
OpenShift Dedicated 4

Operator

OpenShift Dedicated の Operator

Last Updated: 2025-12-01

OpenShift Dedicated 4 Operator

OpenShift Dedicated の Operator

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

コントロールプレーンでのサービスのパッケージ化、デプロイメント、管理に Operator がどのよ
うに役立つかを説明します。

. .

. .

. .

. .

Table of Contents

第1章 OPERATOR の概要
1.1. 開発者の場合
1.2. 管理者の場合
1.3. 次のステップ

第2章 OPERATORS について
2.1. OPERATORS について
2.2. OPERATOR FRAMEWORK パッケージ形式
2.3. 一般的な OPERATOR FRAMEWORK 用語
2.4. OPERATOR LIFECYCLE MANAGER (OLM)
2.5. ソフトウェアカタログの概要
2.6. RED HAT が提供する OPERATOR カタログ
2.7. マルチテナントクラスター内の OPERATORS
2.8. CRD

第3章 ユーザータスク
3.1. インストールされた OPERATOR からのアプリケーションの作成

第4章 管理者タスク
4.1. OPERATOR のクラスターへの追加
4.2. インストール済み OPERATOR の更新
4.3. クラスターからの OPERATOR の削除
4.4. OPERATOR LIFECYCLE MANAGER でのプロキシーサポートの設定
4.5. OPERATOR ステータスの表示
4.6. OPERATOR 条件の管理
4.7. カスタムカタログの管理
4.8. カタログソース POD のスケジューリング
4.9. OPERATOR 関連の問題のトラブルシューティング

3
3
3
3

4
4
5

20
22
65
66
68
70

73
73

75
75
92
94
97
101

104
106
123
126

Table of Contents

1

OpenShift Dedicated 4 Operator

2

第1章 OPERATOR の概要
Operator は OpenShift Dedicated の最も重要なコンポーネントです。これらは、コントロールプレー
ン上でサービスをパッケージ化、デプロイ、および管理するための推奨される方法です。Operator の
使用は、ユーザーが実行するアプリケーションにも各種の利点があります。

Operators は、kubectl や OpenShift CLI (oc) などの Kubernetes API および CLI ツールと統合します。
Operator はアプリケーションの監視、ヘルスチェックの実行、OTA (over-the-air) 更新の管理を実行
し、アプリケーションが指定した状態にあることを確認するための手段となります。

Operators は、Kubernetes ネイティブアプリケーション向けに特別に設計されており、インストールや
設定などの一般的な Day 1 オペレーションを実装および自動化します。Operators は、自動スケール
アップや自動スケールダウン、バックアップの作成など、Day 2 オペレーションを自動化することもで
きます。これらのアクティビティーは、クラスター上で実行されているソフトウェアによってすべて制
御されます。

OpenShift Dedicated の Operator は、目的に応じて 2 つの異なるシステムによって管理されます。ど
ちらも同様の Operator の概念と目標に準拠しています。

クラスター Operator

Cluster Version Operator (CVO) により管理され、クラスター機能を実行するためにデフォルトでイ
ンストールされます。

オプションのアドオン Operators

Operator Lifecycle Manager (OLM) により管理され、ユーザーがアプリケーションで実行するよう
にアクセスを可能にします。OLM ベースの Operators とも呼ばれます。

1.1. 開発者の場合

Operator 作成者は、OLM ベースの Operators に関して、次の開発タスクを実行できます。

インストールされた Operator から Web コンソールを介してアプリケーションを作成 します。

1.2. 管理者の場合

dedicated-admin ロールを持つ管理者は、次の Operator タスクを実行できます。

カスタムカタログを管理 します。

ソフトウェアカタログから Operator をインストール します。

オペレータのステータスを表示 します。

Operator の状態を管理 します。

インストールされている Operators をアップグレード します。

インストールされている Operators を削除 します。

プロキシーサポートを設定 します。

1.3. 次のステップ

Operators について

第1章 OPERATOR の概要

3

第2章 OPERATORS について

2.1. OPERATORS について

概念的に言うと、Operators は人間の運用上のナレッジを使用し、これをコンシューマーと簡単に共有
できるソフトウェアにエンコードします。

Operator は、ソフトウェアの他の部分を実行する運用上の複雑さを軽減するソフトウェアの特定の部
分で設定されます。Operator はソフトウェアベンダーのエンジニアリングチームの一員のように機能
し、Kubernetes 環境 (OpenShift Dedicated など) を監視し、その現在の状態を使用してリアルタイム
で意思決定を行います。高度な Operator はアップグレードをシームレスに実行し、障害に自動的に対
応するように設計されており、時間の節約のためにソフトウェアのバックアッププロセスを省略するな
どのショートカットを実行することはありません。

技術的に言うと、Operators は Kubernetes アプリケーションをパッケージ化し、デプロイし、管理す
る方法です。

Kubernetes アプリケーションは、Kubernetes にデプロイされ、Kubernetes API および kubectl または
oc ツールを使用して管理されるアプリケーションです。Kubernetes を最大限に活用するには、
Kubernetes 上で実行されるアプリケーションを提供し、管理するために拡張できるように一連の総合
的な API が必要です。Operators は、Kubernetes 上でこのタイプのアプリケーションを管理するラン
タイムと見なすことができます。

2.1.1. Operators を使用する理由

Operators は以下を提供します。

インストールおよびアップグレードの反復性。

すべてのシステムコンポーネントの継続的なヘルスチェック。

OpenShift コンポーネントおよび ISV コンテンツの OTA (Over-the-air) 更新。

フィールドエンジニアの知識を凝縮し、1 人や 2 人だけでなくすべてのユーザーに広める場所。

Kubernetes にデプロイする理由

Kubernetes (延長線上で考えると OpenShift Dedicated も含まれる) には、シークレットの処理、負
荷分散、サービスの検出、自動スケーリングなどの、オンプレミスおよびクラウドプロバイダーで
機能する、複雑な分散システムをビルドするために必要なすべてのプリミティブが含まれます。

アプリケーションを Kubernetes API および kubectl ツールで管理する理由

これらの API は機能的に充実しており、すべてのプラットフォームのクライアントを持ち、クラス
ターのアクセス制御/監査機能にプラグインします。Operator は Kubernetes の拡張メカニズム、カ
スタムリソース定義 (CRD、Custom Resource Definition) を使用するため、MongoDB など のカス
タムオブジェクトは、ビルトインされたネイティブ Kubernetes オブジェクトのように表示され、機
能します。

Operators とサービスブローカーとの比較

サービスブローカーは、アプリケーションのプログラムによる検出およびデプロイメントを行うた
めの 1 つの手段です。ただし、これは長期的に実行されるプロセスではないため、アップグレード、
フェイルオーバー、またはスケーリングなどの Day 2 オペレーションを実行できません。カスタマ
イズおよびチューニング可能なパラメーターはインストール時に提供されるのに対し、Operator は
クラスターの最新の状態を常に監視します。クラスター外のサービスを使用する場合は、Operators
もこれらのクラスター外のサービスに使用できますが、これらをサービスブローカーで使用できま
す。

OpenShift Dedicated 4 Operator

4

https://marketplace.redhat.com/en-us/products/mongodb-enterprise-advanced-from-ibm

2.1.2. Operator Framework

Operator Framework は、上記のカスタマーエクスペリエンスに関連して提供されるツールおよび機能
のファミリーです。これは、コードを作成するためだけにあるのではなく、Operators のテスト、実
行、および更新などの重要な機能を実行します。Operator Framework コンポーネントは、これらの課
題に対応するためのオープンソースツールで構成されています。

Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) は、クラスター内の Operators のインストール、アップグレー
ド、ロールベースのアクセス制御 (RBAC) を制御します。OpenShift Dedicated ではデフォルトでデ
プロイされます。

Operator Registry

Operator Registry は、クラスターで作成するためのクラスターサービスバージョン (Cluster Service
Version、CSV) およびカスタムリソース定義 (CRD) を保存し、パッケージおよびチャネルに関する
Operator メタデータを保存します。これは Kubernetes または OpenShift クラスターで実行され、
この Operator カタログデータを OLM に指定します。

ソフトウェアカタログ

ソフトウェアカタログは、クラスター管理者がクラスターにインストールする Operator を検索して
選択するための Web コンソールです。OpenShift Dedicated ではデフォルトでデプロイされます。

これらのツールは組み立て可能なツールとして設計されているため、役に立つと思われるツールを使用
できます。

2.1.3. Operator 成熟度モデル

Operator 内にカプセル化されている管理ロジックの複雑さのレベルはさまざまです。また、このロ
ジックは通常 Operator によって表されるサービスのタイプによって大きく変わります。

ただし、大半の Operators に含まれる特定の機能セットは、Operator のカプセル化された操作の成熟
度の規模を一般化することができます。このため、以下の Operator 成熟度モデルは、Operator の一般
的な Day 2 オペレーションに関する 5 つのフェーズの成熟度を定義しています。

図2.1 Operator 成熟度モデル

2.2. OPERATOR FRAMEWORK パッケージ形式

第2章 OPERATORS について

5

ここでは、OpenShift Dedicated の Operator Lifecycle Manager (OLM) によってサポートされる
Operator のパッケージ形式の概要を説明します。

2.2.1. Bundle Format

Operators の Bundle Format は、Operator Framework によって導入されるパッケージ形式です。ス
ケーラビリティーを向上させ、アップストリームユーザーがより効果的に独自のカタログをホストでき
るようにするために、Bundle Format 仕様は Operator メタデータのディストリビューションを単純化
します。

Operator バンドルは、Operator の単一バージョンを表します。ディスク上の バンドルマニフェスト
は、Kubernetes マニフェストおよび Operator メタデータを保存する実行不可能なコンテナーイメージ
である バンドルイメージ としてコンテナー化され、提供されます。次に、バンドルイメージの保存お
よび配布は、podman、docker、および Quay などのコンテナーレジストリーを使用して管理されま
す。

Operator メタデータには以下を含めることができます。

Operator を識別する情報 (名前およびバージョンなど)。

UI を駆動する追加情報 (アイコンや一部のカスタムリソース (CR) など)。

必須および提供される API。

関連するイメージ。

マニフェストを Operator Registry データベースに読み込む際に、以下の要件が検証されます。

バンドルには、アノテーションで定義された 1 つ以上のチャネルが含まれる必要がある。

すべてのバンドルには、1 つのクラスターサービスバージョン (CSV) がある。

CSV がクラスターリソース定義 (CRD) を所有する場合、その CRD はバンドルに存在する必要
がある。

2.2.1.1. マニフェスト

バンドルマニフェストは、Operator のデプロイメントおよび RBAC モデルを定義する Kubernetes マニ
フェストのセットを指します。

バンドルには、ディレクトリーごとに 1 つの CSV が含まれています。通常、その /manifests ディレク
トリーには、CSV が所有する API を定義する CRD が格納されています。

Bundle Format のレイアウトの例

etcd
├── manifests
│ ├── etcdcluster.crd.yaml
│ └── etcdoperator.clusterserviceversion.yaml
│ └── secret.yaml
│ └── configmap.yaml
└── metadata
 └── annotations.yaml
 └── dependencies.yaml

OpenShift Dedicated 4 Operator

6

2.2.1.1.1. その他のサポート対象のオブジェクト

以下のオブジェクトタイプは、バンドルの /manifests ディレクトリーにオプションとして追加するこ
ともできます。

サポート対象のオプションオブジェクトタイプ

ClusterRole

ClusterRoleBinding

ConfigMap

ConsoleCLIDownload

ConsoleLink

ConsoleQuickStart

ConsoleYamlSample

PodDisruptionBudget

PriorityClass

PrometheusRule

Role

RoleBinding

Secret

Service

ServiceAccount

ServiceMonitor

VerticalPodAutoscaler

これらのオプションオブジェクトがバンドルに含まれる場合、Operator Lifecycle Manager (OLM) はバ
ンドルからこれらを作成し、CSV と共にそれらのライフサイクルを管理できます。

オプションオブジェクトのライフサイクル

CSV が削除されると、OLM はオプションオブジェクトを削除します。

CSV がアップグレードされると、以下を実行します。

オプションオブジェクトの名前が同じである場合、OLM はこれを更新します。

オプションオブジェクトの名前がバージョン間で変更された場合、OLM はこれを削除し、
再作成します。

2.2.1.2. アノテーション
バンドルには、/metadata ディレクトリーに annotations.yaml ファイルも含まれています。このファ

第2章 OPERATORS について

7

1

2

3

4

5

6

バンドルには、/metadata ディレクトリーに annotations.yaml ファイルも含まれています。このファ
イルは、バンドルをバンドルのインデックスに追加する方法に関する形式およびパッケージ情報の記述
に役立つ高レベルの集計データを定義します。

annotations.yaml の例

Operator バンドルのメディアタイプまたは形式。registry+v1 形式の場合、これに CSV および関
連付けられた Kubernetes オブジェクトが含まれることを意味します。

Operator マニフェストが含まれるディレクトリーへのイメージのパス。このラベルは今後使用す
るために予約され、現時点ではデフォの manifests/ に設定されています。manifests.v1 の値は、
バンドルに Operator マニフェストが含まれることを示します。

バンドルに関するメタデータファイルが含まれるディレクトリーへのイメージのパス。このラベル
は今後使用するために予約され、現時点ではデフォの metadata/ に設定されていま
す。metadata.v1 の値は、このバンドルに Operator メタデータがあることを意味します。

バンドルのパッケージ名。

Operator Registry に追加される際にバンドルがサブスクライブするチャネルのリスト。

レジストリーからインストールされる場合に Operator がサブスクライブされるデフォルトチャネ
ル。

注記

一致しない場合、annotations.yaml ファイルは、これらのアノテーションに依存するク
ラスター上の Operator Registry のみがこのファイルにアクセスできるために権威を持つ
ファイルになります。

2.2.1.3. Dependencies

Operator の依存関係は、バンドルの metadata/ フォルダー内の dependencies.yaml ファイルに一覧表
示されます。このファイルはオプションであり、現時点では明示的な Operator バージョンの依存関係
を指定するためにのみ使用されます。

依存関係の一覧には、依存関係の内容を指定するために各項目の type フィールドが含まれます。次の
タイプの Operator 依存関係がサポートされています。

olm.package

このタイプは、特定の Operator バージョンの依存関係であることを意味します。依存関係情報に
は、パッケージ名とパッケージのバージョンを semver 形式で含める必要があります。たとえ
ば、0.5.2 などの特定バージョンや >0.5.1 などのバージョンの範囲を指定することができます。

olm.gvk

annotations:
 operators.operatorframework.io.bundle.mediatype.v1: "registry+v1" 1
 operators.operatorframework.io.bundle.manifests.v1: "manifests/" 2
 operators.operatorframework.io.bundle.metadata.v1: "metadata/" 3
 operators.operatorframework.io.bundle.package.v1: "test-operator" 4
 operators.operatorframework.io.bundle.channels.v1: "beta,stable" 5
 operators.operatorframework.io.bundle.channel.default.v1: "stable" 6

OpenShift Dedicated 4 Operator

8

このタイプの場合、作成者は CSV の既存の CRD および API ベースの使用方法と同様に
group/version/kind (GVK) 情報で依存関係を指定できます。これは、Operator の作成者がすべての
依存関係、API または明示的なバージョンを同じ場所に配置できるようにするパスです。

olm.constraint

このタイプは、任意の Operator プロパティーに対するジェネリック制約を宣言します。

以下の例では、依存関係は Prometheus Operator および etcd CRD に指定されます。

dependencies.yaml ファイルの例

関連情報

Operator Lifecycle Manager の依存関係の解決

2.2.1.4. opm CLI について

opm CLI ツールは、Operator Bundle Format で使用するために Operator Framework によって提供さ
れます。このツールを使用して、ソフトウェアリポジトリーに相当する Operator バンドルのリストか
ら Operators のカタログを作成し、維持することができます。結果として、コンテナーイメージをコン
テナーレジストリーに保存し、その後にクラスターにインストールできます。

カタログには、コンテナーイメージの実行時に提供される組み込まれた API を使用してクエリーでき
る、Operator マニフェストコンテンツへのポインターのデータベースが含まれます。OpenShift
Dedicated では、Operator Lifecycle Manager (OLM) は、CatalogSource オブジェクトが定義したカ
タログソース内のイメージ参照できます。これにより、クラスター上にインストールされた Operator
への頻度の高い更新を可能にするためにイメージを一定の間隔でポーリングできます。

opm CLI のインストール手順は、CLI ツール を参照してください。

2.2.2. 主な特徴

ファイルベースのカタログ は、Operator Lifecycle Manager (OLM) の最新バージョンのカタログ形式
です。この形式は、プレーンテキストベース (JSON または YAML) であり、以前の SQLite データベー
ス形式の宣言的な設定の進化であり、完全な下位互換性があります。この形式の目標は、Operator の
カタログ編集、設定可能性、および拡張性を有効にすることです。

編集

ファイルベースのカタログを使用すると、カタログの内容を操作するユーザーは、形式を直接変更
し、変更が有効であることを確認できます。この形式はプレーンテキストの JSON または YAML で
あるため、カタログメンテナーは、一般的に知られている、サポート対象の JSON または YAML
ツール (例: jq CLI) を使用して、手動でカタログメタデータを簡単に操作できます。
この編集機能により、以下の機能とユーザー定義の拡張が有効になります。

dependencies:
 - type: olm.package
 value:
 packageName: prometheus
 version: ">0.27.0"
 - type: olm.gvk
 value:
 group: etcd.database.coreos.com
 kind: EtcdCluster
 version: v1beta2

第2章 OPERATORS について

9

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/cli_tools/#cli-opm-install

既存のバンドルの新規チャネルへのプロモート

パッケージのデフォルトチャネルの変更

アップグレードパスを追加、更新、および削除するためのカスタムアルゴリズム

コンポーザービリティー

ファイルベースのカタログは、任意のディレクトリー階層に保管され、カタログの作成が可能にな
ります。たとえば、2 つのファイルベースのカタログディレクトリー (catalogA および catalogB)
を見てみましょう。カタログメンテナーは、新規のディレクトリー catalogC を作成して catalogA
と catalogB をそのディレクトリーにコピーし、新しく結合カタログを作成できます。
このコンポーザービリティーにより、カタログの分散化が可能になります。この形式により、
Operator の作成者は Operator 固有のカタログを維持でき、メンテナーは個別の Operator カタログ
で構成されるカタログを簡単にビルドできます。ファイルベースのカタログは、他の複数のカタロ
グを組み合わせたり、1 つのカタログのサブセットを抽出したり、またはこれらの両方を組み合わせ
たりすることで作成できます。

注記

パッケージ内でパッケージおよびバンドルを重複できません。opm validate コマン
ドは、重複が見つかった場合はエラーを返します。

Operator の作成者は Operator、その依存関係およびそのアップグレードの互換性を最も理解してい
るので、Operator 固有のカタログを独自のカタログに維持し、そのコンテンツを直接制御できま
す。ファイルベースのカタログの場合に、Operator の作成者はカタログでパッケージをビルドして
維持するタスクを所有します。ただし、複合カタログメンテナーは、カタログ内のパッケージの
キュレートおよびユーザーにカタログを公開するタスクのみを所有します。

拡張性

ファイルベースのカタログ仕様は、カタログの低レベル表現です。これは低レベルの形式で直接保
守できますが、カタログメンテナーは、このレベルの上に任意の拡張をビルドして、独自のカスタ
ムツールを使用して任意数の変更を加えることができます。
たとえば、(mode=semver) などの高レベルの API を、アップグレードパス用に低レベルのファイル
ベースのカタログ形式にツールで変換できます。または、カタログメンテナーは、特定の条件を満
たすバンドルに新規プロパティーを追加して、すべてのバンドルメタデータをカスタマイズする必
要がある場合があります。

このような拡張性を使用すると、今後の OpenShift Dedicated リリース向けに、追加の正式なツー
ルを低レベル API 上で開発できます。主な利点としては、カタログメンテナーもこの機能を利用で
きる点が挙げられます。

重要

OpenShift Dedicated 4 Operator

10

重要

OpenShift Dedicated 4.11 以降、デフォルトの Red Hat 提供の Operator カタログはファ
イルベースのカタログ形式でリリースされます。OpenShift Dedicated 4.6 から 4.10 ま
での Red Hat が提供するデフォルトの Operator カタログは、非推奨の SQLite データ
ベース形式でリリースされました。

opm サブコマンド、フラグ、および SQLite データベース形式に関連する機能も非推奨
となり、今後のリリースで削除されます。機能は引き続きサポートされており、非推奨
の SQLite データベース形式を使用するカタログに使用する必要があります。

opm index prune などの SQLite データベース形式を使用する opm サブコマンドおよび
フラグの多くは、ファイルベースのカタログ形式では機能しません。ファイルベースの
カタログを使用する方法の詳細は、カスタムカタログの管理 を参照してください。

2.2.2.1. ディレクトリー構造

ファイルベースのカタログは、ディレクトリーベースのファイルシステムから保存してロードできま
す。opm CLI は、root ディレクトリーを元に、サブディレクトリーに再帰してカタログを読み込みま
す。CLI は、検出されるすべてのファイルの読み込みを試行し、エラーが発生した場合には失敗しま
す。

.gitignore ファイルとパターンと優先順位が同じ .indexignore ファイルを使用して、カタログ以外の
ファイルを無視できます。

例: .indexignore ファイル

カタログメンテナーは、必要なレイアウトを柔軟に選択できますが、各パッケージのファイルベースの
カタログ Blob は別々のサブディレクトリーに保管することを推奨します。個々のファイルは JSON ま
たは YAML のいずれかをしようしてください。カタログ内のすべてのファイルが同じ形式を使用する必
要はありません。

推奨される基本構造

この推奨の構造には、ディレクトリー階層内の各サブディレクトリーは自己完結型のカタログであると
いう特性があるため、カタログの作成、検出、およびナビゲーションなどのファイルシステムの操作が

Ignore everything except non-object .json and .yaml files
**/*
!*.json
!*.yaml
**/objects/*.json
**/objects/*.yaml

catalog
├── packageA
│ └── index.yaml
├── packageB
│ ├── .indexignore
│ ├── index.yaml
│ └── objects
│ └── packageB.v0.1.0.clusterserviceversion.yaml
└── packageC
 └── index.json
 └── deprecations.yaml

第2章 OPERATORS について

11

簡素化されます。このカタログは、親カタログのルートディレクトリーにコピーして親カタログに追加
することもできます。

2.2.2.2. スキーマ

ファイルベースのカタログは、任意のスキーマで拡張できる CUE 言語仕様 に基づく形式を使用しま
す。以下の _Meta CUE スキーマは、すべてのファイルベースのカタログ Blob が順守する必要のある形
式を定義します。

_Meta スキーマ

注記

この仕様にリストされている CUE スキーマは網羅されていると見なされます。opm
validate コマンドには、CUE で簡潔に記述するのが困難または不可能な追加の検証が含
まれます。

Operator Lifecycle Manager(OLM) カタログは、現時点で OLM の既存のパッケージおよびバンドルの
概念に対応する 3 つのスキーマ (olm.package、olm.channel および olm.bundle) を使用します。

カタログの各 Operator パッケージには、olm.package Blob が 1 つ (少なくとも olm.channel Blob 1
つ、および 1 つ以上の olm.bundle Blob) が必要です。

注記

olm.* スキーマは OLM 定義スキーマ用に予約されています。カスタムスキーマには、所
有しているドメインなど、一意の接頭辞を使用する必要があります。

2.2.2.2.1. olm.package スキーマ

olm.package スキーマは Operator のパッケージレベルのメタデータを定義します。これには、名前、
説明、デフォルトのチャネル、およびアイコンが含まれます。

例2.1 olm.package スキーマ

_Meta: {
 // schema is required and must be a non-empty string
 schema: string & !=""

 // package is optional, but if it's defined, it must be a non-empty string
 package?: string & !=""

 // properties is optional, but if it's defined, it must be a list of 0 or more properties
 properties?: [... #Property]
}

#Property: {
 // type is required
 type: string & !=""

 // value is required, and it must not be null
 value: !=null
}

OpenShift Dedicated 4 Operator

12

https://cuelang.org/docs/references/spec/

2.2.2.2.2. olm.channel スキーマ

olm.channel スキーマは、パッケージ内のチャネル、チャネルのメンバーであるバンドルエントリー、
およびそのバンドルのアップグレードパスを定義します。

バンドルエントリーが複数の olm.channel Blob 内のエッジを表す場合、バンドルエントリーはチャネ
ルごとに 1 つだけ指定できます。

エントリーの replaces 値が、このカタログにも別のカタログにも存在しない別のバンドル名を参照し
ていても、有効とされます。ただし、他のすべてのチャネルの普遍条件に該当する必要があります
(チャネルに複数のヘッドがない場合など)。

例2.2 olm.channel スキーマ

#Package: {
 schema: "olm.package"

 // Package name
 name: string & !=""

 // A description of the package
 description?: string

 // The package's default channel
 defaultChannel: string & !=""

 // An optional icon
 icon?: {
 base64data: string
 mediatype: string
 }
}

#Channel: {
 schema: "olm.channel"
 package: string & !=""
 name: string & !=""
 entries: [...#ChannelEntry]
}

#ChannelEntry: {
 // name is required. It is the name of an `olm.bundle` that
 // is present in the channel.
 name: string & !=""

 // replaces is optional. It is the name of bundle that is replaced
 // by this entry. It does not have to be present in the entry list.
 replaces?: string & !=""

 // skips is optional. It is a list of bundle names that are skipped by
 // this entry. The skipped bundles do not have to be present in the
 // entry list.
 skips?: [...string & !=""]

第2章 OPERATORS について

13

警告

skipRange フィールドを使用すると、スキップされた Operator バージョンが更新
グラフからプルーニングされ、ユーザーが Subscription オブジェクトの
spec.startingCSV プロパティーを使用してそのバージョンをインストールできな
くなります。

skipRange フィールドと replaces フィールドの両方を使用すると、以前にインス
トールしたバージョンをユーザーが将来インストールできるように維持しながら、
Operator を段階的に更新できます。replaces フィールドが当該 Operator バー
ジョンの直前のバージョンを参照していることを確認してください。

2.2.2.2.3. olm.bundle スキーマ

例2.3 olm.bundle スキーマ

 // skipRange is optional. It is the semver range of bundle versions
 // that are skipped by this entry.
 skipRange?: string & !=""
}



#Bundle: {
 schema: "olm.bundle"
 package: string & !=""
 name: string & !=""
 image: string & !=""
 properties: [...#Property]
 relatedImages?: [...#RelatedImage]
}

#Property: {
 // type is required
 type: string & !=""

 // value is required, and it must not be null
 value: !=null
}

#RelatedImage: {
 // image is the image reference
 image: string & !=""

 // name is an optional descriptive name for an image that
 // helps identify its purpose in the context of the bundle
 name?: string & !=""
}

OpenShift Dedicated 4 Operator

14

1

2.2.2.2.4. olm.deprecations スキーマ

オプションの olm.deprecations スキーマは、カタログ内のパッケージ、バンドル、チャネルの非推奨
情報を定義します。Operator の作成者は、このスキーマを使用して、サポートステータスや推奨アッ
プグレードパスなど、Operators に関する関連メッセージを、カタログから Operators を実行している
ユーザーに提供できます。

このスキーマが定義されると、OpenShift Dedicated Web コンソールには、ソフトウェアカタログのイ
ンストール前ページとインストール後ページの両方で、カスタムの非推奨メッセージを含む Operator
の影響を受ける要素の警告バッジが表示されます。

olm.deprecations スキーマエントリーには、非推奨の範囲を示す次の reference タイプが 1 つ以上含
まれています。Operator がインストールされると、指定されたメッセージが、関連する Subscription
オブジェクトのステータス状況として表示されます。

表2.1 非推奨の reference タイプ

型 スコープ ステータス状況

olm.package パッケージ全体を表します。 PackageDeprecated

olm.channel 1 つのチャネルを表します。 ChannelDeprecated

olm.bundle 1 つのバンドルバージョンを表します。 BundleDeprecated

次の例で詳しく説明するように、各 reference タイプには独自の要件があります。

例2.4 各 reference タイプを使用した olm.deprecations スキーマの例

各非推奨スキーマには package 値が必要であり、そのパッケージ参照はカタログ全体で一意で
ある必要があります。関連する name フィールドを含めることはできません。

schema: olm.deprecations
package: my-operator 1
entries:
 - reference:
 schema: olm.package 2
 message: | 3
 The 'my-operator' package is end of life. Please use the
 'my-operator-new' package for support.
 - reference:
 schema: olm.channel
 name: alpha 4
 message: |
 The 'alpha' channel is no longer supported. Please switch to the
 'stable' channel.
 - reference:
 schema: olm.bundle
 name: my-operator.v1.68.0 5
 message: |
 my-operator.v1.68.0 is deprecated. Uninstall my-operator.v1.68.0 and
 install my-operator.v1.72.0 for support.

第2章 OPERATORS について

15

2

3

4

5

olm.package スキーマに name フィールドを含めることはできません。このフィールドは、ス
キーマ内で前に定義した package フィールドによって決定されるためです。

すべての message フィールドは、reference タイプを問わず、長さが 0 以外である必要があ
り、不透明なテキスト Blob として表す必要があります。

olm.channel スキーマの name フィールドは必須です。

olm.bundle スキーマの name フィールドは必須です。

注記

非推奨機能では、パッケージ、チャネル、バンドルなど、重複する非推奨は考慮されま
せん。

Operator の作成者は、olm.deprecations スキーマエントリーを deprecations.yaml ファイルとして
パッケージの index.yaml ファイルと同じディレクトリーに保存できます。

非推奨を含むカタログのディレクトリー構造の例

関連情報

ファイルベースのカタログイメージの更新またはフィルタリング

2.2.2.3. プロパティー

プロパティーは、ファイルベースのカタログスキーマに追加できる任意のメタデータです。type
フィールドは、value フィールドのセマンティックおよび構文上の意味を効果的に指定する文字列で
す。値には任意の JSON または YAML を使用できます。

OLM は、予約済みの olm.* 接頭辞をもう一度使用して、いくつかのプロパティータイプを定義しま
す。

2.2.2.3.1. olm.package プロパティー

olm.package プロパティーは、パッケージ名とバージョンを定義します。これはバンドルの必須プロ
パティーであり、これらのプロパティーが 1 つ必要です。packageName フィールドはバンドルの
ファーストクラス package フィールドと同じでなければならず、version フィールドは有効なセマン
ティクスバージョンである必要があります。

例2.5 olm.package プロパティー

my-catalog
└── my-operator
 ├── index.yaml
 └── deprecations.yaml

#PropertyPackage: {
 type: "olm.package"
 value: {
 packageName: string & !=""

OpenShift Dedicated 4 Operator

16

2.2.2.3.2. olm.gvk プロパティー

olm.gvk プロパティーは、このバンドルで提供される Kubernetes API の group/version/kind(GVK) を
定義します。このプロパティーは、OLM が使用して、必須の API と同じ GVK をリストする他のバンド
ルの依存関係として、このプロパティーでバンドルを解決します。GVK は Kubernetes GVK の検証に準
拠する必要があります。

例2.6 olm.gvk プロパティー

2.2.2.3.3. olm.package.required

olm.package.required プロパティーは、このバンドルが必要な別のパッケージのパッケージ名とバー
ジョン範囲を定義します。バンドルにリストされている必要なパッケージプロパティーごとに、OLM
は、リストされているパッケージのクラスターに必要なバージョン範囲で Operator がインストールさ
れていることを確認します。versionRange フィールドは有効なセマンティクスバージョン (semver)
の範囲である必要があります。

例2.7 olm.package.required プロパティー

2.2.2.3.4. olm.gvk.required

olm.gvk.required プロパティーは、このバンドルが必要とする Kubernetes API の
group/version/kind(GVK) を定義します。バンドルにリストされている必要な GVK プロパティーごと
に、OLM は、提供する Operator がクラスターにインストールされていることを確認します。GVK は
Kubernetes GVK の検証に準拠する必要があります。

例2.8 olm.gvk.required プロパティー

 version: string & !=""
 }
}

#PropertyGVK: {
 type: "olm.gvk"
 value: {
 group: string & !=""
 version: string & !=""
 kind: string & !=""
 }
}

#PropertyPackageRequired: {
 type: "olm.package.required"
 value: {
 packageName: string & !=""
 versionRange: string & !=""
 }
}

第2章 OPERATORS について

17

2.2.2.4. カタログの例

ファイルベースのカタログを使用すると、カタログメンテナーは Operator のキュレーションおよび互
換性に集中できます。Operator の作成者は Operators 用に Operator 固有のカタログをすでに生成して
いるので、カタログメンテナーは、各 Operator カタログをカタログのルートディレクトリーのサブ
ディレクトリーにレンダリングしてビルドできます。

ファイルベースのカタログをビルドする方法は多数あります。以下の手順は、単純なアプローチの概要
を示しています。

1. カタログの設定ファイルを 1 つ維持し、カタログ内に Operator ごとにイメージの参照を含めま
す。

カタログ設定ファイルのサンプル

2. 設定ファイルを解析し、その参照から新規カタログを作成するスクリプトを実行します。

スクリプトの例

#PropertyGVKRequired: {
 type: "olm.gvk.required"
 value: {
 group: string & !=""
 version: string & !=""
 kind: string & !=""
 }
}

name: community-operators
repo: quay.io/community-operators/catalog
tag: latest
references:
- name: etcd-operator
 image: quay.io/etcd-
operator/index@sha256:5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f
6be03
- name: prometheus-operator
 image: quay.io/prometheus-
operator/index@sha256:e258d248fda94c63753607f7c4494ee0fcbe92f1a76bfdac795c9d84101
eb317

name=$(yq eval '.name' catalog.yaml)
mkdir "$name"
yq eval '.name + "/" + .references[].name' catalog.yaml | xargs mkdir
for l in $(yq e '.name as $catalog | .references[] | .image + "|" + $catalog + "/" + .name +
"/index.yaml"' catalog.yaml); do
 image=$(echo $l | cut -d'|' -f1)
 file=$(echo $l | cut -d'|' -f2)
 opm render "$image" > "$file"
done
opm generate dockerfile "$name"

OpenShift Dedicated 4 Operator

18

2.2.2.5. ガイドライン

ファイルベースのカタログを維持する場合には、以下のガイドラインを考慮してください。

2.2.2.5.1. イミュータブルなバンドル

Operator Lifecycle Manager(OLM) に関する一般的なアドバイスとして、バンドルイメージとそのメタ
データをイミュータブルとして処理する必要がある点があります。

破損したバンドルがカタログにプッシュされている場合には、少なくとも 1 人のユーザーがそのバンド
ルにアップグレードしたと想定する必要があります。このような想定に基づいて、破損したバンドルを
インストールしたユーザーがアップグレードを確実に受け取れるように、破損したバンドルのアップグ
レードパスを使用して別のバンドルをリリースする必要があります。OLM は、カタログでバンドルの
内容が更新された場合に、インストールされたバンドルは再インストールされません。

ただし、カタログメタデータの変更が推奨される場合があります。

チャネルプロモーション: バンドルをすでにリリースし、後で別のチャネルに追加することにし
た場合は、バンドルのエントリーを別の olm.channel Blob に追加できます。

新規アップグレードパス: 1.2.z バンドルバージョンを新たにリリースしたが (例:1.2.4)、1.3.0
がすでにリリースされている場合は、1.2.4 をスキップするように 1.3.0 のカタログメタデータ
を更新できます。

2.2.2.5.2. ソース制御

カタログメタデータはソースコントロールに保存され、信頼できる情報源として処理される必要があり
ます。以下の手順で、カタログイメージを更新する必要があります。

1. ソース制御されたカタログディレクトリーを新規コミットを使用して更新します。

2. カタログイメージをビルドし、プッシュします。ユーザーがカタログが利用可能になり次第更
新を受信できるように、一貫性のあるタグ付け (:latest or :<target_cluster_version>) を使用
します。

2.2.2.6. CLI の使用

opm CLI を使用してファイルベースのカタログを作成する方法は、カスタムカタログの管理 を参照し
てください。

ファイルベースのカタログの管理に関連する opm CLI コマンドに関する参考情報は、CLI ツール を参
照してください。

2.2.2.7. 自動化

Operator の作成者およびカタログメンテナーは、CI/CD ワークフローを使用してカタログのメンテナ
ンスを自動化することが推奨されます。カタログメンテナーは、GitOps 自動化をビルドして以下のタ
スクを実行し、これをさらに向上させることができます。

パッケージのイメージ参照の更新など、プル要求 (PR) の作成者が要求された変更を実行できる
ことを確認します。

indexImage=$(yq eval '.repo + ":" + .tag' catalog.yaml)
docker build -t "$indexImage" -f "$name.Dockerfile" .
docker push "$indexImage"

第2章 OPERATORS について

19

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/cli_tools/#cli-opm-ref

カタログの更新で opm validate コマンドが指定されていることを確認します。

更新されたバンドルまたはカタログイメージの参照が存在し、カタログイメージがクラスター
で正常に実行され、そのパッケージの Operators が正常にインストールされることを確認しま
す。

以前のチェックに合格した PR を自動的にマージします。

カタログイメージを自動的にもう一度ビルドして公開します。

2.3. 一般的な OPERATOR FRAMEWORK 用語

このトピックでは、Operator Lifecycle Manager (OLM) を含む Operator Framework に関連する一般的
な用語の用語集を提供します。

2.3.1. バンドル

Bundle Format では、バンドル は Operator CSV、マニフェスト、およびメタデータのコレクションで
す。さらに、それらはクラスターにインストールできる一意のバージョンの Operator を形成します。

2.3.2. バンドルイメージ

Bundle Format では、バンドルイメージ は Operator マニフェストからビルドされ、1 つのバンドルが
含まれるコンテナーイメージです。バンドルイメージは、Quay.io または DockerHub などの Open
Container Initiative (OCI) 仕様コンテナーレジストリーによって保存され、配布されます。

2.3.3. カタログソース

カタログソース は、OLM が Operators およびそれらの依存関係を検出し、インストールするためにク
エリーできるメタデータのストアを表します。

2.3.4. チャネル

チャネル は Operator の更新ストリームを定義し、サブスクライバーの更新をロールアウトするために
使用されます。ヘッドはそのチャネルの最新バージョンを参照します。たとえば stable チャネルに
は、Operator のすべての安定したバージョンが最も古いものから最新のものへと編成されます。

Operator には複数のチャネルを含めることができ、特定のチャネルへのサブスクリプションのバイン
ドはそのチャネル内の更新のみを検索します。

2.3.5. チャネルヘッド

チャネルヘッド は、特定のチャネル内の最新の既知の更新を指します。

2.3.6. クラスターサービスバージョン

クラスターサービスバージョン (CSV) は、クラスターでの Operator の実行に使用される Operator メ
タデータから作成される YAML マニフェストです。これは、ユーザーインターフェイスにロゴ、説明、
およびバージョンなどの情報を設定するために使用される Operator コンテナーイメージに伴うメタ
データです。

CSV は、Operator が必要とする RBAC ルールやそれが管理したり、依存したりするカスタムリソース
(CR) などの Operator の実行に必要な技術情報の情報源でもあります。

OpenShift Dedicated 4 Operator

20

2.3.7. 依存関係

Operator はクラスターに存在する別の Operator への 依存関係 を持つ場合があります。たとえば、
Vault Operator にはそのデータ永続層に etcd Operator への依存関係があります。

OLM は、インストールフェーズで指定されたすべてのバージョンの Operators および CRD がクラス
ターにインストールされていることを確認して依存関係を解決します。この依存関係は、必要な CRD
API を満たすカタログの Operator を検索し、インストールすることで解決され、パッケージまたはバ
ンドルには関連しません。

2.3.8. 拡張機能

拡張機能により、クラスター管理者は OpenShift Dedicated クラスター上のユーザーの機能を拡張でき
ます。拡張機能は Operator Lifecycle Manager (OLM) v1 によって管理されます。

ClusterExtension API は、ユーザー向け API を単一のオブジェクトに統合することで、 registry+v1 バ
ンドル形式を使用した Operators を含むインストール済み拡張機能の管理を効率化します。管理者と
SRE は、この API を使用してプロセスを自動化し、GitOps の原則に基づき望ましい状態を定義できま
す。

2.3.9. インデックスイメージ

Bundle Format で、インデックスイメージ は、すべてのバージョンの CSV および CRD を含む
Operator バンドルに関する情報が含まれるデータベースのイメージ (データベーススナップショット)
を指します。このインデックスは、クラスターで Operators の履歴をホストでき、opm CLI ツールを使
用して Operators を追加または削除することで維持されます。

2.3.10. インストール計画

インストール計画 は、CSV を自動的にインストールするか、アップグレードするために作成されるリ
ソースの計算された一覧です。

2.3.11. マルチテナンシー

OpenShift Dedicated の テナント は、デプロイされた一連のワークロードに対する共通のアクセス権
と権限を共有するユーザーまたはユーザーのグループであり、通常は namespace またはプロジェクト
で表されます。テナントを使用して、異なるグループまたはチーム間に一定レベルの分離を提供できま
す。

クラスターが複数のユーザーまたはグループによって共有されている場合、マルチテナント クラスター
と見なされます。

2.3.12. Operator

Operators は、Kubernetes アプリケーションをパッケージ化し、デプロイし、管理する方法です。
Kubernetes アプリケーションは、Kubernetes にデプロイされ、Kubernetes API および kubectl または
oc ツールを使用して管理されるアプリケーションです。

Operator Lifecycle Manager (OLM) v1 では、ClusterExtension API により、registry+v1 バンドル形式
を使用した Operators を含むインストール済み拡張機能の管理が効率化されます。

2.3.13. Operator グループ

Operator グループ は、OperatorGroup オブジェクトと同じ namespace にデプロイされたすべての

第2章 OPERATORS について

21

Operator グループ は、OperatorGroup オブジェクトと同じ namespace にデプロイされたすべての
Operators を、namespace のリストまたはクラスター全体でそれらの CR を監視できるように設定しま
す。

2.3.14. Package

Bundle Format で、パッケージ は Operator のリリースされたすべての履歴をそれぞれのバージョンで
囲むディレクトリーです。Operator のリリースされたバージョンは、CRD と共に CSV マニフェストに
記述されます。

2.3.15. レジストリー

レジストリー は、Operators のバンドルイメージを保存するデータベースで、それぞれにすべてのチャ
ネルの最新バージョンおよび過去のバージョンすべてが含まれます。

2.3.16. サブスクリプション

サブスクリプション は、パッケージのチャネルを追跡して CSV を最新の状態に保ちます。

2.3.17. 更新グラフ

更新グラフ は、他のパッケージ化されたソフトウェアの更新グラフと同様に、CSV の複数のバージョ
ンを 1 つにまとめます。Operators を順番にインストールすることも、特定のバージョンを省略するこ
ともできます。更新グラフは、新しいバージョンが追加されている状態でヘッドでのみ拡張することが
予想されます。

更新エッジ または 更新パス とも呼ばれます。

2.4. OPERATOR LIFECYCLE MANAGER (OLM)

2.4.1. Operator Lifecycle Manager の概念およびリソース

このガイドでは、OpenShift Dedicated の Operator Lifecycle Manager (OLM) を支える概念の概要を説
明します。

2.4.1.1. Operator Lifecycle Manager (OLM) Classic とは

Operator Lifecycle Manager (OLM) Classic を使用することにより、ユーザーは Kubernetes ネイティブ
アプリケーション (Operator) および OpenShift Dedicated クラスター全体で実行される関連サービス
に対してインストール、更新、およびそのライフサイクルの管理を実行できます。これは、Operator
を効果的かつ自動化された拡張可能な方法で管理するために設計されたオープンソースツールキットの
Operator Framework の一部です。

図2.2 OLM (Classic) ワークフロー

OpenShift Dedicated 4 Operator

22

https://operatorframework.io/

図2.2 OLM (Classic) ワークフロー

OLM は OpenShift Dedicated でデフォルトで実行されます。これは、dedicated-admin ロールを持つ
管理者が、クラスターで実行されている Operator のインストール、アップグレード、アクセス付与を
行う際に役立ちます。OpenShift Dedicated Web コンソールは、dedicated-admin 管理者が Operator
をインストールしたり、クラスターで利用可能な Operator のカタログを使用できるように特定のプロ
ジェクトアクセスを付与したりするのに使用する管理画面を提供します。

開発者の場合は、セルフサービスを使用することで、専門的な知識がなくてもデータベースのインスタ
ンスのプロビジョニングや設定、またモニタリング、ビッグデータサービスなどを実行できます。
Operator にそれらに関するナレッジが織り込まれているためです。

2.4.1.2. OLM リソース

以下のカスタムリソース定義 (CRD) は Operator Lifecycle Manager (OLM) によって定義され、管理さ
れます。

表2.2 OLM およびカタログ Operators で管理される CRD

リソース 短縮名 説明

ClusterServic
eVersion
(CSV)

csv アプリケーションメタデータ:例: 名前、バージョン、アイコン、必須リ
ソース。

CatalogSour
ce

catsrc CSV、CRD、およびアプリケーションを定義するパッケージのリポジ
トリー。

Subscription sub パッケージのチャネルを追跡して CSV を最新の状態に保ちます。

InstallPlan ip CSV を自動的にインストールするか、アップグレードするために作成
されるリソースの計算された一覧。

OperatorGro
up

og OperatorGroup オブジェクトと同じ namespace にデプロイされたす
べての Operators を、namespace のリストまたはクラスター全体でカ
スタムリソース (CR) を監視できるように設定します。

OperatorCon
ditions

- OLM とそれが管理する Operator との間で通信チャネルを作成しま
す。Operators は Status.Conditions 配列に書き込みを行い、複雑な
状態を OLM と通信できます。

第2章 OPERATORS について

23

2.4.1.2.1. クラスターサービスバージョン

クラスターサービスバージョン (CSV) は、OpenShift Dedicated クラスター上で実行中の Operator の
特定バージョンを表します。これは、クラスターでの Operator Lifecycle Manager (OLM) の Operator
の実行に使用される Operator メタデータから作成される YAML マニフェストです。

OLM は Operator に関するこのメタデータを要求し、これがクラスターで安全に実行できるようにし、
Operator の新規バージョンが公開される際に更新を適用する方法に関する情報を提供します。これは
従来のオペレーティングシステムのソフトウェアのパッケージに似ています。OLM のパッケージ手順
を、rpm、deb、または apk バンドルを作成するステージとして捉えることができます。

CSV には、ユーザーインターフェイスに名前、バージョン、説明、ラベル、リポジトリーリンクおよび
ロゴなどの情報を設定するために使用される Operator コンテナーイメージに伴うメタデータが含まれ
ます。

CSV は、Operator が管理したり、依存したりするカスタムリソース (CR)、RBAC ルール、クラスター
要件、およびインストールストラテジーなどの Operator の実行に必要な技術情報の情報源でもありま
す。この情報は OLM に対して必要なリソースの作成方法と、Operator をデプロイメントとしてセット
アップする方法を指示します。

2.4.1.2.2. カタログソース

カタログソース は、通常コンテナーレジストリーに保存されている インデックスイメージ を参照して
メタデータのストアを表します。Operator Lifecycle Manager(OLM) はカタログソースをクエリーし、
Operators およびそれらの依存関係を検出してインストールします。OpenShift Dedicated Web コン
ソールのソフトウェアカタログには、カタログソースによって提供される Operator も表示されます。

ヒント

クラスター管理者は、Web コンソールの Administration → Cluster Settings → Configuration →
OperatorHub ページを使用して、クラスターで有効なログソースにより提供される Operators の詳細
一覧を表示できます。

CatalogSource オブジェクトの spec は、Pod の構築方法、または Operator Registry gRPC API を提
供するサービスとの通信方法を示します。

例2.9 CatalogSource オブジェクトの例

​apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 generation: 1
 name: example-catalog 1
 namespace: openshift-marketplace 2
 annotations:
 olm.catalogImageTemplate: 3
 "quay.io/example-org/example-catalog:v{kube_major_version}.{kube_minor_version}.
{kube_patch_version}"
spec:
 displayName: Example Catalog 4
 image: quay.io/example-org/example-catalog:v1 5
 priority: -400 6
 publisher: Example Org
 sourceType: grpc 7

OpenShift Dedicated 4 Operator

24

1

2

3

4

5

6

7

CatalogSource オブジェクトの名前。この値は、要求された namespace で作成される、関連
の Pod 名の一部としても使用されます。

カタログを作成する namespace。カタログを全 namespace のクラスター全体で利用可能にす
るには、この値を openshift-marketplace に設定します。Red Hat が提供するデフォルトのカ
タログソースも openshift-marketplace namespace を使用します。それ以外の場合は、値を特
定の namespace に設定し、Operator をその namespace でのみ利用可能にします。

任意: クラスターのアップグレードにより、Operator のインストールがサポートされていない
状態になったり、更新パスが継続されなかったりする可能性を回避するために、クラスターの
アップグレードの一環として、Operator カタログのインデックスイメージのバージョンを自動
的に変更するように有効化することができます。

olm.catalogImageTemplate アノテーションをインデックスイメージ名に設定し、イメージタ
グのテンプレートを作成する際に、1 つ以上の Kubernetes クラスターバージョン変数を使用し
ます。アノテーションは、実行時に spec.image フィールドを上書きします。詳細は、「カス
タムカタログソースのイメージテンプレート」のセクションを参照してください。

Web コンソールおよび CLI でのカタログの表示名。

カタログのインデックスイメージ。オプションで、olm.catalogImageTemplate アノテーショ
ンを使用して実行時のプル仕様を設定する場合には、省略できます。

カタログソースの重み。OLM は重みを使用して依存関係の解決時に優先順位付けします。重み
が大きい場合は、カタログが重みの小さいカタログよりも優先されることを示します。

ソースタイプには以下が含まれます。

image 参照のある grpc: OLM はイメージをポーリングし、Pod を実行します。これに

 grpcPodConfig:
 securityContextConfig: <security_mode> 8
 nodeSelector: 9
 custom_label: <label>
 priorityClassName: system-cluster-critical 10
 tolerations: 11
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"
 updateStrategy:
 registryPoll: 12
 interval: 30m0s
status:
 connectionState:
 address: example-catalog.openshift-marketplace.svc:50051
 lastConnect: 2021-08-26T18:14:31Z
 lastObservedState: READY 13
 latestImageRegistryPoll: 2021-08-26T18:46:25Z 14
 registryService: 15
 createdAt: 2021-08-26T16:16:37Z
 port: 50051
 protocol: grpc
 serviceName: example-catalog
 serviceNamespace: openshift-marketplace

第2章 OPERATORS について

25

8

9

10

11

12

13

14

15

image 参照のある grpc: OLM はイメージをポーリングし、Pod を実行します。これに
より、準拠 API が提供されることが予想されます。

address フィールドのある grpc: OLM は所定アドレスでの gRPC API へのアクセスを
試行します。これはほとんどの場合使用することができません。

configmap: OLM は設定マップデータを解析し、gRPC API を提供できる Pod を実行
します。

legacy または restricted の値を指定します。フィールドが設定されていない場合、デフォルト
値は legacy です。今後の OpenShift Dedicated リリースでは、デフォルト値が restricted に
なる予定です。restricted 権限でカタログを実行できない場合は、このフィールドを手動で
legacy に設定することを推奨します。

オプション: grpc タイプのカタログソースの場合は、spec.image でコンテンツを提供する
Pod のデフォルトのノードセレクターをオーバーライドします (定義されている場合)。

オプション: grpc タイプのカタログソースの場合は、spec.image でコンテンツを提供する
Pod のデフォルトの優先度クラス名をオーバーライドします (定義されている場合)。
Kubernetes は、デフォルトで優先度クラス system-cluster-critical および system-node-
critical を提供します。フィールドを空 ("") に設定すると、Pod にデフォルトの優先度が割り
当てられます。他の優先度クラスは、手動で定義できます。

オプション: grpc タイプのカタログソースの場合は、spec.image でコンテンツを提供する
Pod のデフォルトの Toleration をオーバーライドします (定義されている場合)。

最新の状態を維持するために、特定の間隔で新しいバージョンの有無を自動的にチェックしま
す。

カタログ接続が最後に監視された状態。以下に例を示します。

READY: 接続が正常に確立されました。

CONNECTING: 接続が確立中です。

TRANSIENT_FAILURE: タイムアウトなど、接続の確立時一時的な問題が発生しまし
た。状態は最終的に CONNECTING に戻り、再試行されます。

詳細は、gRPC ドキュメントの 接続の状態 を参照してください。

カタログイメージを保存するコンテナーレジストリーがポーリングされ、イメージが最新の状
態であることを確認します。

カタログの Operator Registry サービスのステータス情報。

サブスクリプションの CatalogSource オブジェクトの name を参照すると、要求された Operator を
検索する場所を、OLM に指示します。

例2.10 カタログソースを参照する Subscription オブジェクトの例

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: example-operator

OpenShift Dedicated 4 Operator

26

https://grpc.github.io/grpc/core/md_doc_connectivity-semantics-and-api.html

関連情報

ソフトウェアカタログの概要

Red Hat が提供する Operator カタログ

クラスターへのカタログソースの追加

カタログの優先順位

CLI を使用した Operator カタログソースのステータス表示

カタログソース Pod のスケジューリング

2.4.1.2.2.1. カスタムカタログソースのイメージテンプレート

基礎となるクラスターとの Operator との互換性は、さまざまな方法でカタログソースにより表現でき
ます。1 つの方法は、特定のプラットフォームリリース (OpenShift Dedicated など) 用に特別に作成さ
れたインデックスイメージのイメージタグを特定することです。この方法は、Red Hat 提供のデフォル
トのカタログソースに使用されています。

クラスターのアップグレード時に、Red Hat が提供するデフォルトのカタログソースのインデックスイ
メージのタグは、Operator Lifecycle Manager (OLM) が最新版のカタログをプルするように、Cluster
Version Operator (CVO) により自動更新されます。たとえば、OpenShift Dedicated 4.19 から 4 への
アップグレード時に、redhat-operators カタログの CatalogSource オブジェクトの spec.image
フィールドは次のように更新されます。

更新後は次のようになります。

ただし、CVO ではカスタムカタログのイメージタグは自動更新されません。クラスターのアップグ
レード後、ユーザーが互換性があり、サポート対象の Operator のインストールを確実に行えるように
するには、カスタムカタログも更新して、更新されたインデックスイメージを参照する必要がありま
す。

OpenShift Dedicated 4.9 以降、クラスター管理者は、カスタムカタログの CatalogSource オブジェク
トの olm.catalogImageTemplate アノテーションを、テンプレートを含むイメージ参照に追加できま
す。以下の Kubernetes バージョン変数は、テンプレートで使用できるようにサポートされています。

kube_major_version

kube_minor_version

kube_patch_version

 namespace: example-namespace
spec:
 channel: stable
 name: example-operator
 source: example-catalog
 sourceNamespace: openshift-marketplace

registry.redhat.io/redhat/redhat-operator-index:v4.20

registry.redhat.io/redhat/redhat-operator-index:v4.20

第2章 OPERATORS について

27

注記

OpenShift Dedicated クラスターのバージョンではなく、Kubernetes クラスターのバー
ジョンを指定する必要があります。OpenShift Dedicated クラスターのバージョンは、
現在テンプレートに使用できないためです。

更新された Kubernetes バージョンを指定するタグでインデックスイメージを作成してプッシュしてい
る場合に、このアノテーションを設定すると、カスタムカタログのインデックスイメージのバージョン
がクラスターのアップグレード後に自動的に変更されます。アノテーションの値は、CatalogSource
オブジェクトの spec.image フィールドでイメージ参照を設定したり、更新したりするために使用され
ます。こうすることで、サポートなしの状態や、継続する更新パスなしの状態で Operator がインス
トールされないようにします。

重要

格納されているレジストリーがどれであっても、クラスターのアップグレード時に、ク
ラスターが、更新されたタグを含むインデックスイメージにアクセスできるようにする
必要があります。

例2.11 イメージテンプレートを含むカタログソースの例

注記

spec.image フィールドおよび olm.catalogImageTemplate アノテーションの両方が設
定されている場合には、spec.image フィールドはアノテーションから解決された値で上
書きされます。アノテーションが使用可能なプル仕様に対して解決されない場合は、カ
タログソースは spec.image 値にフォールバックします。

spec.image フィールドが設定されていない場合に、アノテーションが使用可能なプル仕
様に対して解決されない場合は、OLM はカタログソースの調整を停止し、人間が判読で
きるエラー条件に設定します。

Kubernetes 1.33 を使用する OpenShift Dedicated クラスターの場合、前の例の
olm.catalogImageTemplate アノテーションは次のイメージ参照に解決されます。

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 generation: 1
 name: example-catalog
 namespace: openshift-marketplace
 annotations:
 olm.catalogImageTemplate:
 "quay.io/example-org/example-catalog:v{kube_major_version}.{kube_minor_version}"
spec:
 displayName: Example Catalog
 image: quay.io/example-org/example-catalog:v1.33
 priority: -400
 publisher: Example Org

quay.io/example-org/example-catalog:v1.33

OpenShift Dedicated 4 Operator

28

OpenShift Dedicated の今後のリリースに備えて、新しい OpenShift Dedicated バージョンで使用され
る新しい Kubernetes バージョンを対象とした、カスタムカタログの更新済みインデックスイメージを
作成できます。アップグレード前に olm.catalogImageTemplate アノテーションを設定してから、ク
ラスターを新しい OpenShift Dedicated バージョンにアップグレードすると、カタログのインデックス
イメージも自動的に更新されます。

2.4.1.2.2.2. カタログの正常性要件

クラスター上の Operator カタログは、インストール解決の観点から相互に置き換え可能で
す。Subscription オブジェクトは特定のカタログを参照する場合がありますが、依存関係はクラス
ターのすべてのカタログを使用して解決されます。

たとえば、カタログ A が正常でない場合、カタログ A を参照するサブスクリプションはカタログ B の
依存関係を解決する可能性があります。通常、B のカタログ優先度は A よりも低いため、クラスター管
理者はこれおを想定していない可能性があります。

その結果、OLM では、特定のグローバル namespace (デフォルトの openshift-marketplace
namespace やカスタムグローバル namespace など) を持つすべてのカタログが正常であることが必要
になります。カタログが正常でない場合、その共有グローバル namespace 内のすべての Operator のイ
ンストールまたは更新操作は、CatalogSourcesUnhealthy 状態で失敗します。正常でない状態でこれ
らの操作が許可されている場合、OLM はクラスター管理者が想定しない解決やインストールを決定す
る可能性があります。

クラスター管理者として、正常でないカタログが見つかった際にそのカタログを無効とみなして
Operator のインストールを再開する場合は、「カスタムカタログの削除」または「デフォルトのソフ
トウェアカタログソースの無効化」セクションで、正常でないカタログを削除する方法を確認してくだ
さい。

2.4.1.2.3. サブスクリプション

サブスクリプション は、Subscription オブジェクトによって定義され、Operator をインストールする
意図を表します。これは、Operator をカタログソースに関連付けるカスタムリソースです。

サブスクリプションは、サブスクライブする Operator パッケージのチャネルや、更新を自動または手
動で実行するかどうかを記述します。サブスクリプションが自動に設定された場合、Operator
Lifecycle Manager (OLM) が Operator を管理し、アップグレードして、最新バージョンがクラスター
内で常に実行されるようにします。

Subscription オブジェクトの例

この Subscription オブジェクトは、Operator の名前と namespace、および Operator データのあるカ
タログを定義します。alpha、beta、または stable などのチャネルは、カタログソースからインストー
ルする必要のある Operator ストリームを判別するのに役立ちます。

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: example-operator
 namespace: example-namespace
spec:
 channel: stable
 name: example-operator
 source: example-catalog
 sourceNamespace: openshift-marketplace

第2章 OPERATORS について

29

サブスクリプションのチャネルの名前は Operators 間で異なる可能性がありますが、命名スキームは指
定された Operator 内の一般的な規則に従う必要があります。たとえば、チャネル名は Operator によっ
て提供されるアプリケーションのマイナーリリース更新ストリーム (1.2、1.3) またはリリース頻度
(stable、fast) に基づく可能性があります。

関連するサブスクリプションのステータスを調べると、Operator の新しいバージョンが利用可能に
なったことを確認できます。これは、OpenShift Dedicated Web コンソールからも簡単に確認できま
す。currentCSV フィールドに関連付けられる値は OLM に認識される最新のバージョンであ
り、installedCSV はクラスターにインストールされるバージョンです。

関連情報

CLI を使用した Operator サブスクリプションステータスの表示

2.4.1.2.4. インストール計画

InstallPlan オブジェクトによって定義される インストール計画 は、Operator Lifecycle
Manager(OLM) が特定バージョンの Operator をインストールまたはアップグレードするために作成す
るリソースのセットを記述します。バージョンはクラスターサービスバージョン (CSV) で定義されま
す。

Operator、クラスター管理者、または Operator インストールパーミッションが付与されているユー
ザーをインストールするには、まず Subscription オブジェクトを作成する必要があります。サブスク
リプションでは、カタログソースから利用可能なバージョンの Operator のストリームにサブスクライ
ブする意図を表します。次に、サブスクリプションは InstallPlan オブジェクトを作成し、Operator の
リソースのインストールを容易にします。

その後、インストール計画は、以下の承認ストラテジーのいずれかをもとに承認される必要がありま
す。

サブスクリプションの spec.installPlanApproval フィールドが Automatic に設定されている
場合には、インストール計画は自動的に承認されます。

サブスクリプションの spec.installPlanApproval フィールドが Manual に設定されている場合
には、インストール計画はクラスター管理者または適切なパーミッションが割り当てられた
ユーザーによって手動で承認する必要があります。

インストール計画が承認されると、OLM は指定されたリソースを作成し、サブスクリプションで指定
された namespace に Operator をインストールします。

例2.12 InstallPlan オブジェクトの例

apiVersion: operators.coreos.com/v1alpha1
kind: InstallPlan
metadata:
 name: install-abcde
 namespace: operators
spec:
 approval: Automatic
 approved: true
 clusterServiceVersionNames:
 - my-operator.v1.0.1
 generation: 1
status:
 ...

OpenShift Dedicated 4 Operator

30

 catalogSources: []
 conditions:
 - lastTransitionTime: '2021-01-01T20:17:27Z'
 lastUpdateTime: '2021-01-01T20:17:27Z'
 status: 'True'
 type: Installed
 phase: Complete
 plan:
 - resolving: my-operator.v1.0.1
 resource:
 group: operators.coreos.com
 kind: ClusterServiceVersion
 manifest: >-
 ...
 name: my-operator.v1.0.1
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1alpha1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: apiextensions.k8s.io
 kind: CustomResourceDefinition
 manifest: >-
 ...
 name: webservers.web.servers.org
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1beta1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: ''
 kind: ServiceAccount
 manifest: >-
 ...
 name: my-operator
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: rbac.authorization.k8s.io
 kind: Role
 manifest: >-
 ...
 name: my-operator.v1.0.1-my-operator-6d7cbc6f57
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: rbac.authorization.k8s.io
 kind: RoleBinding

第2章 OPERATORS について

31

2.4.1.2.5. Operator グループ

Operator グループ は、OperatorGroup リソースによって定義され、マルチテナント設定を OLM でイ
ンストールされた Operators に提供します。Operator グループは、そのメンバー Operators に必要な
RBAC アクセスを生成するために使用するターゲット namespace を選択します。

ターゲット namespace のセットは、クラスターサービスバージョン (CSV) の olm.targetNamespaces
アノテーションに保存されるコンマ区切りの文字列によって指定されます。このアノテーションは、メ
ンバー Operator の CSV インスタンスに適用され、そのデプロイメントに反映されます。

関連情報

Operator グループ

2.4.1.2.6. Operator 条件

Operator のライフサイクル管理のロールの一部として、Operator Lifecycle Manager (OLM) は、
Operator を定義する Kubernetes リソースの状態から Operator の状態を推測します。このアプローチ
では、Operator が特定の状態にあることをある程度保証しますが、推測できない情報を Operator が
OLM と通信して提供する必要がある場合も多々あります。続いて、OLM がこの情報を使用して、
Operator のライフサイクルをより適切に管理することができます。

OLM は、Operators が OLM に条件を通信できる OperatorCondition というカスタムリソース定義
(CRD) を提供します。OperatorCondition リソースの Spec.Conditions 配列にある場合に、OLM に
よる Operator の管理に影響するサポートされる条件のセットがあります。

注記

デフォルトでは、Spec.Conditions 配列は、ユーザーによって追加されるか、カスタム
Operator ロジックの結果として追加されるまで、OperatorCondition オブジェクトに存
在しません。

関連情報

Operator 条件

2.4.2. Operator Lifecycle Manager アーキテクチャー

ここでは、OpenShift Dedicated における Operator Lifecycle Manager (OLM) のコンポーネントアーキ
テクチャーの概要を説明します。

2.4.2.1. コンポーネントの役割

Operator Lifecycle Manager (OLM) は、OLM Operator および Catalog Operator の 2 つの Operator で

 manifest: >-
 ...
 name: my-operator.v1.0.1-my-operator-6d7cbc6f57
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1
 status: Created
 ...

OpenShift Dedicated 4 Operator

32

Operator Lifecycle Manager (OLM) は、OLM Operator および Catalog Operator の 2 つの Operator で
構成されています。

OLM Operator と Catalog Operator は、それぞれ OLM フレームワークの基礎となるカスタムリソース
定義 (CRD) を管理します。

表2.3 OLM およびカタログ Operators で管理される CRD

リソース 短縮
名

所有
者

説明

ClusterServic
eVersion
(CSV)

csv OLM アプリケーションのメタデータ: 名前、バージョン、アイコン、必須リ
ソース、インストールなど。

InstallPlan ip Catal
og

CSV を自動的にインストールするか、アップグレードするために作成さ
れるリソースの計算された一覧。

CatalogSour
ce

cats
rc

Catal
og

CSV、CRD、およびアプリケーションを定義するパッケージのリポジト
リー。

Subscription sub Catal
og

パッケージのチャネルを追跡して CSV を最新の状態に保つために使用
されます。

OperatorGro
up

og OLM OperatorGroup オブジェクトと同じ namespace にデプロイされたす
べての Operators を、namespace のリストまたはクラスター全体でカス
タムリソース (CR) を監視できるように設定します。

これらの Operators のそれぞれは以下のリソースの作成も行います。

表2.4 OLM およびカタログ Operators によって作成されるリソース

リソース 所有者

Deployments OLM

ServiceAccounts

(Cluster)Roles

(Cluster)RoleBindings

CustomResourceDefinitions (CRDs) Catalog

ClusterServiceVersions

2.4.2.2. OLM Operator

OLM Operator は、CSV で指定された必須リソースがクラスター内にあることが確認された後に CSV

第2章 OPERATORS について

33

OLM Operator は、CSV で指定された必須リソースがクラスター内にあることが確認された後に CSV
リソースで定義されるアプリケーションをデプロイします。

OLM Operator は必須リソースの作成には関与せず、ユーザーが CLI またはカタログ Operator を使用
してこれらのリソースを手動で作成することを選択できます。このタスクの分離により、アプリケー
ションに OLM フレームワークをどの程度活用するかに関連してユーザーによる追加機能の購入を可能
にします。

OLM Operator は以下のワークフローを使用します。

1. namespace でクラスターサービスバージョン (CSV) の有無を確認し、要件を満たしていること
を確認します。

2. 要件が満たされている場合、CSV のインストールストラテジーを実行します。

注記

CSV は、インストールストラテジーの実行を可能にするために Operator グルー
プのアクティブなメンバーである必要があります。

2.4.2.3. Catalog Operator

Catalog Operator はクラスターサービスバージョン (CSV) およびそれらが指定する必須リソースを解
決し、インストールします。また、カタログソースでチャネル内のパッケージへの更新の有無を確認
し、必要な場合はそれらを利用可能な最新バージョンに自動的にアップグレードします。

チャネル内のパッケージを追跡するために、必要なパッケージ、チャネル、および更新のプルに使用す
る CatalogSource オブジェクトを設定して Subscription オブジェクトを作成できます。更新が見つか
ると、ユーザーに代わって適切な InstallPlan オブジェクトの namespace への書き込みが行われます。

Catalog Operator は以下のワークフローを使用します。

1. クラスターの各カタログソースに接続します。

2. ユーザーによって作成された未解決のインストール計画の有無を確認し、これがあった場合は
以下を実行します。

a. 要求される名前に一致する CSV を検索し、これを解決済みリソースとして追加します。

b. マネージドまたは必須の CRD のそれぞれについて、これを解決済みリソースとして追加し
ます。

c. 必須 CRD のそれぞれについて、これを管理する CSV を検索します。

3. 解決済みのインストール計画の有無を確認し、それに関する検出されたすべてのリソースを作
成します (ユーザーによって、または自動的に承認される場合)。

4. カタログソースおよびサブスクリプションの有無を確認し、それらに基づいてインストール計
画を作成します。

2.4.2.4. カタログレジストリー

カタログレジストリーは、クラスター内での作成用に CSV および CRD を保存し、パッケージおよび
チャネルに関するメタデータを保存します。

パッケージマニフェスト は、パッケージアイデンティティーを CSV のセットに関連付けるカタログレ

OpenShift Dedicated 4 Operator

34

ジストリー内のエントリーです。パッケージ内で、チャネルは特定の CSV を参照します。CSV は置き
換え対象の CSV を明示的に参照するため、パッケージマニフェストは Catalog Operator に対し、CSV
をチャネル内の最新バージョンに更新するために必要なすべての情報を提供します (各中間バージョン
をステップスルー)。

2.4.3. Operator Lifecycle Manager ワークフロー

ここでは、OpenShift Dedicated における Operator Lifecycle Manager (OLM) のワークフローの概要を
説明します。

2.4.3.1. OLM での Operator のインストールおよびアップグレードのワークフロー

Operator Lifecycle Manager (OLM) エコシステムでは、以下のリソースを使用して Operator インス
トールおよびアップグレードを解決します。

ClusterServiceVersion (CSV)

CatalogSource

Subscription

CSV で定義される Operator メタデータは、カタログソースというコレクションに保存できます。OLM
はカタログソースを使用します。これは Operator Registry API を使用して利用可能な Operators やイ
ンストールされた Operators のアップグレードをクエリーします。

図2.3 カタログソースの概要

カタログソース内では、Operator は パッケージ と、チャネル と呼ばれる更新のストリームに編成され
ています。これは、OpenShift Dedicated や、Web ブラウザーなどの継続的なリリースサイクルを持つ
その他のソフトウェアでもよく見られる更新パターンです。

図2.4 カタログソースのパッケージおよびチャネル

第2章 OPERATORS について

35

https://github.com/operator-framework/operator-registry

図2.4 カタログソースのパッケージおよびチャネル

ユーザーは サブスクリプション の特定のカタログソースの特定のパッケージおよびチャネルを指定で
きます (例: etcd パッケージおよびその alpha チャネル)。サブスクリプションが namespace にインス
トールされていないパッケージに対して作成されると、そのパッケージの最新 Operator がインストー
ルされます。

注記

OLM では、バージョンの比較が意図的に避けられます。そのため、所定の catalog →
channel → package パスから利用可能な "latest" または "newest" Operator が必ずしも最
も高いバージョン番号である必要はありません。これは Git リポジトリーの場合と同様
に、チャネルの head リファレンスとして見なされます。

各 CSV には、これが置き換える Operator を示唆する replaces パラメーターがあります。これによ
り、OLM でクエリー可能な CSV のグラフが作成され、更新がチャネル間で共有されます。チャネル
は、更新グラフのエントリーポイントと見なすことができます。

図2.5 利用可能なチャネル更新に関する OLM グラフ

OpenShift Dedicated 4 Operator

36

図2.5 利用可能なチャネル更新に関する OLM グラフ

パッケージのチャネルの例

カタログソース、パッケージ、チャネルおよび CSV がある状態で、OLM が更新のクエリーを実行でき
るようにするには、カタログが入力された CSV の置き換え (replaces) を実行する単一 CSV を明確に
かつ確定的に返すことができる必要があります。

2.4.3.1.1. アップグレードパスの例

アップグレードシナリオのサンプルについて、CSV バージョン 0.1.1 に対応するインストールされた
Operator を見てみましょう。OLM はカタログソースをクエリーし、新規 CSV バージョン 0.1.3 につい
て、サブスクライブされたチャネルのアップグレードを検出します。これは、古いバージョンでインス
トールされていない CSV バージョン 0.1.2 を置き換えます。その後、さらに古いインストールされた
CSV バージョン 0.1.1 を置き換えます。

OLM は、チャネルヘッドから CSV で指定された replaces フィールドで以前のバージョンに戻り、
アップグレードパス 0.1.3 → 0.1.2 → 0.1.1 を判別します。矢印の方向は前者が後者を置き換えることを
示します。OLM は、チャネルヘッドに到達するまで Operator を 1 バージョンずつアップグレードしま
す。

このシナリオでは、OLM は Operator バージョン 0.1.2 をインストールし、既存の Operator バージョ
ン 0.1.1 を置き換えます。その後、Operator バージョン 0.1.3 をインストールし、直前にインストール
された Operator バージョン 0.1.2 を置き換えます。この時点で、インストールされた Operator のバー
ジョン 0.1.3 はチャネルヘッドに一致し、アップグレードは完了します。

packageName: example
channels:
- name: alpha
 currentCSV: example.v0.1.2
- name: beta
 currentCSV: example.v0.1.3
defaultChannel: alpha

第2章 OPERATORS について

37

2.4.3.1.2. アップグレードの省略

OLM のアップグレードの基本パスは以下の通りです。

カタログソースは Operator への 1 つ以上の更新によって更新されます。

OLM は、カタログソースに含まれる最新バージョンに到達するまで、Operator のすべての
バージョンを横断します。

ただし、この操作の実行は安全でない場合があります。公開されているバージョンの Operator がクラ
スターにインストールされていない場合、そのバージョンによって深刻な脆弱性が導入される可能性が
あるなどの理由で、その Operator をクラスターにインストールできないことがあります。

この場合、OLM は以下の 2 つのクラスターの状態を考慮に入れて、それらの両方に対応する更新グラ
フを提供する必要があります。

"問題のある" 中間 Operator がクラスターによって確認され、かつインストールされている。

"問題のある" 中間 Operator がクラスターにまだインストールされていない。

OLM は、新規カタログを送り、省略された リリースを追加することで、クラスターの状態や問題のあ
る更新が発見されたかどうかにかかわらず、単一の固有の更新を常に取得することができます。

省略されたリリースの CSV 例

古い CatalogSource および 新規 CatalogSource に関する以下の例を見てみましょう。

図2.6 更新のスキップ

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: etcdoperator.v0.9.2
 namespace: placeholder
 annotations:
spec:
 displayName: etcd
 description: Etcd Operator
 replaces: etcdoperator.v0.9.0
 skips:
 - etcdoperator.v0.9.1

OpenShift Dedicated 4 Operator

38

図2.6 更新のスキップ

このグラフは、以下を示しています。

古い CatalogSource の Operator には、新規 CatalogSource の単一の置き換えがある。

新規 CatalogSource の Operator には、新規 CatalogSource の単一の置き換えがある。

問題のある更新がインストールされていない場合、これがインストールされることはない。

2.4.3.1.3. 複数の Operators の置き換え

前述の方法で 新規 CatalogSource を作成するには、ある Operator を置き換えつつ (replace)、複数
バージョンをスキップ (skip) できる CSV を公開する必要があります。これは、skipRange アノテー
ションを使用して実行できます。

ここで <semver_range> には、semver ライブラリー でサポートされるバージョン範囲の形式が使用さ
れます。

カタログで更新を検索する場合、チャネルのヘッドに skipRange アノテーションがあり、現在インス
トールされている Operator にその範囲内のバージョンフィールドがある場合、OLM はチャネル内の最
新エントリーに対して更新されます。

以下は動作が実行される順序になります。

1. サブスクリプションの sourceName で指定されるソースのチャネルヘッド (省略する他の条件

olm.skipRange: <semver_range>

第2章 OPERATORS について

39

https://github.com/blang/semver#ranges

1. サブスクリプションの sourceName で指定されるソースのチャネルヘッド (省略する他の条件
が満たされている場合)。

2. sourceName で指定されるソースの現行バージョンを置き換える次の Operator。

3. サブスクリプションに表示される別のソースのチャネルヘッド (省略する他の条件が満たされて
いる場合)。

4. サブスクリプションに表示されるソースの現行バージョンを置き換える次の Operator。

skipRange を含む CSV の例

2.4.3.1.4. z-stream サポート

z-stream またはパッチリリースは、同じマイナーバージョンの以前のすべての z-stream リリースを置
き換える必要があります。OLM は、メジャー、マイナーまたはパッチバージョンを考慮せず、カタロ
グ内で正確なグラフのみを作成する必要があります。

つまり、OLM では 古い CatalogSource のようにグラフを使用し、以前と同様に 新規 CatalogSource
にあるようなグラフを生成する必要があります。

図2.7 複数 Operators の置き換え

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: elasticsearch-operator.v4.1.2
 namespace: <namespace>
 annotations:
 olm.skipRange: '>=4.1.0 <4.1.2'

OpenShift Dedicated 4 Operator

40

図2.7 複数 Operators の置き換え

このグラフは、以下を示しています。

古い CatalogSource の Operator には、新規 CatalogSource の単一の置き換えがある。

新規 CatalogSource の Operator には、新規 CatalogSource の単一の置き換えがある。

古い CatalogSource の z-stream リリースは、新規 CatalogSource の最新 z-stream リリース
に更新される。

使用不可のリリースは "仮想" グラフノードと見なされる。それらのコンテンツは存在する必要
がなく、レジストリーはグラフが示すように応答することのみが必要になります。

2.4.4. Operator Lifecycle Manager の依存関係の解決

ここでは、OpenShift Dedicated における Operator Lifecycle Manager (OLM) を使用した依存関係の解
決とカスタムリソース定義 (CRD) のアップグレードライフサイクルの概要を説明します。

2.4.4.1. 依存関係の解決

Operator Lifecycle Manager (OLM) は、実行中の Operators の依存関係の解決とアップグレードのライ
フサイクルを管理します。多くの場合、OLM が直面する問題は、yum や rpm などの他のシステムま
たは言語パッケージマネージャーと同様です。

ただし、OLM にはあるものの、通常同様のシステムにはない 1 つの制約があります。Operators は常に
実行されており、OLM は相互に機能しない Operators のセットの共存を防ごうとします。

第2章 OPERATORS について

41

その結果、以下のシナリオで OLM を使用しないでください。

提供できない API を必要とする Operators のセットのインストール

Operator と依存関係のあるものに障害を発生させる仕方での Operator の更新

これは、次の 2 種類のデータで可能になります。

プロパティー Operator に関する型付きのメタデータ。これは、依存関係のリゾルバーで Operator の公開
インターフェイスを構成します。例としては、Operator が提供する API の
group/version/kind (GVK) や Operator のセマンティックバージョン (semver) などがありま
す。

制約または依
存関係

ターゲットクラスターにすでにインストールされているかどうかに関係なく、他の
Operators が満たす必要のある Operator の要件。これらは、使用可能なすべての Operators
に対するクエリーまたはフィルターとして機能し、依存関係の解決およびインストール中に
選択を制限します。クラスターで特定の API が利用できる状態にする必要がある場合や、特
定のバージョンに特定の Operator をインストールする必要がある場合など、例として挙げ
られます。

OLM は、これらのプロパティーと制約をブール式のシステムに変換して SAT ソルバーに渡します。こ
れは、ブールの充足可能性を確立するプログラムであり、インストールする Operators を決定する作業
を行います。

2.4.4.2. Operator のプロパティー

カタログ内の Operators にはすべて、次のプロパティーが含まれます。

olm.package

パッケージの名前と Operator のバージョンを含めます。

olm.gvk

クラスターサービスバージョン (CSV) から提供された API ごとに 1 つのプロパティー

追加のプロパティーは、Operator バンドルの metadata/ ディレクトリーに properties.yaml ファイル
を追加して、Operator 作成者が直接宣言することもできます。

任意のプロパティーの例

2.4.4.2.1. 任意のプロパティー

Operator の作成者は、Operator バンドルの metadata/ ディレクトリーにある properties.yaml ファイ
ルで任意のプロパティーを宣言できます。これらのプロパティーは、実行時に Operator Lifecycle
Manager (OLM) リゾルバーへの入力として使用されるマップデータ構造に変換されます。

これらのプロパティーはリゾルバーには不透明です。リゾルバーはプロパティーを理解しませんが、こ
れらのプロパティーに対する一般的な制約を評価して、プロパティーリストを指定することで制約を満
たすことができるかどうかを判断します。

properties:
- type: olm.kubeversion
 value:
 version: "1.16.0"

OpenShift Dedicated 4 Operator

42

任意のプロパティーの例

この構造を使用して、ジェネリック制約の Common Expression Language (CEL) 式を作成できます。

関連情報

Common Expression Language (CEL) の制約

2.4.4.3. Operator の依存関係

Operator の依存関係は、バンドルの metadata/ フォルダー内の dependencies.yaml ファイルに一覧表
示されます。このファイルはオプションであり、現時点では明示的な Operator バージョンの依存関係
を指定するためにのみ使用されます。

依存関係の一覧には、依存関係の内容を指定するために各項目の type フィールドが含まれます。次の
タイプの Operator 依存関係がサポートされています。

olm.package

このタイプは、特定の Operator バージョンの依存関係であることを意味します。依存関係情報に
は、パッケージ名とパッケージのバージョンを semver 形式で含める必要があります。たとえ
ば、0.5.2 などの特定バージョンや >0.5.1 などのバージョンの範囲を指定することができます。

olm.gvk

このタイプの場合、作成者は CSV の既存の CRD および API ベースの使用方法と同様に
group/version/kind (GVK) 情報で依存関係を指定できます。これは、Operator の作成者がすべての
依存関係、API または明示的なバージョンを同じ場所に配置できるようにするパスです。

olm.constraint

このタイプは、任意の Operator プロパティーに対するジェネリック制約を宣言します。

以下の例では、依存関係は Prometheus Operator および etcd CRD に指定されます。

dependencies.yaml ファイルの例

properties:
 - property:
 type: color
 value: red
 - property:
 type: shape
 value: square
 - property:
 type: olm.gvk
 value:
 group: olm.coreos.io
 version: v1alpha1
 kind: myresource

dependencies:
 - type: olm.package
 value:
 packageName: prometheus
 version: ">0.27.0"
 - type: olm.gvk
 value:

第2章 OPERATORS について

43

2.4.4.4. 一般的な制約

olm.constraint プロパティーは、特定のタイプの依存関係制約を宣言し、非制約プロパティーと制約プ
ロパティーを区別します。その value フィールドは、制約メッセージの文字列表現を保持する
failureMessage フィールドを含むオブジェクトです。このメッセージは、実行時に制約が満たされな
い場合に、ユーザーへの参考のコメントとして表示されます。

次のキーは、使用可能な制約タイプを示します。

gvk

値と解釈が olm.gvk タイプと同じタイプ

package

値と解釈が olm.package タイプと同じタイプ

cel

任意のバンドルプロパティーとクラスター情報に対して Operator Lifecycle Manager (OLM) リゾル
バーによって実行時に評価される Common Expression Language (CEL) 式

all、any、not

gvk やネストされた複合制約など、1 つ以上の具体的な制約を含む、論理積、論理和、否定の制約。

2.4.4.4.1. Common Expression Language (CEL) の制約

cel 制約型は、式言語として Common Expression Language (CEL) をサポートしています。cel 構造に
は、Operator が制約を満たしているかどうかを判断するために、実行時に Operator プロパティーに対
して評価される CEL 式文字列を含む rule フィールドがあります。

cel 制約の例

CEL 構文は、AND や OR などの幅広い論理演算子をサポートします。その結果、単一の CEL 式は、こ
れらの論理演算子で相互にリンクされる複数の条件に対して複数のルールを含めることができます。こ
れらのルールは、バンドルまたは任意のソースからの複数の異なるプロパティーのデータセットに対し
て評価され、出力は、単一の制約内でこれらのルールのすべてを満たす単一のバンドルまたは
Operator に対して解決されます。

複数のルールが指定された cel 制約の例

 group: etcd.database.coreos.com
 kind: EtcdCluster
 version: v1beta2

type: olm.constraint
value:
 failureMessage: 'require to have "certified"'
 cel:
 rule: 'properties.exists(p, p.type == "certified")'

type: olm.constraint
value:
 failureMessage: 'require to have "certified" and "stable" properties'
 cel:
 rule: 'properties.exists(p, p.type == "certified") && properties.exists(p, p.type == "stable")'

OpenShift Dedicated 4 Operator

44

https://github.com/google/cel-go

2.4.4.4.2. 複合制約 (all, any, not)

複合制約タイプは、論理定義に従って評価されます。

以下は、2 つのパッケージと 1 つの GVK の接続制約 (all) の例です。つまり、インストールされたバン
ドルがすべての制約を満たす必要があります。

all 制約の例

以下は、同じ GVK の 3 つのバージョンの選言的制約 (any) の例です。つまり、インストールされたバ
ンドルが少なくとも 1 つの制約を満たす必要があります。

any 制約の例

以下は、GVK の 1 つのバージョンの否定制約 (not) の例です。つまり、この結果セットのバンドルで
は、この GVK を提供できません。

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 failureMessage: All are required for Red because...
 all:
 constraints:
 - failureMessage: Package blue is needed for...
 package:
 name: blue
 versionRange: '>=1.0.0'
 - failureMessage: GVK Green/v1 is needed for...
 gvk:
 group: greens.example.com
 version: v1
 kind: Green

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 failureMessage: Any are required for Red because...
 any:
 constraints:
 - gvk:
 group: blues.example.com
 version: v1beta1
 kind: Blue
 - gvk:
 group: blues.example.com
 version: v1beta2
 kind: Blue
 - gvk:
 group: blues.example.com
 version: v1
 kind: Blue

第2章 OPERATORS について

45

not の制約例

否定のセマンティクスは、not 制約のコンテキストで不明確であるように見える場合があります。つま
り、この否定では、特定の GVK、あるバージョンのパッケージを含むソリューション、または結果セッ
トからの子の複合制約を満たすソリューションを削除するように、リゾルバーに対して指示を出してい
ます。

当然の結果として、最初に可能な依存関係のセットを選択せずに否定することは意味がないため、複合
では not 制約は all または any 制約内でのみ使用する必要があります。

2.4.4.4.3. ネストされた複合制約

ネストされた複合制約 (少なくとも 1 つの子複合制約と 0 個以上の単純な制約を含む制約) は、前述の各
制約タイプの手順に従って、下から上に評価されます。

以下は、接続詞の論理和の例で、one、the other、または both が制約を満たすことができます。

ネストされた複合制約の例

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 all:
 constraints:
 - failureMessage: Package blue is needed for...
 package:
 name: blue
 versionRange: '>=1.0.0'
 - failureMessage: Cannot be required for Red because...
 not:
 constraints:
 - gvk:
 group: greens.example.com
 version: v1alpha1
 kind: greens

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 failureMessage: Required for Red because...
 any:
 constraints:
 - all:
 constraints:
 - package:
 name: blue
 versionRange: '>=1.0.0'
 - gvk:
 group: blues.example.com
 version: v1
 kind: Blue

OpenShift Dedicated 4 Operator

46

1

注記

olm.constraint タイプの最大 raw サイズは 64KB に設定されており、リソース枯渇攻撃
を制限しています。

2.4.4.5. 依存関係の設定

Operator の依存関係を同等に満たすオプションが多数ある場合があります。Operator Lifecycle
Manager (OLM) の依存関係リゾルバーは、要求された Operator の要件に最も適したオプションを判別
します。Operator の作成者またはユーザーとして、依存関係の解決が明確になるようにこれらの選択
方法を理解することは重要です。

2.4.4.5.1. カタログの優先順位

OpenShift Dedicated クラスターでは、OLM がカタログソースを読み取り、どの Operator がインス
トール可能であるかを確認します。

CatalogSource オブジェクトの例

legacy または restricted の値を指定します。フィールドが設定されていない場合、デフォルト値
は legacy です。今後の OpenShift Dedicated リリースでは、デフォルト値が restricted になる予
定です。

注記

restricted 権限でカタログを実行できない場合は、このフィールドを手動で legacy
に設定することを推奨します。

CatalogSource オブジェクトには priority フィールドがあります。このフィールドは、依存関係のオ

 - all:
 constraints:
 - package:
 name: blue
 versionRange: '<1.0.0'
 - gvk:
 group: blues.example.com
 version: v1beta1
 kind: Blue

apiVersion: "operators.coreos.com/v1alpha1"
kind: "CatalogSource"
metadata:
 name: "my-operators"
 namespace: "operators"
spec:
 sourceType: grpc
 grpcPodConfig:
 securityContextConfig: <security_mode> 1
 image: example.com/my/operator-index:v1
 displayName: "My Operators"
 priority: 100

第2章 OPERATORS について

47

CatalogSource オブジェクトには priority フィールドがあります。このフィールドは、依存関係のオ
プションを優先する方法を把握するためにリゾルバーによって使用されます。

カタログ設定を規定する 2 つのルールがあります。

優先順位の高いカタログにあるオプションは、優先順位の低いカタログのオプションよりも優
先されます。

依存オブジェクトと同じカタログにあるオプションは他のカタログよりも優先されます。

2.4.4.5.2. チャネルの順序付け

カタログ内の Operator パッケージは、OpenShift Dedicated クラスターでユーザーがサブスクライブ
できる更新チャネルのコレクションです。チャネルは、マイナーリリース (1.2、1.3) またはリリース頻
度 (stable、fast) に関する特定の更新ストリームを提供するために使用できます。

同じパッケージの Operators によって依存関係が満たされる可能性がありますが、その場合、異なる
チャネルの Operators のバージョンによって満たされる可能性があります。たとえば、Operator の
バージョン 1.2 は stable および fast チャネルの両方に存在する可能性があります。

それぞれのパッケージにはデフォルトのチャネルがあり、これは常にデフォルト以外のチャネルよりも
優先されます。デフォルトチャネルのオプションが依存関係を満たさない場合には、オプションは、
チャネル名の辞書式順序 (lexicographic order) で残りのチャネルから検討されます。

2.4.4.5.3. チャネル内での順序

ほとんどの場合、単一のチャネル内に依存関係を満たすオプションが複数あります。たとえば、1 つの
パッケージおよびチャネルの Operators は同じセットの API を提供します。

ユーザーがサブスクリプションを作成すると、それらはどのチャネルから更新を受け取るかを示唆しま
す。これにより、すぐにその 1 つのチャネルだけに検索が絞られます。ただし、チャネル内では、多く
の Operators が依存関係を満たす可能性があります。

チャネル内では、更新グラフでより上位にある新規 Operators が優先されます。チャネルのヘッドが依
存関係を満たす場合、これがまず試行されます。

2.4.4.5.4. その他の制約

OLM には、パッケージの依存関係で指定される制約のほかに、必要なユーザーの状態を表し、常にメ
ンテナンスする必要のある依存関係の解決を適用するための追加の制約が含まれます。

2.4.4.5.4.1. サブスクリプションの制約

サブスクリプションの制約は、サブスクリプションを満たすことのできる Operators のセットをフィル
ターします。サブスクリプションは、依存関係リゾルバーに関するユーザー指定の制約です。それら
は、クラスター上にない場合は新規 Operator をインストールすることを宣言するか、既存 Operator の
更新された状態を維持することを宣言します。

2.4.4.5.4.2. パッケージの制約

namespace 内では、2 つの Operators が同じパッケージから取得されることはありません。

2.4.4.5.5. 関連情報

カタログの正常性要件

OpenShift Dedicated 4 Operator

48

2.4.4.6. CRD のアップグレード

OLM は、単一のクラスターサービスバージョン (CSV) によって所有されている場合にはカスタムリ
ソース定義 (CRD) をすぐにアップグレードします。CRD が複数の CSV によって所有されている場合、
CRD は、以下の後方互換性の条件のすべてを満たす場合にアップグレードされます。

現行 CRD の既存の有効にされたバージョンすべてが新規 CRD に存在する。

検証が新規 CRD の検証スキーマに対して行われる場合、CRD の提供バージョンに関連付けら
れる既存インスタンスまたはカスタムリソースすべてが有効である。

2.4.4.7. 依存関係のベストプラクティス

依存関係を指定する際には、ベストプラクティスを考慮する必要があります。

Operators の API または特定のバージョン範囲によって異なります。

Operators は API をいつでも追加または削除できます。Operators が必要とする API に olm.gvk 依
存関係を常に指定できます。これの例外は、olm.package 制約を代わりに指定する場合です。

最小バージョンの設定

API の変更に関する Kubernetes ドキュメントでは、Kubernetes 形式の Operators で許可される変
更を説明しています。これらのバージョン管理規則により、Operator は API バージョンに後方互換
性がある限り、API バージョンに影響を与えずに API を更新することができます。
Operator の依存関係の場合、依存関係の API バージョンを把握するだけでは、依存する Operator
が確実に意図された通りに機能することを確認できないことを意味します。

以下に例を示します。

TestOperator v1.0.0 は、v1alpha1 API バージョンの MyObject リソースを提供します。

TestOperator v1.0.1 は新しいフィールド spec.newfield を MyObject に追加しますが、
v1alpha1 のままになります。

Operator では、spec.newfield を MyObject リソースに書き込む機能が必要になる場合がありま
す。olm.gvk 制約のみでは、OLM で TestOperator v1.0.0 ではなく TestOperator v1.0.1 が必要であ
ると判断することはできません。

可能な場合には、API を提供する特定の Operator が事前に分かっている場合、最小値を設定するた
めに追加の olm.package 制約を指定します。

最大バージョンを省略するか、幅広いバージョンを許可します。

Operators は API サービスや CRD などのクラスタースコープのリソースを提供するため、依存関係
に小規模な範囲を指定する Operator は、その依存関係の他のコンシューマーの更新に不要な制約を
加える可能性があります。
可能な場合は、最大バージョンを設定しないでください。または、他の Operators との競合を防ぐ
ために、幅広いセマンティクスの範囲を設定します。例: >1.0.0 <2.0.0

従来のパッケージマネージャーとは異なり、Operator の作成者は更新が OLM のチャネルで更新を
安全に行われるように Operator を明示的にエンコードします。更新が既存のサブスクリプションで
利用可能な場合、Operator の作成者がこれが以前のバージョンから更新できることを示唆している
ことが想定されます。依存関係の最大バージョンを設定すると、特定の上限で不必要な切り捨てが
行われることにより、作成者の更新ストリームがオーバーライドされます。

注記

第2章 OPERATORS について

49

注記

クラスター管理者は、Operator の作成者が設定した依存関係をオーバーライドでき
ません。

ただし、回避する必要がある非互換性があることが分かっている場合は、最大バージョンを設定で
き、およびこれを設定する必要があります。バージョン範囲の構文を使用すると、複数の特定の
バージョンを省略できます (例: > 1.0.0 !1.2.1)。

関連情報

Kubernetes ドキュメント: Changing the API

2.4.4.8. 依存関係に関する注意事項

依存関係を指定する際には、考慮すべき注意事項があります。

複合制約がない (AND)

現時点で、制約の間に AND 関係を指定する方法はありません。つまり、ある Operator が、所定の
API を提供し、バージョン >1.1.0 を持つ別の Operator に依存するように指定することはできませ
ん。
依存関係を指定すると、以下のようになります。

OLM は EtcdCluster を提供する Operators とバージョン >3.1.0 を持つ Operators の 2 つの
Operators で、上記の依存関係の例の条件を満たすことができる可能性があります。その場合や、ま
たは両方の制約を満たす Operator が選択されるかどうかは、選択できる可能性のあるオプションが
参照される順序によって変わります。依存関係の設定および順序のオプションは十分に定義され、
理にかなったものであると考えられますが、Operators は継続的に特定のメカニズムをベースとする
必要があります。

namespace 間の互換性

OLM は namespace スコープで依存関係の解決を実行します。ある namespace での Operator の更
新が別の namespace の Operator の問題となる場合、更新のデッドロックが生じる可能性がありま
す。

2.4.4.9. 依存関係解決のシナリオ例

以下の例で、プロバイダー は CRD または API サービスを "所有" する Operator です。

2.4.4.9.1. 例: 依存 API を非推奨にする

dependencies:
- type: olm.package
 value:
 packageName: etcd
 version: ">3.1.0"
- type: olm.gvk
 value:
 group: etcd.database.coreos.com
 kind: EtcdCluster
 version: v1beta2

OpenShift Dedicated 4 Operator

50

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api_changes.md#readme

A および B は API (CRD):

A のプロバイダーは B によって異なる。

B のプロバイダーにはサブスクリプションがある。

B のプロバイダーは C を提供するように更新するが、B を非推奨にする。

この結果は以下のようになります。

B にはプロバイダーがなくなる。

A は機能しなくなる。

これは OLM がアップグレードストラテジーで回避するケースです。

2.4.4.9.2. 例: バージョンのデッドロック

A および B は API である:

A のプロバイダーは B を必要とする。

B のプロバイダーは A を必要とする。

A のプロバイダーは (A2 を提供し、B2 を必要とするように) 更新し、A を非推奨にする。

B のプロバイダーは (B2 を提供し、A2 を必要とするように) 更新し、B を非推奨にする。

OLM が B を同時に更新せずに A を更新しようとする場合や、その逆の場合、OLM は、新しい互換性
のあるセットが見つかったとしても Operators の新規バージョンに進むことができません。

これは OLM がアップグレードストラテジーで回避するもう 1 つのケースです。

2.4.5. Operator グループ

ここでは、OpenShift Dedicated における Operator Lifecycle Manager (OLM) での Operator グループ
の使用を概説します。

2.4.5.1. Operator グループについて

Operator グループ は、OperatorGroup リソースによって定義され、マルチテナント設定を OLM でイ
ンストールされた Operators に提供します。Operator グループは、そのメンバー Operators に必要な
RBAC アクセスを生成するために使用するターゲット namespace を選択します。

ターゲット namespace のセットは、クラスターサービスバージョン (CSV) の olm.targetNamespaces
アノテーションに保存されるコンマ区切りの文字列によって指定されます。このアノテーションは、メ
ンバー Operator の CSV インスタンスに適用され、そのデプロイメントに反映されます。

2.4.5.2. Operator グループメンバーシップ

Operator は、以下の条件が true の場合に Operator グループの メンバー とみなされます。

Operator の CSV が Operator グループと同じ namespace にある。

Operator の CSV のインストールモードは Operator グループがターゲットに設定する
namespace のセットをサポートする。

第2章 OPERATORS について

51

CSV のインストールモードは InstallModeType フィールドおよびブール値の Supported フィールドで
構成されます。CSV の仕様には、4 つの固有の InstallModeTypes のインストールモードのセットを含
めることができます。

表2.5 インストールモードおよびサポートされる Operator グループ

InstallModeType 説明

OwnNamespace Operator は、独自の namespace を選択する Operator グループのメン
バーにすることができます。

SingleNamespace Operator は 1 つの namespace を選択する Operator グループのメンバー
にすることができます。

MultiNamespace Operator は複数の namespace を選択する Operator グループのメン
バーにすることができます。

AllNamespaces Operator はすべての namespace を選択する Operator グループのメン
バーにすることができます (設定されるターゲット namespace は空の文
字列 "" です)。

注記

CSV の仕様が InstallModeType のエントリーを省略する場合、そのタイプは暗黙的にこ
れをサポートする既存エントリーによってサポートが示唆されない限り、サポートされ
ないものとみなされます。

2.4.5.3. ターゲット namespace の選択

spec.targetNamespaces パラメーターを使用して Operator グループのターゲット namespace に名前
を明示的に指定することができます。

または、spec.selector パラメーターでラベルセレクターを使用して namespace を指定することもでき
ます。

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
spec:
 targetNamespaces:
 - my-namespace

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
spec:
 selector:
 cool.io/prod: "true"

OpenShift Dedicated 4 Operator

52

重要

spec.targetNamespaces で複数の namespace をリスト表示したり、spec.selector で
ラベルセレクターを使用したりすることは推奨されません。Operator グループの複数の
ターゲット namespace のサポートは今後のリリースで取り除かれる可能性があります。

spec.targetNamespaces と spec.selector の両方が定義されている場合、spec.selector は無視されま
す。または、spec.selector と spec.targetNamespaces の両方を省略し、global Operator グループを
指定できます。これにより、すべての namespace が選択されます。

選択された namespace の解決済みのセットは Operator グループの status.namespaces パラメーター
に表示されます。グローバル Operator グループの status.namespace には空の文字列 ("") が含まれま
す。これは、消費する Operator に対し、すべての namespace を監視するように示唆します。

2.4.5.4. Operator グループの CSV アノテーション

Operator グループのメンバー CSV には以下のアノテーションがあります。

アノテーション 説明

olm.operatorGroup=<group_name> Operator グループの名前が含まれます。

olm.operatorNamespace=
<group_namespace>

Operator グループの namespace が含まれます。

olm.targetNamespaces=
<target_namespaces>

Operator グループのターゲット namespace 選択を
リスト表示するコンマ区切りの文字列が含まれま
す。

注記

olm.targetNamespaces 以外のすべてのアノテーションがコピーされた CSV と共に含ま
れます。olm.targetNamespaces アノテーションをコピーされた CSV で省略すると、テ
ナント間のターゲット namespace の重複が回避されます。

2.4.5.5. 提供される API アノテーション

group/version/kind(GVK) は Kubernetes API の一意の識別子です。Operator グループによって提供さ
れる GVK に関する情報が olm.providedAPIs アノテーションに表示されます。アノテーションの値
は、コンマで区切られた <kind>.<version>.<group> で構成される文字列です。Operator グループの
すべてのアクティブメンバーの CSV によって提供される CRD および API サービスの GVK が含まれま
す。

PackageManifest リースを提供する単一のアクティブメンバー CSV を含む OperatorGroup オブジェ
クトの以下の例を確認してください。

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace

第2章 OPERATORS について

53

2.4.5.6. ロールベースのアクセス制御

Operator グループの作成時に、3 つのクラスタールールが生成されます。クラスターロールが生成され
ると、各クラスターロールが一意になるように、ハッシュ値が自動的に末尾に付加されます。各
Operator グループには、次の表に示すように、ラベルに一致するように設定されたクラスターロール
セレクターを持つ 1 つの集約ルールが含まれています。

クラスターロール 一致するラベル

olm.og.<operatorgroup_name>-admin-
<hash_value>

olm.opgroup.permissions/aggregate-to-
admin: <operatorgroup_name>

olm.og.<operatorgroup_name>-edit-
<hash_value>

olm.opgroup.permissions/aggregate-to-edit:
<operatorgroup_name>

olm.og.<operatorgroup_name>-view-
<hash_value>

olm.opgroup.permissions/aggregate-to-view:
<operatorgroup_name>

注記

Operator グループのクラスターロールを使用してリソースにロールベースのアクセス制
御 (RBAC) を割り当てるには、次のコマンドを実行して、クラスターロールの完全な名
前とハッシュ値を取得します。

ハッシュ値は Operator グループの作成時に生成されるため、クラスターロールの完全な
名前を検索するには、先に Operator グループを作成する必要があります。

以下の RBAC リソースは、CSV が AllNamespaces インストールモードのあるすべての namespace を

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 annotations:
 olm.providedAPIs: PackageManifest.v1alpha1.packages.apps.redhat.com
 name: olm-operators
 namespace: local
 ...
spec:
 selector: {}
 serviceAccountName:
 metadata:
 creationTimestamp: null
 targetNamespaces:
 - local
status:
 lastUpdated: 2019-02-19T16:18:28Z
 namespaces:
 - local

$ oc get clusterroles | grep <operatorgroup_name>

OpenShift Dedicated 4 Operator

54

以下の RBAC リソースは、CSV が AllNamespaces インストールモードのあるすべての namespace を
監視しており、理由が InterOperatorGroupOwnerConflict の失敗状態にない限り、CSV が Operator
グループのアクティブメンバーになる際に生成されます。

CRD からの各 API リソースのクラスターロール

API サービスからの各 API リソースのクラスターロール

追加のロールおよびロールバインディング

表2.6 CRD からの各 API リソース用に生成されたクラスターロール

クラスターロール 設定

<kind>.<group>-<version>-admin <kind> の動詞

*

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

<kind>.<group>-<version>-edit <kind> の動詞

create

update

patch

delete

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

第2章 OPERATORS について

55

<kind>.<group>-<version>-view <kind> の動詞

get

list

watch

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

<kind>.<group>-<version>-view-crdview Verbs on apiextensions.k8s.io
customresourcedefinitions <crd-name>:

get

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

クラスターロール 設定

表2.7 API サービスから各 API リソース用に生成されたクラスターロール

クラスターロール 設定

<kind>.<group>-<version>-admin <kind> の動詞

*

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

OpenShift Dedicated 4 Operator

56

<kind>.<group>-<version>-edit <kind> の動詞

create

update

patch

delete

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

<kind>.<group>-<version>-view <kind> の動詞

get

list

watch

集計ラベル:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

クラスターロール 設定

追加のロールおよびロールバインディング

CSV が * が含まれる 1 つのターゲット namespace を定義する場合、クラスターロールと対応す
るクラスターロールバインディングが CSV の permissions フィールドに定義されるパーミッ
ションごとに生成されます。生成されたすべてのリソースには olm.owner: <csv_name> およ
び olm.owner.namespace: <csv_namespace> ラベルが付与されます。

CSV が * が含まれる 1 つのターゲット namespace を定義 しない 場合、olm.owner:
<csv_name> および olm.owner.namespace: <csv_namespace> ラベルの付いた Operator
namespace にあるすべてのロールおよびロールバインディングがターゲット namespace にコ
ピーされます。

2.4.5.7. コピーされる CSV

OLM は、それぞれの Operator グループのターゲット namespace の Operator グループのすべてのア
クティブな CSV のコピーを作成します。コピーされる CSV の目的は、ユーザーに対して、特定の
Operator が作成されるリソースを監視するように設定されたターゲット namespace を通知することに
あります。

コピーされる CSV にはステータスの理由 Copied があり、それらのソース CSV のステータスに一致す

第2章 OPERATORS について

57

コピーされる CSV にはステータスの理由 Copied があり、それらのソース CSV のステータスに一致す
るように更新されます。olm.targetNamespaces アノテーションは、クラスター上でコピーされる
CSV が作成される前に取られます。ターゲット namespace 選択を省略すると、テナント間のターゲッ
ト namespace の重複が回避されます。

コピーされる CSV はそれらのソース CSV が存在しなくなるか、それらのソース CSV が属する
Operator グループが、コピーされた CSV の namespace をターゲットに設定しなくなると削除されま
す。

注記

デフォルトでは、disableCopiedCSVs フィールドは無効になっていま
す。disableCopiedCSVs フィールドを有効にすると、OLM はクラスター上の既存のコ
ピーされた CSV を削除します。disableCopiedCSVs フィールドが無効になると、OLM
はコピーされた CSV を再度追加します。

disableCopiedCSVs フィールドを無効にします。

disableCopiedCSVs フィールドを有効にします。

2.4.5.8. 静的 Operator グループ

Operator グループはその spec.staticProvidedAPIs フィールドが true に設定されると 静的 になりま
す。その結果、OLM は Operator グループの olm.providedAPIs アノテーションを変更しません。つま
り、これを事前に設定することができます。これは、ユーザーが Operator グループを使用して
namespace のセットでリソースの競合を防ぐ必要がある場合で、それらのリソースの API を提供する
アクティブなメンバーの CSV がない場合に役立ちます。

以下は、something.cool.io/cluster-monitoring: "true" アノテーションのあるすべての namespace の
Prometheus リソースを保護する Operator グループの例です。

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:
 name: cluster
spec:
 features:
 disableCopiedCSVs: false
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:
 name: cluster
spec:
 features:
 disableCopiedCSVs: true
EOF

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

OpenShift Dedicated 4 Operator

58

2.4.5.9. Operator グループの交差部分

2 つの Operator グループは、それらのターゲット namespace セットの交差部分が空のセットではな
く、olm.providedAPIs アノテーションで定義されるそれらの指定 API セットの交差部分が空のセット
ではない場合に、交差部分のある指定 API があると見なされます。

これによって生じ得る問題として、交差部分のある指定 API を持つ複数の Operator グループは、一連
の交差部分のある namespace で同じリソースに関して競合関係になる可能性があります。

注記

交差ルールを確認すると、Operator グループの namespace は常に選択されたターゲッ
ト namespace の一部として組み込まれます。

2.4.5.9.1. 交差のルール

アクティブメンバーの CSV が同期する際はいつでも、OLM はクラスターで、CSV の Operator グルー
プとそれ以外のすべての間での交差部分のある指定 API のセットをクエリーします。その後、OLM は
そのセットが空のセットであるかどうかを確認します。

true であり、CSV の指定 API が Operator グループのサブセットである場合:

移行を継続します。

true であり、CSV の指定 API が Operator グループのサブセット ではない 場合:

Operator グループが静的である場合:

CSV に属するすべてのデプロイメントをクリーンアップします。

ステータスの理由 CannotModifyStaticOperatorGroupProvidedAPIs のある失敗状態
に CSV を移行します。

Operator グループが静的 ではない 場合:

Operator グループの olm.providedAPIs アノテーションを、それ自体と CSV の指定
API の集合に置き換えます。

false であり、CSV の指定 API が Operator グループのサブセット ではない 場合:

CSV に属するすべてのデプロイメントをクリーンアップします。

ステータスの理由 InterOperatorGroupOwnerConflict のある失敗状態に CSV を移行しま
す。

 name: cluster-monitoring
 namespace: cluster-monitoring
 annotations:
 olm.providedAPIs:
Alertmanager.v1.monitoring.coreos.com,Prometheus.v1.monitoring.coreos.com,PrometheusRule.v1.mo
nitoring.coreos.com,ServiceMonitor.v1.monitoring.coreos.com
spec:
 staticProvidedAPIs: true
 selector:
 matchLabels:
 something.cool.io/cluster-monitoring: "true"

第2章 OPERATORS について

59

false であり、CSV の指定 API が Operator グループのサブセットである場合:

Operator グループが静的である場合:

CSV に属するすべてのデプロイメントをクリーンアップします。

ステータスの理由 CannotModifyStaticOperatorGroupProvidedAPIs のある失敗状態
に CSV を移行します。

Operator グループが静的 ではない 場合:

Operator グループの olm.providedAPIs アノテーションを、それ自体と CSV の指定
API 間の差異部分に置き換えます。

注記

Operator グループによって生じる失敗状態は非終了状態です。

以下のアクションは、Operator グループが同期するたびに実行されます。

アクティブメンバーの CSV の指定 API のセットは、クラスターから計算されます。コピーされ
た CSV は無視されることに注意してください。

クラスターセットは olm.providedAPIs と比較され、olm.providedAPIs に追加の API が含ま
れる場合は、それらの API がプルーニングされます。

すべての namespace で同じ API を提供するすべての CSV は再びキューに入れられます。これ
により、交差部分のあるグループ間の競合する CSV に対して、それらの競合が競合する CSV
のサイズ変更または削除のいずれかによって解決されている可能性があることが通知されま
す。

2.4.5.10. マルチテナント Operator 管理の制限事項

OpenShift Dedicated では、同じクラスターに異なる Operator のバージョンを同時にインストールし
た場合、サポートが限定的になります。Operator Lifecycle Manager (OLM) は、Operator を異なる
namespace に複数回インストールします。その 1 つの制約として、Operator の API バージョンは同じ
である必要があります。

Operators は、Kubernetes のグローバルリソースである CustomResourceDefinition オブジェクト
(CRD) を使用するため、コントロールプレーンの拡張機能です。多くの場合、Operator の異なるメ
ジャーバージョンには互換性のない CRD があります。これにより、クラスター上の異なる namespace
に同時にインストールするのに互換性がなくなります。

すべてのテナントまたは namespace がクラスターの同じコントロールプレーンを共有します。した
がって、マルチテナントクラスター内のテナントはグローバル CRD も共有するため、同じクラスター
で同じ Operator の異なるインスタンスを並行して使用できるシナリオが制限されます。

サポートされているシナリオは次のとおりです。

まったく同じ CRD 定義を提供する異なるバージョンの Operators (バージョン管理された CRD
の場合は、まったく同じバージョンのセット)

CRD を同梱しておらず、代わりにソフトウェアカタログ内の別のバンドルで CRD を提供して
いる異なるバージョンの Operator

他のすべてのシナリオはサポートされていません。これは、異なる Operator バージョンからの複数の

OpenShift Dedicated 4 Operator

60

他のすべてのシナリオはサポートされていません。これは、異なる Operator バージョンからの複数の
競合または重複する CRD が同じクラスター上で調整される場合、クラスターデータの整合性が保証さ
れないためです。

関連情報

マルチテナントクラスター内の Operators

2.4.5.11. Operator グループのトラブルシューティング

2.4.5.11.1. メンバーシップ

インストールプランの namespace には、Operator グループを 1 つだけ含める必要がありま
す。namespace でクラスターサービスバージョン (CSV) を生成しようとすると、インストール
プランでは、以下のシナリオの Operator グループが無効であると見なされます。

インストールプランの namespace に Operator グループが存在しない。

インストールプランの namespace に複数の Operator グループが存在する。

Operator グループに、正しくないサービスアカウント名または存在しないサービスアカウ
ント名が指定されている。

インストールプランで無効な Operator グループが検出された場合には、CSV は生成され
ず、InstallPlan リソースは関連するメッセージを出力して、インストールを続行します。たと
えば、複数の Operator グループが同じ namespace に存在する場合に以下のメッセージが表示
されます。

ここでは、count= は、namespace 内の Operator グループの数を指します。

CSV のインストールモードがその namespace で Operator グループのターゲット namespace
選択をサポートしない場合、CSV は UnsupportedOperatorGroup の理由で失敗状態に切り替
わります。この理由で失敗した状態にある CSV は、Operator グループのターゲット
namespace の選択がサポートされる設定に変更されるか、CSV のインストールモードがター
ゲット namespace 選択をサポートするように変更される場合に、保留状態に切り替わります。

2.4.6. マルチテナント対応と Operator のコロケーション

このガイドでは、Operator Lifecycle Manager (OLM) のマルチテナント対応と Operator のコロケー
ションを説明します。

2.4.6.1. namespace 内での Operators コロケーション

Operator Lifecycle Manager (OLM) は、同じ namespace にインストールされている OLM 管理
Operators を処理します。つまり、それらの Subscription リソースは、関連する Operators として同
じ namespace に配置されます。それらが実際には関連していなくても、いずれかが更新されると、
OLM はバージョンや更新ポリシーなどの状態を考慮します。

このデフォルトの動作は、次の 2 つの方法で現れます。

保留中の更新の InstallPlan リソースには、同じ namespace にある他のすべての Operators の
ClusterServiceVersion (CSV) リソースが含まれます。

attenuated service account query failed - more than one operator group(s) are managing this
namespace count=2

第2章 OPERATORS について

61

同じ namespace 内のすべての Operators は、同じ更新ポリシーを共有します。たとえば、1 つ
の Operator が手動更新に設定されている場合は、他のすべての Operators の更新ポリシーも
手動に設定されます。

これらのシナリオは、次の問題につながる可能性があります。

更新された Operator だけでなく、より多くのリソースが定義されているため、Operator 更新
のインストール計画を推論するのは難しくなります。

namespace 内の一部の Operator を自動で更新し、他の Operator を手動で更新するという、多
くのクラスター管理者が求めていることが不可能になります。

通常、これらの問題が明らかになるのは、OpenShift Dedicated を使用して Operator をインストール
するときに、デフォルトの動作により、All namespaces インストールモードをサポートする Operator
が、デフォルトの openshift-operators グローバル namespace にインストールされるためです。

dedicated-admin ロールを持つ管理者は、次のワークフローを使用して、このデフォルトの動作を手動
で回避できます。

1. Operator をインストールするためのプロジェクトを作成します。

2. すべての namespace を監視する Operator グループである、カスタム グローバル Operator グ
ループ を作成します。この Operator グループを作成した namespace に関連付けることで、イ
ンストール namespace がグローバル namespace になり、そこにインストールされた
Operators がすべての namespace で使用できるようになります。

3. 必要な Operator をインストール namespace にインストールします。

Operator に依存関係がある場合、依存関係は事前に作成された namespace に自動的にインストールさ
れます。その結果、依存関係 Operators が同じ更新ポリシーと共有インストールプランを持つことが有
効になります。詳細な手順は、「カスタム namespace へのグローバル Operators のインストール」を
参照してください。

関連情報

カスタム namespace にグローバル Operators をインストールする

マルチテナントクラスター内の Operators

2.4.7. Operator 条件

以下では、Operator Lifecycle Manager (OLM) による Operator 条件の使用方法を説明します。

2.4.7.1. Operator 条件について

Operator のライフサイクル管理のロールの一部として、Operator Lifecycle Manager (OLM) は、
Operator を定義する Kubernetes リソースの状態から Operator の状態を推測します。このアプローチ
では、Operator が特定の状態にあることをある程度保証しますが、推測できない情報を Operator が
OLM と通信して提供する必要がある場合も多々あります。続いて、OLM がこの情報を使用して、
Operator のライフサイクルをより適切に管理することができます。

OLM は、Operators が OLM に条件を通信できる OperatorCondition というカスタムリソース定義
(CRD) を提供します。OperatorCondition リソースの Spec.Conditions 配列にある場合に、OLM に
よる Operator の管理に影響するサポートされる条件のセットがあります。

注記

OpenShift Dedicated 4 Operator

62

1

2

注記

デフォルトでは、Spec.Conditions 配列は、ユーザーによって追加されるか、カスタム
Operator ロジックの結果として追加されるまで、OperatorCondition オブジェクトに存
在しません。

2.4.7.2. サポートされる条件

Operator Lifecycle Manager (OLM) は、以下の Operator 条件をサポートします。

2.4.7.2.1. アップグレード可能な条件

Upgradeable Operator 条件は、既存のクラスターサービスバージョン (CSV) が、新規の CSV バー
ジョンに置き換えられることを阻止します。この条件は、以下の場合に役に立ちます。

Operator が重要なプロセスを開始するところで、プロセスが完了するまでアップグレードして
はいけない場合

Operator が、Operator のアップグレードの準備ができる前に完了する必要のあるカスタムリ
ソース (CR) の移行を実行している場合

重要

Upgradeable Operator の条件を False 値に設定しても、Pod の中断は回避できませ
ん。Pod が中断されないようにする必要がある場合は、「追加リソース」セクションの
「Pod 中断バジェットを使用して稼働させなければならない Pod の数を指定する」と
「グレースフルな終了」を参照してください。

Upgradeable Operator 条件の例

条件の名前。

False 値は、Operator のアップグレードの準備ができていないことを示します。OLM は、
Operator の既存の CSV を置き換える CSV が Pending フェーズでなくなることを阻止しま
す。False 値はクラスターのアップグレードをブロックしません。

2.4.7.3. 関連情報

Operator 条件の管理

apiVersion: operators.coreos.com/v1
kind: OperatorCondition
metadata:
 name: my-operator
 namespace: operators
spec:
 conditions:
 - type: Upgradeable 1
 status: "False" 2
 reason: "migration"
 message: "The Operator is performing a migration."
 lastTransitionTime: "2020-08-24T23:15:55Z"

第2章 OPERATORS について

63

2.4.8. Operator Lifecycle Manager メトリクス

2.4.8.1. 公開されるメトリクス

Operator Lifecycle Manager (OLM) は、Prometheus ベースの OpenShift Dedicated クラスターモニタ
リングスタックで使用される特定の OLM 固有のリソースを公開します。

表2.8 OLM によって公開されるメトリクス

名前 説明

catalog_source
_count

カタログソースの数。

catalogsource_r
eady

カタログソースの状態。値 1 は、カタログソースが READY 状態であることを示しま
す。値 0 は、カタログソースが READY 状態ではないことを示します。

csv_abnormal クラスターサービスバージョン (CSV) を調整する際に、(インストールされていない場
合など) CSV バージョンが Succeeded 以外の状態にあることを表しま
す。name、namespace、phase、reason、および version ラベルが含まれま
す。Prometheus アラートは、このメトリクスが存在する場合に作成されます。

csv_count 正常に登録された CSV の数。

csv_succeeded CSV を調整する際に、CSV バージョンが Succeeded 状態 (値 1) にあるか、そうでな
いか (値 0) を表します。name、namespace、および version ラベルが含まれま
す。

csv_upgrade_c
ount

CSV アップグレードの単調 (monotonic) カウント。

install_plan_co
unt

インストール計画の数。

installplan_war
nings_total

インストール計画に含まれる非推奨のリソースなど、リソースによって生成される警
告の個数。

olm_resolution_
duration_secon
ds

依存関係解決の試行期間。

subscription_co
unt

サブスクリプションの数。

subscription_sy
nc_total

サブスクリプション同期の単調 (monotonic) カウント。channel、installed CSV、お
よびサブスクリプション name ラベルが含まれます。

2.4.9. Operator Lifecycle Manager での Webhook の管理

OpenShift Dedicated 4 Operator

64

Webhook により、リソースがオブジェクトストアに保存され、Operator コントローラーによって処理
される前に、Operator の作成者はリソースのインターセプト、変更、許可、および拒否を実行するこ
とができます。Operator Lifecycle Manager (OLM) は、Operator と共に提供される際にこれらの
Webhook のライフサイクルを管理できます。

2.4.9.1. 関連情報

Kubernetes ドキュメント:

検証用の受付 Webhook

変更用の受付 Webhook

変換 Webhook

2.5. ソフトウェアカタログの概要

2.5.1. ソフトウェアカタログについて

ソフトウェアカタログ は、クラスター管理者が Operator を検出してインストールするために使用する
OpenShift Dedicated の Web コンソールインターフェイスです。1 回のクリックで、Operator をクラス
ター外のソースからプルし、クラスター上でインストールおよびサブスクライブして、エンジニアリン
グチームが Operator Lifecycle Manager (OLM) を使用してデプロイメント環境全体で製品をセルフ
サービスで管理される状態にすることができます。

クラスター管理者は、以下のカテゴリーにグループ化されたカタログから選択することができます。

カテゴリー 説明

Red Hat Operators Red Hat によってパッケージ化され、出荷される Red Hat 製品。Red Hat によってサ
ポートされます。

Certified
Operators

大手独立系ソフトウェアベンダー (ISV) の製品。Red Hat は ISV とのパートナーシップ
により、パッケージ化および出荷を行います。ISV によってサポートされます。

Community
Operators

redhat-openshift-ecosystem/community-operators-prod/operators GitHub リポジト
リーで関連する担当者によって保守されているオプションで表示可能なソフトウェ
ア。正式なサポートはありません。

Custom Operators 各自でクラスターに追加する Operator。カスタム Operator を追加していない場合、
Web コンソールソフトウェアカタログに Custom カテゴリーは表示されません。

ソフトウェアカタログ内の Operator は、OLM 上で実行できるようにパッケージ化されています。これ
には、Operator のインストールおよびセキュアな実行に必要なすべての CRD、RBAC ルール、デプロ
イメント、およびコンテナーイメージが含まれるクラスターサービスバージョン (CSV) という YAML
ファイルが含まれます。また、機能の詳細やサポートされる Kubernetes バージョンなどのユーザーに
表示される情報も含まれます。

2.5.2. ソフトウェアカタログのアーキテクチャー

OpenShift Dedicated 上のソフトウェアカタログ UI コンポーネントは、デフォルトでは openshift-
marketplace namespace の Marketplace Operator によって動作しています。

第2章 OPERATORS について

65

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#webhook-conversion
https://github.com/redhat-openshift-ecosystem/community-operators-prod/tree/main/operators

2.5.2.1. OperatorHub カスタムリソース

Marketplace Operator は、ソフトウェアカタログで提供されるデフォルトの CatalogSource オブジェ
クトを管理する、cluster という名前の OperatorHub カスタムリソース (CR) を管理します。

2.5.3. 関連情報

カタログソース

OLM での Operator のインストールおよびアップグレードのワークフロー

Red Hat Partner Connect

2.6. RED HAT が提供する OPERATOR カタログ

Red Hat は、OpenShift Dedicated にデフォルトで含まれる複数の Operator カタログを提供します。

重要

OpenShift Dedicated 4.11 以降、デフォルトの Red Hat 提供の Operator カタログはファ
イルベースのカタログ形式でリリースされます。OpenShift Dedicated 4.6 から 4.10 ま
での Red Hat が提供するデフォルトの Operator カタログは、非推奨の SQLite データ
ベース形式でリリースされました。

opm サブコマンド、フラグ、および SQLite データベース形式に関連する機能も非推奨
となり、今後のリリースで削除されます。機能は引き続きサポートされており、非推奨
の SQLite データベース形式を使用するカタログに使用する必要があります。

opm index prune などの SQLite データベース形式を使用する opm サブコマンドおよび
フラグの多くは、ファイルベースのカタログ形式では機能しません。ファイルベースの
カタログを使用する方法の詳細は、カスタムカタログの管理 および Operator
Framework パッケージ形式 を参照してください。

2.6.1. Operator カタログについて

Operator カタログは、Operator Lifecycle Manager (OLM) がクエリーを行い、Operators およびそれら
の依存関係をクラスターで検出し、インストールできるメタデータのリポジトリーです。OLM は最新
バージョンのカタログから Operators を常にインストールします。

Operator Bundle Format に基づくインデックスイメージは、カタログのコンテナー化されたスナップ
ショットです。これは、Operator マニフェストコンテンツのセットへのポインターのデータベースが
含まれるイミュータブルなアーティファクトです。カタログはインデックスイメージを参照し、クラス
ター上の OLM のコンテンツを調達できます。

カタログが更新されると、Operators の最新バージョンが変更され、それ以前のバージョンが削除また
は変更される可能性があります。また、制限されたネットワーク環境の OpenShift Dedicated クラス
ター上で OLM が実行されている場合、インターネットからカタログに直接アクセスして最新のコンテ
ンツをプルすることはできません。

クラスター管理者は、Red Hat が提供するカタログをベースとして使用して、またはゼロから独自のカ
スタムインデックスイメージを作成できます。これを使用して、クラスターのカタログコンテンツを調
達できます。独自のインデックスイメージの作成および更新により、クラスターで利用可能な
Operators のセットをカスタマイズする方法が提供され、また前述のネットワークが制限された環境の
問題を回避することができます。

重要

OpenShift Dedicated 4 Operator

66

https://connect.redhat.com

重要

Kubernetes は定期的に特定の API を非推奨とし、後続のリリースで削除します。そのた
め、OpenShift Dedicated のバージョンで、API が削除された Kubernetes バージョンが
採用されると、Operator がその API を使用できなくなります。

注記

Operator のレガシー パッケージマニフェスト形式 (レガシー形式を使用していたカスタ
ムカタログを含む) のサポートは、OpenShift Dedicated 4.8 以降で削除されました。

カスタムカタログイメージを作成する場合、OpenShift Dedicated 4 の以前のバージョン
では oc adm catalog build コマンドを使用する必要がありました。このコマンドはいく
つかのリリースで非推奨となり、現在は削除されています。OpenShift Dedicated 4.6 以
降、Red Hat 提供のインデックスイメージが利用可能になったため、カタログ作成者は
opm index コマンドを使用してインデックスイメージを管理する必要があります。

関連情報

カスタムカタログの管理

パッケージ形式

2.6.2. Red Hat が提供する Operator カタログについて

Red Hat が提供するカタログソースは、デフォルトで openshift-marketplace namespace にインス
トールされます。これにより、すべての namespace でクラスター全体でカタログを利用できるように
なります。

以下の Operator カタログは Red Hat によって提供されます。

Catalog インデックスイメージ 説明

redhat-
operators

registry.redhat.io/redhat/redhat-operator-index:v4 Red Hat によってパッ
ケージ化され、出荷され
る Red Hat 製品。Red
Hat によってサポートさ
れます。

certified-
operators

registry.redhat.io/redhat/certified-operator-
index:v4

大手独立系ソフトウェア
ベンダー (ISV) の製品。
Red Hat は ISV とのパー
トナーシップにより、
パッケージ化および出荷
を行います。ISV によっ
てサポートされます。

第2章 OPERATORS について

67

community-
operators

registry.redhat.io/redhat/community-operator-
index:v4

redhat-openshift-
ecosystem/community-
operators-
prod/operators GitHub
リポジトリーで、関連す
る担当者によって保守さ
れているソフトウェア。
正式なサポートはありま
せん。

Catalog インデックスイメージ 説明

クラスターのアップグレード時に、Red Hat が提供するデフォルトのカタログソースのインデックスイ
メージのタグは、Operator Lifecycle Manager (OLM) が最新版のカタログをプルするように、Cluster
Version Operator (CVO) により自動更新されます。たとえば、OpenShift Dedicated 4.8 から 4.9 への
アップグレード時に、redhat-operators カタログの CatalogSource オブジェクトの spec.image
フィールドは次のように更新されます。

更新後は次のようになります。

2.7. マルチテナントクラスター内の OPERATORS

Operator Lifecycle Manager (OLM) のデフォルトの動作は、Operator のインストール時に簡素化する
ことを目的としています。ただし、この動作は、特にマルチテナントクラスターでは柔軟性に欠ける場
合があります。OpenShift Dedicated クラスター上の複数のテナントが Operator を使用するには、
OLM のデフォルトの動作では、管理者が Operator を All namespaces モードでインストールする必要
がありますが、これは最小特権の原則に違反すると考えられます。

以下のシナリオを考慮して、環境と要件に最適な Operator インストールワークフローを決定してくだ
さい。

関連情報

Common terms: Multitenant

マルチテナント Operator 管理の制限事項

2.7.1. デフォルトの Operator インストールモードと動作

管理者として Web コンソールを使用して Operators をインストールする場合、通常、Operators の機
能に応じて、インストールモードに 2 つの選択肢があります。

単一の namespace

選択した単一の namespace に Operator をインストールし、Operator が要求するすべての権限をそ
の namespace で使用できるようにします。

すべての namespace

デフォルトの openshift-operators namespace で Operator をインストールし、クラスターのすべ

registry.redhat.io/redhat/redhat-operator-index:v4.8

registry.redhat.io/redhat/redhat-operator-index:v4.9

OpenShift Dedicated 4 Operator

68

https://github.com/redhat-openshift-ecosystem/community-operators-prod/tree/main/operators

デフォルトの openshift-operators namespace で Operator をインストールし、クラスターのすべ
ての namespace を監視し、Operator をこれらの namespace に対して利用可能にします。Operator
が要求するすべてのアクセス許可をすべての namespace で使用できるようにします。場合によって
は、Operator の作成者はメタデータを定義して、その Operator が提案する namespace の 2 番目の
オプションをユーザーに提供できます。

この選択は、影響を受ける namespace のユーザーが、namespace でのロールに応じて、所有するカス
タムリソース (CR) を活用できる Operators API にアクセスできることも意味します。

namespace-admin および namespace-edit ロールは、Operator API の読み取り/書き込みが
可能です。つまり、Operator API を使用できます。

namespace-view ロールは、その Operator の CR オブジェクトを読み取ることができます。

Single namespace モードの場合、Operator 自体が選択した namespace にインストールされるため、
その Pod とサービスアカウントもそこに配置されます。All namespaces モードの場合、Operator の権
限はすべて自動的にクラスターロールに昇格されます。つまり、Operator はすべての namespace でこ
れらの権限を持ちます。

関連情報

クラスターへの Operators の追加

Install modes types

2.7.2. マルチテナントクラスターの推奨ソリューション

Multinamespace インストールモードは存在しますが、サポートされている Operators はほとんどあり
ません。標準 All namespaces と Single namespace インストールモードの中間的なソリューションと
して、次のワークフローを使用して、テナントごとに 1 つずつ、同じ Operator の複数のインスタンス
をインストールできます。

1. テナントの namespace とは別のテナント Operator の namespace を作成します。これは、プ
ロジェクトを作成することで実行できます。

2. テナントの namespace のみを対象とするテナント Operator の Operator グループを作成しま
す。

3. テナント Operator namespace に Operator をインストールします。

その結果、Operator はテナントの Operator namespace に存在し、テナントの namespace を監視しま
すが、Operator の Pod もそのサービスアカウントも、テナントによって表示または使用できません。

このソリューションは、より優れたテナント分離、リソースの使用を犠牲にした最小特権の原則、およ
び制約が確実に満たされるようにするための追加のオーケストレーションを提供します。詳細な手順
は、「マルチテナントクラスター用の Operator の複数インスタンスの準備」を参照してください。

制限および考慮事項

このソリューションは、次の制約が満たされている場合にのみ機能します。

同じ Operator のすべてのインスタンスは、同じバージョンである必要があります。

Operator は、他の Operators に依存することはできません。

Operator は CRD 変換 Webhook を出荷できません。

重要

第2章 OPERATORS について

69

重要

同じクラスターで同じ Operator の異なるバージョンを使用することはできません。最終
的に、Operator の別のインスタンスのインストールは、以下の条件を満たす場合にブ
ロックされます。

インスタンスは Operator の最新バージョンではありません。

インスタンスは、クラスターですでに使用されている新しいリビジョンに含まれ
る情報またはバージョンを欠いている CRD の古いリビジョンを出荷します。

関連情報

マルチテナントクラスター用の Operator の複数インスタンスの準備

2.7.3. Operator のコロケーションと Operator グループ

Operator Lifecycle Manager (OLM) は、同じ namespace にインストールされている OLM 管理
Operators を処理します。つまり、それらの Subscription リソースは、関連する Operators として同
じ namespace に配置されます。それらが実際には関連していなくても、いずれかが更新されると、
OLM はバージョンや更新ポリシーなどの状態を考慮します。

Operator のコロケーションと Operator グループの効果的な使用の詳細は、Operator Lifecycle
Manager (OLM) → マルチテナント対応と Operator のコロケーション を参照してください。

2.8. CRD

2.8.1. カスタムリソース定義からのリソースの管理

以下では、開発者がカスタムリソース定義 (CRD) にあるカスタムリソース (CR) をどのように管理でき
るかを説明します。

2.8.1.1. カスタムリソース定義

Kubernetes API では、リソース は特定の種類の API オブジェクトのコレクションを保管するエンドポ
イントです。たとえば、ビルトインされた Pods リソースには、Pod オブジェクトのコレクションが含
まれます。

カスタムリソース定義 (CRD) オブジェクトは、クラスター内に新規の固有オブジェクト kind を定義
し、Kubernetes API サーバーにそのライフサイクル全体を処理させます。

カスタムリソース (CR) オブジェクトは、クラスター管理者によってクラスターに追加された CRD から
作成され、すべてのクラスターユーザーが新規リソースタイプをプロジェクトに追加できるようにしま
す。

Operators はとりわけ CRD を必要な RBAC ポリシーおよび他のソフトウェア固有のロジックでパッ
ケージ化することで CRD を利用します。

2.8.1.2. ファイルからのカスタムリソースの作成

カスタムリソース定義 (CRD) がクラスターに追加された後に、クラスターリソース (CR) は CR 仕様を
使用するファイルを使って CLI で作成できます。

手順

1. CR の YAML ファイルを作成します。以下の定義例では、cronSpec と image のカスタム

OpenShift Dedicated 4 Operator

70

1

2

3

4

5

1. CR の YAML ファイルを作成します。以下の定義例では、cronSpec と image のカスタム
フィールドが Kind: CronTab の CR に設定されます。この Kind は、CRD オブジェクトの
spec.kind フィールドから取得されます。

CR の YAML ファイルサンプル

CRD からグループ名および API バージョン (name/version) を指定します。

CRD にタイプを指定します。

オブジェクトの名前を指定します。

オブジェクトの ファイナライザー を指定します (ある場合)。ファイナライザーは、コン
トローラーがオブジェクトの削除前に完了する必要のある条件を実装できるようにしま
す。

オブジェクトのタイプに固有の条件を指定します。

2. ファイルの作成後に、オブジェクトを作成します。

2.8.1.3. カスタムリソースの検査

CLI を使用してクラスターに存在するカスタムリソース (CR) オブジェクトを検査できます。

前提条件

CR オブジェクトがアクセスできる namespace にあること。

手順

1. CR の特定の kind に関する情報を取得するには、以下を実行します。

以下に例を示します。

出力例

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com
spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

$ oc create -f <file_name>.yaml

$ oc get <kind>

$ oc get crontab

第2章 OPERATORS について

71

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

1 2

リソース名では大文字と小文字が区別されず、CRD で定義される単数形または複数形のいずれ
か、および任意の短縮名を指定できます。以下に例を示します。

2. CR の未加工の YAML データを確認することもできます。

以下に例を示します。

出力例

オブジェクトの作成に使用した YAML からのカスタムデータが表示されます。

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

$ oc get crontabs

$ oc get crontab

$ oc get ct

$ oc get <kind> -o yaml

$ oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

OpenShift Dedicated 4 Operator

72

第3章 ユーザータスク

3.1. インストールされた OPERATOR からのアプリケーションの作成

以下では、開発者を対象に、OpenShift Dedicated Web コンソールを使用して、インストールされた
Operator からアプリケーションを作成する例を示します。

3.1.1. Operator を使用した etcd クラスターの作成

この手順では、Operator Lifecycle Manager (OLM) で管理される etcd Operator を使用した新規 etcd
クラスターの作成を説明します。

前提条件

OpenShift Dedicated クラスターへのアクセス。

管理者によってクラスター全体に etcd Operator がすでにインストールされている。

手順

1. この手順を実行するために OpenShift Dedicated Web コンソールで新規プロジェクトを作成し
ます。この例では、my-etcd というプロジェクトを使用します。

2. Ecosystem → Installed Operators ページに移動します。このページには、dedicated-admin に
よってクラスターにインストールされた使用可能な Operators が、クラスターサービスバー
ジョン (CSV) のリストの形で表示されます。CSV は Operator によって提供されるソフトウェ
アを起動し、管理するために使用されます。

ヒント

以下を使用して、CLI でこのリストを取得できます。

3. Installed Operators ページで、etcd Operator をクリックして詳細情報および選択可能なアク
ションを表示します。
Provided APIs に表示されているように、この Operator は 3 つの新規リソースタイプを利用可
能にします。これには、etcd クラスター (EtcdCluster リソース) のタイプが含まれます。これ
らのオブジェクトは、Deployment または ReplicaSet などの組み込み済みのネイティブ
Kubernetes オブジェクトと同様に機能しますが、これらには etcd を管理するための固有のロ
ジックが含まれます。

4. 新規 etcd クラスターを作成します。

a. etcd Cluster API ボックスで、Create instance をクリックします。

b. 次のページでは、EtcdCluster オブジェクト (クラスターのサイズなど) のテンプレートを
起動する最小条件を変更できます。ここでは Create をクリックして確定します。これによ
り、Operator がトリガーされ、Pod、サービス、および新規 etcd クラスターの他のコン
ポーネントが起動します。

5. example etcd クラスター、Resources タブの順にクリックし、Operator が自動的に作成およ
び設定した多数のリソースが含まれていることを確認します。

Kubernetes サービスが作成され、プロジェクトの他の Pod からデータベースにアクセスでき

$ oc get csv

第3章 ユーザータスク

73

Kubernetes サービスが作成され、プロジェクトの他の Pod からデータベースにアクセスでき
ることを確認します。

6. 所定プロジェクトで edit ロールを持つすべてのユーザーは、クラウドサービスのようにセルフ
サービス方式でプロジェクトにすでに作成されている Operators によって管理されるアプリ
ケーションのインスタンス (この例では etcd クラスター) を作成し、管理し、削除することが
できます。この機能を持つ追加のユーザーを有効にする必要がある場合、プロジェクト管理者
は以下のコマンドを使用してこのロールを追加できます。

これで、etcd クラスターは Pod が正常でなくなったり、クラスターのノード間で移行する際の障害に
対応し、データのリバランスを行います。最も重要なことは、適切なアクセス権を持つ dedicated-
admin または開発者が、アプリケーションでデータベースを簡単に使用できるようになった点です。

$ oc policy add-role-to-user edit <user> -n <target_project>

OpenShift Dedicated 4 Operator

74

第4章 管理者タスク

4.1. OPERATOR のクラスターへの追加

dedicated-admin ロールを持つ管理者は、Operator Lifecycle Manager (OLM) を使用して、OLM ベー
スの Operator を OpenShift Dedicated クラスターにインストールできます。

注記

OLM が同一 namespace に配置されたインストール済み Operator の更新を処理する方
法や、カスタムグローバル Operator グループで Operator をインストールする別の方法
は、マルチテナント対応と Operator のコロケーション を参照してください。

4.1.1. ソフトウェアカタログからの Operator のインストールについて

ソフトウェアカタログは、Operator を検索するためのユーザーインターフェイスです。これは、クラ
スター上で Operator をインストールして管理する Operator Lifecycle Manager (OLM) と連携して動作
します。

dedicated-admin として、OpenShift Dedicated Web コンソールまたは CLI を使用して、ソフトウェ
アカタログから Operator をインストールできます。Operator を 1 つまたは複数の namespace にサブ
スクライブし、Operator をクラスター上で開発者が使用できるようにできます。

インストール時に、Operator の以下の初期設定を判別する必要があります。

インストールモード

All namespaces on the cluster (default) を選択して Operator をすべての namespace にインストー
ルするか、(利用可能な場合は) 個別の namespace を選択し、選択された namespace のみに
Operator をインストールします。この例では、All namespaces…​ を選択し、Operator をすべての
ユーザーおよびプロジェクトで利用可能にします。

更新チャネル

Operator が複数のチャネルで利用可能な場合、サブスクライブするチャネルを選択できます。たと
えば、(利用可能な場合に) stable チャネルからデプロイするには、これをリストから選択します。

承認ストラテジー

自動 (Automatic) または手動 (Manual) のいずれかの更新を選択します。
インストールされた Operator に自動更新を選択する場合、Operator の新規バージョンが選択され
たチャネルで利用可能になると、Operator Lifecycle Manager (OLM) は人の介入なしに、Operator
の実行中のインスタンスを自動的にアップグレードします。

手動更新を選択した場合、新しいバージョンの Operator が利用可能になると、OLM によって更新
要求が作成されます。その後、dedicated-admin として、その更新リクエストを手動で承認して、
Operator を新しいバージョンに更新する必要があります。

関連情報

ソフトウェアカタログの概要

4.1.2. Web コンソールを使用してソフトウェアカタログからインストールする

OpenShift Dedicated Web コンソールを使用して、ソフトウェアカタログから Operator をインストー
ルし、サブスクライブできます。

第4章 管理者タスク

75

前提条件

dedicated-admin ロールを持つアカウントを使用して、OpenShift Dedicated クラスターにア
クセスできる。

手順

1. Web コンソールで、Ecosystem → Software Catalog ページに移動します。

2. スクロールするか、キーワードを Filter by keyword ボックスに入力し、必要な Operator を見
つけます。たとえば、Advanced Cluster Management for Kubernetes Operator を検索するには
advanced を入力します。
また、インフラストラクチャー機能 でオプションをフィルターすることもできます。たとえ
ば、非接続環境 (ネットワークが制限された環境ともしても知られる) で機能する Operators を
表示するには、Disconnected を選択します。

3. Operator を選択して、追加情報を表示します。

注記

コミュニティー Operator を選択すると、Red Hat がコミュニティー Operator
を認定していないことを警告します。続行する前に警告を確認する必要がありま
す。

4. Operator の情報を確認してから、Install をクリックします。

5. Install Operator ページで、Operator のインストールを設定します。

a. 特定のバージョンの Operator をインストールする場合は、リストから Update channel と
Version を選択します。Operator のすべてのチャネルから Operator のさまざまなバージョ
ンを参照し、そのチャネルとバージョンのメタデータを表示して、インストールする正確
なバージョンを選択できます。

注記

バージョン選択のデフォルトは、選択したチャネルの最新バージョンです。
チャネルの最新バージョンが選択されている場合は、自動 承認戦略がデフォ
ルトで有効になります。それ以外の場合、選択したチャネルの最新バージョ
ンをインストールしない場合は、手動 による承認が必要です。

手動 承認を使用して Operator をインストールすると、namespace 内にイン
ストールされたすべての Operators が 手動 承認戦略で機能し、すべての
Operators が一緒に更新されます。Operators を個別に更新する場合は、
Operators を別の namespace にインストールします。

b. Operator のインストールモードを確認します。

All namespaces on the cluster (default) は、デフォルトの openshift-operators
namespace で Operator をインストールし、クラスターのすべての namespace を監視
し、Operator をこれらの namespace に対して利用可能にします。このオプションは常
に選択可能です。

A specific namespace on the cluster では、Operator をインストールする特定の単一
namespace を選択できます。Operator は監視のみを実行し、この単一 namespace で
使用されるように利用可能になります。

OpenShift Dedicated 4 Operator

76

c. トークン認証が有効になっているクラウドプロバイダー上のクラスターの場合:

クラスターで AWS Security Token Service (Web コンソールの STS Mode) を使用する
場合は、role ARN フィールドに、サービスアカウントの AWS IAM ロールの Amazon
Resource Name (ARN) を入力します。ロールの ARN を作成するには、AWS アカウン
トの準備 で説明されている手順に従います。

クラスターで Microsoft Entra Workload ID (Web コンソールの Workload Identity /
Federated Identity Mode) を使用する場合は、適切なフィールドに、クライアント
ID、テナント ID、サブスクリプション ID を追加します。

クラスターで Google Cloud Platform Workload Identity (Web コンソールの GCP
Workload Identity / Federated Identity Mode) を使用する場合は、適切なフィールド
に、プロジェクト番号、プール ID、プロバイダー ID、サービスアカウントのメールア
ドレスを追加します。

d. Update approval で、承認ストラテジー Automatic または Manual を選択します。

重要

Web コンソールに、クラスターが AWS STS、Microsoft Entra Workload
ID、または GCP Workload Identity を使用していることが示されている場合
は、Update approval を Manual に設定する必要があります。

更新の自動承認を使用したサブスクリプションは推奨されません。更新前に
権限の変更が必要な場合があるためです。更新の手動承認を使用したサブス
クリプションであれば、管理者が新しいバージョンの権限を確認し、必要な
手順を実行してから更新できます。

6. Install をクリックし、Operator をこの OpenShift Dedicated クラスターの選択した
namespace で利用可能にします。

a. 手動 の承認ストラテジーを選択している場合、サブスクリプションのアップグレードス
テータスは、そのインストール計画を確認し、承認するまで Upgrading のままになりま
す。
Install Plan ページでの承認後に、サブスクリプションのアップグレードステータスは Up
to date に移行します。

b. 自動 の承認ストラテジーを選択している場合、アップグレードステータスは、介入なしに
Up to date に解決するはずです。

検証

サブスクリプションのアップグレードステータスが Up to date になったら、Ecosystem →
Installed Operator を選択して、インストールされた Operator のクラスターサービスバージョ
ン (CSV) が最終的に表示されることを確認します。Status は、関連する namespace で最終的
に Succeeded に解決されるはずです。

注記

All namespaces…​ インストールモードの場合、ステータスは openshift-
operators namespace で Succeeded になりますが、他の namespace でチェッ
クする場合、ステータスは Copied になります。

上記通りにならない場合、以下を実行します。

第4章 管理者タスク

77

https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html/tutorials/cloud-experts-deploy-api-data-protection#prepare-aws-account_cloud-experts-deploy-api-data-protection

さらにトラブルシューティングを行うために問題を報告している Workloads → Pods ペー
ジで、openshift-operators プロジェクト (または A specific namespace…​ インストール
モードが選択されている場合は他の関連の namespace) の Pod のログを確認します。

Operator をインストールすると、メタデータに、インストールされているチャネルとバージョ
ンが示されます。

注記

ドロップダウンメニュー Channel および Version は、このカタログコンテキス
トで他のバージョンのメタデータを表示するために引き続き使用できます。

関連情報

保留中の Operator 更新の手動による承認

4.1.3. CLI を使用してソフトウェアカタログからインストールする

OpenShift Dedicated Web コンソールを使用する代わりに、CLI を使用してソフトウェアカタログから
Operator をインストールできます。oc コマンドを使用して、Subscription オブジェクトを作成または
更新します。

SingleNamespace インストールモードの場合は、関連する namespace に適切な Operator グループが
存在することも確認する必要があります。OperatorGroup で定義される Operator グループは、
Operator グループと同じ namespace 内のすべての Operators に必要な RBAC アクセスを生成するター
ゲット namespace を選択します。

ヒント

ほとんどの場合は、この手順の Web コンソール方式が推奨されます。これは、SingleNamespace
モードを選択したときに OperatorGroup オブジェクトおよび Subscription オブジェクトの作成を自
動的に処理するなど、バックグラウンドでタスクが自動化されるためです。

前提条件

dedicated-admin ロールを持つアカウントを使用して、OpenShift Dedicated クラスターにア
クセスできる。

OpenShift CLI (oc) がインストールされている。

手順

1. ソフトウェアカタログからクラスターで使用可能な Operator のリストを表示します。

例4.1 出力例

$ oc get packagemanifests -n openshift-marketplace

NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
advanced-cluster-management Red Hat Operators 91m
amq7-cert-manager Red Hat Operators 91m
...

OpenShift Dedicated 4 Operator

78

1

2 3

4

必要な Operator のカタログをメモします。

2. 必要な Operator を検査して、サポートされるインストールモードおよび利用可能なチャネルを
確認します。

例4.2 出力例

サポートされているインストールモードを示します。

チャネル名の例。

指定されていない場合にデフォルトで選択されるチャネル。

ヒント

couchbase-enterprise-certified Certified Operators 91m
crunchy-postgres-operator Certified Operators 91m
mongodb-enterprise Certified Operators 91m
...
etcd Community Operators 91m
jaeger Community Operators 91m
kubefed Community Operators 91m
...

$ oc describe packagemanifests <operator_name> -n openshift-marketplace

...
Kind: PackageManifest
...
 Install Modes: 1
 Supported: true
 Type: OwnNamespace
 Supported: true
 Type: SingleNamespace
 Supported: false
 Type: MultiNamespace
 Supported: true
 Type: AllNamespaces
...
 Entries:
 Name: example-operator.v3.7.11
 Version: 3.7.11
 Name: example-operator.v3.7.10
 Version: 3.7.10
 Name: stable-3.7 2
...
 Entries:
 Name: example-operator.v3.8.5
 Version: 3.8.5
 Name: example-operator.v3.8.4
 Version: 3.8.4
 Name: stable-3.8 3
 Default Channel: stable-3.8 4

第4章 管理者タスク

79

ヒント

次のコマンドを実行すると、Operator のバージョンとチャネル情報を YAML 形式で出力できま
す。

3. namespace に複数のカタログがインストールされている場合は、次のコマンドを実行して、特
定のカタログから Operator の使用可能なバージョンとチャネルを検索します。

重要

Operator のカタログを指定しない場合、oc get packagemanifest および oc
describe packagemanifest コマンドを実行すると、次の条件が満たされると予
期しないカタログからパッケージが返される可能性があります。

複数のカタログが同じ namespace にインストールされます。

カタログには、同じ Operators、または同じ名前の Operators が含まれてい
ます。

4. インストールする Operator が AllNamespaces インストールモードをサポートしており、この
モードを使用することを選択した場合は、openshift-operators namespace に global-
operators と呼ばれる適切な Operator グループがデフォルトですでに配置されているため、こ
の手順をスキップしてください。
インストールする Operator が SingleNamespace インストールモードをサポートしており、
このモードを使用することを選択した場合は、関連する namespace に適切な Operator グルー
プが存在することを確認する必要があります。存在しない場合は、次の手順に従って作成でき
ます。

重要

namespace ごとに Operator グループを 1 つだけ持つことができます。詳細は、
「Operator グループ」を参照してください。

a. SingleNamespace インストールモード用に、OperatorGroup オブジェクト YAML ファイ
ル (例: operatorgroup.yaml) を作成します。

SingleNamespace インストールモードの OperatorGroup オブジェクトの例

$ oc get packagemanifests <operator_name> -n <catalog_namespace> -o yaml

$ oc get packagemanifest \
 --selector=catalog=<catalogsource_name> \
 --field-selector metadata.name=<operator_name> \
 -n <catalog_namespace> -o yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: <operatorgroup_name>
 namespace: <namespace> 1

OpenShift Dedicated 4 Operator

80

1 2 SingleNamespace インストールモードの場合は、metadata.namespace フィールド
と spec.targetNamespaces フィールドの両方に同じ <namespace> 値を使用しま
す。

b. OperatorGroup オブジェクトを作成します。

5. namespace を Operator にサブスクライブするための Subscription オブジェクトを作成しま
す。

a. Subscription オブジェクトの YAML ファイル (例: subscription.yaml) を作成します。

注記

特定のバージョンの Operator をサブスクライブする場合は、startingCSV
フィールドを目的のバージョンに設定し、installPlanApproval フィールド
を Manual に設定して、カタログに新しいバージョンが存在する場合に
Operator が自動的にアップグレードされないようにします。詳細は、次の
「特定の開始 Operator バージョンを持つ Subscription オブジェクトの例」
を参照してください。

例4.3 Subscription オブジェクトの例

spec:
 targetNamespaces:
 - <namespace> 2

$ oc apply -f operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: <subscription_name>
 namespace: <namespace_per_install_mode> 1
spec:
 channel: <channel_name> 2
 name: <operator_name> 3
 source: <catalog_name> 4
 sourceNamespace: <catalog_source_namespace> 5
 config:
 env: 6
 - name: ARGS
 value: "-v=10"
 envFrom: 7
 - secretRef:
 name: license-secret
 volumes: 8
 - name: <volume_name>
 configMap:
 name: <configmap_name>
 volumeMounts: 9
 - mountPath: <directory_name>
 name: <volume_name>

第4章 管理者タスク

81

1

2

3

4

5

6

7

8

9

10

11

12

デフォルトの AllNamespaces インストールモードの使用は、openshift-
operators namespace を指定します。カスタムグローバル namespace を作成して
いる場合はこれを指定できます。SingleNamespace インストールモードを使用す
る場合は、関連する単一の namespace を指定します。

サブスクライブするチャネルの名前。

サブスクライブする Operator の名前。

Operator を提供するカタログソースの名前。

カタログソースの namespace。デフォルトのソフトウェアカタログソースには
openshift-marketplace を使用します。

env パラメーターは、OLM によって作成される Pod のすべてのコンテナーに存在
する必要がある環境変数の一覧を定義します。

envFrom パラメーターは、コンテナーの環境変数に反映するためのソースの一覧
を定義します。

volumes パラメーターは、OLM によって作成される Pod に存在する必要がある
ボリュームの一覧を定義します。

volumeMounts パラメーターは、OLM によって作成される Pod のすべてのコン
テナーに存在する必要があるボリュームマウントの一覧を定義します。存在しない
volume を volumeMount が参照すると、OLM が Operator のデプロイに失敗しま
す。

tolerations パラメーターは、OLM によって作成される Pod の toleration の一覧を
定義します。

resources パラメーターは、OLM によって作成される Pod のすべてのコンテナー
のリソース制約を定義します。

nodeSelector パラメーターは、OLM によって作成される Pod の NodeSelector
を定義します。

例4.4 特定の開始 Operator バージョンを持つ Subscription オブジェクトの例

 tolerations: 10
 - operator: "Exists"
 resources: 11
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"
 nodeSelector: 12
 foo: bar

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription

OpenShift Dedicated 4 Operator

82

1

2

1

指定したバージョンがカタログの新しいバージョンに置き換えられる場合に備え
て、承認ストラテジーを Manual に設定します。これにより、新しいバージョンへ
の自動アップグレードが阻止され、最初の CSV のインストールが完了する前に手
動での承認が必要となります。

Operator CSV の特定バージョンを設定します。

b. Amazon Web Services (AWS) Security Token Service (STS)、Microsoft Entra Workload
ID、Google Cloud Platform Workload Identity など、トークン認証が有効なクラウドプロバ
イダー上のクラスターの場合は、次の手順に従って Subscription オブジェクトを設定しま
す。

i. Subscription オブジェクトが手動更新承認に設定されていることを確認します。

例4.5 更新の手動承認を使用した Subscription オブジェクトの例

更新の自動承認を使用したサブスクリプションは推奨されません。更新前に権
限の変更が必要な場合があるためです。更新の手動承認を使用したサブスクリ
プションであれば、管理者が新しいバージョンの権限を確認し、必要な手順を
実行してから更新できます。

ii. 関連するクラウドプロバイダー固有のフィールドを Subscription オブジェクトの
config セクションに含めます。
クラスターが AWS STS モードの場合は、次のフィールドを含めます。

例4.6 AWS STS の変数を使用した Subscription オブジェクトの例

metadata:
 name: example-operator
 namespace: example-operator
spec:
 channel: stable-3.7
 installPlanApproval: Manual 1
 name: example-operator
 source: custom-operators
 sourceNamespace: openshift-marketplace
 startingCSV: example-operator.v3.7.10 2

kind: Subscription
...
spec:
 installPlanApproval: Manual 1

kind: Subscription
...
spec:
 config:
 env:
 - name: ROLEARN
 value: "<role_arn>" 1

第4章 管理者タスク

83

1

1

2

3

ロール ARN の詳細を含めます。

クラスターが Workload ID モードの場合は、次のフィールドを含めます。

例4.7 Workload ID の変数を使用した Subscription オブジェクトの例

クライアント ID を含めます。

テナント ID を含めます。

サブスクリプション ID を含めます。

クラスターが GCP Workload Identity モードの場合は、次のフィールドを含めます。

例4.8 GCP Workload Identity の変数を使用した Subscription オブジェクトの例

ここでは、以下のようになります。

<audience>

AUDIENCE 値は、管理者が GCP Workload Identity を設定するときに Google
Cloud で作成し、次の形式で事前にフォーマットした URL である必要があります。

kind: Subscription
...
spec:
 config:
 env:
 - name: CLIENTID
 value: "<client_id>" 1
 - name: TENANTID
 value: "<tenant_id>" 2
 - name: SUBSCRIPTIONID
 value: "<subscription_id>" 3

kind: Subscription
...
spec:
 config:
 env:
 - name: AUDIENCE
 value: "<audience_url>" 1
 - name: SERVICE_ACCOUNT_EMAIL
 value: "<service_account_email>" 2

//iam.googleapis.com/projects/<project_number>/locations/global/workloadIdentityP
ools/<pool_id>/providers/<provider_id>

OpenShift Dedicated 4 Operator

84

<service_account_email>

SERVICE_ACCOUNT_EMAIL 値は、Operator 操作中に権限を借用する Google
Cloud サービスアカウントのメールアドレスです。次に例を示します。

c. 以下のコマンドを実行して Subscription オブジェクトを作成します。

6. installPlanApproval フィールドを Manual に設定する場合は、保留中のインストールプランを
手動で承認して Operator のインストールを完了します。詳細は、「保留中の Operator 更新の
手動による承認」を参照してください。

この時点で、OLM は選択した Operator を認識します。Operator のクラスターサービスバージョン
(CSV) はターゲット namespace に表示され、Operator で指定される API は作成用に利用可能になりま
す。

検証

1. 次のコマンドを実行して、インストールされている Operator の Subscription オブジェクトの
ステータスを確認します。

2. SingleNamespace インストールモードの Operator グループを作成した場合は、次のコマンド
を実行して OperatorGroup オブジェクトのステータスを確認します。

関連情報

Operator グループについて

カスタム namespace にグローバル Operators をインストールする

保留中の Operator 更新の手動による承認

4.1.4. マルチテナントクラスター用の Operator の複数インスタンスの準備

dedicated-admin ロールを持つ管理者は、マルチテナントクラスターで使用する Operator のインスタ
ンスを複数追加できます。これは、最小特権の原則に違反していると見なされる標準の All
namespaces インストールモード、または広く採用されていない Multinamespace モードのいずれか
を使用する代替ソリューションです。詳細は、「マルチテナントクラスター内の Operators」を参照し
てください。

次の手順では、テナント は、デプロイされた一連のワークロードに対する共通のアクセス権と特権を共
有するユーザーまたはユーザーのグループです。テナント Operator は、そのテナントのみによる使用
を意図した Operator のインスタンスです。

前提条件

<service_account_name>@<project_id>.iam.gserviceaccount.com

$ oc apply -f subscription.yaml

$ oc describe subscription <subscription_name> -n <namespace>

$ oc describe operatorgroup <operatorgroup_name> -n <namespace>

第4章 管理者タスク

85

1 1

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

インストールする Operator のすべてのインスタンスは、特定のクラスター全体で同じバージョ
ンである必要があります。

重要

この制限およびその他の制限の詳細は、「マルチテナントクラスター内の
Operators」を参照してください。

手順

1. Operator をインストールする前に、テナントの namespace とは別のテナント Operator の
namespace を作成します。これは、プロジェクトを作成することで実行できます。たとえば、
テナントの namespace が team1 の場合、team1-operator プロジェクトを作成します。

2. spec.targetNamespaces リストにその 1 つの namespace エントリーのみを使用して、テナン
トの namespace をスコープとするテナント Operator の Operator グループを作成します。

a. OperatorGroup リソースを定義し、YAML ファイル (例: team1-operatorgroup.yaml) を保
存します。

spec.targetNamespaces リストでテナントの namespace のみを定義します。

b. 以下のコマンドを実行して Operator グループを作成します。

次のステップ

テナント Operator namespace に Operator をインストールします。このタスクは、CLI ではな
く Web コンソールでソフトウェアカタログを使用するとより簡単に実行できます。詳細な手順
は、「Web コンソールを使用したソフトウェアカタログからのインストール」を参照してくだ
さい。

注記

Operator のインストールが完了すると、Operator はテナントの Operator
namespace に存在し、テナントの namespace を監視しますが、Operator の
Pod もそのサービスアカウントも、テナントによって表示または使用されませ
ん。

$ oc new-project team1-operator

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: team1-operatorgroup
 namespace: team1-operator
spec:
 targetNamespaces:
 - team1 1

$ oc create -f team1-operatorgroup.yaml

OpenShift Dedicated 4 Operator

86

関連情報

マルチテナントクラスター内の Operators

4.1.5. カスタム namespace にグローバル Operator をインストールする

OpenShift Dedicated を使用して Operator をインストールする場合、デフォルトの動作では、All
namespaces インストールモードをサポートする Operator がデフォルトの openshift-operators グ
ローバル namespace にインストールされます。これにより、namespace 内のすべての Operator 間で
共有インストールプランと更新ポリシーに関連する問題が発生する可能性があります。これらの制限の
詳細は、「マルチテナント対応と Operator のコロケーション」を参照してください。

dedicated-admin ロールを持つ管理者は、カスタムのグローバル namespace を作成し、その
namespace を使用して個別の Operators またはスコープ指定した Operators のセットとその依存関係
をインストールすることで、このデフォルトの動作を手動で回避できます。

前提条件

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

1. Operator をインストールする前に、目的の Operator をインストールするための namespace を
作成します。これは、プロジェクトを作成することで実行できます。このプロジェクトの
namespace は、カスタムのグローバル namespace になります。

2. すべての namespace を監視する Operator グループである、カスタム global Operator group
を作成します。

a. OperatorGroup リソースを定義し、global-operatorgroup.yaml などの YAML ファイルを
保存します。spec.selector フィールドと spec.targetNamespaces フィールドの両方を省
略して、すべての namespace を選択する global Operator group にします。

注記

作成されたグローバル Operator グループの status.namespaces には、空
の文字列 ("") が含まれています。これは、すべての namespace を監視する
必要があることを消費する Operator に通知します。

b. 以下のコマンドを実行して Operator グループを作成します。

次のステップ

必要な Operator をカスタムのグローバル namespace にインストールします。Web コンソール

$ oc new-project global-operators

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: global-operatorgroup
 namespace: global-operators

$ oc create -f global-operatorgroup.yaml

第4章 管理者タスク

87

必要な Operator をカスタムのグローバル namespace にインストールします。Web コンソール
では、Operator のインストール時に、カスタムのグローバル namespace が Installed
Namespace メニューに追加されません。そのため、このインストールタスクを実行するに
は、OpenShift CLI (oc) を使用する必要があります。詳細なインストール手順は、「CLI を使
用して OperatorHub からインストールする」を参照してください。

注記

Operator のインストールを開始すると、Operator に依存関係がある場合、その
依存関係もカスタムグローバル namespace に自動的にインストールされます。
その結果、依存関係 Operators が同じ更新ポリシーと共有インストールプランを
持つことが有効になります。

関連情報

マルチテナント対応と Operator のコロケーション

4.1.6. Operator ワークロードの Pod の配置

デフォルトで、Operator Lifecycle Manager (OLM) は、Operator のインストールまたはオペランドの
ワークロードのデプロイ時に Pod を任意のワーカーノードに配置します。管理者は、ノードセレク
ター、taint、および toleration の組み合わせを持つプロジェクトを使用して、Operators およびオペラ
ンドの特定のノードへの配置を制御できます。

Operator およびオペランドワークロードの Pod 配置の制御には以下の前提条件があります。

1. 要件に応じて Pod のターゲットとするノードまたはノードのセットを判別します。利用可能な
場合は、単数または複数のノードを特定する node-role.kubernetes.io/app などの既存ラベル
をメモします。それ以外の場合は、コンピュートマシンセットを使用するか、ノードを直接編
集して、myoperator などのラベルを追加します。このラベルは、後のステップでプロジェク
トのノードセレクターとして使用します。

2. 関連しないワークロードを他のノードに向けつつ、特定のラベルの付いた Pod のみがノードで
実行されるようにする必要がある場合、コンピュートマシンセットを使用するか、ノードを直
接編集して taint をノードに追加します。taint に一致しない新規 Pod がノードにスケジュール
されないようにする effect を使用します。たとえば、myoperator:NoSchedule taint は、taint
に一致しない新規 Pod がノードにスケジュールされないようにしますが、ノードの既存 Pod
はそのまま残ります。

3. デフォルトのノードセレクターで設定され、taint を追加している場合に一致する toleration を
持つプロジェクトを作成します。

この時点で、作成したプロジェクトでは、以下のシナリオの場合に指定されたノードに Pod を導くこ
とができます。

Operator Pod の場合

管理者は、次のセクションで説明するように、プロジェクトに Subscription オブジェクトを作成で
きます。その結果、Operator Pod は指定されたノードに配置されます。

オペランド Pod の場合

インストールされた Operator を使用して、ユーザーはプロジェクトにアプリケーションを作成でき
ます。これにより、Operator が所有するカスタムリソース (CR) がプロジェクトに置かれます。そ
の結果、Operator が他の namespace にクラスター全体のオブジェクトまたはリソースをデプロイ
しない限り、オペランド Pod は指定されたノードに配置されます。この場合、このカスタマイズさ
れた Pod の配置は適用されません。

OpenShift Dedicated 4 Operator

88

1

関連情報

プロジェクトスコープのノードセレクターの作成

4.1.7. Operator のインストール場所の制御

デフォルトでは、Operator をインストールすると、OpenShift Dedicated は Operator Pod をワーカー
ノードの 1 つにランダムにインストールします。ただし、特定のノードまたはノードのセットでその
Pod をスケジュールする必要がある場合があります。

以下の例では、Operator Pod を特定のノードまたはノードのセットにスケジュールする状況を説明し
ます。

同じホストまたは同じラックに配置されたホストでスケジュールされた一緒に動作する
Operators が必要な場合

ネットワークまたはハードウェアの問題によるダウンタイムを回避するために、Operators を
インフラストラクチャー全体に分散させたい場合

Operator の Subscription オブジェクトにノードアフィニティー、Pod アフィニティー、または Pod
アンチアフィニティー制約を追加することで、Operator Pod がインストールされる場所を制御できま
す。ノードアフィニティーは、Pod の配置場所を判別するためにスケジューラーによって使用される
ルールのセットです。Pod アフィニティーを使用すると、関連する Pod が同じノードにスケジュール
されていることを確認できます。Pod アンチアフィニティーを使用すると、ノードで Pod がスケ
ジュールされないようにすることができます。

次の例は、ノードアフィニティーまたは Pod アンチアフィニティーを使用して、Custom Metrics
Autoscaler Operator のインスタンスをクラスター内の特定のノードにインストールする方法を示して
います。

Operator Pod を特定のノードに配置するノードアフィニティーの例

Operator の Pod を ip-10-0-163-94.us-west-2.compute.internal という名前のノードでスケ
ジュールする必要があるノードアフィニティー。

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-163-94.us-west-2.compute.internal
#...

第4章 管理者タスク

89

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/nodes/#nodes-scheduler-node-selectors-project_nodes-scheduler-node-selectors

1

Operator Pod を特定のプラットフォームのノードに配置するノードアフィニティーの例

Operator の Pod を kubernetes.io/arch=arm64 および kubernetes.io/os=linux ラベルを持つノー
ドでスケジュールする必要があるノードアフィニティー。

Operator Pod を 1 つ以上の特定のノードに配置する Pod アフィニティーの例

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/arch
 operator: In
 values:
 - arm64
 - key: kubernetes.io/os
 operator: In
 values:
 - linux
#...

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 podAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - test
 topologyKey: kubernetes.io/hostname
#...

OpenShift Dedicated 4 Operator

90

1

1

app=test ラベルを持つ Pod を持つノードに Operator の Pod を配置する Pod アフィニティー。

Operator Pod が 1 つ以上の特定のノードからアクセスできないようにする Pod アンチアフィ
ニティーの例

Operator の Pod が cpu=high ラベルの Pod を持つノードでスケジュールされないようにする
Pod アンチアフィニティー。

手順

Operator Pod の配置を制御するには、次の手順を実行します。

1. 通常どおり Operator をインストールします。

2. 必要に応じて、ノードがアフィニティーに適切に応答するようにラベル付けされていることを
確認してください。

3. Operator Subscription オブジェクトを編集してアフィニティーを追加します。

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 podAntiAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: cpu
 operator: In
 values:
 - high
 topologyKey: kubernetes.io/hostname
#...

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity: 1
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:

第4章 管理者タスク

91

1 nodeAffinity、podAffinity、または podAntiAffinity を追加します。アフィニティーの作
成は、以下のその他のリソースセクションを参照してください。

検証

Pod が特定のノードにデプロイされていることを確認するには、次のコマンドを実行します。

出力例

関連情報

Pod のアフィニティーについて

ノードアフィニティーについて

4.2. インストール済み OPERATOR の更新

dedicated-admin ロールを持つ管理者は、Operator Lifecycle Manager (OLM) を使用して OpenShift
Dedicated クラスターに以前インストールした Operator を更新できます。

注記

OLM が同一 namespace に配置されたインストール済み Operator の更新を処理する方
法や、カスタムグローバル Operator グループで Operator をインストールする別の方法
は、マルチテナント対応と Operator のコロケーション を参照してください。

4.2.1. Operator 更新の準備

インストールされた Operator のサブスクリプションは、Operator の更新を追跡および受信する更新
チャネルを指定します。更新チャネルを変更して、新しいチャネルからの更新の追跡と受信を開始でき
ます。

サブスクリプションの更新チャネルの名前は Operators 間で異なる可能性がありますが、命名スキーム
通常、特定の Operators 内の共通の規則に従います。たとえば、チャネル名は Operator によって提供
されるアプリケーションのマイナーリリース更新ストリーム (1.2、1.3) またはリリース頻度
(stable、fast) に基づく可能性があります。

注記

 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-185-229.ec2.internal
#...

$ oc get pods -o wide

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
custom-metrics-autoscaler-operator-5dcc45d656-bhshg 1/1 Running 0 50s
10.131.0.20 ip-10-0-185-229.ec2.internal <none> <none>

OpenShift Dedicated 4 Operator

92

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/nodes/#nodes-scheduler-pod-affinity-about_nodes-scheduler-pod-affinity
https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/nodes/#nodes-scheduler-node-affinity-about_nodes-scheduler-node-affinity

注記

インストールされた Operators は、現在のチャネルよりも古いチャネルに切り換えるこ
とはできません。

Red Hat Customer Portal Labs には、管理者が Operators の更新を準備するのに役立つ以下のアプリ
ケーションが含まれています。

Red Hat OpenShift Container Platform Operator Update Information Checker

このアプリケーションを使用すると、OpenShift Dedicated のさまざまなバージョンを対象に、
Operator Lifecycle Manager ベースの Operator を検索し、更新チャネルごとに利用可能な Operator の
バージョンを確認できます。Cluster Version Operator ベースの Operator は含まれません。

4.2.2. Operator の更新チャネルの変更

OpenShift Dedicated を使用して、Operator の更新チャネルを変更できます。

ヒント

サブスクリプションの承認ストラテジーが Automatic に設定されている場合、アップグレードプロセ
スは、選択したチャネルで新規 Operator バージョンが利用可能になるとすぐに開始します。承認スト
ラテジーが Manual に設定されている場合は、保留中のアップグレードを手動で承認する必要がありま
す。

前提条件

Operator Lifecycle Manager (OLM) を使用して以前にインストールされている Operator。

手順

1. Web コンソールで、Ecosystem → Installed Operators に移動します。

2. 更新チャネルを変更する Operator の名前をクリックします。

3. Subscription タブをクリックします。

4. Update channel の下にある更新チャネルの名前をクリックします。

5. 変更する新しい更新チャネルをクリックし、Save をクリックします。

6. Automatic 承認ストラテジーがあるサブスクリプションの場合、更新は自動的に開始しま
す。Ecosystem → Installed Operators ページに戻って、更新の進行状況を監視します。完了
時に、ステータスは Succeeded および Up to date に変更されます。
Manual 承認ストラテジーのあるサブスクリプションの場合、Subscription タブから更新を手
動で承認できます。

4.2.3. 保留中の Operator 更新の手動による承認

インストールされた Operator のサブスクリプションの承認ストラテジーが Manual に設定されている
場合、新規の更新が現在の更新チャネルにリリースされると、インストールを開始する前に更新を手動
で承認する必要があります。

前提条件

第4章 管理者タスク

93

https://access.redhat.com/labs/ocpouic/

Operator Lifecycle Manager (OLM) を使用して以前にインストールされている Operator。

手順

1. OpenShift Dedicated Web コンソールで、Ecosystem → Installed Operators に移動します。

2. 更新が保留中の Operators は Upgrade available のステータスを表示します。更新する
Operator の名前をクリックします。

3. Subscription タブをクリックします。承認が必要な更新は、Upgrade status の横に表示され
ます。たとえば、1 requires approval が表示される可能性があります。

4. 1 requires approval をクリックしてから、Preview Install Plan をクリックします。

5. 更新に利用可能なリソースとして一覧表示されているリソースを確認します。問題がなけれ
ば、Approve をクリックします。

6. Ecosystem → Installed Operators ページに戻って、更新の進行状況を監視します。完了時
に、ステータスは Succeeded および Up to date に変更されます。

4.3. クラスターからの OPERATOR の削除

以下では、Operator Lifecycle Manager (OLM) を使用して OpenShift Dedicated クラスターに以前イン
ストールした Operator を削除またはアンインストールする方法を説明します。

重要

同じ Operator の再インストールを試行する前に、Operator を正常かつ完全にアンイン
ストールする必要があります。Operator を適切かつ完全にアンインストールできていな
い場合、プロジェクトや namespace などのリソースが "Terminating" ステータスでス
タックし、Operator を再インストールしようとすると "error resolving resource" メッ
セージが表示される可能性があります。

4.3.1. Web コンソールの使用によるクラスターからの Operators の削除

クラスター管理者は Web コンソールを使用して、選択した namespace からインストールされた
Operators を削除できます。

前提条件

dedicated-admin パーミッションを持つアカウントを使用して OpenShift Dedicated クラス
ター Web コンソールにアクセスできる。

手順

1. Ecosystem → Installed Operators ページに移動します。

2. スクロールするか、キーワードを Filter by name フィールドに入力して、削除する Operator
を見つけます。次に、それをクリックします。

3. Operator Details ページの右側で、Actions 一覧から Uninstall Operator を選択します。
Uninstall Operator? ダイアログボックスが表示されます。

4. Uninstall を選択し、Operator、Operator デプロイメント、および Pod を削除します。このア
クションの後には、Operator は実行を停止し、更新を受信しなくなります。

OpenShift Dedicated 4 Operator

94

注記

このアクションは、カスタムリソース定義 (CRD) およびカスタムリソース (CR)
など、Operator が管理するリソースは削除されません。Web コンソールおよび
継続して実行されるクラスター外のリソースによって有効にされるダッシュボー
ドおよびナビゲーションアイテムには、手動でのクリーンアップが必要になる場
合があります。Operator のアンインストール後にこれらを削除するには、
Operator CRD を手動で削除する必要があります。

4.3.2. CLI の使用によるクラスターからの Operators の削除

クラスター管理者は CLI を使用して、選択した namespace からインストールされた Operators を削除
できます。

前提条件

dedicated-admin パーミッションを持つアカウントを使用して OpenShift Dedicated クラス
ターにアクセスできる。

OpenShift CLI (oc) がワークステーションにインストールされている。

手順

1. サブスクライブした Operator の最新バージョン (serverless-operator など) が、currentCSV
フィールドで識別されていることを確認します。

出力例

2. サブスクリプション (serverless-operator など) を削除します。

出力例

3. 直前の手順で currentCSV 値を使用し、ターゲット namespace の Operator の CSV を削除し
ます。

出力例

4.3.3. 障害のあるサブスクリプションの更新

$ oc get subscription.operators.coreos.com serverless-operator -n openshift-serverless -o
yaml | grep currentCSV

 currentCSV: serverless-operator.v1.28.0

$ oc delete subscription.operators.coreos.com serverless-operator -n openshift-serverless

subscription.operators.coreos.com "serverless-operator" deleted

$ oc delete clusterserviceversion serverless-operator.v1.28.0 -n openshift-serverless

clusterserviceversion.operators.coreos.com "serverless-operator.v1.28.0" deleted

第4章 管理者タスク

95

Operator Lifecycle Manager (OLM) で、ネットワークでアクセスできないイメージを参照する
Operator をサブスクライブする場合、以下のエラーを出して失敗した openshift-marketplace
namespace でジョブを見つけることができます。

出力例

出力例

その結果、サブスクリプションはこの障害のある状態のままとなり、Operator はインストールまたは
アップグレードを実行できません。

サブスクリプション、クラスターサービスバージョン (CSV) その他の関連オブジェクトを削除して、障
害のあるサブスクリプションを更新できます。サブスクリプションを再作成した後に、OLM は
Operator の正しいバージョンを再インストールします。

前提条件

アクセス不可能なバンドルイメージをプルできない障害のあるサブスクリプションがある。

正しいバンドルイメージにアクセスできることを確認している。

手順

1. Operator がインストールされている namespace から Subscription および
ClusterServiceVersion オブジェクトの名前を取得します。

出力例

2. サブスクリプションを削除します。

3. クラスターサービスバージョンを削除します。

ImagePullBackOff for
Back-off pulling image "example.com/openshift4/ose-elasticsearch-operator-
bundle@sha256:6d2587129c846ec28d384540322b40b05833e7e00b25cca584e004af9a1d292e"

rpc error: code = Unknown desc = error pinging docker registry example.com: Get
"https://example.com/v2/": dial tcp: lookup example.com on 10.0.0.1:53: no such host

$ oc get sub,csv -n <namespace>

NAME PACKAGE SOURCE CHANNEL
subscription.operators.coreos.com/elasticsearch-operator elasticsearch-operator redhat-
operators 5.0

NAME DISPLAY VERSION
REPLACES PHASE
clusterserviceversion.operators.coreos.com/elasticsearch-operator.5.0.0-65 OpenShift
Elasticsearch Operator 5.0.0-65 Succeeded

$ oc delete subscription <subscription_name> -n <namespace>

$ oc delete csv <csv_name> -n <namespace>

OpenShift Dedicated 4 Operator

96

4. openshift-marketplace namespace の失敗したジョブおよび関連する config map の名前を取
得します。

出力例

5. ジョブを削除します。

これにより、アクセスできないイメージのプルを試行する Pod は再作成されなくなります。

6. 設定マップを削除します。

7. Web コンソールのソフトウェアカタログを使用して Operator を再インストールします。

検証

Operator が正常に再インストールされていることを確認します。

4.4. OPERATOR LIFECYCLE MANAGER でのプロキシーサポートの設定

グローバルプロキシーが OpenShift Dedicated クラスターに設定されている場合、Operator Lifecycle
Manager (OLM) は、クラスター全体のプロキシーで管理する Operator を自動的に設定します。ただ
し、インストールされた Operators をグローバルプロキシーをオーバーライドするか、カスタム CA 証
明書を注入するように設定することもできます。

関連情報

クラスター全体のプロキシーの設定

4.4.1. Operator のプロキシー設定のオーバーライド

クラスター全体の egress プロキシーが設定されている場合、Operator Lifecycle Manager (OLM) を使
用して実行する Operators は、デプロイメントでクラスター全体のプロキシー設定を継承しま
す。dedicated-admin ロールを持つ管理者は、Operator のサブスクリプションを設定することで、こ
れらのプロキシー設定をオーバーライドすることもできます。

重要

$ oc get job,configmap -n openshift-marketplace

NAME COMPLETIONS DURATION AGE
job.batch/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 1/1
26s 9m30s

NAME DATA AGE
configmap/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 3
9m30s

$ oc delete job <job_name> -n openshift-marketplace

$ oc delete configmap <configmap_name> -n openshift-marketplace

$ oc get sub,csv,installplan -n <namespace>

第4章 管理者タスク

97

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/ovn-kubernetes_network_plugin/#configuring-cluster-wide-proxy

重要

Operators は、マネージドオペランドの Pod でのプロキシー設定の環境変数の設定を処
理する必要があります。

前提条件

dedicated-admin ロールを持つユーザーとして OpenShift Dedicated クラスターにアクセスで
きる。

手順

1. Web コンソールで、Ecosystem → Software Catalog ページに移動します。

2. Operator を選択し、Install をクリックします。

3. Install Operator ページで、Subscription オブジェクトを変更して以下の 1 つ以上の環境変数
を spec セクションに組み込みます。

HTTP_PROXY

HTTPS_PROXY

NO_PROXY

以下に例を示します。

プロキシー設定のオーバーライドのある Subscription オブジェクト

注記

これらの環境変数では、以前に設定されたクラスター全体またはカスタムプロキ
シーの設定を削除するために空の値を使用してそれらの設定を解除することもで
きます。

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: etcd-config-test
 namespace: openshift-operators
spec:
 config:
 env:
 - name: HTTP_PROXY
 value: test_http
 - name: HTTPS_PROXY
 value: test_https
 - name: NO_PROXY
 value: test
 channel: clusterwide-alpha
 installPlanApproval: Automatic
 name: etcd
 source: community-operators
 sourceNamespace: openshift-marketplace
 startingCSV: etcdoperator.v0.9.4-clusterwide

OpenShift Dedicated 4 Operator

98

OLM はこれらの環境変数を単位として処理します。それらの環境変数が 1 つ以上設定されてい
る場合、それらはすべてオーバーライドされているものと見なされ、クラスター全体のデフォ
ルト値はサブスクライブされた Operator のデプロイメントには使用されません。

4. Install をクリックし、Operator を選択された namespace で利用可能にします。

5. Operator の CSV が関連する namespace に表示されると、カスタムプロキシーの環境変数がデ
プロイメントに設定されていることを確認できます。たとえば、CLI を使用します。

出力例

4.4.2. カスタム CA 証明書の注入

dedicated-admin ロールを持つ管理者が config map を使用してカスタム CA 証明書をクラスターに追
加すると、Cluster Network Operator がユーザー提供の証明書とシステム CA 証明書を 1 つのバンドル
にマージします。このマージされたバンドルを Operator Lifecycle Manager (OLM) で実行されている
Operator に注入することができます。これは、man-in-the-middle HTTPS プロキシーがある場合に役
立ちます。

前提条件

dedicated-admin ロールを持つユーザーとして OpenShift Dedicated クラスターにアクセスで
きる。

設定マップを使用してクラスターに追加されたカスタム CA 証明書。

必要な Operator が OLM にインストールされ、実行される。

手順

1. Operator のサブスクリプションがある namespace に空の設定マップを作成し、以下のラベル
を組み込みます。

$ oc get deployment -n openshift-operators \
 etcd-operator -o yaml \
 | grep -i "PROXY" -A 2

 - name: HTTP_PROXY
 value: test_http
 - name: HTTPS_PROXY
 value: test_https
 - name: NO_PROXY
 value: test
 image: quay.io/coreos/etcd-
operator@sha256:66a37fd61a06a43969854ee6d3e21088a98b93838e284a6086b13917f96b0
d9c
...

apiVersion: v1
kind: ConfigMap
metadata:
 name: trusted-ca 1
 labels:
 config.openshift.io/inject-trusted-cabundle: "true" 2

第4章 管理者タスク

99

1

2

1

2

3

4

5

6

設定マップの名前。

Cluster Network Operator に対してマージされたバンドルを注入するように要求します。

この設定マップの作成後すぐに、設定マップにはマージされたバンドルの証明書の内容が設定
されます。

2. Subscription オブジェクトを更新し、trusted-ca 設定マップをカスタム CA を必要とする Pod
内の各コンテナーにボリュームとしてマウントする spec.config セクションを追加します。

config セクションがない場合に、これを追加します。

Operator が所有する Pod に一致するラベルを指定します。

trusted-ca ボリュームを作成します。

ca-bundle.crt は設定マップキーとして必要になります。

tls-ca-bundle.pem は設定マップパスとして必要になります。

trusted-ca ボリュームマウントを作成します。

注記

Operator のデプロイメントは認証局の検証に失敗し、x509 certificate signed
by unknown authority エラーが表示される可能性があります。このエラーは、
Operator のサブスクリプションの使用時にカスタム CA を注入した後でも発生
する可能性があります。この場合、Operator のサブスクリプションを使用し
て、trusted-ca の mountPath を /etc/ssl/certs として設定できます。

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: my-operator
spec:
 package: etcd
 channel: alpha
 config: 1
 selector:
 matchLabels:
 <labels_for_pods> 2
 volumes: 3
 - name: trusted-ca
 configMap:
 name: trusted-ca
 items:
 - key: ca-bundle.crt 4
 path: tls-ca-bundle.pem 5
 volumeMounts: 6
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 readOnly: true

OpenShift Dedicated 4 Operator

100

4.5. OPERATOR ステータスの表示

Operator Lifecycle Manager (OLM) のシステムの状態を理解することは、インストールされた
Operators に関する問題について意思決定を行い、デバッグを行う上で重要です。OLM は、サブスク
リプションおよびそれに関連するカタログソースリソースの状態および実行されたアクションに関する
知見を提供します。これは、それぞれの Operators の正常性を把握するのに役立ちます。

4.5.1. Operator サブスクリプションの状態のタイプ

サブスクリプションは状態に関する以下のタイプを報告します。

表4.1 サブスクリプションの状態のタイプ

状態 説明

CatalogSourcesUnhealthy 解決に使用される一部のまたはすべてのカタログソースは正常ではあり
ません。

InstallPlanMissing サブスクリプションのインストール計画がありません。

InstallPlanPending サブスクリプションのインストール計画はインストールの保留中です。

InstallPlanFailed サブスクリプションのインストール計画が失敗しました。

ResolutionFailed サブスクリプションの依存関係の解決に失敗しました。

注記

デフォルトの OpenShift Dedicated クラスター Operator は、Cluster Version Operator
(CVO) によって管理されます。この Operator には Subscription オブジェクトがありま
せん。アプリケーション Operator は、Operator Lifecycle Manager (OLM) によって管理
されます。この Operator には Subscription オブジェクトがあります。

関連情報

障害のあるサブスクリプションの更新

4.5.2. CLI を使用した Operator サブスクリプションステータスの表示

CLI を使用して Operator サブスクリプションステータスを表示できます。

前提条件

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

OpenShift CLI (oc) がインストールされている。

手順

1. Operator サブスクリプションをリスト表示します。

第4章 管理者タスク

101

2. oc describe コマンドを使用して、Subscription リソースを検査します。

3. コマンド出力で、Conditions セクションで Operator サブスクリプションの状態タイプのス
テータスを確認します。以下の例では、利用可能なすべてのカタログソースが正常であるた
め、CatalogSourcesUnhealthy 状態タイプのステータスは false になります。

出力例

注記

デフォルトの OpenShift Dedicated クラスター Operator は、Cluster Version Operator
(CVO) によって管理されます。この Operator には Subscription オブジェクトがありま
せん。アプリケーション Operator は、Operator Lifecycle Manager (OLM) によって管理
されます。この Operator には Subscription オブジェクトがあります。

4.5.3. CLI を使用した Operator カタログソースのステータス表示

Operator カタログソースのステータスは、CLI を使用して確認できます。

前提条件

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

OpenShift CLI (oc) がインストールされている。

手順

1. namespace のカタログソースをリスト表示します。たとえば、クラスター全体のカタログソー
スに使用されている openshift-marketplace namespace を確認することができます。

出力例

$ oc get subs -n <operator_namespace>

$ oc describe sub <subscription_name> -n <operator_namespace>

Name: cluster-logging
Namespace: openshift-logging
Labels: operators.coreos.com/cluster-logging.openshift-logging=
Annotations: <none>
API Version: operators.coreos.com/v1alpha1
Kind: Subscription
...
Conditions:
 Last Transition Time: 2019-07-29T13:42:57Z
 Message: all available catalogsources are healthy
 Reason: AllCatalogSourcesHealthy
 Status: False
 Type: CatalogSourcesUnhealthy
...

$ oc get catalogsources -n openshift-marketplace

OpenShift Dedicated 4 Operator

102

2. カタログソースの詳細やステータスを確認するには、oc describe コマンドを使用します。

出力例

前述の出力例では、最後に観測された状態が TRANSIENT_FAILURE となっています。この状
態は、カタログソースの接続確立に問題があることを示しています。

3. カタログソースが作成された namespace の Pod をリストアップします。

出力例

namespace にカタログソースを作成すると、その namespace にカタログソース用の Pod が作
成されます。前述の出力例では、example-catalog-bwt8z Pod のステータスが
ImagePullBackOff になっています。このステータスは、カタログソースのインデックスイ
メージのプルに問題があることを示しています。

NAME DISPLAY TYPE PUBLISHER AGE
certified-operators Certified Operators grpc Red Hat 55m
community-operators Community Operators grpc Red Hat 55m
example-catalog Example Catalog grpc Example Org 2m25s
redhat-operators Red Hat Operators grpc Red Hat 55m

$ oc describe catalogsource example-catalog -n openshift-marketplace

Name: example-catalog
Namespace: openshift-marketplace
Labels: <none>
Annotations: operatorframework.io/managed-by: marketplace-operator
 target.workload.openshift.io/management: {"effect": "PreferredDuringScheduling"}
API Version: operators.coreos.com/v1alpha1
Kind: CatalogSource
...
Status:
 Connection State:
 Address: example-catalog.openshift-marketplace.svc:50051
 Last Connect: 2021-09-09T17:07:35Z
 Last Observed State: TRANSIENT_FAILURE
 Registry Service:
 Created At: 2021-09-09T17:05:45Z
 Port: 50051
 Protocol: grpc
 Service Name: example-catalog
 Service Namespace: openshift-marketplace
...

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE
certified-operators-cv9nn 1/1 Running 0 36m
community-operators-6v8lp 1/1 Running 0 36m
marketplace-operator-86bfc75f9b-jkgbc 1/1 Running 0 42m
example-catalog-bwt8z 0/1 ImagePullBackOff 0 3m55s
redhat-operators-smxx8 1/1 Running 0 36m

第4章 管理者タスク

103

4. oc describe コマンドを使用して、より詳細な情報を得るために Pod を検査します。

出力例

前述の出力例では、エラーメッセージは、カタログソースのインデックスイメージが承認問題
のために正常にプルできないことを示しています。例えば、インデックスイメージがログイン
認証情報を必要とするレジストリーに保存されている場合があります。

関連情報

Operator Lifecycle Manager の概念およびリソース → カタログソース

gRPC ドキュメント:接続性の状態

4.6. OPERATOR 条件の管理

dedicated-admin ロールを持つ管理者は、Operator Lifecycle Manager (OLM) を使用して Operator 条
件を管理できます。

4.6.1. Operator 条件のオーバーライド

dedicated-admin ロールを持つ管理者は、Operator によって報告されるサポート対象の Operator 条件
を無視することもできます。Spec.Overrides 配列に Operator 条件が存在する場合、この条件によって
Spec.Conditions 配列の条件がオーバーライドされます。これを使用することで、dedicated-admin
管理者は、Operator が Operator Lifecycle Manager (OLM) に状態を誤って報告している状況に対処で
きます。

注記

$ oc describe pod example-catalog-bwt8z -n openshift-marketplace

Name: example-catalog-bwt8z
Namespace: openshift-marketplace
Priority: 0
Node: ci-ln-jyryyg2-f76d1-ggdbq-worker-b-vsxjd/10.0.128.2
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 48s default-scheduler Successfully assigned openshift-
marketplace/example-catalog-bwt8z to ci-ln-jyryyf2-f76d1-fgdbq-worker-b-vsxjd
 Normal AddedInterface 47s multus Add eth0 [10.131.0.40/23] from
openshift-sdn
 Normal BackOff 20s (x2 over 46s) kubelet Back-off pulling image
"quay.io/example-org/example-catalog:v1"
 Warning Failed 20s (x2 over 46s) kubelet Error: ImagePullBackOff
 Normal Pulling 8s (x3 over 47s) kubelet Pulling image "quay.io/example-
org/example-catalog:v1"
 Warning Failed 8s (x3 over 47s) kubelet Failed to pull image
"quay.io/example-org/example-catalog:v1": rpc error: code = Unknown desc = reading
manifest v1 in quay.io/example-org/example-catalog: unauthorized: access to the requested
resource is not authorized
 Warning Failed 8s (x3 over 47s) kubelet Error: ErrImagePull

OpenShift Dedicated 4 Operator

104

https://grpc.github.io/grpc/core/md_doc_connectivity-semantics-and-api.html

1

注記

デフォルトでは、Spec.Overrides 配列は、dedicated-admin ロールを持つ管理者が追
加するまで、OperatorCondition オブジェクトに存在しません。Spec.Conditions 配列
も、ユーザーが追加するか、カスタム Operator ロジックの結果として追加されるまで存
在しません。

たとえば、アップグレードできないことを常に通信する Operator の既知のバージョンを考えてみま
しょう。この場合、Operator がアップグレードできないと通信していますが、Operator をアップグ
レードすることを推奨します。これは、条件の type および status を OperatorCondition オブジェク
トの Spec.Overrides 配列に追加して Operator 条件をオーバーライドすることによって実行できま
す。

前提条件

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

OperatorCondition オブジェクトを持つ Operator が OLM を使用してインストールされてい
る。

手順

1. Operator の OperatorCondition オブジェクトを編集します。

2. Spec.Overrides 配列をオブジェクトに追加します。

Operator 条件のオーバーライドの例

このように編集すると、dedicated-admin ユーザーはアップグレードの準備状況を True
に変更できます。

$ oc edit operatorcondition <name>

apiVersion: operators.coreos.com/v2
kind: OperatorCondition
metadata:
 name: my-operator
 namespace: operators
spec:
 overrides:
 - type: Upgradeable 1
 status: "True"
 reason: "upgradeIsSafe"
 message: "This is a known issue with the Operator where it always reports that it cannot
be upgraded."
 conditions:
 - type: Upgradeable
 status: "False"
 reason: "migration"
 message: "The operator is performing a migration."
 lastTransitionTime: "2020-08-24T23:15:55Z"

第4章 管理者タスク

105

4.6.2. Operator 条件を使用するための Operator の更新

Operator Lifecycle Manager (OLM) は、調整する ClusterServiceVersion リソースごとに
OperatorCondition リソースを自動的に作成します。CSV のすべてのサービスアカウントには、
Operator が所有する OperatorCondition と対話するための RBAC が付与されます。

Operator の作成者は、Operator が OLM によってデプロイされた後に、独自の条件を設定できるよう
に Operator を開発し、operator-lib ライブラリーを使用することができます。Operator 作成者として
Operator 条件を設定する方法の詳細は、Operator 条件の有効化 ページを参照してください。

4.6.2.1. デフォルトの設定

後方互換性を維持するために、OLM は OperatorCondition リソースがない状態を条件からのオプトア
ウトとして扱います。そのため、Operator 条件の使用にオプトインする Operator は、Pod の ready プ
ローブが true に設定される前に、デフォルトの条件を設定する必要があります。これにより、
Operator には、条件を正しい状態に更新するための猶予期間が与えられます。

4.6.3. 関連情報

Operator 条件

4.7. カスタムカタログの管理

dedicated-admin ロールを持つ管理者と Operator カタログメンテナーは、OpenShift Dedicated の
Operator Lifecycle Manager (OLM) で バンドル形式 を使用してパッケージ化したカスタムカタログを
作成および管理できます。

重要

Kubernetes は定期的に特定の API を非推奨とし、後続のリリースで削除します。そのた
め、OpenShift Dedicated のバージョンで、API が削除された Kubernetes バージョンが
採用されると、Operator がその API を使用できなくなります。

関連情報

Red Hat が提供する Operator カタログ

4.7.1. 前提条件

opm CLI がインストールされている。

4.7.2. ファイルベースのカタログ

ファイルベースのカタログ は、Operator Lifecycle Manager (OLM) の最新バージョンのカタログ形式
です。この形式は、プレーンテキストベース (JSON または YAML) であり、以前の SQLite データベー
ス形式の宣言的な設定の進化であり、完全な下位互換性があります。

重要

OpenShift Dedicated 4 Operator

106

https://docs.openshift.com/container-platform/4.12/operators/operator_sdk/osdk-generating-csvs.html#osdk-operatorconditions_osdk-generating-csvs
https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/cli_tools/#cli-opm-install

1

重要

OpenShift Dedicated 4.11 以降、デフォルトの Red Hat 提供の Operator カタログはファ
イルベースのカタログ形式でリリースされます。OpenShift Dedicated 4.6 から 4.10 ま
での Red Hat が提供するデフォルトの Operator カタログは、非推奨の SQLite データ
ベース形式でリリースされました。

opm サブコマンド、フラグ、および SQLite データベース形式に関連する機能も非推奨
となり、今後のリリースで削除されます。機能は引き続きサポートされており、非推奨
の SQLite データベース形式を使用するカタログに使用する必要があります。

opm index prune などの SQLite データベース形式を使用する opm サブコマンドおよび
フラグの多くは、ファイルベースのカタログ形式では機能しません。ファイルベースの
カタログを使用する方法の詳細は、Operator Framework パッケージ形式 を参照してく
ださい。

4.7.2.1. ファイルベースのカタログイメージの作成

opm CLI を使用して、非推奨の SQLite データベース形式を置き換えるプレーンテキストの ファイル
ベースのカタログ 形式 (JSON または YAML) を使用するカタログイメージを作成できます。

前提条件

opm CLI がインストールされている。

podman バージョン 1.9.3 以降がある。

バンドルイメージがビルドされ、Docker v2-2 をサポートするレジストリーにプッシュされて
いる。

手順

1. カタログを初期化します。

a. 次のコマンドを実行して、カタログ用のディレクトリーを作成します。

b. opm generate dockerfile コマンドを実行して、カタログイメージを構築できる Dockerfile
を生成します。

-i フラグを使用して公式の Red Hat ベースイメージを指定します。それ以外の場合、
Dockerfile はデフォルトのアップストリームイメージを使用します。

Dockerfile は、直前の手順で作成したカタログディレクトリーと同じ親ディレクトリーに存
在する必要があります。

ディレクトリー構造の例

$ mkdir <catalog_dir>

$ opm generate dockerfile <catalog_dir> \
 -i registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4 1

第4章 管理者タスク

107

https://docs.docker.com/registry/spec/manifest-v2-2/

1

2

3

1

2

3

4

5

6

1

2

親ディレクトリー

カタログディレクトリー

opm generate dockerfile コマンドによって生成された Dockerfile

c. opm init コマンドを実行して、カタログに Operator のパッケージ定義を追加します。

Operator、またはパッケージ、名前。

指定されていない場合にサブスクリプションがデフォルトで使用するチャネル

Operator の README.md またはその他のドキュメントへのパス。

Operator のアイコンへのパス。

出力形式: JSON または YAML。

カタログ設定ファイルを作成するパス。

このコマンドは、指定されたカタログ設定ファイルに olm.package 宣言型設定 blob を生
成します。

2. opm render コマンドを実行して、バンドルをカタログに追加します。

バンドルイメージのプル仕様。

カタログ設定ファイルへのパス。

注記

チャネルには、1 つ以上のバンドルが含まれる必要があります。

3. バンドルのチャネルエントリーを追加します。たとえば、次の例を仕様に合わせて変更
し、<catalog_dir>/index.yaml ファイルに追加します。

. 1
├── <catalog_dir> 2
└── <catalog_dir>.Dockerfile 3

$ opm init <operator_name> \ 1
 --default-channel=preview \ 2
 --description=./README.md \ 3
 --icon=./operator-icon.svg \ 4
 --output yaml \ 5
 > <catalog_dir>/index.yaml 6

$ opm render <registry>/<namespace>/<bundle_image_name>:<tag> \ 1
 --output=yaml \
 >> <catalog_dir>/index.yaml 2

OpenShift Dedicated 4 Operator

108

1

チャネルエントリーの例

<operator_name> の後、かつ、バージョンの v の前に、ピリオド (.) を追加するようにし
てください。それ以外の場合、エントリーが opm validate コマンドに合格できません。

4. ファイルベースのカタログを検証します。

a. カタログディレクトリーに対して opm validate コマンドを実行します。

b. エラーコードが 0 であることを確認します。

出力例

5. podman build コマンドを実行して、カタログイメージをビルドします。

6. カタログイメージをレジストリーにプッシュします。

a. 必要に応じて、podman login コマンドを実行してターゲットレジストリーで認証します。

b. podman push コマンドを実行して、カタログイメージをプッシュします。

関連情報

opm CLI リファレンス

4.7.2.2. ファイルベースのカタログイメージの更新またはフィルタリング

opm CLI を使用して、ファイルベースのカタログ形式を使用するカタログイメージを更新またはフィル
タリングできます。既存のカタログイメージのコンテンツを抽出すると、必要に応じてカタログを変更
できます。たとえば、以下を実行できます。

schema: olm.channel
package: <operator_name>
name: preview
entries:
 - name: <operator_name>.v0.1.0 1

$ opm validate <catalog_dir>

$ echo $?

0

$ podman build . \
 -f <catalog_dir>.Dockerfile \
 -t <registry>/<namespace>/<catalog_image_name>:<tag>

$ podman login <registry>

$ podman push <registry>/<namespace>/<catalog_image_name>:<tag>

第4章 管理者タスク

109

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/cli_tools/#cli-opm-ref

パッケージの追加

パッケージの削除

既存のパッケージエントリーの更新

パッケージ、チャネル、バンドルごとの非推奨メッセージの記載

その後、イメージをカタログの更新バージョンとして再構築できます。

前提条件

ワークステーションに以下が含まれている。

opm CLI。

podman version 1.9.3+。

ファイルベースのカタログイメージ。

このカタログに関連するワークステーションで最近初期化されたカタログディレクトリー
構造。
初期化されたカタログディレクトリーがない場合は、ディレクトリーを作成し、Dockerfile
を生成します。詳細は、「ファイルベースのカタログイメージの作成」手順の「カタログ
の初期化」手順を参照してください。

手順

1. カタログイメージのコンテンツを YAML 形式でカタログディレクトリーの index.yaml ファイ
ルに展開します。

注記

または、-o json フラグを使用して JSON 形式で出力することもできます。

2. 作成された index.yaml ファイルの内容を仕様に合わせて変更します。

重要

バンドルがカタログに公開されたら、いずれかのユーザーがバンドルをインス
トールしていると想定します。カタログ内で以前に公開されたすべてのバンドル
に、現在または新しいチャネルヘッドへの更新パスが設定されていることを確認
し、そのバージョンがインストールされているユーザーが立ち往生するのを防ぎ
ます。

Operator を追加するには、「ファイルベースのカタログイメージの作成」手順のパッケー
ジ、バンドル、およびチャネルエントリーを作成する手順に従います。

Operator を削除するには、パッケージに関連する olm.package、olm.channel、および
olm.bundle Blob のセットを削除します。次の例は、カタログから example-operator
パッケージを削除するために削除する必要があるセットを示しています。

$ opm render <registry>/<namespace>/<catalog_image_name>:<tag> \
 -o yaml > <catalog_dir>/index.yaml

OpenShift Dedicated 4 Operator

110

例4.9 削除されたエントリーの例

defaultChannel: release-2.7
icon:
 base64data: <base64_string>
 mediatype: image/svg+xml
name: example-operator
schema: olm.package

entries:
- name: example-operator.v2.7.0
 skipRange: '>=2.6.0 <2.7.0'
- name: example-operator.v2.7.1
 replaces: example-operator.v2.7.0
 skipRange: '>=2.6.0 <2.7.1'
- name: example-operator.v2.7.2
 replaces: example-operator.v2.7.1
 skipRange: '>=2.6.0 <2.7.2'
- name: example-operator.v2.7.3
 replaces: example-operator.v2.7.2
 skipRange: '>=2.6.0 <2.7.3'
- name: example-operator.v2.7.4
 replaces: example-operator.v2.7.3
 skipRange: '>=2.6.0 <2.7.4'
name: release-2.7
package: example-operator
schema: olm.channel

image: example.com/example-inc/example-operator-bundle@sha256:<digest>
name: example-operator.v2.7.0
package: example-operator
properties:
- type: olm.gvk
 value:
 group: example-group.example.io
 kind: MyObject
 version: v1alpha1
- type: olm.gvk
 value:
 group: example-group.example.io
 kind: MyOtherObject
 version: v1beta1
- type: olm.package
 value:
 packageName: example-operator
 version: 2.7.0
- type: olm.bundle.object
 value:
 data: <base64_string>
- type: olm.bundle.object
 value:
 data: <base64_string>
relatedImages:
- image: example.com/example-inc/example-related-image@sha256:<digest>

第4章 管理者タスク

111

Operator の非推奨メッセージを追加または更新するには、パッケージの index.yaml ファ
イルと同じディレクトリーに deprecations.yaml ファイルがあることを確認してくださ
い。deprecations.yaml ファイル形式の詳細は、「olm.deprecations スキーマ」を参照し
てください。

3. 変更を保存します。

4. カタログを検証します。

5. カタログを再構築します。

6. 更新されたカタログイメージをレジストリーにプッシュします。

検証

1. Web コンソールで、Administration → Cluster Settings → Configuration ページで
OperatorHub 設定リソースに移動します。

2. カタログソースを追加するか、既存のカタログソースを更新して、更新されたカタログイメー
ジのプル仕様を使用します。
詳細は、このセクションの「関連情報」にある「クラスターへのカタログソースの追加」を参
照してください。

3. カタログソースが READY 状態になったら、Ecosystem → Software Catalog ページに移動し
ます。Type 見出しの下の Operator を選択し、行った変更が Operator のリストに反映されて
いることを確認します。

4.7.3. SQLite ベースのカタログ

重要

Operator カタログの SQLite データベース形式は非推奨の機能です。非推奨の機能は依
然として OpenShift Dedicated に含まれており、引き続きサポートされますが、この製
品の今後のリリースで削除されるため、新規デプロイメントでの使用は推奨されませ
ん。

OpenShift Dedicated で非推奨化または削除された主な機能の最新のリストは、
OpenShift Dedicated リリースノートの 非推奨および削除された機能 セクションを参照
してください。

 name: example-related-image
schema: olm.bundle

$ opm validate <catalog_dir>

$ podman build . \
 -f <catalog_dir>.Dockerfile \
 -t <registry>/<namespace>/<catalog_image_name>:<tag>

$ podman push <registry>/<namespace>/<catalog_image_name>:<tag>

OpenShift Dedicated 4 Operator

112

1

2

3

4.7.3.1. SQLite ベースのインデックスイメージの作成

opm CLI を使用して、SQLite データベース形式に基づいてインデックスイメージを作成できます。

前提条件

opm CLI がインストールされている。

podman バージョン 1.9.3 以降がある。

バンドルイメージがビルドされ、Docker v2-2 をサポートするレジストリーにプッシュされて
いる。

手順

1. 新しいインデックスを開始します。

インデックスに追加するバンドルイメージのコンマ区切りのリスト。

インデックスイメージで使用するイメージタグ。

オプション: カタログを提供するために使用する代替レジストリーベースイメージ。

2. インデックスイメージをレジストリーにプッシュします。

a. 必要な場合は、ターゲットレジストリーで認証します。

b. インデックスイメージをプッシュします。

4.7.3.2. SQLite ベースのインデックスイメージの更新

dedicated-admin ロールを持つ管理者は、カスタムインデックスイメージを参照するカタログソースを
使用するようにソフトウェアカタログを設定した後、インデックスイメージにバンドルイメージを追加
することで、クラスター上で利用可能な Operators を最新の状態に保つことができます。

opm index add コマンドを使用して既存インデックスイメージを更新できます。

前提条件

opm CLI がインストールされている。

podman バージョン 1.9.3 以降がある。

インデックスイメージがビルドされ、レジストリーにプッシュされている。

$ opm index add \
 --bundles <registry>/<namespace>/<bundle_image_name>:<tag> \ 1
 --tag <registry>/<namespace>/<index_image_name>:<tag> \ 2
 [--binary-image <registry_base_image>] 3

$ podman login <registry>

$ podman push <registry>/<namespace>/<index_image_name>:<tag>

第4章 管理者タスク

113

https://docs.docker.com/registry/spec/manifest-v2-2/

1

2

3

4

インデックスイメージを参照する既存のカタログソースがある。

手順

1. バンドルイメージを追加して、既存のインデックスを更新します。

--bundles フラグは、インデックスに追加する他のバンドルイメージのコンマ区切りリス
トを指定します。

--from-index フラグは、以前にプッシュされたインデックスを指定します。

--tag フラグは、更新されたインデックスイメージに適用するイメージタグを指定しま
す。

--pull-tool フラグは、コンテナーイメージのプルに使用されるツールを指定します。

ここでは、以下のようになります。

<registry>

quay.io や mirror.example.com などのレジストリーのホスト名を指定します。

<namespace>

ocs-dev や abc など、レジストリーの namespace を指定します。

<new_bundle_image>

ocs-operator など、レジストリーに追加する新しいバンドルイメージを指定します。

<digest>

c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a41 などのバンド
ルイメージの SHA イメージ ID またはダイジェストを指定します。

<existing_index_image>

abc-redhat-operator-index など、以前にプッシュされたイメージを指定します。

<existing_tag>

以前にプッシュしたイメージのタグ (4 など) を指定します。

<updated_tag>

更新されたインデックスイメージに適用するイメージタグ (4.1 など) を指定します。

コマンドの例

$ opm index add \
 --bundles <registry>/<namespace>/<new_bundle_image>@sha256:<digest> \ 1
 --from-index <registry>/<namespace>/<existing_index_image>:<existing_tag> \ 2
 --tag <registry>/<namespace>/<existing_index_image>:<updated_tag> \ 3
 --pull-tool podman 4

$ opm index add \
 --bundles quay.io/ocs-dev/ocs-
operator@sha256:c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a
41 \
 --from-index mirror.example.com/abc/abc-redhat-operator-index:4 \
 --tag mirror.example.com/abc/abc-redhat-operator-index:4.1 \
 --pull-tool podman

OpenShift Dedicated 4 Operator

114

2. 更新されたインデックスイメージをプッシュします。

3. Operator Lifecycle Manager (OLM) がカタログソースで参照されるインデックスイメージを一
定間隔で自動的にポーリングした後に、新規パッケージが正常に追加されたことを確認しま
す。

4.7.3.3. SQLite ベースのインデックスイメージのフィルタリング

Operator Bundle Format に基づくインデックスイメージは、Operator カタログのコンテナー化された
スナップショットです。パッケージの指定された一覧以外のすべてのインデックスを プルーニング で
きます。これにより、必要な Operators のみが含まれるソースインデックスのコピーを作成できます。

前提条件

podman バージョン 1.9.3 以降がある。

grpcurl (サードパーティーのコマンドラインツール) がある。

opm CLI がインストールされている。

Docker v2-2 をサポートするレジストリーにアクセスできる。

手順

1. ターゲットレジストリーで認証します。

2. プルーニングされたインデックスに追加するパッケージのリストを判別します。

a. コンテナーでプルーニングするソースインデックスイメージを実行します。以下に例を示
します。

出力例

b. 別のターミナルセッションで、grpcurl コマンドを使用して、インデックスが提供するパッ
ケージのリストを取得します。

$ podman push <registry>/<namespace>/<existing_index_image>:<updated_tag>

$ oc get packagemanifests -n openshift-marketplace

$ podman login <target_registry>

$ podman run -p50051:50051 \
 -it registry.redhat.io/redhat/redhat-operator-index:v4

Trying to pull registry.redhat.io/redhat/redhat-operator-index:v4...
Getting image source signatures
Copying blob ae8a0c23f5b1 done
...
INFO[0000] serving registry database=/database/index.db port=50051

$ grpcurl -plaintext localhost:50051 api.Registry/ListPackages > packages.out

第4章 管理者タスク

115

https://github.com/fullstorydev/grpcurl
https://docs.docker.com/registry/spec/manifest-v2-2/

1

2

3

4

c. packages.out ファイルを検査し、プルーニングされたインデックスに保持したいパッケー
ジ名をこのリストから特定します。以下に例を示します。

パッケージリストのスニペットの例

d. podman run コマンドを実行したターミナルセッションで、Ctrl と C を押してコンテナー
プロセスを停止します。

3. 以下のコマンドを実行して、指定したパッケージ以外のすべてのパッケージのソースインデッ
クスをプルーニングします。

プルーニングするインデックス。

保持するパッケージのコンマ区切りリスト。

IBM Power® および IBM Z® イメージにのみ必要: OpenShift Dedicated クラスターのター
ゲットのメジャーバージョンとマイナーバージョンに一致するタグを持つ Operator
Registry ベースイメージ。

ビルドされる新規インデックスイメージのカスタムタグ。

4. 以下のコマンドを実行して、新規インデックスイメージをターゲットレジストリーにプッシュ
します。

ここで、<namespace> はレジストリー上の既存の namespace になります。

4.7.4. カタログソースと Pod セキュリティーアドミッション

Pod のセキュリティー標準を確保するために、Pod セキュリティーアドミッション が OpenShift

...
{
 "name": "advanced-cluster-management"
}
...
{
 "name": "jaeger-product"
}
...
{
{
 "name": "quay-operator"
}
...

$ opm index prune \
 -f registry.redhat.io/redhat/redhat-operator-index:v4 \ 1
 -p advanced-cluster-management,jaeger-product,quay-operator \ 2
 [-i registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4] \ 3
 -t <target_registry>:<port>/<namespace>/redhat-operator-index:v4 4

$ podman push <target_registry>:<port>/<namespace>/redhat-operator-index:v4

OpenShift Dedicated 4 Operator

116

Dedicated 4.11 で導入されました。SQLite ベースのカタログ形式と、OpenShift Dedicated 4.11 より前
にリリースされたバージョンの opm CLI ツールを使用してビルドされたカタログソースは、制限付き
Pod セキュリティーの適用下では実行できません。

OpenShift Dedicated では、制限付き Pod セキュリティーが namespace にデフォルトで適用されず、
カタログソースのデフォルトセキュリティーモードが legacy に設定されています。

すべての namespace に対するデフォルトの制限付き適用は、今後の OpenShift Dedicated リリースに
組み込まれる予定です。制限付き適用が発生した場合、カタログソース Pod の Pod 仕様のセキュリ
ティーコンテキストは、制限付き Pod のセキュリティー標準に一致する必要があります。カタログ
ソースイメージで別の Pod セキュリティー標準が必要な場合は、namespace の Pod セキュリティーア
ドミッションラベルを明示的に設定する必要があります。

注記

SQLite ベースのカタログソース Pod を制限付きで実行する必要がない場合は、
OpenShift Dedicated でカタログソースを更新する必要はありません。

ただし、制限付きの Pod セキュリティー適用下でカタログソースが確実に実行されるよ
うに、今すぐ対策を講じることを推奨します。制限付き Pod セキュリティー適用下でカ
タログソースが確実に実行されるように対策を講じないと、今後の OpenShift
Dedicated リリースでカタログソースが動作しなくなる可能性があります。

カタログの作成者は、次のいずれかのアクションを実行することで、制限付き Pod セキュリティー適
用との互換性を有効にできます。

カタログをファイルベースのカタログ形式に移行します。

OpenShift Dedicated 4.11 以降でリリースされた opm CLI ツールのバージョンを使用してカタ
ログイメージを更新します。

注記

SQLite データベースカタログ形式は非推奨ですが、Red Hat では引き続きサポートされ
ています。将来のリリースでは、SQLite データベース形式はサポートされなくなり、カ
タログはファイルベースのカタログ形式に移行する必要があります。OpenShift
Dedicated 4.11 以降、デフォルトの Red Hat 提供の Operator カタログは、ファイルベー
スのカタログ形式でリリースされます。ファイルベースのカタログは、制限付き Pod セ
キュリティー適用と互換性があります。

SQLite データベースカタログイメージを更新したり、カタログをファイルベースのカタログ形式に移
行したりしたくない場合は、昇格されたアクセス許可で実行するようにカタログを設定できます。

関連情報

Pod セキュリティーアドミッションの理解と管理

4.7.4.1. SQLite データベースカタログをファイルベースのカタログ形式に移行する

非推奨の SQLite データベース形式のカタログをファイルベースのカタログ形式に更新できます。

前提条件

SQLite データベースカタログソースがある。

第4章 管理者タスク

117

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

OpenShift Dedicated でリリースされた opm CLI ツールの最新バージョンが、ワークステー
ションにインストールされている。

手順

1. 次のコマンドを実行して、SQLite データベースカタログをファイルベースのカタログに移行し
ます。

2. 次のコマンドを実行して、ファイルベースのカタログ用の Dockerfile を生成します。

次のステップ

生成された Dockerfile をビルドしてタグ付けし、レジストリーにプッシュできます。

関連情報

クラスターへのカタログソースの追加

4.7.4.2. SQLite データベースカタログイメージの再ビルド

OpenShift Dedicated のお使いのバージョンでリリースされた opm CLI ツールの最新バージョンを使用
して、SQLite データベースカタログイメージを再ビルドできます。

前提条件

SQLite データベースカタログソースがある。

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

OpenShift Dedicated でリリースされた opm CLI ツールの最新バージョンが、ワークステー
ションにインストールされている。

手順

次のコマンドを実行して、最新バージョンの opm CLI ツールでカタログを再構築します。

4.7.4.3. 昇格された権限で実行するためのカタログの設定

SQLite データベースカタログイメージを更新したり、カタログをファイルベースのカタログ形式に移

$ opm migrate <registry_image> <fbc_directory>

$ opm generate dockerfile <fbc_directory> \
 --binary-image \
 registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4

$ opm index add --binary-image \
 registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4 \
 --from-index <your_registry_image> \
 --bundles "" -t \<your_registry_image>

OpenShift Dedicated 4 Operator

118

SQLite データベースカタログイメージを更新したり、カタログをファイルベースのカタログ形式に移
行したりしたくない場合は、次のアクションを実行して、デフォルトの Pod セキュリティー適用が制
限付きに変更されたときにカタログソースが確実に実行されるようにすることができます。

カタログソース定義でカタログセキュリティーモードをレガシーに手動で設定します。このア
クションにより、デフォルトのカタログセキュリティーモードが制限付きに変更された場合で
も、カタログが従来のアクセス許可で実行されることが保証されます。

ベースラインまたは特権付き Pod のセキュリティー適用のために、カタログソースの
namespace にラベルを付けます。

注記

SQLite データベースカタログ形式は非推奨ですが、Red Hat では引き続きサポートされ
ています。将来のリリースでは、SQLite データベース形式はサポートされなくなり、カ
タログはファイルベースのカタログ形式に移行する必要があります。ファイルベースの
カタログは、制限付き Pod セキュリティー適用と互換性があります。

前提条件

SQLite データベースカタログソースがある。

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

Pod Security Admission 標準が baseline または privileged に昇格された実行中の Pod をサ
ポートするターゲット namespace がある。

手順

1. 次の例に示すように、spec.grpcPodConfig.securityContextConfig ラベルを legacy に設定し
て、CatalogSource 定義を編集します。

CatalogSource 定義の例

ヒント

OpenShift Dedicated では、spec.grpcPodConfig.securityContextConfig フィールドはデ
フォルトで legacy に設定されています。OpenShift Dedicated の今後のリリースでは、デフォ
ルト設定が restricted に変更される予定です。カタログを制限付き適用で実行できない場合
は、このフィールドを手動で legacy に設定することを推奨します。

2. 次の例に示すように、<namespace>.yaml ファイルを編集して、上位の Pod Security

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-catsrc
 namespace: my-ns
spec:
 sourceType: grpc
 grpcPodConfig:
 securityContextConfig: legacy
 image: my-image:latest

第4章 管理者タスク

119

1

2

2. 次の例に示すように、<namespace>.yaml ファイルを編集して、上位の Pod Security
Admission 標準をカタログソース namespace に追加します。

<namespace>.yaml ファイルの例

security.openshift.io/scc.podSecurityLabelSync=false ラベルを namespace に追加し
て、Pod のセキュリティーラベルの同期をオフにします。

Pod セキュリティーアドミッションの pod-security.kubernetes.io/enforce ラベルを適用
します。ラベルを baseline または privileged に設定します。namespace 内の他のワーク
ロードが privileged プロファイルを必要としないかぎり、baseline Pod セキュリティー
プロファイルを使用します。

4.7.5. クラスターへのカタログソースの追加

OpenShift Dedicated クラスターにカタログソースを追加すると、ユーザーが Operator を検出してイ
ンストールできるようになります。dedicated-admin ロールを持つ管理者は、インデックスイメージを
参照する CatalogSource オブジェクトを作成できます。ソフトウェアカタログは、カタログソースを
使用してユーザーインターフェイスの内容を表示します。

ヒント

または、Web コンソールを使用してカタログソースを管理できます。Home → Search ページからプロ
ジェクトを選択し、Resources ドロップダウンをクリックして CatalogSource を検索します。個々の
ソースを作成、更新、削除、無効化、および有効化できます。

前提条件

インデックスイメージをビルドしてレジストリーにプッシュしている。

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

1. インデックスイメージを参照する CatalogSource オブジェクトを作成します。

a. 仕様を以下のように変更し、これを catalogSource.yaml ファイルとして保存します。

apiVersion: v1
kind: Namespace
metadata:
...
 labels:
 security.openshift.io/scc.podSecurityLabelSync: "false" 1
 openshift.io/cluster-monitoring: "true"
 pod-security.kubernetes.io/enforce: baseline 2
 name: "<namespace_name>"

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-operator-catalog
 namespace: openshift-marketplace 1

OpenShift Dedicated 4 Operator

120

1

2

3

4

5

6

カタログソースを全 namespace のユーザーがグローバルに利用できるようにする場
合は、openshift-marketplace namespace を指定します。それ以外の場合は、そのカ
タログの別の namespace を対象とし、その namespace のみが利用できるように指定
できます。

任意: olm.catalogImageTemplate アノテーションをカタログイメージ名に設定し、イ
メージタグのテンプレートを作成する際に、1 つ以上の Kubernetes クラスターバー
ジョン変数を使用します。

legacy または restricted の値を指定します。フィールドが設定されていない場合、デ
フォルト値は legacy です。今後の OpenShift Dedicated リリースでは、デフォルト
値が restricted になる予定です。

注記

restricted 権限でカタログを実行できない場合は、このフィールドを手
動で legacy に設定することを推奨します。

インデックスイメージを指定します。イメージ名の後にタグを指定すると (:v4 な
ど)、カタログソース Pod が Always イメージプルポリシーを使用します。つまり、
Pod がコンテナーを起動する前に常にイメージをプルするようになりま
す。@sha256:<id> などのダイジェストを指定した場合、イメージプルポリシーは
IfNotPresent になります。これは、イメージがノード上にまだ存在しない場合にの
み、Pod がイメージをプルすることを意味します。

カタログを公開する名前または組織名を指定します。

カタログソースは新規バージョンの有無を自動的にチェックし、最新の状態を維持し
ます。

b. このファイルを使用して CatalogSource オブジェクトを作成します。

2. 以下のリソースが正常に作成されていることを確認します。

a. Pod を確認します。

 annotations:
 olm.catalogImageTemplate: 2
 "<registry>/<namespace>/<index_image_name>:v{kube_major_version}.
{kube_minor_version}.{kube_patch_version}"
spec:
 sourceType: grpc
 grpcPodConfig:
 securityContextConfig: <security_mode> 3
 image: <registry>/<namespace>/<index_image_name>:<tag> 4
 displayName: My Operator Catalog
 publisher: <publisher_name> 5
 updateStrategy:
 registryPoll: 6
 interval: 30m

$ oc apply -f catalogSource.yaml

第4章 管理者タスク

121

出力例

b. カタログソースを確認します。

出力例

c. パッケージマニフェストを確認します。

出力例

OpenShift Dedicated Web コンソールの Software Catalog ページから Operator をインストールでき
るようになりました。

関連情報

Operator Lifecycle Manager の概念およびリソース → カタログソース

4.7.6. カスタムカタログの削除

dedicated-admin ロールを持つ管理者は、関連するカタログソースを削除することで、以前にクラス
ターに追加したカスタム Operator カタログを削除できます。

前提条件

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

1. Web コンソールの Administrator パースペクティブで、Home → Search に移動します。

2. Project: リストからプロジェクトを選択します。

3. Resources リストから CatalogSource を選択します。

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE
my-operator-catalog-6njx6 1/1 Running 0 28s
marketplace-operator-d9f549946-96sgr 1/1 Running 0 26h

$ oc get catalogsource -n openshift-marketplace

NAME DISPLAY TYPE PUBLISHER AGE
my-operator-catalog My Operator Catalog grpc 5s

$ oc get packagemanifest -n openshift-marketplace

NAME CATALOG AGE
jaeger-product My Operator Catalog 93s

OpenShift Dedicated 4 Operator

122

4. 削除するカタログの Options メニュー を選択し、Delete CatalogSource をクリックしま
す。

4.8. カタログソース POD のスケジューリング

ソースタイプ grpc の Operator Lifecycle Manager (OLM) カタログソースが spec.image を定義する
と、Catalog Operator は、定義されたイメージコンテンツを提供する Pod を作成します。デフォルト
では、この Pod は、その仕様で以下を定義します。

kubernetes.io/os=linux ノードセレクターのみ

デフォルトの優先クラス名: system-cluster-critical。

toleration なし

管理者は、CatalogSource オブジェクトのオプションの spec.grpcPodConfig セクションのフィール
ドを変更すると、これらの値をオーバーライドできます。

重要

Marketplace Operator の openshift-marketplace は、デフォルトの OperatorHub カス
タムリソース (CR) を管理します。この CR は CatalogSource オブジェクトを管理しま
す。ユーザーが CatalogSource オブジェクトの spec.grpcPodConfig セクションの
フィールドを変更しようとすると、Marketplace Operator によってその変更が自動的に
元に戻されます。デフォルトでは、CatalogSource オブジェクトの
spec.grpcPodConfig セクションのフィールドを変更すると、Marketplace Operator に
よってその変更が自動的に元に戻されます。

CatalogSource オブジェクトに永続的な変更を適用するには、まずデフォルトの
CatalogSource オブジェクトを無効にする必要があります。

関連情報

OLM concepts and resources → Catalog source

4.8.1. ローカルレベルでのデフォルト CatalogSource オブジェクトの無効化

デフォルトの CatalogSource オブジェクトを無効にすることで、カタログソース Pod などの永続的な
変更をローカルレベルで CatalogSource オブジェクトに適用できます。デフォルトの CatalogSource
オブジェクトの設定が組織のニーズを満たさない場合は、デフォルト設定を検討してください。デフォ
ルトでは、CatalogSource オブジェクトの spec.grpcPodConfig セクションのフィールドを変更する
と、Marketplace Operator によってその変更が自動的に元に戻されます。

Marketplace Operator の openshift-marketplace は、OperatorHub のデフォルトのカスタムリソース
(CR) を管理します。OperatorHub は CatalogSource オブジェクトを管理します。

CatalogSource オブジェクトに永続的な変更を適用するには、まずデフォルトの CatalogSource オブ
ジェクトを無効にする必要があります。

手順

すべてのデフォルトの CatalogSource オブジェクトをローカルレベルで無効にするには、次の

第4章 管理者タスク

123

すべてのデフォルトの CatalogSource オブジェクトをローカルレベルで無効にするには、次の
コマンドを入力します。

注記

また、デフォルトの OperatorHub CR を設定して、すべての CatalogSource オ
ブジェクトを無効にするか、または特定のオブジェクトを無効にすることもでき
ます。

関連情報

OperatorHub カスタムリソース

4.8.2. カタログソース Pod のノードセレクターのオーバーライド

前提条件

spec.image を持つソースタイプ grpc の CatalogSource オブジェクトが定義されている。

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

CatalogSource オブジェクトを編集し、spec.grpcPodConfig セクションを追加または変更し
て、以下を含めます。

<label> は、カタログソース Pod がスケジュールに使用するノードセレクターのラベルです。

関連情報

ノードセレクターの使用による特定ノードへの Pod の配置

4.8.3. カタログソース Pod の優先度クラス名のオーバーライド

前提条件

spec.image を持つソースタイプ grpc の CatalogSource オブジェクトが定義されている。

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

CatalogSource オブジェクトを編集し、spec.grpcPodConfig セクションを追加または変更し
て、以下を含めます。

$ oc patch operatorhub cluster -p '{"spec": {"disableAllDefaultSources": true}}' --type=merge

 grpcPodConfig:
 nodeSelector:
 custom_label: <label>

OpenShift Dedicated 4 Operator

124

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/nodes/#nodes-scheduler-node-selectors

<priority_class> は次のいずれかです。

Kubernetes によって提供されるデフォルトの優先度クラスの 1 つ: system-cluster-critical
または system-node-critical

デフォルトの優先度を割り当てる空のセット ("")

既存およびカスタム定義の優先度クラス

注記

以前は、オーバーライドできる唯一の Pod スケジューリングパラメーターは
priorityClassName でした。これは、operatorframework.io/priorityclass アノテー
ションを CatalogSource オブジェクトに追加することによって行われました。以下に例
を示します。

CatalogSource オブジェクトがアノテーションと
spec.grpcPodConfig.priorityClassName の両方を定義する場合、アノテーションは設
定パラメーターよりも優先されます。

関連情報

Pod の優先度クラス

4.8.4. カタログソース Pod の toleration のオーバーライド

前提条件

spec.image を持つソースタイプ grpc の CatalogSource オブジェクトが定義されている。

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

手順

CatalogSource オブジェクトを編集し、spec.grpcPodConfig セクションを追加または変更し
て、以下を含めます。

 grpcPodConfig:
 priorityClassName: <priority_class>

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: example-catalog
 namespace: openshift-marketplace
 annotations:
 operatorframework.io/priorityclass: system-cluster-critical

 grpcPodConfig:
 tolerations:
 - key: "<key_name>"

第4章 管理者タスク

125

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/nodes/#admin-guide-priority-preemption-priority-class_nodes-pods-priority

4.9. OPERATOR 関連の問題のトラブルシューティング

Operator に問題が発生した場合には、Operator Subscription のステータスを確認します。クラスター
全体で Operator Pod の正常性を確認し、診断用に Operator ログを収集します。

4.9.1. Operator サブスクリプションの状態のタイプ

サブスクリプションは状態に関する以下のタイプを報告します。

表4.2 サブスクリプションの状態のタイプ

状態 説明

CatalogSourcesUnhealthy 解決に使用される一部のまたはすべてのカタログソースは正常ではあり
ません。

InstallPlanMissing サブスクリプションのインストール計画がありません。

InstallPlanPending サブスクリプションのインストール計画はインストールの保留中です。

InstallPlanFailed サブスクリプションのインストール計画が失敗しました。

ResolutionFailed サブスクリプションの依存関係の解決に失敗しました。

注記

デフォルトの OpenShift Dedicated クラスター Operator は、Cluster Version Operator
(CVO) によって管理されます。この Operator には Subscription オブジェクトがありま
せん。アプリケーション Operator は、Operator Lifecycle Manager (OLM) によって管理
されます。この Operator には Subscription オブジェクトがあります。

関連情報

カタログの正常性要件

4.9.2. CLI を使用した Operator サブスクリプションステータスの表示

CLI を使用して Operator サブスクリプションステータスを表示できます。

前提条件

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

OpenShift CLI (oc) がインストールされている。

手順

 operator: "<operator_type>"
 value: "<value>"
 effect: "<effect>"

OpenShift Dedicated 4 Operator

126

1. Operator サブスクリプションをリスト表示します。

2. oc describe コマンドを使用して、Subscription リソースを検査します。

3. コマンド出力で、Conditions セクションで Operator サブスクリプションの状態タイプのス
テータスを確認します。以下の例では、利用可能なすべてのカタログソースが正常であるた
め、CatalogSourcesUnhealthy 状態タイプのステータスは false になります。

出力例

注記

デフォルトの OpenShift Dedicated クラスター Operator は、Cluster Version Operator
(CVO) によって管理されます。この Operator には Subscription オブジェクトがありま
せん。アプリケーション Operator は、Operator Lifecycle Manager (OLM) によって管理
されます。この Operator には Subscription オブジェクトがあります。

4.9.3. CLI を使用した Operator カタログソースのステータス表示

Operator カタログソースのステータスは、CLI を使用して確認できます。

前提条件

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

OpenShift CLI (oc) がインストールされている。

手順

1. namespace のカタログソースをリスト表示します。たとえば、クラスター全体のカタログソー
スに使用されている openshift-marketplace namespace を確認することができます。

$ oc get subs -n <operator_namespace>

$ oc describe sub <subscription_name> -n <operator_namespace>

Name: cluster-logging
Namespace: openshift-logging
Labels: operators.coreos.com/cluster-logging.openshift-logging=
Annotations: <none>
API Version: operators.coreos.com/v1alpha1
Kind: Subscription
...
Conditions:
 Last Transition Time: 2019-07-29T13:42:57Z
 Message: all available catalogsources are healthy
 Reason: AllCatalogSourcesHealthy
 Status: False
 Type: CatalogSourcesUnhealthy
...

$ oc get catalogsources -n openshift-marketplace

第4章 管理者タスク

127

出力例

2. カタログソースの詳細やステータスを確認するには、oc describe コマンドを使用します。

出力例

前述の出力例では、最後に観測された状態が TRANSIENT_FAILURE となっています。この状
態は、カタログソースの接続確立に問題があることを示しています。

3. カタログソースが作成された namespace の Pod をリストアップします。

出力例

namespace にカタログソースを作成すると、その namespace にカタログソース用の Pod が作
成されます。前述の出力例では、example-catalog-bwt8z Pod のステータスが

NAME DISPLAY TYPE PUBLISHER AGE
certified-operators Certified Operators grpc Red Hat 55m
community-operators Community Operators grpc Red Hat 55m
example-catalog Example Catalog grpc Example Org 2m25s
redhat-operators Red Hat Operators grpc Red Hat 55m

$ oc describe catalogsource example-catalog -n openshift-marketplace

Name: example-catalog
Namespace: openshift-marketplace
Labels: <none>
Annotations: operatorframework.io/managed-by: marketplace-operator
 target.workload.openshift.io/management: {"effect": "PreferredDuringScheduling"}
API Version: operators.coreos.com/v1alpha1
Kind: CatalogSource
...
Status:
 Connection State:
 Address: example-catalog.openshift-marketplace.svc:50051
 Last Connect: 2021-09-09T17:07:35Z
 Last Observed State: TRANSIENT_FAILURE
 Registry Service:
 Created At: 2021-09-09T17:05:45Z
 Port: 50051
 Protocol: grpc
 Service Name: example-catalog
 Service Namespace: openshift-marketplace
...

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE
certified-operators-cv9nn 1/1 Running 0 36m
community-operators-6v8lp 1/1 Running 0 36m
marketplace-operator-86bfc75f9b-jkgbc 1/1 Running 0 42m
example-catalog-bwt8z 0/1 ImagePullBackOff 0 3m55s
redhat-operators-smxx8 1/1 Running 0 36m

OpenShift Dedicated 4 Operator

128

ImagePullBackOff になっています。このステータスは、カタログソースのインデックスイ
メージのプルに問題があることを示しています。

4. oc describe コマンドを使用して、より詳細な情報を得るために Pod を検査します。

出力例

前述の出力例では、エラーメッセージは、カタログソースのインデックスイメージが承認問題
のために正常にプルできないことを示しています。例えば、インデックスイメージがログイン
認証情報を必要とするレジストリーに保存されている場合があります。

関連情報

gRPC ドキュメント:接続性の状態

4.9.4. Operator Pod ステータスのクエリー

クラスター内の Operator Pod およびそれらのステータスをリスト表示できます。詳細な Operator Pod
の要約を収集することもできます。

前提条件

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

API サービスが機能している。

OpenShift CLI (oc) がインストールされている。

手順

$ oc describe pod example-catalog-bwt8z -n openshift-marketplace

Name: example-catalog-bwt8z
Namespace: openshift-marketplace
Priority: 0
Node: ci-ln-jyryyg2-f76d1-ggdbq-worker-b-vsxjd/10.0.128.2
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 48s default-scheduler Successfully assigned openshift-
marketplace/example-catalog-bwt8z to ci-ln-jyryyf2-f76d1-fgdbq-worker-b-vsxjd
 Normal AddedInterface 47s multus Add eth0 [10.131.0.40/23] from
openshift-sdn
 Normal BackOff 20s (x2 over 46s) kubelet Back-off pulling image
"quay.io/example-org/example-catalog:v1"
 Warning Failed 20s (x2 over 46s) kubelet Error: ImagePullBackOff
 Normal Pulling 8s (x3 over 47s) kubelet Pulling image "quay.io/example-
org/example-catalog:v1"
 Warning Failed 8s (x3 over 47s) kubelet Failed to pull image
"quay.io/example-org/example-catalog:v1": rpc error: code = Unknown desc = reading
manifest v1 in quay.io/example-org/example-catalog: unauthorized: access to the requested
resource is not authorized
 Warning Failed 8s (x3 over 47s) kubelet Error: ErrImagePull

第4章 管理者タスク

129

https://grpc.github.io/grpc/core/md_doc_connectivity-semantics-and-api.html

1. クラスターで実行されている Operators をリスト表示します。出力には、Operator バージョ
ン、可用性、およびアップタイムの情報が含まれます。

2. Operator の namespace で実行されている Operator Pod をリスト表示し、Pod のステータ
ス、再起動、および経過時間をリスト表示します。

3. 詳細な Operator Pod の要約を出力します。

4.9.5. Operator ログの収集

Operator の問題が発生した場合、Operator Pod ログから詳細な診断情報を収集できます。

前提条件

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

API サービスが機能している。

OpenShift CLI (oc) がインストールされている。

コントロールプレーンまたはコントロールプレーンマシンの完全修飾ドメイン名がある。

手順

1. Operator の namespace で実行されている Operator Pod、Pod のステータス、再起動、および
経過時間をリスト表示します。

2. Operator Pod のログを確認します。

Operator Pod に複数のコンテナーがある場合、前述のコマンドにより各コンテナーの名前が含
まれるエラーが生成されます。個別のコンテナーに対して、ログのクエリーを実行します。

3. API が機能しない場合には、代わりに SSH を使用して各コントロールプレーンノードで
Operator Pod およびコンテナーログを確認します。<master-node>.<cluster_name>.
<base_domain> を適切な値に置き換えます。

a. 各コントロールプレーンノードの Pod をリスト表示します。

b. Operator Pod で Ready ステータスが表示されない場合は、Pod のステータスを詳細に検

$ oc get clusteroperators

$ oc get pod -n <operator_namespace>

$ oc describe pod <operator_pod_name> -n <operator_namespace>

$ oc get pods -n <operator_namespace>

$ oc logs pod/<pod_name> -n <operator_namespace>

$ oc logs pod/<operator_pod_name> -c <container_name> -n <operator_namespace>

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl pods

OpenShift Dedicated 4 Operator

130

b. Operator Pod で Ready ステータスが表示されない場合は、Pod のステータスを詳細に検
査します。<operator_pod_id> を直前のコマンドの出力にリスト表示されている Operator
Pod の ID に置き換えます。

c. Operator Pod に関連するコンテナーをリスト表示します。

d. Ready ステータスが Operator コンテナーに表示されない場合は、コンテナーのステータ
スを詳細に検査します。<container_id> を前述のコマンドの出力に一覧表示されているコ
ンテナー ID に置き換えます。

e. Ready ステータスが表示されない Operator コンテナーのログを確認しま
す。<container_id> を前述のコマンドの出力に一覧表示されているコンテナー ID に置き換
えます。

注記

Red Hat Enterprise Linux CoreOS (RHCOS) を実行する OpenShift
Dedicated 4 クラスターノードはイミュータブルです。クラスターの変更を
適用するには、Operator を使用します。SSH を使用したクラスターノード
へのアクセスは推奨されません。SSH 経由で診断データの収集を試行する前
に、oc adm must gather およびその他の oc コマンドを実行して収集され
るデータが十分であるかどうかを確認してください。ただし、OpenShift
Dedicated API が使用できない場合、または kubelet がターゲットノード上
で適切に機能していない場合は、oc 操作が影響を受けます。この場合は、
代わりに ssh core@<node>.<cluster_name>.<base_domain> を使用して
ノードにアクセスできます。

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl inspectp
<operator_pod_id>

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl ps --pod=
<operator_pod_id>

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl inspect
<container_id>

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl logs -f
<container_id>

第4章 管理者タスク

131

	Table of Contents
	第1章 OPERATOR の概要
	1.1. 開発者の場合
	1.2. 管理者の場合
	1.3. 次のステップ

	第2章 OPERATORS について
	2.1. OPERATORS について
	2.1.1. Operators を使用する理由
	2.1.2. Operator Framework
	2.1.3. Operator 成熟度モデル

	2.2. OPERATOR FRAMEWORK パッケージ形式
	2.2.1. Bundle Format
	2.2.1.1. マニフェスト
	2.2.1.2. アノテーション
	2.2.1.3. Dependencies
	2.2.1.4. opm CLI について

	2.2.2. 主な特徴
	2.2.2.1. ディレクトリー構造
	2.2.2.2. スキーマ
	2.2.2.3. プロパティー
	2.2.2.4. カタログの例
	2.2.2.5. ガイドライン
	2.2.2.6. CLI の使用
	2.2.2.7. 自動化

	2.3. 一般的な OPERATOR FRAMEWORK 用語
	2.3.1. バンドル
	2.3.2. バンドルイメージ
	2.3.3. カタログソース
	2.3.4. チャネル
	2.3.5. チャネルヘッド
	2.3.6. クラスターサービスバージョン
	2.3.7. 依存関係
	2.3.8. 拡張機能
	2.3.9. インデックスイメージ
	2.3.10. インストール計画
	2.3.11. マルチテナンシー
	2.3.12. Operator
	2.3.13. Operator グループ
	2.3.14. Package
	2.3.15. レジストリー
	2.3.16. サブスクリプション
	2.3.17. 更新グラフ

	2.4. OPERATOR LIFECYCLE MANAGER (OLM)
	2.4.1. Operator Lifecycle Manager の概念およびリソース
	2.4.1.1. Operator Lifecycle Manager (OLM) Classic とは
	2.4.1.2. OLM リソース

	2.4.2. Operator Lifecycle Manager アーキテクチャー
	2.4.2.1. コンポーネントの役割
	2.4.2.2. OLM Operator
	2.4.2.3. Catalog Operator
	2.4.2.4. カタログレジストリー

	2.4.3. Operator Lifecycle Manager ワークフロー
	2.4.3.1. OLM での Operator のインストールおよびアップグレードのワークフロー

	2.4.4. Operator Lifecycle Manager の依存関係の解決
	2.4.4.1. 依存関係の解決
	2.4.4.2. Operator のプロパティー
	2.4.4.3. Operator の依存関係
	2.4.4.4. 一般的な制約
	2.4.4.5. 依存関係の設定
	2.4.4.6. CRD のアップグレード
	2.4.4.7. 依存関係のベストプラクティス
	2.4.4.8. 依存関係に関する注意事項
	2.4.4.9. 依存関係解決のシナリオ例

	2.4.5. Operator グループ
	2.4.5.1. Operator グループについて
	2.4.5.2. Operator グループメンバーシップ
	2.4.5.3. ターゲット namespace の選択
	2.4.5.4. Operator グループの CSV アノテーション
	2.4.5.5. 提供される API アノテーション
	2.4.5.6. ロールベースのアクセス制御
	2.4.5.7. コピーされる CSV
	2.4.5.8. 静的 Operator グループ
	2.4.5.9. Operator グループの交差部分
	2.4.5.10. マルチテナント Operator 管理の制限事項
	2.4.5.11. Operator グループのトラブルシューティング

	2.4.6. マルチテナント対応と Operator のコロケーション
	2.4.6.1. namespace 内での Operators コロケーション

	2.4.7. Operator 条件
	2.4.7.1. Operator 条件について
	2.4.7.2. サポートされる条件
	2.4.7.3. 関連情報

	2.4.8. Operator Lifecycle Manager メトリクス
	2.4.8.1. 公開されるメトリクス

	2.4.9. Operator Lifecycle Manager での Webhook の管理
	2.4.9.1. 関連情報

	2.5. ソフトウェアカタログの概要
	2.5.1. ソフトウェアカタログについて
	2.5.2. ソフトウェアカタログのアーキテクチャー
	2.5.2.1. OperatorHub カスタムリソース

	2.5.3. 関連情報

	2.6. RED HAT が提供する OPERATOR カタログ
	2.6.1. Operator カタログについて
	2.6.2. Red Hat が提供する Operator カタログについて

	2.7. マルチテナントクラスター内の OPERATORS
	2.7.1. デフォルトの Operator インストールモードと動作
	2.7.2. マルチテナントクラスターの推奨ソリューション
	2.7.3. Operator のコロケーションと Operator グループ

	2.8. CRD
	2.8.1. カスタムリソース定義からのリソースの管理
	2.8.1.1. カスタムリソース定義
	2.8.1.2. ファイルからのカスタムリソースの作成
	2.8.1.3. カスタムリソースの検査

	第3章 ユーザータスク
	3.1. インストールされた OPERATOR からのアプリケーションの作成
	3.1.1. Operator を使用した etcd クラスターの作成

	第4章 管理者タスク
	4.1. OPERATOR のクラスターへの追加
	4.1.1. ソフトウェアカタログからの Operator のインストールについて
	4.1.2. Web コンソールを使用してソフトウェアカタログからインストールする
	4.1.3. CLI を使用してソフトウェアカタログからインストールする
	4.1.4. マルチテナントクラスター用の Operator の複数インスタンスの準備
	4.1.5. カスタム namespace にグローバル Operator をインストールする
	4.1.6. Operator ワークロードの Pod の配置
	4.1.7. Operator のインストール場所の制御

	4.2. インストール済み OPERATOR の更新
	4.2.1. Operator 更新の準備
	4.2.2. Operator の更新チャネルの変更
	4.2.3. 保留中の Operator 更新の手動による承認

	4.3. クラスターからの OPERATOR の削除
	4.3.1. Web コンソールの使用によるクラスターからの Operators の削除
	4.3.2. CLI の使用によるクラスターからの Operators の削除
	4.3.3. 障害のあるサブスクリプションの更新

	4.4. OPERATOR LIFECYCLE MANAGER でのプロキシーサポートの設定
	4.4.1. Operator のプロキシー設定のオーバーライド
	4.4.2. カスタム CA 証明書の注入

	4.5. OPERATOR ステータスの表示
	4.5.1. Operator サブスクリプションの状態のタイプ
	4.5.2. CLI を使用した Operator サブスクリプションステータスの表示
	4.5.3. CLI を使用した Operator カタログソースのステータス表示

	4.6. OPERATOR 条件の管理
	4.6.1. Operator 条件のオーバーライド
	4.6.2. Operator 条件を使用するための Operator の更新
	4.6.2.1. デフォルトの設定

	4.6.3. 関連情報

	4.7. カスタムカタログの管理
	4.7.1. 前提条件
	4.7.2. ファイルベースのカタログ
	4.7.2.1. ファイルベースのカタログイメージの作成
	4.7.2.2. ファイルベースのカタログイメージの更新またはフィルタリング

	4.7.3. SQLite ベースのカタログ
	4.7.3.1. SQLite ベースのインデックスイメージの作成
	4.7.3.2. SQLite ベースのインデックスイメージの更新
	4.7.3.3. SQLite ベースのインデックスイメージのフィルタリング

	4.7.4. カタログソースと Pod セキュリティーアドミッション
	4.7.4.1. SQLite データベースカタログをファイルベースのカタログ形式に移行する
	4.7.4.2. SQLite データベースカタログイメージの再ビルド
	4.7.4.3. 昇格された権限で実行するためのカタログの設定

	4.7.5. クラスターへのカタログソースの追加
	4.7.6. カスタムカタログの削除

	4.8. カタログソース POD のスケジューリング
	4.8.1. ローカルレベルでのデフォルト CatalogSource オブジェクトの無効化
	4.8.2. カタログソース Pod のノードセレクターのオーバーライド
	4.8.3. カタログソース Pod の優先度クラス名のオーバーライド
	4.8.4. カタログソース Pod の toleration のオーバーライド

	4.9. OPERATOR 関連の問題のトラブルシューティング
	4.9.1. Operator サブスクリプションの状態のタイプ
	4.9.2. CLI を使用した Operator サブスクリプションステータスの表示
	4.9.3. CLI を使用した Operator カタログソースのステータス表示
	4.9.4. Operator Pod ステータスのクエリー
	4.9.5. Operator ログの収集

