
OpenShift Container Platform 4.4

Operator

OpenShift Container Platform での Operator の使用

Last Updated: 2022-11-28

OpenShift Container Platform 4.4 Operator

OpenShift Container Platform での Operator の使用

Enter your first name here. Enter your surname here.
Enter your organisation's name here. Enter your organisational division here.
Enter your email address here.

法律上の通知

Copyright © 2022 | You need to change the HOLDER entity in the en-US/Operators.ent file |.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要

本書では、OpenShift Container Platform での Operator の使用方法について説明します。これに
は、クラスター管理者向けの Operator のインストールおよび管理方法についての説明や、開発者
向けのインストールされた Operator からアプリケーションを作成する方法についての情報が含ま
れます。また、Operator SDK を使用して独自の Operator をビルドする方法についてのガイダンス
も含まれます。

. .

. .

. .

. .

目次

第1章 OPERATOR について
1.1. OPERATOR を使用する理由
1.2. OPERATOR FRAMEWORK
1.3. OPERATOR 成熟度モデル

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について
2.1. OPERATOR LIFECYCLE MANAGER のワークフローおよびアーキテクチャー

2.1.1. Operator Lifecycle Manager の概要
2.1.2. ClusterServiceVersion (CSV)
2.1.3. OLM での Operator のインストールおよびアップグレードのワークフロー

2.1.3.1. アップグレードパスの例
2.1.3.2. アップグレードの省略
2.1.3.3. 複数 Operator の置き換え
2.1.3.4. z-stream サポート

2.1.4. Operator Lifecycle Manager アーキテクチャー
2.1.4.1. OLM Operator
2.1.4.2. カタログ Operator
2.1.4.3. カタログレジストリー

2.1.5. 公開されるメトリクス
2.2. OPERATOR LIFECYCLE MANAGER の依存関係の解決

2.2.1. 依存関係の解決
2.2.2. カスタムリソース定義 (Custom Resource Definition、CRD) のアップグレード

2.2.2.1. 新規 CRD バージョンの追加
2.2.2.2. CRD バージョンの非推奨または削除

2.2.3. 依存関係解決のシナリオ例
例: 依存 API を非推奨にする
例: バージョンのデッドロック

2.3. OPERATORGROUP
2.3.1. OperatorGroup
2.3.2. OperatorGroup メンバーシップ
2.3.3. ターゲット namespace の選択
2.3.4. OperatorGroup CSV アノテーション
2.3.5. 提供される API アノテーション
2.3.6. ロールベースのアクセス制御
2.3.7. コピーされる CSV
2.3.8. 静的 OperatorGroup
2.3.9. OperatorGroup の交差部分
交差のルール

2.3.10. OperatorGroup のトラブルシューティング
メンバーシップ

第3章 OPERATORHUB について
3.1. OPERATORHUB の概要
3.2. OPERATORHUB アーキテクチャー

3.2.1. OperatorHub CRD
3.2.2. OperatorSource CRD

第4章 OPERATOR のクラスターへの追加
4.1. OPERATORHUB からの OPERATOR のインストール

4.1.1. Web コンソールを使用した OperatorHub からのインストール
4.1.2. CLI を使用した OperatorHub からのインストール

8
8
9
9

11
11
11
11

12
14
15
16
17
18
19

20
20
21
21
21
22
22
22
23
24
24
24
24
24
25
26
26
27
30
30
31
31
32
32

33
33
34
34
34

36
36
36
39

目次

1

. .

. .

. .

. .

. .

. .

. .

. .

第5章 OPERATOR LIFECYCLE MANAGER でのプロキシーサポートの設定
5.1. OPERATOR のプロキシー設定の上書き
5.2. カスタム CA 証明書の挿入

第6章 クラスターからの OPERATOR の削除
6.1. WEB コンソールの使用によるクラスターからの OPERATOR の削除
6.2. CLI の使用によるクラスターからの OPERATOR の削除

第7章 インストールされた OPERATOR からのアプリケーションの作成
7.1. OPERATOR を使用した ETCD クラスターの作成

第8章 OPERATOR ステータスの表示
8.1. 条件のタイプ
8.2. CLI を使用した OPERATOR ステータスの表示

第9章 OPERATOR のインストールおよびアップグレードについてのポリシーの作成
9.1. OPERATOR インストールポリシーについて

9.1.1. インストールシナリオ
9.1.2. インストールワークフロー

9.2. OPERATOR インストールのスコープ設定
9.2.1. 粒度の細かいパーミッション

9.3. パーミッションに関する失敗のトラブルシューティング

第10章 ネットワークが制限された環境での OPERATOR LIFECYCLE MANAGER の使用
10.1. OPERATOR カタログイメージについて
10.2. OPERATOR カタログイメージのビルド
10.3. ネットワークが制限された環境向けの OPERATORHUB の設定
10.4. OPERATOR カタログイメージの更新
10.5. OPERATOR カタログイメージのテスト

第11章 CRD
11.1. カスタムリソース定義による KUBERNETES API の拡張

11.1.1. カスタムリソース定義
11.1.2. カスタムリソース定義の作成
11.1.3. カスタムリソース定義のクラスターロールの作成
11.1.4. ファイルからのカスタムリソースの作成
11.1.5. カスタムリソースの検査

11.2. カスタムリソース定義からのリソースの管理
11.2.1. カスタムリソース定義
11.2.2. ファイルからのカスタムリソースの作成
11.2.3. カスタムリソースの検査

第12章 OPERATOR SDK
12.1. OPERATOR SDK の使用を開始する

12.1.1. Operator SDK のアーキテクチャー
12.1.1.1. ワークフロー
12.1.1.2. マネージャーファイル
12.1.1.3. Prometheus Operator のサポート

12.1.2. Operator SDK CLI のインストール
12.1.2.1. GitHub リリースからのインストール
12.1.2.2. Homebrew からのインストール
12.1.2.3. ソースを使用したコンパイルおよびインストール

12.1.3. Operator SDK を使用した Go ベースの Operator のビルド
12.1.4. Operator Lifecycle Manager を使用した Go ベースの Operator の管理
12.1.5. 関連情報

42
42
43

46
46
46

48
48

51
51
51

52
52
52
53
53
55
56

59
59
60
62
66
69

72
72
72
72
74
75
76
77
77
78
78

80
80
80
80
81
81
81

82
84
84
85
91

93

OpenShift Container Platform 4.4 Operator

2

12.2. ANSIBLE ベース OPERATOR の作成
12.2.1. Operator SDK における Ansible サポート

12.2.1.1. カスタムリソースファイル
12.2.1.2. 監視ファイル

12.2.1.2.1. 高度なオプション
12.2.1.3. Ansible に送信される追加変数
12.2.1.4. Ansible Runner ディレクトリー

12.2.2. Operator SDK CLI のインストール
12.2.2.1. GitHub リリースからのインストール
12.2.2.2. Homebrew からのインストール
12.2.2.3. ソースを使用したコンパイルおよびインストール

12.2.3. Operator SDK を使用した Ansible ベースの Operator のビルド
12.2.4. K8S Ansible モジュールの使用によるアプリケーションライフサイクルの管理

12.2.4.1. k8s Ansible モジュールのインストール
12.2.4.2. k8s Ansible モジュールのローカルでのテスト
12.2.4.3. Operator 内での k8s Ansible モジュールのテスト

12.2.4.3.1. Ansible ベース Operator のローカルでのテスト
12.2.4.3.2. Ansible ベース Operator のクラスター上でのテスト

12.2.5. operator_sdk.util Ansible コレクションを使用したカスタムリソースのステータス管理
12.2.6. 追加リソース

12.3. HELM ベース OPERATOR の作成
12.3.1. Operator SDK での Helm チャートのサポート
12.3.2. Operator SDK CLI のインストール

12.3.2.1. GitHub リリースからのインストール
12.3.2.2. Homebrew からのインストール
12.3.2.3. ソースを使用したコンパイルおよびインストール

12.3.3. Operator SDK を使用した Helm ベースの Operator のビルド
12.3.4. 追加リソース

12.4. CLUSTERSERVICEVERSION (CSV) の生成
12.4.1. CSV 生成の仕組み
ワークフロー

12.4.2. CSV 設定の設定
12.4.3. 手動で定義される CSV フィールド
12.4.4. CSV の生成
12.4.5. ネットワークが制限された環境についての Operator の有効化
12.4.6. 複数のアーキテクチャーおよびオペレーティングシステム用の Operator の有効化

12.4.6.1. Operator のアーキテクチャーおよびオペレーティングシステムのサポート
12.4.7. 推奨される namespace の設定
12.4.8. カスタムリソース定義 (CRD)

12.4.8.1. 所有 CRD (Owned CRD)
12.4.8.2. 必須 CRD (Required CRD)
12.4.8.3. CRD テンプレート
12.4.8.4. 内部オブジェクトの非表示

12.4.9. API サービスについて
12.4.9.1. 所有 APIService (Owned APIService)

12.4.9.1.1. APIService リソースの作成
12.4.9.1.2. APIService 提供証明書

12.4.9.2. 必須 APIService
12.5. スコアカードを使用した OPERATOR の検証

12.5.1. スコアカードツールについて
12.5.2. スコアカードの設定

12.5.2.1. 設定ファイル
12.5.2.2. コマンド引数

94
94
94
95
96
97
98
98
98

100
101
101

106
107
107
109
109

111
111

113
113
113
114
114
116
117
117
122
122
122
123
123
124
125
126
128
129
129
130
130
132
133
134
134
134
135
135
136
136
136
137
137
137

目次

3

. .

12.5.2.3. 設定ファイルのオプション
12.5.2.3.1. 基本的なプラグインおよび OLM プラグイン

12.5.3. 実行されるテスト
12.5.3.1. 基本的なプラグイン
12.5.3.2. OLM プラグイン

12.5.4. スコアカードの実行
12.5.5. OLM 管理の Operator を使用したスコアカードの実行

12.6. PROMETHEUS による組み込みモニタリングの設定
12.6.1. Prometheus Operator のサポート
12.6.2. メトリクスヘルパー

12.6.2.1. メトリクスポートの変更
12.6.3. ServiceMonitor リソース

12.6.3.1. ServiceMonitor リソースの作成
12.7. リーダー選択の設定

12.7.1. Leader-for-life 選択の使用
12.7.2. Leader-with-lease 選択の使用

12.8. OPERATOR SDK CLI リファレンス
12.8.1. build
12.8.2. completion
12.8.3. print-deps
12.8.4. generate

12.8.4.1. CRD
12.8.4.2. csv
12.8.4.3. k8s

12.8.5. new
12.8.6. add
12.8.7. test

12.8.7.1. local
12.8.8. run

12.8.8.1. --local
12.9. 付録

12.9.1. Operator プロジェクトのスキャフォールディングレイアウト
12.9.1.1. Go ベースプロジェクト
12.9.1.2. Helm ベースのプロジェクト

第13章 RED HAT OPERATOR
13.1. CLOUD CREDENTIAL OPERATOR
目的
プロジェクト
CRD
設定オブジェクト
注記

13.2. クラスター認証 OPERATOR
目的
プロジェクト

13.3. CLUSTER AUTOSCALER OPERATOR
目的
プロジェクト
CRD

13.4. CLUSTER IMAGE REGISTRY OPERATOR
目的
プロジェクト

13.5. クラスターモニタリング OPERATOR

138
139
140
141
141

142
143
147
147
147
148
148
149
149
150
150
151
151
152
152
153
153
153
154
155
156
158
158
159
159
160
160
160
161

162
162
162
162
162
162
162
162
162
162
162
162
162
162
163
163
163
163

OpenShift Container Platform 4.4 Operator

4

目的
プロジェクト
CRD
設定オブジェクト

13.6. CLUSTER NETWORK OPERATOR
目的

13.7. OPENSHIFT CONTROLLER MANAGER OPERATOR
目的
プロジェクト

13.8. CLUSTER SAMPLES OPERATOR
目的
プロジェクト

13.9. CLUSTER STORAGE OPERATOR
目的
プロジェクト
設定
注記

13.10. CLUSTER SVCAT API SERVER OPERATOR
目的
プロジェクト

13.11. CLUSTER SVCAT CONTROLLER MANAGER OPERATOR
目的
プロジェクト

13.12. クラスターバージョン OPERATOR
目的
プロジェクト

13.13. CONSOLE OPERATOR
目的
プロジェクト

13.14. DNS OPERATOR
目的
プロジェクト

13.15. ETCD CLUSTER OPERATOR
目的
プロジェクト
CRD
設定オブジェクト

13.16. INGRESS OPERATOR
目的
プロジェクト
CRD
設定オブジェクト
注記

13.17. KUBERNETES API SERVER OPERATOR
目的
プロジェクト
CRD
設定オブジェクト

13.18. KUBERNETES CONTROLLER MANAGER OPERATOR
目的
プロジェクト

13.19. KUBERNETES SCHEDULER OPERATOR
目的

163
163
163
164
164
164
164
164
164
164
164
165
165
165
165
165
165
165
166
166
166
166
166
166
166
166
166
166
166
166
166
166
167
167
167
167
167
167
167
167
167
167
167
168
168
168
168
168
168
168
169
169
169

目次

5

プロジェクト
設定

13.20. MACHINE API OPERATOR
目的
プロジェクト
CRD

13.21. MACHINE CONFIG OPERATOR
目的
プロジェクト

13.22. MARKETPLACE OPERATOR
目的
プロジェクト

13.23. NODE TUNING OPERATOR
目的
プロジェクト

13.24. OPENSHIFT API SERVER OPERATOR
目的
プロジェクト
CRD

13.25. PROMETHEUS OPERATOR
目的
プロジェクト

169
169
169
169
169
169
170
170
170
170
170
170
170
170
170
171
171
171
171
171
171
171

OpenShift Container Platform 4.4 Operator

6

目次

7

第1章 OPERATOR について
概念的に、Operator は人間の運用上のナレッジを使用し、これをコンシューマーと簡単に共有できる
ソフトウェアにエンコードします。

Operator は、ソフトウェアの他の部分を実行する運用上の複雑さを軽減するソフトウェアの特定の部
分で設定されます。Operator はソフトウェアベンダーのエンジニアリングチームの拡張機能のように
動作し、(OpenShift Container Platform などの) Kubernetes 環境を監視し、その最新状態に基づいてリ
アルタイムの意思決定を行います。高度な Operator はアップグレードをシームレスに実行し、障害に
自動的に対応するように設計されており、時間の節約のためにソフトウェアのバックアッププロセスを
省略するなどのショートカットを実行することはありません。

技術的には、Operator は Kubernetes アプリケーションをパッケージ化し、デプロイし、管理する方法
です。

Kubernetes アプリケーションは、Kubernetes にデプロイされ、Kubernetes API および kubectl または
oc ツールを使用して管理されるアプリケーションです。Kubernetes を最大限に活用するには、
Kubernetes 上で実行されるアプリケーションを提供し、管理するために拡張できるように一連の総合
的な API が必要です。Operator は、Kubernetes 上でこのタイプのアプリケーションを管理するランタ
イムと見なすことができます。

1.1. OPERATOR を使用する理由

Operator は以下を提供します。

インストールおよびアップグレードの反復性。

すべてのシステムコンポーネントの継続的なヘルスチェック。

OpenShift コンポーネントおよび ISV コンテンツの OTA (Over-the-air) 更新。

フィールドエンジニアからの知識をカプセル化し、1 または 2 ユーザーだけでなく、すべての
ユーザーに展開する場所。

Kubernetes にデプロイする理由

Kubernetes (延長線上で考えると OpenShift Container Platform も含まれる) には、シークレットの
処理、負荷分散、サービスの検出、自動スケーリングなどの、オンプレミスおよびクラウドプロバ
イダーで機能する、複雑な分散システムをビルドするために必要なすべてのプリミティブが含まれ
ます。

アプリケーションを Kubernetes API および kubectl ツールで管理する理由

これらの API は機能的に充実しており、すべてのプラットフォームのクライアントを持ち、クラス
ターのアクセス制御/監査機能にプラグインします。Operator は Kubernetes の拡張メカニズム、カ
スタムリソース定義 (CRD、Custom Resource Definition) を使用するので、 MongoDB などの カス
タムオブジェクトはビルトインされた、ネイティブ Kubernetes オブジェクトのように表示され、機
能します。

Operator とサービスブローカーとの比較

サービスブローカーは、アプリケーションのプログラムによる検出およびデプロイメントを行うた
めの 1 つの手段です。ただし、これは長期的に実行されるプロセスではないため、アップグレード、
フェイルオーバー、またはスケーリングなどの Day 2 オペレーションを実行できません。カスタマ
イズおよびチューニング可能なパラメーターはインストール時に提供されるのに対し、Operator は
クラスターの最新の状態を常に監視します。クラスター外のサービスを使用する場合は、これらを
サービスブローカーで使用できますが、Operator もこれらのクラスター外のサービスに使用できま
す。

OpenShift Container Platform 4.4 Operator

8

https://marketplace.redhat.com/en-us/products/mongodb-enterprise-advanced-from-ibm

1.2. OPERATOR FRAMEWORK

Operator Framework は、上記のカスタマーエクスペリエンスに関連して提供されるツールおよび機能
のファミリーです。これは、コードを作成するためだけにあるのではなく、Operator のテスト、実
行、および更新などの重要な機能を実行します。Operator Framework コンポーネントは、これらの課
題に対応するためのオープンソースツールで設定されています。

Operator SDK

Operator SDK は Kubernetes API の複雑性を把握していなくても、それぞれの専門知識に基づいて
独自の Operator のブートストラップ、ビルド、テストおよびパッケージ化を実行できるよう
Operator の作成者を支援します。

Operator Lifecycle Manager

Operator Lifecycle Manager は、クラスター内の Operator のインストール、アップグレード、ロー
ルベースのアクセス制御 (RBAC) を制御します。OpenShift Container Platform 4.4 ではデフォルト
でデプロイされます。

Operator レジストリー

Operator レジストリーは、クラスターで作成するための ClusterServiceVersion (CSV) およびカスタ
ムリソース定義 (CRD) を保存し、パッケージおよびチャネルについての Operator メタデータを保
存します。これは Kubernetes または OpenShift クラスターで実行され、この Operator カタログ
データを OLM に指定します。

OperatorHub

OperatorHub は、クラスター管理者がクラスター上にインストールする Operator を検出し、選択
するための Web コンソールです。OpenShift Container Platform ではデフォルトでデプロイされま
す。

Operator Metering

Operator Metering は、クラスター上で Day 2 管理についての Operator の運用上のメトリクスを収
集し、使用状況のメトリクスを集計します。

これらのツールは組み立て可能なツールとして設計されているため、役に立つと思われるツールを使用
できます。

1.3. OPERATOR 成熟度モデル

Operator 内にカプセル化されている管理ロジックの複雑さのレベルはさまざまです。また、このロ
ジックは通常 Operator によって表されるサービスのタイプによって大きく変わります。

ただし、大半の Operator に含まれる特定の機能セットについては、Operator のカプセル化された操作
の成熟度を一般化することができます。このため、以下の Operator 成熟度モデルは、 Operator の一般
的な Day 2 オペレーションについての 5 つのフェーズの成熟度を定義しています。

図1.1 Operator 成熟度モデル

第1章 OPERATOR について

9

図1.1 Operator 成熟度モデル

上記のモデルでは、これらの機能を Operator SDK の Helm、Go、および Ansible 機能で最適に開発す
る方法も示します。

OpenShift Container Platform 4.4 Operator

10

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について

2.1. OPERATOR LIFECYCLE MANAGER のワークフローおよびアーキテク
チャー

以下では、OpenShift Container Platform における Operator Lifecycle Manager (OLM) の概念および
アーキテクチャーの概要を説明します。

2.1.1. Operator Lifecycle Manager の概要

OpenShift Container Platform 4.4 では、 Operator Lifecycle Manager (OLM) を使用することによ
り、ユーザーはすべての Operator およびクラスター全体で実行される関連サービスをインストール
し、更新し、管理することができます。これは、Kubernetes のネイティブアプリケーション
(Operator) を効果的かつ自動化された拡張可能な方法で管理するために設計されたオープンソースツー
ルキットの Operator Framework の一部です。

図2.1 Operator Lifecycle Manager ワークフロー

OLM は OpenShift Container Platform 4.4 でデフォルトで実行されます。これは、クラスター管理者が
クラスターで実行されている Operator をインストールし、アップグレードし、アクセスをこれに付与
するのに役立ちます。OpenShift Container Platform Web コンソールは、クラスター管理者が
Operator をインストールしたり、クラスターで利用可能な Operator のカタログを使用できるように特
定のプロジェクトアクセスを付与したりするのに使用する管理画面を提供します。

開発者の場合には、セルフサービスを使用することで、専門的な知識がなくてもデータベースのインス
タンスのプロビジョニングや設定、またモニタリング、ビッグデータサービスなどを実行できます。
Operator にそれらに関するナレッジが織り込まれているためです。

2.1.2. ClusterServiceVersion (CSV)

ClusterServiceVersion (CSV) は、Operator Lifecycle Manager (OLM) のクラスターでの Operator の
実行を支援する Operator メタデータから作成される YAML マニフェストです。

CSV は、ユーザーインターフェイスにロゴ、説明、およびバージョンなどの情報を設定するために使用
される Operator コンテナーイメージを伴うメタデータです。また、これは Operator が必要とする
RBAC ルールやそれが管理したり、依存したりするカスタムリース (Custom Resource、CR) などの、
Operator を実行するために必要な技術情報の情報源にもなります。

CSV は以下で設定されます。

メタデータ

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について

11

https://github.com/operator-framework

アプリケーションメタデータ:

名前、説明、バージョン (semver 準拠)、リンク、ラベル、アイコンなど

インストールストラテジー

タイプ: Deployment

サービスアカウントおよび必要なパーミッションのセット

Deployment のセット。

CRD

タイプ

Owned: サービスで管理されます。

Required: サービスが実行されるためにクラスターに存在する必要があります。

Resources: Operator が対話するリソースの一覧です。

Descriptors: 意味情報を提供するために CRD 仕様およびステータスフィールドにアノテー
ションを付けます。

2.1.3. OLM での Operator のインストールおよびアップグレードのワークフロー

Operator Lifecycle Manager (OLM) エコシステムでは、以下のリソースを使用して Operator インス
トールおよびアップグレードを解決します。

ClusterServiceVersion (CSV)

CatalogSource

Subscription

CSV で定義される Operator メタデータは CatalogSource というコレクションに保存できます。OLM
は CatalogSource を使用します。これは Operator Registry API を使用して利用可能な Operator やイン
ストールされた Operator のアップグレードについてクエリーします。

図2.2 CatalogSource の概要

CatalogSource 内で、Operator は パッケージ と チャネル という更新のストリームに編成されます。

OpenShift Container Platform 4.4 Operator

12

https://github.com/operator-framework/operator-registry

CatalogSource 内で、Operator は パッケージ と チャネル という更新のストリームに編成されます。
これは、Web ブラウザーのような継続的なリリースサイクルの OpenShift Container Platform や他のソ
フトウェアで使用される更新パターンです。

図2.3 CatalogSource のパッケージおよびチャネル

ユーザーは Subscription の特定の CatalogSource の特定のパッケージおよびチャネルを指定できます
(例: etcd パッケージおよびその alpha チャネル)。Subscription が namespace にインストールされて
いないパッケージに対して作成されると、そのパッケージの最新 Operator がインストールされます。

注記

OLM では、バージョンの比較が意図的に避けられます。そのため、所定の catalog →
channel → package パスから利用可能な latest または newest Operator が必ずしも最も
高いバージョン番号である必要はありません。これは Git リポジトリーの場合と同様
に、チャネルの Head リファレンスとして見なされます。

各 CSV には、これが置き換える Operator を示唆する replaces パラメーターがあります。これによ
り、OLM でクエリー可能な CSV のグラフが作成され、更新がチャネル間で共有されます。チャネル
は、更新グラフのエントリーポイントと見なすことができます。

図2.4 利用可能なチャネル更新についての OLM グラフ

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について

13

図2.4 利用可能なチャネル更新についての OLM グラフ

以下に例を示します。

パッケージのチャネル

CatalogSource、パッケージ、チャネルおよび CSV がある状態で、OLM が更新のクエリーを実行でき
るようにするには、カタログが入力された CSV の置き換え (replaces) を実行する単一 CSV を明確に
かつ確定的に返すことができる必要があります。

2.1.3.1. アップグレードパスの例

アップグレードシナリオのサンプルについて、CSV バージョン 0.1.1 に対応するインストールされた
Operator について見てみましょう。OLM は CatalogSource をクエリーし、新規 CSV バージョン 0.1.3
についてのサブスクライブされたチャネルのアップグレードを検出します。これは、古いバージョンで
インストールされていない CSV バージョン 0.1.2 を置き換えます。その後、さらに古いインストールさ
れた CSV バージョン 0.1.1 を置き換えます。

OLM は、チャネルヘッドから CSV で指定された replaces フィールドで以前のバージョンに戻り、
アップグレードパス 0.1.3 → 0.1.2 → 0.1.1 を判別します。矢印の方向は前者が後者を置き換えることを
示します。OLM は、チャネルヘッドに到達するまで Operator を 1 バージョンずつアップグレードしま
す。

このシナリオでは、OLM は Operator バージョン 0.1.2 をインストールし、既存の Operator バージョ
ン 0.1.1 を置き換えます。その後、Operator バージョン 0.1.3 をインストールし、直前にインストール
された Operator バージョン 0.1.2 を置き換えます。この時点で、インストールされた Operator のバー
ジョン 0.1.3 はチャネルヘッドに一致し、アップグレードは完了します。

packageName: example
channels:
- name: alpha
 currentCSV: example.v0.1.2
- name: beta
 currentCSV: example.v0.1.3
defaultChannel: alpha

OpenShift Container Platform 4.4 Operator

14

2.1.3.2. アップグレードの省略

OLM のアップグレードの基本パスは以下のとおりです。

CatalogSource は Operator への 1 つ以上の更新に応じて更新されます。

OLM は、CatalogSource に含まれる最新バージョンに到達するまで、Operator のすべての
バージョンを横断します。

ただし、この操作の実行は安全でない場合があります。公開されているバージョンの Operator がクラ
スターにインストールされていない場合、そのバージョンによって深刻な脆弱性が導入される可能性が
あるなどの理由でその Operator をがクラスターにインストールできないことがあります。

この場合、OLM は以下の 2 つのクラスターの状態を考慮に入れて、それらの両方に対応する更新グラ
フを提供する必要があります。

問題のある中間 Operator がクラスターによって確認され、かつインストールされている。

問題のある中間 Operator がクラスターにまだインストールされていない。

OLM は、新規カタログを送り、省略されたリリースを追加することで、クラスターの状態や問題のあ
る更新が発見されたかどうかにかかわらず、単一の固有の更新を常に取得することができます。

以下は例になります。

省略されたリリースの CSV

古い CatalogSource と 新規 CatalogSource についての以下の例を見てみましょう。

図2.5 更新のスキップ

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: etcdoperator.v0.9.2
 namespace: placeholder
 annotations:
spec:
 displayName: etcd
 description: Etcd Operator
 replaces: etcdoperator.v0.9.0
 skips:
 - etcdoperator.v0.9.1

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について

15

図2.5 更新のスキップ

このグラフは、以下を示しています。

古い CatalogSource の Operator には、新規 CatalogSource の単一の置き換えがある。

新規 CatalogSource の Operator には、新規 CatalogSource の単一の置き換えがある。

問題のある更新がインストールされていない場合、これがインストールされることはない。

2.1.3.3. 複数 Operator の置き換え

説明されているように新規 CatalogSource を作成する場合、1 つの Operator を置き換える (replace)
が、複数バージョンを省略 (skip) できる CSV を公開する必要があります。これは、skipRange アノ
テーションを使用して実行できます。

olm.skipRange: <semver_range>

ここで <semver_range> には、semver ライブラリー でサポートされるバージョン範囲の形式が使用さ
れます。

カタログで更新を検索する場合、チャネルのヘッドに skipRange アノテーションがあり、現在インス
トールされている Operator にその範囲内のバージョンフィールドがある場合、OLM はチャネル内の最
新エントリーに対して更新されます。

以下は動作が実行される順序になります。

1. Subscription の sourceName で指定されるソースのチャネルヘッド (省略する他の条件が満た
されている場合)。

OpenShift Container Platform 4.4 Operator

16

https://github.com/blang/semver#ranges

2. sourceName で指定されるソースの現行バージョンを置き換える次の Operator。

3. Subscription に表示される別のソースのチャネルヘッド (省略する他の条件が満たされている場
合)。

4. Subscription に表示されるソースの現行バージョンを置き換える次の Operator。

以下は例になります。

skipRange のある CSV

2.1.3.4. z-stream サポート

z-streamまたはパッチリリースは、同じマイナーバージョンの以前のすべての z-stream リリースを置
き換える必要があります。OLM は、メジャー、マイナーまたはパッチバージョンを区別せず、カタロ
グ内で正確なグラフを作成する必要があります。

つまり、OLM では古い CatalogSource のグラフを使用し、上記のように新規 CatalogSource のグラフ
を生成する必要があります。

図2.6 複数 Operator の置き換え

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: elasticsearch-operator.v4.1.2
 namespace: <namespace>
 annotations:
 olm.skipRange: '>=4.1.0 <4.1.2'

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について

17

図2.6 複数 Operator の置き換え

このグラフは、以下を示しています。

古い CatalogSource の Operator には、新規 CatalogSource の単一の置き換えがある。

新規 CatalogSource の Operator には、新規 CatalogSource の単一の置き換えがある。

古い CatalogSource の z-stream リリースは、新規 CatalogSource の最新 z-stream リリースに
更新される。

使用不可のリリースは仮想グラフノードと見なされる。それらのコンテンツは存在する必要が
なく、レジストリーはグラフが示すように応答することのみが必要になります。

2.1.4. Operator Lifecycle Manager アーキテクチャー

Operator Lifecycle Manager は、OLM Operator および Catalog Operator の 2 つの Operator で設定さ
れています。

これらの Operator はそれぞれ OLM フレームワークのベースとなるカスタムリソース定義 (Custom
Resource Definition、CRD) を管理します。

表2.1 OLM およびカタログ Operator で管理される CRD

OpenShift Container Platform 4.4 Operator

18

リソース 短縮
名

所有
する
Oper
ator

説明

ClusterService
Version

csv OLM アプリケーションのメタデータ: 名前、バージョン、アイコン、必須リ
ソース、インストールなど。

InstallPlan ip カタ
ログ

CSV を自動的にインストールするか、またはアップグレードするために
作成されるリソースの計算された一覧。

CatalogSourc
e

cats
rc

カタ
ログ

CSV、CRD、およびアプリケーションを定義するパッケージのリポジト
リー。

Subscription sub カタ
ログ

パッケージのチャネルを追跡して CSV を最新の状態に保つために使用さ
れます。

OperatorGrou
p

og OLM 複数の namespace をグループ化し、それらを Operator で使用できるよ
うに準備するために使用されます。

これらの Operator のそれぞれはリソースの作成も行います。

表2.2 OLM およびカタログ Operator によって作成されるリソース

リソース 所有する Operator

Deployment OLM

ServiceAccount

(Cluster)Role

(Cluster)RoleBinding

Custom Resource Definition (CRD) カタログ

ClusterServiceVersion (CSV)

2.1.4.1. OLM Operator

OLM Operator は、CSV で指定された必須リソースがクラスター内にあることが確認された後に CSV
リソースで定義されるアプリケーションをデプロイします。

OLM Operator は必須リソースの作成には関与せず、ユーザーが CLI を使用してこれらのリソースを手
動で作成したり、カタログ Operator を使用してこれらのリソースを作成することを選択することがで
きます。このタスクの分離により、アプリケーションに OLM フレームワークをどの程度活用するかに
関連してユーザーによる追加機能の購入を可能にします。

OLM Operator はすべての namespace を監視するように設定されることが多い一方で、それらすべて
が別々の namespace を管理する限り、他の OLM Operator と並行して操作することができます。

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について

19

OLM Operator のワークフロー

namespace で ClusterServiceVersion (CSV) の有無を確認し、要件を満たしていることを確認
します。その場合、CSV のインストールストラテジーを実行します。

注記

CSV は、インストールストラテジーの実行を可能にするには、OperatorGroup
のアクティブなメンバーである必要があります。

2.1.4.2. カタログ Operator

カタログ Operator は CSV およびそれらが指定する必須リソースを解決し、インストールします。ま
た、CatalogSource でチャネル内のパッケージへの更新の有無を確認し、それらを利用可能な最新バー
ジョンに (オプションで自動的に) アップグレードします。

チャネル内のパッケージを追跡する必要のあるユーザーは、必要なパッケージ、チャネル、および更新
のプルに使用する CatalogSource を設定する Subscription リソースを作成します。更新が見つかると、
ユーザーに代わって適切な InstallPlan の namespace への書き込みが行われます。

また、ユーザーは必要な CSV および承認ストラテジーの名前を含む InstallPlan リソースを直接作成で
き、カタログ Operator はすべての必須リソースの作成の実行計画を作成します。これが承認される
と、カタログ Operator はすべてのリソースを InstallPlan に作成します。 その後、これが単独で OLM
Operator の要件を満たすと、CSV のインストールに移行します。

カタログ Operator のワークフロー

名前でインデックス化される CRD および CSV のキャッシュがあることを確認します。

ユーザーによって作成された未解決の InstallPlan の有無を確認します。

要求される名前に一致する CSV を検索し、これを解決済みリソースとして追加します。

管理対象または必須の CRD のそれぞれについて、これを解決済みリソースとして追加しま
す。

必須 CRD のそれぞれについて、これを管理する CSV を検索します。

解決済みの InstallPlan の有無を確認し、それについての検出されたすべてのリソースを作成し
ます (ユーザーによって、または自動的に承認される場合)。

CatalogSource および Subscription の有無を確認し、それらに基づいて InstallPlan を作成しま
す。

2.1.4.3. カタログレジストリー

カタログレジストリーは、クラスター内での作成用に CSV および CRD を保存し、パッケージおよび
チャネルについてのメタデータを保存します。

パッケージマニフェスト は、パッケージアイデンティティーを CSV のセットに関連付けるカタログレ
ジストリー内のエントリーです。パッケージ内で、チャネルは特定の CSV を参照します。CSV は置き
換え対象の CSV を明示的に参照するため、パッケージマニフェストはカタログ Operator に対し、CSV
をチャネル内の最新バージョンに更新するために必要なすべての情報を提供します (各中間バージョン
をステップスルー)。

OpenShift Container Platform 4.4 Operator

20

2.1.5. 公開されるメトリクス

Operator Lifecycle Manager (OLM) は、Prometheus ベースの OpenShift Container Platform クラス
ターモニタリングスタックで使用される特定の OLM 固有のリソースを公開します。

表2.3 OLM によって公開されるメトリクス

名前 説明

catalog_source
_count

CatalogSource の数。

csv_abnormal ClusterServiceVersion (CSV) を調整する際に、(インストールされていない場合な
ど)CSV バージョンが Succeeded 以外の状態にあることを表しま
す。name、namespace、 phase、reason、および version ラベルが含まれま
す。Prometheus アラートは、このメトリクスが存在する場合に作成されます。

csv_count 正常に登録された CSV の数。

csv_succeeded CSV を調整する際に、CSV バージョンが Succeeded 状態 (値 1) にあるか、またはそ
うでないか (値 0) を表します。name、namespace、および version ラベルが含ま
れます。

csv_upgrade_c
ount

CSV アップグレードの単調 (monotonic) カウント。

install_plan_co
unt

InstallPlan の数。

subscription_co
unt

Subscription の数。

subscription_sy
nc_total

Subscription 同期の単調 (monotonic) カウント。channel、installed CSV、および
Subscription name ラベルが含まれます。

2.2. OPERATOR LIFECYCLE MANAGER の依存関係の解決

本書では、OpenShift Container Platform の Operator Lifecycle Manager (OLM) 内の依存関係の解決お
よびカスタムリソース定義 (CRD) アップグレードライフサイクルについて説明します。

2.2.1. 依存関係の解決

OLM は、実行中の Operator の依存関係の解決およびアップグレードライフサイクルを管理します。多
くの場合、OLM が直面する問題は yum や rpm などの他のオペレーティングシステムパッケージマ
ネージャーと同様です。

ただし、OLM には通常同様のシステムには 1 つの制約があります。それは、Opearator は常に実行中で
あるため、OLM は相互に機能しない Operator のセットの共存を防ごうとする点です。

つまり、これは OLM が以下を実行しないことを意味します。

提供できない API を必要とする Operator のセットのインストール

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について

21

1

1

Operator と依存関係のあるものに障害を発生させる仕方での Operator の更新

2.2.2. カスタムリソース定義 (Custom Resource Definition、CRD) のアップグレード

OLM は、単一の Cluster Service Version (CSV) によって所有されている場合にはカスタムリソース定
義 (CRD) をすぐにアップグレードします。CRD が複数の CSV によって所有されている場合、CRD
は、以下の後方互換性の条件のすべてを満たす場合にアップグレードされます。

現行 CRD の既存の有効にされたバージョンすべてが新規 CRD に存在する。

検証が新規 CRD の検証スキーマに対して行われる場合、CRD の有効にされたバージョンに関
連付けられる既存インスタンスまたはカスタムリソース (CR) すべてが有効である。

2.2.2.1. 新規 CRD バージョンの追加

手順

CRD の新規バージョンを追加するには、以下を実行します。

1. versions セクションに CRD リソースの新規エントリーを追加します。
たとえば、現在の CRD に 1 つのバージョン v1alpha1 があり、新規バージョン v1beta1 を追加
し、これを新規のストレージバージョンとしてマークをする場合に、以下を実行します。

v1beta1 の新規エントリーを追加します。

2. CSV で新規バージョンが使用されることが意図される場合は、CSV の owned セクションの
CRD の参照バージョンが更新されていることを確認します。

version を更新します。

3. 更新された CRD および CSV をバンドルにプッシュします。

2.2.2.2. CRD バージョンの非推奨または削除

OLM は、CRD の有効にされたバージョンがすぐに削除されることを許可しません。その代わりに、
CRD の非推奨バージョンを CRD の served フィールドを false に設定して無効にする必要がありま
す。その後に、無効にされたバージョンではないバージョンを後続の CRD アップグレードで削除でき
ます。

versions:
 - name: v1alpha1
 served: true
 storage: false
 - name: v1beta1 1
 served: true
 storage: true

customresourcedefinitions:
 owned:
 - name: cluster.example.com
 version: v1beta1 1
 kind: cluster
 displayName: Cluster

OpenShift Container Platform 4.4 Operator

22

1

1 2

手順

特定バージョンの CRD を非推奨にし、削除するには、以下を実行します。

1. 非推奨バージョンを non-serving (無効にされたバージョン) とマークして、このバージョンが
使用されなくなり、後続のアップグレードで削除される可能性があることを示します。以下に
例を示します。

false に設定します。

2. 非推奨となるバージョンが現在 storage バージョンの場合、storage バージョンを有効にされ
たバージョンに切り替えます。以下に例を示します。

storage フィールドを適宜更新します。

注記

CRD から storage バージョンであるか、このバージョンであった特定のバー
ジョンを削除するために、そのバージョンが CRD のステータスの
storedVersion から削除される必要があります。OLM は、保存されたバージョ
ンが新しい CRD に存在しないことを検知した場合に、この実行を試行します。

3. 上記の変更内容で CRD をアップグレードします。

4. 後続のアップグレードサイクルでは、無効にされたバージョンを CRD から完全に削除できま
す。以下は例になります。

5. 該当バージョンが CRD から削除される場合、CSV の owned セクションにある CRD の参照
バージョンも更新されていることを確認します。

2.2.3. 依存関係解決のシナリオ例

以下の例で、プロバイダー は CRD または APIService を所有する Operator です。

versions:
 - name: v1alpha1
 served: false 1
 storage: true

versions:
 - name: v1alpha1
 served: false
 storage: false 1
 - name: v1beta1
 served: true
 storage: true 2

versions:
 - name: v1beta1
 served: true
 storage: true

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について

23

例: 依存 API を非推奨にする
A および B は API である (例: CRD):

A のプロバイダーは B に依存する。

B のプロバイダーには Subscription がある。

B のプロバイダーは C を提供するように更新するが、B を非推奨にする。

この結果は以下のようになります。

B にはプロバイダーがなくなる。

A は機能しなくなる。

これは OLM がアップグレードストラテジーで回避するケースです。

例: バージョンのデッドロック
A および B は API である:

A のプロバイダーには B が必要。

B のプロバイダーには A が必要。

A のプロバイダーは (A2 を提供し、B2 を必要とするように) 更新され、A を非推奨にする。

B のプロバイダーは (B2 を提供し、A2 を必要とするように) 更新され、B を非推奨にする。

OLM が B を同時に更新せずに A を更新しようとする場合や、その逆の場合、OLM は、新しい互換性
のあるセットが見つかったとしても Operator の新規バージョンに進むことができません。

これは OLM がアップグレードストラテジーで回避するもう 1 つのケースです。

2.3. OPERATORGROUP

以下では、OpenShift Container Platform における Operator Lifecycle Manager (OLM) の
OperatorGroup の使用について説明します。

2.3.1. OperatorGroup

OperatorGroup は、マルチテナント設定を OLM でインストールされた Operator に提供する OLM リ
ソースです。OperatorGroup は、そのメンバー Operator に必要な RBAC アクセスを生成するために使
用するターゲット namespace を選択します。

ターゲット namespace のセットは、ClusterServiceVersion (CSV) の olm.targetNamespaces アノテー
ションに保存されるコンマ区切りの文字列によって指定されます。このアノテーションは、メンバー
Operator の CSV インスタンスに適用され、それらのデプロインメントに展開されます。

2.3.2. OperatorGroup メンバーシップ

Operator は、以下の条件が true の場合に OperatorGroup の メンバー とみなされます。

Operator の CSV が OperatorGroup と同じ namespace にある。

Operator の CSV の InstallMode は OperatorGroup がターゲットに設定する namespace の
セットをサポートする。

OpenShift Container Platform 4.4 Operator

24

InstallMode は InstallModeType フィールドおよびブール値の Supported フィールドで設定される。
CSV の仕様には、4 つの固有の InstallModeTypes の InstallMode のセットを含めることができます。

表2.4 InstallMode およびサポートされる OperatorGroup

InstallMode タイプ 説明

OwnNamespace Operator は、独自の namespace を選択する OperatorGroup のメンバー
にすることができます。

SingleNamespace Operator は 1 つの namespace を選択する OperatorGroup のメンバーに
することができます。

MultiNamespace Operator は複数の namespace を選択する OperatorGroup のメンバーに
することができます。

AllNamespaces Operator はすべての namespace を選択する OperatorGroup のメンバー
にすることができます (設定されるターゲット namespace は空の文字列
"" です)。

注記

CSV の仕様が InstallModeType のエントリーを省略する場合、そのタイプは暗黙的にこ
れをサポートする既存エントリーによってサポートが示唆されない限り、サポートされ
ないものとみなされます。

2.3.3. ターゲット namespace の選択

spec.targetNamespaces パラメーターを使用して OperatorGroup のターゲット namespace に名前を
明示的に指定することができます。

または、spec.selector パラメーターでラベルセレクターを使用して namespace を指定することもでき
ます。

重要

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
spec:
 targetNamespaces:
 - my-namespace

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
 spec:
 selector:
 cool.io/prod: "true"

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について

25

重要

spec.targetNamespaces で複数の namespace を一覧表示したり、spec.selector でラ
ベルセレクターを使用したりすることは推奨されません。OperatorGroup の複数のター
ゲット namespace のサポートは今後のリリースで取り除かれる可能性があります。

spec.targetNamespaces と spec.selector の両方が定義されている場合、 spec.selector は無視され
ます。または、spec.selector と spec.targetNamespaces の両方を省略し、global OperatorGroup を
指定できます。 これにより、すべての namespace が選択されます。

選択された namespace の解決済みのセットは OperatorGroup の status.namespaces フィールドに表
示されます。グローバル OperatorGroup の status.namespace には空の文字列 ("") が含まれます。 こ
れは、消費する Operator に対し、すべての namespace を監視するように示唆します。

2.3.4. OperatorGroup CSV アノテーション

OperatorGroup のメンバー CSV には以下のアノテーションがあります。

アノテーション 説明

olm.operatorGroup=<group_name> OperatorGroup の名前が含まれます。

olm.operatorGroupNamespace=
<group_namespace>

OperatorGroup の namespace が含まれます。

olm.targetNamespaces=
<target_namespaces>

OperatorGroup のターゲット namespace 選択を一覧
表示するコンマ区切りの文字列が含まれます。

注記

olm.targetNamespaces 以外のすべてのアノテーションがコピーされた CSV と共に含ま
れます。olm.targetNamespaces アノテーションをコピーされた CSV で省略すると、テ
ナント間のターゲット namespace の重複が回避されます。

2.3.5. 提供される API アノテーション

OperatorGroup によって提供される GroupVersionKinds (GVK) についての情報が olm.providedAPIs
アノテーションに表示されます。アノテーションの値は、コンマで区切られた <kind>.<version>.
<group> で設定される文字列です。OperatorGroup のすべてのアクティブメンバーの CSV によって提
供される CRD および APIService の GVK が含まれます。

PackageManifest リソースを提供する単一のアクティブメンバー CSV を含む OperatorGroup の以下の
例を確認してください。

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace

apiVersion: operators.coreos.com/v1
kind: OperatorGroup

OpenShift Container Platform 4.4 Operator

26

2.3.6. ロールベースのアクセス制御

OperatorGroup の作成時に、3 つの ClusterRole が生成されます。それぞれには、以下の示すように
ClusterRoleSelector がラベルに一致するように設定された単一の AggregationRule が含まれます。

ClusterRole 一致するラベル

<operatorgroup_name>-admin olm.opgroup.permissions/aggregate-to-
admin: <operatorgroup_name>

<operatorgroup_name>-edit olm.opgroup.permissions/aggregate-to-edit:
<operatorgroup_name>

<operatorgroup_name>-view olm.opgroup.permissions/aggregate-to-view:
<operatorgroup_name>

以下の RBAC リソースは、CSV が AllNamespaces InstallMode のあるすべての namespace を監視し
ており、理由が InterOperatorGroupOwnerConflict の失敗状態にない限り、CSV が OperatorGroup
のアクティブメンバーになる際に生成されます。

CRD からの各 API リソースの ClusterRole

APIService からの各 API リソースの ClusterRole

追加のロールおよびロールバインディング

表2.5 CRD からの各 API リソース用に生成された ClusterRole

ClusterRole 設定

metadata:
 annotations:
 olm.providedAPIs: PackageManifest.v1alpha1.packages.apps.redhat.com
 name: olm-operators
 namespace: local
 ...
spec:
 selector: {}
 serviceAccount:
 metadata:
 creationTimestamp: null
 targetNamespaces:
 - local
status:
 lastUpdated: 2019-02-19T16:18:28Z
 namespaces:
 - local

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について

27

<kind>.<group>-<version>-admin <kind> の動詞

*

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

<kind>.<group>-<version>-edit <kind> の動詞

create

update

patch

delete

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

<kind>.<group>-<version>-view <kind> の動詞

get

list

watch

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

ClusterRole 設定

OpenShift Container Platform 4.4 Operator

28

<kind>.<group>-<version>-view-crdview Verbs on apiextensions.k8s.io
customresourcedefinitions <crd-name>:

get

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

ClusterRole 設定

表2.6 APIService からの各 API リソース用に生成された ClusterRole

ClusterRole 設定

<kind>.<group>-<version>-admin <kind> の動詞

*

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

<kind>.<group>-<version>-edit <kind> の動詞

create

update

patch

delete

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について

29

<kind>.<group>-<version>-view <kind> の動詞

get

list

watch

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

ClusterRole 設定

追加のロールおよびロールバインディング

CSV が * が含まれる 1 つのターゲット namespace を定義する場合、ClusterRole と対応する
ClusterRoleBinding が CSV のパーミッションフィールドに定義されるパーミッションごとに生
成されます。生成されたすべてのリソースには olm.owner: <csv_name> および
olm.owner.namespace: <csv_namespace> ラベルが付与されます。

CSV が * が含まれる 1 つのターゲット namespace を定義 しない 場合、olm.owner:
<csv_name> および olm.owner.namespace: <csv_namespace> ラベルの付いた Operator
namespace にあるすべてのロールおよびロールバインディングがターゲット namespace にコ
ピーされます。

2.3.7. コピーされる CSV

OLM は、それぞれの OperatorGroup のターゲット namespace の OperatorGroup のすべてのアクティ
ブな CSV のコピーを作成します。コピーされる CSV の目的は、ユーザーに対して、特定の Operator
が作成されるリソースを監視するように設定されたターゲット namespace について通知することにあ
ります。コピーされる CSV にはステータスの理由 Copied があり、それらのソース CSV のステータス
に一致するように更新されます。olm.targetNamespaces アノテーションは、クラスター上でコピーさ
れる CSV が作成される前に取られます。ターゲット namespace 選択を省略すると、テナント間のター
ゲット namespace の重複が回避されます。コピーされる CSV はそれらのソース CSV が存在しなくな
るか、またはそれらのソース CSV が属する OperatorGroup がコピーされた CSV の namespace をター
ゲットに設定しなくなると削除されます。

2.3.8. 静的 OperatorGroup

OperatorGroup はその spec.staticProvidedAPIs フィールドが true に設定されると 静的 になりま
す。その結果、OLM は OperatorGroup の olm.providedAPIs アノテーションを変更しません。つま
り、これを事前に設定することができます。これは、ユーザーが OperatorGroup を使用して
namespace のセットでリソースの競合を防ぐ必要がある場合で、それらのリソースの API を提供する
アクティブなメンバーの CSV がない場合に役立ちます。

以下は、something.cool.io/cluster-monitoring: "true" アノテーションのあるすべての namespace の
Prometheus リソースを保護する OperatorGroup の例です。

apiVersion: operators.coreos.com/v1
kind: OperatorGroup

OpenShift Container Platform 4.4 Operator

30

2.3.9. OperatorGroup の交差部分

2 つの OperatorGroup は、それらのターゲット namespace セットの交差部分が空のセットではな
く、olm.providedAPIs アノテーションで定義されるそれらの指定 API セットの交差部分が空のセット
ではない場合に、 交差部分のある指定 API があると見なされます。

これによって生じ得る問題として、交差部分のある指定 API を持つ複数の OperatorGroup は、一連の
交差部分のある namespace で同じリソースに関して競合関係になる可能性があります。

注記

交差ルールを確認すると、OperatorGroup の namespace は常に選択されたターゲット
namespace の一部として組み込まれます。

交差のルール
アクティブメンバーの CSV が同期する際はいつでも、OLM はクラスターで、CSV の OperatorGroup
とそれ以外のすべての間での交差部分のある指定 API のセットについてクエリーします。その後、
OLM はそのセットが空のセットであるかどうかを確認します。

true であり、CSV の指定 API が OperatorGroup のサブセットである場合:

移行を継続します。

true であり、CSV の指定 API が Operator Group のサブセット ではない 場合:

OperatorGroup が静的である場合:

CSV に属するすべてのデプロイメントをクリーンアップします。

ステータスの理由 CannotModifyStaticOperatorGroupProvidedAPIs のある失敗状態
に CSV を移行します。

OperatorGroup が静的 ではない 場合:

OperatorGroup の olm.providedAPIs アノテーションを、それ自体と CSV の指定 API
の集合に置き換えます。

false であり、CSV の指定 API が OperatorGroupt のサブセット ではない 場合:

CSV に属するすべてのデプロイメントをクリーンアップします。

ステータスの理由 InterOperatorGroupOwnerConflict のある失敗状態に CSV を移行しま
す。

metadata:
 name: cluster-monitoring
 namespace: cluster-monitoring
 annotations:
 olm.providedAPIs:
Alertmanager.v1.monitoring.coreos.com,Prometheus.v1.monitoring.coreos.com,PrometheusRule.v1.mo
nitoring.coreos.com,ServiceMonitor.v1.monitoring.coreos.com
spec:
 staticProvidedAPIs: true
 selector:
 matchLabels:
 something.cool.io/cluster-monitoring: "true"

第2章 OPERATOR LIFECYCLE MANAGER (OLM) について

31

false であり、CSV の指定 API が OperatorGroup のサブセットである場合:

OperatorGroup が静的である場合:

CSV に属するすべてのデプロイメントをクリーンアップします。

ステータスの理由 CannotModifyStaticOperatorGroupProvidedAPIs のある失敗状態
に CSV を移行します。

OperatorGroup が静的 ではない 場合:

OperatorGroup の olm.providedAPIs アノテーションを、それ自体と CSV の指定 API
間の差異部分に置き換えます。

注記

OperatorGroup によって生じる失敗状態は非終了状態です。

以下のアクションは、OperatorGroup が同期するたびに実行されます。

アクティブメンバーの CSV の指定 API のセットは、クラスターから計算されます。コピーされ
た CSV は無視されることに注意してください。

クラスターセットは olm.providedAPIs と比較され、olm.providedAPIs に追加の API が含ま
れる場合は、それらの API がプルーニングされます。

すべての namespace で同じ API を提供するすべての CSV は再びキューに入れられます。これ
により、交差部分のあるグループ間の競合する CSV に対して、それらの競合が競合する CSV
のサイズ変更または削除のいずれかによって解決されている可能性があることが通知されま
す。

2.3.10. OperatorGroup のトラブルシューティング

メンバーシップ

複数の OperatorGroup が単一の namespace にある場合、その namespace で作成されるすべ
ての CSV は TooManyOperatorGroups の理由で失敗状態に切り替わります。この理由で失敗
状態になる CSV は、それらの namespace の OperatorGroup 数が 1 になると保留状態に切り替
わります。

CSV の InstallMode がその namespace で OperatorGroup のターゲット namespace 選択をサ
ポートしない場合、CSV は UnsupportedOperatorGroup の理由で失敗状態に切り替わりま
す。この理由で失敗した状態にある CSV は、 OperatorGroup のターゲット namespace の選
択がサポートされる設定に変更されるか、または CSV の InstallMode が OperatorGroup の
target namespace 選択をサポートするように変更される場合に保留状態に切り替わります。

OpenShift Container Platform 4.4 Operator

32

第3章 OPERATORHUB について
以下では、OperatorHub のアーキテクチャーについて説明します。

3.1. OPERATORHUB の概要

OperatorHub は OpenShift Container Platform Web コンソールで利用でき、クラスター管理者が
Operator を検出し、インストールするために使用するインターフェイスです。1 回のクリックで、
Operator はクラスター外のソースからプルでき、クラスター上でインストールされ、サブスクライブ
され、エンジニアリングチームが Operator Lifecycle Manager (OLM) を使用してデプロイメント環境
で製品をセルフサービスで管理される状態にすることができます。

クラスター管理者は、以下のカテゴリーにグループ化された OperatorSource から選択することができ
ます。

カテゴリー 説明

Red Hat Operator Red Hat によってパッケージ化され、出荷される Red Hat 製品。Red Hat によってサ
ポートされます。

認定 Operator 大手独立系ソフトウェアベンダー (ISV) の製品。Red Hat は ISV とのパートナーシップ
により、パッケージ化および出荷を行います。ISV によってサポートされます。

コミュニティー
Operator

operator-framework/community-operators GitHub リポジトリーで関連するエンティ
ティーによってメンテナーンスされる、オプションで表示可能になるソフトウェア。
正式なサポートはありません。

カスタム Operator 各自でクラスターに追加する Operator。カスタム Operator を追加しない場合、カス
タムカテゴリーは Web コンソールの OperatorHub 上に表示されません。

注記

OperatorHub コンテンツは 60 分ごとに自動的に更新されます。

OperatorHub の Operator は OLM で実行されるようにパッケージ化されます。これには、Operator の
インストールおよびセキュアな実行に必要なすべての CRD、RBAC ルール、デプロイメント、および
コンテナーイメージが含まれる ClusterServiceVersion (CSV) という YAML ファイルが含まれます。ま
た、機能の詳細やサポートされる Kubernetes バージョンなどのユーザーに表示される情報も含まれま
す。

Operator SDK は、開発者が OLM および OperatorHub で使用するために Operator のパッケージ化す
ることを支援するために使用できます。お客様によるアクセスが可能な商用アプリケーションがある場
合、Red Hat の ISV パートナーポータル (connect.redhat.com) で提供される認定ワークフローを使用し
てこれを組み込むようにしてください。

追加リソース

Operator SDK の使用を開始する

ClusterServiceVersion (CSV) の生成

OLM での Operator のインストールおよびアップグレードのワークフロー

第3章 OPERATORHUB について

33

https://github.com/operator-framework/community-operators
https://connect.redhat.com
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#osdk-getting-started
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#osdk-generating-csvs
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#olm-upgrades_olm-understanding-olm

1

2

Red Hat Partner Connect

Red Hat Marketplace

3.2. OPERATORHUB アーキテクチャー

OperatorHub UI コンポーネントは、デフォルトで OpenShift Container Platform の openshift-
marketplace namespace で Marketplace Operator によって実行されます。

Marketplace Operator は OperatorHub および OperatorSource カスタムリソース定義 (CRD) を管理し
ます。

注記

一部の OperatorSource 情報は OperatorHub ユーザーインターフェイスで公開されます
が、それは独自の Operator を作成するユーザーによってのみ直接使用されます。

注記

OperatorHub は CatalogSourceConfig リソースを使用しなくなりましたが、それらは
OpenShift Container Platform で引き続きサポートされます。

3.2.1. OperatorHub CRD

OperatorHub CRD を使用して、クラスター上で OperatorHub で提供されているデフォルト
OperatorSource の状態を enabled と disabled 間で切り替えることができます。この機能は、
OpenShift Container Platform をネットワークが制限された環境で設定する際に役立ちます。

OperatorHub カスタムリソースの例

disableAllDefaultSources は、OpenShift Container Platform のインストール時にデフォルトで設
定されるすべてのデフォルトの OperatorSource の可用性を制御するオーバーライドです。

ソースごとに disabled パラメーター値を変更して、デフォルトの OperatorSource を個別に無効
にします。

3.2.2. OperatorSource CRD

それぞれの Operator について、OperatorSource CRD は Operator バンドルを保存するために使用され
る外部データストアを定義するために使用されます。

apiVersion: config.openshift.io/v1
kind: OperatorHub
metadata:
 name: cluster
spec:
 disableAllDefaultSources: true 1
 sources: [2
 {
 name: "community-operators",
 disabled: false
 }
]

OpenShift Container Platform 4.4 Operator

34

https://connect.redhat.com
https://marketplace.redhat.com

1

2

3

4

5

OperatorSource カスタムリソースの例

データストアをアプリケーションレジストリーとして識別するために、type は appregistry に設
定されます。

現時点で、Quay は OperatorHub によって使用される外部データストアであるため、エンドポイ
ントは Quay.io appregistry について https://quay.io/cnr に設定されます。

コミュニティー Operator の場合、 registryNamespace は community-operator に設定されま
す。

オプションで、displayName を、 OperatorHub UI の Operator の表示される名前に設定します。

オプションで、publisher を、OperatorHub UI に表示される Operator を公開する人または組織に
設定します。

apiVersion: operators.coreos.com/v1
kind: OperatorSource
metadata:
 name: community-operators
 namespace: marketplace
spec:
 type: appregistry 1
 endpoint: https://quay.io/cnr 2
 registryNamespace: community-operators 3
 displayName: "Community Operators" 4
 publisher: "Red Hat" 5

第3章 OPERATORHUB について

35

第4章 OPERATOR のクラスターへの追加
以下では、クラスター管理者を対象に、Operator の OpenShift Container Platform クラスターへのイ
ンストールおよび Operator を namespace にサブスクライブする方法について説明します。

4.1. OPERATORHUB からの OPERATOR のインストール

クラスター管理者は、OpenShift Container Platform Web コンソールまたは CLI を使用して
OperatorHub から Operator をインストールできます。その後、Operator を 1 つまたは複数の
namespace にサブスクライブし、クラスター上で開発者が使用できるようにできます。

インストール時に、Operator の以下の初期設定を判別する必要があります。

インストールモード

All namespaces on the cluster (default) を選択して Operator をすべての namespace にインストー
ルするか、または (利用可能な場合は) 個別の namespace を選択し、選択された namespace のみに
Operator をインストールします。この例では、All namespaces…​ を選択し、Operator をすべての
ユーザーおよびプロジェクトで利用可能にします。

更新チャネル

Operator が複数のチャネルで利用可能な場合、サブスクライブするチャネルを選択できます。たと
えば、(利用可能な場合に) stable チャネルからデプロイするには、これを一覧から選択します。

承認ストラテジー

自動 (Automatic) または手動 (Manual) のいずれかの更新を選択します。インストールされた
Operator について自動更新を選択する場合、Operator の新規バージョンが利用可能になると、
Operator Lifecycle Manager (OLM) は人の介入なしに、Operator の実行中のインスタンスを自動的
にアップグレードします。手動更新を選択する場合、Operator の新規バージョンが利用可能になる
と、OLM は更新要求を作成します。クラスター管理者は、Operator が新規バージョンに更新され
るように更新要求を手動で承認する必要があります。

4.1.1. Web コンソールを使用した OperatorHub からのインストール

この手順では、Couchbase Operator をサンプルとして使用し、OpenShift Container Platform Web コ
ンソールを使用して、OperatorHub から Operator をインストールし、これにサブスクライブします。

前提条件

cluster-admin パーミッションを持つアカウントを使用して OpenShift Container Platform ク
ラスターにアクセスできる。

手順

1. Web コンソールで、Operators → OperatorHub ページに移動します。

2. スクロールするか、またはキーワードを Filter by keyword ボックスに入力し (この場合は
Couchbase)、必要な Operator を見つけます。

図4.1 キーワードによる Operator のフィルター

OpenShift Container Platform 4.4 Operator

36

図4.1 キーワードによる Operator のフィルター

3. Operator を選択します。コミュニティー Operator の場合、Red Hat がそれらの Operator を認
定していないことについての警告が出されます。作業を継続する前に、この警告を確認してく
ださい。Operator についての情報が表示されます。

4. Operator についての情報を確認してから、Install をクリックします。

5. Create Operator Subscription ページで以下を実行します。

a. 以下のいずれかを選択します。

All namespaces on the cluster (default) は、デフォルトの openshift-operators
namespace で Operator をインストールし、クラスターのすべての namespace を監視
し、Operator をこれらの namespace に対して利用可能にします。このオプションは常
に選択可能です。

A specific namespace on the cluster では、Operator をインストールする特定の単一
namespace を選択できます。Operator は監視のみを実行し、この単一 namespace で
使用されるように利用可能になります。

b. Update Channel を選択します (複数を選択できる場合)。

c. 前述のように、自動 (Automatic) または 手動 (Manual) の承認ストラテジーを選択しま

第4章 OPERATOR のクラスターへの追加

37

c. 前述のように、自動 (Automatic) または 手動 (Manual) の承認ストラテジーを選択しま
す。

6. Subscribe をクリックし、Operator をこの OpenShift Container Platform クラスターの選択し
た namespace で利用可能にします。

a. 手動の承認ストラテジーを選択している場合、Subscription のアップグレードステータス
は、その Install Plan を確認し、承認するまで Upgrading のままになります。

図4.2 Install Plan ページからの手動による承認

Install Plan ページでの承認後に、Subscription のアップグレードステータスは Up to date
に移行します。

b. 自動承認ストラテジーを選択している場合、アップグレードステータスは、介入なしに Up
to date に解決するはずです。

図4.3 Subscription のアップグレードステータス Up to date

OpenShift Container Platform 4.4 Operator

38

図4.3 Subscription のアップグレードステータス Up to date

7. Subscription のアップグレードステータスが Up to date になった後に、Operators → Installed
Operators を選択して、 Couchbase ClusterServiceVersion (CSV) が表示され、その ステータ
ス が最終的に関連する namespace で InstallSucceeded に解決することを確認します。

注記

All namespaces…​ インストールモードの場合、ステータスは openshift-
operators namespace で InstallSucceeded になりますが、他の namespace で
チェックする場合、ステータスは Copied になります。

上記通りにならない場合:

a. さらにトラブルシューティングを行うために問題を報告している Workloads → Pods ペー
ジで、openshift-operators プロジェクト (または A specific namespace…​ インストール
モードが選択されている場合は他の関連の namespace) の Pod のログを確認します。

4.1.2. CLI を使用した OperatorHub からのインストール

OpenShift Container Platform Web コンソールを使用する代わりに、CLI を使用して OperatorHub か
ら Operator をインストールできます。oc コマンドを使用して、Subscription オブジェクトを作成また
は更新します。

前提条件

cluster-admin パーミッションを持つアカウントを使用して OpenShift Container Platform ク
ラスターにアクセスできる。

oc コマンドをローカルシステムにインストールする。

第4章 OPERATOR のクラスターへの追加

39

手順

1. OperatorHub からクラスターで利用できる Operator の一覧を表示します。

$ oc get packagemanifests -n openshift-marketplace
NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
amq-online Red Hat Operators 91m
amq-streams Red Hat Operators 91m
...
couchbase-enterprise-certified Certified Operators 91m
mariadb Certified Operators 91m
mongodb-enterprise Certified Operators 91m
...
etcd Community Operators 91m
jaeger Community Operators 91m
kubefed Community Operators 91m
...

必要な Operator の CatalogSource をメモします。

2. 必要な Operator を検査して、サポートされる InstallMode および利用可能なチャネルを確認し
ます。

$ oc describe packagemanifests <operator_name> -n openshift-marketplace

3. OperatorGroup は、OperatorGroup と同じ名前空間内のすべての Operator に必要な RBAC ア
クセスを生成するターゲット名前空間を選択する OLM リソースです。
Operator をサブスクライブする namespace には、Operator の InstallMode に一致する
OperatorGroup が必要になります (AllNamespaces または SingleNamespace モードのいず
れか)。インストールする Operator が AllNamespaces を使用する場合、openshift-operators
namespace には適切な OperatorGroup がすでに配置されます。

ただし、Operator が SingleNamespace モードを使用し、適切な OperatorGroup がない場
合、それらを作成する必要があります。

注記

この手順の Web コンソールバージョンでは、SingleNamespace モードを選択
する際に、OperatorGroup および Subscription オブジェクトの作成を背後で自
動的に処理します。

a. OperatorGroup オブジェクト YAML ファイルを作成します (例: operatorgroup.yaml)。

OperatorGroup の例

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: <operatorgroup_name>
 namespace: <namespace>
spec:
 targetNamespaces:
 - <namespace>

OpenShift Container Platform 4.4 Operator

40

1

2

3

4

b. OperatorGroup オブジェクトを作成します。

$ oc apply -f operatorgroup.yaml

4. Subscription オブジェクトの YAML ファイルを作成し、namespace を Operator にサブスクラ
イブします (例: sub.yaml)。

Subscription の例

AllNamespaces InstallMode の使用については、openshift-operators namespace を指定
します。それ以外の場合は、SingleNamespace InstallMode の使用について関連する単一
の namespace を指定します。

サブスクライブする Operator の名前。

Operator を提供する CatalogSource の名前。

CatalogSource の namespace。デフォルトの OperatorHub CatalogSource には
openshift-marketplace を使用します。

5. Subscription オブジェクトを作成します。

$ oc apply -f sub.yaml

この時点で、OLM は選択した Operator を認識します。Operator の ClusterServiceVersion
(CSV) はターゲット namespace に表示され、Operator で指定される API は作成用に利用可能
になります。

追加リソース

About OperatorGroups

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: <operator_name>
 namespace: openshift-operators 1
spec:
 channel: alpha
 name: <operator_name> 2
 source: redhat-operators 3
 sourceNamespace: openshift-marketplace 4

第4章 OPERATOR のクラスターへの追加

41

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#olm-operatorgroups-about_olm-understanding-operatorgroups

第5章 OPERATOR LIFECYCLE MANAGER でのプロキシーサポー
トの設定

グローバルプロキシーが OpenShift Container Platform クラスターで設定されている場合、Operator
Lifecycle Manager はクラスター全体のプロキシーで管理する Operator を自動的に設定します。ただ
し、インストールされた Operator をグローバルプロキシーを上書きするか、またはカスタム CA 証明
書を挿入するように設定することもできます。

関連情報

クラスター全体のプロキシーの設定

カスタム PKI の設定 (カスタム CA 証明書)

5.1. OPERATOR のプロキシー設定の上書き

クラスター全体の egress プロキシーが設定されている場合、Operator Lifecycle Manager (OLM) を使
用して実行する Operator は、デプロイメントでクラスター全体のプロキシー設定を継承します。クラ
スター管理者は、Operator のサブスクリプションを設定してこれらのプロキシー設定を上書きするこ
ともできます。

重要

Operator は、管理対象オペランドの Pod でのプロキシー設定の環境変数の設定を処理す
る必要があります。

前提条件

cluster-admin パーミッションを持つアカウントを使用して OpenShift Container Platform ク
ラスターにアクセスできる。

手順

1. Web コンソールで、Operators → OperatorHub ページに移動します。

2. Operator を選択し、Install をクリックします。

3. Create Operator Subscription ページで、Subscription オブジェクトの YAML を変更して以下
の環境変数を 1 つ以上 spec セクションに組み込みます。

HTTP_PROXY

HTTPS_PROXY

NO_PROXY

以下は例になります。

プロキシー設定の上書きのある Subscription オブジェクト

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: etcd-config-test

OpenShift Container Platform 4.4 Operator

42

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/networking/#enable-cluster-wide-proxy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/networking/#configuring-a-custom-pki

注記

これらの環境変数については、以前に設定されたクラスター全体またはカスタム
プロキシーの設定を削除するために空の値を使用してそれらの設定を解除するこ
ともできます。

OLM はこれらの環境変数を単位として処理します。それらの環境変数が 1 つ以上設定されてい
る場合、それらはすべて上書きされているものと見なされ、クラスター全体のデフォルト値は
サブスクライブされた Operator の Deployment には使用されません。

4. Subscribe をクリックし、Operator を選択された namespace で利用可能にします。

5. Operator の CSV が関連する namespace に表示されると、カスタムプロキシーの環境変数が
Deployment に設定されていることを確認できます。たとえば、CLI を使用します。

$ oc get deployment -n openshift-operators etcd-operator -o yaml | grep -i "PROXY" -A 2

 - name: HTTP_PROXY
 value: test_http
 - name: HTTPS_PROXY
 value: test_https
 - name: NO_PROXY
 value: test
 image: quay.io/coreos/etcd-
operator@sha256:66a37fd61a06a43969854ee6d3e21088a98b93838e284a6086b13917f96b0
d9c
...

5.2. カスタム CA 証明書の挿入

クラスター管理者が ConfigMap を使用してカスタム CA 証明書をクラスターに追加すると、Cluster
Network Operator はユーザーによってプロビジョニングされる証明書およびシステム CA 証明書を単
一バンドルにマージします。このマージされたバンドルを Operator Lifecycle Manager (OLM) で実行
されている Operator に挿入することができます。これは、man-in-the-middle HTTPS プロキシーがあ
る場合に役立ちます。

前提条件

 namespace: openshift-operators
spec:
 config:
 env:
 - name: HTTP_PROXY
 value: test_http
 - name: HTTPS_PROXY
 value: test_https
 - name: NO_PROXY
 value: test
 channel: clusterwide-alpha
 installPlanApproval: Automatic
 name: etcd
 source: community-operators
 sourceNamespace: openshift-marketplace
 startingCSV: etcdoperator.v0.9.4-clusterwide

第5章 OPERATOR LIFECYCLE MANAGER でのプロキシーサポートの設定

43

1

2

1

cluster-admin パーミッションを持つアカウントを使用して OpenShift Container Platform ク
ラスターにアクセスできること。

ConfigMap を使用してクラスターに追加されたカスタム CA 証明書。

必要な Operator が OLM にインストールされ、実行される。

手順

1. Operator の Subscription がある namespace に空の ConfigMap を作成し、以下のラベルを組み
込みます。

ConfigMap の名前。

Cluster Network Operator に対してマージされたバンドルを挿入するように要求します。

この ConfigMap の作成後すぐに、ConfigMap にはマージされたバンドルの証明書の内容が設
定されます。

2. Operator の Subscription オブジェクトを更新し、trusted-ca ConfigMap をカスタム CA を必
要とする Pod 内の各コンテナーにボリュームとしてマウントする spec.config セクションを追
加します。

config セクションがない場合に、これを追加します。

apiVersion: v1
kind: ConfigMap
metadata:
 name: trusted-ca 1
 labels:
 config.openshift.io/inject-trusted-cabundle: "true" 2

kind: Subscription
metadata:
 name: my-operator
spec:
 package: etcd
 channel: alpha
 config: 1
 - selector:
 matchLabels:
 <labels_for_pods> 2
 volumes: 3
 - name: trusted-ca
 configMap:
 name: trusted-ca
 items:
 - key: ca-bundle.crt 4
 path: tls-ca-bundle.pem 5
 volumeMounts: 6
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 readOnly: true

OpenShift Container Platform 4.4 Operator

44

2

3

4

5

6

Operator が所有する Pod に一致するラベルを指定します。

trusted-ca ボリュームを作成します。

ca-bundle.crt は ConfigMap キーとして必要になります。

tls-ca-bundle.pem は ConfigMap パスとして必要になります。

trusted-ca ボリュームマウントを作成します。

第5章 OPERATOR LIFECYCLE MANAGER でのプロキシーサポートの設定

45

第6章 クラスターからの OPERATOR の削除
以下では、Web コンソールまたは CLI のいずれかを使用してクラスターから Operator を削除する方法
について説明します。

6.1. WEB コンソールの使用によるクラスターからの OPERATOR の削除

クラスター管理者は Web コンソールを使用して、選択した namespace からインストールされた
Operator を削除できます。

前提条件

cluster-admin パーミッションを持つアカウントを使用して OpenShift Container Platform ク
ラスター Web コンソールにアクセスできること。

手順

1. Operators → Installed Operators ページからスクロールするか、または Filter by name に
キーワードを入力して必要な Operator を見つけます。次に、それをクリックします。

2. Operator Details ページの右側で、Actions ドロップダウンメニューから Uninstall Operator
を選択します。
Uninstall Operator? ダイアログボックスが表示され、以下の内容が伝えられます。Operator
を削除してもそのカスタムリソース定義または管理リソースは削除されません。Operator がク
ラスターにアプリケーションをデプロイしているか、またはクラスター外のリソースを設定し
ている場合、それらは引き続き実行され、手動でクリーンアップする必要があります。

Operator、Operator デプロイメントおよび Pod はこのアクションで削除されます。CRD およ
び CR を含む Operator によって管理されるリソースは削除されません。Web コンソールは、
一部の Operator のダッシュボードおよびナビゲーションアイテムを有効にします。Operator
のアンインストール後にこれらを削除するには、Operator CRD を手動で削除する必要があり
ます。

3. Uninstall を選択します。この Operator は実行を停止し、更新を受信しなくなります。

6.2. CLI の使用によるクラスターからの OPERATOR の削除

クラスター管理者は CLI を使用して、選択した namespace からインストールされた Operator を削除
できます。

前提条件

cluster-admin パーミッションを持つアカウントを使用して OpenShift Container Platform ク
ラスターにアクセスできる。

oc コマンドがワークステーションにインストールされていること。

手順

1. サブスクライブされた Operator (例: jaeger) の現行バージョンを currentCSV フィールドで確
認します。

$ oc get subscription jaeger -n openshift-operators -o yaml | grep currentCSV
 currentCSV: jaeger-operator.v1.8.2

OpenShift Container Platform 4.4 Operator

46

2. Operator の Subscription (例: jaeger) を削除します。

$ oc delete subscription jaeger -n openshift-operators
subscription.operators.coreos.com "jaeger" deleted

3. 直前の手順で currentCSV 値を使用し、ターゲット namespace の Operator の CSV を削除し
ます。

$ oc delete clusterserviceversion jaeger-operator.v1.8.2 -n openshift-operators
clusterserviceversion.operators.coreos.com "jaeger-operator.v1.8.2" deleted

第6章 クラスターからの OPERATOR の削除

47

第7章 インストールされた OPERATOR からのアプリケーションの
作成

以下では、開発者を対象に、OpenShift Container Platform Web コンソールを使用して、インストール
された Operator からアプリケーションを作成する例を示します。

7.1. OPERATOR を使用した ETCD クラスターの作成

この手順では、Operator Lifecycle Manager (OLM) で管理される etcd Operator を使用した新規 etcd
クラスターの作成について説明します。

前提条件

OpenShift Container Platform 4.4 クラスターへのアクセス

管理者によってクラスターにすでにインストールされている etcd Operator

手順

1. この手順を実行するために OpenShift Container Platform Web コンソールで新規プロジェクト
を作成します。この例では、my-etcd というプロジェクトを使用します。

2. Operators → Installed Operators ページに移動します。クラスター管理者によってクラスター
にインストールされ、使用可能にされた Operator が ClusterServiceVersion (CSV) の一覧とし
てここに表示されます。CSV は Operator によって提供されるソフトウェアを起動し、管理す
るために使用されます。

ヒント

以下を使用して、CLI でこの一覧を取得できます。

$ oc get csv

3. Installed Operators ページで、Copied をクリックしてから、etcd Operator をクリックして詳
細情報および選択可能なアクションを表示します。

図7.1 etcd Operator の概要

OpenShift Container Platform 4.4 Operator

48

図7.1 etcd Operator の概要

Provided APIs に表示されているように、この Operator は 3 つの新規リソースタイプを利用可
能にします。これには、etcd クラスター (EtcdCluster リソース) のタイプが含まれます。これ
らのオブジェクトは、 Deployments または ReplicaSets などの組み込み済みのネイティブ
Kubernetes オブジェクトと同様に機能しますが、これらには etcd を管理するための固有のロ
ジックが含まれます。

4. 新規 etcd クラスターを作成します。

a. etcd Cluster API ボックスで、Create New をクリックします。

b. 次の画面では、クラスターのサイズなど EtcdCluster オブジェクトのテンプレートを起動
する最小条件への変更を加えることができます。ここでは Create をクリックして確定しま
す。これにより、Operator がトリガーされ、Pod、サービス、および新規 etcd クラスター
の他のコンポーネントが起動します。

5. Resources タブをクリックして、プロジェクトに Operator によって自動的に作成され、設定
された数多くのリソースが含まれることを確認します。

図7.2 etcd Operator リソース

第7章 インストールされた OPERATOR からのアプリケーションの作成

49

図7.2 etcd Operator リソース

Kubernetes サービスが作成され、プロジェクトの他の Pod からデータベースにアクセスでき
ることを確認します。

6. 所定プロジェクトで edit ロールを持つすべてのユーザーは、クラウドサービスのようにセルフ
サービス方式でプロジェクトにすでに作成されている Operator によって管理されるアプリケー
ションのインスタンス (この例では etcd クラスター) を作成し、管理し、削除することができ
ます。この機能を持つ追加のユーザーを有効にする必要がある場合、プロジェクト管理者は以
下のコマンドを使用してこのロールを追加できます。

$ oc policy add-role-to-user edit <user> -n <target_project>

これで、etcd クラスターは Pod が正常でなくなったり、クラスターのノード間で移行する際の障害に
対応し、データのリバランスを行います。最も重要な点として、適切なアクセスを持つクラスター管理
者または開発者は独自のアプリケーションでデータベースを簡単に使用できるようになります。

OpenShift Container Platform 4.4 Operator

50

第8章 OPERATOR ステータスの表示
Operator Lifecycle Manager (OLM) のシステムの状態を理解することは、インストールされた
Operator についての問題について意思決定を行い、デバッグを行う上で重要です。OLM は、
Subscription およびそれに関連するカタログソースリソースの状態および実行されたアクションに関す
る知見を提供します。これは、それぞれの Operator の正常性を把握するのに役立ちます。

8.1. 条件のタイプ

Subscription は状態についての以下のタイプを報告します。

表8.1 サブスクリプションの状態のタイプ

状態 説明

CatalogSourcesUnhealthy 解決に使用される一部のまたはすべてのカタログソースは正常ではあり
ません。

InstallPlanMissing Subscription の InstallPlan がありません。

InstallPlanPending Subscription の InstallPlan のインストールが保留中です。

InstallPlanFailed Subscription の InstallPlan が失敗しました。

8.2. CLI を使用した OPERATOR ステータスの表示

CLI を使用して Operator ステータスを表示できます。

手順

1. oc describe コマンドを使用して、Subscription のリソースを検査します。

$ oc describe sub <subscription_name>

2. コマンド出力で Conditions セクションを見つけます。

Conditions:
 Last Transition Time: 2019-07-29T13:42:57Z
 Message: all available catalogsources are healthy
 Reason: AllCatalogSourcesHealthy
 Status: False
 Type: CatalogSourcesUnhealthy

第8章 OPERATOR ステータスの表示

51

第9章 OPERATOR のインストールおよびアップグレードについて
のポリシーの作成

Operator の実行には幅広い権限が必要になる可能性があり、必要な権限はバージョン間で異なる場合
があります。Operator Lifecycle Manager (OLM) は、cluster-admin 権限で実行されます。デフォルト
で、Operator の作成者は ClusterServiceVersion (CSV) で任意のパーミッションのセットを指定でき、
OLM はこれを Operator に付与します。

クラスター管理者は、Operator がクラスタースコープの権限を実行できず、ユーザーが OLM を使用し
て権限をエスカレートできないようにするよう対策を取る必要があります。これを制限する方法とし
て、クラスター管理者は Operator をクラスターに追加される前に監査する必要があります。また、ク
ラスター管理者には、サービスアカウントを使用した Operator のインストールまたはアップグレード
時に許可されるアクションを判別し、制限するための各種ツールが提供されます。

OperatorGroup を、その権限のセットが付与されたサービスアカウントセットに関連付けることによ
り、クラスター管理者は Operator にポリシーを設定して、それらが RBAC ルールを使用して事前に決
定された境界内でのみ動作するようにできます。Operator は、それらのルールによって明示的に許可
されていないことはいずれも実行できません。

クラスター管理者以外のユーザーによるこの自己完結型の、スコープが制限された Operator のインス
トールによって、より多くのユーザーがさらに多くの Operator Framework ツールを利用でき、
Operator によるアプリケーションのビルドのエクスペリエンスが強化されます。

9.1. OPERATOR インストールポリシーについて

OLM を使用すると、クラスター管理者は OperatorGroup に関連付けられたすべての Operator がデプ
ロイされ、サービスアカウントに付与される権限に基づいてデプロイされ、実行されるように
OperatorGroup のサービスアカウントを指定できます。

APIService および CustomResourceDefinition リソースは、cluster-admin ロールを使用して OLM
によって常に作成されます。OperatorGroup に関連付けられたサービスアカウントには、これらのリ
ソースを作成するための権限を付与できません。

指定したサービスアカウントがインストールまたはアップグレードされる Operator についての適切な
パーミッションを持たない場合、便利なコンテキスト情報がそれぞれのリソースのステータスに追加さ
れます。これにより、管理者が問題のトラブルシューティングおよび解決が容易になります。

この OperatorGroup に関連付けられる Operator は、指定されたサービスアカウントに付与されるパー
ミッションに制限されます。Operator がサービスアカウントの範囲外のパーミッションを要求する場
合、インストールは適切なエラーを出して失敗します。

9.1.1. インストールシナリオ

Operator をクラスターでインストールまたはアップグレードできるかどうかを決定する際に、OLM は
以下のシナリオを検討します。

クラスター管理者は新規の OperatorGroup を作成し、サービスアカウントを指定します。この
OperatorGroup に関連付けられるすべての Operator がサービスアカウントに付与される権限
に基づいてインストールされ、実行されます。

クラスター管理者は新規の OperatorGroup を作成し、サービスアカウントを指定しません。
OpenShift Container Platform は後方互換性を維持します。そのため、デフォルト動作はその
まま残り、Operator のインストールおよびアップグレードは許可されます。

サービスアカウントを指定しない既存の OperatorGroup の場合、デフォルトの動作は残り、

OpenShift Container Platform 4.4 Operator

52

サービスアカウントを指定しない既存の OperatorGroup の場合、デフォルトの動作は残り、
Operator のインストールおよびアップグレードは許可されます。

クラスター管理者は既存の OperatorGroup を更新し、サービスアカウントを指定します。
OLM により、既存の Operator は現在の権限で継続して実行されます。このような既存
Operator がアップグレードされる場合、これは再インストールされ、新規 Operator のように
サービスアカウントに付与される権限に基づいて実行されます。

OperatorGroup で指定されるサービスアカウントは、パーミッションの追加または削除によっ
て変更されるか、または既存のサービスアカウントは新しいサービスアカウントに切り替わり
ます。既存の Operator がアップグレードされる場合、これは再インストールされ、新規
Operator のように更新されたサービスアカウントに付与される権限に基づいて実行されます。

クラスター管理者は、サービスアカウントを OperatorGroup から削除します。デフォルトの動
作は残り、Operator のインストールおよびアップグレードは許可されます。

9.1.2. インストールワークフロー

OperatorGroup がサービスアカウントに関連付けられ、Operator がインストールまたはアップグレー
ドされると、OLM は以下のワークフローを使用します。

1. 指定された Subscription オブジェクトは OLM によって選択されます。

2. OLM はこの Subscription に関連する OperatorGroup をフェッチします。

3. OLM は OperatorGroup にサービスアカウントが指定されていることを判別します。

4. OLM はサービスアカウントにスコープが設定されたクライアントを作成し、スコープ設定され
たクライアントを使用して Operator をインストールします。これにより、Operator で要求さ
れるパーミッションは常に OperatorGroup のそのサービスアカウントのパーミッションに制限
されるようになります。

5. OLM は CSV で指定されたパーミッションセットを使用して新規サービスアカウントを作成
し、これを Operator に割り当てます。Operator は割り当てられたサービスアカウントで実行
されます。

9.2. OPERATOR インストールのスコープ設定

Operator の OLM でのインストールおよびアップグレードについてのスコープ設定ルールを提供するに
は、サービスアカウントを OperatorGroup に関連付けます。

この例では、クラスター管理者は一連の Operator を指定された namespace に制限できます。

手順

1. 新規の namespace を作成します。

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: scoped
EOF

2. Operator を制限する必要のあるパーミッションを割り当てます。これには、新規サービスアカ

第9章 OPERATOR のインストールおよびアップグレードについてのポリシーの作成

53

2. Operator を制限する必要のあるパーミッションを割り当てます。これには、新規サービスアカ
ウント、関連するロール、およびロールバインディングの作成が必要になります。

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: ServiceAccount
metadata:
 name: scoped
 namespace: scoped
EOF

以下の例では、単純化するために、サービスアカウントに対し、指定される namespace ですべ
てのことを実行できるパーミッションを付与します。実稼働環境では、より粒度の細かいパー
ミッションセットを作成する必要があります。

$ cat <<EOF | oc create -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: scoped
 namespace: scoped
rules:
- apiGroups: ["*"]
 resources: ["*"]
 verbs: ["*"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: scoped-bindings
 namespace: scoped
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: scoped
subjects:
- kind: ServiceAccount
 name: scoped
 namespace: scoped
EOF

3. 指定された namespace に OperatorGroup を作成します。この OperatorGroup は指定された
namespace をターゲットにし、そのテナンシーがこれに制限されるようにします。さらに、
OperatorGroup はユーザーがサービスアカウントを指定できるようにします。直前の手順で作
成した ServiceAccount を指定します。

$ cat <<EOF | oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: scoped
 namespace: scoped
spec:
 serviceAccountName: scoped

OpenShift Container Platform 4.4 Operator

54

1

2

 targetNamespaces:
 - scoped
EOF

指定された namespace にインストールされる Operator はこの OperatorGroup に関連付けら
れ、指定されるサービスアカウントに関連付けられます。

4. 指定された namespace で Subscription を作成し、Operator をインストールします。

$ cat <<EOF | oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: etcd
 namespace: scoped
spec:
 channel: singlenamespace-alpha
 name: etcd
 source: <catalog_source_name> 1
 sourceNamespace: <catalog_source_namespace> 2
EOF

指定された namespace にある CatalogSource、またはグローバルカタログ namespace に
あるものを指定します。

CatalogSource が作成された CatalogSourceNamespace を指定します。

この OperatorGroup に関連付けられる Operator は、指定されたサービスアカウントに付与さ
れるパーミッションに制限されます。Operator がサービスアカウントの範囲外のパーミッショ
ンを要求する場合、インストールは該当するエラーを出して失敗します。

9.2.1. 粒度の細かいパーミッション

OLM は OperatorGroup で指定されたサービスアカウントを使用して、インストールされる Operator
に関連する以下のリソースを作成または更新します。

ClusterServiceVersion

Subscription

Secret

ServiceAccount

Service

ClusterRole および ClusterRoleBinding

Role および RoleBinding

Operator を指定された namespace に制限するため、クラスター管理者は以下のパーミッションをサー
ビスアカウントに付与して起動できます。

注記

第9章 OPERATOR のインストールおよびアップグレードについてのポリシーの作成

55

1 2

1

注記

以下のロールは一般的なサンプルであり、特定の Operator に基づいて追加のルールが必
要になる可能性があります。

ここで、Deployment および Pod などの他のリソースを作成するためのパーミッションを追加し
ます。

さらに、Operator がプルシークレットを指定する場合、以下のパーミッションも追加する必要があり
ます。

シークレットを OLM namespace から取得するために必要です。

9.3. パーミッションに関する失敗のトラブルシューティング

パーミッションがないために Operator のインストールが失敗する場合は、以下の手順を使用してエ
ラーを特定します。

手順

1. Subscription オブジェクトを確認します。このステータスには、Operator の必要な

kind: Role
rules:
- apiGroups: ["operators.coreos.com"]
 resources: ["subscriptions", "clusterserviceversions"]
 verbs: ["get", "create", "update", "patch"]
- apiGroups: [""]
 resources: ["services", "serviceaccounts"]
 verbs: ["get", "create", "update", "patch"]
- apiGroups: ["rbac.authorization.k8s.io"]
 resources: ["roles", "rolebindings"]
 verbs: ["get", "create", "update", "patch"]
- apiGroups: ["apps"] 1
 resources: ["deployments"]
 verbs: ["list", "watch", "get", "create", "update", "patch", "delete"]
- apiGroups: [""] 2
 resources: ["pods"]
 verbs: ["list", "watch", "get", "create", "update", "patch", "delete"]

kind: ClusterRole 1
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["get"]

kind: Role
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["create", "update", "patch"]

OpenShift Container Platform 4.4 Operator

56

1. Subscription オブジェクトを確認します。このステータスには、Operator の必要な
ClusterRole、 ClusterRoleBinding、Role、および RoleBinding の作成を試行した InstallPlan オ
ブジェクトをポイントするオブジェクト参照 installPlanRef があります。

2. InstallPlan オブジェクトのステータスでエラーの有無を確認します。

エラーメッセージは、以下を示しています。

リソースの API グループを含む、作成に失敗したリソースのタイプ。この場合、これは
rbac.authorization.k8s.io グループの clusterroles です。

リソースの名前。

エラーのタイプ: is forbidden は、ユーザーに操作を実行するための十分なパーミッション
がないことを示します。

リソースの作成または更新を試みたユーザーの名前。この場合、これは OperatorGroup で
指定されたサービスアカウントを参照します。

操作の範囲が cluster scope かどうか。
ユーザーは、不足しているパーミッションをサービスアカウントに追加してから、繰り返
すことができます。

注記

apiVersion: operators.coreos.com/v1
kind: Subscription
metadata:
 name: etcd
 namespace: scoped
status:
 installPlanRef:
 apiVersion: operators.coreos.com/v1
 kind: InstallPlan
 name: install-4plp8
 namespace: scoped
 resourceVersion: "117359"
 uid: 2c1df80e-afea-11e9-bce3-5254009c9c23

apiVersion: operators.coreos.com/v1
kind: InstallPlan
status:
 conditions:
 - lastTransitionTime: "2019-07-26T21:13:10Z"
 lastUpdateTime: "2019-07-26T21:13:10Z"
 message: 'error creating clusterrole etcdoperator.v0.9.4-clusterwide-dsfx4:
clusterroles.rbac.authorization.k8s.io
 is forbidden: User "system:serviceaccount:scoped:scoped" cannot create resource
 "clusterroles" in API group "rbac.authorization.k8s.io" at the cluster scope'
 reason: InstallComponentFailed
 status: "False"
 type: Installed
 phase: Failed

第9章 OPERATOR のインストールおよびアップグレードについてのポリシーの作成

57

注記

現在、OLM は最初の試行でエラーの詳細の一覧を提供しませんが、今後の
リリースで追加される可能性があります。

OpenShift Container Platform 4.4 Operator

58

第10章 ネットワークが制限された環境での OPERATOR
LIFECYCLE MANAGER の使用

OpenShift Container Platform がネットワークが制限された環境 (非接続クラスターとしても知られる)
にインストールされている場合、Operator Lifecycle Manager (OLM) では、デフォルトの
OperatorHub ソースでは完全なインターネット接続が必要であるため、デフォルトの OperatorHub
ソースを使用できなくなります。クラスター管理者はこれらのデフォルトソースを無効にして、ローカ
ルミラーを作成し、OLM がローカルソースから Operator をインストールし、管理するようにできま
す。

重要

OLM はローカルソースから Operator を管理できますが、指定された Operator がネッ
トワークが制限された環境で正常に実行されるかどうかは Operator 自体に依存します。
以下は、Operator の特長です。

関連するイメージ、または Operator がそれらの機能を実行するために必要とな
る可能性のある他のコンテナーイメージを ClusterServiceVersion (CSV) オブ
ジェクトの relatedImages パラメーターで一覧表示します。

指定されたすべてのイメージを、タグではなくダイジェスト (SHA) で参照しま
す。

非接続モードでの実行をサポートする Red Hat Operator の一覧については、以下の Red
Hat ナレッジベースの記事を参照してください。

https://access.redhat.com/articles/4740011

追加リソース

ネットワークが制限された環境についての Operator の有効化

10.1. OPERATOR カタログイメージについて

Operator Lifecycle Manager (OLM) は常に Operator カタログの最新バージョンから Operator をイン
ストールします。OpenShift Container Platform 4.3 の時点で、Red Hat が提供する Operator
は、quay.io から Quay App Registry カタログ経由で配布されます。

表10.1 Red Hat が提供する App Registry カタログ

カタログ 説明

redhat-operators Red Hat によってパッケージ化され、出荷される Red Hat 製品のパブリッ
クカタログ。Red Hat によってサポートされます。

certified-operators 大手独立系ソフトウェアベンダー (ISV) の製品のパブリックカタログ。Red
Hat は ISV とのパートナーシップにより、パッケージ化および出荷を行いま
す。ISV によってサポートされます。

community-operators operator-framework/community-operators GitHub リポジトリーで関連す
るエンティティーによってメンテナーンスされる、オプションで表示可能
になるソフトウェアのパブリックカタログ。正式なサポートはありませ
ん。

第10章 ネットワークが制限された環境での OPERATOR LIFECYCLE MANAGER の使用

59

https://access.redhat.com/articles/4740011
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#olm-enabling-operator-for-restricted-network_osdk-generating-csvs
https://quay.io/
https://github.com/operator-framework/community-operators

カタログ 説明

カタログが更新されると、Operator の最新バージョンが変更され、それ以前のバージョンが削除また
は変更される可能性があります。この動作により、再現可能なインストールを維持することが徐々に難
しくなる可能性があります。さらに OLM がネットワークが制限された環境の OpenShift Container
Platform クラスターで実行される場合、quay.io からカタログに直接アクセスすることはできません。

oc adm catalog build コマンドを使用して、クラスター管理者は Operator カタログイメージを作成で
きます。以下は Operator カタログイメージの説明です。

App Registry タイプカタログのコンテンツの特定の時点のエクスポート。

App Registry カタログをコンテナーイメージタイプカタログに変換した結果。

イミュータブルなアーティファクト。

Operator カタログイメージを作成する方法は、前述の問題を引き起こさずにこのコンテンツを使用で
きる簡単な方法です。

10.2. OPERATOR カタログイメージのビルド

クラスター管理者は、Operator Lifecycle Manager (OLM) によって使用されるカスタム Operator カタ
ログイメージをビルドし、Docker v2-2 をサポートするコンテナーイメージレジストリーにそのイメー
ジをプッシュできます。ネットワークが制限された環境のクラスターの場合、このレジストリーには、
ネットワークが制限されたインストールで作成されたミラーレジストリーなど、クラスターにネット
ワークアクセスのあるレジストリーを使用できます。

重要

OpenShift Container Platform クラスターの内部レジストリーはターゲットレジストリー
として使用できません。これは、ミラーリングプロセスで必要となるタグを使わない
プッシュをサポートしないためです。

以下の例では、お使いのネットワークとインターネットの両方にアクセスできるミラーレジストリーを
使用することを前提としています。

前提条件

ネットワークアクセスが無制限の Linux ワークステーション [1]

oc version 4.3.5+

podman version 1.4.4+

Docker v2-2 をサポートするミラーレジストリーへのアクセス

プライベートレジストリーを使用している場合、後続の手順で使用するために REG_CREDS

OpenShift Container Platform 4.4 Operator

60

https://quay.io/
https://docs.docker.com/registry/spec/manifest-v2-2/
https://docs.docker.com/registry/spec/manifest-v2-2/

1

2

プライベートレジストリーを使用している場合、後続の手順で使用するために REG_CREDS
環境変数をレジストリー認証情報のファイルパスに設定します。たとえば podman CLI の場合
は、以下のようになります。

$ REG_CREDS=${XDG_RUNTIME_DIR}/containers/auth.json

quay.io アカウントがアクセスできるプライベート namespace を使用している場合、Quay 認
証トークンを設定する必要があります。quay.io 認証情報を使用してログイン API に対して要求
を行うことにより、--auth-token フラグで使用できる AUTH_TOKEN 環境変数を設定します。

手順

1. ネットワークアクセスが無制限のワークステーションで、ターゲットミラーレジストリーを使
用して認証を行います。

$ podman login <registry_host_name>

また、ビルド時にベースイメージをプルできるように、registry.redhat.io で認証します。

$ podman login registry.redhat.io

2. quay.io から redhat-operators カタログをベースにカタログイメージをビルドし、そのイメー
ジにタグを付け、ミラーレジストリーにプッシュします。

$ oc adm catalog build \
 --appregistry-org redhat-operators \ 1
 --from=registry.redhat.io/openshift4/ose-operator-registry:v4.4 \ 2
 --filter-by-os="linux/amd64" \ 3
 --to=<registry_host_name>:<port>/olm/redhat-operators:v1 \ 4
 [-a ${REG_CREDS}] \ 5
 [--insecure] \ 6
 [--auth-token "${AUTH_TOKEN}"] 7

INFO[0013] loading Bundles
dir=/var/folders/st/9cskxqs53ll3wdn434vw4cd80000gn/T/300666084/manifests-829192605
...
Pushed sha256:f73d42950021f9240389f99ddc5b0c7f1b533c054ba344654ff1edaf6bf827e3
to example_registry:5000/olm/redhat-operators:v1

App Registry インスタンスからのプルに使用する組織 (namespace)。

ターゲット OpenShift Container Platform クラスターのメジャーバージョンおよびマイ
ナーバージョンに一致するタグを使用して、--from を ose-operator-registry ベースイ
メージに設定します。

$ AUTH_TOKEN=$(curl -sH "Content-Type: application/json" \
 -XPOST https://quay.io/cnr/api/v1/users/login -d '
 {
 "user": {
 "username": "'"<quay_username>"'",
 "password": "'"<quay_password>"'"
 }
 }' | jq -r '.token')

第10章 ネットワークが制限された環境での OPERATOR LIFECYCLE MANAGER の使用

61

https://quay.io
https://quay.io
https://quay.io/

3

4

5

6

7

--filter-by-os を、ターゲットの OpenShift Container Platform クラスターと一致する必要
のある、ベースイメージに使用するオペレーティングシステムおよびアーキテクチャーに

カタログイメージに名前を付け、v1 などのタグを追加します。

オプション: 必要な場合は、レジストリー認証情報ファイルの場所を指定します。

オプション: ターゲットレジストリーの信頼を設定しない場合は、--insecure フラグを追
加します。

オプション: 公開されていない他のアプリケーションレジストリーカタログが使用されて
いる場合、Quay 認証トークンを指定します。

無効なマニフェストが Red Hat のカタログに誤って導入される可能性があります。これが実際
に生じる場合には、以下のようなエラーが表示される可能性があります。

...
INFO[0014] directory
dir=/var/folders/st/9cskxqs53ll3wdn434vw4cd80000gn/T/300666084/manifests-829192605
file=4.2 load=package
W1114 19:42:37.876180 34665 builder.go:141] error building database: error loading
package into db: fuse-camel-k-operator.v7.5.0 specifies replacement that couldn't be found
Uploading ... 244.9kB/s

通常、これらのエラーは致命的なエラーではなく、該当する Operator パッケージにインストー
ルする予定の Operator やその依存関係が含まれない場合、それらを無視することができます。

追加リソース

接続するネットワークが制限された環境でのインストール用のミラーレジストリーの作成

10.3. ネットワークが制限された環境向けの OPERATORHUB の設定

クラスター管理者は、カスタム Operator カタログイメージを使用し、OLM および OperatorHub を
ネットワークが制限された環境でローカルコンテンツを使用するように設定できます。この例では、以
前にビルドされ、サポートされているレジストリーにプッシュされたカスタム redhat-operators カタ
ログイメージを使用します。

前提条件

ネットワークアクセスが無制限の Linux ワークステーション [1]

サポートされているレジストリーにプッシュされるカスタム Operator カタログイメージ

oc version 4.3.5+

podman version 1.4.4+

Docker v2-2 をサポートするミラーレジストリーへのアクセス

プライベートレジストリーを使用している場合、後続の手順で使用するために REG_CREDS
環境変数をレジストリー認証情報のファイルパスに設定します。たとえば podman CLI の場合
は、以下のようになります。

OpenShift Container Platform 4.4 Operator

62

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/installing/#installing-restricted-networks-preparations
https://docs.docker.com/registry/spec/manifest-v2-2/

1

2

3

4

5

$ REG_CREDS=${XDG_RUNTIME_DIR}/containers/auth.json

手順

1. disableAllDefaultSources: true を仕様に追加してデフォルトの OperatorSource を無効にしま
す。

$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

これにより、OpenShift Container Platform のインストール時にデフォルトで設定されるデ
フォルトの OperatorSource が無効になります。

2. oc adm catalog mirror コマンドは、カスタム Operator カタログイメージのコンテンツを抽出
し、ミラーリングに必要なマニフェストを生成します。以下のいずれかを選択できます。

コマンドのデフォルト動作で、マニフェストの生成後にすべてのイメージコンテンツをミ
ラーレジストリーに自動的にミラーリングできるようにします。または、

--manifests-only フラグを追加して、ミラーリングに必要なマニフェストのみを生成しま
すが、これにより、イメージコンテンツがレジストリーに自動的にミラーリングされる訳
ではありません。これは、ミラーリングする内容を確認するのに役立ちます。また、コン
テンツのサブセットのみが必要な場合に、マッピングの一覧に変更を加えることができま
す。次に、そのファイルを oc image mirror コマンドで使用し、後のステップでイメージ
の変更済みの一覧をミラーリングできます。

ネットワークアクセスが無制限のワークステーションで、以下のコマンドを実行します。

$ oc adm catalog mirror \
 <registry_host_name>:<port>/olm/redhat-operators:v1 \ 1
 <registry_host_name>:<port> \
 [-a ${REG_CREDS}] \ 2
 [--insecure] \ 3
 [--filter-by-os="<os>/<arch>"] \ 4
 [--manifests-only] 5

Operator カタログイメージを指定します。

オプション: 必要な場合は、レジストリー認証情報ファイルの場所を指定します。

オプション: ターゲットレジストリーの信頼を設定しない場合は、--insecure フラグを追
加します。

オプション: カタログは複数のアーキテクチャーおよびオペレーティングシステムをサ
ポートするイメージを参照する可能性があるため、アーキテクチャーおよびオペレーティ
ングシステムでフィルターして、一 致するイメージのみをミラーリングするようにできま
す。使用できる値は、linux/amd64、linux/ppc64le、および linux/s390x です。

オプション: ミラーリングに必要なマニフェストのみを生成し、実際にはイメージコンテ
ンツをレジストリーにミラーリングしません。

出力例

第10章 ネットワークが制限された環境での OPERATOR LIFECYCLE MANAGER の使用

63

1

1

コマンドで生成される一時的なデータベース。

コマンドの実行後に、<image_name>-manifests/ ディレクトリーが現在のディレクトリーに
作成され、以下のファイルが生成されます。

これにより、imageContentSourcePolicy.yaml ファイルは ImageContentSourcePolicy オ
ブジェクトを定義します。このオブジェクトは、このオブジェクトは、ノードを Operator
マニフェストおよびミラーリングされたレジストリーに保存されるイメージ参照間で変換
できるように設定します。

mapping.txt ファイルには、すべてのソースイメージが含まれ、これはそれらのイメージ
をターゲットレジストリー内のどこにマップするかを示します。このファイルは oc image
mirror コマンドと互換性があり、ミラーリング設定をさらにカスタマイズするために使用
できます。

3. 直前の手順で --manifests-only フラグを使用して、コンテンツのサブセットのみをミラーリン
グする場合は、以下を実行します。

a. mapping.txt ファイルのイメージの一覧を仕様に変更します。ミラーリングするイメージ
のサブセットの名前とバージョンが不明な場合は、以下の手順で確認します。

i. oc adm catalog mirror コマンドで生成された一時的なデータベースに対して sqlite3
ツールを実行し、一般的な検索クエリーに一致するイメージの一覧を取得します。出力
は、後に mapping.txt ファイルを編集する方法を通知するのに役立ちます。
たとえば、clusterlogging.4.3 の文字列のようなイメージの一覧を取得するには、以下
を実行します。

oc adm catalog mirror コマンドの直前の出力を参照し、データベースファイル
のパスを見つけます。

出力例

ii. 直前の手順で取得した結果を使用して mapping.txt ファイルを編集し、ミラーリング

using database path mapping: /:/tmp/190214037
wrote database to /tmp/190214037
using database at: /tmp/190214037/bundles.db 1
...

$ echo "select * from related_image \
 where operatorbundle_name like 'clusterlogging.4.3%';" \
 | sqlite3 -line /tmp/190214037/bundles.db 1

image = registry.redhat.io/openshift4/ose-logging-
kibana5@sha256:aa4a8b2a00836d0e28aa6497ad90a3c116f135f382d8211e3c55f34f
b36dfe61
operatorbundle_name = clusterlogging.4.3.33-202008111029.p0

image = registry.redhat.io/openshift4/ose-oauth-
proxy@sha256:6b4db07f6e6c962fc96473d86c44532c93b146bbefe311d0c348117bf75
9c506
operatorbundle_name = clusterlogging.4.3.33-202008111029.p0
...

OpenShift Container Platform 4.4 Operator

64

1

ii. 直前の手順で取得した結果を使用して mapping.txt ファイルを編集し、ミラーリング
する必要のあるイメージのサブセットのみを追加します。
たとえば、前述の出力例の image 値を使用して、mapping.txt ファイルに以下の一致
する行が存在することを確認できます。

mapping.txt の一致するイメージマッピング。

この例では、これらのイメージのみをミラーリングする場合に、mapping.txt ファイル
の他のすべてのエントリーを削除し、上記の 2 行のみを残します。

b. ネットワークアクセスが無制限のワークステーション上で、変更した mapping.txt ファイ
ルを使用し、 oc image mirror コマンドを使用してイメージをレジストリーにミラーリン
グします。

$ oc image mirror \
 [-a ${REG_CREDS}] \
 -f ./redhat-operators-manifests/mapping.txt

4. ImageContentSourcePolicy を適用します。

$ oc apply -f ./redhat-operators-manifests/imageContentSourcePolicy.yaml

5. カタログイメージを参照する CatalogSource オブジェクトを作成します。

a. 仕様を以下のように変更し、これを catalogsource.yaml ファイルとして保存します。

Operator カタログイメージを指定します。

b. このファイルを使用して CatalogSource オブジェクトを作成します。

$ oc create -f catalogsource.yaml

6. 以下のリソースが正常に作成されていることを確認します。

a. Pod を確認します。

registry.redhat.io/openshift4/ose-logging-
kibana5@sha256:aa4a8b2a00836d0e28aa6497ad90a3c116f135f382d8211e3c55f34f
b36dfe61=<registry_host_name>:<port>/openshift4-ose-logging-kibana5:a767c8f0
registry.redhat.io/openshift4/ose-oauth-
proxy@sha256:6b4db07f6e6c962fc96473d86c44532c93b146bbefe311d0c348117bf75
9c506=<registry_host_name>:<port>/openshift4-ose-oauth-proxy:3754ea2b

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-operator-catalog
 namespace: openshift-marketplace
spec:
 sourceType: grpc
 image: <registry_host_name>:<port>/olm/redhat-operators:v1 1
 displayName: My Operator Catalog
 publisher: grpc

第10章 ネットワークが制限された環境での OPERATOR LIFECYCLE MANAGER の使用

65

$ oc get pods -n openshift-marketplace

出力例

NAME READY STATUS RESTARTS AGE
my-operator-catalog-6njx6 1/1 Running 0 28s
marketplace-operator-d9f549946-96sgr 1/1 Running 0 26h

b. CatalogSource を確認します。

$ oc get catalogsource -n openshift-marketplace

出力例

NAME DISPLAY TYPE PUBLISHER AGE
my-operator-catalog My Operator Catalog grpc 5s

c. PackageManifest を確認します。

$ oc get packagemanifest -n openshift-marketplace

出力例

NAME CATALOG AGE
etcd My Operator Catalog 34s

ネットワークが制限された環境の OpenShift Container Platform クラスター Web コンソール
で、OperatorHub ページから Operator をインストールできます。

追加リソース

Operator のアーキテクチャーおよびオペレーティングシステムのサポート

10.4. OPERATOR カタログイメージの更新

クラスター管理者がカスタム Operator カタログイメージを使用するように OperatorHub を設定した
後、管理者は Red Hat の App Registry カタログに追加された更新をキャプチャーして、OpenShift
Container Platform クラスターを最新の Operator と共に最新の状態に保つことができます。これは、
新規 Operator カタログイメージをビルドし、プッシュしてから、既存の CatalogSource の
spec.image パラメーターを新規イメージダイジェストに置き換えることによって実行されます。

この例では、カスタムの redhat-operators カタログイメージが OperatorHub と使用するように設定さ
れていることを前提としています。

前提条件

ネットワークアクセスが無制限の Linux ワークステーション [1]

oc version 4.3.5+

podman version 1.4.4+

OpenShift Container Platform 4.4 Operator

66

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#olm-arch-os-support_osdk-generating-csvs

1

Docker v2-2 をサポートするミラーレジストリーへのアクセス

カスタムカタログイメージを使用するように設定されている OperatorHub

プライベートレジストリーを使用している場合、後続の手順で使用するために REG_CREDS
環境変数をレジストリー認証情報のファイルパスに設定します。たとえば podman CLI の場合
は、以下のようになります。

$ REG_CREDS=${XDG_RUNTIME_DIR}/containers/auth.json

quay.io アカウントがアクセスできるプライベート namespace を使用している場合、Quay 認
証トークンを設定する必要があります。quay.io 認証情報を使用してログイン API に対して要求
を行うことにより、--auth-token フラグで使用できる AUTH_TOKEN 環境変数を設定します。

手順

1. ネットワークアクセスが無制限のワークステーションで、ターゲットミラーレジストリーを使
用して認証を行います。

$ podman login <registry_host_name>

また、ビルド時にベースイメージをプルできるように、registry.redhat.io で認証します。

$ podman login registry.redhat.io

2. quay.io から redhat-operators カタログをベースに新規カタログイメージをビルドし、そのイ
メージにタグを付け、ミラーレジストリーにプッシュします。

$ oc adm catalog build \
 --appregistry-org redhat-operators \ 1
 --from=registry.redhat.io/openshift4/ose-operator-registry:v4.4 \ 2
 --filter-by-os="linux/amd64" \ 3
 --to=<registry_host_name>:<port>/olm/redhat-operators:v2 \ 4
 [-a ${REG_CREDS}] \ 5
 [--insecure] \ 6
 [--auth-token "${AUTH_TOKEN}"] 7

INFO[0013] loading Bundles
dir=/var/folders/st/9cskxqs53ll3wdn434vw4cd80000gn/T/300666084/manifests-829192605
...
Pushed sha256:f73d42950021f9240389f99ddc5b0c7f1b533c054ba344654ff1edaf6bf827e3
to example_registry:5000/olm/redhat-operators:v2

App Registry インスタンスからのプルに使用する組織 (namespace)。

$ AUTH_TOKEN=$(curl -sH "Content-Type: application/json" \
 -XPOST https://quay.io/cnr/api/v1/users/login -d '
 {
 "user": {
 "username": "'"<quay_username>"'",
 "password": "'"<quay_password>"'"
 }
 }' | jq -r '.token')

第10章 ネットワークが制限された環境での OPERATOR LIFECYCLE MANAGER の使用

67

https://docs.docker.com/registry/spec/manifest-v2-2/
https://quay.io
https://quay.io
https://quay.io/

2

3

4

5

6

7

1

2

3

4

ターゲット OpenShift Container Platform クラスターのメジャーバージョンおよびマイ
ナーバージョンに一致するタグを使用して、--from を ose-operator-registry ベースイ

--filter-by-os を、ターゲットの OpenShift Container Platform クラスターと一致する必要
のある、ベースイメージに使用するオペレーティングシステムおよびアーキテクチャーに
設定します。使用できる値は、linux/amd64、linux/ppc64le、および linux/s390x です。

カタログイメージに名前を付け、タグを追加します (更新済みのカタログの場合は v2 など
のタグ)。

オプション: 必要な場合は、レジストリー認証情報ファイルの場所を指定します。

オプション: ターゲットレジストリーの信頼を設定しない場合は、--insecure フラグを追
加します。

オプション: 公開されていない他のアプリケーションレジストリーカタログが使用されて
いる場合、Quay 認証トークンを指定します。

3. カタログのコンテンツをターゲットレジストリーに対してミラーリングします。以下の oc
adm catalog mirror コマンドは、カスタム Operator カタログイメージのコンテンツを抽出
し、ミラーリングに必要なマニフェストを生成し、イメージをレジストリーにミラーリングし
ます。

$ oc adm catalog mirror \
 <registry_host_name>:<port>/olm/redhat-operators:v2 \ 1
 <registry_host_name>:<port> \
 [-a ${REG_CREDS}] \ 2
 [--insecure] \ 3
 [--filter-by-os="<os>/<arch>"] 4

mirroring ...

新規の Operator カタログイメージを指定します。

オプション: 必要な場合は、レジストリー認証情報ファイルの場所を指定します。

オプション: ターゲットレジストリーの信頼を設定しない場合は、--insecure フラグを追
加します。

オプション: カタログは複数のアーキテクチャーおよびオペレーティングシステムをサ
ポートするイメージを参照する可能性があるため、アーキテクチャーおよびオペレーティ
ングシステムでフィルターして、一 致するイメージのみをミラーリングするようにできま
す。使用できる値は、linux/amd64、linux/ppc64le、および linux/s390x です。

4. 新たに生成されたマニフェストを適用します。

$ oc apply -f ./redhat-operators-manifests

重要

imageContentSourcePolicy.yaml マニフェストを適用する必要がない場合があ
ります。ファイルの diff を完了して、変更が必要かどうかを判断します。

OpenShift Container Platform 4.4 Operator

68

1

5. カタログイメージを参照する CatalogSource オブジェクトを更新します。

a. この CatalogSource の元の catalogsource.yaml ファイルがある場合:

i. catalogsource.yaml ファイルを編集し、spec.image フィールドで新規カタログイ
メージを参照できるようにします。

新規の Operator カタログイメージを指定します。

ii. 更新されたファイルを使用して CatalogSource オブジェクトを置き換えます。

$ oc replace -f catalogsource.yaml

b. または、以下のコマンドを使用して CatalogSource を編集し、spec.image パラメーター
で新規カタログイメージを参照します。

$ oc edit catalogsource <catalog_source_name> -n openshift-marketplace

更新された Operator は、OpenShift Container Platform クラスターの OperatorHub ページから利用で
きるようになりました。

関連情報

Operator のアーキテクチャーおよびオペレーティングシステムのサポート

10.5. OPERATOR カタログイメージのテスト

Operator カタログイメージのコンテンツは、これをコンテナーとして実行し、gRPC API をクエリーし
て検証できます。イメージをさらにテストするには、CatalogSource でイメージを参照して OLM サブ
スクリプションを解決できます。この例では、以前にビルドされ、サポートされているレジストリーに
プッシュされたカスタム redhat-operators カタログイメージを使用します。

前提条件

サポートされているレジストリーにプッシュされるカスタム Operator カタログイメージ

podman version 1.4.4+

oc version 4.3.5+

Docker v2-2 をサポートするミラーレジストリーへのアクセス

grpcurl

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-operator-catalog
 namespace: openshift-marketplace
spec:
 sourceType: grpc
 image: <registry_host_name>:<port>/olm/redhat-operators:v2 1
 displayName: My Operator Catalog
 publisher: grpc

第10章 ネットワークが制限された環境での OPERATOR LIFECYCLE MANAGER の使用

69

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#olm-arch-os-support_osdk-generating-csvs
https://docs.docker.com/registry/spec/manifest-v2-2/
https://github.com/fullstorydev/grpcurl

手順

1. Operator カタログイメージをプルします。

$ podman pull <registry_host_name>:<port>/olm/redhat-operators:v1

2. イメージを実行します。

$ podman run -p 50051:50051 \
 -it <registry_host_name>:<port>/olm/redhat-operators:v1

3. grpcurl を使用して利用可能なパッケージの実行中のイメージをクエリーします。

$ grpcurl -plaintext localhost:50051 api.Registry/ListPackages
{
 "name": "3scale-operator"
}
{
 "name": "amq-broker"
}
{
 "name": "amq-online"
}

4. チャネルの最新の Operator バンドルを取得します。

$ grpcurl -plaintext -d '{"pkgName":"kiali-ossm","channelName":"stable"}' localhost:50051
api.Registry/GetBundleForChannel
{
 "csvName": "kiali-operator.v1.0.7",
 "packageName": "kiali-ossm",
 "channelName": "stable",
...

5. イメージのダイジェストを取得します。

$ podman inspect \
 --format='{{index .RepoDigests 0}}' \
 <registry_host_name>:<port>/olm/redhat-operators:v1

example_registry:5000/olm/redhat-
operators@sha256:f73d42950021f9240389f99ddc5b0c7f1b533c054ba344654ff1edaf6bf827e3

6. OperatorGroup が Operator とその依存関係をサポートする namespace my-ns にあることを
前提とし、イメージダイジェストを使用して CatalogSource オブジェクトを作成します。以下
は例になります。

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: custom-redhat-operators
 namespace: my-ns
spec:
 sourceType: grpc

OpenShift Container Platform 4.4 Operator

70

7. カタログイメージから、利用可能な最新の servicemeshoperator およびその依存関係を解決す
るサブスクリプションを作成します。

[1] oc adm catalog コマンドは、現在 Linux でのみサポートされています。(BZ#1771329)

 image: example_registry:5000/olm/redhat-
operators@sha256:f73d42950021f9240389f99ddc5b0c7f1b533c054ba344654ff1edaf6bf827e3

 displayName: Red Hat Operators

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: servicemeshoperator
 namespace: my-ns
spec:
 source: custom-redhat-operators
 sourceNamespace: my-ns
 name: servicemeshoperator
 channel: "1.0"

第10章 ネットワークが制限された環境での OPERATOR LIFECYCLE MANAGER の使用

71

https://bugzilla.redhat.com/show_bug.cgi?id=1771329

第11章 CRD

11.1. カスタムリソース定義による KUBERNETES API の拡張

以下では、カスタムリソース定義 (CRD) を作成し、管理することで、クラスター管理者が OpenShift
Container Platform クラスターをどのように拡張できるかについて説明します。

11.1.1. カスタムリソース定義

Kubernetes API では、リソースは特定の種類の API オブジェクトのコレクションを保管するエンドポ
イントです。たとえば、ビルトインされた Pod リソースには Pod オブジェクトのコレクションが含ま
れます。

カスタムリソース定義 (CRD) オブジェクトは、クラスター内に新規の固有オブジェクト Kind を定義
し、Kubernetes API サーバーにそのライフサイクル全体を処理させます。

カスタムリソース (CR) オブジェクトは、クラスター管理者によってクラスターに追加された CRD から
作成され、すべてのクラスターユーザーが新規リソースタイプをプロジェクトに追加できるようにしま
す。

クラスター管理者が新規 CRD をクラスターに追加する際に、Kubernetes API サーバーは、クラスター
全体または単一プロジェクト (namespace) によってアクセスできる新規の RESTful リソースパスを作
成することによって応答し、指定された CR を提供し始めます。

CRD へのアクセスを他のユーザーに付与する必要のあるクラスター管理者は、クラスターロールの集
計を使用して admin、edit、または view のデフォルトクラスターロールを持つユーザーにアクセスを
付与できます。また、クラスターロールの集計により、カスタムポリシールールをこれらのクラスター
ロールに挿入することができます。この動作は、新規リソースを組み込み型のインリソースであるかの
ようにクラスターの RBAC ポリシーに統合します。

Operator はとりわけ CRD を必要な RBAC ポリシーおよび他のソフトウェア固有のロジックでパッケー
ジ化することで CRD を利用します。またクラスター管理者は、Operator のライフサイクル外にあるク
ラスターに CRD を手動で追加でき、これらをすべてのユーザーに利用可能にすることができます。

注記

クラスター管理者のみが CRD を作成できる一方で、開発者は CRD への読み取りおよび
書き込みパーミッションがある場合には、既存の CRD から CR を作成することができま
す。

11.1.2. カスタムリソース定義の作成

カスタムリソース (CR) オブジェクトを作成するには、クラスター管理者はまずカスタムリソース定義
(CRD) を作成する必要があります。

前提条件

cluster-admin ユーザー権限を使用した OpenShift Container Platform クラスターへのアクセ
ス

手順

CRD を作成するには、以下を実行します。

1. 以下の例のようなフィールドタイプを含む YAML ファイルを作成します。

OpenShift Container Platform 4.4 Operator

72

1

2

3

4

5

6

7

8

9

CRD の YAML ファイルの例

apiextensions.k8s.io/v1beta1 API を使用します。

定義の名前を指定します。これは group および plural フィールドの値を使用する <plural-
name>.<group> 形式である必要があります。

API のグループ名を指定します。API グループは、論理的に関連付けられるオブジェクト
のコレクションです。たとえば、Job または ScheduledJob などのすべてのバッチオブ
ジェクトはバッチ API グループ (batch.api.example.com など) である可能性があります。
組織の完全修飾ドメイン名を使用することが奨励されます。

URL で使用されるバージョン名を指定します。それぞれの API グループは複数バージョン
で存在させることができます。たとえば、v1alpha、v1beta、v1 などが使用されます。

カスタムオブジェクトがクラスター (Cluster) の 1 つのプロジェクト (Namespaced) また
はすべてのプロジェクトで利用可能であるかどうかを指定します。

URL で使用される複数形の名前を指定します。plural フィールドは API URL のリソース
と同じになります。

CLI および表示用にエイリアスとして使用される単数形の名前を指定します。

作成できるオブジェクトの種類を指定します。タイプは CamelCase にすることができま
す。

CLI でリソースに一致する短い文字列を指定します。

注記

デフォルトで、CRD のスコープはクラスターで設定され、すべてのプロジェク
トで利用可能です。

2. CRD オブジェクトを作成します。

$ oc create -f <file_name>.yaml

新規の RESTful API エンドポイントは以下のように作成されます。

apiVersion: apiextensions.k8s.io/v1beta1 1
kind: CustomResourceDefinition
metadata:
 name: crontabs.stable.example.com 2
spec:
 group: stable.example.com 3
 version: v1 4
 scope: Namespaced 5
 names:
 plural: crontabs 6
 singular: crontab 7
 kind: CronTab 8
 shortNames:
 - ct 9

第11章 CRD

73

/apis/<spec:group>/<spec:version>/<scope>/*/<names-plural>/...

たとえば、サンプルファイルを使用すると、以下のエンドポイントが作成されます。

/apis/stable.example.com/v1/namespaces/*/crontabs/...

このエンドポイント URL を使用して CR を作成し、管理できます。オブジェクトの Kind は、
作成した CRD オブジェクトの spec.kind フィールドに基づいています。

11.1.3. カスタムリソース定義のクラスターロールの作成

クラスター管理者は、既存のクラスタースコープのカスタムリソース定義 (CRD) にパーミッションを
付与できます。admin、edit、および view のデフォルトクラスターロールを使用する場合、これらの
ルールにクラスターロールの集計を利用します。

重要

これらのロールのいずれかにパーミッションを付与する際は、明示的に付与する必要が
あります。より多くのパーミッションを持つロールはより少ないパーミッションを持つ
ロールからルールを継承しません。ルールをあるロールに割り当てる場合、より多くの
パーミッションを持つロールにもその動詞を割り当てる必要もあります。たとえば、get
crontabs パーミッションを表示ロールに付与する場合、これを edit および admin ロー
ルにも付与する必要があります。admin または edit ロールは通常、プロジェクトテンプ
レートでプロジェクトを作成したユーザーに割り当てられます。

前提条件

CRD を作成します。

手順

1. CRD のクラスターロール定義ファイルを作成します。クラスターロール定義は、各クラスター
ロールに適用されるルールが含まれる YAML ファイルです。OpenShift Container Platform
Controller はデフォルトクラスターロールに指定するルールを追加します。

カスタムロール定義の YAML ファイルサンプル

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1 1
metadata:
 name: aggregate-cron-tabs-admin-edit 2
 labels:
 rbac.authorization.k8s.io/aggregate-to-admin: "true" 3
 rbac.authorization.k8s.io/aggregate-to-edit: "true" 4
rules:
- apiGroups: ["stable.example.com"] 5
 resources: ["crontabs"] 6
 verbs: ["get", "list", "watch", "create", "update", "patch", "delete", "deletecollection"] 7

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: aggregate-cron-tabs-view 8

OpenShift Container Platform 4.4 Operator

74

1

2 8

3

4

5 11

6 12

7 13

9

10

rbac.authorization.k8s.io/v1 API を使用します。

定義の名前を指定します。

パーミッションを管理のデフォルトロールに付与するためにこのラベルを指定します。

パーミッションを編集のデフォルトロールに付与するためにこのラベルを指定します。

CRD のグループ名を指定します

これらのルールが適用される CRD の複数形の名前を指定します。

ロールに付与されるパーミッションを表す動詞を指定します。たとえば、読み取りおよび
書き込みパーミッションを admin および edit ロールに適用し、読み取り専用パーミッ
ションを view ロールに適用します。

このラベルを指定して、パーミッションを view デフォルトロールに付与します。

このラベルを指定して、パーミッションを cluster-reader デフォルトロールに付与しま
す。

2. クラスターロールを作成します。

$ oc create -f <file_name>.yaml

11.1.4. ファイルからのカスタムリソースの作成

カスタムリソース定義 (CRD) がクラスターに追加された後に、クラスターリソース (CR) は CR 仕様を
使用するファイルを使って CLI で作成できます。

前提条件

CRD がクラスター管理者によってクラスターに追加されている。

手順

1. CR の YAML ファイルを作成します。以下の定義例では、cronSpec と image のカスタム
フィールドが Kind: CronTab の CR に設定されます。この Kind は、CRD オブジェクトの
spec.kind フィールドから取得します。

CR の YAML ファイルサンプル

 labels:
 # Add these permissions to the "view" default role.
 rbac.authorization.k8s.io/aggregate-to-view: "true" 9
 rbac.authorization.k8s.io/aggregate-to-cluster-reader: "true" 10
rules:
- apiGroups: ["stable.example.com"] 11
 resources: ["crontabs"] 12
 verbs: ["get", "list", "watch"] 13

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2

第11章 CRD

75

1

2

3

4

5

カスタムリソース定義からグループ名および API バージョン (名前/バージョン) を指定し
ます。

CRD にタイプを指定します。

オブジェクトの名前を指定します。

オブジェクトの ファイナライザー を指定します (ある場合)。ファイナライザーは、コン
トローラーがオブジェクトの削除前に完了する必要のある条件を実装できるようにしま
す。

オブジェクトのタイプに固有の条件を指定します。

2. ファイルの作成後に、オブジェクトを作成します。

$ oc create -f <file_name>.yaml

11.1.5. カスタムリソースの検査

CLI を使用してクラスターに存在するカスタムリソース (CR) オブジェクトを検査できます。

前提条件

CR オブジェクトがアクセスできる namespace にあること。

手順

1. CR の特定の Kind についての情報を取得するには、以下を実行します。

$ oc get <kind>

以下に例を示します。

$ oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

リソース名では大文字と小文字が区別されず、CRD で定義される単数形または複数形のいずれ
か、および任意の短縮名を指定できます。以下に例を示します。

$ oc get crontabs
$ oc get crontab
$ oc get ct

metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com
spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

OpenShift Container Platform 4.4 Operator

76

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

1 2

2. CR の未加工の YAML データを確認することもできます。

$ oc get <kind> -o yaml

$ oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

オブジェクトの作成に使用した YAML からのカスタムデータが表示されます。

11.2. カスタムリソース定義からのリソースの管理

以下では、開発者がカスタムリソース定義 (CRD) にあるカスタムリソース (CR) をどのように管理でき
るかについて説明します。

11.2.1. カスタムリソース定義

Kubernetes API では、リソースは特定の種類の API オブジェクトのコレクションを保管するエンドポ
イントです。たとえば、ビルトインされた Pod リソースには Pod オブジェクトのコレクションが含ま
れます。

カスタムリソース定義 (CRD) オブジェクトは、クラスター内に新規の固有オブジェクト Kind を定義
し、Kubernetes API サーバーにそのライフサイクル全体を処理させます。

カスタムリソース (CR) オブジェクトは、クラスター管理者によってクラスターに追加された CRD から
作成され、すべてのクラスターユーザーが新規リソースタイプをプロジェクトに追加できるようにしま
す。

Operator はとりわけ CRD を必要な RBAC ポリシーおよび他のソフトウェア固有のロジックでパッケー
ジ化することで CRD を利用します。またクラスター管理者は、Operator のライフサイクル外にあるク
ラスターに CRD を手動で追加でき、これらをすべてのユーザーに利用可能にすることができます。

注記

クラスター管理者のみが CRD を作成できる一方で、開発者は CRD への読み取りおよび
書き込みパーミッションがある場合には、既存の CRD から CR を作成することができま
す。

第11章 CRD

77

1

2

3

4

5

11.2.2. ファイルからのカスタムリソースの作成

カスタムリソース定義 (CRD) がクラスターに追加された後に、クラスターリソース (CR) は CR 仕様を
使用するファイルを使って CLI で作成できます。

前提条件

CRD がクラスター管理者によってクラスターに追加されている。

手順

1. CR の YAML ファイルを作成します。以下の定義例では、cronSpec と image のカスタム
フィールドが Kind: CronTab の CR に設定されます。この Kind は、CRD オブジェクトの
spec.kind フィールドから取得します。

CR の YAML ファイルサンプル

カスタムリソース定義からグループ名および API バージョン (名前/バージョン) を指定し
ます。

CRD にタイプを指定します。

オブジェクトの名前を指定します。

オブジェクトの ファイナライザー を指定します (ある場合)。ファイナライザーは、コン
トローラーがオブジェクトの削除前に完了する必要のある条件を実装できるようにしま
す。

オブジェクトのタイプに固有の条件を指定します。

2. ファイルの作成後に、オブジェクトを作成します。

$ oc create -f <file_name>.yaml

11.2.3. カスタムリソースの検査

CLI を使用してクラスターに存在するカスタムリソース (CR) オブジェクトを検査できます。

前提条件

CR オブジェクトがアクセスできる namespace にあること。

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com
spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

OpenShift Container Platform 4.4 Operator

78

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

1 2

手順

1. CR の特定の Kind についての情報を取得するには、以下を実行します。

$ oc get <kind>

以下に例を示します。

$ oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

リソース名では大文字と小文字が区別されず、CRD で定義される単数形または複数形のいずれ
か、および任意の短縮名を指定できます。以下に例を示します。

$ oc get crontabs
$ oc get crontab
$ oc get ct

2. CR の未加工の YAML データを確認することもできます。

$ oc get <kind> -o yaml

$ oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

オブジェクトの作成に使用した YAML からのカスタムデータが表示されます。

第11章 CRD

79

第12章 OPERATOR SDK

12.1. OPERATOR SDK の使用を開始する

以下では、Operator SDK の基本事項についての概要を説明し、単純な Go ベースの Memcached
Operator のビルドおよびインストールからアップグレードまでのそのライフサイクル管理の例を使っ
て、(OpenShift Container Platform などの) クラスター管理者の Kubernetes ベースのクラスターへの
アクセスを持つ Operator の作成者を支援します。

これは、Operator SDK (operator-sdk CLI ツールおよび controller-runtime ライブラリー API) と
Operator Lifecycle Manager (OLM) という 2 つの Operator Framework の重要な設定要素を使用して実
行されます。

注記

OpenShift Container Platform 4.4 は Operator SDK v0.15.0 以降をサポートします。

12.1.1. Operator SDK のアーキテクチャー

Operator Framework は Operator という Kubernetes ネイティブアプリケーションを効果的かつ自動化
された拡張性のある方法で管理するためのオープンソースツールキットです。Operator は、プロビ
ジョニング、スケーリング、バックアップおよび復元などのクラウドサービスの自動化の利点を提供
し、同時に Kubernetes が実行されるいずれの場所でも実行できます。

Operator により、Kubernetes の上部に複雑で、ステートフルなアプリケーションを管理することが容
易になります。ただし、現時点で Operator の作成は、低レベルの API の使用、スケルトンコードの作
成、モジュール化の欠如による重複の発生などの課題があるために困難になる場合があります。

Operator SDK は、以下を提供して Operator をより容易に作成できるように設計されたフレームワーク
です。

運用ロジックをより直感的に作成するための高レベルの API および抽象化

新規プロジェクトを迅速にブートストラップするためのスケルトンコードの作成およびコード
生成ツール

共通する Operator ユースケースに対応する拡張機能

12.1.1.1. ワークフロー

Operator SDK は、新規 Operator を開発するために以下のワークフローを提供します。

1. Operator SDK コマンドラインインターフェイス (CLI) を使用した新規 Operator プロジェクト
の作成。

2. カスタムリソース定義 (CRD) を追加することによる新規リソース API の定義。

3. Operator SDK API を使用した監視対象リソースの指定。

4. 指定されたハンドラーでの Operator 調整 (reconciliation) ロジックの定義、およびリソースと
対話するための Operator SDK API の使用。

5. Operator Deployment マニフェストをビルドし、生成するための Operator SDK CLI の使用。

図12.1 Operator SDK ワークフロー

OpenShift Container Platform 4.4 Operator

80

https://coreos.com/operators/

図12.1 Operator SDK ワークフロー

高次元では、Operator SDK を使用する Operator は Operator の作成者が定義するハンドラーで監視対
象のリソースについてのイベントを処理し、アプリケーションの状態を調整するための動作を実行しま
す。

12.1.1.2. マネージャーファイル

Operator の主なプログラムは、cmd/manager/main.go のマネージャーファイルです。マネージャー
は、pkg/apis/ で定義されるすべてのカスタムリソース (CR) のスキームを自動的に登録
し、pkg/controller/ 下のすべてのコントローラーを実行します。

マネージャーは、すべてのコントローラーがリソースの監視に使用する namespace を制限できます。

mgr, err := manager.New(cfg, manager.Options{Namespace: namespace})

デフォルトでは、これは Operator が実行されている namespace です。すべての namespace を確認す
るには、namespace オプションのオプションを空のままにすることができます。

mgr, err := manager.New(cfg, manager.Options{Namespace: ""})

12.1.1.3. Prometheus Operator のサポート

Prometheus はオープンソースのシステムモニタリングおよびアラートツールキットです。Prometheus
Operator は、 OpenShift Container Platform などの Kubernetes ベースのクラスターで実行される
Prometheus クラスターを作成し、設定し、管理します。

ヘルパー関数は、デフォルトで Operator SDK に存在し、Prometheus Operator がデプロイされている
クラスターで使用できるように生成された Go ベースの Operator にメトリクスを自動的にセットアッ
プします。

12.1.2. Operator SDK CLI のインストール

Operator SDK には、開発者による新規 Operator プロジェクトの作成、ビルドおよびデプロイを支援を
する CLI ツールが含まれます。ワークステーションに SDK CLI をインストールして、独自の Operator
のオーサリングを開始することができます。

注記

第12章 OPERATOR SDK

81

https://prometheus.io/

注記

以下では、ローカル Kubernetes クラスターとしての minikube v0.25.0+ とパブリックレ
ジストリーの quay.io を使用します。

12.1.2.1. GitHub リリースからのインストール

GitHub のプロジェクトから SDK CLI の事前ビルドリリースのバイナリーをダウンロードし、インス
トールできます。

前提条件

Go v1.13+

docker v17.03+、podman v1.2.0+、または buildah v1.7+

OpenShift CLI (oc) 4.4+ (インストール済み)

Kubernetes v1.12.0+ に基づくクラスターへのアクセス

コンテナーレジストリーへのアクセス

手順

1. リリースバージョン変数を設定します。

RELEASE_VERSION=v0.15.0

2. リリースバイナリーをダウンロードします。

Linux の場合

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-linux-gnu

macOS の場合

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-apple-darwin

3. ダウンロードしたリリースのバイナリーを確認します。

a. 提供された ASC ファイルをダウンロードします。

Linux の場合

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-linux-gnu.asc

MacOS の場合:

OpenShift Container Platform 4.4 Operator

82

https://github.com/kubernetes/minikube#installation
https://quay.io/
https://golang.org/dl/

1

1

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-apple-darwin.asc

b. バイナリーと対応する ASC ファイルを同じディレクトリーに置き、以下のコマンドを実行
してバイナリーを確認します。

Linux の場合

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu.asc

MacOS の場合:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc

保守管理者の公開キーがワークステーションにない場合は、以下のエラーが出されます。

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc
$ gpg: assuming signed data in 'operator-sdk-${RELEASE_VERSION}-x86_64-apple-
darwin'
$ gpg: Signature made Fri Apr 5 20:03:22 2019 CEST
$ gpg: using RSA key <key_id> 1
$ gpg: Can't check signature: No public key

RSA キー文字列。

キーをダウンロードするには、以下のコマンドを実行し、 <key_id> を直前のコマンドの出
力で提供された RSA キー文字列に置き換えます。

$ gpg [--keyserver keys.gnupg.net] --recv-key "<key_id>" 1

キーサーバーが設定されていない場合、これを --keyserver オプションで指定しま
す。

4. リリースバイナリーを PATH にインストールします。

Linux の場合

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu

macOS の場合

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin

5. CLI ツールが正しくインストールされていることを確認します。

第12章 OPERATOR SDK

83

$ operator-sdk version

12.1.2.2. Homebrew からのインストール

Homebrew を使用して SDK CLI をインストールできます。

前提条件

Homebrew

docker v17.03+、podman v1.2.0+、または buildah v1.7+

OpenShift CLI (oc) 4.4+ (インストール済み)

Kubernetes v1.12.0+ に基づくクラスターへのアクセス

コンテナーレジストリーへのアクセス

手順

1. brew コマンドを使用して SDK CLI をインストールします。

$ brew install operator-sdk

2. CLI ツールが正しくインストールされていることを確認します。

$ operator-sdk version

12.1.2.3. ソースを使用したコンパイルおよびインストール

Operator SDK ソースコードを取得して、SDK CLI をコンパイルし、インストールできます。

前提条件

Git

Go v1.13+

docker v17.03+、podman v1.2.0+、または buildah v1.7+

OpenShift CLI (oc) 4.4+ (インストール済み)

Kubernetes v1.12.0+ に基づくクラスターへのアクセス

コンテナーレジストリーへのアクセス

手順

1. operator-sdk リポジトリーのクローンを作成します。

$ mkdir -p $GOPATH/src/github.com/operator-framework
$ cd $GOPATH/src/github.com/operator-framework
$ git clone https://github.com/operator-framework/operator-sdk
$ cd operator-sdk

OpenShift Container Platform 4.4 Operator

84

https://brew.sh/
https://git-scm.com/downloads
https://golang.org/dl/

2. 必要なリリースブランチをチェックアウトします。

$ git checkout master

3. SDK CLI ツールをコンパイルし、インストールします。

$ make dep
$ make install

これにより、$GOPATH/bin に CLI バイナリー operator-sdk がインストールされます。

4. CLI ツールが正しくインストールされていることを確認します。

$ operator-sdk version

12.1.3. Operator SDK を使用した Go ベースの Operator のビルド

Operator SDK は、詳細なアプリケーション固有の運用上の知識を必要とする可能性のあるプロセスで
ある、Kubernetes ネイティブアプリケーションのビルドを容易にします。SDK はこの障壁を低くする
だけでなく、メータリングやモニタリングなどの数多くの一般的な管理機能に必要なスケルトンコード
の量を減らします。

この手順では、SDK によって提供されるツールおよびライブラリーを使用して単純な Memcached
Operator をビルドする例を示します。

前提条件

開発ワークステーションにインストールされる Operator SDK CLI

OpenShift Container Platform 4.4 などの、Kubernetes ベースのクラスター (v1.8 以上の
apps/v1beta2 API グループをサポートするもの) にインストールされる Operator Lifecycle
Manager (OLM)

cluster-admin パーミッションのあるアカウントを使用したクラスターへのアクセス

OpenShift CLI (oc) v4.1+ (インストール済み)

手順

1. 新規プロジェクトを作成します。
CLI を使用して新規 memcached-operator プロジェクトを作成します。

$ mkdir -p $GOPATH/src/github.com/example-inc/
$ cd $GOPATH/src/github.com/example-inc/
$ operator-sdk new memcached-operator
$ cd memcached-operator

2. 新規カスタムリソース定義 (CRD) を追加します。

a. APIVersion を cache.example.com/v1apha1 に設定し、Kind を Memcached に設定した
状態で、CLI を使用して Memcached という新規 CRD API を追加します。

第12章 OPERATOR SDK

85

$ operator-sdk add api \
 --api-version=cache.example.com/v1alpha1 \
 --kind=Memcached

これにより、pkg/apis/cache/v1alpha1/ の下で Memcached resource API のスキャフォー
ルディングが実行されます。

b. pkg/apis/cache/v1alpha1/memcached_types.go ファイルで、 Memcached カスタムリ
ソース (CR) の仕様およびステータスを変更します。

c. *_types.go ファイルを変更後は、以下のコマンドを常に実行し、該当するリソースタイプ
用に生成されたコードを更新します。

$ operator-sdk generate k8s

3. オプション: カスタム検証を CRD に追加します。
OpenAPI v3.0 スキーマは、マニフェストの生成時に spec.validation ブロックの CRD マニ
フェストに追加されます。この検証ブロックにより、Kubernetes が作成または更新時に
Memcached CR のプロパティーを検証できます。

さらに、pkg/apis/<group>/<version>/zz_generated.openapi.go ファイルが生成されます。
このファイルには、デフォルトで存在する +k8s:openapi-gen=true annotation が Kind 型の宣
言の上に存在する場合に、この検証ブロックの Go 表現が含まれます。この自動生成コードは
Go の Kind 型の OpenAPI モデルです。これを使用して完全な OpenAPI 仕様を作成し、クライ
アントを生成できます。

Operator の作成者は Kubebuilder マーカー (アノテーション) を使用して API のカスタム検証を
設定できます。これらのマーカーには、+kubebuilder:validation 接頭辞が常に必要です。たと
えば、以下のマーカーを追加して enum 型の仕様を追加できます。

API コードのマーカーの使用については、Kubebuilder ドキュメントの Generating CRDs およ
び Markers for Config/Code Generation を参照してください。OpenAPIv3 検証マーカーの詳細
の一覧については、Kubebuilder ドキュメントの CRD Validation を参照してください。

カスタム検証を追加する場合は、以下のコマンドを実行し、CRD の
deploy/crds/cache.example.com_memcacheds_crd.yaml ファイルの OpenAPI 検証セク
ションを更新します。

$ operator-sdk generate crds

生成される YAML の例

type MemcachedSpec struct {
 // Size is the size of the memcached deployment
 Size int32 `json:"size"`
}
type MemcachedStatus struct {
 // Nodes are the names of the memcached pods
 Nodes []string `json:"nodes"`
}

// +kubebuilder:validation:Enum=Lion;Wolf;Dragon
type Alias string

OpenShift Container Platform 4.4 Operator

86

https://book.kubebuilder.io/reference/generating-crd.html
https://book.kubebuilder.io/reference/markers.html
https://book.kubebuilder.io/reference/markers/crd-validation.html

4. 新規コントローラーを追加します。

a. 新規コントローラーをプロジェクトに追加し、 Memcached リソースを確認し、調整しま
す。

$ operator-sdk add controller \
 --api-version=cache.example.com/v1alpha1 \
 --kind=Memcached

これにより、pkg/controller/memcached/ の下で新規コントローラー実装のスキャフォー
ルディングが実行されます。

b. この例では、生成されたコントローラーファイル
pkg/controller/memcached/memcached_controller.go を 実装例 に置き換えます。
コントローラーのサンプルは、それぞれの Memcached CR について以下の調整
(reconciliation) ロジックを実行します。

Memcached Deployment を作成します (ない場合)。

Deployment のサイズが、 Memcached CR 仕様で指定されるのと同じであることを確
認します。

Memcached CR ステータスを Memcached Pod の名前で置き換えます。

次の 2 つのサブステップでは、コントローラーがリソースを監視する方法および調整ルー
プがトリガーされる方法を検査します。これらの手順を省略し、直接 Operator のビルドお
よび実行に進むことができます。

c. pkg/controller/memcached/memcached_controller.go ファイルでコントローラーの実装
を検査し、コントローラーのリソースの監視方法を確認します。
最初の監視は、プライマリーソースとしての Memcached タイプに対して実行します。そ
れぞれの Add、Update、または Delete イベントについて、reconcile ループに
Memcached オブジェクトの reconcile Request (<namespace>:<name> キー) が送られま
す。

err := c.Watch(
 &source.Kind{Type: &cachev1alpha1.Memcached{}},
&handler.EnqueueRequestForObject{})

次の監視は、Deployment に対して実行されますが、イベントハンドラーは各イベントを、
Deployment のオーナーの reconcile Request にマップします。この場合、これは
Deployment が作成された Memcached オブジェクトです。これにより、コントローラーは
Deployment をセカンダリーリソースとして監視できます。

err := c.Watch(&source.Kind{Type: &appsv1.Deployment{}},

spec:
 validation:
 openAPIV3Schema:
 properties:
 spec:
 properties:
 size:
 format: int32
 type: integer

第12章 OPERATOR SDK

87

https://github.com/operator-framework/operator-sdk/blob/master/example/memcached-operator/memcached_controller.go.tmpl

&handler.EnqueueRequestForOwner{
 IsController: true,
 OwnerType: &cachev1alpha1.Memcached{},
 })

d. すべてのコントローラーには、reconcile ループを実装する Reconcile() メソッドのある
Reconciler オブジェクトがあります。この reconcile ループには、キャッシュからプライマ
リーリソースオブジェクトの Memcached を検索するために使用される <namespace>:
<name> キーである Request 引数が渡されます。

func (r *ReconcileMemcached) Reconcile(request reconcile.Request) (reconcile.Result,
error) {
 // Lookup the Memcached instance for this reconcile request
 memcached := &cachev1alpha1.Memcached{}
 err := r.client.Get(context.TODO(), request.NamespacedName, memcached)
 ...
}

Reconcile() の戻り値に応じて、reconcile Request は再度キューに入れられ、ループが再
びトリガーされる可能性があります。

// Reconcile successful - don't requeue
return reconcile.Result{}, nil
// Reconcile failed due to error - requeue
return reconcile.Result{}, err
// Requeue for any reason other than error
return reconcile.Result{Requeue: true}, nil

5. Operator をビルドし、実行します 。

a. Operator の実行前に、CRD を Kubernetes API サーバーに再度登録する必要があります。

$ oc create \
 -f deploy/crds/cache_v1alpha1_memcached_crd.yaml

b. CRD の登録後に、Operator を実行するための 2 つのオプションを選択できます。

Kubernetes クラスター内の Deployment を使用

クラスター内の Go プログラムを使用

以下の方法のいずれかを選択します。

i. オプション A: クラスター内の Deployment として実行する。

A. memcached-operator イメージをビルドし、これをレジストリーにプッシュしま
す。

$ operator-sdk build quay.io/example/memcached-operator:v0.0.1

B. Deployment マニフェストは deploy/operator.yaml に生成されます。デフォルト
はプレースホルダーでしかないため、以下のように Deployment イメージを更新し
ます。

OpenShift Container Platform 4.4 Operator

88

$ sed -i 's|REPLACE_IMAGE|quay.io/example/memcached-operator:v0.0.1|g'
deploy/operator.yaml

C. 次のステップについての quay.io にアカウントがあることを確認するか、または優
先しているコンテナーレジストリーで置き換えます。レジストリーに
は、memcached-operator という名前の 新規パブリックイメージ リポジトリーを
作成します。

D. イメージをレジストリーにプッシュします。

$ podman push quay.io/example/memcached-operator:v0.0.1

E. RBAC をセットアップし、memcached-operator をデプロイします。

$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml
$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/operator.yaml

F. memcached-operator が設定されており、稼働していることを確認します。

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
memcached-operator 1 1 1 1 1m

ii. オプション B: クラスター外でローカルに実行する。
この方法は、迅速にデプロイメントおよびテストを実行するための開発サイクルで優先
される方法です。

$HOME/.kube/config にあるデフォルトの Kubernetes 設定ファイルを使用して
Operator をローカルで実行します。

$ operator-sdk run --local --namespace=default

フラグ --kubeconfig=<path/to/kubeconfig> を使用して特定の kubeconfig を使用で
きます。

6. Memcached CR を作成して、Operator が Memcached アプリケーションをデプロイできるこ
とを確認します。

a. deploy/crds/cache_v1alpha1_memcached_cr.yaml で生成された Memcached CR のサ
ンプルを作成します。

$ cat deploy/crds/cache_v1alpha1_memcached_cr.yaml
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
spec:
 size: 3

$ oc apply -f deploy/crds/cache_v1alpha1_memcached_cr.yaml

b. memcached-operator が CR の Deployment を作成できることを確認します。

第12章 OPERATOR SDK

89

https://quay.io
https://quay.io/new/

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
memcached-operator 1 1 1 1 2m
example-memcached 3 3 3 3 1m

c. ステータスが memcached Pod 名で更新されていることを確認するために、Pod および
CR ステータスをチェックします。

$ oc get pods
NAME READY STATUS RESTARTS AGE
example-memcached-6fd7c98d8-7dqdr 1/1 Running 0 1m
example-memcached-6fd7c98d8-g5k7v 1/1 Running 0 1m
example-memcached-6fd7c98d8-m7vn7 1/1 Running 0 1m
memcached-operator-7cc7cfdf86-vvjqk 1/1 Running 0 2m

$ oc get memcached/example-memcached -o yaml
apiVersion: cache.example.com/v1alpha1
kind: Memcached
metadata:
 clusterName: ""
 creationTimestamp: 2018-03-31T22:51:08Z
 generation: 0
 name: example-memcached
 namespace: default
 resourceVersion: "245453"
 selfLink:
/apis/cache.example.com/v1alpha1/namespaces/default/memcacheds/example-
memcached
 uid: 0026cc97-3536-11e8-bd83-0800274106a1
spec:
 size: 3
status:
 nodes:
 - example-memcached-6fd7c98d8-7dqdr
 - example-memcached-6fd7c98d8-g5k7v
 - example-memcached-6fd7c98d8-m7vn7

7. デプロイメントのサイズを更新し、Operator がデプロイ済みの Memcached アプリケーション
を管理できることを確認します 。

a. memcached CR の spec.size フィールドを 3 から 4 に変更します。

$ cat deploy/crds/cache_v1alpha1_memcached_cr.yaml
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
spec:
 size: 4

b. 変更を適用します。

$ oc apply -f deploy/crds/cache_v1alpha1_memcached_cr.yaml

OpenShift Container Platform 4.4 Operator

90

c. Operator が Deployment サイズを変更することを確認します。

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
example-memcached 4 4 4 4 5m

8. リソースをクリーンアップします。

$ oc delete -f deploy/crds/cache_v1alpha1_memcached_cr.yaml
$ oc delete -f deploy/crds/cache_v1alpha1_memcached_crd.yaml
$ oc delete -f deploy/operator.yaml
$ oc delete -f deploy/role.yaml
$ oc delete -f deploy/role_binding.yaml
$ oc delete -f deploy/service_account.yaml

追加リソース

CRD の OpenAPI v3.0 検証スキーマについての詳細は、Kubernetes ドキュメント を参照して
ください。

12.1.4. Operator Lifecycle Manager を使用した Go ベースの Operator の管理

直前のセクションでは、Operator を手動で実行することについて説明しました。次のセクションで
は、実稼働環境で実行される Operator のより堅牢なデプロイメントモデルを可能にする Operator
Lifecycle Manager (OLM) の使用方法について説明します。

OLM は、Kubernetes クラスターで Operator (およびそれらの関連サービス) をインストールし、更新
し、通常はそれらすべての Operator のライフサイクルを管理するのに役立ちます。これは、
Kubernetes 拡張として実行され、追加のツールなしにすべてのライフサイクル管理機能について oc を
使用できます。

前提条件

OLM が (apps/v1beta2 API グループをサポートする v1.8 以上のバージョンの) Kubernetes
ベースのクラスターにインストールされていること。 たとえば、 OpenShift Container
Platform 4.4 Preview OLM が有効にされていること。

Memcached Operator がビルドされていること。

手順

1. Operator マニフェストを生成します 。
Operator マニフェストは、アプリケーションを表示し、作成し、管理する方法について説明し
ます (この場合は Memcached)。これは ClusterServiceVersion (CSV) オブジェクトで定義さ
れ、OLM が機能するために必要です。

Memcached Operator のビルド時に作成された memcached-operator/ ディレクトリーから
CSV を生成します。

$ operator-sdk generate csv --csv-version 0.0.1

注記

第12章 OPERATOR SDK

91

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/#specifying-a-structural-schema

注記

マニフェストファイルの手動による定義についての詳細は、Building a CSV for
the Operator Framework を参照してください。

2. Operator がターゲットとする namespace を指定する OperatorGroup を作成します。以下の
OperatorGroup を、CSV を作成する namespace に作成します。この例では、default
namespace が使用されます。

3. Operator をデプロイします。これらのファイルは、Memcached Operator のビルド時に
Operator SDK よって deploy/ ディレクトリーに生成されたファイルを使用します。

a. Operator の CSV マニフェストをクラスターの指定された namespace に適用します。

$ oc apply -f deploy/olm-catalog/memcached-operator/0.0.1/memcached-
operator.v0.0.1.clusterserviceversion.yaml

このマニフェストを適用する際に、クラスターはマニフェストで指定された要件を満たし
ていないためにすぐに更新を実行しません。

b. リソースパーミッションを Operator に付与するためにロール、ロールバインディング、お
よびサービスアカウントを作成し、Operator が管理する Memcached タイプを作成するた
めにカスタムリソース定義 (CRD、Custom Resource Definition) を作成します。

$ oc create -f deploy/crds/cache.example.com_memcacheds_crd.yaml
$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml

マニフェストの適用時に OLM は Operator を特定の namespace に作成するため、管理者
は、Operator をインストールできるユーザーを制限するためのネイティブの Kubernetes
RBAC パーミッションモデルを利用できます。

4. アプリケーションインスタンスを作成します 。
Memcached Operator が default namespace で実行されるようになります。ユーザーは
CustomResources のインスタンス経由で Operator と対話します。この場合、リソースには
Memcached の種類が設定されます。ネイティブの Kubernetes RBAC は CustomResources
に適用され、管理者には各 Operater と対話できるユーザーへの制御が提供されます。

この namespace で Memcached のインスタンスを作成することにより、Operator で管理され
る memcached サーバーを実行する Pod をインスタンス化するために Memcached Operator
がトリガーされます。CustomResources をより多く作成すると、Memcached のより多くの
固有なインスタンスがこの namespace で実行されている Memcached Operator によって管理
されます。

$ cat <<EOF | oc apply -f -

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: memcached-operator-group
 namespace: default
spec:
 targetNamespaces:
 - default

OpenShift Container Platform 4.4 Operator

92

https://github.com/operator-framework/operator-lifecycle-manager/blob/master/doc/design/building-your-csv.md

apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "memcached-for-wordpress"
spec:
 size: 1
EOF

$ cat <<EOF | oc apply -f -
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "memcached-for-drupal"
spec:
 size: 1
EOF

$ oc get Memcached
NAME AGE
memcached-for-drupal 22s
memcached-for-wordpress 27s

$ oc get pods
NAME READY STATUS RESTARTS AGE
memcached-app-operator-66b5777b79-pnsfj 1/1 Running 0 14m
memcached-for-drupal-5476487c46-qbd66 1/1 Running 0 3s
memcached-for-wordpress-65b75fd8c9-7b9x7 1/1 Running 0 8s

5. アプリケーションを更新します。
新規 Operator マニフェストを、古い Operator マニフェストを参照する replaces フィールド
を使って作成し、更新を Operator に手動で適用します。OLM は、古い Operator で管理され
ているすべてのリソースの所有権が、いずれのプログラムも停止することなく新規 Operator に
移行できるようにします。新規バージョンの Operator 下で実行するリソースのアップグレード
に必要なデータ移行を実行するかどうかは Operator によって異なります。

以下のコマンドは、新規バージョンの Operator を使用して新規 Operator マニフェストファイ
ル を適用する方法を示し、Pod が実行状態であることを示します。

$ curl -Lo memcachedoperator.0.0.2.csv.yaml https://raw.githubusercontent.com/operator-
framework/getting-started/master/memcachedoperator.0.0.2.csv.yaml
$ oc apply -f memcachedoperator.0.0.2.csv.yaml
$ oc get pods
NAME READY STATUS RESTARTS AGE
memcached-app-operator-66b5777b79-pnsfj 1/1 Running 0 3s
memcached-for-drupal-5476487c46-qbd66 1/1 Running 0 14m
memcached-for-wordpress-65b75fd8c9-7b9x7 1/1 Running 0 14m

12.1.5. 関連情報

Operator SDK によって作成されるプロジェクトディレクトリー構造についての詳細
は、Appendices を参照してください。

Operator Development Guide for Red Hat Partners

第12章 OPERATOR SDK

93

https://github.com/operator-framework/getting-started/blob/master/memcachedoperator.0.0.2.csv.yaml
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#osdk-project-scaffolding-layout_operator-appendices
https://operators.gitbook.io/operator-developer-guide-for-red-hat-partners/

12.2. ANSIBLE ベース OPERATOR の作成

以下では、Operator SDK における Ansible サポートについての概要を説明し、Operator の作成者に、
Ansible Playbook およびモジュールを使用する operator-sdk CLI ツールを使って Ansible ベースの
Operator をビルドし、実行するサンプルを示します。

12.2.1. Operator SDK における Ansible サポート

Operator Framework は Operator という Kubernetes ネイティブアプリケーションを効果的かつ自動化
された拡張性のある方法で管理するためのオープンソースツールキットです。このフレームワークには
Operator SDK が含まれ、これは Kubernetes API の複雑性を把握していなくても、それぞれの専門知識
に基づいて Operator のブートストラップおよびビルドを実行できるように開発者を支援します。

Operator プロジェクトを生成するための Operator SDK のオプションの 1 つに、Go コードを作成する
ことなしに Kubernetes リソースを統一されたアプリケーションとしてデプロイするために既存の
Ansible Playbook およびモジュールを使用できるオプションがあります。

12.2.1.1. カスタムリソースファイル

Operator は Kubernetes の拡張メカニズムであるカスタムリソース定義 (CRD) を使用するため、カス
タムリソース (CR) は、組み込み済みのネイティブ Kubernetes オブジェクトのように表示され、機能し
ます。

CR ファイル形式は Kubernetes リソースファイルです。オブジェクトには、必須およびオプション
フィールドが含まれます。

表12.1 カスタムリソースフィールド

フィールド 説明

apiVersion 作成される CR のバージョン。

kind 作成される CR の種類。

metadata 作成される Kubernetes 固有のメタデータ。

spec (オプション) Ansible に渡される変数のキーと値の一覧。このフィールドは、デフォルト
では空です。

status オブジェクトの現在の状態の概要を示します。Ansible ベースの Operator
の場合、status サブリソース はデフォルトで CRD について有効にさ
れ、operator_sdk.util.k8s_status Ansible モジュールによって管理され
ます。 これには、CR の status に対する condition 情報が含まれます。

annotations CR に付加する Kubernetes 固有のアノテーション。

CR アノテーションの以下の一覧は Operator の動作を変更します。

表12.2 Ansible ベースの Operator アノテーション

OpenShift Container Platform 4.4 Operator

94

https://coreos.com/operators/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#status-subresource

アノテーション 説明

ansible.operator-
sdk/reconcile-period

CR の調整間隔を指定します。この値は標準的な Golang パッケージ time
を使用して解析されます。とくに、ParseDuration は、s のデフォルト接
尾辞を適用し、秒単位で値を指定します。

Ansible ベースの Operator アノテーションの例

12.2.1.2. 監視ファイル

監視ファイルには、Group、Version、および Kind などによって特定される、カスタムリソース (CR)
から Ansible ロールまたは Playbook へのマッピングの一覧が含まれます。Operator はこのマッピング
ファイルが事前に定義された場所の /opt/ansible/watches.yaml にあることを予想します。

表12.3 監視ファイルのマッピング

フィールド 説明

group 監視する CR のグループ。

version 監視する CR のバージョン。

kind 監視する CR の種類。

role (デフォルト) コンテナーに追加される Ansible ロールへのパスです。たとえば、 roles
ディレクトリーが /opt/ansible/roles/ にあり、ロールの名前が busybox
の場合、この値は /opt/ansible/roles/busybox になります。このフィー
ルドは playbook フィールドと相互に排他的です。

playbook コンテナーに追加される Ansible Playbook へのパスです。この Playbook は
単純にロールを呼び出す方法になります。このフィールドは role フィール
ドと相互に排他的です。

reconcilePeriod (オプショ
ン)

ロールまたは Playbook が特定の CR について実行される調整期間および頻
度。

manageStatus (オプション) true (デフォルト) に設定されると、Operator は CR のステータスを汎用的
に管理します。false に設定されると、指定されたロール、または別のコン
トローラーの Playbook により、CR のステータスは他の場所で管理されま
す。

監視ファイルの例

apiVersion: "foo.example.com/v1alpha1"
kind: "Foo"
metadata:
 name: "example"
annotations:
 ansible.operator-sdk/reconcile-period: "30s"

第12章 OPERATOR SDK

95

https://golang.org/pkg/time/
https://golang.org/pkg/time/#ParseDuration

1

2

3

Foo の Foo ロールへの単純なマッピング例。

Bar の Playbook への単純なマッピング例。

Baz の種類についてのより複雑な例。Playbook での CR ステータスを再度キューに入れるタスク
またはその管理を無効にします。

12.2.1.2.1. 高度なオプション

高度な機能は、それらを GVK (グループ、バージョン、および種類) ごとに監視ファイルに追加して有
効にできます。それらは group、version、kind および playbook または role フィールドの下に移行で
きます。

一部の機能は、カスタムリソース (CR) のアノテーションを使用してリソースごとに上書きできます。
オーバーライドできるオプションには、以下に指定されるアノテーションが含まれます。

表12.4 高度な監視対象ファイルオプション

機能 YAML キー 説明 上書きのアノ
テーション

デ
フォ
ルト
値

調整期間 reconcilePer
iod

特定の CR についての調整実行の
間隔。

ansbile.ope
rator-
sdk/reconcil
e-period

1m

ステータスの管理 manageStat
us

Operator は各 CR の status セク
ションの conditions セクション
を管理できます。

 true

依存するリソースの監視 watchDepen
dentResour
ces

Operator は Ansible によって作成
されるリソースを動的に監視でき
ます。

 true

- version: v1alpha1 1
 group: foo.example.com
 kind: Foo
 role: /opt/ansible/roles/Foo

- version: v1alpha1 2
 group: bar.example.com
 kind: Bar
 playbook: /opt/ansible/playbook.yml

- version: v1alpha1 3
 group: baz.example.com
 kind: Baz
 playbook: /opt/ansible/baz.yml
 reconcilePeriod: 0
 manageStatus: false

OpenShift Container Platform 4.4 Operator

96

クラスタースコープのリ
ソースの監視

watchCluste
rScopedRes
ources

Operator は Ansible によって作成
されるクラスタースコープのリ
ソースを監視できます。

 fals
e

最大 Runner アーティファ
クト

maxRunner
Artifacts

Ansible Runner が各リソースにつ
いて Operator コンテナーに保持
する アーティファクトディレクト
リー の数を管理します。

ansible.ope
rator-
sdk/max-
runner-
artifacts

20

機能 YAML キー 説明 上書きのアノ
テーション

デ
フォ
ルト
値

高度なオプションを含む監視ファイルの例

12.2.1.3. Ansible に送信される追加変数

追加の変数を Ansible に送信し、Operator で管理できます。カスタマーリソース (CR) の spec セク
ションでは追加変数としてキーと値のペアを渡します。これは、ansible-playbook コマンドに渡され
る追加変数と同等です。

また Operator は、CR の名前および CR の namespace についての meta フィールドの下に追加の変数
を渡します。

以下は CR の例になります。

追加変数として Ansible に渡される構造は以下のとおりです。

- version: v1alpha1
 group: app.example.com
 kind: AppService
 playbook: /opt/ansible/playbook.yml
 maxRunnerArtifacts: 30
 reconcilePeriod: 5s
 manageStatus: False
 watchDependentResources: False

apiVersion: "app.example.com/v1alpha1"
kind: "Database"
metadata:
 name: "example"
spec:
 message:"Hello world 2"
 newParameter: "newParam"

{ "meta": {
 "name": "<cr_name>",
 "namespace": "<cr_namespace>",
 },

第12章 OPERATOR SDK

97

https://ansible-runner.readthedocs.io/en/latest/intro.html#runner-artifacts-directory-hierarchy

message および newParameter フィールドは追加変数として上部に設定され、meta は Operator に定
義されるように CR の関連メタデータを提供します。meta フィールドは、Ansible のドット表記などを
使用してアクセスできます。

12.2.1.4. Ansible Runner ディレクトリー

Ansible Runner はコンテナーに Ansible 実行についての情報を維持します。これは /tmp/ansible-
operator/runner/<group>/<version>/<kind>/<namespace>/<name> に置かれます。

関連情報

runner ディレクトリーについての詳細は、Ansible Runner ドキュメント を参照してくださ
い。

12.2.2. Operator SDK CLI のインストール

Operator SDK には、開発者による新規 Operator プロジェクトの作成、ビルドおよびデプロイを支援を
する CLI ツールが含まれます。ワークステーションに SDK CLI をインストールして、独自の Operator
のオーサリングを開始することができます。

注記

以下では、ローカル Kubernetes クラスターとしての minikube v0.25.0+ とパブリックレ
ジストリーの quay.io を使用します。

12.2.2.1. GitHub リリースからのインストール

GitHub のプロジェクトから SDK CLI の事前ビルドリリースのバイナリーをダウンロードし、インス
トールできます。

前提条件

Go v1.13+

docker v17.03+、podman v1.2.0+、または buildah v1.7+

OpenShift CLI (oc) 4.4+ (インストール済み)

Kubernetes v1.12.0+ に基づくクラスターへのアクセス

コンテナーレジストリーへのアクセス

手順

 "message": "Hello world 2",
 "new_parameter": "newParam",
 "_app_example_com_database": {
 <full_crd>
 },
}

- debug:
 msg: "name: {{ meta.name }}, {{ meta.namespace }}"

OpenShift Container Platform 4.4 Operator

98

https://ansible-runner.readthedocs.io/en/latest/index.html
https://github.com/kubernetes/minikube#installation
https://quay.io/
https://golang.org/dl/

1. リリースバージョン変数を設定します。

RELEASE_VERSION=v0.15.0

2. リリースバイナリーをダウンロードします。

Linux の場合

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-linux-gnu

macOS の場合

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-apple-darwin

3. ダウンロードしたリリースのバイナリーを確認します。

a. 提供された ASC ファイルをダウンロードします。

Linux の場合

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-linux-gnu.asc

MacOS の場合:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-apple-darwin.asc

b. バイナリーと対応する ASC ファイルを同じディレクトリーに置き、以下のコマンドを実行
してバイナリーを確認します。

Linux の場合

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu.asc

MacOS の場合:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc

保守管理者の公開キーがワークステーションにない場合は、以下のエラーが出されます。

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc
$ gpg: assuming signed data in 'operator-sdk-${RELEASE_VERSION}-x86_64-apple-
darwin'
$ gpg: Signature made Fri Apr 5 20:03:22 2019 CEST
$ gpg: using RSA key <key_id> 1
$ gpg: Can't check signature: No public key

第12章 OPERATOR SDK

99

1

1

RSA キー文字列。

キーをダウンロードするには、以下のコマンドを実行し、 <key_id> を直前のコマンドの出
力で提供された RSA キー文字列に置き換えます。

$ gpg [--keyserver keys.gnupg.net] --recv-key "<key_id>" 1

キーサーバーが設定されていない場合、これを --keyserver オプションで指定しま
す。

4. リリースバイナリーを PATH にインストールします。

Linux の場合

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu

macOS の場合

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin

5. CLI ツールが正しくインストールされていることを確認します。

$ operator-sdk version

12.2.2.2. Homebrew からのインストール

Homebrew を使用して SDK CLI をインストールできます。

前提条件

Homebrew

docker v17.03+、podman v1.2.0+、または buildah v1.7+

OpenShift CLI (oc) 4.4+ (インストール済み)

Kubernetes v1.12.0+ に基づくクラスターへのアクセス

コンテナーレジストリーへのアクセス

手順

1. brew コマンドを使用して SDK CLI をインストールします。

$ brew install operator-sdk

OpenShift Container Platform 4.4 Operator

100

https://brew.sh/

2. CLI ツールが正しくインストールされていることを確認します。

$ operator-sdk version

12.2.2.3. ソースを使用したコンパイルおよびインストール

Operator SDK ソースコードを取得して、SDK CLI をコンパイルし、インストールできます。

前提条件

Git

Go v1.13+

docker v17.03+、podman v1.2.0+、または buildah v1.7+

OpenShift CLI (oc) 4.4+ (インストール済み)

Kubernetes v1.12.0+ に基づくクラスターへのアクセス

コンテナーレジストリーへのアクセス

手順

1. operator-sdk リポジトリーのクローンを作成します。

$ mkdir -p $GOPATH/src/github.com/operator-framework
$ cd $GOPATH/src/github.com/operator-framework
$ git clone https://github.com/operator-framework/operator-sdk
$ cd operator-sdk

2. 必要なリリースブランチをチェックアウトします。

$ git checkout master

3. SDK CLI ツールをコンパイルし、インストールします。

$ make dep
$ make install

これにより、$GOPATH/bin に CLI バイナリー operator-sdk がインストールされます。

4. CLI ツールが正しくインストールされていることを確認します。

$ operator-sdk version

12.2.3. Operator SDK を使用した Ansible ベースの Operator のビルド

以下の手順では、Operator SDK が提供するツールおよびライブラリーを使用した Ansible Playbook が
サポートする単純な Memcached Operator のビルドの例について説明します。

前提条件

第12章 OPERATOR SDK

101

https://git-scm.com/downloads
https://golang.org/dl/

開発ワークステーションにインストールされる Operator SDK CLI

cluster-admin パーミッションを持つアカウントを使用した Kubernetes ベースのクラスター r
v1.11.3+ (OpenShift Container Platform 4.4 など) へのアクセス

OpenShift CLI (oc) v4.1+ (インストール済み)

ansible v2.6.0+

ansible-runner v1.1.0+

ansible-runner-http v1.0.0+

手順

1. 新規 Operator プロジェクトを作成します。namespace スコープの Operator は単一
namespace でリソースを監視し、管理します。namespace スコープの Operator は柔軟性があ
るために優先して使用されます。これらの Operator は切り離されたアップグレード、障害対応
およびモニタリングのための namespace の分離、および API 定義の差異化を可能にします。
新規の Ansible ベース、namespace スコープの memcached-operator プロジェクトを作成
し、そのディレクトリーに切り換えるには、以下のコマンドを使用します。

$ operator-sdk new memcached-operator \
 --api-version=cache.example.com/v1alpha1 \
 --kind=Memcached \
 --type=ansible
$ cd memcached-operator

これにより、APIVersion example.com/v1apha1 および Kind Memcached の Memcached リ
ソースを監視するための memcached-operator プロジェクトが作成されます。

2. Operator ロジックをカスタマイズします。
この例では、memcached-operator はそれぞれの Memcached カスタムリソース (CR) につい
て以下の調整 (reconciliation) ロジックを実行します。

memcached Deployment を作成します (ない場合)。

Deployment のサイズが Memcached CR で指定されるのと同じであることを確認します。

デフォルトで、memcached-operator は watches.yaml ファイルに示されるように
Memcached リソースイベントを監視し、Ansible ロール Memcached を実行します。

オプションで、以下のロジックを watches.yaml ファイルでカスタマイズできます。

a. role オプションを指定して、ansible-runner を Ansible ロールを使って起動する際に
Operator がこの特定のパスを使用するように設定します。デフォルトでは、新規コマンド
でロールが置かれる場所への絶対パスが入力されます。

- version: v1alpha1
 group: cache.example.com
 kind: Memcached

- version: v1alpha1
 group: cache.example.com
 kind: Memcached

OpenShift Container Platform 4.4 Operator

102

https://docs.ansible.com/ansible/latest/index.html
https://ansible-runner.readthedocs.io/en/latest/install.html
https://github.com/ansible/ansible-runner-http

b. playbook オプションを watches.yaml ファイルに指定して、ansible-runner を Ansible
Playbook で起動する際に Operator がこの指定されたパスを使用するように設定します。

3. Memcached Ansible ロールをビルドします。
生成された Ansible ロールを roles/memcached/ ディレクトリーの下で変更します。この
Ansible ロールは、リソースの変更時に実行されるロジックを制御します。

a. Memcached 仕様を定義します。
Ansible ベースの Operator の定義は Ansible 内ですべて実行できます。Ansible Operator は
CR 仕様フィールドのすべてのキー/値ペアを 変数 として Ansible に渡します。仕様フィー
ルドのすべての変数の名前は、Ansible の実行前に Operator によってスネークケース (小文
字 + アンダースコア) に変換されます。たとえば、仕様の serviceAccount は Ansible では
service_account になります。

ヒント

Ansible で変数についてのタイプの検証を実行し、アプリケーションが予想される入力を受
信できることを確認する必要があります。

ユーザーが spec フィールドを設定しない場合、 roles/memcached/defaults/main.yml
ファイルを変更してデフォルトを設定します。

b. Memcached デプロイメントを定義します。
Memcached 仕様が定義された状態で、リソースの変更に対する Ansible の実行内容を定義
できます。これは Ansible ロールであるため、デフォルトの動作は
roles/memcached/tasks/main.yml ファイルでタスクを実行します。

ここでの目的は、Ansible で memcached:1.4.36-alpine イメージを実行する Deployement
を作成することにあります (Deployment がない場合)。Ansible 2.7+ は k8s Ansible モ
ジュール をサポートします。 この例では、このモジュールを活用し、Deployment 定義を
制御します。

roles/memcached/tasks/main.yml を以下に一致するように変更します。

 role: /opt/ansible/roles/memcached

- version: v1alpha1
 group: cache.example.com
 kind: Memcached
 playbook: /opt/ansible/playbook.yaml

size: 1

- name: start memcached
 k8s:
 definition:
 kind: Deployment
 apiVersion: apps/v1
 metadata:
 name: '{{ meta.name }}-memcached'
 namespace: '{{ meta.namespace }}'
 spec:
 replicas: "{{size}}"
 selector:

第12章 OPERATOR SDK

103

https://docs.ansible.com/ansible/2.5/user_guide/playbooks_variables.html#passing-variables-on-the-command-line
https://docs.ansible.com/ansible/2.7/modules/k8s_module.html

注記

この例では、size 変数を使用し、 Memcached Deployment のレプリカ数を
制御しています。この例では、デフォルトを 1 に設定しますが、任意のユー
ザーがこのデフォルトを上書きする CR を作成することができます。

4. CRD をデプロイします。
Operator の実行前に、Kubernetes は Operator が監視する新規カスタムリソース定義 (CRD)
について把握している必要があります。Memcached CRD をデプロイします。

$ oc create -f deploy/crds/cache.example.com_memcacheds_crd.yaml

5. Operator をビルドし、実行します 。
Operator をビルドし、実行する方法として 2 つの方法を使用できます。

Kubernetes クラスター内の Pod を使用

operator-sdk up コマンドを使用してクラスター外で Go プログラムを使用

以下の方法のいずれかを選択します。

a. Kubernetes クラスター内で Pod として実行 します。これは実稼働環境での優先される方
法です。

i. memcached-operator イメージをビルドし、これをレジストリーにプッシュします。

$ operator-sdk build quay.io/example/memcached-operator:v0.0.1
$ podman push quay.io/example/memcached-operator:v0.0.1

ii. Deployment マニフェストは deploy/operator.yaml ファイルに生成されます。この
ファイルの Deployment イメージは、プレースホルダー REPLACE_IMAGE から直前
にビルドされたイメージに変更される必要があります。これを実行するには、以下を実
行します。

 matchLabels:
 app: memcached
 template:
 metadata:
 labels:
 app: memcached
 spec:
 containers:
 - name: memcached
 command:
 - memcached
 - -m=64
 - -o
 - modern
 - -v
 image: "docker.io/memcached:1.4.36-alpine"
 ports:
 - containerPort: 11211

OpenShift Container Platform 4.4 Operator

104

$ sed -i 's|REPLACE_IMAGE|quay.io/example/memcached-operator:v0.0.1|g'
deploy/operator.yaml

iii. memcached-operator をデプロイします。

$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml
$ oc create -f deploy/operator.yaml

iv. memcached-operator が稼働していることを確認します。

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
memcached-operator 1 1 1 1 1m

b. クラスター外で実行します。この方法は、デプロイメントおよびテストの速度を上げるた
めに開発サイクル時に優先される方法です。
Ansible Runner および Ansible Runner HTTP プラグインがインストールされていることを
確認します。 インストールされていない場合、CR の作成時に Ansible Runner から予想し
ないエラーが発生します。

さらに、watches.yaml ファイルで参照されるロールパスがマシン上にある必要がありま
す。通常、コンテナーはディスク上のロールが置かれる場所で使用されるため、ロールは
設定済みの Ansible ロールパス (例: /etc/ansible/roles) に手動でコピーされる必要がありま
す。

i. $HOME/.kube/config にあるデフォルトの Kubernetes 設定ファイルを使って Operator
をローカルに実行するには、以下を実行します。

$ operator-sdk run --local

提供された Kubernetes 設定ファイルを使って Operator をローカルに実行するには、
以下を実行します。

$ operator-sdk run --local --kubeconfig=config

6. Memcached CR を作成します。

a. 以下に示されるように deploy/crds/cache_v1alpha1_memcached_cr.yaml ファイルを変
更し、 Memcached CR を作成します。

$ cat deploy/crds/cache_v1alpha1_memcached_cr.yaml
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
spec:
 size: 3

$ oc apply -f deploy/crds/cache_v1alpha1_memcached_cr.yaml

b. memcached-operator が CR の Deployment を作成できることを確認します。

第12章 OPERATOR SDK

105

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
memcached-operator 1 1 1 1 2m
example-memcached 3 3 3 3 1m

c. Pod で 3 つのレプリカが作成されていることを確認します。

$ oc get pods
NAME READY STATUS RESTARTS AGE
example-memcached-6fd7c98d8-7dqdr 1/1 Running 0 1m
example-memcached-6fd7c98d8-g5k7v 1/1 Running 0 1m
example-memcached-6fd7c98d8-m7vn7 1/1 Running 0 1m
memcached-operator-7cc7cfdf86-vvjqk 1/1 Running 0 2m

7. サイズを更新します。

a. memcached CR の spec.size フィールドを 3 から 4 に変更し、変更を適用します。

$ cat deploy/crds/cache_v1alpha1_memcached_cr.yaml
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
spec:
 size: 4

$ oc apply -f deploy/crds/cache_v1alpha1_memcached_cr.yaml

b. Operator が Deployment サイズを変更することを確認します。

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
example-memcached 4 4 4 4 5m

8. リソースをクリーンアップします。

$ oc delete -f deploy/crds/cache_v1alpha1_memcached_cr.yaml
$ oc delete -f deploy/operator.yaml
$ oc delete -f deploy/role_binding.yaml
$ oc delete -f deploy/role.yaml
$ oc delete -f deploy/service_account.yaml
$ oc delete -f deploy/crds/cache_v1alpha1_memcached_crd.yaml

12.2.4. K8S Ansible モジュールの使用によるアプリケーションライフサイクルの管理

Ansible を使用して Kubernetes でアプリケーションのライフサイクルを管理するには、k8s Ansible モ
ジュール を使用できます。この Ansible モジュールにより、開発者は既存の Kubernetes リソースファ
イル (YAML で作成されている) を利用するか、またはネイティブの Ansible でライフサイクル管理を表
現することができます。

Ansible を既存の Kubernetes リソースファイルと併用する最大の利点の 1 つに、Ansible のいくつかを
変数のみを使う単純な方法でのリソースのカスタマイズを可能にする Jinja テンプレートを使用できる
点があります。

OpenShift Container Platform 4.4 Operator

106

https://docs.ansible.com/ansible/2.7/modules/k8s_module.html

このセクションでは、k8s Ansible モジュールの使用法を詳細に説明します。使用を開始するには、
Playbook を使用してローカルワークステーションにモジュールをインストールし、これをテストして
から、Operator 内での使用を開始します。

12.2.4.1. k8s Ansible モジュールのインストール

k8s Ansible モジュールをローカルワークステーションにインストールするには、以下を実行します。

手順

1. Ansible 2.6+ をインストールします。

$ sudo yum install ansible

2. pip を使用して OpenShift python クライアント パッケージをインストールします。

$ pip install openshift

12.2.4.2. k8s Ansible モジュールのローカルでのテスト

開発者が毎回 Operator を実行し、再ビルドするのではなく、Ansible コードをローカルマシンから実行
する方が利点がある場合があります。

手順

1. 新規 Ansible ベースの Operator プロジェクトを初期化します。

$ operator-sdk new --type ansible --kind Foo --api-version foo.example.com/v1alpha1 foo-
operator
Create foo-operator/tmp/init/galaxy-init.sh
Create foo-operator/tmp/build/Dockerfile
Create foo-operator/tmp/build/test-framework/Dockerfile
Create foo-operator/tmp/build/go-test.sh
Rendering Ansible Galaxy role [foo-operator/roles/Foo]...
Cleaning up foo-operator/tmp/init
Create foo-operator/watches.yaml
Create foo-operator/deploy/rbac.yaml
Create foo-operator/deploy/crd.yaml
Create foo-operator/deploy/cr.yaml
Create foo-operator/deploy/operator.yaml
Run git init ...
Initialized empty Git repository in /home/dymurray/go/src/github.com/dymurray/opsdk/foo-
operator/.git/
Run git init done

$ cd foo-operator

2. 必要な Ansible ロジックを使用して roles/foo/tasks/main.yml ファイルを変更します。この例
では、変数の切り替えと共に namespace を作成し、削除します。

- name: set test namespace to {{ state }}
 k8s:
 api_version: v1

第12章 OPERATOR SDK

107

https://github.com/openshift/openshift-restclient-python

1 ignore_errors: true を設定することにより、存在しないプロジェクトを削除しても失敗し
ません。

3. roles/foo/defaults/main.yml ファイルを、デフォルトで state を present に設定するように変
更します。

4. 上部ディレクトリーに、Foo ロールを含む Ansible Playbook playbook.yml を作成します。

5. Playbook を実行します。

$ ansible-playbook playbook.yml
 [WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit
localhost does not match 'all'

PLAY [localhost] ***

PROCEDURE [Gathering Facts]

ok: [localhost]

Task [Foo : set test namespace to present]
changed: [localhost]

PLAY RECAP ***
localhost : ok=2 changed=1 unreachable=0 failed=0

6. namespace が作成されていることを確認します。

$ oc get namespace
NAME STATUS AGE
default Active 28d
kube-public Active 28d
kube-system Active 28d
test Active 3s

7. state を absent に設定して Playbook を再実行します。

$ ansible-playbook playbook.yml --extra-vars state=absent
 [WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit
localhost does not match 'all'

PLAY [localhost] ***

 kind: Namespace
 state: "{{ state }}"
 name: test
 ignore_errors: true 1

state: present

- hosts: localhost
 roles:
 - Foo

OpenShift Container Platform 4.4 Operator

108

PROCEDURE [Gathering Facts]

ok: [localhost]

Task [Foo : set test namespace to absent]
changed: [localhost]

PLAY RECAP ***
localhost : ok=2 changed=1 unreachable=0 failed=0

8. namespace が削除されていることを確認します。

$ oc get namespace
NAME STATUS AGE
default Active 28d
kube-public Active 28d
kube-system Active 28d

12.2.4.3. Operator 内での k8s Ansible モジュールのテスト

k8s Ansible モジュールをローカルで使用することに慣れたら、カスタムリソース (CR) の変更時に
Operator 内で同じ Ansible ロジックをトリガーできます。この例では、Ansible ロールを、Operator が
監視する特定の Kubernetes リソースにマップします。このマッピングは監視ファイルで実行されま
す。

12.2.4.3.1. Ansible ベース Operator のローカルでのテスト

Ansible ワークフローのテストをローカルで実行することに慣れたら、ローカルに実行される Ansible
ベースの Operator 内でロジックをテストできます。

これを実行するには、Operator プロジェクトの上部ディレクトリーから operator-sdk run --local コマ
ンドを使用します。このコマンドは ./watches.yaml ファイルから読み取り、 ~/.kube/config ファイル
を使用して k8s Ansible モジュールが実行するように Kubernetes クラスターと通信します。

手順

1. run --local コマンドは ./watches.yaml ファイルから読み取るため、Operator の作成者はいく
つかのオプションを選択できます。role が単独で残される場合 (デフォルトでは
/opt/ansible/roles/<name>)、ロールを Operator から /opt/ansible/roles/ ディレクトリーに直
接コピーする必要があります。
これは、現行ディレクトリーからの変更が反映されないために複雑になります。この代わり
に、role フィールドを現行ディレクトリーを参照するように変更し、既存の行をコメントアウ
トします。

2. カスタムリソース定義 (CRD) およびカスタムリソース (CR) Foo の適切なロールベースアクセ
ス制御 (RBAC) 定義を作成します。operator-sdk コマンドは、deploy/ ディレクトリー内にこ
れらのファイルを自動生成します。

- version: v1alpha1
 group: foo.example.com
 kind: Foo
 # role: /opt/ansible/roles/Foo
 role: /home/user/foo-operator/Foo

第12章 OPERATOR SDK

109

$ oc create -f deploy/crds/foo_v1alpha1_foo_crd.yaml
$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml

3. run --local コマンドを実行します。

$ operator-sdk run --local
[...]
INFO[0000] Starting to serve on 127.0.0.1:8888
INFO[0000] Watching foo.example.com/v1alpha1, Foo, default

4. Operator はリソース Foo でイベントを監視しているため、CR の作成により、Ansible ロール
の実行がトリガーされます。deploy/cr.yaml ファイルを表示します。

spec フィールドは設定されていないため、Ansible は追加の変数なしで起動します。次のセク
ションでは、追加の変数が CR から Ansible に渡される方法について説明します。このため、
Operator に同じでデフォルト値を設定することが重要になります。

5. デフォルト変数 state を present に設定し、Foo の CR インスタンスを作成します。

$ oc create -f deploy/cr.yaml

6. namespace test が作成されていることを確認します。

$ oc get namespace
NAME STATUS AGE
default Active 28d
kube-public Active 28d
kube-system Active 28d
test Active 3s

7. deploy/cr.yaml ファイルを、state フィールドを absent に設定するように変更します。

8. 変更を適用し、namespace が定義されていることを確認します。

$ oc apply -f deploy/cr.yaml

$ oc get namespace
NAME STATUS AGE

apiVersion: "foo.example.com/v1alpha1"
kind: "Foo"
metadata:
 name: "example"

apiVersion: "foo.example.com/v1alpha1"
kind: "Foo"
metadata:
 name: "example"
spec:
 state: "absent"

OpenShift Container Platform 4.4 Operator

110

default Active 28d
kube-public Active 28d
kube-system Active 28d

12.2.4.3.2. Ansible ベース Operator のクラスター上でのテスト

Ansible ロジックを Ansible ベース Operator 内でローカルに実行することに慣れたら、OpenShift
Container Platform などの Kubernetes クラスターの Pod 内で Operator をテストすることができま
す。Pod のクラスターでの実行は、実稼働環境で優先される方法です。

手順

1. foo-operator イメージをビルドし、これをレジストリーにプッシュします。

$ operator-sdk build quay.io/example/foo-operator:v0.0.1
$ podman push quay.io/example/foo-operator:v0.0.1

2. Deployment マニフェストは deploy/operator.yaml ファイルに生成されます。このファイルの
Deployment イメージはプレースホルダーの REPLACE_IMAGE から以前にビルドされたイ
メージに変更される必要があります。これには以下のコマンドを実行します。

$ sed -i 's|REPLACE_IMAGE|quay.io/example/foo-operator:v0.0.1|g' deploy/operator.yaml

OSX でこれらの手順を実行している場合には、代わりに以下のコマンドを実行します。

$ sed -i "" 's|REPLACE_IMAGE|quay.io/example/foo-operator:v0.0.1|g' deploy/operator.yaml

3. foo-operator をデプロイします。

$ oc create -f deploy/crds/foo_v1alpha1_foo_crd.yaml # if CRD doesn't exist already
$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml
$ oc create -f deploy/operator.yaml

4. foo-operator が稼働していることを確認します。

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
foo-operator 1 1 1 1 1m

12.2.5. operator_sdk.util Ansible コレクションを使用したカスタムリソースのステータ
ス管理

Ansible ベースの Operator は、カスタムリソース (CR) status サブリソース を以前の Ansible 実行につ
いての一般的な情報で自動的に更新します。これには、以下のように成功したタスクおよび失敗したタ
スクの数と関連するエラーメッセージが含まれます。

status:
 conditions:
 - ansibleResult:
 changed: 3

第12章 OPERATOR SDK

111

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#status-subresource

さらに Ansible ベースの Operator は、Operator の作成者が operator_sdk util コレクション に含まれる
k8s_status Ansible モジュールでカスタムのステータス値を指定できるようにします。これにより、作
成者は必要に応じ、任意のキー/値のペアを使って Ansible から status を更新できます。

デフォルトでは、Ansible ベースの Operator には、上記のように常に汎用的な Ansible 実行出力が含ま
れます。アプリケーションのステータスが Ansible 出力で更新 されない ようにする必要がある場合に、
アプリケーションからステータスを手動で追跡することができます。

手順

1. CR ステータスをアプリケーションから手動で追跡するには、 manageStatus フィールドを
false に設定して監視ファイルを更新します。

2. 次に、operator_sdk.util.k8s_status Ansible モジュールを使用してサブリソースを更新しま
す。たとえば、キー foo および値 bar を使用して更新するには、operator_sdk.util を以下のよ
うに使用することができます。

コレクションは、新たにスキャフォールディングされた Ansible Operator に含まれるロールの
meta/main.yml で宣言することもできます。

ロールのメタでコレクションを宣言すると、k8s_status モジュールを直接起動することができます。

 completion: 2018-12-03T13:45:57.13329
 failures: 1
 ok: 6
 skipped: 0
 lastTransitionTime: 2018-12-03T13:45:57Z
 message: 'Status code was -1 and not [200]: Request failed: <urlopen error [Errno
 113] No route to host>'
 reason: Failed
 status: "True"
 type: Failure
 - lastTransitionTime: 2018-12-03T13:46:13Z
 message: Running reconciliation
 reason: Running
 status: "True"
 type: Running

- version: v1
 group: api.example.com
 kind: Foo
 role: Foo
 manageStatus: false

- operator_sdk.util.k8s_status:
 api_version: app.example.com/v1
 kind: Foo
 name: "{{ meta.name }}"
 namespace: "{{ meta.namespace }}"
 status:
 foo: bar

collections:
 - operator_sdk.util

OpenShift Container Platform 4.4 Operator

112

https://galaxy.ansible.com/operator_sdk/util

+

追加リソース

Ansible ベース Operator からのユーザー主導のステータス管理を行う方法についての詳細
は、Ansible-based Operator Status Proposal for Operator SDK を参照してください。

12.2.6. 追加リソース

Operator SDK によって作成されるプロジェクトディレクトリー構造についての詳細
は、Appendices を参照してください。

Reaching for the Stars with Ansible Operator - Red Hat OpenShift Blog

Operator Development Guide for Red Hat Partners

12.3. HELM ベース OPERATOR の作成

以下では、Operator SDK での Helm チャートのサポートについての概要を説明し、Operator 作成者を
対象に、既存の Helm チャートを使用する operator-sdk CLI ツールで Nginx Operator をビルドし、実
行する例を示します。

12.3.1. Operator SDK での Helm チャートのサポート

Operator Framework は Operator という Kubernetes ネイティブアプリケーションを効果的かつ自動化
された拡張性のある方法で管理するためのオープンソースツールキットです。このフレームワークには
Operator SDK が含まれ、これは Kubernetes API の複雑性を把握していなくても、それぞれの専門知識
に基づいて Operator のブートストラップおよびビルドを実行できるように開発者を支援します。

Operator プロジェクトを生成するための Operator SDK のオプションの 1 つとして、Go コードを作成
せずに既存の Helm チャートを使用して Kubernetes リソースを統一されたアプリケーションとしてデ
プロイするオプションがあります。このような Helm ベースの Operator では、変更はチャートの一部
として生成される Kubernetes オブジェクトに適用されるため、ロールアウト時にロジックをほとんど
必要としないステートレスなアプリケーションを使用する際に適しています。いくらか制限があるよう
な印象を与えるかもしれませんが、Kubernetes コミュニティーがビルドする Helm チャートが急速に増
加していることからも分かるように、この Operator は数多くのユーザーケースに対応することができ
ます。

Operator の主な機能として、アプリケーションインスタンスを表すカスタムオブジェクトから読み取
り、必要な状態を実行されている内容に一致させることができます。Helm ベース Operator の場合、オ
ブジェクトの仕様フィールドは、通常 Helm の values.yaml ファイルに記述される設定オプションの一
覧です。Helm CLI を使用してフラグ付きの値を設定する代わりに (例: helm install -f values.yaml)、
これらをカスタムリソース (CR) 内で表現することができます。 これにより、ネイティブ Kubernetes
オブジェクトとして、適用される RBAC および監査証跡の利点を活用できます。

Tomcat という単純な CR の例:

apiVersion: apache.org/v1alpha1
kind: Tomcat

k8s_status:
 <snip>
 status:
 foo: bar

第12章 OPERATOR SDK

113

https://github.com/operator-framework/operator-sdk/blob/master/proposals/ansible-operator-status.md
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#osdk-project-scaffolding-layout_operator-appendices
https://blog.openshift.com/reaching-for-the-stars-with-ansible-operator/
https://operators.gitbook.io/operator-developer-guide-for-red-hat-partners/
https://coreos.com/operators/

metadata:
 name: example-app
spec:
 replicaCount: 2

この場合の replicaCount 値、2 は以下が使用されるチャートのテンプレートに伝播されます。

{{ .Values.replicaCount }}

Operator のビルドおよびデプロイ後に、CR の新規インスタンスを作成してアプリケーションの新規イ
ンスタンスをデプロイしたり、 oc コマンドを使用してすべての環境で実行される異なるインスタンス
を一覧表示したりすることができます。

$ oc get Tomcats --all-namespaces

Helm CLI を使用したり、Tiller をインストールしたりする必要はありません。Helm ベースの Operator
はコードを Helm プロジェクトからインポートします。Helm ベースの Operator はコードを Helm プロ
ジェクトからインポートします。Operator のインスタンスを実行状態にし、カスタムリソース定義
(CRD) に CR を登録することのみが必要になります。 さらにこれは RBAC に準拠するため、実稼働環
境の変更を簡単に防止することができます。

12.3.2. Operator SDK CLI のインストール

Operator SDK には、開発者による新規 Operator プロジェクトの作成、ビルドおよびデプロイを支援を
する CLI ツールが含まれます。ワークステーションに SDK CLI をインストールして、独自の Operator
のオーサリングを開始することができます。

注記

以下では、ローカル Kubernetes クラスターとしての minikube v0.25.0+ とパブリックレ
ジストリーの quay.io を使用します。

12.3.2.1. GitHub リリースからのインストール

GitHub のプロジェクトから SDK CLI の事前ビルドリリースのバイナリーをダウンロードし、インス
トールできます。

前提条件

Go v1.13+

docker v17.03+、podman v1.2.0+、または buildah v1.7+

OpenShift CLI (oc) 4.4+ (インストール済み)

Kubernetes v1.12.0+ に基づくクラスターへのアクセス

コンテナーレジストリーへのアクセス

手順

1. リリースバージョン変数を設定します。

RELEASE_VERSION=v0.15.0

OpenShift Container Platform 4.4 Operator

114

https://github.com/kubernetes/minikube#installation
https://quay.io/
https://golang.org/dl/

1

2. リリースバイナリーをダウンロードします。

Linux の場合

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-linux-gnu

macOS の場合

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-apple-darwin

3. ダウンロードしたリリースのバイナリーを確認します。

a. 提供された ASC ファイルをダウンロードします。

Linux の場合

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-linux-gnu.asc

MacOS の場合:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-apple-darwin.asc

b. バイナリーと対応する ASC ファイルを同じディレクトリーに置き、以下のコマンドを実行
してバイナリーを確認します。

Linux の場合

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu.asc

MacOS の場合:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc

保守管理者の公開キーがワークステーションにない場合は、以下のエラーが出されます。

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc
$ gpg: assuming signed data in 'operator-sdk-${RELEASE_VERSION}-x86_64-apple-
darwin'
$ gpg: Signature made Fri Apr 5 20:03:22 2019 CEST
$ gpg: using RSA key <key_id> 1
$ gpg: Can't check signature: No public key

RSA キー文字列。

キーをダウンロードするには、以下のコマンドを実行し、 <key_id> を直前のコマンドの出

第12章 OPERATOR SDK

115

1

キーをダウンロードするには、以下のコマンドを実行し、 <key_id> を直前のコマンドの出
力で提供された RSA キー文字列に置き換えます。

$ gpg [--keyserver keys.gnupg.net] --recv-key "<key_id>" 1

キーサーバーが設定されていない場合、これを --keyserver オプションで指定しま
す。

4. リリースバイナリーを PATH にインストールします。

Linux の場合

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu

macOS の場合

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin

5. CLI ツールが正しくインストールされていることを確認します。

$ operator-sdk version

12.3.2.2. Homebrew からのインストール

Homebrew を使用して SDK CLI をインストールできます。

前提条件

Homebrew

docker v17.03+、podman v1.2.0+、または buildah v1.7+

OpenShift CLI (oc) 4.4+ (インストール済み)

Kubernetes v1.12.0+ に基づくクラスターへのアクセス

コンテナーレジストリーへのアクセス

手順

1. brew コマンドを使用して SDK CLI をインストールします。

$ brew install operator-sdk

2. CLI ツールが正しくインストールされていることを確認します。

$ operator-sdk version

OpenShift Container Platform 4.4 Operator

116

https://brew.sh/

12.3.2.3. ソースを使用したコンパイルおよびインストール

Operator SDK ソースコードを取得して、SDK CLI をコンパイルし、インストールできます。

前提条件

Git

Go v1.13+

docker v17.03+、podman v1.2.0+、または buildah v1.7+

OpenShift CLI (oc) 4.4+ (インストール済み)

Kubernetes v1.12.0+ に基づくクラスターへのアクセス

コンテナーレジストリーへのアクセス

手順

1. operator-sdk リポジトリーのクローンを作成します。

$ mkdir -p $GOPATH/src/github.com/operator-framework
$ cd $GOPATH/src/github.com/operator-framework
$ git clone https://github.com/operator-framework/operator-sdk
$ cd operator-sdk

2. 必要なリリースブランチをチェックアウトします。

$ git checkout master

3. SDK CLI ツールをコンパイルし、インストールします。

$ make dep
$ make install

これにより、$GOPATH/bin に CLI バイナリー operator-sdk がインストールされます。

4. CLI ツールが正しくインストールされていることを確認します。

$ operator-sdk version

12.3.3. Operator SDK を使用した Helm ベースの Operator のビルド

以下の手順では、Operator SDK が提供するツールおよびライブラリーを使用して Helm チャートがサ
ポートする単純な Nginx Operator のビルドの例について説明します。

ヒント

各チャートについて新規 Operator をビルドすることは最も効果的な方法と言えます。これにより、
Hem ベースの Operator から移行して Go で完全装備の Operator を作成する場合などに、さらに多く
のネイティブ動作をする Kubernetes API (例: oc get Nginx) の使用および柔軟性が可能になります。

第12章 OPERATOR SDK

117

https://git-scm.com/downloads
https://golang.org/dl/

前提条件

開発ワークステーションにインストールされる Operator SDK CLI

cluster-admin パーミッションを持つアカウントを使用した Kubernetes ベースのクラスター r
v1.11.3+ (OpenShift Container Platform 4.4 など) へのアクセス

OpenShift CLI (oc) v4.1+ (インストール済み)

手順

1. 新規 Operator プロジェクトを作成します。namespace スコープの Operator は単一
namespace でリソースを監視し、管理します。namespace スコープの Operator は柔軟性があ
るために優先して使用されます。これらの Operator は切り離されたアップグレード、障害対応
およびモニタリングのための namespace の分離、および API 定義の差異化を可能にします。
新規の Helm ベース、namespace スコープの nginx-operator プロジェクトを作成するには、
以下のコマンドを使用します。

$ operator-sdk new nginx-operator \
 --api-version=example.com/v1alpha1 \
 --kind=Nginx \
 --type=helm
$ cd nginx-operator

これにより、とりわけ APIVersion example.com/v1apha1 および Kind Nginx の Nginx リソー
スを監視する目的で nginx-operator プロジェクトが作成されます。

2. Operator ロジックをカスタマイズします。
この例では、nginx-operator はそれぞれの Nginx カスタムリソース (CR) について以下の調整
(reconciliation) ロジックを実行します。

Nginx デプロイメントを作成します (ない場合)。

Nginx サービスを作成します (ない場合)。

Nginx Ingress を作成します (有効にされているが存在しない場合)。

Deployment、Service、およびオプションの Ingress が Nginx CR で指定される必要な設定
(レプリカ数、イメージ、サービスタイプなど) に一致することを確認します。

デフォルトで、nginx-operator は watches.yaml ファイルに示されるように Nginx リソース
イベントを監視し、指定されたチャートを使用して Helm リリースを実行します。

a. Nginx Helm チャートを確認します。
Helm Operator プロジェクトの作成時に、Operator SDK は、単純な Nginx リリース用のテ
ンプレートセットが含まれる Helm チャートのサンプルを作成します。

この例では、Helm チャート開発者がリリースについての役立つ情報を伝えるために使用す
る NOTES.txt テンプレートと共に、Deployment、Service、および Ingress リソース用に
テンプレートを利用できます。

- version: v1alpha1
 group: example.com
 kind: Nginx
 chart: /opt/helm/helm-charts/nginx

OpenShift Container Platform 4.4 Operator

118

Helm チャートの使用に慣れていない場合は、Helm Chart 開発者用のドキュメント を参照
してください。

b. Nginx CR 仕様を確認します。
Helm は 値 (value) という概念を使用して、Helm チャートの values.yaml ファイルに定義
される Helm チャートのデフォルトをカスタマイズします。

CR 仕様に必要な値を設定し、これらのデフォルトを上書きします。例としてレプリカ数を
使用することができます。

i. まず、helm-charts/nginx/values.yaml ファイルで、チャートに replicaCount という
値が含まれ、これがデフォルトで 1 に設定されていることを検査します。デプロイメ
ントに 2 つの Nginx インスタンスを設定するには、CR 仕様に replicaCount: 2 が含ま
れる必要があります。
deploy/crds/example.com_v1alpha1_nginx_cr.yaml ファイルを以下のように更新し
ます。

ii. 同様に、デフォルトのサービスポートは 80 に設定されます。8080 を代わりに使用す
るには、サービスポートの上書きを追加して
deploy/crds/example.com_v1alpha1_nginx_cr.yaml ファイルを再度更新します。

Helm Operator は、helm install -f ./overrides.yaml コマンドが機能するように、仕様
全体を values ファイルの内容のように適用します。

3. CRD をデプロイします。
Operator の実行前に、Kubernetes は Operator が監視する新規カスタムリソース定義 (CRD)
について把握している必要があります。以下の CRD をデプロイします。

$ oc create -f deploy/crds/example_v1alpha1_nginx_crd.yaml

4. Operator をビルドし、実行します 。
Operator をビルドし、実行する方法として 2 つの方法を使用できます。

Kubernetes クラスター内の Pod を使用

operator-sdk up コマンドを使用してクラスター外で Go プログラムを使用

以下の方法のいずれかを選択します。

apiVersion: example.com/v1alpha1
kind: Nginx
metadata:
 name: example-nginx
spec:
 replicaCount: 2

apiVersion: example.com/v1alpha1
kind: Nginx
metadata:
 name: example-nginx
spec:
 replicaCount: 2
 service:
 port: 8080

第12章 OPERATOR SDK

119

https://docs.helm.sh/developing_charts/
https://docs.helm.sh/using_helm/#customizing-the-chart-before-installing

a. Kubernetes クラスター内で Pod として実行 します。これは実稼働環境での優先される方
法です。

i. nginx-operator イメージをビルドし、これをレジストリーにプッシュします。

$ operator-sdk build quay.io/example/nginx-operator:v0.0.1
$ podman push quay.io/example/nginx-operator:v0.0.1

ii. Deployment マニフェストは deploy/operator.yaml ファイルに生成されます。この
ファイルの Deployment イメージは、プレースホルダー REPLACE_IMAGE から直前
にビルドされたイメージに変更される必要があります。これを実行するには、以下を実
行します。

$ sed -i 's|REPLACE_IMAGE|quay.io/example/nginx-operator:v0.0.1|g'
deploy/operator.yaml

iii. nginx-operator をデプロイします。

$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml
$ oc create -f deploy/operator.yaml

iv. nginx-operator が稼働していることを確認します。

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-operator 1 1 1 1 1m

b. クラスター外で実行します。この方法は、デプロイメントおよびテストの速度を上げるた
めに開発サイクル時に優先される方法です。
watches.yaml ファイルで参照されるチャートパスがマシン上に存在している必要がありま
す。デフォルトで、 watches.yaml ファイルは operator-sdk build コマンドでビルドされ
る Operator イメージを使用できるようにスキャフォールディングされます。Operator を
operator-sdk run --local コマンドで開発し、テストする場合、SDK はローカルファイルシ
ステムでこのパスを検索します。

i. この場所に、Helm チャートのパスを参照するシンボリックリンクを作成します。

$ sudo mkdir -p /opt/helm/helm-charts
$ sudo ln -s $PWD/helm-charts/nginx /opt/helm/helm-charts/nginx

ii. $HOME/.kube/config にあるデフォルトの Kubernetes 設定ファイルを使って Operator
をローカルに実行するには、以下を実行します。

$ operator-sdk run --local

提供された Kubernetes 設定ファイルを使って Operator をローカルに実行するには、
以下を実行します。

$ operator-sdk run --local --kubeconfig=<path_to_config>

5. Nginx CR をデプロイします。

OpenShift Container Platform 4.4 Operator

120

これまでに変更した Nginx CR を適用します。

$ oc apply -f deploy/crds/example.com_v1alpha1_nginx_cr.yaml

nginx-operator が CR の Deployment を作成することを確認します。

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1 2 2 2 2 1m

Pod で 2 つのレプリカが作成されていることを確認します。

$ oc get pods
NAME READY STATUS RESTARTS AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1-f8f9c875d-fjcr9 1/1 Running 0 1m
example-nginx-b9phnoz9spckcrua7ihrbkrt1-f8f9c875d-ljbzl 1/1 Running 0 1m

サービスポートが 8080 に設定されていることを確認します。

$ oc get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1 ClusterIP 10.96.26.3 <none> 8080/TCP
1m

6. replicaCount を更新し、ポートを削除します。
spec.replicaCount フィールドを 2 から 3 に変更し、spec.service フィールドを削除して、変
更を適用します。

$ cat deploy/crds/example.com_v1alpha1_nginx_cr.yaml
apiVersion: "example.com/v1alpha1"
kind: "Nginx"
metadata:
 name: "example-nginx"
spec:
 replicaCount: 3

$ oc apply -f deploy/crds/example.com_v1alpha1_nginx_cr.yaml

Operator が Deployment サイズを変更することを確認します。

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1 3 3 3 3 1m

サービスポートがデフォルトの 80 に設定されていることを確認します。

$ oc get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1 ClusterIP 10.96.26.3 <none> 80/TCP
1m

7. リソースをクリーンアップします。

第12章 OPERATOR SDK

121

$ oc delete -f deploy/crds/example.com_v1alpha1_nginx_cr.yaml
$ oc delete -f deploy/operator.yaml
$ oc delete -f deploy/role_binding.yaml
$ oc delete -f deploy/role.yaml
$ oc delete -f deploy/service_account.yaml
$ oc delete -f deploy/crds/example_v1alpha1_nginx_crd.yaml

12.3.4. 追加リソース

Operator SDK によって作成されるプロジェクトディレクトリー構造についての詳細
は、Appendices を参照してください。

Operator Development Guide for Red Hat Partners

12.4. CLUSTERSERVICEVERSION (CSV) の生成

ClusterServiceVersion (CSV) は、Operator Lifecycle Manager (OLM) のクラスターでの Operator の
実行を支援する Operator メタデータから作成される YAML マニフェストです。これは、ユーザーイン
ターフェイスにロゴ、説明、およびバージョンなどの情報を設定するために使用される Operator コン
テナーイメージを伴うメタデータです。CSV は、Operator が必要とする RBAC ルールやそれが管理し
たり、依存したりするカスタムリソース (CR) などの Operator の実行に必要な技術情報の情報源でもあ
ります。

Operator SDK には、手動で定義された YAML マニフェストおよび Operator ソースファイルに含まれ
る情報を使用してカスタマイズされた現行 Operator プロジェクトの ClusterServiceVersion (CSV) を
生成するための generate csv サブコマンドが含まれます。

CSV で生成されるコマンドにより、Operator の作成者が OLM について詳しく知らなくても、
Operator が OLM と対話させたり、メタデータをカタログレジストリーに公開したりできます。また、
Kubernetes および OLM の新機能が実装される過程で CSV 仕様は変更されるため、Operator SDK は
その後の新規 CSV 機能を処理できるように更新システムを容易に拡張できるようになっています。

CSV バージョンは Operator のバージョンと同じであり、新規 CSV は Operator バージョンのアップグ
レード時に生成されます。Operator 作成者は --csv-version フラグを使用して、それらの Operator の
状態を指定されたセマンティクスバージョンと共に CSV にカプセル化できます。

$ operator-sdk generate csv --csv-version <version>

このアクションはべき等であり、新規バージョンが指定されるか、または YAML マニフェストまたは
ソースファイルが変更される場合にのみ CSV ファイルを更新します。Operator の作成者は CSV マニ
フェストのほとんどのフィールドを直接変更する必要はありません。変更が必要なフィールドについ
て、本書で定義されています。たとえば、CSV バージョンについては metadata.name に組み込む必要
があります。

12.4.1. CSV 生成の仕組み

Operator プロジェクトの deploy/ ディレクトリーは、Operator をデプロイするために必要なすべての
マニフェストの標準的な場所です。Operator SDK は deploy/ のマニフェストのデータを使用し、CSV
を作成できます。以下のコマンドを実行します。

$ operator-sdk generate csv --csv-version <version>

デフォルトで、CSV YAML ファイルを deploy/olm-catalog/ ディレクトリーに書き込みます。

OpenShift Container Platform 4.4 Operator

122

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#osdk-project-scaffolding-layout_operator-appendices
https://operators.gitbook.io/operator-developer-guide-for-red-hat-partners/

3 つのタイプのマニフェストが CSV の生成に必要になります。

operator.yaml

*_{crd,cr}.yaml

RBAC ロールファイル (例: role.yaml)

Operator の作者にはこれらのファイルについてそれぞれ異なるバージョン管理の要件がある場合があ
り、deploy/olm-catalog/csv-config.yaml ファイルに組み込む特定のファイルを設定できます。

ワークフロー
検出される既存の CSV に応じて、またすべての設定のデフォルト値が使用されることを仮定する
と、generate csv サブコマンドは以下のいずれかを実行します。

既存の場所および命名規則と同じ設定で、YAML マニフェストおよびソースファイルの利用可
能なデータを使用して新規 CSV を作成します。

a. 更新メカニズムは、deploy/ で既存の CSV の有無をチェックします。これが見つからない
場合、ここでは キャッシュ と呼ばれる ClusterServiceVersion オブジェクトを作成し、
Kubernetes API ObjectMeta などの Operator メタデータから派生するフィールドを簡単に
設定できます。

b. 更新メカニズムは、deploy/ で Deployment リソースなどの CSV が使用するデータが含ま
れるマニフェストを検索し、このデータを使ってキャッシュ内の該当する CSV フィールド
を設定します。

c. 検索が完了したら、設定されたすべてのキャッシュフィールドが CSV YAML ファイルに書
き込まれます。

または、以下を実行します。

YAML マニフェストおよびソースファイルで利用可能なデータを使用して、現時点で事前に定
義されている場所で既存の CSV を更新します。

a. 更新メカニズムは、deploy/ で既存の CSV の有無をチェックします。これが見つかる場
合、CSV YAML ファイルのコンテンツは ClusterServiceVersion キャッシュにマーシャルさ
れます。

b. 更新メカニズムは、deploy/ で Deployment リソースなどの CSV が使用するデータが含ま
れるマニフェストを検索し、このデータを使ってキャッシュ内の該当する CSV フィールド
を設定します。

c. 検索が完了したら、設定されたすべてのキャッシュフィールドが CSV YAML ファイルに書
き込まれます。

注記

ファイル全体ではなく、個別の YAML フィールドが上書きされます。 CSV の説明およ
び他の生成されない部分が保持される必要があるためです。

12.4.2. CSV 設定の設定

Operator の作者者は、deploy/olm-catalog/csv-config.yaml ファイルでいくつかのフィールドを設定
し、CSV の設定を設定できます。

第12章 OPERATOR SDK

123

フィールド 説明

operator-path
(文字列)

Operator リソースマニフェストファイルのパス。デフォルトで
deploy/operator.yaml に設定されます。

crd-cr-path-list
(string(, string)*)

CRD および CR マニフェストファイルのパス。デフォルトで
[deploy/crds/*_{crd,cr}.yaml] に設定されます。

rbac-path-list
(string(, string)*)

RBAC ロールマニフェストファイルのパス。デフォルトで [deploy/role.yaml] に設定
されます。

12.4.3. 手動で定義される CSV フィールド

数多くの CSV フィールドは、生成される SDK 固有のマニフェスト以外のファイルを使用して設定する
ことができません。これらのフィールドは、ほとんどの場合、人間が作成する、Operator および各種
のカスタムリソース定義 (CRD) についての英語のメタデータです。

Operator 作成者はそれらの CSV YAML ファイルを直接変更する必要があり、パーソナライズ設定され
たデータを以下の必須フィールドに追加します。Operator SDK は、必須フィールドのいずれかにデー
タが欠落していることが検出されると、CSV 生成に関する警告を送信します。

表12.5 必須

フィールド 説明

metadata.name CSV の固有名。Operator バージョンは、app-operator.v0.1.1 などのように一意性を
確保するために名前に含める必要があります。

metadata.capab
ilities

Operator の成熟度モデルに応じた Operator の機能レベルオプションには、Basic
Install、Seamless Upgrades、Full Lifecycle、 Deep Insights、および Auto
Pilot が含まれます。

spec.displayNa
me

Operator を識別するためのパブリック名。

spec.descriptio
n

Operator の機能についての簡単な説明。

spec.keywords Operator について記述するキーワード。

spec.maintainer
s

name および email を持つ、Operator を維持する人または組織上のエンティティー

spec.provider name を持つ、Operator のプロバイダー (通常は組織)

spec.labels Operator 内部で使用されるキー/値のペア。

spec.version Operator のセマンティクスバージョン。 例: 0.1.1。

OpenShift Container Platform 4.4 Operator

124

spec.customres
ourcedefinitions

Operator が使用する任意の CRD。このフィールドは、CRD YAML ファイルが deploy/
にある場合に Operator SDK によって自動的に設定されます。ただし、CRD マニフェ
スト仕様にない複数のフィールドでは、ユーザーの入力が必要です。

description: CRD の説明。

resources: CRD によって利用される任意の Kubernetes リソース (例: Pod お
よび StatefulSet)。

specDescriptors: Operator の入力および出力についての UI ヒント。

フィールド 説明

表12.6 オプション

フィールド 説明

spec.replaces この CSV によって置き換えられる CSV の名前。

spec.links それぞれが name および url を持つ、Operator および管理されているアプリケーショ
ンに関する URL (例: Web サイトおよびドキュメント)。

spec.selector Operator がクラスターでのリソースのペアの作成に使用するセレクター。

spec.icon mediatype で base64data フィールドに設定される、Operator に固有の base64 で
エンコーディングされるアイコン。

spec.maturity このバージョンでソフトウェアが達成した成熟度。オプションに、planning、pre-
alpha、alpha、beta、 stable、mature、 inactive、および deprecated が含まれ
ます。

上記の各フィールドが保持するデータについての詳細は、CSV spec を参照してください。

注記

現時点でユーザーの介入を必要とするいくつかの YAML フィールドは、Operator コード
から解析される可能性があります。 このような Operator SDK 機能は、今後の設計ド
キュメントで扱われます。

追加リソース

Operator 成熟度モデル

12.4.4. CSV の生成

前提条件

Operator プロジェクトが Operator SDK を使用して生成されている

第12章 OPERATOR SDK

125

https://github.com/operator-framework/operator-lifecycle-manager/blob/master/doc/design/building-your-csv.md
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#olm-maturity-model_olm-what-operators-are

1

2

3

手順

1. Operator プロジェクトで、必要な場合に deploy/olm-catalog/csv-config.yaml ファイルを変
更して CSV 設定を設定します。

2. CSV を生成します。

$ operator-sdk generate csv --csv-version <version>

3. deploy/olm-catalog/ ディレクトリーに生成される新規 CSV で、すべての必須で、手動で定義
されたフィールドが適切に設定されていることを確認します。

12.4.5. ネットワークが制限された環境についての Operator の有効化

Operator の作成者は、CSV が Operator がネットワークが制限された環境で適切に実行されるよう以下
の追加要件を満たすことを確認する必要があります。

Operator がそれらの機能を実行するために必要となる可能性のある 関連イメージ または他の
コンテナーを一覧表示します。

指定されたすべてのイメージを、タグではなくダイジェスト (SHA) で参照します。

Operator の CSV の 2 つの場所で関連するイメージへの SHA 参照を使用する必要があります。

spec.relatedImages:

relatedImages セクションを作成し、関連するイメージの一覧を設定します。

イメージの一意の識別子を指定します。

各イメージを、イメージタグでなく、ダイジェスト (SHA) で指定します。

Operator が使用する必要のあるイメージを挿入する環境変数を宣言する際に Operator
Deployment の env セクションで、以下を実行します。

...
spec:
 relatedImages: 1
 - name: etcd-operator 2
 image: quay.io/etcd-
operator/operator@sha256:d134a9865524c29fcf75bbc4469013bc38d8a15cb5f41acfddb6b9e4
92f556e4 3
 - name: etcd-image
 image: quay.io/etcd-
operator/etcd@sha256:13348c15263bd8838ec1d5fc4550ede9860fcbb0f843e48cbccec07810e
ebb68
...

spec:
 install:
 spec:
 deployments:
 - name: etcd-operator-v3.1.1
 spec:

OpenShift Container Platform 4.4 Operator

126

1

2

3

環境変数を使用して Operator によって参照されるイメージを挿入します。

各イメージを、イメージタグでなく、ダイジェスト (SHA) で指定します。

また、イメージタグではなく、ダイジェスト (SHA) で Operator コンテナーイメージを参
照します。

12.4.6. 複数のアーキテクチャーおよびオペレーティングシステム用の Operator の有効

 replicas: 1
 selector:
 matchLabels:
 name: etcd-operator
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 name: etcd-operator
 spec:
 containers:
 - args:
 - /opt/etcd/bin/etcd_operator_run.sh
 env:
 - name: WATCH_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.annotations['olm.targetNamespaces']
 - name: ETCD_OPERATOR_DEFAULT_ETCD_IMAGE 1
 value: quay.io/etcd-
operator/etcd@sha256:13348c15263bd8838ec1d5fc4550ede9860fcbb0f843e48cbccec07810e
ebb68 2
 - name: ETCD_LOG_LEVEL
 value: INFO
 image: quay.io/etcd-
operator/operator@sha256:d134a9865524c29fcf75bbc4469013bc38d8a15cb5f41acfddb6b9e4
92f556e4 3
 imagePullPolicy: IfNotPresent
 livenessProbe:
 httpGet:
 path: /healthy
 port: 8080
 initialDelaySeconds: 10
 periodSeconds: 30
 name: etcd-operator
 readinessProbe:
 httpGet:
 path: /ready
 port: 8080
 initialDelaySeconds: 10
 periodSeconds: 30
 resources: {}
 serviceAccountName: etcd-operator
 strategy: deployment

第12章 OPERATOR SDK

127

1

2

12.4.6. 複数のアーキテクチャーおよびオペレーティングシステム用の Operator の有効
化

Operator Lifecycle Manager (OLM) では、すべての Operator が Linux ホストで実行されることを前提
としています。ただし、Operator の作成者は、ワーカーノードが OpenShift Container Platform クラ
スターで利用可能な場合に、Operator が他のアーキテクチャーでのワークロードの管理をサポートす
るかどうかを指定できます。

Operator が AMD64 および Linux 以外のバリアントをサポートする場合、サポートされるバリアントを
一覧表示するために Operator を提供する CSV にラベルを追加できます。サポートされているアーキテ
クチャーとオペレーティングシステムを示すラベルは、以下で定義されます。

<arch> をサポートされる文字列に設定します。

<os> をサポートされる文字列に設定します。

注記

デフォルトチャネルのチャネルヘッドにあるラベルのみが、PackageManifest をラベル
でフィルターする場合に考慮されます。たとえば、デフォルト以外のチャネルで
Operator の追加アーキテクチャーを提供することは可能ですが、そのアーキテクチャー
は PackageManifest API でのフィルターには使用できません。

CSV に os ラベルが含まれていない場合、これはデフォルトで以下の Linux サポートラベルが設定され
ているかのように処理されます。

CSV に arch ラベルが含まれていない場合、これはデフォルトで以下の AMD64 サポートラベルが設定
されているかのように処理されます。

Operator が複数のノードアーキテクチャーまたはオペレーティングシステムをサポートする場合、複
数のラベルを追加することもできます。

前提条件

CSV を含む Operator プロジェクト

複数のアーキテクチャーおよびオペレーティングシステムの一覧表示をサポートするには、
CSV で参照される Operator イメージはマニフェスト一覧イメージである必要があります。

Operator がネットワークが制限された環境または非接続環境で適切に機能できるようにするに
は、参照されるイメージは、タグではなくダイジェスト (SHA) を使用して指定される必要もあ
ります。

labels:
 operatorframework.io/arch.<arch>: supported 1
 operatorframework.io/os.<os>: supported 2

labels:
 operatorframework.io/os.linux: supported

labels:
 operatorframework.io/arch.amd64: supported

OpenShift Container Platform 4.4 Operator

128

1 2

手順

Operator がサポートするサポートされるアーキテクチャーおよびオペレーティングシステムの
それぞれについて CSV の metadata.labels にラベルを追加します。

新規のアーキテクチャーまたはオペレーティングシステムを追加したら、デフォルトの
os.linux および arch.amd64 バリアントも明示的に組み込む必要があります。

関連情報

マニフェストの一覧についての詳細は、Image Manifest V 2, Schema 2 仕様を参照してくださ
い。

12.4.6.1. Operator のアーキテクチャーおよびオペレーティングシステムのサポート

以下の文字列は、複数のアーキテクチャーおよびオペレーティングシステムをサポートする Operator
のラベル付けまたはフィルター時に OpenShift Container Platform の Operator Lifecycle Manager
(OLM) でサポートされます。

表12.7 OpenShift Container Platform でサポートされるアーキテクチャー

アーキテクチャー 文字列

AMD64 amd64

64 ビット PowerPC little-endian ppc64le

IBM Z s390x

表12.8 OpenShift Container Platform でサポートされるオペレーティングシステム

オペレーティングシステム 文字列

Linux linux

z/OS zos

注記

OpenShift Container Platform およびその他の Kubernetes ベースのディストリビュー
ションの異なるバージョンは、アーキテクチャーおよびオペレーティングシステムの異
なるセットをサポートする可能性があります。

12.4.7. 推奨される namespace の設定

labels:
 operatorframework.io/arch.s390x: supported
 operatorframework.io/os.zos: supported
 operatorframework.io/os.linux: supported 1
 operatorframework.io/arch.amd64: supported 2

第12章 OPERATOR SDK

129

https://docs.docker.com/registry/spec/manifest-v2-2/#manifest-list

1

Operator が正しく機能するには、一部の Operator を特定の namespace にデプロイするか、または特
定の namespace で補助リソースと共にデプロイする必要があります。Subscription から解決されてい
る場合、OLM は Operator の namespace を使用したリソースをその Subscription の namespace にデ
フォルト設定します。

Operator の作成者は、必要なターゲット namespace を CSV の一部として表現し、それらの Operator
にインストールされるリソースの最終的な namespace の制御を維持できます。OperatorHub を使用し
て Operator をクラスターに追加する場合、Web コンソールはインストールプロセス時にクラスター管
理者に提案される namespace を自動設定します。

手順

CSV で、operatorframework.io/suggested-namespace アノテーションを提案される
namespace に設定します。

提案された namespace を設定します。

12.4.8. カスタムリソース定義 (CRD)

Operator が使用できる以下の 2 つのタイプのカスタムリソース定義 (CRD) があります。1 つ目は
Operator が所有する 所有 タイプと、もう 1 つは Operator が依存する 必須 タイプです。

12.4.8.1. 所有 CRD (Owned CRD)

Operator が所有する CRD は CSV の最も重要な部分です。これは Operator と必要な RBAC ルール間
のリンク、依存関係の管理、および他の Kubernetes の概念を設定します。

Operator は通常、複数の CRD を使用して複数の概念を結び付けます (あるオブジェクトの最上位の
データベース設定と別のオブジェクトの ReplicaSet の表現など)。それぞれは CSV ファイルに一覧表示
される必要があります。

表12.9 所有 CRD フィールド

フィールド 説明 必須/オプション

名前 CRD のフルネーム。 必須

Version オブジェクト API のバージョン。 必須

Kind CRD の機械可読名。 必須

DisplayName CRD 名の人間が判読できるバージョン (例: MongoDB
Standalone)。

必須

説明 Operator がこの CRD を使用する方法についての短い説明、
または CRD が提供する機能の説明。

必須

metadata:
 annotations:
 operatorframework.io/suggested-namespace: <namespace> 1

OpenShift Container Platform 4.4 Operator

130

Group この CRD が所属する API グループ (例:
database.example.com)。

オプション

Resources CRD が 1 つ以上の Kubernetes オブジェクトのタイプを所有
する。これらは、トラブルシューティングが必要になる可
能性のあるオブジェクトや、データベースを公開するサー
ビスまたは Ingress ルールなどのアプリケーションに接続す
る方法についてユーザーに知らせるためにリソースセク
ションに一覧表示されます。

この場合、オーケストレーションするすべての一覧ではな
く、重要なオブジェクトのみを一覧表示することが推奨さ
れます。たとえば、ユーザーが変更できない内部状態を保
存する ConfigMap はここには表示しません。

オプション

SpecDescriptors
、StatusDescripto
rs、および
ActionDescriptors

これらの記述子は、エンドユーザーにとって最も重要な
Operator の入力および出力で UI にヒントを提供する手段に
なります。CRD にユーザーが指定する必要のあるシーク
レットまたは ConfigMap の名前が含まれる場合は、それを
ここに指定できます。これらのアイテムはリンクされ、互
換性のある UI で強調表示されます。

記述子には、3 つの種類があります。

SpecDescriptors: オブジェクトの spec ブロッ
クのフィールドへの参照。

StatusDescriptors: オブジェクトの status ブ
ロックのフィールドへの参照。

ActionDescriptors: オブジェクトで実行できる
アクションへの参照。

すべての記述子は以下のフィールドを受け入れます。

DisplayName: 仕様、ステータス、またはアク
ションの人間が判読できる名前。

Description: 仕様、ステータス、またはアクショ
ン、およびそれが Operator によって使用される方
法についての短い説明。

Path: この記述子が記述するオブジェクトのフィー
ルドのドットで区切られたパス。

X-Descriptors: この記述子が持つ機能および使用
する UI コンポーネントを判別するために使用され
ます。OpenShift Container Platform の正規の
React UI X-Descriptor の一覧 については、
openshift/console プロジェクトを参照してくださ
い。

記述子 一般についての詳細は、openshift/console プロ
ジェクトも参照してください。

オプション

フィールド 説明 必須/オプション

以下の例は、シークレットおよび ConfigMap でユーザー入力を必要とし、サービス、StatefulSet、

第12章 OPERATOR SDK

131

https://github.com/openshift/console/tree/release-4.3/frontend/packages/operator-lifecycle-manager/src/components/descriptors/types.ts
https://github.com/openshift/console/tree/release-4.3/frontend/packages/operator-lifecycle-manager/src/components/descriptors

以下の例は、シークレットおよび ConfigMap でユーザー入力を必要とし、サービス、StatefulSet、
Pod および ConfigMap のオーケストレーションを行う MongoDB Standalone CRD を示しています。

所有 CRD の例

12.4.8.2. 必須 CRD (Required CRD)

他の必須 CRD の使用は完全にオプションであり、これらは個別 Operator のスコープを縮小し、エンド
ツーエンドのユースケースに対応するために複数の Operator を一度に作成するために使用できます。

一例として、Operator がアプリケーションをセットアップし、分散ロックに使用する (etcd Operator

 - displayName: MongoDB Standalone
 group: mongodb.com
 kind: MongoDbStandalone
 name: mongodbstandalones.mongodb.com
 resources:
 - kind: Service
 name: ''
 version: v1
 - kind: StatefulSet
 name: ''
 version: v1beta2
 - kind: Pod
 name: ''
 version: v1
 - kind: ConfigMap
 name: ''
 version: v1
 specDescriptors:
 - description: Credentials for Ops Manager or Cloud Manager.
 displayName: Credentials
 path: credentials
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:Secret'
 - description: Project this deployment belongs to.
 displayName: Project
 path: project
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:ConfigMap'
 - description: MongoDB version to be installed.
 displayName: Version
 path: version
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:label'
 statusDescriptors:
 - description: The status of each of the pods for the MongoDB cluster.
 displayName: Pod Status
 path: pods
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:podStatuses'
 version: v1
 description: >-
 MongoDB Deployment consisting of only one host. No replication of
 data.

OpenShift Container Platform 4.4 Operator

132

一例として、Operator がアプリケーションをセットアップし、分散ロックに使用する (etcd Operator
からの) etcd クラスター、およびデータストレージ用に (Postgres Operator からの) Postgres データ
ベースをインストールする場合があります。

Operator Lifecycle Manager (OLM) は、これらの要件を満たすためにクラスター内の利用可能な CRD
および Operator に対してチェックを行います。適切なバージョンが見つかると、Operator は必要な
namespace 内で起動し、サービスアカウントが各 Operator が必要な Kubernetes リソースを作成し、
監視し、変更できるようにするために作成されます。

表12.10 必須 CRD フィールド

フィールド 説明 必須/オプション

名前 必要な CRD のフルネーム。 必須

Version オブジェクト API のバージョン。 必須

Kind Kubernetes オブジェクトの種類。 必須

DisplayName CRD の人間による可読可能なバージョン。 必須

説明 大規模なアーキテクチャーにおけるコンポーネントの位置
付けについてのサマリー。

必須

必須 CRD の例

12.4.8.3. CRD テンプレート

Operator のユーザーは、どのオプションが必須またはオプションであるかを認識している必要があり
ます。alm-examples という名前のアノテーションとして、設定の最小セットを使用して、各カスタム
リソース定義 (CRD) のテンプレートを提供できます。互換性のある UI は、ユーザーがさらにカスタマ
イズできるようにこのテンプレートの事前入力を行います。

アノテーションは、kind の一覧で設定されます (例: CRD 名および Kubernetes オブジェクトの対応す
る metadata および spec)。

以下の詳細の例では、EtcdCluster、EtcdBackup および EtcdRestore のテンプレートを示していま
す。

 required:
 - name: etcdclusters.etcd.database.coreos.com
 version: v1beta2
 kind: EtcdCluster
 displayName: etcd Cluster
 description: Represents a cluster of etcd nodes.

metadata:
 annotations:
 alm-examples: >-
 [{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdCluster","metadata":
{"name":"example","namespace":"default"},"spec":{"size":3,"version":"3.2.13"}},
{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdRestore","metadata":
{"name":"example-etcd-cluster"},"spec":{"etcdCluster":{"name":"example-etcd-

第12章 OPERATOR SDK

133

1

12.4.8.4. 内部オブジェクトの非表示

Operator がタスクを実行するためにカスタムリソース定義 (CRD) を内部で使用する方法は一般的な方
法です。これらのオブジェクトはユーザーが操作することが意図されていません。オブジェクトの操作
により Operator のユーザーにとって混乱を生じさせる可能性があります。たとえば、データベース
Operator には、ユーザーが replication: true で Database オブジェクトを作成する際に常に作成される
Replication CRD が含まれる場合があります。

CRD がユーザーによって操作されることを目的としていない場合、それらは Operator の
ClusterServiceVersion (CSV) の operators.operatorframework.io/internal-objects アノテーションを
使用してユーザーインターフェイスで非表示にできます。

内部オブジェクのトアノテーション

内部 CRD を文字列の配列として設定します。

CRD のいずれかに internal のマークを付ける前に、アプリケーションの管理に必要となる可能性のある
デバッグ情報または設定が CR のステータスまたは spec ブロックに反映されていることを確認してく
ださい (使用する Opearator に該当する場合)。

12.4.9. API サービスについて

CRD の場合のように、Operator が使用できる APIService の 2 つのタイプ (所有 (owned) および 必須
(required)) があります。

12.4.9.1. 所有 APIService (Owned APIService)

CSV が APIService を所有する場合、CSV は APIService をサポートする拡張 api-server およびこれが
提供する group-version-kinds のデプロイメントを記述します。

APIService はこれが提供する group-version によって一意に識別され、提供することが予想される複
数の種類を示すために複数回一覧表示できます。

表12.11 所有 APIService フィールド

フィールド 説明 必須/オプション

Group APIService が提供するグループ (database.example.com
など)。

必須

cluster"},"backupStorageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}},
{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdBackup","metadata":
{"name":"example-etcd-cluster-backup"},"spec":{"etcdEndpoints":["<etcd-cluster-
endpoints>"],"storageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}}]

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: my-operator-v1.2.3
 annotations:
 operators.operatorframework.io/internal-objects: '["my.internal.crd1.io","my.internal.crd2.io"]' 1
...

OpenShift Container Platform 4.4 Operator

134

Version APIService のバージョン (v1alpha1 など)。 必須

Kind APIService が提供することが予想される種類。 必須

名前 指定された APIService の複数形の名前 必須

DeploymentName APIService に対応する CSV で定義されるデプロイメントの
名前 (所有 APIService に必要)。CSV が保留中のフェーズに
ある場合、OLM Operator は CSV の InstallStrategy で一致
する名前を持つデプロイメント仕様を検索し、これが見つ
からない場合には、CSV をインストールの準備完了フェー
ズに移行しません。

必須

DisplayName APIService 名の人間が判読できるバージョン (例:
MongoDB Standalone)。

必須

説明 Operator がこの APIService を使用する方法についての短い
説明、または APIService が提供する機能の説明。

必須

Resources APIService は 1 つ以上の Kubernetes オブジェクトのタイプ
を所有します。これらは、トラブルシューティングが必要
になる可能性のあるオブジェクトや、データベースを公開
するサービスまたは Ingress ルールなどのアプリケーション
に接続する方法についてユーザーに知らせるためにリソー
スセクションに一覧表示されます。

この場合、オーケストレーションするすべての一覧ではな
く、重要なオブジェクトのみを一覧表示することが推奨さ
れます。たとえば、ユーザーが変更できない内部状態を保
存する ConfigMap はここには表示しません。

オプション

SpecDescriptors
、StatusDescripto
rs、および
ActionDescriptors

所有 CRD と基本的に同じです。 オプション

フィールド 説明 必須/オプション

12.4.9.1.1. APIService リソースの作成

Operator Lifecycle Manager (OLM) はそれぞれ固有の所有 APIService のサービスおよび APIService リ
ソースを作成するか、またはこれらを置き換えます。

サービス Pod セレクターは APIServiceDescription の DeDeploymentName に一致する CSV
デプロイメントからコピーされます。

新規の CA キー/証明書ペアが各インストールについて生成され、base64 でエンコードされた
CA バンドルがそれぞれの APIService リソースに組み込まれます。

12.4.9.1.2. APIService 提供証明書

OLM は、所有 APIService がインストールされるたびに、提供するキー/証明書のペアの生成を処理し

第12章 OPERATOR SDK

135

OLM は、所有 APIService がインストールされるたびに、提供するキー/証明書のペアの生成を処理し
ます。提供証明書には、生成されるサービスリソースのホスト名が含まれる CN が含まれ、これは対応
する APIService リソースに組み込まれた CA バンドルのプライベートキーによって署名されます。

証明書は、デプロイメント namespace の kubernetes.io/tls タイプのシークレットとして保存され、
apiservice-cert という名前のボリュームは、 APIServiceDescription の DeploymentName フィールド
に一致する CSV のデプロイメントのボリュームセクションに自動的に追加されます。

存在していない場合、一致する名前を持つ VolumeMount もそのデプロイメントのすべてのコンテナー
に追加されます。これにより、ユーザーは、カスタムパスの要件に対応するために、予想される名前の
ボリュームマウントを定義できます。生成される volumeMount のパスは
/apiserver.local.config/certificates にデフォルト設定され、既存の volumeMounts が同じパスと置き
換えられます。

12.4.9.2. 必須 APIService

OLM は、必要なすべての CSV に利用可能な APIService があり、すべての予想される group-version-
kinds がインストールの試行前に検出可能であることを確認します。これにより、CSV は所有しない
APIServices によって提供される特定の種類に依存できます。

表12.12 必須 APIService フィールド

フィールド 説明 必須/オプション

Group APIService が提供するグループ (database.example.com
など)。

必須

Version APIService のバージョン (v1alpha1 など)。 必須

Kind APIService が提供することが予想される種類。 必須

DisplayName APIService 名の人間が判読できるバージョン (例:
MongoDB Standalone)。

必須

説明 Operator がこの APIService を使用する方法についての短い
説明、または APIService が提供する機能の説明。

必須

12.5. スコアカードを使用した OPERATOR の検証

Operator の作成者は、Operator が適切にパッケージ化されていることと、構文エラーがないことを確
認する必要があります。Operator の作成者は、Operator SDK のスコアカードツールを使用して
Operator のパッケージ化を検証し、テストを実行できます。

注記

OpenShift Container Platform 4.4 は Operator SDK v0.15.0 をサポートします。

12.5.1. スコアカードツールについて

Operator を検証するには、Operator SDK のスコアカードツールを、関連するカスタムリソース (CR)
および Operator に必要なすべてのリソースを作成して開始します。スコアカードは、その後に API
サーバーへの呼び出しを記録し、一部のテストを実行するために使用されるプロキシーコンテナーを

OpenShift Container Platform 4.4 Operator

136

1

2

Operator の Deployment に作成します。実行されるテストは CR の一部のパラメーターも検査します。

12.5.2. スコアカードの設定

スコアカードツールでは、内部プラグインの設定を可能にする設定ファイルと、複数のグローバル設定
オプションを使用します。

12.5.2.1. 設定ファイル

スコアカードツールの設定のデフォルトの場所は <project_dir>/.osdk-scorecard.* です。以下は、
YAML 形式の設定ファイルの例になります。

スコアカード設定ファイル

2 つの CR をテストするために設定された basic テスト。

2 つの CR をテストするために設定された olm テスト。

グローバルオプションの設定方法の優先度は最も高いものから低いものへの順になります。

コマンド引数 (利用可能な場合)→ 設定ファイル → デフォルト

設定ファイルは YAML 形式である必要があります。設定ファイルは、今後すべての operator-sdk サブ
コマンドの設定を許可するように拡張される可能性があるため、スコアカードの設定は scorecard サ
ブセクションの下に置く必要があります。

注記

設定ファイルのサポートは viper パッケージで提供されます。viper 設定がどのように機
能するかについての詳細は、viper パッケージの README を参照してください。

12.5.2.2. コマンド引数

ほとんどのスコアカードツールの設定は設定ファイルを使用して行われますが、以下の引数を使用する
こともできます。

表12.13 スコアカードツール引数

scorecard:
 output: json
 plugins:
 - basic: 1
 cr-manifest:
 - "deploy/crds/cache.example.com_v1alpha1_memcached_cr.yaml"
 - "deploy/crds/cache.example.com_v1alpha1_memcachedrs_cr.yaml"
 - olm: 2
 cr-manifest:
 - "deploy/crds/cache.example.com_v1alpha1_memcached_cr.yaml"
 - "deploy/crds/cache.example.com_v1alpha1_memcachedrs_cr.yaml"
 csv-path: "deploy/olm-catalog/memcached-operator/0.0.3/memcached-
operator.v0.0.3.clusterserviceversion.yaml"

第12章 OPERATOR SDK

137

https://github.com/spf13/viper/blob/master/README.md

フラグ タイプ 説明

--bundle, -b string バンドル検証テストに使用するバ
ンドルディレクトリーへのパス。

--config string スコアカード設定ファイルへのパ
ス。デフォルトは
<project_dir>/.osdk-
scorecard です。ファイルタイ
プおよび拡張子は .yaml である必
要があります。設定ファイルが指
定されていないか、デフォルトの
場所にある場合は、エラーを出し
て終了します。

--output, -o string 出力形式有効なオプションは text
および json です。デフォルトの
形式は text です。これは人間が
判読できることを目的として設計
されています。json 形式は、後
に定義されるプラグインに使用さ
れる JSON スキーマ出力形式を使
用します。

--kubeconfig, -o string kubeconfig ファイルへのパス。
内部プラグインの kubeconfig
を設定します。

--version string 実行するスコアカードのバージョ
ン。デフォルトおよび唯一の有効
なオプションは v1alpha2 です。

--selector, -l string テストのフィルターに使用するラ
ベルセレクター。

--list, -L bool true の場合、セレクターのフィ
ルターに基づいて実行されるテス
ト名のみを出力します。

12.5.2.3. 設定ファイルのオプション

スコアカード設定ファイルは以下のオプションを提供します。

表12.14 スコアカード設定ファイルのオプション

オプション 型 説明

bundle string --bundle フラグと同等です。
OLM バンドルディレクトリーパ
ス (指定されている場合) はバンド
ルの検証を実行します。

OpenShift Container Platform 4.4 Operator

138

output string --output フラグと同等です。こ
のオプションが設定ファイルとフ
ラグの両方で定義されている場
合、フラグの値が優先されます。

kubeconfig string --kubeconfig フラグと同等で
す。このオプションが設定ファイ
ルとフラグの両方で定義されてい
る場合、フラグの値が優先されま
す。

plugins array プラグイン名の配列。

オプション 型 説明

12.5.2.3.1. 基本的なプラグインおよび OLM プラグイン

スコアボードは、内部の basic プラグインおよび olm プラグインをサポートします。これは、設定
ファイルの plugins セクションで設定されます。

表12.15 プラグインオプション

オプション 型 説明

cr-manifest []string テストされる CR のパス。olm-
deployed が設定されていない
か、または false の場合に必要で
す。

csv-path string Operator の CSV へのパス。OLM
テストまたは olm-deployed が
true に設定されている場合に必
要です。

olm-deployed bool CSV および関連する CRD が OLM
によってクラスターにデプロイさ
れていることを示します。

kubeconfig string kubeconfig ファイルへのパス。
グローバルの kubeconfig とこ
のフィールドの両方が設定されて
いる場合、このフィールドはプラ
グインに使用されます。

namespace string プラグインを実行する
namespace。設定されていない場
合、kubeconfig ファイルで指定
されるデフォルトが使用されま
す。

第12章 OPERATOR SDK

139

init-timeout int Operator の初期化時のタイムア
ウトまでの時間 (秒単位)。

crds-dir string クラスターにデプロイする必要の
ある CRD が含まれるディレクト
リーへのパス。

namespaced-manifest string namespace 内で実行されるすべ
てのリソースが含まれるマニフェ
ストファイル。デフォルトで、ス
コアカード
は、service_account.yaml、r
ole.yaml、
role_binding.yaml、および
operator.yaml ファイルを統合
し、deploy ディレクトリーか
ら、namespace を使用したマニ
フェストとして使用する一時的な
マニフェストに移動します。

global-manifest 文字列 グローバルに実行される必須リ
ソースが含まれるマニフェスト
(namespace を使用したマニフェ
ストではない)。デフォルトで、
スコアカードは crds-dir ディレ
クトリーのすべての CRD を、グ
ローバルマニフェストとして使用
する一時的なマニフェストに統合
します。

オプション 型 説明

注記

現在、CSV でスコアカードを使用しても、複数の CR マニフェストを CLI、設定ファイ
ル、または CSV アノテーションを使用して設定することはできません。Operator をク
ラスターで破棄し、再デプロイし、テストされる各 CR のスコアカードを再実行する必
要があります。

追加リソース

cr-manifest または CSV の metadata.annotations['alm-examples'] のいずれかを設定し、CR
をスコアカードに提供できますが、これらの両方を設定することはできません。詳細は、CRD
テンプレート を参照してください。

12.5.3. 実行されるテスト

デフォルトでは、スコアカードツールには実行可能な 8 つの内部テストがあり、これらは 2 つの内部プ
ラグインで利用できます。複数の CR がプラグインに対して指定される場合、各 CR がクリーンなテス
ト環境を取得できるように、テスト環境は完全にクリーンアップされます。

OpenShift Container Platform 4.4 Operator

140

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#osdk-crds-templates_osdk-generating-csvs

各テストには、テストを一意に識別する短縮名があります。これは、実行する特定のテストを選択する
場合に役立ちます。以下は例になります。

$ operator-sdk scorecard -o text --selector=test=checkspectest
$ operator-sdk scorecard -o text --selector='test in (checkspectest,checkstatustest)'

12.5.3.1. 基本的なプラグイン

以下の基本的な Operator テストは、basic プラグインから入手できます。

表12.16 basic プラグインのテスト

テスト 説明 短縮名

Spec Block Exists このテストは、クラスターで作成
されたカスタムリソースをチェッ
クし、すべての CR に spec ブ
ロックがあることを確認します。
このテストの最大スコアは 1 で
す。

checkspectest

Status Block Exists このテストは、クラスターで作成
されたカスタムリソースをチェッ
クし、すべての CR に status ブ
ロックがあることを確認します。
このテストの最大スコアは 1 で
す。

checkstatustest

Writing Into CRs Has An Effect このテストは、スコアカードプロ
キシーのログを読み取り、
Operator が PUT または POST、
またはその両方を API サーバーに
対して要求していることを検証し
ます。これは、リソースが変更さ
れていることを示します。このテ
ストの最大スコアは 1 です。

writingintocrshaseffecttest

12.5.3.2. OLM プラグイン

olm プラグインから、以下の OLM 統合テストを利用できます。

テスト 説明 短縮名

OLM Bundle Validation このテストは、バンドルフラグで
指定されたバンドルディレクト
リーにある OLM バンドルマニ
フェストを検証します。バンドル
の内容にエラーが含まれる場合、
テスト結果の出力には検証ログと
検証ライブラリーからのエラー
メッセージが含まれます。

bundlevalidationtest

第12章 OPERATOR SDK

141

Provided APIs Have Validation このテストは、提供された CR の
CRD に検証セクションが含ま
れ、CR で検出される各 spec お
よび status フィールドの検証が
あることを確認します。このテス
トの最大スコアは、cr-manifest
オプションによって提供される
CR 数と等しくなります。

crdshavevalidationtest

Owned CRDs Have Resources
Listed

このテストでは、cr-manifest オ
プションが提供する各 CR の CRD
に、CSV の owned CRD セク
ションの resources サブセク
ションがあることを確認します。
テストで resources セクション
に一覧表示されていない使用済み
のリソースを検出する場合、テス
トの最後にある提案にそれらのリ
ソースを一覧表示します。このテ
ストの最大スコアは、cr-
manifest オプションによって提
供される CR 数と等しくなりま
す。

crdshaveresourcestest

Spec Fields With Descriptors このテストは、カスタムリソース
の spec セクションのすべての
フィールドに、CSV に一覧表示さ
れる対応する記述子があることを
確認します。このテストの最大ス
コアは、cr-manifest オプション
で渡される各カスタムリソースの
spec セクションにあるフィール
ドの合計数と等しくなります。

specdescriptorstest

Status Fields With Descriptors このテストは、カスタムリソース
の status セクションのすべての
フィールドに CSV に一覧表示さ
れる対応する記述子があることを
確認します。このテストの最大ス
コアは、cr-manifest オプション
で渡される各カスタムリソースの
status セクションのフィールド
の合計数と等しくなります。

statusdescriptorstest

テスト 説明 短縮名

追加リソース

所有 CRD (Owned CRD)

12.5.4. スコアカードの実行

OpenShift Container Platform 4.4 Operator

142

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#osdk-crds-owned_osdk-generating-csvs

前提条件

Operator プロジェクトの以下の前提条件は、スコアカードツールでチェックされます。

Kubernetes 1.11.3 以降を実行するクラスターへのアクセス。

スコアカードを使用して Operator Lifecycle Manager (OLM) で Operator プロジェクトの統合
をチェックする必要がある場合、ClusterServiceVersion (CSV) ファイルも必要になります。こ
れは、olm-deployed オプションを使用する場合の要件です。

Operator SDK を使用して生成されなかった Operator (SDK Operator 以外) の場合:

Operator および CR のインストールおよび設定用のリソースマニフェスト。

clientcmd または controller-runtime 設定 getter などの KUBECONFIG 環境変数からの読
み取りをサポートする設定 getter。これは、スコアカードプロキシーが正常に機能するた
めに必要になります。

手順

1. .osdk-scorecard.yaml 設定ファイルを Operator プロジェクトで定義します。

2. RBAC ファイル (role_binding) で定義される namespace を作成します。

3. Operator プロジェクトのルートディレクトリーからスコアカードを実行します。

$ operator-sdk scorecard

実行されたテキストのいずれかがパスしなかった場合、スコアカードのリターンコードは 1 に
なり、選択したすべてのテストにパスすると 0 になります。

12.5.5. OLM 管理の Operator を使用したスコアカードの実行

スコアカードは ClusterServiceVersion (CSV) を使用して実行でき、クラスター対応および SDK 以外の
Operator をテストする方法を提供します。

手順

1. スコアカードでは、Operator のログを読み取るために、Operator の Deployment Pod にプロ
キシーコンテナーが必要になります。OLM で Operator をデプロイする 前 に、CSV の変更お
よび 1 つの追加オブジェクトの作成が必要になります。
この手順は、bash 関数を使用して、手動または自動で実行できます。以下の方法のいずれかを
選択します。

手動の方法:

a. ローカル kubeconfig を含むプロキシーサーバーシークレットを作成します。

i. スコアカードプロキシーの namespace を使用した所有者参照を使用してユーザー
名を生成します。

$ echo
'{"apiVersion":"","kind":"","name":"scorecard","uid":"","Namespace":"'<namespace>
'"}' | base64 -w 0 1

第12章 OPERATOR SDK

143

1

1

2

<namespace> を Operator がデプロイに使用する namespace に置き換えま
す。

ii. 以下のテンプレートを使用して Config マニフェスト scorecard-config.yaml を作
成し、 <username> を直前の手順で生成される base64 ユーザー名に置き換えま
す。

iii. Config を base64 としてエンコードします。

$ cat scorecard-config.yaml | base64 -w 0

iv. Secret マニフェストの -secret.yaml を作成します。

<namespace> を Operator がデプロイに使用する namespace に置き換えま
す。

<kubeconfig_base64> を、base64 としてエンコードされる Config に置き
換えます。

v. シークレットを適用します。

$ oc apply -f scorecard-secret.yaml

vi. Secret を参照するボリュームを Operator の Deployment に挿入します。

apiVersion: v1
kind: Config
clusters:
- cluster:
 insecure-skip-tls-verify: true
 server: http://<username>@localhost:8889
 name: proxy-server
contexts:
- context:
 cluster: proxy-server
 user: admin/proxy-server
 name: <namespace>/proxy-server
current-context: <namespace>/proxy-server
preferences: {}
users:
- name: admin/proxy-server
 user:
 username: <username>
 password: unused

apiVersion: v1
kind: Secret
metadata:
 name: scorecard-kubeconfig
 namespace: <namespace> 1
data:
 kubeconfig: <kubeconfig_base64> 2

OpenShift Container Platform 4.4 Operator

144

1

1

2

3

スコアカードの kubeconfig ボリューム。

b. ボリュームマウントおよび KUBECONFIG 環境変数を Operator の Deployment の各コ
ンテナーに挿入します。

スコアカードの kubeconfig ボリュームマウント。

スコアカードの kubeconfig 環境変数。

これと同じ手順を他のコンテナーについても繰り返します。

c. スコアカードプロキシーコンテナーを Operator の Deployment に挿入します。

spec:
 install:
 spec:
 deployments:
 - name: memcached-operator
 spec:
 ...
 template:
 ...
 spec:
 containers:
 ...
 volumes:
 - name: scorecard-kubeconfig 1
 secret:
 secretName: scorecard-kubeconfig
 items:
 - key: kubeconfig
 path: config

spec:
 install:
 spec:
 deployments:
 - name: memcached-operator
 spec:
 ...
 template:
 ...
 spec:
 containers:
 - name: container1
 ...
 volumeMounts:
 - name: scorecard-kubeconfig 1
 mountPath: /scorecard-secret
 env:
 - name: KUBECONFIG 2
 value: /scorecard-secret/config
 - name: container2 3
 ...

第12章 OPERATOR SDK

145

1

1

2

スコアカードプロキシーコンテナー。

自動的な方法:
community-operators リポジトリーには、直前の手順を実行できるいくつかの bash 関数
が含まれます。

$ curl -Lo csv-manifest-modifiers.sh \
 https://raw.githubusercontent.com/operator-framework/community-
operators/master/scripts/lib/file
$. ./csv-manifest-modifiers.sh
$ create_kubeconfig_secret_file scorecard-secret.yaml "<namespace>" 1
$ oc apply -f scorecard-secret.yaml
$ insert_kubeconfig_volume "<csv_file>" 2
$ insert_kubeconfig_secret_mount "<csv_file>"
$ insert_proxy_container "<csv_file>" "quay.io/operator-framework/scorecard-
proxy:master"

<namespace> を Operator がデプロイに使用する namespace に置き換えます。

<csv_file> を、Operator の CSV マニフェストへのパスに置き換えます。

2. プロキシーコンテナーの挿入後に、Operator SDK の使用を開始するの手順に従い、CSV およ
び CRD をバンドルし、Operator を OLM にデプロイします。

3. Operator が OLM にデプロイされた後に、.osdk-scorecard.yaml 設定ファイルを Operator プ

spec:
 install:
 spec:
 deployments:
 - name: memcached-operator
 spec:
 ...
 template:
 ...
 spec:
 containers:
 ...
 - name: scorecard-proxy 1
 command:
 - scorecard-proxy
 env:
 - name: WATCH_NAMESPACE
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: metadata.namespace
 image: quay.io/operator-framework/scorecard-proxy:master
 imagePullPolicy: Always
 ports:
 - name: proxy
 containerPort: 8889

OpenShift Container Platform 4.4 Operator

146

https://github.com/operator-framework/community-operators

3. Operator が OLM にデプロイされた後に、.osdk-scorecard.yaml 設定ファイルを Operator プ
ロジェクトに定義し、csv-path: <csv_manifest_path> および olm-deployed オプションの両
方が設定されていることを確認します。

4. csv-path: <csv_manifest_path> および olm-deployed オプションの両方をスコアカード設定
ファイルに設定した状態でスコアカードを実行します。

$ operator-sdk scorecard

関連情報

Operator Lifecycle Manager を使用した Go ベースの Operator の管理

12.6. PROMETHEUS による組み込みモニタリングの設定

以下では、Prometheus Operator を使用して Operator SDK いよって提供されるビルトインされたモニ
タリングサポートについて説明し、Operator 作成者がどのように使用できるかについて詳しく説明し
ます。

12.6.1. Prometheus Operator のサポート

Prometheus はオープンソースのシステムモニタリングおよびアラートツールキットです。Prometheus
Operator は、 OpenShift Container Platform などの Kubernetes ベースのクラスターで実行される
Prometheus クラスターを作成し、設定し、管理します。

ヘルパー関数は、デフォルトで Operator SDK に存在し、Prometheus Operator がデプロイされている
クラスターで使用できるように生成された Go ベースの Operator にメトリクスを自動的にセットアッ
プします。

12.6.2. メトリクスヘルパー

Operator SDK を使用して生成される Go ベース Operator では、以下の関数が実行中のプログラムにつ
いての一般的なメトリクスを公開します。

これらのメトリクスは controller-runtime ライブラリー API から継承されます。メトリクスはデフォル
トで 0.0.0.0:8383/metrics で提供されます。

サービスオブジェクトは、メトリクスポートが公開された状態で作成されます。これはその後
Prometheus によってアクセスされます。 サービスオブジェクトは、リーダー Pod のルート所有者が
削除されるとガベージコレクションの対象になります。

以下のサンプルは、Operator SDK を使用して生成されるすべての Operator の cmd/manager/main.go
ファイルにあります。

func ExposeMetricsPort(ctx context.Context, port int32) (*v1.Service, error)

import(
 "github.com/operator-framework/operator-sdk/pkg/metrics"
 "machine.openshift.io/controller-runtime/pkg/manager"
)

var (
 // Change the below variables to serve metrics on a different host or port.
 metricsHost = "0.0.0.0" 1

第12章 OPERATOR SDK

147

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.4/html-single/operators/#managing-memcached-operator-using-olm_osdk-getting-started
https://prometheus.io/

1

2

メトリクスの公開に使用されるホスト。

メトリクスの公開に使用されるポート。

12.6.2.1. メトリクスポートの変更

Operator の作成者は、メトリクスが公開されるポートを変更できます。

前提条件

Operator SDK を使用して生成される Go ベースの Operator

Prometheus Operator がデプロイされた Kubernetes ベースのクラスター

手順

生成された Operator の cmd/manager/main.go ファイルで、 var metricsPort int32 = 8383 行
の metricsPort の値を変更します。

12.6.3. ServiceMonitor リソース

ServiceMonitor は、Prometheus Operator によって提供されるカスタマーリソース定義 (CRD) であ
り、サービスオブジェクトで Endpoints を検出し、Prometheus がこれらの Pod を監視するように設
定します。

Operator SDK を使用して生成される Go ベースの Operator では、 GenerateServiceMonitor() ヘル
パー関数がサービスオブジェクトを取り、これに基づいて ServiceMonitor カスタムリソース (CR) を生
成することができます。

追加リソース

ServiceMonitor CRD についての詳細は、Prometheus Operator のドキュメント を参照してく
ださい。

 metricsPort int32 = 8383 2
)
...
func main() {
 ...
 // Pass metrics address to controller-runtime manager
 mgr, err := manager.New(cfg, manager.Options{
 Namespace: namespace,
 MetricsBindAddress: fmt.Sprintf("%s:%d", metricsHost, metricsPort),
 })

 ...
 // Create Service object to expose the metrics port.
 _, err = metrics.ExposeMetricsPort(ctx, metricsPort)
 if err != nil {
 // handle error
 log.Info(err.Error())
 }
 ...
}

OpenShift Container Platform 4.4 Operator

148

https://github.com/coreos/prometheus-operator/blob/7a25bf6b6bb2347dacb235659b73bc210117acc7/Documentation/design.md#servicemonitor

12.6.3.1. ServiceMonitor リソースの作成

Operator の作成者は、新規に作成されるサービスを受け入れる metrics.CreateServiceMonitor() ヘル
パー関数を使用して、作成されたモニタリングサービスのサービスターゲット検出を追加できます。

前提条件

Operator SDK を使用して生成される Go ベースの Operator

Prometheus Operator がデプロイされた Kubernetes ベースのクラスター

手順

metrics.CreateServiceMonitor() ヘルパー関数を Operator コードに追加します。

12.7. リーダー選択の設定

Operator のライフサイクル中は、いずれかの時点で複数のインスタンスが実行される可能性がありま
す。たとえば、Operator のアップグレードをロールアウトしている場合などがこれに含まれます。こ
れにより、1 つのリーダーインスタンスのみが調整を行い、他のインスタンスは非アクティブな状態で
あるものの、リーダーがそのロールを実行しなくなる場合に引き継げる状態にできます。

2 種類のリーダー選択の実装を選択できますが、それぞれに考慮すべきトレードオフがあります。

Leader-for-life: リーダー Pod は削除される場合のみリーダーシップを放棄します (ガべージコ
レクションを使用)。この実装は 2 つのインスタンスが誤ってリーダーとして実行されるのを防
ぎます (スプリットブレイン)。しかし、この方法では、新規リーダーの選択に遅延が生じる可
能性があります。たとえば、リーダー Pod が応答しないノードまたはパーティション化された

import(
 "k8s.io/api/core/v1"
 "github.com/operator-framework/operator-sdk/pkg/metrics"
 "machine.openshift.io/controller-runtime/pkg/client/config"
)
func main() {

 ...
 // Populate below with the Service(s) for which you want to create ServiceMonitors.
 services := []*v1.Service{}
 // Create one ServiceMonitor per application per namespace.
 // Change the below value to name of the Namespace you want the ServiceMonitor to be
created in.
 ns := "default"
 // restConfig is used for talking to the Kubernetes apiserver
 restConfig := config.GetConfig()

 // Pass the Service(s) to the helper function, which in turn returns the array of
ServiceMonitor objects.
 serviceMonitors, err := metrics.CreateServiceMonitors(restConfig, ns, services)
 if err != nil {
 // Handle errors here.
 }
 ...
}

第12章 OPERATOR SDK

149

ノードにある場合、pod-eviction-timeout はリーダー Pod がノードから削除され、リーダー
シップを中止するまでの時間を判別します (デフォルトは 5m)。詳細は、Leader-for-life Go ド
キュメントを参照してください。

Leader-with-lease : リーダー Pod は定期的にリーダーリースを更新し、リースを更新できない
場合にリーダーシップを放棄します。この実装により、既存リーダーが分離される場合に新規
リーダーへの迅速な移行が可能になりますが、スピリットブレインが 特定の状況 で生じる場合
があります。詳細は、Leader-with-lease Go ドキュメントを参照してください。

デフォルトで、Operator SDK は Leader-for-life 実装を有効にします。実際のユースケースに適した選
択ができるように両方のアプローチのトレードオフについて、関連する Go ドキュメントを参照してく
ださい。

以下の例は、これらの 2 つのオプションを使用する方法について説明しています。

12.7.1. Leader-for-life 選択の使用

Leader-for-life 選択の実装の場合、leader.Become() の呼び出しは、memcached-operator-lock とい
う名前の ConfigMap を作成して、リーダー選択までの再試行中に Operator をブロックします。

Operator がクラスター内で実行されていない場合、 leader.Become() はエラーなしに返し、Operator
の namespace を検出できないことからリーダー選択をスキップします。

12.7.2. Leader-with-lease 選択の使用

Leader-with-lease 実装は、リーダー選択について Manager オプション を使用して有効にできます。

import (
 ...
 "github.com/operator-framework/operator-sdk/pkg/leader"
)

func main() {
 ...
 err = leader.Become(context.TODO(), "memcached-operator-lock")
 if err != nil {
 log.Error(err, "Failed to retry for leader lock")
 os.Exit(1)
 }
 ...
}

import (
 ...
 "sigs.k8s.io/controller-runtime/pkg/manager"
)

func main() {
 ...
 opts := manager.Options{
 ...
 LeaderElection: true,
 LeaderElectionID: "memcached-operator-lock"
 }

OpenShift Container Platform 4.4 Operator

150

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/#options
https://godoc.org/github.com/operator-framework/operator-sdk/pkg/leader
https://github.com/kubernetes/client-go/blob/30b06a83d67458700a5378239df6b96948cb9160/tools/leaderelection/leaderelection.go#L21-L24
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/leaderelection
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/manager#Options

Operator がクラスターで実行されていない場合、Manager はリーダー選択用の ConfigMap を作成する
ための Operator の namespace を検出できないことから開始時にエラーを返します。Manager の
LeaderElectionNamespace オプションを設定してこの namespace を上書きできます。

12.8. OPERATOR SDK CLI リファレンス

以下では、Operator SDK CLI コマンドおよびそれらの構文について説明します。

$ operator-sdk <command> [<subcommand>] [<argument>] [<flags>]

12.8.1. build

operator-sdk build コマンドはコードをコンパイルし、実行可能プロジェクトをビルドします。build
が完了すると、イメージは docker でローカルにビルドされます。これは次にリモートレジストリーに
プッシュされる必要があります。

表12.17 build 引数

引数 説明

<image> ビルトされるコンテナーイメージ (例: quay.io/example/operator:v0.0.1)。

表12.18 build フラグ

フラグ 説明

--enable-tests (ブー
ル)

テストバイナリーをイメージに追加することにより、クラスター内でのテストを
有効にします。

--namespaced-
manifest (文字列)

テスト用の namespace を使用したリソースマニフェストのパス。デフォルト:
deploy/operator.yaml

--test-location (文字
列)

テストの場所。デフォルト: ./test/e2e

-h, --help 使用方法についてのヘルプの出力。

--enable-tests が設定される場合、build コマンドはテストバイナリーもビルドし、これをコンテナー
イメージに追加して、ユーザーがテストをクラスター上で Pod として実行できるように deploy/test-
pod.yaml ファイルを生成します。

出力例

$ operator-sdk build quay.io/example/operator:v0.0.1

building example-operator...

 mgr, err := manager.New(cfg, opts)
 ...
}

第12章 OPERATOR SDK

151

building container quay.io/example/operator:v0.0.1...
Sending build context to Docker daemon 163.9MB
Step 1/4 : FROM alpine:3.6
 ---> 77144d8c6bdc
Step 2/4 : ADD tmp/_output/bin/example-operator /usr/local/bin/example-operator
 ---> 2ada0d6ca93c
Step 3/4 : RUN adduser -D example-operator
 ---> Running in 34b4bb507c14
Removing intermediate container 34b4bb507c14
 ---> c671ec1cff03
Step 4/4 : USER example-operator
 ---> Running in bd336926317c
Removing intermediate container bd336926317c
 ---> d6b58a0fcb8c
Successfully built d6b58a0fcb8c
Successfully tagged quay.io/example/operator:v0.0.1

12.8.2. completion

operator-sdk completion コマンドは、CLI コマンドをより迅速に、より容易に実行できるようにシェ
ル補完を生成します。

表12.19 completion サブコマンド

サブコマンド 説明

bash bash 補完を生成します。

zsh zsh 補完を生成します。

表12.20 completion フラグ

フラグ 説明

-h, --help 使用方法についてのヘルプの出力。

出力例

$ operator-sdk completion bash

bash completion for operator-sdk -*- shell-script -*-
...
ex: ts=4 sw=4 et filetype=sh

12.8.3. print-deps

operator-sdk print-deps コマンドは、Operator が必要とする最新の Golang パッケージおよびバー
ジョンを出力します。これはデフォルトで単票形式 (columnar format) の出力を行います。

表12.21 print-deps フラグ

OpenShift Container Platform 4.4 Operator

152

フラグ 説明

--as-file Gopkg.toml 形式でパッケージおよびバージョンを出力します。

出力例

$ operator-sdk print-deps --as-file
required = [
 "k8s.io/code-generator/cmd/defaulter-gen",
 "k8s.io/code-generator/cmd/deepcopy-gen",
 "k8s.io/code-generator/cmd/conversion-gen",
 "k8s.io/code-generator/cmd/client-gen",
 "k8s.io/code-generator/cmd/lister-gen",
 "k8s.io/code-generator/cmd/informer-gen",
 "k8s.io/code-generator/cmd/openapi-gen",
 "k8s.io/gengo/args",
]

[[override]]
 name = "k8s.io/code-generator"
 revision = "6702109cc68eb6fe6350b83e14407c8d7309fd1a"
...

12.8.4. generate

operator-sdk generate コマンドは特定のジェネレーターを起動して、必要に応じてコードを生成しま
す。

12.8.4.1. CRD

generate crds サブコマンドは CRD を生成するか、またはすでに存在する場合は
deploy/crds/__crd.yaml でそれらを更新します。OpenAPI V3 検証 YAML は validation オブジェクト
として生成されます。

表12.22 generate crds フラグ

フラグ 説明

--csv-version (文字列) 生成する CRD バージョン (デフォルトは v1beta1)

-h、--help generate crds のヘルプ

出力例

$ operator-sdk generate crds
$ tree deploy/crds
├── deploy/crds/app.example.com_v1alpha1_appservice_cr.yaml
└── deploy/crds/app.example.com_appservices_crd.yaml

12.8.4.2. csv

第12章 OPERATOR SDK

153

csv サブコマンドは、Operator Lifecycle Manager (OLM) で使用する Cluster Service Version (CSV) マ
ニフェストを作成します。また、オプションで Custom Resource Definition (CRD) ファイルを
deploy/olm-catalog/<operator_name>/<csv_version> に書き込みます。

表12.23 generate csv フラグ

フラグ 説明

--csv-channel (文字
列)

CSV のパッケージマニフェスト下での登録に使用する必要があるチャネル。

--csv-config (文字列) CSV 設定ファイルへのパス。デフォルト: deploy/olm-catalog/csv-
config.yaml。

--csv-version (文字列) CSV マニフェストのセマンティックバージョン。必須。

--default-channel パッケージマニフェストのデフォルトチャネルとして --csv-channel に渡され
るチャネルを使用します。--csv-channel が設定されている場合にのみ有効で
す。

--from-version (文字
列)

新規バージョンのベースとして使用する CSV マニフェストのセマンティックバー
ジョン。

--operator-name CSV の生成時に使用する Operator 名。

--update-crds 最新の CRD マニフェストを使用して
deploy/<operator_name>/<csv_version> で CRD マニフェストを更新しま
す。

出力例

$ operator-sdk generate csv --csv-version 0.1.0 --update-crds
INFO[0000] Generating CSV manifest version 0.1.0
INFO[0000] Fill in the following required fields in file deploy/olm-catalog/operator-
name/0.1.0/operator-name.v0.1.0.clusterserviceversion.yaml:
 spec.keywords
 spec.maintainers
 spec.provider
 spec.labels
INFO[0000] Created deploy/olm-catalog/operator-name/0.1.0/operator-
name.v0.1.0.clusterserviceversion.yaml

12.8.4.3. k8s

k8s サブコマンドは、pkg/apis/ の下のすべての CRD API の Kubernetes code-generator を実行しま
す。現時点で、k8s は deepcopy-gen のみを実行し、すべてのカスタムリソース (CR) タイプに必要な
DeepCopy() 関数を生成します。

注記

OpenShift Container Platform 4.4 Operator

154

https://github.com/kubernetes/code-generator

注記

このコマンドは、カスタムリソースの API (spec および status) が更新されるたびに実
行される必要があります。

出力例

$ tree pkg/apis/app/v1alpha1/
pkg/apis/app/v1alpha1/
├── appservice_types.go
├── doc.go
├── register.go

$ operator-sdk generate k8s
Running code-generation for Custom Resource (CR) group versions: [app:v1alpha1]
Generating deepcopy funcs

$ tree pkg/apis/app/v1alpha1/
pkg/apis/app/v1alpha1/
├── appservice_types.go
├── doc.go
├── register.go
└── zz_generated.deepcopy.go

12.8.5. new

operator-sdk new コマンドは新規の Operator アプリケーションを作成し、入力された
<project_name> に基づいてデフォルトのプロジェクトディレクトリーのレイアウトの生成 (または ス
キャフォールディング) を実行します。

表12.24 new 引数

引数 説明

<project_name> 新規プロジェクトの名前。

表12.25 new フラグ

フラグ 説明

--api-version $GROUP_NAME/$VERSION 形式の CRD APIVersion (例:
app.example.com/v1alpha1)。ansible または helm タイプで使用されま
す。

--generate-playbook Ansible Playbook のスケルトンを生成します。ansible タイプで使用されます。

--header-file <string> 生成される Go ファイルのヘッダーを含むファイルへのパスで
す。hack/boilerplate.go.txt にコピーされます。

--helm-chart <string> 既存の Helm チャートで Helm Operator を初期化します。
<url>、<repo>/<name> 、またはローカルパス。

第12章 OPERATOR SDK

155

--helm-chart-repo
<string>

要求される Helm チャートのチャートリポジトリー URL。

--helm-chart-version
<string>

Helm チャートの特定バージョン。(デフォルト: latest version)

--help, -h 使用方法およびヘルプの出力。

--kind <string> CRD Kind (例: AppService)。ansible または helm タイプで使用されます。

--skip-git-init ディレクトリーを Git リポジトリーとして実行しません。

--type 初期化する Operator のタイプ: go、 ansible または helm。(デフォルト: go)

フラグ 説明

注記

Operator SDK v0.12.0 以降では、--dep-manager フラグおよび dep ベースのプロジェク
トのサポートが削除されました。Go プロジェクトは Go モジュールを使用できるように
スキャフォールディングされています。

Go プロジェクトの使用例

$ mkdir $GOPATH/src/github.com/example.com/
$ cd $GOPATH/src/github.com/example.com/
$ operator-sdk new app-operator

Ansible プロジェクトの使用例

$ operator-sdk new app-operator \
 --type=ansible \
 --api-version=app.example.com/v1alpha1 \
 --kind=AppService

12.8.6. add

operator-sdk add コマンドは、コントローラーまたはリソースをプロジェクトに追加します。コマン
ドは、Operator プロジェクトのルートディレクトリーから実行される必要があります。

表12.26 add サブコマンド

サブコマンド 説明

api 新規カスタムリソース (CR) の新規 API 定義を pkg/apis の下に追加し、カスタ
ムリソース定義 (CRD) およびカスタムリソース (CR) ファイルを deploy/crds/
の下に生成します。API が pkg/apis/<group>/<version> にすでにある場合に
は、コマンドは上書きせず、エラーを返します。

OpenShift Container Platform 4.4 Operator

156

controller 新規コントローラーを pkg/controller/<kind>/ の下に追加します。コントロー
ラーは operator-sdk add api --kind=<kind> --api-version=
<group/version> コマンドで pkg/apis/<group>/<version> の下にすでに定
義されている必要のある CR タイプを使用することを予想します。その Kind の
コントローラーパッケージが pkg/controller/<kind> にすでに存在する場合、
コマンドは上書きせず、エラーが返されます。

crd CRD および CR ファイルを追加します。<project-name>/deploy パスがすでに
存在している必要があります。--api-version および --kind フラグが、新規
Operator アプリケーションを生成するために必要です。

生成される CRD ファイル名: <project-
name>/deploy/crds/<group>_<version>_<kind>_crd.yaml

生成される CR ファイル名: <project-
name>/deploy/crds/<group>_<version>_<kind>_cr.yaml

サブコマンド 説明

表12.27 add api フラグ

フラグ 説明

--api-version (文字列) $GROUP_NAME/$VERSION 形式の CRD APIVersion (例:
app.example.com/v1alpha1)。

--image (文字列) CRD Kind (例: AppService)。

add api 出力サンプル

$ operator-sdk add api --api-version app.example.com/v1alpha1 --kind AppService
Create pkg/apis/app/v1alpha1/appservice_types.go
Create pkg/apis/addtoscheme_app_v1alpha1.go
Create pkg/apis/app/v1alpha1/register.go
Create pkg/apis/app/v1alpha1/doc.go
Create deploy/crds/app_v1alpha1_appservice_cr.yaml
Create deploy/crds/app_v1alpha1_appservice_crd.yaml
Running code-generation for Custom Resource (CR) group versions: [app:v1alpha1]
Generating deepcopy funcs

$ tree pkg/apis
pkg/apis/
├── addtoscheme_app_appservice.go
├── apis.go
└── app
 └── v1alpha1
 ├── doc.go
 ├── register.go
 ├── types.go

第12章 OPERATOR SDK

157

add controller 出力サンプル

$ operator-sdk add controller --api-version app.example.com/v1alpha1 --kind AppService
Create pkg/controller/appservice/appservice_controller.go
Create pkg/controller/add_appservice.go

$ tree pkg/controller
pkg/controller/
├── add_appservice.go
├── appservice
│ └── appservice_controller.go
└── controller.go

add crd 出力サンプル

$ operator-sdk add crd --api-version app.example.com/v1alpha1 --kind AppService
Generating Custom Resource Definition (CRD) files
Create deploy/crds/app_v1alpha1_appservice_crd.yaml
Create deploy/crds/app_v1alpha1_appservice_cr.yaml

12.8.7. test

operator-sdk test コマンドは Operator をローカルでテストできます。

12.8.7.1. local

local サブコマンドは、Operator SDK のテストフレームワークを使用してビルドされた Go テストを
ローカルで実行します。

表12.28 test local 引数

引数 説明

<test_location> (文字
列)

e2e テストファイルの場所 (例: ./test/e2e/)。

表12.29 test local フラグ

フラグ 説明

--kubeconfig (文字列) クラスターの kubeconfig の場所。デフォルト: ~/.kube/config。

--global-manifest (文
字列)

グローバルリソースのマニフェストへのパス。デフォルト: deploy/crd.yaml。

--namespaced-
manifest (文字列)

テスト別の namespace を使用したリソースのマニフェストへのパス。デフォル
ト: deploy/service_account.yaml、deploy/rbac.yaml、および
deploy/operator.yaml の組み合わせ。

OpenShift Container Platform 4.4 Operator

158

--namespace (文字列) 空ではない場合、テストを実行する単一の namespace (例: operator-test)。デ
フォルト: ""

--go-test-flags (string) go test に渡す追加の引数 (例: -f "-v -parallel=2")。

--up-local クラスターのイメージとしてではなく、go run を使用した Operator のローカル
の実行を有効にします。

--no-setup テストリソースの作成を無効にします。

--image (文字列) namespace を使用したマニフェストで指定されたイメージとは異なる Operator
イメージを使用します。

-h, --help 使用方法についてのヘルプの出力。

フラグ 説明

出力例

$ operator-sdk test local ./test/e2e/

Output:
ok github.com/operator-framework/operator-sdk-samples/memcached-operator/test/e2e 20.410s

12.8.8. run

operator-sdk run コマンドは、各種の環境で Operator を起動できるオプションを提供します。

表12.30 new 引数

引数 説明

--kubeconfig (文字列) Kubernetes 設定ファイルへのファイルパス。デフォルト: $HOME/.kube/config

--local Operator は、kubeconfig ファイルを使用して Kubernetes クラスターにアクセ
スする機能を使って Operator バイナリーをビルドしてローカルに実行されま
す。

--namespace (文字列) Operator が変更の有無を監視する namespace。デフォルト: default

--operator-flags ローカル Operator が必要とする可能性のあるフラグ。例: --flag1 value1 --
flag2=value2.--local フラグのみで使用する場合

-h, --help 使用方法についてのヘルプの出力。

12.8.8.1. --local

--local フラグは、kubeconfig ファイルを使用して Kubernetes クラスターにアクセスできる機能を

第12章 OPERATOR SDK

159

--local フラグは、kubeconfig ファイルを使用して Kubernetes クラスターにアクセスできる機能を
使って Operator バイナリーをビルドし、Operator をローカルマシンで起動します。

出力例

$ operator-sdk run --local \
 --kubeconfig "mycluster.kubecfg" \
 --namespace "default" \
 --operator-flags "--flag1 value1 --flag2=value2"

以下の例では、デフォルトの kubeconfig、デフォルトの namespace 環境変数を使用し、Operator の
フラグを渡します。Operator フラグを使用するには、Operator がこのオプションの処理方法を認識し
ている必要があります。たとえば、resync-interval フラグを認識する Operator の場合は、以下を実行
します。

$ operator-sdk run --local --operator-flags "--resync-interval 10"

デフォルト以外の namespace を使用することを予定している場合は、 --namespace フラグを使用し
て、Operator が作成されるカスタムリソース (CR) を監視する場所を変更します。

$ operator-sdk run --local --namespace "testing"

これが機能させるには、Operator が WATCH_NAMESPACE 環境変数を処理する必要があります。こ
れは、Operator に ユーティリティー機能 の k8sutil.GetWatchNamespace を使用して実行できます。

12.9. 付録

12.9.1. Operator プロジェクトのスキャフォールディングレイアウト

operator-sdk CLI は、それぞれの Operator プロジェクトに多数のパッケージを生成します。以下のセ
クションには、生成される各ファイルおよびディレクトリーの基本的な要約が含まれます。

12.9.1.1. Go ベースプロジェクト

operator-sdk new コマンドを使用して生成される Go ベースの Operator プロジェクト (デフォルトタ
イプ) には、以下のディレクトリーおよびファイルが含まれます。

ファイル/フォルダー 目的

cmd/ Operator のメインプログラムである manager/main.go ファイルが含
まれます。これは Operator の主なプログラムです。 これは、すべての
カスタムリソース定義を pkg/apis/ の下に定義し、すべてのコントロー
ラーを pkg/controllers/ の下で起動する新規マネージャーをインスタ
ンス化します。

pkg/apis/ カスタムリソース定義 (CRD) の API を定義するディレクトリーツリーが
含まれます。ユーザーは
pkg/apis/<group>/<version>/<kind>_types.go ファイルを編集
し、各リソースタイプの API を定義し、それらのパッケージをコント
ローラーにインポートしてリソースタイプの有無について監視すること
が想定されます。

OpenShift Container Platform 4.4 Operator

160

https://github.com/operator-framework/operator-sdk/blob/89bf021063d18b6769bdc551ed08fc37027939d5/pkg/util/k8sutil/k8sutil.go#L140

pkg/controller この pkg には、コントローラーの実装が含まれます。ユーザーは
pkg/controller/<kind>/<kind>_controller.go ファイルを編集し、
指定された kind のリソースタイプを処理するためのコントローラーの
調整 (reconciliation) ロジックを定義することが想定されます。

build/ Operator をビルドするために使用される Dockerfile およびビルドスク
リプトが含まれます。

deploy/ CRD を登録し、RBAC をセットアップし、Deployment として Operator
をデプロイするための各種 YAML マニフェストが含まれます。

Gopkg.toml
Gopkg.lock

この Operator の外部の依存関係を記述する Go Dep マニフェスト。

vendor/ このプロジェクトのインポートの条件を満たす外部の依存関係のローカ
ルコピーが含まれる golang vendor フォルダー。Go Dep はベンダーを
直接管理します。

ファイル/フォルダー 目的

12.9.1.2. Helm ベースのプロジェクト

operator-sdk new --type helm コマンドを使用して生成される Helm ベース Operator プロジェクトに
は、以下のディレクトリーおよびファイルが含まれます。

ファイル/フォルダー 目的

deploy/ CRD を登録し、RBAC をセットアップし、Deployment として Operator
をデプロイするための各種 YAML マニフェストが含まれます。

helm-charts/<kind> helm create と同等のコマンドを使用して初期化された Helm チャート
が含まれます。

build/ Operator をビルドするために使用される Dockerfile およびビルドスク
リプトが含まれます。

watches.yaml Group、Version、 Kind、および Helm チャートの場所が含まれま
す。

第12章 OPERATOR SDK

161

https://github.com/golang/dep
https://golang.org/cmd/go/#hdr-Vendor_Directories
https://github.com/golang/dep
https://docs.helm.sh/helm/#helm-create

第13章 RED HAT OPERATOR

13.1. CLOUD CREDENTIAL OPERATOR

目的
Cloud Credential Operator は、クラウドプロバイダーの認証情報を Kubernetes カスタムリソース定義
(CRD) として管理します。

プロジェクト
openshift-cloud-credential-operator

CRD

credentialsrequests.cloudcredential.openshift.io

スコープ: Namespaced

CR: credentialsrequest

検証: Yes

設定オブジェクト
必要な設定はありません。

注記

Cloud Credential Operator は kube-system/aws-creds からの認証情報を使用します。

Cloud Credential Operator は、credentialsrequest に基づいてシークレットを作成します。

13.2. クラスター認証 OPERATOR

目的
Cluster Authentication Operator は、クラスター内に認証カスタムリソースをインストールし、維持し
ます。これは、以下を使用して表示できます。

$ oc get clusteroperator authentication -o yaml

プロジェクト
cluster-authentication-operator

13.3. CLUSTER AUTOSCALER OPERATOR

目的
Cluster Autoscaler Operator は cluster-api プロバイダーを使用して OpenShift Cluster Autoscaler のデ
プロイメントを管理します。

プロジェクト
cluster-autoscaler-operator

CRD

ClusterAutoscaler: これは、クラスターの Autoscaler インスタンスの設定を制御するシングル

OpenShift Container Platform 4.4 Operator

162

https://github.com/openshift/cloud-credential-operator
https://github.com/openshift/cluster-authentication-operator
https://github.com/openshift/cluster-autoscaler-operator

ClusterAutoscaler: これは、クラスターの Autoscaler インスタンスの設定を制御するシングル
トンリソースです。Operator は、管理された namespace の default という名前の
ClusterAutoscaler リソース (WATCH_NAMESPACE 環境変数の値) のみに応答します。

MachineAutoscaler: このリソースはノードグループを対象にし、アノテーションを管理してグ
ループの自動スケーリングを有効にし、設定します (min および max サイズ)。現時点で
は、MachineSet オブジェクトのみをターゲットにすることができます。

13.4. CLUSTER IMAGE REGISTRY OPERATOR

目的
Cluster Image Registry Operator は、OpenShift Container Platform レジストリーのシングルトンイン
スタンスを管理します。ストレージの作成を含む、レジストリーのすべての設定を管理します。

初回起動時に、Operator はクラスターで検出される設定に基づいてデフォルトの image-registry リ
ソースインスタンスを作成します。これは、クラウドプロバイダーに基づいて使用するクラウドスト
レージのタイプを示します。

完全な image-registry リソースを定義するのに利用できる十分な情報がない場合、その不完全なリ
ソースが定義され、Operator は足りない情報を示す情報を使ってリソースのステータスを更新しま
す。

Cluster Image Registry Operator は openshift-image-registry namespace で実行され、その場所のレ
ジストリーインスタンスも管理します。レジストリーのすべての設定およびワークロードリソースはそ
の namespace に置かれます。

プロジェクト
cluster-image-registry-operator

13.5. クラスターモニタリング OPERATOR

目的
Cluster Monitoring Operator は、OpenShift Container Platform の上部にデプロイされた Prometheus
ベースのクラスターモニタリングスタックを管理し、更新します。

プロジェクト
openshift-monitoring

CRD

alertmanagers.monitoring.coreos.com

スコープ: Namespaced

CR: alertmanager

検証: Yes

prometheuses.monitoring.coreos.com

スコープ: Namespaced

CR: prometheus

検証: Yes

第13章 RED HAT OPERATOR

163

https://github.com/openshift/cluster-image-registry-operator
https://github.com/openshift/cluster-monitoring-operator

prometheusrules.monitoring.coreos.com

スコープ: Namespaced

CR: prometheusrule

検証: Yes

servicemonitors.monitoring.coreos.com

スコープ: Namespaced

CR: servicemonitor

検証: Yes

設定オブジェクト

$ oc -n openshift-monitoring edit cm cluster-monitoring-config

13.6. CLUSTER NETWORK OPERATOR

目的
Cluster Network Operator は、OpenShift Kubernetes クラスターでネットワークコンポーネントをイン
ストールし、アップグレードします。

13.7. OPENSHIFT CONTROLLER MANAGER OPERATOR

目的
OpenShift Controller Manager Operator は OpenShiftControllerManager カスタムリソースをクラス
ターにインストールし、維持します。これは、以下で表示できます。

$ oc get clusteroperator openshift-controller-manager -o yaml

カスタムリソース定義 openshiftcontrollermanagers.operator.openshift.io は以下を使用してクラス
ターで確認できます。

$ oc get crd openshiftcontrollermanagers.operator.openshift.io -o yaml

プロジェクト
cluster-openshift-controller-manager-operator

13.8. CLUSTER SAMPLES OPERATOR

目的
Cluster Samples Operator は、openshift namespace に保存されるサンプルイメージストリームおよび
テンプレート、およびイメージストリームが参照するイメージをインポートするために必要なシーク
レットとして保存されるコンテナー認証情報を管理します。

初回起動時に、Operator はデフォルトのサンプルリソースを作成し、イメージストリームおよびテン
プレートの作成を開始します。イメージストリームは、registry.redhat.io のイメージを参照する Red
Hat Enterprise Linux CoreOS (RHCOS) ベースの OpenShift Container Platform イメージストリームで
す。同様に、テンプレートは OpenShift Container Platform テンプレートとして分類されます。

OpenShift Container Platform 4.4 Operator

164

https://github.com/openshift/cluster-openshift-controller-manager-operator

Cluster Samples Operator は、その設定リソースと共に openshift-cluster-samples-operator
namespace 内に組み込まれます。起動時に、インストールによってキャプチャーされたプルシーク
レットを samples-registry-credentials という名前の openshift namespace にコピーし、イメージス
トリームのインポートを容易にします。管理者は必要に応じて追加のシークレットを openshift
namespace に作成できます。これらのシークレットには、イメージのインポートを容易にするために
必要なコンテナー config.json のコンテンツが含まれます。

Cluster Samples Operator のイメージには、関連付けられた OpenShift Container Platform リリースの
イメージストリームおよびテンプレートの定義が含まれます。各サンプルには、互換性のある
OpenShift Container Platform バージョンを示すアノテーションが含まれます。Operator はこのアノ
テーションを使用して、各サンプルをリリースバージョンに一致させるようにします。このインベント
リーの外にあるサンプルは省略されるサンプルであるために無視されます。Operator によって管理さ
れるサンプルへの変更は、自動的に元に戻されます。jenkins イメージはインストールからのイメージペ
イロードの一部であり、イメージストリームに直接タグ付けされます。

Samples Operator 設定リソースには、削除時に以下を消去するファイナライザーが含まれます。

Operator 管理のイメージストリーム

Operator 管理のテンプレート

Operator が生成する設定リソース

クラスターステータスのリソース

samples-registry-credentials シークレット

サンプルリソースの削除時に、Cluster Samples Operator はデフォルト設定を使用してリソースを再作
成します。

プロジェクト
cluster-samples-operator

13.9. CLUSTER STORAGE OPERATOR

目的
Cluster Storage Operator は OpenShift Container Platform のクラスター全体のストレージのデフォル
ト値を設定します。これにより、OpenShift Container Platform クラスターのデフォルトのストレージ
クラスの存在を確認できます。

プロジェクト
cluster-storage-operator

設定
必要な設定はありません。

注記

Cluster Storage Operator は Amazon Web Services (AWS) および Red Hat OpenStack Platform
(RHOSP) をサポートします。

作成されたストレージクラスは、そのアノテーションを編集してデフォルト以外にすることが
できますが、ストレージクラスは Operator が実行される限り削除できません。

13.10. CLUSTER SVCAT API SERVER OPERATOR

第13章 RED HAT OPERATOR

165

https://github.com/openshift/cluster-samples-operator
https://github.com/openshift/cluster-storage-operator

目的
Cluster SVCAT API Server Operator は、クラスター上に OpenShift Service Catalog のシングルトンイ
ンスタンスをインストールし、維持します。サービスカタログは集約された API サーバーとコントロー
ラーマネージャーで設定されます。この Operator はサービスカタログの API サーバーの部分のみに対
応します。サービスカタログのコントローラーマネージャーのコンポーネントに対応する Operator に
ついては、cluster-svcat-controller-manager-operator を参照してください。

プロジェクト
cluster-svcat-apiserver-operator

13.11. CLUSTER SVCAT CONTROLLER MANAGER OPERATOR

目的
Cluster SVCAT Controller Manager Operator は、クラスター上に OpenShift Service Catalog のシング
ルトンインスタンスをインストールし、維持します。サービスカタログは集約された API サーバーとコ
ントローラーマネージャーで設定されます。この Operator はサービスカタログのコントローラーマ
ネージャーの部分のみに対応します。サービスカタログの API サーバーコンポーネントに対応する
Operator については、cluster-svcat-apiserver-operator を参照してください。

プロジェクト
cluster-svcat-controller-manager-operator

13.12. クラスターバージョン OPERATOR

目的
プロジェクト
cluster-version-operator

13.13. CONSOLE OPERATOR

目的
Console Operator は OpenShift Container Platform Web コンソールをクラスターにインストールし、
維持します。

プロジェクト
console-operator

13.14. DNS OPERATOR

目的
DNS Operator は、Pod に対して名前解決サービスを提供するために CoreDNS をデプロイし、これを
管理し、OpenShift Container Platform での DNS ベースの Kubernetes サービス検出を可能にします。

Operator は、クラスターの設定に基づいて作業用のデフォルトデプロイメントを作成します。

デフォルトのクラスタードメインは cluster.local です。

CoreDNS Corefile または Kubernetes プラグインの設定はサポートされていません。

DNS Operator は、静的 IP を持つサービスとして公開される Kubernetes デーモンセットとして
CoreDNS を管理します。CoreDNS は、クラスター内のすべてのノードで実行されます。

プロジェクト
cluster-dns-operator

OpenShift Container Platform 4.4 Operator

166

https://github.com/openshift/cluster-svcat-controller-manager-operator
https://github.com/openshift/cluster-svcat-apiserver-operator
https://github.com/openshift/cluster-svcat-apiserver-operator
https://github.com/openshift/cluster-svcat-controller-manager-operator
https://github.com/openshift/cluster-version-operator
https://github.com/openshift/console-operator
https://github.com/openshift/cluster-dns-operator

13.15. ETCD CLUSTER OPERATOR

目的
etcd cluster Operator は etcd クラスターのスケーリングを自動化し、etcd モニタリングおよびメトリ
クスを有効にし、障害復旧手順を単純化します。

プロジェクト
cluster-etcd-operator

CRD

etcds.operator.openshift.io

スコープ: Cluster

CR: etcd

検証: Yes

設定オブジェクト

$ oc edit etcd cluster

13.16. INGRESS OPERATOR

目的
Ingress Operator は OpenShift Container Platform ルーターを設定し、管理します。

プロジェクト
openshift-ingress-operator

CRD

clusteringresses.ingress.openshift.io

スコープ: Namespaced

CR: clusteringresses

検証: No

設定オブジェクト

クラスター設定

タイプ名: clusteringresses.ingress.openshift.io

インスタンス名: default

コマンドの表示:

$ oc get clusteringresses.ingress.openshift.io -n openshift-ingress-operator default -o
yaml

注記

Ingress Operator はルーターを openshift-ingress プロジェクトに設定し、ルーターのデプロイメント

第13章 RED HAT OPERATOR

167

https://github.com/openshift/cluster-etcd-operator/
https://github.com/openshift/cluster-ingress-operator

Ingress Operator はルーターを openshift-ingress プロジェクトに設定し、ルーターのデプロイメント
を作成します。

$ oc get deployment -n openshift-ingress

Ingress Operator は、ネットワーク/クラスターステータスの clusterNetwork[].cidr を使用して、管理
Ingress コントローラー (ルーター) が動作するモード (IPv4、IPv6、またはデュアルスタック) を判別し
ます。たとえば、clusterNetwork に v6 cidr のみが含まれる場合、Ingress コントローラーは v6 専用
モードで動作します。以下の例では、Ingress Operator によって管理される Ingress コントローラー
は、1 つのクラスターネットワークのみが存在し、ネットワークが v4 cidr であるために v4 専用モード
で実行されます。

$ oc get network/cluster -o jsonpath='{.status.clusterNetwork[*]}'

map[cidr:10.128.0.0/14 hostPrefix:23]

13.17. KUBERNETES API SERVER OPERATOR

目的
Kubernetes API Server Operator は、OpenShift Container Platform の上部にデプロイされた
Kubernetes API サーバーを管理し、更新します。Operator は OpenShift の library-go フレームワーク
をベースとしており、Cluster Version Operator (CVO) を使用してインストールされます。

プロジェクト
openshift-kube-apiserver-operator

CRD

kubeapiservers.operator.openshift.io

スコープ: Cluser

CR: kubeapiserver

検証: Yes

設定オブジェクト

$ oc edit kubeapiserver

13.18. KUBERNETES CONTROLLER MANAGER OPERATOR

目的
Kubernetes Controller Manager Operator は、OpenShift Container Platform にデプロイされた
Kubernetes Controller Manager を管理し、更新します。Operator は OpenShift の library-go フレーム
ワークをベースとしており、これは Cluster Version Operator (CVO) 経由でインストールされます。

これには、以下のコンポーネントが含まれます。

Operator

ブートストラップマニフェストレンダラー

静的 Pod をベースとするインストーラー

OpenShift Container Platform 4.4 Operator

168

https://github.com/openshift/cluster-kube-apiserver-operator

設定オブザーバー

デフォルトで、Operator はメトリクスサービス経由で Prometheus メトリクスを公開します。

プロジェクト
cluster-kube-controller-manager-operator

13.19. KUBERNETES SCHEDULER OPERATOR

目的
Kubernetes Scheduler Operator は、OpenShift Container Platform の上部にデプロイされる
Kubernetes スケジューラーを管理し、更新します。Operator は OpenShift Container Platform の
library-go フレームワークをベースとしており、Cluster Version Operator (CVO) でインストールされ
ます。

Kubernetes Scheduler Operator には以下のコンポーネントが含まれます。

Operator

ブートストラップマニフェストレンダラー

静的 Pod をベースとするインストーラー

設定オブザーバー

デフォルトで、Operator はメトリクスサービス経由で Prometheus メトリクスを公開します。

プロジェクト
cluster-kube-scheduler-operator

設定
Kubernetes Scheduler の設定はマージの結果になります。

デフォルト設定。

仕様 schedulers.config.openshift.io からの観察される設定。

これらはすべてスパースな設定であり、最後に有効な設定を形成するためにマージされる無効にされた
JSON スニペットです。

13.20. MACHINE API OPERATOR

目的
Machine API Operator は、Kubernetes API を拡張する特定の目的の CRD、コントローラー、および
RBAC オブジェクトのライフサイクルを管理します。これにより、クラスター内のマシンの必要な状態
が宣言されます。

プロジェクト
machine-api-operator

CRD

MachineSet

マシン

第13章 RED HAT OPERATOR

169

https://github.com/openshift/cluster-kube-controller-manager-operator
https://github.com/openshift/cluster-kube-scheduler-operator
https://github.com/openshift/machine-api-operator

MachineHealthCheck

13.21. MACHINE CONFIG OPERATOR

目的
Machine Congig Operator は、カーネルと kubelet 間のすべてのものを含め、ベースオペレーティング
システムおよびコンテナーランタイムの設定および更新を管理し、適用します。

以下の 4 つのコンポーネントがあります。

machine-config-server: クラスターに参加する新規マシンに Ignition 設定を提供します。

machine-config-controller: マシンのアップグレードを MachineConfig オブジェクトで定義さ
れる必要な設定に調整します。マシンセットのアップグレードを個別に制御するオプションが
提供されます。

machine-config-daemon: 更新時に新規のマシン設定を適用します。マシンの状態を要求された
マシン設定に対して検証し、確認します。

machine-config: インストール時のマシン設定の完全なソース、初回の起動、およびマシンの更
新を提供します。

プロジェクト
openshift-machine-config-operator

13.22. MARKETPLACE OPERATOR

目的
Marketplace Operator はクラスター外の Operator をクラスターに入れるための経路です。

プロジェクト
operator-marketplace

13.23. NODE TUNING OPERATOR

目的
Node Tuning Operator は、Tuned デーモンのオーケストレーションによるノードレベルのチューニン
グの管理に役立ちます。ほとんどの高パフォーマンスアプリケーションでは、一定レベルのカーネルの
チューニングが必要です。Node Tuning Operator は、ノードレベルの sysctl の統一された管理イン
ターフェイスをユーザーに提供し、ユーザーが指定するカスタムチューニングを追加できるよう柔軟性
を提供します。Operator は、コンテナー化された OpenShift Container Platform の Tuned デーモンを
Kubernetes デーモンセットとして管理します。これにより、カスタムチューニング仕様が、デーモン
が認識する形式でクラスターで実行されるすべてのコンテナー化された Tuned デーモンに渡されま
す。デーモンは、ノードごとに 1 つずつ、クラスターのすべてのノードで実行されます。

コンテナー化された Tuned デーモンによって適用されるノードレベルの設定は、プロファイルの変更
をトリガーするイベントで、または終了シグナルの受信および処理によってコンテナー化された Tuned
デーモンが正常に終了する際にロールバックされます。

Node Tuning Operator は、バージョン 4.1 以降における標準的な OpenShift Container Platform インス
トールの一部となっています。

プロジェクト
cluster-node-tuning-operator

OpenShift Container Platform 4.4 Operator

170

https://github.com/openshift/machine-config-operator
https://github.com/operator-framework/operator-marketplace
https://github.com/openshift/cluster-node-tuning-operator

13.24. OPENSHIFT API SERVER OPERATOR

目的
OpenShift API Server Operator は、クラスターに openshift-apiserver をインストールし、維持しま
す。

プロジェクト
openshift-apiserver-operator

CRD

openshiftapiservers.operator.openshift.io

スコープ: Cluster

CR: openshiftapiserver

検証: Yes

13.25. PROMETHEUS OPERATOR

目的
Kubernetes の Prometheus Operator は、Kubernetes サービスおよび Prometheus インスタンスのデプ
ロイメントおよび管理についての簡単なモニタリングの定義を提供します。

インストールされると、Prometheus Operator は以下の機能を提供します。

作成および破棄: Kubernetes namespace の Prometheus インスタンス、特定のアプリケーショ
ンまたはチームを Operator を使用して簡単に起動します。

単純な設定: ネイティブの Kubernetes リソースからのバージョン、永続性、保持ポリシー、レ
プリカなどの Prometheus の基礎的な設定を行います。

ラベルによるサービスのターゲット設定: 従来の Kubernetes ラベルクエリーに基づいてモニタ
リングのターゲット設定を自動的に生成します。Prometheus 固有の設定言語を学習する必要
はありません。

プロジェクト
prometheus-operator

第13章 RED HAT OPERATOR

171

https://github.com/openshift/cluster-openshift-apiserver-operator
https://github.com/openshift/prometheus-operator

	目次
	第1章 OPERATOR について
	1.1. OPERATOR を使用する理由
	1.2. OPERATOR FRAMEWORK
	1.3. OPERATOR 成熟度モデル

	第2章 OPERATOR LIFECYCLE MANAGER (OLM) について
	2.1. OPERATOR LIFECYCLE MANAGER のワークフローおよびアーキテクチャー
	2.1.1. Operator Lifecycle Manager の概要
	2.1.2. ClusterServiceVersion (CSV)
	2.1.3. OLM での Operator のインストールおよびアップグレードのワークフロー
	2.1.3.1. アップグレードパスの例
	2.1.3.2. アップグレードの省略
	2.1.3.3. 複数 Operator の置き換え
	2.1.3.4. z-stream サポート

	2.1.4. Operator Lifecycle Manager アーキテクチャー
	2.1.4.1. OLM Operator
	2.1.4.2. カタログ Operator
	2.1.4.3. カタログレジストリー

	2.1.5. 公開されるメトリクス

	2.2. OPERATOR LIFECYCLE MANAGER の依存関係の解決
	2.2.1. 依存関係の解決
	2.2.2. カスタムリソース定義 (Custom Resource Definition、CRD) のアップグレード
	2.2.2.1. 新規 CRD バージョンの追加
	2.2.2.2. CRD バージョンの非推奨または削除

	2.2.3. 依存関係解決のシナリオ例
	例: 依存 API を非推奨にする
	例: バージョンのデッドロック

	2.3. OPERATORGROUP
	2.3.1. OperatorGroup
	2.3.2. OperatorGroup メンバーシップ
	2.3.3. ターゲット namespace の選択
	2.3.4. OperatorGroup CSV アノテーション
	2.3.5. 提供される API アノテーション
	2.3.6. ロールベースのアクセス制御
	2.3.7. コピーされる CSV
	2.3.8. 静的 OperatorGroup
	2.3.9. OperatorGroup の交差部分
	交差のルール

	2.3.10. OperatorGroup のトラブルシューティング
	メンバーシップ

	第3章 OPERATORHUB について
	3.1. OPERATORHUB の概要
	3.2. OPERATORHUB アーキテクチャー
	3.2.1. OperatorHub CRD
	3.2.2. OperatorSource CRD

	第4章 OPERATOR のクラスターへの追加
	4.1. OPERATORHUB からの OPERATOR のインストール
	4.1.1. Web コンソールを使用した OperatorHub からのインストール
	4.1.2. CLI を使用した OperatorHub からのインストール

	第5章 OPERATOR LIFECYCLE MANAGER でのプロキシーサポートの設定
	5.1. OPERATOR のプロキシー設定の上書き
	5.2. カスタム CA 証明書の挿入

	第6章 クラスターからの OPERATOR の削除
	6.1. WEB コンソールの使用によるクラスターからの OPERATOR の削除
	6.2. CLI の使用によるクラスターからの OPERATOR の削除

	第7章 インストールされた OPERATOR からのアプリケーションの作成
	7.1. OPERATOR を使用した ETCD クラスターの作成

	第8章 OPERATOR ステータスの表示
	8.1. 条件のタイプ
	8.2. CLI を使用した OPERATOR ステータスの表示

	第9章 OPERATOR のインストールおよびアップグレードについてのポリシーの作成
	9.1. OPERATOR インストールポリシーについて
	9.1.1. インストールシナリオ
	9.1.2. インストールワークフロー

	9.2. OPERATOR インストールのスコープ設定
	9.2.1. 粒度の細かいパーミッション

	9.3. パーミッションに関する失敗のトラブルシューティング

	第10章 ネットワークが制限された環境での OPERATOR LIFECYCLE MANAGER の使用
	10.1. OPERATOR カタログイメージについて
	10.2. OPERATOR カタログイメージのビルド
	10.3. ネットワークが制限された環境向けの OPERATORHUB の設定
	10.4. OPERATOR カタログイメージの更新
	10.5. OPERATOR カタログイメージのテスト

	第11章 CRD
	11.1. カスタムリソース定義による KUBERNETES API の拡張
	11.1.1. カスタムリソース定義
	11.1.2. カスタムリソース定義の作成
	11.1.3. カスタムリソース定義のクラスターロールの作成
	11.1.4. ファイルからのカスタムリソースの作成
	11.1.5. カスタムリソースの検査

	11.2. カスタムリソース定義からのリソースの管理
	11.2.1. カスタムリソース定義
	11.2.2. ファイルからのカスタムリソースの作成
	11.2.3. カスタムリソースの検査

	第12章 OPERATOR SDK
	12.1. OPERATOR SDK の使用を開始する
	12.1.1. Operator SDK のアーキテクチャー
	12.1.1.1. ワークフロー
	12.1.1.2. マネージャーファイル
	12.1.1.3. Prometheus Operator のサポート

	12.1.2. Operator SDK CLI のインストール
	12.1.2.1. GitHub リリースからのインストール
	12.1.2.2. Homebrew からのインストール
	12.1.2.3. ソースを使用したコンパイルおよびインストール

	12.1.3. Operator SDK を使用した Go ベースの Operator のビルド
	12.1.4. Operator Lifecycle Manager を使用した Go ベースの Operator の管理
	12.1.5. 関連情報

	12.2. ANSIBLE ベース OPERATOR の作成
	12.2.1. Operator SDK における Ansible サポート
	12.2.1.1. カスタムリソースファイル
	12.2.1.2. 監視ファイル
	12.2.1.3. Ansible に送信される追加変数
	12.2.1.4. Ansible Runner ディレクトリー

	12.2.2. Operator SDK CLI のインストール
	12.2.2.1. GitHub リリースからのインストール
	12.2.2.2. Homebrew からのインストール
	12.2.2.3. ソースを使用したコンパイルおよびインストール

	12.2.3. Operator SDK を使用した Ansible ベースの Operator のビルド
	12.2.4. K8S Ansible モジュールの使用によるアプリケーションライフサイクルの管理
	12.2.4.1. k8s Ansible モジュールのインストール
	12.2.4.2. k8s Ansible モジュールのローカルでのテスト
	12.2.4.3. Operator 内での k8s Ansible モジュールのテスト

	12.2.5. operator_sdk.util Ansible コレクションを使用したカスタムリソースのステータス管理
	12.2.6. 追加リソース

	12.3. HELM ベース OPERATOR の作成
	12.3.1. Operator SDK での Helm チャートのサポート
	12.3.2. Operator SDK CLI のインストール
	12.3.2.1. GitHub リリースからのインストール
	12.3.2.2. Homebrew からのインストール
	12.3.2.3. ソースを使用したコンパイルおよびインストール

	12.3.3. Operator SDK を使用した Helm ベースの Operator のビルド
	12.3.4. 追加リソース

	12.4. CLUSTERSERVICEVERSION (CSV) の生成
	12.4.1. CSV 生成の仕組み
	ワークフロー

	12.4.2. CSV 設定の設定
	12.4.3. 手動で定義される CSV フィールド
	12.4.4. CSV の生成
	12.4.5. ネットワークが制限された環境についての Operator の有効化
	12.4.6. 複数のアーキテクチャーおよびオペレーティングシステム用の Operator の有効化
	12.4.6.1. Operator のアーキテクチャーおよびオペレーティングシステムのサポート

	12.4.7. 推奨される namespace の設定
	12.4.8. カスタムリソース定義 (CRD)
	12.4.8.1. 所有 CRD (Owned CRD)
	12.4.8.2. 必須 CRD (Required CRD)
	12.4.8.3. CRD テンプレート
	12.4.8.4. 内部オブジェクトの非表示

	12.4.9. API サービスについて
	12.4.9.1. 所有 APIService (Owned APIService)
	12.4.9.2. 必須 APIService

	12.5. スコアカードを使用した OPERATOR の検証
	12.5.1. スコアカードツールについて
	12.5.2. スコアカードの設定
	12.5.2.1. 設定ファイル
	12.5.2.2. コマンド引数
	12.5.2.3. 設定ファイルのオプション

	12.5.3. 実行されるテスト
	12.5.3.1. 基本的なプラグイン
	12.5.3.2. OLM プラグイン

	12.5.4. スコアカードの実行
	12.5.5. OLM 管理の Operator を使用したスコアカードの実行

	12.6. PROMETHEUS による組み込みモニタリングの設定
	12.6.1. Prometheus Operator のサポート
	12.6.2. メトリクスヘルパー
	12.6.2.1. メトリクスポートの変更

	12.6.3. ServiceMonitor リソース
	12.6.3.1. ServiceMonitor リソースの作成

	12.7. リーダー選択の設定
	12.7.1. Leader-for-life 選択の使用
	12.7.2. Leader-with-lease 選択の使用

	12.8. OPERATOR SDK CLI リファレンス
	12.8.1. build
	12.8.2. completion
	12.8.3. print-deps
	12.8.4. generate
	12.8.4.1. CRD
	12.8.4.2. csv
	12.8.4.3. k8s

	12.8.5. new
	12.8.6. add
	12.8.7. test
	12.8.7.1. local

	12.8.8. run
	12.8.8.1. --local

	12.9. 付録
	12.9.1. Operator プロジェクトのスキャフォールディングレイアウト
	12.9.1.1. Go ベースプロジェクト
	12.9.1.2. Helm ベースのプロジェクト

	第13章 RED HAT OPERATOR
	13.1. CLOUD CREDENTIAL OPERATOR
	目的
	プロジェクト
	CRD
	設定オブジェクト
	注記

	13.2. クラスター認証 OPERATOR
	目的
	プロジェクト

	13.3. CLUSTER AUTOSCALER OPERATOR
	目的
	プロジェクト
	CRD

	13.4. CLUSTER IMAGE REGISTRY OPERATOR
	目的
	プロジェクト

	13.5. クラスターモニタリング OPERATOR
	目的
	プロジェクト
	CRD
	設定オブジェクト

	13.6. CLUSTER NETWORK OPERATOR
	目的

	13.7. OPENSHIFT CONTROLLER MANAGER OPERATOR
	目的
	プロジェクト

	13.8. CLUSTER SAMPLES OPERATOR
	目的
	プロジェクト

	13.9. CLUSTER STORAGE OPERATOR
	目的
	プロジェクト
	設定
	注記

	13.10. CLUSTER SVCAT API SERVER OPERATOR
	目的
	プロジェクト

	13.11. CLUSTER SVCAT CONTROLLER MANAGER OPERATOR
	目的
	プロジェクト

	13.12. クラスターバージョン OPERATOR
	目的
	プロジェクト

	13.13. CONSOLE OPERATOR
	目的
	プロジェクト

	13.14. DNS OPERATOR
	目的
	プロジェクト

	13.15. ETCD CLUSTER OPERATOR
	目的
	プロジェクト
	CRD
	設定オブジェクト

	13.16. INGRESS OPERATOR
	目的
	プロジェクト
	CRD
	設定オブジェクト
	注記

	13.17. KUBERNETES API SERVER OPERATOR
	目的
	プロジェクト
	CRD
	設定オブジェクト

	13.18. KUBERNETES CONTROLLER MANAGER OPERATOR
	目的
	プロジェクト

	13.19. KUBERNETES SCHEDULER OPERATOR
	目的
	プロジェクト
	設定

	13.20. MACHINE API OPERATOR
	目的
	プロジェクト
	CRD

	13.21. MACHINE CONFIG OPERATOR
	目的
	プロジェクト

	13.22. MARKETPLACE OPERATOR
	目的
	プロジェクト

	13.23. NODE TUNING OPERATOR
	目的
	プロジェクト

	13.24. OPENSHIFT API SERVER OPERATOR
	目的
	プロジェクト
	CRD

	13.25. PROMETHEUS OPERATOR
	目的
	プロジェクト

