
OpenShift Container Platform 4.9

アプリケーションのビルド

OpenShift Container Platform でのアプリケーションの作成および管理

Last Updated: 2023-05-23

OpenShift Container Platform 4.9 アプリケーションのビルド

OpenShift Container Platform でのアプリケーションの作成および管理

法律上の通知

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要

本書では、OpenShift Container Platform で実行されるユーザーによってプロビジョニングされた
アプリケーションのインスタンスを作成し、管理する各種の方法について説明します。これには、
プロジェクトの使用および Open Service Broker API を使用したアプリケーションのプロビジョニ
ングについての情報が含まれます。

. .

. .

. .

. .

. .

. .

. .

. .

目次

第1章 アプリケーションのビルドの概要
1.1. プロジェクトの使用
1.2. アプリケーションの使用
1.3. RED HAT MARKETPLACE の使用

第2章 プロジェクト
2.1. プロジェクトの使用
2.2. 別のユーザーとしてのプロジェクトの作成
2.3. プロジェクト作成の設定

第3章 アプリケーションの作成
3.1. 開発者パースペクティブを使用したアプリケーションの作成
3.2. インストールされた OPERATOR からのアプリケーションの作成
3.3. CLI を使用したアプリケーションの作成

第4章 TOPOLOGY ビューを使用したアプリケーション設定の表示
4.1. 前提条件
4.2. アプリケーションのトポロジーの表示
4.3. アプリケーションおよびコンポーネントとの対話
4.4. アプリケーション POD のスケーリングおよびビルドとルートの確認
4.5. コンポーネントの既存プロジェクトへの追加
4.6. アプリケーション内での複数コンポーネントのグループ化
4.7. サービスのアプリケーションへの追加
4.8. アプリケーションからのサービスの削除
4.9. TOPOLOGY ビューに使用するラベルとアノテーション
4.10. 関連情報

第5章 アプリケーションのサービスへの接続
5.1. SERVICE BINDING OPERATOR のリリースノート
5.2. サービスバインディング OPERATOR
5.3. サービスバインディング OPERATOR のインストール
5.4. サービスバインディングの使用
5.5. IBM POWER SYSTEMS、IBM Z、および LINUXONE でのサービスバインディングの使用
5.6. サービスからバインディングデータの公開
5.7. バインディングデータのプロジェクション
5.8. サービスバインディング OPERATOR を使用したワークロードのバインド
5.9. 開発者パースペクティブを使用したアプリケーションのサービスへの接続

第6章 HELM チャートの使用
6.1. HELM について
6.2. HELM のインストール
6.3. カスタム HELM チャートリポジトリーの設定
6.4. HELM リリースの使用

第7章 デプロイメント
7.1. DEPLOYMENT および DEPLOYMENTCONFIG オブジェクトについて
7.2. デプロイメントプロセスの管理
7.3. デプロイメントストラテジーの使用
7.4. ルートベースのデプロイメントストラテジーの使用

第8章 クォータ
8.1. プロジェクトごとのリソースクォータ
8.2. 複数のプロジェクト間のリソースクォータ

4
4
4
5

6
6

13
13

19
19
27
28

37
37
37
38
40
40
42
43
44
45
46

47
47
51

54
55
60
67
79
82
90

96
96
96
98

106

108
108
114
121
131

139
139
152

目次

1

. .

. .

. .

. .

. .

. .

. .

. .

第9章 アプリケーションでの設定マップの使用
9.1. 設定マップについて
9.2. ユースケース: POD で設定マップを使用する

第10章 開発者パースペクティブを使用したプロジェクトおよびアプリケーションメトリクスのモニタリング
10.1. 前提条件
10.2. プロジェクトメトリクスのモニターリング
10.3. アプリケーションメトリクスのモニターリング
10.4. 関連情報

第11章 ヘルスチェックの使用によるアプリケーションの正常性の監視
11.1. ヘルスチェックについて
11.2. CLI を使用したヘルスチェックの設定
11.3. 開発者パースペクティブを使用したアプリケーションの正常性の監視
11.4. 開発者パースペクティブを使用したヘルスチェックの追加
11.5. 開発者パースペクティブを使用したヘルスチェックの編集
11.6. 開発者パースペクティブを使用したヘルスチェックの失敗の監視

第12章 アプリケーションの編集
12.1. 前提条件
12.2. 開発者パースペクティブを使用したアプリケーションのソースコードの編集
12.3. 開発者パースペクティブを使用したアプリケーション設定の編集

第13章 リソースを回収するためのオブジェクトのプルーニング
13.1. プルーニングの基本操作
13.2. グループのプルーニング
13.3. デプロイメントリソースのプルーニング
13.4. ビルドのプルーニング
13.5. イメージの自動プルーニング
13.6. イメージの手動プルーニング
13.7. レジストリーのハードプルーニング
13.8. CRON ジョブのプルーニング

第14章 アプリケーションのアイドリング
14.1. アプリケーションのアイドリング
14.2. アプリケーションのアイドリング解除

第15章 アプリケーションの削除
15.1. 開発者パースペクティブを使用したアプリケーションの削除

第16章 RED HAT MARKETPLACE の使用
16.1. RED HAT MARKETPLACE 機能

156
156
157

162
162
162
165
166

167
167
171

174
175
176
177

179
179
179
179

182
182
182
183
183
184
186
194
197

198
198
198

200
200

201
201

OpenShift Container Platform 4.9 アプリケーションのビルド

2

目次

3

第1章 アプリケーションのビルドの概要
OpenShift Container Platform を使用すると、Web コンソールまたはコマンドラインインターフェイス
(CLI) を使用してアプリケーションを作成、編集、削除、および管理できます。

1.1. プロジェクトの使用

プロジェクトを使用すると、アプリケーションを分離して編成および管理できます。OpenShift
Container Platform で、プロジェクトの作成、表示、削除 などを含め、プロジェクトライフサイクル全
体を管理できます。

プロジェクトを作成したら、Developer パースペクティブを使用して、ユーザーに対して プロジェクト
へのアクセス権の付与または取り消し と クラスターロールの管理 を行えます。また、新規プロジェク
トの自動プロビジョニングに使用されるプロジェクトテンプレートを作成する際に、プロジェクト設定
リソースの編集 も行えます。

CLI を使用して、OpenShift Container Platform API へのリクエストを借用して 別のユーザーとしてプ
ロジェクトを作成 できます。新規プロジェクトの作成をリクエストすると、OpenShift Container
Platform はエンドポイントを使用して、カスタマイズ可能なテンプレートに従ってプロジェクトをプロ
ビジョニングします。クラスター管理者は、認証されたユーザーグループによる新規プロジェクトのセ
ルフプロビジョニングを阻止 することを選択できます。

1.2. アプリケーションの使用

1.2.1. アプリケーションの作成

アプリケーションを作成するには、プロジェクトを作成しているか、適切なロールとパーミッションで
プロジェクトにアクセスできる必要があります。Web コンソールの Developer パースペクティブ、イ
ンストール済みの Operator、OpenShift Container Platform CLI のいずれかを使用してアプリケーショ
ンを作成できます。プロジェクトに追加するアプリケーションは、Git、JAR ファイル、devfile、また
は開発者カタログから入手できます。

ソースまたはバイナリーコード、イメージ、およびテンプレートを含むコンポーネントを使用し、
OpenShift Container Platform CLI を使用してアプリケーションを作成することもできます。OpenShift
Container Platform Web コンソールを使用すると、クラスター管理者によってインストールされた
Operator からアプリケーションを作成できます。

1.2.2. アプリケーションの保守

アプリケーションを作成したら、Web コンソールを使用して プロジェクトまたはアプリケーションの
メトリックを監視 できます。Web コンソールを使用して、アプリケーションを 編集 または 削除 する
こともできます。アプリケーションの実行中は、すべてのアプリケーションリソースが使用されるわけ
ではありません。クラスター管理者は、スケーラブルなリソースをアイドル状態 にして、リソースの消
費を減らすことができます。

1.2.3. アプリケーションのサービスへの接続

アプリケーションはバッキングサービスを使用して、サービスプロバイダーに応じて異なるワークロー
ドを構築および接続します。開発者として Service Binding Operator を使用すると、手作業でバイン
ディング接続を設定する手順なしに、Operator が管理するバッキングサービスとワークロードを簡単
にバインドできます。IBM Power Systems、IBM Z、および LinuxONE 環境 にもサービスバインディン
グを適用できます。

OpenShift Container Platform 4.9 アプリケーションのビルド

4

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#working-with-projects
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-providing-project-permissions-using-developer-perspective_projects
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-customizing-available-cluster-roles-using-developer-perspective_projects
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#configuring-project-creation
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#creating-project-other-user
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#disabling-project-self-provisioning_configuring-project-creation
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#creating-apps-from-installed-operators
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#creating-applications-using-cli
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-monitoring-project-and-application-metrics-using-developer-perspective
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-editing-applications
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-deleting-applications
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#idling-applications
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#understanding-service-binding-operator
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#getting-started-with-service-binding-ibm-power-ibm-z

1.2.4. アプリケーションのデプロイ

Deployment または DeploymentConfig オブジェクトを使用してアプリケーションをデプロイし、
Web コンソールからそれらを 管理 できます。アプリケーションの変更またはアップグレード中のダウ
ンタイムを短縮するのに役立つ デプロイメントストラテジー を作成できます。

アプリケーションやサービスの OpenShift Container Platform クラスターへのデプロイメントを単純化
するソフトウェアパッケージマネージャーである Helm も使用できます。

1.3. RED HAT MARKETPLACE の使用

Red Hat Marketplace は、パブリッククラウドおよびオンプレミスで実行されるコンテナーベース環境
向けの認定されたソフトウェアの検出とアクセスが可能なオープンクラウドマーケットプレースです。

第1章 アプリケーションのビルドの概要

5

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#what-deployments-are
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#deployment-operations
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#deployment-strategies
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#understanding-helm
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#red-hat-marketplace

第2章 プロジェクト

2.1. プロジェクトの使用

プロジェクト を使用することにより、あるユーザーコミュニティーは、他のコミュニティーと切り離さ
れた状態で独自のコンテンツを整理し、管理することができます。

注記

openshift- および kube- で始まる名前のプロジェクトは デフォルトプロジェクト で
す。これらのプロジェクトは、Pod として実行されるクラスターコンポーネントおよび
他のインフラストラクチャーコンポーネントをホストします。そのため、OpenShift
Container Platform では oc new-project コマンドを使用して openshift- または kube-
で始まる名前のプロジェクトを作成することができません。クラスター管理者は、oc
adm new-project コマンドを使用してこれらのプロジェクトを作成できます。

注記

デフォルト namespace (default、kube-system、kube-public、openshift-
node、openshift-infra、openshift) のいずれかに作成された Pod に SCC を割り当てる
ことはできません。これらの namespace は Pod またはサービスを実行するために使用
することはできません。

2.1.1. Web コンソールを使用したプロジェクトの作成

クラスター管理者が許可する場合、新規プロジェクトを作成できます。

注記

openshift- および kube- で始まる名前のプロジェクトは OpenShift Container Platform
によって重要 (Critical) と見なされます。そのため、OpenShift Container Platform で
は、Web コンソールを使用して openshift- で始まる名前のプロジェクトを作成すること
はできません。

注記

デフォルト namespace (default、kube-system、kube-public、openshift-
node、openshift-infra、openshift) のいずれかに作成された Pod に SCC を割り当てる
ことはできません。これらの namespace は Pod またはサービスを実行するために使用
することはできません。

手順

1. Home → Projects に移動します。

2. Create Project をクリックします。

3. プロジェクトの詳細を入力します。

4. Create をクリックします。

2.1.2. Web コンソールでの開発者パースペクティブを使用したプロジェクトの作成

OpenShift Container Platform Web コンソールの Developer パースペクティブを使用し、クラスター

OpenShift Container Platform 4.9 アプリケーションのビルド

6

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/authentication_and_authorization/#rbac-default-projects_using-rbac

OpenShift Container Platform Web コンソールの Developer パースペクティブを使用し、クラスター
でプロジェクトを作成できます。

注記

openshift- および kube- で始まる名前のプロジェクトは OpenShift Container Platform
によって重要 (Critical) と見なされます。そのため、OpenShift Container Platform で
は、Developer パーステクティブを使用して、 openshift- または kube- で始まる名前の
プロジェクトを作成することはできません。クラスター管理者は、oc adm new-project
コマンドを使用してこれらのプロジェクトを作成できます。

注記

デフォルト namespace (default、kube-system、kube-public、openshift-
node、openshift-infra、openshift) のいずれかに作成された Pod に SCC を割り当てる
ことはできません。これらの namespace は Pod またはサービスを実行するために使用
することはできません。

前提条件

OpenShift Container Platform のプロジェクト、アプリケーション、および他のワークロード
を作成するために適切なロールおよびパーミッションがあることを確認します。

手順

以下のように、Developer パースペクティブを使用してプロジェクトを作成できます。

1. Project ドロップダウンメニューをクリックし、利用可能なすべてのプロジェクトの一覧を表
示します。Create Project を選択します。

図2.1 Create project

2. Create Project ダイアログボックスで、Name フィールドに、myproject などの一意の名前を
入力します。

3. オプション: プロジェクトの Display Name および Description の詳細を追加します。

4. Create をクリックします。

5. 左側のナビゲーションパネルを使用して Project ビューに移動し、プロジェクトのダッシュ

第2章 プロジェクト

7

5. 左側のナビゲーションパネルを使用して Project ビューに移動し、プロジェクトのダッシュ
ボードを確認します。

6. オプション。

画面上部の Project ドロップダウンメニューで、all projects を選択し、クラスターのすべ
てのプロジェクトを一覧表示します。

Details タブを使用してプロジェクトの詳細を表示します。

プロジェクトに対する適切なパーミッションがある場合は、Project Access タブを使用し
て、プロジェクトの administrator、edit、および view 権限を提供するか、または取り消
します。

2.1.3. CLI を使用したプロジェクトの作成

クラスター管理者が許可する場合、新規プロジェクトを作成できます。

注記

openshift- および kube- で始まる名前のプロジェクトは OpenShift Container Platform
によって重要 (Critical) と見なされます。そのため、OpenShift Container Platform では
oc new-project コマンドを使用して openshift- または kube- で始まる名前のプロジェ
クトを作成することができません。クラスター管理者は、oc adm new-project コマンド
を使用してこれらのプロジェクトを作成できます。

注記

デフォルト namespace (default、kube-system、kube-public、openshift-
node、openshift-infra、openshift) のいずれかに作成された Pod に SCC を割り当てる
ことはできません。これらの namespace は Pod またはサービスを実行するために使用
することはできません。

手順

以下を実行します。

以下に例を示します。

注記

作成できるプロジェクトの数は、システム管理者によって制限される場合があります。
上限に達すると、新規プロジェクトを作成できるように既存プロジェクトを削除しなけ
ればならない場合があります。

2.1.4. Web コンソールを使用したプロジェクトの表示

$ oc new-project <project_name> \
 --description="<description>" --display-name="<display_name>"

$ oc new-project hello-openshift \
 --description="This is an example project" \
 --display-name="Hello OpenShift"

OpenShift Container Platform 4.9 アプリケーションのビルド

8

手順

1. Home → Projects に移動します。

2. 表示するプロジェクトを選択します。
このページで、Workloads をクリックして、プロジェクトのワークロードを確認します。

2.1.5. CLI を使用したプロジェクトの表示

プロジェクトを表示する際は、認証ポリシーに基づいて、表示アクセスのあるプロジェクトだけを表示
できるように制限されます。

手順

1. プロジェクトの一覧を表示するには、以下を実行します。

2. CLI 操作について現在のプロジェクトから別のプロジェクトに切り換えることができます。そ
の後の操作についてはすべて指定のプロジェクトが使用され、プロジェクトスコープのコンテ
ンツの操作が実行されます。

2.1.6. 開発者パースペクティブを使用したプロジェクトに対するアクセスパーミッショ
ンの提供

Developer パースペクティブで Project ビューを使用し、プロジェクトに対するアクセスを付与した
り、取り消したりできます。

手順

ユーザーをプロジェクトに追加し、Admin、Edit、または View アクセスをユーザーに付与するには、
以下を実行します。

1. Developer パースペクティブで、Project ビューに移動します。

2. Project ページで、Project Access タブを選択します。

3. Add Access をクリックして、パーミッションの新規の行をデフォルトパーミッションに追加し
ます。

図2.2 プロジェクトパーミッション

$ oc get projects

$ oc project <project_name>

第2章 プロジェクト

9

図2.2 プロジェクトパーミッション

4. ユーザー名を入力し、Select a role ドロップダウンリストをクリックし、適切なロールを選択
します。

5. Save をクリックして新規パーミッションを追加します。

以下を使用することもできます。

Select a role ドロップダウンリストを使用して、既存ユーザーのアクセスパーミッションを変
更できます。

Remove Access アイコンを使用して、既存ユーザーのプロジェクトへのアクセスパーミッショ
ンを完全に削除できます。

注記

高度なロールベースのアクセス制御は、Administrator パースペクティブの Roles およ
び Roles Binding ビューで管理されます。

2.1.7. 開発者パースペクティブを使用した利用可能なクラスターロールのカスタマイズ

プロジェクトのユーザーは、アクセス制御に基づいてクラスターロールに割り当てられます。Project
→ Project access → Role の順に移動して、これらのクラスターロールにアクセスできます。デフォル
トでは、これらのロールは Admin、Edit、および View です。

プロジェクトのクラスターロールを追加または編集するには、クラスターの YAML コードをカスタマイ
ズできます。

手順

プロジェクトの異なるクラスターロールをカスタマイズするには、以下を実行します。

1. Search ビューで、Resources ドロップダウンリストを使用して Console を検索します。

OpenShift Container Platform 4.9 アプリケーションのビルド

10

2. 利用可能なオプションから、Console operator.openshift.io/v1 を選択します。

図2.3 コンソールリソースの検索

3. Name リストで cluster を選択します。

4. YAML タブに移動し、YAML コードを表示し、編集します。

5. spec の YAML コードで、availableClusterRoles の一覧を追加または編集し、変更を保存しま
す。

2.1.8. プロジェクトへの追加

手順

1. Web コンソールのナビゲーションメニューの上部にあるコンテキストセレクターから
Developer を選択します。

spec:
 customization:
 projectAccess:
 availableClusterRoles:
 - admin
 - edit
 - view

第2章 プロジェクト

11

2. +Add をクリックします。

3. ページの上部で、追加するプロジェクトの名前を選択します。

4. プロジェクトに追加する方法をクリックし、ワークフローに従います。

注記

また、クイック検索を使用してコンポーネントをトポロジーに追加することもできま
す。

2.1.9. Web コンソールを使用したプロジェクトステータスの確認

手順

1. Home → Projects に移動します。

2. ステータスを確認するプロジェクトを選択します。

2.1.10. CLI を使用したプロジェクトステータスの確認

手順

1. 以下を実行します。

このコマンドは、コンポーネントとそれらの各種の関係を含む現在のプロジェクトの概要を示
します。

2.1.11. Web コンソールを使用したプロジェクトの削除

OpenShift Container Platform Web コンソールを使用してプロジェクトを削除できます。

注記

プロジェクトを削除するパーミッションがない場合は、Delete Project オプションが選
択できなくなります。

手順

1. Home → Projects に移動します。

2. プロジェクトの一覧から削除するプロジェクトを見つけます。

3. プロジェクト一覧の右側にある Options メニュー から Delete Project を選択します。

4. Delete Project ペインが開いたら、フィールドから削除するプロジェクトの名前を入力しま
す。

5. Delete をクリックします。

$ oc status

OpenShift Container Platform 4.9 アプリケーションのビルド

12

2.1.12. CLI を使用したプロジェクトの削除

プロジェクトを削除する際に、サーバーはプロジェクトのステータスを Active から Terminating に更
新します。次に、サーバーは Terminating 状態のプロジェクトからすべてのコンテンツをクリアしてか
ら、最終的にプロジェクトを削除します。プロジェクトのステータスが Terminating の場合、新規のコ
ンテンツをプロジェクトに追加することはできません。プロジェクトは CLI または Web コンソールか
ら削除できます。

手順

1. 以下を実行します。

2.2. 別のユーザーとしてのプロジェクトの作成

権限の借用機能により、別のユーザーとしてプロジェクトを作成することができます。

2.2.1. API の権限借用

OpenShift Container Platform API への要求を、別のユーザーから発信されているかのように設定でき
ます。詳細は、Kubernetes ドキュメントの User impersonation を参照してください。

2.2.2. プロジェクト作成時のユーザー権限の借用

プロジェクト要求を作成する際に別のユーザーの権限を借用できます。system:authenticated:oauth
はプロジェクト要求を作成できる唯一のブートストラップグループであるため、そのグループの権限を
借用する必要があります。

手順

別のユーザーの代わりにプロジェクト要求を作成するには、以下を実行します。

2.3. プロジェクト作成の設定

OpenShift Container Platform では、プロジェクト は関連するオブジェクトをグループ分けし、分離す
るために使用されます。Web コンソールまたは oc new-project コマンドを使用して新規プロジェクト
の作成要求が実行されると、OpenShift Container Platform のエンドポイントは、カスタマイズ可能な
テンプレートに応じてプロジェクトをプロビジョニングするために使用されます。

クラスター管理者は、開発者やサービスアカウントが独自のプロジェクトを作成し、プロジェクトの セ
ルフプロビジョニング を実行することを許可し、その方法を設定できます。

2.3.1. プロジェクト作成について

OpenShift Container Platform API サーバーは、クラスターのプロジェクト設定リソースの
projectRequestTemplate パラメーターで識別されるプロジェクトテンプレートに基づいて新規プロ
ジェクトを自動的にプロビジョニングします。パラメーターが定義されない場合、API サーバーは要求
される名前でプロジェクトを作成するデフォルトテンプレートを作成し、要求するユーザーをプロジェ
クトの admin (管理者) ロールに割り当てます。

$ oc delete project <project_name>

$ oc new-project <project> --as=<user> \
 --as-group=system:authenticated --as-group=system:authenticated:oauth

第2章 プロジェクト

13

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation

プロジェクト要求が送信されると、API はテンプレートで以下のパラメーターを置き換えます。

表2.1 デフォルトのプロジェクトテンプレートパラメーター

パラメーター 説明

PROJECT_NAME プロジェクトの名前。必須。

PROJECT_DISPLAYNAME プロジェクトの表示名。空にできます。

PROJECT_DESCRIPTION プロジェクトの説明。空にできます。

PROJECT_ADMIN_USER 管理ユーザーのユーザー名。

PROJECT_REQUESTING_U
SER

要求するユーザーのユーザー名。

API へのアクセスは、self-provisioner ロールと self-provisioners のクラスターロールバインディング
で開発者に付与されます。デフォルトで、このロールはすべての認証された開発者が利用できます。

2.3.2. 新規プロジェクトのテンプレートの変更

クラスター管理者は、デフォルトのプロジェクトテンプレートを変更し、新規プロジェクトをカスタム
要件に基づいて作成することができます。

独自のカスタムプロジェクトテンプレートを作成するには、以下を実行します。

手順

1. cluster-admin 権限を持つユーザーとしてログインしている。

2. デフォルトのプロジェクトテンプレートを生成します。

3. オブジェクトを追加するか、または既存オブジェクトを変更することにより、テキストエディ
ターで生成される template.yaml ファイルを変更します。

4. プロジェクトテンプレートは、openshift-config namespace に作成される必要があります。変
更したテンプレートを読み込みます。

5. Web コンソールまたは CLI を使用し、プロジェクト設定リソースを編集します。

Web コンソールの使用

i. Administration → Cluster Settings ページに移動します。

ii. Configuration をクリックし、すべての設定リソースを表示します。

iii. Project のエントリーを見つけ、Edit YAML をクリックします。

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

$ oc create -f template.yaml -n openshift-config

OpenShift Container Platform 4.9 アプリケーションのビルド

14

CLI の使用

i. project.config.openshift.io/cluster リソースを編集します。

6. spec セクションを、projectRequestTemplate および name パラメーターを組み込むように更
新し、アップロードされたプロジェクトテンプレートの名前を設定します。デフォルト名は
project-request です。

カスタムプロジェクトテンプレートを含むプロジェクト設定リソース

7. 変更を保存した後、変更が正常に適用されたことを確認するために、新しいプロジェクトを作
成します。

2.3.3. プロジェクトのセルフプロビジョニングの無効化

認証されたユーザーグループによる新規プロジェクトのセルフプロビジョニングを禁止することができ
ます。

手順

1. cluster-admin 権限を持つユーザーとしてログインしている。

2. 以下のコマンドを実行して、self-provisioners クラスターロールバインディングの使用を確認
します。

出力例

self-provisioners セクションのサブジェクトを確認します。

3. self-provisioner クラスターロールをグループ system:authenticated:oauth から削除しま
す。

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestTemplate:
 name: <template_name>

$ oc describe clusterrolebinding.rbac self-provisioners

Name: self-provisioners
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: self-provisioner
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated:oauth

第2章 プロジェクト

15

self-provisioners クラスターロールバインディングが self-provisioner ロールのみを
system:authenticated:oauth グループにバインドする場合、以下のコマンドを実行しま
す。

self-provisioners クラスターロールバインディングが self-provisioner ロールを
system:authenticated:oauth グループ以外のユーザー、グループまたはサービスアカウン
トにバインドする場合、以下のコマンドを実行します。

4. ロールへの自動更新を防ぐには、self-provisioners クラスターロールバインディングを編集し
ます。自動更新により、クラスターロールがデフォルトの状態にリセットされます。

CLI を使用してロールバインディングを更新するには、以下を実行します。

i. 以下のコマンドを実行します。

ii. 表示されるロールバインディングで、以下の例のように
rbac.authorization.kubernetes.io/autoupdate パラメーター値を false に設定しま
す。

単一コマンドを使用してロールバインディングを更新するには、以下を実行します。

5. 認証されたユーザーとしてログインし、プロジェクトのセルフプロビジョニングを実行できな
いことを確認します。

出力例

組織に固有のより有用な説明を提供できるようこのプロジェクト要求メッセージをカスタマイ
ズすることを検討します。

2.3.4. プロジェクト要求メッセージのカスタマイズ

プロジェクトのセルフプロビジョニングを実行できない開発者またはサービスアカウントが Web コン

$ oc patch clusterrolebinding.rbac self-provisioners -p '{"subjects": null}'

$ oc adm policy \
 remove-cluster-role-from-group self-provisioner \
 system:authenticated:oauth

$ oc edit clusterrolebinding.rbac self-provisioners

apiVersion: authorization.openshift.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "false"
 ...

$ oc patch clusterrolebinding.rbac self-provisioners -p '{ "metadata": { "annotations": {
"rbac.authorization.kubernetes.io/autoupdate": "false" } } }'

$ oc new-project test

Error from server (Forbidden): You may not request a new project via this API.

OpenShift Container Platform 4.9 アプリケーションのビルド

16

プロジェクトのセルフプロビジョニングを実行できない開発者またはサービスアカウントが Web コン
ソールまたは CLI を使用してプロジェクト作成要求を行う場合、以下のエラーメッセージがデフォルト
で返されます。

クラスター管理者はこのメッセージをカスタマイズできます。これを、組織に固有の新規プロジェクト
の要求方法の情報を含むように更新することを検討します。以下に例を示します。

プロジェクトを要求するには、システム管理者 (projectname@example.com) に問い合わせて
ください。

新規プロジェクトを要求するには、https://internal.example.com/openshift-project-request
にあるプロジェクト要求フォームに記入します。

プロジェクト要求メッセージをカスタマイズするには、以下を実行します。

手順

1. Web コンソールまたは CLI を使用し、プロジェクト設定リソースを編集します。

Web コンソールの使用

i. Administration → Cluster Settings ページに移動します。

ii. Configuration をクリックし、すべての設定リソースを表示します。

iii. Project のエントリーを見つけ、Edit YAML をクリックします。

CLI の使用

i. cluster-admin 権限を持つユーザーとしてログインしている。

ii. project.config.openshift.io/cluster リソースを編集します。

2. spec セクションを、projectRequestMessage パラメーターを含むように更新し、値をカスタ
ムメッセージに設定します。

カスタムプロジェクト要求メッセージを含むプロジェクト設定リソース

以下に例を示します。

You may not request a new project via this API.

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestMessage: <message_string>

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...

第2章 プロジェクト

17

3. 変更を保存した後に、プロジェクトをセルフプロビジョニングできない開発者またはサービス
アカウントとして新規プロジェクトの作成を試行し、変更が正常に適用されていることを確認
します。

spec:
 projectRequestMessage: To request a project, contact your system administrator at
projectname@example.com.

OpenShift Container Platform 4.9 アプリケーションのビルド

18

第3章 アプリケーションの作成

3.1. 開発者パースペクティブを使用したアプリケーションの作成

Web コンソールの Developer パースペクティブでは、+Add ビューからアプリケーションおよび関連
サービスを作成し、それらを OpenShift Container Platform にデプロイするための以下のオプションが
提供されます。

リソースの使用: 開発者コンソールを使い始めるには、これらのリソースを使用しま

す。Options メニュー を使用してヘッダーを非表示にすることができます。

サンプルを使用したアプリケーションの作成: 既存のコードサンプルを使用して、
OpenShift Container Platform でアプリケーションの作成を開始します。

ガイド付きドキュメントを使用してビルド: ガイド付きドキュメントを参照してアプリケー
ションを構築し、主なコンセプトや用語に慣れてください。

新規開発者機能の確認: Developer パースペクティブの新機能およびリソースを紹介しま
す。

Developer catalog: Developer Catalog で、イメージビルダーに必要なアプリケーション、サー
ビス、またはソースを選択し、プロジェクトに追加します。

All Services: カタログを参照し、OpenShift Container Platform 全体でサービスを検出しま
す。

Database: 必要なデータベースサービスを選択し、アプリケーションに追加します。

Operator Backed: 必要な Operator 管理サービスを選択し、デプロイします。

Helm Chart: 必要な Helm チャートを選択し、アプリケーションおよびサービスのデプロイ
メントを単純化します。

Event Source: 特定のシステムからイベントソースを選択し、関心のあるイベントクラスを
登録します。

注記

RHOAS Operator がインストールされている場合には、マネージドサービス
オプションも利用できます。

Git repository: From Git、From Devfile または From Dockerfile オプションを使用して Git リ
ポジトリーから既存のコードベース、Devfile、または Dockerfile をインポートし、OpenShift
Container Platform でアプリケーションをビルドしてデプロイします。

Container Image: イメージストリームまたはレジストリーからの既存イメージを使用し、これ
を OpenShift Container Platform にデプロイします。

Pipelines: Tekton パイプラインを使用して OpenShift Container Platform でソフトウェア配信
プロセスの CI/CD パイプラインを作成します。

Serverless: Serverless オプションを検査して、OpenShift Container Platform でステートレス
およびサーバーレスアプリケーションを作成、ビルド、デプロイします。

第3章 アプリケーションの作成

19

Channel: Knative チャネルを作成し、インメモリーの信頼性の高い実装を備えたイベント転
送および永続化層を作成します。

Samples: 利用可能なサンプルアプリケーションを確認して、アプリケーションをすばやく作
成、ビルド、デプロイします。

From Local Machine: From Local Machine タイルを確認して、ローカルマシンのファイルをイ
ンポートまたはアップロードし、簡単にアプリケーションをビルドしてデプロイします。

Import YAML: YAML ファイルをアップロードし、アプリケーションをビルドしてデプロイ
するためのリソースを定義します。

Upload JAR file: JAR ファイルをアップロードして Java アプリケーションをビルドおよび
デプロイします。

Pipelines、 Event Source、および Import Virtual Machines などの特定のオプションは、OpenShift
Pipelines Operator、 OpenShift Serverless Operator、および OpenShift Virtualization Operator がイン
ストールされる場合にのみそれぞれ表示されることに注意してください。

3.1.1. 前提条件

Developer パースペクティブを使用してアプリケーションを作成するには、以下を確認してください。

Web コンソールにログインしている。

OpenShift Container Platform でアプリケーションおよび他のワークロードを作成するため
に、プロジェクトを作成しているか、適切な ロールおよびパーミッション を持つプロジェクト
にアクセスできる。

前述の前提条件に加えてサーバーレスアプリケーションを作成するには、以下を確認します。

OpenShift Serverless Operator がインストールされている。

knative-serving namespace に KnativeServing リソースを作成している。

3.1.2. サンプルアプリケーションの作成

Developer パースペクティブの +Add フローで基本的なサンプルアプリケーションを使用し、アプリ
ケーションをすぐに作成し、ビルドし、デプロイできます。

以下の手順では、サンプルアプリケーションを作成するための Developer パースペクティブの
Samples オプションについて説明します。

手順

1. +Add ビューで、Samples タイルをクリックし、Samples ページを表示します。

2. Samples ページで、利用可能なサンプルアプリケーションの 1 つを選択し、Create Sample
Application フォームを表示します。

3. Create Sample Application Form:

Name フィールドには、デフォルトでデプロイメント名が表示されます。この名前は必要
に応じて変更することができます。

Builder Image Version では、ビルダーイメージがデフォルトで選択されます。Builder

OpenShift Container Platform 4.9 アプリケーションのビルド

20

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/cicd/#op-installing-pipelines-operator-in-web-console_installing-pipelines
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/serverless/#serverless-install-web-console_install-serverless-operator
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/virtualization/#virt-subscribing-to-the-catalog_installing-virt-web
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/web_console/#web-console
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/authentication_and_authorization/#default-roles_using-rbac
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/serverless/#install-serverless-operator
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/serverless/#installing-knative-serving

Builder Image Version では、ビルダーイメージがデフォルトで選択されます。Builder
Image Version ドロップダウンリストを使用してイメージバージョンを変更できます。

Git リポジトリー URL のサンプルは、デフォルトで追加されます。

4. Create をクリックしてサンプルアプリケーションを作成します。サンプルアプリケーションの
ビルドステータスが Topology ビューに表示されます。サンプルアプリケーションの作成後、
デプロイメントがアプリケーションに追加されていることを確認できます。

3.1.3. Git のコードベースのインポートおよびアプリケーションの作成

Developer パースペクティブを使用し、GitHub で既存のコードベースを使用して OpenShift Container
Platform でアプリケーションを作成し、ビルドし、デプロイすることができます。

以下の手順では、Developer パースペクティブの From Git オプションを使用してアプリケーションを
作成します。

手順

1. +Add ビューで、Git Repository タイルの From Git をクリックし、Import from git フォーム
を表示します。

2. Git セクションで、アプリケーションの作成に使用するコードベースの Git リポジトリー URL
を入力します。たとえば、このサンプル nodejs アプリケーションの URL
https://github.com/sclorg/nodejs-ex を入力します。その後、URL は検証されます。

3. オプション: Show Advanced Git Options をクリックし、以下のような詳細を追加できます。

Git Reference: アプリケーションのビルドに使用する特定のブランチ、タグ、またはコ
ミットのコードを参照します。

Context Dir: アプリケーションのビルドに使用するアプリケーションのソースコードのサ
ブディレクトリーを指定します。

Source Secret: プライベートリポジトリーからソースコードをプルするための認証情報で
Secret Name を作成します。

4. オプション: Git リポジトリーを使用して devfile、Dockerfile、またはビルダーイメージをイン
ポートして、デプロイメントをさらにカスタマイズできるようになりました。

Git リポジトリーに devfile、Dockerfile、またはビルダーイメージが含まれる場合には、こ
れらは自動的に検出され、それぞれのパスフィールドに設定されます。devfile、
Dockerfile、およびビルダーイメージが同じリポジトリーで検出されると、devfile はデフォ
ルトで選択されます。

ファイルのインポートタイプを編集して、別のストラテジーを選択し、Edit import
strategy オプションをクリックします。

複数の devfile、Dockerfile、またはビルダーイメージを検出された場合に、特定の
devfile、Dockerfile、またはビルダーイメージをインポートするにはコンテキストディレク
トリーを起点とした相対パスを指定します。

5. Git URL の検証後に、推奨されるビルダーイメージが選択されて星マークが付けられます。ビ
ルダーイメージが自動検出されていない場合は、ビルダーイメージを選択しま
す。https://github.com/sclorg/nodejs-ex Git URL の場合、Node.js ビルダーイメージがデフォ
ルトで選択されます。

a. オプション:Builder Image Version ドロップダウンリストを使用してバージョンを指定しま

第3章 アプリケーションの作成

21

https://github.com/sclorg/nodejs-ex

a. オプション:Builder Image Version ドロップダウンリストを使用してバージョンを指定しま
す。

b. オプション:Edit import strategy を使用して、別のストラテジーを選択します。

6. General セクションで、以下を実行します。

a. Application フィールドに、アプリケーションを分類するために一意の名前 (myapp など)
を入力します。アプリケーション名が namespace で一意であることを確認します。

b. Name フィールドで、既存のアプリケーションが存在しない場合に、このアプリケーショ
ン用に作成されたリソースが Git リポジトリー URL をベースとして自動的に設定されるこ
とを確認します。既存のアプリケーションがある場合には、既存のアプリケーション内で
そのコンポーネントをデプロイしたり、新しいアプリケーションを作成したり、またはコ
ンポーネントをいずれにも割り当てない状態にしたりすることができます。

注記

リソース名は namespace で一意である必要があります。エラーが出る場合
はリソース名を変更します。

7. Resources セクションで、以下を選択します。

Deployment: 単純な Kubernetes スタイルのアプリケーションを作成します。

Deployment Config: OpenShift Container Platform スタイルのアプリケーションを作成し
ます。

Serverless Deployment: Knative サービスを作成します。

注記

Serverless Deployment オプションは、Serverless Operator がクラスター
にインストールされている場合にのみ、Import from git フォームに表示さ
れます。詳細は、OpenShift Serverless のドキュメントを参照してくださ
い。

8. Pipelines セクションで、 Add Pipeline を選択してから Show Pipeline Visualization をクリッ
クし、アプリケーションのパイプラインを表示します。

9. Advanced Options セクションでは、Create a route to the application がデフォルトで選択さ
れるため、公開されている URL を使用してアプリケーションにアクセスできます。アプリケー
ションをパブリックルートに公開したくない場合は、チェックボックスをクリアできます。

10. オプション: 以下の高度なオプションを使用してアプリケーションをさらにカスタマイズできま
す。

Routing

Routing のリンクをクリックして、以下のアクションを実行できます。

ルートのホスト名をカスタマイズします。

ルーターが監視するパスを指定します。

ドロップダウンリストから、トラフィックのターゲットポートを選択します。

Secure Route チェックボックスを選択してルートを保護します。必要な TLS 終端タイプを

OpenShift Container Platform 4.9 アプリケーションのビルド

22

Secure Route チェックボックスを選択してルートを保護します。必要な TLS 終端タイプを
選択し、各ドロップダウンリストから非セキュアなトラフィックについてのポリシーを設定
します。

注記

サーバーレスアプリケーションの場合、Knative サービスが上記のすべての
ルーティングオプションを管理します。ただし、必要に応じて、トラフィッ
クのターゲットポートをカスタマイズできます。ターゲットポートが指定さ
れていない場合、デフォルトポートの 8080 が使用されます。

ドメインマッピング

Serverless Deployment を作成する場合、作成時に Knative サービスにカスタムドメインマッピン
グを追加できます。

Advanced options セクションで、Show advanced Routing options をクリックします。

サービスにマッピングするドメインマッピング CR がすでに存在する場合は、Domain
mapping のドロップダウンメニューから選択できます。

新規ドメインマッピング CR を作成する場合は、ドメイン名をボックスに入力
し、Create オプションを選択します。たとえば、example.com と入力すると、Create
オプションは Create "example.com" になります。

ヘルスチェック

Health Checks リンクをクリックして、Readiness、Liveness、および Startup プローブをアプリ
ケーションに追加します。すべてのプローブに事前に設定されたデフォルトデータが実装され、必
要に応じてデフォルトデータでプローブを追加したり、必要に応じてこれをカスタマイズしたりで
きます。
ヘルスプローブをカスタマイズするには、以下を実行します。

Add Readiness Probe をクリックし、必要に応じてコンテナーが要求を処理する準備がで
きているかどうかを確認するためにパラメーターを変更し、チェックマークを選択してプ
ローブを追加します。

Add Liveness Probe をクリックし、必要に応じてコンテナーが実行中かどうかを確認する
ためにパラメーターを変更し、チェックマークを選択してプローブを追加します。

Add Startup Probe をクリックし、必要に応じてコンテナー内のアプリケーションが起動し
ているかどうかを確認するためにパラメーターを変更し、チェックマークを選択してプロー
ブを追加します。
それぞれのプローブについて、ドロップダウンリストから要求タイプ (HTTP
GET、Container Command、TCP Socket) を指定できます。選択した要求タイプに応じて
フォームが変更されます。次に、プローブの成功および失敗のしきい値、コンテナーの起動
後の最初のプローブ実行までの秒数、プローブの頻度、タイムアウト値など、他のパラメー
ターのデフォルト値を変更できます。

ビルド設定およびデプロイメント

Build Configuration および Deployment リンクをクリックして、それぞれの設定オプションを表示
します。オプションの一部はデフォルトで選択されています。必要なトリガーおよび環境変数を追
加して、オプションをさらにカスタマイズできます。

サーバーレスアプリケーションの場合、Deployment オプションは表示されません。これは、

第3章 アプリケーションの作成

23

サーバーレスアプリケーションの場合、Deployment オプションは表示されません。これは、
Knative 設定リソースが DeploymentConfig リソースの代わりにデプロイメントの必要な状態を維
持するためです。

スケーリング

Scaling リンクをクリックして、最初にデプロイするアプリケーションの Pod 数またはインスタン
ス数を定義します。
サーバーレスデプロイメントを作成する場合、以下の設定を行うこともできます。

Min Pods は、Knative サービスである時点で実行する必要がある Pod 数の下限を決定しま
す。これは、minScale 設定としても知られています。

Max Pods は、Knative サービスである時点で実行できる Pod 数の上限を決定します。これ
は、maxScale 設定としても知られています。

Concurrency target は、ある時点でアプリケーションの各インスタンスに対して必要な同
時リクエストの数を決定します。

Concurrency limit は、ある時点でアプリケーションの各インスタンスに対して許容される
同時リクエストの数の制限を決定します。

Concurrency utilization は、Knative が追加のトラフィックを処理するために追加の Pod を
スケールアップする際に満たす必要のある同時リクエストの制限のパーセンテージを決定し
ます。

Autoscale window は、Autoscaler がパニックモードではない場合に、スケーリングの決定
を行う際のインプットを提供するためにメトリクスの平均値を計算する期間を定義します。
この期間中にリクエストが受信されなかった場合、サービスはゼロにスケーリングされま
す。Autoscale window のデフォルト期間は 60s です。これは stable window としても知られ
ています。

リソースの制限

Resource Limit リンクをクリックして、コンテナーが実行時に保証または使用が許可されている
CPU および メモリー リソースの量を設定します。

ラベル

Labels リンクをクリックして、カスタムラベルをアプリケーションに追加します。

1. Create をクリックして、アプリケーションを作成し、Topology ビューでビルドのステータ
スを確認します。

3.1.4. Java アプリケーションのデプロイメントを容易にする JAR ファイルのアップ
ロード

Developer パースペクティブの Topology ビューで JAR ファイルを使用して、Java アプリケーション
をデプロイできます。以下のオプションを使用して JAR ファイルをアップロードできます。

Developer パースペクティブの +Add ビューに移動し、From Local Machine タイルで Upload
JAR file をクリックします。JAR ファイルを参照および選択するか、または JAR ファイルをド
ラッグアンドドロップしてアプリケーションをデプロイします。

Topology ビューに移動し、Upload JAR file オプションを使用して、JAR ファイルをドラッグ
アンドドロップしてアプリケーションをデプロイします。

Topology ビューのコンテキストメニューで Upload JAR file オプションを使用して JAR ファ

OpenShift Container Platform 4.9 アプリケーションのビルド

24

Topology ビューのコンテキストメニューで Upload JAR file オプションを使用して JAR ファ
イルをアップロードしてアプリケーションをデプロイします。

以下の手順に従って、Topology ビューで JAR ファイルをアップロードし、Java アプリケーションを
デプロイします。

手順

1. Topology ビューで、Topology ビューの任意の場所を右クリックし、Add to Project メニュー
を表示します。

2. Add to Project メニューにカーソルを置いてメニューオプションを表示し、Upload JAR ファ
イルオプションを選択し、 Upload JAR file オプションを選択して Upload JAR file フォームを
確認します。または、Topology ビューで JAR ファイルをドラッグアンドドロップすることも
できます。

3. JAR file フィールドで、ローカルマシンで必要な JAR ファイルを参照し、これをアップロード
します。または、JAR ファイルをフィールドにドラッグアンドドロップすることもできます。
互換性のないファイルタイプが Topology ビューでドラッグアンドドロップされると、トース
トアラートが右側に表示されます。互換性のないファイルタイプがアップロードフォームの
フィールドにドロップされると、フィールドエラーが表示されます。

4. オプションの Java コマンドをさらに指定して、デプロイされたアプリケーションをカスタマイ
ズできます。ランタイムアイコンおよびビルダーイメージはデフォルトで選択されます。ビル
ダーイメージが自動検出されていない場合は、ビルダーイメージを選択します。必要に応じ
て、Builder Image Version のドロップダウンリストを使用してバージョンを変更できます。

5. オプションの Application Name フィールドに、リソースラベルリング用にアプリケーション
の一意の名前を入力します。

6. Name フィールドに、関連付けられたリソースに名前を付けるために一意のコンポーネント名
を入力します。

7. Resources フィールドで、アプリケーションのリソースタイプを選択します。

8. Advanced options で、Create a Route to the Application をクリックし、デプロイされたア
プリケーションのパブリック URL を設定します。

9. Create をクリックしてアプリケーションをデプロイします。ユーザーは JAR ファイルがアッ
プロード中であり、しばらくかかることを通知するトースト通知を確認します。トースト通知
には、ビルドログを表示するリンクも含まれます。

注記

ユーザーがビルドの実行中にブラウザータブを閉じようとすると、ユーザーに
Web アラートはページを実際に出るかどうかについて尋ねます。

JAR ファイルをアップロードし、アプリケーションがデプロイされると、デプロイメントが Topology
ビューに表示されます。

3.1.5. Developer Catalog を使用したサービスまたはコンポーネントのアプリケーショ
ンへの追加

Developer Catalog を使用して、データベース、ビルダーイメージ、Helm チャートなどの Operator が
サポートするサービスに基づいてアプリケーションとサービスをデプロイします。Developer Catalog

第3章 アプリケーションの作成

25

には、プロジェクトに追加できるアプリケーションコンポーネント、サービス、イベントソース、また
は Source-to-Image ビルダーのコレクションが含まれます。クラスター管理者は、カタログで利用可能
なコンテンツをカスタマイズできます。

手順

1. Developer パースペクティブで、+Add に移動して、Developer Catalog タイルから All
Services をクリックし、Developer Catalog で利用可能なすべてのサービスを表示します。

2. All Services で、サービスの種類またはプロジェクトに追加する必要のあるコンポーネントを選
択します。この例では、Databases を選択してすべてのデータベースサービスを一覧表示
し、MariaDB をクリックしてサービスの詳細を表示します。

3. Instantiate Template をクリックして、MariaDB サービスの詳細情報を含む自動的に設定され
たテンプレートを表示し、Create をクリックして Topology ビューで MariaDB サービスを作
成し、これを表示します。

図3.1 トポロジーの MariaDB

3.1.6. 関連情報

OpenShift Serverless の Knative ルーティング設定についての詳細は、Routingを参照してくだ
さい。

OpenShift Serverless のドメインマッピング設定についての詳細は、Configuring a custom
domain for a Knative serviceを参照してください。

OpenShift Serverless の Knative 自動スケーリング設定についての詳細は、Autoscalingを参照
してください。

プロジェクトに新規ユーザーを追加する方法について、詳しくは プロジェクトの使用 を参照し
てください。

OpenShift Container Platform 4.9 アプリケーションのビルド

26

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/serverless/#routing-overview
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/serverless/#serverless-custom-domains
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/serverless/#serverless-autoscaling-developer
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/projects/#odc-providing-project-permissions-using-developer-perspective_projects

3.2. インストールされた OPERATOR からのアプリケーションの作成

Operator は、Kubernetes アプリケーションをパッケージ化し、デプロイし、管理する方法です。クラ
スター管理者によってインストールされる Operator を使用して、アプリケーションを OpenShift
Container Platform で作成できます。

以下では、開発者を対象に、OpenShift Container Platform Web コンソールを使用して、インストール
された Operator からアプリケーションを作成する例を示します。

関連情報

Operator の仕組みおよび Operator Lifecycle Manager の OpenShift Container Platform への統
合方法に関する詳細は、Operator ガイドを参照してください。

3.2.1. Operator を使用した etcd クラスターの作成

この手順では、Operator Lifecycle Manager (OLM) で管理される etcd Operator を使用した新規 etcd
クラスターの作成について説明します。

前提条件

OpenShift Container Platform 4.9 クラスターへのアクセス

管理者によってクラスター全体に etcd Operator がすでにインストールされている。

手順

1. この手順を実行するために OpenShift Container Platform Web コンソールで新規プロジェクト
を作成します。この例では、my-etcd というプロジェクトを使用します。

2. Operators → Installed Operators ページに移動します。クラスター管理者によってクラスター
にインストールされ、使用可能にされた Operator がクラスターサービスバージョン (CSV) の
一覧としてここに表示されます。CSV は Operator によって提供されるソフトウェアを起動
し、管理するために使用されます。

ヒント

以下を使用して、CLI でこの一覧を取得できます。

3. Installed Operators ページで、etcd Operator をクリックして詳細情報および選択可能なアク
ションを表示します。
Provided APIs に表示されているように、この Operator は 3 つの新規リソースタイプを利用可
能にします。これには、etcd クラスター (EtcdCluster リソース) のタイプが含まれます。これ
らのオブジェクトは、Deployment または ReplicaSet などの組み込み済みのネイティブ
Kubernetes オブジェクトと同様に機能しますが、これらには etcd を管理するための固有のロ
ジックが含まれます。

4. 新規 etcd クラスターを作成します。

a. etcd Cluster API ボックスで、Create instance をクリックします。

b. 次の画面では、クラスターのサイズなど EtcdCluster オブジェクトのテンプレートを起動

$ oc get csv

第3章 アプリケーションの作成

27

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/operators/#olm-what-operators-are

する最小条件への変更を加えることができます。ここでは Create をクリックして確定しま
す。これにより、Operator がトリガーされ、Pod、サービス、および新規 etcd クラスター
の他のコンポーネントが起動します。

5. example etcd クラスターをクリックしてから Resources タブをクリックして、プロジェクト
に Operator によって自動的に作成され、設定された数多くのリソースが含まれることを確認し
ます。
Kubernetes サービスが作成され、プロジェクトの他の Pod からデータベースにアクセスでき
ることを確認します。

6. 所定プロジェクトで edit ロールを持つすべてのユーザーは、クラウドサービスのようにセルフ
サービス方式でプロジェクトにすでに作成されている Operator によって管理されるアプリケー
ションのインスタンス (この例では etcd クラスター) を作成し、管理し、削除することができ
ます。この機能を持つ追加のユーザーを有効にする必要がある場合、プロジェクト管理者は以
下のコマンドを使用してこのロールを追加できます。

これで、etcd クラスターは Pod が正常でなくなったり、クラスターのノード間で移行する際の障害に
対応し、データのリバランスを行います。最も重要な点として、適切なアクセスを持つクラスター管理
者または開発者は独自のアプリケーションでデータベースを簡単に使用できるようになります。

3.3. CLI を使用したアプリケーションの作成

OpenShift Container Platform CLI を使用して、ソースまたはバイナリーコード、イメージおよびテン
プレートを含むコンポーネントから OpenShift Container Platform アプリケーションを作成できます。

new-app で作成したオブジェクトのセットは、ソースリポジトリー、イメージまたはテンプレートな
どのインプットとして渡されるアーティファクトによって異なります。

3.3.1. ソースコードからのアプリケーションの作成

new-app コマンドを使用して、ローカルまたはリモート Git リポジトリーのソースコードからアプリ
ケーションを作成できます。

new-app コマンドは、ビルド設定を作成し、これはソースコードから新規のアプリケーションイメー
ジを作成します。new-app コマンドは通常、Deployment オブジェクトを作成して新規のイメージを
デプロイするほか、サービスを作成してイメージを実行するデプロイメントへの負荷分散したアクセス
を提供します。

OpenShift Container Platform は、パイプライン、ソース、または docker ビルドストラテジーのいずれ
を使用すべきかを自動的に検出します。また、ソースビルドの場合は、適切な言語のビルダーイメージ
を検出します。

3.3.1.1. Local

ローカルディレクトリーの Git リポジトリーを使用してアプリケーションを作成するには、以下を実行
します。

注記

$ oc policy add-role-to-user edit <user> -n <target_project>

$ oc new-app /<path to source code>

OpenShift Container Platform 4.9 アプリケーションのビルド

28

注記

ローカル Git リポジトリーを使用する場合には、リポジトリーで OpenShift Container
Platform クラスターがアクセス可能な URL を参照する origin という名前のリモートリ
ポジトリーが必要です。認識されているリモートがない場合は、new-app コマンドを実
行してバイナリービルドを作成します。

3.3.1.2. リモート

リモート Git リポジトリーを使用してアプリケーションを作成するには、以下を実行します。

プライベートのリモート Git リポジトリーを使用してアプリケーションを作成するには、以下を実行し
ます。

注記

プライベートリモート Git リポジトリーを使用する場合には、--source-secret フラグを
使用して、既存のソースクローンのシークレットを指定できます。このシークレット
は、ビルド設定に挿入され、リポジトリーにアクセスできるようになります。

--context-dir フラグを指定することで、ソースコードリポジトリーのサブディレクトリーを使用できま
す。リモート Git リポジトリーおよびコンテキストサブディレクトリーを使用してアプリケーションを
作成する場合は、以下を実行します。

また、リモート URL を指定する場合は、以下のように URL の最後に #<branch_name> を追加するこ
とで、使用する Git ブランチを指定できます。

3.3.1.3. ビルドストラテジーの検出

OpenShift Container Platform は、特定のファイルを検出し、使用するビルドストラテジーを自動的に
判別します。

新規アプリケーションの作成時に Jenkinsfile がソースリポジトリーのルート または指定された
コンテキストディレクトリーに存在する場合に、OpenShift Container Platform はパイプライ
ンビルドストラテジーを生成します。

注記

pipeline ビルドストラテジーは非推奨になりました。代わりに Red Hat
OpenShift Pipelines を使用することを検討してください。

新規アプリケーションの作成時に Dockerfile がソースリポジトリーのルートまたは指定された

$ oc new-app https://github.com/sclorg/cakephp-ex

$ oc new-app https://github.com/youruser/yourprivaterepo --source-secret=yoursecret

$ oc new-app https://github.com/sclorg/s2i-ruby-container.git \
 --context-dir=2.0/test/puma-test-app

$ oc new-app https://github.com/openshift/ruby-hello-world.git#beta4

第3章 アプリケーションの作成

29

新規アプリケーションの作成時に Dockerfile がソースリポジトリーのルートまたは指定された
コンテキストディレクトリーに存在する場合に、OpenShift Container Platform は docker ビル
ドストラテジーを生成します。

Jenkins ファイルも Dockerfile も検出されない場合、OpenShift Container Platform はソースビ
ルドストラテジーを生成します。

--strategy フラグを docker、pipeline、または source に設定して、自動的に検出されたビルドストラ
テジーを上書きします。

注記

oc コマンドを使用するには、ビルドソースを含むファイルがリモートの git リポジト
リーで利用可能である必要があります。すべてのソースビルドには、git remote -v を使
用する必要があります。

3.3.1.4. 言語の検出

ソースビルドストラテジーを使用する場合に、new-app はリポジトリーのルート または指定したコン
テキストディレクトリーに特定のファイルが存在するかどうかで、使用する言語ビルダーを判別しよう
とします。

表3.1 new-app が検出する言語

言語 ファイル

dotnet project.json、*.csproj

jee pom.xml

nodejs app.json、package.json

perl cpanfile、index.pl

php composer.json、index.php

python requirements.txt、setup.py

ruby Gemfile、Rakefile、config.ru

scala build.sbt

golang Godeps、main.go

言語の検出後、new-app は OpenShift Container Platform サーバーで、検出言語と一致して supports
アノテーションが指定されたイメージストリームタグか、または検出された言語の名前に一致するイ
メージストリームの有無を検索します。一致するものが見つからない場合には、new-app は Docker
Hub レジストリー で名前をベースにした検出言語と一致するイメージの検索を行います。

$ oc new-app /home/user/code/myapp --strategy=docker

OpenShift Container Platform 4.9 アプリケーションのビルド

30

https://registry.hub.docker.com

~ をセパレーターとして使用し、イメージ (イメージストリームまたはコンテナーの仕様) とリポジト
リーを指定して、ビルダーが特定のソースリポジトリーを使用するようにイメージを上書きすることが
できます。この方法を使用すると、ビルドストラテジーの検出および言語の検出は実行されない点に留
意してください。

たとえば、リモートリポジトリーのソースを使用して myproject/my-ruby イメージストリームを作成
する場合は、以下を実行します。

ローカルリポジトリーのソースを使用して openshift/ruby-20-centos7:latest コンテナーのイメージス
トリームを作成するには、以下を実行します。

注記

言語の検出では、リポジトリーのクローンを作成し、検査できるように Git クライアン
トをローカルにインストールする必要があります。Git が使用できない場合、<image>~
<repository> 構文を指定し、リポジトリーで使用するビルダーイメージを指定して言語
の検出手順を回避することができます。

-i <image> <repository> 呼び出しでは、アーティファクトのタイプを判別するために
new-app が repository のクローンを試行する必要があります。そのため、これは Git が
利用できない場合には失敗します。

-i <image> --code <repository> 呼び出しでは、image がソースコードのビルダーとし
て使用されるか、またはデータベースイメージの場合のように別個にデプロイされる必
要があるかどうかを判別するために、new-app が repository のクローンを作成する必
要があります。

3.3.2. イメージからアプリケーションを作成する方法

既存のイメージからアプリケーションのデプロイが可能です。イメージは、OpenShift Container
Platform サーバー内のイメージストリーム、指定したレジストリー内のイメージ、またはローカルの
Docker サーバー内のイメージから取得できます。

new-app コマンドは、渡された引数に指定されたイメージの種類を判断しようとします。ただし、イ
メージが、--docker-image 引数を使用したコンテナーイメージなのか、または -i|--image-stream 引数
を使用したイメージストリームなのかを、new-app に明示的に指示できます。

注記

ローカル Docker リポジトリーからイメージを指定した場合、同じイメージが OpenShift
Container Platform のクラスターノードでも利用できることを確認する必要がありま
す。

3.3.2.1. Docker Hub MySQL イメージ

たとえば、Docker Hub MySQL イメージからアプリケーションを作成するには、以下を実行します。

$ oc new-app myproject/my-ruby~https://github.com/openshift/ruby-hello-world.git

$ oc new-app openshift/ruby-20-centos7:latest~/home/user/code/my-ruby-app

$ oc new-app mysql

第3章 アプリケーションの作成

31

3.3.2.2. プライベートレジストリーのイメージ

プライベートのレジストリーのイメージを使用してアプリケーションを作成し、コンテナーイメージの
仕様全体を以下のように指定します。

3.3.2.3. 既存のイメージストリームおよびオプションのイメージストリームタグ

既存のイメージストリームおよび任意のイメージストリームタグでアプリケーションを作成します。

3.3.3. テンプレートからのアプリケーションの作成

テンプレート名を引数として指定することで、事前に保存したテンプレートまたはテンプレートファイ
ルからアプリケーションを作成することができます。たとえば、サンプルアプリケーションテンプレー
トを保存し、これを利用してアプリケーションを作成できます。

現在のプロジェクトのテンプレートライブラリーにアプリケーションテンプレートをアップロードしま
す。以下の例では、examples/sample-app/application-template-stibuild.json というファイルからア
プリケーションテンプレートをアップロードします。

次に、アプリケーションテンプレートを参照して新規アプリケーションを作成します。この例では、テ
ンプレート名は ruby-helloworld-sample です。

OpenShift Container Platform にテンプレートファイルを保存せずに、ローカルファイルシステムでテ
ンプレートファイルを参照して新規アプリケーションを作成するには、-f|--file 引数を使用します。以
下に例を示します。

3.3.3.1. テンプレートパラメーター

テンプレートをベースとするアプリケーションを作成する場合、以下の -p|--param 引数を使用してテ
ンプレートで定義したパラメーター値を設定します。

パラメーターをファイルに保存しておいて、--param-file を指定して、テンプレートをインスタンス化
する時にこのファイルを使用することができます。標準入力からパラメーターを読み込む必要がある場
合は、以下のように --param-file=- を使用します。以下は、helloworld.params というファイルの例で
す。

$ oc new-app myregistry:5000/example/myimage

$ oc new-app my-stream:v1

$ oc create -f examples/sample-app/application-template-stibuild.json

$ oc new-app ruby-helloworld-sample

$ oc new-app -f examples/sample-app/application-template-stibuild.json

$ oc new-app ruby-helloworld-sample \
 -p ADMIN_USERNAME=admin -p ADMIN_PASSWORD=mypassword

ADMIN_USERNAME=admin
ADMIN_PASSWORD=mypassword

OpenShift Container Platform 4.9 アプリケーションのビルド

32

テンプレートをインスタンス化する時に、ファイルのパラメーターを参照します。

3.3.4. アプリケーション作成の変更

new-app コマンドは、OpenShift Container Platform オブジェクトを生成します。このオブジェクトに
より、作成されるアプリケーションがビルドされ、デプロイされ、実行されます。通常、これらのオブ
ジェクトは現在のプロジェクトに作成され、これらのオブジェクトには入力ソースリポジトリーまたは
インプットイメージから派生する名前が割り当てられます。ただし、new-app でこの動作を変更する
ことができます。

表3.2 new-app 出力オブジェクト

オブジェクト 説明

BuildConfig BuildConfig オブジェクトは、コマンドラインで指定された各ソースリポジトリーに
作成されます。BuildConfig オブジェクトは使用するストラテジー、ソースのロケー
ション、およびビルドの出力ロケーションを指定します。

ImageStreams BuildConfig オブジェクトでは、通常 2 つのイメージストリームが作成されます。1 つ
目は、インプットイメージを表します。ソースビルドの場合、これはビルダーイメー
ジです。Docker ビルドでは、これは FROM イメージです。2 つ目は、アウトプット
イメージを表します。コンテナーイメージが new-app にインプットとして指定された
場合、このイメージに対してもイメージストリームが作成されます。

DeploymentCon
fig

DeploymentConfig オブジェクトは、ビルドの出力または指定されたイメージのい
ずれかをデプロイするために作成されます。new-app コマンドは、結果として生成さ
れる DeploymentConfig に含まれるコンテナーに指定されるすべての Docker ボ
リュームに emptyDir ボリュームを作成します。

Service new-app コマンドは、インプットイメージで公開ポートを検出しようと試みます。公
開されたポートで数値が最も低いものを使用して、そのポートを公開するサービスを
生成します。new-app 完了後に別のポートを公開するには、単純に oc expose コマ
ンドを使用し、追加のサービスを生成することができます。

その他 テンプレートのインスタンスを作成する際に、他のオブジェクトをテンプレートに基
づいて生成できます。

3.3.4.1. 環境変数の指定

テンプレート、ソースまたはイメージからアプリケーションを生成する場合、-e|--env 引数を使用し、
ランタイムに環境変数をアプリケーションコンテナーに渡すことができます。

変数は、--env-file 引数を使用してファイルから読み取ることもできます。以下は、postgresql.env と
いうファイルの例です。

$ oc new-app ruby-helloworld-sample --param-file=helloworld.params

$ oc new-app openshift/postgresql-92-centos7 \
 -e POSTGRESQL_USER=user \
 -e POSTGRESQL_DATABASE=db \
 -e POSTGRESQL_PASSWORD=password

第3章 アプリケーションの作成

33

ファイルから変数を読み取ります。

さらに --env-file=- を使用することで、標準入力で環境変数を指定することもできます。

注記

-e|--env または --env-file 引数で渡される環境変数では、new-app 処理の一環として作
成される BuildConfig オブジェクトは更新されません。

3.3.4.2. ビルド環境変数の指定

テンプレート、ソースまたはイメージからアプリケーションを生成する場合、--build-env 引数を使用
し、ランタイムに環境変数をビルドコンテナーに渡すことができます。

変数は、--build-env-file 引数を使用してファイルから読み取ることもできます。以下は、ruby.env と
いうファイルの例です。

ファイルから変数を読み取ります。

さらに --build-env-file=- を使用して、環境変数を標準入力で指定することもできます。

3.3.4.3. ラベルの指定

ソース、イメージ、またはテンプレートからアプリケーションを生成する場合、-l|--label 引数を使用
し、作成されたオブジェクトにラベルを追加できます。ラベルを使用すると、アプリケーションに関連
するオブジェクトを一括で選択、設定、削除することが簡単になります。

3.3.4.4. 作成前の出力の表示

new-app コマンドの実行に関するドライランを確認するには、yaml または json の値と共に -o|--

POSTGRESQL_USER=user
POSTGRESQL_DATABASE=db
POSTGRESQL_PASSWORD=password

$ oc new-app openshift/postgresql-92-centos7 --env-file=postgresql.env

$ cat postgresql.env | oc new-app openshift/postgresql-92-centos7 --env-file=-

$ oc new-app openshift/ruby-23-centos7 \
 --build-env HTTP_PROXY=http://myproxy.net:1337/ \
 --build-env GEM_HOME=~/.gem

HTTP_PROXY=http://myproxy.net:1337/
GEM_HOME=~/.gem

$ oc new-app openshift/ruby-23-centos7 --build-env-file=ruby.env

$ cat ruby.env | oc new-app openshift/ruby-23-centos7 --build-env-file=-

$ oc new-app https://github.com/openshift/ruby-hello-world -l name=hello-world

OpenShift Container Platform 4.9 アプリケーションのビルド

34

output 引数を使用できます。次にこの出力を使用して、作成されるオブジェクトのプレビューまたは
編集可能なファイルへのリダイレクトを実行できます。問題がなければ、oc create を使用して
OpenShift Container Platform オブジェクトを作成できます。

new-app アーティファクトをファイルに出力するには、以下を実行します。

ファイルを編集します。

ファイルを参照して新規アプリケーションを作成します。

3.3.4.5. 別名でのオブジェクトの作成

通常 new-app で作成されるオブジェクトの名前はソースリポジトリーまたは生成に使用されたイメー
ジに基づいて付けられます。コマンドに --name フラグを追加することで、生成されたオブジェクトの
名前を設定できます。

3.3.4.6. 別のプロジェクトでのオブジェクトの作成

通常 new-app は現在のプロジェクトにオブジェクトを作成します。ただし、-n|--namespace 引数を使
用して、別のプロジェクトにオブジェクトを作成することができます。

3.3.4.7. 複数のオブジェクトの作成

new-app コマンドは、複数のパラメーターを new-app に指定して複数のアプリケーションを作成でき
ます。コマンドラインで指定するラベルは、単一コマンドで作成されるすべてのオブジェクトに適用さ
れます。環境変数は、ソースまたはイメージから作成されたすべてのコンポーネントに適用されます。

ソースリポジトリーおよび Docker Hub イメージからアプリケーションを作成するには、以下を実行し
ます。

注記

ソースコードリポジトリーおよびビルダーイメージが別個の引数として指定されている
場合、new-app はソースコードリポジトリーのビルダーとしてそのビルダーイメージを
使用します。これを意図していない場合は、~ セパレーターを使用してソースに必要な
ビルダーイメージを指定します。

3.3.4.8. 単一 Pod でのイメージとソースのグループ化

$ oc new-app https://github.com/openshift/ruby-hello-world \
 -o yaml > myapp.yaml

$ vi myapp.yaml

$ oc create -f myapp.yaml

$ oc new-app https://github.com/openshift/ruby-hello-world --name=myapp

$ oc new-app https://github.com/openshift/ruby-hello-world -n myproject

$ oc new-app https://github.com/openshift/ruby-hello-world mysql

第3章 アプリケーションの作成

35

new-app コマンドにより、単一 Pod に複数のイメージをまとめてデプロイできます。グループ化する
イメージを指定するには + セパレーターを使用します。--group コマンドライン引数をグループ化する
必要のあるイメージを指定する際に使用することもできます。ソースリポジトリーからビルドされたイ
メージを別のイメージと共にグループ化するには、そのビルダーイメージをグループで指定します。

ソースからビルドされたイメージと外部のイメージをまとめてデプロイするには、以下を実行します。

3.3.4.9. イメージ、テンプレート、および他の入力の検索

イメージ、テンプレート、および oc new-app コマンドの他の入力内容を検索するには、--search フラ
グおよび --list フラグを追加します。たとえば、PHP を含むすべてのイメージまたはテンプレートを検
索するには、以下を実行します。

$ oc new-app ruby+mysql

$ oc new-app \
 ruby~https://github.com/openshift/ruby-hello-world \
 mysql \
 --group=ruby+mysql

$ oc new-app --search php

OpenShift Container Platform 4.9 アプリケーションのビルド

36

第4章 TOPOLOGY ビューを使用したアプリケーション設定の表示
Web コンソールの Developer パースペクティブにある Topology ビューは、プロジェクト内のすべて
のアプリケーション、それらのビルドステータスおよびアプリケーションに関連するコンポーネントと
サービスを視覚的に表示します。

4.1. 前提条件

Topology ビューでアプリケーションを表示し、それらと対話するには、以下を確認します。

Web コンソールにログインしている。

OpenShift Container Platform でアプリケーションおよび他のワークロードを作成するための
適切なプロジェクト内の ロールおよびパーミッション がある。

Developer パースペクティブを使用して OpenShift Container Platform でアプリケーションを
作成し、デプロイしている。

Developer パースペクティブ を使用している。

4.2. アプリケーションのトポロジーの表示

Developer パースペクティブの左側のナビゲーションパネルを使用すると、Topology ビューに移動で
きます。アプリケーションをデプロイしたら、Graph view に自動的に移動します。ここでは、アプリ
ケーション Pod のステータスの確認、パブリック URL でのアプリケーションへの迅速なアクセス、
ソースコードへのアクセスとその変更、最終ビルドのステータスの確認ができます。ズームインおよび
ズームアウトにより、特定のアプリケーションの詳細を表示することができます。

Topology ビューは、List ビューを使用してアプリケーションを監視するオプションも提供しま

す。List view アイコン () を使用してすべてのアプリケーションの一覧を表示し、 Graph view

アイコン () を使用してグラフビューに戻します。

以下を使用して、必要に応じてビューをカスタマイズできます。

Find by name フィールドを使用して、必要なコンポーネントを見つけます。検索結果は表示可
能な領域外に表示される可能性があります。その場合、画面の左下のツールバーで Fit to
Screen をクリックし、Topology ビューのサイズを変更して、すべてのコンポーネントを表示
します。

Display Options ドロップダウンリストを使用して、各種アプリケーショングループの
Topology ビューを設定します。選択可能なオプションは、プロジェクトにデプロイされるコ
ンポーネントのタイプによって異なります。

モード (Connectivity または Consumption)

Connectivity: トポロジー内の異なるノード間の接続をすべて表示する際に選択しま
す。

Consumption: トポロジー内のすべてのノードのリソース消費を表示する際に選択しま
す。

Expand グループ

第4章 TOPOLOGY ビューを使用したアプリケーション設定の表示

37

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/web_console/#web-console
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/authentication_and_authorization/#default-roles_using-rbac
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/web_console/#about-developer-perspective_web-console-overview

Virtual Machines: 仮想マシンを表示または非表示にするためにこれを切り替えます。

Application Groupings: アプリケーショングループとそれに関連するアラートの概要を
使用して、アプリケーショングループをカードにまとめるには、これをクリアします。

Helm Releases: 指定のリリースの概要を使用して、Helm リリースとしてデプロイされ
たコンポーネントをカードにまとめるには、これをクリアします。

Knative Services: 指定のコンポーネントの概要を使用して Knative Service コンポーネ
ントをカードにまとめるには、これをクリアします。

Operator Groupings: 指定のグループの概要を使用して Operator でデプロイされたコ
ンポーネントをカードにまとめるには、これをクリアします。

Pod 数 または ラベルに基づく Show の要素

Pod Count: コンポーネントアイコンでコンポーネントの Pod 数を表示するためにこれ
を選択します。

Labels: コンポーネントラベルを表示または非表示にするためにこれを選択します。

4.3. アプリケーションおよびコンポーネントとの対話

Web コンソールの Developer パースペクティブの Topology ビューは、アプリケーションおよびコン
ポーネントと対話するために以下のオプションを提供します。

Open URL () をクリックして、パブリック URL のルートで公開されるアプリケーションを
表示します。

Edit Source code をクリックして、ソースコードにアクセスし、これを変更します。

注記

この機能は、From Git、From Catalog、および From Dockerfile オプションを
使用してアプリケーションを作成する場合にのみ利用できます。

カーソルを Pod の左下のアイコンの上に置き、最新ビルドおよびそのステータスを確認しま
す。アプリケーションビルドのステータスは、New ()、Pending ()、Running (

)、Completed ()、Failed ()、および Canceled () と表示されます。

Pod のステータスまたはフェーズは、色で区別され、ツールチップで次のように表示されま
す。

Running (): Pod はノードにバインドされ、すべてのコンテナーが作成されます。1 つ以
上のコンテナーが実行中か、または起動または再起動のプロセスが実行中です。

Not Ready(): 複数のコンテナーを実行している Pod。すべてのコンテナーが準備状態
にある訳ではありません。

Warning(): Pod のコンテナーは終了されていますが、正常に終了しませんでした。一
部のコンテナーは、他の状態にある場合があります。

Failed(): Pod 内のすべてのコンテナーは終了しますが、少なくとも 1 つのコンテナーが
終了に失敗しました。つまり、コンテナーはゼロ以外のステータスで終了するか、または
システムによって終了された状態であるかのいずれかになります。

OpenShift Container Platform 4.9 アプリケーションのビルド

38

Pending(): Pod は Kubernetes クラスターによって受け入れられますが、1 つ以上のコ
ンテナーが設定されておらず、実行される準備が整っていません。これには、Pod がスケ
ジュールされるのを待機する時間や、ネットワーク経由でコンテナーイメージのダウン
ロードに費やされた時間が含まれます。

Succeeded(): Pod のすべてのコンテナーが正常に終了し、再起動されません。

Terminating(): Pod が削除されている場合に、一部の kubectl コマンドによって
Terminating と表示されます。Terminating ステータスは Pod フェーズのいずれにもあり
ません。Pod には正常な終了期間が付与されます。これはデフォルトで 30 秒に設定されま
す。

Unknown(): Pod の状態を取得できませんでした。このフェーズは、通常、Pod が実行
されているノードとの通信でエラーが発生するために生じます。

アプリケーションを作成し、イメージがデプロイされると、ステータスは Pending と表示され
ます。アプリケーションをビルドすると、Runningと表示されます。

図4.1 Application トポロジー

以下のように、異なるタイプのリソースオブジェクトのインジケーターと共に、アプリケー
ションリソース名が追加されます。

CJ: CronJob

D: Deployment

DC: DeploymentConfig

DS: DaemonSet

J: Job

P: Pod

SS: StatefulSet

第4章 TOPOLOGY ビューを使用したアプリケーション設定の表示

39

 (Knative): サーバーレスアプリケーション

注記

サーバーレスアプリケーションでは、Graph view での読み込みおよび表示
にしばらく時間がかかります。サーバーレスアプリケーションをデプロイす
ると、これは最初にサービスリソースを作成し、次にリビジョンを作成しま
す。続いて、これは Graph view にデプロイされ、表示されます。これが唯
一のワークロードの場合には、Add ページにリダイレクトされる可能性があ
ります。リビジョンがデプロイされると、サーバーレスアプリケーションは
Graph view ビューに表示されます。

4.4. アプリケーション POD のスケーリングおよびビルドとルートの確認

Topology ビューは、Overview パネルでデプロイ済みのコンポーネントの詳細を提供しま
す。Overview および Resources タブを使用して、アプリケーション Pod をスケーリングし、ビルド
のステータス、サービスおよびルートについて以下のように確認できます。

コンポーネントノードをクリックし、右側の Overview パネルを確認します。Overview タブ
を使用して、以下を実行します。

上下の矢印を使用して Pod をスケーリングし、アプリケーションのインスタンス数の増減
を手動で調整します。サーバーレスアプリケーションの場合、Pod は、チャネルのトラ
フィックに基づいてアイドルおよびスケールアップ時に自動的にゼロにスケーリングされ
ます。

アプリケーションの ラベル、アノテーション および ステータス を確認します。

Resources タブをクリックして、以下を実行します。

すべての Pod の一覧を確認し、それらのステータスを表示し、ログにアクセスし、Pod を
クリックして Pod の詳細を表示します。

ビルド、ステータスを確認し、ログにアクセスし、必要に応じて新規ビルドを開始しま
す。

コンポーネントによって使用されるサービスとルートを確認します。

サーバーレスアプリケーションの場合、Resources タブは、そのコンポーネントに使用される
リビジョン、ルート、および設定に関する情報を提供します。

4.5. コンポーネントの既存プロジェクトへの追加

手順

1. Add to Project () をクリックし、左側のナビゲーションペインまたは Ctrl+Spaceを
押します。

2. コンポーネントを検索し、Create または Enter を押してコンポーネントをアプリケーションに
追加し、トポロジーの Graph ビュー に表示します。

図4.2 クイック検索を使用したコンポーネントの追加

OpenShift Container Platform 4.9 アプリケーションのビルド

40

図4.2 クイック検索を使用したコンポーネントの追加

または、トポロジーのGraph viewを右クリックしてプロジェクトにコンポーネントを追加して、コンテ
キストメニューの Import from Git、Container Image、Database、From Catalog、Operator
Backed、Helm Charts、Samples またあ Upload JAR file オプションも使用できます。

図4.3 サービスを追加するコンテキストメニュー

第4章 TOPOLOGY ビューを使用したアプリケーション設定の表示

41

4.6. アプリケーション内での複数コンポーネントのグループ化

+Add ビューを使用して、複数のコンポーネントまたはサービスをプロジェクトに追加し、Topology
ビューを使用してアプリケーショングループ内のアプリケーションとリソースをグループ化できます。

前提条件

Developer パースペクティブを使用して OpenShift Container Platform に 2 つ以上のコンポー
ネントを作成し、デプロイしていること。

手順

サービスを既存のアプリケーショングループに追加するには、Shift+ を既存のアプリケーショ
ングループに追加します。コンポーネントをドラッグし、これをアプリケーショングループに
追加すると、必要なラベルがコンポーネントに追加されます。

図4.4 アプリケーションのグループ化

または、以下のようにコンポーネントをアプリケーションに追加することもできます。

1. サービス Pod をクリックし、右側の Overview パネルを確認します。

2. Actions ドロップダウンメニューをクリックし、Edit Application Grouping を選択します。

3. Edit Application Grouping ダイアログボックスで、Application ドロップダウンリストをク
リックし、適切なアプリケーショングループを選択します。

4. Save をクリックしてサービスをアプリケーショングループに追加します。

アプリケーショングループからコンポーネントを削除するには、コンポーネントを選択し、Shift+ ド
ラッグでこれをアプリケーショングループからドラッグします。

OpenShift Container Platform 4.9 アプリケーションのビルド

42

4.7. サービスのアプリケーションへの追加

アプリケーションにサービスを追加するには、トポロジー Graph view のコンテキストメニューで+Add
アクションを使用します。

注記

コンテキストメニュー以外に、サイドバーを使用するか、またはアプリケーショング
ループから矢印の上にマウスをかざしてドラッグしてサービスを追加できます。

手順

1. トポロジー Graph view でアプリケーショングループを右クリックし、コンテキストメニュー
を表示します。

図4.5 リソースコンテキストメニューの追加

2. Add to Application を使用して、From Git、Container Image、From Dockerfile、From
Devfile、Upload JAR file、Event Source、Channel、または Broker など、アプリケーション
グループにサービスを追加する手法を選択します。

3. 選択した手法のフォームに入力して、Create をクリックします。たとえば、Git リポジトリー

第4章 TOPOLOGY ビューを使用したアプリケーション設定の表示

43

3. 選択した手法のフォームに入力して、Create をクリックします。たとえば、Git リポジトリー
のソースコードに基づいてサービスを追加するには、From Git の手法を選択し、Import from
Git フォームに入力して、Create をクリックします。

4.8. アプリケーションからのサービスの削除

トポロジー Graph view のコンテキストメニューでアプリケーションからサービスを削除します。

手順

1. トポロジー Graph view でアプリケーショングループのサービスを右クリックし、コンテキス
トメニューを表示します。

2. Delete Deployment を選択してサービスを削除します。

図4.6 デプロイメントオプションの削除

OpenShift Container Platform 4.9 アプリケーションのビルド

44

図4.6 デプロイメントオプションの削除

4.9. TOPOLOGY ビューに使用するラベルとアノテーション

Topology ビューは、以下のラベルおよびアノテーションを使用します。

ノードに表示されるアイコン

ノードのアイコンは、最初に app.openshift.io/runtime ラベルを使用してから
app.kubernetes.io/name ラベルを使用して一致するアイコンを検索して定義されます。このマッチ
ングは、事前定義されたアイコンセットを使用して行われます。

ソースコードエディターまたはソースへのリンク

第4章 TOPOLOGY ビューを使用したアプリケーション設定の表示

45

app.openshift.io/vcs-uri アノテーションは、ソースコードエディターへのリンクを作成するために
使用されます。

ノードコネクター

app.openshift.io/connects-to アノテーションは、ノードに接続するために使用されます。

アプリケーションのグループ化

app.kubernetes.io/part-of=<appname> ラベルは、アプリケーション、サービス、およびコンポー
ネントをグループ化するために使用されます。

OpenShift Container Platform アプリケーションで使用する必要のあるラベルとアノテーションの詳細
については、Guidelines for labels and annotations for OpenShift applications を参照してください。

4.10. 関連情報

Git からアプリケーションを作成する方法は、Git のコードベースのインポートおよびアプリ
ケーションの作成を参照してください。

開発者パースペクティブを使用したアプリケーションのサービスへの接続を参照してくださ
い。

OpenShift Container Platform 4.9 アプリケーションのビルド

46

https://github.com/redhat-developer/app-labels/blob/master/labels-annotation-for-openshift.adoc
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-importing-codebase-from-git-to-create-application_odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-connecting-an-application-to-a-service-using-the-developer-perspective

第5章 アプリケーションのサービスへの接続

5.1. SERVICE BINDING OPERATOR のリリースノート

サービスバインディング Operator は、サービスバインディングのコントローラーおよび付随のカスタ
ムリソース定義 (CRD) で設定されます。サービスバインディング Operator は、ワークロードおよび
バッキングサービスのデータプレーンを管理します。サービスバインディングコントローラーは、バッ
キングサービスのコントロールプレーン提供のデータを読み取ります。次に、ServiceBinding リソー
スで指定されるルールに従って、このデータをワークロードに追加します。

サービスバインディング Operator を使用すると、以下を行うことができます。

ワークロードを Operator 管理のバッキングサービスと共にバインドします。

バインディングデータの設定を自動化します。

サービスオペレーターは簡単にサービスへのアクセスのプロビジョニングや管理が行えます。

クラスター環境の不一致をなくす一貫性がある宣言型サービスバインディングメソッドを使用
し、開発ライフサイクルを充実させます。

5.1.1. 多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り
組んでいます。まずは、マスター (master)、スレーブ (slave)、ブラックリスト (blacklist)、ホワイトリ
スト (whitelist) の 4 つの用語の置き換えから始めます。この取り組みは膨大な作業を要するため、今後
の複数のリリースで段階的に用語の置き換えを実施して参ります。詳細は、弊社の CTO、Chris Wright
のメッセージ を参照してください。

5.1.2. Service Binding Operator 1.0.1 のリリースノート

サービスバインディング Operator が OpenShift Container Platform 4.7、4.8 および 4.9 で利用可能に
なりました。

サービスバインディング Operator 1.0.1 は、以下で実行されている OpenShift Container Platform 4.9 以
降をサポートします。

IBM Power Systems

IBM Z および LinuxONE

サービスバインディング Operator 1.0.1 のカスタムリソース定義 (CRD) は以下の API をサポートしま
す。

Service Binding: binding.operators.coreos.com API グループ

Service Binding (Spec API テクノロジープレビュー): servicebinding.io API グループ

重要

第5章 アプリケーションのサービスへの接続

47

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

重要

servicebinding.io API グループを備えた Service Binding (Spec API テクノロ
ジープレビュー) は、テクノロジープレビュー機能のみでの提供です。テクノロ
ジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA)
の対象外であり、機能的に完全ではないことがあります。Red Hat は実稼働環境
でこれらを使用することを推奨していません。テクノロジープレビューの機能
は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行いフィー
ドバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノ
ロジープレビュー機能のサポート範囲 を参照してください。

5.1.2.1. サポート表

現在、今回のリリースに含まれる機能にはテクノロジープレビューのものがあります。これらの実験的
機能は、実稼働環境での使用を目的としていません。

テクノロジープレビュー機能のサポート範囲

以下の表では、機能は以下のステータスでマークされています。

TP: テクノロジープレビュー機能

GA: 一般公開機能

これらの機能に関しては、Red Hat カスタマーポータルの以下のサポート範囲を参照してください。

表5.1 サポート表

機能 サービスバインディング Operator 1.0.1

binding.operators.coreos.com API グループ GA

ServiceBinding.io API グループ TP

5.1.2.2. 修正された問題

今回の更新以前は、postgresql.k8s.enterpriesedb.io/v1 API の Cluster カスタムリソース
(CR) からデータ値をバインドすると、CR の .metadata.name フィールドから host バイン
ディング値が収集されていました。収集されたバインディング値は間違ったホスト名であり、
正しいホスト名は .status.writeService フィールドで確認できます。今回の更新により、サー
ビスバインディング Operator がバッキングサービス CR からバインディングデータ値を公開す
るために使用するアノテーションが変更され、.status.writeService フィールドから host バイ
ンディング値を収集するようになりました。サービスバインディング Operator はこれらの変更
されたアノテーションを使用して、host および provider のバインディングに正しいホスト名
を反映します。APPSVC-1040

今回の更新以前は、postgres-operator.crunchydata.com/v1beta1 API の PostgresCluster
CR をバインドする際に、バインディングデータ値にデータベース証明書の値が含まれませんで
した。その結果、アプリケーションはデータベースへの接続に失敗しました。今回の更新によ
り、サービスバインディング Operator がバッキングサービス CR からバインディングデータを
公開するために使用するアノテーションへの変更に、データベース証明書が含まれるようにな
りました。サービスバインディング Operator はこれらの変更されたアノテーションを使用し
て、正しい ca.crt、tls.crt、および tls.key 証明書ファイルを反映します。APPSVC-1045

OpenShift Container Platform 4.9 アプリケーションのビルド

48

https://access.redhat.com/ja/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview
https://issues.redhat.com/browse/APPSVC-1040
https://issues.redhat.com/browse/APPSVC-1045

今回の更新以前は、pxc.percona.com API の PerconaXtraDBCluster カスタムリソース (CR)
をバインドする場合、バインディングデータ値に port および database の値が含まれませんで
した。アプリケーションがデータベースサービスに正常に接続するには、これらのバインディ
ング値とすでに反映されている他の値が必要です。今回の更新により、サービスバインディン
グ Operator がバッキングサービス CR からバインディングデータ値を公開するために使用する
アノテーションが変更され、追加の por および database バインディング値を反映するように
なりました。サービスバインディング Operator はこれらの変更されたアノテーションを使用し
て、アプリケーションがデータベースサービスに正常に接続するために使用できるバインディ
ング値の完全なセットを反映します。APPSVC-1073

5.1.2.3. 既知の問題

現時点で、単一の namespace インストールモードでサービスバインディング Operator をイン
ストールする際に、適切な namespace スコープのロールベースアクセス制御 (RBAC) ルールが
ないため、サービスバインディング Operator が自動的に検出およびバインドできる既知の
Operator がサポートするいくつかのサービスへのアプリケーションのバインドが正常に行われ
ません。さらに、以下のエラーメッセージが生成されます。

エラーメッセージの例

`postgresclusters.postgres-operator.crunchydata.com "hippo" is forbidden:
 User "system:serviceaccount:my-petclinic:service-binding-operator" cannot
 get resource "postgresclusters" in API group "postgres-operator.crunchydata.com"
 in the namespace "my-petclinic"`

回避策 1: all namespaces インストールモードでサービスバインディング Operator をインス
トールします。その結果、適切なクラスタースコープの RBAC ルールが存在し、バインディン
グが正常に実行されるようになります。

回避策 2: サービスバインディング Operator を all namespaces インストールモードでインス
トールできない場合は、サービスバインディング Operator がインストールされている
namespace に以下のロールバインディングをインストールします。

例:Crunchy Postgres Operator のロールバインディング

APPSVC-1062

5.1.3. サービスバインディング Operator 1.0 のリリースノート

サービスバインディング Operator が OpenShift Container Platform 4.7、4.8 および 4.9 で利用可能に
なりました。

サービスバインディング Operator 1.0 のカスタムリソース定義 (CRD) は以下の API をサポートしま

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: service-binding-crunchy-postgres-viewer
subjects:
 - kind: ServiceAccount
 name: service-binding-operator
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: service-binding-crunchy-postgres-viewer-role

第5章 アプリケーションのサービスへの接続

49

https://issues.redhat.com/browse/APPSVC-1073
https://issues.redhat.com/browse/APPSVC-1062

サービスバインディング Operator 1.0 のカスタムリソース定義 (CRD) は以下の API をサポートしま
す。

Service Binding: binding.operators.coreos.com API グループ

Service Binding (Spec API テクノロジープレビュー): servicebinding.io API グループ

重要

servicebinding.io API グループを備えた Service Binding (Spec API テクノロ
ジープレビュー) は、テクノロジープレビュー機能のみでの提供です。テクノロ
ジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA)
の対象外であり、機能的に完全ではないことがあります。Red Hat は実稼働環境
でこれらを使用することを推奨していません。テクノロジープレビューの機能
は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行いフィー
ドバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノ
ロジープレビュー機能のサポート範囲 を参照してください。

5.1.3.1. サポート表

現在、今回のリリースに含まれる機能にはテクノロジープレビューのものがあります。これらの実験的
機能は、実稼働環境での使用を目的としていません。

テクノロジープレビュー機能のサポート範囲

以下の表では、機能は以下のステータスでマークされています。

TP: テクノロジープレビュー機能

GA: 一般公開機能

これらの機能に関しては、Red Hat カスタマーポータルの以下のサポート範囲を参照してください。

表5.2 サポート表

機能 サービスバインディング Operator 1.0

binding.operators.coreos.com API グループ GA

ServiceBinding.io API グループ TP

5.1.3.2. 新機能

サービスバインディング Operator 1.0 は、以下で実行されている OpenShift Container Platform 4.9 以
降をサポートします。

IBM Power Systems

IBM Z および LinuxONE

このセクションでは、サービスバインディング Operator 1.0 の主な新機能について説明します。

サービスからのバインディングデータの公開

OpenShift Container Platform 4.9 アプリケーションのビルド

50

https://access.redhat.com/ja/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview

CRD、カスタムリソース (CR)、またはリソースに存在するアノテーションをベースにす
る。

Operator Lifecycle Manager(OLM) 記述子にある記述子をベースにする。

プロビジョニングされたサービスのサポート

ワークロードのプロジェクション

ボリュームマウントを使用してバインディングデータをファイルとしてプロジェクション
する。

バインディングデータを環境変数としてプロジェクションする。

サービスバインディングオプション

ワークロード namespace とは異なる namespace でバッキングサービスをバインドする。

バインディングデータを特定のコンテナーワークロードにプロジェクションする。

バッキングサービス CR が所有するリソースからバインディングデータを自動的に検出す
る。

公開されるバインディングデータからカスタムバインディングデータを作成する。

PodSpec 以外のワークロードリソースをサポートする。

セキュリティー

ロールベースアクセス制御 (RBAC) をサポートする。

5.1.4. 関連情報

サービスバインディング Operator

5.2. サービスバインディング OPERATOR

アプリケーション開発者は、ワークロードをビルドして接続するバッキングサービスへのアクセスが必
要です。ワークロードをバッキングサービスに接続するのは、提案するシークレットにアクセスして
ワークロードで消費する方法がサービスプロバイダーごとに異なるので、困難です。さらにワークロー
ドのバインドおよびサービスのバッキングを手動で設定して保守する場合には、プロセスが煩雑で効率
が悪く、エラーが発生しやすくなります。

サービスバインディング Operator を使用すると、アプリケーション開発者は、手作業でバインディン
グ接続を設定する手順なしに、オペレーターが管理するバッキングサービスとワークロードを簡単にバ
インドできます。

5.2.1. サービスバインディングの用語

このセクションでは、サービスバインディングで使用される基本用語の概要を説明します。

サービスバイ
ンディング

サービスに関する情報をワークロードに提供するアクションの表現。たとえば、Java アプリ
ケーションと必要なデータベース間で認証情報の交換を確立することなどです。

第5章 アプリケーションのサービスへの接続

51

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#understanding-service-binding-operator

バッキング
サービス

アプリケーションが通常の操作の一部としてネットワーク経由で使用するサービスまたはソ
フトウェア。たとえば、データベース、メッセージ、REST エンドポイント、イベントスト
リーム、アプリケーション、アプリケーションパフォーマンスモニター (APM)、またはハー
ドウェアセキュリティーモジュール (HSM) が含まれます。

ワークロード
(アプリケー
ション)

コンテナー内で実行されているプロセス。たとえば、Sprsh Boot アプリケーション、
NodeJS Express アプリケーション、Ruby on Rails アプリケーションなどが含まれます。

バインディン
グデータ

クラスター内で他のリソースの動作を設定するのに使用するサービスに関する情報。たとえ
ば、認証情報、接続の詳細、ボリュームマウント、またはシークレットが含まれます。

バインディン
グ接続

バインド可能なバッキングサービスとそのバッキングサービスを必要とするアプリケーショ
ンなど、接続されたコンポーネント間の相互作用を確立する接続。

5.2.2. サービスバインディング Operator

サービスバインディング Operator は、サービスバインディングのコントローラーおよび付随のカスタ
ムリソース定義 (CRD) で設定されます。サービスバインディング Operator は、ワークロードおよび
バッキングサービスのデータプレーンを管理します。サービスバインディングコントローラーは、バッ
キングサービスのコントロールプレーン提供のデータを読み取ります。次に、ServiceBinding リソー
スで指定されるルールに従って、このデータをワークロードに追加します。

これにより、サービスバインディング Operator は、ワークロードとのバインディングデータを自動的
に収集して共有することで、サービスはバッキングサービスまたは外部サービスを使用できます。この
プロセスには、バッキングサービスをバインド可能にして、ワークロードとサービスをバインドするこ
とが含まれます。

5.2.2.1. Operator の管理するサービスをバインド可能にする

サービスをバインド可能にするには、Operator プロバイダーは、ワークロードに必要なバインドデー
タを公開して Operator が提供するサービスとバインドする必要があります。バインディングデータ
は、バッキングサービスを管理する Operator の CRD で、アノテーションか、記述子として指定できま
す。

5.2.2.2. ワークロードをバッキングサービスとバインドする

サービスバインディング Operator を使用して、アプリケーション開発者はバインディング接続を確立
する意思を宣言する必要があります。バッキングサービスを参照する S サービスバインディング CR を
作成する必要があります。このアクションにより、サービスバインディング Operator がトリガーさ
れ、公開されたバインディングデータがワークロードにプロジェクションされます。サービスバイン
ディング Operator は、宣言された意図を受けとり、バッキングサービスとワークロードをバインドし
ます。

サービスバインディング Operator の CRD は以下の API をサポートします。

Service Binding: binding.operators.coreos.com API グループ

Service Binding (Spec API テクノロジープレビュー): servicebinding.io API グループ

重要

OpenShift Container Platform 4.9 アプリケーションのビルド

52

重要

servicebinding.io API グループを備えた Service Binding (Spec API テクノロ
ジープレビュー) は、テクノロジープレビュー機能のみでの提供です。テクノロ
ジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA)
の対象外であり、機能的に完全ではないことがあります。Red Hat は実稼働環境
でこれらを使用することを推奨していません。テクノロジープレビューの機能
は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行いフィー
ドバックを提供していただくことを目的としています。Red Hat のテクノロジー
プレビュー機能のサポート範囲に関する詳細は、テクノロジープレビュー機能の
サポート範囲 を参照してください。

サービスバインディング Operator を使用すると、以下を行うことができます。

ワークロードを Operator 管理のバッキングサービスとバインドします。

バインディングデータの設定を自動化します。

サービスオペレーターは簡単にサービスへのアクセスのプロビジョニングや管理が行えます。

クラスター環境の不一致をなくす一貫性がある宣言型サービスバインディングメソッドを使用
し、開発ライフサイクルを充実させます。

5.2.3. 主な特長

サービスからのバインディングデータの公開

CRD、カスタムリソース (CR)、またはリソースに存在するアノテーションをベースにす
る。

Operator Lifecycle Manager(OLM) 記述子にある記述子をベースにする。

ワークロードのプロジェクション

ボリュームマウントを使用してバインディングデータをファイルとしてプロジェクション
する。

バインディングデータを環境変数としてプロジェクションする。

サービスバインディングオプション

ワークロード namespace とは異なる namespace でバッキングサービスをバインドする。

バインディングデータを特定のコンテナーワークロードにプロジェクションする。

バッキングサービス CR が所有するリソースからバインディングデータを自動的に検出す
る。

公開されるバインディングデータからカスタムバインディングデータを作成する。

PodSpec 以外のワークロードリソースをサポートする。

セキュリティー

ロールベースアクセス制御 (RBAC) をサポートする。

5.2.4. 関連情報

第5章 アプリケーションのサービスへの接続

53

https://access.redhat.com/support/offerings/techpreview/

サービスバインディングの使用

5.3. サービスバインディング OPERATOR のインストール

以下では、クラスター管理者を対象に、サービスバインディング Operator を OpenShift Container
Platform クラスターにインストールするプロセスについて説明します。

OpenShift Container Platform 4.7 以降では サービスバインディング Operator をインストールできま
す。

5.3.1. Web コンソールを使用したサービスバインディング Operator のインストール

OpenShift Container Platform OperatorHub を使用してサービスバインディング Operator をインス
トールできます。サービスバインディング Operator をインストールする時に、サービスバインディン
グの設定に必要なカスタムリソース (CR) は Operator と共に自動的にインストールされます。

前提条件
cluster-admin パーミッションを持つアカウントを使用して OpenShift Container Platform クラスター
にアクセスできる。

手順

1. Web コンソールの Administrator パースペクティブで、Operators → OperatorHub に移動し
ます。

2. Filter by keywordボックスを使用して、カタログで Service Binding Operator を検索しま
す。Service Binding Operator タイルをクリックします。

3. Service Binding Operator ページで Operator についての簡単な説明を参照してくださ
い。Install をクリックします。

4. Install Operator ページで以下を行います。

a. Installation Mode について All namespaces on the cluster (default) を選択します。この
モードは、デフォルトの openshift-operators namespace で Operator をインストール
し、Operator がクラスターのすべての namespace を監視し、これらの namespace に対し
て利用可能になるようにします。

b. Approval Strategy について Automatic を選択します。これにより、Operator への今後の
アップグレードは Operator Lifecycle Manager (OLM) によって自動的に処理されま
す。Manual 承認ストラテジーを選択すると、OLM は更新要求を作成します。クラスター
管理者は、Operator を新規バージョンに更新できるように OLM 更新要求を手動で承認す
る必要があります。

c. Update Channel を選択します。

デフォルトでは、stable チャネルでは、サービスバインディング Operator の安定した
最新版のリリースをインストールできます。

5. Install をクリックします。

注記

Operator は openshift-operators namespace に自動的にインストールされま
す。

6. Installed operator - ready for use ペインで、View Operator をクリックします。Operator が

OpenShift Container Platform 4.9 アプリケーションのビルド

54

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#getting-started-with-service-binding

6. Installed operator - ready for use ペインで、View Operator をクリックします。Operator が
Installed Operators ページに一覧表示されます。

7. Status が Succeeded に設定されており、サービスバインディング Operator のインストール
が正常に行われたことを確認します。

5.3.2. 関連情報

サービスバインディングの使用

5.4. サービスバインディングの使用

サービスバインディング Operator は、ワークロードおよびバッキングサービスのデータプレーンを管
理します。本ガイドでは、データベースインスタンスの作成、アプリケーションのデプロイ、サービス
バインディング Operator を使用してアプリケーションとデータベースサービス間のバインディング接
続の作成に役立つ例を使用してその手順を説明します。

前提条件

cluster-admin パーミッションを持つアカウントを使用して OpenShift Container Platform ク
ラスターにアクセスできる。

oc CLI がインストールされている。

OperatorHub からサービスバインディング Operator をインストールしている。

v5 Update チャネルを使用して、OperatorHub から Kubernetes Operator の Cruny Postgres を
インストールしている。また、インストールした Operator が、my-petclinic namespace な
ど、適切な namespace で利用できる。

注記

oc create namespace my-petclinic コマンドを使用して namespace を作成で
きます。

5.4.1. PostgreSQL データベースインスタンスの作成

PostgreSQL データベースインスタンスを作成するには、PostgresCluster カスタムリソース (CR) を
作成し、データベースを設定する必要があります。

手順

1. シェルで以下のコマンドを実行して、my-petclinic namespace に PostgresCluster CR を作成
します。

$ oc apply -n my-petclinic -f - << EOD

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
spec:
 image: registry.developers.crunchydata.com/crunchydata/crunchy-postgres-ha:centos8-
13.4-0
 postgresVersion: 13

第5章 アプリケーションのサービスへの接続

55

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#getting-started-with-service-binding

この PostgresCluster CR に追加されたアノテーションは、サービスバインディング接続を有
効にし、Operator の調整をトリガーします。

この出力では、データベースインスタンスが作成されていることを検証します。

出力例

2. データベースインスタンスを作成したら、my-petclinic namespace のすべての Pod が実行さ
れていることを確認します。

出力 (表示に数分かかる) で、データベースが作成され設定されていることを検証できます。

出力例

 instances:
 - name: instance1
 dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 backups:
 pgbackrest:
 image: registry.developers.crunchydata.com/crunchydata/crunchy-pgbackrest:centos8-
2.33-2
 repos:
 - name: repo1
 volume:
 volumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 - name: repo2
 volume:
 volumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 proxy:
 pgBouncer:
 image: registry.developers.crunchydata.com/crunchydata/crunchy-pgbouncer:centos8-
1.15-2
EOD

postgrescluster.postgres-operator.crunchydata.com/hippo created

$ oc get pods -n my-petclinic

NAME READY STATUS RESTARTS AGE
hippo-backup-nqjg-2rq94 1/1 Running 0 35s

OpenShift Container Platform 4.9 アプリケーションのビルド

56

データベースを設定したら、サンプルアプリケーションをデプロイしてデータベースサービス
に接続できます。

5.4.2. Spring PetClinic サンプルアプリケーションのデプロイ

OpenShift Container Platform クラスターに、Spring PetClinic サンプルアプリケーションをデプロイす
るには、デプロイメント設定を使用し、アプリケーションをテストできるようにローカル環境を設定す
る必要があります。

手順

1. シェルで以下のコマンドを実行して、spring-petclinic アプリケーションを PostgresCluster
カスタムリソース (CR) でデプロイします。

hippo-instance1-nw92-0 3/3 Running 0 112s
hippo-pgbouncer-57b98f4476-znsk5 2/2 Running 0 112s
hippo-repo-host-0 1/1 Running 0 112s

$ oc apply -n my-petclinic -f - << EOD

apiVersion: apps/v1
kind: Deployment
metadata:
 name: spring-petclinic
 labels:
 app: spring-petclinic
spec:
 replicas: 1
 selector:
 matchLabels:
 app: spring-petclinic
 template:
 metadata:
 labels:
 app: spring-petclinic
 spec:
 containers:
 - name: app
 image: quay.io/service-binding/spring-petclinic:latest
 imagePullPolicy: Always
 env:
 - name: SPRING_PROFILES_ACTIVE
 value: postgres
 ports:
 - name: http
 containerPort: 8080

apiVersion: v1
kind: Service
metadata:
 labels:
 app: spring-petclinic
 name: spring-petclinic
spec:
 type: NodePort

第5章 アプリケーションのサービスへの接続

57

この出力では、Spring PetClinic サンプルアプリケーションが作成され、デプロイされているこ
とを確認します。

出力例

注記

Web コンソールの Developer パースペクティブでコンテナーイメージ を使用し
てアプリケーションをデプロイする場合は、Advanced options の Deployment
セクションで以下の環境変数を入力する必要があります。

Name: SPRING_PROFILES_ACTIVE

Value: postgres

2. 以下のコマンドを実行して、アプリケーションがまだデータベースサービスに接続されていな
いことを確認します。

出力にCrashLoopBackOff ステータスが表示されるまで、数分かかります。

出力例

この段階では、Pod は起動に失敗します。アプリケーションとの対話を試みると、エラーが返
されます。

サービスバインディング Operator を使用すると、アプリケーションをデータベースサービスに接続で
きるようになります。

5.4.3. Spring PetClinic サンプルアプリケーションを PostgreSQL データベースサービ
スに接続します。

サンプルアプリ ks−本をデータベースサービスに接続するには、サービスバインディング Operator が
バインディングデータをアプリケーションにプロジェクションするようにトリガーする
ServiceBinding カスタムリソース (CR) を作成する必要があります。

手順

 ports:
 - port: 80
 protocol: TCP
 targetPort: 8080
 selector:
 app: spring-petclinic
EOD

deployment.apps/spring-petclinic created
service/spring-petclinic created

$ oc get pods -n my-petclinic

NAME READY STATUS RESTARTS AGE
spring-petclinic-5b4c7999d4-wzdtz 0/1 CrashLoopBackOff 4 (13s ago) 2m25s

OpenShift Container Platform 4.9 アプリケーションのビルド

58

1

2

3

1. ServiceBinding CR を作成し、バインディングデータにパッチを適用します。

サービスリソースの一覧を指定します。

データベースの CR。

Deployment または PodSpec が組み込まれた同様のリソースを参照するサンプルアプリ
ケーション。

この出力では、バインディングデータをサンプルアプリケーションにプロジェクションする
ServiceBinding CR が作成されていることを確認します。

出力例

2. サービスバインディングのリクエストが正常に完了したことを確認します。

出力例

デフォルトでは、データベースサービスのバインディングデータからの値は、サンプルアプリ
ケーションを実行するワークロードコンテナーにファイルとしてプロジェクションされます。
たとえば、Secret リソースからの値はすべて bindings/spring-petclinic-pgcluster ディレクト
リーに反映されます。

注記

$ oc apply -n my-petclinic -f - << EOD

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-pgcluster
spec:
 services: 1
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster 2
 name: hippo
 application: 3
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments
EOD

servicebinding.binding.operators.coreos.com/spring-petclinic created

$ oc get servicebindings -n my-petclinic

NAME READY REASON AGE
spring-petclinic-pgcluster True ApplicationsBound 7s

第5章 アプリケーションのサービスへの接続

59

注記

オプションとして、ディレクトリーの内容を出力して、アプリケーションのファ
イルに反映されたバインディングデータが含まれることを確認することもできま
す。

出力例: シークレットリソースからのすべての値

3. アプリケーションポートからポート転送を設定し、ローカル環境からサンプルアプリケーショ
ンにアクセスします。

出力例

4. http://localhost:8080/petclinic にアクセスします。
localhost:8080 で Spring PetClinic サンプルアプリケーションにリモートでアクセスできるよ
うになり、アプリケーションがデータベースサービスに接続されていることを確認できます。

5.4.4. 関連情報

サービスバインディング Operator のインストール

Developer パースペクティブを使用したアプリケーションの作成

カスタムリソース定義からのリソース管理

バインド可能な既知の Operator

5.5. IBM POWER SYSTEMS、IBM Z、および LINUXONE でのサービスバ
インディングの使用

サービスバインディング Operator は、ワークロードおよびバッキングサービスのデータプレーンを管
理します。本ガイドでは、データベースインスタンスの作成、アプリケーションのデプロイ、サービス
バインディング Operator を使用してアプリケーションとデータベースサービス間のバインディング接
続の作成に役立つ例を使用してその手順を説明します。

前提条件

cluster-admin パーミッションを持つアカウントを使用して OpenShift Container Platform ク
ラスターにアクセスできる。

$ for i in username password host port type; do oc exec -it deploy/spring-
petclinic -n my-petclinic -- /bin/bash -c 'cd /tmp; find /bindings/*/'$i' -exec echo
-n {}:" " \; -exec cat {} \;'; echo; done

/bindings/spring-petclinic-pgcluster/username: hippo
/bindings/spring-petclinic-pgcluster/password: KXKF{nAI,I-J6zLt:W+FKnze
/bindings/spring-petclinic-pgcluster/host: hippo-primary.my-petclinic.svc
/bindings/spring-petclinic-pgcluster/port: 5432
/bindings/spring-petclinic-pgcluster/type: postgresql

$ oc port-forward --address 0.0.0.0 svc/spring-petclinic 8080:80 -n my-petclinic

Forwarding from 0.0.0.0:8080 -> 8080
Handling connection for 8080

OpenShift Container Platform 4.9 アプリケーションのビルド

60

http://localhost:8080/petclinic
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#installing-sbo
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/operators/#managing-resources-from-crds
https://github.com/redhat-developer/service-binding-operator#known-bindable-operators

cluster-admin パーミッションを持つアカウントを使用して OpenShift Container Platform ク
ラスターにアクセスできる。

oc CLI がインストールされている。

OperatorHub からサービスバインディング Operator をインストールしている。

5.5.1. PostgreSQL Operator のデプロイ

手順

1. my-petclinic namespace に Dev4Devs PostgreSQL Operator をデプロイするには、シェルで
以下のコマンドを実行します。

$ oc apply -f - << EOD

apiVersion: v1
kind: Namespace
metadata:
 name: my-petclinic

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: postgres-operator-group
 namespace: my-petclinic

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: ibm-multiarch-catalog
 namespace: openshift-marketplace
spec:
 sourceType: grpc
 image: quay.io/ibm/operator-registry-<architecture> 1
 imagePullPolicy: IfNotPresent
 displayName: ibm-multiarch-catalog
 updateStrategy:
 registryPoll:
 interval: 30m

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: postgresql-operator-dev4devs-com
 namespace: openshift-operators
spec:
 channel: alpha
 installPlanApproval: Automatic
 name: postgresql-operator-dev4devs-com
 source: ibm-multiarch-catalog
 sourceNamespace: openshift-marketplace

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

第5章 アプリケーションのサービスへの接続

61

1 Operator イメージ

IBM Power:quay.io/ibm/operator-registry-ppc64le:release-4.9

For IBM Z および LinuxONE: quay.io/ibm/operator-registry-s390x:release-4.8

検証

1. Operator のインストール後に、openshift-operators namespace の Operator サブスクリプ
ションを一覧表示します。

出力例

5.5.2. PostgreSQL データベースインスタンスの作成

PostgreSQL データベースインスタンスを作成するには、Database カスタムリソース (CR) を作成し、
データベースを設定する必要があります。

手順

1. シェルで以下のコマンドを実行して、my-petclinic namespace に Database CR を作成しま
す。

 name: database-view
 labels:
 servicebinding.io/controller: "true"
rules:
 - apiGroups:
 - postgresql.dev4devs.com
 resources:
 - databases
 verbs:
 - get
 - list
EOD

$ oc get subs -n openshift-operators

NAME PACKAGE SOURCE CHANNEL
postgresql-operator-dev4devs-com postgresql-operator-dev4devs-com ibm-multiarch-
catalog alpha
rh-service-binding-operator rh-service-binding-operator redhat-operators stable

$ oc apply -f - << EOD
apiVersion: postgresql.dev4devs.com/v1alpha1
kind: Database
metadata:
 name: sampledatabase
 namespace: my-petclinic
 annotations:
 host: sampledatabase
 type: postgresql
 port: "5432"

OpenShift Container Platform 4.9 アプリケーションのビルド

62

この Database CR に追加されたアノテーションは、サービスバインディング接続を有効にし、
Operator の調整をトリガーします。

この出力では、データベースインスタンスが作成されていることを検証します。

出力例

2. データベースインスタンスを作成したら、my-petclinic namespace のすべての Pod が実行さ
れていることを確認します。

出力 (表示に数分かかる) で、データベースが作成され設定されていることを検証できます。

出力例

データベースを設定したら、サンプルアプリケーションをデプロイしてデータベースサービスに接続で
きます。

5.5.3. Spring PetClinic サンプルアプリケーションのデプロイ

OpenShift Container Platform クラスターに、Spring PetClinic サンプルアプリケーションをデプロイす
るには、デプロイメント設定を使用し、アプリケーションをテストできるようにローカル環境を設定す
る必要があります。

手順

1. シェルで以下のコマンドを実行して、spring-petclinic アプリケーションを PostgresCluster

 service.binding/database: 'path={.spec.databaseName}'
 service.binding/port: 'path={.metadata.annotations.port}'
 service.binding/password: 'path={.spec.databasePassword}'
 service.binding/username: 'path={.spec.databaseUser}'
 service.binding/type: 'path={.metadata.annotations.type}'
 service.binding/host: 'path={.metadata.annotations.host}'
spec:
 databaseCpu: 30m
 databaseCpuLimit: 60m
 databaseMemoryLimit: 512Mi
 databaseMemoryRequest: 128Mi
 databaseName: "sampledb"
 databaseNameKeyEnvVar: POSTGRESQL_DATABASE
 databasePassword: "samplepwd"
 databasePasswordKeyEnvVar: POSTGRESQL_PASSWORD
 databaseStorageRequest: 1Gi
 databaseUser: "sampleuser"
 databaseUserKeyEnvVar: POSTGRESQL_USER
 image: registry.redhat.io/rhel8/postgresql-13:latest
 databaseStorageClassName: nfs-storage-provisioner
 size: 1
EOD

database.postgresql.dev4devs.com/sampledatabase created

$ oc get pods -n my-petclinic

NAME READY STATUS RESTARTS AGE
sampledatabase-cbc655488-74kss 0/1 Running 0 32s

第5章 アプリケーションのサービスへの接続

63

1. シェルで以下のコマンドを実行して、spring-petclinic アプリケーションを PostgresCluster
カスタムリソース (CR) でデプロイします。

この出力では、Spring PetClinic サンプルアプリケーションが作成され、デプロイされているこ
とを確認します。

出力例

$ oc apply -n my-petclinic -f - << EOD

apiVersion: apps/v1
kind: Deployment
metadata:
 name: spring-petclinic
 labels:
 app: spring-petclinic
spec:
 replicas: 1
 selector:
 matchLabels:
 app: spring-petclinic
 template:
 metadata:
 labels:
 app: spring-petclinic
 spec:
 containers:
 - name: app
 image: quay.io/service-binding/spring-petclinic:latest
 imagePullPolicy: Always
 env:
 - name: SPRING_PROFILES_ACTIVE
 value: postgres
 - name: org.springframework.cloud.bindings.boot.enable
 value: "true"
 ports:
 - name: http
 containerPort: 8080

apiVersion: v1
kind: Service
metadata:
 labels:
 app: spring-petclinic
 name: spring-petclinic
spec:
 type: NodePort
 ports:
 - port: 80
 protocol: TCP
 targetPort: 8080
 selector:
 app: spring-petclinic
EOD

OpenShift Container Platform 4.9 アプリケーションのビルド

64

注記

Web コンソールの Developer パースペクティブでコンテナーイメージ を使用し
てアプリケーションをデプロイする場合は、Advanced options の Deployment
セクションで以下の環境変数を入力する必要があります。

Name: SPRING_PROFILES_ACTIVE

Value: postgres

2. 以下のコマンドを実行して、アプリケーションがまだデータベースサービスに接続されていな
いことを確認します。

CrashLoopBackOff ステータスが表示されるまで数分かかります。

出力例

この段階では、Pod は起動に失敗します。アプリケーションとの対話を試みると、エラーが返
されます。

サービスバインディング Operator を使用すると、アプリケーションをデータベースサービスに接続で
きるようになります。

5.5.4. Spring PetClinic サンプルアプリケーションを PostgreSQL データベースサービ
スに接続します。

サンプルアプリ ks−本をデータベースサービスに接続するには、サービスバインディング Operator が
バインディングデータをアプリケーションにプロジェクションするようにトリガーする
ServiceBinding カスタムリソース (CR) を作成する必要があります。

手順

1. ServiceBinding CR を作成し、バインディングデータにパッチを適用します。

deployment.apps/spring-petclinic created
service/spring-petclinic created

$ oc get pods -n my-petclinic

NAME READY STATUS RESTARTS AGE
spring-petclinic-5b4c7999d4-wzdtz 0/1 CrashLoopBackOff 4 (13s ago) 2m25s

$ oc apply -n my-petclinic -f - << EOD

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-pgcluster
spec:
 services: 1
 - group: postgresql.dev4devs.com
 kind: Database 2
 name: sampledatabase

第5章 アプリケーションのサービスへの接続

65

1

2

3

サービスリソースの一覧を指定します。

データベースの CR。

Deployment または PodSpec が組み込まれた同様のリソースを参照するサンプルアプリ
ケーション。

この出力では、バインディングデータをサンプルアプリケーションにプロジェクションする
ServiceBinding CR が作成されていることを確認します。

出力例

2. サービスバインディングのリクエストが正常に完了したことを確認します。

出力例

デフォルトでは、データベースサービスのバインディングデータからの値は、サンプルアプリ
ケーションを実行するワークロードコンテナーにファイルとしてプロジェクションされます。
たとえば、Secret リソースからの値はすべて bindings/spring-petclinic-pgcluster ディレクト
リーに反映されます。

3. これが作成されたら、トポロジーに移動し、接続を視覚的に確認できます。

図5.1 spring-petclinic のサンプルデータベースへの接続

 version: v1alpha1
 application: 3
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments
EOD

servicebinding.binding.operators.coreos.com/spring-petclinic created

$ oc get servicebindings -n my-petclinic

NAME READY REASON AGE
spring-petclinic-postgresql True ApplicationsBound 47m

OpenShift Container Platform 4.9 アプリケーションのビルド

66

図5.1 spring-petclinic のサンプルデータベースへの接続

4. アプリケーションポートからポート転送を設定し、ローカル環境からサンプルアプリケーショ
ンにアクセスします。

出力例

5. http://localhost:8080 にアクセスします。
localhost:8080 で Spring PetClinic サンプルアプリケーションにリモートでアクセスできるよ
うになり、アプリケーションがデータベースサービスに接続されていることを確認できます。

5.5.5. 関連情報

サービスバインディング Operator のインストール

Developer パースペクティブを使用したアプリケーションの作成

カスタムリソース定義からのリソースの管理

5.6. サービスからバインディングデータの公開

アプリケーション開発者は、ワークロードをビルドして接続するバッキングサービスへのアクセスが必
要です。ワークロードをバッキングサービスに接続するのは、サービスプロバイダーごと、シークレッ
トにアクセスしてワークロードで消費するのに必要となる方法が異なるので、困難です。

サービスバインディング Operator を使用すると、アプリケーション開発者は、手作業でバインディン
グ接続を設定する手順なしに、オペレーターが管理するバッキングサービスとワークロードを簡単にバ
インドできます。サービスバインディングオペレーターがバインディングデータを提供するには、オペ
レータープロバイダーまたはバッキングサービスを作成するユーザーが、サービスバインディングオペ

$ oc port-forward --address 0.0.0.0 svc/spring-petclinic 8080:80 -n my-petclinic

Forwarding from 0.0.0.0:8080 -> 8080
Handling connection for 8080

第5章 アプリケーションのサービスへの接続

67

http://localhost:8080
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#installing-sbo
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/operators/#managing-resources-from-crds

レーターによって自動的に検出されるようにバインディングデータを公開する必要があります。次に、
サービスバインディング Operator は、バッキングサービスからバインディングデータを自動的に収集
し、ワークロードと共有して、一貫性のある、予測可能なエクスペリエンスを提供します。

5.6.1. バインディングデータを公開する方法

本セクションでは、バインディングデータの公開に使用できる方法について説明します。

ワークロードの要件や環境、および提供されるサービスとの連携方法を理解しておくようにしてくださ
い。

バインディングデータは以下の状況下で公開されます。

バッキングサービスは、プロビジョニングされたサービスリソースとして利用できます。
接続するサービスはサービスバインディング仕様に準拠するものになります。必要なバイン
ディングデータ値すべてを使用して Secret リソースを作成し、バッキングサービスカスタムリ
ソース (CR) で参照する必要があります。すべてのバインディングデータ値の検出は自動的に実
行されます。

バッキングサービスは、プロビジョニングされたサービスリソースとしては利用できません。
バッキングサービスからバインディングデータを公開する必要があります。ワークロード要件
および環境に応じて、以下のいずれかの方法でバインディングデータを公開することができま
す。

直接のシークレット参照

カスタムリソース定義 (CRD) または CR アノテーションを使用したバインディングデータ
の宣言

所有リソースによるバインディングデータの検出

5.6.1.1. プロビジョニングされたサービス

プロビジョニングされたサービスは、バッキングサービス CR の .status.binding.name フィールドに
配置された Secret リソースへの参照のあるバッキングサービス CR を表します。

Operator プロバイダーまたは、バッキングサービスを作成するユーザーが、Secret リソースを作成
し、バッキングサービス CR の status.binding.name セクションでその CR を参照して、この方法を
使用してサービスバインディング仕様に準拠できます。この Secret リソースは、バッキングサービス
に接続するためにワークロードに必要なすべてのバインディングデータ値を指定する必要があります。

以下の例は、バッキングサービスおよび CR から参照される Secret リソースを表す AccountService
CR を示しています。

例: AccountService CR

apiVersion: example.com/v1alpha1
kind: AccountService
name: prod-account-service
spec:
 ...
status:
 binding:
 name: hippo-pguser-hippo

OpenShift Container Platform 4.9 アプリケーションのビルド

68

例: 参照された Secret リソース

サービスバインディングリソースを作成するとき、次のように ServiceBinding仕様で
AccountService リソースの詳細を直接指定できます。

ServiceBinding リソースの例

重要

servicebinding.io API グループを備えた Service Binding (Spec API テクノロジープレ
ビュー) は、テクノロジープレビュー機能のみでの提供です。テクノロジープレビュー機
能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であり、機能的に
完全ではないことがあります。Red Hat は実稼働環境でこれらを使用することを推奨し
ていません。テクノロジープレビューの機能は、最新の製品機能をいち早く提供して、
開発段階で機能のテストを行いフィードバックを提供していただくことを目的としてい
ます。Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノ
ロジープレビュー機能のサポート範囲 を参照してください。

例: 仕様 API での ServiceBinding リソース

apiVersion: v1
kind: Secret
metadata:
 name: hippo-pguser-hippo
data:
 password: "MTBz"
 user: "Z3Vlc3Q="
 ...

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: account-service
spec:
 ...
 services:
 - group: "example.com"
 version: v1alpha1
 kind: AccountService
 name: prod-account-service
 application:
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments

apiVersion: servicebinding.io/v1alpha3
kind: ServiceBinding
metadata:
 name: account-service
spec:
 ...
 service:

第5章 アプリケーションのサービスへの接続

69

https://access.redhat.com/support/offerings/techpreview/

この方法では、ワークロードにプロジェクションされるバインディングデータとして、Secret リソー
スを参照する hippo-pguser-hippo に、すべてのキーを公開します。

5.6.1.2. 直接のシークレット参照

サービスバインディング定義で参照できる Secret リソースで、必要なバインディングデータ値すべて
が利用できる場合にこの手法使用できます。この方法では、ServiceBinding リソースは Secret リソー
スを直接参照し、サービスに接続します。Secret リソースの全キーがバインディングデータとして公
開されます。

例: binding.operators.coreos.com API での仕様

例: servicebinding.io API に準拠した仕様

5.6.1.3. CRD または CR アノテーションによるバインディングデータを宣言する

この方法を使用して、バッキングサービスのリソースにアノテーションを付け、バインディングデータ
を特定のアノテーションで公開できます。metadata セクションにアノテーションを追加すると、バッ
キングサービスの CR および CRD が変更されます。サービスバインディング Operator は CR および
CRD に追加されるアノテーションを検出し、アノテーションに基づいて抽出された値を使用して
Secret リソースを作成します。

以下の例は、metadata セクションに追加されるアノテーションと、リソースから参照される

 apiVersion: example.com/v1alpha1
 kind: AccountService
 name: prod-account-service
 application:
 apiVersion: apps/v1
 kind: Deployment
 name: spring-petclinic

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: account-service
spec:
 ...
 services:
 - group: ""
 version: v1
 kind: Secret
 name: hippo-pguser-hippo

apiVersion: servicebinding.io/v1alpha3
kind: ServiceBinding
metadata:
 name: account-service
spec:
 ...
 service:
 apiVersion: v1
 kind: Secret
 name: hippo-pguser-hippo

OpenShift Container Platform 4.9 アプリケーションのビルド

70

以下の例は、metadata セクションに追加されるアノテーションと、リソースから参照される
ConfigMap オブジェクトを示しています。

例:CR アノテーションで定義される Secret オブジェクトからのバインディングデータの公開

上記の例では、hippo-pguser-hippo に解決する {.metadata.name}-pguser-{.metadata.name} テンプ
レートにシークレット名の名前を配置します。テンプレートには複数の JSONPath 表現を含めること
ができます。

例: リソースからの参照された Secret オブジェクト

例:CR アノテーションで定義される ConfigMap オブジェクトからのバインディングデータの公
開

上記の例では、hippo-config に解決する {.metadata.name}-config テンプレートに設定マップの名前
を配置します。テンプレートには複数の JSONPath 表現を含めることができます。

例: リソースからの参照された ConfigMap オブジェクト

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 service.binding: 'path={.metadata.name}-pguser-{.metadata.name},objectType=Secret'
 ...

apiVersion: v1
kind: Secret
metadata:
 name: hippo-pguser-hippo
data:
 password: "MTBz"
 user: "Z3Vlc3Q="

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 service.binding: 'path={.metadata.name}-config,objectType=ConfigMap'
 ...

apiVersion: v1
kind: ConfigMap
metadata:
 name: hippo-config
data:
 db_timeout: "10s"
 user: "hippo"

第5章 アプリケーションのサービスへの接続

71

5.6.1.4. 所有リソースによるバインディングデータの検出

バッキングサービスが、バインディングデータの検出に使用できるルート、サービス、設定マップ、
シークレットなど、1 つ以上の Kubernetes リソースを所有している場合は、このメソッドを使用できま
す。この方法では、Service Binding Operator は、バッキングサービス CR が所有するリソースからバ
インディングデータを検出します。

次の例では、detectBindingResourcesAPI オプションが ServiceBindingCR で true に設定されてい
ます。

例

直前の例では、PostgresCluster カスタムリソースはルート、サービス、設定マップ、またはシーク
レットなどの 1 つ以上の Kubernetes リソースを所有します。

サービスバインディング Operator は、所有リソースごとに公開されるバインディングデータを自動的
に検出します。

5.6.2. データモデル

アノテーションで使用されるデータモデルは、特定の規則に従います。

サービスバインディングアノテーションは、以下の規則を使用する必要があります。

ここでは、以下のようになります。

<NAME> バインディング値を公開する名前を指定します。objectType パラメーターが Secret また
は ConfigMap に設定されている場合にのみ除外できます。

<VALUE> path が設定されていない場合に公開される定数値を指定します。

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-detect-all
 namespace: my-petclinic
spec:
 detectBindingResources: true
 services:
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster
 name: hippo
 application:
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments

service.binding(/<NAME>)?:
 "<VALUE>|(path=<JSONPATH_TEMPLATE>(,objectType=<OBJECT_TYPE>)?(,elementType=
<ELEMENT_TYPE>)?(,sourceKey=<SOURCE_KEY>)?(,sourceValue=<SOURCE_VALUE>)?)"

OpenShift Container Platform 4.9 アプリケーションのビルド

72

データモデルは、path、elementType、objectType、sourceKey、および sourceValue パラメーター
の許可される値とセマンティックの詳細を提供します。

表5.3 パラメーターおよびその説明

パラメーター 説明 デフォルト値

path 中かっこ {} で囲まれた JSONPath 表現で設定さ
れる JSONPath テンプレート。

該当なし

elementType path パラメーターで参照される要素の値が以下
のいずれかのタイプに準拠するかどうかを指定
します。

文字列

sliceOfStrings

sliceOfMaps

文字列

objectType path パラメーターで示される要素の値が、現在
の namespace の ConfigMap、Secret、また
は平文の文字列を参照するかどうかを指定しま
す。

secret(elementType が文字
列以外の場合)

sourceKey バインディングデータを収集する際にバイン
ディングシークレットに追加される
ConfigMap または Secret リソースのキーを指
定します。

注記:

elementType=sliceOfMaps と併用
される場合、sourceKey パラメー
ターは、値がバインディングシーク
レットのキーとして使用される、マッ
プのスライスのキーを指定します。

このオプションパラメーターを使用し
て、参照される Secret または
ConfigMap リソースの特定のエント
リーをバインディングデータとして公
開します。

指定されていない場合、Secret または
ConfigMap リソースからのすべての
キーと値が公開され、バインディング
シークレットに追加されます。

該当なし

第5章 アプリケーションのサービスへの接続

73

sourceValue マップのスライスのキーを指定します。

注記:

このキーの値は、バインディングシー
クレットに追加されるキーと値のペア
のエントリーの値を生成するベースと
して使用されます。

さらに、sourceKey の値は、バイン
ディングシークレットに追加される
キーと値のペアのエントリーのキーと
して使用されます。

elementType=sliceOfMaps の場合
のみ必須です。

該当なし

パラメーター 説明 デフォルト値

注記

sourceKey および sourceValue パラメーターは、path パラメーターで指定された要素
が ConfigMap または Secret リソースを参照する場合にのみ適用されます。

5.6.3. RBAC 要件

サービスバインディング Operator を使用してバッキングサービスバインディングデータを公開するに
は、特定のロールベースアクセス制御 (RBAC) パーミッションが必要になります。ClusterRole リソー
スの rules フィールドに特定の動詞を指定し、バッキングサービスリソースの RBAC パーミッションを
付与します。これらの rules を定義すると、サービスバインディング Operator はクラスター全体で
バッキングサービスリソースのバインディングデータを読み取ることができます。ユーザーにバイン
ディングデータの読み取りまたはアプリケーションリソースの変更のパーミッションがない場合、サー
ビスバインディング Operator はこのようなユーザーがサービスをアプリケーションにバインドできな
いようにします。RBAC 要件を順守することで、ユーザーの不要なパーミッション昇格を回避し、承認
されていないサービスまたはアプリケーションへのアクセスを防ぎます。

サービスバインディング Operator は、専用のサービスアカウントを使用して Kubernetes API に対して
リクエストを実行します。デフォルトでは、このアカウントはサービスをワークロードにバインドする
ためのパーミッションを持ち、共に以下の標準の Kubernetes または OpenShift オブジェクトで表され
ます。

デプロイメント

DaemonSets

ReplicaSet

StatefulSets

DeploymentConfig

Operator サービスアカウントは集約されたクラスターロールにバインドされ、Operator プロバイダー
またはクラスター管理者はワークロードへのカスタムサービスリソースのバインドを有効にできま
す。ClusterRole 内の必要なパーミッションを付与するには、これに servicebinding.io/controller フ

OpenShift Container Platform 4.9 アプリケーションのビルド

74

ラグでラベルを付け、フラグの値を true に設定します。以下の例は、サービスバインディング
Operator が Crunchy PostgreSQL Operator のカスタムリソース (CR) を 取得、監視、および 一覧表示
するのを許可する方法を示しています。

例:Crunchy PostgreSQL Operator によってプロビジョニングされる PostgreSQL データベー
スインスタンスへのバインディングの有効化

このクラスターロールは、バッキングサービス Operator のインストール時にデプロイできます。

5.6.4. 公開可能なバインディングデータのカテゴリー

サービスバインディング Operator を使用すると、バッキングサービスリソースおよびカスタムリソー
ス定義 (CRD) からバインディングデータ値を公開できます。

本セクションでは、さまざまな公開可能なバインディングデータのカテゴリーを使用する方法を例とと
もに紹介します。これらのサンプルは、実際の環境と要件に合わせて変更する必要があります。

5.6.4.1. リソースからの文字列の公開

以下の例は、PostgresCluster カスタムリソース (CR) の metadata.name フィールドから文字列を公
開する方法を示しています。

例

5.6.4.2. 定数値のバインディング項目としての公開

以下の例は、PostgresCluster カスタムリソース (CR) から定数値を公開する方法を示しています。

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: postgrescluster-reader
 labels:
 servicebinding.io/controller: "true"
rules:
- apiGroups:
 - postgres-operator.crunchydata.com
 resources:
 - postgresclusters
 verbs:
 - get
 - watch
 - list
 ...

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 service.binding/username: path={.metadata.name}
 ...

第5章 アプリケーションのサービスへの接続

75

1

例: 定数値の公開

postgresql 値で公開されるバインディング タイプ。

5.6.4.3. リソースから参照される設定マップまたはシークレット全体を公開する

以下の例では、シークレット全体をアノテーションにより公開する方法を説明します。

例: アノテーションによるシークレット全体の公開

例: バッキングサービスリソースから参照されるシークレット

5.6.4.4. リソースから参照される設定マップまたはシークレットから特定のエントリーを公開
する

以下の例では、アノテーションにより設定マップから特定のエントリーを公開する方法を説明します。

例: アノテーションを使用した設定マップからのエントリーの公開

例: バッキングサービスリソースから参照される設定マップ

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 "service.binding/type": "postgresql" 1

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 service.binding: 'path={.metadata.name}-pguser-{.metadata.name},objectType=Secret'

apiVersion: v1
kind: Secret
metadata:
 name: hippo-pguser-hippo
data:
 password: "MTBz"
 user: "Z3Vlc3Q="

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 service.binding: 'path={.metadata.name}-config,objectType=ConfigMap,sourceKey=user'

OpenShift Container Platform 4.9 アプリケーションのビルド

76

バインディングデータには、名前が db_timeout、値が 10s のキーが必要です。

5.6.4.5. リソース定義値の公開

以下の例は、リソース定義の値をアノテーションを使用して公開する方法を説明します。

例: アノテーションによるリソース定義値の公開

5.6.4.6. コレクションのエントリーを、各エントリーのキーと値で公開する

以下の例は、アノテーションを使用して各エントリーのキーと値を持つコレクションのエントリーを公
開する方法を示しています。

例: アノテーションによるコレクションのエントリーの公開

以下の例では、1 つ前のアノテーションでのコレクションエントリーが、バインドされたアプリケー
ションにどのようにプロジェクションされるかを紹介します。

apiVersion: v1
kind: ConfigMap
metadata:
 name: hippo-config
data:
 db_timeout: "10s"
 user: "hippo"

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 service.binding/username: path={.metadata.name}
 ...

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 "service.binding/uri": "path=
{.status.connections},elementType=sliceOfMaps,sourceKey=type,sourceValue=url"
spec:
 ...
status:
 connections:
 - type: primary
 url: primary.example.com
 - type: secondary
 url: secondary.example.com
 - type: '404'
 url: black-hole.example.com

第5章 アプリケーションのサービスへの接続

77

例: データファイルのバインディング

例: バッキングサービスリソースの設定

上記の例では、primary、secondary などのキーを使用したすべての値をプロジェクションできるよう
にします。

5.6.4.7. コレクションのアイテムをアイテムごとに 1 つのキーで公開する

以下の例は、アノテーションを使用して項目ごとに 1 つのキーを持つコレクションの項目を公開する方
法を示しています。

例: アノテーションによるコレクションの項目の公開

以下の例では、1 つ前のアノテーションでのコレクションアイテムが、バインドされたアプリケーショ
ンにどのようにプロジェクションされるかを紹介します。

例: データファイルのバインディング

例: バッキングサービスリソースの設定

/bindings/<binding-name>/uri_primary => primary.example.com
/bindings/<binding-name>/uri_secondary => secondary.example.com
/bindings/<binding-name>/uri_404 => black-hole.example.com

status:
 connections:
 - type: primary
 url: primary.example.com
 - type: secondary
 url: secondary.example.com
 - type: '404'
 url: black-hole.example.com

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 "service.binding/tags": "path={.spec.tags},elementType=sliceOfStrings"
spec:
 tags:
 - knowledge
 - is
 - power

/bindings/<binding-name>/tags_0 => knowledge
/bindings/<binding-name>/tags_1 => is
/bindings/<binding-name>/tags_2 => power

spec:
 tags:

OpenShift Container Platform 4.9 アプリケーションのビルド

78

5.6.4.8. エントリー値ごとに 1 つのキーを使用してコレクションエントリーの値を公開する

以下の例は、アノテーションを使用してエントリー値ごとに 1 つのキーを持つコレクションエントリー
の値を公開する方法を示しています。

例: アノテーションを使用したコレクションエントリーの値の公開

以下の例では、1 つ前のアノテーションでのコレクション値が、バインドされたアプリケーションにど
のようにプロジェクションされるかを紹介します。

例: データファイルのバインディング

5.6.5. 関連情報

クラスターサービスバージョン (CSV) の定義

バインドデータのプロジェクション

5.7. バインディングデータのプロジェクション

本セクションでは、バインディングデータを使用する方法について説明します。

5.7.1. バインディングデータの使用

バッキングサービスがバインディングデータを公開した後、ワークロードがこのデータにアクセスして
消費するには、バッキングサービスからワークロードにデータをプロジェクションする必要がありま
す。サービスバインディング Operator は、以下のいずれかの方法でデータセットをワークロードに自
動的にプロジェクションします。

 - knowledge
 - is
 - power

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 "service.binding/url": "path={.spec.connections},elementType=sliceOfStrings,sourceValue=url"
spec:
 connections:
 - type: primary
 url: primary.example.com
 - type: secondary
 url: secondary.example.com
 - type: '404'
 url: black-hole.example.com

/bindings/<binding-name>/url_0 => primary.example.com
/bindings/<binding-name>/url_1 => secondary.example.com
/bindings/<binding-name>/url_2 => black-hole.example.com

第5章 アプリケーションのサービスへの接続

79

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/operators/#osdk-generating-csvs
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#projecting-binding-data

1

2 5

3

4

1. ファイルとして (デフォルト)。

2. 環境変数として。(ServiceBinding リソースから .spec.bindAsFiles パラメーターを設定した
後)。

5.7.2. ワークロードコンテナー内にバインディングデータをプロジェうションするディ
レクトリーパスの設定

デフォルトでは、サービスバインディング Operator は、バインディングデータをファイルとしてワー
クロードリソースの特定のディレクトリーにマウントします。ワークロードが実行されるコンテナーで
設定された SERVICE_BINDING_ROOT 環境変数を使用してディレクトリーパスを設定できます。

例: ファイルとしてマウントされるバインディングデータ

$SERVICE_BINDING_ROOT 1
├── account-database 2
│ ├── type 3
│ ├── provider 4
│ ├── uri
│ ├── username
│ └── password
└── transaction-event-stream 5
 ├── type
 ├── connection-count
 ├── uri
 ├── certificates
 └── private-key

ルートディレクトリー。

バインディングデータを保存するディレクトリー。

対応するディレクトリーにプロジェクションされるバインディングデータのタイプを識別する必須
の ID。

オプション: アプリケーションが接続できるバッキングサービスのタイプを識別できるように、プ
ロバイダーを識別するための ID。

バインディングデータを環境変数として使用するには、環境変数の読み取りに使用できる任意のプログ
ラミング言語の組み込み言語機能を使用します。

例: Python クライアントの使用

import os
username = os.getenv("USERNAME")
password = os.getenv("PASSWORD")

5.7.2.1. バインディングデータをファイルとしてプロジェクションするための最終パスの計算

以下の表は、ファイルが指定のディレクトリーにマウントされるときに、バインディクデータプロジェ
クションの最終パスを計算する方法に関する設定をまとめています。

表5.4 最終パスの計算の概要

OpenShift Container Platform 4.9 アプリケーションのビルド

80

SERVICE_BINDING_ROOT 最終パス

利用不可 /bindings/<ServiceBinding_ResourceName>

dir/path/root dir/path/root/<ServiceBinding_ResourceNam
e>

1 つ前の表の <ServiceBinding_ResourceName> エントリーは、カスタムリソース (CR) の .
metadata.name セクションで設定する ServiceBinding リソースの名前を指定します。

既存の SERVICE_BINDING_ROOT 環境変数内のバインディングデータにアクセスして使用するには、
環境変数を読み取れる任意のプログラミング言語の組み込み言語機能を使用します。

例: Python クライアントの使用

from pyservicebinding import binding
try:
 sb = binding.ServiceBinding()
except binding.ServiceBindingRootMissingError as msg:
 # log the error message and retry/exit
 print("SERVICE_BINDING_ROOT env var not set")
sb = binding.ServiceBinding()
bindings_list = sb.bindings("postgresql")

直前の例では、bindings_list 変数には、postgresql データベースサービスタイプのバインディング
データが含まれます。

5.7.3. バインディングデータのプロジェクション

ワークロード要件および環境に応じて、ファイルまたは環境変数としてバインディングデータをプロ
ジェクションすることができます。

前提条件

以下の概念について理解しておく。

ワークロードの環境および要件、指定のサービスと連携する方法。

ワークロードリソースでのバインディングデータ消費量。

デフォルトの方法でデータプロジェクションの最終パスを計算する方法の設定。

バインディングデータがバッキングサービスから公開されている。

手順

1. ファイルとしてバインディングデータをプロジェクションするには、既存の
SERVICE_BINDING_ROOT 環境変数がワークロードが実行されるコンテナーで存在すること
を確認して、宛先フォルダーを決定します。

2. バインドデータを環境変数としてプロジェクションするには、カスタムリソース (CR) の
ServiceBinding リソースから、 .spec.bindAsFiles パラメーターの値を false に設定します。

第5章 アプリケーションのサービスへの接続

81

1

2

5.7.4. 関連情報

サービスからバインディングデータの公開

アプリケーションのソースコードでの反映されたバインディングデータの使用

5.8. サービスバインディング OPERATOR を使用したワークロードのバイ
ンド

アプリケーション開発者は、バインディングシークレットを使用して、ワークロードを 1 つまたは複数
のバッキングサービスにバインドする必要があります。このシークレットは、ワークロードによって使
用される情報を保存するために生成されます。

たとえば、接続するサービスがすでにバインディングデータを公開しているとします。この場
合、ServiceBinding カスタムリソース (CR) と共に、使用されるワークロードの必要になります。この
ServiceBinding CR を使用することで、ワークロードはバインドするサービスの詳細と共にバインディ
ング要求を送信します。

ServiceBinding CR の例

サービスリソースの一覧を指定します。

Deployment または PodSpec が組み込まれた同様のリソースを参照するサンプルアプリケーショ
ン。

上記の例で示されるように、ConfigMap または Secret 自体を、バインディングデータのソースとして
使用されるサービスリソースとして直接使用することもできます。

5.8.1. 命名ストラテジー

命名ストラテジーは、binding.operators.coreos.com API グループでのみ利用できます。

命名ストラテジーは Go テンプレートを使用して、サービスバインディングリクエストでカスタムバイ
ンディング名を定義するのに役立ちます。命名ストラテジーは、ServiceBinding カスタムリソース
(CR) のマッピングを含むすべての属性に適用されます。

バッキングサービスは、バインディング名をファイルまたは環境変数としてワークロードに反映しま

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-pgcluster
 namespace: my-petclinic
spec:
 services: 1
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster
 name: hippo
 application: 2
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments

OpenShift Container Platform 4.9 アプリケーションのビルド

82

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#exposing-binding-data-from-a-service
https://redhat-developer.github.io/service-binding-operator/userguide/using-projected-bindings/using-projected-bindings.html

す。ワークロードが特定の形式で反映されるバインディング名を要求し、バッキングサービスから反映
されるバインディング名がその形式で利用できない場合、命名ストラテジーを使用してバインディング
名を変更できます。

定義済みの後処理関数

命名ストラテジーを使用する一方、ワークロードの要求や要件によっては、任意の組み合わせで以下の
定義済みの後処理関数を使用して、文字列を変換できます。

upper: 文字列を大文字に変換します。

lower: 文字列を小文字に変換します。

title: 特定の一部の語句を除いて、各語句の最初の文字が大文字になるように文字列を変換しま
す。

事前に定義された命名ストラテジー

アノテーションで宣言されたバインディング名は、以下の事前に定義された命名ストラテジーに従っ
て、ワークロードへの反映前に名前の変更に対して処理されます。

none: これが適用されると、バインディング名は変更されません。

例

テンプレートのコンパイル後、バインディング名は {{ .name }} の形式を取ります。

upper: namingStrategy が定義されていない場合に適用されます。これが適用されると、バイ
ンディング名キーのすべての文字列を大文字に変換します。

例

テンプレートのコンパイル後、バインディング名は {{ .service.kind | upper}}_{{ .name |
upper }} の形式を取ります。

ワークロードが別の形式を要求する場合は、カスタム命名ストラテジーを定義し、接頭辞とセ
パレーターを使用してバインディング名を変更できます (例:PORT_DATABASE)。

注記

バインディング名がファイルとして反映される場合、デフォルトでは、事前定義
されたnone命名ストラテジーが適用され、バインディング名は変更されませ
ん。

バインディング名が環境変数として反映され、namingStrategy が定義されてい
ない場合には、デフォルトでは事前定義された uppercase 命名ストラテジーが
適用されます。

カスタムバインディング名と事前定義済みの後処理関数の別の組み合わせを使用
して、カスタム命名ストラテジーを定義することで、事前に定義された命名スト
ラテジーを上書きできます。

host: hippo-pgbouncer
port: 5432

DATABASE_HOST: hippo-pgbouncer
DATABASE_PORT: 5432

第5章 アプリケーションのサービスへの接続

83

5.8.2. 高度なバインディングオプション

高度なバインディングオプションは、binding.operators.coreos.com API グループでのみ利用できま
す。

5.8.2.1. ワークロードへの反映前のバインディング名の変更

ServiceBinding カスタムリソース (CR) の .spec.namingStrategy 属性で、バインディング名を変更す
るルールを指定できます。たとえば、PostgreSQL データベースに接続する Spring PetClinic サンプル
アプリケーションについて考えてみましょう。この場合、PostgreSQL データベースサービスは、バイ
ンディングに使用するデータベースのホストおよびポートフィールドを公開します。Spring PetClinic
サンプルアプリケーションは、バインディング名を使用してこの公開されたバインディングデータにア
クセスできます。

例:ServiceBinding CR の Spring PetClinic サンプルアプリケーション

例:ServiceBinding CR の PostgreSQL データベースサービス

namingStrategy が定義されておらず、バインディング名が環境変数として反映される場合、バッキン
グサービスの host: hippo-pgbouncer 値および反映される環境変数は以下の例のように表示されま
す。

例

ここでは、以下のようになります。

DATABAS
E

kind バックエンドサービスを指定します。

HOST バインディング名を指定します。

POSTGRESQL_{{ .service.kind | upper }}_{{ .name | upper }}_ENV 命名ストラテジーを適用する
と、サービスバインディングリクエストで準備したカスタムバインディング名の一覧が以下の例のよう
に表示されます。

...
 application:
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments
...

...
 services:
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster
 name: hippo
...

DATABASE_HOST: hippo-pgbouncer

OpenShift Container Platform 4.9 アプリケーションのビルド

84

例

以下の項目は、POSTGRESQL_{{ .service.kind | upper }}_{{ .name | upper }}_ENV 命名ストラテ
ジーで定義される表現について説明しています。

.name: バッキングサービスが公開するバインディング名を参照します。上記の例では、バイン
ディング名は HOST および PORT です。

.service.kind: バインディング名が命名ストラテジーで変更されるサービスリソースの種類を参
照します。

upper: Go テンプレート文字列をコンパイルする際に文字列を後処理するために使用する文字
列関数。

POSTGRESQL: カスタムバインディング名の接頭辞。

ENV: カスタムバインディング名の接尾辞。

前述の例と同様に、namingStrategy で文字列テンプレートを定義し、バインディング名のそれぞれの
キーがサービスバインディングリクエストによってどのように準備されるかを定義できます。

5.8.2.2. カスタムバインディングデータの作成

アプリケーション開発者は、以下の状況でカスタムバインディングデータを作成できます。

バッキングサービスがバインディングデータを公開しない。

公開される値が、ワークロードによって要求される形式では利用できません。

たとえば、バッキングサービス CR がホスト、ポート、およびデータベースユーザーをバインディング
データとして公開するが、ワークロードはバインディングデータを接続文字列として使用することを要
求するケースを考えてみます。バッキングサービスを表す Kubernetes リソースの属性を使用して、カ
スタムバインディングデータを作成できます。

例

POSTGRESQL_DATABASE_HOST_ENV: hippo-pgbouncer
POSTGRESQL_DATABASE_PORT_ENV: 5432

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-pgcluster
 namespace: my-petclinic
spec:
 services:
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster
 name: hippo 1
 id: postgresDB 2
 - group: ""
 version: v1
 kind: Secret
 name: hippo-pguser-hippo

第5章 アプリケーションのサービスへの接続

85

1

2

3

4

バッキングサービスリソースの名前。

オプションの識別子。

ファイルの内容または環境の値として反映される生成された JSON 名。JSON 名には、バッキン
グサービスのカスタムリソースの属性が含まれます。

ファイルの内容または環境の値として反映される生成された JSON 値。JSON 値には、バッキン
グサービスのカスタムリソースの属性が含まれます。

5.8.3. PodSpec に準拠していないセカンダリーワークロードのバインド

サービスバインディングの一般的なシナリオでは、バッキングサービス、ワークロード (デプロイメン
ト)、およびサービスバインディング Operator を設定する必要があります。PodSpec に準拠しておら
ず、プライマリーワークロード (デプロイメント) とサービスバインディング Operator の間にあるセカ
ンダリーワークロード (アプリケーション Operator の場合もあります) が関与するシナリオについて考
えてみます。

このようなセカンダリーワークロードリソースの場合、コンテナーパスのロケーションは任意です。
サービスバインディングの場合、CR のセカンダリーワークロードが PodSpec に準拠していない場合、
コンテナーパスのロケーションを指定する必要があります。これにより、バインディングデータ
がServiceBinding カスタムリソース (CR) のセカンダリーワークロードで指定されたコンテナーパスに
反映されます (たとえば、Pod 内にバインディングデータを配置したくない場合)。

サービスバインディング Operator により、コンテナーのパスまたはシークレットパスの場所の値を設
定し、これらのパスをカスタムロケーションにバインドすることができます。このオプションは、バイ
ンディングデータが環境変数として反映される場合に、binding.operators.coreos.com API グループ
でのみ利用できます。

5.8.3.1. コンテナーパスのカスタムロケーションの設定

PodSpec に準拠しておらず、spec.containers パスに置かれているコンテナーを持つセカンダリーワー
クロード CR について考えてみます。

例: セカンダリーワークロード CR

 id: postgresSecret
 application:
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments
 mappings:
 ## From the database service
 - name: JDBC_URL
 value: 'jdbc:postgresql://{{ .postgresDB.metadata.annotations.proxy }}:{{ .postgresDB.spec.port
}}/{{ .postgresDB.metadata.name }}'
 ## From both the services!
 - name: CREDENTIALS
 value: '{{ .postgresDB.metadata.name }}{{ translationService.postgresSecret.data.password }}'
 ## Generate JSON
 - name: DB_JSON 3
 value: {{ json .postgresDB.status }} 4

OpenShift Container Platform 4.9 アプリケーションのビルド

86

1

2

3

手順

ServiceBinding CR で値を指定して spec.containers パスを設定し、このパスを
spec.application.bindingPath.containersPath カスタムロケーションにバインドします。

例:ServiceBinding CR とカスタムロケーションの spec.containers パス

Deployment または PodSpec が組み込まれた同様のリソースを参照するサンプルアプリ
ケーション。

PodSpec に準拠していないセカンダリーワークロード。

コンテナーパスのカスタムロケーション。

コンテナーパスのロケーションを指定した後に、サービスバインディング Operator はバインディング

apiVersion: "operator.sbo.com/v1"
kind: SecondaryWorkload
metadata:
 name: secondary-workload
spec:
 containers:
 - name: hello-world
 image: quay.io/baijum/secondary-workload:latest
 ports:
 - containerPort: 8080

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-pgcluster
spec:
 services:
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster
 name: hippo
 id: postgresDB
 - group: ""
 version: v1
 kind: Secret
 name: hippo-pguser-hippo
 id: postgresSecret
 application: 1
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments
 application: 2
 name: secondary-workload
 group: operator.sbo.com
 version: v1
 resource: secondaryworkloads
 bindingPath:
 containersPath: spec.containers 3

第5章 アプリケーションのサービスへの接続

87

1

2

コンテナーパスのロケーションを指定した後に、サービスバインディング Operator はバインディング
データを生成します。これは、ServiceBinding CR のセカンダリーワークロードで指定されるコンテ
ナーパスで利用できます。

以下の例は、 envFromフィールドとsecretRefフィールドを持つspec.containersパスを示していま
す。

例:envFrom および secretRef フィールドのあるセカンダリーワークロード CR

サービスバインディング Operator で生成される値を持つコンテナーの一意の配列。これらの値は
バッキングサービス CR に基づいています。

サービスバインディング Operator によって生成される Secret リソースの名前。

5.8.3.2. シークレットパスのカスタムロケーションの設定

PodSpec に準拠しておらず、spec.secret パスに置かれているシークレットのみを持つセカンダリー
ワークロード CR を考えてみます。

例: セカンダリーワークロード CR

手順

ServiceBinding CR で値を指定して spec.secret パスを設定し、このパスを
spec.application.bindingPath.secretPath カスタムロケーションにバインドします。

例:ServiceBinding CR とカスタムロケーションの spec.secret パス

apiVersion: "operator.sbo.com/v1"
kind: SecondaryWorkload
metadata:
 name: secondary-workload
spec:
 containers:
 - env: 1
 - name: ServiceBindingOperatorChangeTriggerEnvVar
 value: "31793"
 envFrom:
 - secretRef:
 name: secret-resource-name 2
 image: quay.io/baijum/secondary-workload:latest
 name: hello-world
 ports:
 - containerPort: 8080
 resources: {}

apiVersion: "operator.sbo.com/v1"
kind: SecondaryWorkload
metadata:
 name: secondary-workload
spec:
 secret: ""

OpenShift Container Platform 4.9 アプリケーションのビルド

88

1

2

1

PodSpec に準拠していないセカンダリーワークロード。

Secret リソースの名前が含まれるシークレットパスのカスタムロケーション。

シークレットパスのロケーションを指定した後に、サービスバインディング Operator はバインディン
グデータを生成します。これは、ServiceBinding CR のセカンダリーワークロードで指定されるシーク
レットパスで利用できます。

以下の例は、binding-request 値による spec.secret パスを示しています。

例:binding-request 値が設定されたセカンダリーワークロード CR

サービスバインディング Operator によって生成される Secret リソースの一意の名前。

5.8.4. バッキングサービスからのワークロードのバインド解除

oc ツールを使用して、バッキングサービスからワークロードのバインドを解除できます。

バッキングサービスからワークロードのバインドを解除するには、これにリンクされている
ServiceBinding カスタムリソース (CR) を削除します。

例

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-pgcluster
spec:
...
 application: 1
 name: secondary-workload
 group: operator.sbo.com
 version: v1
 resource: secondaryworkloads
 bindingPath:
 secretPath: spec.secret 2
...

...
apiVersion: "operator.sbo.com/v1"
kind: SecondaryWorkload
metadata:
 name: secondary-workload
spec:
 secret: binding-request-72ddc0c540ab3a290e138726940591debf14c581 1
...

$ oc delete ServiceBinding <.metadata.name>

$ oc delete ServiceBinding spring-petclinic-pgcluster

第5章 アプリケーションのサービスへの接続

89

ここでは、以下のようになります。

spring-
petclinic-
pgcluster

ServiceBinding CR の名前を指定します。

5.8.5. 関連情報

ワークロードをバッキングサービスとバインドする

Spring PetClinic サンプルアプリケーションを PostgreSQL データベースサービスに接続しま
す。

5.9. 開発者パースペクティブを使用したアプリケーションのサービスへの接
続

アプリケーション内で複数のコンポーネントをグループ化することに加え、Topology ビューを使用し
てコンポーネントを相互に接続することもできます。バインディングコネクターまたはビジュアルコネ
クターのいずれかを使用してコンポーネントを接続できます。

コンポーネント間のバインディング接続は、ターゲットノードが Operator がサポートするサービスで
ある場合にのみ確立できます。これは、矢印をこのようなターゲットノードにドラッグする際に表示さ
れる Create a binding connector ツールチップによって示されます。アプリケーションがバインディン
グコネクターを使用してサービスに接続されると、ServiceBinding が作成されます。その後、サービ
スバインディング Operator コントローラーは必要なバインディングデータをアプリケーションデプロ
イメントにプロジェクションします。要求が正常に行われると、アプリケーションが再デプロイされ、
接続されたコンポーネント間の対話が確立されます。

ビジュアルコネクターは、接続先となるコンポーネント間の視覚的な接続のみを表示します。コンポー
ネント間の対話は確立されません。ターゲットノードが Operator がサポートするサービスではない場
合、Create a visual connector ツールチップは矢印をターゲットノードにドラッグすると表示されま
す。

5.9.1. コンポーネント間のビジュアル接続の作成

ビジュアルコネクターを使用してアプリケーションコンポーネントに接続する意図を示すことができま
す。

この手順では、PostgreSQL データベースサービスと Spring PetClinic のサンプルアプリケーション間
の視覚的な接続の作成例を説明します。

前提条件

Developer パースペクティブを使用して Spring PetClinic のサンプルアプリケーションを作成
し、デプロイしている。

Developer パースペクティブを使用して Crunchy PostgreSQL データベースインスタンスを作
成し、デプロイしている。このインスタンスには、hippo-backup、hippo-instance、hippo-
repo-host、および hippo-pgbouncer の 4 つのコンポーネントがあります。

手順

1. Spring PetClinic サンプルアプリケーションにカーソルを合わせ、ノード上の矢印を確認しま

OpenShift Container Platform 4.9 アプリケーションのビルド

90

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#binding-a-workload-together-with-a-backing-service
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#connecting-the-spring-petclinic-sample-application-to-the-postgresql-database-service

1. Spring PetClinic サンプルアプリケーションにカーソルを合わせ、ノード上の矢印を確認しま
す。

図5.2 ビジュアルコネクター

2. 矢印をクリックして hippo-pgbouncer デプロイメントに向かってドラッグし、Spring
PetClinic サンプルアプリケーションを接続します。

3. spring-petclinic デプロイメントをクリックし、Overview パネルを表示します。Details タブ
で Annotations セクションの編集アイコンをクリックして、Key =
app.openshift.io/connects-to と Value =
[{"apiVersion":"apps/v1","kind":"Deployment","name":"hippo-pgbouncer"}] アノテーショ
ンがデプロイメントに追加されていることを確認します。

他のアプリケーションやコンポーネントを同様に作成し、それらの間の視覚的な接続を確立することが
できます。

図5.3 複数アプリケーションへの接続

第5章 アプリケーションのサービスへの接続

91

図5.3 複数アプリケーションへの接続

5.9.2. コンポーネント間のバインディング接続の作成

Operator がサポートするコンポーネントとのバインディング接続を確立できます。

この手順では、PostgreSQL データベースサービスと Spring PetClinic のサンプルアプリケーション間
のバインディング接続の作成例を説明します。PostgreSQL Database Operator がサポートするサービ
スでバインディング接続を作成するには、まずサポートする Red Hat 提供の PostgreSQL データベース
Operator を OperatorHub に追加し、Operator をインストールする必要があります。次に、
PostreSQL Database Operator はシークレット、設定マップ、ステータス、および仕様属性のバイン
ディング情報を公開する Database リソースを作成し、管理します。

前提条件

Developer パースペクティブを使用して Spring PetClinic のサンプルアプリケーションを作成
し、デプロイしている。

OperatorHub からサービスバインディング Operator をインストールしている。

v5 Update チャネルを使用して、OperatorHub から Crunchy Postgres for Kubernetes
Operator をインストールしている。

Developer パースペクティブを使用して Crunchy PostgreSQL データベースインスタンスを作
成し、デプロイしている。このインスタンスには、hippo-backup、hippo-instance、hippo-
repo-host、および hippo-pgbouncer の 4 つのコンポーネントがあります。

OpenShift Container Platform 4.9 アプリケーションのビルド

92

手順

1. Developer パースペクティブに切り替え、my-petclinic などの適切なプロジェクトにいること
を確認します。Topology ビューで、Spring PetClinic サンプルアプリケーションにカーソルを
合わせてノードの矢印を確認します。

2. 矢印をクリックして hippo データベース Postgres クラスターに向かってドラッグし、Spring
PetClinic サンプルアプリケーションとのバインディング接続を確立します。
または、+Add ビューで、YAML オプションをクリックし、 Import YAML 画面を表示しま
す。YAML エディターを使用して ServiceBinding リソースを追加します。

サービスバインディング要求が作成され、サービスバインディングコントローラーは、ボリュームマウ
ントを使用してファイルとして、データベースサービスの接続情報をアプリケーションデプロイメント
にプロジェクションします。要求が正常に行われると、アプリケーションが再デプロイされ、接続が確
立されます。

図5.4 バインディングコネクター

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-pgcluster
 namespace: my-petclinic
spec:
 services:
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster
 name: hippo
 application:
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments

第5章 アプリケーションのサービスへの接続

93

図5.4 バインディングコネクター

注記

矢印をドラッグしてコンテキストメニューを使用し、Operator がサポートするサービス
へのバインディング接続を追加して作成できます。

図5.5 バインディング接続を作成するためのコンテキストメニュー

5.9.3. 関連情報

OpenShift Container Platform 4.9 アプリケーションのビルド

94

サービスバインディングの使用

バインド可能な既知の Operator

第5章 アプリケーションのサービスへの接続

95

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#getting-started-with-service-binding
https://github.com/redhat-developer/service-binding-operator#known-bindable-operators

第6章 HELM チャートの使用

6.1. HELM について

Helm は、アプリケーションやサービスの OpenShift Container Platform クラスターへのデプロイメン
トを単純化するソフトウェアパッケージマネージャーです。

Helm は charts というパッケージ形式を使用します。Helm チャートは、OpenShift Container Platform
リソースを記述するファイルのコレクションです。

クラスター内のチャートの実行中のインスタンスは、リリース と呼ばれます。チャートがクラスターに
インストールされているたびに、新規のリリースが作成されます。

チャートのインストール時、またはリリースがアップグレードまたはロールバックされるたびに、増分
リビジョンが作成されます。

6.1.1. 主な特長

Helm は以下を行う機能を提供します。

チャートリポジトリーに保存したチャートの大規模なコレクションの検索。

既存のチャートの変更。

OpenShift Container Platform または Kubernetes リソースの使用による独自のチャートの作
成。

アプリケーションのチャートとしてのパッケージ化および共有。

6.1.2. OpenShift の Helm チャートの Red Hat 認定

Red Hat OpenShift Container Platform にデプロイする全コンポーネントに対して、Red Hat による
Helm チャートの検証と認定を受けることができます。チャートは、自動化の Red Hat OpenShift 認定
ワークフローを経て、セキュリティーコンプライアンスを確保し、プラットフォームとの統合とサービ
ス全般が最適であることを保証します。認定はチャートの整合性を確保し、Helm チャートが Red Hat
OpenShift クラスターでシームレスに機能することを確認します。

6.1.3. 関連情報

Red Hat パートナーとしての Helm チャートの認定方法は、OpenShift の Helm チャートの Red
Hat 認定 を参照してください。

Red Hat パートナー向けの OpenShift および Container 認定に関する情報は、Partner Guide
for OpenShift and Container Certification を参照してください。

チャートの一覧については、Red Hat Helm インデックス ファイルを参照してください。

Red Hat Marketplace で利用可能なチャートを確認できます。詳細は、Red Hat Marketplace の
使用 を参照してください。

6.2. HELM のインストール

以下のセクションでは、CLI を使用して各種の異なるプラットフォームに Helm をインストールする方
法を説明します。

OpenShift Container Platform 4.9 アプリケーションのビルド

96

https://redhat-connect.gitbook.io/partner-guide-for-red-hat-openshift-and-container/helm-chart-certification/overview
https://redhat-connect.gitbook.io/partner-guide-for-red-hat-openshift-and-container/
https://charts.openshift.io/index.yaml
https://marketplace.redhat.com/en-us/documentation/access-red-hat-marketplace
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#red-hat-marketplace

また、OpenShift Container Platform Web コンソールから最新のバイナリーへの URL を見つけるに
は、右上隅の ? アイコンをクリックし、Command Line Tools を選択します。

前提条件

Go バージョン 1.13 以降がインストールされている。

6.2.1. Linux の場合

1. Helm バイナリーをダウンロードし、これをパスに追加します。

Linux (x86_64, amd64)

Linux on IBM Z and LinuxONE (s390x)

Linux on IBM Power (ppc64le)

2. バイナリーファイルを実行可能にします。

3. インストールされたバージョンを確認します。

出力例

6.2.2. Windows 7/8 の場合

1. 最新の .exe ファイル をダウンロードし、希望のディレクトリーに配置します。

2. Start を右クリックし、Control Panel をクリックします。

3. System and Security を選択してから System をクリックします。

4. 左側のメニューから、Advanced systems settings を選択し、下部にある Environment
Variables をクリックします。

5. Variable セクションから Path を選択し、Edit をクリックします。

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-
amd64 -o /usr/local/bin/helm

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-
s390x -o /usr/local/bin/helm

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-
ppc64le -o /usr/local/bin/helm

chmod +x /usr/local/bin/helm

$ helm version

version.BuildInfo{Version:"v3.0",
GitCommit:"b31719aab7963acf4887a1c1e6d5e53378e34d93", GitTreeState:"clean",
GoVersion:"go1.13.4"}

第6章 HELM チャートの使用

97

https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-windows-amd64.exe

6. New をクリックして、 .exe ファイルのあるフォルダーへのパスをフィールドに入力するか、
または Browse をクリックし、ディレクトリーを選択して OK をクリックします。

6.2.3. Windows 10 の場合

1. 最新の .exe ファイル をダウンロードし、希望のディレクトリーに配置します。

2. Search クリックして、env または environment を入力します。

3. Edit environment variables for your account を選択します。

4. Variable セクションから Path を選択し、Edit をクリックします。

5. New をクリックし、exe ファイルのあるディレクトリーへのパスをフィールドに入力するか、
または Browse をクリックし、ディレクトリーを選択して OK をクリックします。

6.2.4. MacOS の場合

1. Helm バイナリーをダウンロードし、これをパスに追加します。

2. バイナリーファイルを実行可能にします。

3. インストールされたバージョンを確認します。

出力例

6.3. カスタム HELM チャートリポジトリーの設定

以下の方法のいずれかを使用して、OpenShift Container Platform クラスターに Helm チャートをイン
ストールできます。

CLI

Web コンソールの Developer パースペクティブ。

Web コンソールの Developer パースペクティブの Developer Catalog には、クラスターで利用可能な
Helm チャートが表示されます。デフォルトで、これは Red Hat Helm チャートリポジトリーの
OpenShift Helm チャートの一覧を表示します。チャートの一覧については、Red Hat Helm インデック
ス ファイルを参照してください。

クラスター管理者は、デフォルトのリポジトリーとは別に複数の Helm チャートリポジトリーを追加
し、Developer Catalog でこれらのリポジトリーから Helm チャートを表示できます。

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-darwin-amd64
-o /usr/local/bin/helm

chmod +x /usr/local/bin/helm

$ helm version

version.BuildInfo{Version:"v3.0",
GitCommit:"b31719aab7963acf4887a1c1e6d5e53378e34d93", GitTreeState:"clean",
GoVersion:"go1.13.4"}

OpenShift Container Platform 4.9 アプリケーションのビルド

98

https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-windows-amd64.exe
https://charts.openshift.io/index.yaml

6.3.1. OpenShift Container Platform クラスターでの Helm チャートのインストール

前提条件

実行中の OpenShift Container Platform クラスターがあり、ログインしている。

Helm がインストールされている。

手順

1. 新規プロジェクトを作成します。

2. Helm チャートのリポジトリーをローカルの Helm クライアントに追加します。

出力例

3. リポジトリーを更新します。

4. サンプルの HashiCorp Vault をインストールします。

出力例

5. チャートが正常にインストールされたことを確認します。

出力例

$ oc new-project vault

$ helm repo add openshift-helm-charts https://charts.openshift.io/

"openshift-helm-charts" has been added to your repositories

$ helm repo update

$ helm install example-vault openshift-helm-charts/hashicorp-vault

NAME: example-vault
LAST DEPLOYED: Fri Mar 11 12:02:12 2022
NAMESPACE: vault
STATUS: deployed
REVISION: 1
NOTES:
Thank you for installing HashiCorp Vault!

$ helm list

NAME NAMESPACE REVISION UPDATED STATUS CHART
APP VERSION
example-vault vault 1 2022-03-11 12:02:12.296226673 +0530 IST deployed vault-
0.19.0 1.9.2

第6章 HELM チャートの使用

99

6.3.2. 開発者パースペクティブを使用した Helm チャートのインストール

Web コンソールまたは CLI コンソールの Developer パースペクティブを使用して、Developer
Catalog に一覧表示されている Helm チャートからチャートを選択し、インストールできます。Helm
チャートをインストールして Helm リリースを作成し、Web コンソールの Developer パースペクティ
ブに表示できます。

前提条件

Web コンソールにログインしており、Developer パースペクティブ に切り替えている。

手順

Developer Catalog で提供される Helm チャートから Helm リリースを作成するには、以下を実行しま
す。

1. Developer パースペクティブで、+Add ビューに移動し、プロジェクトを選択します。次
に、Helm Chart オプションをクリックし、Developer Catalog にすべての Helm チャートを表
示します。

2. チャートを選択し、チャートの説明、README、チャートについてのその他の詳細を確認しま
す。

3. Install Helm Chart をクリックします。

図6.1 Developer カタログの Helm チャート

4. Install Helm Chart ページで以下を行います。

a. リリースの固有の名前を Release Name フィールドに入力します。

b. Chart Version ドロップダウンリストから必要なチャートのバージョンを選択します。

c. Form View または YAML View を使用して Helm チャートを設定します。

注記

OpenShift Container Platform 4.9 アプリケーションのビルド

100

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/web_console/#about-developer-perspective_web-console-overview

1

2

3

4

5

注記

利用可能な場合は、YAML View と Form View 間で切り替えることができま
す。ビューの切り替え時に、データは永続化されます。

d. Install をクリックして Helm リリースを作成します。リリースが表示される Topology
ビューにリダイレクトされます。Helm チャートにリリースノートがある場合、チャートは
事前に選択され、右側のパネルにそのリリースのリリースノートが表示されます。

サイドパネルで Actions ボタンを使用するか、または Helm リリースを右クリックして Helm リリース
のアップグレード、ロールバック、またはアンインストールを実行できます。

6.3.3. Web 端末での Helm の使用

Web コンソールの Developer パースペクティブで Web 端末を初期化して Helm を使用できます。詳細
は Web 端末の使用 を参照してください。

6.3.4. OpenShift Container Platform でのカスタム Helm チャートの作成

手順

1. 新規プロジェクトを作成します。

2. OpenShift Container Platform オブジェクトが含まれる Node.js チャートのサンプルをダウン
ロードします。

3. サンプルチャートを含むディレクトリーに移動します。

4. Chart.yaml ファイルを編集し、チャートの説明を追加します。

チャート API バージョン。これは、Helm 3 以上を必要とする Helm チャートの場合は v2
である必要があります。

チャートの名前。

チャートの説明。

アイコンとして使用するイメージへの URL。

Semantic Versioning (SemVer) 2.0.0 仕様に準拠したチャートのバージョン。

$ oc new-project nodejs-ex-k

$ git clone https://github.com/redhat-developer/redhat-helm-charts

$ cd redhat-helm-charts/alpha/nodejs-ex-k/

apiVersion: v2 1
name: nodejs-ex-k 2
description: A Helm chart for OpenShift 3
icon: https://static.redhat.com/libs/redhat/brand-assets/latest/corp/logo.svg 4
version: 0.2.1 5

第6章 HELM チャートの使用

101

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/web_console/#odc-using-web-terminal_odc-about-web-terminal

5. チャートが適切にフォーマットされていることを確認します。

出力例

6. 直前のディレクトリーレベルに移動します。

7. チャートをインストールします。

8. チャートが正常にインストールされたことを確認します。

出力例

6.3.5. カスタム Helm チャートリポジトリーの追加

クラスター管理者は、カスタムの Helm チャートリポジトリーをクラスターに追加し、Developer
Catalog のこれらのリポジトリーから Helm チャートへのアクセスを有効にできます。

手順

1. 新規の Helm Chart リポジトリーを追加するには、Helm Chart Repository カスタムリソース
(CR) をクラスターに追加する必要があります。

Helm チャートリポジトリー CR のサンプル

たとえば、Azure サンプルチャートリポジトリーを追加するには、以下を実行します。

$ helm lint

[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, 0 chart(s) failed

$ cd ..

$ helm install nodejs-chart nodejs-ex-k

$ helm list

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
nodejs-chart nodejs-ex-k 1 2019-12-05 15:06:51.379134163 -0500 EST deployed nodejs-
0.1.0 1.16.0

apiVersion: helm.openshift.io/v1beta1
kind: HelmChartRepository
metadata:
 name: <name>
spec:
 # optional name that might be used by console
 # name: <chart-display-name>
 connectionConfig:
 url: <helm-chart-repository-url>

OpenShift Container Platform 4.9 アプリケーションのビルド

102

2. Web コンソールで Developer Catalog に移動し、チャートリポジトリーの Helm チャートが表
示されることを確認します。
たとえば、Chart リポジトリー フィルターを使用して、リポジトリーから Helm チャートを検
索します。

図6.2 チャートリポジトリーのフィルター

注記

クラスター管理者がすべてのチャートリポジトリーを削除する場合は、+Add
ビュー、Developer Catalog、および左側のナビゲーションパネルで Helm オプ
ションを表示できません。

6.3.6. Helm チャートリポジトリーを追加するための認証情報および CA 証明書の作成

一部の Helm チャートリポジトリーに接続するには、認証情報とカスタム認証局 (CA) 証明書が必要で
す。Web コンソールと CLI を使用して認証情報と証明書を追加することができます。

手順

認証情報と証明書を設定し、CLI を使用して Helm チャートリポジトリーを追加します。

1. openshift-config namespace で、PEM でエンコードされた形式のカスタム CA 証明書で
ConfigMap を作成し、これを設定マップ内の ca-bundle.crt キーに保存します。

2. openshift-config namespace で、クライアント TLS 設定を追加するために Secret オブジェク
トを作成します。

$ cat <<EOF | oc apply -f -
apiVersion: helm.openshift.io/v1beta1
kind: HelmChartRepository
metadata:
 name: azure-sample-repo
spec:
 name: azure-sample-repo
 connectionConfig:
 url: https://raw.githubusercontent.com/Azure-Samples/helm-charts/master/docs
EOF

$ oc create configmap helm-ca-cert \
--from-file=ca-bundle.crt=/path/to/certs/ca.crt \
-n openshift-config

第6章 HELM チャートの使用

103

クライアント証明書とキーは PEM でエンコードされた形式であり、それぞれ tls.crt および
tls.key キーに保存される必要があります。

3. 以下のように Helm リポジトリーを追加します。

ConfigMap および Secret は、tlsConfig および ca フィールドを使用して
HelmChartRepository CR で使用されます。これらの証明書は、Helm リポジトリー URL への
接続に使用されます。

4. デフォルトでは、認証されたユーザーはすべて設定済みのチャートにアクセスできます。ただ
し、証明書が必要なチャートリポジトリーの場合は、以下のように openshift-config
namespace で helm-ca-cert 設定マップおよび helm-tls-configs シークレットへの読み取りア
クセスを提供する必要があります。

$ oc create secret tls helm-tls-configs \
--cert=/path/to/certs/client.crt \
--key=/path/to/certs/client.key \
-n openshift-config

$ cat <<EOF | oc apply -f -
apiVersion: helm.openshift.io/v1beta1
kind: HelmChartRepository
metadata:
 name: <helm-repository>
spec:
 name: <helm-repository>
 connectionConfig:
 url: <URL for the Helm repository>
 tlsConfig:
 name: helm-tls-configs
 ca:
 name: helm-ca-cert
EOF

$ cat <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: openshift-config
 name: helm-chartrepos-tls-conf-viewer
rules:
- apiGroups: [""]
 resources: ["configmaps"]
 resourceNames: ["helm-ca-cert"]
 verbs: ["get"]
- apiGroups: [""]
 resources: ["secrets"]
 resourceNames: ["helm-tls-configs"]
 verbs: ["get"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: openshift-config
 name: helm-chartrepos-tls-conf-viewer

OpenShift Container Platform 4.9 アプリケーションのビルド

104

6.3.7. 証明書レベルでの Helm チャートのフィルターリング

Developer Catalog の認定レベルに基づいて Helm チャートをフィルターできます。

手順

1. Developer パースペクティブで、+Add ビューに移動してプロジェクトを選択します。

2. Developer Catalog タイルから、Helm Chart オプションを選択して Developer Catalog です
べての Helm チャートを表示します。

3. Helm チャートの一覧の左側にあるフィルターを使用して、必要なチャートをフィルターしま
す。

Chart Repositories フィルターを使用して、Red Hat Certification Charts または
OpenShift Helm Charts が提供したチャートをフィルターします。

Source フィルターを使用して、Partners、Community または Red Hat から提供される

チャートをフィルターします。認定チャートはアイコン () で表示されます。

注記

プロバイダータイプが 1 つしかない場合は、Source フィルターは表示されません。

必要なチャートを選択してインストールできるようになりました。

6.3.8. Helm チャートリポジトリーの無効化

HelmChartRepository の disabled プロパティーを true に設定して、カタログにある特定の Helm
チャートリポジトリーからの Helm チャートを無効にできます。

手順

CLI を使用して Helm チャートリポジトリーを無効にするには、disabled: true フラグをカスタ
ムリソースに追加します。たとえば、Azure サンプルチャートリポジトリーを削除するには、
以下を実行します。

$ cat <<EOF | oc apply -f -
apiVersion: helm.openshift.io/v1beta1
kind: HelmChartRepository
metadata:
 name: azure-sample-repo
spec:
 connectionConfig:

subjects:
 - kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: 'system:authenticated'
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: helm-chartrepos-tls-conf-viewer
EOF

第6章 HELM チャートの使用

105

 url:https://raw.githubusercontent.com/Azure-Samples/helm-charts/master/docs
 disabled: true
EOF

Web コンソールを使用して、最近追加された Helm チャートリポジトリーを無効にするには、
以下を実行します。

1. Custom Resource Definitions に移動し、 HelmChartRepository カスタムリソースを検索
します。

2. Instances に移動し、無効にするリポジトリーを見つけ、その名前をクリックします。

3. YAML タブに移動し、spec セクションに disabled: true フラグを追加し、Save をクリッ
クします。

例

spec:
 connectionConfig:
 url: <url-of-the-repositoru-to-be-disabled>
 disabled: true

リポジトリーは無効にされ、カタログには表示されなくなります。

6.4. HELM リリースの使用

Web コンソールの Developer パースペクティブを使用し、Helm リリースの更新、ロールバック、また
はアンインストールを実行できます。

6.4.1. 前提条件

Web コンソールにログインしており、Developer パースペクティブ に切り替えている。

6.4.2. Helm リリースのアップグレード

Helm リリースをアップグレードして、新規チャートバージョンにアップグレードしたり、リリース設
定を更新したりできます。

手順

1. Topology ビューで Helm リリースを選択し、サイドパネルを表示します。

2. Actions → Upgrade Helm Release をクリックします。

3. Upgrade Helm Release ページで、アップグレード先とする Chart Version を選択してから
Upgrade をクリックし、別の Helm リリースを作成します。Helm Releases ページには 2 つの
リビジョンが表示されます。

6.4.3. Helm リリースのロールバック

リリースに失敗する場合、Helm リリースを直前のバージョンにロールバックできます。

手順

OpenShift Container Platform 4.9 アプリケーションのビルド

106

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/web_console/#about-developer-perspective_web-console-overview

Helm ビューを使用してリリースをロールバックするには、以下を実行します。

1. Developer パースペクティブで Helm ビューに移動し、namespace の Helm Releases を表示
します。

2. 一覧表示されているリソースに隣接する Options メニュー をクリックし、Rollback を選
択します。

3. Rollback Helm Release ページで、ロールバックする Revision を選択し、 Rollback をクリッ
クします。

4. Helm Releases ページで、チャートをクリックし、リリースの詳細およびリソースを表示しま
す。

5. Revision History タブに移動し、チャートのすべてのリビジョンを表示します。

図6.3 Helm リビジョン履歴

6. 必要な場合は、さらに特定のリビジョンに隣接する Options メニュー を使用して、ロー
ルバックするリビジョンを選択します。

6.4.4. Helm リリースのアンインストール

手順

1. Topology ビューで、 Helm リリースを右クリックし、Uninstall Helm Release を選択します。

2. 確認プロンプトでチャートの名前を入力し、Uninstall をクリックします。

第6章 HELM チャートの使用

107

第7章 デプロイメント

7.1. DEPLOYMENT および DEPLOYMENTCONFIG オブジェクトについて

OpenShift Container Platform の Deployment および DeploymentConfig API オブジェクトは、一般的
なユーザーアプリケーションに対する詳細な管理を行うためのよく似ているものの、異なる 2 つの方法
を提供します。これらは、以下の個別の API オブジェクトで設定されています。

アプリケーションの特定のコンポーネントの必要な状態を記述する、Pod テンプレートとして
の DeploymentConfig または Deployment。

DeploymentConfig オブジェクトには 1 つまたは複数の レプリケーションコントローラー が使
用され、これには Pod テンプレートとしてのデプロイメントの特定の時点の状態のレコードが
含まれます。同様に、Deployment オブジェクトには、レプリケーションコントローラーを継
承する 1 つ以上の replica sets が使用されます。

1 つまたは複数の Pod。 特定バージョンのアプリケーションのインスタンスを表します。

7.1.1. デプロイメントのビルディングブロック

デプロイメントおよびデプロイメント設定は、それぞれビルディングブロックとして、ネイティブ
Kubernetes API オブジェクトの ReplicaSet および ReplicationController の使用によって有効にされ
ます。

ユーザーは、DeploymentConfig オブジェクトまたはデプロイメントによって所有されるレプリケー
ションコントローラー、レプリカセットまたは Pod を操作する必要はありません。デプロイメントシ
ステムは変更を適切に伝播します。

ヒント

既存のデプロイメントストラテジーが特定のユースケースに適さない場合で、デプロイメントのライフ
サイクル期間中に複数の手順を手動で実行する必要がある場合は、カスタムデプロイメントストラテ
ジーを作成することを検討してください。

以下のセクションでは、これらのオブジェクトの詳細情報を提供します。

7.1.1.1. レプリケーションコントローラー

レプリケーションコントローラーは、指定した Pod のレプリカ数が常に実行されていることを確認し
ます。Pod の終了または削除が行われた場合に、レプリケーションコントローラーが機能し、定義した
数になるまでインスタンス化する数を増やします。同様に、必要以上の数の Pod が実行されている場
合には、定義された数に一致させるために必要な数の Pod を削除します。

レプリケーションコントローラー設定は以下で設定されています。

必要なレプリカ数 (これはランタイム時に調整可能)。

レプリケートされた Pod の作成時に使用する Pod 定義。

管理された Pod を識別するためのセレクター。

セレクターは、レプリケーションコントローラーが管理する Pod に割り当てられるラベルセットで
す。これらのラベルは、Pod 定義に組み込まれ、レプリケーションコントローラーがインスタンス化し
ます。レプリケーションコントローラーは、必要に応じて調節するために、セレクターを使用して、す

OpenShift Container Platform 4.9 アプリケーションのビルド

108

1

2

3

4

5

でに実行中の Pod 数を判断します。

レプリケーションコントローラーは、追跡もしませんが、負荷またはトラフィックに基づいて自動ス
ケーリングを実行することもありません。この場合は、レプリカ数を外部の自動スケーラーで調整する
必要があります。

以下は、レプリケーションコントローラー定義の例です。

実行する Pod のコピー数です。

実行する Pod のラベルセレクターです。

コントローラーが作成する Pod のテンプレートです。

Pod のラベルにはラベルセレクターからのものが含まれている必要があります。

パラメーター拡張後の名前の最大長さは 63 文字です。

7.1.1.2. レプリカセット

レプリケーションコントローラーと同様に、ReplicaSet は、指定された数の Pod レプリカが特定の時
点で実行されるようにするネイティブの Kubernetes API オブジェクトです。レプリカセットとレプリ
ケーションコントローラーの相違点は、レプリカセットではセットベースのセレクター要件をサポート
し、レプリケーションコントローラーは等価ベースのセレクター要件のみをサポートする点です。

注記

カスタム更新のオーケストレーションが必要な場合や、更新が全く必要のない場合にの
みレプリカセットを使用します。それ以外はデプロイメントを使用します。レプリカ
セットは個別に使用できますが、Pod 作成/削除/更新のオーケストレーションにはデプ
ロイメントでレプリカセットを使用します。デプロイメントは、自動的にレプリカセッ
トを管理し、Pod に宣言的更新を加えるので、作成するレプリカセットを手動で管理す
る必要はありません。

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend-1
spec:
 replicas: 1 1
 selector: 2
 name: frontend
 template: 3
 metadata:
 labels: 4
 name: frontend 5
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

第7章 デプロイメント

109

1

2

3

以下は、ReplicaSet 定義の例になります。

一連のリソースに対するラベルのクエリー。matchLabels と matchExpressions の結果は論理的
に結合されます。

セレクターに一致するラベルでリソースを指定する等価ベースのセレクター

キーをフィルターするセットベースのセレクター。これは、tier と同等のキー、frontend と同等
の値のリソースをすべて選択します。

7.1.2. DeploymentConfig オブジェクト

レプリケーションコントローラーでビルドする OpenShift Container Platform は DeploymentConfig
オブジェクトの概念を使用したソフトウェアの開発およびデプロイメントライフサイクルの拡張サポー
トを追加します。最も単純な場合に、DeploymentConfig オブジェクトは新規アプリケーションコント
ローラーのみを作成し、それに Pod を起動させます。

ただし、DeploymentConfig オブジェクトの OpenShift Container Platform デプロイメントは、イメー
ジの既存デプロイメントから新規デプロイメントに移行する機能を提供し、レプリケーションコント
ローラーの作成前後に実行されるフックも定義します。

DeploymentConfig デプロイメントシステムは以下の機能を提供します。

アプリケーションを実行するためのテンプレートである DeploymentConfig オブジェクト。

イベントへの対応として自動化されたデプロイメントを駆動するトリガー。

直前のバージョンから新規バージョンに移行するためのユーザーによるカスタマイズが可能な

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: frontend-1
 labels:
 tier: frontend
spec:
 replicas: 3
 selector: 1
 matchLabels: 2
 tier: frontend
 matchExpressions: 3
 - {key: tier, operator: In, values: [frontend]}
 template:
 metadata:
 labels:
 tier: frontend
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

OpenShift Container Platform 4.9 アプリケーションのビルド

110

直前のバージョンから新規バージョンに移行するためのユーザーによるカスタマイズが可能な
デプロイメントストラテジー。ストラテジーは、デプロイメントプロセスと一般的に呼ばれる
Pod 内で実行されます。

デプロイメントのライフサイクル中の異なる時点でカスタム動作を実行するためのフックの
セット (ライフサイクルフック)。

デプロイメントの失敗時に手動または自動でロールバックをサポートするためのアプリケー
ションのバージョン管理。

レプリケーションの手動および自動スケーリング。

DeploymentConfig オブジェクトを作成すると、レプリケーションコントローラー
が、DeploymentConfig オブジェクトの Pod テンプレートとして作成されます。デプロイメントが変
更されると、最新の Pod テンプレートで新しいレプリケーションコントローラーが作成され、デプロ
イメントプロセスが実行されて以前のレプリケーションコントローラーのスケールダウン、および新規
レプリケーションコントーラーのスケールアップが行われます。

アプリケーションのインスタンスは、作成時にサービ出力ダーバランサーやルーターに対して自動的に
追加/削除されます。アプリケーションが正常なシャットダウン機能をサポートしている限り、アプリ
ケーションが TERM シグナルを受け取ると、実行中のユーザー接続が通常通り完了できるようにする
ことができます。

OpenShift Container Platform DeploymentConfig オブジェクトは以下の詳細を定義します。

1. ReplicationController 定義の要素。

2. 新規デプロイメントの自動作成のトリガー。

3. デプロイメント間の移行ストラテジー。

4. ライフサイクルフック。

デプロイヤー Pod は、デプロイメントがトリガーされるたびに、手動または自動であるかを問わず、
(古いレプリケーションコントローラーの縮小、新規レプリケーションコントローラーの拡大および
フックの実行などの) デプロイメントを管理します。デプロイメント Pod は、デプロイメントのログを
維持するためにデプロイメントの完了後は無期限で保持されます。デプロイメントが別のものに置き換
えられる場合、以前のレプリケーションコントローラーは必要に応じて簡単なロールバックを有効にで
きるように保持されます。

DeploymentConfig 定義の例

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
 name: frontend
spec:
 replicas: 5
 selector:
 name: frontend
 template: { ... }
 triggers:
 - type: ConfigChange 1
 - imageChangeParams:
 automatic: true
 containerNames:
 - helloworld

第7章 デプロイメント

111

1

2

3

設定変更トリガーにより、デプロイメント設定の Pod テンプレートに変更があると検出されるた
びに、新規のレプリケーションコントローラーが作成されます。

イメージ変更トリガーにより、新規デプロイメントが、バッキングイメージの新規バージョンが名
前付きイメージストリームで利用可能になる際には常に作成されます。

デフォルトの Rolling ストラテジーにより、デプロイメント間のダウンタイムなしの移行が行われ
ます。

7.1.3. デプロイメント

Kubernetes は、Deployment という OpenShift Container Platform のファーストクラスのネイティブ
API オブジェクトを提供します。Deployment オブジェクトは、OpenShift Container Platform 固有の
DeploymentConfig オブジェクトとして機能します。

DeploymentConfig オブジェクトの様に、Deployment オブジェクトは Pod テンプレートとして、ア
プリケーションの特定コンポーネントの必要な状態を記述します。デプロイメントは、Pod のライフサ
イクルをオーケストレーションするレプリカセットを作成します。

たとえば、以下のデプロイメント定義はレプリカセットを作成し、1 つの hello-openshift Pod を起動し
ます。

デプロイメントの定義

7.1.4. Deployment および DeploymentConfig オブジェクトの比較

Kubernetes Deployment および OpenShift Container Platform でプロビジョニングされる

 from:
 kind: ImageStreamTag
 name: hello-openshift:latest
 type: ImageChange 2
 strategy:
 type: Rolling 3

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-openshift
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello-openshift
 template:
 metadata:
 labels:
 app: hello-openshift
 spec:
 containers:
 - name: hello-openshift
 image: openshift/hello-openshift:latest
 ports:
 - containerPort: 80

OpenShift Container Platform 4.9 アプリケーションのビルド

112

DeploymentConfig オブジェクトの両方が OpenShift Container Platform でサポートされています
が、DeploymentConfig オブジェクトで提供される特定の機能または動作が必要でない場
合、Deployment を使用することが推奨されます。

以下のセクションでは、使用するタイプの決定に役立つ 2 つのオブジェクト間の違いを詳述します。

7.1.4.1. 設計

Deployment と DeploymentConfig オブジェクトの重要な違いの 1 つとして、ロールアウトプロセスで
各設計で選択される CAP theorem (原則) のプロパティーがあります。DeploymentConfig オブジェク
トは整合性を優先しますが、Deployments オブジェクトは整合性よりも可用性を優先します。

DeploymentConfig オブジェクトの場合、デプロヤー Pod を実行するノードがダウンする場合、ノー
ドの置き換えは行われません。プロセスは、ノードが再びオンラインになるまで待機するか、または手
動で削除されます。ノードを手動で削除すると、対応する Pod も削除されます。つまり、kubelet は関
連付けられた Pod も削除するため、Pod を削除してロールアウトの固定解除を行うことはできませ
ん。

一方、Deployment ロールアウトはコントローラーマネージャーから実行されます。コントローラーマ
ネージャーはマスター上で高可用性モードで実行され、リーダー選択アルゴリズムを使用して可用性を
整合性よりも優先するように設定します。障害の発生時には、他の複数のマスターが同時に同じデプロ
イメントに対して作用する可能性がありますが、この問題は障害の発生直後に調整されます。

7.1.4.2. DeploymentConfig オブジェクト固有の機能

自動ロールバック
現時点で、デプロイメントでは、問題の発生時の最後に正常にデプロイされたレプリカセットへの自動
ロールバックをサポートしていません。

トリガー
Deployment の場合、デプロイメントの Pod テンプレートに変更があるたびに新しいロールアウトが自
動的にトリガーされるので、暗黙的な設定変更トリガーが含まれます。Pod テンプレートの変更時に新
たなロールアウトが不要な場合には、デプロイメントを以下のように停止します。

ライフサイクルフック
Deployment ではライフサイクルフックをサポートしていません。

カスタムストラテジー
デプロイメントでは、ユーザーが指定するカスタムデプロイメントストラテジーをサポートしていませ
ん。

7.1.4.3. デプロイメント固有の機能

ロールオーバー
Deployment オブジェクトのデプロイメントプロセスは、すべての新規ロールアウトにデプロイヤー
Pod を使用する DeploymentConfig オブジェクトとは対照的に、コントローラーループで実行されま
す。つまり、Deployment オブジェクトにはできるだけ多くのアクティブなレプリカセットを指定する
ことができ、最終的にデプロイメントコントローラーが以前のすべてのレプリカセットをスケールダウ
ンし、最新のものをスケールアップします。

DeploymentConfig オブジェクトでは、実行できるデプロイヤー Pod は最大 1 つとなっています。複
数のデプロイヤーがある場合は競合が生じ、それぞれが最新のレプリケーションコントローラーである
と考えるコントローラーをスケールアップしようとします。これにより、2 つのレプリケーションコン

$ oc rollout pause deployments/<name>

第7章 デプロイメント

113

https://en.wikipedia.org/wiki/CAP_theorem

トローラーのみを一度にアクティブにできます。最終的には Deployment オブジェクトのロールアウト
が加速します。

比例スケーリング
デプロイメントコントローラーのみが Deployment オブジェクトが所有する新旧のレプリカセットのサ
イズについての信頼できる情報源であるため、継続中のロールアウトのスケーリングが可能です。追加
のレプリカはレプリカセットのサイズに比例して分散されます。

DeploymentConfig オブジェクトは、コントローラーが新規レプリケーションコントローラーのサイズ
に関してデプロイヤープロセスと競合するためにロールアウトが続行されている場合にスケーリングで
きません。

ロールアウト中の一時停止
Deployment はいつでも一時停止できます。つまり、継続中のロールアウトも一時停止できます。一
方、デプロイヤー Pod は現時点で一時停止できないので、ロールアウト時にデプロイメントを一時停
止しようとしても、デプロイヤープロセスはこの影響を受けず、完了するまで続行されます。

7.2. デプロイメントプロセスの管理

7.2.1. DeploymentConfig オブジェクトの管理

DeploymentConfig オブジェクトは、OpenShift Container Platform Web コンソールの Workloads
ページからか、または oc CLI を使用して管理できます。以下の手順は、特に指定がない場合の CLI の
使用法を示しています。

7.2.1.1. デプロイメントの開始

アプリケーションのデプロイメントプロセスを開始するために、ロールアウトを開始できます。

手順

1. 既存の DeploymentConfig から新規デプロイメントプロセスを開始するには、以下のコマンド
を実行します。

注記

デプロイメントプロセスが進行中の場合には、このコマンドを実行すると、メッ
セージが表示され、新規レプリケーションコントローラー はデプロイされませ
ん。

7.2.1.2. デプロイメントの表示

アプリケーションの利用可能なすべてのリビジョンについての基本情報を取得するためにデプロイメン
トを表示できます。

手順

1. 現在実行中のデプロイメントプロセスを含む、指定した DeploymentConfig オブジェクトにつ
いての最近作成されたすべてのレプリケーションコントローラーについての詳細を表示するに
は、以下を実行します。

$ oc rollout latest dc/<name>

OpenShift Container Platform 4.9 アプリケーションのビルド

114

2. リビジョンに固有の詳細情報を表示するには、--revision フラグを追加します。

3. DeploymentConfig オブジェクトおよびその最新バージョンの詳細については、oc describe
コマンドを使用します。

7.2.1.3. デプロイメントの再試行

現行リビジョンの DeploymentConfig がデプロイに失敗した場合、デプロイメントプロセスを再起動
することができます。

手順

1. 失敗したデプロイメントプロセスを再起動するには、以下を実行します。

最新リビジョンのデプロイメントに成功した場合には、このコマンドによりメッセージが表示
され、デプロイメントプロセスは試行されません。

注記

デプロイメントを再試行すると、デプロイメントプロセスが再起動され、新しい
デプロイメントリビジョンは作成されません。再起動されたレプリケーションコ
ントローラーは、失敗したときと同じ設定を使用します。

7.2.1.4. デプロイメントのロールバック

ロールバックすると、アプリケーションを以前のリビジョンに戻します。この操作は、REST API、CLI
または Web コンソールで実行できます。

手順

1. 最後にデプロイして成功した設定のリビジョンにロールバックするには、以下を実行します。

DeploymentConfig オブジェクトのテンプレートは、undo コマンドで指定されたデプロイメ
ントのリビジョンと一致するように元に戻され、新規レプリケーションコントローラーが起動
します。--to-revision でリビジョンが指定されない場合には、最後に成功したデプロイメント
のリビジョンが使用されます。

2. ロールバックの完了直後に新規デプロイメントプロセスが誤って開始されないよう
に、DeploymentConfig オブジェクトのイメージ変更トリガーがロールバックの一部として無
効にされます。
イメージ変更トリガーを再度有効にするには、以下を実行します。

$ oc rollout history dc/<name>

$ oc rollout history dc/<name> --revision=1

$ oc describe dc <name>

$ oc rollout retry dc/<name>

$ oc rollout undo dc/<name>

第7章 デプロイメント

115

注記

デプロイメント設定は、最新のデプロイメントプロセスが失敗した場合の、設定の最後
に成功したリビジョンへの自動ロールバックもサポートします。この場合、デプロイに
失敗した最新のテンプレートはシステムで修正されないので、ユーザーがその設定の修
正を行う必要があります。

7.2.1.5. コンテナー内でのコマンドの実行

コマンドをコンテナーに追加して、イメージの ENTRYPOINT を却下してコンテナーの起動動作を変更
することができます。これは、指定したタイミングでデプロイメントごとに 1 回実行できるライフサイ
クルフックとは異なります。

手順

1. command パラメーターを、DeploymentConfig オブジェクトの spec フィールドを追加しま
す。command コマンドを変更する args フィールドも追加できます (または command が存在
しない場合には、ENTRYPOINT)。

たとえば、-jar および /opt/app-root/springboots2idemo.jar 引数を指定して、java コマンド
を実行するには、以下を実行します。

7.2.1.6. デプロイメントログの表示

手順

1. 指定の DeploymentConfig オブジェクトに関する最新リビジョンのログをストリームするに
は、以下を実行します。

$ oc set triggers dc/<name> --auto

spec:
 containers:
 - name: <container_name>
 image: 'image'
 command:
 - '<command>'
 args:
 - '<argument_1>'
 - '<argument_2>'
 - '<argument_3>'

spec:
 containers:
 - name: example-spring-boot
 image: 'image'
 command:
 - java
 args:
 - '-jar'
 - /opt/app-root/springboots2idemo.jar

$ oc logs -f dc/<name>

OpenShift Container Platform 4.9 アプリケーションのビルド

116

最新のリビジョンが実行中または失敗した場合には、コマンドが、Pod のデプロイを行うプロ
セスのログを返します。成功した場合には、アプリケーションの Pod からのログを返します。

2. 以前に失敗したデプロイメントプロセスからのログを表示することも可能です。 ただし、これ
らのプロセス (以前のレプリケーションコントローラーおよびデプロイヤーの Pod) が存在し、
手動でプルーニングまたは削除されていない場合に限ります。

7.2.1.7. デプロイメントトリガー

DeploymentConfig オブジェクトには、クラスター内のイベントに対応する新規デプロイメントプロセ
スの作成を駆動するトリガーを含めることができます。

警告

トリガーが DeploymentConfig オブジェクトに定義されていない場合は、設定変
更トリガーがデフォルトで追加されます。トリガーが空のフィールドとして定義さ
れている場合には、デプロイメントは手動で起動する必要があります。

設定変更デプロイメントトリガー
設定変更トリガーにより、DeploymentConfig オブジェクトの Pod テンプレートで設定の変更が検出
されるたびに、新規のレプリケーションコントローラーが作成されます。

注記

設定変更トリガーが DeploymentConfig オブジェクトに定義されている場合
は、DeploymentConfig オブジェクト自体が作成された直後に、最初のレプリケーショ
ンコントローラーが自動的に作成され、一時停止されません。

設定変更デプロイメントトリガー

イメージ変更デプロイメントトリガー
イメージ変更トリガーにより、イメージストリームタグの内容が変更されるたびに、(イメージの新規
バージョンがプッシュされるタイミングで) 新規レプリケーションコントローラーが作成されます。

イメージ変更デプロイメントトリガー

$ oc logs --version=1 dc/<name>



triggers:
 - type: "ConfigChange"

triggers:
 - type: "ImageChange"
 imageChangeParams:
 automatic: true 1
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"

第7章 デプロイメント

117

1 imageChangeParams.automatic フィールドが false に設定されると、トリガーが無効になりま
す。

上記の例では、origin-ruby-sample イメージストリームの latest タグの値が変更され、新しいイメー
ジの値が DeploymentConfig オブジェクトの helloworld コンテナーに指定されている現在のイメージ
と異なる場合に、helloworld コンテナーの新規イメージを使用して、新しいレプリケーションコント
ローラーが作成されます。

注記

イメージ変更トリガーが DeploymentConfig で定義され (設定変更トリガーおよび
automatic=false が指定されるか、または automatic=true が指定される)、イメージ変
更トリガーで参照されているイメージストリームタグがまだ存在していない場合、ビル
ドによりイメージがイメージストリームタグにインポートまたはプッシュされた直後に
初回のデプロイメントプロセスが自動的に開始されます。

7.2.1.7.1. デプロイメントトリガーの設定

手順

1. oc set triggers コマンドを使用して、DeploymentConfig オブジェクトにデプロイメントトリ
ガーを設定することができます。たとえば、イメージ変更トリガーを設定するには、以下のコ
マンドを使用します。

7.2.1.8. デプロイメントリソースの設定

デプロイメントは、ノードでリソース (メモリーおよび一時ストレージ) を消費する Pod を使用して完
了します。デフォルトで、Pod はバインドされていないノードのリソースを消費します。ただし、プロ
ジェクトにデフォルトのコンテナー制限が指定されている場合には、Pod はその上限までリソースを消
費します。

注記

デプロイメントの最小メモリー制限は 12 MB です。Cannot allocate memory Pod イベ
ントのためにコンテナーの起動に失敗すると、メモリー制限は低くなります。メモリー
制限を引き上げるか、またはこれを削除します。制限を削除すると、Pod は制限のない
ノードのリソースを消費できるようになります。

デプロイメントストラテジーの一部としてリソース制限を指定して、リソースの使用を制限することも
可能です。デプロイメントリソースは、Recreate (再作成)、Rolling (ローリング) または Custom (カス
タム) のデプロイメントストラテジーで使用できます。

手順

1. 以下の例では、resources、cpu、memory、および ephemeral-storage はそれぞれオプショ

 namespace: "myproject"
 containerNames:
 - "helloworld"

$ oc set triggers dc/<dc_name> \
 --from-image=<project>/<image>:<tag> -c <container_name>

OpenShift Container Platform 4.9 アプリケーションのビルド

118

1

2

3

1

1. 以下の例では、resources、cpu、memory、および ephemeral-storage はそれぞれオプショ
ンです。

cpu は CPU のユニットで、100m は 0.1 CPU ユニット (100 * 1e-3) を表します。

memory はバイト単位です。256Mi は 268435456 バイトを表します (256 * 2 ^ 20)。

ephemeral-storage はバイト単位です。1Gi は 1073741824 バイト (2 ^ 30) を表します。

ただし、クォータがプロジェクトに定義されている場合には、以下の 2 つの項目のいずれかが
必要です。

明示的な requests で設定した resources セクション:

requests オブジェクトは、クォータ内のリソース一覧に対応するリソース一覧を含み
ます。

プロジェクトで定義される制限の範囲。LimitRange オブジェクトのデフォルト値がデプロ
イメントプロセス時に作成される Pod に適用されます。

デプロイメントリソースを設定するには、上記のいずれかのオプションを選択してください。
それ以外の場合は、デプロイ Pod の作成は、クォータ基準を満たしていないことを示すメッ
セージを出して失敗します。

関連情報

リソース制限および要求の詳細は、Understanding managing application memoryを参照してく
ださい。

7.2.1.9. 手動のスケーリング

ロールバック以外に、手動スケーリングにより、レプリカの数を詳細に管理できます。

注記

Pod は oc autoscale コマンドを使用して自動スケーリングすることも可能です。

手順

type: "Recreate"
resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2
 ephemeral-storage: "1Gi" 3

 type: "Recreate"
 resources:
 requests: 1
 cpu: "100m"
 memory: "256Mi"
 ephemeral-storage: "1Gi"

第7章 デプロイメント

119

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/nodes/#nodes-cluster-resource-configure-about_nodes-cluster-resource-configure

1. DeploymentConfig オブジェクトを手動でスケーリングするには、oc scale コマンドを使用し
ます。たとえば、以下のコマンドは、frontend DeploymentConfig オブジェクトを 3 に設定し
ます。

レプリカの数は最終的に、DeploymentConfig オブジェクトの frontend で設定した希望のデ
プロイメントの状態と現在のデプロイメントの状態に伝播されます。

7.2.1.10. DeploymentConfig オブジェクトからのプライベートリポジトリーへのアクセス

シークレットを DeploymentConfig オブジェクトに追加し、プライベートリポジトリーからイメージ
にアクセスできるようにします。この手順では、OpenShift Container Platform Web コンソールを使用
する方法を示します。

手順

1. 新規プロジェクトを作成します。

2. Workloads ページから、プライベートイメージリポジトリーにアクセスするための認証情報を
含むシークレットを作成します。

3. DeploymentConfig オブジェクトを作成します。

4. DeploymentConfig エディターページで、Pull Secret を設定し、変更を保存します。

7.2.1.11. 特定のノードへの Pod の割り当て

ラベル付きのノードと合わせてノードセレクターを使用し、Pod の割り当てを制御することができま
す。

クラスター管理者は、プロジェクトに対して デフォルトのノードセレクターを設定して 特定のノード
に Pod の配置を制限できます。開発者は、Pod 設定にノードセレクターを設定して、ノードをさらに
制限することができます。

手順

1. Pod の作成時にセレクターを追加するには、Pod 設定を編集し、nodeSelector の値を追加し
ます。これは、単一の Pod 設定や、Pod テンプレートに追加できます。

ノードセレクターが有効な場合に作成される Pod は指定されたラベルを持つノードに割り当て
られます。ここで指定されるラベルは、クラスター管理者によって追加されるラベルと併用さ
れます。

たとえば、プロジェクトに type=user-node と region=east のラベルがクラスター管理者によ
り追加され、上記の disktype: ssd ラベルを Pod に追加した場合に、Pod は 3 つのラベルすべ
てが含まれるノードにのみスケジュールされます。

$ oc scale dc frontend --replicas=3

apiVersion: v1
kind: Pod
spec:
 nodeSelector:
 disktype: ssd
...

OpenShift Container Platform 4.9 アプリケーションのビルド

120

注記

ラベルには値を 1 つしか設定できないので、region=east が管理者によりデフォ
ルト設定されている Pod 設定に region=west のノードセレクターを設定する
と、Pod が全くスケジュールされなくなります。

7.2.1.12. 異なるサービスアカウントでの Pod の実行

デフォルト以外のサービスアカウントで Pod を実行できます。

手順

1. DeploymentConfig オブジェクトを編集します。

2. serviceAccount と serviceAccountName パラメーターを spec フィールドに追加し、使用す
るサービスアカウントを指定します。

7.3. デプロイメントストラテジーの使用

デプロイメントストラテジー は、アプリケーションを変更またはアップグレードする 1 つの方法です。
この目的は、ユーザーには改善が加えられていることが分からないように、ダウンタイムなしに変更を
加えることにあります。

エンドユーザーは通常ルーターによって処理されるルート経由でアプリケーションにアクセスするた
め、デプロイメントストラテジーは、 DeploymentConfig オブジェクト機能またはルーティング機能
に重点を置きます。デプロイメントに重点を置くストラテジーは、アプリケーションを使用するすべて
のルートに影響を与えます。ルーター機能を使用するストラテジーは個別のルートにターゲットを設定
します。

デプロイメントストラテジーの多くは、DeploymentConfig オブジェクトでサポートされ、追加のスト
ラテジーはルーター機能でサポートされます。このセクションでは、デプロイメントストラテジーにつ
いて説明します。

デプロイメントストラテジーの選択

デプロイメントストラテジーを選択する場合に、以下を考慮してください。

長期間実行される接続は正しく処理される必要があります。

データベースの変換は複雑になる可能性があり、アプリケーションと共に変換し、ロールバッ
クする必要があります。

アプリケーションがマイクロサービスと従来のコンポーネントを使用するハイブリッドの場合
には、移行の完了時にダウンタイムが必要になる場合があります。

これを実行するためのインフラストラクチャーが必要です。

テスト環境が分離されていない場合は、新規バージョンと以前のバージョン両方が破損してし

$ oc edit dc/<deployment_config>

spec:
 securityContext: {}
 serviceAccount: <service_account>
 serviceAccountName: <service_account>

第7章 デプロイメント

121

1

2

3

4

5

テスト環境が分離されていない場合は、新規バージョンと以前のバージョン両方が破損してし
まう可能性があります。

デプロイメントストラテジーは、readiness チェックを使用して、新しい Pod の使用準備ができている
かを判断します。readiness チェックに失敗すると、DeploymentConfig オブジェクトは、タイムアウ
トするまで Pod の実行を再試行します。デフォルトのタイムアウトは、10m で、値は
dc.spec.strategy.*params の TimeoutSeconds で設定します。

7.3.1. ローリングストラテジー

ローリングデプロイメントは、以前のバージョンのアプリケーションインスタンスを、新しいバージョ
ンのアプリケーションインスタンスに徐々に置き換えます。ローリングストラテジー
は、DeploymentConfig オブジェクトにストラテジーが指定されていない場合に使用されるデフォルト
のデプロイメントストラテジーです。

ローリングデプロイメントは通常、新規 Pod が readiness チェックによって ready になるのを待機して
から、古いコンポーネントをスケールダウンします。重大な問題が生じる場合、ローリングデプロイメ
ントは中止される場合があります。

ローリングデプロイメントの使用のタイミング

ダウンタイムを発生させずに、アプリケーションの更新を行う場合

以前のコードと新しいコードの同時実行がアプリケーションでサポートされている場合

ローリングデプロイメントとは、以前のバージョンと新しいバージョンのコードを同時に実行するとい
う意味です。これは通常、アプリケーションで N-1 互換性に対応する必要があります。

ローリングストラテジー定義の例

各 Pod が次に更新されるまで待機する時間。指定されていない場合、デフォルト値は 1 となりま
す。

更新してからデプロイメントステータスをポーリングするまでの間待機する時間。指定されていな
い場合、デフォルト値は 1 となります。

イベントのスケーリングを中断するまでの待機時間。この値はオプションです。デフォルトは 600
です。ここでの 中断 とは、自動的に以前の完全なデプロイメントにロールバックされるという意
味です。

maxSurge はオプションで、指定されていない場合には、デフォルト値は 25% となります。以下
の手順の次にある情報を参照してください。

maxUnavailable はオプションで、指定されていない場合には、デフォルト値は 25% となりま
す。以下の手順の次にある情報を参照してください。

strategy:
 type: Rolling
 rollingParams:
 updatePeriodSeconds: 1 1
 intervalSeconds: 1 2
 timeoutSeconds: 120 3
 maxSurge: "20%" 4
 maxUnavailable: "10%" 5
 pre: {} 6
 post: {}

OpenShift Container Platform 4.9 アプリケーションのビルド

122

6

す。以下の手順の次にある情報を参照してください。

pre および post はどちらもライフサイクルフックです。

ローリングストラテジー:

1. pre ライフサイクルフックを実行します。

2. サージ数に基づいて新しいレプリケーションコントローラーをスケールアップします。

3. 最大利用不可数に基づいて以前のレプリケーションコントローラーをスケールダウンします。

4. 新しいレプリケーションコントローラーが希望のレプリカ数に到達して、以前のレプリケー
ションコントローラーの数がゼロになるまで、このスケーリングを繰り返します。

5. post ライフサイクルフックを実行します。

重要

スケールダウン時には、ローリングストラテジーは Pod の準備ができるまで待機し、ス
ケーリングを行うことで可用性に影響が出るかどうかを判断します。Pod をスケール
アップしたにもかかわらず、準備が整わない場合には、デプロイメントプロセスは最終
的にタイムアウトして、デプロイメントに失敗します。

maxUnavailable パラメーターは、更新時に利用できない Pod の最大数です。maxSurge パラメーター
は、元の Pod 数を超えてスケジュールできる Pod の最大数です。どちらのパラメーターも、パーセン
ト (例: 10%) または絶対値 (例: 2) のいずれかに設定できます。両方のデフォルト値は 25% です。

以下のパラメーターを使用して、デプロイメントの可用性やスピードを調整できます。以下に例を示し
ます。

maxUnavailable*=0 および maxSurge*=20% が指定されていると、更新時および急速なス
ケールアップ時に完全なキャパシティーが維持されるようになります。

maxUnavailable*=10% および maxSurge*=0 が指定されていると、追加のキャパシティーを
使用せずに更新を実行します (インプレース更新)。

maxUnavailable*=10% および maxSurge*=10% の場合は、キャパシティーが失われる可能性
がありますが、迅速にスケールアップおよびスケールダウンします。

一般的に、迅速にロールアウトする場合は maxSurge を使用します。リソースのクォータを考慮し
て、一部に利用不可の状態が発生してもかまわない場合には、maxUnavailable を使用します。

7.3.1.1. カナリアデプロイメント

OpenShift Container Platform におけるすべてのローリングデプロイメントは カナリアデプロイメント
です。新規バージョン (カナリア) はすべての古いインスタンスが置き換えられる前にテストされます。
readiness チェックが成功しない場合、カナリアインスタンスは削除され、DeploymentConfig オブ
ジェクトは自動的にロールバックされます。

readiness チェックはアプリケーションコードの一部であり、新規インスタンスが使用できる状態にす
るために必要に応じて高度な設定をすることができます。(実際のユーザーワークロードを新規インス
タンスに送信するなどの) アプリケーションのより複雑なチェックを実装する必要がある場合、カスタ
ムデプロイメントや blue-green デプロイメントストラテジーの実装を検討してください。

7.3.1.2. ローリングデプロイメントの作成

第7章 デプロイメント

123

ローリングデプロイメントは OpenShift Container Platform のデフォルトタイプです。CLI を使用して
ローリングデプロイメントを作成できます。

手順

1. Quay.io にあるデプロイメントイメージのサンプルに基づいてアプリケーションを作成します。

2. ルーターをインストールしている場合は、ルートを使用してアプリケーションを利用できるよ
うにするか、または、サービス IP を直接使用してください。

3. deployment-example.<project>.<router_domain> でアプリケーションを参照し、v1 イメー
ジが表示されることを確認します。

4. レプリカが最大 3 つになるまで、DeploymentConfig オブジェクトをスケーリングします。

5. 新しいバージョンの例を latest とタグ付けして、新規デプロイメントを自動的にトリガーしま
す。

6. ブラウザーで、v2 イメージが表示されるまでページを更新します。

7. CLI を使用している場合は、以下のコマンドで、バージョン 1 に Pod がいくつあるか、バー
ジョン 2 にはいくつあるかを表示します。Web コンソールでは、Pod が徐々に v2 に追加さ
れ、v1 から削除されます。

デプロイメントプロセスで、新しいレプリケーションコントローラーが漸増的にスケールアップしま
す。(rediness チェックをパスした後に) 新規 Pod に ready のマークが付けられると、デプロイメント
プロセスは継続されます。

Pod が準備状態にならない場合、プロセスは中止し、デプロイメントは直前のバージョンにロールバッ
クします。

7.3.1.3. 開発者パースペクティブを使用したローリングデプロイメントの開始

前提条件

Web コンソールの Developer パースペクティブにいることを確認します。

Add ビューを使用してアプリケーションを作成し、これが Topology ビューにデプロイされて
いることを確認します。

手順

ローリングデプロイメントを開始し、アプリケーションをアップグレードするには、以下を実行しま
す。

$ oc new-app quay.io/openshifttest/deployment-example:latest

$ oc expose svc/deployment-example

$ oc scale dc/deployment-example --replicas=3

$ oc tag deployment-example:v2 deployment-example:latest

$ oc describe dc deployment-example

OpenShift Container Platform 4.9 アプリケーションのビルド

124

https://quay.io/repository/openshifttest/deployment-example

1. Developer パースペクティブの Topology ビューで、アプリケーションノードをクリック
し、Overview タブをパネル内に表示します。Update Strategy がデフォルトの Rolling ストラ
テジーに設定されていることに注意してください。

2. Actions ドロップダウンメニューで、Start Rollout を選択し、ローリング更新を開始します。
ローリングデプロイメントは、新しいバージョンのアプリケーションを起動してから、古い
バージョンを終了します。

図7.1 ローリング更新

関連情報

Developer パースペクティブを使用して OpenShift Container Platform でアプリケーションを
作成し、デプロイする

Topology ビューを使用してプロジェクトにアプリケーションを表示し、デプロイメントのス
テータスを確認し、それらと対話する

7.3.2. 再作成ストラテジー

再作成ストラテジーは、基本的なロールアウト動作で、デプロイメントプロセスにコードを挿入するた
めのライフサイクルフックをサポートします。

再作成ストラテジー定義の例

strategy:
 type: Recreate
 recreateParams: 1

第7章 デプロイメント

125

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-viewing-application-composition-using-topology-view

1

2

recreateParams はオプションです。

pre、mid、および post はライフサイクルフックです。

再作成ストラテジー:

1. pre ライフサイクルフックを実行します。

2. 以前のデプロイメントをゼロにスケールダウンします。

3. 任意の mid ライフサイクルフックを実行します。

4. 新規デプロイメントをスケールアップします。

5. post ライフサイクルフックを実行します。

重要

スケールアップ中に、デプロイメントのレプリカ数が複数ある場合は、デプロイメント
の最初のレプリカが準備できているかどうかが検証されてから、デプロイメントが完全
にスケールアップされます。最初のレプリカの検証に失敗した場合には、デプロイメン
トは失敗とみなされます。

再作成デプロイメントの使用のタイミング:

新規コードを起動する前に、移行または他のデータの変換を行う必要がある場合

以前のバージョンと新しいバージョンのアプリケーションコードの同時使用をサポートしてい
ない場合

複数のレプリカ間での共有がサポートされていない、RWO ボリュームを使用する場合

再作成デプロイメントでは、短い期間にアプリケーションのインスタンスが実行されなくなるので、ダ
ウンタイムが発生します。ただし、以前のコードと新しいコードは同時には実行されません。

7.3.3. 開発者パースペクティブを使用した再作成デプロイメントの開始

Web コンソールの Developer パースペクティブを使用して、デプロイメントストラテジーをデフォル
トのローリング更新から再作成更新に切り替えることができます。

前提条件

Web コンソールの Developer パースペクティブにいることを確認します。

Add ビューを使用してアプリケーションを作成し、これが Topology ビューにデプロイされて
いることを確認します。

手順

再作成更新ストラテジーに切り替え、アプリケーションをアップグレードするには、以下を実行しま
す。

 pre: {} 2
 mid: {}
 post: {}

OpenShift Container Platform 4.9 アプリケーションのビルド

126

1. Actions ドロップダウンメニューで、Edit Deployment Config を選択し、アプリケーションの
デプロイメント設定の詳細を確認します。

2. YAML エディターで spec.strategy.type を Recreate に変更し、Save をクリックします。

3. Topology ビューでノードを選択し、サイドパネルの Overview タブを表示します。これ
で、Update Strategy は Recreate に設定されます。

4. Actions ドロップダウンメニューを使用し、Start Rollout を選択し、再作成ストラテジーを使
用して更新を開始します。再作成ストラテジーはまず、アプリケーションの古いバージョンの
Pod を終了してから、新規バージョンの Pod を起動します。

図7.2 再作成更新

関連情報

Developer パースペクティブを使用して OpenShift Container Platform でアプリケーションを
作成し、デプロイする

Topology ビューを使用してプロジェクトにアプリケーションを表示し、デプロイメントのス
テータスを確認し、それらと対話する

第7章 デプロイメント

127

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-viewing-application-composition-using-topology-view

7.3.4. カスタムストラテジー

カスタムストラテジーでは、独自のデプロイメントの動作を提供できるようになります。

カスタムストラテジー定義の例

上記の例では、organization/strategy コンテナーイメージにより、デプロイメントの動作が提供され
ます。オプションの command 配列は、イメージの Dockerfile で指定した CMD ディレクティブを上
書きします。指定したオプションの環境変数は、ストラテジープロセスの実行環境に追加されます。

さらに、OpenShift Container Platform は以下の環境変数をデプロイメントプロセスに提供します。

環境変数 説明

OPENSHIFT_DEPLOYMENT_
NAME

新規デプロイメント名 (レプリケーションコントローラー)

OPENSHIFT_DEPLOYMENT_
NAMESPACE

新規デプロイメントの namespace

新規デプロイメントのレプリカ数は最初はゼロです。ストラテジーの目的は、ユーザーのニーズに最適
な仕方で対応するロジックを使用して新規デプロイメントをアクティブにすることにあります。

または customParams オブジェクトを使用して、カスタムのデプロイメントロジックを、既存のデプ
ロイメントストラテジーに挿入します。カスタムのシェルスクリプトロジックを指定して、openshift-
deploy バイナリーを呼び出します。カスタムのデプロイヤーコンテナーイメージを用意する必要はあ
りません。ここでは、代わりにデフォルトの OpenShift Container Platform デプロイヤーイメージが使
用されます。

この設定により、以下のようなデプロイメントになります。

strategy:
 type: Custom
 customParams:
 image: organization/strategy
 command: ["command", "arg1"]
 environment:
 - name: ENV_1
 value: VALUE_1

strategy:
 type: Rolling
 customParams:
 command:
 - /bin/sh
 - -c
 - |
 set -e
 openshift-deploy --until=50%
 echo Halfway there
 openshift-deploy
 echo Complete

OpenShift Container Platform 4.9 アプリケーションのビルド

128

1

カスタムデプロイメントストラテジーのプロセスでは、OpenShift Container Platform API または
Kubernetes API へのアクセスが必要な場合には、ストラテジーを実行するコンテナーは、認証用のコン
テナーで利用可能なサービスアカウントのトークンを使用できます。

7.3.5. ライフサイクルフック

ローリングおよび再作成ストラテジーは、ストラテジーで事前に定義したポイントでデプロイメントプ
ロセスに動作を挿入できるようにする ライフサイクルフック またはデプロイメントフックをサポート
します。

pre ライフサイクルフックの例

execNewPod は Pod ベースのライフサイクルフックです。

フックにはすべて、フックに問題が発生した場合にストラテジーが取るべきアクションを定義する 失敗
ポリシー が含まれます。

Abort フックに失敗すると、デプロイメントプロセスも失敗とみなされます。

Retry フックの実行は、成功するまで再試行されます。

Ignore フックの失敗は無視され、デプロイメントは続行されます。

フックには、フックの実行方法を記述するタイプ固有のフィールドがあります。現在、フックタイプと
してサポートされているのは Pod ベースのフックのみで、このフックは execNewPod フィールドで指
定されます。

Pod ベースのライフサイクルフック
Pod ベースのライフサイクルフックは、DeploymentConfig オブジェクトのテンプレートをベースとす
る新しい Pod でフックコードを実行します。

以下のデプロイメントの例は簡素化されており、この例ではローリングストラテジーを使用します。簡
潔にまとめられるように、トリガーおよびその他の詳細は省略しています。

Started deployment #2
--> Scaling up custom-deployment-2 from 0 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-2 up to 1
--> Reached 50% (currently 50%)
Halfway there
--> Scaling up custom-deployment-2 from 1 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-1 down to 1
 Scaling custom-deployment-2 up to 2
 Scaling custom-deployment-1 down to 0
--> Success
Complete

pre:
 failurePolicy: Abort
 execNewPod: {} 1

第7章 デプロイメント

129

1

2

3

4

helloworld の名前は spec.template.spec.containers[0].name を参照します。

この command は、openshift/origin-ruby-sample イメージで定義される ENTRYPOINT を上書
きします。

env は、フックコンテナーの環境変数です (任意)。

volumes は、フックコンテナーのボリューム参照です (任意)。

この例では、pre フックは、helloworld コンテナーからの openshift/origin-ruby-sample イメージを
使用して新規 Pod で実行されます。フック Pod には以下のプロパティーが設定されます。

フックコマンドは /usr/bin/command arg1 arg2 です。

フックコンテナーには、CUSTOM_VAR1=custom_value1 環境変数が含まれます。

フックの失敗ポリシーは Abort で、フックが失敗するとデプロイメントプロセスも失敗しま
す。

フック Pod は、DeploymentConfig オブジェクト Pod から data ボリュームを継承します。

7.3.5.1. ライフサイクルフックの設定

CLI を使用してデプロイメント用に、ライフサイクルフックまたはデプロイメントフックを設定できま
す。

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: frontend
spec:
 template:
 metadata:
 labels:
 name: frontend
 spec:
 containers:
 - name: helloworld
 image: openshift/origin-ruby-sample
 replicas: 5
 selector:
 name: frontend
 strategy:
 type: Rolling
 rollingParams:
 pre:
 failurePolicy: Abort
 execNewPod:
 containerName: helloworld 1
 command: ["/usr/bin/command", "arg1", "arg2"] 2
 env: 3
 - name: CUSTOM_VAR1
 value: custom_value1
 volumes:
 - data 4

OpenShift Container Platform 4.9 アプリケーションのビルド

130

手順

1. oc set deployment-hook コマンドを使用して、必要なフックのタイプを設定します (--pre、--
mid、または --post)。たとえば、デプロイメント前のフックを設定するには、以下を実行しま
す。

7.4. ルートベースのデプロイメントストラテジーの使用

デプロイメントストラテジーは、アプリケーションを進化させる手段として使用します。一部のストラ
テジーは Deployment オブジェクトを使用して、アプリケーションに解決されるすべてのルートのユー
ザーが確認できる変更を実行します。このセクションで説明される他の高度なストラテジーでは、ルー
ターを Deployment オブジェクトと併用して特定のルートに影響を与えます。

最も一般的なルートベースのストラテジーとして blue-green デプロイメント を使用します。新規バー
ジョン (green バージョン) を、テストと評価用に起動しつつ、安定版 (blue バージョン) をユーザーが
継続して使用します。準備が整ったら、green バージョンに切り替えられます。問題が発生した場合に
は、blue バージョンに戻すことができます。

一般的な別のストラテジーとして、A/B バージョン がいずれも、同時にアクティブな状態で、A バー
ジョンを使用するユーザーも、B バージョンを使用するユーザーもいるという方法があります。これ
は、ユーザーインターフェイスや他の機能の変更をテストして、ユーザーのフィードバックを取得する
ために使用できます。また、ユーザーに対する問題の影響が限られている場合に、実稼働のコンテキス
トで操作が正しく行われていることを検証するのに使用することもできます。

カナリアデプロイメントでは、新規バージョンをテストしますが、問題が検出されると、すぐに以前の
バージョンにフォールバックされます。これは、上記のストラテジーどちらでも実行できます。

ルートベースのデプロイメントストラテジーでは、サービス内の Pod 数はスケーリングされません。
希望とするパフォーマンスの特徴を維持するには、デプロイメント設定をスケーリングする必要がある
場合があります。

7.4.1. プロキシーシャードおよびトラフィック分割

実稼働環境で、特定のシャードに到達するトラフィックの分散を正確に制御できます。多くのインスタ
ンスを扱う場合は、各シャードに相対的なスケールを使用して、割合ベースのトラフィックを実装でき
ます。これは、他の場所で実行中の別のサービスやアプリケーションに転送または分割する プロキシー
シャード とも適切に統合されます。

最も単純な設定では、プロキシーは要求を変更せずに転送します。より複雑な設定では、受信要求を複
製して、別のクラスターだけでなく、アプリケーションのローカルインスタンスにも送信して、結果を
比較することができます。他のパターンとしては、DR のインストールのキャッシュを保持したり、分
析目的で受信トラフィックをサンプリングすることができます。

TCP (または UDP) のプロキシーは必要なシャードで実行できます。oc scale コマンドを使用して、プ
ロキシーシャードで要求に対応するインスタンスの相対数を変更してください。より複雑なトラフィッ
クを管理する場合には、OpenShift Container Platform ルーターを比例分散機能でカスタマイズするこ
とを検討してください。

7.4.2. N-1 互換性

新規コードと以前のコードが同時に実行されるアプリケーションの場合は、新規コードで記述された

$ oc set deployment-hook dc/frontend \
 --pre -c helloworld -e CUSTOM_VAR1=custom_value1 \
 --volumes data --failure-policy=abort -- /usr/bin/command arg1 arg2

第7章 デプロイメント

131

新規コードと以前のコードが同時に実行されるアプリケーションの場合は、新規コードで記述された
データが、以前のバージョンのコードで読み込みや処理 (または正常に無視) できるように注意する必要
があります。これは、スキーマの進化と呼ばれる複雑な問題です。

これは、ディスクに保存したデータ、データベース、一時的なキャッシュ、ユーザーのブラウザーセッ
ションの一部など、多数の形式を取ることができます。多くの Web アプリケーションはローリングデ
プロイメントをサポートできますが、アプリケーションをテストし、設計してこれに対応させることが
重要です。

アプリケーションによっては、新旧のコードが並行的に実行されている期間が短いため、バグやユー
ザーのトランザクションに失敗しても許容範囲である場合があります。別のアプリケーションでは失敗
したパターンが原因で、アプリケーション全体が機能しなくなる場合もあります。

N-1 互換性を検証する 1 つの方法として、A/B デプロイメントを使用できます。 制御されたテスト環境
で、以前のコードと新しいコードを同時に実行して、新規デプロイメントに流れるトラフィックが以前
のデプロイメントで問題を発生させないかを確認します。

7.4.3. 正常な終了

OpenShift Container Platform および Kubernetes は、負荷分散のローテーションから削除する前にア
プリケーションインスタンスがシャットダウンする時間を設定します。ただし、アプリケーションで
は、終了前にユーザー接続が正常に中断されていることを確認する必要があります。

シャットダウン時に、OpenShift Container Platform はコンテナーのプロセスに TERM シグナルを送信
します。SIGTERM を受信すると、アプリケーションコードは、新規接続の受け入れを停止します。こ
れにより、ロードバランサーによって他のアクティブなインスタンスにトラフィックがルーティングさ
れるようになります。アプリケーションコードは、開放されている接続がすべて終了するか、または、
次の機会に個別接続が正常に終了されるまで待機してから終了します。

正常に終了する期間が終わると、終了されていないプロセスに KILL シグナルが送信され、プロセスが
即座に終了されます。Pod の terminationGracePeriodSeconds 属性または Pod テンプレートは正常
に終了する期間 (デフォルトの 30 秒) を制御し、必要に応じてこれらをアプリケーションごとにカスタ
マイズすることができます。

7.4.4. Blue-Green デプロイメント

Blue-green デプロイメントでは、同時にアプリケーションの 2 つのバージョンを実行し、実稼働版
(blue バージョン) からより新しいバージョン (green バージョン) にトラフィックを移動します。ルー
トでは、ローリングストラテジーまたは切り替えサービスを使用できます。

多くのアプリケーションは永続データに依存するので、N-1 互換性 をサポートするアプリケーションが
必要です。つまり、データを共有して、データ層を 2 つ作成し、データベース、ストアまたはディスク
間のライブマイグレーションを実装します。

新規バージョンのテストに使用するデータについて考えてみてください。実稼働データの場合には、新
規バージョンのバグにより、実稼働版を破損してしまう可能性があります。

7.4.4.1. Blue-Green デプロイメントの設定

Blue-green デプロイメントでは 2 つの Deployment を使用します。どちらも実行され、実稼働のデプ
ロイメントはルートが指定するサービスによって変わります。この際、各 Deployment オブジェクトは
異なるサービスに公開されます。

注記

OpenShift Container Platform 4.9 アプリケーションのビルド

132

注記

ルートは、Web (HTTP および HTTPS) トラフィックを対象としているので、この手法は
Web アプリケーションに最適です。

新規バージョンに新規ルートを作成し、これをテストすることができます。準備ができたら、実稼働
ルートのサービスが新規サービスを参照するように変更します。 新規 (green) バージョンは有効になり
ます。

必要に応じて以前のバージョンにサービスを切り替えて、以前の (blue) バージョンにロールバックする
ことができます。

手順

1. 2 つの独立したアプリケーションコンポーネントを作成します。

a. v1 イメージを example-blue サービスで実行するサンプルアプリケーションのコピーを作
成します。

b. example-green サービスで v2 イメージを使用する 2 つ目のコピーを作成します。

2. 以前のサービスを参照するルートを作成します。

3. bluegreen-example-<project>.<router_domain> でアプリケーションを参照し、v1 イメージ
が表示されることを確認します。

4. ルートを編集して、サービス名を example-green に変更します。

5. ルートが変更されたことを確認するには、v2 イメージが表示されるまで、ブラウザーを更新し
ます。

7.4.5. A/B デプロイメント

A/B デプロイメントストラテジーでは、新しいバージョンのアプリケーションを実稼働環境での制限さ
れた方法で試すことができます。実稼働バージョンは、ユーザーの要求の大半に対応し、要求の一部が
新しいバージョンに移動されるように指定できます。

各バージョンへの要求の割合を制御できるので、テストが進むにつれ、新しいバージョンへの要求を増
やし、最終的に以前のバージョンの使用を停止することができます。各バージョン要求負荷を調整する
際に、期待どおりのパフォーマンスを出せるように、各サービスの Pod 数もスケーリングする必要が
生じる場合があります。

ソフトウェアのアップグレードに加え、この機能を使用してユーザーインターフェイスのバージョンを
検証することができます。以前のバージョンを使用するユーザーと、新しいバージョンを使用するユー
ザーが出てくるので、異なるバージョンに対するユーザーの反応を評価して、設計上の意思決定を知ら
せることができます。

$ oc new-app openshift/deployment-example:v1 --name=example-blue

$ oc new-app openshift/deployment-example:v2 --name=example-green

$ oc expose svc/example-blue --name=bluegreen-example

$ oc patch route/bluegreen-example -p '{"spec":{"to":{"name":"example-green"}}}'

第7章 デプロイメント

133

このデプロイメントを有効にするには、以前のバージョンと新しいバージョンは同時に実行できるほど
類似している必要があります。これは、バグ修正リリースや新機能が以前の機能と干渉しないようにす
る場合の一般的なポイントになります。これらのバージョンが正しく連携するには N-1 互換性が必要で
す。

OpenShift Container Platform は、Web コンソールと CLI で N-1 互換性をサポートします。

7.4.5.1. A/B テスト用の負荷分散

ユーザーは複数のサービスでルートを設定します。各サービスは、アプリケーションの 1 つのバージョ
ンを処理します。

各サービスには weight が割り当てられ、各サービスへの要求の部分については service_weight を
sum_of_weights で除算します。エンドポイントの weights の合計がサービスの weight になるよう
に、サービスごとの weight がサービスのエンドポイントに分散されます。

ルートにはサービスを最大で 4 つ含めることができます。サービスの weight は、0 から 256 の間で指
定してください。weight が 0 の場合は、サービスはロードバランシングに参加せず、既存の持続する
接続を継続的に提供します。サービスの weight が 0 でない場合は、エンドポイントの最小 weight は
1 となります。これにより、エンドポイントが多数含まれるサービスでは、最終的に weight は意図さ
れる値よりも大きくなる可能性があります。このような場合は、予想される負荷分散の weight を得る
ために Pod の数を減らします。

手順

A/B 環境を設定するには、以下を実行します。

1. 2 つのアプリケーションを作成して、異なる名前を指定します。それぞれが Deployment オブ
ジェクトを作成します。これらのアプリケーションは同じプログラムのバージョンであり、通
常 1 つは現在の実稼働バージョンで、もう 1 つは提案される新規バージョンとなります。

a. 最初のアプリケーションを作成します。以下の例では、ab-example-a という名前のアプリ
ケーションを作成します。

b. 2 番目のアプリケーションを作成します。

どちらのアプリケーションもデプロイされ、サービスが作成されます。

2. ルート経由でアプリケーションを外部から利用できるようにします。この時点でサービスを公
開できます。現在の実稼働バージョンを公開してから、後でルートを編集して新規バージョン
を追加すると便利です。

ab-example-a.<project>.<router_domain> でアプリケーションを参照して、予想されるバー
ジョンが表示されていることを確認します。

3. ルートをデプロイする場合には、ルーターはサービスに指定した weights に従ってトラフィッ
クを分散します。この時点では、デフォルトの weight=1 と指定されたサービスが 1 つ存在する
ので、すべての要求がこのサービスに送られます。他のサービスを alternateBackends として
追加し、weights を調整すると、A/B 設定が機能するようになります。これは、oc set route-
backends コマンドを実行するか、ルートを編集して実行できます。

$ oc new-app openshift/deployment-example --name=ab-example-a

$ oc new-app openshift/deployment-example:v2 --name=ab-example-b

$ oc expose svc/ab-example-a

OpenShift Container Platform 4.9 アプリケーションのビルド

134

oc set route-backend を 0 に設定することは、サービスがロードバランシングに参加しない
が、既存の持続する接続を提供し続けることを意味します。

注記

ルートに変更を加えると、さまざまなサービスへのトラフィックの部分だけが変
更されます。デプロイメントをスケーリングして、必要な負荷を処理できるよう
に Pod 数を調整する必要がある場合があります。

ルートを編集するには、以下を実行します。

出力例

7.4.5.1.1. Web コンソールを使用した既存ルートの重みの管理

手順

1. Networking → Routes ページに移動します。

2. 編集するルートの横にある Actions メニューをクリックし、Edit Route を選択します。

3. YAML ファイルを編集します。weight を 0 から 256 の間の整数になるように更新します。こ
れは、他のターゲット参照オブジェクトに対するターゲットの相対的な重みを指定します。値
0 はこのバックエンドへの要求を抑制します。デフォルトは 100 です。オプションについての
詳細は、oc explain routes.spec.alternateBackends を実行します。

4. Save をクリックします。

7.4.5.1.2. Web コンソールを使用した新規ルートの重みの管理

1. Networking → Routes ページに移動します。

2. Create Route をクリックします。

$ oc edit route <route_name>

...
metadata:
 name: route-alternate-service
 annotations:
 haproxy.router.openshift.io/balance: roundrobin
spec:
 host: ab-example.my-project.my-domain
 to:
 kind: Service
 name: ab-example-a
 weight: 10
 alternateBackends:
 - kind: Service
 name: ab-example-b
 weight: 15
...

第7章 デプロイメント

135

3. ルートの Name を入力します。

4. Service を選択します。

5. Add Alternate Service をクリックします。

6. Weight および Alternate Service Weight の値を入力します。他のターゲットとの相対的な重
みを示す 0 から 255 の間の数字を入力します。デフォルトは 100 です。

7. Target Port を選択します。

8. Create をクリックします。

7.4.5.1.3. CLI を使用した重みの管理

手順

1. サービスおよび対応する重みのルートによる負荷分散を管理するには、oc set route-backends
コマンドを使用します。

たとえば、以下のコマンドは ab-example-a に weight=198 を指定して主要なサービスと
し、ab-example-b に weight=2 を指定して 1 番目の代用サービスとして設定します。

つまり、99% のトラフィックはサービス ab-example-a に、1% はサービス ab-example-b に送
信されます。

このコマンドでは、デプロイメントはスケーリングされません。要求の負荷を処理するのに十
分な Pod がある状態でこれを実行する必要があります。

2. フラグなしのコマンドを実行して、現在の設定を確認します。

出力例

3. --adjust フラグを使用すると、個別のサービスの重みを、それ自体に対して、または主要な
サービスに対して相対的に変更できます。割合を指定すると、主要サービスまたは 1 番目の代
用サービス (主要サービスを設定している場合) に対して相対的にサービスを調整できます。他
にバックエンドがある場合には、重みは変更に比例した状態になります。
以下の例では、ab-example-a および ab-example-b サービスの重みを変更します。

または、パーセンテージを指定してサービスの重みを変更します。

$ oc set route-backends ROUTENAME \
 [--zero|--equal] [--adjust] SERVICE=WEIGHT[%] [...] [options]

$ oc set route-backends ab-example ab-example-a=198 ab-example-b=2

$ oc set route-backends ab-example

NAME KIND TO WEIGHT
routes/ab-example Service ab-example-a 198 (99%)
routes/ab-example Service ab-example-b 2 (1%)

$ oc set route-backends ab-example --adjust ab-example-a=200 ab-example-b=10

OpenShift Container Platform 4.9 アプリケーションのビルド

136

パーセンテージ宣言の前に + を指定すると、現在の設定に対して重み付けを調整できます。以
下に例を示します。

--equal フラグでは、全サービスの weight が 100 になるように設定します。

--zero フラグは、全サービスの weight を 0 に設定します。すべての要求に対して 503 エラー
が返されます。

注記

ルートによっては、複数のバックエンドまたは重みが設定されたバックエンドを
サポートしないものがあります。

7.4.5.1.4. 1 サービス、複数の Deployment オブジェクト

手順

1. すべてのシャードに共通の ab-example=true ラベルを追加して新規アプリケーションを作成し
ます。

アプリケーションがデプロイされ、サービスが作成されます。これは最初のシャードです。

2. ルートを使用してアプリケーションを利用できるようにしてください (または、サービス IP を
直接使用してください)。

3. ab-example-<project_name>.<router_domain> でアプリケーションを参照し、v1 イメージが
表示されることを確認します。

4. 1 つ目のシャードと同じソースイメージおよびラベルに基づくが、別のバージョンがタグ付けさ
れたバージョンと一意の環境変数を指定して 2 つ目のシャードを作成します。

5. この時点で、いずれの Pod のセットもルートで提供されます。しかし、両ブラウザー (接続を
開放) とルーター (デフォルトでは cookie を使用) で、バックエンドサーバーへの接続を維持し
ようとするので、シャードが両方返されない可能性があります。
1 つのまたは他のシャードに対してブラウザーを強制的に実行するには、以下を実行します。

$ oc set route-backends ab-example --adjust ab-example-b=5%

$ oc set route-backends ab-example --adjust ab-example-b=+15%

$ oc set route-backends ab-example --equal

$ oc new-app openshift/deployment-example --name=ab-example-a --as-deployment-
config=true --labels=ab-example=true --env=SUBTITLE\=shardA
$ oc delete svc/ab-example-a

$ oc expose deployment ab-example-a --name=ab-example --selector=ab-example\=true
$ oc expose service ab-example

$ oc new-app openshift/deployment-example:v2 \
 --name=ab-example-b --labels=ab-example=true \
 SUBTITLE="shard B" COLOR="red" --as-deployment-config=true
$ oc delete svc/ab-example-b

第7章 デプロイメント

137

a. oc scale コマンドを使用して、ab-example-a のレプリカを 0 に減らします。

ブラウザーを更新して、v2 および shard B (赤) を表示させます。

b. ab-example-a を 1 レプリカに、ab-example-b を 0 にスケーリングします。

ブラウザーを更新して、v1 および shard A (青) を表示します。

6. いずれかのシャードでデプロイメントをトリガーする場合、そのシャードの Pod のみが影響を
受けます。どちらかの Deployment オブジェクトで SUBTITLE 環境変数を変更してデプロイ
メントをトリガーできます。

または

$ oc scale dc/ab-example-a --replicas=0

$ oc scale dc/ab-example-a --replicas=1; oc scale dc/ab-example-b --replicas=0

$ oc edit dc/ab-example-a

$ oc edit dc/ab-example-b

OpenShift Container Platform 4.9 アプリケーションのビルド

138

第8章 クォータ

8.1. プロジェクトごとのリソースクォータ

ResourceQuota オブジェクトで定義される リソースクォータ は、プロジェクトごとにリソース消費量
の総計を制限する制約を指定します。これは、タイプ別にプロジェクトで作成できるオブジェクトの数
量を制限すると共に、そのプロジェクトのリソースが消費する可能性のあるコンピュートリソースおよ
びストレージの合計量を制限することができます。

本書では、リソースクォータの仕組みや、クラスター管理者がリソースクォータはプロジェクトごとに
どのように設定し、管理できるか、および開発者やクラスター管理者がそれらをどのように表示できる
かについて説明します。

8.1.1. クォータで管理されるリソース

以下では、クォータで管理できる一連のコンピュートリソースとオブジェクトタイプについて説明しま
す。

注記

status.phase in (Failed、Succeeded) が true の場合、Pod は終了状態にあります。

表8.1 クォータで管理されるコンピュートリソース

リソース名 説明

cpu 非終了状態のすべての Pod での CPU 要求の合計はこの値を超えることができ
ません。cpu および requests.cpu は同じ値であり、相互に置き換え可能な
ものとして使用できます。

memory 非終了状態のすべての Pod でのメモリー要求の合計はこの値を超えることがで
きません。memory および requests.memory は同じ値であり、相互に置き
換え可能なものとして使用できます。

requests.cpu 非終了状態のすべての Pod での CPU 要求の合計はこの値を超えることができ
ません。cpu および requests.cpu は同じ値であり、相互に置き換え可能な
ものとして使用できます。

requests.memory 非終了状態のすべての Pod でのメモリー要求の合計はこの値を超えることがで
きません。memory および requests.memory は同じ値であり、相互に置き
換え可能なものとして使用できます。

limits.cpu 非終了状態のすべての Pod での CPU 制限の合計はこの値を超えることができ
ません。

limits.memory 非終了状態のすべての Pod でのメモリー制限の合計はこの値を超えることがで
きません。

表8.2 クォータで管理されるストレージリソース

第8章 クォータ

139

リソース名 説明

requests.storage 任意の状態のすべての永続ボリューム要求 (PVC) でのストレージ要求の合計
は、この値を超えることができません。

persistentvolumeclaim
s

プロジェクトに存在できる永続ボリューム要求 (PVC) の合計数です。

<storage-class-
name>.storageclass.st
orage.k8s.io/requests.
storage

一致するストレージクラスを持つ、任意の状態のすべての永続ボリューム要求
(PVC) でのストレージ要求の合計はこの値を超えることができません。

<storage-class-
name>.storageclass.st
orage.k8s.io/persistent
volumeclaims

プロジェクトに存在できる、一致するストレージクラスを持つ Persistent
Volume Claim (永続ボリューム要求、PVC) の合計数です。

ephemeral-storage 非終了状態のすべての Pod におけるローカルの一時ストレージ要求の合計は、
この値を超えることができません。ephemeral-storage および
requests.ephemeral-storage は同じ値であり、相互に置き換え可能なもの
として使用できます。

requests.ephemeral-
storage

非終了状態のすべての Pod における一時ストレージ要求の合計は、この値を超
えることができません。ephemeral-storage および requests.ephemeral-
storage は同じ値であり、相互に置き換え可能なものとして使用できます。

limits.ephemeral-
storage

非終了状態のすべての Pod における一時ストレージ制限の合計は、この値を超
えることができません。

表8.3 クォータで管理されるオブジェクト数

リソース名 説明

pods プロジェクトに存在できる非終了状態の Pod の合計数です。

replicationcontrollers プロジェクトに存在できる ReplicationController の合計数です。

resourcequotas プロジェクトに存在できるリソースクォータの合計数です。

services プロジェクトに存在できるサービスの合計数です。

services.loadbalancers プロジェクトに存在できるタイプ LoadBalancer のサービスの合計数です。

services.nodeports プロジェクトに存在できるタイプ NodePort のサービスの合計数です。

secrets プロジェクトに存在できるシークレットの合計数です。

OpenShift Container Platform 4.9 アプリケーションのビルド

140

configmaps プロジェクトに存在できる ConfigMap オブジェクトの合計数です。

persistentvolumeclaim
s

プロジェクトに存在できる永続ボリューム要求 (PVC) の合計数です。

openshift.io/imagestre
ams

プロジェクトに存在できるイメージストリームの合計数です。

リソース名 説明

8.1.2. クォータのスコープ

各クォータには スコープ のセットが関連付けられます。クォータは、列挙されたスコープの交差部分
に一致する場合にのみリソースの使用状況を測定します。

スコープをクォータに追加すると、クォータが適用されるリソースのセットを制限できます。許可され
るセット以外のリソースを設定すると、検証エラーが発生します。

スコープ 説明

BestEffort cpu または memory のいずれかについてのサービ
スの QoS (Quality of Service) が Best Effort の Pod
に一致します。

NotBestEffort cpu および memory についてのサービスの QoS
(Quality of Service) が Best Effort ではない Pod に一
致します。

BestEffort スコープは、以下のリソースに制限するようにクォータを制限します。

pods

NotBestEffort スコープは、以下のリソースを追跡するようにクォータを制限します。

pods

memory

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

8.1.3. クォータの実施

プロジェクトのリソースクォータが最初に作成されると、プロジェクトは、更新された使用状況の統計

第8章 クォータ

141

1

2

3

4

5

6

プロジェクトのリソースクォータが最初に作成されると、プロジェクトは、更新された使用状況の統計
が計算されるまでクォータ制約の違反を引き起こす可能性のある新規リソースの作成機能を制限しま
す。

クォータが作成され、使用状況の統計が更新されると、プロジェクトは新規コンテンツの作成を許可し
ます。リソースを作成または変更する場合、クォータの使用量はリソースの作成または変更要求がある
とすぐに増分します。

リソースを削除する場合、クォータの使用量は、プロジェクトのクォータ統計の次回の完全な再計算時
に減分されます。設定可能な時間を指定して、クォータ使用量の統計値を現在確認されるシステム値ま
で下げるのに必要な時間を決定します。

プロジェクト変更がクォータ使用制限を超える場合、サーバーはそのアクションを拒否し、クォータ制
約を違反していること、およびシステムで現在確認される使用量の統計値を示す適切なエラーメッセー
ジがユーザーに返されます。

8.1.4. 要求 vs 制限

コンピュートリソースの割り当て時に、各コンテナーは CPU、メモリー、一時ストレージのそれぞれ
に要求値と制限値を指定できます。クォータはこれらの値のいずれも制限できます。

クォータに requests.cpu または requests.memory の値が指定されている場合、すべての着信コンテ
ナーがそれらのリソースを明示的に要求することが求められます。クォータに limits.cpu または
limits.memory の値が指定されている場合、すべての着信コンテナーがそれらのリソースの明示的な制
限を指定することが求められます。

8.1.5. リソースクォータ定義の例

core-object-counts.yaml

プロジェクトに存在できる ConfigMap オブジェクトの合計数です。

プロジェクトに存在できる永続ボリューム要求 (PVC) の合計数です。

プロジェクトに存在できるレプリケーションコントローラーの合計数です。

プロジェクトに存在できるシークレットの合計数です。

プロジェクトに存在できるサービスの合計数です。

プロジェクトに存在できるタイプ LoadBalancer のサービスの合計数です。

apiVersion: v1
kind: ResourceQuota
metadata:
 name: core-object-counts
spec:
 hard:
 configmaps: "10" 1
 persistentvolumeclaims: "4" 2
 replicationcontrollers: "20" 3
 secrets: "10" 4
 services: "10" 5
 services.loadbalancers: "2" 6

OpenShift Container Platform 4.9 アプリケーションのビルド

142

1

1

2

3

4

5

1

openshift-object-counts.yaml

プロジェクトに存在できるイメージストリームの合計数です。

compute-resources.yaml

プロジェクトに存在できる非終了状態の Pod の合計数です。

非終了状態のすべての Pod において、CPU 要求の合計は 1 コアを超えることができません。

非終了状態のすべての Pod において、メモリー要求の合計は 1 Gi を超えることができません。

非終了状態のすべての Pod において、CPU 制限の合計は 2 コアを超えることができません。

非終了状態のすべての Pod において、メモリー制限の合計は 2 Gi を超えることができません。

besteffort.yaml

プロジェクトに存在できるサービスの QoS (Quality of Service) が BestEffort の非終了状態の Pod
の合計数です。

apiVersion: v1
kind: ResourceQuota
metadata:
 name: openshift-object-counts
spec:
 hard:
 openshift.io/imagestreams: "10" 1

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:
 pods: "4" 1
 requests.cpu: "1" 2
 requests.memory: 1Gi 3
 limits.cpu: "2" 4
 limits.memory: 2Gi 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:
 pods: "1" 1
 scopes:
 - BestEffort 2

第8章 クォータ

143

2

1

2

3

4

1

2

3

4

クォータを、メモリーまたは CPU のいずれかのサービスの QoS (Quality of Service) が
BestEffort の一致する Pod のみに制限します。

compute-resources-long-running.yaml

非終了状態の Pod の合計数です。

非終了状態のすべての Pod において、CPU 制限の合計はこの値を超えることができません。

非終了状態のすべての Pod において、メモリー制限の合計はこの値を超えることができません。

クォータを spec.activeDeadlineSeconds が nil に設定されている一致する Pod のみに制限しま
す。ビルド Pod は、RestartNever ポリシーが適用されない限り NotTerminating になります。

compute-resources-time-bound.yaml

終了状態の Pod の合計数です。

終了状態のすべての Pod において、CPU 制限の合計はこの値を超えることができません。

終了状態のすべての Pod において、メモリー制限の合計はこの値を超えることができません。

クォータを spec.activeDeadlineSeconds >=0 に設定されている一致する Pod のみに制限しま
す。たとえば、このクォータはビルド Pod またはデプロイヤー Pod に影響を与えますが、web
サーバーまたはデータベースなどの長時間実行されない Pod には影響を与えません。

storage-consumption.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-long-running
spec:
 hard:
 pods: "4" 1
 limits.cpu: "4" 2
 limits.memory: "2Gi" 3
 scopes:
 - NotTerminating 4

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-time-bound
spec:
 hard:
 pods: "2" 1
 limits.cpu: "1" 2
 limits.memory: "1Gi" 3
 scopes:
 - Terminating 4

OpenShift Container Platform 4.9 アプリケーションのビルド

144

1

2

3

4

5

6

7

8

9

プロジェクト内の永続ボリューム要求 (PVC) の合計数です。

プロジェクトのすべての永続ボリューム要求 (PVC) において、要求されるストレージの合計はこ
の値を超えることができません。

プロジェクトのすべての永続ボリューム要求 (PVC) において、gold ストレージクラスで要求され
るストレージの合計はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求 (PVC) において、silver ストレージクラスで要求され
るストレージの合計はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求 (PVC) において、silver ストレージクラスの要求の合
計数はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求 (PVC) において、bronze ストレージクラスで要求さ
れるストレージの合計はこの値を超えることができません。これが 0 に設定される場合、bronze
ストレージクラスはストレージを要求できないことを意味します。

プロジェクトのすべての永続ボリューム要求 (PVC) において、bronze ストレージクラスで要求さ
れるストレージの合計はこの値を超えることができません。これが 0 に設定される場合は、
bronze ストレージクラスでは要求を作成できないことを意味します。

非終了状態のすべての Pod において、一時ストレージ要求の合計は 2 Gi を超えることができませ
ん。

非終了状態のすべての Pod において、一時ストレージ制限の合計は 4 Gi を超えることができませ
ん。

8.1.6. クォータの作成

特定のプロジェクトでリソースの使用を制限するためにクォータを作成することができます。

手順

1. ファイルにクォータを定義します。

2. クォータを作成し、これをプロジェクトに適用するためにファイルを使用します。

apiVersion: v1
kind: ResourceQuota
metadata:
 name: storage-consumption
spec:
 hard:
 persistentvolumeclaims: "10" 1
 requests.storage: "50Gi" 2
 gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
 silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
 silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
 bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
 bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7
 requests.ephemeral-storage: 2Gi 8
 limits.ephemeral-storage: 4Gi 9

第8章 クォータ

145

1

以下に例を示します。

8.1.6.1. オブジェクトカウントクォータの作成

BuildConfig および DeploymentConfig オブジェクトなどの、OpenShift Container Platform の標準的
な namespace を使用しているリソースタイプのすべてにオブジェクトカウントクォータを作成できま
す。オブジェクトクォータカウントは、定義されたクォータをすべての標準的な namespace を使用し
ているリソースタイプに設定します。

リソースクォータを使用する際に、オブジェクトは作成時クォータに基づいてチャージされます。以下
のクォータのタイプはリソースが使い切られることから保護するのに役立ちます。クォータは、プロ
ジェクト内に余分なリソースが十分にある場合にのみ作成できます。

手順

リソースのオブジェクトカウントクォータを設定するには、以下を実行します。

1. 以下のコマンドを実行します。

<resource> 変数はリソースの名前であり、<group> は API グループです (該当する場
合)。リソースおよびそれらの関連付けられた API グループの一覧に oc api-resources コ
マンドを使用します。

以下に例を示します。

出力例

この例では、一覧表示されたリソースをクラスター内の各プロジェクトのハード制限に制限し
ます。

2. クォータが作成されていることを確認します。

出力例

$ oc create -f <file> [-n <project_name>]

$ oc create -f core-object-counts.yaml -n demoproject

$ oc create quota <name> \
 --hard=count/<resource>.<group>=<quota>,count/<resource>.<group>=<quota> 1

$ oc create quota test \
 --
hard=count/deployments.extensions=2,count/replicasets.extensions=4,count/pods=3,count/secr
ets=4

resourcequota "test" created

$ oc describe quota test

Name: test
Namespace: quota

OpenShift Container Platform 4.9 アプリケーションのビルド

146

8.1.6.2. 拡張リソースのリソースクォータの設定

リソースのオーバーコミットは拡張リソースには許可されません。そのため、クォータで同じ拡張リ
ソースについて requests および limits を指定する必要があります。現時点で、接頭辞 requests. のあ
るクォータ項目のみが拡張リソースに許可されます。以下は、GPU リソース nvidia.com/gpu のリ
ソースクォータを設定する方法についてのシナリオ例です。

手順

1. クラスター内のノードで利用可能な GPU の数を判別します。以下に例を示します。

出力例

この例では、2 つの GPU が利用可能です。

2. namespace nvidia にクォータを設定します。この例では、クォータは 1 です。

出力例

3. クォータを作成します。

出力例

Resource Used Hard
-------- ---- ----
count/deployments.extensions 0 2
count/pods 0 3
count/replicasets.extensions 0 4
count/secrets 0 4

oc describe node ip-172-31-27-209.us-west-2.compute.internal | egrep
'Capacity|Allocatable|gpu'

 openshift.com/gpu-accelerator=true
Capacity:
 nvidia.com/gpu: 2
Allocatable:
 nvidia.com/gpu: 2
 nvidia.com/gpu 0 0

cat gpu-quota.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: gpu-quota
 namespace: nvidia
spec:
 hard:
 requests.nvidia.com/gpu: 1

oc create -f gpu-quota.yaml

第8章 クォータ

147

4. namespace に正しいクォータが設定されていることを確認します。

出力例

5. 単一 GPU を要求する Pod を定義します。以下の定義ファイルのサンプルの名前は gpu-
pod.yaml です。

6. Pod を作成します。

7. Pod が実行されていることを確認します。

出力例

resourcequota/gpu-quota created

oc describe quota gpu-quota -n nvidia

Name: gpu-quota
Namespace: nvidia
Resource Used Hard
-------- ---- ----
requests.nvidia.com/gpu 0 1

apiVersion: v1
kind: Pod
metadata:
 generateName: gpu-pod-
 namespace: nvidia
spec:
 restartPolicy: OnFailure
 containers:
 - name: rhel7-gpu-pod
 image: rhel7
 env:
 - name: NVIDIA_VISIBLE_DEVICES
 value: all
 - name: NVIDIA_DRIVER_CAPABILITIES
 value: "compute,utility"
 - name: NVIDIA_REQUIRE_CUDA
 value: "cuda>=5.0"
 command: ["sleep"]
 args: ["infinity"]
 resources:
 limits:
 nvidia.com/gpu: 1

oc create -f gpu-pod.yaml

oc get pods

NAME READY STATUS RESTARTS AGE
gpu-pod-s46h7 1/1 Running 0 1m

OpenShift Container Platform 4.9 アプリケーションのビルド

148

8. クォータ Used のカウンターが正しいことを確認します。

出力例

9. nvidia namespace で 2 番目の GPU Pod の作成を試行します。2 つの GPU があるので、これ
をノード上で実行することは可能です。

出力例

クォータが 1 GPU であり、この Pod がそのクォータを超える 2 つ目の GPU の割り当てを試行
したため、Forbidden エラーメッセージが表示されることが予想されます。

8.1.7. クォータの表示

Web コンソールでプロジェクトの Quota ページに移動し、プロジェクトのクォータで定義されるハー
ド制限に関連する使用状況の統計を表示できます。

CLI を使用してクォータの詳細を表示することもできます。

手順

1. プロジェクトで定義されるクォータの一覧を取得します。たとえば、demoproject というプロ
ジェクトの場合、以下を実行します。

出力例

2. 関連するクォータについて記述します。たとえば、core-object-counts クォータの場合、以下
を実行します。

oc describe quota gpu-quota -n nvidia

Name: gpu-quota
Namespace: nvidia
Resource Used Hard
-------- ---- ----
requests.nvidia.com/gpu 1 1

oc create -f gpu-pod.yaml

Error from server (Forbidden): error when creating "gpu-pod.yaml": pods "gpu-pod-f7z2w" is
forbidden: exceeded quota: gpu-quota, requested: requests.nvidia.com/gpu=1, used:
requests.nvidia.com/gpu=1, limited: requests.nvidia.com/gpu=1

$ oc get quota -n demoproject

NAME AGE
besteffort 11m
compute-resources 2m
core-object-counts 29m

$ oc describe quota core-object-counts -n demoproject

第8章 クォータ

149

出力例

8.1.8. 明示的なリソースクォータの設定

プロジェクト要求テンプレートで明示的なリソースクォータを設定し、新規プロジェクトに特定のリ
ソースクォータを適用します。

前提条件

cluster-admin ロールを持つユーザーとしてのクラスターへのアクセスがあること。

OpenShift CLI (oc) をインストールしている。

手順

1. プロジェクト要求テンプレートにリソースクォータ定義を追加します。

プロジェクト要求テンプレートがクラスターに存在しない場合:

a. ブートストラッププロジェクトテンプレートを作成し、これを template.yaml という
ファイルに出力します。

b. リソースクォータの定義を template.yaml に追加します。以下の例では、storage-
consumption という名前のリソースクォータを定義します。テンプレートの
parameters: セクションの前に定義を追加する必要があります。

Name: core-object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10
persistentvolumeclaims 0 4
replicationcontrollers 3 20
secrets 9 10
services 2 10

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

- apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: storage-consumption
 namespace: ${PROJECT_NAME}
 spec:
 hard:
 persistentvolumeclaims: "10" 1
 requests.storage: "50Gi" 2
 gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
 silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
 silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
 bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
 bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7

OpenShift Container Platform 4.9 アプリケーションのビルド

150

1

2

3

4

5

6

7

プロジェクト内の永続ボリューム要求 (PVC) の合計数です。

プロジェクトのすべての永続ボリューム要求 (PVC) において、要求されるスト
レージの合計はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求 (PVC) において、gold ストレージク
ラスで要求されるストレージの合計はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求 (PVC) において、silver ストレージ
クラスで要求されるストレージの合計はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求 (PVC) において、silver ストレージ
クラスの要求の合計数はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求 (PVC) において、bronze ストレージ
クラスで要求されるストレージの合計はこの値を超えることができません。この
値が 0 に設定される場合、bronze ストレージクラスはストレージを要求できませ
ん。

プロジェクトのすべての永続ボリューム要求 (PVC) において、bronze ストレージ
クラスで要求されるストレージの合計はこの値を超えることができません。この
値が 0 に設定される場合、bronze ストレージクラスは要求を作成できません。

c. openshift-config namespace の変更された template.yaml ファイルでプロジェクト要
求テンプレートを作成します。

注記

設定を kubectl.kubernetes.io/last-applied-configuration アノテーショ
ンとして追加するには、 --save-config オプションを oc create コマン
ドに追加します。

デフォルトでは、テンプレートは project-request という名前になります。

プロジェクト要求テンプレートがクラスター内にすでに存在する場合は、以下を実行しま
す。

注記

設定ファイルを使用してクラスター内のオブジェクトを宣言的または命令的
に管理する場合は、これらのファイルを使用して既存のプロジェクト要求テ
ンプレートを編集します。

a. openshift-config namespace のテンプレートを一覧表示します。

b. 既存のプロジェクト要求テンプレートを編集します。

c. 前述の storage-consumption の例などのリソースクォータ定義を既存のテンプレート

$ oc create -f template.yaml -n openshift-config

$ oc get templates -n openshift-config

$ oc edit template <project_request_template> -n openshift-config

第8章 クォータ

151

c. 前述の storage-consumption の例などのリソースクォータ定義を既存のテンプレート
に追加します。テンプレートの parameters: セクションの前に定義を追加する必要が
あります。

2. プロジェクト要求テンプレートを作成した場合は、クラスターのプロジェクト設定リソースで
これを参照します。

a. 編集するプロジェクト設定リソースにアクセスします。

Web コンソールの使用

i. Administration → Cluster Settings ページに移動します。

ii. Configuration をクリックし、すべての設定リソースを表示します。

iii. Project のエントリーを見つけ、Edit YAML をクリックします。

CLI の使用

i. project.config.openshift.io/cluster リソースを編集します。

b. プロジェクト設定リソースの spec セクションを更新し、projectRequestTemplate および
name パラメーターを追加します。以下の例は、project-request というデフォルトのプロ
ジェクト要求テンプレートを参照します。

3. プロジェクトの作成時にリソースクォータが適用されていることを確認します。

a. プロジェクトを作成します。

b. プロジェクトのリソースクォータを一覧表示します。

c. リソースクォータを詳細に記述します。

8.2. 複数のプロジェクト間のリソースクォータ

ClusterResourceQuota オブジェクトで定義される複数プロジェクトのクォータは、複数プロジェクト
間でクォータを共有できるようにします。それぞれの選択されたプロジェクトで使用されるリソースは
集計され、その集計は選択したすべてのプロジェクトでリソースを制限するために使用されます。

以下では、クラスター管理者が複数のプロジェクトでリソースクォータを設定および管理する方法につ

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestTemplate:
 name: project-request

$ oc new-project <project_name>

$ oc get resourcequotas

$ oc describe resourcequotas <resource_quota_name>

OpenShift Container Platform 4.9 アプリケーションのビルド

152

1

2

以下では、クラスター管理者が複数のプロジェクトでリソースクォータを設定および管理する方法につ
いて説明します。

8.2.1. クォータ作成時の複数プロジェクトの選択

クォータの作成時に、アノテーションの選択、ラベルの選択、またはその両方に基づいて複数のプロ
ジェクトを選択することができます。

手順

1. アノテーションに基づいてプロジェクトを選択するには、以下のコマンドを実行します。

これにより、以下の ClusterResourceQuota オブジェクトが作成されます。

選択されたプロジェクトに対して実施される ResourceQuotaSpec オブジェクトです。

アノテーションの単純なキー/値のセレクターです。

$ oc create clusterquota for-user \
 --project-annotation-selector openshift.io/requester=<user_name> \
 --hard pods=10 \
 --hard secrets=20

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
 name: for-user
spec:
 quota: 1
 hard:
 pods: "10"
 secrets: "20"
 selector:
 annotations: 2
 openshift.io/requester: <user_name>
 labels: null 3
status:
 namespaces: 4
 - namespace: ns-one
 status:
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"
 secrets: "9"
 total: 5
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"
 secrets: "9"

第8章 クォータ

153

3

4

5

1

2

プロジェクトを選択するために使用できるラベルセレクターです。

選択された各プロジェクトの現在のクォータの使用状況を記述する namespace ごとの
マップです。

選択されたすべてのプロジェクトにおける使用量の総計です。

この複数プロジェクトのクォータの記述は、デフォルトのプロジェクト要求エンドポイントを
使用して <user_name> によって要求されるすべてのプロジェクトを制御します。ここでは、
10 Pod および 20 シークレットに制限されます。

2. 同様にラベルに基づいてプロジェクトを選択するには、以下のコマンドを実行します。

clusterresourcequota および clusterquota はいずれも同じコマンドのエイリアスで
す。for-name は ClusterResourceQuota オブジェクトの名前です。

ラベル別にプロジェクトを選択するには、--project-label-selector=key=value 形式を使
用してキーと値のペアを指定します。

これにより、以下の ClusterResourceQuota オブジェクト定義が作成されます。

8.2.2. 該当するクラスターリソースクォータの表示

プロジェクト管理者は、各自のプロジェクトを制限する複数プロジェクトのクォータを作成したり、変
更したりすることはできませんが、それぞれのプロジェクトに適用される複数プロジェクトのクォータ
を表示することはできます。プロジェクト管理者は、AppliedClusterResourceQuota リソースを使っ
てこれを実行できます。

手順

1. プロジェクトに適用されているクォータを表示するには、以下を実行します。

$ oc create clusterresourcequota for-name \ 1
 --project-label-selector=name=frontend \ 2
 --hard=pods=10 --hard=secrets=20

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
 creationTimestamp: null
 name: for-name
spec:
 quota:
 hard:
 pods: "10"
 secrets: "20"
 selector:
 annotations: null
 labels:
 matchLabels:
 name: frontend

$ oc describe AppliedClusterResourceQuota

OpenShift Container Platform 4.9 アプリケーションのビルド

154

出力例

8.2.3. 選択における粒度

クォータの割り当てを要求する際にロックに関して考慮する必要があるため、複数プロジェクトの
クォータで選択されるアクティブなプロジェクトの数は重要な考慮点になります。単一の複数プロジェ
クトクォータで 100 を超えるプロジェクトを選択すると、それらのプロジェクトの API サーバーの応答
に負の影響が及ぶ可能性があります。

Name: for-user
Namespace: <none>
Created: 19 hours ago
Labels: <none>
Annotations: <none>
Label Selector: <null>
AnnotationSelector: map[openshift.io/requester:<user-name>]
Resource Used Hard
-------- ---- ----
pods 1 10
secrets 9 20

第8章 クォータ

155

1

2

第9章 アプリケーションでの設定マップの使用
設定マップにより、設定アーティファクトをイメージコンテンツから切り離し、コンテナー化されたア
プリケーションを移植可能な状態に保つことができます。

以下のセクションでは、設定マップおよびそれらを作成し、使用する方法を定義します。

設定マップの作成に関する詳細は、Creating and using config mapsを参照してください。

9.1. 設定マップについて

数多くのアプリケーションには、設定ファイル、コマンドライン引数、および環境変数の組み合わせを
使用した設定が必要です。OpenShift Container Platform では、これらの設定アーティファクトは、コ
ンテナー化されたアプリケーションを移植可能な状態に保つためにイメージコンテンツから切り離され
ます。

ConfigMap オブジェクトは、コンテナーを OpenShift Container Platform に依存させないようにする
一方で、コンテナーに設定データを挿入するメカニズムを提供します。設定マップは、個々のプロパ
ティーなどの粒度の細かい情報や、設定ファイル全体または JSON Blob などの粒度の荒い情報を保存
するために使用できます。

ConfigMap API オブジェクトは、Pod で使用したり、コントローラーなどのシステムコンポーネント
の設定データを保存するために使用できる設定データのキーと値のペアを保持します。以下に例を示し
ます。

ConfigMap オブジェクト定義

設定データが含まれます。

バイナリー Java キーストアファイルなどの UTF8 以外のデータを含むファイルを参照します。
Base 64 のファイルデータを入力します。

注記

イメージなどのバイナリーファイルから設定マップを作成する場合に、binaryData
フィールドを使用できます。

kind: ConfigMap
apiVersion: v1
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: example-config
 namespace: default
data: 1
 example.property.1: hello
 example.property.2: world
 example.property.file: |-
 property.1=value-1
 property.2=value-2
 property.3=value-3
binaryData:
 bar: L3Jvb3QvMTAw 2

OpenShift Container Platform 4.9 アプリケーションのビルド

156

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/nodes/#creating-and-using-config-maps

1

設定データはさまざまな方法で Pod 内で使用できます。設定マップは以下を実行するために使用でき
ます。

コンテナーへの環境変数値の設定

コンテナーのコマンドライン引数の設定

ボリュームの設定ファイルの設定

ユーザーとシステムコンポーネントの両方が設定データを設定マップに保存できます。

設定マップはシークレットに似ていますが、機密情報を含まない文字列の使用をより効果的にサポート
するように設計されています。

設定マップの制限
設定マップは、コンテンツを Pod で使用される前に作成する必要があります。

コントローラーは、設定データが不足していても、その状況を許容して作成できます。ケースごとに設
定マップを使用して設定される個々のコンポーネントを参照してください。

ConfigMap オブジェクトはプロジェクト内にあります。

それらは同じプロジェクトの Pod によってのみ参照されます。

Kubelet は、API サーバーから取得する Pod の設定マップの使用のみをサポートします。

これには、CLI を使用して作成された Pod、またはレプリケーションコントローラーから間接的に作成
された Pod が含まれます。これには、OpenShift Container Platform ノードの --manifest-url フラグ、
その --config フラグ、またはその REST API を使用して作成された Pod は含まれません (これらは Pod
を作成する一般的な方法ではありません)。

9.2. ユースケース: POD で設定マップを使用する

以下のセクションでは、Pod で ConfigMap オブジェクトを使用する際のいくつかのユースケースにつ
いて説明します。

9.2.1. 設定マップの使用によるコンテナーでの環境変数の設定

設定マップはコンテナーで個別の環境変数を設定するために使用したり、有効な環境変数名を生成する
すべてのキーを使用してコンテナーで環境変数を設定するために使用したりすることができます。

例として、以下の設定マップについて見てみましょう。

2 つの環境変数を含む ConfigMap

設定マップの名前。

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config 1
 namespace: default 2
data:
 special.how: very 3
 special.type: charm 4

第9章 アプリケーションでの設定マップの使用

157

2

3 4

1

2

設定マップが存在するプロジェクト。設定マップは同じプロジェクトの Pod によってのみ参照さ
れます。

挿入する環境変数。

1 つの環境変数を含む ConfigMap

設定マップの名前。

挿入する環境変数。

手順

configMapKeyRef セクションを使用して、Pod のこの ConfigMap のキーを使用できます。

特定の環境変数を挿入するように設定されている Pod 仕様のサンプル

apiVersion: v1
kind: ConfigMap
metadata:
 name: env-config 1
 namespace: default
data:
 log_level: INFO 2

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env: 1
 - name: SPECIAL_LEVEL_KEY 2
 valueFrom:
 configMapKeyRef:
 name: special-config 3
 key: special.how 4
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config 5
 key: special.type 6
 optional: true 7
 envFrom: 8
 - configMapRef:
 name: env-config 9
 restartPolicy: Never

OpenShift Container Platform 4.9 アプリケーションのビルド

158

1

2

3 5

4 6

7

8

9

ConfigMap から指定された環境変数をプルするためのスタンザです。

キーの値を挿入する Pod 環境変数の名前です。

特定の環境変数のプルに使用する ConfigMap の名前です。

ConfigMap からプルする環境変数です。

環境変数をオプションにします。オプションとして、Pod は指定された ConfigMap およ
びキーが存在しない場合でも起動します。

ConfigMap からすべての環境変数をプルするためのスタンザです。

すべての環境変数のプルに使用する ConfigMap の名前です。

この Pod が実行されると、Pod のログには以下の出力が含まれます。

SPECIAL_LEVEL_KEY=very
log_level=INFO

注記

SPECIAL_TYPE_KEY=charm は出力例に一覧表示されません。optional: true が設定さ
れているためです。

9.2.2. 設定マップを使用したコンテナーコマンドのコマンドライン引数の設定

設定マップを使用して、コンテナー内のコマンドまたは引数の値を設定することもできます。これは、
Kubernetes 置換構文 $(VAR_NAME) を使用して実行できます。次の設定マップを検討してください。

手順

値をコンテナーのコマンドに挿入するには、環境変数で ConfigMap を使用する場合のように環
境変数として使用する必要のあるキーを使用する必要があります。次に、$(VAR_NAME) 構文
を使用してコンテナーのコマンドでそれらを参照することができます。

特定の環境変数を挿入するように設定されている Pod 仕様のサンプル

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:

第9章 アプリケーションでの設定マップの使用

159

1 環境変数として使用するキーを使用して、コンテナーのコマンドに値を挿入します。

この Pod が実行されると、test-container コンテナーで実行される echo コマンドの出力は以
下のようになります。

very charm

9.2.3. 設定マップの使用によるボリュームへのコンテンツの挿入

設定マップを使用して、コンテンツをボリュームに挿入することができます。

ConfigMap カスタムリソース (CR) の例

手順

設定マップを使用してコンテンツをボリュームに挿入するには、2 つの異なるオプションを使用できま
す。

設定マップを使用してコンテンツをボリュームに挿入するための最も基本的な方法は、キーが
ファイル名であり、ファイルの内容がキーの値になっているファイルでボリュームを設定する
方法です。

 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)"]
1

 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.how
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.type
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:

OpenShift Container Platform 4.9 アプリケーションのビルド

160

1

1

キーを含むファイル。

この Pod が実行されると、cat コマンドの出力は以下のようになります。

very

設定マップキーが投影されるボリューム内のパスを制御することもできます。

設定マップキーへのパス。

この Pod が実行されると、cat コマンドの出力は以下のようになります。

very

 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "cat", "/etc/config/special.how"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config 1
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "cat", "/etc/config/path/to/special-key"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 items:
 - key: special.how
 path: path/to/special-key 1
 restartPolicy: Never

第9章 アプリケーションでの設定マップの使用

161

第10章 開発者パースペクティブを使用したプロジェクトおよびア
プリケーションメトリクスのモニタリング

Developer パースペクティブの Observe ビューは、CPU、メモリー、帯域幅の使用状況、ネットワー
ク関連の情報などのプロジェクトまたはアプリケーションのメトリクスを監視するオプションを提供し
ます。

10.1. 前提条件

OpenShift Container Platform にアプリケーションを作成し、デプロイしている。

Web コンソールにログイン しており、Developer パースペクティブ に切り替えている。

10.2. プロジェクトメトリクスのモニターリング

プロジェクトでアプリケーションを作成し、それらをデプロイした後に、Web コンソールで
Developer パースペクティブを使用し、プロジェクトのメトリクスを表示できます。

手順

1. Developer パースペクティブの左側のナビゲーションパネルで Observe をクリックし、プロ
ジェクトの Dashboard、Metrics、Alerts、および Events を表示します。

2. オプション: Dashboard タブを使用して、次のアプリケーションメトリクスを示すグラフを表
示します:

CPU usage (CPU の使用率)

メモリー使用量

帯域幅の使用

送受信パケットのレートやドロップされたパケットのレートなど、ネットワーク関連の情
報。

Dashboard タブで、Kubernetes コンピュートリソースダッシュボードにアクセスできます。

図10.1 ダッシュボードの監視

OpenShift Container Platform 4.9 アプリケーションのビルド

162

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/web_console/#web-console
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/web_console/#about-developer-perspective_web-console-overview

図10.1 ダッシュボードの監視

注記

Dashboard リストでは、デフォルトで Kubernetes / Compute Resources /
Namespace (Pods) ダッシュボードが選択されています。

詳細は、以下のオプションを使用します。

Dashboard リストからダッシュボードを選択し、フィルターリングされたメトリクスを表
示します。すべてのダッシュボードは、Kubernetes / Compute Resources /
Namespace(Pod) を除く、選択時に追加のサブメニューを生成します。

Time Range 一覧からオプションを選択し、キャプチャーされるデータの期間を判別しま
す。

Time Range 一覧で Custom time range を選択して、カスタムの時間範囲を設定しま
す。From および To の日付と時間を入力または選択します。Save をクリックして、カス
タムの時間範囲を保存します。

Refresh Interval 一覧からオプションを選択し、データの更新後の期間を判別します。

カーソルをグラフの上に置き、Pod の特定の詳細を表示します。

各グラフの右上隅にある Inspect をクリックして、特定のグラフの詳細を表示します。グ
ラフの詳細は Metrics タブに表示されます。

3. オプション: Metrics タブを使用して、必要なプロジェクトメトリクスについてクエリーしま
す。

図10.2 メトリクスのモニターリング

第10章 開発者パースペクティブを使用したプロジェクトおよびアプリケーションメトリクスのモニタリング

163

図10.2 メトリクスのモニターリング

a. Select Query 一覧で、プロジェクトに必要な詳細をフィルターするオプションを選択しま
す。プロジェクト内のすべてのアプリケーション Pod のフィルターされたメトリクスがグ
ラフに表示されます。プロジェクトの Pod も以下に記載されています。

b. Pod の一覧から色の付いた四角のボックスをクリアし、特定の Pod のメトリクスを削除し
てクエリーの結果をさらに絞り込みます。

c. Show PromQL をクリックし、 Prometheus クエリーを表示します。このクエリーをプロ
ンプトのヘルプを使用してさらに変更し、クエリーをカスタマイズして、該当する
namespace に表示するメトリクスをフィルターすることができます。

d. ドロップダウンリストを使用して、表示されるデータの時間の範囲を設定します。Reset
Zoom をクリックして、これをデフォルトの時間の範囲にリセットできます。

e. オプションで、Select Query 一覧で Custom Query を選択し、カスタム Prometheus クエ
リーを作成し、関連するメトリクスをフィルターします。

4. オプション: Alerts タブを使用して、次のタスクを実行します:

プロジェクト内のアプリケーションのアラートをトリガーするルールを確認します。

プロジェクトで発生しているアラートを特定します。

必要に応じて、そのようなアラートを解除します。

図10.3 アラートのモニターリング

OpenShift Container Platform 4.9 アプリケーションのビルド

164

詳細は、以下のオプションを使用します。

Filter 一覧を使用して Alert State および Severity でアラートをフィルターします。

アラートをクリックして、そのアラートの詳細ページに移動します。Alerts Details ページ
で、View Metrics をクリックし、アラートのメトリクスを表示できます。

アラートルールに隣接する Notifications トグルを使用して、そのルールのすべてのアラー
トをサイレンスにし、Silence for 一覧からアラートをサイレンスにする期間を選択しま
す。Notifications トグルを表示するには、アラートを編集するパーミッションが必要で
す。

アラートルールに隣接する Options メニュー を使用して、アラートルールの詳細を
表示します。

5. オプション: Events タブを使用してプロジェクトのイベントを表示します。

図10.4 イベントのモニターリング

以下のオプションを使用して、表示されるイベントをフィルターできます。

Resources 一覧で、リソースを選択し、そのリソースのイベントを表示します。

All Types 一覧で、イベントのタイプを選択し、そのタイプに関連するイベントを表示しま
す。

Filter events by names or messages フィールドを使用して特定のイベントを検索します。

10.3. アプリケーションメトリクスのモニターリング

プロジェクトでアプリケーションを作成し、それらをデプロイした後に、Developer ペースペクティブ
で Topology ビューを使用し、アプリケーションのアラートおよびメトリクスを表示できます。アプリ
ケーションの重大な問題および警告のアラートは、Topology ビューでワークロードノードについて示
されます。

手順

ワークロードのアラートを表示するには、以下を実行します。

1. Topology ビューで、ワークロードをクリックし、ワークロードの詳細を右側のパネルに表示

第10章 開発者パースペクティブを使用したプロジェクトおよびアプリケーションメトリクスのモニタリング

165

1. Topology ビューで、ワークロードをクリックし、ワークロードの詳細を右側のパネルに表示
します。

2. Observe タブをクリックして、アプリケーションの重大な問題および警告のアラート、CPU、
メモリー、および帯域幅の使用状況などのメトリクスのグラフ、およびアプリケーションのす
べてのイベントを表示します。

注記

Firing 状態の重大な問題および警告のアラートのみが Topology ビューに表示さ
れます。Silenced、Pending および Not Firing 状態のアラートは表示されませ
ん。

図10.5 アプリケーションメトリクスのモニターリング

a. 右側のパネルに一覧表示されるアラートをクリックし、アラートの詳細を Alert Details
ページに表示します。

b. チャートのいずれかをクリックして Metrics タブに移動し、アプリケーションの詳細なメ
トリクスを表示します。

c. View monitoring dashboard をクリックし、そのアプリケーションのモニターリングダッ
シュボードを表示します。

10.4. 関連情報

モニタリングの概要

OpenShift Container Platform 4.9 アプリケーションのビルド

166

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/monitoring/#monitoring-overview

第11章 ヘルスチェックの使用によるアプリケーションの正常性の監
視

ソフトウェアのシステムでは、コンポーネントは一時的な問題 (一時的に接続が失われるなど)、設定エ
ラー、または外部の依存関係に関する問題などにより正常でなくなることがあります。OpenShift
Container Platform アプリケーションには、正常でないコンテナーを検出し、これに対応するための数
多くのオプションがあります。

11.1. ヘルスチェックについて

ヘルスチェックは、readiness、liveness、および startup ヘルスチェックの組み合わせを使用して、実
行中のコンテナーで診断を定期的に実行します。

ヘルスチェックを実行するコンテナーが含まれる Pod の仕様に、1 つ以上のプローブを含めることがで
きます。

注記

既存の Pod でヘルスチェックを追加または編集する必要がある場合、Pod の
DeploymentConfig オブジェクトを編集するか、または Web コンソールで Developer
パースペクティブを使用する必要があります。CLI を使用して既存の Pod のヘルス
チェックを追加したり、編集したりすることはできません。

readiness プローブ

readiness プローブ はコンテナーがサービス要求を受け入れることができるかどうかを判別しま
す。コンテナーの readiness プローブが失敗すると、kubelet は利用可能なサービスエンドポイント
の一覧から Pod を削除します。
失敗後、プローブは Pod の検証を継続します。Pod が利用可能になると、kubelet は Pod を利用可
能なサービスエンドポイントの一覧に追加します。

liveness ヘルスチェック

liveness プローブ は、コンテナーが実行中かどうかを判別します。デッドロックなどの状態のため
に liveness プローブが失敗する場合、kubelet はコンテナーを強制終了します。その後、Pod は再起
動ポリシーに基づいて応答します。
たとえば、restartPolicy として Always または OnFailure が設定されている Pod での liveness プ
ローブは、コンテナーを強制終了してから再起動します。

スタートアッププローブ

スタートアッププローブ は、コンテナー内のアプリケーションが起動しているかどうかを示しま
す。その他のプローブはすべて、起動に成功するまで無効にされます。スタートアッププローブが
指定の期間内に成功しない場合、kubelet はコンテナーを強制終了し、コンテナーは Pod の
restartPolicy の対象となります。
一部のアプリケーションでは、最初の初期化時に追加の起動時間が必要になる場合があります。
liveness または readiness プローブで startup プローブを使用して、failureThreshold および
periodSeconds パラメーターを使用し、長い起動時間に十分に対応できるようにプローブを遅延さ
せることができます。

たとえば、failureThreshold が 30 回 (30 failure) で、 periodSeconds が 10 秒の最大 5 分 (30 * 10s
= 300s) を指定して startup プローブを liveness プローブに追加できます。startup プローブが初回
に成功すると、liveness プローブがこれを引き継ぎます。

以下のテストのタイプのいずれかを使用して、liveness、readiness、および startup プローブを設定で

第11章 ヘルスチェックの使用によるアプリケーションの正常性の監視

167

以下のテストのタイプのいずれかを使用して、liveness、readiness、および startup プローブを設定で
きます。

HTTP GET: HTTP GET テストを使用する場合、テストは Web hook を使用してコンテナーの正
常性を判別します。このテストは、HTTP の応答コードが 200 から 399 までの値の場合に正常
と見なされます。
完全に初期化されている場合に、HTTP ステータスコードを返すアプリケーションで HTTP
GET テストを使用できます。

コンテナーコマンド: コンテナーコマンドテストを使用すると、プローブはコンテナー内でコマ
ンドを実行します。テストが 0 のステータスで終了すると、プローブは成功します。

TCP ソケット: TCP ソケットテストを使用する場合、プローブはコンテナーに対してソケット
を開こうとします。コンテナーはプローブで接続を確立できる場合にのみ正常であるとみなさ
れます。TCP ソケットテストは、初期化が完了するまでリスニングを開始しないアプリケー
ションで使用できます。

複数のフィールドを設定して、プローブの動作を制御できます。

initialDelaySeconds: コンテナーが起動してからプローブがスケジュールされるまでの時間 (秒
単位)。デフォルトは 0 です。

periodSeconds: プローブの実行間の遅延 (秒単位)。デフォルトは 10 です。この値は
timeoutSeconds よりも大きくなければなりません。

timeoutSeconds: プローブがタイムアウトし、コンテナーが失敗した想定されてから非アク
ティブになるまでの時間 (秒数)。デフォルトは 1 です。この値は periodSeconds 未満である
必要があります。

successThreshold: コンテナーのステータスを successful にリセットするために、プローブが
失敗後に成功を報告する必要のある回数。liveness プローブの場合は、値は 1 である必要があ
ります。デフォルトは 1 です。

failureThreshold: プローブが失敗できる回数。デフォルトは 3 です。指定される試行の後に、
以下を実行します。

liveness プローブの場合、コンテナーが再起動します。

readiness プローブの場合、Pod には Unready というマークが付けられます。

startup プローブの場合、コンテナーは強制終了され、Pod の restartPolicy の対象となり
ます。

プローブの例
以下は、オブジェクト仕様に表示されるさまざまなプローブの例です。

Pod 仕様のコンテナーコマンド readiness プローブを含む readiness プローブの例

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
...
spec:
 containers:

OpenShift Container Platform 4.9 アプリケーションのビルド

168

1

2

3

4

5

1

コンテナー名。

デプロイするコンテナーイメージ。

readiness プローブ

コンテナーコマンドのテスト。

コンテナーで実行するコマンド。

Pod 仕様のコンテナーコマンドテストを含むコンテナーコマンドの startup プローブおよび
liveness プローブの例

コンテナー名。

 - name: goproxy-app 1
 args:
 image: k8s.gcr.io/goproxy:0.1 2
 readinessProbe: 3
 exec: 4
 command: 5
 - cat
 - /tmp/healthy
...

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
...
spec:
 containers:
 - name: goproxy-app 1
 args:
 image: k8s.gcr.io/goproxy:0.1 2
 livenessProbe: 3
 httpGet: 4
 scheme: HTTPS 5
 path: /healthz
 port: 8080 6
 httpHeaders:
 - name: X-Custom-Header
 value: Awesome
 startupProbe: 7
 httpGet: 8
 path: /healthz
 port: 8080 9
 failureThreshold: 30 10
 periodSeconds: 10 11
...

第11章 ヘルスチェックの使用によるアプリケーションの正常性の監視

169

2

3

4

5

6

7

8

9

10

11

1

2

3

4

デプロイするコンテナーイメージを指定します。

liveness プローブ

HTTP GET テスト。

インターネットスキーム: HTTP または HTTPSデフォルト値は HTTP です。

コンテナーがリッスンしているポート。

スタートアッププローブ。

HTTP GET テスト。

コンテナーがリッスンしているポート。

失敗後にプローブを試行する回数。

プローブを実行する秒数。

Pod 仕様でタイムアウトを使用するコンテナーコマンドテストを使用した liveness プローブの
例

コンテナー名。

デプロイするコンテナーイメージを指定します。

liveness プローブ。

プローブのタイプ。この場合はコンテナーコマンドプローブです。

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
...
spec:
 containers:
 - name: goproxy-app 1
 args:
 image: k8s.gcr.io/goproxy:0.1 2
 livenessProbe: 3
 exec: 4
 command: 5
 - /bin/bash
 - '-c'
 - timeout 60 /opt/eap/bin/livenessProbe.sh
 periodSeconds: 10 6
 successThreshold: 1 7
 failureThreshold: 3 8
...

OpenShift Container Platform 4.9 アプリケーションのビルド

170

5

6

7

8

1

2

コンテナー内で実行するコマンドライン。

プローブを実行する頻度 (秒単位)。

失敗後の成功を示すために必要な連続する成功の数。

失敗後にプローブを試行する回数。

デプロイメントでの TCP ソケットテストを含む readiness プローブおよび liveness プローブ
の例

readiness プローブ。

liveness プローブ。

11.2. CLI を使用したヘルスチェックの設定

readiness、liveness、および startup プローブを設定するには、1 つ以上のプローブをヘルスチェックを
実行するコンテナーが含まれる Pod の仕様に追加します。

注記

kind: Deployment
apiVersion: apps/v1
...
spec:
...
 template:
 spec:
 containers:
 - resources: {}
 readinessProbe: 1
 tcpSocket:
 port: 8080
 timeoutSeconds: 1
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3
 terminationMessagePath: /dev/termination-log
 name: ruby-ex
 livenessProbe: 2
 tcpSocket:
 port: 8080
 initialDelaySeconds: 15
 timeoutSeconds: 1
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3
...

第11章 ヘルスチェックの使用によるアプリケーションの正常性の監視

171

1

2

3

4

注記

既存の Pod でヘルスチェックを追加または編集する必要がある場合、Pod の
DeploymentConfig オブジェクトを編集するか、または Web コンソールで Developer
パースペクティブを使用する必要があります。CLI を使用して既存の Pod のヘルス
チェックを追加したり、編集したりすることはできません。

手順

コンテナーのプローブを追加するには、以下を実行します。

1. Pod オブジェクトを作成して、1 つ以上のプローブを追加します。

コンテナー名を指定します。

デプロイするコンテナーイメージを指定します。

オプション: liveness プローブを作成します。

実行するテストを指定します。この場合は TCP ソケットテストです。

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
spec:
 containers:
 - name: my-container 1
 args:
 image: k8s.gcr.io/goproxy:0.1 2
 livenessProbe: 3
 tcpSocket: 4
 port: 8080 5
 initialDelaySeconds: 15 6
 periodSeconds: 20 7
 timeoutSeconds: 10 8
 readinessProbe: 9
 httpGet: 10
 host: my-host 11
 scheme: HTTPS 12
 path: /healthz
 port: 8080 13
 startupProbe: 14
 exec: 15
 command: 16
 - cat
 - /tmp/healthy
 failureThreshold: 30 17
 periodSeconds: 20 18
 timeoutSeconds: 10 19

OpenShift Container Platform 4.9 アプリケーションのビルド

172

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

コンテナーがリッスンするポートを指定します。

コンテナーが起動してからプローブがスケジュールされるまでの時間 (秒単位) を指定しま
す。

プローブを実行する秒数を指定します。デフォルトは 10 です。この値は
timeoutSeconds よりも大きくなければなりません。

プローブが失敗したと想定されてから非アクティブになる時間 (秒数)。デフォルトは 1 で
す。この値は periodSeconds 未満である必要があります。

オプション: readiness プローブを作成します。

実行するテストのタイプを指定します。この場合は HTTP テストです。

ホストの IP アドレスを指定します。host が定義されていない場合は、PodIP が使用され
ます。

HTTP または HTTPS を指定します。scheme が定義されていない場合は、HTTP スキー
ムが使用されます。

コンテナーがリッスンするポートを指定します。

オプション: スタートアッププローブを作成します。

実行するテストのタイプを指定します。この場合はコンテナー実行プローブです。

コンテナーで実行するコマンドを指定します。

失敗後にプローブを試行する回数を指定します。

プローブを実行する秒数を指定します。デフォルトは 10 です。この値は
timeoutSeconds よりも大きくなければなりません。

プローブが失敗したと想定されてから非アクティブになる時間 (秒数)。デフォルトは 1 で
す。この値は periodSeconds 未満である必要があります。

注記

initialDelaySeconds 値が periodSeconds 値よりも低い場合、最初の readiness
プローブがタイマーの問題により 2 つの期間の間のある時点で生じます。

timeoutSeconds 値は periodSeconds の値よりも低い値である必要がありま
す。

2. Pod オブジェクトを作成します。

3. ヘルスチェック Pod の状態を確認します。

出力例

$ oc create -f <file-name>.yaml

$ oc describe pod health-check

第11章 ヘルスチェックの使用によるアプリケーションの正常性の監視

173

以下は、コンテナーを再起動した障害のあるプローブの出力です。

正常ではないコンテナーについての liveness チェック出力の例

出力例

11.3. 開発者パースペクティブを使用したアプリケーションの正常性の監視

Developer パースペクティブを使用して、3 種類のヘルスプローブをコンテナーに追加し、アプリケー
ションが正常であることを確認することができます。

Readiness プローブを使用して、コンテナーが要求を処理する準備ができているかどうかを確
認します。

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 9s default-scheduler Successfully assigned openshift-
logging/liveness-exec to ip-10-0-143-40.ec2.internal
 Normal Pulling 2s kubelet, ip-10-0-143-40.ec2.internal pulling image
"k8s.gcr.io/liveness"
 Normal Pulled 1s kubelet, ip-10-0-143-40.ec2.internal Successfully pulled image
"k8s.gcr.io/liveness"
 Normal Created 1s kubelet, ip-10-0-143-40.ec2.internal Created container
 Normal Started 1s kubelet, ip-10-0-143-40.ec2.internal Started container

$ oc describe pod pod1

....

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> Successfully
assigned aaa/liveness-http to ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
 Normal AddedInterface 47s multus Add eth0
[10.129.2.11/23]
 Normal Pulled 46s kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "k8s.gcr.io/liveness" in 773.406244ms
 Normal Pulled 28s kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "k8s.gcr.io/liveness" in 233.328564ms
 Normal Created 10s (x3 over 46s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Created container liveness
 Normal Started 10s (x3 over 46s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Started container liveness
 Warning Unhealthy 10s (x6 over 34s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-
snzrj Liveness probe failed: HTTP probe failed with statuscode: 500
 Normal Killing 10s (x2 over 28s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Container liveness failed liveness probe, will be restarted
 Normal Pulling 10s (x3 over 47s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Pulling image "k8s.gcr.io/liveness"
 Normal Pulled 10s kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "k8s.gcr.io/liveness" in 244.116568ms

OpenShift Container Platform 4.9 アプリケーションのビルド

174

Liveness プローブを使用して、コンテナーが実行中であることを確認します。

Startup プローブを使用して、コンテナー内のアプリケーションが起動しているかどうかを確認
します。

アプリケーションの作成およびデプロイ中、またはアプリケーションをデプロイした後にヘルスチェッ
クを追加できます。

11.4. 開発者パースペクティブを使用したヘルスチェックの追加

Topology ビューを使用して、デプロイされたアプリケーションにヘルスチェックを追加できます。

前提条件:

Web コンソールで Developer パースペクティブに切り替えていること。

Developer パースペクティブを使用して OpenShift Container Platform でアプリケーションを
作成し、デプロイしていること。

手順

1. Topology ビューで、アプリケーションノードをクリックし、サイドパネルを表示します。ア
プリケーションがスムーズに実行されていることを確認するためのヘルスチェックがコンテ
ナーに追加されていない場合、Health Checks 通知がヘルスチェックを追加するためのリンク
と共に表示されます。

2. 表示された通知で、Add Health Checks リンクをクリックします。

3. または、Actions ドロップダウンリストをクリックし、Add Health Checks を選択します。コ
ンテナーにヘルスチェックがすでにある場合は、add オプションの代わりに Edit Health
Checks オプションが表示されます。

4. Add Health Checks フォームで複数のコンテナーをデプロイしている場合は、Container ド
ロップダウンリストを使用して適切なコンテナーが選択されていることを確認します。

5. 必要なヘルスプローブのリンクをクリックして、それらをコンテナーに追加します。ヘルス
チェックのデフォルトデータは事前に設定されています。デフォルトデータでプローブを追加
するか、または値をさらにカスタマイズしてから追加できます。たとえば、コンテナーが要求
を処理する準備ができているかどうかを確認する Readiness プローブを追加するには、以下を
実行します。

a. Add Readiness Probe をクリックし、プローブのパラメーターが含まれているフォームを
表示します。

b. Type ドロップダウンリストをクリックし、追加する要求タイプを選択します。たとえば、
この場合は Container Command を選択し、コンテナー内で実行されるコマンドを選択し
ます。

c. Command フィールドで、引数 cat を追加することもできます。同様に、チェック用に複
数の引数を追加したり、別の引数 /tmp/healthy を追加したりすることができます。

d. 必要に応じて、他のパラメーターのデフォルト値を保持するか、または変更します。

注記

第11章 ヘルスチェックの使用によるアプリケーションの正常性の監視

175

注記

Timeout の値は Period の値よりも小さくなければなりません。Timeout の
デフォルト値は 1 です。Period のデフォルト値は 10 です。

e. フォームの下部にあるチェックマークをクリックします。Readiness Probe Added メッ
セージが表示されます。

6. Add をクリックしてヘルスチェックを追加します。Topology ビューにリダイレクトされ、コ
ンテナーが再起動します。

7. サイドパネルで、Pods セクションの下にあるデプロイされた Pod をクリックして、プローブ
が追加されたことを確認します。

8. Pod Details ページで、 Containers セクションに一覧表示されているコンテナーをクリックし
ます。

9. Container Details ページで、Readiness probe - Exec Command cat /tmp/healthy がコンテ
ナーに追加されていることを確認します。

11.5. 開発者パースペクティブを使用したヘルスチェックの編集

Topology ビューを使用して、アプリケーションに追加されたヘルスチェックを編集したり、アプリ
ケーションを変更したり、ヘルスチェックを追加したりすることができます。

前提条件:

Web コンソールで Developer パースペクティブに切り替えていること。

Developer パースペクティブを使用して OpenShift Container Platform でアプリケーションを
作成し、デプロイしていること。

アプリケーションにヘルスチェックを追加していること。

手順

1. Topology ビューでアプリケーションを右クリックし、Edit Health Checks を選択します。ま
たは、サイドパネルで Actions ドロップダウンリストをクリックし、Edit Health Checks を選
択します。

2. Edit Health Checks ページで以下を行います。

以前に追加したヘルスプローブを削除するには、それに隣接するマイナス記号をクリック
します。

既存のプローブのパラメーターを編集するには、以下を実行します。

a. 以前に追加したプローブの横にある Edit Probe リンクをクリックし、プローブのパラ
メーターを表示します。

b. 必要に応じてパラメーターを変更し、チェックマークをクリックして変更を保存しま
す。

既存のヘルスチェックに加え、新規のヘルスプローブを追加するには、add probe リンク
をクリックします。たとえば、コンテナーが実行中かどうかを確認する Liveness プローブ
を追加するには、以下を実行します。

a. Add Liveness Probe をクリックし、プローブのパラメーターが含まれているフォーム

OpenShift Container Platform 4.9 アプリケーションのビルド

176

a. Add Liveness Probe をクリックし、プローブのパラメーターが含まれているフォーム
を表示します。

b. 必要に応じてプローブのパラメーターを編集します。

注記

Timeout の値は Period の値よりも小さくなければなりませ
ん。Timeout のデフォルト値は 1 です。Period のデフォルト値は 10 で
す。

c. フォームの下部にあるチェックマークをクリックします。Liveness Probe Added とい
うメッセージが表示されます。

3. Save をクリックして変更を保存し、追加のプローブをコンテナーに追加します。Topology
ビューにリダイレクトされます。

4. サイドパネルで、Pods セクションの下にあるデプロイされた Pod をクリックして、プローブ
が追加されたことを確認します。

5. Pod Details ページで、 Containers セクションに一覧表示されているコンテナーをクリックし
ます。

6. Container Details ページで、以前の既存プローブに加えて Liveness probe - HTTP Get
10.129.4.65:8080/ がコンテナーに追加されていることを確認します。

11.6. 開発者パースペクティブを使用したヘルスチェックの失敗の監視

アプリケーションのヘルスチェックに失敗した場合、Topology ビューを使用してこれらのヘルス
チェックの違反を監視できます。

前提条件:

Web コンソールで Developer パースペクティブに切り替えていること。

Developer パースペクティブを使用して OpenShift Container Platform でアプリケーションを
作成し、デプロイしていること。

アプリケーションにヘルスチェックを追加していること。

手順

1. Topology ビューで、アプリケーションノードをクリックし、サイドパネルを表示します。

2. Observe タブをクリックして、Events(Warning) セクションにヘルスチェックの失敗を確認し
ます。

3. Events (Warning) に隣接する下矢印をクリックし、ヘルスチェックの失敗の詳細を確認しま
す。

関連情報

Web コンソールで Developer パースペクティブに切り換える方法についての詳細は、About
Developer perspective を参照してください。

アプリケーションの作成およびデプロイ時にヘルスチェックを追加する方法についての詳細

第11章 ヘルスチェックの使用によるアプリケーションの正常性の監視

177

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/web_console/#about-developer-perspective_web-console-overview

アプリケーションの作成およびデプロイ時にヘルスチェックを追加する方法についての詳細
は、Developer パースペクティブを使用したアプリケーションの作成セクションの高度なオプ
ションを参照してください。

OpenShift Container Platform 4.9 アプリケーションのビルド

178

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-creating-applications-using-developer-perspective

第12章 アプリケーションの編集
Topology ビューを使用して、作成するアプリケーションの設定およびソースコードを編集できます。

12.1. 前提条件

OpenShift Container Platform でアプリケーションを作成し、変更するための適切なプロジェ
クト内の ロールおよびパーミッション があること。

Developer パースペクティブを使用して OpenShift Container Platform でアプリケーションを
作成し、デプロイしている。

Web コンソールにログイン しており、Developer パースペクティブ に切り替えている。

12.2. 開発者パースペクティブを使用したアプリケーションのソースコード
の編集

Developer パースペクティブの Topology ビューを使用して、アプリケーションのソースコードを編集
できます。

手順

Topology ビューで、デプロイされたアプリケーションの右下に表示される Edit Source code
アイコンをクリックして、ソースコードにアクセスし、これを変更します。

注記

この機能は、From Git、From Catalog、および From Dockerfile オプションを
使用してアプリケーションを作成する場合にのみ利用できます。

Eclipse Che Operator がクラスターにインストールされている場合、Che ワークスペース (

) が作成され、ソースコードを編集するためにワークスペースが表示されます。インス

トールされていない場合は、ソースコードがホストされている Git リポジトリー () が表示
されます。

12.3. 開発者パースペクティブを使用したアプリケーション設定の編集

Developer パースペクティブの Topology ビューを使用して、アプリケーションの設定を編集できま
す。

注記

現在、Developer パースペクティブの Add ワークフローにある From Git、Container
Image、From Catalog、または From Dockerfile オプションを使用して作成されるアプ
リケーションの設定のみを編集できます。CLI または Add ワークフローからの YAML オ
プションを使用して作成したアプリケーションの設定は編集できません。

前提条件

Add ワークフローの From Git、Container Image、From Catalog、または From Dockerfile オプショ
ンを使用してアプリケーションを作成している。

第12章 アプリケーションの編集

179

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/authentication_and_authorization/#default-roles_using-rbac
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/web_console/#web-console
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/web_console/#about-developer-perspective_web-console-overview

手順

1. アプリケーションを作成し、アプリケーションが Topology ビューに表示された後に、アプリ
ケーションを右クリックして選択可能な編集オプションを確認します。

図12.1 アプリケーションの編集

2. Edit application-name をクリックし、アプリケーションの作成に使用した Add ワークフロー
を表示します。このフォームには、アプリケーションの作成時に追加した値が事前に設定され
ています。

3. アプリケーションに必要な値を編集します。

注記

OpenShift Container Platform 4.9 アプリケーションのビルド

180

注記

General セクションの Name フィールド、CI/CD パイプライン、または
Advanced Options セクションの Create a route to the application フィールド
を編集することはできません。

4. Save をクリックしてビルドを再起動し、新規イメージをデプロイします。

図12.2 アプリケーションの編集および再デプロイ

第12章 アプリケーションの編集

181

第13章 リソースを回収するためのオブジェクトのプルーニング
時間の経過と共に、OpenShift Container Platform で作成される API オブジェクトは、アプリケーショ
ンのビルドおよびデプロイなどの通常のユーザーの操作によってクラスターの etcd データストアに蓄
積されます。

クラスター管理者は、不要になった古いバージョンのオブジェクトをクラスターから定期的にプルーニ
ングできま。たとえば、イメージのプルーニングにより、使用されなくなったものの、ディスク領域を
使用している古いイメージや層を削除できます。

13.1. プルーニングの基本操作

CLI は、共通の親コマンドでプルーニング操作を分類します。

これにより、以下が指定されます。

groups、builds、deployments、または images などのアクションを実行するための
<object_type>。

オブジェクトタイプのプルーニングの実行においてサポートされる <options>。

13.2. グループのプルーニング

グループのレコードを外部プロバイダーからプルーニングするために、管理者は以下のコマンドを実行
できます。

表13.1 oc adm prune groups フラグ

オプション 説明

--confirm ドライランを実行する代わりにプルーニングが実行されることを示しま
す。

--blacklist グループブラックリストファイルへのパス。

--whitelist グループホワイトリストファイルへのパス 。

--sync-config 同期設定ファイルへのパスです。

手順

1. prune コマンドが削除するグループを表示するには、以下のコマンドを実行します。

2. prune 操作を実行するには、--confirm フラグを追加します。

$ oc adm prune <object_type> <options>

$ oc adm prune groups \
 --sync-config=path/to/sync/config [<options>]

$ oc adm prune groups --sync-config=ldap-sync-config.yaml

OpenShift Container Platform 4.9 アプリケーションのビルド

182

13.3. デプロイメントリソースのプルーニング

使用年数やステータスによりシステムで不要となったデプロイメントに関連付けられたリソースをプ
ルーニングできます。

以下のコマンドは、DeploymentConfig オブジェクトに関連付けられたレプリケーションコントロー
ラーをプルーニングします。

表13.2 oc adm prune deployments フラグ

オプション 説明

--confirm ドライランを実行する代わりにプルーニングが実行されることを示しま
す。

--keep-complete=<N> DeploymentConfig オブジェクトに基づいて、ステータスが
Complete でレプリカ数がゼロの最後の N レプリケーションコント
ローラーを維持します。デフォルトは 5 です。

--keep-failed=<N> DeploymentConfig オブジェクトに基づいて、ステータスが Failed
でレプリカ数がゼロの最後の N レプリケーションコントローラーを維持
します。デフォルトは 1 です。

--keep-younger-than=
<duration>

現在の時間との対比で <duration> 未満の新しいレプリケーションコン
トローラーはプルーニングしません。有効な測定単位には、ナノ秒
(ns)、マイクロ秒 (us)、ミリ秒 (ms)、秒 (s)、分 (m)、および時間 (h)
が含まれます。デフォルトは 60m です。

--orphans DeploymentConfig オブジェクトを持たない、ステータスが
Complete または Failed で、レプリカ数がゼロのすべてのレプリケー
ションコントローラーをプルーニングします。

手順

1. プルーニング操作によって削除されるものを確認するには、以下のコマンドを実行します。

2. 実際に prune 操作を実行するには、--confirm フラグを追加します。

13.4. ビルドのプルーニング

使用年数やステータスによりシステムで不要となったビルドをプルーニングするために、管理者は以下

$ oc adm prune groups --sync-config=ldap-sync-config.yaml --confirm

$ oc adm prune deployments [<options>]

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

第13章 リソースを回収するためのオブジェクトのプルーニング

183

使用年数やステータスによりシステムで不要となったビルドをプルーニングするために、管理者は以下
のコマンドを実行できます。

表13.3 oc adm prune builds フラグ

オプション 説明

--confirm ドライランを実行する代わりにプルーニングが実行されることを示しま
す。

--orphans ビルド設定が存在せず、ステータスが complete (完了)、failed (失敗)、
error (エラー)、または canceled (中止) のすべてのビルドをプルーニン
グします。

--keep-complete=<N> ビルド設定基づいて、ステータスが complete (完了) の最後の N ビルド
を保持します。デフォルトは 5 です。

--keep-failed=<N> ビルド設定に基づいて、ステータスが failed (失敗)、error (エラー)、ま
たは canceled (中止) の最後の N ビルドを保持します。デフォルトは 1
です。

--keep-younger-than=
<duration>

現在の時間との対比で <duration> 未満の新しいオブジェクトはプルー
ニングしません。デフォルトは 60m です。

手順

1. プルーニング操作によって削除されるものを確認するには、以下のコマンドを実行します。

2. 実際に prune 操作を実行するには、--confirm フラグを追加します。

注記

開発者は、ビルドの設定を変更して自動ビルドプルーニングを有効にできます。

関連情報

Performing advanced builds → Pruning builds

13.5. イメージの自動プルーニング

使用年数、ステータス、または制限の超過のためにシステムで不要となった内部レジストリーのイメー
ジは、自動的にプルーニングされます。クラスター管理者は、Pruning Custom Resource を設定した
り、これを保留にしたりすることができます。

$ oc adm prune builds [<options>]

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

OpenShift Container Platform 4.9 アプリケーションのビルド

184

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/cicd/#builds-build-pruning-advanced-build-operations

1

2

3

4

前提条件

クラスター管理者のパーミッション。

oc CLI をインストールしている。

手順

imagepruners.imageregistry.operator.openshift.io/cluster という名前のオブジェクトに以下
の spec および status フィールドが含まれることを確認します。

schedule: CronJob 形式のスケジュールこれはオプションのフィールドで、デフォルトは dayly で
午前 0 時でに設定されます。

suspend: true に設定されている場合、プルーニングを実行している CronJob は中断されます。
これはオプションのフィールドで、デフォルトは false です。新規クラスターの初期値は false で
す。

keepTagRevisions: 保持するタグ別のリビジョン数です。これはオプションのフィールドで、デ
フォルトは 3 です。初期値は 3 です。

keepYoungerThanDuration: 指定の期間よりも後に作成されたイメージを保持します。これはオ
プションのフィールドです。値の指定がない場合は、keepYoungerThan またはデフォルト値
60m (60 分) のいずれかが使用されます。

spec:
 schedule: 0 0 * * * 1
 suspend: false 2
 keepTagRevisions: 3 3
 keepYoungerThanDuration: 60m 4
 keepYoungerThan: 3600000000000 5
 resources: {} 6
 affinity: {} 7
 nodeSelector: {} 8
 tolerations: [] 9
 successfulJobsHistoryLimit: 3 10
 failedJobsHistoryLimit: 3 11
status:
 observedGeneration: 2 12
 conditions: 13
 - type: Available
 status: "True"
 lastTransitionTime: 2019-10-09T03:13:45
 reason: Ready
 message: "Periodic image pruner has been created."
 - type: Scheduled
 status: "True"
 lastTransitionTime: 2019-10-09T03:13:45
 reason: Scheduled
 message: "Image pruner job has been scheduled."
 - type: Failed
 staus: "False"
 lastTransitionTime: 2019-10-09T03:13:45
 reason: Succeeded
 message: "Most recent image pruning job succeeded."

第13章 リソースを回収するためのオブジェクトのプルーニング

185

5

6

7

8

9

10

11

12

13

60m (60 分) のいずれかが使用されます。

keepYoungerThan: 非推奨。keepYoungerThanDuration と同じですが、期間は整数 (ナノ秒単
位) で指定されます。これはオプションのフィールドです。keepYoungerThanDuration を設定す
ると、このフィールドは無視されます。

resources: 標準の Pod リソースの要求および制限です。これはオプションのフィールドです。

affinity: 標準の Pod のアフィニティーです。これはオプションのフィールドです。

nodeSelector: 標準の Pod ノードセレクターです。これはオプションのフィールドです。

tolerations: 標準の Pod の容認です。これはオプションのフィールドです。

successfulJobsHistoryLimit: 保持する成功したジョブの最大数です。メトリクスがレポートされ
るようにするには >= 1 にする必要があります。これはオプションのフィールドで、デフォルトは
3 です。初期値は 3 です。

failedJobsHistoryLimit: 保持する失敗したジョブの最大数です。メトリクスがレポートされるよ
うにするには >= 1 にする必要があります。これはオプションのフィールドで、デフォルトは 3 で
す。初期値は 3 です。

observedGeneration: Operator によって観察される生成です。

conditions: 以下のタイプの標準条件オブジェクトです。

Available: プルーニングジョブが作成されているかどうかを示します。理由には Ready ま
たは Error のいずれかを使用できます。

Scheduled: 次のプルーニングジョブがスケジュールされているかどうかを示します。理
由には、Scheduled、Suspended、または Error を使用できます。

Failed: 最新のプルーニングジョブが失敗したかどうかを示します。

重要

プルーナーを管理するためのイメージレジストリー Operator の動作は、イメージレジス
トリー Operator の ClusterOperator オブジェクトで指定される managementState と
は独立しています。イメージレジストリー Operator が Managed 状態ではない場合、イ
メージプルーナーは Pruning Custom Resource によって設定され、管理できます。

ただし、イメージレジストリー Operator の managementState は、デプロイされたイ
メージプルーナージョブの動作を変更します。

Managed: イメージプルーナーの --prune-registry フラグは true に設定されま
す。

Removed: イメージプルーナーの --prune-registry フラグは false に設定されま
す。つまり、これは etcd のイメージメタデータのみのプルーニングを実行しま
す。

Unmanaged: イメージプルーナーの --prune-registry フラグは false に設定され
ます。

13.6. イメージの手動プルーニング

OpenShift Container Platform 4.9 アプリケーションのビルド

186

プルーニングカスタムリソースは、内部レジストリーからのイメージの自動イメージプルーニングを有
効にします。ただし、管理者は、使用年数やステータスまたは制限の超過によりシステムで不要となっ
たイメージを手動でプルーニングすることができます。イメージを手動でプルーニングする方法は 2 つ
あります。

イメージのプルーニングをクラスター上で Job または CronJob として実行する。

oc adm prune images コマンドを実行する。

前提条件

イメージをプルーニングするには、まずアクセストークンを使ってユーザーとして CLI にログ
インする必要があります。ユーザーにはクラスターロール system:image-pruner 以上のロー
ルがなければなりません (例: cluster-admin)。

イメージレジストリーを公開します。

手順

使用年数やステータスまたは制限の超過によりシステムで不要となったイメージを手動でプルーニング
するには、以下の方法のいずれかを使用します。

以下の例のように、pruner サービスアカウントの YAML ファイルを作成して、イメージプ
ルーニングをクラスター上で Job または CronJob として実行します。

出力例

$ oc create -f <filename>.yaml

kind: List
apiVersion: v1
items:
- apiVersion: v1
 kind: ServiceAccount
 metadata:
 name: pruner
 namespace: openshift-image-registry
- apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRoleBinding
 metadata:
 name: openshift-image-registry-pruner
 roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:image-pruner
 subjects:
 - kind: ServiceAccount
 name: pruner
 namespace: openshift-image-registry
- apiVersion: batch/v1
 kind: CronJob
 metadata:
 name: image-pruner
 namespace: openshift-image-registry
 spec:
 schedule: "0 0 * * *"

第13章 リソースを回収するためのオブジェクトのプルーニング

187

oc adm prune images [<options>] コマンドを実行します。

--prune-registry=false が使用されていない限り、イメージのプルーニングにより、統合レジス
トリーのデータが削除されます。

--namespace フラグの付いたイメージをプルーニングしてもイメージは削除されず、イメージ
ストリームのみが削除されます。イメージは namespace を使用しないリソースです。そのた
め、プルーニングを特定の namespace に制限すると、現在の使用量を算出できなくなります。

デフォルトで、統合レジストリーは Blob のメタデータをキャッシュしてストレージに対する要
求数を減らし、要求の処理速度を高めます。プルーニングによって統合レジストリーのキャッ
シュが更新されることはありません。プルーニング後の依然としてプルーニングされた層を含
むイメージは破損します。キャッシュにメタデータを持つプルーニングされた層はプッシュさ
れないためです。そのため、プルーニング後にキャッシュをクリアするためにレジストリーを
再デプロイする必要があります。

統合レジストリーが Redis キャッシュを使用する場合、データベースを手動でクリーンアップ
する必要があります。

プルーニング後にレジストリーを再デプロイすることがオプションでない場合は、キャッシュ
を永続的に無効にする必要があります。

oc adm prune images 操作ではレジストリーのルートが必要です。レジストリーのルートはデ

 concurrencyPolicy: Forbid
 successfulJobsHistoryLimit: 1
 failedJobsHistoryLimit: 3
 jobTemplate:
 spec:
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - image: "quay.io/openshift/origin-cli:4.1"
 resources:
 requests:
 cpu: 1
 memory: 1Gi
 terminationMessagePolicy: FallbackToLogsOnError
 command:
 - oc
 args:
 - adm
 - prune
 - images
 - --certificate-authority=/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt
 - --keep-tag-revisions=5
 - --keep-younger-than=96h
 - --confirm=true
 name: image-pruner
 serviceAccountName: pruner

$ oc adm prune images [<options>]

$ oc rollout restart deployment/image-registry -n openshift-image-registry

OpenShift Container Platform 4.9 アプリケーションのビルド

188

oc adm prune images 操作ではレジストリーのルートが必要です。レジストリーのルートはデ
フォルトでは作成されません。

Prune images CLI configuration options の表では、oc adm prune images <options> コマン
ドで使用できるオプションについて説明しています。

表13.4 イメージのプルーニング用の CLI の設定オプション

オプション 説明

--all レジストリーにプッシュされていないものの、プルスルー
(pullthrough) でミラーリングされたイメージを組み込みます。こ
れはデフォルトでオンに設定されます。プルーニングを統合レジ
ストリーにプッシュされたイメージに制限するには、--all=false
を渡します。

--certificate-authority OpenShift Container Platform で管理されるレジストリーと通信
する際に使用する認証局ファイルへのパスです。デフォルトは現
行ユーザーの設定ファイルの認証局データに設定されます。これ
が指定されている場合、セキュアな通信が実行されます。

--confirm test-run を実行する代わりにプルーニングが実行されることを示
します。これには、統合コンテナーイメージレジストリーへの有
効なルートが必要になります。このコマンドがクラスターネット
ワーク外で実行される場合、ルートは --registry-url を使用して
指定される必要があります。

--force-insecure このオプションは注意して使用してください。HTTP 経由でホス
トされるか、または無効な HTTPS 証明書を持つコンテナーレジ
ストリーへの非セキュアな接続を許可します。

--keep-tag-revisions=<N> それぞれのイメージストリームについては、タグごとに最大 N の
イメージリビジョンを保持します (デフォルト: 3)。

--keep-younger-than=
<duration>

現在の時間との対比で <duration> より後の新しいイメージはプ
ルーニングしません。または、現在の時間との対比で
<duration> より後の他のオブジェクトで参照されるイメージは
プルーニングしません (デフォルト: 60m)。

--prune-over-size-limit 同じプロジェクトに定義される最小の制限を超える各イメージを
プルーニングします。このフラグは --keep-tag-revisions また
は --keep-younger-than と共に使用することはできません。

--registry-url レジストリーと通信する際に使用するアドレスです。このコマン
ドは、管理されるイメージおよびイメージストリームから判別さ
れるクラスター内の URL の使用を試行します。これに失敗する
(レジストリーを解決できないか、これにアクセスできない) 場
合、このフラグを使用して他の機能するルートを指定する必要が
あります。レジストリーのホスト名の前には、特定の接続プロト
コルを実施する https:// または http:// を付けることができます。

第13章 リソースを回収するためのオブジェクトのプルーニング

189

--prune-registry 他のオプションで規定される条件と共に、このオプションは、
OpenShift Container Platform イメージ API オブジェクトに対応
するレジストリーのデータがプルーニングされるかどうかを制御
します。デフォルトで、イメージのプルーニングは、イメージ
API オブジェクトとレジストリーの対応するデータの両方を処理
します。

このオプションは、イメージオブジェクトの数を減らすなどの目
的で etcd の内容のみを削除することを検討していているか (ただ
しレジストリーのストレージのクリーンアップは検討していない
場合)、レジストリーの適切なメンテナンス期間中にレジストリー
のハードプルーニングによってこれを別途実行しようとする場合
に役立ちます。

オプション 説明

13.6.1. イメージのプルーニングの各種条件

手動でプルーニングされたイメージに条件を適用できます。

OpenShift Container Platform が管理するイメージ、またはアノテーション
openshift.io/image.managed を持つイメージを削除するには、以下を実行します。

少なくとも --keep-younger-than 分前に作成され、現時点ではいずれによっても参照され
ていません。

--keep-younger-than 分前よりも後に作成された Pod

--keep-younger-than 分前よりも後に作成されたイメージストリーム

実行中の Pod

保留中の Pod

レプリケーションコントローラー

デプロイメント

デプロイメント設定

レプリカセット

ビルド設定

ビルド

stream.status.tags[].items の --keep-tag-revisions の最新のアイテム

これは、同じプロジェクトで定義される最小の制限を超えており、現時点ではいずれにも
参照されていません。

実行中の Pod

OpenShift Container Platform 4.9 アプリケーションのビルド

190

保留中の Pod

レプリケーションコントローラー

デプロイメント

デプロイメント設定

レプリカセット

ビルド設定

ビルド

外部レジストリーからのプルーニングはサポートされていません。

イメージがプルーニングされる際、イメージのすべての参照は status.tags にイメージの参照
を持つすべてのイメージストリームから削除されます。

イメージによって参照されなくなったイメージ層は削除されます。

注記

--prune-over-size-limit フラグは、 --keep-tag-revisions フラグまたは --keep-
younger-than フラグと共に使用することができません。これを実行すると、この操作が
許可されないことを示す情報が返されます。

--prune-registry=false とその後にレジストリーのハードプルーニングを実行することで、OpenShift
Container Platform イメージ API オブジェクトの削除とイメージデータのレジストリーからの削除を分
離することができます。これにより、タイミングウィンドウが制限され、1 つのコマンドで両方をプ
ルーニングする場合よりも安全に実行できるようになります。ただし、タイミングウィンドウを完全に
取り除くことはできません。

たとえばプルーニングの実行時にプルーニング対象のイメージを特定する場合も、そのイメージを参照
する Pod を引き続き作成することができます。また、プルーニングの操作時にイメージを参照してい
る可能性のある API オブジェクトを追跡することもできます。これにより、削除されたコンテンツの参
照に関連して発生する可能性のある問題を軽減できる可能性があります。

--prune-registry オプションを指定しないか、または --prune-registry=true を指定してプルーニングを
再実行しても、--prune-registry=false を指定して以前にプルーニングされたイメージの、イメージレ
ジストリー内で関連付けられたストレージがプルーニングされる訳ではありません。--prune-
registry=false を指定してプルーニングされたすべてのイメージは、レジストリーのハードプルーニン
グによってのみ削除できます。

13.6.2. イメージのプルーニング操作の実行

手順

1. プルーニング操作によって削除されるものを確認するには、以下を実行します。

a. 最高 3 つのタグリビジョンを保持し、60 分前よりも後に作成されたリソース (イメージ、
イメージストリームおよび Pod) を保持します。

$ oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m

第13章 リソースを回収するためのオブジェクトのプルーニング

191

b. 定義された制限を超えるすべてのイメージをプルーニングします。

2. 前述のステップからオプションを指定してプルーニングの操作を実行するには、以下を実行し
ます。

13.6.3. セキュアまたは非セキュアな接続の使用

セキュアな通信の使用は優先され、推奨される方法です。これは、必須の証明書検証と共に HTTPS 経
由で実行されます。prune コマンドは、可能な場合は常にセキュアな通信の使用を試行します。これを
使用できない場合には、非セキュアな通信にフォールバックすることがあり、これには危険が伴いま
す。この場合、証明書検証は省略されるか、または単純な HTTP プロトコルが使用されます。

非セキュアな通信へのフォールバックは、--certificate-authority が指定されていない場合、以下の
ケースで可能になります。

1. prune コマンドが --force-insecure オプションと共に実行される。

2. 指定される registry-url の前に http:// スキームが付けられる。

3. 指定される registry-url はローカルリンクアドレスまたは localhost である。

4. 現行ユーザーの設定が非セキュアな接続を許可する。これは、ユーザーが --insecure-skip-tls-
verify を使用してログインするか、またはプロンプトが出される際に非セキュアな接続を選択
することによって生じる可能性があります。

重要

レジストリーのセキュリティーが、OpenShift Container Platform で使用されるものとは
異なる認証局で保護される場合、これを --certificate-authority フラグを使用して指定す
る必要があります。そうしない場合、prune コマンドがエラーを出して失敗します。

13.6.4. イメージのプルーニングに関する問題

イメージがプルーニングされない
イメージが蓄積し続け、prune コマンドが予想よりも小規模な削除を実行する場合、プルーニング候補
のイメージについて満たすべきイメージプルーティングの条件があることを確認します。

とくに削除する必要のあるイメージが、それぞれのタグ履歴において選択したタグリビジョンのしきい
値よりも高い位置にあることを確認します。たとえば、sha:abz という名前の古く陳腐化したイメージ
があるとします。イメージがタグ付けされている namespace N で以下のコマンドを実行すると、イ
メージが myapp という単一イメージストリームで 3 回タグ付けされていることに気づかれるでしょ
う。

$ oc adm prune images --prune-over-size-limit

$ oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m --confirm

$ oc adm prune images --prune-over-size-limit --confirm

$ oc get is -n N -o go-template='{{range $isi, $is := .items}}{{range $ti, $tag := $is.status.tags}}'\
 '{{range $ii, $item := $tag.items}}{{if eq $item.image "'"sha:abz"\
 $'"}}{{$is.metadata.name}}:{{$tag.tag}} at position {{$ii}} out of {{len $tag.items}}\n'\
 '{{end}}{{end}}{{end}}{{end}}'

OpenShift Container Platform 4.9 アプリケーションのビルド

192

出力例

デフォルトオプションが使用される場合、イメージは myapp:v2.1-may-2016 タグの履歴の 0 の位置に
あるためプルーニングされません。イメージがプルーニングの対象とみなされるようにするには、管理
者は以下を実行する必要があります。

oc adm prune images コマンドで --keep-tag-revisions=0 を指定します。

警告

このアクションを実行すると、イメージが指定されたしきい値よりも新し
いか、またはこれよりも新しいオブジェクトによって参照されていない限
り、すべてのタグが基礎となるイメージと共にすべての namespace から削
除されます。

リビジョンのしきい値の下にあるすべての istags、つまり myapp:v2.1 および myapp:v2.1-
may-2016 を削除します。

同じ istag にプッシュする新規ビルドを実行するか、または他のイメージをタグ付けしてイ
メージを履歴内でさらに移動させます。ただし、これは古いリリースタグの場合には常に適切
な操作となる訳ではありません。

特定のイメージのビルド日時が名前の一部になっているタグは、その使用を避ける必要があります (イ
メージが未定義の期間保持される必要がある場合を除きます)。このようなタグは履歴内で 1 つのイメー
ジのみに関連付けられる可能性があり、その場合にこれらをプルーニングできなくなります。

非セキュアなレジストリーに対するセキュアな接続の使用
oc adm prune images コマンドの出力で以下のようなメッセージが表示される場合、レジストリーの
セキュリティーは保護されておらず、oc adm prune images クライアントがセキュアな接続の使用を
試行することを示しています。

推奨される解決法として、レジストリーのセキュリティーを保護することができます。そうし
ない場合は、--force-insecure をコマンドに追加して、クライアントに対して非セキュアな接
続の使用を強制することができますが、これは推奨される方法ではありません。

セキュリティーが保護されたレジストリーに対する非セキュアな接続の使用
oc adm prune images コマンドの出力に以下のエラーのいずれかが表示される場合、レジストリーの
セキュリティー保護に使用されている認証局で署名された証明書が、接続の検証用に oc adm prune
images クライアントで使用されるものとは異なることを意味します。

myapp:v2 at position 4 out of 5
myapp:v2.1 at position 2 out of 2
myapp:v2.1-may-2016 at position 0 out of 1



error: error communicating with registry: Get https://172.30.30.30:5000/healthz: http: server gave
HTTP response to HTTPS client

error: error communicating with registry: Get http://172.30.30.30:5000/healthz: malformed HTTP
response "\x15\x03\x01\x00\x02\x02"
error: error communicating with registry: [Get https://172.30.30.30:5000/healthz: x509: certificate

第13章 リソースを回収するためのオブジェクトのプルーニング

193

デフォルトでは、ユーザーの接続ファイルに保存されている認証局データが使用されます。 これはマス
ター API との通信の場合も同様です。

--certificate-authority オプションを使用してコンテナーイメージレジストリーサーバーに適切な認証
局を指定します。

正しくない認証局の使用
以下のエラーは、セキュリティーが保護されたコンテナーイメージレジストリーの証明書の署名に使用
される認証局がクライアントで使用される認証局とは異なることを示しています。

フラグ --certificate-authority を使用して適切な認証局を指定します。

回避策として、--force-insecure フラグを代わりに追加することもできます。ただし、これは推奨され
る方法ではありません。

関連情報

レジストリーへのアクセス

レジストリーの公開

レジストリールートの作成方法についての詳細は、OpenShift Container Platform のイメージ
レジストリー Operator を参照してください。

13.7. レジストリーのハードプルーニング

OpenShift Container レジストリーは、OpenShift Container Platform クラスターの etcd で参照されな
い Blob を蓄積します。基本的なイメージプルーニングの手順はこれらに対応しません。これらの Blob
は 孤立した Blob と呼ばれています。

孤立した Blob は以下のシナリオで発生する可能性があります。

oc delete image <sha256:image-id> コマンドを使ってイメージを手動で削除すると、etcd の
イメージのみが削除され、レジストリーのストレージからは削除されません。

デーモンの障害によって生じるレジストリーへのプッシュにより、一部の Blob はアップロード
されるものの、(最後のコンポーネントとしてアップロードされる) イメージマニフェスト は
アップロードされません。固有のイメージ Blob すべてが孤立します。

OpenShift Container Platform がクォータの制限によりイメージを拒否します。

標準のイメージプルーナーがイメージマニフェストを削除するが、関連する Blob を削除する前
に中断されます。

対象の Blob を削除できないというレジストリープルーナーのバグにより、それらを参照するイ
メージオブジェクトは削除され、Blob は孤立します。

基本的なイメージプルーニングとは異なるレジストリーの ハードプルーニング により、クラスター管
理者は孤立した Blob を削除することができます。OpenShift Container レジストリーのストレージ領域
が不足している場合や、孤立した Blob があると思われる場合にはハードプルーニングを実行する必要

signed by unknown authority, Get http://172.30.30.30:5000/healthz: malformed HTTP response
"\x15\x03\x01\x00\x02\x02"]

error: error communicating with registry: Get https://172.30.30.30:5000/: x509: certificate signed by
unknown authority

OpenShift Container Platform 4.9 アプリケーションのビルド

194

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/registry/#accessing-the-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/registry/#securing-exposing-registry
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/registry/#configuring-registry-operator

があります。

これは何度も行う操作ではなく、多数の孤立した Blob が新たに作成されているという証拠がある場合
にのみ実行する必要があります。または、(作成されるイメージの数によって異なりますが) 1 日 1 回な
どの定期的な間隔で標準のイメージプルーニングを実行することもできます。

手順

孤立した Blob をレジストリーからハードプルーニングするには、以下を実行します。

1. ログイン
CLI で kubeadmin として、または openshift-image-registry namespace へのアクセスのある
別の特権ユーザーとしてクラスターにログインします。

2. 基本的なイメージプルーニングの実行
基本的なイメージプルーニングにより、不要になった追加のイメージが削除されます。ハード
プルーニングによってイメージが削除される訳ではありません。レジストリーストレージに保
存された Blob のみが削除されます。したがって、ハードプルーニングの実行前にこれを実行す
る必要があります。

3. レジストリーの読み取り専用モードへの切り替え
レジストリーが読み取り専用モードで実行されていない場合、プルーニングと同時に実行され
ているプッシュの結果は以下のいずれかになります。

失敗する。孤立した Blob が新たに発生します。

成功する。ただし、(参照される Blob の一部が削除されたため) イメージをプルできませ
ん。

プッシュは、レジストリーが読み取り書き込みモードに戻されるまで成功しません。したがっ
て、ハードプルーニングは注意してスケジューリングする必要があります。

レジストリーを読み取り専用モードに切り換えるには、以下を実行します。

a. configs.imageregistry.operator.openshift.io/cluster で、 spec.readOnly を true に設定
します。

4. system:image-pruner ロールの追加
一部のリソースを一覧表示するには、レジストリーインスタンスの実行に使用するサービスア
カウントに追加のパーミッションが必要になります。

a. サービスアカウント名を取得します。

b. system:image-pruner クラスターロールをサービスアカウントに追加します。

5. オプション: プルーナーのドライランモードでの実行

$ oc patch configs.imageregistry.operator.openshift.io/cluster -p '{"spec":
{"readOnly":true}}' --type=merge

$ service_account=$(oc get -n openshift-image-registry \
 -o jsonpath='{.spec.template.spec.serviceAccountName}' deploy/image-registry)

$ oc adm policy add-cluster-role-to-user \
 system:image-pruner -z \
 ${service_account} -n openshift-image-registry

第13章 リソースを回収するためのオブジェクトのプルーニング

195

削除される Blob の数を確認するには、ドライランモードでハードプルーナーを実行します。実
際の変更は加えられません。以下の例では、image-registry-3-vhndw というイメージレジスト
リー Pod を参照します。

または、プルーニング候補の実際のパスを取得するには、ロギングレベルを上げます。

出力例

6. ハードプルーニングを実行します。
ハードプルーニングを実行するには、image-registry Pod の実行中のインスタンスのいずれか
で以下のコマンドを実行します。以下の例では、image-registry-3-vhndw というイメージレジ
ストリー Pod を参照します。

出力例

$ oc -n openshift-image-registry exec pod/image-registry-3-vhndw -- /bin/sh -c
'/usr/bin/dockerregistry -prune=check'

$ oc -n openshift-image-registry exec pod/image-registry-3-vhndw -- /bin/sh -c
'REGISTRY_LOG_LEVEL=info /usr/bin/dockerregistry -prune=check'

time="2017-06-22T11:50:25.066156047Z" level=info msg="start prune (dry-run mode)"
distribution_version="v2.4.1+unknown" kubernetes_version=v1.6.1+$Format:%h$
openshift_version=unknown
time="2017-06-22T11:50:25.092257421Z" level=info msg="Would delete blob:
sha256:00043a2a5e384f6b59ab17e2c3d3a3d0a7de01b2cabeb606243e468acc663fa5"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:25.092395621Z" level=info msg="Would delete blob:
sha256:0022d49612807cb348cabc562c072ef34d756adfe0100a61952cbcb87ee6578a"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:25.092492183Z" level=info msg="Would delete blob:
sha256:0029dd4228961086707e53b881e25eba0564fa80033fbbb2e27847a28d16a37c"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.673946639Z" level=info msg="Would delete blob:
sha256:ff7664dfc213d6cc60fd5c5f5bb00a7bf4a687e18e1df12d349a1d07b2cf7663"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.674024531Z" level=info msg="Would delete blob:
sha256:ff7a933178ccd931f4b5f40f9f19a65be5eeeec207e4fad2a5bafd28afbef57e"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.674675469Z" level=info msg="Would delete blob:
sha256:ff9b8956794b426cc80bb49a604a0b24a1553aae96b930c6919a6675db3d5e06"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
...
Would delete 13374 blobs
Would free up 2.835 GiB of disk space
Use -prune=delete to actually delete the data

$ oc -n openshift-image-registry exec pod/image-registry-3-vhndw -- /bin/sh -c
'/usr/bin/dockerregistry -prune=delete'

Deleted 13374 blobs
Freed up 2.835 GiB of disk space

OpenShift Container Platform 4.9 アプリケーションのビルド

196

7. レジストリーを読み取り/書き込みモードに戻す
プルーニングの終了後は、レジストリーを読み取り/書き込みモードに戻すことができま
す。configs.imageregistry.operator.openshift.io/cluster で、 spec.readOnly を false に設
定します。

13.8. CRON ジョブのプルーニング

cron ジョブは正常なジョブのプルーニングを実行できますが、失敗したジョブを適切に処理していない
可能性があります。そのため、クラスター管理者はジョブの定期的なクリーンアップを手動で実行する
必要があります。また、信頼できるユーザーの小規模なグループに cron ジョブへのアクセスを制限
し、cron ジョブでジョブや Pod が作成され過ぎないように適切なクォータを設定する必要もありま
す。

関連情報

ジョブを使用した Pod でのタスクの実行

複数のプロジェクト間のリソースクォータ

RBAC の使用によるパーミッションの定義および適用

$ oc patch configs.imageregistry.operator.openshift.io/cluster -p '{"spec":{"readOnly":false}}' -
-type=merge

第13章 リソースを回収するためのオブジェクトのプルーニング

197

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/nodes/#nodes-nodes-jobs_nodes-nodes-jobs
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/building_applications/#setting-quotas-across-multiple-projects
https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.9/html-single/authentication_and_authorization/#using-rbac

第14章 アプリケーションのアイドリング
クラスター管理者は、アプリケーションをアイドリング状態にしてリソース消費を減らすことができま
す。これは、コストがリソース消費と関連付けられるパブリッククラウドにデプロイされている場合に
役立ちます。

スケーラブルなリソースが使用されていない場合、OpenShift Container Platform はリソースを検出し
た後にそれらを 0 レプリカに設定してアイドリングします。ネットワークトラフィックがリソースに送
信される場合、レプリカをスケールアップしてアイドリング解除を実行し、通常の操作を続行します。

アプリケーションは複数のサービスやデプロイメント設定などの他のスケーラブルなリソースで設定さ
れています。アプリケーションのアイドリングには、関連するすべてのリソースのアイドリングを実行
することが関係します。

14.1. アプリケーションのアイドリング

アプリケーションのアイドリングには、サービスに関連付けられたスケーラブルなリソース (デプロイ
メント設定、レプリケーションコントローラーなど) を検索することが必要です。アプリケーションの
アイドルリングには、サービスを検索してこれをアイドリング状態としてマークし、リソースを zero
レプリカにスケールダウンすることが関係します。

oc idle コマンドを使用して単一サービスをアイドリングするか、または --resource-names-file オプ
ションを使用して複数のサービスをアイドリングすることができます。

14.1.1. 単一サービスのアイドリング

手順

1. 単一のサービスをアイドリングするには、以下を実行します。

14.1.2. 複数サービスのアイドリング

複数サービスのアイドリングは、アプリケーションがプロジェクト内の一連のサービスにまたがる場合
や、同じプロジェクト内で複数のアプリケーションを一括してアイドリングするため、複数サービスを
スクリプトを併用してアイドリングする場合に役立ちます。

手順

1. 複数サービスの一覧を含むファイルを作成します (それぞれを各行に指定)。

2. --resource-names-file オプションを使用してサービスをアイドリングします。

注記

idle コマンドは単一プロジェクトに制限されます。クラスター全体でアプリケーション
をアイドリングするには、各プロジェクトに対して idle コマンドを個別に実行します。

14.2. アプリケーションのアイドリング解除

$ oc idle <service>

$ oc idle --resource-names-file <filename>

OpenShift Container Platform 4.9 アプリケーションのビルド

198

アプリケーションサービスは、ネットワークトラフィックを受信し、直前の状態に再びスケールアップ
すると再びアクティブになります。これには、サービスへのトラフィックとルートを通るトラフィック
の両方が含まれます。

また、アプリケーションはリソースをスケールアップすることにより、手動でアイドリング解除するこ
とができます。

手順

1. DeploymentConfig をスケールアップするには、以下を実行します。

注記

現時点で、ルーターによる自動アイドルリング解除はデフォルトの HAProxy ルーターの
みでサポートされています。

注記

Kuryr-Kubernetes を SDN として設定している場合、サービスは自動アイドリング解除
をサポートしません。

$ oc scale --replicas=1 dc <dc_name>

第14章 アプリケーションのアイドリング

199

第15章 アプリケーションの削除
プロジェクトで作成されたアプリケーションを削除できます。

15.1. 開発者パースペクティブを使用したアプリケーションの削除

Developer パースペクティブの Topology ビューを使用して、アプリケーションとその関連コンポーネ
ントすべてを削除できます。

1. 削除するアプリケーションをクリックし、アプリケーションのリソースの詳細を含むサイドパ
ネルを確認します。

2. パネルの右上に表示される Actions ドロップダウンメニューをクリックし、Delete
Application を選択して確認ダイアログボックスを表示します。

3. アプリケーションの名前を入力して Delete をクリックし、これを削除します。

削除するアプリケーションを右クリックし、Delete Application をクリックして削除することもできま
す。

OpenShift Container Platform 4.9 アプリケーションのビルド

200

第16章 RED HAT MARKETPLACE の使用
Red Hat Marketplace は、パブリッククラウドおよびオンプレミスで実行されるコンテナーベース環境
向けの認定されたソフトウェアの検出とアクセスを容易にする、オープンクラウドマーケットプレース
です。

16.1. RED HAT MARKETPLACE 機能

クラスター管理者は Red Hat Marketplace を使用して OpenShift Container Platform でソフトウェアを
管理し、開発者にアプリケーションインスタンスをデプロイするためのセルフサービスアクセスを付与
し、アプリケーションの使用状況をクォータに対して関連付けることができます。

16.1.1. OpenShift Container Platform クラスターの Marketplace への接続

クラスター管理者は、Marketplace に接続する OpenShift Container Platform クラスターに、共通のア
プリケーションセットをインストールできます。また、Marketplace を使用し、サブスクリプションま
たはクォータに対してクラスターの使用状況を追跡することもできます。Marketplace を使用して追加
したユーザーは、それぞれの製品のの使用状況を追跡し、組織に対して請求できます。

クラスター接続のプロセス で、イメージレジストリーシークレットを更新し、カタログを管理し、アプ
リケーションの使用状況を報告する Marketplace Operator がインストールされています。

16.1.2. アプリケーションのインストール

クラスター管理者は、OpenShift Container Platform の OperatorHub 内から、または Marketplace
Web アプリケーション から Marketplace アプリケーションをインストール できます。

Operators > Installed Operators をクリックして、Web コンソールからインストールされたアプリケー
ションにアクセスできます。

16.1.3. 異なるパースペクティブからのアプリケーションのデプロイ

Web コンソールの Administrator および 開発者パースペクティブから Marketplace アプリケーションを
デプロイすることができます。

開発者パースペクティブ
開発者は 開発者パースペクティブを使用して、新しくインストールされた機能にアクセスできます。

たとえば、データベース Operator のインストール後に、開発者はプロジェクト内のカタログからイン
スタンスを作成できます。データベースの使用状況は集計され、クラスター管理者に報告されます。

このパースペクティブには、Operator のインストールやアプリケーション使用状況の追跡は含まれま
せん。

Administrator パースペクティブ
クラスター管理者は、Administrator パースペクティブから Operator のインストールおよびアプリケー
ションの使用状況の情報にアクセスできます。

また、Installed Operators 一覧でカスタムリソース定義 (CRD) を参照してアプリケーションインスタ
ンスを起動することもできます。

第16章 RED HAT MARKETPLACE の使用

201

https://marketplace.redhat.com
https://marketplace.redhat.com/en-us/documentation/getting-started
https://marketplace.redhat.com/en-us/documentation/clusters
https://marketplace.redhat.com
https://marketplace.redhat.com/en-us/documentation/operators

	目次
	第1章 アプリケーションのビルドの概要
	1.1. プロジェクトの使用
	1.2. アプリケーションの使用
	1.2.1. アプリケーションの作成
	1.2.2. アプリケーションの保守
	1.2.3. アプリケーションのサービスへの接続
	1.2.4. アプリケーションのデプロイ

	1.3. RED HAT MARKETPLACE の使用

	第2章 プロジェクト
	2.1. プロジェクトの使用
	2.1.1. Web コンソールを使用したプロジェクトの作成
	2.1.2. Web コンソールでの開発者パースペクティブを使用したプロジェクトの作成
	2.1.3. CLI を使用したプロジェクトの作成
	2.1.4. Web コンソールを使用したプロジェクトの表示
	2.1.5. CLI を使用したプロジェクトの表示
	2.1.6. 開発者パースペクティブを使用したプロジェクトに対するアクセスパーミッションの提供
	2.1.7. 開発者パースペクティブを使用した利用可能なクラスターロールのカスタマイズ
	2.1.8. プロジェクトへの追加
	2.1.9. Web コンソールを使用したプロジェクトステータスの確認
	2.1.10. CLI を使用したプロジェクトステータスの確認
	2.1.11. Web コンソールを使用したプロジェクトの削除
	2.1.12. CLI を使用したプロジェクトの削除

	2.2. 別のユーザーとしてのプロジェクトの作成
	2.2.1. API の権限借用
	2.2.2. プロジェクト作成時のユーザー権限の借用

	2.3. プロジェクト作成の設定
	2.3.1. プロジェクト作成について
	2.3.2. 新規プロジェクトのテンプレートの変更
	2.3.3. プロジェクトのセルフプロビジョニングの無効化
	2.3.4. プロジェクト要求メッセージのカスタマイズ

	第3章 アプリケーションの作成
	3.1. 開発者パースペクティブを使用したアプリケーションの作成
	3.1.1. 前提条件
	3.1.2. サンプルアプリケーションの作成
	3.1.3. Git のコードベースのインポートおよびアプリケーションの作成
	3.1.4. Java アプリケーションのデプロイメントを容易にする JAR ファイルのアップロード
	3.1.5. Developer Catalog を使用したサービスまたはコンポーネントのアプリケーションへの追加
	3.1.6. 関連情報

	3.2. インストールされた OPERATOR からのアプリケーションの作成
	3.2.1. Operator を使用した etcd クラスターの作成

	3.3. CLI を使用したアプリケーションの作成
	3.3.1. ソースコードからのアプリケーションの作成
	3.3.1.1. Local
	3.3.1.2. リモート
	3.3.1.3. ビルドストラテジーの検出
	3.3.1.4. 言語の検出

	3.3.2. イメージからアプリケーションを作成する方法
	3.3.2.1. Docker Hub MySQL イメージ
	3.3.2.2. プライベートレジストリーのイメージ
	3.3.2.3. 既存のイメージストリームおよびオプションのイメージストリームタグ

	3.3.3. テンプレートからのアプリケーションの作成
	3.3.3.1. テンプレートパラメーター

	3.3.4. アプリケーション作成の変更
	3.3.4.1. 環境変数の指定
	3.3.4.2. ビルド環境変数の指定
	3.3.4.3. ラベルの指定
	3.3.4.4. 作成前の出力の表示
	3.3.4.5. 別名でのオブジェクトの作成
	3.3.4.6. 別のプロジェクトでのオブジェクトの作成
	3.3.4.7. 複数のオブジェクトの作成
	3.3.4.8. 単一 Pod でのイメージとソースのグループ化
	3.3.4.9. イメージ、テンプレート、および他の入力の検索

	第4章 TOPOLOGY ビューを使用したアプリケーション設定の表示
	4.1. 前提条件
	4.2. アプリケーションのトポロジーの表示
	4.3. アプリケーションおよびコンポーネントとの対話
	4.4. アプリケーション POD のスケーリングおよびビルドとルートの確認
	4.5. コンポーネントの既存プロジェクトへの追加
	4.6. アプリケーション内での複数コンポーネントのグループ化
	4.7. サービスのアプリケーションへの追加
	4.8. アプリケーションからのサービスの削除
	4.9. TOPOLOGY ビューに使用するラベルとアノテーション
	4.10. 関連情報

	第5章 アプリケーションのサービスへの接続
	5.1. SERVICE BINDING OPERATOR のリリースノート
	5.1.1. 多様性を受け入れるオープンソースの強化
	5.1.2. Service Binding Operator 1.0.1 のリリースノート
	5.1.2.1. サポート表
	5.1.2.2. 修正された問題
	5.1.2.3. 既知の問題

	5.1.3. サービスバインディング Operator 1.0 のリリースノート
	5.1.3.1. サポート表
	5.1.3.2. 新機能

	5.1.4. 関連情報

	5.2. サービスバインディング OPERATOR
	5.2.1. サービスバインディングの用語
	5.2.2. サービスバインディング Operator
	5.2.2.1. Operator の管理するサービスをバインド可能にする
	5.2.2.2. ワークロードをバッキングサービスとバインドする

	5.2.3. 主な特長
	5.2.4. 関連情報

	5.3. サービスバインディング OPERATOR のインストール
	5.3.1. Web コンソールを使用したサービスバインディング Operator のインストール
	前提条件

	5.3.2. 関連情報

	5.4. サービスバインディングの使用
	前提条件
	5.4.1. PostgreSQL データベースインスタンスの作成
	5.4.2. Spring PetClinic サンプルアプリケーションのデプロイ
	5.4.3. Spring PetClinic サンプルアプリケーションを PostgreSQL データベースサービスに接続します。
	5.4.4. 関連情報

	5.5. IBM POWER SYSTEMS、IBM Z、および LINUXONE でのサービスバインディングの使用
	前提条件
	5.5.1. PostgreSQL Operator のデプロイ
	5.5.2. PostgreSQL データベースインスタンスの作成
	5.5.3. Spring PetClinic サンプルアプリケーションのデプロイ
	5.5.4. Spring PetClinic サンプルアプリケーションを PostgreSQL データベースサービスに接続します。
	5.5.5. 関連情報

	5.6. サービスからバインディングデータの公開
	5.6.1. バインディングデータを公開する方法
	5.6.1.1. プロビジョニングされたサービス
	5.6.1.2. 直接のシークレット参照
	5.6.1.3. CRD または CR アノテーションによるバインディングデータを宣言する
	5.6.1.4. 所有リソースによるバインディングデータの検出

	5.6.2. データモデル
	5.6.3. RBAC 要件
	5.6.4. 公開可能なバインディングデータのカテゴリー
	5.6.4.1. リソースからの文字列の公開
	5.6.4.2. 定数値のバインディング項目としての公開
	5.6.4.3. リソースから参照される設定マップまたはシークレット全体を公開する
	5.6.4.4. リソースから参照される設定マップまたはシークレットから特定のエントリーを公開する
	5.6.4.5. リソース定義値の公開
	5.6.4.6. コレクションのエントリーを、各エントリーのキーと値で公開する
	5.6.4.7. コレクションのアイテムをアイテムごとに 1 つのキーで公開する
	5.6.4.8. エントリー値ごとに 1 つのキーを使用してコレクションエントリーの値を公開する

	5.6.5. 関連情報

	5.7. バインディングデータのプロジェクション
	5.7.1. バインディングデータの使用
	5.7.2. ワークロードコンテナー内にバインディングデータをプロジェうションするディレクトリーパスの設定
	5.7.2.1. バインディングデータをファイルとしてプロジェクションするための最終パスの計算

	5.7.3. バインディングデータのプロジェクション
	5.7.4. 関連情報

	5.8. サービスバインディング OPERATOR を使用したワークロードのバインド
	5.8.1. 命名ストラテジー
	5.8.2. 高度なバインディングオプション
	5.8.2.1. ワークロードへの反映前のバインディング名の変更
	5.8.2.2. カスタムバインディングデータの作成

	5.8.3. PodSpec に準拠していないセカンダリーワークロードのバインド
	5.8.3.1. コンテナーパスのカスタムロケーションの設定
	5.8.3.2. シークレットパスのカスタムロケーションの設定

	5.8.4. バッキングサービスからのワークロードのバインド解除
	5.8.5. 関連情報

	5.9. 開発者パースペクティブを使用したアプリケーションのサービスへの接続
	5.9.1. コンポーネント間のビジュアル接続の作成
	5.9.2. コンポーネント間のバインディング接続の作成
	5.9.3. 関連情報

	第6章 HELM チャートの使用
	6.1. HELM について
	6.1.1. 主な特長
	6.1.2. OpenShift の Helm チャートの Red Hat 認定
	6.1.3. 関連情報

	6.2. HELM のインストール
	6.2.1. Linux の場合
	6.2.2. Windows 7/8 の場合
	6.2.3. Windows 10 の場合
	6.2.4. MacOS の場合

	6.3. カスタム HELM チャートリポジトリーの設定
	6.3.1. OpenShift Container Platform クラスターでの Helm チャートのインストール
	6.3.2. 開発者パースペクティブを使用した Helm チャートのインストール
	6.3.3. Web 端末での Helm の使用
	6.3.4. OpenShift Container Platform でのカスタム Helm チャートの作成
	6.3.5. カスタム Helm チャートリポジトリーの追加
	6.3.6. Helm チャートリポジトリーを追加するための認証情報および CA 証明書の作成
	6.3.7. 証明書レベルでの Helm チャートのフィルターリング
	6.3.8. Helm チャートリポジトリーの無効化

	6.4. HELM リリースの使用
	6.4.1. 前提条件
	6.4.2. Helm リリースのアップグレード
	6.4.3. Helm リリースのロールバック
	6.4.4. Helm リリースのアンインストール

	第7章 デプロイメント
	7.1. DEPLOYMENT および DEPLOYMENTCONFIG オブジェクトについて
	7.1.1. デプロイメントのビルディングブロック
	7.1.1.1. レプリケーションコントローラー
	7.1.1.2. レプリカセット

	7.1.2. DeploymentConfig オブジェクト
	7.1.3. デプロイメント
	7.1.4. Deployment および DeploymentConfig オブジェクトの比較
	7.1.4.1. 設計
	7.1.4.2. DeploymentConfig オブジェクト固有の機能
	7.1.4.3. デプロイメント固有の機能

	7.2. デプロイメントプロセスの管理
	7.2.1. DeploymentConfig オブジェクトの管理
	7.2.1.1. デプロイメントの開始
	7.2.1.2. デプロイメントの表示
	7.2.1.3. デプロイメントの再試行
	7.2.1.4. デプロイメントのロールバック
	7.2.1.5. コンテナー内でのコマンドの実行
	7.2.1.6. デプロイメントログの表示
	7.2.1.7. デプロイメントトリガー
	7.2.1.8. デプロイメントリソースの設定
	7.2.1.9. 手動のスケーリング
	7.2.1.10. DeploymentConfig オブジェクトからのプライベートリポジトリーへのアクセス
	7.2.1.11. 特定のノードへの Pod の割り当て
	7.2.1.12. 異なるサービスアカウントでの Pod の実行

	7.3. デプロイメントストラテジーの使用
	7.3.1. ローリングストラテジー
	7.3.1.1. カナリアデプロイメント
	7.3.1.2. ローリングデプロイメントの作成
	7.3.1.3. 開発者パースペクティブを使用したローリングデプロイメントの開始

	7.3.2. 再作成ストラテジー
	7.3.3. 開発者パースペクティブを使用した再作成デプロイメントの開始
	7.3.4. カスタムストラテジー
	7.3.5. ライフサイクルフック
	Pod ベースのライフサイクルフック
	7.3.5.1. ライフサイクルフックの設定

	7.4. ルートベースのデプロイメントストラテジーの使用
	7.4.1. プロキシーシャードおよびトラフィック分割
	7.4.2. N-1 互換性
	7.4.3. 正常な終了
	7.4.4. Blue-Green デプロイメント
	7.4.4.1. Blue-Green デプロイメントの設定

	7.4.5. A/B デプロイメント
	7.4.5.1. A/B テスト用の負荷分散

	第8章 クォータ
	8.1. プロジェクトごとのリソースクォータ
	8.1.1. クォータで管理されるリソース
	8.1.2. クォータのスコープ
	8.1.3. クォータの実施
	8.1.4. 要求 vs 制限
	8.1.5. リソースクォータ定義の例
	8.1.6. クォータの作成
	8.1.6.1. オブジェクトカウントクォータの作成
	8.1.6.2. 拡張リソースのリソースクォータの設定

	8.1.7. クォータの表示
	8.1.8. 明示的なリソースクォータの設定

	8.2. 複数のプロジェクト間のリソースクォータ
	8.2.1. クォータ作成時の複数プロジェクトの選択
	8.2.2. 該当するクラスターリソースクォータの表示
	8.2.3. 選択における粒度

	第9章 アプリケーションでの設定マップの使用
	9.1. 設定マップについて
	設定マップの制限

	9.2. ユースケース: POD で設定マップを使用する
	9.2.1. 設定マップの使用によるコンテナーでの環境変数の設定
	9.2.2. 設定マップを使用したコンテナーコマンドのコマンドライン引数の設定
	9.2.3. 設定マップの使用によるボリュームへのコンテンツの挿入

	第10章 開発者パースペクティブを使用したプロジェクトおよびアプリケーションメトリクスのモニタリング
	10.1. 前提条件
	10.2. プロジェクトメトリクスのモニターリング
	10.3. アプリケーションメトリクスのモニターリング
	10.4. 関連情報

	第11章 ヘルスチェックの使用によるアプリケーションの正常性の監視
	11.1. ヘルスチェックについて
	プローブの例

	11.2. CLI を使用したヘルスチェックの設定
	11.3. 開発者パースペクティブを使用したアプリケーションの正常性の監視
	11.4. 開発者パースペクティブを使用したヘルスチェックの追加
	11.5. 開発者パースペクティブを使用したヘルスチェックの編集
	11.6. 開発者パースペクティブを使用したヘルスチェックの失敗の監視

	第12章 アプリケーションの編集
	12.1. 前提条件
	12.2. 開発者パースペクティブを使用したアプリケーションのソースコードの編集
	12.3. 開発者パースペクティブを使用したアプリケーション設定の編集

	第13章 リソースを回収するためのオブジェクトのプルーニング
	13.1. プルーニングの基本操作
	13.2. グループのプルーニング
	13.3. デプロイメントリソースのプルーニング
	13.4. ビルドのプルーニング
	13.5. イメージの自動プルーニング
	13.6. イメージの手動プルーニング
	13.6.1. イメージのプルーニングの各種条件
	13.6.2. イメージのプルーニング操作の実行
	13.6.3. セキュアまたは非セキュアな接続の使用
	13.6.4. イメージのプルーニングに関する問題
	イメージがプルーニングされない
	非セキュアなレジストリーに対するセキュアな接続の使用
	セキュリティーが保護されたレジストリーに対する非セキュアな接続の使用
	正しくない認証局の使用

	13.7. レジストリーのハードプルーニング
	13.8. CRON ジョブのプルーニング

	第14章 アプリケーションのアイドリング
	14.1. アプリケーションのアイドリング
	14.1.1. 単一サービスのアイドリング
	14.1.2. 複数サービスのアイドリング

	14.2. アプリケーションのアイドリング解除

	第15章 アプリケーションの削除
	15.1. 開発者パースペクティブを使用したアプリケーションの削除

	第16章 RED HAT MARKETPLACE の使用
	16.1. RED HAT MARKETPLACE 機能
	16.1.1. OpenShift Container Platform クラスターの Marketplace への接続
	16.1.2. アプリケーションのインストール
	16.1.3. 異なるパースペクティブからのアプリケーションのデプロイ
	開発者パースペクティブ
	Administrator パースペクティブ

