
OpenShift Container Platform 4.11

ネットワーク可観測性

Network Observability Operator

Last Updated: 2024-02-18

OpenShift Container Platform 4.11 ネットワーク可観測性

Network Observability Operator

法律上の通知

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要

このドキュメントでは、OpenShift Container Platform クラスターのネットワークトラフィックフ
ローを観察および分析するために使用できる Network Observability Operator を使用する手順を説
明します。

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

目次

第1章 NETWORK OBSERVABILITY OPERATOR リリースノート
1.1. NETWORK OBSERVABILITY OPERATOR 1.4.2
1.2. NETWORK OBSERVABILITY OPERATOR 1.4.1
1.3. NETWORK OBSERVABILITY OPERATOR 1.4.0
1.4. NETWORK OBSERVABILITY OPERATOR 1.3.0
1.5. NETWORK OBSERVABILITY OPERATOR 1.2.0
1.6. NETWORK OBSERVABILITY OPERATOR 1.1.0

第2章 ネットワーク可観測性について
2.1. NETWORK OBSERVABILITY OPERATOR のオプションの依存関係
2.2. NETWORK OBSERVABILITY OPERATOR
2.3. OPENSHIFT CONTAINER PLATFORM コンソール統合

第3章 NETWORK OBSERVABILITY OPERATOR のインストール
3.1. LOKI を使用しないネットワーク可観測性
3.2. LOKI OPERATOR のインストール
3.3. NETWORK OBSERVABILITY OPERATOR のインストール
3.4. フローコレクター設定に関する重要な考慮事項
3.5. KAFKA のインストール (オプション)
3.6. NETWORK OBSERVABILITY OPERATOR のアンインストール

第4章 OPENSHIFT CONTAINER PLATFORM の NETWORK OBSERVABILITY OPERATOR
4.1. 状況の表示
4.2. NETWORK OBSERVABLITY OPERATOR のアーキテクチャー
4.3. NETWORK OBSERVABILITY OPERATOR のステータスと設定の表示

第5章 NETWORK OBSERVABILITY OPERATOR の設定
5.1. FLOWCOLLECTOR リソースを表示する
5.2. KAFKA を使用した FLOW COLLECTOR リソースの設定
5.3. 強化されたネットワークフローデータをエクスポートする
5.4. FLOW COLLECTOR リソースの更新
5.5. クイックフィルターの設定
5.6. SR-IOV インターフェイストラフィックの監視の設定
5.7. リソース管理およびパフォーマンスに関する考慮事項

第6章 ネットワークポリシー
6.1. ネットワーク可観測性のためのネットワークポリシーの作成
6.2. ネットワークポリシーの例

第7章 ネットワークトラフィックの監視
7.1. 概要ビューからのネットワークトラフィックの監視
7.2. トラフィックフロービューからのネットワークトラフィックの観察
7.3. トポロジービューからのネットワークトラフィックの観察
7.4. ネットワークトラフィックのフィルタリング

第8章 NETWORK OBSERVABILITY OPERATOR の監視
8.1. ヘルス情報の表示
8.2. NETOBSERV ダッシュボードの LOKI レート制限アラートの作成

第9章 FLOWCOLLECTOR 設定パラメーター
9.1. FLOWCOLLECTOR API 仕様

第10章 ネットワークフロー形式の参照
10.1. ネットワークフロー形式のリファレンス

4
4
4
5
7
9
11

12
12
12
12

14
14
14

20
22
22
23

25
25
26
27

29
29
31
32
33
33
35
36

38
38
39

40
40
41

44
45

47
47
48

49
49

87
87

目次

1

. .第11章 ネットワーク可観測性のトラブルシューティング
11.1. MUST-GATHER ツールの使用
11.2. OPENSHIFT CONTAINER PLATFORM コンソールでのネットワークトラフィックメニューエントリーの設定

11.3. FLOWLOGS-PIPELINE は、KAFKA のインストール後にネットワークフローを消費しません
11.4. BR-INT インターフェイスと BR-EX インターフェイスの両方からのネットワークフローが表示されない
11.5. ネットワーク可観測性コントローラーマネージャー POD でメモリーが不足しています
11.6. LOKI RESOURCEEXHAUSTED エラーのトラブルシューティング
11.7. リソースのトラブルシューティング
11.8. LOKISTACK レート制限エラー

95
95

95
97
97
97
98
99
99

OpenShift Container Platform 4.11 ネットワーク可観測性

2

目次

3

第1章 NETWORK OBSERVABILITY OPERATOR リリースノート
Network Observability Operator を使用すると、管理者は OpenShift Container Platform クラスターの
ネットワークトラフィックフローを観察および分析できます。

これらのリリースノートは、OpenShift Container Platform での Network Observability Operator の開
発を追跡します。

Network Observability Operator の概要は、Network Observability Operator について を参照してくだ
さい。

1.1. NETWORK OBSERVABILITY OPERATOR 1.4.2

Network Observability Operator 1.4.2 では、次のアドバイザリーを利用できます。

2023:6787 Network Observability Operator 1.4.2

1.1.1. CVE

2023-39325

2023-44487

1.2. NETWORK OBSERVABILITY OPERATOR 1.4.1

Network Observability Operator 1.4.1 では、次のアドバイザリーを利用できます。

2023:5974 Network Observability Operator 1.4.1

1.2.1. CVE

2023-44487

2023-39325

2023-29406

2023-29409

2023-39322

2023-39318

2023-39319

2023-39321

1.2.2. バグ修正

1.4 には、ネットワークフローデータを Kafka に送信するときに既知の問題がありました。
Kafka メッセージキーが無視されたため、接続の追跡でエラーが発生していました。現在、
キーはパーティショニングに使用されるため、同じ接続からの各フローが同じプロセッサーに
送信されます。(NETOBSERV-926)

OpenShift Container Platform 4.11 ネットワーク可観測性

4

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#dependency-network-observability
https://access.redhat.com/errata/RHSA-2023:6787
https://access.redhat.com/security/cve/CVE-2023-39325
https://access.redhat.com/security/cve/CVE-2023-44487
https://access.redhat.com/errata/RHSA-2023:5974
https://access.redhat.com/security/cve/cve-2023-44487
https://access.redhat.com/security/cve/cve-2023-39325
https://access.redhat.com/security/cve/cve-2023-29406
https://access.redhat.com/security/cve/CVE-2023-29409
https://access.redhat.com/security/cve/cve-2023-39322
https://access.redhat.com/security/cve/cve-2023-39318
https://access.redhat.com/security/cve/cve-2023-39319
https://access.redhat.com/security/cve/cve-2023-39321
https://issues.redhat.com/browse/NETOBSERV-926

1.4 で、同じノード上で実行されている Pod 間のフローを考慮するために、Inner 方向のフロー
が導入されました。Inner 方向のフローは、フローから派生して生成される Prometheus メト
リクスでは考慮されなかったため、バイトレートとパケットレートが過小評価されていまし
た。現在は派生メトリクスに Inner 方向のフローが含まれ、正しいバイトレートとパケット
レートが提供されるようになりました。(NETOBSERV-1344)

1.3. NETWORK OBSERVABILITY OPERATOR 1.4.0

Network Observability Operator 1.4.0 では、次のアドバイザリーを利用できます。

RHSA-2023:5379 Network Observability Operator 1.4.0

1.3.1. チャネルの削除

最新の Operator 更新を受信するには、チャネルを v1.0.x から stable に切り替える必要がありま
す。v1.0.x チャネルは削除されました。

1.3.2. 新機能および機能拡張

1.3.2.1. 主な機能拡張

Network Observability Operator の 1.4 リリースでは、OpenShift Container Platform Web コンソールプ
ラグインと Operator 設定が改良され、新機能が追加されています。

Web コンソールの機能拡張:

Query Options に、重複したフローを表示するかどうかを選択するための Duplicate flows
チェックボックスが追加されました。

送信元トラフィックおよび宛先トラフィックを、 One-way、 Back-and-forth、Swap
のフィルターでフィルタリングできるようになりました。

Observe → Dashboards → NetObserv、および NetObserv / Health のネットワーク可観測性
メトリクスダッシュボードは次のように変更されます。

NetObserv ダッシュボードには、ノード、namespace、およびワークロードごとに、上位
のバイト、送信パケット、受信パケットが表示されます。フローグラフはこのダッシュ
ボードから削除されました。

NetObserv/Health ダッシュボードには、フローのオーバーヘッド以外にも、ノード、
namespace、ワークロードごとの最大フローレートが表示されます。

インフラストラクチャーとアプリケーションのメトリクスは、namespace とワークロード
の分割ビューで表示されます。

詳細は、ネットワーク可観測性メトリクス と クイックフィルター を参照してください。

設定の機能拡張

証明書設定など、設定された ConfigMap または Secret 参照に対して異なる namespace を指定
できるオプションが追加されました。

spec.processor.clusterName パラメーターが追加されたため、クラスターの名前がフロー
データに表示されるようになりました。これは、マルチクラスターコンテキストで役立ちま
す。OpenShift Container Platform を使用する場合は、自動的に決定されるように空のままに

第1章 NETWORK OBSERVABILITY OPERATOR リリースノート

5

https://issues.redhat.com/browse/NETOBSERV-1344
https://access.redhat.com/errata/RHSA-2023:5379
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-dashboards
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-quickfilternw-observe-network-traffic

します。

詳細は、フローコレクターのサンプルリソース および フローコレクター API 参照 を参照してくださ
い。

1.3.2.2. Loki を使用しないネットワーク可観測性

Network Observability Operator は、Loki なしでも機能し、使用できるようになりました。Loki がイン
ストールされていない場合は、フローを KAFKA または IPFIX 形式にエクスポートし、ネットワーク可
観測性メトリクスダッシュボードに入力することのみ可能です。詳細は、Loki を使用しないネットワー
ク可観測性 を参照してください。

1.3.2.3. DNS 追跡

1.4 では、Network Observability Operator は eBPF トレースポイントフックを使用して DNS 追跡を有
効にします。Web コンソールの Network Traffic ページと Overview ページで、ネットワークの監視、
セキュリティー分析の実施、DNS 問題のトラブルシューティングを行なえます。

詳細は、DNS 追跡の設定 および DNS 追跡の使用 を参照してください。

1.3.2.4. SR-IOV のサポート

Single Root I/O Virtualization (SR-IOV) デバイスを使用して、クラスターからトラフィックを収集でき
るようになりました。詳細は、SR-IOV インターフェイストラフィックの監視の設定 を参照してくださ
い。

1.3.2.5. IPFIX エクスポーターのサポート

eBPF が強化されたネットワークフローを IPFIX コレクターにエクスポートできるようになりました。
詳細は、強化されたネットワークフローデータのエクスポート を参照してください。

1.3.2.6. s390x アーキテクチャーのサポート

Network Observability Operator が、s390x アーキテクチャー上で実行できるようになりました。以前
は、amd64、ppc64le、または arm64 で実行されていました。

1.3.3. バグ修正

これまで、ネットワーク可観測性によってエクスポートされた Prometheus メトリクスは、重
複する可能性のあるネットワークフローから計算されていました。その結果、関連するダッ
シュボード (Observe → Dashboards) でレートが 2 倍になる可能性がありました。ただ
し、Network Traffic ビューのダッシュボードは影響を受けていませんでした。現在は、メトリ
クスの計算前にネットワークフローがフィルタリングされて重複が排除されるため、ダッシュ
ボードに正しいトラフィックレートが表示されます。(NETOBSERV-1131)

以前は、Network Observability Operator エージェントは、Multus または SR-IOV (デフォルト
以外のネットワーク namespace) で設定されている場合、ネットワークインターフェイス上の
トラフィックをキャプチャーできませんでした。現在は、利用可能なすべてのネットワーク
namespace が認識され、フローのキャプチャーに使用されるため、SR-IOV のトラフィックを
キャプチャーできます。トラフィックを収集する場合は、FlowCollector および
SRIOVnetwork カスタムリソースで 必要な設定 があります。(NETOBSERV-1283)

以前は、Operators → Installed Operators に表示される Network Observability Operator の詳
細の FlowCollector Status フィールドで、デプロイメントの状態に関する誤った情報が報告さ
れることがありました。ステータスフィールドには、改善されたメッセージと適切な状態が表

OpenShift Container Platform 4.11 ネットワーク可観測性

6

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-flowcollector-view_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-flowcollector-api-specifications_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-without-loki_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-dns-overview_nw-observe-network-traffic
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-dns-tracking_nw-observe-network-traffic
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-SR-IOV-config_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-enriched-flows_network_observability
https://issues.redhat.com/browse/NETOBSERV-1131
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-SR-IOV-config_network_observability
https://issues.redhat.com/browse/NETOBSERV-1283

示されるようになりました。イベントの履歴は、イベントの日付順に保存されます。
(NETOBSERV-1224)

以前は、ネットワークトラフィックの負荷が急増すると、特定の eBPF Pod が OOM によって
強制終了され、CrashLoopBackOff 状態になりました。現在は、eBPF agent のメモリーフッ
トプリントが改善されたため、Pod が OOM によって強制終了されて CrashLoopBackOff 状
態に遷移することはなくなりました。(NETOBSERV-975)

以前は、processor.metrics.tls が PROVIDED に設定されている場合、insecureSkipVerify オ
プションの値が強制的に true に設定されていました。現在は、insecureSkipVerify を true ま
たは false に設定し、必要に応じて CA 証明書を提供できるようになりました。(NETOBSERV-
1087)

1.3.4. 既知の問題

Network Observability Operator 1.2.0 リリース以降では、Loki Operator 5.6 を使用すると、
Loki 証明書の変更が定期的に flowlogs-pipeline Pod に影響を及ぼすため、フローが Loki に書
き込まれず、ドロップされます。この問題はしばらくすると自動的に修正されますが、Loki 証
明書の移行中に一時的なフローデータの損失が発生します。この問題は、120 以上のノードを
内包する大規模環境でのみ発生します。(NETOBSERV-980)

現在、spec.agent.ebpf.features に DNSTracking が含まれている場合、DNS パケットが大き
いと、eBPF agent が最初のソケットバッファー (SKB) セグメント外で DNS ヘッダーを探す必
要があります。これをサポートするには、eBPF agent の新しいヘルパー関数を実装する必要が
あります。現在、この問題に対する回避策はありません。(NETOBSERV-1304)

現在、spec.agent.ebpf.features に DNSTracking が含まれている場合、DNS over TCP パケッ
トを扱うときに、eBPF agent が最初の SKB セグメント外で DNS ヘッダーを探す必要がありま
す。これをサポートするには、eBPF agent の新しいヘルパー関数を実装する必要があります。
現在、この問題に対する回避策はありません。(NETOBSERV-1245)

現在、KAFKA デプロイメントモデルを使用する場合、会話の追跡が設定されていると会話イ
ベントが Kafka コンシューマー間で重複する可能性があり、その結果、会話の追跡に一貫性が
なくなり、ボリュームデータが不正確になる可能性があります。そのため、deploymentModel
が KAFKA に設定されている場合は、会話の追跡を設定することは推奨されません。
(NETOBSERV-926)

現在、processor.metrics.server.tls.type が PROVIDED 証明書を使用するように設定されて
いる場合、Operator の状態が不安定になり、パフォーマンスとリソース消費に影響を与える可
能性があります。この問題が解決されるまでは PROVIDED 証明書を使用せず、代わりに自動
生成された証明書を使用し、processor.metrics.server.tls.type を AUTO に設定することが推
奨されます。(NETOBSERV-1293

1.4. NETWORK OBSERVABILITY OPERATOR 1.3.0

Network Observability Operator 1.3.0 では、次のアドバイザリーを利用できます。

RHSA-2023:3905 Network Observability Operator 1.3.0

1.4.1. チャネルの非推奨化

今後の Operator 更新を受信するには、チャネルを v1.0.x から stable に切り替える必要がありま
す。v1.0.x チャネルは非推奨となり、次のリリースで削除される予定です。

1.4.2. 新機能および機能拡張

第1章 NETWORK OBSERVABILITY OPERATOR リリースノート

7

https://issues.redhat.com/browse/NETOBSERV-1224
https://issues.redhat.com/browse/NETOBSERV-975
https://issues.redhat.com/browse/NETOBSERV-1087
https://issues.redhat.com/browse/NETOBSERV-980
https://issues.redhat.com/browse/NETOBSERV-1304
https://issues.redhat.com/browse/NETOBSERV-1245
https://issues.redhat.com/browse/NETOBSERV-926
https://issues.redhat.com/browse/NETOBSERV-1293)
https://access.redhat.com/errata/RHSA-2023:3905

1.4.2.1. ネットワーク可観測性におけるマルチテナンシー

システム管理者は、Loki に保存されているフローへの個々のユーザーアクセスまたはグループ
アクセスを許可および制限できます。詳細は、ネットワーク可観測性におけるマルチテナン
シー を参照してください。

1.4.2.2. フローベースのメトリクスダッシュボード

このリリースでは、OpenShift Container Platform クラスター内のネットワークフローの概要
を表示する新しいダッシュボードが追加されています。詳細は、ネットワーク可観測性メトリ
クス を参照してください。

1.4.2.3. must-gather ツールを使用したトラブルシューティング

Network Observability Operator に関する情報を、トラブルシューティングで使用する must-
gather データに追加できるようになりました。詳細は、ネットワーク可観測性の must-gather
を参照してください。

1.4.2.4. 複数のアーキテクチャーに対するサポートを開始

Network Observability Operator は、amd64、ppc64le、または arm64 アーキテクチャー上で
実行できるようになりました。以前は、amd64 上でのみ動作しました。

1.4.3. 非推奨の機能

1.4.3.1. 非推奨の設定パラメーターの設定

Network Observability Operator 1.3 のリリースでは、spec.Loki.authToken HOST 設定が非推奨になり
ました。Loki Operator を使用する場合、FORWARD 設定のみを使用する必要があります。

1.4.4. バグ修正

以前は、Operator が CLI からインストールされた場合、Cluster Monitoring Operator がメトリ
クスを読み取るために必要な Role と RoleBinding が期待どおりにインストールされませんで
した。この問題は、Operator が Web コンソールからインストールされた場合には発生しませ
んでした。現在は、どちらの方法で Operator をインストールしても、必要な Role と
RoleBinding がインストールされます。(NETOBSERV-1003)

バージョン 1.2 以降、Network Observability Operator は、フローの収集で問題が発生した場合
にアラートを生成できます。以前は、バグのため、アラートを無効にするための関連設定であ
る spec.processor.metrics.disableAlerts が期待どおりに動作せず、効果がない場合がありま
した。現在、この設定は修正され、アラートを無効にできるようになりました。
(NETOBSERV-976)

以前は、ネットワーク可観測性の spec.loki.authToken が DISABLED に設定されている場
合、kubeadmin クラスター管理者のみがネットワークフローを表示できました。他のタイプの
クラスター管理者は認可エラーを受け取りました。これで、クラスター管理者は誰でもネット
ワークフローを表示できるようになりました。(NETOBSERV-972)

以前は、バグが原因でユーザーは spec.consolePlugin.portNaming.enable を false に設定で
きませんでした。現在は、これを false に設定すると、ポートからサービスへの名前変換を無
効にできます。(NETOBSERV-971)

以前は、設定が間違っていたため、コンソールプラグインが公開するメトリクスは、Cluster

OpenShift Container Platform 4.11 ネットワーク可観測性

8

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-multi-tenancynetwork_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-dashboards
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-must-gather_network-observability-troubleshooting
https://issues.redhat.com/browse/NETOBSERV-1003
https://issues.redhat.com/browse/NETOBSERV-976
https://issues.redhat.com/browse/NETOBSERV-972
https://issues.redhat.com/browse/NETOBSERV-971

Monitoring Operator (Prometheus) によって収集されませんでした。現在は設定が修正され、
コンソールプラグインメトリクスが正しく収集され、OpenShift Container Platform Web コン
ソールからアクセスできるようになりました。(NETOBSERV-765)

以前は、FlowCollector で processor.metrics.tls が AUTO に設定されている場合、flowlogs-
pipeline servicemonitor は適切な TLS スキームを許可せず、メトリクスは Web コンソールに
表示されませんでした。この問題は AUTO モードで修正されました。(NETOBSERV-1070)

以前は、Kafka や Loki に使用されるような証明書設定では、namespace フィールドを指定でき
ず、ネットワーク可観測性がデプロイされているのと同じ namespace に証明書が存在する必要
がありました。さらに、TLS/mTLS で Kafka を使用する場合、ユーザーは eBPF agent Pod が
デプロイされている特権付き namespace に証明書を手動でコピーし、証明書のローテーション
を行う場合などに手動で証明書の更新を管理する必要がありました。現在は、FlowCollector
リソースに証明書の namespace フィールドを追加することで、ネットワーク可観測性のセット
アップが簡素化されています。その結果、ユーザーはネットワーク可観測性 namespace に証明
書を手動でコピーすることなく、Loki または Kafka を別の namespace にインストールできる
ようになりました。元の証明書は監視されているため、必要に応じてコピーが自動的に更新さ
れます。(NETOBSERV-773)

以前は、SCTP、ICMPv4、および ICMPv6 プロトコルはネットワーク可観測性エージェントの
カバレッジに含まれていなかったため、ネットワークフローのカバレッジもあまり包括的では
ありませんでした。これらのプロトコルを使用することで、フローカバレッジが向上すること
が確認されています。(NETOBSERV-934)

1.4.5. 既知の問題

FlowCollector で processor.metrics.tls が PROVIDED に設定されている場合、flowlogs-
pipelineservicemonitor は TLS スキームに適用されません。(NETOBSERV-1087)

Network Observability Operator 1.2.0 リリース以降では、Loki Operator 5.6 を使用すると、
Loki 証明書の変更が定期的に flowlogs-pipeline Pod に影響を及ぼすため、フローが Loki に書
き込まれず、ドロップされます。この問題はしばらくすると自動的に修正されますが、Loki 証
明書の移行中に一時的なフローデータの損失が発生します。この問題は、120 以上のノードを
内包する大規模環境でのみ発生します。(NETOBSERV-980)

1.5. NETWORK OBSERVABILITY OPERATOR 1.2.0

Network Observability Operator 1.2.0 では、次のアドバイザリーを利用できます。

RHSA-2023:1817 Network Observability Operator 1.2.0

1.5.1. 次の更新の準備

インストールされた Operator のサブスクリプションは、Operator の更新を追跡および受信する更新
チャネルを指定します。Network Observability Operator の 1.2 リリースまでは、利用可能なチャネルは
v1.0.x だけでした。Network Observability Operator の 1.2 リリースでは、更新の追跡および受信用に
stable 更新チャネルが導入されました。今後の Operator 更新を受信するには、チャネルを v1.0.x から
stable に切り替える必要があります。v1.0.x チャネルは非推奨となり、次のリリースで削除される予定
です。

1.5.2. 新機能および機能拡張

1.5.2.1. Traffic Flow ビューのヒストグラム

経時的なフローのヒストグラムバーグラフを表示するように選択できるようになりました。ヒ

第1章 NETWORK OBSERVABILITY OPERATOR リリースノート

9

https://issues.redhat.com/browse/NETOBSERV-765
https://issues.redhat.com/browse/NETOBSERV-1070
https://issues.redhat.com/browse/NETOBSERV-773
https://issues.redhat.com/browse/NETOBSERV-934
https://issues.redhat.com/browse/NETOBSERV-1087
https://issues.redhat.com/browse/NETOBSERV-980
https://access.redhat.com/errata/RHSA-2023:1817

経時的なフローのヒストグラムバーグラフを表示するように選択できるようになりました。ヒ
ストグラムを使用すると、Loki クエリー制限に達することなくフロー履歴を可視化できます。
詳細は、ヒストグラムの使用 を参照してください。

1.5.2.2. 会話の追跡

ログタイプ でフローをクエリーできるようになりました。これにより、同じ会話に含まれる
ネットワークフローをグループ化できるようになりました。詳細は、会話の使用 を参照してく
ださい。

1.5.2.3. ネットワーク可観測性のヘルスアラート

Network Observability Operator は、書き込み段階でのエラーが原因で flowlogs-pipeline がフ
ローをドロップする場合、または Loki 取り込みレート制限に達した場合、自動アラートを作成
するようになりました。詳細は、ヘルス情報の表示 を参照してください。

1.5.3. バグ修正

これまでは、FlowCollector 仕様の namespace の値を変更すると、以前の namespace で実行
されている eBPF agent Pod が適切に削除されませんでした。今は、以前の namespace で実行
されている Pod も適切に削除されるようになりました。(NETOBSERV-774)

これまでは、FlowCollector 仕様 (Loki セクションなど) の caCert.name 値を変更しても、
FlowLogs-Pipeline Pod および Console プラグイン Pod が再起動されないため、設定の変更が
認識されませんでした。今は、Pod が再起動されるため、設定の変更が適用されるようになり
ました。(NETOBSERV-772)

これまでは、異なるノードで実行されている Pod 間のネットワークフローは、異なるネット
ワークインターフェイスでキャプチャーされるため、重複が正しく認識されないことがありま
した。その結果、コンソールプラグインに表示されるメトリクスが過大に見積もられていまし
た。現在は、フローが重複として正しく識別され、コンソールプラグインで正確なメトリクス
が表示されます。(NETOBSERV-755)

コンソールプラグインのレポーターオプションは、送信元ノードまたは宛先ノードのいずれか
の観測点に基づいてフローをフィルタリングするために使用されます。以前は、このオプショ
ンはノードの観測点に関係なくフローを混合していました。これは、ネットワークフローが
ノードレベルで Ingress または Egress として誤って報告されることが原因でした。これで、
ネットワークフロー方向のレポートが正しくなりました。レポーターオプションは、期待どお
り、ソース観測点または宛先観測点をフィルターします。(NETOBSERV-696)

以前は、フローを gRPC+protobuf リクエストとしてプロセッサーに直接送信するように設定さ
れたエージェントの場合、送信されたペイロードが大きすぎる可能性があり、プロセッサーの
GRPC サーバーによって拒否されました。これは、非常に高負荷のシナリオで、エージェント
の一部の設定でのみ発生しました。エージェントは、次のようなエラーメッセージをログに記
録しました: grpc: max より大きいメッセージを受信しました。その結果、それらのフローに関
する情報が損失しました。現在、gRPC ペイロードは、サイズがしきい値を超えると、いくつ
かのメッセージに分割されます。その結果、サーバーは接続を維持します。(NETOBSERV-
617)

1.5.4. 既知の問題

Loki Operator 5.6 を使用する Network Observability Operator の 1.2.0 リリースでは、Loki 証明
書の移行が定期的に flowlogs-pipeline Pod に影響を及ぼし、その結果、Loki に書き込まれる
フローではなくフローがドロップされます。この問題はしばらくすると自動的に修正されます

OpenShift Container Platform 4.11 ネットワーク可観測性

10

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-histogram-trafficflow_nw-observe-network-traffic
https://issues.redhat.com/browse/NETOBSERV-774
https://issues.redhat.com/browse/NETOBSERV-772
https://issues.redhat.com/browse/NETOBSERV-755
https://issues.redhat.com/browse/NETOBSERV-696
https://issues.redhat.com/browse/NETOBSERV-617

が、依然として Loki 証明書の移行中に一時的なフローデータの損失が発生します。
(NETOBSERV-980)

1.5.5. 主な技術上の変更点

以前は、カスタム namespace を使用して Network Observability Operator をインストールでき
ました。このリリースでは、ClusterServiceVersion を変更する conversion webhook が導入
されています。この変更により、使用可能なすべての namespace がリストされなくなりまし
た。さらに、Operator メトリクス収集を有効にするには、openshift-operators namespace な
ど、他の Operator と共有される namespace は使用できません。ここで、Operator を
openshift-netobserv-operator namespace にインストールする必要があります。以前にカスタ
ム namespace を使用して Network Observability Operator をインストールした場合、新しい
Operator バージョンに自動的にアップグレードすることはできません。以前にカスタム
namespace を使用して Operator をインストールした場合は、インストールされた Operator の
インスタンスを削除し、openshift-netobserv-operator namespace に Operator を再インス
トールする必要があります。一般的に使用される netobserv namespace などのカスタム
namespace は、FlowCollector、Loki、Kafka、およびその他のプラグインでも引き続き使用で
きることに注意することが重要です。(NETOBSERV-907)(NETOBSERV-956)

1.6. NETWORK OBSERVABILITY OPERATOR 1.1.0

Network Observability Operator 1.1.0 については、次のアドバイザリーを利用できます。

RHSA-2023:0786 Network Observability Operator セキュリティアドバイザリーの更新

Network Observability Operator は現在安定しており、リリースチャンネルは v1.1.0 にアップグレード
されています。

1.6.1. バグ修正

以前は、Loki の authToken 設定が FORWARD モードに設定されていない限り、認証が適用さ
れず、OpenShift Container Platform クラスター内の OpenShift Container Platform コンソー
ルに接続できるすべてのユーザーが認証なしでフローを取得できました。現在は、Loki の
authToken モードに関係なく、クラスター管理者のみがフローを取得できます。
(BZ#2169468)

第1章 NETWORK OBSERVABILITY OPERATOR リリースノート

11

https://issues.redhat.com/browse/NETOBSERV-980
https://issues.redhat.com/browse/NETOBSERV-907
https://https//issues.redhat.com/browse/NETOBSERV-956
https://access.redhat.com/errata/RHSA-2023:0786
https://bugzilla.redhat.com/show_bug.cgi?id=2169468

第2章 ネットワーク可観測性について
Red Hat は、OpenShift Container Platform クラスターのネットワークトラフィックを監視する
Network Observability Operator をクラスター管理者に提供します。Network Observability Operator
は、eBPF テクノロジーを使用してネットワークフローを作成します。その後、ネットワークフローは
OpenShift Container Platform 情報で強化され、Loki に保存されます。保存されたネットワークフロー
情報を OpenShift Container Platform コンソールで表示および分析して、さらなる洞察とトラブル
シューティングを行うことができます。

2.1. NETWORK OBSERVABILITY OPERATOR のオプションの依存関係

Loki Operator: Loki は、収集されたすべてのフローを保存するために使用されるバックエンド
です。Loki をインストールして、Network Observability Operator と併用することが推奨され
ます。Loki を使用せずに Network Observability を使用することも選択できますが、その場合は
リンク先のセクションで説明されているいくつかの事項を考慮する必要があります。Loki のイ
ンストールを選択した場合は、Red Hat がサポートする Loki Operator の使用が推奨されま
す。

Grafana Operator: Grafana Operator などのオープンソース製品を使用して、カスタムダッ
シュボードの作成やケイパビリティーのクエリーに使用する Grafana をインストールできま
す。Red Hat は Grafana Operator をサポートしていません。

AMQ Streams Operator: Kafka は、大規模なデプロイメント向けに OpenShift Container
Platform クラスターにスケーラビリティ、復元力、高可用性を提供します。Kafka を使用する
ことを選択する場合は、Red Hat がサポートする AMQ Streams Operator を使用することが推
奨されます。

2.2. NETWORK OBSERVABILITY OPERATOR

Network Observability Operator は Flow Collector API カスタムリソース定義を提供します。Flow
Collector インスタンスは、インストール中に作成され、ネットワークフローコレクションの設定を有
効にします。フローコレクターインスタンスは、モニタリングパイプラインを形成する Pod とサービ
スをデプロイし、そこでネットワークフローが収集され、Loki に保存する前に Kubernetes メタデータ
で強化されます。デーモンセットオブジェクトとしてデプロイメントされる eBPF エージェントは、
ネットワークフローを作成します。

2.3. OPENSHIFT CONTAINER PLATFORM コンソール統合

OpenShift Container Platform コンソール統合は、概要、トポロジービュー、およびトラフィックフ
ローテーブルを提供します。

2.3.1. ネットワーク可観測性メトリクスのダッシュボード

OpenShift Container Platform コンソールの Overview タブでは、クラスター上のネットワークトラ
フィックフローの集約された全体的なメトリクスを表示できます。ノード、namespace、所有者、
Pod、サービスごとに情報を表示することを選択できます。フィルターと表示オプションにより、メト
リクスをさらに絞り込むことができます。

Observe → Dashboards のNetobserv ダッシュボードには、OpenShift Container Platform クラスター
内のネットワークフローの簡易的な概要が表示されます。次のカテゴリーのネットワークトラフィック
メトリクスを抽出して表示できます。

各送信元ノードおよび宛先ノードの上位受信バイトレート

OpenShift Container Platform 4.11 ネットワーク可観測性

12

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-without-loki_network_observability

各送信元 namespace および宛先 namespace の上位受信バイトレート

各送信元ワークロードおよび宛先ワークロードの上位受信バイトレート

Infrastructure および Application メトリクスは、namespace とワークロードの分割ビューで表示され
ます。FlowCollector spec.processor.metrics を設定し、ignoreTags リストを変更してメトリクスを
追加または削除できます。使用可能なタグの詳細は、Flow Collector API リファレンス を参照してくだ
さい。

また、Observe → Dashboards の Netobserv/Health ダッシュボードには、次に示すカテゴリーの
Operator の健全性に関するメトリクスが表示されます。

フロー

フローのオーバーヘッド

各送信元ノードおよび宛先ノードの上位フローレート

各送信元 namespace および宛先 namespace の上位フローレート

各送信元ワークロードおよび宛先ワークロードの上位フローレート

エージェント

プロセッサー

Operator

Infrastructure および Application メトリクスは、namespace とワークロードの分割ビューで表示され
ます。

2.3.2. Network Observability トポロジービュー

OpenShift Container Platform コンソールは、ネットワークフローとトラフィック量をグラフィカルに
表示する Topology タブを提供します。トポロジービューは、OpenShift Container Platform コンポー
ネント間のトラフィックをネットワークグラフとして表します。フィルターと表示オプションを使用し
て、グラフを絞り込むことができます。ノード、namespace、所有者、Pod、およびサービスの情報に
アクセスできます。

2.3.3. トラフィックフローテーブル

トラフィックフローテーブルビューは、生のフロー、集約されていないフィルタリングオプション、お
よび設定可能な列のビューを提供します。OpenShift Container Platform コンソールは、ネットワーク
フローのデータとトラフィック量を表示する Traffic flows タブを提供します。

第2章 ネットワーク可観測性について

13

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-flowcollector-api-specifications_network_observability

第3章 NETWORK OBSERVABILITY OPERATOR のインストール
Network Observability Operator を使用する場合、前提条件として Loki のインストールが推奨されま
す。Loki を使用せずに Network Observability を使用することも選択できますが、その場合はリンクし
た前述のセクションで説明されているいくつかの事項を考慮する必要があります。

Loki Operator は、マルチテナンシーと認証を実装するゲートウェイを Loki と統合して、データフロー
ストレージを実現します。LokiStack リソースは、スケーラブルで高可用性のマルチテナントログ集約
システムである Loki と、OpenShift Container Platform 認証を備えた Web プロキシーを管理しま
す。LokiStack プロキシーは、OpenShift Container Platform 認証を使用してマルチテナンシーを適用
し、Loki ログストアでのデータの保存とインデックス作成を容易にします。

注記

Loki Operator は、LokiStack ログストアの設定 にも使用できます。Network
Observability Operator には、ロギングとは別の専用の LokiStack が必要です。

3.1. LOKI を使用しないネットワーク可観測性

Loki のインストール手順を実行せず、直接「Network Observability Operator のインストール」を実行
することで、Loki なしで Network Observability を使用できます。フローを Kafka コンシューマーまた
は IPFIX コレクターのみにエクスポートする場合、またはダッシュボードメトリクスのみ必要な場合
は、Loki をインストールしたり、Loki 用のストレージを提供したりする必要はありません。Loki を使
用しない場合、Observe の下に Network Traffic パネルは表示されません。つまり、概要チャート、フ
ローテーブル、トポロジーはありません。次の表は、Loki を使用した場合と使用しない場合の利用可能
な機能を比較しています。

表3.1 Loki を使用した場合と使用しない場合の使用可能な機能の比較

 Loki を使用する場合 Loki を使用しない場合

エクスポーター

フローベースのメトリクスとダッ
シュボード

トラフィックフローの概要、テー
ブルビュー、トポロジービュー

クイックフィルター

OpenShift Container Platform
コンソールの Network Traffic タ
ブの統合

関連情報

強化されたネットワークフローデータのエクスポート

3.2. LOKI OPERATOR のインストール

ネットワーク可観測性でサポートされている Loki Operator のバージョンは、Loki Operator バージョン

OpenShift Container Platform 4.11 ネットワーク可観測性

14

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-without-loki_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/logging/#cluster-logging-loki
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-enriched-flows_network_observability

ネットワーク可観測性でサポートされている Loki Operator のバージョンは、Loki Operator バージョン
5.7 以降 です。これらのバージョンでは、openshift-network テナント設定モードを使用して
LokiStack インスタンスを作成する機能が提供されており、ネットワーク可観測性に対する完全に自動
化されたクラスター内認証および認可がサポートされています。Loki をインストールするにはいくつか
の方法があります。そのうちの 1 つが、OpenShift Container Platform Web コンソールの Operator Hub
を使用する方法です。

前提条件

対応ログストア (AWS S3、Google Cloud Storage、Azure、Swift、Minio、OpenShift Data
Foundation)

OpenShift Container Platform 4.10 以上

Linux カーネル 4.18 以降

手順

1. OpenShift Container Platform Web コンソールで、Operators → OperatorHub をクリックし
ます。

2. 使用可能な Operator のリストから Loki Operator を選択し、Install をクリックします。

3. Installation Mode で、All namespaces on the cluster を選択します。

検証

1. Loki Operator がインストールされていることを確認します。Operators→ Installed Operators
ページにアクセスして、Loki Operator を探します。

2. Loki Operator がすべてのプロジェクトで Succeeded の Status でリストされていることを確
認します。

重要

Loki をアンインストールするには、Loki のインストールに使用した方法に対応するアン
インストールプロセスを参照してください。ClusterRole と ClusterRoleBindings、オ
ブジェクトストアに格納されたデータ、および削除する必要のある永続ボリュームが
残っている可能性があります。

3.2.1. Loki ストレージのシークレットの作成

Loki Operator は、AWS S3、Google Cloud Storage、Azure、Swift、Minio、OpenShift Data
Foundation など、いくつかのログストレージオプションをサポートしています。次の例は、AWS S3 ス
トレージのシークレットを作成する方法を示しています。この例で作成されたシークレット loki-s3
は、「LokiStack リソースの作成」で参照されています。このシークレットは、Web コンソールまたは
CLI で作成できます。

1. Web コンソールを使用して、Project → All Projects ドロップダウンに移動し、Create Project
を選択します。プロジェクトに netobserv という名前を付けて、Create をクリックします。

2. 右上隅にあるインポートアイコン + に移動します。YAML ファイルをエディターにペーストし
ます。
以下は、S3 ストレージのシークレット YAML ファイルの例です。

第3章 NETWORK OBSERVABILITY OPERATOR のインストール

15

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

1 このドキュメントに記載されているインストール例では、すべてのコンポーネントで同じ
namespace である netobserv を使用しています。オプションで、異なるコンポーネント
で異なる namespace を使用できます。

検証

シークレットを作成すると、Web コンソールの Workloads → Secrets の下に一覧表示されま
す。

関連情報

フローコレクター API リファレンス

フローコレクターのサンプルリソース

Loki オブジェクトストレージ

3.2.2. LokiStack カスタムリソースの作成

Web コンソールまたは CLI を使用して LokiStack をデプロイし、namespace や新規プロジェクトを作
成できます。

重要

cluster-admin ユーザーとして複数の namespace のアプリケーションログをクエリーす
ると、クラスター内のすべての namespace の文字数の合計が 5120 を超え、Parse
error: input size too long (XXXX > 5120) エラーが発生します。LokiStack のログへのア
クセスをより適切に制御するには、cluster-admin ユーザーを cluster-admin グループ
のメンバーにします。cluster-admin グループが存在しない場合は、作成して必要な
ユーザーを追加します。

cluster-admin グループの作成の詳細は、「関連情報」セクションを参照してください。

手順

1. Operators → Installed Operators に移動し、Project ドロップダウンから All projects を表示
します。

2. Loki Operator を探します。詳細の Provided APIs で、LokiStack を選択します。

apiVersion: v1
kind: Secret
metadata:
 name: loki-s3
 namespace: netobserv 1
stringData:
 access_key_id: QUtJQUlPU0ZPRE5ON0VYQU1QTEUK
 access_key_secret:
d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=
 bucketnames: s3-bucket-name
 endpoint: https://s3.eu-central-1.amazonaws.com
 region: eu-central-1

OpenShift Container Platform 4.11 ネットワーク可観測性

16

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-flowcollector-api-specifications_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-flowcollector-view_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/logging/#logging-loki-storage_installing-log-storage

1

2

3. Create LokiStack をクリックします。

4. Form View または YAML view で次のフィールドが指定されていることを確認します。

このドキュメントに記載されているインストール例では、すべてのコンポーネントで同じ
namespace である netobserv を使用しています。必要に応じて、別の namespace を使用
できます。

ReadWriteOnce アクセスモードのクラスターで使用可能なストレージクラス名を使用し
ます。oc get storageclasses を使用して、クラスターで利用できるものを確認できま
す。

重要

クラスターロギングに使用されるものと同じ LokiStack を再利用しないでくだ
さい。

5. Create をクリックします。

3.2.2.1. デプロイメントのサイズ

Loki のサイズは N<x>.<size> の形式に従います。<N> はインスタンスの数を、<size> はパフォーマン
スの機能を指定します。

注記

1x.extra-small はデモ用であり、サポートされていません。

表3.2 Loki のサイズ

 1x.extra-small 1x.small 1x.medium

データ転送 デモ使用のみ。 500GB/day 2 TB/日

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: loki
 namespace: netobserv 1
spec:
 size: 1x.small
 storage:
 schemas:
 - version: v12
 effectiveDate: '2022-06-01'
 secret:
 name: loki-s3
 type: s3
 storageClassName: gp3 2
 tenants:
 mode: openshift-network

第3章 NETWORK OBSERVABILITY OPERATOR のインストール

17

1 秒あたりのクエリー数
(QPS)

デモ使用のみ。 200 ミリ秒で 25 - 50
QPS

200 ミリ秒で 25 - 75
QPS

レプリケーション係数 なし 2 3

合計 CPU 要求 仮想 CPU 5 個 仮想 CPU 36 個 仮想 CPU 54 個

合計メモリー要求 7.5Gi 63Gi 139Gi

ディスク要求の合計 150Gi 300Gi 450Gi

 1x.extra-small 1x.small 1x.medium

関連情報

cluster-admin ユーザーロールの新規グループの作成

3.2.3. LokiStack の取り込み制限とヘルスアラート

LokiStack インスタンスには、設定されたサイズに応じたデフォルト設定が付属しています。取り込み
やクエリーの制限など、これらの設定の一部を上書きすることができます。コンソールプラグインまた
は flowlogs-pipeline ログに Loki エラーが表示される場合は、それらを更新することを推奨します。こ
れらの制限に達すると、Web コンソールの自動アラートで通知されます。

設定された制限の例を次に示します。

これらの設定の詳細は、LokiStack API リファレンス を参照してください。

3.2.4. 認可とマルチテナンシーの設定

ClusterRole と ClusterRoleBinding を定義します。netobserv-reader ClusterRole はマルチテナン
シーを有効にし、Loki に保存されているフローへのユーザーアクセスまたはグループアクセスを個別に
許可します。これらのロールを定義する YAML ファイルを作成できます。

手順

1. Web コンソールを使用して、インポートアイコン + をクリックします。

2. YAML ファイルをエディターにドロップし、Create をクリックします。

spec:
 limits:
 global:
 ingestion:
 ingestionBurstSize: 40
 ingestionRate: 20
 maxGlobalStreamsPerTenant: 25000
 queries:
 maxChunksPerQuery: 2000000
 maxEntriesLimitPerQuery: 10000
 maxQuerySeries: 3000

OpenShift Container Platform 4.11 ネットワーク可観測性

18

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/logging/#logging-creating-new-group-cluster-admin-user-role_cluster-logging-loki
https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-IngestionLimitSpec

1

ClusterRole リーダー yaml の例

このロールはマルチテナンシーに使用できます。

ClusterRole ライター yaml の例

ClusterRoleBinding yaml の例

flowlogs-pipeline は Loki に書き込みます。Kafka を使用している場合、この値は flowlogs-

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: netobserv-reader 1
rules:
- apiGroups:
 - 'loki.grafana.com'
 resources:
 - network
 resourceNames:
 - logs
 verbs:
 - 'get'

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: netobserv-writer
rules:
- apiGroups:
 - 'loki.grafana.com'
 resources:
 - network
 resourceNames:
 - logs
 verbs:
 - 'create'

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: netobserv-writer-flp
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: netobserv-writer
subjects:
- kind: ServiceAccount
 name: flowlogs-pipeline 1
 namespace: netobserv
- kind: ServiceAccount
 name: flowlogs-pipeline-transformer
 namespace: netobserv

第3章 NETWORK OBSERVABILITY OPERATOR のインストール

19

1 flowlogs-pipeline は Loki に書き込みます。Kafka を使用している場合、この値は flowlogs-
pipeline-transformer です。

3.2.5. ネットワーク可観測性でのマルチテナンシーの有効化

Network Observability Operator のマルチテナンシーにより、Loki に保存されているフローへのユー
ザーアクセスまたはグループアクセスが個別に許可および制限されます。プロジェクト管理者のアクセ
スが有効になっています。一部の namespace へのアクセスが制限されているプロジェクト管理者は、
それらの namespace のフローのみにアクセスできます。

前提条件

Loki Operator バージョン 5.7 がインストールされている。

FlowCollector spec.loki.authToken が FORWARD に設定されている。

プロジェクト管理者としてログインしている。

手順

1. 次のコマンドを実行して、user1 に読み取り権限を付与します。

現在、データは許可されたユーザー namespace のみに制限されています。たとえば、単一の
namespace にアクセスできるユーザーは、この namespace 内部のフローすべてと、この
namespace から出入りするフローを表示できます。プロジェクト管理者は、OpenShift
Container Platform コンソールの Administrator パースペクティブにアクセスして、Network
Flows Traffic ページにアクセスできます。

3.3. NETWORK OBSERVABILITY OPERATOR のインストール

OpenShift Container Platform Web コンソール Operator Hub を使用して Network Observability
Operator をインストールできます。Operator をインストールすると、FlowCollector カスタムリソー
ス定義 (CRD) が提供されます。FlowCollector を作成するときに、Web コンソールで仕様を設定でき
ます。

重要

Operator の実際のメモリー消費量は、クラスターのサイズとデプロイされたリソースの
数によって異なります。それに応じて、メモリー消費量を調整する必要がある場合があ
ります。詳細は、「フローコレクター設定の重要な考慮事項」セクションの「Network
Observability コントローラーマネージャー Pod のメモリー不足」を参照してください。

前提条件

Loki を使用する場合は、Loki Operator バージョン 5.7 以降 をインストールしている。

cluster-admin 権限を持っている必要があります。

サポートされているアーキテクチャーである amd64、ppc64le、arm64、s390x のいずれか。

Red Hat Enterprise Linux (RHEL) 9 でサポートされる任意の CPU。

$ oc adm policy add-cluster-role-to-user netobserv-reader user1

OpenShift Container Platform 4.11 ネットワーク可観測性

20

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39
https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

OVN-Kubernetes または OpenShift SDN をメインネットワークプラグインとして設定し、オプ
ションで Multus や SR-IOV などのセカンダリーインターフェイスを使用している。

注記

このドキュメントでは、LokiStack インスタンス名が loki であることを前提としていま
す。別の名前を使用するには、追加の設定が必要です。

手順

1. OpenShift Container Platform Web コンソールで、Operators → OperatorHub をクリックし
ます。

2. OperatorHub で使用可能な Operator のリストから Network Observability Operator を選択
し、Install をクリックします。

3. Enable Operator recommended cluster monitoring on this Namespace チェックボックスを
選択します。

4. Operators → Installed Operators に移動します。Network Observability 用に提供された API
で、Flow Collector リンクを選択します。

5. Flow Collector タブに移動し、Create FlowCollector をクリックします。フォームビューで次
の選択を行います。

a. spec.agent.ebpf.Sampling: フローのサンプリングサイズを指定します。サンプリングサイ
ズが小さいほど、リソース使用率への影響が大きくなります。詳細は、「FlowCollector
API リファレンス」の spec.agent.ebpf を参照してください。

b. Loki を使用している場合は、次の仕様を設定します。

i. spec.loki.enable: Loki へのフローの保存を有効にするには、チェックボックスをオンに
します。

ii. spec.loki.url: 認証が別途指定されるため、この URL を https://loki-gateway-
http.netobserv.svc:8080/api/logs/v1/network に更新する必要があります。URL の最
初にある "loki" 部分は、LokiStack の名前と一致する必要があります。

iii. spec.loki.authToken: FORWARD 値を選択します。

iv. spec.loki.statusUrl: これを https://loki-query-frontend-http.netobserv.svc:3100/ に
設定します。URL の最初にある "loki" 部分は、LokiStack の名前と一致する必要があり
ます。

v. spec.loki.tls.enable: TLS を有効にするには、このチェックボックスを選択します。

vi. spec.loki.statusTls: デフォルトでは、enable 値は false です。
証明書参照名の最初の部分: loki-gateway-ca-bundle、loki-ca-bundle、および loki-
query-frontend-http、loki は、LokiStack の名前と一致する必要があります。

c. オプション: 使用している環境が大規模な場合は、回復性とスケーラビリティーが高い方法
でデータを転送するために、Kafka を使用して FlowCollector を設定することを検討して
ください。「フローコレクター設定に関する重要な考慮事項」セクションの「Kafka スト
レージを使用したフローコレクターリソースの設定」を参照してください。

d. オプション: 次の FlowCollector 作成手順に進む前に、他のオプションを設定します。たと
えば、Loki を使用しないことを選択した場合は、Kafka または IPFIX へのフローのエクス

第3章 NETWORK OBSERVABILITY OPERATOR のインストール

21

https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network
https://loki-query-frontend-http.netobserv.svc:3100/

ポートを設定できます。「フローコレクター設定の重要な考慮事項」セクションの「強化
されたネットワークフローデータを Kafka および IPFIX にエクスポートする」などを参照
してください。

e. Create をクリックします。

検証

これが成功したことを確認するには、Observe に移動すると、オプションに Network Traffic が表示さ
れます。

OpenShift Container Platform クラスター内に アプリケーショントラフィック がない場合は、デフォル
トのフィルターが "No results" と表示され、視覚的なフローが発生しないことがあります。フィルター
選択の横にある Clear all filters を選択して、フローを表示します。

重要

Loki Operator を使用して Loki をインストールした場合は、Loki へのコンソールアクセ
スを中断する可能性があるため、querierUrl を使用しないことを推奨します。別のタイ
プの Loki インストールを使用して Loki をインストールした場合、これは当てはまりませ
ん。

3.4. フローコレクター設定に関する重要な考慮事項

FlowCollector インスタンスを作成すると、それを再設定することはできますが、Pod が終了して再作
成されるため、中断が生じる可能性があります。そのため、初めて FlowCollector を作成する際には、
以下のオプションを設定することを検討してください。

Kafka を使用した Flow Collector リソースの設定

強化されたネットワークフローデータを Kafka または IPFIX にエクスポート

SR-IOV インターフェイストラフィックの監視の設定

会話追跡の使用

DNS 追跡の使用

関連情報

フローコレクターの仕様や、Network Observability Operator のアーキテクチャーとリソースの使用に
関する全般的な情報については、次のリソースを参照してください。

フローコレクター API リファレンス

フローコレクターのサンプルリソース

リソースの留意事項

ネットワーク可観測性コントローラーマネージャー Pod のメモリー不足のトラブルシューティ
ング

ネットワーク可観測性アーキテクチャー

3.5. KAFKA のインストール (オプション)

OpenShift Container Platform 4.11 ネットワーク可観測性

22

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-flowcollector-kafka-config_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-enriched-flows_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-SR-IOV-config_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-working-with-conversations_nw-observe-network-traffic
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-dns-tracking_nw-observe-network-traffic
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-flowcollector-api-specifications_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-flowcollector-view_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-resources-table_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#controller-manager-pod-runs-out-of-memory_network-observability-troubleshooting
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-architecture_nw-network-observability-operator

Kafka Operator は、大規模な環境でサポートされています。Kafka は、回復性とスケーラビリティーの
高い方法でネットワークフローデータを転送するために、高スループットかつ低遅延のデータフィード
を提供します。Loki Operator および Network Observability Operator がインストールされたのと同じよ
うに、Kafka Operator を Operator Hub から Red Hat AMQ Streams としてインストールできます。
Kafka をストレージオプションとして設定する場合は、「Kafka を使用した FlowCollector リソースの
設定」を参照してください。

注記

Kafka をアンインストールするには、インストールに使用した方法に対応するアンイン
ストールプロセスを参照してください。

関連情報

Kafka を使用した FlowCollector リソースの設定

3.6. NETWORK OBSERVABILITY OPERATOR のアンインストール

Network Observability Operator は、Operators → Installed Operators エリアで作業する OpenShift
Container Platform Web コンソール Operator Hub を使用してアンインストールできます。

手順

1. FlowCollector カスタムリソースを削除します。

a. Provided APIs 列の Network Observability Operator の横にある Flow Collector をクリッ
クします。

b. cluster のオプションメニュー をクリックし、Delete FlowCollector を選択します。

2. Network Observability Operator をアンインストールします。

a. Operators → Installed Operators エリアに戻ります。

b. Network Observability Operator の隣にあるオプションメニュー をクリック
し、Uninstall Operator を選択します。

c. Home → Projects を選択し、openshift-netobserv-operator を選択します。

d. Actions に移動し、Delete Project を選択します。

3. FlowCollector カスタムリソース定義 (CRD) を削除します。

a. Administration → CustomResourceDefinitions に移動します。

b. FlowCollector を探し、オプションメニュー をクリックします。

c. Delete CustomResourceDefinition を選択します。

重要

第3章 NETWORK OBSERVABILITY OPERATOR のインストール

23

https://access.redhat.com/documentation/ja-jp/red_hat_amq_streams/2.2
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-flowcollector-kafka-config_network_observability

重要

Loki Operator と Kafka は、インストールされていた場合、残っているた
め、個別に削除する必要があります。さらに、オブジェクトストアに保存さ
れた残りのデータ、および削除する必要がある永続ボリュームがある場合が
あります。

OpenShift Container Platform 4.11 ネットワーク可観測性

24

第4章 OPENSHIFT CONTAINER PLATFORM の NETWORK
OBSERVABILITY OPERATOR

Network Observability は、Network Observability eBPF agent によって生成されるネットワークトラ
フィックフローを収集および強化するためにモニタリングパイプラインをデプロイする OpenShift
Operator です。

4.1. 状況の表示

Network Observability Operator は Flow Collector API を提供します。Flow Collector リソースが作成さ
れると、Pod とサービスをデプロイしてネットワークフローを作成して Loki ログストアに保存し、
ダッシュボード、メトリクス、およびフローを OpenShift Container Platform Web コンソールに表示し
ます。

手順

1. 次のコマンドを実行して、FlowCollector の状態を表示します。

出力例

NAME AGENT SAMPLING (EBPF) DEPLOYMENT MODEL STATUS
cluster EBPF 50 DIRECT Ready

2. 次のコマンドを実行して、netobserv namespace で実行している Pod のステータスを確認し
ます。

出力例

NAME READY STATUS RESTARTS AGE
flowlogs-pipeline-56hbp 1/1 Running 0 147m
flowlogs-pipeline-9plvv 1/1 Running 0 147m
flowlogs-pipeline-h5gkb 1/1 Running 0 147m
flowlogs-pipeline-hh6kf 1/1 Running 0 147m
flowlogs-pipeline-w7vv5 1/1 Running 0 147m
netobserv-plugin-cdd7dc6c-j8ggp 1/1 Running 0 147m

flowlogs-pipeline Pod はフローを収集し、収集したフローを充実させてから、フローを Loki ストレー
ジに送信します。netobserv-plugin Pod は、OpenShift Container Platform コンソール用の視覚化プラ
グインを作成します。

1. 次のコマンドを入力して、namespace netobserv-privileged で実行している Pod のステータ
スを確認します。

出力例

NAME READY STATUS RESTARTS AGE

$ oc get flowcollector/cluster

$ oc get pods -n netobserv

$ oc get pods -n netobserv-privileged

第4章 OPENSHIFT CONTAINER PLATFORM の NETWORK OBSERVABILITY OPERATOR

25

netobserv-ebpf-agent-4lpp6 1/1 Running 0 151m
netobserv-ebpf-agent-6gbrk 1/1 Running 0 151m
netobserv-ebpf-agent-klpl9 1/1 Running 0 151m
netobserv-ebpf-agent-vrcnf 1/1 Running 0 151m
netobserv-ebpf-agent-xf5jh 1/1 Running 0 151m

netobserv-ebpf-agent Pod は、ノードのネットワークインターフェイスを監視してフローを取得し、
それを flowlogs-pipeline Pod に送信します。

1. Loki Operator を使用している場合は、次のコマンドを実行して、openshift-operators-redhat
namespace で実行している Pod のステータスを確認します。

出力例

NAME READY STATUS RESTARTS AGE
loki-operator-controller-manager-5f6cff4f9d-jq25h 2/2 Running 0 18h
lokistack-compactor-0 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-qhkhv 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-skxgm 1/1 Running 0 18h
lokistack-gateway-796dc6ff7-c54gz 2/2 Running 0 18h
lokistack-index-gateway-0 1/1 Running 0 18h
lokistack-index-gateway-1 1/1 Running 0 18h
lokistack-ingester-0 1/1 Running 0 18h
lokistack-ingester-1 1/1 Running 0 18h
lokistack-ingester-2 1/1 Running 0 18h
lokistack-querier-66747dc666-6vh5x 1/1 Running 0 18h
lokistack-querier-66747dc666-cjr45 1/1 Running 0 18h
lokistack-querier-66747dc666-xh8rq 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-b2xfb 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-jm94f 1/1 Running 0 18h

4.2. NETWORK OBSERVABLITY OPERATOR のアーキテクチャー

Network Observability Operator は、FlowCollector API を提供します。これは、インストール時にイン
スタンス化され、eBPF agent、flowlogs-pipeline、netobserv-plugin コンポーネントを調整するよう
に設定されています。FlowCollector は、クラスターごとに 1 つだけサポートされます。

eBPF agent は、各クラスター上で実行され、ネットワークフローを収集するためのいくつかの権限を
持っています。flowlogs-pipeline はネットワークフローデータを受信し、データに Kubernetes 識別子
を追加します。Loki を使用している場合、flowlogs-pipeline はフローログデータを Loki に送信して、
保存およびインデックス化を行います。netobserv-plugin は、動的 OpenShift Container Platform
Web コンソールプラグインであり、Loki にクエリーを実行してネットワークフローデータを取得しま
す。クラスター管理者は、Web コンソールでデータを表示できます。

$ oc get pods -n openshift-operators-redhat

OpenShift Container Platform 4.11 ネットワーク可観測性

26

次の図に示すように、Kafka オプションを使用している場合、eBPF agent はネットワークフローデー
タを Kafka に送信し、flowlogs-pipeline は Loki に送信する前に Kafka トピックから読み取ります。

4.3. NETWORK OBSERVABILITY OPERATOR のステータスと設定の表示

oc describe コマンドを使用して、ステータスを検査し、flowcollector の詳細を表示できます。

第4章 OPENSHIFT CONTAINER PLATFORM の NETWORK OBSERVABILITY OPERATOR

27

手順

1. 次のコマンドを実行して、Network Observability Operator のステータスと設定を表示します。

$ oc describe flowcollector/cluster

OpenShift Container Platform 4.11 ネットワーク可観測性

28

第5章 NETWORK OBSERVABILITY OPERATOR の設定
Flow Collector API リソースを更新して、Network Observability Operator とそのマネージドコンポーネ
ントを設定できます。Flow Collector は、インストール中に明示的に作成されます。このリソースはク
ラスター全体で動作するため、単一の FlowCollector のみが許可され、cluster という名前を付ける必
要があります。

5.1. FLOWCOLLECTOR リソースを表示する

OpenShift Container Platform Web コンソールで YAML を直接表示および編集できます。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。そこで、FlowCollector リソースを変更して
Network Observability Operator を設定できます。

以下の例は、OpenShift Container Platform Network Observability Operator のサンプル FlowCollector
リソースを示しています。

FlowCollector リソースのサンプル

apiVersion: flows.netobserv.io/v1beta1
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: DIRECT
 agent:
 type: EBPF 1
 ebpf:
 sampling: 50 2
 logLevel: info
 privileged: false
 resources:
 requests:
 memory: 50Mi
 cpu: 100m
 limits:
 memory: 800Mi
 processor:
 logLevel: info
 resources:
 requests:
 memory: 100Mi
 cpu: 100m
 limits:
 memory: 800Mi
 conversationEndTimeout: 10s
 logTypes: FLOWS 3

第5章 NETWORK OBSERVABILITY OPERATOR の設定

29

1

2

3

エージェント仕様 spec.agent.type は EBPF でなければなりません。eBPF は、OpenShift
Container Platform でサポートされる唯一のオプションです。

サンプリング仕様 spec.agent.ebpf.sampling を設定して、リソースを管理できます。サンプリン
グ値が低いと、大量の計算、メモリー、およびストレージリソースが消費される可能性がありま
す。これは、サンプリング比の値を指定することで軽減できます。値 100 は、100 ごとに 1 つのフ
ローがサンプリングされることを意味します。0 または 1 の値は、すべてのフローがキャプチャー
されることを意味します。値が低いほど、返されるフローが増加し、派生メトリクスの精度が向上
します。デフォルトでは、eBPF サンプリングは値 50 に設定されているため、50 ごとに 1 つのフ
ローがサンプリングされます。より多くのサンプルフローは、より多くのストレージが必要になる
ことにも注意してください。デフォルト値から始めて経験的に調整し、クラスターが管理できる設
定を決定することを推奨します。

オプションの仕様
spec.processor.logTypes、spec.processor.conversationHeartbeatInterval、および
spec.processor.conversationEndTimeout を設定して、会話追跡を有効にすることができます。
有効にすると、Web コンソールで会話イベントをクエリーできるようになりま
す。spec.processor.logTypes の値は次のとおりです: FLOWS

 conversationHeartbeatInterval: 30s
 loki: 4
 url: 'https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network'
 statusUrl: 'https://loki-query-frontend-http.netobserv.svc:3100/'
 authToken: FORWARD
 tls:
 enable: true
 caCert:
 type: configmap
 name: loki-gateway-ca-bundle
 certFile: service-ca.crt
 namespace: loki-namespace # 5
 consolePlugin:
 register: true
 logLevel: info
 portNaming:
 enable: true
 portNames:
 "3100": loki
 quickFilters: 6
 - name: Applications
 filter:
 src_namespace!: 'openshift-,netobserv'
 dst_namespace!: 'openshift-,netobserv'
 default: true
 - name: Infrastructure
 filter:
 src_namespace: 'openshift-,netobserv'
 dst_namespace: 'openshift-,netobserv'
 - name: Pods network
 filter:
 src_kind: 'Pod'
 dst_kind: 'Pod'
 default: true
 - name: Services network
 filter:
 dst_kind: 'Service'

OpenShift Container Platform 4.11 ネットワーク可観測性

30

4

5

6

CONVERSATIONS、ENDED_CONVERSATIONS、または ALL。ストレージ要件は ALL で最も
高く、ENDED_CONVERSATIONS で最も低くなります。

Loki 仕様である spec.loki は、Loki クライアントを指定します。デフォルト値は、Loki Operator
のインストールセクションに記載されている Loki インストールパスと一致します。Loki の別のイ
ンストール方法を使用した場合は、インストールに適切なクライアント情報を指定します。

元の証明書は Network Observability インスタンスの namespace にコピーされ、更新が監視されま
す。指定しない場合、namespace はデフォルトで "spec.namespace" と同じになります。Loki を
別の namespace にインストールすることを選択した場合は、spec.loki.tls.caCert.namespace
フィールドにその namespace を指定する必要があります。同様に、Kafka を別の namespace に
インストールした場合は、spec.exporters.kafka.tls.caCert.namespace フィールドを指定できま
す。

spec.quickFilters 仕様は、Web コンソールに表示されるフィルターを定義します。Application
フィルターキー、src_namespace および dst_namespace は否定 (!) されているた
め、Application フィルターは、openshift- または netobserv namespace から発信されて いな
い、または宛先がないすべてのトラフィックを表示します。詳細は、以下のクイックフィルターの
設定を参照してください。

関連情報

会話追跡の詳細は、Working with conversations を参照してください。

5.2. KAFKA を使用した FLOW COLLECTOR リソースの設定

Kafka を高スループットかつ低遅延のデータフィードのために使用するように、FlowCollector リソー
スを設定できます。Kafka インスタンスを実行する必要があり、そのインスタンスで OpenShift
Container Platform Network Observability 専用の Kafka トピックを作成する必要があります。詳細
は、AMQ Streams を使用した Kafka ドキュメント を参照してください。

前提条件

Kafka がインストールされている。Red Hat は、AMQ Streams Operator を使用する Kafka を
サポートします。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. Network Observability Operator の Provided APIs という見出しの下で、Flow Collector を選
択します。

3. クラスターを選択し、YAML タブをクリックします。

4. 次のサンプル YAML に示すように、Kafka を使用するように OpenShift Container Platform
Network Observability Operator の FlowCollector リソースを変更します。

FlowCollector リソースの Kafka 設定のサンプル

apiVersion: flows.netobserv.io/v1beta1
kind: FlowCollector
metadata:
 name: cluster

第5章 NETWORK OBSERVABILITY OPERATOR の設定

31

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-working-with-conversations_nw-observe-network-traffic
https://access.redhat.com/documentation/ja-jp/red_hat_amq/7.7/html/using_amq_streams_on_openshift/using-the-topic-operator-str

1

2

3

4

Kafka デプロイメントモデルを有効にするには、spec.deploymentModel を DIRECT ではなく
KAFKA に設定します。

spec.kafka.address は、Kafka ブートストラップサーバーのアドレスを参照します。ポート 9093
で TLS を使用するため、kafka-cluster-kafka-bootstrap.netobserv:9093 など、必要に応じて
ポートを指定できます。

spec.kafka.topic は、Kafka で作成されたトピックの名前と一致する必要があります。

spec.kafka.tls を使用して、Kafka との間のすべての通信を TLS または mTLS で暗号化できま
す。有効にした場合、Kafka CA 証明書は、flowlogs-pipeline プロセッサーコンポーネントがデプ
ロイされている namespace (デフォルト: netobserv) と eBPF エージェントがデプロイされている
namespace (デフォルト: netobserv-privileged) の両方で ConfigMap または Secret として使用で
きる必要があります。spec.kafka.tls.caCert で参照する必要があります。mTLS を使用する場
合、クライアントシークレットはこれらの namespace でも利用でき (たとえば、AMQ Streams
User Operator を使用して生成できます)、spec.kafka.tls.userCert で参照される必要がありま
す。

5.3. 強化されたネットワークフローデータをエクスポートする

ネットワークフローを Kafka、IPFIX、またはその両方に同時に送信できます。Splunk、Elasticsearch、
Fluentd などをはじめとする、Kafka または IPFIX 入力をサポートするプロセッサーまたはストレージ
は、補完されたネットワークフローデータを使用できます。

前提条件

ネットワーク可観測性の flowlogs-pipeline Pod から Kafka または IPFIX コレクターエンドポ
イントを使用できる。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. FlowCollector を編集して、spec.exporters を次のように設定します。

spec:
 deploymentModel: KAFKA 1
 kafka:
 address: "kafka-cluster-kafka-bootstrap.netobserv" 2
 topic: network-flows 3
 tls:
 enable: false 4

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 exporters:
 - type: KAFKA 1

OpenShift Container Platform 4.11 ネットワーク可観測性

32

2

3

1 4

5

Network Observability Operator は、すべてのフローを設定された Kafka トピックにエク
スポートします。

Kafka との間のすべての通信を SSL/TLS または mTLS で暗号化できます。有効にした場
合、Kafka CA 証明書は、flowlogs-pipeline プロセッサーコンポーネントがデプロイされ
ている namespace (デフォルト: netobserv) で、ConfigMap または Secret として使用でき
る必要があります。これは spec.exporters.tls.caCert で参照する必要があります。mTLS
を使用する場合、クライアントシークレットはこれらの namespace でも利用可能であり
(たとえば、AMQ Streams User Operator を使用して生成できま
す)、spec.exporters.tls.userCert で参照される必要があります。

Kafka にフローをエクスポートする代わりに、またはそれを併せて、フローを IPFIX にエ
クスポートできます。

オプションでトランスポートを指定できます。デフォルト値は tcp ですが、udp を指定す
ることもできます。

5. 設定後、ネットワークフローデータを JSON 形式で利用可能な出力に送信できます。詳細
は、ネットワークフロー形式のリファレンス を参照してください。

関連情報

フロー形式の指定の詳細は、ネットワークフロー形式リファレンス を参照してください。

5.4. FLOW COLLECTOR リソースの更新

OpenShift Container Platform Web コンソールで YAML を編集する代わりに、flowcollector カスタム
リソース (CR) にパッチを適用することで、eBPF サンプリングなどの仕様を設定できます。

手順

1. 次のコマンドを実行して、flowcollector CR にパッチを適用し、spec.agent.ebpf.sampling 値
を更新します。

5.5. クイックフィルターの設定

FlowCollector リソースでフィルターを変更できます。値を二重引用符で囲むと、完全一致が可能にな
ります。それ以外の場合、テキスト値には部分一致が使用されます。キーの最後にあるバング (!) 文字
は、否定を意味します。YAML の変更に関する詳細なコンテキストは、サンプルの FlowCollector リ

 kafka:
 address: "kafka-cluster-kafka-bootstrap.netobserv"
 topic: netobserv-flows-export 2
 tls:
 enable: false 3
 - type: IPFIX 4
 ipfix:
 targetHost: "ipfix-collector.ipfix.svc.cluster.local"
 targetPort: 4739
 transport: tcp or udp 5

$ oc patch flowcollector cluster --type=json -p "[{"op": "replace", "path":
"/spec/agent/ebpf/sampling", "value": <new value>}] -n netobserv"

第5章 NETWORK OBSERVABILITY OPERATOR の設定

33

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-flows-format_json_reference

ソースを参照してください。

注記

フィルターマッチングタイプ "all of" または "any of" は、ユーザーがクエリーオプション
から変更できる UI 設定です。これは、このリソース設定の一部ではありません。

使用可能なすべてのフィルターキーのリストを次に示します。

表5.1 フィルターキー

Unive
rsal*

ソース 送信先 説明

names
pace

src_n
ames
pace

dst_n
ames
pace

特定の namespace に関連するトラフィックをフィルタリングします。

name src_n
ame

dst_n
ame

特定の Pod、サービス、またはノード (ホストネットワークトラフィックの場
合) など、特定のリーフリソース名に関連するトラフィックをフィルター処理
します。

kind src_k
ind

dst_k
ind

特定のリソースの種類に関連するトラフィックをフィルタリングします。リ
ソースの種類には、リーフリソース (Pod、Service、または Node)、または所
有者リソース (Deployment および StatefulSet) が含まれます。

owner
_name

src_o
wner
_nam
e

dst_o
wner
_nam
e

特定のリソース所有者に関連するトラフィックをフィルタリングします。つま
り、ワークロードまたは Pod のセットです。たとえば、Deployment 名、
StatefulSet 名などです。

resour
ce

src_r
esou
rce

dst_r
esou
rce

一意に識別する正規名で示される特定のリソースに関連するトラフィックを
フィルタリングします。正規の表記法は、namespace の種類の場合は
kind.namespace.name、ノードの場合は node.name です。たとえ
ば、Deployment.my-namespace.my-web-server です。

addre
ss

src_a
ddre
ss

dst_a
ddre
ss

IP アドレスに関連するトラフィックをフィルタリングします。IPv4 と IPv6 が
サポートされています。CIDR 範囲もサポートされています。

mac src_
mac

dst_
mac

MAC アドレスに関連するトラフィックをフィルタリングします。

port src_p
ort

dst_p
ort

特定のポートに関連するトラフィックをフィルタリングします。

host_a
ddres
s

src_h
ost_a
ddre
ss

dst_h
ost_a
ddre
ss

Pod が実行しているホスト IP アドレスに関連するトラフィックをフィルタリン
グします。

OpenShift Container Platform 4.11 ネットワーク可観測性

34

1

proto
col

該当
なし

該当
なし

TCP や UDP などのプロトコルに関連するトラフィックをフィルタリングしま
す。

Unive
rsal*

ソース 送信先 説明

ソースまたは宛先のいずれかのユニバーサルキーフィルター。たとえば、フィルタリング
name: 'my-pod' は、使用される一致タイプ (Match all または Match any) に関係なく、my-
pod からのすべてのトラフィックと my-pod へのすべてのトラフィックを意味します。

5.6. SR-IOV インターフェイストラフィックの監視の設定

Single Root I/O Virtualization (SR-IOV) デバイスを使用してクラスターからトラフィックを収集するに
は、FlowCollector spec.agent.ebpf.privileged フィールドを true に設定する必要があります。次に、
eBPF agent は、デフォルトで監視されるホストネットワーク namespace に加え、他のネットワーク
namespace も監視します。仮想機能 (VF) インターフェイスを持つ Pod が作成されると、新しいネット
ワーク namespace が作成されます。SRIOVNetwork ポリシーの IPAM 設定を指定すると、VF イン
ターフェイスがホストネットワーク namespace から Pod ネットワーク namespace に移行されます。

前提条件

SR-IOV デバイスを使用して OpenShift Container Platform クラスターにアクセスできる。

SRIOVNetwork カスタムリソース (CR) の spec.ipam 設定は、インターフェイスのリストにあ
る範囲または他のプラグインからの IP アドレスを使用して設定する必要があります。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. FlowCollector カスタムリソースを設定します。設定例は次のとおりです。

SR-IOV モニタリング用に FlowCollector を設定する

SR-IOV モニタリングを有効にするには、spec.agent.ebpf.privileged フィールドの値を
true に設定する必要があります。

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: DIRECT
 agent:
 type: EBPF
 ebpf:
 privileged: true 1

第5章 NETWORK OBSERVABILITY OPERATOR の設定

35

関連情報

SriovNetwork カスタムリソースの作成の詳細は、CNI VRF プラグインを使用した追加 SR-IOV ネット
ワーク割り当ての作成 を参照してください。

5.7. リソース管理およびパフォーマンスに関する考慮事項

ネットワーク監視に必要なリソースの量は、クラスターのサイズと、クラスターが可観測データを取り
込んで保存するための要件によって異なります。リソースを管理し、クラスターのパフォーマンス基準
を設定するには、次の設定を設定することを検討してください。これらの設定を設定すると、最適な
セットアップと可観測性のニーズを満たす可能性があります。

次の設定は、最初からリソースとパフォーマンスを管理するのに役立ちます。

eBPF サンプリング

サンプリング仕様 spec.agent.ebpf.sampling を設定して、リソースを管理できます。サンプリング
値が低いと、大量の計算、メモリー、およびストレージリソースが消費される可能性があります。
これは、サンプリング比の値を指定することで軽減できます。値 100 は、100 ごとに 1 つのフロー
がサンプリングされることを意味します。0 または 1 の値は、すべてのフローがキャプチャーされ
ることを意味します。値が小さいほど、返されるフローが増加し、派生メトリクスの精度が向上し
ます。デフォルトでは、eBPF サンプリングは値 50 に設定されているため、50 ごとに 1 つのフロー
がサンプリングされます。より多くのサンプルフローは、より多くのストレージが必要になること
にも注意してください。クラスターがどの設定を管理できるかを判断するには、デフォルト値から
始めて実験的に調整することを検討してください。

インターフェイスの制限または除外

spec.agent.ebpf.interfaces および spec.agent.ebpf.excludeInterfaces の値を設定して、観測され
るトラフィック全体を削減します。デフォルトでは、エージェントは、excludeInterfaces および
lo (ローカルインターフェイス) にリストされているインターフェイスを除く、システム内のすべて
のインターフェイスを取得します。インターフェイス名は、使用される Container Network
Interface (CNI) によって異なる場合があることに注意してください。

Network Observability をしばらく実行した後、次の設定を使用してパフォーマンスを微調整できます。

リソース要件および制限

spec.agent.ebpf.resources および spec.processor.resources 仕様を使用して、リソース要件と
制限をクラスターで予想される負荷とメモリー使用量に適応させます。多くの中規模のクラスター
には、デフォルトの制限の 800MB で十分な場合があります。

キャッシュの最大フロータイムアウト

eBPF エージェントの spec.agent.ebpf.cacheMaxFlows および
spec.agent.ebpf.cacheActiveTimeout 仕様を使用して、エージェントによってフローが報告され
る頻度を制御します。値が大きいほど、エージェントで生成されるトラフィックが少なくなり、こ
れは CPU 負荷の低下と相関します。ただし、値を大きくするとメモリー消費量がわずかに増加し、
フロー収集でより多くの遅延が発生する可能性があります。

5.7.1. リソースの留意事項

次の表は、特定のワークロードサイズのクラスターのリソースに関する考慮事項の例を示しています。

重要

表に概要を示した例は、特定のワークロードに合わせて調整されたシナリオを示してい
ます。各例は、ワークロードのニーズに合わせて調整を行うためのベースラインとして
のみ考慮してください。

OpenShift Container Platform 4.11 ネットワーク可観測性

36

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/networking/#cnf-creating-an-additional-sriov-network-with-vrf-plug-in_configuring-sriov-device

表5.2 リソースの推奨事項

 極小規模 (10 ノー
ド)

小規模 (25 ノード) 中規模 (65 ノード)
[2]

大規模 (120 ノー
ド) [2]

ワーカーノードの
vCPU とメモリー

4 vCPU| 16GiB

mem [1]

16 vCPU| 64GiB

mem [1]

16 vCPU| 64GiB

mem [1]

16 vCPU| 64GiB

Mem [1]

LokiStack サイズ 1x.extra-small 1x.small 1x.small 1x.medium

ネットワーク可観
測性コントロー
ラーのメモリー制
限

400Mi (デフォル
ト)

400Mi (デフォル
ト)

400Mi (デフォル
ト)

800 Mi

eBPF サンプリン
グレート

50 (デフォルト) 50 (デフォルト) 50 (デフォルト) 50 (デフォルト)

eBPF メモリー制
限

800Mi (デフォル
ト)

800Mi (デフォル
ト)

2000Mi 800Mi (デフォル
ト)

FLP メモリー制限 800Mi (デフォル
ト)

800Mi (デフォル
ト)

800Mi (デフォル
ト)

800Mi (デフォル
ト)

FLP Kafka パー
ティション

該当なし 48 48 48

Kafka コンシュー
マーレプリカ

該当なし 24 24 24

Kafka ブローカー 該当なし 3 (デフォルト) 3 (デフォルト) 3 (デフォルト)

1. AWS M6i インスタンスでテスト済み。

2. このワーカーとそのコントローラーに加えて、3 つのインフラノード (サイズ M6i.12xlarge) と
1 つのワークロードノード (サイズ M6i.8xlarge) がテストされました。

第5章 NETWORK OBSERVABILITY OPERATOR の設定

37

第6章 ネットワークポリシー
admin ロールを持つユーザーとして、netobserv namespace のネットワークポリシーを作成できま
す。

6.1. ネットワーク可観測性のためのネットワークポリシーの作成

netobserv namespace への ingress トラフィックを保護するために、ネットワークポリシーを作成する
必要がある場合があります。Web コンソールでは、フォームビューを使用してネットワークポリシーを
作成できます。

手順

1. Networking → NetworkPolicies に移動します。

2. Project ドロップダウンメニューから netobserv プロジェクトを選択します。

3. ポリシーに名前を付けます。この例では、ポリシー名は allowed-ingress です。

4. Add ingress rule を 3 回クリックして、3 つのイングレスルールを作成します。

5. フォームで以下を指定します。

a. 最初の Ingress rule に対して以下の仕様を作成します。

i. Add allowed source ドロップダウンメニューから、Allow pods from the same
namespace を選択します。

b. 2 番目の Ingress rule に対して次の仕様を作成します。

i. Add allowed source ドロップダウンメニューから、Allow pods from inside the
cluster を選択します。

ii. + Add namespace selector をクリックします。

iii. ラベル kubernetes.io/metadata.name とセレクター openshift-console を追加しま
す。

c. 3 番目の Ingress rule に対して次の仕様を作成します。

i. Add allowed source ドロップダウンメニューから、Allow pods from inside the
cluster を選択します。

ii. + Add namespace selector をクリックします。

iii. ラベル kubernetes.io/metadata.name とセレクター openshift-monitoring を追加し
ます。

検証

1. Observe → Network Traffic に移動します。

2. Traffic Flows タブまたは任意のタブを表示して、データが表示されていることを確認します。

3. Observe → Dashboards に移動します。NetObserv/Health の選択で、フローが取り込まれて
Loki に送信されていることを確認します (最初のグラフに示されています)。

OpenShift Container Platform 4.11 ネットワーク可観測性

38

1

2

3

6.2. ネットワークポリシーの例

以下は、netobserv namespace の NetworkPolicy オブジェクトの例にアノテーションを付けていま
す。

サンプルネットワークポリシー

ポリシーが適用される Pod を説明するセレクター。ポリシーオブジェクトは NetworkPolicy オブ
ジェクトが定義されるプロジェクトの Pod のみを選択できます。このドキュメントでは、
Netobservability Operator がインストールされているプロジェクト、つまり netobserv プロジェ
クトになります。

ポリシーオブジェクトが入力トラフィックを許可する Pod に一致するセレクター。デフォルトで
は、セレクターは NetworkPolicy と同じ namespace の Pod と一致します。

namespaceSelector が指定されている場合、セレクターは指定された namespace 内の Pod と一
致します。

関連情報

CLI を使用したネットワークポリシーの作成

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-ingress
 namespace: netobserv
spec:
 podSelector: {} 1
 ingress:
 - from:
 - podSelector: {} 2
 namespaceSelector: 3
 matchLabels:
 kubernetes.io/metadata.name: openshift-console
 - podSelector: {}
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: openshift-monitoring
 policyTypes:
 - Ingress
status: {}

第6章 ネットワークポリシー

39

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/networking/#nw-networkpolicy-object_creating-network-policy

第7章 ネットワークトラフィックの監視
管理者は、OpenShift Container Platform コンソールでネットワークトラフィックを観察して、詳細な
トラブルシューティングと分析を行うことができます。この機能は、トラフィックフローのさまざまな
グラフィカル表現から洞察を得るのに役立ちます。ネットワークトラフィックを観察するために使用で
きるビューがいくつかあります。

7.1. 概要ビューからのネットワークトラフィックの監視

Overview ビューには、クラスター上のネットワークトラフィックフローの集約された全体的なメトリ
クスが表示されます。管理者は、使用可能な表示オプションを使用して統計を監視できます。

7.1.1. 概要ビューの操作

管理者は、Overview ビューに移動して、フローレートの統計をグラフィカルに表示できます。

手順

1. Observe → Network Traffic に移動します。

2. ネットワークトラフィック ページで、Overview タブをクリックします。

メニューアイコンをクリックすると、各流量データの範囲を設定できます。

7.1.2. 概要ビューの詳細オプションの設定

詳細オプションを使用して、グラフィカルビューをカスタマイズできます。詳細オプションにアクセス
するには、Show advanced options をクリックします。Display options ドロップダウンメニューを使
用して、グラフの詳細を設定できます。利用可能なオプションは次のとおりです。

Metric type: Bytes または Packets 単位で表示されるメトリクス。デフォルト値は Bytes で
す。

Scope: ネットワークトラフィックが流れるコンポーネントの詳細を選択します。スコープを
Node、Namespace、Owner、または Resource に設定できます。Owner はリソースの集合体
です。Resource は、ホストネットワークトラフィックの場合は Pod、サービス、ノード、ま
たは不明な IP アドレスです。デフォルト値は Namespace です。

Truncate labels: ドロップダウンリストから必要なラベルの幅を選択します。デフォルト値は
M です。

7.1.2.1. パネルの管理

必要な統計を選択して表示し、並べ替えることができます。列を管理するには、Manage panels をク
リックします。

7.1.2.2. DNS 追跡

Overview ビューで、ネットワークフローの Domain Name System (DNS) 追跡のグラフィカル表示を設
定できます。拡張 Berkeley Packet Filter (eBPF) トレースポイントフックを使用する DNS 追跡は、さ
まざまな目的に使用できます。

ネットワーク監視: DNS クエリーと応答に関する知見を得ることで、ネットワーク管理者は異
常パターン、潜在的なボトルネック、またはパフォーマンスの問題を特定できます。

セキュリティー分析: マルウェアによって使用されるドメイン名生成アルゴリズム (DGA) など

OpenShift Container Platform 4.11 ネットワーク可観測性

40

セキュリティー分析: マルウェアによって使用されるドメイン名生成アルゴリズム (DGA) など
の不審な DNS アクティビティーを検出したり、セキュリティーを侵害する可能性のある不正な
DNS 解決を特定したりします。

トラブルシューティング: DNS 解決手順を追跡し、遅延を追跡し、設定ミスを特定することに
より、DNS 関連の問題をデバッグします。

DNS 追跡が有効になっている場合、Overview のグラフに次のメトリクスが表示されます。このビュー
の有効化と使用の詳細は、このセクションの 関連情報 を参照してください。

上位 5 つの平均 DNS 遅延

上位 5 つの DNS レスポンスコード

上位 5 つの DNS レスポンスコードの累積と合計

この機能は、IPv4 および IPv6 UDP プロトコルでサポートされています。

関連情報

FlowCollector での DNS の設定の詳細は、DNS 追跡の使用 を参照してください。

7.2. トラフィックフロービューからのネットワークトラフィックの観察

Traffic flows ビューには、ネットワークフローのデータとトラフィックの量がテーブルに表示されま
す。管理者は、トラフィックフローテーブルを使用して、アプリケーション全体のトラフィック量を監
視できます。

7.2.1. トラフィックフロービューの操作

管理者は、Traffic flows テーブルに移動して、ネットワークフロー情報を確認できます。

手順

1. Observe → Network Traffic に移動します。

2. Network Traffic ページで、Traffic flows タブをクリックします。

各行をクリックして、対応するフロー情報を取得できます。

7.2.2. トラフィックフロービューの詳細オプションの設定

Show advanced options を使用して、ビューをカスタマイズおよびエクスポートできます。Display
options ドロップダウンメニューを使用して、行サイズを設定できます。デフォルト値は Normal で
す。

7.2.2.1. 列の管理

表示する必要のある列を選択し、並べ替えることができます。列を管理するには、Manage columns を
クリックします。

7.2.2.2. トラフィックフローデータのエクスポート

Traffic flows ビューからデータをエクスポートできます。

第7章 ネットワークトラフィックの監視

41

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-dns-tracking_nw-observe-network-traffic

手順

1. Export data をクリックします。

2. ポップアップウィンドウで、Export all data チェックボックスを選択してすべてのデータをエ
クスポートし、チェックボックスをオフにしてエクスポートする必要のあるフィールドを選択
できます。

3. Export をクリックします。

7.2.3. 会話追跡の使用

管理者は、同じ会話の一部であるネットワークフローをグループ化できます。会話は、IP アドレス、
ポート、プロトコルによって識別されるピアのグループとして定義され、その結果、一意の
Conversation ID が得られます。Web コンソールで対話イベントをクエリーできます。これらのイベン
トは、Web コンソールでは次のように表示されます。

Conversation start: このイベントは、接続が開始されているか、TCP フラグがインターセプト
されたときに発生します。

会話ティック: このイベントは、接続がアクティブである間、FlowCollector
spec.processor.conversationHeartbeatInterval パラメーターで定義された指定された間隔ご
とに発生します。

Conversation end: このイベントは、FlowCollector
spec.processor.conversationEndTimeout パラメーターに達するか、TCP フラグがインター
セプトされたときに発生します。

Flow: これは、指定された間隔内に発生するネットワークトラフィックフローです。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. spec.processor.logTypes、conversationEndTimeout、および
conversationHeartbeatInterval パラメーターが観察のニーズに応じて設定されるよう
に、FlowCollector カスタムリソースを設定します。設定例は次のとおりです。

会話追跡用に FlowCollector を設定する

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 processor:
 conversationEndTimeout: 10s 1
 logTypes: FLOWS 2
 conversationHeartbeatInterval: 30s 3

OpenShift Container Platform 4.11 ネットワーク可観測性

42

1

2

3

Conversation end イベントは、conversationEndTimeout に達するか、TCP フラグがイ
ンターセプトされた時点を表します。

logTypes が FLOWS に設定されている場合、フロー イベントのみがエクスポートされま
す。値を ALL に設定すると、会話イベントとフローイベントの両方がエクスポートさ
れ、Network Traffic ページに表示されます。会話イベントのみに焦点を当てるに
は、Conversation start、Conversation tick、および Conversation end イベントをエク
スポートする CONVERSATIONS を指定できます。または ENDED_CONVERSATIONS
は Conversation end イベントのみをエクスポートします。ストレージ要件は ALL で最も
高く、ENDED_CONVERSATIONS で最も低くなります。

Conversation tick イベントは、ネットワーク接続がアクティブである間
の、FlowCollector の conversationHeartbeatInterval パラメーターで定義された各指定
間隔を表します。

注記

logType オプションを更新しても、以前の選択によるフローはコンソールプラグ
インから消去されません。たとえば、最初に午前 10 時までの期間 logType を
CONVERSATIONS に設定し、その後 ENDED_CONVERSATIONS に移動する
と、コンソールプラグインは午前 10 時までのすべての会話イベントを表示し、
午前 10 時以降に終了した会話のみを表示します。

5. Traffic flows タブの Network Traffic ページを更新します。Event/Type と Conversation Id
という 2 つの新しい列があることに注意してください。クエリーオプションとして Flow が選
択されている場合、すべての Event/Type フィールドは Flow になります。

6. Query Options を選択し、Log Type として Conversation を選択します。Event/Type は、必
要なすべての会話イベントを表示するようになりました。

7. 次に、特定の会話 ID でフィルタリングするか、サイドパネルから Conversation と Flow ログ
タイプのオプションを切り替えることができます。

7.2.4. DNS 追跡の使用

DNS 追跡を使用すると、ネットワークの監視、セキュリティー分析の実施、DNS 問題のトラブル
シューティングを実行できます。次に示す YAML の例の仕様に合わせて FlowCollector を編集するこ
とで、DNS を追跡できます。

重要

この機能を有効にすると、eBPF agent で CPU とメモリーの使用量の増加が観察されま
す。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. FlowCollector カスタムリソースを設定します。設定例は次のとおりです。

第7章 ネットワークトラフィックの監視

43

1

2

DNS 追跡用に FlowCollector を設定する

spec.agent.ebpf.features パラメーターリストを設定すると、Web コンソールで各ネット
ワークフローの DNS 追跡を有効にできます。

DNS 追跡を有効にする場合は、spec.agent.ebpf.privileged の仕様値が true である必要
があります。

5. Network Traffic ページを更新すると、Overview ビューと Traffic Flow ビューで表示する新し
い DNS 表示と適用可能な新しいフィルターが表示されます。

a. Manage panels で新しい DNS の選択肢を選択すると、Overview にグラフィカルな表現と
DNS メトリクスが表示されます。

b. Manage columns で新しい選択肢を選択すると、DNS 列が Traffic Flows ビューに追加さ
れます。

c. DNS Id、DNS Latency、DNS Response Code などの特定の DNS メトリクスでフィルタ
リングして、サイドパネルで詳細情報を確認できます。

7.2.4.1. ヒストグラムの使用

Show histogram をクリックすると、フローの履歴を棒グラフとして視覚化するためのツールバー
ビューが表示されます。ヒストグラムは、時間の経過に伴うログの数を示します。ヒストグラムの一部
を選択して、ツールバーに続く表でネットワークフローデータをフィルタリングできます。

7.3. トポロジービューからのネットワークトラフィックの観察

Topology ビューには、ネットワークフローとトラフィック量がグラフィカルに表示されます。管理者
は、Topology ビューを使用して、アプリケーション全体のトラフィックデータを監視できます。

7.3.1. トポロジービューの操作

管理者は、Topology ビューに移動して、コンポーネントの詳細とメトリクスを確認できます。

手順

1. Observe → Network Traffic に移動します。

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: DIRECT
 agent:
 type: EBPF
 ebpf:
 features:
 - DNSTracking 1
 privileged: true 2

OpenShift Container Platform 4.11 ネットワーク可観測性

44

2. Network Traffic ページで、Topology タブをクリックします。

Topology 内の各コンポーネントをクリックして、コンポーネントの詳細とメトリクスを表示できま
す。

7.3.2. トポロジービューの詳細オプションの設定

Show advanced options を使用して、ビューをカスタマイズおよびエクスポートできます。詳細オプ
ションビューには、次の機能があります。

Find in view で必要なコンポーネントを検索します。

Display options: 次のオプションを設定するには:

Layout: グラフィック表示のレイアウトを選択します。デフォルト値は ColaNoForce で
す。

スコープ: ネットワークトラフィックが流れるコンポーネントのスコープを選択します。デ
フォルト値は Namespace です。

Groups: コンポーネントをグループ化することにより、所有権の理解を深めます。デフォ
ルト値は None です。

グループを Collapse groups をデプロイメントまたは折りたたむ。グループはデフォルト
でデプロイメントされています。Groups の値が None の場合、このオプションは無効にな
ります。

表示: 表示する必要がある詳細を選択します。デフォルトでは、すべてのオプションが
チェックされています。使用可能なオプションは、Edges、Edges label、および Badges
です。

Truncate labels: ドロップダウンリストから必要なラベルの幅を選択します。デフォルト値
は M です。

7.3.2.1. トポロジービューのエクスポート

ビューをエクスポートするには、トポロジービューのエクスポート をクリックします。ビューは PNG
形式でダウンロードされます。

7.4. ネットワークトラフィックのフィルタリング

デフォルトでは、ネットワークトラフィックページには、FlowCollector インスタンスで設定されたデ
フォルトフィルターに基づいて、クラスター内のトラフィックフローデータが表示されます。フィル
ターオプションを使用して、プリセットフィルターを変更することにより、必要なデータを観察できま
す。

クエリーオプション

以下に示すように、Query Options を使用して検索結果を最適化できます。

Log Type: 利用可能なオプション Conversation と Flows では、フローログ、新しい会話、
完了した会話、および長い会話の更新を含む定期的なレコードであるハートビートなどのロ
グタイプ別にフローをクエリーする機能が提供されます。会話は、同じピア間のフローの集
合体です。

Duplicated flows: フローは複数のインターフェイスや、送信元ノードと宛先ノードの両方
から報告される可能性があり、データに複数回表示されます。このクエリーオプションを選

第7章 ネットワークトラフィックの監視

45

択すると、重複したフローを表示するように選択できます。重複したフローでは、ポートを
含め送信元と宛先が同じであり、Interface フィールドと Direction フィールドを除きプロ
トコルも同じです。重複はデフォルトでは非表示になります。ドロップダウンリストの
Common セクションにある Direction フィルターを使用して、ingress トラフィックと
egress トラフィックを切り替えます。

Match filters: 高度なフィルターで選択されたさまざまなフィルターパラメーター間の関係
を決定できます。利用可能なオプションは、Match all と Match any です。Match all はす
べての値に一致する結果を提供し、Match any は入力された値のいずれかに一致する結果を
提供します。デフォルト値は Match all です。

Limit: 内部バックエンドクエリーのデータ制限。マッチングやフィルターの設定に応じて、
トラフィックフローデータの数が指定した制限内で表示されます。

クイックフィルター

クイックフィルター ドロップダウンメニューのデフォルト値は、FlowCollector 設定で定義されま
す。コンソールからオプションを変更できます。

高度なフィルター

ドロップダウンリストからフィルタリングするパラメーターを選択することで、詳細フィルター
(Common、Source、Destination) を設定できます。フローデータは選択に基づいてフィルタリン
グされます。適用されたフィルターを有効または無効にするには、フィルターオプションの下にリ
ストされている適用されたフィルターをクリックします。

 One way と Back and forth のフィルタリングを切り替えることができます。 One way フィ
ルターを使用すると、選択したフィルターに基づき Source および Destination トラフィックのみが表
示されます。Swap を使用すると、Source および Destination トラフィックの方向ビューを変更でき
ます。 Back and forth フィルターには、Source フィルターと Destination フィルターによる戻
りトラフィックが含まれます。ネットワークトラフィックの方向性があるフローは、トラフィックフ
ローテーブルの DIrection 列に、ノード間トラフィックの場合は Ingress`or `Egress として、シングル
ノード内のトラフィックの場合は `Inner` として表示されます。

Reset default をクリックして既存のフィルターを削除し、FlowCollector 設定で定義したフィルター
を適用できます。

注記

テキスト値を指定する規則を理解するには、詳細 をクリックします。

または、Namespaces、Services、Routes、Nodes、および Workloads ページの Network Traffic タ
ブでトラフィックフローデータにアクセスして、対応する集約のフィルタリングされたデータを提供し
ます。

関連情報

FlowCollector でのクイックフィルターの設定の詳細は、クイックフィルターの設定 および Flow
Collector のサンプルリソース を参照してください。

OpenShift Container Platform 4.11 ネットワーク可観測性

46

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-config-quick-filters_network_observability
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-flowcollector-view_network_observability

第8章 NETWORK OBSERVABILITY OPERATOR の監視
Web コンソールを使用して、Network Observability Operator の健全性に関連するアラートを監視でき
ます。

8.1. ヘルス情報の表示

Web コンソールの Dashboards ページから、Network Observability Operator の健全性とリソースの使
用状況に関するメトリクスにアクセスできます。ダッシュボードに転送するヘルスアラートバナーは、
アラートがトリガーされた場合に Network Traffic および Home ページに表示されます。アラートは次
の場合に生成されます。

NetObservLokiError アラートは、Loki 取り込みレート制限に達した場合など、Loki エラーが
原因で flowlogs-pipeline ワークロードがフローをドロップすると発生します。

NetObservNoFlows アラートは、一定時間フローが取り込まれない場合に発生します。

前提条件

Network Observability Operator がインストールされています。

cluster-admin ロールまたはすべてのプロジェクトの表示パーミッションを持つユーザーとし
てクラスターにアクセスできる。

手順

1. Web コンソールの Administrator パースペクティブから、Observe → Dashboards に移動しま
す。

2. Dashboards ドロップダウンメニューから、Netobserv/Health を選択します。Operator の健
全性に関するメトリクスがページに表示されます。

8.1.1. ヘルスアラートの無効化

FlowCollector リソースを編集して、ヘルスアラートをオプトアウトできます。

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. 次の YAML サンプルのように、spec.processor.metrics.disableAlerts を追加してヘルスア
ラートを無効にします。

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 processor:
 metrics:
 disableAlerts: [NetObservLokiError, NetObservNoFlows] 1

第8章 NETWORK OBSERVABILITY OPERATOR の監視

47

1 無効にするアラートの 1 つまたは両方のタイプを含むリストを指定できます。

8.2. NETOBSERV ダッシュボードの LOKI レート制限アラートの作成

Netobserv ダッシュボードメトリクスのカスタムルールを作成して、Loki のレート制限に達した場合
にアラートをトリガーできます。

以下は、アラートルール設定 YAML ファイルの例です。

関連情報

ダッシュボードに表示できるアラート作成の詳細は、ユーザー定義プロジェクトのアラート
ルールの作成 を参照してください。

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 name: loki-alerts
 namespace: openshift-operators-redhat
spec:
 groups:
 - name: LokiRateLimitAlerts
 rules:
 - alert: LokiTenantRateLimit
 annotations:
 message: |-
 {{ $labels.job }} {{ $labels.route }} is experiencing 429 errors.
 summary: "At any number of requests are responded with the rate limit error code."
 expr: sum(irate(loki_request_duration_seconds_count{status_code="429"}[1m])) by (job,
namespace, route) / sum(irate(loki_request_duration_seconds_count[1m])) by (job, namespace,
route) * 100 > 0
 for: 10s
 labels:
 severity: warning

OpenShift Container Platform 4.11 ネットワーク可観測性

48

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/monitoring/#creating-alerting-rules-for-user-defined-projects_managing-alerts

第9章 FLOWCOLLECTOR 設定パラメーター
FlowCollector は、基盤となるデプロイメントを操作および設定するネットワークフロー収集 API のス
キーマです。

9.1. FLOWCOLLECTOR API 仕様

説明

FlowCollector は、基盤となるデプロイメントを操作および設定するネットワークフロー収集 API
のスキーマです。

型

object

プロパティー 型 説明

apiVersion string APIVersion はオブジェクトのこの
表現のバージョンスキーマを定義
します。サーバーは認識されたス
キーマを最新の内部値に変換し、
認識されない値は拒否することが
あります。詳細
は、https://git.k8s.io/community
/contributors/devel/sig-
architecture/api-
conventions.md#resources を参
照してください。

kind string kind はこのオブジェクトが表す
REST リソースを表す文字列の値
です。サーバーは、クライアント
が要求を送信するエンドポイント
からこれを推測できることがあり
ます。これを更新することはでき
ません。キャメルケースを使用し
ます。詳細
は、https://git.k8s.io/community
/contributors/devel/sig-
architecture/api-
conventions.md#types-kinds を参
照してください。

metadata object 標準オブジェクトのメタデータ。
詳細
は、https://git.k8s.io/community
/contributors/devel/sig-
architecture/api-
conventions.md#metadata を参
照してください。

第9章 FLOWCOLLECTOR 設定パラメーター

49

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

spec object FlowCollector リソースの望まし
い状態を定義します。

*: このドキュメントで "サポート
対象外" または "非推奨" と記載さ
れている場合、Red Hat はその機
能を公式にサポートしていませ
ん。たとえば、コミュニティーに
よって提供され、メンテナンスに
関する正式な合意なしに受け入れ
られた可能性があります。製品の
メンテナーは、ベストエフォート
に限定してこれらの機能に対する
サポートを提供する場合がありま
す。

プロパティー 型 説明

9.1.1. .metadata

説明

標準オブジェクトのメタデータ。詳細は、https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata を参照してください。

型

object

9.1.2. .spec

説明

FlowCollector リソースの望ましい状態を定義します。

*: このドキュメントで "サポート対象外" または "非推奨" と記載されている場合、Red Hat はその機
能を公式にサポートしていません。たとえば、コミュニティーによって提供され、メンテナンスに
関する正式な合意なしに受け入れられた可能性があります。製品のメンテナーは、ベストエフォー
トに限定してこれらの機能に対するサポートを提供する場合があります。

型

object

プロパティー 型 説明

agent (エージェント) object フローを展開するためのエージェ
ント設定。

consolePlugin object consolePlugin は、利用可能な
場合、OpenShift Container
Platform コンソールプラグインに
関連する設定を定義します。

OpenShift Container Platform 4.11 ネットワーク可観測性

50

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

deploymentModel string deploymentModel は、フロー
処理に必要なデプロイメントのタ
イプを定義します。使用できる値
は次のとおりです。
- DIRECT (デフォルト): フロープ
ロセッサーがエージェントから直
接リッスンするようにします。
- KAFKA は、プロセッサーに
よって消費される前にフローを
Kafka パイプラインに送信するよ
うにします。
Kafka は、より優れたスケーラビ
リティ、回復性、および高可用性
を提供できます (詳細
は、https://www.redhat.com/en/
topics/integration/what-is-
apache-kafka を参照してくださ
い)。

exporters array exporters は、カスタム消費また
はストレージ用の追加のオプショ
ンのエクスポータを定義します。

kafka object Kafka 設定。Kafka をフローコレ
クションパイプラインの一部とし
てブローカーとして使用できま
す。spec.deploymentModel
が KAFKA の場合に利用できま
す。

loki object ロキ、フローストア、クライアン
ト設定。

namespace string Network Observability Pod がデプ
ロイされる namespace。

processor object processor は、エージェントか
らフローを受信し、それを強化
し、メトリクスを生成し、 Loki
永続化レイヤーや使用可能なエエ
クスポーターに転送するコンポー
ネントの設定を定義します。

プロパティー 型 説明

9.1.3. .spec.agent

説明

フローを展開するためのエージェント設定。

第9章 FLOWCOLLECTOR 設定パラメーター

51

https://www.redhat.com/en/topics/integration/what-is-apache-kafka

型

object

プロパティー 型 説明

ebpf object ebpf は、spec.agent.type が
EBPF に設定されている場合の
eBPF ベースのフローレポーター
に関連する設定を説明します。

ipfix object ipfix [非推奨 (*)] -
spec.agent.type が IPFIX に設
定されている場合の IPFIX ベース
のフローレポーターに関連する設
定を記述します。

type string type は、フロートレースエー
ジェントを選択します。使用可能
な値は次のとおりです。
- Network Observability eBPF
agent を使用する場合は EBPF
(デフォルト)。
- レガシー IPFIX コレクターを使
用する場合は IPFIX [非推奨 (*)]
です。
EBPF は、より優れたパフォーマ
ンスを提供し、クラスターにイン
ストールされている CNI に関係な
く動作するため、推奨されま
す。IPFIX は OVN-Kubernetes
CNI で動作します (IPFIX のエクス
ポートをサポートしている場合
は、他の CNI も動作しますが、手
動設定が必要になります)。

9.1.4. .spec.agent.ebpf

説明

ebpf は、spec.agent.type が EBPF に設定されている場合の eBPF ベースのフローレポーターに関
連する設定を説明します。

型

object

プロパティー 型 説明

OpenShift Container Platform 4.11 ネットワーク可観測性

52

cacheActiveTimeout string cacheActiveTimeout は、レ
ポーターがフローを集約して送信
するまでの最大期間で
す。cacheMaxFlows と
cacheActiveTimeout を増やす
と、ネットワークトラフィックの
オーバーヘッドと CPU 負荷を減
らすことができますが、メモリー
消費量が増え、フローコレクショ
ンのレイテンシーが増加すること
が予想されます。

cacheMaxFlows integer cacheMaxFlows は、集約内の
フローの最大数です。到達する
と、レポーターはフローを送信し
ます。cacheMaxFlows と
cacheActiveTimeout を増やす
と、ネットワークトラフィックの
オーバーヘッドと CPU 負荷を減
らすことができますが、メモリー
消費量が増え、フローコレクショ
ンのレイテンシーが増加すること
が予想されます。

debug object debug では、eBPF エージェント
の内部設定のいくつかの側面を設
定できます。このセクションは、
デバッグと、GOGC や
GOMAXPROCS 環境変数などの
きめ細かいパフォーマンスの最適
化のみを目的としています。その
値を設定するユーザーは、自己責
任で行ってください。

excludeInterfaces array (string) excludeInterfaces には、フ
ロートレースから除外するイン
ターフェイス名を含めます。/br-/
など、スラッシュで囲まれたエン
トリーは正規表現として照合され
ます。それ以外は、大文字と小文
字を区別する文字列として照合さ
れます。

プロパティー 型 説明

第9章 FLOWCOLLECTOR 設定パラメーター

53

features array (string) 有効にする追加機能のリスト。こ
れらはデフォルトですべて無効に
なっています。追加機能を有効に
すると、パフォーマンスに影響が
出る可能性があります。使用でき
る値は、次のとおりです。
- PacketDrop は、パケットド
ロップフローのロギングを有効に
します。この機能を使用する場合
はカーネルデバッグファイルシス
テムをマウントする必要があるた
め、eBPF Pod は特権付きとして
実行する必要がありま
す。spec.agent.eBPF.privileg
ed パラメーターが設定されてい
ない場合はエラーが報告されま
す。
- DNSTracking は、DNS 追跡機
能を有効にします。この機能を使
用する場合はカーネルデバッグ
ファイルシステムをマウントする
必要があるため、eBPF Pod は特
権付きとして実行する必要があり
ま
す。spec.agent.eBPF.privileg
ed パラメーターが設定されてい
ない場合、エラーが報告されま
す。
- FlowRTT [サポート対象外 (*)]:
TCP ハンドシェイク中に eBPF
agent でのフローレイテンシー
(RTT) 計算を有効にします。この
機能は、sampling を 1 に設定す
るとより適切に機能します。

imagePullPolicy string imagePullPolicy は、上で定義
したイメージの Kubernetes プル
ポリシーです。

interfaces array (string) interfaces には、フローの収集
元であるインターフェイスの名前
を含めます。空の場合、エージェ
ントは ExcludeInterfaces にリス
トされているものを除いて、シス
テム内のすべてのインターフェイ
スを取得します。/br-/ など、ス
ラッシュで囲まれたエントリーは
正規表現として照合されます。そ
れ以外は、大文字と小文字を区別
する文字列として照合されます。

プロパティー 型 説明

OpenShift Container Platform 4.11 ネットワーク可観測性

54

kafkaBatchSize integer kafkaBatchSize は、パーティ
ションに送信される前のリクエス
トの最大サイズをバイト単位で制
限します。Kafka を使用しない場
合は無視されます。デフォルト:
10MB。

logLevel string logLevel は、Network
Observability eBPF Agent のログ
レベルを定義します。

privileged boolean eBPF Agent コンテナーの特権
モード。一般的には、この設定は
無視するか、false に設定しま
す。その場合、Operator はコン
テナーに詳細な機能 (BPF、
PERFMON、NET_ADMIN、
SYS_RESOURCE) を設定して、
正しい操作を有効にします。
CAP_BPF を認識しない古いカー
ネルバージョンが使用されている
場合など、何らかの理由でこれら
の機能を設定できない場合は、こ
のモードをオンにして、より多く
のグローバル権限を取得できま
す。

resources object resources は、このコンテナー
が必要とするコンピューティング
リソースです。詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

sampling integer フローレポーターのサンプリング
レート。100 は、100 の 1 つのフ
ローが送信されることを意味しま
す。0 または 1 は、すべてのフ
ローがサンプリングされることを
意味します。

プロパティー 型 説明

9.1.5. .spec.agent.ebpf.debug

説明

debug では、eBPF エージェントの内部設定のいくつかの側面を設定できます。このセクション
は、デバッグと、GOGC や GOMAXPROCS 環境変数などのきめ細かいパフォーマンスの最適化の
みを目的としています。その値を設定するユーザーは、自己責任で行ってください。

型

第9章 FLOWCOLLECTOR 設定パラメーター

55

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

object

プロパティー 型 説明

env object (string) env を使用すると、カスタム環境
変数を基礎となるコンポーネント
に渡すことができます。GOGC
や GOMAXPROCS などの非常に
具体的なパフォーマンスチューニ
ングオプションを渡すのに役立ち
ます。これらは、エッジデバッグ
またはサポートシナリオでのみ有
用であるため、FlowCollector 記
述子の一部として公開すべきでは
ありません。

9.1.6. .spec.agent.ebpf.resources

説明

resources は、このコンテナーが必要とするコンピューティングリソースです。詳細
は、https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/ を参照し
てください。

型

object

プロパティー 型 説明

limits integer-or-string 制限は、許容されるコンピュート
リソースの最大量を記述します。
詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

requests integer-or-string 要求は、必要なコンピュートリ
ソースの最小量を記述します。コ
ンテナーについて Requests が省
略される場合、明示的に指定され
る場合にデフォルトで Limits に設
定されます。指定しない場合は、
実装定義の値に設定されます。リ
クエストは制限を超えることはで
きません。詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

9.1.7. .spec.agent.ipfix

OpenShift Container Platform 4.11 ネットワーク可観測性

56

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

説明

ipfix [非推奨 (*)] - spec.agent.type が IPFIX に設定されている場合の IPFIX ベースのフローレポー
ターに関連する設定を記述します。

型

object

プロパティー 型 説明

cacheActiveTimeout string cacheActiveTimeout は、レ
ポーターがフローを集約して送信
するまでの最大期間です。

cacheMaxFlows integer cacheMaxFlows は、集約内の
フローの最大数です。到達する
と、レポーターはフローを送信し
ます。

clusterNetworkOperator object clusterNetworkOperator は、
利用可能な場合、OpenShift
Container Platform Cluster
Network Operator に関連する設
定を定義します。

forceSampleAll boolean forceSampleAll を使用すると、
IPFIX ベースのフローレポーター
でのサンプリングを無効にできま
す。クラスターが不安定になる可
能性があるため、IPFIX を使用し
てすべてのトラフィックをサンプ
リングすることは推奨しません。
本当にそうしたい場合は、このフ
ラグを true に設定してくださ
い。自己責任でお使いください。
true に設定すると、sampling の
値は無視されます。

ovnKubernetes object ovnKubernetes は、利用可能な
場合、OVN-Kubernetes CNI の設
定を定義します。この設定は、
OpenShift Container Platform な
しで OVN の IPFIX エクスポート
を使用する場合に使用されます。
OpenShift Container Platform を
使用する場合は、代わりに
clusterNetworkOperator プロ
パティーを参照してください。

第9章 FLOWCOLLECTOR 設定パラメーター

57

sampling integer sampling は、レポーターのサン
プリングレートです。100 は、
100 の 1 つのフローが送信される
ことを意味します。クラスターの
安定性を確保するために、2 未満
の値を設定することはできませ
ん。クラスターの安定性に影響を
与える可能性があるすべてのパ
ケットを本当にサンプリングした
い場合は、forceSampleAll を参
照してください。または、IPFIX
の代わりに eBPF エージェントを
使用できます。

プロパティー 型 説明

9.1.8. .spec.agent.ipfix.clusterNetworkOperator

説明

clusterNetworkOperator は、利用可能な場合、OpenShift Container Platform Cluster Network
Operator に関連する設定を定義します。

型

object

プロパティー 型 説明

namespace string ConfigMap がデプロイされる
namespace。

9.1.9. .spec.agent.ipfix.ovnKubernetes

説明

ovnKubernetes は、利用可能な場合、OVN-Kubernetes CNI の設定を定義します。この設定は、
OpenShift Container Platform なしで OVN の IPFIX エクスポートを使用する場合に使用されます。
OpenShift Container Platform を使用する場合は、代わりに clusterNetworkOperator プロパティー
を参照してください。

型

object

プロパティー 型 説明

containerName string containerName は、IPFIX 用に
設定するコンテナーの名前を定義
します。

OpenShift Container Platform 4.11 ネットワーク可観測性

58

daemonSetName string daemonSetName は、OVN-
Kubernetes Pod を制御する
DaemonSet の名前を定義しま
す。

namespace string OVN-Kubernetes Pod がデプロイ
される namespace。

プロパティー 型 説明

9.1.10. .spec.consolePlugin

説明

consolePlugin は、利用可能な場合、OpenShift Container Platform コンソールプラグインに関連す
る設定を定義します。

型

object

プロパティー 型 説明

autoscaler object プラグインのデプロイメント用に
設定する水平 Pod オートスケー
ラーの autoscaler 仕様。
HorizontalPodAutoscaler のド
キュメント (自動スケーリン
グ/v2) を参照してください。

enable boolean コンソールプラグインのデプロイ
メントを有効にします。
spec.Loki.enable も true にする必
要があります

imagePullPolicy string imagePullPolicy は、上で定義
したイメージの Kubernetes プル
ポリシーです。

logLevel string コンソールプラグインバックエン
ドの logLevel。

port integer port はプラグインサービスポー
トです。メトリクス用に予約され
ている 9002 は使用しないでくだ
さい。

portNaming object portNaming は、ポートから
サービス名への変換の設定を定義
します。

第9章 FLOWCOLLECTOR 設定パラメーター

59

quickFilters array quickFilters は、コンソールプ
ラグインのクイックフィルタープ
リセットを設定します。

register boolean register を true に設定すると、
提供されたコンソールプラグイン
を OpenShift Container Platform
Console Operator に自動的に登
録できます。false に設定した場
合でも、oc patch
console.operator.openshift.i
o cluster --type='json' -p
'[{"op": "add", "path":
"/spec/plugins/-", "value":
"netobserv-plugin"}]' コマンド
で
console.operator.openshift.io/clus
ter を編集することにより、手動
で登録できます。

replicas integer replicas は、開始するレプリカ
(Pod) の数を定義します。

resources object resources (コンピューティング
リソースから見た場合にコンテ
ナーに必要)。詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

プロパティー 型 説明

9.1.11. .spec.consolePlugin.autoscaler

説明

プラグインのデプロイメント用に設定する水平 Pod オートスケーラーの autoscaler 仕様。
HorizontalPodAutoscaler のドキュメント (自動スケーリング/v2) を参照してください。

型

object

9.1.12. .spec.consolePlugin.portNaming

説明

portNaming は、ポートからサービス名への変換の設定を定義します。

型

object

OpenShift Container Platform 4.11 ネットワーク可観測性

60

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

プロパティー 型 説明

enable boolean コンソールプラグインのポートか
らサービス名への変換を有効にし
ます。

portNames object (string) portNames は、コンソールで使
用する追加のポート名を定義しま
す (例: portNames: {"3100":
"loki"})。

9.1.13. .spec.consolePlugin.quickFilters

説明

quickFilters は、コンソールプラグインのクイックフィルタープリセットを設定します。

型

array

9.1.14. .spec.consolePlugin.quickFilters[]

説明

QuickFilter は、コンソールのクイックフィルターのプリセット設定を定義します。

型

object

必須

filter

name

プロパティー 型 説明

default boolean default は、このフィルターをデ
フォルトで有効にするかどうかを
定義します。

filter object (string) filter は、このフィルターが選択
されたときに設定されるキーと値
のセットです。各キーは、コンマ
区切りの文字列を使用して値のリ
ストに関連付けることができます
(例: filter: {"src_namespace":
"namespace1,namespace2"}
)。

name string コンソールに表示されるフィル
ターの名前

第9章 FLOWCOLLECTOR 設定パラメーター

61

9.1.15. .spec.consolePlugin.resources

説明

resources (コンピューティングリソースから見た場合にコンテナーに必要)。詳細
は、https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/ を参照し
てください。

型

object

プロパティー 型 説明

limits integer-or-string 制限は、許容されるコンピュート
リソースの最大量を記述します。
詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

requests integer-or-string 要求は、必要なコンピュートリ
ソースの最小量を記述します。コ
ンテナーについて Requests が省
略される場合、明示的に指定され
る場合にデフォルトで Limits に設
定されます。指定しない場合は、
実装定義の値に設定されます。リ
クエストは制限を超えることはで
きません。詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

9.1.16. .spec.exporters

説明

exporters は、カスタム消費またはストレージ用の追加のオプションのエクスポータを定義します。

型

array

9.1.17. .spec.exporters[]

説明

FlowCollectorExporter は、強化されたフローを送信する追加のエクスポーターを定義します。

型

object

必須

type

OpenShift Container Platform 4.11 ネットワーク可観測性

62

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

プロパティー 型 説明

ipfix object 強化された IPFIX フローの送信先
となる、IP アドレスやポートなど
の IPFIX 設定。

kafka object 強化されたフローの送信先とな
る、アドレスやトピックなどの
Kafka 設定。

type string type は、エクスポーターのタイ
プを選択します。使用可能なオプ
ションは KAFKA および IPFIX
です。

9.1.18. .spec.exporters[].ipfix

説明

強化された IPFIX フローの送信先となる、IP アドレスやポートなどの IPFIX 設定。

型

object

必須

targetHost

targetPort

プロパティー 型 説明

targetHost string IPFIX 外部レシーバーのアドレス

targetPort integer IPFIX 外部レシーバー用のポート

transport string IPFIX 接続に使用されるトランス
ポートプロトコル (TCP または
UDP)。デフォルトは TCP で
す。

9.1.19. .spec.exporters[].kafka

説明

強化されたフローの送信先となる、アドレスやトピックなどの Kafka 設定。

型

object

必須

address

第9章 FLOWCOLLECTOR 設定パラメーター

63

topic

プロパティー 型 説明

address string Kafka サーバーのアドレス

sasl object SASL 認証の設定。[サポート対象
外 (*)]。

tls object TLS クライアント設定。TLS を使
用する場合は、アドレスが TLS
に使用される Kafka ポート (通常
は 9093) と一致することを確認
します。

topic string 使用する Kafka トピック。これは
必ず存在する必要があります。
ネットワーク可観測性はこれを作
成しません。

9.1.20. .spec.exporters[].kafka.sasl

説明

SASL 認証の設定。[サポート対象外 (*)]。

型

object

プロパティー 型 説明

clientIDReference object クライアント ID を含むシーク
レットまたは config map への参
照

clientSecretReference object クライアントシークレットを含む
シークレットまたは config map
への参照

type string 使用する SASL 認証のタイプ。
SASL を使用しない場合は
DISABLED。

9.1.21. .spec.exporters[].kafka.sasl.clientIDReference

説明

クライアント ID を含むシークレットまたは config map への参照

型

object

OpenShift Container Platform 4.11 ネットワーク可観測性

64

プロパティー 型 説明

file string config map またはシークレット内
のファイル名

name string ファイルを含む config map また
はシークレットの名前

namespace string ファイルを含む config map また
はシークレットの namespace。
省略した場合、デフォルトでは、
ネットワーク可観測性がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string ファイル参照のタイプ:
"configmap" または "secret"

9.1.22. .spec.exporters[].kafka.sasl.clientSecretReference

説明

クライアントシークレットを含むシークレットまたは config map への参照

型

object

プロパティー 型 説明

file string config map またはシークレット内
のファイル名

name string ファイルを含む config map また
はシークレットの名前

namespace string ファイルを含む config map また
はシークレットの namespace。
省略した場合、デフォルトでは、
ネットワーク可観測性がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

第9章 FLOWCOLLECTOR 設定パラメーター

65

type string ファイル参照のタイプ:
"configmap" または "secret"

プロパティー 型 説明

9.1.23. .spec.exporters[].kafka.tls

説明

TLS クライアント設定。TLS を使用する場合は、アドレスが TLS に使用される Kafka ポート (通常
は 9093) と一致することを確認します。

型

object

プロパティー 型 説明

cacert object caCert は、認証局の証明書の参
照を定義します。

enable boolean TLS を有効にします。

insecureSkipVerify boolean insecureSkipVerify を使用する
と、サーバー証明書のクライアン
ト側の検証をスキップできます。
true に設定すると、caCert
フィールドは無視されます。

userCert object userCert は、mTLS に使用され
るユーザー証明書参照を定義しま
す (一方向 TLS を使用する場合は
無視できます)。

9.1.24. .spec.exporters[].kafka.tls.caCert

説明

caCert は、認証局の証明書の参照を定義します。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します

OpenShift Container Platform 4.11 ネットワーク可観測性

66

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、ネッ
トワーク可観測性がデプロイされ
ているのと同じ namespace が使
用されます。namespace が異な
る場合は、必要に応じてマウント
できるように、config map または
シークレットがコピーされます。

type string 証明書参照のタイプ: configmap
または secret

プロパティー 型 説明

9.1.25. .spec.exporters[].kafka.tls.userCert

説明

userCert は、mTLS に使用されるユーザー証明書参照を定義します (一方向 TLS を使用する場合は
無視できます)。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前

第9章 FLOWCOLLECTOR 設定パラメーター

67

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、ネッ
トワーク可観測性がデプロイされ
ているのと同じ namespace が使
用されます。namespace が異な
る場合は、必要に応じてマウント
できるように、config map または
シークレットがコピーされます。

type string 証明書参照のタイプ: configmap
または secret

プロパティー 型 説明

9.1.26. .spec.kafka

説明

Kafka 設定。Kafka をフローコレクションパイプラインの一部としてブローカーとして使用できま
す。spec.deploymentModel が KAFKA の場合に利用できます。

型

object

必須

address

topic

プロパティー 型 説明

address string Kafka サーバーのアドレス

sasl object SASL 認証の設定。[サポート対象
外 (*)]。

tls object TLS クライアント設定。TLS を使
用する場合は、アドレスが TLS
に使用される Kafka ポート (通常
は 9093) と一致することを確認
します。

topic string 使用する Kafka トピック。これは
必ず存在する必要があり、ネット
ワーク可観測性はこれを作成しま
せん。

OpenShift Container Platform 4.11 ネットワーク可観測性

68

9.1.27. .spec.kafka.sasl

説明

SASL 認証の設定。[サポート対象外 (*)]。

型

object

プロパティー 型 説明

clientIDReference object クライアント ID を含むシーク
レットまたは config map への参
照

clientSecretReference object クライアントシークレットを含む
シークレットまたは config map
への参照

type string 使用する SASL 認証のタイプ。
SASL を使用しない場合は
DISABLED。

9.1.28. .spec.kafka.sasl.clientIDReference

説明

クライアント ID を含むシークレットまたは config map への参照

型

object

プロパティー 型 説明

file string config map またはシークレット内
のファイル名

name string ファイルを含む config map また
はシークレットの名前

namespace string ファイルを含む config map また
はシークレットの namespace。
省略した場合、デフォルトでは、
ネットワーク可観測性がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string ファイル参照のタイプ:
"configmap" または "secret"

第9章 FLOWCOLLECTOR 設定パラメーター

69

9.1.29. .spec.kafka.sasl.clientSecretReference

説明

クライアントシークレットを含むシークレットまたは config map への参照

型

object

プロパティー 型 説明

file string config map またはシークレット内
のファイル名

name string ファイルを含む config map また
はシークレットの名前

namespace string ファイルを含む config map また
はシークレットの namespace。
省略した場合、デフォルトでは、
ネットワーク可観測性がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string ファイル参照のタイプ:
"configmap" または "secret"

9.1.30. .spec.kafka.tls

説明

TLS クライアント設定。TLS を使用する場合は、アドレスが TLS に使用される Kafka ポート (通常
は 9093) と一致することを確認します。

型

object

プロパティー 型 説明

cacert object caCert は、認証局の証明書の参
照を定義します。

enable boolean TLS を有効にします。

insecureSkipVerify boolean insecureSkipVerify を使用する
と、サーバー証明書のクライアン
ト側の検証をスキップできます。
true に設定すると、caCert
フィールドは無視されます。

OpenShift Container Platform 4.11 ネットワーク可観測性

70

userCert object userCert は、mTLS に使用され
るユーザー証明書参照を定義しま
す (一方向 TLS を使用する場合は
無視できます)。

プロパティー 型 説明

9.1.31. .spec.kafka.tls.caCert

説明

caCert は、認証局の証明書の参照を定義します。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、ネッ
トワーク可観測性がデプロイされ
ているのと同じ namespace が使
用されます。namespace が異な
る場合は、必要に応じてマウント
できるように、config map または
シークレットがコピーされます。

type string 証明書参照のタイプ: configmap
または secret

9.1.32. .spec.kafka.tls.userCert

説明

userCert は、mTLS に使用されるユーザー証明書参照を定義します (一方向 TLS を使用する場合は
無視できます)。

型

第9章 FLOWCOLLECTOR 設定パラメーター

71

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、ネッ
トワーク可観測性がデプロイされ
ているのと同じ namespace が使
用されます。namespace が異な
る場合は、必要に応じてマウント
できるように、config map または
シークレットがコピーされます。

type string 証明書参照のタイプ: configmap
または secret

9.1.33. .spec.loki

説明

ロキ、フローストア、クライアント設定。

型

object

プロパティー 型 説明

OpenShift Container Platform 4.11 ネットワーク可観測性

72

authToken string authToken は、Loki に対して認
証するためのトークンを取得する
方法を記述します。
- DISABLED は、要求に対して
トークンを送信しません。
- FORWARD は、認可のために
ユーザートークンを転送します。
- HOST - [非推奨 (*)] - Loki に対
する認証にローカル Pod サービス
アカウントを使用します。
Loki Operator を使用する場
合、FORWARD に設定する必要
があります。

batchSize integer batchSize は、送信前に蓄積す
るログの最大バッチサイズ (バイ
ト単位) です。

batchWait string batchWait は、バッチを送信す
るまでに待機する最大時間です。

enable boolean フローを Loki に保存する場合は
enable に設定します。これは、
OpenShift Container Platform コ
ンソールプラグインのインストー
ルに必要です。

maxBackoff string maxBackoff は、再試行間のク
ライアント接続の最大バックオフ
時間です。

maxRetries integer maxRetries は、クライアント接
続の最大再試行回数です。

minBackoff string minBackoff は、再試行間のクラ
イアント接続の初期バックオフ時
間です。

プロパティー 型 説明

第9章 FLOWCOLLECTOR 設定パラメーター

73

querierUrl string querierURL は、Loki インジェ
スター URL とは異なる場合に備
えて、Loki クエリーアサービスの
アドレスを指定します。空の場
合、URL 値が使用されます (Loki
インジェスターとクエリアが同じ
サーバー内にあると仮定しま
す)。Loki Operator を使用する場
合は、取り込みとクエリーに Loki
ゲートウェイが使用されるため設
定しないでください。

staticLabels object (string) staticLabels は、各フローに設
定する共通ラベルのマップです。

statusTls object Loki ステータス URL の TLS クラ
イアント設定。

statusUrl string statusURL は、Loki クエリア
URL と異なる場合に備えて、Loki
/ready、/metrics、/config エン
ドポイントのアドレスを指定しま
す。空の場合、querierURL 値が
使用されます。これは、フロント
エンドでエラーメッセージやコン
テキストを表示するのに便利で
す。Loki Operator を使用する場
合は、Loki HTTP クエリーフロン
トエンドサービス (例 :
https://loki-query-frontend-
http.netobserv.svc:3100/) に設定
します。statusTLS 設定
は、statusUrl が設定されている
場合に使用されます。

tenantID string tenantID は、各リクエストのテ
ナントを識別する Loki X-Scope-
OrgID です。Loki Operator を使
用する場合は、特別なテナント
モードに対応する network に設
定します。

timeout string timeout は、接続/リクエスト時
間の上限です。タイムアウトがゼ
ロの場合は、タイムアウトしませ
ん。

tls object Loki URL の TLS クライアント設
定。

プロパティー 型 説明

OpenShift Container Platform 4.11 ネットワーク可観測性

74

https://loki-query-frontend-http.netobserv.svc:3100/

url string url は、フローをプッシュする既
存の Loki サービスのアドレスで
す。Loki Operator を使用する場
合は、パスに network テナント
が設定された Loki ゲートウェイ
サービスに設定します (例:
https://loki-gateway-
http.netobserv.svc:8080/api/logs
/v1/network)。

プロパティー 型 説明

9.1.34. .spec.loki.statusTls

説明

Loki ステータス URL の TLS クライアント設定。

型

object

プロパティー 型 説明

cacert object caCert は、認証局の証明書の参
照を定義します。

enable boolean TLS を有効にします。

insecureSkipVerify boolean insecureSkipVerify を使用する
と、サーバー証明書のクライアン
ト側の検証をスキップできます。
true に設定すると、caCert
フィールドは無視されます。

userCert object userCert は、mTLS に使用され
るユーザー証明書参照を定義しま
す (一方向 TLS を使用する場合は
無視できます)。

9.1.35. .spec.loki.statusTls.caCert

説明

caCert は、認証局の証明書の参照を定義します。

型

object

プロパティー 型 説明

第9章 FLOWCOLLECTOR 設定パラメーター

75

https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、ネッ
トワーク可観測性がデプロイされ
ているのと同じ namespace が使
用されます。namespace が異な
る場合は、必要に応じてマウント
できるように、config map または
シークレットがコピーされます。

type string 証明書参照のタイプ: configmap
または secret

プロパティー 型 説明

9.1.36. .spec.loki.statusTls.userCert

説明

userCert は、mTLS に使用されるユーザー証明書参照を定義します (一方向 TLS を使用する場合は
無視できます)。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

OpenShift Container Platform 4.11 ネットワーク可観測性

76

name string 証明書を含む config map または
シークレットの名前

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、ネッ
トワーク可観測性がデプロイされ
ているのと同じ namespace が使
用されます。namespace が異な
る場合は、必要に応じてマウント
できるように、config map または
シークレットがコピーされます。

type string 証明書参照のタイプ: configmap
または secret

プロパティー 型 説明

9.1.37. .spec.loki.tls

説明

Loki URL の TLS クライアント設定。

型

object

プロパティー 型 説明

cacert object caCert は、認証局の証明書の参
照を定義します。

enable boolean TLS を有効にします。

insecureSkipVerify boolean insecureSkipVerify を使用する
と、サーバー証明書のクライアン
ト側の検証をスキップできます。
true に設定すると、caCert
フィールドは無視されます。

userCert object userCert は、mTLS に使用され
るユーザー証明書参照を定義しま
す (一方向 TLS を使用する場合は
無視できます)。

9.1.38. .spec.loki.tls.caCert

説明

caCert は、認証局の証明書の参照を定義します。

型

第9章 FLOWCOLLECTOR 設定パラメーター

77

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、ネッ
トワーク可観測性がデプロイされ
ているのと同じ namespace が使
用されます。namespace が異な
る場合は、必要に応じてマウント
できるように、config map または
シークレットがコピーされます。

type string 証明書参照のタイプ: configmap
または secret

9.1.39. .spec.loki.tls.userCert

説明

userCert は、mTLS に使用されるユーザー証明書参照を定義します (一方向 TLS を使用する場合は
無視できます)。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

OpenShift Container Platform 4.11 ネットワーク可観測性

78

name string 証明書を含む config map または
シークレットの名前

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、ネッ
トワーク可観測性がデプロイされ
ているのと同じ namespace が使
用されます。namespace が異な
る場合は、必要に応じてマウント
できるように、config map または
シークレットがコピーされます。

type string 証明書参照のタイプ: configmap
または secret

プロパティー 型 説明

9.1.40. .spec.processor

説明

processor は、エージェントからフローを受信し、それを強化し、メトリクスを生成し、 Loki 永続
化レイヤーや使用可能なエエクスポーターに転送するコンポーネントの設定を定義します。

型

object

プロパティー 型 説明

clusterName string clusterName は、フローデータ
に表示されるクラスターの名前で
す。これは、マルチクラスターコ
ンテキストで役立ちます。
OpenShift Container Platform を
使用する場合は、自動的に決定さ
れるように空のままにします。

conversationEndTimeout string conversationEndTimeout
は、ネットワークフローを受信し
た後、対話が終了したとみなされ
るまでの待機時間です。TCP フ
ローの FIN パケットが収集される
場合、この遅延は無視されます
(代わり
に、conversationTerminating
Timeout を使用します)。

conversationHeartbeatInterv
al

string conversationHeartbeatInterv
al は、対話の "tick" イベント間の
待機時間です。

第9章 FLOWCOLLECTOR 設定パラメーター

79

conversationTerminatingTim
eout

string conversationTerminatingTim
eout、FIN フラグが検知されてか
ら対話が終了するまでの待機時間
です。TCP フローにのみ関連しま
す。

debug object debug では、フロープロセッ
サーの内部設定のいくつかの側面
を設定できます。このセクション
は、デバッグと、GOGC や
GOMAXPROCS 環境変数などの
きめ細かいパフォーマンスの最適
化のみを目的としています。その
値を設定するユーザーは、自己責
任で行ってください。

dropUnusedFields boolean dropUnusedFields を true に設
定すると、OVS によって未使用
であることがわかっているフィー
ルドを削除して、ストレージ領域
を節約できます。

enableKubeProbes boolean enableKubeProbes は、
Kubernetes の liveness および
readiness プローブを有効または
無効にするフラグです。

healthPort integer healthPort は、ヘルスチェック
API を公開する Pod のコレクター
HTTP ポートです。

imagePullPolicy string imagePullPolicy は、上で定義
したイメージの Kubernetes プル
ポリシーです。

kafkaConsumerAutoscaler object kafkaConsumerAutoscaler
は、Kafka メッセージを消費する
flowlogs-pipeline-
transformer を設定する水平
Pod オートスケーラーの仕様で
す。Kafka が無効になっている場
合、この設定は無視されます。
HorizontalPodAutoscaler のド
キュメント (自動スケーリン
グ/v2) を参照してください。

プロパティー 型 説明

OpenShift Container Platform 4.11 ネットワーク可観測性

80

kafkaConsumerBatchSize integer kafkaConsumerBatchSize
は、コンシューマーが受け入れる
最大バッチサイズ (バイト単位) を
ブローカーに示します。Kafka を
使用しない場合は無視されます。
デフォルト: 10MB。

kafkaConsumerQueueCapaci
ty

integer kafkaConsumerQueueCapac
ity は、Kafka コンシューマークラ
イアントで使用される内部メッ
セージキューの容量を定義しま
す。Kafka を使用しない場合は無
視されます。

kafkaConsumerReplicas integer kafkaConsumerReplicas は、
Kafka メッセージを消費する
flowlogs-pipeline-
transformer に対して開始する
レプリカ (Pod) の数を定義しま
す。Kafka が無効になっている場
合、この設定は無視されます。

logLevel string プロセッサーランタイムの
logLevel

logTypes string logTypes は、生成するレコード
タイプを定義します。可能な値は
次のとおりです。
- FLOWS (デフォルト): 通常の
ネットワークフローをエクスポー
トします。
- CONVERSATIONS: 開始され
た対話、終了した対話、および定
期的な "tick" 更新のイベントを生
成します。
- ENDED_CONVERSATIONS:
終了した対話イベントのみ生成し
ます。
- ALL: ネットワークフローとすべ
ての対話イベントの両方を生成し
ます。

metrics object Metric は、メトリクスに関する
プロセッサー設定を定義します。

プロパティー 型 説明

第9章 FLOWCOLLECTOR 設定パラメーター

81

port integer フローコレクターのポート (ホス
トポート)。慣例により、一部の
値は禁止されています。1024 よ
り大きい値とし、4500、4789、
6081 は使用できません。

profilePort integer profilePort を使用すると、この
ポートをリッスンする Go pprof
プロファイラーを設定できます

resources object resources は、このコンテナー
が必要とするコンピューティング
リソースです。詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

プロパティー 型 説明

9.1.41. .spec.processor.debug

説明

debug では、フロープロセッサーの内部設定のいくつかの側面を設定できます。このセクション
は、デバッグと、GOGC や GOMAXPROCS 環境変数などのきめ細かいパフォーマンスの最適化の
みを目的としています。その値を設定するユーザーは、自己責任で行ってください。

型

object

プロパティー 型 説明

env object (string) env を使用すると、カスタム環境
変数を基礎となるコンポーネント
に渡すことができます。GOGC
や GOMAXPROCS などの非常に
具体的なパフォーマンスチューニ
ングオプションを渡すのに役立ち
ます。これらは、エッジデバッグ
またはサポートシナリオでのみ有
用であるため、FlowCollector 記
述子の一部として公開すべきでは
ありません。

9.1.42. .spec.processor.kafkaConsumerAutoscaler

説明

kafkaConsumerAutoscaler は、Kafka メッセージを消費する flowlogs-pipeline-transformer を設
定する水平 Pod オートスケーラーの仕様です。Kafka が無効になっている場合、この設定は無視さ
れます。HorizontalPodAutoscaler のドキュメント (自動スケーリング/v2) を参照してください。

OpenShift Container Platform 4.11 ネットワーク可観測性

82

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

型

object

9.1.43. .spec.processor.metrics

説明

Metric は、メトリクスに関するプロセッサー設定を定義します。

型

object

プロパティー 型 説明

disableAlerts array (string) disableAlerts は、無効にする必
要があるアラートのリストです。
可能な値は次のとおりです:
NetObservNoFlows: 一定期間
フローが観察されなかった場合に
トリガーされます。
NetObservLokiError: Loki エ
ラーが原因でフローがドロップさ
れるとトリガーされます。

ignoreTags array (string) ignoreTags は、無視するメトリ
クスを指定するタグのリストで
す。各メトリクスはタグのリスト
に関連付けられています。詳細
は、https://github.com/netobser
v/network-observability-
operator/tree/main/controllers/fl
owlogspipeline/metrics_settings
を参照してください。使用可能な
タグ
は、egress、ingress、flows、
bytes、packet、namespaces
、node、workloads、nodes-
flows、namespaces-
flows、workloads-flows で
す。namespace ベースのメトリ
クスは、workloads タグと
namespace タグの両方でカバー
されるため、常にいずれか 1 つを
無視することが推奨されます
(workloads の方が粒度が小さ
い)。

server object Prometheus スクレイパーの
metricsServer エンドポイント設
定

9.1.44. .spec.processor.metrics.server

説明

第9章 FLOWCOLLECTOR 設定パラメーター

83

https://github.com/netobserv/network-observability-operator/tree/main/controllers/flowlogspipeline/metrics_definitions

Prometheus スクレイパーの metricsServer エンドポイント設定

型

object

プロパティー 型 説明

port integer Prometheus HTTP ポート

tls object TLS 設定。

9.1.45. .spec.processor.metrics.server.tls

説明

TLS 設定。

型

object

プロパティー 型 説明

insecureSkipVerify boolean insecureSkipVerify を使用する
と、提供された証明書に対するク
ライアント側の検証をスキップで
きます。true に設定する
と、providedCaFile フィールド
が無視されます。

provided object type が PROVIDED に設定され
ている場合の TLS 設定。

providedCaFile object type が PROVIDED に設定され
ている場合の CA ファイルへの参
照。

type string TLS 設定のタイプを選択します。
- DISABLED (デフォルト) は、
エンドポイントに TLS を設定し
ません。- PROVIDED は、証明
書ファイルとキーファイルを手動
で指定します。- AUTO は、アノ
テーションを使用して OpenShift
Container Platform の自動生成証
明書を使用します。

9.1.46. .spec.processor.metrics.server.tls.provided

説明

type が PROVIDED に設定されている場合の TLS 設定。

型

OpenShift Container Platform 4.11 ネットワーク可観測性

84

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、ネッ
トワーク可観測性がデプロイされ
ているのと同じ namespace が使
用されます。namespace が異な
る場合は、必要に応じてマウント
できるように、config map または
シークレットがコピーされます。

type string 証明書参照のタイプ: configmap
または secret

9.1.47. .spec.processor.metrics.server.tls.providedCaFile

説明

type が PROVIDED に設定されている場合の CA ファイルへの参照。

型

object

プロパティー 型 説明

file string config map またはシークレット内
のファイル名

name string ファイルを含む config map また
はシークレットの名前

第9章 FLOWCOLLECTOR 設定パラメーター

85

namespace string ファイルを含む config map また
はシークレットの namespace。
省略した場合、デフォルトでは、
ネットワーク可観測性がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string ファイル参照のタイプ:
"configmap" または "secret"

プロパティー 型 説明

9.1.48. .spec.processor.resources

説明

resources は、このコンテナーが必要とするコンピューティングリソースです。詳細
は、https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/ を参照し
てください。

型

object

プロパティー 型 説明

limits integer-or-string 制限は、許容されるコンピュート
リソースの最大量を記述します。
詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

requests integer-or-string 要求は、必要なコンピュートリ
ソースの最小量を記述します。コ
ンテナーについて Requests が省
略される場合、明示的に指定され
る場合にデフォルトで Limits に設
定されます。指定しない場合は、
実装定義の値に設定されます。リ
クエストは制限を超えることはで
きません。詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

OpenShift Container Platform 4.11 ネットワーク可観測性

86

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

第10章 ネットワークフロー形式の参照
これらはネットワークフロー形式の仕様であり、内部で使用され、フローを Kafka にエクスポートする
場合にも使用されます。

10.1. ネットワークフロー形式のリファレンス

これはネットワークフロー形式の仕様であり、内部で使用され、フローを Kafka にエクスポートする場
合にも使用されます。

このドキュメントは、Labels と通常の Fields という 2 つの主要なカテゴリーで設定されています。こ
の区別は、Loki にクエリーを実行する場合にのみ重要です。これは、Fields とは異なり、Labels は ス
トリームセレクター で使用する必要があるためです。

この仕様を Kafka エクスポート機能のリファレンスとしてお読みになる場合は、すべての Labels と
Fields を通常のフィールドとして扱い、Loki に固有のそれらの区別を無視する必要があります。

10.1.1. ラベル

SrcK8S_Namespace

Optional SrcK8S_Namespace: string

リソースの namespace。

DstK8S_Namespace

Optional DstK8S_Namespace: string

宛先 namespace

SrcK8S_OwnerName

Optional SrcK8S_OwnerName: string

ソース所有者 (Deployment、StatefulSet など)。

DstK8S_OwnerName

Optional DstK8S_OwnerName: string

デプロイメント、StatefulSet などの宛先所有者。

FlowDirection

FlowDirection: FlowDirection (次の「Enumeration: FlowDirection」セクションを参照)

ノード観測点からの流れ方向

_RecordType

Optional _RecordType: RecordType

第10章 ネットワークフロー形式の参照

87

https://grafana.com/docs/loki/latest/logql/log_queries/#log-stream-selector

レコードの種類: 通常のフローログの場合は 'flowLog'、会話追跡の場合は 'allConnections'、
'newConnection'、'heartbeat'、'endConnection'

10.1.2. フィールド

SrcAddr

SrcAddr: string

送信元 IP アドレス (ipv4 または ipv6)

DstAddr

DstAddr: string

宛先 IP アドレス (ipv4 または ipv6)

SrcMac

SrcMac: string

送信元 MAC アドレス

DstMac

DstMac: string

宛先 MAC アドレス

SrcK8S_Name

Optional SrcK8S_Name: string

Pod 名、サービス名など、ソースと一致する Kubernetes オブジェクトの名前。

DstK8S_Name

Optional DstK8S_Name: string

Pod 名、サービス名など、宛先と一致する Kubernetes オブジェクトの名前。

SrcK8S_Type

Optional SrcK8S_Type: string

Pod、サービスなど、ソースと一致する Kubernetes オブジェクトの種類。

DstK8S_Type

Optional DstK8S_Type: string

OpenShift Container Platform 4.11 ネットワーク可観測性

88

Pod 名、サービス名など、宛先と一致する Kubernetes オブジェクトの種類。

SrcPort

Optional SrcPort: number

送信元ポート

DstPort

Optional DstPort: number

送信先ポート

SrcK8S_OwnerType

Optional SrcK8S_OwnerType: string

ソース Kubernetes 所有者の種類 (Deployment、StatefulSet など)。

DstK8S_OwnerType

Optional DstK8S_OwnerType: string

Deployment、StatefulSet などの宛先 Kubernetes 所有者の種類。

SrcK8S_HostIP

Optional SrcK8S_HostIP: string

送信元ノード IP

DstK8S_HostIP

Optional DstK8S_HostIP: string

送信先ノード IP

SrcK8S_HostName

Optional SrcK8S_HostName: string

送信元ノード名

DstK8S_HostName

Optional DstK8S_HostName: string

送信先ノード名

Proto

第10章 ネットワークフロー形式の参照

89

Proto: number

L4 プロトコル

インターフェイス

Optional Interface: string

ネットワークインターフェイス

IfDirection

Optional IfDirection: InterfaceDirection (次の「Enumeration: InterfaceDirection」セクショ
ンを参照)

ネットワークインターフェイス観測点からのフロー方向

フラグ

Optional Flags: number

TCP フラグ

パケット

Optional Packets: number

パケット数

Packets_AB

Optional Packets_AB: number

会話追跡では、会話ごとの A to B パケットカウンター

Packets_BA

Optional Packets_BA: number

会話追跡では、会話ごとの B to A パケットカウンター

バイト

Optional Bytes: number

バイト数

Bytes_AB

Optional Bytes_AB: number

OpenShift Container Platform 4.11 ネットワーク可観測性

90

会話追跡では、会話ごとの A to B バイトカウンター

Bytes_BA

Optional Bytes_BA: number

会話追跡では、会話ごとの B to A バイトカウンター

IcmpType

Optional IcmpType: number

ICMP のタイプ

IcmpCode

Optional IcmpCode: number

ICMP コード

PktDropLatestState

Optional PktDropLatestState: string

ドロップの Pkt TCP 状態

PktDropLatestDropCause

Optional PktDropLatestDropCause: string

ドロップの原因の Pkt

PktDropLatestFlags

Optional PktDropLatestFlags: number

ドロップの Pkt TCP フラグ

PktDropPackets

Optional PktDropPackets: number

カーネルによってドロップされたパケットの数

PktDropPackets_AB

Optional PktDropPackets_AB: number

会話追跡では、会話ごとのドロップされた A to B パケットカウンター

PktDropPackets_BA

第10章 ネットワークフロー形式の参照

91

Optional PktDropPackets_BA: number

会話追跡では、会話ごとのドロップされた B to A パケットカウンター

PktDropBytes

Optional PktDropBytes: number

カーネルによってドロップされたバイト数

PktDropBytes_AB

Optional PktDropBytes_AB: number

会話追跡では、会話ごとのドロップされた A to B バイトカウンター

PktDropBytes_BA

Optional PktDropBytes_BA: number

会話追跡では、会話ごとのドロップされた B to A バイトカウンター

DnsId

Optional DnsId: number

DNS レコード id

DnsFlags

Optional DnsFlags: number

DNS レコードの DNS フラグ

DnsFlagsResponseCode

Optional DnsFlagsResponseCode: string

解析された DNS ヘッダーの RCODEs 名

DnsLatencyMs

Optional DnsLatencyMs: number

レスポンスとリクエストの間で計算された時間 (ミリ秒単位)

TimeFlowStartMs

TimeFlowStartMs: number

このフローの開始タイムスタンプ (ミリ秒単位)

OpenShift Container Platform 4.11 ネットワーク可観測性

92

TimeFlowEndMs

TimeFlowEndMs: number

このフローの終了タイムスタンプ (ミリ秒単位)

TimeReceived

TimeReceived: number

このフローがフローコレクターによって受信および処理されたときのタイムスタンプ (秒単位)

TimeFlowRttNs

Optional TimeFlowRttNs: number

Flow Round Trip Time (RTT) (ナノ秒単位)

_HashId

Optional _HashId: string

会話追跡では、会話識別子

_IsFirst

Optional _IsFirst: string

会話追跡では、最初のフローを識別するフラグ

numFlowLogs

Optional numFlowLogs: number

会話追跡では、会話ごとのフローログのカウンター

10.1.3. 列挙: FlowDirection

Ingress

Ingress = "0"

ノード観測ポイントからの受信トラフィック

Egress

Egress = "1"

ノード観測ポイントからの送信トラフィック

Inner

第10章 ネットワークフロー形式の参照

93

Inner = "2"

同じ送信元ノードと宛先ノードを持つ内部トラフィック

OpenShift Container Platform 4.11 ネットワーク可観測性

94

第11章 ネットワーク可観測性のトラブルシューティング
ネットワーク可観測性の問題のトラブルシューティングを支援するために、いくつかのトラブルシュー
ティングアクションを実行できます。

11.1. MUST-GATHER ツールの使用

must-gather ツールを使用すると、Pod ログ、FlowCollector、Webhook 設定などの、Network
Observability Operator リソースおよびクラスター全体のリソースに関する情報を収集できます。

手順

1. must-gather データを保存するディレクトリーに移動します。

2. 次のコマンドを実行して、クラスター全体の must-gather リソースを収集します。

11.2. OPENSHIFT CONTAINER PLATFORM コンソールでのネットワーク
トラフィックメニューエントリーの設定

OpenShift Container Platform コンソールの 監視 メニューにネットワークトラフィックのメニューエン
トリーがリストされていない場合は、OpenShift Container Platform コンソールでネットワークトラ
フィックのメニューエントリーを手動で設定します。

前提条件

OpenShift Container Platform バージョン 4.10 以降がインストールされている。

手順

1. 次のコマンドを実行して、spec.consolePlugin.register フィールドが true に設定されている
かどうかを確認します。

出力例

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 consolePlugin:
 register: false

2. オプション: Console Operator 設定を手動で編集して、netobserv-plugin プラグインを追加し
ます。

$ oc adm must-gather
 --image-stream=openshift/must-gather \
 --image=quay.io/netobserv/must-gather

$ oc -n netobserv get flowcollector cluster -o yaml

$ oc edit console.operator.openshift.io cluster

第11章 ネットワーク可観測性のトラブルシューティング

95

出力例

...
spec:
 plugins:
 - netobserv-plugin
...

3. オプション: 次のコマンドを実行して、spec.consolePlugin.register フィールドを true に設定
します。

出力例

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 consolePlugin:
 register: true

4. 次のコマンドを実行して、コンソール Pod のステータスが running であることを確認します。

5. 次のコマンドを実行して、コンソール Pod を再起動します。

6. ブラウザーのキャッシュと履歴をクリアします。

7. 次のコマンドを実行して、ネットワーク可観測性プラグイン Pod のステータスを確認します。

出力例

NAME READY STATUS RESTARTS AGE
netobserv-plugin-68c7bbb9bb-b69q6 1/1 Running 0 21s

8. 次のコマンドを実行して、ネットワーク可観測性プラグイン Pod のログを確認します。

出力例

$ oc -n netobserv edit flowcollector cluster -o yaml

$ oc get pods -n openshift-console -l app=console

$ oc delete pods -n openshift-console -l app=console

$ oc get pods -n netobserv -l app=netobserv-plugin

$ oc logs -n netobserv -l app=netobserv-plugin

time="2022-12-13T12:06:49Z" level=info msg="Starting netobserv-console-plugin [build
version: , build date: 2022-10-21 15:15] at log level info" module=main
time="2022-12-13T12:06:49Z" level=info msg="listening on https://:9001" module=server

OpenShift Container Platform 4.11 ネットワーク可観測性

96

1

11.3. FLOWLOGS-PIPELINE は、KAFKA のインストール後にネットワーク
フローを消費しません

最初に deploymentModel: KAFKA を使用してフローコレクターをデプロイし、次に Kafka をデプロイ
した場合、フローコレクターが Kafka に正しく接続されない可能性があります。Flowlogs-pipeline が
Kafka からのネットワークフローを消費しないフローパイプライン Pod を手動で再起動します。

手順

1. 次のコマンドを実行して、flow-pipeline Pod を削除して再起動します。

11.4. BR-INT インターフェイスと BR-EX インターフェイスの両方からのネット
ワークフローが表示されない

br-ex` と br-int は、OSI レイヤー 2 で動作する仮想ブリッジデバイスです。eBPF エージェントは、IP
レベルと TCP レベル、それぞれレイヤー 3 と 4 で動作します。ネットワークトラフィックが物理ホス
トや仮想 Pod インターフェイスなどの他のインターフェイスによって処理される場合、eBPF エージェ
ントは br-ex および br-int を通過するネットワークトラフィックをキャプチャすることが期待できま
す。eBPF エージェントのネットワークインターフェイスを br-ex および br-int のみに接続するように
制限すると、ネットワークフローは表示されません。

ネットワークインターフェイスを br-int および br-ex に制限する interfaces または excludeInterfaces
の部分を手動で削除します。

手順

1. interfaces: ['br-int', 'br-ex'] フィールド。これにより、エージェントはすべてのインターフェ
イスから情報を取得できます。または、レイヤー 3 インターフェイス (例: eth0) を指定するこ
ともできます。以下のコマンドを実行します。

出力例

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 agent:
 type: EBPF
 ebpf:
 interfaces: ['br-int', 'br-ex'] 1

ネットワークインターフェイスを指定します。

11.5. ネットワーク可観測性コントローラーマネージャー POD でメモリーが
不足しています

$ oc delete pods -n netobserv -l app=flowlogs-pipeline-transformer

$ oc edit -n netobserv flowcollector.yaml -o yaml

第11章 ネットワーク可観測性のトラブルシューティング

97

1

2

Subscription オブジェクトの spec.config.resources.limits.memory 仕様を編集することで、
Network Observability Operator のメモリー制限を引き上げることができます。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. Network Observability をクリックし、Subscription を選択します。

3. Actions メニューから、Edit Subscription をクリックします。

a. または、CLI を使用して次のコマンドを実行して、Subscription オブジェクトの YAML 設
定を開くこともできます。

4. Subscription オブジェクトを編集して config.resources.limits.memory 仕様を追加し、メモ
リー要件を考慮して値を設定します。リソースに関する考慮事項の詳細は、関連情報を参照し
てください。

たとえば、メモリー制限を 800 Mi に引き上げることができます。

この値は編集しないでください。この値は Operator の最新リリースによって異なりま
す。

関連情報

リソースの留意事項

11.6. LOKI RESOURCEEXHAUSTED エラーのトラブルシューティング

Network Observability によって送信されたネットワークフローデータが、設定された最大メッセージサ
イズを超えると、Loki は ResourceExhausted エラーを返すことがあります。Red Hat Loki Operator
を使用している場合、この最大メッセージサイズは 100 MiB に設定されています。

$ oc edit subscription netobserv-operator -n openshift-netobserv-operator

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: netobserv-operator
 namespace: openshift-netobserv-operator
spec:
 channel: stable
 config:
 resources:
 limits:
 memory: 800Mi 1
 requests:
 cpu: 100m
 memory: 100Mi
 installPlanApproval: Automatic
 name: netobserv-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: <network_observability_operator_latest_version> 2

OpenShift Container Platform 4.11 ネットワーク可観測性

98

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.11/html-single/network_observability/#network-observability-resources-table_network_observability

手順

1. Operators → Installed Operators に移動し、Project ドロップダウンメニューから All
projects を表示します。

2. Provided APIs リストで、Network Observability Operator を選択します。

3. Flow Collector をクリックし、YAML view タブをクリックします。

a. Loki Operator を使用している場合は、spec.loki.batchSize 値が 98 MiB を超えていないこ
とを確認してください。

b. Red Hat Loki Operator とは異なる Loki インストール方法 (Grafana Loki など) を使用して
いる場合は、Grafana Loki サーバー設定 の grpc_server_max_recv_msg_size
が、FlowCollector リソースの spec.loki.batchSize 値より大きいことを確認してくださ
い。大きくない場合は、grpc_server_max_recv_msg_size 値を増やす
か、spec.loki.batchSize 値を制限値よりも小さくなるように減らす必要があります。

4. FlowCollector を編集した場合は、Save をクリックします。

11.7. リソースのトラブルシューティング

11.8. LOKISTACK レート制限エラー

Loki テナントにレート制限が設定されていると、データが一時的に失われ、429 エラー (Per stream
rate limit exceeded (limit:xMB/sec) while attempting to ingest for stream) が発生する可能性があり
ます。このエラーを通知するようにアラートを設定することを検討してください。詳細は、このセク
ションの関連情報として記載されている「NetObserv ダッシュボードの Loki レート制限アラートの作
成」を参照してください。

次に示す手順を実行して、perStreamRateLimit および perStreamRateLimitBurst 仕様で LokiStack
CRD を更新できます。

手順

1. Operators → Installed Operators に移動し、Project ドロップダウンから All projects を表示
します。

2. Loki Operator を見つけて、LokiStack タブを選択します。

3. YAML view を使用して LokiStack インスタンスを作成するか既存のものを編集
し、perStreamRateLimit および perStreamRateLimitBurst 仕様を追加します。

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: loki
 namespace: netobserv
spec:
 limits:
 global:
 ingestion:
 perStreamRateLimit: 6 1
 perStreamRateLimitBurst: 30 2

第11章 ネットワーク可観測性のトラブルシューティング

99

https://grafana.com/docs/loki/latest/configure/#server

1

2

perStreamRateLimit のデフォルト値は 3 です。

perStreamRateLimitBurst のデフォルト値は 15 です。

4. Save をクリックします。

検証

perStreamRateLimit および perStreamRateLimitBurst 仕様を更新すると、クラスター内の Pod が再
起動し、429 レート制限エラーが発生しなくなります。

 tenants:
 mode: openshift-network
 managementState: Managed

OpenShift Container Platform 4.11 ネットワーク可観測性

100

	目次
	第1章 NETWORK OBSERVABILITY OPERATOR リリースノート
	1.1. NETWORK OBSERVABILITY OPERATOR 1.4.2
	1.1.1. CVE

	1.2. NETWORK OBSERVABILITY OPERATOR 1.4.1
	1.2.1. CVE
	1.2.2. バグ修正

	1.3. NETWORK OBSERVABILITY OPERATOR 1.4.0
	1.3.1. チャネルの削除
	1.3.2. 新機能および機能拡張
	1.3.2.1. 主な機能拡張
	1.3.2.2. Loki を使用しないネットワーク可観測性
	1.3.2.3. DNS 追跡
	1.3.2.4. SR-IOV のサポート
	1.3.2.5. IPFIX エクスポーターのサポート
	1.3.2.6. s390x アーキテクチャーのサポート

	1.3.3. バグ修正
	1.3.4. 既知の問題

	1.4. NETWORK OBSERVABILITY OPERATOR 1.3.0
	1.4.1. チャネルの非推奨化
	1.4.2. 新機能および機能拡張
	1.4.2.1. ネットワーク可観測性におけるマルチテナンシー
	1.4.2.2. フローベースのメトリクスダッシュボード
	1.4.2.3. must-gather ツールを使用したトラブルシューティング
	1.4.2.4. 複数のアーキテクチャーに対するサポートを開始

	1.4.3. 非推奨の機能
	1.4.3.1. 非推奨の設定パラメーターの設定

	1.4.4. バグ修正
	1.4.5. 既知の問題

	1.5. NETWORK OBSERVABILITY OPERATOR 1.2.0
	1.5.1. 次の更新の準備
	1.5.2. 新機能および機能拡張
	1.5.2.1. Traffic Flow ビューのヒストグラム
	1.5.2.2. 会話の追跡
	1.5.2.3. ネットワーク可観測性のヘルスアラート

	1.5.3. バグ修正
	1.5.4. 既知の問題
	1.5.5. 主な技術上の変更点

	1.6. NETWORK OBSERVABILITY OPERATOR 1.1.0
	1.6.1. バグ修正

	第2章 ネットワーク可観測性について
	2.1. NETWORK OBSERVABILITY OPERATOR のオプションの依存関係
	2.2. NETWORK OBSERVABILITY OPERATOR
	2.3. OPENSHIFT CONTAINER PLATFORM コンソール統合
	2.3.1. ネットワーク可観測性メトリクスのダッシュボード
	2.3.2. Network Observability トポロジービュー
	2.3.3. トラフィックフローテーブル

	第3章 NETWORK OBSERVABILITY OPERATOR のインストール
	3.1. LOKI を使用しないネットワーク可観測性
	3.2. LOKI OPERATOR のインストール
	3.2.1. Loki ストレージのシークレットの作成
	3.2.2. LokiStack カスタムリソースの作成
	3.2.2.1. デプロイメントのサイズ

	3.2.3. LokiStack の取り込み制限とヘルスアラート
	3.2.4. 認可とマルチテナンシーの設定
	3.2.5. ネットワーク可観測性でのマルチテナンシーの有効化

	3.3. NETWORK OBSERVABILITY OPERATOR のインストール
	3.4. フローコレクター設定に関する重要な考慮事項
	3.5. KAFKA のインストール (オプション)
	3.6. NETWORK OBSERVABILITY OPERATOR のアンインストール

	第4章 OPENSHIFT CONTAINER PLATFORM の NETWORK OBSERVABILITY OPERATOR
	4.1. 状況の表示
	4.2. NETWORK OBSERVABLITY OPERATOR のアーキテクチャー
	4.3. NETWORK OBSERVABILITY OPERATOR のステータスと設定の表示

	第5章 NETWORK OBSERVABILITY OPERATOR の設定
	5.1. FLOWCOLLECTOR リソースを表示する
	5.2. KAFKA を使用した FLOW COLLECTOR リソースの設定
	5.3. 強化されたネットワークフローデータをエクスポートする
	5.4. FLOW COLLECTOR リソースの更新
	5.5. クイックフィルターの設定
	5.6. SR-IOV インターフェイストラフィックの監視の設定
	5.7. リソース管理およびパフォーマンスに関する考慮事項
	5.7.1. リソースの留意事項

	第6章 ネットワークポリシー
	6.1. ネットワーク可観測性のためのネットワークポリシーの作成
	6.2. ネットワークポリシーの例

	第7章 ネットワークトラフィックの監視
	7.1. 概要ビューからのネットワークトラフィックの監視
	7.1.1. 概要ビューの操作
	7.1.2. 概要ビューの詳細オプションの設定
	7.1.2.1. パネルの管理
	7.1.2.2. DNS 追跡

	7.2. トラフィックフロービューからのネットワークトラフィックの観察
	7.2.1. トラフィックフロービューの操作
	7.2.2. トラフィックフロービューの詳細オプションの設定
	7.2.2.1. 列の管理
	7.2.2.2. トラフィックフローデータのエクスポート

	7.2.3. 会話追跡の使用
	7.2.4. DNS 追跡の使用
	7.2.4.1. ヒストグラムの使用

	7.3. トポロジービューからのネットワークトラフィックの観察
	7.3.1. トポロジービューの操作
	7.3.2. トポロジービューの詳細オプションの設定
	7.3.2.1. トポロジービューのエクスポート

	7.4. ネットワークトラフィックのフィルタリング

	第8章 NETWORK OBSERVABILITY OPERATOR の監視
	8.1. ヘルス情報の表示
	8.1.1. ヘルスアラートの無効化

	8.2. NETOBSERV ダッシュボードの LOKI レート制限アラートの作成

	第9章 FLOWCOLLECTOR 設定パラメーター
	9.1. FLOWCOLLECTOR API 仕様
	9.1.1. .metadata
	9.1.2. .spec
	9.1.3. .spec.agent
	9.1.4. .spec.agent.ebpf
	9.1.5. .spec.agent.ebpf.debug
	9.1.6. .spec.agent.ebpf.resources
	9.1.7. .spec.agent.ipfix
	9.1.8. .spec.agent.ipfix.clusterNetworkOperator
	9.1.9. .spec.agent.ipfix.ovnKubernetes
	9.1.10. .spec.consolePlugin
	9.1.11. .spec.consolePlugin.autoscaler
	9.1.12. .spec.consolePlugin.portNaming
	9.1.13. .spec.consolePlugin.quickFilters
	9.1.14. .spec.consolePlugin.quickFilters[]
	9.1.15. .spec.consolePlugin.resources
	9.1.16. .spec.exporters
	9.1.17. .spec.exporters[]
	9.1.18. .spec.exporters[].ipfix
	9.1.19. .spec.exporters[].kafka
	9.1.20. .spec.exporters[].kafka.sasl
	9.1.21. .spec.exporters[].kafka.sasl.clientIDReference
	9.1.22. .spec.exporters[].kafka.sasl.clientSecretReference
	9.1.23. .spec.exporters[].kafka.tls
	9.1.24. .spec.exporters[].kafka.tls.caCert
	9.1.25. .spec.exporters[].kafka.tls.userCert
	9.1.26. .spec.kafka
	9.1.27. .spec.kafka.sasl
	9.1.28. .spec.kafka.sasl.clientIDReference
	9.1.29. .spec.kafka.sasl.clientSecretReference
	9.1.30. .spec.kafka.tls
	9.1.31. .spec.kafka.tls.caCert
	9.1.32. .spec.kafka.tls.userCert
	9.1.33. .spec.loki
	9.1.34. .spec.loki.statusTls
	9.1.35. .spec.loki.statusTls.caCert
	9.1.36. .spec.loki.statusTls.userCert
	9.1.37. .spec.loki.tls
	9.1.38. .spec.loki.tls.caCert
	9.1.39. .spec.loki.tls.userCert
	9.1.40. .spec.processor
	9.1.41. .spec.processor.debug
	9.1.42. .spec.processor.kafkaConsumerAutoscaler
	9.1.43. .spec.processor.metrics
	9.1.44. .spec.processor.metrics.server
	9.1.45. .spec.processor.metrics.server.tls
	9.1.46. .spec.processor.metrics.server.tls.provided
	9.1.47. .spec.processor.metrics.server.tls.providedCaFile
	9.1.48. .spec.processor.resources

	第10章 ネットワークフロー形式の参照
	10.1. ネットワークフロー形式のリファレンス
	10.1.1. ラベル
	10.1.2. フィールド
	10.1.3. 列挙: FlowDirection

	第11章 ネットワーク可観測性のトラブルシューティング
	11.1. MUST-GATHER ツールの使用
	11.2. OPENSHIFT CONTAINER PLATFORM コンソールでのネットワークトラフィックメニューエントリーの設定
	11.3. FLOWLOGS-PIPELINE は、KAFKA のインストール後にネットワークフローを消費しません
	11.4. BR-INT インターフェイスと BR-EX インターフェイスの両方からのネットワークフローが表示されない
	11.5. ネットワーク可観測性コントローラーマネージャー POD でメモリーが不足しています
	11.6. LOKI RESOURCEEXHAUSTED エラーのトラブルシューティング
	11.7. リソースのトラブルシューティング
	11.8. LOKISTACK レート制限エラー

