推奨しま
す。

Jenkins アプリケーションの作成、ジョブの設定、Jenkins プラグインの正しい使用の方法に関する詳
細は、以下のリソースを参照してください。

https://github.com/openshift/origin/blob/master/examples/jenkins/README.md

https://github.com/openshift/jenkins-plugin/blob/master/README.md

https://github.com/openshift/origin/blob/master/examples/sample-app/README.md

6.6. WEBHOOK およびアクションフック

6.6.1. 概要

以下のトピックでは、OpenShift バージョン 2 (v2) と OpenShift バージョン 3 (v3) 間の webhook とア
クションフックの相違点と、これらのアプリケーションの v3 環境への移行方法について説明します。

6.6.2. Webhook

1. GitHub リポジトリーから BuildConfig を作成した後に、以下を実行します。

以下のように、上記のコマンドは webhook GitHub URL を出力します。

$ oc describe bc/<name-of-your-BuildConfig>

第6章 アプリケーションの移行

67

https://github.com/openshift/origin/blob/master/examples/jenkins/README.md
https://github.com/openshift/jenkins-plugin/blob/master/README.md
https://github.com/openshift/origin/blob/master/examples/sample-app/README.md

<https://api.starter-us-east-
1.openshift.com:443/oapi/v1/namespaces/nsname/buildconfigs/bcname/webhooks/secret/github
>.

2. GitHub の Web コンソールから、この URL を GitHub にカットアンドペーストします。

3. GitHub リポジトリーで、Settings → Webhooks & Services から Add Webhook を選択しま
す。

4. Payload URL フィールドに、(上記と同様の) URL の出力を貼り付けます。

5. Content Type を application/json に設定します。

6. Add webhook をクリックします。

webhook の設定が正常に完了したことを示す GitHub のメッセージが表示されます。

これで変更を GitHub リポジトリーにプッシュするたびに新しいビルドが自動的に起動し、ビルドに成
功すると新しいデプロイメントが起動します。

注記

アプリケーションを削除または再作成する場合には、GitHub の Payload URL フィール
ドを BuildConfig webhook url で更新する必要があります。

6.6.3. アクションフック

OpenShift バージョン 2 (v2) では、.openshift/action_hooks ディレクトリーに build、deploy、
post_deploy および pre_build スクリプトまたは action_hooks が置かれます。v3 にはこれらのスクリプ
トに対応する 1 対 1 の機能マッピングはありませんが、v3 の S2I ツール には カスタム可能なスクリプ
ト を指定の URL またはソースリポジトリーの .s2i/bin ディレクトリーに追加するオプションがありま
す。

OpenShift バージョン 3 (v3) には、イメージをビルドしてからレジストリーにプッシュするまでのイ
メージの基本的なテストを実行する post-build hook があります。デプロイメントフック はデプロイメ
ント構成で設定されます。

v2 では、通常 action_hooks は環境変数を設定するために使用されます。v2 では、環境変数は以下のよ
うに渡される必要があります。

または

または、以下を使用して環境変数を追加し、変更することができます。

6.7. S2I ツール

$ oc new-app <source-url> -e ENV_VAR=env_var

$ oc new-app <template-name> -p ENV_VAR=env_var

$ oc set env dc/<name-of-dc>
ENV_VAR1=env_var1 ENV_VAR2=env_var2’

OpenShift Container Platform 3.9 開発者ガイド

68

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/creating_images/#s2i-scripts

6.7.1. 概要

Source-to-Image (S2I) ツールは、アプリケーションのソースコードをコンテナーイメージに挿入しま
す。最終成果物として、ビルダーイメージとビルド済みのソースコードが組み込まれた実行準備のでき
たコンテナーイメージが新たに作成されます。S2I ツールは、OpenShift Container Platform がなくて
も、リポジトリー から、ローカルマシンにインストールできます。

S2I ツールは、OpenShift Container Platform で使用する前にアプリケーションとイメージをローカル
でテストし、検証するための非常に強力なツールです。

6.7.2. コンテナーイメージの作成

1. アプリケーションに必要なビルダーイメージを特定します。Red Hat は、Python、Ruby、
Perl、PHP および Node.js など各種の言語のビルダーイメージを複数提供しています。他のイ
メージは コミュニティースペース から取得できます。

2. S2I は、Git リポジトリーまたはローカルのファイルシステムのソースコードからイメージをビ
ルドできます。ビルダーイメージおよびソースコードから新しいコンテナーイメージをビルド
するには、以下を実行します。

$ s2i build <source-location> <builder-image-name> <output-image-name>

注記

<source-location> には Git リポジトリーの URL、 またはローカルファイルシ
ステムのソースコードのディレクトリーのいずれかを指定できます。

3. Docker デーモンでビルドしたイメージをテストします。

$ docker run -d --name <new-name> -p <port-number>:<port-number> <output-image-
name>
$ curl localhost:<port-number>

4. 新しいイメージをOpenShiftレジストリーにプッシュします。

5. oc コマンドを使用して、OpenShift レジストリーのイメージから新規アプリケーションを作成
します。

$ oc new-app <image-name>

6.8. サポートガイド

6.8.1. 概要

以下のトピックでは、OpenShift バージョン 2 (v2) および OpenShift バージョン 3 (v3) でサポート対
象の言語、フレームワーク、データベース、マーカーについて説明します。

OpenShift Container Platform のお客様が使用する一般的な組み合わせに関する情報は、「OpenShift
Container Platform tested integrations」を参照してください。

6.8.2. サポートされているデータベース

データベースアプリケーションのトピックの「サポート対象のデータベース」セクションを参照してく

第6章 アプリケーションの移行

69

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#using-images-s2i-images-index
https://github.com/openshift/source-to-image#installation
https://github.com/sclorg?query=s2i
https://github.com/openshift-s2i
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#access-pushing-and-pulling-images
https://access.redhat.com/articles/2176281

データベースアプリケーションのトピックの「サポート対象のデータベース」セクションを参照してく
ださい。

6.8.3. サポート言語

PHP

Python

Perl

Node.js

Ruby

JBoss/xPaaS

6.8.4. サポート対象のフレームワーク

表6.1 サポート対象のフレームワーク

v2 v3

Jenkins サーバー jenkins-persistent

Drupal 7

Ghost 0.7.5

WordPress 4

Ceylon

Go

MEAN

6.8.5. サポート対象のマーカー

表6.2 Python

v2 v3

pip_install リポジトリーに requirements.txt が含まれる場合に
は、デフォルトで pip が呼び出されます。含まれて
いない場合に pip は使用されません。

表6.3 Ruby

OpenShift Container Platform 3.9 開発者ガイド

70

../../dev_guide/migrating_applications/web_framework_applications.xml#dev-guide-migrating-web-framework-applications-supported-Node.js-versions

v2 v3

disable_asset_compilation これは、buildconfig ストラテジー定義で
DISABLE_ASSET_COMPILATION 環境変数を
true に設定すると使用できます。

表6.4 Perl

v2 v3

enable_cpan_tests これは、ビルド設定 で ENABLE_CPAN_TEST 環
境変数を true に設定すると実行できます。

表6.5 PHP

v2 v3

use_composer ソースリポジトリーの root ディレクトリーに
composer.json が含まれる場合に、コンポーザーが
常に使用されます。

表6.6 Node.js

v2 v3

NODEJS_VERSION 該当なし

use_npm アプリケーションの起動には、DEV_MODE が true
に設定されていない限り npm が常に使用されます。
true に設定されていない場合には nodemon が使用
されます。

表6.7 JBoss EAP, JBoss WS, WildFly

v2 v3

enable_debugging このオプションは、デプロイメント設定で設定され
る ENABLE_JPDA 環境変数に値を設定することで
制御します。

skip_maven_build pom.xml がある場合には、maven が実行されます。

java7 該当なし

java8 JavaEE は JDK8 を使用します。

表6.8 Jenkins

第6章 アプリケーションの移行

71

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#configuration

v2 v3

enable_debugging 該当なし

表6.9 all

v2 v3

force_clean_build v3 には同様の概念が使われています。buildconfig
の noCache フィールドにより、コンテナービルドに
よる各層の再実行が強制的に実行されます。S2I ビル
ドでは、clean build を示す incremental フラグはデ
フォルトで false になっています。

hot_deploy Ruby、Python、Perl、PHP、Node.js

enable_public_server_status 該当なし

disable_auto_scaling 自動スケーリングはデフォルトではオフになってい
ますが、pod auto-scaling でオンにすることができま
す。

6.8.6. サポート対象の環境変数

MySQL

MongoDB

PostgreSQL

OpenShift Container Platform 3.9 開発者ガイド

72

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#ruby-hot-deploy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#python-hot-deploy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#perl-hot-deploy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#php-hot-deploy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#nodejs-hot-deploying

第7章 チュートリアル

7.1. 概要

以下のトピックでは、OpenShift Container Platform でアプリケーションを稼働させる方法や、さまざ
まな言語とフレームワークについて説明します。

7.2. クイックスタートのテンプレート

7.2.1. 概要

クイックスタートは、OpenShift Container Platform で実行するアプリケーションの基本的なサンプル
です。クイックスタートはさまざまな言語やフレームワークが含まれており、サービスのセット、ビル
ド設定およびデプロイメント設定などで構成されるテンプレートで定義されています。このテンプレー
トは、必要なイメージやソースリポジトリーを参照して、アプリケーションをビルドし、デプロイしま
す。

クイックスタートを確認するには、テンプレートからアプリケーションを作成します。管理者がすでに
これらのテンプレートを OpenShift Container Platform クラスターにインストールしている可能性があ
りますが、その場合には、Web コンソールからこれを簡単に選択できます。テンプレートのアップロー
ド、作成、変更に関する情報は、テンプレートのドキュメントを参照してください。

クイックスタートは、アプリケーションのソースコードを含むソースリポジトリーを参照します。ク
イックスタートをカスタマイズするには、リポジトリーをフォークし、テンプレートからアプリケー
ションを作成する時に、デフォルトのソースリポジトリー名をフォークしたリポジトリーに置き換えま
す。これにより、提供されたサンプルのソースではなく、独自のソースコードを使用してビルドが実行
されます。ソースリポジトリーでコードを更新し、新しいビルドを起動して、デプロイされたアプリ
ケーションで変更が反映されていることを確認できます。

7.2.2. Web フレームワーククイックスタートのテンプレート

以下のクイックスタートでは、指定のフレームワークおよび言語の基本アプリケーションを提供しま
す。

CakePHP: PHP Web フレームワーク (MySQL データベースを含む)

テンプレートの定義

Source repository

Dancer: Perl Web フレームワーク (MySQL データベースを含む)

テンプレートの定義

Source repository

Django: Python Web フレームワーク (PostgreSQL データベースを含む)

テンプレートの定義

Source repository

NodeJS: NodeJS web アプリケーション (MongoDB データベースを含む)

テンプレートの定義

第7章 チュートリアル

73

https://github.com/openshift/origin/tree/master/examples/quickstarts/cakephp-mysql.json
https://github.com/sclorg/cakephp-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/dancer-mysql.json
https://github.com/sclorg/dancer-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/django-postgresql.json
https://github.com/sclorg/django-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/nodejs-mongodb.json

Source repository

Rails: Ruby Web フレームワーク (PostgreSQL データベースを含む)

テンプレートの定義

Source repository

7.3. RUBY ON RAILS

7.3.1. 概要

Ruby on Rails は Ruby で記述された一般的な Web フレームワークです。本ガイドでは、OpenShift
Container Platform での Rails 4 の使用について説明します。

警告

チュートリアル全体をチェックして、OpenShift Container Platform でアプリケー
ションを実行するために必要なすべての手順を概観することを強く推奨します。問
題に直面した場合には、チュートリアル全体を振り返り、もう一度問題に対応して
ください。またチュートリアルは、実行済みの手順を確認し、すべての手順が適切
に実行されていることを確認するのに役立ちます。

本書では、以下があることを前提としています。

Ruby/Rails の基本知識

Ruby 2.0.0+、Rubygems、Bundler のローカルにインストールされたバージョン

Git の基本知識

OpenShift Container Platform v3 の実行インスタンス

7.3.2. ローカルのワークステーション設定

まず、OpenShift Container Platform のインスタンスが実行されており、利用できることを確認しま
す。OpenShift Container Platform を稼働させる方法については、「Installation Methods」を確認して
ください。さらに、oc CLI クライアントがインストールされており、コマンドがコマンドシェルからア
クセスできることを確認し、メールアドレスおよびパスワードを使用してログインする際にこれを使用
できるようにします。

7.3.2.1. データベースの設定

Rails アプリケーションはほぼ常にデータベースと併用されます。ローカル開発の場合は、PostgreSQL
データベースを選択してください。PostgreSQL データベースをインストール方法するには、以下を入
力します。

$ sudo yum install -y postgresql postgresql-server postgresql-devel



OpenShift Container Platform 3.9 開発者ガイド

74

https://github.com/sclorg/nodejs-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/rails-postgresql.json
https://github.com/sclorg/rails-ex
https://github.com/sclorg/mysql-container/tree/master/5.5
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-index
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#cli-reference-get-started-cli
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#basic-setup-and-login

次に、以下のコマンドでデータベースを初期化する必要があります。

$ sudo postgresql-setup initdb

このコマンドで /var/lib/pgsql/data ディレクトリーが作成され、このディレクトリーにデータが保存さ
れます。

以下を入力してデータベースを起動します。

$ sudo systemctl start postgresql.service

データベースが実行されたら、rails ユーザーを作成します。

$ sudo -u postgres createuser -s rails

作成をしたユーザーのパスワードは作成されていない点に留意してください。

7.3.3. アプリケーションの作成

Rails アプリケーションをゼロからビルドするには、Rails gem を先にインストールする必要がありま
す。

$ gem install rails
Successfully installed rails-4.2.0
1 gem installed

Rails gem のインストール後に、PostgreSQL をデータベースとして 指定して新規アプリケーションを
作成します。

$ rails new rails-app --database=postgresql

次に、新規ディレクトリーに移動します。

$ cd rails-app

アプリケーションがすでにある場合には pg (postgresql) gem が Gemfile に配置されていることを確認
します。配置されていない場合には、gem を追加して Gemfile を編集します。

gem 'pg'

すべての依存関係を含む Gemfile.lock を新たに生成するには、以下を実行します。

$ bundle install

pg gem で postgresql データベースを使用することのほかに、config/database.yml が postgresql ア
ダプターを使用していることを確認する必要があります。

config/database.yml ファイルの default セクションを以下のように更新するようにしてください。

default: &default
 adapter: postgresql
 encoding: unicode

第7章 チュートリアル

75

 pool: 5
 host: localhost
 username: rails
 password:

アプリケーションの開発およびテストデータベースを作成するには、以下の rake コマンドを使用しま
す。

$ rake db:create

これで PostgreSQL サーバーに development および test データベースが作成されます。

7.3.3.1. Welcome ページの作成

Rails 4 では、静的な public/index.html ページが実稼働環境で提供されなくなったので、新たに root
ページを作成する必要があります。

welcome ページをカスタマイズするには、以下の手順を実行する必要があります。

index アクションで コントローラー を作成します。

welcome コントローラー index アクションの ビュー ページを作成します。

作成した コントローラー と ビュー と共にアプリケーションの root ページを提供する ルート
を作成します。

Rails には、これらの必要な手順をすべて実行するジェネレーターがあります。

$ rails generate controller welcome index

必要なファイルはすべて作成されたので、config/routes.rb ファイルの 2 行目を以下のように編集する
ことのみが必要になります。

root 'welcome#index'

rails server を実行して、ページが利用できることを確認します。

$ rails server

ブラウザーで http://localhost:3000 に移動してページを表示してください。このページが表示されな
い場合は、サーバーに出力されるログを確認してデバッグを行ってください。

7.3.3.2. OpenShift Container Platform のアプリケーションの設定

アプリケーションと OpenShift Container Platform で実行されている PostgreSQL データベースサービ
スとを通信させるには、環境変数 を使用するように config/database.yml の default セクションを編集
する必要があります。 環境変数は、後のデータベースサービスの作成時に定義します。

編集した config/database.yml の default セクションに事前定義済みの変数を入力すると、以下のよう
になります。

<% user = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ? "root" :
ENV["POSTGRESQL_USER"] %>
<% password = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ?

OpenShift Container Platform 3.9 開発者ガイド

76

http://localhost:3000
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#postgresql-environment-variables

ENV["POSTGRESQL_ADMIN_PASSWORD"] : ENV["POSTGRESQL_PASSWORD"] %>
<% db_service = ENV.fetch("DATABASE_SERVICE_NAME","").upcase %>

default: &default
 adapter: postgresql
 encoding: unicode
 # For details on connection pooling, see rails configuration guide
 # http://guides.rubyonrails.org/configuring.html#database-pooling
 pool: <%= ENV["POSTGRESQL_MAX_CONNECTIONS"] || 5 %>
 username: <%= user %>
 password: <%= password %>
 host: <%= ENV["#{db_service}_SERVICE_HOST"] %>
 port: <%= ENV["#{db_service}_SERVICE_PORT"] %>
 database: <%= ENV["POSTGRESQL_DATABASE"] %>

最終的なファイルの内容のサンプルについては、「Ruby on Rails アプリケーションの例
config/database.yml」を参照してください。

7.3.3.3. アプリケーションの Git への保存

OpenShift ContainerPlatformにはgitが必要です。インストールしていない場合はインストールする必
要があります。

OpenShift Container Platform でアプリケーションをビルドするには通常、ソースコードを git リポジ
トリーに保存する必要があるため、git がない場合にはインストールしてください。

ls -1 コマンドを実行して、Rails アプリケーションのディレクトリーで操作を行っていることを確認し
ます。コマンドの出力は以下のようになります。

$ ls -1
app
bin
config
config.ru
db
Gemfile
Gemfile.lock
lib
log
public
Rakefile
README.rdoc
test
tmp
vendor

Rails app ディレクトリーでこれらのコマンドを実行して、コードを初期化して、git にコミットしま
す。

$ git init
$ git add .
$ git commit -m "initial commit"

アプリケーションをコミットしたら、リモートのリポジトリーにプッシュする必要があります。これに
は、GitHub アカウント が必要です。 このアカウントで 新しいリポジトリーを作成します。

第7章 チュートリアル

77

https://github.com/sclorg/rails-ex
https://github.com/sclorg/rails-ex/blob/master/config/database.yml
http://git-scm.com/
http://git-scm.com/
https://github.com/join
https://help.github.com/articles/creating-a-new-repository/

お使いの git リポジトリーを参照するリモートを設定します。

$ git remote add origin git@github.com:<namespace/repository-name>.git

次に、アプリケーションをリモートの git リポジトリーにプッシュします。

$ git push

7.3.4. アプリケーションの OpenShift Container Platform へのデプロイ

Ruby on Rails アプリケーションをデプロイするには、アプリケーション用に新規のプロジェクトを作成
します。

$ oc new-project rails-app --description="My Rails application" --display-name="Rails Application"

rails-app プロジェクト の作成後、新規プロジェクトの namespace に自動的に切り替えられます。

OpenShift Container Platform へのアプリケーションのデプロイでは 3 つの手順を実行します。

OpenShift Container Platform の PostgreSQL イメージ からデータベースサービスを作成しま
す。

OpenShift Container Platform の Ruby 2.0 ビルダーイメージ と Ruby on Rails のソースコード
でフロントエンドの サービス を作成して、データベースサービスと接続します。

アプリケーションのルートを作成します。

7.3.4.1. データベースサービスの作成

Rails アプリケーションには実行中のデータベースサービス が必要です。このサービスに
は、PostgeSQL データベースイメージを使用します。

データベースサービスを作成するために、oc new-app コマンドを使用します。このコマンドでは、必
要な環境変数を渡す必要があります。この環境変数はデータベースコンテナー内で使用します。これら
の環境変数は、ユーザー名、パスワード、およびデータベースの名前を設定するために必要です。これ
らの環境変数の値を任意の値に変更できます。今回設定する変数は以下の通りです。

POSTGRESQL_DATABASE

POSTGRESQL_USER

POSTGRESQL_PASSWORD

これらの変数を設定すると、以下を確認できます。

指定の名前のデータベースが存在する

指定の名前のユーザーが存在する

ユーザーは指定のパスワードで指定のデータベースにアクセスできる

以下に例を示します。

$ oc new-app postgresql -e POSTGRESQL_DATABASE=db_name -e
POSTGRESQL_USER=username -e POSTGRESQL_PASSWORD=password

OpenShift Container Platform 3.9 開発者ガイド

78

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#services
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#using-images-s2i-images-ruby
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#services
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#services
http://www.postgresql.org/
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#services
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#postgresql-environment-variables

データベース管理者のパスワードを設定するには、直前のコマンドに以下を追加します。

-e POSTGRESQL_ADMIN_PASSWORD=admin_pw

このコマンドの進捗を確認するには、以下を実行します。

$ oc get pods --watch

7.3.4.2. フロントエンドサービスの作成

アプリケーションを OpenShift Container Platform にデプロイするには、oc new-app コマンドをもう
一度使用して、アプリケーションを配置するリポジトリーを指定する必要があります。 このコマンドで
は、「データベースサービスの作成」で設定したデータベース関連の環境変数を指定してください。

$ oc new-app path/to/source/code --name=rails-app -e POSTGRESQL_USER=username -e
POSTGRESQL_PASSWORD=password -e POSTGRESQL_DATABASE=db_name -e
DATABASE_SERVICE_NAME=postgresql

このコマンドでは、OpenShift Container Platform は、ソースコードの取得、ビルダーイメージの設
定、アプリケーションイメージの ビルド、新規作成したイメージと指定の 環境変数 のデプロイを行い
ます。このアプリケーションは rails-app という名前に指定します。

rails-app DeploymentConfig の JSON ドキュメントを参照して、環境変数が追加されたかどうかを確
認できます。

$ oc get dc rails-app -o json

以下のセクションが表示されるはずです。

env": [
 {
 "name": "POSTGRESQL_USER",
 "value": "username"
 },
 {
 "name": "POSTGRESQL_PASSWORD",
 "value": "password"
 },
 {
 "name": "POSTGRESQL_DATABASE",
 "value": "db_name"
 },
 {
 "name": "DATABASE_SERVICE_NAME",
 "value": "postgresql"
 }

],

ビルドプロセスを確認するには、以下を実行します。

$ oc logs -f build rails-app-1

第7章 チュートリアル

79

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#postgresql-environment-variables

ビルドが完了すると、OpenShift Container Platform で Pod が実行されていることを確認できます。

$ oc get pods

myapp-<number>-<hash> で始まる行が表示されますが、これは OpenShift Container Platform で実
行中のアプリケーションです。

データベースの移行スクリプトを実行してデータベースを初期化してからでないと、アプリケーション
は機能しません。これを実行する 2 種類の方法があります。

実行中のフロントエンドコンテナーから手動で実行する

最初に rsh コマンドでフロントエンドコンテナーに対して実行します。

$ oc rsh <FRONTEND_POD_ID>

コンテナー内から移行を実行します。

$ RAILS_ENV=production bundle exec rake db:migrate

development または test 環境で Rails アプリケーションを実行する場合には、RAILS_ENV の環境変数
を指定する必要はありません。

デプロイメント前のライフサイクルフックをテンプレートに追するたとえば、Rails サンプル ア
プリケーションの フックのサンプル を確認します。

7.3.4.3. アプリケーションのルートの作成

www.example.com などの外部からアクセスできるホスト名を指定してサービスを公開するには、
OpenShift Container Platform のルートを使用します。この場合は、以下を入力してフロントエンド
サービスを公開する必要があります。

$ oc expose service rails-app --hostname=www.example.com

警告

ユーザーは指定したホスト名がルーターの IP アドレスに解決することを確認する
必要があります。詳しい情報は、以下に関する OpenShift Container Platform ド
キュメントを参照してください。

ルート

高可用性ルートシステムの設定

7.4. MAVEN 用の NEXUS ミラーリングの設定

7.4.1. はじめに

Java および Maven でアプリケーションを開発すると、ビルドを複数回実行する可能性が非常に高くな



OpenShift Container Platform 3.9 開発者ガイド

80

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://github.com/sclorg/rails-ex/blob/master/openshift/templates/rails-postgresql.json#L122-L130
https://github.com/sclorg/rails-ex
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#routers
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#configuring-a-highly-available-service

Java および Maven でアプリケーションを開発すると、ビルドを複数回実行する可能性が非常に高くな
ります。Pod のビルド時間を短縮するために、Maven の依存関係をローカルの Nexus リポジトリーに
キャッシュすることができます。このチュートリアルでは、クラスター上に Nexus リポジトリーを作成
する方法を説明します。

このチュートリアルでは、ご利用のプロジェクトが Maven で使用できるように設定されていることを
前提としています。Java プロジェクトで Maven を使用する場合は、Maven のガイドを参照することを
強く推奨します。

また、アプリケーションのイメージに Maven ミラーリング機能があるか確認するようにしてくださ
い。Maven を使用するイメージの多くに MAVEN_MIRROR_URL 環境変数が含まれており、このプロ
セスを単純化するために使用できます。この機能が含まれていない場合には、Nexus ドキュメント を
参照して、ビルドが正しく設定されていることを確認してください。

さらに、各 Pod が機能するように十分なリソースを割り当てるようにしてください。追加のリソース
を要求するには、Nexus デプロイメント設定で Pod テンプレートを編集する必要がある場合がありま
す。

7.4.2. Nexus の設定

1. 正式な Nexus コンテナーイメージをダウンロードし、デプロイします。

oc new-app sonatype/nexus

2. 新規作成した Nexus サービスを公開して、ルートを作成します。

oc expose svc/nexus

3. oc get routes を使用して、Pod の新規外部アドレスを検索します。

oc get routes

出力は以下のようになります。

NAME HOST/PORT PATH SERVICES PORT TERMINATION
nexus nexus-myproject.192.168.1.173.xip.io nexus 8081-tcp

4. ブラウザーで HOST/PORT の対象の URL に移動して、Nexus が実行されていることを確認し
ます。Nexus にサインインするには、デフォルトの管理者ユーザー名 admin、パスワード
admin123 を使用します。

注記

Nexus は中央リポジトリー用に事前に設定されていますが、アプリケーション用に他の
リポジトリーが必要な場合があります。Red Hat イメージの多くは、Maven リポジト
リー に jboss-ga リポジトリーを追加 することを推奨します。

7.4.2.1. プローブを使用した正常な実行の確認

ここで readiness プローブと liveness プローブ を設定することができます。これらのプローブは、
Nexus が正しく実行されていることを定期的に確認します。

$ oc set probe dc/nexus \

第7章 チュートリアル

81

https://maven.apache.org/guides/getting-started/index.html
https://books.sonatype.com/nexus-book/reference/config.html
https://maven.repository.redhat.com/ga/
https://books.sonatype.com/nexus-book/reference/config-maven.html

 --liveness \
 --failure-threshold 3 \
 --initial-delay-seconds 30 \
 -- echo ok
$ oc set probe dc/nexus \
 --readiness \
 --failure-threshold 3 \
 --initial-delay-seconds 30 \
 --get-url=http://:8081/nexus/content/groups/public

7.4.2.2. Nexus への永続性の追加

注記

永続ストレージを必要としない場合には、Connecting to Nexus に進みます。ただし、
Pod が何らかの理由で再起動された場合には、キャッシュされた依存関係および設定の
カスタマイズはなくなります。

Nexus の Persistent Volume Claim (永続ボリューム要求、PVC) を作成し、サーバーを実行中の Pod を
中断すると、キャッシュされた依存関係が失われないようにします。PVC にはクラスター内で利用可能
な永続ボリューム (PV) が必要です。利用可能な PV がない場合や、クラスターに管理者としてのアク
セス権限がない場合には、システム管理者に、読み取り/書き込み可能な永続ボリュームを作成するよ
うに依頼してください。

永続ボリュームの作成手順については、「Persistent Storage in OpenShift Container Platform」を参照
してください。

Nexus デプロイメント設定に PVC を追加します。

$ oc volumes dc/nexus --add \
 --name 'nexus-volume-1' \
 --type 'pvc' \
 --mount-path '/sonatype-work/' \
 --claim-name 'nexus-pv' \
 --claim-size '1G' \
 --overwrite

これで、デプロイメント設定の以前の emptyDir ボリュームが削除され、1 GB 永続ストレージを
/sonatype-work (依存関係の保存先) にマウントする要求を追加します。この設定の変更により、
Nexus Pod は自動的に再デプロイされます。

Nexus が実行していることを確認するには、ブラウザーで Nexus ページを更新します。以下を使用し
て、デプロイメントの進捗をモニタリングすることができます。

$ oc get pods -w

7.4.3. Nexus への接続

次の手順では、新しい Nexus リポジトリーを使用するビルドを定義する方法を説明します。残りの
チュートリアルでは、このリポジトリーサンプル と、ビルダーとして wildfly-100-centos7を使用しま
すが、これらの変更はどのプロジェクトでも機能します。

ビルダーイメージサンプル では、環境の一部として MAVEN_MIRROR_URL をサポートするため、こ

OpenShift Container Platform 3.9 開発者ガイド

82

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-index
https://github.com/openshift/jee-ex.git
https://github.com/openshift/jee-ex.git

1

れを使用して、ビルダーイメージを Nexus リポジトリーにポイントすることができます。イメージが環
境変数を使用した Mavin のミラーリングをサポートしていない場合には、Nexus ミラーリングを参照す
る正しい Maven 設定を指定するようにビルダーイメージを変更する必要がある場合があります。

$ oc new-build openshift/wildfly-100-centos7:latest~https://github.com/openshift/jee-ex.git \
 -e MAVEN_MIRROR_URL='http://nexus.<Nexus_Project>:8081/nexus/content/groups/public'
$ oc logs build/jee-ex-1 --follow

<Nexus_Project> は Nexus リポジトリーのプロジェクト名に置き換えます。これが使用するアプリ
ケーションと同じプロジェクトに含まれる場合には、<Nexus_Project>. を削除できます。OpenShift
Container Platform の DNS 解決について参照してください。

7.4.4. 正常な実行の確認

web ブラウザーで、http://<NexusIP>:8081/nexus/content/groups/public に移動して、アプリケー
ションの依存関係を保存したことを確認します。また、ビルドログを確認して Maven が Nexus ミラー
リングを使用しているかどうかをチェックできます。正常にミラーリングされている場合には、URL
http://nexus:8081 を参照する出力が表示されるはずです。

7.4.5. その他のリソース

OpenShift Container Platform でのボリュームの管理

OpenShift Container Platform での Java ビルドの構築時間の改善

Nexus リポジトリーのドキュメント

7.5. OPENSHIFT PIPELINE ビルド

7.5.1. はじめに

シンプルな web サイトを作成する場合も、複雑なマイクロサービス web を作成する場合も、
OpenShift Pipeline を使用して、OpenShift でアプリケーションをビルド、テスト、デプロイ、プロ
モートを実行します。

標準の Jenkins Pipeline 構文のほかにも、OpenShift Jenkins イメージは (OpenShift Jenkins Client プ
ラグインを使用して) OpenShift の Domain Specific Language (DSL) を提供します。 これは、
OpenShift API サーバーと高度な対話を行う、読み取り可能でコンパクトで総合的な、かつ Fluent (流
れるような) 構文を提供することを目的とし、OpenShift クラスターのアプリケーションのビルド、デ
プロイメント、プロモートのより詳細な制御が可能になります。

以下の例では、nodejs-mongodb.json テンプレートを使用して nodejs-mongodb.json アプリケー
ションをビルドし、デプロイし、検証する OpenShift Pipeline を作成する方法を紹介します。

7.5.2. Jenkins Master の作成

Jenkins master を作成するには以下を実行します。

 $ oc project <project_name> 1
 $ oc new-app jenkins-ephemeral 2

oc new-project <project_name> で新規プロジェクトを使用するか、または作成するプロジェク
トを選択します。

第7章 チュートリアル

83

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-networking
https://blog.openshift.com/improving-build-time-java-builds-openshift/
https://books.sonatype.com/nexus-book/reference/index.html
https://github.com/sclorg/nodejs-ex/blob/master/openshift/templates/nodejs-mongodb.json

2 永続ストレージを使用する場合は、jenkins-persistent を代わりに使用します。

注記

Jenkins の自動プロビジョニングがクラスターで有効化されており、Jenkins master を
カスタマイズする必要がない場合には、以前の手順を省略できます。

Jenkins自動プロビジョニングの詳細については、「Configuring Pipeline Execution」を
参照してください。

7.5.3. Pipeline のビルド設定

Jenkins master が機能するようになったので、Jenkins Pipeline ストラテジーを使用して
Node.js/MongoDB のサンプルアプリケーションをビルドし、デプロイし、スケーリングする
BuildConfig を作成します。

以下の内容で nodejs-sample-pipeline.yaml という名前のファイルを作成します。

Pipeline ビルドストラテジーに関する情報は、「Pipeline ストラテジーオプション」を参照してくださ
い。

7.5.4. Jenkinsfile

jenkinsPipelineStrategy で BuildConfig を作成したら、インラインの jenkinsfile を使用して、
Pipeline に指示を出します。この例では、アプリケーションに Git リポジトリーを設定しません。

以下の jenkinsfile の内容は、OpenShift DSL を使用して Groovy で記述されています。ソースリポジ
トリーに jenkinsfile を追加することが推奨される方法ですが、この例では YAML Literal Style を使用
して BuildConfig にインラインコンテンツを追加しています。

完了した BuildConfig は、OpenShift Origin リポジトリーの examples ディレクトリーの nodejs-
sample-pipeline.yaml で確認できます。

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "nodejs-sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: <pipeline content from below>
 type: JenkinsPipeline

def templatePath = 'https://raw.githubusercontent.com/openshift/nodejs-
ex/master/openshift/templates/nodejs-mongodb.json' 1
def templateName = 'nodejs-mongodb-example' 2
pipeline {
 agent {
 node {
 label 'nodejs' 3
 }
 }
 options {

OpenShift Container Platform 3.9 開発者ガイド

84

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-configuring-pipeline-execution
http://www.yaml.org/spec/1.2/spec.html#id2795688
https://github.com/openshift/origin/tree/master/examples/jenkins/pipeline/nodejs-sample-pipeline.yaml

 timeout(time: 20, unit: 'MINUTES') 4
 }
 stages {
 stage('preamble') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 echo "Using project: ${openshift.project()}"
 }
 }
 }
 }
 }
 stage('cleanup') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.selector("all", [template : templateName]).delete() 5
 if (openshift.selector("secrets", templateName).exists()) { 6
 openshift.selector("secrets", templateName).delete()
 }
 }
 }
 }
 }
 }
 stage('create') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.newApp(templatePath) 7
 }
 }
 }
 }
 }
 stage('build') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def builds = openshift.selector("bc", templateName).related('builds')
 timeout(5) { 8
 builds.untilEach(1) {
 return (it.object().status.phase == "Complete")
 }
 }
 }
 }
 }
 }
 }

第7章 チュートリアル

85

1

2

3

4

5

6

7

8

9

10

使用するテンプレートへのパス

作成するテンプレート名

このビルドを実行する node.js のスレーブ Pod をスピンアップします。

この Pipeline に 20 分間のタイムアウトを設定します。

このテンプレートラベルが指定されたものすべてを削除します。

このテンプレートラベルが付いたシークレットをすべて削除します。

templatePath から新規アプリケーションを作成します。

ビルドが完了するまで最大 5 分待機します。

デプロイメントが完了するまで最大 5 分待機します。

すべてが正常に完了した場合は、$ {templateName}:latest イメージに $ {templateName}-
staging:latest のタグを付けます。ステージング環境向けの Pipeline の BuildConfig は、変更する
$ {templateName}-staging:latest イメージがないかを確認し、このイメージをステージング環境
にデプロイします。

注記

 stage('deploy') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def rm = openshift.selector("dc", templateName).rollout().latest()
 timeout(5) { 9
 openshift.selector("dc", templateName).related('pods').untilEach(1) {
 return (it.object().status.phase == "Running")
 }
 }
 }
 }
 }
 }
 }
 stage('tag') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.tag("${templateName}:latest", "${templateName}-staging:latest") 10
 }
 }
 }
 }
 }
 }
}

OpenShift Container Platform 3.9 開発者ガイド

86

注記

以前の例は、declarative pipeline スタイルを使用して記述されていますが、以前の
scripted pipeline スタイルもサポートされます。

7.5.5. パイプラインの作成

OpenShift の BuildConfig を作成するには、以下を実行します。

$ oc create -f nodejs-sample-pipeline.yaml

独自のファイルを作成しない場合には、以下を実行して Origin リポジトリーからサンプルを使用できま
す。

$ oc create -f
https://raw.githubusercontent.com/openshift/origin/master/examples/jenkins/pipeline/nodejs-sample-
pipeline.yaml

使用する OpenShift DSL 構文の情報は、「OpenShift Jenkins クライアントプラグイン」を参照してく
ださい。

7.5.6. パイプラインの起動

以下のコマンドでパイプラインを起動します。

$ oc start-build nodejs-sample-pipeline

注記

または、OpenShift Web コンソールで Builds → Pipeline セクションに移動して、Start
Pipeline をクリックするか、Jenkins コンソールから作成した Pipeline に移動し
て、Build Now をクリックして Pipeline を起動できます。

パイプラインが起動したら、以下のアクションがプロジェクト内で実行されるはずです。

ジョブインスタンスが Jenkins サーバー上で作成される

Pipeline で必要な場合には、スレーブ Pod が起動される

Pipeline がスレーブ Pod で実行されるか、またはスレーブが必要でない場合には master で実
行される

template=nodejs-mongodb-example ラベルの付いた以前に作成されたリソースは削除さ
れます。

新規アプリケーションおよびそれに関連するすべてのリソースは、nodejs-mongodb-
example テンプレートで作成されます。

ビルドは nodejs-mongodb-example BuildConfig を使用して起動されます。

パイプラインは、ビルドが完了して次のステージをトリガーするまで待機します。

デプロイメントは、nodejs-mongodb-example のデプロイメント設定を使用して開始され
ます。

第7章 チュートリアル

87

https://github.com/openshift/jenkins-client-plugin/blob/master/README.md

パイプラインは、デプロイメントが完了して次のステージをトリガーするまで待機しま
す。

ビルドとデプロイに成功すると、nodejs-mongodb-example:latest イメージが nodejs-
mongodb-example:stage としてトリガーされます。

Pipeline で以前に要求されていた場合には、スレーブ Pod が削除される

注記

OpenShift Web コンソールで確認すると、最適な方法で Pipeline の実行を視覚的に把握
することができます。Web コンソールにログインして、Builds → Pipelines に移動して、
パイプラインを確認します。

7.5.7. OpenShift Pipeline の詳細オプション

OpenShift Pipeline では、Jenkins を 1 つのプロジェクトで起動してから、OpenShift Sync プラグイン
に開発者が作業をするプロジェクトのグループをモニタリングさせることができます。以下のセクショ
ンでは、このプロセスを完了する手順を説明します。

Jenkins auto = Provisioningを無効にするには、「Configuring Pipeline Execution」を参照して
ください。

JenkinsサービスアカウントがOpenShiftPipelinesを実行する各プロジェクトにアクセスできる
ようにするには、「Cross Project Access」を参照してください。

モニタリングするプロジェクトを追加するには、以下のいずれかを行います。

Jenkins コンソールにログインします。

Manage Jenkins から、Configure System に移動します。

OpenShift Jenkins Sync の Namespace フィールドを更新します。

または、S2I 拡張オプションを使用して OpenShift Jenkins イメージを拡張して Jenkins 設
定ファイルを更新します。

注記

OpenShift Sync プラグインを実行する複数の Jenkins デプロイメントから、同じプロ
ジェクトのモニタリングがされないようにします。これらのインスタンスは相互に連携
していないため、予期せぬ結果が発生する可能性があります。

7.6. バイナリービルド

7.6.1. はじめに

OpenShift のバイナリービルドの機能では、開発者はビルドで Git リポジトリーの URL からソースをプ
ルするのではなく、ソースまたはアーティファクトをビルドに直接アップロードします。ソース、
Docker またはカスタムのストラテジーが指定された BuildConfig はバイナリービルドとして起動できま
す。ローカルのアーティファクトからビルドを起動する場合は、既存のソース参照をローカルユーザー
のマシンのソースに置き換えます。

ソースは複数の方法で提供できます。 これは、start-build コマンドの使用時に利用可能な引数に相当し
ます。

OpenShift Container Platform 3.9 開発者ガイド

88

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#overview
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#jenkins-cross-project-access
https://github.com/openshift/jenkins#installing-using-s2i-build

ファイルから (--from-file): これは、ビルドのソース全体が単一ファイルで構成されている場合
です。たとえば、Docker ビルドは Dockerfile、Wildfly ビルドは pom.xml、Ruby ビルドは
Gemfile です。

ディレクトリーから (--from-directory): ソースがローカルのディレクトリーにあり、Git リポ
ジトリーにコミットされていない場合に使用します。start-build コマンドは指定のディレクト
リーのアーカイブを作成して、ビルダーにソースとしてアップロードします。

アーカイブから (--from-archive): ソースが含まれるアーカイブがすでに存在する場合に使用し
ます。アーカイブはtar、tar.gz または zip 形式のいずれかを使用できます。

Git リポジトリーから (--from-repo): これはソースがユーザーのローカルマシンで Git リポジト
リーの一部となっている場合に使用します。現在のリポジトリーの HEAD コミットがアーカイ
ブされ、ビルド用に OpenShift に送信されます。

7.6.1.1. 使用例

バイナリービルドの場合は、ビルドでソースを既存の git リポジトリーからプルする必要がありませ
ん。バイナリービルドを使用する理由は以下のとおりです。

ローカルコードの変更をビルドし、テストする。パブリックリポジトリーからのソースはク
ローンでき、ローカルの変更を OpenShift にアップロードしてビルドできます。ローカルの変
更はコミットまたはプッシュする必要はありません。

プロイベートコードをビルドする。新規ビルドをゼロからバイナリービルドとして起動するこ
とができます。ソースは、SCM にチェックインする必要なく、ローカルのワークステションか
ら OpenShift に直接アップロードできます。

別のソースからアーティファクトを含むイメージをビルドする。Jenkins Pipeline では、Maven
または C コンパイラー、これらのビルドを活用するランタイムイメージなどのツールでビルド
したアーティファクトを組み合わせる場合に、バイナリービルドが役立ちます。

7.6.1.2. 制限

バイナリービルドは反復できません。バイナリービルドは、ビルドの開始時にアーティファク
トをアップロードするユーザーに依存するため、そのユーザーが毎回同じアップロードを繰り
返さない限り、OpenShift は同じビルドを反復できません。

バイナリービルドは自動的にトリガーできません。バイナリービルドは、ユーザーが必要なバ
イナリーアーティファクトをアップロードする時にのみ手動で起動できます。

注記

バイナリービルドとして起動したビルドには設定済みのソース URL が含まれる場合があ
ります。その場合、トリガーでビルドが正常に起動しますが、ソースはビルドの最終実
行時にユーザーが指定した URL ではなく、設定済みのソース URL から取得されます。

7.6.2. チュートリアルの概要

以下のチュートリアルは、OpenShift クラスターが利用可能であり、アーティファクトを作成できるプ
ロジェクトが用意されていることを前提としています。このチュートリアルでは、git と oc がローカル
で使用できる必要があります。

7.6.2.1. チュートリアル: ローカルコードの変更のビルド

1. 既存のソースリポジトリーをベースにして新規アプリケーションを作成し、そのルートを作成

第7章 チュートリアル

89

1. 既存のソースリポジトリーをベースにして新規アプリケーションを作成し、そのルートを作成
します。

$ oc new-app https://github.com/openshift/ruby-hello-world.git
$ oc expose svc/ruby-hello-world

2. 初期ビルドが完了するまで待機し、ルートのホストに移動してアプリケーションのページを表
示します。Welcome ページが表示されるはずです。

$ oc get route ruby-hello-world

3. リポジトリーをローカルにクローンします。

$ git clone https://github.com/openshift/ruby-hello-world.git
$ cd ruby-hello-world

4. アプリケーションのビューに変更を加えます。任意のエディターで views/main.rb を編集しま
す。 <body> タグを <body style="background-color:blue"> に変更します。

5. ローカルで変更したソースで新規ビルドを起動します。リポジトリーのローカルディレクト
リーから、以下を実行します。

$ oc start-build ruby-hello-world --from-dir="." --follow

ビルドが完了し、アプリケーションが再デプロイされたら、アプリケーションのルートホストに移動す
ると、青のバックグラウンドのページが表示されるはずです。

ローカルでさらに変更を加えて、oc start-build --from-dir でコードをビルドします。

また、コードのブランチを作成し、変更をローカルでコミットし、リポジトリーの HEAD をビルドの
ソースとして使用します。

$ git checkout -b my_branch
$ git add .
$ git commit -m "My changes"
$ oc start-build ruby-hello-world --from-repo="." --follow

7.6.2.2. チュートリアル: プライベートコードのビルド

1. コードを保存するローカルディレクトリーを作成します。

$ mkdir myapp
$ cd myapp

2. このディレクトリーで、以下の内容を含む Dockerfile という名前のファイルを作成します。

FROM centos:centos7

EXPOSE 8080

OpenShift Container Platform 3.9 開発者ガイド

90

COPY index.html /var/run/web/index.html

CMD cd /var/run/web && python -m SimpleHTTPServer 8080

3. 以下の内容を含む index.html という名前のファイルを作成します。

<html>
 <head>
 <title>My local app</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <p>This is my local application</p>
 </body>
</html>

4. アプリケーションの新規ビルドを作成します。

$ oc new-build --strategy docker --binary --docker-image centos:centos7 --name myapp

5. ローカルディレクトリーの内容を使用して、バイナリービルドを起動します。

$ oc start-build myapp --from-dir . --follow

6. new-app を使用してアプリケーションをデプロイしてから、そのルートを作成します。

$ oc new-app myapp
$ oc expose svc/myapp

7. ルートのホスト名を取得して、そこに移動します。

$ oc get route myapp

コードをビルドし、デプロイした後に、ローカルファイルに変更を加えて、oc start-build myapp --
from-dir を呼び出して新規ビルドを起動します。ビルドされると、コードが自動的にデプロイされ、
ページを更新すると、変更がブラウザーに反映されます。

7.6.2.3. チュートリアル: パイプラインからのバイナリーアーティファクト

OpenShift の Jenkins では、適切なツールでスレーブイメージを使用して、コードをビルドすることが
できます。たとえば、maven スレーブを使用して、コードリポジトリーから WAR をビルドできます。
ただし、このアーティファクトがビルドされたら、コードを実行するための適切なランタイムアーティ
ファクトが含まれるイメージにコミットする必要があります。これらのアーティファクトをランタイム
イメージに追加するために、バイナリービルドが使用される場合があります。以下のチュートリアルで
は、maven スレーブで WAR をビルドし、Dockerfile でバイナリービルドを使用してこの WAR を
WIldfly のランタイムイメージに追加するように Jenkins パイプラインを作成します。

1. アプリケーションの新規ディレクトリーを作成します。

$ mkdir mavenapp
$ cd mavenapp

2. WAR を wildfly イメージ内の適切な場所にコピーする Dockerfile を作成します。以下を

第7章 チュートリアル

91

2. WAR を wildfly イメージ内の適切な場所にコピーする Dockerfile を作成します。以下を
Dockerfile という名前のローカルファイルにコピーします。

FROM wildfly:latest
COPY ROOT.war /wildfly/standalone/deployments/ROOT.war
CMD $STI_SCRIPTS_PATH/run

3. Dockerfile の新規 BuildConfig を作成します。

注記

これにより、ビルドが自動的に起動しますが、ROOT.war アーティファクトが
まだ利用できないので初回は失敗します。以下のパイプラインでは、バイナリー
ビルドを使用してその WAR をビルドに渡します。

$ cat Dockerfile | oc new-build -D - --name mavenapp

4. Jenkins Pipeline で BuildConfig を作成します。この BuildConfig では WAR をビルドし、以前
に作成した Dockerfile を使用してこの WAR でイメージをビルドします。ツールのセットでバ
イナリーアーティファクトをビルドしてから、最終的なパッケージ用に別のランタイムイメー
ジと組み合わせる場合など、同じパターンを別のプラットフォームでも使用できます。 以下の
コードを mavenapp-pipeline.yml に保存します。

apiVersion: v1
kind: BuildConfig
metadata:
 name: mavenapp-pipeline
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 pipeline {
 agent { label "maven" }
 stages {
 stage("Clone Source") {
 steps {
 checkout([$class: 'GitSCM',
 branches: [[name: '*/master']],
 extensions: [
 [$class: 'RelativeTargetDirectory', relativeTargetDir: 'mavenapp']
],
 userRemoteConfigs: [[url: 'https://github.com/openshift/openshift-jee-
sample.git']]
])
 }
 }
 stage("Build WAR") {
 steps {
 dir('mavenapp') {
 sh 'mvn clean package -Popenshift'
 }
 }
 }
 stage("Build Image") {

OpenShift Container Platform 3.9 開発者ガイド

92

 steps {
 dir('mavenapp/target') {
 sh 'oc start-build mavenapp --from-dir . --follow'
 }
 }
 }
 }
 }
 type: JenkinsPipeline
 triggers: []

5. Pipeline ビルドを作成します。Jenkins がプロジェクトにデプロイされていない場合は、パイプ
ラインが含まれる BuildConfig を作成すると、Jenkins がデプロイされます。Jenkins がパイプ
ラインをビルドする準備ができるまで、2 分ほどかかる場合があります。Jenkins のロールアウ
トの状況を確認するには、oc rollout status dc/jenkins を起動します。

$ oc create -f ./mavenapp-pipeline.yml

6. Jenkins の準備ができたら、以前に定義したパイプラインを起動します。

$ oc start-build mavenapp-pipeline

7. パイプラインがビルドを完了した時点で、new-app で新規アプリケーションをデプロイし、
ルートを公開します。

$ oc new-app mavenapp
$ oc expose svc/mavenapp

8. ブラウザーで、アプリケーションのルートに移動します。

$ oc get route mavenapp

第7章 チュートリアル

93

第8章 ビルド

8.1. ビルドの仕組み

8.1.1. ビルドの概要

OpenShift Container Platform での ビルド とは、入力パラメーターをオブジェクトに変換するプロセス
のことです。多くの場合に、ビルドを使用して、ソースコードを実行可能なコンテナーイメージに変換
します。

ビルド設定 または BuildConfig は、ビルドストラテジー と 1 つまたは複数のソースを特徴としていま
す。ストラテジーは前述のプロセスを決定し、ソースは入力内容を提供します。

ビルドストラテジーには、以下が含まれます。

Source-to-Image (S2I) (説明、オプション)

Pipeline (説明、オプション)

Docker (説明、オプション)

カスタム (説明、オプション)

ビルド入力として指定できるソースは 6 種類あります。

Git

Dockerfile

バイナリー

イメージ

入力シークレット

外部アーティファクト

ビルドストラテジーごとに、特定タイプのソースを検討するか、または無視するかや、そのソースタイ
プの使用方法が決まります。バイナリーおよび Git のソースタイプは併用できません。Dockerfile とイ
メージは、そのまま単体で使用することも、2 つを併用することも、 Git またはバイナリーと組み合わ
せることも可能です。バイナリーのソースタイプは、他のオプションと比べると システムへの指定方法
の面で独特のタイプです。

8.1.2. BuildConfig の概要

ビルド設定は、単一のビルド定義と新規ビルドを作成するタイミングについての トリガーのセットを記
述します。ビルド設定は BuildConfig で定義されます。 BuildConfig は、新規インスタンスを作成する
ために API サーバーへの POST で使用可能な REST オブジェクトのことです。

OpenShift Container Platform を使用したアプリケーションの作成方法の選択に応じて Web コンソール
または CLI のいずれを使用している場合でも、BuildConfig は通常自動的に作成され、いつでも編集で
きます。BuildConfig を構成する部分や利用可能なオプションを理解しておくと、後に設定を手動で調
整する場合に役立ちます。

以下の BuildConfig の例では、コンテナーイメージのタグやソースコードが変更されるたびに新規ビル

OpenShift Container Platform 3.9 開発者ガイド

94

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#builds
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#source-build
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#pipeline-build
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#docker-build
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#custom-build

1

2

3

4

5

6

以下の BuildConfig の例では、コンテナーイメージのタグやソースコードが変更されるたびに新規ビル
ドが作成されます。

BuildConfig のオブジェクト定義

この仕様は、ruby-sample-build という名前の新規の BuildConfig を作成します。

runPolicy フィールドは、このビルド設定に基づいて作成されたビルドを同時に実行できるかどう
かを制御します。デフォルトの値は Serial です。 これは新規ビルドが同時にではなく、順番に実
行されることを意味します。

新規ビルドを作成するトリガーの一覧を指定できます。

source セクションでは、ビルドのソースを定義します。ソースの種類は入力の主なソースを決定
し、Git (コードのリポジトリーの場所を参照)、Dockerfile (インラインの Dockerfile からビルド)
または Binary (バイナリーペイロードを受け入れる) のいずれかとなっています。複数のソースを
一度に指定できます。 詳細は、各ソースタイプのドキュメントを参照してください。

strategy セクションでは、ビルドの実行に使用するビルドストラテジーを記述します。ここでは
Source、Docker または Custom ストラテジーを指定できます。上記の例では、Source-To-
Image がアプリケーションのビルドに使用する ruby-20-centos7 コンテナーイメージを使用しま
す。

コンテナーイメージが正常にビルドされた後に、これは output セクションで記述されているリポ

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "ruby-sample-build" 1
spec:
 runPolicy: "Serial" 2
 triggers: 3
 -
 type: "GitHub"
 github:
 secret: "secret101"
 - type: "Generic"
 generic:
 secret: "secret101"
 -
 type: "ImageChange"
 source: 4
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy: 5
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"
 output: 6
 to:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 postCommit: 7
 script: "bundle exec rake test"

第8章 ビルド

95

7

コンテナーイメージが正常にビルドされた後に、これは output セクションで記述されているリポ
ジトリーにプッシュされます。

postCommit セクションは、オプションのビルドフック を定義します。

8.2. 基本的なビルド操作

8.2.1. ビルドの開始

以下のコマンドを使用して、現在のプロジェクトに既存のビルド設定から新規ビルドを手動で起動しま
す。

$ oc start-build <buildconfig_name>

--from-build フラグを使用してビルドを再度実行します。

$ oc start-build --from-build=<build_name>

--follow フラグを指定して、stdout のビルドのログをストリームします。

$ oc start-build <buildconfig_name> --follow

--env フラグを指定して、ビルドに任意の環境変数を設定します。

$ oc start-build <buildconfig_name> --env=<key>=<value>

Git ソースプルまたは Dockerfile に依存してビルドするのではなく、ソースを直接プッシュしてビルド
を開始することも可能です。ソースには、Git または SVN の作業ディレクトリーの内容、デプロイする
事前にビルド済みのバイナリーアーティファクトのセットまたは単一ファイルのいずれかを選択できま
す。これは、start-build コマンドに以下のオプションのいずれかを指定して実行できます。

オプション 説明

--from-dir=<directory> アーカイブし、ビルドのバイナリー入力として使用するディレクトリー
を指定します。

--from-file=<file> 単一ファイルを指定します。これはビルドソースで唯一のファイルでな
ければなりません。 このファイルは、元のファイルと同じファイル名で
空のディレクトリーのルートに置いてください。

--from-repo=
<local_source_repo>

ビルドのバイナリー入力として使用するローカルリポジトリーへのパス
を指定します。--commit オプションを追加して、ビルドに使用するブ
ランチ、タグ、またはコミットを制御します。

以下のオプションをビルドに直接指定した場合には、コンテンツはビルドにストリーミングされ、現在
のビルドソースの設定が上書きされます。

注記

OpenShift Container Platform 3.9 開発者ガイド

96

注記

バイナリー入力からトリガーされたビルドは、サーバー上にソースを保存しないため、
ベースイメージの変更でビルドが再度トリガーされた場合には、ビルド設定で指定され
たソースが使用されます。

たとえば、以下のコマンドは、タグ v2 からのアーカイブとしてローカルの Git リポジトリーのコンテ
ンツを送信し、ビルドを開始します。

$ oc start-build hello-world --from-repo=../hello-world --commit=v2

8.2.2. ビルドの中止

Web コンソールまたは以下の CLI コマンドを使用して、ビルドを手動でキャンセルします。

$ oc cancel-build <build_name>

複数のビルドを同時にキャンセルします。

$ oc cancel-build <build1_name> <build2_name> <build3_name>

ビルド設定から作成されたビルドすべてをキャンセルします。

$ oc cancel-build bc/<buildconfig_name>

特定の状態にあるビルドをすべてキャンセルします (例: new または pending)。 この際、他の状態のビ
ルドは無視されます。

$ oc cancel-build bc/<buildconfig_name> --state=<state>

8.2.3. BuildConfig の削除

以下のコマンドで BuildConfig を削除します。

$ oc delete bc <BuildConfigName>

これにより、この BuildConfig でインスタンス化されたビルドがすべて削除されます。ビルドを削除し
ない場合には、--cascade=false フラグを指定します。

$ oc delete --cascade=false bc <BuildConfigName>

8.2.4. ビルドの詳細表示

Web コンソールまたは oc describe CLI コマンドを使用して、ビルドの詳細を表示できます。

$ oc describe build <build_name>

これにより、以下のような情報が表示されます。

ビルドソース

第8章 ビルド

97

1

ビルドストラテジー

出力先

宛先レジストリーのイメージのダイジェスト

ビルドの作成方法

ビルドが Docker または Source ストラテジーを使用する場合、oc describe 出力には、コミット ID、
作成者、コミットしたユーザー、メッセージなどのビルドに使用するソースのリビジョンの情報が含ま
れます。

8.2.5. ビルドログへのアクセス

Web コンソールまたは CLI を使用してビルドログにアクセスできます。

ビルドを直接使用してログをストリームするには、以下を実行します。

$ oc logs -f build/<build_name>

ビルド設定の最新ビルドのログをストリームするには、以下を実行します。

$ oc logs -f bc/<buildconfig_name>

ビルド設定で指定されているバージョンのビルドに関するログを返すには、以下を実行します。

$ oc logs --version=<number> bc/<buildconfig_name>

ログの詳細レベル

詳細の出力を有効にするには、BuildConfig 内の sourceStrategy または dockerStrategy の一部とし
て BUILD_LOGLEVEL 環境変数を渡します。

この値を任意のログレベルに調整します。

注記

プラットフォームの管理者は、BuildDefaults 受付コントローラーの
env/BUILD_LOGLEVEL を設定して、OpenShift Container Platform インスタンス全体
のデフォルトのビルドの詳細レベルを設定できます。このデフォルトは、指定の
BuildConfig で BUILD_LOGLEVEL を指定することで上書きできます。コマンドライン
で --build-loglevel を oc start-build に渡すことで、バイナリー以外のビルドについて優
先順位の高い上書きを指定することができます。

ソースビルドで利用できるログレベルは以下のとおりです。

sourceStrategy:
...
 env:
 - name: "BUILD_LOGLEVEL"
 value: "2" 1

OpenShift Container Platform 3.9 開発者ガイド

98

レベル 0 assemble スクリプトを実行してコンテナーからの出力とすべてのエラーを生成します。こ
れはデフォルトの設定です。

レベル 1 実行したプロセスに関する基本情報を生成します。

レベル 2 実行したプロセスに関する詳細情報を生成します。

レベル 3 実行したプロセスに関する詳細情報と、アーカイブコンテンツの一覧を生成します。

レベル 4 現時点ではレベル 3 と同じ情報を生成します。

レベル 5 これまでのレベルで記載したすべての内容と docker のプッシュメッセージを提供します。

8.3. ビルド入力

8.3.1. ビルド入力の仕組み

ビルド入力 は、ビルドが動作するために必要なソースコンテンツを提供します。OpenShift Cotainer
Platform では複数の方法でソースを提供します。以下に優先順に記載します。

インラインの Dockerfile 定義

既存イメージから抽出したコンテンツ

Git リポジトリー

バイナリー (ローカル) 入力

入力シークレット

外部アーティファクト

異なる入力を単一のビルドにまとめることができます。インラインの Dockerfile が優先されるため、別
の入力で指定される Dockerfile という名前の他のファイルは上書きされます。バイナリー (ローカル)
入力および Git リポジトリーは併用できません。

入力シークレットは、ビルド時に使用される特定のリソースや認証情報をビルドで生成される最終アプ
リケーションイメージで使用不可にする必要がある場合や、Secret リソースで定義される値を使用す
る必要がある場合に役立ちます。外部アーティファクトは、他のビルド入力タイプのいずれとしても利
用できない別のファイルをプルする場合に使用できます。

ビルドが実行されるたびに、以下が行われます。

1. 作業ディレクトリーが作成され、すべての入力内容がその作業ディレクトリーに配置されま
す。たとえば、入力 Git リポジトリーのクローンはこの作業ディレクトリーに作成され、入力
イメージから指定されたファイルはターゲットのパスを使用してこの作業ディレクトリーにコ
ピーされます。

2. ビルドプロセスによりディレクトリーが contextDir に変更されます (定義されている場合)。

3. インライン Dockerfile がある場合は、現在のディレクトリーに書き込まれます。

4. 現在の作業ディレクトリーにある内容が Dockerfile、カスタムビルダーのロジック、または

第8章 ビルド

99

1

2

3

4

1

4. 現在の作業ディレクトリーにある内容が Dockerfile、カスタムビルダーのロジック、または
assemble スクリプトが参照するビルドプロセスに提供されます。つまり、ビルドでは
contextDir 内にない入力コンテンツは無視されます。

以下のソース定義の例には、複数の入力タイプと、入力タイプの統合方法の説明が含まれています。そ
れぞれの入力タイプの定義方法に関する詳細は、各入力タイプについての個別のセクションを参照して
ください。

作業ディレクトリーにクローンされるビルド用のリポジトリー

myinputimage の /usr/lib/somefile.jar は、<workingdir>/app/dir/injected/dir に保存されま
す。

ビルドの作業ディレクトリーは <original_workingdir>/app/dir になります。

このコンテンツを含む Dockerfile は <original_workingdir>/app/dir に作成され、この名前が指定
された既存ファイルは上書きされます。

8.3.2. Dockerfile ソース

dockerfile の値が指定されると、このフィールドの内容は、Dockerfile という名前のファイルとして
ディスクに書き込まれます。これは、他の入力ソースが処理された後に実行されるので、入力ソースリ
ポジトリーの root ディレクトリーに Dockerfile が含まれる場合は、これはこの内容で上書きされま
す。

このフィールドは、通常は Dockerfile を Docker ストラテジー ビルドに指定するために使用されま
す。

ソースの定義は BuildConfig の spec セクションに含まれます。

dockerfile フィールドには、ビルドされるインライン Dockerfile が含まれます。

8.3.3. イメージソース

追加のファイルは、イメージを使用してビルドプロセスに渡すことができます。入力イメージは From
および To イメージターゲットが定義されるのと同じ方法で参照されます。つまり、コンテナーイメー

source:
 git:
 uri: https://github.com/openshift/ruby-hello-world.git 1
 images:
 - from:
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace
 paths:
 - destinationDir: app/dir/injected/dir 2
 sourcePath: /usr/lib/somefile.jar
 contextDir: "app/dir" 3
 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 4

source:
 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 1

OpenShift Container Platform 3.9 開発者ガイド

100

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#docker-build

1

2

3

4

5

6

ジと イメージストリームタグ の両方を参照できます。イメージとの関連で、1 つまたは複数のパスのペ
アを指定して、ファイルまたはディレクトリーのパスを示し、イメージと宛先をコピーしてビルドコン
テキストに配置する必要があります。

ソースパスは、指定したイメージ内の絶対パスで指定してください。宛先は、相対ディレクトリーパス
でなければなりません。ビルド時に、イメージは読み込まれ、指定のファイルおよびディレクトリーは
ビルドプロセスのコンテキストディレクトリーにコピーされます。これは、ソースリポジトリーのコン
テンツ (ある場合) のクローンが作成されるディレクトリーと同じです。ソースパスの末尾は /. であ
り、ディレクトリーのコンテンツがコピーされますが、ディレクトリー自体は宛先で作成されません。

イメージの入力は、BuildConfig の source の定義で指定します。

1 つ以上のインプットイメージおよびファイルの配列

コピーされるファイルが含まれるイメージへの参照

ソース/宛先パスの配列

ビルドプロセスで対象のファイルにアクセス可能なビルドルートへの相対パス

参照イメージの中からコピーするファイルの場所

認証情報がインプットイメージにアクセスするのに必要な場合に提供されるオプションのシーク
レット

注記

この機能は、カスタムストラテジーを使用するビルドについてサポートされません。

8.3.4. Git ソース

指定されている場合には、ソースコードが指定先の場所からフェッチされます。

インラインの Dockerfile がサポートされる場合には、git リポジトリー contextDir 内にあるDockerfile

source:
 git:
 uri: https://github.com/openshift/ruby-hello-world.git
 images: 1
 - from: 2
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace
 paths: 3
 - destinationDir: injected/dir 4
 sourcePath: /usr/lib/somefile.jar 5
 - from:
 kind: ImageStreamTag
 name: myotherinputimage:latest
 namespace: myothernamespace
 pullSecret: mysecret 6
 paths:
 - destinationDir: injected/dir
 sourcePath: /usr/lib/somefile.jar

第8章 ビルド

101

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-stream-tag

1

2

3

インラインの Dockerfile がサポートされる場合には、git リポジトリー contextDir 内にあるDockerfile
(ある場合) が上書きされます。

ソースの定義は BuildConfig の spec セクションに含まれます。

git フィールドには、ソースコードのリモート Git リポジトリーへの URI が含まれます。オプショ
ンで、ref フィールドを指定して特定の Git 参照をチェックアウトします。SHA1 タグまたはブラ
ンチ名は、ref として有効です。

contextDir フィールドでは、ビルドがアプリケーションのソースコードを検索する、ソースコー
ドのリポジトリー内のデフォルトの場所を上書きできます。アプリケーションがサブディレクト
リーに存在する場合には、このフィールドを使用してデフォルトの場所 (root フォルダー) を上書
きすることができます。

オプションの dockerfile フィールドがある場合は、Dockerfile を含む文字列を指定してくださ
い。 この文字列は、ソースリポジトリーに存在する可能性のある Dockerfile を上書きします。

ref フィールドにプル要求が記載されている場合には、システムは git fetch 操作を使用して
FETCH_HEAD をチェックアウトします。

ref の値が指定されていない場合は、OpenShift Container Platform はシャロークローン (--depth=1) を
実行します。この場合、デフォルトのブランチ (通常は master) での最新のコミットに関連するファイ
ルのみがダウンロードされます。これにより、リポジトリーのダウンロード時間が短縮されます (詳細
のコミット履歴はありません)。指定リポジトリーのデフォルトのブランチで完全な git clone を実行す
るには、ref をデフォルトのブランチ名に設定します (例: master)。

8.3.4.1. プロキシーの使用

プロキシーの使用によってのみ Git リポジトリーにアクセスできる場合は、使用するプロキシーを
BuildConfig の source セクションで定義できます。HTTP および HTTPS プロキシーの両方を設定で
きますが、いずれのフィールドもオプションです。いずれのフィールドもオプションです。NoProxy
フィールドで、プロキシーを実行しないドメインを指定することもできます。

注記

実際に機能させるには、ソース URI で HTTP または HTTPS プロトコルを使用する必要
があります。

クラスター管理者は、Ansible を使用して Git クローンにグローバルプロキシーを設定する こともでき

source:
 git: 1
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"
 contextDir: "app/dir" 2
 dockerfile: "FROM openshift/ruby-22-centos7\nUSER example" 3

source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
 noProxy: somedomain.com, otherdomain.com

OpenShift Container Platform 3.9 開発者ガイド

102

クラスター管理者は、Ansible を使用して Git クローンにグローバルプロキシーを設定する こともでき
ます。

注記

パイプラインストラテジーのビルドの場合には、現在 Jenkins の Git プラグインに制約
があるので、Git プラグインを使用する Git の操作では BuildConfig に定義された HTTP
または HTTPS プロキシーは使用されません。Git プラグインは、Jenkins UI の Plugin
Manager パネルで設定されたプロキシーのみを使用します。どのジョブであっても、
Jenkins 内の git のすべての対話にはこのプロキシーが使用されます。Jenkins UI でのプ
ロキシーの設定方法については、JenkinsBehindProxyを参照してください。

8.3.4.2. ソースクローンのシークレット

ビルダー Pod には、ビルドのソースとして定義された Git リポジトリーへのアクセスが必要です。ソー
スクローンのシークレットは、ビルダー Pod に対し、プライベートリポジトリーや自己署名証明書ま
たは信頼されていない SSL 証明書が設定されたリポジトリーなどの通常アクセスできないリポジト
リーへのアクセスを提供するために使用されます。

以下は、サポートされているソースクローンのシークレット設定です。

.gitconfig ファイル

Basic 認証

SSH キー認証

信頼されている認証局

注記

特定のニーズに対応するために、これらの設定の組み合わせを使用することもできま
す。

ビルドは builder サービスアカウントで実行されます。この builder アカウントには、使用するソース
クローンのシークレットに対するアクセスが必要です。以下のコマンドを使用してアクセスを付与でき
ます。

$ oc secrets link builder mysecret

注記

シークレットを参照しているサービスアカウントにのみにシークレットを制限すること
はデフォルトで無効にされています。つまり、マスターの設定ファイルで
serviceAccountConfig.limitSecretReferences がマスター設定の false (デフォルトの
設定) に設定されている場合は、サービスにシークレットをリンクする必要はありませ
ん。

8.3.4.2.1. ソースクローンシークレットのビルド設定への自動追加

BuildConfig が作成されると、OpenShift Container Platform は自動的にソースクローンのシークレッ
ト参照を生成します。この動作により、追加の設定なしに、作成される Builds が参照される Secret に
保存された認証情報を自動的に使用して、リモート git リポジトリーへの認証を行います。

第8章 ビルド

103

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-hosts-for-proxies-using-ansible
https://wiki.jenkins-ci.org/display/JENKINS/JenkinsBehindProxy

この機能を使用するには、git リポジトリーの認証情報を含む Secret が BuildConfig が後に作成される
namespace になければなりません。この Secret には、プレフィックスbuild.openshift.io/source-
secret-match-uri- で開始するアノテーション 1 つ以上含まれている必要もあります。これらの各アノ
テーションの値には、以下で定義される URI パターンを指定します。ソースクローンのシークレット参
照なしに BuildConfig が作成され、git ソースの URI が Secret アノテーションの URI パターンと一致
する場合に、OpenShift Container Platform はその Secret への参照を BuildConfig に自動的に挿入し
ます。

URI パターンには以下を含める必要があります。

有効なスキーム (*://、git://、http://、https:// または ssh://)

ホスト (*、有効なホスト名、またはオプションで *. が先頭に指定された IP アドレス)

パス (/* または、/ の後に * などの文字が後に続く文字列)

上記のいずれの場合でも、* 文字はワイルドカードと見なされます。

重要

URI パターンは、RFC3986 に準拠する Git ソースの URI と一致する必要があります。
URI パターンにユーザー名 (またはパスワード) のコンポーネントを含ないようにしてく
ださい。

たとえば、git リポジトリーの URL に
ssh://git@bitbucket.atlassian.com:7999/ATLASSIAN/jira.git を使用する場合に、ソー
スのシークレットは ssh://bitbucket.atlassian.com:7999/* として指定する必要がありま
す (ssh://git@bitbucket.atlassian.com:7999/* ではありません)。

複数の Secrets が特定の BuildConfig の Git URI と一致する場合は、OpenShift Container Platform は
一致する文字列が一番長いシークレットを選択します。これは、以下の例のように基本的な上書きを許
可します。

以下の部分的な例では、ソースクローンのシークレットの一部が 2 つ表示されています。 1 つ目は、
HTTPS がアクセスする mycorp.com ドメイン内のサーバーに一致しており、2 つ目は
mydev1.mycorp.com および mydev2.mycorp.com のサーバーへのアクセスを上書きします。

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=ssh://bitbucket.atlassian.com:7999/*'

kind: Secret
apiVersion: v1
metadata:
 name: matches-all-corporate-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://*.mycorp.com/*
data:
 ...

kind: Secret
apiVersion: v1
metadata:
 name: override-for-my-dev-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://mydev1.mycorp.com/*

OpenShift Container Platform 3.9 開発者ガイド

104

https://www.ietf.org/rfc/rfc3986.txt

以下のコマンドを使用して、build.openshift.io/source-secret-match-uri- アノテーションを既存の
シークレットに追加します。

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=https://*.mycorp.com/*'

8.3.4.2.2. ソースクローンシークレットの手動による追加

ソースクローンのシークレットは、ビルド設定に手動で追加できます。 sourceSecret フィールドを
BuildConfig 内の source セクションに追加してから、作成した secret の名前に設定して実行できます
(この例では basicsecret)。

注記

oc set build-secret コマンドを使用して、既存のビルド設定にソースクローンのシーク
レットを設定することも可能です。

$ oc set build-secret --source bc/sample-build basicsecret

BuildConfig にシークレットを定義すると、このトピックの詳細情報を表示できます。

8.3.4.2.3. .gitconfig ファイル

アプリケーションのクローンが .gitconfig ファイルに依存する場合、そのファイルが含まれるシーク
レットを作成してからこれをビルダーサービスアカウントに追加し、BuildConfig に追加できます。

.gitconfig ファイルからシークレットを作成するには、以下を実行します。

$ oc create secret generic <secret_name> --from-file=<path/to/.gitconfig>

 build.openshift.io/source-secret-match-uri-2: https://mydev2.mycorp.com/*
data:
 ...

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"
 source:
 git:
 uri: "https://github.com/user/app.git"
 sourceSecret:
 name: "basicsecret"
 strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "python-33-centos7:latest"

第8章 ビルド

105

1

2

注記

.gitconfig ファイルの http セクションが sslVerify=false に設定されている場合は、SSL
検証をオフにすることができます。

[http]
 sslVerify=false

8.3.4.2.4. セキュアな git 用の .gitconfig ファイル

Git サーバーが 2 方向の SSL、ユーザー名とパスワードでセキュリティー保護されている場合には、
ソースビルドに証明書ファイルを追加して、.gitconfig ファイルに証明書ファイルへの参照を追加する
必要があります。

1. client.crt、cacert.crt、および client.key ファイルをアプリケーションソースコードの
/var/run/secrets/openshift.io/source/ フォルダーに追加します。

2. サーバーの .gitconfig ファイルに、以下の例のように [http] セクションを追加します。

cat .gitconfig
[user]
 name = <name>
 email = <email>
[http]
 sslVerify = false
 sslCert = /var/run/secrets/openshift.io/source/client.crt
 sslKey = /var/run/secrets/openshift.io/source/client.key
 sslCaInfo = /var/run/secrets/openshift.io/source/cacert.crt

3. シークレットを作成します。

$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \ 1
--from-literal=password=<password> \ 2
--from-file=.gitconfig=.gitconfig \
--from-file=client.crt=/var/run/secrets/openshift.io/source/client.crt \
--from-file=cacert.crt=/var/run/secrets/openshift.io/source/cacert.crt \
--from-file=client.key=/var/run/secrets/openshift.io/source/client.key

ユーザーの Git ユーザー名

このユーザーのパスワード

重要

パスワードを再度入力してくてもよいように、ビルドに S2I イメージを指定するように
してください。ただし、リポジトリーをクローンできない場合には、ビルドをプロモー
トするためにユーザー名とパスワードを指定する必要があります。

8.3.4.2.5. Basic 認証

Basic 認証では、SCM サーバーに対して認証する場合に --username と --password の組み合わせ、ま

OpenShift Container Platform 3.9 開発者ガイド

106

Basic 認証では、SCM サーバーに対して認証する場合に --username と --password の組み合わせ、ま
たは token が必要です。

secret を先に作成してから、プライベートリポジトリーにアクセスするためにユーザー名とパスワード
を使用してください。

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --type=kubernetes.io/basic-auth

トークンで Basic 認証のシークレットを作成するには、以下を実行します。

$ oc create secret generic <secret_name> \
 --from-literal=password=<token> \
 --type=kubernetes.io/basic-auth

8.3.4.2.6. SSH キー認証

SSH キーベースの認証では、プライベート SSH キーが必要です。

リポジトリーのキーは通常 $HOME/.ssh/ ディレクトリーにあり、デフォルトで
id_dsa.pub、id_ecdsa.pub、id_ed25519.pub または id_rsa.pub という名前が付けられています。以
下のコマンドで、SSH キーの認証情報を生成します。

$ ssh-keygen -t rsa -C "your_email@example.com"

注記

SSH キーのパスフレーズを作成すると、OpenShift Container Platform でビルドができ
なくなります。パスフレーズを求めるプロンプトが出されても、ブランクのままにしま
す。

パブリックキーと、それに対応するプライベートキーのファイルが 2 つ作成されます
(id_dsa、id_ecdsa、id_ed25519 または id_rsa のいずれか)。これらが両方設定されたら、パブリック
キーのアップロード方法についてソースコントロール管理 (SCM) システムのマニュアルを参照してく
ださい。プライベートキーは、プライベートリポジトリーにアクセスするために使用されます。

SSHキーを使用してプライベートリポジトリーにアクセスする前に、シークレットを作成します。

$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --type=kubernetes.io/ssh-auth

8.3.4.2.7. 信頼された認証局

git clone の操作時に信頼される TLS 認証局のセットは OpenShift Container Platform インフラストラ
クチャーイメージにビルドされます。Git サーバーが自己署名の証明書を使用するか、イメージで信頼
されていない認証局により署名された証明書を使用する場合には、その証明書が含まれるシークレット
を作成するか、TLS 検証を無効にしてください。

CA 証明書 のシークレットを作成した場合に、OpenShift Container Platform はその証明書を使用し

第8章 ビルド

107

1

CA 証明書 のシークレットを作成した場合に、OpenShift Container Platform はその証明書を使用し
て、git clone 操作時に Git サーバーにアクセスします。存在する TLS 証明書をどれでも受け入れてし
まう Git の SSL 検証の無効化に比べ、この方法を使用するとセキュリティーレベルが高くなります。

以下のプロセスの 1 つを完了します。

CA 証明書ファイルでシークレットを作成する (推奨)

a. CA が中間証明局を使用する場合には、ca.crt ファイルにすべての CA の証明書を統合しま
す。以下のコマンドを実行します。

$ cat intermediateCA.crt intermediateCA.crt rootCA.crt > ca.crt

b. シークレットを作成します。

$ oc create secret generic mycert --from-file=ca.crt=</path/to/file> 1

ca.crt というキーの名前を使用する必要があります。

git TLS 検証を無効にします。
ビルド設定の適切なストラテジーセクションで GIT_SSL_NO_VERIFY 環境変数を true に設定
します。BuildConfig 環境変数を管理するには、oc set env コマンドを使用できます。

8.3.4.2.8. 組み合わせ

ここでは、特定のニーズに対応するために上記の方法を組み合わせてソースクローンのシークレットを
作成する方法についての例を紹介します。

a. .gitconfig ファイルで SSH ベースの認証シークレットを作成するには、以下を実行します。

$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/.gitconfig> \
 --type=kubernetes.io/ssh-auth

b. .gitconfig ファイルと CA 証明書を組み合わせてシークレットを作成するには、以下を実行しま
す。

$ oc create secret generic <secret_name> \
 --from-file=ca.crt=<path/to/certificate> \
 --from-file=<path/to/.gitconfig>

c. CA 証明書ファイルで Basic 認証のシークレットを作成するには、以下を実行します。

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=ca.crt=</path/to/file> \
 --type=kubernetes.io/basic-auth

d. .gitconfig ファイルで Basic 認証のシークレットを作成するには、以下を実行します。

$ oc create secret generic <secret_name> \

OpenShift Container Platform 3.9 開発者ガイド

108

 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --type=kubernetes.io/basic-auth

e. .gitconfig ファイルと CA 証明書ファイルを合わせて Basic 認証シークレットを作成するには、
以下を実行します。

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --from-file=ca.crt=</path/to/file> \
 --type=kubernetes.io/basic-auth

8.3.5. バイナリー (ローカル) ソース

ローカルのファイルシステムからビルダーにコンテンツをストリーミングする方法は、Binary タイプ
のビルドと呼ばれています。このビルドについての BuildConfig.spec.source.type の対応する値は
Binary です。

このソースタイプは、oc start-build のみをベースとして使用される点で独特なタイプです。

注記

バイナリータイプのビルドでは、ローカルファイルシステムからコンテンツをストリー
ミングする必要があります。そのため、バイナリーファイルが提供されないので、バイ
ナリータイプのビルドを自動的にトリガーすること (例: イメージの変更トリガーなど) は
できません。同様に、Web コンソールからバイナリータイプのビルドを起動することは
できません。

バイナリービルドを使用するには、以下のオプションのいずれかを指定して oc start-build を呼び出し
ます。

--from-file: 指定したファイルのコンテンツはバイナリーストリームとしてビルダーに送信され
ます。ファイルに URL を指定することもできます。次に、ビルダーはそのデータをビルドコン
テキストの上に、同じ名前のファイルに保存します。

--from-dir および --from-repo: コンテンツはアーカイブされて、バイナリーストリームとして
バイナリーに送信されます。次に、ビルダーはビルドコンテキストディレクトリー内にアーカ
イブのコンテンツを展開します。--from-dir を使用して、展開されるアーカイブに URL を指定
することもできます。

--from-archive: 指定したアーカイブはビルダーに送信され、ビルドコンテキストディレクト
リーに展開されます。このオプションは --from-dir と同様に動作しますが、このオプションの
引数がディレクトリーの場合には常に、まずアーカイブがホストに作成されます。

上記のそれぞれの例では、以下のようになります。

BuildConfig に Binary のソースタイプが定義されている場合には、これは事実上無視され、ク
ライアントが送信する内容に置き換えられます。

BuildConfig に Git のソースタイプが定義されている場合には、Binary と Git は併用できない
ので、動的に無効にされます。 この場合、ビルダーに渡されるバイナリーストリームのデータ
が優先されます。

第8章 ビルド

109

ファイル名ではなく、HTTP または HTTPS スキーマを使用する URL を --from-file や --from-archive
に渡すことができます。--from-file で URL を指定すると、ビルダーイメージのファイル名は Web サー
バーが送信する Content-Disposition ヘッダーか、ヘッダーがない場合には URL パスの最後のコン
ポーネントによって決定されます。認証形式はどれもサポートされておらず、カスタムのTLS 証明書を
使用したり、証明書の検証を無効にしたりできません。

oc new-build --binary=true を使用すると、バイナリービルドに関連する制約が実施されるようになり
ます。作成される BuildConfig のソースタイプは Binary になります。 つまり、この BuildConfig のビ
ルドを実行するための唯一の有効な方法は、--from オプションのいずれかを指定して oc start-build を
使用し、必須のバイナリーデータを提供する方法になります。

dockerfile および contextDir のソースオプションは、バイナリービルドに関して特別な意味を持ちま
す。

dockerfile はバイナリービルドソースと合わせて使用できます。dockerfile を使用し、バイナリースト
リームがアーカイブの場合には、そのコンテンツはアーカイブにある Dockerfile の代わりとして機能し
ます。dockerfile が --from-file の引数と合わせて使用されている場合には、ファイルの引数は
dockerfile となり、dockerfile の値はバイナリーストリームの値に置き換わります。

バイナリーストリームが展開されたアーカイブのコンテンツをカプセル化する場合には、contextDir
フィールドの値はアーカイブ内のサブディレクトリーと見なされます。 有効な場合には、ビルド前にビ
ルダーがサブディレクトリーに切り替わります。

8.3.6. 入力シークレット

シナリオによっては、ビルド操作において、依存するリソースにアクセスするために認証情報が必要に
なる場合がありますが、この認証情報をビルドで生成される最終的なアプリケーションイメージで利用
可能にすることは適切ではありません。このため、入力シークレット を定義することができます。

たとえば、Node.js アプリケーションのビルド時に、Node.js モジュールのプライベートミラーを設定で
きます。プライベートミラーからモジュールをダウンロードするには、URL、ユーザー名、パスワード
を含む、ビルド用のカスタム .npmrc ファイルを指定する必要があります。セキュリティー上の理由に
より、認証情報はアプリケーションイメージで公開しないでください。

以下の例は Node.js について説明していますが、/etc/ssl/certs ディレクトリー、API キーまたはトー
クン、ラインセンスファイルなどに SSL 証明書を追加する場合に同じ方法を使用できます。

8.3.6.1. 入力シークレットの追加

入力シークレットを既存の BuildConfig に追加するには、以下を実行します。

1. シークレットがない場合は作成します。

$ oc create secret generic secret-npmrc \
 --from-file=.npmrc=<path/to/.npmrc>

これにより、secret-npmrc という名前の新規シークレットが作成されます。 これに
は、~/.npmrc ファイルの base64 でエンコードされたコンテンツが含まれます。

2. シークレットを既存の BuildConfig の source セクションに追加します。

source:
 git:
 uri: https://github.com/openshift/nodejs-ex.git

OpenShift Container Platform 3.9 開発者ガイド

110

シークレットを新規の BuildConfig に追加するには、以下のコマンドを実行します。

$ oc new-build \
 openshift/nodejs-010-centos7~https://github.com/openshift/nodejs-ex.git \
 --build-secret secret-npmrc

ビルド時に、.npmrc ファイルはソースコードが配置されているディレクトリーにコピーされます。
OpenShift Container Platform S2I ビルダーイメージでは、これはイメージの作業ディレクトリー
で、Dockerfile の WORKDIR の指示を使用して設定されます。別のディレクトリーを指定するに
は、destinationDir をシークレット定義に追加します。

新規の BuildConfig を作成時に、宛先のディレクトリーを指定することも可能です。

$ oc new-build \
 openshift/nodejs-010-centos7~https://github.com/openshift/nodejs-ex.git \
 --build-secret “secret-npmrc:/etc”

いずれの場合も、.npmrc ファイルがビルド環境の /etc ディレクトリーに追加されます。Docker スト
ラテジー の場合は、宛先のディレクトリーは相対パスでなければならない点に注意してください。

8.3.6.2. Source-to-Image ストラテジー

Source ストラテジーを使用すると、定義された入力シークレットはすべて、適切な destinationDir に
コピーされます。destinationDir を空にすると、シークレットはビルダーイメージの作業ディレクト
リーに配置されます。

destinationDir が相対パスの場合に同じルールが使用されます。シークレットは、イメージの作業ディ
レクトリーに対する相対的なパスに配置されます。destinationDir が存在する必要があり、存在しない
場合はエラーが生じます。コピープロセスでディレクトリーパスは作成されません。

注記

現時点で、これらのシークレットが含まれるすべてのファイルは全ユーザーに書き込み
権限が割り当てられた状態で追加され (0666 のパーミッション)、assemble スクリプト
の実行後には、サイズが 0 になるように切り捨てられます。つまり、シークレットファ
イルは作成されたイメージ内に存在しますが、セキュリティーの理由で空になります。

8.3.6.3. Docker ストラテジー

Docker ストラテジーを使用すると、Dockerfileで ADD および COPY の命令 を使用してコンテナーイ
メージに定義されたすべての入力シークレットを追加できます。

 secrets:
 - secret:
 name: secret-npmrc

source:
 git:
 uri: https://github.com/openshift/nodejs-ex.git
 secrets:
 - secret:
 name: secret-npmrc
 destinationDir: /etc

第8章 ビルド

111

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#docker-build
https://docs.docker.com/engine/reference/builder/#add
https://docs.docker.com/engine/reference/builder/#copy

シークレットの destinationDir を指定しない場合は、ファイルは、Dockerfile が配置されているのと
同じディレクトリーにコピーされます。相対パスを destinationDir として指定する場合は、シークレッ
トは、Dockerfile と相対的なディレクトリーにコピーされます。これにより、ビルド時に使用するコン
テキストディレクトリーの一部として、Docker ビルド操作でシークレットファイルが利用できるよう
になります。

例8.1 シークレットデータを参照する Dockerfile の例

FROM centos/ruby-22-centos7

USER root
ADD ./secret-dir /secrets
COPY ./secret2 /

Create a shell script that will output secrets when the image is run
RUN echo '#!/bin/sh' > /secret_report.sh
RUN echo '(test -f /secrets/secret1 && echo -n "secret1=" && cat /secrets/secret1)' >>
/secret_report.sh
RUN echo '(test -f /secret2 && echo -n "relative-secret2=" && cat /secret2)' >> /secret_report.sh
RUN chmod 755 /secret_report.sh

CMD ["/bin/sh", "-c", "/secret_report.sh"]

注記

通常はシークレットがイメージから実行するコンテナーに置かれないように、入力シー
クレットを最終的なアプリケーションイメージから削除する必要があります。ただし、
シークレットは追加される階層のイメージ自体に存在します。この削除は、Dockerfile
の一部として組み込まれる必要があります。

8.3.6.4. カスタムストラテジー

Custom ストラテジーを使用する場合、定義された入力シークレットはすべ
て、/var/run/secrets/openshift.io/build ディレクトリー内のビルダーコンテナーで入手できます。カ
スタムビルドイメージは、これらのシークレットを適切に使用する必要があります。また、Custom ス
トラテジーを使用すると、カスタムストラテジーのオプションで記載されているようにシークレットを
定義できます。

既存のストラテジーのシークレットと入力シークレットには違いはありません。ただし、ビルダーイ
メージはこれらを区別し、、ビルドのユースケースに基づいてこれらを異なる方法で使用する場合があ
ります。

入力シークレットは常に /var/run/secrets/openshift.io/build ディレクトリーにマウントされます。
そうでない場合には、ビルダーが完全なビルドオブジェクトを含む $BUILD 環境変数を分析できます。

8.3.7. 外部アーティファクトの使用

ソースリポジトリーにバイナリーファイルを保存することは推奨していません。そのため、ビルドプロ
セス中に追加のファイル (Java .jar の依存関係など) をプルするビルドを定義する必要がある場合があ
ります。この方法は、使用するビルドストラテジーにより異なります。

Source ビルドストラテジーの場合は、assemble スクリプトに適切なシェルコマンドを設定する必要が
あります。

OpenShift Container Platform 3.9 開発者ガイド

112

.s2i/bin/assemble ファイル

.s2i/bin/run ファイル

注記

Source ビルドが使用する assemble および run スクリプトを制御する方法に関する情報
は、「ビルダーイメージスクリプトの上書き」を参照してください。

Docker ビルドストラテジーの場合は、Dockerfile を変更して、RUN 命令を指定してシェルコマンドを
呼び出す必要があります。

Dockerfile の抜粋

FROM jboss/base-jdk:8

ENV APP_VERSION 1.0
RUN wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

EXPOSE 8080
CMD ["java", "-jar", "app.jar"]

I実際には、ファイルの場所の環境変数を使用し、Dockerfile または assemble スクリプトを更新するの
ではなく、BuildConfig で定義した環境変数で、ダウンロードする特定のファイルをカスタマイズする
ことができます。

環境変数の定義には複数の方法があり、いずれかの方法を選択できます。

.s2i/environment ファイルの使用 (ソースビルドストラテジーのみ)

BuildConfig での設定

oc start-build --envを使用した明示的な指定 （手動でトリガーされるビルドのみ）

8.3.8. プライベートレジストリーでの Docker 認証情報の使用

プライベート Docker レジストリーの有効な認証情報を指定して、.docker/config.json ファイルでビル
ドを提供できます。これにより、プライベート Docker レジストリーにアウトプットイメージをプッ
シュしたり、認証を必要とするプライベート Docker レジストリーからビルダーイメージをプルするこ
とができます。

注記

OpenShift Container Platform Docker レジストリーでは、OpenShift Container Platform
が自動的にシークレットを生成するので、この作業は必要ありません。

#!/bin/sh
APP_VERSION=1.0
wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

#!/bin/sh
exec java -jar app.jar

第8章 ビルド

113

https://docs.docker.com/engine/reference/builder/#run
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#build-and-deployment-cli-operations

1

2

3

デフォルトでは、.docker/config.json ファイルはホームディレクトリーにあり、以下の形式となって
います。

レジストリーの URL

暗号化されたパスワード

ログイン用のメールアドレス

このファイルに複数の Docker レジストリーを定義できます。または docker login コマンドを実行し
て、このファイルに認証エントリーを追加することも可能です。ファイルが存在しない場合には作成さ
れます。

Kubernetes では Secret オブジェクトが提供され、これを使用して設定とパスワードを保存することが
できます。

1. ローカルの .docker/config.json ファイルからシークレットを作成します。

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

このコマンドにより、dockerhub という名前のシークレットの JSON 仕様が生成され、オブ
ジェクトが作成されます。

2. シークレットが作成されたら、これをビルダーサービスアカウントに追加します。ビルドは
builder ロールで実行されるので、以下のコマンドでシークレットへのアクセスを設定する必要
があります。

$ oc secrets link builder dockerhub

3. pushSecret フィールドを BuildConfig の output セクションに追加し、作成した secret の名
前 (上記の例では、dockerhub) に設定します。

oc set build-secret コマンドを使用して、ビルド設定にプッシュするシークレットを設定しま
す。

$ oc set build-secret --push bc/sample-build dockerhub

4. ビルドストラテジー定義に含まれる pullSecret を指定して、プライベート Docker レジスト

auths:
 https://index.docker.io/v1/: 1
 auth: "YWRfbGzhcGU6R2labnRib21ifTE=" 2
 email: "user@example.com" 3

spec:
 output:
 to:
 kind: "DockerImage"
 name: "private.registry.com/org/private-image:latest"
 pushSecret:
 name: "dockerhub"

OpenShift Container Platform 3.9 開発者ガイド

114

4. ビルドストラテジー定義に含まれる pullSecret を指定して、プライベート Docker レジスト
リーからビルダーコンテナーイメージをプルします。

oc set build-secret コマンドを使用して、ビルド設定にプルするシークレットを設定します。

$ oc set build-secret --pull bc/sample-build dockerhub

注記

以下の例では、ソールビルドに pullSecret を使用しますが、Docker とカスタムビルド
にも該当します。

8.4. ビルドの出力

8.4.1. ビルド出力の概要

Docker または Source ストラテジーを使用するビルドにより、新しいコンテナーイメージが作成され
ます。このイメージは、Build 仕様の output セクションで指定されているコンテナーイメージのレジ
ストリーにプッシュされます。

出力の種類が ImageStreamTag の場合は、イメージが統合された OpenShift Container Platform レジ
ストリーにプッシュされ、指定のイメージストリームにタグ付けされます。出力が DockerImage タイ
プの場合は、出力参照の名前が Docker のプッシュ仕様として使用されます。この仕様にレジストリー
が含まれる場合もありますが、レジストリーが指定されていない場合は、DockerHub にデフォルト設
定されます。ビルド仕様の出力セクションが空の場合には、ビルドの最後にイメージはプッシュされま
せん。

ImageStreamTag への出力

Docker のプッシュ仕様への出力

8.4.2. アウトプットイメージの環境変数

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "docker.io/user/private_repository"
 pullSecret:
 name: "dockerhub"

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"

spec:
 output:
 to:
 kind: "DockerImage"
 name: "my-registry.mycompany.com:5000/myimages/myimage:tag"

第8章 ビルド

115

Docker および Source ストラテジービルドは、以下の環境変数をアウトプットイメージに設定しま
す。

変数 説明

OPENSHIFT_BUILD_NAME ビルドの名前

OPENSHIFT_BUILD_NAMESPACE ビルドの namespace

OPENSHIFT_BUILD_SOURCE ビルドのソース URL

OPENSHIFT_BUILD_REFERENCE ビルドで使用する Git 参照

OPENSHIFT_BUILD_COMMIT ビルドで使用するソースコミット

さらに、Source または Docker ストラテジーオプションで設定されるユーザー定義の環境変数は、ア
ウトプットイメージの環境変数一覧にも含まれます。

8.4.3. アウトプットイメージのラベル

Docker および Source ビルドは、以下のラベルをアウトプットイメージに設定します。

ラベル 説明

io.openshift.build.commit.author ビルドで使用するソースコミットの作成者

io.openshift.build.commit.date ビルドで使用するソースコミットの日付

io.openshift.build.commit.id ビルドで使用するソースコミットのハッシュ

io.openshift.build.commit.message ビルドで使用するソースコミットのメッセージ

io.openshift.build.commit.ref ソースに指定するブランチまたは参照

io.openshift.build.source-location ビルドのソース URL

BuildConfig.spec.output.imageLabels フィールドを使用して、カスタムラベルの一覧を指定すること
も可能です。 このラベルは、BuildConfig の各イメージビルドに適用されます。

ビルドイメージに適用されるカスタムラベル

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "my-image:latest"
 imageLabels:
 - name: "vendor"

OpenShift Container Platform 3.9 開発者ガイド

116

1

2

8.4.4. アウトプットイメージのダイジェスト

ビルドイメージは、ダイジェストで一意に識別して、後に現在のタグとは無関係にこれを使用してダイ
ジェスト別にイメージをプルすることができます。

Docker および Source ビルドは、イメージがレジストリーにプッシュされた後に
Build.status.output.to.imageDigest にダイジェストを保存します。ダイジェストはレジストリーで処
理されます。そのため、これはレジストリーがダイジェストを返さない場合や、ビルダーイメージで形
式が認識されない場合など、存在しないことがあります。

レジストリーへのプッシュに成功した後のビルドイメージのダイジェスト

8.4.5. プライベートレジストリーでの docker 認証情報の使用

シークレットを使用して認証情報を指定することで、プライベート Docker レジストリーにイメージを
プッシュすることができます。方法については、「ビルド入力」を参照してください。

8.5. ビルドストラテジーのオプション

8.5.1. Source-to-Image ストラテジーのオプション

以下のオプションは、S2I ビルドストラテジー に固有のオプションです。

8.5.1.1. 強制プル

ビルド設定で指定したビルドイメージがノードでローカルに利用できる場合には、デフォルトではその
イメージが使用されます。ただし、ローカルイメージを上書きして、イメージストリームが参照するレ
ジストリーからイメージを更新する場合には、 forcePull フラグを true に設定して BuildConfig を作
成します。

使用するビルダーイメージ。 ノードのローカルバージョンは、イメージストリームが参照するレ
ジストリーのバージョンと同様の最新の状態でない可能性があります。

このフラグがあると、ローカルのビルダーイメージが無視され、イメージストリームが参照するレ

 value: "MyCompany"
 - name: "authoritative-source-url"
 value: "registry.mycompany.com"

status:
 output:
 to:
 imageDigest:
sha256:29f5d56d12684887bdfa50dcd29fc31eea4aaf4ad3bec43daf19026a7ce69912

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "builder-image:latest" 1
 forcePull: true 2

第8章 ビルド

117

https://docs.docker.com/registry/spec/api/#/content-digests
https://docs.docker.com/engine/reference/commandline/pull/#/pull-an-image-by-digest-immutable-identifier
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#source-build

1

2

1

このフラグがあると、ローカルのビルダーイメージが無視され、イメージストリームが参照するレ
ジストリーから新しいバージョンがプルされます。forcePull を false に設定すると、デフォルト

8.5.1.2. 増分ビルド

S2I は増分ビルドを実行できるので、以前にビルドされたイメージからのアーティファクトが再利用さ
れます。増分ビルドを作成するには、ストラテジー定義に以下の変更を加えて BuildConfig を作成しま
す。

増分ビルドをサポートするイメージを指定します。この動作がサポートされているか判断するに
は、ビルダーイメージのドキュメントを参照してください。

このフラグでは、増分ビルドを試行するかどうかを制御します。ビルダーイメージで増分ビルドが
サポートされていない場合は、ビルドは成功しますが、save-artifacts スクリプトがないため増分
ビルドに失敗したというログメッセージが表示されます。

注記

増分ビルドをサポートするビルダーイメージを作成する方法に関する説明は、「 S2I
Requirements 」を参照してください。

8.5.1.3. ビルダーイメージのスクリプトの上書き

ビルダーイメージが提供する assemble、run、および save-artifacts S2I スクリプト は、2 種類のいず
れかの方法で上書きできます。次のいずれかになります。

1. アプリケーションのソースリポジトリーの .s2i/bin ディレクトリーに assemble、run および/
または save-artifacts スクリプトを指定します。

2. ストラテジー定義の一部として、スクリプトを含むディレクトリーの URL を指定します。以下
は例になります。

このパスに、run, assemble および save-artifacts が追加されます。一部または全スクリプトがあ
る場合、そのスクリプトが、イメージに指定された同じ名前のスクリプトの代わりに使用されま
す。

注記

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "incremental-image:latest" 1
 incremental: true 2

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "builder-image:latest"
 scripts: "http://somehost.com/scripts_directory" 1

OpenShift Container Platform 3.9 開発者ガイド

118

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/creating_images/#creating-images-s2i
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/creating_images/#s2i-scripts

注記

scripts URL に配置されているファイルは、ソースリポジトリーの .s2i/bin に配置されて
いるファイルよりも優先されます。S2I スクリプトがどのように使用されるかについて
は、S2I 要件 のトピックおよび S2I ドキュメント を参照してください。

8.5.1.4. 環境変数

ソースビルド のプロセスと生成されるイメージで環境変数を利用できるようにする方法として、2 種類
(環境ファイルおよび BuildConfig 環境の値の使用) あります。指定される変数は、ビルドプロセスでア
ウトプットイメージに表示されます。

8.5.1.4.1. 環境ファイル

ソースビルドでは、ソースリポジトリーの .s2i/environment ファイルに指定することで、アプリケー
ション内に環境の値 (1 行に 1 つ) を設定できます。このファイルで指定された環境変数は、ビルドプロ
セスとアウトプットイメージに存在します。サポートされる環境変数の完全な一覧は、各イメージの ド
キュメント にあります。

ソースリポジトリーに .s2i/environment ファイルを渡すと、S2I はビルド時にこのファイルを読み取り
ます。これにより assemble スクリプトがこれらの変数を使用できるので、ビルドの動作をカスタマイ
ズできます。

たとえば、Rails アプリケーションのアセットのコンパイルを無効にする場合には、.s2i/environment
ファイルに DISABLE_ASSET_COMPILATION=true を追加して、ビルド時にアセットのコンパイルが
スキップされるようにします。

ビルド以外に、指定の環境変数も実行中のアプリケーション自体で利用できます。たとえ
ば、.s2i/environment ファイルに RAILS_ENV=development を追加して、Rails アプリケーションが
production ではなく development モードで起動できるようにします。

8.5.1.4.2. BuildConfig 環境

環境変数を BuildConfig の sourceStrategy 定義に追加できます。ここに定義されている環境変数
は、assemble スクリプトの実行時に表示され、アウトプットイメージで定義されるので、run スクリ
プトやアプリケーションコードでも利用できるようになります。

Rails アプリケーションのアセットコンパイルを無効にする例:

ビルド環境のセクションでは、より詳細な説明を提供します。

oc set env コマンドで、BuildConfig に定義した環境変数を管理することも可能です。

8.5.1.5. Web コンソールを使用したシークレットの追加

プライベートリポジトリーにアクセスできるようにビルド設定にシークレットを追加するには、以下を
実行します。

1. 新規の OpenShift Container Platform プロジェクトを作成します。

sourceStrategy:
...
 env:
 - name: "DISABLE_ASSET_COMPILATION"
 value: "true"

第8章 ビルド

119

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/creating_images/#creating-images-s2i
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#source-build
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#using-images-index

2. プライベートのソースコードリポジトリーにアクセスするための認証情報が含まれるシーク
レットを作成します。

3. Source-to-Image(S2I)ビルド設定 を作成します。

4. ビルド設定のエディターページや、Web コンソール の create app from builder image ページ
で、Source Secret を設定します。

5. Save ボタンをクリックします。

8.5.1.5.1. プルおよびプッシュの有効化

プライベートレジストリーにプルできるようにするには、ビルド設定に Pull Secret を設定し、プッ
シュを有効にするには Push Secret を設定します。

8.5.1.6. ソースファイルの無視

Source to image は .s2iignore ファイルをサポートします。このファイルには、無視すべきファイルパ
ターンの一覧が含まれます。 .s2iignore ファイルにあるパターンと一致する、さまざまな入力ソースで
提供されるビルドの作業ディレクトリーにあるファイルは assemble スクリプトでは利用できません。

.s2iignore ファイルの形式についての詳細は、 source-to-image ドキュメント を参照してください。

8.5.2. Docker ストラテジーのオプション

以下のオプションは、「 Docker ビルドストラテジー 」に固有のオプションです。

8.5.2.1. FROM イメージ

Dockerfile の FROM 命令は、BuildConfig の from に置き換えられます。

8.5.2.2. Dockerfile パス

デフォルトでは Docker ビルドは BuildConfig.spec.source.contextDir フィールドで指定されたコンテ
キストのルートに配置されている Dockerfile (名前付きの Dockerfile) を使用します。

dockerfilePath フィールドでは、異なるパスを使用して Dockerfile の場所
(BuildConfig.spec.source.contextDir フィールドへの相対パス) を特定します。デフォルトの
Dockerfile (例: MyDockerfile) とは異なる名前や、サブディレクトリーにある Dockerfile へのパス (例:
dockerfiles/app1/Dockerfile) などを単純に設定できます。

8.5.2.3. キャッシュなし

Docker ビルドは通常、ビルドを実行するホスト上のキャッシュ階層を再利用します。noCache オプ

strategy:
 dockerStrategy:
 from:
 kind: "ImageStreamTag"
 name: "debian:latest"

strategy:
 dockerStrategy:
 dockerfilePath: dockerfiles/app1/Dockerfile

OpenShift Container Platform 3.9 開発者ガイド

120

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#source-build
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-infrastructure-components-web-console
https://github.com/openshift/source-to-image#build-workflow
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#docker-build

1

Docker ビルドは通常、ビルドを実行するホスト上のキャッシュ階層を再利用します。noCache オプ
ションを true に設定すると、ビルドがキャッシュ階層を無視して、Dockerfile のすべての手順を再実
行します。

8.5.2.4. 強制プル

ビルド設定で指定したビルドイメージがノードでローカルに利用できる場合には、デフォルトではその
イメージが使用されます。ただし、ローカルイメージを上書きして、イメージストリームが参照するレ
ジストリーからイメージを更新する場合には、 forcePull フラグを true に設定して BuildConfig を作
成します。

このフラグがあると、ローカルのビルダーイメージが無視され、イメージストリームが参照するレ
ジストリーから新しいバージョンがプルされます。forcePull を false に設定すると、デフォルト
の動作として、ローカルに保存されたイメージが使用されます。

8.5.2.5. 環境変数

環境変数を Docker ビルド プロセスおよび結果として生成されるイメージで利用可能にするには、環境
変数を BuildConfig の dockerStrategy 定義に追加できます。

ここに定義した環境変数は、Dockerfile 内で後に参照できるように、単一の ENV Dockerfile 命令として
FROM 命令の直後に挿入されます。

変数はビルド時に定義され、アウトプットイメージに残るため、そのイメージを実行するコンテナーに
も存在します。

たとえば、ビルドやランタイム時にカスタムの HTTP プロキシーを定義するには以下を設定します。

クラスター管理者は、Ansible を使用してグローバルビルド設定を設定 することもできます。

oc set env コマンドで、BuildConfig に定義した環境変数を管理することも可能です。

8.5.2.6. Web コンソールを使用したシークレットの追加

プライベートリポジトリーにアクセスできるようにビルド設定にシークレットを追加するには、以下を
実行します。

1. 新規の OpenShift Container Platform プロジェクトを作成します。

strategy:
 dockerStrategy:
 noCache: true

strategy:
 dockerStrategy:
 forcePull: true 1

dockerStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

第8章 ビルド

121

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#docker-build
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-hosts-for-proxies-using-ansible

2. プライベートのソースコードリポジトリーにアクセスするための認証情報が含まれるシーク
レットを作成します。

3. docker ビルド設定 を作成します。

4. ビルド設定のエディターページまたは、Web コンソール の fromimage ページで、Source
Secret を設定します。

5. Save ボタンをクリックします。

8.5.2.7. Docker ビルド引数

Docker ビルドの引数 を設定するには、以下のように BuildArgs 配列にエントリーを追加します。これ
は、BuildConfig の dockerStrategy 定義の中にあります。以下に例を示します。

ビルド引数は、ビルドの開始時に Docker に渡されます。

8.5.2.7.1. プルおよびプッシュの有効化

プライベートレジストリーにプルできるようにするには、ビルド設定に Pull Secret を設定し、プッ
シュを有効にするには Push Secret を設定します。

8.5.3. カスタムストラテジーのオプション

以下のオプションは、「 カスタムビルドストラテジー 」に固有のオプションです。

8.5.3.1. FROM イメージ

customStrategy.from セクションを使用して、カスタムビルドに使用するイメージを指定します。

8.5.3.2. Docker ソケットの公開

コンテナー内から Docker コマンドを実行して、コンテナーイメージをビルドできるようにするには、
アクセス可能なソケットにビルドコンテナーをバインドする必要があります。これに
は、exposeDockerSocket オプションを true に設定します。

8.5.3.3. Secret

dockerStrategy:
...
 buildArgs:
 - name: "foo"
 value: "bar"

strategy:
 customStrategy:
 from:
 kind: "DockerImage"
 name: "openshift/sti-image-builder"

strategy:
 customStrategy:
 exposeDockerSocket: true

OpenShift Container Platform 3.9 開発者ガイド

122

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#docker-build
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-infrastructure-components-web-console
http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#custom-build

1

2

すべてのビルドタイプに追加できるソースおよびイメージのシークレットのほかに、カスタムストラテ
ジーを使用することにより、シークレットの任意の一覧をビルダー Pod に追加できます。

各シークレットは、特定の場所にマウントできます。

secretSource は、ビルドと同じ namespace にあるシークレットへの参照です。

mountPath は、シークレットがマウントされる必要のあるカスタムビルダー内のパスです。

8.5.3.3.1. Web コンソールを使用したシークレットの追加

プライベートリポジトリーにアクセスできるようにビルド設定にシークレットを追加するには、以下を
実行します。

1. 新規の OpenShift Container Platform プロジェクトを作成します。

2. プライベートのソースコードリポジトリーにアクセスするための認証情報が含まれるシーク
レットを作成します。

3. カスタムビルド設定 を作成します。

4. ビルド設定のエディターページまたは、Web コンソール の fromimage ページで、Source
Secret を設定します。

5. Save ボタンをクリックします。

8.5.3.3.2. プルおよびプッシュの有効化

プライベートレジストリーにプルできるようにするには、ビルド設定に Pull Secret を設定し、プッ
シュを有効にするには Push Secret を設定します。

8.5.3.4. 強制プル

ビルド Pod を設定する場合に、ビルドコントローラーはデフォルトで、ビルド設定で指定したイメー
ジがローカルで使用できるかどうかを確認します。ローカルで利用できる場合にはそのイメージが使用
されます。ただし、ローカルイメージを上書きして、イメージストリームが参照するレジストリーから
イメージを更新する場合には、 forcePull フラグを true に設定して BuildConfig を作成します。

このフラグがあると、ローカルのビルダーイメージが無視され、イメージストリームが参照するレ

strategy:
 customStrategy:
 secrets:
 - secretSource: 1
 name: "secret1"
 mountPath: "/tmp/secret1" 2
 - secretSource:
 name: "secret2"
 mountPath: "/tmp/secret2"

strategy:
 customStrategy:
 forcePull: true 1

第8章 ビルド

123

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#custom-build
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-infrastructure-components-web-console

1 このフラグがあると、ローカルのビルダーイメージが無視され、イメージストリームが参照するレ
ジストリーから新しいバージョンがプルされます。forcePull を false に設定すると、デフォルト
の動作として、ローカルに保存されたイメージが使用されます。

8.5.3.5. 環境変数

環境変数を カスタムビルド プロセスで利用可能にするには、環境変数を BuildConfig の
customStrategy 定義に追加できます。

ここに定義された環境変数は、カスタムビルドを実行する Pod に渡されます。

たとえば、ビルド時にカスタムの HTTP プロキシーを定義するには以下を設定します。

クラスター管理者は、Ansible を使用してグローバルビルド設定を設定 することもできます。

oc set env コマンドで、BuildConfig に定義した環境変数を管理することも可能です。

8.5.4. パイプラインストラテジーのオプション

以下のオプションは、「 Pipeline ビルドストラテジー 」に固有のオプションです。

8.5.4.1. Jenkinsfile の提供

Jenkinsfile は、以下の 2 つの方法のどちらかで提供できます。

1. ビルド設定に Jenkinsfile を埋め込む

2. Jenkinsfile を含む git リポジトリーへの参照をビルド設定に追加する

埋め込み定義

Git リポジトリーへの参照

customStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node('agent') {
 stage 'build'
 openshiftBuild(buildConfig: 'ruby-sample-build', showBuildLogs: 'true')
 stage 'deploy'
 openshiftDeploy(deploymentConfig: 'frontend')
 }

OpenShift Container Platform 3.9 開発者ガイド

124

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#custom-build
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-hosts-for-proxies-using-ansible
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#pipeline-build

1 オプションの jenkinsfilePath フィールドは、ソース contextDir との関連で使用するファイルの
名前を指定します。contextDir が省略される場合、デフォルトはリポジトリーのルートに設定さ
れます。jenkinsfilePath が省略される場合、デフォルトは Jenkinsfile に設定されます。

8.5.4.2. 環境変数

環境変数を Pipeline ビルド プロセスで利用可能にするには、環境変数を BuildConfig の
jenkinsPipelineStrategy 定義に追加できます。

定義した後に、環境変数は BuildConfig に関連する Jenkins ジョブのパラメーターとして設定されま
す。

以下に例を示します。

注記

oc set env コマンドで、BuildConfig に定義した環境変数を管理することも可能です。

8.5.4.2.1. BuildConfig 環境変数と Jenkins ジョブパラメーター間のマッピング

Pipeline ストラテジーの BuildConfig への変更に従い、Jenkins ジョブが作成/更新される
と、BuildConfig の環境変数は Jenkins ジョブパラメーターの定義にマッピングされます。 Jenkins
ジョブパラメーター定義のデフォルト値は、関連する環境変数の現在の値になります。

Jenkins ジョブの初回作成後に、パラメーターを Jenkins コンソールからジョブに追加できます。パラ
メーター名は、BuildConfig の環境変数名とは異なります。上記の Jenkins ジョブ用にビルドを開始す
ると、これらのパラメーターが使用されます。

Jenkins ジョブのビルドを開始する方法により、パラメーターの設定方法が決まります。oc start-build
で開始された場合には、BuildConfig の環境変数の値は対応するジョブインスタンスに設定するパラ
メーターになります。Jenkins コンソールからパラメーターのデフォルト値に変更を加えても無視され
ます。BuildConfig の値が優先されます。

oc start-build -e で開始すると、-e オプションで指定した環境変数の値が優先されます。ま
た、BuildConfig に記載されていない環境変数を指定した場合には、Jenkins ジョブのパラメーター定
義として追加されます。また、Jenkins コンソールから環境変数に対応するパラメーターに加える変更

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfilePath: some/repo/dir/filename 1

jenkinsPipelineStrategy:
...
 env:
 - name: "FOO"
 value: "BAR"

第8章 ビルド

125

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#pipeline-build

は無視されます。BuildConfig および oc start-build -e て指定する内容が優先されます。

Jenkins コンソールで Jenkins ジョブを開始した場合には、ジョブのビルドを開始する操作の一環とし
て、Jenkins コンソールを使用してパラメーターの設定を制御できます。

8.6. ビルド環境

8.6.1. 概要

Pod 環境変数と同様に、ビルドの環境変数は Downward API を使用して他のリソースや変数の参照とし
て定義できます。ただし、以下のような例外があります。

注記

oc set env コマンドで、BuildConfig に定義した環境変数を管理することも可能です。

8.6.2. 環境変数としてのビルドフィールドの使用

ビルドオブジェクトの情報は、値を取得するフィールドの JsonPath に、fieldPath 環境変数のソース
を設定することで挿入できます。

注記

Jenkins Pipeline ストラテジーは、環境変数の valueFrom 構文をサポートしません。

8.6.3. 環境変数としてのコンテナーリソースの使用

参照はコンテナーの作成前に解決されるため、ビルド環境変数の valueFrom を使用したコンテナーリ
ソースの参照はサポートされません。

8.6.4. 環境変数としてのシークレットの使用

valueFrom 構文を使用して、シークレットからのキーの値を環境変数として利用できます。

env:
 - name: FIELDREF_ENV
 valueFrom:
 fieldRef:
 fieldPath: metadata.name

apiVersion: v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: MYVAL
 valueFrom:

OpenShift Container Platform 3.9 開発者ガイド

126

8.7. ビルドのトリガー

8.7.1. ビルドトリガーの概要

BuildConfig の定義時に、BuildConfig を実行する必要のある状況を制御するトリガーを定義できま
す。以下のビルドトリガーを利用できます。

Webhook

イメージの変更

設定の変更

8.7.2. Webhook のトリガー

Webhook のトリガーにより、要求を OpenShift Container Platform API エンドポイントに送信して新
規ビルドをトリガーできます。GitHub、GitLab、Bitbucketまたは Generic webhook を使用して、
Webhook トリガーを定義できます。

OpenShift Container Platform の Webhook は現在、Git ベースのソースコード管理システム (SCM) の
それぞれのプッシュイベントの類似のバージョンのみをサポートしています。その他のイベントタイプ
はすべて無視されます。

プッシュイベントを処理する場合に、イベント内のブランチ参照が、対応の BuildConfig のブランチ参
照と一致しているかどうか確認されます。一致する場合には、webhook イベントに記載されているのと
全く同じコミット参照が、OpenShift Container Platform ビルド用にチェックアウトされます。一致し
ない場合には、ビルドはトリガーされません。

注記

oc new-app および oc new-build は GitHub および Generic Webhook トリガーを自動的
に作成しますが、それ以外の Webhook トリガーが必要な場合には手動で追加する必要が
あります (「トリガーの設定」を参照)。

Webhook すべてに対して、WebHookSecretKey という名前のキーで、Secret と、Webook の呼び出
し時に提供される値を定義する必要があります。webhook の定義で、このシークレットを参照する必要
があります。このシークレットを使用することで URL が一意となり、他の URL でビルドがトリガーさ
れないようにします。キーの値は、webhook の呼び出し時に渡されるシークレットと比較されます。

たとえば、mysecret という名前のシークレットを参照する GitHub webhook は以下のとおりです。

次に、シークレットは以下のように定義します。シークレットの値は base64 エンコードされており、
この値は Secret オブジェクトの data フィールドに必要である点に注意してください。

 secretKeyRef:
 key: myval
 name: mysecret

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

第8章 ビルド

127

https://developer.github.com/webhooks/
https://docs.gitlab.com/ce/user/project/integrations/webhooks.html
https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

8.7.2.1. GitHub Webhooks

GitHub webhook は、リポジトリーの更新時に GitHub からの呼び出しを処理します。トリガーを定義
するときに、secret を定義してください。 このシークレットは、Webhook の設定時に GitHub に渡さ
れる URL に追加されます。

GitHub Webhook の定義例:

注記

Webhook トリガーの設定で使用されるシークレットは、GitHub UI で Webhook の設定
時に表示される secret フィールドとは異なります。Webhook トリガー設定で使用する
シークレットは、Webhook URL を一意にして推測ができないようにし、GitHub UI の
シークレットは、任意の文字列フィールドで、このフィールドを使用して本体の HMAC
hex ダイジェストを作成して、X-Hub-Signature ヘッダーとして送信します。

oc describe コマンドは、ペイロード URL を GitHub Webhook URL として返します (「 Webhook URL
の表示」を参照)。 ペイロード URL は以下のように構成されます。

http://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<se
cret>/github

GitHub Webhook を設定するには以下を実行します。

1. GitHub リポジトリーから BuildConfig を作成した後に、以下を実行します。

以下のように、上記のコマンドは Webhook GitHub URL を生成します。

<https://api.starter-us-east-
1.openshift.com:443/oapi/v1/namespaces/nsname/buildconfigs/bcname/webhooks/<secret>/gith
ub>.

2. GitHub の Web コンソールから、この URL を GitHub にカットアンドペーストします。

3. GitHub リポジトリーで、Settings → Webhooks & Services から Add Webhook を選択しま
す。

4. Payload URL フィールドに、(上記と同様の) URL の出力を貼り付けます。

- kind: Secret
 apiVersion: v1
 metadata:
 name: mysecret
 creationTimestamp:
 data:
 WebHookSecretKey: c2VjcmV0dmFsdWUx

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

$ oc describe bc/<name-of-your-BuildConfig>

OpenShift Container Platform 3.9 開発者ガイド

128

https://developer.github.com/webhooks/creating/
https://developer.github.com/webhooks/#delivery-headers

5. Content Type を GitHub のデフォルト application/x-www-form-urlencoded から
application/json に変更します。

6. Add webhook をクリックします。

webhook の設定が正常に完了したことを示す GitHub のメッセージが表示されます。

これで変更を GitHub リポジトリーにプッシュするたびに新しいビルドが自動的に起動し、ビルドに成
功すると新しいデプロイメントが起動します。

注記

Gogs は、GitHub と同じ webhook のペイロード形式をサポートします。そのため、
Gogs サーバーを使用する場合は、GitHub webhook トリガーを BuildConfig に定義する
と、Gogs サーバー経由でもトリガーされます。

payload.json などの有効な JSON ペイロードがファイルに含まれる場合には、curl を使用して
webhook を手動でトリガーできます。

$ curl -H "X-GitHub-Event: push" -H "Content-Type: application/json" -k -X POST --data-binary
@payload.json
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<s
ecret>/github

-k の引数は、API サーバーに正しく署名された証明書がない場合にのみ必要です。

8.7.2.2. GitLab Webhooks

GitLab Webhook は、リポジトリーの更新時の GitLab による呼び出しを処理します。GitHub トリガー
では、secret を指定する必要があります。以下の例は、BuildConfig 内のトリガー定義の YAML で
す。

oc describe コマンドは、ペイロード URL を GitLab Webhook URL として返します (「 Webhook URL
の表示」を参照)。 ペイロード URL は以下のように構成されます。

http://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<se
cret>/gitlab

GitLab Webhook を設定するには以下を実行します。

1. ビルド設定を記述して、webhook URL を取得します。

$ oc describe bc <name>

2. Webhook URL をコピーします。 <secret> はシークレットの値に置き換えます。

3. GitLab の設定手順 に従い、GitLab リポジトリーの設定に Webhook URL を貼り付けます。

payload.json などの有効な JSON ペイロードがファイルに含まれる場合には、curl を使用して

type: "GitLab"
gitlab:
 secretReference:
 name: "mysecret"

第8章 ビルド

129

https://gogs.io
https://docs.gitlab.com/ce/user/project/integrations/webhooks.html
https://docs.gitlab.com/ce/user/project/integrations/webhooks.html#webhooks

payload.json などの有効な JSON ペイロードがファイルに含まれる場合には、curl を使用して
webhook を手動でトリガーできます。

$ curl -H "X-GitLab-Event: Push Hook" -H "Content-Type: application/json" -k -X POST --data-binary
@payload.json
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<s
ecret>/gitlab

-k の引数は、API サーバーに正しく署名された証明書がない場合にのみ必要です。

8.7.2.3. Bitbucket Webhook

Bitbucket Webhook リポジトリーの更新時の Bitbucket による呼び出しを処理します。これまでのトリ
ガーと同様に、secret を指定する必要があります。以下の例は、BuildConfig 内のトリガー定義の
YAML です。

oc describe コマンドは、ペイロード URL を Bitbucket Webhook URL として返します (「 Webhook
URL の表示」を参照)。 ペイロード URL は以下のように構成されます。

http://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<se
cret>/bitbucket

Bitbucket Webhook を設定するには以下を実行します。

1. ビルド設定を記述して、webhook URL を取得します。

$ oc describe bc <name>

2. Webhook URL をコピーします。 <secret> はシークレットの値に置き換えます。

3. Bitbucket の設定手順 に従い、Bitbucket リポジトリーの設定に Webhook URL を貼り付けま
す。

payload.json などの有効な JSON ペイロードがファイルに含まれる場合には、curl を使用して
webhook を手動でトリガーできます。

$ curl -H "X-Event-Key: repo:push" -H "Content-Type: application/json" -k -X POST --data-binary
@payload.json
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<s
ecret>/bitbucket

-k の引数は、API サーバーに正しく署名された証明書がない場合にのみ必要です。

8.7.2.4. Generic Webhook

Generic webhook は、Web 要求を実行できるシステムから呼び出されます。他の webhook と同様に、
シークレットを指定する必要があります。このシークレットを使用することで URL が一意となり、他
の URL でビルドがトリガーされないようにします。以下の例は、BuildConfig 内のトリガー定義の
YAML です。

type: "Bitbucket"
bitbucket:
 secretReference:
 name: "mysecret"

OpenShift Container Platform 3.9 開発者ガイド

130

https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html
https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

1

1

true に設定して、Generic Webhook が環境変数で渡させるようにします。

呼び出し元を設定するには、呼び出しシステムに、ビルドの Generic Webhook エンドポイントの URL
を指定します。

http://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<se
cret>/generic

呼び出し元は、POST 操作として Webhook を呼び出す必要があります。

手動で Webhook を呼び出すには、curl を使用します。

$ curl -X POST -k
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<s
ecret>/generic

HTTP 動詞は POST に設定する必要があります。セキュアでない -k フラグを指定して、証明書の検証
を無視します。クラスターに正しく署名された証明書がある場合には、2 つ目のフラグは必要ありませ
ん。

エンドポイントは、以下の形式で任意のペイロードを受け入れることができます。

BuildConfig 環境変数と同様に、ここで定義されている環境変数はビルドで利用できます。これら
の変数が BuildConfig の環境変数と競合する場合には、これらの変数が優先されます。デフォル
トでは、webhook 経由で渡された環境変数は無視されます。Webhook 定義の allowEnv フィール
ドを true に設定して、この動作を有効にします。

curl を使用してこのペイロードを渡すには、payload_file.yaml という名前のファイルにペイロードを
定義して実行します。

type: "Generic"
generic:
 secretReference:
 name: "mysecret"
 allowEnv: true 1

git:
 uri: "<url to git repository>"
 ref: "<optional git reference>"
 commit: "<commit hash identifying a specific git commit>"
 author:
 name: "<author name>"
 email: "<author e-mail>"
 committer:
 name: "<committer name>"
 email: "<committer e-mail>"
 message: "<commit message>"
env: 1
 - name: "<variable name>"
 value: "<variable value>"

第8章 ビルド

131

$ curl -H "Content-Type: application/yaml" --data-binary @payload_file.yaml -X POST -k
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<s
ecret>/generic

引数は、ヘッダーとペイロードを追加した以前の例と同じです。-H の引数は、ペイロードの形式によ
り Content-Type ヘッダーを application/yaml または application/json に設定します。--data-binary
の引数を使用すると、POST 要求では、改行を削除せずにバイナリーペイロードを送信します。

注記

OpenShift Container Platform は、要求のペイロードが無効な場合でも (例: 無効なコン
テンツタイプ、解析不可能または無効なコンテンツなど)、Generic Webhook 経由でビル
ドをトリガーできます。この動作は、後方互換性を確保するために継続されています。
無効な要求ペイロードがある場合には、OpenShift Container Platform は、HTTP 200
OK 応答の一部として JSON 形式で警告を返します。

8.7.2.5. Webhook URL の表示

以下のコマンドを使用して、ビルド設定に関連する webhook URL を表示します。

$ oc describe bc <name>

上記のコマンドで webhook URL が表示されない場合には、対象のビルド設定に webhook トリガーが定
義されていないことになります。トリガーを手動で追加するには、「トリガーの設定」を参照してくだ
さい。

8.7.3. イメージ変更のトリガー

イメージ変更のトリガーを使用すると、アップストリームで新規バージョンが利用できるようになると
ビルドが自動的に呼び出されます。たとえば、RHEL イメージ上にビルドが設定されている場合には、
RHEL のイメージが変更された時点でビルドの実行をトリガーできます。その結果、アプリケーション
イメージは常に最新の RHEL ベースイメージ上で実行されるようになります。

イメージ変更のトリガーを設定するには、以下のアクションを実行する必要があります。

1. トリガーするアップストリームイメージを参照するように、ImageStream を定義します。

この定義では、イメージストリームが <system-registry>/<namespace>/ruby-20-centos7 に
配置されているコンテナーイメージリポジトリーに紐付けられます。<system-registry> は、
OpenShift Container Platform で実行する docker-registry の名前で、サービスとして定義され
ます。

2. イメージストリームがビルドのベースイメージの場合には、ビルドストラテジーの From
フィールドを設定して、イメージストリームを参照します。

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby-20-centos7"

strategy:
 sourceStrategy:
 from:

OpenShift Container Platform 3.9 開発者ガイド

132

1

2

上記の例では、sourceStrategy の定義は、この namespace 内に配置されている ruby-20-
centos7 という名前のイメージストリームの latest タグを使用します。

3. イメージストリームを参照する 1 つまたは複数のトリガーでビルドを定義します。

ビルドストラテジーの from フィールドに定義されたように ImageStream および Tag を
監視するイメージ変更トリガー。ここの imageChange オブジェクトは空でなければなり
ません。

任意のイメージストリームを監視するイメージ変更トリガー。この例に含まれる
imageChange の部分には from フィールドを追加して、監視する ImageStreamTag を参
照させる必要があります。

ストラテジーイメージストリームにイメージ変更トリガーを使用する場合は、生成されたビルドに不変
な docker タグが付けられ、そのタグに対応する最新のイメージを参照させます。この新規イメージ参
照は、ビルド用に実行するときに、ストラテジーにより使用されます。

ストラテジーイメージストリームを参照しない、他のイメージ変更トリガーの場合は、新規ビルドが開
始されますが、一意のイメージ参照で、ビルドストラテジーは更新されません。

ストラテジーにイメージ変更トリガーが含まれる上記の例では、作成されるビルドは以下のようになり
ます。

これにより、トリガーされたビルドは、リポジトリーにプッシュされたばかりの新しいイメージを使用
して、ビルドが同じ入力内容でいつでも再実行できるようにします。

カスタムビルドの場合、すべての Strategy タイプにイメージフィールドを設定するだけでな
く、OPENSHIFT_CUSTOM_BUILD_BASE_IMAGE の環境変数もチェックされます。この環境変数が
存在しない場合は、不変のイメージ参照で作成されます。存在する場合には、この不変のイメージ参照
で更新されます。

ビルドが Webhook トリガーまたは手動の要求でトリガーされた場合に、作成されるビルド
は、Strategy が参照する ImageStream から解決する <immutableid> を使用します。これにより、簡
単に再現できるように、一貫性のあるイメージタグを使用してビルドが実行されるようになります。

注記

 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"

type: "imageChange" 1
imageChange: {}
type: "imageChange" 2
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "172.30.17.3:5001/mynamespace/ruby-20-centos7:<immutableid>"

第8章 ビルド

133

注記

v1 Docker レジストリー のコンテナーイメージを参照するイメージストリームは、イ
メージ ストリームタグ が利用できるようになった時点でビルドが 1 度だけトリガーさ
れ、後続のイメージ更新ではトリガーされません。これは、v1 Docker レジストリーに一
意で識別可能なイメージがないためです。

8.7.4. 設定変更のトリガー

設定変更のトリガーは、BuildConfig がされると同時に自動的にビルドが呼び出されます。以下の例
は、BuildConfig 内のトリガー定義の YAML です。

注記

設定変更のトリガーは新しい BuildConfig が作成された場合のみ機能します。今後のリ
リースでは、設定変更トリガーは、BuildConfig が更新されるたびにビルドを起動でき
るようになります。

8.7.4.1. トリガーの手動設定

トリガーは、oc set triggers でビルド設定に対して追加/削除できます。たとえば、GitHub webhook
トリガーをビルド設定に追加するには以下を使用します。

$ oc set triggers bc <name> --from-github

イメージ変更トリガーを設定するには以下を使用します。

$ oc set triggers bc <name> --from-image='<image>'

トリガーを削除するには --remove を追加します。

$ oc set triggers bc <name> --from-bitbucket --remove

注記

Webhook トリガーがすでに存在する場合には、トリガーをもう一度追加すると、
Webhook のシークレットが再生成されます。

詳細情報は、oc set triggers --help のヘルプドキュメントを参照してください。

8.8. ビルドフック

8.8.1. ビルドフックの概要

ビルドフックを使用すると、ビルドプロセスに動作を挿入できます。

BuildConfig オブジェクトの postCommit フィールドにより、ビルドアウトプットイメージを実行する
一時的なコンテナー内でコマンドが実行されます。イメージの最後の層がコミットされた直後、かつイ
メージがレジストリーにプッシュされる前に、フックが実行されます。

現在の作業ディレクトリーは、イメージの WORKDIR に設定され、コンテナーイメージのデフォルト

 type: "ConfigChange"

OpenShift Container Platform 3.9 開発者ガイド

134

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-stream-tag

現在の作業ディレクトリーは、イメージの WORKDIR に設定され、コンテナーイメージのデフォルト
の作業ディレクトリーになります。多くのイメージでは、ここにソースコードが配置されます。

ゼロ以外の終了コードが返された場合、一時コンテナーの起動に失敗した場合には、フックが失敗しま
す。フックが失敗すると、ビルドに失敗とマークされ、このイメージはレジストリーにプッシュされま
せん。失敗の理由は、ビルドログを参照して検証できます。

ビルドフックは、ビルドが完了とマークされ、イメージがレジストリーに公開される前に、単体テスト
を実行してイメージを検証するために使用できます。すべてのテストに合格し、テストランナーにより
終了コード 0 が返されると、ビルドは成功とマークされます。テストに失敗すると、ビルドは失敗と
マークされます。すべての場合で、ビルドログには、テストランナーの出力が含まれるので、失敗した
テストを特定するのに使用できます。

postCommit フックは、テストの実行だけでなく、他のコマンドにも使用できます。一時的なコンテ
ナーで実行されるので、フックによる変更は永続されず、フックの実行は最終的なイメージには影響が
ありません。この動作はさまざまな用途がありますが、これにより、テストの依存関係がインストー
ル、使用されて、自動的に破棄され、最終イメージには残らないようにすることができます。

8.8.2. コミット後のビルドフックの設定

ビルド後のフックを設定する方法は複数あります。以下の例に出てくるすべての形式は同等で、bundle
exec rake test --verbose を実行します。

シェルスクリプト:

script の値は、/bin/sh -ic で実行するシェルスクリプトです。上記のように単体テストを実行
する場合など、シェルスクリプトがビルドフックの実行に適している場合に、これを使用しま
す。たとえば、上記のユニットテストを実行する場合などです。イメージのエントリーポイン
トを制御するか、イメージに /bin/sh がない場合は、command および/または argsを使用しま
す。

注記

CentOS や RHEL イメージでの作業を改善するために、追加で -i フラグが導入
されましたが、今後のリリースで削除される可能性があります。

イメージエントリーポイントとしてのコマンド:

この形式では command は実行するコマンドで、Dockerfile 参照に記載されている、実行形式
のイメージエントリーポイントを上書きします。Command は、イメージに /bin/sh がない、ま
たはシェルを使用しない場合に必要です。他の場合は、script を使用することが便利な方法に
なります。

デフォルトのエントリーポイントに渡す引数:

この形式では、args はイメージのデフォルトエントリーポイントに渡される引数一覧です。イ

postCommit:
 script: "bundle exec rake test --verbose"

postCommit:
 command: ["/bin/bash", "-c", "bundle exec rake test --verbose"]

postCommit:
 args: ["bundle", "exec", "rake", "test", "--verbose"]

第8章 ビルド

135

https://docs.docker.com/engine/reference/builder/#entrypoint

この形式では、args はイメージのデフォルトエントリーポイントに渡される引数一覧です。イ
メージのエントリーポイントは、引数を処理できる必要があります。

引数を指定したシェルスクリプト:

引数を渡す必要があるが、シェルスクリプトで正しく引用するのが困難な場合に、この形式を
使用します。上記の script では、$0 は "/bin/sh" で、$1、$2 などは args の位置引数となりま
す。

引数のあるコマンド:

この形式は command に引数を追加するのと同じです。

注記

script と command を同時に指定すると、無効なビルドフックが作成されてしまいま
す。

8.8.2.1. CLI の使用

oc set build-hook コマンドを使用して、ビルド設定のビルドフックを設定することができます。

コミット後のビルドフックとしてコマンドを設定します。

$ oc set build-hook bc/mybc \
 --post-commit \
 --command \
 -- bundle exec rake test --verbose

コミット後のビルドフックとしてスクリプトを設定します。

$ oc set build-hook bc/mybc --post-commit --script="bundle exec rake test --verbose"

8.9. ビルド実行ポリシー

8.9.1. ビルド実行ポリシーの概要

ビルド実行ポリシーでは、ビルド設定から作成されるビルドを実行する順番を記述します。これに
は、Build の spec セクションにある runPolicy フィールドの値を変更してください。

既存のビルド設定の runPolicy 値を変更することも可能です。

Parallel から Serial や SerialLatestOnly に変更して、この設定から新規ビルドをトリガーする
と、新しいビルドは並列ビルドすべてが完了するまで待機します。 これは、順次ビルドは、一
度に 1 つしか実行できないためです。

Serial を SerialLatestOnly に変更して、新規ビルドをトリガーすると、現在実行中のビルドと

postCommit:
 script: "bundle exec rake test $1"
 args: ["--verbose"]

postCommit:
 command: ["bundle", "exec", "rake", "test"]
 args: ["--verbose"]

OpenShift Container Platform 3.9 開発者ガイド

136

Serial を SerialLatestOnly に変更して、新規ビルドをトリガーすると、現在実行中のビルドと
直近で作成されたビルド以外には、キューにある既存のビルドがすべてキャンセルされます。
最新のビルドが次に実行されます。

8.9.2. 順次実行ポリシー

runPolicy フィールドを Serial に設定すると、Build ビルドから作成される新しいビルドはすべて 順次
実行になります。つまり、1 度に実行されるビルドは 1 つだけで、新しいビルドは、前のビルドが完了
するまで待機します。このポリシーを使用すると、一貫性があり、予測可能なビルドが出力されます。
これは、デフォルトの runPolicy です。

Serial ポリシーで sample-build 設定から 3 つのビルドをトリガーすると以下のようになります。

NAME TYPE FROM STATUS STARTED DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git New
sample-build-3 Source Git New

sample-build-1 ビルドが完了すると、sample-build-2 ビルドが実行されます。

NAME TYPE FROM STATUS STARTED DURATION
sample-build-1 Source Git@e79d887 Completed 43 seconds ago 34s
sample-build-2 Source Git@1aa381b Running 2 seconds ago 2s
sample-build-3 Source Git New

8.9.3. SerialLatestOnly 実行ポリシー

runPolicy フィールドを SerialLatestOnly に設定すると、Serial 実行ポリシーと同様に、Build 設定か
ら作成される新規ビルドすべてが順次実行されます。相違点は、現在実行中のビルドの完了後に、実行
される次のビルドが作成される最新ビルドになるという点です。言い換えると、キューに入っているビ
ルドはスキップされるので、これらの実行を待機しないということです。スキップされたビルドは
Cancelled としてマークされます。このポリシーは、反復的な開発を迅速に行う場合に使用できます。

SerialLatestOnly ポリシーで sample-build 設定から 3 つのビルドをトリガーすると以下のようになり
ます。

NAME TYPE FROM STATUS STARTED DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git Cancelled
sample-build-3 Source Git New

sample-build-2 のビルドはキャンセル (スキップ) され、sample-build-1 の完了後に、sample-build-3
ビルドが次のビルドとして実行されます。

NAME TYPE FROM STATUS STARTED DURATION
sample-build-1 Source Git@e79d887 Completed 43 seconds ago 34s
sample-build-2 Source Git Cancelled
sample-build-3 Source Git@1aa381b Running 2 seconds ago 2s

8.9.4. 並列実行ポリシー

runPolicy フィールドを Parallel に設定すると、Build 設定から作成される新規ビルドはすべて並列で
実行されます。この設定では、最初に作成されるビルドが完了するのが最後になる可能性があり、最新

第8章 ビルド

137

1

2

のイメージで生成され、プッシュされたコンテナーイメージが先に完了してしまい、置き換わる可能性
があるので、結果が予想できません。

ビルドの完了する順番が問題とはならない場合には、並列実行ポリシーを使用してください。

Parallel ポリシーで sample-build 設定から 3 つのビルドをトリガーすると、3 つのビルドが同時に実
行されます。

NAME TYPE FROM STATUS STARTED DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git@a76d881 Running 15 seconds ago 3s
sample-build-3 Source Git@689d111 Running 17 seconds ago 3s

完了する順番は保証されません。

NAME TYPE FROM STATUS STARTED DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git@a76d881 Running 15 seconds ago 3s
sample-build-3 Source Git@689d111 Completed 17 seconds ago 5s

8.10. 高度なビルド操作

8.10.1. ビルドリソースの設定

デフォルトでは、ビルドは、メモリーや CPU など、バインドされていないリソースを使用して Pod に
より完了されます。プロジェクトのデフォルトのコンテナー制限に、リソースの制限を指定すると、こ
れらのリソースを制限できます。

ビルド設定の一部にリソース制限を指定して、リソースの使用を制限することも可能です。以下の例で
は、resources、cpu および memory の各パラメーターはオプションです。

cpu は CPU のユニットで、100m は 0.1 CPU ユニット (100 * 1e-3) を表します。

memory はバイト単位です。 256Mi は 268435456 バイトを表します (256 * 2 ^ 20)。

ただし、クォータがプロジェクトに定義されている場合には、以下の 2 つの項目のいずれかが必要で
す。

明示的な requests で設定した resources セクション:

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2

resources:
 requests: 1
 cpu: "100m"

OpenShift Container Platform 3.9 開発者ガイド

138

1

1

requests オブジェクトは、クォータ内のリソース一覧に対応するリソース一覧を含みま
す。

プロジェクトで定義される 制限の範囲。LimitRange オブジェクトのデフォルト値がビルドプ
ロセス時に作成される Pod に適用されます。

適用されない場合は、クォータ基準を満たさないために失敗したというメッセージが出され、ビルド
Pod の作成は失敗します。

8.10.2. 最長期間の設定

BuildConfig の定義時に、completionDeadlineSeconds フィールドを設定して最長期間を定義できま
す。このフィールドは秒単位で指定し、デフォルトでは設定されません。設定されていない場合は、最
長期間は有効ではありません。

最長期間はビルドの Pod がシステムにスケジュールされた時点から計算され、ビルダーイメージをプ
ルするのに必要な時間など、ジョブが有効である期間を定義します。指定したタイムアウトに達する
と、ジョブは OpenShift Container Platform により終了されます。

以下の例は BuildConfig の一部で、completionDeadlineSeconds フィールドを 30 分に指定していま
す。

spec:
 completionDeadlineSeconds: 1800

注記

この設定は、パイプラインストラテジーオプションではサポートされていません。

8.10.3. 特定のノードへのビルドの割り当て

ビルドは、ビルド設定の nodeSelector フィールドにラベルを指定して、特定のノード上で実行するよ
うにターゲットを設定できます。nodeSelector の値は、ビルド Pod のスケジュール時の node ラベル
に一致するキー/値のペアに指定してください。

このビルド設定に関連するビルドは、key1=value2 と key2=value2 ラベルが指定されたノードで
のみ実行されます。

nodeSelector の値は、クラスター全体のデフォルトでも制御でき、値を上書きできます。ビルド設定
で nodeSelector キー/値ペアが定義されておらず、nodeSelector:{} が明示的に空になるように定義さ
れていない場合にのみ、デフォルト値が適用されます。値を上書きすると、キーごとにビルド設定の値

 memory: "256Mi"

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 nodeSelector: 1
 key1: value1
 key2: value2

第8章 ビルド

139

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#admin-guide-limits

が置き換えられます。

詳細情報は、「 グローバルビルドのデフォルト設定および上書きの 設定」を参照してください。

注記

指定の NodeSelector がこれらのラベルが指定されているノードに一致しない場合に
は、ビルドは Pending の状態が無限に続きます。

8.10.4. チェーンビルド

コンパイル言語 (Go、C、C++、Java など) の場合には、アプリケーションイメージにコンパイルに必
要な依存関係を追加すると、イメージのサイズが増加したり、悪用される可能性のある脆弱性が発生し
たりする可能性があります。

これらの問題を回避するには、2 つのビルドをチェーンでつなげることができます。 1 つ目のビルドで
コンパイルしたアーティファクトを作成し、2 つ目のビルドで、アーティファクトを実行する別のイ
メージにそのアーティファクトを配置します。以下の例では、Source-to-Image ビルドが Docker ビル
ドと組み合わせて、アーティファクトをコンパイルし、別のランタイムイメージに配置します。

注記

この例では、Source-to-Image ビルドと Docker ビルドをチェーンでつないでいます
が、1 つ目のビルドは、任意のアーティファクトを含むイメージを生成するストラテジー
を使用し、2 つ目のビルドは、イメージからの入力コンテンツを使用可能なストラテ
ジーを使用できます。

最初のビルドは、アプリケーションソースを取得して、WAR ファイルを含むイメージを作成します。
このイメージは、artifact-image イメージストリームにプッシュされます。アウトプットアーティファ
クトのパスは、使用する Source-to-Image ビルダーの assemble スクリプトにより異なります。この場
合、/wildfly/standalone/deployments/ROOT.war に出力されます。

OpenShift Container Platform 3.9 開発者ガイド

140

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-build-defaults-overrides
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#source-build
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#docker-build

2 つ目のビルドは、1 つ目のビルドからのアウトプットイメージ内にある WAR ファイルへのパスが指定
されているイメージソースを使用します。インライン Dockerfile は、その WAR ファイルをランタイム
イメージにコピーします。

apiVersion: v1
kind: BuildConfig
metadata:
 name: artifact-build
spec:
 output:
 to:
 kind: ImageStreamTag
 name: artifact-image:latest
 source:
 git:
 uri: https://github.com/openshift/openshift-jee-sample.git
 type: Git
 strategy:
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: wildfly:10.1
 namespace: openshift
 type: Source

apiVersion: v1
kind: BuildConfig
metadata:
 name: image-build
spec:
 output:
 to:
 kind: ImageStreamTag
 name: image-build:latest
 source:
 type: Dockerfile
 dockerfile: |-
 FROM jee-runtime:latest
 COPY ROOT.war /deployments/ROOT.war
 images:
 - from: 1
 kind: ImageStreamTag
 name: artifact-image:latest
 paths: 2
 - sourcePath: /wildfly/standalone/deployments/ROOT.war
 destinationDir: "."
 strategy:
 dockerStrategy:
 from: 3
 kind: ImageStreamTag
 name: jee-runtime:latest
 type: Docker
 triggers:
 - imageChange: {}
 type: ImageChange

第8章 ビルド

141

1

2

3

1

2

from は、docker ビルドに、以前のビルドのターゲットであった artifact-image イメージストリー
ムからのイメージの出力を追加する必要があることを指定します。

paths は、現在の Docker ビルドに追加するターゲットイメージからのパスを指定します。

ランタイムのイメージは、Docker ビルドのソースイメージとして使用します。

この設定の結果、2 番目のビルドのアウトプットイメージに、WAR ファイルの作成に必要なビルドツー
ルを含める必要がなくなります。また、この 2 番目のビルドにはイメージ変更のトリガーが含まれてい
るので、1 番目のビルドがバイナリーアーティファクトで新規イメージを実行して作成するたびに、2
番目のビルドが自動的に、そのアーティファクトを含むランタイムイメージを生成するためにトリガー
されます。そのため、どちらのビルドも、ステージが 2 つある単一ビルドのように振る舞います。

8.10.5. ビルドのプルーニング

デフォルトでは、ライフサイクルが完了したビルドは、無限に永続します。以下のビルド設定例にある
ように、successfulBuildsHistoryLimit または failedBuildsHistoryLimit を正の整数に指定すると、以
前のビルドを保持する数を制限することができます。

successfulBuildsHistoryLimit は、completed のステータスのビルドを最大 2 つまで保持しま
す。

failedBuildsHistoryLimit はステータスが failed、cancelled または error のビルドを最大 2 つま
で保持します。

ビルドプルーニングは、以下のアクションによりトリガーされます。

ビルド設定が更新された場合

ビルドのライフサイクルが完了した場合

ビルドは、作成時のタイムスタンプで分類され、一番古いビルドが先にプルーニングされます。

注記

管理者は、'oc adm' オブジェクトのプルーニングコマンドを使用して、ビルドを手動で
プルーニング できます。

8.11. ビルドのトラブルシューティング

8.11.1. 拒否されたリソースへのアクセス要求

問題

ビルドが以下のエラーで失敗します。

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 successfulBuildsHistoryLimit: 2 1
 failedBuildsHistoryLimit: 2 2

OpenShift Container Platform 3.9 開発者ガイド

142

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#pruning-builds

requested access to the resource is denied

解決策

プロジェクトに設定されているイメージのクォータのいずれかの上限を超えています。現在の
クォータを確認して、適用されている制限数と、使用中のストレージを確認してください。

$ oc describe quota

第8章 ビルド

143

第9章 デプロイメント

9.1. デプロイメントの仕組み

9.1.1. デプロイメントの概要

OpenShift Container Platform デプロイメントでは、一般的なユーザーアプリケーションに対して詳細
にわたる管理ができます。デプロイメントは、3 つの異なる API オブジェクトを使用して記述します。

デプロイメント設定。 Pod テンプレートとして、アプリケーションの特定のコンポーネントに
対する状態を記述します。

1 つまたは複数のレプリケーションコントローラー。 このコントローラーには、Pod テンプ
レートとしてデプロイメント設定のある時点の状態が含まれます。

1 つまたは複数の Pod。 特定バージョンのアプリケーションのインスタンスを表します。

重要

デプロイメント設定が所有するレプリケーションコントローラーまたは Pod を操作する
必要はありません。デプロイメントシステムにより、デプロイメント設定への変更は適
切に伝搬されます。既存のデプロイメントストラテジーがユースケースに適さない場合
や、デプロイメントのライフサイクルで手動の手順を実行する必要がある場合には、
「カスタムストラテジー」の作成を検討してください。

デプロイメント設定を作成すると、レプリケーションコントローラーが、デプロイメント設定の Pod
テンプレートとして作成されます。デプロイメント設定が変更されると、最新の Pod テンプレートで
新しいレプリケーションコントローラーが作成され、デプロイメントプロセスが実行され、以前のレプ
リケーションコントローラーにスケールダウンされるか、新しいレプリケーションコントローラーにス
ケールアップされます。

アプリケーションのインスタンスは、作成時にサービスローダーバランサーやルーターに対して自動的
に追加/削除されます。アプリケーションが正常なシャットダウン機能をサポートしている限り、アプ
リケーションが TERM シグナルを受け取ると、実行中のユーザー接続が通常通り完了できるようにす
ることができます。

デプロイメントシステムで提供される機能:

実行中のアプリケーションのテンプレートとなるデプロイメント設定。

イベントへの対応として自動化されたデプロイメントを駆動するトリガー。

以前のバージョンから新しいバージョンに移行するための、ユーザーによるカスタマイズが可
能なストラテジー。ストラテジーは、デプロイメントプロセスと一般的に呼ばれる Pod 内で実
行されます。

デプロイメントのライフサイクル中のさまざまなポイントで、カスタムの動作を実行するため
の フック セット。

デプロイメントの失敗時に手動または自動でロールバックをサポートするためのアプリケー
ションのバージョン管理。

レプリケーションの手動および自動スケーリング。

OpenShift Container Platform 3.9 開発者ガイド

144

1

2

3

4

5

6

7

9.1.2. デプロイメント設定の作成

デプロイメント設定は、OpenShift Container Platform API リソースの deploymentConfig で、他のリ
ソースのように oc コマンドで管理できます。以下は、deploymentConfig リソースの例です。

単純な Ruby アプリケーションを記述する frontend デプロイメント設定の Pod テンプレート。

frontend のレプリカは 5 つとなります。

Pod テンプレートが変更されるたびに、新規レプリケーションコントローラーが作成されるよう
にする設定変更トリガー

origin-ruby-sample:latest イメージストリームタグの新規バージョンが利用できるようになると、
新しいレプリケーションコントローラーが作成されるようにするイメージ変更トリガー

ローリングストラテジーは、Pod をデプロイするデフォルトの方法です。このストラテジーは、
Pod をデプロイするデフォルトの方法で、省略可能です。

デプロイメント設定を一時停止します。これにより、すべてのトリガー機能が無効になり、実際に
ロールアウトされる前に Pod テンプレートに複数の変更を加えることができます。

改訂履歴の制限。ロールバック用に保持する、以前のレプリケーションコントローラー数の上限で
す。これは省略可能です。省略した場合には、以前のレプリケーションコントローラーは消去され

kind: "DeploymentConfig"
apiVersion: "v1"
metadata:
 name: "frontend"
spec:
 template: 1
 metadata:
 labels:
 name: "frontend"
 spec:
 containers:
 - name: "helloworld"
 image: "openshift/origin-ruby-sample"
 ports:
 - containerPort: 8080
 protocol: "TCP"
 replicas: 5 2
 triggers:
 - type: "ConfigChange" 3
 - type: "ImageChange" 4
 imageChangeParams:
 automatic: true
 containerNames:
 - "helloworld"
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 strategy: 5
 type: "Rolling"
 paused: false 6
 revisionHistoryLimit: 2 7
 minReadySeconds: 0 8

第9章 デプロイメント

145

8

す。これは省略可能です。省略した場合には、以前のレプリケーションコントローラーは消去され
ません。

(Readiness チェックにパスした後) Pod が利用可能とみなされるまでに待機する最低期間 (秒)。デ
フォルト値は 0 です。

9.2. 基本のデプロイメント操作

9.2.1. デプロイメントの開始

Web コンソールまたは CLI を使用して手動で新規デプロイメントプロセスを開始できます。

$ oc rollout latest dc/<name>

注記

デプロイメントプロセスが進行中の場合には、このコマンドを実行すると、メッセージ
が表示され、新規レプリケーションコントローラーがデプロイされません。

9.2.2. デプロイメントの表示

アプリケーションで利用可能な全リビジョンの基本情報を取得します。

$ oc rollout history dc/<name>

このコマンドでは、現在実行中のデプロイメントプロセスなど、指定したデプロイメント設定用に、最
近作成されたすべてのレプリケーションコントローラーの詳細を表示します。

--revision フラグを使用すると、リビジョン固有の詳細情報が表示されます。

$ oc rollout history dc/<name> --revision=1

デプロイメント設定および最新のリビジョンに関する詳細情報は、以下を実行してください。

$ oc describe dc <name>

注記

Web コンソール では、Browse タブにデプロイメントが表示されます。

9.2.3. デプロイメントのロールバック

ロールバックすると、アプリケーションを以前のリビジョンに戻します。この操作は、REST API、CLI
または Web コンソールで実行できます。

最後にデプロイして成功した設定のリビジョンにロールバックするには、以下を実行します。

$ oc rollout undo dc/<name>

デプロイメント設定のテンプレートは、undo コマンドで指定してデプロイメントのリビジョンと一致

OpenShift Container Platform 3.9 開発者ガイド

146

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#project-overviews

デプロイメント設定のテンプレートは、undo コマンドで指定してデプロイメントのリビジョンと一致
するように元に戻され、新しいレプリケーションコントローラーが起動します。--to-revision でリビ
ジョンが指定されていない場合には、最後に成功したデプロイメントのバージョンが使用されます。

ロールバックの完了直後に新規デプロイメントプロセスが誤って開始されないように、ロールバックの
一部として、デプロイメント設定のイメージ変更トリガーは無効になります。イメージ変更トリガーを
再度有効にするには、以下を実行します。

$ oc set triggers dc/<name> --auto

注記

最新のデプロイメントプロセスに失敗した場合に、デプロイメント設定は、最後に成功
したリビジョンの設定に自動的にロールバックする機能をサポートします。この場合
に、デプロイに失敗した最新のテンプレートはシステムで修正されないので、設定の修
正はユーザーが行う必要があります。

9.2.4. コンテナー内でのコマンドの実行

コンテナーにコマンドを追加して、イメージの ENTRYPOINT を却下して、コンテナーの起動動作を変
更することができます。これは、指定したタイミングでデプロイメントごとに 1 回実行できるライフサ
イクルフックとは異なります。

command パラメーターを、デプロイメントの spec フィールドを追加します。command コマンドを
変更する args フィールドも追加できます (または command が存在しない場合に
は、ENTRYPOINT)。

...
spec:
 containers:
 -
 name: <container_name>
 image: 'image'
 command:
 - '<command>'
 args:
 - '<argument_1>'
 - '<argument_2>'
 - '<argument_3>'
...

たとえば、-jar および /opt/app-root/springboots2idemo.jar 引数を指定して、java コマンドを実行
するには、以下を実行します。

...
spec:
 containers:
 -
 name: example-spring-boot
 image: 'image'
 command:
 - java
 args:

第9章 デプロイメント

147

 - '-jar'
 - /opt/app-root/springboots2idemo.jar
...

9.2.5. デプロイメントログの表示

指定のデプロイメント設定に関する最新リビジョンのログをストリームします。

$ oc logs -f dc/<name>

最新のリビジョンが実行中または失敗した場合には、oc logs は、Pod のデプロイを行うプロセスのロ
グが返されます。成功した場合には、oc logs は、アプリケーションの Pod からのログを返します。

以前に失敗したデプロイメントプロセスからのログを表示することも可能です。 ただし、これらのプロ
セス (以前のレプリケーションコントローラーおよびデプロイヤーの Pod) が存在し、手動でプルーニ
ングまたは削除されていない場合に限ります。

$ oc logs --version=1 dc/<name>

ログの取得に関する他のオプションについては、以下を参照してください。

$ oc logs --help

9.2.6. デプロイメントトリガーの設定

デプロイメント設定には、クラスター内のイベントに対応する新規デプロイメントプロセスの作成を駆
動するトリガーを含めることができます。

警告

トリガーがデプロイメント設定に定義されていない場合は、ConfigChange トリ
ガーがデフォルトで追加されます。トリガーが空のフィールドとして定義されてい
る場合には、デプロイメントは手動で起動する必要があります。

9.2.6.1. 設定変更トリガー

ConfigChange トリガーにより、デプロイメント設定の Pod テンプレートに変更があると検出される
たびに、新規のレプリケーションコントローラーが作成されます。

注記

ConfigChange トリガーがデプロイメント設定に定義されている場合は、デプロイメン
ト設定自体が作成された直後に、最初のレプリケーションコントローラーは自動的に作
成され、一時停止されません。

例9.1 ConfigChange Trigger



OpenShift Container Platform 3.9 開発者ガイド

148

1

9.2.6.2. ImageChange Trigger

ImageChange トリガーにより、イメージストリームタグの内容が変更されるたびに、（イメージ の新
規バージョンがプッシュされるタイミングで）新規レプリケーションコントローラーが作成されます。

例9.2 ImageChange トリガー

imageChangeParams.automatic フィールドが false に設定されると、トリガーが無効になり
ます。

上記の例では、origin-ruby-sample イメージストリームの latest タグの値が変更され、新しいイメー
ジの値がデプロイメント設定の helloworld コンテナーに指定されている現在のイメージと異なる場合
に、helloworld コンテナーの新規イメージを使用して、新しいレプリケーションコントローラーが作成
されます。

注記

ImageChange トリガーがデプロイメント設定 (ConfigChange トリガーと
automatic=false、または automatic=true) で定義されていて、ImageChange トリガー
で参照されている ImageStreamTag がまだ存在していない場合には、ビルドにより、イ
メージが、ImageStreamTag にインポートまたはプッシュされた直後に初回のデプロイ
メントプロセスが自動的に開始されます。

9.2.6.2.1. コマンドラインの使用するには、以下を行います。

oc set triggers コマンドは、デプロイメント設定のデプロイメントトリガーを設定するために使用でき
ます。上記の例では、次のコマンドを使用して ImageChangeTrigger を設定できます。

$ oc set triggers dc/frontend --from-image=myproject/origin-ruby-sample:latest -c helloworld

詳細は以下を参照してください。

$ oc set triggers --help

9.2.7. デプロイメントリソースの設定

triggers:
 - type: "ConfigChange"

triggers:
 - type: "ImageChange"
 imageChangeParams:
 automatic: true 1
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 namespace: "myproject"
 containerNames:
 - "helloworld"

第9章 デプロイメント

149

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-stream-tag

1

2

1

デプロイメントは、ノードでリソース (メモリーおよび CPU) を消費する Pod を使用して完了します。
デフォルトで、Pod はバインドされていないノードのリソースを消費します。ただし、プロジェクトに
デフォルトのコンテナー制限が指定されている場合には、Pod はその上限までリソースを消費します。

デプロイメントストラテジーの一部としてリソース制限を指定して、リソースの使用を制限することも
可能です。デプロイメントリソースは、Recreate (再作成)、Rolling (ローリング) または Custom (カス
タム) のデプロイメントストラテジーで使用できます。

以下の例では、recources、cpu、および memory はそれぞれ任意です。

cpu は CPU のユニットで、100m は 0.1 CPU ユニット (100 * 1e-3) を表します。

memory はバイト単位です。256Mi は 268435456 バイトを表します (256 * 2 ^ 20)。

ただし、クォータがプロジェクトに定義されている場合には、以下の 2 つの項目のいずれかが必要で
す。

明示的な requests で設定した resources セクション:

requests オブジェクトは、クォータ内のリソース一覧に対応するリソース一覧を含みま
す。

コンピュートリソースや、要求と制限の相違点についての詳しい情報は、「クォータと制限の範囲」を
参照してください。

プロジェクトで定義される 制限の範囲。LimitRange オブジェクトのデフォルト値がデプロイ
メントプロセス時に作成される Pod に適用されます。

適用されない場合は、クォータ基準を満たさないために失敗したというメッセージが出され、デプロイ
メントの Pod 作成は失敗します。

9.2.8. 手動のスケーリング

ロールバック以外に、Web コンソールまたは oc scale コマンドを使用して、レプリカの数を細かく管
理できます。たとえば、以下のコマンドは、デプロイメント設定の frontend を 3 に設定します。

$ oc scale dc frontend --replicas=3

レプリカの数は最終的に、デプロイメント設定の frontend で設定した希望のデプロイメントの状態と
現在のデプロイメントの状態に伝搬されます。

注記

type: "Recreate"
resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2

 type: "Recreate"
 resources:
 requests: 1
 cpu: "100m"
 memory: "256Mi"

OpenShift Container Platform 3.9 開発者ガイド

150

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#admin-guide-limits

注記

Pod は oc autoscale コマンドを使用して自動スケーリングすることも可能です。詳細は
「Pod の自動スケーリング」を参照してください。

9.2.9. 特定のノードへの Pod の割り当て

ラベル付きのノードと合わせてノードセレクターを使用し、Pod の割り当てを制御することができま
す。

注記

OpenShift Container Platform 管理者は通常 インストール(Advanced installation)時にラ
ベル を割り当てるか、または インストール後にノードに追加 できます。

クラスター管理者 は、プロジェクトに対して デフォルトのノードセレクターを設定 して 特定のノード
に Pod の配置を制限できます。OpenShift Container Platform の開発者は、Pod 設定にノードセレク
ターを設定して、ノードをさらに制限することができます。

Pod の作成時にセレクターを追加するには、Pod 設定を編集し、nodeSelector の値を追加します。こ
れは、単一の Pod 設定や、Pod テンプレートに追加できます。

apiVersion: v1
kind: Pod
spec:
 nodeSelector:
 disktype: ssd
...

ノードセレクターが有効な場合に作成される Pod は指定されたラベルを持つノードに割り当てられま
す。

ここで指定したラベルは、クラスター管理者が追加したラベルと併用さ れます。

たとえば、プロジェクトに type=user-node と region=east のラベルがクラスター管理者により追加さ
れ、上記の disktype: ssd ラベルを Pod に追加した場合に、Pod は 3 つのラベルすべてが含まれる
ノードにのみスケジュールされます。

注記

ラベルには値を 1 つしか設定できないので、region=east が管理者によりデフォルト設定
されている Pod 設定に region=west のノードセレクターを設定すると、Pod が全くス
ケジュールされなくなります。

9.2.10. 異なるサービスアカウントでの Pod の実行

デフォルト以外のサービスアカウントで Pod を実行できます。

1. デプロイメント設定を編集します。

$ oc edit dc/<deployment_config>

2. serviceAccount と serviceAccountName パラメーターを spec フィールドに追加し、使用す
るサービスアカウントを指定します。

第9章 デプロイメント

151

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-node-host-labels
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#updating-labels-on-nodes
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#using-node-selectors
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#using-node-selectors

spec:
 securityContext: {}
 serviceAccount: <service_account>
 serviceAccountName: <service_account>

9.2.11. Web コンソールを使用してデプロイメント設定にシークレットを追加する手順

プライベートリポジトリーにアクセスできるように、デプロイメント設定にシークレットを追加しま
す。

1. 新規の OpenShift Container Platform プロジェクトを作成します。

2. プライベートのイメージリポジトリーにアクセスするための認証情報が含まれるシークレット
を作成します。

3. デプロイメント設定を作成します。

4. デプロイメント設定のエディターページまたは、Web コンソール の fromimage ページ
で、Pull Secret を設定します。

5. Save ボタンをクリックします。

9.3. デプロイメントストラテジー

9.3.1. デプロイメントストラテジーの概要

デプロイメントストラテジーは、アプリケーションを変更またはアップグレードする 1 つの方法です。
この目的は、ユーザーには改善が加えられていることが分からないように、ダウンタイムなしに変更を
加えることにあります。

最も一般的なストラテジーとして blue-green デプロイメント を使用します。新規バージョン (blue
バージョン) を、テストと評価用に起動しつつ、安定版 (green バージョン) をユーザーが継続して使用
します。準備が整ったら、blue バージョンに切り替えられます。問題が発生した場合には、green バー
ジョンに戻すことができます。

一般的な別のストラテジーとして、A/B バージョンがいずれも、同時にアクティブな状態で、A バー
ジョンを使用するユーザーも、B バージョンを使用するユーザーもいるという方法があります。これ
は、ユーザーインターフェースや他の機能の変更をテストして、ユーザーのフィードバックを取得する
ために使用できます。また、ユーザーに対する問題の影響が限られている場合に、実稼働のコンテキス
トで操作が正しく行われていることを検証するのに使用することもできます。

カナリアデプロイメントでは、新規バージョンをテストしますが、問題が検出されると、すぐに以前の
バージョンにフォールバックされます。これは、上記のストラテジーどちらでも実行できます。

ルートベースのデプロイメントストラテジーでは、サービス内の Pod 数はスケーリングされません。
希望するパフォーマンスの特徴を維持するには、デプロイメント設定をスケーリングする必要がありま
す。

デプロイメントストラテジーを選択する場合に、考慮するべき事項があります。

長期間実行される接続は正しく処理される必要があります。

データベースの変換は複雑になる可能性があり、アプリケーションと共に変換し、ロールバッ
クする必要があります。

アプリケーションがマイクロサービスと従来のコンポーネントを使用するハイブリッドの場合

OpenShift Container Platform 3.9 開発者ガイド

152

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-infrastructure-components-web-console

アプリケーションがマイクロサービスと従来のコンポーネントを使用するハイブリッドの場合
には、移行の完了時にダウンタイムが必要になる場合があります。

これを実行するためのインフラストラクチャーが必要です。

テスト環境が分離されていない場合は、新規バージョンと以前のバージョン両方が破損してし
まう可能性があります。

通常、エンドユーザーはルーターが取り扱うルート経由でアプリケーションにアクセスするので、デプ
ロイメントストラテジーは、デプロイメント設定機能またはルーティング機能にフォーカスできます。

デプロイメント設定にフォーカスするストラテジーは、アプリケーションを使用するすべてのルートに
影響を与えます。ルーター機能を使用するストラテジーは個別のルートにターゲットを設定します。

デプロイメントストラテジーの多くは、デプロイメント設定でサポートされ、追加のストラテジーは
ルーター機能でサポートされます。このセクションでは、デプロイメント設定をベースにするストラテ
ジーについて説明します。

ローリングストラテジー およびカナリアデプロイメント

再作成ストラテジー

カスタムストラテジー

ルートを使用した Blue-Green デプロイメント

ルートを使用した A/B デプロイメント およびカナリアデプロイメント

1 サービス、複数のデプロイメント設定

ローリングストラテジー は、ストラテジーがデプロイメント設定に指定されていない場合にデフォルト
で使用するストラテジーです。

デプロイメントストラテジーは、readiness チェックを使用して、新しい Pod の使用準備ができている
かを判断します。Readiness チェックに失敗すると、デプロイメント設定は、タイムアウトするまで
Pod の実行を再試行します。デフォルトのタイムアウトは、10m で、値は dc.spec.strategy.*params
の TimeoutSeconds で設定します。

9.3.2. ローリングストラテジー

ローリングデプロイメントは、以前のバージョンのアプリケーションインスタンスを、新しいバージョ
ンのアプリケーションインスタンスに徐々に置き換えます。ローリングデプロイメントは通常、新規
Pod が readiness チェック によって ready になるのを待機してから、古いコンポーネントをスケール
ダウンします。大きな問題が発生した場合には、ローリングデプロイメントは中断される可能性があり
ます。

9.3.2.1. カナリアデプロイメント

OpenShift Container Platform におけるすべてのローリングデプロイメントは カナリアデプロイメント
です。新規バージョン (カナリア) はすべての古いインスタンスが置き換えられる前にテストされます。
Readiness チェックに成功しない場合には、カナリアリリースのインスタンスが削除され、デプロイメ
ント設定は自動的にロールバックされます。Readiness チェックはアプリケーションコードの一部で、
新規インスタンスの使用準備が確実に整うように、必要に応じて改善されます。より複雑なアプリケー
ションチェックを実装する必要がある場合には (新規インスタンスに実際のユーザーワークロードを送
信するなど)、カスタムデプロイメントの実装や、blue-green デプロイメントストラテジーの使用を検
討してください。

第9章 デプロイメント

153

1

2

3

4

5

6

9.3.2.2. ローリングデプロイメントの使用のタイミング

ダウンタイムを発生させずに、アプリケーションの更新を行う場合

以前のコードと新しいコードの同時実行がアプリケーションでサポートされている場合

ローリングデプロイメントとは、以前のバージョンと新しいバージョンのコードを同時に実行するとい
う意味です。これは通常、アプリケーションで N-1 互換性に対応する必要があります。

以下は、ローリングストラテジーの例です。

各 Pod が次に更新されるまで待機する時間。指定されていない場合、デフォルト値は 1 となりま
す。

更新してからデプロイメントステータスをポーリングするまでの間待機する時間。指定されていな
い場合、デフォルト値は 1 となります。

イベントのスケーリングを中断するまでの待機時間。この値はオプションです。デフォルトは 600
です。ここでの 中断 とは、自動的に以前の完全なデプロイメントにロールバックされるという意
味です。

maxSurge はオプションで、指定されていない場合には、デフォルト値は 25% となります。以下
の手順の次にある情報を参照してください。

maxUnavailable はオプションで、指定されていない場合には、デフォルト値は 25% となりま
す。以下の手順の次にある情報を参照してください。

pre および post はどちらもライフサイクルフックです。

ローリングストラテジーは以下を行います。

1. pre ライフサイクルフックを実行します。

2. サージ数に基づいて新しいレプリケーションコントローラーをスケールアップします。

3. 最大利用不可数に基づいて以前のレプリケーションコントローラーをスケールダウンします。

4. 新しいレプリケーションコントローラーが希望のレプリカ数に到達して、以前のレプリケー
ションコントローラーの数がゼロになるまで、このスケーリングを繰り返します。

5. post ライフサイクルフックを実行します。

重要

strategy:
 type: Rolling
 rollingParams:
 updatePeriodSeconds: 1 1
 intervalSeconds: 1 2
 timeoutSeconds: 120 3
 maxSurge: "20%" 4
 maxUnavailable: "10%" 5
 pre: {} 6
 post: {}

OpenShift Container Platform 3.9 開発者ガイド

154

重要

スケールダウン時には、ローリングストラテジーは Pod の準備ができるまで待機し、ス
ケーリングを行うことで可用性に影響が出るかどうかを判断します。Pod をスケール
アップしたにもかかわらず、準備が整わない場合には、デプロイメントプロセスは最終
的にタイムアウトして、デプロイメントに失敗します。

maxUnavailable パラメーターは、更新時に利用できない Pod の最大数です。maxSurge パラメーター
は、元の Pod 数を超えてスケジュールできる Pod の最大数です。どちらのパラメーターも、パーセン
ト (例: 10%) または絶対値 (例: 2) のいずれかに設定できます。両方のデフォルト値は 25％ です。

以下のパラメーターを使用して、デプロイメントの可用性やスピードを調整できます。以下は例になり
ます。

maxUnavailable=0 および maxSurge=20% が指定されていると、更新時および急速なスケー
ルアップ時に完全なキャパシティーが維持されるようになります。

maxUnavailable=10% および maxSurge=0 が指定されていると、追加のキャパシティーを使
用せずに更新を実行します (インプレース更新)。

maxUnavailable=10% および maxSurge=10% の場合は、キャパシティーが失われる可能性が
ありますが、迅速にスケールアップおよびスケールダウンします。

一般的に、迅速にロールアウトする場合は maxSurge を使用します。リソースのクォータを考慮し
て、一部に利用不可の状態が発生してもかまわない場合には、maxUnavailable を使用します。

9.3.2.3. ローリングの例

OpenShift Container Platform では、ローリングデプロイメントはデフォルト設定です。ローリング
アップデートを行うには、以下の手順に従います。

1. DockerHub にあるデプロイメントイメージの例を基にアプリケーションを作成します。

$ oc new-app openshift/deployment-example

ルーターをインストールしている場合は、ルートを使用してアプリケーションを利用できるよ
うにしてください (または、サービス IP を直接使用してください)。

$ oc expose svc/deployment-example

deployment-example.<project>.<router_domain> でアプリケーションを参照し、v1 イメージ
が表示されることを確認します。

2. レプリカが最大 3 つになるまで、デプロイメント設定をスケーリングします。

$ oc scale dc/deployment-example --replicas=3

3. 新しいバージョンの例を latest とタグ付けして、新規デプロイメントを自動的にトリガーしま
す。

$ oc tag deployment-example:v2 deployment-example:latest

4. ブラウザーで、v2 イメージが表示されるまでページを更新します。

5. CLI を使用している場合は、以下のコマンドで、バージョン 1 に Pod がいくつあるか、バー

第9章 デプロイメント

155

https://hub.docker.com/r/openshift/deployment-example/

1

2

5. CLI を使用している場合は、以下のコマンドで、バージョン 1 に Pod がいくつあるか、バー
ジョン 2 にはいくつあるかを表示します。Web コンソールでは、徐々に v2 に追加される
Pod、v1 から削除される Pod が確認できるはずです。

$ oc describe dc deployment-example

デプロイメントプロセスで、新しいレプリケーションコントローラーが漸増的にスケールアップしま
す。新しい Pod が (readiness チェックをパスして) ready とマークされたら、デプロイメントプロセス
が継続されます。Pod の準備が整わない場合には、プロセスが中断され、デプロイメント設定が以前の
バージョンにロールバックされます。

9.3.3. 再作成ストラテジー

再作成ストラテジーは、基本的なロールアウト動作で、デプロイメントプロセスにコードを挿入するた
めのライフサイクルフックをサポートします。

以下は、再作成ストラテジーの例です。

recreateParams はオプションです。

pre、mid、および post はライフサイクルフックです。

再作成ストラテジーは以下を行います。

1. pre ライフサイクルフックを実行します。

2. 以前のデプロイメントをゼロにスケールダウンします。

3. mid ライフサイクルフックを実行します。

4. 新規デプロイメントをスケールアップします。

5. post ライフサイクルフックを実行します。

重要

スケールアップ中に、デプロイメントのレプリカ数が複数ある場合は、デプロイメント
の最初のレプリカが準備できているかどうかが検証されてから、デプロイメントが完全
にスケールアップされます。最初のレプリカの検証に失敗した場合には、デプロイメン
トは失敗とみなされます。

9.3.3.1. 再作成デプロイメントの使用のタイミング

新規コードを起動する前に、移行または他のデータの変換を行う必要がある場合

以前のバージョンと新しいバージョンのアプリケーションコードの同時使用をサポートしてい
ない場合

strategy:
 type: Recreate
 recreateParams: 1
 pre: {} 2
 mid: {}
 post: {}

OpenShift Container Platform 3.9 開発者ガイド

156

複数のレプリカ間での共有がサポートされていない、RWO ボリュームを使用する場合

再作成デプロイメントでは、短い期間にアプリケーションのインスタンスが実行されなくなるので、ダ
ウンタイムが発生します。ただし、以前のコードと新しいコードは同時には実行されません。

9.3.4. カスタムストラテジー

カスタムストラテジーでは、独自のデプロイメントの動作を提供できるようになります。

以下は、カスタムストラテジーの例です。

上記の例では、organization/strategy コンテナーイメージにより、デプロイメントの動作が提供され
ます。オプションの command 配列は、イメージの Dockerfile で指定した CMD ディレクティブを上
書きします。指定したオプションの環境変数は、ストラテジープロセスの実行環境に追加されます。

さらに、OpenShift Container Platform は以下の環境変数もデプロイメントプロセスに提供します。

環境変数 説明

OPENSHIFT_DEPLOYMENT_
NAME

新規デプロイメント名 (レプリケーションコントローラー)

OPENSHIFT_DEPLOYMENT_
NAMESPACE

新規デプロイメントの namespace

新規デプロイメントのレプリカ数は最初はゼロです。ストラテジーの目的は、ユーザーのニーズに最適
な仕方で対応するロジックを使用して新規デプロイメントをアクティブにすることにあります。

詳細は、高度なデプロイメントストラテジーを参照してください。

または customParams を使用して、カスタムのデプロイメントロジックを、既存のデプロイメントス
トラテジーに挿入します。カスタムのシェルロジックを指定して、openshift-deploy バイナリーを呼び
出します。カスタムのデプロイヤーコンテナーイメージを用意する必要はありません。 ここでは、代わ
りにデフォルトの OpenShift Container Platform デプロイヤーイメージが使用されます。

strategy:
 type: Custom
 customParams:
 image: organization/strategy
 command: ["command", "arg1"]
 environment:
 - name: ENV_1
 value: VALUE_1

strategy:
 type: Rolling
 customParams:
 command:
 - /bin/sh
 - -c
 - |
 set -e
 openshift-deploy --until=50%

第9章 デプロイメント

157

1

このストラテジーの設定では、以下のようなデプロイメントになります。

Started deployment #2
--> Scaling up custom-deployment-2 from 0 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-2 up to 1
--> Reached 50% (currently 50%)
Halfway there
--> Scaling up custom-deployment-2 from 1 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-1 down to 1
 Scaling custom-deployment-2 up to 2
 Scaling custom-deployment-1 down to 0
--> Success
Complete

カスタムデプロイメントストラテジーのプロセスでは、OpenShift Container Platform API または
Kubernetes API へのアクセスが必要な場合には、ストラテジーを実行するコンテナーは、認証用のコン
テナーで利用可能なサービスアカウントのトークンを使用できます。

9.3.5. ライフサイクルフック

再作成 および ローリング ストラテジーは、ストラテジーで事前に定義したポイントでデプロイメント
プロセスに動作を挿入できるようにするライフサイクルフックをサポートします。

以下は pre ライフサイクルフックの例です。

execNewPod は Pod ベースのライフサイクルフック です。

フックにはすべて、フックに問題が発生した場合にストラテジーが取るべきアクションを定義する
failurePolicy が含まれます。

Abort フックに失敗すると、デプロイメントプロセスも失敗とみなされます。

Retry フックの実行は、成功するまで再試行されます。

Ignore フックの失敗は無視され、デプロイメントは続行されます。

フックには、フックの実行方法を記述するタイプ固有のフィールドがあります。現在、フックタイプと
してサポートされているのは Pod ベースのフック のみで、このフックは e execNewPod フィールドで
指定されます。

9.3.5.1. Pod ベースのライフサイクルフック

Pod ベースのライフサイクルフックは、デプロイメント設定のテンプレートをベースとする新しい Pod

 echo Halfway there
 openshift-deploy
 echo Complete

pre:
 failurePolicy: Abort
 execNewPod: {} 1

OpenShift Container Platform 3.9 開発者ガイド

158

1

2

3

4

Pod ベースのライフサイクルフックは、デプロイメント設定のテンプレートをベースとする新しい Pod
でフックコードを実行します。

以下のデプロイメント設定例は簡素化されており、この例では ローリングストラテジーを使用します。
簡潔にまとめられるように、トリガーおよびその他の詳細は省略しています。

helloworld の名前は spec.template.spec.containers[0].name を参照します。

この command は、openshift/origin-ruby-sample イメージで定義される ENTRYPOINT を上書
きします。

env は、フックコンテナーの環境変数です (任意)。

volumes は、フックコンテナーのボリューム参照です (任意)。

この例では、pre フックは、helloworld コンテナーからの openshift/origin-ruby-sample イメージを
使用して新規 Pod で実行されます。フック Pod には以下のプロパティーが設定されます。

フックコマンドは /usr/bin/command arg1 arg2 となります。

フックコンテナーには CUSTOM_VAR1=custom_value1 環境変数が含まれます。

フックの失敗ポリシーは Abort で、フックが失敗するとデプロイメントプロセスも失敗しま
す。

kind: DeploymentConfig
apiVersion: v1
metadata:
 name: frontend
spec:
 template:
 metadata:
 labels:
 name: frontend
 spec:
 containers:
 - name: helloworld
 image: openshift/origin-ruby-sample
 replicas: 5
 selector:
 name: frontend
 strategy:
 type: Rolling
 rollingParams:
 pre:
 failurePolicy: Abort
 execNewPod:
 containerName: helloworld 1
 command: ["/usr/bin/command", "arg1", "arg2"] 2
 env: 3
 - name: CUSTOM_VAR1
 value: custom_value1
 volumes:
 - data 4

第9章 デプロイメント

159

フック Pod は、設定 Pod から data ボリュームを継承します。

9.3.5.2. コマンドラインの使用するには、以下を行います。

oc set deployment-hook コマンドは、デプロイメント構成にデプロイメントフックを設定するのに使
用できます。上記の例では、以下のコマンドでプリデプロイメントフックを設定できます。

$ oc set deployment-hook dc/frontend --pre -c helloworld -e CUSTOM_VAR1=custom_value1 \
 -v data --failure-policy=abort -- /usr/bin/command arg1 arg2

9.4. 高度なデプロイメントストラテジー

9.4.1. 高度なデプロイメントストラテジー

デプロイメントストラテジーは、アプリケーションを進化させる手段として使用します。一部のストラ
テジーは デプロイメント設定 を使用して変更を加えます。これらの変更は、アプリケーションを解決
する全ルートのユーザーに表示されます。これらの変更は、アプリケーションを解決する全ルートの
ユーザーに表示されます。 ここで説明している他のストラテジーは、ルート機能を使用して固有のルー
トに影響を与えます。

9.4.2. Blue-Green デプロイメント

Blue-green デプロイメントでは、同時に 2 つのバージョンを実行し、実稼働版 (green バージョン) か
らより新しいバージョン (blue バージョン) にトラフィックを移動します。ルートでは、ローリングス
トラテジーまたは切り替えサービスを使用できます。

注記

多くのアプリケーションは永続データに依存するので、N-1 互換性 をサポートするアプ
リケーションが必要です。 つまり、データを共有して、データ層を 2 つ作成し、データ
ベース、ストアまたはディスク間のライブマイグレーションを実装します。

新規バージョンのテストに使用するデータについて考えてみてください。実稼働データ
の場合には、新規バージョンのバグにより、実稼働版を破損してしまう可能性がありま
す。

9.4.2.1. Blue-Green デプロイメントの使用

Blue-Green デプロイメントは 2 つのデプロイメント設定を使用します。いずれも実行され、実稼働の
デプロイメントはルートが指定するルートによって変わります。この際、各デプロイメント設定は異な
るサービスに公開されます。準備ができたら、実稼働ルートのサービスが新規サービスを参照するよう
に変更します。 新規 (blue) バージョンは有効になります。

必要に応じて以前のバージョンにサービスを切り替えて、以前の green バージョンにロールバックする
ことができます。

ルートと 2 つのサービスの使用
以下の例は、2 つのデプロイメント設定を行います。 1 つは、安定版 (green バージョン) で、もう 1 つ
は新規バージョン (blue バージョン) です。

ルートは、サービスを参照し、いつでも別のサービスを参照するように変更できます。開発者は、実稼
働トラフィックが新規サービスにルーティングされる前に、新規サービスに接続して、コードの新規
バージョンをテストできます。

ルートは、Web (HTTP および HTTPS) トラフィックを対象としているので、この手法は Web アプリ

OpenShift Container Platform 3.9 開発者ガイド

160

ルートは、Web (HTTP および HTTPS) トラフィックを対象としているので、この手法は Web アプリ
ケーションに最適です。

1. アプリケーションサンプルの 2 つのコピーを作成します。

$ oc new-app openshift/deployment-example:v1 --name=example-green
$ oc new-app openshift/deployment-example:v2 --name=example-blue

上記のコマンドにより、独立したアプリケーションコンポーネントが 2 つ作成されます。 1 つ
は、example-green サービスで v1 イメージを実行するコンポーネントと、もう 1 つは
example-blue サービスで v2 イメージを実行するコンポーネントです。

2. 以前のサービスを参照するルートを作成します。

$ oc expose svc/example-green --name=bluegreen-example

3. bluegreen-example.<project>.<router_domain> でアプリケーションを参照し、v1 イメージ
が表示されることを確認します。

注記

v3.0.1 より前のバージョンの OpenShift Container Platform では、このコマンド
は上記の場所ではなく、example-green.<project>.<router_domain > にルート
を生成します。

4. ルートを編集して、サービス名を example-blue に変更します。

$ oc patch route/bluegreen-example -p '{"spec":{"to":{"name":"example-blue"}}}'

5. ルートが変更されたことを確認するには、v2 イメージが表示されるまで、ブラウザーを更新し
ます。

9.4.3. A/B デプロイメント

A/B デプロイメントストラテジーでは、新しいバージョンのアプリケーションを実稼働環境での制限さ
れた方法で試すことができます。実稼働バージョンは、ユーザーの要求の大半に対応し、要求の一部が
新しいバージョンに移動されるように指定できます。各バージョンへの要求の部分を制御できるので、
テストが進むにつれ、新しいバージョンへの要求を増やし、最終的に以前のバージョンの使用を停止す
ることができます。各バージョン要求負荷を調整するにつれ、期待どおりのパフォーマンスを出せるよ
うに、各サービスの Pod 数もスケーリングする必要があります。

ソフトウェアのアップグレードに加え、この機能を使用してユーザーインターフェースのバージョンを
検証することができます。以前のバージョンを使用するユーザーと、新しいバージョンを使用するユー
ザーが出てくるので、異なるバージョンに対するユーザーの反応を評価して、設計上の意思決定を知ら
せることができます。

このデプロイメントの効果を発揮するには、以前のバージョンと新しいバージョンは同時に実行できる
ほど類似している必要があります。これは、バグ修正リリースや新機能が以前の機能と干渉しないよう
にする場合の一般的なポイントになります。これらのバージョンが正しく連携するには N-1 互換性 が必
要です。

OpenShift Container Platform は、Web コンソールとコマンドラインインターフェースで N-1 互換性を
サポートします。

第9章 デプロイメント

161

9.4.3.1. A/B テスト用の負荷分散

ユーザーは 複数のサービスでルート を設定します。各サービスは、アプリケーションの 1 つのバー
ジョンを処理します。

各サービスには weight が割り当てられ、各サービスへの要求の部分については service_weight を
sum_of_weights で除算します。エンドポイントの weights の合計がサービスの weight になるよう
に、サービスごとの weight がサービスのエンドポイントに分散されます。

ルートにはサービスを最大で 4 つ含めることができます。サービスの weight は、0 から 256 の間で指
定してください。weight が 0 の場合、新しい要求はサービスには送信されませんが、既存の接続はア
クティブのままになります。サービスの weight が 0 でない場合は、エンドポイントの最小 weight は
1 となります。これにより、エンドポイントが多数含まれるサービスは、最終的に weight は必要な値
よりも大きくなる可能性があります。このような場合は、負荷分散の weight を必要なレベルに下げる
ために Pod の数を減らします。詳細は、Alternate Backends and Weights セクションを参照してくださ
い。

Web コンソールでは、重みを設定したり、各サービス間の重みの分散を表示したりできます。

OpenShift Container Platform 3.9 開発者ガイド

162

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#alternateBackends
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#alternateBackends

A/B 環境を設定するには以下を行います。

1. 2 つのアプリケーションを作成して、異なる名前を指定します。それぞがデプロイメント設定
を作成します。これらのアプリケーションは同じアプリケーションのバージョンであり、通常 1
つは現在の実稼働バージョンで、もう 1 つは提案される新規バージョンとなります。

$ oc new-app openshift/deployment-example1 --name=ab-example-a
$ oc new-app openshift/deployment-example2 --name=ab-example-b

2. デプロイメント設定を公開してサービスを作成します。

$ oc expose dc/ab-example-a --name=ab-example-A
$ oc expose dc/ab-example-b --name=ab-example-B

この時点で、いずれのアプリケーションもデプロイ、実行され、サービスが追加されていま
す。

3. ルート経由でアプリケーションを外部から利用できるようにします。この時点でサービスを公
開できます。 現在の実稼働バージョンを公開してから、後でルートを編集して新規バージョン
を追加すると便利です。

$ oc expose svc/ab-example-A

ab-example.<project>.<router_domain> でアプリケーションを参照して、希望とするバー
ジョンが表示されていることを確認します。

4. ルートをデプロイする場合には、ルーターはサービスに指定 した weights に従ってトラフィッ
クを分散 します。この時点では、デフォルトの weight=1 と指定されたサービスが 1 つ存在す
るので、すべての要求がこのサービスに送られます。他のサービスを alternateBackends とし
て追加し、weights を調整すると、A/B 設定が機能するようになります。これは、oc set
route-backends コマンドを実行するか、ルートを編集して実行できます。

注記

ルートに変更を加えると、さまざまなサービスへのトラフィックの部分だけが変
更されます。デプロイメント設定をスケーリングして、必要な負荷を処理できる
ように Pod 数を調整する必要がある場合があります。

ルートを編集するには、以下を実行します。

$ oc edit route <route-name>
...
metadata:
 name: route-alternate-service
 annotations:
 haproxy.router.openshift.io/balance: roundrobin
spec:
 host: ab-example.my-project.my-domain
 to:
 kind: Service
 name: ab-example-A
 weight: 10
 alternateBackends:
 - kind: Service

第9章 デプロイメント

163

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#alternateBackends

 name: ab-example-B
 weight: 15
...

9.4.3.1.1. Web コンソールを使用した重みの管理

1. Route の詳細ページ (アプリケーション/ルート) に移動します。

2. Actions メニューから Edit を選択します。

3. Split traffic across multiple services にチェックを入れます。

4. Service Weights スライダーで、各サービスに送信するトラフィックの割合を設定します。

2 つ以上のサービスにトラフィックを分割する場合には、各サービスに 0 から 256 の整数を使
用して、相対的な重みを指定します。

OpenShift Container Platform 3.9 開発者ガイド

164

トラフィックの重みは、トラフィックを分割したアプリケーションの行を展開すると
Overview に表示されます。

9.4.3.1.2. CLI を使用した重みの管理

このコマンドは、ルートでサービスと対応する重みの 負荷分散 を管理します。

$ oc set route-backends ROUTENAME [--zero|--equal] [--adjust] SERVICE=WEIGHT[%] [...]
[options]

たとえば、以下のコマンドは ab-example-A に weight=198 を指定して主要なサービスとし、ab-
example-B に weight=2 を指定して 1 番目の代用サービスとして設定します。

$ oc set route-backends web ab-example-A=198 ab-example-B=2

つまり、99% のトラフィックはサービス ab-example-A に、1% はサービス ab-example-B に送信され
ます。

第9章 デプロイメント

165

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#alternateBackends

このコマンドでは、デプロイメント設定はスケーリングされません。要求の負荷を処理するのに十分な
Pod がある状態でこれを実行する必要があります。

フラグなしのコマンドでは、現在の設定が表示されます。

$ oc set route-backends web
NAME KIND TO WEIGHT
routes/web Service ab-example-A 198 (99%)
routes/web Service ab-example-B 2 (1%)

--adjust フラグを使用すると、個別のサービスの重みを、それ自体に対して、または主要なサービスに
対して相対的に変更できます。割合を指定すると、主要サービスまたは 1 番目の代用サービス (主要
サービスを設定している場合) に対して相対的にサービスを調整できます。他にバックエンドがある場
合には、重みは変更に比例した状態になります。

$ oc set route-backends web --adjust ab-example-A=200 ab-example-B=10
$ oc set route-backends web --adjust ab-example-B=5%
$ oc set route-backends web --adjust ab-example-B=+15%

--equal フラグでは、全サービスの weight が 100 になるように設定します。

$ oc set route-backends web --equal

--zero フラグは、全サービスの weight を 0 に設定します。すべての要求に対して 503 エラーが返さ
れます。

注記

ルートによっては、複数のバックエンドたは重みが設定されたバックエンドをサポート
しないものがあります。

9.4.3.1.3. 1 サービス、複数のデプロイメント設定

ルーターをインストールしている場合は、ルートを使用してアプリケーションを利用できるようにして
ください (または、サービス IP を直接使用してください)。

$ oc expose svc/ab-example

ab-example.<project>.<router_domain> でアプリケーションを参照し、v1 イメージが表示されること
を確認します。

1. 1 つ目のシャードと同じだが別のバージョンがタグ付けされたソースイメージを基に 2 つ目の
シャードを作成して、一意の値を設定します。

$ oc new-app openshift/deployment-example:v2 --name=ab-example-b --labels=ab-
example=true SUBTITLE="shard B" COLOR="red"

2. 新たに作成したシャードを編集して、全シャードに共通の ab-example=true ラベルを設定しま
す。

$ oc edit dc/ab-example-b

エディターで、spec.selector および spec.template.metadata.labels の下に、既存の

OpenShift Container Platform 3.9 開発者ガイド

166

エディターで、spec.selector および spec.template.metadata.labels の下に、既存の
deploymentconfig=ab-example-b ラベルと一緒に ab-example: "true" の行を追加します。保
存してからエディターを終了します。

3. 2 番目のシャードの再デプロイメントをトリガーして、新規ラベルを取得します。

$ oc rollout latest dc/ab-example-b

4. この時点で、いずれの Pod のセットもルートで提供されます。しかし、両ブラウザー (接続を
開放) とルーター (デフォルトでは cookie を使用) で、バックエンドサーバーへの接続を維持し
ようとするので、シャードが両方返されない可能性があります。1 つまたは他のシャードに対し
てブラウザーを強制的に実行するには、scale コマンドを使用します。

$ oc scale dc/ab-example-a --replicas=0

ブラウザーを更新すると、 v2 および shard B (赤字) が表示されているはずです。

$ oc scale dc/ab-example-a --replicas=1; oc scale dc/ab-example-b --replicas=0

ブラウザーを更新すると、v1 と shard A (青字) が表示されているはずです。

いずれかのシャードでデプロイメントをトリガーした場合には、そのシャード内の Pod のみが
影響を受けます。いずれかのデプロイメント設定で SUBTITLE 環境変数を変更して (oc edit
dc/ab-example-a または oc edit dc/ab-example-b)、デプロイメントを簡単にトリガーできま
す。ステップ 5-7 を繰り返すと、別のシャードを追加できます。

注記

これらの手順は、今後の OpenShift Container Platform バージョンでは簡素化さ
れる予定です。

9.4.4. プロキシーシャード/トラフィックスプリッター

実稼働環境で、特定のシャードに到達するトラフィックの分散を正確に制御できます。多くのインスタ
ンスを扱う場合は、各シャードに相対的なスケールを使用して、割合ベースのトラフィックを実装でき
ます。これは、他の場所で実行中の別のサービスやアプリケーションに転送または分割する プロキシー
シャード とも適切に統合されます。

最も単純な設定では、プロキシーは要求を変更せずに転送します。より複雑な設定では、受信要求を複
製して、別のクラスターだけでなく、アプリケーションのローカルインスタンスにも送信して、結果を
比較することができます。他のパターンとしては、DR のインストールのキャッシュを保持したり、分
析目的で受信トラフィックをサンプリングすることができます。

実装がこの例のスコープ外の場合でも、TCP (または UDP) のプロキシーは必要なシャードで実行でき
ます。oc scale コマンドを使用して、プロキシーシャードで要求に対応するインスタンスの相対数を変
更してください。より複雑なトラフィックを管理する場合には、OpenShift Container Platform ルー
ターを比例分散機能でカスタマイズすることを検討してください。

9.4.5. N-1 互換性

新規コードと以前のコードが同時に実行されるアプリケーションの場合は、新規コードで記述された
データが、以前のコードで読み込みや処理 (または正常に無視) できるように注意する必要があります。
これは、スキーマの進化 と呼ばれ、複雑な問題です。

これは、ディスクに保存したデータ、データベース、一時的なキャッシュ、ユーザーのブラウザーセッ

第9章 デプロイメント

167

ションの一部など、多数の形式を取ることができます。多くの Web アプリケーションはローリングデ
プロイメントをサポートできますが、アプリケーションをテストし、設計してこれに対応させることが
重要です。

アプリケーションによっては、新旧のコードが並行的に実行されている期間が短いため、バグやユー
ザーのトランザクションに失敗しても許容範囲である場合があります。別のアプリケーションでは失敗
したパターンが原因で、アプリケーション全体が機能しなくなる場合もあります。

N-1 互換性を検証する 1 つの方法として、A/B デプロイメントがあります。制御されたテスト環境で、
以前のコードと新しいコードを同時に実行して、新規デプロイメントに流れるトラフィックが以前のデ
プロイメントで問題を発生させないかを確認します。

9.4.6. 正常な終了

OpenShift Container Platform および Kubernetes は、負荷分散のローテーションから削除する前にア
プリケーションインスタンスがシャットダウンする時間を設定します。ただし、アプリケーションで
は、終了前にユーザー接続が正常に中断されていることを確認する必要があります。

シャットダウン時に、OpenShift Container Platform はコンテナーのプロセスに TERM シグナルを送信
します。SIGTERM を受信すると、アプリケーションコードは、新規接続の受け入れを停止する必要が
あります。こうすることで、ロードバランサーにより、他のアクティブなインスタンスにトラフィック
をルーティングされるようになります。アプリケーションコードは、開放されている接続がすべて終了
する (または、次の機会に個別接続が正常に終了される) まで待機してから終了します。

正常に終了する期間が終わると、終了されていないプロセスに KILL シグナルが送信され、プロセスが
即座に終了されます。Pod の terminationGracePeriodSeconds 属性または Pod テンプレートが正常
に終了する期間 (デフォルト 30 秒) を制御し、必要に応じてアプリケーションごとにカスタマイズする
ことができます。

9.5. KUBERNETES デプロイメントサポート

9.5.1. デプロイメントオブジェクトタイプ

Kubernetes には、OpenShift Container Platform では デプロイメント と呼ばれるファーストクラスの
オブジェクトタイプがあります。このオブジェクトタイプ (ここでは区別するために Kubernetes デプ
ロイメント と呼びます) は、デプロイメント設定オブジェクトタイプの派生タイプとして機能します。

デプロイメント設定と同様に、Kubernetes デプロイメントは Pod テンプレートとして、アプリケー
ションの特定のコンポーネントの必要とされる状態を記述します。Kubernetes デプロイメント は レプ
リカセット （ レプリケーションコントローラーの反復）を作成して、Pod ライフサイクルをオーケス
トレーションします。

たとえば、Kubernetes デプロイメントのこの定義は、レプリカセットを作成して hello-openshift Pod
を 1 つ起動します。

例: Kubernetes デプロイメント定義 hello-openshift-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-openshift
spec:
 replicas: 1
 selector:
 matchLabels:

OpenShift Container Platform 3.9 開発者ガイド

168

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#replication-controllers

 app: hello-openshift
 template:
 metadata:
 labels:
 app: hello-openshift
 spec:
 containers:
 - name: hello-openshift
 image: openshift/hello-openshift:latest
 ports:
 - containerPort: 80

ローカルファイルに定義を保存した後に、Kubernetes デプロイメントの作成にこのファイルを使用で
きます。

$ oc create -f hello-openshift-deployment.yaml

CLI を使用して、get や describe などの 一般的な操作で説明されているように、他のオブジェクトタ
イプなどの Kubernetes デプロイメントおよびレプリカセットを検証し、操作 できます。オブジェクト
タイプの場合、Kubernetes デプロイメントには deployments または deploy を、レプリカセットには
replicasets または rs を使用します。

デプロイメント および レプリカセット に関する詳細は、Kubernetes のドキュメントを参照してくださ
い。 CLI の使用方法の例で、oc を kubectl に置き換えてください。

9.5.2. Kubernetes デプロイメント 対 デプロイメント設定

デプロイメントが Kurbernetes 1.2 に追加される前にデプロイメント設定が OpenShift Container
Platform に存在していたために、Kurbenetes のオブジェクトタイプは OpenShift Container Platform
の設定とは若干異なっています。OpenShift Container Platform の長期的な目標は、Kubernetes デプロ
イメントと全く同等な機能を実現し、アプリケーションの詳細な管理を可能にする単一オブジェクトタ
イプとしてそれらのデプロイメントを使用する方法に切り替えることにあります。

新規オブジェクトタイプを使用するアップストリームのプロジェクトや例が OpenShift Container
Platform でスムーズに実行できるように、Kubernetes デプロイメントはサポートされます。
Kubernetes デプロイメントの現在の機能を考慮すると、特に以下のいずれかを使用する予定がない場
合には、OpenShift Container Platform デプロイメント設定の代わりに、Kubernetes デプロイメントを
使用すると良いでしょう。

イメージストリーム

ライフサイクルフック

カスタムデプロイメントストラテジー

以下のセクションでは、2 つのオブジェクトタイプの相違点に関してさらに扱います。 これは、デプロ
イメント設定ではなく、Kubernetes デプロイメントを使用する場合を判別するのに役立ちます。

9.5.2.1. デプロイメント設定固有の機能

9.5.2.1.1. 自動ロールバック

Kubernetes デプロイメントは、問題が発生した場合に、最後に正常にデプロイされたレプリカセット
に自動的にロールバックされません。この機能は近日追加される予定です。

第9章 デプロイメント

169

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#oc-common-operations
http://kubernetes.io/docs/user-guide/deployments/
http://kubernetes.io/docs/user-guide/replicasets/

9.5.2.1.2. トリガー

Kubernetes デプロイメントには、デプロイメントの Pod テンプレートに変更があるたびに、新しい
ロールアウトが自動的にトリガーされるので、暗黙的な ConfigChange トリガーが含まれています。
Pod テンプレートの変更時に新たなロールアウトが不要な場合には、デプロイメントを以下のように停
止します。

$ oc rollout pause deployments/<name>

現在、Kubernetes デプロイメントでは ImageChange トリガーはサポートされません。汎用的なトリ
ガーの仕組みがアップストリームでは提案されていますが、この提案が受け入れられるのか、また受け
入れられるタイミングは不明です。最終的には、OpenShift Container Platform 固有の仕組みが、
Kubernetes デプロイメントの階層の上に実装される可能性がありますが、Kubernetes コアの一部とし
て存在させる方が適しています。

9.5.2.1.3. ライフサイクルフック

Kubernetes デプロイメントではライフサイクルフックがサポートされません。

9.5.2.1.4. カスタムストラテジー

Kubernetes デプロイメントでは、ユーザーが指定するカスタムデプロイメントストラテジーはまだサ
ポートされていません。

9.5.2.1.5. カナリアデプロイメント

Kubernetes デプロイメントでは、新規ロールアウトの一部としてカナリアリリースは実行されませ
ん。

9.5.2.1.6. テストデプロイメント

Kubernetes デプロイメントでは、実行中のテストトラックはサポートされません。

9.5.2.2. Kubernetes デプロイメント固有の機能

9.5.2.2.1. ロールオーバー

Kubernetes デプロイメントのデプロイメントプロセスは、コントローラーループで駆動されますが、
デプロイメント設定は、新しいロールアウトごとにデプロイヤー Pod を使用します。つまり、
Kubernetes デプロイメントはできるだけアクティブなレプリカセットを指定することができ、最終的
にデプロイメントコントローラーが以前のレプリカセットをスケールダウンし、最新のものをスケール
アップします。

デプロイメント設定で、実行できるデプロイヤー Pod は最大 1 つとなっています。デプロイヤーが 2 つ
ある場合は、他のデプロイヤーと競合して、それぞれが最新のレプリケーションコントローラーである
と考えるコントローラーをスケールアップしようとします。これにより、一度にアクティブにできるの
は、レプリケーションコントローラー 2 つだけで、最終的に、Kubernetes デプロイヤーのロールアウ
トが加速します。

9.5.2.2.2. 比例スケーリング

Kubernetes デプロイメントコントローラーのみがデプロイメントが所有する新旧レプリカセットのサ
イズについての信頼できる情報源であるため、継続中のロールアウトのスケーリングできます。追加の
レプリカはレプリカセットのサイズに比例して分散されます。

OpenShift Container Platform 3.9 開発者ガイド

170

デプロイメント設定は、デプロイメント設定コントローラーが新規レプリケーションコントローラーの
サイズに関してデプロイヤープロセスと競合するためにロールアウトが続行されている場合はスケーリ
ングできません。

9.5.2.2.3. ロールアウト中の一時停止

Kubernetes デプロイメントはいつでも一時停止できます。つまり、継続中のロールアウトも一時停止
できます。 反対に、デプロイヤー Pod は現時点で一時停止できないので、ロールアウト時にデプロイ
メント設定を一時停止しようとしても、デプロイヤープロセスはこの影響を受けず、完了するまで続行
されます。

第9章 デプロイメント

171

第10章 TEMPLATES (テンプレート)

10.1. 概要

テンプレートでは、パラメーター化や処理が可能な一連の オブジェクト を記述し、OpenShift
Container Platform で作成するためのオブジェクトの一覧を生成します。テンプレートは、サービ
ス、ビルド設定および デプロイメント設定 など、プロジェクト内で作成パーミッションがあるすべて
のものを作成するために処理できます。また、テンプレートでは ラベル のセットを定義して、これを
テンプレート内に定義されたすべてのオブジェクトに適用できます。

オブジェクトの一覧は CLI を使用してテンプレートから作成することも、プロジェクトまたはグローバ
ルテンプレートライブラリーにテンプレートがアップロードされている場合、Web コンソールを使用す
ることもできます。キュレートされたテンプレートの場合は、OpenShift イメージストリームおよびテ
ンプレートライブラリー を参照してください。

10.2. テンプレートのアップロード

テンプレートを定義する JSON または YAML ファイルがある場合は、この例にあるように、CLI を使
用してプロジェクトにテンプレートをアップロードできます。こうすることで、プロジェクトにテンプ
レートが保存され、対象のプロジェクトに対して適切なアクセスを持つユーザーが繰り返し使用できま
す。独自のテンプレートの記述については、このトピックで後ほど説明します。

現在のプロジェクトのテンプレートライブラリーにテンプレートをアップロードするには、JSON また
は YAML ファイルを以下のコマンドで渡します。

$ oc create -f <filename>

-n オプションを使用してプロジェクト名を指定することで、別のプロジェクトにテンプレートをアップ
ロードできます。

$ oc create -f <filename> -n <project>

テンプレートは、Web コンソールまたは CLI を使用して選択できるようになりました。

10.3. WEB コンソールを使用してテンプレートから作成する手順

「Web コンソールを使用したアプリケーションの作成」を参照してください。

10.4. CLI を使用してテンプレートから作成する手順

CLI を使用して、テンプレートを処理し、オブジェクトを作成するために生成された設定を使用できま
す。

10.4.1. ラベル

ラベル は、Pod などの生成されたオブジェクトを管理し、整理するために使用されます。テンプレー
トで指定されるラベルは、テンプレートから生成されるすべてのオブジェクトに適用されます。

コマンドラインからテンプレートにラベルを追加する機能もあります。

$ oc process -f <filename> -l name=otherLabel

OpenShift Container Platform 3.9 開発者ガイド

172

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#services
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#builds
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#labels
https://github.com/openshift/library
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#labels

10.4.2. パラメーター

上書きできるパラメーターの一覧は、テンプレートの parameters セクションに表示されます。以下の
コマンドで使用するファイルを指定して、CLI でパラメーター一覧を追加できます。

$ oc process --parameters -f <filename>

または、テンプレートがすでにアップロードされている場合には、以下を実行します。

$ oc process --parameters -n <project> <template_name>

たとえば、デフォルトの openshift プロジェクトにあるクイックスタートテンプレートのいずれかに対
してパラメーターを一覧表示する場合に、以下のような出力が表示されます。

$ oc process --parameters -n openshift rails-postgresql-example
NAME DESCRIPTION
GENERATOR VALUE
SOURCE_REPOSITORY_URL The URL of the repository with your application source code
https://github.com/sclorg/rails-ex.git
SOURCE_REPOSITORY_REF Set this to a branch name, tag or other ref of your repository if
you are not using the default branch
CONTEXT_DIR Set this to the relative path to your project if it is not in the root of your
repository
APPLICATION_DOMAIN The exposed hostname that will route to the Rails service
rails-postgresql-example.openshiftapps.com
GITHUB_WEBHOOK_SECRET A secret string used to configure the GitHub webhook
expression [a-zA-Z0-9]{40}
SECRET_KEY_BASE Your secret key for verifying the integrity of signed cookies
expression [a-z0-9]{127}
APPLICATION_USER The application user that is used within the sample application to
authorize access on pages openshift
APPLICATION_PASSWORD The application password that is used within the sample
application to authorize access on pages secret
DATABASE_SERVICE_NAME Database service name
postgresql
POSTGRESQL_USER database username
expression user[A-Z0-9]{3}
POSTGRESQL_PASSWORD database password
expression [a-zA-Z0-9]{8}
POSTGRESQL_DATABASE database name
root
POSTGRESQL_MAX_CONNECTIONS database max connections
10
POSTGRESQL_SHARED_BUFFERS database shared buffers
12MB

この出力から、テンプレートの処理時に正規表現のようなジェネレーターで生成された複数のパラメー
ターを特定できます。

10.4.3. オブジェクト一覧の生成

CLI を使用して、標準出力にオブジェクト一覧を返すテンプレートを定義するファイルを処理できま
す。

第10章 TEMPLATES (テンプレート)

173

$ oc process -f <filename>

または、テンプレートがすでに現在のプロジェクトにアップロードされている場合には以下を実行しま
す。

$ oc process <template_name>

テンプレートを処理し、oc create の出力をパイプして、テンプレートからオブジェクトを作成するこ
とができます。

$ oc process -f <filename> | oc create -f -

または、テンプレートがすでに現在のプロジェクトにアップロードされている場合には以下を実行しま
す。

$ oc process <template> | oc create -f -

上書きする <name>=<value> の各ペアに -p オプションを追加することで、ファイルに定義された
parameter の値を上書きできます。パラメーター参照は、テンプレートアイテム内のテキストフィール
ドに表示される場合があります。

たとえば、テンプレートの以下の POSTGRESQL_USER および POSTGRESQL_DATABASE パラ
メーターを上書きし、カスタマイズされた環境変数の設定を出力します。

例10.1 テンプレートからのオブジェクト一覧の作成

$ oc process -f my-rails-postgresql \
 -p POSTGRESQL_USER=bob \
 -p POSTGRESQL_DATABASE=mydatabase

JSON ファイルは、ファイルにリダイレクトすることも、oc create コマンドで処理済みの出力をパイ
プして、テンプレートをアップロードせずに直接適用することも可能です。

$ oc process -f my-rails-postgresql \
 -p POSTGRESQL_USER=bob \
 -p POSTGRESQL_DATABASE=mydatabase \
 | oc create -f -

多数のパラメーターがある場合は、それらをファイルに保存してからそのファイルを oc process に渡
すことができます。

$ cat postgres.env
POSTGRESQL_USER=bob
POSTGRESQL_DATABASE=mydatabase
$ oc process -f my-rails-postgresql --param-file=postgres.env

--param-file の引数として "-" を使用して、標準入力から環境を読み込むこともできます。

$ sed s/bob/alice/ postgres.env | oc process -f my-rails-postgresql --param-file=-

OpenShift Container Platform 3.9 開発者ガイド

174

10.5. アップロードしたテンプレートの変更

以下のコマンドを使用して、すでにプロジェクトにアップロードされているテンプレートを編集できま
す。

$ oc edit template <template>

10.6. インスタントアプリおよびクイックスタートテンプレートの使用

OpenShift Container Platform では、デフォルトで、インスタントアプリとクイックスタートテンプ
レートを複数提供しており、各種言語で簡単に新規アプリの構築を開始できます。Rails (Ruby)、
Django (Python)、Node.js、CakePHP (PHP) および Dancer (Perl) 用のテンプレートを利用できます。
クラスター管理者は、これらのテンプレートを利用できるようにデフォルトのグローバル openshift プ
ロジェクトにこれらのテンプレートを作成しているはずです。以下のように、利用可能なデフォルトの
インスタントアプリとクイックスタートテンプレートを一覧表示できます。

$ oc get templates -n openshift

見つからない場合には、クラスター管理者に「 Loading the Default Image Streams and Templates 」
のトピックを参照してもらうようにしてください。

デフォルトで、テンプレートビルドは必要なアプリケーションコードが含まれる GitHub の公開ソース
リポジトリーを使用して行われます。ソースを変更して、独自のバージョンのアプリケーションをビル
ドするには、以下を実行する必要があります。

1. テンプレートのデフォルト SOURCE_REPOSITORY_URL パラメーターが参照するリポジト
リーをフォークします。

2. テンプレートから作成する場合には、SOURCE_REPOSITORY_URL パラメーターの値を上書
きします。 デフォルト値ではなく、フォークを指定してください。

これにより、テンプレートで作成したビルド設定はアプリケーションコードのフォークを参照するよう
になり、コードを更新して、自由にアプリケーションをリビルドできます。

Web コンソールを使用してこのプロセスを行う場合は、「 Getting Started for Developers: Web
Console 」を参照してください。

注記

インスタンスアプリおよびクイックスタートアプリのテンプレートで、データベースの
デプロイメント設定 を定義します。テンプレートが定義する設定では、データベースコ
ンテツ用に一時ストレージを使用します。データベース Pod が何らかの理由で再起動さ
れると、データベースの全データが失われてしまうので、これらのテンプレートは、デ
モ目的でのみ使用する必要があります。

10.7. テンプレートの記述

アプリケーションの全オブジェクトを簡単に再作成するために、新規テンプレートを定義できます。テ
ンプレートでは、作成するオブジェクトと、これらのオブジェクトの作成をガイドするメタデータを定
義します。

例10.2 単純なテンプレートオブジェクト定義 (YAML)

第10章 TEMPLATES (テンプレート)

175

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-imagestreams-templates
https://github.com
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/getting_started/#getting-started-developers-console
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#deployments-and-deployment-configurations

10.7.1. 詳細

テンプレートの説明では、テンプレートの内容に関する情報を提供でき、Web コンソールでの検索時に
役立ちます。テンプレート名以外のメタデータは任意ですが、使用できると便利です。メタデータに
は、一般的な説明などの情報以外にタグのセットも含まれます。便利なタグにはテンプレートで使用す
る言語名などがあります (例: java、php、ruby)。

例10.3 テンプレート記述メタデータ

apiVersion: v1
kind: Template
metadata:
 name: redis-template
 annotations:
 description: "Description"
 iconClass: "icon-redis"
 tags: "database,nosql"
objects:
- apiVersion: v1
 kind: Pod
 metadata:
 name: redis-master
 spec:
 containers:
 - env:
 - name: REDIS_PASSWORD
 value: ${REDIS_PASSWORD}
 image: dockerfile/redis
 name: master
 ports:
 - containerPort: 6379
 protocol: TCP
parameters:
- description: Password used for Redis authentication
 from: '[A-Z0-9]{8}'
 generate: expression
 name: REDIS_PASSWORD
labels:
 redis: master

kind: Template
apiVersion: v1
metadata:
 name: cakephp-mysql-example 1
 annotations:
 openshift.io/display-name: "CakePHP MySQL Example (Ephemeral)" 2
 description: >-
 An example CakePHP application with a MySQL database. For more information
 about using this template, including OpenShift considerations, see
 https://github.com/sclorg/cakephp-ex/blob/master/README.md.

 WARNING: Any data stored will be lost upon pod destruction. Only use this

OpenShift Container Platform 3.9 開発者ガイド

176

1

2

3

4

5

6

7

8

9

10

テンプレートの一意の名前。

ユーザーインターフェースで利用できるように、ユーザーに分かりやすく、簡単な名前。

テンプレートの説明。デプロイされる内容、デプロイ前に知っておく必要のある注意点をユー
ザーができるように詳細を追加します。README など、追加情報へのリンクも追加できます。
パラグラフを作成するには、改行を追加できます。

追加の説明。たとえば、サービスカタログに表示されます。

検索およびグループ化を実行するためにテンプレートに関連付けられるタグ。指定のカタログ
カテゴリーの 1 つに含まれるように、タグを追加します。コンソールの定数ファイルの
CATALOG_CATEGORIES で id および categoryAliases を参照してください。カテゴリーは
クラスター全体に対して カスタマイズ することもできます。

Web コンソールでテンプレートと一緒に表示されるアイコン。可能な場合は、既存のロゴアイ
コンから選択します。また、FontAwesome および PatternFly からもアイコンを使用できま
す。または、テンプレートを使用する OpenShift Container Platform クラスターに CSS カスタ
マイズ を追加できるので、CSS カスタマイズ経由でアイコンを提供します。存在するアイコン
クラスを指定するようにしてください。 指定しないと、汎用アイコンにフォールバックできな
くなります。

テンプレートを提供する人または組織の名前

テンプレートに関する他のドキュメントを参照する URL

テンプレートに関するサポートを取得できる URL

テンプレートがインスタンス化された時に表示される説明メッセージ。このフィールドで、新
規作成されたリソースの使用方法をユーザーに通知します。生成された認証情報や他のパラ
メーターを出力に追加できるように、メッセージの表示前にパラメーターの置換が行われま
す。ユーザーが従うべき次の手順が記載されたドキュメントへのリンクを追加してください。

10.7.2. ラベル

テンプレートには ラベル のセットを追加できます。これらのラベルは、テンプレートがインスタンス
化される時に作成されるオブジェクトごとに追加します。このようにラベルを定義すると、特定のテン
プレートから作成された全オブジェクトの検索、管理が簡単になります。

 template for testing." 3
 openshift.io/long-description: >-
 This template defines resources needed to develop a CakePHP application,
 including a build configuration, application deployment configuration, and
 database deployment configuration. The database is stored in
 non-persistent storage, so this configuration should be used for
 experimental purposes only. 4
 tags: "quickstart,php,cakephp" 5
 iconClass: icon-php 6
 openshift.io/provider-display-name: "Red Hat, Inc." 7
 openshift.io/documentation-url: "https://github.com/sclorg/cakephp-ex" 8
 openshift.io/support-url: "https://access.redhat.com" 9
message: "Your admin credentials are ${ADMIN_USERNAME}:${ADMIN_PASSWORD}" 10

第10章 TEMPLATES (テンプレート)

177

https://github.com/openshift/origin-web-console/blob/master/app/scripts/constants.js
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-catalog-categories
https://rawgit.com/openshift/openshift-logos-icon/master/demo.html
http://fontawesome.io/icons/
https://www.patternfly.org/styles/icons/
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#loading-custom-scripts-and-stylesheets
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#labels

1

2

例10.4 テンプレートオブジェクトのラベル

このテンプレートから作成する全オブジェクトに適用されるラベル

パラメーター化されたラベル。このラベルは、このテンプレートを基に作成された全オブジェ
クトに適用されます。パラメーターは、ラベルキーおよび値の両方で拡張されます。

10.7.3. パラメーター

パラメーターにより、テンプレートがインスタンス化される時に値を生成するか、ユーザーが値を指定
できるようになります。パラメーターが参照されると、値が置換されます。参照は、オブジェクト一覧
フィールドであればどこでも定義できます。これは、無作為にパスワードを作成したり、テンプレート
のカスタマイズに必要なユーザー固有の値やホスト名を指定したりできるので便利です。パラメーター
は、2 種類の方法で参照可能です。

文字列の値として、テンプレートの文字列フィールドに ${PARAMETER_NAME} の形式で配置
する

json/yaml の値として、テンプレートのフィールドに ${{PARAMETER_NAME}} の形式で配置
する

${PARAMETER_NAME} 構文を使用すると、複数のパラメーター参照を 1 つのフィールドに統合で
き、"http://${PARAMETER_1}${PARAMETER_2}" などのように、参照を固定データ内に埋め込むこ
とができます。どちらのパラメーター値も置換されて、引用された文字列が最終的な値になります。

${{PARAMETER_NAME}} 構文のみを使用する場合は、単一のパラメーター参照のみが許可され、先頭
文字や終了文字は使用できません。結果の値は、置換後に結果が有効な json オブジェクトの場合は引用
されません。結果が有効な json 値でない場合に、結果の値は引用され、標準の文字列として処理されま
す。

単一のパラメーターは、テンプレート内で複数回参照でき、1 つのテンプレート内で両方の置換構文を
使用して参照することができます。

デフォルト値を指定でき、ユーザーが別の値を指定していない場合に使用されます。

例10.5 デフォルト値として明示的な値の設定

パラメーター値は、パラメーター定義に指定したルールを基に生成することも可能です。

kind: "Template"
apiVersion: "v1"
...
labels:
 template: "cakephp-mysql-example" 1
 app: "${NAME}" 2

parameters:
 - name: USERNAME
 description: "The user name for Joe"
 value: joe

OpenShift Container Platform 3.9 開発者ガイド

178

例10.6 パラメーター値の生成

上記の例では、処理後に、大文字、小文字、数字すべてを含む 12 文字長のパスワードが無作為に作成
されます。

利用可能な構文は、完全な正規表現構文ではありません。ただし、\w、\d、および \a 修飾子を使用で
きます。

[\w]{10} は、10 桁の英字、数字、およびアンダースコアを生成します。これは PCRE 標準に準
拠し、[a-zA-Z0-9_]{10} に相当します。

[\d]{10} は 10 桁の数字を生成します。これは [0-9]{10} に相当します。

[\a]{10} は 10 桁の英字を生成します。これは [a-zA-Z]{10} に相当します。

以下は、パラメーター定義と参照を含む完全なテンプレートの例です。

例10.7 パラメーター定義と参照を含む完全なテンプレート

parameters:
 - name: PASSWORD
 description: "The random user password"
 generate: expression
 from: "[a-zA-Z0-9]{12}"

kind: Template
apiVersion: v1
metadata:
 name: my-template
objects:
 - kind: BuildConfig
 apiVersion: v1
 metadata:
 name: cakephp-mysql-example
 annotations:
 description: Defines how to build the application
 spec:
 source:
 type: Git
 git:
 uri: "${SOURCE_REPOSITORY_URL}" 1
 ref: "${SOURCE_REPOSITORY_REF}"
 contextDir: "${CONTEXT_DIR}"
 - kind: DeploymentConfig
 apiVersion: v1
 metadata:
 name: frontend
 spec:
 replicas: "${{REPLICA_COUNT}}" 2
parameters:
 - name: SOURCE_REPOSITORY_URL 3
 displayName: Source Repository URL 4
 description: The URL of the repository with your application source code 5

第10章 TEMPLATES (テンプレート)

179

1

2

3

4

5

6

7

8

9

10

この値は、テンプレートがインスタンス化された時点で SOURCE_REPOSITORY_URL パラ
メーターに置き換えられます。

この値は、テンプレートがインスタンス化された時点で、REPLICA_COUNT パラメーターの
引用なしの値に置き換えられます。

パラメーター名。この値は、テンプレート内でパラメーターを参照するのに使用します。

分かりやすいパラメーターの名前。これは、ユーザーに表示されます。

パラメーターの説明。期待値に対する制約など、パラメーターの目的を詳細にわたり説明しま
す。説明には、コンソールのテキスト標準に従い、完結した文章を使用するようにしてくださ
い。表示名と同じ内容を使用しないでください。

テンプレートをインスタンス化する時に、ユーザーにより値が上書きされない場合に使用され
るパラメーターのデフォルト値。パスワードなどのデフォルト値の使用を避けるようにしてく
ださい。 シークレットと組み合わせた生成パラメーターを使用するようにしてください。

このパラメーターが必須であることを示します。つまり、ユーザーは空の値で上書きできませ
ん。パラメーターでデフォルト値または生成値が指定されていない場合には、ユーザーは値を
指定する必要があります。

値が生成されるパラメーター

ジェネレーターへの入力。この場合、ジェネレーターは、大文字、小文字を含む 40 桁の英数
字の値を生成します。

パラメーターはテンプレートメッセージに含めることができます。これにより、生成された値
がユーザーに通知されます。

10.7.4. オブジェクト一覧

テンプレートの主な部分は、テンプレートがインスタンス化される時に作成されるオブジェクトの一覧
です。これには、BuildConfig、DeploymentConfig、Service などの 有効な API オブジェクト を使用
できます。オブジェクトは、ここで定義された通りに作成され、パラメーターの値は作成前に置換され
ます。これらのオブジェクトの定義では、以前に定義したパラメーターを参照できます。

 value: https://github.com/sclorg/cakephp-ex.git 6
 required: true 7
 - name: GITHUB_WEBHOOK_SECRET
 description: A secret string used to configure the GitHub webhook
 generate: expression 8
 from: "[a-zA-Z0-9]{40}" 9
 - name: REPLICA_COUNT
 description: Number of replicas to run
 value: "2"
 required: true
message: "... The GitHub webhook secret is ${GITHUB_WEBHOOK_SECRET} ..." 10

kind: "Template"
apiVersion: "v1"
metadata:
 name: my-template

OpenShift Container Platform 3.9 開発者ガイド

180

https://www.patternfly.org/styles/terminology-and-wording/
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-index

1 Service の定義。 このテンプレートにより作成されます。

注記

オブジェクト定義のメタデータに namespace フィールドの固定値が含まれる場合、
フィールドはテンプレートのインスタンス化の際に定義から取り除かれま
す。namespace フィールドにパラメーター参照が含まれる場合には、通常のパラメー
ター置換が行われ、パラメーター置換が値を解決した namespace で、オブジェクトが作
成されます。 この際、ユーザーは対象の namespace でオブジェクトを作成するパー
ミッションがあることが前提です。

10.7.5. バインド可能なテンプレートの作成

テンプレートサービスブローカーは、認識されているテンプレートオブジェクトごとに、カタログ内に
サービスを 1 つ公開します。デフォルトでは、これらのサービスはそれぞれ「バインド可能」として公
開され、エンドユーザーがプロビジョニングしたサービスに対してバインドできるようにします。

テンプレートの作成者は、template.openshift.io/bindable: "false" のアノテーションをテンプレート
に追加して、エンドユーザーが、指定のテンプレートからプロビジョニングされるサービスをバインド
できないようにできます。

10.7.6. オブジェクトフィールドの公開

テンプレートの作成者は、テンプレートに含まれる特定のオブジェクトのフィールドを公開すべきかど
うかを指定できます。テンプレートサービスのブローカーは、ConfigMap、Secret、Service、Route オ
ブジェクトに公開されたフィールドを認識し、ユーザーがブローカーでバックされているサービスをバ
ンドした場合に公開されたフィールドの値を返します。

オブジェクトのフィールドを 1 つまたは複数公開するには、テンプレート内のオブジェクトに、プレ
フィックスが template.openshift.io/expose- または template.openshift.io/base64-expose- のアノ
テーションを追加します。

各アノテーションキーは、bind 応答のキーになるように、プレフィックスが削除されてパススルーさ
れます。

各アノテーションの値は Kubernetes JSONPath 式の値であり、バインド時に解決され、bind 応答で返
される値が含まれるオブジェクトフィールドを指定します。

注記

objects:
 - kind: "Service" 1
 apiVersion: "v1"
 metadata:
 name: "cakephp-mysql-example"
 annotations:
 description: "Exposes and load balances the application pods"
 spec:
 ports:
 - name: "web"
 port: 8080
 targetPort: 8080
 selector:
 name: "cakephp-mysql-example"

第10章 TEMPLATES (テンプレート)

181

https://kubernetes.io/docs/user-guide/jsonpath/

注記

Bind 応答のキー/値のペアは、環境変数として、システムの他の場所で使用できます。
そのため、アノテーションキーでプレフィックスを取り除いた値を有効な環境変数名と
して使用することが推奨されます。先頭にA-Z、a-z またはアンダースコアを指定して、
その後に、ゼロか、他の文字 A-Z、a-z、0-9 またはアンダースコアを指定してくださ
い。

template.openshift.io/expose- アノテーションを使用して、文字列としてフィールドの値を返しま
す。これは、任意のバイナリーデータを処理しないものの、便利な方法です。バイナリーデータを返す
場合には、バイナリーデータを返す前にデータのエンコードに base64b を使用するのではな
く、template.openshift.io/base64-expose- アノテーションを使用します。

注記

バックスラッシュでエスケープしない限り、Kubernetes の JSONPath 実装は表現内の
どの場所に使用されていても、.、@ などはメタ文字として解釈されます。そのため、た
とえば、my.key という名前の ConfigMap のデータを参照するには、JSONPath 式は
{.data['my\.key']} とする必要があります。JSONPath 式が YAML でどのように記述され
ているかによって、"{.data['my\\.key']}" などのように、追加でバックスラッシュが必要
になる場合があります。

以下は、公開されるさまざまなオブジェクトのフィールドの例です。

kind: Template
apiVersion: v1
metadata:
 name: my-template
objects:
- kind: ConfigMap
 apiVersion: v1
 metadata:
 name: my-template-config
 annotations:
 template.openshift.io/expose-username: "{.data['my\\.username']}"
 data:
 my.username: foo
- kind: Secret
 apiVersion: v1
 metadata:
 name: my-template-config-secret
 annotations:
 template.openshift.io/base64-expose-password: "{.data['password']}"
 stringData:
 password: bar
- kind: Service
 apiVersion: v1
 metadata:
 name: my-template-service
 annotations:
 template.openshift.io/expose-service_ip_port: "{.spec.clusterIP}:{.spec.ports[?
(.name==\"web\")].port}"
 spec:
 ports:
 - name: "web"

OpenShift Container Platform 3.9 開発者ガイド

182

上記の部分的なテンプレートでの bind 操作に対する応答例は以下のようになります。

10.7.7. テンプレートの準備ができるまで待機

テンプレートの作成者は、テンプレート内の特定のオブジェクトがサービスカタログ、Template
Service Broker または TemplateInstance API によるテンプレートのインスタンス化が完了したとされる
まで待機する必要があるかを指定できます。

この機能を使用するには、テンプレート内の
Build、BuildConfig、Deployment、DeploymentConfig、Job または StatefulSet のオブジェクト 1
つ以上に、次のアノテーションでマークを付けてください。

"template.alpha.openshift.io/wait-for-ready": "true"

テンプレートのインスタンス化は、アノテーションのマークが付けられたすべてのオブジェクトが準備
できたと報告されるまで、完了しません。同様に、アノテーションが付けられたオブジェクトが失敗し
たと報告されるか、固定タイムアウトである 1 時間以内にテンプレートの準備が整わなかった場合に、
テンプレートのインスタンス化は失敗します。

インスタンス化の目的で、各オブジェクトの種類の準備状態および失敗は以下のように定義されます。

種類 準備状態 (Readines) 失敗 (Failure)

Build オブジェクトが Complete (完了) フェー
ズを報告する

オブジェクトが Canceled (キャンセル)、
Error (エラー)、または Failed (失敗) を報
告する

BuildConfig 関連付けられた最新のビルドオブジェク
トが Complete (完了) フェーズを報告す
る

関連付けられた最新のビルドオブジェク
トが Canceled (キャンセル)、Error (エ
ラー)、または Failed (失敗) を報告する

 port: 8080
- kind: Route
 apiVersion: v1
 metadata:
 name: my-template-route
 annotations:
 template.openshift.io/expose-uri: "http://{.spec.host}{.spec.path}"
 spec:
 path: mypath

{
 "credentials": {
 "username": "foo",
 "password": "YmFy",
 "service_ip_port": "172.30.12.34:8080",
 "uri": "http://route-test.router.default.svc.cluster.local/mypath"
 }
}

第10章 TEMPLATES (テンプレート)

183

Deployment オブジェクトが新しい ReplicaSet やデプ
ロイメントが利用可能であることを報告
する (これはオブジェクトに定義された
readiness プローブに従います)

オブジェクトで、Progressing (進捗中) の
状態が false であると報告される

DeploymentCon
fig

オブジェクトが新しい ReplicaController
やデプロイメントが利用可能であると報
告する (これはオブジェクトに定義された
readiness プローブに従います)

オブジェクトで、Progressing (進捗中) の
状態が false であると報告される

Job オブジェクトが完了 (completion) を報告
する

オブジェクトが 1 つ以上の失敗が発生し
たことを報告する

StatefulSet オブジェクトがすべてのレプリカが準備
状態にあることを報告する (これはオブ
ジェクトに定義された readiness プロー
ブに従います)

該当なし

種類 準備状態 (Readines) 失敗 (Failure)

以下は、テンプレートサンプルを一部抜粋したものです。この例では、wait-for-ready アノテーション
が使用されています。他のサンプルは、OpenShift クイックスタートテンプレートにあります。

kind: Template
apiVersion: v1
metadata:
 name: my-template
objects:
- kind: BuildConfig
 apiVersion: v1
 metadata:
 name: ...
 annotations:
 # wait-for-ready used on BuildConfig ensures that template instantiation
 # will fail immediately if build fails
 template.alpha.openshift.io/wait-for-ready: "true"
 spec:
 ...
- kind: DeploymentConfig
 apiVersion: v1
 metadata:
 name: ...
 annotations:
 template.alpha.openshift.io/wait-for-ready: "true"
 spec:
 ...
- kind: Service
 apiVersion: v1
 metadata:
 name: ...
 spec:
 ...

OpenShift Container Platform 3.9 開発者ガイド

184

10.7.8. その他の推奨事項

アプリケーションがスムーズ に実行するのに十分なリソースが提供されるようにメモリー、
CPU、および ストレージ のデフォルトサイズを設定します。

latest タグが複数のメジャーバージョンで使用されている場合には、イメージからこのタグを
参照しないようにします。新規イメージがそのタグにプッシュされると、実行中のアプリケー
ションが破損してしまう可能性があります。

適切なテンプレートの場合、テンプレートのデプロイ後に変更の必要なく、クリーンにビル
ド、デプロイが行われます。

10.7.9. 既存オブジェクトからのテンプレートの作成

テンプレートをゼロから作成するのではなく、プロジェクトから既存のオブジェクトをテンプレート形
式でエクスポートして、パラメーターおよび他のカスタマイズを追加して、テンプレート形式を変更す
ることができます。プロジェクトのオブジェクトをテンプレート形式でエクスポートするには、以下を
実行します。

$ oc export all --as-template=<template_name> > <template_filename>

all ではなく、特定のリソースタイプや複数のリソースを置き換えることも可能です。他の例について
は、oc export -h を実行します。

以下は、oc export all に含まれるオブジェクトタイプです。

BuildConfig

Build

DeploymentConfig

ImageStream

Pod

ReplicationController

Route

Service

第10章 TEMPLATES (テンプレート)

185

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#pvc-resources

第11章 コンテナーへのリモートシェルを開く

11.1. 概要

oc rsh コマンドを使用すると、システム上にある各種のツールにローカルでアクセスし、管理すること
ができます。セキュアシェル (SSH) は、アプリケーションへのセキュアな接続を提供する基礎となるテ
クノロジーであり、これは業界標準になっています。シェル環境を使ったアプリケーションへのアクセ
スは Security-Enhanced Linux (SELinux) ポリシーで保護され、制限されます。

11.2. セキュアなシェルセッションの開始

コンテナーへのリモートシェルセッションを開きます。

$ oc rsh <pod>

リモートシェルの使用時には、コンテナー内で実行しているかのようにコマンドを実行でき、モニタリ
ングやデバッグ、およびコンテナー内で実行されているものに固有の CLI コマンドの使用などのローカ
ルの操作を実行できます。

たとえば MySQL コンテナーの場合、mysql コマンドを起動し、プロンプトを使用して SELECT コマ
ンド を入力することでデータベース内のレコード数をカウントできます。また、検証には ps(1) および
ls(1) などのコマンドを使用することもできます。

BuildConfigs および DeployConfigs は内容の表示方法や、(コンテナーを内部に含む) Pod を必要に応
じて作成し、取り外す方法を定義します。加えられる変更は永続化しません。コンテナー内で直接変更
を加えても、そのコンテナーが破棄され再ビルドされると加えた変更は存在しなくなります。

注記

oc exec はコマンドをリモートで実行するために使用できます。しかしながら、oc rsh
コマンドの使用がリモートシェルを永続的に開いた状態にするより簡単な方法になりま
す。

11.3. セキュアなシェルセッションのヘルプ

使用方法やオプションについてのヘルプ、例を参照するには、以下を実行します。

$ oc rsh -h

OpenShift Container Platform 3.9 開発者ガイド

186

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#using-images-db-images-mysql

第12章 サービスアカウント

12.1. 概要

ユーザーが OpenShift Container Platform CLI または web コンソールを使用する場合、API トークンは
OpenShift API に対して認証を行いますが、一般ユーザーの認証情報が利用できない場合、通常各種コ
ンポーネントが API 呼び出しを別個に実行します。ただし、一般ユーザーの認証情報を利用できない場
合、以下のようにコンポーネントが API 呼び出しを行うのが通例になります。以下に例を示します。

レプリケーションコントローラーが Pod を作成するか、または削除するために API 呼び出しを
実行する。

コンテナー内のアプリケーションが検出の目的で API 呼び出しを実行する。

外部アプリケーションがモニタリングおよび統合目的で API 呼び出しを実行する。

サービスアカウントは、一般ユーザーの認証情報を共有せずに API アクセスをより柔軟に制御する方法
を提供します。

12.2. ユーザー名およびグループ

すべてのサービスアカウントには、一般ユーザーのようにロールを付与できるユーザー名が関連付けら
れています。ユーザー名はそのプロジェクトおよび名前から派生します。

system:serviceaccount:<project>:<name>

たとえば、view (表示) ロールを top-secret プロジェクトの robot サービスアカウントに追加するに
は、以下を実行します。

$ oc policy add-role-to-user view system:serviceaccount:top-secret:robot

重要

プロジェクトで特定のサービスアカウントにアクセスを付与する必要がある場合は、-z
フラグを使用できます。サービスアカウントが属するプロジェクトから -z フラグを使用
し、<serviceaccount_name> を指定します。これによりタイプミスの発生する可能性
が減り、アクセスを指定したサービスアカウントのみに付与できるため、この方法を使
用することを強くお勧めします。以下に例を示します。

 $ oc policy add-role-to-user <role_name> -z <serviceaccount_name>

プロジェクトから実行しない場合は、以下の例に示すように -n オプションを使用してこ
れが適用されるプロジェクトの namespace を指定します。

すべてのサービスアカウントは以下の 2 つのグループのメンバーでもあります。

system:serviceaccount

システムのすべてのサービスアカウントが含まれます。

system:serviceaccount:<project>

指定されたプロジェクトのすべてのサービスアカウントが含まれます。

たとえば、すべてのプロジェクトのすべてのサービスアカウントが top-secret プロジェクトのリソー

第12章 サービスアカウント

187

たとえば、すべてのプロジェクトのすべてのサービスアカウントが top-secret プロジェクトのリソー
スを表示できるようにするには、以下を実行します。

$ oc policy add-role-to-group view system:serviceaccount -n top-secret

managers プロジェクトのすべてのサービスアカウントが top-secret プロジェクトのリソースを編集
できるようにするには、以下を実行します。

$ oc policy add-role-to-group edit system:serviceaccount:managers -n top-secret

12.3. デフォルトのサービスアカウントおよびロール

3 つのサービスアカウントがすべてのプロジェクトで自動的に作成されます。

サービスアカウント 使用法

builder ビルド Pod で使用されます。これには system:image-builder ロールが付与され
ます。 このロールは、内部 Docker レジストリーを使用してイメージをプロジェ
クトのイメージストリームにプッシュすることを可能にします。

deployer デプロイメント Pod で使用され、system:deployer ロールが付与されます。 この
ロールは、プロジェクトでレプリケーションコントローラーや Pod を表示した
り、変更したりすることを可能にします。

default 別のサービスアカウントが指定されていない限り、その他すべての Pod を実行す
るために使用されます。

プロジェクトのすべてのサービスアカウントには system:image-puller ロールが付与されます。 この
ロールは、内部 Docker レジストリーを使用してイメージをイメージストリームからプルすることを可
能にします。

12.4. サービスアカウントの管理

サービスアカウントは、各プロジェクトに存在する API オブジェクトです。サービスアカウントを管理
するには、sa または serviceaccount オブジェクトタイプと共に oc コマンドを使用するか、または
web コンソールを使用することができます。

現在のプロジェクトの既存のサービスアカウントの一覧を取得するには、以下を実行します。

$ oc get sa
NAME SECRETS AGE
builder 2 2d
default 2 2d
deployer 2 2d

新規のサービスアカウントを作成するには、以下を実行します。

$ oc create sa robot
serviceaccount "robot" created

サービスアカウントの作成後すぐに、以下の 2 つのシークレットが自動的に追加されます。

OpenShift Container Platform 3.9 開発者ガイド

188

1

2

3

API トークン

OpenShift Container レジストリーの認証情報

これらはサービスアカウントを記述すると表示できます。

$ oc describe sa robot
Name: robot
Namespace: project1
Labels: <none>
Annotations: <none>

Image pull secrets: robot-dockercfg-qzbhb

Mountable secrets: robot-token-f4khf
 robot-dockercfg-qzbhb

Tokens: robot-token-f4khf
 robot-token-z8h44

システムは、サービスアカウントが常に API トークンとレジストリーの認証情報を持っていることを保
証します。

生成される API トークンとレジストリーの認証情報は期限切れになることはありませんが、シークレッ
トを削除することで取り消すことができます。シークレットが削除されると、新規のシークレットが自
動生成され、これに置き換わります。

12.5. サービスアカウント認証の有効化

サービスアカウントは、プライベート RSA キーで署名されるトークンを使用して API に対して認証さ
れます。認証層では一致するパブリック RSA キーを使用して署名を検証します。

サービスアカウントトークンの生成を有効にするには、マスターで /etc/origin/master/master-
config.yml ファイルの serviceAccountConfig スタンザを更新し、(署名 用に) privateKeyFile と
publicKeyFiles 一覧の一致するパブリックキーファイルを指定します。

serviceAccountConfig:
 ...
 masterCA: ca.crt 1
 privateKeyFile: serviceaccount.private.key 2
 publicKeyFiles:
 - serviceaccount.public.key 3
 - ...

API サーバーの提供する証明書を検証するために使用される CA ファイル。

プライベート RSA キーファイル (トークンの署名用)。

パブリック RSA キーファイル (トークンの検証用)。プライベートキーファイルが提供されている
場合、パブリックキーコンポーネントが使用されます。複数のパブリックキーファイルを使用で
き、トークンはパブリックキーのいずれかで検証できる場合に受け入れられます。これにより、署
名するキーのローテーションが可能となり、以前の署名者が生成したトークンは依然として受け入
れられます。

第12章 サービスアカウント

189

1

2

3

4

12.6. 管理サービスアカウント

サービスアカウントは、ビルド、デプロイメントおよびその他の Pod を実行するために各プロジェク
トで必要になります。マスターの /etc/origin/master/master-config.yml ファイルの
managedNames 設定は、すべてのプロジェクトに自動作成されるサービスアカウントを制御します。

serviceAccountConfig:
 ...
 managedNames: 1
 - builder 2
 - deployer 3
 - default 4
 - ...

すべてのプロジェクトで自動作成するサービスアカウントの一覧。

各プロジェクトの ビルダー サービスアカウントはビルド Pod で必要になり、system:image-
builder ロールが付与されます。このロールは、内部コンテナーレジストリーを使用してイメージ
をプロジェクトのイメージストリームにプッシュすることを可能にします。

各プロジェクトの deployer サービスアカウントはデプロイメント Pod で必要になり、レプリ
ケーションコントローラーおよびプロジェクトの Pod の表示および変更を可能にする
system:deployer ロールが付与されます。

デフォルトのサービスアカウントは、別のサービスアカウントが指定されない限り、他のすべての
Pod で使用されます。

プロジェクトのすべてのサービスアカウントには system:image-puller ロールが付与されます。この
ロールは、内部コンテナーレジストリーを使用してイメージをイメージストリームからプルすることを
可能にします。

12.7. インフラストラクチャーサービスアカウント

一部のインフラストラクチャーコントローラーは、サービスアカウント認証情報を使用して実行されま
す。以下のサービスアカウントは、サーバーの起動時に OpenShift Container Platform インフラストラ
クチャープロジェクト (openshift-infra) に作成され、クラスター全体で以下のロールが付与されま
す。

サービスアカウント 説明

replication-controller system:replication-controller ロールの割り当て

deployment-controller system:deployment-controller ロールの割り当て

build-controller system:build-controller ロールの割り当て。さらに、build-controller サービス
アカウントは、特権付きの ビルド Pod を作成するために特権付きセキュリティー
コンテキストに組み込まれます。

これらのサービスアカウントが作成されるプロジェクトを設定するには、マスターで
/etc/origin/master/master-config.yml ファイルの openshiftInfrastructureNamespace フィールド
を設定します。

OpenShift Container Platform 3.9 開発者ガイド

190

policyConfig:
 ...
 openshiftInfrastructureNamespace: openshift-infra

12.8. サービスアカウントおよびシークレット

マスターで /etc/origin/master/master-config.yml ファイルの limitSecretReferences フィールドを
true に設定し、Pod のシークレット参照をサービスアカウントでホワイトリストに入れることが必要に
なるようにします。この値を false に設定すると、Pod がプロジェクトのすべてのシークレットを参照
できるようになります。

serviceAccountConfig:
 ...
 limitSecretReferences: false

12.9. 許可されたシークレットの管理

API 認証情報を提供するほかに、Pod のサービスアカウントは Pod が使用できるシークレットを決定し
ます。

Pod は以下の 2 つの方法でシークレットを使用します。

イメージプルシークレットの使用: Pod のコンテナーのイメージをプルするために使用される認
証情報を提供します。

マウント可能なシークレットの使用: シークレットの内容をファイルとしてコンテナーに挿入し
ます。

サービスアカウントの Pod がシークレットをイメージプルシークレットとして使用できるようにする
には、以下を実行します。

$ oc secrets link --for=pull <serviceaccount-name> <secret-name>

サービスアカウントの Pod がシークレットをマウントできるようにするには、以下を実行します。

$ oc secrets link --for=mount <serviceaccount-name> <secret-name>

注記

シークレットを参照しているサービスアカウントにのみにシークレットを制限すること
はデフォルトで無効にされています。これ
は、serviceAccountConfig.limitSecretReferences がマスター設定ファイルで false
(デフォルト設定) に設定されている場合はシークレットを --for=mount オプションを
使ってサービスアカウントの Pod にマウントする必要がないことを意味します。ただし
serviceAccountConfig.limitSecretReferences の値にかかわらず、--for=pull オプショ
ンを使用してイメージプルシークレットの使用を有効にする必要はあります。

以下の例では、シークレットを作成し、これをサービスアカウントに追加しています。

$ oc create secret generic secret-plans \
 --from-file=plan1.txt \
 --from-file=plan2.txt

第12章 サービスアカウント

191

secret/secret-plans

$ oc create secret docker-registry my-pull-secret \
 --docker-username=mastermind \
 --docker-password=12345 \
 --docker-email=mastermind@example.com
secret/my-pull-secret

$ oc secrets link robot secret-plans --for=mount

$ oc secrets link robot my-pull-secret --for=pull

$ oc describe serviceaccount robot
Name: robot
Labels: <none>
Image pull secrets: robot-dockercfg-624cx
 my-pull-secret

Mountable secrets: robot-token-uzkbh
 robot-dockercfg-624cx
 secret-plans

Tokens: robot-token-8bhpp
 robot-token-uzkbh

12.10. コンテナー内でのサービスアカウントの認証情報の使用

Pod が作成されると、Pod はサービスアカウントを指定し (またはデフォルトのサービスアカウントを
使用し)、サービスアカウントの API 認証情報と参照されるシークレットを使用することができます。

Pod のサービスアカウントの API トークンが含まれるファイルは
/var/run/secrets/kubernetes.io/serviceaccount/token に自動的にマウントされます。

このトークンは Pod のサービスアカウントとして API 呼び出しを実行するために使用できます。以下
の例では、トークンによって識別されるユーザーについての情報を取得するために users/~ API を呼び
出しています。

$ TOKEN="$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)"

$ curl --cacert /var/run/secrets/kubernetes.io/serviceaccount/ca.crt \
 "https://openshift.default.svc.cluster.local/oapi/v1/users/~" \
 -H "Authorization: Bearer $TOKEN"

kind: "User"
apiVersion: "user.openshift.io/v1"
metadata:
 name: "system:serviceaccount:top-secret:robot"
 selflink: "/oapi/v1/users/system:serviceaccount:top-secret:robot"
 creationTimestamp: null
identities: null
groups:
 - "system:serviceaccount"
 - "system:serviceaccount:top-secret"

OpenShift Container Platform 3.9 開発者ガイド

192

12.11. サービスアカウントの認証情報の外部での使用

同じトークンを、API に対して認証する必要のある外部アプリケーションに配布することができます。

以下の構文を使用してサービスアカウントの API トークンを表示します。

$ oc describe secret <secret-name>

以下に例を示します。

$ oc describe secret robot-token-uzkbh -n top-secret
Name: robot-token-uzkbh
Labels: <none>
Annotations: kubernetes.io/service-account.name=robot,kubernetes.io/service-
account.uid=49f19e2e-16c6-11e5-afdc-3c970e4b7ffe

Type: kubernetes.io/service-account-token

Data

token: eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9...

$ oc login --token=eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9...
Logged into "https://server:8443" as "system:serviceaccount:top-secret:robot" using the token
provided.

You don't have any projects. You can try to create a new project, by running

 $ oc new-project <projectname>

$ oc whoami
system:serviceaccount:top-secret:robot

第12章 サービスアカウント

193

第13章 イメージの管理

13.1. 概要

イメージストリーム は、タグで識別される数多くの コンテナーイメージ で構成されます。これは
Docker イメージリポジトリーのように関連イメージの単一仮想ビューを提供します。

イメージストリームの監視により、ビルドおよびデプロイメントは新規イメージの追加または変更時に
通知を受信し、それぞれビルドまたはデプロイメントを実行してこれに対応します。

イメージのレジストリーが置かれる場所やレジストリー関連の認証要件、およびビルドやデプロイメン
トで必要とされる動作が何であるかによって、イメージと対話し、イメージストリームをセットアップ
する方法は異なり、数多くの方法でこれらを実行することができます。以下のセクションではこれらの
トピックについて扱います。

13.2. イメージのタグ付け

OpenShift Container Platform イメージストリームとそのタグを使用する前に、コンテナーイメージの
コンテキストにおけるイメージタグ全般について理解しておくと便利です。

コンテナーイメージにはその内容を直感的に判別できるようにする名前 (タグ) を追加できます。タグの
一般的な使用例として、イメージに含まれるもののバージョンを指定するために使用できます。ruby
という名前のイメージがある場合、Ruby の 2.0 バージョン用に 2.0 という名前のタグを使用したり、
リポジトリー全体における最新のビルドされたイメージを示す latest というタグを使用したりすること
ができます。

docker CLI を使用してイメージと直接対話する場合、docker tag コマンドを使用してタグを追加でき
ます。基本的に、この操作は複数の部分で構成されるエイリアスをイメージに追加する操作です。 これ
には、以下が含まれます。

<registry_server>/<user_name>/<image_name>:<tag>

上記の <user_name > の部分は、イメージが内部レジストリー（OpenShift Container レジストリー）
を使用して OpenShift Container Platform 環境に保存される場合には、プロジェクト または
namespace も参照することがあります。

OpenShift Container Platform は docker tag コマンドに似た oc tag コマンドを提供しますが、これら
はイメージ上で直接動作するのではなくイメージストリームで動作します。

注記

docker CLI を使用してイメージに直接タグ付けする方法についての詳細は、Red Hat
Enterprise Linux 7 の『Getting Started with Containers』ドキュメントを参照してくださ
い。

13.2.1. タグのイメージストリームへの追加

OpenShift Container Platform のイメージストリームはタグで識別されるゼロまたは 1 つ以上のコンテ
ナーイメージで構成されることに留意した上で、oc tag コマンドを使用してタグをイメージストリーム
に追加することができます。

$ oc tag <source> <destination>

たとえば、ruby イメージストリームの static-2.0 タグを ruby イメージストリーム 2.0 タグの現行のイ

OpenShift Container Platform 3.9 開発者ガイド

194

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-streams
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#docker-images
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#projects
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#namespaces
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#creating_docker_images

たとえば、ruby イメージストリームの static-2.0 タグを ruby イメージストリーム 2.0 タグの現行のイ
メージを常に参照するように設定するには、以下を実行します。

$ oc tag ruby:2.0 ruby:static-2.0

これにより、ruby イメージストリームに static-2.0 という名前のイメージストリームタグが新たに作
成されます。この新規タグは、oc tag の実行時に ruby:2.0 イメージストリームタグが参照したイメー
ジ ID を直接参照し、これが参照するイメージが変更されることがありません。

各種のタグを利用できます。デフォルト動作では、特定の時点の特定のイメージを参照する 永続 タグ
を使用します。 ソースが変更されても新規 (宛先) タグは変更されません。

トラッキング タグの場合は、宛先タグのメタデータがソースタグのインポート時に更新されます。宛先
タグがソースタグの変更時に常に更新されるようにするには、--alias=true フラグを使用します。

$ oc tag --alias=true <source> <destination>

注記

永続的なエイリアス (latest または stable など) を作成するには トラッキング タグを使
用します。このタグは単一イメージストリーム内で のみ 適切に機能します。複数のイ
メージストリーム間で使用されるエイリアスを作成しようとするとエラーが生じます。

さらに --scheduled=true フラグを追加して宛先タグが定期的に更新 (再インポートなど) されるように
できます。期間はシステムレベルで グローバルに設定 できます。詳細は、「タグおよびイメージメタ
データのインポート」を参照してください。

--reference フラグはインポートされないイメージストリームを作成します。このタグはソースの場所
を参照しますが、これを永続的に参照します。

Docker に対して統合レジストリーのタグ付けされたイメージを常にフェッチするよう指示するには、--
reference-policy=local を使用します。レジストリーはプルスルー(pull-through)機能 を使用してイ
メージをクライアントに提供します。デフォルトで、イメージ Blob はレジストリーによってローカル
にミラーリングされます。その結果、それらが次回必要となる場合により迅速にプルされます。またこ
のフラグは --insecure-registry を Docker デーモンに指定しなくても、イメージストリームに非セキュ
アなアノテーションがあるか、またはタグに非セキュアなインポートポリシーがある限り、非セキュア
なレジストリーからのプルを許可します。

13.2.2. 推奨されるタグ付け規則

イメージは時間の経過と共に変化するもので、それらのタグはその変化を反映します。イメージタグは
ビルドされる最新イメージを常に参照します。

タグ名にあまりにも多くの情報が組み込まれる場合 (例: v2.0.1-may-2016)、タグはイメージの 1 つのリ
ビジョンのみを参照し、更新されることがなくなります。デフォルトのイメージのプルーニングオプ
ションを使用しても、このようなイメージは削除されません。非常に大規模なクラスターでは、イメー
ジが修正されるたびに新規タグが作成される設定の場合、古くなって久しいイメージの余分のタグメタ
データで etcd データストアが一杯になる可能性があります。

一方、タグの名前が v2.0 である場合はイメージリビジョンの数が多くなることが予想されます。これ
により タグ履歴 が長くなるため、イメージプルーナーが古くなり使われなくなったイメージを削除す
る可能性が高くなります。詳細は、「 イメージのプルーニング 」を参照してください。

タグの名前付け規則は各自で定めることができますが、ここでは <image_name>:<image_tag> 形式の

第13章 イメージの管理

195

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#master-config-image-policy-config
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#middleware-repository-pullthrough
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-stream-tag
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#pruning-images

タグの名前付け規則は各自で定めることができますが、ここでは <image_name>:<image_tag> 形式の
いくつかの例を見てみましょう。

表13.1 イメージタグの名前付け規則

説明 例

リビジョン myimage:v2.0.1

アーキテクチャー myimage:v2.0-x86_64

ベースイメージ myimage:v1.2-centos7

最新 (不安定な可能性がある) myimage:latest

最新 (安定性がある) myimage:stable

タグ名に日付を含める必要がある場合、古くなり使用されなくなったイメージおよび istags を定期的
に検査し、これらを削除してください。そうしないと、古いイメージによるリソース使用量が増大する
可能性があります。

13.2.3. タグのイメージストリームからの削除

タグをイメージストリームから完全に削除するには、以下を実行します。

$ oc delete istag/ruby:latest

または

$ oc tag -d ruby:latest

13.2.4. イメージストリームでのイメージの参照

以下の参照タイプを使用して、イメージをイメージストリームで参照できます。

ImageStreamTag は、所定のイメージストリームおよびタグのイメージを参照し、取得するた
めに使用されます。この名前は以下の規則に基づいて付けられます。

<image_stream_name>:<tag>

ImageStreamImage は、所定のイメージストリームおよびイメージ名のイメージを参照し、取
得するために使用されます。この名前は以下の規則に基づいて付けられます。

<image_stream_name>@<id>

<id> は、ダイジェストとも呼ばれる特定イメージのイミュータブルな ID です。

DockerImage は、所定の外部レジストリーのイメージを参照し、取得するために使用されま
す。この名前は、以下のような標準の Docker プル仕様 に基づいて付けられます。

openshift/ruby-20-centos7:2.0

OpenShift Container Platform 3.9 開発者ガイド

196

注記

タグが指定されていない場合、latest タグが使用されることが想定されます。

サードパーティーのレジストリーを参照することもできます。

registry.access.redhat.com/rhel7:latest

またはダイジェストでイメージを参照できます。

centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b2
8e

CentOS イメージストリームのサンプル などのイメージストリーム定義のサンプルを表示する場合、そ
れらには ImageStreamTag の定義や DockerImage の参照が含まれる一方で、ImageStreamImage に
関連するものは何も含まれていないことに気づかれることでしょう。

これは、イメージストリームでのイメージのインポートまたはイメージのタグ付けを行う場合は常に
ImageStreamImage オブジェクトが OpenShift Container Platform に自動的に作成されるためです。
イメージストリームを作成するために使用するイメージストリーム定義で ImageStreamImage オブ
ジェクトを明示的に定義する必要はありません。

イメージのオブジェクト定義は、イメージストリーム名および ID を使用し、ImageStreamImage 定義
を取得して確認することができます。

$ oc export isimage <image_stream_name>@<id>

注記

以下を実行して所定のイメージストリームの有効な <id> 値を確認することができます。

$ oc describe is <image_stream_name>

たとえば、ruby イメージストリームから ruby@3a335d7 の名前および ID を使って
ImageStreamImage を検索します。

ImageStreamImage で取得されるイメージオブジェクトの定義

$ oc export isimage ruby@3a335d7

apiVersion: v1
image:
 dockerImageLayers:
 - name: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 size: 0
 - name: sha256:ee1dd2cb6df21971f4af6de0f1d7782b81fb63156801cfde2bb47b4247c23c29
 size: 196634330
 - name: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 size: 0
 - name: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 size: 0

第13章 イメージの管理

197

https://github.com/openshift/origin/blob/master/examples/image-streams/image-streams-centos7.json

 - name: sha256:ca062656bff07f18bff46be00f40cfbb069687ec124ac0aa038fd676cfaea092
 size: 177723024
 - name: sha256:63d529c59c92843c395befd065de516ee9ed4995549f8218eac6ff088bfa6b6e
 size: 55679776
 dockerImageMetadata:
 Architecture: amd64
 Author: SoftwareCollections.org <sclorg@redhat.com>
 Config:
 Cmd:
 - /bin/sh
 - -c
 - $STI_SCRIPTS_PATH/usage
 Entrypoint:
 - container-entrypoint
 Env:
 - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - STI_SCRIPTS_URL=image:///usr/libexec/s2i
 - STI_SCRIPTS_PATH=/usr/libexec/s2i
 - HOME=/opt/app-root/src
 - BASH_ENV=/opt/app-root/etc/scl_enable
 - ENV=/opt/app-root/etc/scl_enable
 - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
 - RUBY_VERSION=2.2
 ExposedPorts:
 8080/tcp: {}
 Image: d9c3abc5456a9461954ff0de8ae25e0e016aad35700594714d42b687564b1f51
 Labels:
 build-date: 2015-12-23
 io.k8s.description: Platform for building and running Ruby 2.2 applications
 io.k8s.display-name: Ruby 2.2
 io.openshift.builder-base-version: 8d95148
 io.openshift.builder-version: 8847438ba06307f86ac877465eadc835201241df
 io.openshift.s2i.scripts-url: image:///usr/libexec/s2i
 io.openshift.tags: builder,ruby,ruby22
 io.s2i.scripts-url: image:///usr/libexec/s2i
 license: GPLv2
 name: CentOS Base Image
 vendor: CentOS
 User: "1001"
 WorkingDir: /opt/app-root/src
 ContainerConfig: {}
 Created: 2016-01-26T21:07:27Z
 DockerVersion: 1.8.2-el7
 Id: 57b08d979c86f4500dc8cad639c9518744c8dd39447c055a3517dc9c18d6fccd
 Parent: d9c3abc5456a9461954ff0de8ae25e0e016aad35700594714d42b687564b1f51
 Size: 430037130
 apiVersion: "1.0"
 kind: DockerImage
 dockerImageMetadataVersion: "1.0"
 dockerImageReference: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e
 metadata:
 creationTimestamp: 2016-01-29T13:17:45Z
 name: sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e
 resourceVersion: "352"

OpenShift Container Platform 3.9 開発者ガイド

198

 uid: af2e7a0c-c68a-11e5-8a99-525400f25e34
kind: ImageStreamImage
metadata:
 creationTimestamp: null
 name: ruby@3a335d7
 namespace: openshift
 selflink: /oapi/v1/namespaces/openshift/imagestreamimages/ruby@3a335d7

13.3. KUBERNETES リソースでのイメージストリームの使用

OpenShift Container Platform のネイティブリソースであるイメージストリームは、ビルド または デプ
ロイメント などの OpenShift Container Platform で利用可能な残りのネイティブリソースのすべてと共
に追加の設定なしで機能します。現時点で、これらは ジョブ、レプリケーションコントローラー、レプ
リカセットまたは Kubernetes デプロイメントなどのネイティブ Kubernetes リソースと共に機能するこ
ともでき ます。

クラスター管理者は使用可能 なリソースを正確に設定 することができます。

この機能が有効な場合、リソースの image フィールドにイメージストリームの参照を配置することが
できます。この機能を使用する場合、リソースと同じプロジェクトにあるイメージストリームのみを参
照することができます。イメージストリームの参照は、単一セグメントの値で構成される必要がありま
す。たとえば ruby:2 . 4 の場合、ruby は 2.4 という名前のタグを持ち、参照するリソースと同じプロ
ジェクトにあるイメージストリームの名前になります。

この機能を有効にする 2 つの方法があります。

1. 特定のリソースでイメージストリームの解決を有効にする。これにより、このリソースのみが
イメージフィールドのイメージストリーム名を使用できます。

2. イメージストリームでイメージストリームの解決を有効にする。これにより、このイメージス
トリームを参照するすべてのリソースがイメージフィールドのイメージストリーム名を使用で
きます。

上記の操作のいずれも oc set image-lookup を使用して実行できます。たとえば、以下のコマンドはす
べてのリソースが mysql という名前のイメージストリームを参照できるようにします。

$ oc set image-lookup mysql

これにより、Imagestream.spec.lookupPolicy.local フィールドが true に設定されます。

イメージルックアップが有効なイメージストリーム

apiVersion: v1
kind: ImageStream
metadata:
 annotations:
 openshift.io/display-name: mysql
 name: mysql
 namespace: myproject
spec:
 lookupPolicy:
 local: true

有効な場合には、この動作はイメージストリーム内のすべてのタグに対して有効化されます。

第13章 イメージの管理

199

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#admin-guide-image-policy

以下を使用してイメージストリームをクエリーし、このオプションが設定されているかどうかを確認で
きます。

$ oc set image-lookup

さらに、特定のリソースでイメージルックアップを有効にすることもできます。以下のコマンドは
mysql という名前の Kubernetes デプロイメントがイメージストリームを使用できるようにします。

$ oc set image-lookup deploy/mysql

これにより、alpha.image.policy.openshift.io/resolve-names アノテーションがデプロイメントに設
定されます。

イメージルックアップが有効にされたデプロイメント

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mysql
 namespace: myproject
spec:
 replicas: 1
 template:
 metadata:
 annotations:
 alpha.image.policy.openshift.io/resolve-names: '*'
 spec:
 containers:
 - image: mysql:latest
 imagePullPolicy: Always
 name: mysql

イメージルックアップを無効にするには、--enabled=false を渡します。

$ oc set image-lookup deploy/mysql --enabled=false

13.4. イメージプルポリシー

Pod のそれぞれのコンテナーにはコンテナーイメージがあります。イメージを作成し、これをレジスト
リーにプッシュすると、イメージを Pod で参照できます。

OpenShift Container Platform はコンテナーを作成すると、コンテナーの imagePullPolicy を作成し
て、コンテナーの起動前にイメージをプルする必要があるかどうかを決定します。imagePullPolicy に
は以下の 3 つの値を使用できます。

Always: 常にイメージをプルします。

IfNotPresent: イメージがノード上にない場合にのみイメージをプルします。

Never: イメージをプルしません。

コンテナーの imagePullPolicy パラメーターが指定されていない場合、OpenShift Container Platform
はイメージのタグに基づいてこれを設定します。

1. タグが 最新 の場合、OpenShift Container Platform は imagePullPolicy を Always にデフォル

OpenShift Container Platform 3.9 開発者ガイド

200

1. タグが 最新 の場合、OpenShift Container Platform は imagePullPolicy を Always にデフォル
ト設定します。

2. それ以外の場合に、OpenShift Container Platform は imagePullPolicy を IfNotPresent にデ
フォルト設定します。

注記

Never Image Pull Policy を使用する場合、AlwaysPullImages 受付コントローラー を使
用してプライベートイメージをプルするための認証情報を持つ Pod のみがそれらのイ
メージを使用できることを確認できます。この受付コントローラーが有効になっていな
い場合、イメージの認可検査なしにノード上の任意のユーザーからの Pod がイメージを
使用できます。

13.5. 内部レジストリーへのアクセス

イメージのプッシュまたはプルを実行するために OpenShift Container Platform の内部レジストリーに
直接アクセスできます。たとえば、これは イメージの手動プッシュによってイメージストリームを作成
する場合や、単にイメージに対して docker pull を直接実行する場合に役立ちます。

内部レジストリーは OpenShift Container Platform API と同じ トークン を使用して認証します。内部
レジストリーに対して docker login を実行するには、任意のユーザー名およびメールを使用できます
が、パスワードは有効な OpenShift Container Platform トークンである必要があります。

内部レジストリーにログインするには、以下を実行します。

1. OpenShift Container Platform にログインします。

$ oc login

2. アクセストークンを取得します。

$ oc whoami -t

3. トークンを使用して内部レジストリーにログインします。docker をシステムにインストールし
ておく必要があります。

$ docker login -u <user_name> -e <email_address> \
 -p <token_value> <registry_server>:<port>

注記

使用するレジストリー IP またはホスト名およびポートが不明な場合は、クラス
ター管理者に問い合わせてください。

イメージをプルするには、要求される imagestreams/layers に対する get 権限が、この認証済みの
ユーザーに割り当てられている必要があります。また、イメージをプッシュするには、認証済みのユー
ザーに、要求される imagestreams/layers に対する update 権限が割り当てられている必要がありま
す。

デフォルトで、プロジェクトのすべてのサービスアカウントは同じプロジェクトの任意のイメージをプ
ルする権限を持ち、builder サービスアカウントには同じプロジェクトの任意のイメージをプッシュす
る権限を持ちます。

第13章 イメージの管理

201

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-admission-controllers
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#api-authentication

13.6. イメージプルシークレットの使用

Docker レジストリー のセキュリティーを保護し、承認されていないユーザーが特定イメージにアクセ
スできないようにすることができます。OpenShift Container Platform の内部レジストリーを使用し、
同じプロジェクトにあるイメージストリームからプルしている場合は、Pod のサービスアカウントに適
切なパーミッションがすでに設定されているために追加のアクションは不要です。

ただし、OpenShift Container Platform プロジェクト全体でイメージを参照する場合や、セキュリ
ティー保護されたレジストリーからイメージを参照するなどの他のシナリオでは、追加の設定手順が必
要になります。以下のセクションでは、それらのシナリオと必要な手順について詳しく説明します。

13.6.1. Pod が複数のプロジェクト間でのイメージを参照できるようにする設定

内部レジストリーを使用している場合で project-a の Pod が project-b のイメージを参照できるように
するには、project-a のサービスアカウントが project-b の system:image-puller ロールにバインドさ
れている必要があります。

$ oc policy add-role-to-user \
 system:image-puller system:serviceaccount:project-a:default \
 --namespace=project-b

このロールを追加した後に、デフォルトのサービスアカウントを参照する project-a の Pod は
project-b からイメージをプルできるようになります。

project-a のすべてのサービスアカウントにアクセスを許可するには、グループを使用します。

$ oc policy add-role-to-group \
 system:image-puller system:serviceaccounts:project-a \
 --namespace=project-b

13.6.2. Pod による他のセキュアなレジストリーからのイメージの参照を許可する

.dockercfg ファイル (または新規 Docker クライアントの場合は $HOME/.docker/config.json) は、
ユーザーがセキュア/非セキュアなレジストリーに事前にログインしている場合にそのユーザーの情報
を保存する Docker 認証情報ファイルです。

OpenShift Container Platform の内部レジストリーにないセキュリティー保護されたコンテナーイメー
ジをプルするには、Docker 認証情報で プルシークレット を作成し、これをサービスアカウントに追加
する必要があります。

セキュリティー保護されたレジストリーの .dockercfg ファイルがある場合、以下を実行してそのファ
イルからシークレットを作成できます。

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockercfg=<path/to/.dockercfg> \
 --type=kubernetes.io/dockercfg

または、$HOME/.docker/config.json ファイルがある場合は以下を実行します。

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

セキュアなレジストリーについての Docker 認証情報ファイルがまだない場合には、以下のコマンドを

OpenShift Container Platform 3.9 開発者ガイド

202

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-infrastructure-components-image-registry

セキュアなレジストリーについての Docker 認証情報ファイルがまだない場合には、以下のコマンドを
実行してシークレットを作成することができます。

$ oc create secret docker-registry <pull_secret_name> \
 --docker-server=<registry_server> \
 --docker-username=<user_name> \
 --docker-password=<password> \
 --docker-email=<email>

Pod のイメージをプルするためにシークレットを使用するには、サービスアカウントにシークレットを
追加する必要があります。この例では、サービスアカウントの名前は Pod が使用するサービスアカウ
ントの名前に一致している必要があります。 default はデフォルトのサービスアカウントです。

$ oc secrets link default <pull_secret_name> --for=pull

ビルドイメージのプッシュおよびプルにシークレットを使用するには、シークレットは Pod 内でマウ
ント可能でなければなりません。以下でこれを実行できます。

$ oc secrets link builder <pull_secret_name>

13.6.2.1. 委任された認証を使用したプライベートレジストリーからのプル

プライベートレジストリーは認証を別個のサービスに委任できます。この場合、イメージプルシーク
レットは認証およびレジストリーのエンドポイントの両方に対して定義されている必要があります。

注記

Red Hat Container Catalog のサードパーティーのイメージは Red Hat Connect Partner
Registry (registry.connect.redhat.com) から提供されます。このレジストリーは認証を
sso.redhat.com に委任するため、以下の手順が適用されます。

1. 委任された認証サーバーのシークレットを作成します。

$ oc create secret docker-registry \
 --docker-server=sso.redhat.com \
 --docker-username=developer@example.com \
 --docker-password=******** \
 --docker-email=unused \
 redhat-connect-sso

secret/redhat-connect-sso

2. プライベートレジストリーのシークレットを作成します。

$ oc create secret docker-registry \
 --docker-server=privateregistry.example.com \
 --docker-username=developer@example.com \
 --docker-password=******** \
 --docker-email=unused \
 private-registry

secret/private-registry

注記

第13章 イメージの管理

203

注記

Red Hat Connect Partner Registry (registry.connect.redhat.com) は自動生成される
dockercfg シークレットタイプを受け入れません (BZ#1476330)。汎用のファイルベー
スのシークレットは docker login コマンドで生成されるファイルを使用して作成する必
要があります。

$ docker login registry.connect.redhat.com --username developer@example.com

Password: *************
Login Succeeded

$ oc create secret generic redhat-connect --from-
file=.dockerconfigjson=.docker/config.json

$ oc secrets link default redhat-connect --for=pull

13.7. タグおよびイメージメタデータのインポート

イメージストリームは、外部 Docker イメージレジストリーのイメージリポジトリーからタグおよびイ
メージメタデータをインポートするように設定できます。これは複数の異なる方法で実行できます。

oc import-image コマンドで --from オプションを使用してタグとイメージ情報を手動でイン
ポートできます。

$ oc import-image <image_stream_name>[:<tag>] --from=<docker_image_repo> --confirm

以下に例を示します。

$ oc import-image my-ruby --from=docker.io/openshift/ruby-20-centos7 --confirm
The import completed successfully.

Name: my-ruby
Created: Less than a second ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2016-05-06T20:59:30Z
Docker Pull Spec: 172.30.94.234:5000/demo-project/my-ruby

Tag Spec Created PullSpec Image
latest docker.io/openshift/ruby-20-centos7 Less than a second ago docker.io/openshift/ruby-
20-centos7@sha256:772c5bf9b2d1e8... <same>

また、latest だけではなくイメージのすべてのタグをインポートするには --all フラグを追加す
ることもできます。

OpenShift Container Platform のほとんどのオブジェクトの場合と同様に、CLI を使用して
JSON または YAML 定義を作成し、これをファイルに保存してからオブジェクトを作成できま
す。spec.dockerImageRepository フィールドをイメージの Docker プル仕様に設定します。

apiVersion: "v1"
kind: "ImageStream"
metadata:

OpenShift Container Platform 3.9 開発者ガイド

204

https://bugzilla.redhat.com/show_bug.cgi?id=1476330

 name: "my-ruby"
spec:
 dockerImageRepository: "docker.io/openshift/ruby-20-centos7"

次にオブジェクトを作成します。

$ oc create -f <file>

外部 Docker レジストリーのイメージを参照するイメージストリームを作成する場合、OpenShift
Container Platform は短時間で外部レジストリーと通信し、イメージについての最新情報を取得しま
す。

タグおよびイメージメタデータの同期後に、イメージストリームオブジェクトは以下のようになりま
す。

apiVersion: v1
kind: ImageStream
metadata:
 name: my-ruby
 namespace: demo-project
 selflink: /oapi/v1/namespaces/demo-project/imagestreams/my-ruby
 uid: 5b9bd745-13d2-11e6-9a86-0ada84b8265d
 resourceVersion: '4699413'
 generation: 2
 creationTimestamp: '2016-05-06T21:34:48Z'
 annotations:
 openshift.io/image.dockerRepositoryCheck: '2016-05-06T21:34:48Z'
spec:
 dockerImageRepository: docker.io/openshift/ruby-20-centos7
 tags:
 -
 name: latest
 annotations: null
 from:
 kind: DockerImage
 name: 'docker.io/openshift/ruby-20-centos7:latest'
 generation: 2
 importPolicy: { }
status:
 dockerImageRepository: '172.30.94.234:5000/demo-project/my-ruby'
 tags:
 -
 tag: latest
 items:
 -
 created: '2016-05-06T21:34:48Z'
 dockerImageReference: 'docker.io/openshift/ruby-20-
centos7@sha256:772c5bf9b2d1e8e80742ed75aab05820419dc4532fa6d7ad8a1efddda5493dc3'
 image: 'sha256:772c5bf9b2d1e8e80742ed75aab05820419dc4532fa6d7ad8a1efddda5493dc3'
 generation: 2

タグおよびイメージメタデータを同期するため、タグをスケジュールに応じて外部レジストリーのクエ
リーを実行できるよう設定できます。 これは、「タグのイメージストリームへの追加」で説明されてい
るように --scheduled=true フラグを oc tag コマンドに設定して実行できます。

第13章 イメージの管理

205

1

または、タグの定義で importPolicy.scheduled を true に設定することもできます。

apiVersion: v1
kind: ImageStream
metadata:
 name: ruby
spec:
 tags:
 - from:
 kind: DockerImage
 name: openshift/ruby-20-centos7
 name: latest
 importPolicy:
 scheduled: true

13.7.1. 非セキュアなレジストリーからのイメージのインポート

イメージストリームは、自己署名型の証明書を使って署名されたものを使用する場合や、HTTPS では
なく単純な HTTP を使用する場合など、非セキュアなイメージレジストリーからタグおよびイメージメ
タデータをインポートするように設定できます。

これを設定するには、openshift.io/image.insecureRepository アノテーションを追加し、これを true
に設定します。この設定はレジストリーへの接続時の証明書の検証をバイパスします。

openshift.io/image.insecureRepository アノテーション true に設定します。

重要

このオプションは統合レジストリーに対して、イメージの提供時にイメージストリーム
でタグ付けされた外部イメージについて非セキュアなトランスポートにフォールバック
するよう指示しますが、これにはリスクが伴います。可能な場合には、istag にのみ非セ
キュアのマークを付けてこのリスクを回避します。

重要

kind: ImageStream
apiVersion: v1
metadata:
 name: ruby
 annotations:
 openshift.io/image.insecureRepository: "true" 1
 spec:
 dockerImageRepository: my.repo.com:5000/myimage

OpenShift Container Platform 3.9 開発者ガイド

206

重要

上記の定義はタグおよびイメージメタデータのインポートのみに適用されます。このイ
メージがクラスターで使用されるようにするには (docker pull を実行できるようにする
には)、以下のいずれかが該当している必要があります。

1. 各ノードには Docker が dockerImageRepository のレジストリーの部分に一致
する --insecure-registry フラグで設定されている。詳細は、「 Host
Preparation 」を参照してください。

2. 各 istag 仕様では referencePolicy.type が Local に設定されている。詳細は、
「参照ポリシー」を参照してください。

13.7.1.1. イメージストリームタグのポリシー

13.7.1.1.1. 非セキュアなタグのインポートポリシー

上記のアノテーションは、特定の ImageStream のすべてのイメージおよびタグに適用されます。より
詳細な制御を実行するために、ポリシーを istags に設定できます。タグの定義の
importPolicy.insecure を true に設定すると、このタグ下のイメージについてのみ非セキュアなトラン
スポートへのフォールバックが許可されます。

注記

特定の istag 下のイメージについてのセキュアでないトランスポートへのフォールバッ
クは、イメージストリームにセキュアでないアノテーションが付けられるか、または
istag にセキュアでないインポートポリシーが設定されている場合に有効になりま
す。importPolicy.insecure ̀が false に設定されていると、イメージストリームのアノ
テーションは上書きできません。

13.7.1.1.2. 参照ポリシー

参照ポリシーにより、このイメージストリームタグを参照するリソースがどこからイメージをプルする
かを指定できます。これはリモートイメージ (外部レジストリーからインポートされるもの) にのみ適用
されます。Local と Source のオプションから選択できます。

Source ポリシーはクライアントに対し、イメージのソースレジストリーから直接プルするように指示
します。統合レジストリーは、イメージがクラスターによって管理されていない限り使用されません。
(これは外部イメージではありません。) これはデフォルトポリシーになります。

Local ポリシーはクライアントに対し、常に統合レジストリーからプルするように指示します。これは
Docker デーモンの設定を変更せずに外部の非セキュアなレジストリーからプルする場合に役立ちま
す。

このポリシーはイメージストリームタグの使用にのみ適用されます。外部レジストリーの場所を使用し
てイメージを直接参照したり、プルしたりするコンポーネントまたは操作は内部レジストリーにリダイ
レクトされません。

プルスルー(pull-through)機能

このレジストリーの機能はリモートイメージをクライアントに提供します。この機能はデフォルトで有
効にされており、ローカルの参照ポリシーが使用されるようにするには有効にされている必要がありま
す。さらにすべての Blob は後のアクセスを速めるためにミラーリングされます。

イメージストリームタグの仕様でポリシーを referencePolicy.type として設定できます。

第13章 イメージの管理

207

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-host-preparation
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#image-stream-tag
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#middleware-repository-pullthrough

1

2

ローカル参照ポリシーが設定されたセキュアでないタグの例

該当レジストリーへの非セキュアな接続を使用するようタグ mytag を設定します。

外部イメージをプルするために統合レジストリーを使用するよう mytag を設定します。参照ポリ
シータイプが Source に設定されている場合、クライアントはイメージを
my.repo.com:5000/myimage から直接フェッチします。

13.7.2. プライベートレジストリーからのイメージのインポート

イメージストリームは、プライベートレジストリーからタグおよびイメージメタデータをインポートす
るように設定できます。 これには認証が必要です。

これを設定するには、認証情報を保存するために使用されるシークレットを作成する必要がありま
す。oc create secret コマンドを使用してシークレットを作成する方法については、「Pod が他のセ
キュアなレジストリーからイメージを参照できるようにする設定」を参照してください。

シークレットが設定されたら、次に新規イメージストリームを作成するか、または oc import-image
コマンドを使用します。インポートプロセスで OpenShift Container Platform はシークレットを取得し
てリモートパーティーに提供します。

注記

セキュアでないレジストリーからインポートする場合には、シークレットに定義された
レジストリーの URL に :80 ポートのサフィックスを追加するようにしてください。 追加
していない場合にレジストリーからインポートしようとすると、このシークレットは使
用されません。

13.7.3. 外部レジストリーの信頼される証明書の追加

インポート元となっているレジストリーが標準の認証局で署名されていない証明書を使用している場
合、レジストリーの証明書または署名する認証局を信頼するようシステムを明示的に設定する必要があ
ります。これは 、レジストリーインポートコントローラーを実行するホストシステム (通常はマスター
ノード) に CA 証明書またはレジストリー証明書を追加して実行できます。

証明書または CA 証明書は、ホストシステムの /etc/pki/tls/certs または /etc/pki/ca-trust にそれぞれ追
加する必要があります。また証明書の変更を反映するには、update-ca-trust コマンドを Red Hat ディ
ストリビューションで実行して、マスターサービスを再起動する必要があります。

kind: ImageStream
apiVersion: v1
metadata:
 name: ruby
 tags:
 - from:
 kind: DockerImage
 name: my.repo.com:5000/myimage
 name: mytag
 importPolicy:
 insecure: true 1
 referencePolicy:
 type: Local 2

OpenShift Container Platform 3.9 開発者ガイド

208

13.7.4. 複数のプロジェクト間でのイメージのインポート

イメージストリームは、異なるプロジェクトから内部レジストリーのタグおよびイメージメタデータを
インポートするように設定できます。推奨される方法としては、「タグのイメージストリームへの追
加」で説明されている oc tag コマンドを使用できます。

$ oc tag <source_project>/<image_stream>:<tag> <new_image_stream>:<new_tag>

別の方法として、プル仕様を使用して他のプロジェクトからイメージを手動でインポートすることもで
きます。

警告

以下の方法は使用しないことを強く推奨します。 この使用は oc tag を使用するだ
けでは不十分な場合にのみに使用する必要があります。

1. 最初に、他のプロジェクトにアクセスするために必要なポリシーを追加します。

$ oc policy add-role-to-group \
 system:image-puller \
 system:serviceaccounts:<destination_project> \
 -n <source_project>

これにより、<destination_project> が <source_project> からイメージをプルできます。

2. ポリシーが有効な場合、イメージを手動でインポートできます。

$ oc import-image <new_image_stream> --confirm \
 --from=<docker_registry>/<source_project>/<image_stream>

13.7.5. イメージの手動プッシュによるイメージストリームの作成

イメージストリームはイメージを内部レジストリーに手動でプッシュすると自動的に作成されます。こ
れは OpenShift Container Platform 内部レジストリーを使用している場合にのみ可能です。

この手順を実行する前に、以下の条件を満たしている必要があります。

プッシュ先となる宛先プロジェクトがすでに存在している必要がある。

ユーザーはそのプロジェクトで {get, update} "imagestream/layers" を実行する権限がある必
要があります。さらに、イメージストリームが存在していない場合、ユーザーはそのプロジェ
クトで {create} "imagestream" を実行する権限がなければなりません。プロジェクト管理者に
はこれらを実行するパーミッションがあります。

注記



第13章 イメージの管理

209

注記

system:image-pusher ロールは新規イメージストリームの作成パーミッションを付与せ
ず、既存イメージストリームにイメージをプッシュするパーミッションのみを付与する
ため、ユーザーに追加パーミッションが付与されない場合、存在していないイメージス
トリームにイメージをプッシュするためにこのパーミッションを使用することはできま
せん。

イメージを手動でプッシュしてイメージストリームを作成するには、以下を実行します。

1. まず、内部レジストリーにログインします。

2. 次に、適切な内部レジストリーの場所を使用してイメージにタグを付けます。たとえ
ば、docker.io/centos:centos7 イメージをローカルにプルしている場合は以下を実行します。

$ docker tag docker.io/centos:centos7 172.30.48.125:5000/test/my-image

3. 最後に、イメージを内部レジストリーにプッシュします。以下に例を示します。

$ docker push 172.30.48.125:5000/test/my-image
The push refers to a repository [172.30.48.125:5000/test/my-image] (len: 1)
c8a648134623: Pushed
2bf4902415e3: Pushed
latest: digest:
sha256:be8bc4068b2f60cf274fc216e4caba6aa845fff5fa29139e6e7497bb57e48d67 size:
6273

4. イメージストリームが作成されていることを確認します。

$ oc get is
NAME DOCKER REPO TAGS UPDATED
my-image 172.30.48.125:5000/test/my-image latest 3 seconds ago

13.8. イメージストリーム変更時の更新のトリガー

イメージストリームタグが新規イメージを参照するように更新される場合、OpenShift Container
Platform は、古いイメージを使用していたリソースに新規イメージをロールアウトするためのアクショ
ンを自動的に実行します。イメージストリームタグを参照しているリソースのタイプに応じ、この設定
はさまざまな方法で実行できます。

13.8.1. OpenShift リソース

OpenShift DeploymentConfigs および BuildConfigs は ImageStreamTags への変更によって自動的にト
リガーされます。トリガーされたアクションは更新された ImageStreamTag で参照されるイメージの新
規の値を使用して実行されます。この機能の使用方法についての詳細は、BuildConfig トリガーおよび
DeploymentConfig トリガーについての説明を参照してください。

13.8.2. Kubernetes リソース

API 定義の一部としてトリガーを制御するためのフィールドセットを含む DeploymentConfigs および
BuildConfigs とは異なり、Kubernetes リソースにはトリガー用のフィールドがありません。その代わ
りに、OpenShift Container Platform はアノテーションを使用してユーザーがトリガーを要求できるよ
うにします。アノテーションは以下のように定義されます。

OpenShift Container Platform 3.9 開発者ガイド

210

Key: image.openshift.io/triggers
Value: array of triggers, where each item has the schema:
[
 {
 "from" :{
 "kind": "ImageStreamTag", // required, the resource to trigger from, must be ImageStreamTag
 "name": "example:latest", // required, the name of an ImageStreamTag
 "namespace": "myapp", // optional, defaults to the namespace of the object
 },
 // required, JSON path to change
 // Note that this field is limited today, and only accepts a very specific set
 // of inputs (a JSON path expression that precisely matches a container by ID or index).
 // For pods this would be "spec.containers[?(@.name='web')].image".
 "fieldPath": "spec.template.spec.containers[?(@.name='web')].image",
 // optional, set to true to temporarily disable this trigger.
 "paused": "false"
 },
 ...
]

OpenShift Container Platform が Pod テンプレート (CronJobs、Deployments、StatefulSets、
DaemonSets、Jobs、ReplicaSets、ReplicationControllers、および Pods のみ) とこのアノテーション
の両方が指定されたコアの Kubernetes リソースを検出すると、トリガーが参照する ImageStreamTag
に関連付けられているイメージを使用してオブジェクトの更新を試行します。この更新は、指定の
fieldPath に対して実行されます。

以下の例では、トリガーは example:latest イメージストリームタグの更新時に実行されます。実行時
に、オブジェクトの Pod テンプレートにある web コンテナーへのイメージ参照が、新しいイメージの
値に更新されます。Pod テンプレートがデプロイメント定義の一部である場合には、Pod テンプレート
への変更はデプロイメントを自動的にトリガーされて、新規イメージがロールアウトされます。

image.openshift.io/triggers=[{"from":
{"kind":"ImageStreamTag","name":"example:latest"},"fieldPath":"spec.template.spec.containers[?
(@.name='web')].image"}]

イメージトリガーをデプロイメントに追加する時に、oc set triggers コマンドも使用できます。たとえ
ば、以下のコマンドは example という名前のデプロイメントにイメージ変更トリガーを追加
し、example:latest イメージストリームタグが更新されるとデプロイメント内の web コンテナーがイ
メージの新規の値で更新されます。

$ oc set triggers deploy/example --from-image=example:latest -c web

デプロイメントが一時停止されない限り、この Pod テンプレートの更新により、デプロイメントはイ
メージの新規の値で自動的に実行されます。

13.9. イメージストリーム定義の記述

イメージストリーム全体に対するイメージストリームの定義を記述して、複数のイメージストリームを
定義できます。これにより、oc コマンドを実行せずに異なるクラスターに定義を配信することができ
ます。

イメージストリームの定義は、イメージストリームやインポートする固有のタグに関する情報を指定し
ます。

第13章 イメージの管理

211

1

2

3

4

5

6

7

8

イメージストリームオブジェクトの定義

apiVersion: v1
kind: ImageStream
metadata:
 name: ruby
 annotations:
 openshift.io/display-name: Ruby 1
spec:
 tags:
 - name: '2.0' 2
 annotations:
 openshift.io/display-name: Ruby 2.0 3
 description: >- 4
 Build and run Ruby 2.0 applications on CentOS 7. For more information
 about using this builder image, including OpenShift considerations,
 see
 https://github.com/sclorg/s2i-ruby-container/tree/master/2.0/README.md.
 iconClass: icon-ruby 5
 sampleRepo: 'https://github.com/sclorg/ruby-ex.git' 6
 tags: 'builder,ruby' 7
 supports: 'ruby' 8
 version: '2.0' 9
 from:
 kind: DockerImage 10
 name: 'docker.io/openshift/ruby-20-centos7:latest' 11

イメージストリーム全体での簡単でユーザーフレンドリーな名前。

タグはバージョンとして参照されます。タグはドロップダウンメニューに表示されます。

イメージストリーム内のこのタグのユーザーフレンドリーな名前です。これは簡単で、バージョン
情報が含まれている必要があります (該当する場合)。

タグの説明。これにはユーザーがイメージの提供内容を把握できる程度の詳細情報が含まれます。
これには追加の説明へのリンクを含めることができます。説明をいくつかの文に制限します。

このタグの表示されるアイコン。可能な場合は既存のロゴアイコンから選択しま
す。FontAwesome および Patternfly のアイコンも使用できます。または、イメージストリームを
使用する OpenShift Container Platform クラスターに CSS カスタマイズ を追加できるので、CSS
カスタマイズ経由でアイコンを提供します。存在するアイコンクラスを指定する必要があります。
これを指定しないと、汎用アイコンへのフォールバックが禁止されます。

このイメージストリームタグをビルダーイメージタグとして使用してビルドでき、サンプルアプリ
ケーションを実行するために使用されるソースリポジトリーの URL です。

イメージストリームタグが関連付けられるカテゴリーです。このタグがカタログに表示されるに
は、ビルダータグが必要です。これを提供されているカタログカテゴリーのいずれかに関連付ける
タグを追加します。コンソールの定数ファイルの CATALOG_CATEGORIES で id および
categoryAliases を参照してください。カテゴリーはクラスター全体に対して カスタマイズ する
こともできます。

このイメージがサポートする言語。この値は builder イメージを指定されるソースリポジトリーに
一致させるように oc new-app の起動時に使用されます。

OpenShift Container Platform 3.9 開発者ガイド

212

https://rawgit.com/openshift/openshift-logos-icon/master/demo.html
http://fontawesome.io/icons/
https://www.patternfly.org/styles/icons/
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#loading-custom-scripts-and-stylesheets
https://github.com/openshift/origin-web-console/blob/master/app/scripts/constants.js
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-catalog-categories

9

10

11

このタグのバージョン情報。

このイメージストリームタグが参照するオブジェクトのタイプ。有効な値は
DockerImage、ImageStreamTag および ImageStreamImage です。

このイメージストリームタグがインポートするオブジェクト。

ImageStream に定義できるフィールドについての詳細は、「 Imagestream API 」および「
ImagestreamTag API 」を参照してください。

第13章 イメージの管理

213

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/io/#object-schema
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/io/#object-schema

第14章 クォータおよび制限範囲

14.1. 概要

クォータおよび制限範囲を使用して、クラスター管理者はプロジェクトで使用されるオブジェクトの数
やコンピュートリソースの量を制限するための制約を設定することができます。これは、管理者がすべ
てのプロジェクトでリソースの効果的な管理および割り当てを実行し、いずれのプロジェクトでの使用
量がクラスターサイズに対して適切な量を超えることのないようにするのに役立ちます。

開発者は Pod およびコンテナーのレベルでコンピュートリソースの要求および制限を設定することも
できます。

以下のセクションは、クォータおよび制限範囲の設定を確認し、それらの制約対象や、独自の Pod お
よびコンテナーでコンピュートリソースを要求し、制限する方法について理解するのに役立ちます。

14.2. クォータ

ResourceQuota オブジェクトで定義されるリソースクォータは、プロジェクトごとにリソース消費量
の総計を制限する制約を指定します。これは、タイプ別にプロジェクトで作成できるオブジェクトの数
量を制限すると共に、そのプロジェクトのリソースが消費できるコンピュートリソースおよびストレー
ジの合計量を制限することができます。

注記

クォータはクラスター管理者によって設定され、所定プロジェクトにスコープが設定さ
れます。

14.2.1. クォータの表示

web コンソールでプロジェクトの Quota ページに移動し、プロジェクトのクォータで定義されるハー
ド制限に関連する使用状況の統計を表示できます。

CLI を使用してクォータの詳細を表示することもできます。

1. 最初に、プロジェクトで定義されたクォータの一覧を取得します。たとえば、demoproject と
いうプロジェクトの場合は以下のようになります。

$ oc get quota -n demoproject
NAME AGE
besteffort 11m
compute-resources 2m
core-object-counts 29m

2. 次に、関心のあるクォータについて記述します。たとえば、core-object-counts クォータの場
合、以下を実行します。

$ oc describe quota core-object-counts -n demoproject
Name: core-object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10
persistentvolumeclaims 0 4

OpenShift Container Platform 3.9 開発者ガイド

214

1

2

3

4

5

1

replicationcontrollers 3 20
secrets 9 10
services 2 10

詳細のクォータ定義は、オブジェクトで oc export を実行して表示できます。以下は、クォータ定義の
サンプルを示しています。

core-object-counts.yaml

プロジェクトに存在できる ConfigMap オブジェクトの合計数です。

プロジェクトに存在できる Persistent Volume Claim (永続ボリューム要求、PVC) の合計数です。

プロジェクトに存在できるレプリケーションコントローラーの合計数です。

プロジェクトに存在できるシークレットの合計数です。

プロジェクトに存在できるサービスの合計数です。

openshift-object-counts.yaml

プロジェクトに存在できるイメージストリームの合計数です。

compute-resources.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: core-object-counts
spec:
 hard:
 configmaps: "10" 1
 persistentvolumeclaims: "4" 2
 replicationcontrollers: "20" 3
 secrets: "10" 4
 services: "10" 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: openshift-object-counts
spec:
 hard:
 openshift.io/imagestreams: "10" 1

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:
 pods: "4" 1

第14章 クォータおよび制限範囲

215

1

2

3

4

5

1

2

1

2

3

プロジェクトに存在できる非終了状態の Pod の合計数です。

非終了状態のすべての Pod において、CPU 要求の合計は 1 コアを超えることができません。

非終了状態のすべての Pod において、メモリー要求の合計は 1 Gi を超えることができません。

非終了状態のすべての Pod において、CPU 制限の合計は 2 コアを超えることができません。

非終了状態のすべての Pod において、メモリー制限の合計は 2 Gi を超えることができません。

besteffort.yaml

プロジェクトに存在できる QoS (Quality of Service) が BestEffort の非終了状態の Pod の合計数
です

クォータを、メモリーまたは CPU のいずれかの QoS (Quality of Service) が BestEffort の一致す
る Pod のみに制限します。

compute-resources-long-running.yaml

非終了状態の Pod の合計数です。

非終了状態のすべての Pod において、CPU 制限の合計はこの値を超えることができません。

非終了状態のすべての Pod において、メモリー制限の合計はこの値を超えることができません。

 requests.cpu: "1" 2
 requests.memory: 1Gi 3
 limits.cpu: "2" 4
 limits.memory: 2Gi 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:
 pods: "1" 1
 scopes:
 - BestEffort 2

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-long-running
spec:
 hard:
 pods: "4" 1
 limits.cpu: "4" 2
 limits.memory: "2Gi" 3
 scopes:
 - NotTerminating 4

OpenShift Container Platform 3.9 開発者ガイド

216

4

1

2

3

4

1

2

3

4

クォータをspec.activeDeadlineSeconds が nil に設定されている一致する Pod のみに制限しま
す。ビルド Pod は、RestartNever ポリシーが適用されない場合に NotTerminating になります。

compute-resources-time-bound.yaml

非終了状態の Pod の合計数です。

非終了状態のすべての Pod において、CPU 制限の合計はこの値を超えることができません。

非終了状態のすべての Pod において、メモリー制限の合計はこの値を超えることができません。

クォータをspec.activeDeadlineSeconds >=0 に設定されている一致する Pod のみに制限しま
す。たとえば、このクォータはビルド Pod またはデプロイヤー Pod に影響を与えますが、web
サーバーまたはデータベースなどの長時間実行されない Pod には影響を与えません。

storage-consumption.yaml

プロジェクト内の永続ボリューム要求 (PVC) の合計数です。

プロジェクトのすべての永続ボリューム要求 (PVC) において、要求されるストレージの合計はこ
の値を超えることができません。

プロジェクトのすべての永続ボリューム要求 (PVC) において、gold ストレージクラスで要求され
るストレージの合計はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求 (PVC) において、silver ストレージクラスで要求され
るストレージの合計はこの値を超えることができません。

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-time-bound
spec:
 hard:
 pods: "2" 1
 limits.cpu: "1" 2
 limits.memory: "1Gi" 3
 scopes:
 - Terminating 4

apiVersion: v1
kind: ResourceQuota
metadata:
 name: storage-consumption
spec:
 hard:
 persistentvolumeclaims: "10" 1
 requests.storage: "50Gi" 2
 gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
 silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
 silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
 bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
 bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7

第14章 クォータおよび制限範囲

217

5

6

7

るストレージの合計はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求 (PVC) において、silver ストレージクラスの要求の合
計数はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求 (PVC) において、bronze ストレージクラスで要求さ
れるストレージの合計はこの値を超えることができません。これが 0 に設定される場合、bronze
ストレージクラスはストレージを要求できないことを意味します。

プロジェクトのすべての永続ボリューム要求 (PVC) において、bronze ストレージクラスで要求さ
れるストレージの合計はこの値を超えることができません。これが 0 に設定される場合は、
bronze ストレージクラスでは要求を作成できないことを意味します。

14.2.2. クォータで管理されるリソース

以下では、クォータで管理できる一連のコンピュートリソースとオブジェクトタイプについて説明しま
す。

注記

status.phase in (Failed, Succeeded) が true の場合、Pod は終了状態にあります。

表14.1 クォータで管理されるコンピュートリソース

リソース名 説明

cpu 非終了状態のすべての Pod での CPU 要求の合計はこの値を超えることができ
ません。cpu および requests.cpu は同じ値であり、相互に置き換え可能な
ものとして使用できます。

memory 非終了状態のすべての Pod でのメモリー要求の合計はこの値を超えることがで
きません。memory および requests.memory は同じ値であり、相互に置き
換え可能なものとして使用できます。

requests.cpu 非終了状態のすべての Pod での CPU 要求の合計はこの値を超えることができ
ません。cpu および requests.cpu は同じ値であり、相互に置き換え可能な
ものとして使用できます。

requests.memory 非終了状態のすべての Pod でのメモリー要求の合計はこの値を超えることがで
きません。memory および requests.memory は同じ値であり、相互に置き
換え可能なものとして使用できます。

limits.cpu 非終了状態のすべての Pod での CPU 制限の合計はこの値を超えることができ
ません。

limits.memory 非終了状態のすべての Pod でのメモリー制限の合計はこの値を超えることがで
きません。

表14.2 クォータで管理されるストレージリソース

OpenShift Container Platform 3.9 開発者ガイド

218

リソース名 説明

requests.storage 任意の状態のすべての永続ボリューム要求 (PVC) でのストレージ要求の合計
は、この値を超えることができません。

persistentvolumeclaim
s

プロジェクトに存在できる永続ボリューム要求 (PVC) の合計数です。

<storage-class-
name>.storageclass.st
orage.k8s.io/requests.
storage

一致するストレージクラスを持つ、任意の状態のすべての永続ボリューム要求
(PVC) でのストレージ要求の合計はこの値を超えることができません。

<storage-class-
name>.storageclass.st
orage.k8s.io/persistent
volumeclaims

プロジェクトに存在できる、一致するストレージクラスを持つ Persistent
Volume Claim (永続ボリューム要求、PVC) の合計数です。

表14.3 クォータで管理されるオブジェクト数

リソース名 説明

pods プロジェクトに存在できる非終了状態の Pod の合計数です。

replicationcontrollers プロジェクトに存在できるレプリケーションコントローラーの合計数です。

resourcequotas プロジェクトに存在できるリソースクォータの合計数です。

services プロジェクトに存在できるサービスの合計数です。

secrets プロジェクトに存在できるシークレットの合計数です。

configmaps プロジェクトに存在できる ConfigMap オブジェクトの合計数です。

persistentvolumeclaim
s

プロジェクトに存在できる永続ボリューム要求 (PVC) の合計数です。

openshift.io/imagestre
ams

プロジェクトに存在できるイメージストリームの合計数です。

14.2.3. クォータのスコープ

各クォータには スコープ のセットが関連付けられます。クォータは、列挙されたスコープの交差部分
に一致する場合にのみリソースの使用状況を測定します。

スコープをクォータに追加すると、クォータが適用されるリソースのセットを制限できます。許可され
るセット以外のリソースを設定すると、検証エラーが発生します。

第14章 クォータおよび制限範囲

219

スコープ 説明

Terminating spec.activeDeadlineSeconds >= 0 の Pod に一致します。

NotTerminating spec.activeDeadlineSeconds が nil の Pod に一致します。

BestEffort cpu または memory のいずれかの QoS (Quality of Service) が Best Effort の
Pod に一致します。コンピュートリソースのコミットについての詳細は、「
QoS(Quality of Service)クラス 」を参照してください。

NotBestEffort cpu および memory の QoS (Quality of Service) が Best Effort でない Pod に
一致します。

BestEffort スコープは、以下のリソースを制限するようにクォータを制限します。

pods

Terminating、NotTerminating、および NotBestEffort スコープは、以下のリソースを追跡するよう
にクォータを制限します。

pods

memory

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

14.2.4. クォータの実施

プロジェクトのリソースクォータが最初に作成されると、プロジェクトは、更新された使用状況の統計
が計算されるまでクォータ制約の違反を引き起こす可能性のある新規リソースの作成機能を制限しま
す。

クォータが作成され、使用状況の統計が更新されると、プロジェクトは新規コンテンツの作成を許可し
ます。リソースを作成または変更する場合、クォータの使用量はリソースの作成または変更要求がある
とすぐに増分します。

リソースを削除する場合、クォータの使用量は、プロジェクトのクォータ統計の次回の完全な再計算時
に減分されます。プロジェクトの変更がクォータの使用制限を超える場合、サーバーはアクションを拒
否します。クォータ制約を違反していること、およびシステムで現在確認される使用量の統計値を示す
適切なエラーメッセージが返されます。

14.2.5. 要求 vs 制限

コンピュートリソースの割り当て時に、各コンテナーは CPU およびメモリーの要求値と制限値を指定
できます。クォータはこれらの値のいずれも制限できます。

OpenShift Container Platform 3.9 開発者ガイド

220

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#qos-classes

クォータに requests.cpu または requests.memory の値が指定されている場合、すべての着信コンテ
ナーがそれらのリソースを明示的に要求することが求められます。クォータに limits.cpu または
limits.memory の値が指定されている場合、すべての着信コンテナーがそれらのリソースの明示的な制
限を指定することが求められます。

Pod およびコンテナーに要求および制限を設定する方法についての詳細は、「コンピュートリソース」
を参照してください。

14.3. 制限範囲

LimitRange オブジェクトで定義される制限範囲は、Pod、コンテナー、イメージ、イメージストリー
ム、および Persistent Volume Claim (永続ボリューム要求、PVC) のレベルでプロジェクトのコン
ピュートリソース制約を列挙し、Pod、コンテナー、イメージ、イメージストリームまたは Persistent
Volume Claim (永続ボリューム要求、PVC) で消費できるリソースの量を指定します。

すべてのリソース作成および変更要求は、プロジェクトの各 LimitRange オブジェクトに対して評価さ
れます。リソースが列挙される制約に違反する場合、そのリソースは拒否されます。リソースが明示的
な値を指定しない場合で、制約がデフォルト値をサポートする場合は、デフォルト値がリソースに適用
されます。

注記

制限範囲はクラスター管理者によって設定され、所定プロジェクトにスコープが設定さ
れます。

14.3.1. 制限範囲の表示

web コンソールでプロジェクトの Quota ページに移動し、プロジェクトで定義される制限範囲を表示
できます。

CLI を使用して制限範囲の詳細を表示することもできます。

1. まず、プロジェクトで定義される制限範囲の一覧を取得します。たとえば、demoproject とい
うプロジェクトの場合は以下のようになります。

$ oc get limits -n demoproject
NAME AGE
resource-limits 6d

2. 次に、関連のある制限範囲の説明を表示します。 たとえば、resource-limits 制限範囲の場合は
以下のようになります。

$ oc describe limits resource-limits -n demoproject
Name: resource-limits
Namespace: demoproject
Type Resource Min Max Default Request Default Limit Max
Limit/Request Ratio
---- -------- --- --- --------------- ------------- -----------------------
Pod cpu 200m 2 - - -
Pod memory 6Mi 1Gi - - -
Container cpu 100m 2 200m 300m 10
Container memory 4Mi 1Gi 100Mi 200Mi -
openshift.io/Image storage - 1Gi - - -
openshift.io/ImageStream openshift.io/image - 12 - - -
openshift.io/ImageStream openshift.io/image-tags - 10 - - -

第14章 クォータおよび制限範囲

221

1

2

3

4

5

6

7

8

9

10

詳細の制限範囲の定義は、オブジェクトで oc export を実行して表示できます。以下は、制限範囲の定
義例を示しています。

コア Limit Range オブジェクトの定義

制限範囲オブジェクトの名前です。

すべてのコンテナーにおいて Pod がノードで要求できる CPU の最大量です。

すべてのコンテナーにおいて Pod がノードで要求できるメモリーの最大量です。

すべてのコンテナーにおいて Pod がノードで要求できる CPU の最小量です。

すべてのコンテナーにおいて Pod がノードで要求できるメモリーの最小量です。

Pod の単一コンテナーが要求できる CPU の最大量です。

Pod の単一コンテナーが要求できるメモリーの最大量です。

Pod の単一コンテナーが要求できる CPU の最小量です。

Pod の単一コンテナーが要求できるメモリーの最小量です。

指定がない場合、コンテナーによる使用を制限する CPU のデフォルト量です。

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "core-resource-limits" 1
spec:
 limits:
 - type: "Pod"
 max:
 cpu: "2" 2
 memory: "1Gi" 3
 min:
 cpu: "200m" 4
 memory: "6Mi" 5
 - type: "Container"
 max:
 cpu: "2" 6
 memory: "1Gi" 7
 min:
 cpu: "100m" 8
 memory: "4Mi" 9
 default:
 cpu: "300m" 10
 memory: "200Mi" 11
 defaultRequest:
 cpu: "200m" 12
 memory: "100Mi" 13
 maxLimitRequestRatio:
 cpu: "10" 14

OpenShift Container Platform 3.9 開発者ガイド

222

11

12

13

14

コンテナーによる使用を制限するメモリーのデフォルト量です (指定がない場合)。

コンテナーが使用を要求する CPU のデフォルト量です (指定がない場合)。

コンテナーが使用を要求するメモリーのデフォルト量です (指定がない場合)。

制限の要求に対する比率でコンテナーで実行できる CPU バーストの最大量です。

CPU およびメモリーの測定方法についての詳細は、「コンピュートリソース」を参照してください。

14.3.2. コンテナーの制限

サポートされるリソース:

CPU

メモリー

サポートされる制約:

コンテナーごとに設定されます。 指定される場合、以下を満たしている必要があります。

表14.4 コンテナー

制約 動作

Min Min[resource]: container.resources.requests[resource] (必須) または
container/resources.limits[resource] (オプション) 以下

設定で min CPU を定義している場合、要求値はその CPU 値よりも大きくなけ
ればなりません。制限値を指定する必要はありません。

Max container.resources.limits[resource] (必須): Max[resource] 以下

設定で max CPU を定義している場合、要求値を定義する必要はありません
が、CPU 制約の最大値の条件を満たす制限値を設定する必要があります。

MaxLimitRequestRatio MaxLimitRequestRatio[resource]: (
container.resources.limits[resource] /
container.resources.requests[resource]) 以下

設定で maxLimitRequestRatio 値を定義している場合に、新規コンテナーに
は要求値および制限値の両方が必要になります。さらに OpenShift Container
Platform は、制限を要求で除算して制限の要求に対する比率を算出します。こ
の値は、1 より大きい正の整数でなければなりません。

たとえば、コンテナーのlimit 値が cpu: 500 で、request 値が cpu: 100 であ
る場合、cpu の要求に対する制限の比は 5 になります。この比率は
maxLimitRequestRatio より小さいか等しくなければなりません。

サポートされるデフォルト:

Default[resource]

指定がない場合は container.resources.limit[resource] を所定の値にデフォルト設定します。

第14章 クォータおよび制限範囲

223

Default Requests[resource]

指定がない場合は、container.resources.requests[resource] を所定の値にデフォルト設定しま
す。

14.3.3. Pod の制限

サポートされるリソース:

CPU

メモリー

サポートされる制約:

Pod のすべてのコンテナーにおいて、以下を満たしている必要があります。

表14.5 Pod

制約 実施される動作

Min Min[resource]: container.resources.requests[resource] (必須) または
container.resources.limits[resource] (オプション) 以下

Max container.resources.limits[resource] (必須): Max[resource] 以下

MaxLimitRequestRatio MaxLimitRequestRatio[resource]:
(container.resources.limits[resource] /
container.resources.requests[resource]) 以下

14.4. コンピュートリソース

ノードで実行される各コンテナーはコンピュートリソースを消費します。 コンピュートリソースは要求
し、割り当て、消費できる数量を測定できるリソースです。

Pod 設定ファイルの作成時に、クラスターでの Pod のスケジュールを効果的に実行し、適切なパ
フォーマンスを確保できるように各コンテナーが必要とする CPU およびメモリー (RAM) の量をオプ
ションで指定できます。

CPU は millicore という単位で測定されます。クラスター内の各ノードはオペレーティングシステムを
検査して、ノード上の CPU コアの量を判別し、その値を 1000 で乗算して合計容量を表します。たと
えば、ノードに 2 コアある場合に、ノードの CPU 容量は 2000m として表されます。単一コアの 1/10
を使用する場合には、100m として表されます。

メモリーはバイト単位で測定されます。さらに、これには SI サフィックス (E、P、T、G、M、 K) また
は、相当する 2 のべき乗の値 (Ei、Pi、Ti、Gi、Mi、Ki) を指定できます。

apiVersion: v1
kind: Pod
spec:
 containers:
 - image: openshift/hello-openshift
 name: hello-openshift
 resources:

OpenShift Container Platform 3.9 開発者ガイド

224

1

2

3

4

コンテナーは 100m CPU を要求します。

コンテナーは 200Mi メモリーを要求します。

コンテナーは 200m CPU の制限を設定します。

コンテナーは 400Mi メモリーの制限を設定します。

14.4.1. CPU 要求

Pod の各コンテナーはノードで要求する CPU の量を指定できます。スケジューラーは CPU 要求を使
用してコンテナーに適したノードを検索します。

CPU 要求はコンテナーが消費できる CPU の最小量を表しますが、CPU の競合がない場合、ノード上
の利用可能なすべての CPU を使用できます。ノードに CPU の競合がある場合、CPU 要求はシステム
上のすべてのコンテナーに対し、コンテナーで使用可能な CPU 時間についての相対的な重みを指定し
ます。

ノード上でこの動作を実施するために CPU 要求がカーネル CFS 共有にマップされます。

14.4.2. コンピュートリソースの表示

Pod のコンピュートリソースを表示するには、以下を実行します。

$ oc describe pod ruby-hello-world-tfjxt
Name: ruby-hello-world-tfjxt
Namespace: default
Image(s): ruby-hello-world
Node: /
Labels: run=ruby-hello-world
Status: Pending
Reason:
Message:
IP:
Replication Controllers: ruby-hello-world (1/1 replicas created)
Containers:
 ruby-hello-world:
 Container ID:
 Image ID:
 Image: ruby-hello-world
 QoS Tier:
 cpu: Burstable
 memory: Burstable
 Limits:
 cpu: 200m
 memory: 400Mi
 Requests:

 requests:
 cpu: 100m 1
 memory: 200Mi 2
 limits:
 cpu: 200m 3
 memory: 400Mi 4

第14章 クォータおよび制限範囲

225

 cpu: 100m
 memory: 200Mi
 State: Waiting
 Ready: False
 Restart Count: 0
 Environment Variables:

14.4.3. CPU 制限

Pod の各コンテナーはノードで使用を制限する CPU 量を指定できます。CPU 制限はコンテナーがノー
ドの競合の有無とは関係なく使用できる CPU の最大量を制御します。コンテナーが指定の制限を以上
を使用しようとする場合には、システムによりコンテナーの使用量が調節されます。これにより、コン
テナーがノードにスケジュールされる Pod 数とは関係なく一貫したサービスレベルを維持することが
できます。

14.4.4. メモリー要求

デフォルトで、コンテナーはノード上の可能な限り多くのメモリーを使用できます。クラスター内での
Pod の配置を改善するには、コンテナーの実行に必要なメモリーの量を指定します。スケジューラーは
Pod をノードにバインドする前にノードの利用可能なメモリー容量を考慮に入れます。コンテナーは、
要求を指定する場合も依然として可能な限り多くのメモリーを消費することができます。

14.4.5. メモリー制限

メモリー制限を指定する場合、コンテナーが使用できるメモリーの量を制限できます。たとえば 200Mi
の制限を指定する場合、コンテナーの使用はノード上のそのメモリー量に制限されます。コンテナーが
指定されるメモリー制限を超える場合、コンテナーは終了します。 その後はコンテナーの再起動ポリ
シーによって再起動する可能性もあります。

14.4.6. QoS (Quality of Service) 層

作成後、コンピュートリソースは quality of service (QoS) で分類されます。これは、リソースごとに
指定される要求および制限値に基づいて 3 つの層に分類されます。

QoS (Quality of Service) 説明

BestEffort 要求および制限が指定されない場合に指定されます。

Burstable 要求がオプションで指定される制限よりも小さい値に指定される場合に指定さ
れます。

Guaranteed 制限がオプションで指定される要求に等しい値に指定される場合に指定されま
す。

コンテナーに各コンピュートリソースに異なる QoS を生じさせる要求および制限セットが含まれる場
合、これは Burstable として分類されます。

QoS は、リソースが圧縮可能であるかどうかによって各種のリソースにそれぞれ異なる影響を与えま
す。CPU は圧縮可能なリソースですが、メモリーは圧縮できないリソースです。

CPU リソースの場合:

OpenShift Container Platform 3.9 開発者ガイド

226

BestEffort CPU コンテナーはノードで利用可能な CPU を消費できますが、最も低い優先
順位で実行されます。

Burstable CPU コンテナーは要求される CPU の最小量を取得することが保証されますが、
追加の CPU 時間を取得できる場合もあればできない場合もあります。追加の CPU リソー
スはノード上のすべてのコンテナーで要求される量に基づいて分配されます。

Guaranteed CPU コンテナーは、追加の CPU サイクルが利用可能な場合でも要求される量
のみを取得することが保証されます。これにより、ノード上の他のアクティビティーとは関
係なく一定のパフォーマンスレベルを確保できます。

メモリーリソースの場合:

BestEffort メモリー コンテナーはノード上で利用可能なメモリーを消費できますが、スケ
ジューラーがコンテナーを、その必要を満たすのに十分なメモリーを持つノードに配置する
保証はありません。さらにノードで OOM (Out of Memory) イベントが発生する場
合、BestEffort コンテナーが強制終了される可能性が最も高くなります。

Burstable メモリー コンテナーは要求されるメモリー量を取得できるようノードにスケ
ジュールされますが、それ以上の量を消費する可能性があります。ノード上で OOM イベン
トが発生する場合、Burstable コンテナーはメモリー回復の試行時に BestEffort コンテ
ナーの次に強制終了されます。

Guaranteed メモリー コンテナーは、要求されるメモリー量のみを取得します。OOM イベ
ントが発生する場合は、システム上に他の BestEffort または Burstable コンテナーがない
場合にのみ強制終了されます。

14.4.7. CLI でのコンピュートリソースの指定

CLI でコンピュートリソースを指定するには、以下を実行します。

$ oc run ruby-hello-world --image=ruby-hello-world --limits=cpu=200m,memory=400Mi --
requests=cpu=100m,memory=200Mi

14.4.8. 不透明な整数リソース

不透明な整数リソースは、クラスターのオペレーターがシステムで認識されない新規のノードレベルの
リソースを提供することを可能にします。ユーザーは CPU やメモリーと同様に Pod 仕様にあるこれら
のリソースを消費できます。スケジューラーは、利用可能な量を上回るリソースが複数の Pod に同時
に割り当てられないようにリソースアカウンティングを実行します。

注記

不透明な整数リソースは現時点でアルファ機能であり、リソースアカウンティングのみ
が実装されています。これらのリソースについてのリソースクォータや制限範囲のサ
ポートはなく、これらが QoS に影響を与えることはありません。

不透明な整数リソースが 不透明 (opaque) と言われるのは、OpenShift Container Platform がリソース
が何を認識しない状態でも、そのリソースが十分にある場合に Pod をノードにスケジュールするため
です。それらが 整数リソース と言われるのは、それらが整数で表される量で利用可能であるか、また
は 公開 されるためです。API サーバーはこれらのリソースの量を整数に制限します。有効な 量の例
は、3、3000m、および 3Ki などです。

通常はクラスター管理者がリソースを作成し、それらを利用可能にします。不透明な整数リソースの作

第14章 クォータおよび制限範囲

227

通常はクラスター管理者がリソースを作成し、それらを利用可能にします。不透明な整数リソースの作
成についての詳細は、『管理者ガイド』の「 不透明な 整数リソース」を参照してください。

Pod の不透明な整数リソースを消費するには、不透明なリソースの名前を
spec.containers[].resources.requests フィールドにキーとして含めるように Pod を編集します。

例: 以下の Pod は 2 つの CPU および 1 つの foo (不透明なリソース) を要求しています。

Pod は、(CPU、メモリー、およびすべての不透明なリソースを含む) リソース要求のすべてが満たされ
る場合にのみスケジュールされます。Pod は、リソース要求がいずれのノードでも満たされない場合に
は PENDING 状態のままになります。

Conditions:
 Type Status
 PodScheduled False
...
Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason Message
 --------- -------- ----- ---- ------------- -------- ------ -------
 14s 0s 6 default-scheduler Warning FailedScheduling No nodes are available that match all of
the following predicates:: Insufficient pod.alpha.kubernetes.io/opaque-int-resource-foo (1).

14.5. プロジェクトごとのリソース制限

クラスター管理者 はリソース制限をプロジェクトごとに設定することができ ます。開発者にはこれら
の制限を作成し、編集し、削除することができませんが、アクセス可能なプロジェクトのリソース制限
を 表示すること ができます。

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: myimage
 resources:
 requests:
 cpu: 2
 pod.alpha.kubernetes.io/opaque-int-resource-foo: 1

OpenShift Container Platform 3.9 開発者ガイド

228

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#admin-guide-opaque-resources
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#admin-guide-limits
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#viewing-limits

第15章 POD の PRESET (プリセット) を使用した情報の POD への
挿入

15.1. 概要

Pod の Preset は、ユーザーが指定する情報を Pod の作成時に Pod に挿入するオブジェクトです。

重要

OpenShift Container Platform 3.7 の時点で、Pod の Preset はサポートされなくなりま
した。

挿入可能な Pod の Preset オブジェクトを使用します。

シークレットオブジェクト

ConfigMap オブジェクト

ストレージボリューム

コンテナーボリュームのマウント

環境変数

開発者は、すべての情報を Pod に追加するために Pod ラベルが PodPreset のラベルセレクターに一致
することのみを確認する必要があります。Pod の ラベル は、一致する ラベルセレクター を持つ 1 つ以
上の Pod Preset オブジェクトに Pod を関連付けます。

Pod の Preset を使用すると、開発者は Pod が消費するサービスの詳細を把握せずに Pod をプロビジョ
ニングできます。管理者は、開発者が Pod をデプロイできないようにすることなく、サービスの設定
項目を開発者に表示されないようにすることができます。たとえば、管理者は環境変数を使ってシーク
レットおよびデータベースポート経由でデータベースの名前、ユーザー名、パスワードを提供する Pod
の Preset を作成できます。Pod 開発者は、すべての情報を Pod に含めるために使用するラベルのみを
知っている必要があります。開発者は Pod の Preset を作成し、すべての同じタスクを実行することも
できます。たとえば、開発者は環境変数を複数の Pod に自動的に挿入する Preset を作成できます。

Pod の Preset が Pod に適用されると、OpenShift Container Platform は Pod 仕様を変更し、挿入可能
なデータを追加し、Pod の Preset で変更されたことを示すアノテーションを Pod 仕様に付けます。ア
ノテーションの形式は以下のとおりです。

podpreset.admission.kubernetes.io/<pod-preset name>: `resource version`

クラスターで Pod の Preset を使用するには、以下を実行します。

管理者は、/etc/origin/master/master -config.yaml で Pod の Preset 受付コントローラープ
ラグインを有効 にする必要があります。

Pod の Preset の作成者は Pod の Preset で API タイプの settings.k8s.io/v1alpha1/podpreset
を有効にし、挿入可能な情報を Pod の Preset に追加する必要があります。

Pod の作成時にエラーが生じる場合は、Pod の Preset から挿入されたリソースなしに Pod が作成され
ている場合です。

Pod 仕様の podpreset.admission.kubernetes.io/exclude: "true" パラメーターを使用して、Pod の

第15章 POD の PRESET (プリセット) を使用した情報の POD への挿入

229

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#labels
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#services

1

2

3

4 5

6

7

8

9

Pod 仕様の podpreset.admission.kubernetes.io/exclude: "true" パラメーターを使用して、Pod の
Preset 変更によって特定の Pod が変更されないようにすることができます。以下の Pod 仕様の例 を参
照してください。

注記

Pod の Preset 機能は、サービスカタログ がインストールされている場合にのみ利用で
きます。

Pod の Preset オブジェクトの例

settings.k8s.io/v1alpha1 API を指定します。

Pod の Preset の名前。この名前は Pod アノテーションで使用されます。

Pod 仕様のラベルに一致するラベルセレクターです。

コンテナーに渡す環境変数を作成します。

ConfigMap を Pod 仕様に追加します。

シークレットオブジェクトを Pod 仕様に追加します。

外部ストレージボリュームをコンテナー内にマウントするかどうかを指定します。

コンテナーが利用できるストレージボリュームを定義します。

Pod 仕様の例

kind: PodPreset
apiVersion: settings.k8s.io/v1alpha1 1
metadata:
 name: allow-database 2
spec:
 selector:
 matchLabels:
 role: frontend 3
 env:
 - name: DB_PORT 4
 value: "6379" 5
 envFrom:
 - configMapRef: 6
 name: etcd-env-config
 - secretKeyRef: 7
 name: test-secret
 volumeMounts: 8
 - mountPath: /cache
 name: cache-volume
 volumes: 9
 - name: cache-volume
 emptyDir: {}

apiVersion: v1

OpenShift Container Platform 3.9 開発者ガイド

230

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-service-catalog

1

1

2

3

Pod の Preset のラベルセレクターに一致するラベルです。

Pod の Preset 適用後の Pod 仕様の例

Pod 仕様が変更を禁止するように設定されていない場合に、Pod の Preset が挿入されたことを示
すアノテーションが追加されます。

ボリュームマウントが Pod に追加されます。

環境変数が Pod に追加されます。

kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend 1
spec:
 containers:
 - name: website
 image: ecorp/website
 ports:
 - containerPort: 80

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend
 annotations:
 podpreset.admission.kubernetes.io/allow-database: "resource version" 1
spec:
 containers:
 - name: website
 image: ecorp/website
 volumeMounts: 2
 - mountPath: /cache
 name: cache-volume
 ports:
 - containerPort: 80
 env: 3
 - name: DB_PORT
 value: "6379"
 envFrom: 4
 - configMapRef:
 name: etcd-env-config
 - secretKeyRef:
 name: test-secret
 volumes: 5
 - name: cache-volume
 emptyDir: {}

第15章 POD の PRESET (プリセット) を使用した情報の POD への挿入

231

4

5

1

Pod に追加される ConfigMap およびシークレットオブジェクト。

ボリュームマウントが Pod に追加されます。

Pod を Pod の Preset から除外する Pod 仕様の例

Pod の Preset 機能がこの Pod を挿入できないようにするにはこのパラメーターを追加します。

15.2. POD の PRESET の作成

以下の例は、Pod の Preset を作成し、使用する方法を示しています。

受付コントローラーの追加

管理者は /etc/origin/master/master-config.yaml ファイルをチェックして、Pod の Preset 受付コ
ントローラープラグインが存在することを確認できます。受付コントローラーが存在しない場合
は、以下を使用してプラグインを追加します。

admissionConfig:
 pluginConfig:
 PodPreset:
 configuration:
 kind: DefaultAdmissionConfig
 apiVersion: v1
 disable: false

次に OpenShift Container Platform サービスを再起動します。

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

Pod の Preset の作成

管理者または開発者は、settings.k8s.io/v1alpha1 API、挿入する情報、および Pod に一致するラベ
ルセレクターを使用して Pod の Preset を作成します。

kind: PodPreset
apiVersion: settings.k8s.io/v1alpha1
metadata:
 name: allow-database

apiVersion: v1
kind: Pod
metadata:
 name: no-podpreset
 labels:
 app: website
 role: frontend
 annotations:
 podpreset.admission.kubernetes.io/exclude: "true" 1
spec:
 containers:
 - name: hello-pod
 image: docker.io/ocpqe/hello-pod

OpenShift Container Platform 3.9 開発者ガイド

232

spec:
 selector:
 matchLabels:
 role: frontend
 env:
 - name: DB_PORT
 value: "6379"
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir: {}

Pod の作成

開発者は Pod の Preset のラベルセレクターに一致するラベルを使って Pod を作成します。

1. Pod の Preset のラベルセレクターに一致するラベルで標準的な Pod 仕様を作成します。

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend
spec:
 containers:
 - name: website
 image: ecorp/website
 ports:
 - containerPort: 80

2. Pod を作成します。

$ oc create -f pod.yaml

3. 作成後に Pod 仕様をチェックします。

$ oc get pod website -o yaml

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend
 annotations:
 podpreset.admission.kubernetes.io/allow-database: "resource version" 1
spec:
 containers:
 - name: website
 image: ecorp/website
 volumeMounts: 2

第15章 POD の PRESET (プリセット) を使用した情報の POD への挿入

233

1 2 3

1

 - mountPath: /cache
 name: cache-volume
 ports:
 - containerPort: 80
 env: 3
 - name: DB_PORT
 value: "6379"
 volumes:
 - name: cache-volume
 emptyDir: {}

アノテーションが含まれており、コンテナーのストレージおよび環境変数が挿入さ
れています。

15.3. 複数の POD の PRESET の使用

複数の Pod 挿入ポリシーを挿入するために複数の Pod の Preset を使用することができます。

Pod の Preset 受付コントローラープラグインが有効に なっていることを確認します。

環境変数、マウントポイントおよび/またはストレージボリュームを使用して、以下のような
Pod の Preset を作成します。

kind: PodPreset
apiVersion: settings.k8s.io/v1alpha1
metadata:
 name: allow-database
spec:
 selector:
 matchLabels:
 role: frontend 1
 env:
 - name: DB_PORT
 value: "6379"
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir: {}

Pod ラベルに一致するラベルセレクターです。

以下のように 2 つ目の Pod の Preset を作成します。

kind: PodPreset
apiVersion: settings.k8s.io/v1alpha1
metadata:
 name: proxy
spec:
 selector:
 matchLabels:

OpenShift Container Platform 3.9 開発者ガイド

234

1

1

 role: frontend 1
 volumeMounts:
 - mountPath: /etc/proxy/configs
 name: proxy-volume
 volumes:
 - name: proxy-volume
 emptyDir: {}

Pod ラベルに一致するラベルセレクターです。

標準的な Pod 仕様を作成します。

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend 1
spec:
 containers:
 - name: website
 image: ecorp/website
 ports:
 - containerPort: 80

Pod の Preset ラベルセレクターのいずれにも一致するラベルです。

Pod を作成します。

$ oc create -f pod.yaml

作成後に Pod 仕様をチェックします。

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend
 annotations:
 podpreset.admission.kubernetes.io/allow-database: "resource version" 1
 podpreset.admission.kubernetes.io/proxy: "resource version" 2
spec:
 containers:
 - name: website
 image: ecorp/website
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 - mountPath: /etc/proxy/configs
 name: proxy-volume

第15章 POD の PRESET (プリセット) を使用した情報の POD への挿入

235

1 2

 ports:
 - containerPort: 80
 env:
 - name: DB_PORT
 value: "6379"
 volumes:
 - name: cache-volume
 emptyDir: {}
 - name: proxy-volume
 emptyDir: {}

複数の Pod の Preset が挿入されたことを示すアノテーションです。

15.4. POD の PRESET の削除

以下のコマンドを使用して Pod の Preset を削除できます。

$ oc delete podpreset <name>

以下に例を示します。

$ oc delete podpreset allow-database

podpreset "allow-database" deleted

OpenShift Container Platform 3.9 開発者ガイド

236

第16章 クラスターへのトラフィックの送信

16.1. クラスターへのトラフィックの送信

OpenShift Container Platform は、クラスター内で実行されるサービスを使ってクラスター外からの通
信を実行するための複数の方法を提供します。

注記

このセクションの手順では、クラスターの管理者が事前に行っておく必要のある前提条
件があります。

管理者は、一定範囲の外部 IP アドレスから固有の外部 IP アドレスをサービスに割り当てることにより
外部トラフィックが到達できるサービスのエンドポイントを公開することができます。管理者は CIDR
表記を使用してアドレスの範囲を指定でき、これによりユーザーはクラスターに対して外部 IP アドレ
スの要求を行うことができます。

各 IP アドレスは、各サービスがそれぞれ固有のエンドポイントを持つように 1 つのサービスにのみ割り
当てる必要があります。起こり得るポートのクラッシュについては 「first-come, first-served (先着
順)」で処理されます。

以下は、推奨事項を推奨される順で示しています。

HTTP/HTTPS を使用する場合はルーターを使用します。

HTTPS 以外の TLS で暗号化されたプロトコルを使用する場合 (TLS と SNI ヘッダーの使用な
ど) はルーターを使用します。

それ以外の場合は、ロードバランサー、外部 IP、または NodePort を使用します。

方法 目的

ルーターの使用 HTTP/HTTPS トラフィックおよび HTTPS 以外の
TLS で暗号化されたプロトコル (TLS と SNI ヘッダー
の使用など) へのアクセスを許可します。

ロードバランサーサービスを使用したパブリック IP
の自動割り当て

プールから割り当てられた IP アドレスを使った非標
準ポートへのトラフィックを許可します。

外部 IP のサービスへの手動割り当て 特定の IP アドレスを使った非標準ポートへのトラ
フィックを許可します。

NodePort の設定 クラスターのすべてのノードでサービスを公開しま
す。

16.2. ルーターを使用したトラフィックのクラスターへの送信

16.2.1. 概要

ルーターの使用は、OpenShift Container Platform クラスターへの外部アクセスを許可する最も一般的

第16章 クラスターへのトラフィックの送信

237

ルーターの使用は、OpenShift Container Platform クラスターへの外部アクセスを許可する最も一般的
な方法です。

ルーター は外部要求を許可し、設定された ルート に基づいてそれらをプロキシー送信するよう設定さ
れます。これは Web アプリケーションに対応する HTTP/HTTPS(SNI)/TLS(SNI) に制限されます。

16.2.2. 管理者の前提条件

この手順を開始する前に、管理者は以下の条件を満たしていることを確認する必要があります。

要求がクラスターに到達するように外部ポートをクラスターネットワーク環境にセットアップ
します。たとえば名前については、クラスター内の特定ノードまたは他の IP アドレスを参照す
るように DNS で設定できます。DNS ワイルドカード 機能はクラスター内の IP アドレスに対
して名前のサブセットを設定するために使用できます。これを使用するユーザーは、管理者に
問い合わせることなくクラスター内でルートをセットアップできます。

各ノードのローカルのファイアウォールが、IP アドレスの到達要求を許可していることを確認
します。

OpenShift Container Platform クラスターを、適切なユーザーアクセスを許可 するアイデン
ティティープロバイダーを使用 するように設定します。

クラスター管理者ロールを持つユーザーが 1 名以上いることを確認します。このロールをユー
ザーに追加するには、以下のコマンドを実行します。

oc adm policy add-cluster-role-to-user cluster-admin username

OpenShift Container Platform クラスターを、1 つ以上のマスターと 1 つ以上のノード、および
クラスターへのネットワークアクセスのあるクラスター外のシステムと共に用意します。この
手順では、外部システムがクラスターと同じサブセットにあることを前提とします。別のサブ
セットの外部システムに必要な追加のネットワーク設定については、このトピックでは扱いま
せん。

16.2.2.1. パブリック IP 範囲の定義

サービスへのアクセスを許可するための最初の手順として、マスター設定ファイルで外部 IP アドレス
範囲を定義します。

1. クラスター管理者ロールを持つユーザーとして OpenShift Container Platform にログインしま
す。

$ oc login
Authentication required (openshift)
Username: admin
Password:
Login successful.

You have access to the following projects and can switch between them with 'oc project
<projectname>':
 * default
Using project "default".

2. 以下のように /etc/origin/master/master-config.yaml ファイルで externalIPNetworkCIDRs
パラメーターを設定します。

OpenShift Container Platform 3.9 開発者ガイド

238

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#prereq-dns
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-configuring-authentication

networkConfig:
 externalIPNetworkCIDRs:
 - <ip_address>/<cidr>

以下に例を示します。

networkConfig:
 externalIPNetworkCIDRs:
 - 192.168.120.0/24

3. 変更を有効にするために OpenShift Container Platform マスターサービスを再起動します。

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

注意

IP アドレスプールはクラスター内の 1 つ以上のノードで終了している必要があります。

16.2.3. プロジェクトおよびサービスの作成

公開するプロジェクトおよびサービスが存在しない場合、最初にプロジェクトを作成し、次にサービス
を作成します。

プロジェクトおよびサービスがすでに存在する場合は、サービスを公開し、ルートを作成する という次
の手順に進みます。

1. OpenShift Container Platform にログインします。

2. サービスの新規プロジェクトを作成します。

$ oc new-project <project_name>

以下に例を示します。

$ oc new-project external-ip

3. oc new-app コマンドを使用してサービスを作成します。
以下に例を示します。

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.access.redhat.com/openshift3/mysql-55-rhel7

4. 以下のコマンドを実行して新規サービスが作成されていることを確認します。

oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 <none> 3306/TCP 13m

デフォルトで、新規サービスには外部 IP アドレスがありません。

第16章 クラスターへのトラフィックの送信

239

16.2.4. サービスを公開し、ルートを作成する

oc expose コマンドを使用して、サービスをルートと して公開する必要があります。

サービスを公開するには、以下を実行します。

1. OpenShift Container Platform にログインします。

2. 公開するサービスが置かれているプロジェクトにログインします。

$ oc project project1

3. 以下のコマンドを実行してルートを公開します。

oc expose service <service-name>

以下に例を示します。

oc expose service mysql-55-rhel7
route "mysql-55-rhel7" exposed

4. マスターで cURL などのツールを使用し、サービスのクラスター IP アドレスを使用してサービ
スに到達できることを確認します。

curl <pod-ip>:<port>

以下に例を示します。

curl 172.30.131.89:3306

このセクションの例では、クライアントアプリケーションを必要とする MySQL サービスを使
用しています。Got packets out of order のメッセージと共に文字ストリングを取得する場合
は、このサービスに接続されていることになります。

MySQL クライアントがある場合は、標準 CLI コマンドでログインします。

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

16.2.5. ルーターの設定

管理者と連携してルーターを設定します。 外部要求を許可し、設定されたルートに基づいてそれらをプ
ロキシー送信するようにルーターを設定します。

管理者は ワイルドカード DNS エントリーを作成してからルーターをセットアップできます。その後は
管理者に問い合わせることなく edge ルーターをセルフサービスで提供できます。

ルーターには、ユーザーがホスト名をセルフプロビジョニングできるかどうか、またはホスト名に特定
のパターンを使用する必要があるかどうかを管理者が指定できるようにするコントロールがあります。

一連のルートが各種プロジェクトで作成される場合、ルートのセット全体が一連のルーターで利用可能

OpenShift Container Platform 3.9 開発者ガイド

240

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#expose
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#prereq-dns

一連のルートが各種プロジェクトで作成される場合、ルートのセット全体が一連のルーターで利用可能
になります。各ルートはルートのセットからルートを許可 (または選択) します。デフォルトで、すべて
のルーターはすべてのルートを許可します。

すべてのプロジェクトのすべてのラベルを表示するパーミッションを持つルーターは ラベル に基づい
て許可するルートを選択できます。これは ルーターのシャード化 と呼ばれています。これは一連の
ルーター間で着信トラフィックの負荷を分散する際や、特定のルーターへのトラフィックを分離する際
に役立ちます。たとえば、Company A のトラフィックをあるルーターに設定し、Company B のトラ
フィックを別のルーターに指定する場合などに役立ちます。

ルーターは特定のノードで実行されるため、ルーターまたはノードが失敗すると、Ingress トラフィッ
クが停止します。この影響は、各種の異なるノードで冗長なルーターを作成し、高可用性 を使用して
ノードの失敗時にルーター IP アドレスを切り換えることなどによって軽減することができます。

16.2.6. VIP を使用した IP フェイルオーバーの設定

オプションとして、管理者は IP フェイルオーバーを設定できます。

IP フェイルオーバーは、ノードセットの仮想 IP (VIP) アドレスのプールを管理します。セットのすべて
の VIP はセットから選択されるノードによって提供されます。VIP は単一ノードが利用可能である限り
提供されます。ノード上で VIP を明示的に配布する方法がないため、VIP のないノードがある可能性
も、多数の VIP を持つノードがある可能性もあります。そのため、VIPのないノードと、複数のVIPのあ
るノードが存在する場合があります。ノードが 1 つのみ存在する場合は、すべての VIP がそのノードに
配置されます。

VIP はクラスター外からルーティングできる必要があります。

IP フェイルオーバーを設定するには、以下を実行します。

1. マスターで ipfailover サービスアカウントに十分なセキュリティー権限があることを確認しま
す。

oc adm policy add-scc-to-user privileged -z ipfailover

2. 以下のコマンドを実行して IP フェイルオーバーを作成します。

oc adm ipfailover --virtual-ips=<exposed-ip-address> --watch-port=<exposed-port> --
replicas=<number-of-pods> --create

以下に例を示します。

oc adm ipfailover --virtual-ips="172.30.233.169" --watch-port=32315 --replicas=4 --create
--> Creating IP failover ipfailover ...
 serviceaccount "ipfailover" created
 deploymentconfig "ipfailover" created
--> Success

16.3. ロードバランサーを使用したトラフィックのクラスターへの送信

16.3.1. 概要

特定の外部 IP アドレスを必要としない場合、ロードバランサーサービスを OpenShift Container
Platform クラスターへの外部アクセスを許可するよう設定することができます。

ロードバランサーサービスは設定済みのプールから固有の IP を割り当てます。ロードバランサーには

第16章 クラスターへのトラフィックの送信

241

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#labels
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#admin-guide-high-availability

ロードバランサーサービスは設定済みのプールから固有の IP を割り当てます。ロードバランサーには
単一の edge ルーター IP があります (これは仮想 IP (VIP) の場合もありますが、初期の負荷分散では単
一マシンになります。

このプロセスには以下を実行することが関係します。

管理者が前提条件を実行する

開発者がプロジェクトおよびサービスを作成する (公開されるサービスが存在しない場合)

開発者がサービスを公開し、ルートを作成する

開発者がロードバランサーサービスを作成する

ネットワーク管理者がサービスへのネットワークを設定する

16.3.2. 管理者の前提条件

この手順を開始する前に、管理者は以下の条件を満たしていることを確認する必要があります。

要求がクラスターに到達するように外部ポートをクラスターネットワーク環境にセットアップ
します。たとえば名前については、クラスター内の特定ノードまたは他の IP アドレスを参照す
るように DNS で設定できます。DNS ワイルドカード 機能はクラスター内の IP アドレスに対
して名前のサブセットを設定するために使用できます。これを使用するユーザーは、管理者に
問い合わせることなくクラスター内でルートをセットアップできます。

各ノードのローカルのファイアウォールが、IP アドレスの到達要求を許可していることを確認
します。

OpenShift Container Platform クラスターを、適切なユーザーアクセスを許可 するアイデン
ティティープロバイダーを使用 するように設定します。

クラスター管理者ロールを持つユーザーが 1 名以上いることを確認します。このロールをユー
ザーに追加するには、以下のコマンドを実行します。

oc adm policy add-cluster-role-to-user cluster-admin username

OpenShift Container Platform クラスターを、1 つ以上のマスターと 1 つ以上のノード、および
クラスターへのネットワークアクセスのあるクラスター外のシステムと共に用意します。この
手順では、外部システムがクラスターと同じサブセットにあることを前提とします。別のサブ
セットの外部システムに必要な追加のネットワーク設定については、このトピックでは扱いま
せん。

16.3.2.1. パブリック IP 範囲の定義

サービスへのアクセスを許可するための最初の手順として、マスター設定ファイルで外部 IP アドレス
範囲を定義します。

1. クラスター管理者ロールを持つユーザーとして OpenShift Container Platform にログインしま
す。

$ oc login
Authentication required (openshift)
Username: admin
Password:
Login successful.

OpenShift Container Platform 3.9 開発者ガイド

242

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#prereq-dns
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-configuring-authentication

You have access to the following projects and can switch between them with 'oc project
<projectname>':
 * default
Using project "default".

2. 以下のように /etc/origin/master/master-config.yaml ファイルで externalIPNetworkCIDRs
パラメーターを設定します。

networkConfig:
 externalIPNetworkCIDRs:
 - <ip_address>/<cidr>

以下に例を示します。

networkConfig:
 externalIPNetworkCIDRs:
 - 192.168.120.0/24

3. 変更を有効にするために OpenShift Container Platform マスターサービスを再起動します。

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

注意

IP アドレスプールはクラスター内の 1 つ以上のノードで終了している必要があります。

16.3.3. プロジェクトおよびサービスの作成

公開するプロジェクトおよびサービスが存在しない場合、最初にプロジェクトを作成し、次にサービス
を作成します。

プロジェクトおよびサービスがすでに存在する場合は、サービスを公開し、ルートを作成する という次
の手順に進みます。

1. OpenShift Container Platform にログインします。

2. サービスの新規プロジェクトを作成します。

$ oc new-project <project_name>

以下に例を示します。

$ oc new-project external-ip

3. oc new-app コマンドを使用してサービスを作成します。
以下に例を示します。

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.access.redhat.com/openshift3/mysql-55-rhel7

第16章 クラスターへのトラフィックの送信

243

4. 以下のコマンドを実行して新規サービスが作成されていることを確認します。

oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 <none> 3306/TCP 13m

デフォルトで、新規サービスには外部 IP アドレスがありません。

16.3.4. サービスを公開し、ルートを作成する

oc expose コマンドを使用して、サービスをルートと して公開する必要があります。

サービスを公開するには、以下を実行します。

1. OpenShift Container Platform にログインします。

2. 公開するサービスが置かれているプロジェクトにログインします。

$ oc project project1

3. 以下のコマンドを実行してルートを公開します。

oc expose service <service-name>

以下に例を示します。

oc expose service mysql-55-rhel7
route "mysql-55-rhel7" exposed

4. マスターで cURL などのツールを使用し、サービスのクラスター IP アドレスを使用してサービ
スに到達できることを確認します。

curl <pod-ip>:<port>

以下に例を示します。

curl 172.30.131.89:3306

このセクションの例では、クライアントアプリケーションを必要とする MySQL サービスを使
用しています。Got packets out of order のメッセージと共に文字ストリングを取得する場合
は、このサービスに接続されていることになります。

MySQL クライアントがある場合は、標準 CLI コマンドでログインします。

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

次に以下のタスクを実行します。

ロードバランサーサービスの作成

OpenShift Container Platform 3.9 開発者ガイド

244

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#expose

1

2

3

4

ネットワークの設定

IP フェイルオーバーの設定

16.3.5. ロードバランサーサービスの作成

ロードバランサーサービスを作成するには、以下を実行します。

1. OpenShift Container Platform にログインします。

2. 公開するサービスが置かれているプロジェクトを読み込みます。プロジェクトまたはサービス
が存在しない場合は、「プロジェクトおよびサービスの作成」を参照してください。

$ oc project project1

3. マスターノードでテキストファイルを開き、以下のテキストを貼り付け、必要に応じてファイ
ルを編集します。

例16.1 ロードバランサー設定ファイルのサンプル

apiVersion: v1
kind: Service
metadata:
 name: egress-2 1
spec:
 ports:
 - name: db
 port: 3306 2
 loadBalancerIP:
 type: LoadBalancer 3
 selector:
 name: mysql 4

ロードバランサーサービスの説明となる名前を入力します。

公開するサービスがリッスンしている同じポートを入力します。

タイプに loadbalancer を入力します。

サービスの名前を入力します。

4. ファイルを保存し、終了します。

5. 以下のコマンドを実行してサービスを作成します。

oc create -f <file-name>

以下は例になります。

oc create -f mysql-lb.yaml

6. 以下のコマンドを実行して新規サービスを表示します。

第16章 クラスターへのトラフィックの送信

245

oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
egress-2 172.30.236.167 172.29.121.74,172.29.121.74 3306/TCP 6s

サービスには自動的に割り当てられた外部 IP アドレスがあることに注意してください。

7. マスターで cURL などのツールを使用し、パブリック IP アドレスを使用してサービスに到達で
きることを確認します。

$ curl <public-ip>:<port>

++ 例：

$ curl 172.29.121.74:3306

このセクションの例では、クライアントアプリケーションを必要とする MySQL サービスを使
用しています。Got packets out of order のメッセージと共に文字ストリングを取得する場合
は、このサービスに接続していることになります。

MySQL クライアントがある場合は、標準 CLI コマンドでログインします。

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

16.3.6. ネットワークの設定

以下の手順は、他のノードから公開されたサービスにアクセスするために必要なネットワークを設定す
るための一般的なガイドラインです。ネットワーク環境は異なるため、お使いに環境に必要な特定の設
定についてはネットワーク管理者にお問い合わせください。

以下の手順は、すべてのシステムが同じサブネットにあることを前提としています。

ノード上:

1. ネットワークを稼働させるためにネットワークを再起動します。

$ service network restart
Restarting network (via systemctl): [OK]

ネットワークが稼働していない場合、以下のコマンドを実行すると Network is unreachable な
どのエラーメッセージが表示されます。

2. マスター上の公開されたサービスの IP アドレスとマスターホストの IP アドレス間のルートを
追加します。ネットワークルートのネットマスクを使用する場合には、使用するネットマスク
および netmask オプションを使用します。

$ route add -net 172.29.121.74 netmask 255.255.0.0 gw 10.16.41.22 dev eth0

3. cURL などのツールを使用して、パブリック IP アドレスを使用してサービスに到達できること
を確認します。

OpenShift Container Platform 3.9 開発者ガイド

246

$ curl <public-ip>:<port>

以下に例を示します。

curl 172.29.121.74:3306

Got packets out of order のメッセージと共に文字ストリングを取得する場合は、サービスが
ノードからアクセス可能であることになります。

クラスター内にないシステム上:

1. ネットワークを稼働させるためにネットワークを再起動します。

$ service network restart
Restarting network (via systemctl): [OK]

ネットワークが稼働していない場合、以下のコマンドを実行すると Network is unreachable な
どのエラーメッセージが表示されます。

2. マスター上の公開されたサービスの IP アドレスとマスターホストの IP アドレス間のルートを
追加します。ネットワークルートのネットマスクを使用する場合には、使用するネットマスク
および netmask オプションを使用します。

$ route add -net 172.29.121.74 netmask 255.255.0.0 gw 10.16.41.22 dev eth0

3. パブリック IP アドレスを使用してサービスに到達できることを確認します。

$ curl <public-ip>:<port>

以下に例を示します。

curl 172.29.121.74:3306

Got packets out of order のメッセージと共に文字ストリングを取得する場合、サービスがク
ラスター外からアクセス可能であることになります。

16.3.7. VIP を使用した IP フェイルオーバーの設定

オプションとして、管理者は IP フェイルオーバーを設定できます。

IP フェイルオーバーは、ノードセットの仮想 IP (VIP) アドレスのプールを管理します。セットのすべて
の VIP はセットから選択されるノードによって提供されます。VIP は単一ノードが利用可能である限り
提供されます。ノード上で VIP を明示的に配布する方法がないため、VIP のないノードがある可能性
も、多数の VIP を持つノードがある可能性もあります。そのため、VIPのないノードと、複数のVIPのあ
るノードが存在する場合があります。ノードが 1 つのみ存在する場合は、すべての VIP がそのノードに
配置されます。

VIP はクラスター外からルーティングできる必要があります。

IP フェイルオーバーを設定するには、以下を実行します。

1. マスターで ipfailover サービスアカウントに十分なセキュリティー権限があることを確認しま
す。

第16章 クラスターへのトラフィックの送信

247

oc adm policy add-scc-to-user privileged -z ipfailover

2. 以下のコマンドを実行して IP フェイルオーバーを作成します。

oc adm ipfailover --virtual-ips=<exposed-ip-address> --watch-port=<exposed-port> --
replicas=<number-of-pods> --create

以下に例を示します。

oc adm ipfailover --virtual-ips="172.30.233.169" --watch-port=32315 --replicas=4 --create
--> Creating IP failover ipfailover ...
 serviceaccount "ipfailover" created
 deploymentconfig "ipfailover" created
--> Success

16.4. サービスの外部 IP を使用したトラフィックのクラスターへの送信

16.4.1. 概要

サービスを公開する 1 つの方法として、外部 IP アドレスをクラスター外からアクセス可能にするサービ
スに直接割り当てることができます。

「パブリック IP アドレス範囲の定義」で説明されているように、使用する IP アドレスの範囲を作成し
ていることを確認します。

サービスに外部 IP を設定することにより、OpenShift Container Platform は、その IP アドレスをター
ゲットとするクラスターノードに到達するトラフィックが内部 Pod のいずれかに送信されることを許
可する IP テーブルルールをセットアップします。これは内部サービス IP アドレスと似ていますが、外
部 IP は OpenShift Container Platform に対し、このサービスが所定の IP で外部に公開される必要があ
ることを示します。管理者は、この IP アドレスをクラスター内のノードのいずれかのホスト (ノード)
インターフェースに割り当てる必要があります。または、このアドレスは仮想 IP (VIP) として使用する
ことができます。

OpenShift Container Platform ではこれらの IP を管理しないため、管理者はトラフィックがこの IP を
持つノードに到達することを確認する必要があります。

注記

以下は非 HA ソリューションであり、IP フェイルオーバーを設定しません。IP フェイル
オーバーはサービスの高可用性を確保するために必要です。

このプロセスには以下を実行することが関係します。

管理者が前提条件を実行する

開発者がプロジェクトおよびサービスを作成する (公開されるサービスが存在しない場合)

開発者がサービスを公開し、ルートを作成する

開発者が IP アドレスをサービスに割り当てる

ネットワーク管理者がサービスへのネットワークを設定する

OpenShift Container Platform 3.9 開発者ガイド

248

16.4.2. 管理者の前提条件

この手順を開始する前に、管理者は以下の条件を満たしていることを確認する必要があります。

要求がクラスターに到達するように外部ポートをクラスターネットワーク環境にセットアップ
します。たとえば名前については、クラスター内の特定ノードまたは他の IP アドレスを参照す
るように DNS で設定できます。DNS ワイルドカード 機能はクラスター内の IP アドレスに対
して名前のサブセットを設定するために使用できます。これを使用するユーザーは、管理者に
問い合わせることなくクラスター内でルートをセットアップできます。

各ノードのローカルのファイアウォールが、IP アドレスの到達要求を許可していることを確認
します。

OpenShift Container Platform クラスターを、適切なユーザーアクセスを許可 するアイデン
ティティープロバイダーを使用 するように設定します。

クラスター管理者ロールを持つユーザーが 1 名以上いることを確認します。このロールをユー
ザーに追加するには、以下のコマンドを実行します。

oc adm policy add-cluster-role-to-user cluster-admin username

OpenShift Container Platform クラスターを、1 つ以上のマスターと 1 つ以上のノード、および
クラスターへのネットワークアクセスのあるクラスター外のシステムと共に用意します。この
手順では、外部システムがクラスターと同じサブセットにあることを前提とします。別のサブ
セットの外部システムに必要な追加のネットワーク設定については、このトピックでは扱いま
せん。

16.4.2.1. パブリック IP 範囲の定義

サービスへのアクセスを許可するための最初の手順として、マスター設定ファイルで外部 IP アドレス
範囲を定義します。

1. クラスター管理者ロールを持つユーザーとして OpenShift Container Platform にログインしま
す。

$ oc login
Authentication required (openshift)
Username: admin
Password:
Login successful.

You have access to the following projects and can switch between them with 'oc project
<projectname>':
 * default
Using project "default".

2. 以下のように /etc/origin/master/master-config.yaml ファイルで externalIPNetworkCIDRs
パラメーターを設定します。

networkConfig:
 externalIPNetworkCIDRs:
 - <ip_address>/<cidr>

以下に例を示します。

第16章 クラスターへのトラフィックの送信

249

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#prereq-dns
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-configuring-authentication

networkConfig:
 externalIPNetworkCIDRs:
 - 192.168.120.0/24

3. 変更を有効にするために OpenShift Container Platform マスターサービスを再起動します。

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

注意

IP アドレスプールはクラスター内の 1 つ以上のノードで終了している必要があります。

16.4.3. プロジェクトおよびサービスの作成

公開するプロジェクトおよびサービスが存在しない場合、最初にプロジェクトを作成し、次にサービス
を作成します。

プロジェクトおよびサービスがすでに存在する場合は、サービスを公開し、ルートを作成する という次
の手順に進みます。

1. OpenShift Container Platform にログインします。

2. サービスの新規プロジェクトを作成します。

$ oc new-project <project_name>

以下に例を示します。

$ oc new-project external-ip

3. oc new-app コマンドを使用してサービスを作成します。
以下に例を示します。

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.access.redhat.com/openshift3/mysql-55-rhel7

4. 以下のコマンドを実行して新規サービスが作成されていることを確認します。

oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 <none> 3306/TCP 13m

デフォルトで、新規サービスには外部 IP アドレスがありません。

16.4.4. サービスを公開し、ルートを作成する

oc expose コマンドを使用して、サービスをルートと して公開する必要があります。

サービスを公開するには、以下を実行します。

OpenShift Container Platform 3.9 開発者ガイド

250

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#expose

1. OpenShift Container Platform にログインします。

2. 公開するサービスが置かれているプロジェクトにログインします。

$ oc project project1

3. 以下のコマンドを実行してルートを公開します。

oc expose service <service-name>

以下に例を示します。

oc expose service mysql-55-rhel7
route "mysql-55-rhel7" exposed

4. マスターで cURL などのツールを使用し、サービスのクラスター IP アドレスを使用してサービ
スに到達できることを確認します。

curl <pod-ip>:<port>

以下に例を示します。

curl 172.30.131.89:3306

このセクションの例では、クライアントアプリケーションを必要とする MySQL サービスを使
用しています。Got packets out of order のメッセージと共に文字ストリングを取得する場合
は、このサービスに接続されていることになります。

MySQL クライアントがある場合は、標準 CLI コマンドでログインします。

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

次に以下のタスクを実行します。

IP アドレスのサービスへの割り当て

ネットワークの設定

IP フェイルオーバーの設定

16.4.5. IP アドレスのサービスへの割り当て

外部 IP アドレスをサービスに割り当てるには、以下を実行します。

1. OpenShift Container Platform にログインします。

2. 公開するサービスが置かれているプロジェクトを読み込みます。プロジェクトまたはサービス
が存在しない場合は、前提条件にある「プロジェクトおよびサービスの作成」を参照してくだ
さい。

第16章 クラスターへのトラフィックの送信

251

3. 以下のコマンドを実行して、アクセスするサービスに外部 IP アドレスを割り当てます。外部 IP
アドレス範囲の IP アドレスを使用します。

oc patch svc <name> -p '{"spec":{"externalIPs":["<ip_address>"]}}'

<name> はサービスの名前であり、-p はサービス JSON ファイルに適用されるパッチを示して
います。括弧内の式は特定の IP アドレスを指定されたサービスに割り当てます。

以下に例を示します。

oc patch svc mysql-55-rhel7 -p '{"spec":{"externalIPs":["192.174.120.10"]}}'

"mysql-55-rhel7" patched

4. 以下のコマンドを実行してサービスにパブリック IP があることを確認します。

oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 192.174.120.10 3306/TCP 13m

5. マスターで cURL などのツールを使用し、パブリック IP アドレスを使用してサービスに到達で
きることを確認します。

$ curl <public-ip>:<port>

以下に例を示します。

curl 192.168.120.10:3306

Got packets out of order のメッセージと共に文字ストリングを取得する場合は、このサービ
スに接続されていることになります。

MySQL クライアントがある場合は、標準 CLI コマンドでログインします。

$ mysql -h 192.168.120.10 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

16.4.6. ネットワークの設定

外部 IP アドレスが割り当てられた後は、その IP へのルートを作成する必要があります。

以下の手順は、他のノードから公開されたサービスにアクセスするために必要なネットワークを設定す
るための一般的なガイドラインです。ネットワーク環境は異なるため、お使いに環境に必要な特定の設
定についてはネットワーク管理者にお問い合わせください。

注記

以下の手順は、すべてのシステムが同じサブネットにあることを前提としています。

マスター上:

OpenShift Container Platform 3.9 開発者ガイド

252

1. ネットワークを稼働させるためにネットワークを再起動します。

$ service network restart
Restarting network (via systemctl): [OK]

ネットワークが稼働していない場合、以下のコマンドを実行すると Network is unreachable な
どのエラーメッセージが表示されます。

2. 公開するサービスの外部 IP アドレスおよび ifconfig コマンド出力からのホスト IP に関連付け
られたデバイス名を使って以下のコマンドを実行します。

$ ip address add <external-ip> dev <device>

以下に例を示します。

$ ip address add 192.168.120.10 dev eth0

必要な場合は、以下のコマンドを実行してマスターが置かれているホストサーバーの IP アドレ
スを取得します。

$ ifconfig

UP,BROADCAST,RUNNING,MULTICAST のように一覧表示されているデバイスを検索しま
す。

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 10.16.41.22 netmask 255.255.248.0 broadcast 10.16.47.255
 ...

3. マスターが存在するホストの IP アドレスと、マスターホストのゲートウェイ IP アドレスの間
のルートを追加します。ネットワークルートのネットマスクを使用する場合には、使用する
ネットマスクおよび netmask オプションを使用します。

$ route add -host <host_ip_address> netmask <netmask> gw <gateway_ip_address> dev
<device>

以下に例を示します。

$ route add -host 10.16.41.22 netmask 255.255.248.0 gw 10.16.41.254 dev eth0

netstat -nr コマンドはゲートウェイ IP アドレスを提供します。

$ netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 10.16.41.254 0.0.0.0 UG 0 0 0 eth0

4. 公開されるサービスの IP アドレスとマスターホストの IP アドレス間のルートを追加します。

$ route add -net 192.174.120.0/24 gw 10.16.41.22 eth0

ノード上:

第16章 クラスターへのトラフィックの送信

253

1. ネットワークを稼働させるためにネットワークを再起動します。

$ service network restart
Restarting network (via systemctl): [OK]

ネットワークが稼働していない場合、以下のコマンドを実行すると Network is unreachable な
どのエラーメッセージが表示されます。

2. ノードが配置されているホストの IP アドレスと、ノードホストのゲートウェイ IP との間の
ルートを追加します。ネットワークルートのネットマスクを使用する場合には、使用するネッ
トマスクおよび netmask オプションを使用します。

$ route add -net 10.16.40.0 netmask 255.255.248.0 gw 10.16.47.254 eth0

ifconfig コマンドはホスト IP を表示します。

ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 10.16.41.71 netmask 255.255.248.0 broadcast 10.19.41.255

netstat -nrコマンドはゲートウェイ IP を表示します。

netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 10.16.41.254 0.0.0.0 UG 0 0 0 eth0

3. 公開されるサービスの IP アドレスとマスターノードが置かれているホストサーバーの IP アド
レス間のルートを追加します。

$ route add -net 192.174.120.0 netmask 255.255.255.0 gw 10.16.41.22 dev eth0

4. cURL などのツールを使用して、パブリック IP アドレスを使用してサービスに到達できること
を確認します。

$ curl <public-ip>:<port>

以下に例を示します。

curl 192.168.120.10:3306

Got packets out of order のメッセージと共に文字ストリングを取得する場合は、サービスが
ノードからアクセス可能であることになります。

クラスター内にないシステム上:

1. ネットワークを稼働させるためにネットワークを再起動します。

$ service network restart
Restarting network (via systemctl): [OK]

ネットワークが稼働していない場合、以下のコマンドを実行すると Network is unreachable な
どのエラーメッセージが表示されます。

OpenShift Container Platform 3.9 開発者ガイド

254

2. リモートホストの IP アドレスと、リモートホストのゲートウェイ IP の間のルートを追加しま
す。ネットワークルートのネットマスクを使用する場合には、使用するネットマスクおよび
netmask オプションを使用します。

$ route add -net 10.16.64.0 netmask 255.255.248.0 gw 10.16.71.254 eno1

3. マスター上の公開されたサービスの IP アドレスとマスターホストの IP アドレス間のルートを
追加します。

$ route add -net 192.174.120.0 netmask 255.255.248.0 gw 10.16.41.22

4. cURL などのツールを使用して、パブリック IP アドレスを使用してサービスに到達できること
を確認します。

$ curl <public-ip>:<port>

以下に例を示します。

curl 192.168.120.10:3306

Got packets out of order のメッセージと共に文字ストリングを取得する場合、サービスがク
ラスター外からアクセス可能であることになります。

16.4.7. VIP を使用した IP フェイルオーバーの設定

オプションとして、管理者は IP フェイルオーバーを設定できます。

IP フェイルオーバーは、ノードセットの仮想 IP (VIP) アドレスのプールを管理します。セットのすべて
の VIP はセットから選択されるノードによって提供されます。VIP は単一ノードが利用可能である限り
提供されます。ノード上で VIP を明示的に配布する方法がないため、VIP のないノードがある可能性
も、多数の VIP を持つノードがある可能性もあります。そのため、VIPのないノードと、複数のVIPのあ
るノードが存在する場合があります。ノードが 1 つのみ存在する場合は、すべての VIP がそのノードに
配置されます。

VIP はクラスター外からルーティングできる必要があります。

IP フェイルオーバーを設定するには、以下を実行します。

1. マスターで ipfailover サービスアカウントに十分なセキュリティー権限があることを確認しま
す。

oc adm policy add-scc-to-user privileged -z ipfailover

2. 以下のコマンドを実行して IP フェイルオーバーを作成します。

oc adm ipfailover --virtual-ips=<exposed-ip-address> --watch-port=<exposed-port> --
replicas=<number-of-pods> --create

以下に例を示します。

oc adm ipfailover --virtual-ips="172.30.233.169" --watch-port=32315 --replicas=4 --create
--> Creating IP failover ipfailover ...
 serviceaccount "ipfailover" created

第16章 クラスターへのトラフィックの送信

255

 deploymentconfig "ipfailover" created
--> Success

16.5. NODEPORT を使用したトラフィックのクラスターへの送信

16.5.1. 概要

NodePort を使用してクラスター内のすべてのノードでサービス nodePort を公開します。

NodePort を使用するには追加のポートリソースが必要です。

ノードポートはノード IP アドレスの静的ポートでサービスを公開します。

NodePort はデフォルトで 30000-32767 の範囲に置かれます。 つまり、NodePort はサービスの意図
されるポートに一致しないことが予想されます (たとえば 8080 は 31020 として公開される可能性があ
ります)。

管理者は外部 IP がノードにルーティングされており、すべてのノードのローカルのファイアウォール
ルールによって開いたポートへのアクセスが許可されることを確認する必要があります。

NodePort および外部 IP は独立しており、両方を同時に使用できます。

16.5.2. 管理者の前提条件

この手順を開始する前に、管理者は以下の条件を満たしていることを確認する必要があります。

要求がクラスターに到達するように外部ポートをクラスターネットワーク環境にセットアップ
します。たとえば名前については、クラスター内の特定ノードまたは他の IP アドレスを参照す
るように DNS で設定できます。DNS ワイルドカード 機能はクラスター内の IP アドレスに対
して名前のサブセットを設定するために使用できます。これを使用するユーザーは、管理者に
問い合わせることなくクラスター内でルートをセットアップできます。

各ノードのローカルのファイアウォールが、IP アドレスの到達要求を許可していることを確認
します。

OpenShift Container Platform クラスターを、適切なユーザーアクセスを許可 するアイデン
ティティープロバイダーを使用 するように設定します。

クラスター管理者ロールを持つユーザーが 1 名以上いることを確認します。このロールをユー
ザーに追加するには、以下のコマンドを実行します。

oc adm policy add-cluster-role-to-user cluster-admin username

OpenShift Container Platform クラスターを、1 つ以上のマスターと 1 つ以上のノード、および
クラスターへのネットワークアクセスのあるクラスター外のシステムと共に用意します。この
手順では、外部システムがクラスターと同じサブセットにあることを前提とします。別のサブ
セットの外部システムに必要な追加のネットワーク設定については、このトピックでは扱いま
せん。

16.5.3. サービスの設定

サービスの作成または変更時に nodePort のポート番号を指定します。ポートを手動で指定しない場合
は、システムが代わりにこれを割り当てます。

OpenShift Container Platform 3.9 開発者ガイド

256

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#prereq-dns
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-configuring-authentication

1. マスターノードにログインします。

2. 使用予定のプロジェクトが存在しない場合には、サービス用に新規プロジェクトを作成しま
す。

$ oc new-project <project_name>

以下に例を示します。

$ oc new-project external-ip

3. サービス定義を編集して spec.type:NodePort を指定し、オプションで 30000-32767 範囲の
ポートを指定します。

apiVersion: v1
kind: Service
metadata:
 name: mysql
 labels:
 name: mysql
spec:
 type: NodePort
 ports:
 - port: 3036
 nodePort: 30036
 name: http
 selector:
 name: mysql

4. 以下のコマンドを実行して サービスを作成し ます。

$ oc new-app <file-name>

以下に例を示します。

oc new-app mysql.yaml

5. 以下のコマンドを実行して新規サービスが作成されていることを確認します。

oc get svc

NAME CLUSTER_IP EXTERNAL_IP PORT(S) AGE
mysql 172.30.89.219 <nodes> 3036:30036/TCP 2m

外部 IP が <nodes> として一覧表示され、ノードのポートが一覧表示されることに注意してく
ださい。

<NodeIP>:<NodePort> アドレスを使用してサービスにアクセスできるはずです。

第16章 クラスターへのトラフィックの送信

257

第17章 ルート

17.1. 概要

OpenShift Container Platform ルート は、外部クライアントが名前で到達できるように
www.example.com などのホスト名で サービス を公開します。

ホスト名の DNS 解決はルーティングとは別に処理されます。 管理者は常に OpenShift Container
Platform ルーターに対して正常に解決されるクラウドドメインを設定している場合がありますが、関連
性のないホスト名を使用する場合には、ルーターに対して解決されるようにその DNS レコードを別途
変更する必要がある場合があります。

17.2. ルートの作成

Web コンソールまたは CLI を使用して、セキュリティー保護されていないルートとセキュリティー保
護されているルートを作成できます。

Web コンソールを使用してナビゲーションの Applications セクションの下にある Routes ページに移
動します。

Create Route をクリックしてプロジェクト内でルートを定義し、作成します。

図17.1 Web コンソールを使用したルートの作成

OpenShift Container Platform 3.9 開発者ガイド

258

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#services

図17.1 Web コンソールを使用したルートの作成

以下の例では、CLI を使用して非セキュアなルートを作成します。

$ oc expose svc/frontend --hostname=www.example.com

新規ルートは、--name オプションを使用して名前を指定しない限りサービスから名前を継承します。

上記で作成された非セキュアなルートの YAML 定義

apiVersion: v1

第17章 ルート

259

1 パスベースのルーティング については、URL に対して比較対象となるパスコンポーネントを指定
します。

CLI を使用したルートの設定についての情報は、「ルート タイプ」を参照 してください。

非セキュアなルートはデフォルト設定であるため、これが最も簡単なセットアップになります。ただ
し、セキュリティー 保護されたルート は、接続がプライベートのままになるようにセキュリティーを
提供します。キーと証明書 (別々に生成し、署名する必要のある PEM 形式のファイル) で暗号化された
セキュリティー保護された HTTPS ルートを作成するには、create route コマンドを使用し、オプショ
ンで証明書およびキーを指定できます。

注記

TLS は、HTTPS および他の暗号化されたプロトコルにおける SSL の代わりとして使用
されます。

$ oc create route edge --service=frontend \
 --cert=${MASTER_CONFIG_DIR}/ca.crt \
 --key=${MASTER_CONFIG_DIR}/ca.key \
 --ca-cert=${MASTER_CONFIG_DIR}/ca.crt \
 --hostname=www.example.com

上記で作成されたセキュリティー保護されたルートの YAML 定義

kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 path: "/test" 1
 to:
 kind: Service
 name: frontend

apiVersion: v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: edge
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

OpenShift Container Platform 3.9 開発者ガイド

260

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#path-based-routes
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#route-types
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#secured-routes
https://en.wikipedia.org/wiki/Transport_Layer_Security

現時点で、パスワードで保護されたキーファイルはサポートされていません。HAProxy は開始時にパス
ワードを求めるプロンプトを出しますが、このプロセスを自動化する方法はありません。キーファイル
からパスフレーズを削除するために、以下を実行できます。

openssl rsa -in <passwordProtectedKey.key> -out <new.key>

キーと証明書を指定せずにセキュリティー保護されたルートを作成できます。この場合、ルーターのデ
フォルト証明書 が TLS 終端に使用されます。

注記

OpenShift Container Platform の TLS 終端は、カスタム証明書を提供する SNI に依存し
ます。ポート 443 で受信される SNI 以外のトラフィックは TLS 終端で処理され、要求
されるホスト名に一致しない可能性のあるデフォルト証明書により検証エラーが生じる
可能性があります。

すべてのタイプの TLS 終端 および パスベースのルーティング についての詳細は、「アーキテク
チャー」セクション を参照してください。

17.3. ルートエンドポイントによる COOKIE 名の制御の許可

OpenShift Container Platform は、すべてのトラフィックを同じエンドポイントにヒットさせることに
よりステートフルなアプリケーションのトラフィックを可能にするスティッキーセッションを提供しま
す。ただし、エンドポイント Pod が再起動、スケーリング、または設定の変更などによって終了する
場合、このステートフル性はなくなります。

OpenShift Container Platform は Cookie を使用してセッションの永続化を設定できます。ルーターは
ユーザー要求を処理するエンドポイントを選択し、そのセッションの Cookie を作成します。Cookie は
要求の応答として戻され、ユーザーは Cookie をセッションの次の要求と共に送り返します。Cookie は
ルーターに対し、セッションを処理しているエンドポイントを示し、クライアント要求が Cookie を使
用して同じ Pod にルーティングされるようにします。

ルート用に自動生成されるデフォルト名を上書きするために Cookie 名を設定できます。Cookie を削除
すると、次の要求でエンドポイントの再選択が強制的に実行される可能性があります。そのためサー
バーがオーバーロードしている場合には、クライアントからの要求を取り除き、それらの再分配を試行
します。

1. 必要な Cookie 名でルートにアノテーションを付けます。

$ oc annotate route <route_name> router.openshift.io/cookie_name="<your_cookie_name>"

たとえば、my_cookie を新規の Cookie 名として指定するには、以下を実行します。

$ oc annotate route my_route router.openshift.io/cookie_name="my_cookie"

2. cookie を保存し、ルートにアクセスします。

$ curl $my_route -k -c /tmp/my_cookie

 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

第17章 ルート

261

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#using-wildcard-certificates
https://en.wikipedia.org/wiki/Server_Name_Indication
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#secured-routes
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#path-based-routes
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-core-concepts-routes

第18章 外部サービスの統合

18.1. 概要

数多くの OpenShift Container Platform アプリケーションは外部データベースや外部 SaaS エンドポイ
ントなどの外部リソースを使用します。これらの外部リソースはネイティブの OpenShift Container
Platform サービスとしてモデリングされ、アプリケーションが他の内部サービスの場合と同様にそれら
を使用できるようにします。

egress トラフィック はファイアウォールルールまたは Egress ルーターで制御できます。これにより、
アプリケーションサービスの静的 IP アドレスの使用が許可されます。

18.2. 外部データベースのサービスの定義

外部サービスの最も一般的なタイプとして外部データベースを挙げることができます。外部データベー
スをサポートするには、アプリケーションで以下が必要になります。

1. 通信するエンドポイント。

2. 以下を含む認証情報および位置情報 (coordinate)。

ユーザー名

パスフレーズ

データベース名

外部データベースと統合するためのソリューションには、以下が含まれます。

Service オブジェクト: SaaS プロバイダーを OpenShift Container Platform サービスとして表
示します。

1 つ以上のサービスの Endpoint。

認証情報を含む適切な Pod の環境変数。

以下の手順は、外部 MySQL データベースとの統合シナリオについて説明しています。

18.2.1. 手順 1: サービスの定義

サービスは、IP アドレスとエンドポイントを指定するか、または完全修飾ドメイン名 (FQDN) を指定
し定義することができます。

18.2.1.1. IP アドレスの使用

1. 外部データベースを表す OpenShift Container Platform サービス を作成します。これは内部
サービスを作成する場合と同様ですが、サービスの Selector フィールドが異なります。
内部 OpenShift Container Platform サービスは Selector フィールドで ラベル を使用して Pod
をサービスに関連付けます。EndpointsController システムコンポーネントは、セレクターに
一致する Pod でセレクターを指定するサービスのエンドポイントを同期します。サービスプロ
キシー および OpenShift Container Platform ルーター はサービス のエンドポイント間でサー
ビスに対する要求の負荷分散を実行します。

外部リソースを表すサービスには関連付けられる Pod が不要です。代わりに、Selector フィー
ルドを未設定のままにします。これは外部サービスであることを表します。 これにより

OpenShift Container Platform 3.9 開発者ガイド

262

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#admin-guide-controlling-egress-traffic
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#services
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#labels
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#service-proxy

1

2

1

2

3

4

EndpointsController にこのサービスを無視させ、エンドポイントを手動で指定することがで
きます。

オプション: サービスによる接続の転送先となるバッキング Pod のポートです。

selector フィールドは空白のままにします。

2. 次に、サービスの必要なエンドポイントを作成します。これによりサービスプロキシーとルー
ターに対し、サービスにダイレクトされたトラフィックを送信する場所が指定されます。

直前の手順で定義された Service インスタンスの名前です。

サービスへのトラフィックは、複数の指定がある場合に指定された Endpoints 間で負荷
分散されます。

エンドポイント IP にはループバック (127.0.0.0/8)、リンクローカル (169.254.0.0/16)、ま
たはリンクローカルマルチキャスト (224.0.0.0/24) を使用できません。

port および name の定義は直前の手順で定義されたサービスの port および name の値に
一致している必要があります。

18.2.1.2. 外部ドメイン名の使用

外部ドメイン名を使用すると、外部サービスの IP アドレスの変更について把握しておく必要がないた
めに外部サービスのリンケージを管理するのが容易になります。

 kind: "Service"
 apiVersion: "v1"
 metadata:
 name: "external-mysql-service"
 spec:
 ports:
 -
 name: "mysql"
 protocol: "TCP"
 port: 3306
 targetPort: 3306 1
 nodePort: 0
 selector: {} 2

 kind: "Endpoints"
 apiVersion: "v1"
 metadata:
 name: "external-mysql-service" 1
 subsets: 2
 -
 addresses:
 -
 ip: "10.0.0.0" 3
 ports:
 -
 port: 3306 4
 name: "mysql"

第18章 外部サービスの統合

263

http://kubernetes.io/docs/user-guide/services/#services-without-selectors

1

ExternalName サービスにはセレクターまたは定義されたポートまたはエンドポイントがないた
め、ExternalName サービスを使用してトラフィックを外部サービスにダイレクトすることができま
す。

selector フィールドは空白のままにします。

外部ドメイン名サービスを使用すると、システムに対して externalName フィールドの DNS 名 (直前
の例では example.domain.name) がサービスをサポートするリソースの場所であることを示します。
DNS 要求が Kubernetes DNS サーバーに対してなされる場合、CNAME レコードで externalName を
返し、クライアントに対して返された名前を検索して IP アドレスを取得するように指示します。

18.2.2. 手順 2: サービスの消費

サービスおよびエンドポイントが定義されたので、適切なコンテナーの環境変数を設定し、適切な Pod
が認証情報にアクセスしてサービスを使用できるようにします。

kind: "Service"
apiVersion: "v1"
metadata:
 name: "external-mysql-service"
spec:
 type: ExternalName
 externalName: example.domain.name
selector: {} 1

kind: "DeploymentConfig"
apiVersion: "v1"
metadata:
 name: "my-app-deployment"
spec: 1
 strategy:
 type: "Rolling"
 rollingParams:
 updatePeriodSeconds: 1 2
 intervalSeconds: 1 3
 timeoutSeconds: 120
 replicas: 2
 selector:
 name: "frontend"
 template:
 metadata:
 labels:
 name: "frontend"
 spec:
 containers:
 -
 name: "helloworld"
 image: "origin-ruby-sample"
 ports:
 -
 containerPort: 3306
 protocol: "TCP"
 env:
 -

OpenShift Container Platform 3.9 開発者ガイド

264

1

2

3

4

5

6

DeploymentConfig の他のフィールドは省略されます。

各 Pod が次に更新されるまで待機する時間。

更新後に実行されるデプロイメントステータスのポーリング間の待機時間です。

サービスで使用するユーザー名です。

サービスで使用するパスフレーズです。

データベース名です。

外部データベースの環境変数

アプリケーションで外部サービスを使用することは内部サービスを使用することに似ています。アプリ
ケーションには、直前の手順で説明されている認証情報と共に、サービスの環境変数と追加の環境変数
が割り当てられます。たとえば、MySQL コンテナーは以下の環境変数を受信します。

EXTERNAL_MYSQL_SERVICE_SERVICE_HOST=<ip_address>

EXTERNAL_MYSQL_SERVICE_SERVICE_PORT=<port_number>

MYSQL_USERNAME=<mysql_username>

MYSQL_PASSWORD=<mysql_password>

MYSQL_DATABASE_NAME=<mysql_database>

アプリケーションは環境からサービスの位置情報 (coordinate) および認証情報を読み取り、サービス経
由でデータベースとの接続を確立します。

18.3. 外部 SAAS プロバイダー

外部サービスの一般的なタイプは外部 SaaS エンドポイントです。外部 SaaS プロバイダーをサポート
するために、アプリケーションには以下が必要になります。

1. 通信に使用するエンドポイント

2. 以下を含む認証情報のセット

a. API キー

b. ユーザー名

c. パスフレーズ

以下の手順は、外部 SaaS プロバイダーとの統合シナリオについて説明しています。

 name: "MYSQL_USER"
 value: "${MYSQL_USER}" 4
 -
 name: "MYSQL_PASSWORD"
 value: "${MYSQL_PASSWORD}" 5
 -
 name: "MYSQL_DATABASE"
 value: "${MYSQL_DATABASE}" 6

第18章 外部サービスの統合

265

1

2

1

2

18.3.1. IP アドレスおよびエンドポイントの使用

1. 外部サービスを表す OpenShift Container Platform サービス を作成します。これは内部サービ
スを作成することと同様ですが、サービスの Selector フィールドが異なります。
内部 OpenShift Container Platform サービスは Selector フィールドで ラベル を使用して Pod
をサービスに関連付けます。EndpointsController というシステムコンポーネントは、セレク
ターに一致する Pod でセレクターを指定するサービスのエンドポイントを同期します。サービ
スプロキシー および OpenShift Container Platform ルーター はサービス のエンドポイント間
でサービスに対する要求の負荷分散を実行します。

外部リソースを表すサービスは関連付けられる Pod が不要です。代わりに、Selector フィール
ドを未設定のままにします。これによりEndpointsController にこのサービスを無視させ、エ
ンドポイントを手動で指定することができます。

オプション: サービスによる接続の転送先となるバッキング Pod のポートです。

selector フィールドは空白のままにします。

2. 次に、サービスプロキシーおよびルーターにダイレクトされたトラフィックの送信先について
の情報が含まれるサービスのエンドポイントを作成します。

Service インスタンスの名前です。

サービスへのトラフィックはここで指定される subsets 間で負荷分散されます。

3. サービスおよびエンドポイントが定義されたので、適切なコンテナーの環境変数を設定し、
Pod にサービスを使用するための認証情報を付与します。

 kind: "Service"
 apiVersion: "v1"
 metadata:
 name: "example-external-service"
 spec:
 ports:
 -
 name: "mysql"
 protocol: "TCP"
 port: 3306
 targetPort: 3306 1
 nodePort: 0
 selector: {} 2

kind: "Endpoints"
apiVersion: "v1"
metadata:
 name: "example-external-service" 1
subsets: 2
- addresses:
 - ip: "10.10.1.1"
 ports:
 - name: "mysql"
 port: 3306

OpenShift Container Platform 3.9 開発者ガイド

266

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#services
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#labels
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#service-proxy

1

2

3

4

DeploymentConfig の他のフィールドは省略されます。

SAAS_API_KEY: サービスで使用する API キーです。

SAAS_USERNAME: サービスで使用するユーザー名です。

SAAS_PASSPHRASE: サービスで使用するパスフレーズです。

これらの変数は環境変数としてコンテナーに追加されます。環境変数を使用することにより
サービス間の通信が許可されます。 これには API キーやユーザー名およびパスワード認証また
は証明書が必要になる場合とそうでない場合があります。

外部 SaaS プロバイダーの環境変数

内部サービスを作成する場合と同様に、アプリケーションには、直前の手順で説明されている認証情報
と共に、サービスの環境変数と追加の環境変数が割り当てられます。直前の例では、コンテナーは以下
の環境変数を受信します。

EXAMPLE_EXTERNAL_SERVICE_SERVICE_HOST=<ip_address>

 kind: "DeploymentConfig"
 apiVersion: "v1"
 metadata:
 name: "my-app-deployment"
 spec: 1
 strategy:
 type: "Rolling"
 rollingParams:
 timeoutSeconds: 120
 replicas: 1
 selector:
 name: "frontend"
 template:
 metadata:
 labels:
 name: "frontend"
 spec:
 containers:
 -
 name: "helloworld"
 image: "openshift/openshift/origin-ruby-sample"
 ports:
 -
 containerPort: 3306
 protocol: "TCP"
 env:
 -
 name: "SAAS_API_KEY" 2
 value: "<SaaS service API key>"
 -
 name: "SAAS_USERNAME" 3
 value: "<SaaS service user>"
 -
 name: "SAAS_PASSPHRASE" 4
 value: "<SaaS service passphrase>"

第18章 外部サービスの統合

267

1

EXAMPLE_EXTERNAL_SERVICE_SERVICE_PORT=<port_number>

SAAS_API_KEY=<saas_api_key>

SAAS_USERNAME=<saas_username>

SAAS_PASSPHRASE=<saas_passphrase>

アプリケーションは環境からサービスの位置情報 (coordinate) および認証情報を読み取り、サービス経
由でデータベースとの接続を確立します。

18.3.2. 外部ドメイン名の使用

ExternalName サービスにはセレクターや、定義されたポートまたはエンドポイントがありませ
ん。ExternalName サービスを使用して、クラスター内にない外部サービスに、トラフィックを割り当
てることができます。

selector フィールドは空白のままにします。

ExternalName サービスを使用してサービスを externalName フィールドの値 (直前の例では
example.domain.name) にマップします。 これは CNAME レコードを挿入し、サービス名を外部 DNS
アドレスに直接マップするので、エンドポイントのレコードは必要ありません。

 kind: "Service"
 apiVersion: "v1"
 metadata:
 name: "external-mysql-service"
 spec:
 type: ExternalName
 externalName: example.domain.name
 selector: {} 1

OpenShift Container Platform 3.9 開発者ガイド

268

第19章 デバイスマネージャーの使用

19.1. デバイスマネージャーの機能

重要

デバイスマネージャーはテクノロジープレビュー機能です。テクノロジープレビュー機
能は、Red Hat の実稼働環境でのサービスレベルアグリーメント (SLA) ではサポートさ
れていないため、Red Hat では実稼働環境での使用を推奨していません。これらの機能
は、近々発表予定の製品機能をリリースに先駆けてご提供することにより、開発プロセ
スの中でお客様に機能性のテストとフィードバックをしていただくことを目的としてい
ます。

Red Hat のテクノロジープレビュー機能のサポートについての詳細
は、https://access.redhat.com/support/offerings/techpreview/を参照してください。

デバイスマネージャーは、特殊なノードのハードウェアリソースをデバイスプラグインとして知られる
Kubelet プラグインを使って公開するメカニズムを提供する Kubelet 機能です。

すべてのベンダーがデバイスプラグインを実装し、アップストリームのコード変更なしにそれぞれの特
殊なハードウェアを公開できます。

デバイスマネージャーはデバイスを 拡張リソース として公開します。ユーザー Pod は、他の 拡張リ
ソース を要求するために使用されるのと同じ 制限/要求 メカニズムを使用してデバイスマネージャーで
公開されるデバイスを消費できます。

19.1.1. 登録

使用開始時に、デバイスプラグイン は /var/lib/kubelet/device-plugins/kubelet.sock の Register を
起動してデバイスマネージャーに自己登録し、デバイスマネージャーの要求を提供するために
/var/lib/kubelet/device-plugins/<plugin>.sock で gRPC サービスを起動します。

19.1.2. デバイスの検出および正常性のモニタリング

デバイスマネージャーは、新規登録要求の処理時にデバイスプラグインサービスで ListAndWatch リ
モートプロシージャーコール (RPC) を起動します。応答としてデバイスマネージャーは gRPC スト
リームでプラグインからの デバイス オブジェクトの一覧を取得します。デバイスマネージャーはプラ
グインからの新規の更新の有無についてストリームを監視します。プラグイン側では、プラグインはス
トリームを開いた状態にし、デバイスの状態に変更があった場合には常に新規デバイスの一覧が同じス
トリーム接続でデバイスマネージャーに送信されます。

19.1.3. デバイスの割り当て

新規 Pod の受付要求の処理時に、Kubelet はデバイスの割り当てのために要求された Extended
Resource をデバイスマネージャーに送信します。デバイスマネージャーはそのデータベースにチェッ
クインして対応するプラグインが存在するかどうかを確認します。プラグインが存在し、ローカル
キャッシュと共に割り当て可能な空きデバイスがある場合、Allocate RPC がその特定デバイスのプラ
グインで起動します。

さらにデバイスプラグインは、ドライバーのインストール、デバイスの初期化、およびデバイスのリ
セットなどの他のいくつかのデバイス固有の操作も実行できます。これらの機能は実装ごとに異なりま
す。

第19章 デバイスマネージャーの使用

269

https://access.redhat.com/support/offerings/techpreview/

19.2. デバイスマネージャーの有効化

デバイスマネージャーを有効にし、デバイスプラグインを実装してアップストリームのコード変更なし
に特殊なハードウェアを公開できるようにします。

1. ターゲットノードでのデバイスマネージャーのサポートを有効にします。

cat /etc/origin/node/node-config.yaml
...
kubeletArguments:
...
 feature-gates:
 - DevicePlugins=true

systemctl restart atomic-openshift-node

2. デバイスマネージャーが実際に有効にされるように、/var/lib/kubelet/device-
plugins/kubelet.sock がノードで作成されていることを確認します。これは、デバイスマネー
ジャーの gRPC サーバーが新規プラグインの登録がないかどうかリッスンする UNIX ドメイン
ソケットです。このソケットファイルは、デバイスマネージャーが有効にされている場合にの
み Kubelet の起動時に作成されます。

OpenShift Container Platform 3.9 開発者ガイド

270

第20章 デバイスプラグインの使用

20.1. デバイスプラグインの機能

重要

デバイスプラグインはテクノロジープレビューであり、実稼働環境のワークロードには
適していません。テクノロジープレビュー機能は、Red Hat の実稼働環境でのサービス
レベルアグリーメント (SLA) ではサポートされていないため、Red Hat では実稼働環境
での使用を推奨していません。これらの機能は、近々発表予定の製品機能をリリースに
先駆けてご提供することにより、開発プロセスの中でお客様に機能性のテストとフィー
ドバックをしていただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポートについての詳細
は、https://access.redhat.com/support/offerings/techpreview/を参照してください。

デバイスプラグインを使用すると、カスタムコードを作成せずに特定のデバイスタイプ (GPU、
InfiniBand、またはベンダー固有の初期化およびセットアップを必要とする他の同様のコンピューティ
ングリソース) を OpenShift Container Platform Pod で使用できます。デバイスプラグインは、クラス
ター全体でハードウェアデバイスを消費するための一貫性のある移植可能なソリューションを提供しま
す。デバイスプラグインはこれらのデバイスのサポートを拡張メカニズムでサポートします。 これによ
り、これらのデバイスはコンテナーで利用可能となり、デバイスのヘルスチェックやセキュリティーが
保護された状態でのデバイスの共有が可能になります。

デバイスプラグインは、特定のハードウェアリソースの管理を行う、ノード上で実行される gRPC サー
ビスです (atomic-openshift-node.service の外部にあります)。デバイスプラグインは以下のリモート
プロシージャーコール (RPC) をサポートしている必要があります。

20.1.1. 外部デバイスプラグイン

COS ベースのオペレーティングシステム用の Nvidia GPU デバイスプラグイン

Nvidia の公式 GPU デバイスプラグイン

Solarflare デバイスプラグイン

KubeVirt デバイスプラグイン: vfio および kvm

注記

service DevicePlugin {
 // ListAndWatch returns a stream of List of Devices
 // Whenever a Device state change or a Device disappears, ListAndWatch
 // returns the new list
 rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}

 // Allocate is called during container creation so that the Device
 // Plugin can run device specific operations and instruct Kubelet
 // of the steps to make the Device available in the container
 rpc Allocate(AllocateRequest) returns (AllocateResponse) {}
}

第20章 デバイスプラグインの使用

271

https://access.redhat.com/support/offerings/techpreview/
https://github.com/GoogleCloudPlatform/container-engine-accelerators/tree/master/cmd/nvidia_gpu
https://github.com/NVIDIA/k8s-device-plugin
https://github.com/solarflarecommunications/sfc-k8s-device-plugin
https://github.com/kubevirt/kubernetes-device-plugins

注記

デバイスプラグイン参照の実装を容易にするため
に、vendor/k8s.io/kubernetes/pkg/kubelet/cm/deviceplugin/device_plugin_stub.go
という Device Manager コードのスタブデバイスプラグインを使用できます。

20.2. デバイスプラグインのデプロイ方法

DeamonSet は、デバイスプラグインのデプロイメントに推奨される方法です。

起動時にデバイスプラグインは、デバイスマネージャー から RPC を送信するためにノードの
/var/lib/kubelet/device-plugin/ での UNIX ドメインソケットの作成を試行します。

デバイスプラグインは、ソケットの作成のほかにもハードウェアリソース、ホストファイルシ
ステムへのアクセスを管理する必要があるため、特権付きセキュリティーコンテキストで実行
される必要があります。

デプロイメント手順の詳細については、それぞれのデバイスプラグインの実装で確認できま
す。

OpenShift Container Platform 3.9 開発者ガイド

272

1

2

3

4

5

第21章 シークレット

21.1. シークレットの使用

このトピックでは、シークレットの重要なプロパティーについて説明し、開発者がこれらを使用する方
法の概要を説明します。

Secret オブジェクトタイプはパスワード、OpenShift Container Platform クライアント設定ファイ
ル、dockercfg ファイル、プライベートソースリポジトリーの認証情報などの機密情報を保持するメカ
ニズムを提供します。シークレットは機密内容を Pod から切り離します。シークレットはボリューム
プラグインを使用してコンテナーにマウントすることも、システムが Pod の代わりにシークレットを
使用して各種アクションを実行することもできます。

YAML シークレットオブジェクト定義

シークレットのキー名および値の構造を示しています。

data フィールドのキーに使用可能な形式については、Kubernetes identifiers glossary の
DNS_SUBDOMAIN 値のガイドラインに従う必要があります。

data マップのキーに関連付けられる値は base64 でエンコーディングされている必要がありま
す。

stringData マップのキーに関連付けられた値は単純なテキスト文字列で構成されます。

stringData マップのエントリーが base64 に変換され、このエントリーは自動的に data マップに
移動します。このフィールドは書き込み専用です。 この値は data フィールドでのみ返されます。

1. ローカルの .docker/config.json ファイルからシークレットを作成します。

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

このコマンドにより、dockerhub という名前のシークレットの JSON 仕様が生成され、
オブジェクトが作成されます。

YAML の不透明なシークレットオブジェクトの定義

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace
type: Opaque 1
data: 2
 username: dmFsdWUtMQ0K 3
 password: dmFsdWUtMg0KDQo=
stringData: 4
 hostname: myapp.mydomain.com 5

apiVersion: v1
kind: Secret

第21章 シークレット

273

https://github.com/kubernetes/kubernetes/blob/v1.0.0/docs/design/identifiers.md

1

1

2

opaque シークレットを指定します。

Docker 設定の JSON ファイルシークレットオブジェクトの定義

シークレットが Docker 設定の JSON ファイルを使用することを指定します。

Docker 設定 JSON ファイルを base64 でエンコードした出力

21.1.1. シークレットのプロパティー

キーのプロパティーには以下が含まれます。

シークレットデータはその定義とは別に参照できます。

シークレットデータのボリュームは一時ファイルストレージ機能 (tmpfs) でサポートされ、
ノードで保存されることはありません。

シークレットデータは namespace 内で共有できます。

21.1.2. シークレットの作成

シークレットに依存する Pod を作成する前に、シークレットを作成する必要があります。

シークレットの作成時に以下を実行します。

シークレットデータでシークレットオブジェクトを作成します。

Pod のサービスアカウントをシークレットの参照を許可するように更新します。

シークレットを環境変数またはファイルとして使用する Pod を作成します (secret ボリューム
を使用)。

作成コマンドを使用して JSON または YAML ファイルのシークレットオブジェクトを作成できます。

$ oc create -f <filename>

metadata:
 name: mysecret
type: Opaque 1
data:
 username: dXNlci1uYW1l
 password: cGFzc3dvcmQ=

apiVersion: v1
kind: Secret
metadata:
 name: aregistrykey
 namespace: myapps
type: kubernetes.io/dockerconfigjson 1
data:

.dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV0aC
BrZXlzCg== 2

OpenShift Container Platform 3.9 開発者ガイド

274

21.1.3. シークレットの種類

type フィールドの値で、シークレットのキー名と値の構造を指定します。このタイプを使用して、
シークレットオブジェクトにユーザー名とキーの配置を実行できます。検証の必要がない場合には、デ
フォルト設定の opaque タイプを使用してください。

以下のタイプから 1 つ指定して、サーバー側で最小限の検証をトリガーし、シークレットデータに固有
のキー名が存在することを確認します。

kubernetes.io/service-account-token。サービスアカウントトークン。

kubernetes.io/dockercfg。必須の Docker 認証情報に .dockercfg file を使用します。

kubernetes.io/dockerconfigjson。必須の Docker 認証情報に .docker/config.json ファイルを
使用します。

kubernetes.io/basic-auth。Basic 認証で使用します。

kubernetes.io/ssh-auth。SSH キー認証で使用します。

kubernetes.io/tls。TLS 認証局で使用します。

検証が必要ない場合には type= Opaque と指定します。これは、シークレットがキー名または値の規則
に準拠しないという意味です。 opaque シークレットでは、任意の値を含む、体系化されていない
key:value ペアも使用できます。

注記

example.com/my-secret-type などの他の任意のタイプを指定できます。これらのタイ
プはサーバー側では実行されませんが、シークレットの作成者はその種類のキー/値の要
件に従うことが意図されていることを示します。

異なるシークレットタイプの例については、シークレットの使用のコードサンプルを参照してくださ
い。

21.1.4. シークレットの更新

シークレットの値を変更する場合、値 (すでに実行されている Pod で使用される値) は動的に変更され
ません。シークレットを変更するには、元の Pod を削除してから新規の Pod を作成する必要がありま
す (同じ PodSpec を使用する場合があります)。

シークレットの更新は、新規コンテナーイメージのデプロイと同じワークフローで実行されま
す。kubectl rolling-update コマンドを使用できます。

シークレットの resourceVersion 値は参照時に指定されません。したがって、シークレットが Pod の
起動と同じタイミングで更新される場合、Pod に使用されるシークレットのバージョンは定義されませ
ん。

注記

第21章 シークレット

275

注記

現時点で、Pod の作成時に使用されるシークレットオブジェクトのリソースバージョン
を確認することはできません。今後はコントローラーが古い resourceVersion を使用し
て再起動できるよう Pod がこの情報を報告できるようにすることが予定されています。
それまでは既存シークレットのデータを更新せずに別の名前で新規のシークレットを作
成します。

21.2. ボリュームおよび環境変数のシークレット

シークレットデータを含む YAML ファイルのサンプルを参照してください。

シークレットの作成後に以下を実行できます。

1. シークレットを参照する Pod を作成します。

$ oc create -f <your_yaml_file>.yaml

2. ログを取得します。

$ oc logs secret-example-pod

3. Pod を削除します。

$ oc delete pod secret-example-pod

21.3. イメージプルのシークレット

詳細は、「イメージプルシークレットの使用」を参照してください。

21.4. ソースクローンのシークレット

ビルド時にソースクローンのシークレットを使用する方法についての詳細は、「ビルド入力」を参照し
てください。

21.5. サービス提供証明書のシークレット

サービスが提供する証明書のシークレットは、追加設定なしの証明書を必要とする複雑なミドルウェア
アプリケーションをサポートするように設計されています。これにはノードおよびマスターの管理者
ツールで生成されるサーバー証明書と同じ設定が含まれます。

サービスとの通信のセキュリティーを保護するには、クラスターが署名された提供証明書/キーペアを
namespace のシークレットに生成できるようにします。これを実行するには、シークレットに使用す
る名前に設定した値を使って service.alpha.openshift.io/serving-cert-secret-name アノテーションを
サービスに設定します。その後に PodSpec はそのシークレットをマウントできます。これが利用可能
な場合、Pod が実行されます。この証明書は内部サービス DNS 名、 <service.name>.
<service.namespace>.svc に適しています。

証明書およびキーは PEM 形式であり、それぞれ tls.crt および tls.key に保存されます。証明書/キーの
ペアは有効期限に近づくと自動的に置換されます。シークレットの service.alpha.openshift.io/expiry
アノテーションで RFC3339 形式の有効期限の日付を確認します。

他の Pod は Pod に自動的にマウントされる

OpenShift Container Platform 3.9 開発者ガイド

276

他の Pod は Pod に自動的にマウントされる
/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt ファイルの CA バンドルを使用し
て、クラスターで作成される証明書 (内部 DNS 名の場合にのみ署名される) を信頼できます。

この機能の署名アルゴリズムは x509.SHA256WithRSA です。ローテーションを手動で実行するには、
生成されたシークレットを削除します。新規の証明書が作成されます。

21.6. 制限

シークレットを使用するには、Pod がシークレットを参照できる必要があります。シークレットは、以
下の 3 つの方法で Pod で使用されます。

コンテナーの環境変数を事前に設定するために使用される。

1 つ以上のコンテナーにマウントされるボリュームのファイルとして使用される。

Pod のイメージをプルする際に kubelet によって使用される。

ボリュームタイプのシークレットは、ボリュームメカニズムを使用してデータをファイルとしてコンテ
ナーに書き込みます。imagePullSecrets は、シークレットを namespace のすべての Pod に自動的に
挿入するためにサービスアカウントを使用します。

テンプレートにシークレット定義が含まれる場合、テンプレートで指定のシークレットを使用できるよ
うにするには、シークレットのボリュームソースを検証し、指定されるオブジェクト参照が Secret タ
イプのオブジェクトを実際に参照していることを確認できる必要があります。そのため、シークレット
はこれに依存する Pod の作成前に作成されている必要があります。最も効果的な方法として、サービ
スアカウントを使用してシークレットを自動的に挿入することができます。

シークレット API オブジェクトは namespace にあります。それらは同じ namespace の Pod によって
のみ参照されます。

個々のシークレットは 1MB のサイズに制限されます。これにより、apiserver および kubelet メモリー
を使い切るような大規模なシークレットの作成を防ぐことができます。ただし、小規模なシークレット
であってもそれらを数多く作成するとメモリーの消費につながります。

21.6.1. シークレットデータキー

シークレットキーは DNS サブドメインになければなりません。

21.7. 例

例21.1 4 つのファイルを作成する YAML シークレット

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
data:
 username: dmFsdWUtMQ0K 1
 password: dmFsdWUtMQ0KDQo= 2
stringData:
 hostname: myapp.mydomain.com 3

第21章 シークレット

277

1

2

3

4

デコードされる値が含まれるファイル

デコードされる値が含まれるファイル

提供される文字列が含まれるファイル

提供されるデータが含まれるファイル

例21.2 シークレットデータと共にボリュームのファイルが設定された Pod の YAML

例21.3 シークレットデータと共に環境変数が設定された Pod の YAML

 secret.properties: |- 4
 property1=valueA
 property2=valueB

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts:
 # name must match the volume name below
 - name: secret-volume
 mountPath: /etc/secret-volume
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "export"]
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:

OpenShift Container Platform 3.9 開発者ガイド

278

例21.4 シークレットデータと環境変数を設定するビルド設定の YAML

21.8. トラブルシューティング

サービス証明書の生成が失敗する場合 (サービスの service.alpha.openshift.io/serving-cert-
generation-error のアノテーション):

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not
match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

証明書を生成したサービスがすでに存在しないか、またはサービスに異なる serviceUID があります。
古いシークレットを削除し、サービスのアノテーション (service.alpha.openshift.io/serving-cert-
generation-error、 service.alpha.openshift.io/serving-cert-generation-error-num) をクリアして証
明書の再生成を強制的に実行する必要があります。

$ oc delete secret <secret_name>
$ oc annotate service <service_name> service.alpha.openshift.io/serving-cert-generation-error-
$ oc annotate service <service_name> service.alpha.openshift.io/serving-cert-generation-error-num-

注記

アノテーションを削除するコマンドでは、削除するアノテーションの後に - を付けま
す。

 name: test-secret
 key: username
 restartPolicy: Never

apiVersion: v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username

第21章 シークレット

279

1

第22章 CONFIGMAP

22.1. 概要

数多くのアプリケーションには、設定ファイル、コマンドライン引数、および環境変数の組み合わせを
使用した設定が必要です。これらの設定アーティファクトは、コンテナー化されたアプリケーションを
移植可能な状態に保つためにイメージコンテンツから切り離す必要があります。

ConfigMap オブジェクトは、コンテナーを OpenShift Container Platform に依存しない状態にする一
方でコンテナーに設定データを挿入するメカニズムを提供します。ConfigMap は、個々のプロパ
ティーなどの粒度の細かい情報や設定ファイル全体または JSON Blob などの粒度の荒い情報を保存す
るために使用できます。

ConfigMap API オブジェクトは、 Pod で使用したり、コントローラーなどのシステムコントローラー
の設定データを保存するために使用できる設定データのキーと値のペアを保持します。ConfigMap
はシークレットに似ていますが、機密情報を含まない文字列の使用をより効果的にサポートするように
設計されています。

以下は例になります。

ConfigMap オブジェクト定義

設定データが含まれます。

設定データはさまざまな方法で Pod 内で使用できます。ConfigMap は以下を実行するために使用でき
ます。

1. 環境変数の値の設定

2. コンテナーのコマンドライン引数の設定

3. ボリュームの設定ファイルの設定

ユーザーとシステムコンポーネントの両方が設定データを ConfigMap に保存できます。

22.2. CONFIGMAP の作成

以下のコマンドを使用すると、ConfigMap をディレクトリーや特定ファイルまたはリテラル値から簡
単に作成できます。

kind: ConfigMap
apiVersion: v1
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: example-config
 namespace: default
data: 1
 example.property.1: hello
 example.property.2: world
 example.property.file: |-
 property.1=value-1
 property.2=value-2
 property.3=value-3

OpenShift Container Platform 3.9 開発者ガイド

280

$ oc create configmap <configmap_name> [options]

以下のセクションでは、ConfigMap を作成するための各種の方法について説明します。

22.2.1. ディレクトリーからの作成

ConfigMap の設定に必要なデータを含むファイルのあるディレクトリーについて見てみましょう。

$ ls example-files
game.properties
ui.properties

$ cat example-files/game.properties
enemies=aliens
lives=3
enemies.cheat=true
enemies.cheat.level=noGoodRotten
secret.code.passphrase=UUDDLRLRBABAS
secret.code.allowed=true
secret.code.lives=30

$ cat example-files/ui.properties
color.good=purple
color.bad=yellow
allow.textmode=true
how.nice.to.look=fairlyNice

以下のコマンドを使用して、このディレクトリーの各ファイルの内容を保持する ConfigMap を作成で
きます。

$ oc create configmap game-config \
 --from-file=example-files/

--from-file オプションがディレクトリーを参照する場合、そのディレクトリーに直接含まれる各ファイ
ルが ConfigMap でキーを設定するために使用されます。 このキーの名前はファイル名であり、キーの
値はファイルの内容になります。

たとえば、上記のコマンドは以下の ConfigMap を作成します。

$ oc describe configmaps game-config
Name: game-config
Namespace: default
Labels: <none>
Annotations: <none>

Data

game.properties: 121 bytes
ui.properties: 83 bytes

マップにある 2 つのキーが、コマンドで指定されたディレクトリーのファイル名に基づいて作成されて
いることに気づかれることでしょう。それらのキーの内容のサイズは大きくなる可能性があるため、oc
describe の出力はキーとキーのサイズのみを表示します。

キーの値を確認する必要がある場合は、オブジェクトに対して oc get をオプション -o を指定して実行

第22章 CONFIGMAP

281

キーの値を確認する必要がある場合は、オブジェクトに対して oc get をオプション -o を指定して実行
できます。

$ oc get configmaps game-config -o yaml

apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:34:05Z
 name: game-config
 namespace: default
 resourceVersion: "407"-
 selflink: /api/v1/namespaces/default/configmaps/game-config
 uid: 30944725-d66e-11e5-8cd0-68f728db1985

22.2.2. ファイルからの作成

特定のファイルを指定して --from-file オプションを渡し、それを CLI に複数回渡すことができます。
以下を実行すると、ディレクトリーからの作成の例と同等の結果を出すことができます。

1. 特定のファイルを指定して ConfigMap を作成します。

$ oc create configmap game-config-2 \
 --from-file=example-files/game.properties \
 --from-file=example-files/ui.properties

2. 結果を確認します。

$ oc get configmaps game-config-2 -o yaml

apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |

OpenShift Container Platform 3.9 開発者ガイド

282

 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:52:05Z
 name: game-config-2
 namespace: default
 resourceVersion: "516"
 selflink: /api/v1/namespaces/default/configmaps/game-config-2
 uid: b4952dc3-d670-11e5-8cd0-68f728db1985

さらに key=value の式を渡して、個々のファイルに使用するキーを --from-file オプションで設定する
ことができます。以下は例になります。

1. キーと値のペアを指定して ConfigMap を作成します。

$ oc create configmap game-config-3 \
 --from-file=game-special-key=example-files/game.properties

2. 結果を確認します。

$ oc get configmaps game-config-3 -o yaml

apiVersion: v1
data:
 game-special-key: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:54:22Z
 name: game-config-3
 namespace: default
 resourceVersion: "530"
 selflink: /api/v1/namespaces/default/configmaps/game-config-3
 uid: 05f8da22-d671-11e5-8cd0-68f728db1985

22.2.3. リテラル値からの作成

ConfigMap にリテラル値を指定することもできます。--from-literal オプションは、リテラル値をコマ
ンドラインに直接指定できる key=value 構文を取ります。

1. リテラル値を指定して ConfigMap を作成します。

$ oc create configmap special-config \
 --from-literal=special.how=very \
 --from-literal=special.type=charm

第22章 CONFIGMAP

283

1

2 3

2. 結果を確認します。

$ oc get configmaps special-config -o yaml

apiVersion: v1
data:
 special.how: very
 special.type: charm
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: special-config
 namespace: default
 resourceVersion: "651"
 selflink: /api/v1/namespaces/default/configmaps/special-config
 uid: dadce046-d673-11e5-8cd0-68f728db1985

22.3. ユースケース: POD での CONFIGMAP の使用

以下のセクションでは、Pod で ConfigMap オブジェクトを使用する際のいくつかのユースケースにつ
いて説明します。

22.3.1. 環境変数での使用

ConfigMaps は個別の環境変数を設定するために使用したり、有効な環境変数名を生成するすべての
キーで環境変数を設定したりできます。例として、以下の ConfigMaps について見てみましょう。

2 つの環境変数を含む ConfigMap

ConfigMap の名前です。

挿入する環境変数

1 つの環境変数を含む ConfigMap

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config 1
 namespace: default
data:
 special.how: very 2
 special.type: charm 3

apiVersion: v1
kind: ConfigMap
metadata:
 name: env-config 1
 namespace: default
data:
 log_level: INFO 2

OpenShift Container Platform 3.9 開発者ガイド

284

1

2

1

2 4

3 5

6

7

8

ConfigMap の名前です。

注入する環境変数

configMapKeyRef セクションを使用して、Pod の ConfigMap のキーを使用できます。

特定の環境変数を挿入するように設定されている Pod 仕様のサンプル

ConfigMap から指定された環境変数をプルするためのスタンザです。

特定の環境変数のプルに使用する ConfigMap の名前です。

ConfigMap からプルする環境変数です。

環境変数をオプションにします。オプションとして、Pod は指定された ConfigMap およびキーが
存在しない場合でも起動します。

ConfigMap からすべての環境変数をプルするためのスタンザです。

すべての環境変数のプルに使用する ConfigMap の名前です。

この Pod が実行されると、その出力には以下の行が含まれます。

SPECIAL_LEVEL_KEY=very
log_level=INFO

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env: 1
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config 2
 key: special.how 3
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config 4
 key: special.type 5
 optional: true 6
 envFrom: 7
 - configMapRef:
 name: env-config 8
 restartPolicy: Never

第22章 CONFIGMAP

285

22.3.2. コマンドライン引数の設定

ConfigMap は、コンテナーのコマンドまたは引数の値を設定するために使用することもできます。こ
れは、Kubernetes 置換構文 $(VAR_NAME) を使用して実行できます。以下の ConfigMaps について見
てみましょう。

値をコマンドラインに挿入するには、「環境変数での使用」のユースケースで説明されているように環
境変数として使用する必要のあるキーを使用する必要があります。次に、$(VAR_NAME) 構文を使用し
てコンテナーのコマンドでそれらを参照することができます。

特定の環境変数を挿入するように設定されている Pod 仕様のサンプル

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)"]
 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.how
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.type
 restartPolicy: Never

この Pod が実行されると、test-container コンテナーからの出力は以下のようになります。

very charm

22.3.3. ボリュームでの使用

ConfigMap はボリュームで使用することもできます。以下の ConfigMap の例に戻りましょう。

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: ConfigMap
metadata:

OpenShift Container Platform 3.9 開発者ガイド

286

ボリュームでこの ConfigMap を使用する方法として 2 つの異なるオプションがあります。最も基本的
な方法は、キーがファイル名であり、ファイルの内容がキーの値になっているファイルでボリュームを
設定する方法です。

この Pod が実行されると出力は以下のようになります。

very

ConfigMap キーが展開されるボリューム内のパスを制御することもできます。

 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "cat", "/etc/config/special.how"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "cat", "/etc/config/path/to/special-key"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 items:
 - key: special.how
 path: path/to/special-key
 restartPolicy: Never

第22章 CONFIGMAP

287

この Pod が実行されると出力は以下のようになります。

very

22.4. REDIS の設定例

実際の使用例として、ConfigMap を使用して Redis を設定することができます。推奨の設定で Redis
を挿入して Redis をキャッシュとして使用するには、Redis 設定ファイルに以下を含めるようにしてく
ださい。

maxmemory 2mb
maxmemory-policy allkeys-lru

設定ファイルが example-files/redis/redis-config にある場合、これを使って ConfigMap を作成しま
す。

1. 設定ファイルを指定して ConfigMap を作成します。

$ oc create configmap example-redis-config \
 --from-file=example-files/redis/redis-config

2. 結果を確認します。

$ oc get configmap example-redis-config -o yaml

apiVersion: v1
data:
 redis-config: |
 maxmemory 2mb
 maxmemory-policy allkeys-lru
kind: ConfigMap
metadata:
 creationTimestamp: 2016-04-06T05:53:07Z
 name: example-redis-config
 namespace: default
 resourceVersion: "2985"
 selflink: /api/v1/namespaces/default/configmaps/example-redis-config
 uid: d65739c1-fbbb-11e5-8a72-68f728db1985

ここで、この ConfigMap を使用する Pod を作成します。

1. 以下のような Pod 定義を作成し、これを redis-pod.yaml などのファイルに保存します。

apiVersion: v1
kind: Pod
metadata:
 name: redis
spec:
 containers:
 - name: redis
 image: kubernetes/redis:v1
 env:
 - name: MASTER
 value: "true"

OpenShift Container Platform 3.9 開発者ガイド

288

2. Pod を作成します。

$ oc create -f redis-pod.yaml

新規に作成された Pod には、example-redis-config ConfigMap の redis-config キーを redis.conf と
いうファイルに置く ConfigMap ボリュームがあります。このボリュームは Redis コンテナーの /redis-
master ディレクトリーにマウントされ、設定ファイルを /redis-master/redis.conf に配置します。 こ
こでイメージがマスターの Redis 設定ファイルを検索します。

この Pod に対して oc exec を実行し、redis-cli ツールを実行する場合、設定が正常に適用されたこと
を確認できます。

$ oc exec -it redis redis-cli
127.0.0.1:6379> CONFIG GET maxmemory
1) "maxmemory"
2) "2097152"
127.0.0.1:6379> CONFIG GET maxmemory-policy
1) "maxmemory-policy"
2) "allkeys-lru"

22.5. 制約

ConfigMap は、それらが Pod で使用される前に作成される必要があります。コントローラーは設定
データが欠落している場合にもそれを容認するように作成できます。 個別のケースについて
は、ConfigMap で設定された個々のコンポーネントを確認してください。

ConfigMap オブジェクトはプロジェクトにあります。それらは同じプロジェクトの Pod によってのみ
参照されます。

Kubelet は、API サーバーから取得する Pod の ConfigMap の使用のみをサポートします。これには、
CLI を使用して作成された Pod、またはレプリケーションコントローラーから間接的に作成された Pod
が含まれます。これには、OpenShift Container Platform ノードの --manifest-url フラグ、その --
config フラグ、またはその REST API を使用して作成された Pod は含まれません (これらは Pod を作
成する一般的な方法ではありません)。

 ports:
 - containerPort: 6379
 resources:
 limits:
 cpu: "0.1"
 volumeMounts:
 - mountPath: /redis-master-data
 name: data
 - mountPath: /redis-master
 name: config
 volumes:
 - name: data
 emptyDir: {}
 - name: config
 configMap:
 name: example-redis-config
 items:
 - key: redis-config
 path: redis.conf

第22章 CONFIGMAP

289

第23章 DOWNWARD API

23.1. 概要

Downward API は、OpenShift Container Platform に結合せずにコンテナーが API オブジェクトについ
ての情報を使用できるメカニズムです。この情報には、Pod の名前、namespace およびリソース値が
含まれます。コンテナーは、環境変数またはボリュームプラグインを使用して Downward API から情報
を使用できます。

23.2. フィールドの選択

Pod 内のフィールドは、FieldRef API タイプを使用して選択されます。FieldRef には 2 つのフィール
ドが含まれます。

フィールド 説明

fieldPath Pod に関連して選択するフィールドのパスです。

apiVersion fieldPath セレクターの解釈に使用する API バー
ジョンです。

現時点で v1 API の有効なセレクターには以下が含まれます。

セレクター 説明

metadata.name Pod の名前です。これは環境変数およびボリューム
でサポートされています。

metadata.namespace Pod の namespace です。 これは環境変数およびボ
リュームでサポートされています。

metadata.labels Pod のラベルです。これはボリュームでのみサポー
トされ、環境変数ではサポートされていません。

metadata.annotations Pod のアノテーションです。これはボリュームでの
みサポートされ、環境変数ではサポートされていま
せん。

status.podIP Pod の IP です。これは環境変数でのみサポートさ
れ、ボリュームではサポートされていません。

apiVersion フィールドです。 指定されていない場合は、対象の Pod テンプレートの API バージョンに
デフォルト設定されます。

23.3. DOWNWARD API を使用したコンテナー値の使用

23.3.1. 環境変数の使用

Downward API を使用するための 1 つのメカニズムとして、コンテナーの環境変数を使用することがで

OpenShift Container Platform 3.9 開発者ガイド

290

Downward API を使用するための 1 つのメカニズムとして、コンテナーの環境変数を使用することがで
きます。EnvVar タイプの valueFrom フィールド (タイプは EnvVarSource)は、変数の値が value
フィールドで指定されるリテラル値ではなく、FieldRef ソースからの値になるように指定するために使
用されます。今後は追加のソースがサポートされる可能性があります。 現時点では、ソースの fieldRef
フィールドは Downward API からフィールドを選択するために使用されます。

この方法で使用できるのは Pod の定数属性のみです。環境変数を使用してサポートされるフィールド
には、以下が含まれます。

Pod の名前

Pod の namespace

1. pod.yaml ファイルを作成します。

2. pod.yaml ファイルから Pod を作成します。

$ oc create -f pod.yaml

3. コンテナーのログで MY_POD_NAME および MY_POD_NAMESPACE の値を確認しま
す。

$ oc logs -p dapi-env-test-pod

23.3.2. ボリュームプラグインの使用

Downward API を使用するもう 1 つのメカニズムとしてボリュームプラグインを使用することができま
す。Downward API ボリュームプラグインは、ファイルに展開される設定済みのフィールドを使ってボ
リュームを作成します。VolumeSource API オブジェクトの metadata フィールドはこのボリュームを
設定するために使用されます。プラグインは以下のフィールドをサポートします。

Pod の名前

Pod の namespace

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: MY_POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 restartPolicy: Never

第23章 DOWNWARD API

291

1

2

3

4

Pod のアノテーション

Pod のラベル

例23.1 Downward API ボリュームプラグイン設定

ボリュームソースの metadata フィールドは Downward API ボリュームを設定します。

items フィールドはボリュームに展開するフィールドの一覧を保持します。

フィールドを展開するファイルの名前です。

展開するフィールドのセレクターです。

以下に例を示します。

1. volume-pod.yaml ファイルを作成します。

spec:
 volumes:
 - name: podinfo
 downwardAPI:: 1
 items: 2
 -name: "labels" 3
 fieldRef:
 fieldPath: metadata.labels 4

kind: Pod
apiVersion: v1
metadata:
 labels:
 zone: us-east-coast
 cluster: downward-api-test-cluster1
 rack: rack-123
 name: dapi-volume-test-pod
 annotations:
 annotation1: "345"
 annotation2: "456"
spec:
 containers:
 - name: volume-test-container
 image: gcr.io/google_containers/busybox
 command: ["sh", "-c", "cat /tmp/etc/pod_labels /tmp/etc/pod_annotations"]
 volumeMounts:
 - name: podinfo
 mountPath: /tmp/etc
 readOnly: false
 volumes:
 - name: podinfo
 downwardAPI:
 defaultMode: 420
 items:
 - fieldRef:

OpenShift Container Platform 3.9 開発者ガイド

292

2. volume-pod.yaml ファイルから Pod を作成します。

$ oc create -f volume-pod.yaml

3. コンテナーのログを確認し、設定されたフィールドの有無を確認します。

$ oc logs -p dapi-volume-test-pod
cluster=downward-api-test-cluster1
rack=rack-123
zone=us-east-coast
annotation1=345
annotation2=456
kubernetes.io/config.source=api

23.4. DOWNWARD API を使用したコンテナーリソースの使用

Pod の作成時に、Downward API を使用してコンピューティングリソースの要求および制限についての
情報を挿入し、イメージおよびアプリケーションの作成者が特定の環境用のイメージを適切に作成でき
るようにします。

これは、環境変数およびボリュームプラグインのいずれの方法で実行できます。

23.4.1. 環境変数の使用

1. Pod 設定の作成時に、spec.container フィールド内の resources フィールドの内容に対応す
る環境変数を指定します。

 fieldPath: metadata.name
 path: pod_name
 - fieldRef:
 fieldPath: metadata.namespace
 path: pod_namespace
 - fieldRef:
 fieldPath: metadata.labels
 path: pod_labels
 - fieldRef:
 fieldPath: metadata.annotations
 path: pod_annotations
 restartPolicy: Never

....
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["/bin/sh", "-c", "env"]
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"
 env:

第23章 DOWNWARD API

293

リソース制限がコンテナー設定に含まれていない場合、Downward API はデフォルトでノード
の CPU およびメモリーの割り当て可能な値に設定されます。

2. pod.yaml ファイルから Pod を作成します。

$ oc create -f pod.yaml

23.4.2. ボリュームプラグインの使用

1. Pod 設定の作成時に、spec.volumes.downwardAPI.items フィールドを使用して
spec.resources フィールドに対応する必要なリソースを記述します。

 - name: MY_CPU_REQUEST
 valueFrom:
 resourceFieldRef:
 resource: requests.cpu
 - name: MY_CPU_LIMIT
 valueFrom:
 resourceFieldRef:
 resource: limits.cpu
 - name: MY_MEM_REQUEST
 valueFrom:
 resourceFieldRef:
 resource: requests.memory
 - name: MY_MEM_LIMIT
 valueFrom:
 resourceFieldRef:
 resource: limits.memory
....

....
spec:
 containers:
 - name: client-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["sh", "-c", "while true; do echo; if [[-e /etc/cpu_limit]]; then cat /etc/cpu_limit;
fi; if [[-e /etc/cpu_request]]; then cat /etc/cpu_request; fi; if [[-e /etc/mem_limit]]; then cat
/etc/mem_limit; fi; if [[-e /etc/mem_request]]; then cat /etc/mem_request; fi; sleep 5; done"]
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"
 volumeMounts:
 - name: podinfo
 mountPath: /etc
 readOnly: false
 volumes:
 - name: podinfo
 downwardAPI:
 items:
 - path: "cpu_limit"
 resourceFieldRef:

OpenShift Container Platform 3.9 開発者ガイド

294

リソース制限がコンテナー設定に含まれていない場合、Downward API はデフォルトでノード
の CPU およびメモリーの割り当て可能な値に設定されます。

2. volume-pod.yaml ファイルから Pod を作成します。

$ oc create -f volume-pod.yaml

23.5. DOWNWARD API を使用したシークレットの使用

Pod の作成時に、Downward API を使用してシークレットを挿入し、イメージおよびアプリケーション
の作成者が特定の環境用のイメージを作成できるようにできます。

23.5.1. 環境変数の使用

1. secret.yaml ファイルを作成します。

2. secret.yaml ファイルから Secret を作成します。

oc create -f secret.yaml

3. 上記の Secret から username フィールドを参照する pod.yaml ファイルを作成します。

 containerName: client-container
 resource: limits.cpu
 - path: "cpu_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.cpu
 - path: "mem_limit"
 resourceFieldRef:
 containerName: client-container
 resource: limits.memory
 - path: "mem_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.memory
....

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
data:
 password: cGFzc3dvcmQ=
 username: ZGV2ZWxvcGVy
type: kubernetes.io/basic-auth

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container

第23章 DOWNWARD API

295

4. pod.yaml ファイルから Pod を作成します。

$ oc create -f pod.yaml

5. コンテナーのログで MY_SECRET_USERNAME の値を確認します。

$ oc logs -p dapi-env-test-pod

23.6. DOWNWARD API を使用した CONFIGMAP の使用

Pod の作成時に、Downward API を使用して ConfigMap 値を挿入し、イメージおよびアプリケーショ
ンの作成者が特定の環境用のイメージを作成することができます。

23.6.1. 環境変数の使用

1. configmap.yaml ファイルを作成します。

2. configmap.yaml ファイルから ConfigMap を作成します。

oc create -f configmap.yaml

3. 上記の ConfigMap を参照する pod.yaml ファイルを作成します。

 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: username
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap
metadata:
 name: myconfigmap
data:
 mykey: myvalue

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_CONFIGMAP_VALUE
 valueFrom:
 configMapKeyRef:

OpenShift Container Platform 3.9 開発者ガイド

296

4. pod.yaml ファイルから Pod を作成します。

$ oc create -f pod.yaml

5. コンテナーのログで MY_CONFIGMAP_VALUE の値を確認します。

$ oc logs -p dapi-env-test-pod

23.7. 環境変数の参照

Pod の作成時に、$() 構文を使用して事前に定義された環境変数の値を参照できます。環境変数の参照
が解決されない場合、値は提供された文字列のままになります。

23.7.1. 環境変数の参照の使用

1. 既存の environment variable を参照する pod.yaml ファイルを作成します。

2. pod.yaml ファイルから Pod を作成します。

$ oc create -f pod.yaml

3. コンテナーのログで MY_ENV_VAR_REF_ENV 値を確認します。

$ oc logs -p dapi-env-test-pod

23.7.2. 環境変数の参照のエスケープ

Pod の作成時に、二重ドル記号を使用して環境変数の参照をエスケープできます。次に値は指定された
値の単一ドル記号のバージョンに設定されます。

1. 既存の environment variable を参照する pod.yaml ファイルを作成します。

 name: myconfigmap
 key: mykey
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_EXISTING_ENV
 value: my_value
 - name: MY_ENV_VAR_REF_ENV
 value: $(MY_EXISTING_ENV)
 restartPolicy: Never

第23章 DOWNWARD API

297

2. pod.yaml ファイルから Pod を作成します。

$ oc create -f pod.yaml

3. コンテナーのログで MY_NEW_ENV 値を確認します。

$ oc logs -p dapi-env-test-pod

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_NEW_ENV
 value: $$(SOME_OTHER_ENV)
 restartPolicy: Never

OpenShift Container Platform 3.9 開発者ガイド

298

第24章 PROJECTED ボリューム

24.1. 概要

Projected ボリューム は、いくつかの既存のボリュームソースを同じディレクトリーにマップします。

現時点で、以下のタイプのボリュームソースを展開できます。

シークレット

Config Map

Downward API

注記

すべてのソースは Pod と同じ namespace に置かれる必要があります。

Projected ボリュームはこれらのボリュームソースの任意の組み合わせを単一ディレクトリーにマップ
し、ユーザーの以下の実行を可能にします。

単一ボリュームを、複数のシークレットのキー、configmap、および Downward API 情報で自
動的に設定し、各種の情報ソースで単一ディレクトリーを合成できるようにします。

各項目のパスを明示的に指定して、単一ボリュームを複数シークレットのキー、configmap、
および Downward API 情報で設定し、ユーザーがボリュームの内容を完全に制御できるように
します。

24.2. シナリオ例

以下の一般的なシナリオは、展開されるプロジェクトを使用する方法について示しています。

ConfigMap、シークレット、Downward APIProjected ボリュームを使用すると、パスワードが
含まれる設定データでコンテナーをデプロイできます。これらのリソースを使用するアプリ
ケーションは OpenStack を Kubernetes にデプロイする可能性があります。設定データは、
サービスが実稼働用またはテストで使用されるかによって異なった方法でアセンブルされる必
要がある可能性があります。Pod に実稼働またはテストのラベルが付けられている場合、
Downward API セレクター metadata.labels を使用して適切な OpenStack 設定を生成できま
す。

ConfigMap + シークレットProjected ボリュームにより、設定データおよびパスワードを使用
してコンテナーをデプロイできます。たとえば、暗号化された機密タスクを Vault パスワード
ファイルを使用して復号化して、configmap として保存された Ansible Playbook を実行するこ
とができます。

ConfigMap + Downward API。Projected ボリュームにより、Pod 名 (metadata.name セレク
ターで選択可能) を含む設定を生成できます。このアプリケーションは IP トラッキングを使用
せずに簡単にソースを判別できるよう要求と共に Pod 名を渡すことができます。

シークレット + Downward APIProjected ボリュームにより、Pod の namespace
(metadata.namespace セレクターで選択可能) を暗号化するためのパブリックキーとしてシー
クレットを使用できます。この例では、オペレーターはこのアプリケーションを使用し、暗号
化されたトランスポートを使用せずに namespace 情報を安全に送信できるようになります。

第24章 PROJECTED ボリューム

299

1

2

3

4

5

24.3. POD 仕様の例

以下は、Projected ボリュームを作成するための Pod 仕様の例です。

例24.1 シークレット、Downward API および configmap を含む Pod

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 containers:
 - name: container-test
 image: busybox
 volumeMounts: 1
 - name: all-in-one
 mountPath: "/projected-volume" 2
 readOnly: true 3
 volumes: 4
 - name: all-in-one 5
 projected:
 defaultMode: 0400 6
 sources:
 - secret:
 name: mysecret 7
 items:
 - key: username
 path: my-group/my-username 8
 - downwardAPI: 9
 items:
 - path: "labels"
 fieldRef:
 fieldPath: metadata.labels
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: container-test
 resource: limits.cpu
 - configMap: 10
 name: myconfigmap
 items:
 - key: config
 path: my-group/my-config
 mode: 0777 11

シークレットを必要とする各コンテナーの volumeMounts セクションを追加します。

シークレットが表示される未使用ディレクトリーのパスを指定します。

readOnly を true に設定します。

それぞれの Projected ボリュームソースを一覧表示するために volumes ブロックを追加しま
す。

ボリュームの名前を指定します。

OpenShift Container Platform 3.9 開発者ガイド

300

6

7

8

9

10

11

ファイルに実行パーミッションを設定します。

シークレットを追加します。シークレットオブジェクトの名前を追加します。使用する必要の
あるそれぞれのシークレットは一覧表示される必要があります。

mountPath の下にシークレットへのパスを指定します。ここでシークレットファイルは
/projected-volume/my-group/my-config に置かれます。

Downward API ソースを追加します。

ConfigMap ソースを追加します。

特定の展開におけるモードを設定します。

注記

Pod に複数のコンテナーがある場合、それぞれのコンテナーには volumeMounts セク
ションが必要ですが、1 つの volumes セクションのみが必要になります。

例24.2 デフォルト以外のパーミッションモデルが設定された複数シークレットを含む Pod

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 containers:
 - name: container-test
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:
 defaultMode: 0755
 sources:
 - secret:
 name: mysecret
 items:
 - key: username
 path: my-group/my-username
 - secret:
 name: mysecret2
 items:
 - key: password
 path: my-group/my-password
 mode: 511

注記

第24章 PROJECTED ボリューム

301

注記

defaultMode は展開されるレベルでのみ指定でき、各ボリュームソースには指定されま
せん。ただし、上記のように個々の展開についての mode を明示的に指定できます。

24.4. パスについての留意事項

Projected ボリュームを作成する際に、ボリュームファイルのパスに関連する以下の状況について見て
みましょう。

設定されるパスが同一である場合のキー間の競合

複数のキーを同じパスで設定する場合、Pod 仕様は有効な仕様として受け入れられません。以下の
例では、mysecret および myconfigmap に指定されるパスは同じです。

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 containers:
 - name: container-test
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: mysecret
 items:
 - key: username
 path: my-group/data
 - configMap:
 name: myconfigmap
 items:
 - key: config
 path: my-group/data

設定されたパスのないキー間の競合

上記のシナリオの場合と同様に、実行時の検証が実行される唯一のタイミングはすべてのパスが
Pod の作成時に認識される時です。それ以外の場合は、競合の発生時に指定された最新のリソース
がこれより前のすべてのものを上書きします (これは Pod 作成後に更新されるリソースについても
同様です)。

1 つのパスが明示的なパスであり、もう 1 つのパスが自動的に展開されるパスである場合の競合

自動的に展開されるデータに一致するユーザー指定パスによって競合が生じる場合、前述のように
後からのリソースがこれより前のすべてのものを上書きします。

24.5. POD の PROJECTED ボリュームの設定

以下の例は、既存のシークレットボリュームをマウントするために Projected ボリュームを使用する方

OpenShift Container Platform 3.9 開発者ガイド

302

以下の例は、既存のシークレットボリュームをマウントするために Projected ボリュームを使用する方
法を示しています。

以下の手順は、ローカルファイルからユーザー名およびパスワードのシークレットを作成するために実
行できます。その後に、シークレットを同じ共有ディレクトリーにマウントするために Projected ボ
リュームを使用して 1 つのコンテナーを実行する Pod を作成します。

1. シークレットが含まれるファイルを作成します。
以下に例を示します。

$ nano secret.yaml

以下を入力し、パスワードおよびユーザー情報を適宜置き換えます。

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
data:
 pass: MWYyZDFlMmU2N2Rm
 user: YWRtaW4=

user および pass の値には、base64 でエンコーティングされた任意の有効な文字列を使用で
きます。ここで使用される例は base64 でエンコーディングされた値 (user:
admin、pass:1f2d1e2e67df) になります。

$ echo -n "admin" | base64
YWRtaW4=
$ echo -n "1f2d1e2e67df" | base64
MWYyZDFlMmU2N2Rm

2. 以下のコマンドを使用してシークレットを作成します。

$ oc create -f <secrets-filename>

以下に例を示します。

$ oc create -f secret.yaml
secret "mysecret" created

3. シークレットが以下のコマンドを使用して作成されていることを確認できます。

$ oc get secret <secret-name>
$ oc get secret <secret-name> -o yaml

以下に例を示します。

$ oc get secret mysecret
NAME TYPE DATA AGE
mysecret Opaque 2 17h

oc get secret mysecret -o yaml

第24章 PROJECTED ボリューム

303

apiVersion: v1
data:
 pass: MWYyZDFlMmU2N2Rm
 user: YWRtaW4=
kind: Secret
metadata:
 creationTimestamp: 2017-05-30T20:21:38Z
 name: mysecret
 namespace: default
 resourceVersion: "2107"
 selfLink: /api/v1/namespaces/default/secrets/mysecret
 uid: 959e0424-4575-11e7-9f97-fa163e4bd54c
type: Opaque

4. volumes セクションが含まれる 以下のような Pod 設定ファイルを作成します。

apiVersion: v1
kind: Pod
metadata:
 name: test-projected-volume
spec:
 containers:
 - name: test-projected-volume
 image: busybox
 args:
 - sleep
 - "86400"
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: user
 - secret:
 name: pass

5. 設定ファイルから Pod を作成します。

$ oc create -f <your_yaml_file>.yaml

以下に例を示します。

$ oc create -f secret-pod.yaml
pod "test-projected-volume" created

6. Pod コンテナーが実行中であることを確認してから、Pod への変更を確認します。

$ oc get pod <name>

出力は以下のようになります。

OpenShift Container Platform 3.9 開発者ガイド

304

$ oc get pod test-projected-volume
NAME READY STATUS RESTARTS AGE
test-projected-volume 1/1 Running 0 14s

7. 別のターミナルで、oc exec コマンド を使用して実行中のコンテナーへのシェルを開きます。

$ oc exec -it <pod> <command>

以下に例を示します。

$ oc exec -it test-projected-volume -- /bin/sh

8. シェルで、projected-volumes ディレクトリーに展開されるソースが含まれることを確認しま
す。

/ # ls
bin home root tmp
dev proc run usr
etc projected-volume sys var

第24章 PROJECTED ボリューム

305

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#exec

第25章 DAEMONSET の使用

25.1. 概要

daemonset は、OpenShift Container Platform クラスター内の特定の、またはすべてのノードで Pod
のレプリカを実行するために使用できます。

daemonset を使用して共有ストレージを作成し、クラスターのすべてのノードでロギング Pod を実行
するか、またはすべてのノードでモニターエージェントをデプロイします。

セキュリティー上の理由から、 クラスター管理者のみが DeamonSet を作成できます。（ユーザーへの
Daemonset パーミッションの付与。）

daemonset についての詳細は、Kubernetes ドキュメントを参照してください。

重要

Daemonset のスケジューリングにはプロジェクトのデフォルトノードセレクターとの互
換性がありません。これを無効にしない場合、daemonset はデフォルトのノードセレク
ターとのマージによって制限されます。これにより、マージされたノードセレクターで
選択解除されたノードで Pod が頻繁に再作成されるようになり、クラスターに不要な負
荷が加わります。

そのため、以下に留意してください。

daemonset の使用を開始する前に、namespace のアノテーション openshift.io/
node-selector を空の文字列に設定することで、namespace のプロジェクト全
体のデフォルトのノードセレクターを無効にします。

oc patch namespace myproject -p \
 '{"metadata": {"annotations": {"openshift.io/node-selector": ""}}}'

新規プロジェクトを作成している場合、oc adm new-project --node-
selector="" を使用してデフォルトのノードセレクターを上書きします。

25.2. DAEMONSET の作成

daemonset の作成時に、nodeSelector フィールドは daemonset がレプリカをデプロイする必要のあ
るノードを指定するために使用されます。

1. daemonset yaml ファイルを定義します。

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 name: hello-daemonset
spec:
 selector:
 matchLabels:
 name: hello-daemonset 1
 template:
 metadata:
 labels:
 name: hello-daemonset 2

OpenShift Container Platform 3.9 開発者ガイド

306

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#admin-guide-granting-users-daemonset-permissions
http://kubernetes.io/docs/admin/daemons/
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cluster_administration/#using-node-selectors

1

2

3

 spec:
 nodeSelector: 3
 type: infra
 containers:
 - image: openshift/hello-openshift
 imagePullPolicy: Always
 name: registry
 ports:
 - containerPort: 80
 protocol: TCP
 resources: {}
 terminationMessagePath: /dev/termination-log
 serviceAccount: default
 terminationGracePeriodSeconds: 10

daemonset に属する Pod を判別するラベルセレクターです。

Pod テンプレートのラベルセレクターです。上記のラベルセレクターに一致している必要
があります。

Pod レプリカがデプロイされる必要のあるノードを判別するノードセレクターです。

2. daemonset オブジェクトを作成します。

oc create -f daemonset.yaml

3. Pod が作成されていることを確認し、各 Pod に Pod レプリカがあることを確認するには、以
下を実行します。

a. daemonset Pod を検索します。

$ oc get pods
hello-daemonset-cx6md 1/1 Running 0 2m
hello-daemonset-e3md9 1/1 Running 0 2m

b. Pod がノードに配置されていることを確認するために Pod を表示します。

$ oc describe pod/hello-daemonset-cx6md|grep Node
Node: openshift-node01.hostname.com/10.14.20.134
$ oc describe pod/hello-daemonset-e3md9|grep Node
Node: openshift-node02.hostname.com/10.14.20.137

重要

第25章 DAEMONSET の使用

307

重要

DaemonSet の Pod テンプレートを更新しても、既存の Pod レプリカには影響
はありません。

DaemonSet を削除してから、異なるテンプレートと同じラベルセレクターを使
用して新規の DaemonSet を作成する場合に、既存の Pod レプリカを、ラベル
が一致していると認識するため、既存の Pod レプリカは更新されず、Pod テン
プレートで一致しない場合でも新しいレプリカが作成されます。

ノードのラベルを変更する場合には、DaemonSet は新しいラベルと一致する
ノードに Pod を追加し、新しいラベルと一致しないノードから Pod を削除しま
す。

DaemonSet を更新するには、以前のレプリカまたはノードを削除して新規の pod レプ
リカを強制的に作成します。

OpenShift Container Platform 3.9 開発者ガイド

308

第26章 POD の自動スケーリング

26.1. 概要

HorizontalPodAutoscaler オブジェクトで定義される Horizontal Pod Autoscaler は、レプリケーショ
ンコントローラーに属する Pod から収集されるメトリクスまたはデプロイメント設定に基づいて、シ
ステムがレプリケーションコントローラーまたはデプロイメント設定のスケールの増減を自動的に設定
する方法を指定します。

26.2. HORIZONTAL POD AUTOSCALER の要件

Horizontal Pod Autoscaler を使用するには、クラスター管理者は クラスターメトリクスを適切に設定
している必要があります。

26.3. サポートされるメトリクス

以下のメトリクスは Horizontal Pod Autoscaler でサポートされています。

表26.1 メトリクス

メトリクス 説明 API バージョン

CPU の使用率 要求される CPU のパーセンテージ autoscaling/v1、autoscaling/v2be
ta1

メモリーの使用率 要求されるメモリーの割合 autoscaling/v2beta1

26.4. 自動スケーリング

oc autoscale コマンドを使用して Horizontal Pod Autoscaler を作成し、実行する Pod の最小数および
最大数を指定すると共に Pod がターゲットとして設定すべき CPU の使用率またはメモリーの使用率を
指定することができます。

重要

メモリー使用率の自動スケーリングはテクノロジープレビュー機能のみとして提供され
ています。

Horizontal Pod Autoscaler の作成後に、これは Heapster で Pod のメトリクスのクエリーを試行しま
す。Heapster が初期メトリクスを取得するまでに 1 分から 2 分の時間がかかる場合があります。

メトリクスが Heapster で利用可能になると、Horizontal Pod Autoscaler は必要なメトリクスの使用率
に対する現在のメトリクスの使用率の割合を計算し、随時スケールアップまたはスケールダウンを実行
します。スケーリングは一定間隔で実行されますが、メトリクスが Heapster に移されるまでに 1 分か
ら 2 分の時間がかかる場合があります。

レプリケーションコントローラーの場合、このスケーリングはレプリケーションコントローラーのレプ
リカに直接対応します。デプロイメント設定の場合、スケーリングはデプロイメント設定のレプリカ数
に直接対応します。自動スケーリングは Complete フェーズの最新デプロイメントにのみ適用されるこ
とに注意してください。

第26章 POD の自動スケーリング

309

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-cluster-metrics

1

2

3

4

5

6

7

OpenShift Container Platform はリソースに自動的に対応し、起動時などのリソースの使用が急増した
場合など必要のない自動スケーリングを防ぎます。unready 状態の Pod には、スケールアップ時の使
用率が 0 CPU と指定され、Autoscaler はスケールダウン時にはこれらの Pod を無視します。既知のメ
トリクスのない Pod にはスケールアップ時の使用率が 0% CPU、スケールダウン時に 100% CPU とな
ります。これにより、HPA の決定時に安定性が増します。この機能を使用するには、readiness チェッ
クを設定して新規 Pod が使用可能であるかどうかを判別します。

26.5. CPU 使用率の自動スケーリング

oc autoscale コマンドを使用して、少なくとも指定される時間に実行する Pod の最大数を指定しま
す。オプションとして Pod の最小数と Pod がターゲットとする平均の CPU 使用率を指定できます。
指定しない場合は、OpenShift Container Platform サーバーからのデフォルト値がそれらに指定されま
す。

以下に例を示します。

$ oc autoscale dc/frontend --min 1 --max 10 --cpu-percent=80
deploymentconfig "frontend" autoscaled

上記の例では、Horizontal Pod Autoscaler の autoscaling/v1 を使用して以下の定義で Horizontal Pod
Autoscaler をする作成方法を示しています。

例26.1 Horizontal Pod Autoscaler オブジェクト定義

この Horizontal Pod Autoscaler オブジェクトの名前

スケーリングするオブジェクトの種類

スケーリングするオブジェクトの名前

スケーリングするオブジェクトの API バージョン

スケールダウン時のレプリカの最小数

スケールアップ時のレプリカの最大数

各 Pod が使用していることが期待される要求された CPU のパーセンテージ

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: frontend 1
spec:
 scaleTargetRef:
 kind: DeploymentConfig 2
 name: frontend 3
 apiVersion: apps/v1 4
 subresource: scale
 minReplicas: 1 5
 maxReplicas: 10 6
 targetCPUUtilizationPercentage: 80 7

OpenShift Container Platform 3.9 開発者ガイド

310

1

2

3

4

5

6

7

または、oc autoscale コマンドは Horizontal Pod Autoscaler の v2beta1 バージョンを使用する際に以
下の定義を使用して Horizontal Pod Autoscaler を作成します。

この Horizontal Pod Autoscaler オブジェクトの名前

スケーリングするオブジェクトの API バージョン

スケーリングするオブジェクトの種類

スケーリングするオブジェクトの名前

スケールダウン時のレプリカの最小数

スケールアップ時のレプリカの最大数

各 Pod が使用していることが予想される要求された CPU の平均のパーセンテージ

26.6. メモリー使用率の自動スケーリング

重要

メモリー使用率の自動スケーリングはテクノロジープレビュー機能のみとして提供され
ています。テクノロジープレビュー機能は Red Hat の実稼働環境でのサービスレベルア
グリーメント (SLA) ではサポートされていないため、Red Hat では実稼働環境での使用
を推奨していません。これらの機能は、近々発表予定の製品機能をリリースに先駆けて
ご提供することにより、開発プロセスの中でお客様に機能性のテストとフィードバック
をしていただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポートについての詳細
は、https://access.redhat.com/support/offerings/techpreview/を参照してください。

CPU ベースの自動スケーリングとは異なり、メモリーベースの自動スケーリングでは、oc autoscale
コマンドの代わりに YAML を使用してAutoscaler を指定することが必要です。オプションとして、Pod
の最小数および Pod がターゲットとする必要のある平均のメモリー使用率を指定できます。 これらを
指定しない場合は、OpenShift Container Platform サーバーからのデフォルト値がこれらに指定されま
す。

apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-resource-metrics-cpu 1
spec:
 scaleTargetRef:
 apiVersion: apps/v1 2
 kind: ReplicationController 3
 name: hello-hpa-cpu 4
 minReplicas: 1 5
 maxReplicas: 10 6
 metrics:
 - type: Resource
 resource:
 name: cpu
 targetAverageUtilization: 50 7

第26章 POD の自動スケーリング

311

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

7

1. メモリーベースの自動スケーリングは、自動スケーリング API の v2beta1 バージョンでのみ利
用できます。以下をクラスターの master-config.yaml ファイルに追加してメモリーベースの
自動スケーリングを有効にします。

2. 以下を hpa.yaml などのファイルに置きます。

この Horizontal Pod Autoscaler オブジェクトの名前

スケーリングするオブジェクトの API バージョン

スケーリングするオブジェクトの種類

スケーリングするオブジェクトの名前

スケールダウン時のレプリカの最小数

スケールアップ時のレプリカの最大数

各 Pod が使用していることが予想される要求されたメモリーの平均のパーセンテージ

3. 次に上記のファイルから Autoscaler を作成します。

$ oc create -f hpa.yaml

重要

...
apiServerArguments:
 runtime-config:
 - apis/autoscaling/v2beta1=true
...

apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-resource-metrics-memory 1
spec:
 scaleTargetRef:
 apiVersion: apps/v1 2
 kind: ReplicationController 3
 name: hello-hpa-memory 4
 minReplicas: 1 5
 maxReplicas: 10 6
 metrics:
 - type: Resource
 resource:
 name: memory
 targetAverageUtilization: 50 7

OpenShift Container Platform 3.9 開発者ガイド

312

重要

メモリーベースの自動スケーリングを機能させるには、メモリー使用量がレプリカ数と
比例して増減する必要があります。平均的には以下のようになります。

レプリカ数が増えると、Pod ごとのメモリー (作業セット) の使用量が全体的に
減少します。

レプリカ数が減ると、Pod ごとのメモリー使用量が全体的に増加します。

OpenShift web コンソールを使用して、アプリケーションのメモリー動作を確認し、メ
モリーベースの自動スケーリングを使用する前にアプリケーションがそれらの要件を満
たしていることを確認します。

26.7. HORIZONTAL POD AUTOSCALER の表示

Horizontal Pod Autoscaler のステータスを表示するには、以下を実行します。

oc get コマンドを使用して CPU 使用率および Pod 制限の情報を表示します。

$ oc get hpa/hpa-resource-metrics-cpu
NAME REFERENCE TARGET CURRENT MINPODS
MAXPODS AGE
hpa-resource-metrics-cpu DeploymentConfig/default/frontend/scale 80% 79% 1
10 8d

出力には以下が含まれます。

Target。デプロイメント設定で制御されるすべての Pod でターゲットに設定された平均
CPU 使用率です。

Current。デプロイメント設定で制御されるすべての Pod における現在の CPU 使用率。

Minpods/Maxpods。Autoscaler で設定できるレプリカの最小数および最大数です。

Horizontal Pod Autoscaler オブジェクトの詳細情報を参照するには、oc describe コマンドを
使用します。

$ oc describe hpa/hpa-resource-metrics-cpu
Name: hpa-resource-metrics-cpu
Namespace: default
Labels: <none>
CreationTimestamp: Mon, 26 Oct 2015 21:13:47 -0400
Reference: DeploymentConfig/default/frontend/scale
Target CPU utilization: 80% 1
Current CPU utilization: 79% 2
Min replicas: 1 3
Max replicas: 4 4
ReplicationController pods: 1 current / 1 desired
Conditions: 5
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old
as to warrant a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate

第26章 POD の自動スケーリング

313

1

2

3

4

5

a replica count from pods metric http_requests
 ScalingLimited False DesiredWithinRange the desired replica count is within the
acceptable range
Events:

各 Pod が使用していることが予想される要求されたメモリーの平均のパーセンテージ。

デプロイメント設定で制御されるすべての Pod における現在の CPU 使用率。

スケールダウン時のレプリカの最小数。

スケールアップ時のレプリカの最大数。

オブジェクトが v2alpha1 API を使用している場合、状況条件が表示されます。

26.7.1. Horizontal Pod Autoscaler の状況条件の表示

状況条件セットを使用して、Horizontal Pod Autoscaler がスケーリングできるかどうかや、現時点でこ
れがいずれかの方法で制限されているかどうかを判別できます。

Horizontal Pod Autoscaler の状況条件は、自動スケーリング API の v2beta1 バージョンで利用できま
す。

以下の状況条件が設定されます。

AbleToScale は Horizontal Pod Autoscaler がスケールをフェッチし、更新できるかどうかや、
いずれかのバックオフ条件がスケーリングを防いでいないかどうかを示します。

True 条件はスケーリングが許可されることを示します。

False 条件は指定される理由によりスケーリングが許可されないことを示します。

ScalingActive は Horizontal Pod Autoscaler が有効にされており (ターゲットのレプリカ数がゼ
ロでない)、必要なメトリクス (scale) を計算できるかどうかを示します。

True 条件はメトリクスが適切に機能していることを示します。

False 条件は通常フェッチするメトリクスに関する問題を示します。

ScalingLimited は、レプリカの最大または最小数に達したために自動スケーリングが許可され
ないことを示します。

True 条件は、スケーリングするためにレプリカの最小または最大数を引き上げるか、また
は引き下げる必要があることを示します。

False 条件は、要求されたスケーリングが許可されることを示します。

この行を追加または編集する必要がある場合には、OpenShift Container Platform サービスを再起動し
ます。

kubernetesMasterConfig:
 ...
 apiServerArguments:
 runtime-config:
 - apis/autoscaling/v2beta1=true

OpenShift Container Platform 3.9 開発者ガイド

314

1

systemctl restart atomic-openshift-master-api atomic-openshift-master-controllers

Horizontal Pod Autoscaler に影響を与える条件を表示するには、oc describe hpa を使用します。条件
は status.conditions フィールドに表示されます。

$ oc describe hpa cm-test
Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: (current / target)
 "http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: 1
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant
a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica
count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable
range
Events:

Horizontal Pod Autoscaler の状況メッセージです。

AbleToScale 条件では、HPA がスケールを取得して更新できるか、またバックオフ関連
の条件によりスケーリングを防止できるかどうかを指定します。

ScalingActive の条件は、HPA を有効にするか (たとえば、ターゲットのレプリカ数は 0
でないなど)、任意のスケーリングを計算できるかどうかを指定します。「False」の状態
は通常、メトリクスの取得に問題があることを示します。

ScalingLimited の条件は、スケーリングが Horiontal Pod Autoscaler の最大値または最小
値で制限されていることを示します。「True」の状態は通常、Horizontal Pod Autoscaler
で最小または最大レプリカ数の制限の増減を実行する必要があることを示します。

以下は、スケーリングできない Pod の例です。

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale False FailedGetScale the HPA controller was unable to get the target's current
scale: replicationcontrollers/scale.extensions "hello-hpa-cpu" not found

以下は、スケーリングに必要なメトリクスを取得できなかった Pod の例です。

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------

第26章 POD の自動スケーリング

315

 AbleToScale True SucceededGetScale the HPA controller was able to get the target's
current scale
 ScalingActive False FailedGetResourceMetric the HPA was unable to compute the replica
count: unable to get metrics for resource cpu: no metrics returned from heapster

以下は、要求される自動スケーリングが要求される最小数よりも小さい場合の Pod の例です。

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant
a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica
count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable
range
Events:

OpenShift Container Platform 3.9 開発者ガイド

316

第27章 ボリュームの管理

27.1. 概要

コンテナーはデフォルトで永続性がある訳ではありません。再起動時にそれらのコンテンツはクリアさ
れます。 ボリュームとは Pod およびコンテナーで利用可能なマウントされたファイルシステムのこと
であり、これらは数多くのホストのローカルまたはネットワーク割り当てストレージのエンドポイント
でサポートされる場合があります。

ボリュームのファイルシステムにエラーが含まれないようにし、かつエラーが存在する場合はそれを修
復するために、OpenShift Container Platform は mount ユーティリティーの前に fsck ユーティリ
ティーを起動します。これはボリュームを追加するか、または既存ボリュームを更新する際に実行され
ます。

最も単純なボリュームタイプは emptyDir です。管理者はユーザーによる Pod に自動的に割り当てられ
る永続ボリュームの要求を許可することもできます。

注記

emptyDir ボリュームストレージは、FSGroup パラメーターがクラスター管理者によっ
て有効にされている場合は Pod の FSGroup に基づいてクォータで制限できます。

CLI コマンドの oc volume を使用して、レプリケーションコントローラー や デプロイメント設定 など
の Pod テンプレートを持つオブジェクトのボリュームおよびボリュームマウントを 追加 し、更新 し、
または 削除 することができます。また、Pod または Pod テンプレートを持つオブジェクトのボリュー
ムを一覧表示することもできます。

27.2. 一般的な CLI の使用方法

oc volume コマンドは以下の一般的な構文を使用します。

$ oc volume <object_selection> <operation> <mandatory_parameters> <optional_parameters>

このトピックでは、<object_selection> の <object_type>/<name> 形式を後に説明する例で使用して
います。ただし、以下のオプションのいずれかを使用できます。

表27.1 オブジェクトの選択

構文 説明 例

<object_type> <name> タイプ <object_type> の
<name> を選択します。

deploymentConfig registry

<object_type>/<name> タイプ <object_type> の
<name> を選択します。

deploymentConfig/registry

<object_type> --
selector=<object_label_selec
tor>

所定のラベルセレクターに一致す
るタイプ <object_type> のリ
ソースを選択します。

deploymentConfig --
selector="name=registry"

第27章 ボリュームの管理

317

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#deployments-and-deployment-configurations

<object_type> --all タイプ <object_type> のすべて
のリソースを選択します。

deploymentConfig --all

-f または --
filename=<file_name>

リソースを編集するために使用す
るファイル名、ディレクトリー、
または URL です。

-f registry-deployment-
config.json

構文 説明 例

<operation> には、--add、--remove、または --list のいずれかを使用できます。

いずれの <mandatory_parameters> または <optional_parameters> も選択された操作に固有のもので
あり、これらについては後のセクションで説明します。

27.3. ボリュームの追加

ボリューム、ボリュームマウントまたはそれらの両方を Pod テンプレートに追加するには、以下を実
行します。

$ oc volume <object_type>/<name> --add [options]

表27.2 ボリュームを追加するためのサポートされるオプション

オプション 詳細 Default

--name ボリュームの名前。 指定がない場合は、自動的に生成
されます。

-t, --type ボリュームソースの名前。サポー
トされる値は
emptyDir、hostPath、secret
、configmap、persistentVolu
meClaim または projected で
す。

emptyDir

-c, --containers 名前でコンテナーを選択します。
すべての文字に一致するワイルド
カード '*' を取ることもできま
す。

'*'

-m, --mount-path 選択されたコンテナー内のマウン
トパス。

--path ホストパス。--type=hostPath
の必須パラメーターです。

--secret-name シークレットの名前。--
type=secret の必須パラメー
ターです。

OpenShift Container Platform 3.9 開発者ガイド

318

--configmap-name configmap の名前。--
type=configmap の必須のパラ
メーターです。

--claim-name 永続ボリューム要求 (PVC) の名
前。--
type=persistentVolumeClaim
の必須パラメーターです。

--source JSON 文字列としてのボリューム
ソースの詳細。必要なボリューム
ソースが --type でサポートされ
ない場合に推奨されます。

-o, --output サーバー上で更新せずに変更した
オブジェクトを表示します。サ
ポートされる値は json、yaml で
す。

--output-version 指定されたバージョンで変更され
たオブジェクトを出力します。

api-version

オプション 詳細 Default

例
新規ボリュームソース emptyDir をデプロイメント設定の レジストリー に追加します。

$ oc volume dc/registry --add

レプリケーションコントローラー r1 のシークレット $ecret を使用してボリューム v1 を追加し、コンテ
ナー内の /data でマウントします。

$ oc volume rc/r1 --add --name=v1 --type=secret --secret-name='$ecret' --mount-path=/data

要求名 pvc1 を使って既存の永続ボリューム v1 をディスク上のデプロイメント設定 dc.json に追加し、
ボリュームをコンテナー c1 の /data でマウントし、サーバー上でデプロイメント設定を更新します。

$ oc volume -f dc.json --add --name=v1 --type=persistentVolumeClaim \
 --claim-name=pvc1 --mount-path=/data --containers=c1

すべてのレプリケーションコントローラーについてリビジョン 5125c45f9f563 を使い、Git リポジト
リー https://github.com/namespace1/project1 に基づいてボリューム v1 を追加します。

$ oc volume rc --all --add --name=v1 \
 --source='{"gitRepo": {
 "repository": "https://github.com/namespace1/project1",
 "revision": "5125c45f9f563"
 }}'

第27章 ボリュームの管理

319

27.4. ボリュームの更新

既存のボリュームまたはボリュームマウントを更新することは、ボリュームの追加と同様ですが、--
overwrite オプションを使用します。

$ oc volume <object_type>/<name> --add --overwrite [options]

例
レプリケーションコントローラーの既存ボリューム r1 の既存のボリューム v1 を 既存の Persistent
Volume Claim (永続ボリューム要求、PVC) pvc1 に置き換えます。

$ oc volume rc/r1 --add --overwrite --name=v1 --type=persistentVolumeClaim --claim-name=pvc1

デプロイメント設定 d1 のマウントポイントをボリューム v1 の /opt に変更します。

$ oc volume dc/d1 --add --overwrite --name=v1 --mount-path=/opt

27.5. ボリュームの削除

Pod テンプレートからボリュームまたはボリュームマウントを削除するには、以下を実行します。

$ oc volume <object_type>/<name> --remove [options]

表27.3 ボリュームを削除するためにサポートされるオプション

オプション 詳細 Default

--name ボリュームの名前。

-c, --containers 名前でコンテナーを選択します。
すべての文字に一致するワイルド
カード '*' を取ることもできま
す。

'*'

--confirm 複数のボリュームを 1 度に削除す
ることを示します。

-o, --output サーバー上で更新せずに変更した
オブジェクトを表示します。サ
ポートされる値は json、yaml で
す。

--output-version 指定されたバージョンで変更され
たオブジェクトを出力します。

api-version

例
デプロイメント設定 d1 からボリューム v1 を削除します。

$ oc volume dc/d1 --remove --name=v1

デプロイメント設定 d1 のコンテナー c1 からボリューム v1 をアンマウントし、d1 のコンテナーで参照

OpenShift Container Platform 3.9 開発者ガイド

320

デプロイメント設定 d1 のコンテナー c1 からボリューム v1 をアンマウントし、d1 のコンテナーで参照
されていない場合はボリューム v1 を削除します。

$ oc volume dc/d1 --remove --name=v1 --containers=c1

レプリケーションコントローラー r1 のすべてのボリュームを削除します。

$ oc volume rc/r1 --remove --confirm

27.6. ボリュームの一覧表示

Pod または Pod テンプレートのボリュームまたはボリュームマウントを一覧表示するには、以下を実
行します。

$ oc volume <object_type>/<name> --list [options]

ボリュームのサポートされているオプションを一覧表示します。

オプション 詳細 Default

--name ボリュームの名前。

-c, --containers 名前でコンテナーを選択します。
すべての文字に一致するワイルド
カード '*' を取ることもできま
す。

'*'

例
Pod p1 のすべてのボリュームを一覧表示します。

$ oc volume pod/p1 --list

すべてのデプロイメント設定で定義されるボリューム v1 を一覧表示します。

$ oc volume dc --all --name=v1

27.7. サブパスの指定

volumeMounts.subPathプロパティを使用して、ボリュームのルートではなく、ボリューム内のサブパ
スを指定します。subPath を使用すると、1 つの Pod でボリュームを共有して複数の用途に使用できま
す。

ボリューム内のファイルの一覧を表示するには、oc rsh コマンドを実行します。

$ oc rsh <pod>
sh-4.2$ ls /path/to/volume/subpath/mount
example_file1 example_file2 example_file3

subPath を指定します。

第27章 ボリュームの管理

321

1

2

subPath の使用例

apiVersion: v1
kind: Pod
metadata:
 name: my-site
spec:
 containers:
 - name: mysql
 image: mysql
 volumeMounts:
 - mountPath: /var/lib/mysql
 name: site-data
 subPath: mysql 1
 - name: php
 image: php
 volumeMounts:
 - mountPath: /var/www/html
 name: site-data
 subPath: html 2
 volumes:
 - name: site-data
 persistentVolumeClaim:
 claimName: my-site-data

データベースは mysql フォルダーに保存されます。

HTML コンテンツは html フォルダーに保存されます。

OpenShift Container Platform 3.9 開発者ガイド

322

第28章 永続ボリュームの使用

28.1. 概要

PersistentVolume オブジェクトは OpenShift Container Platform クラスターのストレージリソースで
す。ストレージは、クラスター管理者が PersistentVolume オブジェクトを GCE Persistent Disk、
AWS Elastic Block Store (EBS) および NFS マウントなどのソースから作成することによってプロビ
ジョニングできます。

注記

『 Installation and Configuration Guide 』では、NFS、GlusterFS、Ceph
RBD、OpenStack Cinder、AWS EBS、GCE Persistent Disk、iSCSI、および Fibre
Channel を使用して、永続ストレージを OpenShift Container Platform クラスターにプ
ロビジョニングする方法についてのクラスター管理者向けの手順を説明しています。

ストレージは、リソースの要求 (claim) を指定することにより利用可能になります。ストレージリソー
スの要求は PersistentVolumeClaim オブジェクトを使用して実行できます。 この要求 (claim) は、通
常は要求する内容に一致するボリュームとペアになります。

28.2. ストレージの要求

ストレージの要求は、プロジェクトで PersistentVolumeClaim オブジェクトを作成して実行できま
す。

Persistent Volume Claim (永続ボリューム要求、PVC) オブジェクト定義

28.3. ボリュームと要求のバインディング

PersistentVolume は固有のリソースです。PersistentVolumeClaim はストレージサイズなどの特定の
属性を持つリソースの要求です。これら 2 者の間には、要求を利用可能なボリュームに一致させ、要求
とボリュームをバインドするプロセスがあります。これにより、要求は Pod のボリュームとして使用
できます。OpenShift Container Platform は要求をサポートするボリュームを検索し、これを Pod にマ
ウントします。

CLI を使用してクエリーを実行し、要求またはボリュームがバインドされているかどうかを判別できま
す。

$ oc get pvc
NAME LABELS STATUS VOLUME

apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:
 name: "claim1"
spec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: "1Gi"
 volumeName: "pv0001"

第28章 永続ボリュームの使用

323

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-index
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-glusterfs
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-ceph-rbd
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-cinder
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-aws
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-gce
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-iscsi
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-fibre-channel

claim1 map[] Bound pv0001

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM
pv0001 map[] 5368709120 RWO Bound yournamespace / claim1

28.4. POD のボリュームとしての要求

PersistentVolumeClaim は Pod によってボリュームとして使用されます。OpenShift Container
Platform は Pod と同じ namespace の指定された名前で要求を検索し、この要求を使用してこれに対応
するマウントするボリュームを検索します。

要求を含む Pod の定義

28.5. ボリュームと要求の事前バインディング

PersistentVolumeClaim をバインドする PersistentVolume を正確に把握している場
合、volumeName フィールドを使用して PV を PVC に指定できます。この方法は、通常のマッチング
およびバインディングプロセスを省略します。PVC は volumeName に指定される同じ名前を持つ PV
にのみバインドできます。この名前を持つ PV が存在し、Available の場合、PV と PVC は、PV が
PVC のラベルセレクター、アクセスモードおよびリソース要求を満たすかどうかに関係なくバインドさ
れます。

例28.1 volumeName のある Persistent Volume Claim (永続ボリューム要求、PVC) オブジェクト定
義

apiVersion: "v1"
kind: "Pod"
metadata:
 name: "mypod"
 labels:
 name: "frontendhttp"
spec:
 containers:
 -
 name: "myfrontend"
 image: openshift/hello-openshift
 ports:
 -
 containerPort: 80
 name: "http-server"
 volumeMounts:
 -
 mountPath: "/var/www/html"
 name: "pvol"
 volumes:
 -
 name: "pvol"
 persistentVolumeClaim:
 claimName: "claim1"

apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:

OpenShift Container Platform 3.9 開発者ガイド

324

重要

claimRefs を設定する機能は、説明されているユースケースにおける一時的な回避策で
す。ボリュームを要求できるユーザーを制限する長期的なソリューションは開発中で
す。

注記

クラスター管理者は、ユーザーの代わりに claimRefs を設定する前に セレクターとラベ
ルによるボリュームのバインディング を設定することをまず検討する必要があります。

クラスター管理者が独自の要求に対してのみにボリュームを「予約」し、それ以外の要求がその独自の
要求がボリュームにバインドされる前にバインドされないようにすることもできます。この場合、管理
者は claimRef フィールドを使用して PVC を PV に指定できます。PV は claimRef で指定される同じ
名前および namesapce を持つ PVC にのみバインドできます。PVC のアクセスモードおよびリソース
要求の条件は、ラベルセレクターが無視される場合でも PV および PVC がバインドされるために満た
される必要があります。

claimRef での永続ボリュームオブジェクト定義

volumeName を PVC に指定しても、その PVC がバインドされる前に異なる PVC が指定された PV に
バインドされることを防ぐ訳ではありません。要求は PV が Available になるまで Pending のままにな
ります。

claimRef を PV に指定しても、指定された PVC が異なる PV にバインドされることを防ぐ訳ではあり
ません。PVC は通常のバインディングプロセスに基づいてバインドする別の PV を自由に選択できま
す。そのため、これらのシナリオを避け、要求が必要なボリュームにバインドされるようにするに

 name: "claim1"
spec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: "1Gi"
 volumeName: "pv0001"

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 nfs:
 path: /tmp
 server: 172.17.0.2
 persistentVolumeReclaimPolicy: Recycle
 claimRef:
 name: claim1
 namespace: default

第28章 永続ボリュームの使用

325

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#selector-label-volume-binding

は、volumeName および claimRef の両方が指定される必要があります。

pv.kubernetes.io/bound-by-controller アノテーションについて Bound PV および PVC ペアを検査す
ることにより、volumeName および/または claimRef の設定のマッチングおよびバインディングプロ
セスへの影響を確認できます。volumeName および/または claimRef を独自に設定した PV および
PVC にはこのアノテーションがありませんが、通常の PV および PVC ではこれは "yes" に設定されて
います。

PV の claimRef が一部の PVC 名および namespace に設定されていて、PV が Retain または Recycle
回収ポリシーに応じて回収されている場合、その claimRef は PVC または namespace 全体が存在しな
くなっても同じ PVC 名および namespace に設定されたままになります。

OpenShift Container Platform 3.9 開発者ガイド

326

第29章 永続ボリュームの拡張

29.1. PERSISTENT VOLUME CLAIM (永続ボリューム要求、PVC) の拡張を
有効化

ボリューム拡張はテクノロジープレビュー機能であるため、OpenShift Container Platform 3.9 クラス
ターではデフォルトで有効にされません。OpenShift Container Platform 管理者がこの機能を特定の
ユースケースで有効にしたい理由が他にもある可能性があります。

注記

Red Hat のテクノロジープレビュー機能のサポートについての詳細
は、https://access.redhat.com/support/offerings/techpreview/を参照してください。

OpenShift Container Platform ユーザーによる Persistent Volume Claim (永続ボリューム要求、PVC) の
拡張を可能にするには、OpenShift Container Platform 管理者は、allowVolumeExpansion を true に
設定して StorageClass を作成するか、または更新する必要があります。このクラスから作成された
PVC のみを拡張することができます。

これとは別に、OpenShift Container Platform 管理者は ExpandPersistentVolumes 機能フラグを有効
にし、PersistentVolumeClaimResize 受付コントローラーをオンにする必要がありま
す。PersistentVolumeClaimResize 受付 コントローラー についての詳細は、「受付コントローラー」
を参照してください。

機能ゲートを有効にするには、システム全体で ExpandPersistentVolumes を true に設定します。

1. クラスターのすべてのノードで node-config.yaml を設定します。

cat /etc/origin/node/node-config.yaml
...
kubeletArguments:
...
 feature-gates:
 - ExpandPersistentVolumes=true
systemctl restart atomic-openshift-node

2. マスター API およびコントローラーマネージャーで ExpandPersistentVolumes 機能ゲートを
有効にします。

cat /etc/origin/master/master-config.yaml
...
kubernetesMasterConfig:
 apiServerArguments:
 ...
 feature-gates:
 - ExpandPersistentVolumes=true
 controllerArguments:
 ...
 feature-gates:
 - ExpandPersistentVolumes=true

systemctl restart atomic-openshift-master-api

第29章 永続ボリュームの拡張

327

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-admission-controllers

1

29.2. GLUSTERFS ベースの PERSISTENT VOLUME CLAIM (永続ボリュー
ム要求、PVC) の拡張

OpenShift Container Platform 管理者が allowVolumeExpansion を true に設定して StorageClass を
作成すると、そのクラスから PVC を作成でき、以降は必要に応じてその PVC を編集し、新規サイズを
要求できます。

以下に例を示します。

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: gluster-mysql
spec:
 storageClass: "storageClassWithFlagSet"
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 8Gi 1

spec.resources.requests を更新して拡張されたボリュームを要求できます。

29.3. ファイルシステムを搭載した PERSISTENT VOLUME CLAIM (永続ボ
リューム要求、PVC) の拡張

ファイルサイズのサイズ変更を必要とするボリュームタイプ (GCE PD、EBS、および Cinder など) に
基づいて PVC を拡張するには 2 つの手順からなるプロセスが必要です。通常このプロセスでは、
CloudProvider でボリュームオブジェクトを拡張してから実際のノードでファイルシステムを拡張しま
す。

ノードでのファイルシステムの拡張は、新規 Pod がボリュームと共に起動する場合にのみ実行されま
す。

以下のプロセスは、 allowVolumeExpansion が true に設定された状態で PVC が StorageClass から作
成されていることを前提としています。

1. spec.resources.requests を編集して PVC を編集し、新規サイズを要求します。
CloudProvider オブジェクトのサイズ変更が終了すると、PVC は FileSystemResizePending
に設定されます。

2. 条件を確認するために以下のコマンドを入力します。

 oc describe pvc <pvc_name>

CloudProvider オブジェクトのサイズ変更が終了すると、永続ボリューム (PV) オブジェクトは
PersistentVolume.Spec.Capacity に新規に要求されたサイズを反映します。この時点で、PVC から新
規 Pod を作成または再作成してファイルシステムのサイズ変更を終了することができます。Pod が実
行されている場合、新たに要求されたサイズが利用可能になり、FileSystemResizePending 条件が
PVC から削除されます。

29.4. ボリューム拡張時に障害からの復旧

OpenShift Container Platform 3.9 開発者ガイド

328

マスターまたはノードで基礎となるストレージの拡張に失敗した場合に、OpenShift Container
Platform の管理者は手動で PVC の状態を復旧し、管理者の介入なしにコントローラーによって継続的
に再試行されるリサイズ要求を取り消します。

現時点で、これは以下の手順によって手動で実行できます。

1. Retain 回収ポリシーで要求 (PVC) にバインドされている PV をマークします。これは、PV を
編集し、persistentVolumeReclaimPolicy を Retain に変更することで実行できます。

2. PVC を削除します (後ほど再作成されます)。

3. 新規作成された PVC が Retain とマークされた PV にバインドするには、手動で PV を編集
し、PV 仕様から claimRef エントリーを削除します。これで、PV は Available とマークされ
ます。PVC の事前バインドに関する情報は、「ボリュームと要求の事前バインド」を参照して
ください。

4. 小さ目のサイズか、または基礎となるストレージプロバイダーによって割り当て可能なサイズ
で PVC を再作成します。また、PVC の volumeName フィールドを PV の名前に設定します。
これにより、PVC はプロビジョニングされた PV のみにバインドされます。

5. PV で回収ポリシーを復元します。

第29章 永続ボリュームの拡張

329

第30章 リモートコマンドの実行

30.1. 概要

CLI を使用してコンテナーでリモートコマンドを実行できます。これにより、コンテナーでルーチン操
作を実行するための一般的な Linux コマンドを実行できます。

重要

セキュリティー保護の理由により、oc exec コマンドは、コマンドが cluster-admin
ユーザーによって実行されている場合を除き、特権付きコンテナーにアクセスしようと
しても機能しません。詳細は、「 CLI 操作」のトピック を参照してください。

30.2. 基本的な使用方法

リモートコンテナーコマンド実行のサポートは CLI に組み込まれて います。

$ oc exec <pod> [-c <container>] <command> [<arg_1> ... <arg_n>]

以下に例を示します。

$ oc exec mypod date
Thu Apr 9 02:21:53 UTC 2015

30.3. プロトコル

クライアントは要求を Kubernetes API サーバーに対して実行してコンテナーのリモートコマンドの実
行を開始します。

/proxy/minions/<node_name>/exec/<namespace>/<pod>/<container>?command=<command>

上記の URL には以下が含まれます。

<node_name> はノードの FQDN です。

<namespace> はターゲット Pod の namespace です。

<pod> はターゲット Pod の名前です。

<container> はターゲットコンテナーの名前です。

<command> は実行される必要なコマンドです。

以下は例になります。

/proxy/minions/node123.openshift.com/exec/myns/mypod/mycontainer?command=date

さらに、クライアントはパラメーターを要求に追加して以下について指示します。

クライアントはリモートクライアントのコマンドに入力を送信する (標準入力: stdin)。

クライアントのターミナルは TTY である。

OpenShift Container Platform 3.9 開発者ガイド

330

https://access.redhat.com/errata/RHSA-2015:1650
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#cli-reference-index

リモートコンテナーのコマンドは標準出力 (stdout) からクライアントに出力を送信する。

リモートコンテナーのコマンドは標準エラー出力 (stderr) からクライアントに出力を送信す
る。

exec 要求の API サーバーへの送信後、クライアントは多重化ストリームをサポートするものに接続を
アップグレードします。 現在の実装では SPDY を使用しています。

クライアントは標準入力 (stdin)、標準出力 (stdout)、および標準エラー出力 (stderr) 用にそれぞれのス
トリームを作成します。ストリームを区別するために、クライアントはストリームの streamType ヘッ
ダーを stdin、stdout、または stderr のいずれかに設定します。

リモートコマンド実行要求の処理が終了すると、クライアントはすべてのストリームやアップグレード
された接続および基礎となる接続を閉じます。

注記

詳細については、『 Architecture 』ガイドを参照してください。

第30章 リモートコマンドの実行

331

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-remote-commands

第31章 ファイルのコンテナーから/へのコピー

31.1. 概要

CLI を使用してコンテナーのリモートディレクトリーに/からローカルファイルをコピーできます。これ
は、バックアップと復元を実行するためにデータベースアーカイブを Pod にコピーし、Pod からコ
ピーするのに役立つツールです。また、実行中の Pod がソースファイルのホットリロードをサポート
する場合に、ソースコードの変更を開発のデバッグ目的で実行中の Pod にコピーするために使用でき
ます。

31.2. 基本的な使用方法

ローカルファイルをコンテナーから/にコピーするためのサポートは、CLI に組み込まれて います。

$ oc rsync <source> <destination> [-c <container>]

たとえば、ローカルディレクトリーを Pod ディレクトリーにコピーするには、以下を実行します。

$ oc rsync /home/user/source devpod1234:/src

または、Pod ディレクトリーをローカルディレクトリーにコピーするには、以下を実行します。

$ oc rsync devpod1234:/src /home/user/source

31.3. データベースのバックアップおよび復元

oc rsync を使用して、データベースアーカイブを既存のデータベースコンテナーから新規データベー
スコンテナーの永続ボリュームディレクトリーにコピーします。

注記

MySQL は以下の例で使用されています。mysql|MYSQL を pgsql|PGSQL または
mongodb|MONGODB に置き換え、移行ガイド を参照してサポートされているデータ
ベースイメージに対応するコマンドを確認してください。この例では既存のデータベー
スコンテナーを使用していることを前提としています。

1. 実行中のデータベース Pod から既存のデータベースをバックアップします。

$ oc rsh <existing db container>
mkdir /var/lib/mysql/data/db_archive_dir
mysqldump --skip-lock-tables -h ${MYSQL_SERVICE_HOST} -P
${MYSQL_SERVICE_PORT:-3306} \
 -u ${MYSQL_USER} --password="$MYSQL_PASSWORD" --all-databases >
/var/lib/mysql/data/db_archive_dir/all.sql
exit

2. ローカルマシンに対してアーカイブファイルのリモート同期を実行します。

$ oc rsync <existing db container with db archive>:/var/lib/mysql/data/db_archive_dir /tmp/.

3. 上記で作成されたデータベースアーカイブを読み込む 2 つ目の MySQL Pod を起動します。

OpenShift Container Platform 3.9 開発者ガイド

332

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#cli-reference-index

1

3. 上記で作成されたデータベースアーカイブを読み込む 2 つ目の MySQL Pod を起動します。
MySQL Pod には固有の DATABASE_SERVICE_NAME がなければなりません。

$ oc new-app mysql-persistent \
 -p MYSQL_USER=<archived mysql username> \
 -p MYSQL_PASSWORD=<archived mysql password> \
 -p MYSQL_DATABASE=<archived database name> \
 -p DATABASE_SERVICE_NAME='mysql2' 1
$ oc rsync /tmp/db_archive_dir new_dbpod1234:/var/lib/mysql/data
$ oc rsh new_dbpod1234

mysql はデフォルトです。この例では mysql2 が作成されます。

4. 適切なコマンドを使用してコピーされたデータベースアーカイブディレクトリーから新規の
データベースコンテナーにデータベースを復元します。

MySQL

$ cd /var/lib/mysql/data/db_archive_dir
$ mysql -u root
$ source all.sql
$ GRANT ALL PRIVILEGES ON <dbname>.* TO '<your username>'@'localhost'; FLUSH
PRIVILEGES;
$ cd ../; rm -rf /var/lib/mysql/data/db_backup_dir

これで、アーカイブされたデータベースを使って 2 つの MySQL データベース Pod がプロジェ
クトで実行されていることになります。

31.4. 要件

oc rsync コマンドは、クライアントのマシンでローカルの rsync コマンドを使用します。この場合、
リモートコンテナーにも rsync コマンドがあることが必要になります。

rsync がローカルまたはリモートコンテナーにない場合、tar アーカイブがローカルに作成され、 tar が
ファイルを展開するために使用されるコンテナーに送信されます。tar がリモートコンテナーで利用で
きない場合にコピーは失敗します。

tar のコピー方法は rsync と同様に機能する訳ではありません。たとえば、rsync は宛先ディレクト
リーを作成し (存在しない場合)、ソースと宛先間の差分のファイルのみを送信します。

注記

Windows では、cwRsync クライアントが oc rsync コマンドで使用するためにインス
トールされ、PATH に追加される必要があります。

31.5. COPY SOURCE の指定

oc rsync コマンドのソース引数はローカルディレクトリーまた Pod ディレクトリーのいずれかを参照
する必要があります。個々のファイルは現時点ではサポートされていません。

Pod ディレクトリーを指定する場合、ディレクトリー名の前に Pod 名を付ける必要があります。

<pod name>:<dir>

第31章 ファイルのコンテナーから/へのコピー

333

標準の rsync の場合と同様に、ディレクトリー名がパスセパレーター (/) で終了する場合、ディレクト
リーの内容のみが宛先にコピーされます。そうでない場合は、ディレクトリー自体がその内容すべてと
共に宛先にコピーされます。

31.6. COPY DESTINATION の指定

oc rsync コマンドの宛先引数はディレクトリーを参照する必要があります。ディレクトリーが存在せ
ず、rsync がコピーに使用される場合、ディレクトリーが作成されます。

31.7. 宛先でのファイルの削除

--delete フラグは、ローカルディレクトリーにないリモートディレクトリーにあるファイルを削除する
ために使用できます。

31.8. ファイル変更についての継続的な同期

--watch オプションを使用すると、コマンドはソースパスでファイルシステムの変更をモニターし、変
更が生じるとそれらを同期します。この引数を指定すると、コマンドは無期限に実行されます。

同期は短い非表示期間の後に実行され、急速に変化するファイルシステムによって同期呼び出しが継続
的に実行されないようにします。

--watch オプションを使用する場合、動作は通常 oc rsync に渡される引数の使用を含め oc rsync を繰
り返し手動で起動する場合と同様になります。そのため、--delete などの oc rsync の手動の呼び出し
で使用される同じフラグでこの動作を制御できます。

31.9. 高度な RSYNC 機能

oc rsync コマンドは標準の rsync ほどコマンドラインのオプションを表示しません。oc rsync で利用
できない標準の rsync コマンドラインオプションを使用する場合 (--exclude-from=FILE オプションな
ど)、以下のように標準の rsync の --rsh (-e) オプションまたは RSYNC_RSH 環境変数を回避策として
使用することができます。

$ rsync --rsh='oc rsh' --exclude-from=FILE SRC POD:DEST

または

$ export RSYNC_RSH='oc rsh'
$ rsync --exclude-from=FILE SRC POD:DEST

上記の例のいずれも標準の rsync をリモートシェルプログラムとして oc rsh を使用するように設定し
て リモート Pod に接続できるようにします。これらは oc rsync を実行する代替方法となります。

OpenShift Container Platform 3.9 開発者ガイド

334

第32章 ポート転送

32.1. 概要

OpenShift Container Platform は Kubernetes に組み込まれた機能を利用してPod へのポート転送をサ
ポートします。詳細は、「 アーキテクチャー 」を参照してください。

CLI を使用して 1 つ以上のローカルポートを Pod に転送できます。これにより、指定されたポートまた
はランダムのポートでローカルにリッスンでき、Pod の所定ポートへ/からデータを転送できます。

32.2. 基本的な使用方法

ポート転送のサポートは CLI に組み込まれて います。

$ oc port-forward <pod> [<local_port>:]<remote_port> [...[<local_port_n>:]<remote_port_n>]

CLI はユーザーによって指定されたそれぞれのローカルポートでリッスンし、以下で説明されているプ
ロトコルで転送を実行します。

ポートは以下の形式を使用して指定できます。

5000 クライアントはポート 5000 でローカルにリッスンし、Pod の 5000 に転送します。

6000:5000 クライアントはポート 6000 でローカルにリッスンし、Pod の 5000 に転送します。

:5000 または
0:5000

クライアントは空きのローカルポートを選択し、Pod の 5000 に転送します。

たとえば、ポート 5000 および 6000 でローカルにリッスンし、Pod のポート 5000 および 6000 へ/か
らデータを転送するには、以下を実行します。

$ oc port-forward <pod> 5000 6000

ポート 8888 でローカルにリッスンし、Pod の 5000 に転送するには、以下を実行します。

$ oc port-forward <pod> 8888:5000

空きポートでローカルにリッスンし、Pod の 5000 に転送するには、以下を実行します。

$ oc port-forward <pod> :5000

または、以下を実行します。

$ oc port-forward <pod> 0:5000

32.3. プロトコル

クライアントは Kubernetes API サーバーに対して要求を実行して Pod へのポート転送を実行します。

第32章 ポート転送

335

https://kubernetes.io/docs/user-guide/kubectl/kubectl_port-forward/#
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-port-forwarding
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#cli-reference-index

/proxy/minions/<node_name>/portForward/<namespace>/<pod>

上記の URL には以下が含まれます。

<node_name> はノードの FQDN です。

<namespace> はターゲット Pod の namespace です。

<pod> はターゲット Pod の名前です。

以下に例を示します。

/proxy/minions/node123.openshift.com/portForward/myns/mypod

ポート転送要求を API サーバーに送信した後に、クライアントは多重化ストリームをサポートするもの
に接続をアップグレードします。現在の実装では SPDY を使用しています。

クライアントは Pod のターゲットポートを含む port ヘッダーでストリームを作成します。ストリーム
に書き込まれるすべてのデータは Kubelet 経由でターゲット Pod およびポートに送信されます。同様
に、転送された接続で Pod から送信されるすべてのデータはクライアントの同じストリームに送信さ
れます。

クライアントは、ポート転送要求が終了するとすべてのストリーム、アップグレードされた接続および
基礎となる接続を閉じます。

注記

詳細については、『 Architecture 』ガイドを参照してください。

OpenShift Container Platform 3.9 開発者ガイド

336

http://www.chromium.org/spdy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-port-forwarding

1

2

第33章 共有メモリー

33.1. 概要

Linux には、System V と POSIX という 2 つのタイプの共有メモリーオブジェクトがあります。Pod の
コンテナーは Pod インフラストラクチャーコンテナーの IPC namespace を共有し、System V 共有メ
モリーオブジェクトを共有できます。本書ではそれらが POSIX 共有メモリーオブジェクトを共有する
方法についても説明します。

33.2. POSIX 共有メモリー

POSIX 共有メモリーでは、tmpfs が /dev/shm にマウントされる必要があります。Pod のコンテナー
はそれらのマウント namespace を共有しないため、ボリュームを使用して同じ /dev/shm を Pod の各
コンテナーに提供します。以下の例では、2 つのコンテナー間で POSIX 共有メモリーをセットアップす
る方法を示しています。

shared-memory.yaml

tmpfs ボリューム dshm を指定します。

dshm で hello-container1 の POSIX 共有メモリーを有効にします。

apiVersion: v1
id: hello-openshift
kind: Pod
metadata:
 name: hello-openshift
 labels:
 name: hello-openshift
spec:
 volumes: 1
 - name: dshm
 emptyDir:
 medium: Memory
 containers:
 - image: kubernetes/pause
 name: hello-container1
 ports:
 - containerPort: 8080
 hostPort: 6061
 volumeMounts: 2
 - mountPath: /dev/shm
 name: dshm
 - image: kubernetes/pause
 name: hello-container2
 ports:
 - containerPort: 8081
 hostPort: 6062
 volumeMounts: 3
 - mountPath: /dev/shm
 name: dshm

第33章 共有メモリー

337

3 dshm で hello-container2 の POSIX 共有メモリーを有効にします。

shared-memory.yaml ファイルを使用して Pod を作成します。

$ oc create -f shared-memory.yaml

OpenShift Container Platform 3.9 開発者ガイド

338

第34章 アプリケーションの正常性

34.1. 概要

ソフトウェアのシステムでは、コンポーネントは一時的な問題 (一時的に接続が失われるなど)、設定エ
ラー、または外部の依存関係に関する問題などにより正常でなくなることがあります。OpenShift
Container Platform アプリケーションには、正常でないコンテナーを検出し、これに対応するための数
多くのオプションがあります。

34.2. プローブを使用したコンテナーのヘルスチェック

プローブは実行中のコンテナーで定期的に実行する Kubernetes の動作です。現時点では、2 つのタイ
プのプローブがあり、それぞれが目的別に使用されています。

liveness プローブ liveness プローブは、liveness プローブが設定されているコンテナーが実行中であるか
どうかを判別します。liveness プローブが失敗すると、kubelet はその再起動ポリシー
に基づいてコンテナーを強制終了します。Pod 設定の
template.spec.containers.livenessprobe スタンザを設定して liveness チェック
を設定します。

readiness プローブ readiness プローブはコンテナーが要求を提供できるかどうかを判別します。readiness
プローブがコンテナーで失敗する場合、エンドポイントコントローラーはコンテナー
の IP アドレスがすべてのエンドポイントから削除されるようにします。readiness プ
ローブはコンテナーが実行中の場合でも、それがプロキシーからトラフィックを受信
しないようにエンドポイントコントローラーに対して信号を送るために使用できま
す。Pod 設定の template.spec.containers.readinessprobe スタンザを設定して
readiness チェックを設定します。

プローブの正確なタイミングは、秒単位で表される 2 つのフィールドで制御されます。

フィールド 説明

initialDelaySeconds コンテナーのプローブ開始後の待機時間。

timeoutSeconds プローブが終了するまでの待機時間 (デフォルト:
1)。この時間を過ぎると、OpenShift Container
Platform はプローブが失敗したものとみなします。

どちらのプローブも以下の 3 つの方法で設定できます。

HTTP チェック

kubelet は web hook を使用してコンテナーの正常性を判別します。このチェックは HTTP の応答コー
ドが 200 から 399 までの値の場合に正常とみなされます。以下は、HTTP チェック方法を使用した
readiness チェックの例です。

例34.1 Readiness HTTP チェック

...
readinessProbe:

第34章 アプリケーションの正常性

339

1

 httpGet:
 path: /healthz
 port: 8080
 initialDelaySeconds: 15
 timeoutSeconds: 1
...

HTTP チェックは、これが完全に初期化されている場合は HTTP ステータスコードを返すアプリケー
ションに適しています。

コンテナー実行チェック

kubeletは、コンテナー内でコマンドを実行します。ステータス 0 でチェックを終了すると正常である
とみなされます。以下はコンテナー実行方法を使用した liveness チェックの例です。

例34.2 Liveness コンテナー実行チェック

...
livenessProbe:
 exec:
 command:
 - cat
 - /tmp/health
 initialDelaySeconds: 15
...

注記

timeoutSeconds パラメーターは、コンテナー実行チェックの Readiness および
Liveness プローブには影響はありません。OpenShift Container Platform はコンテナー
への実行呼び出しでタイムアウトにならないため、タイムアウトをプローブ自体に実装
できます。プローブでタイムアウトを実装する 1 つの方法として、timeout パラメーター
を使用して liveness プローブおよび readiness プローブを実行できます。

[...]
 livenessProbe:
 exec:
 command:
 - /bin/bash
 - '-c'
 - timeout 60 /opt/eap/bin/livenessProbe.sh 1
 timeoutSeconds: 1
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3
[...]

タイムアウト値およびプローブスクリプトへのパスです。

TCP ソケットチェック

OpenShift Container Platform 3.9 開発者ガイド

340

kubelet はコンテナーに対してソケットを開くことを試行します。コンテナーはチェックで接続を確立
できる場合にのみ正常であるとみなされます。以下は TCP ソケットチェック方法を使用した liveness
チェックの例です。

例34.3 Liveness TCP ソケットチェック

...
livenessProbe:
 tcpSocket:
 port: 8080
 initialDelaySeconds: 15
 timeoutSeconds: 1
...

TCP ソケットチェック は、初期化が完了するまでリスニングを開始しないアプリケーションに適して
います。

ヘルスチェックについての詳細は、Kubernetes ドキュメントを参照してください。

第34章 アプリケーションの正常性

341

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

第35章 イベント

35.1. 概要

OpenShift Container Platform のイベントは OpenShift Container Platform クラスターの API オブジェ
クトに対して発生するイベントに基づいてモデル化されます。イベントにより、OpenShift Container
Platform はリソースに依存しない方法で現実に生じているイベントについての情報を記録できます。ま
た、開発者および管理者が統一された方法でシステムコンポーネントについての情報を使用できるよう
にします。

35.2. CLI によるイベントの表示

以下のコマンドを使って所定プロジェクトのイベントの一覧を取得できます。

$ oc get events [-n <project>]

35.3. コンソールでのイベントの表示

Web コンソールの Browse → Events ページでプロジェクトのイベントを表示できます。Pod およびデ
プロイメントなどの他の多くのオブジェクトには独自の Events タブもあり、これはオブジェクトに関
連するイベントを表示します。

35.4. 総合的なイベント一覧

このセクションでは、OenShift Container Platform のイベントについて説明します。

表35.1 設定イベント

名前 説明

FailedValidation Pod 設定の検証に失敗しました。

表35.2 コンテナーイベント

名前 説明

BackOff バックオフ (再起動) によりコンテナーが失敗しました。

Created コンテナーが作成されました。

Failed プル/作成/起動が失敗しました。

Killing コンテナーを強制終了しています。

Started コンテナーが起動しました。

Preempting 他の Pod を退避します。

OpenShift Container Platform 3.9 開発者ガイド

342

ExceededGrace
Period

コンテナーランタイムは、指定の猶予期間以内に Pod を停止しませんでした。

名前 説明

表35.3 正常性イベント

名前 説明

Unhealthy コンテナーが正常ではありません。

表35.4 イメージイベント

名前 説明

BackOff バックオフ (コンテナー起動、イメージのプル)。

ErrImageNeverP
ull

イメージの NeverPull Policy の違反があります。

Failed イメージのプルに失敗しました。

InspectFailed イメージの検査に失敗しました。

Pulled イメージのプルに成功し、コンテナーイメージがマシンにすでに置かれています。

Pulling イメージをプルしています。

表35.5 イメージマネージャーイベント

名前 説明

FreeDiskSpaceF
ailed

空きディスク容量に関連する障害が発生しました。

InvalidDiskCapa
city

無効なディスク容量です。

表35.6 ノードイベント

名前 説明

FailedMount ボリュームのマウントに失敗しました。

第35章 イベント

343

HostNetworkNo
tSupported

ホストのネットワークがサポートされていません。

HostPortConflic
t

ホスト/ポートの競合

InsufficientFree
CPU

空き CPU が十分にありません。

InsufficientFree
Memory

空きメモリーが十分にありません。

KubeletSetupFa
iled

Kubelet のセットアップに失敗しました。

NilShaper シェイパーが定義されていません。

NodeNotReady ノードの準備ができていません。

NodeNotSched
ulable

ノードがスケジュール可能ではありません。

NodeReady ノードの準備ができています。

NodeSchedulab
le

ノードがスケジュール可能です。

NodeSelectorMi
smatching

ノードセレクターの不一致があります。

OutOfDisk ディスクの空き容量が不足しています。

Rebooted ノードが再起動しました。

Starting kubelet を起動しています。

FailedAttachVol
ume

ボリュームの割り当てに失敗しました。

FailedDetachVol
ume

ボリュームの割り当て解除に失敗しました。

VolumeResizeF
ailed

ボリュームの拡張/縮小に失敗しました。

名前 説明

OpenShift Container Platform 3.9 開発者ガイド

344

VolumeResizeS
uccessful

正常にボリュームを拡張/縮小しました。

FileSystemResi
zeFailed

ファイルシステムの拡張/縮小に失敗しました。

FileSystemResi
zeSuccessful

正常にファイルシステムが拡張/縮小されました。

FailedUnMount ボリュームのマウント解除に失敗しました。

FailedMapVolu
me

ボリュームのマッピングに失敗しました。

FailedUnmapDe
vice

デバイスのマッピング解除に失敗しました。

AlreadyMounte
dVolume

ボリュームがすでにマウントされています。

SuccessfulDeta
chVolume

ボリュームの割り当てが正常に解除されました。

SuccessfulMou
ntVolume

ボリュームが正常にマウントされました。

SuccessfulUnM
ountVolume

ボリュームのマウントが正常に解除されました。

ContainerGCFai
led

コンテナーのガベージコレクションに失敗しました。

ImageGCFailed イメージのガベージコレクションに失敗しました。

FailedNodeAllo
catableEnforce
ment

システム予約の Cgroup 制限の実施に失敗しました。

NodeAllocatabl
eEnforced

システム予約の Cgroup 制限を有効にしました。

UnsupportedMo
untOption

マウントオプションが非対応です。

SandboxChang
ed

Pod のサンドボックスが変更されました。

名前 説明

第35章 イベント

345

FailedCreatePo
dSandBox

Pod のサンドボックスの作成に失敗しました。

FailedPodSand
BoxStatus

Pod サンドボックスの状態取得に失敗しました。

名前 説明

表35.7 Pod ワーカーイベント

名前 説明

FailedSync Pod の同期が失敗しました。

表35.8 システムイベント

名前 説明

SystemOOM クラスターに OOM (out of memory) 状態が発生しました。

表35.9 Pod イベント

名前 説明

FailedKillPod Pod の停止に失敗しました。

FailedCreatePo
dContainer

Pod コンテナーの作成に失敗しました。

Failed Pod データディレクトリーの作成に失敗しました。

NetworkNotRea
dy

ネットワークの準備ができていません。

FailedCreate 作成エラー: <error-msg>.

SuccessfulCrea
te

作成された Pod: <pod-name>.

FailedDelete 削除エラー: <error-msg>.

SuccessfulDelet
e

削除した Pod: <pod-id>.

表35.10 Horizontal Pod AutoScaler イベント

OpenShift Container Platform 3.9 開発者ガイド

346

名前 説明

SelectorRequired セレクターが必要です。

InvalidSelector セレクターを適切な内部セレクターオブジェクトに変換できませんでした。

FailedGetObject
Metric

HPA はレプリカ数を計算できませんでした。

InvalidMetricSo
urceType

不明なメトリクスソースタイプです。

ValidMetricFoun
d

HPA は正常にレプリカ数を計算できました。

FailedConvertH
PA

指定の HPA への変換に失敗しました。

FailedGetScale HPA コントローラーは、ターゲットの現在のスケーリングを取得できませんでした。

SucceededGetS
cale

HPA コントローラーは、ターゲットの現在のスケールを取得できました。

FailedCompute
MetricsReplicas

表示されているメトリクスに基づく必要なレプリカ数の計算に失敗しました。

FailedRescale 新しいサイズ: <size>; 理由: <msg>; エラー: <error-msg>

SuccessfulResc
ale

新しいサイズ: <size>; 理由: <msg>.

FailedUpdateSt
atus

状況の更新に失敗しました。

表35.11 ネットワークイベント (openshift-sdn)

名前 説明

Starting OpenShift-SDN を開始します。

NetworkFailed Pod のネットワークインターフェースがなくなり、Pod が停止します。

表35.12 ネットワークイベント (kube-proxy)

名前 説明

NeedPods サービスポート <serviceName>:<port> は Pod が必要です。

第35章 イベント

347

表35.13 ボリュームイベント

名前 説明

FailedBinding 利用可能な永続ボリュームがなく、ストレージクラスが設定されていません。

VolumeMismatc
h

ボリュームサイズまたはクラスが要求の内容と異なります。

VolumeFailedRe
cycle

再利用 Pod の作成エラー

VolumeRecycle
d

ボリュームの再利用時に発生します。

RecyclerPod Pod の再利用時に発生します。

VolumeDelete ボリュームの削除時に発生します。

VolumeFailedDe
lete

ボリュームの削除時のエラー。

ExternalProvisi
oning

要求のボリュームが手動または外部ソフトウェアでプロビジョニングされる場合に発
生します。

ProvisioningFail
ed

ボリュームのプロビジョニングに失敗しました。

ProvisioningCle
anupFailed

プロビジョニングしたボリュームの消去エラー

ProvisioningSu
cceeded

ボリュームが正常にプロビジョニングされる場合に発生します。

WaitForFirstCo
nsumer

Pod のスケジューリングまでバインドが遅延します。

表35.14 ライフサイクルフック

名前 説明

FailedPostStart
Hook

ハンドラーが Pod の起動に失敗しました。

FailedPreStopH
ook

ハンドラーが pre-stop に失敗しました。

UnfinishedPreSt
opHook

Pre-stop フックが完了しませんでした。

OpenShift Container Platform 3.9 開発者ガイド

348

表35.15 デプロイメント

名前 説明

DeploymentCan
cellationFailed

デプロイメントのキャンセルに失敗しました。

DeploymentCan
celled

デプロイメントがキャンセルされました。

DeploymentCre
ated

新規レプリケーションコントローラーが作成されました。

IngressIPRange
Full

サービスに割り当てる Ingress IP がありません。

表35.16 スケジューラーイベント

名前 説明

FailedSchedulin
g

Pod のスケジューリングに失敗: <pod-namespace>/<pod-name>。このイベントは
AssumePodVolumes の失敗、バインドの拒否など、複数の理由で発生します。

Preempted ノード <node-name> にある <preemptor-namespace>/<preemptor-name>

Scheduled <node-name> に <pod-name> が正常に割り当てられました。

表35.17 DaemonSet イベント

名前 説明

SelectingAll この DaemonSet は全 Pod を選択しています。空でないセレクターが必要です。

FailedPlacemen
t

<node-name> への Pod の配置に失敗しました。

FailedDaemonP
od

ノード <node-name> で問題のあるデーモン Pod <pod-name> が見つかりました。
この Pod の終了を試行します。

表35.18 LoadBalancer サービスイベント

名前 説明

CreatingLoadBa
lancerFailed

ロードバランサーの作成エラー

DeletingLoadBa
lancer

ロードバランサーを削除します。

第35章 イベント

349

EnsuringLoadB
alancer

ロードバランサーを確保します。

EnsuredLoadBa
lancer

ロードバランサーを確保しました。

UnAvailableLoa
dBalancer

LoadBalancer サービスに利用可能なノードがありません。

LoadBalancerS
ourceRanges

新規の LoadBalancerSourceRanges を表示します。例: <old-source-range> →
<new-source-range>

LoadbalancerIP 新しい IP アドレスを表示します。例: <old-ip> → <new-ip>

ExternalIP 外部 IP アドレスを表示します。例: Added: <external-ip>

UID 新しい UID を表示します。例: <old-service-uid> → <new-service-uid>

ExternalTrafficP
olicy

新しい ExternalTrafficPolicy を表示します。例: <old-policy> → <new-ploicy>

HealthCheckNo
dePort

新しい HealthCheckNodePort を表示します。例: <old-node-port> → new-
node-port>

UpdatedLoadBa
lancer

新規ホストでロードバランサーを更新しました。

LoadBalancerU
pdateFailed

新規ホストでのロードバランサーの更新に失敗しました。

DeletingLoadBa
lancer

ロードバランサーを削除します。

DeletingLoadBa
lancerFailed

ロードバランサーの削除エラー。

DeletedLoadBal
ancer

ロードバランサーを削除しました。

名前 説明

OpenShift Container Platform 3.9 開発者ガイド

350

第36章 環境変数の管理

36.1. 環境変数の設定および設定解除

OpenShift Container Platform は oc set env コマンドを提供して、レプリケーションコントローラーま
たはデプロイメント設定などの Pod テンプレート を持つオブジェクトの環境変数の設定または設定解
除を実行します。また、Pod および Pod テンプレートを持つオブジェクトの環境変数を一覧表示しま
す。このコマンドは BuildConfig オブジェクトで使用することもできます。

36.2. 環境変数の一覧表示

Pod または Pod テンプレートの環境変数を一覧表示するには、以下を実行します。

$ oc set env <object-selection> --list [<common-options>]

この例では、Pod p1 のすべての環境変数を一覧表示します。

$ oc set env pod/p1 --list

36.3. 環境変数の設定

Pod テンプレートに環境変数を設定するには、以下を実行します。

$ oc set env <object-selection> KEY_1=VAL_1 ... KEY_N=VAL_N [<set-env-options>] [<common-
options>]

環境オプションを設定します。

オプション 説明

-e, --env=<KEY>=<VAL> 環境変数のキーと値のペアを設定します。

--overwrite 既存の環境変数の更新を確定します。

以下の例では、両方のコマンドがデプロイメント設定 registry で環境変数 STORAGE を変更します。
最初に値 /data を追加します。2 番目の更新（値 /opt)。

$ oc set env dc/registry STORAGE=/data
$ oc set env dc/registry --overwrite STORAGE=/opt

以下の例では、現在のシェルで RAILS_ で始まる名前を持つ環境変数を検索し、それらをサーバーのレ
プリケーションコントローラー r1 に追加します。

$ env | grep RAILS_ | oc set env rc/r1 -e -

以下の例では、rc.json で定義されたレプリケーションコントローラーを変更しません。代わりに、更
新された環境 STORAGE=/local を含む YAML オブジェクトを新規ファイル rc.yaml に書き込みます。

$ oc set env -f rc.json STORAGE=/opt -o yaml > rc.yaml

第36章 環境変数の管理

351

36.3.1. 自動的に追加された環境変数

表36.1 自動的に追加された環境変数

変数名

<SVCNAME>_SERVICE_HOST

<SVCNAME>_SERVICE_PORT

使用例

TCP ポート 53 を公開し、クラスター IP アドレス 10.0.0.11 が割り当てられたサービス KUBERNETES
は以下の環境変数を生成します。

KUBERNETES_SERVICE_PORT=53
MYSQL_DATABASE=root
KUBERNETES_PORT_53_TCP=tcp://10.0.0.11:53
KUBERNETES_SERVICE_HOST=10.0.0.11

注記

oc rsh コマンドを使用してコンテナーに対して SSH を実行し、oc set env を実行して
利用可能なすべての変数を一覧表示します。

36.4. 環境変数の設定解除

Pod テンプレートで環境変数を設定解除するには、以下を実行します。

$ oc set env <object-selection> KEY_1- ... KEY_N- [<common-options>]

重要

末尾のハイフン (-, U+2D) は必須です。

この例では、環境変数 ENV1 および ENV2 をデプロイメント設定 d1 から削除します。

$ oc set env dc/d1 ENV1- ENV2-

これは、すべてのレプリケーションコントローラーから環境変数 ENV を削除します。

$ oc set env rc --all ENV-

これは、レプリケーションコントローラー r1 のコンテナー c1 から環境変数 ENV を削除します。

$ oc set env rc r1 --containers='c1' ENV-

OpenShift Container Platform 3.9 開発者ガイド

352

第37章 ジョブ

37.1. 概要

レプリケーションコントローラー とは対照的に、ジョブは Pod を任意の数のレプリカと共に完了する
まで実行します。ジョブはタスクの全体的な進捗状況を追跡し、アクティブな Pod、成功および失敗し
た Pod についての情報でそのステータスを更新します。ジョブを削除すると、作成した Pod レプリカ
が削除されます。ジョブは Kubernetes API の一部で、他の オブジェクトタイプ と同様に oc コマンド
で管理できます。

ジョブについての詳細は、Kubernetes のドキュメント を参照してください。

37.2. ジョブの作成

ジョブ設定は以下の主な部分で構成されます。

Pod テンプレート: Pod が作成するアプリケーションを記述します。

オプションの parallelism パラメーター: ジョブの実行に使用する、並行して実行される Pod の
レプリカ数を指定します。これが指定されていない場合、デフォルトは completions パラメー
ターの値に設定されます。

オプションの completions パラメーター: ジョブの実行に使用する、並行して実行される Pod
の数を指定します。指定されていない場合、デフォルトで 1 の値に設定されます。

以下は、job リソースのサンプルです。

1. ジョブが並行して実行する Pod のレプリカ数のオプションの値です。 デフォルトでは
completions の値に設定されます。

2. ジョブを完了としてマークするために必要な Pod の正常な完了数のオプションの値です。 デ
フォルトは 1 に設定されます。

3. コントローラーが作成する Pod のテンプレートです。

4. Pod の再起動ポリシー。これは、ジョブコントローラーには適用されません。詳細は、「既知
の制限事項」 を参照してください。

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 parallelism: 1 1
 completions: 1 2
 template: 3
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 4

第37章 ジョブ

353

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#object-types
http://kubernetes.io/docs/user-guide/jobs/

oc run を使用して単一コマンドからジョブを作成し、起動することもできます。以下のコマンドは直
前の例に指定されている同じジョブを作成し、これを起動します。

$ oc run pi --image=perl --replicas=1 --restart=OnFailure \
 --command -- perl -Mbignum=bpi -wle 'print bpi(2000)'

37.2.1. 既知の制限事項

ジョブ仕様の再起動ポリシーは Pod にのみ適用され、ジョブコントローラー には適用されません。た
だし、ジョブコントローラーはジョブを完了まで再試行するようハードコーディングされます。

そのため restartPolicy: Never または --restart=Never により、restartPolicy: OnFailure または --
restart=OnFailure と同じ動作が実行されます。つまり、ジョブが失敗すると、成功するまで (または手
動で破棄されるまで) 自動で再起動します。このポリシーは再起動するサブシステムのみを設定しま
す。

Never ポリシーでは、ジョブコントローラー が再起動を実行します。それぞれの再試行時に、ジョブ
コントローラーはジョブステータスの失敗数を増分し、新規 Pod を作成します。これは、それぞれの
試行が失敗するたびに Pod の数が増えることを意味します。

OnFailure ポリシーでは、kubelet が再起動を実行します。それぞれの試行によりジョブステータスで
の失敗数が増分する訳ではありません。さらに、kubelet は同じノードで Pod の起動に失敗したジョブ
を再試行します。

37.3. ジョブのスケーリング

ジョブは oc scale コマンドを --replicas オプションと共に使用してスケールアップしたり、スケール
ダウンしたりすることができます。これはジョブの場合には spec.parallelism パラメーターを変更しま
す。これにより、並行して実行されている Pod のレプリカ数が変更され、ジョブが実行されます。

以下のコマンドは上記のジョブサンプルを使用し、parallelism パラメーターを 3 に設定します。

$ oc scale job pi --replicas=3

注記

レプリケーションコントローラーのスケーリングでは、oc scale コマンドを --replicas
オプションと共に使用しますが、レプリケーションコントローラー設定の replicas パラ
メーターを変更します。

37.4. 最長期間の設定

ジョブ を定義する際に、activeDeadlineSeconds フィールドを設定して最長期間を定義することがで
きます。これが秒単位で指定され、デフォルトでは設定されません。設定されていない場合は、実施さ
れる最長期間はありません。

最長期間は、最初の Pod がスケジュールされた時点から計算され、ジョブが有効である期間を定義し
ます。これは実行の全体の時間を追跡し、完了の数 (タスクを実行するために必要な Pod のレプリカ
数) とは無関係に追跡されます。指定されたタイムアウトに達すると、ジョブは OpenShift Container
Platform で終了されます。

以下の例は、activeDeadlineSeconds フィールドを 30 分に指定する ジョブ の一部を示しています。

OpenShift Container Platform 3.9 開発者ガイド

354

37.5. ジョブ失敗のバックオフポリシー

ジョブは、設定の論理的なエラーなどの理由により再試行の設定回数を超えた後に失敗とみなされる場
合があります。ジョブの再試行回数を指定するには、.spec.backoffLimit プロパティーを設定します。
このフィールドはデフォルトで 6 に設定されます。ジョブに関連付けられた失敗した Pod は 6 分を上
限として指数関数的バックオフ遅延値 (10s、20s、 40s …) に基づいて再作成されます。この制限は、
コントローラーのチェック間で失敗した Pod が新たに生じない場合に再設定されます。

 spec:
 activeDeadlineSeconds: 1800

第37章 ジョブ

355

第38章 OPENSHIFT PIPELINE

38.1. 概要

OpenShift Pipeline により、OpenShift でのアプリケーションのビルド、デプロイ、およびプロモート
に対する制御が可能になります。Jenkins Pipeline ビルドストラテジー、Jenkinsfiles、および
OpenShift のドメイン固有言語 (DSL) (OpenShift Jenkins クライアントプラグインで提供される) の組
み合わせを使用することにより、すべてのシナリオにおける高度なビルド、テスト、デプロイおよびプ
ロモート用のパイプラインを作成できます。

38.2. OPENSHIFT JENKINS クライアントプラグイン

OpenShift Jenkins クライアントプラグイン は Jenkins マスターにインストールされ、OpenShift DSL
がアプリケーションの JenkinsFile 内で利用可能である必要があります。このプラグインは、OpenShift
Jenkins イメージの使用時にデフォルトでインストールされ、有効にされます。

このプラグインのインストールおよび設定についての詳細は、「 Configuring Pipeline Execution 」を
参照してください。

38.2.1. OpenShift DSL

OpenShift Jenkins クライアントプラグインは、Jenkins スレーブから OpenShift API と通信するために
Fluent (流れるような) スタイルの DSL を提供します。OpenShift DSL は Groovy 構文をベースとして
おり、作成、ビルド、デプロイ、および削除などのアプリケーションのライフサイクルを制御する方法
を提供します。

API の詳細は、実行中の Jenkins インスタンス内にあるプラグインのオンラインドキュメントに記載さ
れています。これを検索するには、以下を実行します。

新規のパイプラインアイテムを作成します。

DSL テキスト領域の下にある Pipeline Syntax をクリックします。

左側のナビゲーションメニューから、Global Variables Reference をクリックします。

38.3. JENKINS PIPELINE ストラテジー

プロジェクト内で OpenShift Pipeline を使用するには、Jenkins Pipeline ビルドストラテジーを使用す
る必要があります。このストラテジーはソースリポジトリーの root で jenkinsfile を使用するようにデ
フォルト設定されますが、以下の設定オプションも提供します。

BuildConfig 内のインラインの jenkinsfile フィールド。

ソース contextDir との関連で使用する jenkinsfile の場所を参照する BuildConfig 内の
jenkinsfilePath。

注記

オプションの jenkinsfilePath フィールドは、ソース contextDir との関連で使用する
ファイルの名前を指定します。contextDir が省略される場合、デフォルトはリポジト
リーのルートに設定されます。jenkinsfilePath が省略される場合、デフォルトは
jenkinsfile に設定されます。

Jenkins Pipeline ストラテジーについての詳細は、「Pipeline ストラテジーのオプション」を参照して

OpenShift Container Platform 3.9 開発者ガイド

356

https://github.com/openshift/jenkins-client-plugin
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#openshift-pipeline-dsl-plugin

Jenkins Pipeline ストラテジーについての詳細は、「Pipeline ストラテジーのオプション」を参照して
ください。

38.4. JENKINSFILE

jenkinsfile は標準的な groovy 言語構文を使用して、アプリケーションの設定、ビルド、およびデプロ
イメントに対する詳細な制御を可能にします。

jenkinsfile は以下のいずれかの方法で指定できます。

ソースコードリポジトリー内にあるファイルの使用。

jenkinsfile フィールドを使用してビルド設定の一部として組み込む。

最初のオプションを使用する場合、jenkinsfile を以下の場所のいずれかでアプリケーションソースコー
ドリポジトリーに組み込む必要があります。

リポジトリーのルートにある jenkinsfile という名前のファイル。

リポジトリーのソース contextDir のルートにある jenkinsfile という名前のファイル。

ソース contextDir に関連して BuildConfig の JenkinsPiplineStrategy セクションの
jenkinsfilePath フィールドで指定される名前のファイル (指定される場合)。 指定されない場合
は、リポジトリーのルートに設定されます。

jenkinsfile は Jenkins スレーブ Pod で実行されます。 ここでは OpenShift DSL を使用する場合に
OpenShift クライアントのバイナリーを利用可能にしておく必要があります。

38.5. チュートリアル

Jenkins Pipeline を使用したアプリケーションのビルドおよびデプロイについての詳細は、「Jenkins パ
イプラインのチュートリアル」を参照してください。

38.6. 詳細トピック

38.6.1. Jenkins 自動プロビジョニングの無効化

パイプラインのビルド設定が作成される場合、OpenShift は現時点で現行プロジェクトでプロビジョニ
ングされた Jenkins マスター Pod があるかどうかを確認します。Jenkins マスターが見つからない場
合、これが自動的に作成されます。この動作が必要でないか、または OpenShift の外部にある Jenkins
サーバーを使用する場合は、これを無効にすることができます。

詳細は、「 Configuring Pipeline Execution 」を参照してください。

38.6.2. スレーブ Pod の設定

Kubernetes プラグインも公式の Jenkins イメージに事前にインストールされます。このプラグインに
よって、Jenkins マスターは OpenShift でスレーブ Pod を作成し、Pod に特定ジョブの特定ランタイ
ムを提供すると同時に、実行中のジョブをそれらに委任して拡張性を実現できます。

Kubernetes プラグインを使用してスレーブ Pod を作成する方法についての詳細は、Kubernetes プラグ
インを参照してください。

第38章 OPENSHIFT PIPELINE

357

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-configuring-pipeline-execution
https://wiki.jenkins.io/display/JENKINS/Kubernetes+Plugin
https://github.com/jenkinsci/kubernetes-plugin/blob/master/README.md

第39章 CRON ジョブ

39.1. 概要

Cron ジョブ は、ジョブの実行スケジュールを指定できるようにすることで通常のジョブに基づいてビ
ルドされます。Cron ジョブは Kubernetes API の一部であり、他の オブジェクトタイプ と同様に oc コ
マンドで管理できます。

警告

Cron ジョブはスケジュールの実行時間ごとに約 1 回ずつジョブオブジェクトを作成
しますが、ジョブの作成に失敗したり、2 つのジョブが作成される可能性のある状
況があります。そのため、ジョブはべき等である必要があり、履歴制限を設定す
る必要があります。

39.2. CRON ジョブの作成

Cron ジョブの設定は以下の主な部分で構成されます。

cron 形式で指定されるスケジュール。

次のジョブの作成時に使用されるジョブテンプレート。

ジョブを開始するためのオプションの期限 (秒単位)(何らかの理由によりスケジュールされた時
間が経過する場合)。ジョブの実行が行われない場合、ジョブの失敗としてカウントされます。
これが指定されない場合は期間が設定されません。

ConcurrencyPolicy: オプションの同時実行ポリシー。Cron ジョブ内での同時実行ジョブを処
理する方法を指定します。以下の同時実行ポリシーの 1 つのみを指定できます。 これが指定さ
れない場合、同時実行を許可するようにデフォルト設定されます。

Allow: Cron ジョブを同時に実行できます。

Forbid: 同時実行を禁止し、直前の実行が終了していない場合は次の実行を省略します。

Replace: 同時に実行されているジョブを取り消し、これを新規ジョブに置き換えます。

Cron ジョブの停止を許可するオプションのフラグ。これが true に設定されている場合、後続
のすべての実行が停止されます。

以下は、CronJob リソースのサンプルです。



apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: pi
spec:
 schedule: "*/1 * * * *" 1
 jobTemplate: 2
 spec:

OpenShift Container Platform 3.9 開発者ガイド

358

http://kubernetes.io/docs/user-guide/cron-jobs
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/cli_reference/#object-types
https://en.wikipedia.org/wiki/Cron

1. ジョブのスケジュールです。この例では、ジョブは 1 分ごとに実行されます。

2. ジョブテンプレートです。これは、ジョブの例と同様です。

3. この Cron ジョブで生成されるジョブのラベルを設定します。

4. Pod の再起動ポリシー。これは、ジョブコントローラーには適用されません。詳細は、「既知
の問題および制限」を参照してください。

注記

すべての cron ジョブ schedule の時間は、ジョブが実行されるマスターのタイムゾーン
をベースとします。

oc run を使用して単一コマンドから cron ジョブを作成し、起動することもできます。以下のコマンド
は直前の例で指定されている同じ cron ジョブを作成し、これを起動します。

$ oc run pi --image=perl --schedule='*/1 * * * *' \
 --restart=OnFailure --labels parent="cronjobpi" \
 --command -- perl -Mbignum=bpi -wle 'print bpi(2000)'

oc runで、--schedule オプションは cron 形式のスケジュールを受け入れます。

注記

Cron ジョブの作成時に、oc run は Never または OnFailure 再起動ポリシー (--restart)
のみをサポートします。

ヒント

必要なくなった Cron ジョブを削除します。

$ oc delete cronjob/<cron_job_name>

これを実行することで、不要なアーティファクトの生成を防げます。

39.3. CRON ジョブ後のクリーンアップ

.spec.successfulJobsHistoryLimit と .spec.failedJobsHistoryLimit のフィールドはオプションで
す。これらのフィールドでは、完了したジョブと失敗したジョブのそれぞれを保存する数を指定しま
す。デフォルトで、これらのジョブの保存数はそれぞれ 3 と 1 に設定されます。制限に 0 を設定する
と、終了後に対応する種類のジョブのいずれも保持しません。

 template:
 metadata:
 labels: 3
 parent: "cronjobpi"
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 4

第39章 CRON ジョブ

359

https://en.wikipedia.org/wiki/Cron

1 1 1

2 2 2

Cron ジョブはジョブや Pod などのアーティファクトリソースをそのままにすることがあります。ユー
ザーは履歴制限を設定して古いジョブとそれらの Pod が適切に消去されるようにすることが重要で
す。現時点で、これに対応する 2 つのフィールドが Cron ジョブ仕様にあります。

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: pi
spec:
 successfulJobsHistoryLimit: 3 1
 failedJobsHistoryLimit: 1 2
 schedule: "*/1 * * * *"
 jobTemplate:
 spec:
 ...

保持する成功した終了済みジョブの数 (デフォルトは 3 に設定)。

保持する失敗した終了済みジョブの数 (デフォルトは 1 に設定)。

OpenShift Container Platform 3.9 開発者ガイド

360

第40章 CREATE FROM URL

40.1. 概要

Create From URL (URL からの作成) は、イメージストリーム、イメージタグ、またはテンプレートか
ら URL を構築できるようにする機能です。

Create from URL は、明示的にホワイトリスト化された namespace のイメージストリームまたはテン
プレートでのみ機能します。ホワイトリストには、デフォルトで openshift namespace が含まれま
す。namespace をホワイトリストに追加するには、「 Configuring the Create From URL Namespace
Whitelist 」を参照してください。

カスタムボタンを定義できます。

これらのボタンは、適切なクエリー文字列で定義された URL パターンを利用します。ユーザーにはプ
ロジェクトを選択することを求めるプロンプトが出されます。次に Create from URL ワークフローが続
きます。

40.2. イメージストリームおよびイメージタグの使用

40.2.1. クエリー文字列パラメーター

名前 説明 必須 スキーマ デフォルト

imageStream 使用されるイメー
ジストリームで定
義される
metadata.name
の値。

true 文字列

imageTag 使用されるイメー
ジストリームで定
義される
spec.tags.name
の値。

true 文字列

namespace 使用するイメージ
ストリームおよび
イメージタグを含
む namespace の名
前。

false 文字列 openshift

name このアプリケー
ション用に作成さ
れるリソースを識
別します。

false 文字列

第40章 CREATE FROM URL

361

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-the-create-from-url-namespace-whitelist

sourceURI アプリケーション
のソースコードを
含む Git リポジト
リー URL。

false 文字列

sourceRef sourceURI で指
定されるアプリ
ケーションソース
コードのブラン
チ、タグ、または
コミット。

false 文字列

contextDir sourceURI で指
定されるアプリ
ケーションソース
コードのサブディ
レクトリー。 ビル
ドのコンテキスト
ディレクトリーと
して使用されま
す。

false 文字列

名前 説明 必須 スキーマ デフォルト

注記

パラメーター値の 予約された文字 は URL エンコーディングされている必要がありま
す。

40.2.1.1. 例

 create?
imageStream=nodejs&imageTag=4&name=nodejs&sourceURI=https%3A%2F%2Fgithub.com%2Fope
nshift%2Fnodejs-ex.git&sourceRef=master&contextDir=%2F

40.3. テンプレートの使用

40.3.1. クエリー文字列パラメーター

名前 説明 必須 スキーマ デフォルト

template 使用されるテンプ
レートで定義され
る
metadata.name
の値。

true 文字列

OpenShift Container Platform 3.9 開発者ガイド

362

https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters

templateParams
Map

テンプレートパラ
メーター名と上書
き対象の対応する
値が含まれる
JSON パラメー
ターマップ。

false JSON

namespace 使用するテンプ
レートを含む
namespace の名
前。

false 文字列 openshift

名前 説明 必須 スキーマ デフォルト

注記

パラメーター値の 予約された文字 は URL エンコーディングされている必要がありま
す。

40.3.1.1. 例

 create?template=nodejs-mongodb-example&templateParamsMap=
{"SOURCE_REPOSITORY_URL"%3A"https%3A%2F%2Fgithub.com%2Fopenshift%2Fnodejs-
ex.git"}

第40章 CREATE FROM URL

363

https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters

1

2

3

4

第41章 カスタムリソース定義からのオブジェクトの作成

41.1. KUBERNETES カスタムリソース定義

Kubernetes API では、リソースは特定の種類の API オブジェクトのコレクションを保管するエンドポ
イントです。たとえば、ビルトインされた Pod リソースには Pod オブジェクトのコレクションが含ま
れます。

カスタムリソースは、Kubernetes API を拡張するか、またはプロジェクトまたはクラスターに独自の
API を導入することを可能にするオブジェクトです。

カスタムリソース定義 (CRD) ファイルは、独自のオブジェクトの種類を定義し、API サーバーがライフ
サイクル全体を処理できるようにします。

注記

クラスター管理者のみが CRD を作成できますが、読み取りと書き込みのパーミッション
がある場合には、CRD からオブジェクトを作成できます。

41.2. CRD からのカスタムオブジェクトの作成

カスタムオブジェクトには、任意の JSON コードを含むカスタムフィールドを含めることができます。

前提条件

CRD を作成します。

手順

1. カスタムオブジェクトの YAML 定義を作成します。以下の定義例では、cronSpec と image の
カスタムフィールドが CronTab タイプのカスタムオブジェクトに設定されます。このタイプ
は、カスタムリソース定義オブジェクトの spec.kind フィールドから取得します。

カスタムオブジェクトの YAML ファイルの例

カスタムリソース定義からグループ名および API バージョン (名前/バージョン) を指定し
ます。

カスタムリソース定義のタイプを指定します。

オブジェクトの名前を指定します。

オブジェクトのファイナライザーを指定します (ある場合)。ファイナライザーは、コント
ローラーがオブジェクトの削除前に完了する必要のある条件を実装できるようにします。

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com
spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

OpenShift Container Platform 3.9 開発者ガイド

364

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

5 オブジェクトのタイプに固有の条件を指定します。

2. オブジェクトファイルの作成後に、オブジェクトを作成します。

oc create -f <file-name>.yaml

41.3. カスタムオブジェクトの管理

オブジェクトを作成した後には、カスタムリソースを管理できます。

前提条件

カスタムリソース定義 (CRD) を作成します。

CRD からオブジェクトを作成します。

手順

1. 特定の種類のカスタムリソースについての情報を取得するには、以下を入力します。

oc get <kind>

以下に例を示します。

oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

リソース名では大文字と小文字が区別されず、CRD で定義される単数形または複数形のいずれ
か、および任意の短縮名を指定できることに注意してください。以下に例を示します。

oc get crontabs
oc get crontab
oc get ct

2. カスタムリソースの未加工の YAML データも確認することができます。

oc get <kind> -o yaml

oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default

第41章 カスタムリソース定義からのオブジェクトの作成

365

1 2

 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

オブジェクトの作成に使用した YAML からのカスタムデータが表示されます。

OpenShift Container Platform 3.9 開発者ガイド

366

第42章 アプリケーションメモリーのサイジング

42.1. 概要

ここでは、アプリケーション開発者が OpenShift Container Platform を使用して以下を実行する際に役
立つ情報を提供します。

1. コンテナー化されたアプリケーションコンポーネントのメモリーおよびリスク要件を判別し、
それらの要件を満たすようコンテナーメモリーパラメーターを設定する

2. コンテナー化されたアプリケーションランタイム (OpenJDK など) を、設定されたコンテナー
メモリーパラメーターに基づいて最適に実行されるよう設定する

3. コンテナーでの実行に関連するメモリー関連のエラー状態を診断し、これを解決する

42.2. 背景情報

まず OpenShift Container Platform によるコンピュートリソースの管理方法の概要をよく読んでから次
の手順に進むことをお勧めします。

アプリケーションメモリーのサイジングについては、以下が主要なポイントになります。

各種のリソース (メモリー、cpu、ストレージ) に応じて、OpenShift Container Platform ではオ
プションの 要求 および 制限 の値を Pod の各コンテナーに設定できます。ここでは、メモリー
要求とメモリー制限のみに言及します。

メモリー要求

メモリー要求値は、指定される場合 OpenShift Container Platform スケジューラーに影響
を与えます。スケジューラーは、コンテナーのノードへのスケジュール時にメモリー要求
を考慮し、コンテナーの使用のために選択されたノードで要求されたメモリーをフェンス
オフします。

ノードのメモリーが使い切られると、OpenShift Container Platform はメモリー使用がメモ
リー要求を最も超過しているコンテナーのエビクションを優先します。メモリー消費の深
刻な状況が生じる場合、ノードの OOM killer は同様のメトリクスに基づいてコンテナーで
プロセスを選択し、これを強制終了する場合があります。

メモリー制限

メモリー制限値が指定されている場合、コンテナーのすべてのプロセスに割り当て可能な
メモリーにハード制限を指定します。

コンテナーのすべてのプロセスで割り当てられるメモリーがメモリー制限を超過する場
合、ノードの OOM killer はコンテナーのプロセスをすぐに選択し、これを強制終了しま
す。

メモリー要求とメモリー制限の両方が指定される場合、メモリー制限の値はメモリー要求
の値よりも大きいか、またはこれと等しくなければなりません。

管理

クラスター管理者はメモリーの要求値、制限値、これらの両方に対してクォータを割り当
てるか、いずれにも割り当てないようにすることができます。

クラスター管理者はメモリーの要求値、制限値またはこれらの両方についてデフォルト値

第42章 アプリケーションメモリーのサイジング

367

クラスター管理者はメモリーの要求値、制限値またはこれらの両方についてデフォルト値
を割り当てることも、それらのいずれにもデフォルト値を割り当てないようにすることも
できます。

クラスター管理者は、クラスターのオーバーコミットを管理するために開発者が指定する
メモリー要求の値を上書きできます。これは OpenShift Online などで行われます。

42.3. ストラテジー

OpenShift Container Platform でアプリケーションメモリーをサイジングする手順は以下の通りです。

1. 予想されるコンテナーのメモリー使用の判別
必要時に予想される平均およびピーク時のコンテナーのメモリー使用を判別します (例: 別の負
荷テストを実行)。コンテナーで並行して実行されている可能性のあるすべてのプロセスを必ず
考慮に入れるようにしてください。 たとえば、メインのアプリケーションは付属スクリプトを
生成しているかどうかを確認します。

2. リスク選好 (risk appetite) の判別
エビクションのリスク選好を判別します。リスク選好のレベルが低い場合、コンテナーは予想
されるピーク時の使用量と安全マージンのパーセンテージに応じてメモリーを要求します。リ
スク選好が高くなる場合、予想される平均の使用量に応じてメモリーを要求することがより適
切な場合があります。

3. コンテナーのメモリー要求の設定
上記に基づいてコンテナーのメモリー要求を設定します。要求がアプリケーションのメモリー
使用をより正確に表示することが望ましいと言えます。要求が高すぎる場合には、クラスター
およびクォータの使用が非効率となります。要求が低すぎる場合、アプリケーションのエビク
ションの可能性が高くなります。

4. コンテナーのメモリー制限の設定 (必要な場合)
必要時にコンテナーのメモリー制限を設定します。制限を設定すると、コンテナーのすべての
プロセスのメモリー使用量の合計が制限を超える場合にコンテナーのプロセスがすぐに強制終
了されるため、いくつかの利点をもたらします。まずは予期しないメモリー使用の超過を早期
に明確にする (「fail fast (早く失敗する)」) ことができ、次にプロセスをすぐに中止できま
す。

一部の OpenShift Container Platform クラスターでは制限値を設定する必要があります。 制限
に基づいて要求を上書きする場合があります。 また、一部のアプリケーションイメージは、要
求値よりも検出が簡単なことから設定される制限値に依存します。

メモリー制限が設定される場合、これは予想されるピーク時のコンテナーのメモリー使用量と
安全マージンのパーセンテージよりも低い値に設定することはできません。

5. アプリケーションが調整されていることの確認
適切な場合は、設定される要求および制限値に関連してアプリケーションが調整されているこ
とを確認します。この手順は、JVM などのメモリーをプールするアプリケーションにおいてと
くに当てはまります。残りの部分では、これについて説明します。

42.4. OPENSHIFT CONTAINER PLATFORM での OPENJDK のサイジン
グ

デフォルトの OpenJDK 設定はコンテナー化された環境では機能しません。 コンテナーで OpenJDK を
実行する場合は常に追加の Java メモリー設定を指定することがルールとなっているためです。

JVM のメモリーレイアウトは複雑で、バージョンに依存しており、本書ではこれについて詳細には説

OpenShift Container Platform 3.9 開発者ガイド

368

JVM のメモリーレイアウトは複雑で、バージョンに依存しており、本書ではこれについて詳細には説
明しません。ただし、コンテナーで OpenJDK を実行する際のスタートにあたって少なくとも以下の 3
つのメモリー関連のタスクが主なタスクになります。

1. JVM 最大ヒープサイズを上書きする。

2. JVM が未使用メモリーをオペレーティングシステムに解放するよう促す (適切な場合)。

3. コンテナー内のすべての JVM プロセスが適切に設定されていることを確認する。

コンテナーでの実行に向けて JVM ワークロードを最適に調整する方法については本書では扱いません
が、これには複数の JVM オプションを追加で設定することが必要になる場合があります。

42.4.1. JVM 最大ヒープサイズの上書き

数多くの Java ワークロードにおいて、JVM ヒープはメモリーの最大かつ単一のコンシューマーです。
現時点で OpenJDK は、OpenJDK がコンテナー内で実行されているかにかかわらず、ヒープに使用さ
れるコンピュートノードのメモリーの最大 1/4 (1/-XX:MaxRAMFraction) を許可するようデフォルトで
設定されます。そのため、コンテナーのメモリー制限も設定されている場合には、この動作をオーバー
ライドすることが 必須 です。

上記を実行する方法として、2 つ以上の方法を使用できます:

1. コンテナーのメモリー制限が設定されており、JVM で実験的なオプションがサポートされてい
る場合には、-XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap
を設定します。
これにより、-XX:MaxRAM がコンテナーのメモリー制限に設定され、最大ヒープサイズ (-
XX:MaxHeapSize / -Xmx) が 1/-XX:MaxRAMFraction に設定されます (デフォルトでは 1/4)。

2. -XX:MaxRAM、-XX:MaxHeapSize または -Xmx のいずれかを直接上書きします。
このオプションには、値のハードコーディングが必要になりますが、安全マージンを計算でき
るという利点があります。

42.4.2. JVM が未使用メモリーをオペレーティングシステムに解放するよう促す

デフォルトで、OpenJDK は未使用メモリーをオペレーティングシステムに積極的に返しません。これ
は多くのコンテナー化された Java ワークロードには適していますが、例外として、コンテナー内に
JVM と共存する追加のアクティブなプロセスがあるワークロードの場合を考慮する必要があります。
それらの追加のプロセスはネイティブのプロセスである場合や追加の JVM の場合、またはこれら 2 つ
の組み合わせである場合もあります。

OpenShift Container Platform Jenkins maven スレーブイメージ は、以下の JVM 引数を使用して JVM
に未使用メモリーをオペレーティングシステムに解放するよう促します： -XX:+UseParallelGC -
XX:MinHeapFreeRatio=5 -XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeight =90 .これらの引数は、割り当てられたメモリーが使用中のメモリー (-
XX:MaxHeapFreeRatio) の 110% を超え、ガベージコレクター (-XX:GCTimeRatio) での CPU 時間の
20% を使用する場合は常にヒープメモリーをオペレーティングシステムに返すことが意図されていま
す。アプリケーションのヒープ割り当てが初期のヒープ割り当て (-XX:InitialHeapSize / -Xms で上書
きされる) を下回ることはありません。詳細情報については、「Tuning Java’s footprint in OpenShift
(Part 1)」、「Tuning Java’s footprint in OpenShift (Part 2)」、および「 OpenJDK and Containers」を
参照してください。

42.4.3. コンテナー内のすべての JVM プロセスが適切に設定されていることを確認する

複数の JVM が同じコンテナーで実行される場合、それらすべてが適切に設定されていることを確認す

第42章 アプリケーションメモリーのサイジング

369

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#
https://developers.redhat.com/blog/2014/07/15/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-1/
https://developers.redhat.com/blog/2014/07/22/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-2/
https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/

複数の JVM が同じコンテナーで実行される場合、それらすべてが適切に設定されていることを確認す
る必要があります。多くのワークロードでは、それぞれの JVM に memory budget のパーセンテージを
付与する必要があります。 これにより大きな安全マージンが残される場合があります。

多くの Java ツールは JVM を設定するために各種の異なる環境変数
(JAVA_OPTS、GRADLE_OPTS、MAVEN_OPTS など) を使用します。 適切な設定が適切な JVM に
渡されていることを確認するのが容易でない場合もあります。

JAVA_TOOL_OPTIONS 環境変数は常に OpenJDK によって使用され、JAVA_TOOL_OPTIONS で指
定される値は JVM コマンドラインで指定される他のオプションによって上書きされます。デフォルト
で、OpenShift Container Platform Jenkins maven スレーブイメージ は JAVA_TOOL_OPTIONS="-
XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap -
Dsun.zip.disableMemoryMapping=true" を設定してこれらのオプションがスレーブイメージで実行さ
れるすべての JVM ワークロードに対してデフォルトで使用されるようにします。これは、追加のオプ
ションが不要になることを保証する訳ではありませんが、開始時には役立ちます。

42.5. POD 内でのメモリー要求および制限の検索

Pod 内からメモリー要求および制限を動的に検出するアプリケーションは Downward API を使用する必
要があります。以下のスニペットはこれがどのように実行されるかを示しています。

oc rsh test
$ env | grep MEMORY | sort
MEMORY_LIMIT=536870912
MEMORY_REQUEST=402653184

メモリー制限値は、/sys/fs/cgroup/memory/memory.limit_in_bytes ファイルによってコンテナー内か

apiVersion: v1
kind: Pod
metadata:
 name: test
spec:
 containers:
 - name: test
 image: fedora:latest
 command:
 - sleep
 - "3600"
 env:
 - name: MEMORY_REQUEST
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: requests.memory
 - name: MEMORY_LIMIT
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: limits.memory
 resources:
 requests:
 memory: 384Mi
 limits:
 memory: 512Mi

OpenShift Container Platform 3.9 開発者ガイド

370

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/3.9/html-single/using_images/#

メモリー制限値は、/sys/fs/cgroup/memory/memory.limit_in_bytes ファイルによってコンテナー内か
ら読み取ることもできます。

42.6. OOM による強制終了の診断

OpenShift Container Platform は、コンテナーのすべてのプロセスのメモリー使用量の合計がメモリー
制限を超えるか、またはノードのメモリーを使い切られるなどの深刻な状態が生じる場合にコンテナー
のプロセスを強制終了する場合があります。

プロセスが OOM によって強制終了される場合、コンテナーがすぐに終了する場合もあれば、終了しな
い場合もあります。コンテナーの PID 1 プロセスが SIGKILL を受信する場合、コンテナーはすぐに終了
します。それ以外の場合、コンテナーの動作は他のプロセスの動作に依存します。

コンテナーがすぐに終了しない場合、OOM による強制終了は以下のように検出できます。

1. コンテナーのプロセスは SIGKILL シグナルを受信したことを示すコード 137 で終了する。

2. /sys/fs/cgroup/memory/memory.oom_control の oom_kill カウンターの増分が確認されま
す。

$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control
oom_kill 0
$ sed -e '' </dev/zero # provoke an OOM kill
Killed
$ echo $?
137
$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control
oom_kill 1

Pod の 1 つ以上のプロセスが OOM で強制終了され、Pod がこれに続いて終了する場合 (即時であるか
どうかは問わない)、フェーズは Failed、理由は OOMKilled になります。OOM で強制終了された Pod
は restartPolicy の値によって再起動する場合があります。再起動されない場合は、
ReplicationController などのコントローラーが Pod の失敗したステータスを認識し、古い Pod に置き
換わる新規 Pod を作成します。

再起動されない場合、Pod のステータスは以下のようになります。

$ oc get pod test
NAME READY STATUS RESTARTS AGE
test 0/1 OOMKilled 0 1m

$ oc get pod test -o yaml
...
status:
 containerStatuses:
 - name: test
 ready: false
 restartCount: 0
 state:
 terminated:
 exitCode: 137
 reason: OOMKilled
 phase: Failed

再起動される場合、そのステータスは以下のようになります。

第42章 アプリケーションメモリーのサイジング

371

$ oc get pod test
NAME READY STATUS RESTARTS AGE
test 1/1 Running 1 1m

$ oc get pod test -o yaml
...
status:
 containerStatuses:
 - name: test
 ready: true
 restartCount: 1
 lastState:
 terminated:
 exitCode: 137
 reason: OOMKilled
 state:
 running:
 phase: Running

42.7. エビクトされた POD の診断

OpenShift Container Platform は、ノードのメモリーが使い切られとそのノードから Pod をエビクトす
る場合があります。メモリー消費の度合いによって、エビクションは正常に行われる場合もあれば、そ
うでない場合もあります。正常なエビクションは、各コンテナーのメインプロセス (PID 1) が SIGTERM
シグナルを受信してから、プロセスがすでに終了していない場合は後になって SIGKILL シグナルを受信
することを意味します。正常ではないエビクションは各コンテナーのメインプロセスが SIGKILL シグナ
ルを即時に受信することを示します。

エビクトされた Pod のフェーズは Failed に、理由 は Evicted になります。この場合、restartPolicy
の値に関係なく再起動されません。ただし、ReplicationController などのコントローラーは Pod の失敗
したステータスを認識し、古い Pod に置き換わる新規 Pod を作成します。

$ oc get pod test
NAME READY STATUS RESTARTS AGE
test 0/1 Evicted 0 1m

$ oc get pod test -o yaml
...
status:
 message: 'Pod The node was low on resource: [MemoryPressure].'
 phase: Failed
 reason: Evicted

OpenShift Container Platform 3.9 開発者ガイド

372

	目次
	第1章 概要
	第2章 アプリケーションライフサイクル管理
	2.1. 開発プロセスの計画
	2.1.1. 概要
	2.1.2. 開発環境としての OpenShift Container Platform の使用
	2.1.3. アプリケーションの OpenShift Container Platform へのデプロイ

	2.2. 新規アプリケーションの作成
	2.2.1. 概要
	2.2.2. CLI を使用したアプリケーションの作成
	2.2.2.1. ソースコードからのアプリケーションの作成
	2.2.2.2. イメージからアプリケーションを作成する方法
	2.2.2.3. テンプレートからのアプリケーションの作成
	2.2.2.4. アプリケーション作成における追加修正

	2.2.3. Web コンソールを使用したアプリケーションの作成

	2.3. 環境全体におけるアプリケーションのプロモート
	2.3.1. 概要
	2.3.2. アプリケーションコンポーネント
	2.3.2.1. API オブジェクト
	2.3.2.2. イメージ
	2.3.2.3. 概要

	2.3.3. デプロイメント環境
	2.3.3.1. 留意事項
	2.3.3.2. 概要

	2.3.4. 方法およびツール
	2.3.4.1. API オブジェクトの管理
	2.3.4.2. イメージおよびイメージストリームの管理
	2.3.4.3. 概要

	2.3.5. シナリオおよび実例
	2.3.5.1. プロモーションのセットアップ
	2.3.5.2. 繰り返し可能なプロモーションプロセス
	2.3.5.3. Jenkins を使用した反復可能なプロモーションプロセス

	第3章 認証
	3.1. WEB コンソール認証
	3.2. CLI 認証

	第4章 承認
	4.1. 概要
	4.2. ユーザーの POD 作成権限の有無の確認
	4.3. 認証済みのユーザーとして何が実行できるのかを判断する方法

	第5章 プロジェクト
	5.1. 概要
	5.2. プロジェクトの作成
	5.2.1. Web コンソールの使用
	5.2.2. CLI の使用

	5.3. プロジェクトの表示
	5.4. プロジェクトステータスの確認
	5.5. ラベル別の絞り込み
	5.6. ページの状態のブックマーク
	5.7. プロジェクトの削除

	第6章 アプリケーションの移行
	6.1. 概要
	6.2. データベースアプリケーションの移行
	6.2.1. 概要
	6.2.2. サポートされているデータベース
	6.2.3. MySQL
	6.2.4. PostgreSQL
	6.2.5. MongoDB

	6.3. WEB フレームワークアプリケーションの移行
	6.3.1. 概要
	6.3.2. Python
	6.3.3. Ruby
	6.3.4. PHP
	6.3.5. Perl
	6.3.6. Node.js
	6.3.7. WordPress
	6.3.8. Ghost
	6.3.9. JBoss EAP
	6.3.10. JBoss WS (Tomcat)
	6.3.11. JBoss AS (Wildfly 10)
	6.3.12. サポート対象の JBoss バージョン

	6.4. クイックスタートの例
	6.4.1. 概要
	6.4.2. ワークフロー

	6.5. 継続的インテグレーションまたは継続的デプロイ (CI/CD)
	6.5.1. 概要
	6.5.2. Jenkins

	6.6. WEBHOOK およびアクションフック
	6.6.1. 概要
	6.6.2. Webhook
	6.6.3. アクションフック

	6.7. S2I ツール
	6.7.1. 概要
	6.7.2. コンテナーイメージの作成

	6.8. サポートガイド
	6.8.1. 概要
	6.8.2. サポートされているデータベース
	6.8.3. サポート言語
	6.8.4. サポート対象のフレームワーク
	6.8.5. サポート対象のマーカー
	6.8.6. サポート対象の環境変数

	第7章 チュートリアル
	7.1. 概要
	7.2. クイックスタートのテンプレート
	7.2.1. 概要
	7.2.2. Web フレームワーククイックスタートのテンプレート

	7.3. RUBY ON RAILS
	7.3.1. 概要
	7.3.2. ローカルのワークステーション設定
	7.3.2.1. データベースの設定

	7.3.3. アプリケーションの作成
	7.3.3.1. Welcome ページの作成
	7.3.3.2. OpenShift Container Platform のアプリケーションの設定
	7.3.3.3. アプリケーションの Git への保存

	7.3.4. アプリケーションの OpenShift Container Platform へのデプロイ
	7.3.4.1. データベースサービスの作成
	7.3.4.2. フロントエンドサービスの作成
	7.3.4.3. アプリケーションのルートの作成

	7.4. MAVEN 用の NEXUS ミラーリングの設定
	7.4.1. はじめに
	7.4.2. Nexus の設定
	7.4.2.1. プローブを使用した正常な実行の確認
	7.4.2.2. Nexus への永続性の追加

	7.4.3. Nexus への接続
	7.4.4. 正常な実行の確認
	7.4.5. その他のリソース

	7.5. OPENSHIFT PIPELINE ビルド
	7.5.1. はじめに
	7.5.2. Jenkins Master の作成
	7.5.3. Pipeline のビルド設定
	7.5.4. Jenkinsfile
	7.5.5. パイプラインの作成
	7.5.6. パイプラインの起動
	7.5.7. OpenShift Pipeline の詳細オプション

	7.6. バイナリービルド
	7.6.1. はじめに
	7.6.1.1. 使用例
	7.6.1.2. 制限

	7.6.2. チュートリアルの概要
	7.6.2.1. チュートリアル: ローカルコードの変更のビルド
	7.6.2.2. チュートリアル: プライベートコードのビルド
	7.6.2.3. チュートリアル: パイプラインからのバイナリーアーティファクト

	第8章 ビルド
	8.1. ビルドの仕組み
	8.1.1. ビルドの概要
	8.1.2. BuildConfig の概要

	8.2. 基本的なビルド操作
	8.2.1. ビルドの開始
	8.2.2. ビルドの中止
	8.2.3. BuildConfig の削除
	8.2.4. ビルドの詳細表示
	8.2.5. ビルドログへのアクセス

	8.3. ビルド入力
	8.3.1. ビルド入力の仕組み
	8.3.2. Dockerfile ソース
	8.3.3. イメージソース
	8.3.4. Git ソース
	8.3.4.1. プロキシーの使用
	8.3.4.2. ソースクローンのシークレット

	8.3.5. バイナリー (ローカル) ソース
	8.3.6. 入力シークレット
	8.3.6.1. 入力シークレットの追加
	8.3.6.2. Source-to-Image ストラテジー
	8.3.6.3. Docker ストラテジー
	8.3.6.4. カスタムストラテジー

	8.3.7. 外部アーティファクトの使用
	8.3.8. プライベートレジストリーでの Docker 認証情報の使用

	8.4. ビルドの出力
	8.4.1. ビルド出力の概要
	8.4.2. アウトプットイメージの環境変数
	8.4.3. アウトプットイメージのラベル
	8.4.4. アウトプットイメージのダイジェスト
	8.4.5. プライベートレジストリーでの docker 認証情報の使用

	8.5. ビルドストラテジーのオプション
	8.5.1. Source-to-Image ストラテジーのオプション
	8.5.1.1. 強制プル
	8.5.1.2. 増分ビルド
	8.5.1.3. ビルダーイメージのスクリプトの上書き
	8.5.1.4. 環境変数
	8.5.1.5. Web コンソールを使用したシークレットの追加
	8.5.1.6. ソースファイルの無視

	8.5.2. Docker ストラテジーのオプション
	8.5.2.1. FROM イメージ
	8.5.2.2. Dockerfile パス
	8.5.2.3. キャッシュなし
	8.5.2.4. 強制プル
	8.5.2.5. 環境変数
	8.5.2.6. Web コンソールを使用したシークレットの追加
	8.5.2.7. Docker ビルド引数

	8.5.3. カスタムストラテジーのオプション
	8.5.3.1. FROM イメージ
	8.5.3.2. Docker ソケットの公開
	8.5.3.3. Secret
	8.5.3.4. 強制プル
	8.5.3.5. 環境変数

	8.5.4. パイプラインストラテジーのオプション
	8.5.4.1. Jenkinsfile の提供
	8.5.4.2. 環境変数

	8.6. ビルド環境
	8.6.1. 概要
	8.6.2. 環境変数としてのビルドフィールドの使用
	8.6.3. 環境変数としてのコンテナーリソースの使用
	8.6.4. 環境変数としてのシークレットの使用

	8.7. ビルドのトリガー
	8.7.1. ビルドトリガーの概要
	8.7.2. Webhook のトリガー
	8.7.2.1. GitHub Webhooks
	8.7.2.2. GitLab Webhooks
	8.7.2.3. Bitbucket Webhook
	8.7.2.4. Generic Webhook
	8.7.2.5. Webhook URL の表示

	8.7.3. イメージ変更のトリガー
	8.7.4. 設定変更のトリガー
	8.7.4.1. トリガーの手動設定

	8.8. ビルドフック
	8.8.1. ビルドフックの概要
	8.8.2. コミット後のビルドフックの設定
	8.8.2.1. CLI の使用

	8.9. ビルド実行ポリシー
	8.9.1. ビルド実行ポリシーの概要
	8.9.2. 順次実行ポリシー
	8.9.3. SerialLatestOnly 実行ポリシー
	8.9.4. 並列実行ポリシー

	8.10. 高度なビルド操作
	8.10.1. ビルドリソースの設定
	8.10.2. 最長期間の設定
	8.10.3. 特定のノードへのビルドの割り当て
	8.10.4. チェーンビルド
	8.10.5. ビルドのプルーニング

	8.11. ビルドのトラブルシューティング
	8.11.1. 拒否されたリソースへのアクセス要求

	第9章 デプロイメント
	9.1. デプロイメントの仕組み
	9.1.1. デプロイメントの概要
	9.1.2. デプロイメント設定の作成

	9.2. 基本のデプロイメント操作
	9.2.1. デプロイメントの開始
	9.2.2. デプロイメントの表示
	9.2.3. デプロイメントのロールバック
	9.2.4. コンテナー内でのコマンドの実行
	9.2.5. デプロイメントログの表示
	9.2.6. デプロイメントトリガーの設定
	9.2.6.1. 設定変更トリガー
	9.2.6.2. ImageChange Trigger

	9.2.7. デプロイメントリソースの設定
	9.2.8. 手動のスケーリング
	9.2.9. 特定のノードへの Pod の割り当て
	9.2.10. 異なるサービスアカウントでの Pod の実行
	9.2.11. Web コンソールを使用してデプロイメント設定にシークレットを追加する手順

	9.3. デプロイメントストラテジー
	9.3.1. デプロイメントストラテジーの概要
	9.3.2. ローリングストラテジー
	9.3.2.1. カナリアデプロイメント
	9.3.2.2. ローリングデプロイメントの使用のタイミング
	9.3.2.3. ローリングの例

	9.3.3. 再作成ストラテジー
	9.3.3.1. 再作成デプロイメントの使用のタイミング

	9.3.4. カスタムストラテジー
	9.3.5. ライフサイクルフック
	9.3.5.1. Pod ベースのライフサイクルフック
	9.3.5.2. コマンドラインの使用するには、以下を行います。

	9.4. 高度なデプロイメントストラテジー
	9.4.1. 高度なデプロイメントストラテジー
	9.4.2. Blue-Green デプロイメント
	9.4.2.1. Blue-Green デプロイメントの使用

	9.4.3. A/B デプロイメント
	9.4.3.1. A/B テスト用の負荷分散

	9.4.4. プロキシーシャード/トラフィックスプリッター
	9.4.5. N-1 互換性
	9.4.6. 正常な終了

	9.5. KUBERNETES デプロイメントサポート
	9.5.1. デプロイメントオブジェクトタイプ
	9.5.2. Kubernetes デプロイメント 対 デプロイメント設定
	9.5.2.1. デプロイメント設定固有の機能
	9.5.2.2. Kubernetes デプロイメント固有の機能

	第10章 TEMPLATES (テンプレート)
	10.1. 概要
	10.2. テンプレートのアップロード
	10.3. WEB コンソールを使用してテンプレートから作成する手順
	10.4. CLI を使用してテンプレートから作成する手順
	10.4.1. ラベル
	10.4.2. パラメーター
	10.4.3. オブジェクト一覧の生成

	10.5. アップロードしたテンプレートの変更
	10.6. インスタントアプリおよびクイックスタートテンプレートの使用
	10.7. テンプレートの記述
	10.7.1. 詳細
	10.7.2. ラベル
	10.7.3. パラメーター
	10.7.4. オブジェクト一覧
	10.7.5. バインド可能なテンプレートの作成
	10.7.6. オブジェクトフィールドの公開
	10.7.7. テンプレートの準備ができるまで待機
	10.7.8. その他の推奨事項
	10.7.9. 既存オブジェクトからのテンプレートの作成

	第11章 コンテナーへのリモートシェルを開く
	11.1. 概要
	11.2. セキュアなシェルセッションの開始
	11.3. セキュアなシェルセッションのヘルプ

	第12章 サービスアカウント
	12.1. 概要
	12.2. ユーザー名およびグループ
	12.3. デフォルトのサービスアカウントおよびロール
	12.4. サービスアカウントの管理
	12.5. サービスアカウント認証の有効化
	12.6. 管理サービスアカウント
	12.7. インフラストラクチャーサービスアカウント
	12.8. サービスアカウントおよびシークレット
	12.9. 許可されたシークレットの管理
	12.10. コンテナー内でのサービスアカウントの認証情報の使用
	12.11. サービスアカウントの認証情報の外部での使用

	第13章 イメージの管理
	13.1. 概要
	13.2. イメージのタグ付け
	13.2.1. タグのイメージストリームへの追加
	13.2.2. 推奨されるタグ付け規則
	13.2.3. タグのイメージストリームからの削除
	13.2.4. イメージストリームでのイメージの参照

	13.3. KUBERNETES リソースでのイメージストリームの使用
	13.4. イメージプルポリシー
	13.5. 内部レジストリーへのアクセス
	13.6. イメージプルシークレットの使用
	13.6.1. Pod が複数のプロジェクト間でのイメージを参照できるようにする設定
	13.6.2. Pod による他のセキュアなレジストリーからのイメージの参照を許可する
	13.6.2.1. 委任された認証を使用したプライベートレジストリーからのプル

	13.7. タグおよびイメージメタデータのインポート
	13.7.1. 非セキュアなレジストリーからのイメージのインポート
	13.7.1.1. イメージストリームタグのポリシー

	13.7.2. プライベートレジストリーからのイメージのインポート
	13.7.3. 外部レジストリーの信頼される証明書の追加
	13.7.4. 複数のプロジェクト間でのイメージのインポート
	13.7.5. イメージの手動プッシュによるイメージストリームの作成

	13.8. イメージストリーム変更時の更新のトリガー
	13.8.1. OpenShift リソース
	13.8.2. Kubernetes リソース

	13.9. イメージストリーム定義の記述

	第14章 クォータおよび制限範囲
	14.1. 概要
	14.2. クォータ
	14.2.1. クォータの表示
	14.2.2. クォータで管理されるリソース
	14.2.3. クォータのスコープ
	14.2.4. クォータの実施
	14.2.5. 要求 vs 制限

	14.3. 制限範囲
	14.3.1. 制限範囲の表示
	14.3.2. コンテナーの制限
	14.3.3. Pod の制限

	14.4. コンピュートリソース
	14.4.1. CPU 要求
	14.4.2. コンピュートリソースの表示
	14.4.3. CPU 制限
	14.4.4. メモリー要求
	14.4.5. メモリー制限
	14.4.6. QoS (Quality of Service) 層
	14.4.7. CLI でのコンピュートリソースの指定
	14.4.8. 不透明な整数リソース

	14.5. プロジェクトごとのリソース制限

	第15章 POD の PRESET (プリセット) を使用した情報の POD への挿入
	15.1. 概要
	15.2. POD の PRESET の作成
	15.3. 複数の POD の PRESET の使用
	15.4. POD の PRESET の削除

	第16章 クラスターへのトラフィックの送信
	16.1. クラスターへのトラフィックの送信
	16.2. ルーターを使用したトラフィックのクラスターへの送信
	16.2.1. 概要
	16.2.2. 管理者の前提条件
	16.2.2.1. パブリック IP 範囲の定義

	16.2.3. プロジェクトおよびサービスの作成
	16.2.4. サービスを公開し、ルートを作成する
	16.2.5. ルーターの設定
	16.2.6. VIP を使用した IP フェイルオーバーの設定

	16.3. ロードバランサーを使用したトラフィックのクラスターへの送信
	16.3.1. 概要
	16.3.2. 管理者の前提条件
	16.3.2.1. パブリック IP 範囲の定義

	16.3.3. プロジェクトおよびサービスの作成
	16.3.4. サービスを公開し、ルートを作成する
	16.3.5. ロードバランサーサービスの作成
	16.3.6. ネットワークの設定
	16.3.7. VIP を使用した IP フェイルオーバーの設定

	16.4. サービスの外部 IP を使用したトラフィックのクラスターへの送信
	16.4.1. 概要
	16.4.2. 管理者の前提条件
	16.4.2.1. パブリック IP 範囲の定義

	16.4.3. プロジェクトおよびサービスの作成
	16.4.4. サービスを公開し、ルートを作成する
	16.4.5. IP アドレスのサービスへの割り当て
	16.4.6. ネットワークの設定
	16.4.7. VIP を使用した IP フェイルオーバーの設定

	16.5. NODEPORT を使用したトラフィックのクラスターへの送信
	16.5.1. 概要
	16.5.2. 管理者の前提条件
	16.5.3. サービスの設定

	第17章 ルート
	17.1. 概要
	17.2. ルートの作成
	17.3. ルートエンドポイントによる COOKIE 名の制御の許可

	第18章 外部サービスの統合
	18.1. 概要
	18.2. 外部データベースのサービスの定義
	18.2.1. 手順 1: サービスの定義
	18.2.1.1. IP アドレスの使用
	18.2.1.2. 外部ドメイン名の使用

	18.2.2. 手順 2: サービスの消費

	18.3. 外部 SAAS プロバイダー
	18.3.1. IP アドレスおよびエンドポイントの使用
	18.3.2. 外部ドメイン名の使用

	第19章 デバイスマネージャーの使用
	19.1. デバイスマネージャーの機能
	19.1.1. 登録
	19.1.2. デバイスの検出および正常性のモニタリング
	19.1.3. デバイスの割り当て

	19.2. デバイスマネージャーの有効化

	第20章 デバイスプラグインの使用
	20.1. デバイスプラグインの機能
	20.1.1. 外部デバイスプラグイン

	20.2. デバイスプラグインのデプロイ方法

	第21章 シークレット
	21.1. シークレットの使用
	21.1.1. シークレットのプロパティー
	21.1.2. シークレットの作成
	21.1.3. シークレットの種類
	21.1.4. シークレットの更新

	21.2. ボリュームおよび環境変数のシークレット
	21.3. イメージプルのシークレット
	21.4. ソースクローンのシークレット
	21.5. サービス提供証明書のシークレット
	21.6. 制限
	21.6.1. シークレットデータキー

	21.7. 例
	21.8. トラブルシューティング

	第22章 CONFIGMAP
	22.1. 概要
	22.2. CONFIGMAP の作成
	22.2.1. ディレクトリーからの作成
	22.2.2. ファイルからの作成
	22.2.3. リテラル値からの作成

	22.3. ユースケース: POD での CONFIGMAP の使用
	22.3.1. 環境変数での使用
	22.3.2. コマンドライン引数の設定
	22.3.3. ボリュームでの使用

	22.4. REDIS の設定例
	22.5. 制約

	第23章 DOWNWARD API
	23.1. 概要
	23.2. フィールドの選択
	23.3. DOWNWARD API を使用したコンテナー値の使用
	23.3.1. 環境変数の使用
	23.3.2. ボリュームプラグインの使用

	23.4. DOWNWARD API を使用したコンテナーリソースの使用
	23.4.1. 環境変数の使用
	23.4.2. ボリュームプラグインの使用

	23.5. DOWNWARD API を使用したシークレットの使用
	23.5.1. 環境変数の使用

	23.6. DOWNWARD API を使用した CONFIGMAP の使用
	23.6.1. 環境変数の使用

	23.7. 環境変数の参照
	23.7.1. 環境変数の参照の使用
	23.7.2. 環境変数の参照のエスケープ

	第24章 PROJECTED ボリューム
	24.1. 概要
	24.2. シナリオ例
	24.3. POD 仕様の例
	24.4. パスについての留意事項
	24.5. POD の PROJECTED ボリュームの設定

	第25章 DAEMONSET の使用
	25.1. 概要
	25.2. DAEMONSET の作成

	第26章 POD の自動スケーリング
	26.1. 概要
	26.2. HORIZONTAL POD AUTOSCALER の要件
	26.3. サポートされるメトリクス
	26.4. 自動スケーリング
	26.5. CPU 使用率の自動スケーリング
	26.6. メモリー使用率の自動スケーリング
	26.7. HORIZONTAL POD AUTOSCALER の表示
	26.7.1. Horizontal Pod Autoscaler の状況条件の表示

	第27章 ボリュームの管理
	27.1. 概要
	27.2. 一般的な CLI の使用方法
	27.3. ボリュームの追加
	例

	27.4. ボリュームの更新
	例

	27.5. ボリュームの削除
	例

	27.6. ボリュームの一覧表示
	例

	27.7. サブパスの指定

	第28章 永続ボリュームの使用
	28.1. 概要
	28.2. ストレージの要求
	28.3. ボリュームと要求のバインディング
	28.4. POD のボリュームとしての要求
	28.5. ボリュームと要求の事前バインディング

	第29章 永続ボリュームの拡張
	29.1. PERSISTENT VOLUME CLAIM (永続ボリューム要求、PVC) の拡張を有効化
	29.2. GLUSTERFS ベースの PERSISTENT VOLUME CLAIM (永続ボリューム要求、PVC) の拡張
	29.3. ファイルシステムを搭載した PERSISTENT VOLUME CLAIM (永続ボリューム要求、PVC) の拡張
	29.4. ボリューム拡張時に障害からの復旧

	第30章 リモートコマンドの実行
	30.1. 概要
	30.2. 基本的な使用方法
	30.3. プロトコル

	第31章 ファイルのコンテナーから/へのコピー
	31.1. 概要
	31.2. 基本的な使用方法
	31.3. データベースのバックアップおよび復元
	31.4. 要件
	31.5. COPY SOURCE の指定
	31.6. COPY DESTINATION の指定
	31.7. 宛先でのファイルの削除
	31.8. ファイル変更についての継続的な同期
	31.9. 高度な RSYNC 機能

	第32章 ポート転送
	32.1. 概要
	32.2. 基本的な使用方法
	32.3. プロトコル

	第33章 共有メモリー
	33.1. 概要
	33.2. POSIX 共有メモリー

	第34章 アプリケーションの正常性
	34.1. 概要
	34.2. プローブを使用したコンテナーのヘルスチェック

	第35章 イベント
	35.1. 概要
	35.2. CLI によるイベントの表示
	35.3. コンソールでのイベントの表示
	35.4. 総合的なイベント一覧

	第36章 環境変数の管理
	36.1. 環境変数の設定および設定解除
	36.2. 環境変数の一覧表示
	36.3. 環境変数の設定
	36.3.1. 自動的に追加された環境変数

	36.4. 環境変数の設定解除

	第37章 ジョブ
	37.1. 概要
	37.2. ジョブの作成
	37.2.1. 既知の制限事項

	37.3. ジョブのスケーリング
	37.4. 最長期間の設定
	37.5. ジョブ失敗のバックオフポリシー

	第38章 OPENSHIFT PIPELINE
	38.1. 概要
	38.2. OPENSHIFT JENKINS クライアントプラグイン
	38.2.1. OpenShift DSL

	38.3. JENKINS PIPELINE ストラテジー
	38.4. JENKINSFILE
	38.5. チュートリアル
	38.6. 詳細トピック
	38.6.1. Jenkins 自動プロビジョニングの無効化
	38.6.2. スレーブ Pod の設定

	第39章 CRON ジョブ
	39.1. 概要
	39.2. CRON ジョブの作成
	39.3. CRON ジョブ後のクリーンアップ

	第40章 CREATE FROM URL
	40.1. 概要
	40.2. イメージストリームおよびイメージタグの使用
	40.2.1. クエリー文字列パラメーター
	40.2.1.1. 例

	40.3. テンプレートの使用
	40.3.1. クエリー文字列パラメーター
	40.3.1.1. 例

	第41章 カスタムリソース定義からのオブジェクトの作成
	41.1. KUBERNETES カスタムリソース定義
	41.2. CRD からのカスタムオブジェクトの作成
	前提条件
	手順

	41.3. カスタムオブジェクトの管理
	前提条件
	手順

	第42章 アプリケーションメモリーのサイジング
	42.1. 概要
	42.2. 背景情報
	42.3. ストラテジー
	42.4. OPENSHIFT CONTAINER PLATFORM での OPENJDK のサイジング
	42.4.1. JVM 最大ヒープサイズの上書き
	42.4.2. JVM が未使用メモリーをオペレーティングシステムに解放するよう促す
	42.4.3. コンテナー内のすべての JVM プロセスが適切に設定されていることを確認する

	42.5. POD 内でのメモリー要求および制限の検索
	42.6. OOM による強制終了の診断
	42.7. エビクトされた POD の診断

