
Red Hat CodeReady Workspaces 2.11

インストールガイド

Red Hat CodeReady Workspaces 2.11のインストール

Last Updated: 2023-02-03

Red Hat CodeReady Workspaces 2.11 インストールガイド

Red Hat CodeReady Workspaces 2.11のインストール

Enter your first name here. Enter your surname here.
Enter your organisation's name here. Enter your organisational division here.
Enter your email address here.

法律上の通知

Copyright © 2021 | You need to change the HOLDER entity in the en-US/Installation_Guide.ent file
|.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要

管理者による Red Hat CodeReady Workspaces のインストールについての情報

. .

. .

. .

. .

. .

目次

多様性を受け入れるオープンソースの強化

第1章 サポートされるプラットフォーム

第2章 CODEREADY WORKSPACES インストールの設定
2.1. CHECLUSTER カスタムリソースについて
2.2. CHECLUSTER カスタムリソースフィールドの参照

第3章 CODEREADY WORKSPACES のインストール
3.1. OPERATORHUB を使用した OPENSHIFT 4 への CODEREADY WORKSPACES のインストール

3.1.1. Red Hat CodeReady Workspaces Operator のインストール
3.1.2. Red Hat CodeReady Workspaces Operator のインスタンスの作成

3.2. CLI を使用した CODEREADY WORKSPACES の OPENSHIFT 4 へのインストール
3.3. CODEREADY WORKSPACES の OPENSHIFT CONTAINER PLATFORM 3.11 へのインストール

3.3.1. crwctl CLI 管理ツールのインストール
3.3.2. Operator を使用した CodeReady Workspaces の OpenShift 3 へのインストール

3.4. 制限された環境での CODEREADY WORKSPACES のインストール
3.4.1. OperatorHub を使用した制限された環境での CodeReady Workspaces のインストール
3.4.2. CLI 管理ツールを使用した制限された環境での CodeReady Workspaces のインストール

3.4.2.1. プライベートレジストリーの準備
3.4.2.2. 制限された環境用の CodeReady Workspaces カスタムリソースの準備

3.4.2.2.1. デフォルトの CheCluster カスタムリソースのダウンロード
3.4.2.2.2. 制限された環境での CheCluster カスタムリソース のカスタマイズ

3.4.2.3. CodeReady Workspaces CLI 管理ツールを使用した制限された環境での CodeReady Workspaces イ
ンストールの開始

3.4.3. プロキシーの後ろでインストールするための CodeReady Workspaces カスタムリソースの準備

第4章 CODEREADY WORKSPACES の設定
4.1. CODEREADY WORKSPACES サーバーコンポーネントの詳細な設定オプション

4.1.1. Operator を使用した CodeReady Workspaces サーバーの詳細設定について
4.1.2. CodeReady Workspaces サーバーコンポーネントのシステムプロパティー参照

4.1.2.1. CodeReady Workspaces サーバー
4.1.2.2. 認証パラメーター
4.1.2.3. 内部
4.1.2.4. OpenShift インフラパラメーター
4.1.2.5. OpenShift インフラパラメーター
4.1.2.6. 実験的なプロパティー
4.1.2.7. 主なWebSocketエンドポイントの設定
4.1.2.8. CORS 設定
4.1.2.9. Factory のデフォルト
4.1.2.10. devfile のデフォルト
4.1.2.11. Che システム
4.1.2.12. Workspace の制限
4.1.2.13. ユーザーワークスペースの制限
4.1.2.14. 組織ワークスペースの制限
4.1.2.15. マルチユーザー固有の OpenShift インフラストラクチャー設定
4.1.2.16. Keycloak の設定

4.2. ワークスペースターゲットプロジェクトの設定
4.2.1. ユーザーストラテジーごとに 1 つのプロジェクト
4.2.2. 互換性のないユーザー名またはユーザー ID の処理
4.2.3. 各ユーザーのプロジェクトの事前作成
4.2.4. namespace のラベル付け

5

6

7
7
7

22
22
22
23
24
24
24
25
26
27
28
28
34
34
34

35
35

37
37
37
38
38
45
47
48
61

62
66
66
66
67
70
70
71
72
72
73
76
78
78
78
79

目次

1

4.3. ストレージストラテジーの設定
4.3.1. codeready-workspaces ワークスペースのストレージストラテジー

4.3.1.1. common PVC ストラテジー
4.3.1.2. per-workspace PVC ストラテジー
4.3.1.3. unique PVC ストラテジー
4.3.1.4. サブパスが PVC で使用される方法

4.3.2. 永続ボリュームストラテジーを使用した CodeReady Workspaces ワークスペースの設定
4.3.2.1. Operator を使用した PVC ストラテジーの設定

4.4. ストレージタイプの設定
4.4.1. 永続ストレージ
4.4.2. 一時ストレージ
4.4.3. 非同期ストレージ
4.4.4. CodeReady Workspaces ダッシュボードのストレージタイプのデフォルトの設定
4.4.5. 非同期ストレージ Pod のアイドリング

4.5. ユーザーが実行できるワークスペース数の設定
4.5.1. Operator を使用したユーザーが実行できるワークスペースの数の設定

4.6. ユーザーが作成できるワークスペースの数の設定
4.6.1. Operator を使用したユーザーが作成できるワークスペースの数の設定

4.7. ワークスペース公開ストラテジーの設定
4.7.1. Operator を使用したワークスペース公開ストラテジーの設定
4.7.2. ワークスペース公開ストラテジー

4.7.2.1. Multihost ストラテジー
4.7.2.2. 単一ホストストラテジー

4.7.2.2.1. devfile エンドポイント：single-host
4.7.2.2.2. devfile エンドポイント: multi-host

4.7.3. セキュリティーに関する考慮事項
4.7.3.1. JSON Web トークン (JWT) プロキシー
4.7.3.2. セキュリティーが保護されたプラグインおよびエディター
4.7.3.3. セキュリティー保護されたコンテナーイメージコンポーネント
4.7.3.4. クロスサイトリクエストフォージェリー攻撃
4.7.3.5. フィッシング攻撃

4.8. ワークスペース NODESELECTOR の設定
4.9. RED HAT CODEREADY WORKSPACES サーバーのホスト名の設定
4.10. OPENSHIFT ルートの設定
4.11. ルーターのシャード化と連携するように OPENSHIFT ルートを設定
4.12. 自己署名証明書を使用した GIT リポジトリーをサポートする CODEREADY WORKSPACES のデプロイ
4.13. ストレージクラスを使用した CODEREADY WORKSPACES のインストール
4.14. 信頼できない TLS 証明書の CODEREADY WORKSPACES へのインポート

4.14.1. 新規 CA 証明書の CodeReady Workspaces への追加
4.14.2. CodeReady Workspaces のインストールレベルでの検証
4.14.3. ワークスペースレベルでの検証

4.15. コンポーネント間の通信での外部 DNS 名と内部 DNS 名間の切り替え
4.16. RED HAT CODEREADY WORKSPACES ログインページの RH-SSO CODEREADY-WORKSPACES-
USERNAME-READONLY テーマの設定

4.16.1. RH-SSO へのログイン
4.16.2. RH-SSO codeready-workspaces-username-readonly テーマの設定

4.17. シークレットまたは CONFIGMAP をファイルまたは環境変数として CODEREADY WORKSPACES コンテ
ナーにマウントする

4.17.1. シークレットまたは ConfigMap をファイルとして CodeReady Workspaces コンテナーにマウントする

4.17.2. シークレットまたは ConfigMap を環境変数として CodeReady Workspaces コンテナーにマウントする

4.18. DEV WORKSPACE エンジンの有効化

80
80
81

82
82
83
83
84
84
85
85
85
86
87
87
87
88
88
89
89
90
90
90
91
91

92
92
92
92
93
93
93
93
95
96

100
101
105
106
107
108
109

110
110
111

111

112

114
117

Red Hat CodeReady Workspaces 2.11 インストールガイド

2

. .

. .

第5章 CODEREADY WORKSPACES のアップグレード
5.1. OPERATORHUB を使用した CODEREADY WORKSPACES のアップグレード

5.1.1. OperatorHub での CodeReady Workspaces の承認ストラテジーの指定
5.1.2. OperatorHub での CodeReady Workspaces の手動によるアップグレード

5.2. CLI 管理ツールを使用した CODEREADY WORKSPACES のアップグレード
5.3. 制限された環境での CLI 管理ツールを使用した CODEREADY WORKSPACES のアップグレード

5.3.1. 制限された環境でのネットワーク接続について
5.3.2. オフラインレジストリーイメージのビルド

5.3.2.1. オフラインの devfile レジストリーイメージのビルド
5.3.2.2. オフラインプラグインレジストリーイメージのビルド

5.3.3. プライベートレジストリーの準備
5.3.4. 制限された環境での CLI 管理ツールを使用した CodeReady Workspaces のアップグレード

5.4. 「PER USER」以外のプロジェクトストラテジーを使用する CODEREADY WORKSPACES のアップグレード

5.4.1. CodeReady Workspaces のアップグレードおよびユーザーデータのバックアップ
5.4.2. CodeReady Workspaces のアップグレードおよびユーザーデータの損失

第6章 CODEREADY WORKSPACES のアンインストール
6.1. OPENSHIFT WEB コンソールを使用した OPERATORHUB のインストール後の CODEREADY WORKSPACES
のアンインストール
6.2. OPENSHIFT CLI を使用した OPERATORHUB のインストール後の CODEREADY WORKSPACES のアンイン
ストール
6.3. CRWCTL インストール後の CODEREADY WORKSPACES のアンインストール

119
119
119

120
121
121
122
122
122
123
124
130

131
131
132

133

133

134
135

目次

3

Red Hat CodeReady Workspaces 2.11 インストールガイド

4

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り
組んでいます。まずは、マスター (master)、スレーブ (slave)、ブラックリスト (blacklist)、ホワイトリ
スト (whitelist) の 4 つの用語の置き換えから始めます。この取り組みは膨大な作業を要するため、今後
の複数のリリースで段階的に用語の置き換えを実施して参ります。詳細は、弊社 の CTO、Chris Wright
のメッセージを参照してください。

多様性を受け入れるオープンソースの強化

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

第1章 サポートされるプラットフォーム
このセクションでは、OpenShift Container Platform 4.6、3.11、および OpenShift Dedicated の
CodeReady Workspaces 2.11 の可用性およびサポートされるインストール方法を説明します。

表1.1 OpenShift Container Platform および OpenShift Dedicated での CodeReady Workspaces 2.11 で
サポートされるデプロイメント環境

プラットフォーム アーキテクチャー デプロイメント方法

OpenShift Container Platform
3.11

AMD64 および Intel 64 (x86_64) crwctl

OpenShift Container Platform
4.6

AMD64 および Intel 64 (x86_64) OperatorHub, crwctl

OpenShift Container Platform
4.6

IBM Z (s390x) OperatorHub, crwctl

OpenShift Container Platform
4.6

IBM Power Systems (ppc64le) OperatorHub, crwctl

OpenShift Container Platform
4.8

AMD64 および Intel 64 (x86_64) OperatorHub, crwctl

OpenShift Container Platform
4.8

IBM Z (s390x) OperatorHub, crwctl

OpenShift Container Platform
4.8

IBM Power Systems (ppc64le) OperatorHub, crwctl

OpenShift Dedicated 4.8 AMD64 および Intel 64 (x86_64) アドオン

注記

IBM Z (s390x) での OpenShift Container Platform への CodeReady Workspaces のデプ
ロイのサポートは、現在テクノロジープレビュー機能としてのみ利用できます。テクノ
ロジープレビュー機能は Red Hat の実稼働環境でのサービスレベルアグリーメント
(SLA) ではサポートされていないため、Red Hat では実稼働環境での使用を推奨してい
ません。Red Hat は実稼働環境でこれらを使用することを推奨していません。これらの
機能は、近々発表予定の製品機能をリリースに先駆けてご提供することにより、お客様
は機能性をテストし、開発プロセス中にフィードバックをお寄せいただくことができま
す。テクノロジープレビュー機能のサポートレベルの詳細は、「テクノロジープレ
ビュー機能のサポート範囲」を参照してください。

Red Hat CodeReady Workspaces 2.11 インストールガイド

6

第2章 CODEREADY WORKSPACES インストールの設定
以下のセクションでは、Operator を使用して Red Hat CodeReady Workspaces をインストールする設
定オプションについて説明します。

2.1. CHECLUSTER カスタムリソースについて

CodeReady Workspaces のデフォルトデプロイメントは、Red Hat CodeReady Workspaces Operator
によって準仮想化された CheCluster カスタムリソースのアプリケーションで構成されています。

CheCluster カスタムリソース

CodeReady Workspaces インストール全体の設定を記述する YAML ドキュメント。

各コンポーネントを設定するセクション（auth、database、server、storage）が含まれま
す。

Red Hat CodeReady Workspaces Operator の役割

CheCluster カスタムリソースを、CodeReady Workspaces インストールの各コンポーネン
トで使用できる設定 (ConfigMap) に変換します。

OpenShift プラットフォームの役割

各コンポーネントの設定 (ConfigMap) を適用するには、以下を実行します。

必要な Pod を作成するには、以下を実行します。

OpenShift がコンポーネントの設定で変更を検知すると、Pod を適宜再起動します。

例2.1 CodeReady Workspaces サーバーコンポーネントの主なプロパティーの設定

1. ユーザーは、server に関連する一部の設定が含まれる CheCluster カスタムリソースを適用
します。

2. Operator は che という必要な ConfigMap を生成します。

3. OpenShift は ConfigMap の変更を検知し、CodeReady Workspaces Pod の再起動をトリ
ガーします。

関連資料

Operator について

カスタムリソースについて

CheCluster カスタムリソースを変更する方法は、選択したインストール手順を参照してくださ
い。

2.2. CHECLUSTER カスタムリソースフィールドの参照

このセクションでは、CheCluster カスタムリソースのカスタマイズに使用できるすべてのフィールド

第2章 CODEREADY WORKSPACES インストールの設定

7

https://docs.openshift.com/container-platform/latest/operators/understanding/olm-what-operators-are.html
https://docs.openshift.com/container-platform/latest/operators/understanding/crds/crd-managing-resources-from-crds.html

このセクションでは、CheCluster カスタムリソースのカスタマイズに使用できるすべてのフィールド
について説明します。

例2.2「最小の CheCluster カスタムリソースの例。」

表2.1「CodeReady Workspaces サーバーコンポーネントに関連する CheCluster カスタムリ
ソースの server 設定。」

表2.2「CodeReady Workspaces で使用されるデータベースに関連する CheCluster カスタムリ
ソース database 設定。」

表2.3「CodeReady Workspaces で使用される認証に関連するカスタムリソース auth 設定。」

表2.4「CodeReady Workspaces で使用される永続ストレージに関連する CheCluster カスタム
リソース storage 設定。」

表2.5「OpenShift の CodeReady Workspaces インストールに固有の CheCluster カスタムリ
ソース k8s 設定。」

表2.6「CodeReady Workspaces によって使用される CodeReady Workspaces メトリクス収集
に関連する CheCluster カスタムリソース metrics 設定。」

表2.7「CheCluster カスタムリソース status は、CodeReady Workspaces インストールの観察
される状態を定義します。」

例2.2 最小の CheCluster カスタムリソースの例。

表2.1 CodeReady Workspaces サーバーコンポーネントに関連する CheCluster カスタムリソースの
server 設定。

プロパティー 詳細

airGapContainerRegistryHo
stname

イメージのプルに使用する別のコンテナーレジストリーに対する、オプショ
ンのホスト名または URL。この値は、Che デプロイメントに関連するすべて
のデフォルトコンテナーイメージで定義されるコンテナーレジストリーのホ
スト名を上書きします。これは、制限された環境で Che をインストールする
場合にとくに便利です。

apiVersion: org.eclipse.che/v1
kind: CheCluster
metadata:
 name: codeready-workspaces
spec:
 auth:
 externalIdentityProvider: false
 database:
 externalDb: false
 server:
 selfSignedCert: false
 gitSelfSignedCert: false
 tlsSupport: true
 storage:
 pvcStrategy: 'common'
 pvcClaimSize: '1Gi'

Red Hat CodeReady Workspaces 2.11 インストールガイド

8

airGapContainerRegistryOr
ganization

イメージのプルに使用する別のコンテナーレジストリーのオプションのリポ
ジトリー名。この値は、Che デプロイメントに関連するすべてのデフォルト
コンテナーイメージで定義されるコンテナーレジストリーの組織を上書きし
ます。これは、制限された環境で CodeReady Workspaces をインストールす
る場合にとくに便利です。

allowUserDefinedWorkspac
eNamespaces

非推奨。このフラグの値は無視されます。ユーザーが OpenShift プロジェク
トまたはデフォルトとは異なる OpenShift プロジェクトを指定できるように
定義します。OpenShift OAuth を設定せずに true に設定することは推奨され
ていません。OpenShift インフラストラクチャーは、このプロパティーも使用
します。

cheClusterRoles Che ServiceAccount に割り当てられる ClusterRole のコンマ区切りの一覧。
Che Operator には、これらの ClusterRole のすべてのパーミッションがすで
にあり、これらを付与できる必要があることに注意してください。

cheDebug Che サーバーのデバッグモードを有効にします。デフォルトは false です。

cheFlavor インストールのバリエーションを指定します。このオプションは、アップス
トリームの Che インストールの場合は che、CodeReady Workspaces インス
トールの場合は codeready です。デフォルト値は、必要な場合にのみ上書
きします。

cheHost インストールされた Che サーバーのパブリックホスト名。値を省略すると、
値は Operator によって自動的に設定されます。cheHostTLSSecret フィー
ルドを参照してください。

cheHostTLSSecret インストールされた Che サーバーのカスタムホスト名の Ingress またはルー
トのセキュリティーを保護するための証明書が含まれるシークレットの名
前。cheHost フィールドを参照してください。

cheImage Che デプロイメントで使用されるコンテナーイメージを上書きします。これ
には、コンテナーイメージタグは含まれません。Operator によって提供され
るデフォルトのコンテナーイメージを使用するには、これを省略するか、ま
たは空のままにします。

cheImagePullPolicy Che デプロイメントで使用されるイメージプルポリシーを上書きします。デ
フォルト値は、nightly または latest イメージの場合は Always で、他の場
合は IfNotPresent です。

cheImageTag Che デプロイメントで使用されるコンテナーイメージのタグを上書きしま
す。Operator によって提供されるデフォルトのイメージタグを使用するに
は、これを省略するか、または空のままにします。

cheLogLevel Che サーバーのログレベル： INFO または DEBUG。デフォルトは INFO で
す。

プロパティー 詳細

第2章 CODEREADY WORKSPACES インストールの設定

9

https://developers.redhat.com/products/codeready-workspaces/overview

cheServerIngress Che サーバー Ingress のカスタム設定。

cheServerRoute Che サーバールートのカスタム設定。

cheWorkspaceClusterRole Che ワークスペースのユーザーにバインドされるカスタムロール。デフォル
トのロールは、省略されているか、または空白のままの場合に使用されま
す。

customCheProperties CheCluster カスタムリソース (CR) の他のフィールドからすでに生成されて
いる値に加えて、Che サーバーによって使用される生成された che
ConfigMap に適用される追加の環境変数のマップ。custom
CheProperties に他の CR フィールドから che ConfigMap に生成されるプ
ロパティーが含まれる場合、代わりに カスタム CheProperties に定義され
た値が使用されます。

dashboardCpuLimit ダッシュボードのデプロイメントで使用される CPU 制限を上書きします。コ
ア(500m = .5 コア)。デフォルトは 500m に設定されます。

dashboardCpuRequest ダッシュボードのデプロイメントで使用される CPU 要求を上書きします。コ
ア(500m = .5 コア)。デフォルトは 100m に設定されます。

dashboardImage ダッシュボードのデプロイメントで使用されるコンテナーイメージを上書き
します。これには、イメージタグが含まれます。Operator によって提供され
るデフォルトのコンテナーイメージを使用するには、これを省略するか、ま
たは空のままにします。

dashboardImagePullPolicy ダッシュボードのデプロイメントで使用されるイメージプルポリシーを上書
きします。デフォルト値は、nightly または latest イメージの場合は
Always で、他の場合は IfNotPresent です。

dashboardIngress ダッシュボード Ingress のカスタム設定。

dashboardMemoryLimit ダッシュボードのデプロイメントで使用されるメモリー制限を上書きしま
す。デフォルトは 256Mi に設定されます。

dashboardMemoryRequest ダッシュボードのデプロイメントで使用されるメモリー要求を上書きしま
す。デフォルトは 16Mi に設定されます。

dashboardRoute ダッシュボードルートのカスタム設定。

devfileRegistryCpuLimit devfile レジストリーのデプロイメントで使用される CPU 制限を上書きしま
す。コア(500m = .5 コア)。デフォルトは 500m に設定されます。

devfileRegistryCpuRequest devfile レジストリーのデプロイメントで使用される CPU 要求を上書きしま
す。コア(500m = .5 コア)。デフォルトは 100m に設定されます。

プロパティー 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

10

devfileRegistryImage devfile レジストリーのデプロイメントで使用されるコンテナーイメージを上
書きします。これには、イメージタグが含まれます。Operator によって提供
されるデフォルトのコンテナーイメージを使用するには、これを省略する
か、または空のままにします。

devfileRegistryIngress devfile レジストリー Ingress のカスタム設定。

devfileRegistryMemoryLimit devfile レジストリーのデプロイメントで使用されるメモリー制限を上書きし
ます。デフォルトは 256Mi に設定されます。

devfileRegistryMemoryReq
uest

devfile レジストリーのデプロイメントで使用されるメモリー要求を上書きし
ます。デフォルトは 16Mi に設定されます。

devfileRegistryPullPolicy devfile レジストリーのデプロイメントで使用されるイメージプルポリシーを
上書きします。デフォルト値は、nightly または latest イメージの場合は
Always で、他の場合は IfNotPresent です。

devfileRegistryRoute devfile レジストリールートのカスタム設定。

devfileRegistryUrl externalDevfileRegistries フィールドが導入されたため、非推奨になりま
した。

disableInternalClusterSVCN
ames

内部クラスターの SVC 名の使用を無効にして、トラフィックを高速化し、プ
ロキシーの問題を回避します。

externalDevfileRegistries 外部 devfile レジストリーで、すぐに使用可能な devfiles を提供します。
（externalDevfileRegistry が falseの場合）専用の devfile レジストリーに
加えて、（externalDevfileRegistry が true の場合）専用の devfile レジス
トリーの代わりに、外部の devfile レジストリーを追加します。

externalDevfileRegistry 専用の devfile レジストリーサーバーをデプロイするかどうかについて
Operator に指示します。デフォルトでは、専用の devfile レジストリーサー
バーが起動します。externalDevfileRegistry が true の場合には、このよ
うな専用サーバーは Operator によって起動され
ず、externalDevfileRegistries フィールドで少なくとも 1 つの devfile レジ
ストリーが設定されます。

externalPluginRegistry 専用のプラグインレジストリーサーバーをデプロイするかどうかについて
Operator に指示します。デフォルトでは、専用のプラグインレジストリー
サーバーが起動します。externalPluginRegistry が true の場合には、この
ような専用サーバーは Operator によって起動されず、pluginRegistryUrl
フィールドを手動で設定する必要があります。

gitSelfSignedCert che-git-self-signed-cert ConfigMap からの証明書が有効にされている場
合、これは Che コンポーネントに伝播し、Git の特定の設定が提供されま
す。

プロパティー 詳細

第2章 CODEREADY WORKSPACES インストールの設定

11

nonProxyHosts プロキシーをバイパスして、直接到達されるホストの一覧。ワイルドカード
のドメインを指定するには、以下の .<DOMAIN> および | を区切り文字とし
て使用します。たとえば、localhost|.my.host.com|123.42.12.32 のよう
になります。これは、プロキシーの設定が必要な場合にのみ使用します。
Operator は OpenShift クラスター全体のプロキシー設定に対応し、追加の設
定は必要ありませんが、カスタムリソースで nonProxyHosts を定義する
と、クラスタープロキシー設定からのプロキシー以外のホストと、カスタム
リソースで定義されるホストをマージします。ドキュメント
(https://docs.openshift.com/container-platform/4.4/networking/enable-
cluster-wide-proxy.html) を参照してください。proxyURL フィールドも参照
してください。

pluginRegistryCpuLimit プラグインレジストリーのデプロイメントで使用される CPU 制限を上書きし
ます。コア(500m = .5 コア)。デフォルトは 500m に設定されます。

pluginRegistryCpuRequest プラグインレジストリーのデプロイメントで使用される CPU 要求を上書きし
ます。コア(500m = .5 コア)。デフォルトは 100m に設定されます。

pluginRegistryImage プラグインレジストリーのデプロイメントで使用されるコンテナーイメージ
を上書きします。これには、イメージタグが含まれます。Operator によって
提供されるデフォルトのコンテナーイメージを使用するには、これを省略す
るか、または空のままにします。

pluginRegistryIngress プラグインレジストリー Ingress のカスタム設定。

pluginRegistryMemoryLimit プラグインレジストリーのデプロイメントで使用されるメモリー制限を上書
きします。デフォルトは 256Mi に設定されます。

pluginRegistryMemoryRequ
est

プラグインレジストリーのデプロイメントで使用されるメモリー要求を上書
きします。デフォルトは 16Mi に設定されます。

pluginRegistryPullPolicy プラグインレジストリーのデプロイメントで使用されるイメージプルポリ
シーを上書きします。デフォルト値は、nightly または latest イメージの場
合は Always で、他の場合は IfNotPresent です。

pluginRegistryRoute プラグインレジストリールートのカスタム設定。

pluginRegistryUrl サンプルのすぐに使できる devfile を提供するプラグインレジストリーの公開
URL。外部 devfile レジストリーを使用する必要がある場合は、この ONLY を
設定します。externalPluginRegistry フィールドを参照してください。デ
フォルトで、これは Operator によって自動的に計算されます。

proxyPassword プロキシーサーバーのパスワード。プロキシー設定が必要である場合にのみ
使用します。proxyURL、proxyUser および proxySecret フィールドを参
照してください。

proxyPort プロキシーサーバーのポート。プロキシーの設定が必要な場合にのみ使用し
ます。proxyURL および nonProxyHosts フィールドも参照してくださ
い。

プロパティー 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

12

https://docs.openshift.com/container-platform/4.4/networking/enable-cluster-wide-proxy.html

proxySecret プロキシーサーバーの user と password が含まれるシークレット。シーク
レットが定義されると、proxyUser および proxyPassword は無視されま
す。

proxyURL プロキシーサーバーの URL (プロトコル+ホスト名)。これにより、Che サー
バーおよびワークスペースコンテナーの JAVA_OPTS および https_proxy
変数に適切な変更が加えられます。プロキシーの設定が必要な場合にのみ使
用します。Operator は OpenShift クラスター全体のプロキシー設定に対応
し、追加の設定は必要ありませんが、カスタムリソースで proxyUrl を定義
すると、クラスタープロキシー設定が、カスタムリソースのフィールドの
proxyUrl、proxyPort、proxyUser および proxyPassword で上書きさ
れます。ドキュメント (https://docs.openshift.com/container-
platform/4.4/networking/enable-cluster-wide-proxy.html) を参照してくださ
い。proxyPort および nonProxyHosts フィールドも参照してください。

proxyUser プロキシーサーバーのユーザー名。プロキシーの設定が必要な場合にのみ使
用します。proxyURL、proxyPassword および proxySecret フィールド
も参照してください。

selfSignedCert 非推奨。このフラグの値は無視されます。Che Operator は、ルーター証明書
が自己署名されているかどうかを自動的に検知し、これを Che サーバーなど
の他のコンポーネントに伝播します。

serverCpuLimit Che サーバーのデプロイメントで使用される CPU 制限を上書きします (コア
単位)。(500m = .5 コア)。デフォルトは 1 に設定されます。

serverCpuRequest Che サーバーのデプロイメントで使用される CPU 要求を上書きします (コア
単位)。(500m = .5 コア)。デフォルトは 100m に設定されます。

serverExposureStrategy サーバーおよびワークスペースの公開タイプを設定します。設定可能な値
は、multi-host、single-host、default-host です。必要なエンドポイント
ごとに個別の Ingress または OpenShift ルートを作成する multi-host にデ
フォルト設定されます。single-host は、ワークスペースがサブパスで公開
された状態で Che を単一のホスト名で公開します。この方法の制限について
は、関連ドキュメントを参照してください。さらに、Operator および Che
サーバーが Kubernetes でこれを実行する方法の追加の設定については、
singleHostExposureType プロパティーを参照してください。default-
host は、クラスターのホストで Che サーバーを公開します。この方法の制限
については、関連ドキュメントを参照してください。

serverMemoryLimit Che サーバーのデプロイメントで使用されるメモリー制限を上書きします。
デフォルトは 1Gi に設定されます。

プロパティー 詳細

第2章 CODEREADY WORKSPACES インストールの設定

13

https://docs.openshift.com/container-platform/4.4/networking/enable-cluster-wide-proxy.html

serverMemoryRequest Che サーバーのデプロイメントで使用されるメモリー要求を上書きします。
デフォルトは 512Mi に設定されます。

serverTrustStoreConfigMap
Name

Che サーバーの Java トラストストアに追加するパブリック証明書のある
ConfigMap の名前。これは、HTTPS エンドポイントが自己署の証明書で署名
されている OpenShift OAuth プロバイダーを追加する際に必要になります。
Che サーバーは、要求できるように CA 証明書を認識できる必要があります。
これはデフォルトで無効にされます。

singleHostGatewayConfigM
apLabels

ゲートウェイ設定を表す ConfigMap に存在する必要があるラベル。

singleHostGatewayConfigSi
decarImage

ゲートウェイに設定を提供するゲートウェイサイドカーに使用されるイメー
ジ。Operator によって提供されるデフォルトのコンテナーイメージを使用す
るには、これを省略するか、または空のままにします。

singleHostGatewayImage 単一ホストモードでゲートウェイに使用されるイメージ。Operator によって
提供されるデフォルトのコンテナーイメージを使用するには、これを省略す
るか、または空のままにします。

tlsSupport 非推奨。Operator に対して Che を TLS モードでデプロイするように指示し
ます。これはデフォルトで有効になります。TLS を無効にすると、Che コン
ポーネントが正しく機能しないことがあります。

useInternalClusterSVCNam
es

disableInternalClusterSVCNames が導入されたため非推奨になりまし
た。

workspaceNamespaceDefa
ult

ユーザーが上書きしない場合に、ユーザーのワークスペースが作成されるデ
フォルトの OpenShift プロジェクトを定義しま
す。<username>、<userid> および <workspaceid> プレースホルダー
(例: che-workspace-<username>）を使用できます。この場合、新規
namespace が各ユーザーまたはワークスペースについて作成されます。

プロパティー 詳細

表2.2 CodeReady Workspaces で使用されるデータベースに関連する CheCluster カスタムリソース
database 設定。

プロパティー 詳細

chePostgresContainerReso
urces

PostgreSQL コンテナーのカスタム設定

chePostgresDb Che サーバーが DB への接続に使用する PostgreSQL データベース名。デフォ
ルトは dbche です。

Red Hat CodeReady Workspaces 2.11 インストールガイド

14

chePostgresHostName Che サーバーが接続する PostgreSQL データベースのホスト名。デフォルト
は postgres です。外部データベースを使用する場合、この値のみを上書き
します。externalDb フィールドを参照してください。デフォルトでは、こ
れは Operator によって自動的に設定されます。

chePostgresPassword Che サーバーが DB への接続に使用する PostgreSQL パスワード。これは、省
略されるか、または空のままの場合は、自動的に生成される値に設定されま
す。

chePostgresPort Che サーバーが接続する PostgreSQL データベースのポート。デフォルトは
5432 に設定されます。外部データベースを使用する場合、この値のみを上書
きします。externalDb フィールドを参照してください。デフォルトでは、
これは Operator によって自動的に設定されます。

chePostgresSecret Che サーバーが DB への接続に使用する PosgreSQL の `user` および
password が含まれるシークレット。シークレットが定義される
と、chePostgresUser および chePostgresPassword は無視されます。
値が省略されるか、空のままにすると、以下のいずれかのシナリオが適用さ
れます。1.chePostgresUser および chePostgresPassword が定義さ
れ、DB への接続に使用されます。2.chePostgresUser または
chePostgresPassword が定義されていないため、user には pgche のデ
フォルト値を、password には自動生成された値を使用して、che-
postgres-secret という名前の新しいシークレットが作成されます。

chePostgresUser Che サーバーが DB への接続に使用する PostgreSQL ユーザー。デフォルトは
pgche です。

externalDb 専用のデータベースをデプロイするかどうかについて Operator に指示しま
す。デフォルトでは、専用の PostgreSQL データベースは Che インストール
の一部としてデプロイされます。externalDb が true の場合、専用データ
ベースは Operator によってデプロイされず、使用する外部 DB への接続の詳
細を指定する必要があります。chePostgres で始まるすべてのフィールドも
参照してください。

postgresImage PostgreSQL データベースのデプロイメントで使用されるコンテナーイメージ
を上書きします。これには、イメージタグが含まれます。Operator によって
提供されるデフォルトのコンテナーイメージを使用するには、これを省略す
るか、または空のままにします。

postgresImagePullPolicy PostgreSQL データベースのデプロイメントで使用されるイメージプルポリ
シーを上書きします。デフォルト値は、nightly または latest イメージの場
合は Always で、他の場合は IfNotPresent です。

プロパティー 詳細

表2.3 CodeReady Workspaces で使用される認証に関連するカスタムリソース auth 設定。

第2章 CODEREADY WORKSPACES インストールの設定

15

プロパティー 詳細

externalIdentityProvider 専用のアイデンティティープロバイダー (Keycloak または RH SSO インスタ
ンス) をデプロイするかどうかについて Operator に指示します。専用のアイ
デンティティープロバイダー (Keycloak または RH-SSO インスタンス) をデプ
ロイするかどうかについて Operator に指示します。デフォルトで、専用のア
イデンティティープロバイダーサーバーは Che インストールの一部としてデ
プロイされます。externalIdentityProvider が true の場合、専用のアイデ
ンティティープロバイダーは Operator によってデプロイされず、使用する外
部アイデンティティープロバイダーの詳細を指定する必要がありま
す。identityProvider で始まるその他のフィールドもすべて参照してくださ
い。

gatewayAuthenticationSide
carImage

NativeUserMode が有効な場合に認証を行うゲートウェイサイド
カー。oauth2-proxy または openshift/oauth-proxy を参照してください。

gatewayAuthorizationSidec
arImage

NativeUserMode が有効な場合に承認を行うゲートウェイサイドカー。kube-
rbac-proxy または openshift/kube-rbac-proxyを参照してください。

gatewayHeaderRewriteSide
carImage

非推奨。このフラグの値は無視されます。サイドカー機能が Traefik プラグイ
ンに実装されるようになりました。

identityProviderAdminUser
Name

アイデンティティープロバイダーの管理者ユーザーの名前を上書きします。
デフォルトは admin です。

identityProviderClientId Che に使用されるアイデンティティープロバイダー、Keycloak、または RH-
SSO の client-id の名前。外部アイデンティティープロバイダーが使用され
ている場合にこれを上書きします。externalIdentityProvider フィールドを
参照してください。省略されているか、または空のままの場合は、サフィッ
クスが -public の flavour フィールドの値に設定されます。

identityProviderContainerR
esources

アイデンティティープロバイダーコンテナーのカスタム設定。

identityProviderImage アイデンティティープロバイダー、Keycloak、または RH-SSO デプロイメン
トで使用するコンテナーイメージを上書きします。これには、イメージタグ
が含まれます。Operator によって提供されるデフォルトのコンテナーイメー
ジを使用するには、これを省略するか、または空のままにします。

identityProviderImagePullP
olicy

アイデンティティープロバイダー、Keycloak、または RH-SSO デプロイメン
トで使用するイメージプルポリシーを上書きします。デフォルト値
は、nightly または latest イメージの場合は Always で、他の場合は
IfNotPresent です。

identityProviderIngress Ingress のカスタム設定。

Red Hat CodeReady Workspaces 2.11 インストールガイド

16

https://github.com/oauth2-proxy/oauth2-proxy
https://github.com/openshift/oauth-proxy
https://github.com/brancz/kube-rbac-proxy
https://github.com/openshift/kube-rbac-proxy

identityProviderPassword Keycloak 管理者ユーザーのパスワードを上書きします。外部アイデンティ
ティープロバイダーが使用されている場合にこれを上書きしま
す。externalIdentityProvider フィールドを参照してください。省略されて
いるか、または空のままにすると、自動生成されたパスワードに設定されま
す。

identityProviderPostgresPa
ssword

データベースに接続するために使用するアイデンティティープロバイダー、
Keycloak、または RH-SSO のパスワード外部アイデンティティープロバイ
ダーが使用されている場合にこれを上書きしま
す。externalIdentityProvider フィールドを参照してください。省略されて
いるか、または空のままにすると、自動生成されたパスワードに設定されま
す。

identityProviderPostgresSe
cret

データベースに接続するために使用するアイデンティティープロバイダー、
Keycloak、または RH-SSO の パスワード を含むシークレット。シークレッ
トが定義されると、identityProviderPostgresPassword は無視されま
す。値が省略されるか、空のままにすると、以下のいずれかのシナリオが適
用されます。1.identityProviderPostgresPassword が定義されると、こ
れがデータベースへの接続に使用されます。
2.identityProviderPostgresPassword が定義されていない場合に
は、password に自動生成された値を使用して、che-identity-postgres-
secret という名前の新規シークレットが作成されます。

identityProviderRealm Che に使用されるアイデンティティープロバイダー、Keycloak、または RH-
SSO のレルムの名前。外部アイデンティティープロバイダーが使用されてい
る場合にこれを上書きします。externalIdentityProvider フィールドを参照
してください。省略されているか、または空のままの場合、これは、flavour
フィールドの値に設定されます。

identityProviderRoute ルートのカスタム設定。

identityProviderSecret アイデンティティープロバイダーの user と password が含まれるシーク
レット。シークレットが定義される
と、identityProviderAdminUserName および
identityProviderPassword は無視されます。値が省略されるか、空のまま
にすると、以下のいずれかのシナリオが適用されます。
1.identityProviderAdminUserName および identityProviderPassword
が定義され、これらが使用されます。
2.identityProviderAdminUserName または
identityProviderPassword が定義されていない場合は、user には admin
のデフォルト値を、password には自動生成された値を使用して、che-
identity-secret という名前の新規シークレットが作成されます。

identityProviderURL アイデンティティープロバイダーサーバー (Keycloak/RH-SSO サーバー) の公
開 URL。外部アイデンティティープロバイダーを使用する必要がある場合
は、これのみを設定します。externalIdentityProvider フィールドを参照し
てください。デフォルトで、これは Operator によって自動的に計算され、設
定されます。

プロパティー 詳細

第2章 CODEREADY WORKSPACES インストールの設定

17

initialOpenShiftOAuthUser OpenShift OAuth 認証の操作には、kubeadmin を使用できないため、新規
ユーザーアカウントを作成します。値が true の場合には、HTPasswd アイデ
ンティティープロバイダーに新しい OpenShift OAuth ユーザーが作成されま
す。値が false で、ユーザーがすでに作成されている場合は、削除されます。
値が空白の場合は何も実行されません。ユーザーの認証情報は、Operator に
よって 'openshift-config' namespace にある openshift-oauth-user-
credentials シークレットに保存されます。このソリューションは Openshift
4 プラットフォーム固有であることに注意してください。

nativeUserMode ネイティブユーザーモードを有効にします。現在、OpenShift および
DevWorkspace エンジンでのみ動作します。ネイティブユーザーモードは、
Keycloak なしで OpenShift OAuth を直接アイデンティティープロバイダーと
して使用します。

oAuthClientName OpenShift 側でアイデンティティーフェデレーションを設定するために使用さ
れる OpenShift OAuthClient リソースの名前。空のままにすると自動生成さ
れます。OpenShiftoAuth フィールドも参照してください。

oAuthSecret OpenShift 側でアイデンティティーフェデレーションを設定するために使用さ
れる OpenShift OAuthClient リソースに設定されたシークレットの名前。空
のままにすると自動生成されます。OAuthClientName フィールドも参照し
てください。

openShiftoAuth アイデンティティープロバイダー (Keycloak/RHSSO) と OpenShift OAuth の
統合を有効にします。デフォルトでは OpenShift の値は空になります。これ
により、ユーザーは OpenShift ログインで OpenShift ユーザーとして直接ロ
グインでき、独自のワークスペースを個人の OpenShift namespace の下に作
成できます。警告: kubeadmin ユーザーはサポートされておらず、これを使
用してログインしても Che Dashboard にはアクセスできません。

updateAdminPassword デフォルトの admin Che ユーザーの初回ログイン時のパスワードの更新を強
制します。デフォルトは false です。

プロパティー 詳細

表2.4 CodeReady Workspaces で使用される永続ストレージに関連する CheCluster カスタムリソース
storage 設定。

プロパティー 詳細

postgresPVCStorageClass
Name

PostgreSQL データベース専用の Persistent Volume Claim (永続ボリューム要
求、PVC) のストレージクラス。省略されるか、または空のままの場合は、デ
フォルトのストレージクラスが使用されます。

preCreateSubPaths Che サーバーに対し、永続ボリュームでサブパスを事前に作成するために特
別な Pod を起動するように指示します。デフォルトは false に設定されます
が、OpenShift クラスターの設定に応じてこれを有効にする必要があります。

pvcClaimSize ワークスペースの永続ボリューム要求 (PVC) のサイズ。デフォルトは 10Gi
に設定されます。

Red Hat CodeReady Workspaces 2.11 インストールガイド

18

pvcJobsImage 永続ボリュームでサブパスを作成するために使用されるコンテナーイメージ
を上書きします。これには、イメージタグが含まれます。Operator によって
提供されるデフォルトのコンテナーイメージを使用するには、これを省略す
るか、または空のままにします。preCreateSubPaths フィールドも参照し
てください。

pvcStrategy Che サーバーの永続ボリューム要求ストラテジー。これには、'common' (1 つ
のボリュームにすべてのワークスペース PVC)、per-workspace (すべての
宣言されたボリュームについてワークスペースごとに 1 つの PVC)、および
unique (宣言されたボリュームごとに 1 つの PVC) を指定できます。デフォル
トは common です。

workspacePVCStorageClas
sName

Che ワークスペース専用の Persistent Volume Claim（永続ボリューム要求、
PVC）のストレージクラス。省略されるか、または空のままの場合は、デ
フォルトのストレージクラスが使用されます。

プロパティー 詳細

表2.5 OpenShift の CodeReady Workspaces インストールに固有の CheCluster カスタムリソース k8s
設定。

プロパティー 詳細

ingressClass Ingress を管理するコントローラーを定義する Ingress クラス。デフォルトは
nginx です。注意: これは Che 関連の Ingress で
kubernetes.io/ingress.class アノテーションを実行します。

ingressDomain OpenShift クラスターのグローバル Ingress ドメイン。これは明示的に指定す
る必要があります。デフォルト値はありません。

ingressStrategy Ingress 作成のストラテジー。オプション: multi-host (ホストは Ingress で明
示的に指定されます)、single-host (ホストは指定される、パスベースのルー
ル)、および default-host (ホストは指定されない、パスベースのルー
ル)。server セクションの serverExposureStrategy が優先されるため、
デフォルトで multi-host が非推奨になりました。これは、クラスタータイプ
に関係なく定義されます。両方が定義されている場合
は、serverExposureStrategy オプションが優先されます。

securityContextFsGroup Che Pod およびワークスペース Pod コンテナーが実行される FSGroup。デ
フォルト値は 1724 です。

securityContextRunAsUser Che Pod およびワークスペース Pod コンテナーの実行に使用するユーザーの
ID。デフォルト値は 1724 です。

第2章 CODEREADY WORKSPACES インストールの設定

19

singleHostExposureType serverExposureStrategy が single-host に設定されている場合、サーバー、
レジストリー、およびワークスペースを公開する方法は、このプロパティー
によって追加で設定されます。使用できる値は native です。つまり、サー
バーおよびワークスペースは K8s の ingress、またはサーバーおよびワークス
ペースが Traefik をベースとするカスタムゲートウェイを使用して公開される
gateway を使用して公開されます。Ingress またはゲートウェイ route でサ
ポートされる場合でも、すべてのエンドポイントは常に同じドメインのサブ
パスを参照します。デフォルトは native です。

tlsSecretName TLS が有効にされている場合に ingress TLS 終端を設定するために使用される
シークレットの名前。フィールドが空の文字列である場合、デフォルトのク
ラスター証明書が使用されます。tlsSupport フィールドも参照してくださ
い。

プロパティー 詳細

表2.6 CodeReady Workspaces によって使用される CodeReady Workspaces メトリクス収集に関連す
る CheCluster カスタムリソース metrics 設定。

プロパティー 詳細

enable Che サーバーエンドポイント メトリクス を有効にします。デフォルトは
true です。

表2.7 CheCluster カスタムリソース status は、CodeReady Workspaces インストールの観察される状
態を定義します。

プロパティー 詳細

cheClusterRunning Che インストールのステータス。Available、Unavailable まてゃあ
Available, Rolling Update in Progress を使用できます。

cheURL Che サーバーへの公開 URL。

cheVersion 現在のインストールされている Che バージョン。

dbProvisioned PostgreSQL インスタンスが正しくプロビジョニングされているかどうかを示
します。

devfileRegistryURL devfile レジストリーへの公開 URL。

devworkspaceStatus Devworkspace サブシステムのステータス

gitHubOAuthProvisioned アイデンティティープロバイダーインスタンス、Keycloak または RH-SSO が
GitHub OAuth と統合するように設定されているかどうかを示します。

Red Hat CodeReady Workspaces 2.11 インストールガイド

20

https://doc.traefik.io/traefik/

helpLink 現在の Operator ステータスに関連するヘルプの検索に使用する URL を参照
する URL。

keycloakProvisioned アイデンティティープロバイダーインスタンス、Keycloak または RH-SSO が
レルム、クライアント、およびユーザーと共にプロビジョニングされている
かどうかを示します。

keycloakURL アイデンティティープロバイダーサーバー (Keycloak/RH-SSO) の公開 URL。

message Pod がこの状態にある理由の詳細を示す、人が判読できるメッセージ。

openShiftOAuthUserCrede
ntialsSecret

HTPasswd アイデンティティープロバイダーのユーザー認証情報を含む
openshift-config namespace の OpenShift OAuth シークレット。

openShiftoAuthProvisioned アイデンティティープロバイダーインスタンス、Keycloak または RH-SSO が
OpenShift OAuth と統合するように設定されているかどうかを示します。

pluginRegistryURL プラグインレジストリーへの公開 URL。

reason Pod がこの状態にある理由の詳細を示す簡単な CamelCase メッセージ。

プロパティー 詳細

第2章 CODEREADY WORKSPACES インストールの設定

21

第3章 CODEREADY WORKSPACES のインストール
本セクションでは、Red Hat CodeReady Workspaces をインストールする手順を説明します。インス
トール方法は、ターゲットプラットフォームと環境の制限によって異なります。

3.1. OPERATORHUB を使用した OPENSHIFT 4 への CODEREADY
WORKSPACES のインストール

本セクションでは、OpenShift 4 Web コンソールで利用可能な CodeReady Workspaces Operator を使
用して CodeReady Workspaces をインストールする方法を説明します。

Operator は、OpenShift アプリケーションをパッケージ化し、デプロイし、管理する方法です。これ
は、以下も提供します。

インストールおよびアップグレードの再現性。

すべてのシステムコンポーネントの定期的なヘルスチェック。

OpenShift コンポーネントおよび独立ソフトウェアベンダー (ISV) コンテンツの OTA (Over-
the-air) 更新。

フィールドエンジニアの知識をカプセル化し、すべてのユーザーに展開する場所。

前提条件

OpenShift 4 の実行中のインスタンスの管理者アカウント

3.1.1. Red Hat CodeReady Workspaces Operator のインストール

Red Hat CodeReady Workspaces Operator は、PostgreSQL、RH-SSO、イメージレジストリー、
CodeReady Workspaces サーバーなどの CodeReady Workspaces を実行するためのすべてのリソース
を提供し、これらのすべてのサービスも設定します。

前提条件

クラスターの OpenShift Web コンソールへのアクセス。

手順

1. 左側のパネルで Operators → OperatorHub ページに移動します。

2. Filter by keyword フィールドに Red Hat CodeReady Workspaces を入力します。

3. Red Hat CodeReady Workspaces タイルをクリックします。

4. Red Hat CodeReady Workspaces のポップアップウィンドウで、Install ボタンをクリックし
ます。

5. Install Operator ページで、Install ボタンをクリックします。

検証手順

1. Red Hat CodeReady Workspaces Operator が正しくインストールされたことを確認するには、
左側のパネルで Operators → Installed Operators ページに移動します。

2. Installed Operators ページで、Red Hat CodeReady Workspaces 名をクリックし、Details タ

Red Hat CodeReady Workspaces 2.11 インストールガイド

22

2. Installed Operators ページで、Red Hat CodeReady Workspaces 名をクリックし、Details タ
ブに移動します。

3. ClusterServiceVersion details セクションで、以下のメッセージが表示されるまで待機しま
す。

Status: Succeeded

Status reason: install strategy completed with no errors

4. Events タブに移動し、install strategy completed with no errors というメッセージが表示さ
れるまで待機します。

3.1.2. Red Hat CodeReady Workspaces Operator のインスタンスの作成

以下の手順に従って、デフォルト設定で Red Hat CodeReady Workspaces をインストールします。設定
を変更する場合は、2章CodeReady Workspaces インストールの設定 を参照してください。

手順

1. 左側のパネルを使用して、Operators → Installed Operators ページに移動します。

2. Installed Operators ページで、Red Hat CodeReady Workspaces 名をクリックします。

3. Operator details ページで、Details タブの Provided APIs セクションの Create instance リン
クをクリックします。
これにより、 Create CheCluster ページに移動します。このページには、CheCluster カスタ
ムリソースに保存される CodeReady Workspaces インスタンスの作成に必要な設定が含まれま
す。

4. デフォルト値を使用し、ページの最後にある Create ボタンを使用して codeready-
workspaces クラスターを作成します。

5. Operator details ページの、Red Hat CodeReady Workspaces Cluster タブで、codeready-
workspaces リンクをクリックします。

6. Red Hat CodeReady Workspaces URL の出力に表示されるリンクを使用して codeready-
workspaces インスタンスに移動します。

注記

インストールには 5 分以上かかる場合があります。Red Hat CodeReady
Workspaces のインストールが完了すると、URL が表示されます。

検証

1. CodeReady Workspaces インスタンスが正しくインストールされたことを確認するに
は、Operator details ページの CodeReady Workspaces Cluster タブに移動しま
す。CheClusters ページには、CodeReady Workspaces インスタンスの一覧およびそれらのス
テータスが表示されます。

2. codeready-workspaces CheCluster をクリックし、Details タブに移動します。

3. 以下のフィールドの内容を参照してください。

Message フィールドにはエラーメッセージが含まれます。予想される内容は None です。

第3章 CODEREADY WORKSPACES のインストール

23

Red Hat CodeReady Workspaces URL フィールドには、Red Hat CodeReady Workspaces
インスタンスの URL が含まれます。デプロイメントが正常に終了すると、URL が表示され
ます。

4. Resources タブに移動します。CodeReady Workspaces デプロイメントに割り当てられたリ
ソースとそれらのステータスの一覧が表示されます。

関連資料

Dashboard を使用した CodeReady Workspaces のナビゲーション

OpenShift 4 CLI ツールを使用した CodeReady Workspaces クラスターデプロイメントの状態
の表示

3.2. CLI を使用した CODEREADY WORKSPACES の OPENSHIFT 4 への
インストール

本セクションでは、crwctl CLI 管理ツールを使用して、OpenShift 4 に CodeReady Workspaces をイン
ストールする方法を説明します。

前提条件

OpenShift クラスターと管理者アカウント。

oc を利用できます。「Getting started with the OpenShift CLI」を参照してください。oc バー
ジョンは OpenShift クラスターのバージョンと一致する必要があります。

OpenShift にログインしている。「Logging in to the CLI」を参照してください。

crwctl が利用できる。「crwctl CLI 管理ツールのインストール」 を参照してください。

手順

server:deploy コマンドを実行して CodeReady Workspaces インスタンスを作成します。

$ crwctl server:deploy -n openshift-workspaces

検証手順

1. server:deploy コマンドの出力は以下で終わります。

Command server:deploy has completed successfully.

2. CodeReady Workspaces クラスターインスタンス: \https://codeready-
<openshift_deployment_name>.<domain_name> に移動します。

3.3. CODEREADY WORKSPACES の OPENSHIFT CONTAINER
PLATFORM 3.11 へのインストール

3.3.1. crwctl CLI 管理ツールのインストール

本セクションでは、CodeReady Workspaces CLI 管理ツールを使用して crwctl をインストールする方法

Red Hat CodeReady Workspaces 2.11 インストールガイド

24

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/end-user_guide/index#navigating-codeready-workspaces-using-the-dashboard_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#viewing-the-state-of-the-codeready-workspaces-cluster-deployment-using-openshift-4-cli-tools_crw
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html#cli-logging-in_cli-developer-commands

本セクションでは、CodeReady Workspaces CLI 管理ツールを使用して crwctl をインストールする方法
を説明します。

手順

1. https://developers.redhat.com/products/codeready-workspaces/download に移動します。

2. バージョン 2.11 の CodeReady Workspaces CLI 管理ツールアーカイブをダウンロードします。

3. $HOME/crwctl または /opt/crwctl などのフォルダーにアーカイブを展開します。

4. 展開したフォルダーから crwctl の実行可能ファイルを実行します。この例では
$HOME/crwctl/bin/crwctl version です。

5. オプションで、binフォルダーを $PATH （例：PATH=$PATH:$HOME/crwctl/bin）に追加し、
完全パスの指定なしで crwctl の実行を有効にします。

検証手順

crwctl version を実行すると、ツールの現在のバージョンが表示されます。

3.3.2. Operator を使用した CodeReady Workspaces の OpenShift 3 へのインストー
ル

本セクションでは、crwctl CLI 管理ツールを使用して、OpenShift 3 に CodeReady Workspaces をイン
ストールする方法を説明します。このインストールの方法では Operator を使用し、TLS (HTTPS) を有
効にします。

注記

直前の CodeReady Workspaces インストールから更新し、同じ OpenShift Container
Platform 3.11 クラスターで複数のインスタンスを有効にする方法は、インストール手順
で説明されます。

Operator は、OpenShift アプリケーションをパッケージ化し、デプロイし、管理する方法です。これ
は、以下も提供します。

インストールおよびアップグレードの再現性。

すべてのシステムコンポーネントの定期的なヘルスチェック。

OpenShift コンポーネントおよび独立ソフトウェアベンダー (ISV) コンテンツの OTA (Over-
the-air) 更新。

フィールドエンジニアの知識をカプセル化し、すべてのユーザーに展開する場所。

注記

この方法は、OpenShift Container Platform および OpenShift Dedicated バージョン 3.11
でのみサポートされますが、OpenShift Container Platform および OpenShift Dedicated
の新しいバージョンでも機能し、OperatorHub を使用したインストール方法が利用でき
ない場合にバックアップのインストール方法として機能します。

前提条件

第3章 CODEREADY WORKSPACES のインストール

25

https://developers.redhat.com/products/codeready-workspaces/download

OpenShift 3.11 の実行中のインスタンスでの管理者権限

oc OpenShift 3.11 CLI 管理ツールのインストール。「 Installing the OpenShift 3.11 CLI」を参照
してください。

crwctl 管理ツールのインストール。「crwctl CLI 管理ツールのインストール」 を参照してくだ
さい。

主な crwctl コマンドラインパラメーターが設定できない設定を適用するには、Operator で使用
される CheCluster カスタムリソースのデフォルト値を上書きする設定ファイル operator-cr-
patch.yaml を準備します。2章CodeReady Workspaces インストールの設定 を参照してくださ
い。

openshift-workspaces namespace をデフォルトのインストールプロジェクトとして使用しま
す。

イメージを registry.redhat.com からプルするように OpenShift を設定します。Red Hat コン
テナーレジストリーの認証 を参照してください。

手順

1. OpenShift にログインします。「Basic Setup and Login」を参照してください。

$ oc login

2. 以下のコマンドを実行して、oc OpenShift CLI 管理ツールのバージョンが 3.11 であることを確
認します。

$ oc version
oc v3.11.0+0cbc58b

3. 以下のコマンドを実行して、openshift-workspaces というデフォルトプロジェクトに
CodeReady Workspaces インスタンスを作成します。

$ crwctl server:deploy -p openshift

検証手順

1. 上記のコマンドの出力は以下で終わります。

Command server:deploy has completed successfully.

2. CodeReady Workspaces クラスターインスタンス: \https://codeready-
<openshift_deployment_name>.<domain_name> に移動します。

3.4. 制限された環境での CODEREADY WORKSPACES のインストール

デフォルトでは、Red Hat CodeReady Workspaces は、パブリックレジストリーで利用可能なコンテ
ナーイメージを主として、各種の外部リソースを使用します。

これらの外部リソースが利用できない環境に CodeReady Workspaces をデプロイするには (例: 公開イ
ンターネットに公開されていないクラスターなど)、以下を実行します。

1. OpenShift クラスターによって使用されるイメージレジストリーを特定し、これにプッシュで

Red Hat CodeReady Workspaces 2.11 インストールガイド

26

https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html#installing-the-cli
https://access.redhat.com/RegistryAuthentication
https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html#basic-setup-and-login

1. OpenShift クラスターによって使用されるイメージレジストリーを特定し、これにプッシュで
きることを確認します。

2. CodeReady Workspaces の実行に必要なすべてのイメージをこのレジストリーにプッシュしま
す。

3. レジストリーにプッシュされたイメージを使用するように CodeReady Workspaces を設定しま
す。

4. CodeReady Workspaces インストールに進みます。

制限された環境で CodeReady Workspaces をインストールする手順は、使用するインストール方法に
よって異なります。

Openshift 4.3 以降での OperatorHub を使用したインストール

OpenShift 3.11 または 4.x の両方で crwctl 管理ツールを使用したインストール

制限された環境でのネットワーク接続に関する注

ネットワークが制限された環境は、クラウドプロバイダーのプライベートサブネットから、公開イン
ターネットから切断された会社が所有する別個のネットワークに制限されます。ネットワーク設定に関
係なく、CodeReady Workspaces は、CodeReady Workspaces コンポーネント (codeready-
workspaces-server、アイデンティティープロバイダー、devfile、およびプラグインレジストリー) 用
に作成されたルートが OpenShift クラスター内からアクセスできる場合 に機能します。

環境のネットワークトポロジーを考慮して、これを実行する最も良い方法を判断します。たとえば、会
社または組織が所有するネットワークでは、ネットワーク管理者は、クラスターからのトラフィックが
ルートホスト名にルーティングできるようにする必要があります。たとえば、AWS で、トラフィック
がノードを出て、外部に表示されるロードバランサーに到達できるようにプロキシー設定を作成しま
す。

ネットワークが制限された環境にプロキシーが必要な場合は、「プロキシーの後ろでインストールする
ための CodeReady Workspaces カスタムリソースの準備」 に記載の手順に従います。

3.4.1. OperatorHub を使用した制限された環境での CodeReady Workspaces のインス
トール

前提条件

実行中の OpenShift クラスター。OpenShift クラスターをネットワークが制限された環境にイ
ンストールする方法については、OpenShift Container Platform 4.3 ドキュメントを参照してく
ださい。

ネットワークが制限された環境でインストールされた OpenShift の非接続クラスターに対して
使用されるミラーレジストリーへのアクセス。ネットワークが制限された環境でのインストー
ル用のミラーレジストリーの作成についての関連する OpenShift Container Platform 4.3 ドキュ
メントを参照してください。

ネットワークが制限された環境で実行される非接続 OpenShift 4 クラスターでは、Operator が ネット
ワークが制限された環境についての Operator の有効化について定義された追加要件を満たす場合にの
み、Operator を OperatorHub からインストールできます。

CodeReady Workspaces Operator はこれらの要件を満たしているので、ネットワークが制限された環
境での OLM に関する公式ドキュメントに記載の内容と互換性があります。

手順

第3章 CODEREADY WORKSPACES のインストール

27

https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/installing/install_config/installing-restricted-networks-preparations.html#installing-restricted-networks-preparations
https://docs.openshift.com/container-platform/4.3/operators/operator_sdk/osdk-generating-csvs.html#olm-enabling-operator-for-restricted-network_osdk-generating-csvs
https://docs.openshift.com/container-platform/4.3/operators/olm-restricted-networks.html

OperatorHub から CodeReady Workspaces をインストールするには、以下を実行します。

1. redhat-operators カタログイメージをビルドします。「Building an Operator catalog image」
を参照してください。

2. OperatorHub を、Operator のインストールにこのカタログイメージを使用するように設定しま
す。「Configuring OperatorHub for restricted networks」を参照してください。

3. 「OperatorHub を使用した OpenShift 4 への CodeReady Workspaces のインストール」 の説
明に従って、通常通りに CodeReady Workspaces のインストールに進みます。

3.4.2. CLI 管理ツールを使用した制限された環境での CodeReady Workspaces のイン
ストール

注記

OperatorHub を使用したインストールが利用できない場合、CodeReady Workspaces
CLI 管理ツールを使用して制限されたネットワークに CodeReady Workspaces をインス
トールします。この方法は OpenShift Container Platform 3.11 でサポートされます。

前提条件

実行中の OpenShift クラスター。OpenShift クラスターのインストール方法に関する詳細
は、OpenShift Container Platform 3.11 のドキュメントを参照してください。

3.4.2.1. プライベートレジストリーの準備

前提条件

oc ツールが利用できる。

skopeo ツール（バージョン 0.1.40 以降）が利用できる。

podman ツールが利用できる。

OpenShift クラスターからアクセスできるイメージ、および V2 イメージマニフェスト (スキー
マバージョン 2) フォーマットのサポート。インターネットへのアクセスが一時的に可能な場所
から、これにプッシュできることを確認します。

表3.1 サンプルで使用されるプレースホルダー

<source-image> レジストリー、組織、およびダイジェストなどのソースイメージの詳細
な組み合わせ (coordinate)。

<target-registry> ターゲットコンテナーイメージレジストリーのホスト名およびポート。

<target-organization> ターゲットのコンテナーイメージレジストリー内の組織

<target-image> ターゲットのコンテナーイメージレジストリーのイメージ名とダイジェ
スト。

<target-user> ターゲットのコンテナーイメージレジストリーのユーザー名。

Red Hat CodeReady Workspaces 2.11 インストールガイド

28

https://docs.openshift.com/container-platform/4.3/operators/olm-restricted-networks.html#olm-building-operator-catalog-image_olm-restricted-networks
https://docs.openshift.com/container-platform/4.3/operators/olm-restricted-networks.html#olm-restricted-networks-operatorhub_olm-restricted-networks
https://docs.openshift.com/container-platform/3.11/welcome/index.html

<target-password> ターゲットのコンテナーイメージレジストリーのユーザーパスワード。

手順

1. 内部イメージレジストリーにログインします。

$ podman login --username <user> --password <password> <target-registry>

注記

内部レジストリーへのプッシュを試行する際に x509: certificate signed by
unknown authority などのエラーが発生した場合には、以下のいずれかの回避
策を試してください。

OpenShift クラスターの証明書を /etc/containers/certs.d/<target-
registry>に追加します。

/etc/containers/registries.conf にある Podman 設定ファイルに以下の行を
追加して、レジストリーを非セキュアなレジストリーとして追加する。

[registries.insecure]
registries = ['<target-registry>']

2. ダイジェストを変更せずにイメージをコピーします。以下の表のすべてのイメージに対して、
この手順を繰り返します。

$ skopeo copy --all docker://<source-image> docker://<target-registry>/<target-
organization>/<target-image>

注記

表3.2 名前に含まれるプレフィックスまたはキーワードからの container-
images の使用について

使用 プレフィックスまたはキーワード

Essential stacks-, plugin- または -openj9- ではない

Workspaces stacks-, plugin-

IBM Z および IBM
Power Systems

-openj9-

注記

openj9 のサフィックスがつくイメージは、x86_64 で使用される OpenJDK イ
メージと同等の Eclipse OpenJ9 イメージです。IBM Power Systems および IBM
Z は、これらのシステムでパフォーマンスを改善するために Eclipse OpenJ9 を
使用します。

第3章 CODEREADY WORKSPACES のインストール

29

表3.3 プライベートレジストリーでコピーするイメージ

<source-image> <target-image>

registry.redhat.io/codeready-
workspaces/configbump-
rhel8@sha256:20fd31c45d769526d45eaf6
738a6d4af1520a844126a2a2e510c304a81b
7249a

configbump-
rhel8@sha256:20fd31c45d769526d45eaf6
738a6d4af1520a844126a2a2e510c304a81b
7249a

registry.redhat.io/codeready-
workspaces/crw-2-rhel8-
operator@sha256:a41f7b950c5131a6bc08
b1e094db2da9b784e6083ddaa4aa68512f3
947798702

crw-2-rhel8-
operator@sha256:a41f7b950c5131a6bc08
b1e094db2da9b784e6083ddaa4aa68512f3
947798702

registry.redhat.io/codeready-
workspaces/dashboard-
rhel8@sha256:1c37bdffae8cdc154d88b94
ab38e868f7e33486c81b6c3bded36dfdfd85
b81a4

dashboard-
rhel8@sha256:1c37bdffae8cdc154d88b94
ab38e868f7e33486c81b6c3bded36dfdfd85
b81a4

registry.redhat.io/codeready-
workspaces/devfileregistry-
rhel8@sha256:b164968dbd52c72f39533b
ec4efd3ad3cce3acb6060495e472dd9c3f29
08fbbc

devfileregistry-
rhel8@sha256:b164968dbd52c72f39533b
ec4efd3ad3cce3acb6060495e472dd9c3f29
08fbbc

registry.redhat.io/codeready-
workspaces/devworkspace-controller-
rhel8@sha256:c88242524a9074a58bc7d2
0cb8411d37e7e752358ab80366533b8165b
b9f95b0

devworkspace-controller-
rhel8@sha256:c88242524a9074a58bc7d2
0cb8411d37e7e752358ab80366533b8165b
b9f95b0

registry.redhat.io/codeready-
workspaces/devworkspace-
rhel8@sha256:c18f166f570ca572c94472b
7a3bd5127b48521e777ea09dcad6f78ad66
cd7a13

devworkspace-
rhel8@sha256:c18f166f570ca572c94472b
7a3bd5127b48521e777ea09dcad6f78ad66
cd7a13

registry.redhat.io/codeready-
workspaces/jwtproxy-
rhel8@sha256:44acafb02cce3d3fe8b57da
2e27547b502c4088624935ffe7f3aa06a55d
08bba

jwtproxy-
rhel8@sha256:44acafb02cce3d3fe8b57da
2e27547b502c4088624935ffe7f3aa06a55d
08bba

registry.redhat.io/codeready-
workspaces/machineexec-
rhel8@sha256:bfdd8cf61a6fad757f1e8334
aa84dbf44baddf897ff8def7496bf6dbc0666
79d

machineexec-
rhel8@sha256:bfdd8cf61a6fad757f1e8334
aa84dbf44baddf897ff8def7496bf6dbc0666
79d

Red Hat CodeReady Workspaces 2.11 インストールガイド

30

registry.redhat.io/codeready-
workspaces/plugin-java11-openj9-
rhel8@sha256:8d9930cd3c0b2fa72a6c0d
880b4d0b330b1a7a51491f09175134dcc79f
2cb376

plugin-java11-openj9-
rhel8@sha256:8d9930cd3c0b2fa72a6c0d
880b4d0b330b1a7a51491f09175134dcc79f
2cb376

registry.redhat.io/codeready-
workspaces/plugin-java11-
rhel8@sha256:d0337762e71fd4badabcb3
8a582b2f35e7e7fc1c9c0f2e841e339d45b7
bd34ed

plugin-java11-
rhel8@sha256:d0337762e71fd4badabcb3
8a582b2f35e7e7fc1c9c0f2e841e339d45b7
bd34ed

registry.redhat.io/codeready-
workspaces/plugin-java8-openj9-
rhel8@sha256:d7ec33ce2fa61a06fade63e
2b516409c465bd5516030dd482e2f4bdb2d
676c9f

plugin-java8-openj9-
rhel8@sha256:d7ec33ce2fa61a06fade63e
2b516409c465bd5516030dd482e2f4bdb2d
676c9f

registry.redhat.io/codeready-
workspaces/plugin-java8-
rhel8@sha256:b2ceb0039c763e6a38aa37
0157b476ecb08faf8b2bfb680bada774e149
583d62

plugin-java8-
rhel8@sha256:b2ceb0039c763e6a38aa37
0157b476ecb08faf8b2bfb680bada774e149
583d62

registry.redhat.io/codeready-
workspaces/plugin-kubernetes-
rhel8@sha256:45535630e37e3e317772f36
b28b47859d32ad1e82505a796139682cdbe
fb03b8

plugin-kubernetes-
rhel8@sha256:45535630e37e3e317772f36
b28b47859d32ad1e82505a796139682cdbe
fb03b8

registry.redhat.io/codeready-
workspaces/plugin-openshift-
rhel8@sha256:d2384cafc870c4979131685
08be0d846412c68ace9724baa37ca3c6be9
aa4772

plugin-openshift-
rhel8@sha256:d2384cafc870c4979131685
08be0d846412c68ace9724baa37ca3c6be9
aa4772

registry.redhat.io/codeready-
workspaces/pluginbroker-artifacts-
rhel8@sha256:a9bf68e6dabbaaaf3e97afe
4ac6e97a317e8fd9c05c88e5801fbf01aaa1
ebb99

pluginbroker-artifacts-
rhel8@sha256:a9bf68e6dabbaaaf3e97afe
4ac6e97a317e8fd9c05c88e5801fbf01aaa1
ebb99

registry.redhat.io/codeready-
workspaces/pluginbroker-metadata-
rhel8@sha256:727f80af1e1f6054ac93cad1
65bc392f43c951681936b979b98003e06e75
9643

pluginbroker-metadata-
rhel8@sha256:727f80af1e1f6054ac93cad1
65bc392f43c951681936b979b98003e06e75
9643

<source-image> <target-image>

第3章 CODEREADY WORKSPACES のインストール

31

registry.redhat.io/codeready-
workspaces/pluginregistry-
rhel8@sha256:5d19f7c5c0417940c52e552
c51401f729b9ec16868013e016d7b80342c
d8de4e

pluginregistry-
rhel8@sha256:5d19f7c5c0417940c52e552
c51401f729b9ec16868013e016d7b80342c
d8de4e

registry.redhat.io/codeready-
workspaces/server-
rhel8@sha256:e79e0a462b4dd47ecaac2f5
14567287c44e32437496b2c214ebc2bc005
5c4aa9

server-
rhel8@sha256:e79e0a462b4dd47ecaac2f5
14567287c44e32437496b2c214ebc2bc005
5c4aa9

registry.redhat.io/codeready-
workspaces/stacks-cpp-
rhel8@sha256:31ef0774342bc1dbcd91e3
b85d68d7a28846500f04ace7a5dfa3116c0c
edfeb1

stacks-cpp-
rhel8@sha256:31ef0774342bc1dbcd91e3
b85d68d7a28846500f04ace7a5dfa3116c0c
edfeb1

registry.redhat.io/codeready-
workspaces/stacks-dotnet-
rhel8@sha256:6ca14e5a94a98b15f39a353
e533cf659b2b3937a86bd51af175dc3eadd
8b80d5

stacks-dotnet-
rhel8@sha256:6ca14e5a94a98b15f39a353
e533cf659b2b3937a86bd51af175dc3eadd
8b80d5

registry.redhat.io/codeready-
workspaces/stacks-golang-
rhel8@sha256:30e71577cb80ffaf1f67a292
b4c96ab74108a2361347fc593cbb5057846
29db2

stacks-golang-
rhel8@sha256:30e71577cb80ffaf1f67a292
b4c96ab74108a2361347fc593cbb5057846
29db2

registry.redhat.io/codeready-
workspaces/stacks-php-
rhel8@sha256:bb7f7ef0ce58695aaf29b33
55dd9ee187a94d1d382f68f329f9664ca017
72ba2

stacks-php-
rhel8@sha256:bb7f7ef0ce58695aaf29b33
55dd9ee187a94d1d382f68f329f9664ca017
72ba2

registry.redhat.io/codeready-
workspaces/theia-endpoint-
rhel8@sha256:abb4f4c8e1328ea9fc5ca4f
e0c809ec007fe348e3d2ccd722e5ba75c02f
f448f

theia-endpoint-
rhel8@sha256:abb4f4c8e1328ea9fc5ca4f
e0c809ec007fe348e3d2ccd722e5ba75c02f
f448f

registry.redhat.io/codeready-
workspaces/theia-
rhel8@sha256:5ed38a48d18577120993cd
3b673a365e31aeb4265c5b4a95dd9d0ac74
7260392

theia-
rhel8@sha256:5ed38a48d18577120993cd
3b673a365e31aeb4265c5b4a95dd9d0ac74
7260392

<source-image> <target-image>

Red Hat CodeReady Workspaces 2.11 インストールガイド

32

registry.redhat.io/codeready-
workspaces/traefik-
rhel8@sha256:6704bd086f0d971ecedc1d
d6dc7a90429231fdfa86579e742705b31cbe
dbd8b2

traefik-
rhel8@sha256:6704bd086f0d971ecedc1d
d6dc7a90429231fdfa86579e742705b31cbe
dbd8b2

registry.redhat.io/jboss-eap-7/eap-xp3-
openj9-11-openshift-
rhel8@sha256:53684e34b0dbe8560d2c33
0b0761b3eb17982edc1c947a74c36d29805
bda6736

eap-xp3-openj9-11-openshift-
rhel8@sha256:53684e34b0dbe8560d2c33
0b0761b3eb17982edc1c947a74c36d29805
bda6736

registry.redhat.io/jboss-eap-7/eap-xp3-
openjdk11-openshift-
rhel8@sha256:3875b2ee2826a6d8134aa3
b80ac0c8b5ebc4a7f718335d76dfc3461b7
9f93d19

eap-xp3-openjdk11-openshift-
rhel8@sha256:3875b2ee2826a6d8134aa3
b80ac0c8b5ebc4a7f718335d76dfc3461b7
9f93d19

registry.redhat.io/jboss-eap-7/eap74-
openjdk8-openshift-
rhel7@sha256:b4a113c4d4972d142a3c35
0e2006a2b297dc883f8ddb29a88db19c892
358632d

eap74-openjdk8-openshift-
rhel7@sha256:b4a113c4d4972d142a3c35
0e2006a2b297dc883f8ddb29a88db19c892
358632d

registry.redhat.io/rh-sso-7/sso74-openj9-
openshift-
rhel8@sha256:4ff9d6342dfd3b85234ea55
4b92867c649744ece9aa7f8751aae06bf9d2
d324c

sso74-openj9-openshift-
rhel8@sha256:4ff9d6342dfd3b85234ea55
4b92867c649744ece9aa7f8751aae06bf9d2
d324c

registry.redhat.io/rh-sso-7/sso74-
openshift-
rhel8@sha256:b98f0b743dd406be726d8b
a8c0437ed5228c7064015c1d48ef5f87eb36
5522bc

sso74-openshift-
rhel8@sha256:b98f0b743dd406be726d8b
a8c0437ed5228c7064015c1d48ef5f87eb36
5522bc

registry.redhat.io/rhel8/postgresql-
96@sha256:ed53ca7b191432f7cf9da0fd8
629d7de14ade609ca5f38aba443716f83616
f2e

postgresql-
96@sha256:ed53ca7b191432f7cf9da0fd8
629d7de14ade609ca5f38aba443716f83616
f2e

registry.redhat.io/rhscl/mongodb-36-
rhel7@sha256:9f799d356d7d2e442bde9d
401b720600fd9059a3d8eefea6f3b2ffa721c
0dc73

mongodb-36-
rhel7@sha256:9f799d356d7d2e442bde9d
401b720600fd9059a3d8eefea6f3b2ffa721c
0dc73

<source-image> <target-image>

第3章 CODEREADY WORKSPACES のインストール

33

registry.redhat.io/ubi8/ubi-
minimal@sha256:31ccb79b1b2c2d6eff1b
ee0db23d5b8ab598eafd6238417d9813f13
46f717c11

ubi8ubi-
minimal@sha256:31ccb79b1b2c2d6eff1b
ee0db23d5b8ab598eafd6238417d9813f13
46f717c11

<source-image> <target-image>

検証手順

イメージに同じダイジェストがあることを確認します。

$ skopeo inspect docker://<source-image>
$ skopeo inspect docker://<target-registry>/<target-organization>/<target-image>

関連資料

イメージ一覧のソースを見つけるには、CodeReady Workspaces Operator
ClusterServiceVersion ソースの relatedImages 属性の値を参照してください。

3.4.2.2. 制限された環境用の CodeReady Workspaces カスタムリソースの準備

crwctl または OperatorHub を使用して制限された環境で CodeReady Workspaces をインストールする
場合は、CheCluster カスタムリソースに追加の情報を提供します。

3.4.2.2.1. デフォルトの CheCluster カスタムリソースのダウンロード

手順

1. デフォルトのカスタムリソース YAML ファイルをダウンロードします。

2. ダウンロードしたカスタムリソース org_v1_che_cr.yaml に名前を付けます。追加の変更およ
び使用に備えてこれを保持します。

3.4.2.2.2. 制限された環境での CheCluster カスタムリソース のカスタマイズ

前提条件

CodeReady Workspaces がデプロイされる OpenShift クラスターに表示されるイメージレジス
トリーの利用可能な必要なすべてのイメージ。これについては、「プライベートレジストリー
の準備」で説明されています。ここでは、以下の例で使用されているプレースホルダーも定義
されています。

手順

1. CodeReady Workspaces Operator によって管理される CheCluster カスタムリソースで、制限
された環境で CodeReady Workspaces のインスタンスのデプロイを容易にするために使用され
るフィールドを追加します。

[...]
spec:
 server:

Red Hat CodeReady Workspaces 2.11 インストールガイド

34

https://raw.githubusercontent.com/redhat-developer/codeready-workspaces-images/crw-2.11-rhel-8/codeready-workspaces-operator-metadata-generated/manifests/codeready-workspaces.csv.yaml
https://raw.githubusercontent.com/redhat-developer/codeready-workspaces-images/crw-2.11-rhel-8/codeready-workspaces-operator/deploy/crds/org_v1_che_cr.yaml

3.4.2.3. CodeReady Workspaces CLI 管理ツールを使用した制限された環境での CodeReady
Workspaces インストールの開始

本セクションでは、CodeReady Workspaces CLI 管理ツールを使用して、制限された環境で
CodeReady Workspaces インストールを開始する方法を説明します。

前提条件

CodeReady Workspaces CLI 管理ツールがインストールされている。「crwctl CLI 管理ツール
のインストール」 を参照してください。

oc ツールがインストールされている。

OpenShift インスタンスへのアクセス。

手順

1. OpenShift Container Platform にログインします。

$ oc login ${OPENSHIFT_API_URL} --username ${OPENSHIFT_USERNAME} \
 --password ${OPENSHIFT_PASSWORD}

2. カスタマイズされたカスタムリソースで CodeReady Workspaces をインストールし、制限され
た環境に関連するフィールドを追加します。

$ crwctl server:start \
 --che-operator-image=<target-registry>/<target-organization>/crw-2-rhel8-operator:2.11 \
 --che-operator-cr-yaml=org_v1_che_cr.yaml

注記

低速なシステムまたはインターネット接続の場合は、--k8spodwaittimeout=1800000 フ
ラグオプションを crwctl server:start コマンドに追加し、Pod のタイムアウト期間を
1800000 ms 以上に拡張します。

3.4.3. プロキシーの後ろでインストールするための CodeReady Workspaces カスタム
リソースの準備

この手順では、CodeReady Workspaces をプロキシーの後ろでインストールする際に、CheCluster カ
スタムリソースに必要な追加情報を提供する方法を説明します。

手順

1. CodeReady Workspaces Operator によって管理される CheCluster カスタムリソースで、制限
された環境で CodeReady Workspaces のインスタンスのデプロイを容易にするために使用され
るフィールドを追加します。

 airGapContainerRegistryHostname: '<target-registry>'
 airGapContainerRegistryOrganization: '<target-organization>'
[...]

[...]
spec:

第3章 CODEREADY WORKSPACES のインストール

35

2. これらの基本設定のほかに、プロキシー設定では通常、プロキシーを使用せずに CodeReady
Workspaces からアクセスされるホストの一覧に外部 OpenShift クラスター API URL のホスト
を追加する必要があります。
このクラスター API ホストを取得するには、OpenShift クラスターに対して以下のコマンドを
実行します。

$ oc whoami --show-server | sed 's#https://##' | sed 's#:.*$##'

CheCluster カスタムリソースの対応するフィールドは nonProxyHosts です。ホストがこの
フィールドにすでに存在する場合は、| を区切り文字として使用し、クラスター API ホストを追
加します。

 server:
 proxyURL: '<URL of the proxy, with the http protocol, and without the port>'
 proxyPort: '<Port of proxy, typically 3128>'
[...]

[...]
spec:
 server:
 nonProxyHosts: 'anotherExistingHost|<cluster api host>'
[...]

Red Hat CodeReady Workspaces 2.11 インストールガイド

36

第4章 CODEREADY WORKSPACES の設定
本章では、いくつかのーザーストーリーを例として使用し、Red Hat CodeReady Workspaces の設定方
法とオプションについて説明します。

「CodeReady Workspaces サーバーコンポーネントの詳細な設定オプション」 では、前述の方
法を適用できない場合に使用する詳細な設定方法を説明します。

次のセクションでは、特定のユーザーストーリーを説明します。

「ワークスペースターゲットプロジェクトの設定」

「ユーザーが作成できるワークスペースの数の設定」

「ユーザーが実行できるワークスペース数の設定」

「ワークスペース nodeSelector の設定」

「Red Hat CodeReady Workspaces サーバーのホスト名の設定」

「OpenShift ルートの設定」

「ルーターのシャード化と連携するように OpenShift ルートを設定」

「自己署名証明書を使用した Git リポジトリーをサポートする CodeReady Workspaces のデプ
ロイ」

「ストレージクラスを使用した CodeReady Workspaces のインストール」

「ストレージタイプの設定」

「信頼できない TLS 証明書の CodeReady Workspaces へのインポート」

「コンポーネント間の通信での外部 DNS 名と内部 DNS 名間の切り替え」

「Red Hat CodeReady Workspaces ログインページの RH-SSO codeready-workspaces-
username-readonly テーマの設定」

「シークレットまたは ConfigMap をファイルまたは環境変数として CodeReady Workspaces
コンテナーにマウントする」

「Dev Workspace エンジンの有効化」

4.1. CODEREADY WORKSPACES サーバーコンポーネントの詳細な設定オ
プション

以下のセクションでは、CodeReady Workspaces サーバーコンポーネントの詳細なデプロイメントおよ
び設定方法を説明します。

4.1.1. Operator を使用した CodeReady Workspaces サーバーの詳細設定について

以下のセクションでは、Operator を使用したデプロイメントの CodeReady Workspaces サーバーコン
ポーネントの詳細な設定方法について説明します。

詳細設定は以下を実行するために必要です。

標準の CheCluster カスタムリソースフィールドから Operator によって自動的に生成されない

第4章 CODEREADY WORKSPACES の設定

37

標準の CheCluster カスタムリソースフィールドから Operator によって自動的に生成されない
環境変数を追加します。

標準の CheCluster カスタムリソースフィールドから Operator によって自動的に生成されるプ
ロパティーを上書きします。

CheCluster カスタムリソースの server 設定の一部である customCheProperties フィールドには、
CodeReady Workspaces サーバーコンポーネントに適用する追加の環境変数のマップが含まれます。

例4.1 ワークスペースのデフォルトのメモリー制限の上書き

CHE_WORKSPACE_DEFAULT__MEMORY__LIMIT__MB プロパティーを customCheProperties
に追加します。

注記

以前のバージョンの CodeReady Workspaces Operator には、このロールを実行するため
に custom という名前の configMap が含まれていました。CodeReady Workspaces
Operator が custom という名前の configMap を見つけると、これに含まれるデータを
customCheProperties フィールドに追加し、CodeReady Workspaces を再デプロイ
し、custom configMap を削除します。

関連資料

CheCluster カスタムリソースで利用可能なすべてのパラメーターの一覧については、2
章CodeReady Workspaces インストールの設定 を参照してください。

customCheProperties の設定に使用できるすべてのパラメーターの一覧について
は、「CodeReady Workspaces サーバーコンポーネントのシステムプロパティー参照」 を参照
してください。

4.1.2. CodeReady Workspaces サーバーコンポーネントのシステムプロパティー参照

以下のドキュメントでは、CodeReady Workspaces サーバーコンポーネントのすべての使用可能な設定
プロパティーについて説明します。

4.1.2.1. CodeReady Workspaces サーバー

表4.1 CodeReady Workspaces サーバー

apiVersion: org.eclipse.che/v1
kind: CheCluster
[...]
spec:
 server:
 # [...]
 customCheProperties:
 CHE_WORKSPACE_DEFAULT__MEMORY__LIMIT__MB: "2048"
[...]

Red Hat CodeReady Workspaces 2.11 インストールガイド

38

環境変数名 デフォルト値 詳細

CHE_DATABASE ${che.home}/storage CodeReady Workspaces が内部
データオブジェクトを保存する
フォルダー。

CHE_API http://${CHE_HOST}:${CHE_
PORT}/api

API サービス。ブラウザーは、こ
の URL を使用して CodeReady
Workspaces サーバーへの REST
通信を開始します。

CHE_API_INTERNAL http://${CHE_HOST}:${CHE_
PORT}/api

API サービスの内部ネットワーク
URL。バックエンドサービスは、
この URL を使用した CodeReady
Workspaces サーバーへの REST
通信を開始する必要があります。

CHE_WEBSOCKET_ENDPOI
NT

ws://${CHE_HOST}:${CHE_P
ORT}/api/websocket

CodeReady Workspaces
websocket の主なエンドポイン
ト。主な websocket の対話とメッ
セージング用の基本的な通信エン
ドポイントを提供します。

CHE_WORKSPACE_PROJEC
TS_STORAGE

/projects プロジェクトは、CodeReady
Workspaces サーバーから各ワー
クスペースを実行するマシンに同
期されます。これは、プロジェク
トが配置されているマシンのディ
レクトリーです。

CHE_WORKSPACE_PROJEC
TS_STORAGE_DEFAULT_SI
ZE

1Gi devfile 要求の OpenShift タイプ
のコンポーネントがプロジェクト
PVC 作成を要求する場合に使用さ
れます (unique および 'per
workspace PVC ストラテジーの
場合に適用されます。common
PVC ストラテジーの場合は、これ
は
che.infra.kubernetes.pvc.qua
ntity プロパティーの値で書き換
えられます)。

第4章 CODEREADY WORKSPACES の設定

39

CHE_WORKSPACE_LOGS_R
OOT__DIR

/workspace_logs すべてのワークスペースログが置
かれるマシン内のディレクトリー
を定義します。環境変数などの値
として、この値をマシンに指定し
ます。これは、エージェントの開
発者がこのディレクトリーを使用
してエージェントのログをバック
アップできるようにするためのも
のです。

CHE_WORKSPACE_HTTP__
PROXY

 環境変数 HTTP_PROXY は、ワー
クスペースを起動するコンテナー
で指定された値に設定します。

CHE_WORKSPACE_HTTPS_
_PROXY

 環境変数 HTTPS_PROXY は、
ワークスペースを起動するコンテ
ナーで指定された値に設定しま
す。

CHE_WORKSPACE_NO__PR
OXY

 環境変数 NO_PROXY は、ワーク
スペースを起動するコンテナーで
指定された値に設定します。

CHE_WORKSPACE_AUTO__
START

true デフォルトでは、ユーザーがこの
URL を使用してワークスペースに
アクセスすると、ワークスペース
は自動的に起動します (現時点で
停止している場合)。この動作を
無効にするには、このパラメー
ターを false に設定します。

CHE_WORKSPACE_POOL_T
YPE

固定: ワークスペーススレッドプールの
設定。このプールは、非同期の実
行が必要なワークスペース関連の
操作 (例: 起動/停止) に使用されま
す。設定可能な値は fixed および
cached です。

CHE_WORKSPACE_POOL_E
XACT__SIZE

30 プールタイプが fixed と異なる場
合に、このプロパティーは無視さ
れます。これはプールのサイズを
設定します。設定される
と、multiplier プロパティーは無
視されます。このプロパティーが
設定されていない場合 (0, <0,
NULL)、プールサイズはコア数
と等しくなりま
す。che.workspace.pool.core
s_multiplier も参照してくださ
い。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

40

CHE_WORKSPACE_POOL_C
ORES__MULTIPLIER

2 プールタイプが fixed に設定され
ておら
ず、che.workspace.pool.exa
ct_size が設定されている場合
は、このプロパティーは無視され
ます。設定されている場合、プー
ルサイズは N_CORES *
multiplier になります。

CHE_WORKSPACE_PROBE_
_POOL__SIZE

10 このプロパティーは、ワークス
ペースサーバーの liveness プロー
ブに使用するスレッドの数を指定
します。

CHE_WORKSPACE_HTTP__
PROXY__JAVA__OPTIONS

NULL ワークスペース JVM の HTTP プ
ロキシー設定。

CHE_WORKSPACE_JAVA__
OPTIONS

-XX:MaxRAM=150m-
XX:MaxRAMFraction=2 -
XX:+UseParallelGC -
XX:MinHeapFreeRatio=10 -
XX:MaxHeapFreeRatio=20 -
XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeigh
t=90 -
Dsun.zip.disableMemoryMap
ping=true -Xms20m -
Djava.security.egd=file:/dev/.
/urandom

ワークスペースで実行されている
JVM に追加される Java コマンド
ラインオプション。

CHE_WORKSPACE_MAVEN_
_OPTIONS

-XX:MaxRAM=150m-
XX:MaxRAMFraction=2 -
XX:+UseParallelGC -
XX:MinHeapFreeRatio=10 -
XX:MaxHeapFreeRatio=20 -
XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeigh
t=90 -
Dsun.zip.disableMemoryMap
ping=true -Xms20m -
Djava.security.egd=file:/dev/.
/urandom

ワークスペースでエージェントを
実行する JVM に追加される
Maven コマンドラインオプショ
ン。

CHE_WORKSPACE_DEFAUL
T__MEMORY__LIMIT__MB

1024 環境に RAM 設定のない各マシン
の RAM 制限のデフォルト。0 以
下の値値は、制限を無効にするも
のとして解釈されます。

環境変数名 デフォルト値 詳細

第4章 CODEREADY WORKSPACES の設定

41

CHE_WORKSPACE_DEFAUL
T__MEMORY__REQUEST__
MB

200 環境内に明示的な RAM 設定のな
い各コンテナーの RAM 要求。こ
の量はワークスペースコンテナー
の作成時に割り当てられます。こ
のプロパティーは、すべてのイン
フラストラクチャー実装でサポー
トされる訳ではありません。現時
点で、これは OpenShift によって
サポートされます。メモリー制限
を超えるメモリー要求は無視さ
れ、制限サイズのみが使用されま
す。0 以下の値値は、制限を無効
にするものとして解釈されます。

CHE_WORKSPACE_DEFAUL
T__CPU__LIMIT__CORES

-1 環境に CPU 設定のない各コンテ
ナーの CPU 制限。浮動小数点の
コア数 (例: 0.125) で、または
OpenShift 形式（125mなどの整
数のミリコア数) を使用して指定
します。0 以下の値値は、制限を
無効にするものとして解釈されま
す。

CHE_WORKSPACE_DEFAUL
T__CPU__REQUEST__CORE
S

-1 環境内に CPU 設定のない各コン
テナーの CPU 要求。CPU 制限を
超える CPU 要求は無視され、制
限の数値のみが使用されます。0
以下の値値は、制限を無効にする
ものとして解釈されます。

CHE_WORKSPACE_SIDECA
R_DEFAULT__MEMORY__LI
MIT__MB

128 CodeReady Workspaces プラグイ
ン設定に RAM 設定のない各サイ
ドカーの RAM 制限。0 以下の値
値は、制限を無効にするものとし
て解釈されます。

CHE_WORKSPACE_SIDECA
R_DEFAULT__MEMORY__R
EQUEST__MB

64 CodeReady Workspaces プラグイ
ン設定に RAM 設定のない各サイ
ドカーの RAM 要求。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

42

CHE_WORKSPACE_SIDECA
R_DEFAULT__CPU__LIMIT_
_CORES

-1 CodeReady Workspaces プラグイ
ン設定に CPU 設定のない各サイ
ドカーの CPU 制限のデフォル
ト。浮動小数点のコア数 (例:
0.125) で、または OpenShift 形
式（125mなどの整数のミリコア
数) を使用して指定します。0 以
下の値値は、制限を無効にするも
のとして解釈されます。

CHE_WORKSPACE_SIDECA
R_DEFAULT__CPU__REQUE
ST__CORES

-1 CodeReady Workspaces プラグイ
ン設定に CPU 設定のない各サイ
ドカーの CPU 要求のデフォル
ト。浮動小数点のコア数 (例:
0.125) で、または OpenShift 形
式（125mなどの整数のミリコア
数) を使用して指定します。

CHE_WORKSPACE_SIDECA
R_IMAGE__PULL__POLICY

Always サイドカーのイメージプルストラ
テジーを定義します。使用できる
値は
Always、Never、IfNotPresen
t です。その他の値について
は、Always は :latest タグが付
いたイメージに、その他の場合は
IfNotPresent が想定されます。

CHE_WORKSPACE_ACTIVIT
Y__CHECK__SCHEDULER__
PERIOD__S

60 非アクティブなワークスペースの
一時停止ジョブの実行期間。

CHE_WORKSPACE_ACTIVIT
Y__CLEANUP__SCHEDULER
__PERIOD__S

3600 アクティビティーテーブルのク
リーンアップ期間。アクティビ
ティーテーブルには、サーバーが
特定の時点で障害が発生するなど
の予想されないエラーが生じる場
合に、無効なデータまたは古い
データを含まれることがありま
す。デフォルトでは、クリーン
アップジョブは 1 時間ごとに実行
されます。

CHE_WORKSPACE_ACTIVIT
Y__CLEANUP__SCHEDULER
__INITIAL__DELAY__S

60 サーバーの起動後から最初のアク
ティビティーのクリーンアップ
ジョブを開始するまでの遅延。

環境変数名 デフォルト値 詳細

第4章 CODEREADY WORKSPACES の設定

43

CHE_WORKSPACE_ACTIVIT
Y__CHECK__SCHEDULER__
DELAY__S

180 CodeReady Workspaces サーバー
が非アクティブのタイムアウトま
での期間利用できない場合の、大
規模な一時停止を回避するために
最初のワークスペースのアイドル
チェックジョブが開始されるまで
の遅延。

CHE_WORKSPACE_CLEANU
P__TEMPORARY__INITIAL__
DELAY__MIN

5 一時ワークスペースのクリーン
アップジョブの最初の実行を遅延
させる時間。

CHE_WORKSPACE_CLEANU
P__TEMPORARY__PERIOD_
_MIN

180 実行を終了してから次の一時的な
ワークスペースのクリーンアップ
ジョブの実行を開始するまでの間
に遅延する時間

CHE_WORKSPACE_SERVER
_PING__SUCCESS__THRES
HOLD

1 サーバーへの正常に順次実行され
る ping の数。この数を超える
と、サーバーは利用可能な状態に
あるものとして処理されます。
CodeReady Workspaces
Operator: このプロパティーは、
ワークスペース、エージェント、
ターミナル、exec などの全サー
バーに共通します。

CHE_WORKSPACE_SERVER
_PING__INTERVAL__MILLIS
ECONDS

3000 ワークスペースサーバーへの連続
する ping の間隔 (ミリ秒単位)。

CHE_WORKSPACE_SERVER
_LIVENESS__PROBES

wsagent/http,exec-
agent/http,terminal,theia,jup
yter,dirigible,cloud-
shell,intellij

liveness プローブを必要とする
サーバー名の一覧

CHE_WORKSPACE_STARTU
P__DEBUG__LOG__LIMIT__
BYTES

10485760 ワークスペースの起動をデバッグ
する際に che-server で観察され
る単一コンテナーから収集される
ログの制限サイズ。デフォルト値
は 10MB=10485760 です。

CHE_WORKSPACE_STOP_R
OLE_ENABLED

true true の場合、OpenShift OAuth が
有効な場合に、編集権限を持つ
「stop-workspace」ロールが
「che」 ServiceAccount に付与さ
れます。この設定は、OpenShift
OAuth が有効な場合にワークス
ペースのアイドリングに主に必要
になります。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

44

CHE_DEVWORKSPACES_EN
ABLED

false DevWorkspaces を有効にして
CodeReady Workspaces をデプロ
イするかどうかを指定します。こ
のプロパティーは、
DevWorkspace のサポートもイン
ストールされている場合に
CodeReady Workspaces Operator
によって設定されます。このプロ
パティーを使用して、このファク
トを CodeReady Workspaces
ダッシュボードにアドバタイズし
ます。このプロパティーの値を手
動で変更することは推奨されませ
ん。

環境変数名 デフォルト値 詳細

4.1.2.2. 認証パラメーター

表4.2 認証パラメーター

環境変数名 デフォルト値 詳細

CHE_AUTH_USER__SELF__
CREATION

false CodeReady Workspaces には単一
のアイデンティティー実装がある
ため、これによるユーザーエクス
ペリエンスへの変更はありませ
ん。true の場合、API レベルでの
ユーザー作成を有効にします。

CHE_AUTH_ACCESS__DENI
ED__ERROR__PAGE

/error-oauth 認証エラーページアドレス

CHE_AUTH_RESERVED__US
ER__NAMES

 予約済みのユーザー名

第4章 CODEREADY WORKSPACES の設定

45

CHE_OAUTH_GITHUB_CLIE
NTID

NULL GitHub OAuth クライアントの設
定。GitHub OAuth を設定して、
リモートリポジトリーへの認証を
自動化できます。最初に、このア
プリケーションを GitHub OAuth
に登録する必要があります。
GitHub OAuth クライアント ID。

CHE_OAUTH_GITHUB_CLIE
NTSECRET

NULL GitHub OAuth クライアントシー
クレット。

CHE_OAUTH_GITHUB_AUTH
URI

https://github.com/login/oaut
h/authorize

GitHub OAuth 認証 URI。

CHE_OAUTH_GITHUB_TOKE
NURI

https://github.com/login/oaut
h/access_token

GitHub OAuth トークン URI。

CHE_OAUTH_GITHUB_REDI
RECTURIS

http://localhost:${CHE_POR
T}/api/oauth/callback

GitHub OAuth リダイレクト
URI。複数の値をコンマで区切り
ます（例： URI,URI,URI）。

CHE_OAUTH_OPENSHIFT_C
LIENTID

NULL OpenShift OAuth クライアントの
設定。OpenShift OAuth トークン
の取得に使用されます。
OpenShift OAuth クライアント
ID。

CHE_OAUTH_OPENSHIFT_C
LIENTSECRET

NULL OpenShift OAuth クライアントの
設定。OpenShift OAuth トークン
の取得に使用されます。
OpenShift OAuth クライアント
ID。OpenShift OAuth クライアン
トシークレット。

CHE_OAUTH_OPENSHIFT_O
AUTH__ENDPOINT

NULL Configurationof OpenShift OAuth
クライアント。OpenShift OAuth
トークンの取得に使用されます。
OpenShift OAuth クライアント
ID。OpenShift OAuth クライアン
トシークレット。OpenShift
OAuth エンドポイント。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

46

CHE_OAUTH_OPENSHIFT_V
ERIFY__TOKEN__URL

NULL ConfigurationofOpenShiftOAuth
クライアント。OpenShift OAuth
トークンの取得に使用されます。
OpenShift OAuth クライアント
ID。OpenShift OAuth クライアン
トシークレット。OpenShift
OAuth エンドポイント。
OpenShift OAuth 検証トークン
URL。

CHE_OAUTH1_BITBUCKET_
CONSUMERKEYPATH

NULL Bitbucket Server OAuth1 クライア
ントの設定。パーソナルアクセス
トークンの取得に使用されます。
Bitbucket Server アプリケーショ
ンのコンシューマーキーが含まれ
るファイルの場所（ユーザー名と
同等）。

CHE_OAUTH1_BITBUCKET_
PRIVATEKEYPATH

NULL Bitbucket Server OAuth1 クライア
ントの設定パーソナルアクセス
トークンの取得に使用されます。
Bitbucket Server アプリケーショ
ンのコンシューマーキーが含まれ
るファイルの場所（ユーザー名と
同等）。Bitbucket Server アプリ
ケーションの秘密鍵が含まれる
ファイルの場所

CHE_OAUTH1_BITBUCKET_
ENDPOINT

NULL Bitbucket Server OAuth1 クライア
ントの設定パーソナルアクセス
トークンの取得に使用されます。
Bitbucket Server アプリケーショ
ンのコンシューマーキーが含まれ
るファイルの場所（ユーザー名と
同等）。Bitbucket Server アプリ
ケーションの秘密鍵の Bitbucket
Server URL が含まれるファイル
の場所ファクトリーと正しく連携
するには、同じ URL を
che.integration.bitbucket.ser
ver_endpoints に含める必要が
あります。

環境変数名 デフォルト値 詳細

4.1.2.3. 内部

表4.3 内部

第4章 CODEREADY WORKSPACES の設定

47

環境変数名 デフォルト値 詳細

SCHEDULE_CORE__POOL_
_SIZE

10 CodeReady Workspaces 拡張に
は、時間ベースでスケジュールさ
れる実行をスケジュールできま
す。これにより、繰り返されるス
ケジュールで起動する拡張に割り
当てられるスレッドプールのサイ
ズが設定されます。

DB_SCHEMA_FLYWAY_BAS
ELINE_ENABLED

true DB の初期化および移行設定。
trueの場合には、baseline.version
で設定Siたバージョンのスクリプ
トを無視します。

DB_SCHEMA_FLYWAY_BAS
ELINE_VERSION

5.0.0.8.1 これまでのバージョンを含むスク
リプトは無視されます。ベースラ
インバージョンと同じバージョン
のスクリプトも無視されることに
注意してください。

DB_SCHEMA_FLYWAY_SCRI
PTS_PREFIX

 移行スクリプトの接頭辞

DB_SCHEMA_FLYWAY_SCRI
PTS_SUFFIX

.sql 移行スクリプトの接尾辞。

DB_SCHEMA_FLYWAY_SCRI
PTS_VERSION__SEPARATO
R

__ スクリプト名を他の部分からバー
ジョンを区切るための区切り文
字。

DB_SCHEMA_FLYWAY_SCRI
PTS_LOCATIONS

classpath:che-schema 移行スクリプトを検索する場所。

4.1.2.4. OpenShift インフラパラメーター

表4.4 OpenShift インフラパラメーター

環境変数名 デフォルト値 詳細

CHE_INFRA_KUBERNETES_
MASTER__URL

 インフラが使用する OpenShift ク
ライアントのマスター URL の設
定。

CHE_INFRA_KUBERNETES_
TRUST__CERTS

false 信頼済み証明書を使用するように
OpenShift クライアントを設定す
るブール値。

Red Hat CodeReady Workspaces 2.11 インストールガイド

48

CHE_INFRA_KUBERNETES_
CLUSTER__DOMAIN

NULL OpenShift クラスタードメイン。
設定されていない場合は、svc 名
にはクラスタードメインに関する
情報が含まれません。

CHE_INFRA_KUBERNETES_
SERVER__STRATEGY

multi-host サーバーが Kubernetes インフラ
でグローバルに公開される方法を
定義します。CodeReady
Workspaces に実装されたストラ
テジーの一覧: default-host,
multi-host, single-host

CHE_INFRA_KUBERNETES_
SINGLEHOST_WORKSPACE
_EXPOSURE

native ワークスペースのプラグインとエ
ディターを単一ホストモードで公
開する方法を定義します。サポー
トされる公開： native::
OpenShift ルートを使用してサー
バーを公開します。Kubernetes
でのみ機能します。Gateway::
reverse-proxy ゲートウェイを使
用してサーバーを公開します。

CHE_INFRA_KUBERNETES_
SINGLEHOST_WORKSPACE
_DEVFILE__ENDPOINT__EX
POSURE

multi-host single-host サーバーストラテジー
で devfile エンドポイント、エン
ドユーザーのアプリケーションを
公開する方法を定義します。これ
らは single-host ストラテジーに
従い、サブパスで公開されるか、
またはサブドメイン上で公開でき
ます。Multi-host:: サブドメイン
で公開されます。single-host::
サブパスに公開されます。

CHE_INFRA_KUBERNETES_
SINGLEHOST_GATEWAY_C
ONFIGMAP__LABELS

app=che,component=che-
gateway-config

single-host ゲートウェイを設定す
る ConfigMap に設定されるラベ
ルを定義します。

CHE_INFRA_KUBERNETES_I
NGRESS_DOMAIN

 che.infra.kubernetes.server_
strategy プロパティーが multi-
hostに設定されている場合に、
ワークスペースでサーバーのドメ
インを生成するために使用されま
す。

環境変数名 デフォルト値 詳細

第4章 CODEREADY WORKSPACES の設定

49

CHE_INFRA_KUBERNETES_
NAMESPACE_CREATION__A
LLOWED

true CodeReady Workspaces サーバー
がユーザーワークスペースのプロ
ジェクトを作成できるかどうか、
またはそれらはクラスター管理者
によって手動で作成されるかどう
かを示します。このプロパティー
は OpenShift infra によっても使
用されます。

CHE_INFRA_KUBERNETES_
NAMESPACE_DEFAULT

<username>-che ユーザーが上書きしない場合に、
ユーザーのワークスペースが作成
されるデフォルトの OpenShift プ
ロジェクトを定義しま
す。<username> および
<userid> プレースホルダー (例:
che-workspace-
<username>）を使用できま
す。この場合、ユーザーごとに新
規 namespace が作成されます。
OpenShift インフラでプロジェク
トの指定にも使用されま
す。<username> または
<userid> プレースホルダーは必
須です。

CHE_INFRA_KUBERNETES_
NAMESPACE_LABEL

true che-server がワークスペース
namespace にラベルを付けるか
どうかを定義します。

CHE_INFRA_KUBERNETES_
NAMESPACE_LABELS

app.kubernetes.io/part-
of=che.eclipse.org,app.kuber
netes.io/component=worksp
aces-namespace

CodeReady Workspaces に使用さ
れるプロジェクトの検索に使用す
るラベルの一覧。これらは
che.infra.kubernetes.namesp
ace.annotations と組み合わせ
てユーザー用に準備されたプロ
ジェクトを検索し、ワークスペー
スでプロジェクトをアクティブに
ラベル付けするのに使用されま
す。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

50

CHE_INFRA_KUBERNETES_
NAMESPACE_ANNOTATION
S

che.eclipse.org/username=
<username>

CodeReady Workspaces ユーザー
ワークスペース用に用意されたプ
ロジェクトの検索に使用するアノ
テーションの一覧。これらのアノ
テーションと照合されるの
は、che.infra.kubernetes.na
mespace.labels と一致するプ
ロジェクトのみです。このプロ
ジェクト
は、che.infra.kubernetes.na
mespace.labels と
che.infra.kubernetes.namesp
ace.annotations 両方に一致す
るプロジェクトは、優先的にユー
ザーのワークスペースに使用され
ます。<username> プレースホ
ルダーを使用して、具体的なユー
ザーにプロジェクトを指定できま
す。

CHE_INFRA_KUBERNETES_
SERVICE__ACCOUNT__NAM
E

NULL すべてのワークスペース Pod にバ
インドされるように指定する必要
のある Kubernetes サービスアカ
ウント名を定義します。
OpenShift インフラストラク
チャーがサービスアカウントを作
成しない CodeReady Workspaces
Operator は存在すべきです。
OpenShift インフラストラク
チャーは、プロジェクトが事前に
定義されているかどうかをチェッ
クします
（che.infra.openshift.project
が空でない場合)。これが事前に
定義されている場合はサービスア
カウントが存在するはずです。こ
れが 'NULL' または空の文字列の
場合、インフラストラクチャーは
ワークスペースごとに新しい
OpenShift プロジェクトを作成
し、必要なロールを持つワークス
ペーのスサービスアカウントをこ
こに準備します。

環境変数名 デフォルト値 詳細

第4章 CODEREADY WORKSPACES の設定

51

CHE_INFRA_KUBERNETES_
WORKSPACE__SA__CLUST
ER__ROLES

NULL ワークスペースサービスアカウン
トで使用するオプションの追加の
クラスターロールを指定します。
クラスターのロール名がすでに存
在している必要があり、
CodeReady Workspaces サービス
アカウントはロールバインディン
グを作成して、これらのクラス
ターロールをワークスペースの
サービスアカウントに関連付ける
必要があります。名前はコンマで
区切られます。このプロパティー
は
che.infra.kubernetes.cluster
_role_name を非推奨にしま
す。

CHE_INFRA_KUBERNETES_
WORKSPACE__START__TIM
EOUT__MIN

8 Kubernetes ワークスペースの開
始時間を制限する待機時間を定義
します。

CHE_INFRA_KUBERNETES_I
NGRESS__START__TIMEOU
T__MIN

5 OpenShift Route が準備状態にな
る期間を制限するタイムアウトを
分単位で定義します。

CHE_INFRA_KUBERNETES_
WORKSPACE__UNRECOVE
RABLE__EVENTS

FailedMount,FailedSchedulin
g,MountVolume.SetUpfailed,
Failed to pull
image,FailedCreate,ReplicaS
etCreateError

ワークスペースの起動中に、プロ
パティーで定義されたリカバリー
不可能なイベントが発生する場合
は、タイムアウトまで待機するの
ではなく、ワークスペースをすぐ
終了します。CodeReady
Workspaces Operator: リカバリー
不能なイベントが発生する可能性
があるため「Failed」の理由だけ
を追加できません。失敗したコン
テナーの起動は、CodeReady
Workspaces サーバーで明示的に
処理されます。

CHE_INFRA_KUBERNETES_
PVC_ENABLED

true CodeReady Workspaces ワークス
ペースに Persistent Volume
Claim（永続ボリューム要求、
PVC）を使用するかどうかを定義
します (例: プロジェクトやログの
バックアップや、無効化)。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

52

CHE_INFRA_KUBERNETES_
PVC_STRATEGY

common ワークスペース用に PVC を選択
する際に使用するストラテジーを
定義します。サポートされるスト
ラテジー： common:: 同じプロ
ジェクトに含まれる全ワークス
ペースが同じ PVC を再利用しま
す。PVC の名前は
che.infra.kubernetes.pvc.na
me で設定できます。既存の PVC
が使用されるか、または新規
PVC が存在しない場合にはこれが
作成されます。unique:: 各ワーク
スペースのボリュームに別個の
PVC が使用されます。PVC の名
前は
{che.infra.kubernetes.pvc.na
me} + '-' +
{generated_8_chars} として評
価されます。既存の PVC が使用
されるか、または新規 PVC が存
在しない場合にはこれが作成され
ます。per-workspace:: 各ワー
クスペースに別個の PVC が使用
されます。PVC の名前は
{che.infra.kubernetes.pvc.na
me} + '-' + {WORKSPACE_ID}
として評価されます。既存の
PVC が使用されるか、または新規
PVC が存在しない場合にはこれが
作成されます。

環境変数名 デフォルト値 詳細

第4章 CODEREADY WORKSPACES の設定

53

CHE_INFRA_KUBERNETES_
PVC_PRECREATE__SUBPAT
HS

true ワークスペースを起動する前
に、common ストラテジーの永
続ボリュームでワークスペースの
サブパスディレクトリーを作成す
るジョブを実行するかどうかを定
義します。ワークスペースのサブ
パスのボリュームマウントは root
権限で作成され、ユーザーとして
実行するワークスペースで変更で
きないため（CodeReady
Workspace のワークスペースへの
プロジェクトのインポートエラー
が表示される)、一部の
OpenShift のバージョンで必要で
す。デフォルトは true ですが、
OpenShift のバージョンがユー
ザーパーミッションでサブディレ
クトリーを作成する場合は false
に設定する必要がありま
す。subPath in volumeMount is
not writable for non-root users
#41638 the CodeReady
Workspaces Operator that this
property that this property that
only effect for the common PVC
strategy used を参照してくださ
い。

CHE_INFRA_KUBERNETES_
PVC_NAME

claim-che-workspace CodeReady Workspaces ワークス
ペースの PVC 名の設定を定義し
ます。それぞれの PVC ストラテ
ジーは、この値を異なる方法で指
定しま
す。che.infra.kubernetes.pvc.
strategy プロパティーに関する
ドキュメントを参照してくださ
い。

CHE_INFRA_KUBERNETES_
PVC_STORAGE__CLASS__N
AME

 ワークスペースの Persistent
Volume Claim（永続ボリューム要
求、PVC）のストレージクラスを
定義します。空の文字列は「use
default」を意味します。

CHE_INFRA_KUBERNETES_
PVC_QUANTITY

10Gi CodeReady Workspaces ワークス
ペースの Persistent Volume
Claim（永続ボリューム要求、
PVC）のサイズを定義します。
「永続ストレージについて」を参
照してください。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

54

https://github.com/kubernetes/kubernetes/issues/41638
https://docs.openshift.com/container-platform/4.4/storage/understanding-persistent-storage.html

CHE_INFRA_KUBERNETES_
PVC_JOBS_IMAGE

registry.access.redhat.com/u
bi8-minimal:8.3-230

OpenShift で永続ボリューム要求
(PVC）のメンテナンスジョブを
実行する際に起動する Pod

CHE_INFRA_KUBERNETES_
PVC_JOBS_IMAGE_PULL__
POLICY

IfNotPresent OpenShift クラスターのメンテナ
ンスジョブに使用されるコンテ
ナーのイメージプルポリシー

CHE_INFRA_KUBERNETES_
PVC_JOBS_MEMORYLIMIT

250Mi 永続ボリューム要求のメンテナン
スジョブの Pod メモリー制限を定
義します。

CHE_INFRA_KUBERNETES_
PVC_ACCESS__MODE

ReadWriteOnce Persistent Volume Claim（永続ボ
リューム要求、PVC）のアクセス
モードを定義します。アクセス
モードを変更する一般的な PVC
ストラテジー向けの CodeReady
Workspaces Operator は、同時に
実行されるワークスペースの数に
影響します。CodeReady
Workspace を実行している
OpenShift インスタンスが RWX
アクセスモードで永続ボリューム
を使用している場合には、同時に
実行するワークスペース数の上限
は、CodeReady Workspace の制
限設定 (メモリー、CPU など) で
のみバインドされます。「永続ス
トレージについて」を参照してく
ださい。

CHE_INFRA_KUBERNETES_
PVC_WAIT__BOUND

true CodeReady Workspaces Server が
ワークスペース Persistent
Volume Claim（永続ボリューム要
求、PVC）の作成後にバインドす
る必要があるかどうかを定義しま
す。デフォルト値は true です。
このパラメーターは、全
Persistent Volume Claim（永続ボ
リューム要求、PVC）ストラテ
ジーにより使用されま
す。volumeBindingMode が
WaitForFirstConsumer に設定
されている場合は、false に設定
する必要があります。それ以外の
場合は、ワークスペースの起動が
PVC の待機フェーズでハングしま
す。

NULL サーバーを公開するために使用さ
れる Ingress のアノテーションを

環境変数名 デフォルト値 詳細

第4章 CODEREADY WORKSPACES の設定

55

https://docs.openshift.com/container-platform/4.4/storage/understanding-persistent-storage.html

CHE_INFRA_KUBERNETES_I
NGRESS_ANNOTATIONS__J
SON

定義します。値は Ingress コント
ローラーの種類によって異なりま
す。OpenShift インフラストラク
チャーは Ingress ではなくルート
を使用するため、このプロパ
ティーは無視されます。単一ホス
トデプロイメントストラテジーが
機能する CodeReady Workspaces
Operator は、URL の書き換えを
サポートするコントローラーを使
用する必要があります（そのた
め、サーバーはアプリケーション
ルートの変更をサポートする必要
がありませ
ん）。che.infra.kubernetes.in
gress.path.rewrite_transform
プロパティーは、Ingress のパス
が URL の書き換えをサポートす
るよう変換する方法を定義しま
す。このプロパティーは、選択し
た Ingress コントローラーに対し
て実際に URL の書き換えを実行
するように指示する ingress 自体
のアノテーションのセットを定義
します (選択された Ingress コント
ローラーで必要な場合)。たとえ
ば、Ngin Ingress コントローラー
0.22.0 以降で
は、{'ingress.kubernetes.io/r
ewrite-target':
'/$1','ingress.kubernetes.io/s
sl-redirect': 'false',\
'ingress.kubernetes.io/proxy
-connect-timeout':
'3600','ingress.kubernetes.io/
proxy-read-timeout': '3600',
'nginx.org/websocket-
services': '<service-name>'}
の値が推奨されます。
che.infra.kubernetes.ingress
.path.rewrite_transform は
'%s(.*)' に設定する必要がありま
す。0.22.0 よりも古い nginx
Ingress コントローラーの場合に
は、rewrite-target は / に設定す
るだけで、パスは %s に変換され
ます（
che.infra.kubernetes.ingress
.path.rewrite_transform プロ
パティーを参照）。Ingress コン
トローラーが Ingress パスにある
正規表現を使用する方法と、URL
の書き換えを実行する方法につい
ての説明は、nginx Ingress コント
ローラーのドキュメントを参照し
てください。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

56

CHE_INFRA_KUBERNETES_I
NGRESS_PATH__TRANSFO
RM

NULL サーバーを公開する Ingress のパ
スを宣言する方法についての
「recipe」(レシピ) を定義しま
す。%s はサーバーのベース公開
URL を表し、スラッシュで終了す
ることが保証されています。この
プロパティーは String.format()
メソッドへの有効な入力であ
り、%s への参照が 1 つだけ含ま
れる必要があります。Ingress の
アノテーションとパスを指定する
際にこれら 2 つのプロパティーの
相互作用を確認するに
は、che.infra.kubernetes.ingr
ess.annotations_json プロパ
ティーの説明を参照してくださ
い。これが定義されていない場
合、このプロパティーはデフォル
トで %s (引用符なし) に設定され
ます。これは、パスが Ingress コ
ントローラーで使用する場合に変
換されないことを意味します。

CHE_INFRA_KUBERNETES_I
NGRESS_LABELS

NULL 明確化できるように、CodeReady
Workspaces サーバーによって作
成されるすべての Ingress に追加
する追加のラベル。

CHE_INFRA_KUBERNETES_
POD_SECURITY__CONTEXT
_RUN__AS__USER

NULL OpenShift インフラによって作成
される Pod のセキュリティーコン
テキストを定義します。これは
OpenShift インフラによって無視
されます。

CHE_INFRA_KUBERNETES_
POD_SECURITY__CONTEXT
_FS__GROUP

NULL OpenShift インフラによって作成
される Pod のセキュリティーコン
テキストを定義します。Pod の全
コンテナーに適用される特別な補
助グループです。OpenShift イン
フラは、このグループを無視しま
す。

環境変数名 デフォルト値 詳細

第4章 CODEREADY WORKSPACES の設定

57

CHE_INFRA_KUBERNETES_
POD_TERMINATION__GRAC
E__PERIOD__SEC

0 OpenShift インフラストラク
チャーによって作成される Pod の
猶予期間を定義します。デフォル
ト値: 0これにより、Pod をすぐに
停止し、ワークスペースの停止に
必要な時間を短縮できます。
CodeReady Workspaces
Operator:
terminationGracePeriodSeco
nds が OpenShift レシピで明示
的に設定されている場合は上書き
されません。

CHE_INFRA_KUBERNETES_
CLIENT_HTTP_ASYNC__RE
QUESTS_MAX

1000 KubernetesClient インスタン
スの基礎となる共有 HTTP クライ
アントでサポートされる並行非同
期 Web 要求（HTTP 要求または
継続的な WebSocket 呼び出し）
の最大数。デフォルト
値：max=64 および
max_per_host:5CodeReady
Workspaces はコマンドや ws-
agent ログなど、コネクションを
開いたままにするため、デフォル
トの値はマルチユーザーシナリオ
には適していません。

CHE_INFRA_KUBERNETES_
CLIENT_HTTP_ASYNC__RE
QUESTS_MAX__PER__HOST

1000 ホストごとの並行非同期 Web 要
求の最大数。

CHE_INFRA_KUBERNETES_
CLIENT_HTTP_CONNECTIO
N__POOL_MAX__IDLE

5 Kubernetes クライアント共有
http クライアントの接続プールに
おけるアイドル状態の接続の最大
数

CHE_INFRA_KUBERNETES_
CLIENT_HTTP_CONNECTIO
N__POOL_KEEP__ALIVE__M
IN

5 Kubernetes クライアント共有
http クライアントの接続プールの
キープアライブのタイムアウト
(分単位)

CHE_INFRA_KUBERNETES_
TLS__ENABLED

false Transport Layer Security(TLS)を
有効にして Ingress を作成しま
す。OpenShift インフラストラク
チャーではルートは TLS に対応
します。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

58

CHE_INFRA_KUBERNETES_
TLS__SECRET

 TLS でワークスペース Ingress を
作成する際に使用すべきシーク
レットの名前。OpenShift インフ
ラストラクチャーでは、このプロ
パティーは無視されます。

CHE_INFRA_KUBERNETES_
TLS__KEY

NULL ワークスペース Ingress に使用す
る必要のある TLS Secret のデー
タ。cert および key は Base64
アルゴリズムでエンコードする必
要があります。OpenShift インフ
ラストラクチャーでは、これらの
プロパティーは無視されます。

CHE_INFRA_KUBERNETES_
TLS__CERT

NULL ワークスペース Ingress に使用す
る必要のある TLS Secret の証明
書データ。証明書は、Base64 ア
ルゴリズムでエンコードする必要
があります。OpenShift インフラ
ストラクチャーでは、このプロパ
ティーは無視されます。

CHE_INFRA_KUBERNETES_
RUNTIMES__CONSISTENCY
__CHECK__PERIOD__MIN

-1 ランタイムの整合性チェックが実
行される期間を定義します。ラン
タイムに一貫性のない状態がある
場合、ランタイムは自動的に停止
します。値は 0 をより大きな値、
または -1 である必要がありま
す。ここで、-1 はチェックが実行
されないことを意味します。これ
はデフォルトで無効にされます。
CodeReady Workspaces Server は
操作がユーザーによって呼び出し
されない場合に Kubernetes API
と対話できくなる CodeReady
Workspaces サーバーの設定があ
ることが予想されるためです。こ
れは、CodeReady Workspace
Server の配置先と同じ
namespace でワークスペースオ
ブジェクトが作成される場
合、cluster-admin サービスア
カウントトークンが CodeReady
Workspace Server Pod にマウン
トされる場合に機能します。これ
は、CodeReady Workspaces
Server が OAuth プロバイダーか
らトークンを使用して
Kubernetes API と通信する場合に
は機能しません。

環境変数名 デフォルト値 詳細

第4章 CODEREADY WORKSPACES の設定

59

CHE_INFRA_KUBERNETES_
TRUSTED__CA_SRC__CONF
IGMAP

NULL すべてのユーザーのワークスペー
スに伝播される追加の CA TLS 証
明書を含む、CodeReady
Workspaces サーバー namespace
の設定マップの名前。プロパ
ティーを OpenShift 4 インフラス
トラクチャーに設定
し、che.infra.openshift.truste
d_ca.dest_configmap_labels
に config.openshift.io/inject-
trusted-cabundle=true ラベル
が含まれる場合に、クラスター
CA バンドルも伝播されます。

CHE_INFRA_KUBERNETES_
TRUSTED__CA_DEST__CON
FIGMAP

ca-certs 追加の CA TLS 証明書を含むワー
クスペース namespace の設定
マップの名前。ワークスペース
namespace にある
che.infra.kubernetes.trusted
_ca.src_configmap のコピーを
保持します。この設定マップの内
容は、プラグインブローカーを含
むすべてのワークスペースコンテ
ナーにマウントされます。既存の
設定マップと競合しない限り、設
定マップ名は変更しないでくださ
い。CodeReady Workspaces
Operator: 結果として作成される
設定マップ名を最終的に調整して
プロジェクトで一意にすることが
できます。元の名前は
che.original_name ラベルに保
存されます。

CHE_INFRA_KUBERNETES_
TRUSTED__CA_MOUNT__P
ATH

/public-certs CA バンドルがマウントされる
ワークスペースコンテナーでパス
を設定しま
す。che.infra.kubernetes.trus
ted_ca.dest_configmap で指
定される設定マップの内容がマウ
ントされます。

CHE_INFRA_KUBERNETES_
TRUSTED__CA_DEST__CON
FIGMAP__LABELS

 ユーザーワークスペースの CA 証
明書の設定マップに追加するラベ
ルのコンマ区切りの一
覧。che.infra.kubernetes.trus
ted_ca.dest_configmap プロ
パティーを参照してください。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

60

CHE_INFRA_KUBERNETES_
ENABLE__UNSUPPORTED__
K8S

false /unsupported/OpenShift エン
ドポイントを有効にして、
Kubernetes インフラストラク
チャーの呼び出しを解決します。
基礎となるインフラストラク
チャーの REST API に直接アクセ
スできます。この設定では、大幅
に権限が昇格されます。これは
Kubernetes インフラストラク
チャーにだけ影響します。そのた
め、OAuth が使用されている
OpenShift では、セキュリティー
リスクがないことを意味します。
リスクを把握していない場合は有
効にしないでください。

環境変数名 デフォルト値 詳細

4.1.2.5. OpenShift インフラパラメーター

表4.5 OpenShift インフラパラメーター

環境変数名 デフォルト値 詳細

CHE_INFRA_OPENSHIFT_TR
USTED__CA_DEST__CONFI
GMAP__LABELS

config.openshift.io/inject-
trusted-cabundle=true

ユーザーワークスペースの CA 証
明書の設定マップに追加するラベ
ルのコンマ区切りの一
覧。che.infra.kubernetes.trus
ted_ca.dest_configmap プロ
パティーを参照してください。こ
のデフォルト値は、OpenShift 4
でのクラスター CA バンドルの自
動挿入に使用されます。

CHE_INFRA_OPENSHIFT_R
OUTE_LABELS

NULL 明確化できるように、CodeReady
Workspaces サーバーによって作
成されるすべての Route に追加す
る追加のラベル。

CHE_INFRA_OPENSHIFT_R
OUTE_HOST_DOMAIN__SUF
FIX

NULL ワークスペースルートの接尾辞と
して使用する必要のあるホスト
名。たとえ
ば、domain_suffix=<coderea
dy-
<openshift_deployment_nam
e>.<domain_name>> を使用す
る場合には、ルートは
routed3qrtk.<codeready-
<openshift_deployment_nam
e>.<domain_name>> のように
なります。有効な DNS 名である
必要があります。

第4章 CODEREADY WORKSPACES の設定

61

CHE_INFRA_OPENSHIFT_PR
OJECT_INIT__WITH__SERVE
R__SA

true OpenShift OAuth が有効な場合に
は、CodeReady Workspaces サー
バーのサービスアカウントで
OpenShift プロジェクトを初期化
します。

環境変数名 デフォルト値 詳細

4.1.2.6. 実験的なプロパティー

表4.6 実験的なプロパティー

環境変数名 デフォルト値 詳細

CHE_WORKSPACE_PLUGIN
__BROKER_METADATA_IM
AGE

quay.io/eclipse/che-plugin-
metadata-broker:v3.4.0

ワークスペースツール設定を解決
し、プラグインの依存関係をワー
クスペースにコピーする
CodeReady Workspaces プラグイ
ンブローカーアプリケーションの
Docker イメージCodeReady
Workspaces Operator はデフォル
トでこれらのイメージを上書きし
ます。CodeReady Workspaces が
Operator を使用してインストー
ルされている場合は、ここでイ
メージを変更しても、効果があり
ません。

CHE_WORKSPACE_PLUGIN
__BROKER_ARTIFACTS_IM
AGE

quay.io/eclipse/che-plugin-
artifacts-broker:v3.4.0

CodeReady Workspaces プラグイ
ンアーティファクトブローカーの
Docker イメージ。このブロー
カーは、ワークスペース Pod で
init コンテナーとして実行されま
す。このジョブは、プラグインの
ID (レジストリー内のプラグイン
への参照または、プラグインの
meta.yaml へのリンク) の一覧を
取り、ワークスペース向けに要求
されたプラグインごとに、正しい
.vsix and .theia 拡張子が /plugins
ディレクトリーにダウンロードさ
れていることを確認します。

Red Hat CodeReady Workspaces 2.11 インストールガイド

62

CHE_WORKSPACE_PLUGIN
__BROKER_DEFAULT__ME
RGE__PLUGINS

false プラグインをワークスペースにプ
ロビジョニングする際にプラグイ
ンブローカーのデフォルト動作を
設定します。true に設定すると、
プラグインブローカーは可能な場
合にプラグインのマージを試行し
ます（つまり、それらは同じサイ
ドカーイメージで実行され、設定
が競合することはありません)。
この値は、devfile で
mergePlugins 属性が指定され
ていない場合に使用されるデフォ
ルト設定です。

CHE_WORKSPACE_PLUGIN
__BROKER_PULL__POLICY

Always ワークスペースツール設定を解決
し、プラグインの依存関係をワー
クスペースにコピーする
CodeReady Workspaces プラグイ
ンブローカーアプリケーションの
Docker イメージ

CHE_WORKSPACE_PLUGIN
__BROKER_WAIT__TIMEOU
T__MIN

3 プラグインブローカーの待機中に
結果の最大期間を制限するタイム
アウトを分単位で定義します。

CHE_WORKSPACE_PLUGIN
__REGISTRY__URL

https://che-plugin-
registry.prod-
preview.openshift.io/v3

ワークスペースプラグインレジス
トリーのエンドポイント。有効な
HTTP URL でなければなりませ
ん。例: http://che-plugin-
registry-eclipse-
che.192.168.65.2.nip.io
CodeReady Workspaces プラグイ
ンレジストリーが不要な場合、値
'NULL' を使用する必要がありま
す。

CHE_WORKSPACE_PLUGIN
__REGISTRY__INTERNAL__
URL

NULL ワークスペースプラグインレジス
トリーの内部エンドポイント。有
効な HTTP URL でなければなりま
せん。例: http://devfile-
registry.che.svc.cluster.local:8080
CodeReady Workspaces プラグイ
ンレジストリーが不要な場合、値
'NULL' を使用する必要がありま
す。

環境変数名 デフォルト値 詳細

第4章 CODEREADY WORKSPACES の設定

63

CHE_WORKSPACE_DEVFILE
__REGISTRY__URL

https://che-devfile-
registry.prod-
preview.openshift.io/

devfile レジストリーエンドポイン
ト。有効な HTTP URL でなければ
なりません。例: http://che-
devfile-registry-eclipse-
che.192.168.65.2.nip.io
CodeReady Workspaces プラグイ
ンレジストリーが不要な場合、値
'NULL' を使用する必要がありま
す。

CHE_WORKSPACE_DEVFILE
__REGISTRY__INTERNAL__
URL

NULL devfile レジストリー 'internal' エ
ンドポイント。有効な HTTP URL
でなければなりません。例:
http://plugin-
registry.che.svc.cluster.local:8080
CodeReady Workspaces プラグイ
ンレジストリーが不要な場合、値
'NULL' を使用する必要がありま
す。

CHE_WORKSPACE_STORA
GE_AVAILABLE__TYPES

persistent,ephemeral,async ダッシュボードなどのクライアン
トがワークスペースの作成/更新
時にユーザーに提案するストレー
ジタイプに使用できる値を定義す
る設定プロパティー。使用できる
値: - persistent: 永続ストレージ
の I/O は低速だが永続性がある。
- ephemeral: 一時ストレージ
は、高速 I/O を可能にするが、ス
トレージには制限があり、永続性
がない。- async: 実験的機能: 非
同期ストレージは一時ストレージ
と永続ストレージの組み合わせ。
高速な I/O を可能にし、変更を維
持し、停止時にバックアップを実
行し、ワークスペースの開始時に
復元しま
す。che.infra.kubernetes.pvc.
strategy='common' -
che.limits.user.workspaces.r
un.count=1 -
che.infra.kubernetes.namesp
ace.default に <username> が
含まれる場合にのみ機能します。
それ他の場合は、一覧から
async を削除します。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

64

CHE_WORKSPACE_STORA
GE_PREFERRED__TYPE

永続 ダッシュボードなどのクライアン
トがワークスペースの作成/更新
時にユーザーに提案するストレー
ジタイプのデフォルト値を定義す
る設定プロパティー。async 値
は実験的な機能であるため、デ
フォルトタイプとしての使用は推
奨されません。

CHE_SERVER_SECURE__EX
POSER

jwtproxy セキュアなサーバーが認証で保護
される方法を設定します。適切な
値: default: jwtproxy はパスス
ルーモードで設定されます。その
ため、サーバーは要求を認証する
必要があります。jwtproxy:
jwtproxy は要求を認証します。
そのため、サーバーは認証済みの
要求のみを受信します。

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_TOKEN
_ISSUER

wsmaster 署名のない要求をルーティングす
るための Jwtproxy 発行側の文字
列、トークンの有効期間およびオ
プションの認証ページのパス。

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_TOKEN
_TTL

8800h jwtproxy 発行者トークンの有効期
間。

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_AUTH_
LOADER_PATH

/_app/loader.html 署名なしの要求をルーティングす
る認証ページのパス (任意)。

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_IMAGE

quay.io/eclipse/che-
jwtproxy:0.10.0

jwtproxy イメージ。

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_MEMOR
Y__REQUEST

15mb jwtproxy メモリー要求。

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_MEMOR
Y__LIMIT

128mb jwtproxy メモリー制限。

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_CPU__
REQUEST

0.03 jwtproxy CPU 要求。

環境変数名 デフォルト値 詳細

第4章 CODEREADY WORKSPACES の設定

65

CHE_SERVER_SECURE__EX
POSER_JWTPROXY_CPU__L
IMIT

0.5 jwtproxy CPU 制限。

環境変数名 デフォルト値 詳細

4.1.2.7. 主なWebSocketエンドポイントの設定

表4.7 主なWebSocketエンドポイントの設定

環境変数名 デフォルト値 詳細

CHE_CORE_JSONRPC_PRO
CESSOR__MAX__POOL__SI
ZE

50 JSON RPC 処理プールの最大サ
イズ。プールサイズが超過する
と、メッセージの実行が拒否され
ます。

CHE_CORE_JSONRPC_PRO
CESSOR__CORE__POOL__S
IZE

5 初期 JSON 処理プール。主な
JSON RPC メッセージを処理す
るために使用されるスレッドの最
小数。

CHE_CORE_JSONRPC_PRO
CESSOR__QUEUE__CAPACI
TY

100000 Json RPC メッセージの処理に使
用するキューの設定。

CHE_METRICS_PORT 8087 Prometheus メトリクスで公開さ
れる HTTP サーバーエンドポイン
トのポート

4.1.2.8. CORS 設定

表4.8 CORS 設定

環境変数名 デフォルト値 詳細

CHE_CORS_ALLOWED__OR
IGINS

* 許可される要求元を指定します。
WS Master の CORS フィルター
はデフォルトで無効にされます。
環境変数
'CHE_CORS_ENABLED=true' を
使用してオンにします。

CHE_CORS_ALLOW__CRED
ENTIALS

false 認証情報 (cookie、ヘッダー、
TLS クライアント証明書) を使用
して要求の処理を許可するかどう
かを示します。

4.1.2.9. Factory のデフォルト

Red Hat CodeReady Workspaces 2.11 インストールガイド

66

表4.9 Factory のデフォルト

環境変数名 デフォルト値 詳細

CHE_FACTORY_DEFAULT__
PLUGINS

redhat/vscode-
commons/latest

CodeReady Workspaces 固有の
ワークスペース記述子が含まれな
いリモート git リポジトリーから
作成される Factory 用に作成され
るエディターおよびプラグイン。
複数のプラグインは、以下のよう
にコンマで区切る必要がありま
す。例:
pluginFooPublisher/pluginF
ooName/pluginFooVersion,p
luginBarPublisher/pluginBar
Name/pluginBarVersion

CHE_FACTORY_DEFAULT__
DEVFILE__FILENAMES

devfile.yaml,.devfile.yaml リポジトリーベースの
Factory（GitHub など）を検索す
る devfile のファイル名。Factory
は、プロパティーで列挙される順
序でこれらのファイルの特定を試
みます。

4.1.2.10. devfile のデフォルト

表4.10 devfile のデフォルト

環境変数名 デフォルト値 詳細

CHE_FACTORY_DEFAULT__
EDITOR

eclipse/che-theia/latest CodeReady Workspaces 固有の
ワークスペース記述子が含まれな
いリモート Git リポジトリーから
作成される Factory に使用される
エディター。

CHE_FACTORY_SCM__FILE
__FETCHER__LIMIT__BYTES

102400 SCM リポジトリーからファイル
を取得する URL フェッチャーの
ファイルサイズ制限。

CHE_FACTORY_DEVFILE2__
FILES__RESOLUTION__LIST

.che/che-
editor.yaml,.che/che-theia-
plugins.yaml,.vscode/extensi
ons.json

devfile v2 を補完する追加ファイ
ルで、リポジトリーに含まれる場
合があり、取得するには Factory
の SCM リゾルバーサービスへの
リンクとして参照する必要があり
ます。

第4章 CODEREADY WORKSPACES の設定

67

CHE_WORKSPACE_DEVFILE
_DEFAULT__EDITOR

eclipse/che-theia/latest 指定されていない場合に Devfile
にプロビジョニングする必要があ
るデフォルトのエディター。エ
ディター形式
は、editorPublisher/editorNa
me/editorVersion 値になりま
す。NULL または値がない場合
は、デフォルトのエディターはプ
ロビジョニングされません。

CHE_WORKSPACE_DEVFILE
_DEFAULT__EDITOR_PLUGI
NS

NULL デフォルトのエディター用にプロ
ビジョニングする必要があるデ
フォルトのプラグイン。ユーザー
定義の devfile で明示的に参照さ
れていないこの一覧のすべてのプ
ラグインはプロビジョニングされ
ますが、これはデフォルトのエ
ディターが使用されているか、ま
たはユーザー定義のエディターが
(異なるバージョンの場合でも) デ
フォルトと同じである場合に限り
ます。形式は、コンマ区切りの
pluginPublisher/pluginName/
pluginVersion 値および URL で
す。例: eclipse/che-theia-
exec-
plugin/0.0.1,eclipse/che-
theia-terminal-
plugin/0.0.1,https://cdn.plugi
nregistry.com/vi-
mode/meta.yaml プラグインが
URL の場合、プラグインの
meta.yaml はその URL から取得
されます。

CHE_WORKSPACE_PROVISI
ON_SECRET_LABELS

app.kubernetes.io/part-
of=che.eclipse.org,app.kuber
netes.io/component=worksp
ace-secret

ユーザー namespace からシーク
レットを選択するためにラベルの
コンマ区切りの一覧を定義しま
す。これは、ファイルまたは環境
変数としてワークスペースコンテ
ナーにマウントされます。すべて
の指定されるラベルに一致する
シークレットのみが選択されま
す。

CHE_WORKSPACE_DEVFILE
_ASYNC_STORAGE_PLUGIN

eclipse/che-async-pv-
plugin/latest

非同期ストレージ機能がワークス
ペース設定で有効にされ、環境で
サポートされる場合に、プラグイ
ンが追加されます。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

68

CHE_INFRA_KUBERNETES_
ASYNC_STORAGE_IMAGE

quay.io/eclipse/che-
workspace-data-sync-
storage:0.0.1

CodeReady Workspaces 非同期ス
トレージの Docker イメージ

CHE_WORKSPACE_POD_N
ODE__SELECTOR

NULL オプションでワークスペース Pod
のノードセレクターを設定しま
す。形式は、コンマ区切りの
key=value ペアです (例:
disktype=ssd,cpu=xlarge,foo
=bar)。

CHE_WORKSPACE_POD_TO
LERATIONS__JSON

NULL オプションでワークスペース Pod
の容認を設定します。形式は、テ
イントの容認の JSON 配列を表す
文字列か、または NULL の場合
はこれを無効にします。配列に含
まれるオブジェクト
は、toleration v1 コア仕様 に準拠
する必要があります。例:
[{'effect':'NoExecute','key':'a
NodeTaint','operator':'Equal',
'value':'aValue'}]

CHE_INFRA_KUBERNETES_
ASYNC_STORAGE_SHUTDO
WN__TIMEOUT__MIN

120 最後に使用されたワークスペース
の停止後の非同期ストレージ Pod
のシャットダウンのタイムアウ
ト。0 以下の値は、シャットダウ
ン機能を無効にするものとして解
釈されます。

CHE_INFRA_KUBERNETES_
ASYNC_STORAGE_SHUTDO
WN__CHECK__PERIOD__MI
N

30 非同期ストレージ Pod が機能を停
止する期間を定義します (デフォ
ルトでは 30 分ごと)。

CHE_INTEGRATION_BITBUC
KET_SERVER__ENDPOINTS

NULL Factory の統合に使用される
Bitbucket エンドポイント。
bitbucket サーバー URL のコンマ
区切りの一覧、または統合が予想
されない場合は NULL。

CHE_INTEGRATION_GITLAB
_SERVER__ENDPOINTS

NULL Factory の統合に使用される
GitLab エンドポイント。GitLab
サーバー URL のコンマ区切りの
一覧、または統合が予想されない
場合は NULL。

CHE_INTEGRATION_GITLAB
_OAUTH__ENDPOINT

NULL# OAuth 2 統合が設定された GitLab
サーバーのアドレス

環境変数名 デフォルト値 詳細

第4章 CODEREADY WORKSPACES の設定

69

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.20/#toleration-v1-core

4.1.2.11. Che システム

表4.11 Che システム

環境変数名 デフォルト値 詳細

CHE_SYSTEM_SUPER__PRIV
ILEGED__MODE

false System Super Privileged Mode
(システムのスーパー特権モー
ド)。getByKey、
getByNameSpace、
stopWorkspaces、および
getResources の manageSystem
パーミッションの追加パーミッ
ションをユーザーに付与します。
これらは、デフォルトでは管理者
には提供されず、これらのパー
ミッションにより、管理者は
admin 権限でそれらのワークス
ペースに名前を指定し、ワークス
ペースへの可視性を得ることがで
きます。

CHE_SYSTEM_ADMIN__NAM
E

admin che.admin.nameユーザーのシ
ステムパーミッションを付与しま
す。ユーザーがすでに存在する場
合は、これはコンポーネントの起
動時に生じます。ユーザーがすで
に存在しない場合は、ユーザーが
データベースで永続化される初回
のログイン時に発生します。

4.1.2.12. Workspace の制限

表4.12 Workspace の制限

環境変数名 デフォルト値 詳細

CHE_LIMITS_WORKSPACE_
ENV_RAM

16gb ワークスペースは、開発を行う際
のユーザー向けの基本的なランタ
イムです。ワークスペースの作成
方法や、消費されるリソースを制
限するパラメーターを設定できま
す。ユーザーが新規ワークスペー
スの作成時にワークスペースに割
り当てることができる RAM の最
大量。RAM スライダーは、この
最大値に合わせて調整されます。

Red Hat CodeReady Workspaces 2.11 インストールガイド

70

CHE_LIMITS_WORKSPACE_I
DLE_TIMEOUT

1800000 システムがワークスペースを一時
停止した後にこれを停止する際
に、ユーザーがワークスペースで
アイドル状態になる期間 (ミリ秒
単位)。アイドル状態は、ユー
ザーがワークスペースと対話しな
い期間です。つまり、エージェン
トのいずれも対話を受け取ってい
ない期間を意味します。ブラウ
ザーウィンドウを開いたままにす
るとアイドル状態になります。

CHE_LIMITS_WORKSPACE_
RUN_TIMEOUT

0 システムが一時停止するまでの、
アクティビティーを問わず、ワー
クスペースが実行される期間 (ミ
リ秒単位)。一定期間後にワーク
スペースを自動的に停止する場合
は、このプロパティーを設定しま
す。デフォルトはゼロで、実行タ
イムアウトがないことを意味しま
す。

環境変数名 デフォルト値 詳細

4.1.2.13. ユーザーワークスペースの制限

表4.13 ユーザーワークスペースの制限

環境変数名 デフォルト値 詳細

CHE_LIMITS_USER_WORKS
PACES_RAM

-1 単一ユーザーがワークスペースの
実行に割り当てることができる
RAM の合計量。ユーザーは、こ
の RAM を単一のワークスペース
に割り当てるか、または複数の
ワークスペースに分散することが
できます。

CHE_LIMITS_USER_WORKS
PACES_COUNT

-1 ユーザーが作成できるワークス
ペースの最大数。追加のワークス
ペースを作成しようとすると、
ユーザーにはエラーメッセージが
表示されます。これは、実行中お
よび停止中のワークスペースの合
計数に適用されます。

第4章 CODEREADY WORKSPACES の設定

71

CHE_LIMITS_USER_WORKS
PACES_RUN_COUNT

1 単一ユーザーが持てる実行中の
ワークスペースの最大数。ユー
ザーがこのしきい値に達し、追加
のワークスペースを開始しようと
すると、エラーメッセージと共に
プロンプトが表示されます。ユー
ザーは、実行中のワークスペース
を停止してから別のワークスペー
スをアクティべートする必要があ
ります。

環境変数名 デフォルト値 詳細

4.1.2.14. 組織ワークスペースの制限

表4.14 組織ワークスペースの制限

環境変数名 デフォルト値 詳細

CHE_LIMITS_ORGANIZATIO
N_WORKSPACES_RAM

-1 単一組織 (チーム) がワークスペー
スの実行に割り当てることができ
る RAM の合計量。組織の所有者
はこの RAM を割り当てることが
できますが、チームのワークス
ペース全体で適切に割り当てられ
ているように見えます。

CHE_LIMITS_ORGANIZATIO
N_WORKSPACES_COUNT

-1 組織が所有できるワークスペース
の最大数。追加のワークスペース
を作成しようとすると、組織には
エラーメッセージが表示されま
す。これは、実行中および停止中
のワークスペースの合計数に適用
されます。

CHE_LIMITS_ORGANIZATIO
N_WORKSPACES_RUN_CO
UNT

-1 単一組織が持てる実行中のワーク
スペースの最大数。組織がこのし
きい値に達し、追加のワークス
ペースを開始しようとすると、エ
ラーメッセージと共にプロンプト
が表示されます。組織は、実行中
のワークスペースを停止してから
別のワークスペースをアクティ
べートする必要があります。

4.1.2.15. マルチユーザー固有の OpenShift インフラストラクチャー設定

表4.15 マルチユーザー固有の OpenShift インフラストラクチャー設定

Red Hat CodeReady Workspaces 2.11 インストールガイド

72

環境変数名 デフォルト値 詳細

CHE_INFRA_OPENSHIFT_O
AUTH__IDENTITY__PROVID
ER

NULL Keycloak に登録されている
OpenShift アイデンティティープ
ロバイダーのエイリアス。これ
は、現行の CodeReady
Workspaces ユーザーが所有する
OpenShift namespace にワークス
ペース OpenShift リソースを作成
するために使用されま
す。che.infra.openshift.proje
ct が空白以外の値に設定する場合
は NULL に設定する必要がありま
す。OpenShift アイデンティ
ティープロバイダーを参照してく
ださい。

4.1.2.16. Keycloak の設定

表4.16 Keycloak の設定

環境変数名 デフォルト値 詳細

CHE_KEYCLOAK_AUTH__S
ERVER__URL

http://${CHE_HOST}:5050/au
th

che.keycloak.oidcProvider を
使用している場合のみ、keycloak
アイデンティティープロバイダー
サーバーの URL を NULL に設定
できます。

CHE_KEYCLOAK_AUTH__IN
TERNAL__SERVER__URL

NULL keycloak アイデンティティープロ
バイダーサーバーへの内部ネット
ワークサービス URL

CHE_KEYCLOAK_REALM che Keycloak レルムを使用してユー
ザーを認証するために使用されま
す。che.keycloak.oidcProvid
er が使用している場合のみ NULL
に設定できます。

CHE_KEYCLOAK_CLIENT__I
D

che-public ダッシュボード、IDE、および
CLI でユーザーを認証する
che.keycloak.realm の
Keycloak クライアント識別子。

CHE_KEYCLOAK_OSO_END
POINT

NULL OSO OAuth トークンにアクセス
するための URL

CHE_KEYCLOAK_GITHUB_E
NDPOINT

NULL Github OAuth トークンにアクセ
スするための URL

第4章 CODEREADY WORKSPACES の設定

73

https://www.keycloak.org/docs/latest/server_admin/#openshift-4

CHE_KEYCLOAK_ALLOWED
__CLOCK__SKEW__SEC

3 exp または nbf 要求を検証する際
にクロックスキューについて許容
される秒数。

CHE_KEYCLOAK_USE__NO
NCE

true OIDC オプションの nonce 機能
を使用して、セキュリティーを強
化します。

CHE_KEYCLOAK_JS__ADAP
TER__URL

NULL 使用する Keycloak Javascript ア
ダプターの URL。NULL に設定す
ると、デフォルト値が
${che.keycloak.auth_server_
url}/js/keycloak.js になり、別
のoidc_provider を使用する場
合には、<che-
server>/api/keycloak/OIDCKe
ycloak.js になります。

CHE_KEYCLOAK_OIDC__PR
OVIDER

NULL この仕様 (Obtaining OpenID
Provider Configuration
Information) で詳細に検出エンド
ポイントを指定する別の OIDC プ
ロバイダーのベース URL。

CHE_KEYCLOAK_USE__FIX
ED__REDIRECT__URLS

false 固定されたリダイレクト URL の
みをサポートする別の OIDC プロ
バイダーを使用する場合は true
に設定します。このプロパティー
は、che.keycloak.oidc_provi
der が NULL の場合は無視されま
す。

CHE_KEYCLOAK_USERNAM
E__CLAIM

NULL 定義されていない場合、JWT
トークンの解析時にユーザー名の
要求がユーザーの表示名として使
用されます。フォールバック値は
「preferred_username」です。

環境変数名 デフォルト値 詳細

Red Hat CodeReady Workspaces 2.11 インストールガイド

74

https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig

CHE_OAUTH_SERVICE__MO
DE

delegated 「embedded」モードまたは
「delegated」モードで使用でき
る OAuth 認証サービスの設定。
「embedded」に設定すると、
サービスは、(Single User モード
の場合のように) CodeReady
Workspaces の
OAuthAuthenticator のラッパー
として機能します。
「delegated」に設定すると、
サービスは Keycloak
IdentityProvider メカニズムを使
用します。このプロパティーが正
しく設定されていない場合は、ラ
ンタイム例外 wii がスローされま
す。

CHE_KEYCLOAK_CASCADE
__USER__REMOVAL__ENAB
LED

false CodeReady Workspaces データ
ベースからユーザーを削除する際
の Keycloak サーバーからのユー
ザーの削除を有効にするための設
定。デフォルトで、これは無効に
されます。CodeReady
Workspaces データベースでユー
ザーを削除する際に Keycloak か
らの関連ユーザーの削除が実行さ
れる特別なケースでは有効にされ
ある場合があります。適切に機能
するには、管理ユーザー名
${che.keycloak.admin_username}
とパスワード
${che.keycloak.admin_password}
を設定する必要があります。

CHE_KEYCLOAK_ADMIN__U
SERNAME

NULL Keycloak 管理者のユーザー名。
CodeReady Workspaces データ
ベースからユーザーを削除する際
に Keycloak からユーザーを削除
するために使用します。
${che.keycloak.cascade_user_rem
oval_enabled} が 'true' に設定され
ている場合にのみ機能します。

CHE_KEYCLOAK_ADMIN__P
ASSWORD

NULL Keycloak 管理者パスワード。
CodeReady Workspaces データ
ベースからユーザーを削除する際
に Keycloak からユーザーを削除
するために使用します。
${che.keycloak.cascade_user_rem
oval_enabled} が 'true' に設定され
ている場合にのみ機能します。

環境変数名 デフォルト値 詳細

第4章 CODEREADY WORKSPACES の設定

75

CHE_KEYCLOAK_USERNAM
E_REPLACEMENT__PATTER
NS

NULL ユーザー名の調整の設定。
CodeReady Workspaces は、ユー
ザー名を Kubernetes オブジェク
ト名とラベルの一部として使用す
る必要があるため、アイデンティ
ティープロバイダーが通常許可す
る場合よりもフォーマットの要件
が厳しくなります (DNS に準拠す
る必要があります)。この調整
は、コンマ区切りのキー/値のペ
アで表されます。これらは元の
ユーザー名の String.replaceAll 関
数への引数として順次使用されま
す。キーは正規表現で、値は正規
表現に一致するユーザー名の文字
を置き換える置換文字列です。変
更したユーザー名は CodeReady
Workspaces データベースのみに
保存され、アイデンティティープ
ロバイダーには再び公開されませ
ん。DNS に準拠する文字を代替
文字列として使用することが推奨
されます (キー/値のペアの値)。
例：\\=-,@=-at- では \ は - に、@
は -at- に変更され、ユーザー名
org\user@com は org-user-at-
com. になります。

環境変数名 デフォルト値 詳細

関連資料

外部の Keycloak インストールを使用するように Che を設定する

4.2. ワークスペースターゲットプロジェクトの設定

新規ワークスペースがデプロイされる OpenShift プロジェクトは、CodeReady Workspaces サーバー
設定によって異なります。CodeReady Workspaces は、各ワークスペースをユーザー専用のプロジェク
トにデプロイして、対象のユーザーが作成した全 CodeReady Workspaces をホストします。OpenShift
プロジェクトの名前は、CodeReady Workspaces サーバー設定プロパティーとして指定するか、
CodeReady Workspaces 管理者が事前に作成しておく必要があります。

Operator インストーラーでは、OpenShift プロジェクトストラテジーは
server.workspaceNamespaceDefault プロパティーを使用して設定されます。

Operator CheCluster CR パッチ

apiVersion: org.eclipse.che/v1
kind: CheCluster
metadata:
 name: <che-cluster-name>

Red Hat CodeReady Workspaces 2.11 インストールガイド

76

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#configuring-che-to-use-external-keycloak_crw

1

spec:
 server:
 workspaceNamespaceDefault: <workspace-namespace> 1

- CodeReady Workspaces ワークスペースプロジェクト設定

注記

CodeReady Workspaces サーバーが使用する基礎となる環境変数は
CHE_INFRA_KUBERNETES_NAMESPACE_DEFAULT です。

警告

デフォルトでは、同じプロジェクト内で同時に実行できるワークスペースは 1 つだ
けです。「ユーザーが実行できるワークスペース数の設定」を参照してください。

警告

Kubernetes はプロジェクト名の長さを 63 文字に制限します (これには評価される
プレースホルダーが含まれます)。さらに、名前 (プレースホルダーの評価後) は有
効な DNS 名である必要があります。

マルチホストサーバーの脆弱性ストラテジーのある OpenShift では、長さはさらに
49 文字に制限されます。

<userid> プレースホルダーは 36 文字の長さの UUID 文字列として評価されること
に注意してください。

警告

以下の場合は 「各ユーザーのプロジェクトの事前作成」 を使用します。

新規プロジェクトの作成時に、Che ServiceAccount に十分なパーミッショ
ンがない

クラスターロールが self-provisioner の OpenShift OAuth が
system:authenticated:oauth グループにリンクされていない

CodeReady Workspaces が namespace を作成できない







第4章 CODEREADY WORKSPACES の設定

77

1

4.2.1. ユーザーストラテジーごとに 1 つのプロジェクト

ストラテジーは、独自のプロジェクトの各ユーザーを分離します。

ストラテジーを使用するには、CodeReady Workspaces workspace プロジェクト設定 の値を 1 つ以上
のユーザー ID が含まれるように設定します。現在サポートされている識別子は <username> と
<userid> です。

例4.2 ユーザーごとに 1 つのプロジェクト

'codeready-ws' プレフィックスおよび個々のユーザー名（codeready-ws-user1、codeready-ws-
user2) で構成されるプロジェクト名を割り当てるには、以下を設定します。

Operator インストーラー (CheCluster CustomResource)

...
spec:
 server:
 workspaceNamespaceDefault: codeready-ws-<username>
...

4.2.2. 互換性のないユーザー名またはユーザー ID の処理

CodeReady Workspaces サーバーは、テンプレートからプロジェクトを作成する前に、OpenShift オブ
ジェクトの命名規則との互換性についてユーザー名と ID を自動的にチェックします。互換性のない
ユーザー名または ID は、適切ではないシンボルのグループを - に置き換えることにより減少し、ほぼ
有効な名前のみに絞られます。ID が競合しないように、無作為に選択された 6 記号の接尾辞を追加し
ます。再利用できるように、結果は設定に保存されます。

4.2.3. 各ユーザーのプロジェクトの事前作成

各ユーザーにプロジェクトを事前に作成するには、OpenShift のラベルとアノテーションを使用しま
す。このプロジェクトは、CHE_INFRA_KUBERNETES_NAMESPACE_DEFAULT 変数よりも優先し
て使用されます。

metadata:
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: workspaces-namespace
 annotations:
 che.eclipse.org/username: <username> 1

ターゲットユーザーのユーザー名

ラベルを設定するには、CHE_INFRA_KUBERNETES_NAMESPACE_LABELS を必要なラベルに設定
します。アノテーションを設定するに
は、CHE_INFRA_KUBERNETES_NAMESPACE_ANNOTATIONS を必要なアノテーションに設定しま
す。詳細は、CodeReady Workspaces サーバーコンポーネントのシステムプロパティーのリファレン
スを参照してください。

Red Hat CodeReady Workspaces 2.11 インストールガイド

78

1
2

警告

単一ユーザーに複数の namespace を作成しないでください。これにより、定義さ
れていない動作が生じる可能性があります。

重要

OAuth を使用する OpenShift では、ターゲットユーザーにターゲット namespace の
admin ロール権限が必要です。

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: admin
 namespace: <namespace> 1
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: admin
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: <username> 2

事前に作成される namespace
ターゲットユーザー

Kubernetes では、che ServiceAccount には、クラスター全体の list および get
namespaces パーミッションと、ターゲット namespace の admin ロールが必要です。

4.2.4. namespace のラベル付け

CodeReady Workspaces は、CHE_INFRA_KUBERNETES_NAMESPACE_LABELS で定義されるラベ
ルを追加して、ワークスペースの起動時にワークスペースのプロジェクトを更新します。これを実行す
るには、che ServiceAccout に update および get namespaces に対する以下のようなクラスター全体
のパーミッションが必要になります。

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: <cluster-role-name> 1
rules:
 - apiGroups:
 - ""
 resources:
 - namespaces
 verbs:
 - update
 - get



第4章 CODEREADY WORKSPACES の設定

79

1

1

2

3

4

クラスターロールの名前

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: <cluster-role-binding-name> 1
subjects:
 - kind: ServiceAccount
 name: <service-account-name> 2
 namespace: <service-accout-namespace> 3
roleRef:
 kind: ClusterRole
 name: <cluster-role-name> 4
 apiGroup: rbac.authorization.k8s.io

クラスターロールバインディングの名前

che ServiceAccount の名前

CodeReady Workspaces インストール namespace

直前の手順で作成されたクラスターロールの名前

注記

パーミッションがない場合には、CodeReady Workspaces ワークスペースが起動しなく
なり、警告のみがログに記録されます。CodeReady Workspaces ログに警告が表示され
る場合は、CHE_INFRA_KUBERNETES_NAMESPACE_LABEL=false を定義して機能
を無効にすることを検討してください。

4.3. ストレージストラテジーの設定

本セクションでは、CodeReady Workspaces ワークスペースのストレージストラテジーを設定する方法
を説明します。

4.3.1. codeready-workspaces ワークスペースのストレージストラテジー

ワークスペース Pod は、ReadWriteOnce アクセスモードで物理的な永続ボリューム (PV) にバインド
される Persistent Volume Claim（永続ボリューム要求、PVC）を使用します。CodeReady Workspaces
サーバーがワークスペースに PVC を使用する方法を設定できます。この設定の個別の方法は PVC スト
ラテジーと呼ばれます。

ストラテジー 詳細 利点 不利な点

unique ワークスペースボリュー
ムまたはユーザー定義
PVC ごとに 1 つの PVC

ストレージの分離 定義されない数の PV が
必要です

Red Hat CodeReady Workspaces 2.11 インストールガイド

80

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

per-workspace (デフォ
ルト)

1 つのワークスペースに 1
つの PVC

一意のストラテジーと比
較すると、ストレージの
管理と制御が容易になり
ます。

PV 数は不明で、ワーク
スペース数により異なり
ます。

common 1 つの OpenShift
namespace のすべての
ワークスペースに 1 つの
PVC

ストレージの管理と制御
が容易になります。

PV が ReadWriteMany
(RWX) アクセスモード
をサポートしない場合、
ワークスペースは別の
OpenShift namespace
になければなりません。

または、1 つの
namespace で 2 つ以上
のワークスペースを同時
に実行することはできま
せん。

ストラテジー 詳細 利点 不利な点

Red Hat CodeReady Workspaces は、すべての CodeReady Workspaces ワークスペースがユーザーの
プロジェクトで動作し、1 つの PVC を共有する場合に、common PVC ストラテジーを「ユーザーごと
に 1 プロジェクト」のプロジェクトストラテジーと共に使用します。

4.3.1.1. common PVC ストラテジー

OpenShift プロジェクト内のすべてのワークスペースは、宣言されたボリュームに以下のようなデータ
を保存する際に、デフォルトのデータストレージと同じ Persistent Volume Claim（永続ボリューム要
求、PVC）を使用します。

プロジェクト

ワークスペースログ

使用に基づいて定義される追加のボリューム

common PVC ストラテジーが使用されている場合、ユーザー定義 PVC は無視され、これらのユーザー
定義 PVC を参照するボリュームは共通 PVC を参照するボリュームに置き換えられます。このストラテ
ジーでは、すべての CodeReady Workspaces ワークスペースが同じ PVC を使用します。ユーザーが 1
つのワークスペースを実行すると、一度にクラスター内の 1 つのノードにのみバインドします。

対応するコンテナーボリュームのマウントは共通ボリュームにリンクされ、サブパスには
<workspace-ID> または <original-PVC-name> のプレフィックスが付けられます。詳細は、「サブパ
スが PVC で使用される方法」を参照してください。

CodeReady Workspaces ボリューム名は、ユーザー定義 PVC の名前と同じです。つまり、マシンが
ユーザー定義の PVC と同じ名前を持つ CodeReady Workspaces ボリュームを使用するように設定され
ている場合、それらは共通 PVC で同じ共有フォルダーを使用します。

ワークスペースが削除されると、対応するサブディレクトリー (${ws-id}) が PV ディレクトリーで削除
されます。

注記

第4章 CODEREADY WORKSPACES の設定

81

注記

common PVC は、ユーザーのワークスペースがすべて削除された時点で削除されます。
PVC は、一時ワークスペース以外のワークスペースの開始時に再作成されます。

common PVC ストラテジーの使用に関する制限

common ストラテジーが使用され、ワークスペース PVC アクセスモードが ReadWriteOnce (RWO) の
場合、1 つのノードのみが PVC を同時に使用できます。

ノードが複数ある場合には、common ストラテジーを使用できますが、以下の点を注意してくださ
い。

ワークスペース PVC アクセスモードを ReadWriteMany (RWM)に再設定し、複数のノードが
この PVC を同時に使用できるようにする必要があります。

同じプロジェクトの 1 つのワークスペースのみを実行できます。「ユーザーが実行できるワー
クスペース数の設定」を参照してください。

common PVC ストラテジーは、大規模なマルチノードクラスターには適していません。そのため、単
一ノードクラスターで使用することが最も適しています。ただし、per-workspace プロジェクトスト
ラテジーと組み合わせにより、common PVC ストラテジーは 75 ノードを超えるクラスターで使用で
きます。このストラテジーで使用する PVC は、1 つのプロジェクトが他のプロジェクトのリソースを使
い切る状況を防ぐために、すべてのプロジェクトに対応するのに十分な大きさである必要があります。

4.3.1.2. per-workspace PVC ストラテジー

per-workspace ストラテジーは、common PVC ストラテジーに似ています。すべてのワークスペース
ではなく、すべてのワークスペースのボリュームが以下についてデフォルトのデータストレージと同じ
PVC を使用する点が唯一の違いになります。

プロジェクト

ワークスペースログ

ユーザーが定義する追加のボリューム

このストラテジーでは、CodeReady Workspaces は単一の PVC によって割り当てられる割り当てられ
た PV にワークスペースのデータを保持します。

per-workspace PVC ストラテジーは、利用可能な PVC ストラテジーの中でも最も汎用的なストラテ
ジーであり、ユーザーの量が多い大規模なマルチノードクラスターの適切なオプションとして機能しま
す。per-workspace PVC ストラテジーを使用すると、ユーザーは複数のワークスペースを同時に実行
できます。これにより、PVC がさらに作成されます。

4.3.1.3. unique PVC ストラテジー

'unique 'PVC ストラテジーを使用する場合、ワークスペースのすべての CodeReady Workspaces ボ
リュームには独自の PVC があります。その場合、ワークスペース PVC は以下のようになります。

ワークスペースの初回起動時に作成されます。

対応するワークスペースが削除されると削除されます。

ユーザー定義の PVC は以下の詳細で作成されます。

これらは、プロジェクトの他の PVC との名前の競合を防ぐために、生成される名前でプロビ

Red Hat CodeReady Workspaces 2.11 インストールガイド

82

これらは、プロジェクトの他の PVC との名前の競合を防ぐために、生成される名前でプロビ
ジョニングされます。

ユーザー定義の PVC を参照するマウントされた物理的な永続ボリュームのサブパスに
は、<workspace-ID> または <PVC-name> のプレフィックスが付けられます。これにより、同
じ PV データ構造が異なる PVC ストラテジーで設定されます。詳細は、「サブパスが PVC で
使用される方法」を参照してください。

unique PVC ストラテジーは、ユーザーの量が少ない大規模なマルチノードクラスターに適していま
す。このストラテジーはワークスペースの各ボリュームについて別個の PVC で動作するため、さらに
多くの PVC が作成されます。

4.3.1.4. サブパスが PVC で使用される方法

サブパスは、永続ボリューム (PV) のフォルダー階層を示しています。

/pv0001
 /workspaceID1
 /workspaceID2
 /workspaceIDn
 /che-logs
 /projects
 /<volume1>
 /<volume2>
 /<User-defined PVC name 1 | volume 3>
 ...

ユーザーが devfile でコンポーネントのボリュームを定義すると、同じ名前のボリュームを定義するす
べてのコンポーネントは、PV 内の <PV-name>, <workspace-ID> または `<original-PVC-name> と同
じディレクトリーでサポートされます。各コンポーネントでは、コンテナー内の異なるパスにこの場所
をマウントすることができます。

例

common PVC ストラテジーを使用すると、ユーザー定義の PVC は共通 PVC のサブパスに置き換えら
れます。ユーザーがボリュームを my-volume として参照すると、これは /workspace-id/my-volume
サブパスで common-pvc にマウントされます。

4.3.2. 永続ボリュームストラテジーを使用した CodeReady Workspaces ワークスペー
スの設定

永続ボリューム (PV) は、ボリュームをクラスターに追加する仮想ストレージインスタンスとして機能
します。

永続ボリューム要求 (PVC）は、以下の CodeReady Workspaces ストレージ設定ストラテジーで利用可
能な特定のタイプおよび設定の永続ストレージのプロビジョニング要求です。

Common

Per-workspace

Unique

マウントされた PVC はコンテナーのファイルシステムのフォルダーとして表示されます。

第4章 CODEREADY WORKSPACES の設定

83

4.3.2.1. Operator を使用した PVC ストラテジーの設定

以下のセクションでは、Operator を使用して CodeReady Workspaces サーバーのワークプレースの永
続ボリューム要求 (PVC）ストラテジーを設定する方法を説明します。

警告

既存のワークスペースを使用して既存の CodeReady Workspaces クラスターに
PVC ストラテジーを再設定することは推奨されません。これを実行すると、データ
が失われます。

Operator は、カスタムリソースを使用してアプリケーションとそのコンポーネントを管理する
OpenShift に対するソフトウェアの拡張機能です。

Operator を使用して CodeReady Workspaces をデプロイする場合は、CheCluster カスタムリソースオ
ブジェクトの YAML ファイルの spec.storage.pvcStrategy プロパティーを変更して、目的のストラテ
ジーを設定します。

前提条件

oc ツールが利用できる。

手順

以下の手順は、OpenShift コマンドラインツール「oc」で使用できます。

CheCluster YAML ファイルに変更を加えるには、以下のいずれかを選択します。

oc apply コマンドを実行して新規クラスターを作成します。以下に例を示します。

$ oc apply -f <my-cluster.yaml>

oc patch コマンドを実行して、すでに実行中のクラスターの YAML ファイルプロパティーを更
新します。以下に例を示します。

$ oc patch checluster/codeready-workspaces --type=json \
 -p '[{"op": "replace", "path": "/spec/storage/pvcStrategy", "value": "per-workspace"}]'

使用されるストラテジーに応じて、上記の例の per-workspace オプションを unique または common
に置き換えます。

4.4. ストレージタイプの設定

Red Hat CodeReady Workspaces は、さまざまな機能を備えた 3 種類のストレージをサポートします。

Persistent (永続)

Ephemeral (一時)

Asynchronous (非同期)



Red Hat CodeReady Workspaces 2.11 インストールガイド

84

https://docs.openshift.com/container-platform/latest/operators/understanding/olm-what-operators-are.html
https://docs.openshift.com/container-platform/latest/operators/understanding/crds/crd-managing-resources-from-crds.html

4.4.1. 永続ストレージ

永続ストレージにより、マウントされた永続ボリュームにユーザーの変更を直接保存できます。とくに
小さなファイルが数多くある場合に I/O が低速になりますが、ユーザーの変更は OpenShift インフラス
トラクチャー (ストレージバックエンド) によって保護されます。たとえば、Node.js プロジェクトには
多くの依存関係が含まれることがあり、node_modules/ ディレクトリーには数千の小さなファイルが
含まれます。

注記

I/O の速度は、環境内で設定されているストレージクラスによって異なります。

永続ストレージは、新規ワークスペースのデフォルトモードです。この設定をワークスペース設定で表
示できるようにするには、以下を devfile に追加します。

4.4.2. 一時ストレージ

一時ストレージでは、ファイルを emptyDir ボリュームに保存します。このボリュームは最初は空の状
態です。Pod がノードから削除されると、emptyDir ボリュームのデータは永久に削除されます。つま
り、ワークスペースの停止または再起動時にすべての変更が失われます。

重要

変更を保存するには、一時ワークスペースを停止する前に、リモートへのコミットおよ
びプッシュを実行します。

一時モードは、永続ストレージよりも高速な I/O を提供します。このストレージタイプを有効にするに
は、以下をワークスペース設定に追加します。

表4.17 AWS EBS での一時モード (emptyDir) と永続モードの I/O の比較

コマンド Ephemeral (一時) Persistent (永続)

Red Hat CodeReady Workspaces
のクローン作成

0 m 19 s 1 m 26 s

1000 のランダムなファイルの生
成

1 m 12 s 44 m 53 s

4.4.3. 非同期ストレージ

注記

非同期ストレージは実験的な機能です。

attributes:
 persistVolumes: 'true'

attributes:
 persistVolumes: 'false'

第4章 CODEREADY WORKSPACES の設定

85

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/storage-classes/#aws-ebs

非同期ストレージは、永続ストレージと一時モードの組み合わせです。初期ワークスペースコンテナー
は emptyDir ボリュームをマウントします。次に、ワークスペースの停止時にバックアップが実行さ
れ、変更がワークスペースの起動時に復元されます。非同期ストレージは、(一時モードと同様の）高
速 I/O を提供し、ワークスペースプロジェクトの変更は永続化されます。

同期は、SSH プロトコルを使用して rsync ツールで実行されます。ワークスペースが非同期ストレージ
で設定されている場合、workspace-data-sync プラグインはワークスペース設定に自動的に追加されま
す。プラグインはワークスペースの開始時に rsync コマンドを実行して変更を復元します。ワークス
ペースが停止したら、変更を永続ストレージに送信します。

比較的小規模なプロジェクトの場合、復元手順は高速で、Che-Theia が初期化されるとプロジェクトの
ソースファイルはすぐに利用可能になります。rsync にかかる時間が長いと、同期プロセスは Che-
Theia のステータスバーの領域に表示されます。(Che-Theia リポジトリーの拡張)。

注記

非同期モードには、以下の制限があります。

common PVC ストラテジーのみをサポートします。

ユーザーごとの プロジェクトストラテジーのみをサポートします。

1 度に実行できるワークスペースは 1 つのみです。

ワークスペースの非同期ストレージを設定するには、以下をワークスペース設定に追加します。

4.4.4. CodeReady Workspaces ダッシュボードのストレージタイプのデフォルトの設
定

以下の 2 つの che.properties を使用して、CodeReady Workspaces ダッシュボードでデフォルトのク
ライアント値を設定します。

che.workspace.storage.available_types

ワークスペースの作成または更新時に、ダッシュボードなどのクライアントがユーザーに提案する
ストレージタイプに使用できる値を定義します。使用できる値は persistent、ephemeral および
async です。複数の値をコンマで区切ります。以下に例を示します。

che.workspace.storage.available_types=persistent,ephemeral,async

che.workspace.storage.preferred_type

ワークスペースの作成時に、ダッシュボードなどのクライアントがユーザーに提案するストレージ

attributes:
 asyncPersist: 'true'
 persistVolumes: 'false'

Red Hat CodeReady Workspaces 2.11 インストールガイド

86

https://www.openssh.com/
https://rsync.samba.org/
https://github.com/che-incubator/workspace-data-sync/
https://github.com/eclipse-che/che-theia/tree/master/extensions/eclipse-che-theia-file-sync-tracker

ワークスペースの作成時に、ダッシュボードなどのクライアントがユーザーに提案するストレージ
タイプのデフォルト値を定義します。async 値は、実験的な取組であるため、デフォルトタイプと
しての使用は推奨されません。以下に例を示します。

che.workspace.storage.preferred_type=persistent

ユーザーは、ワークスペースの作成時に CodeReady Workspaces ダッシュボードの Create Custom
Workspace タブでストレージタイプを設定できます。既存のワークスペースのストレージタイプは、
ワークスペースの詳細について Overview タブで設定できます。

4.4.5. 非同期ストレージ Pod のアイドリング

CodeReady Workspaces は、設定された期間に使用されていない場合に、非同期ストレージ Pod を
シャットダウンできます。

動作を調整するには、以下の設定プロパティーを使用します。

che.infra.kubernetes.async.storage.shutdown_timeout_min

最後のアクティブなワークスペースの停止後に非同期ストレージ Pod が停止されるアイドル時間を
定義します。デフォルト値は 120 分です。

che.infra.kubernetes.async.storage.shutdown_check_period_min

非同期ストレージ Pod でアイドル状態をチェックする頻度を定義します。デフォルト値は 30 分で
す。

CodeReady Workspaces ワークスペースのタイムアウトを増やすには、以下の例を使用して、ワークス
ペースタイムアウトを 30 分間隔 (1800000 ミリ秒) に設定します。

+

 $ oc patch checluster/codeready-workspaces --patch "{\"spec\":{\"server\":{\"customCheProperties\":
{\"CHE_LIMITS_WORKSPACE_IDLE_TIMEOUT\": \"1800000\"}}}}" --type=merge -n openshift-
workspaces

4.5. ユーザーが実行できるワークスペース数の設定

この記事では、ユーザーが同時に実行できるワークスペースの数を設定する方法を説明します。

4.5.1. Operator を使用したユーザーが実行できるワークスペースの数の設定

この手順では、複数のワークスペースを同時に実行するように、CodeReady Workspacesを設定する
方法を説明します。複数のワークスペースを実行すると、ユーザーは異なる作業環境を同時に使用でき
ます。

前提条件

Operator を使用して CodeReady Workspaces のインスタンスがインストールされている。

PVC ストラテジーとアクセスモードの組み合わせは以下の基準を満たしている。

ReadWriteMany アクセスモードおよび任意の PVC ストラテジー

ReadWriteOnce アクセスモードおよび per-workspace または unique PVC ストラテジー

第4章 CODEREADY WORKSPACES の設定

87

「ストレージストラテジーの設定」を参照してください。

<number-of-workspaces> プレースホルダーの値を特定している。

注記

値が -1 の場合には、各ユーザーが実行できるワークスペース数は無制限になり
ます。値が正の整数である場合には、この整数値と同じ数だけ、ワークスペース
を実行できます。デフォルト値は 1 です。

手順

1. CheCluster カスタムリソースの server 設定で
は、CHE_LIMITS_USER_WORKSPACES_RUN_COUNT プロパティーを custom
CheProperties に追加して、ユーザーが実行できるワークスペース数を設定します。

4.6. ユーザーが作成できるワークスペースの数の設定

この記事では、ユーザーが作成できるワークスペースの数を設定する方法を説明します。

4.6.1. Operator を使用したユーザーが作成できるワークスペースの数の設定

この手順では、ユーザーが作成できるワークスペースの数を設定する方法を説明します。複数のワーク
スペースを作成すると、ユーザーは同時に設定が異なるワークスペースにアクセスできます。

前提条件

Operator を使用して CodeReady Workspaces のインスタンスがインストールされている。

<number-of-workspaces> プレースホルダーの値を特定している。

注記

値が -1 の場合には、ユーザーが無制限にワークスペースを作成できます。値が
正の整数である場合には、この整数値と同じ数だけ、ワークスペースを作成でき
ます。デフォルト値は -1 です。

手順

CheCluster カスタムリソースの server 設定で
は、CHE_LIMITS_USER_WORKSPACES_RUN_COUNT プロパティーを custom
CheProperties に追加して、ユーザーが作成できるワークスペース数を設定します。

apiVersion: org.eclipse.che/v1
kind: CheCluster
[...]
spec:
 server:
 # [...]
 customCheProperties:
 CHE_LIMITS_USER_WORKSPACES_RUN_COUNT: "<number-of-workspaces>"

apiVersion: org.eclipse.che/v1

Red Hat CodeReady Workspaces 2.11 インストールガイド

88

4.7. ワークスペース公開ストラテジーの設定

CodeReady Workspaces サーバーのワークスペース公開ストラテジーを設定し、内部で実行されている
アプリケーションが外部からの攻撃を受けないようにする方法を説明します。

4.7.1. Operator を使用したワークスペース公開ストラテジーの設定

Operator は、カスタムリソースを使用してアプリケーションとそのコンポーネントを管理する
OpenShift に対するソフトウェアの拡張機能です。

前提条件

oc ツールが利用できる。

手順

Operator を使用して CodeReady Workspaces をデプロイする場合は、CheCluster カスタムリソースオ
ブジェクトの YAML ファイルの spec.server.serverExposureStrategy プロパティーを変更して、目的
のストラテジーを設定します。

spec.server.serverExposureStrategy でサポートされる値は次のとおりです。

multi-host

single-host

個別のストラテジーの詳細は、「ワークスペース公開ストラテジー」 を参照してください。

CheCluster YAML ファイルに加えた変更を有効にするには、以下のいずれかを実行します。

パッチを適用して crwctl コマンドを実行して、新しいクラスターを作成します。以下に例を示
します。

$ crwctl server:deploy --installer=operator --platform=<platform> \
 --che-operator-cr-patch-yaml=patch.yaml

注記

利用可能な OpenShift デプロイメントプラットフォームの一覧について
は、crwctl server:deploy --platform --help を使用します。

以下の patch.yaml ファイルを使用します。

kind: CheCluster
[...]
spec:
 server:
 # [...]
 customCheProperties:
 CHE_LIMITS_USER_WORKSPACES_COUNT: "<number-of-workspaces>"

apiVersion: org.eclipse.che/v1
kind: CheCluster
metadata:

第4章 CODEREADY WORKSPACES の設定

89

https://docs.openshift.com/container-platform/latest/operators/understanding/olm-what-operators-are.html
https://docs.openshift.com/container-platform/latest/operators/understanding/crds/crd-managing-resources-from-crds.html

1

1

- ワークスペース公開ストラテジーの使用

oc patch コマンドを実行して、すでに実行中のクラスターの YAML ファイルプロパティーを更
新します。以下に例を示します。

$ oc patch checluster/codeready-workspaces --type=json \
 -p '[{"op": "replace",
 "path": "/spec/server/serverExposureStrategy",
 "value": "<exposure-strategy>"}]' \ 1
 -n openshift-workspaces

- ワークスペース公開ストラテジーの使用

4.7.2. ワークスペース公開ストラテジー

ワークスペースの特定のコンポーネントは、OpenShift クラスター外からアクセスできるようにする必
要があります。通常、これはワークスペースの IDE のユーザーインターフェースですが、開発されるア
プリケーションの Web UI である可能性もあります。これにより、開発プロセスでの開発者のアプリ
ケーションとの対話が可能になります。

ワークスペースをユーザーが使用できるようにするためのサポートされる方法は、ストラテジー と呼ば
れます。このストラテジーは、ワークスペースコンポーネントに新しいサブドメインが作成されるかど
うか、およびこれらのコンポーネントを利用可能にするホストを定義します。

CodeReady Workspaces は以下をサポートします。

Multi-host ストラテジー

single-host ストラテジー

gateway サブタイプの使用

4.7.2.1. Multihost ストラテジー

Multihost ストラテジーでは、各ワークスペースコンポーネントには、CodeReady Workspaces サー
バーに設定された主なドメインの新規サブドメインが割り当てられます。これはデフォルトのストラテ
ジーです。

このストラテジーは、コンポーネントへの URL に存在するいずれのパスもコンポーネントごとにその
まま受信されるため、コンポーネントのデプロイメントの点で最も理解しやすいストラテジーです。

Transport Layer Security (TLS) プロトコルの使用によってセキュリティーが保護された CodeReady
Workspaces サーバーで、各ワークスペースの各コンポーネントに新規のサブドメインを作成するに
は、CodeReady Workspaces デプロイメントが機能するため、このようなサブドメインすべてについて
ワイルドカード証明書が利用可能である必要があります。

4.7.2.2. 単一ホストストラテジー

single-host ストラテジーでは、すべてのワークスペースが主な CodeReady Workspaces サーバードメ

 name: eclipse-che
spec:
 server:
 serverExposureStrategy: '<exposure-strategy>' 1

Red Hat CodeReady Workspaces 2.11 インストールガイド

90

single-host ストラテジーでは、すべてのワークスペースが主な CodeReady Workspaces サーバードメ
インのサブパスにデプロイされます。

これは、すべてのワークスペースコンポーネントのデプロイメントに対応する CodeReady Workspaces
サーバーの単一の証明書のみが必要となるため、TLS で保護される CodeReady Workspaces サーバー
の場合に便利です。

単一ホストストラテジーには、異なる実装方法が設定された 2 つのサブタイプがあります。最初のサブ
タイプの名前は native です。このストラテジーは Kubernetes でデフォルトで利用できますが、サー
バーの公開に Ingress を使用するため、OpenShift では利用できません。gateway という名前の 2 つ目
のサブタイプは OpenShift の両方で機能し、内部で実行されるリバースプロキシーのある特別な Pod
を使用して要求をルーティングします。

警告

gateway single-host ストラテジーでは、クラスターのネットワークポリシーを設
定して、ワークスペースのサービスが (通常は CodeReady Workspaces プロジェク
トの) リバースプロキシー Pod から到達できるように設定する必要があります。通
常、これらは異なるプロジェクトに置かれます。

devfile に指定されたエンドポイントを公開する方法を定義するには、CodeReady Workspaces インス
タンスの
CHE_INFRA_KUBERNETES_SINGLEHOST_WORKSPACE_DEVFILE__ENDPOINT__EXPOSURE
環境変数を定義します。この環境変数は、single-host サーバーストラテジーでのみ有効であり、すべて
のユーザーのすべてのワークスペースに適用できます。

4.7.2.2.1. devfile エンドポイント：single-host

CHE_INFRA_KUBERNETES_SINGLEHOST_WORKSPACE_DEVFILE__ENDPOINT__EXPOSURE:
'single-host'

この単一ホスト設定は、サブパスのエンドポイントを公開します（例：https://<che-
host>/serverihzmuqqc/go-cli-server-8080 ）。これにより、公開されるコンポーネントおよびユー
ザーアプリケーションが制限されます。サーバーを参照するサーバー側で生成される絶対 URL は機能
しません。これは、サーバーが、コンポーネントまたはユーザーアプリケーションから一意の URL パ
スのプレフィックスを非表示にするパスが書き換えられるリバースプロキシーの背後にあるためです。

たとえば、ユーザーが仮の \https://codeready-<openshift_deployment_name>.
<domain_name>/component-prefix-djh3d/app/index.php URL にアクセスする場合に、アプリケー
ションには要求が https://internal-host/app/index.php に送信されるように表示されます。アプリケー
ションが UI で生成する URL でホストを使用している場合、内部ホストが外部に表示されるホストとは
異なるため、これは機能しません。ただし、アプリケーションが URL に絶対パスを使用している場合
(上記の場合は /app/index.php)、この URL は依然として機能しません。これは、外部ではこの URL は
コンポーネント固有のプレフィックスがなく、アプリケーションを参照しないためです。

そのため、UI で相対 URL を使用するアプリケーションのみが、single-host ワークスペース公開ストラ
テジーで機能します。

4.7.2.2.2. devfile エンドポイント: multi-host

CHE_INFRA_KUBERNETES_SINGLEHOST_WORKSPACE_DEVFILE__ENDPOINT__EXPOSURE:



第4章 CODEREADY WORKSPACES の設定

91

CHE_INFRA_KUBERNETES_SINGLEHOST_WORKSPACE_DEVFILE__ENDPOINT__EXPOSURE:
'multi-host'

この単一ホスト設定は、サブドメインのエンドポイントを公開します（例：http://serverihzmuqqc-go-
cli-server-8080.<che-host）。これらのエンドポイントは、セキュアでない HTTP ポートで公開されま
す。gateway 単一ホストの設定でも、専用の Ingress または Route がこのエンドポイントに使用されま
す。

この設定により、CodeReady Workspaces が TLS で設定されている場合に、エディターページに直接
表示されるプレビューの使用が制限されます。https ページはセキュリティーが保護されたエンドポイ
ントとの通信のみを許可するため、ユーザーは別のブラウザータブでアプリケーションのプレビューを
開く必要があります。

4.7.3. セキュリティーに関する考慮事項

本セクションでは、さまざまな CodeReady Workspaces ワークスペースの公開ストラテジーを使用す
るセキュリティー上の影響について説明します。

本セクションのすべてのセキュリティー関連の考慮事項は、マルチユーザーモードの CodeReady
Workspaces のみに適用されます。単一ユーザーモードは、セキュリティー制限を課しません。

4.7.3.1. JSON Web トークン (JWT) プロキシー

すべての CodeReady Workspaces プラグイン、エディター、およびコンポーネントには、それらにア
クセスするユーザーの認証が必要になる場合があります。この認証は、その設定に基づいて対応するコ
ンポーネントのリバースプロキシーとして機能し、コンポーネントの代わりに認証を実行する JSON
Web トークン (JWT) プロキシーを使用して実行されます。

認証では、CodeReady Workspaces サーバーの特別なページへのリダイレクトを使用して、ワークス
ペースおよびユーザー固有の認証トークン (ワークスペースアクセストークン) を最初に要求されたペー
ジに伝播します。

JWT プロキシーは、受信要求の以下の場所からのワークスペースアクセストークンを受け入れます。

1. トークンクエリーパラメーター

2. bearer-token 形式の Authorization ヘッダー

3. access_token クッキー

4.7.3.2. セキュリティーが保護されたプラグインおよびエディター

CodeReady Workspaces ユーザーはワークスペースのプラグインやワークスペースのエディター (Che-
Theia など) のセキュリティーを保護する必要はありません。これは、JWT プロキシー認証はユーザー
に透過的であり、meta.yaml 記述子のプラグインまたはエディター定義によって制御されるためです。

4.7.3.3. セキュリティー保護されたコンテナーイメージコンポーネント

コンテナーイメージのコンポーネントは、必要に応じて devfile の作成者側が CodeReady Workspaces
が提供する認証を要求するカスタムエンドポイントを定義できます。この認証は、エンドポイントの 2
つのオプション属性を使用して設定されます。

secure - CodeReady Workspaces サーバーに対し、エンドポイントの前に JWT プロキシーを
配置するよう指示するブール値属性。このエンドポイントでは、「JSON Web トークン (JWT)
プロキシー」 で説明されているいくつかの方法のいずれかを使用して、ワークスペースのアク
セストークンが提供される必要があります。属性のデフォルト値は false です。

Red Hat CodeReady Workspaces 2.11 インストールガイド

92

cookiesAuthEnabled - 「JSON Web トークン (JWT) プロキシー」 で説明されているよう
に、CodeReady Workspaces サーバーに対し、現在のユーザー認証の非認証要求を自動的にリ
ダイレクトするように指示するブール値属性。この属性を true に設定すると、CSRF (クロス
サイトリクエストフォージェリー) 攻撃が可能になり、セキュリティー上の影響が発生します。
属性のデフォルト値は false です。

4.7.3.4. クロスサイトリクエストフォージェリー攻撃

cookie ベースの認証に、JWT プロキシーによってセキュリティーが保護されたアプリケーションは
CSRF (Cross-site Request forgery) 攻撃の対象となりやすくする場合があります。アプリケーションに
脆弱性がないことを確認するには、CSRF (Cross-site request forgery) についての Wikipedia ページや
その他のリソースを参照してください。

4.7.3.5. フィッシング攻撃

JWT プロキシーの背後にあるサービスとホストを共有するワークスペースを使用してクラスター内に
Ingress またはルートを作成できる攻撃者は、サービスの作成やとくに偽造された Ingress オブジェクト
の作成が可能になる場合があります。このようなサービスまたは Ingress がワークスペースで以前に認
証されている適切なユーザーによってアクセスされる際に、攻撃者は偽の URL への適切なユーザーの
ブラウザーが送信する cookie からワークスペースアクセストークンを盗むことができる可能性があり
ます。この攻撃ベクトルを排除するには、Ingress のホストの設定を禁止するように OpenShift を設定
します。

4.8. ワークスペース NODESELECTOR の設定

このセクションでは、CodeReady Workspaces ワークスペースの Pod について nodeSelector を設定
する方法を説明します。

手順

CodeReady Workspaces は CHE_WORKSPACE_POD_NODE__SELECTOR 環境変数を使用して
nodeSelector を設定します。この変数には、nodeSelector ルールを形成するためにコンマ区切りの
key=value ペアのセットが含まれるか、またはこれを無効にする NULL が含まれる場合があります。

CHE_WORKSPACE_POD_NODE__SELECTOR=disktype=ssd,cpu=xlarge,[key=value]

重要

nodeSelector は CodeReady Workspaces のインストール時に設定する必要がありま
す。これにより、既存のワークスペース PVC および Pod が異なるゾーンにスケジュー
ルされることによってボリュームのアフィニティーの競合が生じ、既存のワークスペー
スが実行できなくなることを防ぐことができます。

大規模なマルチゾーンクラスターの異なるゾーンに Pod および PVC がスケジュールさ
れないようにするには、PVC の作成プロセスを調整する追加の StorageClass オブジェ
クトを作成します（allowedTopologies フィールドに注目してください）。

新規に作成された StorageClass の名前
を、CHE_INFRA_KUBERNETES_PVC_STORAGE__CLASS__NAME 環境変数で
CodeReady Workspaces に指定します。この変数のデフォルトの空の値の場合、
CodeReady Workspaces に対し、クラスターのデフォルト StorageClass を使用するよ
うに指示します。

4.9. RED HAT CODEREADY WORKSPACES サーバーのホスト名の設定

第4章 CODEREADY WORKSPACES の設定

93

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/storage/storage-classes/

1

2

3

1

2

この手順では、カスタムホスト名を使用するように CodeReady Workspaces を設定する方法を説明し
ます。

前提条件

oc ツールが利用できる。

証明書とプライベートキーファイルが生成されます。

重要

秘密鍵と証明書のペアを生成するには、他の CodeReady Workspaces ホストと同じ認証
局(CA)を使用する必要があります。

重要

DNS プロバイダーに対し、カスタムホスト名をクラスター Ingress を参照するよう要求
します。

手順

1. CodeReady Workspaces のプロジェクトを事前に作成します。

$ oc create project openshift-workspaces

2. TLS Secret を作成します。

$ oc create secret TLS ${secret} \ 1
--key ${key_file} \ 2
--cert ${cert_file} \ 3
-n openshift-workspaces

TLS Secret 名

プライベートキーを含むファイル

証明書を含むファイル

3. カスタムリソースに以下の値を設定します。

spec:
 server:
 cheHost: <hostname> 1
 cheHostTLSSecret: <secret> 2

カスタム Red Hat CodeReady Workspaces サーバーのホスト名

TLS Secret 名

4. CodeReady Workspaces がすでにデプロイされている場合は、すべての CodeReady
Workspaces コンポーネントのロールアウトが完了するまで待ちます。

Red Hat CodeReady Workspaces 2.11 インストールガイド

94

4.10. OPENSHIFT ルートの設定

この手順では、オブジェクトを整理して分類 (スコープおよび選択）するように、OpenShift
Route のラベルを設定する方法を説明します。

前提条件

oc ツールが利用できる。

OpenShift で実行される CodeReady Workspaces のインスタンス。

手順

1. OpenShift Route のラベルを設定するには、カスタムリソースを更新します。

重要

コンマを使用して、ラベルを区切ります： key1=value1,key2=value2

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/cheServerIngress/labels", '\
'"value": "<labels for a codeready-workspaces server ingress>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/auth/identityProviderIngress/labels", '\
'"value": "<labels for a RH-SSO ingress>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/pluginRegistryIngress/labels", '\
'"value": "<labels for a plug-ins registry ingress>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/devfileRegistryIngress/labels",'\
'"value": "<labels for a devfile registry ingress>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/dashboardIngress/labels",'\
'"value": "<labels for a dashboard ingress>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path":
"/spec/server/customCheProperties/CHE_INFRA_KUBERNETES_INGRESS_LABELS", '\
'"value": "<labels for a workspace ingress>"}]'

2. OpenShift Route のアノテーションを設定するには、以下のコマンドを使用してカスタムリ
ソースを更新します。

重要

オブジェクトを使用してアノテーションを指定します： {"key1": "value1",
"key2" : "value2"}

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \

第4章 CODEREADY WORKSPACES の設定

95

'[{"op": "replace", "path": "/spec/server/cheServerIngress/annotations", '\
'"value": <annotations for a codeready-workspaces server ingress>}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/auth/identityProviderIngress/annotations", '\
'"value": <annotations for a RH-SSO ingress>}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/pluginRegistryIngress/annotations", '\
'"value": <annotations for a plug-ins registry ingress>}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/devfileRegistryIngress/annotations",'\
'"value": <annotations for a devfile registry ingress>}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/dashboardIngress/annotations",'\
'"value": <annotations for a dashboard ingress>}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path":
"/spec/server/customCheProperties/CHE_INFRA_KUBERNETES_INGRESS_ANNOTATIONS
__JSON", '\
'"value": "<annotations for a workspace ingress in json format>"}]'

4.11. ルーターのシャード化と連携するように OPENSHIFT ルートを設定

この手順では、OpenShift Route がルーターのシャード化と連携するようにラベル、アノテーション、
およびドメインを設定する方法を説明します 。本章では、既存のインスタンスの設定プロセス、または
インストール予定の設定プロセスを説明します。

前提条件

oc および crwctl ツールが利用できる。

手順

新規の OperatorHub インストールの場合：

1. OpenShift Container Platform を使用して CodeReady Workspaces クラスターを入力し、
CheCluster カスタムリソース(CR)を作成します。Red Hat CodeReady Workspaces
Operator のインスタンスの作成 を参照してください。

2. 以下の値を codeready-workspaces カスタムリソース(CR)に設定します。

spec:
 server:
 devfileRegistryRoute:
 labels: <labels> 1
 domain: <domain> 2
 annotations: 3
 key1: value1
 key2: value2
 pluginRegistryRoute:

Red Hat CodeReady Workspaces 2.11 インストールガイド

96

https://docs.openshift.com/container-platform/4.7/networking/ingress-operator.html#nw-ingress-sharding_configuring-ingress

1 4 7 10 13 15

2 5 8 11 14 16

3 6 9 12 17

ターゲット Ingress コントローラーがルートからサービスのセットを
フィルタリングする時に使用するラベルのコンマ区切りの一覧

ターゲット Ingress コントローラーが提供する DNS 名

リソースに保管された構造化されていないキー値のマップ

新規の crwctl インストールの場合は、以下のようになります。

1. 以下を使用してインストールを設定します。

$ crwctl server:deploy --che-operator-cr-patch-yaml=patch.yaml ...

patch.yaml ファイルには以下を含める必要があります。

 labels: <labels> 4
 domain: <domain> 5
 annotations: 6
 key1: value1
 key2: value2
 dashboardRoute:
 labels: <labels> 7
 domain: <domain> 8
 annotations: 9
 key1: value1
 key2: value2
 cheServerRoute:
 labels: <labels> 10
 domain: <domain> 11
 annotations: 12
 key1: value1
 key2: value2
 customCheProperties:
 CHE_INFRA_OPENSHIFT_ROUTE_LABELS: <labels> 13
 CHE_INFRA_OPENSHIFT_ROUTE_HOST_DOMAIN__SUFFIX: <domain> 14
 auth:
 identityProviderRoute:
 labels: <labels> 15
 domain: <domain> 16
 annotations: 17
 key1: value1
 key2: value2

spec:
 server:
 devfileRegistryRoute:
 labels: <labels> 1
 domain: <domain> 2
 annotations: 3
 key1: value1
 key2: value2
 pluginRegistryRoute:

第4章 CODEREADY WORKSPACES の設定

97

1 4 7 10 13 15

2 5 8 11 14 16

3 6 9 12 17

ターゲット Ingress コントローラーがルートからサービスのセットを
フィルタリングする時に使用するラベルのコンマ区切りの一覧

ターゲット Ingress コントローラーが提供する DNS 名

リソースに保管された構造化されていないキー値のマップ

既存の CodeReady Workspaces インストールの場合：

1. oc ツールを使用して codeready-workspaces CR を更新します。

a. ラベルを設定するには、以下を実行します。

重要

コンマを使用して、ラベルを区切ります： key1=value1,key2=value2

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/server/cheServerRoute/labels",'\
'"value": "<labels for a codeready-workspaces server route>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\

 labels: <labels> 4
 domain: <domain> 5
 annotations: 6
 key1: value1
 key2: value2
 dashboardRoute:
 labels: <labels> 7
 domain: <domain> 8
 annotations: 9
 key1: value1
 key2: value2
 cheServerRoute:
 labels: <labels> 10
 domain: <domain> 11
 annotations: 12
 key1: value1
 key2: value2
 customCheProperties:
 CHE_INFRA_OPENSHIFT_ROUTE_LABELS: <labels> 13
 CHE_INFRA_OPENSHIFT_ROUTE_HOST_DOMAIN__SUFFIX: <domain> 14
 auth:
 identityProviderRoute:
 labels: <labels> 15
 domain: <domain> 16
 annotations: 17
 key1: value1
 key2: value2

Red Hat CodeReady Workspaces 2.11 インストールガイド

98

'[{"op": "replace", "path": "/spec/server/pluginRegistryRoute/labels", '\
'"value": "<labels for a plug-ins registry route>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/server/devfileRegistryRoute/labels", '\
'"value": "<labels for a devfile registry route>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/server/dashboardRoute/labels", '\
'"value": "<labels for a dashboard route>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/auth/identityProviderRoute/labels", '\
'"value": "<labels for a RH-SSO route>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path":
"/spec/server/customCheProperties/CHE_INFRA_OPENSHIFT_ROUTE_LABELS",
'\
'"value": "<labels for a workspace routes>"}]'

b. ドメインを設定するには、以下を行います。

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/server/cheServerRoute/domain",'\
'"value": "<ingress domain>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/server/pluginRegistryRoute/domain", '\
'"value": "<ingress domain>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/server/devfileRegistryRoute/domain", '\
'"value": "<ingress domain>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/server/dashboardRoute/domain", '\
'"value": "<ingress domain>"}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/auth/identityProviderRoute/domain", '\
'"value": "<ingress domain>"}]'

第4章 CODEREADY WORKSPACES の設定

99

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path":
"/spec/server/customCheProperties/CHE_INFRA_OPENSHIFT_ROUTE_HOST_DO
MAIN__SUFFIX", '\
'"value": "<ingress domain>"}]'

c. アノテーションを設定するには、以下を行います。

重要

オブジェクトを使用してアノテーションを指定します： {"key1":
"value1", "key2" : "value2"}

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/server/cheServerRoute/annotations",'\
'"value": <annotations for a codeready-workspaces ingress>}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/server/pluginRegistryRoute/annotations", '\
'"value": <annotations for a plug-ins registry ingress>}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/server/devfileRegistryRoute/annotations", '\
'"value": <annotations for a devfile registry ingress>}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/server/dashboardRoute/annotations", '\
'"value": <annotations for a dashboard ingress>}]'

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p
\
'[{"op": "replace", "path": "/spec/auth/identityProviderRoute/annotations", '\
'"value": <annotations for a RH-SSO ingress>}]'

4.12. 自己署名証明書を使用した GIT リポジトリーをサポートする
CODEREADY WORKSPACES のデプロイ

この手順では、自己署名証明書を使用するリポジトリーで Git 操作のサポートのあるデプロイメント用
に CodeReady Workspaces を設定する方法を説明します。

前提条件

Git バージョン 2 以降

手順

Red Hat CodeReady Workspaces 2.11 インストールガイド

100

1

2

自己署名の Git リポジトリーのサポートの設定。

1. Git サーバーの詳細情報を使用して新規の configMap を作成します。

$ oc create configmap che-git-self-signed-cert \
 --from-file=ca.crt=<path_to_certificate> \ 1
 --from-literal=githost=<host:port> -n openshift-workspaces 2

自己署名証明書へのパス

Git サーバーの HTTPS 接続のホストおよびポート（オプション）。

注記

githost を指定しないと、指定された証明書がすべての HTTPS リポジト
リーに使用されます。

証明書ファイルは、通常、以下のような Base64 ASCII ファイルとして保存
されます。.pem, .crt, .ca-bundle.また、これらはバイナリーデータとしてエ
ンコードすることもできます (例: .cer)。証明書ファイルを保持するすべての
Secrets は、バイナリーデータ証明書ではなく、Base64 ASCII 証明書を使
用する必要があります。

2. Git リポジトリーの自己署名証明書を使用するように CodeReady Workspaces を設定します。
gitSelfSignedCert プロパティーを更新します。これを行うには、以下を実行します。

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json \
 -p '[{"op": "replace", "path": "/spec/server/gitSelfSignedCert", "value": true}]'

3. 新規ワークスペースを作成および開始します。ワークスペースによって使用されるすべてのコ
ンテナーは、自己署名証明書のあるファイルを含む特殊なボリュームをマウントします。リポ
ジトリーの .git/config ファイルには、Git サーバーホスト (その URL) と http セクションの証
明書へのパスについての情報が含まれます（git-configに関する Git ドキュメントを参照してく
ださい)。以下に例を示します。

[http "https://10.33.177.118:3000"]
sslCAInfo = /etc/che/git/cert/ca.crt

4.13. ストレージクラスを使用した CODEREADY WORKSPACES のインス
トール

設定済みのインフラストラクチャーストレージを使用するように CodeReady Workspaces を設定する
には、ストレージクラスを使用して CodeReady Workspaces をインストールします。これは、ユー
ザーがデフォルト以外のプロビジョナーによって提供される永続ボリュームをバインドする必要がある
場合にとくに役立ちます。これを実行するには、ユーザーは CodeReady Workspaces のデータを節約
するためにこのストレージをバインドし、そのストレージのパラメーターを設定します。これらのパラ
メーターは、以下を決定します。

特殊なホストパス

ストレージ容量

第4章 CODEREADY WORKSPACES の設定

101

https://git-scm.com/docs/git-config#Documentation/git-config.txt-httpsslCAInfo

ボリューム mod

マウントオプション

ファイルシステム

アクセスモード

ストレージタイプ

その他多数

CodeReady Workspaces には、データの格納に永続ボリュームが必要な 2 つのコンポーネントがありま
す。

PostgreSQL データベース。

CodeReady Workspaces ワークスペース。CodeReady Workspaces ワークスペースは、ボ
リューム (例: /projects ボリューム) を使用してソースコードを保存します。

注記

CodeReady Workspaces ワークスペースのソースコードは、ワークスペースが一時的で
はない場合にのみ永続ボリュームに保存されます。

永続ボリューム要求 (PVC）のファクト:

CodeReady Workspaces はインフラストラクチャーに永続ボリュームを作成しません。

CodeReady Workspaces は永続ボリューム要求 (PVC）を使用して永続ボリュームをマウント
します。

CodeReady Workspaces サーバーは永続ボリューム要求を作成します。
ユーザーは、CodeReady Workspaces PVC でストレージクラス機能を使用するために、
CodeReady Workspaces 設定でストレージクラス名を定義します。ストレージクラスを使用す
ると、ユーザーは追加のストレージパラメーターを使用してインフラストラクチャーストレー
ジを柔軟に設定します。クラス名を使用して、静的にプロビジョニングされた永続ボリューム
を CodeReady Workspaces PVC にバインドすることもできます。

手順

CheCluster カスタムリソース定義を使用してストレージクラスを定義します。

1. ストレージクラス名を定義します。
これを行うには、以下のいずれかの方法を使用します。

server:deploy コマンドの引数の使用

i. PostgreSQL PVC のストレージクラス名を指定します。
--postgres-pvc-storage-class-name フラグを指定して crwctl server:deploy コマン
ドを使用します。

$ crwctl server:deploy -m -p minikube -a operator --postgres-pvc-storage-class-
name=postgress-storage

ii. CodeReady Workspaces ワークスペースのストレージクラス名を指定します。

Red Hat CodeReady Workspaces 2.11 インストールガイド

102

--workspace-pvc-storage-class-name フラグを指定して server:deploy コマンドを使
用します。

$ crwctl server:deploy -m -p minikube -a operator --workspace-pvc-storage-class-
name=workspace-storage

CodeReady Workspaces ワークスペースでは、ワークスペースの PVC ストラテジーに
応じてストレージクラスの名前の動作が異なります。

注記

Postgres-pvc-storage-class-name=postgress-storage および
workspace-pvc-storage-class-name は、Operator インストーラーお
よび Helm インストーラーで機能します。

カスタムリソース YAML ファイルを使用してストレージクラス名を定義します。

i. CodeReady Workspaces インストールに定義されたカスタムリソースで YAML ファイ
ルを作成します。

ii. フィールド spec#storage#postgresPVCStorageClassName および
spec#storage#workspacePVCStorageClassName を定義します。

iii. カスタムリソースで codeready-workspaces サーバーを起動します。

$ crwctl server:deploy -m -p minikube -a operator --che-operator-cr-
yaml=/path/to/custom/che/resource/org_v1_che_cr.yaml

2. CodeReady Workspaces を、ワークスペースを 1 つ目の永続ボリュームに、PostreSQL データ
ベースを 2 つ目の永続ボリュームに保存するように設定します。

a. カスタムリソース YAML ファイルを変更します。

pvcStrategy を common に設定します。

単一のプロジェクトでワークスペースを開始するように CodeReady Workspaces を設
定します。

apiVersion: org.eclipse.che/v1
kind: CheCluster
metadata:
 name: codeready-workspaces
spec:
 # ...
 storage:
 # ...
 # keep blank unless you need to use a non default storage class for PostgreSQL
PVC
 postgresPVCStorageClassName: 'postgres-storage'
 # ...
 # keep blank unless you need to use a non default storage class for workspace
PVC(s)
 workspacePVCStorageClassName: 'workspace-storage'
 # ...

第4章 CODEREADY WORKSPACES の設定

103

postgresPVCStorageClassName および workspacePVCStorageClassName のスト
レージクラス名を定義します。

YAML ファイルの例:

b. カスタムリソースで codeready-workspaces サーバーを起動します。

$ crwctl server:deploy -m -p minikube -a operator --che-operator-cr-
yaml=/path/to/custom/che/resource/org_v1_che_cr.yaml

3. クラス名を使用して静的にプロビジョニングされたボリュームをバインドします。

a. PostgreSQL データベースの永続ボリュームを定義します。

b. CodeReady Workspaces ワークスペースの永続ボリュームを定義します。

apiVersion: org.eclipse.che/v1
kind: CheCluster
metadata:
 name: codeready-workspaces
spec:
 server:
 # ...
 workspaceNamespaceDefault: codeready-ws-<username>
 # ...
 storage:
 # ...
 # Defaults to common
 pvcStrategy: 'common'
 # ...
 # keep blank unless you need to use a non default storage class for PostgreSQL
PVC
 postgresPVCStorageClassName: 'postgres-storage'
 # ...
 # keep blank unless you need to use a non default storage class for workspace
PVC(s)
 workspacePVCStorageClassName: 'workspace-storage'
 # ...

che-postgres-pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
 name: postgres-pv-volume
 labels:
 type: local
spec:
 storageClassName: postgres-storage
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: "/data/che/postgres"

Red Hat CodeReady Workspaces 2.11 インストールガイド

104

c. 2 つの永続ボリュームをバインドします。

$ oc apply -f che-workspace-pv.yaml -f che-postgres-pv.yaml

注記

ボリュームの有効なファイルパーミッションを指定する必要があります。これは、スト
レージクラスの設定を使用して実行することも、手動で実行することもできます。パー
ミッションを手動で定義するには、storageClass#mountOptions uid と gid を定義しま
す。PostgreSQL ボリュームには uid=26 と gid=26 が必要です。

4.14. 信頼できない TLS 証明書の CODEREADY WORKSPACES へのイン
ポート

CodeReady Workspaces コンポーネントの外部通信は、デフォルトでは TLS で暗号化されます。
CodeReady Workspaces コンポーネントのプロキシー、ソースコードリポジトリー、アイデンティ
ティープロバイダーなどの外部サービスとの通信では、TLS を使用する必要がある場合があります。こ
れらの通信では、信頼できる認証局が署名する TLS 証明書を使用する必要があります。

CodeReady Workspaces コンポーネントまたは外部サービスで使用される証明書が信頼できない CA に
よって署名される場合、CodeReady Workspaces インストールで CA 証明書をインポートする必要があ
るため、すべての CodeReady Workspaces コンポーネントがそれらを信頼できる CA によって署名され
ているものと見なす必要があります。

この追加が必要になる可能性のある典型的なケースは以下のとおりです。

基礎となる OpenShift クラスターが信頼されていない CA によって署名される TLS 証明書を使
用する場合

CodeReady Workspaces サーバーまたはワークスペースコンポーネントが、信頼できない CA
で署名された TLS 証明書を使用する RH-SSO や Git サーバーなどの外部サービスに接続する
場合

CodeReady Workspaces は、プロジェクトのラベルが付いた ConfigMaps を TLS 証明書のソースとし
て使用します。ConfigMap には、それぞれが任意の数の証明書を持つキーの任意の数を指定できます。

注記

che-workspace-pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
 name: workspace-pv-volume
 labels:
 type: local
spec:
 storageClassName: workspace-storage
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: "/data/che/workspace"

第4章 CODEREADY WORKSPACES の設定

105

注記

クラスターに、クラスター全体のプロキシー設定を使用して追加されたクラスター全体
の信頼される CA 証明書が含まれる場合、CodeReady Workspaces Operator はそれらを
検知し、それらをこの ConfigMap に自動的に挿入します。

CodeReady Workspaces は、ConfigMap に自動的に config.openshift.io/inject-
trusted-cabundle="true" ラベルを付けます。

このアノテーションに基づいて、OpenShift は ConfigMap の ca-bundle.crt
キー内にクラスター全体で信頼される CA 証明書を自動的に挿入します。

重要

一部の CodeReady Workspaces コンポーネントには、エンドポイントを信頼するための
完全な証明書チェーンが必要です。クラスターが中間証明書で設定されている場合に
は、チェーン全体（自己署名ルートを含む）を CodeReady Workspaces に追加する必要
があります。

4.14.1. 新規 CA 証明書の CodeReady Workspaces への追加

本書は、CodeReady Workspaces のインストール前や、CodeReady Workspaces がすでにインストー
ルされ、実行されている場合に使用できます。

注記

2.5.1 より前の CodeReady Workspaces バージョンを使用している場合は、本書で追加の
TLS 証明書を適用する方法について参照してください。

前提条件

oc ツールが利用できる。

CodeReady Workspaces の namespace が存在する。

手順

1. インポートする必要のある証明書をローカルファイルシステムに保存します。

注意

証明書ファイルは、通常、.pem、. crt、.ca-bundle などの Base64 ASCII ファイルとして
保存されます。ただし、それらにはバイナリーエンコード (例: .cer ファイル) を使用するこ
ともできます。証明書ファイルを保持するすべてのシークレットでは、バイナリーでエン
コードされる証明書ではなく、Base64 ASCII 証明書を使用する必要があります。

CodeReady Workspaces はすでに予約済みのファイル名を使用して証明書を ConfigMap に
自動的に挿入するため、以下の予約済みのファイル名を使用して証明書を保存しないよう
にしてください。

ca-bundle.crt

ca.crt

2. 必要な TLS 証明書で新規 ConfigMap を作成します。

Red Hat CodeReady Workspaces 2.11 インストールガイド

106

https://docs.openshift.com/container-platform/4.4/networking/configuring-a-custom-pki.html#nw-proxy-configure-object_configuring-a-custom-pki

$ oc create configmap custom-certs --from-file=<bundle-file-path> -n=openshift-
workspaces

複数のバンドルを適用するには、上記のコマンドに別の --from-file=<bundle-file-path> フラグ
を追加します。または、別の ConfigMap を作成することもできます。

3. app.kubernetes.io/part-of=che.eclipse.org と app.kubernetes.io/component=ca-bundle の
両方のラベルを使用して作成した ConfigMap にラベルを付けます。

$ oc label configmap custom-certs app.kubernetes.io/part-of=che.eclipse.org
app.kubernetes.io/component=ca-bundle -n <crw-namespace-name>

4. CodeReady Workspaces がデプロイされていない場合は、CodeReady Workspaces をデプロイ
します。デプロイしない場合は、CodeReady Workspaces コンポーネントのロールアウトが完
了するまで待機します。実行中のワークスペースがある場合は、変更を有効にするためにそれ
らを再起動する必要があります。

4.14.2. CodeReady Workspaces のインストールレベルでの検証

証明書の追加後に、予想通りに機能しない場合は、以下の一覧を確認してください。

CodeReady Workspaces Operator デプロイメントの場合、CheCluster に適切なコンテンツと
共にラベルが付けられた ConfigMap が含まれる namespace。

$ oc get cm --selector=app.kubernetes.io/component=ca-bundle,app.kubernetes.io/part-
of=che.eclipse.org -n openshift-workspaces

また、ConfigMap の内容を確認するには、以下を実行します。

$ {orch-cli} get cm __<name>__ -n {prod-namespace} -o yaml

CodeReady Workspaces Pod ボリューム一覧には、ca-certs-merged ConfigMap をデータソー
スとして使用するボリュームが含まれます。CodeReady Workspaces Pod のボリュームの一覧
を取得するには、以下を実行します。

$ oc get pod -o json <codeready-workspaces-pod-name> -n openshift-workspaces | jq
.spec.volumes

CodeReady Workspaces は、証明書を CodeReady Workspaces サーバーコンテナーのフォル
ダー /public-certs/ にマウントします。このコマンドは、そのフォルダー内のファイルの一覧
を返します。

$ oc exec -t <codeready-workspaces-pod-name> -n openshift-workspaces -- ls /public-
certs/

CodeReady Workspaces サーバーログに、設定された CodeReady Workspaces 証明書を含む、
Java トラストストアに追加されたすべての証明書についての行があります。

$ oc logs <codeready-workspaces-pod-name> -n openshift-workspaces

CodeReady Workspaces サーバーの Java トラストストアに証明書が含まれる。証明書の SHA1
フィンガープリントは、以下のコマンドで返されるトラストストアに含まれる証明書の SHA1
の一覧にあります。

第4章 CODEREADY WORKSPACES の設定

107

https://docs.openshift.com/container-platform/latest/operators/understanding/olm-what-operators-are.html

$ oc exec -t <codeready-workspaces-pod-name> -n openshift-workspaces -- keytool -list -
keystore /home/jboss/cacerts
Your keystore contains 141 entries

(...)

ローカルファイルシステムの証明書の SHA1 ハッシュを取得するには、以下のコマンドを実行
します。

$ openssl x509 -in <certificate-file-path> -fingerprint -noout
SHA1 Fingerprint=3F:DA:BF:E7:A7:A7:90:62:CA:CF:C7:55:0E:1D:7D:05:16:7D:45:60

4.14.3. ワークスペースレベルでの検証

ワークスペースを起動し、これが作成されたプロジェクトを取得し、これが起動するのを待機
します。

以下のコマンドを使用してワークスペース Pod の名前を取得します。

$ oc get pods -o=jsonpath='{.items[0].metadata.name}' -n <workspace namespace> | grep
'^workspace.*'

以下のコマンドを使用して、ワークスペース Pod の Theia IDE コンテナーの名前を取得しま
す。

$ oc get -o json pod <workspace pod name> -n <workspace namespace> | \
 jq -r '.spec.containers[] | select(.name | startswith("theia-ide")).name'

ワークスペース namespace 内に作成されている必要がある ca-certs ConfigMap を検索しま
す。

$ oc get cm ca-certs <workspace namespace>

ca-certs ConfigMap のエントリーに事前に追加した追加エントリーがすべて含まれていること
を確認します。さらに、予約されている ca-bundl.crt エントリーが含まれる場合があります。

$ oc get cm ca-certs -n <workspace namespace> -o json | jq -r '.data | keys[]'
ca-bundle.crt
source-config-map-name.data-key.crt

ca-certs ConfigMap がワークスペース Pod のボリュームとして追加されていることを確認し
ます。

$ oc get -o json pod <workspace pod name> -n <workspace namespace> | \
 jq '.spec.volumes[] | select(.configMap.name == "ca-certs")'
{
 "configMap": {
 "defaultMode": 420,
 "name": "ca-certs"
 },
 "name": "che-self-signed-certs"
}

Red Hat CodeReady Workspaces 2.11 インストールガイド

108

ボリュームがコンテナー (とくに Theia IDE コンテナー) にマウントされていることを確認しま
す。

$ oc get -o json pod <workspace pod name> -n <workspace namespace> | \
 jq '.spec.containers[] | select(.name == "<theia ide container name>").volumeMounts[] |
select(.name == "che-self-signed-certs")'
{
 "mountPath": "/public-certs",
 "name": "che-self-signed-certs",
 "readOnly": true
}

Theia IDE コンテナーの /public-certs フォルダーを検査し、その内容が ca-certs ConfigMap の
エントリーの一覧と一致することを確認します。

$ oc exec <workspace pod name> -c <theia ide container name> -n <workspace
namespace> -- ls /public-certs
ca-bundle.crt
source-config-map-name.data-key.crt

4.15. コンポーネント間の通信での外部 DNS 名と内部 DNS 名間の切り替え

デフォルトでは、新規の CodeReady Workspaces デプロイメントは、CodeReady Workspaces サー
バー、RH-SSO、レジストリー間の通信に OpenShift サービス DNS 名を使用します。これは以下に役
立ちます。

プロキシー、証明書、およびファイアウォールの問題の回避

トラフィックの高速化

このタイプの通信は、OpenShift Route クラスターのホスト名を使用するコンポーネント間の通信の外
部の方法に代わるものです。以下の状況では、OpenShift 内部 DNS 名の使用はサポートされません。
コンポーネント間の通信で内部クラスターのホスト名の使用を無効にすると、外部 OpenShift Route を
使用した通信が有効になります。

OpenShift における内部のコンポーネント間通信の制限

CodeReady Workspaces コンポーネントは、マルチクラスター OpenShift 環境全体にデプロイ
されます。

OpenShift NetworkPolicies は namespace 間の通信を制限します。

以下のセクションでは、OpenShift Route の外部のコンポーネント間の通信を有効/無効にする方法を説
明します。

前提条件

oc ツールが利用できる。

OpenShift で実行される CodeReady Workspaces のインスタンス。

手順

コンポーネント間の通信方法を外部と内部で切り替えるには、カスタムリソース (CR) に対する更新が
必要です。

第4章 CODEREADY WORKSPACES の設定

109

1. コンポーネント間の通信で外部 OpenShift ルートを使用するには、以下を実行します。

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/disableInternalClusterSVCNames", "value": true}]'

2. コンポーネント間の通信で内部 OpenShift DNS 名を使用するには、以下を実行します。

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/server/disableInternalClusterSVCNames", "value": false}]'

4.16. RED HAT CODEREADY WORKSPACES ログインページの RH-SSO
CODEREADY-WORKSPACES-USERNAME-READONLY テーマの設定

以下の手順は、OpenShift OAuth サービスが有効にされているすべての CodeReady Workspaces イン
スタンスに関連します。

事前に作成した namespace のユーザーが Red Hat CodeReady Workspaces ダッシュボードに初めてロ
グインする際に、ユーザーがアカウント情報を更新できるページが表示されます。ユーザー名を変更す
ることはできますが、OpenShift ユーザー名に一致しないユーザー名を選択すると、ユーザーのワーク
スペースは実行されません。これは、CodeReady Workspaces が存在しない namespace、ユーザーの
OpenShift ユーザー名から派生する名前の使用を試行し、ワークスペースの作成を試行することによっ
て生じます。これを防ぐには、RH-SSO にログインし、テーマの設定を変更します。

4.16.1. RH-SSO へのログイン

以下の手順では、OpenShift プラットフォームのルートとして機能する RH-SSO にログインする方法
を説明します。RH-SSO にログインするには、ユーザーは RH-SSO URL とユーザーの認証情報を最初
に取得する必要があります。

前提条件

oc ツールがインストールされている。

oc ツールを使用して OpenShift クラスターにログインしている。

手順

1. ユーザーの RH-SSO ログインを取得します。

oc get secret che-identity-secret -n openshift-workspaces -o json | jq -r '.data.user' | base64 -
d

2. ユーザーの RH-SSO パスワードを取得します。

oc get secret che-identity-secret -n openshift-workspaces -o json | jq -r '.data.password' |
base64 -d

3. RH-SSO URL を取得します。

oc get ingress -n openshift-workspaces -l app=che,component=keycloak -o 'custom-
columns=URL:.spec.rules[0].host' --no-headers

4. ブラウザーで URL を開き、取得したログインとパスワードを使用して RH-SSO にログインし

Red Hat CodeReady Workspaces 2.11 インストールガイド

110

4. ブラウザーで URL を開き、取得したログインとパスワードを使用して RH-SSO にログインし
ます。

4.16.2. RH-SSO codeready-workspaces-username-readonly テーマの設定

前提条件

OpenShift で実行される CodeReady Workspaces のインスタンス。

RH-SSO サービスにログインしている。

手順

ユーザー名を変更したら、Login Theme オプションを readonly に設定します。

1. 左側のメイン Configure メニューで、Realm Settings を選択します。

2. Themes タブに移動します。

3. Login Theme フィールドで codeready-workspaces-username-readonly オプションを選択
し、Save ボタンをクリックして変更を適用します。

4.17. シークレットまたは CONFIGMAP をファイルまたは環境変数として
CODEREADY WORKSPACES コンテナーにマウントする

シークレットは、以下のような機密データを格納する OpenShift オブジェクトです。

ユーザー名

パスワード

認証トークン

(暗号化された形式)。

ユーザーは、以下のように、機密データを含む OpenShift シークレットまたは CodeReady Workspaces
管理コンテナーの設定を含む ConfigMap をマウントできます。

ファイル

環境変数

マウントプロセスでは、標準の OpenShift マウントメカニズムを使用しますが、追加のアノテーション

第4章 CODEREADY WORKSPACES の設定

111

マウントプロセスでは、標準の OpenShift マウントメカニズムを使用しますが、追加のアノテーション
とラベル付けが必要です。

4.17.1. シークレットまたは ConfigMap をファイルとして CodeReady Workspaces コ
ンテナーにマウントする

前提条件

Red Hat CodeReady Workspaces の実行中のインスタンス。Red Hat CodeReady Workspaces
のインスタンスをインストールするには、CodeReady Workspaces のインストールについて参
照してください。

手順

1. CodeReady Workspaces ワークスペースがデプロイされる OpenShift プロジェクトで新規の
OpenShift シークレットまたは ConfigMap を作成します。作成される予定のオブジェクトのラ
ベルは、ラベルのセットと一致する必要があります。

app.kubernetes.io/part-of: che.eclipse.org

app.kubernetes.io/component: <DEPLOYMENT_NAME>-<OBJECT_KIND>

<DEPLOYMENT_NAME> には、以下のデプロイメントのいずれかを使用します。

postgres

keycloak

devfile-registry

plugin-registry

codeready
および

<jasper_KIND> は以下のいずれかになります。

secret
または

configmap

例4.3 例:

または

apiVersion: v1
kind: Secret
metadata:
 name: custom-settings
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: codeready-secret
...

Red Hat CodeReady Workspaces 2.11 インストールガイド

112

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

アノテーションは、指定されるオブジェクトがファイルとしてマウントされていることを示す必要があ
ります。

1. アノテーション値を設定します。

che.eclipse.org/mount-as: file - オブジェクトをファイルとしてマウントするように指定
します。

che.eclipse.org/mount-path: <TARGET_PATH> - 必要なマウントパスを指定します。

例4.4 例:

または

OpenShift オブジェクトには複数の項目が含まれる可能性があり、その名前はコンテナーにマウントさ
れる必要なファイル名と一致する必要があります。

例4.5 例:

apiVersion: v1
kind: ConfigMap
metadata:
 name: custom-settings
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: codeready-configmap
...

apiVersion: v1
kind: Secret
metadata:
 name: custom-data
 annotations:
 che.eclipse.org/mount-as: file
 che.eclipse.org/mount-path: /data
 labels:
...

apiVersion: v1
kind: ConfigMap
metadata:
 name: custom-data
 annotations:
 che.eclipse.org/mount-as: file
 che.eclipse.org/mount-path: /data
 labels:
...

apiVersion: v1
kind: Secret
metadata:
 name: custom-data

第4章 CODEREADY WORKSPACES の設定

113

または

これにより、ca.crt という名前のファイルが CodeReady Workspaces コンテナーの /data パスにマウン
トされます。

重要

CodeReady Workspaces コンテナーの変更を表示できるようにするには、オブジェクト
を完全に再作成します。

4.17.2. シークレットまたは ConfigMap を環境変数として CodeReady Workspaces コ
ンテナーにマウントする

前提条件

Red Hat CodeReady Workspaces の実行中のインスタンス。Red Hat CodeReady Workspaces
のインスタンスをインストールするには、CodeReady Workspaces のインストールについて参
照してください。

手順

1. CodeReady Workspaces ワークスペースがデプロイされる OpenShift プロジェクトで新規の
OpenShift シークレットまたは ConfigMap を作成します。作成される予定のオブジェクトのラ
ベルは、ラベルのセットと一致する必要があります。

app.kubernetes.io/part-of: che.eclipse.org

app.kubernetes.io/component: <DEPLOYMENT_NAME>-<OBJECT_KIND>

<DEPLOYMENT_NAME> には、以下のデプロイメントのいずれかを使用します。

 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: codeready-secret
 annotations:
 che.eclipse.org/mount-as: file
 che.eclipse.org/mount-path: /data
data:
 ca.crt: <base64 encoded data content here>

apiVersion: v1
kind: ConfigMap
metadata:
 name: custom-data
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: codeready-configmap
 annotations:
 che.eclipse.org/mount-as: file
 che.eclipse.org/mount-path: /data
data:
 ca.crt: <data content here>

Red Hat CodeReady Workspaces 2.11 インストールガイド

114

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

postgres

keycloak

devfile-registry

plugin-registry

codeready
および

<jasper_KIND> は以下のいずれかになります。

secret
または

configmap

例4.6 例:

または

アノテーションは、指定されるオブジェクトが環境変数としてマウントされていることを示す必要があ
ります。

1. アノテーション値を設定します。

che.eclipse.org/mount-as: env -: オブジェクトを環境変数としてマウントするように指定
します。

che.eclipse.org/env-name: <FOOO_ENV>: オブジェクトキー値のマウントに必要な環境
変数名を指定します。

例4.7 例:

apiVersion: v1
kind: Secret
metadata:
 name: custom-settings
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: codeready-secret
...

apiVersion: v1
kind: ConfigMap
metadata:
 name: custom-settings
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: codeready-configmap
...

apiVersion: v1

第4章 CODEREADY WORKSPACES の設定

115

または

これにより、2 つの環境変数が

FOO_ENV

myvalue

CodeReady Workspaces コンテナーにプロビジョニングされます。

オブジェクトに複数のデータ項目がある場合、環境変数の名前は以下のようにそれぞれのデータキーに
ついて指定される必要があります。

例4.8 例:

または

kind: Secret
metadata:
 name: custom-settings
 annotations:
 che.eclipse.org/env-name: FOO_ENV
 che.eclipse.org/mount-as: env
 labels:
 ...
data:
 mykey: myvalue

apiVersion: v1
kind: ConfigMap
metadata:
 name: custom-settings
 annotations:
 che.eclipse.org/env-name: FOO_ENV
 che.eclipse.org/mount-as: env
 labels:
 ...
data:
 mykey: myvalue

apiVersion: v1
kind: Secret
metadata:
 name: custom-settings
 annotations:
 che.eclipse.org/mount-as: env
 che.eclipse.org/mykey_env-name: FOO_ENV
 che.eclipse.org/otherkey_env-name: OTHER_ENV
 labels:
 ...
data:
 mykey: __<base64 encoded data content here>__
 otherkey: __<base64 encoded data content here>__

Red Hat CodeReady Workspaces 2.11 インストールガイド

116

これにより、2 つの環境変数が

FOO_ENV

OTHER_ENV

CodeReady Workspaces コンテナーにプロビジョニングされます。

注記

OpenShift シークレットのアノテーション名の最大長さは 63 文字です。ここで、9 文字
は、/ で終わるプレフィックス用に予約されます。これは、オブジェクトに使用できる
キーの最大長さの制限として機能します。

重要

CodeReady Workspaces コンテナーの変更を表示できるようにするには、オブジェクト
を完全に再作成します。

4.18. DEV WORKSPACE エンジンの有効化

この手順では、Dev Workspace エンジンを有効にして Devfile 2.0.0 ファイル形式をサポートし、既存
のインスタンスやインストールを行う方法を説明します。

前提条件

oc および crwctl ツールが利用できる。

手順

新規の OperatorHub インストールの場合：

1. OpenShift Container Platform を使用して Red Hat CodeReady Workspaces クラスターを
入力し、CheCluster カスタムリソース(CR)を作成します。Red Hat CodeReady
Workspaces Operator のインスタンスの作成 を参照してください。

2. 以下の値を codeready-workspaces カスタムリソース(CR)に設定します。

apiVersion: v1
kind: ConfigMap
metadata:
 name: custom-settings
 annotations:
 che.eclipse.org/mount-as: env
 che.eclipse.org/mykey_env-name: FOO_ENV
 che.eclipse.org/otherkey_env-name: OTHER_ENV
 labels:
 ...
data:
 mykey: __<data content here>__
 otherkey: __<data content here>__

第4章 CODEREADY WORKSPACES の設定

117

新規の crwctl インストールの場合は、以下のようになります。

1. 以下を使用して crwctl インストールを設定します。

$ crwctl server:deploy --che-operator-cr-patch-yaml=patch.yaml ...

patch.yaml には以下を含める必要があります。

既存の CodeReady Workspaces インストールの場合：

1. oc ツールを使用して codeready-workspaces CR を更新します。

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=json -p \
'[{"op": "replace", "path": "/spec/devWorkspace/enable", "value": true}]'

関連資料

本章のインストール方法は、3章CodeReady Workspaces のインストール を参照してください。

spec:
 devWorkspace:
 enable: true

spec:
 devWorkspace:
 enable: true

Red Hat CodeReady Workspaces 2.11 インストールガイド

118

第5章 CODEREADY WORKSPACES のアップグレード
本章では、CodeReady Workspaces インスタンスをバージョン 2.10 から CodeReady Workspaces 2.11
にアップグレードする方法を説明します。

CodeReady Workspaces インスタンスのインストールするために使用する方法により、アップグレード
する方法が決まります。

「OperatorHub を使用した CodeReady Workspaces のアップグレード」

「CLI 管理ツールを使用した CodeReady Workspaces のアップグレード」

「制限された環境での CLI 管理ツールを使用した CodeReady Workspaces のアップグレード」

5.1. OPERATORHUB を使用した CODEREADY WORKSPACES のアップグ
レード

このセクションでは、OpenShift Web コンソールの OperatorHub から Operator を使用して、以前の
マイナーバージョンからアップグレードする方法を説明します。

OperatorHub は、Automatic および Manual アップグレードストラテジーをサポートします。:
Automatic:: Operator の新規バージョンが公開されるとアップグレードプロセスが開始されま
す。Manual:: 更新は、Operator の新規バージョンが公開されるたびに手動で承認される必要がありま
す。

5.1.1. OperatorHub での CodeReady Workspaces の承認ストラテジーの指定

前提条件

OpenShift インスタンスの管理者アカウント。

OpenShift の同じインスタンス上で OperatorHub の Operator を使用してインストールされ
た、以前のマイナーバージョンの CodeReady Workspaces のインスタンス。

手順

1. OpenShift Web コンソールを開きます。

2. Operators → Installed Operators セクションに移動します。

3. インストールされた Operator の一覧で Red Hat CodeReady Workspaces をクリックします。

4. Subscription タブに移動し、承認ストラテジーを指定します。

Approval:Automatic
または

Approval:Manual

第5章 CODEREADY WORKSPACES のアップグレード

119

5.1.2. OperatorHub での CodeReady Workspaces の手動によるアップグレード

前提条件

OpenShift インスタンスの管理者アカウント。

OpenShift の同じインスタンス上で OperatorHub の Operator を使用してインストールされ
た、以前のマイナーバージョンの CodeReady Workspaces のインスタンス。

サブスクリプションの承認ストラテジーは、Manual に設定されます。

手順

1. OpenShift Web コンソールを開きます。

2. Operators → Installed Operators セクションに移動します。

3. インストールされた Operator の一覧で Red Hat CodeReady Workspaces をクリックします。

4. Subscription タブに移動します。承認を必要とするアップグレードは Upgrade Status の横に
表示されます (例: 1 requires approval)。

5. 1 requires approval をクリックしてから、Preview Install Plan をクリックします。

6. アップグレードに利用可能なリソースとして一覧表示されているリソースを確認し、Approve
をクリックします。

検証手順

1. Operators → Installed Operators ページに移動し、アップグレードの進捗をモニターします。
完了時に、ステータスは Succeeded および Up to date に変更されます。

2. 2.11 のバージョン番号がページ下部に表示されます。

関連資料

Red Hat CodeReady Workspaces 2.11 インストールガイド

120

関連資料

OpenShift ドキュメントのインストールされた Operator のアップグレードについてのセクショ
ン。

5.2. CLI 管理ツールを使用した CODEREADY WORKSPACES のアップグ
レード

本セクションでは、CLI 管理ツールを使用して以前のマイナーバージョンからアップグレードする方法
を説明します。

前提条件

OpenShift の管理者アカウント。

以前のマイナーバージョンの Red Hat CodeReady Workspaces の実行中のインスタンス。これ
は、OpenShift の同じインスタンスで CLI 管理ツールを使用して <openshift-workspaces> プ
ロジェクトにインストールされています。

crwctl が利用可能で、更新されている。「crwctl CLI 管理ツールのインストール」 を参照して
ください。

手順

1. 実行中の全 CodeReady Workspaces 2.10 ワークスペースに対する変更を Git リポジトリーに保
存し、プッシュします。

2. CodeReady Workspaces 2.10 インスタンスのすべてのワークスペースをシャットダウンしま
す。

3. CodeReady Workspaces をアップグレードします。

$ crwctl server:update -n openshift-workspaces

注記

低速なシステムまたはインターネット接続の場合は、--k8spodwaittimeout=1800000 フ
ラグオプションを crwctl server:update コマンドに追加し、Pod のタイムアウト期間を
1800000 ms 以上に拡張します。

検証手順

1. CodeReady Workspaces インスタンスに移動します。

2. 2.11 のバージョン番号がページ下部に表示されます。

5.3. 制限された環境での CLI 管理ツールを使用した CODEREADY
WORKSPACES のアップグレード

本セクションでは、制限された環境で CLI 管理ツールを使用して Red Hat CodeReady Workspaces を
アップグレードする方法を説明します。アップグレードパスは、CodeReady Workspaces バージョン
2.10 からバージョン 2.11 へのマイナーバージョンの更新をサポートします。

第5章 CODEREADY WORKSPACES のアップグレード

121

https://docs.openshift.com/container-platform/latest/operators/admin/olm-upgrading-operators.html

前提条件

OpenShift インスタンスの管理者アカウント。

<openshift-workspaces> プロジェクトの crwctl --installer operator の方法を使用し、CLI 管
理ツールでインストールされた Red Hat CodeReady Workspaces の実行中のインスタンスバー
ジョン 2.10。「制限された環境での CodeReady Workspaces のインストール」を参照してくだ
さい。

crwctl 2.11 管理ツールが利用できる。「crwctl CLI 管理ツールのインストール」 を参照してく
ださい。

5.3.1. 制限された環境でのネットワーク接続について

CodeReady Workspaces では、CodeReady Workspaces 用に作成された各 OpenShift Route が
OpenShift クラスター内からアクセスできる必要があります。これらの CodeReady Workspaces コン
ポーネントには OpenShift Route（codeready-workspaces-server, keycloak, devfile-registry, plugin-
registry）があります。

環境のネットワークトポロジーを考慮して、これを実行する最善の方法を判断してください。

例5.1 公開インターネットから切断された、会社または組織が所有するネットワーク

ネットワーク管理者は、クラスターからのトラフィックを OpenShift Route ホスト名にルーティン
グできるようにする必要があります。

例5.2 クラウドプロバイダーのプライベートサブネットワーク

トラフィックがノードから出て、外部に表示されるロードバランサーに到達できるようにするプロ
キシー設定を作成します。

5.3.2. オフラインレジストリーイメージのビルド

5.3.2.1. オフラインの devfile レジストリーイメージのビルド

本セクションでは、オフラインの devfile レジストリーイメージをビルドする方法を説明します。外部
インターネットのリソースを使用せずにワークスペースを起動するには、このイメージをビルドする必
要があります。このイメージには、devfile で zip ファイルとして参照されるすべてのサンプルプロジェ
クトが含まれます。

前提条件:

podman または docker の実行中のインストール。

手順

1. devfile レジストリーリポジトリーのクローンを作成し、デプロイするバージョンをチェックア
ウトします。

$ git clone git@github.com:redhat-developer/codeready-workspaces.git
$ cd codeready-workspaces
$ git checkout crw-2.11-rhel-8

Red Hat CodeReady Workspaces 2.11 インストールガイド

122

http://podman.io
http://docker.io

2. オフラインの devfile レジストリーイメージをビルドします。

$ cd dependencies/che-devfile-registry
$./build.sh --organization <my-org> \
 --registry <my-registry> \
 --tag <my-tag> \
 --offline

注記

build.sh スクリプトの詳細なオプションを表示するには --help パラメーターを
使用します。

関連資料

レジストリーのカスタマイズ

5.3.2.2. オフラインプラグインレジストリーイメージのビルド

本セクションでは、オフラインのプラグインレジストリーイメージをビルドする方法を説明します。外
部インターネットのリソースを使用せずにワークスペースを起動するには、このイメージをビルドする
必要があります。イメージには、プラグインのメタデータとすべてのプラグインまたは拡張アーティ
ファクトが含まれます。

前提条件

NodeJS 12.x

yarn の実行中のバージョン。参照: Installing Yarn .

./node_modules/.bin が PATH 環境変数にある。

podman または docker の実行中のインストール。

手順

1. プラグインレジストリーリポジトリーのクローンを作成し、デプロイするバージョンをチェッ
クアウトします。

$ git clone git@github.com:redhat-developer/codeready-workspaces.git
$ cd codeready-workspaces
$ git checkout crw-2.11-rhel-8

2. オフラインプラグインレジストリーイメージをビルドします。

$ cd dependencies/che-plugin-registry
$./build.sh --organization <my-org> \
 --registry <my-registry> \
 --tag <my-tag> \
 --offline \
 --skip-digest-generation

注記

第5章 CODEREADY WORKSPACES のアップグレード

123

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#customizing-the-registries_crw
https://yarnpkg.com/getting-started/install
http://podman.io
http://docker.io

注記

build.sh スクリプトの詳細なオプションを表示するには --help パラメーターを
使用します。

関連資料

レジストリーのカスタマイズ

5.3.3. プライベートレジストリーの準備

前提条件

oc ツールが利用できる。

skopeo ツール（バージョン 0.1.40 以降）が利用できる。

podman ツールが利用できる。

OpenShift クラスターからアクセスできるイメージ、および V2 イメージマニフェスト (スキー
マバージョン 2) フォーマットのサポート。インターネットへのアクセスが一時的に可能な場所
から、これにプッシュできることを確認します。

表5.1 サンプルで使用されるプレースホルダー

<source-image> レジストリー、組織、およびダイジェストなどのソースイメージの詳細
な組み合わせ (coordinate)。

<target-registry> ターゲットコンテナーイメージレジストリーのホスト名およびポート。

<target-organization> ターゲットのコンテナーイメージレジストリー内の組織

<target-image> ターゲットのコンテナーイメージレジストリーのイメージ名とダイジェ
スト。

<target-user> ターゲットのコンテナーイメージレジストリーのユーザー名。

<target-password> ターゲットのコンテナーイメージレジストリーのユーザーパスワード。

手順

1. 内部イメージレジストリーにログインします。

$ podman login --username <user> --password <password> <target-registry>

注記

Red Hat CodeReady Workspaces 2.11 インストールガイド

124

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#customizing-the-registries_crw

注記

内部レジストリーへのプッシュを試行する際に x509: certificate signed by
unknown authority などのエラーが発生した場合には、以下のいずれかの回避
策を試してください。

OpenShift クラスターの証明書を /etc/containers/certs.d/<target-
registry>に追加します。

/etc/containers/registries.conf にある Podman 設定ファイルに以下の行を
追加して、レジストリーを非セキュアなレジストリーとして追加する。

[registries.insecure]
registries = ['<target-registry>']

2. ダイジェストを変更せずにイメージをコピーします。以下の表のすべてのイメージに対して、
この手順を繰り返します。

$ skopeo copy --all docker://<source-image> docker://<target-registry>/<target-
organization>/<target-image>

注記

表5.2 名前に含まれるプレフィックスまたはキーワードからの container-images
の使用について

使用 プレフィックスまたはキーワード

Essential stacks-, plugin- または -openj9- ではない

Workspaces stacks-, plugin-

IBM Z および IBM
Power Systems

-openj9-

注記

openj9 のサフィックスがつくイメージは、x86_64 で使用される OpenJDK イ
メージと同等の Eclipse OpenJ9 イメージです。IBM Power Systems および IBM
Z は、これらのシステムでパフォーマンスを改善するために Eclipse OpenJ9 を
使用します。

表5.3 プライベートレジストリーでコピーするイメージ

<source-image> <target-image>

registry.redhat.io/codeready-
workspaces/configbump-
rhel8@sha256:20fd31c45d769526d45eaf6
738a6d4af1520a844126a2a2e510c304a81b
7249a

configbump-
rhel8@sha256:20fd31c45d769526d45eaf6
738a6d4af1520a844126a2a2e510c304a81b
7249a

第5章 CODEREADY WORKSPACES のアップグレード

125

registry.redhat.io/codeready-
workspaces/crw-2-rhel8-
operator@sha256:a41f7b950c5131a6bc08
b1e094db2da9b784e6083ddaa4aa68512f3
947798702

crw-2-rhel8-
operator@sha256:a41f7b950c5131a6bc08
b1e094db2da9b784e6083ddaa4aa68512f3
947798702

registry.redhat.io/codeready-
workspaces/dashboard-
rhel8@sha256:1c37bdffae8cdc154d88b94
ab38e868f7e33486c81b6c3bded36dfdfd85
b81a4

dashboard-
rhel8@sha256:1c37bdffae8cdc154d88b94
ab38e868f7e33486c81b6c3bded36dfdfd85
b81a4

registry.redhat.io/codeready-
workspaces/devfileregistry-
rhel8@sha256:b164968dbd52c72f39533b
ec4efd3ad3cce3acb6060495e472dd9c3f29
08fbbc

devfileregistry-
rhel8@sha256:b164968dbd52c72f39533b
ec4efd3ad3cce3acb6060495e472dd9c3f29
08fbbc

registry.redhat.io/codeready-
workspaces/devworkspace-controller-
rhel8@sha256:c88242524a9074a58bc7d2
0cb8411d37e7e752358ab80366533b8165b
b9f95b0

devworkspace-controller-
rhel8@sha256:c88242524a9074a58bc7d2
0cb8411d37e7e752358ab80366533b8165b
b9f95b0

registry.redhat.io/codeready-
workspaces/devworkspace-
rhel8@sha256:c18f166f570ca572c94472b
7a3bd5127b48521e777ea09dcad6f78ad66
cd7a13

devworkspace-
rhel8@sha256:c18f166f570ca572c94472b
7a3bd5127b48521e777ea09dcad6f78ad66
cd7a13

registry.redhat.io/codeready-
workspaces/jwtproxy-
rhel8@sha256:44acafb02cce3d3fe8b57da
2e27547b502c4088624935ffe7f3aa06a55d
08bba

jwtproxy-
rhel8@sha256:44acafb02cce3d3fe8b57da
2e27547b502c4088624935ffe7f3aa06a55d
08bba

registry.redhat.io/codeready-
workspaces/machineexec-
rhel8@sha256:bfdd8cf61a6fad757f1e8334
aa84dbf44baddf897ff8def7496bf6dbc0666
79d

machineexec-
rhel8@sha256:bfdd8cf61a6fad757f1e8334
aa84dbf44baddf897ff8def7496bf6dbc0666
79d

<source-image> <target-image>

Red Hat CodeReady Workspaces 2.11 インストールガイド

126

registry.redhat.io/codeready-
workspaces/plugin-java11-openj9-
rhel8@sha256:8d9930cd3c0b2fa72a6c0d
880b4d0b330b1a7a51491f09175134dcc79f
2cb376

plugin-java11-openj9-
rhel8@sha256:8d9930cd3c0b2fa72a6c0d
880b4d0b330b1a7a51491f09175134dcc79f
2cb376

registry.redhat.io/codeready-
workspaces/plugin-java11-
rhel8@sha256:d0337762e71fd4badabcb3
8a582b2f35e7e7fc1c9c0f2e841e339d45b7
bd34ed

plugin-java11-
rhel8@sha256:d0337762e71fd4badabcb3
8a582b2f35e7e7fc1c9c0f2e841e339d45b7
bd34ed

registry.redhat.io/codeready-
workspaces/plugin-java8-openj9-
rhel8@sha256:d7ec33ce2fa61a06fade63e
2b516409c465bd5516030dd482e2f4bdb2d
676c9f

plugin-java8-openj9-
rhel8@sha256:d7ec33ce2fa61a06fade63e
2b516409c465bd5516030dd482e2f4bdb2d
676c9f

registry.redhat.io/codeready-
workspaces/plugin-java8-
rhel8@sha256:b2ceb0039c763e6a38aa37
0157b476ecb08faf8b2bfb680bada774e149
583d62

plugin-java8-
rhel8@sha256:b2ceb0039c763e6a38aa37
0157b476ecb08faf8b2bfb680bada774e149
583d62

registry.redhat.io/codeready-
workspaces/plugin-kubernetes-
rhel8@sha256:45535630e37e3e317772f36
b28b47859d32ad1e82505a796139682cdbe
fb03b8

plugin-kubernetes-
rhel8@sha256:45535630e37e3e317772f36
b28b47859d32ad1e82505a796139682cdbe
fb03b8

registry.redhat.io/codeready-
workspaces/plugin-openshift-
rhel8@sha256:d2384cafc870c4979131685
08be0d846412c68ace9724baa37ca3c6be9
aa4772

plugin-openshift-
rhel8@sha256:d2384cafc870c4979131685
08be0d846412c68ace9724baa37ca3c6be9
aa4772

registry.redhat.io/codeready-
workspaces/pluginbroker-artifacts-
rhel8@sha256:a9bf68e6dabbaaaf3e97afe
4ac6e97a317e8fd9c05c88e5801fbf01aaa1
ebb99

pluginbroker-artifacts-
rhel8@sha256:a9bf68e6dabbaaaf3e97afe
4ac6e97a317e8fd9c05c88e5801fbf01aaa1
ebb99

registry.redhat.io/codeready-
workspaces/pluginbroker-metadata-
rhel8@sha256:727f80af1e1f6054ac93cad1
65bc392f43c951681936b979b98003e06e75
9643

pluginbroker-metadata-
rhel8@sha256:727f80af1e1f6054ac93cad1
65bc392f43c951681936b979b98003e06e75
9643

<source-image> <target-image>

第5章 CODEREADY WORKSPACES のアップグレード

127

registry.redhat.io/codeready-
workspaces/pluginregistry-
rhel8@sha256:5d19f7c5c0417940c52e552
c51401f729b9ec16868013e016d7b80342c
d8de4e

pluginregistry-
rhel8@sha256:5d19f7c5c0417940c52e552
c51401f729b9ec16868013e016d7b80342c
d8de4e

registry.redhat.io/codeready-
workspaces/server-
rhel8@sha256:e79e0a462b4dd47ecaac2f5
14567287c44e32437496b2c214ebc2bc005
5c4aa9

server-
rhel8@sha256:e79e0a462b4dd47ecaac2f5
14567287c44e32437496b2c214ebc2bc005
5c4aa9

registry.redhat.io/codeready-
workspaces/stacks-cpp-
rhel8@sha256:31ef0774342bc1dbcd91e3
b85d68d7a28846500f04ace7a5dfa3116c0c
edfeb1

stacks-cpp-
rhel8@sha256:31ef0774342bc1dbcd91e3
b85d68d7a28846500f04ace7a5dfa3116c0c
edfeb1

registry.redhat.io/codeready-
workspaces/stacks-dotnet-
rhel8@sha256:6ca14e5a94a98b15f39a353
e533cf659b2b3937a86bd51af175dc3eadd
8b80d5

stacks-dotnet-
rhel8@sha256:6ca14e5a94a98b15f39a353
e533cf659b2b3937a86bd51af175dc3eadd
8b80d5

registry.redhat.io/codeready-
workspaces/stacks-golang-
rhel8@sha256:30e71577cb80ffaf1f67a292
b4c96ab74108a2361347fc593cbb5057846
29db2

stacks-golang-
rhel8@sha256:30e71577cb80ffaf1f67a292
b4c96ab74108a2361347fc593cbb5057846
29db2

registry.redhat.io/codeready-
workspaces/stacks-php-
rhel8@sha256:bb7f7ef0ce58695aaf29b33
55dd9ee187a94d1d382f68f329f9664ca017
72ba2

stacks-php-
rhel8@sha256:bb7f7ef0ce58695aaf29b33
55dd9ee187a94d1d382f68f329f9664ca017
72ba2

registry.redhat.io/codeready-
workspaces/theia-endpoint-
rhel8@sha256:abb4f4c8e1328ea9fc5ca4f
e0c809ec007fe348e3d2ccd722e5ba75c02f
f448f

theia-endpoint-
rhel8@sha256:abb4f4c8e1328ea9fc5ca4f
e0c809ec007fe348e3d2ccd722e5ba75c02f
f448f

registry.redhat.io/codeready-
workspaces/theia-
rhel8@sha256:5ed38a48d18577120993cd
3b673a365e31aeb4265c5b4a95dd9d0ac74
7260392

theia-
rhel8@sha256:5ed38a48d18577120993cd
3b673a365e31aeb4265c5b4a95dd9d0ac74
7260392

<source-image> <target-image>

Red Hat CodeReady Workspaces 2.11 インストールガイド

128

registry.redhat.io/codeready-
workspaces/traefik-
rhel8@sha256:6704bd086f0d971ecedc1d
d6dc7a90429231fdfa86579e742705b31cbe
dbd8b2

traefik-
rhel8@sha256:6704bd086f0d971ecedc1d
d6dc7a90429231fdfa86579e742705b31cbe
dbd8b2

registry.redhat.io/jboss-eap-7/eap-xp3-
openj9-11-openshift-
rhel8@sha256:53684e34b0dbe8560d2c33
0b0761b3eb17982edc1c947a74c36d29805
bda6736

eap-xp3-openj9-11-openshift-
rhel8@sha256:53684e34b0dbe8560d2c33
0b0761b3eb17982edc1c947a74c36d29805
bda6736

registry.redhat.io/jboss-eap-7/eap-xp3-
openjdk11-openshift-
rhel8@sha256:3875b2ee2826a6d8134aa3
b80ac0c8b5ebc4a7f718335d76dfc3461b7
9f93d19

eap-xp3-openjdk11-openshift-
rhel8@sha256:3875b2ee2826a6d8134aa3
b80ac0c8b5ebc4a7f718335d76dfc3461b7
9f93d19

registry.redhat.io/jboss-eap-7/eap74-
openjdk8-openshift-
rhel7@sha256:b4a113c4d4972d142a3c35
0e2006a2b297dc883f8ddb29a88db19c892
358632d

eap74-openjdk8-openshift-
rhel7@sha256:b4a113c4d4972d142a3c35
0e2006a2b297dc883f8ddb29a88db19c892
358632d

registry.redhat.io/rh-sso-7/sso74-openj9-
openshift-
rhel8@sha256:4ff9d6342dfd3b85234ea55
4b92867c649744ece9aa7f8751aae06bf9d2
d324c

sso74-openj9-openshift-
rhel8@sha256:4ff9d6342dfd3b85234ea55
4b92867c649744ece9aa7f8751aae06bf9d2
d324c

registry.redhat.io/rh-sso-7/sso74-
openshift-
rhel8@sha256:b98f0b743dd406be726d8b
a8c0437ed5228c7064015c1d48ef5f87eb36
5522bc

sso74-openshift-
rhel8@sha256:b98f0b743dd406be726d8b
a8c0437ed5228c7064015c1d48ef5f87eb36
5522bc

registry.redhat.io/rhel8/postgresql-
96@sha256:ed53ca7b191432f7cf9da0fd8
629d7de14ade609ca5f38aba443716f83616
f2e

postgresql-
96@sha256:ed53ca7b191432f7cf9da0fd8
629d7de14ade609ca5f38aba443716f83616
f2e

registry.redhat.io/rhscl/mongodb-36-
rhel7@sha256:9f799d356d7d2e442bde9d
401b720600fd9059a3d8eefea6f3b2ffa721c
0dc73

mongodb-36-
rhel7@sha256:9f799d356d7d2e442bde9d
401b720600fd9059a3d8eefea6f3b2ffa721c
0dc73

<source-image> <target-image>

第5章 CODEREADY WORKSPACES のアップグレード

129

registry.redhat.io/ubi8/ubi-
minimal@sha256:31ccb79b1b2c2d6eff1b
ee0db23d5b8ab598eafd6238417d9813f13
46f717c11

ubi8ubi-
minimal@sha256:31ccb79b1b2c2d6eff1b
ee0db23d5b8ab598eafd6238417d9813f13
46f717c11

<source-image> <target-image>

検証手順

イメージに同じダイジェストがあることを確認します。

$ skopeo inspect docker://<source-image>
$ skopeo inspect docker://<target-registry>/<target-organization>/<target-image>

関連資料

イメージ一覧のソースを見つけるには、CodeReady Workspaces Operator
ClusterServiceVersion ソースの relatedImages 属性の値を参照してください。

5.3.4. 制限された環境での CLI 管理ツールを使用した CodeReady Workspaces のアッ
プグレード

本セクションでは、制限された環境で CLI 管理ツールを使用して Red Hat CodeReady Workspaces を
アップグレードする方法を説明します。

前提条件

OpenShift インスタンスの管理者アカウント

<openshift-workspaces> プロジェクトの crwctl --installer operator の方法を使用し、CLI 管
理ツールでインストールされた Red Hat CodeReady Workspaces の実行中のインスタンスバー
ジョン 2.10。「制限された環境での CodeReady Workspaces のインストール」を参照してくだ
さい。

必須のコンテナーイメージはクラスターで実行される CodeReady Workspaces サーバーで使用
できる。「プライベートレジストリーの準備」 を参照してください。

crwctl 2.11 管理ツールが利用できる。「crwctl CLI 管理ツールのインストール」 を参照してく
ださい。

手順

1. CodeReady Workspaces 2.10 インスタンスで実行されているすべてのワークスペースで、変更
を保存し、Git リポジトリーに再度プッシュします。

2. CodeReady Workspaces 2.10 インスタンスのすべてのワークスペースを停止します。

3. 以下のコマンドを実行します。

$ crwctl server:update --che-operator-image=<image-registry>/<organization>/crw-2-rhel8-
operator:2.11 -n openshift-workspaces

<image-registry>: 制限された環境でアクセス可能なコンテナーイメージレジストリーのホ

Red Hat CodeReady Workspaces 2.11 インストールガイド

130

https://raw.githubusercontent.com/redhat-developer/codeready-workspaces-images/crw-2.11-rhel-8/codeready-workspaces-operator-metadata-generated/manifests/codeready-workspaces.csv.yaml

<image-registry>: 制限された環境でアクセス可能なコンテナーイメージレジストリーのホ
スト名およびポート。

<organization>: container-image レジストリーの組織。「プライベートレジストリーの準
備」 を参照してください。

検証手順

1. CodeReady Workspaces インスタンスに移動します。

2. 2.11 のバージョン番号がページ下部に表示されます。

注記

低速なシステムまたはインターネット接続の場合は、--k8spodwaittimeout=1800000 フ
ラグオプションを crwctl server:update コマンドに追加し、Pod のタイムアウト期間を
1800000 ms 以上に拡張します。

5.4. 「PER USER」以外のプロジェクトストラテジーを使用する
CODEREADY WORKSPACES のアップグレード

本セクションでは、「per user」以外のプロジェクトストラテジーを使用する CodeReady Workspaces
をアップグレードする方法を説明します。

CodeReady Workspaces は、全機密ユーザーデータのストレージとして Kubernetes シークレットを使
用することを目的とします。ユーザーごとに 1 つのプロジェクトとすることで、ワークスペースの設計
が簡素化されます。per user 以外のプロジェクトストラテジーが非推奨になるのはこのような理由から
です。２段階で非推奨化プロセスが進められます。最初の手順 では、per user 以外のプロジェクトス
トラテジーは非推奨ですが、使用できます。2 番目の手順 では、per user 以外のプロジェクトストラテ
ジーに対するサポートが削除されます。

注記

最初の手順 と 2 番目の手順との間で、per user 以外を使用するプロジェクトストラテ
ジーのシステム環境を自動的にアップグレードするサポートはありません。

前提条件

per user 以外のプロジェクトストラテジーで設定された CodeReady Workspaces。

per user namespace ストラテジー per user を設定した CodeReady Workspaces を使用する予
定である。

5.4.1. CodeReady Workspaces のアップグレードおよびユーザーデータのバックアップ

手順

1. すべての CodeReady Workspaces ユーザーに今後データが消去されることを通知します。

注記

ワークスペース設定を SCM サーバーにコミットしてデータをバックアップし
て、ファクトリーを使用して後で復元できます。

第5章 CODEREADY WORKSPACES のアップグレード

131

2. per user namespace ストラテジーを使用して、CodeReady Workspaces を再インストールし
ます。

5.4.2. CodeReady Workspaces のアップグレードおよびユーザーデータの損失

CodeReady Workspaces のアップグレード時にユーザーデータをバックアップしない場合には、ワーク
スペース設定およびユーザー設定は保持されますが、ランタイムデータはすべて消去されます。

手順

1. すべての CodeReady Workspaces ユーザーに今後データが消去されることを通知します。

2. per user プロジェクトストラテジーを変更します。

注記

ユーザーデータをバックアップせずにアップグレードするとデメリットがあります。ラ
ンタイムデータが含まれる元の PV は保持されますが、使用されません。これにより、
リソースが無駄になることがあります。

関連資料

「ワークスペースターゲットプロジェクトの設定」

3章CodeReady Workspaces のインストール

コードサンプルからのワークスペースの作成

プロジェクトのソースコードをインポートしてワークスペースを作成する

Red Hat CodeReady Workspaces 2.11 インストールガイド

132

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/end-user_guide/index#creating-a-workspace-from-code-sample_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/end-user_guide/index#creating-a-workspace-by-importing-the-source-code-of-a-project_crw

第6章 CODEREADY WORKSPACES のアンインストール
本セクションでは、Red Hat CodeReady Workspaces のアンインストール手順を説明します。アンイン
ストールプロセスでは、CodeReady Workspaces 関連のユーザーデータが完全に削除されます。
CodeReady Workspaces インスタンスをインストールするために以前に使用された方法により、アンイ
ンストール方法が決まります。

OperatorHub を使用してインストールされた CodeReady Workspaces の場合、OpenShift Web
コンソールの方法については、「OpenShift Web コンソールを使用した OperatorHub のイン
ストール後の CodeReady Workspaces のアンインストール」を参照してください。

CLI の方法を使用してインストールされた CodeReady Workspaces の場合は、「OpenShift CLI
を使用した OperatorHub のインストール後の CodeReady Workspaces のアンインストール」
を参照してください。

crwctl を使用してインストールされた CodeReady Workspaces の場合は、「crwctl インストー
ル後の CodeReady Workspaces のアンインストール」を参照してください。

6.1. OPENSHIFT WEB コンソールを使用した OPERATORHUB のインス
トール後の CODEREADY WORKSPACES のアンインストール

本セクションでは、OpenShift Administrator パースペクティブのメインメニューを使用して、クラス
ターから CodeReady Workspaces をアンインストールする方法を説明します。

前提条件

CodeReady Workspaces が OperatorHub を使用して OpenShift クラスターにインストールさ
れている。

手順

1. OpenShift Web コンソールに移動し、Administrator パースペクティブを選択します。

2. Home > Projects セクションで、CodeReady Workspaces インスタンスが含まれるプロジェク
トに移動します。

注記

デフォルトのプロジェクト名は <openshift-workspaces> です。

3. Operators > Installed Operators セクションで、インストールされた Operator の一覧で Red
Hat CodeReady Workspaces をクリックします。

4. Red Hat CodeReady Workspaces Cluster タブで、表示された Red Hat CodeReady
Workspaces Cluster をクリックし、右上の Actions ドロップダウンメニューで Delete cluster
オプションを選択します。

注記

デフォルトの Red Hat CodeReady Workspaces クラスター名は <red-hat-
codeready-workspaces> です。

5. Operators > Installed Operators セクションの、インストールされた Operator 一覧で Red Hat

第6章 CODEREADY WORKSPACES のアンインストール

133

5. Operators > Installed Operators セクションの、インストールされた Operator 一覧で Red Hat
CodeReady Workspaces をクリックし、右上の Actions ドロップダウンメニューで Uninstall
Operator オプションを選択します。

6. Home > Projects セクションで、CodeReady Workspaces インスタンスが含まれるプロジェク
トに移動し、右上の Actions ドロップダウンメニューで Delete Project オプションを選択しま
す。

6.2. OPENSHIFT CLI を使用した OPERATORHUB のインストール後の
CODEREADY WORKSPACES のアンインストール

本セクションでは、oc コマンドを使用して、CodeReady Workspaces インスタンスをアンインストー
ルする方法を説明します。

前提条件

CodeReady Workspaces が OperatorHub を使用して OpenShift クラスターにインストールさ
れている。

oc ツールが利用できる。

手順

以下の手順では、コマンドラインの出力を例として示します。ユーザーの端末の出力は異なる場合があ
ることに注意してください。

クラスターから CodeReady Workspaces インスタンスをアンインストールするには、以下を実行しま
す。

1. クラスターにサインインします。

$ oc login -u <username> -p <password> <cluster_URL>

2. CodeReady Workspaces インスタンスがデプロイされているプロジェクトに切り替えます。

$ oc project <codeready-workspaces_project>

3. CodeReady Workspaces クラスター名を取得します。以下は、red-hat-codeready-
workspaces という名前のクラスターを示しています。

$ oc get checluster
NAME AGE
red-hat-codeready-workspaces 27m

4. CodeReady Workspaces クラスターを削除します。

$ oc delete checluster red-hat-codeready-workspaces
checluster.org.eclipse.che "red-hat-codeready-workspaces" deleted

5. CodeReady Workspaces クラスターサービスバージョン (CSV) モジュールの名前を取得しま
す。以下は、red-hat-codeready-workspaces.v2.11 という名前の CSV モジュールを検出しま
す。

$ oc get csv

Red Hat CodeReady Workspaces 2.11 インストールガイド

134

NAME DISPLAY VERSION REPLACES PHASE
red-hat-codeready-workspaces.v2.11 Red Hat CodeReady Workspaces 2.11 red-hat-
codeready-workspaces.v2.10 Succeeded

6. CodeReady Workspaces CSV を削除します。

$ oc delete csv red-hat-codeready-workspaces.v2.11
clusterserviceversion.operators.coreos.com "red-hat-codeready-workspaces.v2.11" deleted

6.3. CRWCTL インストール後の CODEREADY WORKSPACES のアンイン
ストール

本セクションでは、crwctl ツールを使用してインストールされた Red Hat CodeReady Workspaces の
インスタンスをアンインストールする方法を説明します。

前提条件

crwctl ツールが利用できる。

oc ツールが利用できる。

crwctl ツールは OpenShift の CodeReady Workspaces インスタンスにインストールされてい
る。

手順

1. OpenShift クラスターにサインインします。

$ oc login -u <username> -p <password> <cluster_URL>

2. 削除する CodeReady Workspaces namespace の名前をエクスポートします。

$ export codereadyNamespace=<codeready-namespace-to-remove>

3. ユーザーのアクセストークンおよび Keycloak URL をエクスポートします。

$ export KEYCLOAK_BASE_URL="http://$KEYCLOAK_URL/auth"

$ export USER_ACCESS_TOKEN=$(curl -X POST
$KEYCLOAK_BASE_URL/realms/codeready/protocol/openid-connect/token \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d "username=admin" \
 -d "password=admin" \
 -d "grant_type=password" \
 -d "client_id=codeready-public" | jq -r .access_token)

4. UAT を使用してサーバーを停止します。

$ crwctl/bin/crwctl server:stop -n "$codereadyNamespace" --access-
token=$USER_ACCESS_TOKEN

5. プロジェクトおよび CodeReady Workspaces デプロイメントを削除します。

第6章 CODEREADY WORKSPACES のアンインストール

135

$ oc project "$codereadyNamespace"

$ oc delete deployment codeready-operator

$ oc delete checluster codeready-workspaces

$ oc delete project "$codereadyNamespace"

6. プロジェクトについての情報を一覧表示して、削除が正常に実行されていることを確認しま
す。

$ oc describe project "$codereadyNamespace"

7. 指定した ClusterRoleBinding を削除します。

$ oc delete clusterrolebinding codeready-operator

Red Hat CodeReady Workspaces 2.11 インストールガイド

136

	目次
	多様性を受け入れるオープンソースの強化
	第1章 サポートされるプラットフォーム
	第2章 CODEREADY WORKSPACES インストールの設定
	2.1. CHECLUSTER カスタムリソースについて
	2.2. CHECLUSTER カスタムリソースフィールドの参照

	第3章 CODEREADY WORKSPACES のインストール
	3.1. OPERATORHUB を使用した OPENSHIFT 4 への CODEREADY WORKSPACES のインストール
	3.1.1. Red Hat CodeReady Workspaces Operator のインストール
	3.1.2. Red Hat CodeReady Workspaces Operator のインスタンスの作成

	3.2. CLI を使用した CODEREADY WORKSPACES の OPENSHIFT 4 へのインストール
	3.3. CODEREADY WORKSPACES の OPENSHIFT CONTAINER PLATFORM 3.11 へのインストール
	3.3.1. crwctl CLI 管理ツールのインストール
	3.3.2. Operator を使用した CodeReady Workspaces の OpenShift 3 へのインストール

	3.4. 制限された環境での CODEREADY WORKSPACES のインストール
	3.4.1. OperatorHub を使用した制限された環境での CodeReady Workspaces のインストール
	3.4.2. CLI 管理ツールを使用した制限された環境での CodeReady Workspaces のインストール
	3.4.2.1. プライベートレジストリーの準備
	3.4.2.2. 制限された環境用の CodeReady Workspaces カスタムリソースの準備
	3.4.2.3. CodeReady Workspaces CLI 管理ツールを使用した制限された環境での CodeReady Workspaces インストールの開始

	3.4.3. プロキシーの後ろでインストールするための CodeReady Workspaces カスタムリソースの準備

	第4章 CODEREADY WORKSPACES の設定
	4.1. CODEREADY WORKSPACES サーバーコンポーネントの詳細な設定オプション
	4.1.1. Operator を使用した CodeReady Workspaces サーバーの詳細設定について
	4.1.2. CodeReady Workspaces サーバーコンポーネントのシステムプロパティー参照
	4.1.2.1. CodeReady Workspaces サーバー
	4.1.2.2. 認証パラメーター
	4.1.2.3. 内部
	4.1.2.4. OpenShift インフラパラメーター
	4.1.2.5. OpenShift インフラパラメーター
	4.1.2.6. 実験的なプロパティー
	4.1.2.7. 主なWebSocketエンドポイントの設定
	4.1.2.8. CORS 設定
	4.1.2.9. Factory のデフォルト
	4.1.2.10. devfile のデフォルト
	4.1.2.11. Che システム
	4.1.2.12. Workspace の制限
	4.1.2.13. ユーザーワークスペースの制限
	4.1.2.14. 組織ワークスペースの制限
	4.1.2.15. マルチユーザー固有の OpenShift インフラストラクチャー設定
	4.1.2.16. Keycloak の設定

	4.2. ワークスペースターゲットプロジェクトの設定
	4.2.1. ユーザーストラテジーごとに 1 つのプロジェクト
	4.2.2. 互換性のないユーザー名またはユーザー ID の処理
	4.2.3. 各ユーザーのプロジェクトの事前作成
	4.2.4. namespace のラベル付け

	4.3. ストレージストラテジーの設定
	4.3.1. codeready-workspaces ワークスペースのストレージストラテジー
	4.3.1.1. common PVC ストラテジー
	4.3.1.2. per-workspace PVC ストラテジー
	4.3.1.3. unique PVC ストラテジー
	4.3.1.4. サブパスが PVC で使用される方法

	4.3.2. 永続ボリュームストラテジーを使用した CodeReady Workspaces ワークスペースの設定
	4.3.2.1. Operator を使用した PVC ストラテジーの設定

	4.4. ストレージタイプの設定
	4.4.1. 永続ストレージ
	4.4.2. 一時ストレージ
	4.4.3. 非同期ストレージ
	4.4.4. CodeReady Workspaces ダッシュボードのストレージタイプのデフォルトの設定
	4.4.5. 非同期ストレージ Pod のアイドリング

	4.5. ユーザーが実行できるワークスペース数の設定
	4.5.1. Operator を使用したユーザーが実行できるワークスペースの数の設定

	4.6. ユーザーが作成できるワークスペースの数の設定
	4.6.1. Operator を使用したユーザーが作成できるワークスペースの数の設定

	4.7. ワークスペース公開ストラテジーの設定
	4.7.1. Operator を使用したワークスペース公開ストラテジーの設定
	4.7.2. ワークスペース公開ストラテジー
	4.7.2.1. Multihost ストラテジー
	4.7.2.2. 単一ホストストラテジー

	4.7.3. セキュリティーに関する考慮事項
	4.7.3.1. JSON Web トークン (JWT) プロキシー
	4.7.3.2. セキュリティーが保護されたプラグインおよびエディター
	4.7.3.3. セキュリティー保護されたコンテナーイメージコンポーネント
	4.7.3.4. クロスサイトリクエストフォージェリー攻撃
	4.7.3.5. フィッシング攻撃

	4.8. ワークスペース NODESELECTOR の設定
	4.9. RED HAT CODEREADY WORKSPACES サーバーのホスト名の設定
	4.10. OPENSHIFT ルートの設定
	4.11. ルーターのシャード化と連携するように OPENSHIFT ルートを設定
	4.12. 自己署名証明書を使用した GIT リポジトリーをサポートする CODEREADY WORKSPACES のデプロイ
	4.13. ストレージクラスを使用した CODEREADY WORKSPACES のインストール
	4.14. 信頼できない TLS 証明書の CODEREADY WORKSPACES へのインポート
	4.14.1. 新規 CA 証明書の CodeReady Workspaces への追加
	4.14.2. CodeReady Workspaces のインストールレベルでの検証
	4.14.3. ワークスペースレベルでの検証

	4.15. コンポーネント間の通信での外部 DNS 名と内部 DNS 名間の切り替え
	4.16. RED HAT CODEREADY WORKSPACES ログインページの RH-SSO CODEREADY-WORKSPACES-USERNAME-READONLY テーマの設定
	4.16.1. RH-SSO へのログイン
	4.16.2. RH-SSO codeready-workspaces-username-readonly テーマの設定

	4.17. シークレットまたは CONFIGMAP をファイルまたは環境変数として CODEREADY WORKSPACES コンテナーにマウントする
	4.17.1. シークレットまたは ConfigMap をファイルとして CodeReady Workspaces コンテナーにマウントする
	4.17.2. シークレットまたは ConfigMap を環境変数として CodeReady Workspaces コンテナーにマウントする

	4.18. DEV WORKSPACE エンジンの有効化

	第5章 CODEREADY WORKSPACES のアップグレード
	5.1. OPERATORHUB を使用した CODEREADY WORKSPACES のアップグレード
	5.1.1. OperatorHub での CodeReady Workspaces の承認ストラテジーの指定
	5.1.2. OperatorHub での CodeReady Workspaces の手動によるアップグレード

	5.2. CLI 管理ツールを使用した CODEREADY WORKSPACES のアップグレード
	5.3. 制限された環境での CLI 管理ツールを使用した CODEREADY WORKSPACES のアップグレード
	5.3.1. 制限された環境でのネットワーク接続について
	5.3.2. オフラインレジストリーイメージのビルド
	5.3.2.1. オフラインの devfile レジストリーイメージのビルド
	5.3.2.2. オフラインプラグインレジストリーイメージのビルド

	5.3.3. プライベートレジストリーの準備
	5.3.4. 制限された環境での CLI 管理ツールを使用した CodeReady Workspaces のアップグレード

	5.4. 「PER USER」以外のプロジェクトストラテジーを使用する CODEREADY WORKSPACES のアップグレード
	5.4.1. CodeReady Workspaces のアップグレードおよびユーザーデータのバックアップ
	5.4.2. CodeReady Workspaces のアップグレードおよびユーザーデータの損失

	第6章 CODEREADY WORKSPACES のアンインストール
	6.1. OPENSHIFT WEB コンソールを使用した OPERATORHUB のインストール後の CODEREADY WORKSPACES のアンインストール
	6.2. OPENSHIFT CLI を使用した OPERATORHUB のインストール後の CODEREADY WORKSPACES のアンインストール
	6.3. CRWCTL インストール後の CODEREADY WORKSPACES のアンインストール

