第3章 ネットワーク遅延の改善
CPU 電力管理機能により、時間を考慮する必要があるアプリケーション処理に望ましくない遅延が発生する可能性があります。これらの電源管理機能の一部またはすべてを無効にして、ネットワーク遅延を改善できます。
たとえば、サーバーの負荷が高いときよりもアイドル状態のときの遅延が高い場合は、CPU 電源管理設定が遅延に影響を与える可能性があります。
CPU 電源管理機能を無効にすると、電力消費量が増加し、熱損失が発生する可能性があります。
3.1. CPU の電源状態がネットワーク遅延に与える影響
CPU の消費状態 (C-状態) は、コンピューターの消費電力を最適化し、削減します。C-状態には、C0 から始まる番号が付けられます。C0 では、プロセッサーはフルパワーで動作し、実行しています。C1 では、プロセッサーはフルパワーで動作していますが、実行されていません。C-状態の番号が大きいほど、CPU がオフにするコンポーネントの数が多くなります。
CPU コアがアイドル状態になると常に、内蔵の省電力ロジックが介入し、さまざまなプロセッサーコンポーネントをオフにして、コアを現在の C-状態から上位の C-状態に移行しようとします。CPU コアがデータを処理する必要がある場合、Red Hat Enterprise Linux (RHEL) はプロセッサーに割り込みを送信してコアをウェイクアップし、C-状態を C0 に戻します。
ディープ C-状態から C0 に戻るには、プロセッサーのさまざまなコンポーネントの電源を再度オンにするため、時間がかかります。マルチコアシステムでは、多くのコアが同時にアイドル状態になり、より深い C-状態になることもあります。RHEL がそれらを同時にウェイクアップしようとすると、すべてのコアがディープ C-状態から戻る間に、カーネルが大量のプロセッサー間割り込み (IPI) を生成する可能性があります。割り込みの処理中にロックが必要となるため、システムはすべての割り込みの処理中にしばらく停止する可能性があります。これにより、イベントに対するアプリケーションの応答が大幅に遅延する可能性があります。
例3.1 コアごとの C-状態時間の表示
PowerTOP アプリケーションの Idle Stats
ページには、CPU コアが各 C-状態で費やした時間が表示されます。
Pkg(HW) | Core(HW) | CPU(OS) 0 CPU(OS) 4 | | C0 active 2.5% 2.2% | | POLL 0.0% 0.0 ms 0.0% 0.1 ms | | C1 0.1% 0.2 ms 0.0% 0.1 ms C2 (pc2) 63.7% | | C3 (pc3) 0.0% | C3 (cc3) 0.1% | C3 0.1% 0.1 ms 0.1% 0.1 ms C6 (pc6) 0.0% | C6 (cc6) 8.3% | C6 5.2% 0.6 ms 6.0% 0.6 ms C7 (pc7) 0.0% | C7 (cc7) 76.6% | C7s 0.0% 0.0 ms 0.0% 0.0 ms C8 (pc8) 0.0% | | C8 6.3% 0.9 ms 5.8% 0.8 ms C9 (pc9) 0.0% | | C9 0.4% 3.7 ms 2.2% 2.2 ms C10 (pc10) 0.0% | | | | C10 80.8% 3.7 ms 79.4% 4.4 ms | | C1E 0.1% 0.1 ms 0.1% 0.1 ms ...
Pkg(HW) | Core(HW) | CPU(OS) 0 CPU(OS) 4
| | C0 active 2.5% 2.2%
| | POLL 0.0% 0.0 ms 0.0% 0.1 ms
| | C1 0.1% 0.2 ms 0.0% 0.1 ms
C2 (pc2) 63.7% | |
C3 (pc3) 0.0% | C3 (cc3) 0.1% | C3 0.1% 0.1 ms 0.1% 0.1 ms
C6 (pc6) 0.0% | C6 (cc6) 8.3% | C6 5.2% 0.6 ms 6.0% 0.6 ms
C7 (pc7) 0.0% | C7 (cc7) 76.6% | C7s 0.0% 0.0 ms 0.0% 0.0 ms
C8 (pc8) 0.0% | | C8 6.3% 0.9 ms 5.8% 0.8 ms
C9 (pc9) 0.0% | | C9 0.4% 3.7 ms 2.2% 2.2 ms
C10 (pc10) 0.0% | |
| | C10 80.8% 3.7 ms 79.4% 4.4 ms
| | C1E 0.1% 0.1 ms 0.1% 0.1 ms
...