5.3.2.2. クラスターの直前の状態への復元
保存された etcd のバックアップを使用して、クラスターの以前の状態を復元したり、大多数のコントロールプレーンホスト (別名マスターホスト) が失われたクラスターを復元したりできます。
クラスターを復元する際に、同じ z-stream リリースから取得した etcd バックアップを使用する必要があります。たとえば、OpenShift Container Platform 4.6.2 クラスターは、4.6.2 から取得した etcd バックアップを使用する必要があります。
前提条件
-
cluster-admin
ロールを持つユーザーとしてクラスターにアクセスできる。 - リカバリーホストとして使用する正常なコントロールプレーンホストがあること。
- コントロールプレーンホストへの SSH アクセス。
-
etcd スナップショットと静的 Pod のリソースの両方を含むバックアップディレクトリー (同じバックアップから取られるもの)。ディレクトリー内のファイル名は、
snapshot_<datetimestamp>.db
およびstatic_kuberesources_<datetimestamp>.tar.gz
の形式にする必要があります。
非復元コントロールプレーンノードの場合は、SSH 接続を確立したり、静的 Pod を停止したりする必要はありません。他のリカバリー以外のコントロールプレーンマシンを 1 つずつ削除し、再作成します。
手順
- リカバリーホストとして使用するコントロールプレーンホストを選択します。これは、復元操作を実行するホストです。
リカバリーホストを含む、各コントロールプレーンノードへの SSH 接続を確立します。
Kubernetes API サーバーは復元プロセスの開始後にアクセスできなくなるため、コントロールプレーンノードにはアクセスできません。このため、別のターミナルで各コントロールプレーンホストに SSH 接続を確立することが推奨されます。
重要この手順を完了しないと、復元手順を完了するためにコントロールプレーンホストにアクセスすることができなくなり、この状態からクラスターを回復できなくなります。
etcd バックアップディレクトリーをリカバリーコントロールプレーンホストにコピーします。
この手順では、etcd スナップショットおよび静的 Pod のリソースを含む
backup
ディレクトリーを、リカバリーコントロールプレーンホストの/home/core/
ディレクトリーにコピーしていることを前提としています。他のすべてのコントロールプレーンノードで静的 Pod を停止します。
注記リカバリーホストで Pod を手動で停止する必要はありません。リカバリースクリプトは、リカバリーホストの Pod を停止します。
- リカバリーホストではないコントロールプレーンホストにアクセスします。
既存の etcd Pod ファイルを kubelet マニフェストディレクトリーから移動します。
$ sudo mv /etc/kubernetes/manifests/etcd-pod.yaml /tmp
etcd Pod が停止していることを確認します。
$ sudo crictl ps | grep etcd | grep -v operator
コマンドの出力は空であるはずです。空でない場合は、数分待機してから再度確認します。
既存の Kubernetes API サーバー Pod ファイルを kubelet マニフェストディレクトリーから移動します。
$ sudo mv /etc/kubernetes/manifests/kube-apiserver-pod.yaml /tmp
Kubernetes API サーバー Pod が停止していることを確認します。
$ sudo crictl ps | grep kube-apiserver | grep -v operator
コマンドの出力は空であるはずです。空でない場合は、数分待機してから再度確認します。
etcd データディレクトリーを別の場所に移動します。
$ sudo mv /var/lib/etcd/ /tmp
- リカバリーホストではない他のコントロールプレーンホストでこの手順を繰り返します。
- リカバリーコントロールプレーンホストにアクセスします。
クラスター全体のプロキシーが有効になっている場合は、
NO_PROXY
、HTTP_PROXY
、およびHTTPS_PROXY
環境変数をエクスポートしていることを確認します。ヒントoc get proxy cluster -o yaml
の出力を確認して、プロキシーが有効にされているかどうかを確認できます。プロキシーは、httpProxy
、httpsProxy
、およびnoProxy
フィールドに値が設定されている場合に有効にされます。リカバリーコントロールプレーンホストで復元スクリプトを実行し、パスを etcd バックアップディレクトリーに渡します。
$ sudo -E /usr/local/bin/cluster-restore.sh /home/core/backup
スクリプトの出力例
...stopping kube-scheduler-pod.yaml ...stopping kube-controller-manager-pod.yaml ...stopping etcd-pod.yaml ...stopping kube-apiserver-pod.yaml Waiting for container etcd to stop .complete Waiting for container etcdctl to stop .............................complete Waiting for container etcd-metrics to stop complete Waiting for container kube-controller-manager to stop complete Waiting for container kube-apiserver to stop ..........................................................................................complete Waiting for container kube-scheduler to stop complete Moving etcd data-dir /var/lib/etcd/member to /var/lib/etcd-backup starting restore-etcd static pod starting kube-apiserver-pod.yaml static-pod-resources/kube-apiserver-pod-7/kube-apiserver-pod.yaml starting kube-controller-manager-pod.yaml static-pod-resources/kube-controller-manager-pod-7/kube-controller-manager-pod.yaml starting kube-scheduler-pod.yaml static-pod-resources/kube-scheduler-pod-8/kube-scheduler-pod.yaml
注記最後の etcd バックアップの後にノード証明書が更新された場合、復元プロセスによってノードが
NotReady
状態になる可能性があります。ノードをチェックして、
Ready
状態であることを確認します。以下のコマンドを実行します。
$ oc get nodes -w
出力例
NAME STATUS ROLES AGE VERSION host-172-25-75-28 Ready master 3d20h v1.23.3+e419edf host-172-25-75-38 Ready infra,worker 3d20h v1.23.3+e419edf host-172-25-75-40 Ready master 3d20h v1.23.3+e419edf host-172-25-75-65 Ready master 3d20h v1.23.3+e419edf host-172-25-75-74 Ready infra,worker 3d20h v1.23.3+e419edf host-172-25-75-79 Ready worker 3d20h v1.23.3+e419edf host-172-25-75-86 Ready worker 3d20h v1.23.3+e419edf host-172-25-75-98 Ready infra,worker 3d20h v1.23.3+e419edf
すべてのノードが状態を報告するのに数分かかる場合があります。
NotReady
状態のノードがある場合は、ノードにログインし、各ノードの/var/lib/kubelet/pki
ディレクトリーからすべての PEM ファイルを削除します。ノードに SSH 接続するか、Web コンソールのターミナルウィンドウを使用できます。$ ssh -i <ssh-key-path> core@<master-hostname>
サンプル
pki
ディレクトリーsh-4.4# pwd /var/lib/kubelet/pki sh-4.4# ls kubelet-client-2022-04-28-11-24-09.pem kubelet-server-2022-04-28-11-24-15.pem kubelet-client-current.pem kubelet-server-current.pem
すべてのコントロールプレーンホストで kubelet サービスを再起動します。
リカバリーホストから以下のコマンドを実行します。
$ sudo systemctl restart kubelet.service
- 他のすべてのコントロールプレーンホストでこの手順を繰り返します。
保留中の CSR を承認します。
現在の CSR の一覧を取得します。
$ oc get csr
出力例
NAME AGE SIGNERNAME REQUESTOR CONDITION csr-2s94x 8m3s kubernetes.io/kubelet-serving system:node:<node_name> Pending 1 csr-4bd6t 8m3s kubernetes.io/kubelet-serving system:node:<node_name> Pending 2 csr-4hl85 13m kubernetes.io/kube-apiserver-client-kubelet system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending 3 csr-zhhhp 3m8s kubernetes.io/kube-apiserver-client-kubelet system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending 4 ...
CSR の詳細をレビューし、これが有効であることを確認します。
$ oc describe csr <csr_name> 1
- 1
<csr_name>
は、現行の CSR の一覧からの CSR の名前です。
それぞれの有効な
node-bootstrapper
CSR を承認します。$ oc adm certificate approve <csr_name>
ユーザーによってプロビジョニングされるインストールの場合は、それぞれの有効な kubelet 提供の CSR を承認します。
$ oc adm certificate approve <csr_name>
単一メンバーのコントロールプレーンが正常に起動していることを確認します。
リカバリーホストから etcd コンテナーが実行中であることを確認します。
$ sudo crictl ps | grep etcd | grep -v operator
出力例
3ad41b7908e32 36f86e2eeaaffe662df0d21041eb22b8198e0e58abeeae8c743c3e6e977e8009 About a minute ago Running etcd 0 7c05f8af362f0
リカバリーホストから、etcd Pod が実行されていることを確認します。
$ oc get pods -n openshift-etcd | grep -v etcd-quorum-guard | grep etcd
注記このコマンドを実行する前に
oc login
の実行を試行し、以下のエラーを受信すると、認証コントローラーが起動し、再試行するまでしばらく待機します。Unable to connect to the server: EOF
出力例
NAME READY STATUS RESTARTS AGE etcd-ip-10-0-143-125.ec2.internal 1/1 Running 1 2m47s
ステータスが
Pending
の場合や出力に複数の実行中の etcd Pod が一覧表示される場合、数分待機してから再度チェックを行います。
etcd の再デプロイメントを強制的に実行します。
クラスターにアクセスできるターミナルで、
cluster-admin
ユーザーとして以下のコマンドを実行します。$ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge 1
- 1
forceRedeploymentReason
値は一意である必要があります。そのため、タイムスタンプが付加されます。
etcd クラスター Operator が再デプロイメントを実行すると、初期ブートストラップのスケールアップと同様に、既存のノードが新規 Pod と共に起動します。
すべてのノードが最新のリビジョンに更新されていることを確認します。
クラスターにアクセスできるターミナルで、
cluster-admin
ユーザーとして以下のコマンドを実行します。$ oc get etcd -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'
etcd の
NodeInstallerProgressing
状況条件を確認し、すべてのノードが最新のリビジョンであることを確認します。更新が正常に実行されると、この出力にはAllNodesAtLatestRevision
が表示されます。AllNodesAtLatestRevision 3 nodes are at revision 7 1
- 1
- この例では、最新のリビジョン番号は
7
です。
出力に
2 nodes are at revision 6; 1 nodes are at revision 7
などの複数のリビジョン番号が含まれる場合、これは更新が依然として進行中であることを意味します。数分待機した後に再試行します。etcd の再デプロイ後に、コントロールプレーンの新規ロールアウトを強制的に実行します。kubelet が内部ロードバランサーを使用して API サーバーに接続されているため、Kubernetes API サーバーは他のノードに再インストールされます。
クラスターにアクセスできるターミナルで、
cluster-admin
ユーザーとして以下のコマンドを実行します。Kubernetes API サーバーの新規ロールアウトを強制的に実行します。
$ oc patch kubeapiserver cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge
すべてのノードが最新のリビジョンに更新されていることを確認します。
$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'
NodeInstallerProgressing
状況条件を確認し、すべてのノードが最新のリビジョンであることを確認します。更新が正常に実行されると、この出力にはAllNodesAtLatestRevision
が表示されます。AllNodesAtLatestRevision 3 nodes are at revision 7 1
- 1
- この例では、最新のリビジョン番号は
7
です。
出力に
2 nodes are at revision 6; 1 nodes are at revision 7
などの複数のリビジョン番号が含まれる場合、これは更新が依然として進行中であることを意味します。数分待機した後に再試行します。Kubernetes コントローラーマネージャーの新規ロールアウトを強制的に実行します。
$ oc patch kubecontrollermanager cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge
すべてのノードが最新のリビジョンに更新されていることを確認します。
$ oc get kubecontrollermanager -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'
NodeInstallerProgressing
状況条件を確認し、すべてのノードが最新のリビジョンであることを確認します。更新が正常に実行されると、この出力にはAllNodesAtLatestRevision
が表示されます。AllNodesAtLatestRevision 3 nodes are at revision 7 1
- 1
- この例では、最新のリビジョン番号は
7
です。
出力に
2 nodes are at revision 6; 1 nodes are at revision 7
などの複数のリビジョン番号が含まれる場合、これは更新が依然として進行中であることを意味します。数分待機した後に再試行します。Kubernetes スケジューラーの新規ロールアウトを強制的に実行します。
$ oc patch kubescheduler cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge
すべてのノードが最新のリビジョンに更新されていることを確認します。
$ oc get kubescheduler -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'
NodeInstallerProgressing
状況条件を確認し、すべてのノードが最新のリビジョンであることを確認します。更新が正常に実行されると、この出力にはAllNodesAtLatestRevision
が表示されます。AllNodesAtLatestRevision 3 nodes are at revision 7 1
- 1
- この例では、最新のリビジョン番号は
7
です。
出力に
2 nodes are at revision 6; 1 nodes are at revision 7
などの複数のリビジョン番号が含まれる場合、これは更新が依然として進行中であることを意味します。数分待機した後に再試行します。
すべてのコントロールプレーンホストが起動しており、クラスターに参加していることを確認します。
クラスターにアクセスできるターミナルで、
cluster-admin
ユーザーとして以下のコマンドを実行します。$ oc get pods -n openshift-etcd | grep -v etcd-quorum-guard | grep etcd
出力例
etcd-ip-10-0-143-125.ec2.internal 2/2 Running 0 9h etcd-ip-10-0-154-194.ec2.internal 2/2 Running 0 9h etcd-ip-10-0-173-171.ec2.internal 2/2 Running 0 9h
復元手順の後にすべてのワークロードが通常の動作に戻るようにするには、Kubernetes API 情報を保存している各 Pod を再起動します。これには、ルーター、Operator、サードパーティーコンポーネントなどの OpenShift Container Platform コンポーネントが含まれます。
この手順の完了後、すべてのサービスを復元するまでに数分かかる場合があります。たとえば、oc login
を使用した認証は、OAuth サーバー Pod が再起動するまですぐに機能しない可能性があります。