
OpenShift Container Platform 4.18

Network Observability

OpenShift Container Platform での Network Observability Operator の設定と使用

Last Updated: 2025-12-13

OpenShift Container Platform 4.18 Network Observability

OpenShift Container Platform での Network Observability Operator の設定と使用

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Network Observability Operator を使用して、OpenShift Container Platform クラスターのネット
ワークトラフィックフローを監視および分析します。

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

第1章 NETWORK OBSERVABILITY OPERATOR リリースノート
1.1. NETWORK OBSERVABILITY OPERATOR 1.10.1 アドバイザリー
1.2. NETWORK OBSERVABILITY OPERATOR 1.10.1 CVE
1.3. NETWORK OBSERVABILITY OPERATOR 1.10.1 の修正された問題
1.4. NETWORK OBSERVABILITY OPERATOR 1.10 アドバイザリー
1.5. NETWORK OBSERVABILITY OPERATOR 1.10 の新機能と機能拡張
1.6. NETWORK OBSERVABILITY OPERATOR 1.10 のテクノロジープレビュー機能
1.7. NETWORK OBSERVABILITY OPERATOR 1.10 で削除された機能
1.8. NETWORK OBSERVABILITY OPERATOR 1.10 の既知の問題
1.9. NETWORK OBSERVABILITY OPERATOR 1.10 で修正された問題

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ
2.1. NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

第3章 NETWORK OBSERVABILITY について
3.1. NETWORK OBSERVABILITY OPERATOR
3.2. NETWORK OBSERVABILITY OPERATOR のオプションの依存関係
3.3. OPENSHIFT CONTAINER PLATFORM コンソールの統合
3.4. NETWORK OBSERVABILITY CLI

第4章 NETWORK OBSERVABILITY OPERATOR のインストール
4.1. LOKI を使用しない NETWORK OBSERVABILITY
4.2. LOKI OPERATOR のインストール
4.3. NETWORK OBSERVABILITY OPERATOR のインストール
4.4. NETWORK OBSERVABILITY でのマルチテナンシーの有効化
4.5. FLOW COLLECTOR 設定に関する重要な考慮事項
4.6. KAFKA のインストール (オプション)
4.7. NETWORK OBSERVABILITY OPERATOR のアンインストール

第5章 OPENSHIFT CONTAINER PLATFORM の NETWORK OBSERVABILITY OPERATOR
5.1. 状況の表示
5.2. NETWORK OBSERVABLITY OPERATOR のアーキテクチャー
5.3. NETWORK OBSERVABILITY OPERATOR のステータスと設定の表示

第6章 NETWORK OBSERVABILITY OPERATOR の設定
6.1. FLOWCOLLECTOR リソースの表示
6.2. KAFKA を使用した FLOW COLLECTOR リソースの設定
6.3. エンリッチされたネットワークフローデータのエクスポート
6.4. FLOW COLLECTOR リソースの更新
6.5. ネットワークフロー取り込み時のフィルタリング
6.6. クイックフィルターの設定
6.7. リソース管理およびパフォーマンスに関する考慮事項

第7章 ネットワークポリシー
7.1. FLOWCOLLECTOR カスタムリソースを使用したネットワークポリシーの設定

第8章 ネットワークトラフィックの観測
8.1. OVERVIEW ビューからのネットワークトラフィックの観測
8.2. TRAFFIC FLOWS ビューからのネットワークトラフィックの観測
8.3. トポロジービューからのネットワークトラフィックの観察
8.4. ネットワークトラフィックのフィルタリング

第9章 NETWORK OBSERVABILITY アラート

5
5
5
5
6
6
7
7
8
9

11
11

41
41
41
41

43

44
44
45
50
51
52
54
54

56
56
57
59

60
60
62
63
65
65
67
68

72
72

74
74
80
95
96

98

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

9.1. NETWORK OBSERVABILITY アラートについて
9.2. NETWORK OBSERVABILITY のアラート (テクノロジープレビュー) の有効化

第10章 ダッシュボードとアラートでのメトリクスの使用
10.1. NETWORK OBSERVABILITY メトリクスのダッシュボードの表示
10.2. NETWORK OBSERVABILITY メトリクス
10.3. アラートの作成
10.4. カスタムメトリクス
10.5. FLOWMETRIC API を使用したカスタムメトリクスの設定
10.6. TRAFFIC FLOWS テーブルのネストされたフィールドまたは配列フィールドからメトリクスを作成する
10.7. FLOWMETRIC API を使用したカスタムグラフの設定
10.8. FLOWMETRIC API と TCP フラグを使用した SYN フラッディングの検出

第11章 NETWORK OBSERVABILITY OPERATOR の監視
11.1. 健全性ダッシュボード
11.2. 健全性アラート
11.3. 健全性情報の表示
11.4. NETOBSERV ダッシュボードの LOKI レート制限アラートの作成
11.5. EBPF エージェントアラートの使用

第12章 リソースのスケジューリング
12.1. 特定のノードにおける NETWORK OBSERVABILITY デプロイメント

第13章 セカンダリーネットワーク
13.1. 前提条件
13.2. SR-IOV インターフェイストラフィックの監視の設定
13.3. 仮想マシン (VM) のセカンダリーネットワークインターフェイスを NETWORK OBSERVABILITY 用に設定す
る

第14章 NETWORK OBSERVABILITY CLI
14.1. NETWORK OBSERVABILITY CLI のインストール
14.2. NETWORK OBSERVABILITY CLI の使用
14.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) リファレンス

第15章 FLOWCOLLECTOR API リファレンス
15.1. FLOWCOLLECTOR API 仕様

第16章 FLOWMETRIC 設定パラメーター
16.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHA1]

第17章 ネットワークフロー形式のリファレンス
17.1. ネットワークフロー形式のリファレンス

第18章 NETWORK OBSERVABILITY のトラブルシューティング
18.1. MUST-GATHER ツールの使用
18.2. OPENSHIFT CONTAINER PLATFORM コンソールでのネットワークトラフィックメニューエントリーの設
定
18.3. KAFKA をインストールした後、FLOWLOGS-PIPELINE がネットワークフローを消費しない
18.4. BR-INT インターフェイスと BR-EX インターフェイスの両方からのネットワークフローが表示されない

18.5. NETWORK OBSERVABILITY コントローラーマネージャー POD のメモリーが不足する
18.6. LOKI へのカスタムクエリーの実行
18.7. LOKI RESOURCEEXHAUSTED エラーのトラブルシューティング
18.8. LOKI の EMPTY RING エラー
18.9. リソースのトラブルシューティング
18.10. LOKISTACK レート制限エラー

98
99

106
106
106
108
109
109

111
113
115

119
119
119
119

120
121

123
123

125
125
125

126

129
129
130
134

142
142

223
223

231
231

238
238

238
240

240
241
241
242
243
243
243

OpenShift Container Platform 4.18 Network Observability

2

18.11. 大きなクエリーを実行すると LOKI エラーが発生する 244

Table of Contents

3

OpenShift Container Platform 4.18 Network Observability

4

第1章 NETWORK OBSERVABILITY OPERATOR リリースノート
Network Observability Operator を使用すると、管理者は OpenShift Container Platform クラスターの
ネットワークトラフィックフローを観察および分析できます。

これらのリリースノートは、OpenShift Container Platform での Network Observability Operator の開
発を追跡します。

Network Observability Operator の概要については、Network Observability について を参照してくださ
い。

1.1. NETWORK OBSERVABILITY OPERATOR 1.10.1 アドバイザリー

Network Observability Operator 1.10.1 リリースに関するアドバイザリーを確認できます。

RHEA-2025:22761 Network Observability Operator 1.10.1

1.2. NETWORK OBSERVABILITY OPERATOR 1.10.1 CVE

Network Observability Operator 1.10.1 リリースの CVE を確認できます。

CVE-2025-47907

1.3. NETWORK OBSERVABILITY OPERATOR 1.10.1 の修正された問題

Network Observability Operator 1.10.1 リリースには、パフォーマンスとユーザーエクスペリエンスを向
上させるいくつかの修正された問題が含まれています。

15 ノードでのクラスターで直接生成される警告

この更新の前は、大規模なクラスターで Direct デプロイメントモデルを使用する場合の推奨事項
は、ドキュメントでのみ利用できていました。
このリリースでは、クラスター上で Direct デプロイメントモードが使用された場合に、Network
Observability Operator が警告を生成するようになりました。

NETOBSERV-2460

OpenShiftSDN でネットワークポリシーのデプロイメントが無効化されている

この更新の前は、OpenShift SDN がクラスターネットワークプラグインであった場
合、FlowCollector ネットワークポリシーを有効にすると、ネットワーク可観測性 Pod 間の通信が
中断されていました。この問題は、サポートされているデフォルトのネットワークプラグインであ
る OVN-Kubernetes では発生しません。
今回のリリースにより、Network Observability Operator は、OpenShift SDN の検出時にネットワー
クポリシーのデプロイを試みなくなりました。代わりに警告が表示されます。さらに、ネットワー
クポリシーを有効にするためのデフォルト値が変更され、OVN-Kubernetes がクラスターネット
ワークプラグインとして検出された場合にのみ、デフォルトで有効になりました。

NETOBSERV-2450

サブネットラベル文字の検証の追加

今回の更新以前は、サブネットラベル "name" 設定で使用可能な文字に制限がなく、ユーザーはス
ペースまたは特殊文字を含むテキストを入力できました。これは、ユーザーがフィルターを適用し
ようとしたときに Web コンソールプラグインでエラーを生成し、サブネットラベルのフィルターア
イコンをクリックしても失敗することがよくあります。

第1章 NETWORK OBSERVABILITY OPERATOR リリースノート

5

https://access.redhat.com/errata/RHEA-2025:22761
https://access.redhat.com/security/cve/cve-2025-47907
https://issues.redhat.com/browse/NETOBSERV-2460
https://issues.redhat.com/browse/NETOBSERV-2450

今回のリリースにより、設定されたサブネットラベル名は、FlowCollector カスタムリソースで設
定された直後に検証されるようになりました。検証により、名前に英数字(:、_、および)のみが含
まれることが保証さ れ ます。その結果、Web コンソールプラグインからのサブネットラベルのフィ
ルタリングが期待どおりに機能するようになりました。

NETOBSERV-2438

実行ごとに一意の一時ディレクトリーを使用します。

今回の更新以前は、Network Observability CLI が現在の作業ディレクトリーに 1 つの一時(tmp)ディ
レクトリーを作成または再利用していました。これにより、別の実行間で競合やデータの破損が発
生する可能性があります。
このリリースでは、Network Observability CLI は実行ごとに一意の一時ディレクトリーを作成する
ようになり、競合の可能性を防ぎ、ファイル管理のハイジーンを改善できるようになりました。

NETOBSERV-2481

1.4. NETWORK OBSERVABILITY OPERATOR 1.10 アドバイザリー

Network Observability Operator 1.10 に関するアドバイザリーをご確認ください。

RHEA-2025:19153 Network Observability Operator 1.10

1.5. NETWORK OBSERVABILITY OPERATOR 1.10 の新機能と機能拡張

Network Observability Operator 1.10 リリースでは、セキュリティーが強化され、パフォーマンスが向上
し、ネットワークフローの管理を改善するための新しい CLI UI ツールが導入されています。

1.5.1. ネットワークポリシーの更新

Network Observability Operator は、Pod トラフィックを制御するために、Ingress と Egress の両方の
ネットワークポリシーの設定をサポートするようになりました。この機能拡張によりセキュリティーが
向上します。

デフォルトで、spec.NetworkPolicy.enable 仕様が true に設定されるようになりました。そのため、
Loki または Kafka を使用する場合は、Loki Operator と Kafka インスタンスを専用の namespace にデ
プロイすることを推奨します。これにより、ネットワークポリシーを正しく設定し、すべてのコンポー
ネント間の通信を許可することが可能になります。

1.5.2. Network Observability Operator CLI UI の更新

このリリースでは、Network Observability Operator CLI (oc netobserv) ユーザーインターフェイス
(UI) に次の新機能と更新が追加されました。

テーブルビューの機能拡張

カスタマイズ可能な列: Manage Columns をクリックして、表示する列を選択し、ニーズに合
わせてテーブルをカスタマイズできます。

スマートフィルタリング: ライブフィルターに自動提案機能が組み込まれ、適切なキーと値を選
択しやすくなりました。

パケットプレビュー: パケットをキャプチャーするときに、行をクリックして pcap の内容を直
接調べることができます。

OpenShift Container Platform 4.18 Network Observability

6

https://issues.redhat.com/browse/NETOBSERV-2438
https://issues.redhat.com/browse/NETOBSERV-2481
https://access.redhat.com/errata/RHEA-2025:19153

ターミナルベースの折れ線グラフの機能拡張

メトリクスの視覚化: リアルタイムグラフが CLI で直接レンダリングされます。

パネルの選択: 事前定義済みのビューから選択するか、Manage Panels ポップアップメニュー
を使用してビューをカスタマイズし、特定のメトリクスのグラフを選択的に表示できます。

1.5.3. Network Observability コンソールの強化

Network Observability コンソールプラグインに、FlowCollector カスタムリソース (CR) を設定するた
めの新しいビューが追加されています。このビューから、次のタスクを完了できます。

FlowCollector CR を設定します。

リソースフットプリントを計算します。

設定の警告やメトリクスのカーディナリティーが高いなどの問題に対する可視性を高めます。

1.5.4. パフォーマンスの向上

Network Observability Operator 1.10 では、特に大規模なクラスターで顕著に表れる Operator のパ
フォーマンスとメモリーフットプリントが改善されました。

1.6. NETWORK OBSERVABILITY OPERATOR 1.10 のテクノロジープレ
ビュー機能

1.6.1. Network Observability Operator カスタムアラート (テクノロジープレビュー)

このリリースでは、新しいアラート機能とカスタムアラート設定が導入されています。これらの機能は
テクノロジープレビュー機能であり、明示的に有効にする必要があります。

新しいアラートを表示するには、OpenShift Container Platform Web コンソールで、Observe →
Alerting → Alerting rules をクリックします。

1.6.2. Network Observability Operator Network Health ダッシュボード (テクノロジー
プレビュー)

Network Observability Operator で、テクノロジープレビューのアラート機能を有効にする
と、Observe をクリックして OpenShift Container Platform Web コンソールで新しい Network Health
ダッシュボードを表示できます。

Network Health ダッシュボードは、トリガーされたアラートの概要を提供し、重大な問題、警告、お
よび軽微な問題に分類します。また、保留中のアラートも表示します。

1.7. NETWORK OBSERVABILITY OPERATOR 1.10 で削除された機能

Network Observability Operator 1.10 リリースの使用に影響する可能性のある削除された機能をご確認く
ださい。

1.7.1. FlowCollector API バージョン v1beta1 の削除

FlowCollector カスタムリソース (CR) API バージョン v1beta1 が削除され、サポートされなくなりま
した。v1beta2 バージョンを使用してください。

第1章 NETWORK OBSERVABILITY OPERATOR リリースノート

7

1.8. NETWORK OBSERVABILITY OPERATOR 1.10 の既知の問題

Network Observability Operator 1.10 リリースの使用に影響する可能性のある、次の既知の問題と推奨さ
れる回避策 (存在する場合) をご確認ください。

1.8.1. OpenShift Container Platform 4.14 以前で 1.10 へのアップグレードが失敗する

OpenShift Container Platform 4.14 以前で Network Observability Operator 1.10 にアップグレードする
と、ソフトウェアカタログの FlowCollector カスタムリソース定義 (CRD) 検証エラーが原因で失敗す
る可能性があります。

この問題を回避するには、次の操作を行う必要があります。

1. OpenShift Container Platform Web コンソールのソフトウェアカタログから、両方のバージョ
ンの Network Observability Operator をアンインストールします。

a. FlowCollector CRD は、フロー収集プロセスに中断が発生しないように、インストールし
たままにしておきます。

2. 次のコマンドを実行して、FlowCollector CRD の現在の名前を確認します。

想定される出力:

3. 次のコマンドを実行して、FlowCollector CRD の現在の提供ステータスを確認します。

想定される出力:

4. 次のコマンドを実行して、v1beta1 バージョンの served フラグを false に設定します。

5. 次のコマンドを実行して、served フラグが false に設定されていることを確認します。

想定される出力:

6. Network Observability Operator 1.10 をインストールします。

OCPBUGS-63208、NETOBSERV-2451

$ oc get crd flowcollectors.flows.netobserv.io -o jsonpath='{.spec.versions[0].name}'

v1beta1

$ oc get crd flowcollectors.flows.netobserv.io -o jsonpath='{.spec.versions[0].served}'

true

$ oc patch crd flowcollectors.flows.netobserv.io --type='json' -p "[{'op': 'replace', 'path':
'/spec/versions/0/served', 'value': false}]"

$ oc get crd flowcollectors.flows.netobserv.io -o jsonpath='{.spec.versions[0].served}'

false

OpenShift Container Platform 4.18 Network Observability

8

https://issues.redhat.com/browse/OCPBUGS-63208
https://issues.redhat.com/browse/NETOBSERV-2451

1.8.2. eBPF エージェントと OpenShift Container Platform の旧バージョンとの互換性

Network Observability コマンドラインインターフェイス (CLI) のパケットキャプチャー機能で使用され
る eBPF エージェントは、OpenShift Container Platform バージョン 4.16 以前と互換性がありません。

この制限により、eBPF ベースの Packet Capture Agent (PCA) が古いクラスター上で正しく機能しな
くなります。

この問題を回避するには、互換性のある古い eBPF エージェントコンテナーイメージを使用するように
PCA を手動で設定する必要があります。詳細は、Red Hat ナレッジベースソリューション eBPF agent
compatibility with older Openshift versions in Network Observability CLI 1.10+ を参照してください。

NETOBSERV-2358

1.8.3. NetworkPolicy が有効な場合、OpenShiftSDN 環境で eBPF エージェントがフ
ローを送信できない

OpenShiftSDN CNI プラグインを使用する OpenShift Container Platform 4.14 クラスターで Network
Observability Operator 1.10 を実行すると、eBPF エージェントが flowlogs-pipeline コンポーネントに
フローレコードを送信できません。これは、NetworkPolicy が有効な状態
(spec.networkPolicy.enable: true) で FlowCollector カスタムリソースが作成された場合に発生しま
す。

その結果、フローデータが flowlogs-pipeline コンポーネントによって処理されず、Network Traffic
ダッシュボードまたは設定されたストレージ (Loki) に表示されません。eBPF エージェント Pod のログ
には、コレクターへの接続を試みたときに i/o timeout エラーが表示されます。

この問題を回避するには、spec.networkPolicy.enable を false に設定して、Network Observability
Operator 1.10 の FlowCollector リソースで NetworkPolicy を無効にします。

これにより、eBPF エージェントが、自動的にデプロイされたネットワークポリシーからの干渉を受け
ずに、flowlogs-pipeline コンポーネントと通信できるようになります。

NETOBSERV-2450

1.9. NETWORK OBSERVABILITY OPERATOR 1.10 で修正された問題

Network Observability Operator 1.10 リリースには、修正された問題がいくつか含まれています。これら
の修正により、パフォーマンスとユーザーエクスペリエンスが向上します。

1.9.1. MetricName および Remap フィールドの検証

この更新前は、ユーザーが無効なメトリクス名を使用して FlowMetric カスタムリソース (CR) を作成
することができました。FlowMetric CR は正常に作成されましたが、その元となるメトリクスはユー
ザーに何のエラーフィードバックを提供せず、サイレントに失敗していました。

このリリースでは、FlowMetric、metricName、および remap フィールドが作成前に検証されるよう
になりました。そのため、ユーザーが無効な名前を入力した場合、すぐに通知されます。

time="2025-10-17T13:53:44Z" level=error msg="couldn't send flow records to collector"
collector="10.0.68.187:2055" component=exporter/GRPCProto error="rpc error: code = Unavailable
desc = connection error: desc = \"transport: Error while dialing: dial tcp 10.0.68.187:2055: i/o
timeout\""

第1章 NETWORK OBSERVABILITY OPERATOR リリースノート

9

https://access.redhat.com/solutions/7132671
https://issues.redhat.com/browse/NETOBSERV-2358
https://issues.redhat.com/browse/NETOBSERV-2450

NETOBSERV-2348

1.9.2. html-to-image エクスポートのパフォーマンスの向上

この更新前は、基盤となるライブラリーのパフォーマンスの問題により、html-to-image エクスポート
機能に時間がかかり、その結果ブラウザーがフリーズしていました。

このリリースでは、html-to-image ライブラリーのパフォーマンスが向上し、エクスポートの待機時間
が短縮され、イメージ生成中にブラウザーがフリーズすることがなくなりました。

NETOBSERV-2314

1.9.3. eBPF privileged モードの警告の改善

この更新前は、privileged モードを必要とする eBPF 機能をユーザーが選択しても、privileged モード
が設定されていないこと、または有効にする必要があることがユーザーに明確に通知されずに、機能が
失敗することがよくありました。

このリリースでは、設定に矛盾がある場合、検証フックによってすぐにユーザーに警告が表示されま
す。これにより、ユーザーの理解が向上し、誤った設定を防ぐことができます。

NETOBSERV-2268

1.9.4. OpenTelemetry エクスポーターへのサブネットラベルの追加

この更新前は、OpenTelemetry メトリクスエクスポーターに、ネットワークフローラベル
SrcSubnetLabel と DstSubnetLabel が欠落していたため、空のラベルが表示されていました。

このリリースでは、これらのラベルがエクスポーターによって正しく提供されるようになりました。ま
た、明確さと OpenTelemetry 標準との整合性を向上させるために、source.subnet.label と
destination.subnet.label に名前が変更されました。

NETOBSERV-2405

1.9.5. Network Observability コンポーネントのデフォルト toleration の削減

この更新前は、すべての Network Observability コンポーネントにデフォルトの toleration が設定されて
おり、NoSchedule の taint が付与されているノードも含め、すべてのノードでコンポーネントをスケ
ジュールすることが許可されていました。これにより、クラスターのアップグレードがブロックされる
ことがありました。

このリリースでは、Direct モードで設定されている場合、eBPF エージェントと Flowlogs-Pipeline に
対してのみ、デフォルトの toleration が維持されるようになりました。Kafka モードで設定されている
場合、OpenShift Container Platform Web コンソールプラグインおよび Flowlogs-Pipeline から
toleration が削除されるようになりました。

さらに、toleration は FlowCollector カスタムリソース (CR) で随時設定できますが、以前は toleration
を空のリストに置き換えることは不可能でした。現在は、toleration を空のリストに置き換えることが
可能です。

NETOBSERV-2434

OpenShift Container Platform 4.18 Network Observability

10

https://issues.redhat.com/browse/NETOBSERV-2348
https://issues.redhat.com/browse/NETOBSERV-2314
https://issues.redhat.com/browse/NETOBSERV-2268
https://issues.redhat.com/browse/NETOBSERV-2405
https://issues.redhat.com/browse/NETOBSERV-2434

第2章 NETWORK OBSERVABILITY OPERATOR リリースノート
のアーカイブ

2.1. NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイ
ブ

これらのリリースノートは、OpenShift Container Platform の Network Observability Operator の開発
履歴を記録したものです。これらはあくまで参考用に提供されています。

Network Observability Operator を使用すると、管理者は OpenShift Container Platform クラスターの
ネットワークトラフィックフローを観察および分析できます。

2.1.1. Network Observability Operator 1.9.3 アドバイザリー

Network Observability Operator 1.9.3 では、次のアドバイザリーを利用できます。

RHEA-2025:15780 Network Observability Operator 1.9.3

2.1.2. Network Observability Operator 1.9.2 アドバイザリー

Network Observability Operator 1.9.2 では、次のアドバイザリーを利用できます。

RHEA-2025:14150 Network Observability Operator 1.9.2

2.1.3. Network Observability 1.9.2 のバグ修正

この更新前は、OpenShift Container Platform バージョン 4.15 以前では TC_ATTACH_MODE
設定はサポートされていませんでした。これにより、コマンドラインインターフェイス (CLI)
エラーが発生し、パケットとフローの観測が妨げられました。このリリースでは、Traffic
Control eXtension (TCX) のフックアタッチメントモードが、これらの古いバージョン向けに調
整されました。これにより、tcx フックのエラーが解消され、フローとパケットの観測が可能
になります。

2.1.4. Network Observability Operator 1.8.0 のアドバイザリー

Network Observability Operator 1.8.0 リリースのアドバイザリーを確認できます。

Network Observability Operator 1.9.1 では、次のアドバイザリーを利用できます。

2025:12024 Network Observability Operator 1.9.1

2.1.5. Network Observability Operator 1.8.0 で修正された問題

Network Observability Operator 1.8.0 リリースで修正された問題を確認できます。

この更新前は、アタッチモードの設定が間違っていたため、OpenShift Container Platform 4.15
でネットワークフローが観測されていませんでした。そのため、特に特定のカタログで、ユー
ザーがネットワークフローを正しく監視できていませんでした。このリリースでは、OpenShift
Container Platform バージョン 4.16.0 より前のバージョンのデフォルトアタッチモードが tc に
設定されているため、OpenShift Container Platform 4.15 でフローが観測されるようになりまし
た。(NETOBSERV-2287)

この更新前は、IPFIX コレクターが再起動すると、IPFIX エクスポーターの設定時に接続が失わ

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

11

https://access.redhat.com/errata/RHEA-2025:15780
https://access.redhat.com/errata/RHEA-2025:14150
https://access.redhat.com/errata/RHEA-2025:12024

れ、コレクターへのネットワークフローの送信が停止することがありました。このリリースで
は、接続が復元され、ネットワークフローが引き続きコレクターに送信されます。
(NETOBSERV-2287)

この更新前は、IPFIX エクスポーターを設定すると、ポート情報のないフロー (ICMP トラ
フィックなど) が無視され、ログにエラーが記録されていました。TCP フラグと ICMP データ
も IPFIX エクスポートから欠落していました。このリリースでは、これらの詳細が含まれるよ
うになりました。欠落しているフィールド (ポートなど) によってエラーが発生しなくなり、エ
クスポートされたデータに含まれるようになりました。(NETOBSERV-2287)

この更新前は、OpenShift Container Platform 4.18 でユーザー定義ネットワーク (UDN) マッピ
ング機能の設定上の問題と警告が表示されていました。これは、OpenShift のバージョンが
コード内で誤って設定されていたことが原因でした。これはユーザーエクスペリエンスに影響
を与えていました。このリリースでは、UDN マッピングが OpenShift Container Platform 4.18
をサポートするようになり、警告が表示されなくなったため、ユーザーエクスペリエンスがス
ムーズになりました。(NETOBSERV-2305)

この更新前は、Network Traffic ページの拡張機能に、OpenShift Container Platform Console
4.19 との互換性の問題がありました。その結果、展開時に空のメニュースペースが表示され、
ユーザーインターフェイスに一貫性がありませんでした。このリリースでは、NetflowTraffic
部分と theme hook の互換性の問題が解決されました。Network Traffic ビューのサイドメ
ニューが適切に管理されるようになり、ユーザーインターフェイスの操作性が向上しました。
(NETOBSERV-2287)

2.1.6. Network Observability Operator 1.9.0 のアドバイザリー

Network Observability Operator 1.9.0 リリースのアドバイザリーを確認できます。

Network Observability Operator 1.9

2.1.7. Network Observability Operator 1.9.0 の新機能と機能拡張

Network Observability Operator 1.9.0 リリースの新機能と機能拡張を確認できます。

2.1.7.1. ユーザー定義ネットワークと Network Observability の連携

このリリースでは、Network Observability で ユーザー定義ネットワーク (UDN) 機能が一般提供になり
ました。Network Observability で UDNMapping 機能が有効になっている場合、Traffic フローテーブ
ルに UDN labels 列が表示されます。Source Network Name と Destination Network Name の情報に
基づいてログをフィルタリングできます。

2.1.7.2. フローログ取り込み時のフィルタリング

このリリースでは、生成されるネットワークフローの数と Network Observability コンポーネントのリ
ソース使用量を削減するためのフィルターを作成できます。設定できるフィルターは次のとおりです。

eBPF エージェントフィルター

flowlogs-pipeline フィルター

2.1.7.3. IPsec のサポート

この更新により、OpenShift Container Platform で IPsec が有効な場合、Network Observability に次の
機能拡張が導入されます。

IPsec Status という新しい列が Network Observability の Traffic フロービューに表示され、フ

OpenShift Container Platform 4.18 Network Observability

12

https://issues.redhat.com/browse/NETOBSERV-2315
https://issues.redhat.com/browse/NETOBSERV-2307
https://issues.redhat.com/browse/NETOBSERV-2305
https://access.redhat.com/errata/RHSA-2025:10020
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/multiple_networks/#understanding-multiple-networks

IPsec Status という新しい列が Network Observability の Traffic フロービューに表示され、フ
ローが正常に IPsec で暗号化されたかどうか、または暗号化/復号化中にエラーが発生したかど
うかが表示されます。

暗号化されたトラフィックの割合を示す新しいダッシュボードが生成されます。

2.1.7.4. Network Observability CLI

パケット、フロー、メトリクスのキャプチャーで、次のフィルタリングオプションが利用できるように
なりました。

--sampling オプションを使用して、サンプリングされるパケットの比率を設定します。

--query オプションを使用して、カスタムクエリーを使用してフローをフィルタリングしま
す。

--interfaces オプションを使用して、監視するインターフェイスを指定します。

--exclude_interfaces オプションを使用して、除外するインターフェイスを指定します。

--include_list オプションを使用して、生成するメトリクス名を指定します。

詳細は以下を参照してください。

Network Observability CLI リファレンス

2.1.8. Network Observability Operator リリースノート 1.9.0 の主な技術上の変更点

Network Observability Operator 1.6.0 リリースの主な技術上の変更点を確認できます。

Network Observability 1.9 では、NetworkEvents 機能が、OpenShift Container Platform 4.19
の新しい Linux カーネルで動作するように更新されました。この更新により、古いカーネルと
の互換性が失われます。そのため、NetworkEvents 機能は OpenShift Container Platform 4.19
でのみ使用できます。Network Observability 1.8 および OpenShift Container Platform 4.18 でこ
の機能を使用している場合は、Network Observability のアップグレードを回避するか、
Network Observability 1.9 にアップグレードし、OpenShift Container Platform を 4.19 にアップ
グレードすることを検討してください。

netobserv-reader クラスターロールの名前が netobserv-loki-reader に変更されました。

eBPF エージェントの CPU パフォーマンスが向上しました。

2.1.9. Network Observability Operator 1.9.0 のテクノロジープレビュー機能

Network Observability Operator 1.9.0 リリースのテクノロジープレビュー機能を確認できます。

現在、このリリースに含まれる機能にはテクノロジープレビューのものがあります。これらの実験的機
能は、実稼働環境での使用を目的としていません。これらの機能に関しては、Red Hat カスタマーポー
タルの以下のサポート範囲を参照してください。

テクノロジープレビュー機能のサポート範囲

2.1.9.1. eBPF Manager Operator と Network Observability の連携

eBPF Manager Operator は、すべての eBPF プログラムを管理することで、攻撃対象領域を削減し、コ

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

13

https://access.redhat.com/support/offerings/techpreview

ンプライアンス、セキュリティー、競合防止を実現します。Network Observability は、eBPF Manager
Operator を使用してフックをロードできます。これにより、特権モードや、CAP_BPF や
CAP_PERFMON などの追加の Linux ケイパビリティーを eBPF エージェントに提供する必要がなくな
ります。eBPF Manager Operator と Network Observability の連携は、64 ビット AMD アーキテク
チャーでのみサポートされています。

2.1.10. Network Observability Operator 1.9.0 の CVE

Network Observability Operator 1.9.0 リリースの CVE を確認できます。

CVE-2025-26791

2.1.11. Network Observability Operator 1.9.0 で修正された問題

Network Observability Operator 1.9.0 リリースで修正された問題を確認できます。

以前は、コンソールプラグインから送信元または送信先 IP でフィルタリングするとき
に、10.128.0.0/24 などの Classless Inter-Domain Routing (CIDR) 表記を使用すると機能せず、
除外されるはずの結果が返されていました。この更新により、CIDR 表記を使用できるようにな
り、結果が期待どおりにフィルタリングされるようになりました。(NETOBSERV-2276)

以前は、ネットワークフローが使用中のネットワークインターフェイスを誤って識別すること
があり、特に eth0 と ens5 が混同されるリスクがありました。この問題は、eBPF エージェン
トが Privileged として設定されている場合にのみ発生していました。この更新により、問題が
部分的に修正され、ほぼすべてのネットワークインターフェイスが正しく識別されるようにな
りました。詳細は、以下の既知の問題を参照してください。(NETOBSERV-2257)

以前は、Operator が動作を適応させるために利用可能な Kubernetes API をチェックするとき
に、古い API がある場合、Operator の正常な起動を妨げるエラーが発生していました。この更
新により、Operator は関連のない API のエラーを無視し、関連する API のエラーをログに記録
して、正常に実行を続行するようになりました。(NETOBSERV-2240)

以前は、コンソールプラグインの Traffic フロービューで、フローを Bytes または Packets で
並べ替えることができませんでした。この更新により、ユーザーがフローを Bytes と Packets
で並べ替えられるようになりました。(NETOBSERV-2239)

以前は、IPFIX エクスポーターを使用して FlowCollector リソースを設定すると、IPFIX フロー
内の MAC アドレスが最初の 2 バイトに切り捨てられていました。この更新により、MAC アド
レスが IPFIX フロー内で完全に表現されるようになりました。(NETOBSERV-2208)

以前は、Operator 検証 Webhook から送信される警告の一部に、実行する必要がある内容が明
確に示されていないものがありました。この更新により、このようなメッセージの一部が見直
され、より実用的なものに修正されました。(NETOBSERV-2178)

以前は、入力エラーなどが発生した場合、FlowCollector リソースから LokiStack を参照する
ときに問題が発生したのかどうかが明確にわかりませんでした。この更新により、そのような
場合に、参照された LokiStack が見つからないことが FlowCollector ステータスに明確に示さ
れるようになりました。(NETOBSERV-2174)

以前は、コンソールプラグインの Traffic flows ビューで、テキストがオーバーフローすると、
テキストの省略記号により、表示されるテキストの大部分が隠れてしまうことがありました。
この更新により、可能な限り多くのテキストが表示されるようになりました。(NETOBSERV-
2119)

以前は、Network Observability 1.8.1 以前のコンソールプラグインが OpenShift Container
Platform 4.19 Web コンソールで動作しなかったため、Network Traffic ページにアクセスでき

OpenShift Container Platform 4.18 Network Observability

14

https://access.redhat.com/security/cve/CVE-2025-26791
https://issues.redhat.com/browse/NETOBSERV-2276
https://issues.redhat.com/browse/NETOBSERV-2257
https://issues.redhat.com/browse/NETOBSERV-2240
https://issues.redhat.com/browse/NETOBSERV-2239
https://issues.redhat.com/browse/NETOBSERV-2208
https://issues.redhat.com/browse/NETOBSERV-2178
https://issues.redhat.com/browse/NETOBSERV-2174
https://issues.redhat.com/browse/NETOBSERV-2119

ませんでした。この更新により、コンソールプラグインに互換性が追加され、Network
Observability 1.9.0 で Network Traffic ページにアクセスできるようになりました。
(NETOBSERV-2046)

以前は、会話トラッキング (FlowCollector リソースの logTypes: Conversations または
logTypes: All) を使用すると、ダッシュボードに表示される Traffic レートのメトリクスに不具
合が発生し、トラフィックの増加が制御不能であると誤って表示されていました。現在は、よ
り正確なトラフィックレートがメトリクスに表示されます。ただし、Conversations および
EndedConversations モードでは、長時間にわたる接続は対象外であるため、これらのメトリ
クスは依然として完全には正確でないことに注意してください。この情報はドキュメントに追
加されました。このような不正確さを避けるために、デフォルトモードの logTypes: Flows が
推奨されます。(NETOBSERV-1955)

2.1.12. Network Observability Operator 1.9.0 の既知の問題

Network Observability Operator 1.9.0 リリースの既知の問題を確認できます。

ユーザー定義ネットワーク (UDN) 機能はサポートされていますが、OpenShift Container
Platform 4.18 で使用すると、設定の問題と警告が表示されます。この警告は無視できます。
(NETOBSERV-2305)

まれに、eBPF エージェントが複数のネットワーク namespace がある環境で privileged モード
で実行されている場合、フローと関連するインターフェイスを適切に相関させることができな
いことがあります。この問題の大部分は今回のリリースで特定され解決されました。しかし、
特に ens5 インターフェイスに関しては、いくつかの不整合が残っています。(NETOBSERV-
2287)

2.1.13. Network Observability Operator 1.8.1 のアドバイザリー

Network Observability Operator 1.8.1 リリースのアドバイザリーを確認できます。

Network Observability Operator 1.8.1

2.1.14. Network Observability Operator 1.8.1 の CVE

Network Observability Operator 1.8.1 リリースの CVE を確認できます。

CVE-2024-56171

CVE-2025-24928

2.1.15. Network Observability Operator 1.8.0 で修正された問題

Network Observability Operator 1.8.1 リリースで修正された問題を確認できます。

この修正により、OpenShift Container Platform の今後のバージョンでは、Observe メニュー
が 1 回だけ表示されるようになります。(NETOBSERV-2139)

2.1.16. Network Observability Operator 1.8.0 のアドバイザリー

Network Observability Operator 1.8.0 リリースのアドバイザリーを確認できます。

Network Observability Operator 1.8.0

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

15

https://issues.redhat.com/browse/NETOBSERV-2046
https://issues.redhat.com/browse/NETOBSERV-1955
https://issues.redhat.com/browse/NETOBSERV-2305
https://issues.redhat.com/browse/NETOBSERV-2287
https://access.redhat.com/errata/RHSA-2025:3867
https://access.redhat.com/security/cve/CVE-2024-56171
https://access.redhat.com/security/cve/CVE-2025-24928
https://issues.redhat.com/browse/NETOBSERV-2139
https://access.redhat.com/errata/RHEA-2025:1940

2.1.17. Network Observability Operator 1.8.0 の新機能と機能拡張

Network Observability Operator 1.8.0 リリースの新機能と機能拡張を確認できます。

2.1.17.1. パケット変換

変換されたエンドポイント情報を使用してネットワークフローをエンリッチできるようになりました。
サービスだけでなく特定のバックエンド Pod も表示されるため、どの Pod がリクエストを処理したか
確認できます。

詳細は以下を参照してください。

エンドポイント変換 (xlat)

エンドポイント変換 (xlat) の操作

2.1.17.2. OVN-Kubernetes ネットワークイベントの追跡

重要

OVN-Kubernetes ネットワークイベントの追跡は、テクノロジープレビュー機能です。
テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA)
の対象外であり、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこ
れらを使用することを推奨していません。テクノロジープレビュー機能は、最新の製品
機能をいち早く提供して、開発段階で機能のテストを行い、フィードバックを提供して
いただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、以下のリンク
を参照してください。

テクノロジープレビュー機能のサポート範囲

Network Observability のネットワークイベントトラッキングを使用して、ネットワークポリシー、管理
ネットワークポリシー、Egress ファイアウォールなどの OVN-Kubernetes イベントに関する情報を取
得できるようになりました。

詳細は以下を参照してください。

ネットワークイベントの表示

2.1.17.3. 1.8 における eBPF パフォーマンスの改善

Network Observability では、per-CPU マップの代わりにハッシュマップが使用されるようにな
りました。つまり、ネットワークフローデータがカーネル空間で追跡され、新しいパケットも
そこに集約されます。ネットワークフローの重複排除がカーネル内で実行できるようになった
ため、カーネルとユーザー空間の間のデータ転送サイズによってパフォーマンスが向上しま
す。これらの eBPF パフォーマンスの向上により、eBPF エージェントで CPU リソースが 40%
から 57% 削減される可能性があります。

2.1.17.4. Network Observability CLI

このリリースでは、Network Observability CLI に次の新しい機能、オプション、フィルターが追加され
ました。

oc netobserv metrics コマンドを実行して、フィルターを有効にしてメトリクスをキャプ

OpenShift Container Platform 4.18 Network Observability

16

https://access.redhat.com/support/offerings/techpreview/

oc netobserv metrics コマンドを実行して、フィルターを有効にしてメトリクスをキャプ
チャーします。

フローおよびパケットキャプチャーで --background オプションを使用して CLI をバックグラ
ウンドで実行し、oc netobserv follow を実行してバックグラウンド実行の進行状況を確認
し、oc netobserv copy を実行して生成されたログをダウンロードします。

--get-subnets オプションを使用して、マシン、Pod、およびサービスのサブネットでフローと
メトリクスのキャプチャーを強化します。

以下は、パケット、フロー、メトリクスのキャプチャーで利用できる新しいフィルタリングオ
プションです。

IP、ポート、プロトコル、アクション、TCP フラグなどに基づく eBPF フィルター

--node-selector を使用するカスタムノード

--drops のみを使用するドロップ

--regexes を使用する任意のフィールド

詳細は以下を参照してください。

Network Observability CLI リファレンス

2.1.18. Network Observability Operator リリースノート 1.8.0 の修正された問題

Network Observability Operator 1.8.0 リリースで修正された問題を確認できます。

以前は、Network Observability Operator には、メトリクスサーバーの RBAC を管理するため
の "kube-rbac-proxy" コンテナーが付属していました。この外部コンポーネントは非推奨であ
るため、削除する必要がありました。これは、サイドカープロキシーを必要としない、
Kubernetes コントローラーランタイムを介した TLS および RBAC の直接管理に置き換えられ
ました。(NETOBSERV-1999)

以前の OpenShift Container Platform コンソールプラグインでは、複数の値と一致しないキー
でフィルタリングするとフィルタリングされませんでした。この修正により、フィルタリング
された値が一切含まれないフローという期待どおりの結果が返されます。(NETOBSERV-1990)

以前は、Loki が無効になっている OpenShift Container Platform コンソールプラグインでは、
互換性のないフィルターと集計のセットを選択することで "Can’t build query" エラーが発生す
ることが多くなっていました。現在は、ユーザーにフィルターの非互換性を認識させつつ、互
換性のないフィルターを自動的に無効にすることで、このエラーを回避しています。
(NETOBSERV-1977)

以前は、コンソールプラグインからフローの詳細を表示すると、ICMP 情報が常にサイドパネ
ルに表示され、ICMP 以外のフローの場合は "undefined" の値が表示されていました。この修正
により、ICMP 以外のフローでは ICMP 情報が表示されなくなります。(NETOBSERV-1969)

以前は、Traffic flows ビューの "Export data" リンクが意図したとおりに機能せず、空の CSV
レポートが生成されていました。現在は、エクスポート機能が復元され、空ではない CSV デー
タが生成されます。(NETOBSERV-1958)

以前は、会話ログは Loki が有効な場合にのみ役立つにもかかわらず、loki.enable を false に設
定して、processor.logTypes Conversations、EndedConversations、または All を使用して
FlowCollector を設定することが可能でした。その結果、リソースを無駄に使用していまし

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

17

https://issues.redhat.com/browse/NETOBSERV-1999
https://issues.redhat.com/browse/NETOBSERV-1990
https://issues.redhat.com/browse/NETOBSERV-1977
https://issues.redhat.com/browse/NETOBSERV-1969
https://issues.redhat.com/browse/NETOBSERV-1958

た。現在、この設定は無効であり、検証 Webhook によって拒否されます。(NETOBSERV-
1957)

FlowCollector で、processor.logTypes を All に設定すると、他のオプションよりも CPU、
メモリー、ネットワーク帯域幅などのリソースがはるかに多く消費されます。この点は、以前
は文書化されていませんでした。これは現在文書化されており、検証 Webhook から警告がト
リガーされます。(NETOBSERV-1956)

以前は、負荷が高い場合に、eBPF エージェントによって生成された一部のフローが誤って破
棄され、トラフィック帯域幅が予測を下回っていました。現在、生成されたフローは破棄され
ません。(NETOBSERV-1954)

以前は、FlowCollector 設定でネットワークポリシーを有効にすると、Operator Webhook へ
のトラフィックがブロックされ、FlowMetrics API 検証が機能しなくなっていました。現在
は、Webhook へのトラフィックは許可されます。(NETOBSERV-1934)

以前は、デフォルトのネットワークポリシーをデプロイすると、additionalNamespaces
フィールドにデフォルトで openshift-console と openshift-monitoring の namespace が設定
され、ルールが重複していました。現在は、デフォルトで追加の namespace が設定されなく
なったため、ルールの重複を防止できます。(NETOBSERV-1933)

以前は、OpenShift Container Platform コンソールプラグインから TCP フラグでフィルタリン
グすると、目的のフラグのみを持つフローが一致していました。現在は、少なくとも目的のフ
ラグを持つフローがフィルタリングされたフローに表示されるようになります。
(NETOBSERV-1890)

eBPF エージェントが特権モードで実行され、Pod が継続的に追加または削除されると、ファ
イル記述子 (FD) リークが発生します。この修正により、ネットワーク namespace の削除時に
FD が適切に閉じられるようになります。(NETOBSERV-2063)

以前は、CLI エージェント DaemonSet はマスターノードにデプロイされませんでした。現在
は、taint が設定された場合にすべてのノードでスケジュールするための toleration がエージェ
ント DaemonSet に追加されています。CLI エージェント DaemonSet Pod はすべてのノード
で実行されます。(NETOBSERV-2030)

以前は、Prometheus ストレージのみを使用する場合、Source Resource および Source
Destination フィルターのオートコンプリートは機能しませんでした。現在、この問題は修正
され、提案が期待どおりに表示されるようになりました。(NETOBSERV-1885)

以前は、複数の IP を使用するリソースは Topology ビューで個別に表示されていました。現在
は、リソースはビュー内で単一のトポロジーノードとして表示されます。(NETOBSERV-1818)

以前は、マウスポインターを列の上に置くと、コンソールで Network traffic テーブルビュー
の内容が更新されていました。現在は表示が固定され、ポインターを置いても行の高さは一定
のままです。(NETOBSERV-2049)

2.1.19. Network Observability Operator リリースノート 1.8.0 の既知の問題

Network Observability Operator 1.8.0 リリースの既知の問題を確認できます。

クラスター内に重複するサブネットを使用するトラフィックがある場合、eBPF エージェント
が重複した IP からのフローを混同するリスクがわずかにあります。これは、異なる接続がまっ
たく同じ送信元 IP と宛先 IP を持ち、ポートとプロトコルが 5 秒の時間枠内にあり、同じノー
ドで発生している場合に発生する可能性があります。セカンダリーネットワークまたは UDN
を設定しない限り、これは不可能です。その場合でも、通常は送信元ポートが差別化要因とな
るため、通常のトラフィックで発生する可能性は非常に低くなります。(NETOBSERV-2115)

OpenShift Container Platform 4.18 Network Observability

18

https://issues.redhat.com/browse/NETOBSERV-1957
https://issues.redhat.com/browse/NETOBSERV-1956
https://issues.redhat.com/browse/NETOBSERV-1954
https://issues.redhat.com/browse/NETOBSERV-1934
https://issues.redhat.com/browse/NETOBSERV-1933
https://issues.redhat.com/browse/NETOBSERV-1890
https://issues.redhat.com/browse/NETOBSERV-2063
https://issues.redhat.com/browse/NETOBSERV-2030
https://issues.redhat.com/browse/NETOBSERV-1885
https://issues.redhat.com/browse/NETOBSERV-1818
https://issues.redhat.com/browse/NETOBSERV-2049
https://issues.redhat.com/browse/NETOBSERV-2115

OpenShift Container Platform Web コンソールのフォームビューから、FlowCollector リソー
スの spec.exporters セクションで設定するエクスポーターのタイプを選択した後、そのタイプ
の詳細な設定がフォームに表示されません。回避策として、YAML を直接設定します。
(NETOBSERV-1981)

2.1.20. Network Observability Operator 1.7.0 アドバイザリー

Network Observability Operator 1.7.0 リリースのアドバイザリーを確認できます。

Network Observability Operator 1.7.0

2.1.21. Network Observability Operator 1.7.0 の新機能と機能拡張

Network Observability Operator 1.7.0 リリースの次の新機能と機能拡張を確認できます。

2.1.21.1. OpenTelemetry のサポート

エンリッチされたネットワークフローを、Red Hat build of OpenTelemetry などの互換性のある
OpenTelemetry エンドポイントにエクスポートできるようになりました。

詳細は以下を参照してください。

エンリッチされたネットワークフローデータのエクスポート

2.1.21.2. Network Observability Developer パースペクティブ

Developer パースペクティブで Network Observability を使用できるようになりました。

詳細は以下を参照してください。

OpenShift Container Platform コンソールの統合

2.1.21.3. TCP フラグフィルタリング

tcpFlags フィルターを使用して、eBPF プログラムによって処理されるパケットの量を制限できるよう
になりました。

詳細は以下を参照してください。

フローフィルターの設定パラメーター

eBPF フローのルールフィルター

FlowMetric API と TCP フラグを使用した SYN フラッディングの検出

2.1.21.4. OpenShift Virtualization の Network Observability

Open Virtual Network (OVN)-Kubernetes などを介してセカンダリーネットワークに接続された仮想マ
シンから送信される eBPF エンリッチ化ネットワークフローを検出することで、OpenShift
Virtualization 環境のネットワークパターンを観測できます。

詳細は以下を参照してください。

仮想マシン (VM) のセカンダリーネットワークインターフェイスを Network Observability 用に
設定する

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

19

https://issues.redhat.com/browse/NETOBSERV-1981
https://access.redhat.com/errata/RHSA-2024:8014

2.1.21.5. FlowCollector カスタムリソース (CR) でのネットワークポリシーのデプロイ

このリリースでは、FlowCollector カスタムリソース (CR) を設定して、ネットワーク可観測性のため
のネットワークポリシーをデプロイできます。以前は、ネットワークポリシーが必要な場合は、手動で
作成する必要がありました。ネットワークポリシーを手動で作成するオプションは引き続き利用可能で
す。

詳細は以下を参照してください。

FlowCollector カスタムリソースを使用した Ingress ネットワークポリシーの設定

2.1.21.6. FIPS コンプライアンス

FIPS モードで実行されている OpenShift Container Platform クラスターに Network
Observability Operator をインストールして使用できます。

重要

クラスターで FIPS モードを有効にするには、FIPS モードで動作するように設定
された Red Hat Enterprise Linux (RHEL) コンピューターからインストールプロ
グラムを実行する必要があります。RHEL で FIPS モードを設定する方法の詳細
は、RHEL から FIPS モードへの切り替え を参照してください。

FIPS モードでブートされた Red Hat Enterprise Linux (RHEL) または Red Hat
Enterprise Linux CoreOS (RHCOS) を実行する場合、OpenShift Container
Platform コアコンポーネントは、x86_64、ppc64le、および s390x アーキテク
チャーのみで、FIPS 140-2/140-3 検証のために NIST に提出された RHEL 暗号
化ライブラリーを使用します。

2.1.21.7. eBPF エージェントの機能拡張

eBPF エージェントで次の機能拡張を利用できます。

DNS サービスが 53 以外のポートにマッピングされている場合
は、spec.agent.ebpf.advanced.env.DNS_TRACKING_PORT を使用して、この DNS 追跡
ポートを指定できます。

トランスポートプロトコル (TCP、UDP、または SCTP) のフィルタリングルールに 2 つのポー
トを使用できるようになりました。

プロトコルフィールドを空のままにしておくことで、ワイルドカードプロトコルを使用してト
ランスポートポートをフィルタリングできるようになりました。

詳細は以下を参照してください。

FlowCollector API 仕様

2.1.21.8. Network Observability CLI

Network Observability CLI (oc netobserv) が一般提供になりました。1.6 テクノロジープレビューリ
リース以降、次の機能強化が行われました。

フローキャプチャーと同様に、パケットキャプチャー用の eBPF エンリッチメントフィルター
が追加されました。

フローキャプチャーとパケットキャプチャーの両方でフィルター tcp_flags を使用できるよう

OpenShift Container Platform 4.18 Network Observability

20

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/security_hardening/switching-rhel-to-fips-mode_security-hardening

フローキャプチャーとパケットキャプチャーの両方でフィルター tcp_flags を使用できるよう
になりました。

最大バイト数または最大時間に達したときに、自動ティアダウンオプションを利用できます。

詳細は以下を参照してください。

Network Observability CLI について

Network Observability CLI

2.1.22. Network Observability Operator 1.7.0 で修正された問題

Network Observability Operator 1.7.0 リリースで修正された次の問題を確認できます。

以前は、RHEL 9.2 リアルタイムカーネルを使用すると、一部の Webhook が機能しませんでし
た。現在は、この RHEL 9.2 リアルタイムカーネルが使用されているかどうかを確認するため
の修正が導入されています。このカーネルが使用されている場合、s390x アーキテクチャーの
使用時にパケットドロップやラウンドトリップ時間などの機能が実行されないという内容の警
告が表示されます。この修正は OpenShift 4.16 以降で適用されます。(NETOBSERV-1808)

以前は、Overview タブの Manage panels ダイアログで、total、bar、donut、または line で
フィルタリングしても、結果が表示されませんでした。現在は、利用可能なパネルが正しく
フィルタリングされます。(NETOBSERV-1540)

以前は、高ストレス下で eBPF エージェントが多数の小さなフローを生成する状態になり、フ
ローがほとんど集約されないことがありました。この修正により、集約プロセスが高いストレ
ス下でも維持され、作成されるフローが少なくなりました。この修正により、eBPF エージェ
ントだけでなく、flowlogs-pipeline および Loki でもリソース消費が改善されます。
(NETOBSERV-1564)

以前は、namespace_flows_total メトリクスではなく、workload_flows_total メトリクスが
有効になっていると、健全性ダッシュボードに By namespace フローチャートが表示されませ
んでした。この修正により、workload_flows_total が有効な場合に健全性ダッシュボードにフ
ローチャートが表示されるようになりました。(NETOBSERV-1746)

以前は、FlowMetrics API を使用してカスタムメトリクスを生成し、後で新しいラベルを追加
するなどしてそのラベルを変更すると、メトリクスの入力が停止し、flowlogs-pipeline ログに
エラーが表示されていました。この修正により、ラベルを変更しても、flowlogs-pipeline ログ
にエラーが表示されなくなりました。(NETOBSERV-1748)

以前は、デフォルトの Loki の WriteBatchSize 設定に不一致がありました。FlowCollector
CRD のデフォルトでは 100 KB に設定されていましたが、OLM のサンプルまたはデフォルト設
定では 10 MB に設定されていました。現在は、両方とも 10 MB になりました。これにより、全
般的にパフォーマンスが向上し、リソースフットプリントが削減されました。(NETOBSERV-
1766)

以前は、プロトコルを指定しなかった場合、ポート上の eBPF フローフィルターが無視されて
いました。この修正により、ポートやプロトコルごとに eBPF フローフィルターを個別に設定
できるようになりました。(NETOBSERV-1779)

以前は、Pod からサービスへのトラフィックが トポロジービュー に表示されませんでした。
サービスから Pod への戻りトラフィックのみが表示されていました。この修正により、そのト
ラフィックも正しく表示されるようになりました。(NETOBSERV-1788)

以前は、Network Observability にアクセスできるクラスター管理者以外のユーザーが、

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

21

https://issues.redhat.com/browse/NETOBSERV-1808
https://issues.redhat.com/browse/NETOBSERV-1540
https://issues.redhat.com/browse/NETOBSERV-1564
https://issues.redhat.com/browse/NETOBSERV-1746
https://issues.redhat.com/browse/NETOBSERV-1748
https://issues.redhat.com/browse/NETOBSERV-1766
https://issues.redhat.com/browse/NETOBSERV-1779
https://issues.redhat.com/browse/NETOBSERV-1788

namespace など、自動補完をトリガーする項目をフィルタリングしようとすると、コンソール
プラグインにエラーが表示されていました。この修正により、エラーが表示されなくなり、自
動補完によって期待どおりの結果が返されるようになりました。(NETOBSERV-1798)

セカンダリーインターフェイスのサポートが追加されたときに、インターフェイスの通知を確
認するために、ネットワークごとの namespace を netlink に登録する作業を複数回繰り返す必
要がありました。同時に、TC とは異なり、TCX フックではインターフェイスがダウンしたと
きにハンドラーを明示的に削除する必要があったため、失敗したハンドラーによってファイル
記述子のリークが発生しました。さらに、ネットワーク namespace が削除されるときに、
netlink goroutine ソケットを終了する Go クローズチャネルイベントが存在していなかったた
め、Go スレッドがリークしていました。現在は、Pod を作成または削除するときに、ファイ
ル記述子や Go スレッドがリークしなくなりました。(NETOBSERV-1805)

以前は、フローの JSON で該当するデータが利用可能であっても、Traffic flows テーブルの
ICMP のタイプと値に、'n/a' と表示されていました。この修正により、ICMP 列にフローテー
ブル内の該当する値が期待どおりに表示されるようになりました。(NETOBSERV-1806)

以前は、コンソールプラグインで、未設定の DNS レイテンシーなどの未設定のフィールドを
フィルタリングできないことがありました。この修正により、未設定のフィールドでのフィル
タリングが可能になりました。(NETOBSERV-1816)

以前は、OpenShift Web コンソールプラグインでフィルターをクリアして、別のページに移動
してからフィルターがあったページに戻ると、フィルターが再表示される場合がありました。
この修正により、クリアした後にフィルターが予期せず再表示されることがなくなりました。
(NETOBSERV-1733)

2.1.23. Network Observability Operator 1.7.0 の既知の問題

Network Observability Operator 1.7.0 リリースの次の既知の問題を確認できます。

Network Observability で must-gather ツールを使用する場合、クラスターで FIPS が有効に
なっているとログが収集されません。(NETOBSERV-1830)

FlowCollector で spec.networkPolicy が有効になっている場合、netobserv namespace に
ネットワークポリシーがインストールされるため、FlowMetrics API を使用できません。ネッ
トワークポリシーにより、検証 Webhook への呼び出しがブロックされます。回避策として、
次のネットワークポリシーを使用してください。

(NETOBSERV-193)

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-from-hostnetwork
 namespace: netobserv
spec:
 podSelector:
 matchLabels:
 app: netobserv-operator
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/host-network: ''
 policyTypes:
 - Ingress

OpenShift Container Platform 4.18 Network Observability

22

https://issues.redhat.com/browse/NETOBSERV-1798
https://issues.redhat.com/browse/NETOBSERV-1805
https://issues.redhat.com/browse/NETOBSERV-1806
https://issues.redhat.com/browse/NETOBSERV-1816
https://issues.redhat.com/browse/NETOBSERV-1733
https://issues.redhat.com/browse/NETOBSERV-1830
https://issues.redhat.com/browse/NETOBSERV-1934

2.1.24. Network Observability Operator リリースノート 1.6.2 のアドバイザリー

Network Observability Operator 1.6.2 リリースのアドバイザリーを確認できます。

2024:7074 Network Observability Operator 1.6.2

2.1.25. Network Observability Operator リリースノート 1.6.2 の CVE

Network Observability Operator 1.6.2 リリースの CVE を確認できます。

CVE-2024-24791

2.1.26. Network Observability Operator リリースノート 1.6.2 の修正された問題

Network Observability Operator 1.6.2 リリースで修正された問題を確認できます。

セカンダリーインターフェイスのサポートが追加されたときに、インターフェイスの通知を確
認するために、ネットワークごとの namespace を netlink に登録する作業を複数回繰り返す必
要がありました。同時に、TC とは異なり、TCX フックではインターフェイスがダウンしたと
きにハンドラーを明示的に削除する必要があったため、失敗したハンドラーによってファイル
記述子のリークが発生しました。これで、Pod の作成および削除時にファイル記述子がリーク
しなくなりました。(NETOBSERV-1805)

2.1.27. Network Observability Operator リリースノート 1.6.2 の既知の問題

Network Observability Operator 1.6.2 リリースの既知の問題を確認できます。

コンソールプラグインとの互換性の問題があり、OpenShift Container Platform クラスターの
将来のバージョンに Network Observability をインストールできない可能性がありました。1.6.2
にアップグレードすると、互換性の問題が解決され、Network Observability を期待どおりにイ
ンストールできるようになります。(NETOBSERV-1737)

2.1.28. Network Observability Operator リリースノート 1.6.1 のアドバイザリー

Network Observability Operator 1.6.1 リリースのアドバイザリーを確認できます。

2024:4785 Network Observability Operator 1.6.1

2.1.29. Network Observability Operator リリースノート 1.6.1 の CVE

Network Observability Operator 1.6.1 リリースの CVE を確認できます。

RHSA-2024:4237

RHSA-2024:4212

2.1.30. Network Observability Operator リリースノート 1.6.1 の修正された問題

Network Observability Operator 1.6.1 リリースで修正された問題を確認できます。

以前は、原因や TCP 状態などのパケットドロップに関する情報は、Loki データストアでのみ
入手でき、Prometheus では入手できませんでした。そのため、OpenShift Web コンソールプ
ラグインの 概要 のドロップ統計は、Loki でのみ利用可能でした。この修正により、パケット
ドロップに関する情報もメトリクスに追加されるため、Loki が無効になっているときにドロッ
プ統計を表示できるようになります。(NETOBSERV-1649)

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

23

https://access.redhat.com/errata/RHSA-2024:7074
https://access.redhat.com/security/cve/CVE-2024-24791
https://issues.redhat.com/browse/NETOBSERV-1805
https://issues.redhat.com/browse/NETOBSERV-1737
https://access.redhat.com/errata/RHSA-2024:4785
https://access.redhat.com/errata/RHSA-2024:4237
https://access.redhat.com/errata/RHSA-2024:4212
https://issues.redhat.com/browse/NETOBSERV-1649

eBPF エージェントの PacketDrop 機能が有効になっていて、サンプリングが 1 より大きい値
に設定されていると、報告されたドロップされたバイトとドロップされたパケットではサンプ
リング設定が無視されます。これは、ドロップを見逃さないように意図的に行われたものです
が、副作用として、ドロップなしの報告率と比較したドロップの報告率が偏ってしまいまし
た。たとえば、1:1000 などの非常に高いサンプリングレートでは、コンソールプラグインから
見ると、ほぼすべてのトラフィックがドロップされているように見える可能性があります。こ
の修正により、ドロップされたバイトとパケットでサンプリング設定が尊重されるようになり
ました。(NETOBSERV-1676)

以前は、最初にインターフェイスが作成されてから eBPF エージェントがデプロイされると、
SR-IOV セカンダリーインターフェイスが検出されませんでした。これは、最初にエージェン
トがデプロイされ、その後 SR-IOV インターフェイスが作成された場合にのみ検出されまし
た。この修正により、デプロイメントの順序に関係なく SR-IOV セカンダリーインターフェイ
スが検出されるようになりました。(NETOBSERV-1697)

以前は、Loki が無効になっていると、関連機能が有効になっていない場合でも、OpenShift
Web コンソールの Topology ビューで、ネットワークトポロジーダイアグラムの横にあるスラ
イダーに Cluster と Zone の集約オプションが表示されていました。この修正により、スライ
ダーには有効な機能に応じたオプションのみが表示されるようになりました。(NETOBSERV-
1705)

以前は、Loki が無効になっていて、OpenShift Web コンソールが初めて読み込まれる
と、Request failed with status code 400 Loki is disabled エラーが発生していました。この
修正により、エラーは発生しなくなりました。(NETOBSERV-1706)

以前は、OpenShift Web コンソールの トポロジー ビューで、任意のグラフノードの横にある
Step into アイコンをクリックすると、選択したグラフノードにフォーカスを設定するために必
要なフィルターが適用されず、OpenShift Web コンソールに Topology ビューの広いビューが
表示されていました。この修正により、フィルターが正しく設定され、トポロジー が効果的に
絞り込まれます。この変更の一環として、ノード 上の Step into アイコンをクリックする
と、Namespaces スコープではなく Resource スコープに移動するようになりました。
(NETOBSERV-1720)

以前は、Loki が無効になっていると、Scope が Owner に設定されている OpenShift Web コン
ソールの Topology ビューで、任意のグラフノードの横にある Step into アイコンをクリック
すると、Scope が Resource に移動しましたが、これは Loki なしでは利用できないため、エ
ラーメッセージが表示されていました。この修正により、Loki が無効になっていると、Owner
スコープで Step into アイコンが非表示になるため、このシナリオは発生しなくなります。
(NETOBSERV-1721)

以前は、Loki が無効になっている場合に、グループを設定すると OpenShift Web コンソールの
Topology ビューにエラーが表示されましたが、その後スコープが変更されたため、グループ
が無効になりました。この修正により、無効なグループが削除され、エラーが防止されます。
(NETOBSERV-1722)

YAML ビュー ではなく、OpenShift Web コンソールの Form view から FlowCollector リソー
スを作成すると、agent.ebpf.metrics.enable および
processor.subnetLabels.openShiftAutoDetect の設定が Web コンソールによって誤って管理
されていました。これらの設定は、Form view ではなく、YAML view でのみ無効にできます。
混乱を避けるため、これらの設定は Form view から削除されました。これらは引き続き YAML
view でアクセスできます。(NETOBSERV-1731)

以前は、eBPF エージェントは、SIGTERM 信号によるクラッシュなど、予期しないクラッシュ
の前にインストールされたトラフィック制御フローをクリーンアップできませんでした。これ
により、古いものが削除されなかったため、同じ名前のトラフィック制御フローフィルターが

OpenShift Container Platform 4.18 Network Observability

24

https://issues.redhat.com/browse/NETOBSERV-1676
https://issues.redhat.com/browse/NETOBSERV-1697
https://issues.redhat.com/browse/NETOBSERV-1705
https://issues.redhat.com/browse/NETOBSERV-1706
https://issues.redhat.com/browse/NETOBSERV-1720
https://issues.redhat.com/browse/NETOBSERV-1721
https://issues.redhat.com/browse/NETOBSERV-1722
https://issues.redhat.com/browse/NETOBSERV-1731

複数作成されました。この修正により、エージェントの起動時に、新しいトラフィック制御フ
ローがインストールされる前に、以前にインストールされたトラフィック制御フローがすべて
クリーンアップされるようになります。(NETOBSERV-1732)

以前は、カスタムサブネットラベルを設定し、OpenShift サブネットの自動検出を有効にした
ままにすると、OpenShift サブネットがカスタムサブネットよりも優先され、クラスターサブ
ネット内のカスタムラベルの定義が妨げられていました。この修正により、カスタム定義され
たサブネットが優先され、クラスター内のサブネットにカスタムラベルを定義できるようにな
ります。(NETOBSERV-1734)

2.1.31. Network Observability Operator リリースノート 1.6.0 のアドバイザリー

Network Observability Operator 1.6.0 リリースのアドバイザリーを確認できます。

Network Observability Operator 1.6.0

2.1.32. Network Observability Operator 1.6.0 の新機能と機能拡張

Network Observability Operator 1.6.0 の次の新機能と機能拡張を確認できます。

2.1.32.1. Loki を使用しない場合の Network Observability Operator の使用の強化

Network Observability Operator を使用すると、Prometheus メトリクスを使用でき、ストレージのため
に Loki に依存する度合いが低下します。

詳細は以下を参照してください。

Loki を使用しない Network Observability

2.1.32.2. カスタムメトリクス API

FlowMetrics API を使用して、フローログデータからカスタムメトリクスを作成できます。フローログ
データを Prometheus ラベルと組み合わせて使用することで、ダッシュボード上のクラスター情報をカ
スタマイズできます。識別する必要があるフローおよびメトリクスのサブネットに、カスタムラベルを
追加できます。この機能拡張により、新しいラベル SrcSubnetLabel と DstSubnetLabel を使用し
て、フローログとメトリクスの両方に存在する外部トラフィックをより簡単に識別することもできま
す。外部トラフィックがある場合、これらのフィールドが空になるため、外部トラフィックを識別でき
ます。

詳細は以下を参照してください。

カスタムメトリクス

FlowMetric API リファレンス

2.1.32.3. eBPF のパフォーマンスの強化

次の更新により、CPU とメモリーの面で eBPF エージェントのパフォーマンスが向上しました。

eBPF エージェントが、TC の代わりに TCX Webhook を使用するようになりました。

NetObserv/Health ダッシュボードに、eBPF メトリクスを表示する新しいセクションがあり
ます。

eBPF エージェントがフローをドロップしたときに、新しい eBPF メトリクスに基づいてア

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

25

https://issues.redhat.com/browse/NETOBSERV-1732
https://issues.redhat.com/browse/NETOBSERV-1734
https://access.redhat.com/errata/RHSA-2024:3868

eBPF エージェントがフローをドロップしたときに、新しい eBPF メトリクスに基づいてア
ラートが通知されます。

重複したフローが削除されたため、Loki のストレージ需要が大幅に減少しました。ネットワー
クインターフェイス別の重複した複数のフローが、関連する一連のネットワークインターフェ
イスを含む重複排除された 1 つのフローになりました。

重要

重複したフローの更新により、Network Traffic テーブルの Interface および Interface
Direction フィールドの名前が Interfaces および Interface Directions に変更されまし
た。そのため、これらのフィールドを使用するブックマーク済みの クイックフィルター
のクエリーを、interfaces および ifdirections に更新する必要があります。

詳細は以下を参照してください。

eBPF エージェントアラートの使用

Network Observability メトリクスのダッシュボード

ネットワークトラフィックのフィルタリング

2.1.32.4. eBPF 収集のルールベースのフィルタリング

ルールベースのフィルタリングを使用して、作成されるフローの量を削減できます。このオプションを
有効にすると、eBPF エージェント統計の Netobserv/Health ダッシュボードに、Filtered flows rate
ビューが表示されます。

詳細は以下を参照してください。

eBPF フローのルールフィルター

2.1.33. Network Observability Operator 1.6.0 で修正された問題

Network Observability Operator 1.6.0 で修正された次の問題を確認できます。

以前は、FlowMetrics API 作成用の Operator Lifecycle Manager (OLM) フォームに、
OpenShift Container Platform ドキュメントへの無効なリンクが表示されていました。このリ
ンクの参照先が有効なページに更新されました。(NETOBSERV-1607)

以前は、Operator Hub の Network Observability Operator の説明に、ドキュメントへの無効な
リンクが表示されていました。この修正により、このリンクは復元されます。(NETOBSERV-
1544)

以前は、Loki が無効になっていて Loki Mode が LokiStack に設定されていても、または Loki
の手動 TLS 設定が設定されていても、Network Observability Operator が Loki CA 証明書の読
み取りを試行していました。この修正により、Loki が無効になっている場合、Loki 設定に設定
があっても Loki 証明書が読み取られなくなりました。(NETOBSERV-1647)

以前は、Network Observability Operator の oc must-gather プラグインが amd64 アーキテク
チャーでしか動作せず、他のすべてのアーキテクチャーでは失敗していました。これは、プラ
グインが oc バイナリーに amd64 を使用していたためです。現在、Network Observability
Operator oc の must-gather プラグインは、あらゆるアーキテクチャープラットフォームでロ
グを収集します。

以前は、not equal to を使用して IP アドレスをフィルタリングすると、Network Observability

OpenShift Container Platform 4.18 Network Observability

26

https://issues.redhat.com/browse/NETOBSERV-1607
https://issues.redhat.com/browse/NETOBSERV-1544
https://issues.redhat.com/browse/NETOBSERV-1647

以前は、not equal to を使用して IP アドレスをフィルタリングすると、Network Observability
Operator がリクエストエラーを返していました。現在は、IP アドレスと範囲が equal の場合
でも not equal to の場合でも、IP フィルタリングが機能します。(NETOBSERV-1630)

以前は、ユーザーが管理者でなかった場合、エラーメッセージが Web コンソールの Network
Traffic ビューで選択したタブと一致しませんでした。現在は、user not admin エラーがどの
タブにも表示されるようになり、表示が改善されました。(NETOBSERV-1621)

2.1.34. Network Observability Operator 1.6.0 の既知の問題

Network Observability Operator 1.6.0 の次の既知の問題を確認できます。

eBPF エージェントの PacketDrop 機能が有効になっていて、サンプリングが 1 より大きい値
に設定されている場合、ドロップされたバイト数とドロップされたパケット数の報告で、サン
プリング設定が無視されます。これはドロップを見逃さないように意図的に行われますが、副
作用として、ドロップが報告された割合と非ドロップが報告された割合が偏ってしまいます。
たとえば、1:1000 などの非常に高いサンプリングレートでは、コンソールプラグインから見る
と、ほぼすべてのトラフィックがドロップされているように見える可能性があります。
(NETOBSERV-1676)

Overview タブの Manage panels ウィンドウで、total、bar、donut、または line でフィルタ
リングしても、結果が表示されません。(NETOBSERV-1540)

SR-IOV セカンダリーインターフェイスを作成してから eBPF エージェントをデプロイした場
合、インターフェイスは検出されません。エージェントをデプロイしてから SR-IOV インター
フェイスを作成した場合にのみ検出されます。(NETOBSERV-1697)

Loki が無効になっている場合、OpenShift Web コンソールの Topology ビューで、関連機能が
有効になっていない場合でも、ネットワークトポロジー図の横にあるスライダーに Cluster お
よび Zone 集計オプションが常に表示されます。これらのスライダーオプションを無視する以
外に、具体的な回避策はありません。(NETOBSERV-1705)

Loki が無効になっているときに、OpenShift Web コンソールが初めて読み込まれる
と、Request failed with status code 400 Loki is disabled というエラーが表示される場合が
あります。回避策としては、Topology タブと Overview タブをクリックするなど、Network
Traffic ページのコンテンツを何度か切り替える方法があります。エラーが表示されなくなるは
ずです。(NETOBSERV-1706)

2.1.35. Network Observability Operator 1.5.0 アドバイザリー

Network Observability Operator 1.5 リリースの次のアドバイザリーを参照できます。

Network Observability Operator 1.5.0

2.1.36. Network Observability Operator 1.5.0 の新機能と機能拡張

Network Observability Operator 1.5 リリースの次の新機能と機能拡張を確認できます。

2.1.36.1. DNS 追跡の機能拡張

1.5 では、UDP に加えて TCP プロトコルもサポートされるようになりました。また、新しいダッシュ
ボードが、Network Traffic ページの Overview ビューに追加されました。

詳細は以下を参照してください。

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

27

https://issues.redhat.com/browse/NETOBSERV-1630
https://issues.redhat.com/browse/NETOBSERV-1621
https://issues.redhat.com/browse/NETOBSERV-1676
https://issues.redhat.com/browse/NETOBSERV-1540
https://issues.redhat.com/browse/NETOBSERV-1697
https://issues.redhat.com/browse/NETOBSERV-1705
https://issues.redhat.com/browse/NETOBSERV-1706
https://access.redhat.com/errata/RHSA-2024:0853

DNS 追跡の設定

DNS 追跡の使用

2.1.36.2. ラウンドトリップタイム (RTT)

fentry/tcp_rcv_established Extended Berkeley Packet Filter (eBPF) フックポイントから取得した TCP
ハンドシェイクのラウンドトリップタイム (RTT) を使用して、平滑化されたラウンドトリップタイム
(SRTT) を読み取り、ネットワークフローを分析できます。Web コンソールの Overview、Network
Traffic、および Topology ページで、ネットワークトラフィックを監視し、RTT メトリクス、フィル
タリング、およびエッジラベルを使用してトラブルシューティングを行うことができます。

詳細は以下を参照してください。

RTT の概要

RTT の操作

2.1.36.3. メトリクス、ダッシュボード、アラートの機能拡張

Observe → Dashboards → NetObserv の Network Observability メトリクスダッシュボードに、
Prometheus アラートの作成に使用できる新しいメトリクスタイプがあります。利用可能なメトリクス
を includeList 仕様で定義できるようになりました。以前のリリースでは、これらのメトリクスは
ignoreTags 仕様で定義されていました。

これらのメトリクスの完全なリストは、以下を参照してください。

Network Observability メトリクス

2.1.36.4. Loki を使用していない場合の Network Observability の向上

Loki を使用していない場合でも、DNS、パケットドロップ、および RTT メトリクスを使用して
Netobserv ダッシュボードの Prometheus アラートを作成できます。旧バージョンの Network
Observability 1.4 では、これらのメトリクスは、Network Traffic、Overview、および Topology
ビューでのクエリーと分析にのみ使用できました。これらのビューを使用するには、Loki が必要でし
た。

詳細は以下を参照してください。

Network Observability メトリクス

2.1.36.5. アベイラビリティーゾーン

クラスターのアベイラビリティーゾーンに関する情報を収集するように FlowCollector リソースを設定
できます。この設定では、ノードに適用される topology.kubernetes.io/zone ラベル値を使用してネッ
トワークフローデータをエンリッチします。

詳細は以下を参照してください。

アベイラビリティーゾーンの使用

2.1.36.6. 主な機能拡張

Network Observability Operator の 1.5 リリースでは、OpenShift Container Platform Web コンソールプ
ラグインと Operator 設定が改良され、新機能が追加されています。

OpenShift Container Platform 4.18 Network Observability

28

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

2.1.36.7. パフォーマンスの強化

Kafka 使用時の eBPF のパフォーマンスを向上させるため
に、spec.agent.ebpf.kafkaBatchSize のデフォルトが 10MB から 1MB に変更されました。

重要

既存のインストールからアップグレードする場合、この新しい値は自動的に設定
されません。アップグレード後に eBPF Agent のメモリー消費のパフォーマンス
リグレッションが確認された場合は、kafkaBatchSize を減らして別の値にする
ことを検討してください。

2.1.36.8. Web コンソールの機能拡張:

DNS と RTT の Overview ビューに新しいパネル (Min、Max、P90、P99) が追加されました。

新しいパネル表示オプションが追加されました。

1 つのパネルに焦点を当て、他のパネルの表示を小さくする。

グラフの種類を切り替える。

Top と Overall を表示する。

Custom time range ウィンドウに収集遅延の警告が表示されます。

Manage panels および Manage columns ポップアップウィンドウの内容の視認性が向上しまし
た。

Egress QoS の Differentiated Services Code Point (DSCP) フィールドを使用して、Web コン
ソールの Network Traffic ページの QoS DSCP をフィルタリングできます。

2.1.36.9. 設定の機能拡張

spec.loki.mode 仕様を LokiStack モードにすると、URL、TLS、クラスターロール、クラス
ターロールバインディング、および authToken 値を自動的に設定され、インストールが簡素化
されます。Manual モードを使用すると、これらの設定をより詳細に制御できます。

API バージョンが flows.netobserv.io/v1beta1 から flows.netobserv.io/v1beta2 に変更されま
す。

2.1.37. Network Observability Operator 1.5.0 で修正された問題

Network Observability Operator 1.5 リリースで修正された次の問題を確認できます。

以前は、コンソールプラグインの自動登録が無効になっている場合、Web コンソールインター
フェイスでコンソールプラグインを手動で登録することができませんでした。FlowCollector
リソースの spec.console.register 値が false に設定されている場合、Operator がプラグイン
の登録をオーバーライドして消去します。この修正により、spec.console.register 値を false
に設定しても、コンソールプラグインの登録または登録削除に影響しなくなりました。その結
果、プラグインを手動で安全に登録できるようになりました。(NETOBSERV-1134)

以前は、デフォルトのメトリクス設定を使用すると、NetObserv/Health ダッシュボードに
Flows Overhead という名前の空のグラフが表示されていました。このメトリクスを使用する
には、ignoreTags リストから "namespaces-flows" と "namespaces" を削除する必要がありま

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

29

https://issues.redhat.com/browse/NETOBSERV-1134

した。この修正により、デフォルトのメトリクス設定を使用する場合にこのメトリクスが表示
されるようになります。(NETOBSERV-1351)

以前は、eBPF Agent を実行しているノードが、特定のクラスター設定で解決されませんでし
た。これにより連鎖的な影響が生じ、最終的にトラフィックメトリクスの一部を提供できなく
なりました。この修正により、eBPF Agent のノード IP が、Pod のステータスから推測され
て、Operator によって安全に提供されるようになりました。これにより、欠落していたメトリ
クスが復元されました。(NETOBSERV-1430)

以前は、Loki Operator の Loki エラー 'Input size too long' に、問題をトラブルシューティング
するための追加情報が含まれていませんでした。この修正により、Web コンソールのエラーの
隣にヘルプが直接表示され、詳細なガイダンスへの直接リンクが表示されるようになりまし
た。(NETOBSERV-1464)

以前は、コンソールプラグインの読み取りタイムアウトが 30 秒に強制的に指定されていまし
た。FlowCollector v1beta2 API の更新により、この値を、Loki Operator の queryTimeout 制
限に基づいて更新するように spec.loki.readTimeout 仕様を設定できるようになりました。
(NETOBSERV-1443)

以前は、Operator バンドルが、CSV アノテーションによってサポートされている機能の一部
(features.operators.openshift.io/… ​ など) を期待どおりに表示しませんでした。この修正によ
り、これらのアノテーションが期待どおりに CSV に設定されるようになりました。
(NETOBSERV-1305)

以前は、調整中に FlowCollector ステータスが DeploymentInProgress 状態と Ready 状態の
間で変動することがありました。この修正により、基礎となるコンポーネントがすべて完全に
準備完了した場合にのみ、ステータスが Ready になります。(NETOBSERV-1293)

2.1.38. Network Observability Operator 1.5.0 の既知の問題

Network Observability Operator 1.5 リリースの次の既知の問題を確認できます。

Web コンソールにアクセスしようとすると、OCP 4.14.10 のキャッシュの問題によ
り、Observe ビューにアクセスできなくなります。Web コンソールに Failed to get a valid
plugin manifest from /api/plugins/monitoring-plugin/ というエラーメッセージが表示されま
す。推奨される回避策は、クラスターを最新のマイナーバージョンに更新することです。この
回避策が機能しない場合は、こちらの Red Hat ナレッジベースの記事 (NETOBSERV-1493) で
説明されている回避策を適用する必要があります。

Network Observability Operator の 1.3.0 リリース以降、Operator をインストールすると、警告
カーネル taint が表示されます。このエラーの理由は、Network Observability eBPF エージェン
トに、HashMap テーブル全体を事前割り当てするメモリー制約があることです。Operator
eBPF エージェントは BPF_F_NO_PREALLOC フラグを設定し、HashMap がメモリーを大幅
に使用している際に事前割り当てが無効化されるようにします。

2.1.39. Network Observability Operator 1.4.2 のアドバイザリー

Network Observability Operator 1.4.2 では、次のアドバイザリーを利用できます。

2023:6787 Network Observability Operator 1.4.2

2.1.40. Network Observability Operator1.4.2 の CVE

Network Observability Operator 1.4.2 リリースでは、次の CVE を確認できます。

OpenShift Container Platform 4.18 Network Observability

30

https://issues.redhat.com/browse/NETOBSERV-1351
https://issues.redhat.com/browse/NETOBSERV-1430
https://issues.redhat.com/browse/NETOBSERV-1464
https://issues.redhat.com/browse/NETOBSERV-1443
https://issues.redhat.com/browse/NETOBSERV-1305
https://issues.redhat.com/browse/NETOBSERV-1293
https://access.redhat.com/solutions/7052408
https://issues.redhat.com/browse/NETOBSERV-1493
https://access.redhat.com/errata/RHSA-2023:6787

2023-39325

2023-44487

2.1.41. Network Observability Operator 1.4.1 のアドバイザリー

Network Observability Operator 1.4.1 の次のアドバイザリーを確認できます。

2023:5974 Network Observability Operator 1.4.1

2.1.42. Network Observability Operator リリース 1.4.1 の CVE

Network Observability Operator 1.4.1 リリースでは、次の CVE を確認できます。

2023-44487

2023-39325

2023-29406

2023-29409

2023-39322

2023-39318

2023-39319

2023-39321

2.1.43. Network Observability Operator リリースノート 1.4.1 の修正された問題

Network Observability Operator 1.4.1 リリースで修正された次の問題を確認できます。

1.4 には、ネットワークフローデータを Kafka に送信するときに既知の問題がありました。
Kafka メッセージキーが無視されたため、接続の追跡でエラーが発生していました。現在、
キーはパーティショニングに使用されるため、同じ接続からの各フローが同じプロセッサーに
送信されます。(NETOBSERV-926)

1.4 で、同じノード上で実行されている Pod 間のフローを考慮するために、Inner 方向のフロー
が導入されました。Inner 方向のフローは、フローから派生して生成される Prometheus メト
リクスでは考慮されなかったため、バイトレートとパケットレートが過小評価されていまし
た。現在は派生メトリクスに Inner 方向のフローが含まれ、正しいバイトレートとパケット
レートが提供されるようになりました。(NETOBSERV-1344)

2.1.44. ネットワーク可観測性リリースノート 1.4.0 のアドバイザリー

Network Observability Operator 1.4.0 リリースの次のアドバイザリーを確認できます。

RHSA-2023:5379 Network Observability Operator 1.4.0

2.1.45. ネットワーク可観測性リリースノート 1.4.0 の新機能と機能拡張

Network Observability Operator 1.4.0 リリースでは、次の新機能と機能拡張を確認できます。

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

31

https://access.redhat.com/security/cve/CVE-2023-39325
https://access.redhat.com/security/cve/CVE-2023-44487
https://access.redhat.com/errata/RHSA-2023:5974
https://access.redhat.com/security/cve/cve-2023-44487
https://access.redhat.com/security/cve/cve-2023-39325
https://access.redhat.com/security/cve/cve-2023-29406
https://access.redhat.com/security/cve/CVE-2023-29409
https://access.redhat.com/security/cve/cve-2023-39322
https://access.redhat.com/security/cve/cve-2023-39318
https://access.redhat.com/security/cve/cve-2023-39319
https://access.redhat.com/security/cve/cve-2023-39321
https://issues.redhat.com/browse/NETOBSERV-926
https://issues.redhat.com/browse/NETOBSERV-1344
https://access.redhat.com/errata/RHSA-2023:5379

2.1.45.1. 主な機能拡張

Network Observability Operator の 1.4 リリースでは、OpenShift Container Platform Web コンソールプ
ラグインと Operator 設定が改良され、新機能が追加されています。

2.1.45.2. Web コンソールの機能拡張:

Query Options に、重複したフローを表示するかどうかを選択するための Duplicate flows
チェックボックスが追加されました。

送信元トラフィックおよび宛先トラフィックを、 One-way、 Back-and-forth、Swap
のフィルターでフィルタリングできるようになりました。

Observe → Dashboards → NetObserv、および NetObserv / Health の Network Observability
メトリクスダッシュボードは次のように変更されます。

NetObserv ダッシュボードには、ノード、namespace、およびワークロードごとに、上位
のバイト、送信パケット、受信パケットが表示されます。フローグラフはこのダッシュ
ボードから削除されました。

NetObserv/Health ダッシュボードには、フローのオーバーヘッド以外にも、ノード、
namespace、ワークロードごとの最大フローレートが表示されます。

インフラストラクチャーとアプリケーションのメトリクスは、namespace とワークロード
の分割ビューで表示されます。

詳細は以下を参照してください。

Network Observability メトリクスのダッシュボード

クイックフィルター

2.1.45.3. 設定の機能拡張

証明書設定など、設定された ConfigMap または Secret 参照に対して異なる namespace を指定
できるオプションが追加されました。

spec.processor.clusterName パラメーターが追加されたため、クラスターの名前がフロー
データに表示されるようになりました。これは、マルチクラスターコンテキストで役立ちま
す。OpenShift Container Platform を使用する場合は、自動的に決定されるように空のままに
します。

詳細は以下を参照してください。

Flow Collector のサンプルリソース

Flow Collector API リファレンス

2.1.45.4. Loki を使用しない Network Observability

Network Observability Operator は、Loki なしでも機能し、使用できるようになりました。Loki がイン
ストールされていない場合は、フローを KAFKA または IPFIX 形式にエクスポートし、Network
Observability メトリクスダッシュボードに入力することのみ可能です。

詳細は以下を参照してください。

OpenShift Container Platform 4.18 Network Observability

32

Loki を使用しない Network Observability

2.1.45.5. DNS 追跡

1.4 では、Network Observability Operator は eBPF トレースポイントフックを使用して DNS 追跡を有
効にします。Web コンソールの Network Traffic ページと Overview ページで、ネットワークの監視、
セキュリティー分析の実施、DNS 問題のトラブルシューティングを行なえます。

詳細は以下を参照してください。

DNS 追跡の設定

DNS 追跡の使用

2.1.45.6. SR-IOV のサポート

Single Root I/O Virtualization (SR-IOV) デバイスを使用して、クラスターからトラフィックを収集でき
るようになりました。

詳細は以下を参照してください。

SR-IOV インターフェイストラフィックのモニタリングの設定

2.1.45.7. IPFIX エクスポーターのサポート

eBPF エンリッチ化ネットワークフローを IPFIX コレクターにエクスポートできるようになりました。

詳細は以下を参照してください。

エンリッチされたネットワークフローデータのエクスポート

2.1.45.8. パケットドロップ

Network Observability Operator の 1.4 リリースでは、eBPF トレースポイントフックを使用してパケッ
トドロップの追跡を有効にできます。パケットドロップの原因を検出して分析し、ネットワークパ
フォーマンスを最適化するための決定を行えるようになりました。OpenShift Container Platform 4.14
以降では、ホストのドロップと OVS のドロップの両方が検出されます。OpenShift Container Platform
4.13 では、ホストのドロップのみが検出されます。

詳細は以下を参照してください。

パケットドロップ追跡の設定

パケットドロップの使用

2.1.45.9. s390x アーキテクチャーのサポート

Network Observability Operator が、s390x アーキテクチャー上で実行できるようになりました。以前
は、amd64、ppc64le、または arm64 で実行されていました。

2.1.46. ネットワーク可観測性リリースノート 1.4.0 で削除された機能

Network Observability Operator 1.4.0 リリースでは、次の削除された機能を確認できます。

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

33

2.1.46.1. チャネルの削除

最新の Operator 更新を受信するには、チャネルを v1.0.x から stable に切り替える必要がありま
す。v1.0.x チャネルは削除されました。

2.1.47. ネットワーク可観測性リリースノート 1.4.0 の修正された問題

Network Observability Operator 1.4.0 リリースで修正された次の問題を確認できます。

これまで、Network Observability によってエクスポートされた Prometheus メトリクスは、重
複する可能性のあるネットワークフローから計算されていました。その結果、関連するダッ
シュボード (Observe → Dashboards) でレートが 2 倍になる可能性がありました。ただ
し、Network Traffic ビューのダッシュボードは影響を受けていませんでした。現在は、メトリ
クスの計算前にネットワークフローがフィルタリングされて重複が排除されるため、ダッシュ
ボードに正しいトラフィックレートが表示されます。(NETOBSERV-1131)

以前は、Network Observability Operator エージェントは、Multus または SR-IOV (デフォルト
以外のネットワーク namespace) で設定されている場合、ネットワークインターフェイス上の
トラフィックをキャプチャーできませんでした。現在は、利用可能なすべてのネットワーク
namespace が認識され、フローのキャプチャーに使用されるため、SR-IOV のトラフィックを
キャプチャーできます。トラフィックを収集する場合は、FlowCollector および
SRIOVnetwork カスタムリソースで必要な設定があります。(NETOBSERV-1283)

以前は、Operators → Installed Operators に表示される Network Observability Operator の詳
細の FlowCollector Status フィールドで、デプロイメントの状態に関する誤った情報が報告さ
れることがありました。ステータスフィールドには、改善されたメッセージと適切な状態が表
示されるようになりました。イベントの履歴は、イベントの日付順に保存されます。
(NETOBSERV-1224)

以前は、ネットワークトラフィックの負荷が急増すると、特定の eBPF Pod が OOM によって
強制終了され、CrashLoopBackOff 状態になりました。現在は、eBPF agent のメモリーフッ
トプリントが改善されたため、Pod が OOM によって強制終了されて CrashLoopBackOff 状
態に遷移することはなくなりました。(NETOBSERV-975)

以前は、processor.metrics.tls が PROVIDED に設定されている場合、insecureSkipVerify オ
プションの値が強制的に true に設定されていました。現在は、insecureSkipVerify を true ま
たは false に設定し、必要に応じて CA 証明書を提供できるようになりました。(NETOBSERV-
1087)

2.1.48. ネットワーク可観測性リリースノート 1.4.0 の既知の問題

Network Observability Operator 1.4.0 リリースでは、次の既知の問題を確認できます。

Network Observability Operator 1.2.0 リリース以降では、Loki Operator 5.6 を使用すると、
Loki 証明書の変更が定期的に flowlogs-pipeline Pod に影響を及ぼすため、フローが Loki に書
き込まれず、ドロップされます。この問題はしばらくすると自動的に修正されますが、Loki 証
明書の移行中に一時的なフローデータの損失が発生します。この問題は、120 以上のノードを
内包する大規模環境でのみ発生します。(NETOBSERV-980)

現在、spec.agent.ebpf.features に DNSTracking が含まれている場合、DNS パケットが大き
いと、eBPF agent が最初のソケットバッファー (SKB) セグメント外で DNS ヘッダーを探す必
要があります。これをサポートするには、eBPF agent の新しいヘルパー関数を実装する必要が
あります。現在、この問題に対する回避策はありません。(NETOBSERV-1304)

現在、spec.agent.ebpf.features に DNSTracking が含まれている場合、DNS over TCP パケッ

OpenShift Container Platform 4.18 Network Observability

34

https://issues.redhat.com/browse/NETOBSERV-1131
https://issues.redhat.com/browse/NETOBSERV-1283
https://issues.redhat.com/browse/NETOBSERV-1224
https://issues.redhat.com/browse/NETOBSERV-975
https://issues.redhat.com/browse/NETOBSERV-1087
https://issues.redhat.com/browse/NETOBSERV-980
https://issues.redhat.com/browse/NETOBSERV-1304

トを扱うときに、eBPF agent が最初の SKB セグメント外で DNS ヘッダーを探す必要がありま
す。これをサポートするには、eBPF agent の新しいヘルパー関数を実装する必要があります。
現在、この問題に対する回避策はありません。(NETOBSERV-1245)

現在、KAFKA デプロイメントモデルを使用する場合、会話の追跡が設定されていると会話イ
ベントが Kafka コンシューマー間で重複する可能性があり、その結果、会話の追跡に一貫性が
なくなり、ボリュームデータが不正確になる可能性があります。そのため、deploymentModel
が KAFKA に設定されている場合は、会話の追跡を設定することは推奨されません。
(NETOBSERV-926)

現在、processor.metrics.server.tls.type が PROVIDED 証明書を使用するように設定されて
いる場合、Operator の状態が不安定になり、パフォーマンスとリソース消費に影響を与える可
能性があります。この問題が解決されるまでは PROVIDED 証明書を使用せず、代わりに自動
生成された証明書を使用し、processor.metrics.server.tls.type を AUTO に設定することが推
奨されます。(NETOBSERV-1293

Network Observability Operator の 1.3.0 リリース以降、Operator をインストールすると、警告
カーネル taint が表示されます。このエラーの理由は、Network Observability eBPF エージェン
トに、HashMap テーブル全体を事前割り当てするメモリー制約があることです。Operator
eBPF エージェントは BPF_F_NO_PREALLOC フラグを設定し、HashMap がメモリーを大幅
に使用している際に事前割り当てが無効化されるようにします。

2.1.49. Network Observability Operator 1.3.0 のアドバイザリー

Network Observability Operator 1.3.0 リリースでは、次のアドバイザリーを確認できます。

RHSA-2023:3905 Network Observability Operator 1.3.0

2.1.50. Network Observability Operator 1.3.0 の新機能と機能拡張

Network Observability Operator 1.3.0 リリースでは、次の新機能と機能拡張を確認できます。

2.1.50.1. Network Observability におけるマルチテナンシー

システム管理者は、Loki に保存されているフローへの個々のユーザーアクセスまたはグループ
アクセスを許可および制限できます。詳細は、「Network Observability におけるマルチテナン
シー」を参照してください。

2.1.50.2. フローベースのメトリクスダッシュボード

このリリースでは、OpenShift Container Platform クラスター内のネットワークフローの概要
を表示する新しいダッシュボードが追加されています。詳細は、「Network Observability メト
リクスのダッシュボード」を参照してください。

2.1.50.3. must-gather ツールを使用したトラブルシューティング

Network Observability Operator に関する情報を、トラブルシューティングで使用する must-
gather データに追加できるようになりました。詳細は、「Network Observability の must-
gather」を参照してください。

2.1.50.4. 複数のアーキテクチャーに対するサポートを開始

Network Observability Operator は、amd64、ppc64le、または arm64 アーキテクチャー上で
実行できるようになりました。以前は、amd64 上でのみ動作しました。

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

35

https://issues.redhat.com/browse/NETOBSERV-1245
https://issues.redhat.com/browse/NETOBSERV-926
https://issues.redhat.com/browse/NETOBSERV-1293)
https://access.redhat.com/errata/RHSA-2023:3905

2.1.51. Network Observability Operator 1.3.0 の非推奨機能

Network Observability Operator 1.3.0 リリースでは、次の非推奨機能を確認できます。

2.1.51.1. チャネルの非推奨化

今後の Operator 更新を受信するには、チャネルを v1.0.x から stable に切り替える必要がありま
す。v1.0.x チャネルは非推奨となり、次のリリースで削除される予定です。

2.1.51.2. 非推奨の設定パラメーターの設定

Network Observability Operator 1.3 のリリースでは、spec.Loki.authToken HOST 設定が非推奨になり
ました。Loki Operator を使用する場合、FORWARD 設定のみを使用する必要があります。

2.1.52. Network Observability Operator 1.3.0 で修正された問題

Network Observability Operator 1.3.0 リリースで修正された次の問題を確認できます。

以前は、Operator が CLI からインストールされた場合、Cluster Monitoring Operator がメトリ
クスを読み取るために必要な Role と RoleBinding が期待どおりにインストールされませんで
した。この問題は、Operator が Web コンソールからインストールされた場合には発生しませ
んでした。現在は、どちらの方法で Operator をインストールしても、必要な Role と
RoleBinding がインストールされます。(NETOBSERV-1003)

バージョン 1.2 以降、Network Observability Operator は、フローの収集で問題が発生した場合
にアラートを生成できます。以前は、バグのため、アラートを無効にするための関連設定であ
る spec.processor.metrics.disableAlerts が期待どおりに動作せず、効果がない場合がありま
した。現在、この設定は修正され、アラートを無効にできるようになりました。
(NETOBSERV-976)

以前は、Network Observability の spec.loki.authToken が DISABLED に設定されている場
合、kubeadmin クラスター管理者のみがネットワークフローを表示できました。他のタイプの
クラスター管理者は認可エラーを受け取りました。これで、クラスター管理者は誰でもネット
ワークフローを表示できるようになりました。(NETOBSERV-972)

以前は、バグが原因でユーザーは spec.consolePlugin.portNaming.enable を false に設定で
きませんでした。現在は、これを false に設定すると、ポートからサービスへの名前変換を無
効にできます。(NETOBSERV-971)

以前は、設定が間違っていたため、コンソールプラグインが公開するメトリクスは、Cluster
Monitoring Operator (Prometheus) によって収集されませんでした。現在は設定が修正され、
コンソールプラグインメトリクスが正しく収集され、OpenShift Container Platform Web コン
ソールからアクセスできるようになりました。(NETOBSERV-765)

以前は、FlowCollector で processor.metrics.tls が AUTO に設定されている場合、flowlogs-
pipeline servicemonitor は適切な TLS スキームを許可せず、メトリクスは Web コンソールに
表示されませんでした。この問題は AUTO モードで修正されました。(NETOBSERV-1070)

以前は、Kafka や Loki に使用されるような証明書設定では、namespace フィールドを指定でき
ず、Network Observability がデプロイされているのと同じ namespace に証明書が存在する必
要がありました。さらに、TLS/mTLS で Kafka を使用する場合、ユーザーは eBPF agent Pod
がデプロイされている特権付き namespace に証明書を手動でコピーし、証明書のローテーショ
ンを行う場合などに手動で証明書の更新を管理する必要がありました。現在は、FlowCollector
リソースに証明書の namespace フィールドを追加することで、Network Observability のセッ
トアップが簡素化されています。その結果、ユーザーは Network Observability namespace に

OpenShift Container Platform 4.18 Network Observability

36

https://issues.redhat.com/browse/NETOBSERV-1003
https://issues.redhat.com/browse/NETOBSERV-976
https://issues.redhat.com/browse/NETOBSERV-972
https://issues.redhat.com/browse/NETOBSERV-971
https://issues.redhat.com/browse/NETOBSERV-765
https://issues.redhat.com/browse/NETOBSERV-1070

証明書を手動でコピーすることなく、Loki または Kafka を別の namespace にインストールで
きるようになりました。元の証明書は監視されているため、必要に応じてコピーが自動的に更
新されます。(NETOBSERV-773)

以前は、SCTP、ICMPv4、および ICMPv6 プロトコルは Network Observability エージェント
のカバレッジに含まれていなかったため、ネットワークフローのカバレッジもあまり包括的で
はありませんでした。これらのプロトコルを使用することで、フローカバレッジが向上するこ
とが確認されています。(NETOBSERV-934)

2.1.53. Network Observability Operator 1.3.0 の既知の問題

Network Observability Operator 1.3.0 リリースの問題をトラブルシューティングするために、次の問題
とその回避策 (存在する場合) を確認できます。

FlowCollector で processor.metrics.tls が PROVIDED に設定されている場合、flowlogs-
pipeline servicemonitor は TLS スキームに適用されません。(NETOBSERV-1087)

Network Observability Operator 1.2.0 リリース以降では、Loki Operator 5.6 を使用すると、
Loki 証明書の変更が定期的に flowlogs-pipeline Pod に影響を及ぼすため、フローが Loki に書
き込まれず、ドロップされます。この問題はしばらくすると自動的に修正されますが、Loki 証
明書の移行中に一時的なフローデータの損失が発生します。この問題は、120 以上のノードを
内包する大規模環境でのみ発生します。(NETOBSERV-980)

Operator のインストール時に、警告のカーネル taint が表示される場合があります。このエ
ラーの理由は、Network Observability eBPF エージェントに、HashMap テーブル全体を事前割
り当てするメモリー制約があることです。Operator eBPF エージェントは
BPF_F_NO_PREALLOC フラグを設定し、HashMap がメモリーを大幅に使用している際に事
前割り当てが無効化されるようにします。

2.1.54. ネットワーク可観測性リリースノート 1.2.0 における次回更新に向けての準備

今後のリリースと更新を引き続き受け取るには、Network Observability Operator の更新チャネルを非
推奨の v1.0.x から stable チャネルに切り替えます。

インストールされた Operator のサブスクリプションは、Operator の更新を追跡および受信する更新
チャネルを指定します。Network Observability Operator の 1.2 リリースまでは、利用可能なチャネルは
v1.0.x だけでした。Network Observability Operator の 1.2 リリースでは、更新の追跡および受信用に
stable 更新チャネルが導入されました。今後の Operator 更新を受信するには、チャネルを v1.0.x から
stable に切り替える必要があります。v1.0.x チャネルは非推奨となり、次のリリースで削除される予定
です。

2.1.55. Network Observability Operator 1.2.0 のアドバイザリー

Network Observability Operator 1.2.0 リリースの次のアドバイザリーを参照できます。

RHSA-2023:1817 Network Observability Operator 1.2.0

2.1.56. Network Observability Operator 1.2.0 の新機能と機能拡張

Network Observability Operator 1.2.0 リリースの次の新機能と機能拡張を確認できます。

2.1.56.1. Traffic Flows ビューのヒストグラム

経時的なフローのヒストグラムを表示することを選択できるようになりました。ヒストグラムを使用す

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

37

https://issues.redhat.com/browse/NETOBSERV-773
https://issues.redhat.com/browse/NETOBSERV-934
https://issues.redhat.com/browse/NETOBSERV-1087
https://issues.redhat.com/browse/NETOBSERV-980
https://access.redhat.com/errata/RHSA-2023:1817

経時的なフローのヒストグラムを表示することを選択できるようになりました。ヒストグラムを使用す
ると、Loki クエリー制限に達することなくフロー履歴を可視化できます。詳細は、「ヒストグラムの使
用」を参照してください。

2.1.56.2. 会話の追跡

ログタイプ でフローをクエリーできるようになりました。これにより、同じ会話に含まれるネットワー
クフローをグループ化できるようになりました。詳細は、「会話の使用」を参照してください。

2.1.56.3. Network Observability のヘルスアラート

Network Observability Operator は、書き込み段階でのエラーが原因で flowlogs-pipeline がフローをド
ロップする場合、または Loki 取り込みレート制限に達した場合、自動アラートを作成するようになり
ました。詳細は、「健全性ダッシュボード」を参照してください。

2.1.57. Network Observability Operator1.2.0 のバグ修正

Network Observability Operator 1.2.0 リリースで修正された次の問題を確認できます。

これまでは、FlowCollector 仕様の namespace の値を変更すると、以前の namespace で実行
されている eBPF agent Pod が適切に削除されませんでした。今は、以前の namespace で実行
されている Pod も適切に削除されるようになりました。(NETOBSERV-774)

これまでは、FlowCollector 仕様 (Loki セクションなど) の caCert.name 値を変更しても、
FlowLogs-Pipeline Pod および Console プラグイン Pod が再起動されないため、設定の変更が
認識されませんでした。今は、Pod が再起動されるため、設定の変更が適用されるようになり
ました。(NETOBSERV-772)

これまでは、異なるノードで実行されている Pod 間のネットワークフローは、異なるネット
ワークインターフェイスでキャプチャーされるため、重複が正しく認識されないことがありま
した。その結果、コンソールプラグインに表示されるメトリクスが過大に見積もられていまし
た。現在は、フローが重複として正しく識別され、コンソールプラグインで正確なメトリクス
が表示されます。(NETOBSERV-755)

コンソールプラグインの "レポーター" オプションは、送信元ノードまたは宛先ノードのいずれ
かの観測点に基づいてフローをフィルタリングするために使用されます。以前は、このオプ
ションはノードの観測点に関係なくフローを混合していました。これは、ネットワークフロー
がノードレベルで Ingress または Egress として誤って報告されることが原因でした。これで、
ネットワークフロー方向のレポートが正しくなりました。"レポーター" オプションは、期待ど
おり、ソース観測点または宛先観測点をフィルターします。(NETOBSERV-696)

以前は、フローを gRPC+protobuf リクエストとしてプロセッサーに直接送信するように設定さ
れたエージェントの場合、送信されたペイロードが大きすぎる可能性があり、プロセッサーの
GRPC サーバーによって拒否されました。これは、非常に高負荷のシナリオで、エージェント
の一部の設定でのみ発生しました。エージェントは、次のようなエラーメッセージをログに記
録しました: grpc: max より大きいメッセージを受信しました。その結果、それらのフローに関
する情報が損失しました。現在、gRPC ペイロードは、サイズがしきい値を超えると、いくつ
かのメッセージに分割されます。その結果、サーバーは接続を維持します。(NETOBSERV-
617)

2.1.58. Network Observability Operator1.2.0 の既知の問題

Network Observability Operator 1.2.0 リリースの問題をトラブルシューティングするために、次の問題
とその回避策 (存在する場合) を確認してください。

Loki Operator 5.6 を使用する Network Observability Operator の 1.2.0 リリースでは、Loki 証明

OpenShift Container Platform 4.18 Network Observability

38

https://issues.redhat.com/browse/NETOBSERV-774
https://issues.redhat.com/browse/NETOBSERV-772
https://issues.redhat.com/browse/NETOBSERV-755
https://issues.redhat.com/browse/NETOBSERV-696
https://issues.redhat.com/browse/NETOBSERV-617

Loki Operator 5.6 を使用する Network Observability Operator の 1.2.0 リリースでは、Loki 証明
書の移行が定期的に flowlogs-pipeline Pod に影響を及ぼし、その結果、Loki に書き込まれる
フローではなくフローがドロップされます。この問題はしばらくすると自動的に修正されます
が、依然として Loki 証明書の移行中に一時的なフローデータの損失が発生します。
(NETOBSERV-980)

2.1.59. Network Observability Operator 1.2.0 の主な技術上の変更点

新しい技術変更により、Network Observability Operator 1.2.0 リリースでは、openshift-netobserv-
operator namespace にインストールする必要があります。以前にカスタム namespace を使用してい
たユーザーは、古いインスタンスを削除して Operator を再インストールする必要があります。

以前は、カスタム namespace を使用して Network Observability Operator をインストールできまし
た。このリリースでは、ClusterServiceVersion を変更する conversion webhook が導入されていま
す。この変更により、使用可能なすべての namespace がリストされなくなりました。さらに、
Operator メトリクス収集を有効にするには、openshift-operators namespace など、他の Operator と
共有される namespace は使用できません。

ここで、Operator を openshift-netobserv-operator namespace にインストールする必要があります。

以前にカスタム namespace を使用して Network Observability Operator をインストールした場合、新
しい Operator バージョンに自動的にアップグレードすることはできません。以前にカスタム
namespace を使用して Operator をインストールした場合は、インストールされた Operator のインス
タンスを削除し、openshift-netobserv-operator namespace に Operator を再インストールする必要が
あります。一般的に使用される netobserv namespace などのカスタム namespace
は、FlowCollector、Loki、Kafka、およびその他のプラグインでも引き続き使用できることに注意する
ことが重要です。

NETOBSERV-907

NETOBSERV-956

2.1.60. Network Observability Operator1.1.0 の機能拡張

Network Observability Operator 1.1.0 の次のアドバイザリーを参照できます。

RHSA-2023:0786 Network Observability Operator Security Advisory Update

Network Observability Operator は安定版になり、リリースチャネルが v1.1.0 にアップグレードされま
した。

2.1.61. Network Observability Operator 1.10 で修正された問題

Network Observability Operator 1.1.0 リリースで修正された次の問題を確認できます。

以前は、Loki の authToken 設定が FORWARD モードに設定されていない限り、認証が強制さ
れず、権限のないユーザーがフローを取得できました。現在は、Loki の authToken モードに
関係なく、クラスター管理者のみがフローを取得できます。(BZ#2169468)

2.1.62. 関連情報

Network Observability におけるマルチテナンシー

Network Observability メトリクスのダッシュボード

第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ

39

https://issues.redhat.com/browse/NETOBSERV-980
https://issues.redhat.com/browse/NETOBSERV-907
https://https//issues.redhat.com/browse/NETOBSERV-956
https://access.redhat.com/errata/RHSA-2023:0786
https://bugzilla.redhat.com/show_bug.cgi?id=2169468

ネットワーク可観測性の must-gather

ヒストグラムの使用

会話の使用

健全性ダッシュボード

OpenShift Container Platform 4.18 Network Observability

40

第3章 NETWORK OBSERVABILITY について
Network Observability Operator を使用し、eBPF テクノロジーを利用してネットワークトラフィック
を観測することで、Prometheus メトリクスと Loki ログを通じてトラブルシューティング用の詳細情報
を入手できます。

OpenShift Container Platform コンソールでこの保存された情報を表示および分析して、さらに詳細な
分析やトラブルシューティングを行うことができます。

3.1. NETWORK OBSERVABILITY OPERATOR

Network Observability Operator は、クラスタースコープの FlowCollector API カスタムリソースを提
供します。これは、ネットワークフローを Loki または Prometheus に収集、強化、および保存する
eBPF エージェントとサービスのパイプラインを管理します。

FlowCollector インスタンスは、監視パイプラインを形成する Pod とサービスをデプロイします。

eBPF エージェントは daemonset オブジェクトとしてデプロイされ、ネットワークフローを作成しま
す。このパイプラインは、ネットワークフローを収集し、Kubernetes メタデータでエンリッチしてか
ら、Loki への保存や Prometheus メトリクスの生成を行います。

3.2. NETWORK OBSERVABILITY OPERATOR のオプションの依存関係

Network Observability Operator をフローストレージ用の Loki Operator や AMQ Streams (Kafka)など
のオプションの依存関係と統合して、回復力のある大規模なデータ処理やスケーラビリティーを確保し
ます。

サポートされているオプションの依存関係には、フローストレージ用の Loki Operator や、Kafka を使
用した大規模データ処理用の AMQ Streams などがあります。

Loki Operator

収集されたすべてのフローを最大限の詳細度で保存するために、Loki をバックエンドとして使用で
きます。Loki をインストールするには、Red Hat がサポートする Loki Operator を使用することを
推奨します。Loki を使用せずに Network Observability を使用するように選択することもできます
が、いくつかの要素を考慮する必要があります。詳細は、「Loki を使用しない Network
Observability」を参照してください。

AMQ Streams Operator

Kafka は、大規模なデプロイメント向けに OpenShift Container Platform クラスターにスケーラビリ
ティー、復元力、高可用性を提供します。

注記

Kafka を使用する場合は、Red Hat がサポートする AMQ Streams Operator を使用す
ることを推奨します。

関連情報

Loki を使用しない Network Observability

3.3. OPENSHIFT CONTAINER PLATFORM コンソールの統合

Network Observability Operator は OpenShift Container Platform コンソールと統合され、概要、トポ

第3章 NETWORK OBSERVABILITY について

41

Network Observability Operator は OpenShift Container Platform コンソールと統合され、概要、トポ
ロジービュー、およびトラフィックフローテーブルを提供します。

Observe → Dashboards の Network Observability メトリクスダッシュボードは、管理者アクセス権を
持つユーザーのみが利用できます。

注記

開発者アクセスと namespace へのアクセスが制限されている管理者に対してマルチテナ
ンシーを有効にするには、ロールを定義して権限を指定する必要があります。詳細は、
「Network Observability でのマルチテナンシーの有効化」を参照してください。

関連情報

Network Observability でのマルチテナンシーの有効化

3.3.1. Network Observability メトリクスのダッシュボード

OpenShift Container Platform コンソールでネットワーク可観測性メトリクスダッシュボードを確認し
ます。これは、全体的なトラフィックフローの集約、フィルタリングオプション、および Operator の
正常性を監視するための専用ダッシュボードを提供します。

OpenShift Container Platform コンソールの Overview タブでは、クラスター上のネットワークトラ
フィックフローの全体的な集計メトリクスを表示できます。クラスター、ノード、namespace、所有
者、Pod、サービスごとに情報を表示するように選択できます。フィルターと表示オプションにより、
メトリクスをさらに絞り込むことができます。詳細は、「Overview ビューからのネットワークトラ
フィックの観測」を参照してください。

Observe → Dashboards の Netobserv ダッシュボードには、OpenShift Container Platform クラス
ター内のネットワークフローの簡易的な概要が表示されます。Netobserv/Health ダッシュボードは、
Operator の健全性に関するメトリクスを提供します。詳細は、「Network Observability メトリクス」
および「健全性情報の表示」を参照してください。

関連情報

Overview ビューからのネットワークトラフィックの観測

Network Observability メトリクス

健全性ダッシュボード

3.3.2. Network Observability トポロジービュー

OpenShift Container Platform コンソールのネットワーク可観測性トポロジービューには、コンポーネ
ント間のトラフィックフローがグラフィカル表示されます。これは、さまざまなフィルターおよび表示
オプションを使用して絞り込むことができます。

OpenShift Container Platform コンソールは、OpenShift Container Platform コンポーネント間のトラ
フィックをネットワークグラフとして表す Topology タブを提供します。フィルターと表示オプション
を使用して、グラフを絞り込むことができます。クラスター、ゾーン、udn、ノード、namespace、所
有者、Pod、サービスの情報にアクセスできます。

3.3.3. トラフィックフローテーブル

OpenShift Container Platform Web コンソールの Traffic flow テーブルには、生のネットワークフロー

OpenShift Container Platform 4.18 Network Observability

42

OpenShift Container Platform Web コンソールの Traffic flow テーブルには、生のネットワークフロー
の詳細ビューが表示され、詳細な分析のための強力なフィルターオプションと設定可能な列が含まれて
います。

OpenShift Container Platform Web コンソールの Traffic flows タブには、ネットワークフローのデー
タとトラフィック量が表示されます。

3.4. NETWORK OBSERVABILITY CLI

Network Observability CLI (oc netobserv)は、Network Observability Operator の完全なインストール
を必要とせずに、フローおよびパケットデータを素早く、ネットワークの問題に素早くストリーミング
する軽量ツールです。

Network Observability CLI は、eBPF エージェントを利用して収集したデータを一時的なコレクター
Pod にストリーミングするフローおよびパケット可視化ツールです。キャプチャー中に永続的なスト
レージは必要ありません。実行後、出力がローカルマシンに転送されます。そのため、Network
Observability Operator をインストールしなくても、パケットとフローデータをすばやくライブで把握
できます。

第3章 NETWORK OBSERVABILITY について

43

第4章 NETWORK OBSERVABILITY OPERATOR のインストール
Network Observability Operator を使用する前に、Loki Operator をインストールすることを推奨しま
す。Loki なしでも Network Observability を使用できますが、メトリクスまたは外部エクスポーターの
みが必要な場合には、特別な考慮事項が適用されます。

Loki Operator は、マルチテナンシーと認証を実装するゲートウェイを Loki と統合して、データフロー
ストレージを実現します。LokiStack リソースは、スケーラブルで高可用性のマルチテナントログ集約
システムである Loki と、OpenShift Container Platform 認証を備えた Web プロキシーを管理しま
す。LokiStack プロキシーは、OpenShift Container Platform 認証を使用してマルチテナンシーを適用
し、Loki ログストアでのデータの保存とインデックス作成を容易にします。

4.1. LOKI を使用しない NETWORK OBSERVABILITY

Loki Operator のインストールの有無にかかわらず、利用可能な機能をネットワーク可観測性と比較し
ます。

フローを Kafka コンシューマーまたは IPFIX コレクターのみにエクスポートする場合、またはダッシュ
ボードメトリクスのみ必要な場合は、Loki をインストールしたり、Loki 用のストレージを提供したり
する必要はありません。次の表は、Loki を使用した場合と使用しない場合の利用可能な機能を比較して
います。

表4.1 Loki を使用した場合と使用しない場合の使用可能な機能の比較

 Loki を使用する場合 Loki を使用しない場合

エクスポーター X X

マルチテナンシー X X

完全なフィルタリングと集計機

能[1]

X

部分的なフィルタリングと集計機

能[2]

X X

フローベースのメトリクスとダッ
シュボード

X X

Traffic flows ビューの概要[3] X X

Traffic flows ビューテーブル X

トポロジービュー X X

OpenShift Container Platform
コンソールの Network Traffic タ
ブの統合

X X

1. Pod ごとなど。

OpenShift Container Platform 4.18 Network Observability

44

2. ワークロードまたは namespace ごとなど。

3. パケットドロップの統計情報は Loki でのみ利用可能です。

関連情報

エンリッチされたネットワークフローデータのエクスポート

4.2. LOKI OPERATOR のインストール

ソフトウェアカタログからサポートされる Loki Operator バージョンをインストールして、ネットワー
ク可観測性の自動クラスター内の認証および承認を提供するセキュアな LokiStack インスタンスを有効
にします。

Loki Operator バージョン 6.0+ は、ネットワーク可観測性でサポートされる Loki Operator バージョン
です。これらのバージョンは、openshift-network テナント設定モードを使用して LokiStack インスタ
ンスを作成し、ネットワーク可観測性に対して完全にクラスター内の認証および認可サポートを提供す
る機能を提供します。

前提条件

管理者権限がある。

OpenShift Container Platform Web コンソールにアクセスできる。

サポートされているオブジェクトストアにアクセスできる。例: AWS S3、Google Cloud
Storage、Azure、Swift、Minio、OpenShift Data Foundation。

手順

1. OpenShift Container Platform Web コンソールで、Operators → OperatorHub をクリックし
ます。

2. 使用可能な Operator のリストから Loki Operator を選択し、Install をクリックします。

3. Installation Mode で、All namespaces on the cluster を選択します。

検証

1. Loki Operator がインストールされていることを確認します。Operators → Installed
Operators ページにアクセスして、Loki Operator を探します。

2. Loki Operator がすべてのプロジェクトで Succeeded の Status でリストされていることを確
認します。

重要

Loki をアンインストールするには、Loki のインストールに使用した方法に対応するアン
インストールプロセスを参照してください。削除する必要がある ClusterRoles と
ClusterRoleBindings、オブジェクトストアに保存されたデータ、および永続ボリュー
ムが残っている可能性があります。

4.2.1. Loki ストレージのシークレットの作成

Amazon Web Services (AWS)などのクラウドストレージ認証情報を使用してシークレットを作成し、

第4章 NETWORK OBSERVABILITY OPERATOR のインストール

45

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel9-operator/64479927e1820602a81cdf13

1

Amazon Web Services (AWS)などのクラウドストレージ認証情報を使用してシークレットを作成し、
Loki Operator がログ永続化に必要なオブジェクトストアにアクセスできるようにします。

Loki Operator は、AWS S3、Google Cloud Storage、Azure、Swift、Minio、OpenShift Data
Foundation など、いくつかのログストレージオプションをサポートしています。次の例は、AWS S3 ス
トレージのシークレットを作成する方法を示しています。この例で作成されたシークレット loki-s3
は、「LokiStack カスタムリソースの作成」で参照されています。このシークレットは、Web コンソー
ルまたは CLI で作成できます。

手順

1. Web コンソールを使用して、Project → All Projects ドロップダウンに移動し、Create Project
を選択します。

2. プロジェクトに netobserv という名前を付けて、Create をクリックします。

3. 右上隅にあるインポートアイコン + に移動します。YAML ファイルをエディターにペーストし
ます。
以下は、S3 ストレージのシークレット YAML ファイルの例です。

このドキュメントに記載されているインストール例では、すべてのコンポーネントで同じ
namespace である netobserv を使用しています。オプションで、異なるコンポーネント
で異なる namespace を使用できます。

検証

シークレットを作成すると、Web コンソールの Workloads → Secrets にリストされたシーク
レットが表示されます。

関連情報

LokiStack カスタムリソースの作成

Flow Collector API リファレンス

Flow Collector のサンプルリソース

4.2.2. LokiStack カスタムリソースの作成

Web コンソールまたは OpenShift CLI (oc)を使用して LokiStack カスタムリソースをデプロイし、

apiVersion: v1
kind: Secret
metadata:
 name: loki-s3
 namespace: netobserv 1
stringData:
 access_key_id: QUtJQUlPU0ZPRE5ON0VYQU1QTEUK
 access_key_secret:
d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=
 bucketnames: s3-bucket-name
 endpoint: https://s3.eu-central-1.amazonaws.com
 region: eu-central-1

OpenShift Container Platform 4.18 Network Observability

46

1

2

3

Web コンソールまたは OpenShift CLI (oc)を使用して LokiStack カスタムリソースをデプロイし、
Loki オブジェクトストレージの正しい namespace、デプロイメントサイズ、およびシークレット名を
設定するようにしてください。

LokiStack カスタムリソース(CR)をデプロイして、namespace または新しいプロジェクトを作成でき
ます。

手順

1. Operators → Installed Operators に移動し、Project ドロップダウンから All projects を表示
します。

2. Loki Operator を探します。詳細の Provided APIs で、LokiStack を選択します。

3. Create LokiStack をクリックします。

4. Form View または YAML view で次のフィールドが指定されていることを確認します。

このドキュメントに記載されているインストール例では、すべてのコンポーネントで同じ
namespace である netobserv を使用しています。必要に応じて、別の namespace を使用
できます。

デプロイメントサイズを指定します。Loki Operator 5.8 以降のバージョンでは、Loki の実
稼働インスタンスでサポートされているサイズオプションは 1x.extra-small、1x.small、
または 1x.medium です。

重要

デプロイメントサイズの 1x の数は変更できません。

ReadWriteOnce アクセスモードのクラスターで使用可能なストレージクラス名を使用し
ます。oc get storageclasses を使用して、クラスターで利用できるものを確認できま
す。

重要

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: loki
 namespace: netobserv 1
spec:
 size: 1x.small 2
 storage:
 schemas:
 - version: v12
 effectiveDate: '2022-06-01'
 secret:
 name: loki-s3
 type: s3
 storageClassName: gp3 3
 tenants:
 mode: openshift-network

第4章 NETWORK OBSERVABILITY OPERATOR のインストール

47

重要

ログ記録に使用したのと同じ LokiStack CR を再利用しないでください。

5. Create をクリックします。

4.2.3. cluster-admin ユーザーロールの新規グループの作成

重要

cluster-admin ユーザーとして複数の namespace のアプリケーションログを照会する
と、クラスター内の全 namespace の合計文字数が 5120 を超え、Parse error: input size
too long (XXXX > 5120) エラーが発生します。LokiStack のログへのアクセスをより適
切に制御するには、cluster-admin ユーザーを cluster-admin グループのメンバーにし
ます。cluster-admin グループが存在しない場合は、作成して必要なユーザーを追加し
ます。

次の手順を使用して、cluster-admin 権限のあるユーザー用に、新しいグループを作成します。

手順

1. 以下のコマンドを入力して新規グループを作成します。

2. 以下のコマンドを実行して、必要なユーザーを cluster-admin グループに追加します。

3. 以下のコマンドを実行して cluster-admin ユーザーロールをグループに追加します。

4.2.4. カスタム管理者グループのアクセス権

必ずしも管理者でなくてもクラスター全体のログを確認する必要がある場合、またはここで使用したい
グループがすでに定義されている場合は、adminGroup フィールドを使用してカスタムグループを指定
できます。LokiStack カスタムリソース (CR) の adminGroups フィールドで指定されたグループのメ
ンバーであるユーザーには、管理者と同じログの読み取りアクセス権があります。

cluster-logging-application-view ロールも割り当てられている管理者ユーザーは、すべての
namespace のすべてのアプリケーションログにアクセスできます。

管理者ユーザーは、クラスター全体のすべてのネットワークログにアクセスできます。

LokiStack CR の例

$ oc adm groups new cluster-admin

$ oc adm groups add-users cluster-admin <username>

$ oc adm policy add-cluster-role-to-group cluster-admin cluster-admin

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: loki

OpenShift Container Platform 4.18 Network Observability

48

1

2

3

カスタム管理者グループは、このモードでのみ使用できます。

このフィールドに空のリスト値 [] を入力すると、管理者グループが無効になります。

デフォルトのグループ (system:cluster-admins、cluster-admin、dedicated-admin) をオーバー
ライドします。

4.2.5. Loki デプロイメントのサイズ

Loki のサイズは 1x.<size> の形式に従います。この場合の 1x はインスタンスの数を、<size> は性能を
指定します。

重要

デプロイメントサイズの 1x の数は変更できません。

表4.2 Loki のサイズ

 1x.demo 1x.extra-small 1x.small 1x.medium

Data transfer デモ使用のみ 100 GB/日 500 GB/日 2 TB/日

1 秒あたりのクエ
リー数 (QPS)

デモ使用のみ 200 ミリ秒で 1 -
25 QPS

200 ミリ秒で 25 -
50 QPS

200 ミリ秒で 25 -
75 QPS

レプリケーション
係数

なし 2 2 2

合計 CPU 要求 なし 仮想 CPU 14 個 仮想 CPU 34 個 仮想 CPU 54 個

合計メモリー要求 なし 31 Gi 67 Gi 139 Gi

合計ディスク要求 40Gi 430 Gi 430 Gi 590 Gi

4.2.6. LokiStack の取り込み制限とヘルスアラート

LokiStack インスタンスには、パフォーマンスを管理し、システムアラートやエラーを防止するために
管理者が上書きできるデフォルトの取り込みとクエリー制限が含まれています。

注記

 namespace: netobserv
spec:
 tenants:
 mode: openshift-network 1
 openshift:
 adminGroups: 2
 - cluster-admin
 - custom-admin-group 3

第4章 NETWORK OBSERVABILITY OPERATOR のインストール

49

注記

コンソールプラグインまたは flowlogs-pipeline ログに Loki エラーが表示される場合
は、取り込みとクエリーの制限を更新することを推奨します。

設定された制限の例を次に示します。

これらの設定の詳細は、LokiStack API リファレンス を参照してください。

4.3. NETWORK OBSERVABILITY OPERATOR のインストール

Network Observability Operator をインストールし、setup ウィザードを使用して FlowCollector カス
タムリソース定義(CRD)を作成し、初期設定を完了します。

FlowCollector を作成するときに、Web コンソールで仕様を設定できます。

重要

Operator の実際のメモリー消費量は、クラスターのサイズとデプロイされたリソースの
数によって異なります。それに応じて、メモリー消費量を調整する必要がある場合があ
ります。詳細は、「Flow Collector 設定に関する重要な考慮事項」セクションの
「Network Observability コントローラーマネージャー Pod のメモリーが不足する」を参
照してください。

前提条件

Loki を使用する場合は、Loki Operator バージョン 5.7 以降 をインストールしている。

cluster-admin 権限を持っている必要があります。

サポートされているアーキテクチャーである amd64、ppc64le、arm64、s390x のいずれか。

Red Hat Enterprise Linux (RHEL) 9 でサポートされる任意の CPU。

メインネットワークプラグインとして OVN-Kubernetes を使用して設定する必要があり、オプ
ションで Multus および SR-IOV を使用したセカンダリーインターフェイスを使用する必要があ
ります。

注記

さらに、このインストール例では、すべてのコンポーネントで使用される netobserv
namespace を使用します。必要に応じて、別の namespace を使用できます。

spec:
 limits:
 global:
 ingestion:
 ingestionBurstSize: 40
 ingestionRate: 20
 maxGlobalStreamsPerTenant: 25000
 queries:
 maxChunksPerQuery: 2000000
 maxEntriesLimitPerQuery: 10000
 maxQuerySeries: 3000

OpenShift Container Platform 4.18 Network Observability

50

https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-IngestionLimitSpec
https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

手順

1. OpenShift Container Platform Web コンソールで、Operators → OperatorHub をクリックし
ます。

2. OperatorHub で使用可能な Operator のリストから Network Observability Operator を選択
し、Install をクリックします。

3. Enable Operator recommended cluster monitoring on this Namespace チェックボックスを
選択します。

4. Operators → Installed Operators に移動します。Network Observability の Provided APIs
で、Flow Collector リンクを選択します。

5. Network Observability FlowCollector setup ウィザードに従います。

6. Create をクリックします。

検証

これが成功したことを確認するには、Observe に移動すると、オプションに Network Traffic が表示さ
れます。

OpenShift Container Platform クラスター内に アプリケーショントラフィック がない場合は、デフォル
トのフィルターが "No results" と表示され、視覚的なフローが発生しないことがあります。フィルター
選択の横にある Clear all filters を選択して、フローを表示します。

4.4. NETWORK OBSERVABILITY でのマルチテナンシーの有効化

クラスターロールと namespace ロールを設定して、ネットワーク可観測性でのマルチテナンシーを有
効にします。これにより、プロジェクト管理者および開発者は Loki および Prometheus のフローとメ
トリクスへの細かいアクセスを許可します。

アクセスはプロジェクト管理者に対して有効になります。一部の namespace だけにアクセスが制限さ
れているプロジェクト管理者は、それらの namespace のフローにのみアクセスできます。

開発者の場合、Loki と Prometheus の両方でマルチテナンシー機能を利用できますが、必要なアクセス
権が異なります。

前提条件

Loki を使用している場合は、少なくとも Loki Operator バージョン 5.7 がインストールされて
いる。

プロジェクト管理者としてログインしている。

手順

テナントごとのアクセスの場合、Developer パースペクティブを使用するために、netobserv-
loki-reader クラスターロールと netobserv-metrics-reader namespace ロールを付与する必要
があります。このレベルのアクセスを提供するために、次のコマンドを実行します。

$ oc adm policy add-cluster-role-to-user netobserv-loki-reader <user_group_or_name>

$ oc adm policy add-role-to-user netobserv-metrics-reader <user_group_or_name> -n
<namespace>

第4章 NETWORK OBSERVABILITY OPERATOR のインストール

51

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

クラスター全体のアクセスの場合、クラスター管理者以外のユーザーに、netobserv-loki-
reader、cluster-monitoring-view、および netobserv-metrics-reader クラスターロールを付
与する必要があります。この場合、Administrator パースペクティブまたは Developer パースペ
クティブのいずれかを使用できます。このレベルのアクセスを提供するために、次のコマンド
を実行します。

4.5. FLOW COLLECTOR 設定に関する重要な考慮事項

FlowCollector インスタンスを作成すると、それを再設定することはできますが、Pod が終了して再作
成されるため、中断が生じる可能性があります。そのため、初めて FlowCollector を作成する際には、
以下のオプションを設定することを検討してください。

Kafka を使用した Flow Collector リソースの設定

エンリッチされたネットワークフローデータを Kafka または IPFIX にエクスポートする

SR-IOV インターフェイストラフィックの監視の設定

会話追跡の使用

DNS 追跡の使用

パケットドロップの使用

関連情報

Flow Collector の仕様や、Network Observability Operator のアーキテクチャーとリソースの使用に関す
る全般的な情報は、次のリソースを参照してください。

Flow Collector API リファレンス

Flow Collector のサンプルリソース

リソースの留意事項

Network Observability コントローラーマネージャー Pod のメモリー不足のトラブルシューティ
ング

Network Observability アーキテクチャー

4.5.1. FlowCollector CRD の削除された保存バージョンの移行

非推奨の v1alpha1 バージョンを FlowCollector カスタムリソース定義(CRD) storedVersion リストか
ら手動で削除し、アップグレードエラーを回避し、Network Observability Operator 1.6 に正常に移行し
ます。

保存されたバージョンを削除するには、次の 2 つのオプションがあります。

$ oc adm policy add-cluster-role-to-user netobserv-loki-reader <user_group_or_name>

$ oc adm policy add-cluster-role-to-user cluster-monitoring-view <user_group_or_name>

$ oc adm policy add-cluster-role-to-user netobserv-metrics-reader <user_group_or_name>

OpenShift Container Platform 4.18 Network Observability

52

1. Storage Version Migrator Operator を使用します。

2. Network Observability Operator をアンインストールして再インストールし、インストールがク
リーンな状態であることを確認します。

前提条件

古いバージョンの Operator がインストールされており、最新バージョンの Operator をインス
トールするようにクラスターを準備する必要がある。または、Network Observability Operator
1.6 をインストールしようとして、Failed risk of data loss updating
"flowcollectors.flows.netobserv.io": new CRD removes version v1alpha1 that is listed as a
stored version on the existing CRD エラーが発生している。

手順

1. 古い FlowCollector CRD バージョンが、storedVersion で引き続き参照されていることを確認
します。

2. 結果のリストに v1alpha1 が表示される場合は、手順 a に進んで Kubernetes Storage Version
Migrator を使用するか、手順 b に進んで CRD と Operator をアンインストールして再インス
トールします。

a. オプション 1: Kubernetes Storage Version Migrator: StorageVersionMigration オブジェ
クトを定義する YAML を作成します (例: migrate-flowcollector-v1alpha1.yaml)。

i. ファイルを保存します。

ii. 次のコマンドを実行して、StorageVersionMigration を適用します。

iii. FlowCollector CRD を更新して、storedVersion から v1alpha1 を手動で削除しま
す。

b. オプション 2: 再インストール: Network Observability Operator 1.5 バージョンの
FlowCollector CR をファイル (例: flowcollector-1.5.yaml) に保存します。

i. 「Network Observability Operator のアンインストール」の手順に従って、Operator を

$ oc get crd flowcollectors.flows.netobserv.io -ojsonpath='{.status.storedVersions}'

apiVersion: migration.k8s.io/v1alpha1
kind: StorageVersionMigration
metadata:
 name: migrate-flowcollector-v1alpha1
spec:
 resource:
 group: flows.netobserv.io
 resource: flowcollectors
 version: v1alpha1

$ oc apply -f migrate-flowcollector-v1alpha1.yaml

$ oc edit crd flowcollectors.flows.netobserv.io

$ oc get flowcollector cluster -o yaml > flowcollector-1.5.yaml

第4章 NETWORK OBSERVABILITY OPERATOR のインストール

53

i. 「Network Observability Operator のアンインストール」の手順に従って、Operator を
アンインストールし、既存の FlowCollector CRD を削除します。

ii. Network Observability Operator の最新バージョン 1.6.0 をインストールします。

iii. 手順 b で保存したバックアップを使用して FlowCollector を作成します。

検証

以下のコマンドを実行します。

結果のリストには v1alpha1 が表示されなくなり、最新バージョンの v1beta1 のみが表示され
ます。

関連情報

Kubernetes Storage Version Migrator Operator

4.6. KAFKA のインストール (オプション)

Kafka Operator は大規模な環境でサポートされます。Kafka は、回復性とスケーラビリティーの高い方
法でネットワークフローデータを転送するために、高スループットかつ低遅延のデータフィードを提供
します。

Loki Operator および Network Observability Operator がインストールされたのと同じように、Kafka
Operator を Operator Hub から Red Hat AMQ Streams としてインストールできます。Kafka をスト
レージオプションとして設定する場合は、「Kafka を使用した FlowCollector リソースの設定」を参照
してください。

注記

Kafka をアンインストールするには、インストールに使用した方法に対応するアンイン
ストールプロセスを参照してください。

関連情報

Kafka を使用した FlowCollector リソースの設定

4.7. NETWORK OBSERVABILITY OPERATOR のアンインストール

Ecosystem → Installed Operators エリアで作業する OpenShift Container Platform Web コンソール
Operator Hub を使用して、Network Observability Operator をアンインストールします。

手順

1. FlowCollector カスタムリソースを削除します。

a. Provided APIs 列の Network Observability Operator の横にある Flow Collector をクリッ
クします。

$ oc get crd flowcollectors.flows.netobserv.io -ojsonpath='{.status.storedVersions}'

OpenShift Container Platform 4.18 Network Observability

54

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#cluster-kube-storage-version-migrator-operator_operator-reference
https://access.redhat.com/documentation/ja-jp/red_hat_amq_streams/2.2

b. cluster の Options メニュー をクリックし、Delete FlowCollector を選択します。

2. Network Observability Operator をアンインストールします。

a. Operators → Installed Operators エリアに戻ります。

b. Network Observability Operator の隣にある Options メニュー をクリック
し、Uninstall Operator を選択します。

c. Home → Projects を選択し、openshift-netobserv-operator を選択します。

d. Actions に移動し、Delete Project を選択します。

3. FlowCollector カスタムリソース定義 (CRD) を削除します。

a. Administration → CustomResourceDefinitions に移動します。

b. FlowCollector を探し、Options メニュー をクリックします。

c. Delete CustomResourceDefinition を選択します。

重要

Loki Operator と Kafka は、インストールされていた場合、残っているた
め、個別に削除する必要があります。さらに、オブジェクトストアに保存さ
れた残りのデータ、および削除する必要がある永続ボリュームがある場合が
あります。

第4章 NETWORK OBSERVABILITY OPERATOR のインストール

55

第5章 OPENSHIFT CONTAINER PLATFORM の NETWORK
OBSERVABILITY OPERATOR

OpenShift Container Platform の Network Observability Operator は、モニタリングパイプラインをデ
プロイします。このパイプラインは、eBPF agent によって生成されたネットワークトラフィックフ
ローを収集および拡充します。

5.1. 状況の表示

oc get コマンドを使用して FlowCollector リソースのステータスと、eBPF エージェント、flowlogs-
pipeline、およびコンソールプラグイン Pod のステータスをチェックして、Network Observability
Operator の運用ステータスを表示します。

Network Observability Operator は Flow Collector API を提供します。Flow Collector リソースが作成さ
れると、Pod とサービスをデプロイしてネットワークフローを作成して Loki ログストアに保存し、
ダッシュボード、メトリクス、およびフローを OpenShift Container Platform Web コンソールに表示し
ます。

手順

1. 次のコマンドを実行して、FlowCollector の状態を表示します。

出力例

NAME AGENT SAMPLING (EBPF) DEPLOYMENT MODEL STATUS
cluster EBPF 50 DIRECT Ready

2. 次のコマンドを実行して、netobserv namespace で実行している Pod のステータスを確認し
ます。

出力例

NAME READY STATUS RESTARTS AGE
flowlogs-pipeline-56hbp 1/1 Running 0 147m
flowlogs-pipeline-9plvv 1/1 Running 0 147m
flowlogs-pipeline-h5gkb 1/1 Running 0 147m
flowlogs-pipeline-hh6kf 1/1 Running 0 147m
flowlogs-pipeline-w7vv5 1/1 Running 0 147m
netobserv-plugin-cdd7dc6c-j8ggp 1/1 Running 0 147m

flowlogs-pipeline Pod はフローを収集し、収集したフローをエンリッチさせてから、フローを
Loki ストレージに送信します。netobserv-plugin Pod は、OpenShift Container Platform コン
ソール用の視覚化プラグインを作成します。

3. 次のコマンドを入力して、namespace netobserv-privileged で実行している Pod のステータ
スを確認します。

$ oc get flowcollector/cluster

$ oc get pods -n netobserv

$ oc get pods -n netobserv-privileged

OpenShift Container Platform 4.18 Network Observability

56

出力例

NAME READY STATUS RESTARTS AGE
netobserv-ebpf-agent-4lpp6 1/1 Running 0 151m
netobserv-ebpf-agent-6gbrk 1/1 Running 0 151m
netobserv-ebpf-agent-klpl9 1/1 Running 0 151m
netobserv-ebpf-agent-vrcnf 1/1 Running 0 151m
netobserv-ebpf-agent-xf5jh 1/1 Running 0 151m

netobserv-ebpf-agent Pod は、ノードのネットワークインターフェイスを監視してフローを取
得し、それを flowlogs-pipeline Pod に送信します。

4. Loki Operator を使用している場合は、次のコマンドを入力して、netobserv namespace にあ
る LokiStack カスタムリソースの component Pod のステータスを確認します。

出力例

NAME READY STATUS RESTARTS AGE
lokistack-compactor-0 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-qhkhv 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-skxgm 1/1 Running 0 18h
lokistack-gateway-796dc6ff7-c54gz 2/2 Running 0 18h
lokistack-index-gateway-0 1/1 Running 0 18h
lokistack-index-gateway-1 1/1 Running 0 18h
lokistack-ingester-0 1/1 Running 0 18h
lokistack-ingester-1 1/1 Running 0 18h
lokistack-ingester-2 1/1 Running 0 18h
lokistack-querier-66747dc666-6vh5x 1/1 Running 0 18h
lokistack-querier-66747dc666-cjr45 1/1 Running 0 18h
lokistack-querier-66747dc666-xh8rq 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-b2xfb 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-jm94f 1/1 Running 0 18h

5.2. NETWORK OBSERVABLITY OPERATOR のアーキテクチャー

Network Observability Operator アーキテクチャー を確認してください。FlowCollector リソースが
eBPF エージェントを管理する方法について詳しく説明します。このエージェント は、フローを収集し
て強化し、ストレージまたは Prometheus にデータを送信してメトリクスがないかの詳細を示します。

Network Observability Operator は、FlowCollector API を提供します。これは、インストール時にイン
スタンス化され、eBPF agent、flowlogs-pipeline、netobserv-plugin コンポーネントを調整するよう
に設定されています。FlowCollector は、クラスターごとに 1 つだけサポートされます。

eBPF agent は、各クラスター上で実行され、ネットワークフローを収集するためのいくつかの権限を
持っています。flowlogs-pipeline はネットワークフローデータを受信し、データに Kubernetes 識別子
を追加します。Loki を使用することを選択した場合、flowlogs-pipeline はフローログデータを Loki に
送信し、保存およびインデックス作成を行います。netobserv-plugin は、動的 OpenShift Container
Platform Web コンソールプラグインであり、Loki にクエリーを実行してネットワークフローデータを
取得します。クラスター管理者は、Web コンソールでデータを表示できます。

Loki を使用しない場合は、Prometheus を使用してメトリクスを生成できます。これらのメトリクスと

$ oc get pods -n netobserv

第5章 OPENSHIFT CONTAINER PLATFORM の NETWORK OBSERVABILITY OPERATOR

57

Loki を使用しない場合は、Prometheus を使用してメトリクスを生成できます。これらのメトリクスと
関連するダッシュボードには、Web コンソールからアクセスできます。詳細は、"Loki を使用しない
Network Observability" を参照してください。

次の図に示すように、Kafka オプションを使用している場合、eBPF agent はネットワークフローデー
タを Kafka に送信し、flowlogs-pipeline は Loki に送信する前に Kafka トピックから読み取ります。

OpenShift Container Platform 4.18 Network Observability

58

関連情報

Loki を使用しない Network Observability

5.3. NETWORK OBSERVABILITY OPERATOR のステータスと設定の表示

oc describe flowcollector/cluster コマンドを使用して、Network Observability Operator の現在のス
テータス、設定の詳細、および生成されたリソースを検査します。

手順

1. 次のコマンドを実行して、Network Observability Operator のステータスと設定を表示します。

$ oc describe flowcollector/cluster

第5章 OPENSHIFT CONTAINER PLATFORM の NETWORK OBSERVABILITY OPERATOR

59

第6章 NETWORK OBSERVABILITY OPERATOR の設定
Network Observability Operator を設定するには、クラスター全体の FlowCollector API リソース (クラ
スター) を更新して、コンポーネント設定とフロー収集設定を管理します。

FlowCollector はインストール中に明示的に作成されます。このリソースはクラスター全体で動作する
ため、単一の FlowCollector のみが許可され、cluster という名前を付ける必要があります。詳細
は、FlowCollector API リファレンス を参照してください。

6.1. FLOWCOLLECTOR リソースの表示

FlowCollector リソースは、統合セットアップ、詳細フォーム、または YAML を直接編集することで、
OpenShift Container Platform Web コンソールで表示および変更できます。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。そこで、FlowCollector リソースを変更して
Network Observability Operator を設定できます。

以下の例は、OpenShift Container Platform Network Observability Operator のサンプル FlowCollector
リソースを示しています。

FlowCollector リソースのサンプル

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF 1
 ebpf:
 sampling: 50 2
 logLevel: info
 privileged: false
 resources:
 requests:
 memory: 50Mi
 cpu: 100m
 limits:
 memory: 800Mi
 processor: 3
 logLevel: info
 resources:
 requests:
 memory: 100Mi
 cpu: 100m
 limits:

OpenShift Container Platform 4.18 Network Observability

60

1

2

3

4

5

エージェント仕様 spec.agent.type は、EBPF である必要があります。eBPF は、OpenShift
Container Platform でサポートされている唯一のオプションです。

サンプリング仕様 spec.agent.ebpf.sampling を設定して、リソースを管理できます。デフォルト
では、eBPF サンプリングは 50 に設定されているため、フローがサンプリングされる確率は 50
分の 1 になります。サンプリング間隔の値が小さいほど、より多くの計算、メモリー、およびスト
レージリソースが必要になります。値が 0 または 1 の場合、すべてのフローがサンプリングされ
ます。デフォルト値から始めて、実験結果を基に調整し、クラスターに最適な設定を決定すること
を推奨します。

プロセッサー仕様 spec.processor. を設定すると、会話の追跡が有効になります。有効にする
と、Web コンソールで会話イベントをクエリーできるようになりま
す。spec.processor.logTypes の値は Flows です。spec.processor.advanced の値
は、Conversations、EndedConversations、または ALL です。ストレージ要件は All で最も高
く、EndedConversations で最も低くなります。

Loki 仕様である spec.loki は、Loki クライアントを指定します。デフォルト値は、Loki Operator
のインストールセクションに記載されている Loki インストールパスと一致します。Loki の別のイ
ンストール方法を使用した場合は、インストールに適切なクライアント情報を指定します。

LokiStack モードは、いくつかの設定 (querierUrl、ingesterUrl、statusUrl、tenantID、および対
応する TLS 設定) を自動的に設定します。クラスターロールとクラスターロールバインディング
が、Loki へのログの読み取りと書き込みのために作成されます。authToken は Forward に設定さ

 memory: 800Mi
 logTypes: Flows
 advanced:
 conversationEndTimeout: 10s
 conversationHeartbeatInterval: 30s
 loki: 4
 mode: LokiStack 5
 consolePlugin:
 register: true
 logLevel: info
 portNaming:
 enable: true
 portNames:
 "3100": loki
 quickFilters: 6
 - name: Applications
 filter:
 src_namespace!: 'openshift-,netobserv'
 dst_namespace!: 'openshift-,netobserv'
 default: true
 - name: Infrastructure
 filter:
 src_namespace: 'openshift-,netobserv'
 dst_namespace: 'openshift-,netobserv'
 - name: Pods network
 filter:
 src_kind: 'Pod'
 dst_kind: 'Pod'
 default: true
 - name: Services network
 filter:
 dst_kind: 'Service'

第6章 NETWORK OBSERVABILITY OPERATOR の設定

61

6

が、Loki へのログの読み取りと書き込みのために作成されます。authToken は Forward に設定さ
れます。Manual モードを使用すると、これらを手動で設定できます。

spec.quickFilters 仕様は、Web コンソールに表示されるフィルターを定義します。Application
フィルターキー、src_namespace および dst_namespace は否定 (!) されているた
め、Application フィルターは、openshift- または netobserv namespace から発信されて いな
い、または宛先がないすべてのトラフィックを表示します。詳細は、以下のクイックフィルターの
設定を参照してください。

関連情報

FlowCollector API リファレンス

会話追跡の使用

6.2. KAFKA を使用した FLOW COLLECTOR リソースの設定

Kafka を高スループットかつ低遅延のデータフィードのために使用するように、FlowCollector リソー
スを設定できます。Kafka インスタンスを実行する必要があり、そのインスタンスで OpenShift
Container Platform Network Observability 専用の Kafka トピックを作成する必要があります。詳細
は、AMQ Streams を使用した Kafka ドキュメント を参照してください。

前提条件

Kafka がインストールされている。Red Hat は、AMQ Streams Operator を使用する Kafka を
サポートします。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. Network Observability Operator の Provided APIs という見出しの下で、Flow Collector を選
択します。

3. クラスターを選択し、YAML タブをクリックします。

4. 次のサンプル YAML に示すように、Kafka を使用するように OpenShift Container Platform
Network Observability Operator の FlowCollector リソースを変更します。

FlowCollector リソースの Kafka 設定のサンプル

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 deploymentModel: Kafka 1
 kafka:
 address: "kafka-cluster-kafka-bootstrap.netobserv" 2
 topic: network-flows 3
 tls:
 enable: false 4

OpenShift Container Platform 4.18 Network Observability

62

https://access.redhat.com/documentation/ja-jp/red_hat_amq/7.7/html/using_amq_streams_on_openshift/using-the-topic-operator-str

1

2

3

4

Kafka デプロイメントモデルを有効にするには、spec.deploymentModel を Direct ではなく
Kafka に設定します。

spec.kafka.address は、Kafka ブートストラップサーバーのアドレスを参照します。ポート 9093
で TLS を使用するため、kafka-cluster-kafka-bootstrap.netobserv:9093 など、必要に応じて
ポートを指定できます。

spec.kafka.topic は、Kafka で作成されたトピックの名前と一致する必要があります。

spec.kafka.tls を使用して、Kafka との間のすべての通信を TLS または mTLS で暗号化できま
す。有効にした場合、Kafka CA 証明書は、flowlogs-pipeline プロセッサーコンポーネントがデプ
ロイされている namespace (デフォルト: netobserv) と eBPF エージェントがデプロイされている
namespace (デフォルト: netobserv-privileged) の両方で ConfigMap または Secret として使用で
きる必要があります。spec.kafka.tls.caCert で参照する必要があります。mTLS を使用する場
合、クライアントシークレットはこれらの namespace でも利用でき (たとえば、AMQ Streams
User Operator を使用して生成できます)、spec.kafka.tls.userCert で参照される必要がありま
す。

6.3. エンリッチされたネットワークフローデータのエクスポート

ネットワークフローを、Kafka、IPFIX、Red Hat build of OpenTelemetry、またはこれら 3 つすべてに
同時に送信できます。Kafka または IPFIX の場合、Splunk、Elasticsearch、Fluentd など、Kafka または
IPFIX の入力をサポートするプロセッサーまたはストレージで、エンリッチされたネットワークフロー
データを利用できます。OpenTelemetry の場合、ネットワークフローデータとメトリクスを、Red Hat
build of OpenTelemetry、Prometheus など、互換性のある OpenTelemetry エンドポイントにエクス
ポートできます。

前提条件

Network Observability の flowlogs-pipeline Pod から、Kafka、IPFIX、または OpenTelemetry
コレクターエンドポイントを利用できる。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. FlowCollector を編集して、spec.exporters を次のように設定します。

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 exporters:
 - type: Kafka 1
 kafka:
 address: "kafka-cluster-kafka-bootstrap.netobserv"
 topic: netobserv-flows-export 2
 tls:

第6章 NETWORK OBSERVABILITY OPERATOR の設定

63

1 4 6

2

3

5

7

8

9

10

11

フローを IPFIX、OpenTelemetry、Kafka に個別または同時にエクスポートできます。

Network Observability Operator は、すべてのフローを設定された Kafka トピックにエク
スポートします。

Kafka との間のすべての通信を SSL/TLS または mTLS で暗号化できます。有効にした場
合、Kafka CA 証明書は、flowlogs-pipeline プロセッサーコンポーネントがデプロイされ
ている namespace (デフォルト: netobserv) で、ConfigMap または Secret として使用でき
る必要があります。これは spec.exporters.tls.caCert で参照する必要があります。mTLS
を使用する場合、クライアントシークレットはこれらの namespace でも利用可能であり
(たとえば、AMQ Streams User Operator を使用して生成できま
す)、spec.exporters.tls.userCert で参照される必要があります。

オプションでトランスポートを指定できます。デフォルト値は tcp ですが、udp を指定す
ることもできます。

OpenTelemetry 接続のプロトコル。使用可能なオプションは http と grpc です。

Loki 用に作成されたログと同じログをエクスポートするための OpenTelemetry 設定。

Prometheus 用に作成されたメトリクスと同じメトリクスをエクスポートするための
OpenTelemetry 設定。これらの設定を、FlowMetrics カスタムリソースを使用して定義し
たカスタムメトリクスとともに、FlowCollector カスタムリソースの
spec.processor.metrics.includeList パラメーターで指定します。

メトリクスを OpenTelemetry コレクターに送信する時間間隔。

オプション: Network Observability のネットワークフローの形式は、OpenTelemetry 準拠
の形式に合わせて、自動的に名前が変更されます。fieldsMapping 仕様を使用すると、
OpenTelemetry 形式の出力をカスタマイズできます。たとえば、YAML サンプルで
は、SrcAddr が Network Observability の入力フィールドです。これは、OpenTelemetry
の出力で source.address に名前が変更されます。「ネットワークフローの形式リファレ
ンス」で、Network Observability の形式と OpenTelemetry の形式の両方を確認できま

 enable: false 3
 - type: IPFIX 4
 ipfix:
 targetHost: "ipfix-collector.ipfix.svc.cluster.local"
 targetPort: 4739
 transport: tcp or udp 5
 - type: OpenTelemetry 6
 openTelemetry:
 targetHost: my-otelcol-collector-headless.otlp.svc
 targetPort: 4317
 type: grpc 7
 logs: 8
 enable: true
 metrics: 9
 enable: true
 prefix: netobserv
 pushTimeInterval: 20s 10
 expiryTime: 2m
 # fieldsMapping: 11
 # input: SrcAddr
 # output: source.address

OpenShift Container Platform 4.18 Network Observability

64

す。

設定後、ネットワークフローデータを JSON 形式で利用可能な出力に送信できます。詳細は、「ネット
ワークフロー形式のリファレンス」を参照してください。

関連情報

ネットワークフロー形式のリファレンス

6.4. FLOW COLLECTOR リソースの更新

OpenShift Container Platform Web コンソールで YAML を編集する代わりに、flowcollector カスタム
リソース (CR) にパッチを適用することで、eBPF サンプリングなどの仕様を設定できます。

手順

1. 次のコマンドを実行して、flowcollector CR にパッチを適用し、spec.agent.ebpf.sampling 値
を更新します。

6.5. ネットワークフロー取り込み時のフィルタリング

フィルターを作成すると、生成されるネットワークフローの数を減らすことができます。ネットワーク
フローをフィルタリングすると、Network Observability コンポーネントのリソース使用量を削減できま
す。

次の 2 種類のフィルターを設定できます。

eBPF エージェントフィルター

flowlogs-pipeline フィルター

6.5.1. eBPF エージェントフィルター

eBPF エージェントフィルターはパフォーマンスを最大化します。このフィルターは、ネットワークフ
ロー収集プロセスの最も早い段階で有効になるためです。

Network Observability Operator を使用して eBPF エージェントフィルターを設定するには、「複数の
ルールを使用した eBPF フローデータのフィルタリング」を参照してください。

6.5.2. flowlogs-pipeline フィルター

flowlogs-pipeline フィルターでは、トラフィックの選択をより細かく制御できます。このフィルター
は、ネットワークフロー収集プロセスの遅い段階で有効になるためです。これは主にデータの保存を改
善するために使用されます。

flowlogs-pipeline フィルターは、次の例に示すように、単純なクエリー言語を使用してネットワークフ
ローをフィルタリングします。

$ oc patch flowcollector cluster --type=json -p "[{"op": "replace", "path":
"/spec/agent/ebpf/sampling", "value": <new value>}] -n netobserv"

(srcnamespace="netobserv" OR (srcnamespace="ingress" AND dstnamespace="netobserv")) AND
srckind!="service"

第6章 NETWORK OBSERVABILITY OPERATOR の設定

65

1

2

クエリー言語では次の構文を使用します。

表6.1 クエリー言語の構文

カテゴリー 演算子

論理ブール演算子 (大文
字と小文字の区別なし)

and、or

比較演算子 = (等しい)、
!= (等しくない)、
=~ (正規表現にマッチ)、
!~ (正規表現にマッチしない)、
< / <= (以下)、
> / >= (以上)

単項演算子 with(field) (フィールドが存在する)、
without(field) (フィールドが存在しない)

flowlogs-pipeline フィルターは、FlowCollector リソースの spec.processor.filters セクションで設定
できます。以下に例を示します。

flowlogs-pipeline フィルターの YAML の例

マッチしたフローを特定の出力 (Loki、Prometheus、外部システムなど) に送信します。省略した
場合は、設定されているすべての出力に送信します。

任意。サンプリング間隔を適用して、保存またはエクスポートするマッチしたフローの数を制限し
ます。たとえば、sampling: 10 は、10 分の 1 の確率でフローが保存されることを意味します。

関連情報

複数のルールを使用した eBPF フローデータのフィルタリング

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 processor:
 filters:
 - query: |
 (SrcK8S_Namespace="netobserv" OR (SrcK8S_Namespace="openshift-ingress" AND
DstK8S_Namespace="netobserv"))
 outputTarget: Loki 1
 sampling: 10 2

OpenShift Container Platform 4.18 Network Observability

66

6.6. クイックフィルターの設定

FlowCollector リソースでフィルターを変更できます。値を二重引用符で囲むと、完全一致が可能にな
ります。それ以外の場合、テキスト値には部分一致が使用されます。キーの最後にあるバング (!) 文字
は、否定を意味します。YAML の変更に関する詳細なコンテキストは、サンプルの FlowCollector リ
ソースを参照してください。

注記

フィルターマッチングタイプ "all of" または "any of" は、ユーザーがクエリーオプション
から変更できる UI 設定です。これは、このリソース設定の一部ではありません。

使用可能なすべてのフィルターキーのリストを次に示します。

表6.2 フィルターキー

Unive
rsal*

ソース 送信先 説明

names
pace

src_n
ames
pace

dst_n
ames
pace

特定の namespace に関連するトラフィックをフィルタリングします。

name src_n
ame

dst_n
ame

特定の Pod、サービス、またはノード (ホストネットワークトラフィックの場
合) など、特定のリーフリソース名に関連するトラフィックをフィルター処理
します。

kind src_k
ind

dst_k
ind

特定のリソースの種類に関連するトラフィックをフィルタリングします。リ
ソースの種類には、リーフリソース (Pod、Service、または Node)、または所
有者リソース (Deployment および StatefulSet) が含まれます。

owner
_name

src_o
wner
_nam
e

dst_o
wner
_nam
e

特定のリソース所有者に関連するトラフィックをフィルタリングします。つま
り、ワークロードまたは Pod のセットです。たとえば、Deployment 名、
StatefulSet 名などです。

resour
ce

src_r
esou
rce

dst_r
esou
rce

一意に識別する正規名で示される特定のリソースに関連するトラフィックを
フィルタリングします。正規の表記法は、namespace の種類の場合は
kind.namespace.name、ノードの場合は node.name です。たとえ
ば、Deployment.my-namespace.my-web-server です。

addre
ss

src_a
ddre
ss

dst_a
ddre
ss

IP アドレスに関連するトラフィックをフィルタリングします。IPv4 と IPv6 が
サポートされています。CIDR 範囲もサポートされています。

mac src_
mac

dst_
mac

MAC アドレスに関連するトラフィックをフィルタリングします。

port src_p
ort

dst_p
ort

特定のポートに関連するトラフィックをフィルタリングします。

第6章 NETWORK OBSERVABILITY OPERATOR の設定

67

host_a
ddres
s

src_h
ost_a
ddre
ss

dst_h
ost_a
ddre
ss

Pod が実行しているホスト IP アドレスに関連するトラフィックをフィルタリン
グします。

proto
col

該当
なし

該当
なし

TCP や UDP などのプロトコルに関連するトラフィックをフィルタリングしま
す。

Unive
rsal*

ソース 送信先 説明

ソースまたは宛先のいずれかのユニバーサルキーフィルター。たとえば、フィルタリング
name: 'my-pod' は、使用される一致タイプ (Match all または Match any) に関係なく、my-
pod からのすべてのトラフィックと my-pod へのすべてのトラフィックを意味します。

6.7. リソース管理およびパフォーマンスに関する考慮事項

Network Observability に必要なリソースの量は、クラスターのサイズと、クラスターが可観測データを
取り込んで保存するための要件によって異なります。リソースを管理し、クラスターのパフォーマンス
基準を設定するには、次の設定を設定することを検討してください。これらの設定を設定すると、最適
なセットアップと可観測性のニーズを満たす可能性があります。

次の設定は、最初からリソースとパフォーマンスを管理するのに役立ちます。

eBPF サンプリング

サンプリング仕様 spec.agent.ebpf.sampling を設定して、リソースを管理できます。デフォルトで
は、eBPF サンプリングは 50 に設定されているため、フローがサンプリングされる確率は 50 分の 1
になります。サンプリング間隔の値が小さいほど、より多くの計算、メモリー、およびストレージ
リソースが必要になります。値が 0 または 1 の場合、すべてのフローがサンプリングされます。デ
フォルト値から始めて、実験結果を基に調整し、クラスターに最適な設定を決定することを推奨し
ます。

eBPF の機能

有効にされた機能が増えるほど、CPU とメモリーへの影響が大きくなります。該当する機能の完全
なリストは、"ネットワークトラフィックのモニタリング" を参照してください。

Loki を使用しない場合

Loki ではなく Prometheus を代わりに使用することで、Network Observability に必要なリソースの
量を削減できます。たとえば、Network Observability を Loki なしで設定すると、サンプリング間隔
の値に応じて、メモリー使用量が合計で 20 - 65% 削減され、CPU 使用率が 10 - 30% 低下します。
詳細は、「Loki を使用しない Network Observability」を参照してください。

インターフェイスの制限または除外

spec.agent.ebpf.interfaces および spec.agent.ebpf.excludeInterfaces の値を設定して、観測され
るトラフィック全体を削減します。デフォルトでは、エージェントは、excludeInterfaces および
lo (ローカルインターフェイス) にリストされているインターフェイスを除く、システム内のすべて
のインターフェイスを取得します。インターフェイス名は、使用される Container Network
Interface (CNI) によって異なる場合があることに注意してください。

パフォーマンスのファインチューニング

Network Observability をしばらく実行した後、次の設定を使用してパフォーマンスを微調整できま

OpenShift Container Platform 4.18 Network Observability

68

Network Observability をしばらく実行した後、次の設定を使用してパフォーマンスを微調整できま
す。

リソース要件と制限: spec.agent.ebpf.resources および spec.processor.resources 仕様
を使用して、クラスターで予想される負荷とメモリー使用量に合わせてリソース要件と制限
を調整します。多くの中規模のクラスターには、デフォルトの制限の 800MB で十分な場合
があります。

キャッシュの最大フロータイムアウト: eBPF エージェントの
spec.agent.ebpf.cacheMaxFlows および spec.agent.ebpf.cacheActiveTimeout 仕様を使
用して、エージェントによってフローが報告される頻度を制御します。値が大きいほど、
エージェントで生成されるトラフィックが少なくなり、これは CPU 負荷の低下と相関しま
す。ただし、値を大きくするとメモリー消費量がわずかに増加し、フロー収集でより多くの
遅延が発生する可能性があります。

6.7.1. リソースの留意事項

次の表は、特定のワークロードサイズのクラスターのリソースに関する考慮事項の例を示しています。

重要

表に概要を示した例は、特定のワークロードに合わせて調整されたシナリオを示してい
ます。各例は、ワークロードのニーズに合わせて調整を行うためのベースラインとして
のみ考慮してください。

表6.3 リソースの推奨事項

 極小規模 (10 ノード) 小規模 (25 ノード) 大規模 (250 ノード) [2]

ワーカーノードの vCPU
とメモリー

4 仮想 CPU| 16 GiB メモ

リー [1]

16 仮想 CPU| 64 GiB メ

モリー [1]

16 仮想 CPU| 64 GiB メ

モリー [1]

LokiStack サイズ 1x.extra-small 1x.small 1x.medium

Network Observability
コントローラーのメモ
リー制限

400 Mi (デフォルト) 400 Mi (デフォルト) 400 Mi (デフォルト)

eBPF サンプリング間隔 50 (デフォルト) 50 (デフォルト) 50 (デフォルト)

eBPF メモリー制限 800 Mi (デフォルト) 800 Mi (デフォルト) 1600 Mi

cacheMaxSize 50,000 100,000 (デフォルト) 100,000 (デフォルト)

FLP メモリー制限 800 Mi (デフォルト) 800 Mi (デフォルト) 800 Mi (デフォルト)

FLP Kafka パーティショ
ン

– 48 48

第6章 NETWORK OBSERVABILITY OPERATOR の設定

69

Kafka コンシューマーレ
プリカ

– 6 18

Kafka ブローカー – 3 (デフォルト) 3 (デフォルト)

 極小規模 (10 ノード) 小規模 (25 ノード) 大規模 (250 ノード) [2]

1. AWS M6i インスタンスでテスト済み。

2. このワーカーとそのコントローラーに加えて、3 つのインフラノード (サイズ M6i.12xlarge) と
1 つのワークロードノード (サイズ M6i.8xlarge) がテストされました。

6.7.2. メモリーと CPU の合計平均使用量

次の表は、2 つの異なるテスト (Test 1、Test 2) について、サンプリング値が 1 および 50 であるクラ
スターの合計リソース使用量の平均を示しています。テストは次の点で異なります。

Test 1 は、OpenShift Container Platform クラスター内の namespace、Pod、およびサービス
の合計数に加え、大量の Ingress トラフィックを考慮しており、eBPF エージェントに負荷をか
けた、特定のクラスターサイズに対して多数のワークロードが発生するユースケースを表して
います。たとえば、Test 1 は、76 個の namespace、5153 個の Pod、および 2305 個のサービ
スで構成され、ネットワークトラフィックの規模は ~350 MB/秒です。

Test 2 は、OpenShift Container Platform クラスター内の namespace、Pod、およびサービス
の合計数に加え、大量の Ingress トラフィックを考慮しており、特定のクラスターサイズに対
して多数のワークロードが発生するユースケースを表しています。たとえば、Test 2 は、553
個の namespace、6998 個の Pod、および 2508 個のサービスで構成され、ネットワークトラ
フィックの規模は ~950 MB/秒です。

さまざまなテストでさまざまなタイプのクラスターユースケースが例示されているため、この表の数値
は並べて比較しても直線的に増加しません。代わりに、これらは個人のクラスター使用状況を評価する
ためのベンチマークとして使用することを目的としています。表に概要を示した例は、特定のワーク
ロードに合わせて調整されたシナリオを示しています。各例は、ワークロードのニーズに合わせて調整
を行うためのベースラインとしてのみ考慮してください。

注記

Prometheus にエクスポートされたメトリクスは、リソースの使用状況に影響を与える可
能性があります。メトリクスのカーディナリティー値は、リソースがどの程度影響を受
けるかを判断するのに役立ちます。詳細は、関連情報セクションの「ネットワークフ
ローの形式」を参照してください。

表6.4 リソース合計平均使用量

サンプリング値 使用されるリソース テスト 1 (25 ノード) テスト 2 (250 ノード)

Sampling = 50 NetObserv の CPU 合計
使用量

1.35 5.39

NetObserv RSS (メモ
リー) の合計使用量

16 GB 63 GB

OpenShift Container Platform 4.18 Network Observability

70

Sampling = 1 NetObserv の CPU 合計
使用量

1.82 11.99

NetObserv RSS (メモ
リー) の合計使用量

22 GB 87 GB

サンプリング値 使用されるリソース テスト 1 (25 ノード) テスト 2 (250 ノード)

概要: この表は、すべての機能が有効になっているエージェント、FLP、Kafka、Loki を含む Network
Observability の平均合計リソース使用量を示しています。有効な機能の詳細は、「ネットワークトラ
フィックの観測」で説明されている機能を参照してください。このテストで有効になっているすべての
機能が記載されています。

関連情報

Traffic flows ビューからのネットワークトラフィックの観測

Loki を使用しない Network Observability

ネットワークフロー形式のリファレンス

第6章 NETWORK OBSERVABILITY OPERATOR の設定

71

第7章 ネットワークポリシー
管理者は、netobserv namespace 用のネットワークポリシーを作成できます。このポリシーにより、
Network Observability Operator への受信および送信アクセスを保護します。

7.1. FLOWCOLLECTOR カスタムリソースを使用したネットワークポリ
シーの設定

Pod のトラフィックを制御するために、Ingress および Egress ネットワークポリシーを設定できます。
これにより、セキュリティーが強化され、必要なネットワークフローデータだけが収集されます。これ
により、ノイズが削減され、コンプライアンスがサポートされるとともに、ネットワーク通信に対する
可視性が向上します。

FlowCollector カスタムリソース (CR) を設定することで、Network Observability 用の Egress および
Ingress ネットワークポリシーをデプロイできます。デフォルトでは、spec.NetworkPolicy.enable 仕
様は true に設定されています。

ネットワークポリシーを持つ別の namespace に Loki、Kafka、または任意のエクスポーターをインス
トールした場合は、Network Observability コンポーネントがそれらと通信できることを確認する必要が
あります。セットアップについて、次の点を考慮してください。

Loki への接続 (FlowCollector CR の spec.loki パラメーターで定義)

Kafka への接続 (FlowCollector CR の spec.kafka パラメーターで定義)

任意のエクスポーターへの接続 (FlowCollector CR の spec.exporters パラメーターで定義)

Loki を使用していて、Loki をポリシーターゲットに含める場合は、外部オブジェクトストレー
ジへの接続 (LokiStack 関連のシークレットで定義)

手順

1. Web コンソールで、Operators → Installed Operators ページに移動します。

2. Network Observability の Provided APIs という見出しの下で、Flow Collector を選択しま
す。

3. cluster を選択し、YAML タブを選択します。

4. FlowCollector CR を設定します。設定例は次のとおりです。

ネットワークポリシー用の FlowCollector CR の例

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 networkPolicy:
 enable: true 1
 additionalNamespaces: ["openshift-console", "openshift-monitoring"] 2
...

OpenShift Container Platform 4.18 Network Observability

72

1

2

デフォルトでは、enable 値は true です。

デフォルト値は ["openshift-console", "openshift-monitoring"] です。

関連情報

CLI を使用したネットワークポリシーの作成

第7章 ネットワークポリシー

73

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/network_security/#nw-networkpolicy-object_creating-network-policy

第8章 ネットワークトラフィックの観測
管理者は、OpenShift Container Platform Web コンソールでネットワークトラフィックを観測し、詳細
なトラブルシューティングと分析を行うことができます。この機能は、トラフィックフローのさまざま
なグラフィカル表現から洞察を得るのに役立ちます。

8.1. OVERVIEW ビューからのネットワークトラフィックの観測

Overview ビューには、クラスター上のネットワークトラフィックフローの集約された全体的なメトリ
クスが表示されます。管理者は、使用可能な表示オプションを使用して統計を監視できます。

8.1.1. 概要ビューの操作

管理者は、Overview ビューに移動して、フローレートの統計をグラフィカルに表示できます。

手順

1. Observe → Network Traffic に移動します。

2. ネットワークトラフィック ページで、Overview タブをクリックします。

メニューアイコンをクリックすると、各流量データの範囲を設定できます。

8.1.2. 概要ビューの詳細オプションの設定

詳細オプションを使用して、グラフィカルビューをカスタマイズできます。詳細オプションにアクセス
するには、Show advanced options をクリックします。Display options ドロップダウンメニューを使
用して、グラフの詳細を設定できます。利用可能なオプションは次のとおりです。

Scope: ネットワークトラフィックが流れるコンポーネントを表示する場合に選択します。ス
コープは、Node、Namespace、Owner、Zones、Cluster、または Resource に設定できま
す。Owner はリソースの集合体です。Resource は、ホストネットワークトラフィックの場合
は Pod、サービス、ノード、または不明な IP アドレスです。デフォルト値は Namespace で
す。

Truncate labels: ドロップダウンリストから必要なラベルの幅を選択します。デフォルト値は
M です。

8.1.2.1. パネルとディスプレイの管理

表示する必要なパネルを選択したり、並べ替えたり、特定のパネルに焦点を当てたりすることができま
す。パネルを追加または削除するには、Manage panels をクリックします。

デフォルトでは、次のパネルが表示されます。

上位 X の平均バイトレート

上位 X のバイトレートと合計の積み上げ値

他のパネルは Manage panels で追加できます。

上位 X の平均パケットレート

上位 X のパケットレートと合計の積み上げ値

Query options を使用すると、Top 5、Top 10、または Top 15 のレートを表示するかどうかを選択でき

OpenShift Container Platform 4.18 Network Observability

74

Query options を使用すると、Top 5、Top 10、または Top 15 のレートを表示するかどうかを選択でき
ます。

8.1.3. パケットドロップの追跡

Overview ビューで、パケットロスが発生したネットワークフローレコードのグラフィック表示を設定
できます。eBPF トレースポイントフックを採用すると、TCP、UDP、SCTP、ICMPv4、ICMPv6 プロ
トコルのパケットドロップに関する貴重な知見を得ることができ、その結果、以下のアクションにつな
がる可能性があります。

識別: パケットドロップが発生している正確な場所とネットワークパスを特定します。ドロップ
が発生しやすい特定のデバイス、インターフェイス、またはルートがあるか判断します。

根本原因分析: eBPF プログラムによって収集されたデータを調査し、パケットドロップの原因
を把握します。たとえば、輻輳、バッファーの問題、特定のネットワークイベントなどの原因
です。

パフォーマンスの最適化: パケットドロップをより明確に把握し、バッファーサイズの調整、
ルーティングパスの再設定、Quality of Service (QoS) 対策の実装など、ネットワークパフォー
マンスを最適化するための手順を実行できます。

パケットドロップの追跡が有効になっている場合、デフォルトで Overview に次のパネルが表示されま
す。

上位 X のパケットドロップの状態と合計の積み上げ値

上位 X のパケットドロップの原因と合計の積み上げ値

上位 X の平均パケットドロップレート

上位 X のパケットドロップレートと合計の積み上げ値

他のパケットドロップパネルは Manage panels で追加できます。

上位 X の平均ドロップバイトレート

上位 X の平均ドロップバイトレートと合計の積み上げ値

8.1.3.1. パケットドロップの種類

Network Observability では、ホストドロップと OVS ドロップという 2 種類のパケットドロップが検出
されます。ホストドロップには SKB_DROP という接頭辞が付き、OVS ドロップには OVS_DROP と
いう接頭辞が付きます。ドロップされたフローは、各ドロップタイプの説明へのリンクととも
に、Traffic flows テーブルのサイドパネルに表示されます。ホストドロップの理由の例は次のとおりで
す。

SKB_DROP_REASON_NO_SOCKET: ソケットが検出されないため、パケットがドロップされ
ました。

SKB_DROP_REASON_TCP_CSUM: TCP チェックサムエラーによりパケットがドロップされ
ました。

OVS ドロップの理由の例は次のとおりです。

OVS_DROP_LAST_ACTION: 暗黙的なドロップアクション (設定されたネットワークポリシー
など) によりドロップされた OVS パケット。

第8章 ネットワークトラフィックの観測

75

OVS_DROP_IP_TTL: IP TTL の期限切れにより OVS パケットがドロップされました。

パケットドロップの追跡を有効化および使用する方法の詳細は、このセクションの 関連情報 を参照し
てください。

関連情報

パケットドロップの使用

Network Observability メトリクス

8.1.4. DNS 追跡

Overview ビューで、ネットワークフローの Domain Name System (DNS) 追跡のグラフィカル表示を設
定できます。拡張 Berkeley Packet Filter (eBPF) トレースポイントフックを使用する DNS 追跡は、さ
まざまな目的に使用できます。

ネットワーク監視: DNS クエリーと応答に関する知見を得ることで、ネットワーク管理者は異
常パターン、潜在的なボトルネック、またはパフォーマンスの問題を特定できます。

セキュリティー分析: マルウェアによって使用されるドメイン名生成アルゴリズム (DGA) など
の不審な DNS アクティビティーを検出したり、セキュリティーを侵害する可能性のある不正な
DNS 解決を特定したりします。

トラブルシューティング: DNS 解決手順を追跡し、遅延を追跡し、設定ミスを特定することに
より、DNS 関連の問題をデバッグします。

デフォルトでは、DNS 追跡が有効になっている場合、Overview に、次の空でないメトリクスがドーナ
ツグラフまたは折れ線グラフで表示されます。

上位 X の DNS レスポンスコード

上位 X の平均 DNS 遅延と合計

上位 X の 90 パーセンタイルの DNS 遅延

他の DNS 追跡パネルは Manage panels で追加できます。

下位 X の最小 DNS 遅延

上位 X の最大 DNS 遅延

上位 X の 99 パーセンタイルの DNS 遅延

この機能は、IPv4 および IPv6 の UDP および TCP プロトコルでサポートされています。

このビューの有効化と使用の詳細は、このセクションの 関連情報 を参照してください。

関連情報

DNS 追跡の使用

Network Observability メトリクス

8.1.5. ラウンドトリップタイム

TCP の平滑化されたラウンドトリップタイム (sRTT) を使用して、ネットワークフローの遅延を分析で

OpenShift Container Platform 4.18 Network Observability

76

TCP の平滑化されたラウンドトリップタイム (sRTT) を使用して、ネットワークフローの遅延を分析で
きます。fentry/tcp_rcv_established eBPF フックポイントから取得した RTT を使用して TCP ソケッ
トから sRTT を読み取ると、次のことに役立てることができます。

ネットワーク監視: TCP の遅延に関する知見を得ることで、ネットワーク管理者は、異常なパ
ターン、潜在的なボトルネック、またはパフォーマンスの問題を特定できます。

トラブルシューティング: 遅延を追跡し、設定ミスを特定することにより、TCP 関連の問題を
デバッグします。

デフォルトでは、RTT が有効になっている場合、Overview に次の TCP RTT メトリクスが表示されま
す。

上位 X の 90 パーセンタイルの TCP ラウンドトリップタイムと合計

上位 X の平均 TCP ラウンドトリップタイムと合計

下位 X の最小 TCP ラウンドトリップタイムと合計

他の RTT パネルは Manage panels で追加できます。

上位 X の最大 TCP ラウンドトリップタイムと合計

上位 X の 99 パーセンタイルの TCP ラウンドトリップタイムと合計

このビューの有効化と使用の詳細は、このセクションの 関連情報 を参照してください。

関連情報

RTT トレーシングの使用

8.1.6. eBPF フローのルールフィルター

ルールベースのフィルタリングを使用して、eBPF フローテーブルにキャッシュされるパケットの量を
制御できます。たとえば、ポート 100 から送信されるパケットのみを取得するようにフィルターを指定
できます。フィルターに一致するパケットのみがキャプチャーされ、残りはドロップされます。

複数のフィルタールールを適用できます。

8.1.6.1. Ingress および Egress トラフィックのフィルタリング

Classless Inter-Domain Routing (CIDR) 表記は、ベース IP アドレスとプレフィックス長を組み合わせる
ことにより、IP アドレス範囲を効率的に表すものです。Ingress と Egress トラフィックの両方におい
て、送信元 IP アドレスが、CIDR 表記で設定されたフィルタールールを照合するために最初に使用され
ます。一致するものがあれば、フィルタリングが続行されます。一致するものがない場合、宛先 IP を
使用して、CIDR 表記で設定されたフィルタールールを照合します。

送信元 IP または宛先 IP の CIDR のいずれかを照合した後、peerIP を使用して特定のエンドポイントを
特定し、パケットの宛先 IP アドレスを識別できます。定められたアクションに基づいて、フローデー
タが eBPF フローテーブルにキャッシュされるかされないかが決まります。

8.1.6.2. ダッシュボードとメトリクスの統合

このオプションを有効にすると、eBPF agent statistics の Netobserv/Health ダッシュボード
に、Filtered flows rate ビューが表示されるようになります。さらに、Observe → Metrics
で、netobserv_agent_filtered_flows_total をクエリーし

第8章 ネットワークトラフィックの観測

77

て、FlowFilterAcceptCounter、FlowFilterNoMatchCounter、または FlowFilterRecjectCounter の
理由を含むメトリクスを観測できます。

8.1.6.3. フローフィルターの設定パラメーター

フローフィルタールールは、必須のパラメーターと任意のパラメーターで構成されます。

表8.1 必須設定パラメーター

パラメーター 説明

enable eBPF フローのフィルタリング機能を有効にするには、enable を true に設定
します。

cidr フローフィルタールールの IP アドレスと CIDR マスクを指定します。IPv4 と
IPv6 の両方のアドレス形式をサポートしています。すべての IP と照合する場
合、IPv4 の場合は 0.0.0.0/0、IPv6 の場合は ::/0 を使用できます。

action フローフィルタールールに対して実行されるアクションを示します。可能な値
は Accept または Reject です。

Accept アクションに一致するルールの場合、フローデータが eBPF
テーブルにキャッシュされ、グローバルメトリクス
FlowFilterAcceptCounter で更新されます。

Reject アクションに一致するルールの場合、フローデータがドロッ
プされ、eBPF テーブルにキャッシュされません。フローデータは、
グローバルメトリクス FlowFilterRejectCounter を使用して更新さ
れます。

ルールが一致しない場合、フローは eBPF テーブルにキャッシュさ
れ、グローバルメトリクス FlowFilterNoMatchCounter で更新さ
れます。

表8.2 オプションの設定パラメーター

パラメーター 説明

direction フローフィルタールールの方向を定義します。可能な値は Ingress または
Egress です。

protocol フローフィルタールールのプロトコルを定義します。可能な値
は、TCP、UDP、SCTP、ICMP、および ICMPv6 です。

tcpFlags フローをフィルタリングするための TCP フラグを定義します。可能な値
は、SYN、SYN-
ACK、ACK、FIN、RST、PSH、URG、ECE、CWR、FIN-ACK、および
RST-ACK です。

OpenShift Container Platform 4.18 Network Observability

78

ports フローのフィルタリングに使用するポートを定義します。送信元ポートまたは
宛先ポートのどちらにも使用できます。単一のポートをフィルタリングするに
は、単一のポートを整数値として設定します。たとえば、ports: 80 です。
ポートの範囲をフィルタリングするには、文字列形式の "開始 - 終了" 範囲を使
用します。たとえば、ports: "80-100" です。

sourcePorts フローのフィルタリングに使用する送信元ポートを定義します。単一のポート
をフィルタリングするには、単一のポートを整数値として設定します (例:
sourcePorts: 80)。ポートの範囲をフィルタリングするには、文字列形式の
"開始 - 終了" 範囲を使用します (例: sourcePorts: "80-100")。

destPorts destPorts は、フローのフィルタリングに使用する宛先ポートを定義します。
単一のポートをフィルタリングするには、単一のポートを整数値として設定し
ます (例: destPorts: 80)。ポートの範囲をフィルタリングするには、文字列
形式の "開始 - 終了" 範囲を使用します (例: destPorts: "80-100")。

icmpType フローのフィルタリングに使用する ICMP タイプを定義します。

icmpCode フローのフィルタリングに使用する ICMP コードを定義します。

peerIP フローのフィルタリングに使用する IP アドレスを定義します (例:
10.10.10.10)。

パラメーター 説明

関連情報

ルールによる eBPF フローデータのフィルタリング

Network Observability メトリクス

健全性ダッシュボード

8.1.7. ユーザー定義ネットワーク

ユーザー定義ネットワーク (UDN) は、カスタムの Layer 2 および Layer 3 ネットワークセグメントを有
効にすることで、Kubernetes Pod ネットワークのデフォルトの Layer 3 トポロジーが持つ柔軟性とセ
グメンテーション機能を強化するものです。これらのセグメントはすべてデフォルトで分離されていま
す。これらのセグメントは、デフォルトの OVN-Kubernetes CNI プラグインを使用するコンテナー
Pod および仮想マシンのプライマリーネットワークまたはセカンダリーネットワークとして機能しま
す。

UDN を使用することで、幅広いネットワークアーキテクチャーとトポロジーが可能になり、ネット
ワークの柔軟性、セキュリティー、パフォーマンスが向上します。

Network Observability で UDNMapping 機能が有効になっている場合、Traffic フローテーブルに UDN
labels 列が表示されます。Source Network Name と Destination Network Name でフィルタリングで
きます。

関連情報

第8章 ネットワークトラフィックの観測

79

ユーザー定義ネットワークについて

CLI を使用した UserDefinedNetwork の作成

Web コンソールを使用した UserDefinedNetwork の作成

ユーザー定義ネットワークの操作

8.1.8. OVN Kubernetes ネットワークイベント

重要

OVN-Kubernetes ネットワークイベントの追跡は、テクノロジープレビュー機能です。
テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA)
の対象外であり、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこ
れらを使用することを推奨していません。テクノロジープレビュー機能は、最新の製品
機能をいち早く提供して、開発段階で機能のテストを行い、フィードバックを提供して
いただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、以下のリンク
を参照してください。

テクノロジープレビュー機能のサポート範囲

Network Observability のネットワークイベントトラッキングを使用して、ネットワークポリシー、管理
ネットワークポリシー、Egress ファイアウォールなどの OVN-Kubernetes イベントに関する情報を取
得できます。ネットワークイベントの追跡から得られる情報は、次のタスクに役立ちます。

ネットワークモニタリング: 許可されたトラフィックとブロックされたトラフィックを監視し、
ネットワークポリシーと管理ネットワークポリシーに基づきパケットが許可されているか、あ
るいはブロックされているかを検出します。

ネットワークセキュリティー: 送信トラフィックを追跡し、Egress ファイアウォールルールに
準拠しているか確認できます。許可されていない送信接続を検出し、Egress ルールに違反する
送信トラフィックにフラグを立てます。

このビューの有効化と使用の詳細は、このセクションの 関連情報 を参照してください。

関連情報

ネットワークイベントの表示

8.2. TRAFFIC FLOWS ビューからのネットワークトラフィックの観測

Traffic flows ビューには、ネットワークフローのデータとトラフィックの量がテーブルに表示されま
す。管理者は、トラフィックフローテーブルを使用して、アプリケーション全体のトラフィック量を監
視できます。

8.2.1. Traffic flows ビューの操作

管理者は、Traffic flows テーブルに移動して、ネットワークフロー情報を確認できます。

手順

OpenShift Container Platform 4.18 Network Observability

80

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/multiple_networks/#about-user-defined-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/multiple_networks/#nw-udn-cr_about-user-defined-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/multiple_networks/#nw-udn-cr-ui_about-user-defined-networks
https://access.redhat.com/support/offerings/techpreview/

1. Observe → Network Traffic に移動します。

2. Network Traffic ページで、Traffic flows タブをクリックします。

各行をクリックして、対応するフロー情報を取得できます。

8.2.2. Traffic flows ビューの詳細オプションの設定

Show advanced options を使用して、ビューをカスタマイズおよびエクスポートできます。Display
options ドロップダウンメニューを使用して、行サイズを設定できます。デフォルト値は Normal で
す。

8.2.2.1. 列の管理

表示する必要のある列を選択し、並べ替えることができます。列を管理するには、Manage columns を
クリックします。

8.2.2.2. トラフィックフローデータのエクスポート

Traffic flows ビューからデータをエクスポートできます。

手順

1. Export data をクリックします。

2. ポップアップウィンドウで、Export all data チェックボックスを選択してすべてのデータをエ
クスポートし、チェックボックスをオフにしてエクスポートする必要のあるフィールドを選択
できます。

3. Export をクリックします。

8.2.3. FlowCollector カスタムリソースを使用した IPsec の設定

OpenShift Container Platform では、IPsec はデフォルトで無効になっています。「IPsec 暗号化の設
定」の手順に従って IPsec を有効にできます。

前提条件

OpenShift Container Platform で IPsec 暗号化を有効にした。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. IPsec の FlowCollector カスタムリソースを設定します。

IPsec の FlowCollector の設定例

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector

第8章 ネットワークトラフィックの観測

81

検証

IPsec が有効な場合:

IPsec Status という新しい列が Network Observability の Traffic フロービューに表示され、フ
ローが正常に IPsec で暗号化されたかどうか、または暗号化/復号化中にエラーが発生したかど
うかが表示されます。

生成された暗号化トラフィックの割合を示す新しいダッシュボード。

関連情報

IPsec 暗号化の設定

8.2.4. 会話追跡の使用

管理者は、同じ会話の一部であるネットワークフローをグループ化できます。会話は、IP アドレス、
ポート、プロトコルによって識別されるピアのグループとして定義され、その結果、一意の
Conversation ID が得られます。Web コンソールで対話イベントをクエリーできます。これらのイベン
トは、Web コンソールでは次のように表示されます。

Conversation start: このイベントは、接続が開始されているか、TCP フラグがインターセプト
されたときに発生します。

Conversation tick: このイベントは、接続がアクティブである間、FlowCollector
spec.processor.conversationHeartbeatInterval パラメーターで定義された指定間隔ごとに発
生します。

Conversation end: このイベントは、FlowCollector
spec.processor.conversationEndTimeout パラメーターに達するか、TCP フラグがインター
セプトされたときに発生します。

Flow: これは、指定された間隔内に発生するネットワークトラフィックフローです。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. spec.processor.logTypes、conversationEndTimeout、および
conversationHeartbeatInterval パラメーターが観察のニーズに応じて設定されるよう
に、FlowCollector カスタムリソースを設定します。設定例は次のとおりです。

metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 type: eBPF
 ebpf:
 features:
 - "IPSec"

OpenShift Container Platform 4.18 Network Observability

82

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/network_security/#configuring-ipsec-ovn

1

2

3

会話追跡用に FlowCollector を設定する

logTypes を Flows に設定すると、Flow イベントのみがエクスポートされます。値を All
に設定すると、会話イベントとフローイベントの両方がエクスポートされ、Network
Traffic ページに表示されます。会話イベントのみに焦点を当てるには、Conversations
を指定します。これを指定すると、Conversation start、Conversation tick、および
Conversation end イベントがエクスポートされます。EndedConversations を指定する
と、Conversation end イベントのみがエクスポートされます。ストレージ要件は All で最
も高く、EndedConversations で最も低くなります。

Conversation end イベントは、conversationEndTimeout に達するか、TCP フラグがイ
ンターセプトされた時点を表します。

Conversation tick イベントは、ネットワーク接続がアクティブである間
の、FlowCollector の conversationHeartbeatInterval パラメーターで定義された各指定
間隔を表します。

注記

logType オプションを更新しても、以前の選択によるフローはコンソールプラグ
インから消去されません。たとえば、午前 10 時まで logType を Conversations
に設定し、その後 EndedConversations に移行すると、コンソールプラグイン
は、午前 10 時まではすべての会話イベントを表示し、午前 10 時以降は終了した
会話のみを表示します。

5. Traffic flows タブの Network Traffic ページを更新します。Event/Type と Conversation Id
という 2 つの新しい列があることに注意してください。クエリーオプションとして Flow が選
択されている場合、すべての Event/Type フィールドは Flow になります。

6. Query Options を選択し、Log Type として Conversation を選択します。Event/Type は、必
要なすべての会話イベントを表示するようになりました。

7. 次に、特定の会話 ID でフィルタリングするか、サイドパネルから Conversation と Flow ログ
タイプのオプションを切り替えることができます。

8.2.5. パケットドロップの使用

パケットロスは、ネットワークフローデータの 1 つ以上のパケットが宛先に到達できない場合に発生し
ます。パケットのドロップは、次に示す YAML の例の仕様に合わせて FlowCollector を編集すること
で追跡できます。

重要

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 processor:
 logTypes: Flows 1
 advanced:
 conversationEndTimeout: 10s 2
 conversationHeartbeatInterval: 30s 3

第8章 ネットワークトラフィックの観測

83

1

2

重要

この機能を有効にすると、CPU とメモリーの使用量が増加します。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. パケットドロップ用に FlowCollector カスタムリソースを設定します。以下はその例です。

FlowCollector の設定例

spec.agent.ebpf.features 仕様リストに PacketDrop パラメーターをリストすることで、
各ネットワークフローにおけるパケットドロップの報告を開始できます。

パケットドロップを追跡するには、spec.agent.ebpf.privileged の仕様値が true である必
要があります。

検証

Network Traffic ページを更新すると、Overview、Traffic Flow、Topology ビューにパケット
ドロップに関する新しい情報が表示されます。

a. Manage panels で、Overview に表示するパケットドロップのグラフィカル表示を新しく
選択します。

b. Manage columns で、Traffic flows テーブルに表示するパケットドロップ情報を選択しま
す。

i. Traffic Flows ビューでは、サイドパネルを展開してパケットドロップの詳細情報を表
示することもできます。ホストドロップには SKB_DROP という接頭辞が付き、OVS
ドロップには OVS_DROP という接頭辞が付きます。

c. Topology ビューでは、ドロップが発生した場所が赤線で表示されます。

8.2.6. DNS 追跡の使用

DNS 追跡を使用すると、ネットワークの監視、セキュリティー分析の実施、DNS 問題のトラブル

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 type: eBPF
 ebpf:
 features:
 - PacketDrop 1
 privileged: true 2

OpenShift Container Platform 4.18 Network Observability

84

1

2

DNS 追跡を使用すると、ネットワークの監視、セキュリティー分析の実施、DNS 問題のトラブル
シューティングを実行できます。次に示す YAML の例の仕様に合わせて FlowCollector を編集するこ
とで、DNS を追跡できます。

重要

この機能を有効にすると、eBPF agent で CPU とメモリーの使用量の増加が観察されま
す。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. Network Observability の Provided APIs という見出しの下で、Flow Collector を選択しま
す。

3. cluster を選択し、YAML タブを選択します。

4. FlowCollector カスタムリソースを設定します。設定例は次のとおりです。

DNS 追跡用に FlowCollector を設定する

spec.agent.ebpf.features パラメーターリストを設定すると、Web コンソールで各ネット
ワークフローの DNS 追跡を有効にできます。

より正確なメトリクスと DNS レイテンシー をキャプチャーするために、sampling 値を 1
に設定できます。sampling 値が 1 より大きい場合、DNS レスポンスコード と DNS ID を
含むフローを観測できますが、DNS レイテンシー を観測できる可能性は低くなります。

5. Network Traffic ページを更新すると、Overview ビューと Traffic Flow ビューで表示する新し
い DNS 表示と適用可能な新しいフィルターが表示されます。

a. Manage panels で新しい DNS の選択肢を選択すると、Overview にグラフィカルな表現と
DNS メトリクスが表示されます。

b. Manage columns で新しい選択肢を選択すると、DNS 列が Traffic Flows ビューに追加さ
れます。

c. DNS Id、DNS Error、DNS Latency、DNS Response Code などの特定の DNS メトリク
スでフィルタリングして、サイドパネルから詳細情報を確認します。DNS Latency 列と
DNS Response Code 列がデフォルトで表示されます。

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 type: eBPF
 ebpf:
 features:
 - DNSTracking 1
 sampling: 1 2

第8章 ネットワークトラフィックの観測

85

1

注記

TCP ハンドシェイクパケットには DNS ヘッダーがありません。DNS ヘッダーのない
TCP プロトコルフローの場合、トラフィックフローデータに表示される DNS
Latency、ID、および Response code の値が "n/a" になります。"DNSError" が "0" の
Common フィルターを使用すると、フローデータをフィルタリングして、DNS ヘッ
ダーを持つフローのみを表示できます。

8.2.7. RTT トレーシングの使用

次に示す YAML の例の仕様に合わせて FlowCollector を編集することで、RTT を追跡できます。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs という見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. RTT トレーシング用に FlowCollector カスタムリソースを設定します。次に例を示します。

FlowCollector の設定例

spec.agent.ebpf.features 仕様リストに FlowRTT パラメーターをリストすることで、
RTT ネットワークフローのトレースを開始できます。

検証

Network Traffic ページを更新すると、Overview、Traffic Flow、Topology ビューに RTT に関する新
しい情報が表示されます。

a. Overview で、Manage panels の新しい選択肢を選択して、表示する RTT のグラフィカル表示
を選択します。

b. Traffic flows テーブルに Flow RTT 列が表示されます。Manage columns で表示を管理できま
す。

c. Traffic Flows ビューでは、サイドパネルを展開して RTT の詳細情報を表示することもできま
す。

フィルタリングの例

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 type: eBPF
 ebpf:
 features:
 - FlowRTT 1

OpenShift Container Platform 4.18 Network Observability

86

i. Common フィルター → Protocol をクリックします。

ii. TCP、Ingress の方向に基づいてネットワークフローデータをフィルタリングし、
10,000,000 ナノ秒 (10 ms) を超える FlowRTT 値を探します。

iii. Protocol フィルターを削除します。

iv. Common フィルターで 0 より大きい Flow RTT 値をフィルタリングします。

d. Topology ビューで、Display option ドロップダウンをクリックします。次に、 edge labels の
ドロップダウンリストで RTT をクリックします。

8.2.8. eBPF Manager Operator の操作

eBPF Manager Operator は、すべての eBPF プログラムを管理することで、攻撃対象領域を削減し、コ
ンプライアンス、セキュリティー、競合防止を実現します。Network Observability は、eBPF Manager
Operator を使用してフックをロードできます。そのため、特権モードや、CAP_BPF や
CAP_PERFMON などの追加の Linux ケイパビリティーを eBPF エージェントに提供する必要がなくな
ります。eBPF Manager Operator と Network Observability の連携は、64 ビット AMD アーキテク
チャーでのみサポートされています。

重要

eBPF Manager Operator と Network Observability の連携は、テクノロジープレビュー機
能です。テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメン
ト (SLA) の対象外であり、機能的に完全ではないことがあります。Red Hat は、実稼働
環境でこれらを使用することを推奨していません。テクノロジープレビュー機能は、最
新の製品機能をいち早く提供して、開発段階で機能のテストを行い、フィードバックを
提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、以下のリンク
を参照してください。

テクノロジープレビュー機能のサポート範囲

手順

1. Web コンソールで、Operator → Operator Hub に移動します。

2. eBPF Manager をインストールします。

3. bpfman namespace の Workloads → Pod をチェックして、すべてが稼働していることを確認
します。

4. eBPF Manager Operator を使用するように FlowCollector カスタムリソースを設定します。

FlowCollector の設定例

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 agent:

第8章 ネットワークトラフィックの観測

87

https://access.redhat.com/support/offerings/techpreview/

検証

1. Web コンソールで、Operators → Installed Operators に移動します。

2. eBPF Manager Operator → All instances タブをクリックします。
各ノードについて、netobserv という名前の BpfApplication と、BpfProgram オブジェクト
のペア (Traffic Control (TCx) Ingress 用と TCx Egress 用のもの) が存在することを確認しま
す。他の eBPF エージェント機能を有効にすると、オブジェクトが増える可能性があります。

関連情報

eBPF Manager Operator のインストール

8.2.8.1. ヒストグラムの使用

Show histogram をクリックすると、フローの履歴を棒グラフとして視覚化するためのツールバー
ビューが表示されます。ヒストグラムは、時間の経過に伴うログの数を示します。ヒストグラムの一部
を選択して、ツールバーに続く表でネットワークフローデータをフィルタリングできます。

8.2.9. アベイラビリティーゾーンの使用

クラスターのアベイラビリティーゾーンに関する情報を収集するように FlowCollector を設定できま
す。この設定により、ノードに適用される topology.kubernetes.io/zone ラベル値を使用してネット
ワークフローデータをエンリッチできます。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. FlowCollector カスタムリソースを設定し、spec.processor.addZone パラメーターを true に
設定します。設定例は次のとおりです。

アベイラビリティーゾーン収集用に FlowCollector を設定する

検証

Network Traffic ページを更新すると、Overview、Traffic Flow、Topology ビューにアベイラビリ

 ebpf:
 features:
 - EbpfManager

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
...
 processor:
 addZone: true
...

OpenShift Container Platform 4.18 Network Observability

88

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#installing-the-ebpf-manager-operator
https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

Network Traffic ページを更新すると、Overview、Traffic Flow、Topology ビューにアベイラビリ
ティーゾーンに関する新しい情報が表示されます。

1. Overview タブに、使用可能な Scope として Zones が表示されます。

2. Network Traffic → Traffic flows の SrcK8S_Zone フィールドと DstK8S_Zone フィールドに
Zones が表示されます。

3. Topology ビューで、Scope または Group として Zones を設定できます。

8.2.10. 複数のルールを使用した eBPF フローデータのフィルタリング

FlowCollector カスタムリソースを設定して、複数のルールを使用して eBPF フローをフィルタリング
し、eBPF フローテーブルにキャッシュされるパケットのフローを制御できます。

重要

フィルタールールでは重複する Classless Inter-Domain Routing (CIDR) を使用す
ることはできません。

IP アドレスが複数のフィルタールールにマッチする場合、最も具体的な CIDR 接
頭辞 (最も長い接頭辞) を持つルールが優先されます。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. Network Observability の Provided APIs という見出しの下で、Flow Collector を選択しま
す。

3. cluster を選択し、YAML タブを選択します。

4. 次のサンプル設定と同じように FlowCollector カスタムリソースを設定します。

すべての North-South トラフィックと 1:50 の East-West トラフィックをサンプリングする
YAML の例

デフォルトでは、他のすべてのフローが拒否されます。

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 flowFilter:
 enable: true 1
 rules:
 - action: Accept 2
 cidr: 0.0.0.0/0 3
 sampling: 1 4

第8章 ネットワークトラフィックの観測

89

1

2

3

4

5

1

2

3

eBPF フローフィルタリングを有効にするには、spec.agent.ebpf.flowFilter.enable を true に設
定します。

フローフィルタールールのアクションを定義するには、必要な action パラメーターを設定しま
す。有効な値は Accept または Reject です。

フローフィルタールールの IP アドレスと CIDR マスクを定義するには、必要な cidr パラメーター
を設定します。このパラメーターは IPv4 と IPv6 の両方のアドレス形式をサポートしています。
すべての IP アドレスにマッチさせるには、IPv4 の場合は 0.0.0.0/0、IPv6 の場合は ::/0 を使用し
ます。

マッチさせるフローのサンプリング間隔を定義し、グローバルサンプリング設定
spec.agent.ebpf.sampling をオーバーライドするには、sampling パラメーターを設定します。

Peer IP CIDR でフローをフィルタリングするには、peerCIDR パラメーターを設定します。

パケットドロップでフローをフィルタリングする YAML の例

デフォルトでは、他のすべてのフローが拒否されます。

パケットドロップを有効にするには、spec.agent.ebpf.privileged を true に設定します。

各ネットワークフローのパケットドロップを報告するには、spec.agent.ebpf.features リストに
PacketDrop 値を追加します。

eBPF フローフィルタリングを有効にするには、spec.agent.ebpf.flowFilter.enable を true に設

 - action: Accept
 cidr: 10.128.0.0/14
 peerCIDR: 10.128.0.0/14 5
 - action: Accept
 cidr: 172.30.0.0/16
 peerCIDR: 10.128.0.0/14
 sampling: 50

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 privileged: true 1
 features:
 - PacketDrop 2
 flowFilter:
 enable: true 3
 rules:
 - action: Accept 4
 cidr: 172.30.0.0/16
 pktDrops: true 5

OpenShift Container Platform 4.18 Network Observability

90

4

5

フローフィルタールールのアクションを定義するには、必要な action パラメーターを設定しま
す。有効な値は Accept または Reject です。

ドロップを含むフローをフィルタリングするには、pktDrops を true に設定します。

8.2.11. エンドポイント変換 (xlat)

Network Observability と拡張 Berkeley Packet Filter (eBPF) を使用して、統合ビューでトラフィックを
処理するエンドポイントを可視化できます。通常、トラフィックがサービス、egressIP、またはロード
バランサーを通過する場合、トラフィックフロー情報は、利用可能な Pod の 1 つにルーティングされる
ときに抽象化されます。トラフィックに関する情報を取得しようとすると、サービス IP やポートなど
のサービス関連情報のみが表示され、リクエストを処理している特定の Pod に関する情報は表示され
ません。多くの場合、サービストラフィックと仮想サービスエンドポイントの両方の情報が 2 つの別々
のフローとしてキャプチャーされるため、トラブルシューティングが複雑になります。

この問題の解決において、エンドポイント xlat は次のように役立ちます。

カーネルレベルでネットワークフローをキャプチャーします。この場合のパフォーマンスへの
影響は、最小限に抑えられます。

変換されたエンドポイント情報を使用してネットワークフローを拡充し、サービスだけでなく
特定のバックエンド Pod も表示することで、どの Pod がリクエストを処理したか確認できま
す。

ネットワークパケットが処理されると、eBPF フックは、変換されたエンドポイントに関するメタデー
タでフローログをエンリッチします。これには、Network Traffic ページに 1 行で表示できる次の情報
が含まれます。

ソース Pod IP

送信元ポート

宛先 Pod IP

宛先ポート

Conntrack Zone ID

8.2.12. エンドポイント変換 (xlat) の操作

Network Observability と eBPF を使用すると、Kubernetes サービスからのネットワークフローを変換
されたエンドポイント情報でエンリッチして、トラフィックを処理するエンドポイントに関する詳細情
報を得ることができます。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs という見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. PacketTranslation の FlowCollector カスタムリソースを、設定します。以下はその例です。

FlowCollector の設定例

第8章 ネットワークトラフィックの観測

91

https://lwn.net/Articles/370152/#:~:text=A zone is simply a,to seperate conntrack defragmentation queues.

1 spec.agent.ebpf.features 仕様リストに PacketTranslation パラメーターをリストするこ
とで、変換されたパケット情報を使用してネットワークフローを充実させることができま
す。

フィルタリングの例

Network Traffic ページを更新すると、変換されたパケットに関する情報をフィルタリングできます。

1. Destination kind: Service に基づき、ネットワークフローデータをフィルタリングします。

2. 変換された情報が表示される場所を区別する xlat 列と、次のデフォルト列が表示されます。

Xlat Zone ID

Xlat Src Kubernetes Object

Xlat Dst Kubernetes Object

追加の xlat 列の表示は、Manage columns で管理できます。

8.2.13. ユーザー定義ネットワークの操作

Network Observability リソースでユーザー定義ネットワーク (UDN) を有効にできます。次の例
は、FlowCollector リソースの設定を示しています。

前提条件

Red Hat OpenShift Networking で UDN を設定した。詳細は、「CLI を使用した
UserDefinedNetwork の作成」または「Web コンソールを使用した UserDefinedNetwork の作
成」を参照してください。

手順

1. 次のコマンドを実行して、Network Observability の FlowCollector リソースを編集します。

2. FlowCollector リソースの ebpf セクションを設定します。

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 type: eBPF
 ebpf:
 features:
 - PacketTranslation 1

$ oc edit flowcollector

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:

OpenShift Container Platform 4.18 Network Observability

92

1 すべてのフローを観測できるように、この設定が推奨されます。

検証

Network Traffic ページを更新して、Traffic Flow と Topology ビューで更新された UDN の情
報を表示します。

Network Traffic > Traffic flows では、SrcK8S_NetworkName フィールドと
DstK8S_NetworkName フィールドで UDN を確認できます。

Topology ビューでは、Network を Scope または Group に設定できます。

関連情報

CLI を使用した UserDefinedNetwork の作成

Web コンソールを使用した UserDefinedNetwork の作成

8.2.14. ネットワークイベントの表示

重要

OVN-Kubernetes ネットワークイベントの追跡は、テクノロジープレビュー機能です。
テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA)
の対象外であり、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこ
れらを使用することを推奨していません。テクノロジープレビュー機能は、最新の製品
機能をいち早く提供して、開発段階で機能のテストを行い、フィードバックを提供して
いただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、以下のリンク
を参照してください。

テクノロジープレビュー機能のサポート範囲

FlowCollector を編集して、次のリソースによってドロップまたは許可されたネットワークフローなど
のネットワークトラフィックイベントに関する情報を表示できます。

NetworkPolicy

AdminNetworkPolicy

BaselineNetworkPolicy

EgressFirewall

 name: cluster
spec:
 agent:
 ebpf:
 sampling: 1 1
 privileged: true
 features:
 - UDNMapping

第8章 ネットワークトラフィックの観測

93

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/multiple_networks/#nw-udn-cr_about-user-defined-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/multiple_networks/#nw-udn-cr-ui_about-user-defined-networks
https://access.redhat.com/support/offerings/techpreview/

1

2

UserDefinedNetwork 分離

マルチキャスト ACL

前提条件

cluster という名前の FeatureGate カスタムリソース (CR) で TechPreviewNoUpgrade 機能
セットを設定することで、OVNObservability を有効にした。詳細は、「CLI を使用した機能
セットの有効化」および「CLI を使用して OVS サンプリングで OVN-Kubernetes ネットワー
クトラフィックを確認する」を参照してください。

NetworkPolicy、AdminNetworkPolicy、BaselineNetworkPolicy、UserDefinedNetwork の
分離、マルチキャスト、または EgressFirewall のいずれかのネットワーク API を 1 つ以上作成
した。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs という見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. NetworkEvents の表示を有効にするには、FlowCollector CR を設定します。例:

FlowCollector の設定例

オプション: すべてのネットワークイベントをキャプチャーするために、sampling パラ
メーターの値は 1 に設定されます。サンプリング 1 ではリソースが多すぎる場合、サンプ
リングをニーズに合わせてより適切な値に設定します。

OVN observability ライブラリーはローカルの Open vSwitch (OVS) ソケットと
OpenShift Virtual Network (OVN) データベースにアクセスする必要があるた
め、privileged パラメーターは true に設定されています。

検証

1. Network Traffic ビューに移動し、Traffic flows テーブルを選択します。

2. Network Events という新しい列が表示されます。ここでは、有効にしたネットワーク API

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 agent:
 type: eBPF
 ebpf:
 # sampling: 1 1
 privileged: true 2
 features:
 - "NetworkEvents"

OpenShift Container Platform 4.18 Network Observability

94

(NetworkPolicy、AdminNetworkPolicy、BaselineNetworkPolicy、UserDefinedNetwork の
分離、マルチキャスト、Egress ファイアウォール) のいずれかがもたらす影響に関する情報を
表示できます。

この列で確認できるイベントの kind の例は次のとおりです。

Network Events の出力例

関連情報

CLI を使用した機能セットの有効化

CLI を使用して OVS サンプリングで OVN-Kubernetes ネットワークトラフィックを確認する

8.3. トポロジービューからのネットワークトラフィックの観察

Topology ビューには、ネットワークフローとトラフィック量がグラフィカルに表示されます。管理者
は、Topology ビューを使用して、アプリケーション全体のトラフィックデータを監視できます。

8.3.1. トポロジービューの操作

管理者は、Topology ビューに移動して、コンポーネントの詳細とメトリクスを確認できます。

手順

1. Observe → Network Traffic に移動します。

2. Network Traffic ページで、Topology タブをクリックします。

Topology 内の各コンポーネントをクリックして、コンポーネントの詳細とメトリクスを表示できま
す。

8.3.2. トポロジービューの詳細オプションの設定

Show advanced options を使用して、ビューをカスタマイズおよびエクスポートできます。詳細オプ
ションビューには、次の機能があります。

Find in view で必要なコンポーネントを検索します。

Display options: 次のオプションを設定するには:

Edge labels: 指定した測定値をエッジラベルとして表示します。デフォルトでは、Average
rate が Bytes 単位で表示されます。

Scope: ネットワークトラフィックが流れるコンポーネントのスコープを選択します。デ
フォルト値は Namespace です。

Groups: コンポーネントをグループ化することにより、所有権をわかりやすくします。デ
フォルト値は None です。

Layout: グラフィック表示のレイアウトを選択します。デフォルト値は ColaNoForce で
す。

<Dropped_or_Allowed> by <network_event_and_event_name>, direction <Ingress_or_Egress>

第8章 ネットワークトラフィックの観測

95

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-cluster-enabling-features-cli_nodes-cluster-enabling
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/ovn-kubernetes_network_plugin/#nw-ovn-kubernetes-observability_ovn-kubernetes-sources-of-troubleshooting-information

表示: 表示する必要がある詳細を選択します。デフォルトでは、すべてのオプションが
チェックされています。使用可能なオプションは、Edges、Edges label、および Badges
です。

Truncate labels: ドロップダウンリストから必要なラベルの幅を選択します。デフォルト値
は M です。

グループを Collapse groups を展開または折りたたみます。グループはデフォルトで展開
されています。Groups の値が None の場合、このオプションは無効になります。

8.3.2.1. トポロジービューのエクスポート

ビューをエクスポートするには、Export topology view をクリックします。ビューは PNG 形式でダウ
ンロードされます。

8.4. ネットワークトラフィックのフィルタリング

デフォルトでは、ネットワークトラフィックページには、FlowCollector インスタンスで設定されたデ
フォルトフィルターに基づいて、クラスター内のトラフィックフローデータが表示されます。フィル
ターオプションを使用して、プリセットフィルターを変更することにより、必要なデータを観察できま
す。

クエリーオプション

以下に示すように、Query Options を使用して検索結果を最適化できます。

Log Type: 利用可能なオプション Conversation と Flows では、フローログ、新しい会話、
完了した会話、および長い会話の更新を含む定期的なレコードであるハートビートなどのロ
グタイプ別にフローをクエリーする機能が提供されます。会話は、同じピア間のフローの集
合体です。

Match filters: 高度なフィルターで選択されたさまざまなフィルターパラメーター間の関係
を決定できます。利用可能なオプションは、Match all と Match any です。Match all はす
べての値に一致する結果を提供し、Match any は入力された値のいずれかに一致する結果を
提供します。デフォルト値は Match all です。

Datasource: クエリーに使用するデータソース (Loki、Prometheus、Auto) を選択できま
す。Loki ではなく Prometheus をデータソースとして使用すると、パフォーマンスが大幅に
向上します。ただし、Prometheus がサポートするフィルターと集計は限られています。デ
フォルトのデータソースは Auto です。Auto の場合、Prometheus をサポートしているクエ
リーでは Prometheus を使用し、サポートしていないクエリーでは Loki を使用します。

Drops filter: 次のクエリーオプションを使用して、各レベルのドロップパケットを表示でき
ます。

Fully dropped の場合、パケットが完全にドロップされたフローレコードが表示されま
す。

Containing drops の場合、ドロップが発生したが送信可能なフローレコードが表示され
ます。

Without drops の場合、送信されたパケットを含むレコードが表示されます。

All の場合、上記のレコードがすべて表示されます。

Limit: 内部バックエンドクエリーのデータ制限。マッチングやフィルターの設定に応じて、
トラフィックフローデータの数が指定した制限内で表示されます。

OpenShift Container Platform 4.18 Network Observability

96

クイックフィルター

Quick filters ドロップダウンメニューのデフォルト値は、FlowCollector 設定で定義されます。コ
ンソールからオプションを変更できます。

高度なフィルター

ドロップダウンリストからフィルタリングするパラメーターを選択することで、詳細フィルター
(Common、Source、Destination) を設定できます。フローデータは選択に基づいてフィルタリン
グされます。適用されたフィルターを有効または無効にするには、フィルターオプションの下にリ
ストされている適用されたフィルターをクリックします。

 One way と Back and forth のフィルタリングを切り替えることができます。 One way フィ
ルターを使用すると、選択したフィルターに基づき Source および Destination トラフィックのみが表
示されます。Swap を使用すると、Source および Destination トラフィックの方向ビューを変更でき
ます。 Back and forth フィルターには、Source フィルターと Destination フィルターによる戻
りトラフィックが含まれます。ネットワークトラフィックの方向性があるフローは、Traffic flows テー
ブルの Direction 列に、ノード間トラフィックの場合は Ingress`or `Egress として、シングルノード内
のトラフィックの場合は `Inner` として表示されます。

Reset defaults をクリックすると、既存のフィルターが削除され、FlowCollector 設定で定義された
フィルターが適用されます。

注記

テキスト値の指定規則を理解するには、Learn More をクリックしてください。

または、Namespaces、Services、Routes、Nodes、および Workloads ページの Network Traffic タ
ブでトラフィックフローデータにアクセスして、対応する集約のフィルタリングされたデータを提供し
ます。

関連情報

クイックフィルターの設定

Flow Collector のサンプルリソース

第8章 ネットワークトラフィックの観測

97

第9章 NETWORK OBSERVABILITY アラート
Network Observability Operator は、組み込みのメトリクスと OpenShift Container Platform モニタリ
ングスタックを使用してアラートを提供し、クラスターのネットワークの健全性を迅速に示します。

重要

Network Observability アラートは、テクノロジープレビュー機能です。テクノロジープ
レビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であ
り、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこれらを使用す
ることを推奨していません。テクノロジープレビュー機能は、最新の製品機能をいち早
く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくこと
を目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、以下のリンク
を参照してください。

テクノロジープレビュー機能のサポート範囲

9.1. NETWORK OBSERVABILITY アラートについて

Network Observability には、事前定義済みのアラートがあります。これらのアラートを使用して、
OpenShift Container Platform アプリケーションとインフラストラクチャーの健全性とパフォーマンス
に関する詳細情報を得ることができます。

事前定義済みのアラートにより、Network Health ダッシュボードに、クラスターのネットワークの健
全性状態がすぐに表示されます。Prometheus Query Language (PromQL) クエリーを使用してアラー
トをカスタマイズすることもできます。

デフォルトでは、Network Observability により、有効にした機能に応じたアラートが作成されます。

たとえば、パケットドロップ関連のアラートは、FlowCollector カスタムリソース (CR) で
PacketDrop エージェント機能が有効になっている場合にのみ作成されます。アラートはメトリクスに
基づいて作成されるため、有効なアラートに必要なメトリクスが不足している場合、設定に関する警告
が表示されることがあります。

これらのメトリクスは、FlowCollector CR の spec.processor.metrics.includeList オブジェクトで設
定できます。

9.1.1. デフォルトのアラートテンプレートのリスト

次のアラートテンプレートはデフォルトでインストールされます。

PacketDropsByDevice

デバイス (/proc/net/dev) からのパケットドロップ率が高い場合にトリガーされます。

PacketDropsByKernel

カーネルによるパケットドロップ率が高い場合にトリガーされます。PacketDrop エージェント機能
が必要です。

IPsecErrors

Network Observability によって IPsec 暗号化エラーが検出されるとトリガーされます。IPSec エー
ジェント機能が必要です。

NetpolDenied

OpenShift Container Platform 4.18 Network Observability

98

https://access.redhat.com/support/offerings/techpreview/

ネットワークポリシーによって拒否されたトラフィックが Network Observability によって検出され
るとトリガーされます。NetworkEvents エージェント機能が必要です。

LatencyHighTrend

Network Observability によって TCP レイテンシーの増加が検出されるとトリガーされま
す。FlowRTT エージェント機能が必要です。

DNSErrors

Network Observability によって DNS エラーが検出されるとトリガーされます。DNSTracking エー
ジェント機能が必要です。

以下は、Network Observability 自体の健全性に関連する運用アラートです。

NetObservNoFlows

一定期間フローが観測されない場合にトリガーされます。

NetObservLokiError

Loki エラーによりフローがドロップされたときにトリガーされます。

Network Observability のアラートは、設定、拡張、または無効にできます。次のコマンドを実行する
と、デフォルトの netobserv namespace に生成された PrometheusRule リソースを表示できます。

9.1.2. Network Health ダッシュボード

Network Observability Operator でアラートが有効な場合、次の 2 つのものが表示されます。

新しいアラートが、OpenShift Container Platform Web コンソールの Observe → Alerting →
Alerting rules タブに表示されます。

新しい Network Health ダッシュボードが、OpenShift Container Platform Web コンソール →
Observe に表示されます。

Network Health ダッシュボードは、トリガーされたアラートと保留中のアラートの概要を提供し、重
大な問題、警告、および軽微な問題に分類します。ルール違反に関するアラートは次のタブに表示され
ます。

Global: クラスター全体に対するアラートを表示します。

Nodes: ノードごとにルール違反に関するアラートを表示します。

Namespaces: namespace ごとにルール違反に関するアラートを表示します。

リソースカードをクリックすると詳細情報が表示されます。各アラートの横に、省略記号メニューが表
示されます。このメニューから、Network Traffic → Traffic flows に移動して、選択したリソースの詳
細情報を表示できます。

9.2. NETWORK OBSERVABILITY のアラート (テクノロジープレビュー) の
有効化

Network Observability Operator アラートはテクノロジープレビュー機能です。この機能を使用するに
は、FlowCollector カスタムリソース (CR) でこの機能を有効にしてから、お客様のニーズに合わせて
アラートを設定する必要があります。

$ oc get prometheusrules -n netobserv -oyaml

第9章 NETWORK OBSERVABILITY アラート

99

手順

1. FlowCollector CR を編集して、実験的なアラートのフラグを true に設定します。

アラートの作成に関しては、従来の方法を引き続き使用できます。詳細は、「アラートの作成」を参照
してください。

9.2.1. 事前定義済みアラートの設定

Network Observability Operator のアラートは、FlowCollector カスタムリソース (CR) の
spec.processor.metrics.alerts オブジェクト内のアラートテンプレートおよびバリアントを使用して
定義されます。デフォルトのテンプレートとバリアントをカスタマイズして、柔軟できめ細かなアラー
トを作成できます。

アラートを有効にすると、OpenShift Container Platform Web コンソールの Observe セクションに
Network Health ダッシュボードが表示されます。

テンプレートごとに、それぞれ固有のしきい値とグループ化設定を持つバリアントのリストを定義でき
ます。詳細は、「デフォルトのアラートテンプレートのリスト」を参照してください。

以下に例を示します。

注記

apiVersion: flows.netobserv.io/v1beta1
kind: FlowCollector
metadata:
 name: flow-collector
spec:
 processor:
 advanced:
 env:
 EXPERIMENTAL_ALERTS_HEALTH: "true"

apiVersion: flows.netobserv.io/v1beta1
kind: FlowCollector
metadata:
 name: flow-collector
spec:
 processor:
 metrics:
 alerts:
 - template: PacketDropsByKernel
 variants:
 # triggered when the whole cluster traffic (no grouping) reaches 10% of drops
 - thresholds:
 critical: "10"
 # triggered when per-node traffic reaches 5% of drops, with gradual severity
 - thresholds:
 critical: "15"
 warning: "10"
 info: "5"
 groupBy: Node

OpenShift Container Platform 4.18 Network Observability

100

注記

アラートをカスタマイズすると、そのテンプレートのデフォルト設定が置き換えられま
す。デフォルト設定を維持する場合は、手動で複製する必要があります。

9.2.2. アラートの PromQL 式について

Prometheus Query Language (PromQL) のベースクエリーと、それをカスタマイズして特定のニーズ
に合わせて Network Observability アラートを設定する方法を説明します。

Network Observability の FlowCollector カスタムリソース (CR) 内のアラート API は、Prometheus
Operator API にマッピングされており、PrometheusRule を生成します。次のコマンドを実行する
と、デフォルトの netobserv namespace 内の PrometheusRule を確認できます。

9.2.2.1. 受信トラフィックの急増に関するアラートのクエリー例

この例では、受信トラフィックの急増に関するアラートの PromQL ベースクエリーパターンを示しま
す。

このクエリーは、過去 30 分間に openshift-ingress namespace からいずれかのワークロードの
namespace に送信されたバイトレートを計算します。

このクエリーをカスタマイズして、一部のレートのみを保持したり、特定の期間にクエリーを実行した
り、最終的なしきい値を設定したりできます。

ノイズのフィルタリング

このクエリーに > 1000 を追加すると、1 KB/s を超える観測レートのみが保持され、通信量が少な
いコンシューマーからのノイズが除去されます。
(sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-
ingress"}[30m])) by (DstK8S_Namespace) > 1000)

バイトレートは、FlowCollector カスタムリソース (CR) 設定で定義されたサンプリング間隔と相対
的な関係にあります。サンプリング間隔が 1:100 の場合、実際のトラフィックは報告されたメトリ
クスの約 100 倍であると考えられます。

期間の比較

offset 修飾子を使用すると、特定の期間に同じクエリーを実行できます。たとえば、offset 1d 使用
すると 1 日前にクエリーを実行でき、offset 5h を使用すると 5 時間前にクエリーを実行できます。
sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m] offset 1d)) by (DstK8S_Namespace))

100 * (<query now> - <query from the previous day>) / <query from the previous day> という数
式を使用すると、前日と比較した増加率を計算できます。今日のバイトレートが前日よりも低い場
合、この値は負になることがあります。

最終的なしきい値

最終的なしきい値を適用すると、目的のパーセンテージに満たない増加分を除外できます。たとえ

$ oc get prometheusrules -n netobserv -oyaml

sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}[30m]))
by (DstK8S_Namespace)

第9章 NETWORK OBSERVABILITY アラート

101

最終的なしきい値を適用すると、目的のパーセンテージに満たない増加分を除外できます。たとえ
ば、> 100 は 100% 未満の増加分を除外します。

まとめると、PrometheusRule の完全な式は次のようになります。

9.2.2.2. アラートのメタデータフィールド

Network Observability Operator は、モニタリングスタックなど、他の OpenShift Container Platform
機能のコンポーネントを使用して、ネットワークトラフィックの可視性を強化します。詳細は、「モニ
タリングスタックアーキテクチャー」を参照してください。

アラートを定義するには、いくつかのメタデータを設定する必要があります。このメタデータは、モニ
タリングスタックの Prometheus および Alertmanager サービス、または Network Health ダッシュ
ボードによって使用されます。

次の例は、メタデータが設定された AlertingRule リソースを示しています。

...
 expr: |-
 (100 *
 (
 (sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m])) by (DstK8S_Namespace) > 1000)
 - sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-
ingress"}[30m] offset 1d)) by (DstK8S_Namespace)
)
 / sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m] offset 1d)) by (DstK8S_Namespace))
 > 100

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
 name: netobserv-alerts
 namespace: openshift-monitoring
spec:
 groups:
 - name: NetObservAlerts
 rules:
 - alert: NetObservIncomingBandwidth
 annotations:
 netobserv_io_network_health: '{"namespaceLabels":
["DstK8S_Namespace"],"threshold":"100","unit":"%","upperBound":"500"}'
 message: |-
 NetObserv is detecting a surge of incoming traffic: current traffic to {{
$labels.DstK8S_Namespace }} has increased by more than 100% since yesterday.
 summary: "Surge in incoming traffic"
 expr: |-
 (100 *
 (
 (sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m])) by (DstK8S_Namespace) > 1000)
 - sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-
ingress"}[30m] offset 1d)) by (DstK8S_Namespace)
)

OpenShift Container Platform 4.18 Network Observability

102

ここでは、以下のようになります。

spec.groups.rules.alert.labels.netobserv

true に設定すると、このアラートが、Network Health ダッシュボードによって検出されるべきア
ラートとして指定されます。

spec.groups.rules.alert.labels.severity

アラートの重大度を指定します。有効な値は、critical、warning、または info です。

message アノテーションで定義されている PromQL 式からの出力ラベルを活用できます。この例で
は、結果が DstK8S_Namespace ごとにグループ化されるため、メッセージテキストで {{
$labels.DstK8S_Namespace }} という式が使用されています。

netobserv_io_network_health アノテーションは任意であり、Network Health ページでアラートをど
のようにレンダリングするかを制御します。

netobserv_io_network_health アノテーションは、次のフィールドで構成される JSON 文字列です。

表9.1 netobserv_io_network_health アノテーションのフィールド

フィールド 型 説明

namespaceLab
els

文字列のリスト namespace を保持する 1 つ以上のラベル。指定すると、アラー
トが Namespaces タブに表示されます。

nodeLabels 文字列のリスト ノード名を保持する 1 つ以上のラベル。指定すると、アラートが
Nodes タブに表示されます。

threshold 文字列 アラートしきい値。PromQL 式で定義したしきい値と同じ値に
する必要があります。

unit 文字列 表示目的でのみ使用されるデータ単位。

upperBound 文字列 閉じた尺度でスコアを計算するために使用される上限値。この
上限を超えるメトリクス値は丸められます。

links オブジェクトのリ
スト

アラートに応じて表示されるリンクのリスト。各リンクに
は、name (表示名) と url が必要です。

trafficLinkFilter 文字列 Network Traffic ページの URL に注入する追加のフィルター。

namespaceLabels と nodeLabels は相互に排他的です。どちらも指定されていない場合は、Global
タブにアラートが表示されます。

 / sum(rate(netobserv_workload_ingress_bytes_total{SrcK8S_Namespace="openshift-ingress"}
[30m] offset 1d)) by (DstK8S_Namespace))
 > 100
 for: 1m
 labels:
 app: netobserv
 netobserv: "true"
 severity: warning

第9章 NETWORK OBSERVABILITY アラート

103

9.2.3. カスタムアラートルールの作成

Prometheus Query Language (PromQL) を使用して、特定のネットワークメトリクス (トラフィックの
急増など) に基づいてアラートをトリガーするカスタム AlertingRule リソースを定義します。

前提条件

PromQL に関する知識。

OpenShift Container Platform 4.14 以降がインストールされている。

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

Network Observability Operator がインストールされている。

手順

1. AlertingRule リソースを含む、custom-alert.yaml という名前の YAML ファイルを作成しま
す。

2. 次のコマンドを実行して、カスタムアラートルールを適用します。

検証

1. 次のコマンドを実行して、PrometheusRule リソースが netobserv namespace に作成された
ことを確認します。

出力に、作成した netobserv-alerts ルールが含まれているはずです。これにより、リソースが
正しく生成されたことを確認できます。

2. OpenShift Container Platform Web コンソールの Network Health ダッシュボード → Observe
をチェックして、ルールがアクティブであることを確認します。

9.2.4. 事前定義済みアラートの無効化

FlowCollector カスタムリソース (CR) の spec.processor.metrics.disableAlerts フィールドで、ア
ラートテンプレートを無効にできます。この設定は、アラートテンプレート名のリストを受け付けま
す。アラートテンプレート名のリストは、「デフォルトのアラートのリスト」を参照してください。

テンプレートが無効化され、かつ spec.processor.metrics.alerts フィールドでオーバーライドされて
いる場合、無効化の設定が優先され、アラートルールは作成されません。

関連情報

デフォルトのアラートのリスト

Network Observability メトリクスのダッシュボードの表示

アラートの作成

$ oc apply -f custom-alert.yaml

$ oc get prometheusrules -n netobserv -oyaml

OpenShift Container Platform 4.18 Network Observability

104

モニタリングスタックアーキテクチャー

第9章 NETWORK OBSERVABILITY アラート

105

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/monitoring/#monitoring-stack-architecture

第10章 ダッシュボードとアラートでのメトリクスの使用
Network Observability Operator は、flowlogs-pipeline コンポーネントを使用して、フローログからメ
トリクスを生成します。カスタムアラートを設定し、ネットワークアクティビティー分析用のダッシュ
ボードを表示するには、これらのメトリクスを使用します。

10.1. NETWORK OBSERVABILITY メトリクスのダッシュボードの表示

OpenShift Container Platform コンソールの Overview タブを使用してネットワーク可観測性メトリク
スダッシュボードを表示し、全体的なトラフィックフローとシステムの正常性を監視し、ノード、
namespace、所有者、Pod、およびサービスごとにメトリクスをフィルタリングするオプションを指定
します。

手順

1. Web コンソールの Observe → Dashboards で、Netobserv ダッシュボードを選択します。

2. 次のカテゴリーのネットワークトラフィックメトリクスを表示します。各カテゴリーには、
ノード、namespace、送信元、宛先ごとのサブセットがあります。

バイトレート

パケットドロップ

DNS

RTT

3. Netobserv/Health ダッシュボードを選択します。

4. Operator の健全性に関する次のカテゴリーのメトリクスを表示します。各カテゴリーには、
ノード、namespace、送信元、宛先ごとのサブセットがあります。

フロー

フローのオーバーヘッド

フローレート

エージェント

プロセッサー

Operator

Infrastructure および Application メトリクスは、namespace とワークロードの分割ビューで表示され
ます。

10.2. NETWORK OBSERVABILITY メトリクス

netobserv_ という接頭辞が付いたネットワーク可観測性メトリックの包括的なリストを確認します。
これは、FlowCollector リソースで設定でき、トラフィックを監視し、Prometheus アラートを作成す
るために使用できます。

flowlogs-pipeline によって生成されるメトリクスは、FlowCollector カスタムリソースの

OpenShift Container Platform 4.18 Network Observability

106

flowlogs-pipeline によって生成されるメトリクスは、FlowCollector カスタムリソースの
spec.processor.metrics.includeList で設定して追加または削除できます。

Prometheus ルールの includeList メトリクスを使用してアラートを作成することもできます。「ア
ラートの作成」の例を参照してください。

コンソールで Observe → Metrics を選択するなどして Prometheus でこれらのメトリクスを探す場
合、またはアラートを定義する場合、すべてのメトリクス名に netobserv_ という接頭辞が付きます。
たとえば、netobserv_namespace_flows_total です。利用可能なメトリクス名は以下のとおりです。

includeList のメトリクス名

名前の後にアスタリスク * が付いているものは、デフォルトで有効です。

namespace_egress_bytes_total

namespace_egress_packets_total

namespace_ingress_bytes_total

namespace_ingress_packets_total

namespace_flows_total *

node_egress_bytes_total

node_egress_packets_total

node_ingress_bytes_total *

node_ingress_packets_total

node_flows_total

workload_egress_bytes_total

workload_egress_packets_total

workload_ingress_bytes_total *

workload_ingress_packets_total

workload_flows_total

PacketDrop のメトリクス名

PacketDrop 機能が (privileged モードにより) spec.agent.ebpf.features で有効になっている場
合、次の追加のメトリクスを使用できます。

namespace_drop_bytes_total

namespace_drop_packets_total *

node_drop_bytes_total

node_drop_packets_total

第10章 ダッシュボードとアラートでのメトリクスの使用

107

workload_drop_bytes_total

workload_drop_packets_total

DNS のメトリクス名

DNSTracking 機能が spec.agent.ebpf.features で有効になっている場合、次の追加のメトリクスを
使用できます。

namespace_dns_latency_seconds *

node_dns_latency_seconds

workload_dns_latency_seconds

FlowRTT のメトリクス名

FlowRTT 機能が spec.agent.ebpf.features で有効になっている場合、次の追加のメトリクスを使用
できます。

namespace_rtt_seconds *

node_rtt_seconds

workload_rtt_seconds

ネットワークイベントメトリクス名

NetworkEvents 機能が有効になっている場合、このメトリクスはデフォルトで利用できます。

namespace_network_policy_events_total

10.3. アラートの作成

Netobserv ダッシュボードメトリクスに基づいてカスタム AlertingRule リソースを作成し、OpenShift
Container Platform コンソールでアラートをトリガーする条件を定義します。

前提条件

cluster-admin ロールを持つユーザー、またはすべてのプロジェクトの表示権限を持つユーザー
としてクラスターにアクセスできる。

Network Observability Operator がインストールされています。

手順

1. インポートアイコン + をクリックして、YAML ファイルを作成します。

2. アラートルール設定を YAML ファイルに追加します。次の YAML サンプルでは、クラスターの
Ingress トラフィックが宛先ワークロードごとの指定しきい値 (10 MBps) に達したときに、ア
ラートが作成されます。

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:

OpenShift Container Platform 4.18 Network Observability

108

1 netobserv_workload_ingress_bytes_total メトリクス
は、spec.processor.metrics.includeList でデフォルトで有効です。

3. Create をクリックして設定ファイルをクラスターに適用します。

10.4. カスタムメトリクス

FlowMetric API を使用して flowlog データからカスタムメトリクスを定義し、ログフィールドを
Prometheus ラベルとして使用し、ダッシュボード情報をカスタマイズし、特定のクラスターデータを
監視します。

収集されるすべてのフローログデータには、送信元名や宛先名など、ログごとのラベルが付けられた
フィールドがいくつかあります。これらのフィールドを Prometheus ラベルとして活用して、ダッシュ
ボード上のクラスター情報をカスタマイズできます。

10.5. FLOWMETRIC API を使用したカスタムメトリクスの設定

特定のモニタリングニーズを満たすために、フローログフィールドをラベルとしてマッピングしてカス
タム Prometheus メトリクスを作成するように FlowMetric API を設定します。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しで、FlowMetric を選択します。

3. Project: ドロップダウンリストで、Network Observability Operator インスタンスのプロジェク
トを選択します。

4. Create FlowMetric をクリックします。

5. 次のサンプル設定と同じように FlowMetric リソースを設定します。

クラスターの外部ソースから受信した Ingress バイト数を追跡するメトリクスを生成す

 name: netobserv-alerts
 namespace: openshift-monitoring
spec:
 groups:
 - name: NetObservAlerts
 rules:
 - alert: NetObservIncomingBandwidth
 annotations:
 message: |-
 {{ $labels.job }}: incoming traffic exceeding 10 MBps for 30s on {{
$labels.DstK8S_OwnerType }} {{ $labels.DstK8S_OwnerName }} ({{
$labels.DstK8S_Namespace }}).
 summary: "High incoming traffic."
 expr: sum(rate(netobserv_workload_ingress_bytes_total
{SrcK8S_Namespace="openshift-ingress"}[1m])) by (job, DstK8S_Namespace,
DstK8S_OwnerName, DstK8S_OwnerType) > 10000000 1
 for: 30s
 labels:
 severity: warning

第10章 ダッシュボードとアラートでのメトリクスの使用

109

1

2

3

4

5

6

クラスターの外部ソースから受信した Ingress バイト数を追跡するメトリクスを生成す
る

FlowMetric リソースは、FlowCollector spec.namespace で定義された namespace (デ
フォルトでは netobserv) に作成する必要があります。

Prometheus メトリクスの名前。Web コンソールでは接頭辞 netobserv-<metricName>
とともに表示されます。

type はメトリクスのタイプを指定します。Counter type は、バイト数またはパケット数
をカウントするのに役立ちます。

キャプチャーするトラフィックの方向。指定しない場合は、Ingress と Egress の両方が
キャプチャーされ、重複したカウントが発生する可能性があります。

ラベルは、メトリクスの外観とさまざまなエンティティー間の関係を定義します。また、
メトリクスのカーディナリティーも定義します。たとえば、SrcK8S_Name はカーディナ
リティーが高いメトリクスです。

リストされた基準に基づいて結果を絞り込みます。この例では、SrcSubnetLabel が存在
しないフローのみを照合することによって、クラスターの外部トラフィックのみを選択し
ます。これは、(spec.processor.subnetLabels により) サブネットラベル機能が有効に
なっていることを前提としています。この機能はデフォルトで有効になっています。

検証

1. Pod が更新されたら、Observe → Metrics に移動します。

2. Expression フィールドにメトリクス名を入力して、対応する結果を表示します。topk(5,
sum(rate(netobserv_cluster_external_ingress_bytes_total{DstK8S_Namespace="my-
namespace"}[2m])) by (DstK8S_HostName, DstK8S_OwnerName, DstK8S_OwnerType)) な
どの式を入力することもできます。

クラスター外部 Ingress トラフィックの RTT 遅延を表示する

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flowmetric-cluster-external-ingress-traffic
 namespace: netobserv 1
spec:
 metricName: cluster_external_ingress_bytes_total 2
 type: Counter 3
 valueField: Bytes
 direction: Ingress 4
 labels:
[DstK8S_HostName,DstK8S_Namespace,DstK8S_OwnerName,DstK8S_OwnerType] 5
 filters: 6
 - field: SrcSubnetLabel
 matchType: Absence

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric

OpenShift Container Platform 4.18 Network Observability

110

1

2

3

4

FlowMetric リソースは、FlowCollector spec.namespace で定義された namespace (デ
フォルトでは netobserv) に作成する必要があります。

type はメトリクスのタイプを指定します。Histogram type は、遅延値 (TimeFlowRttNs)
に役立ちます。

ラウンドトリップタイム (RTT) はフロー内でナノ秒単位で提供されるため、秒単位に変換
するには除数として 10 億を使用します。これは Prometheus ガイドラインの標準です。

カスタムバケットは RTT の精度を指定します。最適な精度は 5 ミリ秒から 250 ミリ秒の
範囲です。

検証

1. Pod が更新されたら、Observe → Metrics に移動します。

2. Expression フィールドにメトリクス名を入力して、対応する結果を表示できます。

10.6. TRAFFIC FLOWS テーブルのネストされたフィールドまたは配列
フィールドからメトリクスを作成する

FlowMetric カスタムリソースを作成し、ネットワークイベント やインターフェイスなどの Traffic
flows テーブルでネストされたフィールドまたは配列フィールドのメトリクスを生成し ます。

重要

metadata:
 name: flowmetric-cluster-external-ingress-rtt
 namespace: netobserv 1
spec:
 metricName: cluster_external_ingress_rtt_seconds
 type: Histogram 2
 valueField: TimeFlowRttNs
 direction: Ingress
 labels:
[DstK8S_HostName,DstK8S_Namespace,DstK8S_OwnerName,DstK8S_OwnerType]
 filters:
 - field: SrcSubnetLabel
 matchType: Absence
 - field: TimeFlowRttNs
 matchType: Presence
 divider: "1000000000" 3
 buckets: [".001", ".005", ".01", ".02", ".03", ".04", ".05", ".075", ".1", ".25", "1"] 4

第10章 ダッシュボードとアラートでのメトリクスの使用

111

重要

OVN Observability/NetworkEvents の表示はテクノロジープレビュー機能です。テクノ
ロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象
外であり、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこれらを
使用することを推奨していません。テクノロジープレビュー機能は、最新の製品機能を
いち早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただ
くことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、以下のリンク
を参照してください。

テクノロジープレビュー機能のサポート範囲

重要

OVN Observability とネットワークイベントの表示および追跡機能は、OpenShift
Container Platform 4.17 および 4.18 でのみ利用できます。

次の例は、ネットワークポリシーイベントの Network events フィールドからメトリクスを生成する方
法を示しています。

前提条件

NetworkEvents feature を有効にする。これを行う方法は、関連情報を参照してください。

ネットワークポリシーが指定されている。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しで、FlowMetric を選択します。

3. Project ドロップダウンリストで、Network Observability Operator インスタンスのプロジェク
トを選択します。

4. Create FlowMetric をクリックします。

5. FlowMetric リソースを作成して、次の設定を追加します。

ポリシー名と namespace ごとにネットワークポリシーイベントをカウントする設定

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: network-policy-events
 namespace: netobserv
spec:
 metricName: network_policy_events_total
 type: Counter
 labels: [NetworkEvents>Type, NetworkEvents>Namespace, NetworkEvents>Name,
NetworkEvents>Action, NetworkEvents>Direction] 1
 filters:
 - field: NetworkEvents>Feature

OpenShift Container Platform 4.18 Network Observability

112

https://access.redhat.com/support/offerings/techpreview/

1

2

3

これらのラベルは、Traffic flows テーブルの Network Events のネストされたフィールド
を表します。各ネットワークイベントには、特定のタイプ、namespace、名前、アクショ
ン、方向があります。使用している OpenShift Container Platform バージョンで
NetworkEvents が利用できない場合は、代わりに Interfaces を指定することもできま
す。

オプション: アイテムのリストを含むフィールドを、個別のアイテムとして表すことを選
択できます。

オプション: Prometheus のフィールドの名前を変更できます。

検証

1. Web コンソールで、Observe → Dashboards に移動し、下にスクロールして Network Policy
タブを表示します。

2. 作成したメトリクスとネットワークポリシー仕様に基づき、メトリクスのフィルタリングが適
用されているはずです。

重要

カーディナリティーが高いと、Prometheus のメモリー使用量に影響する可能性がありま
す。特定のラベルのカーディナリティーが高いかどうかは、ネットワークフロー形式の
リファレンス で確認できます。

10.7. FLOWMETRIC API を使用したカスタムグラフの設定

FlowMetric カスタムリソースの charts セクションを定義して、OpenShift Container Platform Web コ
ンソールダッシュボードのカスタムチャートを生成します。

Dashboard メニューで、管理者としてカスタムチャートを表示できます。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しで、FlowMetric を選択します。

3. Project: ドロップダウンリストで、Network Observability Operator インスタンスのプロジェク
トを選択します。

4. Create FlowMetric をクリックします。

5. 次のサンプル設定と同じように FlowMetric リソースを設定します。

クラスターの外部ソースから受信した Ingress バイト数を追跡するためのチャート

 value: acl
 flatten: [NetworkEvents] 2
 remap: 3
 "NetworkEvents>Type": type
 "NetworkEvents>Namespace": namespace
 "NetworkEvents>Name": name
 "NetworkEvents>Direction": direction

第10章 ダッシュボードとアラートでのメトリクスの使用

113

1 FlowMetric リソースは、FlowCollector spec.namespace で定義された namespace (デ
フォルトでは netobserv) に作成する必要があります。

検証

1. Pod が更新されたら、Observe → Dashboards に移動します。

2. NetObserv / Main ダッシュボードを検索します。NetObserv / Main ダッシュボードの下、ま
たは必要に応じて作成したダッシュボード名の下にある次の 2 つのパネルを確認します。

すべてのディメンションにわたりグローバルな外部 Ingress レートを合計したテキスト形式
の単一の統計

上記と同じメトリクスを示す、宛先ワークロードごとの時系列グラフ

クエリー言語の詳細は、Prometheus のドキュメント を参照してください。

クラスター外部 Ingress トラフィックの RTT 遅延のグラフ

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flowmetric-cluster-external-ingress-traffic
 namespace: netobserv 1
...
 charts:
 - dashboardName: Main 2
 title: External ingress traffic
 unit: Bps
 type: SingleStat
 queries:
 - promQL: "sum(rate($METRIC[2m]))"
 legend: ""
 - dashboardName: Main 3
 sectionName: External
 title: Top external ingress traffic per workload
 unit: Bps
 type: StackArea
 queries:
 - promQL: "sum(rate($METRIC{DstK8S_Namespace!=\"\"}[2m])) by (DstK8S_Namespace,
DstK8S_OwnerName)"
 legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
...

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flowmetric-cluster-external-ingress-traffic
 namespace: netobserv 1
...
 charts:
 - dashboardName: Main 2
 title: External ingress TCP latency
 unit: seconds

OpenShift Container Platform 4.18 Network Observability

114

https://prometheus.io/docs/prometheus/latest/querying/basics/

1

2 3 4

FlowMetric リソースは、FlowCollector spec.namespace で定義された namespace (デフォルト
では netobserv) に作成する必要があります。

異なる dashboardName を使用すると、接頭辞が Netobserv である新しいダッシュボードが
作成されます。たとえば、Netobserv / <dashboard_name> です。

この例では、histogram_quantile 関数を使用して p50 と p99 を表示します。

ヒストグラムを作成するときに自動的に生成されるメトリクス $METRIC_sum をメトリクス
$METRIC_count で割ることで、ヒストグラムの平均を表示できます。前述の例では、これを実行する
ための Prometheus クエリーは次のとおりです。

検証

1. Pod が更新されたら、Observe → Dashboards に移動します。

2. NetObserv / Main ダッシュボードを検索します。NetObserv / Main ダッシュボードの下、ま
たは必要に応じて作成したダッシュボード名の下にある新しいパネルを表示します。

クエリー言語の詳細は、Prometheus のドキュメント を参照してください。

10.8. FLOWMETRIC API と TCP フラグを使用した SYN フラッディングの
検出

カスタム AlertingRule および FlowMetric 設定をデプロイして TCP フラグを監視し、クラスター上の

 type: SingleStat
 queries:
 - promQL: "histogram_quantile(0.99, sum(rate($METRIC_bucket[2m])) by (le)) > 0"
 legend: "p99"
 - dashboardName: Main 3
 sectionName: External
 title: "Top external ingress sRTT per workload, p50 (ms)"
 unit: seconds
 type: Line
 queries:
 - promQL: "histogram_quantile(0.5, sum(rate($METRIC_bucket{DstK8S_Namespace!=\"\"}[2m]))
by (le,DstK8S_Namespace,DstK8S_OwnerName))*1000 > 0"
 legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
 - dashboardName: Main 4
 sectionName: External
 title: "Top external ingress sRTT per workload, p99 (ms)"
 unit: seconds
 type: Line
 queries:
 - promQL: "histogram_quantile(0.99, sum(rate($METRIC_bucket{DstK8S_Namespace!=\"\"}[2m]))
by (le,DstK8S_Namespace,DstK8S_OwnerName))*1000 > 0"
 legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
...

promQL: "(sum(rate($METRIC_sum{DstK8S_Namespace!=\"\"}[2m])) by
(DstK8S_Namespace,DstK8S_OwnerName) / sum(rate($METRIC_count{DstK8S_Namespace!=\"\"}
[2m])) by (DstK8S_Namespace,DstK8S_OwnerName))*1000"

第10章 ダッシュボードとアラートでのメトリクスの使用

115

https://prometheus.io/docs/prometheus/latest/querying/basics/

カスタム AlertingRule および FlowMetric 設定をデプロイして TCP フラグを監視し、クラスター上の
SYN フラッディング攻撃のリアルタイム検出およびアラートを有効にします。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しで、FlowMetric を選択します。

3. Project ドロップダウンリストで、Network Observability Operator インスタンスのプロジェク
トを選択します。

4. Create FlowMetric をクリックします。

5. FlowMetric リソースを作成して、次の設定を追加します。

TCP フラグを使用して、宛先ホストとリソースごとにフローをカウントする設定

TCP フラグを使用して、ソースホストとリソースごとにフローをカウントする設定

6. SYN フラッディングを警告するための次の AlertingRule リソースをデプロイします。

SYN フラッディングの AlertingRule

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flows-with-flags-per-destination
spec:
 metricName: flows_with_flags_per_destination_total
 type: Counter
 labels:
[SrcSubnetLabel,DstSubnetLabel,DstK8S_Name,DstK8S_Type,DstK8S_HostName,DstK8S_N
amespace,Flags]

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flows-with-flags-per-source
spec:
 metricName: flows_with_flags_per_source_total
 type: Counter
 labels:
[DstSubnetLabel,SrcSubnetLabel,SrcK8S_Name,SrcK8S_Type,SrcK8S_HostName,SrcK8S_N
amespace,Flags]

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
 name: netobserv-syn-alerts
 namespace: openshift-monitoring
...
 spec:
 groups:
 - name: NetObservSYNAlerts

OpenShift Container Platform 4.18 Network Observability

116

1 2 この例では、アラートのしきい値は 300 ですが、この値は環境に応じて調整できます。し
きい値が低すぎると誤検出が発生する可能性があります。また、しきい値が高すぎると実
際の攻撃を見逃す可能性があります。

検証

1. Web コンソールで、Network Traffic テーブルビューの Manage Columns をクリックし、TCP
flags をクリックします。

2. Network Traffic テーブルビューで、TCP protocol SYN TCPFlag でフィルタリングします。同
じ byteSize を持つフローが多数ある場合は、SYN フラッドが発生しています。

3. Observe → Alerting に移動し、Alerting Rules タブを選択します。

4. netobserv-synflood-in alert でフィルタリングします。SYN フラッディングが発生すると、ア
ラートが起動するはずです。

関連情報

グローバルルールを使用した eBPF フローデータのフィルタリング

ユーザー定義プロジェクトのアラートルールの作成。

高カーディナリティーメトリクスのトラブルシューティング - Prometheus が大量のディスク

 rules:
 - alert: NetObserv-SYNFlood-in
 annotations:
 message: |-
 {{ $labels.job }}: incoming SYN-flood attack suspected to Host={{
$labels.DstK8S_HostName}}, Namespace={{ $labels.DstK8S_Namespace }}, Resource={{
$labels.DstK8S_Name }}. This is characterized by a high volume of SYN-only flows with
different source IPs and/or ports.
 summary: "Incoming SYN-flood"
 expr: sum(rate(netobserv_flows_with_flags_per_destination_total{Flags="2"}[1m])) by
(job, DstK8S_HostName, DstK8S_Namespace, DstK8S_Name) > 300 1
 for: 15s
 labels:
 severity: warning
 app: netobserv
 - alert: NetObserv-SYNFlood-out
 annotations:
 message: |-
 {{ $labels.job }}: outgoing SYN-flood attack suspected from Host={{
$labels.SrcK8S_HostName}}, Namespace={{ $labels.SrcK8S_Namespace }}, Resource={{
$labels.SrcK8S_Name }}. This is characterized by a high volume of SYN-only flows with
different source IPs and/or ports.
 summary: "Outgoing SYN-flood"
 expr: sum(rate(netobserv_flows_with_flags_per_source_total{Flags="2"}[1m])) by (job,
SrcK8S_HostName, SrcK8S_Namespace, SrcK8S_Name) > 300 2
 for: 15s
 labels:
 severity: warning
 app: netobserv
...

第10章 ダッシュボードとアラートでのメトリクスの使用

117

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/monitoring/#creating-alerting-rules-for-user-defined-projects_managing-alerts-as-a-developer

高カーディナリティーメトリクスのトラブルシューティング - Prometheus が大量のディスク
領域を消費している理由の特定

OpenShift Container Platform 4.18 Network Observability

118

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/support/#determining-why-prometheus-is-consuming-disk-space_investigating-monitoring-issues

第11章 NETWORK OBSERVABILITY OPERATOR の監視
OpenShift Container Platform Web コンソールを使用して、Network Observability Operator の健全性
に関連するアラートを監視します。これにより、システムの安定性を維持し、運用上の問題を迅速に検
出できます。

11.1. 健全性ダッシュボード

OpenShift Container Platform Web コンソールで Network Observability Operator ヘルスダッシュボー
ドを表示し、Operator およびそのコンポーネントのヘルスステータス、リソースの使用状況、および
内部統計を監視します。

メトリクスは、OpenShift Container Platform Web コンソールの Observe → Dashboards ページにあ
ります。Network Observability Operator の健全性に関するメトリクスは、次のカテゴリーで確認でき
ます。

1 秒あたりのフロー数

Sampling

過去 1 分間のエラー数

1 秒あたりのドロップされたフロー数

flowlogs-pipeline 統計

flowlogs-pipeline 統計ビュー

eBPF エージェント統計ビュー

Operator 統計

リソースの使用状況

11.2. 健全性アラート

Network Observability Operator によって生成されるヘルスアラートを理解します。これは、Loki の取
り込みエラー、ゼロフローの取り込み、またはドロップされた eBPF フローなどの条件が発生した場合
にバナーをトリガーします。

アラートがトリガーされると、ダッシュボードに誘導するヘルスアラートバナーが Network Traffic
ページと Home ページに表示されることがあります。アラートは次の場合に生成されます。

NetObservLokiError アラートは、Loki 取り込みレート制限に達した場合など、Loki エラーが
原因で flowlogs-pipeline ワークロードがフローをドロップすると発生します。

NetObservNoFlows アラートは、一定時間フローが取り込まれない場合に発生します。

NetObservFlowsDropped アラートは、Network Observability eBPF エージェントの HashMap
テーブルがいっぱいで、eBPF エージェントがパフォーマンスが低下した状態でフローを処理
している場合、または容量制限がトリガーされた場合に発生します。

11.3. 健全性情報の表示

OpenShift Container Platform Web コンソール内の Netobserv/Health ダッシュボードを表示して、

第11章 NETWORK OBSERVABILITY OPERATOR の監視

119

1

OpenShift Container Platform Web コンソール内の Netobserv/Health ダッシュボードを表示して、
Network Observability Operator とそのコンポーネントの正常性ステータスとリソースの使用状況を監
視します。

前提条件

Network Observability Operator がインストールされています。

cluster-admin ロールまたはすべてのプロジェクトの表示パーミッションを持つユーザーとし
てクラスターにアクセスできる。

手順

1. Web コンソールの Administrator パースペクティブから、Observe → Dashboards に移動しま
す。

2. Dashboards ドロップダウンメニューから、Netobserv/Health を選択します。

3. ページに表示された Operator の健全性に関するメトリクスを確認します。

11.3.1. ヘルスアラートの無効化

FlowCollector リソースを編集し、spec.processor.metrics.disableAlerts 仕様を使用し
て、NetObservLokiError や NetObservNoFlows などの特定の正常性アラートを無効にします。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. 次の YAML サンプルのように、spec.processor.metrics.disableAlerts を追加してヘルスア
ラートを無効にします。

無効にするアラートの 1 つまたは両方のタイプを含むリストを指定できます。

11.4. NETOBSERV ダッシュボードの LOKI レート制限アラートの作成

Loki メトリクスに基づいてカスタム AlertingRule リソースを作成し、Loki の取り込みレート制限に達
したときにアラートを監視およびトリガーします。これは、HTTP 429 エラーで示されます。

Netobserv ダッシュボードメトリクスのカスタム警告ルールを作成して、Loki のレート制限に達した

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 processor:
 metrics:
 disableAlerts: [NetObservLokiError, NetObservNoFlows] 1

OpenShift Container Platform 4.18 Network Observability

120

Netobserv ダッシュボードメトリクスのカスタム警告ルールを作成して、Loki のレート制限に達した
場合にアラートをトリガーできます。

前提条件

cluster-admin ロールを持つユーザー、またはすべてのプロジェクトの表示権限を持つユーザー
としてクラスターにアクセスできる。

Network Observability Operator がインストールされています。

手順

1. インポートアイコン + をクリックして、YAML ファイルを作成します。

2. アラートルール設定を YAML ファイルに追加します。次の YAML サンプルでは、Loki のレー
ト制限に達した場合にアラートが作成されます。

3. Create をクリックして設定ファイルをクラスターに適用します。

11.5. EBPF エージェントアラートの使用

FlowCollector カスタムリソースの spec.agent.ebpf.cacheMaxFlows 値を増やすことにより、eBPF
エージェントハッシュマップがいっぱいになったときに発生する NetObservAgentFlowsDropped ア
ラートを解決します。

容量リミッターがトリガーされると、アラート NetObservAgentFlowsDropped もトリガーされま
す。このアラートが表示された場合は、次の例に示すように、FlowCollector の cacheMaxFlows を増
やすことを検討してください。

注記

cacheMaxFlows を増やすと、eBPF エージェントのメモリー使用量が増加する可能性が
あります。

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
 name: loki-alerts
 namespace: openshift-monitoring
spec:
 groups:
 - name: LokiRateLimitAlerts
 rules:
 - alert: LokiTenantRateLimit
 annotations:
 message: |-
 {{ $labels.job }} {{ $labels.route }} is experiencing 429 errors.
 summary: "At any number of requests are responded with the rate limit error code."
 expr: sum(irate(loki_request_duration_seconds_count{status_code="429"}[1m])) by (job,
namespace, route) / sum(irate(loki_request_duration_seconds_count[1m])) by (job,
namespace, route) * 100 > 0
 for: 10s
 labels:
 severity: warning

第11章 NETWORK OBSERVABILITY OPERATOR の監視

121

1

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. Network Observability Operator の Provided APIs 見出しの下で、Flow Collector を選択しま
す。

3. cluster を選択し、YAML タブを選択します。

4. 次の YAML サンプルに示すように、spec.agent.ebpf.cacheMaxFlows の値を増やします。

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 cacheMaxFlows: 200000 1

NetObservAgentFlowsDropped アラート発生時の値から cacheMaxFlows 値を増やします。

関連情報

ダッシュボードに表示できるアラート作成の詳細は、ユーザー定義プロジェクトのアラート
ルールの作成 を参照してください。

OpenShift Container Platform 4.18 Network Observability

122

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/monitoring/#creating-alerting-rules-for-user-defined-projects_managing-alerts-as-a-developer

第12章 リソースのスケジューリング
taint と toleration は、どのノードに特定の Pod を配置するかを制御するのに役立ちます。Network
Observability コンポーネントの配置を制御するには、これらの手段をノードセレクターとともに使用し
ます。

ノードセレクターは、ノードのカスタムラベルと Pod で指定されたセレクターを使用して定義される
キー/値のペアのマップを指定します。

Pod がノードで実行する要件を満たすには、Pod にはノードのラベルと同じキー/値のペアがなければ
なりません。

12.1. 特定のノードにおける NETWORK OBSERVABILITY デプロイメント

NodeSelector、Tolerations、Affinity を含むスケジューリング仕様を使用して FlowCollector リソー
スを設定し、特定のノードでのネットワーク可観測性コンポーネントのデプロイメントを制御します。

spec.agent.ebpf.advanced.scheduling、spec.processor.advanced.scheduling、および
spec.consolePlugin.advanced.scheduling 仕様で、次の設定が可能です。

NodeSelector

Tolerations

Affinity

PriorityClassName

spec.<component>.advanced.scheduling のサンプル FlowCollector リソース

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
...
advanced:
 scheduling:
 tolerations:
 - key: "<taint key>"
 operator: "Equal"
 value: "<taint value>"
 effect: "<taint effect>"
 nodeSelector:
 <key>: <value>
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: name
 operator: In
 values:

第12章 リソースのスケジューリング

123

関連情報

taint および toleration について

Assign Pods to Nodes (Kubernetes ドキュメント)

Pod Priority and Preemption (Kubernetes ドキュメント)

 - app-worker-node
 priorityClassName: """
...

OpenShift Container Platform 4.18 Network Observability

124

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#priorityclass

第13章 セカンダリーネットワーク
Network Observability Operator を設定して、SR-IOV や OVN-Kubernetes などのセカンダリーネット
ワークからネットワークフローデータを収集し、データをエンリッチすることができます。

13.1. 前提条件

セカンダリーインターフェイスや L2 ネットワークなど、追加のネットワークインターフェイス
を備えた OpenShift Container Platform クラスターへのアクセス。

13.2. SR-IOV インターフェイストラフィックの監視の設定

spec.agent.ebpf.privileged フィールドを true に設定して、Single Root I/O Virtualization (SR-IOV)デ
バイス上のトラフィックを監視するように FlowCollector リソースを設定します。これにより、eBPF
エージェントは他のネットワーク namespace を監視できるようになります。

eBPF エージェントは、デフォルトで監視されるホストネットワークの namespace に加えて、他の
ネットワーク名前空間を監視します。仮想機能 (VF) インターフェイスを持つ Pod が作成されると、新
しいネットワーク namespace が作成されます。SRIOVNetwork ポリシーの IPAM 設定を指定すると、
VF インターフェイスがホストネットワーク namespace から Pod ネットワーク namespace に移行され
ます。

前提条件

SR-IOV デバイスを使用して OpenShift Container Platform クラスターにアクセスできる。

SRIOVNetwork カスタムリソース (CR) の spec.ipam 設定は、インターフェイスのリストにあ
る範囲または他のプラグインからの IP アドレスを使用して設定する必要があります。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

3. cluster を選択し、YAML タブを選択します。

4. FlowCollector カスタムリソースを設定します。設定例は次のとおりです。

SR-IOV モニタリング用に FlowCollector を設定する

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 privileged: true 1

第13章 セカンダリーネットワーク

125

1 SR-IOV モニタリングを有効にするには、spec.agent.ebpf.privileged フィールドの値を
true に設定する必要があります。

関連情報

SR-IOV ネットワークデバイスの設定

13.3. 仮想マシン (VM) のセカンダリーネットワークインターフェイスを
NETWORK OBSERVABILITY 用に設定する

eBPF エージェントを 特権 モードに設定し、セカンダリーネットワークのインデックスを定義すること
により、VM セカンダリーネットワークトラフィックを監視するように FlowCollector を設定し、
OpenShift Virtualization からのフローのキャプチャーと強化を有効にします。

デフォルトの内部 Pod ネットワークに接続された VM から送信されるネットワークフローは、ネット
ワークの可観測性によって自動的にキャプチャーされます。

手順

1. 次のコマンドを実行して、仮想マシンのランチャー Pod に関する情報を取得します。この情報
はステップ 5 で使用します。

$ oc get pod virt-launcher-<vm_name>-<suffix> -n <namespace> -o yaml

apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/network-status: |-
 [{
 "name": "ovn-kubernetes",
 "interface": "eth0",
 "ips": [
 "10.129.2.39"
],
 "mac": "0a:58:0a:81:02:27",
 "default": true,
 "dns": {}
 },
 {
 "name": "my-vms/l2-network", 1
 "interface": "podc0f69e19ba2", 2
 "ips": [3
 "10.10.10.15"
],
 "mac": "02:fb:f8:00:00:12", 4
 "dns": {}
 }]
 name: virt-launcher-fedora-aqua-fowl-13-zr2x9
 namespace: my-vms
spec:
...
status:

OpenShift Container Platform 4.18 Network Observability

126

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/hardware_networks/#cnf-creating-an-additional-sriov-network-with-vrf-plug-in_configuring-sriov-device

1

2

3

4

1

2

3

4

セカンダリーネットワークの名前。

セカンダリーネットワークのネットワークインターフェイス名。

セカンダリーネットワークで使用される IP のリスト。

セカンダリーネットワークに使用される MAC アドレス。

2. Web コンソールで、Operators → Installed Operators に移動します。

3. NetObserv Operator の Provided APIs 見出しの下で、Flow Collector を選択します。

4. cluster を選択し、YAML タブを選択します。

5. 追加のネットワーク調査で調べた情報に基づいて FlowCollector を設定します。

セカンダリーインターフェイスのフローが収集されるように、eBPF エージェントが
privileged モードになっていることを確認します。

仮想マシンランチャー Pod のインデックス作成に使用するフィールドを定義します。セカ
ンダリーインターフェイスのネットワークフローのエンリッチメントを取得するに
は、MAC アドレスをインデックスフィールドとして使用することを推奨します。Pod 間
で MAC アドレスが重複している場合は、IP や Interface などの追加のインデックス
フィールドを追加すると、正確なエンリッチメントを取得できます。

追加のネットワーク情報に MAC アドレスがある場合は、フィールドリストに MAC を追
加します。

k8s.v1.cni.cncf.io/network-status アノテーションで見つかったネットワークの名前を指
定します。通常は <namespace>/<network_attachement_definition_name> です。

6. 仮想マシンのトラフィックを観測します。

a. Network Traffic ページに移動します。

b. k8s.v1.cni.cncf.io/network-status アノテーションで見つかった仮想マシンの IP を使用し

...

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 agent:
 ebpf:
 privileged: true \ 1
 processor:
 advanced:
 secondaryNetworks:
 - index: 2
 - MAC 3
 name: my-vms/l2-network 4
...

第13章 セカンダリーネットワーク

127

b. k8s.v1.cni.cncf.io/network-status アノテーションで見つかった仮想マシンの IP を使用し
て、Source IP でフィルタリングします。

c. エンリッチする必要がある Source フィールドと Destination フィールドの両方を表示し、
仮想マシンランチャー Pod と仮想マシンインスタンスを所有者として指定します。

OpenShift Container Platform 4.18 Network Observability

128

第14章 NETWORK OBSERVABILITY CLI

14.1. NETWORK OBSERVABILITY CLI のインストール

Network Observability CLI (oc netobserv) は、Network Observability Operator とは別にデプロイされ
ます。CLI は、OpenShift CLI (oc) プラグインとして利用できます。CLI は、Network Observability を
活用して、迅速にデバッグおよびトラブルシューティングを行う軽量な方法です。

14.1.1. Network Observability CLI について

ネットワーク可観測性 CLI (oc netobserv)を使用して、ネットワークの問題を迅速にデバッグし、トラ
ブルシューティングします。このツールは、Network Observability Operator をインストールすること
なく、即時、ライブの洞察をフローおよびパケットに提供します。

Network Observability CLI は、eBPF エージェントを利用して収集したデータを一時的なコレクター
Pod にストリーミングするフローおよびパケット可視化ツールです。キャプチャー中に永続的なスト
レージは必要ありません。実行後、出力がローカルマシンに転送されます。

重要

CLI のキャプチャーは、8 - 10 分などの短い期間のみ実行されるように設計されていま
す。実行時間が長すぎると、実行中のプロセスを削除するのが難しくなる可能性があり
ます。

14.1.2. Network Observability CLI のインストール

Network Observability CLI は、ネットワーク可観測性のデバッグおよびトラブルシューティングを迅速
に行う軽量な方法です。これは、別途インストールする必要があります。

Network Observability CLI (oc netobserv) のインストールは、Network Observability Operator のイン
ストールとは別の手順です。つまり、Operator がソフトウェアカタログからインストールされている
場合でも、CLI を別途インストールする必要があります。

注記

ユーザーは、必要に応じて、Krew を使用して netobserv CLI プラグインをインストール
できます。詳細は、「Krew を使用した CLI プラグインのインストール」を参照してくだ
さい。

前提条件

OpenShift CLI (oc) をインストールしておく。

macOS または Linux オペレーティングシステムがある。

docker または podman をインストールする必要があります。

注記

インストールコマンドの実行には、podman または docker を使用できます。この手順
では podman を使用します。

第14章 NETWORK OBSERVABILITY CLI

129

手順

1. 次のコマンドを実行して、Red Hat レジストリー にログインします。

2. 次のコマンドを実行して、イメージから oc-netobserv ファイルを抽出します。

3. 次のコマンドを実行して、抽出したファイルをシステムの PATH にあるディレクトリー
(/usr/local/bin/ など) に移動します。

検証

1. oc netobserv が利用可能であることを確認します。

このコマンドを実行すると、次の例のような結果が生成されるはずです。

Netobserv CLI version <version>

関連情報

CLI プラグインのインストールおよび使用

CLI Manager Operator のインストール

14.2. NETWORK OBSERVABILITY CLI の使用

フローやパケットデータをターミナル内で直接可視化およびフィルタリングすると、特定のポートを使
用しているユーザーの特定など、詳細な使用状況を確認できます。Network Observability CLI は、フ
ローを JSON およびデータベースファイルとして、パケットを PCAP ファイルとして収集します。こ
れらのファイルはサードパーティーツールで使用できます。

14.2.1. フローのキャプチャー

ネットワークフローをキャプチャーし、リソースまたはゾーンに基づいて CLI で直接フィルターを適用
します。これは、2 つの異なるゾーン間の RTT (Round-Trip Time)を視覚的に視覚化するなど、複雑な
ユースケースを解決するのに役立ちます。

CLI でのテーブル視覚化により、表示機能とフロー検索機能が提供されます。

前提条件

OpenShift CLI (oc) がインストールされている。

$ podman login registry.redhat.io

$ podman create --name netobserv-cli registry.redhat.io/network-observability/network-
observability-cli-rhel9:1.10
$ podman cp netobserv-cli:/oc-netobserv .
$ podman rm netobserv-cli

$ sudo mv oc-netobserv /usr/local/bin/

$ oc netobserv version

OpenShift Container Platform 4.18 Network Observability

130

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/cli_tools/#cli-installing-plugins_cli-extend-plugins
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/cli_tools/#installing-cli-manager

Network Observability CLI (oc netobserv) プラグインがインストールされている。

手順

1. 次のコマンドを実行して、フィルターを有効にしてフローをキャプチャーします。

2. ターミナルの live table filter プロンプトでフィルターを追加して、受信するフローをさらに絞
り込みます。以下に例を示します。

3. PageUp キーと PageDown キーを使用して、None、Resource、Zone、Host、Owner、およ
び all of the above を切り替えます。

4. キャプチャーを停止するには、Ctrl+C を押します。キャプチャーされたデータは、CLI のイン
ストールに使用したのと同じパスにある ./output ディレクトリー内の 2 つの異なるファイルに
書き込まれます。

5. キャプチャーされたデータを、JSON ファイル ./output/flow/<capture_date_time>.json で確
認します。このファイルには、キャプチャーされたデータの JSON 配列が含まれています。

JSON ファイルの例:

6. SQLite を使用して、./output/flow/<capture_date_time>.db データベースファイルを検査でき

$ oc netobserv flows --enable_filter=true --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --
port=49051

live table filter: [SrcK8S_Zone:us-west-1b] press enter to match multiple regular expressions
at once

{
 "AgentIP": "10.0.1.76",
 "Bytes": 561,
 "DnsErrno": 0,
 "Dscp": 20,
 "DstAddr": "f904:ece9:ba63:6ac7:8018:1e5:7130:0",
 "DstMac": "0A:58:0A:80:00:37",
 "DstPort": 9999,
 "Duplicate": false,
 "Etype": 2048,
 "Flags": 16,
 "FlowDirection": 0,
 "IfDirection": 0,
 "Interface": "ens5",
 "K8S_FlowLayer": "infra",
 "Packets": 1,
 "Proto": 6,
 "SrcAddr": "3e06:6c10:6440:2:a80:37:b756:270f",
 "SrcMac": "0A:58:0A:80:00:01",
 "SrcPort": 46934,
 "TimeFlowEndMs": 1709741962111,
 "TimeFlowRttNs": 121000,
 "TimeFlowStartMs": 1709741962111,
 "TimeReceived": 1709741964
}

第14章 NETWORK OBSERVABILITY CLI

131

6. SQLite を使用して、./output/flow/<capture_date_time>.db データベースファイルを検査でき
ます。以下に例を示します。

a. 次のコマンドを実行してファイルを開きます。

b. SQLite SELECT ステートメントを実行してデータをクエリーします。次に例を示します。

出力例

14.2.2. パケットのキャプチャー

Network Observability CLI を使用して、ネットワークパケットを取得します。ターミナルでフィルター
を適用し、それらを改良して、正確なリアルタイムのデバッグを行うことができます。

前提条件

OpenShift CLI (oc) がインストールされている。

Network Observability CLI (oc netobserv) プラグインがインストールされている。

手順

1. フィルターを有効にしてパケットキャプチャーを実行します。

2. ターミナルの live table filter プロンプトでフィルターを追加して、受信するパケットを絞り込
みます。フィルターの例は次のとおりです。

3. PageUp キーと PageDown キーを使用して、None、Resource、Zone、Host、Owner、およ
び all of the above を切り替えます。

4. キャプチャーを停止するには、Ctrl+C を押します。

$ sqlite3 ./output/flow/<capture_date_time>.db

sqlite> SELECT DnsLatencyMs, DnsFlagsResponseCode, DnsId, DstAddr, DstPort,
Interface, Proto, SrcAddr, SrcPort, Bytes, Packets FROM flow WHERE DnsLatencyMs
>10 LIMIT 10;

12|NoError|58747|10.128.0.63|57856||17|172.30.0.10|53|284|1
11|NoError|20486|10.128.0.52|56575||17|169.254.169.254|53|225|1
11|NoError|59544|10.128.0.103|51089||17|172.30.0.10|53|307|1
13|NoError|32519|10.128.0.52|55241||17|169.254.169.254|53|254|1
12|NoError|32519|10.0.0.3|55241||17|169.254.169.254|53|254|1
15|NoError|57673|10.128.0.19|59051||17|172.30.0.10|53|313|1
13|NoError|35652|10.0.0.3|46532||17|169.254.169.254|53|183|1
32|NoError|37326|10.0.0.3|52718||17|169.254.169.254|53|169|1
14|NoError|14530|10.0.0.3|58203||17|169.254.169.254|53|246|1
15|NoError|40548|10.0.0.3|45933||17|169.254.169.254|53|174|1

$ oc netobserv packets --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --port=49051

live table filter: [SrcK8S_Zone:us-west-1b] press enter to match multiple regular expressions
at once

OpenShift Container Platform 4.18 Network Observability

132

5. キャプチャーされたデータを確認します。このデータは、CLI のインストールに使用したのと
同じパスにある ./output/pcap ディレクトリー内の 1 つのファイルに書き込まれます。

a. ./output/pcap/<capture_date_time>.pcap ファイルは Wireshark で開くことができます。

14.2.3. メトリクスの取得

サービスモニターを使用して、Prometheus でオンデマンドネットワーク可観測性ダッシュボードを生
成します。これにより、ネットワークメトリクスをすばやく表示および分析できます。

前提条件

OpenShift CLI (oc) がインストールされている。

Network Observability CLI (oc netobserv) プラグインがインストールされている。

手順

1. 次のコマンドを実行して、フィルターを有効にしてメトリクスをキャプチャーします。

出力例

2. ターミナルで提供されているリンクを開いて NetObserv / On-Demand ダッシュボードを表示
します。

URL の例

注記

有効になっていない機能は空のグラフとして表示されます。

14.2.4. Network Observability CLI のクリーンアップ

oc netobserv cleanup を使用して、Network Observability CLI によってインストールされたすべての
コンポーネントをクラスターから手動で削除します。クライアントはキャプチャ後にこのコマンドを自
動的に実行しますが、接続の問題が発生した場合は手動で実行する必要があります。

手順

以下のコマンドを実行します。

関連情報

Network Observability CLI リファレンス

$ oc netobserv metrics --enable_filter=true --cidr=0.0.0.0/0 --protocol=TCP --port=49051

https://console-openshift-
console.apps.rosa...openshiftapps.com/monitoring/dashboards/netobserv-cli

$ oc netobserv cleanup

第14章 NETWORK OBSERVABILITY CLI

133

1

14.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) リファレンス

Network Observability CLI (oc netobserv) は、Network Observability Operator で使用できるほとんど
の機能とフィルタリングオプションを備えています。コマンドライン引数を渡すことで、機能やフィル
タリングオプションを有効にできます。

14.3.1. Network Observability CLI の使用

Network Observability CLI (oc netobserv) を使用して、コマンドライン引数を渡してさらに分析するた
めのフローデータ、パケットデータ、メトリクスをキャプチャーしたり、Network Observability
Operator がサポートする機能を有効にしたりできます。

14.3.1.1. 構文

oc netobserv コマンドの基本構文:

oc netobserv の構文

機能オプションは、oc netobserv flows コマンドでのみ使用できます。oc netobserv packets コ
マンドでは使用できません。

14.3.1.2. 基本コマンド

表14.1 基本コマンド

コマンド 説明

flows フロー情報をキャプチャーします。サブコマンドは、「フローキャプチャーの
オプション」表を参照してください。

packets パケットデータをキャプチャーします。サブコマンドは、「パケットキャプ
チャーのオプション」表を参照してください。

metrics メトリクスデータをキャプチャーします。サブコマンドは、「メトリクスキャ
プチャーのオプション」の表を参照してください。

follow バックグラウンドで実行しているときはコレクターログに従います。

stop エージェントデーモンセットを削除して収集を停止します。

copy コレクターが生成したファイルをローカルにコピーします。

cleanup Network Observability CLI コンポーネントを削除します。

version ソフトウェアのバージョンを出力します。

help ヘルプを表示します。

$ oc netobserv [<command>] [<feature_option>] [<command_options>] 1

OpenShift Container Platform 4.18 Network Observability

134

14.3.1.3. フローキャプチャーのオプション

フローキャプチャーには、必須コマンドのほか、パケットドロップ、DNS 遅延、ラウンドトリップタ
イム、フィルタリングに関する追加機能の有効化などの追加オプションがあります。

oc netobserv flows の構文

オプション 説明 デフォルト

--enable_all すべての eBPF 機能の有効化 false

--enable_dns DNS 追跡の有効化 false

--enable_ipsec IPsec トラッキングの有効化 false

--enable_network_events ネットワークイベントモニタリン
グの有効化

false

--enable_pkt_translation パケット変換の有効化 false

--enable_pkt_drop パケットドロップの有効化 false

--enable_rtt RTT 追跡の有効化 false

--enable_udn_mapping ユーザー定義ネットワークマッピ
ングの有効化

false

--get-subnets サブネット情報の取得 false

--privileged eBPF エージェント特権モードの
強制

auto

--sampling パケットサンプリング間隔 1

--background バックグラウンドでの実行 false

--copy 出力ファイルをローカルにコピー prompt

--log-level コンポーネントログ info

--max-time 最大キャプチャー時間 5m

--max-bytes 最大キャプチャーバイト数 50000000 = 50 MB

--action アクションのフィルタリング Accept

$ oc netobserv flows [<feature_option>] [<command_options>]

第14章 NETWORK OBSERVABILITY CLI

135

--cidr CIDR のフィルタリング 0.0.0.0/0

--direction 方向のフィルタリング -

--dport 送信先ポートのフィルタリング -

--dport_range 送信先ポート範囲のフィルタリン
グ

-

--dports 2 つの送信先ポートのどちらかで
フィルタリング

-

--drops ドロップされたパケットのみでフ
ローをフィルタリング

false

--icmp_code ICMP コードのフィルタリング -

--icmp_type ICMP タイプのフィルタリング -

--node-selector 特定のノードでのキャプチャー -

--peer_ip ピア IP のフィルタリング -

--peer_cidr ピア CIDR のフィルタリング -

--port_range ポート範囲のフィルタリング -

--port ポートのフィルタリング -

--ports 2 つのポートのどちらかでフィル
タリング

-

--protocol プロトコルのフィルタリング -

--query カスタムクエリーを使用したフ
ローのフィルタリング

-

--sport_range 送信元ポート範囲のフィルタリン
グ

-

--sport 送信元ポートのフィルタリング -

--sports 2 つの送信元ポートのどちらかで
フィルタリング

-

オプション 説明 デフォルト

OpenShift Container Platform 4.18 Network Observability

136

--tcp_flags TCP フラグのフィルタリング -

--interfaces 監視するインターフェイスのリス
ト (コンマ区切り)

-

--exclude_interfaces 除外するインターフェイスのリス
ト (コンマ区切り)

lo

オプション 説明 デフォルト

PacketDrop および RTT 機能を有効にして TCP プロトコルとポート 49051 でフローキャプ
チャーを実行する例:

14.3.1.4. パケットキャプチャーのオプション

フィルターを使用すると、フローのキャプチャーと同じようにパケットのキャプチャーデータをフィル
タリングできます。パケットドロップ、DNS、RTT、ネットワークイベントなどの特定の機能は、フ
ローおよびメトリクスのキャプチャーでのみ使用できます。

oc netobserv packets の構文

オプション 説明 デフォルト

--background バックグラウンドでの実行 false

--copy 出力ファイルをローカルにコピー prompt

--log-level コンポーネントログ info

--max-time 最大キャプチャー時間 5m

--max-bytes 最大キャプチャーバイト数 50000000 = 50 MB

--action アクションのフィルタリング Accept

--cidr CIDR のフィルタリング 0.0.0.0/0

--direction 方向のフィルタリング -

--dport 送信先ポートのフィルタリング -

$ oc netobserv flows --enable_pkt_drop --enable_rtt --action=Accept --cidr=0.0.0.0/0 --protocol=TCP
--port=49051

$ oc netobserv packets [<option>]

第14章 NETWORK OBSERVABILITY CLI

137

--dport_range 送信先ポート範囲のフィルタリン
グ

-

--dports 2 つの送信先ポートのどちらかで
フィルタリング

-

--drops ドロップされたパケットのみでフ
ローをフィルタリング

false

--icmp_code ICMP コードのフィルタリング -

--icmp_type ICMP タイプのフィルタリング -

--node-selector 特定のノードでのキャプチャー -

--peer_ip ピア IP のフィルタリング -

--peer_cidr ピア CIDR のフィルタリング -

--port_range ポート範囲のフィルタリング -

--port ポートのフィルタリング -

--ports 2 つのポートのどちらかでフィル
タリング

-

--protocol プロトコルのフィルタリング -

--query カスタムクエリーを使用したフ
ローのフィルタリング

-

--sport_range 送信元ポート範囲のフィルタリン
グ

-

--sport 送信元ポートのフィルタリング -

--sports 2 つの送信元ポートのどちらかで
フィルタリング

-

--tcp_flags TCP フラグのフィルタリング -

オプション 説明 デフォルト

TCP プロトコルとポート 49051 でパケットキャプチャーを実行する例:

$ oc netobserv packets --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --port=49051

OpenShift Container Platform 4.18 Network Observability

138

14.3.1.5. メトリクスキャプチャーのオプション

フローキャプチャーと同じように、メトリクスキャプチャーでも機能を有効にしてフィルターを使用で
きます。生成されたグラフはダッシュボードに適宜表示されます。

oc netobserv metrics 構文

オプション 説明 デフォルト

--enable_all すべての eBPF 機能の有効化 false

--enable_dns DNS 追跡の有効化 false

--enable_ipsec IPsec トラッキングの有効化 false

--enable_network_events ネットワークイベントモニタリン
グの有効化

false

--enable_pkt_translation パケット変換の有効化 false

--enable_pkt_drop パケットドロップの有効化 false

--enable_rtt RTT 追跡の有効化 false

--enable_udn_mapping ユーザー定義ネットワークマッピ
ングの有効化

false

--get-subnets サブネット情報の取得 false

--privileged eBPF エージェント特権モードの
強制

auto

--sampling パケットサンプリング間隔 1

--background バックグラウンドでの実行 false

--log-level コンポーネントログ info

--max-time 最大キャプチャー時間 1h

--action アクションのフィルタリング Accept

--cidr CIDR のフィルタリング 0.0.0.0/0

--direction 方向のフィルタリング -

$ oc netobserv metrics [<option>]

第14章 NETWORK OBSERVABILITY CLI

139

--dport 送信先ポートのフィルタリング -

--dport_range 送信先ポート範囲のフィルタリン
グ

-

--dports 2 つの送信先ポートのどちらかで
フィルタリング

-

--drops ドロップされたパケットのみでフ
ローをフィルタリング

false

--icmp_code ICMP コードのフィルタリング -

--icmp_type ICMP タイプのフィルタリング -

--node-selector 特定のノードでのキャプチャー -

--peer_ip ピア IP のフィルタリング -

--peer_cidr ピア CIDR のフィルタリング -

--port_range ポート範囲のフィルタリング -

--port ポートのフィルタリング -

--ports 2 つのポートのどちらかでフィル
タリング

-

--protocol プロトコルのフィルタリング -

--query カスタムクエリーを使用したフ
ローのフィルタリング

-

--sport_range 送信元ポート範囲のフィルタリン
グ

-

--sport 送信元ポートのフィルタリング -

--sports 2 つの送信元ポートのどちらかで
フィルタリング

-

--tcp_flags TCP フラグのフィルタリング -

オプション 説明 デフォルト

OpenShift Container Platform 4.18 Network Observability

140

--include_list 生成するメトリクス名のリスト
(コンマ区切り)

namespace_flows_total,node_ingr
ess_bytes_total,node_egress_byt
es_total,workload_ingress_bytes_t
otal

--interfaces 監視するインターフェイスのリス
ト (コンマ区切り)

-

--exclude_interfaces 除外するインターフェイスのリス
ト (コンマ区切り)

lo

オプション 説明 デフォルト

TCP ドロップのメトリクスキャプチャーの実行例

$ oc netobserv metrics --enable_pkt_drop --protocol=TCP

第14章 NETWORK OBSERVABILITY CLI

141

第15章 FLOWCOLLECTOR API リファレンス
FlowCollector API は、ネットワークフローを収集するためのデプロイメントを制御および設定するた
めに使用される基礎となるスキーマです。このリファレンスガイドは、このような重要な設定を管理す
るのに役立ちます。

15.1. FLOWCOLLECTOR API 仕様

説明

FlowCollector は、基盤となるデプロイメントを操作および設定するネットワークフロー収集 API
のスキーマです。

型

object

プロパティー 型 説明

apiVersion string APIVersion はオブジェクトのこの
表現のバージョンスキーマを定義
します。サーバーは認識されたス
キーマを最新の内部値に変換し、
認識されない値は拒否することが
あります。詳細
は、https://git.k8s.io/community
/contributors/devel/sig-
architecture/api-
conventions.md#resources を参
照してください。

kind string kind はこのオブジェクトが表す
REST リソースを表す文字列の値
です。サーバーは、クライアント
が要求を送信するエンドポイント
からこれを推測できることがあり
ます。これを更新することはでき
ません。CamelCase を使用しま
す。詳細:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#types-kinds

metadata object 標準オブジェクトのメタデータ。
詳細:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#metadata

OpenShift Container Platform 4.18 Network Observability

142

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

spec object FlowCollector リソースの望まし
い状態を定義します。

*: このドキュメントで「サポート
対象外」または「非推奨」と記載
されている場合、Red Hat はその
機能を公式にサポートしていませ
ん。たとえば、コミュニティーに
よって提供され、メンテナンスに
関する正式な合意なしに受け入れ
られた可能性があります。製品の
メンテナーは、ベストエフォート
に限定してこれらの機能に対する
サポートを提供する場合がありま
す。

プロパティー 型 説明

15.1.1. .metadata

説明

標準オブジェクトのメタデータ。詳細は、https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata を参照してください。

型

object

15.1.2. .spec

説明

FlowCollector リソースの望ましい状態を定義します。

*: このドキュメントで「サポート対象外」または「非推奨」と記載されている場合、Red Hat はそ
の機能を公式にサポートしていません。たとえば、コミュニティーによって提供され、メンテナン
スに関する正式な合意なしに受け入れられた可能性があります。製品のメンテナーは、ベストエ
フォートに限定してこれらの機能に対するサポートを提供する場合があります。

型

object

プロパティー 型 説明

agent object フローを抽出するためのエージェ
ント設定。

consolePlugin object consolePlugin は、利用可能な
場合、OpenShift Container
Platform コンソールプラグインに
関連する設定を定義します。

第15章 FLOWCOLLECTOR API リファレンス

143

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

deploymentModel string deploymentModel は、フロー
処理に必要なデプロイメントのタ
イプを定義します。可能な値は次
のとおりです。

- フロー プロセッサーがエージェ
ントから直接リッスンするように
する direct （デフォルト）。小規
模なクラスターで(15 ノード以下
の)推奨されます。

- Kafka の場合、プロセッサーに
よって消費される前にフローを
Kafka パイプラインに送信しま
す。

Kafka は、より優れたスケーラビ
リティ、回復性、および高可用性
を提供できます (詳細
は、https://www.redhat.com/en/
topics/integration/what-is-
apache-kafka を参照してくださ
い)。

exporters array exporters は、カスタム消費また
はストレージ用の追加のオプショ
ンのエクスポーターを定義しま
す。

kafka object Kafka 設定。Kafka をフローコレ
クションパイプラインの一部とし
てブローカーとして使用できま
す。この設定を利用できるの
は、spec.deploymentModel
が Kafka の場合です。

loki object loki (フローストア) のクライアン
ト設定。

namespace string Network Observability Pod がデプ
ロイされる namespace。

networkPolicy object networkPolicy は、Network
Observability のコンポーネントを
分離するためのネットワークポリ
シー設定を定義します。

プロパティー 型 説明

OpenShift Container Platform 4.18 Network Observability

144

https://www.redhat.com/en/topics/integration/what-is-apache-kafka

processor object processor は、エージェントか
らフローを受信してエンリッチ
し、メトリクスを生成して Loki
永続化レイヤーや利用可能なエク
スポーターに転送するコンポーネ
ントの設定を定義します。

prometheus object prometheus は、コンソールプ
ラグインからメトリクスを取得す
るために使用されるクエリー設定
などの Prometheus 設定を定義し
ます。

プロパティー 型 説明

15.1.3. .spec.agent

説明

フローを抽出するためのエージェント設定。

型

object

プロパティー 型 説明

ebpf object ebpf は、spec.agent.type が
eBPF に設定されている場合、
eBPF ベースのフローレポーター
に関連する設定を示します。

type string type [非推奨 (*)] では、フロート
レースエージェントを選択しま
す。以前は、このフィールドでは
eBPF または IPFIX を選択できま
した。現在、eBPF のみが許可さ
れているため、このフィールドは
非推奨であり、API の今後のバー
ジョンで削除される予定です。

15.1.4. .spec.agent.ebpf

説明

ebpf は、spec.agent.type が eBPF に設定されている場合、eBPF ベースのフローレポーターに関
連する設定を示します。

型

object

第15章 FLOWCOLLECTOR API リファレンス

145

プロパティー 型 説明

advanced object advanced を使用すると、eBPF
エージェントの内部設定のいくつ
かの側面を設定できます。このセ
クションは、GOGC や
GOMAXPROCS 環境変数など
のデバッグと詳細なパフォーマン
スの最適化を主な目的としていま
す。これらの値はお客様の責任の
もと設定してください。このセク
ションでは、デフォルトの Linux
ケイパビリティーをオーバーライ
ドすることもできます。

cacheActiveTimeout string cacheActiveTimeout は、レ
ポーターがフローを集約して送信
するまでの最大期間で
す。cacheMaxFlows と
cacheActiveTimeout を増やす
と、ネットワークトラフィックの
オーバーヘッドと CPU 負荷を減
らすことができますが、メモリー
消費量が増え、フローコレクショ
ンのレイテンシーが増加すること
が予想されます。

cacheMaxFlows integer cacheMaxFlows は、集約内の
フローの最大数です。到達する
と、レポーターはフローを送信し
ます。cacheMaxFlows と
cacheActiveTimeout を増やす
と、ネットワークトラフィックの
オーバーヘッドと CPU 負荷を減
らすことができますが、メモリー
消費量が増え、フローコレクショ
ンのレイテンシーが増加すること
が予想されます。

excludeInterfaces array (string) excludeInterfaces には、フ
ロートレースから除外するイン
ターフェイス名を含めます。/br-/
など、スラッシュで囲まれたエン
トリーは正規表現として照合され
ます。それ以外は、大文字と小文
字を区別する文字列として照合さ
れます。

features array (string) 有効にする追加機能のリスト。こ
れらはデフォルトですべて無効に
なっています。追加機能を有効に

OpenShift Container Platform 4.18 Network Observability

146

すると、パフォーマンスに影響が
出る可能性があります。可能な値
は次のとおりです。

- PacketDrop: パケットドロップ
フローのロギング機能を有効にし
ます。この機能を使用するには、
カーネルデバッグファイルシステ
ムをマウントする必要があるた
め、eBPF エージェント Pod を
spec.agent.ebpf.privileged を
介して特権付き Pod として実行す
る必要があります。

- DNSTracking: DNS 追跡機能
を有効にします。

- FlowRTT: eBPF エージェント
で TCP トラフィックからのフ
ロー遅延 (sRTT) 抽出を有効にし
ます。

- NetworkEvents: フローやネッ
トワークポリシーの相関付けなど
のネットワークイベント監視機能
を有効にします。この機能を使用
するには、カーネルデバッグファ
イルシステムをマウントする必要
があるため、eBPF エージェント
Pod を
spec.agent.ebpf.privileged を
介して特権付き Pod として実行す
る必要があります。Observability
機能を備えた OVN-Kubernetes
ネットワークプラグインを使用す
る必要があります。重要: この機
能はテクノロジープレビューとし
て提供されています。

- PacketTranslation: Service
NAT などのパケット変換情報を使
用してフローをエンリッチできる
ようにします。

- EbpfManager: [サポートされ
ていません (*)]。eBPF Manager
を使用して、Network
Observability eBPF プログラムを
管理します。前提条件として、
eBPF Manager Operator (または
アップストリームの bpfman
Operator) がインストールされて
いる必要があります。

- UDNMapping: ユーザー定義
ネットワーク (UDN) へのイン
ターフェイスのマッピングを有効

プロパティー 型 説明

第15章 FLOWCOLLECTOR API リファレンス

147

にします。

この機能を使用するには、カーネ
ルデバッグファイルシステムをマ
ウントする必要があるため、
eBPF エージェント Pod を
spec.agent.ebpf.privileged を
介して特権付き Pod として実行す
る必要があります。Observability
機能を備えた OVN-Kubernetes
ネットワークプラグインを使用す
る必要があります。

- IPSec: IPsec 暗号化を使用して
ノード間のフローを追跡します。flowFilter object flowFilter は、フローフィルタリ
ングに関する eBPF エージェント
設定を定義します。

imagePullPolicy string imagePullPolicy は、上で定義
したイメージの Kubernetes プル
ポリシーです。

interfaces array (string) interfaces には、フローの収集
元であるインターフェイスの名前
を含めます。空の場合、エージェ
ントは excludeInterfaces にリ
ストされているものを除いて、シ
ステム内のすべてのインターフェ
イスを取得します。/br-/ など、
スラッシュで囲まれたエントリー
は正規表現として照合されます。
それ以外は、大文字と小文字を区
別する文字列として照合されま
す。

kafkaBatchSize integer kafkaBatchSize は、パーティ
ションに送信される前のリクエス
トの最大サイズをバイト単位で制
限します。Kafka を使用しない場
合は無視されます。デフォルト: 1
MB。

logLevel string logLevel は、Network
Observability eBPF Agent のログ
レベルを定義します。

metrics object metrics は、メトリクスに関する
eBPF エージェント設定を定義し
ます。

プロパティー 型 説明

OpenShift Container Platform 4.18 Network Observability

148

privileged boolean eBPF Agent コンテナーの特権
モード。true に設定すると、
エージェントが、セカンダリーイ
ンターフェイスからのトラフィッ
クも含め、より多くのトラフィッ
クをキャプチャーできるようにな
ります。無視されるか false に設
定されていると、Operator がコ
ンテナーに詳細なケイパビリ
ティー (BPF、PERFMON、
NET_ADMIN) を設定します。パ
ケットドロップの追跡 (features
を参照) や SR-IOV サポートな
ど、一部のエージェント機能には
特権モードが必要です。

resources object resources は、このコンテナー
が必要とするコンピューティング
リソースです。詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

sampling integer eBPF プローブのサンプリング間
隔。100 を指定すると、100 分の 1
のパケットが送信されます。0 ま
たは 1 を指定すると、すべてのパ
ケットがサンプリングされます。

プロパティー 型 説明

15.1.5. .spec.agent.ebpf.advanced

説明

advanced を使用すると、eBPF エージェントの内部設定のいくつかの側面を設定できます。このセ
クションは、GOGC や GOMAXPROCS 環境変数などのデバッグと詳細なパフォーマンスの最適化
を主な目的としています。これらの値はお客様の責任のもと設定してください。このセクションで
は、デフォルトの Linux ケイパビリティーをオーバーライドすることもできます。

型

object

プロパティー 型 説明

capOverride array (string) 特権モードで実行されていない場
合に、Linux ケイパビリティーを
オーバーライドします。デフォル
トのケイパビリティーは、BPF、
PERFMON、NET_ADMIN です。

第15章 FLOWCOLLECTOR API リファレンス

149

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

env object (string) env を使用すると、カスタム環境
変数を基礎となるコンポーネント
に渡すことができます。GOGC
や GOMAXPROCS など、非常
に具体的なパフォーマンスチュー
ニングオプションを渡すのに役立
ちます。これらのオプションは、
エッジのデバッグ時かサポートを
受ける場合にのみ有用なものであ
るため、FlowCollector 記述子の
一部として公開しないでくださ
い。

scheduling object scheduling は、Pod がノードでど
のようにスケジュールされるかを
制御します。

プロパティー 型 説明

15.1.6. .spec.agent.ebpf.advanced.scheduling

説明

scheduling は、Pod がノードでどのようにスケジュールされるかを制御します。

型

object

プロパティー 型 説明

affinity object 指定した場合、Pod のスケジュー
リング制約。ドキュメント
は、https://kubernetes.io/docs/r
eference/kubernetes-
api/workload-resources/pod-
v1/#scheduling を参照してくださ
い。

nodeSelector object (string) nodeSelector を使用すると、指
定した各ラベルを持つノードにの
み Pod をスケジュールできます。
ドキュメント
は、https://kubernetes.io/docs/c
oncepts/configuration/assign-
pod-node/ を参照してください。

OpenShift Container Platform 4.18 Network Observability

150

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

priorityClassName string 指定した場合、Pod の優先度を示
します。ドキュメント
は、https://kubernetes.io/docs/c
oncepts/scheduling-
eviction/pod-priority-
preemption/#how-to-use-
priority-and-preemption を参照し
てください。指定されていない場
合はデフォルトの優先度が使用さ
れ、デフォルトの優先度がない場
合は 0 が使用されます。

tolerations array tolerations は、一致する taint
を持つノードに Pod がスケジュー
ルできるようにする toleration の
リストです。ドキュメント
は、https://kubernetes.io/docs/r
eference/kubernetes-
api/workload-resources/pod-
v1/#scheduling を参照してくださ
い。

プロパティー 型 説明

15.1.7. .spec.agent.ebpf.advanced.scheduling.affinity

説明

指定した場合、Pod のスケジューリング制約。ドキュメント
は、https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-
v1/#scheduling を参照してください。

型

object

15.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations

説明

tolerations は、一致する taint を持つノードに Pod がスケジュールできるようにする toleration の
リストです。ドキュメントは、https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-v1/#scheduling を参照してください。

型

array

15.1.9. .spec.agent.ebpf.flowFilter

説明

flowFilter は、フローフィルタリングに関する eBPF エージェント設定を定義します。

型

object

第15章 FLOWCOLLECTOR API リファレンス

151

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

プロパティー 型 説明

action string action は、フィルターに一致す
るフローに対して実行するアク
ションを定義します。使用可能な
オプションは、Accept (デフォ
ルト) と Reject です。

cidr string cidr は、フローのフィルタリング
に使用する IP CIDR を定義しま
す。たとえば、10.10.10.0/24 ま
たは 100:100:100:100::/64 で
す。

destPorts integer-or-string destPorts は、フローのフィル
タリングに使用する宛先ポートを
定義します (任意)。単一のポート
をフィルタリングするには、単一
のポートを整数値として設定しま
す。たとえば、destPorts: 80 で
す。ポートの範囲をフィルタリン
グするには、文字列形式の "開始
- 終了" 範囲を使用します。たと
えば、destPorts: "80-100" で
す。2 つのポートをフィルタリン
グするには、文字列形式の
"port1,port2" を使用します。たと
えば、ports: "80,100" です。

direction string direction は、フローのフィルタ
リングに使用する方向を定義しま
す (任意)。使用可能なオプション
は Ingress と Egress です。

enable boolean eBPF フローのフィルタリング機
能を有効にするには、enable を
true に設定します。

icmpCode integer icmpCode は、Internet Control
Message Protocol (ICMP) トラ
フィックの場合に、フローのフィ
ルタリングに使用する ICMP コー
ドを定義します (任意)。

icmpType integer icmpType は、ICMP トラフィッ
クの場合に、フローのフィルタリ
ングに使用する ICMP タイプを定
義します (任意)。

OpenShift Container Platform 4.18 Network Observability

152

peerCIDR string peerCIDR は、フローをフィルタ
リングする Peer IP CIDR を定義
します。たとえ
ば、10.10.10.0/24 または
100:100:100:100::/64 です。

peerIP string peerIP は、フローのフィルタリ
ングに使用するリモート IP アド
レスを定義します (任意)。たとえ
ば、10.10.10.10 です。

pktDrops boolean pktDrops は、パケットドロップ
を含むフローのみをフィルタリン
グします (任意)。

ports integer-or-string ports は、フローのフィルタリン
グに使用するポートを定義します
(任意)。これは送信元ポートと宛
先ポートの両方に使用されます。
単一のポートをフィルタリングす
るには、単一のポートを整数値と
して設定します。たとえ
ば、ports: 80 です。ポートの範
囲をフィルタリングするには、文
字列形式の "開始 - 終了" 範囲を使
用します。たとえば、ports:
"80-100" です。2 つのポートを
フィルタリングするには、文字列
形式の "port1,port2" を使用しま
す。たとえば、ports: "80,100"
です。

protocol string protocol は、フローのフィルタ
リングに使用するプロトコルを定
義します (任意)。使用可能なオプ
ション
は、TCP、UDP、ICMP、ICMP
v6、SCTP です。

rules array rules は、eBPF エージェントの
フィルタリングルールのリストを
定義します。フィルタリングが有
効になっている場合、どのルール
にも一致しないフローはデフォル
トで拒否されます。デフォルトを
変更するには、すべてを受け入れ
るルール ({ action: "Accept",
cidr: "0.0.0.0/0" }) を定義して
から拒否ルールで調整します。

プロパティー 型 説明

第15章 FLOWCOLLECTOR API リファレンス

153

sampling integer sampling は、マッチしたパケッ
トのサンプリング間隔であ
り、spec.agent.ebpf.samplin
g で定義されたグローバルサンプ
リングをオーバーライドします。

sourcePorts integer-or-string sourcePorts は、フローのフィ
ルタリングに使用する送信元ポー
トを定義します (任意)。単一の
ポートをフィルタリングするに
は、単一のポートを整数値として
設定します。たとえ
ば、sourcePorts: 80 です。
ポートの範囲をフィルタリングす
るには、文字列形式の "開始 - 終
了" 範囲を使用します。たとえ
ば、sourcePorts: "80-100" で
す。2 つのポートをフィルタリン
グするには、文字列形式の
"port1,port2" を使用します。たと
えば、ports: "80,100" です。

tcpFlags string tcpFlags は、フローのフィルタ
リングに使用するための TCP フ
ラグを定義します (任意)。標準の
フラグ (RFC-9293) に加え
て、SYN-ACK、FIN-
ACK、RST-ACK の 3 つの組み
合わせのいずれかを使用してフィ
ルタリングすることもできます。

プロパティー 型 説明

15.1.10. .spec.agent.ebpf.flowFilter.rules

説明

rules は、eBPF エージェントのフィルタリングルールのリストを定義します。フィルタリングが有
効になっている場合、どのルールにも一致しないフローはデフォルトで拒否されます。デフォルト
を変更するには、すべてを受け入れるルール ({ action: "Accept", cidr: "0.0.0.0/0" }) を定義してか
ら拒否ルールで調整します。

型

array

15.1.11. .spec.agent.ebpf.flowFilter.rules[]

説明

EBPFFlowFilterRule は、フローフィルタリングルールに関する eBPF エージェント設定を定義しま
す。

型

OpenShift Container Platform 4.18 Network Observability

154

object

プロパティー 型 説明

action string action は、フィルターに一致す
るフローに対して実行するアク
ションを定義します。使用可能な
オプションは、Accept (デフォ
ルト) と Reject です。

cidr string cidr は、フローのフィルタリング
に使用する IP CIDR を定義しま
す。たとえば、10.10.10.0/24 ま
たは 100:100:100:100::/64 で
す。

destPorts integer-or-string destPorts は、フローのフィル
タリングに使用する宛先ポートを
定義します (任意)。単一のポート
をフィルタリングするには、単一
のポートを整数値として設定しま
す。たとえば、destPorts: 80 で
す。ポートの範囲をフィルタリン
グするには、文字列形式の "開始
- 終了" 範囲を使用します。たと
えば、destPorts: "80-100" で
す。2 つのポートをフィルタリン
グするには、文字列形式の
"port1,port2" を使用します。たと
えば、ports: "80,100" です。

direction string direction は、フローのフィルタ
リングに使用する方向を定義しま
す (任意)。使用可能なオプション
は Ingress と Egress です。

icmpCode integer icmpCode は、Internet Control
Message Protocol (ICMP) トラ
フィックの場合に、フローのフィ
ルタリングに使用する ICMP コー
ドを定義します (任意)。

icmpType integer icmpType は、ICMP トラフィッ
クの場合に、フローのフィルタリ
ングに使用する ICMP タイプを定
義します (任意)。

第15章 FLOWCOLLECTOR API リファレンス

155

peerCIDR string peerCIDR は、フローをフィルタ
リングする Peer IP CIDR を定義
します。たとえ
ば、10.10.10.0/24 または
100:100:100:100::/64 です。

peerIP string peerIP は、フローのフィルタリ
ングに使用するリモート IP アド
レスを定義します (任意)。たとえ
ば、10.10.10.10 です。

pktDrops boolean pktDrops は、パケットドロップ
を含むフローのみをフィルタリン
グします (任意)。

ports integer-or-string ports は、フローのフィルタリン
グに使用するポートを定義します
(任意)。これは送信元ポートと宛
先ポートの両方に使用されます。
単一のポートをフィルタリングす
るには、単一のポートを整数値と
して設定します。たとえ
ば、ports: 80 です。ポートの範
囲をフィルタリングするには、文
字列形式の "開始 - 終了" 範囲を使
用します。たとえば、ports:
"80-100" です。2 つのポートを
フィルタリングするには、文字列
形式の "port1,port2" を使用しま
す。たとえば、ports: "80,100"
です。

protocol string protocol は、フローのフィルタ
リングに使用するプロトコルを定
義します (任意)。使用可能なオプ
ション
は、TCP、UDP、ICMP、ICMP
v6、SCTP です。

sampling integer sampling は、マッチしたパケッ
トのサンプリング間隔であ
り、spec.agent.ebpf.samplin
g で定義されたグローバルサンプ
リングをオーバーライドします。

プロパティー 型 説明

OpenShift Container Platform 4.18 Network Observability

156

sourcePorts integer-or-string sourcePorts は、フローのフィ
ルタリングに使用する送信元ポー
トを定義します (任意)。単一の
ポートをフィルタリングするに
は、単一のポートを整数値として
設定します。たとえ
ば、sourcePorts: 80 です。
ポートの範囲をフィルタリングす
るには、文字列形式の "開始 - 終
了" 範囲を使用します。たとえ
ば、sourcePorts: "80-100" で
す。2 つのポートをフィルタリン
グするには、文字列形式の
"port1,port2" を使用します。たと
えば、ports: "80,100" です。

tcpFlags string tcpFlags は、フローのフィルタ
リングに使用するための TCP フ
ラグを定義します (任意)。標準の
フラグ (RFC-9293) に加え
て、SYN-ACK、FIN-
ACK、RST-ACK の 3 つの組み
合わせのいずれかを使用してフィ
ルタリングすることもできます。

プロパティー 型 説明

15.1.12. .spec.agent.ebpf.metrics

説明

metrics は、メトリクスに関する eBPF エージェント設定を定義します。

型

object

プロパティー 型 説明

disableAlerts array (string) disableAlerts は、無効にする必
要があるアラートのリストです。
可能な値は次のとおりです。

NetObservDroppedFlows
は、eBPF エージェントでパケッ
トまたはフローが欠落している場
合にトリガーされます。たとえ
ば、eBPF の HashMap がビジー
状態または満杯の場合や、容量制
限がトリガーされている場合など
です。

第15章 FLOWCOLLECTOR API リファレンス

157

enable boolean eBPF エージェントのメトリクス
収集を無効にするには、enable
を false に設定します。これは、
デフォルトで有効になっていま
す。

server object Prometheus スクレイパーのメト
リクスサーバーエンドポイント設
定。

プロパティー 型 説明

15.1.13. .spec.agent.ebpf.metrics.server

説明

Prometheus スクレイパーのメトリクスサーバーエンドポイント設定。

型

object

プロパティー 型 説明

port integer メトリクスサーバーの HTTP ポー
ト。

tls object TLS 設定。

15.1.14. .spec.agent.ebpf.metrics.server.tls

説明

TLS 設定。

型

object

必須

type

プロパティー 型 説明

OpenShift Container Platform 4.18 Network Observability

158

insecureSkipVerify boolean insecureSkipVerify を使用する
と、提供された証明書に対するク
ライアント側の検証をスキップで
きます。true に設定する
と、providedCaFile フィールド
が無視されます。

provided object type が Provided に設定されて
いる場合の TLS 設定。

providedCaFile object type が Provided に設定されて
いる場合の CA ファイルへの参
照。

type string TLS 設定のタイプを選択します。

- Disabled (デフォルト) は、エ
ンドポイントに TLS を設定しま
せん。- Provided は、証明書
ファイルとキーファイルを手動で
指定します [サポート対象外
(*)]。- Auto は、アノテーション
を使用して OpenShift Container
Platform の自動生成証明書を使用
します。

プロパティー 型 説明

15.1.15. .spec.agent.ebpf.metrics.server.tls.provided

説明

type が Provided に設定されている場合の TLS 設定。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

第15章 FLOWCOLLECTOR API リファレンス

159

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.16. .spec.agent.ebpf.metrics.server.tls.providedCaFile

説明

type が Provided に設定されている場合の CA ファイルへの参照。

型

object

プロパティー 型 説明

file string config map またはシークレット内
のファイル名。

name string ファイルを含む config map また
はシークレットの名前。

namespace string ファイルを含む config map また
はシークレットの namespace。
省略した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string ファイル参照のタイプ
(configmap または secret)。

15.1.17. .spec.agent.ebpf.resources

説明

resources は、このコンテナーが必要とするコンピューティングリソースです。詳細

OpenShift Container Platform 4.18 Network Observability

160

resources は、このコンテナーが必要とするコンピューティングリソースです。詳細
は、https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/ を参照し
てください。

型

object

プロパティー 型 説明

limits integer-or-string limits は、許可されるコンピュー
トリソースの最大量を示します。
詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

requests integer-or-string requests は、必要なコンピュート
リソースの最小量を示します。コ
ンテナーで Requests が省略され
る場合、明示的に指定される場合
にデフォルトで Limits に設定され
ます。指定しない場合は、実装定
義の値に設定されます。リクエス
トは制限を超えることはできませ
ん。詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

15.1.18. .spec.consolePlugin

説明

consolePlugin は、利用可能な場合、OpenShift Container Platform コンソールプラグインに関連す
る設定を定義します。

型

object

プロパティー 型 説明

advanced object advanced を使用すると、コン
ソールプラグインの内部設定のい
くつかの側面を設定できます。こ
のセクションは、GOGC や
GOMAXPROCS 環境変数など
のデバッグと詳細なパフォーマン
スの最適化を主な目的としていま
す。これらの値はお客様の責任の
もと設定してください。

第15章 FLOWCOLLECTOR API リファレンス

161

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

autoscaler object プラグインのデプロイメント用に
設定する水平 Pod オートスケー
ラーの autoscaler 仕様。
HorizontalPodAutoscaler のド
キュメント (自動スケーリン
グ/v2) を参照してください。

enable boolean コンソールプラグインのデプロイ
メントを有効にします。

imagePullPolicy string imagePullPolicy は、上で定義
したイメージの Kubernetes プル
ポリシーです。

logLevel string コンソールプラグインバックエン
ドの logLevel。

portNaming object portNaming は、ポートから
サービス名への変換の設定を定義
します。

quickFilters array quickFilters は、コンソールプ
ラグインのクイックフィルタープ
リセットを設定します。

replicas integer replicas は、開始するレプリカ
(Pod) の数を定義します。

resources object resources (コンピューティング
リソースから見た場合にコンテ
ナーに必要)。詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

プロパティー 型 説明

15.1.19. .spec.consolePlugin.advanced

説明

advanced を使用すると、コンソールプラグインの内部設定のいくつかの側面を設定できます。こ
のセクションは、GOGC や GOMAXPROCS 環境変数などのデバッグと詳細なパフォーマンスの最
適化を主な目的としています。これらの値はお客様の責任のもと設定してください。

型

object

OpenShift Container Platform 4.18 Network Observability

162

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

プロパティー 型 説明

args array (string) args を使用すると、カスタム引
数を基礎となるコンポーネントに
渡すことができます。URL や設定
パスなど、一部のパラメーターを
オーバーライドする場合に有用で
す。これらのパラメーターは、
エッジのデバッグ時かサポートを
受ける場合にのみ有用なものであ
るため、FlowCollector 記述子の
一部として公開しないでくださ
い。

env object (string) env を使用すると、カスタム環境
変数を基礎となるコンポーネント
に渡すことができます。GOGC
や GOMAXPROCS など、非常
に具体的なパフォーマンスチュー
ニングオプションを渡すのに役立
ちます。これらのオプションは、
エッジのデバッグ時かサポートを
受ける場合にのみ有用なものであ
るため、FlowCollector 記述子の
一部として公開しないでくださ
い。

port integer port はプラグインサービスポー
トです。メトリクス用に予約され
ている 9002 は使用しないでくだ
さい。

register boolean register を true に設定すると、
提供されたコンソールプラグイン
を OpenShift Container Platform
Console Operator に自動的に登
録できます。false に設定した場
合でも、oc patch
console.operator.openshift.i
o cluster --type='json' -p
'[{"op": "add", "path":
"/spec/plugins/-", "value":
"netobserv-plugin"}]' コマンド
で
console.operator.openshift.io/clus
ter を編集することにより、手動
で登録できます。

scheduling object scheduling は、Pod がノードで
どのようにスケジュールされるか
を制御します。

第15章 FLOWCOLLECTOR API リファレンス

163

15.1.20. .spec.consolePlugin.advanced.scheduling

説明

scheduling は、Pod がノードでどのようにスケジュールされるかを制御します。

型

object

プロパティー 型 説明

affinity object 指定した場合、Pod のスケジュー
リング制約。ドキュメント
は、https://kubernetes.io/docs/r
eference/kubernetes-
api/workload-resources/pod-
v1/#scheduling を参照してくださ
い。

nodeSelector object (string) nodeSelector を使用すると、指
定した各ラベルを持つノードにの
み Pod をスケジュールできます。
ドキュメント
は、https://kubernetes.io/docs/c
oncepts/configuration/assign-
pod-node/ を参照してください。

priorityClassName string 指定した場合、Pod の優先度を示
します。ドキュメント
は、https://kubernetes.io/docs/c
oncepts/scheduling-
eviction/pod-priority-
preemption/#how-to-use-
priority-and-preemption を参照し
てください。指定されていない場
合はデフォルトの優先度が使用さ
れ、デフォルトの優先度がない場
合は 0 が使用されます。

tolerations array tolerations は、一致する taint
を持つノードに Pod がスケジュー
ルできるようにする toleration の
リストです。ドキュメント
は、https://kubernetes.io/docs/r
eference/kubernetes-
api/workload-resources/pod-
v1/#scheduling を参照してくださ
い。

15.1.21. .spec.consolePlugin.advanced.scheduling.affinity

説明

指定した場合、Pod のスケジューリング制約。ドキュメント

OpenShift Container Platform 4.18 Network Observability

164

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

指定した場合、Pod のスケジューリング制約。ドキュメント
は、https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-
v1/#scheduling を参照してください。

型

object

15.1.22. .spec.consolePlugin.advanced.scheduling.tolerations

説明

tolerations は、一致する taint を持つノードに Pod がスケジュールできるようにする toleration の
リストです。ドキュメントは、https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-v1/#scheduling を参照してください。

型

array

15.1.23. .spec.consolePlugin.autoscaler

説明

プラグインのデプロイメント用に設定する水平 Pod オートスケーラーの autoscaler 仕様。
HorizontalPodAutoscaler のドキュメント (自動スケーリング/v2) を参照してください。

型

object

15.1.24. .spec.consolePlugin.portNaming

説明

portNaming は、ポートからサービス名への変換の設定を定義します。

型

object

プロパティー 型 説明

enable boolean コンソールプラグインのポートか
らサービス名への変換を有効にし
ます。

portNames object (string) portNames は、コンソールで使
用する追加のポート名を定義しま
す (例: portNames: {"3100":
"loki"})。

15.1.25. .spec.consolePlugin.quickFilters

説明

quickFilters は、コンソールプラグインのクイックフィルタープリセットを設定します。

型

array

第15章 FLOWCOLLECTOR API リファレンス

165

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

15.1.26. .spec.consolePlugin.quickFilters[]

説明

QuickFilter は、コンソールのクイックフィルターのプリセット設定を定義します。

型

object

必須

filter

name

プロパティー 型 説明

default boolean default は、このフィルターをデ
フォルトで有効にするかどうかを
定義します。

filter object (string) filter は、このフィルターが選択
されたときに設定されるキーと値
のセットです。各キーは、コンマ
区切りの文字列を使用して値のリ
ストに関連付けることができます
(例: filter: {"src_namespace":
"namespace1,namespace2"}
)。

name string コンソールに表示されるフィル
ターの名前

15.1.27. .spec.consolePlugin.resources

説明

resources (コンピューティングリソースから見た場合にコンテナーに必要)。詳細
は、https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/ を参照し
てください。

型

object

プロパティー 型 説明

limits integer-or-string limits は、許可されるコンピュー
トリソースの最大量を示します。
詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

OpenShift Container Platform 4.18 Network Observability

166

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

requests integer-or-string requests は、必要なコンピュート
リソースの最小量を示します。コ
ンテナーで Requests が省略され
る場合、明示的に指定される場合
にデフォルトで Limits に設定され
ます。指定しない場合は、実装定
義の値に設定されます。リクエス
トは制限を超えることはできませ
ん。詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

プロパティー 型 説明

15.1.28. .spec.exporters

説明

exporters は、カスタム消費またはストレージ用の追加のオプションのエクスポーターを定義しま
す。

型

array

15.1.29. .spec.exporters[]

説明

FlowCollectorExporter は、エンリッチされたフローを送信する追加のエクスポーターを定義しま
す。

型

object

必須

type

プロパティー 型 説明

ipfix object エンリッチされた IPFIX フローの
送信先の IP アドレスやポートな
どの IPFIX 設定。

kafka object エンリッチされたフローの送信先
のアドレスやトピックなどの
Kafka 設定。

openTelemetry object エンリッチされたログやメトリク
スの送信先の IP アドレスやポー
トなどの OpenTelemetry 設定。

第15章 FLOWCOLLECTOR API リファレンス

167

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

type string type は、エクスポーターのタイ
プを選択します。使用可能なオプ
ション
は、Kafka、IPFIX、OpenTele
metry です。

プロパティー 型 説明

15.1.30. .spec.exporters[].ipfix

説明

エンリッチされた IPFIX フローの送信先の IP アドレスやポートなどの IPFIX 設定。

型

object

必須

targetHost

targetPort

プロパティー 型 説明

targetHost string IPFIX 外部レシーバーのアドレ
ス。

targetPort integer IPFIX 外部レシーバー用のポー
ト。

transport string IPFIX 接続に使用されるトランス
ポートプロトコル (TCP または
UDP)。デフォルトは TCP で
す。

15.1.31. .spec.exporters[].kafka

説明

エンリッチされたフローの送信先のアドレスやトピックなどの Kafka 設定。

型

object

必須

address

topic

OpenShift Container Platform 4.18 Network Observability

168

プロパティー 型 説明

address string Kafka サーバーのアドレス

sasl object SASL 認証の設定。[サポート対象
外 (*)]。

tls object TLS クライアント設定。TLS を使
用する場合は、アドレスが TLS
に使用される Kafka ポート (通常
は 9093) と一致することを確認
します。

topic string 使用する Kafka トピック。これは
必ず存在する必要があります。
Network Observability はこれを作
成しません。

15.1.32. .spec.exporters[].kafka.sasl

説明

SASL 認証の設定。[サポート対象外 (*)]。

型

object

プロパティー 型 説明

clientIDReference object クライアント ID を含むシーク
レットまたは config map への参
照

clientSecretReference object クライアントシークレットを含む
シークレットまたは config map
への参照

type string 使用する SASL 認証のタイプ。
SASL を使用しない場合は
Disabled

15.1.33. .spec.exporters[].kafka.sasl.clientIDReference

説明

クライアント ID を含むシークレットまたは config map への参照

型

object

第15章 FLOWCOLLECTOR API リファレンス

169

プロパティー 型 説明

file string config map またはシークレット内
のファイル名。

name string ファイルを含む config map また
はシークレットの名前。

namespace string ファイルを含む config map また
はシークレットの namespace。
省略した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string ファイル参照のタイプ
(configmap または secret)。

15.1.34. .spec.exporters[].kafka.sasl.clientSecretReference

説明

クライアントシークレットを含むシークレットまたは config map への参照

型

object

プロパティー 型 説明

file string config map またはシークレット内
のファイル名。

name string ファイルを含む config map また
はシークレットの名前。

namespace string ファイルを含む config map また
はシークレットの namespace。
省略した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

OpenShift Container Platform 4.18 Network Observability

170

type string ファイル参照のタイプ
(configmap または secret)。

プロパティー 型 説明

15.1.35. .spec.exporters[].kafka.tls

説明

TLS クライアント設定。TLS を使用する場合は、アドレスが TLS に使用される Kafka ポート (通常
は 9093) と一致することを確認します。

型

object

プロパティー 型 説明

caCert object caCert は、認証局の証明書の参
照を定義します。

enable boolean TLS を有効にします。

insecureSkipVerify boolean insecureSkipVerify を使用する
と、サーバー証明書のクライアン
ト側の検証をスキップできま
す。true に設定すると、caCert
フィールドが無視されます。

userCert object userCert は、ユーザー証明書の
参照を定義し、mTLS に使用され
ます。一方向 TLS を使用する場
合は、このプロパティーを無視で
きます。

15.1.36. .spec.exporters[].kafka.tls.caCert

説明

caCert は、認証局の証明書の参照を定義します。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

第15章 FLOWCOLLECTOR API リファレンス

171

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.37. .spec.exporters[].kafka.tls.userCert

説明

userCert は、ユーザー証明書の参照を定義し、mTLS に使用されます。一方向 TLS を使用する場合
は、このプロパティーを無視できます。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

OpenShift Container Platform 4.18 Network Observability

172

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.38. .spec.exporters[].openTelemetry

説明

エンリッチされたログやメトリクスの送信先の IP アドレスやポートなどの OpenTelemetry 設定。

型

object

必須

targetHost

targetPort

プロパティー 型 説明

fieldsMapping array OpenTelemetry 準拠の形式に
マッピングされるカスタムフィー
ルド。デフォルトでは、Network
Observability の形式の提案
(https://github.com/rhobs/obser
vability-data-
model/blob/main/network-
observability.md#format-
proposal) が使用されます。L3 ま
たは L4 エンリッチ化ネットワー
クログは、現在、受け入れられて
いる標準が存在しないため、デ
フォルトを独自の形式で自由に
オーバーライドできます。

headers object (string) メッセージに追加するヘッダー
(任意)。

logs object ログの OpenTelemetry 設定。

第15章 FLOWCOLLECTOR API リファレンス

173

https://github.com/rhobs/observability-data-model/blob/main/network-observability.md#format-proposal

metrics object メトリクスの OpenTelemetry 設
定。

protocol string OpenTelemetry 接続のプロトコ
ル。使用可能なオプションは
http と grpc です。

targetHost string OpenTelemetry レシーバーのア
ドレス。

targetPort integer OpenTelemetry レシーバーの
ポート。

tls object TLS クライアント設定。

プロパティー 型 説明

15.1.39. .spec.exporters[].openTelemetry.fieldsMapping

説明

OpenTelemetry 準拠の形式にマッピングされるカスタムフィールド。デフォルトでは、Network
Observability の形式の提案 (https://github.com/rhobs/observability-data-
model/blob/main/network-observability.md#format-proposal) が使用されます。L3 または L4 エン
リッチ化ネットワークログは、現在、受け入れられている標準が存在しないため、デフォルトを独
自の形式で自由にオーバーライドできます。

型

array

15.1.40. .spec.exporters[].openTelemetry.fieldsMapping[]

説明

型

object

プロパティー 型 説明

input string

multiplier integer

output string

15.1.41. .spec.exporters[].openTelemetry.logs

説明

ログの OpenTelemetry 設定。

OpenShift Container Platform 4.18 Network Observability

174

https://github.com/rhobs/observability-data-model/blob/main/network-observability.md#format-proposal

型

object

プロパティー 型 説明

enable boolean ログを OpenTelemetry レシー
バーに送信するには、enable を
true に設定します。

15.1.42. .spec.exporters[].openTelemetry.metrics

説明

メトリクスの OpenTelemetry 設定。

型

object

プロパティー 型 説明

enable boolean メトリクスを OpenTelemetry レ
シーバーに送信するに
は、enable を true に設定しま
す。

pushTimeInterval string メトリクスをコレクターに送信す
る頻度を指定します。

15.1.43. .spec.exporters[].openTelemetry.tls

説明

TLS クライアント設定。

型

object

プロパティー 型 説明

caCert object caCert は、認証局の証明書の参
照を定義します。

enable boolean TLS を有効にします。

insecureSkipVerify boolean insecureSkipVerify を使用する
と、サーバー証明書のクライアン
ト側の検証をスキップできま
す。true に設定すると、caCert
フィールドが無視されます。

第15章 FLOWCOLLECTOR API リファレンス

175

userCert object userCert は、ユーザー証明書の
参照を定義し、mTLS に使用され
ます。一方向 TLS を使用する場
合は、このプロパティーを無視で
きます。

プロパティー 型 説明

15.1.44. .spec.exporters[].openTelemetry.tls.caCert

説明

caCert は、認証局の証明書の参照を定義します。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

15.1.45. .spec.exporters[].openTelemetry.tls.userCert

説明

userCert は、ユーザー証明書の参照を定義し、mTLS に使用されます。一方向 TLS を使用する場合
は、このプロパティーを無視できます。

OpenShift Container Platform 4.18 Network Observability

176

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

15.1.46. .spec.kafka

説明

Kafka 設定。Kafka をフローコレクションパイプラインの一部としてブローカーとして使用できま
す。この設定を利用できるのは、spec.deploymentModel が Kafka の場合です。

型

object

必須

address

topic

プロパティー 型 説明

address string Kafka サーバーのアドレス

第15章 FLOWCOLLECTOR API リファレンス

177

sasl object SASL 認証の設定。[サポート対象
外 (*)]。

tls object TLS クライアント設定。TLS を使
用する場合は、アドレスが TLS
に使用される Kafka ポート (通常
は 9093) と一致することを確認
します。

topic string 使用する Kafka トピック。これは
必ず存在する必要があります。
Network Observability はこれを作
成しません。

プロパティー 型 説明

15.1.47. .spec.kafka.sasl

説明

SASL 認証の設定。[サポート対象外 (*)]。

型

object

プロパティー 型 説明

clientIDReference object クライアント ID を含むシーク
レットまたは config map への参
照

clientSecretReference object クライアントシークレットを含む
シークレットまたは config map
への参照

type string 使用する SASL 認証のタイプ。
SASL を使用しない場合は
Disabled

15.1.48. .spec.kafka.sasl.clientIDReference

説明

クライアント ID を含むシークレットまたは config map への参照

型

object

プロパティー 型 説明

OpenShift Container Platform 4.18 Network Observability

178

file string config map またはシークレット内
のファイル名。

name string ファイルを含む config map また
はシークレットの名前。

namespace string ファイルを含む config map また
はシークレットの namespace。
省略した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string ファイル参照のタイプ
(configmap または secret)。

プロパティー 型 説明

15.1.49. .spec.kafka.sasl.clientSecretReference

説明

クライアントシークレットを含むシークレットまたは config map への参照

型

object

プロパティー 型 説明

file string config map またはシークレット内
のファイル名。

name string ファイルを含む config map また
はシークレットの名前。

namespace string ファイルを含む config map また
はシークレットの namespace。
省略した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

第15章 FLOWCOLLECTOR API リファレンス

179

type string ファイル参照のタイプ
(configmap または secret)。

プロパティー 型 説明

15.1.50. .spec.kafka.tls

説明

TLS クライアント設定。TLS を使用する場合は、アドレスが TLS に使用される Kafka ポート (通常
は 9093) と一致することを確認します。

型

object

プロパティー 型 説明

caCert object caCert は、認証局の証明書の参
照を定義します。

enable boolean TLS を有効にします。

insecureSkipVerify boolean insecureSkipVerify を使用する
と、サーバー証明書のクライアン
ト側の検証をスキップできま
す。true に設定すると、caCert
フィールドが無視されます。

userCert object userCert は、ユーザー証明書の
参照を定義し、mTLS に使用され
ます。一方向 TLS を使用する場
合は、このプロパティーを無視で
きます。

15.1.51. .spec.kafka.tls.caCert

説明

caCert は、認証局の証明書の参照を定義します。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

OpenShift Container Platform 4.18 Network Observability

180

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.52. .spec.kafka.tls.userCert

説明

userCert は、ユーザー証明書の参照を定義し、mTLS に使用されます。一方向 TLS を使用する場合
は、このプロパティーを無視できます。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

第15章 FLOWCOLLECTOR API リファレンス

181

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.53. .spec.loki

説明

loki (フローストア) のクライアント設定。

型

object

必須

mode

プロパティー 型 説明

advanced object advanced を使用すると、Loki
クライアントの内部設定のいくつ
かの側面を設定できます。このセ
クションは、デバッグと詳細なパ
フォーマンスの最適化を主な目的
としています。

OpenShift Container Platform 4.18 Network Observability

182

enable boolean Loki にフローを保存するに
は、enable を true に設定しま
す。コンソールプラグインは、メ
トリクスのデータソースとして
Loki または Prometheus、または
その両方を使用できます
(spec.prometheus.querier も
参照してください)。すべてのク
エリーを Loki から Prometheus に
転送できるわけではありません。
したがって、Loki が無効になって
いる場合、Pod ごとの情報の取得
や raw フローの表示など、プラグ
インの一部の機能も無効になりま
す。Prometheus と Loki の両方が
有効になっている場合は、
Prometheus が優先され、
Prometheus が処理できないクエ
リーのフォールバックとして Loki
が使用されます。両方とも無効に
なっている場合、コンソールプラ
グインはデプロイされません。

lokiStack object LokiStack モードの Loki 設定。
これは、Loki Operator を簡単に
設定するのに役立ちます。他の
モードでは無視されます。

manual object Manual モードの Loki 設定。こ
れは最も柔軟な設定です。他の
モードでは無視されます。

microservices object Microservices モードの Loki 設
定。このオプションは、Loki がマ
イクロサービスデプロイメント
モード
(https://grafana.com/docs/loki/la
test/fundamentals/architecture/
deployment-
modes/#microservices-mode) を
使用してインストールされている
場合に使用します。他のモードで
は無視されます。

プロパティー 型 説明

第15章 FLOWCOLLECTOR API リファレンス

183

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#microservices-mode

mode string mode は、Loki のインストール
モードに応じて設定する必要があ
ります。

- Loki が Loki Operator を使用し
て管理されている場合
は、LokiStack を使用します。

- Loki がモノリシックなワーク
ロードとしてインストールされて
いる場合は、Monolithic を使用
します。

- Loki がマイクロサービスとして
インストールされているが、Loki
Operator がない場合
は、Microservices を使用しま
す。

- 上記のオプションが、いずれも
お使いのセットアップに合わない
場合は、Manual を使用します。

monolithic object Monolithic モードの Loki 設定。
このオプションは、Loki がモノリ
シックデプロイメントモード
(https://grafana.com/docs/loki/la
test/fundamentals/architecture/
deployment-modes/#monolithic-
mode) を使用してインストールさ
れている場合に使用します。他の
モードでは無視されます。

readTimeout string readTimeout は、コンソールプ
ラグインの loki クエリーの合計時
間上限です。タイムアウトがゼロ
の場合は、タイムアウトしませ
ん。

writeBatchSize integer writeBatchSize は、送信前に蓄
積する Loki ログの最大バッチサ
イズ (バイト単位) です。

writeBatchWait string writeBatchWait は、Loki バッチ
を送信するまでに待機する最大時
間です。

writeTimeout string writeTimeout は、Loki の接続/
リクエスト時間の上限です。タイ
ムアウトがゼロの場合は、タイム
アウトしません。

プロパティー 型 説明

OpenShift Container Platform 4.18 Network Observability

184

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#monolithic-mode

プロパティー 型 説明

15.1.54. .spec.loki.advanced

説明

advanced を使用すると、Loki クライアントの内部設定のいくつかの側面を設定できます。このセ
クションは、デバッグと詳細なパフォーマンスの最適化を主な目的としています。

型

object

プロパティー 型 説明

excludeLabels array (string) excludeLabels は、Loki ラベル
のリストから除外するフィールド
のリストです [サポートされてい
ません (*)]。

staticLabels object (string) staticLabels は、Loki ストレー
ジ内の各フローに設定する共通ラ
ベルのマップです。

writeMaxBackoff string writeMaxBackoff は、Loki クラ
イアント接続の再試行間の最大
バックオフ時間です。

writeMaxRetries integer writeMaxRetries は、Loki クラ
イアント接続の最大再試行回数で
す。

writeMinBackoff string writeMinBackoff は、Loki クラ
イアント接続の再試行間の初期
バックオフ時間です。

15.1.55. .spec.loki.lokiStack

説明

LokiStack モードの Loki 設定。これは、Loki Operator を簡単に設定するのに役立ちます。他の
モードでは無視されます。

型

object

必須

name

第15章 FLOWCOLLECTOR API リファレンス

185

プロパティー 型 説明

name string 使用する既存の LokiStack リソー
スの名前。

namespace string この LokiStack リソースが配置
される namespace。省略した場
合は、spec.namespace と同じ
であるとみなされます。

15.1.56. .spec.loki.manual

説明

Manual モードの Loki 設定。これは最も柔軟な設定です。他のモードでは無視されます。

型

object

プロパティー 型 説明

authToken string authToken は、Loki に対して認
証するためのトークンを取得する
方法を示します。

- Disabled の場合、リクエスト
とともにトークンが送信されませ
ん。

- Forward の場合、認可のために
ユーザートークンを転送します。

- Host [非推奨 (*)] - ローカル
Pod サービスアカウントを使用し
て Loki に認証します。

Loki Operator を使用する場
合、Forward に設定する必要が
あります。

ingesterUrl string ingesterUrl は、フローのプッ
シュ先となる既存の Loki イン
ジェスターサービスのアドレスで
す。Loki Operator を使用する場
合は、パスに network テナント
が設定された Loki ゲートウェイ
サービスに設定します (例:
https://loki-gateway-
http.netobserv.svc:8080/api/logs
/v1/network)。

OpenShift Container Platform 4.18 Network Observability

186

https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network

querierUrl string querierUrl は、Loki クエリアー
サービスのアドレスを指定しま
す。Loki Operator を使用する場
合は、パスに network テナント
が設定された Loki ゲートウェイ
サービスに設定します (例:
https://loki-gateway-
http.netobserv.svc:8080/api/logs
/v1/network)。

statusTls object Loki ステータス URL の TLS クラ
イアント設定。

statusUrl string statusUrl は、Loki クエリアー
URL と異なる場合に備えて、Loki
/ready、/metrics、/config エン
ドポイントのアドレスを指定しま
す。空の場合、querierUrl の値
が使用されます。これは、フロン
トエンドでエラーメッセージやコ
ンテキストを表示するのに便利で
す。Loki Operator を使用する場
合は、Loki HTTP クエリーフロン
トエンドサービス (例 :
https://loki-query-frontend-
http.netobserv.svc:3100/) に設定
します。statusTLS 設定
は、statusUrl が設定されている
場合に使用されます。

tenantID string tenantID は、各リクエストのテ
ナントを識別する Loki X-Scope-
OrgID です。Loki Operator を使
用する場合は、特別なテナント
モードに対応する network に設
定します。

tls object Loki URL の TLS クライアント設
定。

プロパティー 型 説明

15.1.57. .spec.loki.manual.statusTls

説明

Loki ステータス URL の TLS クライアント設定。

型

object

第15章 FLOWCOLLECTOR API リファレンス

187

https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network
https://loki-query-frontend-http.netobserv.svc:3100/

プロパティー 型 説明

caCert object caCert は、認証局の証明書の参
照を定義します。

enable boolean TLS を有効にします。

insecureSkipVerify boolean insecureSkipVerify を使用する
と、サーバー証明書のクライアン
ト側の検証をスキップできま
す。true に設定すると、caCert
フィールドが無視されます。

userCert object userCert は、ユーザー証明書の
参照を定義し、mTLS に使用され
ます。一方向 TLS を使用する場
合は、このプロパティーを無視で
きます。

15.1.58. .spec.loki.manual.statusTls.caCert

説明

caCert は、認証局の証明書の参照を定義します。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

OpenShift Container Platform 4.18 Network Observability

188

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.59. .spec.loki.manual.statusTls.userCert

説明

userCert は、ユーザー証明書の参照を定義し、mTLS に使用されます。一方向 TLS を使用する場合
は、このプロパティーを無視できます。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

第15章 FLOWCOLLECTOR API リファレンス

189

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.60. .spec.loki.manual.tls

説明

Loki URL の TLS クライアント設定。

型

object

プロパティー 型 説明

caCert object caCert は、認証局の証明書の参
照を定義します。

enable boolean TLS を有効にします。

insecureSkipVerify boolean insecureSkipVerify を使用する
と、サーバー証明書のクライアン
ト側の検証をスキップできま
す。true に設定すると、caCert
フィールドが無視されます。

userCert object userCert は、ユーザー証明書の
参照を定義し、mTLS に使用され
ます。一方向 TLS を使用する場
合は、このプロパティーを無視で
きます。

15.1.61. .spec.loki.manual.tls.caCert

説明

caCert は、認証局の証明書の参照を定義します。

OpenShift Container Platform 4.18 Network Observability

190

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

15.1.62. .spec.loki.manual.tls.userCert

説明

userCert は、ユーザー証明書の参照を定義し、mTLS に使用されます。一方向 TLS を使用する場合
は、このプロパティーを無視できます。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

第15章 FLOWCOLLECTOR API リファレンス

191

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.63. .spec.loki.microservices

説明

Microservices モードの Loki 設定。このオプションは、Loki がマイクロサービスデプロイメント
モード (https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-
modes/#microservices-mode) を使用してインストールされている場合に使用します。他のモード
では無視されます。

型

object

プロパティー 型 説明

ingesterUrl string ingesterUrl は、フローのプッ
シュ先となる既存の Loki イン
ジェスターサービスのアドレスで
す。

querierUrl string querierURL は、Loki クエリ
アーサービスのアドレスを指定し
ます。

OpenShift Container Platform 4.18 Network Observability

192

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#microservices-mode

tenantID string tenantID は、各リクエストのテ
ナントを識別する Loki X-Scope-
OrgID ヘッダーです。

tls object Loki URL の TLS クライアント設
定。

プロパティー 型 説明

15.1.64. .spec.loki.microservices.tls

説明

Loki URL の TLS クライアント設定。

型

object

プロパティー 型 説明

caCert object caCert は、認証局の証明書の参
照を定義します。

enable boolean TLS を有効にします。

insecureSkipVerify boolean insecureSkipVerify を使用する
と、サーバー証明書のクライアン
ト側の検証をスキップできま
す。true に設定すると、caCert
フィールドが無視されます。

userCert object userCert は、ユーザー証明書の
参照を定義し、mTLS に使用され
ます。一方向 TLS を使用する場
合は、このプロパティーを無視で
きます。

15.1.65. .spec.loki.microservices.tls.caCert

説明

caCert は、認証局の証明書の参照を定義します。

型

object

プロパティー 型 説明

第15章 FLOWCOLLECTOR API リファレンス

193

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.66. .spec.loki.microservices.tls.userCert

説明

userCert は、ユーザー証明書の参照を定義し、mTLS に使用されます。一方向 TLS を使用する場合
は、このプロパティーを無視できます。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

OpenShift Container Platform 4.18 Network Observability

194

name string 証明書を含む config map または
シークレットの名前。

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.67. .spec.loki.monolithic

説明

Monolithic モードの Loki 設定。このオプションは、Loki がモノリシックデプロイメントモード
(https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-
modes/#monolithic-mode) を使用してインストールされている場合に使用します。他のモードでは
無視されます。

型

object

プロパティー 型 説明

tenantID string tenantID は、各リクエストのテ
ナントを識別する Loki X-Scope-
OrgID ヘッダーです。

tls object Loki URL の TLS クライアント設
定。

url string url は、インジェスターとクエリ
アーの両方を参照する既存の Loki
サービスの一意のアドレスです。

15.1.68. .spec.loki.monolithic.tls

説明

Loki URL の TLS クライアント設定。

型

object

第15章 FLOWCOLLECTOR API リファレンス

195

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#monolithic-mode

プロパティー 型 説明

caCert object caCert は、認証局の証明書の参
照を定義します。

enable boolean TLS を有効にします。

insecureSkipVerify boolean insecureSkipVerify を使用する
と、サーバー証明書のクライアン
ト側の検証をスキップできま
す。true に設定すると、caCert
フィールドが無視されます。

userCert object userCert は、ユーザー証明書の
参照を定義し、mTLS に使用され
ます。一方向 TLS を使用する場
合は、このプロパティーを無視で
きます。

15.1.69. .spec.loki.monolithic.tls.caCert

説明

caCert は、認証局の証明書の参照を定義します。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

OpenShift Container Platform 4.18 Network Observability

196

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.70. .spec.loki.monolithic.tls.userCert

説明

userCert は、ユーザー証明書の参照を定義し、mTLS に使用されます。一方向 TLS を使用する場合
は、このプロパティーを無視できます。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

第15章 FLOWCOLLECTOR API リファレンス

197

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.71. .spec.networkPolicy

説明

networkPolicy は、Network Observability のコンポーネントを分離するためのネットワークポリ
シー設定を定義します。

型

object

プロパティー 型 説明

additionalNamespaces array (string) additionalNamespaces には、
Network Observability namespace
への接続を許可する追加の
namespace を含めます。これに
より、ネットワークポリシー設定
の柔軟性が向上しますが、より詳
細な設定が必要な場合は、これを
無効にして独自の設定をインス
トールできます。

OpenShift Container Platform 4.18 Network Observability

198

enable boolean Network Observability (main およ
び privileged)が使用する
namespace にネットワークポリ
シーをデプロイします。これらの
ネットワークポリシーは、
Network Observability コンポーネ
ントをより適切に分離し、望まし
くない接続を防ぎます。このオプ
ションは、OVNKubernetes で使
用する際にデフォルトで有効にさ
れ、それ以外の場合は無効にされ
ます（他の CNI でテストされてい
ません）。無効にすると、
Network Observability コンポーネ
ントのネットワークポリシーを手
動で作成できます。

プロパティー 型 説明

15.1.72. .spec.processor

説明

processor は、エージェントからフローを受信してエンリッチし、メトリクスを生成して Loki 永続
化レイヤーや利用可能なエクスポーターに転送するコンポーネントの設定を定義します。

型

object

プロパティー 型 説明

addZone boolean addZone は、フローに送信元
ゾーンと宛先ゾーンのラベルを付
けることで、アベイラビリティー
ゾーンを認識できるようにしま
す。この機能を使用するには、
ノードに
"topology.kubernetes.io/zone" ラ
ベルを設定する必要があります。

advanced object advanced を使用すると、フ
ロープロセッサーの内部設定のい
くつかの側面を設定できます。こ
のセクションは、GOGC や
GOMAXPROCS 環境変数など
のデバッグと詳細なパフォーマン
スの最適化を主な目的としていま
す。これらの値はお客様の責任の
もと設定してください。

第15章 FLOWCOLLECTOR API リファレンス

199

clusterName string clusterName は、フローデータ
に表示されるクラスターの名前で
す。これは、マルチクラスターコ
ンテキストで役立ちます。
OpenShift Container Platform を
使用する場合は、自動的に決定さ
れるように空のままにします。

deduper object deduper を使用すると、重複と
して識別されたフローをサンプリ
ングまたはドロップして、リソー
ス使用量を節約できます。

filters array filters を使用すると、生成される
フローの量を制限するカスタム
フィルターを定義できます。これ
らのフィルターは、Kubernetes
namespace によるフィルター処
理などを含め、eBPF エージェン
トフィルター
(spec.agent.ebpf.flowFilter
内) よりも柔軟性が高くなります
が、パフォーマンスの向上は少な
くなります。

imagePullPolicy string imagePullPolicy は、上で定義
したイメージの Kubernetes プル
ポリシーです。

kafkaConsumerAutoscaler object kafkaConsumerAutoscaler
は、Kafka メッセージを消費する
flowlogs-pipeline-
transformer を設定する水平
Pod オートスケーラーの仕様で
す。Kafka が無効になっている場
合、この設定は無視されます。
HorizontalPodAutoscaler のド
キュメント (自動スケーリン
グ/v2) を参照してください。

kafkaConsumerBatchSize integer kafkaConsumerBatchSize
は、コンシューマーが受け入れる
最大バッチサイズ (バイト単位) を
ブローカーに示します。Kafka を
使用しない場合は無視されます。
デフォルト: 10MB。

プロパティー 型 説明

OpenShift Container Platform 4.18 Network Observability

200

kafkaConsumerQueueCapaci
ty

integer kafkaConsumerQueueCapac
ity は、Kafka コンシューマークラ
イアントで使用される内部メッ
セージキューの容量を定義しま
す。Kafka を使用しない場合は無
視されます。

kafkaConsumerReplicas integer kafkaConsumerReplicas は、
Kafka メッセージを消費する
flowlogs-pipeline-
transformer に対して開始する
レプリカ (Pod) の数を定義しま
す。Kafka が無効になっている場
合、この設定は無視されます。

logLevel string プロセッサーランタイムの
logLevel

logTypes string logTypes は、生成するレコード
タイプを定義します。可能な値は
次のとおりです。

- 通常のネットワークフローをエ
クスポートする場合は Flows。
これはデフォルトです。

- Conversations は、開始した
会話、終了した会話、および定期
的な "ティック" 更新のイベントを
生成します。このモードでは、長
時間にわたる会話では
Prometheus メトリクスが不正確
になることに注意してください。

- EndedConversations は、終
了した会話イベントのみを生成し
ます。このモードでは、長時間に
わたる会話では Prometheus メト
リクスが不正確になることに注意
してください。

- All は、ネットワークフローと
すべての会話イベントの両方を生
成します。リソースフットプリン
トへの影響があるため、推奨され
ません。

metrics object Metrics は、メトリクスに関する
プロセッサー設定を定義します。

プロパティー 型 説明

第15章 FLOWCOLLECTOR API リファレンス

201

multiClusterDeployment boolean マルチクラスター機能を有効にす
るに
は、multiClusterDeployment
を true に設定します。これによ
り、clusterName ラベルがフ
ローデータに追加されます。

resources object resources は、このコンテナー
が必要とするコンピューティング
リソースです。詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

subnetLabels object subnetLabels を使用すると、
サブネットと IP にカスタムラベ
ルを定義したり、OpenShift
Container Platform で認識されて
いるサブネットの自動ラベル付け
を有効にしたりできます。自動ラ
ベル付けは、クラスターの外部ト
ラフィックを識別するために使用
されます。サブネットがフローの
送信元 IP または宛先 IP と一致す
る場合、対応するフィールド
SrcSubnetLabel または
DstSubnetLabel が追加されま
す。

プロパティー 型 説明

15.1.73. .spec.processor.advanced

説明

advanced を使用すると、フロープロセッサーの内部設定のいくつかの側面を設定できます。この
セクションは、GOGC や GOMAXPROCS 環境変数などのデバッグと詳細なパフォーマンスの最適
化を主な目的としています。これらの値はお客様の責任のもと設定してください。

型

object

プロパティー 型 説明

OpenShift Container Platform 4.18 Network Observability

202

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

conversationEndTimeout string conversationEndTimeout
は、ネットワークフローを受信し
た後、対話が終了したとみなされ
るまでの待機時間です。TCP フ
ローの FIN パケットが収集される
場合、この遅延は無視されます
(代わり
に、conversationTerminating
Timeout を使用します)。

conversationHeartbeatInterv
al

string conversationHeartbeatInterv
al は、対話の "tick" イベント間の
待機時間です。

conversationTerminatingTim
eout

string conversationTerminatingTim
eout、FIN フラグが検知されてか
ら対話が終了するまでの待機時間
です。TCP フローにのみ関連しま
す。

dropUnusedFields boolean dropUnusedFields [非推奨 (*)]
この設定は、現在使用されていま
せん。

enableKubeProbes boolean enableKubeProbes は、
Kubernetes の liveness および
readiness プローブを有効または
無効にするフラグです。

env object (string) env を使用すると、カスタム環境
変数を基礎となるコンポーネント
に渡すことができます。GOGC
や GOMAXPROCS など、非常
に具体的なパフォーマンスチュー
ニングオプションを渡すのに役立
ちます。これらのオプションは、
エッジのデバッグ時かサポートを
受ける場合にのみ有用なものであ
るため、FlowCollector 記述子の
一部として公開しないでくださ
い。

healthPort integer healthPort は、ヘルスチェック
API を公開する Pod のコレクター
HTTP ポートです。

プロパティー 型 説明

第15章 FLOWCOLLECTOR API リファレンス

203

port integer フローコレクターのポート (ホス
トポート)。慣例により、一部の
値は禁止されています。1024 よ
り大きい値とし、4500、4789、
6081 は使用できません。

profilePort integer profilePort を使用すると、この
ポートをリッスンする Go pprof
プロファイラーを設定できます

scheduling object scheduling は、Pod がノードでど
のようにスケジュールされるかを
制御します。

secondaryNetworks array リソース識別のためにチェックす
るセカンダリーネットワークを定
義します。正確な識別を確実に行
うために、インデックス値からク
ラスター全体で一意の識別子が形
成されるようにする必要がありま
す。同じインデックスが複数のリ
ソースで使用されている場合、そ
れらのリソースに誤ったラベルが
付けられる可能性があります。

プロパティー 型 説明

15.1.74. .spec.processor.advanced.scheduling

説明

scheduling は、Pod がノードでどのようにスケジュールされるかを制御します。

型

object

プロパティー 型 説明

affinity object 指定した場合、Pod のスケジュー
リング制約。ドキュメント
は、https://kubernetes.io/docs/r
eference/kubernetes-
api/workload-resources/pod-
v1/#scheduling を参照してくださ
い。

OpenShift Container Platform 4.18 Network Observability

204

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

nodeSelector object (string) nodeSelector を使用すると、指
定した各ラベルを持つノードにの
み Pod をスケジュールできます。
ドキュメント
は、https://kubernetes.io/docs/c
oncepts/configuration/assign-
pod-node/ を参照してください。

priorityClassName string 指定した場合、Pod の優先度を示
します。ドキュメント
は、https://kubernetes.io/docs/c
oncepts/scheduling-
eviction/pod-priority-
preemption/#how-to-use-
priority-and-preemption を参照し
てください。指定されていない場
合はデフォルトの優先度が使用さ
れ、デフォルトの優先度がない場
合は 0 が使用されます。

tolerations array tolerations は、一致する taint
を持つノードに Pod がスケジュー
ルできるようにする toleration の
リストです。ドキュメント
は、https://kubernetes.io/docs/r
eference/kubernetes-
api/workload-resources/pod-
v1/#scheduling を参照してくださ
い。

プロパティー 型 説明

15.1.75. .spec.processor.advanced.scheduling.affinity

説明

指定した場合、Pod のスケジューリング制約。ドキュメント
は、https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-
v1/#scheduling を参照してください。

型

object

15.1.76. .spec.processor.advanced.scheduling.tolerations

説明

tolerations は、一致する taint を持つノードに Pod がスケジュールできるようにする toleration の
リストです。ドキュメントは、https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-v1/#scheduling を参照してください。

型

array

第15章 FLOWCOLLECTOR API リファレンス

205

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

15.1.77. .spec.processor.advanced.secondaryNetworks

説明

リソース識別のためにチェックするセカンダリーネットワークを定義します。正確な識別を確実に
行うために、インデックス値からクラスター全体で一意の識別子が形成されるようにする必要があ
ります。同じインデックスが複数のリソースで使用されている場合、それらのリソースに誤ったラ
ベルが付けられる可能性があります。

型

array

15.1.78. .spec.processor.advanced.secondaryNetworks[]

説明

型

object

必須

index

name

プロパティー 型 説明

index array (string) index は、Pod のインデックス作
成に使用するフィールドのリスト
です。これらのフィールドから、
クラスター全体で一意の Pod 識別
子が形成されるようにする必要が
あります。MAC、IP、Interface
のいずれかを使用できます。
'k8s.v1.cni.cncf.io/network-status'
アノテーションに存在しない
フィールドは、インデックスに追
加しないでください。

name string name は、Pod のアノテーション
'k8s.v1.cni.cncf.io/network-status'
に表示されるネットワーク名と一
致する必要があります。

15.1.79. .spec.processor.deduper

説明

deduper を使用すると、重複として識別されたフローをサンプリングまたはドロップして、リソー
ス使用量を節約できます。

型

object

OpenShift Container Platform 4.18 Network Observability

206

プロパティー 型 説明

mode string プロセッサーの重複排除モードを
設定します。エージェントは別々
のノードから報告された同じフ
ローを重複排除できないため、こ
れはエージェントベースの重複排
除に加えて設定されます。

- Drop を使用して重複と見なさ
れるすべてのフローをドロップす
ると、リソース使用量をさらに節
約できますが、ピアから使用され
るネットワークインターフェイス
やネットワークイベントなどの一
部の情報が失われる可能性があり
ます。

- 重複と見なされる 50 (デフォル
ト) のフローのうち 1 つだけラン
ダムに保持するには、Sample を
使用します。これは、すべての重
複を排除する場合と、すべての重
複を保持する場合の中間です。こ
のサンプリングアクションは、
エージェントベースのサンプリン
グに加えて実行されます。エー
ジェントとプロセッサーの両方の
サンプリング値が 50 の場合、結
合されたサンプリングは 1:2500
になります。

- プロセッサーベースの重複排除
をオフにするには、Disabled を
使用します。

sampling integer sampling は、deduper の mode
が Sample の場合のサンプリン
グ間隔です。たとえば、値が 50
の場合、50 個中 1 個のフローがサ
ンプリングされます。

15.1.80. .spec.processor.filters

説明

filters を使用すると、生成されるフローの量を制限するカスタムフィルターを定義できます。これ
らのフィルターは、Kubernetes namespace によるフィルター処理などを含め、eBPF エージェント
フィルター (spec.agent.ebpf.flowFilter 内) よりも柔軟性が高くなりますが、パフォーマンスの向
上は少なくなります。

型

array

第15章 FLOWCOLLECTOR API リファレンス

207

15.1.81. .spec.processor.filters[]

説明

FLPFilterSet は、すべての条件を満たす FLP ベースのフィルタリングに必要な設定を定義します。

型

object

プロパティー 型 説明

outputTarget string 指定されている場合、これらの
フィルターのターゲットが、1 つ
の出力 (Loki、Metrics、または
Exporters) に設定されます。デ
フォルトでは、すべての出力が
ターゲットになります。

query string 保存するネットワークフローを選
択するクエリー。このクエリー言
語の詳細
は、https://github.com/netobser
v/flowlogs-
pipeline/blob/main/docs/filtering
.md を参照してください。

sampling integer sampling は、このフィルターに
適用するオプションのサンプリン
グ間隔です。たとえば、値が 50
の場合、50 個中 1 個のマッチした
フローがサンプリングされること
を意味します。

15.1.82. .spec.processor.kafkaConsumerAutoscaler

説明

kafkaConsumerAutoscaler は、Kafka メッセージを消費する flowlogs-pipeline-transformer を設
定する水平 Pod オートスケーラーの仕様です。Kafka が無効になっている場合、この設定は無視さ
れます。HorizontalPodAutoscaler のドキュメント (自動スケーリング/v2) を参照してください。

型

object

15.1.83. .spec.processor.metrics

説明

Metrics は、メトリクスに関するプロセッサー設定を定義します。

型

object

OpenShift Container Platform 4.18 Network Observability

208

https://github.com/netobserv/flowlogs-pipeline/blob/main/docs/filtering.md

プロパティー 型 説明

alerts array alerts は、Prometheus
AlertManager 用に作成されるア
ラートのリストであり、テンプ
レートとバリアントによって構成
されています [サポート対象外
(*)]。これは現在、フィーチャー
ゲートの制御下にある実験的な機
能です。有効にするに
は、spec.processor.advance
d.env を編集
し、EXPERIMENTAL_ALERT
S_HEALTH を true に設定して
追加します。アラートの詳細情報:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Alerts.
md

disableAlerts array (string) disableAlerts は、デフォルトの
アラートセットから無効にするア
ラートグループのリストです。指
定可能な値
は、NetObservNoFlows、Net
ObservLokiError、PacketDro
psByKernel、PacketDropsBy
Device、IPsecErrors、Netpol
Denied、LatencyHighTrend
、DNSErrors、ExternalEgres
sHighTrend、ExternalIngres
sHighTrend、CrossAZ です。
アラートの詳細情報:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Alerts.
md

第15章 FLOWCOLLECTOR API リファレンス

209

https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md
https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md

includeList array (string) includeList は、生成するメトリ
クスを指定するためのメトリクス
名のリストです。名前は、接頭辞
を除いた Prometheus の名前に対
応します。たとえ
ば、namespace_egress_pack
ets_total は、Prometheus では
netobserv_namespace_egre
ss_packets_total と表示されま
す。メトリクスを追加するほど、
Prometheus ワークロードリソー
スへの影響が大きくなることに注
意してください。デフォルトで有
効になっているメトリクス
は、namespace_flows_total
、node_ingress_bytes_total
、node_egress_bytes_total、
workload_ingress_bytes_tot
al、workload_egress_bytes_
total、namespace_drop_pac
kets_total (PacketDrop 機能が
有効な場
合)、namespace_rtt_seconds
(FlowRTT 機能が有効な場
合)、namespace_dns_latenc
y_seconds (DNSTracking 機
能が有効な場
合)、namespace_network_po
licy_events_total
(NetworkEvents 機能が有効な
場合) です。利用可能なメトリク
スの完全なリストを含む詳細情報
は、https://github.com/netobser
v/network-observability-
operator/blob/main/docs/Metric
s.md を参照してください。

server object Prometheus スクレイパーのメト
リクスサーバーエンドポイント設
定

プロパティー 型 説明

15.1.84. .spec.processor.metrics.alerts

説明

alerts は、Prometheus AlertManager 用に作成されるアラートのリストであり、テンプレートとバ
リアントによって構成されています [サポート対象外 (*)]。これは現在、フィーチャーゲートの制御
下にある実験的な機能です。有効にするには、spec.processor.advanced.env を編集
し、EXPERIMENTAL_ALERTS_HEALTH を true に設定して追加します。アラートの詳細情報:
https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md

OpenShift Container Platform 4.18 Network Observability

210

https://github.com/netobserv/network-observability-operator/blob/main/docs/Metrics.md
https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md

型

array

15.1.85. .spec.processor.metrics.alerts[]

説明

型

object

必須

template

variants

プロパティー 型 説明

template string アラートテンプレート名。指定可
能な値
は、PacketDropsByKernel、P
acketDropsByDevice、IPsec
Errors、NetpolDenied、Late
ncyHighTrend、DNSErrors、
ExternalEgressHighTrend、E
xternalIngressHighTrend、Cr
ossAZ です。アラートの詳細情
報:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Alerts.
md

variants array このテンプレートのバリアンとの
リスト

15.1.86. .spec.processor.metrics.alerts[].variants

説明

このテンプレートのバリアントのリスト

型

array

15.1.87. .spec.processor.metrics.alerts[].variants[]

説明

型

object

必須

第15章 FLOWCOLLECTOR API リファレンス

211

https://github.com/netobserv/network-observability-operator/blob/main/docs/Alerts.md

thresholds

プロパティー 型 説明

groupBy string オプションのグループ化基準。指
定可能な値
は、Node、Namespace、Wor
kload です。

lowVolumeThreshold string 低ボリュームしきい値を使用する
と、S/N 比を改善するために、ト
ラフィック量が少なすぎるメトリ
クスを無視できます。これは絶対
レート (コンテキストに応じて、1
秒あたりのバイト数または 1 秒あ
たりのパケット数) の形で指定し
ます。指定した場合、浮動小数点
数として解析可能である必要があ
ります。

thresholds object 重大度別のアラートのしきい値。
これらの値は、アラートがトリ
ガーされる基準となるエラーの
パーセンテージとして表されま
す。浮動小数点数として解析可能
である必要があります。

trendDuration string トレンドアラートで、ベースライ
ン比較に使用される期間。たとえ
ば、"2h" は 2 時間の平均と比較す
ることを意味します。デフォルト
は 2h です。

trendOffset string トレンドアラートで、ベースライ
ン比較に使用されるオフセット時
間。たとえば、"1d" は昨日と比較
することを意味します。デフォル
トは 1d です。

15.1.88. .spec.processor.metrics.alerts[].variants[].thresholds

説明

重大度別のアラートのしきい値。これらの値は、アラートがトリガーされる基準となるエラーの
パーセンテージとして表されます。浮動小数点数として解析可能である必要があります。

型

object

OpenShift Container Platform 4.18 Network Observability

212

プロパティー 型 説明

重大 string 重大度 critical のしきい値。重大
なアラートを生成しない場合は空
のままにします。

info string 重大度 info のしきい値。情報提
供アラートを生成しない場合は空
白のままにします。

警告 string 重大度 warning のしきい値。警
告アラートを生成しない場合は空
のままにします。

15.1.89. .spec.processor.metrics.server

説明

Prometheus スクレイパーのメトリクスサーバーエンドポイント設定

型

object

プロパティー 型 説明

port integer メトリクスサーバーの HTTP ポー
ト。

tls object TLS 設定。

15.1.90. .spec.processor.metrics.server.tls

説明

TLS 設定。

型

object

必須

type

プロパティー 型 説明

第15章 FLOWCOLLECTOR API リファレンス

213

insecureSkipVerify boolean insecureSkipVerify を使用する
と、提供された証明書に対するク
ライアント側の検証をスキップで
きます。true に設定する
と、providedCaFile フィールド
が無視されます。

provided object type が Provided に設定されて
いる場合の TLS 設定。

providedCaFile object type が Provided に設定されて
いる場合の CA ファイルへの参
照。

type string TLS 設定のタイプを選択します。

- Disabled (デフォルト) は、エ
ンドポイントに TLS を設定しま
せん。- Provided は、証明書
ファイルとキーファイルを手動で
指定します [サポート対象外
(*)]。- Auto は、アノテーション
を使用して OpenShift Container
Platform の自動生成証明書を使用
します。

プロパティー 型 説明

15.1.91. .spec.processor.metrics.server.tls.provided

説明

type が Provided に設定されている場合の TLS 設定。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

OpenShift Container Platform 4.18 Network Observability

214

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

プロパティー 型 説明

15.1.92. .spec.processor.metrics.server.tls.providedCaFile

説明

type が Provided に設定されている場合の CA ファイルへの参照。

型

object

プロパティー 型 説明

file string config map またはシークレット内
のファイル名。

name string ファイルを含む config map また
はシークレットの名前。

namespace string ファイルを含む config map また
はシークレットの namespace。
省略した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string ファイル参照のタイプ
(configmap または secret)。

15.1.93. .spec.processor.resources

説明

resources は、このコンテナーが必要とするコンピューティングリソースです。詳細

第15章 FLOWCOLLECTOR API リファレンス

215

resources は、このコンテナーが必要とするコンピューティングリソースです。詳細
は、https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/ を参照し
てください。

型

object

プロパティー 型 説明

limits integer-or-string limits は、許可されるコンピュー
トリソースの最大量を示します。
詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

requests integer-or-string requests は、必要なコンピュート
リソースの最小量を示します。コ
ンテナーで Requests が省略され
る場合、明示的に指定される場合
にデフォルトで Limits に設定され
ます。指定しない場合は、実装定
義の値に設定されます。リクエス
トは制限を超えることはできませ
ん。詳細
は、https://kubernetes.io/docs/c
oncepts/configuration/manage-
resources-containers/ を参照して
ください。

15.1.94. .spec.processor.subnetLabels

説明

subnetLabels を使用すると、サブネットと IP にカスタムラベルを定義したり、OpenShift
Container Platform で認識されているサブネットの自動ラベル付けを有効にしたりできます。自動
ラベル付けは、クラスターの外部トラフィックを識別するために使用されます。サブネットがフ
ローの送信元 IP または宛先 IP と一致する場合、対応するフィールド SrcSubnetLabel または
DstSubnetLabel が追加されます。

型

object

プロパティー 型 説明

OpenShift Container Platform 4.18 Network Observability

216

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

customLabels array customLabels を使用すると、
クラスター外部のワークロードや
Web サービスの識別などのため
に、サブネットと IP のラベル付
けをカスタマイズできま
す。openShiftAutoDetect を有
効にすると、検出されたサブネッ
トがオーバーラップしている場合
に、customLabels がそのサブ
ネットをオーバーライドできま
す。

openShiftAutoDetect boolean openShiftAutoDetect を true
に設定すると、OpenShift
Container Platform のインストー
ル設定と Cluster Network
Operator の設定に基づいて、マ
シン、Pod、およびサービスのサ
ブネットを自動的に検出できま
す。これは間接的に外部トラ
フィックを正確に検出する方法で
す。つまり、これらのサブネット
のラベルが付いていないフロー
は、クラスターの外部のもので
す。OpenShift Container
Platform ではデフォルトで有効に
なっています。

プロパティー 型 説明

15.1.95. .spec.processor.subnetLabels.customLabels

説明

customLabels を使用すると、クラスター外部のワークロードや Web サービスの識別などのため
に、サブネットと IP のラベル付けをカスタマイズできます。openShiftAutoDetect を有効にする
と、検出されたサブネットがオーバーラップしている場合に、customLabels がそのサブネットを
オーバーライドできます。

型

array

15.1.96. .spec.processor.subnetLabels.customLabels[]

説明

SubnetLabel を使用すると、クラスター外部のワークロードや Web サービスの識別などのために、
サブネットと IP にラベルを付けることができます。

型

object

必須

cidrs

第15章 FLOWCOLLECTOR API リファレンス

217

name

プロパティー 型 説明

cidrs array (string) ["1.2.3.4/32"] などの CIDR のリ
スト。

name string マッチしたフローにフラグを設定
するために使用するラベル名。

15.1.97. .spec.prometheus

説明

prometheus は、コンソールプラグインからメトリクスを取得するために使用されるクエリー設定
などの Prometheus 設定を定義します。

型

object

プロパティー 型 説明

querier object コンソールプラグインで使用され
る、クライアント設定などの
Prometheus クエリー設定。

15.1.98. .spec.prometheus.querier

説明

コンソールプラグインで使用される、クライアント設定などの Prometheus クエリー設定。

型

object

必須

mode

プロパティー 型 説明

OpenShift Container Platform 4.18 Network Observability

218

enable boolean enable が true の場合、コンソー
ルプラグインは、可能な場合は常
に、Loki ではなく Prometheus か
らフローメトリクスをクエリーし
ます。デフォルトでは有効になっ
ています。この機能を無効にする
には false に設定します。コン
ソールプラグインは、メトリクス
のデータソースとして Loki また
は Prometheus、またはその両方
を使用できます (spec.loki も参
照してください)。すべてのクエ
リーを Loki から Prometheus に転
送できるわけではありません。し
たがって、Loki が無効になってい
る場合、Pod ごとの情報の取得や
raw フローの表示など、プラグイ
ンの一部の機能も無効になりま
す。Prometheus と Loki の両方が
有効になっている場合は、
Prometheus が優先され、
Prometheus が処理できないクエ
リーのフォールバックとして Loki
が使用されます。両方とも無効に
なっている場合、コンソールプラ
グインはデプロイされません。

manual object Manual モードの Prometheus 設
定。

mode string mode は、Network Observability
メトリクスを保存する
Prometheus インストールのタイ
プに応じて設定する必要がありま
す。

- 自動設定を試行するには、Auto
を使用します。OpenShift
Container Platform では、
OpenShift Container Platform ク
ラスターモニタリングの Thanos
クエリーを使用します。

- 手動設定の場合は、Manual を
使用します。

timeout string timeout は、Prometheus へのコ
ンソールプラグインクエリーの読
み取りタイムアウトです。タイム
アウトがゼロの場合は、タイムア
ウトしません。

プロパティー 型 説明

第15章 FLOWCOLLECTOR API リファレンス

219

プロパティー 型 説明

15.1.99. .spec.prometheus.querier.manual

説明

Manual モードの Prometheus 設定。

型

object

プロパティー 型 説明

forwardUserToken boolean ログインしたユーザートークンを
クエリーで Prometheus に転送す
るには、true に設定します。

tls object Prometheus URL の TLS クライア
ント設定。

url string url は、メトリクスのクエリーに
使用する既存の Prometheus サー
ビスのアドレスです。

15.1.100. .spec.prometheus.querier.manual.tls

説明

Prometheus URL の TLS クライアント設定。

型

object

プロパティー 型 説明

caCert object caCert は、認証局の証明書の参
照を定義します。

enable boolean TLS を有効にします。

OpenShift Container Platform 4.18 Network Observability

220

insecureSkipVerify boolean insecureSkipVerify を使用する
と、サーバー証明書のクライアン
ト側の検証をスキップできま
す。true に設定すると、caCert
フィールドが無視されます。

userCert object userCert は、ユーザー証明書の
参照を定義し、mTLS に使用され
ます。一方向 TLS を使用する場
合は、このプロパティーを無視で
きます。

プロパティー 型 説明

15.1.101. .spec.prometheus.querier.manual.tls.caCert

説明

caCert は、認証局の証明書の参照を定義します。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

第15章 FLOWCOLLECTOR API リファレンス

221

15.1.102. .spec.prometheus.querier.manual.tls.userCert

説明

userCert は、ユーザー証明書の参照を定義し、mTLS に使用されます。一方向 TLS を使用する場合
は、このプロパティーを無視できます。

型

object

プロパティー 型 説明

certFile string certFile は、config map または
シークレット内の証明書ファイル
名へのパスを定義します。

certKey string certKey は、config map または
シークレット内の証明書秘密鍵
ファイル名へのパスを定義しま
す。キーが不要な場合は省略しま
す。

name string 証明書を含む config map または
シークレットの名前。

namespace string 証明書を含む config map または
シークレットの namespace省略
した場合、デフォルトでは、
Network Observability がデプロイ
されているのと同じ namespace
が使用されます。namespace が
異なる場合は、必要に応じてマウ
ントできるように、config map ま
たはシークレットがコピーされま
す。

type string 証明書参照のタイプ (configmap
または secret)。

OpenShift Container Platform 4.18 Network Observability

222

第16章 FLOWMETRIC 設定パラメーター
FlowMetric API は、収集されたネットワークフローログからカスタムの可観測性メトリクスを生成する
ために使用されます。

16.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHA1]

説明

FlowMetric は、収集されたフローログからカスタムメトリクスを作成することを可能にする API で
す。

型

object

プロパティー 型 説明

apiVersion string APIVersion はオブジェクトのこの
表現のバージョンスキーマを定義
します。サーバーは認識されたス
キーマを最新の内部値に変換し、
認識されない値は拒否することが
あります。詳細
は、https://git.k8s.io/community
/contributors/devel/sig-
architecture/api-
conventions.md#resources を参
照してください。

kind string kind はこのオブジェクトが表す
REST リソースを表す文字列の値
です。サーバーは、クライアント
が要求を送信するエンドポイント
からこれを推測できることがあり
ます。これを更新することはでき
ません。CamelCase を使用しま
す。詳細:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#types-kinds

metadata object 標準オブジェクトのメタデータ。
詳細:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#metadata

第16章 FLOWMETRIC 設定パラメーター

223

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

spec object FlowMetricSpec は、FlowMetric
の目的の状態を定義します。提供
されている API を使用すると、
ニーズに応じてこれらのメトリク
スをカスタマイズできます。

新しいメトリクスを追加したり、
既存のラベルを変更したりする場
合は、大きな影響を与える可能性
があります。そのため、
Prometheus ワークロードのメモ
リー使用量を注意深く監視する必
要があります。https://rhobs-
handbook.netlify.app/products/o
penshiftmonitoring/telemetry.md
/#what-is-the-cardinality-of-a-
metric
を参照してください。

すべての Network Observability
メトリクスのカーディナリティー
を確認するには、promql:
count({name=~"netobserv.*"
}) by (name) を実行します。

プロパティー 型 説明

16.1.1. .metadata

説明

標準オブジェクトのメタデータ。詳細は、https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata を参照してください。

型

object

16.1.2. .spec

説明

FlowMetricSpec は、FlowMetric の目的の状態を定義します。提供されている API を使用すると、
ニーズに応じてこれらのメトリクスをカスタマイズできます。
新しいメトリクスを追加したり、既存のラベルを変更したりする場合は、大きな影響を与える可能
性があります。そのため、Prometheus ワークロードのメモリー使用量を注意深く監視する必要があ
ります。https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-
is-the-cardinality-of-a-metric
を参照してください。

すべての Network Observability メトリクスのカーディナリティーを確認するには、promql:
count({name=~"netobserv.*"}) by (name) を実行します。

型

object

OpenShift Container Platform 4.18 Network Observability

224

https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric

必須

type

プロパティー 型 説明

buckets array (string) type が "Histogram" の場合に使
用するバケットのリスト。このリ
ストは、浮動小数点数として解析
可能である必要があります。設定
されていない場合は、
Prometheus のデフォルトのバ
ケットが使用されます。

charts array 管理者ビューの Dashboards メ
ニューにある OpenShift
Container Platform コンソールの
チャート設定。

direction string Ingress、Egress、または任意の方
向のフローをフィルタリングしま
す。Ingress に設定する
と、FlowDirection に正規表現
フィルター 0|2 を追加した場合と
同じになります。Egress に設定
すると、FlowDirection に正規
表現フィルター 1|2 を追加した場
合と同じになります。

divider string ゼロ以外の場合、値の換算係数
(除数)。メトリクス値 = フロー
値/除数。

filters array filters は、考慮されるフローを制
限するために使用するフィールド
と値のリストです。使用可能な
フィールドのリストは、ドキュメ
ント
https://docs.redhat.com/en/docu
mentation/openshift_container_pl
atform/latest/html/network_obse
rvability/json-flows-format-
reference を参照してください。

第16章 FLOWMETRIC 設定パラメーター

225

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-flows-format-reference

flatten array (string) flatten は、Interfaces や
NetworkEvents など、フラット化
する必要がある配列型フィールド
のリストです。フラット化された
フィールドでは、そのフィールド
内の項目ごとに 1 つのメトリクス
が生成されます。たとえば、バイ
トカウンターで Interfaces をフ
ラット化すると、Interfaces [br-
ex, ens5] を持つフローでは br-ex
のカウンターと ens5 のカウン
ターが 1 つずつ増加します。

labels array (string) labels は、Prometheus ラベル
(ディメンションとも呼ばれます)
として使用するフィールドのリス
トです (例:
SrcK8S_Namespace)。ラベル
を選択すると、このメトリクスの
粒度レベルと、クエリー時に使用
可能な集計が決定されます。これ
は、メトリクスのカーディナリ
ティーに影響するため、慎重に行
う必要があります (https://rhobs-
handbook.netlify.app/products/o
penshiftmonitoring/telemetry.md
/#what-is-the-cardinality-of-a-
metric を参照)。一般に、IP アド
レスや MAC アドレスなど、カー
ディナリティーが非常に高いラベ
ルを設定することは避けてくださ
い。可能な限り、
"SrcK8S_OwnerName" または
"DstK8S_OwnerName" を、
"SrcK8S_Name" または
"DstK8S_Name" よりも優先して
ください。使用可能なフィールド
のリストは、ドキュメント
https://docs.redhat.com/en/docu
mentation/openshift_container_pl
atform/latest/html/network_obse
rvability/json-flows-format-
reference を参照してください。

metricName string メトリクスの名前。Prometheus
では、自動的に "netobserv_" とい
う接頭辞が付けられま
す。FlowMetric リソース名に基
づいて名前を生成するには、空の
ままにします。

プロパティー 型 説明

OpenShift Container Platform 4.18 Network Observability

226

https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-flows-format-reference

remap object (string) 生成されるメトリクスラベルにフ
ローフィールドとは異なる名前を
使用するには、remap プロパ
ティーを設定します。元のフロー
フィールドをキーとして使用し、
目的のラベル名を値として使用し
ます。

type string メトリクスタイプ: "Counter"、
"Histogram"、または"Gauge"。
"Counter" は、バイト数やパケッ
ト数など、時間の経過とともに増
加し、レートを計算できる値に使
用します。"Histogram" は、遅延
など、個別にサンプリングする必
要がある値に使用します。
"Gauge" は、経時的な正確さが必
要がないその他の値に使用します
(ゲージは、Prometheus がメトリ
クスを取得するときに N 秒ごとに
のみサンプリングされます)。

valueField string valueField は、このメトリクス
の値として使用する必要のあるフ
ローフィールドです (例:
Bytes)。このフィールドには数
値を入力する必要があります。フ
ロー数をカウントするには、フ
ローごとに特定の値を指定するの
ではなく、空のままにします。使
用可能なフィールドのリストは、
ドキュメント
https://docs.redhat.com/en/docu
mentation/openshift_container_pl
atform/latest/html/network_obse
rvability/json-flows-format-
reference を参照してください。

プロパティー 型 説明

16.1.3. .spec.charts

説明

管理者ビューの Dashboards メニューにある OpenShift Container Platform コンソールのチャート設
定。

型

array

16.1.4. .spec.charts[]

説明

第16章 FLOWMETRIC 設定パラメーター

227

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-flows-format-reference

メトリクスに関連するグラフ/ダッシュボード生成を設定します。

型

object

必須

dashboardName

queries

title

type

プロパティー 型 説明

dashboardName string 配置先のダッシュボードの名前。
この名前が既存のダッシュボード
を示すものでない場合は、新しい
ダッシュボードが作成されます。

queries array このグラフに表示するクエリーの
リスト。type が SingleStat
で、複数のクエリーが指定されて
いる場合、このグラフは複数のパ
ネル (クエリーごとに 1 つ) に自動
的に展開されます。

sectionName string 配置先のダッシュボードセクショ
ンの名前。この名前が既存のセク
ションを示すものでない場合は、
新しいセクションが作成されま
す。sectionName が省略されて
いるか空の場合、グラフはグロー
バルトップセクションに配置され
ます。

title string グラフのタイトル。

type string グラフの種類。

unit string このグラフの単位。現在サポート
されている単位はごく少数です。
一般的な数字を使用する場合は空
白のままにします。

16.1.5. .spec.charts[].queries

説明

このグラフに表示するクエリーのリスト。type が SingleStat で、複数のクエリーが指定されている
場合、このグラフは複数のパネル (クエリーごとに 1 つ) に自動的に展開されます。

OpenShift Container Platform 4.18 Network Observability

228

型

array

16.1.6. .spec.charts[].queries[]

説明

PromQL クエリーを設定します。

型

object

必須

legend

promQL

top

プロパティー 型 説明

legend string このグラフに表示する各時系列に
適用するクエリーの凡例。複数の
時系列を表示する場合は、それぞ
れを区別する凡例を設定する必要
があります。これは {{ Label }}
という形式で設定できます。たと
えば、promQL でラベルごとに
時系列をグループ化する場合 (例:
sum(rate($METRIC[2m])) by
(Label1, Label2))、凡例として
Label1={{ Label1 }}, Label2=
{{ Label2 }} と記述します。

promQL string Prometheus に対して実行する
promQL クエリー。グラフの
type が SingleStat の場合、こ
のクエリーは単一の時系列のみを
返します。その他のタイプの場
合、上位 7 つが表示されます。こ
のリソースで定義されたメトリク
スを参照するには、$METRIC を
使用できます。たとえ
ば、sum(rate($METRIC[2m]))
です。promQL の詳細は、
Prometheus のドキュメント
https://prometheus.io/docs/pro
metheus/latest/querying/basics/
を参照してください。

第16章 FLOWMETRIC 設定パラメーター

229

https://prometheus.io/docs/prometheus/latest/querying/basics/

top integer タイムスタンプごとに表示する上
位 N 個の系列。SingleStat グラ
フタイプには適用されません。

プロパティー 型 説明

16.1.7. .spec.filters

説明

filters は、考慮されるフローを制限するために使用するフィールドと値のリストです。使用可能な
フィールドのリストは、ドキュメント
https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-
flows-format-reference を参照してください。

型

array

16.1.8. .spec.filters[]

説明

型

object

必須

field

matchType

プロパティー 型 説明

field string フィルタリングするフィールドの
名前 (例:
SrcK8S_Namespace)。

matchType string 適用するマッチングのタイプ

value string フィルタリングする
値。matchType が Equal また
は NotEqual の場
合、$(SomeField) を使用した
フィールドインジェクションを使
用して、フロー内の他のフィール
ドを参照できます。

OpenShift Container Platform 4.18 Network Observability

230

https://docs.redhat.com/en/documentation/openshift_container_platform/latest/html/network_observability/json-flows-format-reference

第17章 ネットワークフロー形式のリファレンス
ネットワークフロー形式の仕様をご確認ください。この仕様は、フローデータを Kafka にエクスポート
するために内部的に使用されます。

17.1. ネットワークフロー形式のリファレンス

これはネットワークフロー形式の仕様です。この形式は、Prometheus メトリクスラベルに、および内
部で Loki ストアに Kafka エクスポーターが設定されているときに使用されます。

"フィルター ID" 列は、クイックフィルターを定義するときに使用する関連名を示します
(FlowCollector 仕様の spec.consolePlugin.quickFilters を参照)。

"Loki ラベル" 列は、Loki に直接クエリーを実行する場合に役立ちます。ラベルフィールドは、stream
selectors を使用して選択する必要があります。

"カーディナリティー" 列は、このフィールドが FlowMetrics API で Prometheus ラベルとして使用され
る場合の暗黙のメトリクスカーディナリティーに関する情報を示します。この API の使用に関する詳細
は、FlowMetrics のドキュメントを参照してください。

名前 型 説明 フィル
ター ID

Loki ラ
ベル

カーディ
ナリ
ティー

OpenTel
emetry

Bytes number バイト数 該当な
し

いいえ avoid bytes

DnsErr
no

number DNS トラッカーの ebpf フック関
数から返されたエラー番号

dns_er
rno

いいえ fine dns.errn
o

DnsFla
gs

number DNS レコードの DNS フラグ 該当な
し

いいえ fine dns.flag
s

DnsFla
gsResp
onseCo
de

string 解析された DNS ヘッダーの
RCODEs 名

dns_fla
g_resp
onse_c
ode

いいえ fine dns.resp
onsecod
e

DnsId number DNS レコード id dns_id いいえ avoid dns.id

DnsLat
encyMs

number DNS リクエストとレスポンスの間
の時間 (ミリ秒単位)

dns_lat
ency

いいえ avoid dns.late
ncy

Dscp number Differentiated Services Code
Point (DSCP) の値

dscp いいえ fine dscp

DstAdd
r

string 宛先 IP アドレス (ipv4 または
ipv6)

dst_ad
dress

いいえ avoid destinati
on.addre
ss

第17章 ネットワークフロー形式のリファレンス

231

https://grafana.com/docs/loki/latest/logql/log_queries/#log-stream-selector

DstK8S
_HostI
P

string 送信先ノード IP dst_ho
st_add
ress

いいえ fine destinati
on.k8s.h
ost.addr
ess

DstK8S
_HostN
ame

string 送信先ノード名 dst_ho
st_nam
e

いいえ fine destinati
on.k8s.h
ost.nam
e

DstK8S
_Name

string 宛先 Kubernetes オブジェクトの
名前 (Pod 名、Service 名、Node
名など)。

dst_na
me

いいえ careful destinati
on.k8s.n
ame

DstK8S
_Name
space

string 宛先 namespace dst_na
mespa
ce

はい fine destinati
on.k8s.n
amespa
ce.name

DstK8S
_Netwo
rkName

string 宛先ネットワーク名 dst_net
work

いいえ fine 該当な
し

DstK8S
_Owner
Name

string 宛先所有者の名前 (Deployment
名、StatefulSet 名など)。

dst_ow
ner_na
me

はい fine destinati
on.k8s.o
wner.na
me

DstK8S
_Owner
Type

string 宛先所有者の種類 (Deployment、
StatefulSet など)。

dst_kin
d

いいえ fine destinati
on.k8s.o
wner.kin
d

DstK8S
_Type

string 宛先 Kubernetes オブジェクトの
種類 (Pod、Service、Node な
ど)。

dst_kin
d

はい fine destinati
on.k8s.ki
nd

DstK8S
_Zone

string 宛先アベイラビリティーゾーン dst_zo
ne

はい fine destinati
on.zone

DstMac string 宛先 MAC アドレス dst_ma
c

いいえ avoid destinati
on.mac

DstPort number 送信先ポート dst_po
rt

いいえ careful destinati
on.port

名前 型 説明 フィル
ター ID

Loki ラ
ベル

カーディ
ナリ
ティー

OpenTel
emetry

OpenShift Container Platform 4.18 Network Observability

232

DstSub
netLab
el

string 宛先サブネットラベル dst_su
bnet_la
bel

いいえ fine destinati
on.subn
et.label

フラグ string[] RFC-9293 に基づく、フローに含
まれる TCP フラグのリスト。パ
ケットごとの組み合わせ (
- SYN_ACK
- FIN_ACK
- RST_ACK) を表す追加のカスタ
ムフラグが含まれます。

tcp_fla
gs

いいえ careful tcp.flags

FlowDir
ection

number ノード観測点から解釈されたフ
ローの方向。次のいずれかになり
ます。
- 0: Ingress (ノード観測点からの
受信トラフィック)
- 1: Egress (ノード観測点からの送
信トラフィック)
- 2: Inner (送信元ノードと宛先
ノードが同じ)

node_d
irectio
n

はい fine host.dire
ction

IPSecSt
atus

string IPsec 暗号化のステータス (Egress
時、カーネルの xfrm_output 関数
によって指定) または復号化のス
テータス (Ingress 時、xfrm_input
経由)

ipsec_
status

いいえ fine 該当な
し

IcmpCo
de

number ICMP コード icmp_c
ode

いいえ fine icmp.co
de

IcmpTy
pe

number ICMP のタイプ icmp_t
ype

いいえ fine icmp.typ
e

IfDirect
ions

number[
]

ネットワークインターフェイス観
測点からのフローの方向。次のい
ずれかになります。
- 0: Ingress (インターフェイスの
受信トラフィック)
- 1: Egress (インターフェイスの送
信トラフィック)

ifdirect
ions

いいえ fine interfac
e.directi
ons

Interfac
es

string[] ネットワークインターフェイス interfa
ces

いいえ careful interfac
e.names

名前 型 説明 フィル
ター ID

Loki ラ
ベル

カーディ
ナリ
ティー

OpenTel
emetry

第17章 ネットワークフロー形式のリファレンス

233

K8S_Cl
usterN
ame

string クラスター名またはクラスター識
別子

cluster
_name

はい fine k8s.clust
er.name

K8S_Fl
owLaye
r

string フローのレイヤー: 'app' または
'infra'

flow_la
yer

はい fine k8s.layer

Networ
kEvent
s

object[] ネストされたフィールドで構成さ
れるネットワークポリシーアク
ションなどのネットワークイベン
ト:
- 機能 (ネットワークポリシーの
"acl" など)
- タイプ ("AdminNetworkPolicy"
など)
- namespace (存在する場合はイ
ベントが適用される namespace)
- 名前 (イベントをトリガーしたリ
ソースの名前)
- アクション ("allow" や "drop" な
ど)
- 方向 (Ingress または Egress)

networ
k_even
ts

いいえ avoid 該当な
し

Packet
s

number パケット数 該当な
し

いいえ avoid packets

PktDro
pBytes

number カーネルによってドロップされた
バイト数

該当な
し

いいえ avoid drops.by
tes

PktDro
pLatest
DropCa
use

string 最新のドロップの原因 pkt_dr
op_cau
se

いいえ fine drops.lat
estcaus
e

PktDro
pLatest
Flags

number 最後にドロップされたパケットの
TCP フラグ

該当な
し

いいえ fine drops.lat
estflags

PktDro
pLatest
State

string 最後にドロップされたパケットの
TCP 状態

pkt_dr
op_stat
e

いいえ fine drops.lat
eststate

名前 型 説明 フィル
ター ID

Loki ラ
ベル

カーディ
ナリ
ティー

OpenTel
emetry

OpenShift Container Platform 4.18 Network Observability

234

PktDro
pPacke
ts

number カーネルによってドロップされた
パケットの数

該当な
し

いいえ avoid drops.pa
ckets

Proto number L4 プロトコル protoc
ol

いいえ fine protocol

Sampli
ng

number このフローで使用されるサンプリ
ング間隔

該当な
し

いいえ fine 該当な
し

SrcAdd
r

string 送信元 IP アドレス (ipv4 または
ipv6)

src_ad
dress

いいえ avoid source.a
ddress

SrcK8S
_HostI
P

string 送信元ノード IP src_ho
st_add
ress

いいえ fine source.k
8s.host.
address

SrcK8S
_HostN
ame

string 送信元ノード名 src_ho
st_nam
e

いいえ fine source.k
8s.host.
name

SrcK8S
_Name

string 送信元 Kubernetes オブジェクト
の名前 (Pod 名、サービス名、
ノード名など)

src_na
me

いいえ careful source.k
8s.name

SrcK8S
_Name
space

string 送信元 namespace src_na
mespa
ce

はい fine source.k
8s.name
space.na
me

SrcK8S
_Netwo
rkName

string 送信元ネットワーク名 src_net
work

いいえ fine 該当な
し

SrcK8S
_Owner
Name

string 送信元所有者の名前 (Deployment
名、StatefulSet 名など)。

src_ow
ner_na
me

はい fine source.k
8s.owne
r.name

SrcK8S
_Owner
Type

string 送信元所有者の種類
(Deployment、StatefulSet な
ど)。

src_kin
d

いいえ fine source.k
8s.owne
r.kind

名前 型 説明 フィル
ター ID

Loki ラ
ベル

カーディ
ナリ
ティー

OpenTel
emetry

第17章 ネットワークフロー形式のリファレンス

235

SrcK8S
_Type

string 送信元 Kubernetes オブジェクト
の種類 (Pod、Service、Node な
ど)。

src_kin
d

はい fine source.k
8s.kind

SrcK8S
_Zone

string 送信元アベイラビリティーゾーン src_zo
ne

はい fine source.z
one

SrcMac string 送信元 MAC アドレス src_ma
c

いいえ avoid source.
mac

SrcPort number 送信元ポート src_po
rt

いいえ careful source.p
ort

SrcSub
netLab
el

string 送信元サブネットラベル src_su
bnet_la
bel

いいえ fine source.s
ubnet.la
bel

TimeFl
owEnd
Ms

number このフローの終了タイムスタンプ
(ミリ秒単位)

該当な
し

いいえ avoid timeflow
end

TimeFl
owRttN
s

number TCP の平滑化されたラウンドト
リップタイム (SRTT) (ナノ秒単
位)

time_fl
ow_rtt

いいえ avoid tcp.rtt

TimeFl
owStart
Ms

number このフローの開始タイムスタンプ
(ミリ秒単位)

該当な
し

いいえ avoid timeflow
start

TimeRe
ceived

number このフローがフローコレクターに
よって受信および処理されたとき
のタイムスタンプ (秒単位)

該当な
し

いいえ avoid timerec
eived

Udns string[] ユーザー定義ネットワークのリス
ト

udns いいえ careful 該当な
し

XlatDst
Addr

string パケット変換の送信先アドレス xlat_ds
t_addr
ess

いいえ avoid 該当な
し

XlatDst
Port

number パケット変換の送信先ポート xlat_ds
t_port

いいえ careful 該当な
し

名前 型 説明 フィル
ター ID

Loki ラ
ベル

カーディ
ナリ
ティー

OpenTel
emetry

OpenShift Container Platform 4.18 Network Observability

236

XlatSrc
Addr

string パケット変換の送信元アドレス xlat_sr
c_addr
ess

いいえ avoid 該当な
し

XlatSrc
Port

number パケット変換の送信元ポート xlat_sr
c_port

いいえ careful 該当な
し

ZoneId number パケット変換のゾーン ID xlat_zo
ne_id

いいえ avoid 該当な
し

_HashI
d

string 会話追跡では、会話識別子 id いいえ avoid 該当な
し

_Recor
dType

string レコードの種類: 通常のフローロ
グの場合は flowLog、会話追跡
の場合は
newConnection、heartbeat、
endConnection

type はい fine 該当な
し

名前 型 説明 フィル
ター ID

Loki ラ
ベル

カーディ
ナリ
ティー

OpenTel
emetry

第17章 ネットワークフロー形式のリファレンス

237

第18章 NETWORK OBSERVABILITY のトラブルシューティング
Network Observability Operator とそのコンポーネントに関連する一般的な問題をトラブルシューティ
ングするための診断アクションを実行します。

18.1. MUST-GATHER ツールの使用

must-gather ツールを使用すると、Network Observability Operator リソースとクラスター全体のリ
ソース (Pod ログ、FlowCollector、webhook 設定など) に関する情報を収集できます。

手順

1. must-gather データを保存するディレクトリーに移動します。

2. 次のコマンドを実行して、クラスター全体の must-gather リソースを収集します。

18.2. OPENSHIFT CONTAINER PLATFORM コンソールでのネットワーク
トラフィックメニューエントリーの設定

OpenShift Container Platform コンソールの Observe メニューにネットワークトラフィックのメニュー
エントリーがリストされていない場合は、OpenShift Container Platform コンソールでネットワークト
ラフィックのメニューエントリーを手動で設定します。

前提条件

OpenShift Container Platform バージョン 4.10 以降がインストールされている。

手順

1. 次のコマンドを実行して、spec.consolePlugin.register フィールドが true に設定されている
かどうかを確認します。

出力例

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 consolePlugin:
 register: false

2. オプション: Console Operator 設定を手動で編集して、netobserv-plugin プラグインを追加し
ます。

$ oc adm must-gather
 --image-stream=openshift/must-gather \
 --image=quay.io/netobserv/must-gather

$ oc -n netobserv get flowcollector cluster -o yaml

$ oc edit console.operator.openshift.io cluster

OpenShift Container Platform 4.18 Network Observability

238

出力例

...
spec:
 plugins:
 - netobserv-plugin
...

3. オプション: 次のコマンドを実行して、spec.consolePlugin.register フィールドを true に設定
します。

出力例

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 consolePlugin:
 register: true

4. 次のコマンドを実行して、コンソール Pod のステータスが running であることを確認します。

5. 次のコマンドを実行して、コンソール Pod を再起動します。

6. ブラウザーのキャッシュと履歴をクリアします。

7. 次のコマンドを実行して、Network Observability プラグイン Pod のステータスを確認します。

出力例

NAME READY STATUS RESTARTS AGE
netobserv-plugin-68c7bbb9bb-b69q6 1/1 Running 0 21s

8. 次のコマンドを実行して、Network Observability プラグイン Pod のログを確認します。

出力例

$ oc -n netobserv edit flowcollector cluster -o yaml

$ oc get pods -n openshift-console -l app=console

$ oc delete pods -n openshift-console -l app=console

$ oc get pods -n netobserv -l app=netobserv-plugin

$ oc logs -n netobserv -l app=netobserv-plugin

time="2022-12-13T12:06:49Z" level=info msg="Starting netobserv-console-plugin [build
version: , build date: 2022-10-21 15:15] at log level info" module=main
time="2022-12-13T12:06:49Z" level=info msg="listening on https://:9001" module=server

第18章 NETWORK OBSERVABILITY のトラブルシューティング

239

1

18.3. KAFKA をインストールした後、FLOWLOGS-PIPELINE がネット
ワークフローを消費しない

最初に deploymentModel: KAFKA を使用してフローコレクターをデプロイし、次に Kafka をデプロイ
した場合、フローコレクターが Kafka に正しく接続されない可能性があります。Flowlogs-pipeline が
Kafka からのネットワークフローを消費しないフローパイプライン Pod を手動で再起動します。

手順

1. 次のコマンドを実行して、flow-pipeline Pod を削除して再起動します。

18.4. BR-INT インターフェイスと BR-EX インターフェイスの両方からのネット
ワークフローが表示されない

br-ex` と br-int は、OSI レイヤー 2 で動作する仮想ブリッジデバイスです。eBPF エージェントは、IP
レベルと TCP レベル、それぞれレイヤー 3 と 4 で動作します。ネットワークトラフィックが物理ホス
トや仮想 Pod インターフェイスなどの他のインターフェイスによって処理される場合、eBPF エージェ
ントは br-ex および br-int を通過するネットワークトラフィックをキャプチャすることが期待できま
す。eBPF エージェントのネットワークインターフェイスを br-ex および br-int のみに接続するように
制限すると、ネットワークフローは表示されません。

ネットワークインターフェイスを br-int および br-ex に制限する interfaces または excludeInterfaces
の部分を手動で削除します。

手順

1. interfaces: ['br-int', 'br-ex'] フィールド。これにより、エージェントはすべてのインターフェ
イスから情報を取得できます。または、レイヤー 3 インターフェイス (例: eth0) を指定するこ
ともできます。以下のコマンドを実行します。

出力例

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 agent:
 type: EBPF
 ebpf:
 interfaces: ['br-int', 'br-ex'] 1

ネットワークインターフェイスを指定します。

18.5. NETWORK OBSERVABILITY コントローラーマネージャー POD のメ

$ oc delete pods -n netobserv -l app=flowlogs-pipeline-transformer

$ oc edit -n netobserv flowcollector.yaml -o yaml

OpenShift Container Platform 4.18 Network Observability

240

1

2

18.5. NETWORK OBSERVABILITY コントローラーマネージャー POD のメ
モリーが不足する

Subscription オブジェクトの spec.config.resources.limits.memory 仕様を編集することで、
Network Observability Operator のメモリー制限を引き上げることができます。

手順

1. Web コンソールで、Operators → Installed Operators に移動します。

2. Network Observability をクリックし、Subscription を選択します。

3. Actions メニューから、Edit Subscription をクリックします。

a. または、CLI を使用して次のコマンドを実行して、Subscription オブジェクトの YAML 設
定を開くこともできます。

4. Subscription オブジェクトを編集して config.resources.limits.memory 仕様を追加し、メモ
リー要件を考慮して値を設定します。リソースに関する考慮事項の詳細は、関連情報を参照し
てください。

たとえば、メモリー制限を 800Mi に引き上げることができます。

この値は編集しないでください。この値は Operator の最新リリースによって異なりま
す。

18.6. LOKI へのカスタムクエリーの実行

トラブルシューティングのために、Loki に対してカスタムクエリーを実行できます。これを行う方法の
例が 2 つあり、<api_token> を独自のものに置き換えることで、ニーズに合わせて調整できます。

注記

$ oc edit subscription netobserv-operator -n openshift-netobserv-operator

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: netobserv-operator
 namespace: openshift-netobserv-operator
spec:
 channel: stable
 config:
 resources:
 limits:
 memory: 800Mi 1
 requests:
 cpu: 100m
 memory: 100Mi
 installPlanApproval: Automatic
 name: netobserv-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: <network_observability_operator_latest_version> 2

第18章 NETWORK OBSERVABILITY のトラブルシューティング

241

注記

これらの例では、Network Observability Operator および Loki デプロイメントに
netobserv namespace を使用します。さらに、例では、LokiStack の名前が loki である
と想定しています。オプションで、例 (具体的には -n netobserv または loki-gateway
URL) を調整して、異なる namespace と命名を使用することもできます。

前提条件

Network Observability Operator で使用するために Loki Operator をインストールしている

手順

利用可能なすべてのラベルを取得するには、次のコマンドを実行します。

ソース namespace my-namespace からすべてのフローを取得するには、次のコマンドを実行
します。

関連情報

リソースの留意事項

18.7. LOKI RESOURCEEXHAUSTED エラーのトラブルシューティング

Network Observability によって送信されたネットワークフローデータが、設定された最大メッセージサ
イズを超えると、Loki は ResourceExhausted エラーを返すことがあります。Red Hat Loki Operator
を使用している場合、この最大メッセージサイズは 100 MiB に設定されています。

手順

1. Operators → Installed Operators に移動し、Project ドロップダウンメニューから All
projects を表示します。

2. Provided APIs リストで、Network Observability Operator を選択します。

3. Flow Collector をクリックし、YAML view タブをクリックします。

a. Loki Operator を使用している場合は、spec.loki.batchSize 値が 98 MiB を超えていないこ
とを確認してください。

b. Red Hat Loki Operator とは異なる Loki インストール方法 (Grafana Loki など) を使用して
いる場合は、Grafana Loki サーバー設定 の grpc_server_max_recv_msg_size
が、FlowCollector リソースの spec.loki.batchSize 値より大きいことを確認してくださ
い。大きくない場合は、grpc_server_max_recv_msg_size 値を増やす
か、spec.loki.batchSize 値を制限値よりも小さくなるように減らす必要があります。

$ oc exec deployment/netobserv-plugin -n netobserv -- curl -G -s -H 'X-Scope-
OrgID:network' -H 'Authorization: Bearer <api_token>' -k https://loki-gateway-
http.netobserv.svc:8080/api/logs/v1/network/loki/api/v1/labels | jq

$ oc exec deployment/netobserv-plugin -n netobserv -- curl -G -s -H 'X-Scope-
OrgID:network' -H 'Authorization: Bearer <api_token>' -k https://loki-gateway-
http.netobserv.svc:8080/api/logs/v1/network/loki/api/v1/query --data-urlencode 'query=
{SrcK8S_Namespace="my-namespace"}' | jq

OpenShift Container Platform 4.18 Network Observability

242

https://grafana.com/docs/loki/latest/configure/#server

4. FlowCollector を編集した場合は、Save をクリックします。

18.8. LOKI の EMPTY RING エラー

Loki の "empty ring" エラーにより、フローが Loki に保存されず、Web コンソールに表示されなくなり
ます。このエラーはさまざまな状況で発生する可能性があります。これらすべてに対処できる 1 つの回
避策はありません。Loki Pod 内のログを調査し、LokiStack が健全な状態で準備が整っていることを確
認するために、いくつかのアクションを実行できます。

このエラーが発生する状況には次のようなものがあります。

LokiStack をアンインストールし、同じ namespace に再インストールすると、古い PVC が削
除されないため、このエラーが発生する可能性があります。

アクション: LokiStack を再度削除し、PVC を削除してから、LokiStack の再インストール
をお試しください。

証明書のローテーション後、このエラーにより、flowlogs-pipeline Pod および console-
plugin Pod との通信が妨げられる可能性があります。

アクション: Pod を再起動すると、接続を復元できます。

18.9. リソースのトラブルシューティング

18.10. LOKISTACK レート制限エラー

Loki テナントにレート制限が設定されていると、データが一時的に失われ、429 エラー (Per stream
rate limit exceeded (limit:xMB/sec) while attempting to ingest for stream) が発生する可能性があり
ます。このエラーを通知するようにアラートを設定することを検討してください。詳細は、このセク
ションの関連情報として記載されている「NetObserv ダッシュボードの Loki レート制限アラートの作
成」を参照してください。

次に示す手順を実行して、perStreamRateLimit および perStreamRateLimitBurst 仕様で LokiStack
CRD を更新できます。

手順

1. Operators → Installed Operators に移動し、Project ドロップダウンから All projects を表示
します。

2. Loki Operator を見つけて、LokiStack タブを選択します。

3. YAML view を使用して LokiStack インスタンスを作成するか既存のものを編集
し、perStreamRateLimit および perStreamRateLimitBurst 仕様を追加します。

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: loki
 namespace: netobserv
spec:
 limits:
 global:
 ingestion:

第18章 NETWORK OBSERVABILITY のトラブルシューティング

243

1

2

perStreamRateLimit のデフォルト値は 3 です。

perStreamRateLimitBurst のデフォルト値は 15 です。

4. Save をクリックします。

検証

perStreamRateLimit および perStreamRateLimitBurst 仕様を更新すると、クラスター内の Pod が再
起動し、429 レート制限エラーが発生しなくなります。

18.11. 大きなクエリーを実行すると LOKI エラーが発生する

大規模なクエリーを長時間実行すると、timeout や too many outstanding requests などの Loki エ
ラーが発生する可能性があります。この問題を完全に修正する方法はありませんが、軽減する方法はい
くつかあります。

クエリーを調整してインデックス付きフィルターを追加する

Loki クエリーを使用すると、インデックスが付けられたフィールドまたはラベルと、インデックス
が付けられていないフィールドまたはラベルの両方に対してクエリーを実行できます。ラベルに
フィルターを含むクエリーのパフォーマンスが向上します。たとえば、インデックス付きフィール
ドではない特定の Pod をクエリーする場合は、その namespace をクエリーに追加できます。イン
デックス付きフィールドのリストは、"Network flows format reference" の Loki label 列にありま
す。

Loki ではなく Prometheus にクエリーすることを検討する

長い時間範囲でクエリーを実行するには、Loki よりも Prometheus の方が適しています。ただし、
Loki の代わりに Prometheus を使用できるかどうかは、ユースケースによって異なります。たとえ
ば、Prometheus のクエリーは Loki よりもはるかに高速であり、時間範囲が長くてもパフォーマン
スに影響はありません。しかし、Prometheus メトリクスには、Loki のフローログほど多くの情報
は含まれていません。Network Observability OpenShift Web コンソールは、クエリーに互換性があ
る場合は、自動的に Loki よりも Prometheus を優先します。互換性がない場合は、デフォルトで
Loki が使用されます。クエリーが Prometheus に対して実行されない場合は、いくつかのフィル
ターまたは集計を変更して切り替えることができます。OpenShift Web コンソールでは、
Prometheus の使用を強制できます。互換性のないクエリーが失敗するとエラーメッセージが表示さ
れ、クエリーを互換性のあるものにするためにどのラベルを変更すればよいかを判断するのに役立
ちます。たとえば、フィルターまたは集計を Resource または Pods から Owner に変更します。

FlowMetrics API を使用して独自のメトリクスを作成することを検討する

必要なデータが Prometheus メトリクスとして利用できない場合は、FlowMetrics API を使用して独
自のメトリクスを作成できます。詳細は、「FlowMetrics API リファレンス」および「FlowMetric
API を使用したカスタムメトリクスの設定」を参照してください。

クエリーパフォーマンスを向上させるために Loki を設定する

問題が解決しない場合は、クエリーのパフォーマンスを向上させるために Loki を設定することを検
討してください。一部のオプションは、Operator と LokiStack の使用、Monolithic モー
ド、Microservices モードなど、Loki に使用したインストールモードによって異なります。

LokiStack または Microservices モードでは、クエリーレプリカの数を増やして みてくだ

 perStreamRateLimit: 6 1
 perStreamRateLimitBurst: 30 2
 tenants:
 mode: openshift-network
 managementState: Managed

OpenShift Container Platform 4.18 Network Observability

244

LokiStack または Microservices モードでは、クエリーレプリカの数を増やして みてくだ
さい。

クエリーのタイムアウト を増やします。また、FlowCollector spec.loki.readTimeout で、
Loki への Network Observability の読み取りタイムアウトを増やす必要があります。

関連情報

ネットワークフロー形式のリファレンス

FlowMetric API リファレンス

FlowMetric API を使用したカスタムメトリクスの設定

第18章 NETWORK OBSERVABILITY のトラブルシューティング

245

https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-LokiComponentSpec
https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-QueryLimitSpec

	Table of Contents
	第1章 NETWORK OBSERVABILITY OPERATOR リリースノート
	1.1. NETWORK OBSERVABILITY OPERATOR 1.10.1 アドバイザリー
	1.2. NETWORK OBSERVABILITY OPERATOR 1.10.1 CVE
	1.3. NETWORK OBSERVABILITY OPERATOR 1.10.1 の修正された問題
	1.4. NETWORK OBSERVABILITY OPERATOR 1.10 アドバイザリー
	1.5. NETWORK OBSERVABILITY OPERATOR 1.10 の新機能と機能拡張
	1.5.1. ネットワークポリシーの更新
	1.5.2. Network Observability Operator CLI UI の更新
	1.5.3. Network Observability コンソールの強化
	1.5.4. パフォーマンスの向上

	1.6. NETWORK OBSERVABILITY OPERATOR 1.10 のテクノロジープレビュー機能
	1.6.1. Network Observability Operator カスタムアラート (テクノロジープレビュー)
	1.6.2. Network Observability Operator Network Health ダッシュボード (テクノロジープレビュー)

	1.7. NETWORK OBSERVABILITY OPERATOR 1.10 で削除された機能
	1.7.1. FlowCollector API バージョン v1beta1 の削除

	1.8. NETWORK OBSERVABILITY OPERATOR 1.10 の既知の問題
	1.8.1. OpenShift Container Platform 4.14 以前で 1.10 へのアップグレードが失敗する
	1.8.2. eBPF エージェントと OpenShift Container Platform の旧バージョンとの互換性
	1.8.3. NetworkPolicy が有効な場合、OpenShiftSDN 環境で eBPF エージェントがフローを送信できない

	1.9. NETWORK OBSERVABILITY OPERATOR 1.10 で修正された問題
	1.9.1. MetricName および Remap フィールドの検証
	1.9.2. html-to-image エクスポートのパフォーマンスの向上
	1.9.3. eBPF privileged モードの警告の改善
	1.9.4. OpenTelemetry エクスポーターへのサブネットラベルの追加
	1.9.5. Network Observability コンポーネントのデフォルト toleration の削減

	第2章 NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ
	2.1. NETWORK OBSERVABILITY OPERATOR リリースノートのアーカイブ
	2.1.1. Network Observability Operator 1.9.3 アドバイザリー
	2.1.2. Network Observability Operator 1.9.2 アドバイザリー
	2.1.3. Network Observability 1.9.2 のバグ修正
	2.1.4. Network Observability Operator 1.8.0 のアドバイザリー
	2.1.5. Network Observability Operator 1.8.0 で修正された問題
	2.1.6. Network Observability Operator 1.9.0 のアドバイザリー
	2.1.7. Network Observability Operator 1.9.0 の新機能と機能拡張
	2.1.7.1. ユーザー定義ネットワークと Network Observability の連携
	2.1.7.2. フローログ取り込み時のフィルタリング
	2.1.7.3. IPsec のサポート
	2.1.7.4. Network Observability CLI

	2.1.8. Network Observability Operator リリースノート 1.9.0 の主な技術上の変更点
	2.1.9. Network Observability Operator 1.9.0 のテクノロジープレビュー機能
	2.1.9.1. eBPF Manager Operator と Network Observability の連携

	2.1.10. Network Observability Operator 1.9.0 の CVE
	2.1.11. Network Observability Operator 1.9.0 で修正された問題
	2.1.12. Network Observability Operator 1.9.0 の既知の問題
	2.1.13. Network Observability Operator 1.8.1 のアドバイザリー
	2.1.14. Network Observability Operator 1.8.1 の CVE
	2.1.15. Network Observability Operator 1.8.0 で修正された問題
	2.1.16. Network Observability Operator 1.8.0 のアドバイザリー
	2.1.17. Network Observability Operator 1.8.0 の新機能と機能拡張
	2.1.17.1. パケット変換
	2.1.17.2. OVN-Kubernetes ネットワークイベントの追跡
	2.1.17.3. 1.8 における eBPF パフォーマンスの改善
	2.1.17.4. Network Observability CLI

	2.1.18. Network Observability Operator リリースノート 1.8.0 の修正された問題
	2.1.19. Network Observability Operator リリースノート 1.8.0 の既知の問題
	2.1.20. Network Observability Operator 1.7.0 アドバイザリー
	2.1.21. Network Observability Operator 1.7.0 の新機能と機能拡張
	2.1.21.1. OpenTelemetry のサポート
	2.1.21.2. Network Observability Developer パースペクティブ
	2.1.21.3. TCP フラグフィルタリング
	2.1.21.4. OpenShift Virtualization の Network Observability
	2.1.21.5. FlowCollector カスタムリソース (CR) でのネットワークポリシーのデプロイ
	2.1.21.6. FIPS コンプライアンス
	2.1.21.7. eBPF エージェントの機能拡張
	2.1.21.8. Network Observability CLI

	2.1.22. Network Observability Operator 1.7.0 で修正された問題
	2.1.23. Network Observability Operator 1.7.0 の既知の問題
	2.1.24. Network Observability Operator リリースノート 1.6.2 のアドバイザリー
	2.1.25. Network Observability Operator リリースノート 1.6.2 の CVE
	2.1.26. Network Observability Operator リリースノート 1.6.2 の修正された問題
	2.1.27. Network Observability Operator リリースノート 1.6.2 の既知の問題
	2.1.28. Network Observability Operator リリースノート 1.6.1 のアドバイザリー
	2.1.29. Network Observability Operator リリースノート 1.6.1 の CVE
	2.1.30. Network Observability Operator リリースノート 1.6.1 の修正された問題
	2.1.31. Network Observability Operator リリースノート 1.6.0 のアドバイザリー
	2.1.32. Network Observability Operator 1.6.0 の新機能と機能拡張
	2.1.32.1. Loki を使用しない場合の Network Observability Operator の使用の強化
	2.1.32.2. カスタムメトリクス API
	2.1.32.3. eBPF のパフォーマンスの強化
	2.1.32.4. eBPF 収集のルールベースのフィルタリング

	2.1.33. Network Observability Operator 1.6.0 で修正された問題
	2.1.34. Network Observability Operator 1.6.0 の既知の問題
	2.1.35. Network Observability Operator 1.5.0 アドバイザリー
	2.1.36. Network Observability Operator 1.5.0 の新機能と機能拡張
	2.1.36.1. DNS 追跡の機能拡張
	2.1.36.2. ラウンドトリップタイム (RTT)
	2.1.36.3. メトリクス、ダッシュボード、アラートの機能拡張
	2.1.36.4. Loki を使用していない場合の Network Observability の向上
	2.1.36.5. アベイラビリティーゾーン
	2.1.36.6. 主な機能拡張
	2.1.36.7. パフォーマンスの強化
	2.1.36.8. Web コンソールの機能拡張:
	2.1.36.9. 設定の機能拡張

	2.1.37. Network Observability Operator 1.5.0 で修正された問題
	2.1.38. Network Observability Operator 1.5.0 の既知の問題
	2.1.39. Network Observability Operator 1.4.2 のアドバイザリー
	2.1.40. Network Observability Operator1.4.2 の CVE
	2.1.41. Network Observability Operator 1.4.1 のアドバイザリー
	2.1.42. Network Observability Operator リリース 1.4.1 の CVE
	2.1.43. Network Observability Operator リリースノート 1.4.1 の修正された問題
	2.1.44. ネットワーク可観測性リリースノート 1.4.0 のアドバイザリー
	2.1.45. ネットワーク可観測性リリースノート 1.4.0 の新機能と機能拡張
	2.1.45.1. 主な機能拡張
	2.1.45.2. Web コンソールの機能拡張:
	2.1.45.3. 設定の機能拡張
	2.1.45.4. Loki を使用しない Network Observability
	2.1.45.5. DNS 追跡
	2.1.45.6. SR-IOV のサポート
	2.1.45.7. IPFIX エクスポーターのサポート
	2.1.45.8. パケットドロップ
	2.1.45.9. s390x アーキテクチャーのサポート

	2.1.46. ネットワーク可観測性リリースノート 1.4.0 で削除された機能
	2.1.46.1. チャネルの削除

	2.1.47. ネットワーク可観測性リリースノート 1.4.0 の修正された問題
	2.1.48. ネットワーク可観測性リリースノート 1.4.0 の既知の問題
	2.1.49. Network Observability Operator 1.3.0 のアドバイザリー
	2.1.50. Network Observability Operator 1.3.0 の新機能と機能拡張
	2.1.50.1. Network Observability におけるマルチテナンシー
	2.1.50.2. フローベースのメトリクスダッシュボード
	2.1.50.3. must-gather ツールを使用したトラブルシューティング
	2.1.50.4. 複数のアーキテクチャーに対するサポートを開始

	2.1.51. Network Observability Operator 1.3.0 の非推奨機能
	2.1.51.1. チャネルの非推奨化
	2.1.51.2. 非推奨の設定パラメーターの設定

	2.1.52. Network Observability Operator 1.3.0 で修正された問題
	2.1.53. Network Observability Operator 1.3.0 の既知の問題
	2.1.54. ネットワーク可観測性リリースノート 1.2.0 における次回更新に向けての準備
	2.1.55. Network Observability Operator 1.2.0 のアドバイザリー
	2.1.56. Network Observability Operator 1.2.0 の新機能と機能拡張
	2.1.56.1. Traffic Flows ビューのヒストグラム
	2.1.56.2. 会話の追跡
	2.1.56.3. Network Observability のヘルスアラート

	2.1.57. Network Observability Operator1.2.0 のバグ修正
	2.1.58. Network Observability Operator1.2.0 の既知の問題
	2.1.59. Network Observability Operator 1.2.0 の主な技術上の変更点
	2.1.60. Network Observability Operator1.1.0 の機能拡張
	2.1.61. Network Observability Operator 1.10 で修正された問題
	2.1.62. 関連情報

	第3章 NETWORK OBSERVABILITY について
	3.1. NETWORK OBSERVABILITY OPERATOR
	3.2. NETWORK OBSERVABILITY OPERATOR のオプションの依存関係
	3.3. OPENSHIFT CONTAINER PLATFORM コンソールの統合
	3.3.1. Network Observability メトリクスのダッシュボード
	3.3.2. Network Observability トポロジービュー
	3.3.3. トラフィックフローテーブル

	3.4. NETWORK OBSERVABILITY CLI

	第4章 NETWORK OBSERVABILITY OPERATOR のインストール
	4.1. LOKI を使用しない NETWORK OBSERVABILITY
	4.2. LOKI OPERATOR のインストール
	4.2.1. Loki ストレージのシークレットの作成
	4.2.2. LokiStack カスタムリソースの作成
	4.2.3. cluster-admin ユーザーロールの新規グループの作成
	4.2.4. カスタム管理者グループのアクセス権
	4.2.5. Loki デプロイメントのサイズ
	4.2.6. LokiStack の取り込み制限とヘルスアラート

	4.3. NETWORK OBSERVABILITY OPERATOR のインストール
	4.4. NETWORK OBSERVABILITY でのマルチテナンシーの有効化
	4.5. FLOW COLLECTOR 設定に関する重要な考慮事項
	4.5.1. FlowCollector CRD の削除された保存バージョンの移行

	4.6. KAFKA のインストール (オプション)
	4.7. NETWORK OBSERVABILITY OPERATOR のアンインストール

	第5章 OPENSHIFT CONTAINER PLATFORM の NETWORK OBSERVABILITY OPERATOR
	5.1. 状況の表示
	5.2. NETWORK OBSERVABLITY OPERATOR のアーキテクチャー
	5.3. NETWORK OBSERVABILITY OPERATOR のステータスと設定の表示

	第6章 NETWORK OBSERVABILITY OPERATOR の設定
	6.1. FLOWCOLLECTOR リソースの表示
	6.2. KAFKA を使用した FLOW COLLECTOR リソースの設定
	6.3. エンリッチされたネットワークフローデータのエクスポート
	6.4. FLOW COLLECTOR リソースの更新
	6.5. ネットワークフロー取り込み時のフィルタリング
	6.5.1. eBPF エージェントフィルター
	6.5.2. flowlogs-pipeline フィルター

	6.6. クイックフィルターの設定
	6.7. リソース管理およびパフォーマンスに関する考慮事項
	6.7.1. リソースの留意事項
	6.7.2. メモリーと CPU の合計平均使用量

	第7章 ネットワークポリシー
	7.1. FLOWCOLLECTOR カスタムリソースを使用したネットワークポリシーの設定

	第8章 ネットワークトラフィックの観測
	8.1. OVERVIEW ビューからのネットワークトラフィックの観測
	8.1.1. 概要ビューの操作
	8.1.2. 概要ビューの詳細オプションの設定
	8.1.2.1. パネルとディスプレイの管理

	8.1.3. パケットドロップの追跡
	8.1.3.1. パケットドロップの種類

	8.1.4. DNS 追跡
	8.1.5. ラウンドトリップタイム
	8.1.6. eBPF フローのルールフィルター
	8.1.6.1. Ingress および Egress トラフィックのフィルタリング
	8.1.6.2. ダッシュボードとメトリクスの統合
	8.1.6.3. フローフィルターの設定パラメーター

	8.1.7. ユーザー定義ネットワーク
	8.1.8. OVN Kubernetes ネットワークイベント

	8.2. TRAFFIC FLOWS ビューからのネットワークトラフィックの観測
	8.2.1. Traffic flows ビューの操作
	8.2.2. Traffic flows ビューの詳細オプションの設定
	8.2.2.1. 列の管理
	8.2.2.2. トラフィックフローデータのエクスポート

	8.2.3. FlowCollector カスタムリソースを使用した IPsec の設定
	8.2.4. 会話追跡の使用
	8.2.5. パケットドロップの使用
	8.2.6. DNS 追跡の使用
	8.2.7. RTT トレーシングの使用
	8.2.8. eBPF Manager Operator の操作
	8.2.8.1. ヒストグラムの使用

	8.2.9. アベイラビリティーゾーンの使用
	8.2.10. 複数のルールを使用した eBPF フローデータのフィルタリング
	8.2.11. エンドポイント変換 (xlat)
	8.2.12. エンドポイント変換 (xlat) の操作
	8.2.13. ユーザー定義ネットワークの操作
	8.2.14. ネットワークイベントの表示

	8.3. トポロジービューからのネットワークトラフィックの観察
	8.3.1. トポロジービューの操作
	8.3.2. トポロジービューの詳細オプションの設定
	8.3.2.1. トポロジービューのエクスポート

	8.4. ネットワークトラフィックのフィルタリング

	第9章 NETWORK OBSERVABILITY アラート
	9.1. NETWORK OBSERVABILITY アラートについて
	9.1.1. デフォルトのアラートテンプレートのリスト
	9.1.2. Network Health ダッシュボード

	9.2. NETWORK OBSERVABILITY のアラート (テクノロジープレビュー) の有効化
	9.2.1. 事前定義済みアラートの設定
	9.2.2. アラートの PromQL 式について
	9.2.2.1. 受信トラフィックの急増に関するアラートのクエリー例
	9.2.2.2. アラートのメタデータフィールド

	9.2.3. カスタムアラートルールの作成
	9.2.4. 事前定義済みアラートの無効化

	第10章 ダッシュボードとアラートでのメトリクスの使用
	10.1. NETWORK OBSERVABILITY メトリクスのダッシュボードの表示
	10.2. NETWORK OBSERVABILITY メトリクス
	10.3. アラートの作成
	10.4. カスタムメトリクス
	10.5. FLOWMETRIC API を使用したカスタムメトリクスの設定
	10.6. TRAFFIC FLOWS テーブルのネストされたフィールドまたは配列フィールドからメトリクスを作成する
	10.7. FLOWMETRIC API を使用したカスタムグラフの設定
	10.8. FLOWMETRIC API と TCP フラグを使用した SYN フラッディングの検出

	第11章 NETWORK OBSERVABILITY OPERATOR の監視
	11.1. 健全性ダッシュボード
	11.2. 健全性アラート
	11.3. 健全性情報の表示
	11.3.1. ヘルスアラートの無効化

	11.4. NETOBSERV ダッシュボードの LOKI レート制限アラートの作成
	11.5. EBPF エージェントアラートの使用

	第12章 リソースのスケジューリング
	12.1. 特定のノードにおける NETWORK OBSERVABILITY デプロイメント

	第13章 セカンダリーネットワーク
	13.1. 前提条件
	13.2. SR-IOV インターフェイストラフィックの監視の設定
	13.3. 仮想マシン (VM) のセカンダリーネットワークインターフェイスを NETWORK OBSERVABILITY 用に設定する

	第14章 NETWORK OBSERVABILITY CLI
	14.1. NETWORK OBSERVABILITY CLI のインストール
	14.1.1. Network Observability CLI について
	14.1.2. Network Observability CLI のインストール

	14.2. NETWORK OBSERVABILITY CLI の使用
	14.2.1. フローのキャプチャー
	14.2.2. パケットのキャプチャー
	14.2.3. メトリクスの取得
	14.2.4. Network Observability CLI のクリーンアップ

	14.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) リファレンス
	14.3.1. Network Observability CLI の使用
	14.3.1.1. 構文
	14.3.1.2. 基本コマンド
	14.3.1.3. フローキャプチャーのオプション
	14.3.1.4. パケットキャプチャーのオプション
	14.3.1.5. メトリクスキャプチャーのオプション

	第15章 FLOWCOLLECTOR API リファレンス
	15.1. FLOWCOLLECTOR API 仕様
	15.1.1. .metadata
	15.1.2. .spec
	15.1.3. .spec.agent
	15.1.4. .spec.agent.ebpf
	15.1.5. .spec.agent.ebpf.advanced
	15.1.6. .spec.agent.ebpf.advanced.scheduling
	15.1.7. .spec.agent.ebpf.advanced.scheduling.affinity
	15.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations
	15.1.9. .spec.agent.ebpf.flowFilter
	15.1.10. .spec.agent.ebpf.flowFilter.rules
	15.1.11. .spec.agent.ebpf.flowFilter.rules[]
	15.1.12. .spec.agent.ebpf.metrics
	15.1.13. .spec.agent.ebpf.metrics.server
	15.1.14. .spec.agent.ebpf.metrics.server.tls
	15.1.15. .spec.agent.ebpf.metrics.server.tls.provided
	15.1.16. .spec.agent.ebpf.metrics.server.tls.providedCaFile
	15.1.17. .spec.agent.ebpf.resources
	15.1.18. .spec.consolePlugin
	15.1.19. .spec.consolePlugin.advanced
	15.1.20. .spec.consolePlugin.advanced.scheduling
	15.1.21. .spec.consolePlugin.advanced.scheduling.affinity
	15.1.22. .spec.consolePlugin.advanced.scheduling.tolerations
	15.1.23. .spec.consolePlugin.autoscaler
	15.1.24. .spec.consolePlugin.portNaming
	15.1.25. .spec.consolePlugin.quickFilters
	15.1.26. .spec.consolePlugin.quickFilters[]
	15.1.27. .spec.consolePlugin.resources
	15.1.28. .spec.exporters
	15.1.29. .spec.exporters[]
	15.1.30. .spec.exporters[].ipfix
	15.1.31. .spec.exporters[].kafka
	15.1.32. .spec.exporters[].kafka.sasl
	15.1.33. .spec.exporters[].kafka.sasl.clientIDReference
	15.1.34. .spec.exporters[].kafka.sasl.clientSecretReference
	15.1.35. .spec.exporters[].kafka.tls
	15.1.36. .spec.exporters[].kafka.tls.caCert
	15.1.37. .spec.exporters[].kafka.tls.userCert
	15.1.38. .spec.exporters[].openTelemetry
	15.1.39. .spec.exporters[].openTelemetry.fieldsMapping
	15.1.40. .spec.exporters[].openTelemetry.fieldsMapping[]
	15.1.41. .spec.exporters[].openTelemetry.logs
	15.1.42. .spec.exporters[].openTelemetry.metrics
	15.1.43. .spec.exporters[].openTelemetry.tls
	15.1.44. .spec.exporters[].openTelemetry.tls.caCert
	15.1.45. .spec.exporters[].openTelemetry.tls.userCert
	15.1.46. .spec.kafka
	15.1.47. .spec.kafka.sasl
	15.1.48. .spec.kafka.sasl.clientIDReference
	15.1.49. .spec.kafka.sasl.clientSecretReference
	15.1.50. .spec.kafka.tls
	15.1.51. .spec.kafka.tls.caCert
	15.1.52. .spec.kafka.tls.userCert
	15.1.53. .spec.loki
	15.1.54. .spec.loki.advanced
	15.1.55. .spec.loki.lokiStack
	15.1.56. .spec.loki.manual
	15.1.57. .spec.loki.manual.statusTls
	15.1.58. .spec.loki.manual.statusTls.caCert
	15.1.59. .spec.loki.manual.statusTls.userCert
	15.1.60. .spec.loki.manual.tls
	15.1.61. .spec.loki.manual.tls.caCert
	15.1.62. .spec.loki.manual.tls.userCert
	15.1.63. .spec.loki.microservices
	15.1.64. .spec.loki.microservices.tls
	15.1.65. .spec.loki.microservices.tls.caCert
	15.1.66. .spec.loki.microservices.tls.userCert
	15.1.67. .spec.loki.monolithic
	15.1.68. .spec.loki.monolithic.tls
	15.1.69. .spec.loki.monolithic.tls.caCert
	15.1.70. .spec.loki.monolithic.tls.userCert
	15.1.71. .spec.networkPolicy
	15.1.72. .spec.processor
	15.1.73. .spec.processor.advanced
	15.1.74. .spec.processor.advanced.scheduling
	15.1.75. .spec.processor.advanced.scheduling.affinity
	15.1.76. .spec.processor.advanced.scheduling.tolerations
	15.1.77. .spec.processor.advanced.secondaryNetworks
	15.1.78. .spec.processor.advanced.secondaryNetworks[]
	15.1.79. .spec.processor.deduper
	15.1.80. .spec.processor.filters
	15.1.81. .spec.processor.filters[]
	15.1.82. .spec.processor.kafkaConsumerAutoscaler
	15.1.83. .spec.processor.metrics
	15.1.84. .spec.processor.metrics.alerts
	15.1.85. .spec.processor.metrics.alerts[]
	15.1.86. .spec.processor.metrics.alerts[].variants
	15.1.87. .spec.processor.metrics.alerts[].variants[]
	15.1.88. .spec.processor.metrics.alerts[].variants[].thresholds
	15.1.89. .spec.processor.metrics.server
	15.1.90. .spec.processor.metrics.server.tls
	15.1.91. .spec.processor.metrics.server.tls.provided
	15.1.92. .spec.processor.metrics.server.tls.providedCaFile
	15.1.93. .spec.processor.resources
	15.1.94. .spec.processor.subnetLabels
	15.1.95. .spec.processor.subnetLabels.customLabels
	15.1.96. .spec.processor.subnetLabels.customLabels[]
	15.1.97. .spec.prometheus
	15.1.98. .spec.prometheus.querier
	15.1.99. .spec.prometheus.querier.manual
	15.1.100. .spec.prometheus.querier.manual.tls
	15.1.101. .spec.prometheus.querier.manual.tls.caCert
	15.1.102. .spec.prometheus.querier.manual.tls.userCert

	第16章 FLOWMETRIC 設定パラメーター
	16.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHA1]
	16.1.1. .metadata
	16.1.2. .spec
	16.1.3. .spec.charts
	16.1.4. .spec.charts[]
	16.1.5. .spec.charts[].queries
	16.1.6. .spec.charts[].queries[]
	16.1.7. .spec.filters
	16.1.8. .spec.filters[]

	第17章 ネットワークフロー形式のリファレンス
	17.1. ネットワークフロー形式のリファレンス

	第18章 NETWORK OBSERVABILITY のトラブルシューティング
	18.1. MUST-GATHER ツールの使用
	18.2. OPENSHIFT CONTAINER PLATFORM コンソールでのネットワークトラフィックメニューエントリーの設定
	18.3. KAFKA をインストールした後、FLOWLOGS-PIPELINE がネットワークフローを消費しない
	18.4. BR-INT インターフェイスと BR-EX インターフェイスの両方からのネットワークフローが表示されない
	18.5. NETWORK OBSERVABILITY コントローラーマネージャー POD のメモリーが不足する
	18.6. LOKI へのカスタムクエリーの実行
	18.7. LOKI RESOURCEEXHAUSTED エラーのトラブルシューティング
	18.8. LOKI の EMPTY RING エラー
	18.9. リソースのトラブルシューティング
	18.10. LOKISTACK レート制限エラー
	18.11. 大きなクエリーを実行すると LOKI エラーが発生する

