
OpenShift Container Platform 4.12

Builds

Builds

Last Updated: 2025-11-10

OpenShift Container Platform 4.12 Builds

Builds

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Container Platform 用のビルド

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

第1章 イメージビルドについて
1.1. BUILDS

第2章 ビルド設定について
2.1. BUILDCONFIG

第3章 ビルド入力の作成
3.1. ビルド入力
3.2. DOCKERFILE ソース
3.3. イメージソース
3.4. GIT ソース
3.5. バイナリー (ローカル) ソース
3.6. 入力シークレットおよび CONFIG MAP
3.7. 外部アーティファクト
3.8. プライベートレジストリーでの DOCKER 認証情報の使用
3.9. ビルド環境
3.10. サービス提供証明書のシークレット
3.11. シークレットの制限

第4章 ビルド出力の管理
4.1. ビルド出力
4.2. アウトプットイメージの環境変数
4.3. アウトプットイメージのラベル

第5章 ビルドストラテジーの使用
5.1. DOCKER ビルド
5.2. SOURCE-TO-IMAGE ビルド
5.3. カスタムビルド
5.4. パイプラインビルド
5.5. WEB コンソールを使用したシークレットの追加
5.6. プルおよびプッシュの有効化

第6章 BUILDAH によるカスタムイメージビルド
6.1. 前提条件
6.2. カスタムビルドアーティファクトの作成
6.3. カスタムビルダーイメージのビルド
6.4. カスタムビルダーイメージの使用

第7章 基本的なビルドの実行および設定
7.1. ビルドの開始
7.2. ビルドの中止
7.3. BUILDCONFIG の編集
7.4. BUILDCONFIG の削除
7.5. ビルドの詳細表示
7.6. ビルドログへのアクセス

第8章 BUILDS のトリガーおよび変更
8.1. ビルドトリガー
8.2. ビルドフック

第9章 高度なビルドの実行
9.1. ビルドリソースの設定
9.2. 最長期間の設定

4
4

6
6

8
8
9
9
11

20
22
31
31

34
35
36

37
37
37
38

39
39
42
49
52
61
61

62
62
62
63
63

66
66
67
68
69
70
70

73
73
84

86
86
87

Table of Contents

1

. .

. .

. .

. .

. .

9.3. 特定のノードへのビルドの割り当て
9.4. チェーンビルド
9.5. ビルドのプルーニング
9.6. ビルド実行ポリシー

第10章 ビルドでの RED HAT サブスクリプションの使用
10.1. RED HAT UNIVERSAL BASE IMAGE へのイメージストリームタグの作成
10.2. ビルドシークレットとしてのサブスクリプションエンタイトルメントの追加
10.3. SUBSCRIPTION MANAGER を使用したビルドの実行
10.4. RED HAT SATELLITE サブスクリプションを使用したビルドの実行
10.5. SHAREDSECRET オブジェクトを使用したエンタイトルメントが適用されたビルドの実行
10.6. 関連情報

第11章 ストラテジーによるビルドのセキュリティー保護
11.1. ビルドストラテジーへのアクセスのグローバルな無効化
11.2. ユーザーへのビルドストラテジーのグルーバルな制限
11.3. プロジェクト内でのユーザーへのビルドストラテジーの制限

第12章 ビルド設定リソース
12.1. ビルドコントローラー設定パラメーター
12.2. ビルド設定の設定

第13章 ビルドのトラブルシューティング
13.1. リソースへのアクセスのための拒否の解決
13.2. サービス証明書の生成に失敗

第14章 ビルドの信頼される認証局の追加設定
14.1. クラスターへの認証局の追加
14.2. 関連情報

87
88
89
90

91
91

92
93
93
94
99

100
100
101
101

102
102
103

105
105
105

106
106
106

OpenShift Container Platform 4.12 Builds

2

Table of Contents

3

第1章 イメージビルドについて

1.1. BUILDS

ビルドとは、入力パラメーターを結果として作成されるオブジェクトに変換するプロセスです。ほとん
どの場合、このプロセスは入力パラメーターまたはソースコードを実行可能なイメージに変換するため
に使用されます。BuildConfig オブジェクトはビルドプロセス全体の定義です。

OpenShift Container Platform は、ビルドイメージからコンテナーを作成し、それらをコンテナーイ
メージレジストリーにプッシュして Kubernetes を使用します。

ビルドオブジェクトは共通の特性を共有します。これらには、ビルドの入力、ビルドプロセスの完了要
件、ビルドプロセスのロギング、正常なビルドからのリリースのパブリッシュ、およびビルドの最終ス
テータスのパブリッシュが含まれます。ビルドはリソースの制限を利用し、CPU 使用、メモリー使用
およびビルドまたは Pod の実行時間などのリソースの制限を指定します。

OpenShift Container Platform ビルドシステムは、ビルド API で指定される選択可能なタイプに基づく
ビルドストラテジーを幅広くサポートします。利用可能なビルドストラテジーは主に 3 つあります。

docker ビルド

Source-to-Image (S2I) ビルド

カスタムビルド

デフォルトで、docker ビルドおよび S2I ビルドがサポートされます。

ビルドの作成されるオブジェクトはこれを作成するために使用されるビルダーによって異なります。
docker および S2I builds の場合、作成されるオブジェクトは実行可能なイメージです。カスタム builds
の場合、作成されるオブジェクトはビルダーイメージの作成者が指定するものになります。

さらに、パイプラインビルドストラテジーを使用して、高度なワークフローを実装することができま
す。

継続的インテグレーション

継続的デプロイメント

1.1.1. docker ビルド

OpenShift Container Platform は Buildah を使用して Dockerfile からコンテナーイメージをビルドしま
す。Dockerfile を使用したコンテナーイメージのビルドの詳細は、Dockerfile リファレンスドキュメン
ト を参照してください。

ヒント

buildArgs 配列を使用して Docker ビルド引数を設定する場合は、Dockerfile リファレンスドキュメン
トの ARG および FROM の対話方法 を参照してください。

1.1.2. Source-to-Image ビルド

Source-to-Image (S2I) は再現可能なコンテナーイメージをビルドするためのツールです。これはアプ
リケーションソースをコンテナーイメージに挿入し、新規イメージをアセンブルして実行可能なイメー
ジを生成します。新規イメージはベースイメージ、ビルダーおよびビルドされたソースを組み込

OpenShift Container Platform 4.12 Builds

4

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

み、buildah run コマンドで使用することができます。S2I は増分ビルドをサポートします。これは以
前にダウンロードされた依存関係や、以前にビルドされたアーティファクトなどを再利用します。

1.1.3. カスタムビルド

カスタムビルドストラテジーにより、開発者はビルドプロセス全体を対象とする特定のビルダーイメー
ジを定義できます。独自のビルダーイメージを使用することにより、ビルドプロセスをカスタマイズで
きます。

カスタムビルダーイメージは、RPM またはベースイメージの構築など、ビルドプロセスのロジックに
組み込まれるプレーンなコンテナーイメージです。

カスタムビルドは高いレベルの権限で実行されるため、デフォルトではユーザーが利用することはでき
ません。クラスター管理者のパーミッションを持つ信頼できるユーザーのみにカスタムビルドを実行す
るためのアクセスが付与される必要があります。

1.1.4. パイプラインビルド

重要

パイプラインビルドストラテジーは OpenShift Container Platform 4 では非推奨になり
ました。同等の機能および改善機能は、Tekton をベースとする OpenShift Container
Platform Pipeline にあります。

OpenShift Container Platform の Jenkins イメージは完全にサポートされており、ユー
ザーは Jenkins ユーザーのドキュメントに従ってジョブで jenkinsfile を定義するか、こ
れをソースコントロール管理システムに保存します。

開発者は、パイプラインビルドストラテジーを利用して Jenkins パイプラインプラグインで使用できる
ように Jenkins パイプラインを定義することができます。このビルドについては、他のビルドタイプの
場合と同様に OpenShift Container Platform での起動、モニタリング、管理が可能です。

パイプラインワークフローは、ビルド設定に直接組み込むか、Git リポジトリーに配置してビルド設定
で参照して jenkinsfile で定義します。

第1章 イメージビルドについて

5

第2章 ビルド設定について
以下のセクションでは、ビルド、ビルド設定の概念を定義し、利用できる主なビルドストラテジーの概
要を示します。

2.1. BUILDCONFIG

ビルド設定は、単一のビルド定義と新規ビルドを作成するタイミングに関するトリガーセットを記述し
ます。ビルド設定は BuildConfig で定義されます。BuildConfig は、新規インスタンスを作成するため
に API サーバーへの POST で使用可能な REST オブジェクトのことです。

ビルド設定または BuildConfig は、ビルドストラテジーと 1 つまたは複数のソースを特徴としていま
す。ストラテジーはプロセスを決定し、ソースは入力内容を提供します。

OpenShift Container Platform を使用したアプリケーションの作成方法の選択に応じて Web コンソール
または CLI のいずれを使用している場合でも、BuildConfig は通常自動的に作成され、いつでも編集で
きます。BuildConfig を設定する部分や利用可能なオプションを理解しておくと、後に設定を手動で変
更する場合に役立ちます。

以下の BuildConfig の例では、コンテナーイメージのタグやソースコードが変更されるたびに新規ビル
ドが作成されます。

BuildConfig のオブジェクト定義

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: "ruby-sample-build" 1
spec:
 runPolicy: "Serial" 2
 triggers: 3
 -
 type: "GitHub"
 github:
 secret: "secret101"
 - type: "Generic"
 generic:
 secret: "secret101"
 -
 type: "ImageChange"
 source: 4
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy: 5
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"
 output: 6
 to:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 postCommit: 7
 script: "bundle exec rake test"

OpenShift Container Platform 4.12 Builds

6

1

2

3

4

5

6

7

この仕様は、ruby-sample-build という名前の新規の BuildConfig を作成します。

runPolicy フィールドは、このビルド設定に基づいて作成された builds を同時に実行できるかどう
かを制御します。デフォルトの値は Serial です。これは新規 builds が同時にではなく、順番に実
行されることを意味します。

新規ビルドを作成するトリガーのリストを指定できます。

source セクションでは、ビルドのソースを定義します。ソースの種類は入力の主なソースを決定
し、Git (コードのリポジトリーの場所を参照)、Dockerfile (インラインの Dockerfile からビルド)
または Binary (バイナリーペイロードを受け入れる) のいずれかとなっています。複数のソースを
一度に指定できます。詳細は、各ソースタイプのドキュメントを参照してください。

strategy セクションでは、ビルドの実行に使用するビルドストラテジーを記述します。ここでは
Source、Docker または Custom ストラテジーを指定できます。上記の例では、Source-to-
image (S2I) がアプリケーションのビルドに使用する ruby-20-centos7 コンテナーイメージを使用
します。

コンテナーイメージが正常にビルドされた後に、これは output セクションで記述されているリポ
ジトリーにプッシュされます。

postCommit セクションは、オプションのビルドフックを定義します。

第2章 ビルド設定について

7

第3章 ビルド入力の作成
以下のセクションでは、ビルド入力の概要、builds の動作に使用するソースコンテンツを提供するため
の入力の使用方法、およびビルド環境の使用およびシークレットの作成方法を説明します。

3.1. ビルド入力

ビルド入力は、ビルドが動作するために必要なソースコンテンツを提供します。以下のビルド入力を使
用して OpenShift Container Platform でソースを提供します。以下に優先される順で記載します。

インラインの Dockerfile 定義

既存イメージから抽出したコンテンツ

Git リポジトリー

バイナリー (ローカル) 入力

入力シークレット

外部アーティファクト

複数の異なる入力を単一のビルドにまとめることができます。インラインの Dockerfile が優先されるた
め、別の入力で指定される Dockerfile という名前の他のファイルは上書きされます。バイナリー (ロー
カル) 入力および Git リポジトリーは併用できません。

入力シークレットは、ビルド時に使用される特定のリソースや認証情報をビルドで生成される最終アプ
リケーションイメージで使用不可にする必要がある場合や、シークレットリソースで定義される値を使
用する必要がある場合に役立ちます。外部アーティファクトは、他のビルド入力タイプのいずれとして
も利用できない別のファイルをプルする場合に使用できます。

ビルドを実行すると、以下が行われます。

1. 作業ディレクトリーが作成され、すべての入力内容がその作業ディレクトリーに配置されま
す。たとえば、入力 Git リポジトリーのクローンはこの作業ディレクトリーに作成され、入力
イメージから指定されたファイルはターゲットのパスを使用してこの作業ディレクトリーにコ
ピーされます。

2. ビルドプロセスによりディレクトリーが contextDir に変更されます (定義されている場合)。

3. インライン Dockerfile がある場合は、現在のディレクトリーに書き込まれます。

4. 現在の作業ディレクトリーにある内容が Dockerfile、カスタムビルダーのロジック、または
assemble スクリプトが参照するビルドプロセスに提供されます。つまり、ビルドでは
contextDir 内にない入力コンテンツは無視されます。

以下のソース定義の例には、複数の入力タイプと、入力タイプの統合方法の説明が含まれています。そ
れぞれの入力タイプの定義方法に関する詳細は、各入力タイプに関する個別のセクションを参照してく
ださい。

source:
 git:
 uri: https://github.com/openshift/ruby-hello-world.git 1
 ref: "master"
 images:
 - from:

OpenShift Container Platform 4.12 Builds

8

1

2

3

4

1

作業ディレクトリーにクローンされるビルド用のリポジトリー

myinputimage の /usr/lib/somefile.jar は、<workingdir>/app/dir/injected/dir に保存されます。

ビルドの作業ディレクトリーは <original_workingdir>/app/dir になります。

このコンテンツを含む Dockerfile は <original_workingdir>/app/dir に作成され、この名前が指定
された既存ファイルは上書きされます。

3.2. DOCKERFILE ソース

dockerfile の値が指定されると、このフィールドの内容は、dockerfile という名前のファイルとして
ディスクに書き込まれます。これは、他の入力ソースが処理された後に実行されるので、入力ソースリ
ポジトリーのルートディレクトリーに Dockerfile が含まれる場合は、これはこの内容で上書きされま
す。

ソースの定義は BuildConfig の spec セクションに含まれます。

dockerfile フィールドには、ビルドされるインライン Dockerfile が含まれます。

関連情報

このフィールドは、通常は Dockerfile を docker ストラテジービルドに指定するために使用され
ます。

3.3. イメージソース

追加のファイルは、イメージを使用してビルドプロセスに渡すことができます。インプットイメージは
From および To イメージターゲットが定義されるのと同じ方法で参照されます。つまり、コンテナー
イメージとイメージストリームタグの両方を参照できます。イメージとの関連で、1 つまたは複数のパ
スのペアを指定して、ファイルまたはディレクトリーのパスを示し、イメージと宛先をコピーしてビル
ドコンテキストに配置する必要があります。

ソースパスは、指定したイメージ内の絶対パスで指定してください。宛先は、相対ディレクトリーパス
でなければなりません。ビルド時に、イメージは読み込まれ、指定のファイルおよびディレクトリーは
ビルドプロセスのコンテキストディレクトリーにコピーされます。これは、ソースリポジトリーのコン
テンツのクローンが作成されるディレクトリーと同じです。ソースパスの末尾は /. であり、ディレクト
リーのコンテンツがコピーされますが、ディレクトリー自体は宛先で作成されません。

イメージの入力は、BuildConfig の source の定義で指定します。

 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace
 paths:
 - destinationDir: app/dir/injected/dir 2
 sourcePath: /usr/lib/somefile.jar
 contextDir: "app/dir" 3
 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 4

source:
 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 1

第3章 ビルド入力の作成

9

1

2

3

4

5

6

1 つ以上のインプットイメージおよびファイルの配列

コピーされるファイルが含まれるイメージへの参照

ソース/宛先パスの配列

ビルドプロセスで対象のファイルにアクセス可能なビルドルートへの相対パス

参照イメージの中からコピーするファイルの場所

認証情報がインプットイメージにアクセスするのに必要な場合に提供されるオプションのシーク
レット

注記

クラスターが ImageContentSourcePolicy オブジェクトを使用してリポジトリー
のミラーリングを設定する場合、ミラーリングされたレジストリーにグローバルプ
ルシークレットのみを使用できます。プロジェクトにプルシークレットを追加する
ことはできません。

プルシークレットを必要とするイメージ

プルシークレットを必要とするインプットイメージを使用する場合には、プルシークレットをビルドで
使用されるサービスアカウントにリンクできます。デフォルトで、builds は builder サービスアカウン
トを使用します。シークレットにインプットイメージをホストするリポジトリーに一致する認証情報が
含まれる場合、プルシークレットはビルドに自動的に追加されます。プルシークレットをビルドで使用
されるサービスアカウントにリンクするには、以下を実行します。

注記

source:
 git:
 uri: https://github.com/openshift/ruby-hello-world.git
 ref: "master"
 images: 1
 - from: 2
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace
 paths: 3
 - destinationDir: injected/dir 4
 sourcePath: /usr/lib/somefile.jar 5
 - from:
 kind: ImageStreamTag
 name: myotherinputimage:latest
 namespace: myothernamespace
 pullSecret: mysecret 6
 paths:
 - destinationDir: injected/dir
 sourcePath: /usr/lib/somefile.jar

$ oc secrets link builder dockerhub

OpenShift Container Platform 4.12 Builds

10

1

2

3

注記

この機能は、カスタムストラテジーを使用する builds をサポートしません。

プルシークレットを必要とするミラーリングされたレジストリーのイメージ

ミラーリングされたレジストリーからインプットイメージを使用する場合、build error: failed to pull
image メッセージが表示される場合、以下のいずれかの方法を使用してエラーを解決できます。

ビルダーイメージのリポジトリーおよびすべての既知のミラーの認証情報が含まれる入力シー
クレットを作成します。この場合、イメージレジストリーおよびそのミラーに対する認証情報
のプルシークレットを作成します。

入力シークレットを BuildConfig オブジェクトのプルシークレットとして使用します。

3.4. GIT ソース

ソースコードは、指定されている場合は指定先の場所からフェッチされます。

インラインの Dockerfile を指定する場合は、これにより Git リポジトリーの contextDir 内にある
Dockerfile が上書きされます。

ソースの定義は BuildConfig の spec セクションに含まれます。

git フィールドには、ソースコードのリモート Git リポジトリーへの URI (Uniform Resource
Identifier) が含まれます。特定の Git リファレンスをチェックアウトするには、ref フィールドの
値を指定する必要があります。SHA1 タグまたはブランチ名は、ref として有効です。ref フィール
ドのデフォルト値は master です。

contextDir フィールドでは、ビルドがアプリケーションのソースコードを検索する、ソースコー
ドのリポジトリー内のデフォルトの場所を上書きできます。アプリケーションがサブディレクト
リーに存在する場合には、このフィールドを使用してデフォルトの場所 (root フォルダー) を上書
きすることができます。

オプションの dockerfile フィールドがある場合は、Dockerfile を含む文字列を指定してくださ
い。この文字列は、ソースリポジトリーに存在する可能性のある Dockerfile を上書きします。

ref フィールドにプル要求が記載されている場合には、システムは git fetch 操作を使用して
FETCH_HEAD をチェックアウトします。

ref の値が指定されていない場合は、OpenShift Container Platform はシャロークローン (--depth=1) を
実行します。この場合、デフォルトのブランチ (通常は master) での最新のコミットに関連するファイ
ルのみがダウンロードされます。これにより、リポジトリーのダウンロード時間が短縮されます (詳細
のコミット履歴はありません)。指定リポジトリーのデフォルトのブランチで完全な git clone を実行す
るには、ref をデフォルトのブランチ名に設定します (例: main)。

source:
 git: 1
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"
 contextDir: "app/dir" 2
 dockerfile: "FROM openshift/ruby-22-centos7\nUSER example" 3

第3章 ビルド入力の作成

11

警告

中間者 (MITM) TLS ハイジャックまたはプロキシーされた接続の再暗号化を実行す
るプロキシーを通過する Git クローンの操作は機能しません。

3.4.1. プロキシーの使用

プロキシーの使用によってのみ Git リポジトリーにアクセスできる場合は、使用するプロキシーをビル
ド設定の source セクションで定義できます。HTTP および HTTPS プロキシーの両方を設定できま
す。いずれのフィールドもオプションです。NoProxy フィールドで、プロキシーを実行しないドメイ
ンを指定することもできます。

注記

実際に機能させるには、ソース URI で HTTP または HTTPS プロトコルを使用する必要
があります。

注記

Pipeline ストラテジー builds の場合には、現在 Jenkins の Git プラグインに制約があるの
で、Git プラグインを使用する Git の操作では BuildConfig に定義された HTTP または
HTTPS プロキシーは使用されません。Git プラグインは、Jenkins UI の Plugin Manager
パネルで設定されたプロキシーのみを使用します。どのジョブであっても、Jenkins 内の
Git のすべての対話にはこのプロキシーが使用されます。

関連情報

Jenkins UI でのプロキシーの設定方法は、JenkinsBehindProxy を参照してください。

3.4.2. ソースクローンのシークレット

ビルダー Pod には、ビルドのソースとして定義された Git リポジトリーへのアクセスが必要です。ソー
スクローンのシークレットは、ビルダー Pod に対し、プライベートリポジトリーや自己署名証明書ま
たは信頼されていない SSL 証明書が設定されたリポジトリーなどの通常アクセスできないリポジト
リーへのアクセスを提供するために使用されます。

以下は、サポートされているソースクローンのシークレット設定です。

.gitconfig ファイル

Basic 認証



source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
 noProxy: somedomain.com, otherdomain.com

OpenShift Container Platform 4.12 Builds

12

https://wiki.jenkins-ci.org/display/JENKINS/JenkinsBehindProxy

SSH キー認証

信頼されている認証局

注記

特定のニーズに対応するために、これらの設定の組み合わせを使用することもできま
す。

3.4.2.1. ソースクローンシークレットのビルド設定への自動追加

BuildConfig が作成されると、OpenShift Container Platform はソースクローンのシークレット参照を
自動生成します。この動作により、追加の設定なしに、作成されるビルドが参照されるシークレットに
保存された認証情報を自動的に使用できるようになり、リモート Git リポジトリーに対する認証が可能
になります。

この機能を使用するには、Git リポジトリーの認証情報を含むシークレットが BuildConfig が後に作成
される namespace になければなりません。このシークレットには、接頭辞 build.openshift.io/source-
secret-match-uri- で開始するアノテーション 1 つ以上含まれている必要もあります。これらの各アノ
テーションの値には、以下で定義される URI (Uniform Resource Identifier) パターンを使用します。こ
れは以下のように定義されます。ソースクローンのシークレット参照なしに BuildConfig が作成され、
Git ソースの URI がシークレットのアノテーションの URI パターンと一致する場合に、OpenShift
Container Platform はそのシークレットへの参照を BuildConfig に自動的に挿入します。

前提条件

URI パターンには以下を含める必要があります。

有効なスキーム: *://、git://、http://、https:// または ssh://

ホスト: *` または有効なホスト名、あるいは *. が先頭に指定された IP アドレス

パス: /* または、/ の後に * 文字などの文字がオプションで後に続きます。

上記のいずれの場合でも、* 文字はワイルドカードと見なされます。

重要

URI パターンは、RFC3986 に準拠する Git ソースの URI と一致する必要があります。
URI パターンにユーザー名 (またはパスワード) のコンポーネントを含ないようにしてく
ださい。

たとえば、Git リポジトリーの URL に
ssh://git@bitbucket.atlassian.com:7999/ATLASSIAN jira.git を使用する場合に、ソー
スのシークレットは、ssh://bitbucket.atlassian.com:7999/* として指定する必要があり
ます (ssh://git@bitbucket.atlassian.com:7999/* ではありません)。

手順

複数のシークレットが特定の BuildConfig の Git URI と一致する場合は、OpenShift Container

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=ssh://bitbucket.atlassian.com:7999/*'

第3章 ビルド入力の作成

13

https://www.ietf.org/rfc/rfc3986.txt

複数のシークレットが特定の BuildConfig の Git URI と一致する場合は、OpenShift Container
Platform は一致する文字列が一番長いシークレットを選択します。これは、以下の例のように基本的な
上書きを許可します。

以下の部分的な例では、ソースクローンのシークレットの一部が 2 つ表示されています。1 つ目は、
HTTPS がアクセスする mycorp.com ドメイン内のサーバーに一致しており、2 つ目は
mydev1.mycorp.com および mydev2.mycorp.com のサーバーへのアクセスを上書きします。

以下のコマンドを使用して、build.openshift.io/source-secret-match-uri- アノテーションを既
存のシークレットに追加します。

3.4.2.2. ソースクローンシークレットの手動による追加

ソースクローンのシークレットは、ビルド設定に手動で追加できます。sourceSecret フィールドを
BuildConfig 内の source セクションに追加してから、作成したシークレットの名前に設定して実行で
きます。この例では basicsecret です。

kind: Secret
apiVersion: v1
metadata:
 name: matches-all-corporate-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://*.mycorp.com/*
data:
 ...

kind: Secret
apiVersion: v1
metadata:
 name: override-for-my-dev-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://mydev1.mycorp.com/*
 build.openshift.io/source-secret-match-uri-2: https://mydev2.mycorp.com/*
data:
 ...

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=https://*.mycorp.com/*'

apiVersion: "build.openshift.io/v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"
 source:
 git:
 uri: "https://github.com/user/app.git"
 sourceSecret:
 name: "basicsecret"
 strategy:
 sourceStrategy:

OpenShift Container Platform 4.12 Builds

14

手順

oc set build-secret コマンドを使用して、既存のビルド設定にソースクローンのシークレットを設定す
ることも可能です。

既存のビルド設定にソースクローンシークレットを設定するには、以下のコマンドを実行しま
す。

3.4.2.3. .gitconfig ファイルからのシークレットの作成

アプリケーションのクローンが .gitconfig ファイルに依存する場合、そのファイルが含まれるシーク
レットを作成できます。これをビルダーサービスアカウントおよび BuildConfig に追加します。

手順

.gitconfig ファイルからシークレットを作成するには、以下を実行します。

注記

.gitconfig ファイルの http セクションが sslVerify=false に設定されている場合は、SSL
検証をオフにすることができます。

3.4.2.4. セキュリティー保護された Git の .gitconfig ファイルからのシークレットの作成

Git サーバーが 2 方向の SSL、ユーザー名とパスワードでセキュリティー保護されている場合には、
ソースビルドに証明書ファイルを追加して、.gitconfig ファイルに証明書ファイルへの参照を追加する
必要があります。

前提条件

Git 認証情報が必要です。

手順

ソースビルドに証明書ファイルを追加して、.gitconfig ファイルに証明書ファイルへの参照を追加しま
す。

1. client.crt、cacert.crt、および client.key ファイルをアプリケーションソースコードの
/var/run/secrets/openshift.io/source/ フォルダーに追加します。

2. サーバーの .gitconfig ファイルに、以下のように [http] セクションを追加します。

 from:
 kind: "ImageStreamTag"
 name: "python-33-centos7:latest"

$ oc set build-secret --source bc/sample-build basicsecret

$ oc create secret generic <secret_name> --from-file=<path/to/.gitconfig>

[http]
 sslVerify=false

第3章 ビルド入力の作成

15

1

2

出力例

3. シークレットを作成します。

ユーザーの Git ユーザー名

このユーザーのパスワード

重要

パスワードを再度入力しなくてもよいように、builds に Source-to-Image (S2I) イメージ
を指定するようにしてください。ただし、リポジトリーをクローンできない場合には、
ビルドをプロモートするためにユーザー名とパスワードを指定する必要があります。

関連情報

アプリケーションソースコードの /var/run/secrets/openshift.io/source/ フォルダー。

3.4.2.5. ソースコードの基本的な認証からのシークレットの作成

Basic 認証では、SCM (software configuration management) サーバーに対して認証する場合に --
username と --password の組み合わせ、またはトークンが必要です。

前提条件

プライベートリポジトリーにアクセスするためのユーザー名およびパスワード。

手順

1. シークレットを先に作成してから、プライベートリポジトリーにアクセスするために --
username および --password を使用してください。

cat .gitconfig

[user]
 name = <name>
 email = <email>
[http]
 sslVerify = false
 sslCert = /var/run/secrets/openshift.io/source/client.crt
 sslKey = /var/run/secrets/openshift.io/source/client.key
 sslCaInfo = /var/run/secrets/openshift.io/source/cacert.crt

$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \ 1
--from-literal=password=<password> \ 2
--from-file=.gitconfig=.gitconfig \
--from-file=client.crt=/var/run/secrets/openshift.io/source/client.crt \
--from-file=cacert.crt=/var/run/secrets/openshift.io/source/cacert.crt \
--from-file=client.key=/var/run/secrets/openshift.io/source/client.key

$ oc create secret generic <secret_name> \

OpenShift Container Platform 4.12 Builds

16

1

2. トークンで Basic 認証のシークレットを作成します。

3.4.2.6. ソースコードの SSH キー認証からのシークレットの作成

SSH キーベースの認証では、プライベート SSH キーが必要です。

リポジトリーのキーは通常 $HOME/.ssh/ ディレクトリーにあり、デフォルトで
id_dsa.pub、id_ecdsa.pub、id_ed25519.pub、または id_rsa.pub という名前が付けられています。

手順

1. SSH キーの認証情報を生成します。

注記

SSH キーのパスフレーズを作成すると、OpenShift Container Platform でビルド
ができなくなります。パスフレーズを求めるプロンプトが出されても、ブランク
のままにします。

パブリックキーと、それに対応するプライベートキーのファイルが 2 つ作成されます
(id_dsa、id_ecdsa、id_ed25519 または id_rsa のいずれか)。これらが両方設定されたら、パ
ブリックキーのアップロード方法について、ソースコントロール管理 (SCM) システムのマニュ
アルを参照してください。プライベートキーは、プライベートリポジトリーにアクセスするた
めに使用されます。

2. SSH キーを使用してプライベートリポジトリーにアクセスする前に、シークレットを作成しま
す。

オプション: このフィールドを追加すると、厳密なサーバーホストキーチェックが有効に
なります。

 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --type=kubernetes.io/basic-auth

$ oc create secret generic <secret_name> \
 --from-literal=password=<token> \
 --type=kubernetes.io/basic-auth

$ ssh-keygen -t ed25519 -C "your_email@example.com"

$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/known_hosts> \ 1
 --type=kubernetes.io/ssh-auth

第3章 ビルド入力の作成

17

1

警告

シークレットの作成中に known_hosts ファイルをスキップすると、ビル
ドが中間者 (MITM) 攻撃を受ける可能性があります。

注記

known_hosts ファイルにソースコードのホストのエントリーが含まれているこ
とを確認してください。

3.4.2.7. ソースコードの信頼されている認証局からのシークレットの作成

Git clone の操作時に信頼される TLS (Transport Layer Security) 認証局 (CA) のセットは OpenShift
Container Platform インフラストラクチャーイメージにビルドされます。Git サーバーが自己署名の証
明書を使用するか、イメージで信頼されていない認証局によって署名された証明書を使用する場合に
は、その証明書が含まれるシークレットを作成するか、TLS 検証を無効にしてください。

CA 証明書のシークレットを作成した場合に、OpenShift Container Platform はその証明書を使用し
て、Git clone 操作時に Git サーバーにアクセスします。存在する TLS 証明書をどれでも受け入れてし
まう Git の SSL 検証の無効化に比べ、この方法を使用するとセキュリティーレベルが高くなります。

手順

CA 証明書ファイルでシークレットを作成します。

1. CA が中間認証局を使用する場合には、ca.crt ファイルにすべての CA の証明書を統合します。
以下のコマンドを入力します。

a. シークレットを作成します。

ca.crt というキーの名前を使用する必要があります。

3.4.2.8. ソースシークレットの組み合わせ

特定のニーズに対応するために上記の方法を組み合わせてソースクローンのシークレットを作成するこ
とができます。

3.4.2.8.1. .gitconfig ファイルでの SSH ベースの認証シークレットの作成

SSH ベースの認証シークレットと .gitconfig ファイルなど、特定のニーズに応じてソースクローンシー
クレットを作成するための複数の異なる方法を組み合わせることができます。

前提条件

SSH 認証



$ cat intermediateCA.crt intermediateCA.crt rootCA.crt > ca.crt

$ oc create secret generic mycert --from-file=ca.crt=</path/to/file> 1

OpenShift Container Platform 4.12 Builds

18

.gitconfig ファイル

手順

.gitconfig ファイルを使用して SSH ベースの認証シークレットを作成するには、以下を実行し
ます。

3.4.2.8.2. .gitconfig ファイルと CA 証明書を組み合わせるシークレットの作成

.gitconfig ファイルおよび認証局 (CA) 証明書を組み合わせるシークレットなど、特定のニーズに応じ
てソースクローンシークレットを作成するための複数の異なる方法を組み合わせることができます。

前提条件

.gitconfig ファイル

CA 証明書

手順

.gitconfig ファイルと CA 証明書を組み合わせてシークレットを作成するには、以下を実行しま
す。

3.4.2.8.3. CA 証明書ファイルを使用した Basic 認証のシークレットの作成

Basic 認証および CA (certificate authority) 証明書を組み合わせるシークレットなど、特定のニーズに
応じてソースクローンシークレットを作成するための複数の異なる方法を組み合わせることができま
す。

前提条件

Basic 認証の認証情報

CA 証明書

手順

CA 証明書ファイルを使用して Basic 認証のシークレットを作成し、以下を実行します。

$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/.gitconfig> \
 --type=kubernetes.io/ssh-auth

$ oc create secret generic <secret_name> \
 --from-file=ca.crt=<path/to/certificate> \
 --from-file=<path/to/.gitconfig>

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=ca-cert=</path/to/file> \
 --type=kubernetes.io/basic-auth

第3章 ビルド入力の作成

19

3.4.2.8.4. .gitconfig ファイルを使用した Basic 認証シークレットの作成

Basic 認証および .gitconfig ファイルを組み合わせるシークレットなど、特定のニーズに応じてソース
クローンシークレットを作成するための複数の異なる方法を組み合わせることができます。

前提条件

Basic 認証の認証情報

.gitconfig ファイル

手順

.gitconfig ファイルで Basic 認証のシークレットを作成するには、以下を実行します。

3.4.2.8.5. .gitconfig ファイルと CA 証明書を使用した Basic 認証シークレットの作成

Basic 認証、.gitconfig ファイルおよび CA 証明書を組み合わせるシークレットなど、特定のニーズに応
じてソースクローンシークレットを作成するための複数の異なる方法を組み合わせることができます。

前提条件

Basic 認証の認証情報

.gitconfig ファイル

CA 証明書

手順

.gitconfig ファイルと CA 証明書ファイルを合わせて Basic 認証シークレットを作成するには、
以下を実行します。

3.5. バイナリー (ローカル) ソース

ローカルのファイルシステムからビルダーにコンテンツをストリーミングすることは、Binary タイプ
のビルドと呼ばれています。この builds に関する BuildConfig.spec.source.type の対応する値は
Binary です。

このソースタイプは、oc start-build のみをベースとして使用される点で独特なタイプです。

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --type=kubernetes.io/basic-auth

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --from-file=ca-cert=</path/to/file> \
 --type=kubernetes.io/basic-auth

OpenShift Container Platform 4.12 Builds

20

注記

バイナリータイプの builds では、ローカルファイルシステムからコンテンツをストリー
ミングする必要があります。そのため、バイナリータイプの builds を自動的にトリガー
すること (例: イメージの変更トリガーなど) はできません。これは、バイナリーファイル
を提供することができないためです。同様に、Web コンソールからバイナリータイプの
builds を起動することはできません。

バイナリー builds を使用するには、以下のオプションのいずれかを指定して oc start-build を呼び出し
ます。

--from-file: 指定したファイルのコンテンツはバイナリーストリームとしてビルダーに送信され
ます。ファイルに URL を指定することもできます。次に、ビルダーはそのデータをビルドコン
テキストの上に、同じ名前のファイルに保存します。

--from-dir および --from-repo: コンテンツはアーカイブされて、バイナリーストリームとして
バイナリーに送信されます。次に、ビルダーはビルドコンテキストディレクトリー内にアーカ
イブのコンテンツをデプロイメントします。--from-dir を使用して、デプロイメントされる
アーカイブに URL を指定することもできます。

--from-archive: 指定したアーカイブはビルダーに送信され、ビルドコンテキストディレクト
リーにデプロイメントされます。このオプションは --from-dir と同様に動作しますが、このオ
プションの引数がディレクトリーの場合には常にアーカイブがホストに最初に作成されます。

上記のそれぞれの例では、以下のようになります。

BuildConfig に Binary のソースタイプが定義されている場合には、これは事実上無視され、ク
ライアントが送信する内容に置き換えられます。

BuildConfig に Git のソースタイプが定義されている場合には、Binary と Git は併用できない
ので、動的に無効にされます。この場合、ビルダーに渡されるバイナリーストリームのデータ
が優先されます。

ファイル名ではなく、HTTP または HTTPS スキーマを使用する URL を --from-file や --from-archive
に渡すことができます。--from-file で URL を指定すると、ビルダーイメージのファイル名は Web サー
バーが送信する Content-Disposition ヘッダーか、ヘッダーがない場合には URL パスの最後のコン
ポーネントによって決定されます。認証形式はどれもサポートされておらず、カスタムの TLS 証明書
を使用したり、証明書の検証を無効にしたりできません。

oc new-build --binary=true を使用すると、バイナリー builds に関連する制約が実施されるようになり
ます。作成される BuildConfig のソースタイプは Binary になります。つまり、この BuildConfig のビ
ルドを実行するための唯一の有効な方法は、--from オプションのいずれかを指定して oc start-build を
使用し、必須のバイナリーデータを提供する方法になります。

Dockerfile および contextDir のソースオプションは、バイナリー builds に関して特別な意味を持ちま
す。

Dockerfile はバイナリービルドソースと合わせて使用できます。Dockerfile を使用し、バイナリースト
リームがアーカイブの場合には、そのコンテンツはアーカイブにある Dockerfile の代わりとして機能し
ます。Dockerfile が --from-file の引数と合わせて使用されている場合には、ファイルの引数は
Dockerfile となり、Dockerfile の値はバイナリーストリームの値に置き換わります。

バイナリーストリームがデプロイメントされたアーカイブのコンテンツをカプセル化する場合に
は、contextDir フィールドの値はアーカイブ内のサブディレクトリーと見なされます。有効な場合に
は、ビルド前にビルダーがサブディレクトリーに切り替わります。

第3章 ビルド入力の作成

21

1

2

3

3.6. 入力シークレットおよび CONFIG MAP

重要

入力シークレットおよび config map のコンテンツがビルドの出力コンテナーイメージに
表示されないようにするには、Docker build と source-to-image build ストラテジーでビ
ルドボリュームを使用します。

シナリオによっては、ビルド操作で、依存するリソースにアクセスするための認証情報や他の設定デー
タが必要になる場合がありますが、この情報をソースコントロールに配置するのは適切ではありませ
ん。この場合は、入力シークレットおよび入力 config map を定義することができます。

たとえば、Maven を使用して Java アプリケーションをビルドする場合、プライベートキーを使用して
アクセスされる Maven Central または JCenter のプライベートミラーをセットアップできます。そのプ
ライベートミラーからライブラリーをダウンロードするには、以下を指定する必要があります。

1. ミラーの URL および接続の設定が含まれる settings.xml ファイル。

2. ~/.ssh/id_rsa などの、設定ファイルで参照されるプライベートキー。

セキュリティー上の理由により、認証情報はアプリケーションイメージで公開しないでください。

以下の例は Java アプリケーションを説明していますが、/etc/ssl/certs ディレクトリー、API キーまた
はトークン、ラインセンスファイルなどに SSL 証明書を追加する場合に同じ方法を使用できます。

3.6.1. シークレットの概要

Secret オブジェクトタイプはパスワード、OpenShift Container Platform クライアント設定ファイ
ル、dockercfg ファイル、プライベートソースリポジトリーの認証情報などの機密情報を保持するメカ
ニズムを提供します。シークレットは機密内容を Pod から切り離します。シークレットはボリューム
プラグインを使用してコンテナーにマウントすることも、システムが Pod の代わりにシークレットを
使用して各種アクションを実行することもできます。

YAML シークレットオブジェクト定義

シークレットにキー名および値の構造を示しています。

data フィールドでキーに使用できる形式は、Kubernetes identifiers glossary の
DNS_SUBDOMAIN 値のガイドラインに従う必要があります。

data マップのキーに関連付けられる値は base64 でエンコーディングされている必要がありま
す。

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace
type: Opaque 1
data: 2
 username: <username> 3
 password: <password>
stringData: 4
 hostname: myapp.mydomain.com 5

OpenShift Container Platform 4.12 Builds

22

4

5

す。

stringData マップのエントリーが base64 に変換され、このエントリーは自動的に data マップに
移動します。このフィールドは書き込み専用です。値は data フィールドによってのみ返されま
す。

stringData マップのキーに関連付けられた値は単純なテキスト文字列で構成されます。

3.6.1.1. シークレットのプロパティー

キーのプロパティーには以下が含まれます。

シークレットデータはその定義とは別に参照できます。

シークレットデータのボリュームは一時ファイルストレージ機能 (tmpfs) でサポートされ、
ノードで保存されることはありません。

シークレットデータは namespace 内で共有できます。

3.6.1.2. シークレットの種類

type フィールドの値で、シークレットのキー名と値の構造を指定します。このタイプを使用して、
シークレットオブジェクトにユーザー名とキーの配置を実行できます。検証の必要がない場合には、デ
フォルト設定の opaque タイプを使用してください。

以下のタイプから 1 つ指定して、サーバー側で最小限の検証をトリガーし、シークレットデータに固有
のキー名が存在することを確認します。

kubernetes.io/service-account-token。サービスアカウントトークンを使用します。

kubernetes.io/dockercfg.必須の Docker 認証には .dockercfg ファイルを使用します。

kubernetes.io/dockerconfigjson.必須の Docker 認証には .docker/config.json ファイルを使
用します。

kubernetes.io/basic-auth.Basic 認証で使用します。

kubernetes.io/ssh-auth.SSH キー認証で使用します。

kubernetes.io/tls.TLS 認証局で使用します。

検証の必要がない場合には type= Opaque と指定します。これは、シークレットがキー名または値の規
則に準拠しないという意味です。opaque シークレットでは、任意の値を含む、体系化されていない
key:value ペアも利用できます。

注記

example.com/my-secret-type などの他の任意のタイプを指定できます。これらのタイ
プはサーバー側では実行されませんが、シークレットの作成者がその種類のキー/値の要
件に従う意図があることを示します。

3.6.1.3. シークレットの更新

シークレットの値を変更する場合、すでに実行されている Pod で使用される値は動的に変更されませ

第3章 ビルド入力の作成

23

シークレットの値を変更する場合、すでに実行されている Pod で使用される値は動的に変更されませ
ん。シークレットを変更するには、元の Pod を削除してから新規の Pod を作成する必要があります
(同じ PodSpec を使用する場合があります)。

シークレットの更新は、新規コンテナーイメージのデプロイと同じワークフローで実行されま
す。kubectl rolling-update コマンドを使用できます。

シークレットの resourceVersion 値は参照時に指定されません。したがって、シークレットが Pod の
起動と同じタイミングで更新される場合、Pod に使用されるシークレットのバージョンは定義されませ
ん。

注記

現時点で、Pod の作成時に使用されるシークレットオブジェクトのリソースバージョン
を確認することはできません。コントローラーが古い resourceVersion を使用して Pod
を再起動できるように、Pod がこの情報を報告できるようにすることが予定されていま
す。それまでは既存シークレットのデータを更新せずに別の名前で新規のシークレット
を作成します。

3.6.2. シークレットの作成

シークレットに依存する Pod を作成する前に、シークレットを作成する必要があります。

シークレットの作成時に以下を実行します。

シークレットデータでシークレットオブジェクトを作成します。

Pod のサービスアカウントをシークレットの参照を許可するように更新します。

シークレットを環境変数またはファイルとして使用する Pod を作成します (secret ボリューム
を使用)。

手順

作成コマンドを使用して JSON または YAML ファイルのシークレットオブジェクトを作成でき
ます。

たとえば、ローカルの .docker/config.json ファイルからシークレットを作成できます。

このコマンドにより、dockerhub という名前のシークレットの JSON 仕様が生成され、オブ
ジェクトが作成されます。

YAML の不透明なシークレットオブジェクトの定義

$ oc create -f <filename>

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

apiVersion: v1
kind: Secret
metadata:
 name: mysecret

OpenShift Container Platform 4.12 Builds

24

1

1

2

opaque シークレットを指定します。

Docker 設定の JSON ファイルシークレットオブジェクトの定義

シークレットが docker 設定の JSON ファイルを使用することを指定します。

docker 設定 JSON ファイルを base64 でエンコードした出力

3.6.3. シークレットの使用

シークレットの作成後に、Pod を作成してシークレットを参照し、ログを取得し、Pod を削除すること
ができます。

手順

1. シークレットを参照する Pod を作成します。

2. ログを取得します。

3. Pod を削除します。

関連情報

シークレットデータを含む YAML ファイルのサンプル

4 つのファイルを作成する YAML シークレット

type: Opaque 1
data:
 username: <username>
 password: <password>

apiVersion: v1
kind: Secret
metadata:
 name: aregistrykey
 namespace: myapps
type: kubernetes.io/dockerconfigjson 1
data:

.dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cg
YXV0aCBrZXlzCg== 2

$ oc create -f <your_yaml_file>.yaml

$ oc logs secret-example-pod

$ oc delete pod secret-example-pod

apiVersion: v1
kind: Secret

第3章 ビルド入力の作成

25

1

2

3

4

デコードされる値が含まれるファイル

デコードされる値が含まれるファイル

提供される文字列が含まれるファイル

提供されるデータが含まれるファイル

シークレットデータと共にボリュームのファイルが設定された Pod の YAML

シークレットデータと共に環境変数が設定された Pod の YAML

metadata:
 name: test-secret
data:
 username: <username> 1
 password: <password> 2
stringData:
 hostname: myapp.mydomain.com 3
 secret.properties: |- 4
 property1=valueA
 property2=valueB

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts:
 # name must match the volume name below
 - name: secret-volume
 mountPath: /etc/secret-volume
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "export"]
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR

OpenShift Container Platform 4.12 Builds

26

シークレットデータと環境変数を設定するビルド設定の YAML

3.6.4. 入力シークレットおよび設定マップの追加

認証情報およびその他の設定データをソース管理に配置せずにビルドに提供するには、入力シークレッ
トおよび入力 config map を定義します。

シナリオによっては、ビルド操作で、依存するリソースにアクセスするための認証情報や他の設定デー
タが必要になる場合があります。この情報をソース管理に配置せずに利用可能にするには、入力シーク
レットおよび入力 config map を定義します。

手順

既存の BuildConfig オブジェクトに入力シークレットおよび/または設定マップを追加するには、以下
を行います。

1. ConfigMap オブジェクトがない場合はこれを作成します。

これにより、settings-mvn という名前の新しい設定マップが作成されます。これには、
settings.xml ファイルのプレーンテキストのコンテンツが含まれます。

ヒント

 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username
 restartPolicy: Never

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username

$ oc create configmap settings-mvn \
 --from-file=settings.xml=<path/to/settings.xml>

第3章 ビルド入力の作成

27

ヒント

または、以下の YAML を適用して設定マップを作成できます。

2. Secret オブジェクトがない場合はこれを作成します。

これにより、secret-mvn という名前の新規シークレットが作成されます。 これには、 id_rsa
プライベートキーの base64 でエンコードされたコンテンツが含まれます。

ヒント

または、以下の YAML を適用して入力シークレットを作成できます。

3. 設定マップおよびシークレットを既存の BuildConfig オブジェクトの source セクションに追
加します。

シークレットおよび設定マップを新規の BuildConfig オブジェクトに追加するには、以下のコマンドを
実行します。

apiVersion: core/v1
kind: ConfigMap
metadata:
 name: settings-mvn
data:
 settings.xml: |
 <settings>
 … # Insert maven settings here
 </settings>

$ oc create secret generic secret-mvn \
 --from-file=ssh-privatekey=<path/to/.ssh/id_rsa>
 --type=kubernetes.io/ssh-auth

apiVersion: core/v1
kind: Secret
metadata:
 name: secret-mvn
type: kubernetes.io/ssh-auth
data:
 ssh-privatekey: |
 # Insert ssh private key, base64 encoded

source:
 git:
 uri: https://github.com/wildfly/quickstart.git
 contextDir: helloworld
 configMaps:
 - configMap:
 name: settings-mvn
 secrets:
 - secret:
 name: secret-mvn

OpenShift Container Platform 4.12 Builds

28

ビルド時に、settings.xml および id_rsa ファイルはソースコードが配置されているディレクトリーに
コピーされます。OpenShift Container Platform S2I ビルダーイメージでは、これはイメージの作業
ディレクトリーで、 Dockerfile の WORKDIR の指示を使用して設定されます。別のディレクトリーを
指定するには、 destinationDir を定義に追加します。

新規の BuildConfig オブジェクトの作成時に、宛先のディレクトリーを指定することも可能です。

いずれの場合も、settings.xml ファイルがビルド環境の ./.m2 ディレクトリーに追加され、id_rsa キー
は ./.ssh ディレクトリーに追加されます。

3.6.5. Source-to-Image ストラテジー

Source ストラテジーを使用すると、定義された入力シークレットはすべて、適切な destinationDir に
コピーされます。destinationDir を空にすると、シークレットはビルダーイメージの作業ディレクト
リーに配置されます。

destinationDir が相対パスの場合に同じルールが使用されます。シークレットは、イメージの作業ディ
レクトリーに相対的なパスに配置されます。destinationDir パスの最終ディレクトリーは、ビルダーイ
メージにない場合に作成されます。destinationDir の先行するすべてのディレクトリーは存在している
必要があり、そうでない場合にはエラーが生じます。

注記

入力シークレットは全ユーザーに書き込み権限が割り当てられた状態で追加され (0666
のパーミッション)、assemble スクリプトの実行後には、サイズが 0 になるように切り
捨てられます。つまり、シークレットファイルは作成されたイメージ内に存在します
が、セキュリティーの理由で空になります。

入力 config map は、assemble スクリプトの実行後に切り捨てられません。

$ oc new-build \
 openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \
 --context-dir helloworld --build-secret “secret-mvn” \
 --build-config-map "settings-mvn"

source:
 git:
 uri: https://github.com/wildfly/quickstart.git
 contextDir: helloworld
 configMaps:
 - configMap:
 name: settings-mvn
 destinationDir: ".m2"
 secrets:
 - secret:
 name: secret-mvn
 destinationDir: ".ssh"

$ oc new-build \
 openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \
 --context-dir helloworld --build-secret “secret-mvn:.ssh” \
 --build-config-map "settings-mvn:.m2"

第3章 ビルド入力の作成

29

3.6.6. Docker ストラテジー

docker ストラテジーを使用すると、Dockerfile で ADD および COPY の命令 を使用してコンテナーイ
メージに定義されたすべての入力シークレットを追加できます。

シークレットの destinationDir を指定しない場合は、ファイルは、Dockerfile が配置されているのと同
じディレクトリーにコピーされます。相対パスを destinationDir として指定する場合は、シークレット
は、Dockerfile の場所と相対的なディレクトリーにコピーされます。これにより、ビルド時に使用する
コンテキストディレクトリーの一部として、Docker ビルド操作でシークレットファイルが利用できる
ようになります。

シークレットおよび config map データを参照する Dockerfile の例

FROM centos/ruby-22-centos7

USER root
COPY ./secret-dir /secrets
COPY ./config /

Create a shell script that will output secrets and ConfigMaps when the image is run
RUN echo '#!/bin/sh' > /input_report.sh
RUN echo '(test -f /secrets/secret1 && echo -n "secret1=" && cat /secrets/secret1)' >>
/input_report.sh
RUN echo '(test -f /config && echo -n "relative-configMap=" && cat /config)' >> /input_report.sh
RUN chmod 755 /input_report.sh

CMD ["/bin/sh", "-c", "/input_report.sh"]

重要

通常はシークレットがイメージから実行するコンテナーに置かれないように、入力シー
クレットを最終的なアプリケーションイメージから削除します。ただし、シークレット
は追加される階層のイメージ自体に存在します。この削除は、Dockerfile の一部として
組み込まれます。

入力シークレットおよび config map のコンテンツがビルド出力コンテナーイメージに表
示されないようにして、この削除プロセスを完全に回避するには、代わりに Docker ビル
ドストラテジーで ビルドボリュームを使用 します。

3.6.7. カスタムストラテジー

Custom ストラテジーを使用する場合、定義された入力シークレットおよび config map はすべ
て、/var/run/secrets/openshift.io/build ディレクトリー内のビルダーコンテナーで入手できます。カス
タムのビルドイメージは、これらのシークレットおよび config map を適切に使用する必要がありま
す。Custom ストラテジーでは、Custom ストラテジーのオプションで説明されているようにシーク
レットを定義できます。

既存のストラテジーのシークレットと入力シークレットには違いはありません。ただし、ビルダーイ
メージはこれらを区別し、ビルドのユースケースに基づいてこれらを異なる方法で使用する場合があり
ます。

入力シークレットは常に /var/run/secrets/openshift.io/build ディレクトリーにマウントされます。そ
うでない場合には、ビルダーが完全なビルドオブジェクトを含む $BUILD 環境変数を解析できます。

重要

OpenShift Container Platform 4.12 Builds

30

https://docs.docker.com/engine/reference/builder/#add
https://docs.docker.com/engine/reference/builder/#copy

重要

レジストリーのプルシークレットが namespace とノードの両方に存在する場合、ビルド
がデフォルトで namespace でのプルシークレットの使用に設定されます。

3.7. 外部アーティファクト

ソースリポジトリーにバイナリーファイルを保存することは推奨していません。そのため、ビルドプロ
セス中に追加のファイル (Java .jar の依存関係など) をプルするビルドを定義する必要がある場合があ
ります。この方法は、使用するビルドストラテジーにより異なります。

Source ビルドストラテジーの場合は、assemble スクリプトに適切なシェルコマンドを設定する必要が
あります。

.s2i/bin/assemble ファイル

.s2i/bin/run ファイル

Docker ビルドストラテジーの場合は、Dockerfile を変更して、RUN 命令 を指定してシェルコマンドを
呼び出す必要があります。

Dockerfile の抜粋

実際には、ファイルの場所の環境変数を使用し、Dockerfile または assemble スクリプトを更新するの
ではなく、BuildConfig で定義した環境変数で、ダウンロードする特定のファイルをカスタマイズする
ことができます。

環境変数の定義には複数の方法があり、いずれかの方法を選択できます。

.s2i/environment ファイルの使用 (ソースビルドストラテジーのみ)

BuildConfig での設定

oc start-build --env を使用した明示的な指定 (手動でトリガーされるビルドのみが対象)

3.8. プライベートレジストリーでの DOCKER 認証情報の使用

プライベートコンテナーレジストリーの有効な認証情報を指定して、.docker/config.json ファイルで

#!/bin/sh
APP_VERSION=1.0
wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

#!/bin/sh
exec java -jar app.jar

FROM jboss/base-jdk:8

ENV APP_VERSION 1.0
RUN wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

EXPOSE 8080
CMD ["java", "-jar", "app.jar"]

第3章 ビルド入力の作成

31

https://docs.docker.com/engine/reference/builder/#run

1

2

3

4

5

builds を提供できます。これにより、プライベートコンテナーイメージレジストリーにアウトプットイ
メージをプッシュしたり、認証を必要とするプライベートコンテナーイメージレジストリーからビル
ダーイメージをプルすることができます。

同じレジストリー内に、レジストリーパスに固有の認証情報を指定して、複数のリポジトリーに認証情
報を指定できます。

注記

OpenShift Container Platform コンテナーイメージレジストリーでは、OpenShift
Container Platform が自動的にシークレットを生成するので、この作業は必要ありませ
ん。

デフォルトでは、.docker/config.json ファイルはホームディレクトリーにあり、以下の形式となって
います。

レジストリーの URL

暗号化されたパスワード

ログイン用のメールアドレス

namespace 内の特定イメージの URL および認証情報

レジストリー namespace の URL および認証情報

複数のコンテナーイメージレジストリーを定義するか、同じレジストリーに複数のリポジトリーを定義
することができます。または docker login コマンドを実行して、このファイルに認証エントリーを追
加することも可能です。ファイルが存在しない場合には作成されます。

Kubernetes では Secret オブジェクトが提供され、これを使用して設定とパスワードを保存することが
できます。

前提条件

.docker/config.json ファイルが必要です。

手順

1. ローカルの .docker/config.json ファイルからシークレットを作成します。

auths:
 index.docker.io/v1/: 1
 auth: "YWRfbGzhcGU6R2labnRib21ifTE=" 2
 email: "user@example.com" 3
 docker.io/my-namespace/my-user/my-image: 4
 auth: "GzhYWRGU6R2fbclabnRgbkSp=""
 email: "user@example.com"
 docker.io/my-namespace: 5
 auth: "GzhYWRGU6R2deesfrRgbkSp=""
 email: "user@example.com"

OpenShift Container Platform 4.12 Builds

32

このコマンドにより、dockerhub という名前のシークレットの JSON 仕様が生成され、オブ
ジェクトが作成されます。

2. pushSecret フィールドを BuildConfig の output セクションに追加し、作成した secret の名
前 (上記の例では、dockerhub) に設定します。

oc set build-secret コマンドを使用して、ビルド設定にプッシュするシークレットを設定しま
す。

pushSecret フィールドを指定する代わりに、プッシュシークレットをビルドで使用される
サービスアカウントにリンクできます。デフォルトで、builds は builder サービスアカウント
を使用します。シークレットにビルドのアウトプットイメージをホストするリポジトリーに一
致する認証情報が含まれる場合、プッシュシークレットはビルドに自動的に追加されます。

3. ビルドストラテジー定義に含まれる pullSecret を指定して、プライベートコンテナーイメージ
レジストリーからビルダーコンテナーイメージをプルします。

oc set build-secret コマンドを使用して、ビルド設定でプルシークレットを設定します。

注記

以下の例では、ソールビルドに pullSecret を使用しますが、Docker とカスタム
builds にも該当します。

pullSecret フィールドを指定する代わりに、プルシークレットをビルドで使用されるサービス
アカウントにリンクできます。デフォルトで、builds は builder サービスアカウントを使用し

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

spec:
 output:
 to:
 kind: "DockerImage"
 name: "private.registry.com/org/private-image:latest"
 pushSecret:
 name: "dockerhub"

$ oc set build-secret --push bc/sample-build dockerhub

$ oc secrets link builder dockerhub

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "docker.io/user/private_repository"
 pullSecret:
 name: "dockerhub"

$ oc set build-secret --pull bc/sample-build dockerhub

第3章 ビルド入力の作成

33

ます。シークレットにビルドのインプットイメージをホストするリポジトリーに一致する認証
情報が含まれる場合、プルシークレットはビルドに自動的に追加されます。pullSecret フィー
ルドを指定する代わりに、プルシークレットをビルドで使用されるサービスアカウントにリン
クするには、以下を実行します。

注記

この機能を使用するには、from イメージを BuildConfig 仕様に指定する必要が
あります。oc new-build または oc new-app で生成される Docker ストラテ
ジービルドは、場合によってこれを実行しない場合があります。

3.9. ビルド環境

Pod 環境変数と同様に、ビルドの環境変数は Downward API を使用して他のリソースや変数の参照とし
て定義できます。ただし、いくつかは例外があります。

oc set env コマンドで、BuildConfig に定義した環境変数を管理することも可能です。

注記

参照はコンテナーの作成前に解決されるため、ビルド環境変数の valueFrom を使用した
コンテナーリソースの参照はサポートされません。

3.9.1. 環境変数としてのビルドフィールドの使用

ビルドオブジェクトの情報は、値を取得するフィールドの JsonPath に、fieldPath 環境変数のソース
を設定することで挿入できます。

注記

Jenkins Pipeline ストラテジーは、環境変数の valueFrom 構文をサポートしません。

手順

値を取得するフィールドの JsonPath に、fieldPath 環境変数のソースを設定します。

3.9.2. 環境変数としてのシークレットの使用

valueFrom 構文を使用して、シークレットからのキーの値を環境変数として利用できます。

重要

$ oc secrets link builder dockerhub

env:
 - name: FIELDREF_ENV
 valueFrom:
 fieldRef:
 fieldPath: metadata.name

OpenShift Container Platform 4.12 Builds

34

重要

この方法では、シークレットをビルド Pod コンソールの出力でプレーンテキストとして
表示します。これを回避するには、代わりに入力シークレットおよび config map を使用
します。

手順

シークレットを環境変数として使用するには、valueFrom 構文を設定します。

関連情報

入力シークレットおよび config map

3.10. サービス提供証明書のシークレット

サービスが提供する証明書のシークレットは、追加設定なしの証明書を必要とする複雑なミドルウェア
アプリケーションをサポートするように設計されています。これにはノードおよびマスターの管理者
ツールで生成されるサーバー証明書と同じ設定が含まれます。

手順

サービスとの通信のセキュリティーを保護するには、クラスターが署名された提供証明書/キーペアを
namespace のシークレットに生成できるようにします。

値をシークレットに使用する名前に設定し、service.beta.openshift.io/serving-cert-secret-
name アノテーションをサービスに設定します。
次に、PodSpec はそのシークレットをマウントできます。これが利用可能な場合、Pod が実行
されます。この証明書は内部サービス DNS 名、<service.name>.<service.namespace>.svc
に適しています。

証明書およびキーは PEM 形式であり、それぞれ tls.crt および tls.key に保存されます。証明
書/キーのペアは有効期限に近づくと自動的に置換されます。シークレットの
service.beta.openshift.io/expiry アノテーションで RFC3339 形式の有効期限の日付を確認し
ます。

注記

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: MYVAL
 valueFrom:
 secretKeyRef:
 key: myval
 name: mysecret

第3章 ビルド入力の作成

35

注記

ほとんどの場合、サービス DNS 名 <service.name>.<service.namespace>.svc は外部
にルーティング可能ではありません。<service.name>.<service.namespace>.svc の主
な使用方法として、クラスターまたはサービス間の通信用として、re-encrypt ルートで
使用されます。

他の Pod は Pod に自動的にマウントされる /var/run/secrets/kubernetes.io/serviceaccount/service-
ca.crt ファイルの認証局 (CA) バンドルを使用して、クラスターで作成される証明書 (内部 DNS 名の場
合にのみ署名される) を信頼できます。

この機能の署名アルゴリズムは x509.SHA256WithRSA です。ローテーションを手動で実行するには、
生成されたシークレットを削除します。新規の証明書が作成されます。

3.11. シークレットの制限

シークレットを使用するには、Pod がシークレットを参照できる必要があります。シークレットは、以
下の 3 つの方法で Pod で使用されます。

コンテナーの環境変数を事前に設定するために使用される。

1 つ以上のコンテナーにマウントされるボリュームのファイルとして使用される。

Pod のイメージをプルする際に kubelet によって使用される。

ボリュームタイプのシークレットは、ボリュームメカニズムを使用してデータをファイルとしてコンテ
ナーに書き込みます。imagePullSecrets は、シークレットを namespace のすべての Pod に自動的に
挿入するためにサービスアカウントを使用します。

テンプレートにシークレット定義が含まれる場合、テンプレートで指定のシークレットを使用できるよ
うにするには、シークレットのボリュームソースを検証し、指定されるオブジェクト参照が Secret タ
イプのオブジェクトを実際に参照していることを確認できる必要があります。そのため、シークレット
はこれに依存する Pod の作成前に作成されている必要があります。最も効果的な方法として、サービ
スアカウントを使用してシークレットを自動的に挿入することができます。

シークレット API オブジェクトは namespace にあります。それらは同じ namespace の Pod によって
のみ参照されます。

個々のシークレットは 1MB のサイズに制限されます。これにより、apiserver および kubelet メモリー
を使い切るような大規模なシークレットの作成を防ぐことができます。ただし、小規模なシークレット
であってもそれらを数多く作成するとメモリーの消費につながります。

OpenShift Container Platform 4.12 Builds

36

第4章 ビルド出力の管理
ビルド出力の概要およびビルド出力の管理方法に関する説明は、以下のセクションを使用します。

4.1. ビルド出力

docker または Source-to-Image (S2I) ストラテジーを使用するビルドにより、新しいコンテナーイメー
ジが作成されます。このイメージは、Build 仕様の output セクションで指定されているコンテナーイ
メージのレジストリーにプッシュされます。

出力の種類が ImageStreamTag の場合は、イメージが統合された OpenShift イメージレジストリーに
プッシュされ、指定のイメージストリームにタグ付けされます。出力が DockerImage タイプの場合
は、出力参照の名前が docker のプッシュ仕様として使用されます。この仕様にレジストリーが含まれ
る場合もありますが、レジストリーが指定されていない場合は、DockerHub にデフォルト設定されま
す。ビルド仕様の出力セクションが空の場合には、ビルドの最後にイメージはプッシュされません。

ImageStreamTag への出力

docker のプッシュ仕様への出力

4.2. アウトプットイメージの環境変数

docker および Source-to-Image (S2I) ストラテジービルドは、以下の環境変数をアウトプットイメージ
に設定します。

変数 説明

OPENSHIFT_BUILD_NAME ビルドの名前

OPENSHIFT_BUILD_NAMESPACE ビルドの namespace

OPENSHIFT_BUILD_SOURCE ビルドのソース URL

OPENSHIFT_BUILD_REFERENCE ビルドで使用する Git 参照

OPENSHIFT_BUILD_COMMIT ビルドで使用するソースコミット

また、S2I] または docker ストラテジーオプションなどで設定されたユーザー定義の環境変数も、アウ

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"

spec:
 output:
 to:
 kind: "DockerImage"
 name: "my-registry.mycompany.com:5000/myimages/myimage:tag"

第4章 ビルド出力の管理

37

また、S2I] または docker ストラテジーオプションなどで設定されたユーザー定義の環境変数も、アウ
トプットイメージの環境変数リストの一部になります。

4.3. アウトプットイメージのラベル

docker および Source-to-Image (S2I) ビルドは、以下のラベルをアウトプットイメージに設定します。

ラベル 説明

io.openshift.build.commit.author ビルドで使用するソースコミットの作成者

io.openshift.build.commit.date ビルドで使用するソースコミットの日付

io.openshift.build.commit.id ビルドで使用するソースコミットのハッシュ

io.openshift.build.commit.message ビルドで使用するソースコミットのメッセージ

io.openshift.build.commit.ref ソースに指定するブランチまたは参照

io.openshift.build.source-location ビルドのソース URL

BuildConfig.spec.output.imageLabels フィールドを使用して、カスタムラベルのリストを指定するこ
とも可能です。 このラベルは、ビルド設定の各イメージビルドに適用されます。

ビルドイメージに適用されるカスタムラベル

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "my-image:latest"
 imageLabels:
 - name: "vendor"
 value: "MyCompany"
 - name: "authoritative-source-url"
 value: "registry.mycompany.com"

OpenShift Container Platform 4.12 Builds

38

第5章 ビルドストラテジーの使用
以下のセクションでは、主なサポートされているビルドストラテジー、およびそれらの使用方法を定義
します。

5.1. DOCKER ビルド

OpenShift Container Platform は Buildah を使用して Dockerfile からコンテナーイメージをビルドしま
す。Dockerfile を使用したコンテナーイメージのビルドの詳細は、Dockerfile リファレンスドキュメン
ト を参照してください。

ヒント

buildArgs 配列を使用して Docker ビルド引数を設定する場合は、Dockerfile リファレンスドキュメン
トの ARG および FROM の対話方法 について参照してください。

5.1.1. Dockerfile FROM イメージの置き換え

Dockerfile の FROM 命令は、BuildConfig オブジェクトの from に置き換えられます。Dockerfile がマ
ルチステージビルドを使用する場合、最後の FROM 命令のイメージを置き換えます。

手順

Dockerfile の FROM 命令は、BuildConfig の from に置き換えられます。

5.1.2. Dockerfile パスの使用

デフォルトで、docker ビルドは、BuildConfig.spec.source.contextDir フィールドで指定されたコン
テキストのルートに配置されている Dockerfile を使用します。

dockerfilePath フィールドでは、ビルドが異なるパスを使用して Dockerfile ファイルの場所
(BuildConfig.spec.source.contextDir フィールドへの相対パス) を特定できます。デフォルトの
Dockerfile (例: MyDockerfile) とは異なるファイル名や、サブディレクトリーにある Dockerfile へのパ
ス (例: dockerfiles/app1/Dockerfile) を設定できます。

手順

ビルドが Dockerfile を見つけるために異なるパスを使用できるように dockerfilePath フィールドを使
用するには、以下を設定します。

5.1.3. docker 環境変数の使用

環境変数を docker ビルドプロセスおよび結果として生成されるイメージで利用可能にするには、環境

strategy:
 dockerStrategy:
 from:
 kind: "ImageStreamTag"
 name: "debian:latest"

strategy:
 dockerStrategy:
 dockerfilePath: dockerfiles/app1/Dockerfile

第5章 ビルドストラテジーの使用

39

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

環境変数を docker ビルドプロセスおよび結果として生成されるイメージで利用可能にするには、環境
変数をビルド設定の dockerStrategy 定義に追加できます。

ここに定義した環境変数は、Dockerfile 内で後に参照できるよう単一の ENV Dockerfile 命令として
FROM 命令の直後に挿入されます。

手順

変数はビルド時に定義され、アウトプットイメージに残るため、そのイメージを実行するコンテナーに
も存在します。

たとえば、ビルドやランタイム時にカスタムの HTTP プロキシーを定義するには以下を設定します。

oc set env コマンドで、ビルド設定に定義した環境変数を管理することも可能です。

5.1.4. docker ビルド引数の追加

buildArgs 配列を使用して、docker ビルド引数 を設定できます。ビルド引数は、ビルドの開始時に
docker に渡されます。

ヒント

Dockerfile リファレンスドキュメントの Understand how ARG and FROM interact を参照してくださ
い。

手順

docker ビルドの引数を設定するには、以下のように buildArgs 配列にエントリーを追加します。これ
は、BuildConfig オブジェクトの dockerStrategy 定義の中にあります。以下に例を示します。

注記

name および value フィールドのみがサポートされます。valueFrom フィールドの設定
は無視されます。

5.1.5. docker ビルドによる層の非表示

Docker ビルドは通常、Dockerfile のそれぞれの命令を表す層を作成します。imageOptimizationPolicy
を SkipLayers に設定することにより、すべての命令がベースイメージ上部の単一層にマージされま
す。

手順

dockerStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

dockerStrategy:
...
 buildArgs:
 - name: "foo"
 value: "bar"

OpenShift Container Platform 4.12 Builds

40

https://docs.docker.com/engine/reference/builder/#arg
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

手順

imageOptimizationPolicy を SkipLayers に設定します。

5.1.6. ビルドボリュームの使用

ビルドボリュームをマウントして、実行中のビルドに、アウトプットコンテナーイメージで永続化しな
い情報にアクセスできます。

ビルドボリュームは、ビルド時にビルド環境や設定が必要なリポジトリーの認証情報など、機密情報の
みを提供します。ビルドボリュームは、データが出力コンテナーイメージに保持される ビルド入力 と
は異なります。

実行中のビルドがデータを読み取るビルドボリュームのマウントポイントは機能的に pod volume
mounts に似ています。

前提条件

入力シークレット、設定マップ、またはその両方を BuildConfig オブジェクトに追加してい
る。

手順

BuildConfig オブジェクトの dockerStrategy 定義で、ビルドボリュームを volumes 配列に追
加します。以下に例を示します。

strategy:
 dockerStrategy:
 imageOptimizationPolicy: SkipLayers

spec:
 dockerStrategy:
 volumes:
 - name: secret-mvn 1
 mounts:
 - destinationPath: /opt/app-root/src/.ssh 2
 source:
 type: Secret 3
 secret:
 secretName: my-secret 4
 - name: settings-mvn 5
 mounts:
 - destinationPath: /opt/app-root/src/.m2 6
 source:
 type: ConfigMap 7
 configMap:
 name: my-config 8
 - name: my-csi-volume 9
 mounts:
 - destinationPath: /opt/app-root/src/some_path 10
 source:
 type: CSI 11
 csi:
 driver: csi.sharedresource.openshift.io 12

第5章 ビルドストラテジーの使用

41

https://kubernetes.io/docs/concepts/storage/volumes/

1 5 9

2 6 10

3 7 11

4 8

12

13

14

1

必須。一意な名前

必須。マウントポイントの絶対パス。.. または : を含めないでください。こうすること
で、ビルダーが生成した宛先パスと競合しなくなります。/opt/app-root/src は、多く

の Red Hat S2I 対応イメージのデフォルトのホームディレクトリーです。

必須。ソースのタイプは、ConfigMap、Secret、または CSI。

必須。ソースの名前。

必須。一時 CSI ボリュームを提供するドライバー。

必須。この値は true に設定する必要があります。読み取り専用ボリュームを提供しま
す。

オプション:一時 CSI ボリュームのボリューム属性。サポートされる属性キーおよび値につ
いては、CSI ドライバーのドキュメントを参照してください。

注記

共有リソース CSI ドライバーは、テクノロジープレビュー機能としてサポートされてい
ます。

5.2. SOURCE-TO-IMAGE ビルド

Source-to-Image (S2I) は再現可能なコンテナーイメージをビルドするためのツールです。これはアプ
リケーションソースをコンテナーイメージに挿入し、新規イメージをアセンブルして実行可能なイメー
ジを生成します。新規イメージはベースイメージ、ビルダーおよびビルドされたソースを組み込
み、buildah run コマンドで使用することができます。S2I は増分ビルドをサポートします。これは以
前にダウンロードされた依存関係や、以前にビルドされたアーティファクトなどを再利用します。

5.2.1. Source-to-Image (S2I) 増分ビルドの実行

Source-to-Image (S2I) は増分ビルドを実行できます。つまり、以前にビルドされたイメージからアー
ティファクトが再利用されます。

手順

増分ビルドを作成するには、ストラテジー定義に以下の変更を加えてこれを作成します。

増分ビルドをサポートするイメージを指定します。この動作がサポートされているか判断
するには、ビルダーイメージのドキュメントを参照してください。

 readOnly: true 13
 volumeAttributes: 14
 attribute: value

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "incremental-image:latest" 1
 incremental: true 2

OpenShift Container Platform 4.12 Builds

42

2

1

このフラグでは、増分ビルドを試行するかどうかを制御します。ビルダーイメージで増分
ビルドがサポートされていない場合は、ビルドは成功しますが、save-artifacts スクリプ

関連情報

増分ビルドをサポートするビルダーイメージを作成する方法の詳細は、S2I 要件を参照してく
ださい。

5.2.2. Source-to-Image (S2I) ビルダーイメージスクリプトの上書き

ビルダーイメージによって提供される assemble、run、および save-artifacts Source-to-Image (S2I)
スクリプトを上書きできます。

手順

ビルダーイメージによって提供される assemble、run、および save-artifacts S2I スクリプトを上書き
するには、以下のいずれかを実行します。

アプリケーションのソースリポジトリーの .s2i/bin ディレクトリーに assemble、run、 また
は save-artifacts スクリプトを指定します。

ストラテジー定義の一部として、スクリプトを含むディレクトリーの URL を指定します。以下
に例を示します。

このパスに、run、assemble、および save-artifacts が追加されます。一部または全スク
リプトがある場合、そのスクリプトが、イメージに指定された同じ名前のスクリプトの代
わりに使用されます。

注記

scripts URL にあるファイルは、ソースリポジトリーの .s2i/bin にあるファイルよりも優
先されます。

5.2.3. Source-to-Image 環境変数

ソースビルドのプロセスと生成されるイメージで環境変数を利用できるようにする方法として、2 つの
方法があります。2 種類 (環境ファイルおよび BuildConfig 環境の値の使用) あります。指定される変数
は、ビルドプロセスでアウトプットイメージに表示されます。

5.2.3.1. Source-to-Image 環境ファイルの使用

ソースビルドでは、ソースリポジトリーの .s2i/environment ファイルに指定することで、アプリケー
ション内に環境の値 (1 行に 1 つ) を設定できます。このファイルに指定される環境変数は、ビルドプロ
セス時にアウトプットイメージに表示されます。

ソースリポジトリーに .s2i/environment ファイルを渡すと、Source-to-Image (S2I) はビルド時にこの

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "builder-image:latest"
 scripts: "http://somehost.com/scripts_directory" 1

第5章 ビルドストラテジーの使用

43

ソースリポジトリーに .s2i/environment ファイルを渡すと、Source-to-Image (S2I) はビルド時にこの
ファイルを読み取ります。これにより assemble スクリプトがこれらの変数を使用できるので、ビルド
の動作をカスタマイズできます。

手順

たとえば、ビルド中の Rails アプリケーションのアセットコンパイルを無効にするには、以下を実行し
ます。

DISABLE_ASSET_COMPILATION=true を .s2i/environment ファイルに追加します。

ビルド以外に、指定の環境変数も実行中のアプリケーション自体で利用できます。たとえば、Rails ア
プリケーションが production ではなく development モードで起動できるようにするには、以下を実
行します。

RAILS_ENV=development を .s2i/environment ファイルに追加します。

サポートされる環境変数の完全なリストは、各イメージのイメージの使用に関するセクションを参照し
てください。

5.2.3.2. Source-to-Image ビルド設定環境の使用

環境変数をビルド設定の sourceStrategy 定義に追加できます。ここに定義されている環境変数
は、assemble スクリプトの実行時に表示され、アウトプットイメージで定義されるので、run スクリ
プトやアプリケーションコードでも利用できるようになります。

手順

たとえば、Rails アプリケーションのアセットコンパイルを無効にするには、以下を実行しま
す。

関連情報

ビルド環境のセクションでは、より詳細な説明を提供します。

oc set env コマンドで、ビルド設定に定義した環境変数を管理することも可能です。

5.2.4. Source-to-Image ソースファイルを無視する

Source-to-Image (S2I) は .s2iignore ファイルをサポートします。これには、無視する必要のあるファ
イルパターンのリストが含まれます。このファイルには、無視すべきファイルパターンのリストが含ま
れます。.s2iignore ファイルにあるパターンと一致する、さまざまな入力ソースで提供されるビルドの
作業ディレクトリーにあるファイルは assemble スクリプトでは利用できません。

5.2.5. Source-to-Image によるソースコードからのイメージの作成

Source-to-Image (S2I) は、アプリケーションのソースコードを入力として取り、アセンブルされたア

sourceStrategy:
...
 env:
 - name: "DISABLE_ASSET_COMPILATION"
 value: "true"

OpenShift Container Platform 4.12 Builds

44

Source-to-Image (S2I) は、アプリケーションのソースコードを入力として取り、アセンブルされたア
プリケーションを出力として実行する新規イメージを生成するイメージを簡単に作成できるようにする
フレームワークです。

再生成可能なコンテナーイメージのビルドに S2I を使用する主な利点として、開発者の使い勝手の良さ
が挙げられます。ビルダーイメージの作成者は、イメージが最適な S2I パフォーマンスを実現できるよ
うに、ビルドプロセスと S2I スクリプトの基本的なコンセプト 2 点を理解する必要があります。

5.2.5.1. Source-to-Image ビルドプロセスについて

ビルドプロセスは次の 3 つの基本要素で構成されます。これらを組み合わせて最終的なコンテナーイ
メージが作成されます。

ソース

Source-to-Image (S2I) スクリプト

ビルダーイメージ

S2I は、最初の FROM 命令として、ビルダーイメージで Dockerfile を生成します。S2I によって生成さ
れる Dockerfile は Buildah に渡されます。

5.2.5.2. Source-to-Image スクリプトの作成方法

Source-to-Image (S2I) スクリプトは、ビルダーイメージ内でスクリプトを実行できる限り、どのプロ
グラム言語でも記述できます。S2I は assemble/run/save-artifacts スクリプトを提供する複数のオプ
ションをサポートします。ビルドごとに、これらの場所はすべて、以下の順番にチェックされます。

1. ビルド設定に指定されるスクリプト

2. アプリケーションソースの .s2i/bin ディレクトリーにあるスクリプト

3. io.openshift.s2i.scripts-url ラベルを含むデフォルトの URL にあるスクリプト

イメージで指定した io.openshift.s2i.scripts-url ラベルも、ビルド設定で指定したスクリプトも、以下
の形式のいずれかを使用します。

image:///path_to_scripts_dir: S2I スクリプトが配置されているディレクトリーへのイメージ内
の絶対パス。

file:///path_to_scripts_dir: S2I スクリプトが配置されているディレクトリーへのホスト上の相
対パスまたは絶対パス。

http(s)://path_to_scripts_dir: S2I スクリプトが配置されているディレクトリーの URL。

表5.1 S2I スクリプト

スクリプト 説明

第5章 ビルドストラテジーの使用

45

assemble assemble スクリプトは、ソースからアプリケーションアーティファクトをビ
ルドし、イメージ内の適切なディレクトリーに配置します。このスクリプトが
必要です。このスクリプトのワークフローは以下のとおりです。

1. オプション: ビルドのアーティファクトを復元します。増分ビルドを
サポートする必要がある場合、save-artifacts も定義するようにして
ください (オプション)。

2. 任意の場所に、アプリケーションソースを配置します。

3. アプリケーションのアーティファクトをビルドします。

4. 実行に適した場所に、アーティファクトをインストールします。

run run スクリプトはアプリケーションを実行します。このスクリプトが必要で
す。

save-artifacts save-artifacts スクリプトは、次に続くビルドプロセスを加速できるようにす
べての依存関係を収集します。このスクリプトはオプションです。以下に例を
示します。

Ruby の場合は、Bundler でインストールされる gems

Java の場合は、.m2 のコンテンツ

これらの依存関係は tar ファイルに集められ、標準出力としてストリーミング
されます。

usage usage スクリプトでは、ユーザーに、イメージの正しい使用方法を通知しま
す。このスクリプトはオプションです。

スクリプト 説明

OpenShift Container Platform 4.12 Builds

46

test/run test/run スクリプトでは、イメージが正しく機能しているかどうかを確認する
ためのプロセスを作成できます。このスクリプトはオプションです。このプロ
セスの推奨フローは以下のとおりです。

1. イメージをビルドします。

2. イメージを実行して usage スクリプトを検証します。

3. s2i build を実行して assemble スクリプトを検証します。

4. オプション: 再度 s2i build を実行して、save-artifacts と
assemble スクリプトの保存、復元アーティファクト機能を検証しま
す。

5. イメージを実行して、テストアプリケーションが機能していることを
確認します。

注記

test/run スクリプトでビルドしたテストアプリケーションを
配置するための推奨される場所は、イメージリポジトリーの
test/test-app ディレクトリーです。

スクリプト 説明

S2I スクリプトの例

以下の S2I スクリプトの例は Bash で記述されています。それぞれの例では、tar の内容は /tmp/s2i
ディレクトリーにデプロイメントされることが前提とされています。

assemble スクリプト:

run スクリプト:

#!/bin/bash

restore build artifacts
if ["$(ls /tmp/s2i/artifacts/ 2>/dev/null)"]; then
 mv /tmp/s2i/artifacts/* $HOME/.
fi

move the application source
mv /tmp/s2i/src $HOME/src

build application artifacts
pushd ${HOME}
make all

install the artifacts
make install
popd

#!/bin/bash

第5章 ビルドストラテジーの使用

47

save-artifacts スクリプト:

usage スクリプト:

関連情報

S2I イメージ作成のチュートリアル

5.2.6. ビルドボリュームの使用

ビルドボリュームをマウントして、実行中のビルドに、アウトプットコンテナーイメージで永続化しな
い情報にアクセスできます。

ビルドボリュームは、ビルド時にビルド環境や設定が必要なリポジトリーの認証情報など、機密情報の
みを提供します。ビルドボリュームは、データが出力コンテナーイメージに保持される ビルド入力 と
は異なります。

実行中のビルドがデータを読み取るビルドボリュームのマウントポイントは機能的に pod volume
mounts に似ています。

前提条件

入力シークレット、設定マップ、またはその両方を BuildConfig オブジェクトに追加してい
る。

手順

BuildConfig オブジェクトの sourceStrategy 定義で、ビルドボリュームを volumes 配列に追
加します。以下に例を示します。

run the application
/opt/application/run.sh

#!/bin/bash

pushd ${HOME}
if [-d deps]; then
 # all deps contents to tar stream
 tar cf - deps
fi
popd

#!/bin/bash

inform the user how to use the image
cat <<EOF
This is a S2I sample builder image, to use it, install
https://github.com/openshift/source-to-image
EOF

spec:
 sourceStrategy:
 volumes:

OpenShift Container Platform 4.12 Builds

48

https://blog.openshift.com/create-s2i-builder-image/
https://kubernetes.io/docs/concepts/storage/volumes/

1 5 9

2 6 10

3 7 11

4 8

12

13

14

必須。一意な名前

必須。マウントポイントの絶対パス。.. または : を含めないでください。こうすることで、ビ
ルダーが生成した宛先パスと競合しなくなります。/opt/app-root/src は、多くの Red Hat S2I

対応イメージのデフォルトのホームディレクトリーです。

必須。ソースのタイプは、ConfigMap、Secret、または CSI。

必須。ソースの名前。

必須。一時 CSI ボリュームを提供するドライバー。

必須。この値は true に設定する必要があります。読み取り専用ボリュームを提供します。

オプション:一時 CSI ボリュームのボリューム属性。サポートされる属性キーおよび値について
は、CSI ドライバーのドキュメントを参照してください。

注記

共有リソース CSI ドライバーは、テクノロジープレビュー機能としてサポートされてい
ます。

5.3. カスタムビルド

カスタムビルドストラテジーにより、開発者はビルドプロセス全体を対象とする特定のビルダーイメー
ジを定義できます。独自のビルダーイメージを使用することにより、ビルドプロセスをカスタマイズで
きます。

 - name: secret-mvn 1
 mounts:
 - destinationPath: /opt/app-root/src/.ssh 2
 source:
 type: Secret 3
 secret:
 secretName: my-secret 4
 - name: settings-mvn 5
 mounts:
 - destinationPath: /opt/app-root/src/.m2 6
 source:
 type: ConfigMap 7
 configMap:
 name: my-config 8
 - name: my-csi-volume 9
 mounts:
 - destinationPath: /opt/app-root/src/some_path 10
 source:
 type: CSI 11
 csi:
 driver: csi.sharedresource.openshift.io 12
 readOnly: true 13
 volumeAttributes: 14
 attribute: value

第5章 ビルドストラテジーの使用

49

1

2

カスタムビルダーイメージは、RPM またはベースイメージの構築など、ビルドプロセスのロジックに
組み込まれるプレーンなコンテナーイメージです。

カスタムビルドは高いレベルの権限で実行されるため、デフォルトではユーザーが利用することはでき
ません。クラスター管理者のパーミッションを持つ信頼できるユーザーのみにカスタムビルドを実行す
るためのアクセスが付与される必要があります。

5.3.1. カスタムビルドの FROM イメージの使用

customStrategy.from セクションを使用して、カスタムビルドに使用するイメージを指定できます。

手順

customStrategy.from セクションを設定するには、以下を実行します。

5.3.2. カスタムビルドでのシークレットの使用

すべてのビルドタイプに追加できるソースおよびイメージのシークレットのほかに、カスタムストラテ
ジーを使用することにより、シークレットの任意のリストをビルダー Pod に追加できます。

手順

各シークレットを特定の場所にマウントするには、strategy YAML ファイルの secretSource
および mountPath フィールドを編集します。

secretSource は、ビルドと同じ namespace にあるシークレットへの参照です。

mountPath は、シークレットがマウントされる必要のあるカスタムビルダー内のパスで
す。

5.3.3. カスタムビルドの環境変数の使用

環境変数をカスタムビルドプロセスで利用可能にするには、環境変数をビルド設定の customStrategy
定義に追加できます。

ここに定義された環境変数は、カスタムビルドを実行する Pod に渡されます。

strategy:
 customStrategy:
 from:
 kind: "DockerImage"
 name: "openshift/sti-image-builder"

strategy:
 customStrategy:
 secrets:
 - secretSource: 1
 name: "secret1"
 mountPath: "/tmp/secret1" 2
 - secretSource:
 name: "secret2"
 mountPath: "/tmp/secret2"

OpenShift Container Platform 4.12 Builds

50

手順

1. ビルド時に使用されるカスタムの HTTP プロキシーを定義します。

2. ビルド設定で定義された環境変数を管理するには、以下のコマンドを入力します。

5.3.4. カスタムビルダーイメージの使用

OpenShift Container Platform のカスタムビルドストラテジーにより、ビルドプロセス全体を対象とす
る特定のビルダーイメージを定義できます。パッケージ、JAR、WAR、インストール可能な ZIP、ベー
スイメージなどの個別のアーティファクトを生成するためにビルドが必要な場合は、カスタムビルドス
トラテジーを使用してカスタムビルダーイメージを使用します。

カスタムビルダーイメージは、RPM またはベースのコンテナーイメージの構築など、ビルドプロセス
のロジックに組み込まれるプレーンなコンテナーイメージです。

さらに、カスタムビルダーは、単体または統合テストを実行する CI/CD フローなどの拡張ビルドプロ
セスを実装できます。

5.3.4.1. カスタムビルダーイメージ

呼び出し時に、カスタムのビルダーイメージは、ビルドの続行に必要な情報が含まれる以下の環境変数
を受け取ります。

表5.2 カスタムビルダーの環境変数

変数名 説明

BUILD Build オブジェクト定義のシリアル化された JSON すべて。シリアル化した中で
固有の API バージョンを使用する必要がある場合は、ビルド設定のカスタムスト
ラテジーの仕様で、buildAPIVersion パラメーターを設定できます。

SOURCE_REPOSITO
RY

ビルドするソースが含まれる Git リポジトリーの URL

SOURCE_URI SOURCE_REPOSITORY と同じ値を仕様します。どちらでも使用できます。

SOURCE_CONTEXT
_DIR

ビルド時に使用する Git リポジトリーのサブディレクトリーを指定します。定義
された場合にのみ表示されます。

SOURCE_REF ビルドする Git 参照

customStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

$ oc set env <enter_variables>

第5章 ビルドストラテジーの使用

51

ORIGIN_VERSION このビルドオブジェクトを作成した OpenShift Container Platform のマスターの
バージョン

OUTPUT_REGISTRY イメージをプッシュするコンテナーイメージレジストリー

OUTPUT_IMAGE ビルドするイメージのコンテナーイメージタグ名

PUSH_DOCKERCFG
_PATH

podman push 操作を実行するためのコンテナーレジストリー認証情報へのパス

変数名 説明

5.3.4.2. カスタムビルダーのワークフロー

カスタムビルダーイメージの作成者は、ビルドプロセスを柔軟に定義できますが、ビルダーイメージ
は、OpenShift Container Platform 内でビルドを実行するために必要な以下の手順に従う必要がありま
す。

1. Build オブジェクト定義に、ビルドの入力パラメーターの必要情報をすべて含める。

2. ビルドプロセスを実行する。

3. ビルドでイメージが生成される場合には、ビルドの出力場所が定義されていれば、その場所に
プッシュする。他の出力場所には環境変数を使用して渡すことができます。

5.4. パイプラインビルド

重要

パイプラインビルドストラテジーは OpenShift Container Platform 4 では非推奨になり
ました。同等の機能および改善機能は、Tekton をベースとする OpenShift Container
Platform Pipeline にあります。

OpenShift Container Platform の Jenkins イメージは完全にサポートされており、ユー
ザーは Jenkins ユーザーのドキュメントに従ってジョブで jenkinsfile を定義するか、こ
れをソースコントロール管理システムに保存します。

開発者は、パイプラインビルドストラテジーを利用して Jenkins パイプラインプラグインで使用できる
ように Jenkins パイプラインを定義することができます。このビルドについては、他のビルドタイプの
場合と同様に OpenShift Container Platform での起動、モニタリング、管理が可能です。

パイプラインワークフローは、ビルド設定に直接組み込むか、Git リポジトリーに配置してビルド設定
で参照して jenkinsfile で定義します。

5.4.1. OpenShift Container Platform Pipeline について

重要

OpenShift Container Platform 4.12 Builds

52

重要

パイプラインビルドストラテジーは OpenShift Container Platform 4 では非推奨になり
ました。同等の機能および改善機能は、Tekton をベースとする OpenShift Container
Platform Pipeline にあります。

OpenShift Container Platform の Jenkins イメージは完全にサポートされており、ユー
ザーは Jenkins ユーザーのドキュメントに従ってジョブで jenkinsfile を定義するか、こ
れをソースコントロール管理システムに保存します。

Pipeline により、OpenShift Container Platform でのアプリケーションのビルド、デプロイ、およびプ
ロモートに対する制御が可能になります。Jenkins Pipeline ビルドストラテジー、jenkinsfiles、および
OpenShift Container Platform のドメイン固有言語 (DSL) (Jenkins クライアントプラグインで提供され
る) の組み合わせを使用することにより、すべてのシナリオにおける高度なビルド、テスト、デプロイ
およびプロモート用のパイプラインを作成できます。

OpenShift Container Platform Jenkins 同期プラグイン

OpenShift Container Platform Jenkins 同期プラグインは、ビルド設定およびビルドオブジェクトを
Jenkins ジョブおよびビルドと同期し、以下を提供します。

Jenkins での動的なジョブおよび実行の作成。

イメージストリーム、イメージストリームタグまたは config map からのエージェント Pod テ
ンプレートの動的作成。

環境変数の挿入。

OpenShift Container Platform Web コンソールでのパイプラインの可視化。

Jenkins Git プラグインとの統合。これにより、OpenShift Container Platform ビルドからの
Jenkins Git プラグインにコミット情報が渡されます。

シークレットを Jenkins 認証情報エントリーに同期。

OpenShift Container Platform Jenkins クライアントプラグイン

OpenShift Container Platform Jenkins Client プラグインは、OpenShift Container Platform API Server
との高度な対話を実現するために、読み取り可能かつ簡潔で、包括的で Fluent (流れるような) スタイ
ルの Jenkins Pipeline 構文を提供することを目的とした Jenkins プラグインです。このプラグインは、
スクリプトを実行するノードで使用できる必要がある OpenShift Container Platform コマンドライン
ツール (oc) を使用します。

Jenkins Client Plugin は Jenkins マスターにインストールされ、OpenShift Container Platform DSL が
アプリケーションの jenkinsfile 内で利用可能である必要があります。このプラグインは、OpenShift
Container Platform Jenkins イメージの使用時にデフォルトでインストールされ、有効にされます。

プロジェクト内で OpenShift Container Platform Pipeline を使用するには、Jenkins Pipeline ビルドス
トラテジーを使用する必要があります。このストラテジーはソースリポジトリーのルートで jenkinsfile
を使用するようにデフォルト設定されますが、以下の設定オプションも提供します。

ビルド設定内のインラインの jenkinsfile フィールド。

ソース contextDir との関連で使用する jenkinsfile の場所を参照するビルド設定内の
jenkinsfilePath フィールド。

注記

第5章 ビルドストラテジーの使用

53

注記

オプションの jenkinsfilePath フィールドは、ソース contextDir との関連で使用する
ファイルの名前を指定します。contextDir が省略される場合、デフォルトはリポジト
リーのルートに設定されます。jenkinsfilePath が省略される場合、デフォルトは
jenkinsfile に設定されます。

5.4.2. パイプラインビルド用の Jenkins ファイルの提供

重要

パイプラインビルドストラテジーは OpenShift Container Platform 4 では非推奨になり
ました。同等の機能および改善機能は、Tekton をベースとする OpenShift Container
Platform Pipeline にあります。

OpenShift Container Platform の Jenkins イメージは完全にサポートされており、ユー
ザーは Jenkins ユーザーのドキュメントに従ってジョブで jenkinsfile を定義するか、こ
れをソースコントロール管理システムに保存します。

jenkinsfile は標準的な groovy 言語構文を使用して、アプリケーションの設定、ビルド、およびデプロ
イメントに対する詳細な制御を可能にします。

jenkinsfile は以下のいずれかの方法で指定できます。

ソースコードリポジトリー内にあるファイルの使用。

jenkinsfile フィールドを使用してビルド設定の一部として組み込む。

最初のオプションを使用する場合、jenkinsfile を以下の場所のいずれかでアプリケーションソースコー
ドリポジトリーに組み込む必要があります。

リポジトリーのルートにある jenkinsfile という名前のファイル。

リポジトリーのソース contextDir のルートにある jenkinsfile という名前のファイル。

ソース contextDir に関連して BuildConfig の JenkinsPipelineStrategy セクションの
jenkinsfilePath フィールドで指定される名前のファイル (指定した場合)。指定しないと、リポ
ジトリーのルートにデフォルト設定されます。

jenkinsfile は Jenkins エージェント Pod で実行されます。ここでは OpenShift Container Platform
DSL を使用する場合に OpenShift Container Platform クライアントのバイナリーを利用可能にしておく
必要があります。

手順

Jenkins ファイルを指定するには、以下のいずれかを実行できます。

ビルド設定に Jenkins ファイルを埋め込む

Jenkins ファイルを含む Git リポジトリーへの参照をビルド設定に追加する

埋め込み定義

kind: "BuildConfig"
apiVersion: "v1"

OpenShift Container Platform 4.12 Builds

54

1

Git リポジトリーへの参照

オプションの jenkinsfilePath フィールドは、ソース contextDir との関連で使用するファイルの
名前を指定します。contextDir が省略される場合、デフォルトはリポジトリーのルートに設定さ
れます。jenkinsfilePath が省略される場合、デフォルトは jenkinsfile に設定されます。

5.4.3. Pipeline ビルドの環境変数の使用

重要

パイプラインビルドストラテジーは OpenShift Container Platform 4 では非推奨になり
ました。同等の機能および改善機能は、Tekton をベースとする OpenShift Container
Platform Pipeline にあります。

OpenShift Container Platform の Jenkins イメージは完全にサポートされており、ユー
ザーは Jenkins ユーザーのドキュメントに従ってジョブで jenkinsfile を定義するか、こ
れをソースコントロール管理システムに保存します。

環境変数を Pipeline ビルドプロセスで利用可能にするには、環境変数をビルド設定の
jenkinsPipelineStrategy 定義に追加できます。

定義した後に、環境変数はビルド設定に関連する Jenkins ジョブのパラメーターとして設定されます。

手順

ビルド時に使用される環境変数を定義するには、YAML ファイルを編集します。

metadata:
 name: "sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node('agent') {
 stage 'build'
 openshiftBuild(buildConfig: 'ruby-sample-build', showBuildLogs: 'true')
 stage 'deploy'
 openshiftDeploy(deploymentConfig: 'frontend')
 }

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfilePath: some/repo/dir/filename 1

第5章 ビルドストラテジーの使用

55

oc set env コマンドで、ビルド設定に定義した環境変数を管理することも可能です。

5.4.3.1. BuildConfig 環境変数と Jenkins ジョブパラメーター間のマッピング

Pipeline ストラテジーのビルド設定への変更に従い、Jenkins ジョブが作成/更新されると、ビルド設定
の環境変数は Jenkins ジョブパラメーターの定義にマッピングされます。Jenkins ジョブパラメーター
定義のデフォルト値は、関連する環境変数の現在の値になります。

Jenkins ジョブの初回作成後に、パラメーターを Jenkins コンソールからジョブに追加できます。パラ
メーター名は、ビルド設定の環境変数名とは異なります。上記の Jenkins ジョブ用にビルドを開始する
と、これらのパラメーターが使用されます。

Jenkins ジョブのビルドを開始する方法により、パラメーターの設定方法が決まります。

oc start-build で開始された場合には、ビルド設定の環境変数が対応するジョブインスタンスに
設定するパラメーターになります。Jenkins コンソールからパラメーターのデフォルト値に変
更を加えても無視されます。ビルド設定値が優先されます。

oc start-build -e で開始する場合、-e オプションで指定される環境変数の値が優先されます。

ビルド設定にリスト表示されていない環境変数を指定する場合、それらは Jenkins ジョブ
パラメーター定義として追加されます。

Jenkins コンソールから環境変数に対応するパラメーターに加える変更は無視されます。ビ
ルド設定および oc start-build -e で指定する内容が優先されます。

Jenkins コンソールで Jenkins ジョブを開始した場合には、ジョブのビルドを開始する操作の一
環として、Jenkins コンソールを使用してパラメーターの設定を制御できます。

注記

ジョブパラメーターに関連付けられる可能性のあるすべての環境変数を、ビルド設定に
指定することが推奨されます。これにより、ディスク I/O が減り、Jenkins 処理時のパ
フォーマンスが向上します。

5.4.4. Pipeline ビルドのチュートリアル

重要

パイプラインビルドストラテジーは OpenShift Container Platform 4 では非推奨になり
ました。同等の機能および改善機能は、Tekton をベースとする OpenShift Container
Platform Pipeline にあります。

OpenShift Container Platform の Jenkins イメージは完全にサポートされており、ユー
ザーは Jenkins ユーザーのドキュメントに従ってジョブで jenkinsfile を定義するか、こ
れをソースコントロール管理システムに保存します。

以下の例では、nodejs-mongodb.json テンプレートを使用して Node.js/MongoDB アプリケーション

jenkinsPipelineStrategy:
...
 env:
 - name: "FOO"
 value: "BAR"

OpenShift Container Platform 4.12 Builds

56

以下の例では、nodejs-mongodb.json テンプレートを使用して Node.js/MongoDB アプリケーション
をビルドし、デプロイし、検証する OpenShift Container Platform Pipeline を作成する方法を紹介しま
す。

手順

1. Jenkins マスターを作成するには、以下を実行します。

oc new-project <project_name> で新規プロジェクトを使用するか、作成するプロジェクトを
選択します。

永続ストレージを使用する場合は、jenkins-persistent を代わりに使用します。

2. 以下の内容で nodejs-sample-pipeline.yaml という名前のファイルを作成します。

注記

Jenkins パイプラインストラテジーを使用して Node.js/MongoDB のサンプルア
プリケーションをビルドし、デプロイし、スケーリングする BuildConfig オブ
ジェクトを作成します。

3. jenkinsPipelineStrategy で BuildConfig オブジェクトを作成したら、インラインの
jenkinsfile を使用して、パイプラインに指示を出します。

注記

この例では、アプリケーションに Git リポジトリーを設定しません。

以下の jenkinsfile の内容は、OpenShift Container Platform DSL を使用して
Groovy で記述されています。ソースリポジトリーに jenkinsfile を追加すること
が推奨される方法ですが、この例では YAML Literal Style を使用して
BuildConfig にインラインコンテンツを追加しています。

 $ oc project <project_name>

 $ oc new-app jenkins-ephemeral 1

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "nodejs-sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: <pipeline content from below>
 type: JenkinsPipeline

def templatePath = 'https://raw.githubusercontent.com/openshift/nodejs-
ex/master/openshift/templates/nodejs-mongodb.json' 1
def templateName = 'nodejs-mongodb-example' 2
pipeline {
 agent {

第5章 ビルドストラテジーの使用

57

 node {
 label 'nodejs' 3
 }
 }
 options {
 timeout(time: 20, unit: 'MINUTES') 4
 }
 stages {
 stage('preamble') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 echo "Using project: ${openshift.project()}"
 }
 }
 }
 }
 }
 stage('cleanup') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.selector("all", [template : templateName]).delete() 5
 if (openshift.selector("secrets", templateName).exists()) { 6
 openshift.selector("secrets", templateName).delete()
 }
 }
 }
 }
 }
 }
 stage('create') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.newApp(templatePath) 7
 }
 }
 }
 }
 }
 stage('build') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def builds = openshift.selector("bc", templateName).related('builds')
 timeout(5) { 8
 builds.untilEach(1) {
 return (it.object().status.phase == "Complete")
 }
 }
 }

OpenShift Container Platform 4.12 Builds

58

1

1 2

3

4

5

6

7

8

9

10

使用するテンプレートへのパス

作成するテンプレート名

このビルドを実行する node.js のエージェント Pod をスピンアップします。

このパイプラインに 20 分間のタイムアウトを設定します。

このテンプレートラベルが指定されたものすべてを削除します。

このテンプレートラベルが付いたシークレットをすべて削除します。

templatePath から新規アプリケーションを作成します。

ビルドが完了するまで最大 5 分待機します。

デプロイメントが完了するまで最大 5 分待機します。

すべてが正常に完了した場合は、$ {templateName}:latest イメージに $
{templateName}-staging:latest のタグを付けます。ステージング環境向けのパイプライ
ンのビルド設定は、変更する $ {templateName}-staging:latest イメージがないかを確認
し、このイメージをステージング環境にデプロイします。

 }
 }
 }
 }
 stage('deploy') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def rm = openshift.selector("dc", templateName).rollout()
 timeout(5) { 9
 openshift.selector("dc", templateName).related('pods').untilEach(1) {
 return (it.object().status.phase == "Running")
 }
 }
 }
 }
 }
 }
 }
 stage('tag') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.tag("${templateName}:latest", "${templateName}-staging:latest") 10
 }
 }
 }
 }
 }
 }
}

第5章 ビルドストラテジーの使用

59

注記

以前の例は、宣言型のパイプラインスタイルを使用して記述されていますが、以
前のスクリプト化されたパイプラインスタイルもサポートされます。

4. OpenShift Container Platform クラスターに Pipeline BuildConfig を作成します。

a. 独自のファイルを作成しない場合には、以下を実行して Origin リポジトリーからサンプル
を使用できます。

5. Pipeline を起動します。

注記

または、OpenShift Container Platform Web コンソールで Builds → Pipeline セク
ションに移動して、Start Pipeline をクリックするか、Jenkins コンソールから
作成した Pipeline に移動して、Build Now をクリックして Pipeline を起動できま
す。

パイプラインが起動したら、以下のアクションがプロジェクト内で実行されるはずです。

ジョブインスタンスが Jenkins サーバー上で作成される

パイプラインで必要な場合には、エージェント Pod が起動される

パイプラインがエージェント Pod で実行されるか、エージェントが必要でない場合には
master で実行される

template=nodejs-mongodb-example ラベルの付いた以前に作成されたリソースは削
除されます。

新規アプリケーションおよびそれに関連するすべてのリソースは、nodejs-mongodb-
example テンプレートで作成されます。

ビルドは nodejs-mongodb-example BuildConfig を使用して起動されます。

パイプラインは、ビルドが完了して次のステージをトリガーするまで待機します。

デプロイメントは、nodejs-mongodb-example のデプロイメント設定を使用して開始
されます。

パイプラインは、デプロイメントが完了して次のステージをトリガーするまで待機
します。

ビルドとデプロイに成功すると、nodejs-mongodb-example:latest イメージが
nodejs-mongodb-example:stage としてトリガーされます。

$ oc create -f nodejs-sample-pipeline.yaml

$ oc create -f
https://raw.githubusercontent.com/openshift/origin/master/examples/jenkins/pipeline/nodejs-
sample-pipeline.yaml

$ oc start-build nodejs-sample-pipeline

OpenShift Container Platform 4.12 Builds

60

パイプラインで以前に要求されていた場合には、スレーブ Pod が削除される

注記

OpenShift Container Platform Web コンソールで確認すると、最適な方法で
Pipeline の実行を視覚的に把握することができます。Web コンソールにログ
インして、Builds → Pipelines に移動し、Pipeline を確認します。

5.5. WEB コンソールを使用したシークレットの追加

プライベートリポジトリーにアクセスできるように、ビルド設定にシークレットを追加することができ
ます。

手順

OpenShift Container Platform Web コンソールからプライベートリポジトリーにアクセスできるように
ビルド設定にシークレットを追加するには、以下を実行します。

1. 新規の OpenShift Container Platform プロジェクトを作成します。

2. プライベートのソースコードリポジトリーにアクセスするための認証情報が含まれるシーク
レットを作成します。

3. ビルド設定を作成します。

4. ビルド設定エディターページまたは Web コンソールの create app from builder image ページ
で、Source Secret を設定します。

5. Save をクリックします。

5.6. プルおよびプッシュの有効化

プライベートレジストリーへのプルを実行できるようにするには、ビルド設定にプルシークレットを設
定し、プッシュします。

手順

プライベートレジストリーへのプルを有効にするには、以下を実行します。

ビルド設定にプルシークレットを設定します。

プッシュを有効にするには、以下を実行します。

ビルド設定にプッシュシークレットを設定します。

第5章 ビルドストラテジーの使用

61

第6章 BUILDAH によるカスタムイメージビルド
OpenShift Container Platform 4.12 では、docker ソケットはホストノードにはありません。これは、カ
スタムビルドの mount docker socket オプションがカスタムビルドイメージ内で使用できる docker ソ
ケットを提供しない可能性がゼロではないことを意味します。

イメージのビルドおよびプッシュにこの機能を必要とする場合、Buildah ツールをカスタムビルドイ
メージに追加し、これを使用してカスタムビルドロジック内でイメージをビルドし、プッシュします。
以下の例は、Buildah でカスタムビルドを実行する方法を示しています。

注記

カスタムビルドストラテジーを使用するためには、デフォルトで標準ユーザーが持たな
いパーミッションが必要です。このパーミッションはユーザーがクラスターで実行され
る特権付きコンテナー内で任意のコードを実行することを許可します。このレベルのア
クセスを使用するとクラスターが危険にさらされる可能性があるため、このアクセスは
クラスターで管理者権限を持つ信頼されたユーザーのみに付与される必要があります。

6.1. 前提条件

カスタムビルドパーミッションを付与する 方法を確認してください。

6.2. カスタムビルドアーティファクトの作成

カスタムビルドイメージとして使用する必要のあるイメージを作成する必要があります。

手順

1. 空のディレクトリーからはじめ、以下の内容を含む Dockerfile という名前のファイルを作成し
ます。

2. 同じディレクトリーに、dockerfile.sample という名前のファイルを作成します。このファイ
ルはカスタムビルドイメージに組み込まれ、コンテンツビルドによって生成されるイメージを
定義します。

3. 同じディレクトリーに、build.sh という名前のファイルを作成します。このファイルには、カ
スタムビルドの実行時に実行されるロジックが含まれます。

FROM registry.redhat.io/rhel8/buildah
In this example, `/tmp/build` contains the inputs that build when this
custom builder image is run. Normally the custom builder image fetches
this content from some location at build time, by using git clone as an example.
ADD dockerfile.sample /tmp/input/Dockerfile
ADD build.sh /usr/bin
RUN chmod a+x /usr/bin/build.sh
/usr/bin/build.sh contains the actual custom build logic that will be run when
this custom builder image is run.
ENTRYPOINT ["/usr/bin/build.sh"]

FROM registry.access.redhat.com/ubi8/ubi
RUN touch /tmp/build

#!/bin/sh

OpenShift Container Platform 4.12 Builds

62

6.3. カスタムビルダーイメージのビルド

OpenShift Container Platform を使用してカスタムストラテジーで使用するカスタムビルダーイメージ
をビルドし、プッシュすることができます。

前提条件

新規カスタムビルダーイメージの作成に使用されるすべての入力を定義します。

手順

1. カスタムビルダーイメージをビルドする BuildConfig オブジェクトを定義します。

2. カスタムビルドイメージを作成したディレクトリーから、ビルドを実行します。

ビルドの完了後に、新規のカスタムビルダーイメージが custom-builder-image:latest という
名前のイメージストリームタグのプロジェクトで利用可能になります。

6.4. カスタムビルダーイメージの使用

カスタムビルダーイメージとカスタムストラテジーを併用する BuildConfig オブジェクトを定義し、カ
スタムビルドロジックを実行することができます。

前提条件

新規カスタムビルダーイメージに必要なすべての入力を定義します。

Note that in this case the build inputs are part of the custom builder image, but normally this
is retrieved from an external source.
cd /tmp/input
OUTPUT_REGISTRY and OUTPUT_IMAGE are env variables provided by the custom
build framework
TAG="${OUTPUT_REGISTRY}/${OUTPUT_IMAGE}"

performs the build of the new image defined by dockerfile.sample
buildah --storage-driver vfs bud --isolation chroot -t ${TAG} .

buildah requires a slight modification to the push secret provided by the service
account to use it for pushing the image
cp /var/run/secrets/openshift.io/push/.dockercfg /tmp
(echo "{ \"auths\": " ; cat /var/run/secrets/openshift.io/push/.dockercfg ; echo "}") >
/tmp/.dockercfg

push the new image to the target for the build
buildah --storage-driver vfs push --tls-verify=false --authfile /tmp/.dockercfg ${TAG}

$ oc new-build --binary --strategy=docker --name custom-builder-image

$ oc start-build custom-builder-image --from-dir . -F

第6章 BUILDAH によるカスタムイメージビルド

63

1

カスタムビルダーイメージをビルドします。

手順

1. buildconfig.yaml という名前のファイルを作成します。このファイルは、プロジェクトに作成
され、実行される BuildConfig オブジェクトを定義します。

プロジェクト名を指定します。

2. BuildConfig を作成します。

3. imagestream.yaml という名前のファイルを作成します。このファイルはビルドがイメージを
プッシュするイメージストリームを定義します。

4. imagestream を作成します。

5. カスタムビルドを実行します。

ビルドが実行されると、以前にビルドされたカスタムビルダーイメージを実行する Pod が起動

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: sample-custom-build
 labels:
 name: sample-custom-build
 annotations:
 template.alpha.openshift.io/wait-for-ready: 'true'
spec:
 strategy:
 type: Custom
 customStrategy:
 forcePull: true
 from:
 kind: ImageStreamTag
 name: custom-builder-image:latest
 namespace: <yourproject> 1
 output:
 to:
 kind: ImageStreamTag
 name: sample-custom:latest

$ oc create -f buildconfig.yaml

kind: ImageStream
apiVersion: image.openshift.io/v1
metadata:
 name: sample-custom
spec: {}

$ oc create -f imagestream.yaml

$ oc start-build sample-custom-build -F

OpenShift Container Platform 4.12 Builds

64

します。Pod はカスタムビルダーイメージのエントリーポイントとして定義される build.sh ロ
ジックを実行します。build.sh ロジックは Buildah を起動し、カスタムビルダーイメージに埋
め込まれた dockerfile.sample をビルドしてから、Buildah を使用して新規イメージを
sample-custom image stream にプッシュします。

第6章 BUILDAH によるカスタムイメージビルド

65

第7章 基本的なビルドの実行および設定
以下のセクションでは、ビルドの開始および中止、BuildConfigs の編集、BuildConfig の削除、ビル
ドの詳細の表示、およびビルドログへのアクセスを含む基本的なビルド操作に関する方法を説明しま
す。

7.1. ビルドの開始

現在のプロジェクトに既存のビルド設定から新規ビルドを手動で起動できます。

手順

手動でビルドを開始するには、以下のコマンドを入力します。

7.1.1. ビルドの再実行

--from-build フラグを使用してビルドを手動で再度実行します。

手順

手動でビルドを再実行するには、以下のコマンドを入力します。

7.1.2. ビルドログのストリーミング

--follow フラグを指定して、stdout のビルドのログをストリーミングします。

手順

stdout でビルドのログを手動でストリーミングするには、以下のコマンドを実行します。

7.1.3. ビルド開始時の環境変数の設定

--env フラグを指定して、ビルドの任意の環境変数を設定します。

手順

必要な環境変数を指定するには、以下のコマンドを実行します。

7.1.4. ソースを使用したビルドの開始

Git ソースプルまたは Dockerfile に依存してビルドするのではなく、ソースを直接プッシュしてビルド
を開始することも可能です。ソースには、Git または SVN の作業ディレクトリーの内容、デプロイする
事前にビルド済みのバイナリーアーティファクトのセットまたは単一ファイルのいずれかを選択できま

$ oc start-build <buildconfig_name>

$ oc start-build --from-build=<build_name>

$ oc start-build <buildconfig_name> --follow

$ oc start-build <buildconfig_name> --env=<key>=<value>

OpenShift Container Platform 4.12 Builds

66

す。これは、start-build コマンドに以下のオプションのいずれかを指定して実行できます。

オプション 説明

--from-dir=<directory> アーカイブし、ビルドのバイナリー入力として使用するディレクトリー
を指定します。

--from-file=<file> 単一ファイルを指定します。これはビルドソースで唯一のファイルでな
ければなりません。このファイルは、元のファイルと同じファイル名で
空のディレクトリーのルートに置いてください。

--from-repo=
<local_source_repo>

ビルドのバイナリー入力として使用するローカルリポジトリーへのパス
を指定します。--commit オプションを追加して、ビルドに使用するブ
ランチ、タグ、またはコミットを制御します。

以下のオプションをビルドに直接指定した場合には、コンテンツはビルドにストリーミングされ、現在
のビルドソースの設定が上書きされます。

注記

バイナリー入力からトリガーされたビルドは、サーバー上にソースを保存しないため、
ベースイメージの変更でビルドが再度トリガーされた場合には、ビルド設定で指定され
たソースが使用されます。

手順

以下のコマンドを使用してソースからビルドを開始し、タグ v2 からローカル Git リポジトリー
の内容をアーカイブとして送信します。

7.2. ビルドの中止

Web コンソールまたは以下の CLI コマンドを使用して、ビルドを中止できます。

手順

手動でビルドを取り消すには、以下のコマンドを入力します。

7.2.1. 複数ビルドのキャンセル

以下の CLI コマンドを使用して複数ビルドを中止できます。

手順

複数ビルドを手動で取り消すには、以下のコマンドを入力します。

$ oc start-build hello-world --from-repo=../hello-world --commit=v2

$ oc cancel-build <build_name>

$ oc cancel-build <build1_name> <build2_name> <build3_name>

第7章 基本的なビルドの実行および設定

67

7.2.2. すべてのビルドのキャンセル

以下の CLI コマンドを使用し、ビルド設定からすべてのビルドを中止できます。

手順

すべてのビルドを取り消すには、以下のコマンドを実行します。

7.2.3. 指定された状態のすべてのビルドのキャンセル

特定の状態にあるビルドをすべて取り消すことができます (例: new または pending)。この際、他の状
態のビルドは無視されます。

手順

特定の状態のすべてのビルドを取り消すには、以下のコマンドを入力します。

7.3. BUILDCONFIG の編集

ビルド設定を編集するには、Developer パースペクティブの Builds ビューで Edit BuildConfig オプ
ションを使用します。

以下のいずれかのビューを使用して BuildConfig を編集できます。

Form view を使用すると、標準のフォームフィールドおよびチェックボックスを使用して
BuildConfig を編集できます。

YAML ビュー を使用すると、操作を完全に制御して BuildConfig を編集できます。

データを失うことなく、Form view と YAML view を切り替えることができます。Form ビュー のデー
タは YAML ビュー に転送されます (その逆も同様です)。

手順

1. Developer パースペクティブの Builds ビューで、メニュー をクリックし、Edit
BuildConfig オプションを表示します。

2. Edit BuildConfig をクリックし、Form view オプションを表示します。

3. Git セクションで、アプリケーションの作成に使用するコードベースの Git リポジトリー URL
を入力します。その後、URL は検証されます。

オプション: Show Advanced Git Options をクリックし、以下のような詳細を追加しま
す。

Git Reference: アプリケーションのビルドに使用するコードが含まれるブランチ、タ
グ、またはコミットを指定します。

Context Dir: アプリケーションのビルドに使用するアプリケーションのコードが含まれ

$ oc cancel-build bc/<buildconfig_name>

$ oc cancel-build bc/<buildconfig_name>

OpenShift Container Platform 4.12 Builds

68

Context Dir: アプリケーションのビルドに使用するアプリケーションのコードが含まれ
るサブディレクトリーを指定します。

Source Secret: プライベートリポジトリーからソースコードをプルするための認証情
報で Secret Name を作成します。

4. Build from セクションで、ビルド元となるオプションを選択します。以下のオプションで使用
できます。

イメージストリームタグ は、所定のイメージストリームおよびタグのイメージを参照しま
す。ビルド元およびプッシュ元の場所に指定するプロジェクト、イメージストリーム、お
よびタグを入力します。

イメージストリームイメージ は、所定のイメージストリームのイメージとおよびイメージ
名を参照します。ビルドするイメージストリームイメージを入力します。また、プッシュ
先となるプロジェクト、イメージストリーム、およびタグも入力します。

Docker image: Docker イメージは Docker イメージリポジトリーを使用して参照されま
す。また、プッシュ先の場所を参照するように、プロジェクト、イメージストリーム、タ
グを入力する必要があります。

5. オプション: 環境変数 セクションで Name と Value フィールドを使用して、プロジェクトに関
連付けられた環境変数を追加します。環境変数を追加するには、Add Value または Add from
ConfigMap と Secret を使用します。

6. オプション: 以下の高度なオプションを使用してアプリケーションをさらにカスタマイズできま
す。

トリガー

ビルダーイメージの変更時に新規イメージビルドをトリガーします。Add Trigger をクリッ
クし、Type および Secret を選択して、トリガーを追加します。

シークレット

アプリケーションのシークレットを追加します。Add secret をクリックし、Secret および
Mount point を選択して、さらにシークレットを追加します。

Policy

Run policy をクリックして、ビルド実行ポリシーを選択します。選択したポリシーは、ビル
ド設定から作成されるビルドを実行する順番を決定します。

フック

Run build hooks after image is built を選択して、ビルドの最後にコマンドを実行し、イ
メージを検証します。Hook type、Command および Arguments をコマンドに追加しあ m
す。

7. Save をクリックして BuildConfig を保存します。

7.4. BUILDCONFIG の削除

以下のコマンドで BuildConfig を削除します。

手順

BuildConfig を削除するには、以下のコマンドを入力します。

$ oc delete bc <BuildConfigName>

第7章 基本的なビルドの実行および設定

69

これにより、この BuildConfig でインスタンス化されたビルドがすべて削除されます。

BuildConfig を削除して、BuildConfig からインスタンス化されたビルドを保持するには、以
下のコマンドの入力時に --cascade=false フラグを指定します。

7.5. ビルドの詳細表示

Web コンソールまたは oc describe CLI コマンドを使用して、ビルドの詳細を表示できます。

これにより、以下のような情報が表示されます。

ビルドソース

ビルドストラテジー

出力先

宛先レジストリーのイメージのダイジェスト

ビルドの作成方法

ビルドが Docker または Source ストラテジーを使用する場合、oc describe 出力には、コミット ID、
作成者、コミットしたユーザー、メッセージなどのビルドに使用するソースのリビジョンの情報が含ま
れます。

手順

ビルドの詳細を表示するには、以下のコマンドを入力します。

7.6. ビルドログへのアクセス

Web コンソールまたは CLI を使用してビルドログにアクセスできます。

手順

ビルドを直接使用してログをストリーミングするには、以下のコマンドを入力します。

7.6.1. BuildConfig ログへのアクセス

Web コンソールまたは CLI を使用して BuildConfig ログにアクセスできます。

手順

BuildConfig の最新ビルドのログをストリーミングするには、以下のコマンドを入力します。

$ oc delete --cascade=false bc <BuildConfigName>

$ oc describe build <build_name>

$ oc describe build <build_name>

$ oc logs -f bc/<buildconfig_name>

OpenShift Container Platform 4.12 Builds

70

7.6.2. 特定バージョンのビルドに関する BuildConfig ログへのアクセス

Web コンソールまたは CLI を使用して、BuildConfig に関する特定バージョンのビルドのログにアクセ
スすることができます。

手順

BuildConfig の特定バージョンのビルドのログをストリームするには、以下のコマンドを入力
します。

7.6.3. ログの冗長性の有効化

詳細の出力を有効にするには、BuildConfig 内の sourceStrategy または dockerStrategy の一部とし
て BUILD_LOGLEVEL 環境変数を指定します。

注記

管理者は、env/BUILD_LOGLEVEL を設定して、OpenShift Container Platform インス
タンス全体のデフォルトのビルドの詳細レベルを設定できます。このデフォルトは、指
定の BuildConfig で BUILD_LOGLEVEL を指定することで上書きできます。コマンドラ
インで --build-loglevel を oc start-build に渡すと、バイナリー以外のビルドに優先順位
の高い上書きを指定できます。

ソース builds で利用できるログレベルは以下のとおりです。

レベル 0 assemble スクリプトを実行してコンテナーからの出力とすべてのエラーを生成します。こ
れはデフォルトになります。

レベル 1 実行したプロセスに関する基本情報を生成します。

レベル 2 実行したプロセスに関する詳細情報を生成します。

レベル 3 実行したプロセスに関する詳細情報と、アーカイブコンテンツのリストを生成します。

レベル 4 現時点ではレベル 3 と同じ情報を生成します。

レベル 5 これまでのレベルで記載したすべての内容と docker のプッシュメッセージを提供します。

手順

詳細の出力を有効にするには、BuildConfig 内の sourceStrategy または dockerStrategy の一
部として BUILD_LOGLEVEL 環境変数を渡します。

$ oc logs --version=<number> bc/<buildconfig_name>

sourceStrategy:
...
 env:
 - name: "BUILD_LOGLEVEL"
 value: "2" 1

第7章 基本的なビルドの実行および設定

71

1 この値を任意のログレベルに調整します。

OpenShift Container Platform 4.12 Builds

72

第8章 BUILDS のトリガーおよび変更
以下のセクションでは、ビルドフックを使用して builds をトリガーし、builds を変更する方法に関する
概要を説明します。

8.1. ビルドトリガー

BuildConfig の定義時に、BuildConfig を実行する必要のある状況を制御するトリガーを定義できま
す。以下のビルドトリガーを利用できます。

Webhook

イメージの変更

設定の変更

8.1.1. Webhook のトリガー

Webhook のトリガーにより、要求を OpenShift Container Platform API エンドポイントに送信して新
規ビルドをトリガーできます。GitHub、GitLab、Bitbucket または Generic webhook を使用してこれ
らのトリガーを定義できます。

OpenShift Container Platform の Webhook は現在、Git ベースのソースコード管理システム (SCM) シ
ステムのそれぞれのプッシュイベントの類似のバージョンのみをサポートしています。その他のイベン
トタイプはすべて無視されます。

プッシュイベントを処理する場合に、OpenShift Container Platform コントロールプレーンホストは、
イベント内のブランチ参照が、対応の BuildConfig のブランチ参照と一致しているかどうを確認しま
す。一致する場合には、OpenShift Container Platform ビルドの Webhook イベントに記載されている
のと全く同じコミット参照がチェックアウトされます。一致しない場合には、ビルドはトリガーされま
せん。

注記

oc new-app および oc new-build は GitHub および Generic Webhook トリガーを自動的
に作成しますが、それ以外の Webhook トリガーが必要な場合には手動で追加する必要が
あります。トリガーを設定して、トリガーを手動で追加できます。

すべての Webhook に対して、WebHookSecretKey という名前のキーと、Webhook の呼び出し時に指
定する値を含むシークレットを定義する必要があります。webhook の定義で、このシークレットを参照
する必要があります。このシークレットを使用することで URL が一意となり、他の URL でビルドがト
リガーされないようにします。キーの値は、webhook の呼び出し時に渡されるシークレットと比較され
ます。

たとえば、mysecret という名前のシークレットを参照する GitHub webhook は以下のとおりです。

次に、シークレットは以下のように定義します。シークレットの値は base64 エンコードされており、
この値は Secret オブジェクトの data フィールドに必要である点に注意してください。

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

第8章 BUILDS のトリガーおよび変更

73

8.1.1.1. GitHub Webhook の使用

GitHub webhook は、リポジトリーの更新時に GitHub からの呼び出しを処理します。トリガーを定義
する際に、シークレットを指定する必要があります。このシークレットは、Webhook の設定時に
GitHub に指定する URL に追加されます。

GitHub Webhook の定義例:

注記

Webhook トリガーの設定で使用されるシークレットは、GitHub UI で Webhook の設定
時に表示される secret フィールドとは異なります。Webhook トリガー設定で使用する
シークレットは、Webhook URL を一意にして推測ができないようにし、GitHub UI の
シークレットは、任意の文字列フィールドで、このフィールドを使用して本体の HMAC
hex ダイジェストを作成して、X-Hub-Signature ヘッダーとして送信します。

oc describe コマンドは、ペイロード URL を GitHub Webhook URL として返します (Webhook URL の
表示を参照)。 ペイロード URL は以下のように設定されます。

出力例

前提条件

GitHub リポジトリーから BuildConfig を作成します。

手順

1. GitHub Webhook を設定するには以下を実行します。

a. GitHub リポジトリーから BuildConfig を作成した後に、以下を実行します。

以下のように、上記のコマンドは Webhook GitHub URL を生成します。

出力例

- kind: Secret
 apiVersion: v1
 metadata:
 name: mysecret
 creationTimestamp:
 data:
 WebHookSecretKey: c2VjcmV0dmFsdWUx

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/github

$ oc describe bc/<name-of-your-BuildConfig>

OpenShift Container Platform 4.12 Builds

74

b. GitHub の Web コンソールから、この URL を GitHub にカットアンドペーストします。

c. GitHub リポジトリーで、Settings → Webhooks から Add Webhook を選択します。

d. Payload URL フィールドに、URL の出力を貼り付けます。

e. Content Type を GitHub のデフォルト application/x-www-form-urlencoded から
application/json に変更します。

f. Add webhook をクリックします。
webhook の設定が正常に完了したことを示す GitHub のメッセージが表示されます。

これで変更を GitHub リポジトリーにプッシュする際に新しいビルドが自動的に起動し、ビ
ルドに成功すると新しいデプロイメントが起動します。

注記

Gogs は、GitHub と同じ webhook のペイロード形式をサポートします。そ
のため、Gogs サーバーを使用する場合は、GitHub webhook トリガーを
BuildConfig に定義すると、Gogs サーバー経由でもトリガーされます。

2. payload.json などの有効な JSON ペイロードがファイルに含まれる場合には、curl を使用し
て webhook を手動でトリガーできます。

-k の引数は、API サーバーに正しく署名された証明書がない場合にのみ必要です。

注記

ビルドは、GitHub Webhook イベントからの ref 値が、BuildConfig リソースの
source.git フィールドで指定された ref 値と一致する場合にのみトリガーされます。

関連情報

Gogs

8.1.1.2. GitLab Webhook の使用

GitLab Webhook は、リポジトリーの更新時の GitLab による呼び出しを処理します。GitHub トリガー
では、シークレットを指定する必要があります。以下の例は、BuildConfig 内のトリガー定義の YAML
です。

<https://api.starter-us-east-
1.openshift.com:443/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/github

$ curl -H "X-GitHub-Event: push" -H "Content-Type: application/json" -k -X POST --data-
binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/github

type: "GitLab"
gitlab:
 secretReference:

第8章 BUILDS のトリガーおよび変更

75

https://gogs.io
https://gogs.io

oc describe コマンドは、ペイロード URL を GitLab Webhook URL として返します。ペイロード URL
は以下のように設定されます。

出力例

手順

1. GitLab Webhook を設定するには以下を実行します。

a. BuildConfig を Webhook URL を取得するように記述します。

b. Webhook URL をコピーします。 <secret> はシークレットの値に置き換えます。

c. GitLab の設定手順 に従い、GitLab リポジトリーの設定に Webhook URL を貼り付けま
す。

2. payload.json などの有効な JSON ペイロードがファイルに含まれる場合には、curl を使用し
て webhook を手動でトリガーできます。

-k の引数は、API サーバーに正しく署名された証明書がない場合にのみ必要です。

8.1.1.3. Bitbucket Webhook の使用

Bitbucket webhook は、リポジトリーの更新時の Bitbucket による呼び出しを処理します。これまでの
トリガーと同様に、シークレットを指定する必要があります。以下の例は、BuildConfig 内のトリガー
定義の YAML です。

oc describe コマンドは、ペイロード URL を Bitbucket Webhook URL として返します。ペイロード
URL は以下のように設定されます。

出力例

手順

 name: "mysecret"

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/gitlab

$ oc describe bc <name>

$ curl -H "X-GitLab-Event: Push Hook" -H "Content-Type: application/json" -k -X POST --
data-binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/gitlab

type: "Bitbucket"
bitbucket:
 secretReference:
 name: "mysecret"

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/bitbucket

OpenShift Container Platform 4.12 Builds

76

https://docs.gitlab.com/ce/user/project/integrations/webhooks.html#webhooks
https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

1

1. Bitbucket Webhook を設定するには以下を実行します。

a. 'BuildConfig' を記述して Webhook URL を取得します。

b. Webhook URL をコピーします。 <secret> はシークレットの値に置き換えます。

c. Bitbucket の設定手順 に従い、Bitbucket リポジトリーの設定に Webhook URL を貼り付け
ます。

2. payload.json などの有効な JSON ペイロードがファイルに含まれる場合には、curl を使用し
て webhook を手動でトリガーできます。

-k の引数は、API サーバーに正しく署名された証明書がない場合にのみ必要です。

8.1.1.4. Generic Webhook の使用

Generic Webhook は、Web 要求を実行できるシステムから呼び出されます。他の webhook と同様に、
シークレットを指定する必要があります。このシークレットは、呼び出し元がビルドをトリガーするた
めに使用する必要のある URL に追加されます。このシークレットを使用することで URL が一意とな
り、他の URL でビルドがトリガーされないようにします。以下の例は、BuildConfig 内のトリガー定
義の YAML です。

true に設定して、Generic Webhook が環境変数で渡させるようにします。

手順

1. 呼び出し元を設定するには、呼び出しシステムに、ビルドの Generic Webhook エンドポイント
の URL を指定します。

出力例

呼び出し元は、POST 操作として Webhook を呼び出す必要があります。

2. 手動で Webhook を呼び出すには、curl を使用します。

$ oc describe bc <name>

$ curl -H "X-Event-Key: repo:push" -H "Content-Type: application/json" -k -X POST --data-
binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/bitbucket

type: "Generic"
generic:
 secretReference:
 name: "mysecret"
 allowEnv: true 1

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

第8章 BUILDS のトリガーおよび変更

77

https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

1

HTTP 動詞は POST に設定する必要があります。セキュアでない -k フラグを指定して、証明書
の検証を無視します。クラスターに正しく署名された証明書がある場合には、2 つ目のフラグ
は必要ありません。

エンドポイントは、以下の形式で任意のペイロードを受け入れることができます。

BuildConfig 環境変数と同様に、ここで定義されている環境変数はビルドで利用できま
す。これらの変数が BuildConfig の環境変数と競合する場合には、これらの変数が優先さ
れます。デフォルトでは、webhook 経由で渡された環境変数は無視されます。Webhook
定義の allowEnv フィールドを true に設定して、この動作を有効にします。

3. curl を使用してこのペイロードを渡すには、payload_file.yaml という名前のファイルにペイ
ロードを定義して実行します。

引数は、ヘッダーとペイロードを追加した以前の例と同じです。-H の引数は、ペイロードの形
式により Content-Type ヘッダーを application/yaml または application/json に設定しま
す。--data-binary の引数を使用すると、POST 要求では、改行を削除せずにバイナリーペイ
ロードを送信します。

注記

OpenShift Container Platform は、要求のペイロードが無効な場合でも (例: 無効なコン
テンツタイプ、解析不可能または無効なコンテンツなど)、Generic Webhook 経由でビル
ドをトリガーできます。この動作は、後方互換性を確保するために継続されています。
無効な要求ペイロードがある場合には、OpenShift Container Platform は、HTTP 200
OK 応答の一部として JSON 形式で警告を返します。

8.1.1.5. Webhook URL の表示

以下のコマンドを使用して、ビルド設定に関連する webhook URL を表示できます。コマンドが

$ curl -X POST -k
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

git:
 uri: "<url to git repository>"
 ref: "<optional git reference>"
 commit: "<commit hash identifying a specific git commit>"
 author:
 name: "<author name>"
 email: "<author e-mail>"
 committer:
 name: "<committer name>"
 email: "<committer e-mail>"
 message: "<commit message>"
env: 1
 - name: "<variable name>"
 value: "<variable value>"

$ curl -H "Content-Type: application/yaml" --data-binary @payload_file.yaml -X POST -k
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

OpenShift Container Platform 4.12 Builds

78

以下のコマンドを使用して、ビルド設定に関連する webhook URL を表示できます。コマンドが
Webhook URL を表示しない場合、そのビルド設定に定義される Webhook トリガーはありません。

手順

BuildConfig に関連付けられた Webhook URL を表示するには、以下を実行します。

8.1.2. イメージ変更トリガーの使用

開発者は、ベースイメージが変更するたびにビルドを自動的に実行するように設定できます。

イメージ変更のトリガーを使用すると、アップストリームイメージで新規バージョンが利用できるよう
になると、ビルドが自動的に呼び出されます。たとえば、RHEL イメージ上にビルドが設定されている
場合に、RHEL のイメージが変更された時点でビルドの実行をトリガーできます。その結果、アプリ
ケーションイメージは常に最新の RHEL ベースイメージ上で実行されるようになります。

注記

v1 コンテナーレジストリー のコンテナーイメージを参照するイメージストリームは、イ
メージストリームタグが利用できるようになった時点でビルドが 1 度だけトリガーさ
れ、後続のイメージ更新ではトリガーされません。これは、v1 コンテナーレジストリー
に一意で識別可能なイメージがないためです。

手順

1. トリガーするアップストリームイメージを参照するように、ImageStream を定義します。

この定義では、イメージストリームが <system-registry>/<namespace>/ruby-20-centos7 に
配置されているコンテナーイメージリポジトリーに紐付けられます。<system-registry> は、
OpenShift Container Platform で実行する名前が docker-registry のサービスとして定義されま
す。

2. イメージストリームがビルドのベースイメージの場合には、ビルドストラテジーの from
フィールドを設定して、ImageStream を参照します。

上記の例では、sourceStrategy の定義は、この namespace 内に配置されている ruby-20-
centos7 という名前のイメージストリームの latest タグを使用します。

3. ImageStreams を参照する 1 つまたは複数のトリガーでビルドを定義します。

$ oc describe bc <name>

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby-20-centos7"

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"

第8章 BUILDS のトリガーおよび変更

79

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

1

2

ビルドストラテジーの from フィールドに定義されたように ImageStream および Tag を
監視するイメージ変更トリガー。ここの imageChange オブジェクトは空でなければなり
ません。

任意のイメージストリームを監視するイメージ変更トリガー。この例に含まれる
imageChange の部分には from フィールドを追加して、監視する ImageStreamTag を参
照させる必要があります。

ストラテジーイメージストリームにイメージ変更トリガーを使用する場合は、生成されたビルドに不変
な docker タグが付けられ、そのタグに対応する最新のイメージを参照させます。この新規イメージ参
照は、ビルド用に実行するときに、ストラテジーにより使用されます。

ストラテジーイメージストリームを参照しない、他のイメージ変更トリガーの場合は、新規ビルドが開
始されますが、一意のイメージ参照で、ビルドストラテジーは更新されません。

この例には、ストラテジーに関するイメージ変更トリガーがあるので、結果として生成されるビルドは
以下のようになります。

これにより、トリガーされたビルドは、リポジトリーにプッシュされたばかりの新しいイメージを使用
して、ビルドが同じ入力内容でいつでも再実行できるようにします。

参照されるイメージストリームで複数の変更を可能にするためにイメージ変更トリガーを一時停止して
からビルドを開始できます。また、ビルドがすぐにトリガーされるのを防ぐために、最初に
ImageChangeTrigger を BuildConfig に追加する際に、paused 属性を true に設定することもできま
す。

カスタムビルドの場合、すべての Strategy タイプにイメージフィールドを設定するだけでな
く、OPENSHIFT_CUSTOM_BUILD_BASE_IMAGE の環境変数もチェックされます。この環境変数が
存在しない場合は、不変のイメージ参照で作成されます。存在する場合には、この不変のイメージ参照
で更新されます。

ビルドが Webhook トリガーまたは手動の要求でトリガーされた場合に、作成されるビルド

type: "ImageChange" 1
imageChange: {}
type: "ImageChange" 2
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "172.30.17.3:5001/mynamespace/ruby-20-centos7:<immutableid>"

type: "ImageChange"
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"
 paused: true

OpenShift Container Platform 4.12 Builds

80

ビルドが Webhook トリガーまたは手動の要求でトリガーされた場合に、作成されるビルド
は、Strategy が参照する ImageStream から解決する <immutableid> を使用します。これにより、簡
単に再現できるように、一貫性のあるイメージタグを使用して builds が実行されるようになります。

関連情報

v1 コンテナーレジストリー

8.1.3. ビルドのイメージ変更トリガーの識別

開発者は、イメージ変更トリガーがある場合は、どのイメージの変更が最後のビルドを開始したかを特
定できます。これは、ビルドのデバッグやトラブルシューティングに役立ちます。

BuildConfig の例

注記

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: bc-ict-example
 namespace: bc-ict-example-namespace
spec:

...

 triggers:
 - imageChange:
 from:
 kind: ImageStreamTag
 name: input:latest
 namespace: bc-ict-example-namespace
 - imageChange:
 from:
 kind: ImageStreamTag
 name: input2:latest
 namespace: bc-ict-example-namespace
 type: ImageChange
status:
 imageChangeTriggers:
 - from:
 name: input:latest
 namespace: bc-ict-example-namespace
 lastTriggerTime: "2021-06-30T13:47:53Z"
 lastTriggeredImageID: image-registry.openshift-image-registry.svc:5000/bc-ict-example-
namespace/input@sha256:0f88ffbeb9d25525720bfa3524cb1bf0908b7f791057cf1acfae917b11266a69

 - from:
 name: input2:latest
 namespace: bc-ict-example-namespace
 lastTriggeredImageID: image-registry.openshift-image-registry.svc:5000/bc-ict-example-
namespace/input2@sha256:0f88ffbeb9d25525720bfa3524cb2ce0908b7f791057cf1acfae917b11266a6
9

 lastVersion: 1

第8章 BUILDS のトリガーおよび変更

81

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

注記

この例では、イメージ変更トリガーに関係のない要素を省略します。

前提条件

複数のイメージ変更トリガーを設定している。これらのトリガーは 1 つまたは複数のビルドが
トリガーされています。

手順

1. buildConfig.status.imageChangeTriggers で、最新のタイムスタンプを持つ lastTriggerTime
を特定します。
This ImageChangeTriggerStatus

Then you use the `name` and `namespace` from that build to find the corresponding image
change trigger in `buildConfig.spec.triggers`.

2. imageChangeTriggers でタイムスタンプを比較して最新のものを特定します。

イメージ変更のトリガー

ビルド設定で、buildConfig.spec.triggers はビルドトリガーポリシー (BuildTriggerPolicy) の配列で
す。

各 BuildTriggerPolicy には type フィールドと、ポインターフィールドのセットがあります。各ポイン
ターフィールドは、type フィールドに許可される値の 1 つに対応します。そのた
め、BuildTriggerPolicy を 1 つのポインターフィールドのみに設定できます。

イメージ変更のトリガーの場合、type の値は ImageChange です。次に、imageChange フィールド
は、以下のフィールドを持つ ImageChangeTrigger オブジェクトへのポインターです。

lastTriggeredImageID: このフィールドは例では提供されず、OpenShift Container Platform
4.8 で非推奨となり、今後のリリースでは無視されます。これには、最後のビルドがこの
BuildConfig からトリガーされた際に ImageStreamTag の解決されたイメージ参照が含まれま
す。

paused: このフィールドは、この例では示されていませんが、この特定のイメージ変更トリ
ガーを一時的に無効にするのに使用できます。

from: このフィールドを使用して、このイメージ変更トリガーを駆動する ImageStreamTag を
参照します。このタイプは、コア Kubernetes タイプである OwnerReference です。

from フィールドには、注意フィールド kind があります。イメージ変更トリガーの場合、サポートされ
る値は ImageStreamTag のみです。 namespace: このフィールドを使用して ImageStreamTag の
namespace を指定します。** name: このフィールドを使用して ImageStreamTag を指定します。

イメージ変更のトリガーのステータス

ビルド設定で、buildConfig.status.imageChangeTriggers は ImageChangeTriggerStatus 要素の配
列です。それぞれの ImageChangeTriggerStatus 要素には、前述の例に示されている
from、lastTriggeredImageID、および lastTriggerTime 要素が含まれます。

最新の lastTriggerTime を持つ ImageChangeTriggerStatus は、最新のビルドをトリガーしまし

OpenShift Container Platform 4.12 Builds

82

最新の lastTriggerTime を持つ ImageChangeTriggerStatus は、最新のビルドをトリガーしまし
た。name および namespace を使用して、ビルドをトリガーした buildConfig.spec.triggers でイ
メージ変更トリガーを特定します。

lastTriggerTime は最新のタイムスタンプ記号で、最後のビルドの ImageChangeTriggerStatus を示し
ます。この ImageChangeTriggerStatus には、ビルドをトリガーした buildConfig.spec.triggers のイ
メージ変更トリガーと同じ name および namespace があります。

関連情報

v1 コンテナーレジストリー

8.1.4. 設定変更のトリガー

設定変更トリガーにより、新規の BuildConfig が作成されるとすぐに、ビルドが自動的に起動されま
す。

以下の例は、BuildConfig 内のトリガー定義の YAML です。

注記

設定変更のトリガーは新しい BuildConfig が作成された場合のみ機能します。

8.1.4.1. トリガーの手動設定

トリガーは、oc set triggers を使用してビルド設定に対して追加/削除できます。

手順

ビルド設定に GitHub Webhook トリガーを設定するには、以下を使用します。

イメージ変更トリガーを設定するには、以下を使用します。

トリガーを削除するには --remove を追加します。

注記

Webhook トリガーがすでに存在する場合には、トリガーをもう一度追加すると、
Webhook のシークレットが再生成されます。

詳細情報は、以下を実行してヘルプドキュメントを参照してください。

 type: "ConfigChange"

$ oc set triggers bc <name> --from-github

$ oc set triggers bc <name> --from-image='<image>'

$ oc set triggers bc <name> --from-bitbucket --remove

$ oc set triggers --help

第8章 BUILDS のトリガーおよび変更

83

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

8.2. ビルドフック

ビルドフックを使用すると、ビルドプロセスに動作を挿入できます。

BuildConfig オブジェクトの postCommit フィールドにより、ビルドアウトプットイメージを実行する
一時的なコンテナー内でコマンドが実行されます。イメージの最後の層がコミットされた直後、かつイ
メージがレジストリーにプッシュされる前に、フックが実行されます。

現在の作業ディレクトリーは、イメージの WORKDIR に設定され、コンテナーイメージのデフォルト
の作業ディレクトリーになります。多くのイメージでは、ここにソースコードが配置されます。

ゼロ以外の終了コードが返された場合、一時コンテナーの起動に失敗した場合には、フックが失敗しま
す。フックが失敗すると、ビルドに失敗とマークされ、このイメージはレジストリーにプッシュされま
せん。失敗の理由は、ビルドログを参照して検証できます。

ビルドフックは、ビルドが完了とマークされ、イメージがレジストリーに公開される前に、単体テスト
を実行してイメージを検証するために使用できます。すべてのテストに合格し、テストランナーにより
終了コード 0 が返されると、ビルドは成功とマークされます。テストに失敗すると、ビルドは失敗と
マークされます。すべての場合に、ビルドログにはテストランナーの出力が含まれるので、失敗したテ
ストを特定するのに使用できます。

postCommit フックは、テストの実行だけでなく、他のコマンドにも使用できます。一時的なコンテ
ナーで実行されるので、フックによる変更は永続されず、フックの実行は最終的なイメージには影響が
ありません。この動作はさまざまな用途がありますが、これにより、テストの依存関係がインストー
ル、使用されて、自動的に破棄され、最終イメージには残らないようにすることができます。

8.2.1. コミット後のビルドフックの設定

ビルド後のフックを設定する方法は複数あります。以下の例に出てくるすべての形式は同等で、bundle
exec rake test --verbose を実行します。

手順

シェルスクリプト:

script の値は、/bin/sh -ic で実行するシェルスクリプトです。上記のように単体テストを実行
する場合など、シェルスクリプトがビルドフックの実行に適している場合に、これを使用しま
す。たとえば、上記のユニットテストを実行する場合などです。イメージのエントリーポイン
トを制御するか、イメージに /bin/sh がない場合は、command および/または args を使用し
ます。

注記

CentOS や RHEL イメージでの作業を改善するために、追加で -i フラグが導入
されましたが、今後のリリースで削除される可能性があります。

イメージエントリーポイントとしてのコマンド:

この形式では command は実行するコマンドで、Dockerfile 参照 に記載されている、実行形式

postCommit:
 script: "bundle exec rake test --verbose"

postCommit:
 command: ["/bin/bash", "-c", "bundle exec rake test --verbose"]

OpenShift Container Platform 4.12 Builds

84

この形式では command は実行するコマンドで、Dockerfile 参照 に記載されている、実行形式
のイメージエントリーポイントを上書きします。これはイメージに /bin/sh がない場合、また
はシェルを使用しない場合に必要です。他の場合は、script を使用することが便利な方法にな
ります。

引数のあるコマンド:

この形式は command に引数を追加するのと同じです。

注記

script と command を同時に指定すると、無効なビルドフックが作成されてしまいま
す。

8.2.2. CLI を使用したコミット後のビルドフックの設定

oc set build-hook コマンドを使用して、ビルド設定のビルドフックを設定することができます。

手順

1. コミット後のビルドフックとしてコマンドを設定します。

2. コミット後のビルドフックとしてスクリプトを設定します。

postCommit:
 command: ["bundle", "exec", "rake", "test"]
 args: ["--verbose"]

$ oc set build-hook bc/mybc \
 --post-commit \
 --command \
 -- bundle exec rake test --verbose

$ oc set build-hook bc/mybc --post-commit --script="bundle exec rake test --verbose"

第8章 BUILDS のトリガーおよび変更

85

https://docs.docker.com/engine/reference/builder/#entrypoint

1

2

1

第9章 高度なビルドの実行
以下のセクションでは、ビルドリソースおよび最長期間の設定、ビルドのノードへの割り当て、チェー
ンビルド、ビルドのプルーニング、およびビルド実行ポリシーなどの高度なビルド操作について説明し
ます。

9.1. ビルドリソースの設定

デフォルトでは、ビルドは、メモリーや CPU など、バインドされていないリソースを使用して Pod に
より完了されます。これらのリソースは制限できます。

手順

リソースの使用を制限する方法は 2 つあります。

プロジェクトのデフォルトコンテナー制限でリソース制限を指定して、リソースを制限しま
す。

リソースの制限をビルド設定の一部として指定し、リソースの使用を制限します。** 以下の例
では、resources、 cpu、および memory パラメーターはそれぞれオプションです。

cpu は CPU のユニットで、100m は 0.1 CPU ユニット (100 * 1e-3) を表します。

memory はバイト単位です。256Mi は 268435456 バイトを表します (256 * 2 ^ 20)。

ただし、クォータがプロジェクトに定義されている場合には、以下の 2 つの項目のいずれかが
必要です。

明示的な requests で設定した resources セクション:

requests オブジェクトは、クォータ内のリソースリストに対応するリソースリストを
含みます。

プロジェクトに定義される制限範囲。LimitRange オブジェクトからのデフォルト値がビル
ドプロセス時に作成される Pod に適用されます。
適用されない場合は、クォータ基準を満たさないために失敗したというメッセージが出さ
れ、ビルド Pod の作成は失敗します。

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2

resources:
 requests: 1
 cpu: "100m"
 memory: "256Mi"

OpenShift Container Platform 4.12 Builds

86

9.2. 最長期間の設定

BuildConfig オブジェクトの定義時に、completionDeadlineSeconds フィールドを設定して最長期間
を定義できます。このフィールドは秒単位で指定し、デフォルトでは設定されません。設定されていな
い場合は、最長期間は有効ではありません。

最長期間はビルドの Pod がシステムにスケジュールされた時点から計算され、ビルダーイメージをプ
ルするのに必要な時間など、ジョブが有効である期間を定義します。指定したタイムアウトに達する
と、ジョブは OpenShift Container Platform により終了されます。

手順

最長期間を設定するには、BuildConfig に completionDeadlineSeconds を指定します。以下
の例は BuildConfig の一部で、completionDeadlineSeconds フィールドを 30 分に指定して
います。

注記

この設定は、Pipeline Strategy オプションではサポートされていません。

9.3. 特定のノードへのビルドの割り当て

ビルドは、ビルド設定の nodeSelector フィールドにラベルを指定して、特定のノード上で実行するよ
うにターゲットを設定できます。nodeSelector の値は、ビルド Pod のスケジュール時の Node ラベル
に一致するキー/値のペアに指定してください。

nodeSelector の値は、クラスター全体のデフォルトでも制御でき、値を上書きできます。ビルド設定
で nodeSelector のキー/値ペアが定義されておらず、nodeSelector:{} が明示的に空になるように定義
されていない場合にのみ、デフォルト値が適用されます。値を上書きすると、キーごとにビルド設定の
値が置き換えられます。

注記

指定の NodeSelector がこれらのラベルが指定されているノードに一致しない場合に
は、ビルドは Pending の状態が無限に続きます。

手順

以下のように、BuildConfig の nodeSelector フィールドにラベルを割り当て、特定のー度で
実行されるビルドを割り当てます。

spec:
 completionDeadlineSeconds: 1800

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 nodeSelector: 1
 key1: value1
 key2: value2

第9章 高度なビルドの実行

87

1 このビルド設定に関連するビルドは、key1=value2 と key2=value2 ラベルが指定された
ノードでのみ実行されます。

9.4. チェーンビルド

コンパイル言語 (Go、C、C++、Java など) の場合には、アプリケーションイメージにコンパイルに必
要な依存関係を追加すると、イメージのサイズが増加したり、悪用される可能性のある脆弱性が発生し
たりする可能性があります。

これらの問題を回避するには、2 つのビルドをチェーンでつなげることができます。1 つ目のビルドで
コンパイルしたアーティファクトを作成し、2 つ目のビルドで、アーティファクトを実行する別のイ
メージにそのアーティファクトを配置します。

以下の例では、Source-to-Image (S2I) ビルドが docker ビルドに組み合わされ、別のランタイムイメー
ジに配置されるアーティファクトがコンパイルされます。

注記

この例では、S2I ビルドと docker ビルドをチェーンでつないでいますが、1 つ目のビル
ドは、必要なアーティファクトを含むイメージを生成するストラテジーを使用し、2 つ
目のビルドは、イメージからの入力コンテンツを使用できるストラテジーを使用できま
す。

最初のビルドは、アプリケーションソースを取得して、WAR ファイルを含むイメージを作成します。
このイメージは、artifact-image イメージストリームにプッシュされます。アウトプットアーティファ
クトのパスは、使用する S2I ビルダーの assemble スクリプトにより異なります。この場
合、/wildfly/standalone/deployments/ROOT.war に出力されます。

2 つ目のビルドは、1 つ目のビルドからのアウトプットイメージ内にある WAR ファイルへのパスが指定
されているイメージソースを使用します。インライン dockerfile は、WAR ファイルをランタイムイ
メージにコピーします。

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: artifact-build
spec:
 output:
 to:
 kind: ImageStreamTag
 name: artifact-image:latest
 source:
 git:
 uri: https://github.com/openshift/openshift-jee-sample.git
 ref: "master"
 strategy:
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: wildfly:10.1
 namespace: openshift

apiVersion: build.openshift.io/v1

OpenShift Container Platform 4.12 Builds

88

1

2

3

from は、docker ビルドに、以前のビルドのターゲットであった artifact-image イメージストリー
ムからのイメージの出力を追加する必要があることを指定します。

paths は、現在の docker ビルドに追加するターゲットイメージからのパスを指定します。

ランタイムのイメージは、docker ビルドのソースイメージとして使用します。

この設定の結果、2 番目のビルドのアウトプットイメージに、WAR ファイルの作成に必要なビルド
ツールを含める必要がなくなります。また、この 2 番目のビルドにはイメージ変更のトリガーが含まれ
ているので、1 番目のビルドがバイナリーアーティファクトで新規イメージを実行して作成するたび
に、2 番目のビルドが自動的に、そのアーティファクトを含むランタイムイメージを生成するためにト
リガーされます。そのため、どちらのビルドも、ステージが 2 つある単一ビルドのように振る舞いま
す。

9.5. ビルドのプルーニング

デフォルトで、ライフサイクルを完了したビルドは無制限に保持されます。保持される以前のビルドの
数を制限することができます。

手順

1. successfulBuildsHistoryLimit または failedBuildsHistoryLimit の正の値を BuildConfig に指
定して、保持される以前のビルドの数を制限します。以下は例になります。

kind: BuildConfig
metadata:
 name: image-build
spec:
 output:
 to:
 kind: ImageStreamTag
 name: image-build:latest
 source:
 dockerfile: |-
 FROM jee-runtime:latest
 COPY ROOT.war /deployments/ROOT.war
 images:
 - from: 1
 kind: ImageStreamTag
 name: artifact-image:latest
 paths: 2
 - sourcePath: /wildfly/standalone/deployments/ROOT.war
 destinationDir: "."
 strategy:
 dockerStrategy:
 from: 3
 kind: ImageStreamTag
 name: jee-runtime:latest
 triggers:
 - imageChange: {}
 type: ImageChange

apiVersion: "v1"
kind: "BuildConfig"

第9章 高度なビルドの実行

89

1

2

successfulBuildsHistoryLimit は、completed のステータスのビルドを最大 2 つまで保
持します。

failedBuildsHistoryLimit はステータスが failed、canceled または error のビルドを最大
2 つまで保持します。

2. 以下の動作のいずれかを実行して、ビルドのプルーニングをトリガーします。

ビルド設定が更新された場合

ビルドがそのライフサイクルを完了するのを待機します。

ビルドは、作成時のタイムスタンプで分類され、一番古いビルドが先にプルーニングされます。

注記

管理者は、'oc adm' オブジェクトプルーニングコマンドを使用して、ビルドを手動でプ
ルーニングできます。

9.6. ビルド実行ポリシー

ビルド実行ポリシーでは、ビルド設定から作成されるビルドを実行する順番を記述します。これに
は、Build の spec セクションにある runPolicy フィールドの値を変更してください。

既存のビルド設定の runPolicy 値を変更することも可能です。以下を実行します。

Parallel から Serial や SerialLatestOnly に変更して、この設定から新規ビルドをトリガーする
と、新しいビルドは並列ビルドすべてが完了するまで待機します。これは、順次ビルドは、一
度に 1 つしか実行できないためです。

Serial を SerialLatestOnly に変更して、新規ビルドをトリガーすると、現在実行中のビルドと
直近で作成されたビルド以外には、キューにある既存のビルドがすべてキャンセルされます。
最新のビルドが次に実行されます。

metadata:
 name: "sample-build"
spec:
 successfulBuildsHistoryLimit: 2 1
 failedBuildsHistoryLimit: 2 2

OpenShift Container Platform 4.12 Builds

90

第10章 ビルドでの RED HAT サブスクリプションの使用
以下のセクションを使用して、OpenShift Container Platform でエンタイトルメントが適用されたビル
ドを実行します。

10.1. RED HAT UNIVERSAL BASE IMAGE へのイメージストリームタグの
作成

ビルド内で Red Hat サブスクリプションを使用するには、Universal Base Image (UBI) を参照するイ
メージストリームを作成します。

UBI をクラスター内の すべてのプロジェクトで 利用可能にするには、イメージストリームタグを
openshift namespace に追加します。それ以外の場合は、これを 特定のプロジェクトで 利用可能にす
るには、イメージストリームタグをそのプロジェクトに追加します。

このようにイメージストリームタグを使用すると、他のユーザーにプルシークレットを公開せずに、イ
ンストールプルシークレットの registry.redhat.io 認証情報に基づいて UBI へのアクセスを付与するこ
とができます。これは、各開発者が各プロジェクトで registry.redhat.io 認証情報を使用してプルシー
クレットをインストールすることが必要になる場合よりも便利です。

手順

openshift namespace で ImageStreamTag を作成し、これを開発者に対してすべてのプロ
ジェクトで利用可能にするには、以下を実行します。

ヒント

または、以下の YAML を適用して openshift namespace に ImageStreamTag を作成できま
す。

単一プロジェクトで ImageStreamTag を作成するには、以下を実行します。

ヒント

$ oc tag --source=docker registry.redhat.io/ubi8/ubi:latest ubi:latest -n openshift

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
 name: ubi
 namespace: openshift
spec:
 tags:
 - from:
 kind: DockerImage
 name: registry.redhat.io/ubi8/ubi:latest
 name: latest
 referencePolicy:
 type: Source

$ oc tag --source=docker registry.redhat.io/ubi8/ubi:latest ubi:latest

第10章 ビルドでの RED HAT サブスクリプションの使用

91

ヒント

または、以下の YAML を適用して単一のプロジェクトに ImageStreamTag を作成できます。

10.2. ビルドシークレットとしてのサブスクリプションエンタイトルメント
の追加

Red Hat サブスクリプションを使用してコンテンツをインストールするビルドには、ビルドシークレッ
トとしてエンタイトルメントキーを含める必要があります。

前提条件

サブスクリプションを使用して Red Hat エンタイトルメントにアクセスできる。エンタイトルメント
シークレットは Insights Operator によって自動的に作成されます。

ヒント

Red Hat Enterprise Linux (RHEL) 7 を使用してエンタイトルメントビルドを実行する場合、yum コマン
ドを実行する前に、Dockerfile に次の手順を含める必要があります。

手順

1. etc-pki-entitlement シークレットをビルド設定の Docker ストラテジーでビルドボリュームと
して追加します。

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
 name: ubi
spec:
 tags:
 - from:
 kind: DockerImage
 name: registry.redhat.io/ubi8/ubi:latest
 name: latest
 referencePolicy:
 type: Source

RUN rm /etc/rhsm-host

strategy:
 dockerStrategy:
 from:
 kind: ImageStreamTag
 name: ubi:latest
 volumes:
 - name: etc-pki-entitlement
 mounts:
 - destinationPath: /etc/pki/entitlement
 source:
 type: Secret
 secret:
 secretName: etc-pki-entitlement

OpenShift Container Platform 4.12 Builds

92

10.3. SUBSCRIPTION MANAGER を使用したビルドの実行

10.3.1. Subscription Manager を使用した Docker ビルド

Docker ストラテジービルドは Subscription Manager を使用してサブスクリプションコンテンツをイン
ストールできます。

前提条件

エンタイトルメントキーは、ビルドストラテジーのボリュームとして追加する必要があります。

手順

以下を Dockerfile の例として使用し、Subscription Manager でコンテンツをインストールします。

10.4. RED HAT SATELLITE サブスクリプションを使用したビルドの実行

10.4.1. Red Hat Satellite 設定のビルドへの追加

Red Hat Satellite を使用してコンテンツをインストールするビルドは、Satellite リポジトリーからコン
テンツを取得するための適切な設定を提供する必要があります。

前提条件

Satellite インスタンスからコンテンツをダウンロードするために、yum 互換リポジトリー設定
ファイルを提供するか、これを作成する必要があります。

サンプルリポジトリーの設定

手順

1. Satellite リポジトリーの設定ファイルを含む ConfigMap を作成します。

2. Satellite リポジトリー設定およびエンタイトルメントキーをビルドボリュームとして追加しま
す。

FROM registry.redhat.io/ubi8/ubi:latest
RUN dnf search kernel-devel --showduplicates && \
 dnf install -y kernel-devel

[test-<name>]
name=test-<number>
baseurl = https://satellite.../content/dist/rhel/server/7/7Server/x86_64/os
enabled=1
gpgcheck=0
sslverify=0
sslclientkey = /etc/pki/entitlement/...-key.pem
sslclientcert = /etc/pki/entitlement/....pem

$ oc create configmap yum-repos-d --from-file /path/to/satellite.repo

strategy:
 dockerStrategy:

第10章 ビルドでの RED HAT サブスクリプションの使用

93

10.4.2. Red Hat Satellite サブスクリプションを使用した Docker ビルド

Docker ストラテジービルドは、Red Hat Satellite リポジトリーを使用してサブスクリプションコンテ
ンツをインストールできます。

前提条件

エンタイトルメントキーと Satellite リポジトリー設定がビルドボリュームとして追加してお
く。

手順

以下のサンプル Dockerfile を使用して、Satellite を使用してコンテンツをインストールします。

関連情報

Red Hat Satellite サブスクリプションと使用する証明書でビルドを使用する方法

10.5. SHAREDSECRET オブジェクトを使用したエンタイトルメントが適用
されたビルドの実行

別の namespace のSecretオブジェクトからの RHEL エンタイトルメントを安全に使用する 1 つの
namespace で、ビルドを設定および実行できます。

Buildオブジェクトと同じ namespace にサブスクリプションクレデンシャルを使用してSecretオブジェ
クトを作成することにより、OpenShift Builds から RHEL エンタイトルメントに引き続きアクセスでき
ます。ただし、OpenShift Container Platform 4.10 以降では、OpenShift Container Platform システム
namespace の 1 つにあ るSecret オブジェクトから、クレデンシャルと証明書にアクセスできるように
なりました。Secret オブジェクトを参照する SharedSecret カスタムリソース (CR) インスタンスの
CSI ボリュームマウントを使用して、エンタイトルメントのあるビルドを実行します。

 from:
 kind: ImageStreamTag
 name: ubi:latest
 volumes:
 - name: yum-repos-d
 mounts:
 - destinationPath: /etc/yum.repos.d
 source:
 type: ConfigMap
 configMap:
 name: yum-repos-d
 - name: etc-pki-entitlement
 mounts:
 - destinationPath: /etc/pki/entitlement
 source:
 type: Secret
 secret:
 secretName: etc-pki-entitlement

FROM registry.redhat.io/ubi8/ubi:latest
RUN dnf search kernel-devel --showduplicates && \
 dnf install -y kernel-devel

OpenShift Container Platform 4.12 Builds

94

https://access.redhat.com/solutions/5847331

この手順は、新しく導入された共有リソース CSI ドライバー機能に依存しています。この機能を使用し
て、OpenShift Container Platform Builds で CSI ボリュームマウントを宣言できます。これは、
OpenShift Container Platform Insights Operator にも依存しています。

重要

共有リソース CSI ドライバーとビルド CSI ボリュームはどちらもテクノロジープレ
ビュー機能であり、実稼働環境でのサービスレベルアグリーメント (SLA) ではサポート
されていないため、機能的に完全ではない可能性があります。Red Hat は実稼働環境で
これらを使用することを推奨していません。テクノロジープレビュー機能は、最新の製
品機能をいち早く提供して、開発段階で機能のテストを行い、フィードバックを提供し
ていただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジー
プレビュー機能のサポート範囲 を参照してください。

共有リソース CSI ドライバーおよびビルド CSI ボリューム機能も、現在のテクノロジー
プレビュー機能のサブセットである TechPreviewNoUpgrade 機能セットに属していま
す。テストクラスターで TechPreviewNoUpgrade 機能セットを有効にできます。この
場合、実稼働クラスターで機能を無効にしたまま、完全にテストできます。この機能
セットを有効にすると元に戻すことができなくなり、マイナーバージョン更新ができな
くなります。この機能セットは、実稼働クラスターでは推奨されません。以下の関連情
報セクションの "Enabling Technology Preview features using feature gates" を参照して
ください。

前提条件

機能ゲートを使用して、TechPreviewNoUpgrade 機能セットを有効にしている。

Insights Operator がサブスクリプションクレデンシャルを格納する Secret オブジェクトを参
照する SharedSecret カスタムリソース (CR) インスタンスがある。

次のアクションを実行するためのパーミッションがある。

ビルド設定を作成し、ビルドを開始します。

oc get sharedsecretsコマンドを入力し、空でないリストを取得して、使用可能
なSharedSecret CR インスタンスを見つけます。

namespace で使用可能な builder サービスアカウントが、指定された SharedSecret CR
インスタンスの使用を許可されているかどうかを確認します。つまり、oc adm policy
who-can use <identifier of specific SharedSecret> を使用して、namespace
のbuilderサービスアカウントが一覧表示されているかどうかを確認できます。

注記

このリストの最後の 2 つの前提条件のいずれも満たされない場合は、必要なロールベー
スアクセス制御 (RBAC) を自身で確立するか、誰かに依頼して確立します。これによ
り、SharedSecret CR インスタンスを検出し、サービスアカウントを有効にして
SharedSecret CR インスタンスを使用できるようになります。

手順

1. YAML コンテンツでoc applyを使用して、SharedSecret CR インスタンスを使用するための
builder サービスアカウント RBAC 権限を付与します。

第10章 ビルドでの RED HAT サブスクリプションの使用

95

https://access.redhat.com/support/offerings/techpreview/

注記

現在、 kubectlとocには、use 動詞を Pod セキュリティーを中心としたロール
に制限する特別な場合のロジックがハードコーディングされています。したがっ
て、oc create role … ​ を使用して、SharedSecret CR インスタンスの使用に必
要なロールを作成することはできません。

YAML Role オブジェクト定義を使用した oc apply -f コマンドの例

2. oc コマンドを使用して、ロールに関連付けられた RoleBinding を作成します。

oc create rolebinding コマンドの例

3. RHEL エンタイトルメントにアクセスする BuildConfig オブジェクトを作成します。

YAML BuildConfig オブジェクト定義の例

$ oc apply -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: shared-resource-my-share
 namespace: my-namespace
rules:
 - apiGroups:
 - sharedresource.openshift.io
 resources:
 - sharedsecrets
 resourceNames:
 - my-share
 verbs:
 - use
EOF

$ oc create rolebinding shared-resource-my-share --role=shared-resource-my-share --
serviceaccount=my-namespace:builder

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: my-csi-bc
 namespace: my-csi-app-namespace
spec:
 runPolicy: Serial
 source:
 dockerfile: |
 FROM registry.redhat.io/ubi8/ubi:latest
 RUN ls -la /etc/pki/entitlement
 RUN rm /etc/rhsm-host
 RUN yum repolist --disablerepo=*
 RUN subscription-manager repos --enable rhocp-4.9-for-rhel-8-x86_64-rpms
 RUN yum -y update
 RUN yum install -y openshift-clients.x86_64
 strategy:

OpenShift Container Platform 4.12 Builds

96

4. BuildConfig オブジェクトからビルドを開始し、oc コマンドでログを追跡します。

oc start-build コマンドの例

例10.1 oc start-build コマンドからの出力例

注記

次の出力の一部のセクションは … に置き換えられました。

 type: Docker
 dockerStrategy:
 volumes:
 - mounts:
 - destinationPath: "/etc/pki/entitlement"
 name: my-csi-shared-secret
 source:
 csi:
 driver: csi.sharedresource.openshift.io
 readOnly: true
 volumeAttributes:
 sharedSecret: my-share-bc
 type: CSI

$ oc start-build my-csi-bc -F

build.build.openshift.io/my-csi-bc-1 started
Caching blobs under "/var/cache/blobs".

Pulling image registry.redhat.io/ubi8/ubi:latest ...
Trying to pull registry.redhat.io/ubi8/ubi:latest...
Getting image source signatures
Copying blob
sha256:5dcbdc60ea6b60326f98e2b49d6ebcb7771df4b70c6297ddf2d7dede6692df6e
Copying blob
sha256:8671113e1c57d3106acaef2383f9bbfe1c45a26eacb03ec82786a494e15956c3
Copying config
sha256:b81e86a2cb9a001916dc4697d7ed4777a60f757f0b8dcc2c4d8df42f2f7edb3a
Writing manifest to image destination
Storing signatures
Adding transient rw bind mount for /run/secrets/rhsm
STEP 1/9: FROM registry.redhat.io/ubi8/ubi:latest
STEP 2/9: RUN ls -la /etc/pki/entitlement
total 360
drwxrwxrwt. 2 root root 80 Feb 3 20:28 .
drwxr-xr-x. 10 root root 154 Jan 27 15:53 ..
-rw-r--r--. 1 root root 3243 Feb 3 20:28 entitlement-key.pem
-rw-r--r--. 1 root root 362540 Feb 3 20:28 entitlement.pem
time="2022-02-03T20:28:32Z" level=warning msg="Adding metacopy option, configured
globally"
--> 1ef7c6d8c1a
STEP 3/9: RUN rm /etc/rhsm-host
time="2022-02-03T20:28:33Z" level=warning msg="Adding metacopy option, configured
globally"

第10章 ビルドでの RED HAT サブスクリプションの使用

97

--> b1c61f88b39
STEP 4/9: RUN yum repolist --disablerepo=*
Updating Subscription Management repositories.

...

--> b067f1d63eb
STEP 5/9: RUN subscription-manager repos --enable rhocp-4.9-for-rhel-8-x86_64-rpms
Repository 'rhocp-4.9-for-rhel-8-x86_64-rpms' is enabled for this system.
time="2022-02-03T20:28:40Z" level=warning msg="Adding metacopy option, configured
globally"
--> 03927607ebd
STEP 6/9: RUN yum -y update
Updating Subscription Management repositories.

...

Upgraded:
 systemd-239-51.el8_5.3.x86_64 systemd-libs-239-51.el8_5.3.x86_64
 systemd-pam-239-51.el8_5.3.x86_64
Installed:
 diffutils-3.6-6.el8.x86_64 libxkbcommon-0.9.1-1.el8.x86_64
 xkeyboard-config-2.28-1.el8.noarch

Complete!
time="2022-02-03T20:29:05Z" level=warning msg="Adding metacopy option, configured
globally"
--> db57e92ff63
STEP 7/9: RUN yum install -y openshift-clients.x86_64
Updating Subscription Management repositories.

...

Installed:
 bash-completion-1:2.7-5.el8.noarch
 libpkgconf-1.4.2-1.el8.x86_64
 openshift-clients-4.9.0-202201211735.p0.g3f16530.assembly.stream.el8.x86_64
 pkgconf-1.4.2-1.el8.x86_64
 pkgconf-m4-1.4.2-1.el8.noarch
 pkgconf-pkg-config-1.4.2-1.el8.x86_64

Complete!
time="2022-02-03T20:29:19Z" level=warning msg="Adding metacopy option, configured
globally"
--> 609507b059e
STEP 8/9: ENV "OPENSHIFT_BUILD_NAME"="my-csi-bc-1"
"OPENSHIFT_BUILD_NAMESPACE"="my-csi-app-namespace"
--> cab2da3efc4
STEP 9/9: LABEL "io.openshift.build.name"="my-csi-bc-1"
"io.openshift.build.namespace"="my-csi-app-namespace"
COMMIT temp.builder.openshift.io/my-csi-app-namespace/my-csi-bc-1:edfe12ca
--> 821b582320b
Successfully tagged temp.builder.openshift.io/my-csi-app-namespace/my-csi-bc-

OpenShift Container Platform 4.12 Builds

98

10.6. 関連情報

Insights Operator を使用した単純なコンテンツアクセス証明書のインポート

フィーチャーゲートを使用した機能の有効化

イメージストリームの管理

ビルドストラテジー

1:edfe12ca
821b582320b41f1d7bab4001395133f86fa9cc99cc0b2b64c5a53f2b6750db91
Build complete, no image push requested

第10章 ビルドでの RED HAT サブスクリプションの使用

99

https://docs.redhat.com/en/documentation/openshift_container_platform/4.12/html-single/support/#insights-operator-simple-access
https://docs.redhat.com/en/documentation/openshift_container_platform/4.12/html-single/nodes/#nodes-cluster-enabling
https://docs.redhat.com/en/documentation/openshift_container_platform/4.12/html-single/images/#image-streams-managing

第11章 ストラテジーによるビルドのセキュリティー保護
OpenShift Container Platform のビルドは特権付きコンテナーで実行されます。使用されるビルドスト
ラテジーに応じて、権限がある場合は、ビルドを実行してクラスターおよびホストノードでの自らの
パーミッションをエスカレートすることができます。セキュリティー対策として、ビルドを実行できる
ユーザーおよびそれらのビルドに使用されるストラテジーを制限します。カスタムビルドは特権付きコ
ンテナー内で任意のコードを実行できるためにソースビルドより安全性が低くなります。そのためデ
フォルトで無効にされます。Dockerfile 処理ロジックにある脆弱性により、権限がホストノードで付与
される可能性があるため、docker ビルドパーミッションを付与する際には注意してください。

デフォルトで、ビルドを作成できるすべてのユーザーには docker および Source-to-Image (S2I) ビルド
ストラテジーを使用するためにパーミッションが付与されます。クラスター管理者権限を持つユーザー
は、ビルドストラテジーをユーザーにぐローバルに制限する方法に関するセクションで言及されている
ようにカスタムビルドストラテジーを有効にできます。

許可ポリシーを使用して、どのユーザーがどのビルドストラテジーを使用してビルドできるかを制限す
ることができます。各ビルドストラテジーには、対応するビルドサブリソースがあります。ストラテ
ジーを使用してビルド作成するには、ユーザーにビルドを作成するパーミッションおよびビルドストラ
テジーのサブリソースで作成するパーミッションがなければなりません。ビルドストラテジーのサブリ
ソースでの create パーミッションを付与するデフォルトロールが提供されます。

表11.1 ビルドストラテジーのサブリソースおよびロール

ストラテジー サブリソース ロール

Docker ビルド/docker system:build-strategy-docker

Source-to-Image ビルド/ソース system:build-strategy-source

カスタム ビルド/カスタム system:build-strategy-custom

JenkinsPipeline ビルド/jenkinspipeline system:build-strategy-
jenkinspipeline

11.1. ビルドストラテジーへのアクセスのグローバルな無効化

特定のビルドストラテジーへのアクセスをグローバルに禁止するには、クラスター管理者の権限を持つ
ユーザーとしてログインし、system:authenticated グループから対応するロールを削除し、アノテー
ション rbac.authorization.kubernetes.io/autoupdate: "false" を適用してそれらを API の再起動間で
の変更から保護します。以下の例では、docker ビルドストラテジーを無効にする方法を示します。

手順

1. rbac.authorization.kubernetes.io/autoupdate アノテーションを適用します。

2. ロールを削除します。

$ oc annotate clusterrolebinding.rbac system:build-strategy-docker-binding
'rbac.authorization.kubernetes.io/autoupdate=false' --overwrite

$ oc adm policy remove-cluster-role-from-group system:build-strategy-docker
system:authenticated

OpenShift Container Platform 4.12 Builds

100

3. ビルドストラテジーサブリソースが admin および edit ユーザーロールからも削除されている
ことを確認します。

11.2. ユーザーへのビルドストラテジーのグルーバルな制限

一連の特定ユーザーのみが特定のストラテジーでビルドを作成できます。

前提条件

ビルドストラテジーへのグローバルアクセスを無効にします。

手順

ビルドストラテジーに対応するロールを特定ユーザーに割り当てます。たとえ
ば、system:build-strategy-docker クラスターロールをユーザー devuser に追加するには、以
下を実行します。

警告

ユーザーに対して builds/docker サブリソースへのクラスターレベルでの
アクセスを付与することは、そのユーザーがビルドを作成できるすべての
プロジェクトにおいて、docker ストラテジーを使用してビルドを作成でき
ることを意味します。

11.3. プロジェクト内でのユーザーへのビルドストラテジーの制限

ユーザーにビルドストラテジーをグローバルに付与するのと同様に、プロジェクト内の特定ユーザーの
セットのみが特定ストラテジーでビルドを作成することを許可できます。

前提条件

ビルドストラテジーへのグローバルアクセスを無効にします。

手順

ビルドストラテジーに対応するロールをプロジェクト内の特定ユーザーに付与します。たとえ
ば、プロジェクト devproject 内の system:build-strategy-docker ロールをユーザー devuser
に追加するには、以下を実行します。

$ oc get clusterrole admin -o yaml | grep "builds/docker"

$ oc get clusterrole edit -o yaml | grep "builds/docker"

$ oc adm policy add-cluster-role-to-user system:build-strategy-docker devuser



$ oc adm policy add-role-to-user system:build-strategy-docker devuser -n devproject

第11章 ストラテジーによるビルドのセキュリティー保護

101

第12章 ビルド設定リソース
以下の手順でビルドを設定します。

12.1. ビルドコントローラー設定パラメーター

build.config.openshift.io/cluster リソースは以下の設定パラメーターを提供します。

パラメーター 説明

Build ビルドの処理方法に関するクラスター全体の情報を保持します。正規名および
唯一の有効な名前となるのは cluster です。

spec: ビルドコントローラー設定のユーザーが設定できる値を保持します。

buildDefaults ビルドのデフォルト情報を制御します。

defaultProxy: イメージのプルまたはプッシュ、およびソースのダウンロード
を含む、ビルド操作のデフォルトのプロキシー設定が含まれます。

BuildConfig ストラテジーに HTTP_PROXY、HTTPS_PROXY、および
NO_PROXY 環境変数を設定することで、値を上書きできます。

gitProxy: Git 操作のプロキシー設定のみが含まれます。設定されている場
合、これは git clone などの Git コマンドのプロキシー設定をオーバーライド
します。

ここで設定されていない値は DefaultProxy から継承されます。

env: 指定される変数がビルドに存在しない場合にビルドに適用される一連のデ
フォルト環境変数。

imageLabels: 結果として生成されるイメージに適用されるラベルのリス
ト。BuildConfig に同じ名前のラベルを指定することでデフォルトのラベル
を上書きできます。

resources: ビルドを実行するためのリソース要件を定義します。

ImageLabel name: ラベルの名前を定義します。ゼロ以外の長さを持つ必要があります。

buildOverrides ビルドの上書き設定を制御します。

imageLabels: 結果として生成されるイメージに適用されるラベルのリスト。
表にあるものと同じ名前のラベルを BuildConfig に指定する場合、ラベルは
上書きされます。

nodeSelector: セレクター。ビルド Pod がノードに適合させるには True であ
る必要があります。

tolerations: ビルド Pod に設定された既存の容認を上書きする容認のリスト。

BuildList items: 標準オブジェクトのメタデータ。

OpenShift Container Platform 4.12 Builds

102

12.2. ビルド設定の設定

build.config.openshift.io/cluster リソースを編集してビルドの設定を行うことができます。

手順

build.config.openshift.io/cluster リソースを編集します。

以下は、build.config.openshift.io/cluster リソースの例になります。

$ oc edit build.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Build 1
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-05-17T13:44:26Z"
 generation: 2
 name: cluster
 resourceVersion: "107233"
 selfLink: /apis/config.openshift.io/v1/builds/cluster
 uid: e2e9cc14-78a9-11e9-b92b-06d6c7da38dc
spec:
 buildDefaults: 2
 defaultProxy: 3
 httpProxy: http://proxy.com
 httpsProxy: https://proxy.com
 noProxy: internal.com
 env: 4
 - name: envkey
 value: envvalue
 gitProxy: 5
 httpProxy: http://gitproxy.com
 httpsProxy: https://gitproxy.com
 noProxy: internalgit.com
 imageLabels: 6
 - name: labelkey
 value: labelvalue
 resources: 7
 limits:
 cpu: 100m
 memory: 50Mi
 requests:
 cpu: 10m
 memory: 10Mi
 buildOverrides: 8
 imageLabels: 9
 - name: labelkey
 value: labelvalue
 nodeSelector: 10
 selectorkey: selectorvalue
 tolerations: 11
 - effect: NoSchedule

第12章 ビルド設定リソース

103

1

2

3

4

5

6

7

8

9

10

11

Build: ビルドの処理方法に関するクラスター全体の情報を保持します。正規名および唯一
の有効な名前となるのは cluster です。

buildDefaults: ビルドのデフォルト情報を制御します。

defaultProxy: イメージのプルまたはプッシュ、およびソースのダウンロードを含む、ビ
ルド操作のデフォルトのプロキシー設定が含まれます。

env: 指定される変数がビルドに存在しない場合にビルドに適用される一連のデフォルト環
境変数。

gitProxy: Git 操作のプロキシー設定のみが含まれます。設定されている場合、これは git
clone などの Git コマンドのプロキシー設定をオーバーライドします。

imageLabels: 結果として生成されるイメージに適用されるラベルのリスト。BuildConfig
に同じ名前のラベルを指定することでデフォルトのラベルを上書きできます。

resources: ビルドを実行するためのリソース要件を定義します。

buildOverrides: ビルドの上書き設定を制御します。

imageLabels: 結果として生成されるイメージに適用されるラベルのリスト。表にあるも
のと同じ名前のラベルを BuildConfig に指定する場合、ラベルは上書きされます。

nodeSelector: セレクター。ビルド Pod がノードに適合させるには True である必要があ
ります。

tolerations: ビルド Pod に設定された既存の容認を上書きする容認のリスト。

 key: node-role.kubernetes.io/builds
operator: Exists

OpenShift Container Platform 4.12 Builds

104

第13章 ビルドのトラブルシューティング
ビルドの問題をトラブルシューティングするために、以下を使用します。

13.1. リソースへのアクセスのための拒否の解決

リソースへのアクセス要求が拒否される場合:

問題

ビルドが以下のエラーで失敗します。

解決策

プロジェクトに設定されているイメージのクォータのいずれかの上限を超えています。現在の
クォータを確認して、適用されている制限数と、使用中のストレージを確認してください。

13.2. サービス証明書の生成に失敗

リソースへのアクセス要求が拒否される場合:

問題

サービス証明書の生成は以下を出して失敗します (サービスの service.beta.openshift.io/serving-
cert-generation-error アノテーションには以下が含まれます)。

出力例

解決策

証明書を生成したサービスがすでに存在しないか、サービスに異なる serviceUID があります。古い
シークレットを削除し、サービスのアノテーション (service.beta.openshift.io/serving-cert-
generation-error および service.beta.openshift.io/serving-cert-generation-error-num) をクリア
して証明書の再生成を強制的に実行する必要があります。

注記

アノテーションを削除するコマンドでは、削除するアノテーション名の後に - を付けま
す。

requested access to the resource is denied

$ oc describe quota

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not
match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

$ oc delete secret <secret_name>

$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-

$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-num-

第13章 ビルドのトラブルシューティング

105

第14章 ビルドの信頼される認証局の追加設定
以下のセクションを参照して、イメージレジストリーからイメージをプルする際に追加の認証局 (CA)
がビルドによって信頼されるように設定します。

この手順を実行するには、クラスター管理者で ConfigMap を作成し、追加の CA を ConfigMap の
キーとして追加する必要があります。

ConfigMap は openshift-config namespace で作成される必要があります。

domain は ConfigMap のキーであり、value は PEM エンコード証明書です。

それぞれの CA はドメインに関連付けられている必要があります。ドメインの形式は
hostname[..port] です。

ConfigMap 名は、image.config.openshift.io/cluster クラスタースコープ設定リソースの
spec.additionalTrustedCA フィールドに設定される必要があります。

14.1. クラスターへの認証局の追加

以下の手順でイメージのプッシュおよびプル時に使用する認証局 (CA) をクラスターに追加することが
できます。

前提条件

レジストリーの公開証明書 (通常は、/etc/docker/certs.d/ ディレクトリーにある
hostname/ca.crt ファイル)。

手順

1. 自己署名証明書を使用するレジストリーの信頼される証明書が含まれる ConfigMap を
openshift-config namespace に作成します。それぞれの CA ファイルで、ConfigMap のキー
が hostname[..port] 形式のレジストリーのホスト名であることを確認します。

2. クラスターイメージの設定を更新します。

14.2. 関連情報

ConfigMap の作成

シークレットおよび ConfigMaps

カスタム PKI の設定

$ oc create configmap registry-cas -n openshift-config \
--from-file=myregistry.corp.com..5000=/etc/docker/certs.d/myregistry.corp.com:5000/ca.crt \
--from-file=otherregistry.com=/etc/docker/certs.d/otherregistry.com/ca.crt

$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"registry-cas"}}}' --type=merge

OpenShift Container Platform 4.12 Builds

106

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubectl.docs.kubernetes.io/guides/config_management/secrets_configmaps/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.12/html-single/networking/#configuring-a-custom-pki

第14章 ビルドの信頼される認証局の追加設定

107

	Table of Contents
	第1章 イメージビルドについて
	1.1. BUILDS
	1.1.1. docker ビルド
	1.1.2. Source-to-Image ビルド
	1.1.3. カスタムビルド
	1.1.4. パイプラインビルド

	第2章 ビルド設定について
	2.1. BUILDCONFIG

	第3章 ビルド入力の作成
	3.1. ビルド入力
	3.2. DOCKERFILE ソース
	3.3. イメージソース
	3.4. GIT ソース
	3.4.1. プロキシーの使用
	3.4.2. ソースクローンのシークレット
	3.4.2.1. ソースクローンシークレットのビルド設定への自動追加
	3.4.2.2. ソースクローンシークレットの手動による追加
	3.4.2.3. .gitconfig ファイルからのシークレットの作成
	3.4.2.4. セキュリティー保護された Git の .gitconfig ファイルからのシークレットの作成
	3.4.2.5. ソースコードの基本的な認証からのシークレットの作成
	3.4.2.6. ソースコードの SSH キー認証からのシークレットの作成
	3.4.2.7. ソースコードの信頼されている認証局からのシークレットの作成
	3.4.2.8. ソースシークレットの組み合わせ

	3.5. バイナリー (ローカル) ソース
	3.6. 入力シークレットおよび CONFIG MAP
	3.6.1. シークレットの概要
	3.6.1.1. シークレットのプロパティー
	3.6.1.2. シークレットの種類
	3.6.1.3. シークレットの更新

	3.6.2. シークレットの作成
	3.6.3. シークレットの使用
	3.6.4. 入力シークレットおよび設定マップの追加
	3.6.5. Source-to-Image ストラテジー
	3.6.6. Docker ストラテジー
	3.6.7. カスタムストラテジー

	3.7. 外部アーティファクト
	3.8. プライベートレジストリーでの DOCKER 認証情報の使用
	3.9. ビルド環境
	3.9.1. 環境変数としてのビルドフィールドの使用
	3.9.2. 環境変数としてのシークレットの使用

	3.10. サービス提供証明書のシークレット
	3.11. シークレットの制限

	第4章 ビルド出力の管理
	4.1. ビルド出力
	4.2. アウトプットイメージの環境変数
	4.3. アウトプットイメージのラベル

	第5章 ビルドストラテジーの使用
	5.1. DOCKER ビルド
	5.1.1. Dockerfile FROM イメージの置き換え
	5.1.2. Dockerfile パスの使用
	5.1.3. docker 環境変数の使用
	5.1.4. docker ビルド引数の追加
	5.1.5. docker ビルドによる層の非表示
	5.1.6. ビルドボリュームの使用

	5.2. SOURCE-TO-IMAGE ビルド
	5.2.1. Source-to-Image (S2I) 増分ビルドの実行
	5.2.2. Source-to-Image (S2I) ビルダーイメージスクリプトの上書き
	5.2.3. Source-to-Image 環境変数
	5.2.3.1. Source-to-Image 環境ファイルの使用
	5.2.3.2. Source-to-Image ビルド設定環境の使用

	5.2.4. Source-to-Image ソースファイルを無視する
	5.2.5. Source-to-Image によるソースコードからのイメージの作成
	5.2.5.1. Source-to-Image ビルドプロセスについて
	5.2.5.2. Source-to-Image スクリプトの作成方法

	5.2.6. ビルドボリュームの使用

	5.3. カスタムビルド
	5.3.1. カスタムビルドの FROM イメージの使用
	5.3.2. カスタムビルドでのシークレットの使用
	5.3.3. カスタムビルドの環境変数の使用
	5.3.4. カスタムビルダーイメージの使用
	5.3.4.1. カスタムビルダーイメージ
	5.3.4.2. カスタムビルダーのワークフロー

	5.4. パイプラインビルド
	5.4.1. OpenShift Container Platform Pipeline について
	5.4.2. パイプラインビルド用の Jenkins ファイルの提供
	5.4.3. Pipeline ビルドの環境変数の使用
	5.4.3.1. BuildConfig 環境変数と Jenkins ジョブパラメーター間のマッピング

	5.4.4. Pipeline ビルドのチュートリアル

	5.5. WEB コンソールを使用したシークレットの追加
	5.6. プルおよびプッシュの有効化

	第6章 BUILDAH によるカスタムイメージビルド
	6.1. 前提条件
	6.2. カスタムビルドアーティファクトの作成
	6.3. カスタムビルダーイメージのビルド
	6.4. カスタムビルダーイメージの使用

	第7章 基本的なビルドの実行および設定
	7.1. ビルドの開始
	7.1.1. ビルドの再実行
	7.1.2. ビルドログのストリーミング
	7.1.3. ビルド開始時の環境変数の設定
	7.1.4. ソースを使用したビルドの開始

	7.2. ビルドの中止
	7.2.1. 複数ビルドのキャンセル
	7.2.2. すべてのビルドのキャンセル
	7.2.3. 指定された状態のすべてのビルドのキャンセル

	7.3. BUILDCONFIG の編集
	7.4. BUILDCONFIG の削除
	7.5. ビルドの詳細表示
	7.6. ビルドログへのアクセス
	7.6.1. BuildConfig ログへのアクセス
	7.6.2. 特定バージョンのビルドに関する BuildConfig ログへのアクセス
	7.6.3. ログの冗長性の有効化

	第8章 BUILDS のトリガーおよび変更
	8.1. ビルドトリガー
	8.1.1. Webhook のトリガー
	8.1.1.1. GitHub Webhook の使用
	8.1.1.2. GitLab Webhook の使用
	8.1.1.3. Bitbucket Webhook の使用
	8.1.1.4. Generic Webhook の使用
	8.1.1.5. Webhook URL の表示

	8.1.2. イメージ変更トリガーの使用
	8.1.3. ビルドのイメージ変更トリガーの識別
	8.1.4. 設定変更のトリガー
	8.1.4.1. トリガーの手動設定

	8.2. ビルドフック
	8.2.1. コミット後のビルドフックの設定
	8.2.2. CLI を使用したコミット後のビルドフックの設定

	第9章 高度なビルドの実行
	9.1. ビルドリソースの設定
	9.2. 最長期間の設定
	9.3. 特定のノードへのビルドの割り当て
	9.4. チェーンビルド
	9.5. ビルドのプルーニング
	9.6. ビルド実行ポリシー

	第10章 ビルドでの RED HAT サブスクリプションの使用
	10.1. RED HAT UNIVERSAL BASE IMAGE へのイメージストリームタグの作成
	10.2. ビルドシークレットとしてのサブスクリプションエンタイトルメントの追加
	10.3. SUBSCRIPTION MANAGER を使用したビルドの実行
	10.3.1. Subscription Manager を使用した Docker ビルド

	10.4. RED HAT SATELLITE サブスクリプションを使用したビルドの実行
	10.4.1. Red Hat Satellite 設定のビルドへの追加
	10.4.2. Red Hat Satellite サブスクリプションを使用した Docker ビルド

	10.5. SHAREDSECRET オブジェクトを使用したエンタイトルメントが適用されたビルドの実行
	10.6. 関連情報

	第11章 ストラテジーによるビルドのセキュリティー保護
	11.1. ビルドストラテジーへのアクセスのグローバルな無効化
	11.2. ユーザーへのビルドストラテジーのグルーバルな制限
	11.3. プロジェクト内でのユーザーへのビルドストラテジーの制限

	第12章 ビルド設定リソース
	12.1. ビルドコントローラー設定パラメーター
	12.2. ビルド設定の設定

	第13章 ビルドのトラブルシューティング
	13.1. リソースへのアクセスのための拒否の解決
	13.2. サービス証明書の生成に失敗

	第14章 ビルドの信頼される認証局の追加設定
	14.1. クラスターへの認証局の追加
	14.2. 関連情報

