
OpenShift Container Platform 4.8

CLI ツール

OpenShift Container Platform コマンドラインツールの使用方法

Last Updated: 2023-04-07

OpenShift Container Platform 4.8 CLI ツール

OpenShift Container Platform コマンドラインツールの使用方法

法律上の通知

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要

本書では、OpenShift Container Platform コマンドラインツールのインストール、設定および使用
について説明します。また、CLI コマンドの参照情報およびそれらの使用方法についての例も記載
しています。

. .

. .

. .

. .

. .

. .

. .

目次

第1章 OPENSHIFT CONTAINER PLATFORM CLI ツールの概要
1.1. CLI ツールのリスト

第2章 OPENSHIFT CLI (OC)
2.1. OPENSHIFT CLI の使用を開始する
2.2. OPENSHIFT CLI の設定
2.3. MANAGING CLI PROFILES
2.4. プラグインによる OPENSHIFT CLI の拡張
2.5. OPENSHIFT CLI 開発者コマンドリファレンス
2.6. OPENSHIFT CLI 管理者コマンドリファレンス
2.7. OC および KUBECTL コマンドの使用

第3章 DEVELOPER CLI (ODO)
3.1. ODO リリースノート
3.2. ODO について
3.3. ODO のインストール
3.4. ODO CLI の設定
3.5. ODO CLI リファレンス

第4章 OPENSHIFT SERVERLESS で使用する KNATIVE CLI
4.1. 主な特長
4.2. KNATIVE CLI のインストール

第5章 PIPELINES CLI (TKN)
5.1. TKN のインストール
5.2. OPENSHIFT PIPELINES TKN CLI の設定
5.3. OPENSHIFT PIPELINES TKN リファレンス

第6章 OPM CLI
6.1. OPM について
6.2. OPM のインストール
6.3. 関連情報

第7章 OPERATOR SDK
7.1. OPERATOR SDK CLI のインストール
7.2. OPERATOR SDK CLI リファレンス

3
3

4
4

14
15
21
23
71

87

90
90
91

94
97
99

127
127
127

128
128
130
130

143
143
143
144

145
145
146

目次

1

OpenShift Container Platform 4.8 CLI ツール

2

第1章 OPENSHIFT CONTAINER PLATFORM CLI ツールの概要
OpenShift Container Platform での作業中に、次のようなさまざまな操作を実行します。

クラスターの管理

アプリケーションのビルド、デプロイ、および管理

デプロイメントプロセスの管理

Operator の開発

Operator カタログの作成と保守

OpenShift Container Platform には、一連のコマンドラインインターフェイス (CLI) ツールが同梱され
ており、ユーザーがターミナルからさまざまな管理および開発操作を実行できるようにしてこれらのタ
スクを簡素化します。これらのツールでは、アプリケーションの管理だけでなく、システムの各コン
ポーネントを操作する簡単なコマンドを利用できます。

1.1. CLI ツールのリスト

OpenShift Container Platform では、以下の CLI ツールのセットを使用できます。

OpenShift CLI (oc): これは OpenShift Container Platform ユーザーが最も一般的に使用する
CLI ツールです。これは、クラスター管理者と開発者の両方が、ターミナルを使用して
OpenShift Container Platform 全体でエンドツーエンドの操作が行えるようにします。Web コ
ンソールとは異なり、ユーザーはコマンドスクリプトを使用してプロジェクトのソースコード
を直接操作できます。

Developer CLI (odo): odo CLI ツールは、複雑な Kubernetes および OpenShift Container
Platform の概念を取り除くことで、開発者が OpenShift Container Platform でアプリケーショ
ンを作成および保守するという主目的に集中できるようにします。これにより、開発者はクラ
スターを管理する必要なしに、ターミナルからクラスターでのアプリケーション作成、ビル
ド、およびデバッグを行うことができます。

Knative CLI (kn): (kn) CLI ツールは、Knative Serving や Eventing などの OpenShift サーバーレ
スコンポーネントの操作に使用できるシンプルで直感的なターミナルコマンドを提供します。

Pipelines CLI (tkn):OpenShift Pipelines は、内部で Tekton を使用する OpenShift Container
Platform の継続的インテグレーションおよび継続的デリバリー (CI / CD) ソリューションで
す。tkn CLI ツールには、シンプルで直感的なコマンドが同梱されており、ターミナルを使用し
て OpenShift パイプラインを操作できます。

opm CLI:opm CLI ツールは、オペレーター開発者とクラスター管理者がターミナルからオペ
レーターのカタログを作成および保守するのに役立ちます。

Operator SDK: Operator Framework のコンポーネントである Operator SDK は、Operator 開発
者がターミナルから Operator のビルド、テストおよびデプロイに使用できる CLI ツールを提
供します。これにより、Kubernetes ネイティブアプリケーションを構築するプロセスが簡素化
されます。これには、アプリケーション固有の深い運用知識が必要になる場合があります。

第1章 OPENSHIFT CONTAINER PLATFORM CLI ツールの概要

3

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/cli_tools/#cli-getting-started
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/cli_tools/#understanding-odo
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/cli_tools/#kn-cli-tools
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/cli_tools/#installing-tkn
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/cli_tools/#opm-cli
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/cli_tools/#cli-osdk-install

第2章 OPENSHIFT CLI (OC)

2.1. OPENSHIFT CLI の使用を開始する

2.1.1. OpenShift CLI について

OpenShift のコマンドラインインターフェイス (CLI)、oc を使用すると、ターミナルからアプリケー
ションを作成し、OpenShift Container Platform プロジェクトを管理できます。OpenShift CLI は以下
の状況に適しています。

プロジェクトソースコードを直接使用している。

OpenShift Container Platform 操作をスクリプト化する。

帯域幅リソースによる制限があり、Web コンソールが利用できない状況でのプロジェクトの管
理

2.1.2. OpenShift CLI のインストール。

OpenShift CLI(oc) をインストールするには、バイナリーをダウンロードするか、RPM を使用します。

2.1.2.1. バイナリーのダウンロードによる OpenShift CLI のインストール

コマンドラインインターフェイスを使用して OpenShift Container Platform と対話するために CLI (oc)
をインストールすることができます。oc は Linux、Windows、または macOS にインストールできま
す。

重要

以前のバージョンの oc をインストールしている場合、これを使用して OpenShift
Container Platform 4.8 のすべてのコマンドを実行することはできません。新規バージョ
ンの oc をダウンロードし、インストールします。

Linux への OpenShift CLI のインストール
以下の手順を使用して、OpenShift CLI (oc) バイナリーを Linux にインストールできます。

手順

1. Red Hat カスタマーポータルの OpenShift Container Platform ダウンロードページ に移動しま
す。

2. Version ドロップダウンメニューで適切なバージョンを選択します。

3. OpenShift v4.8 Linux Client エントリーの横にある Download Now をクリックして、ファイ
ルを保存します。

4. アーカイブを展開します。

5. oc バイナリーを、PATH にあるディレクトリーに配置します。
PATH を確認するには、以下のコマンドを実行します。

$ tar xvzf <file>

OpenShift Container Platform 4.8 CLI ツール

4

https://access.redhat.com/downloads/content/290

OpenShift CLI のインストール後に、oc コマンドを使用して利用できます。

Windows への OpenShift CLI のインストール
以下の手順を使用して、OpenShift CLI (oc) バイナリーを Windows にインストールできます。

手順

1. Red Hat カスタマーポータルの OpenShift Container Platform ダウンロードページ に移動しま
す。

2. Version ドロップダウンメニューで適切なバージョンを選択します。

3. OpenShift v4.8 Windows Client エントリーの横にある Download Now をクリックして、ファ
イルを保存します。

4. ZIP プログラムでアーカイブを解凍します。

5. oc バイナリーを、PATH にあるディレクトリーに移動します。
PATH を確認するには、コマンドプロンプトを開いて以下のコマンドを実行します。

OpenShift CLI のインストール後に、oc コマンドを使用して利用できます。

macOC への OpenShift CLI のインストール
以下の手順を使用して、OpenShift CLI (oc) バイナリーを macOS にインストールできます。

手順

1. Red Hat カスタマーポータルの OpenShift Container Platform ダウンロードページ に移動しま
す。

2. Version ドロップダウンメニューで適切なバージョンを選択します。

3. OpenShift v4.8 MacOSX Client エントリーの横にある Download Now をクリックして、ファ
イルを保存します。

4. アーカイブを展開し、解凍します。

5. oc バイナリーをパスにあるディレクトリーに移動します。
PATH を確認するには、ターミナルを開き、以下のコマンドを実行します。

OpenShift CLI のインストール後に、oc コマンドを使用して利用できます。

$ echo $PATH

$ oc <command>

C:\> path

C:\> oc <command>

$ echo $PATH

$ oc <command>

第2章 OPENSHIFT CLI (OC)

5

https://access.redhat.com/downloads/content/290
https://access.redhat.com/downloads/content/290

2.1.2.2. Web コンソールを使用した OpenShift CLI のインストール

OpenShift CLI(oc) をインストールして、Web コンソールから OpenShift Container Platform と対話で
きます。oc は Linux、Windows、または macOS にインストールできます。

重要

以前のバージョンの oc をインストールしている場合、これを使用して OpenShift
Container Platform 4.8 のすべてのコマンドを実行することはできません。新規バージョ
ンの oc をダウンロードし、インストールします。

2.1.2.2.1. Web コンソールを使用した Linux への OpenShift CLI のインストール

以下の手順を使用して、OpenShift CLI (oc) バイナリーを Linux にインストールできます。

手順

1. Web コンソールで ? をクリックします。

2. コマンドラインツール をクリックします。

3. Linux プラットフォームに適した oc binary を選択してから、Download oc for Linux をクリッ
クします。

4. ファイルを保存します。

5. アーカイブを展開します。

6. oc バイナリーを、PATH にあるディレクトリーに移動します。
PATH を確認するには、以下のコマンドを実行します。

$ tar xvzf <file>

$ echo $PATH

OpenShift Container Platform 4.8 CLI ツール

6

OpenShift CLI のインストール後に、oc コマンドを使用して利用できます。

2.1.2.2.2. Web コンソールを使用した Windows への OpenShift CLI のインストール

以下の手順を使用して、OpenShift CLI(oc) バイナリーを Windows にインストールできます。

手順

1. Web コンソールで ? をクリックします。

2. コマンドラインツール をクリックします。

3. Windows プラットフォームの oc バイナリーを選択してから、Download oc for Windows for
x86_64 をクリックします。

4. ファイルを保存します。

5. ZIP プログラムでアーカイブを解凍します。

6. oc バイナリーを、PATH にあるディレクトリーに移動します。
PATH を確認するには、コマンドプロンプトを開いて以下のコマンドを実行します。

OpenShift CLI のインストール後に、oc コマンドを使用して利用できます。

2.1.2.2.3. Web コンソールを使用した macOS への OpenShift CLI のインストール

以下の手順を使用して、OpenShift CLI (oc) バイナリーを macOS にインストールできます。

手順

$ oc <command>

C:\> path

C:\> oc <command>

第2章 OPENSHIFT CLI (OC)

7

手順

1. Web コンソールで ? をクリックします。

2. コマンドラインツール をクリックします。

3. macOS プラットフォームの oc バイナリーを選択し、Download oc for Mac for x86_64 をク
リックします。

4. ファイルを保存します。

5. アーカイブを展開し、解凍します。

6. oc バイナリーをパスにあるディレクトリーに移動します。
PATH を確認するには、ターミナルを開き、以下のコマンドを実行します。

OpenShift CLI のインストール後に、oc コマンドを使用して利用できます。

2.1.2.3. RPM を使用した OpenShift CLI のインストール

Red Hat Enterprise Linux (RHEL) の場合、Red Hat アカウントに有効な OpenShift Container Platform
サブスクリプションがある場合は、OpenShift CLI (oc) を RPM としてインストールできます。

前提条件

root または sudo の権限が必要です。

手順

1. Red Hat Subscription Manager に登録します。

$ echo $PATH

$ oc <command>

OpenShift Container Platform 4.8 CLI ツール

8

2. 最新のサブスクリプションデータをプルします。

3. 利用可能なサブスクリプションを一覧表示します。

4. 直前のコマンドの出力で、OpenShift Container Platform サブスクリプションのプール ID を見
つけ、これを登録されたシステムにアタッチします。

5. OpenShift Container Platform 4.8 で必要なリポジトリーを有効にします。

Red Hat Enterprise Linux 8 の場合:

Red Hat Enterprise Linux 7 の場合:

6. openshift-clients パッケージをインストールします。

CLI のインストール後は、oc コマンドを使用して利用できます。

2.1.2.4. Homebrew を使用した OpenShift CLI のインストール

macOS の場合、Homebrew パッケージマネージャーを使用して OpenShift CLI (oc) をインストールで
きます。

前提条件

Homebrew (brew) がインストールされている必要があります。

手順

以下のコマンドを実行して openshift-cli パッケージをインストールします。

2.1.3. OpenShift CLI へのログイン

OpenShift CLI (oc) にログインしてクラスターにアクセスし、これを管理できます。

subscription-manager register

subscription-manager refresh

subscription-manager list --available --matches '*OpenShift*'

subscription-manager attach --pool=<pool_id>

subscription-manager repos --enable="rhocp-4.8-for-rhel-8-x86_64-rpms"

subscription-manager repos --enable="rhel-7-server-ose-4.8-rpms"

yum install openshift-clients

$ oc <command>

$ brew install openshift-cli

第2章 OPENSHIFT CLI (OC)

9

https://brew.sh
https://formulae.brew.sh/formula/openshift-cli

1

2

3

前提条件

OpenShift Container Platform クラスターへのアクセスが必要です。

OpenShift CLI (oc) がインストールされている必要があります。

注記

HTTP プロキシーサーバー上でのみアクセスできるクラスターにアクセスするに
は、HTTP_PROXY、HTTPS_PROXY および NO_PROXY 変数を設定できます。これら
の環境変数は、クラスターとのすべての通信が HTTP プロキシーを経由するように oc
CLI で使用されます。

認証ヘッダーは、HTTPS トランスポートを使用する場合にのみ送信されます。

手順

1. oc login コマンドを入力し、ユーザー名を渡します。

2. プロンプトが表示されたら、必要な情報を入力します。

出力例

OpenShift Container Platform サーバー URL を入力します。

非セキュアな接続を使用するかどうかを入力します。

ユーザーのパスワードを入力します。

注記

$ oc login -u user1

Server [https://localhost:8443]: https://openshift.example.com:6443 1
The server uses a certificate signed by an unknown authority.
You can bypass the certificate check, but any data you send to the server could be
intercepted by others.
Use insecure connections? (y/n): y 2

Authentication required for https://openshift.example.com:6443 (openshift)
Username: user1
Password: 3
Login successful.

You don't have any projects. You can try to create a new project, by running

 oc new-project <projectname>

Welcome! See 'oc help' to get started.

OpenShift Container Platform 4.8 CLI ツール

10

注記

Web コンソールにログインしている場合には、トークンおよびサーバー情報を含む oc
login コマンドを生成できます。このコマンドを使用して、対話プロンプトなしに
OpenShift Container Platform CLI にログインできます。コマンドを生成するには、Web
コンソールの右上にあるユーザー名のドロップダウンメニューから Copy login
command を選択します。

これで、プロジェクトを作成でき、クラスターを管理するための他のコマンドを実行することができま
す。

2.1.4. OpenShift CLI の使用

以下のセクションで、CLI を使用して一般的なタスクを実行する方法を確認します。

2.1.4.1. プロジェクトの作成

新規プロジェクトを作成するには、oc new-project コマンドを使用します。

出力例

2.1.4.2. 新しいアプリケーションの作成

新規アプリケーションを作成するには、oc new-app コマンドを使用します。

出力例

2.1.4.3. Pod の表示

現在のプロジェクトの Pod を表示するには、oc get pods コマンドを使用します。

注記

Pod 内で oc を実行し、namespace を指定しない場合、Pod の namespace はデフォル
トで使用されます。

出力例

$ oc new-project my-project

Now using project "my-project" on server "https://openshift.example.com:6443".

$ oc new-app https://github.com/sclorg/cakephp-ex

--> Found image 40de956 (9 days old) in imagestream "openshift/php" under tag "7.2" for "php"

...

 Run 'oc status' to view your app.

$ oc get pods -o wide

第2章 OPENSHIFT CLI (OC)

11

2.1.4.4. Pod ログの表示

特定の Pod のログを表示するには、oc logs コマンドを使用します。

出力例

2.1.4.5. 現在のプロジェクトの表示

現在のプロジェクトを表示するには、oc project コマンドを使用します。

出力例

2.1.4.6. 現在のプロジェクトのステータスの表示

サービス、デプロイメント、およびビルド設定などの現在のプロジェクトについての情報を表示するに
は、oc status コマンドを使用します。

出力例

2.1.4.7. サポートされる API のリソースの一覧表示

サーバー上でサポートされる API リソースの一覧を表示するには、oc api-resources コマンドを使用

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE
cakephp-ex-1-build 0/1 Completed 0 5m45s 10.131.0.10 ip-10-0-141-74.ec2.internal
<none>
cakephp-ex-1-deploy 0/1 Completed 0 3m44s 10.129.2.9 ip-10-0-147-65.ec2.internal
<none>
cakephp-ex-1-ktz97 1/1 Running 0 3m33s 10.128.2.11 ip-10-0-168-105.ec2.internal
<none>

$ oc logs cakephp-ex-1-deploy

--> Scaling cakephp-ex-1 to 1
--> Success

$ oc project

Using project "my-project" on server "https://openshift.example.com:6443".

$ oc status

In project my-project on server https://openshift.example.com:6443

svc/cakephp-ex - 172.30.236.80 ports 8080, 8443
 dc/cakephp-ex deploys istag/cakephp-ex:latest <-
 bc/cakephp-ex source builds https://github.com/sclorg/cakephp-ex on openshift/php:7.2
 deployment #1 deployed 2 minutes ago - 1 pod

3 infos identified, use 'oc status --suggest' to see details.

OpenShift Container Platform 4.8 CLI ツール

12

サーバー上でサポートされる API リソースの一覧を表示するには、oc api-resources コマンドを使用
します。

出力例

2.1.5. ヘルプの表示

CLI コマンドおよび OpenShift Container Platform リソースに関するヘルプを以下の方法で表示するこ
とができます。

利用可能なすべての CLI コマンドの一覧および説明を表示するには、oc help を使用します。

例: CLI についての一般的なヘルプの表示

出力例

特定の CLI コマンドについてのヘルプを表示するには、--help フラグを使用します。

例: oc create コマンドについてのヘルプの表示

出力例

$ oc api-resources

NAME SHORTNAMES APIGROUP NAMESPACED KIND
bindings true Binding
componentstatuses cs false ComponentStatus
configmaps cm true ConfigMap
...

$ oc help

OpenShift Client

This client helps you develop, build, deploy, and run your applications on any OpenShift or
Kubernetes compatible
platform. It also includes the administrative commands for managing a cluster under the 'adm'
subcommand.

Usage:
 oc [flags]

Basic Commands:
 login Log in to a server
 new-project Request a new project
 new-app Create a new application

...

$ oc create --help

Create a resource by filename or stdin

第2章 OPENSHIFT CLI (OC)

13

特定リソースについての説明およびフィールドを表示するには、oc explain コマンドを使用し
ます。

例: Pod リソースのドキュメントの表示

出力例

2.1.6. OpenShift CLI からのログアウト

OpenShift CLI からログアウトし、現在のセッションを終了することができます。

oc logout コマンドを使用します。

出力例

これにより、サーバーから保存された認証トークンが削除され、設定ファイルから除去されます。

2.2. OPENSHIFT CLI の設定

2.2.1. タブ補完の有効化

Bash または Zsh シェルのタブ補完を有効にできます。

JSON and YAML formats are accepted.

Usage:
 oc create -f FILENAME [flags]

...

$ oc explain pods

KIND: Pod
VERSION: v1

DESCRIPTION:
 Pod is a collection of containers that can run on a host. This resource is
 created by clients and scheduled onto hosts.

FIELDS:
 apiVersion <string>
 APIVersion defines the versioned schema of this representation of an
 object. Servers should convert recognized schemas to the latest internal
 value, and may reject unrecognized values. More info:
 https://git.k8s.io/community/contributors/devel/api-conventions.md#resources

...

$ oc logout

Logged "user1" out on "https://openshift.example.com"

OpenShift Container Platform 4.8 CLI ツール

14

2.2.1.1. Bash のタブ補完を有効にする

OpenShift CLI (oc) ツールをインストールした後に、タブ補完を有効にして oc コマンドの自動補完を
実行するか、または Tab キーを押す際にオプションの提案が表示されるようにできます。次の手順で
は、Bash シェルのタブ補完を有効にします。

前提条件

OpenShift CLI (oc) がインストールされている必要があります。

bash-completion パッケージがインストールされている。

手順

1. Bash 補完コードをファイルに保存します。

2. ファイルを /etc/bash_completion.d/ にコピーします。

さらにファイルをローカルディレクトリーに保存した後に、これを .bashrc ファイルから取得
できるようにすることができます。

タブ補完は、新規ターミナルを開くと有効にされます。

2.2.1.2. Zsh のタブ補完を有効にする

OpenShift CLI (oc) ツールをインストールした後に、タブ補完を有効にして oc コマンドの自動補完を
実行するか、または Tab キーを押す際にオプションの提案が表示されるようにできます。次の手順で
は、Zsh シェルのタブ補完を有効にします。

前提条件

OpenShift CLI (oc) がインストールされている必要があります。

手順

oc のタブ補完を .zshrc ファイルに追加するには、次のコマンドを実行します。

タブ補完は、新規ターミナルを開くと有効にされます。

2.3. MANAGING CLI PROFILES

CLI 設定ファイルでは、CLI ツールの概要 で使用するさまざまなプロファイルまたはコンテキストを設

$ oc completion bash > oc_bash_completion

$ sudo cp oc_bash_completion /etc/bash_completion.d/

$ cat >>~/.zshrc<<EOF
if [$commands[oc]]; then
 source <(oc completion zsh)
 compdef _oc oc
fi
EOF

第2章 OPENSHIFT CLI (OC)

15

1

2

CLI 設定ファイルでは、CLI ツールの概要 で使用するさまざまなプロファイルまたはコンテキストを設
定できます。コンテキストは、ユーザー認証 および ニックネーム と関連付けられた OpenShift
Container Platform サーバー情報から設定されます。

2.3.1. CLI プロファイル間のスイッチについて

CLI 操作を使用する場合に、コンテキストを使用すると、複数の OpenShift Container Platform サー
バーまたはクラスターにまたがって、複数ユーザー間の切り替えが簡単になります。ニックネームを使
用すると、コンテキスト、ユーザーの認証情報およびクラスターの詳細情報の省略された参照を提供す
ることで、CLI 設定の管理が容易になります。CLI を使用して初めてログインした後、OpenShift
Container Platform は ~/.kube/config ファイルを作成します (すでに存在しない場合)。oc login 操作中
に自動的に、または CLI プロファイルを手動で設定することにより、より多くの認証と接続の詳細が
CLI に提供されると、更新された情報が設定ファイルに保存されます。

CLI 設定ファイル

clusters セクションは、マスターサーバーのアドレスを含む OpenShift Container Platform クラ
スターの接続の詳細を定義します。この例では、1 つのクラスターのニックネームは
openshift1.example.com:8443 で、もう 1 つのクラスターのニックネームは
openshift2.example.com:8443 となっています。

この contexts セクションでは、2 つのコンテキストを定義します。1 つは alice-
project/openshift1.example.com:8443/alice というニックネームで、alice-project プロジェク
ト、openshift1.example.com:8443 クラスター、および alice ユーザーを使用します。もう 1 つは
joe-project/openshift1.example.com:8443/alice というニックネームで、joe-project プロジェク
ト、openshift1.example.com:8443 クラスター、および alice ユーザーを使用します。

apiVersion: v1
clusters: 1
- cluster:
 insecure-skip-tls-verify: true
 server: https://openshift1.example.com:8443
 name: openshift1.example.com:8443
- cluster:
 insecure-skip-tls-verify: true
 server: https://openshift2.example.com:8443
 name: openshift2.example.com:8443
contexts: 2
- context:
 cluster: openshift1.example.com:8443
 namespace: alice-project
 user: alice/openshift1.example.com:8443
 name: alice-project/openshift1.example.com:8443/alice
- context:
 cluster: openshift1.example.com:8443
 namespace: joe-project
 user: alice/openshift1.example.com:8443
 name: joe-project/openshift1/alice
current-context: joe-project/openshift1.example.com:8443/alice 3
kind: Config
preferences: {}
users: 4
- name: alice/openshift1.example.com:8443
 user:
 token: xZHd2piv5_9vQrg-SKXRJ2Dsl9SceNJdhNTljEKTb8k

OpenShift Container Platform 4.8 CLI ツール

16

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/cli_tools/#cli-tools-overview
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/authentication_and_authorization/#understanding-authentication

3

4

current-context パラメーターは、joe-project/openshift1.example.com:8443/alice コンテキスト
が現在使用中であることを示しています。これにより、alice ユーザーは

users セクションは、ユーザーの認証情報を定義します。この例では、ユーザーニックネーム
alice/openshift1.example.com:8443 は、アクセストークンを使用します。

CLI は、実行時にロードされ、コマンドラインから指定されたオーバーライドオプションとともにマー
ジされる複数の設定ファイルをサポートできます。ログイン後に、oc status または oc project コマン
ドを使用して、現在の作業環境を確認できます。

現在の作業環境の確認

出力例

現在のプロジェクトの一覧表示

出力例

oc login コマンドを再度実行し、対話式プロセス中に必要な情報を指定して、ユーザー認証情報および
クラスターの詳細の他の組み合わせを使用してログインできます。コンテキストが存在しない場合は、
コンテキストが指定される情報に基づいて作成されます。すでにログインしている場合で、現行ユー
ザーがアクセス可能な別のプロジェクトに切り替える場合には、oc project コマンドを使用してプロ
ジェクトの名前を入力します。

出力例

$ oc status

oc status
In project Joe's Project (joe-project)

service database (172.30.43.12:5434 -> 3306)
 database deploys docker.io/openshift/mysql-55-centos7:latest
 #1 deployed 25 minutes ago - 1 pod

service frontend (172.30.159.137:5432 -> 8080)
 frontend deploys origin-ruby-sample:latest <-
 builds https://github.com/openshift/ruby-hello-world with joe-project/ruby-20-centos7:latest
 #1 deployed 22 minutes ago - 2 pods

To see more information about a service or deployment, use 'oc describe service <name>' or 'oc
describe dc <name>'.
You can use 'oc get all' to see lists of each of the types described in this example.

$ oc project

Using project "joe-project" from context named "joe-project/openshift1.example.com:8443/alice" on
server "https://openshift1.example.com:8443".

$ oc project alice-project

Now using project "alice-project" on server "https://openshift1.example.com:8443".

第2章 OPENSHIFT CLI (OC)

17

出力に示されるように、いつでも oc config view コマンドを使用して、現在の CLI 設定を表示できま
す。高度な使用方法で利用できる CLI 設定コマンドが他にもあります。

注記

管理者の認証情報にアクセスできるが、デフォルトのシステムユーザーsystem:adminと
してログインしていない場合は、認証情報が CLI 設定ファイルに残っている限り、いつ
でもこのユーザーとして再度ログインできます。以下のコマンドはログインを実行し、
デフォルトプロジェクトに切り替えます。

2.3.2. CLI プロファイルの手動設定

注記

このセクションでは、CLI 設定の高度な使用方法について説明します。ほとんどの場
合、oc login コマンドおよび oc project コマンドを使用してログインし、コンテキスト
間とプロジェクト間の切り替えを実行できます。

CLI 設定ファイルを手動で設定する必要がある場合は、ファイルを直接変更せずに oc config コマンド
を使用することができます。oc config コマンドには、この目的で役立ついくつかのサブコマンドが含
まれています。

表2.1 CLI 設定サブコマンド

サブコ
マンド

使用法

set-
cluster

CLI 設定ファイルにクラスターエントリーを設定します。参照されるクラスターのニックネーム
がすでに存在する場合、指定情報はマージされます。

set-
context

CLI 設定ファイルにコンテキストエントリーを設定します。参照されるコンテキストのニック
ネームがすでに存在する場合、指定情報はマージされます。

use-
context

指定されたコンテキストのニックネームを使用して、現在のコンテキストを設定します。

$ oc login -u system:admin -n default

$ oc config set-cluster <cluster_nickname> [--server=<master_ip_or_fqdn>]
[--certificate-authority=<path/to/certificate/authority>]
[--api-version=<apiversion>] [--insecure-skip-tls-verify=true]

$ oc config set-context <context_nickname> [--cluster=<cluster_nickname>]
[--user=<user_nickname>] [--namespace=<namespace>]

$ oc config use-context <context_nickname>

OpenShift Container Platform 4.8 CLI ツール

18

set CLI 設定ファイルに個別の値を設定します。

<property_name> はドットで区切られた名前です。ここで、それぞれのトークンは属性名また
はマップキーのいずれかを表します。<property_value> は設定される新しい値です。

unset CLI 設定ファイルでの個別の値の設定を解除します。

<property_name> はドットで区切られた名前です。ここで、それぞれのトークンは属性名また
はマップキーのいずれかを表します。

view 現在使用中のマージされた CLI 設定を表示します。

指定された CLI 設定ファイルの結果を表示します。

サブコ
マンド

使用法

使用例

アクセストークンを使用するユーザーとしてログインします。このトークンは alice ユーザー
によって使用されます。

自動的に作成されたクラスターエントリーを表示します。

出力例

$ oc config set <property_name> <property_value>

$ oc config unset <property_name>

$ oc config view

$ oc config view --config=<specific_filename>

$ oc login https://openshift1.example.com --
token=ns7yVhuRNpDM9cgzfhhxQ7bM5s7N2ZVrkZepSRf4LC0

$ oc config view

apiVersion: v1
clusters:
- cluster:
 insecure-skip-tls-verify: true
 server: https://openshift1.example.com
 name: openshift1-example-com
contexts:
- context:
 cluster: openshift1-example-com
 namespace: default
 user: alice/openshift1-example-com

第2章 OPENSHIFT CLI (OC)

19

現在のコンテキストを更新して、ユーザーが必要な namespace にログインできるようにしま
す。

現在のコンテキストを調べて、変更が実装されていることを確認します。

後続のすべての CLI 操作は、オーバーライドする CLI オプションにより特に指定されていない限り、ま
たはコンテキストが切り替わるまで、新しいコンテキストを使用します。

2.3.3. ルールの読み込みおよびマージ

CLI 設定のロードおよびマージ順序の CLI 操作を実行する際に、以下のルールを実行できます。

CLI 設定ファイルは、以下の階層とマージルールを使用してワークステーションから取得され
ます。

--config オプションが設定されている場合、そのファイルのみが読み込まれます。フラグ
は一度設定され、マージは実行されません。

$KUBECONFIG 環境変数が設定されている場合は、これが使用されます。変数はパスの一
覧である可能性があり、その場合、パスは 1 つにマージされます。値が変更される場合は、
スタンザを定義するファイルで変更されます。値が作成される場合は、存在する最初の
ファイルで作成されます。ファイルがチェーン内に存在しない場合は、一覧の最後のファ
イルが作成されます。

または、~/.kube/config ファイルが使用され、マージは実行されません。

使用するコンテキストは、以下のフローの最初の一致に基づいて決定されます。

--context オプションの値。

CLI 設定ファイルの current-context 値。

この段階では空の値が許可されます。

使用するユーザーおよびクラスターが決定されます。この時点では、コンテキストがある場合
とない場合があります。コンテキストは、以下のフローの最初の一致に基づいて作成されま
す。このフローは、ユーザー用に 1 回、クラスター用に 1 回実行されます。

ユーザー名の --user の値、およびクラスター名の --cluster オプション。

--context オプションがある場合は、コンテキストの値を使用します。

この段階では空の値が許可されます。

 name: default/openshift1-example-com/alice
current-context: default/openshift1-example-com/alice
kind: Config
preferences: {}
users:
- name: alice/openshift1.example.com
 user:
 token: ns7yVhuRNpDM9cgzfhhxQ7bM5s7N2ZVrkZepSRf4LC0

$ oc config set-context `oc config current-context` --namespace=<project_name>

$ oc whoami -c

OpenShift Container Platform 4.8 CLI ツール

20

使用する実際のクラスター情報が決定されます。この時点では、クラスター情報がある場合と
ない場合があります。各クラスター情報は、以下のフローの最初の一致に基づいて構築されま
す。

以下のコマンドラインオプションのいずれかの値。

--server

--api-version

--certificate-authority

--insecure-skip-tls-verify

クラスター情報および属性の値がある場合は、それを使用します。

サーバーロケーションがない場合は、エラーが生じます。

使用する実際のユーザー情報が決定されます。ユーザーは、クラスターと同じルールを使用し
て作成されます。ただし、複数の手法が競合することによって操作が失敗することから、ユー
ザーごとの 1 つの認証手法のみを使用できます。コマンドラインのオプションは、設定ファイ
ルの値よりも優先されます。以下は、有効なコマンドラインのオプションです。

--auth-path

--client-certificate

--client-key

--token

欠落している情報がある場合には、デフォルト値が使用され、追加情報を求めるプロンプトが
出されます。

2.4. プラグインによる OPENSHIFT CLI の拡張

デフォルトの oc コマンドを拡張するためにプラグインを作成およびインストールし、これを使用して
OpenShift Container Platform CLI で新規および追加の複雑なタスクを実行できます。

2.4.1. CLI プラグインの作成

コマンドラインのコマンドを作成できる任意のプログラミング言語またはスクリプトで、OpenShift
Container Platform CLI のプラグインを作成できます。既存の oc コマンドを上書きするプラグインを
使用することはできない点に注意してください。

手順

以下の手順では、oc foo コマンドの実行時にターミナルにメッセージを出力する単純な Bash プラグイ
ンを作成します。

1. oc-foo というファイルを作成します。
プラグインファイルの名前を付ける際には、以下の点に留意してください。

プログインとして認識されるように、ファイルの名前は oc- または kubectl- で開始する必
要があります。

ファイル名は、プラグインを起動するコマンドを判別するものとなります。たとえば、

第2章 OPENSHIFT CLI (OC)

21

ファイル名が oc-foo-bar のプラグインは、oc foo bar のコマンドで起動します。また、コ
マンドにダッシュを含める必要がある場合には、アンダースコアを使用することもできま
す。たとえば、ファイル名が oc-foo_bar のプラグインは、oc foo-bar のコマンドで起動し
ます。

2. 以下の内容をファイルに追加します。

OpenShift Container Platform CLI のこのプラグインをインストールした後に、oc foo コマンドを使用
してこれを起動できます。

関連情報

Go で作成されたプラグインの例については、 サンプルのプラグインリポジトリー を参照して
ください。

Go でのプラグインの作成を支援する一連のユーティリティーについては、CLI ランタイムリポ
ジトリー を参照してください。

2.4.2. CLI プラグインのインストールおよび使用

OpenShift Container Platform CLI のカスタムプラグインの作成後に、これが提供する機能を使用でき
るようインストールする必要があります。

前提条件

oc CLI ツールをインストールしていること。

oc- または kubectl- で始まる CLI プラグインファイルがあること。

手順

1. 必要に応じて、プラグインファイルを更新して実行可能にします。

2. ファイルを PATH の任意の場所に置きます (例: /usr/local/bin/)。

#!/bin/bash

optional argument handling
if [["$1" == "version"]]
then
 echo "1.0.0"
 exit 0
fi

optional argument handling
if [["$1" == "config"]]
then
 echo $KUBECONFIG
 exit 0
fi

echo "I am a plugin named kubectl-foo"

$ chmod +x <plugin_file>

OpenShift Container Platform 4.8 CLI ツール

22

https://github.com/kubernetes/sample-cli-plugin
https://github.com/kubernetes/cli-runtime/

3. oc plugin list を実行し、プラグインが一覧表示されることを確認します。

出力例

プラグインがここに一覧表示されていない場合、ファイルが oc- または kubectl- で開始される
ものであり、実行可能な状態で PATH 上にあることを確認します。

4. プラグインによって導入される新規コマンドまたはオプションを起動します。
たとえば、kubectl-ns プラグインを サンプルのプラグインリポジトリー からビルドし、イン
ストールしている場合、以下のコマンドを使用して現在の namespace を表示できます。

プラグインを呼び出すコマンドは、プラグインのファイル名に依存することに注意してくださ
い。たとえば、ファイル名が oc-foo-bar のプラグインは oc foo bar コマンドによって起動し
ます。

2.5. OPENSHIFT CLI 開発者コマンドリファレンス

このリファレンスは、OpenShift CLI (oc) 開発者コマンドの説明とコマンド例を示しています。管理者
コマンドについては、OpenShift CLI 管理者コマンドリファレンス を参照してください。

oc help を実行して、すべてのコマンドを表示するか、または oc <command> --help を実行して、特
定のコマンドに関する追加情報を取得します。

2.5.1. OpenShift CLI (oc) 開発者コマンド

2.5.1.1. oc annotate

リソースへのアノテーションを更新します。

使用例

$ sudo mv <plugin_file> /usr/local/bin/.

$ oc plugin list

The following compatible plugins are available:

/usr/local/bin/<plugin_file>

$ oc ns

 # Update pod 'foo' with the annotation 'description' and the value 'my frontend'.
 # If the same annotation is set multiple times, only the last value will be applied
 oc annotate pods foo description='my frontend'

 # Update a pod identified by type and name in "pod.json"
 oc annotate -f pod.json description='my frontend'

 # Update pod 'foo' with the annotation 'description' and the value 'my frontend running nginx',
overwriting any existing value.
 oc annotate --overwrite pods foo description='my frontend running nginx'

 # Update all pods in the namespace

第2章 OPENSHIFT CLI (OC)

23

https://github.com/kubernetes/sample-cli-plugin
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/cli_tools/#cli-administrator-commands

2.5.1.2. oc api-resources

サーバー上のサポートされている API リソースを出力します。

使用例

2.5.1.3. oc api-versions

group/version という形式で、サーバー上でサポートされる API バージョンを出力します。

使用例

2.5.1.4. oc apply

設定をファイル名または標準入力 (stdin) 別のリソースに適用します。

使用例

 oc annotate pods --all description='my frontend running nginx'

 # Update pod 'foo' only if the resource is unchanged from version 1.
 oc annotate pods foo description='my frontend running nginx' --resource-version=1

 # Update pod 'foo' by removing an annotation named 'description' if it exists.
 # Does not require the --overwrite flag.
 oc annotate pods foo description-

 # Print the supported API Resources
 oc api-resources

 # Print the supported API Resources with more information
 oc api-resources -o wide

 # Print the supported API Resources sorted by a column
 oc api-resources --sort-by=name

 # Print the supported namespaced resources
 oc api-resources --namespaced=true

 # Print the supported non-namespaced resources
 oc api-resources --namespaced=false

 # Print the supported API Resources with specific APIGroup
 oc api-resources --api-group=extensions

 # Print the supported API versions
 oc api-versions

 # Apply the configuration in pod.json to a pod.
 oc apply -f ./pod.json

 # Apply resources from a directory containing kustomization.yaml - e.g. dir/kustomization.yaml.
 oc apply -k dir/

OpenShift Container Platform 4.8 CLI ツール

24

2.5.1.5. oc apply edit-last-applied

リソース/オブジェクトの最新の last-applied-configuration アノテーションを編集します。

使用例

2.5.1.6. oc apply set-last-applied

ファイルの内容に一致するように、ライブオブジェクトに last-applied-configuration アノテーションを
設定します。

使用例

2.5.1.7. oc apply view-last-applied

リソース/オブジェクトの最新の last-applied-configuration アノテーションを表示します。

使用例

 # Apply the JSON passed into stdin to a pod.
 cat pod.json | oc apply -f -

 # Note: --prune is still in Alpha
 # Apply the configuration in manifest.yaml that matches label app=nginx and delete all the other
resources that are not in the file and match label app=nginx.
 oc apply --prune -f manifest.yaml -l app=nginx

 # Apply the configuration in manifest.yaml and delete all the other configmaps that are not in the file.
 oc apply --prune -f manifest.yaml --all --prune-whitelist=core/v1/ConfigMap

 # Edit the last-applied-configuration annotations by type/name in YAML.
 oc apply edit-last-applied deployment/nginx

 # Edit the last-applied-configuration annotations by file in JSON.
 oc apply edit-last-applied -f deploy.yaml -o json

 # Set the last-applied-configuration of a resource to match the contents of a file.
 oc apply set-last-applied -f deploy.yaml

 # Execute set-last-applied against each configuration file in a directory.
 oc apply set-last-applied -f path/

 # Set the last-applied-configuration of a resource to match the contents of a file, will create the
annotation if it does not already exist.
 oc apply set-last-applied -f deploy.yaml --create-annotation=true

 # View the last-applied-configuration annotations by type/name in YAML.
 oc apply view-last-applied deployment/nginx

 # View the last-applied-configuration annotations by file in JSON
 oc apply view-last-applied -f deploy.yaml -o json

第2章 OPENSHIFT CLI (OC)

25

2.5.1.8. oc attach

実行中のコンテナーに割り当てます。

使用例

2.5.1.9. oc auth can-i

アクションが可能かどうかを確認します。

使用例

2.5.1.10. oc auth reconcile

RBAC Role、RoleBinding、ClusterRole、および ClusterRoleBinding オブジェクトのルールを調整しま
す。

使用例

 # Get output from running pod mypod, use the oc.kubernetes.io/default-container annotation
 # for selecting the container to be attached or the first container in the pod will be chosen
 oc attach mypod

 # Get output from ruby-container from pod mypod
 oc attach mypod -c ruby-container

 # Switch to raw terminal mode, sends stdin to 'bash' in ruby-container from pod mypod
 # and sends stdout/stderr from 'bash' back to the client
 oc attach mypod -c ruby-container -i -t

 # Get output from the first pod of a ReplicaSet named nginx
 oc attach rs/nginx

 # Check to see if I can create pods in any namespace
 oc auth can-i create pods --all-namespaces

 # Check to see if I can list deployments in my current namespace
 oc auth can-i list deployments.apps

 # Check to see if I can do everything in my current namespace ("*" means all)
 oc auth can-i '*' '*'

 # Check to see if I can get the job named "bar" in namespace "foo"
 oc auth can-i list jobs.batch/bar -n foo

 # Check to see if I can read pod logs
 oc auth can-i get pods --subresource=log

 # Check to see if I can access the URL /logs/
 oc auth can-i get /logs/

 # List all allowed actions in namespace "foo"
 oc auth can-i --list --namespace=foo

OpenShift Container Platform 4.8 CLI ツール

26

2.5.1.11. oc autoscale

デプロイメント設定、デプロイメント、レプリカセット、ステートフルセット、またはレプリケーショ
ンコントローラーを自動スケーリングします。

使用例

2.5.1.12. oc cancel-build

実行中、保留中、または新規のビルドを取り消します。

使用例

2.5.1.13. oc cluster-info

クラスターの情報を表示します。

使用例

2.5.1.14. oc cluster-info dump

デバッグおよび診断に関する関連情報を多数ダンプします。

 # Reconcile rbac resources from a file
 oc auth reconcile -f my-rbac-rules.yaml

 # Auto scale a deployment "foo", with the number of pods between 2 and 10, no target CPU
utilization specified so a default autoscaling policy will be used:
 oc autoscale deployment foo --min=2 --max=10

 # Auto scale a replication controller "foo", with the number of pods between 1 and 5, target CPU
utilization at 80%:
 oc autoscale rc foo --max=5 --cpu-percent=80

 # Cancel the build with the given name
 oc cancel-build ruby-build-2

 # Cancel the named build and print the build logs
 oc cancel-build ruby-build-2 --dump-logs

 # Cancel the named build and create a new one with the same parameters
 oc cancel-build ruby-build-2 --restart

 # Cancel multiple builds
 oc cancel-build ruby-build-1 ruby-build-2 ruby-build-3

 # Cancel all builds created from the 'ruby-build' build config that are in the 'new' state
 oc cancel-build bc/ruby-build --state=new

 # Print the address of the control plane and cluster services
 oc cluster-info

第2章 OPENSHIFT CLI (OC)

27

使用例

2.5.1.15. oc completion

指定されたシェル (bash または zsh) の補完コードを出力します。

使用例

2.5.1.16. oc config current-context

current-context を表示します

使用例

 # Dump current cluster state to stdout
 oc cluster-info dump

 # Dump current cluster state to /path/to/cluster-state
 oc cluster-info dump --output-directory=/path/to/cluster-state

 # Dump all namespaces to stdout
 oc cluster-info dump --all-namespaces

 # Dump a set of namespaces to /path/to/cluster-state
 oc cluster-info dump --namespaces default,kube-system --output-directory=/path/to/cluster-state

 # Installing bash completion on macOS using homebrew
 ## If running Bash 3.2 included with macOS
 brew install bash-completion
 ## or, if running Bash 4.1+
 brew install bash-completion@2
 ## If oc is installed via homebrew, this should start working immediately.
 ## If you've installed via other means, you may need add the completion to your completion directory
 oc completion bash > $(brew --prefix)/etc/bash_completion.d/oc

 # Installing bash completion on Linux
 ## If bash-completion is not installed on Linux, please install the 'bash-completion' package
 ## via your distribution's package manager.
 ## Load the oc completion code for bash into the current shell
 source <(oc completion bash)
 ## Write bash completion code to a file and source it from .bash_profile
 oc completion bash > ~/.kube/completion.bash.inc
 printf "
 # Kubectl shell completion
 source '$HOME/.kube/completion.bash.inc'
 " >> $HOME/.bash_profile
 source $HOME/.bash_profile

 # Load the oc completion code for zsh[1] into the current shell
 source <(oc completion zsh)
 # Set the oc completion code for zsh[1] to autoload on startup
 oc completion zsh > "${fpath[1]}/_oc"

OpenShift Container Platform 4.8 CLI ツール

28

2.5.1.17. oc config delete-cluster

kubeconfig から指定されたクラスターを削除します。

使用例

2.5.1.18. oc config delete-context

kubeconfig から指定されたコンテキストを削除します。

使用例

2.5.1.19. oc config delete-user

kubeconfig から指定されたユーザーを削除します。

使用例

2.5.1.20. oc config get-clusters

kubeconfig に定義されるクラスターを表示します。

使用例

2.5.1.21. oc config get-contexts

コンテキストを 1 つまたは複数記述します。

使用例

 # Display the current-context
 oc config current-context

 # Delete the minikube cluster
 oc config delete-cluster minikube

 # Delete the context for the minikube cluster
 oc config delete-context minikube

 # Delete the minikube user
 oc config delete-user minikube

 # List the clusters oc knows about
 oc config get-clusters

 # List all the contexts in your kubeconfig file
 oc config get-contexts

 # Describe one context in your kubeconfig file.
 oc config get-contexts my-context

第2章 OPENSHIFT CLI (OC)

29

2.5.1.22. oc config get-users

kubeconfig で定義されるユーザーを表示します。

使用例

2.5.1.23. oc config rename-context

kubeconfig ファイルからのコンテキストの名前を変更します。

使用例

2.5.1.24. oc config set

kubeconfig ファイルに個別の値を設定します。

使用例

2.5.1.25. oc config set-cluster

kubeconfig でクラスターエントリーを設定します。

使用例

 # List the users oc knows about
 oc config get-users

 # Rename the context 'old-name' to 'new-name' in your kubeconfig file
 oc config rename-context old-name new-name

 # Set server field on the my-cluster cluster to https://1.2.3.4
 oc config set clusters.my-cluster.server https://1.2.3.4

 # Set certificate-authority-data field on the my-cluster cluster.
 oc config set clusters.my-cluster.certificate-authority-data $(echo "cert_data_here" | base64 -i -)

 # Set cluster field in the my-context context to my-cluster.
 oc config set contexts.my-context.cluster my-cluster

 # Set client-key-data field in the cluster-admin user using --set-raw-bytes option.
 oc config set users.cluster-admin.client-key-data cert_data_here --set-raw-bytes=true

 # Set only the server field on the e2e cluster entry without touching other values.
 oc config set-cluster e2e --server=https://1.2.3.4

 # Embed certificate authority data for the e2e cluster entry
 oc config set-cluster e2e --embed-certs --certificate-authority=~/.kube/e2e/kubernetes.ca.crt

 # Disable cert checking for the dev cluster entry
 oc config set-cluster e2e --insecure-skip-tls-verify=true

 # Set custom TLS server name to use for validation for the e2e cluster entry
 oc config set-cluster e2e --tls-server-name=my-cluster-name

OpenShift Container Platform 4.8 CLI ツール

30

2.5.1.26. oc config set-context

kubeconfig のコンテキストエントリーを設定します。

使用例

2.5.1.27. oc config set-credentials

kubeconfig のユーザーエントリーを設定します。

使用例

2.5.1.28. oc config unset

kubeconfig ファイルでの個別値の設定を解除します。

使用例

 # Set the user field on the gce context entry without touching other values
 oc config set-context gce --user=cluster-admin

 # Set only the "client-key" field on the "cluster-admin"
 # entry, without touching other values:
 oc config set-credentials cluster-admin --client-key=~/.kube/admin.key

 # Set basic auth for the "cluster-admin" entry
 oc config set-credentials cluster-admin --username=admin --password=uXFGweU9l35qcif

 # Embed client certificate data in the "cluster-admin" entry
 oc config set-credentials cluster-admin --client-certificate=~/.kube/admin.crt --embed-certs=true

 # Enable the Google Compute Platform auth provider for the "cluster-admin" entry
 oc config set-credentials cluster-admin --auth-provider=gcp

 # Enable the OpenID Connect auth provider for the "cluster-admin" entry with additional args
 oc config set-credentials cluster-admin --auth-provider=oidc --auth-provider-arg=client-id=foo --auth-
provider-arg=client-secret=bar

 # Remove the "client-secret" config value for the OpenID Connect auth provider for the "cluster-
admin" entry
 oc config set-credentials cluster-admin --auth-provider=oidc --auth-provider-arg=client-secret-

 # Enable new exec auth plugin for the "cluster-admin" entry
 oc config set-credentials cluster-admin --exec-command=/path/to/the/executable --exec-api-
version=client.authentication.k8s.io/v1beta1

 # Define new exec auth plugin args for the "cluster-admin" entry
 oc config set-credentials cluster-admin --exec-arg=arg1 --exec-arg=arg2

 # Create or update exec auth plugin environment variables for the "cluster-admin" entry
 oc config set-credentials cluster-admin --exec-env=key1=val1 --exec-env=key2=val2

 # Remove exec auth plugin environment variables for the "cluster-admin" entry
 oc config set-credentials cluster-admin --exec-env=var-to-remove-

第2章 OPENSHIFT CLI (OC)

31

2.5.1.29. oc config use-context

kubeconfig ファイルで current-context を設定します。

使用例

2.5.1.30. oc config view

マージされた kubeconfig 設定または指定された kubeconfig ファイルを表示します。

使用例

2.5.1.31. oc cp

ファイルおよびディレクトリーのコンテナーへの/からのコピーを実行します。

使用例

 # Unset the current-context.
 oc config unset current-context

 # Unset namespace in foo context.
 oc config unset contexts.foo.namespace

 # Use the context for the minikube cluster
 oc config use-context minikube

 # Show merged kubeconfig settings.
 oc config view

 # Show merged kubeconfig settings and raw certificate data.
 oc config view --raw

 # Get the password for the e2e user
 oc config view -o jsonpath='{.users[?(@.name == "e2e")].user.password}'

 # !!!Important Note!!!
 # Requires that the 'tar' binary is present in your container
 # image. If 'tar' is not present, 'oc cp' will fail.
 #
 # For advanced use cases, such as symlinks, wildcard expansion or
 # file mode preservation consider using 'oc exec'.

 # Copy /tmp/foo local file to /tmp/bar in a remote pod in namespace <some-namespace>
 tar cf - /tmp/foo | oc exec -i -n <some-namespace> <some-pod> -- tar xf - -C /tmp/bar

 # Copy /tmp/foo from a remote pod to /tmp/bar locally
 oc exec -n <some-namespace> <some-pod> -- tar cf - /tmp/foo | tar xf - -C /tmp/bar

 # Copy /tmp/foo_dir local directory to /tmp/bar_dir in a remote pod in the default namespace
 oc cp /tmp/foo_dir <some-pod>:/tmp/bar_dir

 # Copy /tmp/foo local file to /tmp/bar in a remote pod in a specific container

OpenShift Container Platform 4.8 CLI ツール

32

2.5.1.32. oc create

ファイルまたは標準入力 (stdin) からリソースを作成します。

使用例

2.5.1.33. oc create build

新規ビルドを作成します。

使用例

2.5.1.34. oc create clusterresourcequota

クラスターリソースクォータを作成します。

使用例

2.5.1.35. oc create clusterrole

ClusterRole を作成します。

使用例

 oc cp /tmp/foo <some-pod>:/tmp/bar -c <specific-container>

 # Copy /tmp/foo local file to /tmp/bar in a remote pod in namespace <some-namespace>
 oc cp /tmp/foo <some-namespace>/<some-pod>:/tmp/bar

 # Copy /tmp/foo from a remote pod to /tmp/bar locally
 oc cp <some-namespace>/<some-pod>:/tmp/foo /tmp/bar

 # Create a pod using the data in pod.json.
 oc create -f ./pod.json

 # Create a pod based on the JSON passed into stdin.
 cat pod.json | oc create -f -

 # Edit the data in docker-registry.yaml in JSON then create the resource using the edited data.
 oc create -f docker-registry.yaml --edit -o json

 # Create a new build
 oc create build myapp

 # Create a cluster resource quota limited to 10 pods
 oc create clusterresourcequota limit-bob --project-annotation-selector=openshift.io/requester=user-
bob --hard=pods=10

 # Create a ClusterRole named "pod-reader" that allows user to perform "get", "watch" and "list" on
pods
 oc create clusterrole pod-reader --verb=get,list,watch --resource=pods

第2章 OPENSHIFT CLI (OC)

33

2.5.1.36. oc create clusterrolebinding

特定の ClusterRole の ClusterRoleBinding を作成します。

使用例

2.5.1.37. oc create configmap

ローカルファイル、ディレクトリー、またはリテラル値から configmap を作成します。

使用例

2.5.1.38. oc create cronjob

指定の名前で cronjob を作成します。

使用例

 # Create a ClusterRole named "pod-reader" with ResourceName specified
 oc create clusterrole pod-reader --verb=get --resource=pods --resource-name=readablepod --
resource-name=anotherpod

 # Create a ClusterRole named "foo" with API Group specified
 oc create clusterrole foo --verb=get,list,watch --resource=rs.extensions

 # Create a ClusterRole named "foo" with SubResource specified
 oc create clusterrole foo --verb=get,list,watch --resource=pods,pods/status

 # Create a ClusterRole name "foo" with NonResourceURL specified
 oc create clusterrole "foo" --verb=get --non-resource-url=/logs/*

 # Create a ClusterRole name "monitoring" with AggregationRule specified
 oc create clusterrole monitoring --aggregation-rule="rbac.example.com/aggregate-to-
monitoring=true"

 # Create a ClusterRoleBinding for user1, user2, and group1 using the cluster-admin ClusterRole
 oc create clusterrolebinding cluster-admin --clusterrole=cluster-admin --user=user1 --user=user2 --
group=group1

 # Create a new configmap named my-config based on folder bar
 oc create configmap my-config --from-file=path/to/bar

 # Create a new configmap named my-config with specified keys instead of file basenames on disk
 oc create configmap my-config --from-file=key1=/path/to/bar/file1.txt --from-
file=key2=/path/to/bar/file2.txt

 # Create a new configmap named my-config with key1=config1 and key2=config2
 oc create configmap my-config --from-literal=key1=config1 --from-literal=key2=config2

 # Create a new configmap named my-config from the key=value pairs in the file
 oc create configmap my-config --from-file=path/to/bar

 # Create a new configmap named my-config from an env file
 oc create configmap my-config --from-env-file=path/to/bar.env

OpenShift Container Platform 4.8 CLI ツール

34

2.5.1.39. oc create deployment

指定の名前のデプロイメントを作成します。

使用例

2.5.1.40. oc create deploymentconfig

デフォルトのオプションを指定して特定のイメージを使用するデプロイメント設定を作成します。

使用例

2.5.1.41. oc create identity

アイデンティティーを手動で作成します (自動作成が無効になっている場合のみが必要)。

使用例

2.5.1.42. oc create imagestream

空のイメージストリームを新たに作成します。

使用例

 # Create a cronjob
 oc create cronjob my-job --image=busybox --schedule="*/1 * * * *"

 # Create a cronjob with command
 oc create cronjob my-job --image=busybox --schedule="*/1 * * * *" -- date

 # Create a deployment named my-dep that runs the busybox image.
 oc create deployment my-dep --image=busybox

 # Create a deployment with command
 oc create deployment my-dep --image=busybox -- date

 # Create a deployment named my-dep that runs the nginx image with 3 replicas.
 oc create deployment my-dep --image=nginx --replicas=3

 # Create a deployment named my-dep that runs the busybox image and expose port 5701.
 oc create deployment my-dep --image=busybox --port=5701

 # Create an nginx deployment config named my-nginx
 oc create deploymentconfig my-nginx --image=nginx

 # Create an identity with identity provider "acme_ldap" and the identity provider username
"adamjones"
 oc create identity acme_ldap:adamjones

 # Create a new image stream
 oc create imagestream mysql

第2章 OPENSHIFT CLI (OC)

35

2.5.1.43. oc create imagestreamtag

新規イメージストリームタグを作成します。

使用例

2.5.1.44. oc create ingress

指定の名前で Ingress を作成します。

使用例

2.5.1.45. oc create job

 # Create a new image stream tag based on an image in a remote registry
 oc create imagestreamtag mysql:latest --from-image=myregistry.local/mysql/mysql:5.0

 # Create a single ingress called 'simple' that directs requests to foo.com/bar to svc
 # svc1:8080 with a tls secret "my-cert"
 oc create ingress simple --rule="foo.com/bar=svc1:8080,tls=my-cert"

 # Create a catch all ingress of "/path" pointing to service svc:port and Ingress Class as
"otheringress"
 oc create ingress catch-all --class=otheringress --rule="/path=svc:port"

 # Create an ingress with two annotations: ingress.annotation1 and ingress.annotations2
 oc create ingress annotated --class=default --rule="foo.com/bar=svc:port" \
 --annotation ingress.annotation1=foo \
 --annotation ingress.annotation2=bla

 # Create an ingress with the same host and multiple paths
 oc create ingress multipath --class=default \
 --rule="foo.com/=svc:port" \
 --rule="foo.com/admin/=svcadmin:portadmin"

 # Create an ingress with multiple hosts and the pathType as Prefix
 oc create ingress ingress1 --class=default \
 --rule="foo.com/path*=svc:8080" \
 --rule="bar.com/admin*=svc2:http"

 # Create an ingress with TLS enabled using the default ingress certificate and different path types
 oc create ingress ingtls --class=default \
 --rule="foo.com/=svc:https,tls" \
 --rule="foo.com/path/subpath*=othersvc:8080"

 # Create an ingress with TLS enabled using a specific secret and pathType as Prefix
 oc create ingress ingsecret --class=default \
 --rule="foo.com/*=svc:8080,tls=secret1"

 # Create an ingress with a default backend
 oc create ingress ingdefault --class=default \
 --default-backend=defaultsvc:http \
 --rule="foo.com/*=svc:8080,tls=secret1"

OpenShift Container Platform 4.8 CLI ツール

36

指定の名前でジョブを作成します。

使用例

2.5.1.46. oc create namespace

指定の名前で namespace を作成します。

使用例

2.5.1.47. oc create poddisruptionbudget

指定の名前で Pod Disruption Budget (PDB) を作成します。

使用例

2.5.1.48. oc create priorityclass

指定の名前で priorityclass を作成します。

使用例

 # Create a job
 oc create job my-job --image=busybox

 # Create a job with command
 oc create job my-job --image=busybox -- date

 # Create a job from a CronJob named "a-cronjob"
 oc create job test-job --from=cronjob/a-cronjob

 # Create a new namespace named my-namespace
 oc create namespace my-namespace

 # Create a pod disruption budget named my-pdb that will select all pods with the app=rails label
 # and require at least one of them being available at any point in time.
 oc create poddisruptionbudget my-pdb --selector=app=rails --min-available=1

 # Create a pod disruption budget named my-pdb that will select all pods with the app=nginx label
 # and require at least half of the pods selected to be available at any point in time.
 oc create pdb my-pdb --selector=app=nginx --min-available=50%

 # Create a priorityclass named high-priority
 oc create priorityclass high-priority --value=1000 --description="high priority"

 # Create a priorityclass named default-priority that considered as the global default priority
 oc create priorityclass default-priority --value=1000 --global-default=true --description="default
priority"

 # Create a priorityclass named high-priority that can not preempt pods with lower priority
 oc create priorityclass high-priority --value=1000 --description="high priority" --preemption-
policy="Never"

第2章 OPENSHIFT CLI (OC)

37

2.5.1.49. oc create quota

指定の名前でクォータを作成します。

使用例

2.5.1.50. oc create role

単一ルールでロールを作成します。

使用例

2.5.1.51. oc create rolebinding

特定のロールまたは ClusterRole の RoleBinding を作成します。

使用例

2.5.1.52. oc create route edge

edge TLS termination を使用するルートを作成します。

使用例

 # Create a new resourcequota named my-quota
 oc create quota my-quota --
hard=cpu=1,memory=1G,pods=2,services=3,replicationcontrollers=2,resourcequotas=1,secrets=5,persis
tentvolumeclaims=10

 # Create a new resourcequota named best-effort
 oc create quota best-effort --hard=pods=100 --scopes=BestEffort

 # Create a Role named "pod-reader" that allows user to perform "get", "watch" and "list" on pods
 oc create role pod-reader --verb=get --verb=list --verb=watch --resource=pods

 # Create a Role named "pod-reader" with ResourceName specified
 oc create role pod-reader --verb=get --resource=pods --resource-name=readablepod --resource-
name=anotherpod

 # Create a Role named "foo" with API Group specified
 oc create role foo --verb=get,list,watch --resource=rs.extensions

 # Create a Role named "foo" with SubResource specified
 oc create role foo --verb=get,list,watch --resource=pods,pods/status

 # Create a RoleBinding for user1, user2, and group1 using the admin ClusterRole
 oc create rolebinding admin --clusterrole=admin --user=user1 --user=user2 --group=group1

 # Create an edge route named "my-route" that exposes the frontend service
 oc create route edge my-route --service=frontend

OpenShift Container Platform 4.8 CLI ツール

38

2.5.1.53. oc create route passthrough

passthrough TLS 終端を使用するルートを作成します。

使用例

2.5.1.54. oc create route reencrypt

re-encrypt TLS 終端を使用するルートを作成します。

使用例

2.5.1.55. oc create secret docker-registry

Docker レジストリーで使用するシークレットを作成します。

使用例

2.5.1.56. oc create secret generic

ローカルファイル、ディレクトリー、またはリテラル値からシークレットを作成します。

使用例

 # Create an edge route that exposes the frontend service and specify a path
 # If the route name is omitted, the service name will be used
 oc create route edge --service=frontend --path /assets

 # Create a passthrough route named "my-route" that exposes the frontend service
 oc create route passthrough my-route --service=frontend

 # Create a passthrough route that exposes the frontend service and specify
 # a host name. If the route name is omitted, the service name will be used
 oc create route passthrough --service=frontend --hostname=www.example.com

 # Create a route named "my-route" that exposes the frontend service
 oc create route reencrypt my-route --service=frontend --dest-ca-cert cert.cert

 # Create a reencrypt route that exposes the frontend service, letting the
 # route name default to the service name and the destination CA certificate
 # default to the service CA
 oc create route reencrypt --service=frontend

 # If you don't already have a .dockercfg file, you can create a dockercfg secret directly by using:
 oc create secret docker-registry my-secret --docker-server=DOCKER_REGISTRY_SERVER --
docker-username=DOCKER_USER --docker-password=DOCKER_PASSWORD --docker-
email=DOCKER_EMAIL

 # Create a new secret named my-secret from ~/.docker/config.json
 oc create secret docker-registry my-secret --from-file=.dockerconfigjson=path/to/.docker/config.json

 # Create a new secret named my-secret with keys for each file in folder bar

第2章 OPENSHIFT CLI (OC)

39

2.5.1.57. oc create secret tls

TLS シークレットを作成します。

使用例

2.5.1.58. oc create service clusterip

ClusterIP サービスを作成します。

使用例

2.5.1.59. oc create service externalname

ExternalName サービスを作成します。

使用例

2.5.1.60. oc create service loadbalancer

Pod に LoadBalancer サービスを作成します。

使用例

 oc create secret generic my-secret --from-file=path/to/bar

 # Create a new secret named my-secret with specified keys instead of names on disk
 oc create secret generic my-secret --from-file=ssh-privatekey=path/to/id_rsa --from-file=ssh-
publickey=path/to/id_rsa.pub

 # Create a new secret named my-secret with key1=supersecret and key2=topsecret
 oc create secret generic my-secret --from-literal=key1=supersecret --from-literal=key2=topsecret

 # Create a new secret named my-secret using a combination of a file and a literal
 oc create secret generic my-secret --from-file=ssh-privatekey=path/to/id_rsa --from-
literal=passphrase=topsecret

 # Create a new secret named my-secret from an env file
 oc create secret generic my-secret --from-env-file=path/to/bar.env

 # Create a new TLS secret named tls-secret with the given key pair:
 oc create secret tls tls-secret --cert=path/to/tls.cert --key=path/to/tls.key

 # Create a new ClusterIP service named my-cs
 oc create service clusterip my-cs --tcp=5678:8080

 # Create a new ClusterIP service named my-cs (in headless mode)
 oc create service clusterip my-cs --clusterip="None"

 # Create a new ExternalName service named my-ns
 oc create service externalname my-ns --external-name bar.com

OpenShift Container Platform 4.8 CLI ツール

40

2.5.1.61. oc create service nodeport

NodePort サービスを作成します。

使用例

2.5.1.62. oc create serviceaccount

指定の名前でサービスアカウントを作成します。

使用例

2.5.1.63. oc create user

ユーザーを手動で作成します (自動作成が無効になっている場合のみ必要)。

使用例

2.5.1.64. oc create useridentitymapping

アイデンティティーをユーザーに手動でマップします。

使用例

2.5.1.65. oc debug

デバッグ用に Pod の新規インスタンスを起動します。

使用例

 # Create a new LoadBalancer service named my-lbs
 oc create service loadbalancer my-lbs --tcp=5678:8080

 # Create a new NodePort service named my-ns
 oc create service nodeport my-ns --tcp=5678:8080

 # Create a new service account named my-service-account
 oc create serviceaccount my-service-account

 # Create a user with the username "ajones" and the display name "Adam Jones"
 oc create user ajones --full-name="Adam Jones"

 # Map the identity "acme_ldap:adamjones" to the user "ajones"
 oc create useridentitymapping acme_ldap:adamjones ajones

 # Start a shell session into a pod using the OpenShift tools image
 oc debug

 # Debug a currently running deployment by creating a new pod
 oc debug deploy/test

第2章 OPENSHIFT CLI (OC)

41

2.5.1.66. oc delete

ファイル名、stdin、リソースおよび名前、またはリソースおよびラベルセレクター別にリソースを削除
します。

使用例

 # Debug a node as an administrator
 oc debug node/master-1

 # Launch a shell in a pod using the provided image stream tag
 oc debug istag/mysql:latest -n openshift

 # Test running a job as a non-root user
 oc debug job/test --as-user=1000000

 # Debug a specific failing container by running the env command in the 'second' container
 oc debug daemonset/test -c second -- /bin/env

 # See the pod that would be created to debug
 oc debug mypod-9xbc -o yaml

 # Debug a resource but launch the debug pod in another namespace
 # Note: Not all resources can be debugged using --to-namespace without modification. For
example,
 # volumes and service accounts are namespace-dependent. Add '-o yaml' to output the debug pod
definition
 # to disk. If necessary, edit the definition then run 'oc debug -f -' or run without --to-namespace
 oc debug mypod-9xbc --to-namespace testns

 # Delete a pod using the type and name specified in pod.json.
 oc delete -f ./pod.json

 # Delete resources from a directory containing kustomization.yaml - e.g. dir/kustomization.yaml.
 oc delete -k dir

 # Delete a pod based on the type and name in the JSON passed into stdin.
 cat pod.json | oc delete -f -

 # Delete pods and services with same names "baz" and "foo"
 oc delete pod,service baz foo

 # Delete pods and services with label name=myLabel.
 oc delete pods,services -l name=myLabel

 # Delete a pod with minimal delay
 oc delete pod foo --now

 # Force delete a pod on a dead node
 oc delete pod foo --force

 # Delete all pods
 oc delete pods --all

OpenShift Container Platform 4.8 CLI ツール

42

2.5.1.67. oc describe

特定のリソースまたはリソースのグループの詳細を表示します。

使用例

2.5.1.68. oc diff

ライブバーションと適用バージョンとの差異を確認します。

使用例

2.5.1.69. oc edit

サーバーのリソースを編集します。

使用例

 # Describe a node
 oc describe nodes kubernetes-node-emt8.c.myproject.internal

 # Describe a pod
 oc describe pods/nginx

 # Describe a pod identified by type and name in "pod.json"
 oc describe -f pod.json

 # Describe all pods
 oc describe pods

 # Describe pods by label name=myLabel
 oc describe po -l name=myLabel

 # Describe all pods managed by the 'frontend' replication controller (rc-created pods
 # get the name of the rc as a prefix in the pod the name).
 oc describe pods frontend

 # Diff resources included in pod.json.
 oc diff -f pod.json

 # Diff file read from stdin
 cat service.yaml | oc diff -f -

 # Edit the service named 'docker-registry':
 oc edit svc/docker-registry

 # Use an alternative editor
 KUBE_EDITOR="nano" oc edit svc/docker-registry

 # Edit the job 'myjob' in JSON using the v1 API format:
 oc edit job.v1.batch/myjob -o json

 # Edit the deployment 'mydeployment' in YAML and save the modified config in its annotation:
 oc edit deployment/mydeployment -o yaml --save-config

第2章 OPENSHIFT CLI (OC)

43

2.5.1.70. oc ex dockergc

Docker ストレージで領域を解放するためにガベージコレクションを実行します。

使用例

2.5.1.71. oc exec

コンテナーでコマンドを実行します。

使用例

2.5.1.72. oc explain

リソースのドキュメントを取得します。

使用例

2.5.1.73. oc expose

 # Perform garbage collection with the default settings
 oc ex dockergc

 # Get output from running 'date' command from pod mypod, using the first container by default
 oc exec mypod -- date

 # Get output from running 'date' command in ruby-container from pod mypod
 oc exec mypod -c ruby-container -- date

 # Switch to raw terminal mode, sends stdin to 'bash' in ruby-container from pod mypod
 # and sends stdout/stderr from 'bash' back to the client
 oc exec mypod -c ruby-container -i -t -- bash -il

 # List contents of /usr from the first container of pod mypod and sort by modification time.
 # If the command you want to execute in the pod has any flags in common (e.g. -i),
 # you must use two dashes (--) to separate your command's flags/arguments.
 # Also note, do not surround your command and its flags/arguments with quotes
 # unless that is how you would execute it normally (i.e., do ls -t /usr, not "ls -t /usr").
 oc exec mypod -i -t -- ls -t /usr

 # Get output from running 'date' command from the first pod of the deployment mydeployment,
using the first container by default
 oc exec deploy/mydeployment -- date

 # Get output from running 'date' command from the first pod of the service myservice, using the first
container by default
 oc exec svc/myservice -- date

 # Get the documentation of the resource and its fields
 oc explain pods

 # Get the documentation of a specific field of a resource
 oc explain pods.spec.containers

OpenShift Container Platform 4.8 CLI ツール

44

複製されたアプリケーションをサービスまたはルートとして公開します。

使用例

2.5.1.74. oc extract

シークレットまたは設定マップをディスクに抽出します。

使用例

2.5.1.75. oc get

 # Create a route based on service nginx. The new route will reuse nginx's labels
 oc expose service nginx

 # Create a route and specify your own label and route name
 oc expose service nginx -l name=myroute --name=fromdowntown

 # Create a route and specify a host name
 oc expose service nginx --hostname=www.example.com

 # Create a route with a wildcard
 oc expose service nginx --hostname=x.example.com --wildcard-policy=Subdomain
 # This would be equivalent to *.example.com. NOTE: only hosts are matched by the wildcard;
subdomains would not be included

 # Expose a deployment configuration as a service and use the specified port
 oc expose dc ruby-hello-world --port=8080

 # Expose a service as a route in the specified path
 oc expose service nginx --path=/nginx

 # Expose a service using different generators
 oc expose service nginx --name=exposed-svc --port=12201 --protocol="TCP" --
generator="service/v2"
 oc expose service nginx --name=my-route --port=12201 --generator="route/v1"

 # Exposing a service using the "route/v1" generator (default) will create a new exposed route with
the "--name" provided
 # (or the name of the service otherwise). You may not specify a "--protocol" or "--target-port" option
when using this generator

 # Extract the secret "test" to the current directory
 oc extract secret/test

 # Extract the config map "nginx" to the /tmp directory
 oc extract configmap/nginx --to=/tmp

 # Extract the config map "nginx" to STDOUT
 oc extract configmap/nginx --to=-

 # Extract only the key "nginx.conf" from config map "nginx" to the /tmp directory
 oc extract configmap/nginx --to=/tmp --keys=nginx.conf

第2章 OPENSHIFT CLI (OC)

45

1 つ以上のリソースを表示します。

使用例

2.5.1.76. oc idle

スケーラブルなリソースをアイドリングします。

使用例

2.5.1.77. oc image append

イメージにレイヤーを追加してレジストリーにプッシュします。

使用例

 # List all pods in ps output format.
 oc get pods

 # List all pods in ps output format with more information (such as node name).
 oc get pods -o wide

 # List a single replication controller with specified NAME in ps output format.
 oc get replicationcontroller web

 # List deployments in JSON output format, in the "v1" version of the "apps" API group:
 oc get deployments.v1.apps -o json

 # List a single pod in JSON output format.
 oc get -o json pod web-pod-13je7

 # List a pod identified by type and name specified in "pod.yaml" in JSON output format.
 oc get -f pod.yaml -o json

 # List resources from a directory with kustomization.yaml - e.g. dir/kustomization.yaml.
 oc get -k dir/

 # Return only the phase value of the specified pod.
 oc get -o template pod/web-pod-13je7 --template={{.status.phase}}

 # List resource information in custom columns.
 oc get pod test-pod -o custom-
columns=CONTAINER:.spec.containers[0].name,IMAGE:.spec.containers[0].image

 # List all replication controllers and services together in ps output format.
 oc get rc,services

 # List one or more resources by their type and names.
 oc get rc/web service/frontend pods/web-pod-13je7

 # Idle the scalable controllers associated with the services listed in to-idle.txt
 $ oc idle --resource-names-file to-idle.txt

 # Remove the entrypoint on the mysql:latest image

OpenShift Container Platform 4.8 CLI ツール

46

2.5.1.78. oc image extract

イメージからファイルシステムにファイルをコピーします。

使用例

 oc image append --from mysql:latest --to myregistry.com/myimage:latest --image '{"Entrypoint":null}'

 # Add a new layer to the image
 oc image append --from mysql:latest --to myregistry.com/myimage:latest layer.tar.gz

 # Add a new layer to the image and store the result on disk
 # This results in $(pwd)/v2/mysql/blobs,manifests
 oc image append --from mysql:latest --to file://mysql:local layer.tar.gz

 # Add a new layer to the image and store the result on disk in a designated directory
 # This will result in $(pwd)/mysql-local/v2/mysql/blobs,manifests
 oc image append --from mysql:latest --to file://mysql:local --dir mysql-local layer.tar.gz

 # Add a new layer to an image that is stored on disk (~/mysql-local/v2/image exists)
 oc image append --from-dir ~/mysql-local --to myregistry.com/myimage:latest layer.tar.gz

 # Add a new layer to an image that was mirrored to the current directory on disk ($(pwd)/v2/image
exists)
 oc image append --from-dir v2 --to myregistry.com/myimage:latest layer.tar.gz

 # Add a new layer to a multi-architecture image for an os/arch that is different from the system's
os/arch
 # Note: Wildcard filter is not supported with append. Pass a single os/arch to append
 oc image append --from docker.io/library/busybox:latest --filter-by-os=linux/s390x --to
myregistry.com/myimage:latest layer.tar.gz

 # Extract the busybox image into the current directory
 oc image extract docker.io/library/busybox:latest

 # Extract the busybox image into a designated directory (must exist)
 oc image extract docker.io/library/busybox:latest --path /:/tmp/busybox

 # Extract the busybox image into the current directory for linux/s390x platform
 # Note: Wildcard filter is not supported with extract. Pass a single os/arch to extract
 oc image extract docker.io/library/busybox:latest --filter-by-os=linux/s390x

 # Extract a single file from the image into the current directory
 oc image extract docker.io/library/centos:7 --path /bin/bash:.

 # Extract all .repo files from the image's /etc/yum.repos.d/ folder into the current directory
 oc image extract docker.io/library/centos:7 --path /etc/yum.repos.d/*.repo:.

 # Extract all .repo files from the image's /etc/yum.repos.d/ folder into a designated directory (must
exist)
 # This results in /tmp/yum.repos.d/*.repo on local system
 oc image extract docker.io/library/centos:7 --path /etc/yum.repos.d/*.repo:/tmp/yum.repos.d

 # Extract an image stored on disk into the current directory ($(pwd)/v2/busybox/blobs,manifests
exists)

第2章 OPENSHIFT CLI (OC)

47

2.5.1.79. oc image info

イメージに関する情報を表示します。

使用例

2.5.1.80. oc image mirror

別のリポジトリーにイメージをミラーリングします。

使用例

 # --confirm is required because the current directory is not empty
 oc image extract file://busybox:local --confirm

 # Extract an image stored on disk in a directory other than $(pwd)/v2 into the current directory
 # --confirm is required because the current directory is not empty ($(pwd)/busybox-mirror-
dir/v2/busybox exists)
 oc image extract file://busybox:local --dir busybox-mirror-dir --confirm

 # Extract an image stored on disk in a directory other than $(pwd)/v2 into a designated directory
(must exist)
 oc image extract file://busybox:local --dir busybox-mirror-dir --path /:/tmp/busybox

 # Extract the last layer in the image
 oc image extract docker.io/library/centos:7[-1]

 # Extract the first three layers of the image
 oc image extract docker.io/library/centos:7[:3]

 # Extract the last three layers of the image
 oc image extract docker.io/library/centos:7[-3:]

 # Show information about an image
 oc image info quay.io/openshift/cli:latest

 # Show information about images matching a wildcard
 oc image info quay.io/openshift/cli:4.*

 # Show information about a file mirrored to disk under DIR
 oc image info --dir=DIR file://library/busybox:latest

 # Select which image from a multi-OS image to show
 oc image info library/busybox:latest --filter-by-os=linux/arm64

 # Copy image to another tag
 oc image mirror myregistry.com/myimage:latest myregistry.com/myimage:stable

 # Copy image to another registry
 oc image mirror myregistry.com/myimage:latest docker.io/myrepository/myimage:stable

 # Copy all tags starting with mysql to the destination repository
 oc image mirror myregistry.com/myimage:mysql* docker.io/myrepository/myimage

OpenShift Container Platform 4.8 CLI ツール

48

2.5.1.81. oc import-image

コンテナーイメージレジストリーからイメージをインポートします。

使用例

 # Copy image to disk, creating a directory structure that can be served as a registry
 oc image mirror myregistry.com/myimage:latest file://myrepository/myimage:latest

 # Copy image to S3 (pull from <bucket>.s3.amazonaws.com/image:latest)
 oc image mirror myregistry.com/myimage:latest
s3://s3.amazonaws.com/<region>/<bucket>/image:latest

 # Copy image to S3 without setting a tag (pull via @<digest>)
 oc image mirror myregistry.com/myimage:latest s3://s3.amazonaws.com/<region>/<bucket>/image

 # Copy image to multiple locations
 oc image mirror myregistry.com/myimage:latest docker.io/myrepository/myimage:stable \
 docker.io/myrepository/myimage:dev

 # Copy multiple images
 oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \
 myregistry.com/myimage:new=myregistry.com/other:target

 # Copy manifest list of a multi-architecture image, even if only a single image is found
 oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \
 --keep-manifest-list=true

 # Copy specific os/arch manifest of a multi-architecture image
 # Run 'oc image info myregistry.com/myimage:latest' to see available os/arch for multi-arch images
 # Note that with multi-arch images, this results in a new manifest list digest that includes only
 # the filtered manifests
 oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \
 --filter-by-os=os/arch

 # Copy all os/arch manifests of a multi-architecture image
 # Run 'oc image info myregistry.com/myimage:latest' to see list of os/arch manifests that will be
mirrored
 oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \
 --keep-manifest-list=true

 # Note the above command is equivalent to
 oc image mirror myregistry.com/myimage:latest=myregistry.com/other:test \
 --filter-by-os=.*

 # Import tag latest into a new image stream
 oc import-image mystream --from=registry.io/repo/image:latest --confirm

 # Update imported data for tag latest in an already existing image stream
 oc import-image mystream

 # Update imported data for tag stable in an already existing image stream
 oc import-image mystream:stable

 # Update imported data for all tags in an existing image stream

第2章 OPENSHIFT CLI (OC)

49

2.5.1.82. oc kustomize

ディレクトリーまたは URL から kustomization ターゲットをビルドします。

使用例

2.5.1.83. oc label

リソースのラベルを更新します。

使用例

2.5.1.84. oc login

サーバーにログインします。

使用例

 oc import-image mystream --all

 # Import all tags into a new image stream
 oc import-image mystream --from=registry.io/repo/image --all --confirm

 # Import all tags into a new image stream using a custom timeout
 oc --request-timeout=5m import-image mystream --from=registry.io/repo/image --all --confirm

 # Build the current working directory
 oc kustomize

 # Build some shared configuration directory
 oc kustomize /home/config/production

 # Build from github
 oc kustomize https://github.com/kubernetes-sigs/kustomize.git/examples/helloWorld?ref=v1.0.6

 # Update pod 'foo' with the label 'unhealthy' and the value 'true'.
 oc label pods foo unhealthy=true

 # Update pod 'foo' with the label 'status' and the value 'unhealthy', overwriting any existing value.
 oc label --overwrite pods foo status=unhealthy

 # Update all pods in the namespace
 oc label pods --all status=unhealthy

 # Update a pod identified by the type and name in "pod.json"
 oc label -f pod.json status=unhealthy

 # Update pod 'foo' only if the resource is unchanged from version 1.
 oc label pods foo status=unhealthy --resource-version=1

 # Update pod 'foo' by removing a label named 'bar' if it exists.
 # Does not require the --overwrite flag.
 oc label pods foo bar-

OpenShift Container Platform 4.8 CLI ツール

50

2.5.1.85. oc logout

現在のサーバーセッションを終了します。

使用例

2.5.1.86. oc logs

Pod 内のコンテナーのログを出力します。

使用例

2.5.1.87. oc new-app

新規アプリケーションを作成します。

使用例

 # Log in interactively
 oc login --username=myuser

 # Log in to the given server with the given certificate authority file
 oc login localhost:8443 --certificate-authority=/path/to/cert.crt

 # Log in to the given server with the given credentials (will not prompt interactively)
 oc login localhost:8443 --username=myuser --password=mypass

 # Log out
 oc logout

 # Start streaming the logs of the most recent build of the openldap build config
 oc logs -f bc/openldap

 # Start streaming the logs of the latest deployment of the mysql deployment config
 oc logs -f dc/mysql

 # Get the logs of the first deployment for the mysql deployment config. Note that logs
 # from older deployments may not exist either because the deployment was successful
 # or due to deployment pruning or manual deletion of the deployment
 oc logs --version=1 dc/mysql

 # Return a snapshot of ruby-container logs from pod backend
 oc logs backend -c ruby-container

 # Start streaming of ruby-container logs from pod backend
 oc logs -f pod/backend -c ruby-container

 # List all local templates and image streams that can be used to create an app
 oc new-app --list

 # Create an application based on the source code in the current git repository (with a public remote)
and a Docker image
 oc new-app . --docker-image=registry/repo/langimage

第2章 OPENSHIFT CLI (OC)

51

2.5.1.88. oc new-build

新規ビルド設定を作成します。

使用例

 # Create an application myapp with Docker based build strategy expecting binary input
 oc new-app --strategy=docker --binary --name myapp

 # Create a Ruby application based on the provided [image]~[source code] combination
 oc new-app centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git

 # Use the public Docker Hub MySQL image to create an app. Generated artifacts will be labeled
with db=mysql
 oc new-app mysql MYSQL_USER=user MYSQL_PASSWORD=pass MYSQL_DATABASE=testdb -
l db=mysql

 # Use a MySQL image in a private registry to create an app and override application artifacts'
names
 oc new-app --docker-image=myregistry.com/mycompany/mysql --name=private

 # Create an application from a remote repository using its beta4 branch
 oc new-app https://github.com/openshift/ruby-hello-world#beta4

 # Create an application based on a stored template, explicitly setting a parameter value
 oc new-app --template=ruby-helloworld-sample --param=MYSQL_USER=admin

 # Create an application from a remote repository and specify a context directory
 oc new-app https://github.com/youruser/yourgitrepo --context-dir=src/build

 # Create an application from a remote private repository and specify which existing secret to use
 oc new-app https://github.com/youruser/yourgitrepo --source-secret=yoursecret

 # Create an application based on a template file, explicitly setting a parameter value
 oc new-app --file=./example/myapp/template.json --param=MYSQL_USER=admin

 # Search all templates, image streams, and Docker images for the ones that match "ruby"
 oc new-app --search ruby

 # Search for "ruby", but only in stored templates (--template, --image-stream and --docker-image
 # can be used to filter search results)
 oc new-app --search --template=ruby

 # Search for "ruby" in stored templates and print the output as YAML
 oc new-app --search --template=ruby --output=yaml

 # Create a build config based on the source code in the current git repository (with a public
 # remote) and a Docker image
 oc new-build . --docker-image=repo/langimage

 # Create a NodeJS build config based on the provided [image]~[source code] combination
 oc new-build centos/nodejs-8-centos7~https://github.com/sclorg/nodejs-ex.git

 # Create a build config from a remote repository using its beta2 branch

OpenShift Container Platform 4.8 CLI ツール

52

2.5.1.89. oc new-project

新規プロジェクトを要求します。

使用例

2.5.1.90. oc observe

リソースの変更を確認し、リソースに対応します (実験的)。

使用例

2.5.1.91. oc patch

リソースのフィールドを更新します。

使用例

 oc new-build https://github.com/openshift/ruby-hello-world#beta2

 # Create a build config using a Dockerfile specified as an argument
 oc new-build -D $'FROM centos:7\nRUN yum install -y httpd'

 # Create a build config from a remote repository and add custom environment variables
 oc new-build https://github.com/openshift/ruby-hello-world -e RACK_ENV=development

 # Create a build config from a remote private repository and specify which existing secret to use
 oc new-build https://github.com/youruser/yourgitrepo --source-secret=yoursecret

 # Create a build config from a remote repository and inject the npmrc into a build
 oc new-build https://github.com/openshift/ruby-hello-world --build-secret npmrc:.npmrc

 # Create a build config from a remote repository and inject environment data into a build
 oc new-build https://github.com/openshift/ruby-hello-world --build-config-map env:config

 # Create a build config that gets its input from a remote repository and another Docker image
 oc new-build https://github.com/openshift/ruby-hello-world --source-image=openshift/jenkins-1-
centos7 --source-image-path=/var/lib/jenkins:tmp

 # Create a new project with minimal information
 oc new-project web-team-dev

 # Create a new project with a display name and description
 oc new-project web-team-dev --display-name="Web Team Development" --
description="Development project for the web team."

 # Observe changes to services
 oc observe services

 # Observe changes to services, including the clusterIP and invoke a script for each
 oc observe services --template '{ .spec.clusterIP }' -- register_dns.sh

 # Observe changes to services filtered by a label selector
 oc observe namespaces -l regist-dns=true --template '{ .spec.clusterIP }' -- register_dns.sh

第2章 OPENSHIFT CLI (OC)

53

2.5.1.92. oc policy add-role-to-user

現在のプロジェクトのユーザーまたはサービスアカウントをロールに追加します。

使用例

2.5.1.93. oc policy scc-review

Pod を作成できるサービスアカウントを確認します。

使用例

2.5.1.94. oc policy scc-subject-review

 # Partially update a node using a strategic merge patch. Specify the patch as JSON.
 oc patch node k8s-node-1 -p '{"spec":{"unschedulable":true}}'

 # Partially update a node using a strategic merge patch. Specify the patch as YAML.
 oc patch node k8s-node-1 -p $'spec:\n unschedulable: true'

 # Partially update a node identified by the type and name specified in "node.json" using strategic
merge patch.
 oc patch -f node.json -p '{"spec":{"unschedulable":true}}'

 # Update a container's image; spec.containers[*].name is required because it's a merge key.
 oc patch pod valid-pod -p '{"spec":{"containers":[{"name":"kubernetes-serve-
hostname","image":"new image"}]}}'

 # Update a container's image using a json patch with positional arrays.
 oc patch pod valid-pod --type='json' -p='[{"op": "replace", "path": "/spec/containers/0/image",
"value":"new image"}]'

 # Add the 'view' role to user1 for the current project
 oc policy add-role-to-user view user1

 # Add the 'edit' role to serviceaccount1 for the current project
 oc policy add-role-to-user edit -z serviceaccount1

 # Check whether service accounts sa1 and sa2 can admit a pod with a template pod spec specified
in my_resource.yaml
 # Service Account specified in myresource.yaml file is ignored
 oc policy scc-review -z sa1,sa2 -f my_resource.yaml

 # Check whether service accounts system:serviceaccount:bob:default can admit a pod with a
template pod spec specified in my_resource.yaml
 oc policy scc-review -z system:serviceaccount:bob:default -f my_resource.yaml

 # Check whether the service account specified in my_resource_with_sa.yaml can admit the pod
 oc policy scc-review -f my_resource_with_sa.yaml

 # Check whether the default service account can admit the pod; default is taken since no service
account is defined in myresource_with_no_sa.yaml
 oc policy scc-review -f myresource_with_no_sa.yaml

OpenShift Container Platform 4.8 CLI ツール

54

ユーザーまたはサービスアカウントが Pod を作成できるかどうかを確認します。

使用例

2.5.1.95. oc port-forward

1 つ以上のローカルポートを Pod に転送します。

使用例

2.5.1.96. oc process

リソースの一覧に対してテンプレートを処理します。

使用例

 # Check whether user bob can create a pod specified in myresource.yaml
 oc policy scc-subject-review -u bob -f myresource.yaml

 # Check whether user bob who belongs to projectAdmin group can create a pod specified in
myresource.yaml
 oc policy scc-subject-review -u bob -g projectAdmin -f myresource.yaml

 # Check whether a service account specified in the pod template spec in myresourcewithsa.yaml
can create the pod
 oc policy scc-subject-review -f myresourcewithsa.yaml

 # Listen on ports 5000 and 6000 locally, forwarding data to/from ports 5000 and 6000 in the pod
 oc port-forward pod/mypod 5000 6000

 # Listen on ports 5000 and 6000 locally, forwarding data to/from ports 5000 and 6000 in a pod
selected by the deployment
 oc port-forward deployment/mydeployment 5000 6000

 # Listen on port 8443 locally, forwarding to the targetPort of the service's port named "https" in a pod
selected by the service
 oc port-forward service/myservice 8443:https

 # Listen on port 8888 locally, forwarding to 5000 in the pod
 oc port-forward pod/mypod 8888:5000

 # Listen on port 8888 on all addresses, forwarding to 5000 in the pod
 oc port-forward --address 0.0.0.0 pod/mypod 8888:5000

 # Listen on port 8888 on localhost and selected IP, forwarding to 5000 in the pod
 oc port-forward --address localhost,10.19.21.23 pod/mypod 8888:5000

 # Listen on a random port locally, forwarding to 5000 in the pod
 oc port-forward pod/mypod :5000

 # Convert the template.json file into a resource list and pass to create
 oc process -f template.json | oc create -f -

 # Process a file locally instead of contacting the server

第2章 OPENSHIFT CLI (OC)

55

2.5.1.97. oc project

別のプロジェクトに切り替えます。

使用例

2.5.1.98. oc projects

既存プロジェクトを表示します。

使用例

2.5.1.99. oc proxy

Kubernetes API サーバーに対してプロキシーを実行します。

使用例

 oc process -f template.json --local -o yaml

 # Process template while passing a user-defined label
 oc process -f template.json -l name=mytemplate

 # Convert a stored template into a resource list
 oc process foo

 # Convert a stored template into a resource list by setting/overriding parameter values
 oc process foo PARM1=VALUE1 PARM2=VALUE2

 # Convert a template stored in different namespace into a resource list
 oc process openshift//foo

 # Convert template.json into a resource list
 cat template.json | oc process -f -

 # Switch to the 'myapp' project
 oc project myapp

 # Display the project currently in use
 oc project

 # List all projects
 oc projects

 # To proxy all of the kubernetes api and nothing else.
 oc proxy --api-prefix=/

 # To proxy only part of the kubernetes api and also some static files.
 # You can get pods info with 'curl localhost:8001/api/v1/pods'
 oc proxy --www=/my/files --www-prefix=/static/ --api-prefix=/api/

 # To proxy the entire kubernetes api at a different root.
 # You can get pods info with 'curl localhost:8001/custom/api/v1/pods'

OpenShift Container Platform 4.8 CLI ツール

56

2.5.1.100. oc registry info

統合レジストリーについての情報を表示します。

使用例

2.5.1.101. oc registry login

統合レジストリーにログインします。

使用例

2.5.1.102. oc replace

リソースをファイル名または stdin に置き換えます。

使用例

 oc proxy --api-prefix=/custom/

 # Run a proxy to kubernetes apiserver on port 8011, serving static content from ./local/www/
 oc proxy --port=8011 --www=./local/www/

 # Run a proxy to kubernetes apiserver on an arbitrary local port.
 # The chosen port for the server will be output to stdout.
 oc proxy --port=0

 # Run a proxy to kubernetes apiserver, changing the api prefix to k8s-api
 # This makes e.g. the pods api available at localhost:8001/k8s-api/v1/pods/
 oc proxy --api-prefix=/k8s-api

 # Display information about the integrated registry
 oc registry info

 # Log in to the integrated registry
 oc registry login

 # Log in as the default service account in the current namespace
 oc registry login -z default

 # Log in to different registry using BASIC auth credentials
 oc registry login --registry quay.io/myregistry --auth-basic=USER:PASS

 # Replace a pod using the data in pod.json.
 oc replace -f ./pod.json

 # Replace a pod based on the JSON passed into stdin.
 cat pod.json | oc replace -f -

 # Update a single-container pod's image version (tag) to v4
 oc get pod mypod -o yaml | sed 's/\(image: myimage\):.*$/\1:v4/' | oc replace -f -

第2章 OPENSHIFT CLI (OC)

57

2.5.1.103. oc rollback

アプリケーションの一部を以前のデプロイメントに戻します。

使用例

2.5.1.104. oc rollout cancel

進行中のデプロイメントをキャンセルします。

使用例

2.5.1.105. oc rollout history

ロールアウト履歴を表示します。

使用例

2.5.1.106. oc rollout latest

トリガーからの最新状態を使用して、デプロイメント設定の新規ロールアウトを開始します。

使用例

 # Force replace, delete and then re-create the resource
 oc replace --force -f ./pod.json

 # Perform a rollback to the last successfully completed deployment for a deployment config
 oc rollback frontend

 # See what a rollback to version 3 will look like, but do not perform the rollback
 oc rollback frontend --to-version=3 --dry-run

 # Perform a rollback to a specific deployment
 oc rollback frontend-2

 # Perform the rollback manually by piping the JSON of the new config back to oc
 oc rollback frontend -o json | oc replace dc/frontend -f -

 # Print the updated deployment configuration in JSON format instead of performing the rollback
 oc rollback frontend -o json

 # Cancel the in-progress deployment based on 'nginx'
 oc rollout cancel dc/nginx

 # View the rollout history of a deployment
 oc rollout history dc/nginx

 # View the details of deployment revision 3
 oc rollout history dc/nginx --revision=3

OpenShift Container Platform 4.8 CLI ツール

58

2.5.1.107. oc rollout pause

提供されたリソースを一時停止としてマークします。

使用例

2.5.1.108. oc rollout restart

リソースを再起動します。

使用例

2.5.1.109. oc rollout resume

一時停止したリソースを再開します。

使用例

2.5.1.110. oc rollout retry

失敗したロールアウトを再試行します。

使用例

2.5.1.111. oc rollout status

ロールアウトのステータスを表示します。

 # Start a new rollout based on the latest images defined in the image change triggers
 oc rollout latest dc/nginx

 # Print the rolled out deployment config
 oc rollout latest dc/nginx -o json

 # Mark the nginx deployment as paused. Any current state of
 # the deployment will continue its function, new updates to the deployment will not
 # have an effect as long as the deployment is paused
 oc rollout pause dc/nginx

 # Restart a deployment
 oc rollout restart deployment/nginx

 # Restart a daemonset
 oc rollout restart daemonset/abc

 # Resume an already paused deployment
 oc rollout resume dc/nginx

 # Retry the latest failed deployment based on 'frontend'
 # The deployer pod and any hook pods are deleted for the latest failed deployment
 oc rollout retry dc/frontend

第2章 OPENSHIFT CLI (OC)

59

使用例

2.5.1.112. oc rollout undo

以前のロールアウトを元に戻します。

使用例

2.5.1.113. oc rsh

コンテナーでシェルセッションを開始します。

使用例

2.5.1.114. oc rsync

ローカルファイルシステムと Pod 間でファイルをコピーします。

使用例

2.5.1.115. oc run

 # Watch the status of the latest rollout
 oc rollout status dc/nginx

 # Roll back to the previous deployment
 oc rollout undo dc/nginx

 # Roll back to deployment revision 3. The replication controller for that version must exist
 oc rollout undo dc/nginx --to-revision=3

 # Open a shell session on the first container in pod 'foo'
 oc rsh foo

 # Open a shell session on the first container in pod 'foo' and namespace 'bar'
 # (Note that oc client specific arguments must come before the resource name and its arguments)
 oc rsh -n bar foo

 # Run the command 'cat /etc/resolv.conf' inside pod 'foo'
 oc rsh foo cat /etc/resolv.conf

 # See the configuration of your internal registry
 oc rsh dc/docker-registry cat config.yml

 # Open a shell session on the container named 'index' inside a pod of your job
 oc rsh -c index job/sheduled

 # Synchronize a local directory with a pod directory
 oc rsync ./local/dir/ POD:/remote/dir

 # Synchronize a pod directory with a local directory
 oc rsync POD:/remote/dir/ ./local/dir

OpenShift Container Platform 4.8 CLI ツール

60

クラスターで特定のイメージを実行します。

使用例

2.5.1.116. oc scale

Deployment、ReplicaSet、または Replication コントローラーに新規サイズを設定します。

使用例

 # Start a nginx pod.
 oc run nginx --image=nginx

 # Start a hazelcast pod and let the container expose port 5701.
 oc run hazelcast --image=hazelcast/hazelcast --port=5701

 # Start a hazelcast pod and set environment variables "DNS_DOMAIN=cluster" and
"POD_NAMESPACE=default" in the container.
 oc run hazelcast --image=hazelcast/hazelcast --env="DNS_DOMAIN=cluster" --
env="POD_NAMESPACE=default"

 # Start a hazelcast pod and set labels "app=hazelcast" and "env=prod" in the container.
 oc run hazelcast --image=hazelcast/hazelcast --labels="app=hazelcast,env=prod"

 # Dry run. Print the corresponding API objects without creating them.
 oc run nginx --image=nginx --dry-run=client

 # Start a nginx pod, but overload the spec with a partial set of values parsed from JSON.
 oc run nginx --image=nginx --overrides='{ "apiVersion": "v1", "spec": { ... } }'

 # Start a busybox pod and keep it in the foreground, don't restart it if it exits.
 oc run -i -t busybox --image=busybox --restart=Never

 # Start the nginx pod using the default command, but use custom arguments (arg1 .. argN) for that
command.
 oc run nginx --image=nginx -- <arg1> <arg2> ... <argN>

 # Start the nginx pod using a different command and custom arguments.
 oc run nginx --image=nginx --command -- <cmd> <arg1> ... <argN>

 # Scale a replicaset named 'foo' to 3.
 oc scale --replicas=3 rs/foo

 # Scale a resource identified by type and name specified in "foo.yaml" to 3.
 oc scale --replicas=3 -f foo.yaml

 # If the deployment named mysql's current size is 2, scale mysql to 3.
 oc scale --current-replicas=2 --replicas=3 deployment/mysql

 # Scale multiple replication controllers.
 oc scale --replicas=5 rc/foo rc/bar rc/baz

 # Scale statefulset named 'web' to 3.
 oc scale --replicas=3 statefulset/web

第2章 OPENSHIFT CLI (OC)

61

2.5.1.117. oc secrets link

サービスアカウントにシークレットをリンクします。

使用例

2.5.1.118. oc secrets unlink

サービスアカウントからシークレットをデタッチします。

使用例

2.5.1.119. oc serviceaccounts create-kubeconfig

サービスアカウントの kubeconfig ファイルを生成します。

使用例

2.5.1.120. oc serviceaccounts get-token

サービスアカウントに割り当てられたトークンを取得します。

使用例

2.5.1.121. oc serviceaccounts new-token

サービスアカウントの新規トークンを生成します。

使用例

 # Add an image pull secret to a service account to automatically use it for pulling pod images
 oc secrets link serviceaccount-name pull-secret --for=pull

 # Add an image pull secret to a service account to automatically use it for both pulling and pushing
build images
 oc secrets link builder builder-image-secret --for=pull,mount

 # If the cluster's serviceAccountConfig is operating with limitSecretReferences: True, secrets must
be added to the pod's service account whitelist in order to be available to the pod
 oc secrets link pod-sa pod-secret

 # Unlink a secret currently associated with a service account
 oc secrets unlink serviceaccount-name secret-name another-secret-name ...

 # Create a kubeconfig file for service account 'default'
 oc serviceaccounts create-kubeconfig 'default' > default.kubeconfig

 # Get the service account token from service account 'default'
 oc serviceaccounts get-token 'default'

 # Generate a new token for service account 'default'
 oc serviceaccounts new-token 'default'

OpenShift Container Platform 4.8 CLI ツール

62

2.5.1.122. oc set build-hook

ビルド設定のビルドフックを更新します。

使用例

2.5.1.123. oc set build-secret

ビルド設定のビルドシークレットを更新します。

使用例

2.5.1.124. oc set data

設定マップまたはシークレット内のデータを更新します。

使用例

 # Generate a new token for service account 'default' and apply
 # labels 'foo' and 'bar' to the new token for identification
 oc serviceaccounts new-token 'default' --labels foo=foo-value,bar=bar-value

 # Clear post-commit hook on a build config
 oc set build-hook bc/mybuild --post-commit --remove

 # Set the post-commit hook to execute a test suite using a new entrypoint
 oc set build-hook bc/mybuild --post-commit --command -- /bin/bash -c /var/lib/test-image.sh

 # Set the post-commit hook to execute a shell script
 oc set build-hook bc/mybuild --post-commit --script="/var/lib/test-image.sh param1 param2 &&
/var/lib/done.sh"

 # Clear the push secret on a build config
 oc set build-secret --push --remove bc/mybuild

 # Set the pull secret on a build config
 oc set build-secret --pull bc/mybuild mysecret

 # Set the push and pull secret on a build config
 oc set build-secret --push --pull bc/mybuild mysecret

 # Set the source secret on a set of build configs matching a selector
 oc set build-secret --source -l app=myapp gitsecret

 # Set the 'password' key of a secret
 oc set data secret/foo password=this_is_secret

 # Remove the 'password' key from a secret
 oc set data secret/foo password-

 # Update the 'haproxy.conf' key of a config map from a file on disk
 oc set data configmap/bar --from-file=../haproxy.conf

第2章 OPENSHIFT CLI (OC)

63

2.5.1.125. oc set deployment-hook

デプロイメント設定のデプロイメントフックを更新します。

使用例

2.5.1.126. oc set env

Pod テンプレートの環境変数を更新します。

使用例

 # Update a secret with the contents of a directory, one key per file
 oc set data secret/foo --from-file=secret-dir

 # Clear pre and post hooks on a deployment config
 oc set deployment-hook dc/myapp --remove --pre --post

 # Set the pre deployment hook to execute a db migration command for an application
 # using the data volume from the application
 oc set deployment-hook dc/myapp --pre --volumes=data -- /var/lib/migrate-db.sh

 # Set a mid deployment hook along with additional environment variables
 oc set deployment-hook dc/myapp --mid --volumes=data -e VAR1=value1 -e VAR2=value2 --
/var/lib/prepare-deploy.sh

 # Update deployment config 'myapp' with a new environment variable
 oc set env dc/myapp STORAGE_DIR=/local

 # List the environment variables defined on a build config 'sample-build'
 oc set env bc/sample-build --list

 # List the environment variables defined on all pods
 oc set env pods --all --list

 # Output modified build config in YAML
 oc set env bc/sample-build STORAGE_DIR=/data -o yaml

 # Update all containers in all replication controllers in the project to have ENV=prod
 oc set env rc --all ENV=prod

 # Import environment from a secret
 oc set env --from=secret/mysecret dc/myapp

 # Import environment from a config map with a prefix
 oc set env --from=configmap/myconfigmap --prefix=MYSQL_ dc/myapp

 # Remove the environment variable ENV from container 'c1' in all deployment configs
 oc set env dc --all --containers="c1" ENV-

 # Remove the environment variable ENV from a deployment config definition on disk and
 # update the deployment config on the server
 oc set env -f dc.json ENV-

OpenShift Container Platform 4.8 CLI ツール

64

2.5.1.127. oc set image

Pod テンプレートのイメージを更新します。

使用例

2.5.1.128. oc set image-lookup

アプリケーションのデプロイ時にイメージを解決する方法を変更します。

使用例

2.5.1.129. oc set probe

 # Set some of the local shell environment into a deployment config on the server
 oc set env | grep RAILS_ | oc env -e - dc/myapp

 # Set a deployment configs's nginx container image to 'nginx:1.9.1', and its busybox container image
to 'busybox'.
 oc set image dc/nginx busybox=busybox nginx=nginx:1.9.1

 # Set a deployment configs's app container image to the image referenced by the imagestream tag
'openshift/ruby:2.3'.
 oc set image dc/myapp app=openshift/ruby:2.3 --source=imagestreamtag

 # Update all deployments' and rc's nginx container's image to 'nginx:1.9.1'
 oc set image deployments,rc nginx=nginx:1.9.1 --all

 # Update image of all containers of daemonset abc to 'nginx:1.9.1'
 oc set image daemonset abc *=nginx:1.9.1

 # Print result (in yaml format) of updating nginx container image from local file, without hitting the
server
 oc set image -f path/to/file.yaml nginx=nginx:1.9.1 --local -o yaml

 # Print all of the image streams and whether they resolve local names
 oc set image-lookup

 # Use local name lookup on image stream mysql
 oc set image-lookup mysql

 # Force a deployment to use local name lookup
 oc set image-lookup deploy/mysql

 # Show the current status of the deployment lookup
 oc set image-lookup deploy/mysql --list

 # Disable local name lookup on image stream mysql
 oc set image-lookup mysql --enabled=false

 # Set local name lookup on all image streams
 oc set image-lookup --all

第2章 OPENSHIFT CLI (OC)

65

Pod テンプレートでプローブを更新します。

使用例

2.5.1.130. oc set resources

オブジェクトのリソース要求/制限を Pod テンプレートで更新します。

使用例

2.5.1.131. oc set route-backends

ルートのバックエンドを更新します。

使用例

 # Clear both readiness and liveness probes off all containers
 oc set probe dc/myapp --remove --readiness --liveness

 # Set an exec action as a liveness probe to run 'echo ok'
 oc set probe dc/myapp --liveness -- echo ok

 # Set a readiness probe to try to open a TCP socket on 3306
 oc set probe rc/mysql --readiness --open-tcp=3306

 # Set an HTTP startup probe for port 8080 and path /healthz over HTTP on the pod IP
 oc probe dc/webapp --startup --get-url=http://:8080/healthz

 # Set an HTTP readiness probe for port 8080 and path /healthz over HTTP on the pod IP
 oc probe dc/webapp --readiness --get-url=http://:8080/healthz

 # Set an HTTP readiness probe over HTTPS on 127.0.0.1 for a hostNetwork pod
 oc set probe dc/router --readiness --get-url=https://127.0.0.1:1936/stats

 # Set only the initial-delay-seconds field on all deployments
 oc set probe dc --all --readiness --initial-delay-seconds=30

 # Set a deployments nginx container CPU limits to "200m and memory to 512Mi"
 oc set resources deployment nginx -c=nginx --limits=cpu=200m,memory=512Mi

 # Set the resource request and limits for all containers in nginx
 oc set resources deployment nginx --limits=cpu=200m,memory=512Mi --
requests=cpu=100m,memory=256Mi

 # Remove the resource requests for resources on containers in nginx
 oc set resources deployment nginx --limits=cpu=0,memory=0 --requests=cpu=0,memory=0

 # Print the result (in YAML format) of updating nginx container limits locally, without hitting the server
 oc set resources -f path/to/file.yaml --limits=cpu=200m,memory=512Mi --local -o yaml

 # Print the backends on the route 'web'
 oc set route-backends web

 # Set two backend services on route 'web' with 2/3rds of traffic going to 'a'

OpenShift Container Platform 4.8 CLI ツール

66

2.5.1.132. oc set selector

リソースにセレクターを設定します。

使用例

2.5.1.133. oc set serviceaccount

リソースの ServiceAccount を更新します。

使用例

2.5.1.134. oc set subject

RoleBinding/ClusterRoleBinding でユーザー、グループ、または ServiceAccount を更新します。

使用例

 oc set route-backends web a=2 b=1

 # Increase the traffic percentage going to b by 10%% relative to a
 oc set route-backends web --adjust b=+10%%

 # Set traffic percentage going to b to 10%% of the traffic going to a
 oc set route-backends web --adjust b=10%%

 # Set weight of b to 10
 oc set route-backends web --adjust b=10

 # Set the weight to all backends to zero
 oc set route-backends web --zero

 # Set the labels and selector before creating a deployment/service pair.
 oc create service clusterip my-svc --clusterip="None" -o yaml --dry-run | oc set selector --local -f -
'environment=qa' -o yaml | oc create -f -
 oc create deployment my-dep -o yaml --dry-run | oc label --local -f - environment=qa -o yaml | oc
create -f -

 # Set deployment nginx-deployment's service account to serviceaccount1
 oc set serviceaccount deployment nginx-deployment serviceaccount1

 # Print the result (in YAML format) of updated nginx deployment with service account from a local
file, without hitting the API server
 oc set sa -f nginx-deployment.yaml serviceaccount1 --local --dry-run -o yaml

 # Update a cluster role binding for serviceaccount1
 oc set subject clusterrolebinding admin --serviceaccount=namespace:serviceaccount1

 # Update a role binding for user1, user2, and group1
 oc set subject rolebinding admin --user=user1 --user=user2 --group=group1

第2章 OPENSHIFT CLI (OC)

67

2.5.1.135. oc set triggers

1 つ以上のオブジェクトでトリガーを更新します。

使用例

2.5.1.136. oc set volumes

Pod テンプレートでボリュームを更新します。

使用例

 # Print the result (in YAML format) of updating role binding subjects locally, without hitting the server
 oc create rolebinding admin --role=admin --user=admin -o yaml --dry-run | oc set subject --local -f -
--user=foo -o yaml

 # Print the triggers on the deployment config 'myapp'
 oc set triggers dc/myapp

 # Set all triggers to manual
 oc set triggers dc/myapp --manual

 # Enable all automatic triggers
 oc set triggers dc/myapp --auto

 # Reset the GitHub webhook on a build to a new, generated secret
 oc set triggers bc/webapp --from-github
 oc set triggers bc/webapp --from-webhook

 # Remove all triggers
 oc set triggers bc/webapp --remove-all

 # Stop triggering on config change
 oc set triggers dc/myapp --from-config --remove

 # Add an image trigger to a build config
 oc set triggers bc/webapp --from-image=namespace1/image:latest

 # Add an image trigger to a stateful set on the main container
 oc set triggers statefulset/db --from-image=namespace1/image:latest -c main

 # List volumes defined on all deployment configs in the current project
 oc set volume dc --all

 # Add a new empty dir volume to deployment config (dc) 'myapp' mounted under
 # /var/lib/myapp
 oc set volume dc/myapp --add --mount-path=/var/lib/myapp

 # Use an existing persistent volume claim (pvc) to overwrite an existing volume 'v1'
 oc set volume dc/myapp --add --name=v1 -t pvc --claim-name=pvc1 --overwrite

 # Remove volume 'v1' from deployment config 'myapp'
 oc set volume dc/myapp --remove --name=v1

OpenShift Container Platform 4.8 CLI ツール

68

2.5.1.137. oc start-build

新しいビルドを開始します。

使用例

2.5.1.138. oc status

現在のプロジェクトの概要を表示します。

使用例

 # Create a new persistent volume claim that overwrites an existing volume 'v1'
 oc set volume dc/myapp --add --name=v1 -t pvc --claim-size=1G --overwrite

 # Change the mount point for volume 'v1' to /data
 oc set volume dc/myapp --add --name=v1 -m /data --overwrite

 # Modify the deployment config by removing volume mount "v1" from container "c1"
 # (and by removing the volume "v1" if no other containers have volume mounts that reference it)
 oc set volume dc/myapp --remove --name=v1 --containers=c1

 # Add new volume based on a more complex volume source (AWS EBS, GCE PD,
 # Ceph, Gluster, NFS, ISCSI, ...)
 oc set volume dc/myapp --add -m /data --source=<json-string>

 # Starts build from build config "hello-world"
 oc start-build hello-world

 # Starts build from a previous build "hello-world-1"
 oc start-build --from-build=hello-world-1

 # Use the contents of a directory as build input
 oc start-build hello-world --from-dir=src/

 # Send the contents of a Git repository to the server from tag 'v2'
 oc start-build hello-world --from-repo=../hello-world --commit=v2

 # Start a new build for build config "hello-world" and watch the logs until the build
 # completes or fails
 oc start-build hello-world --follow

 # Start a new build for build config "hello-world" and wait until the build completes. It
 # exits with a non-zero return code if the build fails
 oc start-build hello-world --wait

 # See an overview of the current project
 oc status

 # Export the overview of the current project in an svg file
 oc status -o dot | dot -T svg -o project.svg

 # See an overview of the current project including details for any identified issues
 oc status --suggest

第2章 OPENSHIFT CLI (OC)

69

2.5.1.139. oc tag

既存のイメージをイメージストリームにタグ付けします。

使用例

2.5.1.140. oc version

クライアントおよびサーバーのバージョン情報を出力します。

使用例

2.5.1.141. oc wait

実験的: 1 つ以上のリソースの特定の条件を待機します。

使用例

 # Tag the current image for the image stream 'openshift/ruby' and tag '2.0' into the image stream
'yourproject/ruby with tag 'tip'
 oc tag openshift/ruby:2.0 yourproject/ruby:tip

 # Tag a specific image
 oc tag
openshift/ruby@sha256:6b646fa6bf5e5e4c7fa41056c27910e679c03ebe7f93e361e6515a9da7e258cc
yourproject/ruby:tip

 # Tag an external container image
 oc tag --source=docker openshift/origin-control-plane:latest yourproject/ruby:tip

 # Tag an external container image and request pullthrough for it
 oc tag --source=docker openshift/origin-control-plane:latest yourproject/ruby:tip --reference-
policy=local

 # Remove the specified spec tag from an image stream
 oc tag openshift/origin-control-plane:latest -d

 # Print the OpenShift client, kube-apiserver, and openshift-apiserver version information for the
current context
 oc version

 # Print the OpenShift client, kube-apiserver, and openshift-apiserver version numbers for the current
context
 oc version --short

 # Print the OpenShift client version information for the current context
 oc version --client

 # Wait for the pod "busybox1" to contain the status condition of type "Ready".
 oc wait --for=condition=Ready pod/busybox1

 # The default value of status condition is true, you can set false.
 oc wait --for=condition=Ready=false pod/busybox1

OpenShift Container Platform 4.8 CLI ツール

70

2.5.1.142. oc whoami

現行セッションに関する情報を返します。

使用例

2.5.2. 関連情報

OpenShift CLI 管理者コマンドリファレンス

2.6. OPENSHIFT CLI 管理者コマンドリファレンス

このリファレンスは、OpenShift CLI (oc) 管理者コマンドの説明およびコマンド例を示しています。こ
れらのコマンドを使用するには、cluster-admin または同等のパーミッションが必要です。

開発者コマンドは、OpenShift CLI 開発者コマンドリファレンス を参照してください。

oc adm -h を実行して、すべての管理者コマンドを表示するか、または oc <command> --help を実行
して、特定のコマンドに関する追加情報を取得します。

2.6.1. OpenShift CLI (oc) 管理者コマンド

2.6.1.1. oc adm build-chain

ビルドの入力と依存関係を出力します。

使用例

2.6.1.2. oc adm catalog mirror

operator-registry カタログをミラーリングします。

使用例

 # Wait for the pod "busybox1" to be deleted, with a timeout of 60s, after having issued the "delete"
command.
 oc delete pod/busybox1
 oc wait --for=delete pod/busybox1 --timeout=60s

 # Display the currently authenticated user
 oc whoami

 # Build the dependency tree for the 'latest' tag in <image-stream>
 oc adm build-chain <image-stream>

 # Build the dependency tree for the 'v2' tag in dot format and visualize it via the dot utility
 oc adm build-chain <image-stream>:v2 -o dot | dot -T svg -o deps.svg

 # Build the dependency tree across all namespaces for the specified image stream tag found in the
'test' namespace
 oc adm build-chain <image-stream> -n test --all

第2章 OPENSHIFT CLI (OC)

71

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/cli_tools/#cli-administrator-commands
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/cli_tools/#cli-developer-commands

2.6.1.3. oc adm completion

指定されたシェル (bash または zsh) の補完コードを出力します。

使用例

 # Mirror an operator-registry image and its contents to a registry
 oc adm catalog mirror quay.io/my/image:latest myregistry.com

 # Mirror an operator-registry image and its contents to a particular namespace in a registry
 oc adm catalog mirror quay.io/my/image:latest myregistry.com/my-namespace

 # Mirror to an airgapped registry by first mirroring to files
 oc adm catalog mirror quay.io/my/image:latest file:///local/index
 oc adm catalog mirror file:///local/index/my/image:latest my-airgapped-registry.com

 # Configure a cluster to use a mirrored registry
 oc apply -f manifests/imageContentSourcePolicy.yaml

 # Edit the mirroring mappings and mirror with "oc image mirror" manually
 oc adm catalog mirror --manifests-only quay.io/my/image:latest myregistry.com
 oc image mirror -f manifests/mapping.txt

 # Delete all ImageContentSourcePolicies generated by oc adm catalog mirror
 oc delete imagecontentsourcepolicy -l operators.openshift.org/catalog=true

 # Installing bash completion on macOS using homebrew
 ## If running Bash 3.2 included with macOS
 brew install bash-completion
 ## or, if running Bash 4.1+
 brew install bash-completion@2
 ## If oc is installed via homebrew, this should start working immediately.
 ## If you've installed via other means, you may need add the completion to your completion directory
 oc completion bash > $(brew --prefix)/etc/bash_completion.d/oc

 # Installing bash completion on Linux
 ## If bash-completion is not installed on Linux, please install the 'bash-completion' package
 ## via your distribution's package manager.
 ## Load the oc completion code for bash into the current shell
 source <(oc completion bash)
 ## Write bash completion code to a file and source it from .bash_profile
 oc completion bash > ~/.kube/completion.bash.inc
 printf "
 # Kubectl shell completion
 source '$HOME/.kube/completion.bash.inc'
 " >> $HOME/.bash_profile
 source $HOME/.bash_profile

 # Load the oc completion code for zsh[1] into the current shell
 source <(oc completion zsh)
 # Set the oc completion code for zsh[1] to autoload on startup
 oc completion zsh > "${fpath[1]}/_oc"

OpenShift Container Platform 4.8 CLI ツール

72

2.6.1.4. oc adm config current-context

current-context を表示します

使用例

2.6.1.5. oc adm config delete-cluster

kubeconfig から指定されたクラスターを削除します。

使用例

2.6.1.6. oc adm config delete-context

kubeconfig から指定されたコンテキストを削除します。

使用例

2.6.1.7. oc adm config delete-user

kubeconfig から指定されたユーザーを削除します。

使用例

2.6.1.8. oc adm config get-clusters

kubeconfig に定義されるクラスターを表示します。

使用例

2.6.1.9. oc adm config get-contexts

コンテキストを 1 つまたは複数記述します。

使用例

 # Display the current-context
 oc config current-context

 # Delete the minikube cluster
 oc config delete-cluster minikube

 # Delete the context for the minikube cluster
 oc config delete-context minikube

 # Delete the minikube user
 oc config delete-user minikube

 # List the clusters oc knows about
 oc config get-clusters

第2章 OPENSHIFT CLI (OC)

73

2.6.1.10. oc adm config get-users

kubeconfig で定義されるユーザーを表示します。

使用例

2.6.1.11. oc adm config rename-context

kubeconfig ファイルからのコンテキストの名前を変更します。

使用例

2.6.1.12. oc adm config set

kubeconfig ファイルに個別の値を設定します。

使用例

2.6.1.13. oc adm config set-cluster

kubeconfig でクラスターエントリーを設定します。

使用例

 # List all the contexts in your kubeconfig file
 oc config get-contexts

 # Describe one context in your kubeconfig file.
 oc config get-contexts my-context

 # List the users oc knows about
 oc config get-users

 # Rename the context 'old-name' to 'new-name' in your kubeconfig file
 oc config rename-context old-name new-name

 # Set server field on the my-cluster cluster to https://1.2.3.4
 oc config set clusters.my-cluster.server https://1.2.3.4

 # Set certificate-authority-data field on the my-cluster cluster.
 oc config set clusters.my-cluster.certificate-authority-data $(echo "cert_data_here" | base64 -i -)

 # Set cluster field in the my-context context to my-cluster.
 oc config set contexts.my-context.cluster my-cluster

 # Set client-key-data field in the cluster-admin user using --set-raw-bytes option.
 oc config set users.cluster-admin.client-key-data cert_data_here --set-raw-bytes=true

 # Set only the server field on the e2e cluster entry without touching other values.
 oc config set-cluster e2e --server=https://1.2.3.4

 # Embed certificate authority data for the e2e cluster entry

OpenShift Container Platform 4.8 CLI ツール

74

2.6.1.14. oc adm config set-context

kubeconfig のコンテキストエントリーを設定します。

使用例

2.6.1.15. oc adm config set-credentials

kubeconfig のユーザーエントリーを設定します。

使用例

 oc config set-cluster e2e --embed-certs --certificate-authority=~/.kube/e2e/kubernetes.ca.crt

 # Disable cert checking for the dev cluster entry
 oc config set-cluster e2e --insecure-skip-tls-verify=true

 # Set custom TLS server name to use for validation for the e2e cluster entry
 oc config set-cluster e2e --tls-server-name=my-cluster-name

 # Set the user field on the gce context entry without touching other values
 oc config set-context gce --user=cluster-admin

 # Set only the "client-key" field on the "cluster-admin"
 # entry, without touching other values:
 oc config set-credentials cluster-admin --client-key=~/.kube/admin.key

 # Set basic auth for the "cluster-admin" entry
 oc config set-credentials cluster-admin --username=admin --password=uXFGweU9l35qcif

 # Embed client certificate data in the "cluster-admin" entry
 oc config set-credentials cluster-admin --client-certificate=~/.kube/admin.crt --embed-certs=true

 # Enable the Google Compute Platform auth provider for the "cluster-admin" entry
 oc config set-credentials cluster-admin --auth-provider=gcp

 # Enable the OpenID Connect auth provider for the "cluster-admin" entry with additional args
 oc config set-credentials cluster-admin --auth-provider=oidc --auth-provider-arg=client-id=foo --auth-
provider-arg=client-secret=bar

 # Remove the "client-secret" config value for the OpenID Connect auth provider for the "cluster-
admin" entry
 oc config set-credentials cluster-admin --auth-provider=oidc --auth-provider-arg=client-secret-

 # Enable new exec auth plugin for the "cluster-admin" entry
 oc config set-credentials cluster-admin --exec-command=/path/to/the/executable --exec-api-
version=client.authentication.k8s.io/v1beta1

 # Define new exec auth plugin args for the "cluster-admin" entry
 oc config set-credentials cluster-admin --exec-arg=arg1 --exec-arg=arg2

 # Create or update exec auth plugin environment variables for the "cluster-admin" entry
 oc config set-credentials cluster-admin --exec-env=key1=val1 --exec-env=key2=val2

第2章 OPENSHIFT CLI (OC)

75

2.6.1.16. oc adm config unset

kubeconfig ファイルでの個別値の設定を解除します。

使用例

2.6.1.17. oc adm config use-context

kubeconfig ファイルで current-context を設定します。

使用例

2.6.1.18. oc adm config view

マージされた kubeconfig 設定または指定された kubeconfig ファイルを表示します。

使用例

2.6.1.19. oc adm cordon

ノードにスケジュール対象外 (unschedulable) のマークを付けます。

使用例

2.6.1.20. oc adm create-bootstrap-project-template

ブートストラッププロジェクトテンプレートを作成します。

 # Remove exec auth plugin environment variables for the "cluster-admin" entry
 oc config set-credentials cluster-admin --exec-env=var-to-remove-

 # Unset the current-context.
 oc config unset current-context

 # Unset namespace in foo context.
 oc config unset contexts.foo.namespace

 # Use the context for the minikube cluster
 oc config use-context minikube

 # Show merged kubeconfig settings.
 oc config view

 # Show merged kubeconfig settings and raw certificate data.
 oc config view --raw

 # Get the password for the e2e user
 oc config view -o jsonpath='{.users[?(@.name == "e2e")].user.password}'

 # Mark node "foo" as unschedulable.
 oc adm cordon foo

OpenShift Container Platform 4.8 CLI ツール

76

使用例

2.6.1.21. oc adm create-error-template

エラーページのテンプレートを作成します。

使用例

2.6.1.22. oc adm create-login-template

ログインテンプレートを作成します。

使用例

2.6.1.23. oc adm create-provider-selection-template

プロバイダー選択のテンプレートを作成します。

使用例

2.6.1.24. oc adm drain

ノードをドレイン (解放) してメンテナンスを準備します。

使用例

2.6.1.25. oc adm groups add-users

ユーザーをグループに追加します。

使用例

 # Output a bootstrap project template in YAML format to stdout
 oc adm create-bootstrap-project-template -o yaml

 # Output a template for the error page to stdout
 oc adm create-error-template

 # Output a template for the login page to stdout
 oc adm create-login-template

 # Output a template for the provider selection page to stdout
 oc adm create-provider-selection-template

 # Drain node "foo", even if there are pods not managed by a ReplicationController, ReplicaSet, Job,
DaemonSet or StatefulSet on it.
 $ oc adm drain foo --force

 # As above, but abort if there are pods not managed by a ReplicationController, ReplicaSet, Job,
DaemonSet or StatefulSet, and use a grace period of 15 minutes.
 $ oc adm drain foo --grace-period=900

第2章 OPENSHIFT CLI (OC)

77

2.6.1.26. oc adm groups new

新規グループを作成します。

使用例

2.6.1.27. oc adm groups prune

外部プロバイダーから欠落しているレコードを参照する以前の OpenShift グループを削除します。

使用例

2.6.1.28. oc adm groups remove-users

グループからユーザーを削除します。

使用例

2.6.1.29. oc adm groups sync

OpenShift グループと外部プロバイダーからのレコードを同期します。

 # Add user1 and user2 to my-group
 oc adm groups add-users my-group user1 user2

 # Add a group with no users
 oc adm groups new my-group

 # Add a group with two users
 oc adm groups new my-group user1 user2

 # Add a group with one user and shorter output
 oc adm groups new my-group user1 -o name

 # Prune all orphaned groups
 oc adm groups prune --sync-config=/path/to/ldap-sync-config.yaml --confirm

 # Prune all orphaned groups except the ones from the blacklist file
 oc adm groups prune --blacklist=/path/to/blacklist.txt --sync-config=/path/to/ldap-sync-config.yaml --
confirm

 # Prune all orphaned groups from a list of specific groups specified in a whitelist file
 oc adm groups prune --whitelist=/path/to/whitelist.txt --sync-config=/path/to/ldap-sync-config.yaml --
confirm

 # Prune all orphaned groups from a list of specific groups specified in a whitelist
 oc adm groups prune groups/group_name groups/other_name --sync-config=/path/to/ldap-sync-
config.yaml --confirm

 # Remove user1 and user2 from my-group
 oc adm groups remove-users my-group user1 user2

OpenShift Container Platform 4.8 CLI ツール

78

使用例

2.6.1.30. oc adm inspect

指定のリソースのデバッグデータを収集します。

使用例

2.6.1.31. oc adm migrate template-instances

テンプレートインスタンスを更新して、最新の group-version-kinds を参照するようにします。

使用例

2.6.1.32. oc adm must-gather

Pod の新規インスタンスを起動してデバッグ情報を収集します。

 # Sync all groups with an LDAP server
 oc adm groups sync --sync-config=/path/to/ldap-sync-config.yaml --confirm

 # Sync all groups except the ones from the blacklist file with an LDAP server
 oc adm groups sync --blacklist=/path/to/blacklist.txt --sync-config=/path/to/ldap-sync-config.yaml --
confirm

 # Sync specific groups specified in a whitelist file with an LDAP server
 oc adm groups sync --whitelist=/path/to/whitelist.txt --sync-config=/path/to/sync-config.yaml --
confirm

 # Sync all OpenShift groups that have been synced previously with an LDAP server
 oc adm groups sync --type=openshift --sync-config=/path/to/ldap-sync-config.yaml --confirm

 # Sync specific OpenShift groups if they have been synced previously with an LDAP server
 oc adm groups sync groups/group1 groups/group2 groups/group3 --sync-config=/path/to/sync-
config.yaml --confirm

 # Collect debugging data for the "openshift-apiserver" clusteroperator
 oc adm inspect clusteroperator/openshift-apiserver

 # Collect debugging data for the "openshift-apiserver" and "kube-apiserver" clusteroperators
 oc adm inspect clusteroperator/openshift-apiserver clusteroperator/kube-apiserver

 # Collect debugging data for all clusteroperators
 oc adm inspect clusteroperator

 # Collect debugging data for all clusteroperators and clusterversions
 oc adm inspect clusteroperators,clusterversions

 # Perform a dry-run of updating all objects
 oc adm migrate template-instances

 # To actually perform the update, the confirm flag must be appended
 oc adm migrate template-instances --confirm

第2章 OPENSHIFT CLI (OC)

79

使用例

2.6.1.33. oc adm new-project

新規プロジェクトを作成します。

使用例

2.6.1.34. oc adm node-logs

ノードのログを表示し、フィルターします。

使用例

2.6.1.35. oc adm pod-network isolate-projects

プロジェクトネットワークを分離します。

使用例

 # Gather information using the default plug-in image and command, writing into ./must-gather.local.
<rand>
 oc adm must-gather

 # Gather information with a specific local folder to copy to
 oc adm must-gather --dest-dir=/local/directory

 # Gather audit information
 oc adm must-gather -- /usr/bin/gather_audit_logs

 # Gather information using multiple plug-in images
 oc adm must-gather --image=quay.io/kubevirt/must-gather --image=quay.io/openshift/origin-must-
gather

 # Gather information using a specific image stream plug-in
 oc adm must-gather --image-stream=openshift/must-gather:latest

 # Gather information using a specific image, command, and pod-dir
 oc adm must-gather --image=my/image:tag --source-dir=/pod/directory -- myspecial-command.sh

 # Create a new project using a node selector
 oc adm new-project myproject --node-selector='type=user-node,region=east'

 # Show kubelet logs from all masters
 oc adm node-logs --role master -u kubelet

 # See what logs are available in masters in /var/logs
 oc adm node-logs --role master --path=/

 # Display cron log file from all masters
 oc adm node-logs --role master --path=cron

 # Provide isolation for project p1

OpenShift Container Platform 4.8 CLI ツール

80

2.6.1.36. oc adm pod-network join-projects

プロジェクトネットワークに参加します。

使用例

2.6.1.37. oc adm pod-network make-projects-global

プロジェクトネットワークをグローバルにします。

使用例

2.6.1.38. oc adm policy add-role-to-user

現在のプロジェクトのユーザーまたはサービスアカウントをロールに追加します。

使用例

2.6.1.39. oc adm policy add-scc-to-group

SCC (Security Context Constraints) オブジェクトをグループに追加します。

使用例

2.6.1.40. oc adm policy add-scc-to-user

 oc adm pod-network isolate-projects <p1>

 # Allow all projects with label name=top-secret to have their own isolated project network
 oc adm pod-network isolate-projects --selector='name=top-secret'

 # Allow project p2 to use project p1 network
 oc adm pod-network join-projects --to=<p1> <p2>

 # Allow all projects with label name=top-secret to use project p1 network
 oc adm pod-network join-projects --to=<p1> --selector='name=top-secret'

 # Allow project p1 to access all pods in the cluster and vice versa
 oc adm pod-network make-projects-global <p1>

 # Allow all projects with label name=share to access all pods in the cluster and vice versa
 oc adm pod-network make-projects-global --selector='name=share'

 # Add the 'view' role to user1 for the current project
 oc policy add-role-to-user view user1

 # Add the 'edit' role to serviceaccount1 for the current project
 oc policy add-role-to-user edit -z serviceaccount1

 # Add the 'restricted' security context constraint to group1 and group2
 oc adm policy add-scc-to-group restricted group1 group2

第2章 OPENSHIFT CLI (OC)

81

SCC (security context constraint) をユーザーまたはサービスアカウントに追加します。

使用例

2.6.1.41. oc adm policy scc-review

Pod を作成できるサービスアカウントを確認します。

使用例

2.6.1.42. oc adm policy scc-subject-review

ユーザーまたはサービスアカウントが Pod を作成できるかどうかを確認します。

使用例

2.6.1.43. oc adm prune builds

以前の完了済みおよび失敗したビルドを削除します。

 # Add the 'restricted' security context constraint to user1 and user2
 oc adm policy add-scc-to-user restricted user1 user2

 # Add the 'privileged' security context constraint to serviceaccount1 in the current namespace
 oc adm policy add-scc-to-user privileged -z serviceaccount1

 # Check whether service accounts sa1 and sa2 can admit a pod with a template pod spec specified
in my_resource.yaml
 # Service Account specified in myresource.yaml file is ignored
 oc policy scc-review -z sa1,sa2 -f my_resource.yaml

 # Check whether service accounts system:serviceaccount:bob:default can admit a pod with a
template pod spec specified in my_resource.yaml
 oc policy scc-review -z system:serviceaccount:bob:default -f my_resource.yaml

 # Check whether the service account specified in my_resource_with_sa.yaml can admit the pod
 oc policy scc-review -f my_resource_with_sa.yaml

 # Check whether the default service account can admit the pod; default is taken since no service
account is defined in myresource_with_no_sa.yaml
 oc policy scc-review -f myresource_with_no_sa.yaml

 # Check whether user bob can create a pod specified in myresource.yaml
 oc policy scc-subject-review -u bob -f myresource.yaml

 # Check whether user bob who belongs to projectAdmin group can create a pod specified in
myresource.yaml
 oc policy scc-subject-review -u bob -g projectAdmin -f myresource.yaml

 # Check whether a service account specified in the pod template spec in myresourcewithsa.yaml
can create the pod
 oc policy scc-subject-review -f myresourcewithsa.yaml

OpenShift Container Platform 4.8 CLI ツール

82

使用例

2.6.1.44. oc adm prune deployments

以前の完了済みおよび失敗したデプロイメント設定を削除します。

使用例

2.6.1.45. oc adm prune groups

外部プロバイダーから欠落しているレコードを参照する以前の OpenShift グループを削除します。

使用例

2.6.1.46. oc adm prune images

参照されていないイメージを削除します。

使用例

 # Dry run deleting older completed and failed builds and also including
 # all builds whose associated build config no longer exists
 oc adm prune builds --orphans

 # To actually perform the prune operation, the confirm flag must be appended
 oc adm prune builds --orphans --confirm

 # Dry run deleting all but the last complete deployment for every deployment config
 oc adm prune deployments --keep-complete=1

 # To actually perform the prune operation, the confirm flag must be appended
 oc adm prune deployments --keep-complete=1 --confirm

 # Prune all orphaned groups
 oc adm prune groups --sync-config=/path/to/ldap-sync-config.yaml --confirm

 # Prune all orphaned groups except the ones from the blacklist file
 oc adm prune groups --blacklist=/path/to/blacklist.txt --sync-config=/path/to/ldap-sync-config.yaml --
confirm

 # Prune all orphaned groups from a list of specific groups specified in a whitelist file
 oc adm prune groups --whitelist=/path/to/whitelist.txt --sync-config=/path/to/ldap-sync-config.yaml --
confirm

 # Prune all orphaned groups from a list of specific groups specified in a whitelist
 oc adm prune groups groups/group_name groups/other_name --sync-config=/path/to/ldap-sync-
config.yaml --confirm

 # See what the prune command would delete if only images and their referrers were more than an
hour old
 # and obsoleted by 3 newer revisions under the same tag were considered
 oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m

第2章 OPENSHIFT CLI (OC)

83

2.6.1.47. oc adm release extract

更新ペイロードの内容をディスクに抽出します。

使用例

2.6.1.48. oc adm release info

リリースに関する情報を表示します。

使用例

2.6.1.49. oc adm release mirror

リリースを別のイメージレジストリーの場所にミラーリングします。

使用例

 # To actually perform the prune operation, the confirm flag must be appended
 oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m --confirm

 # See what the prune command would delete if we are interested in removing images
 # exceeding currently set limit ranges ('openshift.io/Image')
 oc adm prune images --prune-over-size-limit

 # To actually perform the prune operation, the confirm flag must be appended
 oc adm prune images --prune-over-size-limit --confirm

 # Force the insecure http protocol with the particular registry host name
 oc adm prune images --registry-url=http://registry.example.org --confirm

 # Force a secure connection with a custom certificate authority to the particular registry host name
 oc adm prune images --registry-url=registry.example.org --certificate-
authority=/path/to/custom/ca.crt --confirm

 # Use git to check out the source code for the current cluster release to DIR
 oc adm release extract --git=DIR

 # Extract cloud credential requests for AWS
 oc adm release extract --credentials-requests --cloud=aws

 # Show information about the cluster's current release
 oc adm release info

 # Show the source code that comprises a release
 oc adm release info 4.2.2 --commit-urls

 # Show the source code difference between two releases
 oc adm release info 4.2.0 4.2.2 --commits

 # Show where the images referenced by the release are located
 oc adm release info quay.io/openshift-release-dev/ocp-release:4.2.2 --pullspecs

OpenShift Container Platform 4.8 CLI ツール

84

2.6.1.50. oc adm release new

新しい OpenShift リリースを作成します。

使用例

2.6.1.51. oc adm taint

1 つ以上のノードでテイントを更新します。

使用例

 # Perform a dry run showing what would be mirrored, including the mirror objects
 oc adm release mirror 4.3.0 --to myregistry.local/openshift/release \
 --release-image-signature-to-dir /tmp/releases --dry-run

 # Mirror a release into the current directory
 oc adm release mirror 4.3.0 --to file://openshift/release \
 --release-image-signature-to-dir /tmp/releases

 # Mirror a release to another directory in the default location
 oc adm release mirror 4.3.0 --to-dir /tmp/releases

 # Upload a release from the current directory to another server
 oc adm release mirror --from file://openshift/release --to myregistry.com/openshift/release \
 --release-image-signature-to-dir /tmp/releases

 # Mirror the 4.3.0 release to repository registry.example.com and apply signatures to connected
cluster
 oc adm release mirror --from=quay.io/openshift-release-dev/ocp-release:4.3.0-x86_64 \
 --to=registry.example.com/your/repository --apply-release-image-signature

 # Create a release from the latest origin images and push to a DockerHub repo
 oc adm release new --from-image-stream=4.1 -n origin --to-image
docker.io/mycompany/myrepo:latest

 # Create a new release with updated metadata from a previous release
 oc adm release new --from-release registry.svc.ci.openshift.org/origin/release:v4.1 --name 4.1.1 \
 --previous 4.1.0 --metadata ... --to-image docker.io/mycompany/myrepo:latest

 # Create a new release and override a single image
 oc adm release new --from-release registry.svc.ci.openshift.org/origin/release:v4.1 \
 cli=docker.io/mycompany/cli:latest --to-image docker.io/mycompany/myrepo:latest

 # Run a verification pass to ensure the release can be reproduced
 oc adm release new --from-release registry.svc.ci.openshift.org/origin/release:v4.1

 # Update node 'foo' with a taint with key 'dedicated' and value 'special-user' and effect 'NoSchedule'.
 # If a taint with that key and effect already exists, its value is replaced as specified.
 oc adm taint nodes foo dedicated=special-user:NoSchedule

 # Remove from node 'foo' the taint with key 'dedicated' and effect 'NoSchedule' if one exists.
 oc adm taint nodes foo dedicated:NoSchedule-

第2章 OPENSHIFT CLI (OC)

85

2.6.1.52. oc adm top images

イメージの使用状況の統計を表示します。

使用例

2.6.1.53. oc adm top imagestreams

イメージストリームの使用状況の統計を表示します。

使用例

2.6.1.54. oc adm top node

ノードのリソース (CPU/メモリー) の使用状況を表示します。

使用例

2.6.1.55. oc adm top pod

Pod のリソース (CPU/メモリー) の使用状況を表示します。

使用例

 # Remove from node 'foo' all the taints with key 'dedicated'
 oc adm taint nodes foo dedicated-

 # Add a taint with key 'dedicated' on nodes having label mylabel=X
 oc adm taint node -l myLabel=X dedicated=foo:PreferNoSchedule

 # Add to node 'foo' a taint with key 'bar' and no value
 oc adm taint nodes foo bar:NoSchedule

 # Show usage statistics for images
 oc adm top images

 # Show usage statistics for image streams
 oc adm top imagestreams

 # Show metrics for all nodes
 oc adm top node

 # Show metrics for a given node
 oc adm top node NODE_NAME

 # Show metrics for all pods in the default namespace
 oc adm top pod

 # Show metrics for all pods in the given namespace
 oc adm top pod --namespace=NAMESPACE

 # Show metrics for a given pod and its containers

OpenShift Container Platform 4.8 CLI ツール

86

2.6.1.56. oc adm uncordon

ノードにスケジュール対象 (schedulable) のマークを付けます。

使用例

2.6.1.57. oc adm verify-image-signature

イメージ署名に含まれるイメージ ID を確認します。

使用例

2.6.2. 関連情報

OpenShift CLI 開発者コマンドリファレンス

2.7. OC および KUBECTL コマンドの使用

Kubernetes のコマンドラインインターフェイス (CLI) kubectl は、Kubernetes クラスターに対してコ
マンドを実行するために使用されます。OpenShift Container Platform は認定 Kubernetes ディストリ
ビューションであるため、OpenShift Container Platform に同梱されるサポート対象の kubectl バイナ
リーを使用するか、または oc バイナリーを使用して拡張された機能を取得できます。

2.7.1. oc バイナリー

oc バイナリーは kubectl バイナリーと同じ機能を提供しますが、これは、以下を含む OpenShift

 oc adm top pod POD_NAME --containers

 # Show metrics for the pods defined by label name=myLabel
 oc adm top pod -l name=myLabel

 # Mark node "foo" as schedulable.
 $ oc adm uncordon foo

 # Verify the image signature and identity using the local GPG keychain
 oc adm verify-image-signature
sha256:c841e9b64e4579bd56c794bdd7c36e1c257110fd2404bebbb8b613e4935228c4 \
 --expected-identity=registry.local:5000/foo/bar:v1

 # Verify the image signature and identity using the local GPG keychain and save the status
 oc adm verify-image-signature
sha256:c841e9b64e4579bd56c794bdd7c36e1c257110fd2404bebbb8b613e4935228c4 \
 --expected-identity=registry.local:5000/foo/bar:v1 --save

 # Verify the image signature and identity via exposed registry route
 oc adm verify-image-signature
sha256:c841e9b64e4579bd56c794bdd7c36e1c257110fd2404bebbb8b613e4935228c4 \
 --expected-identity=registry.local:5000/foo/bar:v1 \
 --registry-url=docker-registry.foo.com

 # Remove all signature verifications from the image
 oc adm verify-image-signature
sha256:c841e9b64e4579bd56c794bdd7c36e1c257110fd2404bebbb8b613e4935228c4 --remove-all

第2章 OPENSHIFT CLI (OC)

87

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/cli_tools/#cli-developer-commands

oc バイナリーは kubectl バイナリーと同じ機能を提供しますが、これは、以下を含む OpenShift
Container Platform 機能をネイティブにサポートするように拡張されています。

OpenShift Container Platform リソースの完全サポート
DeploymentConfig、 BuildConfig、Route、ImageStream、および ImageStreamTag オブ
ジェクトなどのリソースは OpenShift Container Platform ディストリビューションに固有のリ
ソースであり、標準の Kubernetes プリミティブにビルドされます。

認証
oc バイナリーは、認証を可能にするビルトインの login コマンドを提供し、Kubernetes
namespace を認証ユーザーにマップする OpenShift Container Platform プロジェクトを使って
作業できるようにします。詳細は、認証について を参照してください。

追加コマンド
追加コマンドの oc new-app などは、既存のソースコードまたは事前にビルドされたイメージ
を使用して新規アプリケーションを起動することを容易にします。同様に、追加コマンドの oc
new-project により、デフォルトとして切り替えることができるプロジェクトを簡単に開始で
きるようになります。

重要

以前のバージョンの oc バイナリーをインストールしている場合、これを使用して
OpenShift Container Platform 4.8 のすべてのコマンドを実行することはできません。最
新の機能が必要な場合は、お使いの OpenShift Container Platform サーバーバージョン
に対応する最新バージョンの oc バイナリーをダウンロードし、インストールする必要が
あります。

セキュリティー以外の API の変更は、古い oc バイナリーの更新を可能にするために、2 つ以上のマイ
ナーリリース (例: 4.1 から 4.2、そして 4.3 へ) が必要です。新機能を使用するには新規の oc バイナ
リーが必要になる場合があります。4.3 サーバーには、4.2 oc バイナリーが使用できない機能が追加さ
れている場合や、4.3 oc バイナリーには 4.2 サーバーでサポートされていない追加機能が含まれる場合
があります。

表2.2 互換性に関する表

 X.Y (oc クライアント) X.Y+N footnote:versionpolicyn N
は 1 以上の数値 (oc クライアント)

X.Y (サーバー)

X.Y+N footnote:versionpolicyn[]
(サーバー)

 完全に互換性がある。

 oc クライアントは、サーバー機能にアクセスできない場合があります。

 oc クライアントは、アクセスされるサーバーと互換性のないオプションおよび機能を提供する可
能性があります。

OpenShift Container Platform 4.8 CLI ツール

88

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/authentication_and_authorization/#understanding-authentication

2.7.2. kubectl バイナリー

kubectl バイナリーは、標準の Kubernetes 環境を使用する新規 OpenShift Container Platform ユー
ザー、または kubectl CLI を優先的に使用するユーザーの既存ワークフローおよびスクリプトをサポー
トする手段として提供されます。kubectl の既存ユーザーはバイナリーを引き続き使用し、OpenShift
Container Platform クラスターへの変更なしに Kubernetes のプリミティブと対話できます。

OpenShift CLI のインストール 手順に従って、サポートされている kubectl バイナリーをインストール
できます。kubectl バイナリーは、バイナリーをダウンロードする場合にアーカイブに含まれます。ま
たは RPM を使用して CLI のインストール時にインストールされます。

詳細は、kubectl のドキュメント を参照してください。

第2章 OPENSHIFT CLI (OC)

89

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/cli_tools/#cli-installing-cli_cli-developer-commands
https://kubernetes.io/docs/reference/kubectl/overview/

第3章 DEVELOPER CLI (ODO)

3.1. ODO リリースノート

3.1.1. odo version 2.5.0 への主な変更点および改善点

adler32 ハッシュを使用して各コンポーネントに一意のルートを作成します。

リソースの割り当て用に devfile の追加フィールドをサポートします。

cpuRequest

cpuLimit

memoryRequest

memoryLimit

--deploy フラグを odo delete コマンドに追加し、odo deploy コマンドを使用してデプロイさ
れたコンポーネントを削除します。

odo link コマンドにマッピングサポートを追加します。

volume コンポーネントの ephemeral フィールドを使用して一時ボリュームをサポートしま
す。

Telemetry オプトインを要求する際に、デフォルトの回答を yes に設定します。

追加の Telemetry データを devfile レジストリーに送信してメトリクスを向上させます。

ブートストラップイメージをregistry.access.redhat.com/ocp-tools-4/odo-init-container-
rhel8:1.1.11 に更新します。

アップストリームリポジトリーは https://github.com/redhat-developer/odo から入手できま
す。

3.1.2. バグ修正

以前のバージョンでは、.odo/env ファイルが存在しない場合、odo deploy は失敗していまし
た。このコマンドは、必要に応じて .odo/env ファイルを作成するようになりました。

以前のバージョンでは、odo create コマンドを使用したインタラクティブなコンポーネントの
作成は、クラスターからの切断時に失敗しました。この問題は最新リリースで修正されまし
た。

3.1.3. サポート

製品

エラーを見つけた場合や、odo の機能に関するバグが見つかった場合やこれに関する改善案をお寄せい
ただける場合は、Bugzilla に報告してください。製品タイプとして OpenShift Developer Tools and
Services を選択し、odo をコンポーネントとして選択します。

$ odo delete --deploy

OpenShift Container Platform 4.8 CLI ツール

90

https://github.com/redhat-developer/odo
http://bugzilla.redhat.com

問題の詳細情報をできる限り多く入力します。

ドキュメント

エラーを見つけた場合、またはドキュメントを改善するための提案がある場合は、最も関連性の高いド
キュメントコンポーネントの Jira issue を提出してください。

3.2. ODO について

Red Hat OpenShift Developer CLI(odo) は、アプリケーションを OpenShift Container Platform および
Kubernetes で作成するためのツールです。odo を使用すると、プラットフォームを詳細に理解しなく
ても、マイクロサービスベースのアプリケーションを Kubernetes クラスターで開発、テスト、デバッ
グ、デプロイできます。

odo は 作成とプッシュ のワークフローに従います。ユーザーとして 作成 すると、情報 (またはマニ
フェスト) が設定ファイルに保存されます。プッシュ すると、対応するリソースが Kubernetes クラス
ターに作成されます。この設定はすべて、シームレスなアクセスと機能のために Kubernetes API に格
納されます。

odo は、service および link コマンドを使用して、コンポーネントおよびサービスをリンクしま
す。odo は、クラスターの Kubernetes Operator に基づいてサービスを作成し、デプロイしてこれを実
行します。サービスは、Operator Hub で利用可能な任意の Operator を使用して作成できます。サービ
スをリンクした後に、odo はサービス設定をコンポーネントに挿入します。その後、アプリケーション
はこの設定を使用して、Operator がサポートするサービスと通信できます。

3.2.1. odo キー機能

odo は、Kubernetes の開発者フレンドリーなインターフェイスとなるように設計されており、以下を
実行できます。

新規マニフェストを作成するか、または既存のマニフェストを使用して、Kubernetes クラス
ターでアプリケーションを迅速にデプロイします。

Kubernetes 設定ファイルを理解および維持しなくても、コマンドを使用してマニフェストを簡
単に作成および更新できます。

Kubernetes クラスターで実行されるアプリケーションへのセキュアなアクセスを提供します。

Kubernetes クラスターのアプリケーションの追加ストレージを追加および削除します。

Operator がサポートするサービスを作成し、アプリケーションをそれらのサービスにリンクし
ます。

odo コンポーネントとしてデプロイされる複数のマイクロサービス間のリンクを作成します。

IDE で odo を使用してデプロイしたアプリケーションをリモートでデバッグします。

odoを使用して Kubernetes にデプロイされたアプリケーションを簡単にテスト

3.2.2. odo のコアとなる概念

odo は、Kubernetes の概念を開発者に馴染みのある用語に抽象化します。

アプリケーション

特定のタスクを実行するために使用される、クラウドネイティブなアプローチ で開発された通常の
アプリケーション。

アプリケーション の例には、オンラインビデオストリーミング、オンラインショッピング、ホテル

第3章 DEVELOPER CLI (ODO)

91

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12385629
https://www.redhat.com/en/topics/cloud-native-apps

アプリケーション の例には、オンラインビデオストリーミング、オンラインショッピング、ホテル
の予約システムなどがあります。

コンポーネント

個別に実行でき、デプロイできる Kubernetes リソースのセット。クラウドネイティブアプリケー
ションは、小規模で独立した、緩く結合された コンポーネント の集まりです。
コンポーネント の例には、API バックエンド、Web インターフェイス、支払いバックエンドなどが
あります。

プロジェクト

ソースコード、テスト、ライブラリーを含む単一のユニット。

コンテキスト

単一コンポーネントのソースコード、テスト、ライブラリー、および odo 設定ファイルが含まれる
ディレクトリー。

URL

クラスター外からアクセスするためにコンポーネントを公開するメカニズム。

ストレージ

クラスター内の永続ストレージ。これは、再起動およびコンポーネントの再構築後もデータを永続
化します。

サービス

コンポーネントに追加機能を提供する外部アプリケーション。
サービス の例には、PostgreSQL、MySQL、Redis、RabbitMQ などがあります。

odo では、サービスは OpenShift Service Catalog からプロビジョニングされ、クラスター内で有効
にされる必要があります。

devfile

コンテナー化された開発環境を定義するためのオープン標準。これにより、開発者用ツールはワー
クフローを簡素化し、高速化することができます。詳細は、https://devfile.io のドキュメントを参照
してください。
公開されている devfile レジストリーに接続するか、またはセキュアなレジストリーをインストール
できます。

3.2.3. odo でのコンポーネントの一覧表示

odo は移植可能な devfile 形式を使用してコンポーネントおよびそれらの関連する URL、ストレージ、
およびサービスを記述します。odo はさまざまな devfile レジストリーに接続して、さまざまな言語お
よびフレームワークの devfile をダウンロードできます。devfile 情報を取得するために odo で使用され
るレジストリーを管理する方法についての詳細は、odo registry コマンドのドキュメントを参照してく
ださい。

odo catalog list components コマンドを使用して、さまざまなレジストリーで利用可能な devfile を
すべて一覧表示できます。

手順

1. odo でクラスターにログインします。

$ odo login -u developer -p developer

OpenShift Container Platform 4.8 CLI ツール

92

https://devfile.io

2. 利用可能な odo コンポーネントを一覧表示します。

出力例

$ odo catalog list components

Odo Devfile Components:
NAME DESCRIPTION REGISTRY
dotnet50 Stack with .NET 5.0
DefaultDevfileRegistry
dotnet60 Stack with .NET 6.0
DefaultDevfileRegistry
dotnetcore31 Stack with .NET Core 3.1
DefaultDevfileRegistry
go Stack with the latest Go version
DefaultDevfileRegistry
java-maven Upstream Maven and OpenJDK 11
DefaultDevfileRegistry
java-openliberty Java application Maven-built stack using the Open Liberty ru...
DefaultDevfileRegistry
java-openliberty-gradle Java application Gradle-built stack using the Open Liberty r...
DefaultDevfileRegistry
java-quarkus Quarkus with Java
DefaultDevfileRegistry
java-springboot Spring Boot® using Java
DefaultDevfileRegistry
java-vertx Upstream Vert.x using Java
DefaultDevfileRegistry
java-websphereliberty Java application Maven-built stack using the WebSphere
Liber... DefaultDevfileRegistry
java-websphereliberty-gradle Java application Gradle-built stack using the WebSphere
Libe... DefaultDevfileRegistry
java-wildfly Upstream WildFly
DefaultDevfileRegistry
java-wildfly-bootable-jar Java stack with WildFly in bootable Jar mode, OpenJDK 11
and... DefaultDevfileRegistry
nodejs Stack with Node.js 14
DefaultDevfileRegistry
nodejs-angular Stack with Angular 12
DefaultDevfileRegistry
nodejs-nextjs Stack with Next.js 11
DefaultDevfileRegistry
nodejs-nuxtjs Stack with Nuxt.js 2
DefaultDevfileRegistry
nodejs-react Stack with React 17
DefaultDevfileRegistry
nodejs-svelte Stack with Svelte 3
DefaultDevfileRegistry
nodejs-vue Stack with Vue 3
DefaultDevfileRegistry
php-laravel Stack with Laravel 8
DefaultDevfileRegistry
python Python Stack with Python 3.7

第3章 DEVELOPER CLI (ODO)

93

3.2.4. odo での Telemetry

odo は、オペレーティングシステムのメトリクス、RAM、CPU、コア数、odo バージョン、エラー、
成功/失敗、および odo コマンドの完了までにかかる時間を含む、使用方法に関する情報を収集しま
す。

odo preference コマンドを使用して Telemetry の承諾を変更できます。

odo preference set ConsentTelemetry true は Telemetry を承諾します。

odo preference unset ConsentTelemetry は Telemetry を無効化します。

odo preference view は現在の設定を表示します。

3.3. ODO のインストール

odo CLI は、バイナリーをダウンロードして、Linux、Windows、または macOS にインストールできま
す。また、odo と oc の両方のバイナリーを使用して、OpenShift Container Platform クラスターと対
話する OpenShift VS Code 拡張機能をインストールすることもできます。Red Hat Enterprise
Linux(RHEL) の場合、odo CLI を RPM としてインストールできます。

注記

現時点では、odo はネットワークが制限された環境でのインストールをサポートしてい
ません。

3.3.1. odo の Linux へのインストール

odo CLI はバイナリーとしてダウンロードでき、以下を含む複数のオペレーティングシステムおよび
アーキテクチャーの tarball としてダウンロードできます。

オペレーティングシステム バイナリー Tarball

Linux odo-linux-amd64 odo-linux-amd64.tar.gz

Linux on IBM Power odo-linux-ppc64le odo-linux-
ppc64le.tar.gz

Linux on IBM Z および LinuxONE odo-linux-s390x odo-linux-s390x.tar.gz

手順

1. コンテンツゲートウェイ に移動し、オペレーティングシステムおよびアーキテクチャーに適し
たファイルをダウンロードします。

バイナリーをダウンロードする場合は、これを odo に変更します。

DefaultDevfileRegistry
python-django Python3.7 with Django
DefaultDevfileRegistry

OpenShift Container Platform 4.8 CLI ツール

94

https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/odo-linux-amd64
https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/odo-linux-amd64.tar.gz
https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/odo-linux-ppc64le
https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/odo-linux-ppc64le.tar.gz
https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/odo-linux-s390x
https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/odo-linux-s390x.tar.gz
https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/

tarball をダウンロードする場合は、バイナリーを展開します。

2. バイナリーのパーミッションを変更します。

3. odo バイナリーを、PATH にあるディレクトリーに配置します。
PATH を確認するには、以下のコマンドを実行します。

4. odo がシステムで利用可能になっていることを確認します。

3.3.2. odo の Windows へのインストール

Windows 用のodo CLI は、バイナリーおよびアーカイブとしてダウンロードできます。

オペレーティングシステム バイナリー Tarball

Windows odo-windows-
amd64.exe

odo-windows-
amd64.exe.zip

手順

1. コンテンツゲートウェイ に移動し、適切なファイルをダウンロードします。

バイナリーをダウンロードする場合は、名前を odo.exe に変更します。

アーカイブをダウンロードする場合は、ZIP プログラムでバイナリーを展開し、名前を
odo.exe に変更します。

2. odo.exe バイナリーを PATH にあるディレクトリーに移動します。
PATH を確認するには、コマンドプロンプトを開いて以下のコマンドを実行します。

3. odo がシステムで利用可能になっていることを確認します。

3.3.3. odo の macOS へのインストール

$ curl -L https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-
v4/clients/odo/latest/odo-linux-amd64 -o odo

$ curl -L https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-
v4/clients/odo/latest/odo-linux-amd64.tar.gz -o odo.tar.gz
$ tar xvzf odo.tar.gz

$ chmod +x <filename>

$ echo $PATH

$ odo version

C:\> path

C:\> odo version

第3章 DEVELOPER CLI (ODO)

95

https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/odo-windows-amd64.exe
https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/odo-windows-amd64.exe.zip
https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/

macOS の odo CLI は、バイナリーおよび tarball としてダウンロードできます。

オペレーティングシステム バイナリー Tarball

macOS odo-darwin-amd64 odo-darwin-
amd64.tar.gz

手順

1. コンテンツゲートウェイ に移動し、適切なファイルをダウンロードします。

バイナリーをダウンロードする場合は、これを odo に変更します。

tarball をダウンロードする場合は、バイナリーを展開します。

2. バイナリーのパーミッションを変更します。

3. odo バイナリーを、PATH にあるディレクトリーに配置します。
PATH を確認するには、以下のコマンドを実行します。

4. odo がシステムで利用可能になっていることを確認します。

3.3.4. odo の VS Code へのインストール

OpenShift VS Code 拡張 は、odo と oc バイナリーの両方を使用して OpenShift Container Platform ク
ラスターと対話します。これらの機能を使用するには、OpenShift VS Code 拡張を VS Code にインス
トールします。

前提条件

VS Code がインストールされていること。

手順

1. VS Code を開きます。

2. Ctrl+P で VS Code Quick Open を起動します。

$ curl -L https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-
v4/clients/odo/latest/odo-darwin-amd64 -o odo

$ curl -L https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-
v4/clients/odo/latest/odo-darwin-amd64.tar.gz -o odo.tar.gz
$ tar xvzf odo.tar.gz

chmod +x odo

$ echo $PATH

$ odo version

OpenShift Container Platform 4.8 CLI ツール

96

https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/odo-darwin-amd64
https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/odo-darwin-amd64.tar.gz
https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/odo/latest/
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-openshift-connector

3. 以下のコマンドを入力します。

$ ext install redhat.vscode-openshift-connector

3.3.5. RPM を使用した odo の Red Hat Enterprise Linux(RHEL) へのインストール

Red Hat Enterprise Linux(RHEL) の場合、odo CLI を RPM としてインストールできます。

手順

1. Red Hat Subscription Manager に登録します。

2. 最新のサブスクリプションデータをプルします。

3. 利用可能なサブスクリプションを一覧表示します。

4. 直前のコマンドの出力で、OpenShift Container Platform サブスクリプションの Pool ID
フィールドを見つけ、これを登録されたシステムに割り当てます。

5. odo で必要なリポジトリーを有効にします。

6. odo パッケージをインストールします。

7. odo がシステムで利用可能になっていることを確認します。

3.4. ODO CLI の設定

odo のグローバル設定は、デフォルトで $HOME/.odo ディレクトリーにある preference.yaml ファイ
ルにあります。

GLOBALODOCONFIG 変数をエクスポートして、preference.yaml ファイルに別の場所を設定できま
す。

3.4.1. 現在の設定の表示

以下のコマンドを使用して、現在の odo CLI 設定を表示できます。

subscription-manager register

subscription-manager refresh

subscription-manager list --available --matches '*OpenShift Developer Tools and Services*'

subscription-manager attach --pool=<pool_id>

subscription-manager repos --enable="ocp-tools-4.9-for-rhel-8-x86_64-rpms"

yum install odo

$ odo version

第3章 DEVELOPER CLI (ODO)

97

出力例

3.4.2. 値の設定

以下のコマンドを使用して、preference キーの値を設定できます。

注記

優先キーは大文字と小文字を区別しません。

コマンドの例

出力例

3.4.3. 値の設定解除

以下のコマンドを使用して、preference キーの値の設定を解除できます。

注記

-f フラグを使用して確認を省略できます。

コマンドの例

出力例

$ odo preference view

PARAMETER CURRENT_VALUE
UpdateNotification
NamePrefix
Timeout
BuildTimeout
PushTimeout
Ephemeral
ConsentTelemetry true

$ odo preference set <key> <value>

$ odo preference set updatenotification false

Global preference was successfully updated

$ odo preference unset <key>

$ odo preference unset updatenotification
? Do you want to unset updatenotification in the preference (y/N) y

Global preference was successfully updated

OpenShift Container Platform 4.8 CLI ツール

98

3.4.4. preference キーの表

以下の表は、odo CLI の preference キーを設定するために使用できるオプションを示しています。

preference キー 説明 デフォルト値

UpdateNotificati
on

odo を更新する通知を表示するかどうかを制御します。 True

NamePrefix odo リソースのデフォルト名接頭辞を設定します。例:
component または storage。

現在のディレクト
リー名

タイムアウト Kubernetes サーバー接続チェックのタイムアウト。 1 秒

BuildTimeout git コンポーネントのビルドが完了するまでのタイムアウト。 300 秒

PushTimeout コンポーネントが起動するまで待機するタイムアウト。 240 秒

一時ストレージ ソースコードを保存するために odo が emptyDir ボリュームを
作成するかどうかを制御します。

True

ConsentTelemet
ry

odo がユーザーの odo の使用のために Telemetry を収集できる
かどうかを制御します。

False

3.4.5. ファイルまたはパターンを無視する

アプリケーションのルートディレクトリーにある .odoignore ファイルを変更して、無視するファイル
またはパターンの一覧を設定できます。これは、odo push および odo watch の両方に適用されます。

.odoignore ファイルが存在 しない 場合、特定のファイルおよびフォルダーを無視するように

.gitignore ファイルが代わりに使用されます。

.git ファイル、.js 拡張子のあるファイルおよびフォルダー tests を無視するには、以下を .odoignore
または .gitignore ファイルのいずれかに追加します。

.git
*.js
tests/

.odoignore ファイルはすべての glob 表現を許可します。

3.5. ODO CLI リファレンス

3.5.1. odo build-images

odo は Dockerfile に基づいてコンテナーイメージをビルドし、それらのイメージをレジストリーにプッ
シュできます。

odo build-images コマンドを実行すると、odo は image タイプで devfile.yaml 内のすべてのコン
ポーネントを検索します。以下に例を示します。

第3章 DEVELOPER CLI (ODO)

99

1

2

uri フィールドは、devfile.yaml を含むディレクトリーとの関連で使用する Dockerfile の相対パス
を示します。devfile 仕様は uri が HTTP URL である可能性があることを示しますが、この場合は
odo ではまだサポートされていません。

buildContext は、ビルドコンテキストとして使用されるディレクトリーを示します。デフォルト
値は ${PROJECTS_ROOT} です。

各イメージコンポーネントについて、odo は podman または docker (この順序で最初に見つかったも
の) を実行し、指定された Dockerfile、ビルドコンテキスト、および引数でイメージをビルドします。

--push フラグがコマンドに渡されると、イメージはビルド後にレジストリーにプッシュされます。

3.5.2. odo catalog

odo は異なる カタログ を使用して コンポーネント および サービス をデプロイします。

3.5.2.1. コンポーネント

odo は移植可能な devfile 形式を使用してコンポーネントを記述します。さまざまな devfile レジスト
リーに接続して、さまざまな言語およびフレームワークの devfile をダウンロードできます。詳細
は、odo registry を参照してください。

3.5.2.1.1. コンポーネントの一覧表示

異なるレジストリーで利用可能な devfile の一覧を表示するには、以下のコマンドを実行します。

出力例

3.5.2.1.2. コンポーネントに関する情報の取得

特定のコンポーネントに関する詳細情報を取得するには、以下のコマンドを実行します。

components:
- image:
 imageName: quay.io/myusername/myimage
 dockerfile:
 uri: ./Dockerfile 1
 buildContext: ${PROJECTS_ROOT} 2
 name: component-built-from-dockerfile

$ odo catalog list components

 NAME DESCRIPTION REGISTRY
 go Stack with the latest Go version DefaultDevfileRegistry
 java-maven Upstream Maven and OpenJDK 11 DefaultDevfileRegistry
 nodejs Stack with Node.js 14 DefaultDevfileRegistry
 php-laravel Stack with Laravel 8 DefaultDevfileRegistry
 python Python Stack with Python 3.7 DefaultDevfileRegistry
 [...]

$ odo catalog describe component

OpenShift Container Platform 4.8 CLI ツール

100

1

2

たとえば、以下のコマンドを実行します。

出力例

Registry は、devfile の取得元のレジストリーです。

Starter projects は、devfile の同じ言語およびフレームワークにあるサンプルプロジェクトです。
これは、新規プロジェクトの起動に役立ちます。

スタータープロジェクトからプロジェクトを作成する方法については、odo create を参照してくださ
い。

3.5.2.2. サービス

odo は Operator を利用して サービス をデプロイでき ます。

odo では、Operator Lifecycle Manager を利用してデプロイされた Operator のみがサポートされま
す。

3.5.2.2.1. サービスの一覧表示

利用可能な Operator およびそれらの関連サービスを一覧表示するには、以下のコマンドを実行しま
す。

出力例

$ odo catalog describe component nodejs

* Registry: DefaultDevfileRegistry 1

Starter Projects: 2

name: nodejs-starter
attributes: {}
description: ""
subdir: ""
projectsource:
 sourcetype: ""
 git:
 gitlikeprojectsource:
 commonprojectsource: {}
 checkoutfrom: null
 remotes:
 origin: https://github.com/odo-devfiles/nodejs-ex.git
 zip: null
 custom: null

$ odo catalog list services

 Services available through Operators
 NAME CRDs
 postgresql-operator.v0.1.1 Backup, Database
 redis-operator.v0.8.0 RedisCluster, Redis

第3章 DEVELOPER CLI (ODO)

101

https://olm.operatorframework.io/

この例では、2 つの Operator がクラスターにインストールされます。postgresql-operator.v0.1.1
Operator は、PostgreSQL に関連するサービス: Backup と Database をデプロイします。redis-
operator.v0.8.0 Operator は、RedisCluster および Redis に関連するサービスをデプロイします。

注記

利用可能な Operator の一覧を取得するには、odo は Succeeded フェーズにある現在の
namespace の ClusterServiceVersion (CSV) リソースを取得します。クラスター全体の
アクセスをサポートする Operator の場合、新規 namespace が作成されると、これらの
リソースがこれに自動的に追加されます。ただし、Succeeded フェーズに入るまでに時
間がかかる場合がありますが、odo はリソースが準備状態になるまで空の一覧を返す可
能性があります。

3.5.2.2.2. サービスの検索

キーワードで特定のサービスを検索するには、以下のコマンドを実行します。

たとえば、PostgreSQL サービスを取得するには、以下のコマンドを実行します。

出力例

検索されたキーワードを名前に含む Operator の一覧が表示されます。

3.5.2.2.3. サービスに関する情報の取得

特定のサービスに関する詳細情報を取得するには、以下のコマンドを実行します。

以下に例を示します。

出力例

$ odo catalog search service

$ odo catalog search service postgres

 Services available through Operators
 NAME CRDs
 postgresql-operator.v0.1.1 Backup, Database

$ odo catalog describe service

$ odo catalog describe service postgresql-operator.v0.1.1/Database

KIND: Database
VERSION: v1alpha1

DESCRIPTION:
 Database is the Schema for the the Database Database API

FIELDS:
 awsAccessKeyId (string)

OpenShift Container Platform 4.8 CLI ツール

102

サービスは、CustomResourceDefinition (CRD) リソースによってクラスターに表示されます。前のコ
マンドは、kind、version、このカスタムリソースのインスタンスを定義するために使用できるフィー
ルドのリストなど、CRD に関する詳細を表示します。

フィールドの一覧は、CRD に含まれる OpenAPI スキーマ から抽出されます。この情報は CRD でオプ
ションであり、存在しない場合は、サービスを表す ClusterServiceVersion (CSV) リソースから抽出さ
れます。

CRD タイプの情報を指定せずに、Operator がサポートするサービスの説明を要求することもできま
す。CRD のないクラスターで Redis Operator を記述するには、以下のコマンドを実行します。

出力例

3.5.3. odo create

odo は devfile を使用してコンポーネントの設定を保存し、ストレージやサービスなどのコンポーネン
トのリソースを記述します。odo create コマンドはこのファイルを生成します。

3.5.3.1. コンポーネントの作成

既存のプロジェクトの devfile を 作成 するには、コンポーネントの名前とタイプ (たとえば、nodejs
または go) を指定して odo create コマンドを実行します。

この例では、nodejs はコンポーネントのタイプで、mynodejs は odo が作成するコンポーネントの名
前です。

 AWS S3 accessKey/token ID

 Key ID of AWS S3 storage. Default Value: nil Required to create the Secret
 with the data to allow send the backup files to AWS S3 storage.
[...]

$ odo catalog describe service redis-operator.v0.8.0

NAME: redis-operator.v0.8.0
DESCRIPTION:

 A Golang based redis operator that will make/oversee Redis
 standalone/cluster mode setup on top of the Kubernetes. It can create a
 redis cluster setup with best practices on Cloud as well as the Bare metal
 environment. Also, it provides an in-built monitoring capability using

... (cut short for beverity)

 Logging Operator is licensed under [Apache License, Version
 2.0](https://github.com/OT-CONTAINER-KIT/redis-operator/blob/master/LICENSE)

CRDs:
 NAME DESCRIPTION
 RedisCluster Redis Cluster
 Redis Redis

odo create nodejs mynodejs

第3章 DEVELOPER CLI (ODO)

103

https://devfile.io

注記

サポートされるすべてのコンポーネントタイプの一覧については、コマンド odo
catalog list components を実行します。

ソースコードが現在のディレクトリーに存在する場合は、--context フラグを使用してパスを指定でき
ます。たとえば、nodejs コンポーネントのソースが現在の作業ディレクトリーと相対的に node-
backend というフォルダーにある場合は、以下のコマンドを実行します。

--context フラグは、相対パスおよび絶対パスをサポートします。

コンポーネントがデプロイされるプロジェクトまたはアプリケーションを指定するには、--project フ
ラグおよび --app フラグを使用します。たとえば、backend プロジェクト内の myapp アプリの一部で
あるコンポーネントを作成するには、次のコマンドを実行します。

注記

これらのフラグが指定されていない場合、デフォルトはアクティブなアプリケーション
およびプロジェクトに設定されます。

3.5.3.2. スタータープロジェクト

既存のソースコードがなく、devfile およびコンポーネントを迅速に稼働させる必要がある場合は、ス
タータープロジェクトを使用します。スタータープロジェクトを使用するには、--starter フラグを odo
create コマンドに追加します。

コンポーネントタイプの利用可能なスタータープロジェクトの一覧を表示するには、odo catalog
describe component コマンドを実行します。たとえば、nodejs コンポーネントタイプの利用可能なス
タータープロジェクトをすべて取得するには、以下のコマンドを実行します。

次に、odo create コマンドで --starter フラグを使用して必要なプロジェクトを指定します。

これにより、選択したコンポーネントタイプ (この例では nodejs) に対応するサンプルテンプレートが
ダウンロードされます。テンプレートは、現在のディレクトリーまたは --context フラグで指定された
場所にダウンロードされます。スタータープロジェクトに独自の devfile がある場合、この devfile は保
持されます。

3.5.3.3. 既存の devfile の使用

既存の devfile から新規コンポーネントを作成する場合は、--devfile フラグを使用して devfile へのパス
を指定して実行できます。たとえば、GitHub の devfile に基づいて mynodejs というコンポーネントを
作成するには、以下のコマンドを使用します。

odo create nodejs mynodejs --context ./node-backend

odo create nodejs --app myapp --project backend

odo catalog describe component nodejs

odo create nodejs --starter nodejs-starter

odo create mynodejs --devfile https://raw.githubusercontent.com/odo-
devfiles/registry/master/devfiles/nodejs/devfile.yaml

OpenShift Container Platform 4.8 CLI ツール

104

3.5.3.4. インタラクティブな作成

odo create コマンドを対話的に実行して、コンポーネントの作成に必要な手順をガイドすることもでき
ます。

コンポーネントのコンポーネントタイプ、名前、およびプロジェクトを選択します。スタータープロ
ジェクトをダウンロードするかどうかを選択することもできます。完了したら、新しい devfile.yaml
ファイルが作業ディレクトリーに作成されます。

これらのリソースをクラスターにデプロイするには、odo push コマンドを実行します。

3.5.4. odo delete

odo delete コマンドは、odo によって管理されるリソースを削除するのに役立ちます。

3.5.4.1. コンポーネントの削除

devfile コンポーネントを削除するには、odo delete コマンドを実行します。

コンポーネントがクラスターにプッシュされている場合、コンポーネントは依存するストレージ、
URL、シークレット、他のリソースと共にクラスターから削除されます。コンポーネントがプッシュさ
れていない場合、コマンドはクラスターのリソースが検出できなかったことを示すエラーを出して終了
します。

確認質問を回避するには、-f フラグまたは --force フラグを使用します。

3.5.4.2. devfile Kubernetes コンポーネントのアンデプロイ

odo deploy でデプロイされた devfile Kubernetes コンポーネントをアンデプロイするには、 --deploy
フラグを指定して odo delete コマンドを実行します。

$ odo create

? Which devfile component type do you wish to create go
? What do you wish to name the new devfile component go-api
? What project do you want the devfile component to be created in default
Devfile Object Validation
 ✓ Checking devfile existence [164258ns]
 ✓ Creating a devfile component from registry: DefaultDevfileRegistry [246051ns]
Validation
 ✓ Validating if devfile name is correct [92255ns]
? Do you want to download a starter project Yes

Starter Project
 ✓ Downloading starter project go-starter from https://github.com/devfile-samples/devfile-stack-go.git
[429ms]

Please use odo push command to create the component with source deployed

$ odo delete

$ odo delete --deploy

第3章 DEVELOPER CLI (ODO)

105

確認質問を回避するには、-f フラグまたは --force フラグを使用します。

3.5.4.3. すべて削除

以下の項目を含むすべてのアーティファクトを削除するには、--all フラグを指定して odo delete コマ
ンドを実行します。

devfile コンポーネント

odo deploy コマンドを使用してデプロイされた devfile Kubernetes コンポーネント

devfile

ローカル設定

3.5.4.4. 利用可能なフラグ

-f, --force

このフラグを使用して確認質問を回避します。

-w, --wait

このフラグを使用して、コンポーネントおよび依存関係が削除されるのを待機します。このフラグ
は、アンデプロイ時には機能しません。

Common Flags フラグに関するドキュメントでは、コマンドで利用可能なフラグの詳細情報が提供され
ています。

3.5.5. odo deploy

odo を使用すると、CI/CD システムを使用してコンポーネントをデプロイする方法と同様に、コンポー
ネントをデプロイできます。まず、odo はコンテナーイメージをビルドしてから、コンポーネントのデ
プロイに必要な Kubernetes リソースをデプロイします。

コマンド odo deploy を実行すると、odo は devfile で kind deploy のデフォルトコマンドを検索し、以
下のコマンドを実行します。このタイプの deploy は、バージョン 2.2.0 以降の devfile 形式でサポート
されます。

deploy コマンドは通常、いくつかの 適用 コマンドで設定される 複合 コマンドです。

適用されると、デプロイするコンテナーのイメージを構築し、それをレジストリーにプッシュ
する image コンポーネントを参照するコマンド。

Kubernetes コンポーネント を参照するコマンドは、適用されるとクラスターに Kubernetes リ
ソースを作成します。

以下の devfile.yaml ファイルのサンプルでは、コンテナーイメージはディレクトリーにある
Dockerfile を使用してビルドされます。イメージはレジストリーにプッシュされ、この新規にビルドさ
れたイメージを使用して Kubernetes Deployment リソースがクラスターに作成されます。

$ odo delete --all

schemaVersion: 2.2.0
[...]
variables:
 CONTAINER_IMAGE: quay.io/phmartin/myimage

OpenShift Container Platform 4.8 CLI ツール

106

https://devfile.io/docs/devfile/2.2.0/user-guide/adding-kubernetes-component-to-a-devfile.html

3.5.6. odo link

odo link コマンドは、odo コンポーネントを Operator がサポートするサービスまたは別の odo コン
ポーネントにリンクするのに役立ちます。これは Service Binding Operator を使用して行います。現時
点で、odo は必要な機能を実現するために Operator 自体ではなく、Service Binding ライブラリーを使
用します。

3.5.6.1. 各種リンクオプション

odo は、コンポーネントを Operator がサポートするサービスまたは別の odo コンポーネントにリンク
するための各種のオプションを提供します。これらのオプション (またはフラグ) はすべて、コンポーネ
ントをサービスにリンクする場合でも、別のコンポーネントにリンクする場合でも使用できます。

commands:
 - id: build-image
 apply:
 component: outerloop-build
 - id: deployk8s
 apply:
 component: outerloop-deploy
 - id: deploy
 composite:
 commands:
 - build-image
 - deployk8s
 group:
 kind: deploy
 isDefault: true
components:
 - name: outerloop-build
 image:
 imageName: "{{CONTAINER_IMAGE}}"
 dockerfile:
 uri: ./Dockerfile
 buildContext: ${PROJECTS_ROOT}
 - name: outerloop-deploy
 kubernetes:
 inlined: |
 kind: Deployment
 apiVersion: apps/v1
 metadata:
 name: my-component
 spec:
 replicas: 1
 selector:
 matchLabels:
 app: node-app
 template:
 metadata:
 labels:
 app: node-app
 spec:
 containers:
 - name: main
 image: {{CONTAINER_IMAGE}}

第3章 DEVELOPER CLI (ODO)

107

https://github.com/redhat-developer/service-binding-operator

3.5.6.1.1. デフォルト動作

デフォルトでは、odo link コマンドは、コンポーネントディレクトリーに kubernetes/ という名前の
ディレクトリーを作成し、そこにサービスとリンクに関する情報 (YAML マニフェスト) を保存しま
す。odo push を使用すると、odo はこれらのマニフェストを Kubernetes クラスター上のリソースの
状態と比較し、ユーザーが指定したものと一致するようにリソースを作成、変更、または破棄する必要
があるかどうかを判断します。

3.5.6.1.2. --inlined フラグ

odo link コマンドに --inlined フラグを指定すると、odo は、kubernetes/ ディレクトリーの下にファ
イルを作成する代わりに、リンク情報をコンポーネントディレクトリーの devfile.yaml にインラインで
保存します。--inlined フラグの動作は、odo link および odo service create コマンドの両方で似てい
ます。このフラグは、すべてが単一の devfile.yaml に保存されている場合に便利です。コンポーネント
用に実行する各 odo link および odo service create コマンドで --inlined フラグを使用するのを覚えて
おく必要があります。

3.5.6.1.3. --map フラグ

場合によっては、デフォルトで利用できる内容に加えて、コンポーネントにバインディング情報をさら
に追加する必要がある場合があります。たとえば、コンポーネントをサービスにリンクしていて、サー
ビスの仕様 (仕様の略) からの情報をバインドしたい場合は、-map フラグを使用できます。odo は、リ
ンクされているサービスまたはコンポーネントの仕様に対して検証を実行しないことに注意してくださ
い。このフラグの使用は、Kubernetes YAML マニフェストの使用に慣れる場合にのみ推奨されます。

3.5.6.1.4. --bind-as-files フラグ

これまでに説明したすべてのリンクオプションについて、odo はバインディング情報を環境変数として
コンポーネントに挿入します。この情報をファイルとしてマウントする場合は、--bind-as-files フラグ
を使用できます。これにより、odo はバインディング情報をファイルとしてコンポーネントの Pod 内
の /bindings の場所に挿入します。環境変数のシナリオと比較して、-bind-as-files を使用すると、
ファイルはキーにちなんで名前が付けられ、これらのキーの値はこれらのファイルのコンテンツとして
保存されます。

3.5.6.2. 例

3.5.6.2.1. デフォルトの odo link

以下の例では、バックエンドコンポーネントはデフォルトの odo link コマンドを使用して PostgreSQL
サービスにリンクされています。バックエンドコンポーネントでは、コンポーネントおよびサービスが
クラスターにプッシュされていることを確認します。

出力例

出力例

$ odo list

APP NAME PROJECT TYPE STATE MANAGED BY ODO
app backend myproject spring Pushed Yes

$ odo service list

OpenShift Container Platform 4.8 CLI ツール

108

ここで、odo link を実行してバックエンドコンポーネントを PostgreSQL サービスにリンクします。

出力例

次に、odo push を実行して Kubernetes クラスターにリンクを作成します。

odo push に成功すると、以下のような結果が表示されます。

1. バックエンドコンポーネントによってデプロイされたアプリケーションの URL を開くと、デー
タベース内の ToDo アイテムのリストが表示されます。たとえば、odo url list コマンドの出力
では、todos が記載されているパスが含まれます。

出力例

URL の正しいパスは http://8080-tcp.192.168.39.112.nip.io/api/v1/todos になります。URL は設
定によって異なります。また、追加しない限りデータベースには todo がないため、URL に空
の JSON オブジェクトが表示される場合があることにも注意してください。

2. backend コンポーネントにインジェクトされる Postgres サービスに関連するバインディング情
報を確認できます。このバインディング情報は、デフォルトで環境変数として挿入されます。
バックエンドコンポーネントのディレクトリーから odo describe コマンドを使用してこれを
確認できます。

出力例:

NAME MANAGED BY ODO STATE AGE
PostgresCluster/hippo Yes (backend) Pushed 59m41s

$ odo link PostgresCluster/hippo

 ✓ Successfully created link between component "backend" and service "PostgresCluster/hippo"

To apply the link, please use `odo push`

$ odo url list

Found the following URLs for component backend
NAME STATE URL PORT SECURE KIND
8080-tcp Pushed http://8080-tcp.192.168.39.112.nip.io 8080 false ingress

$ odo describe

Component Name: backend
Type: spring
Environment Variables:
 · PROJECTS_ROOT=/projects
 · PROJECT_SOURCE=/projects
 · DEBUG_PORT=5858
Storage:
 · m2 of size 3Gi mounted to /home/user/.m2
URLs:
 · http://8080-tcp.192.168.39.112.nip.io exposed via 8080
Linked Services:

第3章 DEVELOPER CLI (ODO)

109

これらの変数の一部は、バックエンドコンポーネントの
src/main/resources/application.properties ファイルで使用されるため、JavaSpringBoot ア
プリケーションは PostgreSQL データベースサービスに接続できます。

3. 最後に、odo はバックエンドコンポーネントのディレクトリーに kubernetes/ というディレク
トリーを作成しました。このディレクトリーには次のファイルが含まれています。

これらのファイルには、次の 2 つのリソースの情報 (YAML マニフェスト) が含まれています。

a. odo-service-hippo.yaml-odo service create: odo service create --from-file
../postgrescluster.yaml コマンドを使用して作成された Postgres サービス。

 · PostgresCluster/hippo
 Environment Variables:
 · POSTGRESCLUSTER_PGBOUNCER-EMPTY
 · POSTGRESCLUSTER_PGBOUNCER.INI
 · POSTGRESCLUSTER_ROOT.CRT
 · POSTGRESCLUSTER_VERIFIER
 · POSTGRESCLUSTER_ID_ECDSA
 · POSTGRESCLUSTER_PGBOUNCER-VERIFIER
 · POSTGRESCLUSTER_TLS.CRT
 · POSTGRESCLUSTER_PGBOUNCER-URI
 · POSTGRESCLUSTER_PATRONI.CRT-COMBINED
 · POSTGRESCLUSTER_USER
 · pgImage
 · pgVersion
 · POSTGRESCLUSTER_CLUSTERIP
 · POSTGRESCLUSTER_HOST
 · POSTGRESCLUSTER_PGBACKREST_REPO.CONF
 · POSTGRESCLUSTER_PGBOUNCER-USERS.TXT
 · POSTGRESCLUSTER_SSH_CONFIG
 · POSTGRESCLUSTER_TLS.KEY
 · POSTGRESCLUSTER_CONFIG-HASH
 · POSTGRESCLUSTER_PASSWORD
 · POSTGRESCLUSTER_PATRONI.CA-ROOTS
 · POSTGRESCLUSTER_DBNAME
 · POSTGRESCLUSTER_PGBOUNCER-PASSWORD
 · POSTGRESCLUSTER_SSHD_CONFIG
 · POSTGRESCLUSTER_PGBOUNCER-FRONTEND.KEY
 · POSTGRESCLUSTER_PGBACKREST_INSTANCE.CONF
 · POSTGRESCLUSTER_PGBOUNCER-FRONTEND.CA-ROOTS
 · POSTGRESCLUSTER_PGBOUNCER-HOST
 · POSTGRESCLUSTER_PORT
 · POSTGRESCLUSTER_ROOT.KEY
 · POSTGRESCLUSTER_SSH_KNOWN_HOSTS
 · POSTGRESCLUSTER_URI
 · POSTGRESCLUSTER_PATRONI.YAML
 · POSTGRESCLUSTER_DNS.CRT
 · POSTGRESCLUSTER_DNS.KEY
 · POSTGRESCLUSTER_ID_ECDSA.PUB
 · POSTGRESCLUSTER_PGBOUNCER-FRONTEND.CRT
 · POSTGRESCLUSTER_PGBOUNCER-PORT
 · POSTGRESCLUSTER_CA.CRT

$ ls kubernetes
odo-service-backend-postgrescluster-hippo.yaml odo-service-hippo.yaml

OpenShift Container Platform 4.8 CLI ツール

110

b. odo-service-backend-PostgresCluster-hippo.yaml-odolink: odo link コマンドを使用し
て作成された リンク。

3.5.6.2.2. --inlined フラグでの odo link の使用

odo link コマンドで --inlined フラグを使用すると、これがバインディング情報を挿入するというフラ
グなしに odo link コマンドと同じ効果があります。ただし、上記の場合は、kubernetes/ ディレクト
リーに 2 つのマニフェストファイルがあります。1 つは Postgres サービス用で、もう 1 つは backend コ
ンポーネントとこのサービス間のリンク用です。ただし、-inlined フラグを渡すと、odo は
kubernetes/ ディレクトリーの下に YAML マニフェストを保存するファイルを作成せず、devfile.yaml
ファイルにインラインで保存します。

これを確認するには、最初に PostgreSQL サービスからコンポーネントをリンク解除します。

出力例:

クラスターでそれらをリンクするには、odo push を実行します。kubernetes/ ディレクトリーを検査
すると、1 つのファイルのみが表示されます。

次に、--inlined フラグを使用してリンクを作成します。

出力例:

--inlined フラグを省略する手順など、クラスターで作成されるリンクを取得するために odo push を実
行する必要があります。odo は設定を devfile.yaml に保存します。このファイルに以下のようなエン
トリーが表示されます。

$ odo unlink PostgresCluster/hippo

 ✓ Successfully unlinked component "backend" from service "PostgresCluster/hippo"

To apply the changes, please use `odo push`

$ ls kubernetes
odo-service-hippo.yaml

$ odo link PostgresCluster/hippo --inlined

 ✓ Successfully created link between component "backend" and service "PostgresCluster/hippo"

To apply the link, please use `odo push`

 kubernetes:
 inlined: |
 apiVersion: binding.operators.coreos.com/v1alpha1
 kind: ServiceBinding
 metadata:
 creationTimestamp: null
 name: backend-postgrescluster-hippo
 spec:
 application:
 group: apps
 name: backend-app

第3章 DEVELOPER CLI (ODO)

111

odo unlink PostgresCluster/hippo を実行する場合に、odo はまず devfile.yaml からリンク情報を削
除し、後続の odo push はクラスターからリンクを削除するようになりました。

3.5.6.2.3. カスタムバインディング

odo link は、カスタムバインディング情報をコンポーネントに挿入することのできるフラグ --map を
受け入れます。このようなバインディング情報は、コンポーネントにリンクしているリソースのマニ
フェストから取得されます。たとえば、バックエンドコンポーネントおよび PostgreSQL サービスのコ
ンテキストでは、PostgreSQL サービスのマニフェスト postgrescluster.yaml ファイルからの情報を
バックエンドコンポーネントに注入することができます。

PostgresCluster サービスの名前が hippo (または PostgresCluster サービスの名前が異なる場合は
odo service list の出力) の場合、その YAML 定義から postgresVersion の値をバックエンドコンポー
ネントに挿入するときは、次のコマンドを実行します。

Postgres サービスの名前が hippo と異なる場合は、上記のコマンドで pgVersion の値の .hippo の代
わりにそれを指定する必要があることに注意してください。

リンク操作後に、通常どおり odo push を実行します。プッシュ操作が正常に完了すると、バックエン
ドコンポーネントディレクトリーから次のコマンドを実行して、カスタムマッピングが適切に挿入され
たかどうかを検証できます。

出力例:

カスタムバインディング情報を複数挿入したい可能性があるため、odo link は複数のキーと値のペアを
受け入れます。唯一の制約は、これらを --map <key>=<value> として指定する必要があるということ
です。たとえば、PostgreSQL イメージ情報をバージョンと共に注入する場合には、以下を実行できま
す。

次に、odo push を実行します。両方のマッピングが正しくインジェクトされたかどうかを確認するに
は、以下のコマンドを実行します。

 resource: deployments
 version: v1
 bindAsFiles: false
 detectBindingResources: true
 services:
 - group: postgres-operator.crunchydata.com
 id: hippo
 kind: PostgresCluster
 name: hippo
 version: v1beta1
 status:
 secret: ""
 name: backend-postgrescluster-hippo

$ odo link PostgresCluster/hippo --map pgVersion='{{ .hippo.spec.postgresVersion }}'

$ odo exec -- env | grep pgVersion

pgVersion=13

$ odo link PostgresCluster/hippo --map pgVersion='{{ .hippo.spec.postgresVersion }}' --map
pgImage='{{ .hippo.spec.image }}'

OpenShift Container Platform 4.8 CLI ツール

112

出力例:

3.5.6.2.3.1. インラインかどうか。

odo link が kubernetes/ ディレクトリー下のリンクのマニフェストファイルを生成するデフォルトの動
作を受け入れます。または、すべてを単一の devfile.yaml ファイルに保存する場合は、-inlined フラグ
を使用できます。

3.5.6.3. ファイルとしてのバインド

odo link が提供するもう 1 つの便利なフラグは、--bind-as-files です。このフラグが渡されると、バイ
ンディング情報は環境変数としてコンポーネントの Pod に挿入されませんが、ファイルシステムとし
てマウントされます。

バックエンドコンポーネントと PostgreSQL サービスの間に既存のリンクがないことを確認します。こ
れは、バックエンドコンポーネントのディレクトリーで odo describe を実行して、以下のような出力
が表示されるかどうかを確認することで実行できます。

以下を使用してコンポーネントからサービスをリンクを解除します。

3.5.6.4. --bind-as-files の例

3.5.6.4.1. デフォルトの odo link の使用

デフォルトでは、odo はリンク情報を保存するために kubernetes/ ディレクトリーの下にマニフェスト
ファイルを作成します。バックエンドコンポーネントおよび PostgreSQL サービスをリンクします。

odo describe 出力例:

$ odo exec -- env | grep -e "pgVersion\|pgImage"

pgVersion=13
pgImage=registry.developers.crunchydata.com/crunchydata/crunchy-postgres-ha:centos8-13.4-0

Linked Services:
 · PostgresCluster/hippo

$ odo unlink PostgresCluster/hippo
$ odo push

$ odo link PostgresCluster/hippo --bind-as-files
$ odo push

$ odo describe

Component Name: backend
Type: spring
Environment Variables:
 · PROJECTS_ROOT=/projects
 · PROJECT_SOURCE=/projects
 · DEBUG_PORT=5858
 · SERVICE_BINDING_ROOT=/bindings

第3章 DEVELOPER CLI (ODO)

113

以前の odo describe 出力で key=value 形式の環境変数であったものはすべて、ファイルとしてマウン
トされるようになりました。cat コマンドを使用して、これらのファイルの一部を表示します。

コマンドの例:

出力例:

 · SERVICE_BINDING_ROOT=/bindings
Storage:
 · m2 of size 3Gi mounted to /home/user/.m2
URLs:
 · http://8080-tcp.192.168.39.112.nip.io exposed via 8080
Linked Services:
 · PostgresCluster/hippo
 Files:
 · /bindings/backend-postgrescluster-hippo/pgbackrest_instance.conf
 · /bindings/backend-postgrescluster-hippo/user
 · /bindings/backend-postgrescluster-hippo/ssh_known_hosts
 · /bindings/backend-postgrescluster-hippo/clusterIP
 · /bindings/backend-postgrescluster-hippo/password
 · /bindings/backend-postgrescluster-hippo/patroni.yaml
 · /bindings/backend-postgrescluster-hippo/pgbouncer-frontend.crt
 · /bindings/backend-postgrescluster-hippo/pgbouncer-host
 · /bindings/backend-postgrescluster-hippo/root.key
 · /bindings/backend-postgrescluster-hippo/pgbouncer-frontend.key
 · /bindings/backend-postgrescluster-hippo/pgbouncer.ini
 · /bindings/backend-postgrescluster-hippo/uri
 · /bindings/backend-postgrescluster-hippo/config-hash
 · /bindings/backend-postgrescluster-hippo/pgbouncer-empty
 · /bindings/backend-postgrescluster-hippo/port
 · /bindings/backend-postgrescluster-hippo/dns.crt
 · /bindings/backend-postgrescluster-hippo/pgbouncer-uri
 · /bindings/backend-postgrescluster-hippo/root.crt
 · /bindings/backend-postgrescluster-hippo/ssh_config
 · /bindings/backend-postgrescluster-hippo/dns.key
 · /bindings/backend-postgrescluster-hippo/host
 · /bindings/backend-postgrescluster-hippo/patroni.crt-combined
 · /bindings/backend-postgrescluster-hippo/pgbouncer-frontend.ca-roots
 · /bindings/backend-postgrescluster-hippo/tls.key
 · /bindings/backend-postgrescluster-hippo/verifier
 · /bindings/backend-postgrescluster-hippo/ca.crt
 · /bindings/backend-postgrescluster-hippo/dbname
 · /bindings/backend-postgrescluster-hippo/patroni.ca-roots
 · /bindings/backend-postgrescluster-hippo/pgbackrest_repo.conf
 · /bindings/backend-postgrescluster-hippo/pgbouncer-port
 · /bindings/backend-postgrescluster-hippo/pgbouncer-verifier
 · /bindings/backend-postgrescluster-hippo/id_ecdsa
 · /bindings/backend-postgrescluster-hippo/id_ecdsa.pub
 · /bindings/backend-postgrescluster-hippo/pgbouncer-password
 · /bindings/backend-postgrescluster-hippo/pgbouncer-users.txt
 · /bindings/backend-postgrescluster-hippo/sshd_config
 · /bindings/backend-postgrescluster-hippo/tls.crt

$ odo exec -- cat /bindings/backend-postgrescluster-hippo/password

OpenShift Container Platform 4.8 CLI ツール

114

コマンドの例:

出力例:

コマンドの例:

出力例:

3.5.6.4.2. --inlined の使用

--bind-as-files と --inlined を一緒に使用した結果は、odolink--inlined を使用した場合と同様です。リ
ンクのマニフェストは、kubernetes/ ディレクトリーの別のファイルに保存されるのではな
く、devfile.yaml に保存されます。これ以外に、odo describe 出力は以前と同じになります。

3.5.6.4.3. カスタムバインディング

バックエンドコンポーネントを PostgreSQL サービスにリンクしているときにカスタムバインディング
を渡すと、これらのカスタムバインディングは環境変数としてではなく、ファイルとしてマウントされ
ます。以下に例を示します。

これらのカスタムバインディングは、環境変数として挿入されるのではなく、ファイルとしてマウント
されます。これが機能することを確認するには、以下のコマンドを実行します。

コマンドの例:

出力例:

コマンドの例:

出力例:

q({JC:jn^mm/Bw}eu+j.GX{k

$ odo exec -- cat /bindings/backend-postgrescluster-hippo/user

hippo

$ odo exec -- cat /bindings/backend-postgrescluster-hippo/clusterIP

10.101.78.56

$ odo link PostgresCluster/hippo --map pgVersion='{{ .hippo.spec.postgresVersion }}' --map
pgImage='{{ .hippo.spec.image }}' --bind-as-files
$ odo push

$ odo exec -- cat /bindings/backend-postgrescluster-hippo/pgVersion

13

$ odo exec -- cat /bindings/backend-postgrescluster-hippo/pgImage

第3章 DEVELOPER CLI (ODO)

115

3.5.7. odo registry

odo は移植可能な devfile 形式を使用してコンポーネントを記述します。odo は各種の devfile レジス
トリーに接続して、さまざまな言語およびフレームワークの devfile をダウンロードできます。

公開されている利用可能な devfile レジストリーに接続するか、または独自の Secure Registry をイン
ストールできます。

odo registry コマンドを使用して、odo によって使用されるレジストリーを管理し、devfile 情報を取
得できます。

3.5.7.1. レジストリーの一覧表示

odo で現在接続しているレジストリーを一覧表示するには、以下のコマンドを実行します。

出力例:

DefaultDevfileRegistry は odo によって使用されるデフォルトレジストリーです。これは devfile.io プ
ロジェクトによって提供されます。

3.5.7.2. レジストリーの追加

レジストリーを追加するには、以下のコマンドを実行します。

出力例:

独自の Secure Registry をデプロイしている場合、--token フラグを使用してセキュアなレジストリーに
対して認証するためにパーソナルアクセストークンを指定できます。

3.5.7.3. レジストリーの削除

レジストリーを削除するには、以下のコマンドを実行します。

出力例:

registry.developers.crunchydata.com/crunchydata/crunchy-postgres-ha:centos8-13.4-0

$ odo registry list

NAME URL SECURE
DefaultDevfileRegistry https://registry.devfile.io No

$ odo registry add

$ odo registry add StageRegistry https://registry.stage.devfile.io
New registry successfully added

$ odo registry add MyRegistry https://myregistry.example.com --token <access_token>
New registry successfully added

$ odo registry delete

OpenShift Container Platform 4.8 CLI ツール

116

https://devfile.io

--force (または -f) フラグを使用して、確認なしでレジストリーを強制的に削除します。

3.5.7.4. レジストリーの更新

すでに登録されているレジストリーの URL またはパーソナルアクセストークンを更新するには、以下
のコマンドを実行します。

出力例:

--force (または -f) フラグを使用して、確認なしでレジストリーの更新を強制します。

3.5.8. odo service

odo は Operator を利用して サービス をデプロイでき ます。

インストールに使用できるオペレーターとサービスのリストは、odo catalog コマンドを使用して見つ
けることができます。

サービスは コンポーネント のコンテキストで作成されるため、サービスをデプロイする前に odo
create コマンドを実行してください。

サービスは、以下の 2 つのステップに従ってデプロイされます。

1. サービスを定義し、その定義を devfile に保存します。

2. odo push コマンドを使用して、定義されたサービスをクラスターにデプロイします。

3.5.8.1. 新しいサービスの作成

新規サービスを作成するには、以下のコマンドを実行します。

たとえば、my-redis-service という名前の Redis サービスのインスタンスを作成するには、以下のコマ
ンドを実行します。

出力例

$ odo registry delete StageRegistry
? Are you sure you want to delete registry "StageRegistry" Yes
Successfully deleted registry

$ odo registry update

 $ odo registry update MyRegistry https://otherregistry.example.com --token <other_access_token>
 ? Are you sure you want to update registry "MyRegistry" Yes
 Successfully updated registry

$ odo service create

$ odo catalog list services
Services available through Operators
NAME CRDs
redis-operator.v0.8.0 RedisCluster, Redis

第3章 DEVELOPER CLI (ODO)

117

このコマンドは、サービスの定義を含む Kubernetes マニフェストを kubernetes/ ディレクトリーに作
成し、このファイルは devfile.yaml ファイルから参照されます。

出力例

コマンドの例

出力例

作成されたインスタンスの名前はオプションです。名前を指定しない場合は、サービスの小文字の名前

$ odo service create redis-operator.v0.8.0/Redis my-redis-service
Successfully added service to the configuration; do 'odo push' to create service on the cluster

$ cat kubernetes/odo-service-my-redis-service.yaml

 apiVersion: redis.redis.opstreelabs.in/v1beta1
 kind: Redis
 metadata:
 name: my-redis-service
 spec:
 kubernetesConfig:
 image: quay.io/opstree/redis:v6.2.5
 imagePullPolicy: IfNotPresent
 resources:
 limits:
 cpu: 101m
 memory: 128Mi
 requests:
 cpu: 101m
 memory: 128Mi
 serviceType: ClusterIP
 redisExporter:
 enabled: false
 image: quay.io/opstree/redis-exporter:1.0
 storage:
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

$ cat devfile.yaml

[...]
components:
- kubernetes:
 uri: kubernetes/odo-service-my-redis-service.yaml
 name: my-redis-service
[...]

OpenShift Container Platform 4.8 CLI ツール

118

作成されたインスタンスの名前はオプションです。名前を指定しない場合は、サービスの小文字の名前
です。たとえば、以下のコマンドは redis という名前の Redis サービスのインスタンスを作成します。

3.5.8.1.1. マニフェストのインライン化

デフォルトで、新規マニフェストは kubernetes/ ディレクトリーに作成され、devfile.yaml ファイルか
ら参照されます。--inlined フラグを使用して、devfile.yaml ファイル内でマニフェストをインラインに
することができます。

コマンドの例

出力例

$ odo service create redis-operator.v0.8.0/Redis

$ odo service create redis-operator.v0.8.0/Redis my-redis-service --inlined
Successfully added service to the configuration; do 'odo push' to create service on the cluster

$ cat devfile.yaml

[...]
components:
- kubernetes:
 inlined: |
 apiVersion: redis.redis.opstreelabs.in/v1beta1
 kind: Redis
 metadata:
 name: my-redis-service
 spec:
 kubernetesConfig:
 image: quay.io/opstree/redis:v6.2.5
 imagePullPolicy: IfNotPresent
 resources:
 limits:
 cpu: 101m
 memory: 128Mi
 requests:
 cpu: 101m
 memory: 128Mi
 serviceType: ClusterIP
 redisExporter:
 enabled: false
 image: quay.io/opstree/redis-exporter:1.0
 storage:
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 name: my-redis-service
[...]

第3章 DEVELOPER CLI (ODO)

119

3.5.8.1.2. サービスの設定

特定のカスタマイズを行わないと、サービスはデフォルト設定で作成されます。コマンドライン引数ま
たはファイルのいずれかを使用して、独自の設定を指定できます。

3.5.8.1.2.1. コマンドライン引数の使用

--parameters (または -p) フラグを使用して、独自の設定を指定します。

以下の例では、Redis サービスを 3 つのパラメーターで設定します。

コマンドの例

出力例

odo catalog describe service コマンドを使用して、特定のサービスの使用可能なパラメーターを取得
できます。

3.5.8.1.2.2. ファイルの使用

YAML マニフェストを使用して独自の仕様を設定します。以下の例では、Redis サービスは 3 つのパラ
メーターで設定されます。

1. マニフェストを作成します。

$ odo service create redis-operator.v0.8.0/Redis my-redis-service \
 -p kubernetesConfig.image=quay.io/opstree/redis:v6.2.5 \
 -p kubernetesConfig.serviceType=ClusterIP \
 -p redisExporter.image=quay.io/opstree/redis-exporter:1.0
Successfully added service to the configuration; do 'odo push' to create service on the cluster

$ cat kubernetes/odo-service-my-redis-service.yaml

apiVersion: redis.redis.opstreelabs.in/v1beta1
kind: Redis
metadata:
 name: my-redis-service
spec:
 kubernetesConfig:
 image: quay.io/opstree/redis:v6.2.5
 serviceType: ClusterIP
 redisExporter:
 image: quay.io/opstree/redis-exporter:1.0

$ cat > my-redis.yaml <<EOF
apiVersion: redis.redis.opstreelabs.in/v1beta1
kind: Redis
metadata:
 name: my-redis-service
spec:
 kubernetesConfig:
 image: quay.io/opstree/redis:v6.2.5
 serviceType: ClusterIP

OpenShift Container Platform 4.8 CLI ツール

120

2. マニフェストからサービスを作成します。

3.5.8.2. サービスの削除

サービスを削除するには、以下のコマンドを実行します。

出力例

--force (または -f) フラグを使用して、確認なしでサービスを強制的に削除します。

3.5.8.3. サービスの一覧表示

コンポーネント用に作成されたサービスを一覧表示するには、以下のコマンドを実行します。

出力例

サービスごとに、STATE は、サービスが odo push コマンドを使用してクラスターにプッシュされて
いるか、またはサービスがクラスターで実行中であるが、odo service delete コマンドを使用してロー
カルで devfile から削除されるかどうかを示します。

3.5.8.4. サービスに関する情報の取得

設定したパラメーターの種類、バージョン、名前、および一覧などのサービスの詳細を取得するには、
以下のコマンドを実行します。

 redisExporter:
 image: quay.io/opstree/redis-exporter:1.0
EOF

$ odo service create --from-file my-redis.yaml
Successfully added service to the configuration; do 'odo push' to create service on the cluster

$ odo service delete

$ odo service list
NAME MANAGED BY ODO STATE AGE
Redis/my-redis-service Yes (api) Deleted locally 5m39s

$ odo service delete Redis/my-redis-service
? Are you sure you want to delete Redis/my-redis-service Yes
Service "Redis/my-redis-service" has been successfully deleted; do 'odo push' to delete service from
the cluster

$ odo service list

$ odo service list
NAME MANAGED BY ODO STATE AGE
Redis/my-redis-service-1 Yes (api) Not pushed
Redis/my-redis-service-2 Yes (api) Pushed 52s
Redis/my-redis-service-3 Yes (api) Deleted locally 1m22s

第3章 DEVELOPER CLI (ODO)

121

出力例

3.5.9. odo ストレージ

odo を使用すると、ユーザーはコンポーネントに割り当てられるストレージボリュームを管理できま
す。ストレージボリュームは、emptyDir Kubernetes ボリュームを使用するエフェメラルボリューム、
または 永続ボリュームクレーム (PVC) のいずれかです。PVC を使用すると、ユーザーは特定のクラウ
ド環境の詳細を理解していなくても、永続ボリューム (GCE PersistentDisk や iSCSI ボリュームなど) を
要求できます。永続ストレージボリュームは、再起動時にデータを永続化し、コンポーネントの再ビル
ドに使用できます。

3.5.9.1. ストレージボリュームの追加

ストレージボリュームをクラスターに追加するには、以下のコマンドを実行します。

出力例:

上記の例では、最初のストレージボリュームが /data パスにマウントされており、サイズは 1Gi で、2
番目のボリュームが /tmp にマウントされ、一時的です。

3.5.9.2. ストレージボリュームの一覧表示

コンポーネントで現在使用されているストレージボリュームを確認するには、以下のコマンドを実行し
ます。

出力例:

$ odo service describe

$ odo service describe Redis/my-redis-service
Version: redis.redis.opstreelabs.in/v1beta1
Kind: Redis
Name: my-redis-service
Parameters:
NAME VALUE
kubernetesConfig.image quay.io/opstree/redis:v6.2.5
kubernetesConfig.serviceType ClusterIP
redisExporter.image quay.io/opstree/redis-exporter:1.0

$ odo storage create

$ odo storage create store --path /data --size 1Gi
✓ Added storage store to nodejs-project-ufyy

$ odo storage create tempdir --path /tmp --size 2Gi --ephemeral
✓ Added storage tempdir to nodejs-project-ufyy

Please use `odo push` command to make the storage accessible to the component

$ odo storage list

$ odo storage list

OpenShift Container Platform 4.8 CLI ツール

122

https://kubernetes.io/docs/concepts/storage/volumes/#persistentvolumeclaim

3.5.9.3. ストレージボリュームの削除

ストレージボリュームを削除するには、以下のコマンドを実行します。

出力例:

上記の例では、-f フラグを使用すると、ユーザーパーミッションを要求せずにストレージを強制的に削
除します。

3.5.9.4. 特定のコンテナーへのストレージの追加

devfile に複数のコンテナーがある場合、odo storage create コマンドで --container フラグを使用し
て、ストレージを割り当てるコンテナーを指定できます。

以下の例は、複数のコンテナーを持つ devfile の抜粋です。

この例では、nodejs1 と nodejs2 の 2 つのコンテナーがあります。ストレージを nodejs2 コンテナー
に割り当てるには、以下のコマンドを使用します。

出力例:

The component 'nodejs-project-ufyy' has the following storage attached:
NAME SIZE PATH STATE
store 1Gi /data Not Pushed
tempdir 2Gi /tmp Not Pushed

$ odo storage delete

$ odo storage delete store -f
Deleted storage store from nodejs-project-ufyy

Please use `odo push` command to delete the storage from the cluster

components:
 - name: nodejs1
 container:
 image: registry.access.redhat.com/ubi8/nodejs-12:1-36
 memoryLimit: 1024Mi
 endpoints:
 - name: "3000-tcp"
 targetPort: 3000
 mountSources: true
 - name: nodejs2
 container:
 image: registry.access.redhat.com/ubi8/nodejs-12:1-36
 memoryLimit: 1024Mi

$ odo storage create --container

$ odo storage create store --path /data --size 1Gi --container nodejs2
✓ Added storage store to nodejs-testing-xnfg

Please use `odo push` command to make the storage accessible to the component

第3章 DEVELOPER CLI (ODO)

123

odo storage list コマンドを使用して、ストレージリソースを一覧表示できます。

出力例:

3.5.10. 共通フラグ

以下のフラグは、ほとんどの odo コマンドで利用できます。

表3.1 odo フラグ

コマンド 説明

--context コンポーネントを定義するコンテキストディレクトリーを設定します。

--project コンポーネントのプロジェクトを設定します。デフォルトは、ローカル設定
で定義されたプロジェクトです。利用できる場合は、クラスターの現在のプ
ロジェクトです。

--app コンポーネントのアプリケーションを設定します。デフォルトは、ローカル
設定で定義されたアプリケーションです。存在しない場合は、app にしま
す。

--kubeconfig デフォルト設定を使用していない場合は、パスを kubeconfig 値に設定しま
す。

--show-log このフラグを使用してログを表示します。

-f, --force このフラグを使用して、コマンドに対して確認を求めるプロンプトを出さな
いように指示します。

-v, --v 詳細レベルを設定します。詳細は、odo でのロギング について参照してくだ
さい。

-h, --help コマンドのヘルプを出力します。

注記

一部のコマンドでフラグを使用できない場合があります。--help フラグを指定してコマ
ンドを実行して、利用可能なすべてのフラグの一覧を取得します。

3.5.11. JSON 出力

コンテンツを出力する odo コマンドは、通常、-o json フラグを受け入れて、このコンテンツを JSON

$ odo storage list

The component 'nodejs-testing-xnfg' has the following storage attached:
NAME SIZE PATH CONTAINER STATE
store 1Gi /data nodejs2 Not Pushed

OpenShift Container Platform 4.8 CLI ツール

124

https://github.com/redhat-developer/odo/wiki/Logging-in-odo

コンテンツを出力する odo コマンドは、通常、-o json フラグを受け入れて、このコンテンツを JSON
形式で出力します。これは、他のプログラムがこの出力をより簡単に解析するのに適しています。

出力構造は Kubernetes リソースに似ており、kind、apiVersion、metadata、spec、および status
フィールドがあります。

リスト コマンドは、リストのアイテムを一覧表示する items (または同様の) フィールドを含む List リ
ソースを返します。各アイテムも Kubernetes リソースに類似しています。

delete コマンドは Status リソースを返します。ステータス Kubernetes リソース を参照してくださ
い。

他のコマンドは、Application、Storage、URL などのコマンドに関連付けられたリソースを返しま
す。

現在 -o json フラグを許可するコマンドの全一覧は以下のとおりです。

コマンド 種類 (バージョン) リストアイテムの種類
(バージョン)

完全なコンテンツかどう
か

odo application describe Application
(odo.dev/v1alpha1)

該当なし いいえ

odo application list List (odo.dev/v1alpha1) Application
(odo.dev/v1alpha1)

?

odo catalog list
components

List (odo.dev/v1alpha1) missing はい

odo catalog list services List (odo.dev/v1alpha1) ClusterServiceVersion
(operators.coreos.com/
v1alpha1)

?

odo catalog describe
component

missing 該当なし はい

odo catalog describe
service

CRDDescription
(odo.dev/v1alpha1)

該当なし はい

odo component create Component
(odo.dev/v1alpha1)

該当なし はい

odo component
describe

Component
(odo.dev/v1alpha1)

該当なし はい

odo component list List (odo.dev/v1alpha1) Component
(odo.dev/v1alpha1)

はい

odo config view DevfileConfiguration
(odo.dev/v1alpha1)

該当なし はい

第3章 DEVELOPER CLI (ODO)

125

https://kubernetes.io/docs/reference/kubernetes-api/common-definitions/status/

odo debug info OdoDebugInfo
(odo.dev/v1alpha1)

該当なし はい

odo env view EnvInfo
(odo.dev/v1alpha1)

該当なし はい

odo preference view PreferenceList
(odo.dev/v1alpha1)

該当なし はい

odo project create Project
(odo.dev/v1alpha1)

該当なし はい

odo project delete Status (v1) 該当なし はい

odo project get Project
(odo.dev/v1alpha1)

該当なし はい

odo project list List (odo.dev/v1alpha1) Project
(odo.dev/v1alpha1)

はい

odo registry list List (odo.dev/v1alpha1) missing はい

odo service create サービス 該当なし はい

odo service describe サービス 該当なし はい

odo service list List (odo.dev/v1alpha1) サービス はい

odo storage create Storage
(odo.dev/v1alpha1)

該当なし はい

odo storage delete Status (v1) 該当なし はい

odo storage list List (odo.dev/v1alpha1) Storage
(odo.dev/v1alpha1)

はい

odo url list List (odo.dev/v1alpha1) URL (odo.dev/v1alpha1) はい

コマンド 種類 (バージョン) リストアイテムの種類
(バージョン)

完全なコンテンツかどう
か

OpenShift Container Platform 4.8 CLI ツール

126

第4章 OPENSHIFT SERVERLESS で使用する KNATIVE CLI
Knative (kn) CLI は、OpenShift Container Platform の Knative コンポーネントとの簡単な対話を有効に
します。

4.1. 主な特長

Knative (kn) CLI は、サーバーレスコンピューティングタスクを単純かつ簡潔にするように設計されて
います。Knative CLI の主な機能は次のとおりです。

コマンドラインからサーバーレスアプリケーションをデプロイします。

サービス、リビジョン、およびトラフィック分割などの Knative Serving の機能を管理します。

イベントソースおよびトリガーなどの Knative Eventing コンポーネントを作成し、管理しま
す。

既存の Kubernetes アプリケーションおよび Knative サービスを接続するために、sink binding
を作成します。

kubectl CLI と同様に、柔軟性のあるプラグインアーキテクチャーで Knative CLI を拡張しま
す。

Knative サービスの自動スケーリングパラメーターを設定します。

操作の結果を待機したり、カスタムロールアウトおよびロールバックストラテジーのデプロイ
などのスクリプト化された使用。

4.2. KNATIVE CLI のインストール

Knative CLI のインストール について参照してください。

第4章 OPENSHIFT SERVERLESS で使用する KNATIVE CLI

127

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/serverless/#installing-kn

第5章 PIPELINES CLI (TKN)

5.1. TKN のインストール

tkn CLI を使用して、ターミナルから Red Hat OpenShift Pipeline を管理します。以下のセクションで
は、各種の異なるプラットフォームに tkn をインストールする方法を説明します。

また、OpenShift Container Platform Web コンソールから最新のバイナリーへの URL を見つけるに
は、右上隅の ? アイコンをクリックし、Command Line Tools を選択します。

5.1.1. Linux への Red Hat OpenShift Pipelines CLI (tkn) のインストール

Linux ディストリビューションの場合、CLI を tar.gz アーカイブとして直接ダウンロードできます。

手順

1. 関連する CLI をダウンロードします。

Linux (x86_64, amd64)

Linux on IBM Z and LinuxONE (s390x)

Linux on IBM Power Systems (ppc64le)

2. アーカイブを展開します。

3. tkn バイナリーを、PATH にあるディレクトリーに配置します。

4. PATH を確認するには、以下を実行します。

5.1.2. RPM を使用した Red Hat OpenShift Pipelines CLI (tkn) の Linux へのインストー
ル

Red Hat Enterprise Linux (RHEL) バージョン 8 の場合は、Red Hat OpenShift Pipelines CLI (tkn) を
RPM としてインストールできます。

前提条件

お使いの Red Hat アカウントに有効な OpenShift Container Platform サブスクリプションがあ
る。

ローカルシステムに root または sudo 権限がある。

手順

1. Red Hat Subscription Manager に登録します。

$ tar xvzf <file>

$ echo $PATH

subscription-manager register

OpenShift Container Platform 4.8 CLI ツール

128

https://mirror.openshift.com/pub/openshift-v4/clients/pipeline/0.19.1/tkn-linux-amd64-0.19.1.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipeline/0.19.1/tkn-linux-s390x-0.19.1.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipeline/0.19.1/tkn-linux-ppc64le-0.19.1.tar.gz

2. 最新のサブスクリプションデータをプルします。

3. 利用可能なサブスクリプションを一覧表示します。

4. 直前のコマンドの出力で、OpenShift Container Platform サブスクリプションのプール ID を見
つけ、これを登録されたシステムにアタッチします。

5. Red Hat OpenShift Pipelines で必要なリポジトリーを有効にします。

Linux (x86_64, amd64)

Linux on IBM Z and LinuxONE (s390x)

Linux on IBM Power Systems (ppc64le)

6. openshift-pipelines-client パッケージをインストールします。

CLI のインストール後は、tkn コマンドを使用して利用できます。

5.1.3. Windows への Red Hat OpenShift Pipelines CLI (tkn) のインストール

Windows の場合、tkn CLI は zip アーカイブとして提供されます。

手順

1. CLI をダウンロードします。

2. ZIP プログラムでアーカイブを解凍します。

3. tkn.exe ファイルの場所を、 PATH 環境変数に追加します。

4. PATH を確認するには、コマンドプロンプトを開いて以下のコマンドを実行します。

subscription-manager refresh

subscription-manager list --available --matches '*pipelines*'

subscription-manager attach --pool=<pool_id>

subscription-manager repos --enable="pipelines-1.5-for-rhel-8-x86_64-rpms"

subscription-manager repos --enable="pipelines-1.5-for-rhel-8-s390x-rpms"

subscription-manager repos --enable="pipelines-1.5-for-rhel-8-ppc64le-rpms"

yum install openshift-pipelines-client

$ tkn version

C:\> path

第5章 PIPELINES CLI (TKN)

129

https://mirror.openshift.com/pub/openshift-v4/clients/pipeline/0.19.1/tkn-windows-amd64-0.19.1.zip

5.1.4. macOS への Red Hat OpenShift Pipelines CLI (tkn) のインストール

macOS の場合、tkn CLI は tar.gz アーカイブとして提供されます。

手順

1. CLI をダウンロードします。

2. アーカイブを展開し、解凍します。

3. tkn バイナリーをパスにあるディレクトリーに移動します。

4. PATH を確認するには、ターミナルウィンドウを開き、以下を実行します。

5.2. OPENSHIFT PIPELINES TKN CLI の設定

タブ補完を有効にするために Red Hat OpenShift Pipelines tkn CLI を設定します。

5.2.1. タブ補完の有効化

tkn CLI ツールをインストールした後に、タブ補完を有効にして tkn コマンドの自動補完を実行する
か、または Tab キーを押す際にオプションの提案が表示されるようにできます。

前提条件

tkn CLI ツールをインストールしていること。

ローカルシステムに bash-completion がインストールされていること。

手順

以下の手順では、Bash のタブ補完を有効にします。

1. Bash 補完コードをファイルに保存します。

2. ファイルを /etc/bash_completion.d/ にコピーします。

または、ファイルをローカルディレクトリーに保存した後に、これを .bashrc ファイルから取
得できるようにすることができます。

タブ補完は、新規ターミナルを開くと有効にされます。

5.3. OPENSHIFT PIPELINES TKN リファレンス

このセクションでは、基本的な tkn CLI コマンドの一覧を紹介します。

5.3.1. 基本的な構文

$ echo $PATH

$ tkn completion bash > tkn_bash_completion

$ sudo cp tkn_bash_completion /etc/bash_completion.d/

OpenShift Container Platform 4.8 CLI ツール

130

https://mirror.openshift.com/pub/openshift-v4/clients/pipeline/0.19.1/tkn-macos-amd64-0.19.1.tar.gz

tkn [command or options] [arguments… ​]

5.3.2. グローバルオプション

--help, -h

5.3.3. ユーティリティーコマンド

5.3.3.1. tkn

tkn CLI の親コマンド。

例: すべてのオプションの表示

5.3.3.2. completion [shell]

インタラクティブな補完を提供するために評価する必要があるシェル補完コードを出力します。サポー
トされるシェルは bash および zsh です。

例: bash シェルの補完コード

5.3.3.3. version

tkn CLI のバージョン情報を出力します。

例: tkn バージョンの確認

5.3.4. Pipelines 管理コマンド

5.3.4.1. パイプライン

Pipeline を管理します。

例: ヘルプの表示

5.3.4.2. pipeline delete

Pipeline を削除します。

例: namespace から mypipeline Pipeline を削除します。

$ tkn

$ tkn completion bash

$ tkn version

$ tkn pipeline --help

$ tkn pipeline delete mypipeline -n myspace

第5章 PIPELINES CLI (TKN)

131

5.3.4.3. pipeline describe

Pipeline を記述します。

例: mypipeline Pipeline を記述します。

5.3.4.4. pipeline list

Pipeline の一覧を表示します。

例: Pipeline の一覧を表示します。

5.3.4.5. pipeline logs

特定の Pipeline のログを表示します。

例: mypipeline Pipeline のライブログのストリーミング

5.3.4.6. pipeline start

Pipeline を起動します。

例: mypipeline Pipeline を起動します。

5.3.5. Pipeline 実行コマンド

5.3.5.1. pipelinerun

Pipeline 実行を管理します。

例: ヘルプの表示

5.3.5.2. pipelinerun cancel

Pipeline 実行をキャンセルします。

例: namespace からの mypipelinerun Pipeline 実行を取り消します。

$ tkn pipeline describe mypipeline

$ tkn pipeline list

$ tkn pipeline logs -f mypipeline

$ tkn pipeline start mypipeline

$ tkn pipelinerun -h

$ tkn pipelinerun cancel mypipelinerun -n myspace

OpenShift Container Platform 4.8 CLI ツール

132

1

5.3.5.3. pipelinerun delete

Pipeline 実行を削除します。

例: namespace からの Pipeline 実行を削除します。

例: 最近実行された 5 つの Pipeline 実行を除き、namespace からすべての Pipeline 実行を削
除します。

5 を、保持する最近実行された Pipeline 実行の数に置き換えます。

5.3.5.4. pipelinerun describe

Pipeline 実行を記述します。

例: namespace での mypipelinerun Pipeline 実行を記述します。

5.3.5.5. pipelinerun list

Pipeline 実行を一覧表示します。

例: namespace での Pipeline 実行の一覧を表示します。

5.3.5.6. pipelinerun logs

Pipeline 実行のログを表示します。

例: namespace のすべてのタスクおよび手順を含む mypipelinerun Pipeline 実行のログを表示
します。

5.3.6. タスク管理コマンド

5.3.6.1. task

タスクを管理します。

例: ヘルプの表示

$ tkn pipelinerun delete mypipelinerun1 mypipelinerun2 -n myspace

$ tkn pipelinerun delete -n myspace --keep 5 1

$ tkn pipelinerun describe mypipelinerun -n myspace

$ tkn pipelinerun list -n myspace

$ tkn pipelinerun logs mypipelinerun -a -n myspace

$ tkn task -h

第5章 PIPELINES CLI (TKN)

133

5.3.6.2. task delete

タスクを削除します。

例: namespace からの mytask1 および mytask2 タスクを削除します。

5.3.6.3. task describe

タスクを記述します。

例: namespace の mytask タスクを記述します。

5.3.6.4. task list

タスクを一覧表示します。

例: namespace のすべてのタスクを一覧表示します。

5.3.6.5. task logs

タスクログを表示します。

例: mytask タスクの mytaskrun タスク実行のログを表示します。

5.3.6.6. task start

タスクを開始します。

例: namespace の mytask タスクを開始します。

5.3.7. タスク実行コマンド

5.3.7.1. taskrun

タスク実行を管理します。

例: ヘルプの表示

$ tkn task delete mytask1 mytask2 -n myspace

$ tkn task describe mytask -n myspace

$ tkn task list -n myspace

$ tkn task logs mytask mytaskrun -n myspace

$ tkn task start mytask -s <ServiceAccountName> -n myspace

$ tkn taskrun -h

OpenShift Container Platform 4.8 CLI ツール

134

1

5.3.7.2. taskrun cancel

タスク実行をキャンセルします。

例: namespace からの mytaskrun タスク実行を取り消します。

5.3.7.3. taskrun delete

TaskRun を削除します。

例: namespace からの mytaskrun1 および mytaskrun2 タスク実行を削除します。

例: namespace から最近実行された 5 つのタスク以外のすべてのタスクを削除します。

5 を、保持する最近実行したタスク実行の数に置き換えます。

5.3.7.4. taskrun describe

タスク実行を記述します。

例: namespace での mytaskrun タスク実行を記述します。

5.3.7.5. taskrun list

タスク実行を一覧表示します。

例: namespace のすべてのタスク実行を一覧表示します。

5.3.7.6. taskrun logs

タスク実行ログを表示します。

例: namespace での mytaskrun タスク実行のライブログを表示します。

5.3.8. 条件管理コマンド

5.3.8.1. condition

$ tkn taskrun cancel mytaskrun -n myspace

$ tkn taskrun delete mytaskrun1 mytaskrun2 -n myspace

$ tkn taskrun delete -n myspace --keep 5 1

$ tkn taskrun describe mytaskrun -n myspace

$ tkn taskrun list -n myspace

$ tkn taskrun logs -f mytaskrun -n myspace

第5章 PIPELINES CLI (TKN)

135

条件を管理します。

例: ヘルプの表示

5.3.8.2. condition delete

条件を削除します。

例: namespace からの mycondition1 条件の削除

5.3.8.3. condition describe

条件を記述します。

例: namespace での mycondition1 条件の記述

5.3.8.4. condition list

条件を一覧表示します。

例: namespace での条件の一覧表示

5.3.9. Pipeline リソース管理コマンド

5.3.9.1. resource

Pipeline リソースを管理します。

例: ヘルプの表示

5.3.9.2. resource create

Pipeline リソースを作成します。

例: namespace での Pipeline リソースの作成

これは、リソースの名前、リソースのタイプ、およびリソースのタイプに基づく値の入力を要求するイ
ンタラクティブなコマンドです。

$ tkn condition --help

$ tkn condition delete mycondition1 -n myspace

$ tkn condition describe mycondition1 -n myspace

$ tkn condition list -n myspace

$ tkn resource -h

$ tkn resource create -n myspace

OpenShift Container Platform 4.8 CLI ツール

136

5.3.9.3. resource delete

Pipeline リソースを削除します。

例: namespace から myresource Pipeline リソースを削除します。

5.3.9.4. resource describe

Pipeline リソースを記述します。

例: myresource Pipeline リソースの記述

5.3.9.5. resource list

Pipeline リソースを一覧表示します。

例: namespace のすべての Pipeline リソースの一覧表示

5.3.10. ClusterTask 管理コマンド

5.3.10.1. clustertask

ClusterTask を管理します。

例: ヘルプの表示

5.3.10.2. clustertask delete

クラスターの ClusterTask リソースを削除します。

例: mytask1 および mytask2 ClusterTask の削除

5.3.10.3. clustertask describe

ClusterTask を記述します。

例: mytask ClusterTask の記述

$ tkn resource delete myresource -n myspace

$ tkn resource describe myresource -n myspace

$ tkn resource list -n myspace

$ tkn clustertask --help

$ tkn clustertask delete mytask1 mytask2

$ tkn clustertask describe mytask1

第5章 PIPELINES CLI (TKN)

137

5.3.10.4. clustertask list

ClusterTask を一覧表示します。

例: ClusterTask の一覧表示

5.3.10.5. clustertask start

ClusterTask を開始します。

例: mytask ClusterTask の開始

5.3.11. 管理コマンドのトリガー

5.3.11.1. eventlistener

EventListener を管理します。

例: ヘルプの表示

5.3.11.2. eventlistener delete

EventListener を削除します。

例: namespace の mylistener1 および mylistener2 EventListener の削除

5.3.11.3. eventlistener describe

EventListener を記述します。

例: namespace の mylistener EventListener の記述

5.3.11.4. eventlistener list

EventListener を一覧表示します。

例: namespace のすべての EventListener の一覧表示

$ tkn clustertask list

$ tkn clustertask start mytask

$ tkn eventlistener -h

$ tkn eventlistener delete mylistener1 mylistener2 -n myspace

$ tkn eventlistener describe mylistener -n myspace

$ tkn eventlistener list -n myspace

OpenShift Container Platform 4.8 CLI ツール

138

5.3.11.5. eventlistener ログ

EventListener のログを表示します。

例: namespace の mylistener EventListener のログ表示

5.3.11.6. triggerbinding

TriggerBinding を管理します。

例: TriggerBindings ヘルプの表示

5.3.11.7. triggerbinding delete

TriggerBinding を削除します。

例: namespace の mybinding1 および mybinding2 TriggerBinding の削除

5.3.11.8. triggerbinding describe

TriggerBinding を記述します。

例: namespace の mybinding TriggerBinding の記述

5.3.11.9. triggerbinding list

TriggerBinding を一覧表示します。

例: namespace のすべての TriggerBinding の一覧表示

5.3.11.10. triggertemplate

TriggerTemplate を管理します。

例: TriggerTemplate ヘルプの表示

5.3.11.11. triggertemplate delete

$ tkn eventlistener logs mylistener -n myspace

$ tkn triggerbinding -h

$ tkn triggerbinding delete mybinding1 mybinding2 -n myspace

$ tkn triggerbinding describe mybinding -n myspace

$ tkn triggerbinding list -n myspace

$ tkn triggertemplate -h

第5章 PIPELINES CLI (TKN)

139

TriggerTemplate を削除します。

例: namespace の mytemplate1 および mytemplate2 TriggerTemplate の削除

5.3.11.12. triggertemplate describe

TriggerTemplate を記述します。

例: namespace の mytemplate TriggerTemplate の記述

5.3.11.13. triggertemplate list

TriggerTemplate を一覧表示します。

例: namespace のすべての TriggerTemplate の一覧表示

5.3.11.14. clustertriggerbinding

ClusterTriggerBinding を管理します。

例: ClusterTriggerBinding のヘルプの表示

5.3.11.15. clustertriggerbinding delete

ClusterTriggerBinding を削除します。

例: myclusterbinding1 および myclusterbinding2 ClusterTriggerBinding の削除

5.3.11.16. clustertriggerbinding describe

ClusterTriggerBinding を記述します。

例: myclusterbinding ClusterTriggerBinding の記述

5.3.11.17. clustertriggerbinding list

ClusterTriggerBinding の一覧を表示します。

$ tkn triggertemplate delete mytemplate1 mytemplate2 -n `myspace`

$ tkn triggertemplate describe mytemplate -n `myspace`

$ tkn triggertemplate list -n myspace

$ tkn clustertriggerbinding -h

$ tkn clustertriggerbinding delete myclusterbinding1 myclusterbinding2

$ tkn clustertriggerbinding describe myclusterbinding

OpenShift Container Platform 4.8 CLI ツール

140

例: すべての ClusterTriggerBinding の一覧表示

5.3.12. hub 対話コマンド

タスクやパイプラインなど、リソースの Tekton Hub と対話します。

5.3.12.1. hub

ハブと対話します。

例: ヘルプの表示

例: ハブ API サーバーとの対話

注記

それぞれの例で、対応するサブコマンドとフラグを取得するには、tkn hub <command>
--help を実行します。

5.3.12.2. hub downgrade

インストール済みのリソースをダウングレードします。

例: mynamespace namespace の mytask タスクを古いバージョンにダウングレードします。

5.3.12.3. hub get

名前、種類、カタログ、およびバージョン別に、リソースマニフェストを取得します。

例: tekton カタログからの特定バージョンの myresource Pipeline またはタスクのマニフェスト
取得

5.3.12.4. hub info

名前、種類、カタログ、およびバージョン別に、リソースに関する情報を表示します。

例: tekton カタログからの特定バージョンの mytask タスクについての情報表示

$ tkn clustertriggerbinding list

$ tkn hub -h

$ tkn hub --api-server https://api.hub.tekton.dev

$ tkn hub downgrade task mytask --to version -n mynamespace

$ tkn hub get [pipeline | task] myresource --from tekton --version version

$ tkn hub info task mytask --from tekton --version version

第5章 PIPELINES CLI (TKN)

141

5.3.12.5. hub install

種類、名前、バージョンごとにカタログからのリソースをインストールします。

例: mynamespace namespace の tekton カタログから mytask タスクの特定のバージョンのイ
ンストール

5.3.12.6. hub reinstall

種類および名前ごとにリソースを再インストールします。

例: mynamespace namespace の tekton カタログから mytask タスクの特定のバージョンの再
インストール

5.3.12.7. hub search

名前、種類、およびタグの組み合わせでリソースを検索します。

例: タグ cli でのリソースの検索

5.3.12.8. hub upgrade

インストール済みのリソースをアップグレードします。

例: mynamespace namespace のインストールされた mytask タスクの新規バージョンへのアッ
プグレード

$ tkn hub install task mytask --from tekton --version version -n mynamespace

$ tkn hub reinstall task mytask --from tekton --version version -n mynamespace

$ tkn hub search --tags cli

$ tkn hub upgrade task mytask --to version -n mynamespace

OpenShift Container Platform 4.8 CLI ツール

142

第6章 OPM CLI

6.1. OPM について

opm CLI ツールは、Operator Bundle Format で使用するために Operator Framework によって提供さ
れます。このツールを使用して、ソフトウェアリポジトリーに相当する index と呼ばれるバンドルの一
覧から Operator のカタログを作成し、維持することができます。結果として、インデックスイメージ
というコンテナーイメージをコンテナーレジストリーに保存し、その後にクラスターにインストールで
きます。

インデックスには、コンテナーイメージの実行時に提供される組み込まれた API を使用してクエリーで
きる、Operator マニフェストコンテンツへのポインターのデータベースが含まれます。OpenShift
Container Platform では、Operator Lifecycle Manager (OLM) はインデックスイメージを
CatalogSource オブジェクトで参照し、これをカタログとして使用できます。これにより、クラス
ター上にインストールされた Operator への頻度の高い更新を可能にするためにイメージを一定の間隔
でポーリングできます。

追加リソース

Bundle Format についての詳細は、Operator Framework パッケージ形式 を参照してくださ
い。

Operator SDK を使用してバンドルイメージを作成するには、バンドルイメージの使用 を参照
してください。

6.2. OPM のインストール

opm CLI ツールは、Linux、macOS、または Windows ワークステーションにインストールできます。

前提条件

Linux の場合は、以下のパッケージを指定する必要があります。RHEL 8 は、以下の要件を満た
すようにします。

podman バージョン 1.9.3 以降 (バージョン 2.0 以降を推奨)

glibc バージョン 2.28 以降

手順

1. OpenShift mirror site に移動し、お使いのオペレーティングシステムに一致する最新バージョン
の tarball をダウンロードします。

2. アーカイブを展開します。

Linux または macOS の場合:

Windows の場合、ZIP プログラムでアーカイブを解凍します。

3. ファイルを PATH の任意の場所に置きます。

Linux または macOS の場合:

$ tar xvf <file>

第6章 OPM CLI

143

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/operators/#olm-bundle-format_olm-packaging-format
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/operators/#osdk-working-bundle-images
https://mirror.openshift.com/pub/openshift-v4/x86_64/clients/ocp/latest-4.8/

a. PATH を確認します。

b. ファイルを移動します。以下に例を示します。

Windows の場合:

a. PATH を確認します。

b. ファイルを移動します。

検証

opm CLI のインストール後に、これが利用可能であることを確認します。

出力例

6.3. 関連情報

インデックスイメージの作成、更新、プルーニングを含む opm の手順は、カスタムカタログの
管理 を参照してください。

$ echo $PATH

$ sudo mv ./opm /usr/local/bin/

C:\> path

C:\> move opm.exe <directory>

$ opm version

Version: version.Version{OpmVersion:"v1.15.4-2-g6183dbb3",
GitCommit:"6183dbb3567397e759f25752011834f86f47a3ea", BuildDate:"2021-02-
13T04:16:08Z", GoOs:"linux", GoArch:"amd64"}

OpenShift Container Platform 4.8 CLI ツール

144

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/operators/#olm-managing-custom-catalogs

第7章 OPERATOR SDK

7.1. OPERATOR SDK CLI のインストール

Operator SDK は、Operator 開発者が Operator のビルド、テストおよびデプロイに使用できるコマン
ドラインインターフェイス (CLI) ツールを提供します。ワークステーションに Operator SDK CLI をイ
ンストールして、独自の Operator のオーサリングを開始することができます。

Operator SDK についての詳細は、Operator の開発 について参照してください。

注記

OpenShift Container Platform 4.8 以降は Operator SDK v1.8.0 をサポートします。

7.1.1. Operator SDK CLI のインストール

OpenShift SDK CLI ツールは Linux にインストールできます。

前提条件

Go v1.16+

docker v17.03+、podman v1.9.3+、または buildah v1.7+

手順

1. OpenShift ミラーサイト に移動します。

2. 4.8.4 ディレクトリーから、Linux 用の最新バージョンの tarball をダウンロードします。

3. アーカイブを展開します。

4. ファイルを実行可能にします。

5. 展開された operator-sdk バイナリーを PATH にあるディレクトリーに移動します。

ヒント

PATH を確認するには、以下を実行します。

検証

Operator SDK CLI のインストール後に、これが利用可能であることを確認します。

$ tar xvf operator-sdk-v1.8.0-ocp-linux-x86_64.tar.gz

$ chmod +x operator-sdk

$ echo $PATH

$ sudo mv ./operator-sdk /usr/local/bin/operator-sdk

第7章 OPERATOR SDK

145

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/operators/#osdk-about
https://golang.org/dl/
https://mirror.openshift.com/pub/openshift-v4/x86_64/clients/operator-sdk/4.8.4/

出力例

7.2. OPERATOR SDK CLI リファレンス

Operator SDK コマンドラインインターフェイス (CLI) は、Operator の作成を容易にするために設計さ
れた開発キットです。

Operator SDK CLI 構文

Kubernetes ベースのクラスター (OpenShift Container Platform など) へのクラスター管理者のアクセ
スのある Operator の作成者は、Operator SDK CLI を使用して Go、Ansible、または Helm をベースに
独自の Operator を開発できます。Kubebuilder は Go ベースの Operator のスキャフォールディングソ
リューションとして Operator SDK に組み込まれます。つまり、既存の Kubebuilder プロジェクトは
Operator SDK でそのまま使用でき、引き続き機能します。

Operator SDK についての詳細は、Operator の開発 について参照してください。

7.2.1. bundle

operator-sdk bundle コマンドは Operator バンドルメタデータを管理します。

7.2.1.1. validate

bundle validate サブコマンドは Operator バンドルを検証します。

表7.1 bundle validate フラグ

フラグ 説明

-h, --help bundle validate サブコマンドのヘルプ出力。

--index-builder (文字
列)

バンドルイメージをプルおよび展開するためのツール。バンドルイメージを検証
する場合にのみ使用されます。使用できるオプションは、docker (デフォル
ト)、podman、または none です。

--list-optional 利用可能なすべてのオプションのバリデーターを一覧表示します。これが設定さ
れている場合、バリデーターは実行されません。

--select-optional (文
字列)

実行するオプションのバリデーターを選択するラベルセレクター。--list-
optional フラグを指定して実行する場合は、利用可能なオプションのバリデー
ターを一覧表示します。

7.2.2. cleanup

operator-sdk cleanup コマンドは、run コマンドでデプロイされた Operator 用に作成されたリソース

$ operator-sdk version

operator-sdk version: "v1.8.0-ocp", ...

$ operator-sdk <command> [<subcommand>] [<argument>] [<flags>]

OpenShift Container Platform 4.8 CLI ツール

146

https://kubebuilder.io/
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/operators/#osdk-about

operator-sdk cleanup コマンドは、run コマンドでデプロイされた Operator 用に作成されたリソース
を破棄し、削除します。

表7.2 cleanup フラグ

フラグ 説明

-h, --help run bundle サブコマンドのヘルプ出力。

--kubeconfig (文字列) CLI 要求に使用する kubeconfig ファイルへのパス。

n, --namespace (文字
列)

CLI 要求がある場合の CLI 要求を実行する namespace。

--timeout <duration> コマンドが失敗せずに完了するまでの待機時間。デフォルト値は 2m0s です。

7.2.3. completion

operator-sdk completion コマンドは、CLI コマンドをより迅速に、より容易に実行できるようにシェ
ル補完を生成します。

表7.3 completion サブコマンド

サブコマンド 説明

bash bash 補完を生成します。

zsh zsh 補完を生成します。

表7.4 completion フラグ

フラグ 説明

-h, --help 使用方法についてのヘルプの出力。

以下に例を示します。

出力例

7.2.4. create

operator-sdk create コマンドは、Kubernetes API の作成または スキャフォールディング に使用され
ます。

$ operator-sdk completion bash

bash completion for operator-sdk -*- shell-script -*-
...
ex: ts=4 sw=4 et filetype=sh

第7章 OPERATOR SDK

147

7.2.4.1. api

create api サブコマンドは Kubernetes API をスキャフォールディングします。サブコマンドは、 init コ
マンドで初期化されたプロジェクトで実行する必要があります。

表7.5 create api フラグ

フラグ 説明

-h, --help run bundle サブコマンドのヘルプ出力。

7.2.5. generate

operator-sdk generate コマンドは特定のジェネレーターを起動して、必要に応じてコードを生成しま
す。

7.2.5.1. bundle

generate bundle サブコマンドは、Operator プロジェクトのバンドルマニフェスト、メタデータ、お
よび bundle.Dockerfile ファイルのセットを生成します。

注記

通常は、最初に generate kustomize manifests サブコマンドを実行して、generate
bundle サブコマンドで使用される入力された Kustomize ベースを生成します。ただし、
初期化されたプロジェクトで make bundle コマンドを使用して、これらのコマンドの順
次の実行を自動化できます。

表7.6 generate bundle フラグ

フラグ 説明

--channels (文字列) バンドルが属するチャネルのコンマ区切りリスト。デフォルト値は alpha です。

--crds-dir (文字列) CustomResoureDefinition マニフェストのルートディレクトリー。

--default-channel (文
字列)

バンドルのデフォルトチャネル。

--deploy-dir (文字列) デプロイメントや RBAC などの Operator マニフェストのルートディレクト
リー。このディレクトリーは、--input-dir フラグに渡されるディレクトリーと
は異なります。

-h, --help generate bundle のヘルプ

--input-dir (文字列) 既存のバンドルを読み取るディレクトリー。このディレクトリーは、バンドル
manifests ディレクトリーの親であり、--deploy-dir ディレクトリーとは異な
ります。

OpenShift Container Platform 4.8 CLI ツール

148

https://kustomize.io/

--kustomize-dir (文字
列)

バンドルマニフェストの Kustomize ベースおよび kustomization.yaml ファイ
ルを含むディレクトリー。デフォルトのパスは config/manifests です。

--manifests バンドルマニフェストを生成します。

--metadata バンドルメタデータと Dockerfile を生成します。

--output-dir (文字列) バンドルを書き込むディレクトリー。

--overwrite バンドルメタデータおよび Dockerfile を上書きします (ある場合)。デフォルト値
は true です。

--package (文字列) バンドルのパッケージ名。

-q、--quiet quiet モードで実行します。

--stdout バンドルマニフェストを標準出力に書き込みます。

--version (文字列) 生成されたバンドルの Operator のセマンティックバージョン。新規バンドルを
作成するか、または Operator をアップグレードする場合にのみ設定します。

フラグ 説明

関連情報

generate bundle サブコマンドを呼び出すための make bundle コマンドの使用を含む詳細な手
順については、Operator のバンドルおよび Operator Lifecycle Manager を使用したデプロイ
を参照してください。

7.2.5.2. kustomize

generate kustomize サブコマンドには、Operator の Kustomize データを生成するサブコマンドが含ま
れます。

7.2.5.2.1. manifests

generate kustomize manifests は Kustomize ベースを生成または再生成し、kustomization.yaml ファ
イルを config/manifests ディレクトリーに生成または再生成します。これは、他の Operator SDK コマ
ンドでバンドルマニフェストをビルドするために使用されます。このコマンドは、ベースがすでに存在
しない場合や --interactive=false フラグが設定されていない場合に、デフォルトでマニフェストベース
の重要なコンポーネントである UI メタデータを対話的に要求します。

表7.7 generate kustomize manifests フラグ

フラグ 説明

--apis-dir (文字列) API タイプ定義のルートディレクトリー。

-h, --help generate kustomize manifests のヘルプ。

第7章 OPERATOR SDK

149

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/operators/#osdk-bundle-deploy-olm_osdk-working-bundle-images
https://kustomize.io/

--input-dir (文字列) 既存の Kustomize ファイルを含むディレクトリー。

--interactive false に設定すると、Kustomize ベースが存在しない場合は、対話式コマンドプ
ロンプトがカスタムメタデータを受け入れるように表示されます。

--output-dir (文字列) Kustomize ファイルを書き込むディレクトリー。

--package (文字列) パッケージ名。

-q、--quiet quiet モードで実行します。

フラグ 説明

7.2.6. init

operator-sdk init コマンドは Operator プロジェクトを初期化し、指定されたプラグインのデフォルト
のプロジェクトディレクトリーレイアウトを生成または スキャフォールド します。

このコマンドは、以下のファイルを作成します。

ボイラープレートライセンスファイル

ドメインおよびリポジトリーを含む PROJECT ファイル

プロジェクトをビルドする Makefile

プロジェクト依存関係のある go.mod ファイル

マニフェストをカスタマイズするための kustomization.yaml ファイル

マネージャーマニフェストのイメージをカスタマイズするためのパッチファイル

Prometheus メトリックを有効にするためのパッチファイル

実行する main.go ファイル

表7.8 init フラグ

フラグ 説明

--help, -h init コマンドのヘルプ出力。

--plugins (文字列) プロジェクトを初期化するプラグインの名前およびオプションのバージョン。利
用可能なプラグインは
ansible.sdk.operatorframework.io/v1、go.kubebuilder.io/v2、go.kube
builder.io/v3、および helm.sdk.operatorframework.io/v1 です。

--project-version プロジェクトのバージョン。使用できる値は 2 および 3-alpha (デフォルト) で
す。

7.2.7. run

OpenShift Container Platform 4.8 CLI ツール

150

operator-sdk run コマンドは、さまざまな環境で Operator を起動できるオプションを提供します。

7.2.7.1. bundle

run bundle サブコマンドは、Operator Lifecycle Manager (OLM) を使用してバンドル形式で Operator
をデプロイします。

表7.9 run bundle フラグ

フラグ 説明

--index-image (文字
列)

バンドルを挿入するインデックスイメージ。デフォルトのイメージは
quay.io/operator-framework/upstream-opm-builder:latest です。

--install-mode
<install_mode_value
>

Operator のクラスターサービスバージョン (CSV) によってサポートされるイン
ストールモード (例: AllNamespaces または SingleNamespace)。

--timeout <duration> インストールのタイムアウト。デフォルト値は 2m0s です。

--kubeconfig (文字列) CLI 要求に使用する kubeconfig ファイルへのパス。

n, --namespace (文字
列)

CLI 要求がある場合の CLI 要求を実行する namespace。

-h, --help run bundle サブコマンドのヘルプ出力。

関連情報

使用可能なインストールモードに関する詳細は、Operator グループメンバーシップ を参照して
ください。

7.2.7.2. bundle-upgrade

run bundle-upgrade サブコマンドは、以前に Operator Lifecycle Manager (OLM) を使用してバンドル
形式でインストールされた Operator をアップグレードします。

表7.10 run bundle-upgrade フラグ

フラグ 説明

--timeout <duration> アップグレードのタイムアウト。デフォルト値は 2m0s です。

--kubeconfig (文字列) CLI 要求に使用する kubeconfig ファイルへのパス。

n, --namespace (文字
列)

CLI 要求がある場合の CLI 要求を実行する namespace。

-h, --help run bundle サブコマンドのヘルプ出力。

第7章 OPERATOR SDK

151

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/operators/#olm-operatorgroups-membership_olm-understanding-operatorgroups

7.2.8. scorecard

operator-sdk scorecard コマンドは、スコアカードツールを実行して Operator バンドルを検証し、改
善に向けた提案を提供します。このコマンドは、バンドルイメージまたはマニフェストおよびメタデー
タを含むディレクトリーのいずれかの引数を取ります。引数がイメージタグを保持する場合は、イメー
ジはリモートに存在する必要があります。

表7.11 scorecard フラグ

フラグ 説明

-c, --config (文字列) スコアカード設定ファイルへのパス。デフォルトのパスは
bundle/tests/scorecard/config.yaml です。

-h, --help scorecard コマンドのヘルプ出力。

--kubeconfig (文字列) kubeconfig ファイルへのパス。

-L, --list 実行可能なテストを一覧表示します。

-n, --namespace (文字
列)

テストイメージを実行する namespace。

-o, --output (文字列) 結果の出力形式。使用できる値はデフォルトの text、および json です。

-l, --selector (文字列) 実行されるテストを決定するラベルセレクター。

-s, --service-account
(文字列)

テストに使用するサービスアカウント。デフォルト値は default です。

-x, --skip-cleanup テストの実行後にリソースクリーンアップを無効にします。

-w, --wait-time
<duration>

テストが完了するのを待つ秒数 (例: 35s)。デフォルト値は 30s です。

関連情報

スコアカードツールの実行に関する詳細は、スコアカードを使用した Operator の検証 を参照
してください。

OpenShift Container Platform 4.8 CLI ツール

152

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/operators/#osdk-scorecard

	目次
	第1章 OPENSHIFT CONTAINER PLATFORM CLI ツールの概要
	1.1. CLI ツールのリスト

	第2章 OPENSHIFT CLI (OC)
	2.1. OPENSHIFT CLI の使用を開始する
	2.1.1. OpenShift CLI について
	2.1.2. OpenShift CLI のインストール。
	2.1.2.1. バイナリーのダウンロードによる OpenShift CLI のインストール
	2.1.2.2. Web コンソールを使用した OpenShift CLI のインストール
	2.1.2.3. RPM を使用した OpenShift CLI のインストール
	2.1.2.4. Homebrew を使用した OpenShift CLI のインストール

	2.1.3. OpenShift CLI へのログイン
	2.1.4. OpenShift CLI の使用
	2.1.4.1. プロジェクトの作成
	2.1.4.2. 新しいアプリケーションの作成
	2.1.4.3. Pod の表示
	2.1.4.4. Pod ログの表示
	2.1.4.5. 現在のプロジェクトの表示
	2.1.4.6. 現在のプロジェクトのステータスの表示
	2.1.4.7. サポートされる API のリソースの一覧表示

	2.1.5. ヘルプの表示
	2.1.6. OpenShift CLI からのログアウト

	2.2. OPENSHIFT CLI の設定
	2.2.1. タブ補完の有効化
	2.2.1.1. Bash のタブ補完を有効にする
	2.2.1.2. Zsh のタブ補完を有効にする

	2.3. MANAGING CLI PROFILES
	2.3.1. CLI プロファイル間のスイッチについて
	2.3.2. CLI プロファイルの手動設定
	2.3.3. ルールの読み込みおよびマージ

	2.4. プラグインによる OPENSHIFT CLI の拡張
	2.4.1. CLI プラグインの作成
	2.4.2. CLI プラグインのインストールおよび使用

	2.5. OPENSHIFT CLI 開発者コマンドリファレンス
	2.5.1. OpenShift CLI (oc) 開発者コマンド
	2.5.1.1. oc annotate
	2.5.1.2. oc api-resources
	2.5.1.3. oc api-versions
	2.5.1.4. oc apply
	2.5.1.5. oc apply edit-last-applied
	2.5.1.6. oc apply set-last-applied
	2.5.1.7. oc apply view-last-applied
	2.5.1.8. oc attach
	2.5.1.9. oc auth can-i
	2.5.1.10. oc auth reconcile
	2.5.1.11. oc autoscale
	2.5.1.12. oc cancel-build
	2.5.1.13. oc cluster-info
	2.5.1.14. oc cluster-info dump
	2.5.1.15. oc completion
	2.5.1.16. oc config current-context
	2.5.1.17. oc config delete-cluster
	2.5.1.18. oc config delete-context
	2.5.1.19. oc config delete-user
	2.5.1.20. oc config get-clusters
	2.5.1.21. oc config get-contexts
	2.5.1.22. oc config get-users
	2.5.1.23. oc config rename-context
	2.5.1.24. oc config set
	2.5.1.25. oc config set-cluster
	2.5.1.26. oc config set-context
	2.5.1.27. oc config set-credentials
	2.5.1.28. oc config unset
	2.5.1.29. oc config use-context
	2.5.1.30. oc config view
	2.5.1.31. oc cp
	2.5.1.32. oc create
	2.5.1.33. oc create build
	2.5.1.34. oc create clusterresourcequota
	2.5.1.35. oc create clusterrole
	2.5.1.36. oc create clusterrolebinding
	2.5.1.37. oc create configmap
	2.5.1.38. oc create cronjob
	2.5.1.39. oc create deployment
	2.5.1.40. oc create deploymentconfig
	2.5.1.41. oc create identity
	2.5.1.42. oc create imagestream
	2.5.1.43. oc create imagestreamtag
	2.5.1.44. oc create ingress
	2.5.1.45. oc create job
	2.5.1.46. oc create namespace
	2.5.1.47. oc create poddisruptionbudget
	2.5.1.48. oc create priorityclass
	2.5.1.49. oc create quota
	2.5.1.50. oc create role
	2.5.1.51. oc create rolebinding
	2.5.1.52. oc create route edge
	2.5.1.53. oc create route passthrough
	2.5.1.54. oc create route reencrypt
	2.5.1.55. oc create secret docker-registry
	2.5.1.56. oc create secret generic
	2.5.1.57. oc create secret tls
	2.5.1.58. oc create service clusterip
	2.5.1.59. oc create service externalname
	2.5.1.60. oc create service loadbalancer
	2.5.1.61. oc create service nodeport
	2.5.1.62. oc create serviceaccount
	2.5.1.63. oc create user
	2.5.1.64. oc create useridentitymapping
	2.5.1.65. oc debug
	2.5.1.66. oc delete
	2.5.1.67. oc describe
	2.5.1.68. oc diff
	2.5.1.69. oc edit
	2.5.1.70. oc ex dockergc
	2.5.1.71. oc exec
	2.5.1.72. oc explain
	2.5.1.73. oc expose
	2.5.1.74. oc extract
	2.5.1.75. oc get
	2.5.1.76. oc idle
	2.5.1.77. oc image append
	2.5.1.78. oc image extract
	2.5.1.79. oc image info
	2.5.1.80. oc image mirror
	2.5.1.81. oc import-image
	2.5.1.82. oc kustomize
	2.5.1.83. oc label
	2.5.1.84. oc login
	2.5.1.85. oc logout
	2.5.1.86. oc logs
	2.5.1.87. oc new-app
	2.5.1.88. oc new-build
	2.5.1.89. oc new-project
	2.5.1.90. oc observe
	2.5.1.91. oc patch
	2.5.1.92. oc policy add-role-to-user
	2.5.1.93. oc policy scc-review
	2.5.1.94. oc policy scc-subject-review
	2.5.1.95. oc port-forward
	2.5.1.96. oc process
	2.5.1.97. oc project
	2.5.1.98. oc projects
	2.5.1.99. oc proxy
	2.5.1.100. oc registry info
	2.5.1.101. oc registry login
	2.5.1.102. oc replace
	2.5.1.103. oc rollback
	2.5.1.104. oc rollout cancel
	2.5.1.105. oc rollout history
	2.5.1.106. oc rollout latest
	2.5.1.107. oc rollout pause
	2.5.1.108. oc rollout restart
	2.5.1.109. oc rollout resume
	2.5.1.110. oc rollout retry
	2.5.1.111. oc rollout status
	2.5.1.112. oc rollout undo
	2.5.1.113. oc rsh
	2.5.1.114. oc rsync
	2.5.1.115. oc run
	2.5.1.116. oc scale
	2.5.1.117. oc secrets link
	2.5.1.118. oc secrets unlink
	2.5.1.119. oc serviceaccounts create-kubeconfig
	2.5.1.120. oc serviceaccounts get-token
	2.5.1.121. oc serviceaccounts new-token
	2.5.1.122. oc set build-hook
	2.5.1.123. oc set build-secret
	2.5.1.124. oc set data
	2.5.1.125. oc set deployment-hook
	2.5.1.126. oc set env
	2.5.1.127. oc set image
	2.5.1.128. oc set image-lookup
	2.5.1.129. oc set probe
	2.5.1.130. oc set resources
	2.5.1.131. oc set route-backends
	2.5.1.132. oc set selector
	2.5.1.133. oc set serviceaccount
	2.5.1.134. oc set subject
	2.5.1.135. oc set triggers
	2.5.1.136. oc set volumes
	2.5.1.137. oc start-build
	2.5.1.138. oc status
	2.5.1.139. oc tag
	2.5.1.140. oc version
	2.5.1.141. oc wait
	2.5.1.142. oc whoami

	2.5.2. 関連情報

	2.6. OPENSHIFT CLI 管理者コマンドリファレンス
	2.6.1. OpenShift CLI (oc) 管理者コマンド
	2.6.1.1. oc adm build-chain
	2.6.1.2. oc adm catalog mirror
	2.6.1.3. oc adm completion
	2.6.1.4. oc adm config current-context
	2.6.1.5. oc adm config delete-cluster
	2.6.1.6. oc adm config delete-context
	2.6.1.7. oc adm config delete-user
	2.6.1.8. oc adm config get-clusters
	2.6.1.9. oc adm config get-contexts
	2.6.1.10. oc adm config get-users
	2.6.1.11. oc adm config rename-context
	2.6.1.12. oc adm config set
	2.6.1.13. oc adm config set-cluster
	2.6.1.14. oc adm config set-context
	2.6.1.15. oc adm config set-credentials
	2.6.1.16. oc adm config unset
	2.6.1.17. oc adm config use-context
	2.6.1.18. oc adm config view
	2.6.1.19. oc adm cordon
	2.6.1.20. oc adm create-bootstrap-project-template
	2.6.1.21. oc adm create-error-template
	2.6.1.22. oc adm create-login-template
	2.6.1.23. oc adm create-provider-selection-template
	2.6.1.24. oc adm drain
	2.6.1.25. oc adm groups add-users
	2.6.1.26. oc adm groups new
	2.6.1.27. oc adm groups prune
	2.6.1.28. oc adm groups remove-users
	2.6.1.29. oc adm groups sync
	2.6.1.30. oc adm inspect
	2.6.1.31. oc adm migrate template-instances
	2.6.1.32. oc adm must-gather
	2.6.1.33. oc adm new-project
	2.6.1.34. oc adm node-logs
	2.6.1.35. oc adm pod-network isolate-projects
	2.6.1.36. oc adm pod-network join-projects
	2.6.1.37. oc adm pod-network make-projects-global
	2.6.1.38. oc adm policy add-role-to-user
	2.6.1.39. oc adm policy add-scc-to-group
	2.6.1.40. oc adm policy add-scc-to-user
	2.6.1.41. oc adm policy scc-review
	2.6.1.42. oc adm policy scc-subject-review
	2.6.1.43. oc adm prune builds
	2.6.1.44. oc adm prune deployments
	2.6.1.45. oc adm prune groups
	2.6.1.46. oc adm prune images
	2.6.1.47. oc adm release extract
	2.6.1.48. oc adm release info
	2.6.1.49. oc adm release mirror
	2.6.1.50. oc adm release new
	2.6.1.51. oc adm taint
	2.6.1.52. oc adm top images
	2.6.1.53. oc adm top imagestreams
	2.6.1.54. oc adm top node
	2.6.1.55. oc adm top pod
	2.6.1.56. oc adm uncordon
	2.6.1.57. oc adm verify-image-signature

	2.6.2. 関連情報

	2.7. OC および KUBECTL コマンドの使用
	2.7.1. oc バイナリー
	2.7.2. kubectl バイナリー

	第3章 DEVELOPER CLI (ODO)
	3.1. ODO リリースノート
	3.1.1. odo version 2.5.0 への主な変更点および改善点
	3.1.2. バグ修正
	3.1.3. サポート

	3.2. ODO について
	3.2.1. odo キー機能
	3.2.2. odo のコアとなる概念
	3.2.3. odo でのコンポーネントの一覧表示
	3.2.4. odo での Telemetry

	3.3. ODO のインストール
	3.3.1. odo の Linux へのインストール
	3.3.2. odo の Windows へのインストール
	3.3.3. odo の macOS へのインストール
	3.3.4. odo の VS Code へのインストール
	3.3.5. RPM を使用した odo の Red Hat Enterprise Linux(RHEL) へのインストール

	3.4. ODO CLI の設定
	3.4.1. 現在の設定の表示
	3.4.2. 値の設定
	3.4.3. 値の設定解除
	3.4.4. preference キーの表
	3.4.5. ファイルまたはパターンを無視する

	3.5. ODO CLI リファレンス
	3.5.1. odo build-images
	3.5.2. odo catalog
	3.5.2.1. コンポーネント
	3.5.2.2. サービス

	3.5.3. odo create
	3.5.3.1. コンポーネントの作成
	3.5.3.2. スタータープロジェクト
	3.5.3.3. 既存の devfile の使用
	3.5.3.4. インタラクティブな作成

	3.5.4. odo delete
	3.5.4.1. コンポーネントの削除
	3.5.4.2. devfile Kubernetes コンポーネントのアンデプロイ
	3.5.4.3. すべて削除
	3.5.4.4. 利用可能なフラグ

	3.5.5. odo deploy
	3.5.6. odo link
	3.5.6.1. 各種リンクオプション
	3.5.6.2. 例
	3.5.6.3. ファイルとしてのバインド
	3.5.6.4. --bind-as-files の例

	3.5.7. odo registry
	3.5.7.1. レジストリーの一覧表示
	3.5.7.2. レジストリーの追加
	3.5.7.3. レジストリーの削除
	3.5.7.4. レジストリーの更新

	3.5.8. odo service
	3.5.8.1. 新しいサービスの作成
	3.5.8.2. サービスの削除
	3.5.8.3. サービスの一覧表示
	3.5.8.4. サービスに関する情報の取得

	3.5.9. odo ストレージ
	3.5.9.1. ストレージボリュームの追加
	3.5.9.2. ストレージボリュームの一覧表示
	3.5.9.3. ストレージボリュームの削除
	3.5.9.4. 特定のコンテナーへのストレージの追加

	3.5.10. 共通フラグ
	3.5.11. JSON 出力

	第4章 OPENSHIFT SERVERLESS で使用する KNATIVE CLI
	4.1. 主な特長
	4.2. KNATIVE CLI のインストール

	第5章 PIPELINES CLI (TKN)
	5.1. TKN のインストール
	5.1.1. Linux への Red Hat OpenShift Pipelines CLI (tkn) のインストール
	5.1.2. RPM を使用した Red Hat OpenShift Pipelines CLI (tkn) の Linux へのインストール
	5.1.3. Windows への Red Hat OpenShift Pipelines CLI (tkn) のインストール
	5.1.4. macOS への Red Hat OpenShift Pipelines CLI (tkn) のインストール

	5.2. OPENSHIFT PIPELINES TKN CLI の設定
	5.2.1. タブ補完の有効化

	5.3. OPENSHIFT PIPELINES TKN リファレンス
	5.3.1. 基本的な構文
	5.3.2. グローバルオプション
	5.3.3. ユーティリティーコマンド
	5.3.3.1. tkn
	5.3.3.2. completion [shell]
	5.3.3.3. version

	5.3.4. Pipelines 管理コマンド
	5.3.4.1. パイプライン
	5.3.4.2. pipeline delete
	5.3.4.3. pipeline describe
	5.3.4.4. pipeline list
	5.3.4.5. pipeline logs
	5.3.4.6. pipeline start

	5.3.5. Pipeline 実行コマンド
	5.3.5.1. pipelinerun
	5.3.5.2. pipelinerun cancel
	5.3.5.3. pipelinerun delete
	5.3.5.4. pipelinerun describe
	5.3.5.5. pipelinerun list
	5.3.5.6. pipelinerun logs

	5.3.6. タスク管理コマンド
	5.3.6.1. task
	5.3.6.2. task delete
	5.3.6.3. task describe
	5.3.6.4. task list
	5.3.6.5. task logs
	5.3.6.6. task start

	5.3.7. タスク実行コマンド
	5.3.7.1. taskrun
	5.3.7.2. taskrun cancel
	5.3.7.3. taskrun delete
	5.3.7.4. taskrun describe
	5.3.7.5. taskrun list
	5.3.7.6. taskrun logs

	5.3.8. 条件管理コマンド
	5.3.8.1. condition
	5.3.8.2. condition delete
	5.3.8.3. condition describe
	5.3.8.4. condition list

	5.3.9. Pipeline リソース管理コマンド
	5.3.9.1. resource
	5.3.9.2. resource create
	5.3.9.3. resource delete
	5.3.9.4. resource describe
	5.3.9.5. resource list

	5.3.10. ClusterTask 管理コマンド
	5.3.10.1. clustertask
	5.3.10.2. clustertask delete
	5.3.10.3. clustertask describe
	5.3.10.4. clustertask list
	5.3.10.5. clustertask start

	5.3.11. 管理コマンドのトリガー
	5.3.11.1. eventlistener
	5.3.11.2. eventlistener delete
	5.3.11.3. eventlistener describe
	5.3.11.4. eventlistener list
	5.3.11.5. eventlistener ログ
	5.3.11.6. triggerbinding
	5.3.11.7. triggerbinding delete
	5.3.11.8. triggerbinding describe
	5.3.11.9. triggerbinding list
	5.3.11.10. triggertemplate
	5.3.11.11. triggertemplate delete
	5.3.11.12. triggertemplate describe
	5.3.11.13. triggertemplate list
	5.3.11.14. clustertriggerbinding
	5.3.11.15. clustertriggerbinding delete
	5.3.11.16. clustertriggerbinding describe
	5.3.11.17. clustertriggerbinding list

	5.3.12. hub 対話コマンド
	5.3.12.1. hub
	5.3.12.2. hub downgrade
	5.3.12.3. hub get
	5.3.12.4. hub info
	5.3.12.5. hub install
	5.3.12.6. hub reinstall
	5.3.12.7. hub search
	5.3.12.8. hub upgrade

	第6章 OPM CLI
	6.1. OPM について
	6.2. OPM のインストール
	6.3. 関連情報

	第7章 OPERATOR SDK
	7.1. OPERATOR SDK CLI のインストール
	7.1.1. Operator SDK CLI のインストール

	7.2. OPERATOR SDK CLI リファレンス
	7.2.1. bundle
	7.2.1.1. validate

	7.2.2. cleanup
	7.2.3. completion
	7.2.4. create
	7.2.4.1. api

	7.2.5. generate
	7.2.5.1. bundle
	7.2.5.2. kustomize

	7.2.6. init
	7.2.7. run
	7.2.7.1. bundle
	7.2.7.2. bundle-upgrade

	7.2.8. scorecard

