
Red Hat OpenShift Cluster
Observability Operator 1-latest

Red Hat OpenShift Cluster Observability
Operator について

Cluster Observability Operator の概要

Last Updated: 2025-12-07

Red Hat OpenShift Cluster Observability Operator 1-latest Red Hat
OpenShift Cluster Observability Operator について

Cluster Observability Operator の概要

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

このドキュメントでは、Cluster Observability Operator の機能の概要を説明します。これには、リ
リースノートとサポート情報も含まれています。

. .

Table of Contents

第1章 CLUSTER OBSERVABILITY OPERATOR の概要
1.1. デフォルトのモニタリングスタックと比較した COO
1.2. COO を使用する主な利点
1.3. COO のターゲットユーザー
1.4. SERVER-SIDE APPLY を使用した PROMETHEUS リソースのカスタマイズ

3
3
4
5
5

Table of Contents

1

Red Hat OpenShift Cluster Observability Operator 1-latest Red Hat OpenShift Cluster Observability Operator について

2

第1章 CLUSTER OBSERVABILITY OPERATOR の概要
Cluster Observability Operator (COO) は、高度にカスタマイズ可能なモニタリングスタックを作成
し、管理するために設計された OpenShift Container Platform のオプションのコンポーネントです。こ
れにより、クラスター管理者はモニタリングの設定と管理を大幅に自動化でき、デフォルトの
OpenShift Container Platform のモニタリングシステムと比べて、各 namespace に対するより詳細で
カスタマイズされたビューを提供できます。

COO は、次のモニタリングコンポーネントをデプロイします。

Prometheus: リモート書き込みを使用してメトリクスを外部エンドポイントに送信できる高可
用性 Prometheus インスタンス。

Thanos Querier (オプション): Prometheus インスタンスを中央の場所からクエリーできるよう
にします。

Alertmanager (オプション): さまざまなサービスのアラート設定機能を提供します。

UI plugins (オプション): モニタリング、ロギング、分散トレーシング、およびトラブルシュー
ティング用にプラグインで可観測性機能を強化します。

Korrel8r (オプション): オープンソースの Korrel8r プロジェクトが提供する可観測性シグナルの
相関を提供します。

Incident detection (オプション): アラートバーストの根本原因を特定するために、関連するア
ラートをインシデントにグループ化します。

1.1. デフォルトのモニタリングスタックと比較した COO

COO コンポーネントは、Cluster Monitoring Operator (CMO) でデプロイおよび管理されるデフォルト
のクラスター内モニタリングスタックとは独立して機能します。2 つの Operator でデプロイされたモ
ニタリングスタックは競合しません。CMO でデプロイされたデフォルトのプラットフォームモニタリ
ングコンポーネントに加え、COO モニタリングスタックを使用できます。

COO とデフォルトのクラスター内のモニタリングスタックの主な相違点を次の表に示します。

機能 COO デフォルトのモニタリングスタック

スコープお
よびインテ
グレーショ
ン

クラスターやワークロードのパフォーマンス
を含め、エンタープライズレベルのニーズに
対応した包括的なモニタリングと分析を提供
します。

ただし、OpenShift Container Platform との
直接統合がなく、通常はダッシュボードに外
部 Grafana インスタンスが必要です。

クラスター内のコアコンポーネント (API
サーバーや etcd など) および OpenShift 固
有の namespace に限定されます。

OpenShift Container Platform へのディープ
インテグレーションがあり、コンソールの
ダッシュボードやアラート管理が含まれてい
ます。

第1章 CLUSTER OBSERVABILITY OPERATOR の概要

3

https://docs.redhat.com/en/documentation/red_hat_openshift_cluster_observability_operator/1-latest/html-single/ui_plugins_for_red_hat_openshift_cluster_observability_operator/#observability-ui-plugins-overview
https://docs.redhat.com/en/documentation/red_hat_openshift_cluster_observability_operator/1-latest/html-single/ui_plugins_for_red_hat_openshift_cluster_observability_operator/#coo-incident-detection-overview_monitoring-ui-plugin

設定とカス
タマイズ

データ保持期間、ストレージ方法、収集した
データタイプなど、より広範な設定オプショ
ン。

COO は、カスタマイズを強化する Server-
Side Apply (SSA) を使用して、カスタムリ
ソース内にある 1 つの設定可能フィールドの
所有権をユーザーに委譲できます。

カスタマイズオプションが制限された組み込
み設定。

データの保
持とスト
レージ

長期のデータ保持。履歴分析と容量計画をサ
ポートします。

短期間のデータ保持。短期間のモニタリング
とリアルタイム検出に焦点を当てています。

機能 COO デフォルトのモニタリングスタック

1.2. COO を使用する主な利点

COO のデプロイは、デフォルトのモニタリングスタックを使用して達成することが困難なモニタリン
グ要件に対応する際に役立ちます。

1.2.1. 拡張性

COO でデプロイされたモニタリングスタックにさらにメトリクスを追加できますが、これをコ
アプラットフォームモニタリングで行った場合はサポートされません。

フェデレーションを介して、コアプラットフォームのモニタリングからクラスター固有のメト
リクスを受け取ることができます。

COO は、トレンド予測や異常検出などの高度なモニタリングシナリオをサポートします。

1.2.2. マルチテナンシーのサポート

ユーザー namespace ごとにモニタリングスタックを作成できます。

namespace ごとに複数のスタックをデプロイすることや、複数の namespace に単一のスタッ
クをデプロイすることができます。

COO は、異なるチームのアラートとレシーバーの独立した設定を可能にします。

1.2.3. スケーラビリティー

単一クラスターで複数のモニタリングスタックをサポートします。

手動シャーディングを使用した大規模なクラスターのモニタリングを可能にします。

メトリクスが単一の Prometheus インスタンスの機能を超えるケースに対応します。

1.2.4. 柔軟性

OpenShift Container Platform リリースサイクルから切り離されます。

より速いリリースサイクルを実現し、変化する要件へ迅速に対応します。

Red Hat OpenShift Cluster Observability Operator 1-latest Red Hat OpenShift Cluster Observability Operator について

4

アラートルールを独立して管理します。

1.3. COO のターゲットユーザー

COO は、特に複雑なマルチテナントエンタープライズ環境で、高いカスタマイズ性、スケーラビリ
ティー、および長期のデータ保持が必要なユーザーに適しています。

1.3.1. エンタープライズレベルのユーザーおよび管理者

エンタープライズユーザーには、高度なパフォーマンス分析、長期のデータ保持、トレンド予測、履歴
分析など、OpenShift Container Platform クラスターの詳細なモニタリング機能が必要です。これらの
機能により、企業はリソースの使用状況をより深く理解し、パフォーマンスの問題を防ぎ、リソースの
割り当てを最適化できます。

1.3.2. マルチテナント環境でのオペレーションチーム

マルチテナンシーのサポートにより、COO はさまざまなチームがプロジェクトやアプリケーションの
モニタリングビューを設定できるため、柔軟なモニタリングニーズがあるチームに適しています。

1.3.3. 開発およびオペレーションチーム

COO は、詳細なトラブルシューティング、異常検出、開発および運用時のパフォーマンス調整のため
に、きめ細かなモニタリングとカスタマイズ可能な可観測性ビューを提供します。

1.4. SERVER-SIDE APPLY を使用した PROMETHEUS リソースのカスタマ
イズ

Server-Side Apply は、Kubernetes リソースの共同管理を可能にする機能です。コントロールプレーン
は、さまざまなユーザーおよびコントローラーが Kubernetes オブジェクト内のフィールドをどのよう
に管理するかを追跡します。フィールドマネージャーの概念を導入し、フィールドの所有権を追跡しま
す。この集中制御により、競合検出および解決が行われ、意図しない上書きのリスクが軽減されます。

Client-Side Apply と比較すると、より宣言的であり、最後に適用された状態ではなく、フィールド管理
を追跡します。

Server-Side Apply

リソースの状態を更新することで、削除や再作成を必要とせずに宣言型の設定を管理します。

フィールド管理

ユーザーは、他のフィールドに影響を与えずに、更新するリソースのフィールドを指定できます。

管理対象フィールド

Kubernetes は、メタデータ内の managedFields フィールドでオブジェクトの各フィールドを管理
するユーザーに関するメタデータを保存します。

Conflicts

複数のマネージャーが同じフィールドを変更しようとすると、競合が発生します。アプライヤー
は、上書きするか、制御を放棄するか、または管理を共有するかを選択できます。

マージストラテジー

Server-Side Apply は、管理しているアクターに基づいてフィールドをマージします。

手順

第1章 CLUSTER OBSERVABILITY OPERATOR の概要

5

1. 次の設定を使用して MonitoringStack リソースを追加します。

MonitoringStack オブジェクトの例

2. sample-monitoring-stack という名前の Prometheus リソースが、coo-demo namespace に生
成されます。次のコマンドを実行して、生成された Prometheus リソースの管理対象フィール
ドを取得します。

出力例

apiVersion: monitoring.rhobs/v1alpha1
kind: MonitoringStack
metadata:
 labels:
 coo: example
 name: sample-monitoring-stack
 namespace: coo-demo
spec:
 logLevel: debug
 retention: 1d
 resourceSelector:
 matchLabels:
 app: demo

$ oc -n coo-demo get Prometheus.monitoring.rhobs -oyaml --show-managed-fields

managedFields:
- apiVersion: monitoring.rhobs/v1
 fieldsType: FieldsV1
 fieldsV1:
 f:metadata:
 f:labels:
 f:app.kubernetes.io/managed-by: {}
 f:app.kubernetes.io/name: {}
 f:app.kubernetes.io/part-of: {}
 f:ownerReferences:
 k:{"uid":"81da0d9a-61aa-4df3-affc-71015bcbde5a"}: {}
 f:spec:
 f:additionalScrapeConfigs: {}
 f:affinity:
 f:podAntiAffinity:
 f:requiredDuringSchedulingIgnoredDuringExecution: {}
 f:alerting:
 f:alertmanagers: {}
 f:arbitraryFSAccessThroughSMs: {}
 f:logLevel: {}
 f:podMetadata:
 f:labels:
 f:app.kubernetes.io/component: {}
 f:app.kubernetes.io/part-of: {}
 f:podMonitorSelector: {}
 f:replicas: {}
 f:resources:
 f:limits:
 f:cpu: {}

Red Hat OpenShift Cluster Observability Operator 1-latest Red Hat OpenShift Cluster Observability Operator について

6

 f:memory: {}
 f:requests:
 f:cpu: {}
 f:memory: {}
 f:retention: {}
 f:ruleSelector: {}
 f:rules:
 f:alert: {}
 f:securityContext:
 f:fsGroup: {}
 f:runAsNonRoot: {}
 f:runAsUser: {}
 f:serviceAccountName: {}
 f:serviceMonitorSelector: {}
 f:thanos:
 f:baseImage: {}
 f:resources: {}
 f:version: {}
 f:tsdb: {}
 manager: observability-operator
 operation: Apply
- apiVersion: monitoring.rhobs/v1
 fieldsType: FieldsV1
 fieldsV1:
 f:status:
 .: {}
 f:availableReplicas: {}
 f:conditions:
 .: {}
 k:{"type":"Available"}:
 .: {}
 f:lastTransitionTime: {}
 f:observedGeneration: {}
 f:status: {}
 f:type: {}
 k:{"type":"Reconciled"}:
 .: {}
 f:lastTransitionTime: {}
 f:observedGeneration: {}
 f:status: {}
 f:type: {}
 f:paused: {}
 f:replicas: {}
 f:shardStatuses:
 .: {}
 k:{"shardID":"0"}:
 .: {}
 f:availableReplicas: {}
 f:replicas: {}
 f:shardID: {}
 f:unavailableReplicas: {}
 f:updatedReplicas: {}
 f:unavailableReplicas: {}
 f:updatedReplicas: {}

第1章 CLUSTER OBSERVABILITY OPERATOR の概要

7

3. metadata.managedFields 値を確認し、metadata と spec の一部のフィールドが
MonitoringStack リソースによって管理されていることを確認します。

4. MonitoringStack リソースで制御されないフィールドを変更します。

a. MonitoringStack リソースによって設定されていないフィールドである
spec.enforcedSampleLimit を変更します。prom-spec-edited.yaml ファイルを作成しま
す。

prom-spec-edited.yaml

b. 以下のコマンドを実行して YAML を適用します。

注記

--server-side フラグを使用する必要があります。

c. 変更された Prometheus オブジェクトを取得し、spec.enforcedSampleLimit を持つ
managedFields に、もう 1 つセクションがあることに注意してください。

出力例

 manager: PrometheusOperator
 operation: Update
 subresource: status

apiVersion: monitoring.rhobs/v1
kind: Prometheus
metadata:
 name: sample-monitoring-stack
 namespace: coo-demo
spec:
 enforcedSampleLimit: 1000

$ oc apply -f ./prom-spec-edited.yaml --server-side

$ oc get prometheus -n coo-demo

managedFields: 1
- apiVersion: monitoring.rhobs/v1
 fieldsType: FieldsV1
 fieldsV1:
 f:metadata:
 f:labels:
 f:app.kubernetes.io/managed-by: {}
 f:app.kubernetes.io/name: {}
 f:app.kubernetes.io/part-of: {}
 f:spec:
 f:enforcedSampleLimit: {} 2
 manager: kubectl
 operation: Apply

Red Hat OpenShift Cluster Observability Operator 1-latest Red Hat OpenShift Cluster Observability Operator について

8

1

2

1

managedFields

spec.enforcedSampleLimit

5. MonitoringStack リソースによって管理されるフィールドを変更します。

a. 次の YAML 設定を使用して、MonitoringStack リソースによって管理されるフィールドで
ある spec.LogLevel を変更します。

spec.logLevel が追加されました。

b. 以下のコマンドを実行して YAML を適用します。

出力例

c. フィールド spec.logLevel は observability-operator によってすでに管理されているた
め、Server-Side Apply を使用して変更できないことに注意してください。

d. この変更を強制するには、--force-conflicts フラグを使用します。

出力例

--force-conflicts フラグの場合、このフィールドは強制的に変更できますが、同じフィー

changing the logLevel from debug to info
apiVersion: monitoring.rhobs/v1
kind: Prometheus
metadata:
 name: sample-monitoring-stack
 namespace: coo-demo
spec:
 logLevel: info 1

$ oc apply -f ./prom-spec-edited.yaml --server-side

error: Apply failed with 1 conflict: conflict with "observability-operator": .spec.logLevel
Please review the fields above--they currently have other managers. Here
are the ways you can resolve this warning:
* If you intend to manage all of these fields, please re-run the apply
 command with the `--force-conflicts` flag.
* If you do not intend to manage all of the fields, please edit your
 manifest to remove references to the fields that should keep their
 current managers.
* You may co-own fields by updating your manifest to match the existing
 value; in this case, you'll become the manager if the other manager(s)
 stop managing the field (remove it from their configuration).
See https://kubernetes.io/docs/reference/using-api/server-side-apply/#conflicts

$ oc apply -f ./prom-spec-edited.yaml --server-side --force-conflicts

prometheus.monitoring.rhobs/sample-monitoring-stack serverside-applied

第1章 CLUSTER OBSERVABILITY OPERATOR の概要

9

--force-conflicts フラグの場合、このフィールドは強制的に変更できますが、同じフィー
ルドが MonitoringStack リソースでも管理されるため、Observability Operator は変更を
検出し、MonitoringStack リソースによって設定された値に戻します。

注記

MonitoringStack リソースによって生成される一部の Prometheus フィール
ドは、logLevel など、MonitoringStack spec スタンザのフィールドの影響
を受けます。これらは、MonitoringStack spec を変更することで変更でき
ます。

e. Prometheus オブジェクトの logLevel を変更するには、次の YAML を適用して
MonitoringStack リソースを変更します。

f. 変更が実行されたことを確認するには、次のコマンドを実行してログレベルをクエリーし
ます。

出力例

注記

1. Operator の新規バージョンが、以前にアクターによって生成および制御される
フィールドを生成する場合、アクターによって設定された値はオーバーライドさ
れます。
たとえば、MonitoringStack リソースによって生成されないフィールド
enforcedSampleLimit を管理しているとします。Observability Operator がアッ
プグレードされ、新しいバージョンの Operator が enforcedSampleLimit の値
を生成すると、以前に設定した値がオーバーライドされます。

2. MonitoringStack リソースによって生成された Prometheus オブジェクトに
は、モニタリングスタックによって明示的に設定されていないフィールドが含ま
れる場合があります。これらのフィールドは、デフォルト値があるために表示さ
れます。

関連情報

Server-Side Apply (SSA) に関する Kubernetes ドキュメント

apiVersion: monitoring.rhobs/v1alpha1
kind: MonitoringStack
metadata:
 name: sample-monitoring-stack
 labels:
 coo: example
spec:
 logLevel: info

$ oc -n coo-demo get Prometheus.monitoring.rhobs -
o=jsonpath='{.items[0].spec.logLevel}'

info

Red Hat OpenShift Cluster Observability Operator 1-latest Red Hat OpenShift Cluster Observability Operator について

10

https://kubernetes.io/docs/reference/using-api/server-side-apply/

第1章 CLUSTER OBSERVABILITY OPERATOR の概要

11

	Table of Contents
	第1章 CLUSTER OBSERVABILITY OPERATOR の概要
	1.1. デフォルトのモニタリングスタックと比較した COO
	1.2. COO を使用する主な利点
	1.2.1. 拡張性
	1.2.2. マルチテナンシーのサポート
	1.2.3. スケーラビリティー
	1.2.4. 柔軟性

	1.3. COO のターゲットユーザー
	1.3.1. エンタープライズレベルのユーザーおよび管理者
	1.3.2. マルチテナント環境でのオペレーションチーム
	1.3.3. 開発およびオペレーションチーム

	1.4. SERVER-SIDE APPLY を使用した PROMETHEUS リソースのカスタマイズ

