
OpenShift Container Platform 4.14

アーキテクチャー

OpenShift Container Platform のアーキテクチャーの概要

Last Updated: 2025-11-22

OpenShift Container Platform 4.14 アーキテクチャー

OpenShift Container Platform のアーキテクチャーの概要

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

このドキュメントでは、OpenShift Container Platform のプラットフォームおよびアプリケーショ
ンのアーキテクチャーの概要を解説します。

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

第1章 アーキテクチャーの概要
1.1. OPENSHIFT CONTAINER PLATFORM アーキテクチャーの一般用語集
1.2. インストールおよび更新について
1.3. コントロールプレーンについて
1.4. 開発者向けのコンテナー化されたアプリケーションについて
1.5. RED HAT ENTERPRISE LINUX COREOS (RHCOS) と IGNITION について
1.6. 受付プラグインについて

第2章 OPENSHIFT CONTAINER PLATFORM アーキテクチャー
2.1. OPENSHIFT CONTAINER PLATFORM の紹介

第3章 インストールおよび更新
3.1. OPENSHIFT CONTAINER PLATFORM のインストール
3.2. OPENSHIFT UPDATE SERVICE について
3.3. 管理外の OPERATOR のサポートポリシー
3.4. 次のステップ

第4章 RED HAT OPENSHIFT CLUSTER MANAGER
4.1. RED HAT OPENSHIFT CLUSTER MANAGER へのアクセス
4.2. 一般的なアクション
4.3. クラスタータブ
4.4. 関連情報

第5章 KUBERNETES OPERATOR のマルチクラスターエンジンについて
5.1. OPENSHIFT CONTAINER PLATFORM 上のマルチクラスターエンジンを使用したクラスター管理
5.2. RED HAT ADVANCED CLUSTER MANAGEMENT によるクラスター管理
5.3. 関連情報

第6章 コントロールプレーンアーキテクチャー
6.1. MACHINE CONFIG POOL を使用したノード設定管理
6.2. OPENSHIFT CONTAINER PLATFORM のマシンのロール
6.3. OPENSHIFT CONTAINER PLATFORM の OPERATOR
6.4. ETCD の概要
6.5. ホストされたコントロールプレーンの概要

第7章 NVIDIA GPU アーキテクチャーの概要
7.1. NVIDIA GPU の前提条件
7.2. NVIDIA GPU の有効化
7.3. GPU の共有方法
7.4. OPENSHIFT CONTAINER PLATFORM の NVIDIA GPU 機能

第8章 OPENSHIFT CONTAINER PLATFORM の開発について
8.1. コンテナー化されたアプリケーションの開発について
8.2. 単純なコンテナーのビルド
8.3. OPENSHIFT CONTAINER PLATFORM 用の KUBERNETES マニフェストの作成
8.4. OPERATOR 向けの開発

第9章 RED HAT ENTERPRISE LINUX COREOS (RHCOS)
9.1. RHCOS について
9.2. IGNITION 設定ファイルの表示
9.3. インストール後の IGNITION 設定の変更

第10章 受付プラグイン
10.1. 受付プラグインについて

4
4
8
8
9
9
9

10
10

16
16

24
25
26

27
27
27
28
30

31
31
31
31

33
33
34
37
40
40

46
46
46
50
52

54
54
54
58
60

62
62
67
69

71
71

Table of Contents

1

10.2. デフォルトの受付プラグイン
10.3. WEBHOOK 受付プラグイン
10.4. WEBHOOK 受付プラグインのタイプ
10.5. 動的受付の設定
10.6. 関連情報

71
74
75
78
85

OpenShift Container Platform 4.14 アーキテクチャー

2

Table of Contents

3

第1章 アーキテクチャーの概要
OpenShift Container Platform は、クラウドベースの Kubernetes コンテナープラットフォームです。
OpenShift Container Platform の基盤は、Kubernetes に基づいているため、同じテクノロジーを共有し
ています。OpenShift Container Platform と Kubernetes の詳細は、製品アーキテクチャー を参照して
ください。

1.1. OPENSHIFT CONTAINER PLATFORM アーキテクチャーの一般用語集

この用語集では、アーキテクチャーコンテンツで使用される一般的な用語を定義します。

アクセスポリシー

クラスター内のユーザー、アプリケーション、およびエンティティーが相互に対話する方法を決定
する一連のロール。アクセスポリシーは、クラスターのセキュリティーを強化します。

受付プラグイン

受付プラグインは、セキュリティーポリシー、リソース制限、または設定要件を適用します。

認証

OpenShift Container Platform クラスターへのアクセスを制御するために、クラスター管理者はユー
ザー認証を設定し、承認されたユーザーのみがクラスターにアクセスできます。OpenShift
Container Platform クラスターと対話するには、OpenShift Container Platform API に対して認証す
る必要があります。Open Shift Container Platform API へのリクエストで、OAuth アクセストーク
ンまたは X.509 クライアント証明書を提供することで認証できます。

bootstrap

最小限の Kubernetes を実行し、OpenShift Container Platform コントロールプレーンをデプロイす
る一時的なマシン。

証明書署名要求 (CSR)

リソースは、指定された署名者に証明書への署名を要求します。この要求は承認または拒否される
可能性があります。

Cluster Version Operator (CVO)

OpenShift Container Platform Update Service をチェックして、現在のコンポーネントのバージョン
とグラフの情報に基づいて有効な更新と更新パスを確認する Operator。

コンピュートノード

クラスターユーザーのワークロードを実行するノード。コンピュートノードは、ワーカーノードと
も呼ばれます。

設定ドリフト

ノードの設定が、machine config で指定されているものと一致しない状況。

containers

ソフトウェアとそのすべての依存関係を設定する軽量で実行可能なイメージ。コンテナーはオペ
レーティングシステムを仮想化するため、データセンターからパブリッククラウドまたはプライ
ベートクラウド、ローカルホストまで、どこでもコンテナーを実行できます。

コンテナーオーケストレーションエンジン

コンテナーのデプロイ、管理、スケーリング、ネットワークを自動化するソフトウェア。

コンテナーワークロード

パッケージ化され、コンテナーにデプロイされるアプリケーション。

コントロールグループ (cgroup)

プロセスのセットをグループに分割して、プロセスが消費するリソースを管理および制限します。

コントロールプレーン

OpenShift Container Platform 4.14 アーキテクチャー

4

コンテナーのライフサイクルを定義、デプロイ、および管理するための API とインターフェイスを
公開するコンテナーオーケストレーションレイヤー。コントロールプレーンは、コントロールプ
レーンマシンとも呼ばれます。

CRI-O

オペレーティングシステムと統合して効率的な Kubernetes エクスペリエンスを提供する
Kubernetes ネイティブコンテナーランタイム実装。

デプロイメント

アプリケーションのライフサイクルを維持する Kubernetes リソースオブジェクト。

Dockerfile

イメージを組み立てるために端末で実行するユーザーコマンドを含むテキストファイル。

ホストされたコントロールプレーン

データプレーンおよびワーカーから OpenShift Container Platform クラスターでコントロールプ
レーンをホストできるようにする OpenShift Container Platform 機能。このモデルは次のアクショ
ンを実行します。

コントロールプレーンに必要なインフラストラクチャーコストを最適化します。

クラスターの作成時間を改善します。

Kubernetes ネイティブの高レベルプリミティブを使用して、コントロールプレーンのホス
ティングを有効にします。たとえば、デプロイメント、ステートフルセットなどです。

コントロールプレーンとワークロードの間の強力なネットワークセグメンテーションを許可
します。

ハイブリッドクラウドのデプロイメント。

ベアメタル、仮想、プライベート、およびパブリッククラウド環境全体で一貫したプラットフォー
ムを提供するデプロイメント。これにより、速度、機敏性、移植性が実現します。

Ignition

RHCOS が初期設定中にディスクを操作するために使用するユーティリティー。これにより、ディス
クのパーティション設定やパーティションのフォーマット、ファイル作成、ユーザー設定などの一
般的なディスク関連のタスクが実行されます。

installer-provisioned infrastructure

インストールプログラムは、クラスターが実行されるインフラストラクチャーをデプロイして設定
します。

kubelet

コンテナーが Pod で実行されていることを確認するために、クラスター内の各ノードで実行される
プライマリーノードエージェント。

kubernetes マニフェスト

JSON または YAML 形式の Kubernetes API オブジェクトの仕様。設定ファイルには、デプロイメン
ト、設定マップ、シークレット、デーモンセットを含めることができます。

Machine Config Daemon (MCD)

ノードの設定ドリフトを定期的にチェックするデーモン。

Machine Config Operator (MCO)

新しい設定をクラスターマシンに適用する Operator。

machine config pool (MCP)

コントロールプレーンコンポーネントやユーザーワークロードなど、それらが処理するリソースに
基づくマシンのグループです。

第1章 アーキテクチャーの概要

5

metadata

クラスターデプロイメントアーティファクトに関する追加情報。

マイクロサービス

ソフトウェアを書くためのアプローチ。アプリケーションは、マイクロサービスを使用して互いに
独立した最小のコンポーネントに分離できます。

ミラーレジストリー

OpenShift Container Platform イメージのミラーを保持するレジストリー。

モノリシックアプリケーション

自己完結型で、構築され、1 つのピースとしてパッケージ化されたアプリケーション。

namespace

namespace は、すべてのプロセスから見える特定のシステムリソースを分離します。namespace 内
では、その namespace のメンバーであるプロセスのみがそれらのリソースを参照できます。

networking

OpenShift Container Platform クラスターのネットワーク情報。

node

OpenShift Container Platform クラスター内のワーカーマシン。ノードは、仮想マシン (VM) または
物理マシンのいずれかです。

OpenShift Container Platform Update Service (OSUS)

インターネットにアクセスできるクラスターの場合、Red Hat Enterprise Linux (RHEL) は、パブ
リック API の背後にあるホストされたサービスとして OpenShift Container Platform 更新サービス
を使用して、無線更新を提供します。

OpenShift CLI (oc)

ターミナルで OpenShift Container Platform のコマンドを実行するコマンドラインツール。

OpenShift Dedicated

Amazon Web Services (AWS) および Google Cloud 上で提供されるマネージド RHEL OpenShift
Container Platform。OpenShift Dedicated は、アプリケーションの構築とスケーリングに重点を置
いています。

OpenShift イメージレジストリー

イメージを管理するために OpenShift Container Platform によって提供されるレジストリー。

Operator

OpenShift Container Platform クラスターで Kubernetes アプリケーションをパッケージ化、デプロ
イ、および管理するための推奨される方法。Operator は、人間による操作に関する知識を取り入れ
て、簡単にパッケージ化してお客様と共有できるソフトウェアにエンコードします。

OperatorHub

インストールするさまざまな OpenShift Container Platform Operator を含むプラットフォーム。

Operator Lifecycle Manager (OLM)

OLM は、Kubernetes ネイティブアプリケーションのライフサイクルをインストール、更新、およ
び管理するのに役立ちます。OLM は、Operator を効果的かつ自動化されたスケーラブルな方法で
管理するために設計されたオープンソースのツールキットです。

OSTree

完全なファイルシステムツリーのアトミックアップグレードを実行する、Linux ベースのオペレー
ティングシステムのアップグレードシステム。OSTree は、アドレス指定可能なオブジェクトストア
を使用して、ファイルシステムツリーへの重要な変更を追跡し、既存のパッケージ管理システムを
補完するように設計されています。

OTA (over-the-air) 更新

OpenShift Container Platform 4.14 アーキテクチャー

6

OpenShift Container Platform Update Service (OSUS) は、Red Hat Enterprise Linux CoreOS
(RHCOS) を含む OpenShift Container Platform に OTA (over-the-air) 更新を提供します。

Pod

OpenShift Container Platform クラスターで実行されている、ボリュームや IP アドレスなどの共有
リソースを持つ 1 つ以上のコンテナー。Pod は、定義、デプロイ、および管理される最小のコン
ピュート単位です。

プライベートレジストリー

OpenShift Container Platform は、コンテナーイメージレジストリー API を実装する任意のサーバー
をイメージのソースとして使用できます。これにより、開発者はプライベートコンテナーイメージ
をプッシュおよびプルできます。

公開レジストリー

OpenShift Container Platform は、コンテナーイメージレジストリー API を実装する任意のサーバー
をイメージのソースとして使用できます。これにより、開発者はパブリックコンテナーイメージを
プッシュおよびプルできます。

RHEL OpenShift Container Platform Cluster Manager

OpenShift Container Platform クラスターをインストール、変更、操作、およびアップグレードでき
るマネージドサービス。

RHEL Quay Container Registry

ほとんどのコンテナーイメージと Operator を OpenShift Container Platform クラスターに提供する
Quay.io コンテナーレジストリー。

レプリケーションコントローラー

一度に実行する必要がある Pod レプリカの数を示すアセット。

ロールベースのアクセス制御 (RBAC)

クラスターユーザーとワークロードが、ロールを実行するために必要なリソースにのみアクセスで
きるようにするための重要なセキュリティーコントロール。

ルート

ルートはサービスを公開して、OpenShift Container Platform インスタンス外のユーザーおよびアプ
リケーションから Pod へのネットワークアクセスを許可します。

スケーリング

リソース容量の増加または減少。

サービス

サービスは、一連の Pod で実行中のアプリケーションを公開します。

Source-to-Image (S2I) イメージ

アプリケーションをデプロイするために、OpenShift Container Platform 内のアプリケーションソー
スコードのプログラミング言語に基づいて作成されたイメージ。

storage

OpenShift Container Platform は、オンプレミスおよびクラウドプロバイダーの両方で、多くのタイ
プのストレージをサポートします。OpenShift Container Platform クラスターで、永続データおよび
非永続データ用のコンテナーストレージを管理できます。

Telemetry

OpenShift Container Platform のサイズ、ヘルス、ステータスなどの情報を収集するコンポーネン
ト。

template

テンプレートでは、パラメーター化や処理が可能な一連のオブジェクトを記述し、OpenShift
Container Platform で作成するためのオブジェクトのリストを生成します。

user-provisioned infrastructure

第1章 アーキテクチャーの概要

7

OpenShift Container Platform はユーザーが独自にプロビジョニングするインフラストラクチャーに
インストールできます。インストールプログラムを使用してクラスターインフラストラクチャーの
プロビジョニングに必要なアセットを生成し、クラスターインフラストラクチャーを作成し、その
後にクラスターをプロビジョニングしたインフラストラクチャーにデプロイします。

Web コンソール

OpenShift Container Platform を管理するためのユーザーインターフェイス (UI)。

ワーカーノード

クラスターユーザーのワークロードを実行するノード。ワーカーノードは、コンピュートノードと
も呼ばれます。

関連情報

ネットワーキングの詳細は、OpenShift Container Platform ネットワーキング を参照してくだ
さい。

ストレージの詳細は、OpenShift Container Platform ストレージ を参照してください。

認証の詳細は、OpenShift Container Platform 認証 を参照してください。

Operator Lifecycle Manager (OLM) の詳細は、OLM を参照してください。

ロギングの詳細は、ロギングについて を参照してください。

無線 (OTA) 更新の詳細は、OpenShift 更新の概要 を参照してください。

1.2. インストールおよび更新について

クラスター管理者は、OpenShift Container Platform インストールプログラム を使用して、以下のいず
れかの方法でクラスターをインストールおよびデプロイできます。

Installer-provisioned infrastructure

User-provisioned infrastructure

1.3. コントロールプレーンについて

コントロールプレーン は、クラスター内のワーカーノードと Pod を管理します。machine config pool
(MCP) を使用してノードを設定できます。MCP は、コントロールプレーンコンポーネントやユーザー
ワークロードなど、それらが処理するリソースに基づくマシンのグループです。OpenShift Container
Platform は、ホストに異なるロールを割り当てます。これらのロールは、クラスター内のマシンの機能
を定義します。クラスターには、標準のコントロールプレーンとワーカーロールタイプの定義が含まれ
ています。

Operator を使用して、コントロールプレーン上のサービスをパッケージ化、デプロイ、および管理で
きます。Operator は、以下のサービスを提供するため、OpenShift Container Platform の重要なコン
ポーネントです。

ヘルスチェックを実行する

アプリケーションを監視する方法を提供する

無線更新を管理する

アプリケーションが指定された状態にとどまるようにする

OpenShift Container Platform 4.14 アーキテクチャー

8

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/networking/#understanding-networking
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/storage/#index
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/authentication_and_authorization/#index
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/operators/#olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/logging/#cluster-logging
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/updating_clusters/#understanding-openshift-updates

1.4. 開発者向けのコンテナー化されたアプリケーションについて

開発者は、さまざまなツール、メソッド、および形式を使用して、固有の要件に基づいて コンテナー化
されたアプリケーションを開発 できます。次に例を示します。

さまざまなビルドツール、ベースイメージ、およびレジストリーオプションを使用して、単純
なコンテナーアプリケーションをビルドします。

OperatorHub やテンプレートなどのサポートコンポーネントを使用して、アプリケーションを
開発します。

アプリケーションを Operator としてパッケージ化してデプロイします。

Kubernetes マニフェストを作成して、Git リポジトリーに保存することもできます。Kubernetes は、
Pod と呼ばれる基本ユニットで動作します。Pod は、クラスターで実行中のプロセスの単一インスタン
スです。Pod には 1 つ以上のコンテナーを含めることができます。Pod のセットとそのアクセスポリ
シーをグループ化すると、サービスを作成できます。サービスは、Pod が作成および破棄されるときに
使用する他のアプリケーションの永続的な内部 IP アドレスおよびホスト名を提供します。Kubernetes
は、アプリケーションのタイプに基づいてワークロードを定義します。

1.5. RED HAT ENTERPRISE LINUX COREOS (RHCOS) と IGNITION につ
いて

クラスター管理者は、以下の Red Hat Enterprise Linux CoreOS (RHCOS) タスクを実行できます。

次世代の 単一目的コンテナーオペレーティングシステムテクノロジー を学びます。

Red Hat Enterprise Linux CoreOS (RHCOS) の設定方法を選択してください

Red Hat Enterprise Linux CoreOS (RHCOS) のデプロイ方法を選択します。

Installer-provisioned deployment

User-provisioned deployment

OpenShift Container Platform のインストレーションプログラムは、クラスターを作成するのに必要な
Ignition 設定ファイルを作成します。Red Hat Enterprise Linux CoreOS (RHCOS) は、初期設定時に
Ignition を使用して、パーティション分割、フォーマット、ファイルの書き込み、ユーザーの設定など
の一般的なディスクタスクを実行します。初回起動時に、Ignition はインストールメディアまたは指定
する場所からその設定を読み取り、設定をマシンに適用します。

Ignition の仕組み、OpenShift Container Platform クラスター内の Red Hat Enterprise Linux CoreOS
(RHCOS) マシンのプロセス、Ignition 設定ファイルの表示、およびインストール後の Ignition 設定の変
更を学習できます。

1.6. 受付プラグインについて

受付プラグイン を使用して、OpenShift Container Platform の機能を調整できます。リソースリクエス
トが認証および承認された後、受付プラグインはマスター API へのリソース要求をインターセプトし
て、リソース要求を検証し、スケーリングポリシーが遵守されていることを確認します。受付プラグイ
ンは、セキュリティーポリシー、リソース制限、または設定要件を適用するために使用されます。

第1章 アーキテクチャーの概要

9

第2章 OPENSHIFT CONTAINER PLATFORM アーキテクチャー

2.1. OPENSHIFT CONTAINER PLATFORM の紹介

OpenShift Container Platform は、コンテナー化されたアプリケーションを開発し、実行するためのプ
ラットフォームです。アプリケーションおよびアプリケーションをサポートするデータセンターで、わ
ずか数台のマシンとアプリケーションから、何百万ものクライアントに対応する何千ものマシンに拡張
できるように設計されています。

Kubernetes をその基盤とする OpenShift Container Platform には、大規模な通信、ビデオストリーミ
ング、ゲーミング、バンキングその他のアプリケーションのエンジンと同様に機能する技術が組み込ま
れています。Red Hat のオープンテクノロジーに実装することで、コンテナー化されたアプリケーショ
ンを、単一クラウドを超えてオンプレミスおよびマルチクラウド環境へと拡張できます。

OpenShift Container Platform 4.14 アーキテクチャー

10

2.1.1. Kubernetes について

コンテナーイメージとそれらのイメージから実行されるコンテナーは、最先端のアプリケーション開発
における主要な設定要素ですが、それらを大規模に実行するには、信頼性と柔軟性に優れた分配システ
ムが必要となります。Kubernetes は、コンテナーをオーケストレーションするための事実上の業界標
準です。

Kubernetes は、コンテナー化されたアプリケーションのデプロイ、スケーリング、管理を自動化する
ための、オープンソースのコンテナーオーケストレーションエンジンです。Kubernetes の一般的概念
は非常にシンプルです。

第2章 OPENSHIFT CONTAINER PLATFORM アーキテクチャー

11

1 つまたは複数のワーカーノードを使用して起動し、コンテナーのワークロードを実行します。

1 つまたは複数のコントロールプレーンノードからワークロードのデプロイを管理します。

Pod と呼ばれるデプロイメント単位にコンテナーをラップします。Pod を使うことでコンテ
ナーに追加のメタデータが付与され、複数のコンテナーを単一のデプロイメントエンティ
ティーにグループ化する機能が提供されます。

特殊な種類のアセットを作成します。たとえば、サービスは一連の Pod とそのアクセス方法を
定義するポリシーによって表されます。このポリシーにより、コンテナーはサービス用の特定
の IP アドレスを持っていない場合でも、必要とするサービスに接続できます。レプリケーショ
ンコントローラーは、一度に実行するのに必要な Pod レプリカ数を示すもう一つの特殊なア
セットです。この機能を使用すると、現在の需要に対応できるようにアプリケーションを自動
的にスケーリングできます。

Kubernetes は、わずか数年でクラウドとオンプレミスに非常に幅広く採用されるようになりました。
このオープンソースの開発モデルにより、多くの人々がネットワーク、ストレージ、認証といったコン
ポーネント向けの各種の技術を実装し、Kubernetes を拡張できます。

2.1.2. コンテナー化されたアプリケーションの利点

コンテナー化されたアプリケーションには、従来のデプロイメント方法を使用する場合と比べて多くの
利点があります。アプリケーションはこれまで、すべての依存関係を含むオペレーティングシステムに
インストールする必要がありましたが、コンテナーの場合はアプリケーションがそれぞれの依存関係を
持ち込むことができます。コンテナー化されたアプリケーションを作成すると多くの利点が得られま
す。

2.1.2.1. オペレーティングシステムの利点

コンテナーは、小型の、専用の Linux オペレーティングシステムをカーネルなしで使用します。ファイ
ルシステム、ネットワーク、cgroups、プロセステーブル、namespace は、ホストの Linux システムか
ら分離されていますが、コンテナーは、必要に応じてホストとシームレスに統合できます。Linux を基
盤とすることで、コンテナーでは、迅速なイノベーションを可能にするオープンソース開発モデルに備
わっているあらゆる利点を活用できます。

各コンテナーは専用のオペレーティングシステムを使用するため、競合するソフトウェアの依存関係を
必要とする複数のアプリケーションを、同じホストにデプロイできます。各コンテナーは、それぞれの
依存するソフトウェアを持ち運び、ネットワークやファイルシステムなどの独自のインターフェイスを
管理します。したがってアプリケーションはそれらのアセットについて競い合う必要はありません。

2.1.2.2. デプロイメントとスケーリングの利点

アプリケーションのメジャーリリース間でローリングアップグレードを行うと、ダウンタイムなしにア
プリケーションを継続的に改善し、かつ現行リリースとの互換性を維持できます。

さらに、アプリケーションの新バージョンを、旧バージョンと並行してデプロイおよびテストすること
もできます。コンテナーがテストにパスしたら、新規コンテナーを追加でデプロイし、古いコンテナー
を削除できます。

アプリケーションのソフトウェアの依存関係はすべてコンテナー内で解決されるため、データセンター
の各ホストには標準化されたオペレーティングシステムを使用できます。各アプリケーションホスト向
けに特定のオペレーティングシステムを設定する必要はありません。データセンターでさらに多くの容
量が必要な場合は、別の汎用ホストシステムをデプロイできます。

同様に、コンテナー化されたアプリケーションのスケーリングも簡単です。OpenShift Container
Platform には、どのようなコンテナー化したサービスでもスケーリングできる、シンプルで標準的な方

OpenShift Container Platform 4.14 アーキテクチャー

12

法が用意されています。アプリケーションを大きなモノリシックな (一枚岩的な) サービスではなく、マ
イクロサービスのセットとしてビルドする場合は、個々のマイクロサービスを、需要に合わせて個別に
スケーリングできます。この機能により、アプリケーション全体ではなく必要なサービスのみをスケー
リングすることができ、使用するリソースを最小限に抑えつつ、アプリケーションの需要を満たすこと
ができます。

2.1.3. OpenShift Container Platform の概要

OpenShift Container Platform は、以下を含むエンタープライズ対応の拡張機能を Kubernetes に提供
します。

ハイブリッドクラウドのデプロイメント。OpenShift Container Platform クラスターをさまざ
まなパブリッククラウドのプラットフォームまたはお使いのデータセンターにデプロイできま
す。

Red Hat の統合されたテクノロジー。OpenShift Container Platform の主なコンポーネントは、
Red Hat Enterprise Linux (RHEL) と関連する Red Hat の技術に由来します。OpenShift
Container Platform は、Red Hat の高品質エンタープライズソフトウェアの集中的なテストや
認定の取り組みによる数多くの利点を活用しています。

オープンソースの開発モデル。開発はオープンソースで行われ、ソースコードはソフトウェア
のパブリックリポジトリーから入手可能です。このオープンな共同作業が迅速な技術と開発を
促進します。

Kubernetes はアプリケーションの管理には優れていますが、プラットフォームレベルの要件やデプロ
イメントプロセスの指定や管理には対応しません。そのため、OpenShift Container Platform 4.14 が提
供する強力かつ柔軟なプラットフォーム管理ツールとプロセスは重要な利点の 1 つとなります。以下の
セクションでは、OpenShift Container Platform のいくつかのユニークな機能と利点を説明します。

2.1.3.1. カスタムオペレーティングシステム

OpenShift Container Platform は、Red Hat Enterprise Linux CoreOS (RHCOS) を使用します。これ
は、OpenShift Container Platform からコンテナー化されたアプリケーションを実行するために特別に
設計されたコンテナー指向のオペレーティングシステムであり、新しいツールと連携して、迅速なイン
ストール、Operator ベースの管理、および簡素化されたアップグレードを提供します。

RHCOS には以下が含まれます。

Ignition。OpenShift Container Platform が使用するマシンを最初に起動し、設定するための初
回起動時のシステム設定です。

CRI-O、Kubernetes ネイティブコンテナーランタイム実装。これはオペレーティングシステム
に密接に統合し、Kubernetes の効率的で最適化されたエクスペリエンスを提供します。CRI-O
は、コンテナーを実行、停止および再起動を実行するための機能を提供します。これは、
OpenShift Container Platform 3 で使用されていた Docker Container Engine を完全に置き換え
ます。

Kubelet は、コンテナーの起動と監視を担当する Kubernetes のプライマリーノードエージェン
トです。

OpenShift Container Platform 4.14 はすべてのコントロールプレーンマシンで RHCOS を使用する必要
がありますが、Red Hat Enterprise Linux (RHEL) をコンピュートまたはワーカーマシンのオペレーティ
ングシステムとして使用することができます。RHEL のワーカーを使用する選択をする場合は、すべて
のクラスターマシンに対して RHCOS を使用する場合よりも多くのシステムメンテナンスを実行する必
要があります。

第2章 OPENSHIFT CONTAINER PLATFORM アーキテクチャー

13

2.1.3.2. 単純化されたインストールおよび更新プロセス

OpenShift Container Platform 4.14 では、適切なパーミッションを持つアカウントを使用している場
合、単一のコマンドを実行し、いくつかの値を指定することで、サポートされているクラウドに実稼働
用のクラスターをデプロイすることができます。また、サポートされているプラットフォームを使用し
ている場合は、クラウドのインストールをカスタマイズしたり、クラスターをお使いのデータセンター
にインストールすることもできます。

クラスターのすべてのマシンが RHCOS を使用している場合、OpenShift Container Platform の更新ま
たはアップグレードは、高度に自動化された単純なプロセスで実行できます。OpenShift Container
Platform は、各マシンで実行しているオペレーティングシステム自体を含むシステムとサービスを、中
央のコントロールプレーンから完全に制御するので、アップグレードは自動イベントになるように設計
されています。クラスターに RHEL のワーカーマシンが含まれる場合、コントロールプレーンの使用に
は単純化された更新プロセスの利点があるものの、RHEL マシンのアップグレードには、より多くのタ
スクの実行が必要になります。

2.1.3.3. その他の主な機能

Operator は、OpenShift Container Platform 4.14 コードベースの基本単位であるだけでなく、アプリ
ケーションとアプリケーションで使用されるソフトウェアコンポーネントをデプロイするための便利な
手段です。Operator をプラットフォームの基盤として使用することで、OpenShift Container Platform
ではオペレーティングシステムおよびコントロールプレーンアプリケーションの手動によるアップグ
レードが不要になります。Cluster Version Operator や Machine Config Operator などの OpenShift
Container Platform の Operator が、それらの重要なコンポーネントのクラスター全体での管理を単純
化します。

Operator Lifecycle Manager (OLM) および OperatorHub は、Operator を保管し、アプリケーションの
開発やデプロイを行うユーザーに Operator を提供する機能を提供します。

Red Hat Quay Container Registry は、ほとんどのコンテナーイメージと Operator を OpenShift
Container Platform クラスターに提供する Quay.io コンテナーレジストリーです。Quay.io は、何百万
ものイメージやタグを保存する Red Hat Quay の公開レジストリー版です。

OpenShift Container Platform での Kubernetes のその他の拡張には、SDN (Software Defined
Networking)、認証、ログ集計、監視、およびルーティングの強化された機能が含まれます。OpenShift
Container Platform は、包括的な Web コンソールとカスタム OpenShift CLI (oc) インタフェースも提
供します。

2.1.3.4. OpenShift Container Platform のライフサイクル

以下の図は、OpenShift Container Platform の基本的なライフサイクルを示しています。

OpenShift Container Platform クラスターの作成

クラスターの管理

アプリケーションの開発とデプロイ

アプリケーションのスケールアップ

図2.1 OpenShift Container Platform の概要

OpenShift Container Platform 4.14 アーキテクチャー

14

図2.1 OpenShift Container Platform の概要

2.1.4. OpenShift Container Platform のインターネットアクセス

OpenShift Container Platform 4.14 では、クラスターをインストールするためにインターネットアクセ
スが必要になります。

インターネットへのアクセスは以下を実行するために必要です。

OpenShift Cluster Manager にアクセスし、インストールプログラムをダウンロードし、サブス
クリプション管理を実行します。クラスターがインターネットにアクセスでき、Telemetry を
無効にしていない場合、そのサービスによってクラスターのサブスクリプションが自動的に有
効化されます。

クラスターのインストールに必要なパッケージを取得するために Quay.io にアクセスします。

クラスターの更新を実行するために必要なパッケージを取得します。

重要

クラスターでインターネットに直接アクセスできない場合、プロビジョニングする一部
のタイプのインフラストラクチャーでネットワークが制限されたインストールを実行で
きます。このプロセスで、必要なコンテンツをダウンロードし、これを使用してミラー
レジストリーにインストールパッケージを設定します。インストールタイプに応じて、
クラスターのインストール環境でインターネットアクセスが不要となる場合がありま
す。クラスターを更新する前に、ミラーレジストリーのコンテンツを更新します。

第2章 OPENSHIFT CONTAINER PLATFORM アーキテクチャー

15

https://console.redhat.com/openshift
http://quay.io

第3章 インストールおよび更新

3.1. OPENSHIFT CONTAINER PLATFORM のインストール

OpenShift Container Platform インストールプログラムでは、以下に詳細がリストされている 4 つの方
法でクラスターをデプロイできます。

インタラクティブ: Web ベースの Assisted Installer を使用してクラスターをデプロイできま
す。これは、ネットワークがインターネットに接続されているクラスターに最適です。
Assisted Installer は、OpenShift Container Platform をインストールする最も簡単な方法であ
り、スマートなデフォルトを提供し、クラスターをインストールする前に事前検証を実行しま
す。また、自動化および高度な設定シナリオのための RESTful API も提供します。

ローカルエージェントベース: 非接続環境またはネットワークが制限された環境では、Agent-
based Installer を使用してクラスターをローカルにデプロイできます。この方法では、Assisted
Installer の多くの利点を得られますが、最初に Agent-based Installer をダウンロードして設定
する必要があります。設定はコマンドラインインターフェイスで行います。このアプローチ
は、非接続環境に最適です。

自動化: installer-provisioned infrastructure にクラスターをデプロイできます。インストールプ
ログラムは、各クラスターホストのベースボード管理コントローラー (BMC) をプロビジョニン
グに使用します。接続環境または非接続環境でクラスターをデプロイできます。

完全な制御: お客様が準備および保守するインフラストラクチャーにクラスターをデプロイメン
トできます。これにより、最大限のカスタマイズ性が提供されます。接続環境または非接続環
境でクラスターをデプロイできます。

それぞれの方法でデプロイしたクラスターは、以下の特性を持ちます。

単一障害点のない高可用性インフラストラクチャーがデフォルトで利用できます。

管理者は適用される更新の内容とタイミングを制御できます。

3.1.1. インストールプログラムについて

インストールプログラムを使用して、各タイプのクラスターをデプロイメントできます。インストール
プログラムは、ブートストラップ、コントロールプレーン、コンピュートマシンの Ignition 設定ファイ
ルなどのメインアセットを生成します。インフラストラクチャーを適切に設定している場合は、これら
の 3 つのマシン設定を使用して OpenShift Container Platform クラスターを起動できます。

OpenShift Container Platform インストールプログラムは、クラスターのインストールを管理するため
に一連のターゲットおよび依存関係を使用します。インストールプログラムには、達成する必要のある
一連のターゲットが設定され、それぞれのターゲットには一連の依存関係が含まれます。各ターゲット
はそれぞれの依存関係の条件が満たされ次第、別個に解決されるため、インストールプログラムは複数
のターゲットを並行して達成できるように動作し、最終的にクラスターが実行するようにします。プロ
グラムが依存関係を満たしているため、インストールプログラムはコマンドを実行してコンポーネント
を再作成する代わりに、既存のコンポーネントを認識して使用します。

図3.1 OpenShift Container Platform インストールのターゲットおよび依存関係

OpenShift Container Platform 4.14 アーキテクチャー

16

https://access.redhat.com/documentation/ja-jp/assisted_installer_for_openshift_container_platform
https://console.redhat.com/openshift/install/metal/agent-based

図3.1 OpenShift Container Platform インストールのターゲットおよび依存関係

3.1.2. Red Hat Enterprise Linux CoreOS (RHCOS) について

インストール後に、各クラスターマシンは Red Hat Enterprise Linux CoreOS (RHCOS) をオペレーティ
ングマシンとして使用します。RHCOS は Red Hat Enterprise Linux (RHEL) の不変のコンテナーホスト
のバージョンであり、デフォルトで SELinux が有効になっている RHEL カーネルを特長としています。
RHCOS には、Kubernetes ノードエージェントである kubelet や、Kubernetes に対して最適化される
CRI-O コンテナーランタイムが含まれます。

OpenShift Container Platform 4.14 クラスターのすべてのコントロールプレーンは、Ignition と呼ばれ
る最初の起動時に使用される重要なプロビジョニングツールが含まれる RHCOS を使用する必要があり
ます。このツールは、クラスターのマシンの設定を可能にします。オペレーティングシステムの更新
は、OSTree をバックエンドとして使用する起動可能なコンテナーイメージとして配信され、Machine
Config Operator によりクラスター全体にデプロイされます。実際のオペレーティングシステムの変更
は、rpm-ostree を使用することにより、atomic 操作として各マシン上でインプレースで行われます。
これらのテクノロジーを組み合わせることで、OpenShift Container Platform は、プラットフォーム全
体を最新の状態に保つインプレースアップグレードにより、クラスター上の他のアプリケーションを管
理するのと同じようにオペレーティングシステムを管理できるようになります。これらのインプレース
アップグレードにより、オペレーションチームの負担を軽減できます。

すべてのクラスターマシンのオペレーティングシステムとして RHCOS を使用する場合、クラスターは
オペレーティングシステムを含むコンポーネントとマシンのあらゆる側面を管理します。このため、マ
シンを変更できるのは、インストールプログラムと Machine Config Operator だけです。インストール
プログラムは Ignition 設定ファイルを使用して各マシンの状態を設定し、Machine Config Operator は
インストール後に、新規証明書またはキーの適用などのマシンへの変更を実行します。

3.1.3. OpenShift Container Platform クラスターでサポートされるプラットフォーム

OpenShift Container Platform バージョン 4.14 では、インストーラーでプロビジョニングされるインフ
ラストラクチャーを使用するクラスターの場合、以下のプラットフォームにインストールできます。

第3章 インストールおよび更新

17

Alibaba Cloud

Amazon Web Services (AWS)

ベアメタル

Google Cloud Platform (GCP)

IBM Cloud®

Microsoft Azure

Microsoft Azure Stack Hub

Nutanix

Red Hat OpenStack Platform (RHOSP)

OpenShift Container Platform の最新リリースは、最新の RHOSP のロングライフリリース
および中間リリースの両方をサポートします。RHOSP リリースの互換性の詳細
は、OpenShift Container Platform on RHOSP support matrix を参照してください。

VMware vSphere

これらのクラスターの場合は、インストールプロセスを実行するコンピューターを含むすべてのマシン
が、プラットフォームコンテナーのイメージをプルし、Telemetry データを Red Hat に提供できるよう
インターネットに直接アクセスできる必要があります。

重要

インストール後は、以下の変更はサポートされません。

クラウドプロバイダープラットフォームの混在。

クラウドプロバイダーコンポーネントの混在。たとえば、クラスターをインス
トールしたプラットフォーム上の別のプラットフォームから永続ストレージフ
レームワークを使用します。

OpenShift Container Platform 4.14 では、ユーザーによってプロビジョニングされるインフラストラク
チャーを使用するクラスターの場合、以下のプラットフォームにインストールできます。

AWS

Azure

Azure Stack Hub

ベアメタル

GCP

IBM Power®

IBM Z® または IBM® LinuxONE

RHOSP

OpenShift Container Platform 4.14 アーキテクチャー

18

https://access.redhat.com/articles/4679401

OpenShift Container Platform の最新リリースは、最新の RHOSP のロングライフリリース
および中間リリースの両方をサポートします。RHOSP リリースの互換性の詳細
は、OpenShift Container Platform on RHOSP support matrix を参照してください。

VMware Cloud on AWS

VMware vSphere

プラットフォームでサポートされているケースに応じて、user-provisioned infrastructure でインストー
ルを実行できます。これにより、完全なインターネットアクセスでのマシンの実行、プロキシーの背後
へのクラスターの配置、非接続インストールの実行が可能になります。

非接続インストールでは、クラスターのインストールに必要なイメージをダウンロードして、ミラーレ
ジストリーに配置し、そのデータを使用してクラスターをインストールできます。vSphere またはベア
メタルインフラストラクチャー上での非接続インストールでは、プラットフォームコンテナーのイメー
ジをプルするためにインターネットにアクセスする必要がありますが、クラスターマシンはインター
ネットへの直接のアクセスを必要としません。

OpenShift Container Platform 4.x Tested Integrations のページには、各種プラットフォームの統合テス
トの詳細が記載されています。

3.1.4. インストールプロセス

Assisted Installer を除き、OpenShift Container Platform クラスターをインストールする場合は、
OpenShift Cluster Manager Hybrid Cloud Console の適切な クラスタータイプ ページから、インストー
ルプログラムをダウンロードする必要があります。このコンソールは以下を管理します。

アカウントの REST API。

必要なコンポーネントを取得するために使用するプルシークレットであるレジストリートーク
ン。

クラスターのアイデンティティーを Red Hat アカウントに関連付けて使用状況のメトリクスの
収集を容易にするクラスター登録。

OpenShift Container Platform 4.14 では、インストールプログラムは、一連のアセットに対して一連の
ファイル変換を実行する Go バイナリーファイルです。インストールプログラムと対話する方法は、イ
ンストールタイプによって異なります。次のインストールユースケースを検討してください。

Assisted Installer を使用してクラスターをデプロイするには、Assisted Installer を使用してクラ
スター設定を行う必要があります。ダウンロードして設定するインストールプログラムはあり
ません。クラスター設定が完了したら、検出 ISO をダウンロードし、そのイメージを使用して
クラスターマシンを起動します。Assisted Installer を使用して、完全に統合された Nutanix、
vSphere、およびベアメタル、ならびに統合されていないその他のプラットフォームにクラス
ターをインストールできます。ベアメタルにインストールする場合は、ネットワーク、負荷分
散、ストレージ、個々のクラスターマシンなど、すべてのクラスターインフラストラクチャー
とリソースを提供する必要があります。

Agent-based Installer を使用してクラスターをデプロイするには、最初に Agent-based
Installer をダウンロードします。次に、クラスターを設定して、検出イメージを生成します。
検出イメージを使用してクラスターマシンを起動します。これにより、インストールプログラ
ムと通信してプロビジョニングを処理するエージェントがインストールされます。インストー
ルプログラムを操作したりプロビジョナーマシンを自分で設定したりする必要はありません。
ネットワーク、負荷分散、ストレージ、個々のクラスターマシンなど、すべてのクラスターイ
ンフラストラクチャーとリソースを提供する必要があります。このアプローチは、非接続環境
に最適です。

第3章 インストールおよび更新

19

https://access.redhat.com/articles/4679401
https://access.redhat.com/articles/4128421
https://console.redhat.com/openshift/create
https://access.redhat.com/documentation/ja-jp/assisted_installer_for_openshift_container_platform
https://console.redhat.com/openshift/install/metal/agent-based

installer-provisioned infrastructure のクラスターの場合、インフラストラクチャーのブートス
トラップおよびプロビジョニングは、ユーザーが独自に行うのではなくインストールプログラ
ムが代行します。インストールプログラムは、ベアメタルにインストールする場合を除き、ク
ラスターをサポートするために必要なすべてのネットワーク、マシン、およびオペレーティン
グシステムを作成します。ベアメタルにインストールする場合は、ブートストラップマシン、
ネットワーク、負荷分散、ストレージ、個々のクラスターマシンなど、すべてのクラスターイ
ンフラストラクチャーとリソースを提供する必要があります。

クラスターのインフラストラクチャーを独自にプロビジョニングし、管理する場合は、ブート
ストラップマシン、ネットワーク、負荷分散、ストレージ、および個々のクラスターマシンを
含む、すべてのクラスターインフラストラクチャーおよびリソースを指定する必要がありま
す。

インストールプログラムの場合、プログラムはインストール中に 3 つのファイルセットを使用します。
それは、install-config.yaml という名前のインストール設定ファイル、Kubernetes マニフェスト、お
よびマシンタイプの Ignition 設定ファイルです。

重要

インストール時に、Kubernetes および基礎となる RHCOS オペレーティングシステムを
制御する Ignition 設定ファイルを変更できます。ただし、これらのオブジェクトに対し
て加える変更の適合性を確認するための検証の方法はなく、これらのオブジェクトを変
更するとクラスターが機能しなくなる可能性があります。これらのオブジェクトを変更
すると、クラスターが機能しなくなる可能性があります。このリスクがあるために、変
更方法を文書化した手順に従っているか、Red Hat サポートが変更することを指示した
場合を除き、Kubernetes および Ignition 設定ファイルの変更はサポートされていませ
ん。

インストール設定ファイルは Kubernetes マニフェストに変換され、その後マニフェストは Ignition 設
定にラップされます。インストールプログラムはこれらの Ignition 設定ファイルを使用してクラスター
を作成します。

インストール設定ファイルはインストールプログラムの実行時にすべてプルーニングされるため、再び
使用する必要のあるすべての設定ファイルをバックアップしてください。

重要

インストール時に設定したパラメーターを変更することはできませんが、インストール
後に数多くのクラスター属性を変更できます。

3.1.4.1. Assisted Installer を使用したインストールプロセス

Assisted Installer を使用したインストールでは、Web ベースのユーザーインターフェイスまたは
RESTful API を使用して対話的にクラスター設定を作成します。Assisted Installer ユーザーインター
フェイスは、ユーザーインターフェイスまたは API で変更しない限り、必要な値の入力を求め、残りの
パラメーターに適切なデフォルト値を提供します。Assisted Installer は検出イメージを生成します。こ
のイメージをダウンロードして、クラスターマシンの起動に使用します。イメージにより RHCOS と
エージェントがインストールされ、エージェントがプロビジョニングを処理します。Assisted Installer
を使用して OpenShift Container Platform をインストールし、Nutanix、vSphere、およびベアメタルに
完全に統合できます。統合せずに、Assisted Installer を使用して OpenShift Container Platform を別の
プラットフォームにインストールすることもできます。

OpenShift Container Platform は、オペレーティングシステム自体を含む、クラスターのすべての側面
を管理します。各マシンは、それが参加するクラスターでホストされるリソースを参照する設定に基づ
いて起動します。この設定により、クラスターは更新の適用時に自己管理できます。

OpenShift Container Platform 4.14 アーキテクチャー

20

https://access.redhat.com/documentation/ja-jp/assisted_installer_for_openshift_container_platform

可能であれば、Agent-based Installer をダウンロードして設定する必要がないように、Assisted
Installer 機能を使用してください。

3.1.4.2. エージェントベースのインフラストラクチャーを使用したインストールプロセス

Agent-based installation は Assisted Installer を使用する場合とよく似ていますが、最初に Agent-
based Installer をダウンロードしてインストールする必要があります。エージェントベースのインス
トールは、Assisted Installer の利便性を活用したいにもかかわらず、非接続環境でクラスターをインス
トールする必要がある場合に役立ちます。

可能であれば、エージェントベースのインストール機能を使用してください。その場合は、ブートスト
ラップ仮想マシンを使用してプロビジョナーマシンを作成し、クラスターインフラストラクチャーをプ
ロビジョニングして維持する必要がなくなります。

3.1.4.3. installer-provisioned infrastructure でのインストールプロセス

デフォルトのインストールタイプは、installer-provisioned infrastructure です。デフォルトで、インス
トールプログラムはインストールウィザードとして機能し、独自に判別できない値の入力を求めるプロ
ンプトを出し、残りのパラメーターに妥当なデフォルト値を提供します。インストールプロセスは、高
度なインフラストラクチャーシナリオに対応するようカスタマイズすることもできます。インストール
プログラムは、クラスターの基盤となるインフラストラクチャーをプロビジョニングします。

標準クラスターまたはカスタマイズされたクラスターのいずれかをインストールできます。標準クラス
ターの場合は、クラスターをインストールするのに必要な最小限の詳細情報を指定します。カスタマイ
ズされたクラスターの場合は、コントロールプレーンが使用するマシン数、クラスターがデプロイする
仮想マシンのタイプ、または Kubernetes サービスネットワークの CIDR 範囲などのプラットフォーム
の詳細を指定できます。

可能な場合は、この機能を使用してクラスターインフラストラクチャーのプロビジョニングと保守の手
間を省くようにしてください。他のすべての環境では、インストールプログラムを使用してクラスター
インフラストラクチャーをプロビジョニングするために必要なアセットを生成できます。

installer-provisioned infrastructure クラスターの場合、OpenShift Container Platform は、オペレー
ティングシステム自体を含むクラスターのすべての側面を管理します。各マシンは、それが参加するク
ラスターでホストされるリソースを参照する設定に基づいて起動します。この設定により、クラスター
は更新の適用時に自己管理できます。

3.1.4.4. user-provisioned infrastructure を使用したインストールプロセス

OpenShift Container Platform はユーザーが独自にプロビジョニングするインフラストラクチャーにイ
ンストールすることもできます。インストールプログラムを使用してクラスターインフラストラク
チャーのプロビジョニングに必要なアセットを生成し、クラスターインフラストラクチャーを作成し、
その後にクラスターをプロビジョニングしたインフラストラクチャーにデプロイします。

インストールプログラムがプロビジョニングしたインフラストラクチャーを使用しない場合は、クラス
ターリソースをユーザー自身で管理し、維持する必要があります。次のリストは、一部のセルフマネー
ジドリソースの詳細を示しています。

クラスターを設定するコントロールプレーンおよびコンピュートマシンの基礎となるインフラ
ストラクチャー

ロードバランサー

DNS レコードおよび必要なサブネットを含むクラスターネットワーク

クラスターインフラストラクチャーおよびアプリケーションのストレージ

第3章 インストールおよび更新

21

https://console.redhat.com/openshift/install/metal/agent-based

クラスターで user-provisioned infrastructure を使用する場合は、RHEL コンピュートマシンをクラス
ターに追加するオプションを使用できます。

3.1.4.5. インストールプロセスの詳細

クラスターがプロビジョニングされると、クラスター内の各マシンにはクラスターに関する情報が必要
になります。OpenShift Container Platform は初期設定時に一時的なブートストラップマシンを使用し
て、必要な情報を永続的なコントロールプレーンに提供します。一時的なブートストラップマシンは、
クラスターの作成方法を記述する Ignition 設定ファイルを使用して起動します。ブートストラップマシ
ンは、コントロールプレーンを設定するコントロールプレーンマシンを作成します。その後、コント
ロールプレーンマシンはコンピュートマシン (ワーカーマシンとしても知られる) を作成します。以下の
図はこのプロセスを示しています。

図3.2 ブートストラップ、コントロールプレーンおよびコンピュートマシンの作成

クラスターマシンを初期化した後、ブートストラップマシンは破棄されます。すべてのクラスターがこ
のブートストラッププロセスを使用してクラスターを初期化しますが、ユーザーがクラスターのインフ
ラストラクチャーをプロビジョニングする場合は、多くの手順を手動で実行する必要があります。

重要

OpenShift Container Platform 4.14 アーキテクチャー

22

重要

インストールプログラムが生成する Ignition 設定ファイルには、24 時間が経過
すると期限切れになり、その後に更新される証明書が含まれます。証明書を更新
する前にクラスターが停止し、24 時間経過した後にクラスターを再起動する
と、クラスターは期限切れの証明書を自動的に復元します。例外として、
kubelet 証明書を回復するために保留状態の node-bootstrapper 証明書署名要求
(CSR) を手動で承認する必要があります。詳細は、コントロールプレーン証明書
の期限切れの状態からのリカバリー に関するドキュメントを参照してくださ
い。

24 時間証明書はクラスターのインストール後 16 時間から 22 時間でローテー
ションするため、Ignition 設定ファイルは、生成後 12 時間以内に使用することを
検討してください。12 時間以内に Ignition 設定ファイルを使用することにより、
インストール中に証明書の更新が実行された場合のインストールの失敗を回避で
きます。

クラスターのブートストラップには、以下のステップが関係します。

1. ブートストラップマシンが起動し、コントロールプレーンマシンの起動に必要なリモートリ
ソースのホスティングを開始します。インフラストラクチャーをプロビジョニングする場合、
この手順では人的介入が必要になります。

2. ブートストラップマシンは、単一ノードの etcd クラスターと一時的な Kubernetes コントロー
ルプレーンを起動します。

3. コントロールプレーンマシンは、ブートストラップマシンからリモートリソースをフェッチ
し、起動を終了します。インフラストラクチャーをプロビジョニングする場合、この手順では
人的介入が必要になります。

4. 一時的なコントロールプレーンは、実稼働コントロールプレーンマシンに対して実稼働コント
ロールプレーンをスケジュールします。

5. Cluster Version Operator (CVO) はオンラインになり、etcd Operator をインストールします。
etcd Operator はすべてのコントロールプレーンノードで etcd をスケールアップします。

6. 一時的なコントロールプレーンはシャットダウンし、コントロールを実稼働コントロールプ
レーンに渡します。

7. ブートストラップマシンは OpenShift Container Platform コンポーネントを実稼働コントロー
ルプレーンに挿入します。

8. インストールプログラムはブートストラップマシンをシャットダウンします。インフラストラ
クチャーをプロビジョニングする場合、この手順では人的介入が必要になります。

9. コントロールプレーンはコンピュートノードを設定します。

10. コントロールプレーンは一連の Operator の形式で追加のサービスをインストールします。

このブートストラッププロセスの結果として、OpenShift Container Platform クラスターが実行しま
す。次に、クラスターはサポートされる環境でのコンピュートマシンの作成など、日常の操作に必要な
残りのコンポーネントをダウンロードし、設定します。

3.1.5. インストールのスコープ

OpenShift Container Platform インストールプログラムのスコープは意図的に狭められています。単純

第3章 インストールおよび更新

23

OpenShift Container Platform インストールプログラムのスコープは意図的に狭められています。単純
さを確保し、確実にインストールを実行できるように設計されているためです。インストールが完了し
た後に数多くの設定タスクを実行できます。

関連情報

OpenShift Container Platform 設定リソースの詳細は、利用可能なクラスターのカスタマイズ
を参照してください。

3.2. OPENSHIFT UPDATE SERVICE について

OpenShift Update Service (OSUS) は、Red Hat Enterprise Linux CoreOS (RHCOS) を含む OpenShift
Container Platform に更新の推奨項目を提供します。コンポーネント Operator のグラフ、または 頂点
とそれらを結ぶ 辺 を含む図表が提示されます。グラフのエッジでは、安全に更新できるバージョンが
表示されます。頂点は、マネージドクラスターコンポーネントの意図された状態を指定する更新ペイ
ロードです。

クラスター内の Cluster Version Operator (CVO) は、OpenShift Update Service をチェックして、グラ
フの現在のコンポーネントバージョンとグラフの情報に基づき、有効な更新および更新パスを確認しま
す。更新をリクエストすると、CVO は対応するリリースイメージを使用してクラスターを更新しま
す。リリースアーティファクトは、コンテナーイメージとして Quay でホストされます。

OpenShift Update Service が互換性のある更新のみを提供できるようにするために、リリース検証
Pipeline で自動化を支援します。それぞれのリリースアーティファクトについて、他のコンポーネント
パッケージだけでなくサポートされているクラウドプラットフォームおよびシステムアーキテクチャー
との互換性の有無が検証されます。Pipeline がリリースの適合性を確認した後に、OpenShift Update
Service は更新が利用可能であることを通知します。

OpenShift Update Service (OSUS) は、単一ストリームリリースモデルをサポートします。このモデル
では、常に 1 つのリリースバージョンのみがアクティブになり、サポートされます。新しいリリースを
デプロイすると、以前のリリースが完全に置き換えられます。

更新されたリリースでは、4.8 以降のすべての OpenShift Container Platform バージョンから新しいリ
リースバージョンまでのアップグレードがサポートされます。

重要

OpenShift Update Service は、現在のクラスターに推奨される更新をすべて表示しま
す。OpenShift Update Service が推奨する更新パスがない場合には、更新またはター
ゲットリリースに関連する既知の問題がある可能性があります。

連続更新モード中は、2 つのコントローラーが実行されます。1 つのコントローラーはペイロードマニ
フェストを絶えず更新し、そのマニフェストをクラスターに適用し、Operator が利用可能か、アップ
グレード中か、失敗しているかに応じて Operator の制御されたロールアウトのステータスを出力しま
す。2 つ目のコントローラーは OpenShift Update Service をポーリングして、更新が利用可能かどうか
を判別します。

重要

新しいバージョンへの更新のみがサポートされています。クラスターを以前のバージョ
ンに戻したりロールバックしたりすることはサポートされていません。更新が失敗した
場合は、Red Hat サポートに連絡してください。

更新プロセスで、Machine Config Operator (MCO) は新規設定をクラスターマシンに適用します。

OpenShift Container Platform 4.14 アーキテクチャー

24

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/postinstallation_configuration/#available_cluster_customizations

MCO は、マシン設定プールの maxUnavailable フィールドで指定されたノードの数を制限し、それら
を使用不可としてマークします。デフォルトで、この値は 1 に設定されます。MCO
は、topology.kubernetes.io/zone ラベルに基づいて、影響を受けるノードをゾーンごとにアルファ
ベット順に更新します。ゾーンに複数のノードがある場合は、最も古いノードが最初に更新されます。
ベアメタルデプロイメントなど、ゾーンを使用しないノードの場合、ノードは経過時間ごとに更新さ
れ、最も古いノードが最初に更新されます。MCO は、マシン設定プールの maxUnavailable フィール
ドで指定されたノード数を一度に更新します。次に、MCO は新しい設定を適用して、マシンを再起動
します。

警告

OpenShift Container Platform のすべてのマシン設定プールにおける
maxUnavailable のデフォルト設定は 1 です。この値を変更せず、一度に 1 つのコ
ントロールプレーンノードを更新することを推奨します。コントロールプレーン
プールのこの値を 3 に変更しないでください。

Red Hat Enterprise Linux (RHEL) マシンをワーカーとして使用する場合は、最初に OpenShift API をそ
れらのマシンで更新する必要があるため、MCO は kubelet を更新しません。

新規バージョンの仕様は古い kubelet に適用されるため、RHEL マシンを Ready 状態に戻すことができ
ません。マシンが利用可能になるまでは更新を完了できません。ただし、利用不可のノードの最大数
は、その数のマシンがサービス停止状態のマシンとして分離されても通常のクラスター操作が継続でき
るようにするために設定されます。

OpenShift Update Service は Operator および 1 つ以上のアプリケーションインスタンスで構成されま
す。

3.3. 管理外の OPERATOR のサポートポリシー

Operator の 管理状態 は、Operator が設計通りにクラスター内の関連するコンポーネントのリソースを
アクティブに管理しているかどうかを定めます。Operator が unmanaged 状態に設定されていると、
これは設定の変更に応答せず、更新を受信しません。

これは非実稼働クラスターやデバッグ時に便利ですが、管理外の状態の Operator はサポートされず、
クラスター管理者は個々のコンポーネント設定およびアップグレードを完全に制御していることを前提
としています。

Operator は以下の方法を使用して管理外の状態に設定できます。

個別の Operator 設定
個別の Operator には、それらの設定に managementState パラメーターがあります。これは
Operator に応じてさまざまな方法でアクセスできます。たとえば、Red Hat OpenShift
Logging Operator は管理するカスタムリソース (CR) を変更することによってこれを実行しま
すが、Cluster Samples Operator はクラスター全体の設定リソースを使用します。

managementState パラメーターを Unmanaged に変更する場合、Operator はそのリソースを
アクティブに管理しておらず、コンポーネントに関連するアクションを取らないことを意味し
ます。Operator によっては、クラスターが破損し、手動リカバリーが必要になる可能性がある
ため、この管理状態に対応しない可能性があります。



第3章 インストールおよび更新

25

警告

個別の Operator を Unmanaged 状態に変更すると、特定のコンポーネン
トおよび機能がサポート対象外になります。サポートを継続するには、報
告された問題を Managed 状態で再現する必要があります。

Cluster Version Operator (CVO) のオーバーライド
spec.overrides パラメーターを CVO の設定に追加すると、管理者はコンポーネントの CVO
の動作に対してオーバーライドの一覧を追加できます。コンポーネントの
spec.overrides[].unmanaged パラメーターを true に設定すると、クラスターのアップグレー
ドがブロックされ、CVO のオーバーライドが設定された後に管理者にアラートが送信されま
す。

警告

CVO のオーバーライドを設定すると、クラスター全体がサポートされない
状態になります。サポートを継続するには、オーバーライドを削除した後
に、報告された問題を再現する必要があります。

3.4. 次のステップ

クラスターインストール方法の選択およびそのユーザー向けの準備



Disabling ownership via cluster version overrides prevents upgrades. Please remove
overrides before continuing.



OpenShift Container Platform 4.14 アーキテクチャー

26

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/installation_overview/#installing-preparing

第4章 RED HAT OPENSHIFT CLUSTER MANAGER
Red Hat OpenShift Cluster Manager は、Red Hat OpenShift クラスターのインストール、修正、操
作、およびアップグレードを可能にする管理サービスです。このサービスを使用すると、単一のダッ
シュボードから組織のクラスターをすべて操作できます。

OpenShift Cluster Manager は、OpenShift Container Platform、Red Hat OpenShift Service on AWS
(ROSA)、および OpenShift Dedicated クラスターのインストールをガイドします。また、自己インス
トール後の OpenShift Container Platform クラスターと、ROSA および OpenShift Dedicated クラス
ターの両方を管理するロールも果たします。

OpenShift Cluster Manager を使用して、以下のアクションを実行できます。

新規クラスターの作成

クラスターの詳細とメトリックの表示

スケーリング、ノードラベルの変更、ネットワーキング、認証などのタスクでクラスターの管
理

アクセス制御の管理

クラスターの監視

アップグレードのスケジュール

4.1. RED HAT OPENSHIFT CLUSTER MANAGER へのアクセス

設定した OpenShift アカウントを使用して OpenShift Cluster Manager にアクセスできます。

前提条件

OpenShift 組織の一部であるアカウントがある。

クラスターを作成している場合は、組織がクォータを指定している。

手順

ログインクレデンシャルを使用して、OpenShift Cluster Manager にログインします。

4.2. 一般的なアクション

クラスターページの右上には、ユーザーがクラスター全体で実行できるアクションがいくつかありま
す。

Open Console は、クラスターの所有者がクラスターにコマンドを発行できるように Web コン
ソールを起動します。

Actions ドロップダウンメニューを使用すると、クラスターの所有者は、クラスターの表示名
の名前を変更したり、クラスター上のロードバランサーと永続ストレージの量を変更したり、
必要に応じてノード数を手動で設定したり、クラスターを削除したりできます。

Refresh アイコンは、クラスターの更新を強制します。

第4章 RED HAT OPENSHIFT CLUSTER MANAGER

27

https://console.redhat.com/openshift

4.3. クラスタータブ

アクティブなインストール済みクラスターを選択すると、そのクラスターに関連付けられているタブが
表示されます。クラスターのインストールが完了すると、次のタブが表示されます。

概要

アクセス制御

アドオン

ネットワーキング

Insights Advisor

マシンプール

サポート

設定

4.3.1. 概要タブ

Overview タブには、クラスターがどのように設定されたかに関する情報が表示されます。

Cluster ID は、作成されたクラスターの一意の ID です。この ID は、コマンドラインからクラ
スターにコマンドを発行するときに使用できます。

Type は、クラスターが使用している OpenShift のバージョンを示します。

Region はサーバーリージョンです。

Provider は、クラスターが構築されたクラウドプロバイダーを示します。

Availability は、クラスターが使用する可用性ゾーンのタイプ (シングルゾーンまたはマルチ
ゾーン) を示します。

Version は、クラスターにインストールされている OpenShift バージョンです。利用可能な更
新がある場合は、このフィールドから更新できます。

Created at は、クラスターが作成された日時を示します。

Owner は、クラスターを作成したユーザーを識別し、所有者権限を持っています。

Subscription type は、作成時に選択されたサブスクリプションモデルを示します。

Infrastructure type は、クラスターが使用するアカウントのタイプです。

Status には、クラスターの現在のステータスが表示されます。

Total vCPU は、このクラスターで使用可能な仮想 CPU の合計を示します。

Total memory は、このクラスターで使用可能な合計メモリーを示します。

Load balancers

Persistent storage は、このクラスターで使用可能なストレージの量を表示します。

Nodes には、クラスター上の実際のノードと目的のノードが表示されます。これらの数値は、

OpenShift Container Platform 4.14 アーキテクチャー

28

Nodes には、クラスター上の実際のノードと目的のノードが表示されます。これらの数値は、
クラスターのスケーリングが原因で一致しない場合があります。

Network フィールドには、ネットワーク接続のアドレスと接頭辞が表示されます。

タブの Resource usage セクションには、使用中のリソースがグラフで表示されます。

Advisor recommendations セクションでは、セキュリティー、パフォーマンス、可用性、およ
び安定性に関する洞察を提供します。このセクションでは、リモートヘルス機能を使用する必
要があります。関連資料 セクションの Insights を使用してクラスターの問題を特定する を参照
してください。

Cluster history セクションには、作成や新しいバージョンの識別など、クラスターで行われた
すべてのことが表示されます。

4.3.2. アクセス制御タブ

Access control タブを使用すると、クラスターの所有者は ID プロバイダーをセットアップし、昇格さ
れたアクセス許可を付与し、他のユーザーにロールを付与できます。

前提条件

クラスターの所有者であるか、クラスターでロールを付与するための適切な権限がある。

手順

1. Grant role ボタンを選択します。

2. クラスターでロールを付与するユーザーの Red Hat アカウントログインを入力します。

3. ダイアログボックスの Grant role ボタンを選択します。

4. ダイアログボックスが閉じ、選択したユーザーに「クラスターエディター」アクセスが表示さ
れます。

4.3.3. アドオンタブ

Add-ons タブには、クラスターに追加できるすべての任意のアドオンが表示されます。目的のアドオン
を選択し、表示されるアドオンの説明の下にある Install を選択します。

4.3.4. Insights Advisor タブ

Insights Advisor タブは、OpenShift Container Platform の Remote Health 機能を使用して、セキュリ
ティー、パフォーマンス、可用性、および安定性に対するリスクを特定して軽減します。OpenShift
Container Platform のドキュメントで、Insights を使用してクラスターの問題を特定 を参照してくださ
い。

4.3.5. マシンプールタブ

Machine pools タブでは、使用可能なクォータが十分にある場合、クラスター所有者は新しいマシン
プールを作成できます。もしくは、既存のマシンプールを編集できます。

More options > Scale を選択すると、"Edit node count" ダイアログが開きます。このダイアログでは、
アベイラビリティーゾーンごとのノード数を変更できます。自動スケーリングが有効になっている場合
は、自動スケーリングの範囲を設定することもできます。

第4章 RED HAT OPENSHIFT CLUSTER MANAGER

29

https://docs.openshift.com/container-platform/latest/support/getting-support.html

4.3.6. Support タブ

サポート タブでは、クラスター通知を受け取る必要がある個人の通知連絡先を追加できます。指定する
ユーザー名または電子メールアドレスは、クラスターがデプロイされている Red Hat 組織のユーザーア
カウントに関連付けられている必要があります。

また、このタブからサポートケースを開いて、クラスターのテクニカルサポートを依頼することもでき
ます。

4.3.7. Settings タブ

Settings タブには、クラスター所有者向けのいくつかのオプションがあります。

Monitoring (デフォルトで有効) ユーザー定義のアクションで実行されたレポートが可能になり
ます。モニタリングスタックについて を参照してください。

Update strategy を使用すると、クラスターが特定の曜日の指定された時刻に自動的に更新さ
れるかどうか、またはすべての更新が手動でスケジュールされるかどうかを判別できます。

Node draining は、更新中に保護されたワークロードが有効となる期間を設定します。この期
間が経過すると、ノードは強制的に削除されます。

Update status には、現在のバージョンと、利用可能な更新があるかどうかが表示されます。

4.4. 関連情報

OpenShift Cluster Manager の完全なドキュメントは、OpenShift Cluster Manager のドキュメ
ント を参照してください。

OpenShift Container Platform 4.14 アーキテクチャー

30

https://docs.openshift.com/rosa/observability/monitoring/monitoring-overview.html#understanding-the-monitoring-stack_monitoring-overview.html
https://access.redhat.com/documentation/ja-jp/openshift_cluster_manager/2022/html-single/managing_clusters/index

第5章 KUBERNETES OPERATOR のマルチクラスターエンジンに
ついて

Kubernetes 環境をスケーリングする際の課題の 1 つは、増大するフリートのライフサイクルを管理する
ことです。この課題に対処するには、multicluster engine Operator を使用できます。このオペレーター
は、管理対象の OpenShift Container Platform クラスターに完全なライフサイクル機能を提供し、他の
Kubernetes ディストリビューションに部分的なライフサイクル管理を提供します。次の 2 つの方法で
利用できます。

OpenShift Container Platform または OpenShift Kubernetes Engine サブスクリプションの一部
としてインストールするスタンドアロンオペレーターとして

Red Hat Advanced Cluster Management for Kubernetes の一部として

5.1. OPENSHIFT CONTAINER PLATFORM 上のマルチクラスターエンジン
を使用したクラスター管理

OpenShift Container Platform でマルチクラスターエンジンを有効にすると、以下の機能が得られま
す。

ホストされたコントロールプレーン｡これは、HyperShift プロジェクトに基づく機能です。集中
型の Hosted Control Plane を使用すると、OpenShift Container Platform クラスターをハイ
パースケール方式で操作できます。

セルフマネージド OpenShift Container Platform クラスターをハブにプロビジョニングし、そ
れらのクラスターの初期設定を完了する Hive。

マネージドクラスターをハブに登録する klusterlet エージェント。

ベアメタル上の SNO など、オンプレミスのベアメタルおよび OpenShift Container Platform の
vSphere インストールをオーケストレーションするための Assisted Service のデプロイメント
を管理する Infrastructure Operator。Infrastructure Operator には GitOps Zero Touch
Provisioning (ZTP) が含まれています｡また、ベアメタルでのクラスター作成と、GitOps ワー
クフローを使用した vSphere プロビジョニングを完全に自動化し、デプロイと設定の変更を管
理します。

オープンクラスター管理。Kubernetes クラスターを管理するためのリソースを提供します。

マルチクラスターエンジンは OpenShift Container Platform サポートサブスクリプションに含まれてお
り、コアペイロードとは別に提供されます。マルチクラスターエンジンの使用を開始するには、
OpenShift Container Platform クラスターをデプロイしてから、Operator をインストールします。詳細
は、multicluster engine Operator のインストールとアップグレード を参照してください。

5.2. RED HAT ADVANCED CLUSTER MANAGEMENT によるクラスター管
理

必要なクラスター管理機能が、マルチクラスターエンジンを備えた OpenShift Container Platform で提
供できるものだけでは十分ではない場合は、Red Hat Advanced Cluster Management を検討してくだ
さい。マルチクラスターエンジンは、Red Hat Advanced Cluster Management の不可欠な部分であ
り、デフォルトで有効になっています。

5.3. 関連情報

マルチクラスターエンジンの完全なドキュメントは、Red Hat Advanced Cluster Management の製品

第5章 KUBERNETES OPERATOR のマルチクラスターエンジンについて

31

https://docs.redhat.com/en/documentation/red_hat_advanced_cluster_management_for_kubernetes
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/scalability_and_performance/#ztp-challenges-of-far-edge-deployments_ztp-deploying-far-edge-clusters-at-scale
https://docs.redhat.com/en/documentation/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#mce-install-intro

マルチクラスターエンジンの完全なドキュメントは、Red Hat Advanced Cluster Management の製品
ドキュメントの マルチクラスターエンジンを使用したクラスターライフサイクルについて の章を参照
してください。

OpenShift Container Platform 4.14 アーキテクチャー

32

https://docs.redhat.com/en/documentation/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview

第6章 コントロールプレーンアーキテクチャー
コントロールプレーンマシンで構成される コントロールプレーン は、OpenShift Container Platform ク
ラスターを管理します。コントロールプレーンマシンは、コンピュートマシン (ワーカーマシンとして
も知られる) のワークロードを管理します。クラスター自体は、Cluster Version Operator、Machine
Config Operator (CVO)、および個々の Operator のアクションで、マシンへのすべてのアップグレード
を管理します。

6.1. MACHINE CONFIG POOL を使用したノード設定管理

コントロールプレーンのコンポーネントまたはユーザーワークロードを実行するマシンは、それらが処
理するリソースタイプに基づいてグループに分類されます。マシンのこれらのグループは machine
config pool (MCP) と呼ばれます。それぞれの MCP はノードのセットおよびその対応するマシン設定を
管理します。ノードのロールは、これが所属する MCP を判別します。MCP は割り当てられたノード
ロールラベルに基づいてノードを制御します。MCP のノードには同じ設定があります。つまり、ワー
クロードの増減に応じてノードをスケールアップしたり破棄したりできます。

デフォルトで、クラスターのインストール時にクラスターが作成する MCP が 2 つ (master および
worker) あります。それぞれのデフォルト MCP には、Machine Config Operator (MCO) により適用さ
れる定義済みの設定があり、これは MCP を管理し、MCP 更新を容易にするために使用されます。

ワーカーノードの場合は、追加の MCP またはカスタムプールを作成して、デフォルトのノードタイプ
の範囲を超えるカスタムユースケースを持つノードを管理できます。コントロールプレーンノードのカ
スタム MCP はサポートされていません。

カスタムプールは、ワーカープールから設定を継承するプールです。これらはワーカープールのター
ゲット設定を使用しますが、カスタムプールのみをターゲットに設定する変更をデプロイする機能を追
加します。カスタムプールはワーカープールから設定を継承するため、ワーカープールへの変更もカス
タムプールに適用されます。ワーカープールから設定を継承しないカスタムプールは MCO ではサポー
トされません。

注記

ノードは 1 つの MCP にのみ含めることができます。ノードにいくつかの MCP に対応す
るラベルがある場合 (worker,infra など)、これはワーカープールではなく infra カスタム
プールにより管理されます。カスタムプールは、ノードラベルに基づいて管理するノー
ドの選択を優先します。カスタムプールに属さないノードはワーカープールにより管理
されます。

クラスターで管理するすべてのノードロールにカスタムプールを使用することが推奨されます。たとえ
ば、infra ワークロードを処理するために infra ノードを作成する場合、それらのノードをまとめるため
にカスタム infra MCP を作成することが推奨されます。infra ロールラベルをワーカーノードに適用
し、これが worker,infra の二重ラベルを持つようにするものの、カスタム infra MCP がないと、MCO
はこれをワーカーノードと見なします。ノードから worker ラベルを削除して、これをカスタムプール
で分類せずに infra ラベルを適用すると、ノードは MCO に認識されず、クラスターでは管理されませ
ん。

重要

第6章 コントロールプレーンアーキテクチャー

33

重要

infra ワークロードのみを実行する infra ロールのラベルが付いたノードは、サブスクリ
プションの合計数にカウントされません。infra ノードを管理する MCP は、クラスター
でサブスクリプション料金を決定する方法と相互に排他的です。適切な infra ロールを持
つノードにテイントを付け、テイントを使用してユーザーのワークロードがそのノード
にスケジュールされないようにすることが、infra ワークロードのサブスクリプション料
金を防ぐための唯一の要件になります。

MCO はプールの更新を個別に適用します。たとえば、すべてのプールに影響を与える更新があると、
各プールのノードは相互に並行して更新されます。カスタムプールを追加する場合、そのプールのノー
ドはマスターおよびワーカーノードとの同時更新を試みます。

ノードの設定が、現在適用されているマシン設定で指定されているものと完全に一致しない場合があり
ます。この状態は 設定ドリフト と呼ばれます。Machine Config Daemon (MCD) は、ノードの設定ドリ
フトを定期的にチェックします。MCD が設定のドリフトを検出すると、管理者がノード設定を修正す
るまで、MCO はノードを degraded とマークします。degraded 状態のノードは、オンライン状態で動
作していますが、更新することはできません。

関連情報

設定ドリフト検出について

6.2. OPENSHIFT CONTAINER PLATFORM のマシンのロール

OpenShift Container Platform はホストに複数の異なるロールを割り当てます。これらのロールは、ク
ラスター内のマシンの機能を定義します。クラスターには、標準の master および worker のロールタ
イプの定義が含まれます。

注記

また、クラスターには bootstrap ロールの定義も含まれます。ブートストラップマシン
が使用されるのはクラスターのインストール時のみであり、この機能は、クラスターイ
ンストールのドキュメントで説明されています。

6.2.1. コントロールプレーンとノードホストの互換性

OpenShift Container Platform のバージョンは、コントロールプレーンホストとノードホストの間で一
致する必要があります。たとえば、4.14 クラスターでは、すべてのコントロールプレーンホストが 4.14
であり、すべてのノードが 4.14 である必要があります。

クラスターのアップグレード中の一時的な不一致は許容されます。たとえば、以前の OpenShift
Container Platform バージョンから 4.14 にアップグレードする場合、一部のノードは他のノードよりも
先に 4.14 にアップグレードされます。コントロールプレーンホストとノードホストのスキューが長引く
と、古いコンピューティングマシンがバグや不足している機能にさらされる可能性があります。ユー
ザーは、スキューされたコントロールプレーンホストとノードホストをできるだけ早く解決する必要が
あります。

kubelet サービスは kube-apiserver よりも新しいものであってはならず、OpenShift Container
Platform のバージョンが奇数か偶数かに応じて、最大 2 つのマイナーバージョンになる可能性がありま
す。次の表は、適切なバージョンの互換性を示しています。

OpenShift Container Platform 4.14 アーキテクチャー

34

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/postinstallation_configuration/#machine-config-drift-detection_post-install-machine-configuration-tasks

OpenShift Container Platform バージョン サポートされている kubelet スキュー

奇数の OpenShift Container Platform マイナーバー

ジョン [1]

1 つ前のバージョンまで

偶数の OpenShift Container Platform のマイナー

バージョン [2]

2 つ前のバージョンまで

1. たとえば、OpenShift Container Platform 4.11､4.13 です。

2. たとえば、OpenShift Container Platform 4.10､4.12 です。

6.2.2. クラスターのワーカー

Kubernetes のクラスターでは、Kubernetes のユーザーがリクエストした実際のワークロードは、ワー
カーノードで実行され、管理されます。ワーカーノードは容量をアドバタイズし、コントロールプレー
ンサービスであるスケジューラーは、どのノードで Pod とコンテナーを開始するかを決定します。コ
ンテナーエンジンである CRI-O を含む重要なサービスは、各ワーカーノードで実行されます。Kubelet
は、コンテナーワークロードの実行と停止の要求を受け入れて実行するサービスです。ワーカー間の
Pod の通信を管理するサービスプロキシー。コンテナーを作成して実行する runC または crun 低レベル
コンテナーランタイム。

注記

デフォルトの runC の代わりに crun を有効にする方法について
は、ContainerRuntimeConfig CR の作成に関するドキュメントを参照してください。

OpenShift Container Platform では、コンピューティングマシンセットは、worker マシンロールが割り
当てられたコンピューティングマシンを制御します。worker のロールを持つマシンは、自動スケーリ
ングを行う特定のマシンプールにより制御されるコンピュートワークロードを実行します。OpenShift
Container Platform には複数のマシンタイプをサポートする能力があるため、worker ロールを持つマ
シンは コンピュート マシンとして分類されます。このリリースでは、コンピュートマシンの唯一のデ
フォルトタイプはワーカーマシンであるため、このリリースでは ワーカーマシン と コンピュートマシ
ン は相互に置き換え可能な用語として使用されています。OpenShift Container Platform の今後のバー
ジョンでは、インフラストラクチャーマシンなどの異なる種類のコンピュートマシンがデフォルトで使
用される場合があります。

注記

コンピューティングマシンセットは、machine-api namespace にあるコンピューティン
グマシンリソースのグループです。コンピューティングマシンセットは、特定のクラウ
ドプロバイダーで新しいコンピューティングマシンを起動するように設計された設定で
す。machine config pool (MCP) は Machine Config Operator (MCO) namespace の一部
です。MCP は、MCO がそれらの設定を管理し、それらのアップグレードを容易に実行
できるようにマシンをまとめるために使用されます。

6.2.3. クラスターコントロールプレーン

Kubernetes のクラスターでは、master ノードは Kubernetes クラスターの制御に必要なサービスを実
行します。OpenShift Container Platform では、コントロールプレーンは、master マシンのロールを持
つコントロールプレーンマシンで構成されます。これには、OpenShift Container Platform のクラス

第6章 コントロールプレーンアーキテクチャー

35

ターを管理する Kubernetes サービス以外も含まれます。

ほとんどの OpenShift Container Platform クラスターでは、コントロールプレーンマシンは一連のスタ
ンドアロンマシン API リソースにより定義されます。サポートされているクラウドプロバイダーと
OpenShift Container Platform バージョンの組み合わせの場合、コントロールプレーンはコントロール
プレーンマシンセットで管理できます。すべてのコントロールプレーンマシンが削除されてクラスター
が切断されないようにするために、追加の制御がコントロールプレーンマシンに適用されます。

注記

3 つのコントロールプレーンノードのみが、すべての実稼働デプロイメントで使用され
る必要があります。

コントロールプレーン上の Kubernetes カテゴリーに分類されるサービスには、Kubernetes API サー
バー、etcd、Kubernetes コントローラーマネージャー、Kubernetes スケジューラーが含まれます。

表6.1 コントロールプレーンで実行される Kubernetes サービス

コンポーネント 説明

Kubernetes API サーバー Kubernetes API サーバーは Pod、サービスおよびレプリケーションコン
トローラーのデータを検証し、設定します。また、クラスターの共有さ
れる状態を確認できる中心的な部分として機能します。

etcd etcd はコントロールプレーンの永続的な状態を保存し、他のコンポーネ
ントは etcd で変更の有無を監視して、それぞれを指定された状態に切
り替えます。

Kubernetes コントローラーマ
ネージャー

Kubernetes コントローラーマネージャーは etcd でレプリケーション、
namespace、サービスアカウントコントローラーのオブジェクトなどの
オブジェクトへの変更の有無を監視し、API を使用して指定された状態
を実行します。このような複数のプロセスは、一度に 1 つのアクティブ
なリーダーを設定してクラスターを作成します。

Kubernetes スケジューラー Kubernetes スケジューラーは、割り当て済みのノードなしで新規に作成
された Pod の有無を監視し、Pod をホストする最適なノードを選択しま
す。

また、コントロールプレーンで実行される OpenShift サービス (OpenShift API サーバー、OpenShift
コントローラーマネージャー、OpenShift OAuth API サーバー、および OpenShift OAuth サーバー) も
あります。

表6.2 コントロールプレーンで実行される OpenShift サービス

コンポーネント 説明

OpenShift API サーバー OpenShift API サーバーは、プロジェクト、ルート、テンプレートなど
の OpenShift リソースのデータを検証し、設定します。

OpenShift API サーバーは OpenShift API Server Operator により管理さ
れます。

OpenShift Container Platform 4.14 アーキテクチャー

36

OpenShift コントロールマネー
ジャー

OpenShift コントローラーマネージャーは etcd でプロジェクト、ルー
ト、テンプレートコントローラーオブジェクトなどの OpenShift オブ
ジェクトへの変更の有無を監視し、API を使用して指定された状態を適
用します。

OpenShift コントローラーマネージャーは OpenShift Controller
Manager Operator により管理されます。

OpenShift OAuth API サーバー OpenShift OAuth API サーバーは、ユーザー、グループ、OAuth トーク
ンなどの OpenShift Container Platform に対して認証を行うようにデー
タを検証し、設定します。

OpenShift OAuth API サーバーは Cluster Authentication Operator によ
り管理されます。

OpenShift OAuth サーバー ユーザーは OpenShift OAuth サーバーからトークンを要求し、API に対
して認証します。

OpenShift OAuth サーバーは Cluster Authentication Operator により管
理されます。

コンポーネント 説明

コントロールプレーンマシン上のこれらサービスの一部は systemd サービスとして実行し、それ以外は
静的な Pod として実行されます。

systemd サービスは、起動直後の特定のシステムで常に起動している必要のあるサービスに適していま
す。コントロールプレーンマシンの場合は、リモートログインを可能にする sshd も含まれます。ま
た、以下のようなサービスも含まれます。

CRI-O コンテナーエンジン (crio): コンテナーを実行し、管理します。OpenShift Container
Platform 4.14 は、Docker Container Engine ではなく CRI-O を使用します。

Kubelet (kubelet): マシン上で、コントロールプレーンサービスからのコンテナー管理要求を受
け入れます。

CRI-O および Kubelet は、他のコンテナーを実行する前に実行されている必要があるため、systemd
サービスとしてホスト上で直接実行される必要があります。

installer-* および revision-pruner-* コントロールプレーン Pod は、root ユーザーが所有する
/etc/kubernetes ディレクトリーに書き込むため、root パーミッションで実行する必要があります。こ
れらの Pod は以下の namespace に置かれます。

openshift-etcd

openshift-kube-apiserver

openshift-kube-controller-manager

openshift-kube-scheduler

6.3. OPENSHIFT CONTAINER PLATFORM の OPERATOR

第6章 コントロールプレーンアーキテクチャー

37

Operator は OpenShift Container Platform の最も重要なコンポーネントです。Operator はコントロー
ルプレーンでサービスをパッケージ化し、デプロイし、管理するための優先される方法です。Operator
の使用は、ユーザーが実行するアプリケーションにも各種の利点があります。

Operator は kubectl や oc コマンドなどの Kubernetes API および CLI ツールと統合します。Operator
はアプリケーションの監視、ヘルスチェックの実行、OTA (over-the-air) 更新の管理を実行し、アプリ
ケーションが指定した状態にあることを確認するための手段となります。

また、Operator はより粒度の高いエクスペリエンスも提供します。各コンポーネントは、グローバル
設定ファイルではなく、Operator が公開する API を変更して設定できます。

CRI-O と Kubelet はすべてのノード上で実行されるため、Operator を使用することにより、ほぼすべ
ての他のクラスター機能をコントロールプレーンで管理できます。Operator を使用してコントロール
プレーンに追加されるコンポーネントには、重要なネットワークおよび認証情報サービスが含まれま
す。

どちらも同様の Operator の概念と目標に従いますが、OpenShift Container Platform の Operator は、
目的に応じて 2 つの異なるシステムによって管理されます。

Cluster Version Operator (CVO) によって管理される Cluster Operator は、クラスター機能を
実行するためにデフォルトでインストールされます。

Operator Lifecycle Manager (OLM) によって管理されるオプションのアドオン Operator は、
ユーザーがアプリケーションで実行できるようにアクセスできるようにすることができます。

6.3.1. クラスター Operator

OpenShift Container Platform では、すべてのクラスター機能が一連のデフォルトの クラスター
Operator に分割されます。クラスター Operator は、クラスター全体でのアプリケーションロギング、
Kubernetes コントロールプレーンの管理、またはマシンプロビジョニングシステムなどの、クラス
ター機能の特定の分野を管理します。

クラスター Operator は ClusterOperator オブジェクトで表現されます。これは、クラスター管理者が
OpenShift Container Platform Web コンソールの Administration → Cluster Settings ページから表示
できます。各クラスター Operator は、クラスター機能を決定するためのシンプルな API を提供しま
す。Operator は、コンポーネントのライフサイクル管理の詳細を非表示にします。Operator は単一コ
ンポーネントも、数十のコンポーネントも管理できますが、最終目標は常に、共通アクションの自動化
により操作上の負担の軽減することにあります。

関連情報

クラスター Operator のリファレンス

6.3.2. アドオン Operator

Operator Lifecycle Manager (OLM) と OperatorHub は、OpenShift Container Platform のデフォルト
のコンポーネントであり、Kubernetes ネイティブアプリケーションを Operator として管理するのに役
立ちます。これらは一緒になって、クラスターで使用可能なオプションのアドオン Operator を検出、
インストール、および管理するためのシステムを提供します。

OpenShift Container Platform Web コンソールで OperatorHub を使用すると、クラスター管理者およ
び許可されたユーザーは、Operator のカタログからインストールするオペレーターを選択できます。
OperatorHub から Operator をインストールすると、ユーザーアプリケーションで実行できるように、
グローバルまたは特定の namespace で使用できるようになります。

Red Hat Operator、認定 Operator、コミュニティー Operator を含むデフォルトのカタログソースが利

OpenShift Container Platform 4.14 アーキテクチャー

38

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/operators/#operator-reference

Red Hat Operator、認定 Operator、コミュニティー Operator を含むデフォルトのカタログソースが利
用可能です。クラスター管理者は、独自のカスタムカタログソースを追加することもできます。このカ
タログソースには、カスタムの Operator セットを含めることができます。

開発者は Operator SDK を使用して、OLM 機能を利用するカスタム Operator の作成を支援することも
できます。次に、それらの Operator をバンドルしてカスタムカタログソースに追加し、クラスターに
追加してユーザーが利用できるようにできます。

注記

OLM は、OpenShift Container Platform アーキテクチャーを構成するクラスター
Operator を管理しません。

関連情報

OpenShift Container Platform でのアドオン Operator の実行の詳細については、Operator
Lifecycle Manager (OLM) および OperatorHub の Operators ガイドセクションを参照してく
ださい。

Operator SDK の詳細については、Operators の開発 を参照してください。

6.3.3. Platform Operator (テクノロジープレビュー)

重要

Platform Operator タイプはテクノロジープレビュー機能のみです。テクノロジープレ
ビュー機能は、Red Hat 製品サポートのサービスレベルアグリーメント (SLA) の対象外
であり、機能的に完全ではない場合があります。Red Hat は、実稼働環境でこれらを使
用することを推奨していません。テクノロジープレビュー機能は、最新の製品機能をい
ち早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただく
ことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジー
プレビュー機能のサポート範囲 を参照してください。

Operator Lifecycle Manager (OLM) は、プラットフォーム Operator と呼ばれる新しいタイプの
Operator を導入します。Platform Operator は OLM ベースの Operator であり、OpenShift Container
Platform クラスターの Day 0 操作中または操作後にインストールでき、クラスターのライフサイクル
に参加します。クラスター管理者は、Platform Operator を使用して OpenShift Container Platform イ
ンストールをさらにカスタマイズし、要件とユースケースを満たすことができます。

クラスター管理者は、OpenShift Container Platform の既存のクラスター機能機能を使用して、クラス
ターのインストール前に、初期ペイロードに必須ではないと見なされる Cluster Version Operator ベー
ス (CVO) コンポーネントのサブセットを無効にすることができます。Platform Operator は、追加のカ
スタマイズオプションを提供することで、このモデルを反復します。RukPak コンポーネントからのリ
ソースに依存する Platform Operator メカニズムを通じて、OLM ベースの Operator をクラスターのイ
ンストール時にインストールできるようになり、Operator が正常にインストールに失敗した場合はク
ラスターのロールアウトをブロックできます。

OpenShift Container Platform 4.12 では、このテクノロジープレビューリリースは基本的な Platform
Operator メカニズムに焦点を当て、今後のリリースで概念を拡張するための基盤を構築します。クラ
スター全体の PlatformOperator API を使用して、TechPreviewNoUpgrade 機能セットが有効になっ
ているクラスターでクラスターを作成する前または後に Operator を設定できます。

第6章 コントロールプレーンアーキテクチャー

39

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/operators/#olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/operators/#olm-understanding-operatorhub
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/operators/#osdk-about
https://access.redhat.com/support/offerings/techpreview/

関連情報

Platform Operator の管理

Platform Operator のテクノロジープレビューの制限事項

RukPak コンポーネントとパッケージ形式

クラスター機能

6.4. ETCD の概要

etcd は、完全にメモリーに収まる少量のデータを保持する、一貫性のある分散型のキー値ストアです。
etcd は多くのプロジェクトのコアコンポーネントですが、コンテナーオーケストレーションの標準シス
テムである Kubernetes のプライマリーデータストアです。

6.4.1. etcd を使用する利点

etcd を使用すると、いくつかの利点があります。

クラウドネイティブアプリケーションの一貫したアップタイムを維持し、個々のサーバーに障
害が発生した場合でも動作を維持します

Kubernetes のすべてのクラスター状態を保存して複製する

設定データを配布して、ノードの設定に冗長性と回復力を提供する

6.4.2. etcd の仕組み

クラスターの設定と管理に対する信頼性の高いアプローチを確保するために、etcd は etcd Operator を
使用します。Operator は、OpenShift Container Platform のような Kubernetes コンテナープラット
フォームでの etcd の使用を簡素化します。etcd Operator を使用すると、etcd メンバーの作成または
削除、クラスターのサイズ変更、バックアップの実行、および etcd のアップグレードを行うことがで
きます。

etcd オペレーターは、以下を観察、分析、および実行します。

1. Kubernetes API を使用してクラスターの状態を監視します。

2. 現在の状態と希望する状態の違いを分析します。

3. etcd クラスター管理 API、Kubernetes API、またはその両方を使用して相違点を修正します。

etcd は、常に更新されるクラスターの状態を保持します。この状態は継続的に持続するため、高い頻度
で多数の小さな変化が発生します。そのため、etcd クラスターメンバーを高速で低レイテンシーの I/O
でサポートすることが重要です。etcd のベストプラクティスの詳細は、「推奨される etcd プラクティ
ス」を参照してください。

関連情報

推奨される etcd プラクティス

etcd のバックアップ

6.5. ホストされたコントロールプレーンの概要

OpenShift Container Platform 4.14 アーキテクチャー

40

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/operators/#olm-managing-po
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/operators/#olm-po-techpreview_olm-managing-po
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/operators/#olm-rukpak-about_olm-packaging-format
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/installation_overview/#cluster-capabilities
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/scalability_and_performance/#recommended-etcd-practices
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/backup_and_restore/#backing-up-etcd

Red Hat OpenShift Container Platform の Hosted Control Plane を使用すると、管理コストを削減し、
クラスターのデプロイ時間を最適化し、管理とワークロードの問題を分離して、アプリケーションに集
中できるようになります。

Hosted Control Plane は、次のプラットフォームで Kubernetes Operator バージョン 2.0 以降のマルチ
クラスターエンジン を使用することで利用できます。

Agent プロバイダーを使用したベアメタル

OpenShift Virtualization

Amazon Web Services (AWS) (テクノロジープレビュー機能)

IBM Z (テクノロジープレビュー機能)

IBM Power (テクノロジープレビュー機能)

6.5.1. Hosted Control Plane のアーキテクチャー

OpenShift Container Platform は、多くの場合、クラスターがコントロールプレーンとデータプレーン
で構成される結合モデルまたはスタンドアロンモデルでデプロイされます。コントロールプレーンに
は、API エンドポイント、ストレージエンドポイント、ワークロードスケジューラー、および状態を保
証するアクチュエーターが含まれます。データプレーンには、ワークロードとアプリケーションが実行
されるコンピュート、ストレージ、およびネットワークが含まれます。

スタンドアロンコントロールプレーンは、クォーラムを確保できる最小限の数で、物理または仮想の
ノードの専用グループによってホストされます。ネットワークスタックは共有されます。クラスターへ
の管理者アクセスにより、クラスターのコントロールプレーン、マシン管理 API、およびクラスターの
状態に影響を与える他のコンポーネントを可視化できます。

スタンドアロンモデルは正常に機能しますが、状況によっては、コントロールプレーンとデータプレー
ンが分離されたアーキテクチャーが必要になります。そのような場合には、データプレーンは、専用の
物理ホスティング環境がある別のネットワークドメインに配置されています。コントロールプレーン
は、Kubernetes にネイティブなデプロイやステートフルセットなど、高レベルのプリミティブを使用
してホストされます。コントロールプレーンは、他のワークロードと同様に扱われます。

第6章 コントロールプレーンアーキテクチャー

41

https://access.redhat.com/documentation/ja-jp/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#cluster_mce_overview

6.5.2. Hosted Control Plane の利点

OpenShift Container Platform の Hosted Control Plane を使用すると、真のハイブリッドクラウドアプ
ローチへの道が開かれ、その他のさまざまなメリットも享受できます。

コントロールプレーンが分離され、専用のホスティングサービスクラスターでホストされるた
め、管理とワークロードの間のセキュリティー境界が強化されます。その結果、クラスターの
クレデンシャルが他のユーザーに漏洩する可能性が低くなります。インフラストラクチャーの
シークレットアカウント管理も分離されているため、クラスターインフラストラクチャーの管
理者が誤ってコントロールプレーンインフラストラクチャーを削除することはありません。

Hosted Control Plane を使用すると、より少ないノードで多数のコントロールプレーンを実行
できます。その結果、クラスターはより安価になります。

コントロールプレーンは OpenShift Container Platform で起動される Pod で構成されるため、
コントロールプレーンはすぐに起動します。同じ原則が、モニタリング、ロギング、自動ス
ケーリングなどのコントロールプレーンとワークロードに適用されます。

インフラストラクチャーの観点からは、レジストリー、HAProxy、クラスター監視、ストレー
ジノードなどのインフラストラクチャーをテナントのクラウドプロバイダーのアカウントに
プッシュして、テナントでの使用を分離できます。

運用上の観点からは、マルチクラスター管理はさらに集約され、クラスターの状態と一貫性に
影響を与える外部要因が少なくなります。Site Reliability Engineer は、一箇所で問題をデバッ
グして、クラスターのデータプレインを移動するため、解決までの時間 (TTR) が短縮され、生
産性が向上します。

OpenShift Container Platform 4.14 アーキテクチャー

42

関連情報

Hosted Control Plane

6.5.3. Hosted Control Plane の一般的な概念とペルソナの用語集

OpenShift Container Platform の Hosted Control Plane を使用する場合は、その主要な概念と関連する
ペルソナを理解することが重要です。

6.5.3.1. 概念

ホステッドクラスター

コントロールプレーンと API エンドポイントが管理クラスターでホストされている OpenShift
Container Platform クラスター。ホステッドクラスターには、コントロールプレーンとそれに対応
するデータプレーンが含まれます。

ホステッドクラスターのインフラストラクチャー

テナントまたはエンドユーザーのクラウドアカウントに存在するネットワーク、コンピュート、お
よびストレージリソース。

Hosted Control Plane

管理クラスターで実行される OpenShift Container Platform コントロールプレーン。ホステッドク
ラスターの API エンドポイントによって公開されます。コントロールプレーンのコンポーネントに
は、etcd、Kubernetes API サーバー、Kubernetes コントローラーマネージャー、および VPN が含
まれます。

ホスティングクラスター

管理クラスター を参照してください。

マネージドクラスター

ハブクラスターが管理するクラスター。この用語は、Red Hat Advanced Cluster Management で
multicluster engine for Kubernetes Operator が管理するクラスターライフサイクル特有の用語で
す。マネージドクラスターは、管理クラスター とは異なります。詳細は、マネージドクラスター を
参照してください。

管理クラスター

HyperShift Operator がデプロイされる OpenShift Container Platform クラスター。ホステッドクラ
スターのコントロールプレーンをホストします。管理クラスターは ホスティングクラスター と同義
です。

管理クラスターのインフラストラクチャー

管理クラスターのネットワーク、コンピュート、およびストレージリソース。

ノードプール

コンピュートノードを含むリソース。コントロールプレーンにはノードプールが含まれます。コン
ピュートノードはアプリケーションとワークロードを実行します。

6.5.3.2. ペルソナ

クラスターインスタンス管理者

このロールを引き受けるユーザーは、スタンドアロン OpenShift Container Platform の管理者と同
等です。このユーザーには、プロビジョニングされたクラスター内で cluster-admin ロールがあり
ますが、クラスターがいつ、どのように更新または設定されるかを制御できない可能性がありま
す。このユーザーは、クラスターに投影された設定を表示するための読み取り専用アクセス権を
持っている可能性があります。

クラスターインスタンスユーザー

このロールを引き受けるユーザーは、スタンドアロン OpenShift Container Platform の開発者と同

第6章 コントロールプレーンアーキテクチャー

43

https://access.redhat.com/documentation/ja-jp/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#hosted-control-planes-intro
https://access.redhat.com/documentation/ja-jp/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/about/welcome-to-red-hat-advanced-cluster-management-for-kubernetes#managed-cluster

このロールを引き受けるユーザーは、スタンドアロン OpenShift Container Platform の開発者と同
等です。このユーザーには、OperatorHub またはマシンに対するビューがありません。

クラスターサービスコンシューマー

このロールを引き受けるユーザーは、コントロールプレーンとワーカーノードを要求したり、更新
を実行したり、外部化された設定を変更したりできます。通常、このユーザーはクラウド認証情報
やインフラストラクチャー暗号化キーを管理したりアクセスしたりしません。クラスターサービス
のコンシューマーペルソナは、ホステッドクラスターを要求し、ノードプールと対話できます。こ
のロールを引き受けるユーザーには、論理境界内でホステッドクラスターとノードプールを作成、
読み取り、更新、または削除するための RBAC があります。

クラスターサービスプロバイダー

このロールを引き受けるユーザーは通常、管理クラスター上で cluster-admin ロールを持ち、
HyperShift Operator とテナントのホステッドクラスターのコントロールプレーンの可用性を監視お
よび所有するための RBAC を持っています。クラスターサービスプロバイダーのペルソナは、次の
例を含むいくつかのアクティビティーを担当します。

コントロールプレーンの可用性、稼働時間、安定性を確保するためのサービスレベルオブ
ジェクトの所有

コントロールプレーンをホストするための管理クラスターのクラウドアカウントの設定

ユーザーがプロビジョニングするインフラストラクチャーの設定 (利用可能なコンピュート
リソースのホスト認識を含む)

6.5.4. Hosted Control Plane のバージョン管理

OpenShift Container Platform のメジャー、マイナー、またはパッチバージョンのリリースごとに、
Hosted Control Plane の 2 つのコンポーネントがリリースされます。

HyperShift Operator

hcp コマンドラインインターフェイス (CLI)

HyperShift Operator は、HostedCluster API リソースによって表されるホストされたクラスターのラ
イフサイクルを管理します。HyperShift Operator は、OpenShift Container Platform の各リリースでリ
リースされます。HyperShift Operator は、hypershift namespace に supported-versions config map
を作成します。この config map には、サポートされているホステッドクラスターのバージョンが含ま
れています。

同じ管理クラスター上で異なるバージョンのコントロールプレーンをホストできます。

supported-versions config map オブジェクトの例

hcp CLI を使用してホストされたクラスターを作成できます。

 apiVersion: v1
 data:
 supported-versions: '{"versions":["4.14"]}'
 kind: ConfigMap
 metadata:
 labels:
 hypershift.openshift.io/supported-versions: "true"
 name: supported-versions
 namespace: hypershift

OpenShift Container Platform 4.14 アーキテクチャー

44

HostedCluster や NodePool などの hypershift.openshift.io API リソースを使用して、大規模な
OpenShift Container Platform クラスターを作成および管理できます。HostedCluster リソースには、
コントロールプレーンと共通データプレーンの設定が含まれます。HostedCluster リソースを作成する
と、ノードが接続されていない、完全に機能するコントロールプレーンが作成されます。NodePool リ
ソースは、HostedCluster リソースにアタッチされたスケーラブルなワーカーノードのセットです。

API バージョンポリシーは、通常、Kubernetes API のバージョン管理 のポリシーと一致します。

第6章 コントロールプレーンアーキテクチャー

45

https://kubernetes.io/docs/reference/using-api/#api-versioning

第7章 NVIDIA GPU アーキテクチャーの概要
NVIDIA は、OpenShift Container Platform でのグラフィックスプロセッシングユニット (GPU) リソー
スの使用をサポートしています。OpenShift Container Platform は、大規模な Kubernetes クラスター
のデプロイと管理用に Red Hat が開発およびサポートする、セキュリティーを重視して強化された
Kubernetes プラットフォームです。OpenShift Container Platform には Kubernetes の拡張機能が含ま
れているため、ユーザーはが簡単に NVIDIA GPU リソースを設定し、それを使用してワークロードを高
速化できます。

NVIDIA GPU Operator は、OpenShift Container Platform 内の Operator フレームワークを活用して、
GPU で高速化されたワークロードの実行に必要な NVIDIA ソフトウェアコンポーネントの完全なライフ
サイクルを管理します。

これらのコンポーネントには、NVIDIA ドライバー (CUDA を有効にするため)、GPU 用の Kubernetes
デバイスプラグイン、NVIDIA Container Toolkit、GPU Feature Discovery (GFD) を使用した自動ノード
タグ付け、DCGM ベースのモニタリングなどが含まれます。

注記

NVIDIA GPU Operator をサポートしているのは NVIDIA だけです。NVIDIA からサポート
を受ける方法は、NVIDIA サポートの利用方法 を参照してください。

7.1. NVIDIA GPU の前提条件

1 つ以上の GPU ワーカーノードを備えた OpenShift クラスターが稼働している。

必要な手順を実行するために cluster-admin として OpenShift クラスターにアクセスできる。

OpenShift CLI (oc) がインストールされている。

Node Feature Discovery (NFD) Operator をインストールし、nodefeaturediscovery インスタ
ンスを作成している。

7.2. NVIDIA GPU の有効化

以下の図は、OpenShift で GPU アーキテクチャーがどのように有効になっているかを示しています。

図7.1 NVIDIA GPU の有効化

OpenShift Container Platform 4.14 アーキテクチャー

46

https://access.redhat.com/solutions/5174941

図7.1 NVIDIA GPU の有効化

注記

MIG は、A30、A100、A100X、A800、AX800、H100、H800 でのみサポートされま
す。

7.2.1. GPU とベアメタル

NVIDIA 認定のベアメタルサーバーに OpenShift Container Platform をデプロイできますが、いくつか
の制限があります。

コントロールプレーンノードは CPU ノードにできます。

AI/ML ワークロードがワーカーノードで実行される場合、そのワーカーノードは GPU ノード
である必要があります。
さらに、ワーカーノードは 1 つ以上の GPU をホストできますが、すべて同じタイプである必要
があります。たとえば、ノードには 2 つの NVIDIA A100 GPU が存在することは可能ですが、
A100 GPU と T4 GPU を 1 つずつ備えたノードはサポートされません。Kubernetes の NVIDIA
デバイスプラグインは、同じノード上で異なる GPU モデルの組み合わせをサポートしません。

OpenShift を使用する場合は、1 台または 3 台以上のサーバーが必要な点に注意してください。
2 台のサーバーを含むクラスターはサポートされません。単一サーバーのデプロイメントはシ
ングルノード openShift (SNO) と呼ばれ、この設定を使用すると、高可用性 OpenShift 環境が
得られません。

以下のいずれかの方法で、コンテナー化された GPU にアクセスできます。

GPU パススルー

マルチインスタンス GPU (MIG)

関連情報

Red Hat OpenShift on Bare Metal Stack

第7章 NVIDIA GPU アーキテクチャーの概要

47

https://docs.nvidia.com/ai-enterprise/deployment-guide-openshift-on-bare-metal/0.1.0/on-bare-metal.html

7.2.2. GPU と仮想化

多くの開発者や企業がコンテナー化されたアプリケーションやサーバーレスインフラストラクチャーに
移行していますが、仮想マシン上で実行されるアプリケーションの開発と保守は引き続き注目されてい
ます。Red Hat OpenShift Virtualization はこの機能を提供し、企業はこの機能を使用して仮想マシンを
クラスター内のコンテナー化されたワークフロー組み込むことができます。

ワーカーノードを GPU に接続する場合は、次のいずれかの方法を選択できます。

仮想マシン内の GPU ハードウェアにアクセスして使用するための GPU パススルー。

GPU コンピュート容量がワークロードでいっぱいになっていない場合の GPU (vGPU) のタイ
ムスライス。

関連情報

NVIDIA GPU Operator with OpenShift Virtualization

7.2.3. GPU と vSphere

OpenShift Container Platform は、さまざまな GPU タイプをホストできる NVIDIA 認定の VMware
vSphere サーバーにデプロイできます。

仮想マシンで vGPU インスタンスが使用されている場合は、NVIDIA GPU ドライバーをハイパーバイ
ザーにインストールする必要があります。VMware vSphere の場合、このホストドライバーは VIB ファ
イルの形式で提供されます。

ワーカーノード仮想マシンに割り当てることができる vGPUS の最大数は、vSphere のバージョンに
よって異なります。

vSphere 7.0: 仮想マシンごとに最大 4 つの仮想 GPU

vSphere 8.0: 仮想マシンごとに最大 8 つの仮想 GPU

注記

vSphere 8.0 では、仮想マシンに関連付けられた複数の完全または部分的な異種
プロファイルのサポートが導入されました。

次のいずれかの方法を選択して、ワーカーノードを GPU に割り当てることができます。

仮想マシン内の GPU ハードウェアにアクセスして使用するための GPU パススルー

すべての GPU が必要でない場合の GPU (vGPU) タイムスライス

ベアメタルデプロイメントと同様に、1 台または 3 台以上のサーバーが必要です。2 台のサーバーを含
むクラスターはサポートされません。

関連情報

OpenShift Container Platform on VMware vSphere with NVIDIA vGPUs

7.2.4. GPU および Red Hat KVM

OpenShift Container Platform は、NVIDIA 認定のカーネルベースの仮想マシン (KVM) サーバー上で使

OpenShift Container Platform 4.14 アーキテクチャー

48

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/openshift/openshift-virtualization.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/openshift/nvaie-with-ocp.html#openshift-container-platform-on-vmware-vsphere-with-nvidia-vgpus

OpenShift Container Platform は、NVIDIA 認定のカーネルベースの仮想マシン (KVM) サーバー上で使
用できます。

ベアメタルデプロイメントと同様に、1 台または 3 台以上のサーバーが必要です。2 台のサーバーを含
むクラスターはサポートされません。

ただし、ベアメタルデプロイメントとは異なり、サーバーで異なるタイプの GPU を使用できます。こ
れは、GPU を Kubernetes ノードとして機能する別の仮想マシンに割り当てることができるためです。
唯一の制限として、Kubernetes ノードがノードと同レベルで GPU タイプのセットを持つ必要がありま
す。

以下のいずれかの方法で、コンテナー化された GPU にアクセスできます。

仮想マシン内の GPU ハードウェアにアクセスして使用するための GPU パススルー

すべての GPU が必要でない場合の GPU (vGPU) タイムスライス

vGPU 機能を有効にするには、特別なドライバーをホストレベルでインストールする必要があります。
このドライバーは RPM パッケージとして提供されます。このホストドライバーは、GPU パススルーの
割り当てにはまったく必要ありません。

関連情報

How To Deploy OpenShift Container Platform 4.13 on KVM

7.2.5. GPU と CSP

OpenShift Container Platform は、主要なクラウドサービスプロバイダー (CSP) である Amazon Web
Services (AWS)、Google Cloud Platform (GCP)、Microsoft Azure のいずれかにデプロイできます。

フルマネージドデプロイメントとセルフマネージドデプロイメントの 2 つのオペレーションモードを使
用できます。

フルマネージドデプロイメントでは、Red Hat が CSP と連携してすべてを自動化します。CSP
Web コンソールを使用して OpenShift インスタンスを要求でき、クラスターは Red Hat によっ
て自動的に作成され、完全に管理されます。この環境内では、ノードの障害やエラーについて
心配する必要はありません。Red Hat が、クラスターの稼働時間を維持する全責任を負いま
す。フルマネージドサービスは、AWS および Azure で利用できます。AWS の場合、OpenShift
サービスは ROSA (Red Hat OpenShift Service on AWS) と呼ばれます。Azure の場合、サービ
スは Azure Red Hat OpenShift と呼ばれます。

セルフマネージドデプロイメントでは、OpenShift クラスターのインスタンス化と維持を行う
必要があります。この場合、Red Hat は OpenShift クラスターのデプロイメントをサポートす
るために、OpenShift-install ユーティリティーを提供します。セルフマネージドサービスは、
すべての CSP がグローバルに利用できます。

このコンピュートインスタンスが GPU により高速化されたコンピュートインスタンスであること、お
よび GPU タイプが NVIDIA AI Enterprise でサポートされている GPU のリストと一致することが重要で
す。たとえば、T4、V100、A100 はこのリストに含まれます。

以下のいずれかの方法で、コンテナー化された GPU にアクセスできます。

仮想マシン内の GPU ハードウェアにアクセスして使用するための GPU パススルー。

GPU 全体を必要としない場合 GPU (vGPU) タイムスライス。

第7章 NVIDIA GPU アーキテクチャーの概要

49

https://computingforgeeks.com/how-to-deploy-openshift-container-platform-on-kvm/

関連情報

Red Hat Openshift in the Cloud

7.2.6. GPU と Red Hat Device Edge

Red Hat Device Edge は MicroShift へのアクセスを提供します。MicroShift は、シングルノードデプロ
イメントのシンプルさと、リソースに制約のある (エッジ) コンピューティング求められる機能とサービ
スを備えています。Red Hat Device Edge は、リソースに制約のある環境にデプロイされるベアメタ
ル、仮想、コンテナー化された、または Kubernetes のワークロードのニーズを満たします。

Red Hat Device Edge 環境のコンテナー上で NVIDIA GPU を有効にできます。

コンテナー化された GPU へのアクセスには、GPU パススルーを使用します。

関連情報

Red Hat Device Edge 上の NVIDIA GPU を使用してワークロードを高速化する方法

7.3. GPU の共有方法

Red Hat と NVIDIA は、エンタープライズレベルの OpenShift Container Platform クラスター上で、
GPU 加速コンピューティングを簡略化するための GPU 同時実行性と共有メカニズムを開発しました。

通常、アプリケーションにはさまざまなコンピューティング要件があり、GPU が十分に活用されてい
ない可能性があります。デプロイメントコストを削減し、GPU 使用率を最大化するには、ワークロー
ドごとに適切な量のコンピュートリソースを提供することが重要です。

GPU 使用率を改善するための同時実行メカニズムは、プログラミングモデル API からシステムソフト
ウェアやハードウェアパーティショニングまで、仮想化を含めて幅広く存在します。次のリストは、
GPU 同時実行メカニズムを示しています。

Compute Unified Device Architecture (CUDA) ストリーム

タイムスライス

CUDA マルチプロセスサービス (MPS)

マルチインスタンス GPU (MIG)

vGPU による仮想化

さまざまな OpenShift Container Platform シナリオで GPU 同時実行メカニズムを使用する場合は、次
の GPU 共有に関する推奨事項を考慮してください。

ベアメタル

vGPU は使用できません。MIG 対応カードの使用を検討してください。

仮想マシン

vGPU が最良の選択です。

ベアメタル上の MIG を持たない古い NVIDIA カード

タイムスライスの使用を検討してください。

複数の GPU を搭載し、パススルーと vGPU が必要な仮想マシン

個別の仮想マシンの使用を検討してください。

OpenShift Container Platform 4.14 アーキテクチャー

50

https://docs.nvidia.com/ai-enterprise/deployment-guide-cloud/0.1.0/aws-redhat-openshift.html
https://cloud.redhat.com/blog/how-to-accelerate-workloads-with-nvidia-gpus-on-red-hat-device-edge

OpenShift Virtualization と複数の GPU を備えたベアメタル

ホストされた仮想マシンにはパススルー、コンテナーにはタイムスライスの使用を検討してくださ
い。

関連情報

GPU 使用率の向上

7.3.1. CUDA ストリーム

Compute Unified Device Architecture (CUDA) は、GPU での計算全般のために NVIDIA が開発した並列
コンピューティングプラットフォームおよびプログラミングモデルです。

ストリームは、GPU 上で発行順に実行される一連の操作です。CUDA コマンドは通常、デフォルトス
トリームで順次実行され、前のタスクが完了するまでタスクは開始されません。

ストリームをまたいだ操作の非同期処理により、タスクの並列実行が可能になります。あるストリーム
で発行されたタスクは、別のタスクが別のストリームで発行される前、実行中、または発行された後に
実行されます。これにより、GPU は指定された順序に関係なく複数のタスクを同時に実行できるよう
になり、パフォーマンスの向上につながります。

関連情報

Asynchronous Concurrent Execution

7.3.2. タイムスライス

GPU タイムスライスは、複数の CUDA アプリケーションを実行しているときに、過負荷になった GPU
でスケジュールされたワークロードをインターリーブします。

Kubernetes で GPU のタイムスライスを有効にするには、GPU のレプリカセットを定義し、それを個
別に Pod に配分してワークロードを実行できるようにしっます。マルチインスタンス GPU (MIG) とは
異なり、メモリーや障害はレプリカ間で分離されませんが、一部のワークロードでは一切共有しないよ
り、こちらの方が適切です。内部的には、GPU タイムスライスを使用して、基礎である同じ GPU のレ
プリカからのワークロードを多重化します。

クラスター全体のデフォルト設定をタイムスライスに適用できます。ノード固有の設定を適用すること
もできます。たとえば、タイムスライス設定を Tesla T4 GPU を備えたノードにのみ適用し、他の GPU
モデルを備えたノードは変更しないようにできます。

クラスター全体のデフォルト設定を適用し、ノードにラベルを付けて、それらのノードにノード固有の
設定が適用されるようにすることで、2 つのアプローチを組み合わせることができます。

7.3.3. CUDA マルチプロセスサービス

CUDA マルチプロセスサービス (MPS) を使用すると、単一の GPU で複数の CUDA プロセスを使用で
きます。プロセスは GPU 上で並行して実行されるため、GPU コンピュートリソースの飽和が発生しな
くなります。MPS を使用すると、カーネル操作や、別のプロセスからのメモリーコピーの同時実行ま
たは重複も可能になり、使用率が向上します。

関連情報

CUDA MPS

第7章 NVIDIA GPU アーキテクチャーの概要

51

https://developer.nvidia.com/blog/improving-gpu-utilization-in-kubernetes/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#asynchronous-concurrent-execution
https://docs.nvidia.com/deploy/mps/index.html

7.3.4. マルチインスタンス GPU

マルチインスタンス GPU (MIG) を使用すると、GPU コンピュートユニットとメモリーを複数の MIG
インスタンスに分割できます。これらの各インスタンスは、システムの観点からはスタンドアロン
GPU デバイスであり、ノード上で実行されている任意のアプリケーション、コンテナー、または仮想
マシンに接続できます。GPU を使用するソフトウェアは、これらの各 MIG インスタンスを個別の GPU
として扱います。

MIG は、GPU 全体のフルパワーを必要としないアプリケーションがある場合に役立ちます。新しい
NVIDIA Ampere アーキテクチャーの MIG 機能を使用すると、ハードウェアリソースを複数の GPU イ
ンスタンスに分割できます。各インスタンスは、オペレーティングシステムで独立した CUDA 対応
GPU として利用できます。

NVIDIA GPU Operator バージョン 1.7.0 以降では、A100 および A30 Ampere カードの MIG サポートを
提供しています。これらの GPU インスタンスは、最大 7 つの独立した CUDA アプリケーションをサ
ポートするように設計されており、専用のハードウェアリソースをしようしてそれぞれ完全に分離され
た状態で稼働します。

関連情報

NVIDIA Multi-Instance GPU User Guide

7.3.5. vGPU による仮想化

仮想マシンは、NVIDIA vGPU を使用して単一の物理 GPU に直接アクセスできます。企業全体の仮想マ
シンで共有され、他のデバイスからアクセスできる仮想 GPU を作成できます。

この機能は、GPU パフォーマンスのパワーと、vGPU がもたらす管理およびセキュリティーの利点を
組み合わせたものです。vGPU には他にも、仮想環境のプロアクティブな管理と監視、混合 VDI とコン
ピュートワークロードのワークロードバランシング、複数の仮想マシン間でのリソース共有などの利点
があります。

関連情報

Virtual GPUs

7.4. OPENSHIFT CONTAINER PLATFORM の NVIDIA GPU 機能

NVIDIA Container Toolkit

NVIDIA Container Toolkit を使用すると、GPU で高速化されたコンテナーを作成して実行できま
す。ツールキットには、コンテナーが NVIDIA GPU を使用するように自動的に設定するためのコン
テナーランタイムライブラリーとユーティリティーが含まれています。

NVIDIA AI Enterprise

NVIDIA AI Enterprise は、NVIDIA 認定システムで最適化、認定、サポートされている AI およびデー
タ分析ソフトウェアのエンドツーエンドのクラウドネイティブスイートです。
NVIDIA AI Enterprise には、Red Hat OpenShift Container Platform のサポートが含まれています。
サポートされているインストール方法は以下のとおりです。

GPU パススルーを使用するベアメタルまたは VMware vSphere 上の OpenShift Container
Platform。

NVIDIA vGPU を使用する VMware vSphere 上の OpenShift Container Platform。

GPU Feature Discovery

OpenShift Container Platform 4.14 アーキテクチャー

52

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://www.nvidia.com/en-us/data-center/virtual-solutions/

NVIDIA GPU Feature Discovery for Kubernetes は、ノード上で使用可能な GPU のラベルを自動的に
生成できるソフトウェアコンポーネントです。GPU Feature Discovery は、Node Feature Discovery
(NFD) を使用してこのラベル付けを実行します。
Node Feature Discovery (NFD) Operator は、ハードウェア固有の情報でノードにラベル付けを行う
ことで、OpenShift Container Platform クラスターのハードウェア機能と設定の検出を管理します。
NFD は、PCI カード、カーネル、OS バージョンなどのノード固有の属性で、ホストにラベル付け
を行います。

Operator Hub で NFD Operator を見つけるには、"Node Feature Discovery" で検索してください。

NVIDIA GPU Operator with OpenShift Virtualization

これまで、GPU Operator は、GPU で高速化されたコンテナーを実行するためにワーカーノードの
みをプロビジョニングしていました。現在は、GPU Operator を使用して、GPU で高速化された仮
想マシンを実行するためのワーカーノードもプロビジョニングできます。
GPU Operator を、どの GPU ワークロードがそのワーカーノード上で実行するように設定されたか
に応じて、異なるソフトウェアコンポーネントをワーカーノードにデプロイするように設定できま
す。

GPU モニタリングダッシュボード

モニタリングダッシュボードをインストールして、OpenShift Container Platform Web コンソール
のクラスターの Observe ページに、GPU の使用状況に関する情報を表示できます。GPU 使用状況
に関する情報には、使用可能な GPU の数、消費電力 (ワット単位)、温度 (摂氏)、使用率 (パーセン
ト)、および各 GPU のその他のメトリクスが含まれます。

関連情報

NVIDIA-Certified Systems

NVIDIA AI Enterprise

NVIDIA Container Toolkit

GPU モニタリングダッシュボードの有効化

MIG Support in OpenShift Container Platform

OpenShift での NVIDIA GPU のタイムスライス

Deploy GPU Operators in a disconnected or airgapped environment

Node Feature Discovery Operator

第7章 NVIDIA GPU アーキテクチャーの概要

53

https://docs.nvidia.com/ngc/ngc-deploy-on-premises/nvidia-certified-systems/index.html
https://docs.nvidia.com/ai-enterprise/index.html#deployment-guides
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/overview.html#
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/enable-gpu-monitoring-dashboard.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/mig-ocp.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/time-slicing-gpus-in-openshift.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/mirror-gpu-ocp-disconnected.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/specialized_hardware_and_driver_enablement/#node-feature-discovery-operator

第8章 OPENSHIFT CONTAINER PLATFORM の開発について
高品質のエンタープライズアプリケーションの開発および実行時にコンテナーの各種機能をフルに活用
できるようにするには、使用する環境が、コンテナーの以下の機能を可能にするツールでサポートされ
ている必要があります。

他のコンテナー化された/されていないサービスに接続できる分離したマイクロサービスとして
作成される。たとえば、アプリケーションをデータベースに結合したり、アプリケーションに
モニタリングアプリケーションを割り当てることが必要になることがあります。

回復性がある。サーバーがクラッシュしたときやメンテナンスのために停止する必要があると
き、またはまもなく使用停止になる場合などに、コンテナーを別のマシンで起動できます。

自動化されている。コードの変更を自動的に選択し、新規バージョンの起動およびデプロイを
自動化します。

スケールアップまたは複製が可能である。需要の上下に合わせてクライアントに対応するイン
スタンスの数を増やしたり、インスタンスの数を減らしたりできます。

アプリケーションの種類に応じて複数の異なる方法で実行できる。たとえば、あるアプリケー
ションは月一回実行してレポートを作成した後に終了させる場合があります。別のアプリケー
ションは継続的に実行して、クライアントに対する高可用性が必要になる場合があります。

管理された状態を保つ。アプリケーションの状態を監視し、異常が発生したら対応できるよう
にします。

コンテナーが広く受け入れられ、エンタープライズレベルの対応を可能にするためのツールや方法の要
件が高まり、多くのオプションがコンテナーで利用できるようになりました。

このセクションの残りの部分では、OpenShift Container Platform で Kubernetes のコンテナー化され
たアプリケーションをビルドし、デプロイする際に作成できるアセットの各種のオプションを説明しま
す。また、各種の異なるアプリケーションや開発要件に適した方法も説明します。

8.1. コンテナー化されたアプリケーションの開発について

コンテナーを使用したアプリケーションの開発にはさまざまな方法を状況に合わせて使用できます。単
一コンテナーの開発から、最終的にそのコンテナーの大企業のミッションクリティカルなアプリケー
ションとしてのデプロイに対応する一連の方法の概要を示します。それぞれのアプローチと共に、コン
テナー化されたアプリケーションの開発に使用できる各種のツール、フォーマットおよび方法を説明し
ます。扱う内容は以下の通りです。

単純なコンテナーをビルドし、レジストリーに格納する

Kubernetes マニフェストを作成し、それを Git リポジトリーに保存する

Operator を作成し、アプリケーションを他のユーザーと共有する

8.2. 単純なコンテナーのビルド

たとえば、アプリケーションをコンテナー化しようと考えているとします。

その場合、まず必要になるのは buildah や docker などのコンテナーをビルドするためのツール、および
コンテナーの内部で実行されることを記述したファイルです。これは通常、Dockerfile になります。

次に、作成したコンテナーイメージをプッシュする場所が必要になります。ここからコンテナーイメー
ジをプルすると、任意の場所で実行できます。この場所はコンテナーレジストリーになります。

OpenShift Container Platform 4.14 アーキテクチャー

54

https://docs.docker.com/engine/reference/builder/

各コンポーネントのサンプルは、ほとんどの Linux オペレーティングシステムにデフォルトでインス
トールされています。ただし Dockerfile はユーザーが各自で用意する必要があります。

以下の図は、イメージをビルドし、プッシュするプロセスを示しています。

図8.1 単純なコンテナー化アプリケーションを作成し、レジストリーにプッシュする

Red Hat Enterprise Linux (RHEL) をオペレーティングシステムとして実行しているコンピューターを使
用している場合、コンテナー化されているアプリケーションを作成するプロセスには以下の手順が必要
になります。

1. コンテナービルドツールのインストール。RHEL には、コンテナーのビルドと管理に使用され
る podman、buildah、skopeo など一連のツールが含まれています。

2. Dockerfile を作成してベースイメージとソフトウェアを組み合わせる。コンテナーのビルドに
関する情報は、Dockerfile というファイルに保管されます。このファイルでビルドの起点とな
るベースイメージ、インストールするソフトウェアパッケージ、コンテナーにコピーするソフ
トウェアを指定します。さらに、コンテナーの外部に公開するネットワークポートやコンテ
ナーの内部にマウントするボリュームのなどのパラメーター値も指定します。Dockerfile とコ
ンテナー化するソフトウェアは、RHEL システムのディレクトリーに配置します。

3. buildah または docker build を実行する。buildah build-using-dockerfile または docker build
コマンドを実行し、選択したベースイメージをローカルシステムにプルして、ローカルに保存
されるコンテナーイメージを作成します。 buildah を使用して、Dockerfile なしにコンテナーイ
メージをビルドすることもできます。

4. タグ付けおよびレジストリーへのプッシュを実行します。コンテナーの格納および共有に使用
するレジストリーの場所を特定する新しいコンテナーイメージにタグを追加します。次
に、podman push コマンドまたは docker push コマンドを実行してそのイメージをレジスト
リーにプッシュします。

5. イメージをプルして実行する。Podman や Docker などのコンテナークライアントツールがあ
る任意のシステムから、新しいイメージを特定するコマンドを実行します。たとえ
ば、podman run <image_name> や docker run <image_name> のコマンドを実行します。
ここで、<image_name> は新しいイメージの名前であり、quay.io/myrepo/myapp:latest のよ
うになります。レジストリーでは、イメージをプッシュおよびプルするために認証情報が必要
になる場合があります。

コンテナーイメージをビルドし、レジストリーにプッシュし、それらを実行するプロセスの詳細
は、Buildah によるカスタムイメージビルド を参照してください。

8.2.1. コンテナービルドツールのオプション

第8章 OPENSHIFT CONTAINER PLATFORM の開発について

55

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/builds_using_buildconfig/#custom-builds-buildah

Buildah、Podman、Skopeo を使用してコンテナービルドし、管理すると、それらのコンテナーを最終
的に OpenShift Container Platform またはその他の Kubernetes 環境にデプロイする目的で調整された
各種機能が含まれる業界標準のコンテナーイメージが生成されます。これらのツールはデーモンレスで
あり、root 権限なしで実行できるため、実行に必要なオーバーヘッドが少なくて済みます。

重要

コンテナーランタイムとしての Docker Container Engine のサポートは、Kubernetes
1.20 で非推奨になり、将来のリリースで削除される予定です。ただし、Docker で生成さ
れたイメージは、CRI-O を含むすべてのランタイムでクラスター内で引き続き機能しま
す。詳細は、Kubernetes ブログの発表 を参照してください。

コンテナーを最終的に OpenShift Container Platform で実行するときは、CRI-O コンテナーエンジンを
使用します。CRI-O は、OpenShift Container Platform クラスターのすべてのワーカーマシンおよびコ
ントロールプレーンマシン上で実行されますが、CRI-O は、OpenShift Container Platform の外部のス
タンドアロンランタイムとしてはまだサポートされていません。

8.2.2. ベースイメージのオプション

アプリケーションをビルドするために選択するベースイメージには、Linux システムがアプリケーショ
ンのように表示されるソフトウェアのセットが含まれます。ユーザーが独自のイメージをビルドする場
合、ソフトウェアはそのファイルシステム内に配置され、ファイルシステムはオペレーティングシステ
ムのように表示されます。このベースイメージの選択により、コンテナーの将来の安全性、効率性およ
びアップグレードの可能性に大きな影響を与えます。

Red Hat は、Red Hat Universal Base Images (UBI) と呼ばれるベースイメージの新たなセットを提供し
ます。これらのイメージは Red Hat Enterprise Linux をベースにしており、Red Hat が過去に提供して
いたベースイメージに類似していますが、1 つの大きな違いは、Red Hat サブスクリプションがなくて
も自由に再ディストリビューションできることです。そのため、UBI イメージの共有方法や環境ごとに
異なるイメージを作成する必要性を心配することなく、UBI イメージ上にアプリケーションを構築でき
るようになります。

これらの UBI イメージは、標準で最小限の init バージョンです。また、Red Hat Software Collections
イメージを、Node.js、Perl、Python などの特定のランタイム環境に依存するアプリケーションの基盤
として使用できます。これらのランタイムベースイメージの特殊なバージョンは Source-to-Image
(S2I) イメージと呼ばれています。S2I イメージを使用して、コードを、そのコードを実行できるベース
イメージ環境に挿入することができます。

S2I イメージは、以下の図に示すように、OpenShift Container Platform Web UI のCatalog →
Developer Catalog を選択することにより直接使用することができます。

図8.2 特定のランタイムを必要とするアプリケーションの S2I ベースイメージを選択する

OpenShift Container Platform 4.14 アーキテクチャー

56

https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://cri-o.io/
https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers/index#using_red_hat_base_container_images_standard_and_minimal
https://access.redhat.com/documentation/ja-jp/red_hat_software_collections/3/html-single/using_red_hat_software_collections_container_images/index

図8.2 特定のランタイムを必要とするアプリケーションの S2I ベースイメージを選択する

8.2.3. レジストリーオプション

コンテナーレジストリーはコンテナーイメージを保管する場所です。ここから、コンテナーイメージを
他の人と共有したり、最終的に実行するプラットフォームで使用できるようにしたりできます。無料ア
カウントを提供する大規模なパブリックコンテナーレジストリーや、容量の大きいストレージや特殊な
機能を備えたプレミアムバージョンを選択できます。また、自身の組織にのみ限定される独自のレジス
トリーをインストールしたり、共有する相手を選択して独自のレジストリーをインストールすることも
できます。

Red Hat のイメージおよび認定パートナーのイメージを取得するには、Red Hat レジストリーから取り
出すことができます。Red Hat レジストリーは、認証されていない非推奨の
registry.access.redhat.com、および認証が必要な registry.redhat.io の 2 つの場所によって表わされ
ます。Container images section of the Red Hat Ecosystem Catalog で、Red Hat レジストリーの Red
Hat イメージおよびパートナーのイメージを確認できます。Red Hat コンテナーイメージのリスト表示
に加えて、適用されたセキュリティー更新に基づくヘルススコアなど、イメージの内容と品質に関する
詳細な情報も表示されます。

大規模なパブリックレジストリーには、Docker Hub および Quay.io が含まれます。Quay.io レジスト
リーは Red Hat が所有し、管理しています。OpenShift Container Platform で使用されるコンポーネン
トの多くは Quay.io に保管されます。これには OpenShift Container Platform 自体をデプロイするため
に使用されるコンテナーイメージおよび Operator が含まれます。Quay.io は、Helm チャートなどの他
のタイプのコンテンツを保管する手段ともなります。

専用のプライベートコンテナーレジストリーが必要な場合は、OpenShift Container Platform 自体にプ
ライベートコンテナーレジストリーが含まれています。これは、OpenShift Container Platform と共に
インストールされ、そのクラスター上で実行されます。また、Red Hat は Red Hat Quay と呼ばれるプ
ライベートバージョンの Quay.io レジストリーも提供しています。Red Hat Quay には、geo レプリ
ケーション、Git ビルドトリガー、Clair イメージスキャンなどの多くの機能が含まれています。

ここで言及したすべてのレジストリーでは、これらのレジストリーからイメージをダウンロードする際
に認証情報が必要です。これらの認証情報の一部は OpenShift Container Platform のクラスター全体に
提供されますが、他の認証情報は個別に割り当てられます。

8.3. OPENSHIFT CONTAINER PLATFORM 用の KUBERNETES マニフェ

第8章 OPENSHIFT CONTAINER PLATFORM の開発について

57

https://catalog.redhat.com/software/containers/explore
https://hub.docker.com/
https://quay.io/
https://access.redhat.com/products/red-hat-quay

8.3. OPENSHIFT CONTAINER PLATFORM 用の KUBERNETES マニフェ
ストの作成

コンテナーイメージは、コンテナー化されたアプリケーション用の基本的なビルディングブロックです
が、OpenShift Container Platform などの Kubernetes 環境でそのアプリケーションを管理し、デプロ
イするには、より多くの情報が必要になります。イメージ作成後に実行される通常の手順は以下のとお
りです。

Kubernetes マニフェストで使用する各種リソースの理解

実行するアプリケーションの種類を決定

サポートコンポーネントの収集

マニフェストの作成、およびそのマニフェストを Git リボジトリーに保管。これにより、マニ
フェストをソースバージョン管理システムに保管し、監査と追跡、次の環境へのプロモートと
デプロイ、必要な場合は以前のバージョンへのロールバックなどを実行でき、これを他者と共
有できます。

8.3.1. Kubernetes Pod およびサービスについて

コンテナーイメージは Docker を使用する基本単位であり、Kubernetes が使用する基本単位は Pod と
呼ばれます。Pod はアプリケーションのビルドの次の手順で使用されます。Pod には、1 つ以上のコン
テナーを含めることができます。Pod はデプロイやスケーリングおよび管理を実行する単一の単位であ
ることに留意してください。

Pod での実行内容を決定する際に考慮する必要のある主要な点として、スケーラビリティーと
namespace を考慮できます。デプロイメントを容易にするには、コンテナーを Pod にデプロイして、
Pod 内に独自のロギングとモニタリングコンテナーを含めることができるかもしれません。後に、Pod
を実行し、追加のインスタンスをスケールアップすることが必要になると、それらの他のコンテナーも
スケールアップできます。namespace の場合、Pod 内のコンテナーは同じネットワークインターフェ
イス、共有ストレージボリューム、メモリーや CPU などのリソース制限を共有します。これにより、
Pod のコンテンツを単一の単位として管理することが容易になります。また Pod 内のコンテナーは、
System V セマフォや POSIX 共有メモリーなどの標準的なプロセス間通信を使用することにより、相互
に通信できます。

個々の Pod が Kubernetes 内のスケーラブルな単位を表すのに対し、サービス は、負荷分散などの完全
なタスクを実行する完全で安定したアプリケーションを作成するために複数の Pod をグループ化する
手段を提供します。 また、サービスは削除されるまで同じ IP アドレスで利用可能な状態になるため、
Pod より永続性があります。サービスが使用できる状態では、サービスが名前で要求され、OpenShift
Container Platform クラスターはその名前を IP アドレスとポートに解決し、そこからサービスを設定
する Pod に到達できます。

性質上、コンテナー化されたアプリケーションは、そのアプリケーションが実行するオペレーティング
システムから分離され、したがってユーザーからも分離されます。Kubernetes マニフェストの一部に
は、コンテナー化されたアプリケーションとの通信の詳細な制御を可能にする ネットワークポリシー
を定義して、アプリケーションを内外のネットワークに公開する方法が記述されています。HTTP、
HTTPS の受信要求やクラスター外からの他のサービスをクラスター内のサービスに接続するに
は、Ingress リソースを使用できます。

コンテナーが、サービスを通じて提供されるデータベースストレージではなくディスク上のストレージ
を必要とする場合は、ボリューム をマニフェストに追加して、そのディスクを Pod で使用できるよう
にすることができます。永続ボリューム (PV) を作成するか、Pod 定義に追加されるボリュームを動的
に作成するようにマニフェストを設定できます。

アプリケーションを設定する Pod のグループを定義した後に、それらの Pod を Deployment および

OpenShift Container Platform 4.14 アーキテクチャー

58

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/storage/volumes/

アプリケーションを設定する Pod のグループを定義した後に、それらの Pod を Deployment および
DeploymentConfig オブジェクトで定義できます。

8.3.2. アプリケーションのタイプ

次に、アプリケーションのタイプが、その実行方法にどのように影響するかを検討します。

Kubernetes は、各種のアプリケーションに適した異なるタイプのワークロードのタイプを定義しま
す。アプリケーションに適したワークロードを決定するために、アプリケーションが以下のどのタイプ
に該当するかを確認してください。

完了まで実行されることが意図されている。 例として、アプリケーションがレポートを作成す
るために起動される場合は、レポートの完了時に終了することが想定されます。このアプリ
ケーションはその後一ヵ月間再度実行されない場合もあります。これらのタイプのアプリケー
ションに適した OpenShift Container Platform オブジェクトには、Job および CronJob があ
ります。

継続的に実行することが予想されている。 長時間実行されるアプリケーションの場合は、デプ
ロイメント を作成できます。

高い可用性が必要。 使用しているアプリケーションに高可用性が必要な場合は、2 つ以上のイ
ンスタンスを持てるようにデプロイメントのサイズを設定する必要があります。Deployment
オブジェクトまたは DeploymentConfig オブジェクトの場合は、このタイプのアプリケーショ
ン用に レプリカセット を組み込むことができます。レプリカセットを使用すると、Pod は複数
のノード間で実行され、ワーカーが停止してもアプリケーションを常に利用可能な状態にする
ことができます。

すべてのノード上で実行される必要がある。 Kubernetes アプリケーションのタイプによって
は、すべてのマスターまたはワーカーノード上のクラスターで実行することが意図されていま
す。DNS およびモニタリングアプリケーションは、すべてのノード上で継続的に実行する必要
があるアプリケーションの例です。このタイプのアプリケーションは、デーモンセット として
実行できます。また、デーモンセットはノードラベルに基づいて、ノードのサブセット上でも
実行できます。

ライフサイクル管理を必要とする。 アプリケーションが他者も使用できるようにする場合
は、Operator を作成することを検討してください。Operator を使用すると、インテリジェン
スをビルドできるため、バックアップやアップグレードなどを自動的に処理できます。
Operator Lifecycle Manager (OLM) と組み合わせることで、クラスターマネージャーは、
Operator を選択された namespace に公開し、クラスター内のユーザーが Operator を実行でき
るようになります。

アイデンティティーまたは番号付けの要件がある。アプリケーションには、アイデンティ
ティーや番号付けの要件が存在する場合があります。 たとえば、アプリケーションの 3 つのイ
ンスタンスのみを実行し、インスタンスに 0、1、2 という名前を付けることが求められる場合
があります。このアプリケーションには、ステートフルセット が適しています。 ステートフル
セットは、データベースや zookeeper クラスターなどの独立したストレージが必要なアプリ
ケーションに最も適しています。

8.3.3. 利用可能なサポートコンポーネント

作成するアプリケーションには、データベースやロギングコンポーネントなどのサポートコンポーネン
トが必要な場合があります。このニーズに対応するために、OpenShift Container Platform の Web コン
ソールで利用可能な以下のカタログから必要なコンポーネントを取得できる場合があります。

OperatorHub: 各 OpenShift Container Platform 4.14 クラスターで利用できます。OperatorHub
により、Red Hat、認定 Red Hat パートナー、コミュニティーメンバーおよびクラスターのオ

第8章 OPENSHIFT CONTAINER PLATFORM の開発について

59

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/building_applications/#what-deployments-are
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/building_applications/#deployments-kube-deployments
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://www.openshift.com/learn/topics/operators
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

ペレーターなどから Operator が利用できます。クラスター Operator は、それらの Operator
をクラスター内のすべての場所または選択された namespace で利用できるようにします。その
ため、開発者は Operator を起動し、それらをアプリケーションと共に設定できます。

テンプレート: ワンオフタイプのアプリケーションの場合に役立ちます。この場合、インストー
ル後のコンポーネントのライフサイクルは重要ではありません。テンプレートは、最小限の
オーバーヘッドで Kubernetes アプリケーションの開発を始める簡単な方法を提供します。テン
プレートは、Deployment、Service、Route、またはその他のオブジェクトなどのリソース定
義のリストである場合があります。名前またはリソースを変更する必要がある場合に、それら
の値をパラメーターとしてテンプレートに設定できます。

サポートする Operator およびテンプレートは、開発チームの特定のニーズに合わせて設定し、開発者
が作業に使用する namespace で利用できるようにすることができます。 多くの場合、共有テンプレー
トは他のすべての namespace からアクセス可能になるために openshift namespace に追加されます。

8.3.4. マニフェストの適用

Kubernetes マニフェストを使用して、Kubernetes アプリケーションを設定するコンポーネントのより
詳細な情報を得ることができます。これらのマニフェストは YAML ファイルとして作成し、oc apply
などのコマンドを実行して、それらをクラスターに適用してデプロイできます。

8.3.5. 次のステップ

この時点で、コンテナー開発のプロセスを自動化する方法を検討します。この際、イメージをビルドし
てレジストリーにプッシュするいくつかの CI パイプラインがあることが望ましいと言えます。とくに
GitOps パイプラインは、アプリケーションのビルドに必要なソフトウェアを保管する Git リボジト
リーにコンテナー開発を統合します。

ここまでのワークフローは以下のようになります。

Day 1: YAML を作成します。次に oc apply コマンドを実行して、YAML をクラスターに適用
し、機能することを確かめます。

Day 2: YAML コンテナー設定ファイルを独自の Git リポジトリーに配置します。ここから、ア
プリのインストールやその改善の支援に携わるメンバーが YAML をプルダウンし、アプリを実
行するクラスターにこれを適用できます。

Day 3: アプリケーション用の Operator の作成を検討します。

8.4. OPERATOR 向けの開発

アプリケーションを他者が実行できるようにする際、アプリケーションを Operator としてパッケージ
化し、デプロイすることが適切である場合があります。前述のように、Operator は、ライフサイクル
コンポーネントをアプリケーションに追加し、インストール後すぐにアプリケーションを実行するジョ
ブが完了していないことを認識します。

アプリケーションを Operator として作成する場合は、アプリケーションを実行し、維持する方法に関
する独自のノウハウを盛り込むことができます。アプリケーションのアップグレード、バックアップ、
スケーリング、状態のトラッキングなどを行う機能を組み込むことができます。アプリケーションを正
しく設定すれば、Operator の更新などのメンテナンスタスクは、Operator のユーザーに非表示の状態
で自動的に実行されます。

役に立つ Operator の一例として、データを特定のタイミングで自動的にバックアップするように設定
された Operator を挙げることができます。Operator は設定されたタイミングでのアプリケーションの
バックアップを管理するため、システム管理者はバックアップのタイミングを覚えておく必要がありま

OpenShift Container Platform 4.14 アーキテクチャー

60

せん。

データのバックアップや証明書のローテーションなど、これまで手作業で行われていたアプリケーショ
ンのメンテナンスは、Operator によって自動化されます。

第8章 OPENSHIFT CONTAINER PLATFORM の開発について

61

第9章 RED HAT ENTERPRISE LINUX COREOS (RHCOS)

9.1. RHCOS について

Red Hat Enterprise Linux CoreOS (RHCOS) は、自動化されたリモートアップグレード機能を備えた
Red Hat Enterprise Linux (RHEL) の品質基準を提供することにより、次世代の単一目的コンテナーオペ
レーティングシステムテクノロジーを表しています。

RHCOS は、すべての OpenShift Container Platform マシンの 1 つの OpenShift Container Platform
4.14 コンポーネントとしてのみサポートされます。RHCOS は、OpenShift Container Platform のコン
トロールプレーンまたはマスターマシン向けに唯一サポートされるオペレーティングシステムです。
RHCOS はすべてのクラスターマシンのデフォルトオペレーティングシステムですが、RHEL をオペ
レーティングシステムとして使用するコンピュートマシン (ワーカーマシンとしても知られる) を作成す
ることもできます。RHCOS を OpenShift Container Platform 4.14 にデプロイするには、以下の 2 つの
一般的な方法があります。

インストールプログラムがプロビジョニングするインフラストラクチャーにクラスターをイン
ストールする場合、RHCOS イメージはインストール中にターゲットプラットフォームにダウ
ンロードされます。RHCOS 設定を制御する適切な Ignition 設定ファイルもダウンロードされ、
マシンのデプロイに使用されます。

クラスターを独自に管理するインフラストラクチャーにインストールする場合、インストール
に関するドキュメントを参照して RHCOS イメージの取得や、Ignition 設定ファイルの生成、お
よび設定ファイルの使用によるマシンのプロビジョニングを行ってください。

9.1.1. RHCOS の主な機能

以下は、RHCOS オペレーティングシステムの主要な機能を説明しています。

Based on RHEL (RHEL ベース): この基礎となるオペレーティングシステムは、主に RHEL の
コンポーネントで構成されます。RHEL をサポートする品質、セキュリティーおよび管理基準
が RHCOS にも同様に適用されます。たとえば、RHCOS ソフトウェアは RPM パッケージにあ
り、各 RHCOS システムは、RHEL カーネル、および systemd init システムで管理される一連
のサービスと共に起動します。

Controlled immutability (不変性の制御): RHCOS には、RHEL コンポーネントが含まれている
ものの、RHCOS はデフォルトの RHEL インストールの場合よりも厳密に管理されるように設
計されています。これは OpenShift Container Platform クラスターからリモートで管理されま
す。RHCOS マシンをセットアップする際は、いくつかのシステム設定のみを変更するだけで
対応できます。RHCOS のこの管理機能および不変性により、OpenShift Container Platform で
は RHCOS システムの最新の状態をクラスターに保存し、最新の RHCOS 設定に基づいて追加
のマシンの作成や更新を実行できます。

CRI-O container runtime (CRI-O コンテナーランタイム): RHCOS には Docker で必要な OCI
および libcontainer 形式のコンテナーを実行する機能が含まれていますが、Docker コンテナー
エンジンではなく CRI-O コンテナーエンジンが組み込まれています。OpenShift Container
Platform などの、Kubernetes プラットフォームが必要とする機能に重点が置かれている CRI-
O では、複数の異なる Kubernetes バージョンとの特定の互換性が提供されます。また CRI-O
は、大規模な機能セットを提供するコンテナーエンジンの場合よりもフットプリントや攻撃領
域を縮小できます。現時点で、CRI-O は OpenShift Container Platform クラスター内で利用で
きる唯一のエンジンです。
CRI-O は、runC または crun コンテナーランタイムのいずれかを使用して、コンテナーを開始
および管理できます。crun を有効にする方法は、ContainerRuntimeConfig CR の作成に関す
るドキュメントを参照してください。

OpenShift Container Platform 4.14 アーキテクチャー

62

Set of container tools (コンテナーツールのセット): ビルド、コピーまたはコンテナーの管理
などのタスクに備え、RHCOS では Docker CLI ツールが互換性のあるコンテナーツールセット
に置き換えられます。Podman CLI ツールは、コンテナーおよびコンテナーイメージの実行、
起動、停止、リスト表示および削除などの数多くのコンテナーランタイム機能をサポートしま
す。skopeo CLI ツールは、イメージのコピー、認証およびイメージへの署名を実行できま
す。crictl CLI ツールを使用すると、CRI-O コンテナーエンジンからコンテナーおよび Pod を
使用できます。これらのツールを RHCOS 内で直接使用することは推奨されていませんが、デ
バッグの目的では使用できます。

rpm-ostree upgrades: RHCOS は、rpm-ostree システムを使用したトランザクショナルアップ
グレードを特長としています。更新はコンテナーイメージ経由で提供され、OpenShift 更新プ
ロセスの一部となっています。デプロイされると、コンテナーイメージがプルされ、抽出され
てディスクに書き込まれ、その後、ブートローダーが変更されて新しいバージョンで起動しま
す。クラスター容量への影響を最小限に抑えるために、マシンはローリング方式で更新を再起
動します。

bootupd ファームウェアおよびブートローダー更新ツール: パッケージマネージャーおよび
rpm-ostree などのハイブリッドシステムはファームウェアやブートローダーを更新しませ
ん。bootupd を使用する RHCOS ユーザーは、x86_64、ppc64le、および aarch64 などの最新
のアーキテクチャーで実行される UEFI およびレガシー BIOS ブートモードのファームウェアお
よびブートの更新を管理するシステムに依存しない更新ツールにアクセスできます。
bootupd のインストール方法の詳細は、bootupd を使用したブートローダーの更新に関するド
キュメントを参照してください。

Updated through the Machine Config Operator: OpenShift Container Platform では、
Machine Config Operator がオペレーティングシステムのアップグレードを処理します。yum
で実行される場合のように個々のパッケージをアップグレードする代わりに、rpm-ostree は
OS のアップグレードを atomic 単位として提供します。新規の OS デプロイメントはアップグ
レード時に段階が設定され、次回の再起動時に実行されます。アップグレードに不具合が生じ
た場合は、単一ロールバックおよび再起動によってシステムが以前の状態に戻ります。
OpenShift Container Platform での RHCOS アップグレードは、クラスターの更新時に実行さ
れます。

RHCOS システムの場合、rpm-ostree ファイルシステムのレイアウトには、以下の特徴があります。

/usr: オペレーティングシステムのバイナリーとライブラリーが保管される場所で、読み取り専
用です。これを変更することはサポートされていません。

/etc、/boot、/var: システム上で書き込み可能ですが、Machine Config Operator によってのみ
変更されることが意図されています。

/var/lib/containers: コンテナーイメージを保管するためのグラフストレージの場所です。

9.1.2. RHCOS の設定方法の選択

RHCOS は、最低限のユーザー設定で OpenShift Container Platform クラスターにデプロイするように
設計されています。これは最も基本的な形式であり、以下で構成されます。

AWS など、プロビジョニングされたインフラストラクチャーの使用を開始するか、インフラス
トラクチャーを独自にプロビジョニングします。

openshift-install の実行時に、install-config.yaml ファイルに認証情報およびクラスター名な
どの一部の情報を指定します。

OpenShift Container Platform の RHCOS システムは OpenShift Container Platform クラスターから完
全に管理されるように設計されているため、RHCOS マシンに直接ログインすることは推奨されていま

第9章 RED HAT ENTERPRISE LINUX COREOS (RHCOS)

63

せん。RHCOS マシンクラスターへの直接のアクセスはデバッグ目的で制限的に実行できますが、
RHCOS システムを直接設定することはできません。その代わりに、OpenShift Container Platform
ノードに機能を追加または変更する必要がある場合は、以下の方法で変更を行うことを検討してくださ
い。

Kubernetes ワークロードオブジェクト (DaemonSet や Deployment など): サービスや他の
ユーザーレベルの機能をクラスターに追加する必要がある場合は、Kubernetes ワークロードオ
ブジェクトとしてそれらを追加することを検討します。特定のノード設定以外にこれらの機能
を保持することは、後続のアップグレードでクラスターを破損させるリスクを軽減する上で最
も効果的な方法です。

Day-2 カスタマイズ: 可能な場合は、クラスターノードをカスタマイズせずにクラスターを起動
し、クラスターを起動してから必要なノードの変更を加えます。これらの変更は、後で追跡す
ることが容易であり、更新に支障が及ぶ可能性がより低くなります。machine config の作成ま
たは Operator カスタムリソースの変更により、これらのカスタマイズを行うことができます。

Day-1 カスタマイズ: クラスターの初回起動時に実装する必要のあるカスタマイズの場合は、初
回起動時に変更が実装されるようにクラスターを変更する方法があります。Day-1 のカスタマ
イズは、openshift-install の実行時に Ignition 設定およびマニフェストファイルを使用して実
行することも、ユーザーがプロビジョニングする ISO インストール時に起動オプションを追加
して実行することもできます。

以下は、Day-1 で実行できるカスタマイズの例です。

カーネル引数: 特定のカーネル機能やチューニングがクラスターの初回起動時にノードで必要に
なる場合。

ディスクの暗号化: セキュリティー上、FIPS サポートなど、ノード上のルートファイルシステ
ムが暗号化されている必要がある場合。

カーネルモジュール: ネットワークカードやビデオカードなどの特定のハードウェアデバイス
に、Linux カーネル内でデフォルトで使用できるモジュールがない場合。

Chronyd: タイムサーバーの場所など、特定のクロック設定をノードに指定する必要がある場
合。

これらのタスクを実行する上で、openshift-install プロセスを拡張して MachineConfig などの追加の
オブジェクトを含めることができます。machine config を作成するこれらの手順は、クラスターの起動
後に Machine Config Operator に渡すことができます。

注記

インストールプログラムが生成する Ignition 設定ファイルには、24 時間が経過
すると期限切れになり、その後に更新される証明書が含まれます。証明書を更新
する前にクラスターが停止し、24 時間経過した後にクラスターを再起動する
と、クラスターは期限切れの証明書を自動的に復元します。例外として、
kubelet 証明書を回復するために保留状態の node-bootstrapper 証明書署名要求
(CSR) を手動で承認する必要があります。詳細は、コントロールプレーン証明書
の期限切れの状態からのリカバリー に関するドキュメントを参照してくださ
い。

24 時間証明書はクラスターのインストール後 16 時間から 22 時間にローテー
ションするため、Ignition 設定ファイルは、生成後 12 時間以内に使用することを
推奨します。12 時間以内に Ignition 設定ファイルを使用することにより、インス
トール中に証明書の更新が実行された場合のインストールの失敗を回避できま
す。

OpenShift Container Platform 4.14 アーキテクチャー

64

9.1.3. RHCOS のデプロイ方法の選択

OpenShift Container Platform の RHCOS インストールの相違点は、インストーラーまたはユーザーに
よってプロビジョニングされるインフラストラクチャーにデプロイするかどうかによって異なります。

Installer-provisioned: 一部のクラウド環境は、最低限の設定で OpenShift Container Platform
クラスターを起動することを可能にする、事前に設定されたインフラストラクチャーを提供し
ています。このようなタイプのインストールでは、各ノードにコンテンツを配置する Ignition
設定を指定でき、この場所でクラスターの初回時の起動が行われます。

ユーザーによるプロビジョニング: 独自のインフラストラクチャーをプロビジョニングする場合
は、データを RHCOS ノードに追加する方法により柔軟性を持たせることができます。たとえ
ば、RHCOS ISO インストーラーを起動して各システムをインストールする場合は、カーネル
引数を追加できます。ただし、オペレーティングシステム自体で設定が必要となるほとんどの
場合において、Ignition 設定で設定を指定する方法が最も適しています。

Ignition 機能は、RHCOS システムの初回セットアップ時にのみ実行されます。その後は、Ignition 設定
はマシン設定を使用して指定できます。

9.1.4. Ignition について

Ignition は、初回設定時にディスクを操作するために RHCOS によって使用されるユーティリティーで
す。これにより、ディスクのパーティション設定やパーティションのフォーマット、ファイル作成、
ユーザー設定などの一般的なディスク関連のタスクが実行されます。初回起動時に、Ignition はインス
トールメディアや指定した場所からその設定を読み込み、その設定をマシンに適用します。

クラスターをインストールする場合かマシンをクラスターに追加する場合かを問わず、Ignition は常に
OpenShift Container Platform クラスターマシンの初期設定を実行します。実際のシステム設定のほと
んどは、各マシン自体で行われます。各マシンで、Ignition は、RHCOS イメージを取得し、RHCOS
カーネルを起動します。カーネルコマンドラインのオプションで、デプロイメントのタイプや Ignition
で有効にされた初期 RAM ディスク (initramfs) の場所を特定します。

9.1.4.1. Ignition の仕組み

Ignition を使用してマシンを作成するには、Ignition 設定ファイルが必要です。OpenShift Container
Platform のインストレーションプログラムは、クラスターを作成するのに必要な Ignition 設定ファイル
を作成します。これらのファイルは、インストレーションプログラムに直接指定するか、install-
config.yaml ファイルを通じて提供される情報に基づくものです。

Ignition がマシンを設定する方法は、cloud-init や Linux Anaconda kickstart などのツールがシステムを
設定する方法に似ていますが、以下のような重要な違いがあります。

Ignition はインストール先のシステムから分離され初期 RAM ディスクから実行されます。その
ため、Ignition はディスクのパーティション設定を再度実行し、ファイルシステムをセットアッ
プし、さらにマシンの永続ファイルシステムに他の変更を加える可能性があります。これとは
対照的に、cloud-init はシステムの起動時にマシンの init システムの一部として実行されるた
め、ディスクパーティションなどへの基礎的な変更を簡単に行うことはできません。cloud-init
では、ノードの起動プロセスを実行しているときに、起動プロセスの再設定を簡単に実行でき
ません。

Ignition は既存システムを変更することなく、システムを初期化することが意図されています。
マシンが初期化され、インストールされたシステムからカーネルが実行された後に、OpenShift
Container Platform クラスターの Machine Config Operator がその後のすべてのマシン設定を
行います。

定義されたアクションセットを実行する代わりに、Ignition は宣言型の設定を実装します。これ

第9章 RED HAT ENTERPRISE LINUX COREOS (RHCOS)

65

https://cloud-init.io/
https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/7/html-single/installation_guide/index#chap-kickstart-installations

は新規マシンの起動前にすべてのパーティション、ファイル、サービスその他のアイテムがあ
ることを検査します。また、新規マシンを指定された設定に一致させるために必要なファイル
のディスクへのコピーなどの変更を行います。

Ignition がマシンの設定を終了した後もカーネルは実行し続けますが、初期 RAM ディスクを破
棄し、ディスクにインストールされたシステムにピボットします。システムを再起動しなくて
も、すべての新しいシステムサービスとその他の機能は起動します。

Ignition は新しいマシンがすべて宣言型の設定に一致することを確認するため、部分的に設定さ
れたマシンを含めることはできません。マシンのセットアップが失敗し、初期化プロセスが終
了しないと、Ignition は新しいマシンを起動しません。クラスターに部分的に設定されたマシン
が含まれることはありません。Ignition が完了しないと、マシンがクラスターに追加されること
はありません。その場合は、新しいマシンを各自で追加する必要があります。この動作は、失
敗した設定タスクに依存するタスクが後で失敗するまで設定タスクに問題があることが認識さ
れない場合など、マシンのデバックが困難になる状況を防ぐことができます。

マシンのセットアップの失敗を引き起こす問題が Ignition 設定にある場合、Ignition は他のマシ
ンの設定に同じ設定を使用しないようにします。たとえば、同じファイルを作成しようとする
親と子で構成される Ignition 設定が失敗の原因にある可能性があります。この場合は、問題が
解決されない限り、その Ignition 設定を使用して他のマシンをセットアップすることができま
せん。

複数の Ignition 設定ファイルがある場合は、それらの設定の集合体を取得します。Ignition は宣
言型であるため、これらの設定間で競合が生じると、Ignition はマシンのセットアップに失敗し
ます。ここで、そのファイルにおける情報の順序は問題にはなりません。Ignition はそれぞれの
設定を最も妥当な仕方で並べ替え、実行します。たとえば、あるファイルが数レベル分深いレ
ベルのディレクトリーを必要としており、他のファイルがそのパスにあるディレクトリーを必
要とする場合は、後者のファイルが先に作成されます。Ignition はすべてのファイル、ディレク
トリーおよびリンクを深さに応じて作成します。

Ignition は完全に空のハードディスクで起動できるため、cloud-init では実行できないことを行
うことができます。これには、(PXE ブートなどの機能を使用して)、システムをベアメタルで
ゼロからセットアップすることが含まれます。ベアメタルの場合は、Ignition 設定が起動パー
ティションに挿入されるため、Ignition はこれを見つけ、システムを正しく設定できます。

9.1.4.2. Ignition の順序

OpenShift Container Platform クラスター内の RHCOS マシンの Ignition プロセスには、以下の手順が
含まれます。

マシンがその Ignition 設定ファイルを取得します。コントロールプレーンマシンはブートスト
ラップマシンから Ignition 設定ファイルを取得し、ワーカーマシンはコントロールプレーンマ
シンから Ignition 設定ファイルを取得します。

Ignition はマシン上でディスクパーティション、ファイルシステム、ディレクトリーおよびリン
クを作成します。Ignition は RAID アレイをサポートしますが、LVM ボリュームはサポートし
ません。

Ignition は永続ファイルシステムのルートを initramfs 内の /sysroot ディレクトリーにマウント
し、その /sysroot ディレクトリーで機能し始めます。

Ignition はすべての定義されたファイルシステムを設定し、それらをランタイム時に適切にマウ
ントされるようにセットアップします。

Ignition は、systemd 一時ファイルを実行して、必要なファイルを /var ディレクトリーに設定
します。

OpenShift Container Platform 4.14 アーキテクチャー

66

Ignition は Ignition 設定ファイルを実行し、ユーザー、systemd ユニットファイルその他の設定
ファイルをセットアップします。

Ignition は initramfs にマウントされた永続システムのコンポーネントをすべてアンマウントし
ます。

Ignition は新しいマシンの init プロセスを開始し、システムの起動時に実行されるマシンにある
他のすべてのサービスを開始します。

このプロセスの最後で、マシンはクラスターに参加できる状態になります。再起動は不要です。

9.2. IGNITION 設定ファイルの表示

ブートストラップマシンをデプロイするのに使用される Ignition 設定ファイルを表示するには、以下の
コマンドを実行します。

いくつかの質問に回答すると、bootstrap.ign、master.ign、worker.ign ファイルが入力したディレク
トリーに表示されます。

bootstrap.ign ファイルの内容を確認するには、そのファイルを jq フィルターでそのファイルをパイプ
します。以下は、そのファイルの抜粋です。

$ openshift-install create ignition-configs --dir $HOME/testconfig

$ cat $HOME/testconfig/bootstrap.ign | jq
{
 "ignition": {
 "version": "3.2.0"
 },
 "passwd": {
 "users": [
 {
 "name": "core",
 "sshAuthorizedKeys": [
 "ssh-rsa AAAAB3NzaC1yc...."
]
 }
]
 },
 "storage": {
 "files": [
 {
 "overwrite": false,
 "path": "/etc/motd",
 "user": {
 "name": "root"
 },
 "append": [
 {
 "source": "data:text/plain;charset=utf-
8;base64,VGhpcyBpcyB0aGUgYm9vdHN0cmFwIG5vZGU7IGl0IHdpbGwgYmUgZGVzdHJveWVkIHdo
ZW4gdGhlIG1hc3RlciBpcyBmdWxseSB1cC4KClRoZSBwcmltYXJ5IHNlcnZpY2VzIGFyZSByZWxlYXNlL
WltYWdlLnNlcnZpY2UgZm9sbG93ZWQgYnkgYm9vdGt1YmUuc2VydmljZS4gVG8gd2F0Y2ggdGhlaXI
gc3RhdHVzLCBydW4gZS5nLgoKICBqb3VybmFsY3RsIC1iIC1mIC11IHJlbGVhc2UtaW1hZ2Uuc2Vydm
ljZSAtdSBib290a3ViZS5zZXJ2aWNlCg=="

第9章 RED HAT ENTERPRISE LINUX COREOS (RHCOS)

67

bootstrap.ign ファイルにリスト表示されたファイルの内容をデコードするには、そのファイルの内容
を表す base64 でエンコードされたデータ文字列を base64 -d コマンドに渡します。以下に示すのは、
上記の出力からブートストラップマシンに追加された /etc/motd ファイルの内容の使用例です。

出力例

これらのコマンドを master.ign ファイルと worker.ign ファイルで繰り返し実行し、マシンタイプごと
の Ignition 設定ファイルのソースを参照します。 ブートストラップマシンから Ignition 設定を取得する
方法を特定する、worker.ign に関する以下のような行が表示されるはずです。

bootstrap.ign ファイルについて、以下のいくつかの点に留意してください

フォーマット: ファイルのフォーマットは Ignition config spec に定義されています。同じ
フォーマットのファイルが後に MCO によって使用され、マシンの設定に変更がマージされま
す。

コンテンツ: ブートストラップマシンは他のマシンの Ignition 設定を提供するため、マスターマ
シンとワーカーマシンの両方の Ignition 設定情報は、ブートストラップの設定情報と共に
bootstrap.ign に保管されます。

サイズ: 各種タイプのリソースへのパスを含むファイルのサイズは、1,300 行を超える長さで
す。

マシンにコピーされる各ファイルの内容は実際にデータ URL にエンコードされます。この場
合、内容は少し読み取りにくくなる傾向があります (前述の jq や base64 コマンドを使用する
と内容がより読みやすくなります)。

設定: Ignition 設定ファイルのそれぞれのセクションは、一般的には既存ファイルを修正するコ
マンドではなく、マシンのファイルシステムに単にドロップされるファイルを含むことが想定
されています。たとえば、そのサービスを設定する NFS 上のセクションを設定するのではな
く、単に NFS 設定ファイルを追加します。これはその後のシステムの起動時に init プロセスに
より開始されます。

 }
],
 "mode": 420
 },
...

$ echo
VGhpcyBpcyB0aGUgYm9vdHN0cmFwIG5vZGU7IGl0IHdpbGwgYmUgZGVzdHJveWVkIHdoZW4gdG
hlIG1hc3RlciBpcyBmdWxseSB1cC4KClRoZSBwcmltYXJ5IHNlcnZpY2VzIGFyZSByZWxlYXNlLWltYWdl
LnNlcnZpY2UgZm9sbG93ZWQgYnkgYm9vdGt1YmUuc2VydmljZS4gVG8gd2F0Y2ggdGhlaXIgc3Rhd
HVzLCBydW4gZS5nLgoKICBqb3VybmFsY3RsIC1iIC1mIC11IHJlbGVhc2UtaW1hZ2Uuc2VydmljZSAtd
SBib290a3ViZS5zZXJ2aWNlCg== | base64 --decode

This is the bootstrap node; it will be destroyed when the master is fully up.

The primary services are release-image.service followed by bootkube.service. To watch their status,
run e.g.

 journalctl -b -f -u release-image.service -u bootkube.service

"source": "https://api.myign.develcluster.example.com:22623/config/worker",

OpenShift Container Platform 4.14 アーキテクチャー

68

https://coreos.github.io/ignition/configuration-v3_2/

ユーザー: core という名前のユーザーが作成され、SSH キーがそのユーザーに割り当てられま
す。これにより、そのユーザー名と認証情報を使用してクラスターにログインできます。

ストレージ: ストレージセクションは、各マシンに追加されるファイルを特定します。これらの
ファイルには、(実際のクラスターがコンテナーイメージレジストリーからプルする必要のある
認証情報を提供する) /root/.docker/config.json と、クラスターを設定するのに使用される
/opt/openshift/manifests 内のマニフェストファイルのセットがあります。

systemd: systemd セクションは、systemd ユニットファイルを作成するコンテンツを保持し
ます。これらのファイルは、起動時にサービスを開始するために、また実行システムでサービ
スを管理するために使用されます。

プリミティブ: Ignition は他のツールがビルドに使用できる低レベルのプリミティブも公開しま
す。

9.3. インストール後の IGNITION 設定の変更

machine config pool はノードのクラスターおよびそれらの対応する machine config を管理します。マ
シン設定には、クラスターの設定情報が含まれます。既知のすべての machine config pool を一覧表示
するには、以下を実行します。

出力例

すべての machine config を一覧表示するには、以下を実行します。

出力例

Machine Config Operator がこのようなマシン設定を適用するときの動作は Ignition とは若干異なりま
す。machine config は (00* から 99* までの) 順序で読み取られます。machine config 内のラベルは、
それぞれのノードのタイプ (マスターまたはワーカー) を特定します。同じファイルが複数の machine
config ファイルに表示される場合は、最後のファイルが有効になります。たとえば、99* ファイルに出

$ oc get machineconfigpools

NAME CONFIG UPDATED UPDATING DEGRADED
master master-1638c1aea398413bb918e76632f20799 False False False
worker worker-2feef4f8288936489a5a832ca8efe953 False False False

$ oc get machineconfig

NAME GENERATEDBYCONTROLLER IGNITIONVERSION CREATED
OSIMAGEURL

00-master 4.0.0-0.150.0.0-dirty 3.2.0 16m
00-master-ssh 4.0.0-0.150.0.0-dirty 16m
00-worker 4.0.0-0.150.0.0-dirty 3.2.0 16m
00-worker-ssh 4.0.0-0.150.0.0-dirty 16m
01-master-kubelet 4.0.0-0.150.0.0-dirty 3.2.0 16m
01-worker-kubelet 4.0.0-0.150.0.0-dirty 3.2.0 16m
master-1638c1aea398413bb918e76632f20799 4.0.0-0.150.0.0-dirty 3.2.0 16m
worker-2feef4f8288936489a5a832ca8efe953 4.0.0-0.150.0.0-dirty 3.2.0 16m

第9章 RED HAT ENTERPRISE LINUX COREOS (RHCOS)

69

現するファイルは、00* ファイルに出現する同一のファイルを置き換えます。入力された
MachineConfig オブジェクトは「レンダリング」された MachineConfig オブジェクトに結合されま
す。これは Operator のターゲットとして使用され、machine config pool で確認できる値です。

マシン設定から管理されているファイルを表示するには、特定の MachineConfig オブジェクト内で
“Path:" を検索します。以下に例を示します。

出力例

machine config ファイルには (10-worker-container-runtime などの) より新しい名前を付けてくださ
い。各ファイルの内容は、URL 形式のデータであることに留意してください。次に、新しい machine
config をクラスターに適用します。

$ oc describe machineconfigs 01-worker-container-runtime | grep Path:

 Path: /etc/containers/registries.conf
 Path: /etc/containers/storage.conf
 Path: /etc/crio/crio.conf

OpenShift Container Platform 4.14 アーキテクチャー

70

第10章 受付プラグイン
受付プラグインは、OpenShift Container Platform の機能の調整に役立ちます。

10.1. 受付プラグインについて

受付プラグインは、マスター API へのリクエストをインターセプトして、リソースリクエストを検証し
ます。リクエストが認証および認可された後、受付プラグインは、関連するポリシーが遵守されている
ことを確認します。受付プラグインは、たとえばセキュリティーポリシー、リソース制限、設定要件を
適用するためによく使用されます。

受付プラグインは受付チェーン (admission chain) として順番に実行されます。シーケンス内の受付プ
ラグインが要求を拒否すると、チェーン全体が中止され、エラーが返されます。

OpenShift Container Platform には、各リソースタイプについて有効にされている受付プラグインのデ
フォルトセットがあります。それらはマスターが適切に機能するために必要です。受付プラグインは、
それらが対応していないリソースを無視します。

デフォルト以外にも、受付チェーンは、カスタム Webhook サーバーを呼び出す Webhook 受付プラグ
インを介して動的に拡張できます。Webhook 受付プラグインには、変更用の受付プラグインと検証用
の受付プラグインの 2 種類があります。変更用の受付プラグインが最初に実行され、リソースの変更お
よび要求の検証の両方が可能です。検証用の受付プラグインは要求を検証し、変更用の受付プラグイン
によってトリガーされた変更も検証できるように変更用の受付プラグインの後に実行されます。

変更用の受付プラグインを使用して Webhook サーバーを呼び出すと、ターゲットオブジェクトに関連
するリソースに影響を与える可能性があります。このような場合に、最終結果が想定通りであることを
検証するためにいくつかの手順を実行する必要があります。

警告

動的な受付クラスターはコントロールプレーンの操作に影響するため、これは注意
して使用する必要があります。OpenShift Container Platform 4.14 の Webhook 受
付プラグインを使用して Webhook サーバーを呼び出す場合は、変更による影響に
ついての情報を十分に確認し、それらの影響の有無についてテストするようにして
ください。要求が受付チェーン全体を通過しない場合は、リソースを変更前の元の
状態に復元する手順を追加します。

10.2. デフォルトの受付プラグイン

OpenShift Container Platform 4.14 では、デフォルトの検証および受付プラグインが有効になっていま
す。これらのデフォルトプラグインは、Ingress ポリシー、クラスターリソース制限の上書き、クォー
タポリシーなどの基本的なコントロールプレーンの機能に貢献するものです。

重要



第10章 受付プラグイン

71

重要

デフォルトプロジェクトでワークロードを実行したり、デフォルトプロジェクトへのア
クセスを共有したりしないでください。デフォルトのプロジェクトは、コアクラスター
コンポーネントを実行するために予約されています。

デフォルトプロジェクトである default、kube-public、kube-
system、openshift、openshift-infra、openshift-node、および openshift.io/run-level
ラベルが 0 または 1 に設定されているその他のシステム作成プロジェクトは、高い特権
があるとみなされます。Pod セキュリティーアドミッション、Security Context
Constraints、クラスターリソースクォータ、イメージ参照解決などのアドミッションプ
ラグインに依存する機能は、高い特権を持つプロジェクトでは機能しません。

次のリストには、デフォルトの受付プラグインが含まれています。

例10.1 受付プラグインの検証

LimitRanger

ServiceAccount

PodNodeSelector

Priority

PodTolerationRestriction

OwnerReferencesPermissionEnforcement

PersistentVolumeClaimResize

RuntimeClass

CertificateApproval

CertificateSigning

CertificateSubjectRestriction

autoscaling.openshift.io/ManagementCPUsOverride

authorization.openshift.io/RestrictSubjectBindings

scheduling.openshift.io/OriginPodNodeEnvironment

network.openshift.io/ExternalIPRanger

network.openshift.io/RestrictedEndpointsAdmission

image.openshift.io/ImagePolicy

security.openshift.io/SecurityContextConstraint

security.openshift.io/SCCExecRestrictions

route.openshift.io/IngressAdmission

OpenShift Container Platform 4.14 アーキテクチャー

72

config.openshift.io/ValidateAPIServer

config.openshift.io/ValidateAuthentication

config.openshift.io/ValidateFeatureGate

config.openshift.io/ValidateConsole

operator.openshift.io/ValidateDNS

config.openshift.io/ValidateImage

config.openshift.io/ValidateOAuth

config.openshift.io/ValidateProject

config.openshift.io/DenyDeleteClusterConfiguration

config.openshift.io/ValidateScheduler

quota.openshift.io/ValidateClusterResourceQuota

security.openshift.io/ValidateSecurityContextConstraints

authorization.openshift.io/ValidateRoleBindingRestriction

config.openshift.io/ValidateNetwork

operator.openshift.io/ValidateKubeControllerManager

ValidatingAdmissionWebhook

ResourceQuota

quota.openshift.io/ClusterResourceQuota

例10.2 受付プラグインの変更

NamespaceLifecycle

LimitRanger

ServiceAccount

NodeRestriction

TaintNodesByCondition

PodNodeSelector

Priority

DefaultTolerationSeconds

PodTolerationRestriction

第10章 受付プラグイン

73

DefaultStorageClass

StorageObjectInUseProtection

RuntimeClass

DefaultIngressClass

autoscaling.openshift.io/ManagementCPUsOverride

scheduling.openshift.io/OriginPodNodeEnvironment

image.openshift.io/ImagePolicy

security.openshift.io/SecurityContextConstraint

security.openshift.io/DefaultSecurityContextConstraints

MutatingAdmissionWebhook

10.3. WEBHOOK 受付プラグイン

OpenShift Container Platform のデフォルト受付プラグインのほかに、受付チェーンの機能を拡張する
ために Webhook サーバーを呼び出す Webhook 受付プラグインを使用して動的な受付を実装できま
す。Webhook サーバーは、定義されたエンドポイントにて HTTP で呼び出されます。

OpenShift Container Platform には、2 種類の Webhook 受付プラグインがあります。

受付プロセスで、変更用の受付プラグイン は、アフィニティーラベルの挿入などのタスクを実
行できます。

受付プロセスの最後に、検証用の受付プラグイン を使用して、アフィニティーラベルが予想通
りにされているかどうかの確認など、オブジェクトが適切に設定されていることを確認できま
す。検証にパスすると、OpenShift Container Platform はオブジェクトを設定済みとしてスケ
ジュールします。

API 要求が送信されると、変更用または検証用の受付コントローラーは設定内の外部 Webhook の一覧
を使用し、それらを並行して呼び出します。

すべての Webhook が要求を承認すると、受付チェーンは継続します。

Webhook のいずれかが要求を拒否すると、受付要求は拒否され、これは、初回の拒否理由に基
づいて実行されます。

複数の Webhook が受付要求を拒否する場合は、初回の拒否理由のみがユーザーに返されま
す。

Webhook の呼び出し時にエラーが発生すると、要求が拒否されるか、Webhook がエラーポリ
シーセットに応じて無視されます。エラーポリシーが Ignore に設定されていると、要求が失敗
しても無条件で受け入れられます。ポリシーが Fail に設定されていると、失敗した要求が拒否
されます。Ignore を使用すると、すべてのクライアントで予測できない動作が生じる可能性が
あります。

Webhook の受付プラグインと Webhook サーバー間の通信は TLS を使用する必要があります。CA 証明
書を生成し、その証明書を使用して Webhook 受付サーバーで使用されるサーバー証明書に署名しま

OpenShift Container Platform 4.14 アーキテクチャー

74

す。PEM 形式の CA 証明書は、サービス提供証明書のシークレットなどのメカニズムを使用して
Webhook 受付プラグインに提供されます。

以下の図は、複数の Webhook サーバーが呼び出される連続した受付チェーンのプロセスを示していま
す。

図10.1 変更用および検証用の受付プラグインを含む API 受付チェーン

Webhook 受付プラグインのユースケースの例として使用できるケースでは、すべての Pod に共通のラ
ベルのセットがなければなりません。この例では、変更用の受付プラグインはラベルを挿入でき、検証
用の受付プラグインではラベルが予想通りであることを確認できます。OpenShift Container Platform
は引き続いて必要なラベルが含まれる Pod をスケジュールし、それらのラベルが含まれない Pod を拒
否します。

一般的な Webhook 受付プラグインのユースケースとして、以下が含まれます。

namespace の予約。

SR-IOV ネットワークデバイスプラグインにより管理されるカスタムネットワークリソースの
制限。

テイントでノードにスケジュールする必要のある Pod を特定できるようにする容認の定義。

Pod 優先順位クラスの検証。

注記

OpenShift Container Platform の最大デフォルトの webhook タイムアウト値は 13 秒であ
り、変更することはできません。

10.4. WEBHOOK 受付プラグインのタイプ

クラスター管理者は、API サーバーの受付チェーンで変更用の受付プラグインまたは検証用の受付プラ
グインを使用して Webhook サーバーを呼び出すことができます。

10.4.1. 受付プラグインの変更

変更用の受付プラグインは、受付プロセスの変更フェーズで起動します。これにより、リソースコンテ
ンツが永続化する前にそれらを変更できます。変更用の受付プラグインで呼び出し可能な Webhook の
一例として、Pod ノードセレクター機能があります。この機能は namespace でアノテーションを使用

第10章 受付プラグイン

75

1

2

3

4

5

6

7

8

9

10

11

してラベルセレクターを検索し、これを Pod 仕様に追加します。

変更用の受付プラグインの設定例:

変更用の受付プラグイン設定を指定します。

MutatingWebhookConfiguration オブジェクトの名前。<webhook_name> を適切な値に置き換
えます。

呼び出す Webhook の名前。<webhook_name> を適切な値に置き換えます。

Webhook サーバーに接続し、これを信頼し、データをこれに送信する方法に関する情報です。

フロントエンドサービスが作成される namespace。

フロントエンドサービスの名前。

受付要求に使用される Webhook URL。<webhook_url> を適切な値に置き換えます。

Webhook サーバーで使用されるサーバー証明書に署名する PEM でエンコーディングされた CA
証明書。<ca_signing_certificate> を base64 形式の適切な証明書に置き換えます。

API サーバーがこの Webhook 受付プラグインを使用する必要があるタイミングを定義するルー
ル。

API サーバーをトリガーしてこの Webhook 受付プラグインを呼び出す 1 つ以上の操作。使用でき
る値は、create、update、delete、または connect です。<operation> および <resource> を適
切な値に置き換えます。

Webhook サーバーが利用できない場合にポリシーを実行する方法を指定します。<policy> を

apiVersion: admissionregistration.k8s.io/v1beta1
kind: MutatingWebhookConfiguration 1
metadata:
 name: <webhook_name> 2
webhooks:
- name: <webhook_name> 3
 clientConfig: 4
 service:
 namespace: default 5
 name: kubernetes 6
 path: <webhook_url> 7
 caBundle: <ca_signing_certificate> 8
 rules: 9
 - operations: 10
 - <operation>
 apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - <resource>
 failurePolicy: <policy> 11
 sideEffects: None

OpenShift Container Platform 4.14 アーキテクチャー

76

1

2

3

4

5

6

重要

OpenShift Container Platform 4.14 では、ユーザーによって作成されるオブジェクト、ま
たは変更用の受付プラグインを使用するコントロールループは、初回の要求で設定され
る値が上書きされる場合などに予期しない結果を返す場合があるため、推奨されていま
せん。

10.4.2. 検証用の受付プラグイン

検証用の受付プラグインは、受付プロセスの検証フェーズ中に呼び出されます。このフェーズでは、特
定 API リソースの変更がない項目の実施を可能にし、リソースが再び変更されないようにすることがで
きます。Pod ノードセレクターは、すべての nodeSelector フィールドが namespace のノードセレク
ターの制限の制約を受けるようにするために、検証用の受付プラグインによって呼び出される
Webhook の一例です。

検証用の受付プラグイン設定のサンプル

検証用の受付プラグイン設定を指定します。

ValidatingWebhookConfiguration オブジェクトの名前。<webhook_name> を適切な値に置き換
えます。

呼び出す Webhook の名前。<webhook_name> を適切な値に置き換えます。

Webhook サーバーに接続し、これを信頼し、データをこれに送信する方法に関する情報です。

フロントエンドサービスが作成される namespace。

フロントエンドサービスの名前。

apiVersion: admissionregistration.k8s.io/v1beta1
kind: ValidatingWebhookConfiguration 1
metadata:
 name: <webhook_name> 2
webhooks:
- name: <webhook_name> 3
 clientConfig: 4
 service:
 namespace: default 5
 name: kubernetes 6
 path: <webhook_url> 7
 caBundle: <ca_signing_certificate> 8
 rules: 9
 - operations: 10
 - <operation>
 apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - <resource>
 failurePolicy: <policy> 11
 sideEffects: Unknown

第10章 受付プラグイン

77

7

8

9

10

11

1

受付要求に使用される Webhook URL。<webhook_url> を適切な値に置き換えます。

Webhook サーバーで使用されるサーバー証明書に署名する PEM でエンコーディングされた CA
証明書。<ca_signing_certificate> を base64 形式の適切な証明書に置き換えます。

API サーバーがこの Webhook 受付プラグインを使用する必要があるタイミングを定義するルー
ル。

API サーバーをトリガーしてこの Webhook 受付プラグインを呼び出す 1 つ以上の操作。使用でき
る値は、create、update、delete、または connect です。<operation> および <resource> を適
切な値に置き換えます。

Webhook サーバーが利用できない場合にポリシーを実行する方法を指定します。<policy> を
Ignore (失敗した場合に要求を無条件で受け入れる) または Fail (失敗した要求を拒否する) のいず
れかに置き換えます。Ignore を使用すると、すべてのクライアントで予測できない動作が生じる
可能性があります。

10.5. 動的受付の設定

この手順では、動的受付を設定するための手順の概要を説明します。受付チェーンの機能は、Webhook
サーバーを呼び出すように Webhook 受付プラグインを設定することで拡張されます。

Webhook サーバーは集約された API サーバーとしても設定されます。これにより、他の OpenShift
Container Platform コンポーネントは内部認証情報を使用して Webhook と通信でき、oc コマンドを使
用したテストを容易にします。さらに、これによりロールベースのアクセス制御 (RBAC) が Webhook
に対して可能となり、他の API サーバーからのトークン情報が Webhook に開示されないようになりま
す。

前提条件

クラスター管理者のアクセスを持つ OpenShift Container Platform アカウント。

OpenShift Container Platform CLI (oc) がインストールされている。

公開されている Webhook サーバーコンテナーイメージ。

手順

1. Webhook サーバーコンテナーイメージをビルドし、イメージレジストリーを使用してこれをク
ラスターで使用できるようにします。

2. ローカル CA キーおよび証明書を作成し、それらを使用して Webhook サーバーの証明書署名要
求 (CSR) に署名します。

3. Webhook リソースの新規プロジェクトを作成します。

Webhook サーバーで特定の名前が使用される可能性があることに注意してください。

4. rbac.yaml というファイルで集約された API サービスの RBAC ルールを定義します。

$ oc new-project my-webhook-namespace 1

apiVersion: v1

OpenShift Container Platform 4.14 アーキテクチャー

78

kind: List
items:

- apiVersion: rbac.authorization.k8s.io/v1 1
 kind: ClusterRoleBinding
 metadata:
 name: auth-delegator-my-webhook-namespace
 roleRef:
 kind: ClusterRole
 apiGroup: rbac.authorization.k8s.io
 name: system:auth-delegator
 subjects:
 - kind: ServiceAccount
 namespace: my-webhook-namespace
 name: server

- apiVersion: rbac.authorization.k8s.io/v1 2
 kind: ClusterRole
 metadata:
 annotations:
 name: system:openshift:online:my-webhook-server
 rules:
 - apiGroups:
 - online.openshift.io
 resources:
 - namespacereservations 3
 verbs:
 - get
 - list
 - watch

- apiVersion: rbac.authorization.k8s.io/v1 4
 kind: ClusterRole
 metadata:
 name: system:openshift:online:my-webhook-requester
 rules:
 - apiGroups:
 - admission.online.openshift.io
 resources:
 - namespacereservations 5
 verbs:
 - create

- apiVersion: rbac.authorization.k8s.io/v1 6
 kind: ClusterRoleBinding
 metadata:
 name: my-webhook-server-my-webhook-namespace
 roleRef:
 kind: ClusterRole
 apiGroup: rbac.authorization.k8s.io
 name: system:openshift:online:my-webhook-server
 subjects:
 - kind: ServiceAccount
 namespace: my-webhook-namespace
 name: server

第10章 受付プラグイン

79

1

2

3

認証および認可を Webhook サーバー API に委任します。

Webhook サーバーがクラスターリソースにアクセスできるようにします。

リソースを参照します。この例では、namespacereservations リソースを参照します。

- apiVersion: rbac.authorization.k8s.io/v1 7
 kind: RoleBinding
 metadata:
 namespace: kube-system
 name: extension-server-authentication-reader-my-webhook-namespace
 roleRef:
 kind: Role
 apiGroup: rbac.authorization.k8s.io
 name: extension-apiserver-authentication-reader
 subjects:
 - kind: ServiceAccount
 namespace: my-webhook-namespace
 name: server

- apiVersion: rbac.authorization.k8s.io/v1 8
 kind: ClusterRole
 metadata:
 name: my-cluster-role
 rules:
 - apiGroups:
 - admissionregistration.k8s.io
 resources:
 - validatingwebhookconfigurations
 - mutatingwebhookconfigurations
 verbs:
 - get
 - list
 - watch
 - apiGroups:
 - ""
 resources:
 - namespaces
 verbs:
 - get
 - list
 - watch

- apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRoleBinding
 metadata:
 name: my-cluster-role
 roleRef:
 kind: ClusterRole
 apiGroup: rbac.authorization.k8s.io
 name: my-cluster-role
 subjects:
 - kind: ServiceAccount
 namespace: my-webhook-namespace
 name: server

OpenShift Container Platform 4.14 アーキテクチャー

80

4

5

6

7

8

集約された API サーバーが受付レビューを作成できるようにします。

リソースを参照します。この例では、namespacereservations リソースを参照します。

Webhook サーバーがクラスターリソースにアクセスできるようにします。

認証を終了するために設定を読み取るためのロールバインディングです。

集約された API サーバーのデフォルトのクラスターロールおよびクラスターロールバイン
ディングです。

5. これらの RBAC ルールをクラスターに適用します。

6. namespace に Webhook をデーモンセットサーバーとしてデプロイするために使用される
webhook-daemonset.yaml という YAML ファイルを作成します。

$ oc auth reconcile -f rbac.yaml

apiVersion: apps/v1
kind: DaemonSet
metadata:
 namespace: my-webhook-namespace
 name: server
 labels:
 server: "true"
spec:
 selector:
 matchLabels:
 server: "true"
 template:
 metadata:
 name: server
 labels:
 server: "true"
 spec:
 serviceAccountName: server
 containers:
 - name: my-webhook-container 1
 image: <image_registry_username>/<image_path>:<tag> 2
 imagePullPolicy: IfNotPresent
 command:
 - <container_commands> 3
 ports:
 - containerPort: 8443 4
 volumeMounts:
 - mountPath: /var/serving-cert
 name: serving-cert
 readinessProbe:
 httpGet:
 path: /healthz
 port: 8443 5
 scheme: HTTPS
 volumes:
 - name: serving-cert

第10章 受付プラグイン

81

1

2

3

4

5

1

2

Webhook サーバーで特定のコンテナー名が使用される可能性があることに注意してくだ
さい。

Webhook サーバーコンテナーイメージを参照しま
す。<image_registry_username>/<image_path>:<tag> を適切な値に置き換えます。

Webhook コンテナー run コマンドを指定します。<container_commands> を適切な値に
置き換えます。

Pod 内のターゲットポートを定義します。この例では、ポート 8443 を使用します。

Readiness プローブによって使用されるポートを指定します。この例では、ポート 8443
を使用します。

7. デーモンセットをデプロイします。

8. サービス提供証明書の署名側のシークレットを webhook-secret.yaml という YAML ファイル
内に定義します。

署名された Webhook サーバー証明書を参照します。<server_certificate> を base64 形式
の適切な証明書に置き換えます。

署名された Webhook サーバーキーを参照します。<server_key> を base64 形式の適切な
キーに置き換えます。

9. シークレットを作成します。

10. サービスアカウントおよびサービスを、webhook-service.yaml という YAML ファイル内に定
義します。

 secret:
 defaultMode: 420
 secretName: server-serving-cert

$ oc apply -f webhook-daemonset.yaml

apiVersion: v1
kind: Secret
metadata:
 namespace: my-webhook-namespace
 name: server-serving-cert
type: kubernetes.io/tls
data:
 tls.crt: <server_certificate> 1
 tls.key: <server_key> 2

$ oc apply -f webhook-secret.yaml

apiVersion: v1
kind: List
items:

- apiVersion: v1

OpenShift Container Platform 4.14 アーキテクチャー

82

1

2

1

2

3

4

サービスがリッスンするポートを定義します。この例では、ポート 443 を使用します。

サービスが接続を転送する Pod 内のターゲットポートを定義します。この例では、ポート
8443 を使用します。

11. クラスターに Webhook サーバーを公開します。

12. Webhook サーバーのカスタムリソース定義を webhook-crd.yaml という名前のファイルに定
義します。

CustomResourceDefinition spec 値を反映させ、<plural>.<group> 形式を使用します。
この例では、namespacereservations リソースを使用します。

REST API グループ名。

REST API バージョン名。

許可される値は Namespaced または Cluster です。

 kind: ServiceAccount
 metadata:
 namespace: my-webhook-namespace
 name: server

- apiVersion: v1
 kind: Service
 metadata:
 namespace: my-webhook-namespace
 name: server
 annotations:
 service.beta.openshift.io/serving-cert-secret-name: server-serving-cert
 spec:
 selector:
 server: "true"
 ports:
 - port: 443 1
 targetPort: 8443 2

$ oc apply -f webhook-service.yaml

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 name: namespacereservations.online.openshift.io 1
spec:
 group: online.openshift.io 2
 version: v1alpha1 3
 scope: Cluster 4
 names:
 plural: namespacereservations 5
 singular: namespacereservation 6
 kind: NamespaceReservation 7

第10章 受付プラグイン

83

5

6

7

1

URL に含まれる複数形の名前。

oc 出力に表示されるエイリアス。

リソースマニフェストの参照。

13. カスタムリソース定義を適用します。

14. Webhook サーバーも、webhook-api-service.yaml というファイル内に集約された API サー
バーとして設定します。

Webhook サーバーで使用されるサーバー証明書に署名する PEM でエンコーディングされ
た CA 証明書。<ca_signing_certificate> を base64 形式の適切な証明書に置き換えま
す。

15. 集約された API サービスをデプロイします。

16. Webhook 受付プラグイン設定を webhook-config.yaml というファイル内に定義します。以下
の例では、検証用の受付プラグインを使用します。

$ oc apply -f webhook-crd.yaml

apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
 name: v1beta1.admission.online.openshift.io
spec:
 caBundle: <ca_signing_certificate> 1
 group: admission.online.openshift.io
 groupPriorityMinimum: 1000
 versionPriority: 15
 service:
 name: server
 namespace: my-webhook-namespace
 version: v1beta1

$ oc apply -f webhook-api-service.yaml

apiVersion: admissionregistration.k8s.io/v1beta1
kind: ValidatingWebhookConfiguration
metadata:
 name: namespacereservations.admission.online.openshift.io 1
webhooks:
- name: namespacereservations.admission.online.openshift.io 2
 clientConfig:
 service: 3
 namespace: default
 name: kubernetes
 path: /apis/admission.online.openshift.io/v1beta1/namespacereservations 4
 caBundle: <ca_signing_certificate> 5
 rules:
 - operations:

OpenShift Container Platform 4.14 アーキテクチャー

84

1

2

3

4

5

ValidatingWebhookConfiguration オブジェクトの名前。この例で
は、namespacereservations リソースを使用します。

呼び出す Webhook の名前。この例では、namespacereservations リソースを使用しま
す。

集約された API を使用して Webhook サーバーへのアクセスを有効にします。

受付要求に使用される Webhook URL。この例では、namespacereservation リソースを
使用します。

Webhook サーバーで使用されるサーバー証明書に署名する PEM でエンコーディングされ
た CA 証明書。<ca_signing_certificate> を base64 形式の適切な証明書に置き換えま
す。

17. Webhook をデプロイします。

18. Webhook が想定通りに機能していることを確認します。たとえば、特定の namespace を予約
するように動的受付を設定している場合は、これらの namespace の作成要求が拒否され、予約
されていない namespace の作成要求が正常に実行されることを確認します。

10.6. 関連情報

Limiting custom network resources managed by the SR-IOV network device plugin

Defining tolerations that enable taints to qualify which pods should be scheduled on a node

Pod priority class validation

 - CREATE
 apiGroups:
 - project.openshift.io
 apiVersions:
 - "*"
 resources:
 - projectrequests
 - operations:
 - CREATE
 apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - namespaces
 failurePolicy: Fail

$ oc apply -f webhook-config.yaml

第10章 受付プラグイン

85

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/networking/#configuring-sriov-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/nodes/#nodes-scheduler-taints-tolerations_dedicating_nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/nodes/#admin-guide-priority-preemption-names_nodes-pods-priority

	Table of Contents
	第1章 アーキテクチャーの概要
	1.1. OPENSHIFT CONTAINER PLATFORM アーキテクチャーの一般用語集
	1.2. インストールおよび更新について
	1.3. コントロールプレーンについて
	1.4. 開発者向けのコンテナー化されたアプリケーションについて
	1.5. RED HAT ENTERPRISE LINUX COREOS (RHCOS) と IGNITION について
	1.6. 受付プラグインについて

	第2章 OPENSHIFT CONTAINER PLATFORM アーキテクチャー
	2.1. OPENSHIFT CONTAINER PLATFORM の紹介
	2.1.1. Kubernetes について
	2.1.2. コンテナー化されたアプリケーションの利点
	2.1.2.1. オペレーティングシステムの利点
	2.1.2.2. デプロイメントとスケーリングの利点

	2.1.3. OpenShift Container Platform の概要
	2.1.3.1. カスタムオペレーティングシステム
	2.1.3.2. 単純化されたインストールおよび更新プロセス
	2.1.3.3. その他の主な機能
	2.1.3.4. OpenShift Container Platform のライフサイクル

	2.1.4. OpenShift Container Platform のインターネットアクセス

	第3章 インストールおよび更新
	3.1. OPENSHIFT CONTAINER PLATFORM のインストール
	3.1.1. インストールプログラムについて
	3.1.2. Red Hat Enterprise Linux CoreOS (RHCOS) について
	3.1.3. OpenShift Container Platform クラスターでサポートされるプラットフォーム
	3.1.4. インストールプロセス
	3.1.4.1. Assisted Installer を使用したインストールプロセス
	3.1.4.2. エージェントベースのインフラストラクチャーを使用したインストールプロセス
	3.1.4.3. installer-provisioned infrastructure でのインストールプロセス
	3.1.4.4. user-provisioned infrastructure を使用したインストールプロセス
	3.1.4.5. インストールプロセスの詳細

	3.1.5. インストールのスコープ

	3.2. OPENSHIFT UPDATE SERVICE について
	3.3. 管理外の OPERATOR のサポートポリシー
	3.4. 次のステップ

	第4章 RED HAT OPENSHIFT CLUSTER MANAGER
	4.1. RED HAT OPENSHIFT CLUSTER MANAGER へのアクセス
	4.2. 一般的なアクション
	4.3. クラスタータブ
	4.3.1. 概要タブ
	4.3.2. アクセス制御タブ
	4.3.3. アドオンタブ
	4.3.4. Insights Advisor タブ
	4.3.5. マシンプールタブ
	4.3.6. Support タブ
	4.3.7. Settings タブ

	4.4. 関連情報

	第5章 KUBERNETES OPERATOR のマルチクラスターエンジンについて
	5.1. OPENSHIFT CONTAINER PLATFORM 上のマルチクラスターエンジンを使用したクラスター管理
	5.2. RED HAT ADVANCED CLUSTER MANAGEMENT によるクラスター管理
	5.3. 関連情報

	第6章 コントロールプレーンアーキテクチャー
	6.1. MACHINE CONFIG POOL を使用したノード設定管理
	6.2. OPENSHIFT CONTAINER PLATFORM のマシンのロール
	6.2.1. コントロールプレーンとノードホストの互換性
	6.2.2. クラスターのワーカー
	6.2.3. クラスターコントロールプレーン

	6.3. OPENSHIFT CONTAINER PLATFORM の OPERATOR
	6.3.1. クラスター Operator
	6.3.2. アドオン Operator
	6.3.3. Platform Operator (テクノロジープレビュー)

	6.4. ETCD の概要
	6.4.1. etcd を使用する利点
	6.4.2. etcd の仕組み

	6.5. ホストされたコントロールプレーンの概要
	6.5.1. Hosted Control Plane のアーキテクチャー
	6.5.2. Hosted Control Plane の利点
	6.5.3. Hosted Control Plane の一般的な概念とペルソナの用語集
	6.5.3.1. 概念
	6.5.3.2. ペルソナ

	6.5.4. Hosted Control Plane のバージョン管理

	第7章 NVIDIA GPU アーキテクチャーの概要
	7.1. NVIDIA GPU の前提条件
	7.2. NVIDIA GPU の有効化
	7.2.1. GPU とベアメタル
	7.2.2. GPU と仮想化
	7.2.3. GPU と vSphere
	7.2.4. GPU および Red Hat KVM
	7.2.5. GPU と CSP
	7.2.6. GPU と Red Hat Device Edge

	7.3. GPU の共有方法
	7.3.1. CUDA ストリーム
	7.3.2. タイムスライス
	7.3.3. CUDA マルチプロセスサービス
	7.3.4. マルチインスタンス GPU
	7.3.5. vGPU による仮想化

	7.4. OPENSHIFT CONTAINER PLATFORM の NVIDIA GPU 機能

	第8章 OPENSHIFT CONTAINER PLATFORM の開発について
	8.1. コンテナー化されたアプリケーションの開発について
	8.2. 単純なコンテナーのビルド
	8.2.1. コンテナービルドツールのオプション
	8.2.2. ベースイメージのオプション
	8.2.3. レジストリーオプション

	8.3. OPENSHIFT CONTAINER PLATFORM 用の KUBERNETES マニフェストの作成
	8.3.1. Kubernetes Pod およびサービスについて
	8.3.2. アプリケーションのタイプ
	8.3.3. 利用可能なサポートコンポーネント
	8.3.4. マニフェストの適用
	8.3.5. 次のステップ

	8.4. OPERATOR 向けの開発

	第9章 RED HAT ENTERPRISE LINUX COREOS (RHCOS)
	9.1. RHCOS について
	9.1.1. RHCOS の主な機能
	9.1.2. RHCOS の設定方法の選択
	9.1.3. RHCOS のデプロイ方法の選択
	9.1.4. Ignition について
	9.1.4.1. Ignition の仕組み
	9.1.4.2. Ignition の順序

	9.2. IGNITION 設定ファイルの表示
	9.3. インストール後の IGNITION 設定の変更

	第10章 受付プラグイン
	10.1. 受付プラグインについて
	10.2. デフォルトの受付プラグイン
	10.3. WEBHOOK 受付プラグイン
	10.4. WEBHOOK 受付プラグインのタイプ
	10.4.1. 受付プラグインの変更
	10.4.2. 検証用の受付プラグイン

	10.5. 動的受付の設定
	10.6. 関連情報

