
OpenShift Container Platform 4.8

ネットワーク

クラスターネットワークの設定および管理

Last Updated: 2023-06-12

OpenShift Container Platform 4.8 ネットワーク

クラスターネットワークの設定および管理

法律上の通知

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要

この文書では、DNS、ingress および Pod ネットワークを含む、OpenShift Container Platform の
クラスターネットワークを設定し、管理する方法を説明します。

. .

. .

. .

. .

. .

. .

. .

. .

. .

目次

第1章 ネットワークについて
1.1. OPENSHIFT CONTAINER PLATFORM DNS
1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
1.3. OPENSHIFT CONTAINER PLATFORM ネットワーキングの一般用語集

第2章 ホストへのアクセス
2.1. インストーラーでプロビジョニングされるインフラストラクチャークラスターでの AMAZON WEB SERVICES
のホストへのアクセス

第3章 ネットワーキング OPERATOR の概要
3.1. CLUSTER NETWORK OPERATOR
3.2. DNS OPERATOR
3.3. INGRESS OPERATOR

第4章 OPENSHIFT CONTAINER PLATFORM における CLUSTER NETWORK OPERATOR
4.1. CLUSTER NETWORK OPERATOR
4.2. クラスターネットワーク設定の表示
4.3. CLUSTER NETWORK OPERATOR のステータス表示
4.4. CLUSTER NETWORK OPERATOR ログの表示
4.5. CLUSTER NETWORK OPERATOR (CNO) の設定
4.6. 関連情報

第5章 OPENSHIFT CONTAINER PLATFORM の DNS OPERATOR
5.1. DNS OPERATOR
5.2. DNS POD 配置の制御
5.3. デフォルト DNS の表示
5.4. DNS 転送の使用
5.5. DNS OPERATOR のステータス
5.6. DNS OPERATOR ログ

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR
6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
6.2. INGRESS 設定アセット
6.3. INGRESS コントローラー設定パラメーター
6.4. デフォルト INGRESS コントローラーの表示
6.5. INGRESS OPERATOR ステータスの表示
6.6. INGRESS コントローラーログの表示
6.7. INGRESS コントローラーステータスの表示
6.8. INGRESS コントローラーの設定
6.9. 関連情報

第7章 エンドポイントへの接続の確認
7.1. 実行する接続ヘルスチェック
7.2. 接続ヘルスチェックの実装
7.3. PODNETWORKCONNECTIVITYCHECK オブジェクトフィールド
7.4. エンドポイントのネットワーク接続の確認

第8章 ノードポートサービス範囲の設定
8.1. 前提条件
8.2. ノードのポート範囲の拡張
8.3. 関連情報

第9章 IP フェイルオーバーの設定
9.1. IP フェイルオーバーの環境変数

6
6
6
7

10

10

11
11
11
11

12
12
12
13
13
14
19

20
20
20
21
22
24
24

25
25
25
25
39
39
39
39
40
60

61
61
61
61

64

69
69
69
70

71
72

目次

1

. .

. .

. .

. .

. .

. .

9.2. IP フェイルオーバーの設定
9.3. 仮想 IP アドレスについて
9.4. CHECK スクリプトおよび NOTIFY スクリプトの設定
9.5. VRRP プリエンプションの設定
9.6. VRRP ID オフセットについて
9.7. 254 を超えるアドレスについての IP フェイルオーバーの設定
9.8. INGRESSIP の高可用性

第10章 ベアメタルクラスターでの SCTP (STREAM CONTROL TRANSMISSION PROTOCOL) の使用
10.1. OPENSHIFT CONTAINER PLATFORM での SCTP (STREAM CONTROL TRANSMISSION PROTOCOL) のサ
ポート
10.2. SCTP (STREAM CONTROL TRANSMISSION PROTOCOL) の有効化
10.3. SCTP (STREAM CONTROL TRANSMISSION PROTOCOL) が有効になっていることの確認

第11章 PTP ハードウェアの設定
11.1. PTP ハードウェアについて
11.2. PTP ネットワークデバイスの自動検出
11.3. PTP OPERATOR のインストール
11.4. LINUXPTP サービスの設定

第12章 ネットワークポリシー
12.1. ネットワークポリシーについて
12.2. ネットワークポリシーイベントのロギング
12.3. ネットワークポリシーの作成
12.4. ネットワークポリシーの表示
12.5. ネットワークポリシーの編集
12.6. ネットワークポリシーの削除
12.7. プロジェクトのデフォルトネットワークポリシーの定義
12.8. ネットワークポリシーを使用したマルチテナント分離の設定

第13章 複数ネットワーク
13.1. 複数ネットワークについて
13.2. 追加のネットワークの設定
13.3. 仮想ルーティングおよび転送について
13.4. マルチネットワークポリシーの設定
13.5. POD の追加のネットワークへの割り当て
13.6. 追加ネットワークからの POD の削除
13.7. 追加ネットワークの編集
13.8. 追加ネットワークの削除
13.9. VRF へのセカンダリーネットワークの割り当て

第14章 ハードウェアネットワーク
14.1. SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) ハードウェアネットワークについて
14.2. SR-IOV NETWORK OPERATOR のインストール
14.3. SR-IOV NETWORK OPERATOR の設定
14.4. SR-IOV ネットワークデバイスの設定
14.5. SR-IOV イーサネットネットワーク割り当ての設定
14.6. SR-IOV INFINIBAND ネットワーク割り当ての設定
14.7. POD の SR-IOV の追加ネットワークへの追加
14.8. 高パフォーマンスのマルチキャストの使用
14.9. DPDK および RDMA モードでの仮想機能 (VF) の使用
14.10. SR-IOV NETWORK OPERATOR のインストール

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー
15.1. OPENSHIFT SDN デフォルト CNI ネットワークプロバイダーについて

73
76
77
79
80
80
81

82

82
83
84

87
87
87
88
90

94
94
97

105
107
109

111
112
114

118
118
119
131
131

137
142
143
144
145

148
148
154
157
161

169
175
181

187
189
198

200
200

OpenShift Container Platform 4.8 ネットワーク

2

. .

. .

. .

. .

15.2. プロジェクトの EGRESS IP の設定
15.3. プロジェクトの EGRESS ファイアウォールの設定
15.4. プロジェクトの EGRESS ファイアウォールの編集
15.5. プロジェクトの EGRESS ファイアウォールの編集
15.6. プロジェクトからの EGRESS ファイアウォールの削除
15.7. EGRESS ルーター POD の使用についての考慮事項
15.8. リダイレクトモードでの EGRESS ルーター POD のデプロイ
15.9. HTTP プロキシーモードでの EGRESS ルーター POD のデプロイ
15.10. DNS プロキシーモードでの EGRESS ルーター POD のデプロイ
15.11. 設定マップからの EGRESS ルーター POD 宛先一覧の設定
15.12. プロジェクトのマルチキャストの有効化
15.13. プロジェクトのマルチキャストの無効化
15.14. OPENSHIFT SDN を使用したネットワーク分離の設定
15.15. KUBE-PROXY の設定

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー
16.1. OVN-KUBERNETES デフォルト CONTAINER NETWORK INTERFACE (CNI) ネットワークプロバイダーにつ
いて
16.2. OPENSHIFT SDN クラスターネットワークプロバイダーからの移行
16.3. OPENSHIFT SDN ネットワークプロバイダーへのロールバック
16.4. IPV4/IPV6 デュアルスタックネットワークへの変換
16.5. IPSEC 暗号化の設定
16.6. プロジェクトの EGRESS ファイアウォールの設定
16.7. プロジェクトの EGRESS ファイアウォールの表示
16.8. プロジェクトの EGRESS ファイアウォールの編集
16.9. プロジェクトからの EGRESS ファイアウォールの削除
16.10. EGRESS IP アドレスの設定
16.11. EGRESS IP アドレスの割り当て
16.12. EGRESS ルーター POD の使用についての考慮事項
16.13. リダイレクトモードでの EGRESS ルーター POD のデプロイ
16.14. プロジェクトのマルチキャストの有効化
16.15. プロジェクトのマルチキャストの無効化
16.16. ネットワークフローの追跡
16.17. ハイブリッドネットワークの設定

第17章 ルートの作成
17.1. ルート設定
17.2. セキュリティー保護されたルート

第18章 INGRESS クラスタートラフィックの設定
18.1. INGRESS クラスタートラフィックの設定の概要
18.2. サービスの EXTERNALIP の設定
18.3. INGRESS コントローラーを使用した INGRESS クラスターの設定
18.4. ロードバランサーを使用した INGRESS クラスターの設定
18.5. ネットワークロードバランサーを使用した AWS での INGRESS クラスタートラフィックの設定
18.6. サービスの外部 IP を使用した INGRESS クラスタートラフィックの設定
18.7. NODEPORT を使用した INGRESS クラスタートラフィックの設定

第19章 KUBERNETES NMSTATE
19.1. KUBERNETES NMSTATE OPERATOR について
19.2. ノードのネットワーク状態の確認
19.3. ノードのネットワーク設定の更新
19.4. ノードのネットワーク設定のトラブルシューティング

201
206

211
212
212
213
216
218
221

224
226
229
229
231

234

234
236
246
250
252
254
259
260
261
261
267
268
271

276
278
278
282

285
285
304

308
308
308
315
319
323
327
328

332
332
333
334
345

目次

3

. .

. .

. .

. .

第20章 クラスター全体のプロキシーの設定
20.1. 前提条件
20.2. クラスター全体のプロキシーの有効化
20.3. クラスター全体のプロキシーの削除

第21章 カスタム PKI の設定
21.1. インストール時のクラスター全体のプロキシーの設定
21.2. クラスター全体のプロキシーの有効化
21.3. OPERATOR を使用した証明書の挿入

第22章 RHOSP での負荷分散
22.1. KURYR SDN を使用した OCTAVIA OVN ロードバランサープロバイダードライバーの使用
22.2. OCTAVIA を使用したアプリケーショントラフィック用のクラスターのスケーリング
22.3. RHOSP OCTAVIA を使用した INGRESS トラフィックのスケーリング
22.4. 外部ロードバランサーの設定

第23章 セカンダリーインターフェイスメトリクスのネットワーク割り当てへの関連付け
23.1. モニタリングのためのセカンダリーネットワークメトリックの拡張

351
351
351
353

355
355
357
359

361
361

362
364
366

370
370

OpenShift Container Platform 4.8 ネットワーク

4

目次

5

第1章 ネットワークについて
クラスター管理者は、クラスターで実行されるアプリケーションを外部トラフィックに公開し、ネット
ワーク接続のセキュリティーを保護するための複数のオプションがあります。

ノードポートやロードバランサーなどのサービスタイプ

Ingress や Route などの API リソース

デフォルトで、Kubernetes は各 Pod に、Pod 内で実行しているアプリケーションの内部 IP アドレス
を割り当てます。Pod とそのコンテナーはネットワークネットワーク接続が可能ですが、クラスター外
のクライアントにはネットワークアクセスがありません。アプリケーションを外部トラフィックに公開
する場合、各 Pod に IP アドレスを割り当てると、ポートの割り当て、ネットワーク、名前の指定、
サービス検出、負荷分散、アプリケーション設定、移行などの点で、Pod を物理ホストや仮想マシンの
ように扱うことができます。

注記

一部のクラウドプラットフォームでは、169.254.169.254 IP アドレスでリッスンするメタ
データ API があります。これは、IPv4 169.254.0.0/16 CIDR ブロックのリンクローカル
IP アドレスです。

この CIDR ブロックは Pod ネットワークから到達できません。これらの IP アドレスへの
アクセスを必要とする Pod には、Pod 仕様の spec.hostNetwork フィールドを true に
設定して、ホストのネットワークアクセスが付与される必要があります。

Pod ホストのネットワークアクセスを許可する場合、Pod に基礎となるネットワークイ
ンフラストラクチャーへの特権アクセスを付与します。

1.1. OPENSHIFT CONTAINER PLATFORM DNS

フロントエンドサービスやバックエンドサービスなど、複数のサービスを実行して複数の Pod で使用
している場合、フロントエンド Pod がバックエンドサービスと通信できるように、ユーザー名、サー
ビス IP などの環境変数を作成します。サービスが削除され、再作成される場合には、新規の IP アドレ
スがそのサービスに割り当てられるので、フロントエンド Pod がサービス IP の環境変数の更新された
値を取得するには、これを再作成する必要があります。さらに、バックエンドサービスは、フロントエ
ンド Pod を作成する前に作成し、サービス IP が正しく生成され、フロントエンド Pod に環境変数とし
て提供できるようにする必要があります。

そのため、OpenShift Container Platform には DNS が組み込まれており、これにより、サービスは、
サービス IP/ポートと共にサービス DNS によって到達可能になります。

1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

OpenShift Container Platform クラスターを作成すると、クラスターで実行している Pod およびサービ
スにはそれぞれ独自の IP アドレスが割り当てられます。IP アドレスは、近くで実行されている他の
Pod やサービスからアクセスできますが、外部クライアントの外部からはアクセスできません。Ingress
Operator は IngressController API を実装し、OpenShift Container Platform クラスターサービスへの
外部アクセスを可能にするコンポーネントです。

Ingress Operator を使用すると、ルーティングを処理する 1 つ以上の HAProxy ベースの Ingress コント
ローラー をデプロイおよび管理することにより、外部クライアントがサービスにアクセスできるように
なります。OpenShift Container Platform Route および Kubernetes Ingress リソースを指定して、トラ

OpenShift Container Platform 4.8 ネットワーク

6

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

フィックをルーティングするために Ingress Operator を使用します。endpointPublishingStrategy タ
イプおよび内部負荷分散を定義する機能などの Ingress コントローラー内の設定は、Ingress コントロー
ラーエンドポイントを公開する方法を提供します。

1.2.1. ルートと Ingress の比較

OpenShift Container Platform の Kubernetes Ingress リソースは、クラスター内で Pod として実行され
る共有ルーターサービスと共に Ingress コントローラーを実装します。Ingress トラフィックを管理する
最も一般的な方法は Ingress コントローラーを使用することです。他の通常の Pod と同様にこの Pod
をスケーリングし、複製できます。このルーターサービスは、オープンソースのロードバランサーソ
リューションである HAProxy をベースとしています。

OpenShift Container Platform ルートは、クラスターのサービスに Ingress トラフィックを提供しま
す。ルートは、Blue-Green デプロイメント向けに TLS 再暗号化、TLS パススルー、分割トラフィック
などの標準の Kubernetes Ingress コントローラーでサポートされない可能性のある高度な機能を提供し
ます。

Ingress トラフィックは、ルートを介してクラスターのサービスにアクセスします。ルートおよび
Ingress は、Ingress トラフィックを処理する主要なリソースです。Ingress は、外部要求を受け入れ、
ルートに基づいてそれらを委譲するなどのルートと同様の機能を提供します。ただし、Ingress では、
特定タイプの接続 (HTTP/2、HTTPS およびサーバー名 ID(SNI)、ならび証明書を使用した TLS のみを
許可できます。OpenShift Container Platform では、ルートは、Ingress リソースで指定される各種の条
件を満たすために生成されます。

1.3. OPENSHIFT CONTAINER PLATFORM ネットワーキングの一般用語集

この用語集では、ネットワーキングコンテンツで使用される一般的な用語を定義します。

authentication

OpenShift Container Platform クラスターへのアクセスを制御するために、クラスター管理者はユー
ザー認証を設定し、承認されたユーザーのみがクラスターにアクセスできます。OpenShift
Container Platform クラスターと対話するには、OpenShift Container Platform API に対して認証す
る必要があります。Open Shift Container Platform API へのリクエストで、OAuth アクセストーク
ンまたは X.509 クライアント証明書を提供することで認証できます。

AWS Load Balancer Operator

AWS Load Balancer (ALB) Operator は、aws-load-balancer-controller のインスタンスをデプロイ
および管理します。

Cluster Network Operator

Cluster Network Operator (CNO) は、OpenShift Container Platform クラスター内のクラスター
ネットワークコンポーネントをデプロイおよび管理します。これには、インストール中にクラス
ター用に選択された Container Network Interface (CNI) のデフォルトネットワークプロバイダープ
ラグインのデプロイメントが含まれます。

設定マップ

設定マップは、設定データを Pod に注入する方法を提供します。タイプ ConfigMap のボリューム
内の設定マップに格納されたデータを参照できます。Pod で実行しているアプリケーションは、こ
のデータを使用できます。

カスタムリソース (CR)

CR は Kubernetes API の拡張です。カスタムリソースを作成できます。

DNS

クラスター DNS は、Kubernetes サービスの DNS レコードを提供する DNS サーバーです。
Kubernetes により開始したコンテナーは、DNS 検索にこの DNS サーバーを自動的に含めます。

第1章 ネットワークについて

7

http://www.haproxy.org/

DNS Operator

DNS Operator は、CoreDNS をデプロイして管理し、Pod に名前解決サービスを提供します。これ
により、OpenShift Container Platform で DNS ベースの Kubernetes サービス検出が可能になりま
す。

deployment

アプリケーションのライフサイクルを維持する Kubernetes リソースオブジェクト。

domain

ドメインは、Ingress Controller によってサービスされる DNS 名です。

egress

Pod からのネットワークのアウトバウンドトラフィックを介して外部とデータを共有するプロセ
ス。

外部 DNS Operator

外部 DNS Operator は、ExternalDNS をデプロイして管理し、外部 DNS プロバイダーから
OpenShift Container Platform へのサービスおよびルートの名前解決を提供します。

HTTP ベースのルート

HTTP ベースのルートとは、セキュアではないルートで、基本的な HTTP ルーティングプロトコル
を使用してセキュリティー保護されていないアプリケーションポートでサービスを公開します。

Ingress

OpenShift Container Platform の Kubernetes Ingress リソースは、クラスター内で Pod として実行
される共有ルーターサービスと共に Ingress コントローラーを実装します。

Ingress コントローラー

Ingress Operator は Ingress Controller を管理します。Ingress コントローラーの使用は、OpenShift
Container Platform クラスターへの外部アクセスを許可するための最も一般的な方法です。

インストーラーでプロビジョニングされるインフラストラクチャー

インストールプログラムは、クラスターが実行されるインフラストラクチャーをデプロイして設定
します。

kubelet

コンテナーが Pod で実行されていることを確認するために、クラスター内の各ノードで実行される
プライマリーノードエージェント。

Kubernetes NMState Operator

Kubernetes NMState Operator は、NMState の OpenShift Container Platform クラスターのノード
間でステートドリブンのネットワーク設定を実行するための Kubernetes API を提供します。

kube-proxy

Kube-proxy は、各ノードで実行するプロキシーサービスであり、外部ホストがサービスを利用でき
るようにするのに役立ちます。リクエストを正しいコンテナーに転送するのに役立ち、基本的な負
荷分散を実行できます。

ロードバランサー

OpenShift Container Platform は、ロードバランサーを使用して、クラスターの外部からクラスター
で実行されているサービスと通信します。

Metal LB オペレーター

クラスター管理者は、Bare MetalLB Operator をクラスターに追加し、タイプ LoadBalancer の
サービスがクラスターに追加されると、MetalLB はサービスの外部 IP アドレスを追加できます。

multicast

IP マルチキャストを使用すると、データが多数の IP アドレスに同時に配信されます。

namespace

namespace は、すべてのプロセスから見える特定のシステムリソースを分離します。namespace 内

OpenShift Container Platform 4.8 ネットワーク

8

namespace は、すべてのプロセスから見える特定のシステムリソースを分離します。namespace 内
では、その namespace のメンバーであるプロセスのみがそれらのリソースを参照できます。

networking

OpenShift Container Platform クラスターのネットワーク情報。

node

OpenShift Container Platform クラスター内のワーカーマシン。ノードは、仮想マシン (VM) または
物理マシンのいずれかです。

OpenShift Container Platform Ingress Operator

Ingress Operator は IngressController API を実装し、OpenShift Container Platform サービスへの
外部アクセスを可能にするコンポーネントです。

Pod

OpenShift Container Platform クラスターで実行されている、ボリュームや IP アドレスなどの共有
リソースを持つ 1 つ以上のコンテナー。Pod は、定義、デプロイ、および管理される最小のコン
ピュート単位です。

PTP Operator

PTP Operator は、linuxptp サービスを作成し、管理します。

route

OpenShift Container Platform ルートは、クラスターのサービスに Ingress トラフィックを提供しま
す。ルートは、Blue-Green デプロイメント向けに TLS 再暗号化、TLS パススルー、分割トラ
フィックなどの標準の Kubernetes Ingress コントローラーでサポートされない可能性のある高度な
機能を提供します。

スケーリング

リソース容量の増減。

サービス

一連の Pod で実行中のアプリケーションを公開します。

シングルルート I/O 仮想化 (SR-IOV) Network Operator

Single Root I/O Virtualization (SR-IOV) ネットワーク Operator は、クラスターで SR-IOV ネット
ワークデバイスおよびネットワーク割り当てを管理します。

ソフトウェア定義ネットワーク (SDN)

OpenShift Container Platform は、Software Defined Networking (SDN) アプローチを使用して、ク
ラスターのネットワークを統合し、OpenShift Container Platform クラスターの Pod 間の通信を可
能にします。

SCTP (Stream Control Transmission Protocol)

SCTP は、IP ネットワークの上部で実行される信頼できるメッセージベースのプロトコルです。

taint

テイントと容認により、Pod が適切なノードに確実にスケジュールされます。ノードに 1 つ以上の
テイントを適用できます。

容認

Pod に容認を適用できます。Tolerations を使用すると、スケジューラーは、テイントが一致する
Pod をスケジュールできます。

Web コンソール

OpenShift Container Platform を管理するためのユーザーインターフェイス (UI)。

第1章 ネットワークについて

9

第2章 ホストへのアクセス
OpenShift Container Platform インスタンスにアクセスして、セキュアなシェル (SSH) アクセスでコン
トロールプレーンノード (別名マスターノード) にアクセスするために bastion ホストを作成する方法を
学びます。

2.1. インストーラーでプロビジョニングされるインフラストラクチャークラ
スターでの AMAZON WEB SERVICES のホストへのアクセス

OpenShift Container Platform インストーラーは、OpenShift Container Platform クラスターにプロビ
ジョニングされる Amazon Elastic Compute Cloud (Amazon EC2) インスタンスのパブリック IP アドレ
スを作成しません。OpenShift Container Platform ホストに対して SSH を実行できるようにするには、
以下の手順を実行する必要があります。

手順

1. openshift-install コマンドで作成される仮想プライベートクラウド (VPC) に対する SSH アク
セスを可能にするセキュリティーグループを作成します。

2. インストーラーが作成したパブリックサブネットのいずれかに Amazon EC2 インスタンスを作
成します。

3. パブリック IP アドレスを、作成した Amazon EC2 インスタンスに関連付けます。
OpenShift Container Platform のインストールとは異なり、作成した Amazon EC2 インスタン
スを SSH キーペアに関連付ける必要があります。これにはインターネットを OpenShift
Container Platform クラスターの VPC にブリッジ接続するための SSH bastion としてのみの単
純な機能しかないため、このインスタンスにどのオペレーティングシステムを選択しても問題
ありません。どの Amazon Machine Image (AMI) を使用するかについては、注意が必要です。
たとえば、Red Hat Enterprise Linux CoreOS (RHCOS) では、インストーラーと同様に、
Ignition でキーを指定することができます。

4. Amazon EC2 インスタンスをプロビジョニングし、これに対して SSH を実行した後に、
OpenShift Container Platform インストールに関連付けた SSH キーを追加する必要がありま
す。このキーは bastion インスタンスのキーとは異なる場合がありますが、異なるキーにしな
ければならない訳ではありません。

注記

直接の SSH アクセスは、障害復旧を目的とする場合にのみ推奨されます。
Kubernetes API が応答する場合、特権付き Pod を代わりに実行します。

5. oc get nodes を実行し、出力を検査し、マスターであるノードのいずれかを選択します。ホス
ト名は ip-10-0-1-163.ec2.internal に類似したものになります。

6. Amazon EC2 に手動でデプロイした bastion SSH ホストから、そのコントロールプレーンホス
ト (別名マスターホスト) に対して SSH を実行します。インストール時に指定したものと同じ
SSH キーを使用するようにします。

$ ssh -i <ssh-key-path> core@<master-hostname>

OpenShift Container Platform 4.8 ネットワーク

10

第3章 ネットワーキング OPERATOR の概要
OpenShift Container Platform は、複数のタイプのネットワーキング Operator をサポートします。こ
れらのネットワーク Operator を使用して、クラスターネットワークを管理できます。

3.1. CLUSTER NETWORK OPERATOR

Cluster Network Operator (CNO) は、OpenShift Container Platform クラスター内のクラスターネット
ワークコンポーネントをデプロイおよび管理します。これには、インストール中にクラスター用に選択
された Container Network Interface (CNI) のデフォルトネットワークプロバイダープラグインのデプロ
イメントが含まれます。詳細は、OpenShift Container Platform における Cluster Network Operator を
参照してください。

3.2. DNS OPERATOR

DNS Operator は、CoreDNS をデプロイして管理し、Pod に名前解決サービスを提供します。これに
より、OpenShift Container Platform で DNS ベースの Kubernetes サービス検出が可能になります。詳
細は、OpenShift Container Platform の DNS Operator を参照してください。

3.3. INGRESS OPERATOR

OpenShift Container Platform クラスターを作成すると、クラスターで実行している Pod およびサービ
スにはそれぞれの IP アドレスが割り当てられます。IP アドレスは、近くで実行されている他の Pod や
サービスからアクセスできますが、外部クライアントの外部からはアクセスできません。Ingress
Operator は IngressController API を実装し、OpenShift Container Platform クラスターサービスへの外
部アクセスを可能にします。詳細は、OpenShift Container Platform の Ingress Operator を参照してく
ださい。

第3章 ネットワーキング OPERATOR の概要

11

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#cluster-network-operator
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#dns-operator
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-ingress

第4章 OPENSHIFT CONTAINER PLATFORM における CLUSTER
NETWORK OPERATOR

Cluster Network Operator (CNO) は、インストール時にクラスター用に選択される Container Network
Interface (CNI) デフォルトネットワークプロバイダープラグインを含む、OpenShift Container
Platform クラスターの各種のクラスターネットワークコンポーネントをデプロイし、これらを管理しま
す。

4.1. CLUSTER NETWORK OPERATOR

Cluster Network Operator は、operator.openshift.io API グループから network API を実装します。
Operator は、デーモンセットを使用して OpenShift SDN デフォルト Container Network Interface
(CNI) ネットワークプロバイダープラグイン、またはクラスターのインストール時に選択したデフォル
トネットワークプロバイダープラグインをデプロイします。

手順

Cluster Network Operator は、インストール時に Kubernetes Deployment としてデプロイされます。

1. 以下のコマンドを実行して Deployment のステータスを表示します。

出力例

2. 以下のコマンドを実行して、Cluster Network Operator の状態を表示します。

出力例

以下のフィールドは、Operator のステータス (AVAILABLE、PROGRESSING、および
DEGRADED) についての情報を提供します。AVAILABLE フィールドは、Cluster Network
Operator が Available ステータス条件を報告する場合に True になります。

4.2. クラスターネットワーク設定の表示

すべての新規 OpenShift Container Platform インストールには、cluster という名前の network.config
オブジェクトがあります。

手順

oc describe コマンドを使用して、クラスターネットワーク設定を表示します。

$ oc get -n openshift-network-operator deployment/network-operator

NAME READY UP-TO-DATE AVAILABLE AGE
network-operator 1/1 1 1 56m

$ oc get clusteroperator/network

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.5.4 True False False 50m

$ oc describe network.config/cluster

OpenShift Container Platform 4.8 ネットワーク

12

1

2

出力例

Spec フィールドは、クラスターネットワークの設定済みの状態を表示します。

Status フィールドは、クラスターネットワークの現在の状態を表示します。

4.3. CLUSTER NETWORK OPERATOR のステータス表示

oc describe コマンドを使用して、Cluster Network Operator のステータスを検査し、その詳細を表示
することができます。

手順

以下のコマンドを実行して、Cluster Network Operator のステータスを表示します。

4.4. CLUSTER NETWORK OPERATOR ログの表示

oc logs コマンドを使用して、Cluster Network Operator ログを表示できます。

手順

以下のコマンドを実行して、Cluster Network Operator のログを表示します。

Name: cluster
Namespace:
Labels: <none>
Annotations: <none>
API Version: config.openshift.io/v1
Kind: Network
Metadata:
 Self Link: /apis/config.openshift.io/v1/networks/cluster
Spec: 1
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Network Type: OpenShiftSDN
 Service Network:
 172.30.0.0/16
Status: 2
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Cluster Network MTU: 8951
 Network Type: OpenShiftSDN
 Service Network:
 172.30.0.0/16
Events: <none>

$ oc describe clusteroperators/network

$ oc logs --namespace=openshift-network-operator deployment/network-operator

第4章 OPENSHIFT CONTAINER PLATFORM における CLUSTER NETWORK OPERATOR

13

4.5. CLUSTER NETWORK OPERATOR (CNO) の設定

クラスターネットワークの設定は、Cluster Network Operator (CNO) 設定の一部として指定さ
れ、cluster という名前のカスタムリソース (CR) オブジェクトに保存されます。CR は
operator.openshift.io API グループの Network API のフィールドを指定します。

CNO 設定は、Network.config.openshift.io API グループの Network API からクラスターのインストー
ル時に以下のフィールドを継承し、これらのフィールドは変更できません。

clusterNetwork

Pod IP アドレスの割り当てに使用する IP アドレスプール。

serviceNetwork

サービスの IP アドレスプール。

defaultNetwork.type

OpenShift SDN または OVN-Kubernetes などのクラスターネットワークプロバイダー。

注記

クラスターのインストール後に、直前のセクションで一覧表示されているフィールドを
変更することはできません。

defaultNetwork オブジェクトのフィールドを cluster という名前の CNO オブジェクトに設定すること
により、クラスターのクラスターネットワークプロバイダー設定を指定できます。

4.5.1. Cluster Network Operator 設定オブジェクト

Cluster Network Operator (CNO) のフィールドは以下の表で説明されています。

表4.1 Cluster Network Operator 設定オブジェクト

フィールド タイプ 説明

metadata.name string CNO オブジェクトの名前。この名前は常に cluster です。

spec.clusterNet
work

array Pod ID アドレスの割り当て、サブネット接頭辞の長さのクラス
ター内の個別ノードへの割り当てに使用される IP アドレスのブ
ロックを指定する一覧です。以下に例を示します。

この値は読み取り専用であり、クラスターのインストール時に
cluster という名前の Network.config.openshift.io オブジェ
クトから継承されます。

spec:
 clusterNetwork:
 - cidr: 10.128.0.0/19
 hostPrefix: 23
 - cidr: 10.128.32.0/19
 hostPrefix: 23

OpenShift Container Platform 4.8 ネットワーク

14

spec.serviceNet
work

array サービスの IP アドレスのブロック。OpenShift SDN および
OVN-Kubernetes Container Network Interface (CNI) ネットワー
クプロバイダーは、サービスネットワークの単一 IP アドレスブ
ロックのみをサポートします。以下に例を示します。

この値は読み取り専用であり、クラスターのインストール時に
cluster という名前の Network.config.openshift.io オブジェ
クトから継承されます。

spec.defaultNet
work

object クラスターネットワークの Container Network Interface (CNI)
ネットワークプロバイダーを設定します。

spec.kubeProxy
Config

object このオブジェクトのフィールドは、kube-proxy 設定を指定しま
す。OVN-Kubernetes クラスターネットワークプロバイダーを
使用している場合、kube-proxy 設定は機能しません。

フィールド タイプ 説明

defaultNetwork オブジェクト設定
defaultNetwork オブジェクトの値は、以下の表で定義されます。

表4.2 defaultNetwork オブジェクト

フィールド タイプ 説明

type string OpenShiftSDN または OVNKubernetes のいずれ
か。クラスターネットワークプロバイダーはインス
トール時に選択されます。この値は、クラスターの
インストール後は変更できません。

注記

OpenShift Container Platform はデ
フォルトで、OpenShift SDN
Container Network Interface (CNI)
クラスターネットワークプロバイ
ダーを使用します。

openshiftSDNConfig object このオブジェクトは OpenShift SDN クラスターネッ
トワークプロバイダーにのみ有効です。

ovnKubernetesConfig object このオブジェクトは OVN-Kubernetes クラスター
ネットワークプロバイダーにのみ有効です。

OpenShift SDN CNI クラスターネットワークプロバイダーの設定

以下の表は、OpenShift SDN Container Network Interface (CNI) クラスターネットワークプロバイダー

spec:
 serviceNetwork:
 - 172.30.0.0/14

第4章 OPENSHIFT CONTAINER PLATFORM における CLUSTER NETWORK OPERATOR

15

以下の表は、OpenShift SDN Container Network Interface (CNI) クラスターネットワークプロバイダー
の設定フィールドについて説明しています。

表4.3 openshiftSDNConfig オブジェクト

フィールド タイプ 説明

mode string OpenShiftSDN のネットワーク分離モード。

mtu integer VXLAN オーバーレイネットワークの最大転送単位 (MTU)。通
常、この値は自動的に設定されます。

vxlanPort integer すべての VXLAN パケットに使用するポート。デフォルト値は
4789 です。

注記

クラスターのインストール時にのみクラスターネットワークプロバイダーの設定を変更
することができます。

OpenShift SDN 設定の例

OVN-Kubernetes CNI クラスターネットワークプロバイダーの設定
以下の表は OVN-Kubernetes CNI クラスターネットワークプロバイダーの設定フィールドについて説明
しています。

表4.4 ovnKubernetesConfig object

フィールド タイプ 説明

mtu integer Geneve (Generic Network Virtualization Encapsulation) オー
バーレイネットワークの MTU (maximum transmission unit)。通
常、この値は自動的に設定されます。

genevePort integer Geneve オーバーレイネットワークの UDP ポート。

ipsecConfig object フィールドがある場合、IPsec はクラスターに対して有効にされ
ます。

policyAuditConf
ig

object ネットワークポリシー監査ロギングをカスタマイズする設定オ
ブジェクトを指定します。指定されていない場合は、デフォル
トの監査ログ設定が使用されます。

表4.5 policyAuditConfig object

defaultNetwork:
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789

OpenShift Container Platform 4.8 ネットワーク

16

フィールド タイプ 説明

rateLimit integer ノードごとに毎秒生成されるメッセージの最大数。デフォルト
値は、1 秒あたり 20 メッセージです。

maxFileSize integer 監査ログの最大サイズ (バイト単位)。デフォルト値は
50000000 (50 MB) です。

destination string 以下の追加の監査ログターゲットのいずれかになります。

libc
ホスト上の journald プロセスの libc syslog() 関数。

udp:<host>:<port>
syslog サーバー。<host>:<port> を syslog サーバーのホス
トおよびポートに置き換えます。

unix:<file>
<file> で指定された Unix ドメインソケットファイル。

null
監査ログを追加のターゲットに送信しないでください。

syslogFacility string RFC5424 で定義される kern などの syslog ファシリティー。デ
フォルト値は local0 です。

注記

クラスターのインストール時にのみクラスターネットワークプロバイダーの設定を変更
することができます。

OVN-Kubernetes 設定の例

kubeProxyConfig オブジェクト設定
kubeProxyConfig オブジェクトの値は以下の表で定義されます。

表4.6 kubeProxyConfig オブジェクト

フィールド タイプ 説明

defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 mtu: 1400
 genevePort: 6081
 ipsecConfig: {}

第4章 OPENSHIFT CONTAINER PLATFORM における CLUSTER NETWORK OPERATOR

17

iptablesSyncPeriod string iptables ルールの更新期間。デフォルト値は 30s で
す。有効な接尾辞には、s、m、および h などが含ま
れ、これらについては、Go time パッケージ ドキュ
メントで説明されています。

注記

OpenShift Container Platform 4.3 以
降で強化されたパフォーマンスの向
上により、iptablesSyncPeriod パ
ラメーターを調整する必要はなくな
りました。

proxyArguments.iptables-
min-sync-period

array iptables ルールを更新する前の最小期間。この
フィールドにより、更新の頻度が高くなり過ぎない
ようにできます。有効な接尾辞には、s、m、および
h などが含まれ、これらについては、Go time パッ
ケージ で説明されています。デフォルト値:

フィールド タイプ 説明

4.5.2. Cluster Network Operator の設定例

以下の例では、詳細な CNO 設定が指定されています。

Cluster Network Operator オブジェクトのサンプル

kubeProxyConfig:
 proxyArguments:
 iptables-min-sync-period:
 - 0s

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 clusterNetwork: 1
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 serviceNetwork: 2
 - 172.30.0.0/16
 defaultNetwork: 3
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789
 kubeProxyConfig:
 iptablesSyncPeriod: 30s

OpenShift Container Platform 4.8 ネットワーク

18

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

1 2 3 クラスターのインストール時にのみ設定されます。

4.6. 関連情報

operator.openshift.io API グループの Network API

 proxyArguments:
 iptables-min-sync-period:
 - 0s

第4章 OPENSHIFT CONTAINER PLATFORM における CLUSTER NETWORK OPERATOR

19

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/api_reference/#network-operator-openshift-io-v1

第5章 OPENSHIFT CONTAINER PLATFORM の DNS
OPERATOR

DNS Operator は、Pod に対して名前解決サービスを提供するために CoreDNS をデプロイし、これを
管理し、OpenShift Container Platform での DNS ベースの Kubernetes サービス検出を可能にします。

5.1. DNS OPERATOR

DNS Operator は、operator.openshift.io API グループから dns API を実装します。この Operator
は、デーモンセットを使用して CoreDNS をデプロイし、デーモンセットのサービスを作成し、
kubelet を Pod に対して名前解決に CoreDNS サービス IP を使用するように指示するように設定しま
す。

手順

DNS Operator は、インストール時に Deployment オブジェクトを使用してデプロイされます。

1. oc get コマンドを使用してデプロイメントのステータスを表示します。

出力例

2. oc get コマンドを使用して DNS Operator の状態を表示します。

出力例

AVAILABLE、 PROGRESSING および DEGRADED は、Operator のステータスについての情
報を提供します。AVAILABLE は、CoreDNS デーモンセットからの 1 つ以上の Pod が
Available ステータス条件を報告する場合は True になります。

5.2. DNS POD 配置の制御

DNS Operator には、CoreDNS 用と /etc/hosts ファイルを管理するための 2 つのデーモンセットがあ
ります。/etc/hosts に設定されたデーモンは、イメージのプルをサポートするクラスターイメージレジ
ストリーのエントリーを追加するために、すべてのノードホストで実行する必要があります。セキュリ
ティーポリシーにより、ノードのペア間の通信が禁止され、CoreDNS のデーモンセットがすべての
ノードで実行できなくなります。

クラスター管理者は、カスタムノードセレクターを使用して、CoreDNS のデーモンセットを特定の
ノードで実行するか、または実行しないように設定できます。

前提条件

$ oc get -n openshift-dns-operator deployment/dns-operator

NAME READY UP-TO-DATE AVAILABLE AGE
dns-operator 1/1 1 1 23h

$ oc get clusteroperator/dns

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
dns 4.1.0-0.11 True False False 92m

OpenShift Container Platform 4.8 ネットワーク

20

1

oc CLI をインストールしていること。

cluster-admin 権限を持つユーザーとしてクラスターにログインしていること。

手順

特定のノード間の通信を防ぐには、spec.nodePlacement.nodeSelector API フィールドを設定
します。

1. default という名前の DNS Operator オブジェクトを変更します。

2. spec.nodePlacement.nodeSelector API フィールドにコントロールプレーンノードのみが
含まれるノードセレクターを指定します。

CoreDNS のデーモンセットをノードで実行されるようにするには、テイントおよび容認を設定
します。

1. default という名前の DNS Operator オブジェクトを変更します。

2. テイントのテイントキーおよび容認を指定します。

テイントが dns-only である場合、それは無制限に許容できます。tolerationSeconds
は省略できます。

5.3. デフォルト DNS の表示

すべての新規 OpenShift Container Platform インストールには、default という名前の dns.operator が
あります。

手順

1. oc describe コマンドを使用してデフォルトの dns を表示します。

出力例

$ oc edit dns.operator/default

 spec:
 nodePlacement:
 nodeSelector:
 node-role.kubernetes.io/worker: ""

$ oc edit dns.operator/default

 spec:
 nodePlacement:
 tolerations:
 - effect: NoExecute
 key: "dns-only"
 operators: Equal
 value: abc
 tolerationSeconds: 3600 1

$ oc describe dns.operator/default

第5章 OPENSHIFT CONTAINER PLATFORM の DNS OPERATOR

21

1

2

出力例

Cluster Domain フィールドは、完全修飾 Pod およびサービスドメイン名を作成するため
に使用されるベース DNS ドメインです。

クラスター IP は、Pod が名前解決のためにクエリーするアドレスです。IP は、サービス
CIDR 範囲の 10 番目のアドレスで定義されます。

2. クラスターのサービス CIDR を見つけるには、oc get コマンドを使用します。

出力例

5.4. DNS 転送の使用

DNS 転送を使用すると、指定のゾーンにどのネームサーバーを使用するかを指定することで、ゾーン
ごとに /etc/resolv.conf で特定される転送設定をオーバーライドできます。転送されるゾーンが
OpenShift Container Platform によって管理される Ingress ドメインである場合、アップストリーム
ネームサーバーがドメインについて認証される必要があります。

手順

1. default という名前の DNS Operator オブジェクトを変更します。

これにより、Server に基づく追加のサーバー設定ブロックを使用して dns-default という名前
の ConfigMap を作成し、更新できます。クエリーに一致するゾーンを持つサーバーがない場
合、名前解決は /etc/resolv.conf で指定されたネームサーバーにフォールバックします。

DNS の例

Name: default
Namespace:
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: DNS
...
Status:
 Cluster Domain: cluster.local 1
 Cluster IP: 172.30.0.10 2
...

$ oc get networks.config/cluster -o jsonpath='{$.status.serviceNetwork}'

[172.30.0.0/16]

$ oc edit dns.operator/default

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
 name: default
spec:

OpenShift Container Platform 4.8 ネットワーク

22

1

2

3

name は、rfc6335 サービス名の構文に準拠する必要があります。

zones は、rfc1123 の subdomain の定義に準拠する必要があります。クラスタードメイ
ンの cluster.local は、 zones の無効な subdomain です。

forwardPlugin ごとに最大 15 の upstreams が許可されます。

注記

servers が定義されていないか、または無効な場合、ConfigMap にはデフォルト
サーバーのみが含まれます。

2. ConfigMap を表示します。

以前のサンプル DNS に基づく DNS ConfigMap の例

 servers:
 - name: foo-server 1
 zones: 2
 - example.com
 forwardPlugin:
 upstreams: 3
 - 1.1.1.1
 - 2.2.2.2:5353
 - name: bar-server
 zones:
 - bar.com
 - example.com
 forwardPlugin:
 upstreams:
 - 3.3.3.3
 - 4.4.4.4:5454

$ oc get configmap/dns-default -n openshift-dns -o yaml

apiVersion: v1
data:
 Corefile: |
 example.com:5353 {
 forward . 1.1.1.1 2.2.2.2:5353
 }
 bar.com:5353 example.com:5353 {
 forward . 3.3.3.3 4.4.4.4:5454 1
 }
 .:5353 {
 errors
 health
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 upstream
 fallthrough in-addr.arpa ip6.arpa
 }
 prometheus :9153

第5章 OPENSHIFT CONTAINER PLATFORM の DNS OPERATOR

23

1 forwardPlugin への変更により、CoreDNS デーモンセットのローリング更新がトリガー
されます。

関連情報

DNS 転送の詳細は、CoreDNS forward のドキュメント を参照してください。

5.5. DNS OPERATOR のステータス

oc describe コマンドを使用して、DNS Operator のステータスを検査し、その詳細を表示することが
できます。

手順

DNS Operator のステータスを表示します。

5.6. DNS OPERATOR ログ

oc logs コマンドを使用して、DNS Operator ログを表示できます。

手順

DNS Operator のログを表示します。

 forward . /etc/resolv.conf {
 policy sequential
 }
 cache 30
 reload
 }
kind: ConfigMap
metadata:
 labels:
 dns.operator.openshift.io/owning-dns: default
 name: dns-default
 namespace: openshift-dns

$ oc describe clusteroperators/dns

$ oc logs -n openshift-dns-operator deployment/dns-operator -c dns-operator

OpenShift Container Platform 4.8 ネットワーク

24

https://coredns.io/plugins/forward/

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS
OPERATOR

6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

OpenShift Container Platform クラスターを作成すると、クラスターで実行している Pod およびサービ
スにはそれぞれ独自の IP アドレスが割り当てられます。IP アドレスは、近くで実行されている他の
Pod やサービスからアクセスできますが、外部クライアントの外部からはアクセスできません。Ingress
Operator は IngressController API を実装し、OpenShift Container Platform クラスターサービスへの
外部アクセスを可能にするコンポーネントです。

Ingress Operator を使用すると、ルーティングを処理する 1 つ以上の HAProxy ベースの Ingress コント
ローラー をデプロイおよび管理することにより、外部クライアントがサービスにアクセスできるように
なります。OpenShift Container Platform Route および Kubernetes Ingress リソースを指定して、トラ
フィックをルーティングするために Ingress Operator を使用します。endpointPublishingStrategy タ
イプおよび内部負荷分散を定義する機能などの Ingress コントローラー内の設定は、Ingress コントロー
ラーエンドポイントを公開する方法を提供します。

6.2. INGRESS 設定アセット

インストールプログラムでは、config.openshift.io API グループの Ingress リソースでアセットを生成
します (cluster-ingress-02-config.yml)。

Ingress リソースの YAML 定義

インストールプログラムは、このアセットを manifests/ ディレクトリーの cluster-ingress-02-
config.yml ファイルに保存します。この Ingress リソースは、Ingress のクラスター全体の設定を定義
します。この Ingress 設定は、以下のように使用されます。

Ingress Operator は、クラスター Ingress 設定のドメインを、デフォルト Ingress コントロー
ラーのドメインとして使用します。

OpenShift API Server Operator は、クラスター Ingress 設定からのドメインを使用します。こ
のドメインは、明示的なホストを指定しない Route リソースのデフォルトホストを生成する際
にも使用されます。

6.3. INGRESS コントローラー設定パラメーター

ingresscontrollers.operator.openshift.io リソースは以下の設定パラメーターを提供します。

パラメーター 説明

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: apps.openshiftdemos.com

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

25

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

domain domain は Ingress コントローラーによって提供される DNS 名で、複数の機能
を設定するために使用されます。

LoadBalancerService エンドポイント公開ストラテジーの場
合、domain は DNS レコードを設定するために使用されま
す。endpointPublishingStrategy を参照してください。

生成されるデフォルト証明書を使用する場合、証明書は domain およ
びその subdomains で有効です。defaultCertificate を参照してく
ださい。

この値は個別の Route ステータスに公開され、ユーザーは外部 DNS
レコードのターゲット先を認識できるようにします。

domain 値はすべての Ingress コントローラーの中でも固有の値であり、更新
できません。

空の場合、デフォルト値は ingress.config.openshift.io/cluster
.spec.domain です。

replicas replicas は Ingress コントローラーレプリカの必要な数です。設定されていな
い場合、デフォルト値は 2 になります。

endpointPublishingStr
ategy

endpointPublishingStrategy は Ingress コントローラーエンドポイントを
他のネットワークに公開し、ロードバランサーの統合を有効にし、他のシステ
ムへのアクセスを提供するために使用されます。

設定されていない場合、デフォルト値は
infrastructure.config.openshift.io/cluster .status.platform をベースと
します。

AWS: LoadBalancerService (外部スコープあり)

Azure: LoadBalancerService (外部スコープあり)

GCP: LoadBalancerService (外部スコープあり)

Bare metal: NodePortService

その他: HostNetwork

ほとんどのプラットフォームの場合、endpointPublishingStrategy 値は更
新できません。ただし、GCP で
は、loadbalancer.providerParameters.gcp.clientAccess サブフィール
ドを設定できます。

パラメーター 説明

OpenShift Container Platform 4.8 ネットワーク

26

defaultCertificate defaultCertificate 値は、Ingress コントローラーによって提供されるデフォ
ルト証明書が含まれるシークレットへの参照です。ルートが独自の証明書を指
定しない場合、defaultCertificate が使用されます。

シークレットには以下のキーおよびデータが含まれる必要があります: * tls.crt:
証明書ファイルコンテンツ * tls.key: キーファイルコンテンツ

設定されていない場合、ワイルドカード証明書は自動的に生成され、使用され
ます。証明書は Ingress コントーラーの domain および subdomains で有効
であり、生成された証明書 CA はクラスターの信頼ストアに自動的に統合され
ます。

使用中の証明書 (生成されるか、ユーザー指定の場合かを問わない) は
OpenShift Container Platform のビルトイン OAuth サーバーに自動的に統合さ
れます。

namespaceSelector namespaceSelector は、Ingress コントローラーによって提供される
namespace セットをフィルターするために使用されます。これはシャードの実
装に役立ちます。

routeSelector routeSelector は、Ingress コントローラーによって提供される Routes のセッ
トをフィルターするために使用されます。これはシャードの実装に役立ちま
す。

nodePlacement nodePlacement は、Ingress コントローラーのスケジュールに対する明示的
な制御を有効にします。

設定されていない場合は、デフォルト値が使用されます。

注記

nodePlacement パラメーターには、nodeSelector と
tolerations の 2 つの部分が含まれます。以下に例を示しま
す。

パラメーター 説明

nodePlacement:
 nodeSelector:
 matchLabels:
 kubernetes.io/os: linux
 tolerations:
 - effect: NoSchedule
 operator: Exists

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

27

tlsSecurityProfile tlsSecurityProfile は、Ingress コントローラーの TLS 接続の設定を指定しま
す。

これが設定されていない場合、デフォルト値は
apiservers.config.openshift.io/cluster リソースをベースとして設定され
ます。

Old、Intermediate、および Modern のプロファイルタイプを使用する場
合、有効なプロファイル設定はリリース間で変更される可能性があります。た
とえば、リリース X.Y.Z にデプロイされた Intermediate プロファイルを使用
する仕様がある場合、リリース X.Y.Z+1 へのアップグレードにより、新規の
プロファイル設定が Ingress コントローラーに適用され、ロールアウトが生じ
る可能性があります。

Ingress コントローラーの最小 TLS バージョンは 1.1 で、最大 TLS バージョン
は 1.2 です。

重要

HAProxy Ingress コントローラーイメージは TLS 1.3 をサポー
トしません。Modern プロファイルには TLS 1.3 が必要であ
ることから、これはサポートされません。Ingress Operator は
Modern プロファイルを Intermediate に変換します。

また、Ingress Operator は TLS 1.0 の Old または Custom プ
ロファイルを 1.1 に変換し、TLS 1.3 の Custom プロファイル
を 1.2 に変換します。

OpenShift Container Platform ルーターは、
TLS_AES_128_CCM_SHA256、
TLS_CHACHA20_POLY1305_SHA256、
TLS_AES_256_GCM_SHA384、および
TLS_AES_128_GCM_SHA256 を使用する TLS 1.3 暗号スイー
トの Red Hat 分散 OpenSSL デフォルトセットを有効にしま
す。OpenShift Container Platform 4.6、4.7、および 4.8 では
TLS 1.3 がサポートされていなくても、クラスターは TLS 1.3
接続と暗号スイートを受け入れる場合があります。

注記

設定されたセキュリティープロファイルの暗号および最小 TLS
バージョンが TLSProfile ステータスに反映されます。

パラメーター 説明

OpenShift Container Platform 4.8 ネットワーク

28

routeAdmission routeAdmission は、複数の namespace での要求の許可または拒否など、新
規ルート要求を処理するためのポリシーを定義します。

namespaceOwnership は、namespace 間でホスト名の要求を処理する方法
を記述します。デフォルトは Strict です。

Strict: ルートが複数の namespace 間で同じホスト名を要求すること
を許可しません。

InterNamespaceAllowed: ルートが複数の namespace 間で同じホ
スト名の異なるパスを要求することを許可します。

wildcardPolicy は、ワイルドカードポリシーを使用するルートが Ingress コ
ントローラーによって処理される方法を記述します。

WildcardsAllowed: ワイルドカードポリシーと共にルートが Ingress
コントローラーによって許可されていることを示します。

WildcardsDisallowed: ワイルドカードポリシーの None を持つ
ルートのみが Ingress コントローラーによって許可されることを示し
ます。wildcardPolicy を WildcardsAllowed から
WildcardsDisallowed に更新すると、ワイルドカードポリシーの
Subdomain を持つ許可されたルートが機能を停止します。これらの
ルートは、Ingress コントローラーによって許可されるように None
のワイルドカードポリシーに対して再作成される必要がありま
す。WildcardsDisallowed はデフォルト設定です。

パラメーター 説明

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

29

IngressControllerLoggi
ng

logging はログに記録される内容および場所のパラメーターを定義します。こ
のフィールドが空の場合、操作ログは有効になりますが、アクセスログは無効
になります。

access は、クライアント要求をログに記録する方法を記述します。
このフィールドが空の場合、アクセスロギングは無効になります。

destination はログメッセージの宛先を記述します。

type はログの宛先のタイプです。

Container は、ログがサイドカーコンテナーに移動する
ことを指定します。Ingress Operator は Ingress コント
ローラー Pod で logs という名前のコンテナーを設定
し、Ingress コントローラーがログをコンテナーに書き
込むように設定します。管理者がこのコンテナーからロ
グを読み取るカスタムロギングソリューションを設定す
ることが予想されます。コンテナーログを使用すると、
ログの割合がコンテナーランタイムの容量やカスタムロ
ギングソリューションの容量を超えるとログがドロップ
されることがあります。

Syslog は、ログが Syslog エンドポイントに送信される
ことを指定します。管理者は、Syslog メッセージを受信
できるエンドポイントを指定する必要があります。管理
者がカスタム Syslog インスタンスを設定していること
が予想されます。

container は Container ロギング宛先タイプのパラメー
ターを記述します。現在、コンテナーロギングのパラメー
ターはないため、このフィールドは空である必要がありま
す。

syslog は、Syslog ロギング宛先タイプのパラメーターを
記述します。

address は、ログメッセージを受信する syslog エンド
ポイントの IP アドレスです。

port は、ログメッセージを受信する syslog エンドポイ
ントの UDP ポート番号です。

facility はログメッセージの syslog ファシリティーを指
定します。このフィールドが空の場合、ファシリティー
は local1 になります。それ以外の場合、有効な syslog
ファシリティー (
kern、user、mail、daemon、auth、
syslog、lpr、news、uucp、cron、 auth2、ftp、
ntp、audit、 alert、cron2、 local0、local1、
local2、local3) を指定する必要がありま
す。local4、local5、 local6、または local7。

httpLogFormat は、HTTP 要求のログメッセージの形式を指定
します。このフィールドが空の場合、ログメッセージは実装のデ
フォルト HTTP ログ形式を使用します。HAProxy のデフォルトの
HTTP ログ形式については、HAProxy ドキュメント を参照してく
ださい。

パラメーター 説明

OpenShift Container Platform 4.8 ネットワーク

30

http://cbonte.github.io/haproxy-dconv/2.0/configuration.html#8.2.3

httpHeaders httpHeaders は HTTP ヘッダーのポリシーを定義します。

IngressControllerHTTPHeaders の forwardedHeaderPolicy を設定する
ことで、Ingress コントローラーが Forwarded、X-Forwarded-For、X-
Forwarded-Host、X-Forwarded-Port、X-Forwarded-Proto、および X-
Forwarded-Proto-Version HTTP ヘッダーをいつどのように設定するか指定
します。

デフォルトでは、ポリシーは Append に設定されます。

Append は、Ingress コントローラーがヘッダーを追加するように指
定し、既存のヘッダーを保持します。

Replace は、Ingress コントローラーがヘッダーを設定するように指
定し、既存のヘッダーを削除します。

IfNone は、ヘッダーがまだ設定されていない場合に、Ingress コント
ローラーがヘッダーを設定するように指定します。

Never は、Ingress コントローラーがヘッダーを設定しないように指
定し、既存のヘッダーを保持します。

headerNameCaseAdjustments を設定して、HTTP ヘッダー名に適 用でき
るケースの調整を指定できます。それぞれの調整は、必要な大文字化を指定し
て HTTP ヘッダー名として指定されます。たとえば、X-Forwarded-For を指
定すると、指定された大文字化を有効にするために x-forwarded-for HTTP
ヘッダーを調整する必要があることを示唆できます。

これらの調整は、クリアテキスト、edge terminationd、および re-encrypt
ルートにのみ適用され、HTTP/1 を使用する場合にのみ適用されます。

要求ヘッダーの場合、これらの調整は haproxy.router.openshift.io/h1-
adjust-case=true アノテーションを持つルートについてのみ適用されます。
応答ヘッダーの場合、これらの調整はすべての HTTP 応答に適用されます。こ
のフィールドが空の場合、要求ヘッダーは調整されません。

httpCompression http Compressionは、HTTP トラフィック圧縮のポリシーを定義します。

mimeTypes は、圧縮を適用する必要がある MIME タイプのリストを
定義します。(例: text/css; charset=utf-8, text/html, text/*,
image/svg+xml, application/octet-stream, X-
custom/customsub, using the format pattern, type/subtype;
[;attribute=value])typesは、アプリケーション、イメージ、メッ
セージ、マルチパート、テキスト、ビデオ、またはX-で始まるカスタ
ムタイプ。例: MIME タイプとサブタイプの完全な表記を確認するに
は、 RFC1341を参照してください。

httpErrorCodePages httpErrorCodePages は、カスタムの HTTP エラーコードの応答ページを指
定します。デフォルトで、IngressController は IngressController イメージにビ
ルドされたエラーページを使用します。

パラメーター 説明

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

31

https://datatracker.ietf.org/doc/html/rfc1341#page-7

httpCaptureCookies httpCaptureCookies は、アクセスログにキャプチャーする HTTP Cookie を
指定します。httpCaptureCookies フィールドが空の場合、アクセスログは
Cookie をキャプチャーしません。

キャプチャーするすべての Cookie について、次のパラメーターが
IngressController 設定に含まれている必要があります。

name は、Cookie の名前を指定します。

maxLength は、Cookie の最大長を指定します。

matchType は、Cookie のフィールド の name が、キャプチャー
Cookie 設定と完全に一致するか、キャプチャー Cookie 設定の接頭辞
であるかを指定します。matchType フィールドは Exact および
Prefix パラメーターを使用します。

以下に例を示します。

httpCaptureHeaders httpCaptureHeaders は、アクセスログにキャプチャーする HTTP ヘッダー
を指定します。httpCaptureHeaders フィールドが空の場合、アクセスログ
はヘッダーをキャプチャーしません。

httpCaptureHeaders には、アクセスログにキャプチャーするヘッダーの 2
つのリストが含まれています。ヘッダーフィールドの 2 つのリストは request
と response です。どちらのリストでも、name フィールドはヘッダー名を
指定し、maxlength フィールドはヘッダーの最大長を指定する必要がありま
す。以下に例を示します。

パラメーター 説明

 httpCaptureCookies:
 - matchType: Exact
 maxLength: 128
 name: MYCOOKIE

 httpCaptureHeaders:
 request:
 - maxLength: 256
 name: Connection
 - maxLength: 128
 name: User-Agent
 response:
 - maxLength: 256
 name: Content-Type
 - maxLength: 256
 name: Content-Length

OpenShift Container Platform 4.8 ネットワーク

32

tuningOptions tuningOptions は、Ingress コントローラー Pod のパフォーマンスを調整する
ためのオプションを指定します。

headerBufferBytes は、Ingress コントローラー接続セッション用
に予約されるメモリーの量をバイト単位で指定します。Ingress コン
トローラーで HTTP / 2 が有効になっている場合、この値は少なくと
も 16384 である必要があります。設定されていない場合、デフォル
ト値は 32768 バイトになります。このフィールドを設定することは
お勧めしません。headerBufferBytes 値が小さすぎると Ingress コ
ントローラーが破損する可能性があり、headerBufferBytes 値が大
きすぎると、Ingress コントローラーが必要以上のメモリーを使用す
る可能性があるためです。

headerBufferMaxRewriteBytes は、HTTP ヘッダーの書き換えと
Ingress コントローラー接続セッションの追加のために
headerBufferBytes から予約するメモリーの量をバイト単位で指定
します。headerBufferMaxRewriteBytes の最小値は 4096 です。
受信 HTTP 要求には、headerBufferBytes は
headerBufferMaxRewriteBytes よりも大きくなければなりませ
ん。設定されていない場合、デフォルト値は 8192 バイトになりま
す。このフィールドを設定することはお勧めしませ
ん。headerBufferMaxRewriteBytes 値が小さすぎると Ingress コ
ントローラーが破損する可能性があ
り、headerBufferMaxRewriteBytes 値が大きすぎると、Ingress
コントローラーが必要以上のメモリーを使用する可能性があるためで
す。

threadCount は、HAProxy プロセスごとに作成するスレッドの数を
指定します。より多くのスレッドを作成すると、使用されるシステム
リソースを増やすことで、各 Ingress コントローラー Pod がより多く
の接続を処理できるようになります。HAProxy は最大 64 のスレッド
をサポートします。このフィールドが空の場合、Ingress コントロー
ラーはデフォルト値の 4 スレッドを使用します。デフォルト値は、将
来のリリースで変更される可能性があります。このフィールドを設定
することはお勧めしません。HAProxy スレッドの数を増やすと、
Ingress コントローラー Pod が負荷時に CPU 時間をより多く使用でき
るようになり、他の Pod が実行に必要な CPU リソースを受け取れな
いようになるためです。スレッドの数を減らすと、Ingress コント
ローラーのパフォーマンスが低下する可能性があります。

パラメーター 説明

注記

すべてのパラメーターはオプションです。

6.3.1. Ingress コントローラーの TLS セキュリティープロファイル

TLS セキュリティープロファイルは、サーバーに接続する際に接続クライアントが使用できる暗号を規
制する方法をサーバーに提供します。

6.3.1.1. TLS セキュリティープロファイルについて

TLS (Transport Layer Security) セキュリティープロファイルを使用して、さまざまな OpenShift
Container Platform コンポーネントに必要な TLS 暗号を定義できます。OpenShift Container Platform
の TLS セキュリティープロファイルは、Mozilla が推奨する設定 に基づいています。

コンポーネントごとに、以下の TLS セキュリティープロファイルのいずれかを指定できます。

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

33

https://wiki.mozilla.org/Security/Server_Side_TLS

表6.1 TLS セキュリティープロファイル

プロファイル 説明

Old このプロファイルは、レガシークライアントまたはライブラリーでの使
用を目的としています。このプロファイルは、Old 後方互換性 の推奨設
定に基づいています。

Old プロファイルには、最小 TLS バージョン 1.0 が必要です。

注記

Ingress コントローラーの場合、TLS の最小バージョン
は 1.0 から 1.1 に変換されます。

Intermediate このプロファイルは、大多数のクライアントに推奨される設定です。こ
れは、Ingress コントローラー、kubelet、およびコントロールプレーン
のデフォルトの TLS セキュリティープロファイルです。このプロファイ
ルは、Intermediate 互換性 の推奨設定に基づいています。

Intermediate プロファイルには、最小 TLS バージョン 1.2 が必要で
す。

Modern このプロファイルは、後方互換性を必要としない Modern のクライアン
トでの使用を目的としています。このプロファイルは、Modern 互換性
の推奨設定に基づいています。

Modern プロファイルには、最小 TLS バージョン 1.3 が必要です。

注記

OpenShift Container Platform 4.6、4.7、および 4.8 で
は、Modern プロファイルはサポートされていませ
ん。選択すると、Intermediate プロファイルが有効に
なります。

重要

Modern プロファイルは現在サポートされていませ
ん。

OpenShift Container Platform 4.8 ネットワーク

34

https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

カスタム このプロファイルを使用すると、使用する TLS バージョンと暗号を定義
できます。

警告

無効な設定により問題が発生する可能性があるた
め、Custom プロファイルを使用する際には注意
してください。

注記

OpenShift Container Platform ルーターは、Red Hat 分
散の OpenSSL デフォルトセットの TLS 1.3 暗号スイー
トを有効にします。OpenShift Container Platform
4.6、4.7、および 4.8 では TLS 1.3 がサポートされてい
なくても、クラスターは TLS 1.3 接続と暗号スイートを
受け入れる場合があります。

プロファイル 説明

注記

事前定義されたプロファイルタイプのいずれかを使用する場合、有効なプロファイル設
定はリリース間で変更される可能性があります。たとえば、リリース X.Y.Z にデプロイ
された Intermediate プロファイルを使用する仕様がある場合、リリース X.Y.Z+1 への
アップグレードにより、新規のプロファイル設定が適用され、ロールアウトが生じる可
能性があります。

6.3.1.2. Ingress コントローラーの TLS セキュリティープロファイルの設定

Ingress コントローラーの TLS セキュリティープロファイルを設定するには、IngressController カス
タムリソース (CR) を編集して、事前定義済みまたはカスタムの TLS セキュリティープロファイルを指
定します。TLS セキュリティープロファイルが設定されていない場合、デフォルト値は API サーバーに
設定された TLS セキュリティープロファイルに基づいています。

Old TLS のセキュリティープロファイルを設定するサンプル IngressController CR

TLS セキュリティープロファイルは、Ingress コントローラーの TLS 接続の最小 TLS バージョンと
TLS 暗号を定義します。



apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 old: {}
 type: Old
 ...

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

35

1

2

設定された TLS セキュリティープロファイルの暗号と最小 TLS バージョンは、Status.Tls Profile 配下
の IngressController カスタムリソース (CR) と Spec.Tls Security Profile 配下の設定された TLS セ
キュリティープロファイルで確認できます。Custom TLS セキュリティープロファイルの場合、特定の
暗号と最小 TLS バージョンは両方のパラメーターの下に一覧表示されます。

重要

HAProxy Ingress コントローラーイメージは TLS 1.3 をサポートしません。Modern プロ
ファイルには TLS 1.3 が必要であることから、これはサポートされません。Ingress
Operator は Modern プロファイルを Intermediate に変換します。

また、Ingress Operator は TLS 1.0 の Old または Custom プロファイルを 1.1 に変換
し、TLS 1.3 の Custom プロファイルを 1.2 に変換します。

前提条件

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

1. openshift-ingress-operator プロジェクトの IngressController CR を編集して、TLS セキュ
リティープロファイルを設定します。

2. spec.tlsSecurityProfile フィールドを追加します。

Custom プロファイルのサンプル IngressController CR

TLS セキュリティープロファイルタイプ (Old、Intermediate、または Custom) を指定し
ます。デフォルトは Intermediate です。

選択したタイプに適切なフィールドを指定します。

old: {}

intermediate: {}

custom:

$ oc edit IngressController default -n openshift-ingress-operator

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 type: Custom 1
 custom: 2
 ciphers: 3
 - ECDHE-ECDSA-CHACHA20-POLY1305
 - ECDHE-RSA-CHACHA20-POLY1305
 - ECDHE-RSA-AES128-GCM-SHA256
 - ECDHE-ECDSA-AES128-GCM-SHA256
 minTLSVersion: VersionTLS11
 ...

OpenShift Container Platform 4.8 ネットワーク

36

3 custom タイプには、TLS 暗号の一覧と最小許容 TLS バージョンを指定します。

3. 変更を適用するためにファイルを保存します。

検証

IngressController CR にプロファイルが設定されていることを確認します。

出力例

6.3.2. Ingress コントローラーエンドポイントの公開ストラテジー

NodePortService エンドポイントの公開ストラテジー

NodePortService エンドポイントの公開ストラテジーは、Kubernetes NodePort サービスを使用して
Ingress コントローラーを公開します。

この設定では、Ingress コントローラーのデプロイメントはコンテナーのネットワークを使用しま
す。NodePortService はデプロイメントを公開するために作成されます。特定のノードポートは
OpenShift Container Platform によって動的に割り当てられますが、静的ポートの割り当てをサポート
するために、管理される NodePortService のノードポートフィールドへの変更が保持されます。

図6.1 NodePortService の図

$ oc describe IngressController default -n openshift-ingress-operator

Name: default
Namespace: openshift-ingress-operator
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: IngressController
 ...
Spec:
 ...
 Tls Security Profile:
 Custom:
 Ciphers:
 ECDHE-ECDSA-CHACHA20-POLY1305
 ECDHE-RSA-CHACHA20-POLY1305
 ECDHE-RSA-AES128-GCM-SHA256
 ECDHE-ECDSA-AES128-GCM-SHA256
 Min TLS Version: VersionTLS11
 Type: Custom
 ...

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

37

図6.1 NodePortService の図

前述の図では、OpenShift Container Platform Ingress NodePort エンドポイントの公開戦略に関する以
下のような概念を示しています。

クラスターで利用可能なノードにはすべて、外部からアクセス可能な独自の IP アドレスが割り
当てられています。クラスター内で動作するサービスは、全ノードに固有の NodePort にバイ
ンドされます。

たとえば、クライアントが図中の IP アドレス 10.0.128.4 に接続してダウンしているノードに
接続した場合に、ノードポートは、サービスを実行中で利用可能なノードにクライアントを直
接接続します。このシナリオでは、ロードバランシングは必要ありません。イメージが示すよ
うに、10.0.128.4 アドレスがダウンしており、代わりに別の IP アドレスを使用する必要があり
ます。

注記

Ingress Operator は、サービスの .spec.ports[].nodePort フィールドへの更新を無視し
ます。

デフォルトで、ポートは自動的に割り当てられ、各種の統合用のポート割り当てにアク
セスできます。ただし、既存のインフラストラクチャーと統合するために静的ポートの
割り当てが必要になることがありますが、これは動的ポートに対応して簡単に再設定で
きない場合があります。静的ノードポートとの統合を実行するには、管理対象のサービ
スリソースを直接更新できます。

OpenShift Container Platform 4.8 ネットワーク

38

詳細は、NodePort についての Kubernetes サービスについてのドキュメント を参照してください。

HostNetwork エンドポイントの公開ストラテジー

HostNetwork エンドポイントの公開ストラテジーは、Ingress コントローラーがデプロイされるノード
ポートで Ingress コントローラーを公開します。

HostNetwork エンドポイント公開ストラテジーを持つ Ingress コントローラーには、ノードごとに単一
の Pod レプリカのみを設定できます。n のレプリカを使用する場合、それらのレプリカをスケジュール
できる n 以上のノードを使用する必要があります。各 Pod はスケジュールされるノードホストでポー
ト 80 および 443 を要求するので、同じノードで別の Pod がそれらのポートを使用している場合、レプ
リカをノードにスケジュールすることはできません。

6.4. デフォルト INGRESS コントローラーの表示

Ingress Operator は、OpenShift Container Platform の中核となる機能であり、追加の設定なしに有効
にできます。

すべての新規 OpenShift Container Platform インストールには、ingresscontroller の名前付きのデ
フォルトがあります。これは、追加の Ingress コントローラーで補足できます。デフォルトの
ingresscontroller が削除される場合、Ingress Operator は 1 分以内にこれを自動的に再作成します。

手順

デフォルト Ingress コントローラーを表示します。

6.5. INGRESS OPERATOR ステータスの表示

Ingress Operator のステータスを表示し、検査することができます。

手順

Ingress Operator ステータスを表示します。

6.6. INGRESS コントローラーログの表示

Ingress コントローラーログを表示できます。

手順

Ingress コントローラーログを表示します。

6.7. INGRESS コントローラーステータスの表示

特定の Ingress コントローラーのステータスを表示できます。

手順

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/default

$ oc describe clusteroperators/ingress

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

39

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

手順

Ingress コントローラーのステータスを表示します。

6.8. INGRESS コントローラーの設定

6.8.1. カスタムデフォルト証明書の設定

管理者として、 Secret リソースを作成し、IngressController カスタムリソース (CR) を編集して
Ingress コントローラーがカスタム証明書を使用するように設定できます。

前提条件

PEM エンコードされたファイルに証明書/キーのペアがなければなりません。ここで、証明書
は信頼される認証局またはカスタム PKI で設定されたプライベートの信頼される認証局で署名
されます。

証明書が以下の要件を満たしている必要があります。

証明書が Ingress ドメインに対して有効化されている必要があります。

証明書は拡張を使用して、subjectAltName 拡張を使用して、*.apps.ocp4.example.com
などのワイルドカードドメインを指定します。

IngressController CR がなければなりません。デフォルトの CR を使用できます。

出力例

注記

Intermediate 証明書がある場合、それらはカスタムデフォルト証明書が含まれるシーク
レットの tls.crt ファイルに組み込まれる必要があります。証明書を指定する際の順序は
重要になります。サーバー証明書の後に Intermediate 証明書を一覧表示します。

手順

以下では、カスタム証明書とキーのペアが、現在の作業ディレクトリーの tls.crt および tls.key ファイ
ルにあることを前提とします。tls.crt および tls.key を実際のパス名に置き換えます。さらに、 Secret
リソースを作成し、これを IngressController CR で参照する際に、custom-certs-default を別の名前に
置き換えます。

注記

このアクションにより、Ingress コントローラーはデプロイメントストラテジーを使用し
て再デプロイされます。

1. tls.crt および tls.key ファイルを使用して、カスタム証明書を含む Secret リソースを

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>

$ oc --namespace openshift-ingress-operator get ingresscontrollers

NAME AGE
default 10m

OpenShift Container Platform 4.8 ネットワーク

40

1. tls.crt および tls.key ファイルを使用して、カスタム証明書を含む Secret リソースを
openshift-ingress namespace に作成します。

2. IngressController CR を、新規証明書シークレットを参照するように更新します。

3. 更新が正常に行われていることを確認します。

ここでは、以下のようになります。

<domain>

クラスターのベースドメイン名を指定します。

出力例

ヒント

または、以下の YAML を適用してカスタムのデフォルト証明書を設定できます。

証明書シークレットの名前は、CR を更新するために使用された値に一致する必要があります。

IngressController CR が変更された後に、Ingress Operator はカスタム証明書を使用できるように
Ingress コントローラーのデプロイメントを更新します。

6.8.2. カスタムデフォルト証明書の削除

管理者は、使用する Ingress Controller を設定したカスタム証明書を削除できます。

前提条件

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
 --patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

$ echo Q |\
 openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null |\
 openssl x509 -noout -subject -issuer -enddate

subject=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = *.apps.example.com
issuer=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = example.com
notAfter=May 10 08:32:45 2022 GM

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 defaultCertificate:
 name: custom-certs-default

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

41

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

OpenShift CLI (oc) がインストールされている。

Ingress Controller のカスタムデフォルト証明書を設定している。

手順

カスタム証明書を削除し、OpenShift Container Platform に同梱されている証明書を復元する
には、以下のコマンドを入力します。

クラスターが新しい証明書設定を調整している間、遅延が発生する可能性があります。

検証

元のクラスター証明書が復元されたことを確認するには、次のコマンドを入力します。

ここでは、以下のようになります。

<domain>

クラスターのベースドメイン名を指定します。

出力例

6.8.3. Ingress コントローラーのスケーリング

Ingress コントローラーは、スループットを増大させるための要件を含む、ルーティングのパフォーマ
ンスや可用性に関する各種要件に対応するために手動でスケーリングできます。oc コマンド
は、IngressController リソースのスケーリングに使用されます。以下の手順では、デフォルトの
IngressController をスケールアップする例を示します。

注記

スケーリングは、必要な数のレプリカを作成するのに時間がかかるため、すぐに実行で
きるアクションではありません。

手順

1. デフォルト IngressController の現在の利用可能なレプリカ数を表示します。

$ oc patch -n openshift-ingress-operator ingresscontrollers/default \
 --type json -p $'- op: remove\n path: /spec/defaultCertificate'

$ echo Q | \
 openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null | \
 openssl x509 -noout -subject -issuer -enddate

subject=CN = *.apps.<domain>
issuer=CN = ingress-operator@1620633373
notAfter=May 10 10:44:36 2023 GMT

OpenShift Container Platform 4.8 ネットワーク

42

1

出力例

2. oc patch コマンドを使用して、デフォルトの IngressController を必要なレプリカ数にスケー
リングします。以下の例では、デフォルトの IngressController を 3 つのレプリカにスケーリ
ングしています。

出力例

3. デフォルトの IngressController が指定したレプリカ数にスケーリングされていることを確認
します。

出力例

ヒント

または、以下の YAML を適用して Ingress コントローラーを 3 つのレプリカにスケーリングす
ることもできます。

異なる数のレプリカが必要な場合は replicas 値を変更します。

6.8.4. Ingress アクセスロギングの設定

アクセスログを有効にするように Ingress コントローラーを設定できます。大量のトラフィックを受信
しないクラスターがある場合、サイドカーにログインできます。クラスターのトラフィックが多い場
合、ロギングスタックの容量を超えないようにしたり、OpenShift Container Platform 外のロギングイ
ンフラストラクチャーと統合したりするために、ログをカスタム syslog エンドポイントに転送すること
ができます。アクセスログの形式を指定することもできます。

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

2

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas":
3}}' --type=merge

ingresscontroller.operator.openshift.io/default patched

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

3

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 3 1

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

43

コンテナーロギングは、既存の Syslog ロギングインフラストラクチャーがない場合や、Ingress コント
ローラーで問題を診断する際に短期間使用する場合に、低トラフィックのクラスターのアクセスログを
有効にするのに役立ちます。

アクセスログが OpenShift Logging スタックの容量を超える可能性があるトラフィックの多いクラス
ターや、ロギングソリューションが既存の Syslog ロギングインフラストラクチャーと統合する必要の
ある環境では、syslog が必要です。Syslog のユースケースは重複する可能性があります。

前提条件

cluster-admin 権限を持つユーザーとしてログインしている。

手順

サイドカーへの Ingress アクセスロギングを設定します。

Ingress アクセスロギングを設定するには、spec.logging.access.destination を使用して宛先
を指定する必要があります。サイドカーコンテナーへのロギングを指定するには、Container
spec.logging.access.destination.type を指定する必要があります。以下の例は、コンテナー
Container の宛先に対してログ記録する Ingress コントローラー定義です。

Ingress コントローラーをサイドカーに対してログを記録するように設定すると、Operator は
Ingress コントローラー Pod 内に logs という名前のコンテナーを作成します。

出力例

Syslog エンドポイントへの Ingress アクセスロギングを設定します。

Ingress アクセスロギングを設定するには、spec.logging.access.destination を使用して宛先
を指定する必要があります。Syslog エンドポイント宛先へのロギングを指定するに
は、spec.logging.access.destination.type に Syslog を指定する必要があります。宛先タイ
プが Syslog の場合、spec.logging.access.destination.syslog.endpoint を使用して宛先エン
ドポイントも指定する必要があります。ま
た、spec.logging.access.destination.syslog.facility を使用してファシリティーを指定できま
す。以下の例は、Syslog 宛先に対してログを記録する Ingress コントローラーの定義です。

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Container

$ oc -n openshift-ingress logs deployment.apps/router-default -c logs

2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-
57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public
be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080
0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"

OpenShift Container Platform 4.8 ネットワーク

44

注記

syslog 宛先ポートは UDP である必要があります。

特定のログ形式で Ingress アクセスロギングを設定します。

spec.logging.access.httpLogFormat を指定して、ログ形式をカスタマイズできます。以下の
例は、IP アドレスが 1.2.3.4 およびポート 10514 の syslog エンドポイントに対してログを記録
する Ingress コントローラーの定義です。

Ingress アクセスロギングを無効にします。

Ingress アクセスロギングを無効にするには、spec.logging または spec.logging.access を空
のままにします。

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 port: 10514

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 port: 10514
 httpLogFormat: '%ci:%cp [%t] %ft %b/%s %B %bq %HM %HU %HV'

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

45

6.8.5. Ingress コントローラースレッド数の設定

クラスター管理者は、スレッド数を設定して、クラスターが処理できる受信接続の量を増やすことがで
きます。既存の Ingress コントローラーにパッチを適用して、スレッドの数を増やすことができます。

前提条件

以下では、Ingress コントローラーがすでに作成されていることを前提とします。

手順

Ingress コントローラーを更新して、スレッド数を増やします。

注記

大量のリソースを実行できるノードがある場
合、spec.nodePlacement.nodeSelector を、意図されているノードの容量に一
致するラベルで設定し、spec.tuningOptions.threadCount を随時高い値に設定
します。

6.8.6. Ingress コントローラーのシャード化

トラフィックがクラスターに送信される主要なメカニズムとして、Ingress コントローラーまたはルー
ターへの要求が大きくなる可能性があります。クラスター管理者は、以下を実行するためにルートを
シャード化できます。

Ingress コントローラーまたはルーターを複数のルートに分散し、変更に対する応答を加速しま
す。

特定のルートを他のルートとは異なる信頼性の保証を持つように割り当てます。

特定の Ingress コントローラーに異なるポリシーを定義することを許可します。

特定のルートのみが追加機能を使用することを許可します。

たとえば、異なるアドレスで異なるルートを公開し、内部ユーザーおよび外部ユーザーが異な
るルートを認識できるようにします。

Ingress コントローラーは、ルートラベルまたは namespace ラベルのいずれかをシャード化の方法とし
て使用できます。

6.8.6.1. ルートラベルを使用した Ingress コントローラーのシャード化の設定

ルートラベルを使用した Ingress コントローラーのシャード化とは、Ingress コントローラーがルートセ
レクターによって選択される任意 namespace の任意のルートを提供することを意味します。

Ingress コントローラーのシャード化は、一連の Ingress コントローラー間で着信トラフィックの負荷を

 replicas: 2
 logging:
 access: null

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"threadCount": 8}}}'

OpenShift Container Platform 4.8 ネットワーク

46

分散し、トラフィックを特定の Ingress コントローラーに分離する際に役立ちます。たとえば、
Company A のトラフィックをある Ingress コントローラーに指定し、Company B を別の Ingress コン
トローラーに指定できます。

手順

1. router-internal.yaml ファイルを編集します。

2. Ingress コントローラーの router-internal.yaml ファイルを適用します。

Ingress コントローラーは、type: sharded というラベルのある namespace のルートを選択し
ます。

6.8.6.2. namespace ラベルを使用した Ingress コントローラーのシャード化の設定

namespace ラベルを使用した Ingress コントローラーのシャード化とは、Ingress コントローラーが
namespace セレクターによって選択される任意の namespace の任意のルートを提供することを意味し
ます。

Ingress コントローラーのシャード化は、一連の Ingress コントローラー間で着信トラフィックの負荷を
分散し、トラフィックを特定の Ingress コントローラーに分離する際に役立ちます。たとえば、
Company A のトラフィックをある Ingress コントローラーに指定し、Company B を別の Ingress コン
トローラーに指定できます。

cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

47

警告

Keepalived Ingress VIP をデプロイする場合は、endpoint Publishing Strategy パ
ラメーターに Host Network の値が割り当てられた、デフォルト以外の Ingress
Controller をデプロイしないでください。デプロイしてしまうと、問題が発生する
可能性があります。endpoint Publishing Strategy に Host Network ではな
く、Node Port という値を使用してください。

手順

1. router-internal.yaml ファイルを編集します。

出力例

2. Ingress コントローラーの router-internal.yaml ファイルを適用します。

Ingress コントローラーは、type: sharded というラベルのある namespace セレクターによっ
て選択される namespace のルートを選択します。

6.8.7. 内部ロードバランサーを使用するように Ingress コントローラーを設定する

クラウドプラットフォームで Ingress コントローラーを作成する場合、Ingress コントローラーはデフォ
ルトでパブリッククラウドロードバランサーによって公開されます。管理者は、内部クラウドロードバ
ランサーを使用する Ingress コントローラーを作成できます。



cat router-internal.yaml

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml

OpenShift Container Platform 4.8 ネットワーク

48

警告

クラウドプロバイダーが Microsoft Azure の場合、ノードを参照するパブリック
ロードバランサーが少なくとも 1 つ必要です。これがない場合、すべてのノードが
インターネットへの egress 接続を失います。

重要

IngressController オブジェクトの スコープ を変更する必要がある場
合、IngressController オブジェクトを削除してから、これを再作成する必要がありま
す。カスタムリソース (CR) の作成後に
.spec.endpointPublishingStrategy.loadBalancer.scope パラメーターを変更すること
はできません。

図6.2 ロードバランサーの図

前述の図では、OpenShift Container Platform Ingress LoadBalancerService エンドポイントの公開戦略
に関する以下のような概念を示しています。

負荷は、外部からクラウドプロバイダーのロードバランサーを使用するか、内部から



第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

49

1

2

3

1

負荷は、外部からクラウドプロバイダーのロードバランサーを使用するか、内部から
OpenShift Ingress Controller Load Balancer を使用して、分散できます。

ロードバランサーのシングル IP アドレスと、図にあるクラスターのように、8080 や 4200 と
いった馴染みのあるポートを使用することができます。

外部のロードバランサーからのトラフィックは、ダウンしたノードのインスタンスで記載され
ているように、Pod の方向に進められ、ロードバランサーが管理します。実装の詳細について
は、Kubernetes サービスドキュメント を参照してください。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

1. 以下の例のように、<name>-ingress-controller.yaml という名前のファイルに
IngressController カスタムリソース (CR) を作成します。

<name> を IngressController オブジェクトの名前に置き換えます。

コントローラーによって公開されるアプリケーションの ドメイン を指定します。

内部ロードバランサーを使用するために Internal の値を指定します。

2. 以下のコマンドを実行して、直前の手順で定義された Ingress コントローラーを作成します。

<name> を IngressController オブジェクトの名前に置き換えます。

3. オプション: 以下のコマンドを実行して Ingress コントローラーが作成されていることを確認し
ます。

6.8.8. GCP での Ingress コントローラーのグローバルアクセスの設定

内部ロードバランサーで GCP で作成された Ingress コントローラーは、サービスの内部 IP アドレスを

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: <name> 1
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal 3

$ oc create -f <name>-ingress-controller.yaml 1

$ oc --all-namespaces=true get ingresscontrollers

OpenShift Container Platform 4.8 ネットワーク

50

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer

1

内部ロードバランサーで GCP で作成された Ingress コントローラーは、サービスの内部 IP アドレスを
生成します。クラスター管理者は、グローバルアクセスオプションを指定できます。これにより、同じ
VPC ネットワーク内の任意のリージョンでクラスターを有効にし、ロードバランサーとしてコンピュー
トリージョンを有効にして、クラスターで実行されるワークロードに到達できるようにできます。

詳細情報は、GCP ドキュメントの グローバルアクセス について参照してください。

前提条件

OpenShift Container Platform クラスターを GCP インフラストラクチャーにデプロイしてい
る。

内部ロードバランサーを使用するように Ingress コントローラーを設定している。

OpenShift CLI (oc) がインストールされている。

手順

1. グローバルアクセスを許可するように Ingress コントローラーリソースを設定します。

注記

Ingress コントローラーを作成し、グローバルアクセスのオプションを指定する
こともできます。

a. Ingress コントローラーリソースを設定します。

b. YAML ファイルを編集します。

サンプル clientAccess 設定を Global に設定します。

gcp.clientAccess を Global に設定します。

c. 変更を適用するためにファイルを保存します。

2. 以下のコマンドを実行して、サービスがグローバルアクセスを許可することを確認します。

この出力では、グローバルアクセスがアノテーション networking.gke.io/internal-load-
balancer-allow-global-access で GCP について有効にされていることを示しています。

$ oc -n openshift-ingress-operator edit ingresscontroller/default

 spec:
 endpointPublishingStrategy:
 loadBalancer:
 providerParameters:
 gcp:
 clientAccess: Global 1
 type: GCP
 scope: Internal
 type: LoadBalancerService

$ oc -n openshift-ingress edit svc/router-default -o yaml

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

51

https://cloud.google.com/kubernetes-engine/docs/how-to/internal-load-balancing#global_access

6.8.9. クラスターを内部に配置するようにのデフォルト Ingress コントローラーを設定
する

削除や再作成を実行して、クラスターを内部に配置するように default Ingress コントローラーを設定で
きます。

警告

クラウドプロバイダーが Microsoft Azure の場合、ノードを参照するパブリック
ロードバランサーが少なくとも 1 つ必要です。これがない場合、すべてのノードが
インターネットへの egress 接続を失います。

重要

IngressController オブジェクトの スコープ を変更する必要がある場
合、IngressController オブジェクトを削除してから、これを再作成する必要がありま
す。カスタムリソース (CR) の作成後に
.spec.endpointPublishingStrategy.loadBalancer.scope パラメーターを変更すること
はできません。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

1. 削除や再作成を実行して、クラスターを内部に配置するように default Ingress コントローラー
を設定します。

6.8.10. ルートの受付ポリシーの設定

管理者およびアプリケーション開発者は、同じドメイン名を持つ複数の namespace でアプリケーショ
ンを実行できます。これは、複数のチームが同じホスト名で公開されるマイクロサービスを開発する組
織を対象としています。



$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: default
spec:
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal
EOF

OpenShift Container Platform 4.8 ネットワーク

52

警告

複数の namespace での要求の許可は、namespace 間の信頼のあるクラスターに対
してのみ有効にする必要があります。有効にしないと、悪意のあるユーザーがホス
ト名を乗っ取る可能性があります。このため、デフォルトの受付ポリシーは複数の
namespace 間でのホスト名の要求を許可しません。

前提条件

クラスター管理者の権限。

手順

以下のコマンドを使用して、ingresscontroller リソース変数の .spec.routeAdmission フィー
ルドを編集します。

イメージコントローラー設定例

ヒント

または、以下の YAML を適用してルートの受付ポリシーを設定できます。

6.8.11. ワイルドカードルートの使用

HAProxy Ingress コントローラーにはワイルドカードルートのサポートがあります。Ingress Operator
は wildcardPolicy を使用して、Ingress コントローラーの ROUTER_ALLOW_WILDCARD_ROUTES
環境変数を設定します。

Ingress コントローラーのデフォルトの動作では、ワイルドカードポリシーの None (既存の
IngressController リソースとの後方互換性がある) を持つルートを許可します。

手順



$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed
...

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

53

手順
1. ワイルドカードポリシーを設定します。

a. 以下のコマンドを使用して IngressController リソースを編集します。

b. spec の下で、wildcardPolicy フィールドを WildcardsDisallowed または
WildcardsAllowed に設定します。

6.8.12. X-Forwarded ヘッダーの使用

Forwarded および X-Forwarded-For を含む HTTP ヘッダーの処理方法についてのポリシーを指定する
ように HAProxy Ingress コントローラーを設定します。Ingress Operator は HTTPHeaders フィールド
を使用して、Ingress コントローラーの ROUTER_SET_FORWARDED_HEADERS 環境変数を設定し
ます。

手順

1. Ingress コントローラー用に HTTPHeaders フィールドを設定します。

a. 以下のコマンドを使用して IngressController リソースを編集します。

b. spec の下で、HTTPHeaders ポリシーフィールドを Append、Replace、IfNone、または
Never に設定します。

使用例
クラスター管理者として、以下を実行できます。

Ingress コントローラーに転送する前に、X-Forwarded-For ヘッダーを各リクエストに挿入す
る外部プロキシーを設定します。
ヘッダーを変更せずに渡すように Ingress コントローラーを設定するには、never ポリシーを指
定します。これにより、Ingress コントローラーはヘッダーを設定しなくなり、アプリケーショ
ンは外部プロキシーが提供するヘッダーのみを受信します。

外部プロキシーが外部クラスター要求を設定する X-Forwarded-For ヘッダーを変更せずに渡す
ように Ingress コントローラーを設定します。
外部プロキシーを通過しない内部クラスター要求に X-Forwarded-For ヘッダーを設定するよう
に Ingress コントローラーを設定するには、if-none ポリシーを指定します。外部プロキシー経
由で HTTP 要求にヘッダーがすでに設定されている場合、Ingress コントローラーはこれを保持

$ oc edit IngressController

spec:
 routeAdmission:
 wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed

$ oc edit IngressController

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 forwardedHeaderPolicy: Append

OpenShift Container Platform 4.8 ネットワーク

54

します。要求がプロキシーを通過していないためにヘッダーがない場合、Ingress コントロー
ラーはヘッダーを追加します。

アプリケーション開発者として、以下を実行できます。

X-Forwarded-For ヘッダーを挿入するアプリケーション固有の外部プロキシーを設定します。
他の Route のポリシーに影響を与えずに、アプリケーションの Route 用にヘッダーを変更せず
に渡すように Ingress コントローラーを設定するには、アプリケーションの Route に アノテー
ション haproxy.router.openshift.io/set-forwarded-headers: if-none または
haproxy.router.openshift.io/set-forwarded-headers: never を追加します。

注記

Ingress コントローラーのグローバルに設定された値とは別
に、haproxy.router.openshift.io/set-forwarded-headers アノテーションを
ルートごとに設定できます。

6.8.13. HTTP/2 Ingress 接続の有効化

HAProxy で透過的なエンドツーエンド HTTP/2 接続を有効にすることができます。これにより、アプ
リケーションの所有者は、単一接続、ヘッダー圧縮、バイナリーストリームなど、HTTP/2 プロトコル
機能を使用できます。

個別の Ingress コントローラーまたはクラスター全体について、HTTP/2 接続を有効にすることができ
ます。

クライアントから HAProxy への接続について HTTP/2 の使用を有効にするために、ルートはカスタム
証明書を指定する必要があります。デフォルトの証明書を使用するルートは HTTP/2 を使用することが
できません。この制限は、クライアントが同じ証明書を使用する複数の異なるルートに接続を再使用す
るなどの、接続の結合 (coalescing) の問題を回避するために必要です。

HAProxy からアプリケーション Pod への接続は、re-encrypt ルートのみに HTTP/2 を使用でき、edge
termination ルートまたは非セキュアなルートには使用しません。この制限は、HAProxy が TLS 拡張で
ある Application-Level Protocol Negotiation (ALPN) を使用してバックエンドで HTTP/2 の使用をネゴ
シエートするためにあります。そのため、エンドツーエンドの HTTP/2 はパススルーおよび re-encrypt
使用できますが、非セキュアなルートまたは edge termination ルートでは使用できません。

警告

再暗号化ルートで WebSocket を使用し、Ingress Controller で HTTP/2 を有効にす
るには、HTTP/2 を介した WebSocket のサポートが必要です。HTTP/2 上の
WebSockets は HAProxy 2.4 の機能であり、現時点では OpenShift Container
Platform ではサポートされていません。

重要



第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

55

重要

パススルー以外のルートの場合、Ingress コントローラーはクライアントからの接続とは
独立してアプリケーションへの接続をネゴシエートします。つまり、クライアントが
Ingress コントローラーに接続して HTTP/1.1 をネゴシエートし、Ingress コントローラー
は次にアプリケーションに接続して HTTP/2 をネゴシエートし、アプリケーションへの
HTTP/2 接続を使用してクライアント HTTP/1.1 接続からの要求の転送を実行できます。
Ingress コントローラーは WebSocket を HTTP/2 に転送できず、その HTTP/2 接続を
WebSocket に対してアップグレードできないため、クライアントが後に HTTP/1.1 から
WebSocket プロトコルに接続をアップグレードしようとすると問題が発生します。その
ため、WebSocket 接続を受け入れることが意図されたアプリケーションがある場合、こ
れは HTTP/2 プロトコルのネゴシエートを許可できないようにする必要があります。そ
うしないと、クライアントは WebSocket プロトコルへのアップグレードに失敗します。

手順

単一 Ingress コントローラーで HTTP/2 を有効にします。

Ingress コントローラーで HTTP/2 を有効にするには、oc annotate コマンドを入力します。

<ingresscontroller_name> をアノテーションを付ける Ingress コントローラーの名前に置き換
えます。

クラスター全体で HTTP/2 を有効にします。

クラスター全体で HTTP/2 を有効にするには、oc annotate コマンドを入力します。

ヒント

または、以下の YAML を適用してアノテーションを追加できます。

6.8.14. Ingress コントローラーの PROXY プロトコルの設定

クラスター管理者は、Ingress コントローラーが HostNetwork または NodePortService エンドポイン
トの公開ストラテジータイプのいずれかを使用する際に PROXY プロトコル を設定できます。PROXY
プロトコルにより、ロードバランサーは Ingress コントローラーが受信する接続の元のクライアントア
ドレスを保持することができます。元のクライアントアドレスは、HTTP ヘッダーのロギング、フィル
ターリング、および挿入を実行する場合に便利です。デフォルト設定では、Ingress コントローラーが
受信する接続には、ロードバランサーに関連付けられるソースアドレスのみが含まれます。

この機能は、クラウドデプロイメントではサポートされていません。この制限は、OpenShift Container
Platform がクラウドプラットフォームで実行される場合、IngressController はサービ出力ドバランサー

$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name>
ingress.operator.openshift.io/default-enable-http2=true

$ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
 annotations:
 ingress.operator.openshift.io/default-enable-http2: "true"

OpenShift Container Platform 4.8 ネットワーク

56

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

を使用するように指定し、Ingress Operator はロードバランサーサービスを設定し、ソースアドレスを
保持するプラットフォーム要件に基づいて PROXY プロトコルを有効にするためにあります。

重要

PROXY プロトコルまたは TCP を使用するには、OpenShift Container Platform と外部
ロードバランサーの両方を設定する必要があります。

警告

PROXY プロトコルは、Keepalived Ingress VIP を使用するクラウド以外のプラット
フォーム上のインストーラーによってプロビジョニングされたクラスターを使用す
るデフォルトの Ingress コントローラーではサポートされていません。

前提条件

Ingress コントローラーを作成している。

手順

1. Ingress コントローラーリソースを編集します。

2. PROXY 設定を設定します。

Ingress コントローラーが hostNetwork エンドポイント公開ストラテジータイプを使用する
場合は、spec.endpointPublishingStrategy.nodePort.protocol サブフィールドを PROXY
に設定します。

PROXY への hostNetwork の設定例

Ingress コントローラーが NodePortService エンドポイント公開ストラテジータイプを使用
する場合は、spec.endpointPublishingStrategy.nodePort.protocol サブフィールドを
PROXY に設定します。

PROXY へのサンプル nodePort 設定



$ oc -n openshift-ingress-operator edit ingresscontroller/default

 spec:
 endpointPublishingStrategy:
 hostNetwork:
 protocol: PROXY
 type: HostNetwork

 spec:
 endpointPublishingStrategy:
 nodePort:
 protocol: PROXY
 type: NodePortService

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

57

1

2

6.8.15. appsDomain オプションを使用した代替クラスタードメインの指定

クラスター管理者は、appsDomain フィールドを設定して、ユーザーが作成したルートのデフォルトの
クラスタードメインの代わりとなるものを指定できます。appsDomain フィールドは、domain フィー
ルドで指定されているデフォルトの代わりに使用する OpenShift Container Platform のオプションのド
メインです。代替ドメインを指定する場合、これは新規ルートのデフォルトホストを判別できるように
する目的でデフォルトのクラスタードメインを上書きします。

たとえば、所属企業の DNS ドメインを、クラスター上で実行されるアプリケーションのルートおよび
ingress のデフォルトドメインとして使用できます。

前提条件

OpenShift Container Platform クラスターをデプロイしていること。

oc コマンドラインインターフェイスをインストールしている。

手順

1. ユーザーが作成するルートに代替のデフォルトドメインを指定して appsDomain フィールドを
設定します。

a. Ingress cluster リソースを編集します。

b. YAML ファイルを編集します。

test.example.com への apps Domain の設定例

デフォルトドメインを指定します。インストール後にデフォルトドメインを変更する
ことはできません。

オプション: アプリケーションルートに使用する OpenShift Container Platform インフ
ラストラクチャーのドメイン。デフォルトの接頭辞である apps の代わりに、test の
ような別の接頭辞を使用できます。

2. ルートを公開し、ルートドメインの変更を確認して、既存のルートに、appsDomain フィール
ドで指定したドメイン名が含まれていることを確認します。

注記

ルートを公開する前に openshift-apiserver がローリング更新を終了するのを待
機します。

$ oc edit ingresses.config/cluster -o yaml

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: apps.example.com 1
 appsDomain: <test.example.com> 2

OpenShift Container Platform 4.8 ネットワーク

58

a. ルートを公開します。

出力例:

6.8.16. HTTP ヘッダーケースの変換

HAProxy 2.2 では、デフォルトで HTTP ヘッダー名を小文字化します。たとえば、Host: xyz.com を
host: xyz.com に変更します。レガシーアプリケーションが HTTP ヘッダー名の大文字を認識する場
合、Ingress Controller の spec.httpHeaders.headerNameCaseAdjustments API フィールドを、修正
されるまでレガシーアプリケーションに対応するソリューションに使用します。

重要

OpenShift Container Platform 4.8 には HAProxy 2.2 が含まれるため、アップグレードす
る前に spec.httpHeaders.headerNameCaseAdjustments を使用して必要な設定を追加
するようにしてください。

前提条件

OpenShift CLI (oc) がインストールされている。

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

クラスター管理者は、oc patch コマンドを入力するか、または Ingress コントローラー YAML ファイ
ルの HeaderNameCaseAdjustments フィールドを設定して HTTP ヘッダーのケースを変換できます。

oc patch コマンドを入力して、HTTP ヘッダーの大文字化を指定します。

1. oc patch コマンドを入力して、HTTP host ヘッダーを Host に変更します。

2. アプリケーションのルートにアノテーションを付けます。

次に、Ingress コントローラーは host 要求ヘッダーを指定どおりに調整します。

Ingress コントローラーの YAML ファイルを設定し、 HeaderNameCaseAdjustments フィー
ルドを使用して調整を指定します。

1. 以下のサンプル Ingress コントローラー YAML は、適切にアノテーションが付けられた

$ oc expose service hello-openshift
route.route.openshift.io/hello-openshift exposed

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
hello-openshift hello_openshift-<my_project>.test.example.com
hello-openshift 8080-tcp None

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch='{"spec":{"httpHeaders":{"headerNameCaseAdjustments":["Host"]}}}'

$ oc annotate routes/my-application haproxy.router.openshift.io/h1-adjust-case=true

第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR

59

1

1. 以下のサンプル Ingress コントローラー YAML は、適切にアノテーションが付けられた
ルートへの HTTP/1 要求について host ヘッダーを Host に調整します。

Ingress コントローラー YAML のサンプル

2. 以下のサンプルルートでは、haproxy.router.openshift.io/h1-adjust-case アノテーション
を使用して HTTP 応答ヘッダー名のケース調整を有効にします。

ルート YAML のサンプル

haproxy.router.openshift.io/h1-adjust-case を true に設定します。

6.9. 関連情報

カスタム PKI の設定

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 headerNameCaseAdjustments:
 - Host

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/h1-adjust-case: true 1
 name: my-application
 namespace: my-application
spec:
 to:
 kind: Service
 name: my-application

OpenShift Container Platform 4.8 ネットワーク

60

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-a-custom-pki

第7章 エンドポイントへの接続の確認
Cluster Network Operator (CNO) は、クラスター内のリソース間の接続ヘルスチェックを実行するコン
トローラーである接続性チェックコントローラーを実行します。ヘルスチェックの結果を確認して、調
査している問題が原因で生じる接続の問題を診断したり、ネットワーク接続を削除したりできます。

7.1. 実行する接続ヘルスチェック

クラスターリソースにアクセスできることを確認するには、以下のクラスター API サービスのそれぞれ
に対して TCP 接続が行われます。

Kubernetes API サーバーサービス

Kubernetes API サーバーエンドポイント

OpenShift API サーバーサービス

OpenShift API サーバーエンドポイント

ロードバランサー

サービスおよびサービスエンドポイントがクラスター内のすべてのノードで到達可能であることを確認
するには、以下の各ターゲットに対して TCP 接続が行われます。

ヘルスチェックターゲットサービス

ヘルスチェックターゲットエンドポイント

7.2. 接続ヘルスチェックの実装

接続チェックコントローラーは、クラスター内の接続検証チェックをオーケストレーションします。接
続テストの結果は、openshift-network-diagnostics namespace の PodNetworkConnectivity オブ
ジェクトに保存されます。接続テストは、1 分ごとに並行して実行されます。

Cluster Network Operator (CNO) は、接続性ヘルスチェックを送受信するためにいくつかのリソースを
クラスターにデプロイします。

ヘルスチェックのソース

このプログラムは、Deployment オブジェクトで管理される単一の Pod レプリカセットにデプロイ
します。このプログラムは PodNetworkConnectivity オブジェクトを消費し、各オブジェクトで指
定される spec.targetEndpoint に接続されます。

ヘルスチェックのターゲット

クラスターのすべてのノードにデーモンセットの一部としてデプロイされた Pod。Pod はインバウ
ンドのヘルスチェックをリッスンします。すべてのノードにこの Pod が存在すると、各ノードへの
接続をテストすることができます。

7.3. PODNETWORKCONNECTIVITYCHECK オブジェクトフィールド

PodNetworkConnectivityCheck オブジェクトフィールドについては、以下の表で説明されています。

表7.1 PodNetworkConnectivityCheck オブジェクトフィールド

第7章 エンドポイントへの接続の確認

61

フィールド タイプ 説明

metadata.name string 以下の形式のオブジェクトの名前: <source>-to-
<target><target> で記述される宛先には、以下の
いずれかの文字列が含まれます。

load-balancer-api-external

load-balancer-api-internal

kubernetes-apiserver-endpoint

kubernetes-apiserver-service-cluster

network-check-target

openshift-apiserver-endpoint

openshift-apiserver-service-cluster

metadata.namespace string オブジェクトが関連付けられる namespace。この値
は、常に openshift-network-diagnostics になり
ます。

spec.sourcePod string 接続チェックの起点となる Pod の名前 (例:
network-check-source-596b4c6566-rgh92)。

spec.targetEndpoint string api.devcluster.example.com:6443 などの接続
チェックのターゲット。

spec.tlsClientCert object 使用する TLS 証明書の設定。

spec.tlsClientCert.name string 使用される TLS 証明書の名前 (ある場合)。デフォル
ト値は空の文字列です。

status object 接続テストの状態を表す、および最近の接続の成功
および失敗についてのログ。

status.conditions array 接続チェックと最新のステータスと以前のステータ
ス。

status.failures array 試行に失敗した接続テストのログ。

status.outages array 停止が生じた期間が含まれる接続テストのログ。

status.successes array 試行に成功した接続テストのログ。

以下の表は、status.conditions 配列内のオブジェクトのフィールドについて説明しています。

表7.2 status.conditions

OpenShift Container Platform 4.8 ネットワーク

62

フィールド タイプ 説明

lastTransitionTime string 接続の条件がある状態から別の状態に移行した時
間。

message string 人が判読できる形式の最後の移行についての詳細。

reason string マシンの読み取り可能な形式での移行の最後のス
テータス。

status string 状態のテータス。

type string 状態のタイプ。

以下の表は、status.conditions 配列内のオブジェクトのフィールドについて説明しています。

表7.3 status.outages

フィールド タイプ 説明

end string 接続の障害が解決された時点からのタイムスタン
プ。

endLogs array 接続ログエントリー (停止の正常な終了に関連するロ
グエントリーを含む)。

message string 人が判読できる形式の停止について詳細情報の要
約。

start string 接続の障害が最初に検知された時点からのタイムス
タンプ。

startLogs array 元の障害を含む接続ログのエントリー。

接続ログフィールド
接続ログエントリーのフィールドの説明は以下の表で説明されています。オブジェクトは以下のフィー
ルドで使用されます。

status.failures[]

status.successes[]

status.outages[].startLogs[]

status.outages[].endLogs[]

表7.4 接続ログオブジェクト

第7章 エンドポイントへの接続の確認

63

フィールド タイプ 説明

latency string アクションの期間を記録します。

message string ステータスを人が判読できる形式で提供します。

reason string ステータスの理由をマシンが判読できる形式で提供
します。値は
TCPConnect、TCPConnectError、DNSResol
ve、DNSError のいずれかになります。

success boolean ログエントリーが成功または失敗であるかを示しま
す。

time string 接続チェックの開始時間。

7.4. エンドポイントのネットワーク接続の確認

クラスター管理者は、API サーバー、ロードバランサー、サービス、または Pod などのエンドポイント
の接続を確認できます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

1. 現在の PodNetworkConnectivityCheck オブジェクトを一覧表示するには、以下のコマンドを
入力します。

出力例

$ oc get podnetworkconnectivitycheck -n openshift-network-diagnostics

NAME AGE
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-1 73m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-2 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
service-cluster 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-default-
service-cluster 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
external 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
internal 75m

OpenShift Container Platform 4.8 ネットワーク

64

2. 接続テストログを表示します。

a. 直前のコマンドの出力から、接続ログを確認するエンドポイントを特定します。

b. オブジェクトを表示するには、以下のコマンドを入力します。

ここで、<name> は PodNetworkConnectivityCheck オブジェクトの名前を指定します。

出力例

network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-master-1 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-master-2 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-c-n8mbf 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-d-4hnrz 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-
service-cluster 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-1 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-2 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
service-cluster 75m

$ oc get podnetworkconnectivitycheck <name> \
 -n openshift-network-diagnostics -o yaml

apiVersion: controlplane.operator.openshift.io/v1alpha1
kind: PodNetworkConnectivityCheck
metadata:
 name: network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-
apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0
 namespace: openshift-network-diagnostics
 ...
spec:
 sourcePod: network-check-source-7c88f6d9f-hmg2f
 targetEndpoint: 10.0.0.4:6443
 tlsClientCert:
 name: ""
status:
 conditions:
 - lastTransitionTime: "2021-01-13T20:11:34Z"
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnectSuccess
 status: "True"
 type: Reachable

第7章 エンドポイントへの接続の確認

65

 failures:
 - latency: 2.241775ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
 to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
 connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:10:34Z"
 - latency: 2.582129ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
 to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
 connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:09:34Z"
 - latency: 3.483578ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
 to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
 connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:08:34Z"
 outages:
 - end: "2021-01-13T20:11:34Z"
 endLogs:
 - latency: 2.032018ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 tcp connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T20:11:34Z"
 - latency: 2.241775ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:10:34Z"
 - latency: 2.582129ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:09:34Z"
 - latency: 3.483578ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:08:34Z"
 message: Connectivity restored after 2m59.999789186s
 start: "2021-01-13T20:08:34Z"
 startLogs:
 - latency: 3.483578ms

OpenShift Container Platform 4.8 ネットワーク

66

 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:08:34Z"
 successes:
 - latency: 2.845865ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:14:34Z"
 - latency: 2.926345ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:13:34Z"
 - latency: 2.895796ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:12:34Z"
 - latency: 2.696844ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:11:34Z"
 - latency: 1.502064ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:10:34Z"
 - latency: 1.388857ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:09:34Z"
 - latency: 1.906383ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:08:34Z"
 - latency: 2.089073ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:07:34Z"
 - latency: 2.156994ms

第7章 エンドポイントへの接続の確認

67

 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:06:34Z"
 - latency: 1.777043ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:05:34Z"

OpenShift Container Platform 4.8 ネットワーク

68

第8章 ノードポートサービス範囲の設定
クラスター管理者は、利用可能なノードのポート範囲を拡張できます。クラスターで多数のノードポー
トが使用される場合、利用可能なポートの数を増やす必要がある場合があります。

デフォルトのポート範囲は 30000-32767 です。最初にデフォルト範囲を超えて拡張した場合でも、
ポート範囲を縮小することはできません。

8.1. 前提条件

クラスターインフラストラクチャーは、拡張された範囲内で指定するポートへのアクセスを許
可する必要があります。たとえば、ノードのポート範囲を 30000-32900 に拡張する場合、ファ
イアウォールまたはパケットフィルターリングの設定によりこれに含まれるポート範囲 32768-
32900 を許可する必要があります。

8.2. ノードのポート範囲の拡張

クラスターのノードポート範囲を拡張できます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてクラスターにログインする。

手順

1. ノードのポート範囲を拡張するには、以下のコマンドを入力します。<port> を、新規の範囲内
で最大のポート番号に置き換えます。

ヒント

または、以下の YAML を適用してノードのポート範囲を更新することもできます。

出力例

2. 設定がアクティブであることを確認するには、以下のコマンドを入力します。更新が適用され

$ oc patch network.config.openshift.io cluster --type=merge -p \
 '{
 "spec":
 { "serviceNodePortRange": "30000-<port>" }
 }'

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 serviceNodePortRange: "30000-<port>"

network.config.openshift.io/cluster patched

第8章 ノードポートサービス範囲の設定

69

2. 設定がアクティブであることを確認するには、以下のコマンドを入力します。更新が適用され
るまでに数分の時間がかかることがあります。

出力例

8.3. 関連情報

NodePort を使用した ingress クラスタートラフィックの設定

Network [config.openshift.io/v1]

Service [core/v1]

$ oc get configmaps -n openshift-kube-apiserver config \
 -o jsonpath="{.data['config\.yaml']}" | \
 grep -Eo '"service-node-port-range":["[[:digit:]]+-[[:digit:]]+"]'

"service-node-port-range":["30000-33000"]

OpenShift Container Platform 4.8 ネットワーク

70

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-ingress-cluster-traffic-nodeport
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/api_reference/#network-config-openshift-io-v1
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/api_reference/#service-core-v1

第9章 IP フェイルオーバーの設定
このトピックでは、OpenShift Container Platform クラスターの Pod およびサービスの IP フェイル
オーバーの設定について説明します。

IP フェイルオーバーは、ノードセットの仮想 IP (VIP) アドレスのプールを管理します。セットのすべて
の VIP はセットから選択されるノードによって提供されます。VIP は単一ノードが利用可能である限り
提供されます。ノード上で VIP を明示的に配布する方法がないため、VIP のないノードがある可能性
も、多数の VIP を持つノードがある可能性もあります。ノードが 1 つのみ存在する場合は、すべての
VIP がそのノードに配置されます。

注記

VIP はクラスター外からルーティングできる必要があります。

IP フェイルオーバーは各 VIP のポートをモニターし、ポートがノードで到達可能かどうかを判別しま
す。ポートが到達不能な場合、VIP はノードに割り当てられません。ポートが 0 に設定されている場
合、このチェックは抑制されます。check スクリプトは必要なテストを実行します。

IP フェイルオーバーは Keepalived を使用して、一連のホストでの外部からアクセスできる VIP アドレ
スのセットをホストします。各 VIP は 1 度に 1 つのホストによって提供されます。Keepalived は Virtual
Router Redundancy Protocol (VRRP) を使用して、(一連のホストの) どのホストがどの VIP を提供する
かを判別します。ホストが利用不可の場合や Keepalived が監視しているサービスが応答しない場合
は、VIP は一連のホストの別のホストに切り換えられます。したがって、VIP はホストが利用可能であ
る限り常に提供されます。

Keepalived を実行するノードが check スクリプトを渡す場合、ノードの VIP はプリエンプションスト
ラテジーに応じて、その優先順位および現在のマスターの優先順位に基づいて master 状態になること
ができます。

クラスター管理者は OPENSHIFT_HA_NOTIFY_SCRIPT 変数を介してスクリプトを提供できます。こ
のスクリプトは、ノードの VIP の状態が変更されるたびに呼び出されます。Keepalived は VIP を提供
する場合は master 状態を、別のノードが VIP を提供する場合は backup 状態を、または check スクリ
プトが失敗する場合は fault 状態を使用します。notify スクリプトは、状態が変更されるたびに新規の
状態で呼び出されます。

OpenShift Container Platform で IP フェイルオーバーのデプロイメント設定を作成できます。IP フェ
イルオーバーのデプロイメント設定は VIP アドレスのセットを指定し、それらの提供先となるノードの
セットを指定します。クラスターには複数の IP フェイルオーバーのデプロイメント設定を持たせるこ
とができ、それぞれが固有な VIP アドレスの独自のセットを管理します。IP フェイルオーバー設定の各
ノードは IP フェイルオーバー Pod として実行され、この Pod は Keepalived を実行します。

VIP を使用してホストネットワークを持つ Pod にアクセスする場合、アプリケーション Pod は IP フェ
イルオーバー Pod を実行しているすべてのノードで実行されます。これにより、いずれの IP フェイル
オーバーノードもマスターになり、必要時に VIP を提供することができます。アプリケーション Pod
が IP フェイルオーバーのすべてのノードで実行されていない場合、一部の IP フェイルオーバーノード
が VIP を提供できないか、または一部のアプリケーション Pod がトラフィックを受信できなくなりま
す。この不一致を防ぐために、IP フェイルオーバーとアプリケーション Pod の両方に同じセレクター
とレプリケーション数を使用します。

VIP を使用してサービスにアクセスしている間は、アプリケーション Pod が実行されている場所に関係
なく、すべてのノードでサービスに到達できるため、任意のノードをノードの IP フェイルオーバー
セットに含めることができます。いずれの IP フェイルオーバーノードも、いつでもマスターにするこ
とができます。サービスは外部 IP およびサービスポートを使用するか、または NodePort を使用する
ことができます。

第9章 IP フェイルオーバーの設定

71

http://www.keepalived.org/

サービス定義で外部 IP を使用する場合、VIP は外部 IP に設定され、IP フェイルオーバーのモニターリ
ングポートはサービスポートに設定されます。ノードポートを使用する場合、ポートはクラスター内の
すべてのノードで開かれ、サービスは、現在 VIP にサービスを提供しているあらゆるノードからのトラ
フィックの負荷を分散します。この場合、IP フェイルオーバーのモニターリングポートはサービス定義
で NodePort に設定されます。

重要

NodePort のセットアップは特権付きの操作で実行されます。

重要

サービス VIP の可用性が高い場合でも、パフォーマンスに影響が出る可能性がありま
す。Keepalived は、各 VIP が設定内の一部のノードによってサービスされることを確認
し、他のノードに VIP がない場合でも、複数の VIP が同じノードに配置される可能性が
あります。IP フェイルオーバーによって複数の VIP が同じノードに配置されると、VIP
のセット全体で外部から負荷分散される戦略が妨げられる可能性があります。

ingressIP を使用する場合は、IP フェイルオーバーを ingressIP 範囲と同じ VIP 範囲を持つように設定
できます。また、モニターリングポートを無効にすることもできます。この場合、すべての VIP がクラ
スター内の同じノードに表示されます。すべてのユーザーが ingressIP でサービスをセットアップし、
これを高い可用性のあるサービスにすることができます。

重要

クラスター内の VIP の最大数は 254 です。

9.1. IP フェイルオーバーの環境変数

以下の表は、IP フェイルオーバーの設定に使用される変数を示しています。

表9.1 IP フェイルオーバーの環境変数

変数名 デフォル
ト

説明

OPENSHIFT_HA_MONITOR_POR
T

80 IP フェイルオーバー Pod は、各仮想 IP (VIP) のこの
ポートに対して TCP 接続を開こうとします。接続が
設定されると、サービスは実行中であると見なされ
ます。このポートが 0 に設定される場合、テストは
常にパスします。

OPENSHIFT_HA_NETWORK_INT
ERFACE

 IP フェイルオーバーが Virtual Router Redundancy
Protocol (VRRP) トラフィックの送信に使用するイ
ンターフェイス名。デフォルト値は eth0 です。

OPENSHIFT_HA_REPLICA_COU
NT

2 作成するレプリカの数です。これは、IP フェイル
オーバーデプロイメント設定の spec.replicas 値に
一致する必要があります。

OPENSHIFT_HA_VIRTUAL_IPS 複製する IP アドレス範囲の一覧です。これは指定す
る必要があります例: 1.2.3.4-6,1.2.3.9

OpenShift Container Platform 4.8 ネットワーク

72

OPENSHIFT_HA_VRRP_ID_OFFS
ET

0 仮想ルーター ID の設定に使用されるオフセット値。
異なるオフセット値を使用すると、複数の IP フェイ
ルオーバー設定が同じクラスター内に存在できるよ
うになります。デフォルトのオフセットは 0 で、許
可される範囲は 0 から 255 までです。

OPENSHIFT_HA_VIP_GROUPS VRRP に作成するグループの数です。これが設定さ
れていない場合、グループは
OPENSHIFT_HA_VIP_GROUPS 変数で指定され
ている仮想 IP 範囲ごとに作成されます。

OPENSHIFT_HA_IPTABLES_CHA
IN

INPUT iptables チェーンの名前であり、iptables ルールを
自動的に追加し、VRRP トラフィックをオンにする
ことを許可するために使用されます。この値が設定
されていない場合、iptables ルールは追加されませ
ん。チェーンが存在しない場合は作成されません。

OPENSHIFT_HA_CHECK_SCRIP
T

 アプリケーションが動作していることを確認するた
めに定期的に実行されるスクリプトの Pod ファイル
システム内の完全パス名です。

OPENSHIFT_HA_CHECK_INTER
VAL

2 check スクリプトが実行される期間 (秒単位) です。

OPENSHIFT_HA_NOTIFY_SCRIP
T

 状態が変更されるたびに実行されるスクリプトの
Pod ファイルシステム内の完全パス名です。

OPENSHIFT_HA_PREEMPTION preempt
_nodelay
300

新たな優先度の高いホストを処理するためのストラ
テジーです。nopreempt ストラテジーでは、マス
ターを優先度の低いホストから優先度の高いホスト
に移動しません。

変数名 デフォル
ト

説明

9.2. IP フェイルオーバーの設定

クラスター管理者は、クラスター全体に IP フェイルオーバーを設定することも、ラベルセレクターの
定義に基づいてノードのサブセットに IP フェイルオーバーを設定することもできます。また、複数の
IP フェイルオーバーのデプロイメント設定をクラスター内に設定することもでき、それぞれの設定をク
ラスター内で相互に切り離すことができます。

IP フェイルオーバーのデプロイメント設定により、フェイルオーバー Pod は、制約または使用される
ラベルに一致する各ノードで確実に実行されます。

この Pod は Keepalived を実行します。これは、最初のノードがサービスまたはエンドポイントに到達
できない場合に、エンドポイントを監視し、Virtual Router Redundancy Protocol (VRRP) を使用して仮
想 IP (VIP) を別のノードにフェイルオーバーできます。

実稼働環境で使用する場合は、少なくとも 2 つのノードを選択し、選択したノードの数に相当する
replicas を設定する selector を設定します。

第9章 IP フェイルオーバーの設定

73

前提条件

cluster-admin 権限を持つユーザーとしてクラスターにログインしていること。

プルシークレットを作成している。

手順

1. IP フェイルオーバーのサービスアカウントを作成します。

2. hostNetwork の SCC (Security Context Constraints) を更新します。

3. デプロイメント YAML ファイルを作成して IP フェイルオーバーを設定します。

IP フェイルオーバー設定のデプロイメント YAML の例

$ oc create sa ipfailover

$ oc adm policy add-scc-to-user privileged -z ipfailover
$ oc adm policy add-scc-to-user hostnetwork -z ipfailover

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ipfailover-keepalived 1
 labels:
 ipfailover: hello-openshift
spec:
 strategy:
 type: Recreate
 replicas: 2
 selector:
 matchLabels:
 ipfailover: hello-openshift
 template:
 metadata:
 labels:
 ipfailover: hello-openshift
 spec:
 serviceAccountName: ipfailover
 privileged: true
 hostNetwork: true
 nodeSelector:
 node-role.kubernetes.io/worker: ""
 containers:
 - name: openshift-ipfailover
 image: quay.io/openshift/origin-keepalived-ipfailover
 ports:
 - containerPort: 63000
 hostPort: 63000
 imagePullPolicy: IfNotPresent
 securityContext:
 privileged: true
 volumeMounts:
 - name: lib-modules

OpenShift Container Platform 4.8 ネットワーク

74

 mountPath: /lib/modules
 readOnly: true
 - name: host-slash
 mountPath: /host
 readOnly: true
 mountPropagation: HostToContainer
 - name: etc-sysconfig
 mountPath: /etc/sysconfig
 readOnly: true
 - name: config-volume
 mountPath: /etc/keepalive
 env:
 - name: OPENSHIFT_HA_CONFIG_NAME
 value: "ipfailover"
 - name: OPENSHIFT_HA_VIRTUAL_IPS 2
 value: "1.1.1.1-2"
 - name: OPENSHIFT_HA_VIP_GROUPS 3
 value: "10"
 - name: OPENSHIFT_HA_NETWORK_INTERFACE 4
 value: "ens3" #The host interface to assign the VIPs
 - name: OPENSHIFT_HA_MONITOR_PORT 5
 value: "30060"
 - name: OPENSHIFT_HA_VRRP_ID_OFFSET 6
 value: "0"
 - name: OPENSHIFT_HA_REPLICA_COUNT 7
 value: "2" #Must match the number of replicas in the deployment
 - name: OPENSHIFT_HA_USE_UNICAST
 value: "false"
 #- name: OPENSHIFT_HA_UNICAST_PEERS
 #value: "10.0.148.40,10.0.160.234,10.0.199.110"
 - name: OPENSHIFT_HA_IPTABLES_CHAIN 8
 value: "INPUT"
 #- name: OPENSHIFT_HA_NOTIFY_SCRIPT 9
 # value: /etc/keepalive/mynotifyscript.sh
 - name: OPENSHIFT_HA_CHECK_SCRIPT 10
 value: "/etc/keepalive/mycheckscript.sh"
 - name: OPENSHIFT_HA_PREEMPTION 11
 value: "preempt_delay 300"
 - name: OPENSHIFT_HA_CHECK_INTERVAL 12
 value: "2"
 livenessProbe:
 initialDelaySeconds: 10
 exec:
 command:
 - pgrep
 - keepalived
 volumes:
 - name: lib-modules
 hostPath:
 path: /lib/modules
 - name: host-slash
 hostPath:
 path: /
 - name: etc-sysconfig
 hostPath:

第9章 IP フェイルオーバーの設定

75

1

2

3

4

5

6

7

8

9

10

11

12

13

IP フェイルオーバーデプロイメントの名前。

複製する IP アドレス範囲の一覧です。これは指定する必要があります例: 1.2.3.4-6,1.2.3.9

VRRP に作成するグループの数です。これが設定されていない場合、グループは
OPENSHIFT_HA_VIP_GROUPS 変数で指定されている仮想 IP 範囲ごとに作成されま
す。

IP フェイルオーバーが VRRP トラフィックの送信に使用するインターフェイス名。デフォ
ルトで eth0 が使用されます。

IP フェイルオーバー Pod は、各 VIP のこのポートに対して TCP 接続を開こうとします。
接続が設定されると、サービスは実行中であると見なされます。このポートが 0 に設定さ
れる場合、テストは常にパスします。デフォルト値は 80 です。

仮想ルーター ID の設定に使用されるオフセット値。異なるオフセット値を使用すると、
複数の IP フェイルオーバー設定が同じクラスター内に存在できるようになります。デ
フォルトのオフセットは 0 で、許可される範囲は 0 から 255 までです。

作成するレプリカの数です。これは、IP フェイルオーバーデプロイメント設定の
spec.replicas 値に一致する必要があります。デフォルト値は 2 です。

iptables チェーンの名前であり、iptables ルールを自動的に追加し、VRRP トラフィック
をオンにすることを許可するために使用されます。この値が設定されていない場
合、iptables ルールは追加されません。チェーンが存在しない場合は作成されず、
Keepalived はユニキャストモードで動作します。デフォルトは INPUT です。

状態が変更されるたびに実行されるスクリプトの Pod ファイルシステム内の完全パス名で
す。

アプリケーションが動作していることを確認するために定期的に実行されるスクリプトの
Pod ファイルシステム内の完全パス名です。

新たな優先度の高いホストを処理するためのストラテジーです。デフォルト値は
preempt_delay 300 で、優先順位の低いマスターが VIP を保持する場合に、Keepalived
インスタンスが VIP を 5 分後に引き継ぎます。

check スクリプトが実行される期間 (秒単位) です。デフォルト値は 2 です。

デプロイメントを作成する前にプルシークレットを作成します。作成しない場合には、デ
プロイメントの作成時にエラーが発生します。

9.3. 仮想 IP アドレスについて

Keepalived は一連の仮想 IP アドレス (VIP) を管理します。管理者はこれらすべてのアドレスについて

 path: /etc/sysconfig
 # config-volume contains the check script
 # created with `oc create configmap keepalived-checkscript --from-file=mycheckscript.sh`
 - configMap:
 defaultMode: 0755
 name: keepalived-checkscript
 name: config-volume
 imagePullSecrets:
 - name: openshift-pull-secret 13

OpenShift Container Platform 4.8 ネットワーク

76

Keepalived は一連の仮想 IP アドレス (VIP) を管理します。管理者はこれらすべてのアドレスについて
以下の点を確認する必要があります。

仮想 IP アドレスは設定されたホストでクラスター外からアクセスできる。

仮想 IP アドレスはクラスター内でこれ以外の目的で使用されていない。

各ノードの Keepalived は、必要とされるサービスが実行中であるかどうかを判別します。実行中の場
合、VIP がサポートされ、Keepalived はネゴシエーションに参加してどのノードが VIP を提供するかを
決定します。これに参加するノードについては、このサービスが VIP の監視 ポートでリッスンしてい
る、またはチェックが無効にされている必要があります。

注記

セット内の各 VIP は最終的に別のノードによって提供される可能性があります。

9.4. CHECK スクリプトおよび NOTIFY スクリプトの設定

Keepalived は、オプションのユーザー指定の check スクリプトを定期的に実行してアプリケーションの
正常性をモニターします。たとえば、このスクリプトは要求を発行し、応答を検証することで web
サーバーをテストします。

チェックスクリプトが指定されない場合、TCP 接続をテストする単純なデフォルトスクリプトが実行さ
れます。このデフォルトテストは、モニターポートが 0 の場合は抑制されます。

各 IP フェイルオーバー Pod は、Pod が実行されているノードで 1 つ以上の仮想 IP (VIP) を管理する
Keepalived デーモンを管理します。Keepalived デーモンは、ノードの各 VIP の状態を維持します。特
定のノード上の特定の VIP は、master、backup、または fault 状態にある可能性があります。

master 状態にあるノードでその VIP の check スクリプトが失敗すると、そのノードの VIP は fault 状
態になり、再ネゴシエーションがトリガーされます。再ネゴシエーションの中に fault 状態にないノー
ド上のすべての VIP は、どのノードが VIP を引き継ぐかを決定することに参加します。最終的に VIP は
一部のノードで master の状態に入り、VIP は他のノードで backup 状態のままになります。

backup 状態の VIP を持つノードに障害が発生すると、そのノードの VIP は fault 状態になりま
す。fault 状態のノード上の VIP の check スクリプトが再度パスすると、そのノードの VIP は fault 状態
を終了し、master 状態に入るためにネゴシエートします。次に、そのノードの VIP は、master 状態ま
たは backup 状態のいずれかになります。

クラスター管理者は、オプションの notify スクリプトを提供できます。このスクリプトは状態が変更さ
れるたびに呼び出されます。Keepalived は以下の 3 つのパラメーターをこのスクリプトに渡します。

$1 - group または instance

$2: group または instance の名前です。

$3: 新規の状態: master、backup、または fault

check および notify スクリプトは、IP フェイルオーバー Pod で実行され、ホストファイルシステムで
はなく Pod ファイルシステムを使用します。ただし、IP フェイルオーバー Pod はホストファイルシス
テムが /hosts マウントパスで利用可能にします。check または notify スクリプトを設定する場合は、
スクリプトへの完全パスを指定する必要があります。スクリプトを提供する方法として、設定マップの
使用が推奨されます。

check および notify スクリプトの完全パス名は、Keepalived 設定ファイル

第9章 IP フェイルオーバーの設定

77

check および notify スクリプトの完全パス名は、Keepalived 設定ファイル
(_/etc/keepalived/keepalived.conf) に追加されます。このファイルは、Keepalived が起動するたびに
ロードされます。スクリプトは、以下のように設定マップを使用して Pod に追加できます。

前提条件

OpenShift CLI (oc) がインストールされている。

cluster-admin 権限を持つユーザーとしてクラスターにログインしていること。

手順

1. 必要なスクリプトを作成し、これを保持する設定マップを作成します。スクリプトには入力引
数は指定されず、OK の場合は 0 を、fail の場合は 1 を返す必要があります。
check スクリプト mycheckscript.sh:

2. 設定マップを作成します。

3. スクリプトを Pod に追加します。マウントされた設定マップファイルの defaultMode は、oc
コマンドを使用して、またはデプロイメント設定を編集して実行できる必要があります。通常
は、0755、493 (10 進数) の値が使用されます。

注記

oc set env コマンドは空白を区別します。= 記号の両側に空白を入れることはで
きません。

ヒント

#!/bin/bash
 # Whatever tests are needed
 # E.g., send request and verify response
exit 0

$ oc create configmap mycustomcheck --from-file=mycheckscript.sh

$ oc set env deploy/ipfailover-keepalived \
 OPENSHIFT_HA_CHECK_SCRIPT=/etc/keepalive/mycheckscript.sh

$ oc set volume deploy/ipfailover-keepalived --add --overwrite \
 --name=config-volume \
 --mount-path=/etc/keepalive \
 --source='{"configMap": { "name": "mycustomcheck", "defaultMode": 493}}'

OpenShift Container Platform 4.8 ネットワーク

78

1

2
3
4

ヒント

または、ipfailover-keepalived デプロイメント設定を編集することもできます。

spec.container.env フィールドで、マウントされたスクリプトファイルを参照する
OPENSHIFT_HA_CHECK_SCRIPT 環境変数を追加します。
spec.container.volumeMounts フィールドを追加してマウントポイントを作成します。
新規の spec.volumes フィールドを追加して設定マップに言及します。
これはファイルの実行パーミッションを設定します。読み取られる場合は 10 進数 (493) で
表示されます。

変更を保存し、エディターを終了します。これにより ipfailover-keepalived が再起動されま
す。

9.5. VRRP プリエンプションの設定

ノードの仮想 IP (VIP) が check スクリプトを渡すことで fault 状態を終了すると、ノードの VIP は、現
在 master 状態にあるノードの VIP よりも優先度が低い場合は backup 状態になります。ただし、fault
状態を終了するノードの VIP の優先度が高い場合は、プリエンプションストラテジーによってクラス
ター内でのそのロールが決定されます。

nopreempt ストラテジーは master をホスト上の優先度の低いホストからホスト上の優先度の高い VIP
に移動しません。デフォルトの preempt_delay 300 の場合、Keepalived は指定された 300 秒の間待機
し、master をホスト上の優先度の高い VIP に移動します。

前提条件

OpenShift CLI (oc) がインストールされている。

手順

プリエンプションを指定するには、oc edit deploy ipfailover-keepalived を入力し、ルーター
のデプロイメント設定を編集します。

$ oc edit deploy ipfailover-keepalived

 spec:
 containers:
 - env:
 - name: OPENSHIFT_HA_CHECK_SCRIPT 1
 value: /etc/keepalive/mycheckscript.sh
...
 volumeMounts: 2
 - mountPath: /etc/keepalive
 name: config-volume
 dnsPolicy: ClusterFirst
...
 volumes: 3
 - configMap:
 defaultMode: 0755 4
 name: customrouter
 name: config-volume
...

第9章 IP フェイルオーバーの設定

79

1 OPENSHIFT_HA_PREEMPTION の値を設定します。

preempt_delay 300: Keepalived は、指定された 300 秒の間待機し、master をホス
ト上の優先度の高い VIP に移動します。これはデフォルト値です。

nopreempt: master をホスト上の優先度の低い VIP からホスト上の優先度の高い VIP
に移動しません。

9.6. VRRP ID オフセットについて

IP フェイルオーバーのデプロイメント設定で管理される各 IP フェイルオーバー Pod (ノード/レプリカ
あたり 1 Pod) は Keepalived デーモンを実行します。設定される IP フェイルオーバーのデプロイメン
ト設定が多くなると、作成される Pod も多くなり、共通の Virtual Router Redundancy Protocol
(VRRP) ネゴシエーションに参加するデーモンも多くなります。このネゴシエーションはすべての
Keepalived デーモンによって実行され、これはどのノードがどの仮想 IP (VIP) を提供するかを決定しま
す。

Keepalived は内部で固有の vrrp-id を各 VIP に割り当てます。ネゴシエーションはこの vrrp-ids セット
を使用し、決定後には優先される vrrp-id に対応する VIP が優先されるノードで提供されます。

したがって、IP フェイルオーバーのデプロイメント設定で定義されるすべての VIP について、IP フェ
イルオーバー Pod は対応する vrrp-id を割り当てる必要があります。これ
は、OPENSHIFT_HA_VRRP_ID_OFFSET から開始し、順序に従って vrrp-ids を VIP の一覧に割り当
てることによって実行されます。vrrp-ids には範囲 1..255 の値を設定できます。

複数の IP フェイルオーバーのデプロイメント設定がある場合
は、OPENSHIFT_HA_VRRP_ID_OFFSET を指定して、デプロイメント設定内の VIP 数を増やす余地
があり、vrrp-id 範囲が重複しないようにする必要があります。

9.7. 254 を超えるアドレスについての IP フェイルオーバーの設定

IP フェイルオーバー管理は、仮想 IP (VIP) アドレスの 254 グループに制限されています。デフォルト
では、OpenShift Container Platform は各グループに 1 つの IP アドレスを割り当てま
す。OPENSHIFT_HA_VIP_GROUPS 変数を使用してこれを変更し、複数の IP アドレスが各グループ
に含まれるようにして、IP フェイルオーバーを設定するときに各 Virtual Router Redundancy Protocol
(VRRP) インスタンスで使用可能な VIP グループの数を定義できます。

VIP の作成により、VRRP フェイルオーバーの発生時の広範囲の VRRP の割り当てが作成され、これは
クラスター内のすべてのホストがローカルにサービスにアクセスする場合に役立ちます。たとえば、
サービスが ExternalIP で公開されている場合などがこれに含まれます。

注記

$ oc edit deploy ipfailover-keepalived

...
 spec:
 containers:
 - env:
 - name: OPENSHIFT_HA_PREEMPTION 1
 value: preempt_delay 300
...

OpenShift Container Platform 4.8 ネットワーク

80

1

注記

フェイルオーバーのルールとして、ルーターなどのサービスは特定の 1 つのホストに制
限しません。代わりに、サービスは、IP フェイルオーバーの発生時にサービスが新規ホ
ストに再作成されないように各ホストに複製可能な状態にする必要があります。

注記

OpenShift Container Platform のヘルスチェックを使用している場合、IP フェイルオー
バーおよびグループの性質上、グループ内のすべてのインスタンスはチェックされませ
ん。そのため、Kubernetes ヘルスチェック を使ってサービスが有効であることを確認す
る必要があります。

前提条件

cluster-admin 権限を持つユーザーとしてクラスターにログインしていること。

手順

各グループに割り当てられた IP アドレスの数を変更するに
は、OPENSHIFT_HA_VIP_GROUPS 変数の値を変更します。次に例を示します。

IP フェイルオーバー設定の Deployment YAML の例

たとえば、7 つの VIP のある環境で OPENSHIFT_HA_VIP_GROUPS が 3 に設定されてい
る場合、これは 3 つのグループを作成し、3 つの VIP を最初のグループに、2 つの VIP を
2 つの残りのグループにそれぞれ割り当てます。

注記

OPENSHIFT_HA_VIP_GROUPS で設定されたグループの数が、フェイルオーバーに設
定された IP アドレスの数より少ない場合、グループには複数の IP アドレスが含まれ、
すべてのアドレスが 1 つのユニットとして移動します。

9.8. INGRESSIP の高可用性

クラウド以外のクラスターでは、IP フェイルオーバーおよびサービスへの ingressIP を組み合わせるこ
とができます。結果として、ingressIP を使用してサービスを作成するユーザーに高可用サービスが提
供されます。

この方法では、まず ingressIPNetworkCIDR 範囲を指定し、次に ipfailover 設定を作成する際に同じ範
囲を使用します。

IP フェイルオーバーはクラスター全体に対して最大 255 の VIP をサポートできるた
め、ingressIPNetworkCIDR は /24 以下に設定する必要があります。

...
 spec:
 env:
 - name: OPENSHIFT_HA_VIP_GROUPS 1
 value: "3"
...

第9章 IP フェイルオーバーの設定

81

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

第10章 ベアメタルクラスターでの SCTP (STREAM CONTROL
TRANSMISSION PROTOCOL) の使用

クラスター管理者は、クラスターで SCTP (Stream Control Transmission Protocol) を使用できます。

10.1. OPENSHIFT CONTAINER PLATFORM での SCTP (STREAM
CONTROL TRANSMISSION PROTOCOL) のサポート

クラスター管理者は、クラスターのホストで SCTP を有効にできます。Red Hat Enterprise Linux
CoreOS (RHCOS) で、SCTP モジュールはデフォルトで無効にされています。

SCTP は、IP ネットワークの上部で実行される信頼できるメッセージベースのプロトコルです。

これを有効にすると、SCTP を Pod、サービス、およびネットワークポリシーでプロトコルとして使用
できます。Service オブジェクトは、type パラメーターを ClusterIP または NodePort のいずれかの値
に設定して定義する必要があります。

10.1.1. SCTP プロトコルを使用した設定例

protocol パラメーターを Pod またはサービスリソース定義の SCTP 値に設定して、Pod またはサービ
スを SCTP を使用するように設定できます。

以下の例では、Pod は SCTP を使用するように設定されています。

以下の例では、サービスは SCTP を使用するように設定されています。

apiVersion: v1
kind: Pod
metadata:
 namespace: project1
 name: example-pod
spec:
 containers:
 - name: example-pod
...
 ports:
 - containerPort: 30100
 name: sctpserver
 protocol: SCTP

apiVersion: v1
kind: Service
metadata:
 namespace: project1
 name: sctpserver
spec:
...
 ports:
 - name: sctpserver
 protocol: SCTP
 port: 30100
 targetPort: 30100
 type: ClusterIP

OpenShift Container Platform 4.8 ネットワーク

82

以下の例では、NetworkPolicy オブジェクトは、特定のラベルの付いた Pod からポート 80 の SCTP
ネットワークトラフィックに適用するように設定されます。

10.2. SCTP (STREAM CONTROL TRANSMISSION PROTOCOL) の有効化

クラスター管理者は、クラスターのワーカーノードでブラックリストに指定した SCTP カーネルモ
ジュールを読み込み、有効にできます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

1. 以下の YAML 定義が含まれる load-sctp-module.yaml という名前のファイルを作成します。

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-sctp-on-http
spec:
 podSelector:
 matchLabels:
 role: web
 ingress:
 - ports:
 - protocol: SCTP
 port: 80

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 name: load-sctp-module
 labels:
 machineconfiguration.openshift.io/role: worker
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - path: /etc/modprobe.d/sctp-blacklist.conf
 mode: 0644
 overwrite: true
 contents:
 source: data:,
 - path: /etc/modules-load.d/sctp-load.conf
 mode: 0644
 overwrite: true
 contents:
 source: data:,sctp

第10章 ベアメタルクラスターでの SCTP (STREAM CONTROL TRANSMISSION PROTOCOL) の使用

83

2. MachineConfig オブジェクトを作成するには、以下のコマンドを入力します。

3. オプション: MachineConfig Operator が設定変更を適用している間にノードのステータスを確
認するには、以下のコマンドを入力します。ノードのステータスが Ready に移行すると、設定
の更新が適用されます。

10.3. SCTP (STREAM CONTROL TRANSMISSION PROTOCOL) が有効に
なっていることの確認

SCTP がクラスターで機能することを確認するには、SCTP トラフィックをリッスンするアプリケー
ションで Pod を作成し、これをサービスに関連付け、公開されたサービスに接続します。

前提条件

クラスターからインターネットにアクセスし、nc パッケージをインストールすること。

OpenShift CLI (oc) をインストールします。

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

1. SCTP リスナーを起動する Pod を作成します。

a. 以下の YAML で Pod を定義する sctp-server.yaml という名前のファイルを作成します。

b. 以下のコマンドを入力して Pod を作成します。

2. SCTP リスナー Pod のサービスを作成します。

$ oc create -f load-sctp-module.yaml

$ oc get nodes

apiVersion: v1
kind: Pod
metadata:
 name: sctpserver
 labels:
 app: sctpserver
spec:
 containers:
 - name: sctpserver
 image: registry.access.redhat.com/ubi8/ubi
 command: ["/bin/sh", "-c"]
 args:
 ["dnf install -y nc && sleep inf"]
 ports:
 - containerPort: 30102
 name: sctpserver
 protocol: SCTP

$ oc create -f sctp-server.yaml

OpenShift Container Platform 4.8 ネットワーク

84

a. 以下の YAML でサービスを定義する sctp-service.yaml という名前のファイルを作成しま
す。

b. サービスを作成するには、以下のコマンドを入力します。

3. SCTP クライアントの Pod を作成します。

a. 以下の YAML で sctp-client.yaml という名前のファイルを作成します。

b. Pod オブジェクトを作成するには、以下のコマンドを入力します。

4. サーバーで SCTP リスナーを実行します。

a. サーバー Pod に接続するには、以下のコマンドを入力します。

b. SCTP リスナーを起動するには、以下のコマンドを入力します。

apiVersion: v1
kind: Service
metadata:
 name: sctpservice
 labels:
 app: sctpserver
spec:
 type: NodePort
 selector:
 app: sctpserver
 ports:
 - name: sctpserver
 protocol: SCTP
 port: 30102
 targetPort: 30102

$ oc create -f sctp-service.yaml

apiVersion: v1
kind: Pod
metadata:
 name: sctpclient
 labels:
 app: sctpclient
spec:
 containers:
 - name: sctpclient
 image: registry.access.redhat.com/ubi8/ubi
 command: ["/bin/sh", "-c"]
 args:
 ["dnf install -y nc && sleep inf"]

$ oc apply -f sctp-client.yaml

$ oc rsh sctpserver

$ nc -l 30102 --sctp

第10章 ベアメタルクラスターでの SCTP (STREAM CONTROL TRANSMISSION PROTOCOL) の使用

85

5. サーバーの SCTP リスナーに接続します。

a. ターミナルプログラムで新規のターミナルウィンドウまたはタブを開きます。

b. sctpservice サービスの IP アドレスを取得します。以下のコマンドを入力します。

c. クライアント Pod に接続するには、以下のコマンドを入力します。

d. SCTP クライアントを起動するには、以下のコマンドを入力します。<cluster_IP> を
sctpservice サービスのクラスター IP アドレスに置き換えます。

$ oc get services sctpservice -o go-template='{{.spec.clusterIP}}{{"\n"}}'

$ oc rsh sctpclient

nc <cluster_IP> 30102 --sctp

OpenShift Container Platform 4.8 ネットワーク

86

第11章 PTP ハードウェアの設定

注記

通常のクロックを備えた PTP ハードウェアは一般的に利用可能であり、OpenShift
Container Platform 4.8 で完全にサポートされています。

11.1. PTP ハードウェアについて

OpenShift Container Platform には、ノード上で Precision Time Protocol (PTP) ハードウェアを使用す
る機能が含まれます。linuxptp サービスは、PTP 対応ハードウェアを搭載したクラスターで設定できま
す。

注記

PTP Operator は、ベアメタルインフラストラクチャーでのみプロビジョニングされるク
ラスターの PTP 対応デバイスと連携します。

PTP Operator をデプロイし、OpenShift Container Platform コンソールを使用して PTP をインストー
ルできます。PTP Operator は、linuxptp サービスを作成し、管理します。Operator は以下の機能を提
供します。

クラスター内の PTP 対応デバイスの検出。

linuxptp サービスの設定の管理。

11.2. PTP ネットワークデバイスの自動検出

PTP Operator は NodePtpDevice.ptp.openshift.io カスタムリソース定義 (CRD) を OpenShift
Container Platform に追加します。PTP Operator はクラスターで、各ノードの PTP 対応ネットワーク
デバイスを検索します。Operator は、互換性のある PTP デバイスを提供する各ノードの
NodePtpDevice カスタムリソース (CR) オブジェクトを作成し、更新します。

1 つの CR がノードごとに作成され、ノードと同じ名前を共有します。.status.devices 一覧は、ノード
上の PTP デバイスについての情報を提供します。

以下は、PTP Operator によって作成される NodePtpDevice CR の例です。

apiVersion: ptp.openshift.io/v1
kind: NodePtpDevice
metadata:
 creationTimestamp: "2019-11-15T08:57:11Z"
 generation: 1
 name: dev-worker-0 1
 namespace: openshift-ptp 2
 resourceVersion: "487462"
 selfLink: /apis/ptp.openshift.io/v1/namespaces/openshift-ptp/nodeptpdevices/dev-worker-0
 uid: 08d133f7-aae2-403f-84ad-1fe624e5ab3f
spec: {}
status:
 devices: 3
 - name: eno1
 - name: eno2

第11章 PTP ハードウェアの設定

87

1

2

3

name パラメーターの値はノードの名前と同じです。

CR は PTP Operator によって openshift-ptp namespace に作成されます。

devices コレクションには、ノード上の Operator によって検出されるすべての PTP 対応デバイス
の一覧が含まれます。

11.3. PTP OPERATOR のインストール

クラスター管理者は、OpenShift Container Platform CLI または Web コンソールを使用して PTP
Operator をインストールできます。

11.3.1. CLI: PTP Operator のインストール

クラスター管理者は、CLI を使用して Operator をインストールできます。

前提条件

PTP に対応するハードウェアを持つノードでベアメタルハードウェアにインストールされたク
ラスター。

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

1. PTP Operator の namespace を作成するには、以下のコマンドを入力します。

2. Operator の Operator グループを作成するには、以下のコマンドを入力します。

 - name: ens787f0
 - name: ens787f1
 - name: ens801f0
 - name: ens801f1
 - name: ens802f0
 - name: ens802f1
 - name: ens803

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: openshift-ptp
 annotations:
 workload.openshift.io/allowed: management
 labels:
 name: openshift-ptp
 openshift.io/cluster-monitoring: "true"
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1

OpenShift Container Platform 4.8 ネットワーク

88

3. PTP Operator にサブスクライブします。

a. 以下のコマンドを実行して、OpenShift Container Platform のメジャーおよびマイナーバー
ジョンを環境変数として設定します。これは次の手順で channel の値として使用されま
す。

b. PTP Operator のサブスクリプションを作成するには、以下のコマンドを入力します。

4. Operator がインストールされていることを確認するには、以下のコマンドを入力します。

出力例

11.3.2. Web コンソール: PTP Operator のインストール

クラスター管理者は、Web コンソールを使用して Operator をインストールできます。

注記

先のセクションで説明されているように namespace および Operator グループを作成す
る必要があります。

手順

1. OpenShift Container Platform Web コンソールを使用して PTP Operator をインストールしま

kind: OperatorGroup
metadata:
 name: ptp-operators
 namespace: openshift-ptp
spec:
 targetNamespaces:
 - openshift-ptp
EOF

$ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
 grep -o '[0-9]*[.][0-9]*' | head -1)

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ptp-operator-subscription
 namespace: openshift-ptp
spec:
 channel: "${OC_VERSION}"
 name: ptp-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-ptp \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name Phase
ptp-operator.4.4.0-202006160135 Succeeded

第11章 PTP ハードウェアの設定

89

1. OpenShift Container Platform Web コンソールを使用して PTP Operator をインストールしま
す。

a. OpenShift Container Platform Web コンソールで、Operators → OperatorHub をクリック
します。

b. 利用可能な Operator の一覧から PTP Operator を選択してから Install をクリックしま
す。

c. Install Operator ページの A specific namespace on the cluster の下で openshift-ptp を
選択します。次に、Install をクリックします。

2. オプション: PTP Operator が正常にインストールされていることを確認します。

a. Operators → Installed Operators ページに切り替えます。

b. PTP Operator が Status が InstallSucceeded の状態で openshift-ptp プロジェクトに一
覧表示されていることを確認します。

注記

インストール時に、 Operator は Failed ステータスを表示する可能性があり
ます。インストールが後に InstallSucceeded メッセージを出して正常に実
行される場合は、Failed メッセージを無視できます。

Operator がインストール済みとして表示されない場合に、さらにトラブルシューティング
を実行します。

Operators → Installed Operators ページに移動し、Operator Subscriptions および
Install Plans タブで Status にエラーがあるかどうかを検査します。

Workloads → Pods ページに移動し、openshift-ptp プロジェクトで Pod のログを確認
します。

11.4. LINUXPTP サービスの設定

PTP Operator は PtpConfig.ptp.openshift.io カスタムリソース定義 (CRD) を OpenShift Container
Platform に追加します。PtpConfig カスタムリソース (CR) オブジェクトを作成して、Linuxptp サービ
ス (ptp4l、phc2sys) を設定できます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインしている。

PTP Operator がインストールされていること。

手順

1. 以下の PtpConfig CR を作成してから、YAML を <name>-ptp-config.yaml ファイルに保存し
ます。<name> をこの設定の名前に置き換えます。

apiVersion: ptp.openshift.io/v1
kind: PtpConfig

OpenShift Container Platform 4.8 ネットワーク

90

1

2

3

4

5

6

7

8

9

10

11

12

13

14

PtpConfig CR の名前を指定します。

PTP Operator がインストールされている namespace を指定します。

1 つ以上の profile オブジェクトの配列を指定します。

プロファイルオブジェクトを一意に識別するために使用されるプロファイルオブジェクト
の名前を指定します。

ptp4l サービスで使用するネットワークインターフェイス名を指定します (例: ens787f1)。

ptp4l サービスのシステム設定オプション (例: -s -2) を指定します。これには、インター
フェイス名 -i <interface> およびサービス設定ファイル -f /etc/ptp4l.conf を含めないでく
ださい。これらは自動的に追加されます。

phc2sys サービスのシステム設定オプション (例: -a -r) を指定します。

デフォルトの /etc/ptp4l.conf ファイルを置き換える設定が含まれる文字列を指定します。
デフォルト設定を使用するには、フィールドを空のままにします。

profile がノードに適用される方法を定義する 1 つ以上の recommend オブジェクトの配列
を指定します。

profile セクションに定義される profile オブジェクト名を指定します。

0 から 99 までの整数値で priority を指定します。数値が大きいほど優先度が低くなるた
め、99 の優先度は 10 よりも低くなります。ノードが match フィールドで定義される
ルールに基づいて複数のプロファイルに一致する場合、優先順位の高い プロファイルがそ
のノードに適用されます。

match ルールを、nodeLabel または nodeName で指定します。

oc get nodes --show-labels コマンドを使用して、ノードオブジェクト
のnode.LabelsのkeyでnodeLabelを指定します。

oc get nodesコマンドを使用して、ノードオブジェクトのnode.NameでnodeNameを指
定します。

metadata:
 name: <name> 1
 namespace: openshift-ptp 2
spec:
 profile: 3
 - name: "profile1" 4
 interface: "ens787f1" 5
 ptp4lOpts: "-s -2" 6
 phc2sysOpts: "-a -r" 7
 ptp4lConf: "" 8
 recommend: 9
 - profile: "profile1" 10
 priority: 10 11
 match: 12
 - nodeLabel: "node-role.kubernetes.io/worker" 13
 nodeName: "dev-worker-0" 14

第11章 PTP ハードウェアの設定

91

1

1

2

3

2. 以下のコマンドを実行して CR を作成します。

<filename> を、先の手順で作成したファイルの名前に置き換えます。

3. オプション: PtpConfig プロファイルが、 nodeLabel または nodeName に一致するノードに
適用されることを確認します。

出力例

Profile Name は、ノード dev-worker-0 に適用される名前です。

Interface は、profile1 インターフェイスフィールドに指定される PTP デバイスで
す。ptp4l サービスはこのインターフェイスで実行されます。

PTP4lOpts は、profile1 Ptp4lOpts フィールドで指定される ptp4l sysconfig オプション
です。

$ oc create -f <filename> 1

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
linuxptp-daemon-4xkbb 1/1 Running 0 43m 192.168.111.15 dev-worker-0
<none> <none>
linuxptp-daemon-tdspf 1/1 Running 0 43m 192.168.111.11 dev-master-0
<none> <none>
ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.128.0.116 dev-master-0
<none> <none>

$ oc logs linuxptp-daemon-4xkbb -n openshift-ptp
I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1 1
I1115 09:41:17.117616 4143292 daemon.go:102] Interface: ens787f1 2
I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -s -2 3
I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r 4
I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------
I1115 09:41:18.117934 4143292 daemon.go:186] Starting phc2sys...
I1115 09:41:18.117985 4143292 daemon.go:187] phc2sys cmd: &{Path:/usr/sbin/phc2sys
Args:[/usr/sbin/phc2sys -a -r] Env:[] Dir: Stdin:<nil> Stdout:<nil> Stderr:<nil> ExtraFiles:[]
SysProcAttr:<nil> Process:<nil> ProcessState:<nil> ctx:<nil> lookPathErr:<nil> finished:false
childFiles:[] closeAfterStart:[] closeAfterWait:[] goroutine:[] errch:<nil> waitDone:<nil>}
I1115 09:41:19.118175 4143292 daemon.go:186] Starting ptp4l...
I1115 09:41:19.118209 4143292 daemon.go:187] ptp4l cmd: &{Path:/usr/sbin/ptp4l Args:
[/usr/sbin/ptp4l -m -f /etc/ptp4l.conf -i ens787f1 -s -2] Env:[] Dir: Stdin:<nil> Stdout:<nil>
Stderr:<nil> ExtraFiles:[] SysProcAttr:<nil> Process:<nil> ProcessState:<nil> ctx:<nil>
lookPathErr:<nil> finished:false childFiles:[] closeAfterStart:[] closeAfterWait:[] goroutine:[]
errch:<nil> waitDone:<nil>}
ptp4l[102189.864]: selected /dev/ptp5 as PTP clock
ptp4l[102189.886]: port 1: INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[102189.886]: port 0: INITIALIZING to LISTENING on INIT_COMPLETE

OpenShift Container Platform 4.8 ネットワーク

92

4 phc2sysOpts は、profile1 phc2sysOpts フィールドで指定される phc2sys sysconfig オプ
ションです。

第11章 PTP ハードウェアの設定

93

第12章 ネットワークポリシー

12.1. ネットワークポリシーについて

クラスター管理者は、トラフィックをクラスター内の Pod に制限するネットワークポリシーを定義で
きます。

12.1.1. ネットワークポリシーについて

Kubernetes ネットワークポリシーをサポートする Kubernetes Container Network Interface (CNI) プラ
グインを使用するクラスターでは、ネットワークの分離は NetworkPolicy オブジェクトによって完全
に制御されます。OpenShift Container Platform 4.8 では、OpenShift SDN はデフォルトのネットワー
ク分離モードでのネットワークポリシーの使用をサポートしています。

注記

OpenShift SDN クラスターネットワークプロバイダーを使用する場合、ネットワークポ
リシーについて、以下の制限が適用されます。

egress フィールドで指定される egress ネットワークポリシーはサポートされて
いません。

IPBlock はネットワークポリシーでサポートされますが、except 句はサポートし
ません。except 句を含む IPBlock セクションのあるポリシーを作成する場合、
SDN Pod は警告をログに記録し、そのポリシーの IPBlock セクション全体は無
視されます。

警告

ネットワークポリシーは、ホストのネットワーク namespace には適用されませ
ん。ホストネットワークが有効にされている Pod はネットワークポリシールール
による影響を受けません。

デフォルトで、プロジェクトのすべての Pod は他の Pod およびネットワークのエンドポイントからア
クセスできます。プロジェクトで 1 つ以上の Pod を分離するには、そのプロジェクトで
NetworkPolicy オブジェクトを作成し、許可する着信接続を指定します。プロジェクト管理者は独自の
プロジェクト内で NetworkPolicy オブジェクトの作成および削除を実行できます。

Pod が 1 つ以上の NetworkPolicy オブジェクトのセレクターで一致する場合、Pod はそれらの 1 つ以上
の NetworkPolicy オブジェクトで許可される接続のみを受け入れます。NetworkPolicy オブジェクト
によって選択されていない Pod は完全にアクセス可能です。

以下のサンプル NetworkPolicy オブジェクトは、複数の異なるシナリオをサポートすることを示して
います。

すべてのトラフィックを拒否します。
プロジェクトに deny by default (デフォルトで拒否) を実行させるには、すべての Pod に一致
するが、トラフィックを一切許可しない NetworkPolicy オブジェクトを追加します。



OpenShift Container Platform 4.8 ネットワーク

94

OpenShift Container Platform Ingress コントローラーからの接続のみを許可します。
プロジェクトで OpenShift Container Platform Ingress コントローラーからの接続のみを許可す
るには、以下の NetworkPolicy オブジェクトを追加します。

プロジェクト内の Pod からの接続のみを受け入れます。
Pod が同じプロジェクト内の他の Pod からの接続を受け入れるが、他のプロジェクトの Pod
からの接続を拒否するように設定するには、以下の NetworkPolicy オブジェクトを追加しま
す。

Pod ラベルに基づいて HTTP および HTTPS トラフィックのみを許可します。
特定のラベル (以下の例の role=frontend) の付いた Pod への HTTP および HTTPS アクセスの
みを有効にするには、以下と同様の NetworkPolicy オブジェクトを追加します。

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector: {}
 ingress: []

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-http-and-https
spec:
 podSelector:
 matchLabels:
 role: frontend
 ingress:

第12章 ネットワークポリシー

95

namespace および Pod セレクターの両方を使用して接続を受け入れます。
namespace と Pod セレクターを組み合わせてネットワークトラフィックのマッチングをする
には、以下と同様の NetworkPolicy オブジェクトを使用できます。

NetworkPolicy オブジェクトは加算されるものです。 つまり、複数の NetworkPolicy オブジェクトを
組み合わせて複雑なネットワーク要件を満すことができます。

たとえば、先の例で定義された NetworkPolicy オブジェクトの場合、同じプロジェト内に allow-
same-namespace と allow-http-and-https ポリシーの両方を定義することができます。これにより、
ラベル role=frontend の付いた Pod は各ポリシーで許可されるすべての接続を受け入れます。つま
り、同じ namespace の Pod からのすべてのポート、およびすべての namespace の Pod からのポート
80 および 443 での接続を受け入れます。

12.1.2. ネットワークポリシーの最適化

ネットワークポリシーを使用して、namespace 内でラベルで相互に区別される Pod を分離します。

注記

ネットワークポリシールールを効果的に使用するためのガイドラインは、OpenShift
SDN クラスターネットワークプロバイダーのみに適用されます。

NetworkPolicy オブジェクトを単一 namespace 内の多数の個別 Pod に適用することは効率的ではあり
ません。Pod ラベルは IP レベルには存在しないため、ネットワークポリシーは、podSelector で選択
されるすべての Pod 間のすべてのリンクについての別個の Open vSwitch (OVS) フロールールを生成し
ます。

たとえば、仕様の podSelector および NetworkPolicy オブジェクト内の ingress podSelector のそれ
ぞれが 200 Pod に一致する場合、40,000 (200*200) OVS フロールールが生成されます。これによ
り、ノードの速度が低下する可能性があります。

 - ports:
 - protocol: TCP
 port: 80
 - protocol: TCP
 port: 443

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-pod-and-namespace-both
spec:
 podSelector:
 matchLabels:
 name: test-pods
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: project_name
 podSelector:
 matchLabels:
 name: test-pods

OpenShift Container Platform 4.8 ネットワーク

96

ネットワークポリシーを設計する場合は、以下のガイドラインを参照してください。

namespace を使用して分離する必要のある Pod のグループを組み込み、OVS フロールールの
数を減らします。
namespace 全体を選択する NetworkPolicy オブジェクトは、namespaceSelectors または空
の podSelectors を使用して、namespace の VXLAN 仮想ネットワーク ID に一致する単一の
OVS フロールールのみを生成します。

分離する必要のない Pod は元の namespace に維持し、分離する必要のある Pod は 1 つ以上の
異なる namespace に移します。

追加のターゲット設定された namespace 間のネットワークポリシーを作成し、分離された
Pod から許可する必要のある特定のトラフィックを可能にします。

12.1.3. 次のステップ

ネットワークポリシーの作成

オプション: デフォルトネットワークポリシーの定義

12.1.4. 関連情報

プロジェクトおよび namespace

マルチテナントネットワークポリシーの設定

NetworkPolicy API

12.2. ネットワークポリシーイベントのロギング

クラスター管理者は、クラスターのネットワークポリシー監査ロギングを設定し、1 つ以上の
namespace のロギングを有効にできます。

注記

ネットワークポリシーの監査ロギングは OVN-Kubernetes クラスターネットワークプロ
バイダー でのみ利用可能です。

12.2.1. ネットワークポリシー監査ロギング

OVN-Kubernetes クラスターネットワークプロバイダーは、Open Virtual Network (OVN) ACL を使用
してネットワークポリシーを管理します。監査ロギングは ACL イベントの許可および拒否を公開しま
す。

syslog サーバーや UNIX ドメインソケットなどのネットワークポリシー監査ログの宛先を設定できま
す。追加の設定に関係なく、監査ログは常にクラスター内の各 OVN-Kubernetes Pod の
/var/log/ovn/acl-audit-log.log に保存されます。

以下の例のように、namespace に k8s.ovn.org/acl-logging キーでアノテーションを付けることによ
り、namespace ごとにネットワークポリシー監査ログを有効にします。

namespace アノテーションの例

kind: Namespace

第12章 ネットワークポリシー

97

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#creating-network-policy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#default-network-policy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/authentication_and_authorization/#rbac-projects-namespaces_using-rbac
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#multitenant-network-policy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/api_reference/#networkpolicy-networking-k8s-io-v1
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#about-ovn-kubernetes

ロギング形式は RFC5424 によって定義される syslog と互換性があります。syslog ファシリティーは設
定可能です。デフォルトは local0 です。ログエントリーの例は、以下のようになります。

ACL 拒否ログエントリーの例

以下の表は、namespace アノテーションの値について説明しています。

表12.1 ネットワークポリシー監査ロギング namespace アノテーション

Annotation 値

k8s.ovn.org/acl-logging namespace のネットワークポリシー監査ロギングを有効にする
には、allow、deny、または両方のうち、少なくとも 1 つを指
定する必要があります。

deny
オプション: alert、warning、notice、info、または
debug を指定します。

allow
オプション: alert、warning、notice、info、または
debug を指定します。

12.2.2. ネットワークポリシー監査の設定

監査ロギングの設定は、OVN-Kubernetes クラスターネットワークプロバイダー設定の一部として指定
されます。以下の YAML は、ネットワークポリシーの監査ロギング機能のデフォルト値を示していま
す。

監査ロギング設定

apiVersion: v1
metadata:
 name: example1
 annotations:
 k8s.ovn.org/acl-logging: |-
 {
 "deny": "info",
 "allow": "info"
 }

2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-logging_deny-all",
verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,nw_dst=
10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 policyAuditConfig:

OpenShift Container Platform 4.8 ネットワーク

98

以下の表は、ネットワークポリシー監査ロギングの設定フィールドについて説明しています。

表12.2 policyAuditConfig object

フィールド タイプ 説明

rateLimit integer ノードごとに毎秒生成されるメッセージの最大数。デフォルト
値は、1 秒あたり 20 メッセージです。

maxFileSize integer 監査ログの最大サイズ (バイト単位)。デフォルト値は
50000000 (50 MB) です。

destination string 以下の追加の監査ログターゲットのいずれかになります。

libc
ホスト上の journald プロセスの libc syslog() 関数。

udp:<host>:<port>
syslog サーバー。<host>:<port> を syslog サーバーのホス
トおよびポートに置き換えます。

unix:<file>
<file> で指定された Unix ドメインソケットファイル。

null
監査ログを追加のターゲットに送信しないでください。

syslogFacility string RFC5424 で定義される kern などの syslog ファシリティー。デ
フォルト値は local0 です。

12.2.3. クラスターのネットワークポリシー監査の設定

クラスター管理者は、クラスターのネットワークポリシー監査ロギングをカスタマイズできます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてクラスターにログインする。

手順

ネットワークポリシーの監査ロギングの設定をカスタマイズするには、以下のコマンドを入力
します。

ヒント

 destination: "null"
 maxFileSize: 50
 rateLimit: 20
 syslogFacility: local0

$ oc edit network.operator.openshift.io/cluster

第12章 ネットワークポリシー

99

ヒント

または、以下の YAML をカスタマイズして適用することで、監査ロギングを設定できます。

検証

1. ネットワークポリシーを使用して namespace を作成するには、次の手順を実行します。

a. 検証用の namespace を作成します。

出力例

b. 監査ロギングを有効にします。

c. namespace のネットワークポリシーを作成します。

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 policyAuditConfig:
 destination: "null"
 maxFileSize: 50
 rateLimit: 20
 syslogFacility: local0

$ cat <<EOF| oc create -f -
kind: Namespace
apiVersion: v1
metadata:
 name: verify-audit-logging
 annotations:
 k8s.ovn.org/acl-logging: '{ "deny": "alert", "allow": "alert" }'
EOF

namespace/verify-audit-logging created

$ oc annotate namespace verify-audit-logging k8s.ovn.org/acl-logging='{ "deny": "alert",
"allow": "alert" }'

namespace/verify-audit-logging annotated

$ cat <<EOF| oc create -n verify-audit-logging -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-all
spec:
 podSelector:
 matchLabels:

OpenShift Container Platform 4.8 ネットワーク

100

出力例

2. ソーストラフィックの Pod を default namespace に作成します。

3. verify-audit-logging namespace に 2 つの Pod を作成します。

 policyTypes:
 - Ingress
 - Egress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-same-namespace
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - podSelector: {}
 egress:
 - to:
 - namespaceSelector:
 matchLabels:
 namespace: verify-audit-logging
EOF

networkpolicy.networking.k8s.io/deny-all created
networkpolicy.networking.k8s.io/allow-from-same-namespace created

$ cat <<EOF| oc create -n default -f -
apiVersion: v1
kind: Pod
metadata:
 name: client
spec:
 containers:
 - name: client
 image: registry.access.redhat.com/rhel7/rhel-tools
 command: ["/bin/sh", "-c"]
 args:
 ["sleep inf"]
EOF

$ for name in client server; do
cat <<EOF| oc create -n verify-audit-logging -f -
apiVersion: v1
kind: Pod
metadata:
 name: ${name}
spec:
 containers:
 - name: ${name}

第12章 ネットワークポリシー

101

出力例

4. トラフィックを生成し、ネットワークポリシー監査ログエントリーを作成するには、以下の手
順を実行します。

a. verify-audit-logging namespace で server という名前の Pod の IP アドレスを取得しま
す。

b. default の namespace の client という名前の Pod の直前のコマンドから IP アドレスに
ping し、すべてのパケットがドロップされていることを確認します。

出力例

c. verify-audit-logging namespace の client という名前の Pod から POD_IP シェル環境変数
に保存されている IP アドレスに ping し、すべてのパケットが許可されていることを確認
します。

出力例

5. ネットワークポリシー監査ログの最新エントリーを表示します。

 image: registry.access.redhat.com/rhel7/rhel-tools
 command: ["/bin/sh", "-c"]
 args:
 ["sleep inf"]
EOF
done

pod/client created
pod/server created

$ POD_IP=$(oc get pods server -n verify-audit-logging -o jsonpath='{.status.podIP}')

$ oc exec -it client -n default -- /bin/ping -c 2 $POD_IP

PING 10.128.2.55 (10.128.2.55) 56(84) bytes of data.

--- 10.128.2.55 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 2041ms

$ oc exec -it client -n verify-audit-logging -- /bin/ping -c 2 $POD_IP

PING 10.128.0.86 (10.128.0.86) 56(84) bytes of data.
64 bytes from 10.128.0.86: icmp_seq=1 ttl=64 time=2.21 ms
64 bytes from 10.128.0.86: icmp_seq=2 ttl=64 time=0.440 ms

--- 10.128.0.86 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.440/1.329/2.219/0.890 ms

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node --no-
headers=true | awk '{ print $1 }') ; do
 oc exec -it $pod -n openshift-ovn-kubernetes -- tail -4 /var/log/ovn/acl-audit-log.log

OpenShift Container Platform 4.8 ネットワーク

102

出力例

12.2.4. namespace のネットワークポリシー監査ロギングの有効化

クラスター管理者は、namespace のネットワークポリシーの監査ロギングを有効化できます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてクラスターにログインする。

手順

オプション: namespace のネットワークポリシー監査ロギングを有効にするには、以下のコマ
ンドを入力します。

ここでは、以下のようになります。

<namespace>

namespace の名前を指定します。

ヒント

 done

Defaulting container name to ovn-controller.
Use 'oc describe pod/ovnkube-node-hdb8v -n openshift-ovn-kubernetes' to see all of the
containers in this pod.
2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2021-06-13T19:33:12.614Z|00006|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2021-06-13T19:44:10.037Z|00007|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_allow-from-same-namespace_0", verdict=allow, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:3b,dl_dst=0a:58:0a:80:02:3a,nw_src=10.128.2.59,
nw_dst=10.128.2.58,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2021-06-13T19:44:11.037Z|00008|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_allow-from-same-namespace_0", verdict=allow, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:3b,dl_dst=0a:58:0a:80:02:3a,nw_src=10.128.2.59,
nw_dst=10.128.2.58,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

$ oc annotate namespace <namespace> \
 k8s.ovn.org/acl-logging='{ "deny": "alert", "allow": "notice" }'

第12章 ネットワークポリシー

103

ヒント

または、以下の YAML を適用して監査ロギングを有効化できます。

出力例

検証

ネットワークポリシー監査ログの最新エントリーを表示します。

出力例

12.2.5. namespace のネットワークポリシー監査ロギングの無効化

クラスター管理者は、namespace のネットワークポリシー監査ロギングを無効化できます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてクラスターにログインする。

手順

namespace のネットワークポリシー監査ロギングを無効にするには、以下のコマンドを入力し
ます。

kind: Namespace
apiVersion: v1
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/acl-logging: |-
 {
 "deny": "alert",
 "allow": "notice"
 }

namespace/verify-audit-logging annotated

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node --no-
headers=true | awk '{ print $1 }') ; do
 oc exec -it $pod -n openshift-ovn-kubernetes -- tail -4 /var/log/ovn/acl-audit-log.log
 done

2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

$ oc annotate --overwrite namespace <namespace> k8s.ovn.org/acl-logging={}

OpenShift Container Platform 4.8 ネットワーク

104

ここでは、以下のようになります。

<namespace>

namespace の名前を指定します。

ヒント

または、以下の YAML を適用して監査ロギングを無効化できます。

出力例

12.2.6. 関連情報

ネットワークポリシーについて

12.3. ネットワークポリシーの作成

admin ロールを持つユーザーは、namespace のネットワークポリシーを作成できます。

12.3.1. ネットワークポリシーの作成

クラスターの namespace に許可される Ingress または egress ネットワークトラフィックを記述する詳
細なルールを定義するには、ネットワークポリシーを作成できます。

注記

cluster-admin ロールを持つユーザーでログインしている場合、クラスター内の任意の
namespace でネットワークポリシーを作成できます。

前提条件

クラスターは、NetworkPolicy オブジェクトをサポートするクラスターネットワークプロバイ
ダーを使用する (例: OVN-Kubernetes ネットワークプロバイダー、または mode:
NetworkPolicy が設定された OpenShift SDN ネットワークプロバイダー)。このモードは
OpenShiftSDN のデフォルトです。

OpenShift CLI (oc) がインストールされている。

admin 権限を持つユーザーとしてクラスターにログインしている。

ネットワークポリシーが適用される namespace で作業している。

手順

kind: Namespace
apiVersion: v1
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/acl-logging: null

namespace/verify-audit-logging annotated

第12章 ネットワークポリシー

105

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#about-network-policy

1. ポリシールールを作成します。

a. <policy_name>.yaml ファイルを作成します。

ここでは、以下のようになります。

<policy_name>

ネットワークポリシーファイル名を指定します。

b. 作成したばかりのファイルで、以下の例のようなネットワークポリシーを定義します。

すべての namespace のすべての Pod から ingress を拒否します。

同じ namespace のすべての Pod から ingress を許可します。

2. ネットワークポリシーオブジェクトを作成するには、以下のコマンドを入力します。

ここでは、以下のようになります。

<policy_name>

ネットワークポリシーファイル名を指定します。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場合は
namespace を指定します。

出力例

$ touch <policy_name>.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector:
 ingress: []

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}

$ oc apply -f <policy_name>.yaml -n <namespace>

networkpolicy.networking.k8s.io/default-deny created

OpenShift Container Platform 4.8 ネットワーク

106

1

2

3

4

12.3.2. サンプル NetworkPolicy オブジェクト

以下は、サンプル NetworkPolicy オブジェクトにアノテーションを付けます。

NetworkPolicy オブジェクトの名前。

ポリシーが適用される Pod を説明するセレクター。ポリシーオブジェクトは NetworkPolicy オブ
ジェクトが定義されるプロジェクトの Pod のみを選択できます。

ポリシーオブジェクトが入力トラフィックを許可する Pod に一致するセレクター。セレクター
は、NetworkPolicy と同じ namaspace にある Pod を照合して検索します。

トラフィックを受け入れる 1 つ以上の宛先ポートのリスト。

12.4. ネットワークポリシーの表示

admin ロールを持つユーザーは、namespace のネットワークポリシーを表示できます。

12.4.1. ネットワークポリシーの表示

namespace のネットワークポリシーを検査できます。

注記

cluster-admin ロールを持つユーザーでログインしている場合、クラスター内の任意の
ネットワークポリシーを表示できます。

前提条件

OpenShift CLI (oc) がインストールされている。

admin 権限を持つユーザーとしてクラスターにログインしている。

ネットワークポリシーが存在する namespace で作業している。

手順

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

第12章 ネットワークポリシー

107

namespace のネットワークポリシーを一覧表示します。

namespace で定義されたネットワークポリシーオブジェクトを表示するには、以下のコマ
ンドを実行します。

オプション: 特定のネットワークポリシーを検査するには、以下のコマンドを入力します。

ここでは、以下のようになります。

<policy_name>

検査するネットワークポリシーの名前を指定します。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場
合は namespace を指定します。

以下に例を示します。

oc describe コマンドの出力

12.4.2. サンプル NetworkPolicy オブジェクト

以下は、サンプル NetworkPolicy オブジェクトにアノテーションを付けます。

$ oc get networkpolicy

$ oc describe networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy allow-same-namespace

Name: allow-same-namespace
Namespace: ns1
Created on: 2021-05-24 22:28:56 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 PodSelector: <none>
 Not affecting egress traffic
 Policy Types: Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:

OpenShift Container Platform 4.8 ネットワーク

108

1

2

3

4

NetworkPolicy オブジェクトの名前。

ポリシーが適用される Pod を説明するセレクター。ポリシーオブジェクトは NetworkPolicy オブ
ジェクトが定義されるプロジェクトの Pod のみを選択できます。

ポリシーオブジェクトが入力トラフィックを許可する Pod に一致するセレクター。セレクター
は、NetworkPolicy と同じ namaspace にある Pod を照合して検索します。

トラフィックを受け入れる 1 つ以上の宛先ポートのリスト。

12.5. ネットワークポリシーの編集

admin ロールを持つユーザーは、namespace の既存のネットワークポリシーを編集できます。

12.5.1. ネットワークポリシーの編集

namespace のネットワークポリシーを編集できます。

注記

cluster-admin ロールを持つユーザーでログインしている場合、クラスター内の任意の
namespace でネットワークポリシーを編集できます。

前提条件

クラスターは、NetworkPolicy オブジェクトをサポートするクラスターネットワークプロバイ
ダーを使用する (例: OVN-Kubernetes ネットワークプロバイダー、または mode:
NetworkPolicy が設定された OpenShift SDN ネットワークプロバイダー)。このモードは
OpenShiftSDN のデフォルトです。

OpenShift CLI (oc) がインストールされている。

admin 権限を持つユーザーとしてクラスターにログインしている。

ネットワークポリシーが存在する namespace で作業している。

手順

1. オプション: namespace のネットワークポリシーオブジェクトを一覧表示するには、以下のコ
マンドを入力します。

ここでは、以下のようになります。

 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

$ oc get networkpolicy

第12章 ネットワークポリシー

109

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場合は
namespace を指定します。

2. ネットワークポリシーオブジェクトを編集します。

ネットワークポリシーの定義をファイルに保存した場合は、ファイルを編集して必要な変
更を加えてから、以下のコマンドを入力します。

ここでは、以下のようになります。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場
合は namespace を指定します。

<policy_file>

ネットワークポリシーを含むファイルの名前を指定します。

ネットワークポリシーオブジェクトを直接更新する必要がある場合、以下のコマンドを入
力できます。

ここでは、以下のようになります。

<policy_name>

ネットワークポリシーの名前を指定します。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場
合は namespace を指定します。

3. ネットワークポリシーオブジェクトが更新されていることを確認します。

ここでは、以下のようになります。

<policy_name>

ネットワークポリシーの名前を指定します。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場合は
namespace を指定します。

12.5.2. サンプル NetworkPolicy オブジェクト

以下は、サンプル NetworkPolicy オブジェクトにアノテーションを付けます。

$ oc apply -n <namespace> -f <policy_file>.yaml

$ oc edit networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy <policy_name> -n <namespace>

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1

OpenShift Container Platform 4.8 ネットワーク

110

1

2

3

4

NetworkPolicy オブジェクトの名前。

ポリシーが適用される Pod を説明するセレクター。ポリシーオブジェクトは NetworkPolicy オブ
ジェクトが定義されるプロジェクトの Pod のみを選択できます。

ポリシーオブジェクトが入力トラフィックを許可する Pod に一致するセレクター。セレクター
は、NetworkPolicy と同じ namaspace にある Pod を照合して検索します。

トラフィックを受け入れる 1 つ以上の宛先ポートのリスト。

12.5.3. 関連情報

ネットワークポリシーの作成

12.6. ネットワークポリシーの削除

admin ロールを持つユーザーは、namespace からネットワークポリシーを削除できます。

12.6.1. ネットワークポリシーの削除

namespace のネットワークポリシーを削除できます。

注記

cluster-admin ロールを持つユーザーでログインしている場合、クラスター内の任意の
ネットワークポリシーを削除できます。

前提条件

クラスターは、NetworkPolicy オブジェクトをサポートするクラスターネットワークプロバイ
ダーを使用する (例: OVN-Kubernetes ネットワークプロバイダー、または mode:
NetworkPolicy が設定された OpenShift SDN ネットワークプロバイダー)。このモードは
OpenShiftSDN のデフォルトです。

OpenShift CLI (oc) がインストールされている。

admin 権限を持つユーザーとしてクラスターにログインしている。

ネットワークポリシーが存在する namespace で作業している。

spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

第12章 ネットワークポリシー

111

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#creating-network-policy

手順

ネットワークポリシーオブジェクトを削除するには、以下のコマンドを入力します。

ここでは、以下のようになります。

<policy_name>

ネットワークポリシーの名前を指定します。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場合は
namespace を指定します。

出力例

12.7. プロジェクトのデフォルトネットワークポリシーの定義

クラスター管理者は、新規プロジェクトの作成時にネットワークポリシーを自動的に含めるように新規
プロジェクトテンプレートを変更できます。新規プロジェクトのカスタマイズされたテンプレートがま
だない場合には、まずテンプレートを作成する必要があります。

12.7.1. 新規プロジェクトのテンプレートの変更

クラスター管理者は、デフォルトのプロジェクトテンプレートを変更し、新規プロジェクトをカスタム
要件に基づいて作成することができます。

独自のカスタムプロジェクトテンプレートを作成するには、以下を実行します。

手順

1. cluster-admin 権限を持つユーザーとしてログインすること。

2. デフォルトのプロジェクトテンプレートを生成します。

3. オブジェクトを追加するか、または既存オブジェクトを変更することにより、テキストエディ
ターで生成される template.yaml ファイルを変更します。

4. プロジェクトテンプレートは、openshift-config namespace に作成される必要があります。変
更したテンプレートを読み込みます。

5. Web コンソールまたは CLI を使用し、プロジェクト設定リソースを編集します。

Web コンソールの使用

i. Administration → Cluster Settings ページに移動します。

$ oc delete networkpolicy <policy_name> -n <namespace>

networkpolicy.networking.k8s.io/default-deny deleted

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

$ oc create -f template.yaml -n openshift-config

OpenShift Container Platform 4.8 ネットワーク

112

ii. Global Configuration をクリックし、すべての設定リソースを表示します。

iii. Project のエントリーを見つけ、Edit YAML をクリックします。

CLI の使用

i. project.config.openshift.io/cluster リソースを編集します。

6. spec セクションを、projectRequestTemplate および name パラメーターを組み込むように更
新し、アップロードされたプロジェクトテンプレートの名前を設定します。デフォルト名は
project-request です。

カスタムプロジェクトテンプレートを含むプロジェクト設定リソース

7. 変更を保存した後、変更が正常に適用されたことを確認するために、新しいプロジェクトを作
成します。

12.7.2. 新規プロジェクトへのネットワークポリシーの追加

クラスター管理者は、ネットワークポリシーを新規プロジェクトのデフォルトテンプレートに追加でき
ます。OpenShift Container Platform は、プロジェクトのテンプレートに指定されたすべての
NetworkPolicy オブジェクトを自動的に作成します。

前提条件

クラスターは、NetworkPolicy オブジェクトをサポートするデフォルトの CNI ネットワークプ
ロバイダーを使用している (例: mode: NetworkPolicy が設定された OpenShift SDN ネット
ワークプロバイダー)。このモードは OpenShiftSDN のデフォルトです。

OpenShift CLI (oc) がインストールされている。

cluster-admin 権限を持つユーザーとしてクラスターにログインする。

新規プロジェクトのカスタムデフォルトプロジェクトテンプレートを作成している。

手順

1. 以下のコマンドを実行して、新規プロジェクトのデフォルトテンプレートを編集します。

<project_template> を、クラスターに設定したデフォルトテンプレートの名前に置き換えま
す。デフォルトのテンプレート名は project-request です。

2. テンプレートでは、各 NetworkPolicy オブジェクトを要素として objects パラメーターに追加

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestTemplate:
 name: <template_name>

$ oc edit template <project_template> -n openshift-config

第12章 ネットワークポリシー

113

1

2. テンプレートでは、各 NetworkPolicy オブジェクトを要素として objects パラメーターに追加
します。objects パラメーターは、1 つ以上のオブジェクトのコレクションを受け入れます。
以下の例では、objects パラメーターのコレクションにいくつかの NetworkPolicy オブジェク
トが含まれます。

3. オプション: 以下のコマンドを実行して、新規プロジェクトを作成し、ネットワークポリシーオ
ブジェクトが正常に作成されることを確認します。

a. 新規プロジェクトを作成します。

<project> を、作成しているプロジェクトの名前に置き換えます。

b. 新規プロジェクトテンプレートのネットワークポリシーオブジェクトが新規プロジェクト
に存在することを確認します。

12.8. ネットワークポリシーを使用したマルチテナント分離の設定

クラスター管理者は、マルチテナントネットワークの分離を実行するようにネットワークポリシーを設
定できます。

注記

objects:
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-same-namespace
 spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-openshift-ingress
 spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress
...

$ oc new-project <project> 1

$ oc get networkpolicy
NAME POD-SELECTOR AGE
allow-from-openshift-ingress <none> 7s
allow-from-same-namespace <none> 7s

OpenShift Container Platform 4.8 ネットワーク

114

注記

OpenShift SDN クラスターネットワークプロバイダーを使用している場合、本セクショ
ンで説明されているようにネットワークポリシーを設定すると、マルチテナントモード
と同様のネットワーク分離が行われますが、ネットワークポリシーモードが設定されま
す。

12.8.1. ネットワークポリシーを使用したマルチテナント分離の設定

他のプロジェクト namespace の Pod およびサービスから分離できるようにプロジェクトを設定できま
す。

前提条件

クラスターは、NetworkPolicy オブジェクトをサポートするクラスターネットワークプロバイ
ダーを使用する (例: OVN-Kubernetes ネットワークプロバイダー、または mode:
NetworkPolicy が設定された OpenShift SDN ネットワークプロバイダー)。このモードは
OpenShiftSDN のデフォルトです。

OpenShift CLI (oc) がインストールされている。

admin 権限を持つユーザーとしてクラスターにログインしている。

手順

1. 以下の NetworkPolicy オブジェクトを作成します。

a. allow-from-openshift-ingress という名前のポリシー:

注記

policy-group.network.openshift.io/ingress: ""は、OpenShift SDN の推奨
の namespace セレクターラベルです。network.openshift.io/policy-group:
ingress namespace セレクターラベルを使用できますが、これはレガシーラ
ベルです。

b. allow-from-openshift-monitoring という名前のポリシー。

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: ""
 podSelector: {}
 policyTypes:
 - Ingress
EOF

第12章 ネットワークポリシー

115

c. allow-same-namespace という名前のポリシー:

2. オプション: 以下のコマンドを実行し、ネットワークポリシーオブジェクトが現在のプロジェク
トに存在することを確認します。

出力例

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-monitoring
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: monitoring
 podSelector: {}
 policyTypes:
 - Ingress
EOF

$ cat << EOF| oc create -f -
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}
EOF

$ oc describe networkpolicy

Name: allow-from-openshift-ingress
Namespace: example1
Created on: 2020-06-09 00:28:17 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 NamespaceSelector: network.openshift.io/policy-group: ingress
 Not affecting egress traffic
 Policy Types: Ingress

Name: allow-from-openshift-monitoring
Namespace: example1

OpenShift Container Platform 4.8 ネットワーク

116

12.8.2. 次のステップ

デフォルトのネットワークポリシーの定義

12.8.3. 関連情報

OpenShift SDN ネットワーク分離モード

Created on: 2020-06-09 00:29:57 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 NamespaceSelector: network.openshift.io/policy-group: monitoring
 Not affecting egress traffic
 Policy Types: Ingress

第12章 ネットワークポリシー

117

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#default-network-policy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-openshift-sdn-modes_about-openshift-sdn

第13章 複数ネットワーク

13.1. 複数ネットワークについて

Kubernetes では、コンテナーネットワークは Container Network Interface (CNI) を実装するネット
ワークプラグインに委任されます。

OpenShift Container Platform は、Multus CNI プラグインを使用して CNI プラグインのチェーンを許可
します。クラスターのインストール時に、デフォルト の Pod ネットワークを設定します。デフォルト
のネットワークは、クラスターのすべての通常のネットワークトラフィックを処理します。利用可能な
CNI プラグインに基づいて additional network を定義し、1 つまたは複数のネットワークを Pod に割り
当てることができます。必要に応じて、クラスターの複数のネットワークを追加で定義することができ
ます。これは、スイッチまたはルーティングなどのネットワーク機能を提供する Pod を設定する場合
に柔軟性を実現します。

13.1.1. 追加ネットワークの使用シナリオ

データプレーンとコントロールプレーンの分離など、ネットワークの分離が必要な状況で追加のネット
ワークを使用することができます。トラフィックの分離は、以下のようなパフォーマンスおよびセキュ
リティー関連の理由で必要になります。

パフォーマンス

各プレーンのトラフィック量を管理するために、2 つの異なるプレーンにトラフィックを送信できま
す。

セキュリティー

機密トラフィックは、セキュリティー上の考慮に基づいて管理されているネットワークに送信で
き、テナントまたはカスタマー間で共有できないプライベートを分離することができます。

クラスターのすべての Pod はクラスター全体のデフォルトネットワークを依然として使用し、クラス
ター全体での接続性を維持します。すべての Pod には、クラスター全体の Pod ネットワークに割り当
てられる eth0 インターフェイスがあります。Pod のインターフェイスは、oc exec -it <pod_name> --
ip a コマンドを使用して表示できます。Multus CNI を使用するネットワークを追加する場合、それらの
名前は net1、net2、…​、 netN になります。

追加のネットワークを Pod に割り当てるには、インターフェイスの割り当て方法を定義する設定を作
成する必要があります。それぞれのインターフェイスは、NetworkAttachmentDefinition カスタムリ
ソース (CR) を使用して指定します。これらの CR のそれぞれにある CNI 設定は、インターフェイスの
作成方法を定義します。

13.1.2. OpenShift Container Platform の追加ネットワーク

OpenShift Container Platform は、クラスターに追加のネットワークを作成するために使用する以下の
CNI プラグインを提供します。

bridge: ブリッジベースの追加ネットワークを設定する ことで、同じホストにある Pod が相互
に、かつホストと通信できます。

host-device: ホストデバイスの追加ネットワークを設定する ことで、Pod がホストシステム上
の物理イーサネットネットワークデバイスにアクセスすることができます。

ipvlan: ipvlan ベースの追加ネットワークを設定する ことで、macvlan ベースの追加ネットワー
クと同様に、ホスト上の Pod が他のホストやそれらのホストの Pod と通信できます。macvlan
ベースの追加のネットワークとは異なり、各 Pod は親の物理ネットワークインターフェイスと
同じ MAC アドレスを共有します。

OpenShift Container Platform 4.8 ネットワーク

118

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-multus-bridge-object_configuring-additional-network
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-multus-host-device-object_configuring-additional-network
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-multus-ipvlan-object_configuring-additional-network

macvlan: macvlan ベースの追加ネットワークを作成 することで、ホスト上の Pod が物理ネッ
トワークインターフェイスを使用して他のホストやそれらのホストの Pod と通信できます。
macvlan ベースの追加ネットワークに割り当てられる各 Pod には固有の MAC アドレスが割り
当てられます。

SR-IOV: SR-IOV ベースの追加ネットワークを設定する ことで、Pod を ホストシステム上の
SR-IOV 対応ハードウェアの Virtual Function (VF) インターフェイスに割り当てることができま
す。

13.2. 追加のネットワークの設定

クラスター管理者は、クラスターの追加のネットワークを設定できます。以下のネットワークタイプに
対応しています。

ブリッジ

ホストデバイス

IPVLAN

MACVLAN

13.2.1. 追加のネットワークを管理するためのアプローチ

追加したネットワークのライフサイクルを管理するには、2 つのアプローチがあります。各アプローチ
は同時に使用できず、追加のネットワークを管理する場合に 1 つのアプローチしか使用できません。い
ずれの方法でも、追加のネットワークは、お客様が設定した Container Network Interface (CNI) プラグ
インで管理します。

追加ネットワークの場合には、IP アドレスは、追加ネットワークの一部として設定する IPAM(IP
Address Management)CNI プラグインでプロビジョニングされます。IPAM プラグインは、DHCP や静
的割り当てなど、さまざまな IP アドレス割り当ての方法をサポートしています。

Cluster Network Operator (CNO) の設定を変更する: CNO は自動的に Network Attachment
Definition オブジェクトを作成し、管理します。CNO は、オブジェクトのライフサイクル管理
に加えて、DHCP で割り当てられた IP アドレスを使用する追加のネットワークで確実に DHCP
が利用できるようにします。

YAML マニフェストを適用する: Network Attachment Definition オブジェクトを作成すること
で、追加のネットワークを直接管理できます。この方法では、CNI プラグインを連鎖させるこ
とができます。

13.2.2. ネットワーク追加割り当ての設定

追加のネットワークは、k8s.cni.cncf.ioAPI グループの Network Attachment DefinitionAPI で設定さ
れます。API の設定については、以下の表で説明されています。

表13.1 NetworkAttachmentDefinition API フィールド

フィールド タイプ 説明

metadata.name string 追加のネットワークの名前です。

metadata.namespace string オブジェクトが関連付けられる namespace。

第13章 複数ネットワーク

119

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#about-sriov
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-multus-bridge-object_configuring-additional-network
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-multus-host-device-object_configuring-additional-network
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-multus-ipvlan-object_configuring-additional-network
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network

1

2

3

4

spec.config string JSON 形式の CNI プラグイン設定。

フィールド タイプ 説明

13.2.2.1. Cluster Network Operator による追加ネットワークの設定

追加のネットワーク割り当ての設定は、Cluster Network Operator (CNO) の設定の一部として指定しま
す。

以下の YAML は、CNO で追加のネットワークを管理するための設定パラメーターを記述しています。

Cluster Network Operator (CNO) の設定

1 つまたは複数の追加ネットワーク設定の配列。

作成している追加ネットワーク割り当ての名前。名前は指定された namespace 内で一意である必
要があります。

ネットワークの割り当てを作成する namespace。値を指定しない場合、default の namespace が
使用されます。

JSON 形式の CNI プラグイン設定。

13.2.2.2. YAML マニフェストからの追加ネットワークの設定

追加ネットワークの設定は、以下の例のように YAML 設定ファイルから指定します。

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 # ...
 additionalNetworks: 1
 - name: <name> 2
 namespace: <namespace> 3
 rawCNIConfig: |- 4
 {
 ...
 }
 type: Raw

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: <name> 1
spec:
 config: |- 2
 {
 ...
 }

OpenShift Container Platform 4.8 ネットワーク

120

1

2

作成している追加ネットワーク割り当ての名前。

JSON 形式の CNI プラグイン設定。

13.2.3. 追加のネットワークタイプの設定

次のセクションでは、追加のネットワークの具体的な設定フィールドについて説明します。

13.2.3.1. ブリッジネットワークの追加設定

以下のオブジェクトは、ブリッジ CNI プラグインの設定パラメーターについて説明しています。

表13.2 Bridge CNI プラグイン JSON 設定オブジェクト

フィールド タイプ 説明

cniVersion string CNI 仕様のバージョン。値 0.3.1 が必要です。

name string CNO 設定に以前に指定した name パラメーターの値。

type string

bridge string 使用する仮想ブリッジの名前を指定します。ブリッジインター
フェイスがホストに存在しない場合は、これが作成されます。
デフォルト値は cni0 です。

ipam object IPAM CNI プラグインの設定オブジェクト。プラグインは、割り
当て定義についての IP アドレスの割り当てを管理します。

ipMasq boolean 仮想ネットワークから外すトラフィックについて IP マスカレー
ドを有効にするには、true に設定します。すべてのトラフィッ
クのソース IP アドレスは、ブリッジの IP アドレスに書き換えら
れます。ブリッジに IP アドレスがない場合は、この設定は影響
を与えません。デフォルト値は false です。

isGateway boolean IP アドレスをブリッジに割り当てるには true に設定します。デ
フォルト値は false です。

isDefaultGatewa
y

boolean ブリッジを仮想ネットワークのデフォルトゲートウェイとして
設定するには、true に設定します。デフォルト値は false で
す。isDefaultGateway が true に設定される場
合、isGateway も自動的に true に設定されます。

forceAddress boolean 仮想ブリッジの事前に割り当てられた IP アドレスの割り当てを
許可するには、true に設定します。false に設定される場合、
重複サブセットの IPv4 アドレスまたは IPv6 アドレスが仮想ブ
リッジに割り当てられるとエラーが発生します。デフォルト値
は false です。

第13章 複数ネットワーク

121

hairpinMode boolean 仮想ブリッジが受信時に使用した仮想ポートでイーサネットフ
レームを送信できるようにするには、true に設定します。この
モードは、Reflective Relay (リフレクティブリレー) としても
知られています。デフォルト値は false です。

promiscMode boolean ブリッジで無作為検出モード (Promiscuous Mode) を有効にす
るには、true に設定します。デフォルト値は false です。

vlan string 仮想 LAN (VLAN) タグを整数値として指定します。デフォルト
で、VLAN タグは割り当てません。

mtu string 最大転送単位 (MTU) を指定された値に設定します。デフォルト
値はカーネルによって自動的に設定されます。

フィールド タイプ 説明

13.2.3.1.1. ブリッジ設定の例

以下の例では、bridge-net という名前の追加のネットワークを設定します。

13.2.3.2. ホストデバイスの追加ネットワークの設定

注記

device、hwaddr、 kernelpath、または pciBusID のいずれかのパラメーターを設定し
てネットワークデバイスを指定します。

以下のオブジェクトは、ホストデバイス CNI プラグインの設定パラメーターについて説明しています。

表13.3 ホストデバイス CNI プラグイン JSON 設定オブジェクト

フィールド タイプ 説明

cniVersion string CNI 仕様のバージョン。値 0.3.1 が必要です。

name string CNO 設定に以前に指定した name パラメーターの値。

{
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "bridge",
 "isGateway": true,
 "vlan": 2,
 "ipam": {
 "type": "dhcp"
 }
}

OpenShift Container Platform 4.8 ネットワーク

122

type string 設定する CNI プラグインの名前: host-device

device string オプション: eth0 などのデバイスの名前。

hwaddr string オプション: デバイスハードウェアの MAC アドレス。

kernelpath string オプション: /sys/devices/pci0000:00/0000:00:1f.6 などの
Linux カーネルデバイス。

pciBusID string オプション: 0000:00:1f.6 などのネットワークデバイスの PCI
アドレスを指定します。

ipam object IPAM CNI プラグインの設定オブジェクト。プラグインは、割り
当て定義についての IP アドレスの割り当てを管理します。

フィールド タイプ 説明

13.2.3.2.1. ホストデバイス設定例

以下の例では、hostdev-net という名前の追加のネットワークを設定します。

13.2.3.3. IPVLAN 追加ネットワークの設定

以下のオブジェクトは、IPVLAN CNI プラグインの設定パラメーターについて説明しています。

表13.4 IPVLAN CNI プラグイン JSON 設定オブジェクト

フィールド タイプ 説明

cniVersion string CNI 仕様のバージョン。値 0.3.1 が必要です。

name string CNO 設定に以前に指定した name パラメーターの値。

type string 設定する CNI プラグインの名前: ipvlan。

mode string 仮想ネットワークの操作モード。この値は、l2、l3、または l3s
である必要があります。デフォルト値は l2 です。

{
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "host-device",
 "device": "eth1",
 "ipam": {
 "type": "dhcp"
 }
}

第13章 複数ネットワーク

123

master string ネットワーク割り当てに関連付けるイーサネットインターフェ
イス。master が指定されない場合、デフォルトのネットワー
クルートのインターフェイスが使用されます。

mtu integer 最大転送単位 (MTU) を指定された値に設定します。デフォルト
値はカーネルによって自動的に設定されます。

ipam object IPAM CNI プラグインの設定オブジェクト。プラグインは、割り
当て定義についての IP アドレスの割り当てを管理します。

dhcp は指定しないでください。IPVLAN インターフェイスは
MAC アドレスをホストインターフェイスと共有するため、
IPVLAN の DHCP 設定はサポートされていません。

フィールド タイプ 説明

13.2.3.3.1. IPVLAN 設定例

以下の例では、ipvlan-net という名前の追加のネットワークを設定します。

13.2.3.4. MACVLAN 追加ネットワークの設定

以下のオブジェクトは、macvlan CNI プラグインの設定パラメーターについて説明しています。

表13.5 MACVLAN CNI プラグイン JSON 設定オブジェクト

フィールド タイプ 説明

cniVersion string CNI 仕様のバージョン。値 0.3.1 が必要です。

name string CNO 設定に以前に指定した name パラメーターの値。

type string 設定する CNI プラグインの名前: macvlan。

{
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "ipvlan",
 "master": "eth1",
 "mode": "l3",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "192.168.10.10/24"
 }
]
 }
}

OpenShift Container Platform 4.8 ネットワーク

124

mode string 仮想ネットワークのトラフィックの可視性を設定しま
す。bridge、passthru、private、または vepa のいずれかで
ある必要があります。値が指定されない場合、デフォルト値は
bridge になります。

master string 仮想インターフェイスに関連付けるイーサネット、ボンディン
グ、または VLAN インターフェイス。値が指定されない場合、
ホストシステムのプライマリーイーサネットインターフェイス
が使用されます。

mtu string 最大転送単位 (MTU) を指定された値。デフォルト値はカーネル
によって自動的に設定されます。

ipam object IPAM CNI プラグインの設定オブジェクト。プラグインは、割り
当て定義についての IP アドレスの割り当てを管理します。

フィールド タイプ 説明

13.2.3.4.1. macvlan 設定の例

以下の例では、macvlan-net という名前の追加のネットワークを設定します。

13.2.4. 追加ネットワークの IP アドレス割り当ての設定

IPAM (IP アドレス管理) Container Network Interface (CNI) プラグインは、他の CNI プラグインの IP ア
ドレスを提供します。

以下の IP アドレスの割り当てタイプを使用できます。

静的割り当て。

DHCP サーバーを使用した動的割り当て。指定する DHCP サーバーは、追加のネットワークか
ら到達可能である必要があります。

Whereabouts IPAM CNI プラグインを使用した動的割り当て。

13.2.4.1. 静的 IP アドレス割り当ての設定

以下の表は、静的 IP アドレスの割り当ての設定について説明しています。

{
 "cniVersion": "0.3.1",
 "name": "macvlan-net",
 "type": "macvlan",
 "master": "eth1",
 "mode": "bridge",
 "ipam": {
 "type": "dhcp"
 }
}

第13章 複数ネットワーク

125

表13.6 ipam 静的設定オブジェクト

フィールド タイプ 説明

type string IPAM のアドレスタイプ。値 static が必要です。

addresses array 仮想インターフェイスに割り当てる IP アドレスを指定するオブ
ジェクトの配列。IPv4 と IPv6 の IP アドレスの両方がサポート
されます。

routes array Pod 内で設定するルートを指定するオブジェクトの配列です。

dns array オプション: DNS の設定を指定するオブジェクトの配列です。

addressesの配列には、以下のフィールドのあるオブジェクトが必要です。

表13.7 ipam.addresses[] 配列

フィールド タイプ 説明

address string 指定する IP アドレスおよびネットワーク接頭辞。たとえ
ば、10.10.21.10/24 を指定すると、追加のネットワークに IP
アドレスの 10.10.21.10 が割り当てられ、ネットマスクは
255.255.255.0 になります。

gateway string egress ネットワークトラフィックをルーティングするデフォル
トのゲートウェイ。

表13.8 ipam.routes[] 配列

フィールド タイプ 説明

dst string CIDR 形式の IP アドレス範囲 (192.168.17.0/24、またはデフォ
ルトルートの 0.0.0.0/0)。

gw string ネットワークトラフィックがルーティングされるゲートウェ
イ。

表13.9 ipam.dns オブジェクト

フィールド タイプ 説明

nameservers array DNS クエリーの送信先となる 1 つ以上の IP アドレスの配列。

domain array ホスト名に追加するデフォルトのドメイン。たとえば、ドメイ
ンが example.com に設定されている場合、example-host の
DNS ルックアップクエリーは example-host.example.com
として書き換えられます。

OpenShift Container Platform 4.8 ネットワーク

126

search array DNS ルックアップのクエリー時に非修飾ホスト名に追加される
ドメイン名の配列 (例: example-host)。

フィールド タイプ 説明

静的 IP アドレス割り当ての設定例

13.2.4.2. 動的 IP アドレス (DHCP) 割り当ての設定

以下の JSON は、DHCP を使用した動的 IP アドレスの割り当ての設定について説明しています。

DHCP リースの更新

Pod は、作成時に元の DHCP リースを取得します。リースは、クラスターで実行してい
る最小限の DHCP サーバーデプロイメントで定期的に更新する必要があります。

DHCP サーバーのデプロイメントをトリガーするには、以下の例にあるように Cluster
Network Operator 設定を編集して shim ネットワーク割り当てを作成する必要がありま
す。

shim ネットワーク割り当ての定義例

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7/24"
 }
]
 }
}

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 type: Raw
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }
 # ...

第13章 複数ネットワーク

127

表13.10 ipam DHCP 設定オブジェクト

フィールド タイプ 説明

type string IPAM のアドレスタイプ。値 dhcp が必要です。

動的 IP アドレス (DHCP) 割り当ての設定例

13.2.4.3. Whereabouts を使用した動的 IP アドレス割り当ての設定

Whereabouts CNI プラグインにより、DHCP サーバーを使用せずに IP アドレスを追加のネットワーク
に動的に割り当てることができます。

以下の表は、Whereabouts を使用した動的 IP アドレス割り当ての設定について説明しています。

表13.11 ipamwhereabouts 設定オブジェクト

フィールド タイプ 説明

type string IPAM のアドレスタイプ。値 whereabouts が必要です。

range string IP アドレスと範囲を CIDR 表記。IP アドレスは、この範囲内の
アドレスから割り当てられます。

exclude array オプション: CIDR 表記の IP アドレスと範囲 (0 個以上) の一覧。
除外されたアドレス範囲内の IP アドレスは割り当てられませ
ん。

Whereabouts を使用する動的 IP アドレス割り当ての設定例

13.2.5. Cluster Network Operator による追加ネットワーク割り当ての作成

Cluster Network Operator (CNO) は追加ネットワークの定義を管理します。作成する追加ネットワーク

{
 "ipam": {
 "type": "dhcp"
 }
}

{
 "ipam": {
 "type": "whereabouts",
 "range": "192.0.2.192/27",
 "exclude": [
 "192.0.2.192/30",
 "192.0.2.196/32"
]
 }
}

OpenShift Container Platform 4.8 ネットワーク

128

Cluster Network Operator (CNO) は追加ネットワークの定義を管理します。作成する追加ネットワーク
を指定する場合、CNO は NetworkAttachmentDefinition オブジェクトを自動的に作成します。

重要

Cluster Network Operator が管理する NetworkAttachmentDefinition オブジェクトは編
集しないでください。これを実行すると、追加ネットワークのネットワークトラフィッ
クが中断する可能性があります。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

1. CNO 設定を編集するには、以下のコマンドを入力します。

2. 以下のサンプル CR のように、作成される追加ネットワークの設定を追加して、作成している
CR を変更します。

3. 変更を保存し、テキストエディターを終了して、変更をコミットします。

検証

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 # ...
 additionalNetworks:
 - name: tertiary-net
 namespace: project2
 type: Raw
 rawCNIConfig: |-
 {
 "cniVersion": "0.3.1",
 "name": "tertiary-net",
 "type": "ipvlan",
 "master": "eth1",
 "mode": "l2",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "192.168.1.23/24"
 }
]
 }
 }

第13章 複数ネットワーク

129

以下のコマンドを実行して、CNO が NetworkAttachmentDefinition オブジェクトを作成してい
ることを確認します。CNO がオブジェクトを作成するまでに遅延が生じる可能性があります。

ここでは、以下のようになります。

<namespace>

CNO の設定に追加したネットワーク割り当ての namespace を指定します。

出力例

13.2.6. YAML マニフェストを適用した追加のネットワーク割り当ての作成

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

1. 以下の例のように、追加のネットワーク設定を含む YAML ファイルを作成します。

2. 追加のネットワークを作成するには、次のコマンドを入力します。

ここでは、以下のようになります。

<file>

YAML マニフェストを含むファイルの名前を指定します。

$ oc get network-attachment-definitions -n <namespace>

NAME AGE
test-network-1 14m

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: next-net
spec:
 config: |-
 {
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "host-device",
 "device": "eth1",
 "ipam": {
 "type": "dhcp"
 }
 }

$ oc apply -f <file>.yaml

OpenShift Container Platform 4.8 ネットワーク

130

13.3. 仮想ルーティングおよび転送について

13.3.1. 仮想ルーティングおよび転送について

VRF (Virtual Routing and Forwarding) デバイスは IP ルールとの組み合わせにより、仮想ルーティング
と転送ドメインを作成する機能を提供します。VRF は、CNF で必要なパーミッションの数を減らし、
セカンダリーネットワークのネットワークトポロジーの可視性を強化します。VRF はマルチテナンシー
機能を提供するために使用されます。たとえば、この場合、各テナントには固有のルーティングテーブ
ルがあり、異なるデフォルトゲートウェイが必要です。

プロセスは、ソケットを VRF デバイスにバインドできます。バインドされたソケット経由のパケット
は、VRF デバイスに関連付けられたルーティングテーブルを使用します。VRF の重要な機能として、
これは OSI モデルレイヤー 3 以上にのみ影響を与えるため、LLDP などの L2 ツールは影響を受けませ
ん。これにより、ポリシーベースのルーティングなどの優先度の高い IP ルールが、特定のトラフィッ
クを転送する VRF デバイスルールよりも優先されます。

13.3.1.1. Telecommunications Operator についての Pod のセカンダリーネットワークの利点

通信のユースケースでは、各 CNF が同じアドレス空間を共有する複数の異なるネットワークに接続さ
れる可能性があります。これらのセカンダリーネットワークは、クラスターのメインネットワーク
CIDR と競合する可能性があります。CNI VRF プラグインを使用すると、ネットワーク機能は、同じ IP
アドレスを使用して異なるユーザーのインフラストラクチャーに接続でき、複数の異なるお客様の分離
された状態を維持します。IP アドレスは OpenShift Container Platform の IP スペースと重複します。
CNI VRF プラグインは、CNF で必要なパーミッションの数も減らし、セカンダリーネットワークの
ネットワークトポロジーの可視性を高めます。

13.4. マルチネットワークポリシーの設定

クラスター管理者は、追加のネットワークのネットワークポリシーを設定できます。

注記

macvlan の追加ネットワークのみに対して、マルチネットワークポリシーを指定するこ
とができます。ipvlan などの他の追加のネットワークタイプはサポートされていませ
ん。

13.4.1. マルチネットワークポリシーとネットワークポリシーの違い

MultiNetworkPolicy API は、NetworkPolicy API を実装していますが、いくつかの重要な違いがありま
す。

以下の場合は、MultiNetworkPolicy API を使用する必要があります。

CLI を使用してマルチネットワークポリシーと対話する場合は、multi-networkpolicy リソース
名を使用する必要があります。たとえば、oc get multi-networkpolicy <name> コマンドを使
用してマルチネットワークポリシーオブジェクトを表示できます。ここで、<name> はマルチ
ネットワークポリシーの名前になります。

macvlan 追加ネットワークを定義するネットワーク接続定義の名前でアノテーションを指定す
る必要があります。

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy

第13章 複数ネットワーク

131

ここでは、以下のようになります。

<network_name>

ネットワーク接続定義の名前を指定します。

13.4.2. クラスターのマルチネットワークポリシーの有効化

クラスター管理者は、クラスターでマルチネットワークポリシーのサポートを有効にすることができま
す。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてクラスターにログインする。

手順

1. 以下の YAML で multinetwork-enable-patch.yaml ファイルを作成します。

2. マルチネットワークポリシーを有効にするようにクラスターを設定します。

出力例

13.4.3. マルチネットワークポリシーの使用

クラスター管理者は、マルチネットワークポリシーを作成、編集、表示、および削除することができま
す。

13.4.3.1. 前提条件

クラスターのマルチネットワークポリシーサポートを有効にしている。

13.4.3.2. マルチネットワークポリシーの作成

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 useMultiNetworkPolicy: true

$ oc patch network.operator.openshift.io cluster --type=merge --patch-file=multinetwork-
enable-patch.yaml

network.operator.openshift.io/cluster patched

OpenShift Container Platform 4.8 ネットワーク

132

マルチネットワークポリシーを作成し、クラスターの namespace に許可される Ingress または egress
ネットワークトラフィックを記述する詳細なルールを定義することができます。

前提条件

クラスターは、NetworkPolicy オブジェクトをサポートするクラスターネットワークプロバイ
ダーを使用する (例: OVN-Kubernetes ネットワークプロバイダー、または mode:
NetworkPolicy が設定された OpenShift SDN ネットワークプロバイダー)。このモードは
OpenShiftSDN のデフォルトです。

OpenShift CLI (oc) がインストールされている。

cluster-admin 権限を持つユーザーとしてクラスターにログインしていること。

マルチネットワークポリシーが適用される namespace で作業していること。

手順

1. ポリシールールを作成します。

a. <policy_name>.yaml ファイルを作成します。

ここでは、以下のようになります。

<policy_name>

マルチネットワークポリシーのファイル名を指定します。

b. 作成したばかりのファイルで、以下の例のようなマルチネットワークポリシーを定義しま
す。

すべての namespace のすべての Pod から ingress を拒否します。

ここでは、以下のようになります。

<network_name>

ネットワーク接続定義の名前を指定します。

同じ namespace のすべての Pod から ingress を許可します。

$ touch <policy_name>.yaml

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 name: deny-by-default
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:
 podSelector:
 ingress: []

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:

第13章 複数ネットワーク

133

ここでは、以下のようになります。

<network_name>

ネットワーク接続定義の名前を指定します。

2. マルチネットワークポリシーオブジェクトを作成するには、以下のコマンドを入力します。

ここでは、以下のようになります。

<policy_name>

マルチネットワークポリシーのファイル名を指定します。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場合は
namespace を指定します。

出力例

13.4.3.3. マルチネットワークポリシーの編集

namespace のマルチネットワークポリシーを編集できます。

前提条件

クラスターは、NetworkPolicy オブジェクトをサポートするクラスターネットワークプロバイ
ダーを使用する (例: OVN-Kubernetes ネットワークプロバイダー、または mode:
NetworkPolicy が設定された OpenShift SDN ネットワークプロバイダー)。このモードは
OpenShiftSDN のデフォルトです。

OpenShift CLI (oc) がインストールされている。

cluster-admin 権限を持つユーザーとしてクラスターにログインしていること。

マルチネットワークポリシーが存在する namespace で作業している。

手順

1. オプション: namespace のマルチネットワークポリシーオブジェクトを一覧表示するには、以
下のコマンドを入力します。

 name: allow-same-namespace
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}

$ oc apply -f <policy_name>.yaml -n <namespace>

multinetworkpolicy.k8s.cni.cncf.io/default-deny created

$ oc get multi-networkpolicy

OpenShift Container Platform 4.8 ネットワーク

134

ここでは、以下のようになります。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場合は
namespace を指定します。

2. マルチネットワークポリシーオブジェクトを編集します。

マルチネットワークポリシーの定義をファイルに保存した場合は、ファイルを編集して必
要な変更を加えてから、以下のコマンドを入力します。

ここでは、以下のようになります。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場
合は namespace を指定します。

<policy_file>

ネットワークポリシーを含むファイルの名前を指定します。

マルチネットワークポリシーオブジェクトを直接更新する必要がある場合、以下のコマン
ドを入力できます。

ここでは、以下のようになります。

<policy_name>

ネットワークポリシーの名前を指定します。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場
合は namespace を指定します。

3. マルチネットワークポリシーオブジェクトが更新されていることを確認します。

ここでは、以下のようになります。

<policy_name>

マルチネットワークポリシーの名前を指定します。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場合は
namespace を指定します。

13.4.3.4. マルチネットワークポリシーの表示

namespace のマルチネットワークポリシーを検査できます。

前提条件

$ oc apply -n <namespace> -f <policy_file>.yaml

$ oc edit multi-networkpolicy <policy_name> -n <namespace>

$ oc describe multi-networkpolicy <policy_name> -n <namespace>

第13章 複数ネットワーク

135

OpenShift CLI (oc) がインストールされている。

cluster-admin 権限を持つユーザーとしてクラスターにログインしていること。

マルチネットワークポリシーが存在する namespace で作業している。

手順

namespace のマルチネットワークポリシーを一覧表示します。

namespace で定義されたマルチネットワークポリシーオブジェクトを表示するには、以下
のコマンドを実行します。

オプション: 特定のマルチネットワークポリシーを検査するには、以下のコマンドを入力し
ます。

ここでは、以下のようになります。

<policy_name>

検査するマルチネットワークポリシーの名前を指定します。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場
合は namespace を指定します。

13.4.3.5. マルチネットワークポリシーの削除

namespace のマルチネットワークポリシーを削除できます。

前提条件

クラスターは、NetworkPolicy オブジェクトをサポートするクラスターネットワークプロバイ
ダーを使用する (例: OVN-Kubernetes ネットワークプロバイダー、または mode:
NetworkPolicy が設定された OpenShift SDN ネットワークプロバイダー)。このモードは
OpenShiftSDN のデフォルトです。

OpenShift CLI (oc) がインストールされている。

cluster-admin 権限を持つユーザーとしてクラスターにログインしていること。

マルチネットワークポリシーが存在する namespace で作業している。

手順

マルチネットワークポリシーオブジェクトを削除するには、以下のコマンドを入力します。

ここでは、以下のようになります。

<policy_name>

$ oc get multi-networkpolicy

$ oc describe multi-networkpolicy <policy_name> -n <namespace>

$ oc delete multi-networkpolicy <policy_name> -n <namespace>

OpenShift Container Platform 4.8 ネットワーク

136

1

マルチネットワークポリシーの名前を指定します。

<namespace>

オプション: オブジェクトが現在の namespace 以外の namespace に定義されている場合は
namespace を指定します。

出力例

13.4.4. 関連情報

ネットワークポリシーについて

複数ネットワークについて

macvlan ネットワークの設定

13.5. POD の追加のネットワークへの割り当て

クラスターユーザーとして、Pod を追加のネットワークに割り当てることができます。

13.5.1. Pod の追加ネットワークへの追加

Pod を追加のネットワークに追加できます。Pod は、デフォルトネットワークで通常のクラスター関連
のネットワークトラフィックを継続的に送信します。

Pod が作成されると、追加のネットワークが割り当てられます。ただし、Pod がすでに存在する場合
は、追加のネットワークをこれに割り当てることはできません。

Pod が追加ネットワークと同じ namespace にあること。

前提条件

OpenShift CLI (oc) をインストールしている。

クラスターにログインする。

手順

1. アノテーションを Pod オブジェクトに追加します。以下のアノテーション形式のいずれかのみ
を使用できます。

a. カスタマイズせずに追加ネットワークを割り当てるには、以下の形式でアノテーションを
追加します。<network> を、Pod に関連付ける追加ネットワークの名前に置き換えます。

複数の追加ネットワークを指定するには、各ネットワークをコンマで区切ります。コ
ンマの間にはスペースを入れないでください。同じ追加ネットワークを複数回指定し
た場合、Pod は複数のネットワークインターフェイスをそのネットワークに割り当て
ます。

multinetworkpolicy.k8s.cni.cncf.io/default-deny deleted

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1

第13章 複数ネットワーク

137

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#understanding-multiple-networks
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network

1

2

3

b. カスタマイズして追加のネットワークを割り当てるには、以下の形式でアノテーションを
追加します。

NetworkAttachmentDefinition オブジェクトによって定義される追加のネットワーク
の名前を指定します。

NetworkAttachmentDefinition オブジェクトが定義される namespace を指定しま
す。

オプション: 192.168.17.1 などのデフォルトルートのオーバーライドを指定します。

2. Pod を作成するには、以下のコマンドを入力します。<name> を Pod の名前に置き換えます。

3. オプション: アノテーションが Pod CR に存在することを確認するには、<name> を Pod の名
前に置き換えて、以下のコマンドを入力します。

以下の例では、example-pod Pod が追加ネットワークの net1 に割り当てられています。

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "<network>", 1
 "namespace": "<namespace>", 2
 "default-route": ["<default-route>"] 3
 }
]

$ oc create -f <name>.yaml

$ oc get pod <name> -o yaml

$ oc get pod example-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-bridge
 k8s.v1.cni.cncf.io/networks-status: |- 1
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [
 "10.128.2.14"
],
 "default": true,
 "dns": {}
 },{
 "name": "macvlan-bridge",
 "interface": "net1",
 "ips": [
 "20.2.2.100"
],

OpenShift Container Platform 4.8 ネットワーク

138

1

1

k8s.v1.cni.cncf.io/networks-status パラメーターは、オブジェクトの JSON 配列です。
各オブジェクトは、Pod に割り当てられる追加のネットワークのステータスについて説明
します。アノテーションの値はプレーンテキストの値として保存されます。

13.5.1.1. Pod 固有のアドレスおよびルーティングオプションの指定

Pod を追加のネットワークに割り当てる場合、特定の Pod でそのネットワークに関するその他のプロ
パティーを指定する必要がある場合があります。これにより、ルーティングの一部を変更することがで
き、静的 IP アドレスおよび MAC アドレスを指定できます。これを実行するには、JSON 形式のアノ
テーションを使用できます。

前提条件

Pod が追加ネットワークと同じ namespace にあること。

OpenShift CLI (oc) をインストールしている。

クラスターにログインすること。

手順

アドレスおよび/またはルーティングオプションを指定する間に Pod を追加のネットワークに追加する
には、以下の手順を実行します。

1. Pod リソース定義を編集します。既存の Pod リソースを編集する場合は、以下のコマンドを実
行してデフォルトエディターでその定義を編集します。<name> を、編集する Pod リソースの
名前に置き換えます。

2. Pod リソース定義で、k8s.v1.cni.cncf.io/networks パラメーターを Pod の metadata マッピン
グに追加します。k8s.v1.cni.cncf.io/networks は、追加のプロパティーを指定するだけでな
く、NetworkAttachmentDefinition カスタムリソース (CR) 名を参照するオブジェクト一覧の
JSON 文字列を受け入れます。

<network> を、以下の例にあるように JSON オブジェクトに置き換えます。一重引用符
が必要です。

3. 以下の例では、アノテーションで default-route パラメーターを使用して、デフォルトルートを
持つネットワーク割り当てを指定します。

 "mac": "22:2f:60:a5:f8:00",
 "dns": {}
 }]
 name: example-pod
 namespace: default
spec:
 ...
status:
 ...

$ oc edit pod <name>

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: '[<network>[,<network>,...]]' 1

第13章 複数ネットワーク

139

1

2

name キーは、Pod に関連付ける追加ネットワークの名前です。

default-route キーは、ルーティングテーブルに他のルーティングテーブルがない場合に、
ルーティングされるトラフィックに使用されるゲートウェイ値を指定します。複数の
default-route キーを指定すると、Pod がアクティブでなくなります。

デフォルトのルートにより、他のルートに指定されていないトラフィックがゲートウェイにルーティン
グされます。

重要

OpenShift Container Platform のデフォルトのネットワークインターフェイス以外のイン
ターフェイスへのデフォルトのルートを設定すると、Pod 間のトラフィックについて予
想されるトラフィックが別のインターフェイスでルーティングされる可能性がありま
す。

Pod のルーティングプロパティーを確認する場合、oc コマンドを Pod 内で ip コマンドを実行するた
めに使用できます。

注記

また、Pod の k8s.v1.cni.cncf.io/networks-status を参照して、JSON 形式の一覧のオ
ブジェクトで default-route キーの有無を確認し、デフォルトルートが割り当てられてい
る追加ネットワークを確認することができます。

Pod に静的 IP アドレスまたは MAC アドレスを設定するには、JSON 形式のアノテーションを使用でき
ます。これには、この機能をとくに許可するネットワークを作成する必要があります。これは、CNO
の rawCNIConfig で指定できます。

1. 以下のコマンドを実行して CNO CR を編集します。

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: '
 {
 "name": "net1"
 },
 {
 "name": "net2", 1
 "default-route": ["192.0.2.1"] 2
 }'
spec:
 containers:
 - name: example-pod
 command: ["/bin/bash", "-c", "sleep 2000000000000"]
 image: centos/tools

$ oc exec -it <pod_name> -- ip route

OpenShift Container Platform 4.8 ネットワーク

140

1

2

3

1

2

3

4

以下の YAML は、CNO の設定パラメーターについて説明しています。

Cluster Network Operator YAML の設定

作成している追加ネットワーク割り当ての名前を指定します。名前は指定された namespace 内で
一意である必要があります。

ネットワークの割り当てを作成する namespace を指定します。値を指定しない場合、default の
namespace が使用されます。

以下のテンプレートに基づく CNI プラグイン設定を JSON 形式で指定します。

以下のオブジェクトは、macvlan CNI プラグインを使用して静的 MAC アドレスと IP アドレスを使用す
るための設定パラメーターについて説明しています。

静的 IP および MAC アドレスを使用した macvlan CNI プラグイン JSON 設定オブジェクト

作成する追加のネットワーク割り当ての名前を指定します。名前は指定された namespace 内で一
意である必要があります。

CNI プラグイン設定の配列を指定します。1 つ目のオブジェクトは、macvlan プラグイン設定を指
定し、2 つ目のオブジェクトはチューニングプラグイン設定を指定します。

CNI プラグインのランタイム設定機能の静的 IP 機能を有効にするために要求が実行されるように
指定します。

macvlan プラグインが使用するインターフェイスを指定します。

$ oc edit networks.operator.openshift.io cluster

name: <name> 1
namespace: <namespace> 2
rawCNIConfig: '{ 3
 ...
}'
type: Raw

{
 "cniVersion": "0.3.1",
 "name": "<name>", 1
 "plugins": [{ 2
 "type": "macvlan",
 "capabilities": { "ips": true }, 3
 "master": "eth0", 4
 "mode": "bridge",
 "ipam": {
 "type": "static"
 }
 }, {
 "capabilities": { "mac": true }, 5
 "type": "tuning"
 }]
}

第13章 複数ネットワーク

141

5

1

2

3

CNI プラグインの静的 MAC アドレス機能を有効にするために要求が実行されるように指定しま
す。

上記のネットワーク割り当ては、特定の Pod に割り当てられる静的 IP アドレスと MAC アドレスを指
定するキーと共に、JSON 形式のアノテーションで参照できます。

以下を使用して Pod を編集します。

静的 IP および MAC アドレスを使用した macvlan CNI プラグイン JSON 設定オブジェクト

上記の rawCNIConfig を作成する際に、指定されるように <name> を使用します。

サブネットマスクを含む IP アドレスを指定します。

MAC アドレスを指定します。

注記

静的 IP アドレスおよび MAC アドレスを同時に使用することはできません。これらは個
別に使用することも、一緒に使用することもできます。

追加のネットワークを持つ Pod の IP アドレスと MAC プロパティーを検証するには、oc コマンドを使
用して Pod 内で ip コマンドを実行します。

13.6. 追加ネットワークからの POD の削除

クラスターユーザーとして、追加のネットワークから Pod を削除できます。

13.6.1. 追加ネットワークからの Pod の削除

Pod を削除するだけで、追加のネットワークから Pod を削除できます。

前提条件

$ oc edit pod <name>

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 {
 "name": "<name>", 1
 "ips": ["192.0.2.205/24"], 2
 "mac": "CA:FE:C0:FF:EE:00" 3
 }
]'

$ oc exec -it <pod_name> -- ip a

OpenShift Container Platform 4.8 ネットワーク

142

追加のネットワークが Pod に割り当てられている。

OpenShift CLI (oc) をインストールしている。

クラスターにログインする。

手順

Pod を削除するには、以下のコマンドを入力します。

<name> は Pod の名前です。

<namespace> は Pod が含まれる namespace です。

13.7. 追加ネットワークの編集

クラスター管理者は、既存の追加ネットワークの設定を変更することができます。

13.7.1. 追加ネットワーク割り当て定義の変更

クラスター管理者は、既存の追加ネットワークに変更を加えることができます。追加ネットワークに割
り当てられる既存の Pod は更新されません。

前提条件

クラスター用に追加のネットワークを設定している。

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

クラスターの追加ネットワークを編集するには、以下の手順を実行します。

1. 以下のコマンドを実行し、デフォルトのテキストエディターで Cluster Network Operator
(CNO) CR を編集します。

2. additionalNetworks コレクションで、追加ネットワークを変更内容で更新します。

3. 変更を保存し、テキストエディターを終了して、変更をコミットします。

4. オプション: 以下のコマンドを実行して、CNO が NetworkAttachmentDefinition オブジェクト
を更新していることを確認します。<network-name> を表示する追加ネットワークの名前に置
き換えます。CNO が NetworkAttachmentDefinition オブジェクトを更新して変更内容が反映
されるまでに遅延が生じる可能性があります。

たとえば、以下のコンソールの出力は net1 という名前の NetworkAttachmentDefinition オブ
ジェクトを表示します。

$ oc delete pod <name> -n <namespace>

$ oc edit networks.operator.openshift.io cluster

$ oc get network-attachment-definitions <network-name> -o yaml

第13章 複数ネットワーク

143

1

13.8. 追加ネットワークの削除

クラスター管理者は、追加のネットワーク割り当てを削除できます。

13.8.1. 追加ネットワーク割り当て定義の削除

クラスター管理者は、追加ネットワークを OpenShift Container Platform クラスターから削除できま
す。追加ネットワークは、割り当てられている Pod から削除されません。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

クラスターから追加ネットワークを削除するには、以下の手順を実行します。

1. 以下のコマンドを実行して、デフォルトのテキストエディターで Cluster Network Operator
(CNO) を編集します。

2. 削除しているネットワーク割り当て定義の additionalNetworks コレクションから設定を削除
し、CR を変更します。

additionalNetworks コレクションの追加ネットワーク割り当てのみの設定マッピングを
削除する場合、空のコレクションを指定する必要があります。

3. 変更を保存し、テキストエディターを終了して、変更をコミットします。

4. オプション: 以下のコマンドを実行して、追加ネットワーク CR が削除されていることを確認し
ます。

$ oc get network-attachment-definitions net1 -o go-template='{{printf "%s\n" .spec.config}}'
{ "cniVersion": "0.3.1", "type": "macvlan",
"master": "ens5",
"mode": "bridge",
"ipam": {"type":"static","routes":[{"dst":"0.0.0.0/0","gw":"10.128.2.1"}],"addresses":
[{"address":"10.128.2.100/23","gateway":"10.128.2.1"}],"dns":{"nameservers":
["172.30.0.10"],"domain":"us-west-2.compute.internal","search":["us-west-
2.compute.internal"]}} }

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks: [] 1

$ oc get network-attachment-definition --all-namespaces

OpenShift Container Platform 4.8 ネットワーク

144

13.9. VRF へのセカンダリーネットワークの割り当て

重要

CNI VRF プラグインはテクノロジープレビュー機能としてのみご利用いただけます。テ
クノロジープレビュー機能は Red Hat の実稼働環境でのサービスレベルアグリーメント
(SLA) ではサポートされていないため、Red Hat では実稼働環境での使用を推奨してい
ません。Red Hat は実稼働環境でこれらを使用することを推奨していません。テクノロ
ジープレビューの機能は、最新の製品機能をいち早く提供して、開発段階で機能のテス
トを行いフィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲についての詳細
は、https://access.redhat.com/ja/support/offerings/techpreview/ を参照してくださ
い。

13.9.1. VRF へのセカンダリーネットワークの割り当て

クラスター管理者は、CNI VRF プラグインを使用して、VRF ドメインの追加のネットワークを設定で
きます。このプラグインにより作成される仮想ネットワークは、指定する物理インターフェイスに関連
付けられます。

注記

VRF を使用するアプリケーションを特定のデバイスにバインドする必要があります。一
般的な使用方法として、ソケットに SO_BINDTODEVICE オプションを使用できま
す。SO_BINDTODEVICE は、渡されるインターフェイス名で指定されているデバイス
にソケットをバインドします (例: eth1)。SO_BINDTODEVICE を使用するには、アプリ
ケーションに CAP_NET_RAW 機能がある必要があります。

13.9.1.1. CNI VRF プラグインを使用した追加のネットワーク割り当ての作成

Cluster Network Operator (CNO) は追加ネットワークの定義を管理します。作成する追加ネットワーク
を指定する場合、CNO は NetworkAttachmentDefinition カスタムリソース (CR) を自動的に作成しま
す。

注記

Cluster Network Operator が管理する NetworkAttachmentDefinition CR は編集しない
でください。これを実行すると、追加ネットワークのネットワークトラフィックが中断
する可能性があります。

CNI VRF プラグインで追加のネットワーク割り当てを作成するには、以下の手順を実行します。

前提条件

OpenShift Container Platform CLI (oc) をインストールします。

cluster-admin 権限を持つユーザーとして OpenShift クラスターにログインします。

手順

1. 以下のサンプル CR のように、追加のネットワーク割り当て用の Network カスタムリソース

第13章 複数ネットワーク

145

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

1. 以下のサンプル CR のように、追加のネットワーク割り当て用の Network カスタムリソース
(CR) を作成し、追加ネットワークの rawCNIConfig 設定を挿入します。YAML を additional-
network-attachment.yaml ファイルとして保存します。

plugins は一覧である必要があります。一覧の最初の項目は、VRF ネットワークのベース
となるセカンダリーネットワークである必要があります。一覧の 2 つ目の項目は、VRF プ
ラグイン設定です。

type は vrf に設定する必要があります。

vrfname は、インターフェイスが割り当てられた VRF の名前です。これが Pod に存在し
ない場合は作成されます。

オプション。table はルーティングテーブル ID です。デフォルトで、 tableid パラメー
ターが使用されます。これが指定されていない場合、CNI は空のルーティングテーブル ID
を VRF に割り当てます。

注記

VRF は、リソースが netdevice タイプの場合にのみ正常に機能します。

2. Network リソースを作成します。

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
 spec:
 additionalNetworks:
 - name: test-network-1
 namespace: additional-network-1
 type: Raw
 rawCNIConfig: '{
 "cniVersion": "0.3.1",
 "name": "macvlan-vrf",
 "plugins": [1
 {
 "type": "macvlan", 2
 "master": "eth1",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.23/24"
 }
]
 }
 },
 {
 "type": "vrf",
 "vrfname": "example-vrf-name", 3
 "table": 1001 4
 }]
 }'

OpenShift Container Platform 4.8 ネットワーク

146

3. 以下のコマンドを実行して、CNO が NetworkAttachmentDefinition CR を作成していること
を確認します。<namespace> を、ネットワーク割り当ての設定時に指定した namespace に置
き換えます (例: additional-network-1)。

出力例

注記

CNO が CR を作成するまでに遅延が生じる可能性があります。

追加の VRF ネットワーク割り当てが正常であることの確認

VRF CNI が正しく設定され、追加のネットワーク割り当てが接続されていることを確認するには、以下
を実行します。

1. VRF CNI を使用するネットワークを作成します。

2. ネットワークを Pod に割り当てます。

3. Pod のネットワーク割り当てが VRF の追加ネットワークに接続されていることを確認します。
Pod にリモートシェルを実行し、以下のコマンドを実行します。

出力例

4. VRF インターフェイスがセカンダリーインターフェイスのマスターであることを確認します。

出力例

$ oc create -f additional-network-attachment.yaml

$ oc get network-attachment-definitions -n <namespace>

NAME AGE
additional-network-1 14m

$ ip vrf show

Name Table

red 10

$ ip link

5: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master red
state UP mode

第13章 複数ネットワーク

147

第14章 ハードウェアネットワーク

14.1. SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) ハードウェアネット
ワークについて

Single Root I/O Virtualization (SR-IOV) 仕様は、単一デバイスを複数の Pod で共有できる PCI デバイス
割り当てタイプの標準です。

SR-IOV を使用すると、準拠したネットワークデバイス (ホストノードで物理機能 (PF) として認識され
る) を複数の Virtual Function (VF) にセグメント化することができます。VF は他のネットワークデバイ
スと同様に使用されます。デバイスの SR-IOV ネットワークデバイスドライバーは、VF がコンテナー
で公開される方法を判別します。

netdevice ドライバー: コンテナーの netns 内の通常のカーネルネットワークデバイス

vfio-pci ドライバー: コンテナーにマウントされるキャラクターデバイス

SR-IOV ネットワークデバイスは、ベアメタルまたは Red Hat Open Stack Platform (RHOSP) インフラ
上にインストールされた OpenShift Container Platform クラスターにネットワークを追加して、高帯域
または低遅延を確保する必要のあるアプリケーションに使用できます。

次のコマンドを使用して、ノードで SR-IOV を有効にできます。

14.1.1. SR-IOV ネットワークデバイスを管理するコンポーネント

SR-IOV Network Operator は SR-IOV スタックのコンポーネントを作成し、管理します。以下の機能を
実行します。

SR-IOV ネットワークデバイスの検出および管理のオーケストレーション

SR-IOV Container Network Interface (CNI) の NetworkAttachmentDefinition カスタムリソー
スの生成

SR-IOV ネットワークデバイスプラグインの設定の作成および更新

ノード固有の SriovNetworkNodeState カスタムリソースの作成

各 SriovNetworkNodeState カスタムリソースの spec.interfaces フィールドの更新

Operator は以下のコンポーネントをプロビジョニングします。

SR-IOV ネットワーク設定デーモン

SR-IOV Network Operator の起動時にワーカーノードにデプロイされるデーモンセット。デーモン
は、クラスターで SR-IOV ネットワークデバイスを検出し、初期化します。

SR-IOV ネットワーク Operator Webhook

Operator カスタムリソースを検証し、未設定フィールドに適切なデフォルト値を設定する動的受付
コントローラー Webhook。

SR-IOV Network Resources Injector

SR-IOV VF などのカスタムネットワークリソースの要求および制限のある Kubernetes Pod 仕様の
パッチを適用するための機能を提供する動的受付コントローラー Webhook。SR-IOV ネットワーク
リソースインジェクターは、 Pod 内の最初のコンテナーのみに resource フィールドを自動的に追

$ oc label node <node_name> feature.node.kubernetes.io/network-sriov.capable="true"

OpenShift Container Platform 4.8 ネットワーク

148

加します。

SR-IOV ネットワークデバイスプラグイン

SR-IOV ネットワーク Virtual Function (VF) リソースの検出、公開、割り当てを実行するデバイスプ
ラグイン。デバイスプラグインは、とりわけ物理デバイスでの制限されたリソースの使用を有効に
するために Kubernetes で使用されます。デバイスプラグインは Kubernetes スケジューラーにリ
ソースの可用性を認識させるため、スケジューラーはリソースが十分にあるノードで Pod をスケ
ジュールできます。

SR-IOV CNI プラグイン

SR-IOV ネットワークデバイスプラグインから割り当てられる VF インターフェイスを直接 Pod に
割り当てる CNI プラグイン。

SR-IOV InfiniBand CNI プラグイン

SR-IOV ネットワークデバイスプラグインから割り当てられる InfiniBand (IB) VF インターフェイス
を直接 Pod に割り当てる CNI プラグイン。

注記

SR-IOV Network Resources Injector および SR-IOV Network Operator Webhook は、デ
フォルトで有効にされ、default の SriovOperatorConfig CR を編集して無効にできま
す。

14.1.1.1. サポートされるプラットフォーム

SR-IOV Network Operator は、以下のプラットフォームに対応しています。

ベアメタル

Red Hat OpenStack Platform (RHOSP)

14.1.1.2. サポートされるデバイス

以下のネットワークインターフェイスコントローラーは、OpenShift Container Platform でサポートさ
れています。

表14.1 サポート対象のネットワークインターフェイスコントローラー

製造元 モデル ベンダー ID デバイス ID

Intel X710 8086 1572

Intel XL710 8086 1583

Intel XXV710 8086 158b

Intel E810-CQDA2 8086 1592

Intel E810-2CQDA2 8086 1592

Intel E810-XXVDA2 8086 159b

Intel E810-XXVDA4 8086 1593

第14章 ハードウェアネットワーク

149

Mellanox MT27700 Family [ConnectX‑4] 15b3 1013

Mellanox MT27710 Family [ConnectX‑4 Lx] 15b3 1015

Mellanox MT27800 Family [ConnectX‑5] 15b3 1017

Mellanox MT28880 Family [ConnectX‑5 Ex] 15b3 1019

Mellanox MT28908 Family [ConnectX‑6] 15b3 101b

製造元 モデル ベンダー ID デバイス ID

注記

サポートされているカードの最新リストおよび利用可能な互換性のある OpenShift
Container Platform バージョンについては、Openshift Single Root I/O Virtualization
(SR-IOV) and PTP hardware networks Support Matrix を参照してください。

14.1.1.3. SR-IOV ネットワークデバイスの自動検出

SR-IOV Network Operator は、クラスターでワーカーノード上の SR-IOV 対応ネットワークデバイスを
検索します。Operator は、互換性のある SR-IOV ネットワークデバイスを提供する各ワーカーノード
の SriovNetworkNodeState カスタムリソース (CR) を作成し、更新します。

CR にはワーカーノードと同じ名前が割り当てられます。status.interfaces 一覧は、ノード上のネット
ワークデバイスについての情報を提供します。

重要

SriovNetworkNodeState オブジェクトは変更しないでください。Operator はこれらの
リソースを自動的に作成し、管理します。

14.1.1.3.1. SriovNetworkNodeState オブジェクトの例

以下の YAML は、SR-IOV Network Operator によって作成される SriovNetworkNodeState オブジェク
トの例です。

SriovNetworkNodeState オブジェクト

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodeState
metadata:
 name: node-25 1
 namespace: openshift-sriov-network-operator
 ownerReferences:
 - apiVersion: sriovnetwork.openshift.io/v1
 blockOwnerDeletion: true
 controller: true
 kind: SriovNetworkNodePolicy
 name: default
spec:

OpenShift Container Platform 4.8 ネットワーク

150

https://access.redhat.com/articles/6954499

1

2

name フィールドの値はワーカーノードの名前と同じです。

interfaces スタンザには、ワーカーノード上の Operator によって検出されるすべての SR-IOV デ
バイスの一覧が含まれます。

14.1.1.4. Pod での Virtual Function (VF) の使用例

SR-IOV VF が割り当てられている Pod で、Remote Direct Memory Access (RDMA) または Data Plane
Development Kit (DPDK) アプリケーションを実行できます。

以下の例では、RDMA モードで Virtual Function (VF) を使用する Pod を示しています。

RDMA モードを使用する Pod 仕様

 dpConfigVersion: "39824"
status:
 interfaces: 2
 - deviceID: "1017"
 driver: mlx5_core
 mtu: 1500
 name: ens785f0
 pciAddress: "0000:18:00.0"
 totalvfs: 8
 vendor: 15b3
 - deviceID: "1017"
 driver: mlx5_core
 mtu: 1500
 name: ens785f1
 pciAddress: "0000:18:00.1"
 totalvfs: 8
 vendor: 15b3
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens817f0
 pciAddress: 0000:81:00.0
 totalvfs: 64
 vendor: "8086"
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens817f1
 pciAddress: 0000:81:00.1
 totalvfs: 64
 vendor: "8086"
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens803f0
 pciAddress: 0000:86:00.0
 totalvfs: 64
 vendor: "8086"
 syncStatus: Succeeded

第14章 ハードウェアネットワーク

151

以下の例は、DPDK モードの VF のある Pod を示しています。

DPDK モードを使用する Pod 仕様

14.1.1.5. コンテナーアプリケーションで使用する DPDK ライブラリー

apiVersion: v1
kind: Pod
metadata:
 name: rdma-app
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-rdma-mlnx
spec:
 containers:
 - name: testpmd
 image: <RDMA_image>
 imagePullPolicy: IfNotPresent
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"]
 command: ["sleep", "infinity"]

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-dpdk-net
spec:
 containers:
 - name: testpmd
 image: <DPDK_image>
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"]
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 resources:
 limits:
 memory: "1Gi"
 cpu: "2"
 hugepages-1Gi: "4Gi"
 requests:
 memory: "1Gi"
 cpu: "2"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

OpenShift Container Platform 4.8 ネットワーク

152

オプションライブラリー の app-netutil は、その Pod 内で実行されるコンテナーから Pod についての
ネットワーク情報を収集するための複数の API メソッドを提供します。

このライブラリーは、DPDK (Data Plane Development Kit) モードの SR-IOV Virtual Function (VF) のコ
ンテナーへの統合を支援します。このライブラリーは Golang API と C API の両方を提供します。

現時点で 3 つの API メソッドが実装されています。

GetCPUInfo()

この機能は、コンテナーで利用可能な CPU を判別し、一覧を返します。

GetHugepages()

この機能は、各コンテナーの Pod 仕様で要求される huge page メモリーの量を判別し、値を返しま
す。

GetInterfaces()

この機能は、コンテナーのインターフェイスセットを判別し、インターフェイスタイプとタイプ固
有のデータと共に一覧を返します。戻り値には、インターフェイスのタイプと、各インターフェイ
スのタイプ固有のデータが含まれます。

ライブラリーのリポジトリーには、コンテナーイメージ dpdk-app-centos をビルドするためのサンプ
ル Dockerfile が含まれます。コンテナーイメージは、Pod 仕様の環境変数に応じて、l2fwd、l3wd また
は testpmd の DPDK サンプルアプリケーションのいずれかを実行できます。コンテナーイメージ
は、app-netutil ライブラリーをコンテナーイメージ自体に統合する例を提供します。ライブラリーを
init コンテナーに統合することもできます。init コンテナーは必要なデータを収集し、データを既存の
DPDK ワークロードに渡すことができます。

14.1.1.6. Downward API の Huge Page リソースの挿入

Pod 仕様に Huge Page のリソース要求または制限が含まれる場合、Network Resources Injector は
Downward API フィールドを Pod 仕様に自動的に追加し、Huge Page 情報をコンテナーに提供しま
す。

Network Resources Injector は、podnetinfo という名前のボリュームを追加し、Pod の各コンテナー用
に /etc/podnetinfo にマウントされます。ボリュームは Downward API を使用し、Huge Page の要求お
よび制限についてのファイルを追加します。ファイルの命名規則は以下のとおりです。

/etc/podnetinfo/hugepages_1G_request_<container-name>

/etc/podnetinfo/hugepages_1G_limit_<container-name>

/etc/podnetinfo/hugepages_2M_request_<container-name>

/etc/podnetinfo/hugepages_2M_limit_<container-name>

直前の一覧で指定されているパスは、app-netutil ライブラリーと互換性があります。デフォルトで、
ライブラリーは、/etc/podnetinfo ディレクトリーのリソース情報を検索するように設定されます。
Downward API パス項目を手動で指定する選択をする場合、app-netutil ライブラリーは前述の一覧のパ
スに加えて以下のパスを検索します。

/etc/podnetinfo/hugepages_request

/etc/podnetinfo/hugepages_limit

/etc/podnetinfo/hugepages_1G_request

/etc/podnetinfo/hugepages_1G_limit

第14章 ハードウェアネットワーク

153

https://github.com/openshift/app-netutil

/etc/podnetinfo/hugepages_2M_request

/etc/podnetinfo/hugepages_2M_limit

Network Resources Injector が作成できるパスと同様に、前述の一覧のパスの末尾にはオプションで
_<container-name> 接尾辞を付けることができます。

14.1.2. 次のステップ

SR-IOV Network Operator のインストール

オプション: SR-IOV Network Operator の設定

SR-IOV ネットワークデバイスの設定

OpenShift Virtualization を使用する場合: 仮想マシンの SR-IOV ネットワークデバイスの設定

SR-IOV ネットワーク割り当ての設定

Pod の SR-IOV の追加ネットワークへの追加

14.2. SR-IOV NETWORK OPERATOR のインストール

Single Root I/O Virtualization (SR-IOV) ネットワーク Operator をクラスターにインストールし、SR-
IOV ネットワークデバイスとネットワークの割り当てを管理できます。

14.2.1. SR-IOV Network Operator のインストール

クラスター管理者は、OpenShift Container Platform CLI または Web コンソールを使用して SR-IOV
Network Operator をインストールできます。

14.2.1.1. CLI: SR-IOV Network Operator のインストール

クラスター管理者は、CLI を使用して Operator をインストールできます。

前提条件

SR-IOV に対応するハードウェアを持つノードでベアメタルハードウェアにインストールされ
たクラスター。

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つアカウント。

手順

1. openshift-sriov-network-operator namespace を作成するには、以下のコマンドを入力しま
す。

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sriov-network-operator

OpenShift Container Platform 4.8 ネットワーク

154

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#installing-sriov-operator
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-sriov-operator
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-sriov-device
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/openshift_virtualization/#virt-configuring-sriov-device-for-vms
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-sriov-net-attach
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#add-pod

2. OperatorGroup CR を作成するには、以下のコマンドを実行します。

3. SR-IOV Network Operator にサブスクライブします。

a. 以下のコマンドを実行して OpenShift Container Platform のメジャーおよびマイナーバー
ジョンを取得します。これは、次の手順の channel の値に必要です。

b. SR-IOV Network Operator の Subscription CR を作成するには、以下のコマンドを入力しま
す。

4. Operator がインストールされていることを確認するには、以下のコマンドを入力します。

出力例

14.2.1.2. Web コンソール: SR-IOV Network Operator のインストール

 annotations:
 workload.openshift.io/allowed: management
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sriov-network-operators
 namespace: openshift-sriov-network-operator
spec:
 targetNamespaces:
 - openshift-sriov-network-operator
EOF

$ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
 grep -o '[0-9]*[.][0-9]*' | head -1)

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sriov-network-operator-subscription
 namespace: openshift-sriov-network-operator
spec:
 channel: "${OC_VERSION}"
 name: sriov-network-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-sriov-network-operator \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name Phase
sriov-network-operator.4.4.0-202006160135 Succeeded

第14章 ハードウェアネットワーク

155

クラスター管理者は、Web コンソールを使用して Operator をインストールできます。

注記

CLI を使用して Operator グループを作成する必要があります。

前提条件

SR-IOV に対応するハードウェアを持つノードでベアメタルハードウェアにインストールされ
たクラスター。

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つアカウント。

手順

1. SR-IOV Network Operator の namespace を作成します。

a. OpenShift Container Platform Web コンソールで、Administration → Namespaces をク
リックします。

b. Create Namespace をクリックします。

c. Name フィールドに openshift-sriov-network-operator を入力し、Create をクリックしま
す。

2. SR-IOV Network Operator をインストールします。

a. OpenShift Container Platform Web コンソールで、Operators → OperatorHub をクリック
します。

b. 利用可能な Operator の一覧から SR-IOV Network Operator を選択してから Install をク
リックします。

c. Install Operator ページの A specific namespace on the cluster の下で、openshift-sriov-
network-operator を選択します。

d. Install をクリックします。

3. SR-IOV Network Operator が正常にインストールされていることを確認します。

a. Operators → Installed Operators ページに移動します。

b. Status が InstallSucceeded の状態で、SR-IOV Network Operator が openshift-sriov-
network-operator プロジェクトに一覧表示されていることを確認します。

注記

インストール時に、 Operator は Failed ステータスを表示する可能性があり
ます。インストールが後に InstallSucceeded メッセージを出して正常に実
行される場合は、Failed メッセージを無視できます。

Operator がインストール済みとして表示されない場合に、さらにトラブルシューティング
を実行します。

OpenShift Container Platform 4.8 ネットワーク

156

Operator Subscriptions および Install Plans タブで、Status の下の失敗またはエラー
の有無を確認します。

Workloads → Pods ページに移動し、openshift-sriov-network-operator プロジェクト
で Pod のログを確認します。

14.2.2. 次のステップ

オプション: SR-IOV Network Operator の設定

14.3. SR-IOV NETWORK OPERATOR の設定

Single Root I/O Virtualization (SR-IOV) ネットワーク Operator は、クラスターで SR-IOV ネットワー
クデバイスおよびネットワーク割り当てを管理します。

14.3.1. SR-IOV Network Operator の設定

重要

通常、SR-IOV Network Operator 設定を変更する必要はありません。デフォルト設定
は、ほとんどのユースケースで推奨されます。Operator のデフォルト動作がユースケー
スと互換性がない場合にのみ、関連する設定を変更する手順を実行します。

SR-IOV Network Operator は SriovOperatorConfig.sriovnetwork.openshift.io
CustomResourceDefinition リソースを追加します。Operator は、openshift-sriov-network-operator
namespace に default という名前の SriovOperatorConfig カスタムリソース (CR) を自動的に作成しま
す。

注記

default CR には、クラスターの SR-IOV Network Operator 設定が含まれます。Operator
設定を変更するには、この CR を変更する必要があります。

SriovOperatorConfig オブジェクトは、Operator を設定するための複数のフィールドを提供します。

enableInjector を使用すると、プロジェクト管理者は Network Resources Injector デーモン
セットを有効または無効にすることができます。

enableOperatorWebhook を使用すると、プロジェクト管理者は Operator Admission
Controller webhook デーモンセットを有効または無効にすることができます。

configDaemonNodeSelector を使用すると、プロジェクト管理者は選択したノードで SR-IOV
Network Config Daemon をスケジュールできます。

14.3.1.1. Network Resources Injector について

Network Resources Injector は Kubernetes Dynamic Admission Controller アプリケーションです。これ
は、以下の機能を提供します。

SR-IOV リソース名を SR-IOV ネットワーク割り当て定義アノテーションに従って追加するた
めの、Pod 仕様でのリソース要求および制限の変更。

Pod のアノテーション、ラベル、および Huge Page の要求および制限を公開するための

第14章 ハードウェアネットワーク

157

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-sriov-operator

Pod のアノテーション、ラベル、および Huge Page の要求および制限を公開するための
Downward API ボリュームでの Pod 仕様の変更。Pod で実行されるコンテナーは、公開される
情報に /etc/podnetinfo パスでファイルとしてアクセスできます。

デフォルトで、Network Resources Injector は SR-IOV Network Operator によって有効にされ、すべて
のコントロールプレーンノード (別名マスターノード) でデーモンセットとして実行されます。以下は、
3 つのコントロールプレーンノードを持つクラスターで実行される Network Resources Injector Pod の
例です。

出力例

14.3.1.2. SR-IOV Network Operator Admission Controller Webhook について

SR-IOV Network Operator Admission Controller Webbook は Kubernetes Dynamic Admission Controller
アプリケーションです。これは、以下の機能を提供します。

作成時または更新時の SriovNetworkNodePolicy CR の検証

CR の作成または更新時の priority および deviceType フィールドのデフォルト値の設定による
SriovNetworkNodePolicy CR の変更

デフォルトで、SR-IOV Network Operator Admission Controller Webhook は Operator によって有効に
され、すべてのコントロールプレーンノードでデーモンセットとして実行されます。以下は、3 つのコ
ントロールプレーンノードを持つクラスターで実行される Operator Admission Controller Webhook
Pod の例です。

出力例

14.3.1.3. カスタムノードセレクターについて

SR-IOV Network Config デーモンは、クラスターノード上の SR-IOV ネットワークデバイスを検出し、
設定します。デフォルトで、これはクラスター内のすべての worker ノードにデプロイされます。ノー
ドラベルを使用して、SR-IOV Network Config デーモンが実行するノードを指定できます。

14.3.1.4. Network Resources Injector の無効化または有効化

デフォルトで有効にされている Network Resources Injector を無効にするか、または有効にするには、
以下の手順を実行します。

前提条件

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
network-resources-injector-5cz5p 1/1 Running 0 10m
network-resources-injector-dwqpx 1/1 Running 0 10m
network-resources-injector-lktz5 1/1 Running 0 10m

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
operator-webhook-9jkw6 1/1 Running 0 16m
operator-webhook-kbr5p 1/1 Running 0 16m
operator-webhook-rpfrl 1/1 Running 0 16m

OpenShift Container Platform 4.8 ネットワーク

158

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインしている。

SR-IOV Network Operator がインストールされていること。

手順

enableInjector フィールドを設定します。<value> を false に置き換えて機能を無効にする
か、または true に置き換えて機能を有効にします。

ヒント

または、以下の YAML を適用して Operator を更新することもできます。

14.3.1.5. SR-IOV Network Operator Admission Controller Webhook の無効化または有効化

デフォルトで有効にされている なっている受付コントローラー Webhook を無効にするか、または有効
にするには、以下の手順を実行します。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインしている。

SR-IOV Network Operator がインストールされていること。

手順

enableOperatorWebhook フィールドを設定します。<value> を false に置き換えて機能を無
効するか、true に置き換えて機能を有効にします。

ヒント

$ oc patch sriovoperatorconfig default \
 --type=merge -n openshift-sriov-network-operator \
 --patch '{ "spec": { "enableInjector": <value> } }'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 enableInjector: <value>

$ oc patch sriovoperatorconfig default --type=merge \
 -n openshift-sriov-network-operator \
 --patch '{ "spec": { "enableOperatorWebhook": <value> } }'

第14章 ハードウェアネットワーク

159

ヒント

または、以下の YAML を適用して Operator を更新することもできます。

14.3.1.6. SRIOV Network Config Daemon のカスタム NodeSelector の設定

SR-IOV Network Config デーモンは、クラスターノード上の SR-IOV ネットワークデバイスを検出し、
設定します。デフォルトで、これはクラスター内のすべての worker ノードにデプロイされます。ノー
ドラベルを使用して、SR-IOV Network Config デーモンが実行するノードを指定できます。

SR-IOV Network Config デーモンがデプロイされるノードを指定するには、以下の手順を実行します。

重要

configDaemonNodeSelector フィールドを更新する際に、SR-IOV Network Config デー
モンがそれぞれの選択されたノードに再作成されます。デーモンが再作成されている
間、クラスターのユーザーは新規の SR-IOV Network ノードポリシーを適用したり、新
規の SR-IOV Pod を作成したりできません。

手順

Operator のノードセレクターを更新するには、以下のコマンドを入力します。

以下の例のように、<node_label> を適用するラベルに置き換えます: "node-
role.kubernetes.io/worker": ""

ヒント

または、以下の YAML を適用して Operator を更新することもできます。

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 enableOperatorWebhook: <value>

$ oc patch sriovoperatorconfig default --type=json \
 -n openshift-sriov-network-operator \
 --patch '[{
 "op": "replace",
 "path": "/spec/configDaemonNodeSelector",
 "value": {<node_label>}
 }]'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 configDaemonNodeSelector:
 <node_label>

OpenShift Container Platform 4.8 ネットワーク

160

1

2

3

4

5

6

14.3.2. 次のステップ

SR-IOV ネットワークデバイスの設定

14.4. SR-IOV ネットワークデバイスの設定

クラスターで Single Root I/O Virtualization (SR-IOV) デバイスを設定できます。

14.4.1. SR-IOV ネットワークノード設定オブジェクト

SR-IOV ネットワークノードポリシーを作成して、ノードの SR-IOV ネットワークデバイス設定を指定
します。ポリシーの API オブジェクトは sriovnetwork.openshift.io API グループの一部です。

以下の YAML は SR-IOV ネットワークノードポリシーについて説明しています。

カスタムリソースオブジェクトの名前。

SR-IOV Network Operator がインストールされている namespace を指定します。

SR-IOV ネットワークデバイスプラグインのリソース名。1 つのリソース名に複数の SR-IOV ネッ
トワークポリシーを作成できます。

ノードセレクターは設定するノードを指定します。選択したノード上の SR-IOV ネットワークデバ
イスのみが設定されます。SR-IOV Container Network Interface (CNI) プラグインおよびデバイス
プラグインは、選択したノードにのみデプロイされます。

オプション: 優先度は 0 から 99 までの整数値で指定されます。値が小さいほど優先度が高くなり
ます。たとえば、10 の優先度は 99 よりも高くなります。デフォルト値は 99 です。

オプション: Virtual Function (VF) の最大転送単位 (MTU)。MTU の最大値は、複数の異なるネット
ワークインターフェイスコントローラー (NIC) に応じて異なります。

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true" 4
 priority: <priority> 5
 mtu: <mtu> 6
 numVfs: <num> 7
 nicSelector: 8
 vendor: "<vendor_code>" 9
 deviceID: "<device_id>" 10
 pfNames: ["<pf_name>", ...] 11
 rootDevices: ["<pci_bus_id>", ...] 12
 netFilter: "<filter_string>" 13
 deviceType: <device_type> 14
 isRdma: false 15
 linkType: <link_type> 16

第14章 ハードウェアネットワーク

161

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-sriov-device

7

8

9

10

11

12

13

14

15

16

SR-IOV 物理ネットワークデバイス用に作成する仮想機能 (VF) の数。Intel ネットワークインター
フェイスコントローラー (NIC) の場合、VF の数はデバイスがサポートする VF の合計よりも大き

NIC セレクターは、Operator が設定するデバイスを特定します。すべてのパラメーターの値を指
定する必要はありません。意図せずにデバイスを選択しないように、ネットワークデバイスを極め
て正確に特定することが推奨されます。

rootDevices を指定する場合、vendor、 deviceID、または pfName の値も指定する必要がありま
す。pfNames および rootDevices の両方を同時に指定する場合、それらが同一のデバイスを参照
していることを確認します。netFilter の値を指定する場合、ネットワーク ID は一意の ID である
ためにその他のパラメーターを指定する必要はありません。

オプション: SR-IOV ネットワークデバイスのベンダーの 16 進数コード。許可される値は 8086 お
よび 15b3 のみになります。

オプション: SR-IOV ネットワークデバイスのデバイスの 16 進数コード。たとえば、101b は
Mellanox ConnectX-6 デバイスのデバイス ID です。

オプション: 1 つ以上のデバイスの物理機能 (PF) 名の配列。

オプション: デバイスの PF 用の 1 つ以上の PCI バスアドレスの配列。以下の形式でアドレスを指
定します: 0000:02:00.1

オプション: プラットフォーム固有のネットワークフィルター。サポートされるプラットフォーム
は Red Hat OpenStack Platform (RHOSP) のみです。許可される値
は、openstack/NetworkID:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx の形式を使用しま
す。xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
を、/var/config/openstack/latest/network_data.json メタデータファイルの値に置き換えます。

オプション: Virtual Function (VF) のドライバータイプ。許可される値は netdevice および vfio-
pci のみです。デフォルト値は netdevice です。

Mellanox NIC をベアメタルノードの Data Plane Development Kit (DPDK) モードで機能させるに
は、netdevice ドライバータイプを使用し、isRdma を true に設定します。

オプション: Remote Direct Memory Access (RDMA) モードを有効にするかどうか。デフォルト値
は false です。

isRDMA パラメーターが true に設定される場合、引き続き RDMA 対応の VF を通常のネットワー
クデバイスとして使用できます。デバイスはどちらのモードでも使用できます。

オプション: VF のリンクタイプ。イーサネットのデフォルト値は eth です。InfiniBand の場合は、
この値を ib に変更します。

linkType が ib に設定されている場合、SR-IOV Network Operator Webhook によって isRdma は
true に自動的に設定されます。linkType が ib に設定されている場合、deviceType は vfio-pci に
設定できません。

SriovNetworkNodePolicy の linkType を eth に設定しないでください。デバイスプラグインに
よって報告される使用可能なデバイスの数が正しくなくなる可能性があります。

14.4.1.1. SR-IOV ネットワークノードの設定例

以下の例では、InfiniBand デバイスの設定について説明します。

InfiniBand デバイスの設定例

OpenShift Container Platform 4.8 ネットワーク

162

1

2

以下の例では、RHOSP 仮想マシンの SR-IOV ネットワークデバイスの設定について説明します。

仮想マシンの SR-IOV デバイスの設定例

仮想マシンのノードネットワークポリシーを設定する際に、numVfs フィールドは常に 1 に設定さ
れます。

netFilter フィールドは、仮想マシンが RHOSP にデプロイされる際にネットワーク ID を参照する
必要があります。netFilter の有効な値は、SriovNetworkNodeState オブジェクトから選択できま
す。

14.4.1.2. SR-IOV デバイスの Virtual Function (VF) パーティション設定

Virtual Function (VF) を同じ物理機能 (PF) から複数のリソースプールに分割する必要がある場合があり
ます。たとえば、VF の一部をデフォルトドライバーで読み込み、残りの VF を vfio-pci ドライバーで
読み込む必要がある場合などです。このようなデプロイメントでは、SriovNetworkNodePolicy カスタ
ムリソース (CR) の pfNames セレクターは、以下の形式を使用してプールの VF の範囲を指定するため
に使用できます: <pfname>#<first_vf>-<last_vf>

たとえば、以下の YAML は、VF が 2 から 7 まである netpf0 という名前のインターフェイスのセレク
ターを示します。

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-ib-net-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: ibnic1
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 4
 nicSelector:
 vendor: "15b3"
 deviceID: "101b"
 rootDevices:
 - "0000:19:00.0"
 linkType: ib
 isRdma: true

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-sriov-net-openstack-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: sriovnic1
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 1 1
 nicSelector:
 vendor: "15b3"
 deviceID: "101b"
 netFilter: "openstack/NetworkID:ea24bd04-8674-4f69-b0ee-fa0b3bd20509" 2

第14章 ハードウェアネットワーク

163

netpf0 は PF インターフェイス名です。

2 は、範囲に含まれる最初の VF インデックス (0 ベース) です。

7 は、範囲に含まれる最後の VF インデックス (0 ベース) です。

以下の要件を満たす場合、異なるポリシー CR を使用して同じ PF から VF を選択できます。

numVfs の値は、同じ PF を選択するポリシーで同一である必要があります。

VF インデックスは、0 から <numVfs>-1 の範囲にある必要があります。たとえば、numVfs が
8 に設定されているポリシーがある場合、<first_vf> の値は 0 よりも小さくすることはできず、
<last_vf> は 7 よりも大きくすることはできません。

異なるポリシーの VF の範囲は重複しないようにしてください。

<first_vf> は <last_vf> よりも大きくすることはできません。

以下の例は、SR-IOV デバイスの NIC パーティション設定を示しています。

ポリシー policy-net-1 は、デフォルトの VF ドライバーと共に PF netpf0 の VF 0 が含まれるリソース
プール net-1 を定義します。ポリシー policy-net-1-dpdk は、vfio VF ドライバーと共に PF netpf0 の
VF 8 から 15 までが含まれるリソースプール net-1-dpdk を定義します。

ポリシー policy-net-1:

ポリシー policy-net-1-dpdk:

pfNames: ["netpf0#2-7"]

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-net-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 16
 nicSelector:
 pfNames: ["netpf0#0-0"]
 deviceType: netdevice

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-net-1-dpdk
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1dpdk
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 16

OpenShift Container Platform 4.8 ネットワーク

164

14.4.2. SR-IOV ネットワークデバイスの設定

SR-IOV Network Operator は SriovNetworkNodePolicy.sriovnetwork.openshift.io
CustomResourceDefinition を OpenShift Container Platform に追加します。SR-IOV ネットワークデバ
イスは、SriovNetworkNodePolicy カスタムリソース (CR) を作成して設定できます。

注記

SriovNetworkNodePolicy オブジェクトで指定された設定を適用する際に、SR-IOV
Operator はノードをドレイン (解放) する可能性があり、場合によってはノードの再起動
を行う場合があります。

設定の変更が適用されるまでに数分かかる場合があります。

前提条件

OpenShift CLI (oc) がインストールされている。

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

SR-IOV Network Operator がインストールされている。

ドレイン (解放) されたノードからエビクトされたワークロードを処理するために、クラスター
内に利用可能な十分なノードがあること。

SR-IOV ネットワークデバイス設定についてコントロールプレーンノードを選択していないこ
と。

手順

1. SriovNetworkNodePolicy オブジェクトを作成してから、YAML を <name>-sriov-node-
network.yaml ファイルに保存します。<name> をこの設定の名前に置き換えます。

2. オプション: SR-IOV 対応のクラスターノードにまだラベルが付いていない場合
は、SriovNetworkNodePolicy.Spec.NodeSelector でラベルを付けます。ノードのラベル付け
について、詳しくはノードのラベルを更新する方法についてを参照してください。

3. SriovNetworkNodePolicy オブジェクトを作成します。

ここで、<name> はこの設定の名前を指定します。

設定の更新が適用された後に、sriov-network-operator namespace のすべての Pod が
Running ステータスに移行します。

4. SR-IOV ネットワークデバイスが設定されていることを確認するには、以下のコマンドを実行
します。<node_name> を、設定したばかりの SR-IOV ネットワークデバイスを持つノードの
名前に置き換えます。

 nicSelector:
 pfNames: ["netpf0#8-15"]
 deviceType: vfio-pci

$ oc create -f <name>-sriov-node-network.yaml

第14章 ハードウェアネットワーク

165

関連情報

ノードでラベルを更新する方法について

14.4.3. SR-IOV 設定のトラブルシューティング

SR-IOV ネットワークデバイスの設定の手順を実行した後に、以下のセクションではエラー状態の一部
に対応します。

ノードの状態を表示するには、以下のコマンドを実行します。

ここで、<node_name> は SR-IOV ネットワークデバイスを持つノードの名前を指定します。

エラー出力: Cannot allocate memory

ノードがメモリーを割り当てることができないことを示す場合は、以下の項目を確認します。

ノードの BIOS でグローバル SR-IOV 設定が有効になっていることを確認します。

ノードの BIOS で VT-d が有効であることを確認します。

14.4.4. SR-IOV ネットワークの VRF への割り当て

重要

CNI VRF プラグインはテクノロジープレビュー機能としてのみご利用いただけます。テ
クノロジープレビュー機能は Red Hat の実稼働環境でのサービスレベルアグリーメント
(SLA) ではサポートされていないため、Red Hat では実稼働環境での使用を推奨してい
ません。Red Hat は実稼働環境でこれらを使用することを推奨していません。テクノロ
ジープレビューの機能は、最新の製品機能をいち早く提供して、開発段階で機能のテス
トを行いフィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲についての詳細
は、https://access.redhat.com/ja/support/offerings/techpreview/ を参照してくださ
い。

クラスター管理者は、CNI VRF プラグインを使用して、SR-IOV ネットワークインターフェイスを VRF
ドメインに割り当てることができます。

これを実行するには、VRF 設定を SriovNetwork リソースのオプションの metaPlugins パラメーター
に追加します。

注記

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o
jsonpath='{.status.syncStatus}'

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name>

"lastSyncError": "write /sys/bus/pci/devices/0000:3b:00.1/sriov_numvfs: cannot allocate memory"

OpenShift Container Platform 4.8 ネットワーク

166

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working
https://access.redhat.com/support/offerings/techpreview/

注記

VRF を使用するアプリケーションを特定のデバイスにバインドする必要があります。一
般的な使用方法として、ソケットに SO_BINDTODEVICE オプションを使用できま
す。SO_BINDTODEVICE は、渡されるインターフェイス名で指定されているデバイス
にソケットをバインドします (例: eth1)。SO_BINDTODEVICE を使用するには、アプリ
ケーションに CAP_NET_RAW 機能がある必要があります。

14.4.4.1. CNI VRF プラグインを使用した追加 SR-IOV ネットワーク割り当ての作成

SR-IOV Network Operator は追加ネットワークの定義を管理します。作成する追加ネットワークを指定
する場合、SR-IOV Network Operator は NetworkAttachmentDefinition カスタムリソース (CR) を自動
的に作成します。

注記

SR-IOV Network Operator が管理する NetworkAttachmentDefinition カスタムリソース
は編集しないでください。これを実行すると、追加ネットワークのネットワークトラ
フィックが中断する可能性があります。

CNI VRF プラグインで追加の SR-IOV ネットワーク割り当てを作成するには、以下の手順を実行しま
す。

前提条件

OpenShift Container Platform CLI (oc) をインストールします。

cluster-admin 権限を持つユーザーとして OpenShift Container Platform クラスターにログイン
します。

手順

1. 追加の SR-IOV ネットワーク割り当て用の SriovNetwork カスタムリソース (CR) を作成し、以
下のサンプル CR のように metaPlugins 設定を挿入します。YAML を sriov-network-
attachment.yaml ファイルとして保存します。

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: example-network
 namespace: additional-sriov-network-1
spec:
 ipam: |
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "routes": [{
 "dst": "0.0.0.0/0"
 }],
 "gateway": "10.56.217.1"
 }
 vlan: 0
 resourceName: intelnics

第14章 ハードウェアネットワーク

167

1

2

1

type は vrf に設定する必要があります。

vrfname は、インターフェイスが割り当てられた VRF の名前です。これが Pod に存在し
ない場合は作成されます。

2. SriovNetwork リソースを作成します。

NetworkAttachmentDefinition CR が正常に作成されることの確認

以下のコマンドを実行して、SR-IOV Network Operator が NetworkAttachmentDefinition CR
を作成していることを確認します。

<namespace> を、ネットワーク割り当ての設定時に指定した namespace に置き換えま
す (例: additional-sriov-network-1)。

出力例

注記

SR-IOV Network Operator が CR を作成するまでに遅延が生じる可能性がありま
す。

追加の SR-IOV ネットワーク割り当てが正常であることの確認

VRF CNI が正しく設定され、追加の SR-IOV ネットワーク割り当てが接続されていることを確認するに
は、以下を実行します。

1. VRF CNI を使用する SR-IOV ネットワークを作成します。

2. ネットワークを Pod に割り当てます。

3. Pod のネットワーク割り当てが SR-IOV の追加ネットワークに接続されていることを確認しま
す。Pod にリモートシェルを実行し、以下のコマンドを実行します。

出力例

 metaPlugins : |
 {
 "type": "vrf", 1
 "vrfname": "example-vrf-name" 2
 }

$ oc create -f sriov-network-attachment.yaml

$ oc get network-attachment-definitions -n <namespace> 1

NAME AGE
additional-sriov-network-1 14m

$ ip vrf show

OpenShift Container Platform 4.8 ネットワーク

168

1

4. VRF インターフェイスがセカンダリーインターフェイスのマスターであることを確認します。

出力例

14.4.5. 次のステップ

SR-IOV ネットワーク割り当ての設定

14.5. SR-IOV イーサネットネットワーク割り当ての設定

クラスター内の Single Root I/O Virtualization (SR-IOV) デバイスのイーサネットネットワーク割り当て
を設定できます。

14.5.1. イーサネットデバイス設定オブジェクト

イーサネットネットワークデバイスは、SriovNetwork オブジェクトを定義して設定できます。

以下の YAML は SriovNetwork オブジェクトについて説明しています。

オブジェクトの名前。SR-IOV Network Operator は、同じ名前を持つ
NetworkAttachmentDefinition オブジェクトを作成します。

Name Table

red 10

$ ip link

...
5: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master red
state UP mode
...

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 networkNamespace: <target_namespace> 4
 vlan: <vlan> 5
 spoofChk: "<spoof_check>" 6
 ipam: |- 7
 {}
 linkState: <link_state> 8
 maxTxRate: <max_tx_rate> 9
 minTxRate: <min_tx_rate> 10
 vlanQoS: <vlan_qos> 11
 trust: "<trust_vf>" 12
 capabilities: <capabilities> 13

第14章 ハードウェアネットワーク

169

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-sriov-net-attach

2

3

4

5

6

7

8

9

10

11

12

13

SR-IOV Network Operator がインストールされている namespace を指定します。

この追加ネットワークの SR-IOV ハードウェアを定義する SriovNetworkNodePolicy オブジェク
トの spec.resourceName パラメーターの値。

SriovNetwork オブジェクトのターゲット namespace。ターゲット namespace の Pod のみを追
加ネットワークに割り当てることができます。

オプション: 追加ネットワークの仮想 LAN (VLAN) ID。整数値は 0 から 4095 である必要がありま
す。デフォルト値は 0 です。

オプション: VF の spoof チェックモード。許可される値は、文字列の "on" および "off" です。

重要

指定する値を引用符で囲む必要があります。そうしないと、オブジェクトは SR-
IOV ネットワーク Operator によって拒否されます。

YAML ブロックスケーラーとしての IPAM CNI プラグインの設定オブジェクトプラグインは、割り
当て定義についての IP アドレスの割り当てを管理します。

オプション: Virtual Function (VF) のリンク状態。許可される値は、enable、disable、および
auto です。

オプション: VF の最大伝送レート (Mbps)。

オプション: VF の最小伝送レート (Mbps)。この値は、最大伝送レート以下である必要がありま
す。

注記

Intel NIC は minTxRate パラメーターをサポートしません。詳細は、BZ#1772847
を参照してください。

オプション: VF の IEEE 802.1p 優先度レベル。デフォルト値は 0 です。

オプション: VF の信頼モード。許可される値は、文字列の "on" および "off" です。

重要

指定する値を引用符で囲む必要があります。囲まないと、SR-IOV Network
Operator はオブジェクトを拒否します。

オプション: この追加ネットワークに設定する機能。IP アドレスのサポートを有効にするには、"{
"ips": true }" を指定できます。または、MAC アドレスのサポートを有効にするには "{ "mac":
true }" を指定します。

14.5.1.1. 追加ネットワークの IP アドレス割り当ての設定

IPAM (IP アドレス管理) Container Network Interface (CNI) プラグインは、他の CNI プラグインの IP ア
ドレスを提供します。

以下の IP アドレスの割り当てタイプを使用できます。

OpenShift Container Platform 4.8 ネットワーク

170

https://bugzilla.redhat.com/show_bug.cgi?id=1772847

静的割り当て。

DHCP サーバーを使用した動的割り当て。指定する DHCP サーバーは、追加のネットワークか
ら到達可能である必要があります。

Whereabouts IPAM CNI プラグインを使用した動的割り当て。

14.5.1.1.1. 静的 IP アドレス割り当ての設定

以下の表は、静的 IP アドレスの割り当ての設定について説明しています。

表14.2 ipam 静的設定オブジェクト

フィールド タイプ 説明

type string IPAM のアドレスタイプ。値 static が必要です。

addresses array 仮想インターフェイスに割り当てる IP アドレスを指定するオブ
ジェクトの配列。IPv4 と IPv6 の IP アドレスの両方がサポート
されます。

routes array Pod 内で設定するルートを指定するオブジェクトの配列です。

dns array オプション: DNS の設定を指定するオブジェクトの配列です。

addressesの配列には、以下のフィールドのあるオブジェクトが必要です。

表14.3 ipam.addresses[] 配列

フィールド タイプ 説明

address string 指定する IP アドレスおよびネットワーク接頭辞。たとえ
ば、10.10.21.10/24 を指定すると、追加のネットワークに IP
アドレスの 10.10.21.10 が割り当てられ、ネットマスクは
255.255.255.0 になります。

gateway string egress ネットワークトラフィックをルーティングするデフォル
トのゲートウェイ。

表14.4 ipam.routes[] 配列

フィールド タイプ 説明

dst string CIDR 形式の IP アドレス範囲 (192.168.17.0/24、またはデフォ
ルトルートの 0.0.0.0/0)。

gw string ネットワークトラフィックがルーティングされるゲートウェ
イ。

表14.5 ipam.dns オブジェクト

第14章 ハードウェアネットワーク

171

フィールド タイプ 説明

nameservers array DNS クエリーの送信先となる 1 つ以上の IP アドレスの配列。

domain array ホスト名に追加するデフォルトのドメイン。たとえば、ドメイ
ンが example.com に設定されている場合、example-host の
DNS ルックアップクエリーは example-host.example.com
として書き換えられます。

search array DNS ルックアップのクエリー時に非修飾ホスト名に追加される
ドメイン名の配列 (例: example-host)。

静的 IP アドレス割り当ての設定例

14.5.1.1.2. 動的 IP アドレス (DHCP) 割り当ての設定

以下の JSON は、DHCP を使用した動的 IP アドレスの割り当ての設定について説明しています。

DHCP リースの更新

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7/24"
 }
]
 }
}

OpenShift Container Platform 4.8 ネットワーク

172

DHCP リースの更新

Pod は、作成時に元の DHCP リースを取得します。リースは、クラスターで実行してい
る最小限の DHCP サーバーデプロイメントで定期的に更新する必要があります。

SR-IOV ネットワーク Operator は DHCP サーバーデプロイメントを作成しません。
Cluster Network Operator は最小限の DHCP サーバーデプロイメントを作成します。

DHCP サーバーのデプロイメントをトリガーするには、以下の例にあるように Cluster
Network Operator 設定を編集して shim ネットワーク割り当てを作成する必要がありま
す。

shim ネットワーク割り当ての定義例

表14.6 ipam DHCP 設定オブジェクト

フィールド タイプ 説明

type string IPAM のアドレスタイプ。値 dhcp が必要です。

動的 IP アドレス (DHCP) 割り当ての設定例

14.5.1.1.3. Whereabouts を使用した動的 IP アドレス割り当ての設定

Whereabouts CNI プラグインにより、DHCP サーバーを使用せずに IP アドレスを追加のネットワーク
に動的に割り当てることができます。

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 type: Raw
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }
 # ...

{
 "ipam": {
 "type": "dhcp"
 }
}

第14章 ハードウェアネットワーク

173

以下の表は、Whereabouts を使用した動的 IP アドレス割り当ての設定について説明しています。

表14.7 ipamwhereabouts 設定オブジェクト

フィールド タイプ 説明

type string IPAM のアドレスタイプ。値 whereabouts が必要です。

range string IP アドレスと範囲を CIDR 表記。IP アドレスは、この範囲内の
アドレスから割り当てられます。

exclude array オプション: CIDR 表記の IP アドレスと範囲 (0 個以上) の一覧。
除外されたアドレス範囲内の IP アドレスは割り当てられませ
ん。

Whereabouts を使用する動的 IP アドレス割り当ての設定例

14.5.2. SR-IOV の追加ネットワークの設定

SriovNetwork オブジェクト を作成して、SR-IOV ハードウェアを使用する追加のネットワークを設定
できます。SriovNetwork オブジェクトの作成時に、SR-IOV Operator は
NetworkAttachmentDefinition オブジェクトを自動的に作成します。

注記

SriovNetwork オブジェクトが running 状態の Pod に割り当てられている場合、これを
変更したり、削除したりしないでください。

前提条件

OpenShift CLI (oc) をインストールすること。

cluster-admin 権限を持つユーザーとしてログインしている。

手順

1. SriovNetwork オブジェクトを作成してから、YAML を <name>.yaml ファイルに保存しま
す。<name> はこの追加ネットワークの名前になります。オブジェクト仕様は以下の例のよう
になります。

{
 "ipam": {
 "type": "whereabouts",
 "range": "192.0.2.192/27",
 "exclude": [
 "192.0.2.192/30",
 "192.0.2.196/32"
]
 }
}

apiVersion: sriovnetwork.openshift.io/v1

OpenShift Container Platform 4.8 ネットワーク

174

2. オブジェクトを作成するには、以下のコマンドを入力します。

ここで、<name> は追加ネットワークの名前を指定します。

3. オプション: 以下のコマンドを実行して、直前の手順で作成した SriovNetwork オブジェクトに
関連付けられた NetworkAttachmentDefinition オブジェクトが存在することを確認するには、
以下のコマンドを入力します。<namespace> を SriovNetwork オブジェクトで指定した
networkNamespace に置き換えます。

14.5.3. 次のステップ

Pod の SR-IOV の追加ネットワークへの追加

14.5.4. 関連情報

SR-IOV ネットワークデバイスの設定

14.6. SR-IOV INFINIBAND ネットワーク割り当ての設定

クラスター内の Single Root I/O Virtualization (SR-IOV) デバイスの InfiniBand (IB) ネットワーク割り当
てを設定できます。

14.6.1. InfiniBand デバイス設定オブジェクト

SriovIBNetwork オブジェクトを定義することで、InfiniBand (IB) ネットワークデバイスを設定できま
す。

以下の YAML は、SriovIBNetwork オブジェクトについて説明しています。

kind: SriovNetwork
metadata:
 name: attach1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1
 networkNamespace: project2
 ipam: |-
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "gateway": "10.56.217.1"
 }

$ oc create -f <name>.yaml

$ oc get net-attach-def -n <namespace>

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovIBNetwork
metadata:
 name: <name> 1

第14章 ハードウェアネットワーク

175

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#add-pod
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-sriov-device

1

2

3

4

5

6

7

オブジェクトの名前。SR-IOV Network Operator は、同じ名前を持つ
NetworkAttachmentDefinition オブジェクトを作成します。

SR-IOV Operator がインストールされている namespace。

この追加ネットワークの SR-IOV ハードウェアを定義する SriovNetworkNodePolicy オブジェク
トの spec.resourceName パラメーターの値。

SriovIBNetwork オブジェクトのターゲット namespace。ターゲット namespace の Pod のみを
ネットワークデバイスに割り当てることができます。

オプション: YAML ブロックスケーラーとしての IPAM CNI プラグインの設定オブジェクト。プラ
グインは、割り当て定義についての IP アドレスの割り当てを管理します。

オプション: Virtual Function (VF) のリンク状態。許可される値は、enable、disable、および
auto です。

オプション: このネットワークに設定する機能。"{ "ips": true }" を指定して IP アドレスのサポー
トを有効にするか、"{ "infinibandGUID": true }" を指定して IB Global Unique Identifier (GUID)
サポートを有効にします。

14.6.1.1. 追加ネットワークの IP アドレス割り当ての設定

IPAM (IP アドレス管理) Container Network Interface (CNI) プラグインは、他の CNI プラグインの IP ア
ドレスを提供します。

以下の IP アドレスの割り当てタイプを使用できます。

静的割り当て。

DHCP サーバーを使用した動的割り当て。指定する DHCP サーバーは、追加のネットワークか
ら到達可能である必要があります。

Whereabouts IPAM CNI プラグインを使用した動的割り当て。

14.6.1.1.1. 静的 IP アドレス割り当ての設定

以下の表は、静的 IP アドレスの割り当ての設定について説明しています。

表14.8 ipam 静的設定オブジェクト

フィールド タイプ 説明

type string IPAM のアドレスタイプ。値 static が必要です。

 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 networkNamespace: <target_namespace> 4
 ipam: |- 5
 {}
 linkState: <link_state> 6
 capabilities: <capabilities> 7

OpenShift Container Platform 4.8 ネットワーク

176

addresses array 仮想インターフェイスに割り当てる IP アドレスを指定するオブ
ジェクトの配列。IPv4 と IPv6 の IP アドレスの両方がサポート
されます。

routes array Pod 内で設定するルートを指定するオブジェクトの配列です。

dns array オプション: DNS の設定を指定するオブジェクトの配列です。

フィールド タイプ 説明

addressesの配列には、以下のフィールドのあるオブジェクトが必要です。

表14.9 ipam.addresses[] 配列

フィールド タイプ 説明

address string 指定する IP アドレスおよびネットワーク接頭辞。たとえ
ば、10.10.21.10/24 を指定すると、追加のネットワークに IP
アドレスの 10.10.21.10 が割り当てられ、ネットマスクは
255.255.255.0 になります。

gateway string egress ネットワークトラフィックをルーティングするデフォル
トのゲートウェイ。

表14.10 ipam.routes[] 配列

フィールド タイプ 説明

dst string CIDR 形式の IP アドレス範囲 (192.168.17.0/24、またはデフォ
ルトルートの 0.0.0.0/0)。

gw string ネットワークトラフィックがルーティングされるゲートウェ
イ。

表14.11 ipam.dns オブジェクト

フィールド タイプ 説明

nameservers array DNS クエリーの送信先となる 1 つ以上の IP アドレスの配列。

domain array ホスト名に追加するデフォルトのドメイン。たとえば、ドメイ
ンが example.com に設定されている場合、example-host の
DNS ルックアップクエリーは example-host.example.com
として書き換えられます。

第14章 ハードウェアネットワーク

177

search array DNS ルックアップのクエリー時に非修飾ホスト名に追加される
ドメイン名の配列 (例: example-host)。

フィールド タイプ 説明

静的 IP アドレス割り当ての設定例

14.6.1.1.2. 動的 IP アドレス (DHCP) 割り当ての設定

以下の JSON は、DHCP を使用した動的 IP アドレスの割り当ての設定について説明しています。

DHCP リースの更新

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7/24"
 }
]
 }
}

OpenShift Container Platform 4.8 ネットワーク

178

DHCP リースの更新

Pod は、作成時に元の DHCP リースを取得します。リースは、クラスターで実行してい
る最小限の DHCP サーバーデプロイメントで定期的に更新する必要があります。

DHCP サーバーのデプロイメントをトリガーするには、以下の例にあるように Cluster
Network Operator 設定を編集して shim ネットワーク割り当てを作成する必要がありま
す。

shim ネットワーク割り当ての定義例

表14.12 ipam DHCP 設定オブジェクト

フィールド タイプ 説明

type string IPAM のアドレスタイプ。値 dhcp が必要です。

動的 IP アドレス (DHCP) 割り当ての設定例

14.6.1.1.3. Whereabouts を使用した動的 IP アドレス割り当ての設定

Whereabouts CNI プラグインにより、DHCP サーバーを使用せずに IP アドレスを追加のネットワーク
に動的に割り当てることができます。

以下の表は、Whereabouts を使用した動的 IP アドレス割り当ての設定について説明しています。

表14.13 ipamwhereabouts 設定オブジェクト

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 type: Raw
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }
 # ...

{
 "ipam": {
 "type": "dhcp"
 }
}

第14章 ハードウェアネットワーク

179

フィールド タイプ 説明

type string IPAM のアドレスタイプ。値 whereabouts が必要です。

range string IP アドレスと範囲を CIDR 表記。IP アドレスは、この範囲内の
アドレスから割り当てられます。

exclude array オプション: CIDR 表記の IP アドレスと範囲 (0 個以上) の一覧。
除外されたアドレス範囲内の IP アドレスは割り当てられませ
ん。

Whereabouts を使用する動的 IP アドレス割り当ての設定例

14.6.2. SR-IOV の追加ネットワークの設定

SriovIBNetwork オブジェクトを作成して、SR-IOV ハードウェアを使用する追加のネットワークを設
定できます。SriovIBNetwork オブジェクトの作成時に、SR-IOV Operator は
NetworkAttachmentDefinition オブジェクトを自動的に作成します。

注記

SriovIBNetwork オブジェクトが、running 状態の Pod に割り当てられている場合、こ
れを変更したり、削除したりしないでください。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインしている。

手順

1. SriovIBNetwork CR を作成してから、YAML を <name>.yaml ファイルに保存しま
す。<name> は、この追加ネットワークの名前になります。オブジェクト仕様は以下の例のよ
うになります。

{
 "ipam": {
 "type": "whereabouts",
 "range": "192.0.2.192/27",
 "exclude": [
 "192.0.2.192/30",
 "192.0.2.196/32"
]
 }
}

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovIBNetwork
metadata:
 name: attach1
 namespace: openshift-sriov-network-operator

OpenShift Container Platform 4.8 ネットワーク

180

2. オブジェクトを作成するには、以下のコマンドを入力します。

ここで、<name> は追加ネットワークの名前を指定します。

3. オプション: 以下のコマンドを実行して、直前の手順で作成した SriovIBNetwork オブジェクト
に関連付けられた NetworkAttachmentDefinition オブジェクトが存在することを確認しま
す。<namespace> を SriovIBNetwork オブジェクトで指定した networkNamespace に置き換
えます。

14.6.3. 次のステップ

Pod の SR-IOV の追加ネットワークへの追加

14.6.4. 関連情報

SR-IOV ネットワークデバイスの設定

14.7. POD の SR-IOV の追加ネットワークへの追加

Pod を既存の Single Root I/O Virtualization (SR-IOV) ネットワークに追加できます。

14.7.1. ネットワーク割り当てのランタイム設定

Pod を追加のネットワークに割り当てる場合、ランタイム設定を指定して Pod の特定のカスタマイズ
を行うことができます。たとえば、特定の MAC ハードウェアアドレスを要求できます。

Pod 仕様にアノテーションを設定して、ランタイム設定を指定します。アノテーションキーは
k8s.v1.cni.cncf.io/networks で、ランタイム設定を記述する JSON オブジェクトを受け入れます。

14.7.1.1. イーサネットベースの SR-IOV 割り当てのランタイム設定

以下の JSON は、イーサネットベースの SR-IOV ネットワーク割り当て用のランタイム設定オプション
を説明しています。

spec:
 resourceName: net1
 networkNamespace: project2
 ipam: |-
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "gateway": "10.56.217.1"
 }

$ oc create -f <name>.yaml

$ oc get net-attach-def -n <namespace>

[
 {
 "name": "<name>", 1

第14章 ハードウェアネットワーク

181

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#add-pod
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-sriov-device

1

2

3

1

2

SR-IOV ネットワーク割り当て定義 CR の名前。

オプション: SR-IOV ネットワーク割り当て定義 CR で定義されるリソースタイプから割り当てら
れる SR-IOV デバイスの MAC アドレス。この機能を使用するには、SriovNetwork オブジェクト
で { "mac": true } も指定する必要があります。

オプション: SR-IOV ネットワーク割り当て定義 CR で定義されるリソースタイプから割り当てら
れる SR-IOV デバイスの IP アドレス。IPv4 と IPv6 アドレスの両方がサポートされます。この機
能を使用するには、SriovNetwork オブジェクトで { "ips": true } も指定する必要があります。

ランタイム設定の例

14.7.1.2. InfiniBand ベースの SR-IOV 割り当てのランタイム設定

以下の JSON は、InfiniBand ベースの SR-IOV ネットワーク割り当て用のランタイム設定オプションを
説明しています。

SR-IOV ネットワーク割り当て定義 CR の名前。

SR-IOV デバイスの InfiniBand GUIDこの機能を使用するには、SriovIBNetwork オブジェクトで {
"infinibandGUID": true } も指定する必要があります。

 "mac": "<mac_address>", 2
 "ips": ["<cidr_range>"] 3
 }
]

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "net1",
 "mac": "20:04:0f:f1:88:01",
 "ips": ["192.168.10.1/24", "2001::1/64"]
 }
]
spec:
 containers:
 - name: sample-container
 image: <image>
 imagePullPolicy: IfNotPresent
 command: ["sleep", "infinity"]

[
 {
 "name": "<network_attachment>", 1
 "infiniband-guid": "<guid>", 2
 "ips": ["<cidr_range>"] 3
 }
]

OpenShift Container Platform 4.8 ネットワーク

182

3

"infinibandGUID": true } も指定する必要があります。

SR-IOV ネットワーク割り当て定義 CR で定義されるリソースタイプから割り当てられる SR-IOV
デバイスの IP アドレス。IPv4 と IPv6 アドレスの両方がサポートされます。この機能を使用する
には、SriovIBNetwork オブジェクトで { "ips": true } も指定する必要があります。

ランタイム設定の例

14.7.2. Pod の追加ネットワークへの追加

Pod を追加のネットワークに追加できます。Pod は、デフォルトネットワークで通常のクラスター関連
のネットワークトラフィックを継続的に送信します。

Pod が作成されると、追加のネットワークが割り当てられます。ただし、Pod がすでに存在する場合
は、追加のネットワークをこれに割り当てることはできません。

Pod が追加ネットワークと同じ namespace にあること。

注記

SR-IOV Network Resource Injector は、Pod の最初のコンテナーに resource フィールド
を自動的に追加します。

データプレーン開発キット (DPDK) モードでインテル製のネットワークインターフェイ
スコントローラー (NIC) を使用している場合には、Pod 内の最初のコンテナーのみが
NIC にアクセスできるように設定されています。SR-IOV 追加ネットワークは、Sriov
Network Node Policy オブジェクトで device Type が vfio-pci に設定されてる場合は
DPDK モードに設定されます。

この問題は、NIC にアクセスする必要のあるコンテナーが Pod オブジェクトで定義され
た最初のコンテナーであることを確認するか、Network Resource Injector を無効にする
ことで回避できます。詳細は、BZ#1990953 を参照してください。

前提条件

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "ib1",
 "infiniband-guid": "c2:11:22:33:44:55:66:77",
 "ips": ["192.168.10.1/24", "2001::1/64"]
 }
]
spec:
 containers:
 - name: sample-container
 image: <image>
 imagePullPolicy: IfNotPresent
 command: ["sleep", "infinity"]

第14章 ハードウェアネットワーク

183

https://bugzilla.redhat.com/show_bug.cgi?id=1990953

1

1

2

3

OpenShift CLI (oc) をインストールしている。

クラスターにログインする。

SR-IOV Operator のインストール。

Pod を割り当てる SriovNetwork オブジェクトまたは SriovIBNetwork オブジェクトのいずれ
かを作成する。

手順

1. アノテーションを Pod オブジェクトに追加します。以下のアノテーション形式のいずれかのみ
を使用できます。

a. カスタマイズせずに追加ネットワークを割り当てるには、以下の形式でアノテーションを
追加します。<network> を、Pod に関連付ける追加ネットワークの名前に置き換えます。

複数の追加ネットワークを指定するには、各ネットワークをコンマで区切ります。コ
ンマの間にはスペースを入れないでください。同じ追加ネットワークを複数回指定し
た場合、Pod は複数のネットワークインターフェイスをそのネットワークに割り当て
ます。

b. カスタマイズして追加のネットワークを割り当てるには、以下の形式でアノテーションを
追加します。

NetworkAttachmentDefinition オブジェクトによって定義される追加のネットワーク
の名前を指定します。

NetworkAttachmentDefinition オブジェクトが定義される namespace を指定しま
す。

オプション: 192.168.17.1 などのデフォルトルートのオーバーライドを指定します。

2. Pod を作成するには、以下のコマンドを入力します。<name> を Pod の名前に置き換えます。

3. オプション: アノテーションが Pod CR に存在することを確認するには、<name> を Pod の名

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "<network>", 1
 "namespace": "<namespace>", 2
 "default-route": ["<default-route>"] 3
 }
]

$ oc create -f <name>.yaml

OpenShift Container Platform 4.8 ネットワーク

184

1

3. オプション: アノテーションが Pod CR に存在することを確認するには、<name> を Pod の名
前に置き換えて、以下のコマンドを入力します。

以下の例では、example-pod Pod が追加ネットワークの net1 に割り当てられています。

k8s.v1.cni.cncf.io/networks-status パラメーターは、オブジェクトの JSON 配列です。
各オブジェクトは、Pod に割り当てられる追加のネットワークのステータスについて説明
します。アノテーションの値はプレーンテキストの値として保存されます。

14.7.3. Non-Uniform Memory Access (NUMA) で配置された SR-IOV Pod の作成

NUMA で配置された SR-IOV Pod は、restricted または single-numa-node Topology Manager ポリ
シーで同じ NUMA ノードから割り当てられる SR-IOV および CPU リソースを制限することによって作
成できます。

前提条件

OpenShift CLI (oc) がインストールされている。

CPU マネージャーのポリシーを static に設定している。CPU マネージャーの詳細は、関連情
報セクションを参照してください。

$ oc get pod <name> -o yaml

$ oc get pod example-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-bridge
 k8s.v1.cni.cncf.io/networks-status: |- 1
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [
 "10.128.2.14"
],
 "default": true,
 "dns": {}
 },{
 "name": "macvlan-bridge",
 "interface": "net1",
 "ips": [
 "20.2.2.100"
],
 "mac": "22:2f:60:a5:f8:00",
 "dns": {}
 }]
 name: example-pod
 namespace: default
spec:
 ...
status:
 ...

第14章 ハードウェアネットワーク

185

1

2

3

4

1

Topology Manager ポリシーを single-numa-node に設定している。

注記

single-numa-node が要求を満たさない場合は、Topology Manager ポリシーを
restricted にするように設定できます 。

手順

1. 以下の SR-IOV Pod 仕様を作成してから、YAML を <name>-sriov-pod.yaml ファイルに保存
します。<name> をこの Pod の名前に置き換えます。
以下の例は、SR-IOV Pod 仕様を示しています。

<name> を、SR-IOV ネットワーク割り当て定義 CR の名前に置き換えます。

<image> を sample-pod イメージの名前に置き換えます。

Guaranteed QoS を指定して SR-IOV Pod を作成するには、メモリー要求 に等しい メモ
リー制限 を設定します。

Guaranteed QoS を指定して SR-IOV Pod を作成するには、cpu 要求 に等しい cpu 制限
を設定します。

2. 以下のコマンドを実行して SR-IOV Pod のサンプルを作成します。

<filename> を、先の手順で作成したファイルの名前に置き換えます。

3. sample-pod が Guaranteed QoS を指定して設定されていることを確認します。

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: <name> 1
spec:
 containers:
 - name: sample-container
 image: <image> 2
 command: ["sleep", "infinity"]
 resources:
 limits:
 memory: "1Gi" 3
 cpu: "2" 4
 requests:
 memory: "1Gi"
 cpu: "2"

$ oc create -f <filename> 1

$ oc describe pod sample-pod

OpenShift Container Platform 4.8 ネットワーク

186

4. sample-pod が排他的 CPU を指定して割り当てられていることを確認します。

5. sample-pod に割り当てられる SR-IOV デバイスと CPU が同じ NUMA ノード上にあることを
確認します。

14.7.4. 関連情報

SR-IOV イーサネットネットワーク割り当ての設定

SR-IOV InfiniBand ネットワーク割り当ての設定

CPU マネージャーの使用

14.8. 高パフォーマンスのマルチキャストの使用

Single Root I/O Virtualization (SR-IOV) ハードウェアネットワーク上でマルチキャストを使用できま
す。

14.8.1. 高パフォーマンスのマルチキャスト

OpenShift SDN デフォルト Container Network Interface (CNI) ネットワークプロバイダーは、デフォル
トネットワーク上の Pod 間のマルチキャストをサポートします。これは低帯域幅の調整またはサービ
スの検出での使用に最も適しており、高帯域幅のアプリケーションには適していません。インターネッ
トプロトコルテレビ (IPTV) やマルチポイントビデオ会議など、ストリーミングメディアなどのアプリ
ケーションでは、Single Root I/O Virtualization (SR-IOV) ハードウェアを使用してネイティブに近いパ
フォーマンスを提供できます。

マルチキャストに追加の SR-IOV インターフェイスを使用する場合:

マルチキャストパッケージは、追加の SR-IOV インターフェイス経由で Pod によって送受信さ
れる必要があります。

SR-IOV インターフェイスに接続する物理ネットワークは、OpenShift Container Platform で制
御されないマルチキャストルーティングとトポロジーを判別します。

14.8.2. マルチキャストでの SR-IOV インターフェイスの設定

以下の手順では、サンプルのマルチキャスト用の SR-IOV インターフェイスを作成します。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにログインする必要があります。

手順

1. SriovNetworkNodePolicy オブジェクトを作成します。

$ oc exec sample-pod -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

$ oc exec sample-pod -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

第14章 ハードウェアネットワーク

187

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-sriov-device
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-sriov-ib-attach
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/scalability_and_performance/#using-cpu-manager

1 2

2. SriovNetwork オブジェクトを作成します。

DHCP を IPAM として設定する選択をした場合は、DHCP サーバー経由でデフォルトルー
ト (224.0.0.0/5 および 232.0.0.0/5) をプロビジョニングするようにしてください。これに
より、デフォルトのネットワークプロバイダーによって設定された静的なマルチキャスト
ルートが上書きされます。

3. マルチキャストアプリケーションで Pod を作成します。

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-example
 namespace: openshift-sriov-network-operator
spec:
 resourceName: example
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 4
 nicSelector:
 vendor: "8086"
 pfNames: ['ens803f0']
 rootDevices: ['0000:86:00.0']

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: net-example
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: default
 ipam: | 1
 {
 "type": "host-local", 2
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "routes": [
 {"dst": "224.0.0.0/5"},
 {"dst": "232.0.0.0/5"}
],
 "gateway": "10.56.217.1"
 }
 resourceName: example

apiVersion: v1
kind: Pod
metadata:
 name: testpmd
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: nic1
spec:
 containers:

OpenShift Container Platform 4.8 ネットワーク

188

1 NET_ADMIN 機能は、アプリケーションがマルチキャスト IP アドレスを SR-IOV イン
ターフェイスに割り当てる必要がある場合にのみ必要です。それ以外の場合は省略できま
す。

14.9. DPDK および RDMA モードでの仮想機能 (VF) の使用

Single Root I/O Virtualization (SR-IOV) ネットワークハードウェアは、Data Plane Development Kit
(DPDK) および Remote Direct Memory Access (RDMA) で利用できます。

重要

Data Plane Development Kit (DPDK) はテクノロジープレビュー機能です。テクノロジー
プレビュー機能は Red Hat の実稼働環境でのサービスレベルアグリーメント (SLA) では
サポートされていないため、Red Hat では実稼働環境での使用を推奨していません。
Red Hat は実稼働環境でこれらを使用することを推奨していません。テクノロジープレ
ビューの機能は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行い
フィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲についての詳細
は、https://access.redhat.com/ja/support/offerings/techpreview/ を参照してくださ
い。

14.9.1. NIC を使用した DPDK モードでの仮想機能の使用

前提条件

OpenShift CLI (oc) をインストールしている。

SR-IOV Network Operator をインストールします。

cluster-admin 権限を持つユーザーとしてログインしている。

手順

1. 以下の SriovNetworkNodePolicy オブジェクトを作成してから、YAML を intel-dpdk-node-
policy.yaml ファイルに保存します。

 - name: example
 image: rhel7:latest
 securityContext:
 capabilities:
 add: ["NET_ADMIN"] 1
 command: ["sleep", "infinity"]

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: intel-dpdk-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: intelnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"

第14章 ハードウェアネットワーク

189

https://access.redhat.com/support/offerings/techpreview/

1

1

仮想機能 (VF) のドライバータイプを vfio-pci に指定します。

注記

SriovNetworkNodePolicy の各オプションに関する詳細は、Configuring SR-
IOV network devices セクションを参照してください。

SriovNetworkNodePolicy オブジェクトで指定された設定を適用する際に、SR-
IOV Operator はノードをドレイン (解放) する可能性があり、場合によっては
ノードの再起動を行う場合があります。設定の変更が適用されるまでに数分の時
間がかかる場合があります。エビクトされたワークロードを処理するために、ク
ラスター内に利用可能なノードが十分にあることを前もって確認します。

設定の更新が適用された後に、openshift-sriov-network-operator namespace
のすべての Pod が Running ステータスに変更されます。

2. 以下のコマンドを実行して SriovNetworkNodePolicy オブジェクトを作成します。

3. 以下の SriovNetwork オブジェクトを作成してから、YAML を intel-dpdk-network.yaml ファ
イルに保存します。

IPAM CNI プラグインの空のオブジェクト "{}" を指定します。DPDK はユーザー空間モー
ドで機能し、IP アドレスは必要ありません。

注記

SriovNetwork の各オプションに関する詳細は、SR-IOV の追加ネットワークの
設定セクションを参照してください。

4. 以下のコマンドを実行して、SriovNetwork オブジェクトを作成します。

 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "8086"
 deviceID: "158b"
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: vfio-pci 1

$ oc create -f intel-dpdk-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: intel-dpdk-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: "{}" 1
 vlan: <vlan>
 resourceName: intelnics

OpenShift Container Platform 4.8 ネットワーク

190

1

2

3

4

5

5. 以下の Pod 仕様を作成してから、YAML を intel-dpdk-pod.yaml ファイルに保存します。

SriovNetwork オブジェクトの intel-dpdk-network が作成される同じ target_namespace
を指定します。Pod を異なる namespace に作成する場合、target_namespace を Pod 仕
様および SriovNetowrk オブジェクトの両方で変更します。

アプリケーションとアプリケーションが使用する DPDK ライブラリーが含まれる DPDK イ
メージを指定します。

hugepage の割り当て、システムリソースの割り当て、およびネットワークインターフェ
イスアクセス用のコンテナー内のアプリケーションに必要な追加機能を指定します。

hugepage ボリュームを、/dev/hugepages の下にある DPDK Pod にマウントします。
hugepage ボリュームは、medium が Hugepages に指定されている emptyDir ボリューム
タイプでサポートされます。

オプション: DPDK Pod に割り当てられる DPDK デバイスの数を指定します。このリソー
ス要求および制限は、明示的に指定されていない場合、SR-IOV ネットワークリソースイ
ンジェクターによって自動的に追加されます。SR-IOV ネットワークリソースインジェク

$ oc create -f intel-dpdk-network.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: intel-dpdk-network
spec:
 containers:
 - name: testpmd
 image: <DPDK_image> 2
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
 volumeMounts:
 - mountPath: /dev/hugepages 4
 name: hugepage
 resources:
 limits:
 openshift.io/intelnics: "1" 5
 memory: "1Gi"
 cpu: "4" 6
 hugepages-1Gi: "4Gi" 7
 requests:
 openshift.io/intelnics: "1"
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

第14章 ハードウェアネットワーク

191

6

7

ス要求および制限は、明示的に指定されていない場合、SR-IOV ネットワークリソースイ
ンジェクターによって自動的に追加されます。SR-IOV ネットワークリソースインジェク
ターは、SR-IOV Operator によって管理される受付コントローラーコンポーネントです。
これはデフォルトで有効にされており、デフォルト SriovOperatorConfig CR で
enableInjector オプションを false に設定して無効にすることができます。

CPU の数を指定します。DPDK Pod には通常、kubelet から排他的 CPU を割り当てる必
要があります。これは、CPU マネージャーポリシーを static に設定し、Guaranteed QoS
を持つ Pod を作成して実行されます。

hugepage サイズ hugepages-1Gi または hugepages-2Mi を指定し、DPDK Pod に割り
当てられる hugepage の量を指定します。2Mi および 1Gi hugepage を別々に設定しま
す。1Gi hugepage を設定するには、カーネル引数をノードに追加する必要があります。
たとえば、カーネル引数 default_hugepagesz=1GB、hugepagesz=1G および
hugepages=16 を追加すると、16*1Gi hugepage がシステムの起動時に割り当てられま
す。

6. 以下のコマンドを実行して DPDK Pod を作成します。

14.9.2. Mellanox NIC を使用した DPDK モードでの Virtual Function の使用

前提条件

OpenShift CLI (oc) をインストールしている。

SR-IOV Network Operator をインストールします。

cluster-admin 権限を持つユーザーとしてログインしている。

手順

1. 以下の SriovNetworkNodePolicy オブジェクトを作成してから、YAML を mlx-dpdk-node-
policy.yaml ファイルに保存します。

SR-IOV ネットワークデバイスのデバイス 16 進コードを指定します。Mellanox カードに

$ oc create -f intel-dpdk-pod.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: mlx-dpdk-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: mlxnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "15b3"
 deviceID: "1015" 1
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: netdevice 2
 isRdma: true 3

OpenShift Container Platform 4.8 ネットワーク

192

1

2

3

1

SR-IOV ネットワークデバイスのデバイス 16 進コードを指定します。Mellanox カードに
許可される値は 1015、1017 です。

Virtual Function (VF) のドライバータイプを netdevice に指定します。Mellanox SR-IOV
VF は、vfio-pci デバイスタイプを使用せずに DPDK モードで機能します。VF デバイス
は、コンテナー内のカーネルネットワークインターフェイスとして表示されます。

RDMA モードを有効にします。これは、DPDK モードで機能するために Mellanox カード
で必要とされます。

注記

SriovNetworkNodePolicy の各オプションに関する詳細は、Configuring SR-
IOV network devices セクションを参照してください。

SriovNetworkNodePolicy オブジェクトで指定された設定を適用する際に、SR-
IOV Operator はノードをドレイン (解放) する可能性があり、場合によっては
ノードの再起動を行う場合があります。設定の変更が適用されるまでに数分の時
間がかかる場合があります。エビクトされたワークロードを処理するために、ク
ラスター内に利用可能なノードが十分にあることを前もって確認します。

設定の更新が適用された後に、openshift-sriov-network-operator namespace
のすべての Pod が Running ステータスに変更されます。

2. 以下のコマンドを実行して SriovNetworkNodePolicy オブジェクトを作成します。

3. 以下の SriovNetwork オブジェクトを作成してから、YAML を mlx-dpdk-network.yaml ファ
イルに保存します。

IPAM CNI プラグインの設定オブジェクトを YAML ブロックスケーラーとして指定しま
す。プラグインは、割り当て定義についての IP アドレスの割り当てを管理します。

注記

SriovNetwork の各オプションに関する詳細は、SR-IOV の追加ネットワークの
設定セクションを参照してください。

4. 以下のコマンドを実行して SriovNetworkNodePolicy オブジェクトを作成します。

$ oc create -f mlx-dpdk-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: mlx-dpdk-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: |- 1
 ...
 vlan: <vlan>
 resourceName: mlxnics

第14章 ハードウェアネットワーク

193

1

2

3

4

5

5. 以下の Pod 仕様を作成してから、YAML を mlx-dpdk-pod.yaml ファイルに保存します。

SriovNetwork オブジェクトの mlx-dpdk-network が作成される同じ target_namespace
を指定します。Pod を異なる namespace に作成する場合、target_namespace を Pod 仕
様および SriovNetowrk オブジェクトの両方で変更します。

アプリケーションとアプリケーションが使用する DPDK ライブラリーが含まれる DPDK イ
メージを指定します。

hugepage の割り当て、システムリソースの割り当て、およびネットワークインターフェ
イスアクセス用のコンテナー内のアプリケーションに必要な追加機能を指定します。

hugepage ボリュームを、/dev/hugepages の下にある DPDK Pod にマウントします。
hugepage ボリュームは、medium が Hugepages に指定されている emptyDir ボリューム
タイプでサポートされます。

オプション: DPDK Pod に割り当てられる DPDK デバイスの数を指定します。このリソー
ス要求および制限は、明示的に指定されていない場合、SR-IOV ネットワークリソースイ
ンジェクターによって自動的に追加されます。SR-IOV ネットワークリソースインジェク

$ oc create -f mlx-dpdk-network.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: mlx-dpdk-network
spec:
 containers:
 - name: testpmd
 image: <DPDK_image> 2
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
 volumeMounts:
 - mountPath: /dev/hugepages 4
 name: hugepage
 resources:
 limits:
 openshift.io/mlxnics: "1" 5
 memory: "1Gi"
 cpu: "4" 6
 hugepages-1Gi: "4Gi" 7
 requests:
 openshift.io/mlxnics: "1"
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

OpenShift Container Platform 4.8 ネットワーク

194

6

7

ンジェクターによって自動的に追加されます。SR-IOV ネットワークリソースインジェク
ターは、SR-IOV Operator によって管理される受付コントローラーコンポーネントです。
これはデフォルトで有効にされており、デフォルト SriovOperatorConfig CR で
enableInjector オプションを false に設定して無効にすることができます。

CPU の数を指定します。DPDK Pod には通常、kubelet から排他的 CPU を割り当てる必
要があります。これは、CPU マネージャーポリシーを static に設定し、Guaranteed QoS
を持つ Pod を作成して実行されます。

hugepage サイズ hugepages-1Gi または hugepages-2Mi を指定し、DPDK Pod に割り
当てられる hugepage の量を指定します。2Mi および 1Gi hugepage を別々に設定しま
す。1Gi hugepage を設定するには、カーネル引数をノードに追加する必要があります。

6. 以下のコマンドを実行して DPDK Pod を作成します。

14.9.3. Mellanox NIC を使用した RDMA モードでの仮想機能の使用

RoCE (RDMA over Converged Ethernet) は、OpenShift Container Platform で RDMA を使用する場合
に唯一サポートされているモードです。

前提条件

OpenShift CLI (oc) をインストールしている。

SR-IOV Network Operator をインストールします。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

1. 以下の SriovNetworkNodePolicy オブジェクトを作成してから、YAML を mlx-rdma-node-
policy.yaml ファイルに保存します。

$ oc create -f mlx-dpdk-pod.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: mlx-rdma-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: mlxnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "15b3"
 deviceID: "1015" 1
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: netdevice 2
 isRdma: true 3

第14章 ハードウェアネットワーク

195

1

2

3

1

SR-IOV ネットワークデバイスのデバイス 16 進コードを指定します。Mellanox カードに
許可される値は 1015、1017 です。

Virtual Function (VF) のドライバータイプを netdevice に指定します。

RDMA モードを有効にします。

注記

SriovNetworkNodePolicy の各オプションに関する詳細は、Configuring SR-
IOV network devices セクションを参照してください。

SriovNetworkNodePolicy オブジェクトで指定された設定を適用する際に、SR-
IOV Operator はノードをドレイン (解放) する可能性があり、場合によっては
ノードの再起動を行う場合があります。設定の変更が適用されるまでに数分の時
間がかかる場合があります。エビクトされたワークロードを処理するために、ク
ラスター内に利用可能なノードが十分にあることを前もって確認します。

設定の更新が適用された後に、openshift-sriov-network-operator namespace
のすべての Pod が Running ステータスに変更されます。

2. 以下のコマンドを実行して SriovNetworkNodePolicy オブジェクトを作成します。

3. 以下の SriovNetwork オブジェクトを作成してから、YAML を mlx-rdma-network.yaml ファ
イルに保存します。

IPAM CNI プラグインの設定オブジェクトを YAML ブロックスケーラーとして指定しま
す。プラグインは、割り当て定義についての IP アドレスの割り当てを管理します。

注記

SriovNetwork の各オプションに関する詳細は、SR-IOV の追加ネットワークの
設定セクションを参照してください。

4. 以下のコマンドを実行して SriovNetworkNodePolicy オブジェクトを作成します。

$ oc create -f mlx-rdma-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: mlx-rdma-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: |- 1
 ...
 vlan: <vlan>
 resourceName: mlxnics

$ oc create -f mlx-rdma-network.yaml

OpenShift Container Platform 4.8 ネットワーク

196

1

2

3

4

5

6

5. 以下の Pod 仕様を作成してから、YAML を mlx-rdma-pod.yaml ファイルに保存します。

SriovNetwork オブジェクトの mlx-rdma-network が作成される同じ target_namespace
を指定します。Pod を異なる namespace に作成する場合、target_namespace を Pod 仕
様および SriovNetowrk オブジェクトの両方で変更します。

アプリケーションとアプリケーションが使用する RDMA ライブラリーが含まれる RDMA
イメージを指定します。

hugepage の割り当て、システムリソースの割り当て、およびネットワークインターフェ
イスアクセス用のコンテナー内のアプリケーションに必要な追加機能を指定します。

hugepage ボリュームを、/dev/hugepages の下にある RDMA Pod にマウントします。
hugepage ボリュームは、medium が Hugepages に指定されている emptyDir ボリューム
タイプでサポートされます。

CPU の数を指定します。RDMA Pod には通常、kubelet から排他的 CPU を割り当てる必
要があります。これは、CPU マネージャーポリシーを static に設定し、Guaranteed QoS
を持つ Pod を作成して実行されます。

hugepage サイズ hugepages-1Gi または hugepages-2Mi を指定し、RDMA Pod に割り

apiVersion: v1
kind: Pod
metadata:
 name: rdma-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: mlx-rdma-network
spec:
 containers:
 - name: testpmd
 image: <RDMA_image> 2
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
 volumeMounts:
 - mountPath: /dev/hugepages 4
 name: hugepage
 resources:
 limits:
 memory: "1Gi"
 cpu: "4" 5
 hugepages-1Gi: "4Gi" 6
 requests:
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

第14章 ハードウェアネットワーク

197

hugepage サイズ hugepages-1Gi または hugepages-2Mi を指定し、RDMA Pod に割り
当てられる hugepage の量を指定します。2Mi および 1Gi hugepage を別々に設定しま

6. 以下のコマンドを実行して RDMA Pod を作成します。

14.10. SR-IOV NETWORK OPERATOR のインストール

SR-IOV Network Operator をアンインストールするには、実行中の SR-IOV ワークロードをすべて削除
し、Operator をアンインストールして、Operator が使用した Webhook を削除する必要があります。

14.10.1. SR-IOV Network Operator のインストール

クラスター管理者は、SR-IOV Network Operator をアンインストールできます。

前提条件

cluster-admin パーミッションを持つアカウントを使用して OpenShift Container Platform ク
ラスターにアクセスできる。

SR-IOV Network Operator がインストールされている。

手順

1. すべての SR-IOV カスタムリソース (CR) を削除します。

2. クラスターからの Operator の削除セクションに記載された手順に従い、クラスターから SR-
IOV Network Operator を削除します。

3. SR-IOV Network Operator のアンインストール後にクラスターに残っている SR-IOV カスタム
リソース定義を削除します。

$ oc create -f mlx-rdma-pod.yaml

$ oc delete sriovnetwork -n openshift-sriov-network-operator --all

$ oc delete sriovnetworknodepolicy -n openshift-sriov-network-operator --all

$ oc delete sriovibnetwork -n openshift-sriov-network-operator --all

$ oc delete crd sriovibnetworks.sriovnetwork.openshift.io

$ oc delete crd sriovnetworknodepolicies.sriovnetwork.openshift.io

$ oc delete crd sriovnetworknodestates.sriovnetwork.openshift.io

$ oc delete crd sriovnetworkpoolconfigs.sriovnetwork.openshift.io

$ oc delete crd sriovnetworks.sriovnetwork.openshift.io

$ oc delete crd sriovoperatorconfigs.sriovnetwork.openshift.io

OpenShift Container Platform 4.8 ネットワーク

198

4. SR-IOV Webhook を削除します。

5. SR-IOV Network Operator の namespace を削除します。

関連情報

クラスターからの Operator の削除

$ oc delete mutatingwebhookconfigurations network-resources-injector-config

$ oc delete MutatingWebhookConfiguration sriov-operator-webhook-config

$ oc delete ValidatingWebhookConfiguration sriov-operator-webhook-config

$ oc delete namespace openshift-sriov-network-operator

第14章 ハードウェアネットワーク

199

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/operators/#olm-deleting-operators-from-a-cluster

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイ
ダー

15.1. OPENSHIFT SDN デフォルト CNI ネットワークプロバイダーについて

OpenShift Container Platform は、Software Defined Networking (SDN) アプローチを使用して、クラ
スターのネットワークを統合し、OpenShift Container Platform クラスターの Pod 間の通信を可能にし
ます。OpenShift SDN により、このような Pod ネットワークが確立され、メンテナンスされます。
OpenShift SDN は Open vSwitch (OVS) を使用してオーバーレイネットワークを設定します。

15.1.1. OpenShift SDN ネットワーク分離モード

OpenShift SDN では以下のように、Pod ネットワークを設定するための SDN モードを 3 つ提供しま
す。

ネットワークポリシーモードは、プロジェクト管理者が NetworkPolicy オブジェクトを使用し
て独自の分離ポリシーを設定することを可能にします。ネットワークポリシーは、OpenShift
Container Platform 4.8 のデフォルトモードです。

マルチテナント モードは、Pod およびサービスのプロジェクトレベルの分離を可能にします。
異なるプロジェクトの Pod は、別のプロジェクトの Pod およびサービスとパケットの送受信
をすることができなくなります。プロジェクトの分離を無効にし、クラスター全体のすべての
Pod およびサービスにネットワークトラフィックを送信したり、それらの Pod およびサービス
からネットワークトラフィックを受信したりすることができます。

サブネット モードは、すべての Pod が他のすべての Pod およびサービスと通信できる Pod
ネットワークを提供します。ネットワークポリシーモードは、サブネットモードと同じ機能を
提供します。

15.1.2. サポートされるデフォルトの CNI ネットワークプロバイダー機能マトリクス

OpenShift Container Platform は、OpenShift SDN と OVN-Kubernetes の 2 つのサポート対象のオプ
ションをデフォルトの Container Network Interface (CNI) ネットワークプロバイダーに提供します。以
下の表は、両方のネットワークプロバイダーの現在の機能サポートをまとめたものです。

表15.1 デフォルトの CNI ネットワークプロバイダー機能の比較

機能 OpenShift SDN OVN-Kubernetes

Egress IP サポート対象 サポート対象

Egress ファイアウォール [1] サポート対象 サポート対象

Egress ルーター サポート対象 サポート対象 [2]

IPsec 暗号化 サポート対象外 サポート対象

IPv6 サポート対象外 サポート対象 [3]

Kubernetes ネットワークポリシー 一部サポート対象 [4] サポート対象

OpenShift Container Platform 4.8 ネットワーク

200

Kubernetes ネットワークポリシーログ サポート対象外 サポート対象

マルチキャスト サポート対象 サポート対象

機能 OpenShift SDN OVN-Kubernetes

1. egress ファイアウォールは、OpenShift SDN では egress ネットワークポリシーとしても知ら
れています。これはネットワークポリシーの egress とは異なります。

2. OVN-Kubernetes の egress ルーターはリダイレクトモードのみをサポートします。

3. IPv6 はベアメタルクラスターでのみサポートされます。

4. OpenShift SDN のネットワークポリシーは、egress ルールおよび一部の ipBlock ルールをサ
ポートしません。

15.2. プロジェクトの EGRESS IP の設定

クラスター管理者は、OpenShift SDN デフォルト Container Network Interface (CNI) ネットワークプロ
バイダーが 1 つ以上の egress IP アドレスをプロジェクトに割り当てるように設定できます。

15.2.1. プロジェクトの egress トラフィックについての egress IP アドレスの割り当て

プロジェクトの egress IP アドレスを設定することにより、指定されたプロジェクトからのすべての外
部送信接続が同じ固定ソース IP アドレスを共有します。外部リソースは、egress IP アドレスに基づい
て特定のプロジェクトからのトラフィックを認識できます。プロジェクトに割り当てられる egress IP
アドレスは、トラフィックを特定の宛先に送信するために使用される egress ルーターとは異なりま
す。

egress IP アドレスは、ノードのプライマリーネットワークインターフェイスの追加 IP アドレスとして
実装され、ノードのプライマリー IP アドレスと同じサブネットにある必要があります。

重要

egress IP アドレスは、ifcfg-eth0 などのように Linux ネットワーク設定ファイルで設定
することはできません。

Amazon Web Services (AWS)、Google Cloud Platform (GCP)、および Azure の Egress
IP は、OpenShift Container Platform バージョン 4.10 以降でのみサポートされます。

一部のクラウドまたは仮想マシンソリューションを使用する場合に、プライマリーネッ
トワークインターフェイスで追加の IP アドレスを許可するには追加の設定が必要になる
場合があります。

egress IP アドレスは、NetNamespace オブジェクトの egressIPs パラメーターを設定して
namespace に割り当てることができます。egress IP がプロジェクトに関連付けられた後に、
OpenShift SDN は 2 つの方法で Egress IP をホストに割り当てることを可能にします。

自動的に割り当てる 方法では、egress IP アドレス範囲はノードに割り当てられます。

手動で割り当てる 方法では、1 つ以上の egress IP アドレスの一覧がノードに割り当てられま
す。

egress IP アドレスを要求する namespace は、それらの egress IP アドレスをホストできるノードに一

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

201

egress IP アドレスを要求する namespace は、それらの egress IP アドレスをホストできるノードに一
致し、egress IP アドレスはそれらのノードに割り当てられます。egressIPs パラメーターが
NetNamespace オブジェクトに設定されるものの、ノードがその egress IP アドレスをホストしない場
合、namespace からの egress トラフィックはドロップされます。

ノードの高可用性は自動的に実行されます。egress IP アドレスをホストするノードが到達不可能であ
り、egress IP アドレスをホストできるノードがある場合、egress IP アドレスは新規ノードに移行しま
す。到達不可能なノードが再びオンラインに戻ると、ノード間で egress IP アドレスのバランスを図る
ために egress IP アドレスは自動的に移行します。

重要

OpenShift SDN クラスターネットワークプロバイダーで egress IP アドレスを使用する
場合、以下の制限が適用されます。

手動で割り当てられた egress IP アドレスと、自動的に割り当てられた egress IP
アドレスは同じノードで使用することができません。

IP アドレス範囲から egress IP アドレスを手動で割り当てる場合、その範囲を自
動の IP 割り当てで利用可能にすることはできません。

OpenShift SDN egress IP アドレス実装を使用して、複数の namespace で
egress IP アドレスを共有することはできません。複数の namespace 間で IP ア
ドレスを共有する必要がある場合は、OVN-Kubernetes クラスターネットワーク
プロバイダーの egress IP アドレスの実装により、複数の namespace で IP アド
レスを共有できます。

注記

OpenShift SDN をマルチテナントモードで使用する場合、それらに関連付けられたプロ
ジェクトによって別の namespace に参加している namespace と共に egress IP アドレ
スを使用することはできません。たとえば、project1 および project2 に oc adm pod-
network join-projects --to=project1 project2 コマンドを実行して参加している場合、
どちらもプロジェクトも egress IP アドレスを使用できません。詳細は、BZ#1645577 を
参照してください。

15.2.1.1. 自動的に割り当てられた egress IP アドレスを使用する場合の考慮事項

egress IP アドレスの自動割り当て方法を使用する場合、以下の考慮事項が適用されます。

各ノードの HostSubnet リソースの egressCIDRs パラメーターを設定して、ノードでホスト
できる egress IP アドレスの範囲を指定します。OpenShift Container Platform は、指定する IP
アドレス範囲に基づいて HostSubnet リソースの egressIPs パラメーターを設定します。

namespace の egress IP アドレスをホストするノードに到達できない場合、OpenShift Container
Platform は互換性のある egress IP アドレス範囲を持つ別のノードに egress IP アドレスを再割り当て
します。自動割り当て方法は、追加の IP アドレスをノードに関連付ける柔軟性のある環境にインス
トールされたクラスターに最も適しています。

15.2.1.2. 手動で割り当てられた egress IP アドレスを使用する場合の考慮事項

このアプローチは、パブリッククラウド環境など、追加の IP アドレスをノードに関連付ける際に制限
がある可能性があるクラスターに使用されます。

egress IP アドレスに手動割り当て方法を使用する場合、以下の考慮事項が適用されます。

OpenShift Container Platform 4.8 ネットワーク

202

https://bugzilla.redhat.com/show_bug.cgi?id=1645577

各ノードの HostSubnet リソースの egressIPs パラメーターを設定して、ノードでホストでき
る IP アドレスを指定します。

namespace ごとに複数の egress IP アドレスがサポートされます。

namespace に複数の egress IP アドレスがあり、それらのアドレスが複数のノードでホストされる場
合、以下の追加の考慮事項が適用されます。

Pod が egress IP アドレスをホストするノード上にある場合、その Pod はノード上の egress IP
アドレスを常に使用します。

Pod が egress IP アドレスをホストするノードにない場合、その Pod はランダムで egress IP
アドレスを使用します。

15.2.2. namespace の自動的に割り当てられた egress IP アドレスの有効化

OpenShift Container Platform では、1 つ以上のノードで特定の namespace の egress IP アドレスの自
動的な割り当てを有効にできます。

前提条件

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

OpenShift CLI (oc) がインストールされている。

手順

1. 以下の JSON を使用して、NetNamespace オブジェクトを egress IP アドレスで更新します。

ここでは、以下のようになります。

<project_name>

プロジェクトの名前を指定します。

<ip_address>

egressIPs 配列の 1 つ以上の egress IP アドレスを指定します。

たとえば、project1 を IP アドレスの 192.168.1.100 に、 project2 を IP アドレスの 192.168.1.101
に割り当てるには、以下を実行します。

注記

 $ oc patch netnamespace <project_name> --type=merge -p \
 '{
 "egressIPs": [
 "<ip_address>"
]
 }'

$ oc patch netnamespace project1 --type=merge -p \
 '{"egressIPs": ["192.168.1.100"]}'
$ oc patch netnamespace project2 --type=merge -p \
 '{"egressIPs": ["192.168.1.101"]}'

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

203

注記

OpenShift SDN は NetNamespace オブジェクトを管理するため、既存の
NetNamespace オブジェクトを変更することによってのみ変更を加えることが
できます。新規 NetNamespace オブジェクトは作成しません。

2. 以下の JSON を使用して、各ホストの egressCIDRs パラメーターを設定して egress IP アドレ
スをホストできるノードを示します。

ここでは、以下のようになります。

<node_name>

ノード名を指定します。

<ip_address_range>

CIDR 形式の IP アドレス範囲を指定します。egressCIDRs 配列に複数のアドレス範囲を指
定できます。

たとえば、node1 および node2 を、192.168.1.0 から 192.168.1.255 の範囲で egress IP アドレス
をホストするように設定するには、以下を実行します。

OpenShift Container Platform はバランスを取りながら特定の egress IP アドレスを利用可能な
ノードに自動的に割り当てます。この場合、egress IP アドレス 192.168.1.100 を node1 に、
egress IP アドレス 192.168.1.101 を node2 に割り当て、その逆も行います。

15.2.3. namespace の手動で割り当てられた egress IP アドレスの設定

OpenShift Container Platform で、1 つ以上の egress IP アドレスを namespace に関連付けることがで
きます。

前提条件

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

OpenShift CLI (oc) がインストールされている。

手順

1. 以下の JSON オブジェクトを必要な IP アドレスで指定して、NetNamespace オブジェクトを
更新します。

$ oc patch hostsubnet <node_name> --type=merge -p \
 '{
 "egressCIDRs": [
 "<ip_address_range>", "<ip_address_range>"
]
 }'

$ oc patch hostsubnet node1 --type=merge -p \
 '{"egressCIDRs": ["192.168.1.0/24"]}'
$ oc patch hostsubnet node2 --type=merge -p \
 '{"egressCIDRs": ["192.168.1.0/24"]}'

 $ oc patch netnamespace <project_name> --type=merge -p \

OpenShift Container Platform 4.8 ネットワーク

204

ここでは、以下のようになります。

<project_name>

プロジェクトの名前を指定します。

<ip_address>

egressIPs 配列の 1 つ以上の egress IP アドレスを指定します。

たとえば、project1 プロジェクトを IP アドレス 192.168.1.100 および 192.168.1.101 に割り当
てるには、以下を実行します。

高可用性を提供するには、egressIPs の値を異なるノードの 2 つ以上の IP アドレスに設定しま
す。複数の egress IP アドレスが設定されている場合、Pod はすべての egress IP アドレスをほ
ぼ均等に使用します。

注記

OpenShift SDN は NetNamespace オブジェクトを管理するため、既存の
NetNamespace オブジェクトを変更することによってのみ変更を加えることが
できます。新規 NetNamespace オブジェクトは作成しません。

2. egress IP をノードホストに手動で割り当てます。egressIPs パラメーターを、ノードホストの
HostSubnet オブジェクトに設定します。以下の JSON を使用して、そのノードホストに割り
当てる必要のある任意の数の IP アドレスを含めることができます。

ここでは、以下のようになります。

<node_name>

ノード名を指定します。

<ip_address>

IP アドレスを指定します。egressIPs 配列に複数の IP アドレスを指定できます。

たとえば、node1 に Egress IP 192.168.1.100、 192.168.1.101、および 192.168.1.102 が設定
されるように指定するには、以下を実行します。

 '{
 "egressIPs": [
 "<ip_address>"
]
 }'

$ oc patch netnamespace project1 --type=merge \
 -p '{"egressIPs": ["192.168.1.100","192.168.1.101"]}'

$ oc patch hostsubnet <node_name> --type=merge -p \
 '{
 "egressIPs": [
 "<ip_address>",
 "<ip_address>"
]
 }'

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

205

直前の例では、project1 のすべての egress トラフィックは、指定された egress IP をホストす
るノードにルーティングされてから、その IP アドレスに Network Address Translation (NAT)
を使用して接続されます。

15.3. プロジェクトの EGRESS ファイアウォールの設定

クラスター管理者は、OpenShift Container Platform クラスター外に出るプロジェクトのプロジェクに
ついて、egress トラフィックを制限する egress ファイアウォールを作成できます。

15.3.1. egress ファイアウォールのプロジェクトでの機能

クラスター管理者は、 egress ファイアウォール を使用して、一部またはすべての Pod がクラスター内
からアクセスできる外部ホストを制限できます。egress ファイアウォールポリシーは以下のシナリオを
サポートします。

Pod の接続を内部ホストに制限し、パブリックインターネットへの接続を開始できないように
する。

Pod の接続をパブリックインターネットに制限し、OpenShift Container Platform クラスター
外にある内部ホストへの接続を開始できないようにする。

Pod は OpenShift Container Platform クラスター外の指定された内部サブネットまたはホスト
にアクセスできません。

Pod は特定の外部ホストにのみ接続することができます。

たとえば、指定された IP 範囲へのあるプロジェクトへのアクセスを許可する一方で、別のプロジェク
トへの同じアクセスを拒否することができます。または、アプリケーション開発者の (Python) pip
mirror からの更新を制限したり、更新を承認されたソースからの更新のみに強制的に制限したりするこ
とができます。

EgressNetworkPolicy カスタムリソース (CR) オブジェクトを作成して egress ファイアウォールポリ
シーを設定します。egress ファイアウォールは、以下のいずれかの基準を満たすネットワークトラ
フィックと一致します。

CIDR 形式の IP アドレス範囲。

IP アドレスに解決する DNS 名

重要

$ oc patch hostsubnet node1 --type=merge -p \
 '{"egressIPs": ["192.168.1.100", "192.168.1.101", "192.168.1.102"]}'

OpenShift Container Platform 4.8 ネットワーク

206

1
2
3

重要

egress ファイアウォールに 0.0.0.0/0 の拒否ルールが含まれる場合、OpenShift
Container Platform API サーバーへのアクセスはブロックされます。Pod が OpenShift
Container Platform API サーバーへのアクセスを継続できるようにするには、以下の例に
あるように API サーバーが egress ファイアウォールルールでリッスンする IP アドレス
範囲を含める必要があります。

egress ファイアウォールの namespace。
OpenShift Container Platform API サーバーを含む IP アドレス範囲。
グローバル拒否ルールにより、OpenShift Container Platform API サーバーへのア
クセスが阻止されます。

API サーバーの IP アドレスを見つけるには、oc get ep kubernetes -n default を実行し
ます。

詳細は、BZ#1988324 を参照してください。

重要

egress ファイアウォールを設定するには、ネットワークポリシーまたはマルチテナント
モードのいずれかを使用するように OpenShift SDN を設定する必要があります。

ネットワークポリシーモードを使用している場合、egress ファイアウォールは
namespace ごとに 1 つのポリシーとのみ互換性を持ち、グローバルプロジェクトなどの
ネットワークを共有するプロジェクトでは機能しません。

警告

egress ファイアウォールルールは、ルーターを通過するトラフィックには適用され
ません。ルート CR オブジェクトを作成するパーミッションを持つユーザーは、禁
止されている宛先を参照するルートを作成することにより、egress ファイアウォー
ルポリシールールをバイパスできます。

15.3.1.1. egress ファイアウォールの制限

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: default
 namespace: <namespace> 1
spec:
 egress:
 - to:
 cidrSelector: <api_server_address_range> 2
 type: Allow
...
 - to:
 cidrSelector: 0.0.0.0/0 3
 type: Deny



第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

207

https://bugzilla.redhat.com/show_bug.cgi?id=1988324

egress ファイアウォールには以下の制限があります。

いずれのプロジェクトも複数の EgressNetworkPolicy オブジェクトを持つことができません。

最大 1,000 のルールを持つ最大 1 つの EgressNetworkPolicy オブジェクトはプロジェクトごと
に定義できます。

default プロジェクトは egress ファイアウォールを使用できません。

マルチテナントモードで OpenShift SDN デフォルト Container Network Interface (CNI) ネット
ワークプロバイダーを使用する場合、以下の制限が適用されます。

グローバルプロジェクトは egress ファイアウォールを使用できません。oc adm pod-
network make-projects-global コマンドを使用して、プロジェクトをグローバルにするこ
とができます。

oc adm pod-network join-projects コマンドを使用してマージされるプロジェクトでは、
結合されたプロジェクトのいずれでも egress ファイアウォールを使用することはできませ
ん。

上記の制限のいずれかに違反すると、プロジェクトの egress ファイアウォールに障害が発生し、すべ
ての外部ネットワークトラフィックがドロップされる可能性があります。

egress ファイアウォールリソースは、kube-node-lease、kube-public、kube-
system、openshift、openshift- プロジェクトで作成できます。

15.3.1.2. egress ポリシールールのマッチング順序

egress ファイアウォールポリシールールは、最初から最後へと定義された順序で評価されます。Pod か
らの egress 接続に一致する最初のルールが適用されます。この接続では、後続のルールは無視されま
す。

15.3.1.3. DNS (Domain Name Server) 解決の仕組み

egress ファイアウォールポリシールールのいずれかで DNS 名を使用する場合、ドメイン名の適切な解
決には、以下の制限が適用されます。

ドメイン名の更新は、TTL (Time-to-live) 期間に基づいてポーリングされます。デフォルトの
期間は 30 秒です。egress ファイアウォールコントローラーがローカルネームサーバーでドメ
イン名をクエリーする場合に、応答に 30 秒未満の TTL が含まれる場合は、コントローラーは
その期間を返される値に設定します。応答の TTL が 30 分を超える場合、コントローラーは期
間を 30 分に設定します。TTL が 30 秒から 30 分の間に設定される場合、コントローラーは値
を無視し、期間を 30 秒に設定します。

Pod は、必要に応じて同じローカルネームサーバーからドメインを解決する必要があります。
そうしない場合、egress ファイアウォールコントローラーと Pod によって認識されるドメイン
の IP アドレスが異なる可能性があります。ホスト名の IP アドレスが異なる場合、egress ファ
イアウォールは一貫して実行されないことがあります。

egress ファイアウォールコントローラーおよび Pod は同じローカルネームサーバーを非同期に
ポーリングするため、Pod は egress コントローラーが実行する前に更新された IP アドレスを
取得する可能性があります。これにより、競合状態が生じます。この現時点の制限により、
EgressNetworkPolicy オブジェクトのドメイン名の使用は、IP アドレスの変更が頻繁に生じな
いドメインの場合にのみ推奨されます。

注記

OpenShift Container Platform 4.8 ネットワーク

208

1

2

1

2

3

注記

egress ファイアウォールは、DNS 解決用に Pod が置かれるノードの外部インターフェ
イスに Pod が常にアクセスできるようにします。

ドメイン名を egress ファイアウォールで使用し、DNS 解決がローカルノード上の DNS
サーバーによって処理されない場合は、Pod でドメイン名を使用している場合には DNS
サーバーの IP アドレスへのアクセスを許可する egress ファイアウォールを追加する必
要があります。

15.3.2. EgressNetworkPolicy カスタムリソース (CR) オブジェクト

egress ファイアウォールのルールを 1 つ以上定義できます。ルールは、ルールが適用されるトラフィッ
クを指定して Allow ルールまたは Deny ルールのいずれかになります。

以下の YAML は EgressNetworkPolicy CR オブジェクトについて説明しています。

EgressNetworkPolicy オブジェクト

egress ファイアウォールポリシーの名前。

以下のセクションで説明されているように、egress ネットワークポリシールールのコレクショ
ン。

15.3.2.1. EgressNetworkPolicy ルール

以下の YAML は egress ファイアウォールルールオブジェクトについて説明しています。egress スタン
ザは、単一または複数のオブジェクトの配列を予想します。

Egress ポリシールールのスタンザ

ルールのタイプ。値には Allow または Deny のいずれかを指定する必要があります。

egress トラフィックのマッチングルールを記述するスタンザ。ルールの cidrSelector フィールド
または dnsName フィールドのいずれかの値。同じルールで両方のフィールドを使用することはで
きません。

CIDR 形式の IP アドレス範囲。

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: <name> 1
spec:
 egress: 2
 ...

egress:
- type: <type> 1
 to: 2
 cidrSelector: <cidr> 3
 dnsName: <dns_name> 4

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

209

4

1

ドメイン名。

15.3.2.2. EgressNetworkPolicy CR オブジェクトの例

以下の例では、複数の egress ファイアウォールポリシールールを定義します。

egress ファイアウォールポリシールールオブジェクトのコレクション。

15.3.3. egress ファイアウォールポリシーオブジェクトの作成

クラスター管理者は、プロジェクトの egress ファイアウォールポリシーオブジェクトを作成できま
す。

重要

プロジェクトに EgressNetworkPolicy オブジェクトがすでに定義されている場合、既存
のポリシーを編集して egress ファイアウォールルールを変更する必要があります。

前提条件

OpenShift SDN デフォルト Container Network Interface (CNI) ネットワークプロバイダープラ
グインを使用するクラスター。

OpenShift CLI (oc) をインストールしている。

クラスター管理者としてクラスターにログインする必要があります。

手順

1. ポリシールールを作成します。

a. <policy_name>.yaml ファイルを作成します。この場合、<policy_name> は egress ポリ
シールールを記述します。

b. 作成したファイルで、egress ポリシーオブジェクトを定義します。

2. 以下のコマンドを入力してポリシーオブジェクトを作成します。<policy_name> をポリシーの

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: default
spec:
 egress: 1
 - type: Allow
 to:
 cidrSelector: 1.2.3.0/24
 - type: Allow
 to:
 dnsName: www.example.com
 - type: Deny
 to:
 cidrSelector: 0.0.0.0/0

OpenShift Container Platform 4.8 ネットワーク

210

2. 以下のコマンドを入力してポリシーオブジェクトを作成します。<policy_name> をポリシーの
名前に、 <project> をルールが適用されるプロジェクトに置き換えます。

以下の例では、新規の EgressNetworkPolicy オブジェクトが project1 という名前のプロジェク
トに作成されます。

出力例

3. オプション: 後に変更できるように <policy_name>.yaml ファイルを保存します。

15.4. プロジェクトの EGRESS ファイアウォールの編集

クラスター管理者は、既存の egress ファイアウォールのネットワークトラフィックルールを変更でき
ます。

15.4.1. EgressNetworkPolicy オブジェクトの表示

クラスターで EgressNetworkPolicy オブジェクトを表示できます。

前提条件

OpenShift SDN デフォルト Container Network Interface (CNI) ネットワークプロバイダープラ
グインを使用するクラスター。

oc として知られる OpenShift コマンドラインインターフェイス (CLI) のインストール。

クラスターにログインすること。

手順

1. オプション: クラスターで定義された EgressNetworkPolicy オブジェクトの名前を表示するに
は、以下のコマンドを入力します。

2. ポリシーを検査するには、以下のコマンドを入力します。<policy_name> を検査するポリシー
の名前に置き換えます。

出力例

$ oc create -f <policy_name>.yaml -n <project>

$ oc create -f default.yaml -n project1

egressnetworkpolicy.network.openshift.io/v1 created

$ oc get egressnetworkpolicy --all-namespaces

$ oc describe egressnetworkpolicy <policy_name>

Name: default
Namespace: project1
Created: 20 minutes ago
Labels: <none>

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

211

15.5. プロジェクトの EGRESS ファイアウォールの編集

クラスター管理者は、既存の egress ファイアウォールのネットワークトラフィックルールを変更でき
ます。

15.5.1. EgressNetworkPolicy オブジェクトの編集

クラスター管理者は、プロジェクトの egress ファイアウォールを更新できます。

前提条件

OpenShift SDN デフォルト Container Network Interface (CNI) ネットワークプロバイダープラ
グインを使用するクラスター。

OpenShift CLI (oc) をインストールしている。

クラスター管理者としてクラスターにログインする必要があります。

手順

1. プロジェクトの EgressNetworkPolicy オブジェクトの名前を検索します。<project> をプロ
ジェクトの名前に置き換えます。

2. オプション: egress ネットワークファイアウォールの作成時に EgressNetworkPolicy オブジェク
トのコピーを保存しなかった場合には、以下のコマンドを入力してコピーを作成します。

<project> をプロジェクトの名前に置き換えます。<name> をオブジェクトの名前に置き換え
ます。<filename> をファイルの名前に置き換え、YAML を保存します。

3. ポリシールールに変更を加えたら、以下のコマンドを実行して EgressNetworkPolicy オブジェ
クトを置き換えます。<filename> を、更新された EgressNetworkPolicy オブジェクトを含む
ファイルの名前に置き換えます。

15.6. プロジェクトからの EGRESS ファイアウォールの削除

クラスター管理者は、プロジェクトから egress ファイアウォールを削除して、OpenShift Container
Platform クラスター外に出るプロジェクトからネットワークトラフィックについてのすべての制限を削
除できます。

15.6.1. EgressNetworkPolicy オブジェクトの削除

クラスター管理者は、プロジェクトから Egress ファイアウォールを削除できます。

Annotations: <none>
Rule: Allow to 1.2.3.0/24
Rule: Allow to www.example.com
Rule: Deny to 0.0.0.0/0

$ oc get -n <project> egressnetworkpolicy

$ oc get -n <project> egressnetworkpolicy <name> -o yaml > <filename>.yaml

$ oc replace -f <filename>.yaml

OpenShift Container Platform 4.8 ネットワーク

212

前提条件

OpenShift SDN デフォルト Container Network Interface (CNI) ネットワークプロバイダープラ
グインを使用するクラスター。

OpenShift CLI (oc) をインストールしている。

クラスター管理者としてクラスターにログインする必要があります。

手順

1. プロジェクトの EgressNetworkPolicy オブジェクトの名前を検索します。<project> をプロ
ジェクトの名前に置き換えます。

2. 以下のコマンドを入力し、EgressNetworkPolicy オブジェクトを削除します。<project> をプロ
ジェクトの名前に、 <name> をオブジェクトの名前に置き換えます。

15.7. EGRESS ルーター POD の使用についての考慮事項

15.7.1. egress ルーター Pod について

OpenShift Container Platform egress ルーター Pod は、他の用途で使用されていないプライベートソー
ス IP アドレスから指定されたリモートサーバーにトラフィックをリダイレクトします。Egress ルー
ター Pod により、特定の IP アドレスからのアクセスのみを許可するように設定されたサーバーにネッ
トワークトラフィックを送信できます。

注記

egress ルーター Pod はすべての発信接続のために使用されることが意図されていませ
ん。多数の egress ルーター Pod を作成することで、ネットワークハードウェアの制限
を引き上げられる可能性があります。たとえば、すべてのプロジェクトまたはアプリ
ケーションに egress ルーター Pod を作成すると、ソフトウェアの MAC アドレスのフィ
ルターに戻る前にネットワークインターフェイスが処理できるローカル MAC アドレス数
の上限を超えてしまう可能性があります。

重要

egress ルーターイメージには Amazon AWS, Azure Cloud またはレイヤー 2 操作をサポー
トしないその他のクラウドプラットフォームとの互換性がありません。 それらに
macvlan トラフィックとの互換性がないためです。

15.7.1.1. Egress ルーターモード

リダイレクトモード では、egress ルーター Pod は、トラフィックを独自の IP アドレスから 1 つ以上の
宛先 IP アドレスにリダイレクトするために iptables ルールをセットアップします。予約されたソース
IP アドレスを使用する必要のあるクライアント Pod は、宛先 IP に直接接続するのでなく、egress ルー
ターに接続するように変更される必要があります。

HTTP プロキシーモードでは、egress ルーター Pod はポート 8080 で HTTP プロキシーとして実行され

$ oc get -n <project> egressnetworkpolicy

$ oc delete -n <project> egressnetworkpolicy <name>

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

213

ます。このモードは、HTTP または HTTPS ベースのサービスと通信するクライアントの場合にのみ機
能しますが、通常それらを機能させるのにクライアント Pod への多くの変更は不要です。環境変数を
設定することで、数多くのプログラムは HTTP プロキシーを使用するように指示されます。

DNS プロキシーモードでは、egress ルーター Pod は、トラフィックを独自の IP アドレスから 1 つ以上
の宛先 IP アドレスに送信する TCP ベースのサービスの DNS プロキシーとして実行されます。予約さ
れたソース IP アドレスを使用するには、クライアント Pod は、宛先 IP アドレスに直接接続するのでな
く、egress ルーター Pod に接続するように変更される必要があります。この修正により、外部の宛先
でトラフィックが既知のソースから送信されているかのように処理されます。

リダイレクトモードは、HTTP および HTTPS 以外のすべてのサービスで機能します。HTTP および
HTTPS サービスの場合は、HTTP プロキシーモードを使用します。IP アドレスまたはドメイン名を持
つ TCP ベースのサービスの場合は、DNS プロキシーモードを使用します。

15.7.1.2. egress ルーター Pod の実装

egress ルーター Pod の設定は、初期化コンテナーで実行されます。このコンテナーは特権付きコンテ
キストで実行され、macvlan インターフェイスを設定して iptables ルールを設定できます。初期化コン
テナーが iptables ルールの設定を終了すると、終了します。次に、egress ルーター Pod はコンテナー
を実行して egress ルーターのトラフィックを処理します。使用されるイメージは、egress ルーター
モードによって異なります。

環境変数は、egress-router イメージが使用するアドレスを判別します。イメージは macvlan インター
フェイスを、 EGRESS_SOURCE をその IP アドレスとして使用し、EGRESS_GATEWAY をゲート
ウェイの IP アドレスとして使用するように設定します。

ネットワークアドレス変換 (NAT) ルールは、TCP ポートまたは UDP ポート上の Pod のクラスター IP
アドレスへの接続が EGRESS_DESTINATION 変数で指定される IP アドレスの同じポートにリダイレ
クトされるように設定されます。

クラスター内の一部のノードのみが指定されたソース IP アドレスを要求でき、指定されたゲートウェ
イを使用できる場合、受け入れ可能なノードを示す nodeName または nodeSelector を指定すること
ができます。

15.7.1.3. デプロイメントに関する考慮事項

egress ルーター Pod は追加の IP アドレスおよび MAC アドレスをノードのプライマリーネットワーク
インターフェイスに追加します。その結果、ハイパーバイザーまたはクラウドプロバイダーを、追加の
アドレスを許可するように設定する必要がある場合があります。

Red Hat OpenStack Platform (RHOSP)

OpenShift Container Platform を RHOSP にデプロイする場合、OpenStack 環境の egress ルーター
Pod の IP および MAC アドレスからのトラフィックを許可する必要があります。トラフィックを許
可しないと、通信は失敗 します。

Red Hat Virtualization (RHV)

RHV を使用している場合は、仮想インターフェイスカード (vNIC) に No Network Filter を選択する
必要があります。

VMware vSphere

VMware vSphere を使用している場合は、vSphere 標準スイッチのセキュリティー保護についての

$ openstack port set --allowed-address \
 ip_address=<ip_address>,mac_address=<mac_address> <neutron_port_uuid>

OpenShift Container Platform 4.8 ネットワーク

214

https://access.redhat.com/solutions/2803331
https://access.redhat.com/documentation/ja-jp/red_hat_virtualization/4.4/html/administration_guide/chap-logical_networks#Explanation_of_Settings_in_the_VM_Interface_Profile_Window

1

2

VMware vSphere を使用している場合は、vSphere 標準スイッチのセキュリティー保護についての
VMware ドキュメント を参照してください。vSphere Web クライアントからホストの仮想スイッチ
を選択して、VMware vSphere デフォルト設定を表示し、変更します。

とくに、以下が有効にされていることを確認します。

MAC アドレスの変更

偽装転送 (Forged Transit)

無作為別モード (Promiscuous Mode) 操作

15.7.1.4. フェイルオーバー設定

ダウンタイムを回避するには、以下の例のように Deployment リソースで egress ルーター Pod をデプ
ロイできます。サンプルのデプロイメント用に新規 Service オブジェクトを作成するには、oc expose
deployment/egress-demo-controller コマンドを使用します。

1 つの Pod のみが指定される egress ソース IP アドレスを使用できるため、レプリカが 1 に設定さ
れていることを確認します。これは、単一コピーのルーターのみがノード実行されることを意味し
ます。

egress ルーター Pod の Pod オブジェクトテンプレートを指定します。

15.7.2. 関連情報

リダイレクトモードでの egress ルーターのデプロイ

HTTP プロキシーモードでの egress ルーターのデプロイ

DNS プロキシーモードでの egress ルーターのデプロイ

apiVersion: apps/v1
kind: Deployment
metadata:
 name: egress-demo-controller
spec:
 replicas: 1 1
 selector:
 matchLabels:
 name: egress-router
 template:
 metadata:
 name: egress-router
 labels:
 name: egress-router
 annotations:
 pod.network.openshift.io/assign-macvlan: "true"
 spec: 2
 initContainers:
 ...
 containers:
 ...

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

215

https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#deploying-egress-router-layer3-redirection
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#deploying-egress-router-http-redirection
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#deploying-egress-router-dns-redirection

1

2

3

4

15.8. リダイレクトモードでの EGRESS ルーター POD のデプロイ

クラスター管理者は、トラフィックを指定された宛先 IP アドレスにリダイレクトするように設定され
た egress ルーター Pod をデプロイできます。

15.8.1. リダイレクトモードの egress ルーター Pod 仕様

Pod オブジェクトで egress ルーター Pod の設定を定義します。以下の YAML は、リダイレクトモード
での egress ルーター Pod の設定のフィールドについて説明しています。

このアノテーションは、OpenShift Container Platform に対して、プライマリーネットワークイン
ターフェイスコントローラー (NIC) に macvlan ネットワークインターフェイスを作成し、その
macvlan インターフェイスを Pod ネットワークの namespace に移動するよう指示します。引用符
を "true" 値の周囲に含める必要があります。OpenShift Container Platform が別の NIC インター
フェイスに macvlan インターフェイスを作成するには、アノテーションの値をそのインターフェ
イスの名前に設定します。たとえば、 eth1 を使用します。

ノードが置かれている物理ネットワークの IP アドレスは egress ルーター Pod で使用するために
予約されます。オプション: サブネットの長さ /24 接尾辞を組み込み、ローカルサブネットへの適
切なルートがセットアップされるようにできます。サブネットの長さを指定しない場合、egress
ルーターは EGRESS_GATEWAY 変数で指定されたホストにのみアクセスでき、サブネットの他
のホストにはアクセスできません。

ノードで使用されるデフォルトゲートウェイと同じ値です。

トラフィックの送信先となる外部サーバー。この例では、Pod の接続は 203.0.113.25 にリダイレ
クトされます。 ソース IP アドレスは 192.168.12.99 です。

apiVersion: v1
kind: Pod
metadata:
 name: egress-1
 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: <egress_router>
 - name: EGRESS_GATEWAY 3
 value: <egress_gateway>
 - name: EGRESS_DESTINATION 4
 value: <egress_destination>
 - name: EGRESS_ROUTER_MODE
 value: init
 containers:
 - name: egress-router-wait
 image: registry.redhat.io/openshift4/ose-pod

OpenShift Container Platform 4.8 ネットワーク

216

egress ルーター Pod 仕様の例

15.8.2. egress 宛先設定形式

egress ルーター Pod がリダイレクトモードでデプロイされる場合、以下のいずれかの形式を使用して
リダイレクトルールを指定できます。

<port> <protocol> <ip_address>: 指定される <port> への着信接続が指定される
<ip_address> の同じポートにリダイレクトされます。<protocol> は tcp または udp のいずれ
かになります。

<port> <protocol> <ip_address> <remote_port>: 接続が <ip_address> の別の
<remote_port> にリダイレクトされるのを除き、上記と同じになります。

<ip_address>: 最後の行が単一 IP アドレスである場合、それ以外のポートの接続はその IP ア
ドレスの対応するポートにリダイレクトされます。フォールバック IP アドレスがない場合、他
のポートでの接続は拒否されます。

以下の例では、複数のルールが定義されます。

最初の行はローカルポート 80 から 203.0.113.25 のポート 80 にトラフィックをリダイレクトし
ます。

2 番目と 3 番目の行では、ローカルポート 8080 および 8443 を、203.0.113.26 のリモートポー

apiVersion: v1
kind: Pod
metadata:
 name: egress-multi
 labels:
 name: egress-multi
 annotations:
 pod.network.openshift.io/assign-macvlan: "true"
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE
 value: 192.168.12.99/24
 - name: EGRESS_GATEWAY
 value: 192.168.12.1
 - name: EGRESS_DESTINATION
 value: |
 80 tcp 203.0.113.25
 8080 tcp 203.0.113.26 80
 8443 tcp 203.0.113.26 443
 203.0.113.27
 - name: EGRESS_ROUTER_MODE
 value: init
 containers:
 - name: egress-router-wait
 image: registry.redhat.io/openshift4/ose-pod

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

217

2 番目と 3 番目の行では、ローカルポート 8080 および 8443 を、203.0.113.26 のリモートポー
ト 80 および 443 にリダイレクトします。

最後の行は、先のルールで指定されていないポートのトラフィックに一致します。

設定例

15.8.3. リダイレクトモードでの egress ルーター Pod のデプロイ

リダイレクトモードでは、egress ルーター Pod は、トラフィックを独自の IP アドレスから 1 つ以上の
宛先 IP アドレスにリダイレクトするために iptables ルールをセットアップします。予約されたソース
IP アドレスを使用する必要のあるクライアント Pod は、宛先 IP に直接接続するのでなく、egress ルー
ターに接続するように変更される必要があります。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

1. egress ルーター Pod の作成

2. 他の Pod が egress ルーター Pod の IP アドレスを見つられるようにするには、以下の例のよう
に、egress ルーター Pod を参照するサービスを作成します。

Pod がこのサービスに接続できるようになります。これらの接続は、予約された egress IP ア
ドレスを使用して外部サーバーの対応するポートにリダイレクトされます。

15.8.4. 関連情報

ConfigMap を使用した egress ルーターの宛先マッピングの設定

15.9. HTTP プロキシーモードでの EGRESS ルーター POD のデプロイ

80 tcp 203.0.113.25
8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443
203.0.113.27

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: http
 port: 80
 - name: https
 port: 443
 type: ClusterIP
 selector:
 name: egress-1

OpenShift Container Platform 4.8 ネットワーク

218

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-egress-router-configmap

1

2

3

4

クラスター管理者は、トラフィックを指定された HTTP および HTTPS ベースのサービスにプロキシー
するように設定された egress ルーター Pod をデプロイできます。

15.9.1. HTTP モードの egress ルーター Pod 仕様

Pod オブジェクトで egress ルーター Pod の設定を定義します。以下の YAML は、HTTP モードでの
egress ルーター Pod の設定のフィールドについて説明しています。

このアノテーションは、OpenShift Container Platform に対して、プライマリーネットワークイン
ターフェイスコントローラー (NIC) に macvlan ネットワークインターフェイスを作成し、その
macvlan インターフェイスを Pod ネットワークの namespace に移動するよう指示します。引用符
を "true" 値の周囲に含める必要があります。OpenShift Container Platform が別の NIC インター
フェイスに macvlan インターフェイスを作成するには、アノテーションの値をそのインターフェ
イスの名前に設定します。たとえば、 eth1 を使用します。

ノードが置かれている物理ネットワークの IP アドレスは egress ルーター Pod で使用するために
予約されます。オプション: サブネットの長さ /24 接尾辞を組み込み、ローカルサブネットへの適
切なルートがセットアップされるようにできます。サブネットの長さを指定しない場合、egress
ルーターは EGRESS_GATEWAY 変数で指定されたホストにのみアクセスでき、サブネットの他
のホストにはアクセスできません。

ノードで使用されるデフォルトゲートウェイと同じ値です。

プロキシーの設定方法を指定する文字列または YAML の複数行文字列です。これは、init コンテ
ナーの他の環境変数ではなく、HTTP プロキシーコンテナーの環境変数として指定されることに注
意してください。

apiVersion: v1
kind: Pod
metadata:
 name: egress-1
 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: <egress-router>
 - name: EGRESS_GATEWAY 3
 value: <egress-gateway>
 - name: EGRESS_ROUTER_MODE
 value: http-proxy
 containers:
 - name: egress-router-pod
 image: registry.redhat.io/openshift4/ose-egress-http-proxy
 env:
 - name: EGRESS_HTTP_PROXY_DESTINATION 4
 value: |-
 ...
 ...

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

219

意してください。

15.9.2. egress 宛先設定形式

egress ルーター Pod が HTTP プロキシーモードでデプロイされる場合、以下の形式のいずれかを使用
してリダイレクトルールを指定できます。これはすべてのリモート宛先への接続を許可することを意味
します。 設定の各行には、許可または拒否する接続の 1 つのグループを指定します。

IP アドレス (例: 192.168.1.1) は該当する IP アドレスへの接続を許可します。

CIDR 範囲 (例: 192.168.1.0/24) は CIDR 範囲への接続を許可します。

ホスト名 (例: www.example.com) は該当ホストへのプロキシーを許可します。

*. が前に付けられているドメイン名 (例: *.example.com) は該当ドメインおよびそのサブドメイ
ンのすべてへのプロキシーを許可します。

先の一致 (match) 式のいずれかの後に来る ! は接続を拒否します。

最後の行が * の場合、明示的に拒否されていないすべてのものが許可されます。それ以外の場
合、許可されないすべてのものが拒否されます。

* を使用してすべてのリモート宛先への接続を許可することもできます。

設定例

15.9.3. HTTP プロキシーモードでの egress ルーター Pod のデプロイ

HTTP プロキシーモードでは、egress ルーター Pod はポート 8080 で HTTP プロキシーとして実行され
ます。このモードは、HTTP または HTTPS ベースのサービスと通信するクライアントの場合にのみ機
能しますが、通常それらを機能させるのにクライアント Pod への多くの変更は不要です。環境変数を
設定することで、数多くのプログラムは HTTP プロキシーを使用するように指示されます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

1. egress ルーター Pod の作成

2. 他の Pod が egress ルーター Pod の IP アドレスを見つられるようにするには、以下の例のよう
に、egress ルーター Pod を参照するサービスを作成します。

!*.example.com
!192.168.1.0/24
192.168.2.1
*

apiVersion: v1
kind: Service
metadata:

OpenShift Container Platform 4.8 ネットワーク

220

1

1

http ポートが常に 8080 に設定されていることを確認します。

3. http_proxy または https_proxy 変数を設定して、クライアント Pod (egress プロキシー Pod
ではない) を HTTP プロキシーを使用するように設定します。

先の手順で作成したサービス。

注記

すべてのセットアップに http_proxy および https_proxy 環境変数が必要になる
訳ではありません。上記を実行しても作業用セットアップが作成されない場合
は、Pod で実行しているツールまたはソフトウェアについてのドキュメントを参
照してください。

15.9.4. 関連情報

ConfigMap を使用した egress ルーターの宛先マッピングの設定

15.10. DNS プロキシーモードでの EGRESS ルーター POD のデプロイ

クラスター管理者は、トラフィックを指定された DNS 名および IP アドレスにプロキシーするように設
定された egress ルーター Pod をデプロイできます。

15.10.1. DNS モードの egress ルーター Pod 仕様

Pod オブジェクトで egress ルーター Pod の設定を定義します。以下の YAML は、DNS モードでの
egress ルーター Pod の設定のフィールドについて説明しています。

 name: egress-1
spec:
 ports:
 - name: http-proxy
 port: 8080 1
 type: ClusterIP
 selector:
 name: egress-1

apiVersion: v1
kind: Pod
metadata:
 name: app-1
 labels:
 name: app-1
spec:
 containers:
 env:
 - name: http_proxy
 value: http://egress-1:8080/ 1
 - name: https_proxy
 value: http://egress-1:8080/
 ...

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

221

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-egress-router-configmap

1

2

3

4

5

このアノテーションは、OpenShift Container Platform に対して、プライマリーネットワークイン
ターフェイスコントローラー (NIC) に macvlan ネットワークインターフェイスを作成し、その
macvlan インターフェイスを Pod ネットワークの namespace に移動するよう指示します。引用符
を "true" 値の周囲に含める必要があります。OpenShift Container Platform が別の NIC インター
フェイスに macvlan インターフェイスを作成するには、アノテーションの値をそのインターフェ
イスの名前に設定します。たとえば、 eth1 を使用します。

ノードが置かれている物理ネットワークの IP アドレスは egress ルーター Pod で使用するために
予約されます。オプション: サブネットの長さ /24 接尾辞を組み込み、ローカルサブネットへの適
切なルートがセットアップされるようにできます。サブネットの長さを指定しない場合、egress
ルーターは EGRESS_GATEWAY 変数で指定されたホストにのみアクセスでき、サブネットの他
のホストにはアクセスできません。

ノードで使用されるデフォルトゲートウェイと同じ値です。

1 つ以上のプロキシー宛先の一覧を指定します。

オプション: DNS プロキシーログ出力を stdout に出力するために指定します。

15.10.2. egress 宛先設定形式

apiVersion: v1
kind: Pod
metadata:
 name: egress-1
 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: <egress-router>
 - name: EGRESS_GATEWAY 3
 value: <egress-gateway>
 - name: EGRESS_ROUTER_MODE
 value: dns-proxy
 containers:
 - name: egress-router-pod
 image: registry.redhat.io/openshift4/ose-egress-dns-proxy
 securityContext:
 privileged: true
 env:
 - name: EGRESS_DNS_PROXY_DESTINATION 4
 value: |-
 ...
 - name: EGRESS_DNS_PROXY_DEBUG 5
 value: "1"
 ...

OpenShift Container Platform 4.8 ネットワーク

222

ルーターが DNS プロキシーモードでデプロイされる場合、ポートおよび宛先マッピングの一覧を指定
します。宛先には、IP アドレスまたは DNS 名のいずれかを使用できます。

egress ルーター Pod は、ポートおよび宛先マッピングを指定するために以下の形式をサポートしま
す。

ポートおよびリモートアドレス

送信元ポートおよび宛先ホストは、2 つのフィールド形式 (<port> <remote_address>) を使用して
指定できます。

ホストには、IP アドレスまたは DNS 名を指定できます。DNS 名を指定すると、DNS 解決が起動時に
行われます。特定のホストについては、プロキシーは、宛先ホスト IP アドレスへの接続時に、宛先ホ
ストの指定された送信元ポートに接続されます。

ポートとリモートアドレスペアの例

ポート、リモートアドレス、およびリモートポート

送信元ポート、宛先ホスト、および宛先ポートは、<port> <remote_address> <remote_port> の 3
つのフィールドからなる形式を使用して指定できます。

3 つのフィールド形式は、2 つのフィールドバージョンと同じように動作しますが、宛先ポートが送信
元ポートとは異なる場合があります。

ポート、リモートアドレス、およびリモートポートの例

15.10.3. DNS プロキシーモードでの egress ルーター Pod のデプロイ

DNS プロキシーモードでは、egress ルーター Pod は、トラフィックを独自の IP アドレスから 1 つ以上
の宛先 IP アドレスに送信する TCP ベースのサービスの DNS プロキシーとして機能します。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

1. egress ルーター Pod の作成

2. egress ルーター Pod のサービスを作成します。

a. 以下の YAML 定義が含まれる egress-router-service.yaml という名前のファイルを作成し
ます。spec.ports を、 EGRESS_DNS_PROXY_DESTINATION 環境変数に先に定義した
ポートの一覧に設定します。

80 172.16.12.11
100 example.com

8080 192.168.60.252 80
8443 web.example.com 443

apiVersion: v1
kind: Service

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

223

以下に例を示します。

b. サービスを作成するには、以下のコマンドを入力します。

Pod がこのサービスに接続できるようになります。これらの接続は、予約された egress IP
アドレスを使用して外部サーバーの対応するポートにプロキシー送信されます。

15.10.4. 関連情報

ConfigMap を使用した egress ルーターの宛先マッピングの設定

15.11. 設定マップからの EGRESS ルーター POD 宛先一覧の設定

クラスター管理者は、egress ルーター Pod の宛先マッピングを指定する ConfigMap オブジェクトを定
義できます。設定の特定の形式は、egress ルーター Pod のタイプによって異なります。形式について
の詳細は、特定の egress ルーター Pod のドキュメントを参照してください。

15.11.1. 設定マップを使用した egress ルーター宛先マッピングの設定

宛先マッピングのセットのサイズが大きいか、またはこれが頻繁に変更される場合、設定マップを使用
して一覧を外部で維持できます。この方法の利点は、設定マップを編集するパーミッションを cluster-
admin 権限を持たないユーザーに委任できることです。egress ルーター Pod には特権付きコンテナー
を必要とするため、cluster-admin 権限を持たないユーザーは Pod 定義を直接編集することはできませ
ん。

注記

metadata:
 name: egress-dns-svc
spec:
 ports:
 ...
 type: ClusterIP
 selector:
 name: egress-dns-proxy

apiVersion: v1
kind: Service
metadata:
 name: egress-dns-svc
spec:
 ports:
 - name: con1
 protocol: TCP
 port: 80
 targetPort: 80
 - name: con2
 protocol: TCP
 port: 100
 targetPort: 100
 type: ClusterIP
 selector:
 name: egress-dns-proxy

$ oc create -f egress-router-service.yaml

OpenShift Container Platform 4.8 ネットワーク

224

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-egress-router-configmap

注記

egress ルーター Pod は、設定マップが変更されても自動的に更新されません。更新を取
得するには、egress ルーター Pod を再起動する必要があります。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

1. 以下の例のように、egress ルーター Pod のマッピングデータが含まれるファイルを作成しま
す。

Egress routes for Project "Test", version 3

80 tcp 203.0.113.25

8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443

Fallback
203.0.113.27

空の行とコメントをこのファイルに追加できます。

2. このファイルから ConfigMap オブジェクトを作成します。

直前のコマンドで、egress-routes 値は、作成する ConfigMap オブジェクトの名前で、 my-
egress-destination.txt はデータの読み取り元のファイルの名前です。

ヒント

$ oc delete configmap egress-routes --ignore-not-found

$ oc create configmap egress-routes \
 --from-file=destination=my-egress-destination.txt

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

225

ヒント

または、以下の YAML を適用して設定マップを作成できます。

3. egress ルーター Pod 定義を作成し、environment スタンザの EGRESS_DESTINATION フィー
ルドに configMapKeyRef スタンザを指定します。

15.11.2. 関連情報

リダイレクトモード

HTTP_PROXY

DNS プロキシーモード

15.12. プロジェクトのマルチキャストの有効化

15.12.1. マルチキャストについて

IP マルチキャストを使用すると、データが多数の IP アドレスに同時に配信されます。

重要

現時点で、マルチキャストは低帯域幅の調整またはサービスの検出での使用に最も適し
ており、高帯域幅のソリューションとしては適していません。

OpenShift Container Platform の Pod 間のマルチキャストトラフィックはデフォルトで無効にされま

apiVersion: v1
kind: ConfigMap
metadata:
 name: egress-routes
data:
 destination: |
 # Egress routes for Project "Test", version 3

 80 tcp 203.0.113.25

 8080 tcp 203.0.113.26 80
 8443 tcp 203.0.113.26 443

 # Fallback
 203.0.113.27

...
env:
- name: EGRESS_DESTINATION
 valueFrom:
 configMapKeyRef:
 name: egress-routes
 key: destination
...

OpenShift Container Platform 4.8 ネットワーク

226

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-egress-router-dest-var_deploying-egress-router-layer3-redirection
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-egress-router-dest-var_deploying-egress-router-http-redirection
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-egress-router-dest-var_deploying-egress-router-dns-redirection

OpenShift Container Platform の Pod 間のマルチキャストトラフィックはデフォルトで無効にされま
す。OpenShift SDN デフォルト Container Network Interface (CNI) ネットワークプロバイダーを使用し
ている場合、プロジェクトごとにマルチキャストを有効にできます。

networkpolicy 分離モードで OpenShift SDN ネットワークプラグインを使用する場合は、以下を行い
ます。

Pod によって送信されるマルチキャストパケットは、 NetworkPolicy オブジェクトに関係な
く、プロジェクトの他のすべての Pod に送信されます。Pod はユニキャストで通信できない場
合でもマルチキャストで通信できます。

1 つのプロジェクトの Pod によって送信されるマルチキャストパケットは、NetworkPolicy オ
ブジェクトがプロジェクト間の通信を許可する場合であっても、それ以外のプロジェクトの
Pod に送信されることはありません。

multinenant 分離モードで OpenShift SDN ネットワークプラグインを使用する場合は、以下を行いま
す。

Pod で送信されるマルチキャストパケットはプロジェクトにあるその他の全 Pod に送信されま
す。

あるプロジェクトの Pod によって送信されるマルチキャストパケットは、各プロジェクトが結
合し、マルチキャストが結合した各プロジェクトで有効にされている場合にのみ、他のプロ
ジェクトの Pod に送信されます。

15.12.2. Pod 間のマルチキャストの有効化

プロジェクトの Pod でマルチキャストを有効にすることができます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにログインする必要があります。

手順

以下のコマンドを実行し、プロジェクトのマルチキャストを有効にします。<namespace>
を、マルチキャストを有効にする必要のある namespace に置き換えます。

検証

マルチキャストがプロジェクトについて有効にされていることを確認するには、以下の手順を実行しま
す。

1. 現在のプロジェクトを、マルチキャストを有効にしたプロジェクトに切り替えます。<project>
をプロジェクト名に置き換えます。

2. マルチキャストレシーバーとして機能する Pod を作成します。

$ oc annotate netnamespace <namespace> \
 netnamespace.network.openshift.io/multicast-enabled=true

$ oc project <project>

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

227

3. マルチキャストセンダーとして機能する Pod を作成します。

4. 新しいターミナルウィンドウまたはタブで、マルチキャストリスナーを起動します。

a. Pod の IP アドレスを取得します。

b. 次のコマンドを入力して、マルチキャストリスナーを起動します。

5. マルチキャストトランスミッターを開始します。

a. Pod ネットワーク IP アドレス範囲を取得します。

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: mlistener
 labels:
 app: multicast-verify
spec:
 containers:
 - name: mlistener
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat hostname && sleep inf"]
 ports:
 - containerPort: 30102
 name: mlistener
 protocol: UDP
EOF

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: msender
 labels:
 app: multicast-verify
spec:
 containers:
 - name: msender
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat && sleep inf"]
EOF

$ POD_IP=$(oc get pods mlistener -o jsonpath='{.status.podIP}')

$ oc exec mlistener -i -t -- \
 socat UDP4-RECVFROM:30102,ip-add-membership=224.1.0.1:$POD_IP,fork
EXEC:hostname

OpenShift Container Platform 4.8 ネットワーク

228

1

b. マルチキャストメッセージを送信するには、以下のコマンドを入力します。

マルチキャストが機能している場合、直前のコマンドは以下の出力を返します。

15.13. プロジェクトのマルチキャストの無効化

15.13.1. Pod 間のマルチキャストの無効化

プロジェクトの Pod でマルチキャストを無効にすることができます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにログインする必要があります。

手順

以下のコマンドを実行して、マルチキャストを無効にします。

マルチキャストを無効にする必要のあるプロジェクトの namespace。

15.14. OPENSHIFT SDN を使用したネットワーク分離の設定

クラスターが OpenShift SDN CNI プラグインのマルチテナント分離モードを使用するように設定され
ている場合、各プロジェクトはデフォルトで分離されます。ネットワークトラフィックは、マルチテナ
ント分離モードでは、異なるプロジェクトの Pod およびサービス間で許可されません。

プロジェクトのマルチテナント分離の動作を 2 つの方法で変更することができます。

1 つ以上のプロジェクトを結合し、複数の異なるプロジェクトの Pod とサービス間のネット
ワークトラフィックを可能にします。

プロジェクトのネットワーク分離を無効にできます。これはグローバルにアクセスできるよう
になり、他のすべてのプロジェクトの Pod およびサービスからのネットワークトラフィックを
受け入れます。グローバルにアクセス可能なプロジェクトは、他のすべてのプロジェクトの
Pod およびサービスにアクセスできます。

15.14.1. 前提条件

$ CIDR=$(oc get Network.config.openshift.io cluster \
 -o jsonpath='{.status.clusterNetwork[0].cidr}')

$ oc exec msender -i -t -- \
 /bin/bash -c "echo | socat STDIO UDP4-
DATAGRAM:224.1.0.1:30102,range=$CIDR,ip-multicast-ttl=64"

mlistener

$ oc annotate netnamespace <namespace> \ 1
 netnamespace.network.openshift.io/multicast-enabled-

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

229

クラスターは、マルチテナント分離ノードで OpenShift SDN Container Network Interface
(CNI) プラグインを使用するように設定されている必要があります。

15.14.2. プロジェクトの結合

2 つ以上のプロジェクトを結合し、複数の異なるプロジェクトの Pod とサービス間のネットワークトラ
フィックを可能にします。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにログインする必要があります。

手順

1. 以下のコマンドを使用して、プロジェクトを既存のプロジェクトネットワークに参加させま
す。

または、特定のプロジェクト名を指定する代わりに --selector=<project_selector> オプション
を使用し、関連付けられたラベルに基づいてプロジェクトを指定できます。

2. オプション: 以下のコマンドを実行し、結合した Pod ネットワークを表示します。

同じ Pod ネットワークのプロジェクトには、NETID 列に同じネットワーク ID があります。

15.14.3. プロジェクトの分離

他のプロジェクトの Pod およびサービスがその Pod およびサービスにアクセスできないようにするた
めにプロジェクトを分離することができます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにログインする必要があります。

手順

クラスターのプロジェクトを分離するには、以下のコマンドを実行します。

または、特定のプロジェクト名を指定する代わりに --selector=<project_selector> オプション
を使用し、関連付けられたラベルに基づいてプロジェクトを指定できます。

15.14.4. プロジェクトのネットワーク分離の無効化

プロジェクトのネットワーク分離を無効にできます。

$ oc adm pod-network join-projects --to=<project1> <project2> <project3>

$ oc get netnamespaces

$ oc adm pod-network isolate-projects <project1> <project2>

OpenShift Container Platform 4.8 ネットワーク

230

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにログインする必要があります。

手順

プロジェクトの以下のコマンドを実行します。

または、特定のプロジェクト名を指定する代わりに --selector=<project_selector> オプション
を使用し、関連付けられたラベルに基づいてプロジェクトを指定できます。

15.15. KUBE-PROXY の設定

Kubernetes メットワークプロキシー (kube-proxy) は各ノードで実行され、Cluster Network Operator
(CNO) で管理されます。kube-proxy は、サービスに関連付けられたエンドポイントの接続を転送する
ためのネットワークルールを維持します。

15.15.1. iptables ルールの同期について

同期の期間は、Kubernetes ネットワークプロキシー (kube-proxy) がノードで iptables ルールを同期す
る頻度を定めます。

同期は、以下のイベントのいずれかが生じる場合に開始します。

サービスまたはエンドポイントのクラスターへの追加、またはクラスターからの削除などのイ
ベントが発生する。

最後の同期以後の時間が kube-proxy に定義される同期期間を超過している。

15.15.2. kube-proxy 設定パラメーター

以下の kubeProxyConfig パラメーターを変更することができます。

注記

OpenShift Container Platform 4.3 以降で強化されたパフォーマンスの向上によ
り、iptablesSyncPeriod パラメーターを調整する必要はなくなりました。

表15.2 パラメーター

パラメーター 説明 値 デフォ
ルト

iptablesSyncPeriod iptables ルールの更新期間。 30s または 2m などの期間。
有効な接尾辞には、s、m、
および h などが含まれ、これ
らについては、Go Package
time ドキュメントで説明され
ています。

30s

$ oc adm pod-network make-projects-global <project1> <project2>

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

231

https://golang.org/pkg/time/#ParseDuration

proxyArguments.iptables-
min-sync-period

iptables ルールを更新する前
の最小期間。このパラメー
ターにより、更新の頻度が高
くなり過ぎないようにできま
す。デフォルトで
は、iptables ルールに影響す
る変更が生じるとすぐに、更
新が開始されます。

30s または 2m などの期間。
有効な接尾辞には、s、m、
および h が含まれ、これらに
ついては、Go Package time
で説明されています。

0s

パラメーター 説明 値 デフォ
ルト

15.15.3. kube-proxy 設定の変化

クラスターの Kubernetes ネットワークプロキシー設定を変更することができます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールで実行中のクラスターにログインします。

手順

1. 以下のコマンドを実行して、Network.operator.openshift.io カスタムリソース (CR) を編集し
ます。

2. 以下のサンプル CR のように、kube-proxy 設定への変更内容で、CR の kubeProxyConfig パ
ラメーターを変更します。

3. ファイルを保存し、テキストエディターを編集します。
構文は、ファイルを保存し、エディターを終了する際に oc コマンドによって検証されます。
変更内容に構文エラーが含まれる場合、エディターはファイルを開き、エラーメッセージを表
示します。

4. 以下のコマンドを実行して、設定の更新を確認します。

出力例

$ oc edit network.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period: ["30s"]

$ oc get networks.operator.openshift.io -o yaml

OpenShift Container Platform 4.8 ネットワーク

232

https://golang.org/pkg/time/#ParseDuration

5. オプション: 以下のコマンドを実行し、Cluster Network Operator が設定変更を受け入れている
ことを確認します。

出力例

設定の更新が正常に適用されると、AVAILABLE フィールドが True になります。

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: Network
 metadata:
 name: cluster
 spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 defaultNetwork:
 type: OpenShiftSDN
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period:
 - 30s
 serviceNetwork:
 - 172.30.0.0/16
 status: {}
kind: List

$ oc get clusteroperator network

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.1.0-0.9 True False False 1m

第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー

233

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバ
イダー

16.1. OVN-KUBERNETES デフォルト CONTAINER NETWORK
INTERFACE (CNI) ネットワークプロバイダーについて

OpenShift Container Platform クラスターは、Pod およびサービスネットワークに仮想化ネットワーク
を使用します。OVN-Kubernetes Container Network Interface (CNI) プラグインは、デフォルトのクラ
スターネットワークのネットワークプロバイダーです。OVN-Kubernetes は Open Virtual Network
(OVN) をベースとしており、オーバーレイベースのネットワーク実装を提供します。OVN-Kubernetes
ネットワークプロバイダーを使用するクラスターは、各ノードで Open vSwitch (OVS) も実行します。
OVN は、宣言ネットワーク設定を実装するように各ノードで OVS を設定します。

16.1.1. OVN-Kubernetes の機能

OVN-Kubernetes Container Network Interface (CNI) クラスターネットワークプロバイダーは、以下の
機能を実装します。

Open Virtual Network (OVN) を使用してネットワークトラフィックフローを管理します。OVN
はコミュニティーで開発され、ベンダーに依存しないネットワーク仮想化ソリューションで
す。

ingress および egress ルールを含む Kubernetes ネットワークポリシーのサポートを実装しま
す。

ノード間にオーバーレイネットワークを作成するには、VXLAN ではなく GENEVE (Generic
Network Virtualization Encapsulation) プロトコルを使用します。

16.1.2. サポートされるデフォルトの CNI ネットワークプロバイダー機能マトリクス

OpenShift Container Platform は、OpenShift SDN と OVN-Kubernetes の 2 つのサポート対象のオプ
ションをデフォルトの Container Network Interface (CNI) ネットワークプロバイダーに提供します。以
下の表は、両方のネットワークプロバイダーの現在の機能サポートをまとめたものです。

表16.1 デフォルトの CNI ネットワークプロバイダー機能の比較

機能 OVN-Kubernetes OpenShift SDN

Egress IP サポート対象 サポート対象

Egress ファイアウォール [1] サポート対象 サポート対象

Egress ルーター サポート対象 [2] サポート対象

IPsec 暗号化 サポート対象 サポート対象外

IPv6 サポート対象 [3] サポート対象外

Kubernetes ネットワークポリシー サポート対象 一部サポート対象 [4]

OpenShift Container Platform 4.8 ネットワーク

234

Kubernetes ネットワークポリシーログ サポート対象 サポート対象外

マルチキャスト サポート対象 サポート対象

機能 OVN-Kubernetes OpenShift SDN

1. egress ファイアウォールは、OpenShift SDN では egress ネットワークポリシーとしても知ら
れています。これはネットワークポリシーの egress とは異なります。

2. OVN-Kubernetes の egress ルーターはリダイレクトモードのみをサポートします。

3. IPv6 はベアメタルクラスターでのみサポートされます。

4. OpenShift SDN のネットワークポリシーは、egress ルールおよび一部の ipBlock ルールをサ
ポートしません。

16.1.3. OVN-Kubernetes の制限

OVN-Kubernetes Container Network Interface (CNI) クラスターネットワークプロバイダーには以下の
制限があります。

OVN-Kubernetes には、Kubernetes サービスの外部トラフィックポリシーまたは内部トラ
フィックポリシーを local に設定するサポートはありません。デフォルト値は cluster で、両方
のパラメーターでサポートされます。この制限は、LoadBalancer タイプ、NodePort タイプの
サービスを追加するか、外部 IP でサービスを追加する際に影響を受ける可能性があります。

sessionAffinityConfig.clientIP.timeoutSeconds サービスは、OpenShift OVN 環境では効果
がありませんが、OpenShiftSDN 環境では効果があります。この非互換性により、
OpenShiftSDN から OVN への移行が困難になる可能性があります。

デュアルスタックネットワークに設定されたクラスターでは、IPv4 と IPv6 の両方のトラ
フィックがデフォルトゲートウェイとして同じネットワークインターフェイスを使用する必要
があります。この要件が満たされない場合には、ovnkube-node デーモンセットのホストにあ
る Pod は、CrashLoopBackOff 状態になります。oc get pod -n openshift-ovn-kubernetes -l
app=ovnkube-node -o yaml のようなコマンドで Pod を表示すると、以下の出力のよう
に、status フィールドにデフォルトゲートウェイに関する複数のメッセージが表示されます。

唯一の解決策は、両方の IP ファミリーがデフォルトゲートウェイに同じネットワークインター
フェイスを使用するように、ホストネットワークを再設定することです。

デュアルスタックネットワーク用に設定されたクラスターの場合、IPv4 と IPv6 の両方のルー
ティングテーブルにデフォルトゲートウェイが含まれている必要があります。この要件が満た
されない場合には、ovnkube-node デーモンセットのホストにある Pod
は、CrashLoopBackOff 状態になります。oc get pod -n openshift-ovn-kubernetes -l
app=ovnkube-node -o yaml のようなコマンドで Pod を表示すると、以下の出力のよう
に、status フィールドにデフォルトゲートウェイに関する複数のメッセージが表示されます。

I1006 16:09:50.985852 60651 helper_linux.go:73] Found default gateway interface br-ex
192.168.127.1
I1006 16:09:50.985923 60651 helper_linux.go:73] Found default gateway interface ens4
fe80::5054:ff:febe:bcd4
F1006 16:09:50.985939 60651 ovnkube.go:130] multiple gateway interfaces detected: br-ex
ens4

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

235

唯一の解決策として、両方の IP ファミリーにデフォルトゲートウェイが含まれるようにホスト
ネットワークを再設定できます。

関連情報

プロジェクトの egress ファイアウォールの設定

ネットワークポリシーについて

ネットワークポリシーイベントのロギング

プロジェクトのマルチキャストの有効化

IPsec 暗号化の設定

Network [operator.openshift.io/v1]

16.2. OPENSHIFT SDN クラスターネットワークプロバイダーからの移行

クラスター管理者は、OpenShift SDN CNI クラスターネットワークプロバイダーから OVN-Kubernetes
Container Network Interface(CNI) クラスターネットワークプロバイダーに移行できます。

OVN-Kubernetes についての詳細は、OVN-Kubernetes ネットワークプロバイダーについて を参照し
てください。

16.2.1. OVN-Kubernetes ネットワークプロバイダーへの移行

OVN-Kubernetes Container Network Interface (CNI) クラスターネットワークプロバイダーへの移行
は、クラスターに到達できなくなるダウンタイムも含まれる手動プロセスです。ロールバック手順が提
供されますが、移行は一方向プロセスとなることが意図されています。

OVN-Kubernetes クラスターネットワークプロバイダーへの移行は、以下のプラットフォームでサポー
トされます。

ベアメタルハードウェア

Amazon Web Services (AWS)

Google Cloud Platform (GCP)

Microsoft Azure

Red Hat OpenStack Platform (RHOSP)

Red Hat Virtualization (RHV)

VMware vSphere

重要

I0512 19:07:17.589083 108432 helper_linux.go:74] Found default gateway interface br-ex
192.168.123.1
F0512 19:07:17.589141 108432 ovnkube.go:133] failed to get default gateway interface

OpenShift Container Platform 4.8 ネットワーク

236

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-egress-firewall-ovn
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#logging-network-policy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-ovn-kubernetes-enabling-multicast
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#about-ipsec-ovn
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/api_reference/#network-operator-openshift-io-v1

重要

OVN-Kubernetes ネットワークプラグインとの間の移行は、OpenShift Dedicated や
Red Hat OpenShift Service on AWS (ROSA) などのマネージド OpenShift クラウドサー
ビスではサポートされていません。

16.2.1.1. OVN-Kubernetes ネットワークプロバイダーへの移行についての考慮点

OpenShift Container Platform クラスターに 150 を超えるノードがある場合は、OVN-Kubernetes ネッ
トワークプラグインへの移行について相談するサポートケースを開きます。

ノードに割り当てられたサブネット、および個々の Pod に割り当てられた IP アドレスは、移行時に保
持されません。

OVN-Kubernetes ネットワークプロバイダーは OpenShift SDN ネットワークプロバイダーに存在する
多くの機能を実装しますが、設定は同じではありません。

クラスターが以下の OpenShift SDN 機能のいずれかを使用する場合、OVN-Kubernetes で同じ
機能を手動で設定する必要があります。

namespace の分離

Egress IP アドレス

Egress ネットワークポリシー

Egress ルーター Pod

マルチキャスト

クラスターが 100.64.0.0/16 IP アドレス範囲の一部を使用する場合、この IP アドレス範囲は内
部で使用されるため、OVN-Kubernetes に移行することはできません。

以下のセクションでは、OVN-Kubernetes と OpenShift SDN の上記の機能間の設定の違いについて説
明します。

namespace の分離
OVN-Kubernetes はネットワークポリシーの分離モードのみをサポートします。

重要

クラスターがマルチテナントまたはサブネットの分離モードのいずれかで設定された
OpenShift SDN を使用する場合、OVN-Kubernetes ネットワークプロバイダーに移行す
ることはできません。

Egress IP アドレス
OVN-Kubernetes と OpenShift SDN との間に egress IP アドレスを設定する際の相違点は、以下の表で
説明されています。

表16.2 egress IP アドレス設定の違い

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

237

OVN-Kubernetes OpenShift SDN

EgressIPs オブジェクトを作成します。

アノテーションを Node オブジェクトに追
加します。

NetNamespace オブジェクトにパッチを
適用します。

HostSubnet オブジェクトにパッチを適用
します。

OVN-Kubernetes で egress IP アドレスを使用する方法についての詳細は、egress IP アドレスの設定に
ついて参照してください。

Egress ネットワークポリシー
OVN-Kubernetes と OpenShift SDN との間に egress ファイアウォールとしても知られる egress ネッ
トワークポリシーの設定についての相違点は、以下の表に記載されています。

表16.3 egress ネットワークポリシー設定の相違点

OVN-Kubernetes OpenShift SDN

EgressFirewall オブジェクトを
namespace に作成します。

EgressNetworkPolicy オブジェクトを
namespace に作成します。

OVN-Kubernetes で egress ファイアウォールを使用する方法についての詳細は、プロジェクトの
egress ファイアウォールの設定について参照してください。

Egress ルーター Pod
OVN-Kubernetes は、リダイレクトモードで Egress ルーター Pod をサポートします。OVN-
Kubernetes は、HTTP プロキシーモードまたは DNS プロキシーモードでは Egress ルーター Pod をサ
ポートしません。

Cluster Network Operator で Egress ルーターをデプロイする場合、ノードセレクターを指定して、
Egress ルーター Pod のホストに使用するノードを制御することはできません。

マルチキャスト
OVN-Kubernetes と OpenShift SDN でマルチキャストトラフィックを有効にする方法についての相違
点は、以下の表で説明されています。

表16.4 マルチキャスト設定の相違点

OVN-Kubernetes OpenShift SDN

アノテーションを Namespace オブジェク
トに追加します。

アノテーションを NetNamespace オブ
ジェクトに追加します。

OVN-Kubernetes でのマルチキャストの使用についての詳細は、プロジェクトのマルチキャストの有効
化を参照してください。

ネットワークポリシー

OVN-Kubernetes は、networking.k8s.io/v1 API グループで Kubernetes NetworkPolicy API を完全に

OpenShift Container Platform 4.8 ネットワーク

238

OVN-Kubernetes は、networking.k8s.io/v1 API グループで Kubernetes NetworkPolicy API を完全に
サポートします。OpenShift SDN から移行する際に、ネットワークポリシーで変更を加える必要はあり
ません。

16.2.1.2. 移行プロセスの仕組み

以下の表は、プロセスのユーザーが開始する手順と、移行が応答として実行するアクション間を区分し
て移行プロセスを要約しています。

表16.5 OpenShift SDN から OVN-Kubernetes への移行

ユーザー起動の手順 移行アクティビティー

cluster という名前の
Network.operator.openshift.io カスタムリソー
ス (CR) の migration フィールドを
OVNKubernetes に設定します。migration
フィールドを値に設定する前に null であることを確
認します。

Cluster Network Operator (CNO)
cluster という名前の
Network.config.openshift.io CR のステータ
スを更新します。

Machine Config Operator (MCO)
OVN-Kubernetes に必要な systemd 設定への更
新をロールアウトします。MCO はデフォルトで 1
度にプールごとに単一のマシンを更新します。こ
れにより、移行にかかる合計時間がクラスターの
サイズと共に増加します。

Network.config.openshift.io CR の
networkType フィールドを更新します。 CNO

以下のアクションを実行します。

OpenShift SDN コントロールプレーン
Pod を破棄します。

OVN-Kubernetes コントロールプレーン
Pod をデプロイします。

新しいクラスターネットワークプロバイ
ダーを反映するように Multus オブジェ
クトを更新します。

クラスターの各ノードを再起動します。
Cluster
ノードの再起動時に、クラスターは OVN-
Kubernetes クラスターネットワークの Pod に IP
アドレスを割り当てます。

OpenShift SDN へのロールバックが必要な場合、以下の表がプロセスについて説明します。

表16.6 OpenShift SDN へのロールバックの実行

ユーザー起動の手順 移行アクティビティー

MCO を一時停止し、移行が中断されないようにしま
す。

MCO が停止します。

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

239

cluster という名前の
Network.operator.openshift.io カスタムリソー
ス (CR) の migration フィールドを
OpenShiftSDN に設定します。migration フィー
ルドを値に設定する前に null であることを確認しま
す。

CNO
cluster という名前の
Network.config.openshift.io CR のステータ
スを更新します。

networkType フィールドを更新します。
CNO
以下のアクションを実行します。

OVN-Kubernetes コントロールプレーン
Pod を破棄します。

OpenShift SDN コントロールプレーン
Pod をデプロイします。

新しいクラスターネットワークプロバイ
ダーを反映するように Multus オブジェ
クトを更新します。

クラスターの各ノードを再起動します。
Cluster
ノードがリブートすると、クラスターは
Openshift-SDN ネットワーク上の Pod に IP アド
レスを割り当てます。

クラスターのすべてのノードが再起動した後に MCO
を有効にします。 MCO

OpenShift SDN に必要な systemd 設定への更新
をロールアウトします。MCO はデフォルトで 1
度にプールごとに単一のマシンを更新します。こ
れにより、移行にかかる合計時間がクラスターの
サイズと共に増加します。

ユーザー起動の手順 移行アクティビティー

16.2.2. OVN-Kubernetes デフォルト CNI ネットワークプロバイダーへの移行

クラスター管理者は、クラスターのデフォルトの Container Network Interface (CNI) ネットワークプロ
バイダーを OVN-Kubernetes に変更できます。移行時に、クラスター内のすべてのノードを再起動す
る必要があります。

重要

移行の実行中はクラスターを利用できず、ワークロードが中断される可能性がありま
す。サービスの中断が許容可能な場合にのみ移行を実行します。

前提条件

ネットワークポリシーの分離モードで OpenShift SDN CNI クラスターネットワークプロバイ
ダーで設定されたクラスター。

OpenShift Container Platform 4.8 ネットワーク

240

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

etcd データベースの最新のバックアップが利用可能である。

再起動は、ノードごとに手動でトリガーできます。

クラスターは既知の正常な状態にあり、エラーがないこと。

手順

1. クラスターネットワークの設定のバックアップを作成するには、以下のコマンドを入力しま
す。

2. 移行のすべてのノードを準備するには、以下のコマンドを入力して Cluster Network Operator
設定オブジェクトに migration フィールドを設定します。

注記

この手順では、OVN-Kubernetes はすぐにデプロイしません。その代わり
に、migration フィールドを指定すると、新規マシン設定が OVN-Kubernetes
デプロイメントの準備に向けてクラスター内のすべてのノードに適用されるよう
に Machine Config Operator (MCO) がトリガーされます。

3. オプション: ネットワークインフラストラクチャーの要件を満たすように OVN-Kubernetes の
以下の設定をカスタマイズできます。

Maximum transmission unit (MTU)

Geneve (Generic Network Virtualization Encapsulation) オーバーレイネットワークポート

以前の設定のいずれかをカスタマイズするには、以下のコマンドを入力してカスタマイズしま
す。デフォルト値を変更する必要がない場合は、パッチのキーを省略します。

mtu

Geneve オーバーレイネットワークの MTU。この値は通常は自動的に設定されますが、ク
ラスターにあるノードすべてが同じ MTU を使用しない場合、これを最小のノード MTU 値
よりも 100 小さく設定する必要があります。

port

$ oc get Network.config.openshift.io cluster -o yaml > cluster-openshift-sdn.yaml

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": {"networkType": "OVNKubernetes" } } }'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "ovnKubernetesConfig":{
 "mtu":<mtu>,
 "genevePort":<port>
 }}}}'

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

241

Geneve オーバーレイネットワークの UDP ポート。値が指定されない場合、デフォルトは
6081 になります。ポートは、OpenShift SDN で使用される VXLAN ポートと同じにするこ
とはできません。VXLAN ポートのデフォルト値は 4789 です。

mtu フィールドを更新するパッチコマンドの例

4. MCO がそれぞれのマシン設定プールのマシンを更新すると、各ノードが 1 つずつ再起動しま
す。すべてのノードが更新されるまで待機する必要があります。以下のコマンドを実行してマ
シン設定プールのステータスを確認します。

正常に更新されたノードには、UPDATED=true、UPDATING=false、 DEGRADED=false のス
テータスがあります。

注記

デフォルトで、MCO はプールごとに一度に 1 つのマシンを更新するため、移行
にかかる合計時間がクラスターのサイズと共に増加します。

5. ホスト上の新規マシン設定のステータスを確認します。

a. マシン設定の状態と適用されたマシン設定の名前を一覧表示するには、以下のコマンドを
入力します。

出力例

以下のステートメントが true であることを確認します。

machineconfiguration.openshift.io/state フィールドの値は Done です。

machineconfiguration.openshift.io/currentConfig フィールドの値
は、machineconfiguration.openshift.io/desiredConfig フィールドの値と等しくなり
ます。

b. マシン設定が正しいことを確認するには、以下のコマンドを入力します。

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "ovnKubernetesConfig":{
 "mtu":1200
 }}}}'

$ oc get mcp

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

OpenShift Container Platform 4.8 ネットワーク

242

ここで、<config_name> は、 machineconfiguration.openshift.io/currentConfig フィー
ルドのマシン設定の名前になります。

マシン設定には、systemd 設定に以下の更新を含める必要があります。

c. ノードが NotReady 状態のままになっている場合、マシン設定デーモン Pod のログを調
べ、エラーを解決します。

i. Pod を一覧表示するには、以下のコマンドを入力します。

出力例

設定デーモン Pod の名前は以下の形式になります。machine-config-daemon-
<seq><seq> 値は、ランダムな 5 文字の英数字シーケンスになります。

ii. 以下のコマンドを入力して、直前の出力に表示される最初のマシン設定デーモン Pod
の Pod ログを表示します。

ここで、pod はマシン設定デーモン Pod の名前になります。

iii. 直前のコマンドの出力で示されるログ内のエラーを解決します。

6. 移行を開始するには、以下のコマンドのいずれかを使用して、OVN-Kubernetes クラスター
ネットワークプロバイダーを設定します。

クラスターネットワークの IP アドレスブロックを変更せずにネットワークプロバイダーを
指定するには、以下のコマンドを入力します。

別のクラスターネットワーク IP アドレスブロックを指定するには、以下のコマンドを入力
します。

$ oc get machineconfig <config_name> -o yaml | grep ExecStart

ExecStart=/usr/local/bin/configure-ovs.sh OVNKubernetes

$ oc get pod -n openshift-machine-config-operator

NAME READY STATUS RESTARTS AGE
machine-config-controller-75f756f89d-sjp8b 1/1 Running 0 37m
machine-config-daemon-5cf4b 2/2 Running 0 43h
machine-config-daemon-7wzcd 2/2 Running 0 43h
machine-config-daemon-fc946 2/2 Running 0 43h
machine-config-daemon-g2v28 2/2 Running 0 43h
machine-config-daemon-gcl4f 2/2 Running 0 43h
machine-config-daemon-l5tnv 2/2 Running 0 43h
machine-config-operator-79d9c55d5-hth92 1/1 Running 0 37m
machine-config-server-bsc8h 1/1 Running 0 43h
machine-config-server-hklrm 1/1 Running 0 43h
machine-config-server-k9rtx 1/1 Running 0 43h

$ oc logs <pod> -n openshift-machine-config-operator

$ oc patch Network.config.openshift.io cluster \
 --type='merge' --patch '{ "spec": { "networkType": "OVNKubernetes" } }'

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

243

ここで、cidr は CIDR ブロックであり、prefix はクラスター内の各ノードに割り当てられ
る CIDR ブロックのスライスです。OVN-Kubernetes ネットワークプロバイダーはこのブ
ロックを内部で使用するため、100.64.0.0/16 CIDR ブロックと重複する CIDR ブロックは使
用できません。

重要

移行時に、サービスネットワークのアドレスブロックを変更することはでき
ません。

7. Multus デーモンセットのロールアウトが完了したことを確認してから、後続の手順を続行しま
す。

Multus Pod の名前の形式は multus-<xxxxx> です。ここで、 <xxxxx> は文字のランダムな
シーケンスになります。Pod が再起動するまでにしばらく時間がかかる可能性があります。

出力例

8. 移行を完了するには、クラスター内の各ノードを再起動します。たとえば、以下のような bash
スクリプトを使用できます。このスクリプトは、ssh を使用して各ホストに接続でき、sudo が
パスワードを要求しないように設定されていることを前提としています。

ssh アクセスが使用できない場合、インフラストラクチャープロバイダーの管理ポータルから
各ノードを再起動できる場合があります。

$ oc patch Network.config.openshift.io cluster \
 --type='merge' --patch '{
 "spec": {
 "clusterNetwork": [
 {
 "cidr": "<cidr>",
 "hostPrefix": "<prefix>"
 }
]
 "networkType": "OVNKubernetes"
 }
 }'

$ oc -n openshift-multus rollout status daemonset/multus

Waiting for daemon set "multus" rollout to finish: 1 out of 6 new pods have been updated...
...
Waiting for daemon set "multus" rollout to finish: 5 of 6 updated pods are available...
daemon set "multus" successfully rolled out

#!/bin/bash

for ip in $(oc get nodes -o jsonpath='{.items[*].status.addresses[?
(@.type=="InternalIP")].address}')
do
 echo "reboot node $ip"
 ssh -o StrictHostKeyChecking=no core@$ip sudo shutdown -r -t 3
done

OpenShift Container Platform 4.8 ネットワーク

244

9. 移行が正常に完了したことを確認します。

a. CNI ネットワークプロバイダーが OVN-Kubernetes であることを確認するには、以下のコ
マンドを入力します。status.networkType の値は OVNKubernetes である必要がありま
す。

b. クラスターノードが Ready 状態にあることを確認するには、以下のコマンドを実行しま
す。

c. Pod がエラー状態ではないことを確認するには、以下のコマンドを入力します。

ノードの Pod がエラー状態にある場合は、そのノードを再起動します。

d. すべてのクラスター Operator が異常な状態にないことを確認するには、以下のコマンドを
入力します。

すべてのクラスター Operator のステータスは、
AVAILABLE="True"、PROGRESSING="False"、DEGRADED="False" になります。ク
ラスター Operator が利用できないか、またはそのパフォーマンスが低下する場合には、ク
ラスター Operator のログで詳細を確認します。

10. 以下の手順は、移行に成功し、クラスターの状態が正常である場合にのみ実行します。

a. CNO 設定オブジェクトから移行設定を削除するには、以下のコマンドを入力します。

b. OpenShift SDN ネットワークプロバイダーのカスタム設定を削除するには、以下のコマン
ドを入力します。

c. OpenShift SDN ネットワークプロバイダー namespace を削除するには、以下のコマンド
を入力します。

16.2.3. 関連情報

OVN-Kubernetes デフォルト CNI ネットワークプロバイダーの設定パラメーター

etcd のバックアップ

ネットワークポリシーについて

$ oc get network.config/cluster -o jsonpath='{.status.networkType}{"\n"}'

$ oc get nodes

$ oc get pods --all-namespaces -o wide --sort-by='{.spec.nodeName}'

$ oc get co

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": null } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "defaultNetwork": { "openshiftSDNConfig": null } } }'

$ oc delete namespace openshift-sdn

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

245

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-operator-configuration-parameters-for-ovn-sdn_cluster-network-operator
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/backup_and_restore/#backup-etcd
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#about-network-policy

OVN-Kubernetes の機能

egress IP アドレスの設定

プロジェクトの egress ファイアウォールの設定

プロジェクトのマルチキャストの有効化

OpenShift SDN の機能

プロジェクトの egress IP の設定

プロジェクトの egress ファイアウォールの設定

プロジェクトのマルチキャストの有効化

Network [operator.openshift.io/v1]

16.3. OPENSHIFT SDN ネットワークプロバイダーへのロールバック

クラスター管理者は、OVN-Kubernetes CNI クラスターのネットワークプロバイダーから OpenShift
SDN クラスターの Container Network Interface (CNI) クラスターネットワークプロバイダーにロール
バックできます (OVN-Kubernetes への移行に失敗した場合)。

16.3.1. デフォルトの CNI ネットワークプロバイダーの OpenShift SDN へのロールバッ
ク

クラスター管理者は、クラスターを OpenShift SDN Container Network Interface (CNI) クラスターネッ
トワークプロバイダーにロールバックできます。ロールバック時に、クラスター内のすべてのノードを
再起動する必要があります。

重要

OVN-Kubernetes への移行に失敗した場合にのみ OpenShift SDN にロールバックしま
す。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

OVN-Kubernetes CNI クラスターネットワークプロバイダーで設定されたインフラストラク
チャーにクラスターがインストールされている。

手順

1. Machine Config Operator (MCO) によって管理されるすべてのマシン設定プールを停止しま
す。

マスター設定プールを停止します。

$ oc patch MachineConfigPool master --type='merge' --patch \
 '{ "spec": { "paused": true } }'

OpenShift Container Platform 4.8 ネットワーク

246

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-egress-ips-ovn
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-egress-firewall-ovn
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-ovn-kubernetes-enabling-multicast
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#assigning-egress-ips
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-egress-firewall
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#enabling-multicast
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/api_reference/#network-operator-openshift-io-v1

ワーカーマシン設定プールを停止します。

2. 移行を開始するには、以下のコマンドを入力してクラスターネットワークプロバイダーを
OpenShift SDN に戻します。

3. オプション: ネットワークインフラストラクチャーの要件を満たすように OpenShift SDN の以
下の設定をカスタマイズできます。

Maximum transmission unit (MTU)

VXLAN ポート

以前の設定のいずれかを両方をカスタマイズするには、カスタマイズし、以下のコマンドを入
力します。デフォルト値を変更する必要がない場合は、パッチのキーを省略します。

mtu

VXLAN オーバーレイネットワークの MTU。この値は通常は自動的に設定されますが、クラ
スターにあるノードすべてが同じ MTU を使用しない場合、これを最小のノード MTU 値よ
りも 50 小さく設定する必要があります。

port

VXLAN オーバーレイネットワークの UDP ポート。値が指定されない場合は、デフォルトは
4789 になります。ポートは OVN-Kubernetes で使用される Geneve ポートと同じにするこ
とはできません。Geneve ポートのデフォルト値は 6081 です。

patch コマンドの例

4. Multus デーモンセットのロールアウトが完了するまで待機します。

$ oc patch MachineConfigPool worker --type='merge' --patch \
 '{ "spec":{ "paused" :true } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": { "networkType": "OpenShiftSDN" } } }'

$ oc patch Network.config.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "networkType": "OpenShiftSDN" } }'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "openshiftSDNConfig":{
 "mtu":<mtu>,
 "vxlanPort":<port>
 }}}}'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "openshiftSDNConfig":{
 "mtu":1200
 }}}}'

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

247

Multus Pod の名前の形式は multus-<xxxxx> です。ここで、<xxxxx> は文字のランダムなシー
ケンスになります。Pod が再起動するまでにしばらく時間がかかる可能性があります。

出力例

5. ロールバックを完了するには、クラスター内の各ノードを再起動します。たとえば、以下のよ
うな bash スクリプトを使用できます。このスクリプトは、ssh を使用して各ホストに接続で
き、sudo がパスワードを要求しないように設定されていることを前提としています。

ssh アクセスが使用できない場合、インフラストラクチャープロバイダーの管理ポータルから
各ノードを再起動できる場合があります。

6. クラスターのノードが再起動したら、すべてのマシン設定プールを起動します。

マスター設定プールを開始します。

ワーカー設定プールを開始します。

MCO が各設定プールのマシンを更新すると、各ノードを再起動します。

デフォルトで、MCO は一度にプールごとに単一のマシンを更新するため、移行が完了するまで
に必要な時間がクラスターのサイズと共に増加します。

7. ホスト上の新規マシン設定のステータスを確認します。

a. マシン設定の状態と適用されたマシン設定の名前を一覧表示するには、以下のコマンドを
入力します。

出力例

$ oc -n openshift-multus rollout status daemonset/multus

Waiting for daemon set "multus" rollout to finish: 1 out of 6 new pods have been updated...
...
Waiting for daemon set "multus" rollout to finish: 5 of 6 updated pods are available...
daemon set "multus" successfully rolled out

#!/bin/bash

for ip in $(oc get nodes -o jsonpath='{.items[*].status.addresses[?
(@.type=="InternalIP")].address}')
do
 echo "reboot node $ip"
 ssh -o StrictHostKeyChecking=no core@$ip sudo shutdown -r -t 3
done

$ oc patch MachineConfigPool master --type='merge' --patch \
 '{ "spec": { "paused": false } }'

$ oc patch MachineConfigPool worker --type='merge' --patch \
 '{ "spec": { "paused": false } }'

$ oc describe node | egrep "hostname|machineconfig"

OpenShift Container Platform 4.8 ネットワーク

248

以下のステートメントが true であることを確認します。

machineconfiguration.openshift.io/state フィールドの値は Done です。

machineconfiguration.openshift.io/currentConfig フィールドの値
は、machineconfiguration.openshift.io/desiredConfig フィールドの値と等しくなり
ます。

b. マシン設定が正しいことを確認するには、以下のコマンドを入力します。

ここで、<config_name> は、 machineconfiguration.openshift.io/currentConfig フィー
ルドのマシン設定の名前になります。

8. 移行が正常に完了したことを確認します。

a. デフォルトの CNI ネットワークプロバイダーが OVN-Kubernetes であることを確認するに
は、以下のコマンドを入力します。status.networkType の値は OpenShiftSDN である必
要があります。

b. クラスターノードが Ready 状態にあることを確認するには、以下のコマンドを実行しま
す。

c. ノードが NotReady 状態のままになっている場合、マシン設定デーモン Pod のログを調
べ、エラーを解決します。

i. Pod を一覧表示するには、以下のコマンドを入力します。

出力例

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml

$ oc get network.config/cluster -o jsonpath='{.status.networkType}{"\n"}'

$ oc get nodes

$ oc get pod -n openshift-machine-config-operator

NAME READY STATUS RESTARTS AGE
machine-config-controller-75f756f89d-sjp8b 1/1 Running 0 37m
machine-config-daemon-5cf4b 2/2 Running 0 43h
machine-config-daemon-7wzcd 2/2 Running 0 43h
machine-config-daemon-fc946 2/2 Running 0 43h
machine-config-daemon-g2v28 2/2 Running 0 43h
machine-config-daemon-gcl4f 2/2 Running 0 43h
machine-config-daemon-l5tnv 2/2 Running 0 43h
machine-config-operator-79d9c55d5-hth92 1/1 Running 0 37m

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

249

設定デーモン Pod の名前は以下の形式になります。machine-config-daemon-
<seq><seq> 値は、ランダムな 5 文字の英数字シーケンスになります。

ii. 直前の出力に表示されるそれぞれのマシン設定デーモン Pod の Pod ログを表示するに
は、以下のコマンドを入力します。

ここで、pod はマシン設定デーモン Pod の名前になります。

iii. 直前のコマンドの出力で示されるログ内のエラーを解決します。

d. Pod がエラー状態ではないことを確認するには、以下のコマンドを入力します。

ノードの Pod がエラー状態にある場合は、そのノードを再起動します。

9. 以下の手順は、移行に成功し、クラスターの状態が正常である場合にのみ実行します。

a. Cluster Network Operator 設定オブジェクトから移行設定を削除するには、以下のコマン
ドを入力します。

b. OVN-Kubernetes 設定を削除するには、以下のコマンドを入力します。

c. OVN-Kubernetes ネットワークプロバイダー namespace を削除するには、以下のコマンド
を入力します。

16.4. IPV4/IPV6 デュアルスタックネットワークへの変換

クラスター管理者は、IPv4 および IPv6 アドレスファミリーをサポートするデュアルネットワーククラ
スターネットワークに、IPv4 の単一スタッククラスターを変換できます。デュアルスタックに変換した
後、新規に作成された Pod はすべてデュアルスタック対応になります。

注記

デュアルスタックネットワークは、インストーラーでプロビジョニングされるベアメタ
ルインフラストラクチャーでのみプロビジョニングされるクラスターでサポートされま
す。

16.4.1. デュアルスタッククラスターネットワークへの変換

machine-config-server-bsc8h 1/1 Running 0 43h
machine-config-server-hklrm 1/1 Running 0 43h
machine-config-server-k9rtx 1/1 Running 0 43h

$ oc logs <pod> -n openshift-machine-config-operator

$ oc get pods --all-namespaces -o wide --sort-by='{.spec.nodeName}'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": null } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "defaultNetwork": { "ovnKubernetesConfig":null } } }'

$ oc delete namespace openshift-ovn-kubernetes

OpenShift Container Platform 4.8 ネットワーク

250

1

2

クラスター管理者は、単一スタッククラスターネットワークをデュアルスタッククラスターネットワー
クに変換できます。

注記

デュアルスタックネットワークへの変換後に、新規に作成された Pod のみに IPv6 アド
レスが割り当てられます。変換前に作成された Pod は、IPv6 アドレスを受信するように
再作成される必要があります。

前提条件

OpenShift CLI (oc) がインストールされている。

cluster-admin 権限を持つユーザーとしてクラスターにログインしていること。

クラスターで OVN-Kubernetes CNI クラスターネットワークプロバイダーを使用している。

クラスターノードに IPv6 アドレスがある。

手順

1. クラスターおよびサービスネットワークの IPv6 アドレスブロックを指定するには、以下の
YAML を含むファイルを作成します。

cidr および hostPrefix フィールドでオブジェクトを指定します。ホストの接頭辞は 64 以
上である必要があります。IPv6 CIDR 接頭辞は、指定されたホスト接頭辞に対応する十分
な大きさである必要があります。

接頭辞が 112 である IPv6 CIDR を指定します。Kubernetes は最低レベルの 16 ビットのみ
を使用します。接頭辞が 112 の場合、IP アドレスは 112 から 128 ビットに割り当てられ
ます。

2. クラスターネットワーク設定にパッチを適用するには、以下のコマンドを入力します。

ここでは、以下のようになります。

file

先の手順で作成したファイルの名前を指定します。

出力例

- op: add
 path: /spec/clusterNetwork/-
 value: 1
 cidr: fd01::/48
 hostPrefix: 64
- op: add
 path: /spec/serviceNetwork/-
 value: fd02::/112 2

$ oc patch network.config.openshift.io cluster \
 --type='json' --patch-file <file>.yaml

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

251

検証

以下の手順を実施して、クラスターネットワークが直前の手順で指定した IPv6 アドレスブロックを認
識していることを確認します。

1. ネットワーク設定を表示します。

出力例

16.5. IPSEC 暗号化の設定

IPsec を有効にすると、OVN-Kubernetes Container Network Interface (CNI) クラスターネットワーク
上のノード間のすべてのネットワークトラフィックは暗号化されたトンネルを通過します。

IPsec はデフォルトで無効にされています。

注記

IPsec 暗号化はクラスターのインストール時にのみ有効にでき、有効にした後は無効にす
ることはできません。インストールのドキュメントについては、 クラスターインストー
ル方法の選択およびその使用に向けた準備 について参照してください。

16.5.1. IPsec で暗号化したネットワークトラフィックフローのタイプ

IPsec を有効にすると、Pod 間の以下のネットワークトラフィックフローのみが暗号化されます。

クラスターネットワーク上の複数の異なるノードの Pod 間のトラフィック

ホストネットワークの Pod からクラスターネットワーク上の Pod へのトラフィック

以下のトラフィックフローは暗号化されません。

クラスターネットワーク上の同じノードの Pod 間のトラフィック

ホストネットワーク上の Pod 間のトラフィック

クラスターネットワークの Pod からホストネットワークの Pod へのトラフィック

network.config.openshift.io/cluster patched

$ oc describe network

Status:
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Cidr: fd01::/48
 Host Prefix: 64
 Cluster Network MTU: 1400
 Network Type: OVNKubernetes
 Service Network:
 172.30.0.0/16
 fd02::/112

OpenShift Container Platform 4.8 ネットワーク

252

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/installing/#installing-preparing

暗号化されていないフローと暗号化されていないフローを以下の図に示します。

16.5.1.1. IPsec が有効になっている場合のネットワーク接続要件

OpenShift Container Platform クラスターのコンポーネントが通信できるように、マシン間のネット
ワーク接続を設定する必要があります。すべてのマシンではクラスターの他のすべてのマシンのホスト
名を解決できる必要があります。

表16.7 すべてのマシンからすべてのマシンへの通信に使用されるポート

プロトコル ポート 説明

UDP 500 IPsec IKE パケット

4500 IPsec NAT-T パケット

ESP 該当なし IPsec Encapsulating Security Payload (ESP)

16.5.2. IPsec の暗号化プロトコルおよびトンネルモード

使用する暗号化は AES-GCM-16-256 です。整合性チェック値 (ICV) は 16 バイトです。鍵の長さは 256
ビットです。

使用する IPsec トンネルモードは、エンドツーエンドの通信を暗号化するモードである Transport モー
ド です。

16.5.3. セキュリティー証明書の生成およびローテーション
Cluster Network Operator (CNO) は、暗号化用に IPsec によって使用される自己署名の X.509 認証局

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

253

Cluster Network Operator (CNO) は、暗号化用に IPsec によって使用される自己署名の X.509 認証局
(CA) を生成します。各ノードの証明書署名要求 (CSR) は、CNO によって自動的に満たされます。

この CA は 10 年間有効です。個別のノード証明書は 5 年間有効で、4 年半が経過すると自動的にロー
テーションされます。

16.6. プロジェクトの EGRESS ファイアウォールの設定

クラスター管理者は、OpenShift Container Platform クラスター外に出るプロジェクトのプロジェクに
ついて、egress トラフィックを制限する egress ファイアウォールを作成できます。

16.6.1. egress ファイアウォールのプロジェクトでの機能

クラスター管理者は、 egress ファイアウォール を使用して、一部またはすべての Pod がクラスター内
からアクセスできる外部ホストを制限できます。egress ファイアウォールポリシーは以下のシナリオを
サポートします。

Pod の接続を内部ホストに制限し、パブリックインターネットへの接続を開始できないように
する。

Pod の接続をパブリックインターネットに制限し、OpenShift Container Platform クラスター
外にある内部ホストへの接続を開始できないようにする。

Pod は OpenShift Container Platform クラスター外の指定された内部サブネットまたはホスト
にアクセスできません。

Pod は特定の外部ホストにのみ接続することができます。

たとえば、指定された IP 範囲へのあるプロジェクトへのアクセスを許可する一方で、別のプロジェク
トへの同じアクセスを拒否することができます。または、アプリケーション開発者の (Python) pip
mirror からの更新を制限したり、更新を承認されたソースからの更新のみに強制的に制限したりするこ
とができます。

EgressFirewall カスタムリソース (CR) オブジェクトを作成して egress ファイアウォールポリシーを設
定します。egress ファイアウォールは、以下のいずれかの基準を満たすネットワークトラフィックと一
致します。

CIDR 形式の IP アドレス範囲。

IP アドレスに解決する DNS 名

ポート番号

プロトコル。TCP、UDP、および SCTP のいずれかになります。

重要

OpenShift Container Platform 4.8 ネットワーク

254

1
2
3

重要

egress ファイアウォールに 0.0.0.0/0 の拒否ルールが含まれる場合、OpenShift
Container Platform API サーバーへのアクセスはブロックされます。Pod が OpenShift
Container Platform API サーバーへのアクセスを継続できるようにするには、以下の例に
あるように API サーバーが egress ファイアウォールルールでリッスンする IP アドレス
範囲を含める必要があります。

egress ファイアウォールの namespace。
OpenShift Container Platform API サーバーを含む IP アドレス範囲。
グローバル拒否ルールにより、OpenShift Container Platform API サーバーへのア
クセスが阻止されます。

API サーバーの IP アドレスを見つけるには、oc get ep kubernetes -n default を実行し
ます。

詳細は、BZ#1988324 を参照してください。

警告

egress ファイアウォールルールは、ルーターを通過するトラフィックには適用され
ません。ルート CR オブジェクトを作成するパーミッションを持つユーザーは、禁
止されている宛先を参照するルートを作成することにより、egress ファイアウォー
ルポリシールールをバイパスできます。

16.6.1.1. egress ファイアウォールの制限

egress ファイアウォールには以下の制限があります。

複数の EgressFirewall オブジェクトを持つプロジェクトはありません。

最大 8,000 のルールを持つ最大 1 つの EgressFirewall オブジェクトはプロジェクトごとに定義
できます。

Red Hat OpenShift Networking の共有ゲートウェイモードで OVN-Kubernetes ネットワークプ

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: default
 namespace: <namespace> 1
spec:
 egress:
 - to:
 cidrSelector: <api_server_address_range> 2
 type: Allow
...
 - to:
 cidrSelector: 0.0.0.0/0 3
 type: Deny



第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

255

https://bugzilla.redhat.com/show_bug.cgi?id=1988324

ラグインを使用している場合に、リターン Ingress 応答は Egress ファイアウォールルールの影
響を受けます。送信ファイアウォールルールが受信応答宛先 IP をドロップすると、トラフィッ
クはドロップされます。

上記の制限のいずれかに違反すると、プロジェクトの egress ファイアウォールに障害が発生し、すべ
ての外部ネットワークトラフィックがドロップされる可能性があります。

egress ファイアウォールリソースは、kube-node-lease、kube-public、kube-
system、openshift、openshift- プロジェクトで作成できます。

16.6.1.2. egress ポリシールールのマッチング順序

egress ファイアウォールポリシールールは、最初から最後へと定義された順序で評価されます。Pod か
らの egress 接続に一致する最初のルールが適用されます。この接続では、後続のルールは無視されま
す。

16.6.1.3. DNS (Domain Name Server) 解決の仕組み

egress ファイアウォールポリシールールのいずれかで DNS 名を使用する場合、ドメイン名の適切な解
決には、以下の制限が適用されます。

ドメイン名の更新は、TTL (Time-to-live) 期間に基づいてポーリングされます。デフォルト
で、期間は 30 分です。egress ファイアウォールコントローラーがローカルネームサーバーで
ドメイン名をクエリーする場合に、応答に 30 分未満の TTL が含まれる場合、コントローラー
は DNS 名の期間を返される値に設定します。それぞれの DNS 名は、DNS レコードの TTL の
期限が切れた後にクエリーされます。

Pod は、必要に応じて同じローカルネームサーバーからドメインを解決する必要があります。
そうしない場合、egress ファイアウォールコントローラーと Pod によって認識されるドメイン
の IP アドレスが異なる可能性があります。ホスト名の IP アドレスが異なる場合、egress ファ
イアウォールは一貫して実行されないことがあります。

egress ファイアウォールコントローラーおよび Pod は同じローカルネームサーバーを非同期に
ポーリングするため、Pod は egress コントローラーが実行する前に更新された IP アドレスを
取得する可能性があります。これにより、競合状態が生じます。この現時点の制限により、
EgressFirewall オブジェクトのドメイン名の使用は、IP アドレスの変更が頻繁に生じないドメ
インの場合にのみ推奨されます。

注記

egress ファイアウォールは、DNS 解決用に Pod が置かれるノードの外部インターフェ
イスに Pod が常にアクセスできるようにします。

ドメイン名を egress ファイアウォールで使用し、DNS 解決がローカルノード上の DNS
サーバーによって処理されない場合は、Pod でドメイン名を使用している場合には DNS
サーバーの IP アドレスへのアクセスを許可する egress ファイアウォールを追加する必
要があります。

16.6.2. EgressFirewall カスタムリソース (CR) オブジェクト

egress ファイアウォールのルールを 1 つ以上定義できます。ルールは、ルールが適用されるトラフィッ
クを指定して Allow ルールまたは Deny ルールのいずれかになります。

以下の YAML は EgressFirewall CR オブジェクトについて説明しています。

OpenShift Container Platform 4.8 ネットワーク

256

1

2

1

2

3

4

5

1

2

EgressFirewall オブジェクト

オブジェクトの名前は default である必要があります。

以下のセクションで説明されているように、egress ネットワークポリシールールのコレクショ
ン。

16.6.2.1. EgressFirewall ルール

以下の YAML は egress ファイアウォールルールオブジェクトについて説明しています。egress スタン
ザは、単一または複数のオブジェクトの配列を予想します。

Egress ポリシールールのスタンザ

ルールのタイプ。値には Allow または Deny のいずれかを指定する必要があります。

cidrSelector フィールドまたは dnsName フィールドを指定する egress トラフィックのマッチン
グルールを記述するスタンザ。同じルールで両方のフィールドを使用することはできません。

CIDR 形式の IP アドレス範囲。

DNS ドメイン名。

オプション: ルールのネットワークポートおよびプロトコルのコレクションを記述するスタンザ。

ポートスタンザ

80 や 443 などのネットワークポート。このフィールドの値を指定する場合は、protocol の値も指
定する必要があります。

ネットワークプロトコル。値は TCP、UDP、または SCTP のいずれかである必要があります。

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: <name> 1
spec:
 egress: 2
 ...

egress:
- type: <type> 1
 to: 2
 cidrSelector: <cidr> 3
 dnsName: <dns_name> 4
 ports: 5
 ...

ports:
- port: <port> 1
 protocol: <protocol> 2

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

257

1

16.6.2.2. EgressFirewall CR オブジェクトの例

以下の例では、複数の egress ファイアウォールポリシールールを定義します。

egress ファイアウォールポリシールールオブジェクトのコレクション。

以下の例では、トラフィックが TCP プロトコルおよび宛先ポート 80 または任意のプロトコルと宛先
ポート 443 のいずれかを使用している場合に、IP アドレス 172.16.1.1 でホストへのトラフィックを拒
否するポリシールールを定義します。

16.6.3. egress ファイアウォールポリシーオブジェクトの作成

クラスター管理者は、プロジェクトの egress ファイアウォールポリシーオブジェクトを作成できま
す。

重要

プロジェクトに EgressFirewall オブジェクトがすでに定義されている場合、既存のポリ
シーを編集して egress ファイアウォールルールを変更する必要があります。

前提条件

OVN-Kubernetes デフォルト Container Network Interface (CNI) ネットワークプロバイダープ
ラグインを使用するクラスター。

OpenShift CLI (oc) をインストールしている。

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: default
spec:
 egress: 1
 - type: Allow
 to:
 cidrSelector: 1.2.3.0/24
 - type: Deny
 to:
 cidrSelector: 0.0.0.0/0

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: default
spec:
 egress:
 - type: Deny
 to:
 cidrSelector: 172.16.1.1
 ports:
 - port: 80
 protocol: TCP
 - port: 443

OpenShift Container Platform 4.8 ネットワーク

258

クラスター管理者としてクラスターにログインする必要があります。

手順

1. ポリシールールを作成します。

a. <policy_name>.yaml ファイルを作成します。この場合、<policy_name> は egress ポリ
シールールを記述します。

b. 作成したファイルで、egress ポリシーオブジェクトを定義します。

2. 以下のコマンドを入力してポリシーオブジェクトを作成します。<policy_name> をポリシーの
名前に、 <project> をルールが適用されるプロジェクトに置き換えます。

以下の例では、新規の EgressFirewall オブジェクトが project1 という名前のプロジェクトに作
成されます。

出力例

3. オプション: 後に変更できるように <policy_name>.yaml ファイルを保存します。

16.7. プロジェクトの EGRESS ファイアウォールの表示

クラスター管理者は、既存の egress ファイアウォールの名前を一覧表示し、特定の egress ファイア
ウォールのトラフィックルールを表示できます。

16.7.1. EgressFirewall オブジェクトの表示

クラスターで EgressFirewall オブジェクトを表示できます。

前提条件

OVN-Kubernetes デフォルト Container Network Interface (CNI) ネットワークプロバイダープ
ラグインを使用するクラスター。

oc として知られる OpenShift コマンドラインインターフェイス (CLI) のインストール。

クラスターにログインすること。

手順

1. オプション: クラスターで定義された EgressFirewall オブジェクトの名前を表示するには、以下
のコマンドを入力します。

2. ポリシーを検査するには、以下のコマンドを入力します。<policy_name> を検査するポリシー

$ oc create -f <policy_name>.yaml -n <project>

$ oc create -f default.yaml -n project1

egressfirewall.k8s.ovn.org/v1 created

$ oc get egressfirewall --all-namespaces

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

259

2. ポリシーを検査するには、以下のコマンドを入力します。<policy_name> を検査するポリシー
の名前に置き換えます。

出力例

16.8. プロジェクトの EGRESS ファイアウォールの編集

クラスター管理者は、既存の egress ファイアウォールのネットワークトラフィックルールを変更でき
ます。

16.8.1. EgressFirewall オブジェクトの編集

クラスター管理者は、プロジェクトの egress ファイアウォールを更新できます。

前提条件

OVN-Kubernetes デフォルト Container Network Interface (CNI) ネットワークプロバイダープ
ラグインを使用するクラスター。

OpenShift CLI (oc) をインストールしている。

クラスター管理者としてクラスターにログインする必要があります。

手順

1. プロジェクトの EgressFirewall オブジェクトの名前を検索します。<project> をプロジェクトの
名前に置き換えます。

2. オプション: egress ネットワークファイアウォールの作成時に EgressFirewall オブジェクトのコ
ピーを保存しなかった場合には、以下のコマンドを入力してコピーを作成します。

<project> をプロジェクトの名前に置き換えます。<name> をオブジェクトの名前に置き換え
ます。<filename> をファイルの名前に置き換え、YAML を保存します。

3. ポリシールールに変更を加えたら、以下のコマンドを実行して EgressFirewall オブジェクトを
置き換えます。<filename> を、更新された EgressFirewall オブジェクトを含むファイルの名前
に置き換えます。

$ oc describe egressfirewall <policy_name>

Name: default
Namespace: project1
Created: 20 minutes ago
Labels: <none>
Annotations: <none>
Rule: Allow to 1.2.3.0/24
Rule: Allow to www.example.com
Rule: Deny to 0.0.0.0/0

$ oc get -n <project> egressfirewall

$ oc get -n <project> egressfirewall <name> -o yaml > <filename>.yaml

OpenShift Container Platform 4.8 ネットワーク

260

16.9. プロジェクトからの EGRESS ファイアウォールの削除

クラスター管理者は、プロジェクトから egress ファイアウォールを削除して、OpenShift Container
Platform クラスター外に出るプロジェクトからネットワークトラフィックについてのすべての制限を削
除できます。

16.9.1. EgressFirewall オブジェクトの削除

クラスター管理者は、プロジェクトから Egress ファイアウォールを削除できます。

前提条件

OVN-Kubernetes デフォルト Container Network Interface (CNI) ネットワークプロバイダープ
ラグインを使用するクラスター。

OpenShift CLI (oc) をインストールしている。

クラスター管理者としてクラスターにログインする必要があります。

手順

1. プロジェクトの EgressFirewall オブジェクトの名前を検索します。<project> をプロジェクトの
名前に置き換えます。

2. 以下のコマンドを入力し、EgressFirewall オブジェクトを削除します。<project> をプロジェク
トの名前に、 <name> をオブジェクトの名前に置き換えます。

16.10. EGRESS IP アドレスの設定

クラスター管理者は、1 つ以上の egress IP アドレスを namespace に、または namespace 内の特定の
pod に割り当てるように、OVN-Kubernetes デフォルト Container Network Interface (CNI) ネットワー
クプロバイダーを設定することができます。

16.10.1. Egress IP アドレスアーキテクチャーの設計および実装

OpenShift Container Platform の egress IP アドレス機能を使用すると、1 つ以上の namespace の 1 つ
以上の Pod からのトラフィックに、クラスターネットワーク外のサービスに対する一貫したソース IP
アドレスを持たせることができます。

たとえば、クラスター外のサーバーでホストされるデータベースを定期的にクエリーする Pod がある
場合があります。サーバーにアクセス要件を適用するために、パケットフィルターリングデバイスは、
特定の IP アドレスからのトラフィックのみを許可するよう設定されます。この特定の Pod のみから
サーバーに確実にアクセスできるようにするには、サーバーに要求を行う Pod に特定の egress IP アド
レスを設定できます。

egress IP アドレスは、ノードのプライマリーネットワークインターフェイスの追加 IP アドレスとして

$ oc replace -f <filename>.yaml

$ oc get -n <project> egressfirewall

$ oc delete -n <project> egressfirewall <name>

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

261

egress IP アドレスは、ノードのプライマリーネットワークインターフェイスの追加 IP アドレスとして
実装され、ノードのプライマリー IP アドレスと同じサブネットにある必要があります。追加の IP アド
レスは、クラスター内の他のノードには割り当てないでください。

一部のクラスター設定では、アプリケーション Pod と Ingress ルーター Pod が同じノードで実行され
ます。このシナリオでアプリケーションプロジェクトの Egress IP アドレスを設定する場合、アプリ
ケーションプロジェクトからルートに要求を送信するときに IP アドレスは使用されません。

16.10.1.1. プラットフォームサポート

各種のプラットフォームでの egress IP アドレス機能のサポートについては、以下の表で説明されてい
ます。

重要

egress IP アドレスの実装は、Amazon Web Services (AWS)、Azure Cloud、または
egress IP 機能で必要な自動レイヤー 2 ネットワーク操作と互換性のない他のパブリック
クラウドプラットフォームと互換性がありません。

プラットフォーム サポート対象

ベアメタル はい

vSphere はい

Red Hat OpenStack Platform (RHOSP) いいえ

パブリッククラウド いいえ

16.10.1.2. egress IP の Pod への割り当て

1 つ以上の egress IP を namespace に、または namespace の特定の Pod に割り当てるには、以下の条
件を満たす必要があります。

クラスター内の 1 つ以上のノードに k8s.ovn.org/egress-assignable: "" ラベルがなければなり
ません。

EgressIP オブジェクトが存在し、これは namespace の Pod からクラスターを離脱するトラ
フィックのソース IP アドレスとして使用する 1 つ以上の egress IP アドレスを定義します。

重要

egress IP の割り当て用にクラスター内のノードにラベルを付ける前に EgressIP オブ
ジェクトを作成する場合、OpenShift Container Platform は k8s.ovn.org/egress-
assignable: "" ラベルですべての egress IP アドレスを最初のノードに割り当てる可能性
があります。

egress IP アドレスがクラスター内のノード全体に広く分散されるようにするに
は、EgressIP オブジェクトを作成する前に、egress IP アドレスをホストする予定の
ノードにラベルを常に適用します。

16.10.1.3. egress IP のノードへの割り当て

OpenShift Container Platform 4.8 ネットワーク

262

EgressIP オブジェクトを作成する場合、k8s.ovn.org/egress-assignable: "" ラベルのラベルが付いた
ノードに以下の条件が適用されます。

egress IP アドレスは一度に複数のノードに割り当てられることはありません。

egress IP アドレスは、egress IP アドレスをホストできる利用可能なノード間で均等に分散さ
れます。

EgressIP オブジェクトの spec.EgressIPs 配列が複数の IP アドレスを指定する場合、ノード
が指定したアドレスを複数ホストすることはありません。

ノードが利用不可の場合、そのノードに割り当てられる egress IP アドレスは自動的に再割り当
てされます (前述の条件が適用されます)。

Pod が複数の EgressIP オブジェクトのセレクターに一致する場合、EgressIP オブジェクトに指定さ
れる egress IP アドレスのどれが Pod の egress IP アドレスとして割り当てられるのかという保証はあ
りません。

さらに、EgressIP オブジェクトが複数の送信 IP アドレスを指定する場合、どの送信 IP アドレスが使
用されるかは保証されません。たとえば、Pod が 10.10.20.1 と 10.10.20.2 の 2 つの egress IP アドレ
スを持つ EgressIP オブジェクトのセレクターと一致する場合、各 TCP 接続または UDP 会話にいずれ
かが使用される可能性があります。

16.10.1.4. egress IP アドレス設定のアーキテクチャー図

以下の図は、egress IP アドレス設定を示しています。この図では、クラスターの 3 つのノードで実行
される 2 つの異なる namespace の 4 つの Pod について説明します。ノードには、ホストネットワーク
の 192.168.126.0/18 CIDR ブロックから IP アドレスが割り当てられます。

Node 1

meta:
name: node1
labels:
k8s.ovn.org/egress-assignable: ""

ノード 1 とノード 3 の両方に k8s.ovn.org/egress-assignable: "" というラベルが付けられるため、
egress IP アドレスの割り当てに利用できます。

図の破線は、pod1、pod2、および pod3 からのトラフィックフローが Pod ネットワークを通過し、ク
ラスターがノード 1 およびノード 3 から出る様子を示しています。外部サービスが、EgressIP オブ
ジェクトの例で選択した Pod からトラフィックを受信する場合、ソース IP アドレスは 192.168.126.10
または 192.168.126.102 のいずれかになります。

図にある次のリソースの詳細を以下に示します。

Namespace オブジェクト

namespace は以下のマニフェストで定義されます。

namespace オブジェクト

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

263

EgressIP オブジェクト

以下の EgressIP オブジェクトは、env ラベルが prod に設定される namespace のすべての Pod を
選択する設定を説明しています。選択された Pod の egress IP アドレスは 192.168.126.10 および
192.168.126.102 です。

EgressIP オブジェクト

直前の例の設定の場合、OpenShift Container Platform は両方の egress IP アドレスを利用可能な
ノードに割り当てます。status フィールドは、egress IP アドレスの割り当ての有無および割り当て
られる場所を反映します。

16.10.2. EgressIP オブジェクト

以下の YAML は、EgressIP オブジェクトの API について説明しています。オブジェクトの範囲はクラ
スター全体です。これは namespace では作成されません。

apiVersion: v1
kind: Namespace
metadata:
 name: namespace1
 labels:
 env: prod

apiVersion: v1
kind: Namespace
metadata:
 name: namespace2
 labels:
 env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egressips-prod
spec:
 egressIPs:
 - 192.168.126.10
 - 192.168.126.102
 namespaceSelector:
 matchLabels:
 env: prod
status:
 assignments:
 - node: node1
 egressIP: 192.168.126.10
 - node: node3
 egressIP: 192.168.126.102

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: <name> 1

OpenShift Container Platform 4.8 ネットワーク

264

1

2

3

4

1

1

EgressIPs オブジェクトの名前。

1 つ以上の IP アドレスの配列。

egress IP アドレスを関連付ける namespace の 1 つ以上のセレクター。

オプション: egress IP アドレスを関連付けるための指定された namespace の Pod の 1 つ以上のセ
レクター。これらのセレクターを適用すると、namespace 内の Pod のサブセットを選択できま
す。

以下の YAML は namespace セレクターのスタンザについて説明しています。

namespace セレクタースタンザ

namespace の 1 つ以上のマッチングルール。複数のマッチングルールを指定すると、一致するす
べての namespace が選択されます。

以下の YAML は Pod セレクターのオプションのスタンザについて説明しています。

Pod セレクタースタンザ

オプション: 指定された namespaceSelector ルールに一致する、namespace の Pod の 1 つ以上の
マッチングルール。これが指定されている場合、一致する Pod のみが選択されます。namespace
の他の Pod は選択されていません。

以下の例では、EgressIP オブジェクトは 192.168.126.11 および 192.168.126.102 egress IP アドレス
を、app ラベルが web に設定されており、env ラベルが prod に設定されている namespace にある
Pod に関連付けます。

EgressIP オブジェクトの例

spec:
 egressIPs: 2
 - <ip_address>
 namespaceSelector: 3
 ...
 podSelector: 4
 ...

namespaceSelector: 1
 matchLabels:
 <label_name>: <label_value>

podSelector: 1
 matchLabels:
 <label_name>: <label_value>

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-group1
spec:

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

265

1

以下の例では、EgressIP オブジェクトは、192.168.127.30 および 192.168.127.40 egress IP アドレス
を、environment ラベルが development に設定されていない Pod に関連付けます。

EgressIP オブジェクトの例

16.10.3. egress IP アドレスをホストするノードのラベル付け

OpenShift Container Platform が 1 つ以上の egress IP アドレスをノードに割り当てることができるよう
に、k8s.ovn.org/egress-assignable="" ラベルをクラスター内のノードに適用することができます。

前提条件

OpenShift CLI (oc) をインストールしている。

クラスター管理者としてクラスターにログインします。

手順

1 つ以上の egress IP アドレスをホストできるようにノードにラベルを付けるには、以下のコマ
ンドを入力します。

ラベルを付けるノードの名前。

ヒント

 egressIPs:
 - 192.168.126.11
 - 192.168.126.102
 podSelector:
 matchLabels:
 app: web
 namespaceSelector:
 matchLabels:
 env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-group2
spec:
 egressIPs:
 - 192.168.127.30
 - 192.168.127.40
 namespaceSelector:
 matchExpressions:
 - key: environment
 operator: NotIn
 values:
 - development

$ oc label nodes <node_name> k8s.ovn.org/egress-assignable="" 1

OpenShift Container Platform 4.8 ネットワーク

266

ヒント

または、以下の YAML を適用してラベルをノードに追加できます。

16.10.4. 次のステップ

egress IP の割り当て

16.10.5. 関連情報

LabelSelector meta/v1

LabelSelectorRequirement meta/v1

16.11. EGRESS IP アドレスの割り当て

クラスター管理者は、namespace または namespace の特定の Pod からクラスターを出るトラフィッ
クに egress IP アドレスを割り当てることができます。

16.11.1. egress IP アドレスの namespace への割り当て

1 つ以上の egress IP アドレスを namespace または namespace の特定の Pod に割り当てることができ
ます。

前提条件

OpenShift CLI (oc) をインストールしている。

クラスター管理者としてクラスターにログインします。

egress IP アドレスをホストするように 1 つ以上のノードを設定します。

手順

1. EgressIP オブジェクトを作成します。

a. <egressips_name>.yaml ファイルを作成します。<egressips_name> はオブジェクトの
名前になります。

b. 作成したファイルで、以下の例のように EgressIPs オブジェクトを定義します。

apiVersion: v1
kind: Node
metadata:
 labels:
 k8s.ovn.org/egress-assignable: ""
 name: <node_name>

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-project1
spec:
 egressIPs:

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

267

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#assigning-egress-ips-ovn
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/api_reference/#labelselector-meta-v1
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/api_reference/#labelselectorrequirement-meta-v1

1

1

2. オブジェクトを作成するには、以下のコマンドを入力します。

<egressips_name> をオブジェクトの名前に置き換えます。

出力例

3. オプション: 後に変更できるように <egressips_name>.yaml ファイルを保存します。

4. egress IP アドレスを必要とする namespace にラベルを追加します。手順 1 で定義した Egress
IP オブジェクトの namespace にラベルを追加するには、以下のコマンドを実行します。

<namespace> は、egress IP アドレスを必要とする namespace に置き換えてくださ
い。

16.11.2. 関連情報

egress IP アドレスの設定

16.12. EGRESS ルーター POD の使用についての考慮事項

16.12.1. egress ルーター Pod について

OpenShift Container Platform egress ルーター Pod は、他の用途で使用されていないプライベートソー
ス IP アドレスから指定されたリモートサーバーにトラフィックをリダイレクトします。Egress ルー
ター Pod により、特定の IP アドレスからのアクセスのみを許可するように設定されたサーバーにネッ
トワークトラフィックを送信できます。

注記

egress ルーター Pod はすべての発信接続のために使用されることが意図されていませ
ん。多数の egress ルーター Pod を作成することで、ネットワークハードウェアの制限
を引き上げられる可能性があります。たとえば、すべてのプロジェクトまたはアプリ
ケーションに egress ルーター Pod を作成すると、ソフトウェアの MAC アドレスのフィ
ルターに戻る前にネットワークインターフェイスが処理できるローカル MAC アドレス数
の上限を超えてしまう可能性があります。

重要

 - 192.168.127.10
 - 192.168.127.11
 namespaceSelector:
 matchLabels:
 env: qa

$ oc apply -f <egressips_name>.yaml 1

egressips.k8s.ovn.org/<egressips_name> created

$ oc label ns <namespace> env=qa 1

OpenShift Container Platform 4.8 ネットワーク

268

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-egress-ips-ovn

重要

egress ルーターイメージには Amazon AWS, Azure Cloud またはレイヤー 2 操作をサポー
トしないその他のクラウドプラットフォームとの互換性がありません。 それらに
macvlan トラフィックとの互換性がないためです。

16.12.1.1. Egress ルーターモード

リダイレクトモード では、egress ルーター Pod は、トラフィックを独自の IP アドレスから 1 つ以上の
宛先 IP アドレスにリダイレクトするために iptables ルールをセットアップします。予約されたソース
IP アドレスを使用する必要のあるクライアント Pod は、宛先 IP に直接接続するのでなく、egress ルー
ターに接続するように変更される必要があります。

注記

egress ルーター CNI プラグインはリダイレクトモードのみをサポートします。これは、
OpenShift SDN でデプロイできる egress ルーター実装の相違点です。OpenShift SDN
の Egress ルーターとは異なり、Egress ルーター CNI プラグインは HTTP プロキシー
モードまたは DNS プロキシーモード をサポートしません。

16.12.1.2. egress ルーター Pod の実装

egress ルーターの実装では、egress ルーターの Container Network Interface (CNI) プラグインを使用し
ます。プラグインはセカンダリーネットワークインターフェイスを Pod に追加します。

egress ルーターは、2 つのネットワークインターフェイスを持つ Pod です。たとえば、Pod に
は、eth0 および net1 ネットワークインターフェイスを使用できます。eth0 インターフェイスはクラ
スターネットワークにあり、Pod は通常のクラスター関連のネットワークトラフィックにこのインター
フェイスを引き続き使用します。net1 インターフェイスはセカンダリーネットワークにあり、その
ネットワークの IP アドレスとゲートウェイを持ちます。OpenShift Container Platform クラスターの他
の Pod は egress ルーターサービスにアクセスでき、サービスにより Pod が外部サービスにアクセスで
きるようになります。egress ルーターは、Pod と外部システム間のブリッジとして機能します。

egress ルーターから出るトラフィックはノードで終了しますが、パケットには egress ルーター Pod か
らの net1 インターフェイスの MAC アドレスがあります。

Egress ルーターのカスタムリソースを追加すると、Cluster Network Operator は以下のオブジェクトを
作成します。

Pod の net1 セカンダリーネットワークインターフェイス用のネットワーク接続定義。

Egress ルーターのデプロイメント。

Egress ルーターカスタムリソースを削除する場合、Operator は Egress ルーターに関連付けられた直前
の一覧の 2 つのオブジェクトを削除します。

16.12.1.3. デプロイメントに関する考慮事項

egress ルーター Pod は追加の IP アドレスおよび MAC アドレスをノードのプライマリーネットワーク
インターフェイスに追加します。その結果、ハイパーバイザーまたはクラウドプロバイダーを、追加の
アドレスを許可するように設定する必要がある場合があります。

Red Hat OpenStack Platform (RHOSP)

OpenShift Container Platform を RHOSP にデプロイする場合、OpenStack 環境の egress ルーター

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

269

OpenShift Container Platform を RHOSP にデプロイする場合、OpenStack 環境の egress ルーター
Pod の IP および MAC アドレスからのトラフィックを許可する必要があります。トラフィックを許
可しないと、通信は失敗 します。

Red Hat Virtualization (RHV)

RHV を使用している場合は、仮想インターフェイスカード (vNIC) に No Network Filter を選択する
必要があります。

VMware vSphere

VMware vSphere を使用している場合は、vSphere 標準スイッチのセキュリティー保護についての
VMware ドキュメント を参照してください。vSphere Web クライアントからホストの仮想スイッチ
を選択して、VMware vSphere デフォルト設定を表示し、変更します。

とくに、以下が有効にされていることを確認します。

MAC アドレスの変更

偽装転送 (Forged Transit)

無作為別モード (Promiscuous Mode) 操作

16.12.1.4. フェイルオーバー設定

ダウンタイムを回避するにために、Cluster Network Operator は Egress ルーター Pod をデプロイメン
トリソースとしてデプロイします。デプロイメント名は egress-router-cni-deployment です。デプロ
イメントに対応する Pod には app=egress-router-cni のラベルがあります。

デプロイメントの新規サービスを作成するには、oc expose deployment/egress-router-cni-
deployment --port <port_number> コマンドを使用するか、以下のようにファイルを作成します。

16.12.2. 関連情報

リダイレクトモードでの egress ルーターのデプロイ

$ openstack port set --allowed-address \
 ip_address=<ip_address>,mac_address=<mac_address> <neutron_port_uuid>

apiVersion: v1
kind: Service
metadata:
 name: app-egress
spec:
 ports:
 - name: tcp-8080
 protocol: TCP
 port: 8080
 - name: tcp-8443
 protocol: TCP
 port: 8443
 - name: udp-80
 protocol: UDP
 port: 80
 type: ClusterIP
 selector:
 app: egress-router-cni

OpenShift Container Platform 4.8 ネットワーク

270

https://access.redhat.com/solutions/2803331
https://access.redhat.com/documentation/ja-jp/red_hat_virtualization/4.4/html/administration_guide/chap-logical_networks#Explanation_of_Settings_in_the_VM_Interface_Profile_Window
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#deploying-egress-router-ovn-redirection

16.13. リダイレクトモードでの EGRESS ルーター POD のデプロイ

クラスター管理者は、トラフィックを予約されたソース IP アドレスから指定された宛先 IP アドレスに
リダイレクトするように egress ルーター Pod をデプロイできます。

egress ルーターの実装では、egress ルーターの Container Network Interface (CNI) プラグインを使用し
ます。

16.13.1. Egress ルーターのカスタムリソース

Egress ルーターのカスタムリソースで Egress ルーター Pod の設定を定義します。以下の YAML は、
リダイレクトモードでの Egress ルーターの設定のフィールドについて説明しています。

<.> オプション: namespace フィールドは、Egress ルーターを作成するための namespace を指定しま
す。ファイルまたはコマンドラインで値を指定しない場合には、default namespace が使用されます。

<.> addresses フィールドは、セカンダリーネットワークインターフェイスに設定する IP アドレスを指
定します。

<.> ip フィールドは、ノードが Egress ルーター Pod と使用する物理ネットワークからの予約済みソー
ス IP アドレスとネットマスクを指定します。CIDR 表記を使用して IP アドレスとネットマスクを指定
します。

<.> gateway フィールドは、ネットワークゲートウェイの IP アドレスを指定します。

<.> オプション: redirectRules フィールドは、Egress 宛先 IP アドレス、Egress ルーターポート、およ
びプロトコルの組み合わせを指定します。指定されたポートとプロトコルでの Egress ルーターへの着
信接続は、宛先 IP アドレスにルーティングされます。

<.> オプション: targetPort フィールドは、宛先 IP アドレスのネットワークポートを指定します。この

apiVersion: network.operator.openshift.io/v1
kind: EgressRouter
metadata:
 name: <egress_router_name>
 namespace: <namespace> <.>
spec:
 addresses: [<.>
 {
 ip: "<egress_router>", <.>
 gateway: "<egress_gateway>" <.>
 }
]
 mode: Redirect
 redirect: {
 redirectRules: [<.>
 {
 destinationIP: "<egress_destination>",
 port: <egress_router_port>,
 targetPort: <target_port>, <.>
 protocol: <network_protocol> <.>
 },
 ...
],
 fallbackIP: "<egress_destination>" <.>
 }

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

271

<.> オプション: targetPort フィールドは、宛先 IP アドレスのネットワークポートを指定します。この
フィールドが指定されていない場合、トラフィックは到達したネットワークポートと同じネットワーク
ポートにルーティングされます。

<.> protocol フィールドは TCP、UDP、または SCTP をサポートします。

<.> オプション: fallbackIP フィールドは、宛先 IP アドレスを指定します。リダイレクトルールを指定し
ない場合、Egress ルーターはすべてのトラフィックをこのフォールバック IP アドレスに送信します。
リダイレクトルールを指定する場合、ルールに定義されていないネットワークポートへの接続は、
Egress ルーターによってこのフォールバック IP アドレスに送信されます。このフィールドを指定しな
い場合、Egress ルーターはルールで定義されていないネットワークポートへの接続を拒否します。

egress ルーター仕様の例

16.13.2. リダイレクトモードでの Egress ルーターのデプロイ

egress ルーターをデプロイして、独自の予約済みソース IP アドレスから 1 つ以上の宛先 IP アドレスに

apiVersion: network.operator.openshift.io/v1
kind: EgressRouter
metadata:
 name: egress-router-redirect
spec:
 networkInterface: {
 macvlan: {
 mode: "Bridge"
 }
 }
 addresses: [
 {
 ip: "192.168.12.99/24",
 gateway: "192.168.12.1"
 }
]
 mode: Redirect
 redirect: {
 redirectRules: [
 {
 destinationIP: "10.0.0.99",
 port: 80,
 protocol: UDP
 },
 {
 destinationIP: "203.0.113.26",
 port: 8080,
 targetPort: 80,
 protocol: TCP
 },
 {
 destinationIP: "203.0.113.27",
 port: 8443,
 targetPort: 443,
 protocol: TCP
 }
]
 }

OpenShift Container Platform 4.8 ネットワーク

272

egress ルーターをデプロイして、独自の予約済みソース IP アドレスから 1 つ以上の宛先 IP アドレスに
トラフィックをリダイレクトできます。

egress ルーターを追加した後に、予約済みソース IP アドレスを使用する必要のあるクライアント Pod
は、宛先 IP に直接接続するのでなく、egress ルーターに接続するように変更される必要があります。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin 権限を持つユーザーとしてログインすること。

手順

1. egress ルーター定義の作成

2. 他の Pod が egress ルーター Pod の IP アドレスを見つられるようにするには、以下の例のよう
に、egress ルーターを使用するサービスを作成します。

<.> egress ルーターのラベルを指定します。表示されている値は Cluster Network Operator に
よって追加され、設定不可能です。

サービスの作成後に、Pod はサービスに接続できます。egress ルーター Pod は、トラフィック
を宛先 IP アドレスの対応するポートにリダイレクトします。接続は、予約されたソース IP ア
ドレスを起点とします。

検証

Cluster Network Operator が egress ルーターを起動したことを確認するには、以下の手順を実行しま
す。

1. Operator が egress ルーター用に作成したネットワーク接続定義を表示します。

ネットワーク接続定義の名前は設定できません。

出力例

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: web-app
 protocol: TCP
 port: 8080
 type: ClusterIP
 selector:
 app: egress-router-cni <.>

$ oc get network-attachment-definition egress-router-cni-nad

NAME AGE
egress-router-cni-nad 18m

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

273

2. egress ルーター Pod のデプロイメントを表示します。

デプロイメントの名前は設定できません。

出力例

3. egress ルーター Pod のステータスを表示します。

出力例

4. egress ルーター Pod のログとルーティングテーブルを表示します。

a. egress ルーター Pod のノード名を取得します。

b. ターゲットノードのデバッグセッションに入ります。この手順は、<node_name>-debug とい
うデバッグ Pod をインスタンス化します。

c. /host をデバッグシェル内の root ディレクトリーとして設定します。デバッグ Pod は、Pod 内
の /host にホストのルートファイルシステムをマウントします。ルートディレクトリーを /host
に変更すると、ホストの実行可能パスに含まれるバイナリーを実行できます。

d. chroot 環境コンソール内から、egress ルーターログを表示します。

出力例

$ oc get deployment egress-router-cni-deployment

NAME READY UP-TO-DATE AVAILABLE AGE
egress-router-cni-deployment 1/1 1 1 18m

$ oc get pods -l app=egress-router-cni

NAME READY STATUS RESTARTS AGE
egress-router-cni-deployment-575465c75c-qkq6m 1/1 Running 0 18m

$ POD_NODENAME=$(oc get pod -l app=egress-router-cni -o jsonpath="
{.items[0].spec.nodeName}")

$ oc debug node/$POD_NODENAME

chroot /host

cat /tmp/egress-router-log

2021-04-26T12:27:20Z [debug] Called CNI ADD
2021-04-26T12:27:20Z [debug] Gateway: 192.168.12.1
2021-04-26T12:27:20Z [debug] IP Source Addresses: [192.168.12.99/24]
2021-04-26T12:27:20Z [debug] IP Destinations: [80 UDP 10.0.0.99/30 8080 TCP
203.0.113.26/30 80 8443 TCP 203.0.113.27/30 443]
2021-04-26T12:27:20Z [debug] Created macvlan interface
2021-04-26T12:27:20Z [debug] Renamed macvlan to "net1"
2021-04-26T12:27:20Z [debug] Adding route to gateway 192.168.12.1 on macvlan interface

OpenShift Container Platform 4.8 ネットワーク

274

この手順で説明されているように、EgressRouter オブジェクトを作成して egress ルーターを
起動する場合、ロギングファイルの場所とロギングレベルは設定できません。

e. chroot 環境コンソール内で、コンテナー ID を取得します。

出力例

f. コンテナーのプロセス ID を判別します。この例では、コンテナー ID は bac9fae69ddb6 です。

出力例

g. コンテナーのネットワーク namespace を入力します。

h. ルーティングテーブルを表示します。

以下の出力例では、net1 ネットワークインターフェイスはデフォルトのルートです。クラス
ターネットワークのトラフィックは eth0 ネットワークインターフェイスを使用しま
す。192.168.12.0/24 ネットワークのトラフィックは、net1 ネットワークインターフェイスを
使用し、予約されたソース IP アドレス 192.168.12.99 を起点とします。Pod は他のすべてのト
ラフィックを IP アドレス 192.168.12.1 のゲートウェイにルーティングします。サービスネッ
トワークのルーティングは表示されません。

出力例

2021-04-26T12:27:20Z [debug] deleted default route {Ifindex: 3 Dst: <nil> Src: <nil> Gw:
10.128.10.1 Flags: [] Table: 254}
2021-04-26T12:27:20Z [debug] Added new default route with gateway 192.168.12.1
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p
UDP --dport 80 -j DNAT --to-destination 10.0.0.99
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p
TCP --dport 8080 -j DNAT --to-destination 203.0.113.26:80
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p
TCP --dport 8443 -j DNAT --to-destination 203.0.113.27:443
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat -o net1 -j SNAT --to-
source 192.168.12.99

crictl ps --name egress-router-cni-pod | awk '{print $1}'

CONTAINER
bac9fae69ddb6

crictl inspect -o yaml bac9fae69ddb6 | grep 'pid:' | awk '{print $2}'

68857

nsenter -n -t 68857

ip route

default via 192.168.12.1 dev net1
10.128.10.0/23 dev eth0 proto kernel scope link src 10.128.10.18
192.168.12.0/24 dev net1 proto kernel scope link src 192.168.12.99
192.168.12.1 dev net1

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

275

16.14. プロジェクトのマルチキャストの有効化

16.14.1. マルチキャストについて

IP マルチキャストを使用すると、データが多数の IP アドレスに同時に配信されます。

重要

現時点で、マルチキャストは低帯域幅の調整またはサービスの検出での使用に最も適し
ており、高帯域幅のソリューションとしては適していません。

OpenShift Container Platform の Pod 間のマルチキャストトラフィックはデフォルトで無効にされま
す。OVN-Kubernetes デフォルト Container Network Interface (CNI) ネットワークプロバイダーを使用
している場合には、プロジェクトごとにマルチキャストを有効にすることができます。

16.14.2. Pod 間のマルチキャストの有効化

プロジェクトの Pod でマルチキャストを有効にすることができます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにログインする必要があります。

手順

以下のコマンドを実行し、プロジェクトのマルチキャストを有効にします。<namespace>
を、マルチキャストを有効にする必要のある namespace に置き換えます。

ヒント

または、以下の YAML を適用してアノテーションを追加できます。

検証

マルチキャストがプロジェクトについて有効にされていることを確認するには、以下の手順を実行しま
す。

1. 現在のプロジェクトを、マルチキャストを有効にしたプロジェクトに切り替えます。<project>
をプロジェクト名に置き換えます。

$ oc annotate namespace <namespace> \
 k8s.ovn.org/multicast-enabled=true

apiVersion: v1
kind: Namespace
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/multicast-enabled: "true"

OpenShift Container Platform 4.8 ネットワーク

276

2. マルチキャストレシーバーとして機能する Pod を作成します。

3. マルチキャストセンダーとして機能する Pod を作成します。

4. 新しいターミナルウィンドウまたはタブで、マルチキャストリスナーを起動します。

a. Pod の IP アドレスを取得します。

b. 次のコマンドを入力して、マルチキャストリスナーを起動します。

$ oc project <project>

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: mlistener
 labels:
 app: multicast-verify
spec:
 containers:
 - name: mlistener
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat hostname && sleep inf"]
 ports:
 - containerPort: 30102
 name: mlistener
 protocol: UDP
EOF

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: msender
 labels:
 app: multicast-verify
spec:
 containers:
 - name: msender
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat && sleep inf"]
EOF

$ POD_IP=$(oc get pods mlistener -o jsonpath='{.status.podIP}')

$ oc exec mlistener -i -t -- \
 socat UDP4-RECVFROM:30102,ip-add-membership=224.1.0.1:$POD_IP,fork
EXEC:hostname

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

277

1

5. マルチキャストトランスミッターを開始します。

a. Pod ネットワーク IP アドレス範囲を取得します。

b. マルチキャストメッセージを送信するには、以下のコマンドを入力します。

マルチキャストが機能している場合、直前のコマンドは以下の出力を返します。

16.15. プロジェクトのマルチキャストの無効化

16.15.1. Pod 間のマルチキャストの無効化

プロジェクトの Pod でマルチキャストを無効にすることができます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにログインする必要があります。

手順

以下のコマンドを実行して、マルチキャストを無効にします。

マルチキャストを無効にする必要のあるプロジェクトの namespace。

ヒント

または、以下の YAML を適用してアノテーションを削除できます。

16.16. ネットワークフローの追跡

$ CIDR=$(oc get Network.config.openshift.io cluster \
 -o jsonpath='{.status.clusterNetwork[0].cidr}')

$ oc exec msender -i -t -- \
 /bin/bash -c "echo | socat STDIO UDP4-
DATAGRAM:224.1.0.1:30102,range=$CIDR,ip-multicast-ttl=64"

mlistener

$ oc annotate namespace <namespace> \ 1
 k8s.ovn.org/multicast-enabled-

apiVersion: v1
kind: Namespace
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/multicast-enabled: null

OpenShift Container Platform 4.8 ネットワーク

278

クラスター管理者は、以下の領域をサポートする、クラスターからの Pod ネットワークフローについ
ての情報を収集できます。

Pod ネットワークで ingress および egress トラフィックをモニターします。

パフォーマンスに関する問題のトラブルシューティング

容量計画およびセキュリティー監査に関するデータを収集します。

ネットワークフローのコレクションを有効にすると、トラフィックに関するメタデータのみが収集され
ます。たとえば、パケットデータは収集されませんが、プロトコル、ソースアドレス、宛先アドレス、
ポート番号、バイト数、その他のパケットレベルの情報を収集します。

データは、以下の 1 つ以上のレコード形式で収集されます。

NetFlow

sFlow

IPFIX

1 つ以上のコレクター IP アドレスおよびポート番号を使用して Cluster Network Operator (CNO) を設
定する場合、Operator は各ノードで Open vSwitch (OVS) を設定し、ネットワークフローレコードを各
コレクターに送信します。

Operator を、複数のネットワークフローコレクターにレコードを送信するように設定できます。たと
えば、レコードを NetFlow コレクターに送信し、レコードを sFlow コレクターに送信することもでき
ます。

OVS がデータをコレクターに送信すると、それぞれのタイプのコレクターは同一レコードを受け取り
ます。たとえば、2 つの NetFlow コレクターを設定すると、ノード上の OVS は同じレコードを 2 つの
コレクターに送信します。また、2 つの sFlow コレクターを設定した場合には、2 つの sFlow コレク
ターが同じレコードを受け取ります。ただし、各コレクタータイプには固有のレコード形式がありま
す。

ネットワークフローデータを収集し、レコードをコレクターに送信すると、パフォーマンスに影響があ
ります。ノードは低速でパケットを処理します。パフォーマンスへの影響が大きすぎる場合は、コレク
ターの宛先を削除し、ネットワークフローデータの収集を無効にしてパフォーマンスを回復できます。

注記

ネットワークフローコレクターを有効にすると、クラスターネットワークの全体的なパ
フォーマンスに影響を与える可能性があります。

16.16.1. ネットワークフローを追跡するためのネットワークオブジェクト設定

Cluster Network Operator (CNO) でネットワークフローコレクターを設定するフィールドを以下の表に
示します。

表16.8 ネットワークフローの設定

フィールド タイプ 説明

metadata.name string CNO オブジェクトの名前。この名前は常に cluster です。

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

279

spec.exportNet
workFlows

object 1 つ以上の netFlow、sFlow、または ipfix。

spec.exportNet
workFlows.netF
low.collectors

array 最大 10 コレクターの IP アドレスとネットワークポートのペアの
一覧。

spec.exportNet
workFlows.sFlo
w.collectors

array 最大 10 コレクターの IP アドレスとネットワークポートのペアの
一覧。

spec.exportNet
workFlows.ipfix.
collectors

array 最大 10 コレクターの IP アドレスとネットワークポートのペアの
一覧。

フィールド タイプ 説明

以下のマニフェストを CNO に適用した後に、Operator は、192.168.1.99:2056 でリッスンする
NetFlow コレクターにネットワークフローレコードを送信するようにクラスター内の各ノードで Open
vSwitch (OVS) を設定します。

ネットワークフローを追跡するための設定例

16.16.2. ネットワークフローコレクターの宛先の追加

クラスター管理者として、Cluster Network Operator (CNO) を設定して、Pod ネットワークについての
ネットワークフローメタデータのネットワークフローコレクターへの送信を停止することができます。

前提条件

OpenShift CLI (oc) がインストールされている。

cluster-admin 権限を持つユーザーとしてクラスターにログインしていること。

ネットワークフローコレクターがあり、リッスンする IP アドレスとポートを把握している。

手順

1. ネットワークフローコレクターのタイプおよびコレクターの IP アドレスとポート情報を指定す
るパッチファイルを作成します。

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 exportNetworkFlows:
 netFlow:
 collectors:
 - 192.168.1.99:2056

OpenShift Container Platform 4.8 ネットワーク

280

2. ネットワークフローコレクターで CNO を設定します。

出力例

検証

検証は通常必須ではありません。以下のコマンドを実行して、各ノードの Open vSwitch (OVS) がネッ
トワークフローレコードを 1 つ以上のコレクターに送信するように設定されていることを確認できま
す。

1. Operator 設定を表示して、exportNetworkFlows フィールドが設定されていることを確認しま
す。

出力例

2. 各ノードから OVS のネットワークフロー設定を表示します。

出力例

spec:
 exportNetworkFlows:
 netFlow:
 collectors:
 - 192.168.1.99:2056

$ oc patch network.operator cluster --type merge -p "$(cat <file_name>.yaml)"

network.operator.openshift.io/cluster patched

$ oc get network.operator cluster -o jsonpath="{.spec.exportNetworkFlows}"

{"netFlow":{"collectors":["192.168.1.99:2056"]}}

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node -o
jsonpath='{range@.items[*]}{.metadata.name}{"\n"}{end}');
 do ;
 echo;
 echo $pod;
 oc -n openshift-ovn-kubernetes exec -c ovnkube-node $pod \
 -- bash -c 'for type in ipfix sflow netflow ; do ovs-vsctl find $type ; done';
done

ovnkube-node-xrn4p
_uuid : a4d2aaca-5023-4f3d-9400-7275f92611f9
active_timeout : 60
add_id_to_interface : false
engine_id : []
engine_type : []
external_ids : {}
targets : ["192.168.1.99:2056"]

ovnkube-node-z4vq9
_uuid : 61d02fdb-9228-4993-8ff5-b27f01a29bd6

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

281

16.16.3. ネットワークフローコレクターのすべての宛先の削除

クラスター管理者として、Cluster Network Operator (CNO) を設定して、ネットワークフローメタデー
タのネットワークフローコレクターへの送信を停止することができます。

前提条件

OpenShift CLI (oc) がインストールされている。

cluster-admin 権限を持つユーザーとしてクラスターにログインしていること。

手順

1. すべてのネットワークフローコレクターを削除します。

出力例

16.16.4. 関連情報

Network [operator.openshift.io/v1]

16.17. ハイブリッドネットワークの設定

クラスター管理者は、OVN-Kubernetes Container Network Interface (CNI) クラスターネットワークプ
ロバイダーを、Linux および Windows ノードがそれぞれ Linux および Windows ワークロードをできる
ように設定できます。

16.17.1. OVN-Kubernetes を使用したハイブリッドネットワークの設定

OVN-Kubernetes でハイブリッドネットワークを使用するようにクラスターを設定できます。これによ
り、異なるノードのネットワーク設定をサポートするハイブリッドクラスターが可能になります。たと
えば、これはクラスター内の Linux ノードと Windows ノードの両方を実行するために必要です。

重要

クラスターのインストール時に、OVN-Kubernetes を使用してハイブリッドネットワー
クを設定する必要があります。インストールプロセス後に、ハイブリッドネットワーク
に切り替えることはできません。

active_timeout : 60
add_id_to_interface : false
engine_id : []
engine_type : []
external_ids : {}
targets : ["192.168.1.99:2056"]-

...

$ oc patch network.operator cluster --type='json' \
 -p='[{"op":"remove", "path":"/spec/exportNetworkFlows"}]'

network.operator.openshift.io/cluster patched

OpenShift Container Platform 4.8 ネットワーク

282

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/api_reference/#network-operator-openshift-io-v1

前提条件

install-config.yaml ファイルで networking.networkType パラメーターの OVNKubernetes を
定義していること。詳細は、選択したクラウドプロバイダーでの OpenShift Container
Platform ネットワークのカスタマイズの設定についてのインストールドキュメントを参照して
ください。

手順

1. インストールプログラムが含まれるディレクトリーに切り替え、マニフェストを作成します。

ここでは、以下のようになります。

<installation_directory>

クラスターの install-config.yaml ファイルが含まれるディレクトリーの名前を指定しま
す。

2. cluster-network-03-config.yml という名前の、高度なネットワーク設定用のスタブマニフェス
トファイルを <installation_directory>/manifests/ ディレクトリーに作成します。

ここでは、以下のようになります。

<installation_directory>

クラスターの manifests/ ディレクトリーが含まれるディレクトリー名を指定します。

3. cluster-network-03-config.yml ファイルをエディターで開き、以下の例のようにハイブリッド
ネットワークで OVN-Kubernetes を設定します。

ハイブリッドネットワーク設定の指定

追加のオーバーレイネットワーク上のノードに使用される CIDR 設定を指定しま

$./openshift-install create manifests --dir <installation_directory>

$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
EOF

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 hybridOverlayConfig:
 hybridClusterNetwork: 1
 - cidr: 10.132.0.0/14
 hostPrefix: 23
 hybridOverlayVXLANPort: 9898 2

第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー

283

1

2

追加のオーバーレイネットワーク上のノードに使用される CIDR 設定を指定しま
す。hybridClusterNetwork CIDR は clusterNetwork CIDR と重複できません。

追加のオーバーレイネットワークのカスタム VXLAN ポートを指定します。これは、
vSphere にインストールされたクラスターで Windows ノードを実行するために必要であ
り、その他のクラウドプロバイダー用に設定することはできません。カスタムポートに
は、デフォルトの 4789 ポートを除くいずれかのオープンポートを使用できます。この要
件についての詳細は、Microsoft ドキュメントの Pod-to-pod connectivity between hosts
is broken を参照してください。

注記

Windows Server Long-Term Servicing Channel (LTSC): Windows Server 2019
は、カスタムの VXLAN ポートの選択をサポートしないため、カスタムの
hybridOverlayVXLANPort 値を持つクラスターではサポートされません。

4. cluster-network-03-config.yml ファイルを保存し、テキストエディターを終了します。

5. オプション: manifests/cluster-network-03-config.yml ファイルをバックアップします。イン
ストールプログラムは、クラスターの作成時に manifests/ ディレクトリーを削除します。

追加のインストール設定を完了してから、クラスターを作成します。インストールプロセスが終了する
と、ハイブリッドネットワークが有効になります。

16.17.2. 関連情報

Windows コンテナーワークロードについて

Windows コンテナーワークロードの有効化

ネットワークのカスタマイズによる AWS へのクラスターのインストール

ネットワークのカスタマイズによる Azure へのクラスターのインストール

OpenShift Container Platform 4.8 ネットワーク

284

https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/common-problems#pod-to-pod-connectivity-between-hosts-is-broken-on-my-kubernetes-cluster-running-on-vsphere
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/windows_container_support_for_openshift/#understanding-windows-container-workloads
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/windows_container_support_for_openshift/#enabling-windows-container-workloads
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/installing/#installing-aws-network-customizations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/installing/#installing-azure-network-customizations

第17章 ルートの作成

17.1. ルート設定

17.1.1. HTTP ベースのルートの作成

ルートを使用すると、公開された URL でアプリケーションをホストできます。これは、アプリケー
ションのネットワークセキュリティー設定に応じて、セキュリティー保護または保護なしを指定できま
す。HTTP ベースのルートとは、セキュアではないルートで、基本的な HTTP ルーティングプロトコル
を使用してセキュリティー保護されていないアプリケーションポートでサービスを公開します。

以下の手順では、hello-openshift アプリケーションを例に、Web アプリケーションへのシンプルな
HTTP ベースのルートを作成する方法を説明します。

前提条件

OpenShift CLI (oc) がインストールされている。

管理者としてログインしている。

あるポートを公開する Web アプリケーションと、そのポートでトラフィックをリッスンする
TCP エンドポイントがあります。

手順

1. 次のコマンドを実行して、hello-openshift というプロジェクトを作成します。

2. 以下のコマンドを実行してプロジェクトに Pod を作成します。

3. 以下のコマンドを実行して、hello-openshift というサービスを作成します。

4. 次のコマンドを実行して、hello-openshift アプリケーションに対して、セキュアではないルー
トを作成します。

結果として生成される Route リソースを検査すると、以下のようになります。

上記で作成されたセキュアでないルートの YAML 定義

$ oc new-project hello-openshift

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

$ oc expose svc hello-openshift

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: hello-openshift
spec:

第17章 ルートの作成

285

1

2

1

<Ingress_Domain> はデフォルトの Ingress ドメイン名で
す。ingresses.config/cluster オブジェクトはインストール中に作成され、変更できませ
ん。別のドメインを指定する場合は、appsDomain オプションを使用して別のクラスター
ドメインを指定できます。

targetPort は、このルートが指すサービスによって選択される Pod のターゲットポートで
す。

注記

デフォルトの ingress ドメインを表示するには、以下のコマンドを実行します。

17.1.2. ルートのタイムアウトの設定

Service Level Availability (SLA) で必要とされる、低タイムアウトが必要なサービスや、バックエンドで
の処理速度が遅いケースで高タイムアウトが必要なサービスがある場合は、既存のルートに対してデ
フォルトのタイムアウトを設定することができます。

前提条件

実行中のクラスターでデプロイ済みの Ingress コントローラーが必要になります。

手順

1. oc annotate コマンドを使用して、ルートにタイムアウトを追加します。

サポートされる時間単位は、マイクロ秒 (us)、ミリ秒 (ms)、秒 (s)、分 (m)、時間 (h)、ま
たは日 (d) です。

以下の例では、2 秒のタイムアウトを myroute という名前のルートに設定します。

17.1.3. HTTP Strict Transport Security の有効化

HTTP Strict Transport Security (HSTS) ポリシーは、ホストで HTTPS トラフィックのみを許可するセ
キュリティーの拡張機能です。デフォルトで、すべての HTTP 要求はドロップされます。これは、web
サイトとの対話の安全性を確保したり、ユーザーのためにセキュアなアプリケーションを提供するのに
役立ちます。

HSTS が有効にされると、HSTS はサイトから Strict Transport Security ヘッダーを HTTPS 応答に追加

 host: hello-openshift-hello-openshift.<Ingress_Domain> 1
 port:
 targetPort: 8080 2
 to:
 kind: Service
 name: hello-openshift

$ oc get ingresses.config/cluster -o jsonpath={.spec.domain}

$ oc annotate route <route_name> \
 --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit> 1

$ oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s

OpenShift Container Platform 4.8 ネットワーク

286

1

2

3

HSTS が有効にされると、HSTS はサイトから Strict Transport Security ヘッダーを HTTPS 応答に追加
します。リダイレクトするルートで insecureEdgeTerminationPolicy 値を使用し、HTTP を HTTPS
に送信するようにします。ただし、HSTS が有効にされている場合は、要求の送信前にクライアントが
すべての要求を HTTP URL から HTTPS に変更するためにリダイレクトの必要がなくなります。これは
クライアントでサポートされる必要はなく、max-age=0 を設定することで無効にできます。

重要

HSTS はセキュアなルート (edge termination または re-encrypt) でのみ機能します。こ
の設定は、HTTP またはパススルールートには適していません。

手順

ルートに対して HSTS を有効にするには、haproxy.router.openshift.io/hsts_header 値を
edge termination または re-encrypt ルートに追加します。

max-age は唯一の必須パラメーターです。これは、HSTS ポリシーが有効な期間 (秒単位)
を測定します。クライアントは、ホストから HSTS ヘッダーのある応答を受信する際には
常に max-age を更新します。max-age がタイムアウトになると、クライアントはポリ
シーを破棄します。

includeSubDomains はオプションです。これが含まれる場合、クライアントに対し、ホ
ストのすべてのサブドメインがホストと同様に処理されるように指示します。

preload はオプションです。max-age が 0 より大きい場合、preload を
haproxy.router.openshift.io/hsts_header に組み込むことにより、外部サービスはこの
サイトをそれぞれの HSTS プリロード一覧に含めることができます。たとえば、Google
などのサイトは preload が設定されているサイトの一覧を作成します。ブラウザーはこれ
らの一覧を使用し、サイトと対話する前でも HTTPS 経由で通信できるサイトを判別でき
ます。preload 設定がない場合、ブラウザーはヘッダーを取得するために HTTPS 経由で
サイトと通信している必要があります。

17.1.4. スループット関連の問題のトラブルシューティング

OpenShift Container Platform でデプロイされるアプリケーションでは、特定のサービス間で非常に長
い待ち時間が発生するなど、ネットワークのスループットの問題が生じることがあります。

Pod のログが問題の原因を指摘しない場合は、以下の方法を使用してパフォーマンスの問題を分析しま
す。

ping または tcpdump などのパケットアナライザーを使用して Pod とそのノード間のトラ
フィックを分析します。
たとえば、問題を生じさせる動作を再現している間に各 Pod で tcpdump ツールを実行しま
す。両サイトでキャプチャーしたデータを確認し、送信および受信タイムスタンプを比較して
Pod への/からのトラフィックの待ち時間を分析します。待ち時間は、ノードのインターフェイ
スが他の Pod やストレージデバイス、またはデータプレーンからのトラフィックでオーバー
ロードする場合に OpenShift Container Platform で発生する可能性があります。

apiVersion: v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=31536000;includeSubDomains;preload
1 2 3

第17章 ルートの作成

287

http://www.tcpdump.org/

1 podip は Pod の IP アドレスです。 oc get pod <pod_name> -o wide コマンドを実行して
Pod の IP アドレスを取得します。

tcpdump は 2 つの Pod 間のすべてのトラフィックが含まれる /tmp/dump.pcap のファイルを
生成します。理想的には、ファイルサイズを最小限に抑えるために問題を再現するすぐ前と問
題を再現したすぐ後ににアナライザーを実行することが良いでしょう。以下のようにノード間
でパケットアナライザーを実行することもできます (式から SDN を排除する)。

ストリーミングのスループットおよび UDP スループットを測定するために iperf などの帯域幅
測定ツールを使用します。ボトルネックの特定を試行するには、最初に Pod から、次にノード
からツールを実行します。

iperf のインストールおよび使用についての詳細は、こちらの Red Hat ソリューション を
参照してください。

17.1.5. Cookie に使用によるルートのステートフル性の維持

OpenShift Container Platform は、すべてのトラフィックを同じエンドポイントにヒットさせることに
よりステートフルなアプリケーションのトラフィックを可能にするスティッキーセッションを提供しま
す。ただし、エンドポイント Pod が再起動、スケーリング、または設定の変更などによって終了する
場合、このステートフル性はなくなります。

OpenShift Container Platform は Cookie を使用してセッションの永続化を設定できます。Ingress コン
トローラーはユーザー要求を処理するエンドポイントを選択し、そのセッションの Cookie を作成しま
す。Cookie は要求の応答として戻され、ユーザーは Cookie をセッションの次の要求と共に送り返しま
す。Cookie は Ingress コントローラーに対し、セッションを処理しているエンドポイントを示し、クラ
イアント要求が Cookie を使用して同じ Pod にルーティングされるようにします。

注記

cookie は、HTTP トラフィックを表示できないので、パススルールートで設定できませ
ん。代わりに、ソース IP アドレスをベースに数が計算され、バックエンドを判断しま
す。

バックエンドが変わると、トラフィックが間違ったサーバーに転送されてしまい、ス
ティッキーではなくなります。ソース IP を非表示にするロードバランサーを使用してい
る場合は、すべての接続に同じ番号が設定され、トラフィックは同じ Pod に送られま
す。

17.1.5.1. Cookie を使用したルートのアノテーション

ルート用に自動生成されるデフォルト名を上書きするために Cookie 名を設定できます。これにより、
ルートトラフィックを受信するアプリケーションが Cookie 名を認識できるようになります。Cookie を
削除すると、次の要求でエンドポイントの再選択が強制的に実行される可能性があります。そのため
サーバーがオーバーロードしている場合には、クライアントからの要求を取り除き、それらの再分配を
試行します。

手順

$ tcpdump -s 0 -i any -w /tmp/dump.pcap host <podip 1> && host <podip 2> 1

$ tcpdump -s 0 -i any -w /tmp/dump.pcap port 4789

OpenShift Container Platform 4.8 ネットワーク

288

https://access.redhat.com/solutions/33103

1. 指定される cookie 名でルートにアノテーションを付けます。

ここでは、以下のようになります。

<route_name>

Pod の名前を指定します。

<cookie_name>

cookie の名前を指定します。

たとえば、ルート my_route に cookie 名 my_cookie でアノテーションを付けるには、以下を
実行します。

2. 変数でルートのホスト名を取得します。

ここでは、以下のようになります。

<route_name>

Pod の名前を指定します。

3. cookie を保存してからルートにアクセスします。

ルートに接続する際に、直前のコマンドによって保存される cookie を使用します。

17.1.6. パスベースのルート

パスベースのルートは、URL に対して比較できるパスコンポーネントを指定します。この場合、ルート
のトラフィックは HTTP ベースである必要があります。そのため、それぞれが異なるパスを持つ同じホ
スト名を使用して複数のルートを提供できます。ルーターは、最も具体的なパスの順に基づいてルート
と一致する必要があります。ただし、これはルーターの実装によって異なります。

以下の表は、ルートのサンプルおよびそれらのアクセシビリティーを示しています。

表17.1 ルートの可用性

ルート 比較対象 アクセス可能

www.example.com/test www.example.com/test はい

www.example.com いいえ

$ oc annotate route <route_name> router.openshift.io/cookie_name="<cookie_name>"

$ oc annotate route my_route router.openshift.io/cookie_name="my_cookie"

$ ROUTE_NAME=$(oc get route <route_name> -o jsonpath='{.spec.host}')

$ curl $ROUTE_NAME -k -c /tmp/cookie_jar

$ curl $ROUTE_NAME -k -b /tmp/cookie_jar

第17章 ルートの作成

289

1

www.example.com/test および
www.example.com

www.example.com/test はい

www.example.com はい

www.example.com www.example.com/text Yes (ルートではなく、ホストで
一致)

www.example.com はい

ルート 比較対象 アクセス可能

パスが 1 つでセキュリティー保護されていないルート

パスは、パスベースのルートに唯一追加される属性です。

注記

ルーターは TLS を終了させず、要求のコンテンツを読み込みことができないので、パス
ベースのルーティングは、パススルー TLS を使用する場合には利用できません。

17.1.7. ルート固有のアノテーション

Ingress コントローラーは、公開するすべてのルートのデフォルトオプションを設定できます。個別の
ルートは、アノテーションに個別の設定を指定して、デフォルトの一部を上書きできます。Red Hat で
は、ルートアノテーションの Operator 管理ルートへの追加はサポートしません。

重要

複数のソース IP またはサブネットのホワイトリストを作成するには、スペースで区切ら
れたリストを使用します。他の区切りタイプを使用すると、一覧が警告やエラーメッ
セージなしに無視されます。

表17.2 ルートアノテーション

変数 説明 デフォルトで使用される環境変数

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-unsecured
spec:
 host: www.example.com
 path: "/test" 1
 to:
 kind: Service
 name: service-name

OpenShift Container Platform 4.8 ネットワーク

290

haproxy.router.openshift.io/b
alance

ロードバランシングアルゴリズム
を設定します。使用できるオプ
ションは、random、
source、roundrobin、および
leastconn です。デフォルト値
は random です。

パススルールートの
ROUTER_TCP_BALANCE_S
CHEME です。それ以外の場合は
ROUTER_LOAD_BALANCE_
ALGORITHM を使用します。

haproxy.router.openshift.io/d
isable_cookies

関連の接続を追跡する cookie の
使用を無効にします。'true' また
は 'TRUE' に設定する場合は、分
散アルゴリズムを使用して、受信
する HTTP 要求ごとに、どのバッ
クエンドが接続を提供するかを選
択します。

router.openshift.io/cookie_n
ame

このルートに使用するオプション
の cookie を指定します。名前
は、大文字、小文字、数字、"_"
または "-" を任意に組み合わせて
指定する必要があります。デフォ
ルトは、ルートのハッシュ化され
た内部キー名です。

haproxy.router.openshift.io/p
od-concurrent-connections

ルーターからバッキングされる
Pod に対して許容される接続最大
数を設定します。
注意: Pod が複数ある場合には、
それぞれに対応する接続数を設定
できます。複数のルーターがある
場合は、それらのルーター間で調
整は行われず、それぞれがこれに
複数回接続する可能性がありま
す。設定されていない場合または
0 に設定されている場合には制限
はありません。

haproxy.router.openshift.io/r
ate-limit-connections

'true' または 'TRUE' を設定する
と、ルートごとに特定のバックエ
ンドの stick-tables で実装される
レート制限機能が有効になりま
す。
注記: このアノテーションを使用
すると、DDoS (Distributed
Denial-of-service) 攻撃に対する
基本的な保護機能が提供されま
す。

変数 説明 デフォルトで使用される環境変数

第17章 ルートの作成

291

haproxy.router.openshift.io/r
ate-limit-
connections.concurrent-tcp

同じソース IP アドレスで行われ
る同時 TCP 接続の数を制限しま
す。数値を受け入れます。
注記: このアノテーションを使用
すると、DDoS (Distributed
Denial-of-service) 攻撃に対する
基本的な保護機能が提供されま
す。

haproxy.router.openshift.io/r
ate-limit-connections.rate-
http

同じソース IP アドレスを持つク
ライアントが HTTP 要求を実行で
きるレートを制限します。数値を
受け入れます。
注記: このアノテーションを使用
すると、DDoS (Distributed
Denial-of-service) 攻撃に対する
基本的な保護機能が提供されま
す。

haproxy.router.openshift.io/r
ate-limit-connections.rate-
tcp

同じソース IP アドレスを持つク
ライアントが TCP 接続を確立す
るレートを制限します。数値を受
け入れます。
注記: このアノテーションを使用
すると、DDoS (Distributed
Denial-of-service) 攻撃に対する
基本的な保護機能が提供されま
す。

haproxy.router.openshift.io/ti
meout

ルートのサーバー側のタイムアウ
トを設定します。(TimeUnits)

ROUTER_DEFAULT_SERVE
R_TIMEOUT

haproxy.router.openshift.io/ti
meout-tunnel

このタイムアウトは、クリアテキ
スト、エッジ、再暗号化、または
パススルーのルートを介した
Web Socket などトンネル接続に
適用されます。cleartext、
edge、または reencrypt のルート
タイプでは、このアノテーション
は、タイムアウト値がすでに存在
するタイムアウトトンネルとして
適用されます。パススルーのルー
トタイプでは、アノテーションは
既存のタイムアウト値の設定より
も優先されます。

ROUTER_DEFAULT_TUNNE
L_TIMEOUT

変数 説明 デフォルトで使用される環境変数

OpenShift Container Platform 4.8 ネットワーク

292

ingresses.config/cluster
ingress.operator.openshift.io
/hard-stop-after

設定できるのは、Ingress
Controller または ingress config
です。このアノテーションでは、
ルーターを再デプロイし、HA プ
ロキシーが haproxyhard-stop-
after グローバルオプションを実
行するように設定します。このオ
プションは、クリーンなソフトス
トップ実行で最大許容される時間
を定義します。

ROUTER_HARD_STOP_AFT
ER

router.openshift.io/haproxy.h
ealth.check.interval

バックエンドのヘルスチェックの
間隔を設定します。(TimeUnits)

ROUTER_BACKEND_CHEC
K_INTERVAL

haproxy.router.openshift.io/i
p_whitelist

ルートのホワイトリストを設定し
ます。ホワイトリストは、承認し
たソースアドレスの IP アドレス
および CIDR 範囲の一覧をスペー
ス区切りにします。ホワイトリス
トに含まれていない IP アドレス
からの要求は破棄されます。

ホワイトリストの許可される IP
アドレスおよび CIDR 範囲の最大
数は 61 です。

haproxy.router.openshift.io/h
sts_header

edge terminated または re-
encrypt ルートの Strick-
Transport-Security ヘッダーを設
定します。

haproxy.router.openshift.io/l
og-send-hostname

Syslog ヘッダーの hostname
フィールドを設定します。システ
ムのホスト名を使用します。サイ
ドカーや Syslog ファシリティー
などの Ingress API ロギングメ
ソッドがルーターに対して有効に
なっている場合、log-send-
hostname はデフォルトで有効
になります。

haproxy.router.openshift.io/r
ewrite-target

バックエンドの要求の書き換えパ
スを設定します。

変数 説明 デフォルトで使用される環境変数

第17章 ルートの作成

293

router.openshift.io/cookie-
same-site

Cookie を制限するために値を設
定します。値は以下のようになり
ます。

Lax: Cookie はアクセスしたサイ
トとサードパーティーのサイト間
で転送されます。

Strict: Cookie はアクセスしたサ
イトに制限されます。

None: Cookie はアクセスしたサ
イトに制限されます。

この値は、re-encrypt および
edge ルートにのみ適用されま
す。詳細は、SameSite cookie の
ドキュメント を参照してくださ
い。

haproxy.router.openshift.io/s
et-forwarded-headers

ルートごとに Forwarded および
X-Forwarded-For HTTP ヘッ
ダーを処理するポリシーを設定し
ます。値は以下のようになりま
す。

append: ヘッダーを追加し、既
存のヘッダーを保持します。これ
はデフォルト値です。

Replace: ヘッダーを設定し、既
存のヘッダーを削除します。

never: ヘッダーを設定しません
が、既存のヘッダーを保持しま
す。

if-none: ヘッダーがまだ設定され
ていない場合にこれを設定しま
す。

ROUTER_SET_FORWARDE
D_HEADERS

変数 説明 デフォルトで使用される環境変数

注記

環境変数を編集することはできません。

ルータータイムアウト変数

TimeUnits は数字、その後に単位を指定して表現します。 us *(マイクロ秒)、ms (ミリ秒、デフォル
ト)、s (秒)、m (分)、h *(時間)、d (日)

正規表現: [1-9][0-9]*(us\|ms\|s\|m\|h\|d)

OpenShift Container Platform 4.8 ネットワーク

294

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

変数 デフォルト 説明

ROUTER_BACKEND_CHECK_INTE
RVAL

5000ms バックエンドでの後続の liveness チェッ
クの時間の長さ。

ROUTER_CLIENT_FIN_TIMEOUT 1s クライアントがルートに接続する場合の
TCP FIN タイムアウトの期間を制御しま
す。接続切断のために送信された FIN が
指定の時間内に応答されない場合は、
HAProxy が接続を切断します。小さい値
を設定し、ルーターでリソースをあまり
使用していない場合には、リスクはあり
ません。

ROUTER_DEFAULT_CLIENT_TIME
OUT

30s クライアントがデータを確認するか、送
信するための時間の長さ。

ROUTER_DEFAULT_CONNECT_TI
MEOUT

5s 最大接続時間。

ROUTER_DEFAULT_SERVER_FIN_
TIMEOUT

1s ルーターからルートをバッキングする
Pod の TCP FIN タイムアウトを制御しま
す。

ROUTER_DEFAULT_SERVER_TIME
OUT

30s サーバーがデータを確認するか、送信す
るための時間の長さ。

ROUTER_DEFAULT_TUNNEL_TIME
OUT

1h TCP または WebSocket 接続が開放され
た状態で保つ時間数。このタイムアウト
期間は、HAProxy が再読み込みされるた
びにリセットされます。

ROUTER_SLOWLORIS_HTTP_KEE
PALIVE

300s 新しい HTTP 要求が表示されるまで待機
する最大時間を設定します。この値が低
すぎる場合には、ブラウザーおよびアプ
リケーションの keepalive 値が低くなり
すぎて、問題が発生する可能性がありま
す。

有効なタイムアウト値には、想定した個
別のタイムアウトではなく、特定の変数
を合計した値に指定することができま
す。たとえ
ば、ROUTER_SLOWLORIS_HTTP_
KEEPALIVE は、timeout http-keep-
alive を調整します。HAProxy はデフォ
ルトで 300s に設定されていますが、
HAProxy は tcp-request inspect-
delay も待機します。これは 5s に設定さ
れています。この場合、全体的なタイム
アウトは 300s に 5s を加えたことになり
ます。

第17章 ルートの作成

295

1

ROUTER_SLOWLORIS_TIMEOUT 10s HTTP 要求の伝送にかかる時間。

RELOAD_INTERVAL 5s ルーターがリロードし、新規の変更を受
け入れる最小の頻度を許可します。

ROUTER_METRICS_HAPROXY_TIM
EOUT

5s HAProxy メトリクスの収集タイムアウ
ト。

変数 デフォルト 説明

ルート設定のカスタムタイムアウト

HAProxy 対応の単位 (us、ms、s、 m、h、d) で新規のタイムアウトを指定します。単位が指定
されていない場合は、ms がデフォルトになります。

注記

パススルールートのサーバー側のタイムアウト値を低く設定し過ぎると、WebSocket 接
続がそのルートで頻繁にタイムアウトする可能性があります。

特定の IP アドレスを 1 つだけ許可するルート

複数の IP アドレスを許可するルート

IP アドレスの CIDR ネットワークを許可するルート

IP アドレスと IP アドレスの CIDR ネットワークの両方を許可するルート

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/timeout: 5500ms 1
...

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.10

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.10 192.168.1.11 192.168.1.12

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.0/24

OpenShift Container Platform 4.8 ネットワーク

296

1

書き換えターゲットを指定するルート

バックエンドの要求の書き換えパスとして / を設定します。

ルートに haproxy.router.openshift.io/rewrite-target アノテーションを設定すると、要求をバックエン
ドアプリケーションに転送する前に Ingress コントローラーがこのルートを使用して HTTP 要求のパス
を書き換える必要があることを指定します。spec.path で指定されたパスに一致する要求パスの一部
は、アノテーションで指定された書き換えターゲットに置き換えられます。

以下の表は、spec.path、要求パス、および書き換えターゲットの各種の組み合わせについてのパスの
書き換え動作の例を示しています。

表17.3 rewrite-target の例:

Route.spec.path 要求パス 書き換えターゲット 転送された要求パス

/foo /foo / /

/foo /foo/ / /

/foo /foo/bar / /bar

/foo /foo/bar/ / /bar/

/foo /foo /bar /bar

/foo /foo/ /bar /bar/

/foo /foo/bar /baz /baz/bar

/foo /foo/bar/ /baz /baz/bar/

/foo/ /foo / 該当なし (要求パスが
ルートパスに一致しな
い)

/foo/ /foo/ / /

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 180.5.61.153 192.168.1.0/24 10.0.0.0/8

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/rewrite-target: / 1
...

第17章 ルートの作成

297

/foo/ /foo/bar / /bar

Route.spec.path 要求パス 書き換えターゲット 転送された要求パス

17.1.8. ルートの受付ポリシーの設定

管理者およびアプリケーション開発者は、同じドメイン名を持つ複数の namespace でアプリケーショ
ンを実行できます。これは、複数のチームが同じホスト名で公開されるマイクロサービスを開発する組
織を対象としています。

警告

複数の namespace での要求の許可は、namespace 間の信頼のあるクラスターに対
してのみ有効にする必要があります。有効にしないと、悪意のあるユーザーがホス
ト名を乗っ取る可能性があります。このため、デフォルトの受付ポリシーは複数の
namespace 間でのホスト名の要求を許可しません。

前提条件

クラスター管理者の権限。

手順

以下のコマンドを使用して、ingresscontroller リソース変数の .spec.routeAdmission フィー
ルドを編集します。

イメージコントローラー設定例

ヒント



$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed
...

OpenShift Container Platform 4.8 ネットワーク

298

1

ヒント

または、以下の YAML を適用してルートの受付ポリシーを設定できます。

17.1.9. Ingress オブジェクトを使用したルートの作成

一部のエコシステムコンポーネントには Ingress リソースとの統合機能がありますが、ルートリソース
とは統合しません。これに対応するために、OpenShift Container Platform は Ingress オブジェクトの
作成時に管理されるルートオブジェクトを自動的に作成します。これらのルートオブジェクトは、対応
する Ingress オブジェクトが削除されると削除されます。

手順

1. OpenShift Container Platform コンソールで Ingress オブジェクトを定義するか、または oc
create コマンドを実行します。

Ingress の YAML 定義

route.openshift.io/termination アノテーションは、Route の spec.tls.termination
フィールドを設定するために使用できます。Ingress にはこのフィールドがありません。
許可される値は edge、passthrough、および reencrypt です。その他のすべての値は警
告なしに無視されます。アノテーション値が設定されていない場合は、edge がデフォル

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: "reencrypt" 1
spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - backend:
 service:
 name: frontend
 port:
 number: 443
 path: /
 pathType: Prefix
 tls:
 - hosts:
 - www.example.com
 secretName: example-com-tls-certificate

第17章 ルートの作成

299

トルートになります。デフォルトのエッジルートを実装するには、TLS 証明書の詳細をテ
ンプレートファイルで定義する必要があります。

a. route.openshift.io/termination アノテーションで passthrough の値を指定する場合
は、仕様で path を '' に設定し、pathType を ImplementationSpecific に設定しま
す。

2. ルートを一覧表示します。

結果には、frontend- で始まる名前の自動生成ルートが含まれます。

このルートを検査すると、以下のようになります。

自動生成されるルートの YAML 定義

 spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: ''
 pathType: ImplementationSpecific
 backend:
 service:
 name: frontend
 port:
 number: 443

$ oc apply -f ingress.yaml

$ oc get routes

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
frontend-gnztq www.example.com frontend 443 reencrypt/Redirect None

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend-gnztq
 ownerReferences:
 - apiVersion: networking.k8s.io/v1
 controller: true
 kind: Ingress
 name: frontend
 uid: 4e6c59cc-704d-4f44-b390-617d879033b6
spec:
 host: www.example.com
 path: /
 port:
 targetPort: https
 tls:
 certificate: |

OpenShift Container Platform 4.8 ネットワーク

300

1

17.1.10. Ingress オブジェクトを介してデフォルトの証明書を使用してルートを作成する

TLS 設定を指定せずに Ingress オブジェクトを作成すると、OpenShift Container Platform は安全でな
いルートを生成します。デフォルトの Ingress 証明書を使用してセキュアなエッジ終端ルートを生成す
る Ingress オブジェクトを作成するには、次のように空の TLS 設定を指定できます。

前提条件

公開したいサービスがあります。

OpenShift CLI (oc) にアクセスできる。

手順

1. Ingress オブジェクトの YAML ファイルを作成します。この例では、ファイルの名前は
example-ingress.yaml です。

Ingress オブジェクトの YAML 定義

この正確な構文を使用して、カスタム証明書を指定せずに TLS を指定します。

2. 次のコマンドを実行して、Ingress オブジェクトを作成します。

検証

以下のコマンドを実行して、OpenShift Container Platform が Ingress オブジェクトの予期され
るルートを作成したことを確認します。

 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 insecureEdgeTerminationPolicy: Redirect
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 [...]
 -----END RSA PRIVATE KEY-----
 termination: reencrypt
 to:
 kind: Service
 name: frontend

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 ...
spec:
 rules:
 ...
 tls:
 - {} 1

$ oc create -f example-ingress.yaml

第17章 ルートの作成

301

1

2

3

出力例

ルートの名前には、Ingress オブジェクトの名前とそれに続くランダムな接尾辞が含まれ
ます。

デフォルトの証明書を使用するには、ルートで spec.certificate を指定しないでくださ
い。

ルートは、edge の終了ポリシーを指定する必要があります。

17.1.11. デュアルスタックネットワーク用の OpenShift Container Platform Ingress コン
トローラーの設定

OpenShift Container Platform クラスターが IPv4 および IPv6 デュアルスタックネットワーク用に設定
されている場合、クラスターは OpenShift Container Platform ルートによって外部からアクセス可能で
す。

Ingress コントローラーは、IPv4 エンドポイントと IPv6 エンドポイントの両方を持つサービスを自動的
に提供しますが、シングルスタックまたはデュアルスタックサービス用に Ingress コントローラーを設
定できます。

前提条件

ベアメタルに OpenShift Container Platform クラスターをデプロイしていること。

OpenShift CLI (oc) がインストールされている。

手順

1. Ingress コントローラーが、IPv4 / IPv6 を介してトラフィックをワークロードに提供するよう
にするには、ipFamilies フィールドおよび ipFamilyPolicy フィールドを設定して、サービス
YAML ファイルを作成するか、既存のサービス YAML ファイルを変更します。以下は例になり
ます。

サービス YAML ファイルの例

$ oc get routes -o yaml

apiVersion: v1
items:
- apiVersion: route.openshift.io/v1
 kind: Route
 metadata:
 name: frontend-j9sdd 1
 ...
 spec:
 ...
 tls: 2
 insecureEdgeTerminationPolicy: Redirect
 termination: edge 3
 ...

apiVersion: v1

OpenShift Container Platform 4.8 ネットワーク

302

1

2

3

デュアルスタックインスタンスでは、2 つの異なる clusterIPs が提供されます。

シングルスタックインスタンスの場合は、IPv4 または IPv6 と入力します。デュアルス
タックインスタンスの場合は、IPv4 と IPv6 の両方を入力します。

シングルスタックインスタンスの場合は、SingleStack と入力します。デュアルスタック
インスタンスの場合は、RequireDualStack と入力します。

これらのリソースは、対応する endpoints を生成します。Ingress コントローラー
は、endpointslices を監視するようになりました。

2. endpoints を表示するには、以下のコマンドを入力します。

3. endpointslices を表示するには、以下のコマンドを入力します。

関連情報

kind: Service
metadata:
 creationTimestamp: yyyy-mm-ddT00:00:00Z
 labels:
 name: <service_name>
 manager: kubectl-create
 operation: Update
 time: yyyy-mm-ddT00:00:00Z
 name: <service_name>
 namespace: <namespace_name>
 resourceVersion: "<resource_version_number>"
 selfLink: "/api/v1/namespaces/<namespace_name>/services/<service_name>"
 uid: <uid_number>
spec:
 clusterIP: 172.30.0.0/16
 clusterIPs: 1
 - 172.30.0.0/16
 - <second_IP_address>
 ipFamilies: 2
 - IPv4
 - IPv6
 ipFamilyPolicy: RequireDualStack 3
 ports:
 - port: 8080
 protocol: TCP
 targetport: 8080
 selector:
 name: <namespace_name>
 sessionAffinity: None
 type: ClusterIP
status:
 loadbalancer: {}

$ oc get endpoints

$ oc get endpointslices

第17章 ルートの作成

303

appsDomain オプションを使用した代替クラスタードメインの指定

17.2. セキュリティー保護されたルート

セキュアなルートは、複数の TLS 終端タイプを使用してクライアントに証明書を提供できます。以下
のセクションでは、カスタム証明書を使用して re-encrypt、edge、および passthrough ルートを作成
する方法を説明します。

重要

パブリックエンドポイントを使用して Microsoft Azure にルートを作成する場合、リソー
ス名は制限されます。特定の用語を使用するリソースを作成することはできません。
Azure が制限する語の一覧は、Azure ドキュメントの Resolve reserved resource name
errors を参照してください。

17.2.1. カスタム証明書を使用した re-encrypt ルートの作成

oc create route コマンドを使用し、カスタム証明書と共に reencrypt TLS termination を使用してセ
キュアなルートを設定できます。

前提条件

PEM エンコードされたファイルに証明書/キーのペアがなければなりません。 ここで、証明書
はルートホストに対して有効である必要があります。

証明書チェーンを完了する PEM エンコードされたファイルの別の CA 証明書が必要です。

PEM エンコードされたファイルの別の宛先 CA 証明書が必要です。

公開する必要のあるサービスが必要です。

注記

パスワードで保護されるキーファイルはサポートされません。キーファイルからパスフ
レーズを削除するには、以下のコマンドを使用します。

手順

この手順では、カスタム証明書および reencrypt TLS termination を使用して Route リソースを作成し
ます。以下では、証明書/キーのペアが現在の作業ディレクトリーの tls.crt および tls.key ファイルに
あることを前提としています。また、Ingress コントローラーがサービスの証明書を信頼できるように
宛先 CA 証明書を指定する必要もあります。必要な場合には、証明書チェーンを完了するために CA 証
明書を指定することもできます。tls.crt、 tls.key、cacert.crt、および (オプションで) ca.crt を実際の
パス名に置き換えます。frontend を、公開する必要のある Service リソースに置き換えま
す。www.example.com を適切な名前に置き換えます。

reencrypt TLS 終端およびカスタム証明書を使用してセキュアな Route リソースを作成しま
す。

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route reencrypt --service=frontend --cert=tls.crt --key=tls.key --dest-ca-
cert=destca.crt --ca-cert=ca.crt --hostname=www.example.com

OpenShift Container Platform 4.8 ネットワーク

304

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-ingress
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-reserved-resource-name

結果として生成される Route リソースを検査すると、以下のようになります。

セキュアなルートの YAML 定義

他のオプションについては、oc create route reencrypt --help を参照してください。

17.2.2. カスタム証明書を使用した edge ルートの作成

oc create route コマンドを使用し、edge TLS termination とカスタム証明書を使用してセキュアな
ルートを設定できます。edge ルートの場合、Ingress コントローラーは、トラフィックを宛先 Pod に
転送する前に TLS 暗号を終了します。ルートは、Ingress コントローラーがルートに使用する TLS 証明
書およびキーを指定します。

前提条件

PEM エンコードされたファイルに証明書/キーのペアがなければなりません。 ここで、証明書
はルートホストに対して有効である必要があります。

証明書チェーンを完了する PEM エンコードされたファイルの別の CA 証明書が必要です。

公開する必要のあるサービスが必要です。

注記

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: reencrypt
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 destinationCACertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

第17章 ルートの作成

305

注記

パスワードで保護されるキーファイルはサポートされません。キーファイルからパスフ
レーズを削除するには、以下のコマンドを使用します。

手順

この手順では、カスタム証明書および edge TLS termination を使用して Route リソースを作成しま
す。以下では、証明書/キーのペアが現在の作業ディレクトリーの tls.crt および tls.key ファイルにあ
ることを前提としています。必要な場合には、証明書チェーンを完了するために CA 証明書を指定する
こともできます。tls.crt、 tls.key、および (オプションで) ca.crt を実際のパス名に置き換えま
す。frontend を、公開する必要のあるサービスの名前に置き換えます。www.example.com を適切な
名前に置き換えます。

edge TLS termination およびカスタム証明書を使用して、セキュアな Route リソースを作成し
ます。

結果として生成される Route リソースを検査すると、以下のようになります。

セキュアなルートの YAML 定義

他のオプションについては、oc create route edge --help を参照してください。

17.2.3. passthrough ルートの作成

oc create route コマンドを使用し、passthrough termination を使用してセキュアなルートを設定でき

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route edge --service=frontend --cert=tls.crt --key=tls.key --ca-cert=ca.crt --
hostname=www.example.com

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: edge
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

OpenShift Container Platform 4.8 ネットワーク

306

1

2

3

oc create route コマンドを使用し、passthrough termination を使用してセキュアなルートを設定でき
ます。passthrough termination では、暗号化されたトラフィックが TLS 終端を提供するルーターなし
に宛先に直接送信されます。そのため、ルートでキーや証明書は必要ありません。

前提条件

公開する必要のあるサービスが必要です。

手順

Route リソースを作成します。

結果として生成される Route リソースを検査すると、以下のようになります。

passthrough termination を使用したセキュリティー保護されたルート

オブジェクトの名前で、63 文字に制限されます。

termination フィールドを passthrough に設定します。これは、必要な唯一の tls フィー
ルドです。

オプションの insecureEdgeTerminationPolicy。唯一有効な値は None、Redirect、また
は空の値です (無効にする場合)。

宛先 Pod は、エンドポイントでトラフィックに証明書を提供します。これは、必須となるクラ
イアント証明書をサポートするための唯一の方法です (相互認証とも呼ばれる)。

$ oc create route passthrough route-passthrough-secured --service=frontend --port=8080

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-passthrough-secured 1
spec:
 host: www.example.com
 port:
 targetPort: 8080
 tls:
 termination: passthrough 2
 insecureEdgeTerminationPolicy: None 3
 to:
 kind: Service
 name: frontend

第17章 ルートの作成

307

第18章 INGRESS クラスタートラフィックの設定

18.1. INGRESS クラスタートラフィックの設定の概要

OpenShift Container Platform は、クラスター内で実行されるサービスを使ってクラスター外からの通
信を可能にする以下の方法を提供します。

以下の方法が推奨されます。以下は、これらの方法の優先される順です。

HTTP/HTTPS を使用する場合は Ingress コントローラーを使用する。

HTTPS 以外の TLS で暗号化されたプロトコルを使用する場合、たとえば、SNI ヘッダーを使
用する TLS の場合は、Ingress コントローラーを使用します。

それ以外の場合は、ロードバランサー、外部 IP、または NodePort を使用します。

方法 目的

Ingress コントローラーの使用 HTTP/HTTPS トラフィックおよび HTTPS 以外の
TLS で暗号化されたプロトコル (TLS と SNI ヘッダー
の使用など) へのアクセスを許可します。

ロードバランサーサービスを使用した外部 IP の自動
割り当て

プールから割り当てられた IP アドレスを使った非標
準ポートへのトラフィックを許可します。

外部 IP のサービスへの手動割り当て 特定の IP アドレスを使った非標準ポートへのトラ
フィックを許可します。

NodePort の設定 クラスターのすべてのノードでサービスを公開しま
す。

18.2. サービスの EXTERNALIP の設定

クラスター管理者は、トラフィックをクラスター内のサービスに送信できるクラスター外の IP アドレ
スブロックを指定できます。

この機能は通常、ベアメタルハードウェアにインストールされているクラスターに最も役立ちます。

18.2.1. 前提条件

ネットワークインフラストラクチャーは、外部 IP アドレスのトラフィックをクラスターにルー
ティングする必要があります。

18.2.2. ExternalIP について

クラウド以外の環境では、OpenShift Container Platform は ExternalIP 機能を使用して外部 IP アドレ
スの Service オブジェクトの spec.externalIPs[] フィールドへの割り当てをサポートします。この
フィールドを設定すると、OpenShift Container Platform は追加の仮想 IP アドレスをサービスに割り当
てます。IP アドレスは、クラスターに定義されたサービスネットワーク外に指定できま
す。type=NodePort が設定されたサービスと同様に ExternalIP 機能で設定されたサービスにより、ト
ラフィックを負荷分散のためにローカルノードに転送することができます。

OpenShift Container Platform 4.8 ネットワーク

308

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-ingress-cluster-traffic-ingress-controller
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-ingress-cluster-traffic-load-balancer
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-ingress-cluster-traffic-service-external-ip
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-ingress-cluster-traffic-nodeport

ネットワークインフラストラクチャーを設定し、定義する外部 IP アドレスブロックがクラスターに
ルーティングされるようにする必要があります。

OpenShift Container Platform は以下の機能を追加して Kubernetes の ExternalIP 機能を拡張します。

設定可能なポリシーでの、ユーザーによる外部 IP アドレスの使用の制限

要求時の外部 IP アドレスのサービスへの自動割り当て

警告

ExternalIP 機能の使用はデフォルトで無効にされます。これは、外部 IP アドレス
へのクラスター内のトラフィックがそのサービスにダイレクトされるため、セキュ
リティー上のリスクを生じさせる可能性があります。これにより、クラスターユー
ザーは外部リソースについての機密性の高いトラフィックをインターセプトできる
ようになります。

重要

この機能は、クラウド以外のデプロイメントでのみサポートされます。クラウドデプロ
イメントの場合、クラウドの自動デプロイメントのためにロードバランサーサービスを
使用し、サービスのエンドポイントをターゲットに設定します。

以下の方法で外部 IP アドレスを割り当てることができます。

外部 IP の自動割り当て

OpenShift Container Platform は、spec.type=LoadBalancer を設定して Service オブジェクトを
作成する際に、IP アドレスを autoAssignCIDRs CIDR ブロックから spec.externalIPs[] 配列に自動
的に割り当てます。この場合、OpenShift Container Platform はロードバランサーサービスタイプの
クラウド以外のバージョンを実装し、IP アドレスをサービスに割り当てます。自動割り当てはデ
フォルトで無効にされており、以下のセクションで説明されているように、これはクラスター管理
者が設定する必要があります。

外部 IP の手動割り当て

OpenShift Container Platform は Service オブジェクトの作成時に spec.externalIPs[] 配列に割り
当てられた IP アドレスを使用します。別のサービスによってすでに使用されている IP アドレスを
指定することはできません。

18.2.2.1. ExternalIP の設定

OpenShift Container Platform での外部 IP アドレスの使用は、cluster という名前の
Network.config.openshift.io CR の以下のフィールドで管理されます。

spec.externalIP.autoAssignCIDRs は、サービスの外部 IP アドレスを選択する際にロードバ
ランサーによって使用される IP アドレスブロックを定義します。OpenShift Container
Platform は、自動割り当て用の単一 IP アドレスブロックのみをサポートします。これは、
ExternalIP をサービスに手動で割り当てる際に、制限された数の共有 IP アドレスのポート領域
を管理しなくてはならない場合よりも単純になります。自動割り当てが有効な場合に
は、spec.type=LoadBalancer が設定された Service オブジェクトには外部 IP アドレスが割り
当てられます。



第18章 INGRESS クラスタートラフィックの設定

309

spec.externalIP.policy は、IP アドレスを手動で指定する際に許容される IP アドレスブロック
を定義します。OpenShift Container Platform は、spec.externalIP.autoAssignCIDRs で定義
される IP アドレスブロックにポリシールールを適用しません。

ルーティングが正しく行われると、設定された外部 IP アドレスブロックからの外部トラフィックは、
サービスが公開する TCP ポートまたは UDP ポートを介してサービスのエンドポイントに到達できま
す。

重要

クラスター管理者は、OpenShiftSDN ネットワークタイプと OVN-Kubernetes ネット
ワークタイプの両方で externalIP へのルーティングを設定する必要があります。割り当
てる IP アドレスブロックがクラスター内の 1 つ以上のノードで終了することを確認する
必要もあります。詳細は、Kubernetes External IPs を参照してください。

OpenShift Container Platform は IP アドレスの自動および手動割り当ての両方をサポートしており、そ
れぞれのアドレスは 1 つのサービスの最大数に割り当てられることが保証されます。これにより、各
サービスは、ポートが他のサービスで公開されているかによらず、自らの選択したポートを公開できま
す。

注記

OpenShift Container Platform の autoAssignCIDRs で定義された IP アドレスブロック
を使用するには、ホストのネットワークに必要な IP アドレスの割り当ておよびルーティ
ングを設定する必要があります。

以下の YAML は、外部 IP アドレスが設定されたサービスについて説明しています。

spec.externalIPs[] が設定された Service オブジェクトの例

apiVersion: v1
kind: Service
metadata:
 name: http-service
spec:
 clusterIP: 172.30.163.110
 externalIPs:
 - 192.168.132.253
 externalTrafficPolicy: Cluster
 ports:
 - name: highport
 nodePort: 31903
 port: 30102
 protocol: TCP
 targetPort: 30102
 selector:
 app: web
 sessionAffinity: None
 type: LoadBalancer
status:
 loadBalancer:
 ingress:
 - ip: 192.168.132.253

OpenShift Container Platform 4.8 ネットワーク

310

https://kubernetes.io/docs/concepts/services-networking/service/#external-ips

18.2.2.2. 外部 IP アドレスの割り当ての制限

クラスター管理者は、IP アドレスブロックを指定して許可および拒否できます。

制限は、cluster-admin 権限を持たないユーザーにのみ適用されます。クラスター管理者は、サービス
の spec.externalIPs[] フィールドを任意の IP アドレスに常に設定できます。

spec.ExternalIP.policy フィールドを指定して、policy オブジェクトが定義された IP アドレスポリ
シーを設定します。ポリシーオブジェクトには以下の形があります。

ポリシーの制限を設定する際に、以下のルールが適用されます。

policy={} が設定される場合、spec.ExternalIPs[] が設定されている Service オブジェクトの作
成は失敗します。これは OpenShift Container Platform のデフォルトです。policy=null が設定
される動作は同一です。

policy が設定され、policy.allowedCIDRs[] または policy.rejectedCIDRs[] のいずれかが設定
される場合、以下のルールが適用されます。

allowedCIDRs[] と rejectedCIDRs[] の両方が設定される場合、rejectedCIDRs[] が
allowedCIDRs[] よりも優先されます。

allowedCIDRs[] が設定される場合、spec.ExternalIPs[] が設定されている Service オブ
ジェクトの作成は、指定された IP アドレスが許可される場合にのみ正常に実行されます。

rejectedCIDRs[] が設定される場合、spec.ExternalIPs[] が設定されている Service オブ
ジェクトの作成は、指定された IP アドレスが拒否されていない場合にのみ正常に実行され
ます。

18.2.2.3. ポリシーオブジェクトの例

以下に続く例では、複数のポリシー設定の例を示します。

以下の例では、ポリシーは OpenShift Container Platform が外部 IP アドレスが指定されたサー
ビスを作成するのを防ぎます。

Service オブジェクトの spec.externalIPs[] に指定された値を拒否するポリシーの例

以下の例では、allowedCIDRs および rejectedCIDRs フィールドの両方が設定されます。

許可される、および拒否される CIDR ブロックの両方を含むポリシーの例

{
 "policy": {
 "allowedCIDRs": [],
 "rejectedCIDRs": []
 }
}

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy: {}
 ...

第18章 INGRESS クラスタートラフィックの設定

311

許可される、および拒否される CIDR ブロックの両方を含むポリシーの例

以下の例では、policy は null に設定されます。null に設定されている場合、oc get
networks.config.openshift.io -o yaml を入力して設定オブジェクトを検査する際に、policy
フィールドは出力に表示されません。

Service オブジェクトの spec.externalIPs[] に指定された値を許可するポリシーの例

18.2.3. ExternalIP アドレスブロックの設定

ExternalIP アドレスブロックの設定は、cluster という名前の Network カスタムリソース (CR) で定義
されます。ネットワーク CR は config.openshift.io API グループに含まれます。

重要

クラスターのインストール時に、Cluster Version Operator (CVO) は cluster という名前
のネットワーク CR を自動的に作成します。このタイプのその他の CR オブジェクトの
作成はサポートされていません。

以下の YAML は ExternalIP 設定について説明しています。

cluster という名前の network.config.openshift.io CR

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy:
 allowedCIDRs:
 - 172.16.66.10/23
 rejectedCIDRs:
 - 172.16.66.10/24
 ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy: null
 ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:

OpenShift Container Platform 4.8 ネットワーク

312

1

2

1

2

外部 IP アドレスのサービスへの自動割り当てに使用できる CIDR 形式で IP アドレスブロックを定
義します。1 つの IP アドレス範囲のみが許可されます。

IP アドレスのサービスへの手動割り当ての制限を定義します。制限が定義されていない場合
は、Service オブジェクトに spec.externalIP フィールドを指定しても許可されません。デフォル
トで、制限は定義されません。

以下の YAML は、policy スタンザのフィールドについて説明しています。

Network.config.openshift.io policy スタンザ

CIDR 形式の許可される IP アドレス範囲の一覧。

CIDR 形式の拒否される IP アドレス範囲の一覧。

外部 IP 設定の例
外部 IP アドレスプールの予想される複数の設定が以下の例で表示されています。

以下の YAML は、自動的に割り当てられた外部 IP アドレスを有効にする設定について説明し
ています。

spec.externalIP.autoAssignCIDRs が設定された設定例

以下の YAML は、許可された、および拒否された CIDR 範囲のポリシールールを設定します。

spec.externalIP.policy が設定された設定例

 autoAssignCIDRs: [] 1
 policy: 2
 ...

policy:
 allowedCIDRs: [] 1
 rejectedCIDRs: [] 2

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP:
 autoAssignCIDRs:
 - 192.168.132.254/29

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP:

第18章 INGRESS クラスタートラフィックの設定

313

1

18.2.4. クラスターの外部 IP アドレスブロックの設定

クラスター管理者は、以下の ExternalIP を設定できます。

Service オブジェクトの spec.clusterIP フィールドを自動的に設定するために OpenShift
Container Platform によって使用される ExternalIP アドレスブロック。

IP アドレスを制限するポリシーオブジェクトは Service オブジェクトの spec.clusterIP 配列に
手動で割り当てられます。

前提条件

OpenShift CLI (oc) をインストールしている。

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

1. オプション: 現在の外部 IP 設定を表示するには、以下のコマンドを入力します。

2. 設定を編集するには、以下のコマンドを入力します。

3. 以下の例のように ExternalIP 設定を変更します。

externalIP スタンザの設定を指定します。

4. 更新された ExternalIP 設定を確認するには、以下のコマンドを入力します。

18.2.5. 次のステップ

 policy:
 allowedCIDRs:
 - 192.168.132.0/29
 - 192.168.132.8/29
 rejectedCIDRs:
 - 192.168.132.7/32

$ oc describe networks.config cluster

$ oc edit networks.config cluster

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP: 1
 ...

$ oc get networks.config cluster -o go-template='{{.spec.externalIP}}{{"\n"}}'

OpenShift Container Platform 4.8 ネットワーク

314

サービスの外部 IP を使用した ingress クラスタートラフィックの設定

18.3. INGRESS コントローラーを使用した INGRESS クラスターの設定

OpenShift Container Platform は、クラスター内で実行されるサービスを使ってクラスター外からの通
信を可能にする方法を提供します。この方法は Ingress コントローラーを使用します。

18.3.1. Ingress コントローラーおよびルートの使用

Ingress Operator は Ingress コントローラーおよびワイルドカード DNS を管理します。

Ingress コントローラーの使用は、OpenShift Container Platform クラスターへの外部アクセスを許可す
るための最も一般的な方法です。

Ingress コントローラーは外部要求を許可し、設定されたルートに基づいてそれらをプロキシー送信す
るよう設定されます。これは、HTTP、SNI を使用する HTTPS、SNI を使用する TLS に限定されてお
り、SNI を使用する TLS で機能する Web アプリケーションやサービスには十分な設定です。

管理者と連携して Ingress コントローラーを設定します。外部要求を許可し、設定されたルートに基づ
いてそれらをプロキシー送信するように Ingress コントローラーを設定します。

管理者はワイルドカード DNS エントリーを作成してから Ingress コントローラーを設定できます。そ
の後は管理者に問い合わせることなく edge Ingress コントローラーと連携できます。

デフォルトで、クラスター内のすべての Ingress コントローラーはクラスター内の任意のプロジェクト
で作成されたすべてのルートを許可します。

Ingress コントローラー:

デフォルトでは 2 つのレプリカがあるので、これは 2 つのワーカーノードで実行する必要があ
ります。

追加のノードにレプリカを組み込むためにスケールアップすることができます。

注記

このセクションの手順では、クラスターの管理者が事前に行っておく必要のある前提条
件があります。

18.3.2. 前提条件

以下の手順を開始する前に、管理者は以下の条件を満たしていることを確認する必要があります。

要求がクラスターに到達できるように、クラスターネットワーク環境に対して外部ポートを
セットアップします。

クラスター管理者ロールを持つユーザーが 1 名以上いることを確認します。このロールをユー
ザーに追加するには、以下のコマンドを実行します。

$ oc adm policy add-cluster-role-to-user cluster-admin username

OpenShift Container Platform クラスターを、1 つ以上のマスターと 1 つ以上のノード、および
クラスターへのネットワークアクセスのあるクラスター外のシステムと共に用意します。この
手順では、外部システムがクラスターと同じサブセットにあることを前提とします。別のサブ

第18章 INGRESS クラスタートラフィックの設定

315

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-ingress-cluster-traffic-service-external-ip

セットの外部システムに必要な追加のネットワーク設定については、このトピックでは扱いま
せん。

18.3.3. プロジェクトおよびサービスの作成

公開するプロジェクトおよびサービスが存在しない場合、最初にプロジェクトを作成し、次にサービス
を作成します。

プロジェクトおよびサービスがすでに存在する場合は、サービスを公開してルートを作成する手順に進
みます。

前提条件

クラスター管理者として oc CLI をインストールし、ログインします。

手順

1. oc new-project コマンドを実行して、サービス用の新しいプロジェクトを作成します。

2. oc new-app コマンドを使用してサービスを作成します。

3. サービスが作成されたことを確認するには、以下のコマンドを実行します。

出力例

デフォルトで、新規サービスには外部 IP アドレスがありません。

18.3.4. ルートの作成によるサービスの公開

oc expose コマンドを使用して、サービスをルートとして公開することができます。

手順

サービスを公開するには、以下を実行します。

1. OpenShift Container Platform にログインします。

2. 公開するサービスが置かれているプロジェクトにログインします。

3. oc expose service コマンドを実行して、ルートを公開します。

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

$ oc project myproject

$ oc expose service nodejs-ex

OpenShift Container Platform 4.8 ネットワーク

316

出力例

4. サービスが公開されていることを確認するには、cURL などのツールを使って、クラスター外
からサービスにアクセスできることを確認します。

a. ルートのホスト名を調べるには、oc get route コマンドを使用します。

出力例

b. cURL を使用して、ホストが GET 要求に応答することを確認します。

出力例

18.3.5. ルートラベルを使用した Ingress コントローラーのシャード化の設定

ルートラベルを使用した Ingress コントローラーのシャード化とは、Ingress コントローラーがルートセ
レクターによって選択される任意 namespace の任意のルートを提供することを意味します。

Ingress コントローラーのシャード化は、一連の Ingress コントローラー間で着信トラフィックの負荷を
分散し、トラフィックを特定の Ingress コントローラーに分離する際に役立ちます。たとえば、
Company A のトラフィックをある Ingress コントローラーに指定し、Company B を別の Ingress コン
トローラーに指定できます。

手順

1. router-internal.yaml ファイルを編集します。

route.route.openshift.io/nodejs-ex exposed

$ oc get route

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
nodejs-ex nodejs-ex-myproject.example.com nodejs-ex 8080-tcp None

$ curl --head nodejs-ex-myproject.example.com

HTTP/1.1 200 OK
...

cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:

第18章 INGRESS クラスタートラフィックの設定

317

2. Ingress コントローラーの router-internal.yaml ファイルを適用します。

Ingress コントローラーは、type: sharded というラベルのある namespace のルートを選択し
ます。

18.3.6. namespace ラベルを使用した Ingress コントローラーのシャード化の設定

namespace ラベルを使用した Ingress コントローラーのシャード化とは、Ingress コントローラーが
namespace セレクターによって選択される任意の namespace の任意のルートを提供することを意味し
ます。

Ingress コントローラーのシャード化は、一連の Ingress コントローラー間で着信トラフィックの負荷を
分散し、トラフィックを特定の Ingress コントローラーに分離する際に役立ちます。たとえば、
Company A のトラフィックをある Ingress コントローラーに指定し、Company B を別の Ingress コン
トローラーに指定できます。

警告

Keepalived Ingress VIP をデプロイする場合は、endpoint Publishing Strategy パ
ラメーターに Host Network の値が割り当てられた、デフォルト以外の Ingress
Controller をデプロイしないでください。デプロイしてしまうと、問題が発生する
可能性があります。endpoint Publishing Strategy に Host Network ではな
く、Node Port という値を使用してください。

手順

1. router-internal.yaml ファイルを編集します。

出力例

 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml



cat router-internal.yaml

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:

OpenShift Container Platform 4.8 ネットワーク

318

2. Ingress コントローラーの router-internal.yaml ファイルを適用します。

Ingress コントローラーは、type: sharded というラベルのある namespace セレクターによっ
て選択される namespace のルートを選択します。

18.3.7. 関連情報

Ingress Operator はワイルドカード DNS を管理します。詳細は、OpenShift Container
Platform の Ingress Operator、クラスターのベアメタルへのインストール、および クラスター
の vSphere へのインストール を参照してください。

18.4. ロードバランサーを使用した INGRESS クラスターの設定

OpenShift Container Platform は、クラスター内で実行されるサービスを使ってクラスター外からの通
信を可能にする方法を提供します。この方法では、ロードバランサーを使用します。

18.4.1. ロードバランサーを使用したトラフィックのクラスターへの送信

特定の外部 IP アドレスを必要としない場合、ロードバランサーサービスを OpenShift Container
Platform クラスターへの外部アクセスを許可するよう設定することができます。

ロードバランサーサービスは固有の IP を割り当てます。ロードバランサーには単一の edge ルーター
IP があります (これは仮想 IP (VIP) の場合もありますが、初期の負荷分散では単一マシンになります。

注記

プールが設定される場合、これはクラスター管理者によってではなく、インフラストラ
クチャーレベルで実行されます。

注記

このセクションの手順では、クラスターの管理者が事前に行っておく必要のある前提条
件があります。

 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml

第18章 INGRESS クラスタートラフィックの設定

319

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-ingress
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/installing/#installing-vsphere

18.4.2. 前提条件

以下の手順を開始する前に、管理者は以下の条件を満たしていることを確認する必要があります。

要求がクラスターに到達できるように、クラスターネットワーク環境に対して外部ポートを
セットアップします。

クラスター管理者ロールを持つユーザーが 1 名以上いることを確認します。このロールをユー
ザーに追加するには、以下のコマンドを実行します。

$ oc adm policy add-cluster-role-to-user cluster-admin username

OpenShift Container Platform クラスターを、1 つ以上のマスターと 1 つ以上のノード、および
クラスターへのネットワークアクセスのあるクラスター外のシステムと共に用意します。この
手順では、外部システムがクラスターと同じサブセットにあることを前提とします。別のサブ
セットの外部システムに必要な追加のネットワーク設定については、このトピックでは扱いま
せん。

18.4.3. プロジェクトおよびサービスの作成

公開するプロジェクトおよびサービスが存在しない場合、最初にプロジェクトを作成し、次にサービス
を作成します。

プロジェクトおよびサービスがすでに存在する場合は、サービスを公開してルートを作成する手順に進
みます。

前提条件

クラスター管理者として oc CLI をインストールし、ログインします。

手順

1. oc new-project コマンドを実行して、サービス用の新しいプロジェクトを作成します。

2. oc new-app コマンドを使用してサービスを作成します。

3. サービスが作成されたことを確認するには、以下のコマンドを実行します。

出力例

デフォルトで、新規サービスには外部 IP アドレスがありません。

18.4.4. ルートの作成によるサービスの公開

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

OpenShift Container Platform 4.8 ネットワーク

320

oc expose コマンドを使用して、サービスをルートとして公開することができます。

手順

サービスを公開するには、以下を実行します。

1. OpenShift Container Platform にログインします。

2. 公開するサービスが置かれているプロジェクトにログインします。

3. oc expose service コマンドを実行して、ルートを公開します。

出力例

4. サービスが公開されていることを確認するには、cURL などのツールを使って、クラスター外
からサービスにアクセスできることを確認します。

a. ルートのホスト名を調べるには、oc get route コマンドを使用します。

出力例

b. cURL を使用して、ホストが GET 要求に応答することを確認します。

出力例

18.4.5. ロードバランサーサービスの作成

以下の手順を使用して、ロードバランサーサービスを作成します。

前提条件

公開するプロジェクトとサービスがあること。

手順

ロードバランサーサービスを作成するには、以下を実行します。

$ oc project myproject

$ oc expose service nodejs-ex

route.route.openshift.io/nodejs-ex exposed

$ oc get route

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
nodejs-ex nodejs-ex-myproject.example.com nodejs-ex 8080-tcp None

$ curl --head nodejs-ex-myproject.example.com

HTTP/1.1 200 OK
...

第18章 INGRESS クラスタートラフィックの設定

321

1

2

3

4

5

1. OpenShift Container Platform にログインします。

2. 公開するサービスが置かれているプロジェクトを読み込みます。

3. コントロールプレーンノード (別名マスターノード) でテキストファイルを開き、以下のテキス
トを貼り付け、必要に応じてファイルを編集します。

ロードバランサー設定ファイルのサンプル

apiVersion: v1
kind: Service
metadata:
 name: egress-2 1
spec:
 ports:
 - name: db
 port: 3306 2
 loadBalancerIP:
 loadBalancerSourceRanges: 3
 - 10.0.0.0/8
 - 192.168.0.0/16
 type: LoadBalancer 4
 selector:
 name: mysql 5

ロードバランサーサービスの説明となる名前を入力します。

公開するサービスがリッスンしている同じポートを入力します。

特定の IP アドレスの一覧を入力して、ロードバランサー経由でトラフィックを制限しま
す。クラウドプロバイダーがこの機能に対応していない場合、このフィールドは無視され
ます。

タイプに loadbalancer を入力します。

サービスの名前を入力します。

注記

ロードバランサーを介して特定の IP アドレスへのトラフィックを制限するに
は、loadBalancerSourceRanges フィールドを設定するのではな
く、service.beta.kubernetes.io/load-balancer-source-ranges アノテーション
を使用することが推奨されます。アノテーションを使用すると、OpenShift API
により簡単に移行でき、今後のリリースで実装されます。

4. ファイルを保存し、終了します。

5. 以下のコマンドを実行してサービスを作成します。

$ oc project project1

$ oc create -f <file-name>

OpenShift Container Platform 4.8 ネットワーク

322

以下に例を示します。

6. 以下のコマンドを実行して新規サービスを表示します。

出力例

有効にされたクラウドプロバイダーがある場合、サービスには外部 IP アドレスが自動的に割り
当てられます。

7. マスターで cURL などのツールを使用し、パブリック IP アドレスを使用してサービスに到達で
きることを確認します。

以下に例を示します。

このセクションの例では、クライアントアプリケーションを必要とする MySQL サービスを使
用しています。Got packets out of order のメッセージと共に文字ストリングを取得する場合
は、このサービスに接続していることになります。

MySQL クライアントがある場合は、標準 CLI コマンドでログインします。

出力例

18.5. ネットワークロードバランサーを使用した AWS での INGRESS クラス
タートラフィックの設定

OpenShift Container Platform は、クラスター内で実行されるサービスを使ってクラスター外からの通
信を可能にする方法を提供します。この方法では、クライアントの IP アドレスをノードに転送する
Network Load Balancer (NLB) を使用します。NLB を新規または既存の AWS クラスターに設定するこ
とができます。

18.5.1. Ingress Controller Classic Load Balancer の Network Load Balancer への置き

$ oc create -f mysql-lb.yaml

$ oc get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
egress-2 LoadBalancer 172.30.22.226 ad42f5d8b303045-487804948.example.com
3306:30357/TCP 15m

$ curl <public-ip>:<port>

$ curl 172.29.121.74:3306

$ mysql -h 172.30.131.89 -u admin -p

Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

第18章 INGRESS クラスタートラフィックの設定

323

18.5.1. Ingress Controller Classic Load Balancer の Network Load Balancer への置き
換え

Classic Load Balancer (CLB) を使用している Ingress Controller は、AWS の Network Load Balancer
(NLB) を使用している Ingress Controller に置き換えることができます。

警告

この手順を実行すると、新しい DNS レコードの伝搬、新しいロードバランサーの
プロビジョニングなどの要因により、数分間にわたる障害が発生することが予想さ
れます。この手順を適用すると、Ingress Controller ロードバランサーの IP アドレ
スや正規名が変更になる場合があります。

手順

1. 新しいデフォルトの Ingress Controller を含むファイルを作成します。以下の例では、デフォル
トの Ingress Controller の範囲が External で、その他のカスタマイズをしていないことを想定
しています。

ingresscontroller.yml ファイルの例

デフォルトの Ingress Controller が他にカスタマイズされている場合には、それに応じてファイ
ルを修正してください。

2. Ingress Controller の YAML ファイルを強制的に置き換えます。

Ingress Controller の置き換えが完了するまでお待ちください。数分ほど、サービスが停止しま
す。

18.5.2. 既存 AWS クラスターでの Ingress コントローラーネットワークロードバラン
サーの設定



apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

$ oc replace --force --wait -f ingresscontroller.yml

OpenShift Container Platform 4.8 ネットワーク

324

1

2

3

AWS Network Load Balancer (NLB) がサポートする Ingress コントローラーを既存のクラスターに作成
できます。

前提条件

AWS クラスターがインストールされている。

インフラストラクチャーリソースの PlatformStatus は AWS である必要があります。

PlatformStatus が AWS であることを確認するには、以下を実行します。

手順

既存のクラスターの AWS NLB がサポートする Ingress コントローラーを作成します。

1. Ingress コントローラーのマニフェストを作成します。

出力例

$my_ingress_controller を Ingress コントローラーの一意の名前に置き換えます。

$my_unique_ingress_domain を、クラスター内のすべての Ingress コントローラー間で
一意のドメイン名に置き換えます。

External を内部 NLB を使用するために Internal に置き換えることができます。

2. クラスターにリソースを作成します。

重要

$ oc get infrastructure/cluster -o jsonpath='{.status.platformStatus.type}'
AWS

 $ cat ingresscontroller-aws-nlb.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: $my_ingress_controller 1
 namespace: openshift-ingress-operator
spec:
 domain: $my_unique_ingress_domain 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: External 3
 providerParameters:
 type: AWS
 aws:
 type: NLB

$ oc create -f ingresscontroller-aws-nlb.yaml

第18章 INGRESS クラスタートラフィックの設定

325

1

1

重要

新規 AWS クラスターで Ingress コントローラー NLB を設定する前に、インストール設
定ファイルの作成 手順を実行する必要があります。

18.5.3. 新規 AWS クラスターでの Ingress コントローラーネットワークロードバラン
サーの設定

新規クラスターに AWS Network Load Balancer (NLB) がサポートする Ingress コントローラーを作成で
きます。

前提条件

install-config.yaml ファイルを作成し、これに対する変更を完了します。

手順

新規クラスターの AWS NLB がサポートする Ingress コントローラーを作成します。

1. インストールプログラムが含まれるディレクトリーに切り替え、マニフェストを作成します。

<installation_directory> については、クラスターの install-config.yaml ファイルが含ま
れるディレクトリーの名前を指定します。

2. cluster-ingress-default-ingresscontroller.yaml という名前のファイルを
<installation_directory>/manifests/ ディレクトリーに作成します。

<installation_directory> については、クラスターの manifests/ ディレクトリーが含まれ
るディレクトリー名を指定します。

ファイルの作成後は、以下のようにいくつかのネットワーク設定ファイルが manifests/ ディレ
クトリーに置かれます。

出力例

3. エディターで cluster-ingress-default-ingresscontroller.yaml ファイルを開き、必要な
Operator 設定を記述するカスタムリソース (CR) を入力します。

$./openshift-install create manifests --dir <installation_directory> 1

$ touch <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml 1

$ ls <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml

cluster-ingress-default-ingresscontroller.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator

OpenShift Container Platform 4.8 ネットワーク

326

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/installing/#installation-initializing_installing-aws-network-customizations

4. cluster-ingress-default-ingresscontroller.yaml ファイルを保存し、テキストエディターを終
了します。

5. オプション: manifests/cluster-ingress-default-ingresscontroller.yaml ファイルをバックアッ
プします。インストールプログラムは、クラスターの作成時に manifests/ ディレクトリーを削
除します。

18.5.4. 関連情報

ネットワークのカスタマイズによる AWS へのクラスターのインストール

詳細は、Network Load Balancer support on AWS を参照してください。

18.6. サービスの外部 IP を使用した INGRESS クラスタートラフィックの設
定

外部 IP アドレスをサービスに割り当てることで、これをクラスター外のトラフィックで使用できるよ
うにします。通常、これはベアメタルハードウェアにインストールされているクラスターの場合にのみ
役立ちます。外部ネットワークインフラストラクチャーは、トラフィックをサービスにルーティングす
るように正しく設定される必要があります。

18.6.1. 前提条件

クラスターは ExternalIP が有効にされた状態で設定されます。詳細は、サービスの ExternalIP
の設定 について参照してください。

18.6.2. ExternalIP のサービスへの割り当て

ExternalIP をサービスに割り当てることができます。クラスターが ExternalIP を自動的に割り当てする
ように設定されている場合、ExternalIP をサービスに手動で割り当てる必要がない場合があります。

手順

1. オプション: ExternalIP で使用するために設定される IP アドレス範囲を確認するには、以下の
コマンドを入力します。

autoAssignCIDRs が設定されている場合、spec.externalIPs フィールドが指定されていない
場合、 OpenShift Container Platform は ExternalIP を新規 Service オブジェクトに自動的に割
り当てます。

2. ExternalIP をサービスに割り当てます。

a. 新規サービスを作成する場合は、spec.externalIPs フィールドを指定し、1 つ以上の有効な

spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

$ oc get networks.config cluster -o jsonpath='{.spec.externalIP}{"\n"}'

第18章 INGRESS クラスタートラフィックの設定

327

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/installing/#installing-aws-network-customizations
https://kubernetes.io/docs/concepts/services-networking/service/#aws-nlb-support
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-externalip

a. 新規サービスを作成する場合は、spec.externalIPs フィールドを指定し、1 つ以上の有効な
IP アドレスの配列を指定します。以下に例を示します。

b. ExternalIP を既存のサービスに割り当てる場合は、以下のコマンドを入力します。<name>
をサービス名に置き換えます。<ip_address> を有効な ExternalIP アドレスに置き換えま
す。コンマで区切られた複数の IP アドレスを指定できます。

以下に例を示します。

出力例

3. ExternalIP アドレスがサービスに割り当てられていることを確認するには、以下のコマンドを
入力します。新規サービスに ExternalIP を指定した場合、まずサービスを作成する必要があり
ます。

出力例

18.6.3. 関連情報

サービスの ExternalIP の設定

18.7. NODEPORT を使用した INGRESS クラスタートラフィックの設定

OpenShift Container Platform は、クラスター内で実行されるサービスを使ってクラスター外からの通
信を可能にする方法を提供します。この方法は NodePort を使用します。

18.7.1. NodePort を使用したトラフィックのクラスターへの送信

apiVersion: v1
kind: Service
metadata:
 name: svc-with-externalip
spec:
 ...
 externalIPs:
 - 192.174.120.10

$ oc patch svc <name> -p \
 '{
 "spec": {
 "externalIPs": ["<ip_address>"]
 }
 }'

$ oc patch svc mysql-55-rhel7 -p '{"spec":{"externalIPs":["192.174.120.10"]}}'

"mysql-55-rhel7" patched

$ oc get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 192.174.120.10 3306/TCP 13m

OpenShift Container Platform 4.8 ネットワーク

328

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-externalip

NodePort-type Service リソースを使用して、クラスター内のすべてのノードの特定のポートでサービ
スを公開します。ポートは Service リソースの .spec.ports[*].nodePort フィールドで指定されます。

重要

ノードポートを使用するには、追加のポートリソースが必要です。

NodePort は、ノードの IP アドレスの静的ポートでサービスを公開します。NodePort はデフォルトで
30000 から 32767 の範囲に置かれます。つまり、 NodePort はサービスの意図されるポートに一致し
ないことが予想されます。たとえば、ポート 8080 はノードのポート 31020 として公開できます。

管理者は、外部 IP アドレスがノードにルーティングされることを確認する必要があります。

NodePort および外部 IP は独立しており、両方を同時に使用できます。

注記

このセクションの手順では、クラスターの管理者が事前に行っておく必要のある前提条
件があります。

18.7.2. 前提条件

以下の手順を開始する前に、管理者は以下の条件を満たしていることを確認する必要があります。

要求がクラスターに到達できるように、クラスターネットワーク環境に対して外部ポートを
セットアップします。

クラスター管理者ロールを持つユーザーが 1 名以上いることを確認します。このロールをユー
ザーに追加するには、以下のコマンドを実行します。

$ oc adm policy add-cluster-role-to-user cluster-admin <user_name>

OpenShift Container Platform クラスターを、1 つ以上のマスターと 1 つ以上のノード、および
クラスターへのネットワークアクセスのあるクラスター外のシステムと共に用意します。この
手順では、外部システムがクラスターと同じサブセットにあることを前提とします。別のサブ
セットの外部システムに必要な追加のネットワーク設定については、このトピックでは扱いま
せん。

18.7.3. プロジェクトおよびサービスの作成

公開するプロジェクトおよびサービスが存在しない場合、最初にプロジェクトを作成し、次にサービス
を作成します。

プロジェクトおよびサービスがすでに存在する場合は、サービスを公開してルートを作成する手順に進
みます。

前提条件

クラスター管理者として oc CLI をインストールし、ログインします。

手順

1. oc new-project コマンドを実行して、サービス用の新しいプロジェクトを作成します。

第18章 INGRESS クラスタートラフィックの設定

329

2. oc new-app コマンドを使用してサービスを作成します。

3. サービスが作成されたことを確認するには、以下のコマンドを実行します。

出力例

デフォルトで、新規サービスには外部 IP アドレスがありません。

18.7.4. ルートの作成によるサービスの公開

oc expose コマンドを使用して、サービスをルートとして公開することができます。

手順

サービスを公開するには、以下を実行します。

1. OpenShift Container Platform にログインします。

2. 公開するサービスが置かれているプロジェクトにログインします。

3. アプリケーションのノードポートを公開するには、以下のコマンドを入力します。OpenShift
Container Platform は 30000-32767 範囲の利用可能なポートを自動的に選択します。

出力例

4. オプション: サービスが公開されるノードポートで利用可能なことを確認するには、以下のコマ
ンドを入力します。

出力例

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

$ oc project myproject

$ oc expose service nodejs-ex --type=NodePort --name=nodejs-ex-nodeport --
generator="service/v2"

service/nodejs-ex-nodeport exposed

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.217.127 <none> 3306/TCP 9m44s
nodejs-ex-ingress NodePort 172.30.107.72 <none> 3306:31345/TCP 39s

OpenShift Container Platform 4.8 ネットワーク

330

5. オプション: oc new-app コマンドによって自動的に作成されたサービスを削除するには、以下
のコマンドを入力します。

18.7.5. 関連情報

ノードポートサービス範囲の設定

$ oc delete svc nodejs-ex

第18章 INGRESS クラスタートラフィックの設定

331

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#configuring-node-port-service-range

第19章 KUBERNETES NMSTATE

19.1. KUBERNETES NMSTATE OPERATOR について

Kubernetes NMState Operator は、NMState の OpenShift Container Platform クラスターのノード間
でステートドリブンのネットワーク設定を実行するための Kubernetes API を提供します。Kubernetes
NMState Operator は、ユーザーに対して、クラスターノードの各種のネットワークインターフェイス
タイプ、DNS、およびルーティングを設定する機能を提供します。さらに、クラスターノードのデーモ
ンは、各ノードの API サーバーへのネットワークインターフェイスの状態の定期的な報告を行います。

重要

Kubernetes NMState Operator はテクノロジープレビュー機能としてのみご利用いただ
けます。テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメン
ト (SLA) の対象外であり、機能的に完全ではないことがあります。Red Hat は実稼働環
境でこれらを使用することを推奨していません。テクノロジープレビューの機能は、最
新の製品機能をいち早く提供して、開発段階で機能のテストを行いフィードバックを提
供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲についての詳細
は、https://access.redhat.com/ja/support/offerings/techpreview/ を参照してくださ
い。

OpenShift Container Platform で NMState を使用する前に、Kubernetes NMState Operator をインス
トールする必要があります。

19.1.1. Kubernetes NMState Operator のインストール

管理者権限でログインし、Web コンソールから Kubernetes NMState Operator をインストールする必
要があります。インストールが完了すると、Operator はすべてのクラスターノードに NMState State
Controller をデーモンセットとしてデプロイできます。

手順

1. Operators → OperatorHub を選択します。

2. All Items の下の検索フィールドに、nmstate と入力し、Enter をクリックして Kubernetes
NMState Operator を検索します。

3. Kubernetes NMState Operator の検索結果をクリックします。

4. Install をクリックして、Install Operator ウィンドウを開きます。

5. Installed Namespace で、namespace が openshift-nmstate であることを確認しま
す。openshift-nmstate がコンボボックスに存在しない場合は、Create Namespace をクリッ
クし、ダイアログボックスの Name フィールドに openshift-nmstate を入力し、Create を押
します。

6. Install をクリックして Operator をインストールします。

7. Operator のインストールが完了したら、View Operator をクリックします。

8. Provided APIs で Create Instance をクリックし、kubernetes-nmstate のインスタンスを作成
するダイアログボックスを開きます。

9. ダイアログボックスの Name フィールドで、インスタンスの名前が nmstate であることを確認

OpenShift Container Platform 4.8 ネットワーク

332

https://access.redhat.com/support/offerings/techpreview/

9. ダイアログボックスの Name フィールドで、インスタンスの名前が nmstate であることを確認
します。

注記

名前の制限は既知の問題です。インスタンスはクラスター全体のシングルトンで
す。

10. デフォルト設定を受け入れ、Create をクリックしてインスタンスを作成します。

概要

完了後に、Operator はすべてのクラスターノードに NMState State Controller をデーモンセットとし
てデプロイしています。

19.2. ノードのネットワーク状態の確認

ノードのネットワーク状態は、クラスター内のすべてのノードのネットワーク設定です。

19.2.1. nmstate について

OpenShift Container Platform は nmstate を使用して、ノードネットワークの状態を報告し、これを設
定します。これにより、単一の設定マニフェストをクラスターに適用して、すべてのノードに Linux ブ
リッジを作成するなどして、ネットワークポリシーの設定を変更することができます。

ノードのネットワークは、以下のオブジェクトによって監視され更新されます。

NodeNetworkState

そのノード上のネットワークの状態を報告します。

NodeNetworkConfigurationPolicy

ノードで要求されるネットワーク設定について説明します。NodeNetworkConfigurationPolicy マ
ニフェストをクラスターに適用して、インターフェイスの追加および削除など、ノードネットワー
ク設定を更新します。

NodeNetworkConfigurationEnactment

各ノードに制定されたネットワークポリシーを報告します。

OpenShift Container Platform は、以下の nmstate インターフェイスタイプの使用をサポートします。

Linux Bridge

VLAN

Bond

イーサネット

注記

第19章 KUBERNETES NMSTATE

333

https://nmstate.github.io/

1

2

3

注記

OpenShift Container Platform クラスターが OVN-Kubernetes をデフォルトの Container
Network Interface (CNI) プロバイダーとして使用する場合、OVN-Kubernetes のホスト
ネットワークトポロジーの変更により、Linux ブリッジまたはボンディングをホストのデ
フォルトインターフェイスに割り当てることはできません。回避策として、ホストに接
続されたセカンダリーネットワークインターフェイスを使用するか、OpenShift SDN デ
フォルト CNI プロバイダーに切り替えることができます。

19.2.2. ノードのネットワーク状態の表示

NodeNetworkState オブジェクトはクラスター内のすべてのノードにあります。このオブジェクトは定
期的に更新され、ノードのネットワークの状態を取得します。

手順

1. クラスターのすべての NodeNetworkState オブジェクトを一覧表示します。

2. NodeNetworkState オブジェクトを検査して、そのノードにネットワークを表示します。この
例の出力は、明確にするために編集されています。

出力例

NodeNetworkState オブジェクトの名前はノードから取られています。

currentState には、DNS、インターフェイス、およびルートを含む、ノードの完全なネッ
トワーク設定が含まれます。

最後に成功した更新のタイムスタンプ。これは、ノードが到達可能であり、レポートの鮮
度の評価に使用できる限り定期的に更新されます。

19.3. ノードのネットワーク設定の更新

$ oc get nns

$ oc get nns node01 -o yaml

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkState
metadata:
 name: node01 1
status:
 currentState: 2
 dns-resolver:
...
 interfaces:
...
 route-rules:
...
 routes:
...
 lastSuccessfulUpdateTime: "2020-01-31T12:14:00Z" 3

OpenShift Container Platform 4.8 ネットワーク

334

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用して、ノードからのインターフェ
イスの追加または削除など、ノードネットワーク設定を更新できます。

19.3.1. nmstate について

OpenShift Container Platform は nmstate を使用して、ノードネットワークの状態を報告し、これを設
定します。これにより、単一の設定マニフェストをクラスターに適用して、すべてのノードに Linux ブ
リッジを作成するなどして、ネットワークポリシーの設定を変更することができます。

ノードのネットワークは、以下のオブジェクトによって監視され更新されます。

NodeNetworkState

そのノード上のネットワークの状態を報告します。

NodeNetworkConfigurationPolicy

ノードで要求されるネットワーク設定について説明します。NodeNetworkConfigurationPolicy マ
ニフェストをクラスターに適用して、インターフェイスの追加および削除など、ノードネットワー
ク設定を更新します。

NodeNetworkConfigurationEnactment

各ノードに制定されたネットワークポリシーを報告します。

OpenShift Container Platform は、以下の nmstate インターフェイスタイプの使用をサポートします。

Linux Bridge

VLAN

Bond

イーサネット

注記

OpenShift Container Platform クラスターが OVN-Kubernetes をデフォルトの Container
Network Interface (CNI) プロバイダーとして使用する場合、OVN-Kubernetes のホスト
ネットワークトポロジーの変更により、Linux ブリッジまたはボンディングをホストのデ
フォルトインターフェイスに割り当てることはできません。回避策として、ホストに接
続されたセカンダリーネットワークインターフェイスを使用するか、OpenShift SDN デ
フォルト CNI プロバイダーに切り替えることができます。

19.3.2. ノード上でのインターフェイスの作成

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用してクラスター内のノード上にイ
ンターフェイスを作成します。マニフェストには、インターフェイスの要求された設定の詳細が含まれ
ます。

デフォルトでは、マニフェストはクラスター内のすべてのノードに適用されます。インターフェイスを
特定ノードに追加するには、ノードセレクターの spec: nodeSelector パラメーターおよび適切な
<key>:<value> を追加します。

手順

1. NodeNetworkConfigurationPolicy マニフェストを作成します。以下の例は、すべてのワー
カーノードで Linux ブリッジを設定します。

第19章 KUBERNETES NMSTATE

335

https://nmstate.github.io/

1

2

3

4

1

ポリシーの名前。

オプション: nodeSelector パラメーターを含めない場合、ポリシーはクラスター内のすべ
てのノードに適用されます。

この例では node-role.kubernetes.io/worker: "" ノードセレクターを使用し、クラスター
内のすべてのワーカーノードを選択します。

オプション: インターフェイスの人間が判読できる説明。

2. ノードのネットワークポリシーを作成します。

ノードネットワーク設定ポリシーマニフェストのファイル名。

関連情報

同じポリシーで複数のインターフェイスを作成する例

ポリシーの各種 IP の管理方法の例

19.3.3. ノード上でのノードネットワークポリシー更新の確認

NodeNetworkConfigurationPolicy マニフェストは、クラスターのノードについて要求されるネット
ワーク設定を記述します。ノードネットワークポリシーには、要求されたネットワーク設定と、クラス
ター全体でのポリシーの実行ステータスが含まれます。

ノードネットワークポリシーを適用する際に、NodeNetworkConfigurationEnactment オブジェクト
がクラスター内のすべてのノードについて作成されます。ノードネットワーク設定の enactment (実行)

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: <br1-eth1-policy> 1
spec:
 nodeSelector: 2
 node-role.kubernetes.io/worker: "" 3
 desiredState:
 interfaces:
 - name: br1
 description: Linux bridge with eth1 as a port 4
 type: linux-bridge
 state: up
 ipv4:
 dhcp: true
 enabled: true
 bridge:
 options:
 stp:
 enabled: false
 port:
 - name: eth1

$ oc apply -f <br1-eth1-policy.yaml> 1

OpenShift Container Platform 4.8 ネットワーク

336

は、そのノードでのポリシーの実行ステータスを表す読み取り専用オブジェクトです。ポリシーがノー
ドに適用されない場合、そのノードの enactment (実行) にはトラブルシューティングのためのトレー
スバックが含まれます。

手順

1. ポリシーがクラスターに適用されていることを確認するには、ポリシーとそのステータスを一
覧表示します。

2. オプション: ポリシーの設定に想定されている以上の時間がかかる場合は、特定のポリシーの要
求される状態とステータスの状態を検査できます。

3. オプション: ポリシーのすべてのノード上での設定に想定されている以上の時間がかかる場合
は、クラスターの enactment (実行) のステータスを一覧表示できます。

4. オプション: 特定の enactment (実行) の設定 (失敗した設定のエラーレポートを含む) を表示す
るには、以下を実行します。

19.3.4. ノードからインターフェイスの削除

NodeNetworkConfigurationPolicy オブジェクトを編集し、インターフェイスの state を absent に設
定して、クラスターの 1 つ以上のノードからインターフェイスを削除できます。

ノードからインターフェイスを削除しても、ノードのネットワーク設定は以前の状態に自動的に復元さ
れません。以前の状態に復元する場合、そのノードのネットワーク設定をポリシーで定義する必要があ
ります。

ブリッジまたはボンディングインターフェイスを削除すると、そのブリッジまたはボンディングイン
ターフェイスに以前に接続されたか、またはそれらの下位にあるノード NIC は down の状態になり、
到達できなくなります。接続が失われないようにするには、同じポリシーでノード NIC を設定し、ス
テータスを up にし、DHCP または静的 IP アドレスのいずれかになるようにします。

注記

インターフェイスを追加したポリシーを削除しても、ノード上のポリシーの設定は変更
されません。NodeNetworkConfigurationPolicy はクラスターのオブジェクトですが、
これは要求される設定のみを表します。
同様に、インターフェイスを削除してもポリシーは削除されません。

手順

1. インターフェイスの作成に使用する NodeNetworkConfigurationPolicy マニフェストを更新し
ます。以下の例は Linux ブリッジを削除し、接続が失われないように DHCP で eth1 NIC を設
定します。

$ oc get nncp

$ oc get nncp <policy> -o yaml

$ oc get nnce

$ oc get nnce <node>.<policy> -o yaml

第19章 KUBERNETES NMSTATE

337

1

2

3

4

5

6

7

8

9

1

ポリシーの名前。

オプション: nodeSelector パラメーターを含めない場合、ポリシーはクラスター内のすべ
てのノードに適用されます。

この例では node-role.kubernetes.io/worker: "" ノードセレクターを使用し、クラスター
内のすべてのワーカーノードを選択します。

状態を absent に変更すると、インターフェイスが削除されます。

ブリッジインターフェイスから接続が解除されるインターフェイスの名前。

インターフェイスのタイプ。この例では、イーサネットネットワークインターフェイスを
作成します。

インターフェイスの要求された状態。

オプション: dhcp を使用しない場合は、静的 IP を設定するか、IP アドレスなしでイン
ターフェイスを出ることができます。

この例では ipv4 を有効にします。

2. ノード上でポリシーを更新し、インターフェイスを削除します。

ポリシーマニフェストのファイル名。

19.3.5. 異なるインターフェイスのポリシー設定の例

19.3.5.1. 例: Linux ブリッジインターフェイスノードネットワーク設定ポリシー

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用してクラスター内のノード上に

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: <br1-eth1-policy> 1
spec:
 nodeSelector: 2
 node-role.kubernetes.io/worker: "" 3
 desiredState:
 interfaces:
 - name: br1
 type: linux-bridge
 state: absent 4
 - name: eth1 5
 type: ethernet 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9

$ oc apply -f <br1-eth1-policy.yaml> 1

OpenShift Container Platform 4.8 ネットワーク

338

1

2

3

4

5

6

7

8

9

10

11

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用してクラスター内のノード上に
Linux ブリッジインターフェイスを作成します。

以下の YAML ファイルは、Linux ブリッジインターフェイスのマニフェストの例です。これには、独自
の情報で置き換える必要のあるサンプルの値が含まれます。

ポリシーの名前。

オプション: nodeSelector パラメーターを含めない場合、ポリシーはクラスター内のすべての
ノードに適用されます。

この例では、hostname ノードセレクターを使用します。

インターフェイスの名前。

オプション: 人間が判読できるインターフェイスの説明。

インターフェイスのタイプ。この例では、ブリッジを作成します。

作成後のインターフェイスの要求された状態。

オプション: dhcp を使用しない場合は、静的 IP を設定するか、IP アドレスなしでインターフェイ
スを出ることができます。

この例では ipv4 を有効にします。

この例では stp を無効にします。

ブリッジが接続されるノードの NIC。

19.3.5.2. 例: VLAN インターフェイスノードネットワークの設定ポリシー

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: br1-eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: br1 4
 description: Linux bridge with eth1 as a port 5
 type: linux-bridge 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9
 bridge:
 options:
 stp:
 enabled: false 10
 port:
 - name: eth1 11

第19章 KUBERNETES NMSTATE

339

1

2

3

4

5

6

7

8

9

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用してクラスター内のノード上に
VLAN インターフェイスを作成します。

以下の YAML ファイルは、VLAN インターフェイスのマニフェストの例です。これには、独自の情報で
置き換える必要のあるサンプルの値が含まれます。

ポリシーの名前。

オプション: nodeSelector パラメーターを含めない場合、ポリシーはクラスター内のすべての
ノードに適用されます。

この例では、hostname ノードセレクターを使用します。

インターフェイスの名前。

オプション: 人間が判読できるインターフェイスの説明。

インターフェイスのタイプ。以下の例では VLAN を作成します。

作成後のインターフェイスの要求された状態。

VLAN が接続されているノードの NIC。

VLAN タグ。

19.3.5.3. 例: ボンドインターフェイスノードネットワークの設定ポリシー

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用してノード上にボンドインター
フェイスを作成します。

注記

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: vlan-eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: eth1.102 4
 description: VLAN using eth1 5
 type: vlan 6
 state: up 7
 vlan:
 base-iface: eth1 8
 id: 102 9

OpenShift Container Platform 4.8 ネットワーク

340

1

2

3

4

5

6

注記

OpenShift Container Platform は以下の bond モードのみをサポートします。

mode=1 active-backup

mode=2 balance-xor

mode=4 802.3ad

mode=5 balance-tlb

mode=6 balance-alb

以下の YAML ファイルは、ボンドインターフェイスのマニフェストの例です。これには、独自の情報で
置き換える必要のあるサンプルの値が含まれます。

ポリシーの名前。

オプション: nodeSelector パラメーターを含めない場合、ポリシーはクラスター内のすべての
ノードに適用されます。

この例では、hostname ノードセレクターを使用します。

インターフェイスの名前。

オプション: 人間が判読できるインターフェイスの説明。

インターフェイスのタイプ。この例では、ボンドを作成します。

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: bond0-eth1-eth2-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: bond0 4
 description: Bond enslaving eth1 and eth2 5
 type: bond 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9
 link-aggregation:
 mode: active-backup 10
 options:
 miimon: '140' 11
 slaves: 12
 - eth1
 - eth2
 mtu: 1450 13

第19章 KUBERNETES NMSTATE

341

7

8

9

10

11

12

13

1

2

3

4

5

6

作成後のインターフェイスの要求された状態。

オプション: dhcp を使用しない場合は、静的 IP を設定するか、IP アドレスなしでインターフェイ
スを出ることができます。

この例では ipv4 を有効にします。

ボンドのドライバーモード。この例では、アクティブなバックアップモードを使用します。

オプション: この例では、miimon を使用して 140ms ごとにボンドリンクを検査します。

ボンド内の下位ノードの NIC。

オプション: ボンドの Maximum transmission unit (MTU)指定がない場合、この値はデフォルトで
1500 に設定されます。

19.3.5.4. 例: イーサネットインターフェイスノードネットワークの設定ポリシー

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用してクラスター内のノードにイー
サネットインターフェイスを作成します。

以下の YAML ファイルは、イーサネットインターフェイスのマニフェストの例です。これには、独自の
情報で置き換える必要のあるサンプルの値が含まれます。

ポリシーの名前。

オプション: nodeSelector パラメーターを含めない場合、ポリシーはクラスター内のすべての
ノードに適用されます。

この例では、hostname ノードセレクターを使用します。

インターフェイスの名前。

オプション: 人間が判読できるインターフェイスの説明。

インターフェイスのタイプ。この例では、イーサネットネットワークインターフェイスを作成しま
す。

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: eth1 4
 description: Configuring eth1 on node01 5
 type: ethernet 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9

OpenShift Container Platform 4.8 ネットワーク

342

7

8

9

作成後のインターフェイスの要求された状態。

オプション: dhcp を使用しない場合は、静的 IP を設定するか、IP アドレスなしでインターフェイ
スを出ることができます。

この例では ipv4 を有効にします。

19.3.5.5. 例: 同じノードネットワーク設定ポリシーでの複数のインターフェイス

同じノードネットワーク設定ポリシーで複数のインターフェイスを作成できます。これらのインター
フェイスは相互に参照でき、単一のポリシーマニフェストを使用してネットワーク設定をビルドし、デ
プロイできます。

以下のスニペット例では、2 つの NIC 間に bond10 という名前のボンドと、ボンドに接続する br1 とい
う名前の Linux ブリッジを作成します。

19.3.6. 例: IP 管理

以下の設定スニペットの例は、さまざまな IP 管理方法を示しています。

これらの例では、ethernet インターフェイスタイプを使用して、ポリシー設定に関連するコンテキスト
を表示しつつ、サンプルを単純化します。これらの IP 管理のサンプルは、他のインターフェイスタイ
プでも使用できます。

19.3.6.1. 静的

以下のスニペットは、イーサネットインターフェイスで IP アドレスを静的に設定します。

...
 interfaces:
 - name: bond10
 description: Bonding eth2 and eth3 for Linux bridge
 type: bond
 state: up
 link-aggregation:
 slaves:
 - eth2
 - eth3
 - name: br1
 description: Linux bridge on bond
 type: linux-bridge
 state: up
 bridge:
 port:
 - name: bond10
...

...
 interfaces:
 - name: eth1
 description: static IP on eth1
 type: ethernet
 state: up
 ipv4:

第19章 KUBERNETES NMSTATE

343

1 この値を、インターフェイスの静的 IP アドレスに置き換えます。

19.3.6.2. IP アドレスなし

以下のスニペットでは、インターフェイスに IP アドレスがないことを確認できます。

19.3.6.3. 動的ホストの設定

以下のスニペットは、動的 IP アドレス、ゲートウェイアドレス、および DNS を使用するイーサネット
インターフェイスを設定します。

以下のスニペットは、動的 IP アドレスを使用しますが、動的ゲートウェイアドレスまたは DNS を使用
しないイーサネットインターフェイスを設定します。

 dhcp: false
 address:
 - ip: 192.168.122.250 1
 prefix-length: 24
 enabled: true
...

...
 interfaces:
 - name: eth1
 description: No IP on eth1
 type: ethernet
 state: up
 ipv4:
 enabled: false
...

...
 interfaces:
 - name: eth1
 description: DHCP on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: true
 enabled: true
...

...
 interfaces:
 - name: eth1
 description: DHCP without gateway or DNS on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: true
 auto-gateway: false

OpenShift Container Platform 4.8 ネットワーク

344

1

2

19.3.6.4. DNS

以下のスニペットは、ホストに DNS 設定を設定します。

19.3.6.5. 静的ルーティング

以下のスニペットは、インターフェイス eth1 に静的ルートおよび静的 IP を設定します。

イーサネットインターフェイスの静的 IP アドレス。

ノードトラフィックのネクストホップアドレス。これは、イーサネットインターフェイスに設定さ
れる IP アドレスと同じサブネットにある必要があります。

19.4. ノードのネットワーク設定のトラブルシューティング

ノードのネットワーク設定で問題が発生した場合には、ポリシーが自動的にロールバックされ、

 auto-dns: false
 enabled: true
...

...
 interfaces:
 ...
 dns-resolver:
 config:
 search:
 - example.com
 - example.org
 server:
 - 8.8.8.8
...

...
 interfaces:
 - name: eth1
 description: Static routing on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: false
 address:
 - ip: 192.0.2.251 1
 prefix-length: 24
 enabled: true
 routes:
 config:
 - destination: 198.51.100.0/24
 metric: 150
 next-hop-address: 192.0.2.1 2
 next-hop-interface: eth1
 table-id: 254
...

第19章 KUBERNETES NMSTATE

345

ノードのネットワーク設定で問題が発生した場合には、ポリシーが自動的にロールバックされ、
enactment (実行) レポートは失敗します。これには、以下のような問題が含まれます。

ホストで設定を適用できません。

ホストはデフォルトゲートウェイへの接続を失います。

ホストは API サーバーへの接続を失います。

19.4.1. 正確でないノードネットワーク設定のポリシー設定のトラブルシューティング

ノードネットワーク設定ポリシーを適用し、クラスター全体でノードのネットワーク設定への変更を適
用することができます。正確でない設定を適用する場合、以下の例を使用して、失敗したノードネット
ワークポリシーのトラブルシューティングと修正を行うことができます。

この例では、Linux ブリッジポリシーは、3 つのコントロールプレーンノード (マスター) と 3 つのコン
ピュート (ワーカー) ノードを持つクラスターのサンプルに適用されます。ポリシーは正しくないイン
ターフェイスを参照するために、適用することができません。エラーを確認するには、利用可能な
NMState リソースを調べます。その後に、正しい設定でポリシーを更新できます。

手順

1. ポリシーを作成し、これをクラスターに適用します。以下の例では、ens01 インターフェイス
に単純なブリッジを作成します。

出力例

2. 以下のコマンドを実行してポリシーのステータスを確認します。

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: ens01-bridge-testfail
spec:
 desiredState:
 interfaces:
 - name: br1
 description: Linux bridge with the wrong port
 type: linux-bridge
 state: up
 ipv4:
 dhcp: true
 enabled: true
 bridge:
 options:
 stp:
 enabled: false
 port:
 - name: ens01

$ oc apply -f ens01-bridge-testfail.yaml

nodenetworkconfigurationpolicy.nmstate.io/ens01-bridge-testfail created

OpenShift Container Platform 4.8 ネットワーク

346

この出力は、ポリシーが失敗したことを示しています。

出力例

ただし、ポリシーのステータスのみでは、すべてのノードで失敗したか、またはノードのサブ
セットで失敗したかを確認することはできません。

3. ノードのネットワーク設定の enactment (実行) を一覧表示し、ポリシーがいずれかのノードで
成功したかどうかを確認します。このポリシーがノードのサブセットに対してのみ失敗した場
合は、問題が特定のノード設定にあることが示唆されます。このポリシーがすべてのノードで
失敗した場合には、問題はポリシーに関連するものであることが示唆されます。

この出力は、ポリシーがすべてのノードで失敗したことを示しています。

出力例

4. 失敗した enactment (実行) のいずれかを表示し、トレースバックを確認します。以下のコマン
ドは、出力ツール jsonpath を使用して出力をフィルターします。

このコマンドは、簡潔にするために編集されている大きなトレースバックを返します。

出力例

$ oc get nncp

NAME STATUS
ens01-bridge-testfail FailedToConfigure

$ oc get nnce

NAME STATUS
control-plane-1.ens01-bridge-testfail FailedToConfigure
control-plane-2.ens01-bridge-testfail FailedToConfigure
control-plane-3.ens01-bridge-testfail FailedToConfigure
compute-1.ens01-bridge-testfail FailedToConfigure
compute-2.ens01-bridge-testfail FailedToConfigure
compute-3.ens01-bridge-testfail FailedToConfigure

$ oc get nnce compute-1.ens01-bridge-testfail -o jsonpath='{.status.conditions[?
(@.type=="Failing")].message}'

error reconciling NodeNetworkConfigurationPolicy at desired state apply: , failed to execute
nmstatectl set --no-commit --timeout 480: 'exit status 1' ''
...
libnmstate.error.NmstateVerificationError:
desired
=======

name: br1
type: linux-bridge
state: up
bridge:
 options:
 group-forward-mask: 0

第19章 KUBERNETES NMSTATE

347

 mac-ageing-time: 300
 multicast-snooping: true
 stp:
 enabled: false
 forward-delay: 15
 hello-time: 2
 max-age: 20
 priority: 32768
 port:
 - name: ens01
description: Linux bridge with the wrong port
ipv4:
 address: []
 auto-dns: true
 auto-gateway: true
 auto-routes: true
 dhcp: true
 enabled: true
ipv6:
 enabled: false
mac-address: 01-23-45-67-89-AB
mtu: 1500

current
=======

name: br1
type: linux-bridge
state: up
bridge:
 options:
 group-forward-mask: 0
 mac-ageing-time: 300
 multicast-snooping: true
 stp:
 enabled: false
 forward-delay: 15
 hello-time: 2
 max-age: 20
 priority: 32768
 port: []
description: Linux bridge with the wrong port
ipv4:
 address: []
 auto-dns: true
 auto-gateway: true
 auto-routes: true
 dhcp: true
 enabled: true
ipv6:
 enabled: false
mac-address: 01-23-45-67-89-AB
mtu: 1500

difference
==========

OpenShift Container Platform 4.8 ネットワーク

348

NmstateVerificationError は、desired ポリシー設定、ノード上のポリシーの current 設定、
および一致しないパラメーターを強調表示する difference を一覧表示します。この例で
は、port は difference に組み込まれ、これは問題がポリシーのポート設定に関連するものであ
ることを示唆します。

5. ポリシーが適切に設定されていることを確認するには、NodeNetworkState オブジェクトを要
求して、1 つまたはすべてのノードのネットワーク設定を表示します。以下のコマンド
は、control-plane-1 ノードのネットワーク設定を返します。

$ oc get nns control-plane-1 -o yaml

出力は、ノード上のインターフェイス名は ens1 であるものの、失敗したポリシーが ens01 を
誤って使用していることを示します。

出力例

6. 既存のポリシーを編集してエラーを修正します。

ポリシーを保存して修正を適用します。

7. ポリシーのステータスをチェックして、更新が正常に行われたことを確認します。

出力例

--- desired
+++ current
@@ -13,8 +13,7 @@
 hello-time: 2
 max-age: 20
 priority: 32768
- port:
- - name: ens01
+ port: []
 description: Linux bridge with the wrong port
 ipv4:
 address: []
 line 651, in _assert_interfaces_equal\n
current_state.interfaces[ifname],\nlibnmstate.error.NmstateVerificationError:

 - ipv4:
 ...
 name: ens1
 state: up
 type: ethernet

$ oc edit nncp ens01-bridge-testfail

...
 port:
 - name: ens1

$ oc get nncp

第19章 KUBERNETES NMSTATE

349

更新されたポリシーは、クラスターのすべてのノードで正常に設定されました。

NAME STATUS
ens01-bridge-testfail SuccessfullyConfigured

OpenShift Container Platform 4.8 ネットワーク

350

第20章 クラスター全体のプロキシーの設定
実稼働環境では、インターネットへの直接アクセスを拒否し、代わりに HTTP または HTTPS プロキ
シーを使用することができます。既存クラスターのプロキシーオブジェクトを変更 するか、または新規
クラスターの install-config.yaml ファイルでプロキシー設定を行うことにより、OpenShift Container
Platform をプロキシーを使用するように設定できます。

20.1. 前提条件

クラスターがアクセスする必要のあるサイト を確認し、プロキシーをバイパスする必要がある
かどうかを判断します。デフォルトで、すべてのクラスターシステムの egress トラフィック
(クラスターをホストするクラウドのクラウドプロバイダー API に対する呼び出しを含む) はプ
ロキシーされます。システム全体のプロキシーは、ユーザーのワークロードではなく、システ
ムコンポーネントにのみ影響を与えます。プロキシーオブジェクトの spec.noProxy フィール
ドにサイトを追加し、必要に応じてプロキシーをバイパスします。

注記

Proxy オブジェクトの status.noProxy フィールドには、インストール設定の
networking.machineNetwork[].cidr、 networking.clusterNetwork[].cidr、お
よび networking.serviceNetwork[] フィールドの値が設定されます。

Amazon Web Services (AWS)、Google Cloud Platform (GCP)、Microsoft
Azure、および Red Hat OpenStack Platform (RHOSP) へのインストールの場
合、Proxy オブジェクトの status.noProxy フィールドには、インスタンスメタ
データのエンドポイント (169.254.169.254) も設定されます。

20.2. クラスター全体のプロキシーの有効化

Proxy オブジェクトは、クラスター全体の egress プロキシーを管理するために使用されます。プロキ
シーを設定せずにクラスターがインストールまたはアップグレードされると、Proxyオブジェクトは引
き続き生成されますが、spec は設定されません。以下に例を示します。

クラスター管理者は、この cluster Proxy オブジェクトを変更して OpenShift Container Platform のプ
ロキシーを設定できます。

注記

cluster という名前の Proxy オブジェクトのみがサポートされ、追加のプロキシーを作
成することはできません。

前提条件

クラスター管理者のパーミッション。

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 trustedCA:
 name: ""
status:

第20章 クラスター全体のプロキシーの設定

351

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/networking/#nw-proxy-configure-object_config-cluster-wide-proxy
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/installing/#configuring-firewall

1

2

3

4

OpenShift Container Platform oc CLI ツールがインストールされている。

手順

1. HTTPS 接続のプロキシーに必要な追加の CA 証明書が含まれる config map を作成します。

注記

プロキシーのアイデンティティー証明書が RHCOS 信頼バンドルからの認証局に
よって署名される場合は、これを省略できます。

a. 以下の内容で user-ca-bundle.yaml というファイルを作成して、PEM でエンコードされた
証明書の値を指定します。

このデータキーは ca-bundle.crt という名前にする必要があります。

プロキシーのアイデンティティー証明書に署名するために使用される 1 つ以上の PEM
でエンコードされた X.509 証明書。

Proxy オブジェクトから参照される config map 名。

config map は openshift-config namespace になければなりません。

b. このファイルから設定マップを作成します。

2. oc edit コマンドを使用して Proxy オブジェクトを変更します。

3. プロキシーに必要なフィールドを設定します。

apiVersion: v1
data:
 ca-bundle.crt: | 1
 <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
 name: user-ca-bundle 3
 namespace: openshift-config 4

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
 readinessEndpoints:
 - http://www.google.com 4

OpenShift Container Platform 4.8 ネットワーク

352

1

2

3

4

5

クラスター外の HTTP 接続を作成するために使用するプロキシー URL。URL スキームは
http である必要があります。

クラスター外で HTTPS 接続を作成するために使用するプロキシー URL。URL スキームは
http または https である必要があります。URL スキームをサポートするプロキシーの
URL を指定します。たとえば、ほとんどのプロキシーは、https を使用するように設定さ
れていても、http しかサポートしていない場合、エラーを報告します。このエラーメッ
セージはログに反映されず、代わりにネットワーク接続エラーのように見える場合があり
ます。クラスターからの https 接続をリッスンするプロキシーを使用している場合は、プ
ロキシーが使用する CA と証明書を受け入れるようにクラスターを設定する必要がある場
合があります。

プロキシーを除外するための宛先ドメイン名、ドメイン、IP アドレス、または他のネット
ワーク CIDR のコンマ区切りの一覧。

サブドメインのみと一致するように、ドメインの前に . を付けます。たとえば、.y.com は
x.y.com に一致しますが、 y.com には一致しません。* を使用し、すべての宛先のプロキ
シーをバイパスします。インストール設定で networking.machineNetwork[].cidr フィー
ルドで定義されるネットワークに含まれていないワーカーをスケールアップする場合、そ
れらをこの一覧に追加し、接続の問題を防ぐ必要があります。

httpProxy または httpsProxy フィールドのいずれも設定されていない場合に、この
フィールドは無視されます。

httpProxy および httpsProxy の値をステータスに書き込む前の readiness チェックに使用
するクラスター外の 1 つ以上の URL。

HTTPS 接続のプロキシーに必要な追加の CA 証明書が含まれる、openshift-config
namespace の config map の参照。ここで参照する前に config map が存在している必要
があります。このフィールドは、プロキシーのアイデンティティー証明書が RHCOS 信頼
バンドルからの認証局によって署名されない限り必要になります。

4. 変更を適用するためにファイルを保存します。

20.3. クラスター全体のプロキシーの削除

cluster プロキシーオブジェクトは削除できません。クラスターからプロキシーを削除するには、プロ
キシーオブジェクトからすべての spec フィールドを削除します。

前提条件

クラスター管理者のパーミッション。

OpenShift Container Platform oc CLI ツールがインストールされている。

手順

1. oc edit コマンドを使用してプロキシーを変更します。

 - https://www.google.com
 trustedCA:
 name: user-ca-bundle 5

$ oc edit proxy/cluster

第20章 クラスター全体のプロキシーの設定

353

2. プロキシーオブジェクトからすべての spec フィールドを削除します。以下に例を示します。

3. 変更を適用するためにファイルを保存します。

関連情報

CA バンドル証明書の置き換え

プロキシー証明書のカスタマイズ

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec: {}
status: {}

OpenShift Container Platform 4.8 ネットワーク

354

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/security_and_compliance/#ca-bundle-understanding_updating-ca-bundle
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.8/html-single/security_and_compliance/#customization

第21章 カスタム PKI の設定
Web コンソールなどの一部のプラットフォームコンポーネントは、通信にルートを使用し、それらと対
話するために他のコンポーネントの証明書を信頼する必要があります。カスタムのパブリックキーイン
フラストラクチャー (PKI) を使用している場合は、プライベートに署名された CA 証明書がクラスター
全体で認識されるようにこれを設定する必要があります。

プロキシー API を使用して、クラスター全体で信頼される CA 証明書を追加できます。インストール時
またはランタイム時にこれを実行する必要があります。

インストール 時に、クラスター全体のプロキシーを設定します。プライベートに署名された
CA 証明書は、install-config.yaml ファイルの additionalTrustBundle 設定で定義する必要が
あります。
インストールプログラムは、定義した追加の CA 証明書が含まれる user-ca-bundle という名前
の ConfigMap を生成します。次に Cluster Network Operator は、これらの CA 証明書を Red
Hat Enterprise Linux CoreOS (RHCOS) 信頼バンドルにマージする trusted-ca-bundle
ConfigMap を作成し、この ConfigMap はプロキシーオブジェクトの trustedCA フィールドで
参照されます。

ランタイム 時に、デフォルトのプロキシーオブジェクトを変更して、プライベートに署名され
た CA 証明書を追加 します (これは、クラスターのプロキシー有効化のワークフローの一部で
す)。これには、クラスターで信頼される必要があるプライベートに署名された CA 証明書が含
まれる ConfigMap を作成し、次にプライベートに署名された証明書の ConfigMap を参照する
trustedCA でプロキシーリソースを変更することが関係します。

注記

インストーラー設定の additionalTrustBundle フィールドおよびプロキシーリソースの
trustedCA フィールドは、クラスター全体の信頼バンドルを管理するために使用されま
す。 additionalTrustBundle はインストール時に使用され、プロキシーの trustedCA が
ランタイム時に使用されます。

trustedCA フィールドは、クラスターコンポーネントによって使用されるカスタム証明
書とキーのペアを含む ConfigMap の参照です。

21.1. インストール時のクラスター全体のプロキシーの設定

実稼働環境では、インターネットへの直接アクセスを拒否し、代わりに HTTP または HTTPS プロキ
シーを使用することができます。プロキシー設定を install-config.yaml ファイルで行うことにより、新
規の OpenShift Container Platform クラスターをプロキシーを使用するように設定できます。

前提条件

既存の install-config.yaml ファイルがある。

クラスターがアクセスする必要のあるサイトを確認済みで、それらのいずれかがプロキシーを
バイパスする必要があるかどうかを判別している。デフォルトで、すべてのクラスター egress
トラフィック (クラスターをホストするクラウドについてのクラウドプロバイダー API に対す
る呼び出しを含む) はプロキシーされます。プロキシーを必要に応じてバイパスするために、サ
イトを Proxy オブジェクトの spec.noProxy フィールドに追加している。

注記

第21章 カスタム PKI の設定

355

1

2

3

4

注記

Proxy オブジェクトの status.noProxy フィールドには、インストール設定の
networking.machineNetwork[].cidr、networking.clusterNetwork[].cidr、およ
び networking.serviceNetwork[] フィールドの値が設定されます。

Amazon Web Services (AWS)、Google Cloud Platform (GCP)、Microsoft
Azure、および Red Hat OpenStack Platform (RHOSP) へのインストールの場
合、Proxy オブジェクトの status.noProxy フィールドには、インスタンスメタ
データのエンドポイント (169.254.169.254) も設定されます。

手順

1. install-config.yaml ファイルを編集し、プロキシー設定を追加します。以下に例を示します。

クラスター外の HTTP 接続を作成するために使用するプロキシー URL。URL スキームは
http である必要があります。

クラスター外で HTTPS 接続を作成するために使用するプロキシー URL。

プロキシーから除外するための宛先ドメイン名、IP アドレス、または他のネットワーク
CIDR のコンマ区切りの一覧。サブドメインのみと一致するように、ドメインの前に . を
付けます。たとえば、.y.com は x.y.com に一致しますが、 y.com には一致しません。*
を使用し、すべての宛先のプロキシーをバイパスします。

指定されている場合には、インストールプログラムは、openshift-config namespace に
user-ca-bundle という名前の設定魔府を生成して、追加の CA 証明書を保存しま
す。additionalTrustBundle と少なくとも 1 つのプロキシー設定を指定した場合に
は、Proxy オブジェクトは trusted CA フィールドで user-ca-bundle 設定マップを参照
するように設定されます。その後、Cluster Network Operator は、trustedCA パラメー
ターに指定されたコンテンツを RHCOS トラストバンドルにマージする trusted-ca-
bundle 設定マップを作成します。additionalTrustBundle フィールドは、プロキシーの
アイデンティティー証明書が RHCOS 信頼バンドルからの認証局によって署名されない限
り必要になります。

注記

インストールプログラムは、プロキシーの readinessEndpoints フィールドをサ
ポートしません。

2. ファイルを保存し、OpenShift Container Platform のインストール時にこれを参照します。

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...

OpenShift Container Platform 4.8 ネットワーク

356

インストールプログラムは、指定の install-config.yaml ファイルのプロキシー設定を使用する cluster
という名前のクラスター全体のプロキシーを作成します。プロキシー設定が指定されていない場
合、cluster Proxy オブジェクトが依然として作成されますが、これには spec がありません。

注記

cluster という名前の Proxy オブジェクトのみがサポートされ、追加のプロキシーを作
成することはできません。

21.2. クラスター全体のプロキシーの有効化

Proxy オブジェクトは、クラスター全体の egress プロキシーを管理するために使用されます。プロキ
シーを設定せずにクラスターがインストールまたはアップグレードされると、Proxyオブジェクトは引
き続き生成されますが、spec は設定されません。以下に例を示します。

クラスター管理者は、この cluster Proxy オブジェクトを変更して OpenShift Container Platform のプ
ロキシーを設定できます。

注記

cluster という名前の Proxy オブジェクトのみがサポートされ、追加のプロキシーを作
成することはできません。

前提条件

クラスター管理者のパーミッション。

OpenShift Container Platform oc CLI ツールがインストールされている。

手順

1. HTTPS 接続のプロキシーに必要な追加の CA 証明書が含まれる config map を作成します。

注記

プロキシーのアイデンティティー証明書が RHCOS 信頼バンドルからの認証局に
よって署名される場合は、これを省略できます。

a. 以下の内容で user-ca-bundle.yaml というファイルを作成して、PEM でエンコードされた
証明書の値を指定します。

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 trustedCA:
 name: ""
status:

apiVersion: v1
data:
 ca-bundle.crt: | 1

第21章 カスタム PKI の設定

357

1

2

3

4

1

2

3

このデータキーは ca-bundle.crt という名前にする必要があります。

プロキシーのアイデンティティー証明書に署名するために使用される 1 つ以上の PEM
でエンコードされた X.509 証明書。

Proxy オブジェクトから参照される config map 名。

config map は openshift-config namespace になければなりません。

b. このファイルから設定マップを作成します。

2. oc edit コマンドを使用して Proxy オブジェクトを変更します。

3. プロキシーに必要なフィールドを設定します。

クラスター外の HTTP 接続を作成するために使用するプロキシー URL。URL スキームは
http である必要があります。

クラスター外で HTTPS 接続を作成するために使用するプロキシー URL。URL スキームは
http または https である必要があります。URL スキームをサポートするプロキシーの
URL を指定します。たとえば、ほとんどのプロキシーは、https を使用するように設定さ
れていても、http しかサポートしていない場合、エラーを報告します。このエラーメッ
セージはログに反映されず、代わりにネットワーク接続エラーのように見える場合があり
ます。クラスターからの https 接続をリッスンするプロキシーを使用している場合は、プ
ロキシーが使用する CA と証明書を受け入れるようにクラスターを設定する必要がある場
合があります。

プロキシーを除外するための宛先ドメイン名、ドメイン、IP アドレス、または他のネット
ワーク CIDR のコンマ区切りの一覧。

 <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
 name: user-ca-bundle 3
 namespace: openshift-config 4

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
 readinessEndpoints:
 - http://www.google.com 4
 - https://www.google.com
 trustedCA:
 name: user-ca-bundle 5

OpenShift Container Platform 4.8 ネットワーク

358

4

5

1

サブドメインのみと一致するように、ドメインの前に . を付けます。たとえば、.y.com は
x.y.com に一致しますが、 y.com には一致しません。* を使用し、すべての宛先のプロキ
シーをバイパスします。インストール設定で networking.machineNetwork[].cidr フィー
ルドで定義されるネットワークに含まれていないワーカーをスケールアップする場合、そ
れらをこの一覧に追加し、接続の問題を防ぐ必要があります。

httpProxy または httpsProxy フィールドのいずれも設定されていない場合に、この
フィールドは無視されます。

httpProxy および httpsProxy の値をステータスに書き込む前の readiness チェックに使用
するクラスター外の 1 つ以上の URL。

HTTPS 接続のプロキシーに必要な追加の CA 証明書が含まれる、openshift-config
namespace の config map の参照。ここで参照する前に config map が存在している必要
があります。このフィールドは、プロキシーのアイデンティティー証明書が RHCOS 信頼
バンドルからの認証局によって署名されない限り必要になります。

4. 変更を適用するためにファイルを保存します。

21.3. OPERATOR を使用した証明書の挿入

カスタム CA 証明書が ConfigMap 経由でクラスターに追加されると、Cluster Network Operator は
ユーザーによってプロビジョニングされる CA 証明書およびシステム CA 証明書を単一バンドルにマー
ジし、信頼バンドルの挿入を要求する Operator にマージされたバンドルを挿入します。

Operator は、以下のラベルの付いた空の ConfigMap を作成してこの挿入を要求します。

空の ConfigMap の例:

空の ConfigMap 名を指定します。

Operator は、この ConfigMap をコンテナーのローカル信頼ストアにマウントします。

注記

信頼された CA 証明書の追加は、証明書が Red Hat Enterprise Linux CoreOS (RHCOS)
信頼バンドルに含まれない場合にのみ必要になります。

証明書の挿入は Operator に制限されません。Cluster Network Operator は、空の ConfigMap が
config.openshift.io/inject-trusted-cabundle=true ラベルを使用して作成される場合に、すべての
namespace で証明書を挿入できます。

config.openshift.io/inject-trusted-cabundle="true"

apiVersion: v1
data: {}
kind: ConfigMap
metadata:
 labels:
 config.openshift.io/inject-trusted-cabundle: "true"
 name: ca-inject 1
 namespace: apache

第21章 カスタム PKI の設定

359

1

2

ConfigMap はすべての namespace に置くことができますが、ConfigMap はカスタム CA を必要とする
Pod 内の各コンテナーに対してボリュームとしてマウントされる必要があります。以下は例になりま
す。

ca-bundle.crt は ConfigMap キーとして必要になります。

tls-ca-bundle.pem は ConfigMap パスとして必要になります。

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-example-custom-ca-deployment
 namespace: my-example-custom-ca-ns
spec:
 ...
 spec:
 ...
 containers:
 - name: my-container-that-needs-custom-ca
 volumeMounts:
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 readOnly: true
 volumes:
 - name: trusted-ca
 configMap:
 name: trusted-ca
 items:
 - key: ca-bundle.crt 1
 path: tls-ca-bundle.pem 2

OpenShift Container Platform 4.8 ネットワーク

360

1

第22章 RHOSP での負荷分散

22.1. KURYR SDN を使用した OCTAVIA OVN ロードバランサープロバイ
ダードライバーの使用

OpenShift Container Platform クラスターが Kuryr を使用し、これが後に RHOSP 16 にアップグレード
された Red Hat OpenStack Platform (RHOSP) 13 クラウドにインストールされている場合、これを
Octavia OVN プロバイダードライバーを使用するように設定できます。

重要

Kuryr はプロバイダードライバーの変更後に既存のロードバランサーを置き換えます。こ
のプロセスにより、ダウンタイムが生じます。

前提条件

RHOSP CLI の openstack をインストールします。

OpenShift Container Platform CLI の oc をインストールします。

RHOSP の Octavia OVN ドライバーが有効になっていることを確認します。

ヒント

利用可能な Octavia ドライバーの一覧を表示するには、コマンドラインで openstack
loadbalancer provider list を入力します。

ovn ドライバーはコマンドの出力に表示されます。

手順

Octavia Amphora プロバイダードライバーから Octavia OVN に変更するには、以下を実行します。

1. kuryr-config ConfigMap を開きます。コマンドラインで、以下を実行します。

2. ConfigMap で、kuryr-octavia-provider: default が含まれる行を削除します。以下に例を示し
ます。

この行を削除します。クラスターは、ovn を値としてこれを再生成します。

Cluster Network Operator が変更を検出し、kuryr-controller および kuryr-cni Pod を再デプロ
イするのを待機します。このプロセスには数分の時間がかかる可能性があります。

3. kuryr-config ConfigMap アノテーションで ovn をその値として表示されていることを確認し

$ oc -n openshift-kuryr edit cm kuryr-config

...
kind: ConfigMap
metadata:
 annotations:
 networkoperator.openshift.io/kuryr-octavia-provider: default 1
...

第22章 RHOSP での負荷分散

361

3. kuryr-config ConfigMap アノテーションで ovn をその値として表示されていることを確認し
ます。コマンドラインで、以下を実行します。

ovn プロバイダーの値は出力に表示されます。

4. RHOSP がそのロードバランサーを再作成していることを確認します。

a. コマンドラインで、以下を実行します。

単一の Amphora ロードバランサーが表示されます。以下に例を示します。

b. 以下を入力して ovn ロードバランサーを検索します。

ovn タイプの残りのロードバランサーが表示されます。以下に例を示します。

22.2. OCTAVIA を使用したアプリケーショントラフィック用のクラスター
のスケーリング

Red Hat OpenStack Platform (RHOSP) で実行される OpenShift Container Platform クラスターでは、
Octavia 負荷分散サービスを使用して、複数の仮想マシン (VM) または Floating IP アドレスにトラ
フィックを分散することができます。この機能は、単一マシンまたはアドレスが生じさせるボトルネッ
クを軽減します。

クラスターで Kuryr を使用する場合、Cluster Network Operator はデプロイメント時に内部 Octavia
ロードバランサーを作成していました。アプリケーションネットワークのスケーリングには、このロー
ドバランサーを使用できます。

クラスターで Kuryr を使用しない場合、アプリケーションのネットワークのスケーリングに使用する独
自の Octavia ロードバランサーを作成する必要があります。

$ oc -n openshift-kuryr edit cm kuryr-config

...
kind: ConfigMap
metadata:
 annotations:
 networkoperator.openshift.io/kuryr-octavia-provider: ovn
...

$ openstack loadbalancer list | grep amphora

a4db683b-2b7b-4988-a582-c39daaad7981 | ostest-7mbj6-kuryr-api-loadbalancer |
84c99c906edd475ba19478a9a6690efd | 172.30.0.1 | ACTIVE | amphora

$ openstack loadbalancer list | grep ovn

2dffe783-98ae-4048-98d0-32aa684664cc | openshift-apiserver-operator/metrics |
84c99c906edd475ba19478a9a6690efd | 172.30.167.119 | ACTIVE | ovn
0b1b2193-251f-4243-af39-2f99b29d18c5 | openshift-etcd/etcd |
84c99c906edd475ba19478a9a6690efd | 172.30.143.226 | ACTIVE | ovn
f05b07fc-01b7-4673-bd4d-adaa4391458e | openshift-dns-operator/metrics |
84c99c906edd475ba19478a9a6690efd | 172.30.152.27 | ACTIVE | ovn

OpenShift Container Platform 4.8 ネットワーク

362

22.2.1. Octavia を使用したクラスターのスケーリング

複数の API ロードバランサーを使用する場合や、クラスターが Kuryr を使用しない場合、Octavia ロー
ドバランサーを作成してから、クラスターをこれを使用するように設定します。

前提条件

Octavia は Red Hat OpenStack Platform (RHOSP) デプロイメントで利用できます。

手順

1. コマンドラインから、Amphora ドライバーを使用する Octavia ロードバランサーを作成しま
す。

API_OCP_CLUSTER の代わりに、任意の名前を使用することができます。

2. ロードバランサーがアクティブになったら、リスナーを作成します。

注記

ロードバランサーのステータスを表示するには、openstack loadbalancer list
と入力します。

3. ラウンドロビンアルゴリズムを使用し、セッションの永続性が有効にされているプールを作成
します。

4. コントロールプレーンマシンが利用可能であることを確認するには、ヘルスモニターを作成し
ます。

5. コントロールプレーンマシンをロードバランサープールのメンバーとして追加します。

6. オプション: クラスター API の Floating IP アドレスを再利用するには、設定を解除します。

$ openstack loadbalancer create --name API_OCP_CLUSTER --vip-subnet-id
<id_of_worker_vms_subnet>

$ openstack loadbalancer listener create --name API_OCP_CLUSTER_6443 --protocol
HTTPS--protocol-port 6443 API_OCP_CLUSTER

$ openstack loadbalancer pool create --name API_OCP_CLUSTER_pool_6443 --lb-
algorithm ROUND_ROBIN --session-persistence type=<source_IP_address> --listener
API_OCP_CLUSTER_6443 --protocol HTTPS

$ openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --timeout 10 --type
TCP API_OCP_CLUSTER_pool_6443

$ for SERVER in $(MASTER-0-IP MASTER-1-IP MASTER-2-IP)
do
 openstack loadbalancer member create --address $SERVER --protocol-port 6443
API_OCP_CLUSTER_pool_6443
done

$ openstack floating ip unset $API_FIP

第22章 RHOSP での負荷分散

363

7. 設定を解除された API_FIP、または新規アドレスを、作成されたロードばランサー VIP に追加
します。

クラスターは、負荷分散に Octavia を使用するようになりました。

注記

Kuryr が Octavia Amphora ドライバーを使用する場合、すべてのトラフィックは単一の
Amphora 仮想マシン (VM) 経由でルーティングされます。

この手順を繰り返して追加のロードバランサーを作成します。これにより、ボトルネッ
クを軽減することができます。

22.2.2. Octavia の使用による Kuryr を使用するクラスターのスケーリング

クラスターで Kuryr を使用する場合は、クラスターの API Floating IP アドレスを既存の Octavia ロード
バランサーに関連付けます。

前提条件

OpenShift Container Platform クラスターは Kuryr を使用します。

Octavia は Red Hat OpenStack Platform (RHOSP) デプロイメントで利用できます。

手順

1. オプション: コマンドラインからクラスター API の Floating IP アドレスを再利用するには、こ
の設定を解除します。

2. 設定を解除された API_FIP、または新規アドレスを、作成されたロードばランサー VIP に追加
します。

クラスターは、負荷分散に Octavia を使用するようになりました。

注記

Kuryr が Octavia Amphora ドライバーを使用する場合、すべてのトラフィックは単一の
Amphora 仮想マシン (VM) 経由でルーティングされます。

この手順を繰り返して追加のロードバランサーを作成します。これにより、ボトルネッ
クを軽減することができます。

22.3. RHOSP OCTAVIA を使用した INGRESS トラフィックのスケーリング

Octavia ロードバランサーを使用して、Kuryr を使用するクラスターで Ingress コントローラーをスケー

$ openstack floating ip set --port $(openstack loadbalancer show -c <vip_port_id> -f value
API_OCP_CLUSTER) $API_FIP

$ openstack floating ip unset $API_FIP

$ openstack floating ip set --port $(openstack loadbalancer show -c <vip_port_id> -f value
${OCP_CLUSTER}-kuryr-api-loadbalancer) $API_FIP

OpenShift Container Platform 4.8 ネットワーク

364

1

2

Octavia ロードバランサーを使用して、Kuryr を使用するクラスターで Ingress コントローラーをスケー
リングできます。

前提条件

OpenShift Container Platform クラスターは Kuryr を使用します。

Octavia は RHOSP デプロイメントで利用できます。

手順

1. 現在の内部ルーターサービスをコピーするには、コマンドラインで以下を入力します。

2. external_router.yaml ファイルで、metadata.name および spec.type の値を LoadBalancer
に変更します。

ルーターファイルの例

この値は router-external-default のように記述的であることを確認します。

この値は LoadBalancer であることを確認します。

注記

ロードバランシングと関連性のないタイムスタンプやその他の情報を削除できます。

$ oc -n openshift-ingress get svc router-internal-default -o yaml > external_router.yaml

apiVersion: v1
kind: Service
metadata:
 labels:
 ingresscontroller.operator.openshift.io/owning-ingresscontroller: default
 name: router-external-default 1
 namespace: openshift-ingress
spec:
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: http
 - name: https
 port: 443
 protocol: TCP
 targetPort: https
 - name: metrics
 port: 1936
 protocol: TCP
 targetPort: 1936
 selector:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 sessionAffinity: None
 type: LoadBalancer 2

第22章 RHOSP での負荷分散

365

1. コマンドラインで、external_router.yaml ファイルからサービスを作成します。

2. サービスの外部 IP アドレスがロードバランサーに関連付けられているものと同じであることを
確認します。

a. コマンドラインで、サービスの外部 IP アドレスを取得します。

出力例

b. ロードバランサーの IP アドレスを取得します。

出力例

c. 直前のステップで取得したアドレスが、Floating IP の一覧で相互に関連付けられているこ
とを確認します。

出力例

EXTERNAL-IP の値を新規 Ingress アドレスとして使用できるようになりました。

注記

Kuryr が Octavia Amphora ドライバーを使用する場合、すべてのトラフィックは単一の
Amphora 仮想マシン (VM) 経由でルーティングされます。

この手順を繰り返して追加のロードバランサーを作成します。これにより、ボトルネッ
クを軽減することができます。

22.4. 外部ロードバランサーの設定

$ oc apply -f external_router.yaml

$ oc -n openshift-ingress get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
router-external-default LoadBalancer 172.30.235.33 10.46.22.161
80:30112/TCP,443:32359/TCP,1936:30317/TCP 3m38s
router-internal-default ClusterIP 172.30.115.123 <none>
80/TCP,443/TCP,1936/TCP 22h

$ openstack loadbalancer list | grep router-external

| 21bf6afe-b498-4a16-a958-3229e83c002c | openshift-ingress/router-external-default |
66f3816acf1b431691b8d132cc9d793c | 172.30.235.33 | ACTIVE | octavia |

$ openstack floating ip list | grep 172.30.235.33

| e2f80e97-8266-4b69-8636-e58bacf1879e | 10.46.22.161 | 172.30.235.33 | 655e7122-
806a-4e0a-a104-220c6e17bda6 | a565e55a-99e7-4d15-b4df-f9d7ee8c9deb |
66f3816acf1b431691b8d132cc9d793c |

OpenShift Container Platform 4.8 ネットワーク

366

Red Hat OpenStack Platform (RHOSP) の OpenShift Container Platform クラスターを、デフォルトの
ロードバランサーの代わりに外部ロードバランサーを使用するように設定できます。

前提条件

ロードバランサーでは、システムの任意のユーザーが TCP をポート 6443、443、および 80
が利用できる必要があります。

それぞれのコントロールプレーンノード間で API ポート 6443 を負荷分散します。

すべてのコンピュートノード間でアプリケーションポート 443 と 80 を負荷分散します。

ロードバランサーでは、Ignition 起動設定をノードに提供するために使用されるポート 22623
はクラスター外に公開されません。

ロードバランサーはクラスター内のすべてのマシンにアクセスできる必要があります。このア
クセスを許可する方法には、以下が含まれます。

ロードバランサーをクラスターのマシンのサブネットに割り当てます。

ロードバランサーを使用するマシンに Floating IP アドレスを割り当てます。

重要

外部の負荷分散サービスとコントロールプレーンノードは同じ L2 ネットワークで実行す
る必要があります。また、VLAN を使用して負荷分散サービスとコントロールプレーン
ノード間のトラフィックをルーティングする際に同じ VLAN で実行する必要がありま
す。

手順

1. ポート 6443、443、および 80 でロードバランサーからクラスターへのアクセスを有効にしま
す。
たとえば、以下の HAProxy 設定に留意してください。

サンプル HAProxy 設定のセクション

...
listen my-cluster-api-6443
 bind 0.0.0.0:6443
 mode tcp
 balance roundrobin
 server my-cluster-master-2 192.0.2.2:6443 check
 server my-cluster-master-0 192.0.2.3:6443 check
 server my-cluster-master-1 192.0.2.1:6443 check
listen my-cluster-apps-443
 bind 0.0.0.0:443
 mode tcp
 balance roundrobin
 server my-cluster-worker-0 192.0.2.6:443 check
 server my-cluster-worker-1 192.0.2.5:443 check
 server my-cluster-worker-2 192.0.2.4:443 check
listen my-cluster-apps-80
 bind 0.0.0.0:80
 mode tcp
 balance roundrobin

第22章 RHOSP での負荷分散

367

2. ロードバランサーでクラスター API およびアプリケーションの DNS サーバーにレコードを追
加します。以下に例を示します。

3. コマンドラインで curl を使用して、外部ロードバランサーおよび DNS 設定が機能することを
確認します。

a. クラスター API がアクセス可能であることを確認します。

設定が正しい場合は、応答として JSON オブジェクトを受信します。

b. クラスターアプリケーションがアクセス可能であることを確認します。

注記

Web ブラウザーで OpenShift Container Platform コンソールを開き、アプリ
ケーションのアクセスを確認することもできます。

設定が正しい場合は、HTTP 応答を受信します。

 server my-cluster-worker-0 192.0.2.7:80 check
 server my-cluster-worker-1 192.0.2.9:80 check
 server my-cluster-worker-2 192.0.2.8:80 check

<load_balancer_ip_address> api.<cluster_name>.<base_domain>
<load_balancer_ip_address> apps.<cluster_name>.<base_domain>

$ curl https://<loadbalancer_ip_address>:6443/version --insecure

{
 "major": "1",
 "minor": "11+",
 "gitVersion": "v1.11.0+ad103ed",
 "gitCommit": "ad103ed",
 "gitTreeState": "clean",
 "buildDate": "2019-01-09T06:44:10Z",
 "goVersion": "go1.10.3",
 "compiler": "gc",
 "platform": "linux/amd64"
}

$ curl http://console-openshift-console.apps.<cluster_name>.<base_domain> -I -L --
insecure

HTTP/1.1 302 Found
content-length: 0
location: https://console-openshift-console.apps.<cluster-name>.<base domain>/
cache-control: no-cacheHTTP/1.1 200 OK
referrer-policy: strict-origin-when-cross-origin
set-cookie: csrf-
token=39HoZgztDnzjJkq/JuLJMeoKNXlfiVv2YgZc09c3TBOBU4NI6kDXaJH1LdicNhN1UsQ
Wzon4Dor9GWGfopaTEQ==; Path=/; Secure
x-content-type-options: nosniff
x-dns-prefetch-control: off

OpenShift Container Platform 4.8 ネットワーク

368

x-frame-options: DENY
x-xss-protection: 1; mode=block
date: Tue, 17 Nov 2020 08:42:10 GMT
content-type: text/html; charset=utf-8
set-cookie:
1e2670d92730b515ce3a1bb65da45062=9b714eb87e93cf34853e87a92d6894be; path=/;
HttpOnly; Secure; SameSite=None
cache-control: private

第22章 RHOSP での負荷分散

369

第23章 セカンダリーインターフェイスメトリクスのネットワーク
割り当てへの関連付け

23.1. モニタリングのためのセカンダリーネットワークメトリックの拡張

セカンダリーデバイス (インターフェイス) は、各種の用途に合わせて使用されます。セカンダリーデバ
イスのメトリクスを同じ分類で集計するために、それらを分類する方法を確保する必要があります。

公開されるメトリクスにはインターフェイスが含まれますが、インターフェイスの出所は指定されませ
ん。これは、追加のインターフェイスがない場合に実行できます。ただし、セカンダリーインターフェ
イスが追加された場合、インターフェイス名だけを使用してインターフェイスを識別するのは難しいた
め、メトリックの使用が困難になる可能性があります。

セカンダリーインターフェイスを追加する場合、その名前は追加された順序によって異なります。ま
た、異なるセカンダリーインターフェイスが異なるネットワークに属し、これらを異なる目的に使用で
きます。

pod_network_name_info を使用すると、現在のメトリクスをインターフェイスタイプを識別する追加
情報を使用して拡張できます。このようにして、メトリクスを集約し、特定のインターフェイスタイプ
に特定のアラームを追加できます。

ネットワークタイプは、関連する NetworkAttachmentDefinition の名前を使用して生成されます。こ
の名前は、セカンダリーネットワークの異なるクラスを区別するために使用されます。たとえば、異な
るネットワークに属するインターフェイスや、異なる CNI を使用するインターフェイスは、異なるネッ
トワーク割り当て定義名を使用します。

23.1.1. Network Metrics Daemon

Network Metrics Daemon は、ネットワーク関連のメトリクスを収集し、公開するデーモンコンポーネ
ントです。

kubelet はすでに確認できるネットワーク関連のメトリクスを公開しています。以下は、これらのメト
リクスになります。

container_network_receive_bytes_total

container_network_receive_errors_total

container_network_receive_packets_total

container_network_receive_packets_dropped_total

container_network_transmit_bytes_total

container_network_transmit_errors_total

container_network_transmit_packets_total

container_network_transmit_packets_dropped_total

これらのメトリクスのラベルには、とくに以下が含まれます。

Pod の名前

Pod の namespace

OpenShift Container Platform 4.8 ネットワーク

370

インターフェイス名 (例: eth0)

これらのメトリクスは、たとえば Multus を使用して、新規インターフェイスが Pod に追加されるまで
正常に機能します。

インターフェイスのラベルはインターフェイス名を参照しますが、そのインターフェイスの用途は明確
ではありません。多くの異なるインターフェイスがある場合、監視しているメトリクスが参照するネッ
トワークを把握することはできません。

これには、以降のセクションで説明する新規の pod_network_name_info を導入して対応できます。

23.1.2. ネットワーク名を持つメトリクス

この daemonset は、固定の値が 0 の pod_network_name_info 測定メトリクスを公開します。

ネットワーク名ラベルは、Multus によって追加されるアノテーションを使用して生成されます。これ
は、ネットワークの割り当て定義が属する namespace の連結と、ネットワーク割り当て定義の名前で
す。

新しいメトリクスのみでは十分な値が提供されませんが、ネットワーク関連の container_network_*
メトリクスと組み合わせて、セカンダリーネットワークの監視に対するサポートを強化します。

以下のような promql クエリーを使用すると、k8s.v1.cni.cncf.io/networks-status アノテーションか
ら取得した値とネットワーク名を含む新規のメトリクスを取得できます。

pod_network_name_info{interface="net0",namespace="namespacename",network_name="nadname
space/firstNAD",pod="podname"} 0

(container_network_receive_bytes_total) + on(namespace,pod,interface) group_left(network_name) (
pod_network_name_info)
(container_network_receive_errors_total) + on(namespace,pod,interface) group_left(network_name) (
pod_network_name_info)
(container_network_receive_packets_total) + on(namespace,pod,interface)
group_left(network_name) (pod_network_name_info)
(container_network_receive_packets_dropped_total) + on(namespace,pod,interface)
group_left(network_name) (pod_network_name_info)
(container_network_transmit_bytes_total) + on(namespace,pod,interface) group_left(network_name)
(pod_network_name_info)
(container_network_transmit_errors_total) + on(namespace,pod,interface) group_left(network_name)
(pod_network_name_info)
(container_network_transmit_packets_total) + on(namespace,pod,interface)
group_left(network_name) (pod_network_name_info)
(container_network_transmit_packets_dropped_total) + on(namespace,pod,interface)
group_left(network_name)

第23章 セカンダリーインターフェイスメトリクスのネットワーク割り当てへの関連付け

371

https://github.com/intel/multus-cni

	目次
	第1章 ネットワークについて
	1.1. OPENSHIFT CONTAINER PLATFORM DNS
	1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
	1.2.1. ルートと Ingress の比較

	1.3. OPENSHIFT CONTAINER PLATFORM ネットワーキングの一般用語集

	第2章 ホストへのアクセス
	2.1. インストーラーでプロビジョニングされるインフラストラクチャークラスターでの AMAZON WEB SERVICES のホストへのアクセス

	第3章 ネットワーキング OPERATOR の概要
	3.1. CLUSTER NETWORK OPERATOR
	3.2. DNS OPERATOR
	3.3. INGRESS OPERATOR

	第4章 OPENSHIFT CONTAINER PLATFORM における CLUSTER NETWORK OPERATOR
	4.1. CLUSTER NETWORK OPERATOR
	4.2. クラスターネットワーク設定の表示
	4.3. CLUSTER NETWORK OPERATOR のステータス表示
	4.4. CLUSTER NETWORK OPERATOR ログの表示
	4.5. CLUSTER NETWORK OPERATOR (CNO) の設定
	4.5.1. Cluster Network Operator 設定オブジェクト
	defaultNetwork オブジェクト設定
	kubeProxyConfig オブジェクト設定

	4.5.2. Cluster Network Operator の設定例

	4.6. 関連情報

	第5章 OPENSHIFT CONTAINER PLATFORM の DNS OPERATOR
	5.1. DNS OPERATOR
	5.2. DNS POD 配置の制御
	5.3. デフォルト DNS の表示
	5.4. DNS 転送の使用
	5.5. DNS OPERATOR のステータス
	5.6. DNS OPERATOR ログ

	第6章 OPENSHIFT CONTAINER PLATFORM の INGRESS OPERATOR
	6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
	6.2. INGRESS 設定アセット
	6.3. INGRESS コントローラー設定パラメーター
	6.3.1. Ingress コントローラーの TLS セキュリティープロファイル
	6.3.1.1. TLS セキュリティープロファイルについて
	6.3.1.2. Ingress コントローラーの TLS セキュリティープロファイルの設定

	6.3.2. Ingress コントローラーエンドポイントの公開ストラテジー

	6.4. デフォルト INGRESS コントローラーの表示
	6.5. INGRESS OPERATOR ステータスの表示
	6.6. INGRESS コントローラーログの表示
	6.7. INGRESS コントローラーステータスの表示
	6.8. INGRESS コントローラーの設定
	6.8.1. カスタムデフォルト証明書の設定
	6.8.2. カスタムデフォルト証明書の削除
	6.8.3. Ingress コントローラーのスケーリング
	6.8.4. Ingress アクセスロギングの設定
	6.8.5. Ingress コントローラースレッド数の設定
	6.8.6. Ingress コントローラーのシャード化
	6.8.6.1. ルートラベルを使用した Ingress コントローラーのシャード化の設定
	6.8.6.2. namespace ラベルを使用した Ingress コントローラーのシャード化の設定

	6.8.7. 内部ロードバランサーを使用するように Ingress コントローラーを設定する
	6.8.8. GCP での Ingress コントローラーのグローバルアクセスの設定
	6.8.9. クラスターを内部に配置するようにのデフォルト Ingress コントローラーを設定する
	6.8.10. ルートの受付ポリシーの設定
	6.8.11. ワイルドカードルートの使用
	6.8.12. X-Forwarded ヘッダーの使用
	使用例

	6.8.13. HTTP/2 Ingress 接続の有効化
	6.8.14. Ingress コントローラーの PROXY プロトコルの設定
	6.8.15. appsDomain オプションを使用した代替クラスタードメインの指定
	6.8.16. HTTP ヘッダーケースの変換

	6.9. 関連情報

	第7章 エンドポイントへの接続の確認
	7.1. 実行する接続ヘルスチェック
	7.2. 接続ヘルスチェックの実装
	7.3. PODNETWORKCONNECTIVITYCHECK オブジェクトフィールド
	接続ログフィールド

	7.4. エンドポイントのネットワーク接続の確認

	第8章 ノードポートサービス範囲の設定
	8.1. 前提条件
	8.2. ノードのポート範囲の拡張
	8.3. 関連情報

	第9章 IP フェイルオーバーの設定
	9.1. IP フェイルオーバーの環境変数
	9.2. IP フェイルオーバーの設定
	9.3. 仮想 IP アドレスについて
	9.4. CHECK スクリプトおよび NOTIFY スクリプトの設定
	9.5. VRRP プリエンプションの設定
	9.6. VRRP ID オフセットについて
	9.7. 254 を超えるアドレスについての IP フェイルオーバーの設定
	9.8. INGRESSIP の高可用性

	第10章 ベアメタルクラスターでの SCTP (STREAM CONTROL TRANSMISSION PROTOCOL) の使用
	10.1. OPENSHIFT CONTAINER PLATFORM での SCTP (STREAM CONTROL TRANSMISSION PROTOCOL) のサポート
	10.1.1. SCTP プロトコルを使用した設定例

	10.2. SCTP (STREAM CONTROL TRANSMISSION PROTOCOL) の有効化
	10.3. SCTP (STREAM CONTROL TRANSMISSION PROTOCOL) が有効になっていることの確認

	第11章 PTP ハードウェアの設定
	11.1. PTP ハードウェアについて
	11.2. PTP ネットワークデバイスの自動検出
	11.3. PTP OPERATOR のインストール
	11.3.1. CLI: PTP Operator のインストール
	11.3.2. Web コンソール: PTP Operator のインストール

	11.4. LINUXPTP サービスの設定

	第12章 ネットワークポリシー
	12.1. ネットワークポリシーについて
	12.1.1. ネットワークポリシーについて
	12.1.2. ネットワークポリシーの最適化
	12.1.3. 次のステップ
	12.1.4. 関連情報

	12.2. ネットワークポリシーイベントのロギング
	12.2.1. ネットワークポリシー監査ロギング
	12.2.2. ネットワークポリシー監査の設定
	12.2.3. クラスターのネットワークポリシー監査の設定
	12.2.4. namespace のネットワークポリシー監査ロギングの有効化
	12.2.5. namespace のネットワークポリシー監査ロギングの無効化
	12.2.6. 関連情報

	12.3. ネットワークポリシーの作成
	12.3.1. ネットワークポリシーの作成
	12.3.2. サンプル NetworkPolicy オブジェクト

	12.4. ネットワークポリシーの表示
	12.4.1. ネットワークポリシーの表示
	12.4.2. サンプル NetworkPolicy オブジェクト

	12.5. ネットワークポリシーの編集
	12.5.1. ネットワークポリシーの編集
	12.5.2. サンプル NetworkPolicy オブジェクト
	12.5.3. 関連情報

	12.6. ネットワークポリシーの削除
	12.6.1. ネットワークポリシーの削除

	12.7. プロジェクトのデフォルトネットワークポリシーの定義
	12.7.1. 新規プロジェクトのテンプレートの変更
	12.7.2. 新規プロジェクトへのネットワークポリシーの追加

	12.8. ネットワークポリシーを使用したマルチテナント分離の設定
	12.8.1. ネットワークポリシーを使用したマルチテナント分離の設定
	12.8.2. 次のステップ
	12.8.3. 関連情報

	第13章 複数ネットワーク
	13.1. 複数ネットワークについて
	13.1.1. 追加ネットワークの使用シナリオ
	13.1.2. OpenShift Container Platform の追加ネットワーク

	13.2. 追加のネットワークの設定
	13.2.1. 追加のネットワークを管理するためのアプローチ
	13.2.2. ネットワーク追加割り当ての設定
	13.2.2.1. Cluster Network Operator による追加ネットワークの設定
	13.2.2.2. YAML マニフェストからの追加ネットワークの設定

	13.2.3. 追加のネットワークタイプの設定
	13.2.3.1. ブリッジネットワークの追加設定
	13.2.3.2. ホストデバイスの追加ネットワークの設定
	13.2.3.3. IPVLAN 追加ネットワークの設定
	13.2.3.4. MACVLAN 追加ネットワークの設定

	13.2.4. 追加ネットワークの IP アドレス割り当ての設定
	13.2.4.1. 静的 IP アドレス割り当ての設定
	13.2.4.2. 動的 IP アドレス (DHCP) 割り当ての設定
	13.2.4.3. Whereabouts を使用した動的 IP アドレス割り当ての設定

	13.2.5. Cluster Network Operator による追加ネットワーク割り当ての作成
	13.2.6. YAML マニフェストを適用した追加のネットワーク割り当ての作成

	13.3. 仮想ルーティングおよび転送について
	13.3.1. 仮想ルーティングおよび転送について
	13.3.1.1. Telecommunications Operator についての Pod のセカンダリーネットワークの利点

	13.4. マルチネットワークポリシーの設定
	13.4.1. マルチネットワークポリシーとネットワークポリシーの違い
	13.4.2. クラスターのマルチネットワークポリシーの有効化
	13.4.3. マルチネットワークポリシーの使用
	13.4.3.1. 前提条件
	13.4.3.2. マルチネットワークポリシーの作成
	13.4.3.3. マルチネットワークポリシーの編集
	13.4.3.4. マルチネットワークポリシーの表示
	13.4.3.5. マルチネットワークポリシーの削除

	13.4.4. 関連情報

	13.5. POD の追加のネットワークへの割り当て
	13.5.1. Pod の追加ネットワークへの追加
	13.5.1.1. Pod 固有のアドレスおよびルーティングオプションの指定

	13.6. 追加ネットワークからの POD の削除
	13.6.1. 追加ネットワークからの Pod の削除

	13.7. 追加ネットワークの編集
	13.7.1. 追加ネットワーク割り当て定義の変更

	13.8. 追加ネットワークの削除
	13.8.1. 追加ネットワーク割り当て定義の削除

	13.9. VRF へのセカンダリーネットワークの割り当て
	13.9.1. VRF へのセカンダリーネットワークの割り当て
	13.9.1.1. CNI VRF プラグインを使用した追加のネットワーク割り当ての作成

	第14章 ハードウェアネットワーク
	14.1. SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) ハードウェアネットワークについて
	14.1.1. SR-IOV ネットワークデバイスを管理するコンポーネント
	14.1.1.1. サポートされるプラットフォーム
	14.1.1.2. サポートされるデバイス
	14.1.1.3. SR-IOV ネットワークデバイスの自動検出
	14.1.1.4. Pod での Virtual Function (VF) の使用例
	14.1.1.5. コンテナーアプリケーションで使用する DPDK ライブラリー
	14.1.1.6. Downward API の Huge Page リソースの挿入

	14.1.2. 次のステップ

	14.2. SR-IOV NETWORK OPERATOR のインストール
	14.2.1. SR-IOV Network Operator のインストール
	14.2.1.1. CLI: SR-IOV Network Operator のインストール
	14.2.1.2. Web コンソール: SR-IOV Network Operator のインストール

	14.2.2. 次のステップ

	14.3. SR-IOV NETWORK OPERATOR の設定
	14.3.1. SR-IOV Network Operator の設定
	14.3.1.1. Network Resources Injector について
	14.3.1.2. SR-IOV Network Operator Admission Controller Webhook について
	14.3.1.3. カスタムノードセレクターについて
	14.3.1.4. Network Resources Injector の無効化または有効化
	14.3.1.5. SR-IOV Network Operator Admission Controller Webhook の無効化または有効化
	14.3.1.6. SRIOV Network Config Daemon のカスタム NodeSelector の設定

	14.3.2. 次のステップ

	14.4. SR-IOV ネットワークデバイスの設定
	14.4.1. SR-IOV ネットワークノード設定オブジェクト
	14.4.1.1. SR-IOV ネットワークノードの設定例
	14.4.1.2. SR-IOV デバイスの Virtual Function (VF) パーティション設定

	14.4.2. SR-IOV ネットワークデバイスの設定
	14.4.3. SR-IOV 設定のトラブルシューティング
	14.4.4. SR-IOV ネットワークの VRF への割り当て
	14.4.4.1. CNI VRF プラグインを使用した追加 SR-IOV ネットワーク割り当ての作成

	14.4.5. 次のステップ

	14.5. SR-IOV イーサネットネットワーク割り当ての設定
	14.5.1. イーサネットデバイス設定オブジェクト
	14.5.1.1. 追加ネットワークの IP アドレス割り当ての設定

	14.5.2. SR-IOV の追加ネットワークの設定
	14.5.3. 次のステップ
	14.5.4. 関連情報

	14.6. SR-IOV INFINIBAND ネットワーク割り当ての設定
	14.6.1. InfiniBand デバイス設定オブジェクト
	14.6.1.1. 追加ネットワークの IP アドレス割り当ての設定

	14.6.2. SR-IOV の追加ネットワークの設定
	14.6.3. 次のステップ
	14.6.4. 関連情報

	14.7. POD の SR-IOV の追加ネットワークへの追加
	14.7.1. ネットワーク割り当てのランタイム設定
	14.7.1.1. イーサネットベースの SR-IOV 割り当てのランタイム設定
	14.7.1.2. InfiniBand ベースの SR-IOV 割り当てのランタイム設定

	14.7.2. Pod の追加ネットワークへの追加
	14.7.3. Non-Uniform Memory Access (NUMA) で配置された SR-IOV Pod の作成
	14.7.4. 関連情報

	14.8. 高パフォーマンスのマルチキャストの使用
	14.8.1. 高パフォーマンスのマルチキャスト
	14.8.2. マルチキャストでの SR-IOV インターフェイスの設定

	14.9. DPDK および RDMA モードでの仮想機能 (VF) の使用
	14.9.1. NIC を使用した DPDK モードでの仮想機能の使用
	14.9.2. Mellanox NIC を使用した DPDK モードでの Virtual Function の使用
	14.9.3. Mellanox NIC を使用した RDMA モードでの仮想機能の使用

	14.10. SR-IOV NETWORK OPERATOR のインストール
	14.10.1. SR-IOV Network Operator のインストール

	第15章 OPENSHIFT SDN デフォルト CNI ネットワークプロバイダー
	15.1. OPENSHIFT SDN デフォルト CNI ネットワークプロバイダーについて
	15.1.1. OpenShift SDN ネットワーク分離モード
	15.1.2. サポートされるデフォルトの CNI ネットワークプロバイダー機能マトリクス

	15.2. プロジェクトの EGRESS IP の設定
	15.2.1. プロジェクトの egress トラフィックについての egress IP アドレスの割り当て
	15.2.1.1. 自動的に割り当てられた egress IP アドレスを使用する場合の考慮事項
	15.2.1.2. 手動で割り当てられた egress IP アドレスを使用する場合の考慮事項

	15.2.2. namespace の自動的に割り当てられた egress IP アドレスの有効化
	15.2.3. namespace の手動で割り当てられた egress IP アドレスの設定

	15.3. プロジェクトの EGRESS ファイアウォールの設定
	15.3.1. egress ファイアウォールのプロジェクトでの機能
	15.3.1.1. egress ファイアウォールの制限
	15.3.1.2. egress ポリシールールのマッチング順序
	15.3.1.3. DNS (Domain Name Server) 解決の仕組み

	15.3.2. EgressNetworkPolicy カスタムリソース (CR) オブジェクト
	15.3.2.1. EgressNetworkPolicy ルール
	15.3.2.2. EgressNetworkPolicy CR オブジェクトの例

	15.3.3. egress ファイアウォールポリシーオブジェクトの作成

	15.4. プロジェクトの EGRESS ファイアウォールの編集
	15.4.1. EgressNetworkPolicy オブジェクトの表示

	15.5. プロジェクトの EGRESS ファイアウォールの編集
	15.5.1. EgressNetworkPolicy オブジェクトの編集

	15.6. プロジェクトからの EGRESS ファイアウォールの削除
	15.6.1. EgressNetworkPolicy オブジェクトの削除

	15.7. EGRESS ルーター POD の使用についての考慮事項
	15.7.1. egress ルーター Pod について
	15.7.1.1. Egress ルーターモード
	15.7.1.2. egress ルーター Pod の実装
	15.7.1.3. デプロイメントに関する考慮事項
	15.7.1.4. フェイルオーバー設定

	15.7.2. 関連情報

	15.8. リダイレクトモードでの EGRESS ルーター POD のデプロイ
	15.8.1. リダイレクトモードの egress ルーター Pod 仕様
	15.8.2. egress 宛先設定形式
	15.8.3. リダイレクトモードでの egress ルーター Pod のデプロイ
	15.8.4. 関連情報

	15.9. HTTP プロキシーモードでの EGRESS ルーター POD のデプロイ
	15.9.1. HTTP モードの egress ルーター Pod 仕様
	15.9.2. egress 宛先設定形式
	15.9.3. HTTP プロキシーモードでの egress ルーター Pod のデプロイ
	15.9.4. 関連情報

	15.10. DNS プロキシーモードでの EGRESS ルーター POD のデプロイ
	15.10.1. DNS モードの egress ルーター Pod 仕様
	15.10.2. egress 宛先設定形式
	15.10.3. DNS プロキシーモードでの egress ルーター Pod のデプロイ
	15.10.4. 関連情報

	15.11. 設定マップからの EGRESS ルーター POD 宛先一覧の設定
	15.11.1. 設定マップを使用した egress ルーター宛先マッピングの設定
	15.11.2. 関連情報

	15.12. プロジェクトのマルチキャストの有効化
	15.12.1. マルチキャストについて
	15.12.2. Pod 間のマルチキャストの有効化

	15.13. プロジェクトのマルチキャストの無効化
	15.13.1. Pod 間のマルチキャストの無効化

	15.14. OPENSHIFT SDN を使用したネットワーク分離の設定
	15.14.1. 前提条件
	15.14.2. プロジェクトの結合
	15.14.3. プロジェクトの分離
	15.14.4. プロジェクトのネットワーク分離の無効化

	15.15. KUBE-PROXY の設定
	15.15.1. iptables ルールの同期について
	15.15.2. kube-proxy 設定パラメーター
	15.15.3. kube-proxy 設定の変化

	第16章 OVN-KUBERNETES デフォルト CNI ネットワークプロバイダー
	16.1. OVN-KUBERNETES デフォルト CONTAINER NETWORK INTERFACE (CNI) ネットワークプロバイダーについて
	16.1.1. OVN-Kubernetes の機能
	16.1.2. サポートされるデフォルトの CNI ネットワークプロバイダー機能マトリクス
	16.1.3. OVN-Kubernetes の制限

	16.2. OPENSHIFT SDN クラスターネットワークプロバイダーからの移行
	16.2.1. OVN-Kubernetes ネットワークプロバイダーへの移行
	16.2.1.1. OVN-Kubernetes ネットワークプロバイダーへの移行についての考慮点
	16.2.1.2. 移行プロセスの仕組み

	16.2.2. OVN-Kubernetes デフォルト CNI ネットワークプロバイダーへの移行
	16.2.3. 関連情報

	16.3. OPENSHIFT SDN ネットワークプロバイダーへのロールバック
	16.3.1. デフォルトの CNI ネットワークプロバイダーの OpenShift SDN へのロールバック

	16.4. IPV4/IPV6 デュアルスタックネットワークへの変換
	16.4.1. デュアルスタッククラスターネットワークへの変換

	16.5. IPSEC 暗号化の設定
	16.5.1. IPsec で暗号化したネットワークトラフィックフローのタイプ
	16.5.1.1. IPsec が有効になっている場合のネットワーク接続要件

	16.5.2. IPsec の暗号化プロトコルおよびトンネルモード
	16.5.3. セキュリティー証明書の生成およびローテーション

	16.6. プロジェクトの EGRESS ファイアウォールの設定
	16.6.1. egress ファイアウォールのプロジェクトでの機能
	16.6.1.1. egress ファイアウォールの制限
	16.6.1.2. egress ポリシールールのマッチング順序
	16.6.1.3. DNS (Domain Name Server) 解決の仕組み

	16.6.2. EgressFirewall カスタムリソース (CR) オブジェクト
	16.6.2.1. EgressFirewall ルール
	16.6.2.2. EgressFirewall CR オブジェクトの例

	16.6.3. egress ファイアウォールポリシーオブジェクトの作成

	16.7. プロジェクトの EGRESS ファイアウォールの表示
	16.7.1. EgressFirewall オブジェクトの表示

	16.8. プロジェクトの EGRESS ファイアウォールの編集
	16.8.1. EgressFirewall オブジェクトの編集

	16.9. プロジェクトからの EGRESS ファイアウォールの削除
	16.9.1. EgressFirewall オブジェクトの削除

	16.10. EGRESS IP アドレスの設定
	16.10.1. Egress IP アドレスアーキテクチャーの設計および実装
	16.10.1.1. プラットフォームサポート
	16.10.1.2. egress IP の Pod への割り当て
	16.10.1.3. egress IP のノードへの割り当て
	16.10.1.4. egress IP アドレス設定のアーキテクチャー図

	16.10.2. EgressIP オブジェクト
	16.10.3. egress IP アドレスをホストするノードのラベル付け
	16.10.4. 次のステップ
	16.10.5. 関連情報

	16.11. EGRESS IP アドレスの割り当て
	16.11.1. egress IP アドレスの namespace への割り当て
	16.11.2. 関連情報

	16.12. EGRESS ルーター POD の使用についての考慮事項
	16.12.1. egress ルーター Pod について
	16.12.1.1. Egress ルーターモード
	16.12.1.2. egress ルーター Pod の実装
	16.12.1.3. デプロイメントに関する考慮事項
	16.12.1.4. フェイルオーバー設定

	16.12.2. 関連情報

	16.13. リダイレクトモードでの EGRESS ルーター POD のデプロイ
	16.13.1. Egress ルーターのカスタムリソース
	16.13.2. リダイレクトモードでの Egress ルーターのデプロイ

	16.14. プロジェクトのマルチキャストの有効化
	16.14.1. マルチキャストについて
	16.14.2. Pod 間のマルチキャストの有効化

	16.15. プロジェクトのマルチキャストの無効化
	16.15.1. Pod 間のマルチキャストの無効化

	16.16. ネットワークフローの追跡
	16.16.1. ネットワークフローを追跡するためのネットワークオブジェクト設定
	16.16.2. ネットワークフローコレクターの宛先の追加
	16.16.3. ネットワークフローコレクターのすべての宛先の削除
	16.16.4. 関連情報

	16.17. ハイブリッドネットワークの設定
	16.17.1. OVN-Kubernetes を使用したハイブリッドネットワークの設定
	16.17.2. 関連情報

	第17章 ルートの作成
	17.1. ルート設定
	17.1.1. HTTP ベースのルートの作成
	17.1.2. ルートのタイムアウトの設定
	17.1.3. HTTP Strict Transport Security の有効化
	17.1.4. スループット関連の問題のトラブルシューティング
	17.1.5. Cookie に使用によるルートのステートフル性の維持
	17.1.5.1. Cookie を使用したルートのアノテーション

	17.1.6. パスベースのルート
	17.1.7. ルート固有のアノテーション
	17.1.8. ルートの受付ポリシーの設定
	17.1.9. Ingress オブジェクトを使用したルートの作成
	17.1.10. Ingress オブジェクトを介してデフォルトの証明書を使用してルートを作成する
	17.1.11. デュアルスタックネットワーク用の OpenShift Container Platform Ingress コントローラーの設定

	17.2. セキュリティー保護されたルート
	17.2.1. カスタム証明書を使用した re-encrypt ルートの作成
	17.2.2. カスタム証明書を使用した edge ルートの作成
	17.2.3. passthrough ルートの作成

	第18章 INGRESS クラスタートラフィックの設定
	18.1. INGRESS クラスタートラフィックの設定の概要
	18.2. サービスの EXTERNALIP の設定
	18.2.1. 前提条件
	18.2.2. ExternalIP について
	18.2.2.1. ExternalIP の設定
	18.2.2.2. 外部 IP アドレスの割り当ての制限
	18.2.2.3. ポリシーオブジェクトの例

	18.2.3. ExternalIP アドレスブロックの設定
	外部 IP 設定の例

	18.2.4. クラスターの外部 IP アドレスブロックの設定
	18.2.5. 次のステップ

	18.3. INGRESS コントローラーを使用した INGRESS クラスターの設定
	18.3.1. Ingress コントローラーおよびルートの使用
	18.3.2. 前提条件
	18.3.3. プロジェクトおよびサービスの作成
	18.3.4. ルートの作成によるサービスの公開
	18.3.5. ルートラベルを使用した Ingress コントローラーのシャード化の設定
	18.3.6. namespace ラベルを使用した Ingress コントローラーのシャード化の設定
	18.3.7. 関連情報

	18.4. ロードバランサーを使用した INGRESS クラスターの設定
	18.4.1. ロードバランサーを使用したトラフィックのクラスターへの送信
	18.4.2. 前提条件
	18.4.3. プロジェクトおよびサービスの作成
	18.4.4. ルートの作成によるサービスの公開
	18.4.5. ロードバランサーサービスの作成

	18.5. ネットワークロードバランサーを使用した AWS での INGRESS クラスタートラフィックの設定
	18.5.1. Ingress Controller Classic Load Balancer の Network Load Balancer への置き換え
	18.5.2. 既存 AWS クラスターでの Ingress コントローラーネットワークロードバランサーの設定
	18.5.3. 新規 AWS クラスターでの Ingress コントローラーネットワークロードバランサーの設定
	18.5.4. 関連情報

	18.6. サービスの外部 IP を使用した INGRESS クラスタートラフィックの設定
	18.6.1. 前提条件
	18.6.2. ExternalIP のサービスへの割り当て
	18.6.3. 関連情報

	18.7. NODEPORT を使用した INGRESS クラスタートラフィックの設定
	18.7.1. NodePort を使用したトラフィックのクラスターへの送信
	18.7.2. 前提条件
	18.7.3. プロジェクトおよびサービスの作成
	18.7.4. ルートの作成によるサービスの公開
	18.7.5. 関連情報

	第19章 KUBERNETES NMSTATE
	19.1. KUBERNETES NMSTATE OPERATOR について
	19.1.1. Kubernetes NMState Operator のインストール

	19.2. ノードのネットワーク状態の確認
	19.2.1. nmstate について
	19.2.2. ノードのネットワーク状態の表示

	19.3. ノードのネットワーク設定の更新
	19.3.1. nmstate について
	19.3.2. ノード上でのインターフェイスの作成
	関連情報

	19.3.3. ノード上でのノードネットワークポリシー更新の確認
	19.3.4. ノードからインターフェイスの削除
	19.3.5. 異なるインターフェイスのポリシー設定の例
	19.3.5.1. 例: Linux ブリッジインターフェイスノードネットワーク設定ポリシー
	19.3.5.2. 例: VLAN インターフェイスノードネットワークの設定ポリシー
	19.3.5.3. 例: ボンドインターフェイスノードネットワークの設定ポリシー
	19.3.5.4. 例: イーサネットインターフェイスノードネットワークの設定ポリシー
	19.3.5.5. 例: 同じノードネットワーク設定ポリシーでの複数のインターフェイス

	19.3.6. 例: IP 管理
	19.3.6.1. 静的
	19.3.6.2. IP アドレスなし
	19.3.6.3. 動的ホストの設定
	19.3.6.4. DNS
	19.3.6.5. 静的ルーティング

	19.4. ノードのネットワーク設定のトラブルシューティング
	19.4.1. 正確でないノードネットワーク設定のポリシー設定のトラブルシューティング

	第20章 クラスター全体のプロキシーの設定
	20.1. 前提条件
	20.2. クラスター全体のプロキシーの有効化
	20.3. クラスター全体のプロキシーの削除
	関連情報

	第21章 カスタム PKI の設定
	21.1. インストール時のクラスター全体のプロキシーの設定
	21.2. クラスター全体のプロキシーの有効化
	21.3. OPERATOR を使用した証明書の挿入

	第22章 RHOSP での負荷分散
	22.1. KURYR SDN を使用した OCTAVIA OVN ロードバランサープロバイダードライバーの使用
	22.2. OCTAVIA を使用したアプリケーショントラフィック用のクラスターのスケーリング
	22.2.1. Octavia を使用したクラスターのスケーリング
	22.2.2. Octavia の使用による Kuryr を使用するクラスターのスケーリング

	22.3. RHOSP OCTAVIA を使用した INGRESS トラフィックのスケーリング
	22.4. 外部ロードバランサーの設定

	第23章 セカンダリーインターフェイスメトリクスのネットワーク割り当てへの関連付け
	23.1. モニタリングのためのセカンダリーネットワークメトリックの拡張
	23.1.1. Network Metrics Daemon
	23.1.2. ネットワーク名を持つメトリクス

