
OpenShift Dedicated 4

アプリケーションのビルド

アプリケーション用の OpenShift Dedicated の設定

Last Updated: 2025-12-11

OpenShift Dedicated 4 アプリケーションのビルド

アプリケーション用の OpenShift Dedicated の設定

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

このドキュメントでは、アプリケーションのデプロイメント用に OpenShift Dedicated を設定する
方法を説明します。カスタムワイルドカードドメインの設定も含まれます。

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

第1章 アプリケーションのビルドの概要
1.1. プロジェクトの使用
1.2. アプリケーションの使用

第2章 プロジェクト
2.1. プロジェクトの使用
2.2. プロジェクト作成の設定

第3章 アプリケーションの作成
3.1. テンプレートの使用
3.2. DEVELOPER パースペクティブを使用したアプリケーションの作成
3.3. インストールされた OPERATOR からのアプリケーションの作成
3.4. CLI を使用したアプリケーションの作成
3.5. RUBY ON RAILS を使用したアプリケーションの作成

第4章 TOPOLOGY ビューを使用したアプリケーション構成の表示
4.1. 前提条件
4.2. アプリケーションのトポロジーの表示
4.3. アプリケーションおよびコンポーネントとの対話
4.4. アプリケーション POD のスケーリングおよびビルドとルートの確認
4.5. コンポーネントの既存プロジェクトへの追加
4.6. アプリケーション内での複数コンポーネントのグループ化
4.7. サービスのアプリケーションへの追加
4.8. アプリケーションからのサービスの削除
4.9. TOPOLOGY ビューに使用するラベルとアノテーション
4.10. 関連情報

第5章 HELM チャートの使用
5.1. HELM について
5.2. HELM のインストール
5.3. カスタム HELM チャートリポジトリーの設定
5.4. HELM リリースの使用

第6章 デプロイメント
6.1. アプリケーションのカスタムドメイン
6.2. デプロイメントの理解
6.3. デプロイメントプロセスの管理
6.4. デプロイメントストラテジーの使用
6.5. ルートベースのデプロイメントストラテジーの使用

第7章 QUOTAS
7.1. プロジェクトごとのリソースクォータ
7.2. 複数のプロジェクト間のリソースクォータ

第8章 アプリケーションでの設定マップの使用
8.1. 設定マップについて
8.2. ユースケース: POD で設定マップを使用する

第9章 開発者パースペクティブを使用したプロジェクトおよびアプリケーションメトリクスのモニタリング
9.1. 前提条件
9.2. プロジェクトメトリクスのモニタリング
9.3. アプリケーションメトリクスのモニタリング
9.4. イメージの脆弱性の内訳

4
4
4

5
5

14

19
19
37
47
48
56

64
64
64
65
66
67
69
70
71
72
73

74
74
74
76
80

82
82
85
92

100
112

121
121

134

138
138
139

145
145
145
148
149

Table of Contents

1

. .

. .

. .

. .

. .

. .

9.5. アプリケーションとイメージの脆弱性メトリックの監視
9.6. 関連情報

第10章 ヘルスチェックの使用によるアプリケーションの正常性の監視
10.1. ヘルスチェックについて
10.2. CLI を使用したヘルスチェックの設定
10.3. DEVELOPER パースペクティブを使用したアプリケーションの正常性の監視
10.4. 開発者パースペクティブを使用したヘルスチェックの追加
10.5. 開発者パースペクティブを使用したヘルスチェックの編集
10.6. DEVELOPER パースペクティブを使用したヘルスチェックの失敗の監視

第11章 アプリケーションの編集
11.1. 前提条件
11.2. DEVELOPER パースペクティブを使用したアプリケーションのソースコードの編集
11.3. DEVELOPER パースペクティブを使用したアプリケーション設定の編集

第12章 クォータの使用
12.1. クォータの表示
12.2. クォータで管理されるリソース
12.3. クォータのスコープ
12.4. クォータの実施
12.5. 要求と制限

第13章 リソースを回収するためのオブジェクトのプルーニング
13.1. プルーニングの基本操作
13.2. グループのプルーニング
13.3. デプロイメントリソースのプルーニング
13.4. ビルドのプルーニング
13.5. イメージの自動プルーニング
13.6. CRON ジョブのプルーニング

第14章 アプリケーションのアイドリング
14.1. アプリケーションのアイドリング
14.2. アプリケーションのアイドリング解除

第15章 アプリケーションの削除
15.1. DEVELOPER パースペクティブを使用したアプリケーションの削除

149
150

151
151
155
158
159
160
161

163
163
163
163

166
166
167
169
169
170

171
171
171
172
173
174
176

177
177
177

179
179

OpenShift Dedicated 4 アプリケーションのビルド

2

Table of Contents

3

第1章 アプリケーションのビルドの概要
OpenShift Dedicated を使用すると、Web コンソールまたはコマンドラインインターフェイス (CLI) を
使用してアプリケーションを作成、編集、削除、および管理できます。

1.1. プロジェクトの使用

プロジェクトを使用すると、アプリケーションを分離して編成および管理できます。OpenShift
Dedicated で、プロジェクトの作成、表示、削除 などを含め、プロジェクトライフサイクル全体を管理
できます。

プロジェクトを作成したら、Developer パースペクティブを使用して、ユーザーに対して プロジェクト
へのアクセス権の付与または取り消し と クラスターロールの管理 を行えます。また、新規プロジェク
トの自動プロビジョニングに使用されるプロジェクトテンプレートを作成する際に、プロジェクト設定
リソースの編集 も行えます。

Dedicated の管理者権限のあるユーザーは、認証されたユーザーグループによる新規プロジェクトのセ
ルフプロビジョニングを阻止 することを選択できます。

1.2. アプリケーションの使用

1.2.1. アプリケーションの作成

アプリケーションを作成するには、プロジェクトを作成しているか、適切なロールとパーミッションで
プロジェクトにアクセスできるようになっている必要があります。Web コンソールの Developer パー
スペクティブ、インストール済みの Operator、OpenShift CLI (oc) のいずれかを使用して、アプリケー
ションを作成できます。プロジェクトに追加するアプリケーションは、Git、JAR ファイル、devfile、
または開発者カタログから入手できます。

ソースまたはバイナリーコード、イメージ、およびテンプレートを含むコンポーネントを使用し、
OpenShift CLI (oc) を使用してアプリケーションを作成することもできます。OpenShift Dedicated
Web コンソールを使用すると、クラスター管理者によってインストールされた Operator からアプリ
ケーションを作成できます。

1.2.2. アプリケーションの保守

アプリケーションを作成したら、Web コンソールを使用して プロジェクトまたはアプリケーションの
メトリクスを監視 できます。Web コンソールを使用して、アプリケーションを 編集 または 削除 する
こともできます。

アプリケーションの実行中は、すべてのアプリケーションリソースが使用されるわけではありません。
クラスター管理者は、スケーラブルなリソースをアイドル状態 にして、リソースの消費を減らすことが
できます。

1.2.3. アプリケーションのデプロイ

Deployment または DeploymentConfig オブジェクトを使用してアプリケーションをデプロイし、
Web コンソールからそれらを 管理 できます。アプリケーションの変更またはアップグレード中のダウ
ンタイムを短縮するのに役立つ デプロイメントストラテジー を作成できます。

アプリケーションやサービスの OpenShift Dedicated クラスターへのデプロイメントを単純化するソフ
トウェアパッケージマネージャーである Helm も使用できます。

OpenShift Dedicated 4 アプリケーションのビルド

4

第2章 プロジェクト

2.1. プロジェクトの使用

プロジェクト を使用すると、ユーザーコミュニティーを他のコミュニティーと切り離した状態で独自の
コンテンツを整理し、管理できます。

注記

openshift- および kube- で始まる名前のプロジェクトはデフォルトプロジェクトです。
これらのプロジェクトは、Pod として実行するクラスターコンポーネントおよび他のイ
ンフラストラクチャーコンポーネントをホストします。そのため、OpenShift Dedicated
では、oc new-project コマンドを使用して openshift- または kube- で始まるプロジェ
クトを作成できません。Customer Cloud Subscription (CCS) モデルを使用する
OpenShift Dedicated クラスターでは、cluster-admin 権限を持つユーザーは oc adm
new-project コマンドを使用してこれらのプロジェクトを作成できます。

注記

Customer Cloud Subscription (CCS) モデルを使用する OpenShift Dedicated クラスター
では、デフォルトの namespace (default、kube-system、kube-public、openshift-
node、openshift-infra、openshift) のいずれかで作成された Pod に SCC を割り当てる
ことはできません。これらの namespace は Pod またはサービスを実行するのに使用す
ることはできません。SCC リソースの作成には cluster-admin 権限が必要なため、Red
Hat クラウドアカウントを使用する OpenShift Dedicated クラスターの SCC を作成する
ことはできません。

2.1.1. プロジェクトの作成

OpenShift Dedicated Web コンソールまたは OpenShift CLI (oc) を使用して、クラスター内にプロジェ
クトを作成できます。

2.1.1.1. Web コンソールを使用したプロジェクトの作成

OpenShift Dedicated Web コンソールを使用して、クラスターにプロジェクトを作成できます。

注記

openshift- および kube- で始まる名前のプロジェクトは、OpenShift Dedicated により
重要 (Critical) と見なされます。そのため、OpenShift Dedicated では、Web コンソール
を使用して openshift- で始まる名前のプロジェクトを作成できません。

前提条件

OpenShift Dedicated のプロジェクト、アプリケーション、および他のワークロードを作成す
るために適切なロールおよびパーミッションがある。

手順

Administrator パースペクティブを使用している場合は、以下を行います。

a. Home → Projects に移動します。

第2章 プロジェクト

5

b. Create Project をクリックします。

i. Create Project ダイアログボックスで、Name フィールドに、myproject などの一意
の名前を入力します。

ii. オプション: プロジェクトの Display name および Description の詳細を追加します。

iii. Create をクリックします。
プロジェクトのダッシュボードが表示されます。

c. オプション: Details タブを選択して、プロジェクトの詳細を表示します。

d. オプション: プロジェクトに対する適切なパーミッションがある場合は、Project Access タ
ブを使用して、プロジェクトの admin、edit、および view 権限を付与または取り消すこと
ができます。

Developer パースペクティブを使用している場合は、以下を行います。

a. Project メニューをクリックし、Create Project を選択します。

図2.1 Create project

i. Create Project ダイアログボックスで、Name フィールドに、myproject などの一意
の名前を入力します。

ii. オプション: プロジェクトの Display name および Description の詳細を追加します。

iii. Create をクリックします。

b. オプション: 左側のナビゲーションパネルを使用して Project ビューに移動し、プロジェク
トのダッシュボードを表示します。

c. オプション: プロジェクトダッシュボードで Details タブを選択し、プロジェクトの詳細を
表示します。

d. オプション: プロジェクトに対する適切なパーミッションがある場合は、プロジェクトダッ
シュボードの Project Access タブを使用して、プロジェクトの admin、edit、および view
権限を付与または取り消すことができます。

関連情報

OpenShift Dedicated 4 アプリケーションのビルド

6

Web コンソールを使用した利用可能なクラスターのロールのカスタマイズ

2.1.1.2. CLI を使用したプロジェクトの作成

クラスター管理者が許可する場合は、新規プロジェクトを作成できます。

注記

openshift- および kube- で始まる名前のプロジェクトは、OpenShift Dedicated により
重要 (Critical) と見なされます。そのため、OpenShift Dedicated では oc new-project
コマンドを使用して openshift- または kube- で始まる名前のプロジェクトを作成するこ
とができません。Customer Cloud Subscription (CCS) モデルを使用する OpenShift
Dedicated クラスターでは、cluster-admin 権限を持つユーザーは oc adm new-project
コマンドを使用してこれらのプロジェクトを作成できます。

手順

以下を実行します。

以下に例を示します。

注記

作成できるプロジェクトの数は、システム管理者により制限される場合があります。上
限に達すると、新規プロジェクトを作成できるように、既存プロジェクトの削除が必要
になる場合があります。

2.1.2. プロジェクトの表示

OpenShift Dedicated Web コンソールまたは OpenShift CLI (oc) を使用して、クラスター内にプロジェ
クトを表示できます。

2.1.2.1. Web コンソールを使用したプロジェクトの表示

OpenShift Dedicated Web コンソールを使用して、アクセス権のあるプロジェクトを表示できます。

重要

$ oc new-project <project_name> \
 --description="<description>" --display-name="<display_name>"

$ oc new-project hello-openshift \
 --description="This is an example project" \
 --display-name="Hello OpenShift"

第2章 プロジェクト

7

重要

OpenShift Dedicated 4.19 以降、Web コンソールのパースペクティブが統合されまし
た。Developer パースペクティブは、デフォルトでは有効になっていません。

すべてのユーザーが、OpenShift Dedicated Web コンソールのすべての機能を操作でき
ます。ただし、クラスターの所有者でない場合は、特定の機能にアクセスする権限をク
ラスターの所有者に要求する必要がある場合があります。

引き続き Developer パースペクティブを有効にできます。Web コンソールの Getting
Started ペインでは、コンソールツアーの実行、クラスター設定に関する情報の検
索、Developer パースペクティブを有効にするためのクイックスタートの表示、リンク
先を表示して新機能の確認などを行えます。

手順

管理者としてログインしている場合は、以下を実行します。

a. ナビゲーションメニューで Home → Projects に移動します。

b. 表示するプロジェクトを選択します。Overview タブには、プロジェクトのダッシュボード
が含まれています。

c. Details タブを選択して、プロジェクトの詳細を表示します。

d. YAML タブを選択して、プロジェクトリソースの YAML 設定を表示および更新します。

e. Workloads タブを選択して、プロジェクト内のワークロードを表示します。

f. RoleBindings タブを選択して、プロジェクトのロールバインディングを表示および作成し
ます。

開発者としてログインしている場合は、以下を実行します。

a. ナビゲーションメニューの Project ページに移動します。

b. 画面上部の Project ドロップダウンメニューから All Projects を選択し、クラスター内のす
べてのプロジェクトをリスト表示します。

c. 表示するプロジェクトを選択します。

d. Details タブを選択して、プロジェクトの詳細を表示します。

e. プロジェクトに対する適切なパーミッションがある場合は、Project access タブビューを
選択し、プロジェクトの権限を更新します。

2.1.2.2. CLI を使用したプロジェクトの表示

プロジェクトを表示する際は、認証ポリシーに基づいて、表示アクセスのあるプロジェクトだけを表示
できるように制限されます。

手順

1. プロジェクトのリストを表示するには、以下を実行します。

$ oc get projects

OpenShift Dedicated 4 アプリケーションのビルド

8

2. CLI 操作で、現在のプロジェクトから別のプロジェクトに切り換えることができます。その後
の操作にはすべて指定のプロジェクトが使用され、プロジェクトスコープのコンテンツの操作
が実行されます。

2.1.3. Developer パースペクティブを使用したプロジェクトに対するアクセスパーミッ
ションの提供

Developer パースペクティブで Project ビューを使用し、プロジェクトに対するアクセスを付与した
り、取り消したりできます。

前提条件

プロジェクトを作成している。

手順

ユーザーをプロジェクトに追加し、Admin、Edit、または View アクセスをユーザーに付与するには、
以下を実行します。

1. Developer パースペクティブで、Project ページに移動します。

2. Project メニューからプロジェクトを選択します。

3. Project Access タブを選択します。

4. Add access をクリックして、パーミッションの新規の行をデフォルトのパーミッションに追加
します。

図2.2 プロジェクトパーミッション

5. ユーザー名を入力し、Select a role ドロップダウンリストをクリックし、適切なロールを選択

$ oc project <project_name>

第2章 プロジェクト

9

5. ユーザー名を入力し、Select a role ドロップダウンリストをクリックし、適切なロールを選択
します。

6. Save をクリックして新規パーミッションを追加します。

以下を使用することもできます。

Select a role ドロップダウンリストを使用して、既存ユーザーのアクセスパーミッションを変
更できます。

Remove Access アイコンを使用して、既存ユーザーのプロジェクトへのアクセスパーミッショ
ンを完全に削除できます。

注記

高度なロールベースのアクセス制御は、Administrator パースペクティブの Roles およ
び Roles Binding ビューで管理されます。

2.1.4. Web コンソールを使用した利用可能なクラスターのロールのカスタマイズ

Web コンソールの Developer パースペクティブでは、Project → Project access ページを使用して、
プロジェクト管理者がプロジェクト内のユーザーにロールを付与できるようにします。デフォルトで
は、プロジェクト内のユーザーに付与できるクラスターロールは、admin、edit、および view です。

クラスター管理者は、クラスター全体のすべてのプロジェクトに対して Project access ページでどの
クラスターロールを使用できるかを定義できます。Console 設定リソースの
spec.customization.projectAccess.availableClusterRoles オブジェクトをカスタマイズすることで、
使用可能なロールを指定できます。

前提条件

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

1. Administrator パースペクティブで、Administration → Cluster settings に移動します。

2. Configuration タブをクリックします。

3. Configuration resource リストから、Console operator.openshift.io を選択します。

4. YAML タブに移動し、YAML コードを表示し、編集します。

5. spec の YAML コードで、プロジェクトアクセスに使用可能なクラスターロールのリストをカ
スタマイズします。次の例では、デフォルトの admin、edit、および view ロールを指定しま
す。

apiVersion: operator.openshift.io/v1
kind: Console
metadata:
 name: cluster
...
spec:
 customization:
 projectAccess:

OpenShift Dedicated 4 アプリケーションのビルド

10

6. Save をクリックして、Console 設定リソースへの変更を保存します。

検証

1. Developer パースペクティブで、Project ページに移動します。

2. Project メニューからプロジェクトを選択します。

3. Project access タブを選択します。

4. Role 列のメニューをクリックし、使用可能なロールが Console リソース設定に適用した設定
と一致することを確認します。

2.1.5. プロジェクトへの追加

+Add ページを使用して、プロジェクトにアイテムを追加できます。

前提条件

プロジェクトを作成している。

手順

1. +Add ページに移動します。

2. Project メニューからプロジェクトを選択します。

3. +Add ページで項目をクリックし、ワークフローに従います。

注記

また、Add* ページの検索機能を使用して、プロジェクトに追加する追加アイテムを見つ
けます。画面上部の Add の下にある * をクリックし、検索フィールドにコンポーネント
の名前を入力します。

2.1.6. プロジェクトのステータスの確認

OpenShift Dedicated Web コンソールまたは OpenShift CLI (oc) を使用して、プロジェクトのステータ
スを表示できます。

2.1.6.1. Web コンソールを使用したプロジェクトのステータスの確認

Web コンソールを使用して、プロジェクトのステータスを確認できます。

前提条件

プロジェクトを作成している。

 availableClusterRoles:
 - admin
 - edit
 - view

第2章 プロジェクト

11

1

手順

1. Home → Projects に移動します。

2. 一覧からプロジェクトを選択します。

3. Overview ページで、プロジェクトのステータスを確認します。

2.1.6.2. CLI を使用したプロジェクトのステータスの確認

OpenShift CLI (oc) を使用して、プロジェクトのステータスを確認できます。

前提条件

OpenShift CLI (oc) がインストールされている。

プロジェクトを作成している。

手順

1. プロジェクトに切り替えます。

<project_name> は、プロジェクトの名前に置き換えます。

2. プロジェクトの概要を取得します。

2.1.7. プロジェクトの削除

OpenShift Dedicated Web コンソールまたは OpenShift CLI (oc) を使用して、プロジェクトを削除でき
ます。

プロジェクトを削除する際に、サーバーはプロジェクトのステータスを Active から Terminating に更
新します。その後、サーバーは Terminating 状態のプロジェクトからすべてのコンテンツをクリアして
から、プロジェクトを削除します。プロジェクトのステータスが Terminating の場合は、新規のコンテ
ンツをプロジェクトに追加することができません。プロジェクトは CLI または Web コンソールから削
除できます。

2.1.7.1. Web コンソールを使用したプロジェクトの削除

Web コンソールを使用してプロジェクトを削除できます。

前提条件

プロジェクトを作成している。

プロジェクトを削除するために必要なパーミッションを持っている。

手順

$ oc project <project_name> 1

$ oc status

OpenShift Dedicated 4 アプリケーションのビルド

12

Administrator パースペクティブを使用している場合は、以下を行います。

a. Home → Projects に移動します。

b. 一覧からプロジェクトを選択します。

c. プロジェクトの Actions ドロップダウンメニューをクリックし、Delete Project を選択し
ます。

注記

プロジェクトを削除するために必要なパーミッションがない場合は、Delete
Project オプションは選択できません。

1. Delete Project? ペインで、プロジェクトの名前を入力して削除を確認します。

2. Delete をクリックします。

Developer パースペクティブを使用している場合は、以下を行います。

a. Project ページに移動します。

b. Project メニューから削除するプロジェクトを選択します。

c. プロジェクトの Actions ドロップダウンメニューをクリックし、Delete Project を選択し
ます。

注記

プロジェクトを削除するために必要なパーミッションがないと、Delete
Project オプションを選択できません。

1. Delete Project? ペインで、プロジェクトの名前を入力して削除を確認します。

2. Delete をクリックします。

2.1.7.2. CLI を使用したプロジェクトの削除

OpenShift CLI (oc) を使用してプロジェクトを削除できます。

前提条件

OpenShift CLI (oc) がインストールされている。

プロジェクトを作成している。

プロジェクトを削除するために必要なパーミッションを持っている。

手順

1. プロジェクトを削除します。

$ oc delete project <project_name> 1

第2章 プロジェクト

13

1 <project_name> を、削除するプロジェクトの名前に置き換えます。

2.2. プロジェクト作成の設定

OpenShift Dedicated では、プロジェクト を使用して、関連するオブジェクトをグループ化および分離
します。Web コンソールまたは oc new-project コマンドを使用して新規プロジェクトの作成要求が実
行すると、OpenShift Dedicated のエンドポイントは、カスタマイズ可能なテンプレートに応じてプロ
ジェクトをプロビジョニングするために使用されます。

クラスター管理者は、開発者やサービスアカウントが独自のプロジェクトを作成し、プロジェクトの セ
ルフプロビジョニング を実行することを許可し、その方法を設定できます。

2.2.1. プロジェクト作成について

OpenShift Dedicated API サーバーは、クラスターのプロジェクト設定リソースの
projectRequestTemplate パラメーターで識別されるプロジェクトテンプレートに基づいて新規プロ
ジェクトを自動的にプロビジョニングします。パラメーターが定義されないと、API サーバーは要求さ
れる名前でプロジェクトを作成するデフォルトテンプレートを作成し、要求するユーザーをプロジェク
トの admin (管理者) ロールに割り当てます。

プロジェクト要求が送信されると、API はテンプレートで以下のパラメーターを置き換えます。

表2.1 デフォルトのプロジェクトテンプレートパラメーター

パラメーター 説明

PROJECT_NAME プロジェクトの名前。必須。

PROJECT_DISPLAYNAME プロジェクトの表示名。空にできます。

PROJECT_DESCRIPTION プロジェクトの説明。空にできます。

PROJECT_ADMIN_USER 管理ユーザーのユーザー名。

PROJECT_REQUESTING_U
SER

要求するユーザーのユーザー名。

API へのアクセスは、self-provisioner ロールと self-provisioners のクラスターロールバインディング
で開発者に付与されます。デフォルトで、このロールはすべての認証された開発者が利用できます。

2.2.2. 新規プロジェクトのテンプレートの変更

クラスター管理者は、デフォルトのプロジェクトテンプレートを変更し、新規プロジェクトをカスタム
要件に基づいて作成できます。

独自のカスタムプロジェクトテンプレートを作成するには、以下を実行します。

前提条件

dedicated-admin パーミッションを持つアカウントを使用して OpenShift Dedicated クラス

OpenShift Dedicated 4 アプリケーションのビルド

14

dedicated-admin パーミッションを持つアカウントを使用して OpenShift Dedicated クラス
ターにアクセスできる。

手順

1. cluster-admin 権限を持つユーザーとしてログインします。

2. デフォルトのプロジェクトテンプレートを生成します。

3. オブジェクトを追加するか、既存オブジェクトを変更することにより、テキストエディターで
生成される template.yaml ファイルを変更します。

4. プロジェクトテンプレートは、openshift-config namespace に作成する必要があります。変更
したテンプレートを読み込みます。

5. Web コンソールまたは CLI を使用し、プロジェクト設定リソースを編集します。

Web コンソールの使用

i. Administration → Cluster Settings ページに移動します。

ii. Configuration をクリックし、すべての設定リソースを表示します。

iii. Project のエントリーを見つけ、Edit YAML をクリックします。

CLI の使用

i. project.config.openshift.io/cluster リソースを編集します。

6. spec セクションを、projectRequestTemplate および name パラメーターを組み込むように更
新し、アップロードされたプロジェクトテンプレートの名前を設定します。デフォルト名は
project-request です。

カスタムプロジェクトテンプレートを含むプロジェクト設定リソース

7. 変更を保存した後、変更が正常に適用されたことを確認するために、新しいプロジェクトを作
成します。

2.2.3. プロジェクトのセルフプロビジョニングの無効化

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

$ oc create -f template.yaml -n openshift-config

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...
spec:
 projectRequestTemplate:
 name: <template_name>
...

第2章 プロジェクト

15

認証されたユーザーグループによる新規プロジェクトのセルフプロビジョニングを禁止できます。

手順

1. cluster-admin 権限を持つユーザーとしてログインします。

2. 以下のコマンドを実行して、self-provisioners クラスターロールバインディングの使用を確認
します。

出力例

self-provisioners セクションのサブジェクトを確認します。

3. self-provisioner クラスターロールをグループ system:authenticated:oauth から削除しま
す。

self-provisioners クラスターロールバインディングが self-provisioner ロールのみを
system:authenticated:oauth グループにバインドする場合は、以下のコマンドを実行しま
す。

self-provisioners クラスターロールバインディングが self-provisioner ロールを
system:authenticated:oauth グループ以外のユーザー、グループまたはサービスアカウン
トにバインドする場合は、以下のコマンドを実行します。

4. ロールへの自動更新を防ぐには、self-provisioners クラスターロールバインディングを編集し
ます。自動更新により、クラスターロールがデフォルトの状態にリセットされます。

CLI を使用してロールバインディングを更新するには、以下を実行します。

i. 以下のコマンドを実行します。

ii. 表示されるロールバインディングで、以下の例のように

$ oc describe clusterrolebinding.rbac self-provisioners

Name: self-provisioners
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: self-provisioner
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated:oauth

$ oc patch clusterrolebinding.rbac self-provisioners -p '{"subjects": null}'

$ oc adm policy \
 remove-cluster-role-from-group self-provisioner \
 system:authenticated:oauth

$ oc edit clusterrolebinding.rbac self-provisioners

OpenShift Dedicated 4 アプリケーションのビルド

16

ii. 表示されるロールバインディングで、以下の例のように
rbac.authorization.kubernetes.io/autoupdate パラメーター値を false に設定しま
す。

単一コマンドを使用してロールバインディングを更新するには、以下を実行します。

5. 認証されたユーザーとしてログインし、プロジェクトのセルフプロビジョニングを実行できな
いことを確認します。

出力例

組織に固有のより有用な説明を提供できるように、このプロジェクト要求メッセージをカスタ
マイズすることを検討します。

2.2.4. プロジェクト要求メッセージのカスタマイズ

プロジェクトのセルフプロビジョニングを実行できない開発者またはサービスアカウントが Web コン
ソールまたは CLI を使用してプロジェクト作成要求を行う場合は、以下のエラーメッセージがデフォル
トで返されます。

クラスター管理者はこのメッセージをカスタマイズできます。これを、組織に固有の新規プロジェクト
の要求方法の情報を含むように更新することを検討します。以下に例を示します。

プロジェクトを要求するには、システム管理者 (projectname@example.com) に問い合わせて
ください。

新規プロジェクトを要求するには、https://internal.example.com/openshift-project-request
にあるプロジェクト要求フォームに記入します。

プロジェクト要求メッセージをカスタマイズするには、以下を実行します。

手順

1. Web コンソールまたは CLI を使用し、プロジェクト設定リソースを編集します。

Web コンソールの使用

i. Administration → Cluster Settings ページに移動します。

apiVersion: authorization.openshift.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "false"
...

$ oc patch clusterrolebinding.rbac self-provisioners -p '{ "metadata": { "annotations": {
"rbac.authorization.kubernetes.io/autoupdate": "false" } } }'

$ oc new-project test

Error from server (Forbidden): You may not request a new project via this API.

You may not request a new project via this API.

第2章 プロジェクト

17

ii. Configuration をクリックし、すべての設定リソースを表示します。

iii. Project のエントリーを見つけ、Edit YAML をクリックします。

CLI の使用

i. cluster-admin 権限を持つユーザーとしてログインします。

ii. project.config.openshift.io/cluster リソースを編集します。

2. spec セクションを、projectRequestMessage パラメーターを含むように更新し、値をカスタ
ムメッセージに設定します。

カスタムプロジェクト要求メッセージを含むプロジェクト設定リソース

以下に例を示します。

3. 変更を保存した後に、プロジェクトをセルフプロビジョニングできない開発者またはサービス
アカウントとして新規プロジェクトの作成を試行し、変更が正常に適用されていることを確認
します。

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...
spec:
 projectRequestMessage: <message_string>
...

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...
spec:
 projectRequestMessage: To request a project, contact your system administrator at
projectname@example.com.
...

OpenShift Dedicated 4 アプリケーションのビルド

18

第3章 アプリケーションの作成

3.1. テンプレートの使用

以下のセクションでは、テンプレートの概要と共に、それらを使用し、作成する方法に関する概要を説
明します。

3.1.1. テンプレートについて

テンプレートでは、パラメーター化や処理が可能な一連のオブジェクトを記述し、OpenShift
Dedicated で作成するためのオブジェクトのリストを生成します。テンプレートは、サービス、ビルド
設定およびデプロイメント設定など、プロジェクト内で作成パーミッションがあるすべてのものを作成
するために処理できます。また、テンプレートではラベルのセットを定義して、これをテンプレート内
に定義されたすべてのオブジェクトに適用できます。

オブジェクトのリストは CLI を使用してテンプレートから作成できます。また、テンプレートがプロ
ジェクトまたはグローバルテンプレートライブラリーにアップロードされている場合は Web コンソー
ルを使用することもできます。

3.1.2. テンプレートのアップロード

テンプレートを定義する JSON または YAML ファイルがある場合は、CLI を使用してテンプレートを
プロジェクトにアップロードできます。こうすることで、プロジェクトにテンプレートが保存され、対
象のプロジェクトに対して適切なアクセス権があるユーザーがこれを繰り返し使用できます。独自のテ
ンプレートの記述方法は、このトピックの後半で説明します。

手順

次のいずれかの方法を使用してテンプレートをアップロードします。

現在のプロジェクトのテンプレートライブラリーにテンプレートをアップロードするに
は、JSON または YAML ファイルを以下のコマンドで渡します。

-n オプションを使用してプロジェクト名を指定することで、別のプロジェクトにテンプ
レートをアップロードできます。

テンプレートは、Web コンソールまたは CLI を使用して選択できるようになりました。

3.1.3. Web コンソールを使用したアプリケーションの作成

Web コンソールを使用して、テンプレートからアプリケーションを作成できます。

手順

1. プロジェクトに移動して +Add をクリックします

2. Developer Catalog タイルの All services をクリックします。

3. Type の下の Builder Images をクリックして、利用可能なビルダーイメージを表示します。

注記

$ oc create -f <filename>

$ oc create -f <filename> -n <project>

第3章 アプリケーションの作成

19

1

注記

以下に示すように、builder タグがアノテーションにリスト表示されているイ
メージストリームタグのみがリストに表示されます。

ここに builder を含めると、このイメージストリームがビルダーとして Web コンソール
に表示されます。

4. 新規アプリケーション画面で設定を変更し、オブジェクトをアプリケーションをサポートする
ように設定します。

3.1.4. CLI を使用してテンプレートからオブジェクトを作成する手順

CLI を使用して、テンプレートを処理し、オブジェクトを作成するために生成された設定を使用できま
す。

3.1.4.1. ラベルの追加

ラベルは、Pod などの生成されたオブジェクトを管理し、整理するために使用されます。テンプレート
で指定されるラベルは、テンプレートから生成されるすべてのオブジェクトに適用されます。

手順

コマンドラインからテンプレートにラベルを追加します。

3.1.4.2. パラメーターのリスト表示

上書きできるパラメーターのリストは、テンプレートの parameters セクションに表示されます。

手順

1. CLI で以下のコマンドを使用し、使用するファイルを指定して、パラメーターをリスト表示す
ることができます。

kind: "ImageStream"
apiVersion: "image.openshift.io/v1"
metadata:
 name: "ruby"
 creationTimestamp: null
spec:
...
 tags:
 - name: "2.6"
 annotations:
 description: "Build and run Ruby 2.6 applications"
 iconClass: "icon-ruby"
 tags: "builder,ruby" 1
 supports: "ruby:2.6,ruby"
 version: "2.6"
...

$ oc process -f <filename> -l name=otherLabel

OpenShift Dedicated 4 アプリケーションのビルド

20

または、テンプレートがすでにアップロードされている場合には、以下を実行します。

たとえば、デフォルトの openshift プロジェクトにあるクイックスタートテンプレートのいず
れかに対してパラメーターを一覧表示する場合に、以下のような出力が表示されます。

出力例

この出力から、テンプレートの処理時に正規表現のようなジェネレーターで生成された複数の
パラメーターを特定できます。

3.1.4.3. オブジェクトリストの生成

CLI を使用して、標準出力にオブジェクトリストを返すテンプレートを定義するファイルを処理できま
す。

手順

$ oc process --parameters -f <filename>

$ oc process --parameters -n <project> <template_name>

$ oc process --parameters -n openshift rails-postgresql-example

NAME DESCRIPTION
GENERATOR VALUE
SOURCE_REPOSITORY_URL The URL of the repository with your application source
code https://github.com/sclorg/rails-ex.git
SOURCE_REPOSITORY_REF Set this to a branch name, tag or other ref of your
repository if you are not using the default branch
CONTEXT_DIR Set this to the relative path to your project if it is not in the root of
your repository
APPLICATION_DOMAIN The exposed hostname that will route to the Rails service
rails-postgresql-example.openshiftapps.com
GITHUB_WEBHOOK_SECRET A secret string used to configure the GitHub webhook
expression [a-zA-Z0-9]{40}
SECRET_KEY_BASE Your secret key for verifying the integrity of signed cookies
expression [a-z0-9]{127}
APPLICATION_USER The application user that is used within the sample application
to authorize access on pages openshift
APPLICATION_PASSWORD The application password that is used within the sample
application to authorize access on pages secret
DATABASE_SERVICE_NAME Database service name
postgresql
POSTGRESQL_USER database username
expression user[A-Z0-9]{3}
POSTGRESQL_PASSWORD database password
expression [a-zA-Z0-9]{8}
POSTGRESQL_DATABASE database name
root
POSTGRESQL_MAX_CONNECTIONS database max connections
10
POSTGRESQL_SHARED_BUFFERS database shared buffers
12MB

第3章 アプリケーションの作成

21

1. 標準出力にオブジェクトリストを返すテンプレートを定義するファイルを処理します。

または、テンプレートがすでに現在のプロジェクトにアップロードされている場合には以下を
実行します。

2. テンプレートを処理し、oc create の出力をパイプして、テンプレートからオブジェクトを作成
します。

または、テンプレートがすでに現在のプロジェクトにアップロードされている場合には以下を
実行します。

3. 上書きする <name>=<value> の各ペアに、-p オプションを追加することで、ファイルに定義
されたパラメーターの値を上書きできます。パラメーター参照は、テンプレートアイテム内の
テキストフィールドに表示されます。
たとえば、テンプレートの以下の POSTGRESQL_USER および POSTGRESQL_DATABASE
パラメーターを上書きし、カスタマイズされた環境変数の設定を出力します。

a. テンプレートからのオブジェクトリストの作成

b. JSON ファイルは、ファイルにリダイレクトすることも、oc create コマンドで処理済みの
出力をパイプして、テンプレートをアップロードせずに直接適用することも可能です。

c. 多数のパラメーターがある場合は、それらをファイルに保存してからそのファイルを oc
process に渡すことができます。

d. --param-file の引数として "-" を使用して、標準入力から環境を読み込むこともできます。

$ oc process -f <filename>

$ oc process <template_name>

$ oc process -f <filename> | oc create -f -

$ oc process <template> | oc create -f -

$ oc process -f my-rails-postgresql \
 -p POSTGRESQL_USER=bob \
 -p POSTGRESQL_DATABASE=mydatabase

$ oc process -f my-rails-postgresql \
 -p POSTGRESQL_USER=bob \
 -p POSTGRESQL_DATABASE=mydatabase \
 | oc create -f -

$ cat postgres.env
POSTGRESQL_USER=bob
POSTGRESQL_DATABASE=mydatabase

$ oc process -f my-rails-postgresql --param-file=postgres.env

$ sed s/bob/alice/ postgres.env | oc process -f my-rails-postgresql --param-file=-

OpenShift Dedicated 4 アプリケーションのビルド

22

3.1.5. アップロードしたテンプレートの変更

すでにプロジェクトにアップロードされているテンプレートを編集できます。

手順

すでにアップロードされているテンプレートを変更します。

3.1.6. テンプレートの作成

アプリケーションの全オブジェクトを簡単に再作成するために、新規テンプレートを定義できます。テ
ンプレートでは、作成するオブジェクトと、これらのオブジェクトの作成をガイドするメタデータを定
義します。

以下は、単純なテンプレートオブジェクト定義 (YAML) の例です。

3.1.6.1. テンプレート記述の作成

テンプレートの記述により、テンプレートの内容に関する情報を提供でき、Web コンソールでの検索時
に役立ちます。テンプレート名以外のメタデータは任意ですが、使用できると便利です。メタデータに
は、一般的な説明などの情報以外にタグのセットも含まれます。便利なタグにはテンプレートで使用す

$ oc edit template <template>

apiVersion: template.openshift.io/v1
kind: Template
metadata:
 name: redis-template
 annotations:
 description: "Description"
 iconClass: "icon-redis"
 tags: "database,nosql"
objects:
- apiVersion: v1
 kind: Pod
 metadata:
 name: redis-master
 spec:
 containers:
 - env:
 - name: REDIS_PASSWORD
 value: ${REDIS_PASSWORD}
 image: dockerfile/redis
 name: master
 ports:
 - containerPort: 6379
 protocol: TCP
parameters:
- description: Password used for Redis authentication
 from: '[A-Z0-9]{8}'
 generate: expression
 name: REDIS_PASSWORD
labels:
 redis: master

第3章 アプリケーションの作成

23

1

2

3

4

5

6

る言語名などがあります (例: Java、PHP、Ruby)。

以下は、テンプレート記述メタデータの例です。

テンプレートの一意の名前。

ユーザーインターフェイスで利用できるように、ユーザーに分かりやすく、簡単な名前。

テンプレートの説明。デプロイされる内容、デプロイ前に知っておく必要のある注意点をユーザー
が理解できるように詳細を追加します。README ファイルなど、追加情報へのリンクも追加しま
す。パラグラフを作成するには、改行を追加できます。

追加の説明。たとえば、サービスカタログに表示されます。

検索およびグループ化を実行するためにテンプレートに関連付けられるタグ。これを指定されるカ
タログカテゴリーのいずれかに組み込むタグを追加します。コンソールの定数ファイルの
CATALOG_CATEGORIES で id および categoryAliases を参照してください。

Web コンソールでテンプレートと一緒に表示されるアイコン。

例3.1 利用可能なアイコン

icon-3scale

icon-aerogear

icon-amq

kind: Template
apiVersion: template.openshift.io/v1
metadata:
 name: cakephp-mysql-example 1
 annotations:
 openshift.io/display-name: "CakePHP MySQL Example (Ephemeral)" 2
 description: >-
 An example CakePHP application with a MySQL database. For more information
 about using this template, including OpenShift considerations, see
 https://github.com/sclorg/cakephp-ex/blob/master/README.md.

 WARNING: Any data stored will be lost upon pod destruction. Only use this
 template for testing." 3
 openshift.io/long-description: >-
 This template defines resources needed to develop a CakePHP application,
 including a build configuration, application DeploymentConfig, and
 database DeploymentConfig. The database is stored in
 non-persistent storage, so this configuration should be used for
 experimental purposes only. 4
 tags: "quickstart,php,cakephp" 5
 iconClass: icon-php 6
 openshift.io/provider-display-name: "Red Hat, Inc." 7
 openshift.io/documentation-url: "https://github.com/sclorg/cakephp-ex" 8
 openshift.io/support-url: "https://access.redhat.com" 9
message: "Your admin credentials are ${ADMIN_USERNAME}:${ADMIN_PASSWORD}" 10

OpenShift Dedicated 4 アプリケーションのビルド

24

icon-angularjs

icon-ansible

icon-apache

icon-beaker

icon-camel

icon-capedwarf

icon-cassandra

icon-catalog-icon

icon-clojure

icon-codeigniter

icon-cordova

icon-datagrid

icon-datavirt

icon-debian

icon-decisionserver

icon-django

icon-dotnet

icon-drupal

icon-eap

icon-elastic

icon-erlang

icon-fedora

icon-freebsd

icon-git

icon-github

icon-gitlab

icon-glassfish

icon-go-gopher

第3章 アプリケーションの作成

25

icon-golang

icon-grails

icon-hadoop

icon-haproxy

icon-helm

icon-infinispan

icon-jboss

icon-jenkins

icon-jetty

icon-joomla

icon-jruby

icon-js

icon-knative

icon-kubevirt

icon-laravel

icon-load-balancer

icon-mariadb

icon-mediawiki

icon-memcached

icon-mongodb

icon-mssql

icon-mysql-database

icon-nginx

icon-nodejs

icon-openjdk

icon-openliberty

icon-openshift

icon-openstack

OpenShift Dedicated 4 アプリケーションのビルド

26

icon-other-linux

icon-other-unknown

icon-perl

icon-phalcon

icon-php

icon-play

iconpostgresql

icon-processserver

icon-python

icon-quarkus

icon-rabbitmq

icon-rails

icon-redhat

icon-redis

icon-rh-integration

icon-rh-spring-boot

icon-rh-tomcat

icon-ruby

icon-scala

icon-serverlessfx

icon-shadowman

icon-spring-boot

icon-spring

icon-sso

icon-stackoverflow

icon-suse

icon-symfony

icon-tomcat

第3章 アプリケーションの作成

27

7

8

9

10

1

2

icon-ubuntu

icon-vertx

icon-wildfly

icon-windows

icon-wordpress

icon-xamarin

icon-zend

テンプレートを提供する人または組織の名前

テンプレートに関する他のドキュメントを参照する URL

テンプレートに関するサポートを取得できる URL

テンプレートがインスタンス化された時に表示される説明メッセージ。このフィールドで、新規作
成されたリソースの使用方法をユーザーに通知します。生成された認証情報や他のパラメーターを
出力に追加できるように、メッセージの表示前にパラメーターの置換が行われます。ユーザーが従
うべき次の手順が記載されたドキュメントへのリンクを追加してください。

3.1.6.2. テンプレートラベルの作成

テンプレートにはラベルのセットを追加できます。これらのラベルは、テンプレートがインスタンス化
される時に作成されるオブジェクトごとに追加します。このようにラベルを定義すると、特定のテンプ
レートから作成された全オブジェクトの検索、管理が簡単になります。

以下は、テンプレートオブジェクトのラベルの例です。

このテンプレートから作成する全オブジェクトに適用されるラベル

パラメーター化されたラベル。このラベルは、このテンプレートを基に作成された全オブジェクト
に適用されます。パラメーターは、ラベルキーおよび値の両方で拡張されます。

3.1.6.3. テンプレートパラメーターの作成

パラメーターにより、テンプレートがインスタンス化される時に値を生成するか、ユーザーが値を指定
できるようになります。パラメーターが参照されると、値が置換されます。参照は、オブジェクト一覧
フィールドであればどこでも定義できます。これは、無作為にパスワードを作成したり、テンプレート
のカスタマイズに必要なユーザー固有の値やホスト名を指定したりできるので便利です。パラメーター
は、2 種類の方法で参照可能です。

文字列の値として、テンプレートの文字列フィールドに ${PARAMETER_NAME} の形式で配

kind: "Template"
apiVersion: "v1"
...
labels:
 template: "cakephp-mysql-example" 1
 app: "${NAME}" 2

OpenShift Dedicated 4 アプリケーションのビルド

28

文字列の値として、テンプレートの文字列フィールドに ${PARAMETER_NAME} の形式で配
置する

JSON/YAML の値として、テンプレートのフィールドに ${{PARAMETER_NAME}} の形式で
配置する

${PARAMETER_NAME} 構文を使用すると、複数のパラメーター参照を 1 つのフィールドに統合で
き、"http://${PARAMETER_1}${PARAMETER_2}" などのように、参照を固定データ内に埋め込むこ
とができます。どちらのパラメーター値も置換されて、引用された文字列が最終的な値になります。

${{PARAMETER_NAME}} 構文のみを使用する場合は、単一のパラメーター参照のみが許可され、先頭
文字や終了文字は使用できません。結果の値は、置換後に結果が有効な JSON オブジェクトの場合は引
用されません。結果が有効な JSON 値でない場合に、結果の値は引用され、標準の文字列として処理さ
れます。

単一のパラメーターは、テンプレート内で複数回参照でき、1 つのテンプレート内で両方の置換構文を
使用して参照することができます。

デフォルト値を指定でき、ユーザーが別の値を指定していない場合に使用されます。

以下は、明示的な値をデフォルト値として設定する例です。

パラメーター値は、パラメーター定義に指定したルールを基に生成することも可能です。以下は、パラ
メーター値の生成例です。

上記の例では、処理後に、英字の大文字、小文字、数字をすべて含む 12 文字長のパスワードが無作為
に作成されます。

利用可能な構文は、完全な正規表現構文ではありません。ただし、\w、\d、\a、および \A 修飾子を使
用できます。

[\w]{10} は、10 桁の英字、数字、およびアンダースコアを生成します。これは PCRE 標準に準
拠し、[a-zA-Z0-9_]{10} に相当します。

[\d]{10} は 10 桁の数字を生成します。これは [0-9]{10} に相当します。

[\a]{10} は 10 桁の英字を生成します。これは [a-zA-Z]{10} に相当します。

[\A]{10} は 10 の句読点または記号文字を生成します。これは [~!@#$%\^&*()\-_+={}\[\]\\|
<,>.?/"';:`]{10} に相当します。

注記

parameters:
 - name: USERNAME
 description: "The user name for Joe"
 value: joe

parameters:
 - name: PASSWORD
 description: "The random user password"
 generate: expression
 from: "[a-zA-Z0-9]{12}"

第3章 アプリケーションの作成

29

注記

テンプレートが YAML または JSON で記述されているかどうか、また修飾子が組み込ま
れている文字列のタイプによっては、2 番目のバックスラッシュでバックスラッシュを
エスケープする必要がある場合があります。以下は例になります。

修飾子を含む YAML テンプレートの例

修飾子を含む JSON テンプレートの例

以下は、パラメーター定義と参照を含む完全なテンプレートの例です。

 parameters:
 - name: singlequoted_example
 generate: expression
 from: '[\A]{10}'
 - name: doublequoted_example
 generate: expression
 from: "[\\A]{10}"

{
 "parameters": [
 {
 "name": "json_example",
 "generate": "expression",
 "from": "[\\A]{10}"
 }
]
}

kind: Template
apiVersion: template.openshift.io/v1
metadata:
 name: my-template
objects:
 - kind: BuildConfig
 apiVersion: build.openshift.io/v1
 metadata:
 name: cakephp-mysql-example
 annotations:
 description: Defines how to build the application
 spec:
 source:
 type: Git
 git:
 uri: "${SOURCE_REPOSITORY_URL}" 1
 ref: "${SOURCE_REPOSITORY_REF}"
 contextDir: "${CONTEXT_DIR}"
 - kind: DeploymentConfig
 apiVersion: apps.openshift.io/v1
 metadata:
 name: frontend
 spec:
 replicas: "${{REPLICA_COUNT}}" 2

OpenShift Dedicated 4 アプリケーションのビルド

30

1

2

3

4

5

6

7

8

9

10

この値は、テンプレートがインスタンス化された時点で SOURCE_REPOSITORY_URL パラメー
ターに置き換えられます。

この値は、テンプレートがインスタンス化された時点で、REPLICA_COUNT パラメーターの引用
なしの値に置き換えられます。

パラメーター名。この値は、テンプレート内でパラメーターを参照するのに使用します。

分かりやすいパラメーターの名前。これは、ユーザーに表示されます。

パラメーターの説明。期待値に対する制約など、パラメーターの目的を詳細にわたり説明します。
説明には、コンソールのテキスト標準に従い、完結した文章を使用するようにしてください。表示
名と同じ内容を使用しないでください。

テンプレートをインスタンス化する時に、ユーザーにより値が上書きされない場合に使用されるパ
ラメーターのデフォルト値。パスワードなどのデフォルト値の使用を避けるようにしてください。
シークレットと組み合わせた生成パラメーターを使用するようにしてください。

このパラメーターが必須であることを示します。つまり、ユーザーは空の値で上書きできません。
パラメーターでデフォルト値または生成値が指定されていない場合には、ユーザーは値を指定する
必要があります。

値が生成されるパラメーター

ジェネレーターへの入力。この場合、ジェネレーターは、大文字、小文字を含む 40 桁の英数字の
値を生成します。

パラメーターはテンプレートメッセージに含めることができます。これにより、生成された値が
ユーザーに通知されます。

3.1.6.4. テンプレートオブジェクトリストの作成

テンプレートの主な部分は、テンプレートがインスタンス化される時に作成されるオブジェクトのリス
トです。これには、ビルド設定、デプロイメント設定、またはサービスなどの有効な API オブジェクト
を使用できます。オブジェクトはここで定義された通りに作成され、パラメーターの値は作成前に置換
されます。これらのオブジェクトの定義では、以前に定義したパラメーターを参照できます。

以下は、オブジェクトリストの例です。

parameters:
 - name: SOURCE_REPOSITORY_URL 3
 displayName: Source Repository URL 4
 description: The URL of the repository with your application source code 5
 value: https://github.com/sclorg/cakephp-ex.git 6
 required: true 7
 - name: GITHUB_WEBHOOK_SECRET
 description: A secret string used to configure the GitHub webhook
 generate: expression 8
 from: "[a-zA-Z0-9]{40}" 9
 - name: REPLICA_COUNT
 description: Number of replicas to run
 value: "2"
 required: true
message: "... The GitHub webhook secret is ${GITHUB_WEBHOOK_SECRET} ..." 10

第3章 アプリケーションの作成

31

1 サービスの定義。このテンプレートにより作成されます。

注記

オブジェクト定義のメタデータに namespace フィールドの固定値が含まれる場合、
フィールドはテンプレートのインスタンス化の際に定義から取り除かれま
す。namespace フィールドにパラメーター参照が含まれる場合には、通常のパラメー
ター置換が行われ、パラメーターの置換による値の解決が実行された namespace で、オ
ブジェクトが作成されます。この場合、ユーザーは対象の namespace でオブジェクトを
作成するパーミッションがあることが前提になります。

3.1.6.5. テンプレートをバインド可能としてマーキングする

テンプレートサービスブローカーは、認識されているテンプレートオブジェクトごとに、カタログ内に
サービスを 1 つ公開します。デフォルトでは、これらのサービスはそれぞれバインド可能として公開さ
れ、エンドユーザーがプロビジョニングしたサービスに対してバインドできるようにします。

手順

テンプレートの作成者は、エンドユーザーが指定テンプレートからプロビジョニングされたサービスに
対してバインディングすることを防ぐことができます。

template.openshift.io/bindable: "false" のアノテーションをテンプレートに追加して、エンド
ユーザーが指定のテンプレートからプロビジョニングされるサービスをバインドできないよう
にできます。

3.1.6.6. テンプレートオブジェクトフィールドの公開

テンプレートの作成者は、テンプレートに含まれる特定のオブジェクトのフィールドを公開すべきかど
うかを指定できます。テンプレートサービスブローカーは、ConfigMap、Secret、Service、および
Route オブジェクトに公開されたフィールドを認識し、ユーザーがブローカーでサポートされている
サービスをバインドする際に公開されたフィールドの値を返します。

オブジェクトのフィールドを 1 つまたは複数公開するには、テンプレート内のオブジェクトに、接頭辞

kind: "Template"
apiVersion: "v1"
metadata:
 name: my-template
objects:
 - kind: "Service" 1
 apiVersion: "v1"
 metadata:
 name: "cakephp-mysql-example"
 annotations:
 description: "Exposes and load balances the application pods"
 spec:
 ports:
 - name: "web"
 port: 8080
 targetPort: 8080
 selector:
 name: "cakephp-mysql-example"

OpenShift Dedicated 4 アプリケーションのビルド

32

オブジェクトのフィールドを 1 つまたは複数公開するには、テンプレート内のオブジェクトに、接頭辞
が template.openshift.io/expose- または template.openshift.io/base64-expose- のアノテーションを
追加します。

各アノテーションキーは、bind 応答のキーになるように、接頭辞が削除されてパススルーされます。

各アノテーションの値は Kubernetes JSONPath 式の値であり、バインド時に解決され、bind 応答で返
される値が含まれるオブジェクトフィールドを指定します。

注記

Bind 応答のキーと値のペアは、環境変数として、システムの他の場所で使用できます。
そのため、アノテーションキーで接頭辞を取り除いた値を有効な環境変数名として使用
することが推奨されます。先頭に A-Z、a-z または _ を指定して、その後に、ゼロか、他
の文字 A-Z、a-z、0-9 または _ を指定してください。

注記

バックスラッシュでエスケープしない限り、Kubernetes の JSONPath 実装は表現内の
どの場所に使用されていても、.、@ などはメタ文字として解釈します。そのため、たと
えば、my.key という名前の ConfigMap のデータを参照するには、JSONPath 式は
{.data['my\.key']} とする必要があります。JSONPath 式が YAML でどのように記述され
ているかによって、"{.data['my\\.key']}" などのように、追加でバックスラッシュが必要
になる場合があります。

以下は、公開されるさまざまなオブジェクトのフィールドの例です。

kind: Template
apiVersion: template.openshift.io/v1
metadata:
 name: my-template
objects:
- kind: ConfigMap
 apiVersion: v1
 metadata:
 name: my-template-config
 annotations:
 template.openshift.io/expose-username: "{.data['my\\.username']}"
 data:
 my.username: foo
- kind: Secret
 apiVersion: v1
 metadata:
 name: my-template-config-secret
 annotations:
 template.openshift.io/base64-expose-password: "{.data['password']}"
 stringData:
 password: <password>
- kind: Service
 apiVersion: v1
 metadata:
 name: my-template-service
 annotations:
 template.openshift.io/expose-service_ip_port: "{.spec.clusterIP}:{.spec.ports[?
(.name==\"web\")].port}"

第3章 アプリケーションの作成

33

上記の部分的なテンプレートでの bind 操作に対する応答例は以下のようになります。

手順

template.openshift.io/expose- アノテーションを使用して、値を文字列として返します。これ
は、任意のバイナリーデータを処理しないものの、便利な方法です。

バイナリーデータを返す必要がある場合、template.openshift.io/base64-expose- アノテー
ションを使用して、データが返される前にデータを base64 でエンコードします。

3.1.6.7. テンプレートの準備ができるまで待機する

テンプレートの作成者は、テンプレート内の特定のオブジェクトがサービスカタログ、Template
Service Broker または TemplateInstance API によるテンプレートのインスタンス化が完了したとされ
るまで待機する必要があるかを指定できます。

手順を開始する前に、次の考慮事項をお読みください。

アプリケーションにスムーズに実行するのに十分なリソースが提供されるようにメモリー、
CPU、およびストレージのデフォルトサイズを設定します。

latest タグが複数のメジャーバージョンで使用されている場合には、イメージからこのタグを
参照しないようにします。新規イメージがそのタグにプッシュされると、実行中のアプリケー
ションが破損してしまう可能性があります。

適切なテンプレートの場合、テンプレートのデプロイ後に変更する必要なしに、ビルドおよび
デプロイが正常に行われます。

手順

テンプレート機能を使用するには、テンプレート内の

 spec:
 ports:
 - name: "web"
 port: 8080
- kind: Route
 apiVersion: route.openshift.io/v1
 metadata:
 name: my-template-route
 annotations:
 template.openshift.io/expose-uri: "http://{.spec.host}{.spec.path}"
 spec:
 path: mypath

{
 "credentials": {
 "username": "foo",
 "password": "YmFy",
 "service_ip_port": "172.30.12.34:8080",
 "uri": "http://route-test.router.default.svc.cluster.local/mypath"
 }
}

OpenShift Dedicated 4 アプリケーションのビルド

34

テンプレート機能を使用するには、テンプレート内の
Build、BuildConfig、Deployment、DeploymentConfig、Job、または StatefulSet の種類の
オブジェクト 1 つ以上に、以下のアノテーションでマークを付けます。

テンプレートのインスタンス化は、アノテーションのマークが付けられたすべてのオブジェク
トが準備できたと報告されるまで、完了しません。同様に、アノテーションが付けられたオブ
ジェクトが失敗したと報告されるか、固定タイムアウトである 1 時間以内にテンプレートの準
備が整わなかった場合に、テンプレートのインスタンス化は失敗します。

インスタンス化の目的で、各オブジェクトの種類の準備状態および失敗は以下のように定義さ
れます。

種類 準備状態 (Readiness) 失敗 (Failure)

Build オブジェクトが Complete フェーズを
報告する

オブジェクトが Canceled、Error、ま
たは Failed を報告する

BuildConfig 関連付けられた最新のビルドオブジェ
クトが Complete フェーズを報告する

関連付けられた最新のビルドオブジェ
クトが Canceled、Error、または
Failed を報告する

Deployment オブジェクトは、新しいレプリカセッ
トとデプロイメントが利用可能である
と報告する。これにより、オブジェク
トで定義される readiness プローブが
有効になります。

オブジェクトで、Progressing の状態
が false であると報告される

DeploymentC
onfig

オブジェクトは新規レプリケーション
コントローラーおよびデプロイメント
が利用可能であると報告する。これに
より、オブジェクトで定義される
readiness プローブが有効になりま
す。

オブジェクトで、Progressing の状態
が false であると報告される

Job オブジェクトが完了 (completion) を
報告する

オブジェクトが 1 つ以上の失敗が発生
したことを報告する

StatefulSet オブジェクトはすべてのレプリカが
Ready であることを報告するこれによ
り、オブジェクトで定義される
readiness プローブが有効になりま
す。

該当なし

以下は、テンプレートサンプルを一部抜粋したものです。この例では、wait-for-ready アノ
テーションが使用されています。その他のサンプルは、OpenShift Dedicated クイックスター
トテンプレートにあります。

"template.alpha.openshift.io/wait-for-ready": "true"

kind: Template
apiVersion: template.openshift.io/v1
metadata:

第3章 アプリケーションの作成

35

3.1.6.8. 既存オブジェクトからのテンプレートの作成

テンプレートをゼロから作成するのではなく、プロジェクトから既存のオブジェクトを YAML 形式でエ
クスポートして、パラメーターを追加したり、テンプレート形式としてカスタマイズしたりして、
YAML 形式を変更することもできます。

手順

オブジェクトを YAML 形式でプロジェクトにエクスポートします。

all ではなく、特定のリソースタイプや複数のリソースを置き換えることも可能です。他の例
は、oc get -h を実行してください。

oc get -o yaml all に含まれるオブジェクトタイプは以下の通りです。

BuildConfig

Build

DeploymentConfig

ImageStream

Pod

ReplicationController

 name: my-template
objects:
- kind: BuildConfig
 apiVersion: build.openshift.io/v1
 metadata:
 name: ...
 annotations:
 # wait-for-ready used on BuildConfig ensures that template instantiation
 # will fail immediately if build fails
 template.alpha.openshift.io/wait-for-ready: "true"
 spec:
 ...
- kind: DeploymentConfig
 apiVersion: apps.openshift.io/v1
 metadata:
 name: ...
 annotations:
 template.alpha.openshift.io/wait-for-ready: "true"
 spec:
 ...
- kind: Service
 apiVersion: v1
 metadata:
 name: ...
 spec:
 ...

$ oc get -o yaml all > <yaml_filename>

OpenShift Dedicated 4 アプリケーションのビルド

36

Route

Service

注記

コンテンツはクラスターやバージョンによって異なる可能性があるため、all エイリアス
の使用は推奨されません。代わりに、必要なすべてのリソースを指定してください。

3.2. DEVELOPER パースペクティブを使用したアプリケーションの作成

Web コンソールの Developer パースペクティブでは、+Add ビューからアプリケーションおよび関連
サービスを作成し、それらを OpenShift Dedicated にデプロイするための以下のオプションが提供され
ます。

重要

OpenShift Dedicated 4.19 以降、Web コンソールのパースペクティブが統合されまし
た。Developer パースペクティブは、デフォルトでは有効になっていません。

すべてのユーザーが、OpenShift Dedicated Web コンソールのすべての機能を操作でき
ます。ただし、クラスターの所有者でない場合は、特定の機能にアクセスする権限をク
ラスターの所有者に要求する必要がある場合があります。

引き続き Developer パースペクティブを有効にできます。Web コンソールの Getting
Started ペインでは、コンソールツアーの実行、クラスター設定に関する情報の検
索、Developer パースペクティブを有効にするためのクイックスタートの表示、リンク
先を表示して新機能の確認などを行えます。

リソースの使用: 開発者コンソールを使い始めるには、これらのリソースを使用します。

Options メニュー を使用してヘッダーを非表示できます。

サンプルを使用したアプリケーションの作成: 既存のコードサンプルを使用して、
OpenShift Dedicated でアプリケーションの作成を開始します。

ガイド付きドキュメントを使用してビルド: ガイド付きドキュメントを参照してアプリケー
ションを構築し、主なコンセプトや用語を確認してください。

新規開発者機能の確認: Developer パースペクティブの新機能およびリソースを紹介しま
す。

Developer catalog: Developer Catalog で、イメージビルダーに必要なアプリケーション、サー
ビス、またはソースを選択し、プロジェクトに追加します。

All Services: カタログを参照し、OpenShift Dedicated 全体でサービスを検出します。

Database: 必要なデータベースサービスを選択し、アプリケーションに追加します。

Operator Backed: 必要な Operator 管理サービスを選択し、デプロイします。

Helm chart: 必要な Helm チャートを選択し、アプリケーションおよびサービスのデプロイ
メントを単純化します。

Devfile: Devfile レジストリー から devfile を選択して、開発環境を宣言的に定義します。

第3章 アプリケーションの作成

37

Event Source: 特定のシステムからイベントソースを選択し、関心のあるイベントクラスを
登録します。

注記

RHOAS Operator がインストールされている場合は、マネージドサービスオ
プションも利用できます。

Git repository: From Git、From Devfile または From Dockerfile オプションを使用して Git リ
ポジトリーから既存のコードベース、Devfile、または Dockerfile をインポートし、OpenShift
Dedicated でアプリケーションをビルドしてデプロイします。

Container Image: イメージストリームまたはレジストリーからの既存イメージを使用し、これ
を OpenShift Dedicated にデプロイします。

Pipelines: Tekton パイプラインを使用して OpenShift Dedicated でソフトウェア配信プロセス
の CI/CD パイプラインを作成します。

Serverless: Serverless オプションを検査して、OpenShift Dedicated でステートレスおよび
サーバーレスアプリケーションを作成、ビルド、デプロイします。

Channel: Knative チャネルを作成し、インメモリーの信頼性の高い実装を備えたイベント転
送および永続化層を作成します。

Samples: 利用可能なサンプルアプリケーションを確認して、アプリケーションをすばやく作
成、ビルド、デプロイします。

Quick Starts: アプリケーションを作成、インポート、および実行するためのクイックスタート
オプションを調べて、ステップバイステップの手順とタスクを使用します。

From Local Machine: From Local Machine タイルを確認して、ローカルマシンのファイルをイ
ンポートまたはアップロードし、簡単にアプリケーションをビルドしてデプロイします。

Import YAML: YAML ファイルをアップロードし、アプリケーションをビルドしてデプロイ
するためのリソースを定義します。

Upload JAR file: JAR ファイルをアップロードして Java アプリケーションをビルドおよび
デプロイします。

Share my Project: このオプションを使用して、プロジェクトにユーザーを追加または削除し、
アクセシビリティオプションを提供します。

Helm Chart リポジトリー: このオプションを使用して、namespace に Helm Chart リポジト
リーを追加します。

リソースの並べ替え: これらのリソースを使用して、ナビゲーションペインに追加済みのピン留
めされたリソースを並べ替えます。ナビゲーションウィンドウでピン留めされたリソースに
カーソルを合わせると、その左側にドラッグアンドドロップアイコンが表示されます。ドラッ
グしたリソースは、それが属するセクションにのみドロップできます。

Pipelines オプションは、OpenShift Pipelines Operator がインストールされている場合にのみ表示され
ることに注意してください。

3.2.1. 前提条件

Developer パースペクティブを使用してアプリケーションを作成するには、以下を確認してください。

OpenShift Dedicated 4 アプリケーションのビルド

38

Web コンソールにログインしている。

3.2.2. サンプルアプリケーションの作成

Developer パースペクティブの +Add フローでサンプルアプリケーションを使用し、アプリケーション
をすぐに作成し、ビルドし、デプロイできます。

前提条件

OpenShift Dedicated Web コンソールにログインしており、Developer パースペクティブを使
用している。

手順

1. +Add ビューで、Samples タイルをクリックして Samples ページを表示します。

2. Samples ページで、利用可能なサンプルアプリケーションの 1 つを選択し、Create Sample
Application フォームを表示します。

3. Create Sample Application Form:

Name フィールドには、デフォルトでデプロイメント名が表示されます。この名前は必要
に応じて変更できます。

Builder Image Version では、ビルダーイメージがデフォルトで選択されます。Builder
Image Version ドロップダウンリストを使用してイメージバージョンを変更できます。

Git リポジトリー URL のサンプルは、デフォルトで追加されます。

4. Create をクリックしてサンプルアプリケーションを作成します。サンプルアプリケーションの
ビルドステータスが Topology ビューに表示されます。サンプルアプリケーションの作成後、
デプロイメントがアプリケーションに追加されていることを確認できます。

3.2.3. Quick Starts を使用したアプリケーションの作成

Quick Starts ページでは、OpenShift Dedicated でアプリケーションを作成、インポート、および実行
する方法を、段階的な手順とタスクとともに示します。

前提条件

OpenShift Dedicated Web コンソールにログインしており、Developer パースペクティブを使
用している。

手順

1. +Add ビューで、Getting Started resources → Build with guided documentation → View all
quick starts リンクをクリックして、Quick Starts ページを表示します。

2. Quick Starts ページで、使用するクイックスタートのタイルをクリックします。

3. Start をクリックして、クイックスタートを開始します。

4. 表示される手順を実行します。

3.2.4. Git のコードベースのインポートおよびアプリケーションの作成

第3章 アプリケーションの作成

39

Developer パースペクティブを使用すると、GitHub の既存のコードベースを使用して OpenShift
Dedicated でアプリケーションを作成、構築、デプロイできます。

以下の手順では、Developer パースペクティブの From Git オプションを使用してアプリケーションを
作成します。

手順

1. +Add ビューで、Git Repository タイルの From Git をクリックし、Import from git フォーム
を表示します。

2. Git セクションで、アプリケーションの作成に使用するコードベースの Git リポジトリー URL
を入力します。たとえば、このサンプル nodejs アプリケーションの URL
https://github.com/sclorg/nodejs-ex を入力します。その後、URL は検証されます。

3. オプション: Show Advanced Git Options をクリックし、以下のような詳細を追加できます。

Git Reference: アプリケーションのビルドに使用する特定のブランチ、タグ、またはコ
ミットのコードを参照します。

Context Dir: アプリケーションのビルドに使用するアプリケーションのソースコードのサ
ブディレクトリーを指定します。

Source Secret: プライベートリポジトリーからソースコードをプルするための認証情報で
Secret Name を作成します。

4. オプション: Devfile、Dockerfile、Builder Image、または Serverless Function が Git リポジ
トリーからインポートして、デプロイをさらにカスタマイズできます。

Git リポジトリーに Devfile、Dockerfile、Builder Image、または func.yaml が含まれてい
る場合は自動的に検出され、それぞれのパスフィールドに入力されます。

Devfile、Dockerfile、または Builder Image が同じリポジトリーで検出された場合は、デ
フォルトで Devfile が選択されます。

Git リポジトリーで func.yaml が検出されると、Import Strategy が Serverless Function
に変更になります。

または、Git リポジトリー URL を使用して +Add ビューでサーバー Create Serverless
function をクリックして、サーバーレス関数を作成することもできます。

ファイルのインポートタイプを編集して、別のストラテジーを選択し、Edit import
strategy オプションをクリックします。

複数の Devfiles、Dockerfiles、または Builder Images が検出された場合、特定のインス
タンスをインポートするには、コンテキストディレクトリーからの相対パスをそれぞれ指
定します。

5. Git URL の検証後に、推奨されるビルダーイメージが選択されて星マークが付けられます。ビ
ルダーイメージが自動検出されていない場合は、ビルダーイメージを選択しま
す。https://github.com/sclorg/nodejs-ex Git URL の場合、Node.js ビルダーイメージがデフォ
ルトで選択されます。

a. オプション:Builder Image Version ドロップダウンリストを使用してバージョンを指定しま
す。

b. オプション:Edit import strategy を使用して、別のストラテジーを選択します。

OpenShift Dedicated 4 アプリケーションのビルド

40

https://github.com/sclorg/nodejs-ex

c. オプション:Node.js ビルダーイメージの場合、Run command フィールドを使用して、アプ
リケーションを実行するためにコマンドを上書きします。

6. General セクションで、以下を実行します。

a. Application フィールドに、アプリケーションを分類するために一意の名前 (myapp など)
を入力します。アプリケーション名が namespace で一意であることを確認します。

b. Name フィールドで、既存のアプリケーションが存在しない場合に、このアプリケーショ
ン用に作成されたリソースが Git リポジトリー URL をベースとして自動的に設定されるこ
とを確認します。既存のアプリケーションがある場合には、既存のアプリケーション内で
そのコンポーネントをデプロイしたり、新しいアプリケーションを作成したり、またはコ
ンポーネントをいずれにも割り当てない状態にしたりすることができます。

注記

リソース名は namespace で一意である必要があります。エラーが出る場合
はリソース名を変更します。

7. Resources セクションで、以下を選択します。

Deployment: 単純な Kubernetes スタイルのアプリケーションを作成します。

Deployment Config: OpenShift Dedicated スタイルのアプリケーションを作成します。

8. Pipelines セクションで、Add Pipeline を選択してから Show Pipeline Visualization をクリッ
クし、アプリケーションのパイプラインを表示します。デフォルトのパイプラインが選択され
ますが、アプリケーションで利用可能なパイプラインの一覧から必要なパイプラインを選択で
きます。

注記

次の基準が満たされている場合、Add pipeline チェックボックスがオンにな
り、Configure PAC がデフォルトで選択されます。

パイプラインオペレーターがインストールされています

pipelines-as-code が有効になっています

.tekton ディレクトリーが Git リポジトリーで検出される

9. Webhook をリポジトリーに追加します。Configure PAC がオンになっており、GitHub アプリ
がセットアップされている場合は、Use GitHub App と Setup a webhook オプションが表示さ
れます。GitHub アプリケーションがセットアップされていない場合は、Setup a webhook オ
プションのみが表示されます。

a. Settings → Webhooks に移動し、Add webhook をクリックします。

b. Payload URL を Pipelines as Code コントローラーのパブリック URL に設定します。

c. コンテンツタイプを application/json として選択します。

d. Webhook シークレットを追加し、別の場所に書き留めます。openssl がローカルマシンに
インストールされた状態で、ランダムなシークレットを生成します。

e. Let me select individual events をクリックし、Commit comments、Issue

第3章 アプリケーションの作成

41

e. Let me select individual events をクリックし、Commit comments、Issue
comments、Pull request、および Pushes のイベントを選択します。

f. Add webhook をクリックします。

10. オプション: Advanced Options セクションでは、Target port および Create a route to the
application がデフォルトで選択されるため、公開されている URL を使用してアプリケーショ
ンにアクセスできます。
アプリケーションがデフォルトのパブリックポート 80 でデータを公開しない場合は、チェッ
クボックスの選択を解除し、公開する必要のあるターゲットポート番号を設定します。

11. オプション: 以下の高度なオプションを使用してアプリケーションをさらにカスタマイズできま
す。

Routing

Routing のリンクをクリックして、以下のアクションを実行できます。

ルートのホスト名をカスタマイズします。

ルーターが監視するパスを指定します。

ドロップダウンリストから、トラフィックのターゲットポートを選択します。

Secure Route チェックボックスを選択してルートを保護します。必要な TLS 終端タイ
プを選択し、各ドロップダウンリストから非セキュアなトラフィックに関するポリシー
を設定します。

注記

サーバーレスアプリケーションの場合、Knative サービスが上記のすべて
のルーティングオプションを管理します。ただし、必要に応じて、トラ
フィックのターゲットポートをカスタマイズできます。ターゲットポー
トが指定されていない場合、デフォルトポートの 8080 が使用されます。

ヘルスチェック

Health Checks リンクをクリックして、Readiness、Liveness、および Startup プローブを
アプリケーションに追加します。すべてのプローブに事前に設定されたデフォルトデータが
実装され、必要に応じてデフォルトデータでプローブを追加したり、必要に応じてこれをカ
スタマイズしたりできます。
ヘルスプローブをカスタマイズするには、以下を実行します。

Add Readiness Probe をクリックし、必要に応じてコンテナーが要求を処理する準備が
できているかどうかを確認するためにパラメーターを変更し、チェックマークを選択し
てプローブを追加します。

Add Liveness Probe をクリックし、必要に応じてコンテナーが実行中かどうかを確認
するためにパラメーターを変更し、チェックマークを選択してプローブを追加します。

Add Startup Probe をクリックし、必要に応じてコンテナー内のアプリケーションが起
動しているかどうかを確認するためにパラメーターを変更し、チェックマークを選択し
てプローブを追加します。
それぞれのプローブについて、ドロップダウンリストから要求タイプ (HTTP
GET、Container Command、TCP Socket) を指定できます。選択した要求タイプに応
じてフォームが変更されます。次に、プローブの成功および失敗のしきい値、コンテ

OpenShift Dedicated 4 アプリケーションのビルド

42

ナーの起動後の最初のプローブ実行までの秒数、プローブの頻度、タイムアウト値な
ど、他のパラメーターのデフォルト値を変更できます。

ビルド設定およびデプロイメント

Build Configuration および Deployment リンクをクリックして、それぞれの設定オプショ
ンを表示します。オプションの一部はデフォルトで選択されています。必要なトリガーおよ
び環境変数を追加して、オプションをさらにカスタマイズできます。
サーバーレスアプリケーションの場合、Deployment オプションは表示されません。これ
は、Knative 設定リソースが DeploymentConfig リソースの代わりにデプロイメントの必要
な状態を維持するためです。

スケーリング

Scaling リンクをクリックして、最初にデプロイするアプリケーションの Pod 数またはイン
スタンス数を定義します。
サーバーレスデプロイメントを作成する場合、以下の設定を行うこともできます。

Min Pods は、Knative サービスである時点で実行する必要がある Pod 数の下限を決定
します。これは、minScale 設定としても知られています。

Max Pods は、Knative サービスである時点で実行できる Pod 数の上限を決定します。
これは、maxScale 設定としても知られています。

Concurrency target は、ある時点でアプリケーションの各インスタンスに対して必要
な同時リクエストの数を決定します。

Concurrency limit は、ある時点でアプリケーションの各インスタンスに対して許容さ
れる同時リクエストの数の制限を決定します。

Concurrency utilization は、Knative が追加のトラフィックを処理するために追加の
Pod をスケールアップする際に満たす必要のある同時リクエストの制限のパーセンテー
ジを決定します。

Autoscale window は、オートスケーラーがパニックモードではない場合に、スケーリ
ングの決定を行う際のインプットを提供するためにメトリクスの平均値を計算する期間
を定義します。この期間中にリクエストが受信されなかった場合、サービスはゼロにス
ケーリングされます。Autoscale window のデフォルト期間は 60s です。これは stable
window としても知られています。

リソースの制限

Resource Limit リンクをクリックして、コンテナーが実行時に保証または使用が許可され
ている CPU および メモリー リソースの量を設定します。

ラベル

Labels リンクをクリックして、カスタムラベルをアプリケーションに追加します。

12. Create をクリックしてアプリケーションを作成し、成功の通知が表示されます。Topology
ビューでアプリケーションのビルドステータスを確認できます。

3.2.5. コンテナーイメージをデプロイしてアプリケーションを作成

外部イメージレジストリーまたは内部レジストリーのイメージストリームタグを使用して、アプリケー
ションをクラスターにデプロイできます。

第3章 アプリケーションの作成

43

前提条件

OpenShift Dedicated Web コンソールにログインしており、Developer パースペクティブを使
用している。

手順

1. +Add ビューで、Container images をクリックして、Deploy Images ページを表示します。

2. Image セクションで以下を行います。

a. Image name from external registry を選択してパブリックレジストリーまたはプライベー
トレジストリーからイメージをデプロイメントするか、Image stream tag from internal
registry を選択して内部レジストリーからイメージをデプロイメントします。

b. Runtime icon タブでイメージのアイコンを選択します。

3. General セクションで、以下を実行します。

a. Application name フィールドに、アプリケーションを分類するための一意の名前を入力し
ます。

b. Name フィールドに、このコンポーネント用に作成されたリソースを識別するための一意
の名前を入力します。

4. Resource type セクションで、生成するリソースタイプを選択します。

a. Deployment を選択して、Pod および ReplicaSet オブジェクトの宣言的更新を有効にしま
す。

b. DeploymentConfig を選択して、Pod オブジェクトのテンプレートを定義し、新しいイ
メージと設定ソースのデプロイを管理します。

5. Create をクリックします。Topology ビューでアプリケーションのビルドステータスを確認で
きます。

3.2.6. JAR ファイルをアップロードして Java アプリケーションをデプロイする

Web コンソールの Developer パースペクティブで、以下のオプションを使用して JAR ファイルをアッ
プロードできます。

Developer パースペクティブの +Add ビューに移動し、From Local Machine タイルで Upload
JAR file をクリックします。JAR ファイルを参照および選択するか、JAR ファイルをドラッグ
してアプリケーションをデプロイします。

Topology ビューに移動し、Upload JAR file オプションを使用するか、JAR ファイルをドラッ
グしてアプリケーションをデプロイします。

Topology ビューのコンテキストメニューで Upload JAR file オプションを使用して JAR ファ
イルをアップロードしてアプリケーションをデプロイします。

前提条件

dedicated-admin ロールを持つユーザーが Cluster Samples Operator をインストールしてい
る。

OpenShift Dedicated Web コンソールにアクセスでき、Developer パースペクティブを使用し

OpenShift Dedicated 4 アプリケーションのビルド

44

OpenShift Dedicated Web コンソールにアクセスでき、Developer パースペクティブを使用し
ている。

手順

1. Topology ビューで、任意の場所を右クリックして Add to Project メニューを表示します。

2. Add to Project メニューにカーソルを置いてメニューオプションを表示し、Upload JAR file オ
プションを選択して Upload JAR file フォームを確認します。または、JAR ファイルを
Topology ビューにドラッグできます。

3. JAR file フィールドで、ローカルマシンで必要な JAR ファイルを参照し、これをアップロード
します。または、JAR ファイルをフィールドにドラッグできます。互換性のないタイプのファ
イルが Topology ビューにドラッグされると、トーストアラートが右側に表示されます。互換
性のないファイルタイプがアップロードフォームのフィールドにドロップされると、フィール
ドエラーが表示されます。

4. デフォルトで、ランタイムアイコンとビルダーイメージが選択されています。ビルダーイメー
ジが自動検出されていない場合は、ビルダーイメージを選択します。必要に応じて、Builder
Image Version のドロップダウンリストを使用してバージョンを変更できます。

5. オプション: Application Name フィールドに、リソースのラベル付けに使用する一意のアプリ
ケーション名を入力します。

6. Name フィールドに、関連付けられたリソースに名前を付けるために一意のコンポーネント名
を入力します。

7. オプション: Resource type ドロップダウンリストを使用して、リソースタイプを変更します。

8. Advanced options メニューで Create a Route to the Application をクリックし、デプロイさ
れたアプリケーションのパブリック URL を設定します。

9. Create をクリックしてアプリケーションをデプロイします。JAR ファイルがアップロードされ
たことを通知するトースト通知が表示されます。トースト通知には、ビルドログを表示するリ
ンクも含まれます。

注記

ビルドの実行中にブラウザータブを閉じようとすると、Web アラートが表示されます。

JAR ファイルのアップロードとアプリケーションのデプロイメントが完了すると、Topology ビューに
アプリケーションが表示されます。

3.2.7. Devfile レジストリーを使用した devfile へのアクセス

Developer パースペクティブの +Add フローで devfile を使用して、アプリケーションを作成できま
す。+Add フローは、devfile コミュニティーレジストリー との完全なインテグレーションを提供しま
す。devfile は、ゼロから設定せずに開発環境を記述できる移植可能な YAML ファイルです。Devfile レ
ジストリー を使用すると、事前に設定された devfile を使用してアプリケーションを作成できます。

手順

1. Developer Perspective → +Add → Developer Catalog → All Services に移動しま
す。Developer Catalog で利用可能なすべてのサービスの一覧が表示されます。

2. Type で、Devfiles をクリックして、特定の言語またはフレームワークをサポートする devfiles

第3章 アプリケーションの作成

45

https://registry.devfile.io/viewer

2. Type で、Devfiles をクリックして、特定の言語またはフレームワークをサポートする devfiles
を参照します。あるいは、キーワードフィルターを使用して、名前、タグ、または説明を使用
して特定の devfile を検索できます。

3. アプリケーションの作成に使用する devfile をクリックします。devfile タイルに、devfile の名
前、説明、プロバイダー、ドキュメントなど、devfile の詳細が表示されます。

4. Create をクリックしてアプリケーションを作成し、Topology ビューでアプリケーションを表
示します。

3.2.8. Developer Catalog を使用したサービスまたはコンポーネントのアプリケーショ
ンへの追加

Developer Catalog を使用して、データベース、ビルダーイメージ、Helm チャートなどの Operator が
サポートするサービスに基づいてアプリケーションとサービスをデプロイします。Developer Catalog
には、プロジェクトに追加できるアプリケーションコンポーネント、サービス、イベントソース、また
は Source-to-Image ビルダーのコレクションが含まれます。クラスター管理者は、カタログで利用可能
なコンテンツをカスタマイズできます。

手順

1. Developer パースペクティブで、+Add に移動して、Developer Catalog タイルから All
Services をクリックし、Developer Catalog で利用可能なすべてのサービスを表示します。

2. All Services で、サービスの種類またはプロジェクトに追加する必要のあるコンポーネントを選
択します。この例では、Databases を選択してすべてのデータベースサービスを一覧表示
し、MariaDB をクリックしてサービスの詳細を表示します。

3. Instantiate Template をクリックして、MariaDB サービスの詳細情報を含む自動的に設定され
たテンプレートを表示し、Create をクリックして Topology ビューで MariaDB サービスを作
成し、これを表示します。

図3.1 トポロジーの MariaDB

OpenShift Dedicated 4 アプリケーションのビルド

46

3.2.9. 関連情報

OpenShift Serverless の Knative ルーティング設定の詳細は、ルーティング を参照してくださ
い。

OpenShift Serverless のドメインマッピング設定の詳細は、Knative サービスのカスタムドメイ
ンの設定 を参照してください。

OpenShift Serverless の Knative 自動スケーリング設定の詳細は、自動スケーリング を参照し
てください。

プロジェクトに新規ユーザーを追加する方法の詳細は、プロジェクトの使用 を参照してくださ
い。

Helm チャートリポジトリーの作成の詳細は Helm Chart リポジトリーの作成 を参照してくださ
い。

3.3. インストールされた OPERATOR からのアプリケーションの作成

Operator は、Kubernetes アプリケーションをパッケージ化し、デプロイし、管理する方法です。クラ
スター管理者によってインストールされる Operator を使用して、アプリケーションを OpenShift
Dedicated で作成できます。

以下では、開発者を対象に、OpenShift Dedicated Web コンソールを使用して、インストールされた
Operator からアプリケーションを作成する例を示します。

3.3.1. Operator を使用した etcd クラスターの作成

この手順では、Operator Lifecycle Manager (OLM) で管理される etcd Operator を使用した新規 etcd
クラスターの作成を説明します。

前提条件

OpenShift Dedicated クラスターへアクセスできる。

管理者によってクラスター全体に etcd Operator がすでにインストールされている。

手順

1. この手順を実行するために OpenShift Dedicated Web コンソールで新規プロジェクトを作成し
ます。この例では、my-etcd というプロジェクトを使用します。

2. Ecosystem → Installed Operators ページに移動します。このページには、dedicated-admin に
よってクラスターにインストールされた使用可能な Operators が、クラスターサービスバー
ジョン (CSV) のリストの形で表示されます。CSV は Operator によって提供されるソフトウェ
アを起動し、管理するために使用されます。

ヒント

以下を使用して、CLI でこのリストを取得できます。

3. Installed Operators ページで、etcd Operator をクリックして詳細情報および選択可能なアク

$ oc get csv

第3章 アプリケーションの作成

47

https://docs.openshift.com/serverless/1.28/knative-serving/external-ingress-routing/routing-overview.html#routing-overview
https://docs.openshift.com/serverless/1.28/knative-serving/config-custom-domains/serverless-custom-domains.html#serverless-custom-domains
https://docs.openshift.com/serverless/1.28/knative-serving/autoscaling/serverless-autoscaling-developer.html#serverless-autoscaling-developer

3. Installed Operators ページで、etcd Operator をクリックして詳細情報および選択可能なアク
ションを表示します。
Provided APIs に表示されているように、この Operator は 3 つの新規リソースタイプを利用可
能にします。これには、etcd クラスター (EtcdCluster リソース) のタイプが含まれます。これ
らのオブジェクトは、Deployment または ReplicaSet などの組み込み済みのネイティブ
Kubernetes オブジェクトと同様に機能しますが、これらには etcd を管理するための固有のロ
ジックが含まれます。

4. 新規 etcd クラスターを作成します。

a. etcd Cluster API ボックスで、Create instance をクリックします。

b. 次のページでは、EtcdCluster オブジェクト (クラスターのサイズなど) のテンプレートを
起動する最小条件を変更できます。ここでは Create をクリックして確定します。これによ
り、Operator がトリガーされ、Pod、サービス、および新規 etcd クラスターの他のコン
ポーネントが起動します。

5. example etcd クラスター、Resources タブの順にクリックし、Operator が自動的に作成およ
び設定した多数のリソースが含まれていることを確認します。
Kubernetes サービスが作成され、プロジェクトの他の Pod からデータベースにアクセスでき
ることを確認します。

6. 所定プロジェクトで edit ロールを持つすべてのユーザーは、クラウドサービスのようにセルフ
サービス方式でプロジェクトにすでに作成されている Operators によって管理されるアプリ
ケーションのインスタンス (この例では etcd クラスター) を作成し、管理し、削除することが
できます。この機能を持つ追加のユーザーを有効にする必要がある場合、プロジェクト管理者
は以下のコマンドを使用してこのロールを追加できます。

これで、etcd クラスターは Pod が正常でなくなったり、クラスターのノード間で移行する際の障害に
対応し、データのリバランスを行います。最も重要なことは、適切なアクセス権を持つ dedicated-
admin または開発者が、アプリケーションでデータベースを簡単に使用できるようになった点です。

3.4. CLI を使用したアプリケーションの作成

OpenShift Dedicated CLI を使用して、ソースまたはバイナリーコード、イメージおよびテンプレート
を含むコンポーネントから OpenShift Dedicated アプリケーションを作成できます。

new-app で作成したオブジェクトのセットは、ソースリポジトリー、イメージまたはテンプレートな
どのインプットとして渡されるアーティファクトによって異なります。

3.4.1. ソースコードからのアプリケーションの作成

new-app コマンドを使用して、ローカルまたはリモート Git リポジトリーのソースコードからアプリ
ケーションを作成できます。

new-app コマンドは、ビルド設定を作成し、これはソースコードから新規のアプリケーションイメー
ジを作成します。new-app コマンドは通常、Deployment オブジェクトを作成して新規のイメージを
デプロイするほか、サービスを作成してイメージを実行するデプロイメントへの負荷分散したアクセス
を提供します。

OpenShift Dedicated は、パイプライン、ソース、または docker ビルドストラテジーのいずれを使用
すべきかを自動的に検出します。また、ソースビルドの場合は、適切な言語のビルダーイメージを検出
します。

$ oc policy add-role-to-user edit <user> -n <target_project>

OpenShift Dedicated 4 アプリケーションのビルド

48

3.4.1.1. Local

ローカルディレクトリーの Git リポジトリーを使用してアプリケーションを作成するには、以下を実行
します。

注記

ローカル Git リポジトリーを使用する場合には、リポジトリーで OpenShift Dedicated
クラスターがアクセス可能な URL を参照する origin という名前のリモートリポジト
リーが必要です。認識されているリモートがない場合は、new-app コマンドを実行して
バイナリービルドを作成します。

3.4.1.2. リモート

リモート Git リポジトリーを使用してアプリケーションを作成するには、以下を実行します。

プライベートのリモート Git リポジトリーを使用してアプリケーションを作成するには、以下を実行し
ます。

注記

プライベートリモート Git リポジトリーを使用する場合には、--source-secret フラグを
使用して、既存のソースクローンのシークレットを指定できます。このシークレット
は、ビルド設定に挿入され、リポジトリーにアクセスできるようになります。

--context-dir フラグを指定することで、ソースコードリポジトリーのサブディレクトリーを使用できま
す。リモート Git リポジトリーおよびコンテキストサブディレクトリーを使用してアプリケーションを
作成する場合は、以下を実行します。

また、リモート URL を指定する場合は、以下のように URL の最後に #<branch_name> を追加するこ
とで、使用する Git ブランチを指定できます。

3.4.1.3. ビルドストラテジーの検出

OpenShift Dedicated は、特定のファイルを検出し、使用するビルドストラテジーを自動的に判別しま
す。

新規アプリケーションの作成時に Jenkins ファイルがソースリポジトリーのルートまたは指定
されたコンテキストディレクトリーに存在する場合に、OpenShift Dedicated は pipeline ビル
ドストラテジーを生成します。

注記

$ oc new-app /<path to source code>

$ oc new-app https://github.com/sclorg/cakephp-ex

$ oc new-app https://github.com/youruser/yourprivaterepo --source-secret=yoursecret

$ oc new-app https://github.com/sclorg/s2i-ruby-container.git \
 --context-dir=2.0/test/puma-test-app

$ oc new-app https://github.com/openshift/ruby-hello-world.git#beta4

第3章 アプリケーションの作成

49

注記

pipeline ビルドストラテジーは非推奨になりました。代わりに Red Hat
OpenShift Pipelines を使用することを検討してください。

新規アプリケーションの作成時に Dockerfile がソースリポジトリーのルートまたは指定された
コンテキストディレクトリーに存在する場合に、OpenShift Dedicated は docker ビルドストラ
テジーを生成します。

Jenkins ファイルも Dockerfile も検出されない場合、OpenShift Dedicated はソースビルドスト
ラテジーを生成します。

--strategy フラグを docker、pipeline、または source に設定して、自動的に検出されたビルドストラ
テジーを上書きします。

注記

oc コマンドを使用するには、ビルドソースを含むファイルがリモートの git リポジト
リーで利用可能である必要があります。すべてのソースビルドには、git remote -v を使
用する必要があります。

3.4.1.4. 言語の検出

ソースビルドストラテジーを使用する場合に、new-app はリポジトリーのルートまたは指定したコン
テキストディレクトリーに特定のファイルが存在するかどうかで、使用する言語ビルダーを判別しよう
とします。

表3.1 new-app が検出する言語

言語 ファイル

jee pom.xml

nodejs app.json、package.json

perl cpanfile、index.pl

php composer.json、index.php

python requirements.txt、setup.py

ruby Gemfile、Rakefile、config.ru

scala build.sbt

golang Godeps、main.go

言語が検出されると、new-app は、OpenShift Dedicated サーバーで、検出された言語に一致し

$ oc new-app /home/user/code/myapp --strategy=docker

OpenShift Dedicated 4 アプリケーションのビルド

50

て、supports アノテーションが指定されたイメージストリームタグ、または検出された言語の名前に
一致するイメージストリームを検索します。一致するものが見つからない場合には、new-app は
Docker Hub レジストリー で、名前をベースにした検出言語と一致するイメージの検索を行います。

~ をセパレーターとして使用し、イメージ (イメージストリームまたはコンテナーの仕様) とリポジト
リーを指定して、ビルダーが特定のソースリポジトリーを使用するようにイメージを上書きすることが
できます。この方法を使用すると、ビルドストラテジーの検出および言語の検出は実行されない点に留
意してください。

たとえば、リモートリポジトリーのソースを使用して myproject/my-ruby イメージストリームを作成
する場合は、以下を実行します。

ローカルリポジトリーのソースを使用して openshift/ruby-20-centos7:latest コンテナーのイメージス
トリームを作成するには、以下を実行します。

注記

言語の検出では、リポジトリーのクローンを作成し、検査できるように Git クライアン
トをローカルにインストールする必要があります。Git が使用できない場合、<image>~
<repository> 構文を指定し、リポジトリーで使用するビルダーイメージを指定して言語
の検出手順を回避することができます。

-i <image> <repository> 呼び出しでは、アーティファクトのタイプを判別するために
new-app が repository のクローンを試行する必要があります。そのため、これは Git が
利用できない場合には失敗します。

-i <image> --code <repository> 呼び出しでは、image がソースコードのビルダーとし
て使用されるか、データベースイメージの場合のように別個にデプロイされる必要があ
るかどうかを判別するために、new-app が repository のクローンを作成する必要があ
ります。

3.4.2. イメージからアプリケーションを作成する方法

既存のイメージからアプリケーションのデプロイが可能です。イメージは、OpenShift Dedicated サー
バー内のイメージストリーム、指定したレジストリー内のイメージ、またはローカルの Docker サー
バー内のイメージから取得できます。

new-app コマンドは、渡された引数に指定されたイメージの種類を判断しようとします。ただし、イ
メージが、--docker-image 引数を使用したコンテナーイメージなのか、-i|--image-stream 引数を使用
したイメージストリームなのかを、new-app に明示的に指示できます。

注記

ローカル Docker リポジトリーからイメージを指定した場合、同じイメージが OpenShift
Dedicated のクラスターノードでも利用できることを確認する必要があります。

3.4.2.1. Docker Hub MySQL イメージ

たとえば、Docker Hub MySQL イメージからアプリケーションを作成するには、以下を実行します。

$ oc new-app myproject/my-ruby~https://github.com/openshift/ruby-hello-world.git

$ oc new-app openshift/ruby-20-centos7:latest~/home/user/code/my-ruby-app

第3章 アプリケーションの作成

51

https://registry.hub.docker.com

3.4.2.2. プライベートレジストリーのイメージ

プライベートのレジストリーのイメージを使用してアプリケーションを作成し、コンテナーイメージの
仕様全体を以下のように指定します。

3.4.2.3. 既存のイメージストリームおよびオプションのイメージストリームタグ

既存のイメージストリームおよび任意のイメージストリームタグでアプリケーションを作成します。

3.4.3. テンプレートからのアプリケーションの作成

テンプレート名を引数として指定することで、事前に保存したテンプレートまたはテンプレートファイ
ルからアプリケーションを作成することができます。たとえば、サンプルアプリケーションテンプレー
トを保存し、これを利用してアプリケーションを作成できます。

現在のプロジェクトのテンプレートライブラリーにアプリケーションテンプレートをアップロードしま
す。以下の例では、examples/sample-app/application-template-stibuild.json というファイルからア
プリケーションテンプレートをアップロードします。

次に、アプリケーションテンプレートを参照して新規アプリケーションを作成します。この例では、テ
ンプレート名は ruby-helloworld-sample です。

OpenShift Dedicated にテンプレートファイルを保存せずに、ローカルファイルシステムでテンプレー
トファイルを参照して新規アプリケーションを作成するには、-f|--file 引数を使用します。以下に例を
示します。

3.4.3.1. テンプレートパラメーター

テンプレートをベースとするアプリケーションを作成する場合、以下の -p|--param 引数を使用してテ
ンプレートで定義したパラメーター値を設定します。

パラメーターをファイルに保存しておいて、--param-file を指定して、テンプレートをインスタンス化
する時にこのファイルを使用することができます。標準入力からパラメーターを読み込む必要がある場
合は、以下のように --param-file=- を使用します。以下は、helloworld.params というファイルの例で
す。

$ oc new-app mysql

$ oc new-app myregistry:5000/example/myimage

$ oc new-app my-stream:v1

$ oc create -f examples/sample-app/application-template-stibuild.json

$ oc new-app ruby-helloworld-sample

$ oc new-app -f examples/sample-app/application-template-stibuild.json

$ oc new-app ruby-helloworld-sample \
 -p ADMIN_USERNAME=admin -p ADMIN_PASSWORD=mypassword

OpenShift Dedicated 4 アプリケーションのビルド

52

テンプレートをインスタンス化する時に、ファイルのパラメーターを参照します。

3.4.4. アプリケーション作成の変更

new-app コマンドは、OpenShift Dedicated オブジェクトを生成します。このオブジェクトにより、作
成されるアプリケーションがビルドされ、デプロイされ、実行されます。通常、これらのオブジェクト
は現在のプロジェクトに作成され、これらのオブジェクトには入力ソースリポジトリーまたはインプッ
トイメージから派生する名前が割り当てられます。ただし、new-app でこの動作を変更することがで
きます。

表3.2 new-app 出力オブジェクト

オブジェクト 説明

BuildConfig BuildConfig オブジェクトは、コマンドラインで指定された各ソースリポジトリーに
作成されます。BuildConfig オブジェクトは使用するストラテジー、ソースのロケー
ション、およびビルドの出力ロケーションを指定します。

ImageStreams BuildConfig オブジェクトでは、通常 2 つのイメージストリームが作成されます。1 つ
目は、インプットイメージを表します。ソースビルドの場合、これはビルダーイメー
ジです。Docker ビルドでは、これは FROM イメージです。2 つ目は、アウトプット
イメージを表します。コンテナーイメージが new-app にインプットとして指定された
場合、このイメージに対してもイメージストリームが作成されます。

DeploymentCon
fig

DeploymentConfig オブジェクトは、ビルドの出力または指定されたイメージのい
ずれかをデプロイするために作成されます。new-app コマンドは、結果として生成さ
れる DeploymentConfig に含まれるコンテナーに指定されるすべての Docker ボ
リュームに emptyDir ボリュームを作成します。

Service new-app コマンドは、インプットイメージで公開ポートを検出しようと試みます。公
開されたポートで数値が最も低いものを使用して、そのポートを公開するサービスを
生成します。new-app 完了後に別のポートを公開するには、単純に oc expose コマ
ンドを使用し、追加のサービスを生成することができます。

その他 テンプレートのインスタンスを作成する際に、他のオブジェクトをテンプレートに基
づいて生成できます。

3.4.4.1. 環境変数の指定

テンプレート、ソースまたはイメージからアプリケーションを生成する場合、-e|--env 引数を使用し、
ランタイムに環境変数をアプリケーションコンテナーに渡すことができます。

ADMIN_USERNAME=admin
ADMIN_PASSWORD=mypassword

$ oc new-app ruby-helloworld-sample --param-file=helloworld.params

$ oc new-app openshift/postgresql-92-centos7 \
 -e POSTGRESQL_USER=user \
 -e POSTGRESQL_DATABASE=db \
 -e POSTGRESQL_PASSWORD=password

第3章 アプリケーションの作成

53

変数は、--env-file 引数を使用してファイルから読み取ることもできます。以下は、postgresql.env と
いうファイルの例です。

ファイルから変数を読み取ります。

さらに --env-file=- を使用することで、標準入力で環境変数を指定することもできます。

注記

-e|--env または --env-file 引数で渡される環境変数では、new-app 処理の一環として作
成される BuildConfig オブジェクトは更新されません。

3.4.4.2. ビルド環境変数の指定

テンプレート、ソースまたはイメージからアプリケーションを生成する場合、--build-env 引数を使用
し、ランタイムに環境変数をビルドコンテナーに渡すことができます。

変数は、--build-env-file 引数を使用してファイルから読み取ることもできます。以下は、ruby.env と
いうファイルの例です。

ファイルから変数を読み取ります。

さらに --build-env-file=- を使用して、環境変数を標準入力で指定することもできます。

3.4.4.3. ラベルの指定

ソース、イメージ、またはテンプレートからアプリケーションを生成する場合、-l|--label 引数を使用
し、作成されたオブジェクトにラベルを追加できます。ラベルを使用すると、アプリケーションに関連
するオブジェクトを一括で選択、設定、削除することが簡単になります。

POSTGRESQL_USER=user
POSTGRESQL_DATABASE=db
POSTGRESQL_PASSWORD=password

$ oc new-app openshift/postgresql-92-centos7 --env-file=postgresql.env

$ cat postgresql.env | oc new-app openshift/postgresql-92-centos7 --env-file=-

$ oc new-app openshift/ruby-23-centos7 \
 --build-env HTTP_PROXY=http://myproxy.net:1337/ \
 --build-env GEM_HOME=~/.gem

HTTP_PROXY=http://myproxy.net:1337/
GEM_HOME=~/.gem

$ oc new-app openshift/ruby-23-centos7 --build-env-file=ruby.env

$ cat ruby.env | oc new-app openshift/ruby-23-centos7 --build-env-file=-

$ oc new-app https://github.com/openshift/ruby-hello-world -l name=hello-world

OpenShift Dedicated 4 アプリケーションのビルド

54

3.4.4.4. 作成前の出力の表示

new-app コマンドの実行に関するドライランを確認するには、yaml または json の値と共に -o|--
output 引数を使用できます。次にこの出力を使用して、作成されるオブジェクトのプレビューまたは
編集可能なファイルへのリダイレクトを実行できます。問題がなければ、oc create を使用して
OpenShift Dedicated オブジェクトを作成できます。

new-app アーティファクトをファイルに出力するには、以下を実行します。

ファイルを編集します。

ファイルを参照して新規アプリケーションを作成します。

3.4.4.5. 別名でのオブジェクトの作成

通常 new-app で作成されるオブジェクトの名前はソースリポジトリーまたは生成に使用されたイメー
ジに基づいて付けられます。コマンドに --name フラグを追加することで、生成されたオブジェクトの
名前を設定できます。

3.4.4.6. 別のプロジェクトでのオブジェクトの作成

通常 new-app は現在のプロジェクトにオブジェクトを作成します。ただし、-n|--namespace 引数を使
用して、別のプロジェクトにオブジェクトを作成することができます。

3.4.4.7. 複数のオブジェクトの作成

new-app コマンドは、複数のパラメーターを new-app に指定して複数のアプリケーションを作成でき
ます。コマンドラインで指定するラベルは、単一コマンドで作成されるすべてのオブジェクトに適用さ
れます。環境変数は、ソースまたはイメージから作成されたすべてのコンポーネントに適用されます。

ソースリポジトリーおよび Docker Hub イメージからアプリケーションを作成するには、以下を実行し
ます。

注記

$ oc new-app https://github.com/openshift/ruby-hello-world \
 -o yaml > myapp.yaml

$ vi myapp.yaml

$ oc create -f myapp.yaml

$ oc new-app https://github.com/openshift/ruby-hello-world --name=myapp

$ oc new-app https://github.com/openshift/ruby-hello-world -n myproject

$ oc new-app https://github.com/openshift/ruby-hello-world mysql

第3章 アプリケーションの作成

55

注記

ソースコードリポジトリーおよびビルダーイメージが別個の引数として指定されている
場合、new-app はソースコードリポジトリーのビルダーとしてそのビルダーイメージを
使用します。これを意図していない場合は、~ セパレーターを使用してソースに必要な
ビルダーイメージを指定します。

3.4.4.8. 単一 Pod でのイメージとソースのグループ化

new-app コマンドにより、単一 Pod に複数のイメージをまとめてデプロイできます。グループ化する
イメージを指定するには + セパレーターを使用します。--group コマンドライン引数をグループ化する
必要のあるイメージを指定する際に使用することもできます。ソースリポジトリーからビルドされたイ
メージを別のイメージと共にグループ化するには、そのビルダーイメージをグループで指定します。

ソースからビルドされたイメージと外部のイメージをまとめてデプロイするには、以下を実行します。

3.4.4.9. イメージ、テンプレート、および他の入力の検索

イメージ、テンプレート、および oc new-app コマンドの他の入力内容を検索するには、--search フラ
グおよび --list フラグを追加します。たとえば、PHP を含むすべてのイメージまたはテンプレートを検
索するには、以下を実行します。

3.4.4.10. インポートモードの設定

oc new-app を使用するときにインポートモードを設定するには、--import-mode フラグを追加しま
す。このフラグには Legacy または PreserveOriginal を追加できます。これにより、それぞれ単一の
サブマニフェストまたはすべてのマニフェストを使用してイメージストリームを作成するオプションが
ユーザーに提供されます。

3.5. RUBY ON RAILS を使用したアプリケーションの作成

Ruby on Rails は Ruby で記述される Web フレームワークです。本書では、OpenShift Dedicated での
Rails 4 の使用を説明します。

$ oc new-app ruby+mysql

$ oc new-app \
 ruby~https://github.com/openshift/ruby-hello-world \
 mysql \
 --group=ruby+mysql

$ oc new-app --search php

$ oc new-app --image=registry.redhat.io/ubi8/httpd-24:latest --import-mode=Legacy --name=test

$ oc new-app --image=registry.redhat.io/ubi8/httpd-24:latest --import-mode=PreserveOriginal --
name=test

OpenShift Dedicated 4 アプリケーションのビルド

56

警告

チュートリアル全体をチェックして、OpenShift Dedicated でアプリケーションを
実行するために必要なすべての手順を概観してください。問題に直面した場合に
は、チュートリアル全体を振り返り、もう一度問題に対応してください。また
チュートリアルは、実行済みの手順を確認し、すべての手順が適切に実行されてい
ることを確認するのに役立ちます。

3.5.1. 前提条件

Ruby および Rails の基本知識

Ruby 2.0.0+、Rubygems、Bundler のローカルにインストールされたバージョン

Git の基本知識

OpenShift Dedicated 4 の実行中のインスタンス

OpenShift Dedicated のインスタンスが実行中であり、利用可能であることを確認してくださ
い。さらに、oc CLI クライアントがインストールされており、コマンドがコマンドシェルから
アクセスできることを確認し、メールアドレスおよびパスワードを使用してログインする際に
これを使用できるようにします。

3.5.2. データベースの設定

Rails アプリケーションはほぼ常にデータベースと併用されます。ローカル開発の場合は、PostgreSQL
データベースを使用します。

手順

1. データベースをインストールします。

2. データベースを初期化します。

このコマンドで /var/lib/pgsql/data ディレクトリーが作成され、このディレクトリーにデータ
が保存されます。

3. データベースを起動します。

4. データベースが実行されたら、rails ユーザーを作成します。

作成をしたユーザーのパスワードは作成されていない点に留意してください。



$ sudo yum install -y postgresql postgresql-server postgresql-devel

$ sudo postgresql-setup initdb

$ sudo systemctl start postgresql.service

$ sudo -u postgres createuser -s rails

第3章 アプリケーションの作成

57

3.5.3. アプリケーションの作成

Rails アプリケーションをゼロからビルドするには、Rails gem を先にインストールする必要がありま
す。その後に、アプリケーションを作成することができます。

手順

1. Rails gem をインストールします。

出力例

2. Rails gem のインストール後に、PostgreSQL をデータベースとして指定して新規アプリケー
ションを作成します。

3. 新規アプリケーションディレクトリーに切り替えます。

4. アプリケーションがすでにある場合には pg (postgresql) gem が Gemfile に配置されているこ
とを確認します。配置されていない場合には、gem を追加して Gemfile を編集します。

5. すべての依存関係を含む Gemfile.lock を新たに生成します。

6. pg gem で postgresql データベースを使用するほか、config/database.yml が postgresql ア
ダプターを使用していることを確認する必要があります。
config/database.yml ファイルの default セクションを以下のように更新するようにしてくだ
さい。

7. アプリケーションの開発およびテスト用のデータベースを作成します。

これで PostgreSQL サーバーに development および test データベースが作成されます。

$ gem install rails

Successfully installed rails-4.3.0
1 gem installed

$ rails new rails-app --database=postgresql

$ cd rails-app

gem 'pg'

$ bundle install

default: &default
 adapter: postgresql
 encoding: unicode
 pool: 5
 host: localhost
 username: rails
 password: <password>

$ rake db:create

OpenShift Dedicated 4 アプリケーションのビルド

58

3.5.3.1. Welcome ページの作成

Rails 4 では静的な public/index.html ページが実稼働環境で提供されなくなったので、新たに root ペー
ジを作成する必要があります。

Welcome ページをカスタマイズするには、以下の手順を実行する必要があります。

index アクションでコントローラーを作成します。

welcome コントローラーの index アクションの view ページを作成します。

作成したコントローラーとビューと共にアプリケーションの root ページを提供するルートを作
成します。

Rails には、これらの必要な手順をすべて実行するジェネレーターがあります。

手順

1. Rails ジェネレーターを実行します。

すべての必要なファイルが作成されます。

2. 以下のように config/routes.rb ファイルの 2 行目を編集します。

root 'welcome#index'

3. rails server を実行して、ページが利用できることを確認します。

ブラウザーで http://localhost:3000 に移動してページを表示してください。このページが表示
されない場合は、サーバーに出力されるログを確認してデバッグを行ってください。

3.5.3.2. OpenShift Dedicated のアプリケーションの設定

アプリケーションが OpenShift Dedicated で実行している PostgreSQL データベースサービスと通信す
るには、config/database.yml の default セクションを編集して、データベースサービスの作成時に後
で定義する必要がある環境変数を使用する必要があります。

手順

以下のように事前に定義した変数で、config/database.yml の default セクションを編集しま
す。

config/database YAML ファイルのサンプル

$ rails generate controller welcome index

$ rails server

<% user = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ? "root" :
ENV["POSTGRESQL_USER"] %>
<% password = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ?
ENV["POSTGRESQL_ADMIN_PASSWORD"] : ENV["POSTGRESQL_PASSWORD"] %>
<% db_service = ENV.fetch("DATABASE_SERVICE_NAME","").upcase %>

第3章 アプリケーションの作成

59

http://localhost:3000

3.5.3.3. アプリケーションの Git への保存

通常 OpenShift Dedicated でアプリケーションをビルドする場合、ソースコードを git リポジトリーに
保存する必要があるため、git がない場合にはインストールしてください。

前提条件

git をインストールします。

手順

1. ls -1 コマンドを実行して、Rails アプリケーションのディレクトリーで操作を行っていることを
確認します。コマンドの出力は以下のようになります。

出力例

2. Rails app ディレクトリーで以下のコマンドを実行して、コードを初期化し、git にコミットし
ます。

default: &default
 adapter: postgresql
 encoding: unicode
 # For details on connection pooling, see rails configuration guide
 # http://guides.rubyonrails.org/configuring.html#database-pooling
 pool: <%= ENV["POSTGRESQL_MAX_CONNECTIONS"] || 5 %>
 username: <%= user %>
 password: <%= password %>
 host: <%= ENV["#{db_service}_SERVICE_HOST"] %>
 port: <%= ENV["#{db_service}_SERVICE_PORT"] %>
 database: <%= ENV["POSTGRESQL_DATABASE"] %>

$ ls -1

app
bin
config
config.ru
db
Gemfile
Gemfile.lock
lib
log
public
Rakefile
README.rdoc
test
tmp
vendor

$ git init

$ git add .

OpenShift Dedicated 4 アプリケーションのビルド

60

アプリケーションがコミットされたら、これをリモートリポジトリーにプッシュする必要があ
ります。新規リポジトリーを作成する GitHub アカウントです。

3. お使いの git リポジトリーを参照するリモートを設定します。

4. アプリケーションをリモートの git リポジトリーにプッシュします。

3.5.4. アプリケーションの OpenShift Dedicated へのデプロイ

OpenShift Dedicated にアプリケーションをデプロイすることができます。

rails-app プロジェクトの作成後、新規プロジェクトの namespace に自動的に切り替えられます。

OpenShift Dedicated へのアプリケーションのデプロイでは 3 つの手順を実行します。

OpenShift Dedicated の PostgreSQL イメージからデータベースサービスを作成します。

データベースサービスと連動する OpenShift Dedicated の Ruby 2.0 ビルダーイメージおよび
Ruby on Rails ソースコードのフロントエンドサービスを作成します。

アプリケーションのルートを作成します。

3.5.4.1. データベースサービスの作成

手順

Rails アプリケーションには実行中のデータベースサービスが必要です。このサービスには、
PostgreSQL データベースイメージを使用します。

データベースサービスを作成するために、oc new-app コマンドを使用します。このコマンドには、必
要な環境変数を渡す必要があります。この環境変数は、データベースコンテナー内で使用します。これ
らの環境変数は、ユーザー名、パスワード、およびデータベースの名前を設定するために必要です。こ
れらの環境変数の値を任意の値に変更できます。変数は以下のようになります。

POSTGRESQL_DATABASE

POSTGRESQL_USER

POSTGRESQL_PASSWORD

これらの変数を設定すると、以下を確認できます。

指定の名前のデータベースが存在する

指定の名前のユーザーが存在する

ユーザーは指定のパスワードで指定のデータベースにアクセスできる

手順

$ git commit -m "initial commit"

$ git remote add origin git@github.com:<namespace/repository-name>.git

$ git push

第3章 アプリケーションの作成

61

1. データベースサービスを作成します。

データベース管理者のパスワードを設定するには、直前のコマンドに以下を追加します。

2. 進行状況を確認します。

3.5.4.2. フロントエンドサービスの作成

アプリケーションを OpenShift Dedicated にデプロイするには、アプリケーションが置かれるリポジト
リーを指定する必要があります。

手順

1. フロントエンドサービスを作成し、データベースサービスの作成時に設定されたデータベース
関連の環境変数を指定します。

このコマンドでは、OpenShift Dedicated は指定された環境変数を使用してソースコードの取
得、ビルドのセットアップ、アプリケーションイメージのビルド、新規に作成されたイメージ
のデプロイを実行します。このアプリケーションには rails-app という名前を指定します。

2. rails-app デプロイメント設定の JSON ドキュメントを参照して、環境変数が追加されたかど
うかを確認できます。

以下のセクションが表示されるはずです。

出力例

$ oc new-app postgresql -e POSTGRESQL_DATABASE=db_name -e
POSTGRESQL_USER=username -e POSTGRESQL_PASSWORD=password

-e POSTGRESQL_ADMIN_PASSWORD=admin_pw

$ oc get pods --watch

$ oc new-app path/to/source/code --name=rails-app -e POSTGRESQL_USER=username -e
POSTGRESQL_PASSWORD=password -e POSTGRESQL_DATABASE=db_name -e
DATABASE_SERVICE_NAME=postgresql

$ oc get dc rails-app -o json

env": [
 {
 "name": "POSTGRESQL_USER",
 "value": "username"
 },
 {
 "name": "POSTGRESQL_PASSWORD",
 "value": "password"
 },
 {
 "name": "POSTGRESQL_DATABASE",
 "value": "db_name"
 },

OpenShift Dedicated 4 アプリケーションのビルド

62

3. ビルドプロセスを確認します。

4. ビルドが完了したら、OpenShift Dedicated で Pod が実行されていることを確認します。

myapp-<number>-<hash> で始まる行が表示されますが、これは OpenShift Dedicated で実行
中のアプリケーションです。

5. データベースの移行スクリプトを実行してデータベースを初期化してからでないと、アプリ
ケーションは機能しません。これを実行する 2 種類の方法があります。

実行中のフロントエンドコンテナーから手動で実行する

rsh コマンドでフロントエンドコンテナーに exec を実行します。

コンテナー内から移行を実行します。

development または test 環境で Rails アプリケーションを実行する場合に
は、RAILS_ENV の環境変数を指定する必要はありません。

デプロイメント前のライフサイクルフックをテンプレートに追する

3.5.4.3. アプリケーションのルートの作成

アプリケーションのルートを作成するためにサービスを公開できます。

警告

指定するホスト名がルーターの IP アドレスに解決することを確認します。

 {
 "name": "DATABASE_SERVICE_NAME",
 "value": "postgresql"
 }

],

$ oc logs -f build/rails-app-1

$ oc get pods

$ oc rsh <frontend_pod_id>

$ RAILS_ENV=production bundle exec rake db:migrate



第3章 アプリケーションの作成

63

第4章 TOPOLOGY ビューを使用したアプリケーション構成の表示
Web コンソールの Developer パースペクティブにある Topology ビューは、プロジェクト内のすべて
のアプリケーション、それらのビルドステータスおよびアプリケーションに関連するコンポーネントと
サービスを視覚的に表示します。

4.1. 前提条件

Topology ビューでアプリケーションを表示し、それらと対話するには、以下を確認します。

Web コンソールにログインしている。

Developer パースペクティブを使用している。

4.2. アプリケーションのトポロジーの表示

Developer パースペクティブの左側のナビゲーションパネルを使用すると、Topology ビューに移動で
きます。アプリケーションをデプロイしたら、Graph view に自動的に移動します。ここでは、アプリ
ケーション Pod のステータスの確認、パブリック URL でのアプリケーションへの迅速なアクセス、
ソースコードへのアクセスとその変更、最終ビルドのステータスの確認ができます。ズームインおよび
ズームアウトにより、特定のアプリケーションの詳細を表示することができます。

Topology ビューは、List ビューを使用してアプリケーションを監視するオプションも提供しま

す。List view アイコン () を使用してすべてのアプリケーションの一覧を表示し、Graph view

アイコン () を使用してグラフビューに戻します。

以下を使用して、必要に応じてビューをカスタマイズできます。

Find by name フィールドを使用して、必要なコンポーネントを見つけます。検索結果は表示可
能な領域外に表示される可能性があります。その場合、画面の左下のツールバーで Fit to
Screen をクリックし、Topology ビューのサイズを変更して、すべてのコンポーネントを表示
します。

Display Options ドロップダウンリストを使用して、各種アプリケーショングループの
Topology ビューを設定します。選択可能なオプションは、プロジェクトにデプロイされるコ
ンポーネントのタイプによって異なります。

Expand グループ

Virtual Machines: 仮想マシンを表示または非表示にするためにこれを切り替えます。

Application Groupings: アプリケーショングループとそれに関連するアラートの概要を
使用して、アプリケーショングループをカードにまとめるには、これをクリアします。

Helm Releases: 指定のリリースの概要を使用して、Helm リリースとしてデプロイされ
たコンポーネントをカードにまとめるには、これをクリアします。

Operator Groupings: 指定のグループの概要を使用して Operator でデプロイされたコ
ンポーネントをカードにまとめるには、これをクリアします。

Pod 数 または ラベル に基づく Show の要素

Pod Count: コンポーネントアイコンでコンポーネントの Pod 数を表示するためにこれ

OpenShift Dedicated 4 アプリケーションのビルド

64

Pod Count: コンポーネントアイコンでコンポーネントの Pod 数を表示するためにこれ
を選択します。

Labels: コンポーネントラベルを表示または非表示にするためにこれを選択します。

4.3. アプリケーションおよびコンポーネントとの対話

Web コンソールの Developer パースペクティブの Topology ビューでは、Graph view に、アプリケー
ションおよびコンポーネントと対話するための次のオプションが提供されます。

Open URL () をクリックして、パブリック URL のルートで公開されるアプリケーションを
表示します。

Edit Source code をクリックして、ソースコードにアクセスし、これを変更します。

注記

この機能は、From Git、From Catalog、および From Dockerfile オプションを
使用してアプリケーションを作成する場合にのみ利用できます。

カーソルを Pod の左下のアイコンの上に置き、最新ビルドおよびそのステータスを確認しま
す。アプリケーションビルドのステータスは、New ()、Pending ()、Running (

)、Completed ()、Failed ()、および Canceled () と表示されます。

Pod のステータスまたはフェーズは、色で区別され、ツールチップで次のように表示されま
す。

Running (): Pod はノードにバインドされ、すべてのコンテナーが作成されます。1 つ以
上のコンテナーが実行中か、起動または再起動のプロセスが実行中です。

Not Ready(): 複数のコンテナーを実行している Pod。すべてのコンテナーが準備状態
にある訳ではありません。

Warning(): Pod のコンテナーは終了されていますが、正常に終了しませんでした。一
部のコンテナーは、他の状態にある場合があります。

Failed(): Pod 内のすべてのコンテナーは終了しますが、少なくとも 1 つのコンテナーが
終了に失敗しました。つまり、コンテナーはゼロ以外のステータスで終了するか、システ
ムによって終了された状態であるかのいずれかになります。

Pending(): Pod は Kubernetes クラスターによって受け入れられますが、1 つ以上のコ
ンテナーが設定されておらず、実行される準備が整っていません。これには、Pod がスケ
ジュールされるのを待機する時間や、ネットワーク経由でコンテナーイメージのダウン
ロードに費やされた時間が含まれます。

Succeeded(): Pod のすべてのコンテナーが正常に終了し、再起動されません。

Terminating(): Pod が削除されている場合に、一部の kubectl コマンドによって
Terminating と表示されます。Terminating ステータスは Pod フェーズのいずれにもあり
ません。Pod には正常な終了期間が付与されます。これはデフォルトで 30 秒に設定されま
す。

Unknown(): Pod の状態を取得できませんでした。このフェーズは、通常、Pod が実行
されているノードとの通信でエラーが発生するために生じます。

第4章 TOPOLOGY ビューを使用したアプリケーション構成の表示

65

アプリケーションを作成し、イメージがデプロイされると、ステータスは Pending と表示され
ます。アプリケーションをビルドすると、Running と表示されます。

図4.1 Application トポロジー

以下のように、異なるタイプのリソースオブジェクトのインジケーターと共に、アプリケー
ションリソース名が追加されます。

CJ: CronJob

D: Deployment

DC: DeploymentConfig

DS: DaemonSet

J: Job

P: Pod

SS: StatefulSet

 (Knative): サーバーレスアプリケーション

注記

サーバーレスアプリケーションでは、Graph view での読み込みおよび表示
にしばらく時間がかかります。サーバーレスアプリケーションをデプロイす
ると、これは最初にサービスリソースを作成し、次にリビジョンを作成しま
す。続いて、これは Graph view にデプロイされ、表示されます。これが唯
一のワークロードの場合には、Add ページにリダイレクトされる可能性があ
ります。リビジョンがデプロイされると、サーバーレスアプリケーションは
Graph view ビューに表示されます。

4.4. アプリケーション POD のスケーリングおよびビルドとルートの確認

OpenShift Dedicated 4 アプリケーションのビルド

66

Topology ビューは、Overview パネルでデプロイ済みのコンポーネントの詳細を提供します。次のよ
うに、Overview タブと Details タブを使用して、アプリケーション Pod をスケーリングし、ビルドス
テータス、サービス、およびルートを確認できます。

コンポーネントノードをクリックし、右側の Overview パネルを確認します。Details タブを使
用して以下を行います。

上下の矢印を使用して Pod をスケーリングし、アプリケーションのインスタンス数の増減
を手動で調整します。サーバーレスアプリケーションの場合、Pod は、チャネルのトラ
フィックに基づいてアイドルおよびスケールアップ時に自動的にゼロにスケーリングされ
ます。

アプリケーションの ラベル、アノテーション および ステータス を確認します。

Resources タブをクリックして、以下を実行します。

すべての Pod のリストを確認し、それらのステータスを表示し、ログにアクセスし、Pod
をクリックして Pod の詳細を表示します。

ビルド、ステータスを確認し、ログにアクセスし、必要に応じて新規ビルドを開始しま
す。

コンポーネントによって使用されるサービスとルートを確認します。

サーバーレスアプリケーションの場合、Resources タブは、そのコンポーネントに使用される
リビジョン、ルート、および設定に関する情報を提供します。

4.5. コンポーネントの既存プロジェクトへの追加

プロジェクトにコンポーネントを追加できます。

手順

1. +Add ビューに移動します。

2. Add to Project () をクリックし、左側のナビゲーションペインまたは Ctrl+Space を
押します。

3. コンポーネントを検索し、Start/Create/Install ボタンをクリックするか、Enter をクリックし
てコンポーネントをプロジェクトに追加し、トポロジー Graph view で確認します。

図4.2 クイック検索を使用したコンポーネントの追加

第4章 TOPOLOGY ビューを使用したアプリケーション構成の表示

67

図4.2 クイック検索を使用したコンポーネントの追加

あるいは、トポロジーの Graph view を右クリックして、Import from Git、Container
Image、Database、From Catalog、Operator Backed、Helm Charts、Samples または Upload JAR
file などのコンテキストメニューの利用可能なオプションを使用して、プロジェクトにコンポーネント
を追加することもできます。

図4.3 サービスを追加するコンテキストメニュー

OpenShift Dedicated 4 アプリケーションのビルド

68

4.6. アプリケーション内での複数コンポーネントのグループ化

+Add ビューを使用して、複数のコンポーネントまたはサービスをプロジェクトに追加し、トポロジー
グラフビュー を使用してアプリケーショングループ内のアプリケーションとリソースをグループ化でき
ます。

前提条件

Developer パースペクティブを使用して OpenShift Dedicated に 2 つ以上のコンポーネントを
作成し、デプロイしている。

手順

サービスを既存のアプリケーショングループに追加するには、Shift+ を既存のアプリケーショ
ングループに追加します。コンポーネントをドラッグし、これをアプリケーショングループに
追加すると、必要なラベルがコンポーネントに追加されます。

図4.4 アプリケーションのグループ化

または、以下のようにコンポーネントをアプリケーションに追加することもできます。

1. サービス Pod をクリックし、右側の Overview パネルを確認します。

2. Actions ドロップダウンメニューをクリックし、Edit Application Grouping を選択します。

3. Edit Application Grouping ダイアログボックスで、Application ドロップダウンリストをク
リックし、適切なアプリケーショングループを選択します。

4. Save をクリックしてサービスをアプリケーショングループに追加します。

アプリケーショングループからコンポーネントを削除するには、コンポーネントを選択し、Shift+ ド
ラッグでこれをアプリケーショングループからドラッグします。

第4章 TOPOLOGY ビューを使用したアプリケーション構成の表示

69

4.7. サービスのアプリケーションへの追加

アプリケーションにサービスを追加するには、トポロジー Graph view のコンテキストメニューで
+Add アクションを使用します。

注記

コンテキストメニュー以外に、サイドバーを使用するか、アプリケーショングループか
ら矢印の上にマウスをかざしてドラッグしてサービスを追加できます。

手順

1. トポロジー Graph view でアプリケーショングループを右クリックし、コンテキストメニュー
を表示します。

図4.5 リソースコンテキストメニューの追加

2. Add to Application を使用して、From Git、Container Image、From Dockerfile、From
Devfile、Upload JAR file、Event Source、Channel、または Broker など、アプリケーション
グループにサービスを追加する手法を選択します。

3. 選択した手法のフォームに入力して、Create をクリックします。たとえば、Git リポジトリー

OpenShift Dedicated 4 アプリケーションのビルド

70

3. 選択した手法のフォームに入力して、Create をクリックします。たとえば、Git リポジトリー
のソースコードに基づいてサービスを追加するには、From Git の手法を選択し、Import from
Git フォームに入力して、Create をクリックします。

4.8. アプリケーションからのサービスの削除

トポロジー Graph view のコンテキストメニューでアプリケーションからサービスを削除します。

手順

1. トポロジー Graph view でアプリケーショングループのサービスを右クリックし、コンテキス
トメニューを表示します。

2. Delete Deployment を選択してサービスを削除します。

図4.6 デプロイメントオプションの削除

第4章 TOPOLOGY ビューを使用したアプリケーション構成の表示

71

図4.6 デプロイメントオプションの削除

4.9. TOPOLOGY ビューに使用するラベルとアノテーション

Topology ビューは、以下のラベルおよびアノテーションを使用します。

ノードに表示されるアイコン

ノードのアイコンは、最初に app.openshift.io/runtime ラベルを使用してから
app.kubernetes.io/name ラベルを使用して一致するアイコンを検索して定義されます。このマッチ
ングは、事前定義されたアイコンセットを使用して行われます。

ソースコードエディターまたはソースへのリンク

OpenShift Dedicated 4 アプリケーションのビルド

72

app.openshift.io/vcs-uri アノテーションは、ソースコードエディターへのリンクを作成するために
使用されます。

ノードコネクター

app.openshift.io/connects-to アノテーションは、ノードに接続するために使用されます。

アプリケーションのグループ化

app.kubernetes.io/part-of=<appname> ラベルは、アプリケーション、サービス、およびコンポー
ネントをグループ化するために使用されます。

OpenShift Dedicated アプリケーションで使用する必要のあるラベルとアノテーションの詳細
は、Guidelines for labels and annotations for OpenShift applications を参照してください。

4.10. 関連情報

Git からアプリケーションを作成する方法は、Git のコードベースのインポートおよびアプリ
ケーションの作成 を参照してください。

第4章 TOPOLOGY ビューを使用したアプリケーション構成の表示

73

https://github.com/redhat-developer/app-labels/blob/master/labels-annotation-for-openshift.adoc

第5章 HELM チャートの使用

5.1. HELM について

Helm は、アプリケーションやサービスの OpenShift Dedicated クラスターへのデプロイメントを単純
化するソフトウェアパッケージマネージャーです。

Helm は チャート と呼ばれるパッケージ形式を使用します。Helm チャートは、OpenShift Dedicated
リソースを記述するファイルのコレクションです。

クラスターにチャートを作成すると、リリース と呼ばれる、チャートの実行中のインスタンスが作成さ
れます。

チャートが作成されるか、リリースがアップグレードまたはロールバックされるたびに、増分リビジョ
ンが作成されます。

5.1.1. 主な特長

Helm は以下を行う機能を提供します。

チャートリポジトリーに保存したチャートの大規模なコレクションの検索。

既存のチャートの変更。

OpenShift Dedicated または Kubernetes リソースの使用による独自のチャートの作成。

アプリケーションのチャートとしてのパッケージ化および共有。

5.1.2. OpenShift の Helm チャートの Red Hat 認定

Red Hat OpenShift Dedicated にデプロイする全コンポーネントに対して、Red Hat による Helm
チャートの検証と認定を受けることができます。チャートは、自動化の Red Hat OpenShift 認定ワーク
フローを経て、セキュリティーコンプライアンスを確保し、プラットフォームとの統合とサービス全般
が最適であることを保証します。認定はチャートの整合性を確保し、Helm チャートが Red Hat
OpenShift クラスターでシームレスに機能することを確認します。

5.1.3. 関連情報

Red Hat パートナーとしての Helm チャートの認定方法は、OpenShift の Helm チャートの Red
Hat 認定 を参照してください。

Red Hat パートナー向けの OpenShift および Container 認定に関する情報は、Partner Guide
for OpenShift and Container Certification を参照してください。

チャートのリストは、Red Hat Helm インデックス ファイル を参照してください。

5.2. HELM のインストール

以下のセクションでは、CLI を使用して各種の異なるプラットフォームに Helm をインストールする方
法を説明します。

また、OpenShift Dedicated Web コンソールから最新のバイナリーへの URL を見つけるには、右上隅
の ? アイコンをクリックし、Command Line Tools を選択します。

前提条件

OpenShift Dedicated 4 アプリケーションのビルド

74

https://redhat-connect.gitbook.io/partner-guide-for-red-hat-openshift-and-container/helm-chart-certification/overview
https://access.redhat.com/documentation/ja-jp/red_hat_software_certification/8.51/html-single/red_hat_software_certification_workflow_guide/index#con_container-certification_openshift-sw-cert-workflow-introduction-to-redhat-openshift-operator-certification
https://charts.openshift.io/index.yaml

前提条件

Go バージョン 1.13 以降がインストールされている。

5.2.1. Linux の場合

1. Linux x86_64 または Linux amd64 Helm バイナリーをダウンロードし、これをパスに追加しま
す。

2. バイナリーファイルを実行可能にします。

3. インストールされたバージョンを確認します。

出力例

5.2.2. Windows 7/8 の場合

1. 最新の .exe ファイル をダウンロードし、希望のディレクトリーに配置します。

2. Start を右クリックし、Control Panel をクリックします。

3. System and Security を選択してから System をクリックします。

4. 左側のメニューから、Advanced systems settings を選択し、下部にある Environment
Variables をクリックします。

5. Variable セクションから Path を選択し、Edit をクリックします。

6. New をクリックして、.exe ファイルのあるフォルダーへのパスをフィールドに入力する
か、Browse をクリックし、ディレクトリーを選択して OK をクリックします。

5.2.3. Windows 10 の場合

1. 最新の .exe ファイル をダウンロードし、希望のディレクトリーに配置します。

2. Search をクリックし、env または environment と入力します。

3. Edit environment variables for your account を選択します。

4. Variable セクションから Path を選択し、Edit をクリックします。

5. New をクリックし、exe ファイルのあるディレクトリーへのパスをフィールドに入力する
か、Browse をクリックし、ディレクトリーを選択して OK をクリックします。

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-amd64 -
o /usr/local/bin/helm

chmod +x /usr/local/bin/helm

$ helm version

version.BuildInfo{Version:"v3.0",
GitCommit:"b31719aab7963acf4887a1c1e6d5e53378e34d93", GitTreeState:"clean",
GoVersion:"go1.13.4"}

第5章 HELM チャートの使用

75

https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-windows-amd64.exe
https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-windows-amd64.exe

5.2.4. MacOS の場合

1. Helm バイナリーをダウンロードし、これをパスに追加します。

2. バイナリーファイルを実行可能にします。

3. インストールされたバージョンを確認します。

出力例

5.3. カスタム HELM チャートリポジトリーの設定

Web コンソールの Developer パースペクティブの Developer Catalog には、クラスターで利用可能な
Helm チャートが表示されます。デフォルトで、これは Red Hat Helm チャートリポジトリーの
OpenShift Helm チャートのリストを表示します。チャートのリストは、Red Hat Helm インデックス
ファイル を参照してください。

クラスター管理者は、デフォルトのクラスタースコープの Helm リポジトリーとは別に、複数のクラス
タースコープおよび namespace スコープの Helm チャートリポジトリーを追加し、Developer Catalog
でこれらのリポジトリーから Helm チャートを表示できます。

適切なロールベースアクセス制御 (RBAC) パーミッションを持つ通常のユーザーまたはプロジェクトメ
ンバーとして、デフォルトのクラスタースコープの Helm リポジトリーとは別に、複数の namespace
スコープの Helm チャートリポジトリーを追加し、Developer Catalog でこれらのリポジトリーから
Helm チャートを表示できます。

Web コンソールの Developer パースペクティブでは、Helm ページを使用して次のことができます。

作成 ボタンを使用して、Helm リリースとリポジトリーを作成します。

クラスタースコープまたは namespace スコープの Helm チャートリポジトリーを作成、更新、
または削除します。

リポジトリータブで既存の Helm チャートリポジトリーのリストを表示します。これも、クラ
スタースコープまたは namespace スコープのいずれかとして簡単に区別できます。

5.3.1. 開発者パースペクティブを使用した Helm リリースの作成

Web コンソールの Developer パースペクティブまたは CLI を使用して、Developer Catalog にリスト
されている Helm チャートからリリースを選択して作成できます。Helm チャートをインストールして
Helm リリースを作成し、Web コンソールの Developer パースペクティブに表示できます。

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-darwin-amd64
-o /usr/local/bin/helm

chmod +x /usr/local/bin/helm

$ helm version

version.BuildInfo{Version:"v3.0",
GitCommit:"b31719aab7963acf4887a1c1e6d5e53378e34d93", GitTreeState:"clean",
GoVersion:"go1.13.4"}

OpenShift Dedicated 4 アプリケーションのビルド

76

https://charts.openshift.io/index.yaml

前提条件

Web コンソールにログインしており、Developer パースペクティブに切り替えている。

手順

Developer Catalog で提供される Helm チャートから Helm リリースを作成するには、以下を実行しま
す。

1. Developer パースペクティブで、+Add ビューに移動し、プロジェクトを選択します。次
に、Helm Chart オプションをクリックし、Developer Catalog にすべての Helm チャートを表
示します。

2. チャートを選択し、チャートの説明、README、チャートに関するその他の詳細を確認しま
す。

3. Create をクリックします。

図5.1 Developer カタログの Helm チャート

4. Create Helm Release ページで:

a. リリースの固有の名前を Release Name フィールドに入力します。

b. Chart Version ドロップダウンリストから必要なチャートのバージョンを選択します。

c. Form View または YAML View を使用して Helm チャートを設定します。

注記

利用可能な場合は、YAML View と Form View 間で切り替えることができま
す。ビューの切り替え時に、データは永続化されます。

d. Create をクリックして Helm リリースを作成します。Web コンソールは、Topology
ビューに新しいリリースを表示します。
Helm チャートにリリースノートがある場合は、Web コンソールに表示されます。

Helm チャートがワークロードを作成する場合、Web コンソールはそれらを Topology ま

第5章 HELM チャートの使用

77

1

2

3

4

5

Helm チャートがワークロードを作成する場合、Web コンソールはそれらを Topology ま
たは Helm リリース詳細 ページに表示します。ワークロード
は、DaemonSet、CronJob、Pod、Deployment、および DeploymentConfig です。

e. Helm Releases ページで、新しく作成された Helm リリースを表示します。

サイドパネルの Actions ボタンを使用するか、Helm リリースを右クリックして、Helm リリースを
アップグレード、ロールバック、または削除できます。

5.3.2. Web 端末での Helm の使用

Web コンソールの Developer パースペクティブで Web ターミナルにアクセスすると、Helm を使用で
きます。

5.3.3. OpenShift Dedicated でのカスタム Helm チャートの作成

手順

1. プロジェクトを新規作成します。

2. OpenShift Dedicated オブジェクトが含まれる Node.js チャートのサンプルをダウンロードしま
す。

3. サンプルチャートを含むディレクトリーに移動します。

4. Chart.yaml ファイルを編集し、チャートの説明を追加します。

チャート API バージョン。これは、Helm 3 以上を必要とする Helm チャートの場合は v2
である必要があります。

チャートの名前。

チャートの説明。

アイコンとして使用するイメージへの URL。

Semantic Versioning (SemVer) 2.0.0 仕様に準拠したチャートのバージョン。

5. チャートが適切にフォーマットされていることを確認します。

$ oc new-project nodejs-ex-k

$ git clone https://github.com/redhat-developer/redhat-helm-charts

$ cd redhat-helm-charts/alpha/nodejs-ex-k/

apiVersion: v2 1
name: nodejs-ex-k 2
description: A Helm chart for OpenShift 3
icon: https://static.redhat.com/libs/redhat/brand-assets/latest/corp/logo.svg 4
version: 0.2.1 5

OpenShift Dedicated 4 アプリケーションのビルド

78

出力例

6. 直前のディレクトリーレベルに移動します。

7. チャートをインストールします。

8. チャートが正常にインストールされたことを確認します。

出力例

5.3.4. 証明書レベルでの Helm チャートのフィルタリング

Developer Catalog の認定レベルに基づいて Helm チャートをフィルターできます。

手順

1. Developer パースペクティブで、+Add ビューに移動し、プロジェクトを選択します。

2. Developer Catalog タイルから、Helm Chart オプションを選択して Developer Catalog です
べての Helm チャートを表示します。

3. Helm チャートのリストの左側にあるフィルターを使用して、必要なチャートをフィルターしま
す。

Chart Repositories フィルターを使用して、Red Hat Certification Charts または
OpenShift Helm Charts が提供したチャートをフィルターします。

Source フィルターを使用して、Partners、Community または Red Hat から提供される

チャートをフィルターします。認定チャートはアイコン () で表示されます。

注記

プロバイダータイプが 1 つしかない場合は、Source フィルターは表示されません。

必要なチャートを選択してインストールできるようになりました。

$ helm lint

[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, 0 chart(s) failed

$ cd ..

$ helm install nodejs-chart nodejs-ex-k

$ helm list

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
nodejs-chart nodejs-ex-k 1 2019-12-05 15:06:51.379134163 -0500 EST deployed nodejs-
0.1.0 1.16.0

第5章 HELM チャートの使用

79

5.4. HELM リリースの使用

Web コンソールの Developer パースペクティブを使用して、Helm リリースを更新、ロールバック、ま
たは削除できます。

5.4.1. 前提条件

Web コンソールにログインしており、Developer パースペクティブに切り替えている。

5.4.2. Helm リリースのアップグレード

Helm リリースをアップグレードして、新規チャートバージョンにアップグレードしたり、リリース設
定を更新したりできます。

手順

1. Topology ビューで Helm リリースを選択し、サイドパネルを表示します。

2. Actions → Upgrade Helm Release をクリックします。

3. Upgrade Helm Release ページで、アップグレード先とする Chart Version を選択してから
Upgrade をクリックし、別の Helm リリースを作成します。Helm Releases ページには 2 つの
リビジョンが表示されます。

5.4.3. Helm リリースのロールバック

リリースに失敗する場合、Helm リリースを直前のバージョンにロールバックできます。

手順

Helm ビューを使用してリリースをロールバックするには、以下を実行します。

1. Developer パースペクティブで Helm ビューに移動し、namespace の Helm Releases を表示
します。

2. リスト表示されているリソースに隣接する Options メニュー をクリックし、Rollback を
選択します。

3. Rollback Helm Release ページで、ロールバックする Revision を選択し、Rollback をクリック
します。

4. Helm Releases ページで、チャートをクリックし、リリースの詳細およびリソースを表示しま
す。

5. Revision History タブに移動し、チャートのすべてのリビジョンを表示します。

図5.2 Helm リビジョン履歴

OpenShift Dedicated 4 アプリケーションのビルド

80

図5.2 Helm リビジョン履歴

6. 必要な場合は、さらに特定のリビジョンに隣接する Options メニュー を使用して、ロー
ルバックするリビジョンを選択します。

5.4.4. Helm リリースの削除

手順

1. Topology ビューで Helm リリースを右クリックし、Delete Helm Release を選択します。

2. 確認プロンプトで、グラフの名前を入力し、Delete をクリックします。

第5章 HELM チャートの使用

81

第6章 デプロイメント

6.1. アプリケーションのカスタムドメイン

警告

OpenShift Dedicated 4.14 以降、Custom Domain Operator は非推奨になりまし
た。OpenShift Dedicated 4.14 で Ingress を管理するには、Ingress Operator を使
用します。OpenShift Dedicated 4.13 以前のバージョンでは機能に変更はありませ
ん。

アプリケーションのカスタムドメインを設定できます。カスタムドメインは、OpenShift Dedicated ア
プリケーションで使用できる特定のワイルドカードドメインです。

6.1.1. アプリケーションのカスタムドメインの設定

トップレベルのドメイン (TLD) は、OpenShift Dedicated クラスターを運用しているお客様が所有して
います。カスタムドメイン Operator は、2 日目の操作としてカスタム証明書を使用して新規イングレ
スコントローラーを設定します。次に、このイングレスコントローラーのパブリック DNS レコードを
外部 DNS で使用して、カスタムドメインで使用するワイルドカード CNAME レコードを作成できま
す。

注記

Red Hat は API ドメインを制御するため、カスタム API ドメインはサポートされませ
ん。ただし、お客様はアプリケーションドメインを変更することができます。プライ
ベート IngressController があるプライベートカスタムドメインの場合
は、CustomDomain CR で .spec.scope を Internal に設定します。

前提条件

dedicated-admin 権限を持つユーザーアカウント

*.apps.<company_name>.io などの一意のドメインまたはワイルドカードドメイン

CN=*.apps.<company_name>.io などのカスタム証明書またはワイルドカードカスタム証明書

最新バージョンの oc CLI がインストールされているクラスターへのアクセス

重要

CustomDomain CR の metadata/name: セクションで、予約された名前 default または
apps* (apps や apps2 など) を使用しないでください。

手順

1. 秘密鍵および公開証明書から新しい TLS シークレットを作成します。ここで、fullchain.pem
および privkey.pem は、公開または秘密のワイルドカード証明書です。



OpenShift Dedicated 4 アプリケーションのビルド

82

1

2

3

4

5

例

2. 新規の CustomDomain カスタムリソース (CR) を作成します。

例: <company_name>-custom-domain.yaml

カスタムドメイン。

カスタムドメインのロードバランサーのタイプ。このタイプは、ネットワークロードバラ
ンサーを使用する場合は、デフォルトの classic または NLB にすることができます。

前の手順で作成されたシークレット

オプション: CustomDomain イングレスによって提供されるルートのセットをフィルタリ
ングします。値が指定されていない場合、デフォルトはフィルタリングなしです。

オプション: CustomDomain イングレスによって提供される namespace のセットをフィル
タリングします。値が指定されていない場合、デフォルトはフィルタリングなしです。

3. CR を適用します。

例

4. 新規に作成された CR のステータスを取得します。

出力例

$ oc create secret tls <name>-tls --cert=fullchain.pem --key=privkey.pem -n <my_project>

apiVersion: managed.openshift.io/v1alpha1
kind: CustomDomain
metadata:
 name: <company_name>
spec:
 domain: apps.<company_name>.io 1
 scope: External
 loadBalancerType: Classic 2
 certificate:
 name: <name>-tls 3
 namespace: <my_project>
 routeSelector: 4
 matchLabels:
 route: acme
 namespaceSelector: 5
 matchLabels:
 type: sharded

$ oc apply -f <company_name>-custom-domain.yaml

$ oc get customdomains

第6章 デプロイメント

83

5. エンドポイントの値を使用して、新規のワイルドカード CNAME レコードセットを、
Route53、Azure DNS、Google DNS などの管理 DNS プロバイダーに追加します。

例

6. 新規アプリケーションを作成し、これを公開します。

例

トラブルシューティング

Error creating TLS secret

Troubleshooting: CustomDomain in NotReady state

6.1.2. カスタムドメインの証明書の更新

oc CLI ツールを使用して、Custom Domains Operator (CDO) で証明書を更新できます。

前提条件

最新バージョンの oc CLI ツールがインストールされている。

手順

1. 新しいシークレットを作成します。

2. CustomDomain CR にパッチを適用します。

NAME ENDPOINT DOMAIN STATUS
<company_name> xxrywp.<company_name>.cluster-01.opln.s1.openshiftapps.com
*.apps.<company_name>.io Ready

*.apps.<company_name>.io -> xxrywp.<company_name>.cluster-
01.opln.s1.openshiftapps.com

$ oc new-app --docker-image=docker.io/openshift/hello-openshift -n my-project

$ oc create route <route_name> --service=hello-openshift hello-openshift-tls --hostname
hello-openshift-tls-my-project.apps.<company_name>.io -n my-project

$ oc get route -n my-project

$ curl https://hello-openshift-tls-my-project.apps.<company_name>.io
Hello OpenShift!

$ oc create secret tls <secret-new> --cert=fullchain.pem --key=privkey.pem -n <my_project>

$ oc patch customdomain <company_name> --type='merge' -p '{"spec":{"certificate":
{"name":"<secret-new>"}}}'

OpenShift Dedicated 4 アプリケーションのビルド

84

https://access.redhat.com/solutions/5419501
https://access.redhat.com/solutions/6546011

3. 古いシークレットを削除します。

トラブルシューティング

Error creating TLS secret

6.2. デプロイメントの理解

OpenShift Dedicated の Deployment および DeploymentConfig API オブジェクトは、一般的なユー
ザーアプリケーションに対する詳細な管理を行うためのよく似ているものの、異なる 2 つの方法を提供
します。これらは、以下の個別の API オブジェクトで構成されています。

アプリケーションの特定のコンポーネントの必要な状態を記述する、Pod テンプレートとして
の Deployment または DeploymentConfig。

Deployment オブジェクトには、1 つ以上の レプリカセット が使用され、これには Pod テンプ
レートとしてのデプロイメントの特定の時点の状態のレコードが含まれます。同様
に、DeploymentConfig オブジェクトには、1 つ以上の レプリケーションコントローラー (以前
はレプリカセットでした) が含まれます。

1 つまたは複数の Pod。特定バージョンのアプリケーションのインスタンスを表します。

DeploymentConfig オブジェクトで特定の機能または動作を指定する必要がない場合、Deployment オ
ブジェクトを使用します。

重要

OpenShift Dedicated 4.14 の時点で、DeploymentConfig オブジェクトは非推奨となり
ました。DeploymentConfig オブジェクトは引き続きサポートされていますが、新規イ
ンストールには推奨されません。セキュリティー関連の重大な問題のみが修正されま
す。

代わりに、Deployment オブジェクトまたは別の代替手段を使用して、Pod の宣言的更
新を提供します。

6.2.1. デプロイメントのビルディングブロック

デプロイメントおよびデプロイメント設定は、それぞれビルディングブロックとして、ネイティブ
Kubernetes API オブジェクトの ReplicaSet および ReplicationController の使用によって有効にされ
ます。

ユーザーは、Deployment または DeploymentConfig オブジェクトによって所有されるレプリカセッ
ト、レプリケーションコントローラー、または Pod を操作する必要はありません。デプロイメントシ
ステムは変更を適切に伝播します。

ヒント

既存のデプロイメントストラテジーが特定のユースケースに適さない場合で、デプロイメントのライフ
サイクル期間中に複数の手順を手動で実行する必要がある場合は、カスタムデプロイメントストラテ
ジーを作成することを検討してください。

$ oc delete secret <secret-old> -n <my_project>

第6章 デプロイメント

85

https://access.redhat.com/solutions/5419501

1

2

3

以下のセクションでは、これらのオブジェクトの詳細情報を提供します。

6.2.1.1. レプリカセット

ReplicaSet は、指定された数の Pod レプリカが特定の時点で実行されるようにするネイティブの
Kubernetes API オブジェクトです。

注記

カスタム更新のオーケストレーションが必要な場合や、更新が全く必要のない場合にの
みレプリカセットを使用します。それ以外はデプロイメントを使用します。レプリカ
セットは個別に使用できますが、Pod 作成/削除/更新のオーケストレーションにはデプ
ロイメントでレプリカセットを使用します。デプロイメントは、自動的にレプリカセッ
トを管理し、Pod に宣言的更新を加えるので、作成するレプリカセットを手動で管理す
る必要はありません。

以下は、ReplicaSet 定義の例になります。

一連のリソースに対するラベルのクエリー。matchLabels と matchExpressions の結果は論理的
に結合されます。

セレクターに一致するラベルでリソースを指定する等価ベースのセレクター

キーをフィルターするセットベースのセレクター。これは、tier と同等のキー、frontend と同等
の値のリソースをすべて選択します。

6.2.1.2. レプリケーションコントローラー

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: frontend-1
 labels:
 tier: frontend
spec:
 replicas: 3
 selector: 1
 matchLabels: 2
 tier: frontend
 matchExpressions: 3
 - {key: tier, operator: In, values: [frontend]}
 template:
 metadata:
 labels:
 tier: frontend
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

OpenShift Dedicated 4 アプリケーションのビルド

86

レプリカセットと同様に、レプリケーションコントローラーは、Pod の指定された数のレプリカが常に
実行されるようにします。Pod が終了または削除された場合に、レプリケーションコントローラーは定
義した数になるまでインスタンス化する数を増やします。同様に、必要以上の数の Pod が実行されて
いる場合には、定義された数に一致させるために必要な数の Pod を削除します。レプリカセットとレ
プリケーションコントローラーの相違点は、レプリカセットではセットベースのセレクター要件をサ
ポートし、レプリケーションコントローラーは等価ベースのセレクター要件のみをサポートする点で
す。

レプリケーションコントローラー設定は以下で構成されています。

必要なレプリカ数 (これはランタイム時に調整可能)。

レプリケートされた Pod の作成時に使用する Pod 定義。

管理された Pod を識別するためのセレクター。

セレクターは、レプリケーションコントローラーが管理する Pod に割り当てられるラベルセットで
す。これらのラベルは、Pod 定義に組み込まれ、レプリケーションコントローラーがインスタンス化し
ます。レプリケーションコントローラーは、必要に応じて調節するために、セレクターを使用して、す
でに実行中の Pod 数を判断します。

レプリケーションコントローラーは、追跡もしませんが、負荷またはトラフィックに基づいて自動ス
ケーリングを実行することもありません。この場合は、レプリカ数を外部の自動スケーラーで調整する
必要があります。

注記

レプリケーションコントローラーを直接作成するのではなく、DeploymentConfig を使
用してレプリケーションコントローラーを作成します。

カスタムオーケストレーションが必要な場合や、更新が必要ない場合は、レプリケー
ションコントローラーの代わりにレプリカセットを使用します。

以下は、レプリケーションコントローラー定義の例です。

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend-1
spec:
 replicas: 1 1
 selector: 2
 name: frontend
 template: 3
 metadata:
 labels: 4
 name: frontend 5
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

第6章 デプロイメント

87

1

2

3

4

5

実行する Pod のコピー数です。

実行する Pod のラベルセレクターです。

コントローラーが作成する Pod のテンプレートです。

Pod のラベルにはラベルセレクターからのものが含まれている必要があります。

パラメーター拡張後の名前の最大長さは 63 文字です。

6.2.2. デプロイメント

Kubernetes は、Deployment という OpenShift Dedicated のファーストクラスのネイティブ API オブ
ジェクトを提供します。Deployment オブジェクトは、Pod テンプレートとして、アプリケーションの
特定のコンポーネントで希望する状態を記述します。デプロイメントは、Pod のライフサイクルをオー
ケストレーションするレプリカセットを作成します。

たとえば、以下のデプロイメント定義はレプリカセットを作成し、1 つの hello-openshift Pod を起動し
ます。

デプロイメントの定義

6.2.3. DeploymentConfig オブジェクト

重要

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-openshift
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello-openshift
 template:
 metadata:
 labels:
 app: hello-openshift
 spec:
 containers:
 - name: hello-openshift
 image: openshift/hello-openshift:latest
 ports:
 - containerPort: 80

OpenShift Dedicated 4 アプリケーションのビルド

88

重要

OpenShift Dedicated 4.14 の時点で、DeploymentConfig オブジェクトは非推奨となり
ました。DeploymentConfig オブジェクトは引き続きサポートされていますが、新規イ
ンストールには推奨されません。セキュリティー関連の重大な問題のみが修正されま
す。

代わりに、Deployment オブジェクトまたは別の代替手段を使用して、Pod の宣言的更
新を提供します。

Replication Controller ベースにビルドされた OpenShift Dedicated は、DeploymentConfig の概念に基
づいてソフトウェア開発およびデプロイメントライフサイクルの拡張サポートを追加します。最も単純
な場合に、DeploymentConfig オブジェクトは新規レプリケーションコントローラーを作成し、それに
Pod を起動させます。

ただし、DeploymentConfig オブジェクトの OpenShift Dedicated デプロイメントは、イメージの既存
デプロイメントから新規デプロイメントに移行する機能を提供し、Replication Controller の作成前後に
実行されるフックも定義します。

DeploymentConfig デプロイメントシステムは以下の機能を提供します。

アプリケーションを実行するためのテンプレートである DeploymentConfig オブジェクト。

イベントへの対応として自動化されたデプロイメントを駆動するトリガー。

直前のバージョンから新規バージョンに移行するためのユーザーによるカスタマイズが可能な
デプロイメントストラテジー。ストラテジーは、デプロイメントプロセスと一般的に呼ばれる
Pod 内で実行されます。

デプロイメントのライフサイクル中の異なる時点でカスタム動作を実行するためのフックの
セット (ライフサイクルフック)。

デプロイメントの失敗時に手動または自動でロールバックをサポートするためのアプリケー
ションのバージョン管理。

レプリケーションの手動および自動スケーリング。

DeploymentConfig オブジェクトを作成すると、レプリケーションコントローラー
が、DeploymentConfig オブジェクトの Pod テンプレートとして作成されます。デプロイメントが変
更されると、最新の Pod テンプレートで新しいレプリケーションコントローラーが作成され、デプロ
イメントプロセスが実行されて以前のレプリケーションコントローラーのスケールダウン、および新規
レプリケーションコントーラーのスケールアップが行われます。

アプリケーションのインスタンスは、作成時にサービスローダーバランサーやルーターに対して自動的
に追加/削除されます。アプリケーションが正常なシャットダウン機能をサポートしている限り、アプ
リケーションが TERM シグナルを受け取ると、実行中のユーザー接続が通常通り完了できるようにす
ることができます。

OpenShift Dedicated DeploymentConfig オブジェクトは以下の詳細を定義します。

1. ReplicationController 定義の要素。

2. 新規デプロイメントの自動作成のトリガー。

3. デプロイメント間の移行ストラテジー。

第6章 デプロイメント

89

1

2

3

4. ライフサイクルフック。

デプロイヤー Pod は、デプロイメントがトリガーされるたびに、手動または自動であるかを問わず、
(古いレプリケーションコントローラーの縮小、新規レプリケーションコントローラーの拡大および
フックの実行などの) デプロイメントを管理します。デプロイメント Pod は、デプロイメントのログを
維持するためにデプロイメントの完了後は無期限で保持されます。デプロイメントが別のものに置き換
えられる場合、以前のレプリケーションコントローラーは必要に応じて簡単なロールバックを有効にで
きるように保持されます。

DeploymentConfig 定義の例

設定変更トリガーにより、デプロイメント設定の Pod テンプレートに変更があると検出されるた
びに、新規のレプリケーションコントローラーが作成されます。

イメージ変更トリガーにより、新規デプロイメントが、バッキングイメージの新規バージョンが名
前付きイメージストリームで利用可能になる際には常に作成されます。

デフォルトの Rolling ストラテジーにより、デプロイメント間のダウンタイムなしの移行が行われ
ます。

6.2.4. Deployment および DeploymentConfig オブジェクトの比較

Kubernetes Deployment および OpenShift Dedicated でプロビジョニングされる DeploymentConfig
オブジェクトの両方が OpenShift Dedicated でサポートされていますが、DeploymentConfig オブジェ
クトで提供される特定の機能または動作が必要でない場合、Deployment を使用することが推奨されま
す。

以下のセクションでは、使用するタイプの決定に役立つ 2 つのオブジェクト間の違いを詳述します。

重要

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
 name: frontend
spec:
 replicas: 5
 selector:
 name: frontend
 template: { ... }
 triggers:
 - type: ConfigChange 1
 - imageChangeParams:
 automatic: true
 containerNames:
 - helloworld
 from:
 kind: ImageStreamTag
 name: hello-openshift:latest
 type: ImageChange 2
 strategy:
 type: Rolling 3

OpenShift Dedicated 4 アプリケーションのビルド

90

重要

OpenShift Dedicated 4.14 の時点で、DeploymentConfig オブジェクトは非推奨となり
ました。DeploymentConfig オブジェクトは引き続きサポートされていますが、新規イ
ンストールには推奨されません。セキュリティー関連の重大な問題のみが修正されま
す。

代わりに、Deployment オブジェクトまたは別の代替手段を使用して、Pod の宣言的更
新を提供します。

6.2.4.1. 設計

Deployment と DeploymentConfig オブジェクトの重要な違いの 1 つとして、ロールアウトプロセスで
各設計で選択される CAP theorem (原則) のプロパティーがあります。DeploymentConfig オブジェク
トは整合性を優先しますが、Deployments オブジェクトは整合性よりも可用性を優先します。

DeploymentConfig オブジェクトの場合、デプロヤー Pod を実行するノードがダウンする場合、ノー
ドの置き換えは行われません。プロセスは、ノードが再びオンラインになるまで待機するか、手動で削
除されます。ノードを手動で削除すると、対応する Pod も削除されます。つまり、kubelet は関連付け
られた Pod も削除するため、Pod を削除してロールアウトの固定解除を行うことはできません。

一方、デプロイメントのロールアウトはコントローラーマネージャーから実行されます。コントロー
ラーマネージャーはマスター上で高可用性モードで実行され、リーダー選択アルゴリズムを使用して可
用性を整合性よりも優先するように設定します。障害の発生時には、他の複数のマスターが同時に同じ
デプロイメントに対して作用する可能性がありますが、この問題は障害の発生直後に調整されます。

6.2.4.2. デプロイメント固有の機能

6.2.4.2.1. ロールオーバー

Deployment オブジェクトのデプロイメントプロセスは、すべての新規ロールアウトにデプロイヤー
Pod を使用する DeploymentConfig オブジェクトとは対照的に、コントローラーループで実行されま
す。つまり、Deployment オブジェクトにはできるだけ多くのアクティブなレプリカセットを指定する
ことができ、最終的にデプロイメントコントローラーが以前のすべてのレプリカセットをスケールダウ
ンし、最新のものをスケールアップします。

DeploymentConfig オブジェクトでは、実行できるデプロイヤー Pod は最大 1 つとなっています。複
数のデプロイヤーがある場合は競合が生じ、それぞれが最新のレプリケーションコントローラーである
と考えるコントローラーをスケールアップしようとします。これにより、2 つのレプリケーションコン
トローラーのみを一度にアクティブにできます。最終的には、Deployment オブジェクトのロールアウ
トが速くなります。

6.2.4.2.2. 比例スケーリング

デプロイメントコントローラーのみが Deployment オブジェクトが所有する新旧のレプリカセットのサ
イズに関する信頼できる情報源であるため、継続中のロールアウトのスケーリングが可能です。追加の
レプリカはレプリカセットのサイズに比例して分散されます。

DeploymentConfig オブジェクトは、コントローラーが新規レプリケーションコントローラーのサイズ
に関してデプロイヤープロセスと競合するためにロールアウトが続行されている場合にスケーリングで
きません。

6.2.4.2.3. ロールアウト中の一時停止

第6章 デプロイメント

91

https://en.wikipedia.org/wiki/CAP_theorem

Deployment はいつでも一時停止できます。つまり、継続中のロールアウトも一時停止できます。ただ
し、現時点ではデプロイヤー Pod を一時停止できません。ロールアウトの途中でデプロイメントを一
時停止しようとすると、デプロイヤープロセスは影響を受けず、完了するまで続行されます。

6.2.4.3. DeploymentConfig オブジェクト固有の機能

6.2.4.3.1. 自動ロールバック

現時点で、デプロイメントでは、問題の発生時の最後に正常にデプロイされたレプリカセットへの自動
ロールバックをサポートしていません。

6.2.4.3.2. トリガー

Deployment の場合、デプロイメントの Pod テンプレートに変更があるたびに新しいロールアウトが自
動的にトリガーされるので、暗黙的な設定変更トリガーが含まれます。Pod テンプレートの変更時に新
たなロールアウトが不要な場合には、デプロイメントを以下のように停止します。

6.2.4.3.3. ライフサイクルフック

Deployment ではライフサイクルフックをサポートしていません。

6.2.4.3.4. カスタムストラテジー

デプロイメントでは、ユーザーが指定するカスタムデプロイメントストラテジーをサポートしていませ
ん。

6.3. デプロイメントプロセスの管理

6.3.1. DeploymentConfig オブジェクトの管理

重要

OpenShift Dedicated 4.14 の時点で、DeploymentConfig オブジェクトは非推奨となり
ました。DeploymentConfig オブジェクトは引き続きサポートされていますが、新規イ
ンストールには推奨されません。セキュリティー関連の重大な問題のみが修正されま
す。

代わりに、Deployment オブジェクトまたは別の代替手段を使用して、Pod の宣言的更
新を提供します。

DeploymentConfig オブジェクトは、OpenShift Dedicated Web コンソールの Workloads ページから
か、または oc CLI を使用して管理できます。以下の手順は、特に指定がない場合の CLI の使用法を示
しています。

6.3.1.1. デプロイメントの開始

アプリケーションのデプロイメントプロセスを開始するために、ロールアウトを開始できます。

手順

1. 既存の DeploymentConfig から新規デプロイメントプロセスを開始するには、以下のコマンド

$ oc rollout pause deployments/<name>

OpenShift Dedicated 4 アプリケーションのビルド

92

1. 既存の DeploymentConfig から新規デプロイメントプロセスを開始するには、以下のコマンド
を実行します。

注記

デプロイメントプロセスが進行中の場合には、このコマンドを実行すると、メッ
セージが表示され、新規レプリケーションコントローラーはデプロイされませ
ん。

6.3.1.2. デプロイメントの表示

アプリケーションの利用可能なすべてのリビジョンに関する基本情報を取得するためにデプロイメント
を表示できます。

手順

1. 現在実行中のデプロイメントプロセスを含む、指定した DeploymentConfig オブジェクトに関
する最近作成されたすべてのレプリケーションコントローラーの詳細を表示するには、以下を
実行します。

2. リビジョンに固有の詳細情報を表示するには、--revision フラグを追加します。

3. DeploymentConfig オブジェクトおよびその最新バージョンの詳細は、oc describe コマンド
を使用します。

6.3.1.3. デプロイメントの再試行

現行リビジョンの DeploymentConfig がデプロイに失敗した場合、デプロイメントプロセスを再起動
することができます。

手順

1. 失敗したデプロイメントプロセスを再起動するには、以下を実行します。

最新リビジョンのデプロイメントに成功した場合には、このコマンドによりメッセージが表示
され、デプロイメントプロセスは試行されません。

注記

デプロイメントを再試行すると、デプロイメントプロセスが再起動され、新しい
デプロイメントリビジョンは作成されません。再起動されたレプリケーションコ
ントローラーは、失敗したときと同じ設定を使用します。

$ oc rollout latest dc/<name>

$ oc rollout history dc/<name>

$ oc rollout history dc/<name> --revision=1

$ oc describe dc <name>

$ oc rollout retry dc/<name>

第6章 デプロイメント

93

6.3.1.4. デプロイメントのロールバック

ロールバックすると、アプリケーションを以前のリビジョンに戻します。この操作は、REST API、CLI
または Web コンソールで実行できます。

手順

1. 最後にデプロイして成功した設定のリビジョンにロールバックするには、以下を実行します。

DeploymentConfig オブジェクトのテンプレートは、undo コマンドで指定されたデプロイメ
ントのリビジョンと一致するように元に戻され、新規レプリケーションコントローラーが起動
します。--to-revision でリビジョンが指定されない場合には、最後に成功したデプロイメント
のリビジョンが使用されます。

2. ロールバックの完了直後に新規デプロイメントプロセスが誤って開始されないよう
に、DeploymentConfig オブジェクトのイメージ変更トリガーがロールバックの一部として無
効にされます。
イメージ変更トリガーを再度有効にするには、以下を実行します。

注記

デプロイメント設定は、最新のデプロイメントプロセスが失敗した場合の、設定の最後
に成功したリビジョンへの自動ロールバックもサポートします。この場合、デプロイに
失敗した最新のテンプレートはシステムで修正されないので、ユーザーがその設定の修
正を行う必要があります。

6.3.1.5. コンテナー内でのコマンドの実行

コマンドをコンテナーに追加して、イメージの ENTRYPOINT を却下してコンテナーの起動動作を変更
することができます。これは、指定したタイミングでデプロイメントごとに 1 回実行できるライフサイ
クルフックとは異なります。

手順

1. command パラメーターを、DeploymentConfig オブジェクトの spec フィールドを追加しま
す。command コマンドを変更する args フィールドも追加できます (または command が存在
しない場合には、ENTRYPOINT)。

$ oc rollout undo dc/<name>

$ oc set triggers dc/<name> --auto

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...
spec:
 template:
...
 spec:
 containers:
 - name: <container_name>
 image: 'image'

OpenShift Dedicated 4 アプリケーションのビルド

94

たとえば、-jar および /opt/app-root/springboots2idemo.jar 引数を指定して、java コマンド
を実行するには、以下を実行します。

6.3.1.6. デプロイメントログの表示

手順

1. 指定の DeploymentConfig オブジェクトに関する最新リビジョンのログをストリームするに
は、以下を実行します。

最新のリビジョンが実行中または失敗した場合には、コマンドが、Pod のデプロイを行うプロ
セスのログを返します。成功した場合には、アプリケーションの Pod からのログを返します。

2. 以前に失敗したデプロイメントプロセスからのログを表示することも可能です。ただし、これ
らのプロセス (以前のレプリケーションコントローラーおよびデプロイヤーの Pod) が存在し、
手動でプルーニングまたは削除されていない場合に限ります。

6.3.1.7. デプロイメントトリガー

DeploymentConfig オブジェクトには、クラスター内のイベントに対応する新規デプロイメントプロセ
スの作成を駆動するトリガーを含めることができます。

 command:
 - '<command>'
 args:
 - '<argument_1>'
 - '<argument_2>'
 - '<argument_3>'

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...
spec:
 template:
...
 spec:
 containers:
 - name: example-spring-boot
 image: 'image'
 command:
 - java
 args:
 - '-jar'
 - /opt/app-root/springboots2idemo.jar
...

$ oc logs -f dc/<name>

$ oc logs --version=1 dc/<name>

第6章 デプロイメント

95

警告

トリガーが DeploymentConfig オブジェクトに定義されていない場合は、設定変
更トリガーがデフォルトで追加されます。トリガーが空のフィールドとして定義さ
れている場合には、デプロイメントは手動で起動する必要があります。

6.3.1.7.1. 設定変更デプロイメントトリガー

設定変更トリガーにより、DeploymentConfig オブジェクトの Pod テンプレートで設定の変更が検出
されるたびに、新規のレプリケーションコントローラーが作成されます。

注記

設定変更トリガーが DeploymentConfig オブジェクトに定義されている場合
は、DeploymentConfig オブジェクト自体が作成された直後に、最初のレプリケーショ
ンコントローラーが自動的に作成され、一時停止されません。

設定変更デプロイメントトリガー

6.3.1.7.2. イメージ変更デプロイメントトリガー

イメージ変更トリガーにより、イメージストリームタグの内容が変更されるたびに、(イメージの新規
バージョンがプッシュされるタイミングで) 新規レプリケーションコントローラーが作成されます。

イメージ変更デプロイメントトリガー



kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...
spec:
...
 triggers:
 - type: "ConfigChange"

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...
spec:
...
 triggers:
 - type: "ImageChange"
 imageChangeParams:
 automatic: true 1
 from:
 kind: "ImageStreamTag"

OpenShift Dedicated 4 アプリケーションのビルド

96

1 imageChangeParams.automatic フィールドが false に設定されると、トリガーが無効になりま
す。

上記の例では、origin-ruby-sample イメージストリームの latest タグの値が変更され、新しいイメー
ジの値が DeploymentConfig オブジェクトの helloworld コンテナーに指定されている現在のイメージ
と異なる場合に、helloworld コンテナーの新規イメージを使用して、新しいレプリケーションコント
ローラーが作成されます。

注記

イメージ変更トリガーが DeploymentConfig で定義され (設定変更トリガーおよび
automatic=false が指定されるか、automatic=true が指定される)、イメージ変更トリ
ガーで参照されているイメージストリームタグがまだ存在していない場合、ビルドによ
りイメージがイメージストリームタグにインポートまたはプッシュされた直後に初回の
デプロイメントプロセスが自動的に開始されます。

6.3.1.7.3. デプロイメントトリガーの設定

手順

1. oc set triggers コマンドを使用して、DeploymentConfig オブジェクトにデプロイメントトリ
ガーを設定することができます。たとえば、イメージ変更トリガーを設定するには、以下のコ
マンドを使用します。

6.3.1.8. デプロイメントリソースの設定

デプロイメントは、ノードでリソース (メモリーおよび一時ストレージ) を消費する Pod を使用して完
了します。デフォルトで、Pod はバインドされていないノードのリソースを消費します。ただし、プロ
ジェクトにデフォルトのコンテナー制限が指定されている場合には、Pod はその上限までリソースを消
費します。

注記

デプロイメントの最小メモリー制限は 12 MB です。Cannot allocate memory Pod イベ
ントのためにコンテナーの起動に失敗すると、メモリー制限は低くなります。メモリー
制限を引き上げるか、これを削除します。制限を削除すると、Pod は制限のないノード
のリソースを消費できるようになります。

デプロイメントストラテジーの一部としてリソース制限を指定して、リソースの使用を制限することも
可能です。デプロイメントリソースは、Recreate、Rolling または Custom のデプロイメントストラテ
ジーで使用できます。

手順

1. 以下の例では、resources、cpu、memory、および ephemeral-storage はそれぞれオプショ

 name: "origin-ruby-sample:latest"
 namespace: "myproject"
 containerNames:
 - "helloworld"

$ oc set triggers dc/<dc_name> \
 --from-image=<project>/<image>:<tag> -c <container_name>

第6章 デプロイメント

97

1

2

3

1

1. 以下の例では、resources、cpu、memory、および ephemeral-storage はそれぞれオプショ
ンです。

cpu は CPU のユニットで、100m は 0.1 CPU ユニット (100 * 1e-3) を表します。

memory はバイト単位です。256Mi は 268435456 バイトを表します (256 * 2 ^ 20)。

ephemeral-storage はバイト単位です。1Gi は 1073741824 バイト (2 ^ 30) を表します。

ただし、クォータがプロジェクトに定義されている場合には、以下の 2 つの項目のいずれかが
必要です。

明示的な requests で設定した resources セクション:

requests オブジェクトは、クォータ内のリソースリストに対応するリソースリストを
含みます。

プロジェクトで定義される制限の範囲。LimitRange オブジェクトのデフォルト値がデプロ
イメントプロセス時に作成される Pod に適用されます。

デプロイメントリソースを設定するには、上記のいずれかのオプションを選択してください。
それ以外の場合は、デプロイ Pod の作成は、クォータ基準を満たしていないことを示すメッ
セージを出して失敗します。

6.3.1.9. 手動のスケーリング

kind: Deployment
apiVersion: apps/v1
metadata:
 name: hello-openshift
...
spec:
...
 type: "Recreate"
 resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2
 ephemeral-storage: "1Gi" 3

kind: Deployment
apiVersion: apps/v1
metadata:
 name: hello-openshift
...
spec:
...
 type: "Recreate"
 resources:
 requests: 1
 cpu: "100m"
 memory: "256Mi"
 ephemeral-storage: "1Gi"

OpenShift Dedicated 4 アプリケーションのビルド

98

ロールバック以外に、手動スケーリングにより、レプリカの数を詳細に管理できます。

注記

Pod は oc autoscale コマンドを使用して自動スケーリングすることも可能です。

手順

1. DeploymentConfig オブジェクトを手動でスケーリングするには、oc scale コマンドを使用し
ます。たとえば、以下のコマンドは、frontend DeploymentConfig オブジェクトを 3 に設定し
ます。

レプリカの数は最終的に、DeploymentConfig オブジェクトの frontend で設定した希望のデ
プロイメントの状態と現在のデプロイメントの状態に伝播されます。

6.3.1.10. DeploymentConfig オブジェクトからのプライベートリポジトリーへのアクセス

シークレットを DeploymentConfig オブジェクトに追加し、プライベートリポジトリーからイメージ
にアクセスできるようにします。この手順では、OpenShift Dedicated Web コンソールを使用する方法
を示しています。

手順

1. 新しいプロジェクトを作成する。

2. Workloads → Secrets に移動します。

3. プライベートのイメージリポジトリーにアクセスするための認証情報が含まれるシークレット
を作成します。

4. Workloads → DeploymentConfigs に移動します。

5. DeploymentConfig オブジェクトを作成します。

6. DeploymentConfig オブジェクトエディターページで、Pull Secret を設定し、変更を保存しま
す。

6.3.1.11. 異なるサービスアカウントでの Pod の実行

デフォルト以外のサービスアカウントで Pod を実行できます。

手順

1. DeploymentConfig オブジェクトを編集します。

2. serviceAccount と serviceAccountName パラメーターを spec フィールドに追加し、使用す
るサービスアカウントを指定します。

$ oc scale dc frontend --replicas=3

$ oc edit dc/<deployment_config>

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig

第6章 デプロイメント

99

6.4. デプロイメントストラテジーの使用

デプロイメントストラテジー は、ユーザーが変更にほとんど気付かないように、ダウンタイムなしでア
プリケーションを変更またはアップグレードするために使用されます。

ユーザーは通常、ルーターによって処理されるルートを介してアプリケーションにアクセスするため、
デプロイメント戦略は DeploymentConfig オブジェクト機能またはルーティング機能に重点を置くこ
とができます。DeploymentConfig オブジェクトの機能に焦点を当てた戦略は、アプリケーションを使
用するすべてのルートに影響を与えます。ルーター機能を使用するストラテジーは個別のルートにター
ゲットを設定します。

デプロイメントストラテジーの多くは、DeploymentConfig オブジェクトでサポートされ、追加のスト
ラテジーはルーター機能でサポートされます。

6.4.1. デプロイメントストラテジーの選択

デプロイメントストラテジーを選択する場合に、以下を考慮してください。

長期間実行される接続は正しく処理される必要があります。

データベースの変換は複雑になる可能性があり、アプリケーションと共に変換し、ロールバッ
クする必要があります。

アプリケーションがマイクロサービスと従来のコンポーネントを使用するハイブリッドの場合
には、移行の完了時にダウンタイムが必要になる場合があります。

これを実行するためのインフラストラクチャーが必要です。

テスト環境が分離されていない場合は、新規バージョンと以前のバージョン両方が破損してし
まう可能性があります。

デプロイメントストラテジーは、readiness チェックを使用して、新しい Pod の使用準備ができている
かを判断します。readiness チェックに失敗すると、DeploymentConfig オブジェクトは、タイムアウ
トするまで Pod の実行を再試行します。デフォルトのタイムアウトは、10m で、値は
dc.spec.strategy.*params の TimeoutSeconds で設定します。

6.4.2. ローリングストラテジー

ローリングデプロイメントは、以前のバージョンのアプリケーションインスタンスを、新しいバージョ
ンのアプリケーションインスタンスに徐々に置き換えます。ローリングストラテジー
は、DeploymentConfig オブジェクトにストラテジーが指定されていない場合に使用されるデフォルト
のデプロイメントストラテジーです。

ローリングデプロイメントは通常、新規 Pod が readiness チェックによって ready になるのを待機して
から、古いコンポーネントをスケールダウンします。重大な問題が生じる場合、ローリングデプロイメ
ントは中止される場合があります。

metadata:
 name: example-dc
...
spec:
...
 securityContext: {}
 serviceAccount: <service_account>
 serviceAccountName: <service_account>

OpenShift Dedicated 4 アプリケーションのビルド

100

1

2

3

4

5

6

ローリングデプロイメントの使用のタイミング

ダウンタイムを発生させずに、アプリケーションの更新を行う場合

以前のコードと新しいコードの同時実行がアプリケーションでサポートされている場合

ローリングデプロイメントとは、以前のバージョンと新しいバージョンのコードを同時に実行するとい
う意味です。これは通常、アプリケーションで N-1 互換性に対応する必要があります。

ローリングストラテジー定義の例

各 Pod が次に更新されるまで待機する時間。指定されていない場合、デフォルト値は 1 となりま
す。

更新してからデプロイメントステータスをポーリングするまでの間待機する時間。指定されていな
い場合、デフォルト値は 1 となります。

イベントのスケーリングを中断するまでの待機時間。この値はオプションです。デフォルトは 600
です。ここでの 中断 とは、自動的に以前の完全なデプロイメントにロールバックされるという意
味です。

maxSurge はオプションで、指定されていない場合には、デフォルト値は 25% となります。以下
の手順の次にある情報を参照してください。

maxUnavailable はオプションで、指定されていない場合には、デフォルト値は 25% となりま
す。以下の手順の次にある情報を参照してください。

pre および post はどちらもライフサイクルフックです。

ローリングストラテジー:

1. pre ライフサイクルフックを実行します。

2. サージ数に基づいて新しいレプリケーションコントローラーをスケールアップします。

3. 最大利用不可数に基づいて以前のレプリケーションコントローラーをスケールダウンします。

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...
spec:
...
 strategy:
 type: Rolling
 rollingParams:
 updatePeriodSeconds: 1 1
 intervalSeconds: 1 2
 timeoutSeconds: 120 3
 maxSurge: "20%" 4
 maxUnavailable: "10%" 5
 pre: {} 6
 post: {}

第6章 デプロイメント

101

4. 新しいレプリケーションコントローラーが希望のレプリカ数に到達して、以前のレプリケー
ションコントローラーの数がゼロになるまで、このスケーリングを繰り返します。

5. post ライフサイクルフックを実行します。

重要

スケールダウン時には、ローリングストラテジーは Pod の準備ができるまで待機し、ス
ケーリングを行うことで可用性に影響が出るかどうかを判断します。Pod をスケール
アップしたにもかかわらず、準備が整わない場合には、デプロイメントプロセスは最終
的にタイムアウトして、デプロイメントに失敗します。

maxUnavailable パラメーターは、更新時に利用できない Pod の最大数です。maxSurge パラメーター
は、元の Pod 数を超えてスケジュールできる Pod の最大数です。どちらのパラメーターも、パーセン
ト (例: 10%) または絶対値 (例: 2) のいずれかに設定できます。両方のデフォルト値は 25% です。

以下のパラメーターを使用して、デプロイメントの可用性やスピードを調整できます。以下に例を示し
ます。

maxUnavailable*=0 および maxSurge*=20% が指定されていると、更新時および急速なス
ケールアップ時に完全なキャパシティーが維持されるようになります。

maxUnavailable*=10% および maxSurge*=0 が指定されていると、追加のキャパシティーを
使用せずに更新を実行します (インプレース更新)。

maxUnavailable*=10% および maxSurge*=10% の場合は、キャパシティーが失われる可能性
がありますが、迅速にスケールアップおよびスケールダウンします。

一般的に、迅速にロールアウトする場合は maxSurge を使用します。リソースのクォータを考慮し
て、一部に利用不可の状態が発生してもかまわない場合には、maxUnavailable を使用します。

警告

maxUnavailable のデフォルト設定は、OpenShift Dedicated のすべてのマシン設
定プールで 1 です。この値を変更せず、一度に 1 つのコントロールプレーンノード
を更新することを推奨します。コントロールプレーンプールのこの値を 3 に変更し
ないでください。

6.4.2.1. canary デプロイメント

OpenShift Dedicated におけるすべてのローリングデプロイメントは カナリアデプロイメント です。
新規バージョン (カナリア) はすべての古いインスタンスが置き換えられる前にテストされます。
readiness チェックが成功しない場合、カナリアインスタンスは削除され、DeploymentConfig オブ
ジェクトは自動的にロールバックされます。

readiness チェックはアプリケーションコードの一部であり、新規インスタンスが使用できる状態にす
るために必要に応じて高度な設定をすることができます。(実際のユーザーワークロードを新規インス
タンスに送信するなどの) アプリケーションのより複雑なチェックを実装する必要がある場合、カスタ
ムデプロイメントや blue-green デプロイメントストラテジーの実装を検討してください。



OpenShift Dedicated 4 アプリケーションのビルド

102

6.4.2.2. ローリングデプロイメントの作成

ローリングデプロイメントは OpenShift Dedicated のデフォルトタイプです。CLI を使用してローリン
グデプロイメントを作成できます。

手順

1. Quay.io にあるデプロイメントイメージのサンプルに基づいてアプリケーションを作成します。

注記

このイメージはポートを公開しません。外部 LoadBalancer サービスでアプリ
ケーションを公開するか、パブリックインターネット経由でアプリケーションに
アクセスできるようにする必要がある場合は、この手順を完了した後に oc
expose dc/deployment-example --port=<port> コマンドを使用してサービスを
作成します。

2. ルーターをインストールしている場合は、ルートを使用してアプリケーションを利用できるよ
うにするか、サービス IP を直接使用してください。

3. deployment-example.<project>.<router_domain> でアプリケーションを参照し、v1 イメー
ジが表示されることを確認します。

4. レプリカが最大 3 つになるまで、DeploymentConfig オブジェクトをスケーリングします。

5. 新しいバージョンの例を latest とタグ付けして、新規デプロイメントを自動的にトリガーしま
す。

6. ブラウザーで、v2 イメージが表示されるまでページを更新します。

7. CLI を使用している場合は、以下のコマンドで、バージョン 1 に Pod がいくつあるか、バー
ジョン 2 にはいくつあるかを表示します。Web コンソールでは、Pod が徐々に v2 に追加さ
れ、v1 から削除されます。

デプロイメントプロセスで、新しいレプリケーションコントローラーが漸増的にスケールアップしま
す。新しい Pod が (readiness チェックに合格して) ready とマークされると、デプロイメントプロセス
が続行されます。

Pod が準備状態にならない場合、プロセスは中止し、デプロイメントは直前のバージョンにロールバッ
クします。

6.4.2.3. 開発者パースペクティブを使用したデプロイメントの編集

$ oc new-app quay.io/openshifttest/deployment-example:latest

$ oc expose svc/deployment-example

$ oc scale dc/deployment-example --replicas=3

$ oc tag deployment-example:v2 deployment-example:latest

$ oc describe dc deployment-example

第6章 デプロイメント

103

https://quay.io/repository/openshifttest/deployment-example

Developer パースペクティブを使用して、デプロイメントのデプロイメントストラテジー、イメージ設
定、環境変数、詳細オプションを編集できます。

前提条件

Web コンソールの Developer パースペクティブを使用している。

アプリケーションを作成している。

手順

1. Topology ビューに移動します。

2. アプリケーションをクリックして、Details パネルを表示します。

3. Actions ドロップダウンメニューで Edit Deployment を選択し、Edit Deployment ページを表
示します。

4. デプロイメントの以下の Advanced options を編集できます。

a. オプション: Pause rollouts をクリックして Pause rollouts for this deployment チェック
ボックスを選択すると、ロールアウトを一時停止できます。
ロールアウトを一時停止すると、ロールアウトをトリガーせずにアプリケーションを変更
できます。ロールアウトはいつでも再開できます。

b. オプション: Scaling をクリックし、Replicas のカズを変更することでイメージのインスタ
ンス数を変更できます。

5. Save をクリックします。

6.4.2.4. 開発者パースペクティブを使用したローリングデプロイメントの開始

ローリングデプロイメントを開始することで、アプリケーションをアップグレードできます。

前提条件

Web コンソールの Developer パースペクティブを使用している。

アプリケーションを作成している。

手順

1. Topology ビューでアプリケーションノードをクリックすると、サイドパネルに Overview タ
ブが表示されます。Update Strategy がデフォルトの Rolling ストラテジーに設定されている
ことに注意してください。

2. Actions ドロップダウンメニューで、Start Rollout を選択し、ローリング更新を開始します。
ローリングデプロイメントは、新しいバージョンのアプリケーションを起動してから、古い
バージョンを終了します。

図6.1 ローリング更新

OpenShift Dedicated 4 アプリケーションのビルド

104

図6.1 ローリング更新

関連情報

Developer パースペクティブを使用して OpenShift Dedicated でアプリケーションを作成し、
デプロイする

Topology ビューを使用してプロジェクトにアプリケーションを表示し、デプロイメントのス
テータスを確認し、それらと対話する

6.4.3. 再作成ストラテジー

再作成ストラテジーは、基本的なロールアウト動作で、デプロイメントプロセスにコードを挿入するた
めのライフサイクルフックをサポートします。

再作成ストラテジー定義の例

kind: Deployment
apiVersion: apps/v1
metadata:
 name: hello-openshift
...
spec:
...
 strategy:
 type: Recreate
 recreateParams: 1

第6章 デプロイメント

105

1

2

recreateParams はオプションです。

pre、mid、および post はライフサイクルフックです。

再作成ストラテジー:

1. pre ライフサイクルフックを実行します。

2. 以前のデプロイメントをゼロにスケールダウンします。

3. 任意の mid ライフサイクルフックを実行します。

4. 新規デプロイメントをスケールアップします。

5. post ライフサイクルフックを実行します。

重要

スケールアップ中に、デプロイメントのレプリカ数が複数ある場合は、デプロイメント
の最初のレプリカが準備できているかどうかが検証されてから、デプロイメントが完全
にスケールアップされます。最初のレプリカの検証に失敗した場合には、デプロイメン
トは失敗とみなされます。

再作成デプロイメントの使用のタイミング:

新規コードを起動する前に、移行または他のデータの変換を行う必要がある場合

以前のバージョンと新しいバージョンのアプリケーションコードの同時使用をサポートしてい
ない場合

複数のレプリカ間での共有がサポートされていない、RWO ボリュームを使用する場合

再作成デプロイメントでは、短い期間にアプリケーションのインスタンスが実行されなくなるので、ダ
ウンタイムが発生します。ただし、以前のコードと新しいコードは同時には実行されません。

6.4.3.1. 開発者パースペクティブを使用したデプロイメントの編集

Developer パースペクティブを使用して、デプロイメントのデプロイメントストラテジー、イメージ設
定、環境変数、詳細オプションを編集できます。

前提条件

Web コンソールの Developer パースペクティブを使用している。

アプリケーションを作成している。

手順

1. Topology ビューに移動します。

 pre: {} 2
 mid: {}
 post: {}

OpenShift Dedicated 4 アプリケーションのビルド

106

2. アプリケーションをクリックして、Details パネルを表示します。

3. Actions ドロップダウンメニューで Edit Deployment を選択し、Edit Deployment ページを表
示します。

4. デプロイメントの以下の Advanced options を編集できます。

a. オプション: Pause rollouts をクリックして Pause rollouts for this deployment チェック
ボックスを選択すると、ロールアウトを一時停止できます。
ロールアウトを一時停止すると、ロールアウトをトリガーせずにアプリケーションを変更
できます。ロールアウトはいつでも再開できます。

b. オプション: Scaling をクリックし、Replicas のカズを変更することでイメージのインスタ
ンス数を変更できます。

5. Save をクリックします。

6.4.3.2. 開発者パースペクティブを使用した再作成デプロイメントの開始

Web コンソールの Developer パースペクティブを使用して、デプロイメントストラテジーをデフォル
トのローリング更新から再作成更新に切り替えることができます。

前提条件

Web コンソールの Developer パースペクティブにいることを確認します。

Add ビューを使用してアプリケーションを作成し、これが Topology ビューにデプロイされて
いることを確認します。

手順

再作成更新ストラテジーに切り替え、アプリケーションをアップグレードするには、以下を実行しま
す。

1. アプリケーションをクリックして、Details パネルを表示します。

2. Actions ドロップダウンメニューで、Edit Deployment Config を選択し、アプリケーションの
デプロイメント設定の詳細を確認します。

3. YAML エディターで spec.strategy.type を Recreate に変更し、Save をクリックします。

4. Topology ビューでノードを選択し、サイドパネルの Overview タブを表示します。これ
で、Update Strategy は Recreate に設定されます。

5. Actions ドロップダウンメニューを使用し、Start Rollout を選択し、再作成ストラテジーを使
用して更新を開始します。再作成ストラテジーはまず、アプリケーションの古いバージョンの
Pod を終了してから、新規バージョンの Pod を起動します。

図6.2 再作成更新

第6章 デプロイメント

107

図6.2 再作成更新

関連情報

Developer パースペクティブを使用して OpenShift Dedicated でアプリケーションを作成し、
デプロイする

Topology ビューを使用してプロジェクトにアプリケーションを表示し、デプロイメントのス
テータスを確認し、それらと対話する

6.4.4. カスタムストラテジー

カスタムストラテジーでは、独自のデプロイメントの動作を提供できるようになります。

カスタムストラテジー定義の例

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...

OpenShift Dedicated 4 アプリケーションのビルド

108

上記の例では、organization/strategy コンテナーイメージにより、デプロイメントの動作が提供され
ます。オプションの command 配列は、イメージの Dockerfile で指定した CMD ディレクティブを上
書きします。指定したオプションの環境変数は、ストラテジープロセスの実行環境に追加されます。

さらに、OpenShift Dedicated は以下の環境変数をデプロイメントプロセスに提供します。

環境変数 説明

OPENSHIFT_DEPLOYMENT_
NAME

新規デプロイメント名 (レプリケーションコントローラー)

OPENSHIFT_DEPLOYMENT_
NAMESPACE

新規デプロイメントの namespace

新規デプロイメントのレプリカ数は最初はゼロです。ストラテジーの目的は、ユーザーのニーズに最適
な仕方で対応するロジックを使用して新規デプロイメントをアクティブにすることにあります。

または customParams オブジェクトを使用して、カスタムのデプロイメントロジックを、既存のデプ
ロイメントストラテジーに挿入します。カスタムのシェルスクリプトロジックを指定して、openshift-
deploy バイナリーを呼び出します。カスタムのデプロイヤーコンテナーイメージを用意する必要はあ
りません。ここでは、代わりにデフォルトの OpenShift Dedicated デプロイヤーイメージが使用されま
す。

spec:
...
 strategy:
 type: Custom
 customParams:
 image: organization/strategy
 command: ["command", "arg1"]
 environment:
 - name: ENV_1
 value: VALUE_1

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...
spec:
...
 strategy:
 type: Rolling
 customParams:
 command:
 - /bin/sh
 - -c
 - |
 set -e
 openshift-deploy --until=50%
 echo Halfway there
 openshift-deploy
 echo Complete

第6章 デプロイメント

109

この設定により、以下のようなデプロイメントになります。

カスタムデプロイメントストラテジーのプロセスでは、OpenShift Dedicated API または Kubernetes
API へのアクセスが必要な場合には、ストラテジーを実行するコンテナーは、認証用のコンテナーで利
用可能なサービスアカウントのトークンを使用できます。

6.4.4.1. 開発者パースペクティブを使用したデプロイメントの編集

Developer パースペクティブを使用して、デプロイメントのデプロイメントストラテジー、イメージ設
定、環境変数、詳細オプションを編集できます。

前提条件

Web コンソールの Developer パースペクティブを使用している。

アプリケーションを作成している。

手順

1. Topology ビューに移動します。

2. アプリケーションをクリックして、Details パネルを表示します。

3. Actions ドロップダウンメニューで Edit Deployment を選択し、Edit Deployment ページを表
示します。

4. デプロイメントの以下の Advanced options を編集できます。

a. オプション: Pause rollouts をクリックして Pause rollouts for this deployment チェック
ボックスを選択すると、ロールアウトを一時停止できます。
ロールアウトを一時停止すると、ロールアウトをトリガーせずにアプリケーションを変更
できます。ロールアウトはいつでも再開できます。

b. オプション: Scaling をクリックし、Replicas のカズを変更することでイメージのインスタ
ンス数を変更できます。

5. Save をクリックします。

6.4.5. ライフサイクルフック

ローリングおよび再作成ストラテジーは、ストラテジーで事前に定義したポイントでデプロイメントプ

Started deployment #2
--> Scaling up custom-deployment-2 from 0 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-2 up to 1
--> Reached 50% (currently 50%)
Halfway there
--> Scaling up custom-deployment-2 from 1 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-1 down to 1
 Scaling custom-deployment-2 up to 2
 Scaling custom-deployment-1 down to 0
--> Success
Complete

OpenShift Dedicated 4 アプリケーションのビルド

110

1

ローリングおよび再作成ストラテジーは、ストラテジーで事前に定義したポイントでデプロイメントプ
ロセスに動作を挿入できるようにする ライフサイクルフック またはデプロイメントフックをサポート
します。

pre ライフサイクルフックの例

execNewPod は Pod ベースのライフサイクルフックです。

フックにはすべて、フックに問題が発生した場合にストラテジーが取るべきアクションを定義する 失敗
ポリシー が含まれます。

Abort フックに失敗すると、デプロイメントプロセスも失敗とみなされます。

Retry フックの実行は、成功するまで再試行されます。

Ignore フックの失敗は無視され、デプロイメントは続行されます。

フックには、フックの実行方法を記述するタイプ固有のフィールドがあります。現在、フックタイプと
してサポートされているのは Pod ベースのフックのみで、このフックは execNewPod フィールドで指
定されます。

6.4.5.1. Pod ベースのライフサイクルフック

Pod ベースのライフサイクルフックは、DeploymentConfig オブジェクトのテンプレートをベースとす
る新しい Pod でフックコードを実行します。

以下のデプロイメントの例は簡素化されており、この例ではローリングストラテジーを使用します。簡
潔にまとめられるように、トリガーおよびその他の詳細は省略しています。

pre:
 failurePolicy: Abort
 execNewPod: {} 1

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: frontend
spec:
 template:
 metadata:
 labels:
 name: frontend
 spec:
 containers:
 - name: helloworld
 image: openshift/origin-ruby-sample
 replicas: 5
 selector:
 name: frontend
 strategy:
 type: Rolling
 rollingParams:

第6章 デプロイメント

111

1

2

3

4

helloworld の名前は spec.template.spec.containers[0].name を参照します。

この command は、openshift/origin-ruby-sample イメージで定義される ENTRYPOINT を上書
きします。

env は、フックコンテナーの環境変数です (任意)。

volumes は、フックコンテナーのボリューム参照です (任意)。

この例では、pre フックは、helloworld コンテナーからの openshift/origin-ruby-sample イメージを
使用して新規 Pod で実行されます。フック Pod には以下のプロパティーが設定されます。

フックコマンドは /usr/bin/command arg1 arg2 です。

フックコンテナーには、CUSTOM_VAR1=custom_value1 環境変数が含まれます。

フックの失敗ポリシーは Abort で、フックが失敗するとデプロイメントプロセスも失敗しま
す。

フック Pod は、DeploymentConfig オブジェクト Pod から data ボリュームを継承します。

6.4.5.2. ライフサイクルフックの設定

CLI を使用してデプロイメント用に、ライフサイクルフックまたはデプロイメントフックを設定できま
す。

手順

1. oc set deployment-hook コマンドを使用して、必要なフックのタイプを設定します (--pre、--
mid、または --post)。たとえば、デプロイメント前のフックを設定するには、以下を実行しま
す。

6.5. ルートベースのデプロイメントストラテジーの使用

デプロイメントストラテジーは、アプリケーションを進化させる手段として使用します。一部のストラ
テジーは Deployment オブジェクトを使用して、アプリケーションに解決されるすべてのルートのユー
ザーが確認できる変更を実行します。このセクションで説明される他の高度なストラテジーでは、ルー
ターを Deployment オブジェクトと併用して特定のルートに影響を与えます。

 pre:
 failurePolicy: Abort
 execNewPod:
 containerName: helloworld 1
 command: ["/usr/bin/command", "arg1", "arg2"] 2
 env: 3
 - name: CUSTOM_VAR1
 value: custom_value1
 volumes:
 - data 4

$ oc set deployment-hook dc/frontend \
 --pre -c helloworld -e CUSTOM_VAR1=custom_value1 \
 --volumes data --failure-policy=abort -- /usr/bin/command arg1 arg2

OpenShift Dedicated 4 アプリケーションのビルド

112

最も一般的なルートベースのストラテジーとして blue-green デプロイメント を使用します。新規バー
ジョン (green バージョン) を、テストと評価用に起動しつつ、安定版 (blue バージョン) をユーザーが
継続して使用します。準備が整ったら、green バージョンに切り替えられます。問題が発生した場合に
は、blue バージョンに戻すことができます。

あるいは、両方のバージョンが同時にアクティブになる A/B バージョン ストラテジーを使用すること
もできます。このストラテジーでは、一部のユーザーは バージョン A を使用し、他のユーザーは バー
ジョン B を使用できます。このストラテジーを使用すると、ユーザーインターフェイスの変更やその他
の機能を試して、ユーザーからのフィードバックを得ることができます。また、ユーザーに対する問題
の影響が限られている場合に、実稼働のコンテキストで操作が正しく行われていることを検証するのに
使用することもできます。

カナリアデプロイメントでは、新規バージョンをテストしますが、問題が検出されると、すぐに以前の
バージョンにフォールバックされます。これは、上記のストラテジーどちらでも実行できます。

ルートベースのデプロイメントストラテジーでは、サービス内の Pod 数はスケーリングされません。
希望とするパフォーマンスの特徴を維持するには、デプロイメント設定をスケーリングする必要がある
場合があります。

6.5.1. プロキシーシャードおよびトラフィック分割

実稼働環境で、特定のシャードに到達するトラフィックの分散を正確に制御できます。多くのインスタ
ンスを扱う場合は、各シャードに相対的なスケールを使用して、割合ベースのトラフィックを実装でき
ます。これは、他の場所で実行中の別のサービスやアプリケーションに転送または分割する プロキシー
シャード とも適切に統合されます。

最も単純な設定では、プロキシーは要求を変更せずに転送します。より複雑な設定では、受信要求を複
製して、別のクラスターだけでなく、アプリケーションのローカルインスタンスにも送信して、結果を
比較することができます。他のパターンとしては、DR のインストールのキャッシュを保持したり、分
析目的で受信トラフィックをサンプリングすることができます。

TCP (または UDP) のプロキシーは必要なシャードで実行できます。oc scale コマンドを使用して、プ
ロキシーシャードで要求に対応するインスタンスの相対数を変更してください。より複雑なトラフィッ
クを管理する場合には、OpenShift Dedicated ルーターを比例分散機能でカスタマイズすることを検討
してください。

6.5.2. N-1 互換性

新規コードと以前のコードが同時に実行されるアプリケーションの場合は、新規コードで記述された
データが、以前のバージョンのコードで読み込みや処理 (または正常に無視) できるように注意する必要
があります。これは、スキーマの進化 と呼ばれる複雑な問題です。

これは、ディスクに保存したデータ、データベース、一時的なキャッシュ、ユーザーのブラウザーセッ
ションの一部など、多数の形式を取ることができます。多くの Web アプリケーションはローリングデ
プロイメントをサポートできますが、アプリケーションをテストし、設計してこれに対応させることが
重要です。

アプリケーションによっては、新旧のコードが並行的に実行されている期間が短いため、バグやユー
ザーのトランザクションに失敗しても許容範囲である場合があります。別のアプリケーションでは失敗
したパターンが原因で、アプリケーション全体が機能しなくなる場合もあります。

N-1 互換性を検証する 1 つの方法として、A/B デプロイメントを使用できます。制御されたテスト環境
で、以前のコードと新しいコードを同時に実行して、新規デプロイメントに流れるトラフィックが以前
のデプロイメントで問題を発生させないかを確認します。

第6章 デプロイメント

113

6.5.3. 正常な終了

OpenShift Dedicated および Kubernetes は、負荷分散のローテーションから削除する前にアプリケー
ションインスタンスがシャットダウンする時間を設定します。ただし、アプリケーションでは、終了前
にユーザー接続が正常に中断されていることを確認する必要があります。

シャットダウン時に、OpenShift Dedicated はコンテナーのプロセスに TERM シグナルを送信しま
す。SIGTERM を受信すると、アプリケーションコードは、新規接続の受け入れを停止します。これに
より、ロードバランサーによって他のアクティブなインスタンスにトラフィックがルーティングされる
ようになります。アプリケーションコードは、開放されている接続がすべて終了するか、次の機会に個
別接続が正常に終了されるまで待機してから終了します。

正常に終了する期間が終わると、終了されていないプロセスに KILL シグナルが送信され、プロセスが
即座に終了されます。Pod の terminationGracePeriodSeconds 属性または Pod テンプレートは正常
に終了する期間 (デフォルトの 30 秒) を制御し、必要に応じてこれらをアプリケーションごとにカスタ
マイズすることができます。

6.5.4. Blue-Green デプロイメント

Blue-green デプロイメントでは、同時にアプリケーションの 2 つのバージョンを実行し、実稼働版
(blue バージョン) からより新しいバージョン (green バージョン) にトラフィックを移動します。ルー
トでは、ローリングストラテジーまたは切り替えサービスを使用できます。

多くのアプリケーションは永続データに依存するので、N-1 互換性 をサポートするアプリケーションが
必要です。つまり、データを共有して、データ層を 2 つ作成し、データベース、ストアまたはディスク
間のライブマイグレーションを実装します。

新規バージョンのテストに使用するデータを考えてみてください。実稼働データの場合には、新規バー
ジョンのバグにより、実稼働版を破損してしまう可能性があります。

6.5.4.1. Blue-Green デプロイメントの設定

Blue-green デプロイメントでは 2 つの Deployment を使用します。どちらも実行され、実稼働のデプ
ロイメントはルートが指定するサービスによって変わります。この際、各 Deployment オブジェクトは
異なるサービスに公開されます。

注記

ルートは、Web (HTTP および HTTPS) トラフィックを対象としているので、この手法は
Web アプリケーションに最適です。

新規バージョンに新規ルートを作成し、これをテストすることができます。準備ができたら、実稼働
ルートのサービスが新規サービスを参照するように変更します。新規 (green) バージョンは有効になり
ます。

必要に応じて以前のバージョンにサービスを切り替えて、以前の (blue) バージョンにロールバックする
ことができます。

手順

1. 2 つの独立したアプリケーションコンポーネントを作成します。

a. v1 イメージを example-blue サービスで実行するサンプルアプリケーションのコピーを作
成します。

OpenShift Dedicated 4 アプリケーションのビルド

114

b. example-green サービスで v2 イメージを使用する 2 つ目のコピーを作成します。

2. 以前のサービスを参照するルートを作成します。

3. bluegreen-example-<project>.<router_domain> でアプリケーションを参照し、v1 イメージ
が表示されることを確認します。

4. ルートを編集して、サービス名を example-green に変更します。

5. ルートが変更されたことを確認するには、v2 イメージが表示されるまで、ブラウザーを更新し
ます。

6.5.5. A/B デプロイメント

A/B デプロイメントストラテジーでは、新しいバージョンのアプリケーションを実稼働環境での制限さ
れた方法で試すことができます。実稼働バージョンは、ユーザーの要求の大半に対応し、要求の一部が
新しいバージョンに移動されるように指定できます。

各バージョンへの要求の割合を制御できるので、テストが進むにつれ、新しいバージョンへの要求を増
やし、最終的に以前のバージョンの使用を停止することができます。各バージョン要求負荷を調整する
際に、期待どおりのパフォーマンスを出せるように、各サービスの Pod 数もスケーリングする必要が
生じる場合があります。

ソフトウェアのアップグレードに加え、この機能を使用してユーザーインターフェイスのバージョンを
検証することができます。以前のバージョンを使用するユーザーと、新しいバージョンを使用するユー
ザーが出てくるので、異なるバージョンに対するユーザーの反応を評価して、設計上の意思決定を知ら
せることができます。

このデプロイメントを有効にするには、以前のバージョンと新しいバージョンは同時に実行できるほど
類似している必要があります。これは、バグ修正リリースや新機能が以前の機能と干渉しないようにす
る場合の一般的なポイントになります。これらのバージョンが正しく連携するには N-1 互換性が必要で
す。

OpenShift Dedicated は、Web コンソールと CLI で N-1 互換性をサポートします。

6.5.5.1. A/B テスト用の負荷分散

ユーザーは複数のサービスでルートを設定します。各サービスは、アプリケーションの 1 つのバージョ
ンを処理します。

各サービスには weight が割り当てられ、各サービスへの要求の部分は service_weight を
sum_of_weights で除算します。エンドポイントの weights の合計がサービスの weight になるよう
に、サービスごとの weight がサービスのエンドポイントに分散されます。

ルートにはサービスを最大で 4 つ含めることができます。サービスの weight は、0 から 256 の間で指
定してください。weight が 0 の場合は、サービスはロードバランシングに参加せず、既存の持続する

$ oc new-app openshift/deployment-example:v1 --name=example-blue

$ oc new-app openshift/deployment-example:v2 --name=example-green

$ oc expose svc/example-blue --name=bluegreen-example

$ oc patch route/bluegreen-example -p '{"spec":{"to":{"name":"example-green"}}}'

第6章 デプロイメント

115

接続を継続的に提供します。サービスの weight が 0 でない場合は、エンドポイントの最小 weight は
1 となります。これにより、エンドポイントが多数含まれるサービスでは、最終的に weight は意図さ
れる値よりも大きくなる可能性があります。このような場合は、予想される負荷分散の weight を得る
ために Pod の数を減らします。

手順

A/B 環境を設定するには、以下を実行します。

1. 2 つのアプリケーションを作成して、異なる名前を指定します。それぞれが Deployment オブ
ジェクトを作成します。これらのアプリケーションは同じプログラムのバージョンであり、通
常 1 つは現在の実稼働バージョンで、もう 1 つは提案される新規バージョンとなります。

a. 最初のアプリケーションを作成します。以下の例では、ab-example-a という名前のアプリ
ケーションを作成します。

b. 2 番目のアプリケーションを作成します。

どちらのアプリケーションもデプロイされ、サービスが作成されます。

2. ルート経由でアプリケーションを外部から利用できるようにします。この時点でサービスを公
開できます。現在の実稼働バージョンを公開してから、後でルートを編集して新規バージョン
を追加すると便利です。

ab-example-a.<project>.<router_domain> でアプリケーションを参照して、予想されるバー
ジョンが表示されていることを確認します。

3. ルートをデプロイする場合には、ルーターはサービスに指定した weights に従ってトラフィッ
クを分散します。この時点では、デフォルトの weight=1 と指定されたサービスが 1 つ存在する
ので、すべての要求がこのサービスに送られます。他のサービスを alternateBackends として
追加し、weights を調整すると、A/B 設定が機能するようになります。これは、oc set route-
backends コマンドを実行するか、ルートを編集して実行できます。

注記

また、alternateBackends を使用する場合は、roundrobin ロードバランシング
戦略を使用して、重みに基づいてリクエストが想定どおりにサービスに分散され
るようにします。roundrobin は、ルートアノテーションを使用してルートに設
定できます。ルートアノテーションの詳細は、関連情報 セクションを参照して
ください。

oc set route-backend を 0 に設定することは、サービスがロードバランシングに参加しない
が、既存の持続する接続を提供し続けることを意味します。

注記

$ oc new-app openshift/deployment-example --name=ab-example-a

$ oc new-app openshift/deployment-example:v2 --name=ab-example-b

$ oc expose svc/ab-example-a

OpenShift Dedicated 4 アプリケーションのビルド

116

注記

ルートに変更を加えると、さまざまなサービスへのトラフィックの部分だけが変
更されます。デプロイメントをスケーリングして、必要な負荷を処理できるよう
に Pod 数を調整する必要がある場合があります。

ルートを編集するには、以下を実行します。

出力例

6.5.5.1.1. Web コンソールを使用した既存ルートの重みの管理

手順

1. Networking → Routes ページに移動します。

2. 編集するルートの横にある Options メニュー をクリックし、Edit Route を選択します。

3. YAML ファイルを編集します。weight を 0 から 256 の間の整数になるように更新します。こ
れは、他のターゲット参照オブジェクトに対するターゲットの相対的な重みを指定します。値
0 はこのバックエンドへの要求を抑制します。デフォルトは 100 です。オプションの詳細
は、oc explain routes.spec.alternateBackends を実行します。

4. Save をクリックします。

6.5.5.1.2. Web コンソールを使用した新規ルートの重みの管理

1. Networking → Routes ページに移動します。

2. Create Route をクリックします。

$ oc edit route <route_name>

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-alternate-service
 annotations:
 haproxy.router.openshift.io/balance: roundrobin
...
spec:
 host: ab-example.my-project.my-domain
 to:
 kind: Service
 name: ab-example-a
 weight: 10
 alternateBackends:
 - kind: Service
 name: ab-example-b
 weight: 15
...

第6章 デプロイメント

117

3. ルートの Name を入力します。

4. Service を選択します。

5. Add Alternate Service をクリックします。

6. Weight および Alternate Service Weight の値を入力します。他のターゲットとの相対的な重
みを示す 0 から 255 の間の数字を入力します。デフォルトは 100 です。

7. Target Port を選択します。

8. Create をクリックします。

6.5.5.1.3. CLI を使用した重みの管理

手順

1. サービスおよび対応する重みのルートによる負荷分散を管理するには、oc set route-backends
コマンドを使用します。

たとえば、以下のコマンドは ab-example-a に weight=198 を指定して主要なサービスと
し、ab-example-b に weight=2 を指定して 1 番目の代用サービスとして設定します。

つまり、99% のトラフィックはサービス ab-example-a に、1% はサービス ab-example-b に送
信されます。

このコマンドでは、デプロイメントはスケーリングされません。要求の負荷を処理するのに十
分な Pod がある状態でこれを実行する必要があります。

2. フラグなしのコマンドを実行して、現在の設定を確認します。

出力例

3. 負荷分散アルゴリズムのデフォルト値を上書きするには、アルゴリズムを roundrobin に設定
してルートのアノテーションを調整します。OpenShift Dedicated 上のルートの場合、デフォ
ルトの負荷分散アルゴリズムは random または source 値に設定されます。
アルゴリズムを roundrobin に設定するには、次のコマンドを実行します。

Transport Layer Security (TLS) パススルールートの場合、デフォルト値は source です。他の
すべてのルートの場合、デフォルトは random です。

$ oc set route-backends ROUTENAME \
 [--zero|--equal] [--adjust] SERVICE=WEIGHT[%] [...] [options]

$ oc set route-backends ab-example ab-example-a=198 ab-example-b=2

$ oc set route-backends ab-example

NAME KIND TO WEIGHT
routes/ab-example Service ab-example-a 198 (99%)
routes/ab-example Service ab-example-b 2 (1%)

$ oc annotate routes/<route-name> haproxy.router.openshift.io/balance=roundrobin

OpenShift Dedicated 4 アプリケーションのビルド

118

4. --adjust フラグを使用すると、個別のサービスの重みを、それ自体に対して、または主要な
サービスに対して相対的に変更できます。割合を指定すると、主要サービスまたは 1 番目の代
用サービス (主要サービスを設定している場合) に対して相対的にサービスを調整できます。他
にバックエンドがある場合には、重みは変更に比例した状態になります。
以下の例では、ab-example-a および ab-example-b サービスの重みを変更します。

または、パーセンテージを指定してサービスの重みを変更します。

パーセンテージ宣言の前に + を指定すると、現在の設定に対して重み付けを調整できます。以
下に例を示します。

--equal フラグでは、全サービスの weight が 100 になるように設定します。

--zero フラグは、全サービスの weight を 0 に設定します。すべての要求に対して 503 エラー
が返されます。

注記

ルートによっては、複数のバックエンドまたは重みが設定されたバックエンドを
サポートしないものがあります。

6.5.5.1.4. 1 サービス、複数の Deployment オブジェクト

手順

1. すべてのシャードに共通の ab-example=true ラベルを追加して新規アプリケーションを作成し
ます。

アプリケーションがデプロイされ、サービスが作成されます。これは最初のシャードです。

2. ルートを使用してアプリケーションを利用できるようにしてください (または、サービス IP を
直接使用してください)。

3. ab-example-<project_name>.<router_domain> でアプリケーションを参照し、v1 イメージが

$ oc set route-backends ab-example --adjust ab-example-a=200 ab-example-b=10

$ oc set route-backends ab-example --adjust ab-example-b=5%

$ oc set route-backends ab-example --adjust ab-example-b=+15%

$ oc set route-backends ab-example --equal

$ oc new-app openshift/deployment-example --name=ab-example-a --as-deployment-
config=true --labels=ab-example=true --env=SUBTITLE\=shardA

$ oc delete svc/ab-example-a

$ oc expose deployment ab-example-a --name=ab-example --selector=ab-example\=true

$ oc expose service ab-example

第6章 デプロイメント

119

3. ab-example-<project_name>.<router_domain> でアプリケーションを参照し、v1 イメージが
表示されることを確認します。

4. 1 つ目のシャードと同じソースイメージおよびラベルに基づくが、別のバージョンがタグ付けさ
れたバージョンと一意の環境変数を指定して 2 つ目のシャードを作成します。

5. この時点で、いずれの Pod のセットもルートで提供されます。しかし、両ブラウザー (接続を
開放) とルーター (デフォルトでは cookie を使用) で、バックエンドサーバーへの接続を維持し
ようとするので、シャードが両方返されない可能性があります。
1 つのまたは他のシャードに対してブラウザーを強制的に実行するには、以下を実行します。

a. oc scale コマンドを使用して、ab-example-a のレプリカを 0 に減らします。

ブラウザーを更新して、v2 および shard B (赤) を表示させます。

b. ab-example-a を 1 レプリカに、ab-example-b を 0 にスケーリングします。

ブラウザーを更新して、v1 および shard A (青) を表示します。

6. いずれかのシャードでデプロイメントをトリガーする場合、そのシャードの Pod のみが影響を
受けます。どちらかの Deployment オブジェクトで SUBTITLE 環境変数を変更してデプロイ
メントをトリガーできます。

または

6.5.6. 関連情報

ルート固有のアノテーション

$ oc new-app openshift/deployment-example:v2 \
 --name=ab-example-b --labels=ab-example=true \
 SUBTITLE="shard B" COLOR="red" --as-deployment-config=true

$ oc delete svc/ab-example-b

$ oc scale dc/ab-example-a --replicas=0

$ oc scale dc/ab-example-a --replicas=1; oc scale dc/ab-example-b --replicas=0

$ oc edit dc/ab-example-a

$ oc edit dc/ab-example-b

OpenShift Dedicated 4 アプリケーションのビルド

120

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/ingress_and_load_balancing/#nw-route-specific-annotations

第7章 QUOTAS

7.1. プロジェクトごとのリソースクォータ

ResourceQuota オブジェクトで定義される リソースクォータ は、プロジェクトごとにリソース消費量
の総計を制限する制約を指定します。これは、タイプ別にプロジェクトで作成できるオブジェクトの数
量を制限すると共に、そのプロジェクトのリソースが消費する可能性のあるコンピュートリソースおよ
びストレージの合計量を制限することができます。

このガイドでは、リソースクォータの仕組みや、クラスター管理者がリソースクォータはプロジェクト
ごとにどのように設定し、管理できるか、および開発者やクラスター管理者がそれらをどのように表示
できるかを説明します。

7.1.1. クォータで管理されるリソース

以下では、クォータで管理できる一連のコンピュートリソースとオブジェクトタイプを説明します。

注記

status.phase in (Failed、Succeeded) が true の場合、Pod は終了状態にあります。

表7.1 クォータで管理されるコンピュートリソース

リソース名 説明

cpu 非終了状態のすべての Pod での CPU 要求の合計はこの値を超えることができ
ません。cpu および requests.cpu は同じ値であり、相互に置き換え可能な
ものとして使用できます。

memory 非終了状態のすべての Pod でのメモリー要求の合計はこの値を超えることがで
きません。memory および requests.memory は同じ値であり、相互に置き
換え可能なものとして使用できます。

requests.cpu 非終了状態のすべての Pod での CPU 要求の合計はこの値を超えることができ
ません。cpu および requests.cpu は同じ値であり、相互に置き換え可能な
ものとして使用できます。

requests.memory 非終了状態のすべての Pod でのメモリー要求の合計はこの値を超えることがで
きません。memory および requests.memory は同じ値であり、相互に置き
換え可能なものとして使用できます。

limits.cpu 非終了状態のすべての Pod での CPU 制限の合計はこの値を超えることができ
ません。

limits.memory 非終了状態のすべての Pod でのメモリー制限の合計はこの値を超えることがで
きません。

表7.2 クォータで管理されるストレージリソース

第7章 QUOTAS

121

リソース名 説明

requests.storage 任意の状態のすべての永続ボリューム要求でのストレージ要求の合計は、この
値を超えることができません。

persistentvolumeclaim
s

プロジェクトに存在できる永続ボリューム要求の合計数です。

<storage-class-
name>.storageclass.st
orage.k8s.io/requests.
storage

一致するストレージクラスを持つ、任意の状態のすべての永続ボリューム要求
でのストレージ要求の合計はこの値を超えることができません。

<storage-class-
name>.storageclass.st
orage.k8s.io/persistent
volumeclaims

プロジェクトに存在できる、一致するストレージクラスを持つ永続ボリューム
要求の合計数です。

ephemeral-storage 非終了状態のすべての Pod におけるローカルの一時ストレージ要求の合計は、
この値を超えることができません。ephemeral-storage および
requests.ephemeral-storage は同じ値であり、相互に置き換え可能なもの
として使用できます。

requests.ephemeral-
storage

非終了状態のすべての Pod における一時ストレージ要求の合計は、この値を超
えることができません。ephemeral-storage および requests.ephemeral-
storage は同じ値であり、相互に置き換え可能なものとして使用できます。

limits.ephemeral-
storage

非終了状態のすべての Pod における一時ストレージ制限の合計は、この値を超
えることができません。

表7.3 クォータで管理されるオブジェクト数

リソース名 説明

pods プロジェクトに存在できる非終了状態の Pod の合計数です。

replicationcontrollers プロジェクトに存在できる ReplicationController の合計数です。

resourcequotas プロジェクトに存在できるリソースクォータの合計数です。

services プロジェクトに存在できるサービスの合計数です。

services.loadbalancers プロジェクトに存在できるタイプ LoadBalancer のサービスの合計数です。

services.nodeports プロジェクトに存在できるタイプ NodePort のサービスの合計数です。

secrets プロジェクトに存在できるシークレットの合計数です。

OpenShift Dedicated 4 アプリケーションのビルド

122

configmaps プロジェクトに存在できる ConfigMap オブジェクトの合計数です。

persistentvolumeclaim
s

プロジェクトに存在できる永続ボリューム要求の合計数です。

openshift.io/imagestre
ams

プロジェクトに存在できるイメージストリームの合計数です。

リソース名 説明

7.1.2. クォータのスコープ

各クォータには スコープ のセットが関連付けられます。クォータは、列挙されたスコープの交差部分
に一致する場合にのみリソースの使用状況を測定します。

スコープをクォータに追加すると、クォータが適用されるリソースのセットを制限できます。許可され
るセット以外のリソースを設定すると、検証エラーが発生します。

スコープ 説明

BestEffort cpu または memory のいずれかに関するサービス
の QoS (Quality of Service) が Best Effort の Pod に
一致します。

NotBestEffort cpu および memory に関するサービスの QoS
(Quality of Service) が Best Effort ではない Pod に一
致します。

BestEffort スコープは、以下のリソースに制限するようにクォータを制限します。

pods

NotBestEffort スコープは、以下のリソースを追跡するようにクォータを制限します。

pods

memory

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

7.1.3. クォータの実施

プロジェクトのリソースクォータが最初に作成されると、プロジェクトは、更新された使用状況の統計

第7章 QUOTAS

123

1

2

3

4

5

6

プロジェクトのリソースクォータが最初に作成されると、プロジェクトは、更新された使用状況の統計
が計算されるまでクォータ制約の違反を引き起こす可能性のある新規リソースの作成機能を制限しま
す。

クォータが作成され、使用状況の統計が更新されると、プロジェクトは新規コンテンツの作成を許可し
ます。リソースを作成または変更する場合、クォータの使用量はリソースの作成または変更要求がある
とすぐに増分します。

リソースを削除する場合、クォータの使用量は、プロジェクトのクォータ統計の次回の完全な再計算時
に減分されます。設定可能な時間を指定して、クォータ使用量の統計値を現在確認されるシステム値ま
で下げるのに必要な時間を決定します。

プロジェクト変更がクォータ使用制限を超える場合、サーバーはそのアクションを拒否し、クォータ制
約を違反していること、およびシステムで現在確認される使用量の統計値を示す適切なエラーメッセー
ジがユーザーに返されます。

7.1.4. 要求と制限

コンピュートリソースの割り当て時に、各コンテナーは CPU、メモリー、一時ストレージのそれぞれ
に要求値と制限値を指定できます。クォータはこれらの値のいずれも制限できます。

クォータに requests.cpu または requests.memory の値が指定されている場合、すべての着信コンテ
ナーがそれらのリソースを明示的に要求することが求められます。クォータに limits.cpu または
limits.memory の値が指定されている場合、すべての着信コンテナーがそれらのリソースの明示的な制
限を指定することが求められます。

7.1.5. リソースクォータ定義の例

core-object-counts.yaml

プロジェクトに存在できる ConfigMap オブジェクトの合計数です。

プロジェクトに存在できる永続ボリューム要求 (PVC) の合計数です。

プロジェクトに存在できるレプリケーションコントローラーの合計数です。

プロジェクトに存在できるシークレットの合計数です。

プロジェクトに存在できるサービスの合計数です。

プロジェクトに存在できるタイプ LoadBalancer のサービスの合計数です。

apiVersion: v1
kind: ResourceQuota
metadata:
 name: core-object-counts
spec:
 hard:
 configmaps: "10" 1
 persistentvolumeclaims: "4" 2
 replicationcontrollers: "20" 3
 secrets: "10" 4
 services: "10" 5
 services.loadbalancers: "2" 6

OpenShift Dedicated 4 アプリケーションのビルド

124

1

1

2

3

4

5

1

openshift-object-counts.yaml

プロジェクトに存在できるイメージストリームの合計数です。

compute-resources.yaml

プロジェクトに存在できる非終了状態の Pod の合計数です。

非終了状態のすべての Pod において、CPU 要求の合計は 1 コアを超えることができません。

非終了状態のすべての Pod において、メモリー要求の合計は 1 Gi を超えることができません。

非終了状態のすべての Pod において、CPU 制限の合計は 2 コアを超えることができません。

非終了状態のすべての Pod において、メモリー制限の合計は 2 Gi を超えることができません。

besteffort.yaml

プロジェクトに存在できるサービスの QoS (Quality of Service) が BestEffort の非終了状態の Pod
の合計数です。

apiVersion: v1
kind: ResourceQuota
metadata:
 name: openshift-object-counts
spec:
 hard:
 openshift.io/imagestreams: "10" 1

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:
 pods: "4" 1
 requests.cpu: "1" 2
 requests.memory: 1Gi 3
 limits.cpu: "2" 4
 limits.memory: 2Gi 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:
 pods: "1" 1
 scopes:
 - BestEffort 2

第7章 QUOTAS

125

2

1

2

3

4

1

2

3

4

クォータを、メモリーまたは CPU のいずれかのサービスの QoS (Quality of Service) が
BestEffort の一致する Pod のみに制限します。

compute-resources-long-running.yaml

非終了状態の Pod の合計数です。

非終了状態のすべての Pod において、CPU 制限の合計はこの値を超えることができません。

非終了状態のすべての Pod において、メモリー制限の合計はこの値を超えることができません。

クォータを spec.activeDeadlineSeconds が nil に設定されている一致する Pod のみに制限しま
す。ビルド Pod は、RestartNever ポリシーが適用されない限り NotTerminating になります。

compute-resources-time-bound.yaml

終了状態の Pod の合計数です。

終了状態のすべての Pod において、CPU 制限の合計はこの値を超えることができません。

終了状態のすべての Pod において、メモリー制限の合計はこの値を超えることができません。

クォータを spec.activeDeadlineSeconds >=0 に設定されている一致する Pod のみに制限しま
す。たとえば、このクォータはビルド Pod またはデプロイヤー Pod に影響を与えますが、web
サーバーまたはデータベースなどの長時間実行されない Pod には影響を与えません。

storage-consumption.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-long-running
spec:
 hard:
 pods: "4" 1
 limits.cpu: "4" 2
 limits.memory: "2Gi" 3
 scopes:
 - NotTerminating 4

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-time-bound
spec:
 hard:
 pods: "2" 1
 limits.cpu: "1" 2
 limits.memory: "1Gi" 3
 scopes:
 - Terminating 4

OpenShift Dedicated 4 アプリケーションのビルド

126

1

2

3

4

5

6

7

8

9

プロジェクト内の永続ボリューム要求の合計数です。

プロジェクトのすべての永続ボリューム要求において、要求されるストレージの合計はこの値を超
えることができません。

プロジェクトのすべての永続ボリューム要求において、gold ストレージクラスで要求されるスト
レージの合計はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求において、silver ストレージクラスで要求されるスト
レージの合計はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求において、silver ストレージクラスの要求の合計数は
この値を超えることができません。

プロジェクトのすべての永続ボリューム要求において、bronze ストレージクラスで要求されるス
トレージの合計はこの値を超えることができません。これが 0 に設定される場合、bronze スト
レージクラスはストレージを要求できないことを意味します。

プロジェクトのすべての永続ボリューム要求において、bronze ストレージクラスで要求されるス
トレージの合計はこの値を超えることができません。これが 0 に設定される場合は、bronze スト
レージクラスでは要求を作成できないことを意味します。

非終了状態のすべての Pod において、一時ストレージ要求の合計は 2 Gi を超えることができませ
ん。

非終了状態のすべての Pod において、一時ストレージ制限の合計は 4 Gi を超えることができませ
ん。

7.1.6. クォータの作成

特定のプロジェクトでリソースの使用を制限するためにクォータを作成することができます。

手順

1. ファイルにクォータを定義します。

2. クォータを作成し、これをプロジェクトに適用するためにファイルを使用します。

apiVersion: v1
kind: ResourceQuota
metadata:
 name: storage-consumption
spec:
 hard:
 persistentvolumeclaims: "10" 1
 requests.storage: "50Gi" 2
 gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
 silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
 silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
 bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
 bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7
 requests.ephemeral-storage: 2Gi 8
 limits.ephemeral-storage: 4Gi 9

第7章 QUOTAS

127

1

以下に例を示します。

7.1.6.1. オブジェクトカウントクォータの作成

BuildConfig および DeploymentConfig オブジェクトなどの、OpenShift Dedicated の標準的な
namespace を使用しているリソースタイプのすべてにオブジェクトカウントクォータを作成できま
す。オブジェクトクォータカウントは、定義されたクォータをすべての標準的な namespace を使用し
ているリソースタイプに設定します。

リソースクォータを使用する際に、オブジェクトは作成時クォータに基づいてチャージされます。以下
のクォータのタイプはリソースが使い切られることから保護するのに役立ちます。クォータは、プロ
ジェクト内に余分なリソースが十分にある場合にのみ作成できます。

手順

リソースのオブジェクトカウントクォータを設定するには、以下を実行します。

1. 以下のコマンドを実行します。

<resource> 変数はリソースの名前であり、<group> は API グループです (該当する場
合)。リソースおよびそれらの関連付けられた API グループのリストに oc api-resources
コマンドを使用します。

以下に例を示します。

出力例

この例では、リスト表示されたリソースをクラスター内の各プロジェクトのハード制限に制限
します。

2. クォータが作成されていることを確認します。

出力例

$ oc create -f <file> [-n <project_name>]

$ oc create -f core-object-counts.yaml -n demoproject

$ oc create quota <name> \
 --hard=count/<resource>.<group>=<quota>,count/<resource>.<group>=<quota> 1

$ oc create quota test \
 --
hard=count/deployments.apps=2,count/replicasets.apps=4,count/pods=3,count/secrets=4

resourcequota "test" created

$ oc describe quota test

Name: test
Namespace: quota
Resource Used Hard

OpenShift Dedicated 4 アプリケーションのビルド

128

7.1.6.2. 拡張リソースのリソースクォータの設定

リソースのオーバーコミットは拡張リソースには許可されません。そのため、クォータで同じ拡張リ
ソースについて requests および limits を指定する必要があります。現時点で、接頭辞 requests. のあ
るクォータ項目のみが拡張リソースに許可されます。以下は、GPU リソース nvidia.com/gpu のリ
ソースクォータを設定する方法に関するシナリオ例です。

手順

1. クラスター内のノードで利用可能な GPU の数を判別します。以下に例を示します。

出力例

この例では、2 つの GPU が利用可能です。

2. ResourceQuota オブジェクトを作成して、namespace nvidia にクォータを設定します。この
例では、クォータは 1 です。

出力例

3. クォータを作成します。

出力例

-------- ---- ----
count/deployments.apps 0 2
count/pods 0 3
count/replicasets.apps 0 4
count/secrets 0 4

oc describe node ip-172-31-27-209.us-west-2.compute.internal | egrep
'Capacity|Allocatable|gpu'

 openshift.com/gpu-accelerator=true
Capacity:
 nvidia.com/gpu: 2
Allocatable:
 nvidia.com/gpu: 2
 nvidia.com/gpu 0 0

apiVersion: v1
kind: ResourceQuota
metadata:
 name: gpu-quota
 namespace: nvidia
spec:
 hard:
 requests.nvidia.com/gpu: 1

oc create -f gpu-quota.yaml

resourcequota/gpu-quota created

第7章 QUOTAS

129

4. namespace に正しいクォータが設定されていることを確認します。

出力例

5. 単一 GPU を要求する Pod を定義します。以下の定義ファイルのサンプルの名前は gpu-
pod.yaml です。

6. Pod を作成します。

7. Pod が実行されていることを確認します。

出力例

8. クォータ Used のカウンターが正しいことを確認します。

oc describe quota gpu-quota -n nvidia

Name: gpu-quota
Namespace: nvidia
Resource Used Hard
-------- ---- ----
requests.nvidia.com/gpu 0 1

apiVersion: v1
kind: Pod
metadata:
 generateName: gpu-pod-
 namespace: nvidia
spec:
 restartPolicy: OnFailure
 containers:
 - name: rhel7-gpu-pod
 image: rhel7
 env:
 - name: NVIDIA_VISIBLE_DEVICES
 value: all
 - name: NVIDIA_DRIVER_CAPABILITIES
 value: "compute,utility"
 - name: NVIDIA_REQUIRE_CUDA
 value: "cuda>=5.0"
 command: ["sleep"]
 args: ["infinity"]
 resources:
 limits:
 nvidia.com/gpu: 1

oc create -f gpu-pod.yaml

oc get pods

NAME READY STATUS RESTARTS AGE
gpu-pod-s46h7 1/1 Running 0 1m

OpenShift Dedicated 4 アプリケーションのビルド

130

出力例

9. nvidia namespace で 2 番目の GPU Pod の作成を試行します。2 つの GPU があるので、これ
をノード上で実行することは可能です。

出力例

クォータが 1 GPU であり、この Pod がそのクォータを超える 2 つ目の GPU の割り当てを試行
したため、Forbidden エラーメッセージが表示されることが予想されます。

7.1.7. クォータの表示

Web コンソールでプロジェクトの Quota ページに移動し、プロジェクトのクォータで定義されるハー
ド制限に関連する使用状況の統計情報を表示できます。

CLI を使用してクォータの詳細を表示することもできます。

手順

1. プロジェクトで定義されるクォータのリストを取得します。たとえば、demoproject というプ
ロジェクトの場合、以下を実行します。

出力例

2. 関連するクォータを記述します。たとえば、core-object-counts クォータの場合、以下を実行
します。

oc describe quota gpu-quota -n nvidia

Name: gpu-quota
Namespace: nvidia
Resource Used Hard
-------- ---- ----
requests.nvidia.com/gpu 1 1

oc create -f gpu-pod.yaml

Error from server (Forbidden): error when creating "gpu-pod.yaml": pods "gpu-pod-f7z2w" is
forbidden: exceeded quota: gpu-quota, requested: requests.nvidia.com/gpu=1, used:
requests.nvidia.com/gpu=1, limited: requests.nvidia.com/gpu=1

$ oc get quota -n demoproject

NAME AGE REQUEST
LIMIT
besteffort 4s pods: 1/2
compute-resources-time-bound 10m pods: 0/2
limits.cpu: 0/1, limits.memory: 0/1Gi
core-object-counts 109s configmaps: 2/10, persistentvolumeclaims: 1/4,
replicationcontrollers: 1/20, secrets: 9/10, services: 2/10

$ oc describe quota core-object-counts -n demoproject

第7章 QUOTAS

131

出力例

7.1.8. 明示的なリソースクォータの設定

プロジェクト要求テンプレートで明示的なリソースクォータを設定し、新規プロジェクトに特定のリ
ソースクォータを適用します。

前提条件

cluster-admin ロールを持つユーザーとしてのクラスターへのアクセスがあること。

OpenShift CLI (oc) がインストールされている。

手順

1. プロジェクト要求テンプレートにリソースクォータ定義を追加します。

プロジェクト要求テンプレートがクラスターに存在しない場合:

a. ブートストラッププロジェクトテンプレートを作成し、これを template.yaml という
ファイルに出力します。

b. リソースクォータの定義を template.yaml に追加します。以下の例では、'storage-
consumption' という名前のリソースクォータを定義します。テンプレートの
parameters: セクションの前に定義を追加する必要があります。

Name: core-object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10
persistentvolumeclaims 0 4
replicationcontrollers 3 20
secrets 9 10
services 2 10

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

- apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: storage-consumption
 namespace: ${PROJECT_NAME}
 spec:
 hard:
 persistentvolumeclaims: "10" 1
 requests.storage: "50Gi" 2
 gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
 silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
 silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
 bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
 bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7

OpenShift Dedicated 4 アプリケーションのビルド

132

1

2

3

4

5

6

7

プロジェクト内の永続ボリューム要求の合計数です。

プロジェクトのすべての永続ボリューム要求において、要求されるストレージの
合計はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求において、gold ストレージクラスで
要求されるストレージの合計はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求において、silver ストレージクラスで
要求されるストレージの合計はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求において、silver ストレージクラスの
要求の合計数はこの値を超えることができません。

プロジェクトのすべての永続ボリューム要求において、bronze ストレージクラス
で要求されるストレージの合計はこの値を超えることができません。この値が 0
に設定される場合、bronze ストレージクラスはストレージを要求できません。

プロジェクトのすべての永続ボリューム要求において、bronze ストレージクラス
で要求されるストレージの合計はこの値を超えることができません。この値が 0
に設定される場合、bronze ストレージクラスは要求を作成できません。

c. openshift-config namespace の変更された template.yaml ファイルでプロジェクト要
求テンプレートを作成します。

注記

設定を kubectl.kubernetes.io/last-applied-configuration アノテーショ
ンとして追加するには、--save-config オプションを oc create コマンド
に追加します。

デフォルトでは、テンプレートは project-request という名前になります。

プロジェクト要求テンプレートがクラスター内にすでに存在する場合は、以下を実行しま
す。

注記

設定ファイルを使用してクラスター内のオブジェクトを宣言的または命令的
に管理する場合は、これらのファイルを使用して既存のプロジェクト要求テ
ンプレートを編集します。

a. openshift-config namespace のテンプレートをリスト表示します。

b. 既存のプロジェクト要求テンプレートを編集します。

c. 前述の storage-consumption の例などのリソースクォータ定義を既存のテンプレート

$ oc create -f template.yaml -n openshift-config

$ oc get templates -n openshift-config

$ oc edit template <project_request_template> -n openshift-config

第7章 QUOTAS

133

c. 前述の storage-consumption の例などのリソースクォータ定義を既存のテンプレート
に追加します。テンプレートの parameters: セクションの前に定義を追加する必要が
あります。

2. プロジェクト要求テンプレートを作成した場合は、クラスターのプロジェクト設定リソースで
これを参照します。

a. 編集するプロジェクト設定リソースにアクセスします。

Web コンソールの使用

i. Administration → Cluster Settings ページに移動します。

ii. Configuration をクリックし、すべての設定リソースを表示します。

iii. Project のエントリーを見つけ、Edit YAML をクリックします。

CLI の使用

i. project.config.openshift.io/cluster リソースを編集します。

b. プロジェクト設定リソースの spec セクションを更新し、projectRequestTemplate および
name パラメーターを追加します。以下の例は、project-request というデフォルトのプロ
ジェクト要求テンプレートを参照します。

3. プロジェクトの作成時にリソースクォータが適用されていることを確認します。

a. プロジェクトを作成します。

b. プロジェクトのリソースクォータをリスト表示します。

c. リソースクォータを詳細に記述します。

7.2. 複数のプロジェクト間のリソースクォータ

ClusterResourceQuota オブジェクトで定義される複数プロジェクトのクォータは、複数プロジェクト
間でクォータを共有できるようにします。それぞれの選択されたプロジェクトで使用されるリソースは
集計され、その集計は選択したすべてのプロジェクトでリソースを制限するために使用されます。

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...
spec:
 projectRequestTemplate:
 name: project-request

$ oc new-project <project_name>

$ oc get resourcequotas

$ oc describe resourcequotas <resource_quota_name>

OpenShift Dedicated 4 アプリケーションのビルド

134

以下では、クラスター管理者が複数のプロジェクトでリソースクォータを設定および管理する方法を説
明します。

重要

デフォルトプロジェクトでワークロードを実行したり、デフォルトプロジェクトへのア
クセスを共有したりしないでください。デフォルトのプロジェクトは、コアクラスター
コンポーネントを実行するために予約されています。

デフォルトプロジェクトである default、kube-public、kube-
system、openshift、openshift-infra、openshift-node、および openshift.io/run-level
ラベルが 0 または 1 に設定されているその他のシステム作成プロジェクトは、高い特権
があるとみなされます。Pod セキュリティーアドミッション、Security Context
Constraints、クラスターリソースクォータ、イメージ参照解決などのアドミッションプ
ラグインに依存する機能は、高い特権を持つプロジェクトでは機能しません。

7.2.1. クォータ作成時の複数プロジェクトの選択

クォータの作成時に、アノテーションの選択、ラベルの選択、またはその両方に基づいて複数のプロ
ジェクトを選択することができます。

手順

1. アノテーションに基づいてプロジェクトを選択するには、以下のコマンドを実行します。

これにより、以下の ClusterResourceQuota オブジェクトが作成されます。

$ oc create clusterquota for-user \
 --project-annotation-selector openshift.io/requester=<user_name> \
 --hard pods=10 \
 --hard secrets=20

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
 name: for-user
spec:
 quota: 1
 hard:
 pods: "10"
 secrets: "20"
 selector:
 annotations: 2
 openshift.io/requester: <user_name>
 labels: null 3
status:
 namespaces: 4
 - namespace: ns-one
 status:
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"

第7章 QUOTAS

135

1

2

3

4

5

1

2

選択されたプロジェクトに対して実施される ResourceQuotaSpec オブジェクトです。

アノテーションの単純なキー/値のセレクターです。

プロジェクトを選択するために使用できるラベルセレクターです。

選択された各プロジェクトの現在のクォータの使用状況を記述する namespace ごとの
マップです。

選択されたすべてのプロジェクトにおける使用量の総計です。

この複数プロジェクトのクォータの記述は、デフォルトのプロジェクト要求エンドポイントを
使用して <user_name> によって要求されるすべてのプロジェクトを制御します。ここでは、
10 Pod および 20 シークレットに制限されます。

2. 同様にラベルに基づいてプロジェクトを選択するには、以下のコマンドを実行します。

clusterresourcequota および clusterquota はいずれも同じコマンドのエイリアスで
す。for-name は ClusterResourceQuota オブジェクトの名前です。

ラベル別にプロジェクトを選択するには、--project-label-selector=key=value 形式を使
用してキーと値のペアを指定します。

これにより、以下の ClusterResourceQuota オブジェクト定義が作成されます。

 secrets: "9"
 total: 5
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"
 secrets: "9"

$ oc create clusterresourcequota for-name \ 1
 --project-label-selector=name=frontend \ 2
 --hard=pods=10 --hard=secrets=20

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
 creationTimestamp: null
 name: for-name
spec:
 quota:
 hard:
 pods: "10"
 secrets: "20"
 selector:
 annotations: null
 labels:
 matchLabels:
 name: frontend

OpenShift Dedicated 4 アプリケーションのビルド

136

7.2.2. 該当するクラスターリソースクォータの表示

プロジェクト管理者は、各自のプロジェクトを制限する複数プロジェクトのクォータを作成したり、変
更したりすることはできませんが、それぞれのプロジェクトに適用される複数プロジェクトのクォータ
を表示することはできます。プロジェクト管理者は、AppliedClusterResourceQuota リソースを使用
してこれを実行できます。

手順

1. プロジェクトに適用されているクォータを表示するには、以下を実行します。

出力例

7.2.3. 選択における粒度

クォータの割り当てを要求する際にロックに関して考慮する必要があるため、複数プロジェクトの
クォータで選択されるアクティブなプロジェクトの数は重要な考慮点になります。単一の複数プロジェ
クトクォータで 100 を超えるプロジェクトを選択すると、それらのプロジェクトの API サーバーの応答
に負の影響が及ぶ可能性があります。

$ oc describe AppliedClusterResourceQuota

Name: for-user
Namespace: <none>
Created: 19 hours ago
Labels: <none>
Annotations: <none>
Label Selector: <null>
AnnotationSelector: map[openshift.io/requester:<user-name>]
Resource Used Hard
-------- ---- ----
pods 1 10
secrets 9 20

第7章 QUOTAS

137

1

2

第8章 アプリケーションでの設定マップの使用
設定マップにより、設定アーティファクトをイメージコンテンツから切り離し、コンテナー化されたア
プリケーションを移植可能な状態に保つことができます。

以下のセクションでは、設定マップおよびそれらを作成し、使用する方法を定義します。

8.1. 設定マップについて

数多くのアプリケーションには、設定ファイル、コマンドライン引数、および環境変数の組み合わせを
使用した設定が必要です。OpenShift Dedicated では、これらの設定アーティファクトは、コンテナー
化されたアプリケーションを移植可能な状態に保つためにイメージコンテンツから切り離されます。

ConfigMap オブジェクトは、コンテナーを OpenShift Dedicated に依存させないようにする一方で、
コンテナーに設定データを挿入するメカニズムを提供します。設定マップは、個々のプロパティーなど
の粒度の細かい情報や、設定ファイル全体または JSON Blob などの粒度の荒い情報を保存するために
使用できます。

ConfigMap オブジェクトは、Pod で使用したり、コントローラーなどのシステムコンポーネントの設
定データを保存するために使用できる設定データのキーと値のペアを保持します。以下に例を示しま
す。

ConfigMap オブジェクト定義

設定データが含まれます。

バイナリー Java キーストアファイルなどの UTF8 以外のデータを含むファイルを参照します。
Base 64 のファイルデータを入力します。

注記

イメージなどのバイナリーファイルから設定マップを作成する場合に、binaryData
フィールドを使用できます。

設定データはさまざまな方法で Pod 内で使用できます。設定マップは以下を実行するために使用でき
ます。

kind: ConfigMap
apiVersion: v1
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: example-config
 namespace: my-namespace
data: 1
 example.property.1: hello
 example.property.2: world
 example.property.file: |-
 property.1=value-1
 property.2=value-2
 property.3=value-3
binaryData:
 bar: L3Jvb3QvMTAw 2

OpenShift Dedicated 4 アプリケーションのビルド

138

コンテナーへの環境変数値の設定

コンテナーのコマンドライン引数の設定

ボリュームの設定ファイルの設定

ユーザーとシステムコンポーネントの両方が設定データを設定マップに保存できます。

設定マップはシークレットに似ていますが、機密情報を含まない文字列の使用をより効果的にサポート
するように設計されています。

8.1.1. 設定マップの制限

設定マップは、コンテンツを Pod で使用される前に作成する必要があります。

コントローラーは、設定データが不足していても、その状況を許容して作成できます。ケースごとに設
定マップを使用して設定される個々のコンポーネントを参照してください。

ConfigMap オブジェクトはプロジェクト内にあります。

それらは同じプロジェクトの Pod によってのみ参照されます。

Kubelet は、API サーバーから取得する Pod の設定マップの使用のみをサポートします。

これには、CLI を使用して作成された Pod、またはレプリケーションコントローラーから間接的に作成
された Pod が含まれます。これには、OpenShift Dedicated ノードの --manifest-url フラグ、--config
フラグ、REST API を使用して作成された Pod は含まれません。これらは Pod を作成する一般的な方
法ではないためです。

関連情報

設定マップの作成および使用

8.2. ユースケース: POD で設定マップを使用する

以下のセクションでは、Pod で ConfigMap オブジェクトを使用する際のいくつかのユースケースを説
明します。

8.2.1. 設定マップの使用によるコンテナーでの環境変数の設定

config map を使用して、コンテナーで個別の環境変数を設定するために使用したり、有効な環境変数名
を生成するすべてのキーを使用してコンテナーで環境変数を設定するために使用したりすることができ
ます。

例として、以下の設定マップを見てみましょう。

2 つの環境変数を含む ConfigMap

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config 1
 namespace: default 2

第8章 アプリケーションでの設定マップの使用

139

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/nodes/#creating-and-using-config-maps

1

2

3 4

1

2

設定マップの名前。

設定マップが存在するプロジェクト。設定マップは同じプロジェクトの Pod によってのみ参照さ
れます。

挿入する環境変数。

1 つの環境変数を含む ConfigMap

設定マップの名前。

挿入する環境変数。

手順

configMapKeyRef セクションを使用して、Pod のこの ConfigMap のキーを使用できます。

特定の環境変数を挿入するように設定されている Pod 仕様のサンプル

data:
 special.how: very 3
 special.type: charm 4

apiVersion: v1
kind: ConfigMap
metadata:
 name: env-config 1
 namespace: default
data:
 log_level: INFO 2

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env: 1
 - name: SPECIAL_LEVEL_KEY 2
 valueFrom:
 configMapKeyRef:
 name: special-config 3
 key: special.how 4
 - name: SPECIAL_TYPE_KEY
 valueFrom:

OpenShift Dedicated 4 アプリケーションのビルド

140

1

2

3 5

4 6

7

8

9

ConfigMap から指定された環境変数をプルするためのスタンザです。

キーの値を挿入する Pod 環境変数の名前です。

特定の環境変数のプルに使用する ConfigMap の名前です。

ConfigMap からプルする環境変数です。

環境変数をオプションにします。オプションとして、Pod は指定された ConfigMap およ
びキーが存在しない場合でも起動します。

ConfigMap からすべての環境変数をプルするためのスタンザです。

すべての環境変数のプルに使用する ConfigMap の名前です。

この Pod が実行されると、Pod のログには以下の出力が含まれます。

SPECIAL_LEVEL_KEY=very
log_level=INFO

注記

SPECIAL_TYPE_KEY=charm は出力例にリスト表示されません。optional: true が設定
されているためです。

8.2.2. 設定マップを使用したコンテナーコマンドのコマンドライン引数の設定

config map を使用すると、Kubernetes 置換構文 $(VAR_NAME) を使用してコンテナー内のコマンドま
たは引数の値を設定できます。

例として、以下の設定マップを見てみましょう。

 configMapKeyRef:
 name: special-config 5
 key: special.type 6
 optional: true 7
 envFrom: 8
 - configMapRef:
 name: env-config 9
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

第8章 アプリケーションでの設定マップの使用

141

1

手順

コンテナー内のコマンドに値を挿入するには、環境変数として使用するキーを使用する必要が
あります。次に、$(VAR_NAME) 構文を使用してコンテナーのコマンドでそれらを参照するこ
とができます。

特定の環境変数を挿入するように設定されている Pod 仕様のサンプル

環境変数として使用するキーを使用して、コンテナーのコマンドに値を挿入します。

この Pod が実行されると、test-container コンテナーで実行される echo コマンドの出力は以
下のようになります。

very charm

8.2.3. 設定マップの使用によるボリュームへのコンテンツの挿入

設定マップを使用して、コンテンツをボリュームに挿入することができます。

ConfigMap カスタムリソース (CR) の例

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)"]
1

 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.how
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.type
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap

OpenShift Dedicated 4 アプリケーションのビルド

142

1

手順

設定マップを使用してコンテンツをボリュームに挿入するには、2 つの異なるオプションを使用できま
す。

設定マップを使用してコンテンツをボリュームに挿入するための最も基本的な方法は、キーが
ファイル名であり、ファイルの内容がキーの値になっているファイルでボリュームを設定する
方法です。

キーを含むファイル。

この Pod が実行されると、cat コマンドの出力は以下のようになります。

very

設定マップキーが投影されるボリューム内のパスを制御することもできます。

metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "cat", "/etc/config/special.how"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: config-volume
 configMap:
 name: special-config 1
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:

第8章 アプリケーションでの設定マップの使用

143

1 設定マップキーへのパス。

この Pod が実行されると、cat コマンドの出力は以下のようになります。

very

 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "cat", "/etc/config/path/to/special-key"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 items:
 - key: special.how
 path: path/to/special-key 1
 restartPolicy: Never

OpenShift Dedicated 4 アプリケーションのビルド

144

第9章 開発者パースペクティブを使用したプロジェクトおよびアプ
リケーションメトリクスのモニタリング

Developer パースペクティブの Observe ビューは、CPU、メモリー、帯域幅の使用状況、ネットワー
ク関連の情報などのプロジェクトまたはアプリケーションのメトリクスを監視するオプションを提供し
ます。

9.1. 前提条件

OpenShift Dedicated にアプリケーションを作成し、デプロイ している。

Web コンソールにログインしており、Developer パースペクティブに切り替えている。

9.2. プロジェクトメトリクスのモニタリング

プロジェクトでアプリケーションを作成し、それらをデプロイした後に、Web コンソールで
Developer パースペクティブを使用し、プロジェクトのメトリックを表示できます。

手順

1. Observe に移動して、プロジェクトの Dashboard、Metrics、Alerts、および Events を表示
します。

2. オプション: Dashboard タブを使用して、次のアプリケーションメトリックを示すグラフを表
示します:

CPU usage (CPU の使用率)

メモリー使用量

帯域幅の使用

送受信パケットのレートやドロップされたパケットのレートなど、ネットワーク関連の情
報。

Dashboard タブで、Kubernetes コンピュートリソースダッシュボードにアクセスできます。

注記

Dashboard リストでは、デフォルトで Kubernetes / Compute Resources /
Namespace (Pods) ダッシュボードが選択されています。

詳細は、以下のオプションを使用します。

Dashboard リストからダッシュボードを選択し、フィルタリングされたメトリクスを表示
します。すべてのダッシュボードは、Kubernetes / Compute Resources /
Namespace(Pod) を除く、選択時に追加のサブメニューを生成します。

Time Range 一覧からオプションを選択し、キャプチャーされるデータの期間を判別しま
す。

Time Range リストで Custom time range を選択して、カスタムの時間範囲を設定しま
す。From および To の日付と時間を入力または選択します。Save をクリックして、カス
タムの時間範囲を保存します。

第9章 開発者パースペクティブを使用したプロジェクトおよびアプリケーションメトリクスのモニタリング

145

Refresh Interval 一覧からオプションを選択し、データの更新後の期間を判別します。

カーソルをグラフの上に置き、Pod の特定の詳細を表示します。

各グラフの右上隅にある Inspect をクリックして、特定のグラフの詳細を表示します。グ
ラフの詳細は Metrics タブに表示されます。

3. オプション: Metrics タブを使用して、必要なプロジェクトメトリックをクエリーします。

図9.1 メトリクスのモニタリング

a. Select Query リストで、プロジェクトに必要な詳細をフィルターするオプションを選択し
ます。プロジェクト内のすべてのアプリケーション Pod のフィルターされたメトリックが
グラフに表示されます。プロジェクトの Pod も以下に記載されています。

b. Pod のリストから色の付いた四角のボックスをクリアし、特定の Pod のメトリックを削除
してクエリーの結果をさらに絞り込みます。

c. Show PromQL をクリックし、Prometheus クエリーを表示します。このクエリーをプロン
プトのヘルプを使用してさらに変更し、クエリーをカスタマイズして、該当する
namespace に表示するメトリックをフィルターすることができます。

d. ドロップダウンリストを使用して、表示されるデータの時間の範囲を設定します。Reset
Zoom をクリックして、これをデフォルトの時間の範囲にリセットできます。

e. オプションで、Select Query 一覧で Custom Query を選択し、カスタム Prometheus クエ
リーを作成し、関連するメトリクスをフィルターします。

4. オプション: Alerts タブを使用して、次のタスクを実行します:

プロジェクト内のアプリケーションのアラートをトリガーするルールを確認します。

プロジェクトで発生しているアラートを特定します。

必要に応じて、そのようなアラートを解除します。

図9.2 アラートのモニタリング

OpenShift Dedicated 4 アプリケーションのビルド

146

図9.2 アラートのモニタリング

詳細は、以下のオプションを使用します。

Filter 一覧を使用して Alert State および Severity でアラートをフィルターします。

アラートをクリックして、そのアラートの詳細ページに移動します。Alerts Details ページ
で、View Metrics をクリックし、アラートのメトリクスを表示できます。

アラートルールに隣接する Notifications トグルを使用して、そのルールのすべてのアラー
トをサイレンスにし、Silence for 一覧からアラートをサイレンスにする期間を選択しま
す。Notifications トグルを表示するには、アラートを編集するパーミッションが必要で
す。

アラートルールに隣接する Options メニュー を使用して、アラートルールの詳細を
表示します。

5. オプション: Events タブを使用してプロジェクトのイベントを表示します。

図9.3 イベントのモニタリング

以下のオプションを使用して、表示されるイベントをフィルターできます。

Resources リストで、リソースを選択し、そのリソースのイベントを表示します。

All Types リストで、イベントのタイプを選択し、そのタイプに関連するイベントを表示し
ます。

第9章 開発者パースペクティブを使用したプロジェクトおよびアプリケーションメトリクスのモニタリング

147

Filter events by names or messages フィールドを使用して特定のイベントを検索します。

9.3. アプリケーションメトリクスのモニタリング

プロジェクトでアプリケーションを作成し、それらをデプロイした後に、Developer ペースペクティブ
で Topology ビューを使用し、アプリケーションのアラートおよびメトリックを表示できます。アプリ
ケーションの重大な問題および警告のアラートは、Topology ビューのワークロードノードに示されま
す。

手順

ワークロードのアラートを表示するには、以下を実行します。

1. Topology ビューで、ワークロードをクリックし、ワークロードの詳細を右側のパネルに表示
します。

2. Observe タブをクリックして、アプリケーションの重大な問題および警告のアラート、CPU、
メモリー、および帯域幅の使用状況などのメトリクスのグラフ、およびアプリケーションのす
べてのイベントを表示します。

注記

Firing 状態の重大な問題および警告のアラートのみが Topology ビューに表示さ
れます。Silenced、Pending および Not Firing 状態のアラートは表示されませ
ん。

図9.4 アプリケーションメトリクスのモニタリング

a. 右側のパネルにリスト表示されるアラートをクリックし、アラートの詳細を Alert Details

OpenShift Dedicated 4 アプリケーションのビルド

148

a. 右側のパネルにリスト表示されるアラートをクリックし、アラートの詳細を Alert Details
ページに表示します。

b. チャートのいずれかをクリックして Metrics タブに移動し、アプリケーションの詳細なメ
トリックを表示します。

c. View monitoring dashboard をクリックし、そのアプリケーションのモニタリングダッ
シュボードを表示します。

9.4. イメージの脆弱性の内訳

Developer パースペクティブでは、プロジェクトダッシュボードの Status セクションに Image
Vulnerabilities リンクが表示されます。このリンクを使用すると、脆弱なコンテナーイメージと修正可
能なコンテナーイメージに関する詳細を含む、Image Vulnerabilities breakdown ウィンドウを表示で
きます。アイコンの色は重大度を示します。

赤: 高優先度。すぐに修正してください。

オレンジ: 中優先度。優先度の高い脆弱性の後に修正できます。

黄色: 低優先度。高優先度および中優先度の脆弱性の後に修正できます。

重大度レベルに基づいて、脆弱性に優先順位を付け、系統立てて修正できます。

図9.5 イメージ脆弱性の表示

9.5. アプリケーションとイメージの脆弱性メトリックの監視

プロジェクトでアプリケーションを作成してデプロイしたら、Web コンソールの Developer パースペ
クティブを使用して、クラスター全体におけるアプリケーションの依存関係の脆弱性に関するメトリッ
クを表示します。メトリックは、次のイメージの脆弱性を詳しく分析するのに役立ちます。

第9章 開発者パースペクティブを使用したプロジェクトおよびアプリケーションメトリクスのモニタリング

149

選択したプロジェクト内の脆弱なイメージの総数

選択したプロジェクト内のすべての脆弱なイメージの重大度別の数

脆弱性の数、修正可能な脆弱性の数、各脆弱なイメージの影響を受ける Pod の数など、重大度
をドリルダウンした詳細

前提条件

Operator Hub から Red Hat Quay Container Security Operator をインストールした。

注記

Red Hat Quay Container Security Operator は、quay レジストリーにあるイメー
ジをスキャンして脆弱性を検出します。

手順

1. イメージの脆弱性の一般的な概要は、Developer パースペクティブのナビゲーションパネルで
Project をクリックして、プロジェクトダッシュボードを表示します。

2. Status セクションで Image Vulnerabilities をクリックします。開いたウィンドウに
は、Vulnerable Container Images や Fixable Container Images などの詳細が表示されます。

3. 脆弱性の詳細な概要は、プロジェクトダッシュボードの Vulnerabilities タブをクリックしてく
ださい。

a. イメージの詳細を表示するには、その名前をクリックします。

b. Details タブで、すべてのタイプの脆弱性のデフォルトグラフを表示します。

c. オプション: 切り替えボタンをクリックして、特定のタイプの脆弱性を表示します。たとえ
ば、App dependency をクリックすると、アプリケーションの依存関係に固有の脆弱性が
表示されます。

d. オプション: Severity および Type に基づき脆弱性一覧をフィルタリングする
か、Severity、Package、Type、Source、Current Version、Fixed in Version でソートで
きます。

e. Vulnerability をクリックして、関連する詳細を取得します。

Base image の脆弱性には、Red Hat Security Advisory (RHSA) からの情報が表示され
ます。

App dependency の脆弱性には、Snyk セキュリティーアプリケーションからの情報が
表示されます。

9.6. 関連情報

OpenShift Dedicated モニタリングについて

OpenShift Dedicated 4 アプリケーションのビルド

150

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/monitoring/#about-ocp-monitoring

第10章 ヘルスチェックの使用によるアプリケーションの正常性の
監視

ソフトウェアのシステムでは、コンポーネントは一時的な問題 (一時的に接続が失われるなど)、設定エ
ラー、または外部の依存関係に関する問題などにより正常でなくなることがあります。OpenShift
Dedicated アプリケーションには、正常でないコンテナーを検出し、これに対応するための数多くのオ
プションがあります。

10.1. ヘルスチェックについて

ヘルスチェックは、readiness、liveness、および startup ヘルスチェックの組み合わせを使用して、実
行中のコンテナーで診断を定期的に実行します。

ヘルスチェックを実行するコンテナーが含まれる Pod の仕様に、1 つ以上のプローブを含めることがで
きます。

注記

既存の Pod でヘルスチェックを追加または編集する必要がある場合、Pod の
DeploymentConfig オブジェクトを編集するか、Web コンソールを使用する必要があり
ます。CLI を使用して既存の Pod のヘルスチェックを追加したり、編集したりすること
はできません。

Readiness プローブ

readiness プローブ はコンテナーがサービス要求を受け入れることができるかどうかを判別しま
す。コンテナーの readiness プローブが失敗すると、kubelet は利用可能なサービスエンドポイント
のリストから Pod を削除します。
失敗後、プローブは Pod の検証を継続します。Pod が利用可能になると、kubelet は Pod を利用可
能なサービスエンドポイントのリストに追加します。

Liveness ヘルスチェック

liveness プローブ は、コンテナーが実行中かどうかを判別します。デッドロックなどの状態のため
に liveness プローブが失敗する場合、kubelet はコンテナーを強制終了します。その後、Pod は再起
動ポリシーに基づいて応答します。
たとえば、restartPolicy として Always または OnFailure が設定されている Pod での liveness プ
ローブは、コンテナーを強制終了してから再起動します。

Startup プローブ

startup プローブ は、コンテナー内のアプリケーションが起動しているかどうかを示します。その
他のプローブはすべて、起動に成功するまで無効にされます。startup プローブが指定の期間内に成
功しない場合、kubelet はコンテナーを強制終了し、コンテナーは Pod の restartPolicy の対象とな
ります。
一部のアプリケーションでは、最初の初期化時に追加の起動時間が必要になる場合があります。
liveness または readiness プローブで startup プローブを使用して、failureThreshold および
periodSeconds パラメーターを使用し、長い起動時間に十分に対応できるようにプローブを遅延さ
せることができます。

たとえば、startup プローブを liveness プローブに追加し、failureThreshold を失敗 30
回、periodSeconds を 10 秒 (30 x 10 秒 = 300 秒) に設定すると、最大 5 分間を確保できます。
startup プローブが初回に成功すると、liveness プローブがこれを引き継ぎます。

第10章 ヘルスチェックの使用によるアプリケーションの正常性の監視

151

以下のテストのタイプのいずれかを使用して、liveness、readiness、および startup プローブを設定で
きます。

HTTP GET: HTTP GET テストを使用する場合、テストは Web hook を使用してコンテナーの正
常性を判別します。このテストは、HTTP の応答コードが 200 から 399 までの値の場合に正常
と見なされます。
完全に初期化されている場合に、HTTP ステータスコードを返すアプリケーションで HTTP
GET テストを使用できます。

コンテナーコマンド: コンテナーコマンドテストを使用すると、プローブはコンテナー内でコマ
ンドを実行します。テストが 0 のステータスで終了すると、プローブは成功します。

TCP ソケット: TCP ソケットテストを使用する場合、プローブはコンテナーに対してソケット
を開こうとします。コンテナーはプローブで接続を確立できる場合にのみ正常であるとみなさ
れます。TCP ソケットテストは、初期化が完了するまでリスニングを開始しないアプリケー
ションで使用できます。

複数のフィールドを設定して、プローブの動作を制御できます。

initialDelaySeconds: コンテナーが起動してからプローブがスケジュールされるまでの時間 (秒
単位)。デフォルトは 0 です。

periodSeconds: プローブの実行間の遅延 (秒単位)。デフォルトは 10 です。この値は
timeoutSeconds よりも大きくなければなりません。

timeoutSeconds: プローブがタイムアウトし、コンテナーが失敗した想定されてから非アク
ティブになるまでの時間 (秒数)。デフォルトは 1 です。この値は periodSeconds 未満である
必要があります。

successThreshold: コンテナーのステータスを successful にリセットするために、プローブが
失敗後に成功を報告する必要のある回数。liveness プローブの場合は、値は 1 である必要があ
ります。デフォルトは 1 です。

failureThreshold: プローブが失敗できる回数。デフォルトは 3 です。指定される試行の後に、
以下を実行します。

liveness プローブの場合、コンテナーが再起動します。

readiness プローブの場合、Pod には Unready というマークが付けられます。

startup プローブの場合、コンテナーは強制終了され、Pod の restartPolicy の対象となり
ます。

10.1.1. プローブの例

以下は、オブジェクト仕様に表示されるさまざまなプローブの例です。

Pod 仕様のコンテナーコマンド readiness プローブを含む readiness プローブの例

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application

OpenShift Dedicated 4 アプリケーションのビルド

152

1

2

3

4

5

コンテナー名。

デプロイするコンテナーイメージ。

readiness プローブ

コンテナーコマンドのテスト。

コンテナーで実行するコマンド。

Pod 仕様のコンテナーコマンドテストを含むコンテナーコマンドの startup プローブおよび
liveness プローブの例

...
spec:
 containers:
 - name: goproxy-app 1
 args:
 image: registry.k8s.io/goproxy:0.1 2
 readinessProbe: 3
 exec: 4
 command: 5
 - cat
 - /tmp/healthy
...

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
...
spec:
 containers:
 - name: goproxy-app 1
 args:
 image: registry.k8s.io/goproxy:0.1 2
 livenessProbe: 3
 httpGet: 4
 scheme: HTTPS 5
 path: /healthz
 port: 8080 6
 httpHeaders:
 - name: X-Custom-Header
 value: Awesome
 startupProbe: 7
 httpGet: 8
 path: /healthz
 port: 8080 9
 failureThreshold: 30 10
 periodSeconds: 10 11
...

第10章 ヘルスチェックの使用によるアプリケーションの正常性の監視

153

1

2

3

4

5

6

7

8

9

10

11

1

2

3

コンテナー名。

デプロイするコンテナーイメージを指定します。

liveness プローブ

HTTP GET テスト。

インターネットスキーム: HTTP または HTTPSデフォルト値は HTTP です。

コンテナーがリッスンしているポート。

startup プローブ。

HTTP GET テスト。

コンテナーがリッスンしているポート。

失敗後にプローブを試行する回数。

プローブを実行する秒数。

Pod 仕様でタイムアウトを使用するコンテナーコマンドテストを使用した liveness プローブの
例

コンテナー名。

デプロイするコンテナーイメージを指定します。

liveness プローブ。

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
...
spec:
 containers:
 - name: goproxy-app 1
 args:
 image: registry.k8s.io/goproxy:0.1 2
 livenessProbe: 3
 exec: 4
 command: 5
 - /bin/bash
 - '-c'
 - timeout 60 /opt/eap/bin/livenessProbe.sh
 periodSeconds: 10 6
 successThreshold: 1 7
 failureThreshold: 3 8
...

OpenShift Dedicated 4 アプリケーションのビルド

154

4

5

6

7

8

1

2

プローブのタイプ。この場合はコンテナーコマンドプローブです。

コンテナー内で実行するコマンドライン。

プローブを実行する頻度 (秒単位)。

失敗後の成功を示すために必要な連続する成功の数。

失敗後にプローブを試行する回数。

デプロイメントでの TCP ソケットテストを含む readiness プローブおよび liveness プローブ
の例

readiness プローブ。

liveness プローブ。

10.2. CLI を使用したヘルスチェックの設定

readiness、liveness、および startup プローブを設定するには、1 つ以上のプローブをヘルスチェックを
実行するコンテナーが含まれる Pod の仕様に追加します。

注記

kind: Deployment
apiVersion: apps/v1
metadata:
 labels:
 test: health-check
 name: my-application
spec:
...
 template:
 spec:
 containers:
 - resources: {}
 readinessProbe: 1
 tcpSocket:
 port: 8080
 timeoutSeconds: 1
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3
 terminationMessagePath: /dev/termination-log
 name: ruby-ex
 livenessProbe: 2
 tcpSocket:
 port: 8080
 initialDelaySeconds: 15
 timeoutSeconds: 1
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3
...

第10章 ヘルスチェックの使用によるアプリケーションの正常性の監視

155

1

2

3

4

注記

既存の Pod でヘルスチェックを追加または編集する必要がある場合、Pod の
DeploymentConfig オブジェクトを編集するか、Web コンソールを使用する必要があり
ます。CLI を使用して既存の Pod のヘルスチェックを追加したり、編集したりすること
はできません。

手順

コンテナーのプローブを追加するには、以下を実行します。

1. Pod オブジェクトを作成して、1 つ以上のプローブを追加します。

コンテナー名を指定します。

デプロイするコンテナーイメージを指定します。

オプション: Liveness プローブを作成します。

実行するテストを指定します。この場合は TCP ソケットテストです。

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
spec:
 containers:
 - name: my-container 1
 args:
 image: registry.k8s.io/goproxy:0.1 2
 livenessProbe: 3
 tcpSocket: 4
 port: 8080 5
 initialDelaySeconds: 15 6
 periodSeconds: 20 7
 timeoutSeconds: 10 8
 readinessProbe: 9
 httpGet: 10
 host: my-host 11
 scheme: HTTPS 12
 path: /healthz
 port: 8080 13
 startupProbe: 14
 exec: 15
 command: 16
 - cat
 - /tmp/healthy
 failureThreshold: 30 17
 periodSeconds: 20 18
 timeoutSeconds: 10 19

OpenShift Dedicated 4 アプリケーションのビルド

156

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

コンテナーがリッスンするポートを指定します。

コンテナーが起動してからプローブがスケジュールされるまでの時間 (秒単位) を指定しま
す。

プローブを実行する秒数を指定します。デフォルトは 10 です。この値は
timeoutSeconds よりも大きくなければなりません。

プローブが失敗したと想定されてから非アクティブになる時間 (秒数)。デフォルトは 1 で
す。この値は periodSeconds 未満である必要があります。

オプション: Readiness プローブを作成します。

実行するテストのタイプを指定します。この場合は HTTP テストです。

ホストの IP アドレスを指定します。host が定義されていない場合は、PodIP が使用され
ます。

HTTP または HTTPS を指定します。scheme が定義されていない場合は、HTTP スキー
ムが使用されます。

コンテナーがリッスンするポートを指定します。

オプション: startup プローブを作成します。

実行するテストのタイプを指定します。この場合はコンテナー実行プローブです。

コンテナーで実行するコマンドを指定します。

失敗後にプローブを試行する回数を指定します。

プローブを実行する秒数を指定します。デフォルトは 10 です。この値は
timeoutSeconds よりも大きくなければなりません。

プローブが失敗したと想定されてから非アクティブになる時間 (秒数)。デフォルトは 1 で
す。この値は periodSeconds 未満である必要があります。

注記

initialDelaySeconds 値が periodSeconds 値よりも低い場合、最初の
Readiness プローブがタイマーの問題により 2 つの期間の間のある時点で生じま
す。

timeoutSeconds 値は periodSeconds の値よりも低い値である必要がありま
す。

2. Pod オブジェクトを作成します。

3. ヘルスチェック Pod の状態を確認します。

$ oc create -f <file-name>.yaml

$ oc describe pod my-application

第10章 ヘルスチェックの使用によるアプリケーションの正常性の監視

157

出力例

以下は、コンテナーを再起動した障害のあるプローブの出力です。

正常ではないコンテナーに関する Liveness チェック出力の例

出力例

10.3. DEVELOPER パースペクティブを使用したアプリケーションの正常性
の監視

Developer パースペクティブを使用して、3 種類のヘルスプローブをコンテナーに追加し、アプリケー
ションが正常であることを確認することができます。

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 9s default-scheduler Successfully assigned openshift-
logging/liveness-exec to ip-10-0-143-40.ec2.internal
 Normal Pulling 2s kubelet, ip-10-0-143-40.ec2.internal pulling image
"registry.k8s.io/liveness"
 Normal Pulled 1s kubelet, ip-10-0-143-40.ec2.internal Successfully pulled image
"registry.k8s.io/liveness"
 Normal Created 1s kubelet, ip-10-0-143-40.ec2.internal Created container
 Normal Started 1s kubelet, ip-10-0-143-40.ec2.internal Started container

$ oc describe pod pod1

....

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> Successfully
assigned aaa/liveness-http to ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
 Normal AddedInterface 47s multus Add eth0
[10.129.2.11/23]
 Normal Pulled 46s kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "registry.k8s.io/liveness" in 773.406244ms
 Normal Pulled 28s kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "registry.k8s.io/liveness" in 233.328564ms
 Normal Created 10s (x3 over 46s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Created container liveness
 Normal Started 10s (x3 over 46s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Started container liveness
 Warning Unhealthy 10s (x6 over 34s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-
snzrj Liveness probe failed: HTTP probe failed with statuscode: 500
 Normal Killing 10s (x2 over 28s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Container liveness failed liveness probe, will be restarted
 Normal Pulling 10s (x3 over 47s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Pulling image "registry.k8s.io/liveness"
 Normal Pulled 10s kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "registry.k8s.io/liveness" in 244.116568ms

OpenShift Dedicated 4 アプリケーションのビルド

158

Readiness プローブを使用して、コンテナーが要求を処理する準備ができているかどうかを確
認します。

Liveness プローブを使用して、コンテナーが実行中であることを確認します。

Startup プローブを使用して、コンテナー内のアプリケーションが起動しているかどうかを確認
します。

アプリケーションの作成およびデプロイ中、またはアプリケーションをデプロイした後にヘルスチェッ
クを追加できます。

10.4. 開発者パースペクティブを使用したヘルスチェックの追加

Topology ビューを使用して、デプロイされたアプリケーションにヘルスチェックを追加できます。

前提条件

Web コンソールで Developer パースペクティブに切り替えている。

Developer パースペクティブを使用して OpenShift Dedicated でアプリケーションを作成し、
デプロイしている。

手順

1. Topology ビューで、アプリケーションノードをクリックし、サイドパネルを表示します。コ
ンテナーにヘルスチェックが追加されていない場合は、ヘルスチェックを追加するためのリン
クを含む Health Checks 通知が表示されます。

2. 表示された通知で、Add Health Checks リンクをクリックします。

3. または、Actions リストをクリックし、Add Health Checks を選択します。コンテナーにヘル
スチェックがすでにある場合は、add オプションの代わりに Edit Health Checks オプションが
表示されます。

4. Add Health Checks フォームで複数のコンテナーをデプロイしている場合は、Container リス
トを使用して適切なコンテナーが選択されていることを確認します。

5. 必要なヘルスプローブのリンクをクリックして、それらをコンテナーに追加します。ヘルス
チェックのデフォルトデータは事前に設定されています。デフォルトデータでプローブを追加
するか、値をさらにカスタマイズしてから追加できます。たとえば、コンテナーが要求を処理
する準備ができているかどうかを確認する Readiness プローブを追加するには、以下を実行し
ます。

a. Add Readiness Probe をクリックし、プローブのパラメーターが含まれているフォームを
表示します。

b. Type リストをクリックし、追加する要求タイプを選択します。たとえば、この場合は
Container Command を選択し、コンテナー内で実行されるコマンドを選択します。

c. Command フィールドで、引数 cat を追加することもできます。同様に、チェック用に複
数の引数を追加したり、別の引数 /tmp/healthy を追加したりすることができます。

d. 必要に応じて、他のパラメーターのデフォルト値を保持するか、変更します。

注記

第10章 ヘルスチェックの使用によるアプリケーションの正常性の監視

159

注記

Timeout の値は Period の値よりも小さくなければなりません。Timeout の
デフォルト値は 1 です。Period のデフォルト値は 10 です。

e. フォームの下部にあるチェックマークをクリックします。Readiness Probe Added メッ
セージが表示されます。

6. Add をクリックしてヘルスチェックを追加します。Topology ビューにリダイレクトされ、コ
ンテナーが再起動します。

7. サイドパネルで、Pods セクションの下にあるデプロイされた Pod をクリックして、プローブ
が追加されたことを確認します。

8. Pod Details ページで、Containers セクションに一覧表示されているコンテナーをクリックし
ます。

9. Container Details ページで、Readiness probe - Exec Command cat /tmp/healthy がコンテ
ナーに追加されていることを確認します。

10.5. 開発者パースペクティブを使用したヘルスチェックの編集

Topology ビューを使用して、アプリケーションに追加されたヘルスチェックを編集したり、アプリ
ケーションを変更したり、ヘルスチェックを追加したりすることができます。

前提条件

Web コンソールで Developer パースペクティブに切り替えている。

Developer パースペクティブを使用して OpenShift Dedicated でアプリケーションを作成し、
デプロイしている。

アプリケーションにヘルスチェックを追加していること。

手順

1. Topology ビューでアプリケーションを右クリックし、Edit Health Checks を選択します。ま
たは、サイドパネルで Actions ドロップダウンリストをクリックし、Edit Health Checks を選
択します。

2. Edit Health Checks ページで以下を行います。

追加されている正常性プローブを削除するには、その隣にある Remove アイコンをクリッ
クします。

既存のプローブのパラメーターを編集するには、以下を実行します。

a. 以前に追加したプローブの横にある Edit Probe リンクをクリックし、プローブのパラ
メーターを表示します。

b. 必要に応じてパラメーターを変更し、チェックマークをクリックして変更を保存しま
す。

既存のヘルスチェックに加え、新規のヘルスプローブを追加するには、add probe リンク
をクリックします。たとえば、コンテナーが実行中かどうかを確認する Liveness プローブ
を追加するには、以下を実行します。

OpenShift Dedicated 4 アプリケーションのビルド

160

a. Add Liveness Probe をクリックし、プローブのパラメーターが含まれているフォーム
を表示します。

b. 必要に応じてプローブのパラメーターを編集します。

注記

Timeout の値は Period の値よりも小さくなければなりませ
ん。Timeout のデフォルト値は 1 です。Period のデフォルト値は 10 で
す。

c. フォームの下部にあるチェックマークをクリックします。Liveness Probe Added とい
うメッセージが表示されます。

3. Save をクリックして変更を保存し、追加のプローブをコンテナーに追加します。Topology
ビューにリダイレクトされます。

4. サイドパネルで、Pods セクションの下にあるデプロイされた Pod をクリックして、プローブ
が追加されたことを確認します。

5. Pod Details ページで、Containers セクションに一覧表示されているコンテナーをクリックし
ます。

6. Container Details ページで、以前の既存プローブに加えて Liveness probe - HTTP Get
10.129.4.65:8080/ がコンテナーに追加されていることを確認します。

10.6. DEVELOPER パースペクティブを使用したヘルスチェックの失敗の監
視

アプリケーションのヘルスチェックに失敗した場合、Topology ビューを使用してこれらのヘルス
チェックの違反を監視できます。

前提条件

Web コンソールで Developer パースペクティブに切り替えている。

Developer パースペクティブを使用して OpenShift Dedicated でアプリケーションを作成し、
デプロイしている。

アプリケーションにヘルスチェックを追加していること。

手順

1. Topology ビューで、アプリケーションノードをクリックし、サイドパネルを表示します。

2. Observe タブをクリックして、Events(Warning) セクションにヘルスチェックの失敗を確認し
ます。

3. Events (Warning) に隣接する下矢印をクリックし、ヘルスチェックの失敗の詳細を確認しま
す。

関連情報

アプリケーションの作成およびデプロイ時にヘルスチェックを追加する方法の詳細

第10章 ヘルスチェックの使用によるアプリケーションの正常性の監視

161

アプリケーションの作成およびデプロイ時にヘルスチェックを追加する方法の詳細
は、Developer パースペクティブを使用したアプリケーションの作成 セクションの 高度なオプ
ション を参照してください。

OpenShift Dedicated 4 アプリケーションのビルド

162

第11章 アプリケーションの編集
Topology ビューを使用して、作成するアプリケーションの設定およびソースコードを編集できます。

11.1. 前提条件

Developer パースペクティブを使用して OpenShift Dedicated でアプリケーションを作成し、
デプロイしている。

Web コンソールにログインしており、Developer パースペクティブに切り替えている。

11.2. DEVELOPER パースペクティブを使用したアプリケーションのソース
コードの編集

Developer パースペクティブの Topology ビューを使用して、アプリケーションのソースコードを編集
できます。

手順

Topology ビューで、デプロイされたアプリケーションの右下に表示される Edit Source code
アイコンをクリックして、ソースコードにアクセスし、これを変更します。

注記

この機能は、From Git、From Catalog、および From Dockerfile オプションを
使用してアプリケーションを作成する場合にのみ利用できます。

11.3. DEVELOPER パースペクティブを使用したアプリケーション設定の編
集

Developer パースペクティブの Topology ビューを使用して、アプリケーションの設定を編集できま
す。

注記

現在、Developer パースペクティブの Add ワークフローにある From Git、Container
Image、From Catalog、または From Dockerfile オプションを使用して作成されるアプ
リケーションの設定のみを編集できます。CLI または Add ワークフローからの YAML オ
プションを使用して作成したアプリケーションの設定は編集できません。

前提条件

Add ワークフローの From Git、Container Image、From Catalog、または From Dockerfile オプショ
ンを使用してアプリケーションを作成している。

手順

1. アプリケーションを作成し、アプリケーションが Topology ビューに表示された後に、アプリ
ケーションを右クリックして選択可能な編集オプションを確認します。

図11.1 アプリケーションの編集

第11章 アプリケーションの編集

163

図11.1 アプリケーションの編集

2. Edit application-name をクリックし、アプリケーションの作成に使用した Add ワークフロー
を表示します。このフォームには、アプリケーションの作成時に追加した値が事前に設定され
ています。

3. アプリケーションに必要な値を編集します。

注記

General セクションの Name フィールド、CI/CD パイプライン、または
Advanced Options セクションの Create a route to the application フィールド
を編集することはできません。

4. Save をクリックしてビルドを再起動し、新規イメージをデプロイします。

図11.2 アプリケーションの編集および再デプロイ

OpenShift Dedicated 4 アプリケーションのビルド

164

図11.2 アプリケーションの編集および再デプロイ

第11章 アプリケーションの編集

165

第12章 クォータの使用
ResourceQuota オブジェクトで定義される リソースクォータ は、プロジェクトごとにリソース消費量
の総計を制限する制約を指定します。これは、タイプ別にプロジェクトで作成できるオブジェクトの数
量を制限すると共に、そのプロジェクトのリソースが消費できるコンピュートリソースおよびストレー
ジの合計量を制限することができます。

オブジェクトクォータカウント は、定義されたクォータをすべての標準的な namespace を使用してい
るリソースタイプに設定します。リソースクォータの使用時に、オブジェクトがサーバーストレージに
ある場合、そのオブジェクトはクォータに基づいてチャージされます。以下のクォータのタイプはスト
レージリソースが使い切られることから保護するのに役立ちます。

このガイドでは、リソースクォータの仕組みや、開発者がリソースを使用し、表示する方法を説明しま
す。

12.1. クォータの表示

Web コンソールでプロジェクトの Quota ページに移動し、プロジェクトのクォータで定義されるハー
ド制限に関連する使用状況の統計情報を表示できます。

CLI を使用してクォータの詳細を表示することもできます。

手順

1. プロジェクトで定義されるクォータのリストを取得します。たとえば、demoproject というプ
ロジェクトの場合、以下を実行します。

出力例

2. 関連するクォータを記述します。たとえば、core-object-counts クォータの場合、以下を実行
します。

出力例

$ oc get quota -n demoproject

NAME AGE REQUEST
LIMIT
besteffort 4s pods: 1/2
compute-resources-time-bound 10m pods: 0/2
limits.cpu: 0/1, limits.memory: 0/1Gi
core-object-counts 109s configmaps: 2/10, persistentvolumeclaims: 1/4,
replicationcontrollers: 1/20, secrets: 9/10, services: 2/10

$ oc describe quota core-object-counts -n demoproject

Name: core-object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10
persistentvolumeclaims 0 4

OpenShift Dedicated 4 アプリケーションのビルド

166

12.2. クォータで管理されるリソース

以下では、クォータで管理できる一連のコンピュートリソースとオブジェクトタイプを説明します。

注記

status.phase in (Failed、Succeeded) が true の場合、Pod は終了状態にあります。

表12.1 クォータで管理されるコンピュートリソース

リソース名 説明

cpu 非終了状態のすべての Pod での CPU 要求の合計はこの値を超えることができ
ません。cpu および requests.cpu は同じ値であり、相互に置き換え可能な
ものとして使用できます。

memory 非終了状態のすべての Pod でのメモリー要求の合計はこの値を超えることがで
きません。memory および requests.memory は同じ値であり、相互に置き
換え可能なものとして使用できます。

requests.cpu 非終了状態のすべての Pod での CPU 要求の合計はこの値を超えることができ
ません。cpu および requests.cpu は同じ値であり、相互に置き換え可能な
ものとして使用できます。

requests.memory 非終了状態のすべての Pod でのメモリー要求の合計はこの値を超えることがで
きません。memory および requests.memory は同じ値であり、相互に置き
換え可能なものとして使用できます。

limits.cpu 非終了状態のすべての Pod での CPU 制限の合計はこの値を超えることができ
ません。

limits.memory 非終了状態のすべての Pod でのメモリー制限の合計はこの値を超えることがで
きません。

表12.2 クォータで管理されるストレージリソース

リソース名 説明

requests.storage 任意の状態のすべての永続ボリューム要求でのストレージ要求の合計は、この
値を超えることができません。

persistentvolumeclaim
s

プロジェクトに存在できる永続ボリューム要求の合計数です。

replicationcontrollers 3 20
secrets 9 10
services 2 10

第12章 クォータの使用

167

<storage-class-
name>.storageclass.st
orage.k8s.io/requests.
storage

一致するストレージクラスを持つ、任意の状態のすべての永続ボリューム要求
でのストレージ要求の合計はこの値を超えることができません。

<storage-class-
name>.storageclass.st
orage.k8s.io/persistent
volumeclaims

プロジェクトに存在できる、一致するストレージクラスを持つ永続ボリューム
要求の合計数です。

ephemeral-storage 非終了状態のすべての Pod におけるローカルの一時ストレージ要求の合計は、
この値を超えることができません。ephemeral-storage および
requests.ephemeral-storage は同じ値であり、相互に置き換え可能なもの
として使用できます。

requests.ephemeral-
storage

非終了状態のすべての Pod における一時ストレージ要求の合計は、この値を超
えることができません。ephemeral-storage および requests.ephemeral-
storage は同じ値であり、相互に置き換え可能なものとして使用できます。

limits.ephemeral-
storage

非終了状態のすべての Pod における一時ストレージ制限の合計は、この値を超
えることができません。

リソース名 説明

表12.3 クォータで管理されるオブジェクト数

リソース名 説明

pods プロジェクトに存在できる非終了状態の Pod の合計数です。

replicationcontrollers プロジェクトに存在できる ReplicationController の合計数です。

resourcequotas プロジェクトに存在できるリソースクォータの合計数です。

services プロジェクトに存在できるサービスの合計数です。

services.loadbalancers プロジェクトに存在できるタイプ LoadBalancer のサービスの合計数です。

services.nodeports プロジェクトに存在できるタイプ NodePort のサービスの合計数です。

secrets プロジェクトに存在できるシークレットの合計数です。

configmaps プロジェクトに存在できる ConfigMap オブジェクトの合計数です。

OpenShift Dedicated 4 アプリケーションのビルド

168

persistentvolumeclaim
s

プロジェクトに存在できる永続ボリューム要求の合計数です。

openshift.io/imagestre
ams

プロジェクトに存在できるイメージストリームの合計数です。

リソース名 説明

12.3. クォータのスコープ

各クォータには スコープ のセットが関連付けられます。クォータは、列挙されたスコープの交差部分
に一致する場合にのみリソースの使用状況を測定します。

スコープをクォータに追加すると、クォータが適用されるリソースのセットを制限できます。許可され
るセット以外のリソースを設定すると、検証エラーが発生します。

スコープ 説明

BestEffort cpu または memory のいずれかに関するサービス
の QoS (Quality of Service) が Best Effort の Pod に
一致します。

NotBestEffort cpu および memory に関するサービスの QoS
(Quality of Service) が Best Effort ではない Pod に一
致します。

BestEffort スコープは、以下のリソースに制限するようにクォータを制限します。

pods

NotBestEffort スコープは、以下のリソースを追跡するようにクォータを制限します。

pods

memory

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

12.4. クォータの実施

プロジェクトのリソースクォータが最初に作成されると、プロジェクトは、更新された使用状況の統計

第12章 クォータの使用

169

プロジェクトのリソースクォータが最初に作成されると、プロジェクトは、更新された使用状況の統計
が計算されるまでクォータ制約の違反を引き起こす可能性のある新規リソースの作成機能を制限しま
す。

クォータが作成され、使用状況の統計が更新されると、プロジェクトは新規コンテンツの作成を許可し
ます。リソースを作成または変更する場合、クォータの使用量はリソースの作成または変更要求がある
とすぐに増分します。

リソースを削除する場合、クォータの使用量は、プロジェクトのクォータ統計の次回の完全な再計算時
に減分されます。設定可能な時間を指定して、クォータ使用量の統計値を現在確認されるシステム値ま
で下げるのに必要な時間を決定します。

プロジェクト変更がクォータ使用制限を超える場合、サーバーはそのアクションを拒否し、クォータ制
約を違反していること、およびシステムで現在確認される使用量の統計値を示す適切なエラーメッセー
ジがユーザーに返されます。

12.5. 要求と制限

コンピュートリソースの割り当て時に、各コンテナーは CPU、メモリー、一時ストレージのそれぞれ
に要求値と制限値を指定できます。クォータはこれらの値のいずれも制限できます。

クォータに requests.cpu または requests.memory の値が指定されている場合、すべての着信コンテ
ナーがそれらのリソースを明示的に要求することが求められます。クォータに limits.cpu または
limits.memory の値が指定されている場合、すべての着信コンテナーがそれらのリソースの明示的な制
限を指定することが求められます。

OpenShift Dedicated 4 アプリケーションのビルド

170

第13章 リソースを回収するためのオブジェクトのプルーニング
時間の経過と共に、OpenShift Dedicated で作成される API オブジェクトは、アプリケーションのビル
ドおよびデプロイなどの通常のユーザーの操作によってクラスターの etcd データストアに蓄積されま
す。

dedicated-admin ロールを持つユーザーは、不要になった古いバージョンのオブジェクトをクラスター
から定期的にプルーニングできます。たとえば、イメージのプルーニングにより、使用されなくなった
ものの、ディスク領域を使用している古いイメージや層を削除できます。

13.1. プルーニングの基本操作

CLI は、共通の親コマンドでプルーニング操作を分類します。

これにより、以下が指定されます。

groups、builds、deployments、または images などのアクションを実行するための
<object_type>。

オブジェクトタイプのプルーニングの実行においてサポートされる <options>。

13.2. グループのプルーニング

グループのレコードを外部プロバイダーからプルーニングするために、管理者は以下のコマンドを実行
できます。

表13.1 oc adm prune groups フラグ

オプション 説明

--confirm ドライランを実行する代わりにプルーニングが実行されることを示しま
す。

--blacklist グループブラックリストファイルへのパス。

--whitelist グループホワイトリストファイルへのパス。

--sync-config 同期設定ファイルへのパスです。

手順

1. prune コマンドが削除するグループを表示するには、以下のコマンドを実行します。

$ oc adm prune <object_type> <options>

$ oc adm prune groups \
 --sync-config=path/to/sync/config [<options>]

$ oc adm prune groups --sync-config=ldap-sync-config.yaml

第13章 リソースを回収するためのオブジェクトのプルーニング

171

2. prune 操作を実行するには、--confirm フラグを追加します。

13.3. デプロイメントリソースのプルーニング

使用年数やステータスによりシステムで不要となったデプロイメントに関連付けられたリソースをプ
ルーニングできます。

以下のコマンドは、DeploymentConfig オブジェクトに関連付けられたレプリケーションコントロー
ラーをプルーニングします。

注記

Deployment オブジェクトに関連付けられたレプリカセットもプルーニングするには、--
replica-sets フラグを使用します。このフラグは、現在テクノロジープレビュー機能で
す。

表13.2 oc adm prune deployments フラグ

オプション 説明

--confirm ドライランを実行する代わりにプルーニングが実行されることを示しま
す。

--keep-complete=<N> DeploymentConfig オブジェクトに基づいて、ステータスが
Complete でレプリカ数がゼロの最後の N レプリケーションコント
ローラーを維持します。デフォルトは 5 です。

--keep-failed=<N> DeploymentConfig オブジェクトに基づいて、ステータスが Failed
でレプリカ数がゼロの最後の N レプリケーションコントローラーを維持
します。デフォルトは 1 です。

--keep-younger-than=
<duration>

現在の時間との対比で <duration> 未満の新しいレプリケーションコン
トローラーはプルーニングしません。有効な測定単位には、ナノ秒
(ns)、マイクロ秒 (us)、ミリ秒 (ms)、秒 (s)、分 (m)、および時間 (h)
が含まれます。デフォルトは 60m です。

--orphans DeploymentConfig オブジェクトを持たない、ステータスが
Complete または Failed で、レプリカ数がゼロのすべてのレプリケー
ションコントローラーをプルーニングします。

手順

1. プルーニング操作によって削除されるものを確認するには、以下のコマンドを実行します。

$ oc adm prune groups --sync-config=ldap-sync-config.yaml --confirm

$ oc adm prune deployments [<options>]

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

OpenShift Dedicated 4 アプリケーションのビルド

172

2. 実際に prune 操作を実行するには、--confirm フラグを追加します。

13.4. ビルドのプルーニング

使用年数やステータスによりシステムで不要となったビルドをプルーニングするために、管理者は以下
のコマンドを実行できます。

表13.3 oc adm prune builds フラグ

オプション 説明

--confirm ドライランを実行する代わりにプルーニングが実行されることを示しま
す。

--orphans ビルド設定が存在せず、ステータスが complete、failed、error、または
canceled のすべてのビルドをプルーニングします。

--keep-complete=<N> ビルド設定に基づいて、ステータスが complete の最後の N ビルドを保
持します。デフォルトは 5 です。

--keep-failed=<N> ビルド設定に基づいて、ステータスが failed (失敗)、error (エラー)、ま
たは canceled (中止) の最後の N ビルドを保持します。デフォルトは 1
です。

--keep-younger-than=
<duration>

現在の時間との対比で <duration> 未満の新しいオブジェクトはプルー
ニングしません。デフォルトは 60m です。

手順

1. プルーニング操作によって削除されるものを確認するには、以下のコマンドを実行します。

2. 実際に prune 操作を実行するには、--confirm フラグを追加します。

注記

開発者は、ビルドの設定を変更して自動ビルドプルーニングを有効にできます。

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

$ oc adm prune builds [<options>]

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

第13章 リソースを回収するためのオブジェクトのプルーニング

173

13.5. イメージの自動プルーニング

経過時間、ステータス、または制限の超過によりシステムで不要になった OpenShift イメージレジスト
リーのイメージは、自動的にプルーニングされます。クラスター管理者は、カスタムリソース (CR) の
プルーニングを設定したり、保留にしたりできます。

前提条件

dedicated-admin パーミッションを持つアカウントを使用して OpenShift Dedicated クラス
ターにアクセスできる。

oc CLI がインストールされている。

重要

プルーナーを管理するための Image Registry Operator の動作は、Image Registry
Operator の ClusterOperator オブジェクトで指定された managementState とは無関係
です。Image Registry Operator が Managed 状態ではない場合、イメージプルーナーは
Pruning Custom Resource によって設定され、管理できます。

ただし、Image Registry Operator の managementState は、デプロイされたイメージプ
ルーナージョブの動作を変更します。

Managed: イメージプルーナーの --prune-registry フラグは true に設定されま
す。

Removed: イメージプルーナーの --prune-registry フラグは false に設定されま
す。つまり、etcd のイメージメタデータのみプルーニングされます。

手順

imagepruners.imageregistry.operator.openshift.io/cluster という名前のオブジェクトに以下
の spec および status フィールドが含まれることを確認します。

spec:
 schedule: 0 0 * * *
 suspend: false
 keepTagRevisions: 3
 keepYoungerThanDuration: 60m
 keepYoungerThan: 3600000000000
 resources: {}
 affinity: {}
 nodeSelector: {}
 tolerations: []
 successfulJobsHistoryLimit: 3
 failedJobsHistoryLimit: 3
status:
 observedGeneration: 2
 conditions:
 - type: Available
 status: "True"
 lastTransitionTime: 2019-10-09T03:13:45
 reason: Ready
 message: "Periodic image pruner has been created."
 - type: Scheduled

OpenShift Dedicated 4 アプリケーションのビルド

174

schedule: CronJob 形式のスケジュールこれはオプションのフィールドで、デフォルトは daily
で午前 0 時でに設定されます。

suspend: true に設定されている場合、プルーニングを実行している CronJob は中断されま
す。これはオプションのフィールドで、デフォルトは false です。新規クラスターの初期値は
false です。

keepTagRevisions: 保持するタグ別のリビジョン数です。これはオプションのフィールドで、
デフォルトは 3 です。初期値は 3 です。

keepYoungerThanDuration: 指定の期間よりも後に作成されたイメージを保持します。これは
オプションのフィールドです。値の指定がない場合は、keepYoungerThan またはデフォルト
値 60m (60 分) のいずれかが使用されます。

keepYoungerThan: 非推奨。keepYoungerThanDuration と同じですが、期間は整数 (ナノ秒
単位) で指定されます。これはオプションのフィールドです。keepYoungerThanDuration を
設定すると、このフィールドは無視されます。

resources: 標準の Pod リソースの要求および制限です。これはオプションのフィールドです。

affinity: 標準の Pod のアフィニティーです。これはオプションのフィールドです。

nodeSelector: 標準の Pod ノードセレクターです。これはオプションのフィールドです。

tolerations: 標準の Pod の容認です。これはオプションのフィールドです。

successfulJobsHistoryLimit: 保持する成功したジョブの最大数です。メトリクスがレポート
されるようにするには、1 以上にする必要があります。これはオプションのフィールドで、デ
フォルトは 3 です。初期値は 3 です。

failedJobsHistoryLimit: 保持する失敗したジョブの最大数です。メトリクスがレポートされる
ようにするには、1 以上にする必要があります。これはオプションのフィールドで、デフォル
トは 3 です。初期値は 3 です。

observedGeneration: Operator によって観察される生成です。

conditions: 以下のタイプの標準条件オブジェクトです。

Available: プルーニングジョブが作成されているかどうかを示します。理由には Ready ま
たは Error のいずれかを使用できます。

Scheduled: 次のプルーニングジョブがスケジュールされているかどうかを示します。理由
には、Scheduled、Suspended、または Error を使用できます。

Failed: 最新のプルーニングジョブが失敗したかどうかを示します。

 status: "True"
 lastTransitionTime: 2019-10-09T03:13:45
 reason: Scheduled
 message: "Image pruner job has been scheduled."
 - type: Failed
 staus: "False"
 lastTransitionTime: 2019-10-09T03:13:45
 reason: Succeeded
 message: "Most recent image pruning job succeeded."

第13章 リソースを回収するためのオブジェクトのプルーニング

175

13.6. CRON ジョブのプルーニング

cron ジョブは正常なジョブのプルーニングを実行できますが、失敗したジョブを適切に処理していない
可能性があります。そのため、クラスター管理者はジョブの定期的なクリーンアップを手動で実行する
必要があります。また、信頼できるユーザーの小規模なグループに cron ジョブへのアクセスを制限
し、cron ジョブでジョブや Pod が作成され過ぎないように適切なクォータを設定する必要もありま
す。

関連情報

複数のプロジェクト間のリソースクォータ

OpenShift Dedicated 4 アプリケーションのビルド

176

第14章 アプリケーションのアイドリング
クラスター管理者は、アプリケーションをアイドリング状態にしてリソース消費を減らすことができま
す。これは、コストがリソース消費と関連付けられるパブリッククラウドにデプロイされている場合に
役立ちます。

スケーラブルなリソースが使用されていない場合、OpenShift Dedicated はリソースを検出した後にそ
れらを 0 に設定してアイドリングします。ネットワークトラフィックがリソースに送信される場合、レ
プリカをスケールアップしてアイドリング解除を実行し、通常の操作を続行します。

アプリケーションは複数のサービスやデプロイメント構成などの他のスケーラブルなリソースで設定さ
れています。アプリケーションのアイドリングには、関連するすべてのリソースのアイドリングを実行
することが関係します。

14.1. アプリケーションのアイドリング

アプリケーションのアイドリングには、サービスに関連付けられたスケーラブルなリソース (デプロイ
メント設定、レプリケーションコントローラーなど) を検索することが必要です。アプリケーションの
アイドルリングには、サービスを検索してこれをアイドリング状態としてマークし、リソースを zero
レプリカにスケールダウンすることが関係します。

oc idle コマンドを使用して単一サービスをアイドリングするか、--resource-names-file オプションを
使用して複数のサービスをアイドリングすることができます。

14.1.1. 単一サービスのアイドリング

手順

1. 単一のサービスをアイドリングするには、以下を実行します。

14.1.2. 複数サービスのアイドリング

複数サービスのアイドリングは、アプリケーションがプロジェクト内の一連のサービスにまたがる場合
や、同じプロジェクト内で複数のアプリケーションを一括してアイドリングするため、複数サービスを
スクリプトを併用してアイドリングする場合に役立ちます。

手順

1. 複数サービスのリストを含むファイルを作成します (それぞれを各行に指定)。

2. --resource-names-file オプションを使用してサービスをアイドリングします。

注記

idle コマンドは単一プロジェクトに制限されます。クラスター全体でアプリケーション
をアイドリングするには、各プロジェクトに対して idle コマンドを個別に実行します。

14.2. アプリケーションのアイドリング解除

$ oc idle <service>

$ oc idle --resource-names-file <filename>

第14章 アプリケーションのアイドリング

177

アプリケーションサービスは、ネットワークトラフィックを受信し、直前の状態に再びスケールアップ
すると再びアクティブになります。これには、サービスへのトラフィックとルートを通るトラフィック
の両方が含まれます。

また、アプリケーションはリソースをスケールアップすることにより、手動でアイドリング解除するこ
とができます。

手順

1. DeploymentConfig をスケールアップするには、以下を実行します。

注記

現時点で、ルーターによる自動アイドルリング解除はデフォルトの HAProxy ルーターの
みでサポートされています。

$ oc scale --replicas=1 dc <dc_name>

OpenShift Dedicated 4 アプリケーションのビルド

178

第15章 アプリケーションの削除
プロジェクトで作成されたアプリケーションを削除できます。

15.1. DEVELOPER パースペクティブを使用したアプリケーションの削除

Developer パースペクティブの Topology ビューを使用して、アプリケーションとその関連コンポーネ
ントすべてを削除できます。

1. 削除するアプリケーションをクリックし、アプリケーションのリソースの詳細を含むサイドパ
ネルを確認します。

2. パネルの右上に表示される Actions ドロップダウンメニューをクリックし、Delete
Application を選択して確認ダイアログボックスを表示します。

3. アプリケーションの名前を入力して Delete をクリックし、これを削除します。

削除するアプリケーションを右クリックし、Delete Application をクリックして削除することもできま
す。

第15章 アプリケーションの削除

179

	Table of Contents
	第1章 アプリケーションのビルドの概要
	1.1. プロジェクトの使用
	1.2. アプリケーションの使用
	1.2.1. アプリケーションの作成
	1.2.2. アプリケーションの保守
	1.2.3. アプリケーションのデプロイ

	第2章 プロジェクト
	2.1. プロジェクトの使用
	2.1.1. プロジェクトの作成
	2.1.1.1. Web コンソールを使用したプロジェクトの作成
	2.1.1.2. CLI を使用したプロジェクトの作成

	2.1.2. プロジェクトの表示
	2.1.2.1. Web コンソールを使用したプロジェクトの表示
	2.1.2.2. CLI を使用したプロジェクトの表示

	2.1.3. Developer パースペクティブを使用したプロジェクトに対するアクセスパーミッションの提供
	2.1.4. Web コンソールを使用した利用可能なクラスターのロールのカスタマイズ
	2.1.5. プロジェクトへの追加
	2.1.6. プロジェクトのステータスの確認
	2.1.6.1. Web コンソールを使用したプロジェクトのステータスの確認
	2.1.6.2. CLI を使用したプロジェクトのステータスの確認

	2.1.7. プロジェクトの削除
	2.1.7.1. Web コンソールを使用したプロジェクトの削除
	2.1.7.2. CLI を使用したプロジェクトの削除

	2.2. プロジェクト作成の設定
	2.2.1. プロジェクト作成について
	2.2.2. 新規プロジェクトのテンプレートの変更
	2.2.3. プロジェクトのセルフプロビジョニングの無効化
	2.2.4. プロジェクト要求メッセージのカスタマイズ

	第3章 アプリケーションの作成
	3.1. テンプレートの使用
	3.1.1. テンプレートについて
	3.1.2. テンプレートのアップロード
	3.1.3. Web コンソールを使用したアプリケーションの作成
	3.1.4. CLI を使用してテンプレートからオブジェクトを作成する手順
	3.1.4.1. ラベルの追加
	3.1.4.2. パラメーターのリスト表示
	3.1.4.3. オブジェクトリストの生成

	3.1.5. アップロードしたテンプレートの変更
	3.1.6. テンプレートの作成
	3.1.6.1. テンプレート記述の作成
	3.1.6.2. テンプレートラベルの作成
	3.1.6.3. テンプレートパラメーターの作成
	3.1.6.4. テンプレートオブジェクトリストの作成
	3.1.6.5. テンプレートをバインド可能としてマーキングする
	3.1.6.6. テンプレートオブジェクトフィールドの公開
	3.1.6.7. テンプレートの準備ができるまで待機する
	3.1.6.8. 既存オブジェクトからのテンプレートの作成

	3.2. DEVELOPER パースペクティブを使用したアプリケーションの作成
	3.2.1. 前提条件
	3.2.2. サンプルアプリケーションの作成
	3.2.3. Quick Starts を使用したアプリケーションの作成
	3.2.4. Git のコードベースのインポートおよびアプリケーションの作成
	3.2.5. コンテナーイメージをデプロイしてアプリケーションを作成
	3.2.6. JAR ファイルをアップロードして Java アプリケーションをデプロイする
	3.2.7. Devfile レジストリーを使用した devfile へのアクセス
	3.2.8. Developer Catalog を使用したサービスまたはコンポーネントのアプリケーションへの追加
	3.2.9. 関連情報

	3.3. インストールされた OPERATOR からのアプリケーションの作成
	3.3.1. Operator を使用した etcd クラスターの作成

	3.4. CLI を使用したアプリケーションの作成
	3.4.1. ソースコードからのアプリケーションの作成
	3.4.1.1. Local
	3.4.1.2. リモート
	3.4.1.3. ビルドストラテジーの検出
	3.4.1.4. 言語の検出

	3.4.2. イメージからアプリケーションを作成する方法
	3.4.2.1. Docker Hub MySQL イメージ
	3.4.2.2. プライベートレジストリーのイメージ
	3.4.2.3. 既存のイメージストリームおよびオプションのイメージストリームタグ

	3.4.3. テンプレートからのアプリケーションの作成
	3.4.3.1. テンプレートパラメーター

	3.4.4. アプリケーション作成の変更
	3.4.4.1. 環境変数の指定
	3.4.4.2. ビルド環境変数の指定
	3.4.4.3. ラベルの指定
	3.4.4.4. 作成前の出力の表示
	3.4.4.5. 別名でのオブジェクトの作成
	3.4.4.6. 別のプロジェクトでのオブジェクトの作成
	3.4.4.7. 複数のオブジェクトの作成
	3.4.4.8. 単一 Pod でのイメージとソースのグループ化
	3.4.4.9. イメージ、テンプレート、および他の入力の検索
	3.4.4.10. インポートモードの設定

	3.5. RUBY ON RAILS を使用したアプリケーションの作成
	3.5.1. 前提条件
	3.5.2. データベースの設定
	3.5.3. アプリケーションの作成
	3.5.3.1. Welcome ページの作成
	3.5.3.2. OpenShift Dedicated のアプリケーションの設定
	3.5.3.3. アプリケーションの Git への保存

	3.5.4. アプリケーションの OpenShift Dedicated へのデプロイ
	3.5.4.1. データベースサービスの作成
	3.5.4.2. フロントエンドサービスの作成
	3.5.4.3. アプリケーションのルートの作成

	第4章 TOPOLOGY ビューを使用したアプリケーション構成の表示
	4.1. 前提条件
	4.2. アプリケーションのトポロジーの表示
	4.3. アプリケーションおよびコンポーネントとの対話
	4.4. アプリケーション POD のスケーリングおよびビルドとルートの確認
	4.5. コンポーネントの既存プロジェクトへの追加
	4.6. アプリケーション内での複数コンポーネントのグループ化
	4.7. サービスのアプリケーションへの追加
	4.8. アプリケーションからのサービスの削除
	4.9. TOPOLOGY ビューに使用するラベルとアノテーション
	4.10. 関連情報

	第5章 HELM チャートの使用
	5.1. HELM について
	5.1.1. 主な特長
	5.1.2. OpenShift の Helm チャートの Red Hat 認定
	5.1.3. 関連情報

	5.2. HELM のインストール
	5.2.1. Linux の場合
	5.2.2. Windows 7/8 の場合
	5.2.3. Windows 10 の場合
	5.2.4. MacOS の場合

	5.3. カスタム HELM チャートリポジトリーの設定
	5.3.1. 開発者パースペクティブを使用した Helm リリースの作成
	5.3.2. Web 端末での Helm の使用
	5.3.3. OpenShift Dedicated でのカスタム Helm チャートの作成
	5.3.4. 証明書レベルでの Helm チャートのフィルタリング

	5.4. HELM リリースの使用
	5.4.1. 前提条件
	5.4.2. Helm リリースのアップグレード
	5.4.3. Helm リリースのロールバック
	5.4.4. Helm リリースの削除

	第6章 デプロイメント
	6.1. アプリケーションのカスタムドメイン
	6.1.1. アプリケーションのカスタムドメインの設定
	6.1.2. カスタムドメインの証明書の更新

	6.2. デプロイメントの理解
	6.2.1. デプロイメントのビルディングブロック
	6.2.1.1. レプリカセット
	6.2.1.2. レプリケーションコントローラー

	6.2.2. デプロイメント
	6.2.3. DeploymentConfig オブジェクト
	6.2.4. Deployment および DeploymentConfig オブジェクトの比較
	6.2.4.1. 設計
	6.2.4.2. デプロイメント固有の機能
	6.2.4.3. DeploymentConfig オブジェクト固有の機能

	6.3. デプロイメントプロセスの管理
	6.3.1. DeploymentConfig オブジェクトの管理
	6.3.1.1. デプロイメントの開始
	6.3.1.2. デプロイメントの表示
	6.3.1.3. デプロイメントの再試行
	6.3.1.4. デプロイメントのロールバック
	6.3.1.5. コンテナー内でのコマンドの実行
	6.3.1.6. デプロイメントログの表示
	6.3.1.7. デプロイメントトリガー
	6.3.1.8. デプロイメントリソースの設定
	6.3.1.9. 手動のスケーリング
	6.3.1.10. DeploymentConfig オブジェクトからのプライベートリポジトリーへのアクセス
	6.3.1.11. 異なるサービスアカウントでの Pod の実行

	6.4. デプロイメントストラテジーの使用
	6.4.1. デプロイメントストラテジーの選択
	6.4.2. ローリングストラテジー
	6.4.2.1. canary デプロイメント
	6.4.2.2. ローリングデプロイメントの作成
	6.4.2.3. 開発者パースペクティブを使用したデプロイメントの編集
	6.4.2.4. 開発者パースペクティブを使用したローリングデプロイメントの開始

	6.4.3. 再作成ストラテジー
	6.4.3.1. 開発者パースペクティブを使用したデプロイメントの編集
	6.4.3.2. 開発者パースペクティブを使用した再作成デプロイメントの開始

	6.4.4. カスタムストラテジー
	6.4.4.1. 開発者パースペクティブを使用したデプロイメントの編集

	6.4.5. ライフサイクルフック
	6.4.5.1. Pod ベースのライフサイクルフック
	6.4.5.2. ライフサイクルフックの設定

	6.5. ルートベースのデプロイメントストラテジーの使用
	6.5.1. プロキシーシャードおよびトラフィック分割
	6.5.2. N-1 互換性
	6.5.3. 正常な終了
	6.5.4. Blue-Green デプロイメント
	6.5.4.1. Blue-Green デプロイメントの設定

	6.5.5. A/B デプロイメント
	6.5.5.1. A/B テスト用の負荷分散

	6.5.6. 関連情報

	第7章 QUOTAS
	7.1. プロジェクトごとのリソースクォータ
	7.1.1. クォータで管理されるリソース
	7.1.2. クォータのスコープ
	7.1.3. クォータの実施
	7.1.4. 要求と制限
	7.1.5. リソースクォータ定義の例
	7.1.6. クォータの作成
	7.1.6.1. オブジェクトカウントクォータの作成
	7.1.6.2. 拡張リソースのリソースクォータの設定

	7.1.7. クォータの表示
	7.1.8. 明示的なリソースクォータの設定

	7.2. 複数のプロジェクト間のリソースクォータ
	7.2.1. クォータ作成時の複数プロジェクトの選択
	7.2.2. 該当するクラスターリソースクォータの表示
	7.2.3. 選択における粒度

	第8章 アプリケーションでの設定マップの使用
	8.1. 設定マップについて
	8.1.1. 設定マップの制限

	8.2. ユースケース: POD で設定マップを使用する
	8.2.1. 設定マップの使用によるコンテナーでの環境変数の設定
	8.2.2. 設定マップを使用したコンテナーコマンドのコマンドライン引数の設定
	8.2.3. 設定マップの使用によるボリュームへのコンテンツの挿入

	第9章 開発者パースペクティブを使用したプロジェクトおよびアプリケーションメトリクスのモニタリング
	9.1. 前提条件
	9.2. プロジェクトメトリクスのモニタリング
	9.3. アプリケーションメトリクスのモニタリング
	9.4. イメージの脆弱性の内訳
	9.5. アプリケーションとイメージの脆弱性メトリックの監視
	9.6. 関連情報

	第10章 ヘルスチェックの使用によるアプリケーションの正常性の監視
	10.1. ヘルスチェックについて
	10.1.1. プローブの例

	10.2. CLI を使用したヘルスチェックの設定
	10.3. DEVELOPER パースペクティブを使用したアプリケーションの正常性の監視
	10.4. 開発者パースペクティブを使用したヘルスチェックの追加
	10.5. 開発者パースペクティブを使用したヘルスチェックの編集
	10.6. DEVELOPER パースペクティブを使用したヘルスチェックの失敗の監視

	第11章 アプリケーションの編集
	11.1. 前提条件
	11.2. DEVELOPER パースペクティブを使用したアプリケーションのソースコードの編集
	11.3. DEVELOPER パースペクティブを使用したアプリケーション設定の編集

	第12章 クォータの使用
	12.1. クォータの表示
	12.2. クォータで管理されるリソース
	12.3. クォータのスコープ
	12.4. クォータの実施
	12.5. 要求と制限

	第13章 リソースを回収するためのオブジェクトのプルーニング
	13.1. プルーニングの基本操作
	13.2. グループのプルーニング
	13.3. デプロイメントリソースのプルーニング
	13.4. ビルドのプルーニング
	13.5. イメージの自動プルーニング
	13.6. CRON ジョブのプルーニング

	第14章 アプリケーションのアイドリング
	14.1. アプリケーションのアイドリング
	14.1.1. 単一サービスのアイドリング
	14.1.2. 複数サービスのアイドリング

	14.2. アプリケーションのアイドリング解除

	第15章 アプリケーションの削除
	15.1. DEVELOPER パースペクティブを使用したアプリケーションの削除

