
Red Hat Enterprise Linux 8

ストレージデバイスの管理

ローカルおよびリモートのストレージデバイスの設定と管理

Last Updated: 2025-11-02

Red Hat Enterprise Linux 8 ストレージデバイスの管理

ローカルおよびリモートのストレージデバイスの設定と管理

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat Enterprise Linux (RHEL) は、ローカルおよびリモートのストレージオプションをいくつか
提供します。利用可能なストレージオプションを使用すると、次のタスクを実行できます。 要件に
従ってディスクパーティションを作成します。ディスク暗号化を使用して、ブロックデバイス上の
データを保護します。 RAID (Redundant Array of Independent Disks) を作成して、複数のドライブ
にデータを保存し、データ損失を回避します。 iSCSI および NVMe over Fabrics を使用して、ネッ
トワーク経由でストレージにアクセスします。

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

RED HAT ドキュメントへのフィードバック (英語のみ)

第1章 利用可能なストレージオプションの概要
1.1. ローカルストレージの概要
1.2. リモートストレージの概要
1.3. GFS2 ファイルシステムの概要

第2章 ディスクパーティション
2.1. パーティションの概要
2.2. パーティションテーブルの種類の比較
2.3. MBR ディスクパーティション
2.4. 拡張 MBR パーティション
2.5. MBR パーティションタイプ
2.6. GUID パーティションテーブル
2.7. パーティションタイプ
2.8. パーティション命名スキーム
2.9. マウントポイントとディスクパーティション

第3章 パーティションの使用
3.1. PARTED でディスクにパーティションテーブルを作成
3.2. PARTED でパーティションテーブルの表示
3.3. PARTED を使用したパーティションの作成
3.4. FDISK でパーティションタイプの設定
3.5. PARTED でパーティションのサイズ変更
3.6. PARTED でパーティションの削除

第4章 ディスクを再設定するストラテジー
4.1. パーティションが分割されていない空き領域の使用
4.2. 未使用パーティションの領域の使用
4.3. アクティブなパーティションの空き領域の使用

第5章 永続的な命名属性の概要
5.1. 非永続的な命名属性のデメリット
5.2. ファイルシステムおよびデバイスの識別子
5.3. /DEV/DISK/ にある UDEV メカニズムにより管理されるデバイス名
5.4. DM MULTIPATH を使用した WORLD WIDE IDENTIFIER
5.5. UDEV デバイス命名規則の制約
5.6. 永続的な命名属性のリスト表示
5.7. 永続的な命名属性の変更

第6章 NVDIMM 永続メモリーストレージの使用
6.1. NVDIMM 永続メモリーテクノロジー
6.2. NVDIMM のインターリービングおよび地域
6.3. NVDIMM 名前空間
6.4. NVDIMM アクセスモード
6.5. NDCTL のインストール
6.6. ブロックデバイスとして動作する NVDIMM 上のセクター名前空間の作成
6.7. NVDIMM でのデバイス DAX 名前空間の作成
6.8. NVDIMM でのファイルシステム DAX 名前空間の作成
6.9. S.M.A.R.T. を使用した NVDIMM 正常性 (ヘルス) の監視
6.10. 破損した NVDIMM デバイスの検出と交換

第7章 未使用ブロックの破棄

7

8
8
9

10

12
12
12
13
14
14
15
17
18
19

20
20
21
22
24
25
26

28
28
28
29

33
33
34
34
36
37
38
39

41
41
41

42
42
43
43
47
52
58
59

63

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

要件
7.1. ブロック破棄操作のタイプ
7.2. バッチブロック破棄の実行
7.3. オンラインブロック破棄の有効化
7.4. STORAGE RHEL システムロールを使用してオンラインブロック破棄を有効にする
7.5. 定期的なブロック破棄の有効化

第8章 ISCSI ターゲットの設定
8.1. TARGETCLI のインストール
8.2. ISCSI ターゲットの作成
8.3. ISCSI バックストア
8.4. FILEIO ストレージオブジェクトの作成
8.5. ブロックストレージオブジェクトの作成
8.6. PSCSI ストレージオブジェクトの作成
8.7. メモリーコピーの RAM ディスクストレージオブジェクトの作成
8.8. ISCSI ポータルの作成
8.9. ISCSI LUN の作成
8.10. 読み取り専用の ISCSI LUN の作成
8.11. ISCSI ACL の作成
8.12. ターゲットのチャレンジハンドシェイク認証プロトコルの設定
8.13. TARGETCLI ツールで ISCSI オブジェクトの削除

第9章 ISCSI イニシエーターの設定
9.1. ISCSI イニシエーターの作成
9.2. イニシエーター用のチャレンジハンドシェイク認証プロトコルの設定
9.3. ISCSIADM ユーティリティーを使用して ISCSI セッションを監視する
9.4. DM MULTIPATH によるデバイスのタイムアウトのオーバーライド

第10章 ファイバーチャネルデバイスの使用
10.1. LUN のサイズ変更後にファイバーチャネル論理ユニットを再スキャンする
10.2. ファイバーチャネルを使用したデバイスのリンク切れ動作の特定
10.3. ファイバーチャネル設定ファイル

第11章 FIBRE CHANNEL OVER ETHERNET の設定
11.1. RHEL でハードウェア FCOE HBA の使用
11.2. FCOE デバイスの設定

第12章 EH_DEADLINE を使用したストレージエラーからの回復における最大時間の設定
12.1. EH_DEADLINE パラメーター
12.2. EH_DEADLINE パラメーターの設定

第13章 スワップの使用
13.1. スワップ領域の概要
13.2. システムの推奨スワップ領域
13.3. スワップ用の LVM2 論理ボリュームの作成
13.4. スワップファイルの作成
13.5. STORAGE RHEL システムロールを使用してスワップボリュームを作成する
13.6. LVM2 論理ボリュームでのスワップ領域の拡張
13.7. LVM2 論理ボリュームでのスワップ領域の縮小
13.8. スワップ用の LVM2 論理ボリュームの削除
13.9. スワップファイルの削除

第14章 NVME OVER FABRIC デバイスの概要

第15章 NVME/RDMA を使用した NVME OVER FABRICS の設定

63
63
63
64
64
66

67
67
68
69
69
70
71
71
72
73
74
75
77
77

79
79
80
81

82

83
83
83
84

86
86
86

89
89
90

91
91
91

92
93
94
95
96
96
97

98

99

Red Hat Enterprise Linux 8 ストレージデバイスの管理

2

. .

. .

. .

. .

. .

. .

15.1. CONFIGFS を使用した NVME/RDMA コントローラーのセットアップ
15.2. NVMETCLI を使用した NVME/RDMA コントローラーのセットアップ
15.3. NVME/RDMA ホストの設定
15.4. 次のステップ

第16章 NVME/FC を使用した NVME OVER FABRICS の設定
16.1. BROADCOM アダプターの NVME ホストの設定
16.2. QLOGIC アダプターの NVME ホストの設定
16.3. 次のステップ

第17章 NVME デバイスでのマルチパスの有効化
17.1. ネイティブ NVME マルチパスと DM MULTIPATH
17.2. ネイティブ NVME マルチパスの実現
17.3. NVME デバイスでの DM MULTIPATH の有効化

第18章 ディスクスケジューラーの設定
18.1. 利用可能なディスクスケジューラー
18.2. 各種ユースケースで異なるディスクスケジューラー
18.3. デフォルトのディスクスケジューラー
18.4. アクティブなディスクスケジューラーの決定
18.5. TUNED を使用したディスクスケジューラーの設定
18.6. UDEV ルールを使用したディスクスケジューラーの設定
18.7. 特定ディスクに任意のスケジューラーを一時的に設定

第19章 リモートディスクレスシステムの設定
19.1. リモートディスクレスシステムの環境の準備
19.2. ディスクレスクライアントの TFTP サービスの設定
19.3. ディスクレスクライアントの DHCP サーバーの設定
19.4. ディスクレスクライアントのエクスポートしたファイルシステムの設定
19.5. リモートディスクレスシステムの再設定
19.6. リモートディスクレスシステムのロードに関する一般的な問題のトラブルシューティング

第20章 RAID の管理
20.1. RAID の概要
20.2. RAID のタイプ
20.3. RAID レベルとリニアサポート
20.4. サポート対象の RAID 変換
20.5. RAID サブシステム
20.6. インストール中のソフトウェア RAID の作成
20.7. インストール済みシステムでのソフトウェア RAID の作成
20.8. WEB コンソールで RAID の作成
20.9. WEB コンソールで RAID のフォーマット
20.10. WEB コンソールを使用した RAID 上のパーティションテーブルの作成
20.11. WEB コンソールを使用した RAID 上のパーティションの作成
20.12. WEB コンソールを使用した RAID 上のボリュームグループの作成
20.13. STORAGE RHEL システムロールを使用した RAID ボリュームの設定
20.14. RAID の拡張
20.15. RAID を縮小
20.16. インストール後にルートディスクを RAID1 に変換する
20.17. 高度な RAID デバイスの作成
20.18. RAID を監視するための電子メール通知の設定
20.19. RAID での障害のあるディスクの置き換え
20.20. RAID ディスクの修復

第21章 LUKS を使用したブロックデバイスの暗号化

99
100
101

103

104
104
106
107

108
108
108
110

113
113
114
114
114
115
117
118

119
119

120
121
122
124
125

127
127
127
129
130
133
133
134
135
136
138
138
140
140
142
142
143
144
144
145
147

149

Table of Contents

3

. .

. .

. .

. .

. .

. .

21.1. LUKS ディスクの暗号化
21.2. RHEL の LUKS バージョン
21.3. LUKS2 再暗号化中のデータ保護のオプション
21.4. LUKS2 を使用したブロックデバイスの既存データの暗号化
21.5. 独立したヘッダーがある LUKS2 を使用してブロックデバイスの既存データの暗号化
21.6. LUKS2 を使用した空のブロックデバイスの暗号化
21.7. WEB コンソールでの LUKS パスフレーズの設定
21.8. WEB コンソールで LUKS パスフレーズの変更
21.9. コマンドラインを使用した LUKS パスフレーズの変更
21.10. STORAGE RHEL システムロールを使用して LUKS2 暗号化ボリュームを作成する

第22章 テープデバイスの管理
22.1. テープデバイスの種類
22.2. テープドライブ管理ツールのインストール
22.3. テープコマンド
22.4. 巻き戻しテープデバイスへの書き込み
22.5. 巻き戻しなしのテープデバイスへの書き込み
22.6. テープデバイスでのテープヘッドの切り替え
22.7. テープデバイスからのデータの復元
22.8. テープデバイスのデータの消去

第23章 ストレージデバイスの削除
23.1. ストレージデバイスの安全な削除
23.2. ブロックデバイスと関連メタデータの削除

第24章 STRATIS ファイルシステムの設定
24.1. STRATIS ファイルシステムのコンポーネント
24.2. STRATIS と互換性のあるブロックデバイス
24.3. STRATIS のインストール
24.4. 暗号化されていない STRATIS プールの作成
24.5. WEB コンソールを使用した暗号化されていない STRATIS プールの作成
24.6. カーネルキーリング内のキーを使用して暗号化された STRATIS プールを作成する
24.7. WEB コンソールを使用した暗号化された STRATIS プールの作成
24.8. WEB コンソールを使用した STRATIS プールの名前変更
24.9. STRATIS ファイルシステムでのオーバープロビジョニングモードの設定
24.10. STRATIS プールの NBDE へのバインド
24.11. STRATIS プールの TPM へのバインド
24.12. カーネルキーリングを使用した暗号化 STRATIS プールのロック解除
24.13. 補助暗号化からの STRATIS プールのバインド解除
24.14. STRATIS プールの開始および停止
24.15. STRATIS ファイルシステムの作成
24.16. WEB コンソールを使用した STRATIS プール上のファイルシステムの作成
24.17. STRATIS ファイルシステムのマウント
24.18. SYSTEMD サービスを使用した /ETC/FSTAB での非ルート STRATIS ファイルシステムの設定

第25章 追加のブロックデバイスで STRATIS プールを拡張する
25.1. STRATIS プールへのブロックデバイスの追加
25.2. WEB コンソールを使用した STRATIS プールへのブロックデバイスの追加

第26章 STRATIS ファイルシステムの監視
26.1. STRATIS ファイルシステムに関する情報の表示
26.2. WEB コンソールを使用した STRATIS プールの表示

第27章 STRATIS ファイルシステムでのスナップショットの使用
27.1. STRATIS スナップショットの特徴

149
150
151
152
154
157
158
159
160
161

164
164
164
164
165
166
168
168
169

170
170
170

174
174
175
175
176
177
178
179
181
181

182
183
184
184
185
186
187
187
188

190
190
190

192
192
193

194
194

Red Hat Enterprise Linux 8 ストレージデバイスの管理

4

. .

27.2. STRATIS スナップショットの作成
27.3. STRATIS スナップショットのコンテンツへのアクセス
27.4. STRATIS ファイルシステムを以前のスナップショットに戻す
27.5. STRATIS スナップショットの削除

第28章 STRATIS ファイルシステムの削除
28.1. STRATIS ファイルシステムの削除
28.2. WEB コンソールを使用した STRATIS プールからのファイルシステムの削除
28.3. STRATIS プールの削除
28.4. WEB コンソールを使用した STRATIS プールの削除

194
195
195
196

197
197
197
198
199

Table of Contents

5

Red Hat Enterprise Linux 8 ストレージデバイスの管理

6

RED HAT ドキュメントへのフィードバック (英語のみ)
Red Hat ドキュメントに関するご意見やご感想をお寄せください。また、改善点があればお知らせくだ
さい。

Jira からのフィードバック送信 (アカウントが必要)

1. Jira の Web サイトにログインします。

2. 上部のナビゲーションバーで Create をクリックします。

3. Summary フィールドにわかりやすいタイトルを入力します。

4. Description フィールドに、ドキュメントの改善に関するご意見を記入してください。ドキュ
メントの該当部分へのリンクも追加してください。

5. ダイアログの下部にある Create をクリックします。

RED HAT ドキュメントへのフィードバック (英語のみ)

7

https://issues.redhat.com/projects/RHELDOCS/issues

第1章 利用可能なストレージオプションの概要
RHEL 8 では、複数のローカル、リモート、およびクラスターベースのストレージオプションを利用で
きます。

ローカルストレージは、ストレージデバイスがシステムにインストールされているか、システムに直接
接続されていることを意味します。

リモートストレージでは、LAN、インターネット、またはファイバーチャネルネットワークを介してデ
バイスにアクセスします。以下の Red Hat Enterprise Linux ストレージダイアグラムの概要では、さま
ざまなストレージオプションを説明します。

図1.1 Red Hat Enterprise Linux ストレージダイアグラム (概要)

1.1. ローカルストレージの概要

Red Hat Enterprise Linux 8 は、ローカルストレージオプションを複数提供します。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

8

基本的なディスク管理:

parted と fdisk を使用して、ディスクパーティションの作成、変更、削除、および表示を行うこと
ができます。パーティショニングレイアウトの標準は以下のようになります。

マスターブートレコード (MBR)

BIOS ベースのコンピューターで使用されます。プライマリーパーティション、拡張パーティ
ション、および論理パーティションを作成できます。

GUID パーティションテーブル (GPT)

Globally Unique Identifier (GUID) を使用し、一意のディスクおよびパーティション GUID を提供
します。

ストレージ使用オプション

NVDIMM (Non-Volatile Dual In-line Memory Modules) の管理

メモリーとストレージの組み合わせです。システムに接続した NVDIMM デバイスで、さまざま
な種類のストレージを有効にして管理できます。

ブロックストレージ管理

各ブロックに固有の識別子を持つブロックの形式でデータを保存します。

ファイルストレージ

データは、ローカルシステムのファイルレベルに保存されます。これらのデータは、XFS (デ
フォルト) または ext4 を使用してローカルでアクセスしたり、NFS と SMB を使用してネット
ワーク上でアクセスできます。

論理ボリューム

論理ボリュームマネージャー (LVM)

物理デバイスから論理デバイスを作成します。論理ボリューム (LV) は、物理ボリューム (PV) と
ボリュームグループ (VG) の組み合わせです。

VDO (Virtual Data Optimizer)

重複排除、圧縮、およびシンプロビジョニングを使用して、データの削減に使用されます。VDO
の下で論理ボリュームを使用すると、次のことができます。

VDO ボリュームの拡張

複数のデバイスにまたがる VDO ボリューム

ローカルファイルシステム

XFS

デフォルトの RHEL ファイルシステム。

Ext4

レガシーファイルシステム。

Stratis

テクノロジープレビューとして利用可能になりました。Stratis は、高度なストレージ機能に対応
する、ユーザーとカーネルのハイブリッドローカルストレージ管理システムです。

1.2. リモートストレージの概要

RHEL 8 で利用可能なリモートストレージオプションは次のとおりです。

第1章 利用可能なストレージオプションの概要

9

ストレージの接続オプション

iSCSI

RHEL 8 は targetcli ツールを使用して、iSCSI ストレージの相互接続を追加、削除、表示、およ
び監視します。

ファイバーチャネル (FC)

RHEL 8 は、以下のネイティブファイバーチャネルドライバーを提供します。

lpfc

qla2xxx

Zfcp

NVMe (Non-volatile Memory Express)

ホストソフトウェアユーティリティーがソリッドステートドライブと通信できるようにするイン
ターフェイス。NVMe over Fabrics を設定するには、次のタイプの fabric トランスポートを使用
します。

Remote Direct Memory Access (NVMe/RDMA) を使用する NVMe over Fabrics

ファイバーチャネルを使用した NVMe over Fabrics (NVMe/FC)

Device Mapper Multipath (DM Multipath)

サーバーノードとストレージアレイ間の複数の I/O パスを 1 つのデバイスに設定できます。これ
らの I/O パスは、個別のケーブル、スイッチ、コントローラーを含むことができる物理的な SAN
接続です。

ネットワークファイルシステム

NFS

SMB

1.3. GFS2 ファイルシステムの概要

Red Hat Global File System 2 (GFS2) ファイルシステムは、64 ビットの対称クラスターファイルシス
テムで、共有名前空間を提供し、一般的なブロックデバイスを共有する複数のノード間の一貫性を管理
します。GFS2 ファイルシステムは、ローカルファイルシステムに可能な限り近い機能セットを提供す
ると同時に、ノード間でクラスターの完全な整合性を強制することを目的としています。これを実現す
るため、ノードはファイルシステムリソースにクラスター全体のロックスキームを使用します。この
ロックスキームは、TCP/IP などの通信プロトコルを使用して、ロック情報を交換します。

場合によっては、Linux ファイルシステム API では、GFS2 のクラスター化された性質を完全に透過的
にすることができません。たとえば、GFS2 で POSIX ロックを使用しているプログラムは、GETLK の
使用を回避する必要があります。なぜなら、クラスター環境では、プロセス ID が、クラスター内の別
のノードに対するものである可能性があるためです。ただし、ほとんどの場合、GFS2 ファイルシステ
ムの機能は、ローカルファイルシステムのものと同じです。

Red Hat Enterprise Linux Resilient Storage Add-On は GFS2 を提供します。GFS2 が必要とするクラス
ター管理の提供は Red Hat Enterprise Linux High Availability Add-On により提供されます。

gfs2.ko カーネルモジュールは GFS2 ファイルシステムを実装し、GFS2 クラスターノードに読み込ま

Red Hat Enterprise Linux 8 ストレージデバイスの管理

10

gfs2.ko カーネルモジュールは GFS2 ファイルシステムを実装し、GFS2 クラスターノードに読み込ま
れます。

GFS2 環境を最大限に利用するためにも、基礎となる設計に起因するパフォーマンス事情を考慮するこ
とが重要です。GFS2 では、ローカルファイルシステムと同様、ページキャッシュで、頻繁に使用され
るデータのローカルキャッシングを行ってパフォーマンスを向上します。クラスターのノード間で一貫
性を維持するために、glock ステートマシンでキャッシュ制御が提供されます。

関連情報

GFS2 ファイルシステムの設定

第1章 利用可能なストレージオプションの概要

11

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/configuring_gfs2_file_systems/index

第2章 ディスクパーティション
ディスクを 1 つ以上の論理領域に分割するには、ディスクのパーティション設定ユーティリティーを使
用します。これにより、各パーティションを個別に管理できます。

2.1. パーティションの概要

ハードディスクは、パーティションテーブルの各ディスクパーティションの場所とサイズに関する情報
を保存します。オペレーティングシステムは、パーティションテーブルの情報を使用して、各パーティ
ションを論理ディスクとして扱います。ディスクパーティション設定には、次のような利点がありま
す。

物理ボリュームの管理上の見落としの可能性を減らす。

十分なバックアップを確保する。

効率的なディスク管理を提供する。

関連情報

直接または LVM を間に入れて、LUN でパーティション設定を使用するメリットとデメリット
は何ですか ?(Red Hat ナレッジベース)

2.2. パーティションテーブルの種類の比較

デバイスでパーティションを有効にするには、さまざまな種類のパーティションテーブルでブロックデ
バイスをフォーマットします。次の表では、ブロックデバイスで作成できるさまざまな種類のパーティ
ションテーブルのプロパティーを比較しています。

注記

このセクションでは、IBM Z アーキテクチャーに固有の DASD パーティションテーブル
を説明しません。

表2.1 パーティションテーブルの種類

パーティションテーブル パーティションの最大数 パーティションの最大サイズ

マスターブートレコード (MBR) 4 つのプライマリーパーティショ
ン、または 3 つのプライマリー
パーティションと 12 の論理パー
ティションを持つ 1 つの拡張パー
ティション

512 b セクターのドライブを使用
する場合は 2 TiB
4k セクターのドライブを使用す
る場合は 16 TiB

GUID パーティションテーブル
(GPT)

128 512 b セクターのドライブを使用
する場合は 8 ZiB
4k セクターのドライブを使用す
る場合は 64 ZiB

関連情報

IBM Z への Linux インスタンスの設定

Red Hat Enterprise Linux 8 ストレージデバイスの管理

12

https://access.redhat.com/solutions/163853
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/interactively_installing_rhel_over_the_network/configuring-a-linux-instance-on-ibm-z_rhel-installer

What you should know about DASD

2.3. MBR ディスクパーティション

パーティションテーブルはそのディスクの先頭部分となる、他のファイルシステムまたはユーザーデー
タの前に格納されています。わかりやすくするために、次の図ではパーティションテーブルを区切って
示しています。

図2.1 MBR パーティションテーブルがあるディスク

上記の図で示したとおり、パーティションテーブルは使用していない 4 つのプライマリーパーティショ
ンの 4 つのセクションに分けられます。プライマリーパーティションは、論理ディスクドライブ (また
はセクション) を 1 つだけ含むハードドライブのパーティションです。各論理ドライブは、1 つのパー
ティションの定義に必要な情報を保持できます。つまり、パーティションテーブルで定義できるプライ
マリーパーティションは 4 つまでです。

各パーティションテーブルエントリーには、パーティションの重要な特徴が含まれています。

ディスク上のパーティションの開始点と終了点

パーティションの状態 (アクティブ としてフラグを立てることができるのは 1 つのパーティ
ションのみ)

パーティションのタイプ

開始点と終了点は、ディスク上のパーティションのサイズと場所を定義します。一部のオペレーティン
グシステムブートローダーは、active フラグを使用します。つまり、"active" とマークされているパー
ティションのオペレーティングシステムが起動します。

タイプとは、パーティションの用途を識別する番号です。一部のオペレーティングシステムでは、パー
ティションの種類を使用して以下を行います。

特定のファイルシステムタイプを示します。

特定のオペレーティングシステムに関連付けられているパーティションにフラグを付けます。

パーティションに起動可能なオペレーティングシステムが含まれていることを示します。

以下の図は、パーティションが 1 つあるドライブの例を示しています。この例では、最初のパーティ
ションには DOS パーティションタイプのラベルが付けられています。

図2.2 1 つのパーティションを持つディスク

第2章 ディスクパーティション

13

https://www.ibm.com/docs/en/linux-on-systems?topic=d-what-you-should-know

図2.2 1 つのパーティションを持つディスク

関連情報

MBR パーティションタイプ

2.4. 拡張 MBR パーティション

必要があれば、タイプを extended に設定して追加のパーティションを作成します。

拡張パーティションは、ディスクドライブに似ています。拡張パーティション内に完全に含まれる 1 つ
以上の論理パーティションを指す独自のパーティションテーブルがあります。次の図は、2 つのプライ
マリーパーティションと、2 つの論理パーティションを含む 1 つの拡張パーティションおよびいくつか
の未パーティションの空き領域を備えたディスクドライブを示しています。

図2.3 2 つのプライマリーパーティションと拡張 MBR パーティションの両方を備えたディスク

最大 4 つのプライマリーパーティションと拡張パーティションのみを使用できますが、論理パーティ
ションの数に制限はありません。Linux ではパーティションへのアクセスに制限があり、1 つのディスク
ドライブでは最大 15 個のパーティションが許可されます。

2.5. MBR パーティションタイプ

次の表は、最も一般的に使用される MBR パーティションタイプとそれらを表す 16 進数のリストです。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

14

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/disk-partitions_managing-storage-devices#mbr-partition-types_disk-partitions

表2.2 MBR パーティションタイプ

MBR パーティションタ
イプ

値 MBR パーティションタ
イプ

値

Empty 00 Novell Netware 386 65

DOS 12 ビット FAT 01 PIC/IX 75

XENIX root O2 旧 MINIX 80

XENIX usr O3 Linux/MINUX 81

DOS 16 ビット (32M 以
下)

04 Linux swap 82

Extended 05 Linux ネイティブ 83

DOS 16 ビット (32 以上) 06 Linux 拡張 85

OS/2 HPFS 07 Amoeba 93

AIX 08 Amoeba BBT 94

AIX ブート可能 09 BSD/386 a5

OS/2 Boot Manager 0a OpenBSD a6

Win95 FAT32 0b NEXTSTEP a7

Win95 FAT32 (LBA) 0c BSDI fs b7

Win95 FAT16 (LBA) 0e BSDI swap b8

Win95 Extended (LBA) 0f Syrinx c7

Venix 80286 40 CP/M db

Novell 51 DOS アクセス e1

PRep Boot 41 DOS R/O e3

GNU HURD 63 DOS セカンダリー f2

Novell Netware 286 64 BBT ff

2.6. GUID パーティションテーブル

第2章 ディスクパーティション

15

GUID パーティションテーブル (GPT) は、Globally Unique Identifier (GUID) に基づくパーティション設
定スキームです。

GPT は、Mater Boot Record (MBR) パーティションテーブルの制限に対処します。MBR パーティショ
ンテーブルは、約 2.2 TB に相当する 2 TiB を超えるストレージに対応できません。代わりに、GPT は
大容量のハードディスクをサポートします。アドレス指定可能な最大ディスクサイズは、512b セクター
ドライブを使用する場合は 8 ZiB、4096b セクタードライブを使用する場合は 64 ZiB です。さらに、
デフォルトで、GPT は最大 128 のプライマリーパーティションの作成をサポートします。パーティ
ションテーブルにより多くの領域を割り当てて、プライマリーパーティションの最大量を拡張します。

注記

GPT には GUID に基づくパーティションタイプがあります。特定のパーティションには
特定の GUID が必要です。たとえば、Extensible Firmware Interface (EFI) ブートロー
ダーのシステムパーティションには、GUID C12A7328-F81F-11D2-BA4B-
00A0C93EC93B が必要です。

GPT ディスクは、論理ブロックアドレス指定 (LBA) とパーティションレイアウトを以下のように使用
します。

MBR ディスクとの下位互換性のために、システムは MBR データ用に GPT の最初のセクター
(LBA 0) を予約し、"protective MBR" という名前を適用します。

プライマリー GPT

ヘッダーは、デバイスの 2 番目の論理ブロック (LBA 1) から始まります。ヘッダーには、
ディスク GUID、プライマリーパーティションテーブルの場所、セカンダリー GPT ヘッ
ダーの場所、および CRC32 チェックサム、およびプライマリーパーティションテーブルが
含まれます。また、テーブルにあるパーティションエントリーの数も指定します。

デフォルトでは、プライマリー GPT には 128 のパーティションエントリーが含まれます。
各パーティションには、128 バイトのエントリーサイズ、パーティションタイプ GUID、一
意のパーティション GUID があります。

セカンダリー GPT

リカバリーの場合は、プライマリーパーティションテーブルが破損した場合にバックアッ
プテーブルとして役立ちます。

ディスクの最後の論理セクターにはセカンダリー GPT ヘッダーが含まれており、プライマ
リーヘッダーが破損した場合に備えて GPT 情報を回復します。

以下が含まれます。

ディスク GUID

セカンダリーパーティションテーブルとプライマリー GPT ヘッダーの場所

それ自体の CRC32 チェックサム

セカンダリーパーティションテーブル

可能なパーティションエントリーの数

図2.4 GUID パーティションテーブルを含むディスク

Red Hat Enterprise Linux 8 ストレージデバイスの管理

16

図2.4 GUID パーティションテーブルを含むディスク

重要

GPT ディスクにブートローダーを正常にインストールするには、BIOS ブートパーティ
ションが存在する必要があります。ディスクにすでに BIOS ブートパーティションが含
まれている場合にのみ、再利用が可能です。これには、Anaconda インストールプログ
ラムによって初期化されたディスクが含まれます。

2.7. パーティションタイプ

パーティションタイプを管理する方法は複数あります。

fdisk ユーティリティーは、16 進数コードを指定することで、あらゆる種類のパーティション
タイプに対応します。

systemd-gpt-auto-generator はユニットジェネレーターユーティリティーで、パーティション
タイプを使用してデバイスを自動的に識別し、マウントします。

parted ユーティリティーは、フラグ を使用してパーティションタイプをマップしま
す。parted ユーティリティーは、LVM、swap、RAID など、特定のパーティションタイプのみ
を処理します。
parted ユーティリティーは、次のフラグの設定をサポートしています。

boot

root

swap

hidden

raid

lvm

lba

legacy_boot

irst

第2章 ディスクパーティション

17

esp

palo

parted ユーティリティーは、パーティションを作成するときにオプションでファイルシステムタイプ
引数を受け付けます。必要な条件のリストについては、parted を使用したパーティションの作成 を参
照してください。値を使用して以下を行います。

MBR にパーティションフラグを設定します。

GPT にパーティションの UUID タイプを設定します。たとえば、ファイルシステムタイプの
swap、fat、または hfs には、異なる GUID が設定されます。デフォルト値は Linux Data GUID
です。

この引数では、パーティションのファイルシステムは変更されません。サポート対象フラグと GUID の
み区別します。

次のファイルシステムのタイプがサポートされています。

xfs

ext2

ext3

ext4

fat16

fat32

hfs

hfs+

linux-swap

ntfs

reiserfs

注記

RHEL 8 で対応しているローカルファイルシステムは、ext4 および xfs のみです。

2.8. パーティション命名スキーム

Red Hat Enterprise Linux は、/dev/xxyN 形式のファイル名を持つファイルベースの命名スキームを使
用します。

デバイスおよびパーティション名は、以下の構造で構成されています。

/dev/

すべてのデバイスファイルが含まれるディレクトリーの名前。ハードディスクにはパーティション
が含まれるため、すべてのパーティションを表すファイルは /dev にあります。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

18

xx

パーティション名の最初の 2 文字は、パーティションを含むデバイスのタイプを示します。

y

この文字は、パーティションを含む特定のデバイスを示します。たとえば、/dev/sda は最初のハー
ドディスク、/dev/sdb は 2 番目のハードディスクです。ドライブの数が 26 を超えるシステムで
は、さらに多くの文字を使用できます (例: /dev/sdaa1)。

N

最後の文字は、パーティションを表す数字を示します。最初の 4 つのパーティション (プライマリー
または拡張) のパーティションには、1 から 4 までの番号が付けられます。論理パーティションは 5
から始まります。たとえば、/dev/sda3 は 1 番目のハードディスクの 3 番目のプライマリーパーティ
ションまたは拡張パーティションで、2 番目のハードディスク上の 2 番目の論理パーティション
/dev/sdb6 です。ドライブのパーティション番号は、MBR パーティションテーブルにのみ適用され
ます。N は常にパーティションを意味するものではないことに注意してください。

注記

Red Hat Enterprise Linux が すべて のタイプのディスクパーティションを識別して参照
できる場合でも、ファイルシステムを読み取れないため、すべてのパーティションタイ
プに保存されているデータにアクセスできます。ただし、多くの場合、別のオペレー
ティングシステム専用のパーティション上にあるデータには問題なくアクセスすること
ができます。

2.9. マウントポイントとディスクパーティション

Red Hat Enterprise Linux では、各パーティションは、ファイルおよびディレクトリーの単一セットを
サポートするのに必要なストレージの一部を形成します。パーティションをマウントすると、指定され
たディレクトリー (マウントポイント と呼ばれる) を開始点としてそのパーティションのストレージが
利用可能になります。

たとえば、パーティション /dev/sda5 が /usr/ にマウントされている場合、/usr/ 下にあるすべてのファ
イルとディレクトリーは物理的に /dev/sda5 上に存在することになります。ファイル
/usr/share/doc/FAQ/txt/Linux-FAQ は /dev/sda5 にありますが、ファイル /etc/gdm/custom.conf は
ありません。

また、この例では、/usr/ 以下の 1 つ以上のディレクトリーが他のパーティションのマウントポイントに
なる可能性もあります。たとえば、/usr/local にマウントされた /dev/sda7 パーティションが含まれる
場合、/usr/local/man/whatis は /dev/sda5 ではなく /dev/sda7 にあります。

第2章 ディスクパーティション

19

第3章 パーティションの使用
ディスクパーティション設定を使用して、ディスクを 1 つ以上の論理領域に分割し、各パーティション
で個別に作業できるようにします。ハードディスクは、パーティションテーブルの各ディスクパーティ
ションの場所とサイズに関する情報を保存します。このテーブルを使用すると、各パーティションはオ
ペレーティングシステムへの論理ディスクとして表示されます。その後、それらの個々のディスクで読
み取りと書き込みを行うことができます。

ブロックデバイスでパーティションを使用する利点と欠点の概要は、Red Hat ナレッジベースソリュー
ション What are the advantages and disadvantages to using partitioning on LUNs, either directly or with
LVM in between? を参照してください。

3.1. PARTED でディスクにパーティションテーブルを作成

parted ユーティリティーを使用して、より簡単にパーティションテーブルでブロックデバイスを
フォーマットできます。

警告

パーティションテーブルを使用してブロックデバイスをフォーマットすると、その
デバイスに保存されているすべてのデータが削除されます。

手順

1. インタラクティブな parted シェルを起動します。

parted block-device

2. デバイスにパーティションテーブルがあるかどうかを確認します。

(parted) print

デバイスにパーティションが含まれている場合は、次の手順でパーティションを削除します。

3. 新しいパーティションテーブルを作成します。

(parted) mklabel table-type

table-type を、使用するパーティションテーブルのタイプに置き換えます。

msdos (MBR の場合)

gpt (GPT の場合)

例3.1 GUID パーティションテーブル (GPT) テーブルの作成

ディスクに GPT テーブルを作成するには、次のコマンドを使用します。

(parted) mklabel gpt



Red Hat Enterprise Linux 8 ストレージデバイスの管理

20

https://access.redhat.com/solutions/163853

このコマンドを入力すると、変更の適用が開始されます。

4. パーティションテーブルを表示して、作成されたことを確認します。

(parted) print

5. parted シェルを終了します。

(parted) quit

関連情報

システム上の parted(8) man ページ

3.2. PARTED でパーティションテーブルの表示

ブロックデバイスのパーティションテーブルを表示して、パーティションレイアウトと個々のパーティ
ションの詳細を確認します。parted ユーティリティーを使用して、ブロックデバイスのパーティショ
ンテーブルを表示できます。

手順

1. parted ユーティリティーを起動します。たとえば、次の出力は、デバイス /dev/sda をリスト
します。

parted /dev/sda

2. パーティションテーブルを表示します。

(parted) print

Model: ATA SAMSUNG MZNLN256 (scsi)
Disk /dev/sda: 256GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
 1 1049kB 269MB 268MB primary xfs boot
 2 269MB 34.6GB 34.4GB primary
 3 34.6GB 45.4GB 10.7GB primary
 4 45.4GB 256GB 211GB extended
 5 45.4GB 256GB 211GB logical

3. オプション: 次に調べるデバイスに切り替えます。

(parted) select block-device

print コマンドの出力の詳細は、以下を参照してください。

Model: ATA SAMSUNG MZNLN256 (scsi)

第3章 パーティションの使用

21

ディスクタイプ、製造元、モデル番号、およびインターフェイス。

Disk /dev/sda: 256GB

ブロックデバイスへのファイルパスとストレージ容量。

Partition Table: msdos

ディスクラベルの種類。

Number

パーティション番号。たとえば、マイナー番号 1 のパーティションは、/dev/sda1 に対応します。

Start および End

デバイスにおけるパーティションの開始場所と終了場所。

Type

有効なタイプは、メタデータ、フリー、プライマリー、拡張、または論理です。

File system

ファイルシステムの種類。ファイルシステムの種類が不明な場合は、デバイスの File system
フィールドに値が表示されません。parted ユーティリティーは、暗号化されたデバイスのファイル
システムを認識できません。

Flags

パーティションのフラグ設定リスト。利用可能なフラグ
は、boot、root、swap、hidden、raid、lvm、または lba です。

関連情報

システム上の parted(8) man ページ

3.3. PARTED を使用したパーティションの作成

システム管理者は、parted ユーティリティーを使用してディスクに新しいパーティションを作成でき
ます。

注記

必要なパーティションは、swap、/boot/、および /(root) です。

前提条件

ディスクのパーティションテーブル。

2TiB を超えるパーティションを作成する場合は、GUID Partition Table (GPT) でディスクを
フォーマットしておく。

手順

1. parted ユーティリティーを起動します。

parted block-device

2. 現在のパーティションテーブルを表示し、十分な空き領域があるかどうかを確認します。

(parted) print

Red Hat Enterprise Linux 8 ストレージデバイスの管理

22

十分な空き容量がない場合は、パーティションのサイズを変更してください。

パーティションテーブルから、以下を確認します。

新しいパーティションの開始点と終了点

MBR で、どのパーティションタイプにすべきか

3. 新しいパーティションを作成します。

(parted) mkpart part-type name fs-type start end

part-type を primary、logical、または extended に置き換えます。これは MBR パーティ
ションテーブルにのみ適用されます。

name を任意のパーティション名に置き換えます。これは GPT パーティションテーブルに
必要です。

fs-type を、xfs、ext2、ext3、ext4、fat16、fat32、hfs、hfs+、linux-swap、ntfs、また
は reiserfs に置き換えます。fs-type パラメーターは任意です。parted ユーティリティー
は、パーティションにファイルシステムを作成しないことに注意してください。

start と end を、パーティションの開始点と終了点を決定するサイズに置き換えます (ディ
スクの開始からカウントします)。512MiB、20GiB、1.5TiB などのサイズ接尾辞を使用で
きます。デフォルトサイズの単位はメガバイトです。

例3.2 小さなプライマリーパーティションの作成

MBR テーブルに 1024MiB から 2048MiB までのプライマリーパーティションを作成するに
は、次のコマンドを使用します。

(parted) mkpart primary 1024MiB 2048MiB

コマンドを入力すると、変更の適用が開始されます。

4. パーティションテーブルを表示して、作成されたパーティションのパーティションタイプ、
ファイルシステムタイプ、サイズが、パーティションテーブルに正しく表示されていることを
確認します。

(parted) print

5. parted シェルを終了します。

(parted) quit

6. 新規デバイスノードを登録します。

udevadm settle

7. カーネルが新しいパーティションを認識していることを確認します。

cat /proc/partitions

第3章 パーティションの使用

23

関連情報

システム上の parted(8) man ページ

parted でディスクにパーティションテーブルを作成

parted でパーティションのサイズ変更

3.4. FDISK でパーティションタイプの設定

fdisk ユーティリティーを使用して、パーティションタイプまたはフラグを設定できます。

前提条件

ディスク上のパーティション。

手順

1. インタラクティブな fdisk シェルを起動します。

fdisk block-device

2. 現在のパーティションテーブルを表示して、パーティションのマイナー番号を確認します。

Command (m for help): print

現在のパーティションタイプは Type 列で、それに対応するタイプ ID は Id 列で確認できま
す。

3. パーティションタイプコマンドを入力し、マイナー番号を使用してパーティションを選択しま
す。

Command (m for help): type
Partition number (1,2,3 default 3): 2

4. オプション: リストを 16 進数コードで表示します。

Hex code (type L to list all codes): L

5. パーティションタイプを設定します。

Hex code (type L to list all codes): 8e

6. 変更を書き込み、fdisk シェルを終了します。

Command (m for help): write
The partition table has been altered.
Syncing disks.

7. 変更を確認します。

fdisk --list block-device

Red Hat Enterprise Linux 8 ストレージデバイスの管理

24

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_file_systems/partition-operations-with-parted_managing-file-systems#proc_creating-a-partition-table-on-a-disk-with-parted_partition-operations-with-parted
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_file_systems/partition-operations-with-parted_managing-file-systems#proc_resizing-a-partition-with-parted_partition-operations-with-parted

3.5. PARTED でパーティションのサイズ変更

parted ユーティリティーを使用して、パーティションを拡張して未使用のディスク領域を利用した
り、パーティションを縮小してその容量をさまざまな目的に使用したりできます。

前提条件

パーティションを縮小する前にデータをバックアップする。

2TiB を超えるパーティションを作成する場合は、GUID Partition Table (GPT) でディスクを
フォーマットしておく。

パーティションを縮小する場合は、サイズを変更したパーティションより大きくならないよう
に、最初にファイルシステムを縮小しておく。

注記

XFS は縮小に対応していません。

手順

1. parted ユーティリティーを起動します。

parted block-device

2. 現在のパーティションテーブルを表示します。

(parted) print

パーティションテーブルから、以下を確認します。

パーティションのマイナー番号。

既存のパーティションの位置とサイズ変更後の新しい終了点。

3. パーティションのサイズを変更します。

(parted) resizepart 1 2GiB

1 を、サイズを変更するパーティションのマイナー番号に置き換えます。

2 を、サイズを変更するパーティションの新しい終了点を決定するサイズに置き換えます
(ディスクの開始からカウントします)。512MiB、20GiB、1.5TiB などのサイズ接尾辞を使
用できます。デフォルトサイズの単位はメガバイトです。

4. パーティションテーブルを表示して、サイズ変更したパーティションのサイズが、パーティ
ションテーブルで正しく表示されていることを確認します。

(parted) print

5. parted シェルを終了します。

(parted) quit

第3章 パーティションの使用

25

6. カーネルが新しいパーティションを登録していることを確認します。

cat /proc/partitions

7. オプション: パーティションを拡張した場合は、そこにあるファイルシステムも拡張します。

関連情報

システム上の parted(8) man ページ

3.6. PARTED でパーティションの削除

parted ユーティリティーを使用すると、ディスクパーティションを削除して、ディスク領域を解放で
きます。

手順

1. インタラクティブな parted シェルを起動します。

parted block-device

block-device を、パーティションを削除するデバイスへのパス (例: /dev/sda) に置き換え
ます。

2. 現在のパーティションテーブルを表示して、削除するパーティションのマイナー番号を確認し
ます。

(parted) print

3. パーティションを削除します。

(parted) rm minor-number

minor-number を、削除するパーティションのマイナー番号に置き換えます。

このコマンドを実行すると、すぐに変更の適用が開始されます。

4. パーティションテーブルからパーティションが削除されたことを確認します。

(parted) print

5. parted シェルを終了します。

(parted) quit

6. パーティションが削除されたことをカーネルが登録していることを確認します。

cat /proc/partitions

7. パーティションが存在する場合は、/etc/fstab ファイルからパーティションを削除します。削除
したパーティションを宣言している行を見つけ、ファイルから削除します。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

26

8. システムが新しい /etc/fstab 設定を登録するように、マウントユニットを再生成します。

systemctl daemon-reload

9. スワップパーティション、または LVM の一部を削除した場合は、カーネルコマンドラインから
パーティションへの参照をすべて削除します。

a. アクティブなカーネルオプションを一覧表示し、削除されたパーティションを参照するオ
プションがないか確認します。

grubby --info=ALL

b. 削除されたパーティションを参照するカーネルオプションを削除します。

grubby --update-kernel=ALL --remove-args="option"

10. アーリーブートシステムに変更を登録するには、initramfs ファイルシステムを再構築します。

dracut --force --verbose

関連情報

システム上の parted(8) man ページ

第3章 パーティションの使用

27

第4章 ディスクを再設定するストラテジー
ディスクのパーティションを再設定する方法は複数あります。これには以下が含まれます。

パーティションが分割されていない空き領域が利用できる。

未使用のパーティションが利用可能である。

アクティブに使用されているパーティションの空き領域が利用可能である。

注記

以下の例は、わかりやすくするために単純化されており、実際に Red Hat Enterprise
Linux をインストールするときの正確なパーティションレイアウトは反映していません。

4.1. パーティションが分割されていない空き領域の使用

すでに定義されているパーティションはハードディスク全体にまたがらないため、定義されたパーティ
ションには含まれない未割り当ての領域が残されます。次の図は、これがどのようになるかを示してい
ます。

図4.1 パーティションが分割されていない空き領域があるディスク

最初の図は、1 つのプライマリーパーティションと未割り当て領域のある未定義のパーティションを持
つディスクを表しています。2 番目の図は、スペースが割り当てられた 2 つの定義済みパーティション
を持つディスクを表しています。

未使用のハードディスクもこのカテゴリーに分類されます。唯一の違いは、すべて の領域が定義された
パーティションの一部ではないことです。

新しいディスクでは、未使用の領域から必要なパーティションを作成できます。ほとんどのオペレー
ティングシステムは、ディスクドライブ上の利用可能な領域をすべて取得するように設定されていま
す。

4.2. 未使用パーティションの領域の使用

次の例の最初の図は、未使用のパーティションを持つディスクを表しています。2 番目の図は、Linux
の未使用パーティションの再割り当てを表しています。

図4.2 未使用のパーティションがあるディスク

Red Hat Enterprise Linux 8 ストレージデバイスの管理

28

図4.2 未使用のパーティションがあるディスク

未使用のパーティションに割り当てられた領域を使用するには、パーティションを削除してから、代わ
りに適切な Linux パーティションを作成します。または、インストールプロセス時に未使用のパーティ
ションを削除し、新しいパーティションを手動で作成します。

4.3. アクティブなパーティションの空き領域の使用

すでに使用されているアクティブなパーティションには、必要な空き領域が含まれているため、このプ
ロセスの管理は困難な場合があります。ほとんどの場合、ソフトウェアが事前にインストールされてい
るコンピューターのハードディスクには、オペレーティングシステムとデータを保持する大きなパー
ティションが 1 つ含まれます。

警告

アクティブなパーティションでオペレーティングシステム (OS) を使用する場合
は、OS を再インストールする必要があります。ソフトウェアが事前にインストー
ルされている一部のコンピューターには、元の OS を再インストールするためのイ
ンストールメディアが含まれていないことに注意してください。元のパーティショ
ンと OS インストールを破棄する前に、これが OS に当てはまるか確認してくださ
い。

使用可能な空き領域の使用を最適化するには、破壊的または非破壊的なパーティション再設定の方法を
使用できます。

4.3.1. 破壊的な再設定

破壊的なパーティション再設定は、ハードドライブのパーティションを破棄し、代わりにいくつかの小
さなパーティションを作成します。この方法は完全にコンテンツを削除するため、元のパーティション
から必要なデータをバックアップします。

既存のオペレーティングシステム用に小規模なパーティションを作成すると、以下が可能になります。

ソフトウェアの再インストール。



第4章 ディスクを再設定するストラテジー

29

データの復元。

Red Hat Enterprise Linux インストールの開始。

以下の図は、破壊的なパーティション再設定の方法を使用を簡潔に示しています。

図4.3 ディスク上での破壊的な再パーティション処理

警告

このメソッドは、元のパーティションに保存されたデータをすべて削除します。

4.3.2. 非破壊的な再パーティション

非破壊的なパーティション再設定では、データの損失なしにパーティションのサイズを変更します。こ
の方法は信頼性できますが、大きなドライブでは処理に時間がかかります。

以下は、破壊的なパーティション再設定の開始に役立つメソッドのリストです。

既存データの圧縮

一部のデータの保存場所は変更できません。これにより、必要なサイズへのパーティションのサイズ変
更が妨げられ、最終的に破壊的なパーティション再設定プロセスが必要になる可能性があります。既存
のパーティションでデータを圧縮すると、必要に応じてパーティションのサイズを変更できます。ま
た、使用可能な空き容量を最大化することもできます。

以下の図は、このプロセスを簡略化したものです。

図4.4 ディスク上でのデータ圧縮



Red Hat Enterprise Linux 8 ストレージデバイスの管理

30

図4.4 ディスク上でのデータ圧縮

データ損失の可能性を回避するには、圧縮プロセスを続行する前にバックアップを作成します。

既存パーティションのサイズ変更

既存のパーティションのサイズを変更すると、より多くの領域を解放できます。結果は、サイズ変更ソ
フトウェアにより異なります。多くの場合、元のパーティションと同じタイプのフォーマットされてい
ない新しいパーティションを作成できます。

サイズ変更後の手順は、使用するソフトウェアにより異なります。以下の例では、新しい DOS (Disk
Operating System) パーティションを削除し、代わりに Linux パーティションを作成することを推奨し
ます。サイズ変更プロセスを開始する前に、何がディスクに最適か確認してください。

図4.5 ディスク上でのパーティションのサイズ変更

オプション: 新規パーティションの作成

一部のサイズ変更ソフトウェアは、Linux ベースのシステムをサポートしています。この場合、サイズ
変更後に新たに作成されたパーティションを削除する必要はありません。新しいパーティションの作成
方法は、使用するソフトウェアによって異なります。

以下の図は、新しいパーティションを作成する前後のディスクの状態を示しています。

図4.6 最終パーティション設定のディスク

第4章 ディスクを再設定するストラテジー

31

図4.6 最終パーティション設定のディスク

Red Hat Enterprise Linux 8 ストレージデバイスの管理

32

第5章 永続的な命名属性の概要
システム管理者は、永続的な命名属性を使用してストレージボリュームを参照し、再起動を何度も行っ
ても信頼できるストレージ設定を構築する必要があります。

5.1. 非永続的な命名属性のデメリット

Red Hat Enterprise Linux では、ストレージデバイスを識別する方法が複数あります。特にドライブへ
のインストール時やドライブの再フォーマット時に誤ったデバイスにアクセスしないようにするため、
適切なオプションを使用して各デバイスを識別することが重要になります。

従来、/dev/sd(メジャー番号)(マイナー番号) の形式の非永続的な名前は、ストレージデバイスを参照す
るために Linux 上で使用されます。メジャー番号とマイナー番号の範囲、および関連する sd 名は、検
出されると各デバイスに割り当てられます。つまり、デバイスの検出順序が変わると、メジャー番号と
マイナー番号の範囲、および関連する sd 名の関連付けが変わる可能性があります。

このような順序の変更は、以下の状況で発生する可能性があります。

システム起動プロセスの並列化により、システム起動ごとに異なる順序でストレージデバイス
が検出された場合。

ディスクが起動しなかったり、SCSI コントローラーに応答しなかった場合。この場合は、通常
のデバイスプローブにより検出されません。ディスクはシステムにアクセスできなくなり、後
続のデバイスは関連する次の sd 名が含まれる、メジャー番号およびマイナー番号の範囲があ
ります。たとえば、通常 sdb と呼ばれるディスクが検出されないと、sdc と呼ばれるディスク
が sdb として代わりに表示されます。

SCSI コントローラー (ホストバスアダプターまたは HBA) が初期化に失敗し、その HBA に接続
されているすべてのディスクが検出されなかった場合。後続のプローブされた HBA に接続して
いるディスクは、別のメジャー番号およびマイナー番号の範囲、および関連する別の sd 名が
割り当てられます。

システムに異なるタイプの HBA が存在する場合は、ドライバー初期化の順序が変更する可能性
があります。これにより、HBA に接続されているディスクが異なる順序で検出される可能性が
あります。また、HBA がシステムの他の PCI スロットに移動した場合でも発生する可能性があ
ります。

ストレージアレイや干渉するスイッチの電源が切れた場合など、ストレージデバイスがプロー
ブされたときに、ファイバーチャネル、iSCSI、または FCoE アダプターを持つシステムに接続
されたディスクがアクセスできなくなる可能性があります。システムが起動するまでの時間よ
りもストレージアレイがオンラインになるまでの時間の方が長い場合に、電源の障害後にシス
テムが再起動すると、この問題が発生する可能性があります。一部のファイバーチャネルドラ
イバーは WWPN マッピングへの永続 SCSI ターゲット ID を指定するメカニズムをサポートし
ますが、メジャー番号およびマイナー番号の範囲や関連する sd 名は予約されず、一貫性のあ
る SCSI ターゲット ID 番号のみが提供されます。

そのため、/etc/fstab ファイルなどにあるデバイスを参照するときにメジャー番号およびマイナー番号
の範囲や関連する sd 名を使用することは望ましくありません。誤ったデバイスがマウントされ、デー
タが破損する可能性があります。

しかし、場合によっては他のメカニズムが使用される場合でも sd 名の参照が必要になる場合もありま
す (デバイスによりエラーが報告される場合など)。これは、Linux カーネルはデバイスに関するカーネ
ルメッセージで sd 名 (および SCSI ホスト、チャネル、ターゲット、LUN タプル) を使用するためで
す。

第5章 永続的な命名属性の概要

33

5.2. ファイルシステムおよびデバイスの識別子

ファイルシステムの識別子は、ファイルシステム自体に関連付けられます。一方、デバイスの識別子
は、物理ブロックデバイスに紐付けられます。適切なストレージ管理を行うには、その違いを理解する
ことが重要です。

ファイルシステムの識別子
ファイルシステムの識別子は、ブロックデバイス上に作成された特定のファイルシステムに関連付けら
れます。識別子はファイルシステムの一部としても格納されます。ファイルシステムを別のデバイスに
コピーしても、ファイルシステム識別子は同じです。ただし、mkfs ユーティリティーでフォーマット
するなどしてデバイスを書き換えると、デバイスはその属性を失います。

ファイルシステムの識別子に含まれるものは、次のとおりです。

一意識別子 (UUID)

ラベル

デバイスの識別子
デバイス識別子は、ブロックデバイス (ディスクやパーティションなど) に関連付けられます。mkfs
ユーティリティーでフォーマットするなどしてデバイスを書き換えた場合、デバイスはファイルシステ
ムに格納されていないため、属性を保持します。

デバイスの識別子に含まれるものは、次のとおりです。

World Wide Identifier (WWID)

パーティション UUID

シリアル番号

推奨事項

論理ボリュームなどの一部のファイルシステムは、複数のデバイスにまたがっています。Red
Hat は、デバイスの識別子ではなくファイルシステムの識別子を使用してこのファイルシステ
ムにアクセスすることを推奨します。

5.3. /DEV/DISK/ にある UDEV メカニズムにより管理されるデバイス名

udev メカニズムは、Linux のすべてのタイプのデバイスに使用され、ストレージデバイスだけに限定
されません。/dev/disk/ ディレクトリーにさまざまな種類の永続的な命名属性を提供します。ストレー
ジデバイスの場合、Red Hat Enterprise Linux には /dev/disk/ ディレクトリーにシンボリックリンクを
作成する udev ルールが含まれています。これにより、次の方法でストレージデバイスを参照できま
す。

ストレージデバイスのコンテンツ

一意識別子

シリアル番号

udev の命名属性は永続的なものですが、システムを再起動しても自動的には変更されないため、設定
可能なものもあります。

5.3.1. ファイルシステムの識別子

Red Hat Enterprise Linux 8 ストレージデバイスの管理

34

/dev/disk/by-uuid/ の UUID 属性
このディレクトリーのエントリーは、デバイスに格納されているコンテンツ (つまりデータ) 内の 一意
識別子 (UUID) によりストレージデバイスを参照するシンボリック名を提供します。以下に例を示しま
す。

/dev/disk/by-uuid/3e6be9de-8139-11d1-9106-a43f08d823a6

次の構文を使用することで、UUID を使用して /etc/fstab ファイルのデバイスを参照できます。

UUID=3e6be9de-8139-11d1-9106-a43f08d823a6

ファイルシステムを作成する際に UUID 属性を設定できます。後で変更することもできます。

/dev/disk/by-label/ のラベル属性
このディレクトリーのエントリーは、デバイスに格納されているコンテンツ (つまりデータ) 内の ラベ
ル により、ストレージデバイスを参照するシンボリック名を提供します。

以下に例を示します。

/dev/disk/by-label/Boot

次の構文を使用することで、ラベルを使用して /etc/fstab ファイルのデバイスを参照できます。

LABEL=Boot

ファイルシステムを作成するときにラベル属性を設定できます。また、後で変更することもできます。

5.3.2. デバイスの識別子

/dev/disk/by-id/ の WWID 属性
World Wide Identifier (WWID) は永続的で、SCSI 規格によりすべての SCSI デバイスが必要とする シス
テムに依存しない識別子 です。各ストレージデバイスの WWID 識別子は一意となることが保証され、
デバイスのアクセスに使用されるパスに依存しません。この識別子はデバイスのプロパティーですが、
デバイスのコンテンツ (つまりデータ) には格納されません。

この識別子は、SCSI Inquiry を発行して Device Identification Vital Product Data (0x83 ページ) または
Unit Serial Number (0x80 ページ) を取得することにより獲得できます。

Red Hat Enterprise Linux では、WWID ベースのデバイス名から、そのシステムの現在の /dev/sd 名へ
の正しいマッピングを自動的に維持します。デバイスへのパスが変更したり、別のシステムからそのデ
バイスへのアクセスがあった場合にも、アプリケーションはディスク上のデータ参照に /dev/disk/by-
id/ を使用できます。

例5.1 WWID マッピング

WWID シンボリックリンク 非永続的なデバイス 備考

/dev/disk/by-id/scsi-
3600508b400105e210000900000490000

/dev/sda ページ 0x83 の識別子
を持つデバイス

第5章 永続的な命名属性の概要

35

/dev/disk/by-id/scsi-
SSEAGATE_ST373453LW_3HW1RHM6

/dev/sdb ページ 0x80 の識別子
を持つデバイス

/dev/disk/by-id/ata-
SAMSUNG_MZNLN256HMHQ-
000L7_S2WDNX0J336519-part3

/dev/sdc3 ディスクパーティショ
ン

WWID シンボリックリンク 非永続的なデバイス 備考

システムにより提供される永続的な名前のほかに、udev ルールを使用して独自の永続的な名前を実装
し、ストレージの WWID にマップすることもできます。

/dev/disk/by-partuuid のパーティション UUID 属性
パーティション UUID (PARTUUID) 属性は、GPT パーティションテーブルにより定義されているパー
ティションを識別します。

例5.2 パーティション UUID のマッピング

PARTUUID シンボリックリンク 非永続的なデバイス

/dev/disk/by-partuuid/4cd1448a-01 /dev/sda1

/dev/disk/by-partuuid/4cd1448a-02 /dev/sda2

/dev/disk/by-partuuid/4cd1448a-03 /dev/sda3

/dev/disk/by-path/ のパス属性
この属性は、デバイスへのアクセスに使用される ハードウェアパス がストレージデバイスを参照する
シンボル名を提供します。

ハードウェアパス (PCI ID、ターゲットポート、LUN 番号など) の一部が変更されると、パス属性に失
敗します。このため、パス属性は信頼性に欠けます。ただし、パス属性は以下のいずれかのシナリオで
役に立ちます。

後で置き換える予定のディスクを特定する必要があります。

特定の場所にあるディスクにストレージサービスをインストールする予定です。

5.4. DM MULTIPATH を使用した WORLD WIDE IDENTIFIER

Device Mapper (DM) Multipath を設定して、World Wide Identifier (WWID) と非永続的なデバイス名を
マッピングできます。

システムからデバイスへのパスが複数ある場合、DM Multipath はこれを検出するために WWID を使用
します。その後、DM Multipath は /dev/mapper/wwid ディレクトリー (例:
/dev/mapper/3600508b400105df70000e00000ac0000) に単一の "疑似デバイス" を表示します。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

36

コマンド multipath -l は、非永続的な識別子へのマッピングを示します。

Host:Channel:Target:LUN

/dev/sd 名

major:minor 数値

例5.3 マルチパス設定での WWID マッピング

multipath -l コマンドの出力例:

3600508b400105df70000e00000ac0000 dm-2 vendor,product
[size=20G][features=1 queue_if_no_path][hwhandler=0][rw]
_ round-robin 0 [prio=0][active]
 _ 5:0:1:1 sdc 8:32 [active][undef]
 _ 6:0:1:1 sdg 8:96 [active][undef]
_ round-robin 0 [prio=0][enabled]
 _ 5:0:0:1 sdb 8:16 [active][undef]
 _ 6:0:0:1 sdf 8:80 [active][undef]

DM Multipath は、各 WWID ベースのデバイス名から、システムで対応する /dev/sd 名への適切なマッ
ピングを自動的に維持します。これらの名前は、パスが変更しても持続し、他のシステムからデバイス
にアクセスする際に一貫性を保持します。

DM Multipath の user_friendly_names 機能を使用すると、WWID は /dev/mapper/mpathN 形式の名
前にマップされます。デフォルトでは、このマッピングは /etc/multipath/bindings ファイルに保持さ
れています。これらの mpathN 名は、そのファイルが維持されている限り永続的です。

重要

user_friendly_names を使用する場合は、クラスター内で一貫した名前を取得するため
に追加の手順が必要です。

5.5. UDEV デバイス命名規則の制約

udev 命名規則の制約の一部は次のとおりです。

udev イベントに対して udev ルールが処理されるときに、udev メカニズムはストレージデバ
イスをクエリーする機能に依存する可能性があるため、クエリーの実行時にデバイスにアクセ
スできない可能性があります。これは、ファイバーチャネル、iSCSI、または FCoE ストレージ
デバイスといった、デバイスがサーバーシャーシにない場合に発生する可能性が高くなりま
す。

カーネルは udev イベントをいつでも送信する可能性があるため、デバイスにアクセスできな
い場合に /dev/disk/by-*/ リンクが削除される可能性があります。

udev イベントが生成されそのイベントが処理されるまでに遅延が生じる場合があります (大量
のデバイスが検出され、ユーザー空間の udev サービスによる各デバイスのルールを処理する
のにある程度の時間がかかる場合など)。これにより、カーネルがデバイスを検出してか
ら、/dev/disk/by-*/ の名前が利用できるようになるまでに遅延が生じる可能性があります。

ルールに呼び出される blkid などの外部プログラムによってデバイスが短期間開き、他の目的

第5章 永続的な命名属性の概要

37

ルールに呼び出される blkid などの外部プログラムによってデバイスが短期間開き、他の目的
でデバイスにアクセスできなくなる可能性があります。

/dev/disk/ の udev メカニズムで管理されるデバイス名は、メジャーリリース間で変更される
可能性があるため、リンクの更新が必要になる場合があります。

5.6. 永続的な命名属性のリスト表示

非永続ストレージデバイスの永続的な命名属性を確認できます。

手順

UUID 属性とラベル属性をリスト表示するには、lsblk ユーティリティーを使用します。

$ lsblk --fs storage-device

以下に例を示します。

例5.4 ファイルシステムの UUID とラベルの表示

$ lsblk --fs /dev/sda1

NAME FSTYPE LABEL UUID MOUNTPOINT
sda1 xfs Boot afa5d5e3-9050-48c3-acc1-bb30095f3dc4 /boot

PARTUUID 属性をリスト表示するには、--output +PARTUUID オプションを指定して lsblk
ユーティリティーを使用します。

$ lsblk --output +PARTUUID

以下に例を示します。

例5.5 パーティションの PARTUUID 属性の表示

$ lsblk --output +PARTUUID /dev/sda1

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT PARTUUID
sda1 8:1 0 512M 0 part /boot 4cd1448a-01

WWID 属性をリスト表示するには、/dev/disk/by-id/ ディレクトリーのシンボリックリンクの
ターゲットを調べます。以下に例を示します。

例5.6 システムにある全ストレージデバイスの WWID の表示

$ file /dev/disk/by-id/*

/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001
symbolic link to ../../sda
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part1
symbolic link to ../../sda1
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part2

Red Hat Enterprise Linux 8 ストレージデバイスの管理

38

symbolic link to ../../sda2
/dev/disk/by-id/dm-name-rhel_rhel8-root
symbolic link to ../../dm-0
/dev/disk/by-id/dm-name-rhel_rhel8-swap
symbolic link to ../../dm-1
/dev/disk/by-id/dm-uuid-LVM-
QIWtEHtXGobe5bewlIUDivKOz5ofkgFhP0RMFsNyySVihqEl2cWWbR7MjXJolD6g
symbolic link to ../../dm-1
/dev/disk/by-id/dm-uuid-LVM-
QIWtEHtXGobe5bewlIUDivKOz5ofkgFhXqH2M45hD2H9nAf2qfWSrlRLhzfMyOKd
symbolic link to ../../dm-0
/dev/disk/by-id/lvm-pv-uuid-atlr2Y-vuMo-ueoH-CpMG-4JuH-AhEF-wu4QQm
symbolic link to ../../sda2

5.7. 永続的な命名属性の変更

ファイルシステムの UUID またはラベルの永続的な命名属性を変更できます。

注記

udev 属性の変更はバックグラウンドで行われ、時間がかかる場合がありま
す。udevadm settle コマンドは、変更が完全に登録されるまで待機します。そのため、
その後のコマンドで確実に新しい属性を正しく使用できます。

以下のコマンドでは、次を行います。

new-uuid を、設定する UUID (例: 1cdfbc07-1c90-4984-b5ec-f61943f5ea50) に置き換えま
す。uuidgen コマンドを使用して UUID を生成できます。

new-label を、ラベル (例: backup_data) に置き換えます。

前提条件

XFS ファイルシステムをアンマウントしている (XFS ファイルシステムの属性を変更する場
合)。

手順

XFS ファイルシステムの UUID またはラベル属性を変更するには、xfs_admin ユーティリ
ティーを使用します。

xfs_admin -U new-uuid -L new-label storage-device
udevadm settle

ext4 ファイルシステム、ext3 ファイルシステム、ext2 ファイルシステムの UUID またはラベ
ル属性を変更するには、tune2fs ユーティリティーを使用します。

tune2fs -U new-uuid -L new-label storage-device
udevadm settle

スワップボリュームの UUID またはラベル属性を変更するには、swaplabel ユーティリティー
を使用します。

第5章 永続的な命名属性の概要

39

swaplabel --uuid new-uuid --label new-label swap-device
udevadm settle

Red Hat Enterprise Linux 8 ストレージデバイスの管理

40

第6章 NVDIMM 永続メモリーストレージの使用
システムに接続した NVDIMM (Non-Volatile Dual In-line Memory Modules) デバイス上にあるさまざま
なタイプのストレージの有効化および管理を行うことができます。

NVDIMM ストレージに Red Hat Enterprise Linux 8 をインストールする場合は、NVDIMM デバイスへの
インストール を参照してください。

6.1. NVDIMM 永続メモリーテクノロジー

Non-Volatile Dual In-line Memory Modules (NVDIMM) 永続メモリーは、ストレージクラスメモリーまた
は pmem とも呼ばれ、メモリーとストレージの組み合わせです。

NVDIMM は、ストレージの耐久性に加え、低アクセスレイテンシーと動的な DRAM の広帯域幅を採用
しています。NVDIMM を使用するその他の利点は次のとおりです。

NVDIMM ストレージはバイトアドレス指定可能です。つまり、CPU ロードおよびストア命令
を使用してアクセスできます。従来のブロックベースのストレージへのアクセスに必要なシス
テムコール read() および write() の他に、NVDIMM はダイレクトロードとストアプログラミン
グモデルにも対応しています。

NVDIMM のパフォーマンス特性は、アクセスレイテンシーが非常に低い DRAM と似ていま
す。通常、数万から数十万ナノ秒です。

NVDIMM に保存されたデータは、永続メモリーと同様に、電源がオフになっても保持されま
す。

ダイレクトアクセス (DAX) テクノロジーを使用すると、システムページキャッシュを経由せず
にメモリーマップストレージへのアプリケーションを直接実行できます。これにより、別の目
的で DRAM を解放します。

NVDIMM は、次のようなユースケースでメリットがあります。

データベース

NVDIMM でのストレージアクセスレイテンシーの短縮により、データベースのパフォーマンスが向
上します。

高速な再起動

高速な再起動は、ウォームキャッシュ効果とも呼ばれます。たとえば、ファイルサーバーは起動
後、メモリー内にファイルコンテンツを持ちません。クライアントがデータを接続して読み書きす
ると、そのデータはページキャッシュにキャッシュされます。最終的に、キャッシュには、ほとん
どのホットデータが含まれます。再起動後、システムは従来のストレージで再度プロセスを開始す
る必要があります。
NVDIMM を使用すると、アプリケーションが適切に設計されていれば、再起動後もウォームキャッ
シュを維持できます。この例には、ページキャッシュは含まれません。アプリケーションは、永続
メモリーに直接データをキャッシュします。

高速書き込みキャッシュ

多くの場合、ファイルサーバーは、データが耐久性のあるメディアに保存されるまで、クライアン
トの書き込み要求を認識しません。NVDIMM を高速な書き込みキャッシュとして使用すると、ファ
イルサーバーが書き込み要求をすばやく認識できるようになり、遅延が少なくなります。

6.2. NVDIMM のインターリービングおよび地域

不揮発性デュアルインラインメモリーモジュール (NVDIMM) デバイスは、インターリーブ領域へのグ

第6章 NVDIMM 永続メモリーストレージの使用

41

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html-single/interactively_installing_rhel_from_installation_media/index#installing-to-a-nvdimm-device_storage-devices

不揮発性デュアルインラインメモリーモジュール (NVDIMM) デバイスは、インターリーブ領域へのグ
ループ化をサポートしています。

NVDIMM デバイスは、通常のダイナミック RAM (DRAM) と同じ方法でインターリーブセットにグルー
プ化できます。インターリーブセットは、複数の DIMM にまたがる RAID 0 レベル (ストライプ) 設定と
似ています。インターリーブセットは、リージョンとも呼ばれます。

インターリービングには、以下の利点があります。

NVDIMM は、インターリーブセットに設定するとパフォーマンスが向上します。

インターリービングは、複数の小さな NVDIMM デバイスを大きな論理デバイスに組み合わせま
す。

NVDIMM インターリーブセットは、システムの BIOS または UEFI ファームウェアで設定されます。
Red Hat Enterprise Linux は、各インターリーブセットにリージョンデバイスを作成します。

6.3. NVDIMM 名前空間

不揮発性デュアルインラインメモリーモジュール (NVDIMM) 領域は、ラベル領域のサイズに応じて 1 つ
以上の名前空間に分割できます。名前空間を使用すると、sector、fsdax、devdax、raw などの名前空
間のアクセスモードに基づいて、さまざまな方法でデバイスにアクセスできます。詳細について
は、NVDIMM アクセスモード を参照してください。

一部の NVDIMM デバイスは、任意のリージョンでの複数の名前空間に対応していません。

お使いの NVDIMM デバイスがラベルに対応している場合は、リージョンを名前空間に分割でき
ます。

NVDIMM デバイスがラベルに対応していない場合は、リージョンに名前空間を 1 つだけ追加で
きます。この場合、Red Hat Enterprise Linux は、リージョン全体に対応するデフォルトの名前
空間を作成します。

6.4. NVDIMM アクセスモード

Non-Volatile Dual In-line Memory Modules (NVDIMM) 名前空間を設定して、次のいずれかのモードを使
用できます。

sector

ストレージを高速ブロックデバイスとして示します。このモードは、NVDIMM ストレージを使用す
るように変更されていないレガシーアプリケーションや、Device Mapper を含む完全な I/O スタッ
クを使用するアプリケーションに役立ちます。
セクター デバイスは、システム上のその他のブロックデバイスと同じ方法で使用できます。そこで
はパーティションやファイルシステムを作成し、ソフトウェア RAID セットの一部として作成した
り、dm-cache のキャッシュデバイスとして使用できます

このモードのデバイスは、/dev/pmemNs として利用できます。名前空間を作成したら、リストされ
ている blockdev 値を確認します。

devdax またはデバイスダイレクトアクセス (DAX)

devdax を使用すると、NVDIMM デバイスは、Storage Networking Industry Association (SNIA)
Non-Volatile Memory (NVM) Programming Model 仕様で説明されているように、直接アクセスプロ
グラミングをサポートします。このモードでは、I/O はカーネルのストレージスタックを回避しま
す。したがって、デバイスマッパードライバーは使用できません。

デバイス DAX は、DAX キャラクターデバイスノードを使用して NVDIMM ストレージへの raw アク

Red Hat Enterprise Linux 8 ストレージデバイスの管理

42

デバイス DAX は、DAX キャラクターデバイスノードを使用して NVDIMM ストレージへの raw アク
セスを提供します。CPU キャッシュのフラッシュ命令とフェンシング命令を使用して、devdax デ
バイスのデータを作成できます。特定のデータベースおよび仮想マシンのハイパーバイザーは、こ
のモードの利点を得られます。devdax デバイスにファイルシステムを作成することはできません。

このモードのデバイスは /dev/daxN.M として利用できます。名前空間を作成したら、リストされた
chardev 値を確認します。

fsdax またはファイルシステムダイレクトアクセス (DAX)

fsdax を使用すると、NVDIMM デバイスは、Storage Networking Industry Association (SNIA) Non-
Volatile Memory (NVM) Programming Model 仕様で説明されているように、直接アクセスプログラ
ミングをサポートします。このモードでは、I/O はカーネルのストレージスタックを回避するため、
多くのデバイスマッパードライバーが使用できなくなります。
ファイルシステム DAX デバイスにファイルシステムを作成できます。

このモードのデバイスは、/dev/pmemN として利用できます。名前空間を作成したら、リストされ
ている blockdev 値を確認します。

重要

ファイルシステムの DAX テクノロジーはテクノロジープレビューとしてのみ提供さ
れるため、Red Hat では対応していません。

raw

DAX に対応していないメモリーディスクを示します。このモードでは、名前空間にいくつかの制限
があるため、使用すべきではありません。
このモードのデバイスは、/dev/pmemN として利用できます。名前空間を作成したら、リストされ
ている blockdev 値を確認します。

6.5. NDCTL のインストール

ndctl ユーティリティーをインストールして、不揮発性デュアルインラインメモリーモジュール
(NVDIMM) デバイスを設定および監視できます。

手順

ndctl ユーティリティーをインストールします。

yum install ndctl

6.6. ブロックデバイスとして動作する NVDIMM 上のセクター名前空間の作
成

非揮発性デュアルインラインメモリーモジュール (NVDIMM) デバイスをセクターモード (レガシーモー
ドとも呼ばれます) で設定して、従来のブロックベースのストレージをサポートできます。

次のいずれかになります。

既存の名前空間をセクターモードに再設定

第6章 NVDIMM 永続メモリーストレージの使用

43

新規セクター名前空間を作成 (利用可能な領域がある場合)

前提条件

NVDIMM デバイスがシステムに接続されている。

6.6.1. 既存の NVDIMM 名前空間のセクターモードへの再設定

Non-Volatile Dual In-line Memory Modules (NVDIMM) 名前空間をセクターモードに再設定して、高速ブ
ロックデバイスとして使用できます。

警告

名前空間を再設定すると、名前空間に以前に保存されたデータが削除されます。

前提条件

ndctl ユーティリティーがインストールされている。詳細は、ndctl のインストール を参照して
ください。

手順

1. 既存の名前空間を表示します。

ndctl list --namespaces --idle
[
 {
 "dev":"namespace1.0",
 "mode":"raw",
 "size":34359738368,
 "state":"disabled",
 "numa_node":1
 },
 {
 "dev":"namespace0.0",
 "mode":"raw",
 "size":34359738368,
 "state":"disabled",
 "numa_node":0
 }
]

2. 選択した名前空間をセクターモードに再設定します。

ndctl create-namespace --force --reconfig=namespace-ID --mode=sector

例6.1 セクターモードでの namespace1.0 の再設定

ndctl create-namespace --force --reconfig=namespace1.0 --mode=sector



Red Hat Enterprise Linux 8 ストレージデバイスの管理

44

{
 "dev":"namespace1.0",
 "mode":"sector",
 "size":"755.26 GiB (810.95 GB)",
 "uuid":"2509949d-1dc4-4ee0-925a-4542b28aa616",
 "sector_size":4096,
 "blockdev":"pmem1s"
}

再設定された名前空間は、/dev ディレクトリーの下で /dev/pmem1s ファイルとして利用でき
るようになりました。

検証

システム上の既存の名前空間が再設定されているかどうかを確認します。

ndctl list --namespace namespace1.0
[
 {
 "dev":"namespace1.0",
 "mode":"sector",
 "size":810954706944,
 "uuid":"2509949d-1dc4-4ee0-925a-4542b28aa616",
 "sector_size":4096,
 "blockdev":"pmem1s"
 }
]

関連情報

システム上の ndctl-create-namespace(1) man ページ

6.6.2. セクターモードでの新たな NVDIMM 名前空間の作成

領域に利用可能なスペースがある場合、高速ブロックデバイスとして使用するために、不揮発性デュア
ルインラインメモリーモジュール (NVDIMM) 名前空間をセクターモードで作成できます。

前提条件

ndctl ユーティリティーがインストールされている。詳細は、ndctl のインストール を参照して
ください。

NVDIMM デバイスは、リージョン内に複数の名前空間を作成するためのラベルをサポートして
います。これは、次のコマンドを使用して確認できます。

ndctl read-labels nmem0 >/dev/null
 read 1 nmem

これは、1 つの NVDIMM デバイスのラベルを読み取ったことを示しています。値が 0 の場合、
デバイスがラベルをサポートしていないことを意味します。

手順

第6章 NVDIMM 永続メモリーストレージの使用

45

1. 利用可能な領域があるシステムの pmem リージョンのリストを表示します。以下の例で
は、region1 リージョンと region0 リージョンの領域が利用できます。

ndctl list --regions
[
 {
 "dev":"region1",
 "size":2156073582592,
 "align":16777216,
 "available_size":2117418876928,
 "max_available_extent":2117418876928,
 "type":"pmem",
 "iset_id":-9102197055295954944,
 "badblock_count":1,
 "persistence_domain":"memory_controller"
 },
 {
 "dev":"region0",
 "size":2156073582592,
 "align":16777216,
 "available_size":2143188680704,
 "max_available_extent":2143188680704,
 "type":"pmem",
 "iset_id":736272362787276936,
 "badblock_count":3,
 "persistence_domain":"memory_controller"
 }
]

2. 利用可能な領域のいずれかに、1 つ以上の名前空間を割り当てます。

ndctl create-namespace --mode=sector --region=regionN --size=namespace-size

例6.2 region0 に 36 GiB セクターの名前空間を作成する

ndctl create-namespace --mode=sector --region=region0 --size=36G
{
 "dev":"namespace0.1",
 "mode":"sector",
 "size":"35.96 GiB (38.62 GB)",
 "uuid":"ff5a0a16-3495-4ce8-b86b-f0e3bd9d1817",
 "sector_size":4096,
 "blockdev":"pmem0.1s"
}

新しい名前空間が /dev/pmem0.1s として利用できるようになりました。

検証

新しい名前空間がセクターモードで作成されているかどうかを確認します。

ndctl list -RN -n namespace0.1
{

Red Hat Enterprise Linux 8 ストレージデバイスの管理

46

 "regions":[
 {
 "dev":"region0",
 "size":2156073582592,
 "align":16777216,
 "available_size":2104533975040,
 "max_available_extent":2104533975040,
 "type":"pmem",
 "iset_id":736272362787276936,
 "badblock_count":3,
 "persistence_domain":"memory_controller",
 "namespaces":[
 {
 "dev":"namespace0.1",
 "mode":"sector",
 "size":38615912448,
 "uuid":"ff5a0a16-3495-4ce8-b86b-f0e3bd9d1817",
 "sector_size":4096,
 "blockdev":"pmem0.1s"
 }
]
 }
]
}

関連情報

システム上の ndctl-create-namespace(1) man ページ

6.7. NVDIMM でのデバイス DAX 名前空間の作成

システムに接続されている NVDIMM デバイスをデバイス DAX モードで設定して、ダイレクトアクセス
機能を備えたキャラクターストレージをサポートします。

次のオプションを検討してください。

既存の名前空間をデバイス DAX モードに再設定する。

利用可能な領域がある場合は、新しいデバイスの DAX 名前空間を作成する。

6.7.1. デバイスのダイレクトアクセスモードの NVDIMM

デバイスダイレクトアクセス (デバイス DAX である devdax) は、ファイルシステムの関与なしで、ア
プリケーションがストレージに直接アクセスできる手段を提供します。デバイス DAX の利点は、ndctl
ユーティリティーの --align オプションを使用して設定できる、保証されたフォールトの粒度を提供す
ることです。

Intel 64 アーキテクチャーおよび AMD64 アーキテクチャーでは、以下のフォールト粒度に対応してい
ます。

4 KiB

2 MiB

1 GiB

第6章 NVDIMM 永続メモリーストレージの使用

47

デバイス DAX ノードは、以下のシステム呼び出しにのみ対応しています。

open()

close()

mmap()

ndctl list --human --capabilities コマンドを使用して、NVDIMM デバイスのサポートされているアラ
イメントを表示できます。たとえば、region0 デバイスについて表示するには、ndctl list --human --
capabilities -r region0 コマンドを使用します。

注記

デバイスの DAX ユースケースは SNIA 不揮発性メモリープログラミングモデルに関連付
けられているため、read () および write () システムコールはサポートされていません。

6.7.2. 既存の NVDIMM 名前空間をデバイス DAX モードに再設定

既存の不揮発性デュアルインラインメモリーモジュール (NVDIMM) 名前空間をデバイス DAX モードに
再設定できます。

警告

名前空間を再設定すると、名前空間に以前に保存されたデータが削除されます。

前提条件

ndctl ユーティリティーがインストールされている。詳細は、ndctl のインストール を参照して
ください。

手順

1. システムにある名前空間のリストを表示します。

ndctl list --namespaces --idle

[
 {
 "dev":"namespace1.0",
 "mode":"raw",
 "size":34359738368,
 "uuid":"ac951312-b312-4e76-9f15-6e00c8f2e6f4"
 "state":"disabled",
 "numa_node":1
 },
 {
 "dev":"namespace0.0",
 "mode":"raw",
 "size":38615912448,



Red Hat Enterprise Linux 8 ストレージデバイスの管理

48

 "uuid":"ff5a0a16-3495-4ce8-b86b-f0e3bd9d1817",
 "state":"disabled",
 "numa_node":0
 }
]

2. 名前空間を再設定します。

ndctl create-namespace --force --mode=devdax --reconfig=namespace-ID

例6.3 名前空間をデバイス DAX として再設定

次のコマンドは、DAX に対応するデータストレージ用に namespace0.1 を再設定します。
オペレーティングシステムが一度に 2 MiB ページでフォールトされるように、2 MiB フォー
ルトの粒度に合わせて調整されます。

ndctl create-namespace --force --mode=devdax --align=2M --reconfig=namespace0.1
{
 "dev":"namespace0.1",
 "mode":"devdax",
 "map":"dev",
 "size":"35.44 GiB (38.05 GB)",
 "uuid":"426d6a52-df92-43d2-8cc7-046241d6d761",
 "daxregion":{
 "id":0,
 "size":"35.44 GiB (38.05 GB)",
 "align":2097152,
 "devices":[
 {
 "chardev":"dax0.1",
 "size":"35.44 GiB (38.05 GB)",
 "target_node":4,
 "mode":"devdax"
 }
]
 },
 "align":2097152
}

名前空間は、/dev/dax0.1 パスで利用できます。

検証

システム上の既存の名前空間が再設定されているかどうかを確認します。

ndctl list --namespace namespace0.1
[
 {
 "dev":"namespace0.1",
 "mode":"devdax",
 "map":"dev",
 "size":38048628736,
 "uuid":"426d6a52-df92-43d2-8cc7-046241d6d761",

第6章 NVDIMM 永続メモリーストレージの使用

49

 "chardev":"dax0.1",
 "align":2097152
 }
]

関連情報

システム上の ndctl-create-namespace(1) man ページ

6.7.3. デバイス DAX モードでの新しい NVDIMM 名前空間の作成

リージョンに空き容量がある場合は、Non-Volatile Dual In-line Memory Modules (NVDIMM) デバイスに
新しいデバイス DAX 名前空間を作成できます。

前提条件

ndctl ユーティリティーがインストールされている。詳細は、ndctl のインストール を参照して
ください。

NVDIMM デバイスは、リージョン内に複数の名前空間を作成するためのラベルをサポートして
います。これは、次のコマンドを使用して確認できます。

ndctl read-labels nmem0 >/dev/null
read 1 nmem

これは、1 つの NVDIMM デバイスのラベルを読み取ったことを示しています。値が 0 の場合、
デバイスがラベルをサポートしていないことを意味します。

手順

1. 利用可能な領域があるシステムの pmem リージョンのリストを表示します。以下の例で
は、region1 リージョンと region0 リージョンの領域が利用できます。

ndctl list --regions
[
 {
 "dev":"region1",
 "size":2156073582592,
 "align":16777216,
 "available_size":2117418876928,
 "max_available_extent":2117418876928,
 "type":"pmem",
 "iset_id":-9102197055295954944,
 "badblock_count":1,
 "persistence_domain":"memory_controller"
 },
 {
 "dev":"region0",
 "size":2156073582592,
 "align":16777216,
 "available_size":2143188680704,
 "max_available_extent":2143188680704,
 "type":"pmem",
 "iset_id":736272362787276936,

Red Hat Enterprise Linux 8 ストレージデバイスの管理

50

 "badblock_count":3,
 "persistence_domain":"memory_controller"
 }
]

2. 利用可能な領域のいずれかに、1 つ以上の名前空間を割り当てます。

ndctl create-namespace --mode=devdax --region=regionN --size=namespace-size

例6.4 リージョンへの名前空間の作成

次のコマンドは、region0 に 36-GiB のデバイス DAX 名前空間を作成します。オペレー
ティングシステムが一度に 2 MiB ページでフォールトされるように、2 MiB フォールトの粒
度に合わせて調整されます。

ndctl create-namespace --mode=devdax --region=region0 --align=2M --size=36G
{
 "dev":"namespace0.2",
 "mode":"devdax",
 "map":"dev",
 "size":"35.44 GiB (38.05 GB)",
 "uuid":"89d13f41-be6c-425b-9ec7-1e2a239b5303",
 "daxregion":{
 "id":0,
 "size":"35.44 GiB (38.05 GB)",
 "align":2097152,
 "devices":[
 {
 "chardev":"dax0.2",
 "size":"35.44 GiB (38.05 GB)",
 "target_node":4,
 "mode":"devdax"
 }
]
 },
 "align":2097152
}

名前空間は /dev/dax0.2 として利用できるようになりました。

検証

新しい名前空間がデバイス DAX モードで作成されたかどうかを確認します。

ndctl list -RN -n namespace0.2
{
 "regions":[
 {
 "dev":"region0",
 "size":2156073582592,
 "align":16777216,
 "available_size":2065879269376,
 "max_available_extent":2065879269376,

第6章 NVDIMM 永続メモリーストレージの使用

51

 "type":"pmem",
 "iset_id":736272362787276936,
 "badblock_count":3,
 "persistence_domain":"memory_controller",
 "namespaces":[
 {
 "dev":"namespace0.2",
 "mode":"devdax",
 "map":"dev",
 "size":38048628736,
 "uuid":"89d13f41-be6c-425b-9ec7-1e2a239b5303",
 "chardev":"dax0.2",
 "align":2097152
 }
]
 }
]
}

関連情報

システム上の ndctl-create-namespace(1) man ページ

6.8. NVDIMM でのファイルシステム DAX 名前空間の作成

システムに接続されている NVDIMM デバイスをファイルシステム DAX モードで設定して、ダイレクト
アクセス機能を備えたファイルシステムをサポートします。

次のオプションを検討してください。

ファイルシステムの DAX モードに既存の名前空間を再設定する。

新しいファイルシステムの DAX 名前空間を作成する (利用可能な領域がある場合)。

重要

ファイルシステムの DAX テクノロジーはテクノロジープレビューとしてのみ提供される
ため、Red Hat では対応していません。

6.8.1. ファイルシステムの直接アクセスモードの NVDIMM

NVDIMM デバイスがファイルシステムダイレクトアクセス (ファイルシステム DAX、fsdax) モードで
設定されている場合、その上にファイルシステムを作成できます。このファイルシステムのファイルで
mmap() 操作を実行するアプリケーションは、ストレージに直接アクセスします。これにより、
NVDIMM 上のプログラミングモデルに直接アクセスできます。

次の新しい -o dax オプションが利用できるようになりました。必要に応じて、ファイル属性を介して
直接アクセスの動作を制御できます。

-o dax=inode

これは、ファイルシステムのマウント時に dax オプションを指定しない場合のデフォルトオプショ
ンです。このオプションを使用すると、ファイルに属性フラグを設定して、dax モードをアクティ
ブにできるかどうかを制御できます。必要に応じて、個々のファイルにこのフラグを設定できま
す。

このフラグをディレクトリーに設定することもでき、そのディレクトリー内のすべてのファイルが

Red Hat Enterprise Linux 8 ストレージデバイスの管理

52

このフラグをディレクトリーに設定することもでき、そのディレクトリー内のすべてのファイルが
同じフラグで作成されます。この属性フラグは、xfs_io -c 'chattr +x' directory-name コマンドを使
用して設定できます。

-o dax=never

このオプションを使用すると、dax フラグが inode モードに設定されていても、dax モードは有効
になりません。これは、inode ごとの dax 属性フラグが無視され、このフラグが設定されたファイル
は直接アクセスが有効にならないことを意味します。

-o dax=always

このオプションは、古い -o dax の動作と同等です。このオプションを使用すると、dax 属性フラグ
に関係なく、ファイルシステム上の任意のファイルに対して直接アクセスモードを有効にできま
す。

警告

今後のリリースでは、-o dax がサポートされなくなる可能性があります。必要
に応じて、代わりに -o dax=always を使用できます。このモードでは、すべて
のファイルが直接アクセスモードになる可能性があります。

ページごとのメタデータ割り当て

このモードでは、システム DRAM または NVDIMM デバイス自体でページごとのメタデータを割り
当てる必要があります。このデータ構造のオーバーヘッドは、4 KiB ページごとに 64 バイトです。

小さいデバイスでは、問題なく DRAM に収まるのに十分なオーバーヘッド量があります。
たとえば、16 GiB の名前区間のページ構造に必要なのは 256 MiB だけです。NVDIMM デバ
イスは通常小さくて高価であるため、ページトラッキングデータ構造を DRAM に格納する
ことが推奨されます。

テラバイト以上のサイズの NVDIMM デバイスの場合は、ページトラッキングデータ構造の
格納に必要なメモリーの量がシステム内の DRAM の量を超える可能性があります。
NVDIMM の 1 TiB に対して、ページ構造だけで 16 GiB が必要です。したがって、このよう
な場合には、NVDIMM 自体にデータ構造を保存することが推奨されます。
名前空間の設定時に --map オプションを使用して、ページごとのメタデータを保存する場
所を設定できます。

システム RAM に割り当てるには、--map=mem を使用します。

NVDIMM に割り当てるには、--map=dev を使用します。

6.8.2. ファイルシステム DAX モードへの既存の NVDIMM 名前空間の再設定

既存の不揮発性デュアルインラインメモリーモジュール (NVDIMM) 名前空間をファイルシステム DAX
モードに再設定できます。



第6章 NVDIMM 永続メモリーストレージの使用

53

警告

名前空間を再設定すると、名前空間に以前に保存されたデータが削除されます。

前提条件

ndctl ユーティリティーがインストールされている。詳細は、ndctl のインストール を参照して
ください。

手順

1. システムにある名前空間のリストを表示します。

ndctl list --namespaces --idle
[
 {
 "dev":"namespace1.0",
 "mode":"raw",
 "size":34359738368,
 "uuid":"ac951312-b312-4e76-9f15-6e00c8f2e6f4"
 "state":"disabled",
 "numa_node":1
 },
 {
 "dev":"namespace0.0",
 "mode":"raw",
 "size":38615912448,
 "uuid":"ff5a0a16-3495-4ce8-b86b-f0e3bd9d1817",
 "state":"disabled",
 "numa_node":0
 }
]

2. 名前空間を再設定します。

ndctl create-namespace --force --mode=fsdax --reconfig=namespace-ID

例6.5 ファイルシステム DAX としての名前空間の再設定

DAX に対応するファイルシステムに namespace0.0 を使用するには、次のコマンドを使用
します。

ndctl create-namespace --force --mode=fsdax --reconfig=namespace0.0
{
 "dev":"namespace0.0",
 "mode":"fsdax",
 "map":"dev",
 "size":"11.81 GiB (12.68 GB)",
 "uuid":"f8153ee3-c52d-4c6e-bc1d-197f5be38483",
 "sector_size":512,



Red Hat Enterprise Linux 8 ストレージデバイスの管理

54

 "align":2097152,
 "blockdev":"pmem0"
}

名前空間は /dev/pmem0 パスで利用できるようになりました。

検証

システム上の既存の名前空間が再設定されているかどうかを確認します。

ndctl list --namespace namespace0.0
[
 {
 "dev":"namespace0.0",
 "mode":"fsdax",
 "map":"dev",
 "size":12681478144,
 "uuid":"f8153ee3-c52d-4c6e-bc1d-197f5be38483",
 "sector_size":512,
 "align":2097152,
 "blockdev":"pmem0"
 }
]

関連情報

システム上の ndctl-create-namespace(1) man ページ

6.8.3. ファイルシステム DAX モードで新しい NVDIMM 名前空間の作成

リージョンに空き容量がある場合は、Non-Volatile Dual In-line Memory Modules (NVDIMM) デバイスに
新しいファイルシステム DAX 名前空間を作成できます。

前提条件

ndctl ユーティリティーがインストールされている。詳細は、ndctl のインストール を参照して
ください。

NVDIMM デバイスは、リージョン内に複数の名前空間を作成するためのラベルをサポートして
います。これは、次のコマンドを使用して確認できます。

ndctl read-labels nmem0 >/dev/null
read 1 nmem

これは、1 つの NVDIMM デバイスのラベルを読み取ったことを示しています。値が 0 の場合、
デバイスがラベルをサポートしていないことを意味します。

手順

1. 利用可能な領域があるシステムの pmem リージョンのリストを表示します。以下の例で
は、region1 リージョンと region0 リージョンの領域が利用できます。

第6章 NVDIMM 永続メモリーストレージの使用

55

ndctl list --regions
[
 {
 "dev":"region1",
 "size":2156073582592,
 "align":16777216,
 "available_size":2117418876928,
 "max_available_extent":2117418876928,
 "type":"pmem",
 "iset_id":-9102197055295954944,
 "badblock_count":1,
 "persistence_domain":"memory_controller"
 },
 {
 "dev":"region0",
 "size":2156073582592,
 "align":16777216,
 "available_size":2143188680704,
 "max_available_extent":2143188680704,
 "type":"pmem",
 "iset_id":736272362787276936,
 "badblock_count":3,
 "persistence_domain":"memory_controller"
 }
]

2. 利用可能な領域のいずれかに、1 つ以上の名前空間を割り当てます。

ndctl create-namespace --mode=fsdax --region=regionN --size=namespace-size

例6.6 リージョンへの名前空間の作成

次のコマンドは、region0 で 36 GiB のファイルシステム DAX 名前空間を作成します。

ndctl create-namespace --mode=fsdax --region=region0 --size=36G
{
 "dev":"namespace0.3",
 "mode":"fsdax",
 "map":"dev",
 "size":"35.44 GiB (38.05 GB)",
 "uuid":"99e77865-42eb-4b82-9db6-c6bc9b3959c2",
 "sector_size":512,
 "align":2097152,
 "blockdev":"pmem0.3"
}

名前空間は /dev/pmem0.3 として利用できるようになりました。

検証

新しい名前空間がファイルシステム DAX モードで作成されたかどうかを確認します。

ndctl list -RN -n namespace0.3

Red Hat Enterprise Linux 8 ストレージデバイスの管理

56

{
 "regions":[
 {
 "dev":"region0",
 "size":2156073582592,
 "align":16777216,
 "available_size":2027224563712,
 "max_available_extent":2027224563712,
 "type":"pmem",
 "iset_id":736272362787276936,
 "badblock_count":3,
 "persistence_domain":"memory_controller",
 "namespaces":[
 {
 "dev":"namespace0.3",
 "mode":"fsdax",
 "map":"dev",
 "size":38048628736,
 "uuid":"99e77865-42eb-4b82-9db6-c6bc9b3959c2",
 "sector_size":512,
 "align":2097152,
 "blockdev":"pmem0.3"
 }
]
 }
]
}

関連情報

システム上の ndctl-create-namespace(1) man ページ

6.8.4. ファイルシステム DAX デバイスでのファイルシステムの作成

ファイルシステム DAX デバイス上にファイルシステムを作成し、ファイルシステムをマウントできま
す。ファイルシステムを作成した後、アプリケーションは永続メモリーを使用して mount-point ディ
レクトリーにファイルを作成し、ファイルを開き、mmap 操作を使用して直接アクセスできるように
ファイルをマップできます。

Red Hat Enterprise Linux 8 では、テクノロジープレビューとして、XFS および ext4 ファイルシステム
の両方を NVDIMM にできます。

手順

1. オプション: ファイルシステム DAX デバイス上にパーティションを作成します。詳細
は、parted を使用したパーティションの作成 を参照してください。

注記

第6章 NVDIMM 永続メモリーストレージの使用

57

注記

fsdax デバイスにパーティションを作成する場合、パーティションはページの境
界に調整する必要があります。Intel 64 アーキテクチャーおよび AMD64 アーキ
テクチャーでは、パーティションの開始と終了に最低 4 KiB のアライメントが必
要です。2 MiB が優先されるアライメントです。

parted ツールは、デフォルトでは 1 MiB の境界にパーティションをそろえま
す。最初のパーティションには、パーティションの開始部分として 2 MiB を指定
します。パーティションのサイズが 2 MiB の倍数である場合は、他のすべての
パーティションもそろえられます。

2. パーティションまたは NVDIMM デバイスに XFS または ext4 ファイルシステムを作成します。

mkfs.xfs -d su=2m,sw=1 fsdax-partition-or-device

注記

dax 対応ファイルと reflinked ファイルは、ファイルシステム上で共存できるよ
うになりました。ただし、個々のファイルの場合、dax と reflink は相互に排他
的です。

XFS の場合、dax マウントオプションと互換性がないため、共有コピーオンライ
トのデータエクステントを無効にします。また、大規模ページのマッピングの可
能性を高めるために、ストライプユニットとストライプ幅を設定してください。

3. ファイルシステムをマウントします。

mount f_sdax-partition-or-device mount-point_

直接アクセスモードを有効にするために dax オプションを使用してファイルシステムをマウン
トする必要はありません。マウント時に dax オプションを指定しない場合、ファイルシステム
は dax=inode モードになります。直接アクセスモードをアクティブにする前に、ファイルに
dax オプションを設定します。

関連情報

システム上の mkfs.xfs(8) man ページ

ファイルシステムの直接アクセスモードの NVDIMM

6.9. S.M.A.R.T. を使用した NVDIMM 正常性 (ヘルス) の監視

一部の不揮発性デュアルインラインメモリーモジュール (NVDIMM) デバイスは、ヘルス情報を取得す
るためのセルフモニタリング、分析、レポートテクノロジー (S.M.A.R.T.) インターフェイスをサポート
しています。

重要

NVDIMM 正常性を定期的に監視して、データの損失を防ぎます。S.M.A.R.T. が NVDIMM
デバイスのヘルスステータスに関する問題を報告した場合は､Detecting and replacing a
broken NVDIMM device の説明に従って交換します。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

58

前提条件

オプション: 一部のシステムでは、次のコマンドを使用して acpi_ipmi ドライバーをアップロー
ドし、ヘルス情報を取得します。

modprobe acpi_ipmi

手順

ヘルス情報にアクセスします。

ndctl list --dimms --health
[
 {
 "dev":"nmem1",
 "id":"8089-a2-1834-00001f13",
 "handle":17,
 "phys_id":32,
 "security":"disabled",
 "health":{
 "health_state":"ok",
 "temperature_celsius":36.0,
 "controller_temperature_celsius":37.0,
 "spares_percentage":100,
 "alarm_temperature":false,
 "alarm_controller_temperature":false,
 "alarm_spares":false,
 "alarm_enabled_media_temperature":true,
 "temperature_threshold":82.0,
 "alarm_enabled_ctrl_temperature":true,
 "controller_temperature_threshold":98.0,
 "alarm_enabled_spares":true,
 "spares_threshold":50,
 "shutdown_state":"clean",
 "shutdown_count":4
 }
 },
[...]
]

関連情報

システム上の ndctl-list(1) man ページ

6.10. 破損した NVDIMM デバイスの検出と交換

不揮発性デュアルインラインメモリーモジュール (NVDIMM) に関連するエラーメッセージがシステム
ログまたは S.M.A.R.T. によって報告されている場合は、NVDIMM デバイスに障害が発生している可能
性があります。この場合は、以下を行う必要があります。

1. NVDIMM デバイスがエラーしていることを検出

2. そこに格納されているデータをバックアップ

第6章 NVDIMM 永続メモリーストレージの使用

59

3. デバイスを物理的に交換

手順

1. 壊れたデバイスを検出します。

ndctl list --dimms --regions --health
{
 "dimms":[
 {
 "dev":"nmem1",
 "id":"8089-a2-1834-00001f13",
 "handle":17,
 "phys_id":32,
 "security":"disabled",
 "health":{
 "health_state":"ok",
 "temperature_celsius":35.0,
 [...]
 }
[...]
}

2. 破損した NVDIMM の phys_id 属性を見つけます。

ndctl list --dimms --human

前述の例では、nmem0 が破損した NVDIMM になります。したがって、nmem0 の phys_id 属
性を確認します。

例6.7 NVDIMMs の phys_id 属性

以下の例では、phys_id は 0x10 です。

ndctl list --dimms --human

[
 {
 "dev":"nmem1",
 "id":"XXXX-XX-XXXX-XXXXXXXX",
 "handle":"0x120",
 "phys_id":"0x1c"
 },
 {
 "dev":"nmem0",
 "id":"XXXX-XX-XXXX-XXXXXXXX",
 "handle":"0x20",
 "phys_id":"0x10",
 "flag_failed_flush":true,
 "flag_smart_event":true
 }
]

Red Hat Enterprise Linux 8 ストレージデバイスの管理

60

3. 壊れた NVDIMM のメモリースロットを見つけます。

dmidecode

出力において、Handle 識別子が、破損した NVDIMM の phys_id 属性と一致するエントリーを
確認します。Locator フィールドは、破損した NVDIMM が使用するメモリースロットの一覧を
表示します。

例6.8 NVDIMM メモリースロットリスティング

以下の例では、nmem0 デバイスが 0x0010 の識別子に一致し、DIMM-XXX-YYYY メモリー
スロットを使用します。

dmidecode

...
Handle 0x0010, DMI type 17, 40 bytes
Memory Device
 Array Handle: 0x0004
 Error Information Handle: Not Provided
 Total Width: 72 bits
 Data Width: 64 bits
 Size: 125 GB
 Form Factor: DIMM
 Set: 1
 Locator: DIMM-XXX-YYYY
 Bank Locator: Bank0
 Type: Other
 Type Detail: Non-Volatile Registered (Buffered)
...

4. NVDIMM 上の名前空間にある全データのバックアップを作成します。NVDIMM を交換する前
にデータのバックアップを作成しないと、システムから NVDIMM を削除したときにデータが失
われます。

警告

時折、NVDIMM が完全に破損すると、バックアップが失敗することがあり
ます。

これを防ぐには、Monitoring NVDIMM health using S.M.A.R.T. で説明され
ているように、S.M.A.R.T. を使用して NVDIMM デバイスを定期的に監視
し、故障した NVDIMM を破損する前に交換します。

5. NVDIMM の名前空間を一覧表示します。

ndctl list --namespaces --dimm=DIMM-ID-number



第6章 NVDIMM 永続メモリーストレージの使用

61

例6.9 NVDIMM 名前空間のリスト表示

以下の例では、nmem0 デバイスには、バックアップが必要な名前空間の namespace0.0 と
namespace0.2 が含まれます。

ndctl list --namespaces --dimm=0

[
 {
 "dev":"namespace0.2",
 "mode":"sector",
 "size":67042312192,
 "uuid":"XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
 "raw_uuid":"XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
 "sector_size":4096,
 "blockdev":"pmem0.2s",
 "numa_node":0
 },
 {
 "dev":"namespace0.0",
 "mode":"sector",
 "size":67042312192,
 "uuid":"XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
 "raw_uuid":"XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
 "sector_size":4096,
 "blockdev":"pmem0s",
 "numa_node":0
 }
]

6. 破損した NVDIMM を物理的に交換します。

関連情報

システム上の ndctl-list(1) および dmidecode(8) man ページ

Red Hat Enterprise Linux 8 ストレージデバイスの管理

62

第7章 未使用ブロックの破棄
破棄操作に対応するブロックデバイスで破棄操作を実行するか、そのスケジュールを設定できます。ブ
ロック破棄操作では、マウントされたファイルシステムによって使用されなくなったファイルシステム
ブロックを、基盤となるストレージに伝達します。ブロック破棄操作により、SSD はガベージコレク
ションルーチンを最適化でき、シンプロビジョニングされたストレージに未使用の物理ブロックを再利
用するように通知できます。

要件

ファイルシステムの基礎となるブロックデバイスは、物理的な破棄操作に対応している必要が
あります。
/sys/block/<device>/queue/discard_max_bytes ファイルの値がゼロではない場合は、物理的
な破棄操作はサポートされます。

7.1. ブロック破棄操作のタイプ

以下のような、さまざまな方法で破棄操作を実行できます。

バッチ破棄

これは、ユーザーによって明示的にトリガーされ、選択したファイルシステム内の未使用のブロッ
クをすべて破棄します。

オンライン破棄

これは、マウント時に指定され、ユーザーの介入なしにリアルタイムでトリガーされます。オンラ
イン破棄操作は、used から free 状態に移行中のブロックのみを破棄します。

定期的な破棄

systemd サービスが定期的に実行するバッチ操作です。

すべてのタイプは、XFS ファイルシステムおよび ext4 ファイルシステムでサポートされます。

推奨事項
Red Hat は、バッチ破棄または周期破棄を使用することを推奨します。

以下の場合にのみ、オンライン破棄を使用してください。

システムのワークロードでバッチ破棄が実行できない場合

パフォーマンス維持にオンライン破棄操作が必要な場合

7.2. バッチブロック破棄の実行

バッチブロック破棄操作を実行して、マウントされたファイルシステムの未使用ブロックを破棄するこ
とができます。

前提条件

ファイルシステムがマウントされている。

ファイルシステムの基礎となるブロックデバイスが物理的な破棄操作に対応している。

手順

fstrim ユーティリティーを使用します。
選択したファイルシステムでのみ破棄を実行するには、次のコマンドを使用します。

第7章 未使用ブロックの破棄

63

選択したファイルシステムでのみ破棄を実行するには、次のコマンドを使用します。

fstrim mount-point

マウントされているすべてのファイルシステムで破棄を実行するには、次のコマンドを使
用します。

fstrim --all

fstrim コマンドを以下のいずれかで実行している場合は、

破棄操作に対応していないデバイス

複数のデバイスから構成され、そのデバイスの 1 つが破棄操作に対応していない論理デバイス
(LVM または MD)

次のメッセージが表示されます。

fstrim /mnt/non_discard

fstrim: /mnt/non_discard: the discard operation is not supported

関連情報

システム上の fstrim(8) man ページ

7.3. オンラインブロック破棄の有効化

オンラインブロック破棄操作を実行して、サポートしているすべてのファイルシステムで未使用のブ
ロックを自動的に破棄できます。

手順

マウント時のオンライン破棄を有効にします。

ファイルシステムを手動でマウントするには、-o discard マウントオプションを追加しま
す。

mount -o discard device mount-point

ファイルシステムを永続的にマウントするには、/etc/fstab ファイルのマウントエントリー
に discard オプションを追加します。

関連情報

システム上の mount(8) および fstab(5) man ページ

7.4. STORAGE RHEL システムロールを使用してオンラインブロック破棄を有
効にする

オンラインブロック破棄オプションを使用すると、XFS ファイルシステムをマウントし、未使用のブ
ロックを自動的に破棄できます。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

64

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.storage/README.md ファイルを参照してくださ
い。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

検証

オンラインブロック破棄オプションが有効になっていることを確認します。

ansible managed-node-01.example.com -m command -a 'findmnt /mnt/data'

関連情報

/usr/share/ansible/roles/rhel-system-roles.storage/README.md ファイル

- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Enable online block discard
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 mount_point: /mnt/data
 mount_options: discard

第7章 未使用ブロックの破棄

65

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

/usr/share/doc/rhel-system-roles/storage/ ディレクトリー

7.5. 定期的なブロック破棄の有効化

systemd タイマーを有効にして、サポートしているすべてのファイルシステムで未使用ブロックを定
期的に破棄できます。

手順

systemd タイマーを有効にして起動します。

systemctl enable --now fstrim.timer
Created symlink /etc/systemd/system/timers.target.wants/fstrim.timer →
/usr/lib/systemd/system/fstrim.timer.

検証

タイマーのステータスを確認します。

systemctl status fstrim.timer
fstrim.timer - Discard unused blocks once a week
 Loaded: loaded (/usr/lib/systemd/system/fstrim.timer; enabled; vendor preset: disabled)
 Active: active (waiting) since Wed 2023-05-17 13:24:41 CEST; 3min 15s ago
 Trigger: Mon 2023-05-22 01:20:46 CEST; 4 days left
 Docs: man:fstrim

May 17 13:24:41 localhost.localdomain systemd[1]: Started Discard unused blocks once a
week.

Red Hat Enterprise Linux 8 ストレージデバイスの管理

66

第8章 ISCSI ターゲットの設定
Red Hat Enterprise Linux では、コマンドラインインターフェイスとして targetcli シェルを使用し、以
下の操作を行います。

iSCSI ハードウェアを使用できるように iSCSI ストレージ相互接続を追加、削除、表示、監視し
ます。

ファイル、ボリューム、ローカル SCSI デバイス、またはリモートシステムへの RAM ディスク
で対応しているローカルストレージリソースをエクスポートします。

targetcli ツールには、組み込みタブ補完、自動補完サポート、インラインドキュメントなどのツリー
ベースのレイアウトがあります。

8.1. TARGETCLI のインストール

targetcli ツールをインストールして、iSCSI ストレージの相互接続を追加、監視、削除します。

手順

1. targetcli ツールをインストールします。

yum install targetcli

2. ターゲットサービスを起動します。

systemctl start target

3. システムの起動時にターゲットサービスが起動するように設定するには、次のコマンドを実行
します。

systemctl enable target

4. ファイアウォールの 3260 ポートを開き、ファイアウォール設定を再読み込みします。

firewall-cmd --permanent --add-port=3260/tcp
Success

firewall-cmd --reload
Success

検証

targetcli レイアウトを表示します。

targetcli
/> ls
o- /..[...]
 o- backstores.............................[...]
 | o- block.................[Storage Objects: 0]
 | o- fileio................[Storage Objects: 0]
 | o- pscsi.................[Storage Objects: 0]

第8章 ISCSI ターゲットの設定

67

 | o- ramdisk...............[Storage Objects: 0]
 o- iscsi...........................[Targets: 0]
 o- loopback........................[Targets: 0]

関連情報

システム上の targetcli(8) man ページ

8.2. ISCSI ターゲットの作成

iSCSI ターゲットを作成すると、クライアントの iSCSI イニシエーターがサーバー上のストレージデバ
イスにアクセスできるようになります。ターゲットとイニシエーターにはどちらも一意の識別名があり
ます。

前提条件

targetcli をインストールして、実行している。詳細は、targetcli のインストール を参照してく
ださい。

手順

1. iSCSI ディレクトリーに移動します。cd コマンドを使用して iSCSI ディレクトリーに移動する
こともできます。

/> iscsi/

2. iSCSI ターゲットを作成するには、以下のいずれかのオプションを使用します。

a. デフォルトのターゲット名を使用した iSCSI ターゲットの作成:

/iscsi> create

Created target
iqn.2003-01.org.linux-iscsi.hostname.x8664:sn.78b473f296ff
Created TPG1

b. 特定の名前を使用した iSCSI ターゲットの作成:

/iscsi> create iqn.2006-04.com.example:444

Created target iqn.2006-04.com.example:444
Created TPG1
Here iqn.2006-04.com.example:444 is target_iqn_name

iqn.2006-04.com.example:444 を、特定のターゲット名に置き換えます。

3. 新たに作成されたターゲットを確認します。

/iscsi> ls

o- iscsi.......................................[1 Target]
 o- iqn.2006-04.com.example:444................[1 TPG]
 o- tpg1...........................[enabled, auth]
 o- acls...............................[0 ACL]

Red Hat Enterprise Linux 8 ストレージデバイスの管理

68

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#installing-targetcli_configuring-an-iscsi-target

 o- luns...............................[0 LUN]
 o- portals.........................[0 Portal]

関連情報

システム上の targetcli(8) man ページ

8.3. ISCSI バックストア

iSCSI バックストアは、エクスポートした LUN のデータをローカルマシンに保存するさまざまな方法に
対応します。ストレージオブジェクトを作成して、バックストアが使用するリソースを定義します。

管理者は、LIO (Linux-IO) が対応する以下のバックストアデバイスのいずれかを選択できます。

fileio バックストア

ローカルファイルシステム上の通常のファイルをディスクイメージとして使用する場合は、fileio ス
トレージオブジェクトを作成します。fileio バックストアの作成は、fileio ストレージオブジェクト
の作成 を参照してください。

block バックストア

ローカルのブロックデバイスおよび論理デバイスを使用している場合には、ブロック ストレージオ
ブジェクトを作成します。block バックストアの作成は、ブロックストレージオブジェクトの作成
を参照してください。

pscsi バックストア

ストレージオブジェクトが SCSI コマンドの直接パススルーに対応している場合は、pscsi ストレー
ジオブジェクトを作成します。pscsi バックストアの作成は、pscsi ストレージオブジェクトの作成
を参照してください。

ramdisk バックストア

一時的な RAM 対応デバイスを作成する場合は、ramdisk ストレージオブジェクトを作成しま
す。ramdisk バックストアの作成は、メモリーコピーの RAM ディスクストレージオブジェクトの作
成 を参照してください。

関連情報

システム上の targetcli(8) man ページ

8.4. FILEIO ストレージオブジェクトの作成

fileio ストレージオブジェクトは、write_back または write_thru 操作のいずれかをサポートできま
す。write_back 操作では、ローカルファイルシステムキャッシュが有効になります。これにより、パ
フォーマンスが向上しますが、データの損失のリスクが高まります。

write_thru 操作を優先させるために、write_back=false を使用して write_back 操作を無効にすること
が推奨されます。

前提条件

targetcli をインストールして、実行している。詳細は、targetcli のインストール を参照してく
ださい。

手順

第8章 ISCSI ターゲットの設定

69

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-a-fileio-storage-object_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-a-block-storage-object_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-a-pscsi-storage-object_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-a-memory-copy-ram-disk-storage-object_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-a-fileio-storage-object_configuring-an-iscsi-target

1. backstores/ ディレクトリーから fileio/ に移動します。

/> backstores/fileio

2. fileio ストレージオブジェクトを作成します。

/backstores/fileio> create file1 /tmp/disk1.img 200M write_back=false

Created fileio file1 with size 209715200

検証

作成された fileio ストレージオブジェクトを確認します。

/backstores/fileio> ls

関連情報

システム上の targetcli(8) man ページ

8.5. ブロックストレージオブジェクトの作成

ブロックドライバーを使用すると、/sys/block/ ディレクトリーにあるブロックデバイスを LIO (Linux-
IO) で使用できます。これには、HDD、SSD、CD、DVD などの物理デバイス、およびソフトウェアや
ハードウェアの RAID ボリューム、LVM ボリュームなどの論理デバイスが含まれます。

前提条件

targetcli をインストールして、実行している。詳細は、targetcli のインストール を参照してく
ださい。

手順

1. backstores/ ディレクトリーから block/ に移動します。

/> backstores/block/

2. block バックストアを作成します。

/backstores/block> create name=block_backend dev=/dev/sdb

Generating a wwn serial.
Created block storage object block_backend using /dev/sdb.

検証

作成された block ストレージオブジェクトを確認します。

/backstores/block> ls

関連情報

Red Hat Enterprise Linux 8 ストレージデバイスの管理

70

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#installing-targetcli_configuring-an-iscsi-target

システム上の targetcli(8) man ページ

8.6. PSCSI ストレージオブジェクトの作成

SCSI エミュレーションがない場合、かつ /proc/scsi/scsi に lsscsi で表示される基盤の SCSI デバイス
が存在する場合には、SCSI コマンドの直接パススルーをサポートするストレージオブジェクトであれ
ば、どれでもバックストアとして設定できます。たとえば、SAS ハードドライブなどが該当します。こ
のサブシステムでは、SCSI-3 以降に対応しています。

警告

pscsi は、上級ユーザーのみが使用してください。非対称論理ユニット割り当て
(ALUA) や永続予約 (VMware ESX や vSphere で使用される永続予約など) は、通常
はデバイスのファームウェアに実装されず、誤作動やクラッシュが発生する原因と
なることがあります。確信が持てない場合は、実稼働の設定に block バックストア
を使用してください。

前提条件

targetcli をインストールして、実行している。詳細は、targetcli のインストール を参照してく
ださい。

手順

1. backstores/ ディレクトリーから pscsi/ に移動します。

/> backstores/pscsi/

2. この例では、/dev/sr0 を使用して物理 SCSI デバイスである TYPE_ROM デバイスの pscsi
バックストアを作成します。

/backstores/pscsi> create name=pscsi_backend dev=/dev/sr0

Generating a wwn serial.
Created pscsi storage object pscsi_backend using /dev/sr0

検証

作成した pscsi ストレージオブジェクトを確認します。

/backstores/pscsi> ls

関連情報

システム上の targetcli(8) man ページ

8.7. メモリーコピーの RAM ディスクストレージオブジェクトの作成



第8章 ISCSI ターゲットの設定

71

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#installing-targetcli_configuring-an-iscsi-target

メモリーコピー RAM ディスク (ramdisk) は、完全な SCSI エミュレーションと、イニシエーターのメ
モリーコピーを使用した個別のメモリーマッピングが含まれる RAM ディスクを提供します。これによ
り、マルチセッションの機能を利用できます。これは、特に実稼働環境での高速で不揮発性の大容量ス
トレージで有用です。

前提条件

targetcli をインストールして、実行している。詳細は、targetcli のインストール を参照してく
ださい。

手順

1. backstores/ ディレクトリーから ramdisk/ に移動します。

/> backstores/ramdisk/

2. 1GB RAM ディスクバックストアを作成します。

/backstores/ramdisk> create name=rd_backend size=1GB

Generating a wwn serial.
Created rd_mcp ramdisk rd_backend with size 1GB.

検証

作成した ramdisk ストレージオブジェクトを確認します。

/backstores/ramdisk> ls

関連情報

システム上の targetcli(8) man ページ

8.8. ISCSI ポータルの作成

iSCSI ポータルを作成できます。これにより、IP アドレスとポートがターゲットに追加され、ターゲッ
トが有効な状態に維持されます。

前提条件

targetcli をインストールして、実行している。詳細は、targetcli のインストール を参照してく
ださい。

ターゲットポータルグループ (TPG) に関連付けられた iSCSI ターゲット。詳細は、iSCSI ター
ゲットの作成 を参照してください。

手順

1. TPG ディレクトリーに移動します。

/iscsi> iqn.2006-04.com.example:444/tpg1/

Red Hat Enterprise Linux 8 ストレージデバイスの管理

72

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#installing-targetcli_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#installing-targetcli_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-an-iscsi-target_configuring-an-iscsi-target

2. iSCSI ポータルを作成するには、以下のいずれかのオプションを使用します。

a. デフォルトポータルを作成するには、デフォルトの iSCSI ポート 3260 を使用し、ターゲッ
トがそのポートのすべての IP アドレスをリッスンできるようにします。

/iscsi/iqn.20...mple:444/tpg1> portals/ create

Using default IP port 3260
Binding to INADDR_Any (0.0.0.0)
Created network portal 0.0.0.0:3260

b. 特定の IP アドレスを使用したポータルの作成:

/iscsi/iqn.20...mple:444/tpg1> portals/ create 192.168.122.137

Using default IP port 3260
Created network portal 192.168.122.137:3260

検証

新たに作成されたポータルを確認します。

/iscsi/iqn.20...mple:444/tpg1> ls

o- tpg.................................. [enabled, auth]
 o- acls[0 ACL]
 o- luns[0 LUN]
 o- portals[1 Portal]
 o- 192.168.122.137:3260......................[OK]

関連情報

システム上の targetcli(8) man ページ

8.9. ISCSI LUN の作成

論理ユニット番号 (LUN) は、iSCSI バックストアで対応している物理デバイスです。各 LUN には固有
の番号があります。

前提条件

targetcli をインストールして、実行している。詳細は、targetcli のインストール を参照してく
ださい。

ターゲットポータルグループ (TPG) に関連付けられた iSCSI ターゲット。詳細は、iSCSI ター
ゲットの作成 を参照してください。

作成したストレージオブジェクト。詳細は、iSCSI バックストア を参照してください。

手順

1. 作成したストレージオブジェクトの LUN を作成します。

第8章 ISCSI ターゲットの設定

73

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#installing-targetcli_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-an-iscsi-target_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#iscsi-backstore_configuring-an-iscsi-target

/iscsi/iqn.20...mple:444/tpg1> luns/ create /backstores/ramdisk/rd_backend
Created LUN 0.

/iscsi/iqn.20...mple:444/tpg1> luns/ create /backstores/block/block_backend
Created LUN 1.

/iscsi/iqn.20...mple:444/tpg1> luns/ create /backstores/fileio/file1
Created LUN 2.

2. 作成した LUN を確認します。

/iscsi/iqn.20...mple:444/tpg1> ls

o- tpg.................................. [enabled, auth]
 o- acls[0 ACL]
 o- luns[3 LUNs]
 | o- lun0.........................[ramdisk/ramdisk1]
 | o- lun1.................[block/block1 (/dev/vdb1)]
 | o- lun2...................[fileio/file1 (/foo.img)]
 o- portals[1 Portal]
 o- 192.168.122.137:3260......................[OK]

デフォルトの LUN 名は 0 から始まります。

重要

デフォルトでは、読み書きパーミッションを持つ LUN が作成されます。ACL の
作成後に新しい LUN が追加されると、LUN は自動的に利用可能なすべての ACL
にマッピングされ、セキュリティー上のリスクが発生します。読み取り専用権限
を持つ LUN の作成については、Creating a read-only iSCSI LUN を参照してくだ
さい。

3. ACL を設定します。詳細は、iSCSI ACL の作成 を参照してください。

関連情報

システム上の targetcli(8) man ページ

8.10. 読み取り専用の ISCSI LUN の作成

デフォルトでは、読み書きパーミッションを持つ LUN が作成されます。読み取り専用の LUN を作成で
きます。

前提条件

targetcli をインストールして、実行している。詳細は、targetcli のインストール を参照してく
ださい。

ターゲットポータルグループ (TPG) に関連付けられた iSCSI ターゲット。詳細は、iSCSI ター
ゲットの作成 を参照してください。

作成したストレージオブジェクト。詳細は、iSCSI バックストア を参照してください。

手順

Red Hat Enterprise Linux 8 ストレージデバイスの管理

74

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-a-read-only-iscsi-lun_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-an-iscsi-acl_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#installing-targetcli_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-an-iscsi-target_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#iscsi-backstore_configuring-an-iscsi-target

手順

1. 読み取り専用パーミッションを設定します。

/> set global auto_add_mapped_luns=false

Parameter auto_add_mapped_luns is now 'false'.

これにより、LUN が既存の ACL へ自動的にマッピングされないようになり、LUN を手動で
マッピングできるようになります。

2. initiator_iqn_name ディレクトリーに移動します。

/> iscsi/target_iqn_name/tpg1/acls/initiator_iqn_name/

3. LUN を作成します。

/iscsi/target_iqn_name/tpg1/acls/initiator_iqn_name> create
mapped_lun=next_sequential_LUN_number tpg_lun_or_backstore=backstore
write_protect=1

たとえば、以下のようになります。

/iscsi/target_iqn_name/tpg1/acls/2006-04.com.example:888> create mapped_lun=1
tpg_lun_or_backstore=/backstores/block/block2 write_protect=1

Created LUN 1.
Created Mapped LUN 1.

4. 作成した LUN を確認します。

/iscsi/target_iqn_name/tpg1/acls/2006-04.com.example:888> ls
 o- 2006-04.com.example:888 .. [Mapped LUNs: 2]
 | o- mapped_lun0 [lun0 block/disk1 (rw)]
 | o- mapped_lun1 [lun1 block/disk2 (ro)]

(mapped_lun0 の (rw) とは異なり) mapped_lun1 行の最後に (ro) が表示されますが、これは、
読み取り専用であることを表しています。

5. ACL を設定します。詳細は、iSCSI ACL の作成 を参照してください。

関連情報

システム上の targetcli(8) man ページ

8.11. ISCSI ACL の作成

targetcli サービスは、アクセスコントロールリスト (ACL) を使用してアクセスルールを定義し、各イ
ニシエーターに論理ユニット番号 (LUN) へのアクセスを許可します。

ターゲットとイニシエーターにはどちらも一意の識別名があります。ACL を設定するには、イニシエー
ターの一意の名前を知っている必要があります。iscsi-initiator-utils パッケージによって提供される
/etc/iscsi/initiatorname.iscsi ファイルには、iSCSI イニシエーター名が含まれています。

前提条件

第8章 ISCSI ターゲットの設定

75

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-an-iscsi-acl_configuring-an-iscsi-target

前提条件

targetcli サービスが インストール され、実行されている。

ターゲットポータルグループ (TPG) に関連付けられた iSCSI ターゲット。

手順

1. オプション: ACL への LUN の自動マッピングを無効にするには、読み取り専用の iSCSI LUN の
作成 を参照してください。

2. acls ディレクトリーへ移動します。

/> iscsi/target_iqn_name/tpg_name/acls/

3. ACL を作成するには、以下のいずれかのオプションを使用します。

イニシエーターの /etc/iscsi/initiatorname.iscsi ファイルの initiator_iqn_name を使用し
ます。

iscsi/target_iqn_name/tpg_name/acls> create initiator_iqn_name

Created Node ACL for initiator_iqn_name
Created mapped LUN 2.
Created mapped LUN 1.
Created mapped LUN 0.

Custom_name を使用し、それに一致するようにイニシエーターを更新します。

iscsi/target_iqn_name/tpg_name/acls> create custom_name

Created Node ACL for custom_name
Created mapped LUN 2.
Created mapped LUN 1.
Created mapped LUN 0.

イニシエーター名の更新については、iSCSI イニシエーターの作成 を参照してください。

検証

作成した ACL を確認します。

iscsi/target_iqn_name/tpg_name/acls> ls

o- acls ...[1 ACL]
 o- target_iqn_name[3 Mapped LUNs, auth]
 o- mapped_lun0[lun0 ramdisk/ramdisk1 (rw)]
 o- mapped_lun1[lun1 block/block1 (rw)]
 o- mapped_lun2[lun2 fileio/file1 (rw)]

関連情報

システム上の targetcli(8) man ページ

Red Hat Enterprise Linux 8 ストレージデバイスの管理

76

8.12. ターゲットのチャレンジハンドシェイク認証プロトコルの設定

Challenge-Handshake Authentication Protocol (CHAP) を使用すると、パスワードでターゲットを保
護できます。イニシエーターは、このパスワードでターゲットに接続できることを認識している必要が
あります。

前提条件

iSCSI ACL を作成している。詳細は、iSCSI ACL の作成 を参照してください。

手順

1. 属性認証を設定します。

/iscsi/iqn.20...mple:444/tpg1> set attribute authentication=1

Parameter authentication is now '1'.

2. userid と password を設定します。

/tpg1> set auth userid=redhat
Parameter userid is now 'redhat'.

/iscsi/iqn.20...689dcbb3/tpg1> set auth password=redhat_passwd
Parameter password is now 'redhat_passwd'.

3. acls ディレクトリーへ移動します。

/> iscsi/target_iqn_name/tpg1/acls/initiator_iqn_name/

4. 属性認証を設定します。

/iscsi/iqn.20...:605fcc6a48be> set attribute authentication=1
Parameter authentication is now '1'.

5. userid と password を設定します。

/iscsi/iqn.20...:605fcc6a48be> set auth userid=redhat
Parameter userid is now 'redhat'.

/iscsi/iqn.20...:605fcc6a48be> set auth password=redhat_passwd
Parameter password is now 'redhat_passwd'.

関連情報

システム上の targetcli(8) man ページ

8.13. TARGETCLI ツールで ISCSI オブジェクトの削除

targetcli ツールを使用して iSCSI オブジェクトを削除できます。

手順

第8章 ISCSI ターゲットの設定

77

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-an-iscsi-acl_configuring-an-iscsi-target

1. ターゲットからログオフします。

iscsiadm -m node -T iqn.2006-04.com.example:444 -u

ターゲットへのログイン方法は、iSCSI イニシエーターの作成 を参照してください。

2. ACL、LUN、およびポータルのすべてを含め、ターゲット全体を削除します。

/> iscsi/ delete iqn.2006-04.com.example:444

iqn.2006-04.com.example:444 を target_iqn_name に置き換えます。

iSCSI バックストアを削除するには、次のコマンドを実行します。

/> backstores/backstore-type/ delete block_backend

backstore-type を fileio、block、pscsi、または ramdisk に置き換えます。

block_backend を、削除する バックストア名 に置き換えます。

ACL などの iSCSI ターゲットの一部を削除するには、次のコマンドを実行します。

/> /iscsi/iqn-name/tpg/acls/ delete iqn.2006-04.com.example:444

検証

変更を表示します。

/> iscsi/ ls

関連情報

システム上の targetcli(8) man ページ

Red Hat Enterprise Linux 8 ストレージデバイスの管理

78

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-initiator_managing-storage-devices#creating-an-iscsi-initiator_configuring-an-iscsi-initiator

第9章 ISCSI イニシエーターの設定
iSCSI イニシエーターは iSCSI ターゲットに接続するセッションを形成します。デフォルトでは、iSCSI
サービスは起動に時間がかかり、iscsiadm コマンドの実行後にサービスが起動します。root が iSCSI
デバイスにない場合や、node.startup = automatic でマークされたノードがない場合は、iscsiadm コ
マンドが実行するまで iSCSI サービスが起動しなくなります。これには、カーネルモジュール iscsid ま
たは iscsi の起動が必要になります。

iscsid サービスを強制的に実行し、iSCSI カーネルモジュールをロードするには、root として
systemctl start iscsid コマンドを実行します。

9.1. ISCSI イニシエーターの作成

サーバー上のストレージデバイスにアクセスするために、iSCSI ターゲットに接続するための iSCSI イ
ニシエーターを作成します。

前提条件

iSCSI ターゲットのホスト名と IP アドレスがあります。

外部ソフトウェアが作成したストレージターゲットに接続している場合は、ストレージ管
理者からターゲットのホスト名と IP アドレスを取得します。

iSCSI ターゲットを作成する場合は、iSCSI ターゲットの作成 を参照してください。

手順

1. クライアントマシンに iscsi-initiator-utils をインストールします。

yum install iscsi-initiator-utils

2. iscsid サービスを再起動します。

systemctl start iscsid

3. イニシエーター名を確認します。

cat /etc/iscsi/initiatorname.iscsi

InitiatorName=iqn.2006-04.com.example:888

4. iSCSI ACL の作成 で ACL にカスタム名を指定した場合は、ACL と一致するようにイニシエー
ター名を更新します。

a. /etc/iscsi/initiatorname.iscsi ファイルを開き、イニシエーター名を変更します。

vi /etc/iscsi/initiatorname.iscsi

InitiatorName=custom-name

b. iscsid サービスを再起動します。

systemctl restart iscsid

第9章 ISCSI イニシエーターの設定

79

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-an-iscsi-target_configuring-an-iscsi-target
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-an-iscsi-acl_configuring-an-iscsi-target

5. ターゲットを検出し、表示されたターゲット IQN でターゲットにログインします。

iscsiadm -m discovery -t st -p 10.64.24.179
 10.64.24.179:3260,1 iqn.2006-04.com.example:444

iscsiadm -m node -T iqn.2006-04.com.example:444 -l
 Logging in to [iface: default, target: iqn.2006-04.com.example:444, portal:
10.64.24.179,3260] (multiple)
 Login to [iface: default, target: iqn.2006-04.com.example:444, portal: 10.64.24.179,3260]
successful.

10.64.24.179 を、target-ip-address に置き換えます。

この手順では、iSCSI ACL の作成 で説明されているように、それぞれのイニシエーター名が
ACL に追加されている場合は、同じターゲットに接続されている任意の数のイニシエーターに
対してこの手順を使用できます。

6. iSCSI ディスク名を確認して、この iSCSI ディスクにファイルシステムを作成します。

grep "Attached SCSI" /var/log/messages

mkfs.ext4 /dev/disk_name

disk_name を、/var/log/messages ファイルに記載されている iSCSI ディスク名に置き換えま
す。

7. ファイルシステムをマウントします。

mkdir /mount/point

mount /dev/disk_name /mount/point

/mount/point を、パーティションのマウントポイントに置き換えます。

8. システムの起動時にファイルシステムを自動的にマウントするように /etc/fstab を編集しま
す。

vi /etc/fstab

/dev/disk_name /mount/point ext4 _netdev 0 0

disk_name を iSCSI ディスク名に置き換え、/mount/point を、パーティションのマウントポ
イントに置き換えます。

関連情報

システム上の targetcli(8) および iscsiadm(8) man ページ

9.2. イニシエーター用のチャレンジハンドシェイク認証プロトコルの設定

Challenge-Handshake Authentication Protocol (CHAP) を使用すると、パスワードでターゲットを保
護できます。イニシエーターは、このパスワードでターゲットに接続できることを認識している必要が
あります。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

80

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#creating-an-iscsi-acl_configuring-an-iscsi-target

前提条件

iSCSI イニシエーターを作成しました。詳細は、iSCSI イニシエーターの作成 を参照してくだ
さい。

ターゲットの CHAP を設定します。詳細は、ターゲットのチャレンジハンドシェイク認証プロ
トコルの設定 を参照してください。

手順

1. iscsid.conf ファイルで CHAP 認証を有効にします。

vi /etc/iscsi/iscsid.conf

node.session.auth.authmethod = CHAP

デフォルトでは、node.session.auth.authmethod は None に設定されています。

2. ターゲットの username と password を iscsid.conf ファイルに追加します。

node.session.auth.username = redhat
node.session.auth.password = redhat_passwd

3. iscsid サービスを再起動します。

systemctl restart iscsid

関連情報

システム上の iscsiadm(8) man ページ

9.3. ISCSIADM ユーティリティーを使用して ISCSI セッションを監視する

iscsiadm ユーティリティーを使用して iscsi セッションを監視できます。

デフォルトでは、iSCSI サービスは起動に時間がかかり、iscsiadm コマンドの実行後にサービスが起動
します。root が iSCSI デバイスにない場合や、node.startup = automatic でマークされたノードがない
場合は、iscsiadm コマンドが実行するまで iSCSI サービスが起動しなくなります。これには、カーネ
ルモジュール iscsid または iscsi の起動が必要になります。

iscsid サービスを強制的に実行し、iSCSI カーネルモジュールをロードするには、root として
systemctl start iscsid コマンドを使用します。

手順

1. クライアントマシンに iscsi-initiator-utils をインストールします。

yum install iscsi-initiator-utils

2. 実行中のセッションに関する情報を検索します。

iscsiadm -m session -P 3

このコマンドは、セッションまたはデバイスの状態、セッション ID (sid)、いくつかのネゴシ

第9章 ISCSI イニシエーターの設定

81

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-initiator_managing-storage-devices#creating-an-iscsi-initiator_configuring-an-iscsi-initiator
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/configuring-an-iscsi-target_managing-storage-devices#setting-up-the-challenge-handshake-authentication-protocol-for-the-target_configuring-an-iscsi-target

このコマンドは、セッションまたはデバイスの状態、セッション ID (sid)、いくつかのネゴシ
エートしたパラメーター、およびセッション経由でアクセス可能な SCSI デバイスを表示しま
す。

より短い出力 (たとえば sid-to-node 間のマッピングのみの表示) には、次のコマンドを実
行します。

iscsiadm -m session -P 0
 or
iscsiadm -m session

tcp [2] 10.15.84.19:3260,2 iqn.1992-08.com.netapp:sn.33615311
tcp [3] 10.15.85.19:3260,3 iqn.1992-08.com.netapp:sn.33615311

このコマンドは、driver [sid] target_ip:port,target_portal_group_tag
proper_target_name の形式で実行中のセッションのリストを表示します。

関連情報

/usr/share/doc/iscsi-initiator-utils-version/README ファイル

システム上の iscsiadm(8) man ページ

9.4. DM MULTIPATH によるデバイスのタイムアウトのオーバーライド

sysfs オプションの recovery_tmo は、特定の iSCSI デバイスのタイムアウトを制御します。次のオプ
ションは、recovery_tmo 値をグローバルにオーバーライドします。

replacement_timeout 設定オプションは、すべての iSCSI デバイスの recovery_tmo 値をグ
ローバルにオーバーライドします。

DM Multipath の fast_io_fail_tmo オプションは、DM Multipath によって管理されるすべての
iSCSI デバイスの recovery_tmo 値をグローバルにオーバーライドします。
DM Multipath の fast_io_fail_tmo オプションは、ファイバーチャネルデバイスの
fast_io_fail_tmo オプションもオーバーライドします。

DM Multipath の fast_io_fail_tmo オプションは、replacement_timeout よりも優先されま
す。multipathd サービスがリロードされるたびに、recovery_tmo が fast_io_fail_tmo 設定オプショ
ンの値にリセットされます。DM Multipath によって管理されるデバイスの recovery_tmo をオーバー
ライドするには、DM Multipath の fast_io_fail_tmo 設定オプションを使用してください。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

82

第10章 ファイバーチャネルデバイスの使用
Red Hat Enterprise Linux 8 は、以下のネイティブファイバーチャネルドライバーを提供します。

lpfc

qla2xxx

zfcp

10.1. LUN のサイズ変更後にファイバーチャネル論理ユニットを再スキャン
する

外部ストレージの論理ユニット番号 (LUN) のサイズを変更した場合は、echo コマンドを使用してカー
ネルのサイズのビューを更新します。

手順

1. multipath 論理ユニットのパスとなるデバイスを特定します。

multipath -ll

2. マルチパスを使用するシステムで、ファイバーチャネル論理ユニットを再スキャンします。

$ echo 1 > /sys/block/<device_ID>/device/rescan

<device_ID> は、デバイスの ID (例: sda) に置き換えます。

関連情報

システム上の multipath(8) man ページ

10.2. ファイバーチャネルを使用したデバイスのリンク切れ動作の特定

ドライバーがトランスポートの dev_loss_tmo コールバックを実装している場合、トランスポートの問
題が検出されるとリンクを経由したデバイスへのアクセス試行がブロックされます。

手順

リモートポートの状態を判断します。

$ cat /sys/class/fc_remote_ports/rport-host:bus:remote-port/port_state

このコマンドは、次のいずれかの出力を返します。

リモートポートからアクセスしたデバイスとともにリモートポートがブロックされると
Blocked となります。

リモートポートが正常に動作しているときには Online となります
dev_loss_tmo 秒以内に問題が解決されない場合は、rport およびデバイスのブロックが解
除されます。そのデバイスで実行しているすべての I/O は、そのデバイスに送信された新
しい I/O とともにすべて失敗します。

第10章 ファイバーチャネルデバイスの使用

83

リンクロスが dev_loss_tmo を超えると、scsi_device デバイスおよび sd_N_ デバイスが削除されま
す。通常、ファイバーチャネルクラスがデバイスを変更することはありません。たとえば、/dev/sda は
/dev/sda のままです。これは、ターゲットバインディングがファイバーチャネルドライバーによって保
存されており、ターゲットポートが復帰した際に SCSI アドレスが忠実に再作成されるためです。ただ
し、これは保証されません。ストレージボックス内の LUN 設定に追加の変更が加えられていない場合
にのみ、デバイスが復元されます。

関連情報

システム上の multipath.conf(5) man ページ

Recommended tuning at scsi,multipath and at application layer while configuring Oracle RAC
cluster (Red Hat ナレッジベース)

10.3. ファイバーチャネル設定ファイル

以下は、ユーザー空間の API をファイバーチャネルに提供する /sys/class/ ディレクトリーの設定ファ
イルのリストです。

項目は以下の変数を使用します。

H

ホスト番号

B

バス番号

T

ターゲット

L

論理ユニット (LUN)

-R

リモートポート番号

重要

システムでマルチパスソフトウェアを使用している場合は、このセクションで説明され
ている値を変更する前にハードウェアベンダーにお問い合わせください。

/sys/class/fc_transport/targetH:B:T/ のトランスポート設定

port_id

24 ビットのポート ID/アドレス

node_name

64 ビットのノード名

port_name

64 ビットのポート名

/sys/class/fc_remote_ports/rport-H:B-R/ のリモートポート設定

port_id

Red Hat Enterprise Linux 8 ストレージデバイスの管理

84

https://access.redhat.com/solutions/3182081

node_name

port_name

dev_loss_tmo
scsi デバイスがシステムから削除されるタイミングを制御します。dev_loss_tmo がトリガー
されると、scsi デバイスが削除されます。multipath.conf ファイルでは、dev_loss_tmo を
infinity に設定できます。

Red Hat Enterprise Linux 8 では、fast_io_fail_tmo オプションを設定しない
と、dev_loss_tmo の上限が 600 秒になります。デフォルトでは、multipathd サービスが実行
している場合は、Red Hat Enterprise Linux 8 の fast_io_fail_tmo が 5 秒に設定されています。
それ以外の場合は off に設定されています。

fast_io_fail_tmo
リンクに "bad" のマークが付くまでの待機秒数を指定します。リンクに bad のマークが付けら
れると、対応するパス上の既存の実行中の I/O または新しい I/O が失敗します。

I/O がブロックされたキューに存在する場合は、dev_loss_tmo の期限が切れ、キューのブ
ロックが解除されるまでエラーを起こしません。

fast_io_fail_tmo を off 以外の値に設定すると、dev_loss_tmo は取得されませ
ん。fast_io_fail_tmo を off に設定すると、システムからデバイスが削除されるまで I/O は失
敗します。fast_io_fail_tmo に数値を設定すると、fast_io_fail_tmo タイムアウトが発生する
とすぐに I/O が失敗します。

/sys/class/fc_host/hostH/ のホスト設定

port_id

node_name

port_name

issue_lip
リモートポートを再検出するようにドライバーに指示します。

第10章 ファイバーチャネルデバイスの使用

85

第11章 FIBRE CHANNEL OVER ETHERNET の設定
IEEE T11 FC-BB-5 標準に基づく Fibre Channel over Ethernet (FCoE) は、イーサネットネットワーク上
でファイバーチャネルフレームを送信するためのプロトコルです。通常、データセンターには専用の
LAN および Storage Area Network (SAN) があり、各個別設定に分けられます。FCoE は、これらの
ネットワークを単一のネットワーク設定とコンバージドネットワーク設定に統合します。FCoE の利点
(ハードウェアおよび電力の低さなど) の利点は以下のとおりです。

11.1. RHEL でハードウェア FCOE HBA の使用

RHEL では、ハードウェアの Fibre Channel over Ethernet (FCoE) Host Bus Adapter (HBA) を使用でき
ます。これは、以下のドライバーでサポートされています。

qedf

bnx2fc

fnic

このような HBA を使用する場合は、HBA の設定で FCoE を設定します。詳細は、アダプターのドキュ
メントを参照してください。

HBA を設定すると、Storage Area Network (SAN) からエクスポートした論理ユニット番号 (LUN)
が、/dev/sd* デバイスとして RHEL で自動的に利用可能になります。ローカルストレージデバイスと同
様に、これらのデバイスを使用できます。

11.2. FCOE デバイスの設定

ソフトウェア FCoE デバイスを使用すると、FCoE オフロードを部分的にサポートするイーサネットア
ダプターを使用し、FCoE を介して論理ユニット番号 (LUN) にアクセスできます。

重要

RHEL は、fcoe.ko カーネルモジュールを必要とするソフトウェア FCoE デバイスに対応
していません。

この手順を完了すると、ストレージエリアネットワーク (SAN) からのエクスポート LUN は、/dev/sd*
デバイスとして RHEL で利用可能になります。このようなデバイスは、ローカルストレージデバイスと
同様に使用できます。

前提条件

VLAN に対応するようにネットワークスイッチを設定している。

SAN は VLAN を使用して、通常のイーサネットトラフィックからストレージトラフィックを分
離します。

サーバーの HBA が BIOS で設定されている。

HBA がネットワークに接続されており、リンクが起動している。詳細は、HBA のドキュメン
トを参照してください。

手順

Red Hat Enterprise Linux 8 ストレージデバイスの管理

86

1. fcoe-utils パッケージをインストールします。

yum install fcoe-utils

2. /etc/fcoe/cfg-ethx テンプレートファイルを /etc/fcoe/cfg-interface_name にコピーします。た
とえば、FCoE を使用するように enp1s0 インターフェイスを設定する場合は、以下のコマン
ドを実行します。

cp /etc/fcoe/cfg-ethx /etc/fcoe/cfg-enp1s0

3. fcoe サービスを有効にして起動します。

systemctl enable --now fcoe

4. インターフェイス enp1s0 で FCoE VLAN を検出し、検出された VLAN のネットワークデバイ
スを作成して、イニシエーターを起動します。

fipvlan -s -c enp1s0
Created VLAN device enp1s0.200
Starting FCoE on interface enp1s0.200
Fibre Channel Forwarders Discovered
interface | VLAN | FCF MAC
--
enp1s0 | 200 | 00:53:00:a7:e7:1b

5. 必要に応じて、検出されたターゲット、LUN、および LUN に関連付けられたデバイスの詳細を
表示します。

fcoeadm -t
Interface: enp1s0.200
Roles: FCP Target
Node Name: 0x500a0980824acd15
Port Name: 0x500a0982824acd15
Target ID: 0
MaxFrameSize: 2048 bytes
OS Device Name: rport-11:0-1
FC-ID (Port ID): 0xba00a0
State: Online

LUN ID Device Name Capacity Block Size Description
------ ----------- ---------- ---------- ---------------------
 0 sdb 28.38 GiB 512 NETAPP LUN (rev 820a)
 ...

この例では、SAN からの LUN 0 が /dev/sdb デバイスとしてホストに割り当てられていること
を示しています。

検証

アクティブなすべての FCoE インターフェイスの情報を表示します。

fcoeadm -i
Description: BCM57840 NetXtreme II 10 Gigabit Ethernet

第11章 FIBRE CHANNEL OVER ETHERNET の設定

87

Revision: 11
Manufacturer: Broadcom Inc. and subsidiaries
Serial Number: 000AG703A9B7

Driver: bnx2x Unknown
Number of Ports: 1

 Symbolic Name: bnx2fc (QLogic BCM57840) v2.12.13 over enp1s0.200
 OS Device Name: host11
 Node Name: 0x2000000af70ae935
 Port Name: 0x2001000af70ae935
 Fabric Name: 0x20c8002a6aa7e701
 Speed: 10 Gbit
 Supported Speed: 1 Gbit, 10 Gbit
 MaxFrameSize: 2048 bytes
 FC-ID (Port ID): 0xba02c0
 State: Online

関連情報

システム上の fcoeadm(8) man ページ

/usr/share/doc/fcoe-utils/README

ファイバーチャネルデバイスの使用

Red Hat Enterprise Linux 8 ストレージデバイスの管理

88

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/using-fibre-channel-devices_managing-storage-devices

第12章 EH_DEADLINE を使用したストレージエラーからの回復に
おける最大時間の設定

障害が発生した SCSI デバイスを復旧するのに許容できる最大時間を設定できます。この設定は、スト
レージハードウェアが不具合により応答しなくなっても、I/O 応答時間を保証します。

12.1. EH_DEADLINE パラメーター

SCSI エラー処理 (EH) メカニズムは、障害が発生した SCSI デバイスでエラーからの復旧の実行を試行
します。SCSI ホストオブジェクト eh_deadline パラメーターでは、復旧時間の最大量を設定できま
す。設定した時間が過ぎると、SCSI EH は、ホストバスアダプター (HBA) 全体を停止してリセットし
ます。

eh_deadline を使用すると、以下のいずれかの時間を短縮できます。

エラーのあるパスのシャットオフ

パスの切り替え

RAID スライスの無効化

警告

eh_deadline が過ぎると、SCSI EH は HBA をリセットします。これは、エラーが
発生しているものだけでなく、HBA 上のすべてのターゲットパスに影響します。
一部の冗長パスがその他の理由により利用できない場合は、I/O エラーが発生する
可能性があります。すべてのターゲットでマルチパスが設定されている場合にの
み、eh_deadline を有効にします。また、マルチパスデバイスが完全に冗長でない
場合は、no_path_retry がパスの回復を可能にするのに十分な大きさに設定されて
いることを確認する必要があります。

eh_deadline パラメーターの値は秒単位で指定されます。デフォルト設定は off で、時間制限が無効に
なり、すべてのエラー復旧が行われるようになります。

eh_deadline が便利なシナリオ
多くの場合、eh_deadline を有効にする必要はありません。eh_deadline を使用すると、特定のシナリ
オで役立つ場合があります。たとえば、ファイバーチャネル (FC) スイッチとターゲットポート間でリ
ンクが失われ、HBA が Registered State Change Notifications (RSCN) を受信しない場合などです。こ
のような場合、I/O 要求やエラーからの復旧コマンドは、エラーに遭遇することなく、すべてタイムア
ウトになります。この環境で eh_deadline を設定すると、リカバリー時間に上限が課せられます。こ
れにより、DM Multipath により、利用できる別のパスで不具合の発生した I/O の再試行が可能になり
ます。

以下の条件下では、eh_deadline パラメーターは、これ以上のメリットをもたらしません。その理由
は、DM Multipath の再試行を可能にする I/O とエラー復旧コマンドがすぐに失敗するためです。

RSCN が有効になっている場合

HBA が利用できなくなっているリンクを登録しない場合



第12章 EH_DEADLINE を使用したストレージエラーからの回復における最大時間の設定

89

12.2. EH_DEADLINE パラメーターの設定

eh_deadline パラメーターの値を設定することで、SCSI 最大復旧時間を制限できます。

手順

eh_deadline は、以下のいずれかの方法で設定できます。

multpath.conf ファイルの defaults セクション
multpath.conf ファイルの defaults セクションから、eh_deadline パラメーターを必要な
秒数に設定します。

eh_deadline 300

注記

RHEL 8.4 以降、multpath.conf ファイルの defaults セクションを使用して
eh_deadline パラメーターを設定することが推奨されます。

このメソッドで eh_deadline パラメーターをオフにするには、eh_deadline を off に設定
します。

sysfs
/sys/class/scsi_host/host<host-number>/eh_deadline ファイルに秒数を書き込みます。
たとえば、SCSI ホスト 6 の sysfs を介して eh_deadline パラメーターを設定するには、
次のようにします。

echo 300 > /sys/class/scsi_host/host6/eh_deadline

このメソッドで eh_deadline パラメーターをオフにするには、echo off を使用します。

カーネルパラメーター
すべての SCSI HBA のデフォルト値は scsi_mod.eh_deadline カーネルパラメーターを使
用して設定します。

echo 300 > /sys/module/scsi_mod/parameters/eh_deadline

このメソッドで eh_deadline パラメーターをオフにするには、echo -1 を使用します。

関連情報

How to set eh_deadline and eh_timeout persistently, using a udev rule (Red Hat ナレッジベー
ス)

Red Hat Enterprise Linux 8 ストレージデバイスの管理

90

https://access.redhat.com/solutions/3209481

第13章 スワップの使用
スワップ領域を使用して、非アクティブなプロセスとデータに一時的なストレージを提供し、物理メモ
リーがいっぱいになった場合に発生するメモリー不足エラーを防ぎます。スワップ領域は物理メモリー
の拡張として機能し、物理メモリーが使い果たされた場合でもシステムがスムーズに動作し続けること
を可能にします。スワップ領域を使用するとシステムのパフォーマンスが低下する可能性があるため、
スワップ領域を利用する前に物理メモリーの使用を最適化するほうが望ましい場合があることに注意し
てください。

13.1. スワップ領域の概要

Linux の スワップ領域 は、物理メモリー (RAM) が不足すると使用されます。システムに多くのメモ
リーリソースが必要で、RAM が不足すると、メモリーの非アクティブなページがスワップ領域に移動
します。スワップ領域は、RAM が少ないマシンで役に立ちますが、RAM の代わりに使用しないように
してください。

スワップ領域はハードドライブにあり、そのアクセス速度は物理メモリーに比べると遅くなります。ス
ワップ領域の設定は、専用のスワップパーティション (推奨)、スワップファイル、またはスワップパー
ティションとスワップファイルの組み合せが考えられます。

過去数年、推奨されるスワップ領域のサイズは、システムの RAM サイズに比例して増加していまし
た。しかし、最近のシステムには通常、数百ギガバイトの RAM が含まれます。結果として、推奨され
るスワップ領域は、システムのメモリーではなく、システムメモリーのワークロードの機能とみなされ
ます。

13.2. システムの推奨スワップ領域

推奨されるスワップパーティションのサイズは、システムの RAM の容量と、システムをハイバネート
するのに十分なメモリーが必要かどうかによって異なります。推奨されるスワップパーティションのサ
イズは、インストール時に自動的に設定されます。ハイバネートを可能にするには、カスタムのパー
ティション分割段階でスワップ領域を編集する必要があります。

以下の推奨は、1 GB 以下など、メモリーが少ないシステムで特に重要です。このようなシステムで十分
なスワップ領域を割り当てられないと、システムが不安定になったり、インストールしたシステムが起
動できなくなったりする可能性があります。

表13.1 推奨されるスワップ領域

システム内の RAM の容量 推奨されるスワップ領域 ハイバネートを許可する場合に推
奨されるスワップ領域

⩽ 2 GB RAM 容量の 2 倍 RAM 容量の 3 倍

> 2 GB - 8 GB RAM 容量と同じ RAM 容量の 2 倍

> 8 GB - 64 GB 最低 4GB RAM 容量の 1.5 倍

> 64 GB 最低 4GB ハイバネートは推奨されない

システム RAM が 2 GB、8 GB、または 64 GB などの境界値の場合は、必要に応じてスワップサイズを
選択してください。システムリソースに余裕がある場合は、スワップ領域を増やすとパフォーマンスが
向上することがあります。

第13章 スワップの使用

91

高速のドライブ、コントローラー、およびインターフェイスを搭載したシステムでは、複数のストレー
ジデバイスにスワップ領域を分散すると、スワップ領域のパフォーマンスも向上します。

重要

スワップ領域として割り当てたファイルシステムおよび LVM2 ボリュームは、変更時に
使用しない でください。システムプロセスまたはカーネルがスワップ領域を使用してい
ると、スワップの修正に失敗します。free コマンドおよび cat /proc/swaps コマンドを
使用して、スワップの使用量と、使用中の場所を確認します。

スワップ領域のサイズを変更するには、システムから一時的にスワップ領域を削除する
必要があります。これは、実行中のアプリケーションが追加のスワップ領域に依存し、
メモリーが不足する可能性がある場合に問題になる可能性があります。できれば、レス
キューモードからスワップのサイズ変更を実行してください。デバッグ起動オプション
を参照してください。ファイルシステムをマウントするように指示されたら、スキップ
を選択します。

13.3. スワップ用の LVM2 論理ボリュームの作成

スワップ用の LVM2 論理ボリュームを作成できます。ここでは、追加するスワップボリュームを
/dev/VolGroup00/LogVol02 とします。

前提条件

十分なディスク領域がある。

手順

1. サイズが 2 GB の LVM2 論理ボリュームを作成します。

lvcreate VolGroup00 -n LogVol02 -L 2G

2. 新しいスワップ領域をフォーマットします。

mkswap /dev/VolGroup00/LogVol02

3. 次のエントリーを /etc/fstab ファイルに追加します。

/dev/VolGroup00/LogVol02 none swap defaults 0 0

4. システムが新しい設定を登録するように、マウントユニットを再生成します。

systemctl daemon-reload

5. 論理ボリュームでスワップをアクティブにします。

swapon -v /dev/VolGroup00/LogVol02

検証

スワップ論理ボリュームが正常に作成され、アクティブになったかをテストするには、次のコ
マンドを使用して、アクティブなスワップ領域を調べます。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

92

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/interactively_installing_rhel_over_the_network/custom-boot-options_rhel-installer#debug-boot-options_custom-boot-options

cat /proc/swaps
 total used free shared buff/cache available
Mem: 30Gi 1.2Gi 28Gi 12Mi 994Mi 28Gi
Swap: 22Gi 0B 22Gi

free -h
 total used free shared buff/cache available
Mem: 30Gi 1.2Gi 28Gi 12Mi 995Mi 28Gi
Swap: 17Gi 0B 17Gi

13.4. スワップファイルの作成

システムのメモリーが不足しているときに、スワップファイルを作成して、ソリッドステートドライブ
またはハードディスク上に一時的なストレージ領域を作成できます。

前提条件

十分なディスク領域がある。

手順

1. 新しいスワップファイルのサイズをメガバイト単位で指定してから、そのサイズに 1024 をかけ
てブロック数を指定します。たとえばスワップファイルのサイズが 64 MB の場合は、ブロック
数が 65536 になります。

2. 空のファイルの作成:

dd if=/dev/zero of=/swapfile bs=1024 count=65536

65536 を、必要なブロックサイズと同じ値に置き換えます。

3. 次のコマンドでスワップファイルをセットアップします。

mkswap /swapfile

4. スワップファイルのセキュリティーを変更して、全ユーザーで読み込みができないようにしま
す。

chmod 0600 /swapfile

5. システムの起動時にスワップファイルを有効にするには、次のエントリーを使用して /etc/fstab
ファイルを編集します。

/swapfile none swap defaults 0 0

次にシステムが起動すると新しいスワップファイルが有効になります。

6. システムが新しい /etc/fstab 設定を登録するように、マウントユニットを再生成します。

systemctl daemon-reload

7. すぐにスワップファイルをアクティブにします。

第13章 スワップの使用

93

swapon /swapfile

検証

新しいスワップファイルが正常に作成され、有効になったかをテストするには、次のコマンド
を使用して、アクティブなスワップ領域を調べます。

$ cat /proc/swaps

$ free -h

13.5. STORAGE RHEL システムロールを使用してスワップボリュームを作成す
る

このセクションでは、Ansible Playbook の例を示します。この Playbook は、storage ロールを適用
し、デフォルトのパラメーターを使用して、ブロックデバイスにスワップボリュームが存在しない場合
は作成し、スワップボリュームがすでに存在する場合はそれを変更します。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

現在、ボリューム名 (この例では swap_fs) は任意です。storage ロールは、disks: 属性にリス
ト表示されているディスクデバイスでボリュームを特定します。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない

- name: Create a disk device with swap
 hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.storage
 vars:
 storage_volumes:
 - name: swap_fs
 type: disk
 disks:
 - /dev/sdb
 size: 15 GiB
 fs_type: swap

Red Hat Enterprise Linux 8 ストレージデバイスの管理

94

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

関連情報

/usr/share/ansible/roles/rhel-system-roles.storage/README.md ファイル

/usr/share/doc/rhel-system-roles/storage/ ディレクトリー

13.6. LVM2 論理ボリュームでのスワップ領域の拡張

既存の LVM2 論理ボリューム上のスワップ領域を拡張できます。ここでは、2 GB 拡張するボリューム
を /dev/VolGroup00/LogVol01 とします。

前提条件

十分なディスク領域がある。

手順

1. 関連付けられている論理ボリュームのスワップ機能を無効にします。

swapoff -v /dev/VolGroup00/LogVol01

2. LVM2 論理ボリュームのサイズを 2 GB 増やします。

lvresize /dev/VolGroup00/LogVol01 -L +2G

3. 新しいスワップ領域をフォーマットします。

mkswap /dev/VolGroup00/LogVol01

4. 拡張論理ボリュームを有効にします。

swapon -v /dev/VolGroup00/LogVol01

検証

スワップの論理ボリュームの拡張に成功したかどうかをテストするには、アクティブなスワッ
プ容量を調べます。

cat /proc/swaps
Filename Type Size Used Priority
/dev/dm-1 partition 16322556 0 -2
/dev/dm-4 partition 7340028 0 -3

free -h
 total used free shared buff/cache available

第13章 スワップの使用

95

Mem: 30Gi 1.2Gi 28Gi 12Mi 994Mi 28Gi
Swap: 22Gi 0B 22Gi

13.7. LVM2 論理ボリュームでのスワップ領域の縮小

LVM2 論理ボリュームのスワップ領域を縮小できます。ここでは、縮小するボリュームを
/dev/VolGroup00/LogVol01 とします。

手順

1. 関連付けられている論理ボリュームのスワップ機能を無効にします。

swapoff -v /dev/VolGroup00/LogVol01

2. スワップ署名を削除します。

wipefs -a /dev/VolGroup00/LogVol01

3. LVM2 論理ボリュームのサイズを変更して 512 MB 削減します。

lvreduce /dev/VolGroup00/LogVol01 -L -512M

4. 新しいスワップ領域をフォーマットします。

mkswap /dev/VolGroup00/LogVol01

5. 論理ボリュームでスワップをアクティブにします。

swapon -v /dev/VolGroup00/LogVol01

検証

スワップ論理ボリュームが正常に削減されたかをテストするには、次のコマンドを使用して、
アクティブなスワップ領域を調べます。

$ cat /proc/swaps

$ free -h

13.8. スワップ用の LVM2 論理ボリュームの削除

スワップ用の LVM2 論理ボリュームを削除できます。削除するスワップボリュームを
/dev/VolGroup00/LogVol02 とします。

手順

1. 関連付けられている論理ボリュームのスワップ機能を無効にします。

swapoff -v /dev/VolGroup00/LogVol02

Red Hat Enterprise Linux 8 ストレージデバイスの管理

96

2. LVM2 論理ボリュームを削除します。

lvremove /dev/VolGroup00/LogVol02

3. 次の関連エントリーを /etc/fstab ファイルから削除します。

/dev/VolGroup00/LogVol02 none swap defaults 0 0

4. マウントユニットを再生成して新しい設定を登録します。

systemctl daemon-reload

検証

論理ボリュームが正常に削除されたかどうかをテストし、次のコマンドを使用してアクティブ
なスワップ領域を調べます。

$ cat /proc/swaps

$ free -h

13.9. スワップファイルの削除

スワップファイルを削除できます。

手順

1. /swapfile スワップファイルを無効にします。

swapoff -v /swapfile

2. /etc/fstab ファイルからエントリーを削除します。

3. システムが新しい設定を登録するように、マウントユニットを再生成します。

systemctl daemon-reload

4. 実際のファイルを削除します。

rm /swapfile

第13章 スワップの使用

97

第14章 NVME OVER FABRIC デバイスの概要
Non-volatile Memory Express™ (NVMe™) は、ホストソフトウェアユーティリティーがソリッドステー
トドライブと通信できるようにするインターフェイスです。

次の種類のファブリックトランスポートを使用して、NVMe over fabric デバイスを設定します。

NVMe over Remote Direct Memory Access (NVMe/RDMA)

NVMe™/RDMA の設定方法については、NVMe/RDMA を使用した NVMe over Fabric の設定 を参照
してください。

NVMe over Fibre Channel (NVMe/FC)

NVMe™/FC の設定方法については、NVMe/FC を使用した NVMe over Fabric の設定 を参照してく
ださい。

ファブリック上で NVMe を使用する場合、ソリッドステートドライブはシステムに対してローカルで
ある必要はありません。NVMe over Fabrics デバイスを介してリモートで設定できます。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

98

第15章 NVME/RDMA を使用した NVME OVER FABRICS の設定
Non-volatile Memory Express™ (NVMe™) over RDMA (NVMe™/RDMA) セットアップでは、NVMe コン
トローラーと NVMe イニシエーターを設定します。

15.1. CONFIGFS を使用した NVME/RDMA コントローラーのセットアップ

configfs を使用して、Non-volatile Memory Express™ (NVMe™) over RDMA (NVMe™/RDMA) コント
ローラーを設定できます。

前提条件

nvmet サブシステムに割り当てるブロックデバイスがあることを確認する。

手順

1. nvmet-rdma サブシステムを作成します。

modprobe nvmet-rdma

mkdir /sys/kernel/config/nvmet/subsystems/testnqn

cd /sys/kernel/config/nvmet/subsystems/testnqn

testnqn を、サブシステム名に置き換えます。

2. すべてのホストがこのコントローラーに接続できるようにします。

echo 1 > attr_allow_any_host

3. namespace を設定します。

mkdir namespaces/10

cd namespaces/10

10 を、namespace の数値に置き換えます。

4. NVMe デバイスへのパスを設定します。

echo -n /dev/nvme0n1 > device_path

5. namespace を有効にします。

echo 1 > enable

6. NVMe ポートでディレクトリーを作成します。

mkdir /sys/kernel/config/nvmet/ports/1

cd /sys/kernel/config/nvmet/ports/1

第15章 NVME/RDMA を使用した NVME OVER FABRICS の設定

99

7. mlx5_ib0 の IP アドレスを表示します。

ip addr show mlx5_ib0

8: mlx5_ib0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 4092 qdisc mq state UP
group default qlen 256
 link/infiniband 00:00:06:2f:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:e7:0f:f6 brd
00:ff:ff:ff:ff:12:40:1b:ff:ff:00:00:00:00:00:00:ff:ff:ff:ff
 inet 172.31.0.202/24 brd 172.31.0.255 scope global noprefixroute mlx5_ib0
 valid_lft forever preferred_lft forever
 inet6 fe80::e61d:2d03:e7:ff6/64 scope link noprefixroute
 valid_lft forever preferred_lft forever

8. コントローラーのトランスポートアドレスを設定します。

echo -n 172.31.0.202 > addr_traddr

9. RDMA をトランスポートタイプとして設定します。

echo rdma > addr_trtype

echo 4420 > addr_trsvcid

10. ポートのアドレスファミリーを設定します。

echo ipv4 > addr_adrfam

11. ソフトリンクを作成します。

ln -s /sys/kernel/config/nvmet/subsystems/testnqn
/sys/kernel/config/nvmet/ports/1/subsystems/testnqn

検証

NVMe コントローラーが指定されたポートでリッスンしていて、接続要求の準備ができている
ことを確認します。

dmesg | grep "enabling port"
[1091.413648] nvmet_rdma: enabling port 1 (172.31.0.202:4420)

関連情報

システム上の nvme(1) man ページ

15.2. NVMETCLI を使用した NVME/RDMA コントローラーのセットアップ

nvmetcli ユーティリティーを使用して、Non-volatile Memory Express™ (NVMe™) over RDMA
(NVMe™/RDMA) コントローラーを設定できます。nvmetcli ユーティリティーには、コマンドラインと
対話式のシェルオプションが用意されています。

前提条件

Red Hat Enterprise Linux 8 ストレージデバイスの管理

100

nvmet サブシステムに割り当てるブロックデバイスがあることを確認する。

root で、以下の nvmetcli 操作を実行する。

手順

1. nvmetcli パッケージをインストールします。

yum install nvmetcli

2. rdma.json ファイルをダウンロードします。

wget
http://git.infradead.org/users/hch/nvmetcli.git/blob_plain/0a6b088db2dc2e5de11e6f23f
1e890e4b54fee64:/rdma.json

3. rdma.json ファイルを編集して、traddr の値を 172.31.0.202 に変更します。

4. NVMe コントローラー設定ファイルをロードして、コントローラーをセットアップします。

nvmetcli restore rdma.json

注記

NVMe コントローラー設定ファイル名を指定しない場合は、nvmetcli が
/etc/nvmet/config.json ファイルを使用します。

検証

NVMe コントローラーが指定されたポートでリッスンしていて、接続要求の準備ができている
ことを確認します。

dmesg | tail -1
[4797.132647] nvmet_rdma: enabling port 2 (172.31.0.202:4420)

オプション: 現在の NVMe コントローラーをクリアします。

nvmetcli clear

関連情報

システム上の nvmetcli および nvme(1) man ページ

15.3. NVME/RDMA ホストの設定

NVMe 管理コマンドラインインターフェイス (nvme-cli) ツールを使用して、Non-volatile Memory
Express™ (NVMe™) over RDMA (NVMe™/RDMA) ホストを設定できます。

手順

1. nvme-cli ツールをインストールします。

第15章 NVME/RDMA を使用した NVME OVER FABRICS の設定

101

yum install nvme-cli

2. nvme-rdma モジュールが読み込まれていない場合は、読み込みます。

modprobe nvme-rdma

3. NVMe コントローラーで使用可能なサブシステムを検出します。

nvme discover -t rdma -a 172.31.0.202 -s 4420

Discovery Log Number of Records 1, Generation counter 2
=====Discovery Log Entry 0======
trtype: rdma
adrfam: ipv4
subtype: nvme subsystem
treq: not specified, sq flow control disable supported
portid: 1
trsvcid: 4420
subnqn: testnqn
traddr: 172.31.0.202
rdma_prtype: not specified
rdma_qptype: connected
rdma_cms: rdma-cm
rdma_pkey: 0x0000

4. 検出されたサブシステムに接続します。

nvme connect -t rdma -n testnqn -a 172.31.0.202 -s 4420

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465.8G 0 disk
├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 464.8G 0 part
 ├─rhel_rdma--virt--03-root 253:0 0 50G 0 lvm /
 ├─rhel_rdma--virt--03-swap 253:1 0 4G 0 lvm [SWAP]
 └─rhel_rdma--virt--03-home 253:2 0 410.8G 0 lvm /home
nvme0n1

cat /sys/class/nvme/nvme0/transport
rdma

testnqn を NVMe サブシステム名に置き換えます。

172.31.0.202 をコントローラーの IP アドレスに置き換えます。

4420 を、ポート番号に置き換えます。

検証

現在接続されている NVMe デバイスのリストを表示します。

nvme list

Red Hat Enterprise Linux 8 ストレージデバイスの管理

102

オプション: コントローラーから切断します。

nvme disconnect -n testnqn
NQN:testnqn disconnected 1 controller(s)

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465.8G 0 disk
├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 464.8G 0 part
 ├─rhel_rdma--virt--03-root 253:0 0 50G 0 lvm /
 ├─rhel_rdma--virt--03-swap 253:1 0 4G 0 lvm [SWAP]
 └─rhel_rdma--virt--03-home 253:2 0 410.8G 0 lvm /home

関連情報

システム上の nvme(1) man ページ

15.4. 次のステップ

NVMe デバイスでのマルチパスの有効化

第15章 NVME/RDMA を使用した NVME OVER FABRICS の設定

103

第16章 NVME/FC を使用した NVME OVER FABRICS の設定
Non-volatile Memory Express™ (NVMe™) over Fibre Channel (NVMe™/FC) トランスポートは、特定の
Broadcom Emulex および Marvell Qlogic ファイバーチャネルアダプターと共に使用する場合、ホスト
モードで完全にサポートされます。

16.1. BROADCOM アダプターの NVME ホストの設定

NVMe 管理コマンドラインインターフェイス (nvme-cli) ユーティリティーを使用して、Broadcom アダ
プターで Non-volatile Memory Express™ (NVMe™) ホストを設定できます。

手順

1. nvme-cli ユーティリティーをインストールします。

yum install nvme-cli

これにより、/etc/nvme/ ディレクトリーに hostnqn ファイルが作成されます。hostnqn ファ
イルは、NVMe ホストを識別します。

2. ローカルポートとリモートポートのワールドワイドノード名 (WWNN) とワールドワイドポート
名 (WWPN) 識別子を見つけます。

cat /sys/class/scsi_host/host*/nvme_info

NVME Host Enabled
XRI Dist lpfc0 Total 6144 IO 5894 ELS 250
NVME LPORT lpfc0 WWPN x10000090fae0b5f5 WWNN x20000090fae0b5f5 DID x010f00
ONLINE
NVME RPORT WWPN x204700a098cbcac6 WWNN x204600a098cbcac6 DID x01050e
TARGET DISCSRVC ONLINE

NVME Statistics
LS: Xmt 000000000e Cmpl 000000000e Abort 00000000
LS XMIT: Err 00000000 CMPL: xb 00000000 Err 00000000
Total FCP Cmpl 00000000000008ea Issue 00000000000008ec OutIO 0000000000000002
 abort 00000000 noxri 00000000 nondlp 00000000 qdepth 00000000 wqerr 00000000 err
00000000
FCP CMPL: xb 00000000 Err 00000000

これらの host-traddr と traddr の値を使用して、Subsystem NVMe Qualified Name (NQN) を
検索します。

nvme discover --transport fc \
 --traddr nn-0x204600a098cbcac6:pn-0x204700a098cbcac6 \
 --host-traddr nn-0x20000090fae0b5f5:pn-0x10000090fae0b5f5

Discovery Log Number of Records 2, Generation counter 49530
=====Discovery Log Entry 0======
trtype: fc
adrfam: fibre-channel
subtype: nvme subsystem
treq: not specified
portid: 0

Red Hat Enterprise Linux 8 ストレージデバイスの管理

104

trsvcid: none
subnqn: nqn.1992-
08.com.netapp:sn.e18bfca87d5e11e98c0800a098cbcac6:subsystem.st14_nvme_ss_1_1
traddr: nn-0x204600a098cbcac6:pn-0x204700a098cbcac6

nn-0x204600a098cbcac6:pn-0x204700a098cbcac6 を、traddr に置き換えます。

nn-0x20000090fae0b5f5:pn-0x10000090fae0b5f5 を、host-traddr に置き換えます。

3. nvme-cli を使用して NVMe コントローラーに接続します。

nvme connect --transport fc \
 --traddr nn-0x204600a098cbcac6:pn-0x204700a098cbcac6 \
 --host-traddr nn-0x20000090fae0b5f5:pn-0x10000090fae0b5f5 \
 -n nqn.1992-
08.com.netapp:sn.e18bfca87d5e11e98c0800a098cbcac6:subsystem.st14_nvme_ss_1_
1 \
 -k 5

注記

接続時間がデフォルトの keep-alive タイムアウト値を超えると keep-alive timer
(5 seconds) expired! と表示される場合は、-k オプションを使用して値を増や
します。たとえば、-k 7 を使用できます。

ここでは、以下のようになります。

nn-0x204600a098cbcac6:pn-0x204700a098cbcac6 を、traddr に置き換えます。

nn-0x20000090fae0b5f5:pn-0x10000090fae0b5f5 を、host-traddr に置き換えます。

nqn.1992-
08.com.netapp:sn.e18bfca87d5e11e98c0800a098cbcac6:subsystem.st14_nvme_ss_1_1
を、subnqn に置き換えます。

5 を keep-alive タイムアウト値 (秒単位) に置き換えます。

検証

現在接続されている NVMe デバイスのリストを表示します。

nvme list
Node SN Model Namespace Usage
Format FW Rev
---------------- -------------------- -- --------- -------------------------
- ---------------- --------
/dev/nvme0n1 80BgLFM7xMJbAAAAAAAC NetApp ONTAP Controller 1
107.37 GB / 107.37 GB 4 KiB + 0 B FFFFFFFF

lsblk |grep nvme
nvme0n1 259:0 0 100G 0 disk

第16章 NVME/FC を使用した NVME OVER FABRICS の設定

105

関連情報

システム上の nvme(1) man ページ

16.2. QLOGIC アダプターの NVME ホストの設定

NVMe 管理コマンドラインインターフェイス (nvme-cli) ユーティリティーを使用して、Qlogic アダプ
ターで Non-volatile Memory Express™ (NVMe™) ホストを設定できます。

手順

1. nvme-cli ユーティリティーをインストールします。

yum install nvme-cli

これにより、/etc/nvme/ ディレクトリーに hostnqn ファイルが作成されます。hostnqn ファ
イルは、NVMe ホストを識別します。

2. qla2xxx を再読み込みします。

modprobe -r qla2xxx
modprobe qla2xxx

3. ローカルポートとリモートポートのワールドワイドノード名 (WWNN) とワールドワイドポート
名 (WWPN) 識別子を見つけます。

dmesg |grep traddr

[6.139862] qla2xxx [0000:04:00.0]-ffff:0: register_localport: host-traddr=nn-
0x20000024ff19bb62:pn-0x21000024ff19bb62 on portID:10700
[6.241762] qla2xxx [0000:04:00.0]-2102:0: qla_nvme_register_remote: traddr=nn-
0x203b00a098cbcac6:pn-0x203d00a098cbcac6 PortID:01050d

これらの host-traddr と traddr の値を使用して、Subsystem NVMe Qualified Name (NQN) を
検索します。

nvme discover --transport fc \
 --traddr nn-0x203b00a098cbcac6:pn-0x203d00a098cbcac6 \
 --host-traddr nn-0x20000024ff19bb62:pn-0x21000024ff19bb62

Discovery Log Number of Records 2, Generation counter 49530
=====Discovery Log Entry 0======
trtype: fc
adrfam: fibre-channel
subtype: nvme subsystem
treq: not specified
portid: 0
trsvcid: none
subnqn: nqn.1992-
08.com.netapp:sn.c9ecc9187b1111e98c0800a098cbcac6:subsystem.vs_nvme_multipath_1_su
bsystem_468
traddr: nn-0x203b00a098cbcac6:pn-0x203d00a098cbcac6

nn-0x203b00a098cbcac6:pn-0x203d00a098cbcac6 を、traddr に置き換えます。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

106

nn-0x20000024ff19bb62:pn-0x21000024ff19bb62 を、host-traddr に置き換えます。

4. nvme-cli ツールを使用して NVMe コントローラーに接続します。

nvme connect --transport fc \
 --traddr nn-0x203b00a098cbcac6:pn-0x203d00a098cbcac6 \
 --host-traddr nn-0x20000024ff19bb62:pn-0x21000024ff19bb62 \
 -n nqn.1992-
08.com.netapp:sn.c9ecc9187b1111e98c0800a098cbcac6:subsystem.vs_nvme_multipat
h_1_subsystem_468\
 -k 5

注記

接続時間がデフォルトの keep-alive タイムアウト値を超えると keep-alive timer
(5 seconds) expired! と表示される場合は、-k オプションを使用して値を増や
します。たとえば、-k 7 を使用できます。

ここでは、以下のようになります。

nn-0x203b00a098cbcac6:pn-0x203d00a098cbcac6 を、traddr に置き換えます。

nn-0x20000024ff19bb62:pn-0x21000024ff19bb62 を、host-traddr に置き換えます。

nqn.1992-
08.com.netapp:sn.c9ecc9187b1111e98c0800a098cbcac6:subsystem.vs_nvme_multipath_1_subsystem_468
を、subnqn に置き換えます。

5 を keep-live タイムアウト値 (秒単位) に置き換えます。

検証

現在接続されている NVMe デバイスのリストを表示します。

nvme list
Node SN Model Namespace Usage
Format FW Rev
---------------- -------------------- -- --------- -------------------------
- ---------------- --------
/dev/nvme0n1 80BgLFM7xMJbAAAAAAAC NetApp ONTAP Controller 1
107.37 GB / 107.37 GB 4 KiB + 0 B FFFFFFFF

lsblk |grep nvme
nvme0n1 259:0 0 100G 0 disk

関連情報

システム上の nvme(1) man ページ

16.3. 次のステップ

NVMe デバイスでのマルチパスの有効化

第16章 NVME/FC を使用した NVME OVER FABRICS の設定

107

第17章 NVME デバイスでのマルチパスの有効化
ファイバーチャネル (FC) などのファブリックトランスポートを介して、システムに接続されている
Non-volatile Memory Express™ (NVMe™) デバイスをマルチパスすることができます。複数のマルチパ
スソリューションを選択することができます。

17.1. ネイティブ NVME マルチパスと DM MULTIPATH

Non-volatile Memory Express™ (NVMe™) デバイスは、ネイティブなマルチパス機能をサポートしてい
ます。NVMe にマルチパスを設定する場合、標準の DM Multipath フレームワークと NVMe のネイティ
ブなマルチパスのどちらかを選択できます。

DM Multipath と NVMe のネイティブマルチパスは、どちらも NVMe デバイスのマルチパス方式である
ANA(Asymmetric Namespace Access) に対応しています。ANA は、コントローラーとホスト間の最適
化されたパスを特定し、パフォーマンスを向上させます。

ネイティブ NVMe マルチパスを有効にすると、すべての NVMe デバイスにグローバルに適用されま
す。より高いパフォーマンスを提供できますが、DM Multipath が提供するすべての機能は含まれてい
ません。例えば、ネイティブの NVMe マルチパスは、numa と round-robin のパス選択方法のみをサ
ポートしています。

Red Hat は、Red Hat Enterprise Linux 8 の DM Multipath をデフォルトのマルチパスソリューションと
して使用することを推奨します。

17.2. ネイティブ NVME マルチパスの実現

nvme_core.multipath オプションのデフォルトのカーネル設定は N に設定されています。これは、ネ
イティブ Non-volatile Memory Express™ (NVMe™) マルチパスが無効であることを意味します。ネイ
ティブ NVMe マルチパスソリューションを使用して、ネイティブ NVMe マルチパスを有効にすること
ができます。

前提条件

NVMe デバイスがシステムに接続されていることを確認します。詳細は、NVMe over fabric デ
バイスの概要 を参照してください。

手順

1. カーネルでネイティブ NVMe マルチパスが有効になっているかどうかを確認します。

cat /sys/module/nvme_core/parameters/multipath

コマンドは以下のいずれかを表示します。

N

ネイティブ NVMe マルチパスは無効です。

Y

ネイティブ NVMe マルチパスは有効です。

2. ネイティブ NVMe マルチパスが無効になっている場合は、次のいずれかの方法を使用して有効
にします。

カーネルオプションの使用

Red Hat Enterprise Linux 8 ストレージデバイスの管理

108

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/overview-of-nvme-over-fabric-devices_managing-storage-devices

a. nvme_core.multipath=Y オプションをコマンドラインに追加します。

grubby --update-kernel=ALL --args="nvme_core.multipath=Y"

b. 64 ビットの IBM Z アーキテクチャーでは、ブートメニューを更新します。

zipl

c. システムを再起動します。

カーネルモジュール設定ファイルの使用

a. 以下の内容で /etc/modprobe.d/nvme_core.conf 設定ファイルを作成します。

options nvme_core multipath=Y

b. initramfs ファイルをバックアップします。

cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).bak.$(date
+%m-%d-%H%M%S).img

c. initramfs を再構築します。

dracut --force --verbose

d. システムを再起動します。

3. オプション: 実行中のシステムで、NVMe デバイスの I/O ポリシーを変更して、利用可能なすべ
てのパスに I/O を分散させます。

echo "round-robin" > /sys/class/nvme-subsystem/nvme-subsys0/iopolicy

4. オプション: udev ルールを使用して I/O ポリシーを永続的に設定します。以下の内容で
/etc/udev/rules.d/71-nvme-io-policy.rules ファイルを作成します。

ACTION=="add|change", SUBSYSTEM=="nvme-subsystem", ATTR{iopolicy}="round-robin"

検証

1. システムが NVMe デバイスを認識しているかどうかを確認します。次の例は、2 つの NVMe 名
前空間を持つ NVMe over fabrics ストレージサブシステムが接続されていることを想定してい
ます:

nvme list

Node SN Model Namespace Usage
Format FW Rev
---------------- -------------------- -- --------- -------------------------
- ---------------- --------
/dev/nvme0n1 a34c4f3a0d6f5cec Linux 1 250.06 GB /
250.06 GB 512 B + 0 B 4.18.0-2
/dev/nvme0n2 a34c4f3a0d6f5cec Linux 2 250.06 GB /
250.06 GB 512 B + 0 B 4.18.0-2

第17章 NVME デバイスでのマルチパスの有効化

109

2. 接続されているすべての NVMe サブシステムをリストアップします。

nvme list-subsys

nvme-subsys0 - NQN=testnqn
\
 +- nvme0 fc traddr=nn-0x20000090fadd597a:pn-0x10000090fadd597a host_traddr=nn-
0x20000090fac7e1dd:pn-0x10000090fac7e1dd live
 +- nvme1 fc traddr=nn-0x20000090fadd5979:pn-0x10000090fadd5979 host_traddr=nn-
0x20000090fac7e1dd:pn-0x10000090fac7e1dd live
 +- nvme2 fc traddr=nn-0x20000090fadd5979:pn-0x10000090fadd5979 host_traddr=nn-
0x20000090fac7e1de:pn-0x10000090fac7e1de live
 +- nvme3 fc traddr=nn-0x20000090fadd597a:pn-0x10000090fadd597a host_traddr=nn-
0x20000090fac7e1de:pn-0x10000090fac7e1de live

アクティブトランスポートタイプを確認します。例えば、nvme0 fc はファイバーチャネルトラ
ンスポートで接続されていることを示し、nvme tcp は TCP で接続されていることを示してい
ます。

3. カーネルオプションを編集した場合は、カーネルコマンドラインでネイティブ NVMe マルチパ
スが有効になっているかどうかを確認します。

cat /proc/cmdline

BOOT_IMAGE=[...] nvme_core.multipath=Y

4. I/O ポリシーを変更した場合は、NVMe デバイス上で round-robin がアクティブな I/O ポリ
シーであるかどうかを確認します。

cat /sys/class/nvme-subsystem/nvme-subsys0/iopolicy

round-robin

関連情報

カーネルコマンドラインパラメーターの設定

17.3. NVME デバイスでの DM MULTIPATH の有効化

ネイティブ NVMe マルチパスを無効にすることで、接続された NVMe デバイスで DM マルチパスを有
効にできます。

前提条件

NVMe デバイスがシステムに接続されていることを確認します。詳細は、NVMe over fabric デ
バイスの概要 を参照してください。

手順

1. ネイティブ NVMe マルチパスが無効になっているかどうかを確認します。

cat /sys/module/nvme_core/parameters/multipath

Red Hat Enterprise Linux 8 ストレージデバイスの管理

110

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-command-line-parameters_managing-monitoring-and-updating-the-kernel
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/overview-of-nvme-over-fabric-devices_managing-storage-devices

コマンドは以下のいずれかを表示します。

N

ネイティブ NVMe マルチパスは無効です。

Y

ネイティブ NVMe マルチパスは有効です。

2. ネイティブ NVMe マルチパスが有効になっている場合は、次のいずれかの方法を使用して無効
にします。

カーネルオプションの使用

a. カーネルのコマンドラインから nvme_core.multipath=Y オプションを削除しました。

grubby --update-kernel=ALL --remove-args="nvme_core.multipath=Y"

b. 64 ビットの IBM Z アーキテクチャーでは、ブートメニューを更新します。

zipl

c. システムを再起動します。

カーネルモジュール設定ファイルの使用

a. /etc/modprobe.d/nvme_core.conf ファイルに nvme_core multipath=Y オプションの
行が存在する場合は、それを削除します。

b. initramfs ファイルをバックアップします。

cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).bak.$(date
+%m%d-%H%M%S).img

c. initramfs を再構築します。

cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).bak.$(date
+%m-%d-%H%M%S).img
dracut --force --verbose

d. システムを再起動します。

3. DM マルチパスを有効にします。

systemctl enable --now multipathd.service

4. 利用可能なすべてのパスに I/O を分配します。/etc/multipath.conf ファイルに以下の内容を追
加します。

devices {
 device {
 vendor "NVME"
 product ".*"

第17章 NVME デバイスでのマルチパスの有効化

111

 path_grouping_policy group_by_prio
 }
}

注記

DM Multipath が NVMe デバイスを管理する場合、/sys/class/nvme-
subsystem/nvme-subsys0/iopolicy 設定ファイルは I/O ディストリビューショ
ンには影響を与えません。

5. 設定の変更を適用するために、multipathd サービスをリロードします。

multipath -r

検証

ネイティブ NVMe マルチパスが無効になっているかどうかを確認します。

cat /sys/module/nvme_core/parameters/multipath
N

DM Multipath が NVMe デバイスを認識しているかどうかを確認します。

multipath -l

eui.00007a8962ab241100a0980000d851c8 dm-6 NVME,NetApp E-Series
size=20G features='0' hwhandler='0' wp=rw
`-+- policy='service-time 0' prio=0 status=active
 |- 0:10:2:2 nvme0n2 259:3 active undef running
`-+- policy='service-time 0' prio=0 status=enabled
 |- 4:11:2:2 nvme4n2 259:28 active undef running
`-+- policy='service-time 0' prio=0 status=enabled
 |- 5:32778:2:2 nvme5n2 259:38 active undef running
`-+- policy='service-time 0' prio=0 status=enabled
 |- 6:32779:2:2 nvme6n2 259:44 active undef running

関連情報

カーネルコマンドラインパラメーターの設定

DM Multipath の設定

Red Hat Enterprise Linux 8 ストレージデバイスの管理

112

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-command-line-parameters_managing-monitoring-and-updating-the-kernel
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/configuring_device_mapper_multipath/configuring-dm-multipath_configuring-device-mapper-multipath

第18章 ディスクスケジューラーの設定
ディスクスケジューラーは、ストレージデバイスに送信された I/O 要求を順序付けます。

スケジューラーは以下の複数の方法で設定できます。

Setting the disk scheduler using TuneD の説明に従って、TuneD を使用してスケジューラーを
設定します。

udev ルールを使用したディスクスケジューラーの設定 で説明されているように、udev を使用
してスケジューラーを設定します。

特定ディスクに任意のスケジューラーを一時的に設定 で説明されているように、実行中のシス
テムのスケジューラーを一時的に変更します。

注記

Red Hat Enterprise Linux 8 では、ブロックデバイスはマルチキュースケジューリングの
みに対応します。これにより、ブロックレイヤーのパフォーマンスを高速ソリッドス
テートドライブ (SSD) およびマルチコアシステムで適切に拡張できます。

Red Hat Enterprise Linux 7 以前のバージョンで利用できた従来のシングルキュースケ
ジューラーが削除されました。

18.1. 利用可能なディスクスケジューラー

Red Hat Enterprise Linux 8 では、以下のマルチキューディスクスケジューラーに対応しています。

none

FIFO (First-in First-out) スケジューリングアルゴリズムを実装します。これにより、汎用のブロッ
ク層で単純な last-hit キャッシュを介して要求がマージされます。

mq-deadline

これにより、要求がスケジューラーに到達した時点からの要求のレイテンシーが保証されます。
mq-deadline スケジューラーは、キュー待ちの I/O リクエストを読み取りバッチまたは書き込み
バッチに分類します。そして、論理ブロックアドレス (LBA) を増大順に実行するためのスケジュー
ル設定を行います。デフォルトでは、アプリケーションは読み取り I/O 操作でブロックする可能性
の方が高いため、読み取りバッチの方が書き込みバッチより優先されます。mq-deadline がバッチ
を処理すると、このプロセスは書き込み動作が待機している長さを確認して、次の読み取りバッチ
または書き込みバッチをスケジュールします。

このスケジューラーはほとんどのユースケースに適していますが、必要に応じて特に書き込み動作
より読み取り動作の方が頻繁に起こるユースケースに適しています。

bfq

デスクトップシステムおよび対話式のタスクを対象とします。
bfq スケジューラーは、単一のアプリケーションがすべての帯域幅を使用しないようにします。これ
により、ストレージデバイスがアイドル状態であるかのように常に応答できるようになります。デ
フォルトの設定では、bfq は、最大スループットを実現するのではなく、レイテンシーを最小限に抑
えることに焦点を合わせています。

bfq は cfq コードに基づいています。一定のタイムスライスごとにディスクを各プロセスに付与する
のではなく、セクター数単位で測定された バジェット をプロセスに割り当てます。

第18章 ディスクスケジューラーの設定

113

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-the-disk-scheduler_monitoring-and-managing-system-status-and-performance#setting-the-disk-scheduler-using-tuned_setting-the-disk-scheduler
https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-the-disk-scheduler_monitoring-and-managing-system-status-and-performance#setting-the-disk-scheduler-using-udev-rules_setting-the-disk-scheduler
https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/setting-the-disk-scheduler_monitoring-and-managing-system-status-and-performance#temporarily-setting-a-scheduler-for-a-specific-disk_setting-the-disk-scheduler

このスケジューラーは大きなファイルをコピーする際に適しており、この場合、システムが応答し
なくなることはありません。

kyber

スケジューラーは、ブロック I/O レイヤーに送信されたすべての I/O 要求のレイテンシーを計算す
ることで、レイテンシーゴールを達成するために自身を調整します。cache-misses の場合、読み込
み/同期書き込みリクエストにターゲットレイテンシーを設定できます。
このスケジューラーは、NVMe、SSD などの低レイテンシーデバイスなど、高速なデバイスに適し
ています。

18.2. 各種ユースケースで異なるディスクスケジューラー

システムが実行するタスクに応じて、分析タスクおよびチューニングタスクの前に、以下のディスクス
ケジューラーがベースラインとして推奨されます。

表18.1 各種ユースケースのディスクスケジューラー

ユースケース ディスクスケジューラー

SCSI インターフェイスを備えた従来の HDD mq-deadline または bfq を使用します。

高速ストレージで高パフォーマンスの SSD または
CPU がバインドされたシステム

特にエンタープライズアプリケーションを実行する
場合は none を使用します。または kyber を使用し
ます。

デスクトップまたはインタラクティブなタスク bfq を使用します。

仮想ゲスト mq-deadline を使用します。マルチキューに対応し
ているホストバスアダプター (HBA) ドライバーで
は、none を使用します。

18.3. デフォルトのディスクスケジューラー

ブロックデバイスは、別のスケジューラーを指定しない限り、デフォルトのディスクスケジューラーを
使用します。

注記

NVMe (Non-volatile Memory Express) ブロックデバイスの場合、デフォルトのスケ
ジューラーは none であり、Red Hat ではこれを変更しないことを推奨します。

カーネルは、デバイスのタイプに基づいてデフォルトのディスクスケジューラーを選択します。自動的
に選択されたスケジューラーは、通常、最適な設定です。別のスケジューラーが必要な場合は、
Red Hat では、udev ルールまたは TuneD アプリケーションを使用して設定することを推奨していま
す。選択したデバイスを一致させ、それらのデバイスのスケジューラーのみを切り替えます。

18.4. アクティブなディスクスケジューラーの決定

この手順では、特定のブロックデバイスで現在アクティブなディスクスケジューラーを確認します。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

114

手順

/sys/block/device/queue/scheduler ファイルの内容を読み取ります。

cat /sys/block/device/queue/scheduler

[mq-deadline] kyber bfq none

ファイル名の device を、sdc などのブロックデバイス名に置き換えます。

アクティブなスケジューラーは、角括弧 ([]) にリスト表示されます。

18.5. TUNED を使用したディスクスケジューラーの設定

この手順では、選択したブロックデバイスに特定のディスクスケジューラーを設定するTuneD プロ
ファイルを作成して有効にします。この設定は、システムを再起動しても持続します。

以下のコマンドと設定で、以下の内容を置き換えます。

device をブロックデバイスの名前に置き換えます (例: sdf)。

selected-scheduler を、デバイスに設定するディスクスケジューラーに置き換えます (例:
bfq)。

前提条件

TuneD サービスがインストールされ、有効になっている。詳細は、TuneD のインストールと有
効化 を参照してください。

手順

1. 必要に応じて、プロファイルのベースとなる既存のTuneDプロファイルを選択します。利用可
能なプロファイルのリストは、RHEL とともに配布される TuneD プロファイル を参照してく
ださい。
現在アクティブなプロファイルを確認するには、次のコマンドを実行します。

$ tuned-adm active

2. TuneD プロファイルを保持する新しいディレクトリーを作成します。

mkdir /etc/tuned/my-profile

3. 選択したブロックデバイスのシステム固有の識別子を見つけます。

$ udevadm info --query=property --name=/dev/device | grep -E '(WWN|SERIAL)'

ID_WWN=0x5002538d00000000_
ID_SERIAL=Generic-_SD_MMC_20120501030900000-0:0
ID_SERIAL_SHORT=20120501030900000

注記

第18章 ディスクスケジューラーの設定

115

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance#installing-and-enabling-tuned_getting-started-with-tuned
https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance#tuned-profiles-distributed-with-rhel_getting-started-with-tuned

注記

この例のコマンドは、指定したブロックデバイスに関連付けられた World Wide
Name (WWN) またはシリアル番号として識別されるすべての値を返します。
WWN を使用することが推奨されますが、WWN は特定のデバイスで常に利用で
きる訳ではなく、コマンド例で返される値は、デバイスのシステム固有の ID と
して使用することが許容されます。

4. /etc/tuned/my-profile/tuned.conf 設定ファイルを作成します。このファイルで、以下のオプ
ションを設定します。

a. 必要に応じて、既存のプロファイルを追加します。

[main]
include=existing-profile

b. WWN 識別子に一致するデバイスに対して選択したディスクスケジューラーを設定します。

[disk]
devices_udev_regex=IDNAME=device system unique id
elevator=selected-scheduler

ここでは、以下のようになります。

IDNAME を、使用されている識別子名に置き換えます (例: ID_WWN)。

device system unique id を、選択した識別子の値に置き換えます
(例:0x5002538d00000000)。
devices_udev_regex オプションで複数のデバイスに一致させるには、識別子を括弧
で囲み、垂直バーで区切ります。

devices_udev_regex=(ID_WWN=0x5002538d00000000)|
(ID_WWN=0x1234567800000000)

5. プロファイルを有効にします。

tuned-adm profile my-profile

検証

1. TuneD プロファイルがアクティブで、適用されていることを確認します。

$ tuned-adm active

Current active profile: my-profile

$ tuned-adm verify

Verification succeeded, current system settings match the preset profile.
See TuneD log file ('/var/log/tuned/tuned.log') for details.

2. /sys/block/device/queue/scheduler ファイルの内容を読み取ります。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

116

cat /sys/block/device/queue/scheduler

[mq-deadline] kyber bfq none

ファイル名の device を、sdc などのブロックデバイス名に置き換えます。

アクティブなスケジューラーは、角括弧 ([]) にリスト表示されます。

関連情報

TuneD プロファイルのカスタマイズ

18.6. UDEV ルールを使用したディスクスケジューラーの設定

この手順では、udev ルールを使用して、特定ブロックデバイスに、特定のディスクスケジューラーを
設定します。この設定は、システムを再起動しても持続します。

以下のコマンドと設定で、以下の内容を置き換えます。

device をブロックデバイスの名前に置き換えます (例: sdf)。

selected-scheduler を、デバイスに設定するディスクスケジューラーに置き換えます (例:
bfq)。

手順

1. ブロックデバイスのシステム固有の識別子を見つけます。

$ udevadm info --name=/dev/device | grep -E '(WWN|SERIAL)'
E: ID_WWN=0x5002538d00000000
E: ID_SERIAL=Generic-_SD_MMC_20120501030900000-0:0
E: ID_SERIAL_SHORT=20120501030900000

注記

この例のコマンドは、指定したブロックデバイスに関連付けられた World Wide
Name (WWN) またはシリアル番号として識別されるすべての値を返します。
WWN を使用することが推奨されますが、WWN は特定のデバイスで常に利用で
きる訳ではなく、コマンド例で返される値は、デバイスのシステム固有の ID と
して使用することが許容されます。

2. udev ルールを設定します。以下の内容で /etc/udev/rules.d/99-scheduler.rules ファイルを作
成します。

ACTION=="add|change", SUBSYSTEM=="block", ENV{IDNAME}=="device system unique
id", ATTR{queue/scheduler}="selected-scheduler"

ここでは、以下のようになります。

IDNAME を、使用されている識別子名に置き換えます (例: ID_WWN)。

device system unique id を、選択した識別子の値に置き換えます
(例:0x5002538d00000000)。

第18章 ディスクスケジューラーの設定

117

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance

3. udev ルールを再読み込みします。

udevadm control --reload-rules

4. スケジューラー設定を適用します。

udevadm trigger --type=devices --action=change

検証

アクティブなスケジューラーを確認します。

cat /sys/block/device/queue/scheduler

18.7. 特定ディスクに任意のスケジューラーを一時的に設定

この手順では、特定のブロックデバイスに、特定のディスクスケジューラーを設定します。この設定
は、システムを再起動すると元に戻ります。

手順

選択したスケジューラーの名前を、/sys/block/device/queue/scheduler ファイルに書き込みま
す。

echo selected-scheduler > /sys/block/device/queue/scheduler

ファイル名の device を、sdc などのブロックデバイス名に置き換えます。

検証

スケジューラーがデバイスでアクティブになっていることを確認します。

cat /sys/block/device/queue/scheduler

Red Hat Enterprise Linux 8 ストレージデバイスの管理

118

第19章 リモートディスクレスシステムの設定
ネットワーク環境では、リモートディスクレスシステムをデプロイすることで、同一の設定で複数のク
ライアントをセットアップできます。現在の Red Hat Enterprise Linux サーバーバージョンを使用する
と、これらのクライアントのハードドライブのコストを節約し、別のサーバーにゲートウェイを設定で
きます。

次の図は、Dynamic Host Configuration Protocol (DHCP) および Trivial File Transfer Protocol (TFTP)
サービスを介したディスクレスクライアントとサーバーの接続を示しています。

図19.1 リモートディスクレスシステム設定のダイアグラム

19.1. リモートディスクレスシステムの環境の準備

リモートディスクレスシステムの実装を続行できるように環境を準備します。リモートディスクレスシ
ステムの起動には次のサービスが必要です。

tftp-server によって提供される Trivial File Transfer Protocol (TFTP) サービス。システムは、
tftp サービスを使用して、Preboot Execution Environment (PXE) ローダーを通じてネットワー
ク経由でカーネルイメージと初期 RAM ディスク initrd を取得します。

dhcp によって提供される Dynamic Host Configuration Protocol (DHCP) サービス。

前提条件

xinetd パッケージをインストールしている。

ネットワーク接続が設定されている。

手順

1. dracut-network パッケージをインストールします。

yum install dracut-network

2. /etc/dracut.conf.d/network.conf ファイルに次の行を追加します。

add_dracutmodules+=" nfs "

3. 次の順序でサービスを設定して、環境内のリモートディスクレスシステムが正しく機能するよ
うにします。

a. TFTP サービスを設定します。詳細は、ディスクレスクライアントの TFTP サービスの設定

第19章 リモートディスクレスシステムの設定

119

a. TFTP サービスを設定します。詳細は、ディスクレスクライアントの TFTP サービスの設定
を参照してください。

b. DHCP サーバーを設定します。詳細は、ディスクレスクライアントの DHCP サーバーの設
定 を参照してください。

c. ネットワークファイルシステム (NFS) とエクスポートしたファイルシステムを設定しま
す。詳細は、ディスクレスクライアントのエクスポートしたファイルシステムの設定 を参
照してください。

19.2. ディスクレスクライアントの TFTP サービスの設定

リモートディスクレスシステムを環境内で正しく機能させるには、まずディスクレスクライアントの
Trivial File Transfer Protocol (TFTP) サービスを設定する必要があります。

注記

この設定は、Unified Extensible Firmware Interface (UEFI) 経由では起動しません。UEFI
ベースのインストールの場合は、UEFI ベースのクライアント向けに TFTP サーバーを設
定する を参照してください。

前提条件

次のパッケージがインストールされている。

tftp-server

syslinux

xinetd

手順

1. TFTP サービスを有効にします。

systemctl enable --now tftp

2. tftp のルートディレクトリーに pxelinux ディレクトリーを作成します。

mkdir -p /var/lib/tftpboot/pxelinux/

3. /usr/share/syslinux/pxelinux.0 ファイルを /var/lib/tftpboot/pxelinux/ ディレクトリーにコ
ピーします。

cp /usr/share/syslinux/pxelinux.0 /var/lib/tftpboot/pxelinux/

4. /usr/share/syslinux/ldlinux.c32 を /var/lib/tftpboot/pxelinux/ にコピーします。

cp /usr/share/syslinux/ldlinux.c32 /var/lib/tftpboot/pxelinux/

5. tftp のルートディレクトリーに pxelinux.cfg ディレクトリーを作成します。

mkdir -p /var/lib/tftpboot/pxelinux/pxelinux.cfg/

Red Hat Enterprise Linux 8 ストレージデバイスの管理

120

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/setting-up-a-remote-diskless-system_managing-storage-devices#configuring-a-tftp-service-for-diskless-client_setting-up-a-remote-diskless-system
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/setting-up-a-remote-diskless-system_managing-storage-devices#configuring-a-dhcp-for-diskless-clients_setting-up-a-remote-diskless-system
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/setting-up-a-remote-diskless-system_managing-storage-devices#configuring-an-exported-file-system-for-diskless-clients_setting-up-a-remote-diskless-system
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/interactively_installing_rhel_over_the_network/preparing-for-a-network-install_rhel-installer#configuring-a-tftp-server-for-uefi-based-clients_preparing-for-a-network-install

検証

サービス tftp のステータスを確認します。

systemctl status tftp
...
Active: active (running)
...

19.3. ディスクレスクライアントの DHCP サーバーの設定

リモートディスクレスシステムを正しく機能させるには、いくつかのサービスをあらかじめインストー
ルしておく必要があります。

前提条件

Trivial File Transfer Protocol (TFTP) サービスがインストールされている。

次のパッケージがインストールされている。

dhcp-server

xinetd

ディスクレスクライアントの tftp サービスが設定されている。詳細は、ディスクレスクライア
ントの TFTP サービスの設定 を参照してください。

手順

1. /etc/dhcp/dhcpd.conf ファイルに次の設定を追加して、DHCP サーバーをセットアップし、
ブート用の Preboot Execution Environment (PXE) を有効にします。

option space pxelinux;
option pxelinux.magic code 208 = string;
option pxelinux.configfile code 209 = text;
option pxelinux.pathprefix code 210 = text;
option pxelinux.reboottime code 211 = unsigned integer 32;
option architecture-type code 93 = unsigned integer 16;

subnet 192.168.205.0 netmask 255.255.255.0 {
 option routers 192.168.205.1;
 range 192.168.205.10 192.168.205.25;

 class "pxeclients" {
 match if substring (option vendor-class-identifier, 0, 9) = "PXEClient";
 next-server 192.168.205.1;

 if option architecture-type = 00:07 {
 filename "BOOTX64.efi";
 } else {
 filename "pxelinux/pxelinux.0";
 }
 }
}

DHCP 設定は、リース時間や固定アドレスの設定など、環境によって異なる場合があります。

第19章 リモートディスクレスシステムの設定

121

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/setting-up-a-remote-diskless-system_managing-storage-devices#configuring-a-tftp-service-for-diskless-client_setting-up-a-remote-diskless-system

DHCP 設定は、リース時間や固定アドレスの設定など、環境によって異なる場合があります。
詳細は、DHCP サービスの提供 を参照してください。

注記

libvirt 仮想マシンをディスクレスクライアントとして使用する場合、libvirt デー
モンが DHCP サービスを提供し、スタンドアロン DHCP サーバーは使用されま
せん。この状況では、libvirt ネットワーク設定の virsh net-edit で bootp file=
<filename> オプションを使用して、ネットワークブートを有効にする必要があ
ります。

2. dhcpd.service を有効にします。

systemctl enable --now dhcpd.service

検証

サービス dhcpd.service のステータスを確認します。

systemctl status dhcpd.service
...
Active: active (running)
...

19.4. ディスクレスクライアントのエクスポートしたファイルシステムの設
定

環境にリモートディスクレスシステムを設定する一環として、ディスクレスクライアント用にエクス
ポートしたファイルシステムを設定する必要があります。

前提条件

ディスクレスクライアントの tftp サービスが設定されている。ディスクレスクライアントの
TFTP サービスの設定 セクションを参照してください。

Dynamic Host Configuration Protocol (DHCP) サーバーが設定されている。ディスクレスクラ
イアントの DHCP サーバーの設定 セクションを参照してください。

手順

1. /etc/exports ディレクトリーにルートディレクトリーを追加して、ルートディレクトリーをエ
クスポートするようにネットワークファイルシステム (NFS) サーバーを設定します。手順の詳
細は、NFS サーバーのデプロイ を参照してください。

2. 完全にディスクレスのクライアントに対応できるように、Red Hat Enterprise Linux の完全な
バージョンをルートディレクトリーにインストールします。これを行うには、新しいベースシ
ステムをインストールするか、既存のインストールのクローンを作成します。

exported-root-directory をエクスポートしたファイルシステムへのパスに置き換えて、エ
クスポートした場所に Red Hat Enterprise Linux をインストールします。

yum install @Base kernel dracut-network nfs-utils --installroot=exported-root-
directory --releasever=/

Red Hat Enterprise Linux 8 ストレージデバイスの管理

122

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html-single/managing_networking_infrastructure_services/index#providing-dhcp-services_networking-infrastructure-services
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/deploying-an-nfs-server_deploying-different-types-of-servers

releasever オプションを / に設定すると、releasever がホスト (/) システムから検出されま
す。

rsync ユーティリティーを使用して、実行中のシステムと同期します。

rsync -a -e ssh --exclude='/proc/' --exclude='/sys/' example.com:/ exported-root-
directory

example.com は、rsync ユーティリティーで同期する実行中のシステムのホスト名に
置き換えます。

exported-root-directory を、エクスポートしたファイルシステムへのパスに置き換え
ます。
このオプションには、実行中の別のシステムが必要です。これは、このコマンドでサー
バーにクローンを作成します。

3. ファイルシステムをディスクレスクライアントで使用する前に、エクスポートの準備が完了し
ているファイルシステムを設定します。

a. ディスクレスクライアントがサポートするカーネル (vmlinuz-_kernel-
version_pass:attributes) を tftp ブートディレクトリーにコピーします。

cp /exported-root-directory/boot/vmlinuz-kernel-version /var/lib/tftpboot/pxelinux/

b. initramfs-kernel-version.img ファイルをローカルに作成し、NFS をサポートするエクス
ポートされたルートディレクトリーに移動します。

dracut --add nfs initramfs-kernel-version.img kernel-version

以下に例を示します。

dracut --add nfs /exports/root/boot/initramfs-5.14.0-202.el9.x86_64.img 5.14.0-
202.el9.x86_64

現在実行中のカーネルバージョンを使用し、既存のイメージを上書きして initrd を作成する
例を以下に示します。

dracut -f --add nfs "boot/initramfs-$(uname -r).img" "$(uname -r)"

c. initrd のファイル権限を 0644 に変更します。

chmod 0644 /exported-root-directory/boot/initramfs-kernel-version.img

警告

initrd のファイル権限を変更しないと、pxelinux.0 ブートローダーが
"file not found" エラーを表示して失敗します。

d. 作成された initramfs-kernel-version.img ファイルを tftp ブートディレクトリーにコピー



第19章 リモートディスクレスシステムの設定

123

d. 作成された initramfs-kernel-version.img ファイルを tftp ブートディレクトリーにコピー
します。

cp /exported-root-directory/boot/initramfs-kernel-version.img
/var/lib/tftpboot/pxelinux/

e. /var/lib/tftpboot/pxelinux/pxelinux.cfg/default ファイルに次の設定を追加して、initrd と
カーネルを使用するためのデフォルトのブート設定を編集します。

default menu.c32
prompt 0
menu title PXE Boot Menu
ontimeout rhel8-over-nfsv4.2
timeout 120
label rhel8-over-nfsv4.2
 menu label Install diskless rhel8{} nfsv4.2{}
 kernel $vmlinuz
 append initrd=$initramfs root=nfs4:$nfsserv:/:vers=4.2,rw rw panic=60 ipv6.disable=1
console=tty0 console=ttyS0,115200n8
label rhel8-over-nfsv3
 menu label Install diskless rhel8{} nfsv3{}
 kernel $vmlinuz
 append initrd=$initramfs root=nfs:$nfsserv:$nfsroot:vers=3,rw rw panic=60
ipv6.disable=1 console=tty0 console=ttyS0,115200n8

この設定は、ディスクレスクライアントのルートに、/exported-root-directory エクスポート
ファイルシステムを読み取り/書き込み形式でマウントするように指示します。

a. オプション: /var/lib/tftpboot/pxelinux/pxelinux.cfg/default ファイルを次の設定で編集し
て、ファイルシステムを read-only 形式でマウントします。

default rhel8

label rhel8
 kernel vmlinuz-kernel-version
 append initrd=initramfs-kernel-version.img root=nfs:server-ip:/exported-root-
directory ro

b. NFS サーバーを再起動します。

systemctl restart nfs-server.service

これで、NFS 共有をディスクレスクライアントにエクスポートできるようになりました。これらのクラ
イアントは、Preboot Execution Environment (PXE) 経由でネットワーク経由で起動できます。

19.5. リモートディスクレスシステムの再設定

パッケージのインストール、サービスの再起動、または問題のデバッグを行う場合は、システムを再設
定できます。

前提条件

エクスポートしたファイルシステムで no_root_squash オプションが有効になっている。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

124

手順

ユーザーパスワードを変更します。

コマンドラインを /exported/root/directory に変更します。

chroot /exported/root/directory /bin/bash

必要なユーザーのパスワードを変更します。

passwd <username>

<username> は、パスワードを変更する実際のユーザーに置き換えます。

コマンドラインを終了します。

リモートディスクレスシステムにソフトウェアをインストールします。

yum install <package> --installroot=/exported/root/directory --releasever=/ --config
/etc/dnf/dnf.conf --setopt=reposdir=/etc/yum.repos.d/

<package> を、インストールする実際のパッケージに置き換えます。

2 つの個別のエクスポートを設定して、リモートディスクレスシステムを /usr と /var に分割
します。詳細は、NFS サーバーのデプロイ を参照してください。

19.6. リモートディスクレスシステムのロードに関する一般的な問題のトラ
ブルシューティング

以前の設定を利用すると、リモートディスクレスシステムのロード中に問題が発生する可能性がありま
す。以下に、Red Hat Enterprise Linux サーバーで最も一般的な問題とそのトラブルシューティングの
例をいくつか示します。

例19.1 クライアントが IP アドレスを取得しない

1. サーバー上で Dynamic Host Configuration Protocol (DHCP) サービスが有効になっているか
どうかを確認します。

a. dhcp.service が実行しているかどうかを確認します。

systemctl status dhcpd.service

b. dhcp.service が非アクティブな場合は、有効にして起動します。

systemctl enable dhcpd.service
systemctl start dhcpd.service

c. ディスクレスクライアントを再起動します。

d. DHCP 設定ファイル /etc/dhcp/dhcpd.conf を確認します。詳細は、ディスクレスクラ
イアントの DHCP サーバーの設定 を参照してください。

2. ファイアウォールポートが開いているかどうかを確認します。

第19章 リモートディスクレスシステムの設定

125

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/deploying-an-nfs-server_deploying-different-types-of-servers

a. dhcp.service がアクティブなサービスにリストされているかどうかを確認します。

firewall-cmd --get-active-zones
firewall-cmd --info-zone=public

b. dhcp.service がアクティブなサービスにリストされていない場合は、リストに追加しま
す。

firewall-cmd --add-service=dhcp --permanent

c. nfs.service がアクティブなサービスに記載されているかどうかを確認します。

firewall-cmd --get-active-zones
firewall-cmd --info-zone=public

d. nfs.service がアクティブなサービスに記載されていない場合は、これをリストに追加
します。

firewall-cmd --add-service=nfs --permanent

例19.2 リモートディスクレスシステムの起動時にファイルを使用できない

1. ファイルが /var/lib/tftpboot/ ディレクトリーにあるかどうかを確認します。

2. ファイルがディレクトリー内にある場合は、ファイルに次の権限があるかどうかを確認しま
す。

chmod 644 pxelinux.0

3. ファイアウォールポートが開いているかどうかを確認します。

例19.3 kernel/initrd のロード後にシステムの起動に失敗した

1. サーバーで NFS サービスが有効になっているかどうかを確認します。

a. nfs.service が実行中かどうかを確認します。

systemctl status nfs.service

b. nfs.service が非アクティブな場合は、それを起動して有効にする必要があります。

systemctl start nfs.service
systemctl enable nfs.service

2. /var/lib/tftpboot/pxelinux.cfg/ ディレクトリーでパラメーターが正しいかどうかを確認して
ください。詳細は、ディスクレスクライアントのエクスポートしたファイルシステムの設定
を参照してください。

3. ファイアウォールポートが開いているかどうかを確認します。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

126

第20章 RAID の管理
Redundant Array of Independent Disks (RAID) を使用して、複数のドライブにデータを保存できます。
ドライブに障害が発生した場合に、データの損失を回避することができます。

20.1. RAID の概要

RAID では、HDD、SSD、または NVMe などの複数のデバイスをアレイに組み合わせて、1 つの大型で
高価なドライブでは達成できないパフォーマンスまたは冗長性の目標を達成することができますこのデ
バイスのアレイは、1 つの論理ストレージユニットまたはドライブとしてコンピューターに表示されま
す。

RAID は、レベル 0、1、4、5、6、10、リニアなどのさまざまな設定に対応します。RAID は、ディスク
ストライピング (RAID レベル 0)、ディスクミラーリング (RAID レベル 1)、およびパリティーによる
ディスクストライピング (RAID レベル 4、5、および 6) などの技術を使用して、冗長性、低遅延、帯域
の増加、ハードディスクのクラッシュからの回復能力の最大化を達成します。

RAID は、データを一貫して使用するチャンク (通常は 256KB または 512KB、他の値は受け入れ可能) に
分割することで、アレイ内の各デバイスにデータを分散します。採用されている RAID レベルに従っ
て、これらのチャンクを RAID アレイ内のハードドライブに書き込みます。データの読み取り中はプロ
セスが逆になり、アレイ内の複数のデバイスが実際には 1 つの大きなドライブであるかのように見えま
す。

RAID テクノロジーは、大量のデータを管理するユーザーにとって有益です。RAID を導入する主な理由
は次のとおりです。

速度を高める

1 台の仮想ディスクを使用してストレージ容量を増やす

ディスク障害によるデータ損失を最小限に抑える

RAID レイアウトおよびレベルのオンライン変換

20.2. RAID のタイプ

RAID のタイプとして考えられるのは以下の通りです。

ファームウェア RAID

ファームウェア RAID (ATARAID とも呼ばれる) とは、ソフトウェア RAID の種類で、ファームウェ
アベースのメニューを使用して RAID セットを設定できます。このタイプの RAID で使用される
ファームウェアは BIOS にもフックされるため、その RAID セットから起動できます。異なるベン
ダーは、異なるオンディスクメタデータ形式を使用して、RAID セットのメンバーをマークします。
Intel Matrix RAID は、ファームウェア RAID システムの一例を示しています。

ハードウェア RAID

ハードウェアベースのアレイは、RAID サブシステムをホストとは別に管理します。ホストに対して
RAID アレイごとに複数のデバイスが表示される場合があります。
ハードウェア RAID デバイスは、システムの内部または外部になる場合があります。内部デバイス
は、一般的には、RAID タスクをオペレーティングシステムに対して透過的に処理する専用のコント
ローラーカードで構成されています。外部デバイスは、一般的には SCSI、ファイバーチャネル、
iSCSI、InfiniBand などの高速ネットワーク相互接続を介してシステムに接続し、システムへの論理
ユニットなどのボリュームを提示します。

RAID コントローラーカードは、オペレーティングシステムへの SCSI コントローラーのように動作

第20章 RAID の管理

127

し、実際のドライブ通信をすべて処理します。ドライブを通常の SCSI コントローラーと同様に
RAID コントローラーに接続し、RAID コントローラーの設定に追加できます。オペレーティングシ
ステムはこの違いを認識できません。

ソフトウェア RAID

ソフトウェア RAID は、カーネルブロックデバイスコード内にさまざまな RAID レベルを実装しま
す。高価なディスクコントローラーカードやホットスワップシャーシが不要なため、可能な限り安
価なソリューションを提供します。ホットスワップシャーシを使用すると、システムの電源を切ら
ずにハードドライブを取り外すことができます。ソフトウェア RAID は、SATA、SCSI、NVMe など
の Linux カーネルが対応しているブロックストレージでも機能します。現在高速 CPU では、ハイエ
ンドのストレージデバイスを使用する場合以外は、ソフトウェア RAID は通常ハードウェア RAID の
規模を上回します。
Linux カーネルにはマルチデバイス (MD) ドライバーが含まれているため、RAID ソリューションは
完全にハードウェアに依存しません。ソフトウェアベースのアレイのパフォーマンスは、サーバー
の CPU パフォーマンスと負荷によって異なります。

Linux ソフトウェア RAID スタックの主な機能は次のとおりです。

マルチスレッド設計

再構築なしで Linux マシン間でのアレイの移植性

アイドルシステムリソースを使用したバックグラウンドのアレイ再構築

ホットスワップドライブのサポート

CPU の自動検出は、ストリーミング SIMD (Single Instruction Multiple Data) サポートなど
の特定の CPU 機能を利用するための自動 CPU 検出

アレイ内のディスク上にある不良セクターの自動修正

RAID データの整合性を定期的にチェックしアレイの健全性を確保

重要なイベントが発生すると、指定された電子メールアドレスに送信される電子メールア
ラートによるアレイのプロアクティブな監視

システムのクラッシュ後にアレイ全体を再同期する代わりに、ディスクのどの部分を再同期
する必要があるかをカーネルが正確に把握できるようにすることで、再同期イベントの速度
を大幅に向上させる書き込みが集中しているビットマップ

注記

再同期は、既存の RAID 内のデバイス間でデータを同期して冗長性を実現す
るプロセスです。

チェックポイントを再同期して、再同期中にコンピューターを再起動すると、起動時に再同
期が中断したところから再開され、最初からやり直すことはありません。

インストール後にアレイのパラメーターを変更する機能は、再形成と呼ばれます。たとえ
ば、新しいデバイスを追加しても、4 つのディスクの RAID5 アレイを 5 つのディスク
RAID5 アレイに増大させることができます。この拡張操作はライブで行うため、新しいアレ
イで再インストールする必要はありません。

再成形は、RAID アルゴリズム、RAID アレイタイプのサイズ (RAID4、RAID5、RAID6、
RAID10 など) の変更に対応しています。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

128

テイクオーバーは、RAID0 から RAID6 などの RAID レベルの変換をサポートしています。

クラスターのストレージソリューションである Cluster MD は、RAID1 ミラーリングの冗長
性をクラスターに提供します。現在、RAID1 のみがサポートされています。

20.3. RAID レベルとリニアサポート

レベル 0、1、4、5、6、10、リニアなど、RAID 別の対応設定は以下のとおりです。

レベル 0

ストライピングとも呼ばれる RAID レベル 0 は、パフォーマンス指向のストライピングデータマッ
ピング技術です。これは、アレイに書き込まれるデータがストライプに分割され、アレイのメン
バーディスク全体に書き込まれることを意味します。これにより低い固有コストで高い I/O パ
フォーマンスを実現できますが、冗長性は提供されません。
RAID レベル 0 実装は、アレイ内の最小デバイスのサイズまで、メンバーデバイス全体にだけデータ
をストライピングします。つまり、複数のデバイスのサイズが少し異なる場合、それぞれのデバイ
スは最小ドライブと同じサイズであるかのように処理されます。したがって、レベル 0 アレイの共
通ストレージ容量は、すべてのディスクの合計容量です。メンバーディスクのサイズが異なる場
合、RAID0 は使用可能なゾーンを使用して、それらのディスクのすべての領域を使用します。

レベル 1

RAID レベル 1 (ミラーリング) は、アレイの各メンバーディスクに同一のデータを書き込み、ミラー
化されたコピーを各ディスクに残すことによって冗長性を提供します。ミラーリングは、データの
可用性の単純化と高レベルにより、いまでも人気があります。レベル 1 は 2 つ以上のディスクと連
携して、非常に優れたデータ信頼性を提供し、読み取り集中型のアプリケーションに対してパ
フォーマンスが向上しますが、比較的コストが高くなります。
RAID レベル 1 は、アレイ内のすべてのディスクに同じ情報を書き込むためコストがかかります。こ
れにより、データの信頼性が提供されますが、レベル 5 などのパリティーベースの RAID レベルよ
りもスペース効率が大幅に低下します。ただし、この領域の非効率性にはパフォーマンス上の利点
があります。パリティーベースの RAID レベルは、パリティーを生成するためにかなり多くの CPU
電力を消費しますが、RAID レベル 1 は単に同じデータを、CPU オーバーヘッドが非常に少ない複数
の RAID メンバーに複数回書き込むだけです。そのため、RAID レベル 1 は、ソフトウェア RAID が
使用されているマシンや、マシンの CPU リソースが一貫して RAID アクティビティー以外の操作で
アレイ化されます。

レベル 1 アレイのストレージ容量は、ハードウェア RAID 内でミラーリングされている最小サイズの
ハードディスクの容量と同じか、ソフトウェア RAID 内でミラーリングされている最小のパーティ
ションと同じ容量になります。レベル 1 の冗長性は、すべての RAID タイプの中で最も高いレベルで
あり、アレイは 1 つのディスクのみで動作できます。

レベル 4

レベル 4 は、1 つのディスクドライブでパリティー連結を使用して、データを保護します。パリ
ティー情報は、アレイ内の残りのメンバーディスクのコンテンツに基づいて計算されます。この情
報は、アレイ内のいずれかのディスクに障害が発生した場合にデータの再構築に使用できます。そ
の後、再構築されたデータを使用して、交換前に失敗したディスクに I/O 要求に対応でき、交換後
に失敗したディスクを接続します。
パリティー専用ディスクは、RAID アレイへのすべての書き込みトランザクションにおいて固有のボ
トルネックとなるため、ライトバックキャッシングなどの付随する技術なしにレベル 4 が使用され
ることはほとんどありません。または、システム管理者が意図的にこのボトルネックを考慮してソ
フトウェア RAID デバイスを設計している特定の状況下で使用されます。たとえば、アレイにデータ
が格納されると書き込みトランザクションがほとんどないようなアレイです。RAID レベル 4 にはほ
とんど使用されないため、Anaconda ではこのオプションとしては使用できません。ただし、実際に
は必要な場合は、ユーザーが手動で作成できます。

第20章 RAID の管理

129

ハードウェア RAID レベル 4 のストレージ容量は、最小メンバーパーティションの容量にパーティ
ションの数を掛けて 1 を引いた値に等しくなります。RAID レベル 4 アレイのパフォーマンスは常に
非対称です。つまり、読み込みは書き込みを上回ります。これは、パリティーを生成するときに書
き込み操作が余分な CPU リソースとメインメモリー帯域幅を消費し、実際のデータをディスクに書
き込むときに余分なバス帯域幅も消費するためです。これは、データだけでなくパリティーも書き
込むためです。読み取り操作は、アレイが劣化状態にない限り、データを読み取るだけでパリ
ティーを読み取る必要はありません。その結果、読み取り操作では、通常の操作条件下で同じ量の
データ転送を行う場合でも、ドライブおよびコンピューターのバス全体に生成されるトラフィック
が少なくなります。

レベル 5

これは RAID の最も一般的なタイプです。RAID レベル 5 は、アレイのすべてのメンバーディスクド
ライブにパリティーを分散することにより、レベル 4 に固有の書き込みボトルネックを排除しま
す。パリティー計算プロセス自体のみがパフォーマンスのボトルネックです。最近の CPU はパリ
ティーを非常に高速に計算できます。しかし、RAID 5 アレイに多数のディスクを使用していて、す
べてのデバイスの合計データ転送速度が十分に高い場合、パリティー計算がボトルネックになる可
能性があります。
レベル 5 のパフォーマンスは非対称であり、読み取りは書き込みよりも大幅に優れています。RAID
レベル 5 のストレージ容量は、レベル 4 と同じです。

レベル 6

パフォーマンスではなくデータの冗長性と保存が最重要事項であるが、レベル 1 の領域の非効率性が
許容できない場合は、これが RAID の一般的なレベルです。レベル 6 では、複雑なパリティース
キームを使用して、アレイ内の 2 つのドライブから失われたドライブから復旧できます。複雑なパ
リティースキームにより、ソフトウェア RAID デバイスで CPU 幅が大幅に高くなり、書き込みトラ
ンザクションの際に増大度が高まります。したがって、レベル 6 はレベル 4 や 5 よりもパフォーマ
ンスにおいて、非常に非対称です。
RAID レベル 6 アレイの合計容量は、RAID レベル 5 および 4 と同様に計算されますが、デバイス数
から追加パリティーストレージ領域用に 2 つのデバイス (1 ではなく) を引きます。

レベル 10

この RAID レベルでは、レベル 0 のパフォーマンスとレベル 1 の冗長性を組み合わせます。また、2
台以上のデバイスを使用するレベル 1 アレイの無駄なスペースをある程度削減することができます。
レベル 10 では、たとえば、データごとに 2 つのコピーのみを格納するように設定された 3 ドライブ
アレイを作成することができます。これにより、全体用のアレイサイズを最小デバイスのみと同じ
サイズ (3 つのデバイス、レベル 1 アレイなど) ではなく、最小デバイスのサイズの 1.5 倍にすること
ができます。これにより、CPU プロセスの使用量が RAID レベル 6 のようにパリティーを計算する
のを防ぎますが、これは領域効率が悪くなります。
RAID レベル 10 の作成は、インストール時には対応していません。インストール後に手動で作成で
きます。

リニア RAID

リニア RAID は、より大きな仮想ドライブを作成するドライブのグループ化です。
リニア RAID では、あるメンバードライブからチャンクが順次割り当てられます。最初のドライブが
完全に満杯になったときにのみ次のドライブに移動します。これにより、メンバードライブ間の I/O
操作が分割される可能性はないため、パフォーマンスの向上は見られません。リニア RAID は冗長性
がなく、信頼性は低下します。メンバードライブが 1 台でも故障すると、アレイ全体が使用できなく
なり、データが失われる可能性があります。容量はすべてのメンバーディスクの合計になります。

20.4. サポート対象の RAID 変換

RAID レベルを別のレベルに変換することが可能です。たとえば、RAID5 から RAID10 への変換はでき

Red Hat Enterprise Linux 8 ストレージデバイスの管理

130

RAID レベルを別のレベルに変換することが可能です。たとえば、RAID5 から RAID10 への変換はでき
ますが、RAID10 から RAID5 への変換はできません。次の表は、サポートされている RAID 変換を示し
ています。

RAID 変換レベル 変換手順 注記

RAID レベル 0 か
ら RAID レベル 4 # mdadm --grow /dev/md0 --level=4 -n3 --

add /dev/vdd

MD アレイに少なくとも 3 つ
のディスクが必要なため、
ディスクを追加する必要があ
ります。

RAID レベル 0 か
ら RAID レベル 5 # mdadm --grow /dev/md0 --level=5 -n3 --

add /dev/vdd

MD アレイに少なくとも 3 つ
のディスクが必要なため、
ディスクを追加する必要があ
ります。

RAID レベル 0 か
ら RAID レベル 10 # mdadm --grow /dev/md0 --level 10 -n 4 --

add /dev/vd[ef]

MD アレイに 2 つのディスク
を追加する必要があります。

RAID レベル 1 から
RAID レベル 0 # mdadm --grow /dev/md0 -l0

RAID レベル 1 から
RAID レベル 5 # mdadm --grow /dev/md0 --level=5

RAID レベル 4 か
ら RAID レベル 0 # mdadm --grow /dev/md0 --level=0

RAID レベル 4 か
ら RAID レベル 5 # mdadm --grow /dev/md0 --level=5

RAID レベル 5 から
RAID レベル 0 # mdadm --grow /dev/md0 --level=0

第20章 RAID の管理

131

RAID レベル 5 から
RAID レベル 1 # mdadm -CR /dev/md0 -l5 -n3

/dev/sd[abc] --assume-clean --size 1G

mdadm -D /dev/md0 | grep Level

mdadm --grow /dev/md0 --array-size
1048576

mdadm --grow -n 2 /dev/md0 --
backup=internal

mdadm --grow -l1 /dev/md0

mdadm -D /dev/md0 | grep Level

RAID レベル 5 から
RAID レベル 4 # mdadm --grow /dev/md0 --level=4

RAID レベル 5 から
RAID レベル 6 # mdadm --grow /dev/md0 --level=6 --add

/dev/vde

RAID レベル 5 から
RAID レベル 10 # mdadm --grow /dev/md0 --level=0 #

mdadm --grow /dev/md0 --level=10 --add
/dev/vde /dev/vdf

RAID レベル 5 から RAID レベ
ル 10 への変換は、次の 2 つの
ステップで行います。

1. RAID レベル 0 に変
換します。

2. RAID10 に変換すると
きに 2 つのディスク
を追加します。

RAID レベル 6 か
ら RAID レベル 5 # mdadm --grow /dev/md0 --level=5

RAID レベル 10 か
ら RAID レベル 0 # mdadm --grow /dev/md0 --level=0

RAID 変換レベル 変換手順 注記

注記

Red Hat Enterprise Linux 8 ストレージデバイスの管理

132

注記

RAID 5 から RAID0 および RAID4 への変換は、ALGORITHM_PARITY_N レイアウトで
のみ可能です。

RAID レベルを変換した後、mdadm --detail /dev/md0 または cat /proc/mdstat コマンドを使用して変
換を確認します。

関連情報

システム上の mdadm(8) man ページ

20.5. RAID サブシステム

RAID は次のサブシステムで構成されます。

ハードウェア RAID コントローラードライバー

ハードウェア RAID コントローラーに固有の RAID サブシステムはありません。特別な RAID チップ
セットを使用するため、ハードウェア RAID コントローラには独自のドライバが付属しています。こ
れらのドライバーを使用すると、システムは RAID セットを通常のディスクとして検出します。

mdraid

mdraid サブシステムはソフトウェア RAID ソリューションとして設計されました。これは、Red
Hat Enterprise Linux のソフトウェア RAID の推奨ソリューションでもあります。このサブシステム
では独自のメタデータ形式が使用され、通常はネイティブの MD メタデータと呼ばれます。
mdraid は、外部メタデータとして知られる他のメタデータ形式にも対応しています。Red Hat
Enterprise Linux 8 は mdraid と外部メタデータを使用して、Intel Rapid Storage (ISW) または Intel
Matrix Storage Manager (IMSM) セットと Storage Networking Industry Association (SNIA) Disk
Drive Format (DDF) にアクセスします。mdraid サブシステムセットは、mdadm ユーティリティー
によって設定および制御されます。

20.6. インストール中のソフトウェア RAID の作成

Redundant Arrays of Independent Disks (RAID) デバイスは、パフォーマンスを向上させ、一部の設定で
はより優れたフォールトトレランスを提供するように配置された複数のストレージデバイスから構築さ
れます。RAID デバイスの作成は 1 つのステップで終わり、必要に応じてディスクを追加または削除で
きます。システムでは、1 つの物理ディスクに 1 つの RAID パーティションが作成できるため、インス
トールプログラムで使用できるディスク数により、利用できる RAID デバイスのレベルが決定します。
たとえば、システムにディスクが 2 つある場合は、RAID 10 デバイスを作成することはできません。少
なくともディスクが 3 つ必要になるためです。RHEL は、システムのストレージパフォーマンスと信頼
性を最適化するために、インストールされたシステムにストレージを設定するための LVM および LVM
シンプロビジョニングを使用したソフトウェア RAID 0、RAID 1、RAID 4、RAID 5、RAID 6、および
RAID 10 タイプをサポートしています。

注記

64 ビットの IBM Z では、ストレージサブシステムが RAID を透過的に使用します。ソフ
トウェア RAID を手動で設定する必要はありません。

前提条件

RAID 設定オプションは、インストール用に複数のディスクを選択している場合にのみ表示され

第20章 RAID の管理

133

RAID 設定オプションは、インストール用に複数のディスクを選択している場合にのみ表示され
る。作成する RAID タイプに応じて、少なくとも 2 つのディスクが必要です。

マウントポイントを作成している。マウントポイントを設定して、RAID デバイスを設定しま
す。

インストール先 画面で カスタム ラジオボタンを選択している。

手順

1. 手動パーティション設定 画面の左側のペインで、必要なパーティションを選択します。

2. デバイス セクションの下にある 修正 をクリックします。マウントポイントの設定 ダイアログ
ボックスが開きます。

3. RAID デバイスに追加するディスクを選択して、選択 をクリックします。

4. デバイスタイプ ドロップダウンメニューをクリックして、RAID を選択します。

5. ファイルシステム のドロップダウンメニューをクリックして、目的のファイルシステムタイプ
を選択します。

6. RAID レベル ドロップダウンメニューをクリックして、目的の RAID レベルを選択します。

7. Update Settings をクリックして、変更を保存します。

8. 完了 をクリックして設定を適用し、インストールの概要 ウィンドウに戻ります。

関連情報

DM 整合性での RAID LV の作成

RAID の管理

20.7. インストール済みシステムでのソフトウェア RAID の作成

mdadm ユーティリティーを使用して、既存のシステムにソフトウェア Redundant Array of
Independent Disks (RAID) を作成できます。

前提条件

mdadm パッケージがインストールされている。

システム上に 2 つ以上のパーティションを作成している。詳細な手順は、parted を使用した
パーティションの作成 を参照してください。

手順

1. /dev/sda1 と /dev/sdc1 などの 2 つのブロックデバイスの RAID を作成します。

mdadm --create /dev/md0 --level=0 --raid-devices=2 /dev/sda1 /dev/sdc1
mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md0 started.

level_value オプションは、RAID レベルを定義します。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

134

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/configuring-raid-logical-volumes_configuring-and-managing-logical-volumes#creating-a-raid-lv-with-dm-integrity_configuring-raid-logical-volumes
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/managing-raid_managing-storage-devices

2. オプション: RAID のステータスを確認します。

mdadm --detail /dev/md0
/dev/md0:
 Version : 1.2
 Creation Time : Thu Oct 13 15:17:39 2022
 Raid Level : raid0
 Array Size : 18649600 (17.79 GiB 19.10 GB)
 Raid Devices : 2
 Total Devices : 2
 Persistence : Superblock is persistent

 Update Time : Thu Oct 13 15:17:39 2022
 State : clean
 Active Devices : 2
 Working Devices : 2
 Failed Devices : 0
 Spare Devices : 0
[...]

3. オプション: RAID 内の各デバイスに関する詳細情報を確認します。

mdadm --examine /dev/sda1 /dev/sdc1
/dev/sda1:
 Magic : a92b4efc
 Version : 1.2
 Feature Map : 0x1000
 Array UUID : 77ddfb0a:41529b0e:f2c5cde1:1d72ce2c
 Name : 0
 Creation Time : Thu Oct 13 15:17:39 2022
 Raid Level : raid0
 Raid Devices : 2
[...]

4. RAID ドライブにファイルシステムを作成します。

mkfs -t xfs /dev/md0

xfs を、ドライブをフォーマットするために選択したファイルシステムに置き換えます。

5. RAID ドライブのマウントポイントを作成してマウントします。

mkdir /mnt/raid1
mount /dev/md0 /mnt/raid1

/mnt/raid1 をマウントポイントに置き換えます。

システムの起動時に RHEL が md0 RAID デバイスを自動的にマウントするようにするには、デ
バイスのエントリを /etc/fstab ファイルに追加します。

/dev/md0 /mnt/raid1 xfs defaults 0 0

20.8. WEB コンソールで RAID の作成

第20章 RAID の管理

135

RHEL 8 Web コンソールで RAID を設定します。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

cockpit-storaged パッケージがシステムにインストールされている。

物理ディスクが接続されており、システムに認識されている。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. パネルで、Storage をクリックします。

3. Storage テーブルで、メニューボタンをクリックし、Create MDRAID device を選択します。

4. Create RAID Device フィールドに、新しい RAID の名前を入力します。

5. RAID レベル ドロップダウンリストで、使用する RAID レベルを選択します。

6. Chunk Size ドロップダウンリストから、使用可能なオプションのリストからサイズを選択しま
す。
Chunk Size の値は、データ書き込み用の各ブロックの大きさを指定します。たとえば、チャン
クサイズが 512 KiB の場合、システムは最初の 512 KiB を最初のディスクに書き込み、次の 512
KiB を次のディスクに書き込み、その次の 512 KiB をその次のディスクに書き込みます。RAID
に 3 つのディスクがある場合は、4 つ目の 512 KiB が最初のディスクに再度書き込まれます。

7. RAID に使用するディスクを選択します。

8. Create をクリックします。

検証

ストレージ セクションに移動し、RAID デバイス ボックスに新しい RAID が表示されることを
確認します。

20.9. WEB コンソールで RAID のフォーマット

RHEL 8 Web コンソールでソフトウェア RAID デバイスをフォーマットおよびマウントできます。

ボリュームのサイズや、選択するオプションによって、フォーマットに数分かかることがあります。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

136

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

cockpit-storaged パッケージがインストールされている。

物理ディスクが接続されており、システムに認識されている。

RAID が作成されている。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. パネルで、Storage をクリックします。

3. Storage テーブルで、フォーマットする RAID デバイスのメニューボタン ⋮ をクリックしま
す。

4. ドロップダウンメニューから Format を選択します。

5. Format フィールドに名前を入力します。

6. Mount Point フィールドにマウントパスを追加します。

7. Type ドロップダウンリストから、ファイルシステムのタイプを選択します。

8. オプション: ディスクに機密データが含まれており、それを上書きする場合は、Overwrite
existing data with zeros オプションをオンにします。オンにしない場合、ディスクヘッダーだ
けが書き換えられます。

9. Encryption ドロップダウンメニューで、暗号化の種類を選択します。ボリュームを暗号化しな
い場合は、No encryption を選択します。

10. At boot ドロップダウンメニューで、ボリュームをマウントするタイミングを選択します。

11. Mount options セクションで以下を実行します。

a. ボリュームを読み取り専用論理ボリュームとしてマウントする場合は、Mount read only
チェックボックスをオンにします。

b. デフォルトのマウントオプションを変更する場合は、Custom mount options チェック
ボックスをオンにして、マウントオプションを追加します。

12. RAID パーティションをフォーマットします。

パーティションをフォーマットしてマウントする場合は、Format and mount ボタンをク
リックします。

パーティションのみをフォーマットする場合は、Format only ボタンをクリックします。

検証

フォーマットが正常に完了すると、Storage ページの Storage テーブルでフォーマットされた
論理ボリュームの詳細を確認できます。

20.10. WEB コンソールを使用した RAID 上のパーティションテーブルの作

第20章 RAID の管理

137

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

20.10. WEB コンソールを使用した RAID 上のパーティションテーブルの作
成

RHEL 8 インターフェイスに作成した新しいソフトウェア RAID デバイスで、パーティションテーブル
を有する RAID をフォーマットします。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

cockpit-storaged パッケージがインストールされている。

物理ディスクが接続されており、システムに認識されている。

RAID が作成されている。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. パネルで、Storage をクリックします。

3. Storage テーブルで、パーティションテーブルを作成する RAID デバイスをクリックします。

4. MDRAID device セクションのメニューボタン ⋮ をクリックします。

5. ドロップダウンメニューから、Create partition table を選択します。

6. Initialize disk ダイアログボックスで、以下を選択します。

a. パーティション設定:

すべてのシステムおよびデバイスとの互換性をパーティションに持たせる必要がある場
合は、MBR を選択します。

最新のシステムとの互換性をパーティションに持たせる必要があり、2 TB を超える
ハードディスクが必要な場合は、GPT を選択します。

パーティション設定が必要ない場合は、No partitioning を選択します。

b. オーバーライト:

ディスクに機密データが含まれており、それを上書きする場合は、Overwrite existing
data with zeros オプションをオンにします。オンにしない場合、ディスクヘッダーだ
けが書き換えられます。

7. Initialize をクリックします。

20.11. WEB コンソールを使用した RAID 上のパーティションの作成

Red Hat Enterprise Linux 8 ストレージデバイスの管理

138

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

既存のパーティションテーブルにパーティションを作成します。パーティションを作成した後、さらに
パーティションを作成できます。

前提条件

RHEL 8 Web コンソールをインストールし、アクセスできる。詳細は、Web コンソールのイン
ストールおよび有効化 を参照してください。

cockpit-storaged パッケージがシステムにインストールされている。

RAID 上にパーティションテーブルが作成されている。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. パネルで、Storage をクリックします。

3. パーティションを作成する RAID デバイスをクリックします。

4. RAID デバイスページで、GPT partitions セクションまでスクロールし、メニューボタン [⋮]
をクリックします。

5. Create partition をクリックし、Create partition フィールドにファイルシステムの名前を入力
します。名前にスペースは使用しないでください。

6. Mount Point フィールドにマウントパスを入力します。

7. Type ドロップダウンリストで、ファイルシステムのタイプを選択します。

8. Size スライダーで、パーティションのサイズを設定します。

9. オプション: ディスクに機密データが含まれており、それを上書きする場合は、Overwrite
existing data with zeros を選択します。オンにしない場合、ディスクヘッダーだけが書き換え
られます。

10. Encryption ドロップダウンメニューで、暗号化の種類を選択します。ボリュームを暗号化しな
い場合は、No encryption を選択します。

11. At boot ドロップダウンメニューで、ボリュームをマウントするタイミングを選択します。

12. Mount options セクションで以下を実行します。

a. ボリュームを読み取り専用論理ボリュームとしてマウントする場合は、Mount read only
チェックボックスをオンにします。

b. デフォルトのマウントオプションを変更する場合は、Custom mount options チェック
ボックスをオンにして、マウントオプションを追加します。

13. パーティションを作成します。

パーティションを作成してマウントする場合は、Create and mount ボタンをクリックしま
す。

パーティションのみを作成する場合は、Create only ボタンをクリックします。

ボリュームのサイズや、選択するオプションによって、フォーマットに数分かかることが

第20章 RAID の管理

139

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

ボリュームのサイズや、選択するオプションによって、フォーマットに数分かかることが
あります。

検証

フォーマットされた論理ボリュームの詳細は、メインストレージページの Storage テーブルで
確認できます。

20.12. WEB コンソールを使用した RAID 上のボリュームグループの作成

ソフトウェア RAID からボリュームグループを構築

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

cockpit-storaged パッケージがインストールされている。

フォーマットされておらず、マウントされていない RAID デバイスがある。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. パネルで、Storage をクリックします。

3. Storage テーブルで、メニューボタン [⋮] をクリックし、Create LVM2 volume group を選択
します。

4. Create LVM2 volume group フィールドに、新しいボリュームグループの名前を入力します。

5. Disks リストで、RAID デバイスを選択します。
リストに RAID が表示されない場合は、システムから RAID のマウントを解除します。RAID デ
バイスは、RHEL 8 システムでは使用できません。

6. Create をクリックします。

20.13. STORAGE RHEL システムロールを使用した RAID ボリュームの設定

storage システムロールを使用すると、Red Hat Ansible Automation Platform と Ansible-Core を使用
して RHEL に RAID ボリュームを設定できます。要件に合わせて RAID ボリュームを設定するためのパ
ラメーターを使用して、Ansible Playbook を作成します。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

140

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

警告

特定の状況でデバイス名が変更する場合があります。たとえば、新しいディスクを
システムに追加するときなどです。したがって、データの損失を防ぐために、
Playbook では永続的な命名属性を使用してください。永続的な命名属性の詳細
は、永続的な命名属性の概要 を参照してください。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.storage/README.md ファイルを参照してくださ
い。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。



- name: Manage local storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Create a RAID on sdd, sde, sdf, and sdg
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_safe_mode: false
 storage_volumes:
 - name: data
 type: raid
 disks: [sdd, sde, sdf, sdg]
 raid_level: raid0
 raid_chunk_size: 32 KiB
 mount_point: /mnt/data
 state: present

第20章 RAID の管理

141

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/assembly_overview-of-persistent-naming-attributes_managing-storage-devices
https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

$ ansible-playbook ~/playbook.yml

検証

アレイが正しく作成されたことを確認します。

ansible managed-node-01.example.com -m command -a 'mdadm --detail
/dev/md/data'

関連情報

/usr/share/ansible/roles/rhel-system-roles.storage/README.md ファイル

/usr/share/doc/rhel-system-roles/storage/ ディレクトリー

20.14. RAID の拡張

mdadm ユーティリティーの --grow オプションを使用して RAID を拡張できます。

前提条件

十分なディスク領域

parted パッケージがインストールされている

手順

1. RAID パーティションを拡張します。詳細は、parted を使用したパーティションのサイズ変更
を参照してください。

2. RAID をパーティション容量の最大値まで拡張します。

mdadm --grow --size=max /dev/md0

特定のサイズを設定するには、--size パラメータの値を kB で記述します (例: --size=524228)。

3. ファイルシステムのサイズを拡大します。たとえば、ボリュームが XFS を使用し、/mnt/ にマ
ウントされている場合は、次のように入力します。

xfs_growfs /mnt/

関連情報

システム上の mdadm(8) man ページ

ファイルシステムの管理

20.15. RAID を縮小

mdadm ユーティリティの --grow オプションを使用して RAID を縮小できます。

重要

Red Hat Enterprise Linux 8 ストレージデバイスの管理

142

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-partitions_managing-storage-devices#proc_resizing-a-partition-with-parted_getting-started-with-partitions
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_file_systems/index

重要

XFS ファイルシステムは縮小に対応していません。

前提条件

parted パッケージがインストールされている

手順

1. ファイルシステムを縮小します。詳細は、ファイルシステムの管理 を参照してください。

2. RAID のサイズを 512 MB などに減らします。

mdadm --grow --size=524228 /dev/md0

--size パラメータを kB で記述します。

3. パーティションのサイズを、必要なサイズまで縮小します。

関連情報

システム上の mdadm(8) man ページ

parted でパーティションのサイズ変更

20.16. インストール後にルートディスクを RAID1 に変換する

Red Hat Enterprise Linux 8 をインストールした後、非 RAID ルートディスクを RAID1 ミラーに変換でき
ます。

PowerPC (PPC) アーキテクチャーでは、以下の追加手順を行う必要があります。

前提条件

Red Hat ナレッジベースソリューション How do I convert my root disk to RAID1 after
installation of Red Hat Enterprise Linux 7? の手順を完了した。

注記

PowerPC マシンでは grub2-install /dev/sda コマンドを実行しても動作せず、
エラーが返されますが、システムは想定どおりに起動します。

手順

1. PowerPC Reference Platform (PReP) 起動パーティションの内容を /dev/sda1 から /dev/sdb1
にコピーします。

dd if=/dev/sda1 of=/dev/sdb1

2. 両方のディスクの最初のパーティションで prep フラグと boot フラグを更新します。

$ parted /dev/sda set 1 prep on

第20章 RAID の管理

143

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_file_systems/index
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-partitions_managing-storage-devices#proc_resizing-a-partition-with-parted_getting-started-with-partitions
https://access.redhat.com/solutions/2390831

$ parted /dev/sda set 1 boot on

$ parted /dev/sdb set 1 prep on
$ parted /dev/sdb set 1 boot on

20.17. 高度な RAID デバイスの作成

場合によっては、インストールが完了する前に作成されたアレイにオペレーティングシステムをインス
トールすることを推奨します。通常、これは複雑な RAID デバイスに /boot または root ファイルシステ
ムアレイを設定することを意味します。このような場合、Anaconda インストーラーでサポートされて
いないアレイオプションを使用する必要がある場合があります。これを回避するには、以下の手順を行
います。

注記

インストーラーの制限されたレスキューモードには man ページは含まれませ
ん。mdadm と md の両方の man ページには、カスタム RAID アレイを作成するための
有用な情報が含まれており、回避策全体で必要になる場合があります。

手順

1. インストールディスクを挿入します。

2. 初回起動時に、Install または Upgrade ではなく、Rescue Mode を選択します。システムが
Rescue mode で完全に起動すると、コマンドラインターミナルが表示されます。

3. このターミナルから、次のコマンドを実行します。

a. parted コマンドを使用して、ターゲットハードドライブに RAID パーティションを作成し
ます。

b. 使用可能なすべての設定とオプションを使用して、これらのパーティションから mdadm
コマンドを使用して手動で RAID アレイを作成します。

4. オプション: アレイを作成したら、アレイ上にもファイルシステムを作成します。

5. コンピューターを再起動して、インストール または 更新 を選択して通常通りにインストール
します。Anaconda インストーラーはシステム内のディスクを検索するため、既存の RAID デバ
イスが見つかります。

6. システムのディスクの使い方を求められたら、カスタムレイアウト を選択して 次へ をクリッ
クします。デバイス一覧に、既存の MD RAID デバイスが表示されます。

7. RAID デバイスを選択し、Edit をクリックします。

8. マウントポイントを設定し、必要に応じて、以前に作成していない場合は使用するファイルシ
ステムのタイプを設定し、Done をクリックします。Anaconda は、この既存の RAID デバイス
にインストールし、Rescue モードで作成したときに選択したカスタムオプションを保持しま
す。

20.18. RAID を監視するための電子メール通知の設定

mdadm ツールを使用して RAID を監視するように電子メールアラートを設定できます。MAILADDR 変

Red Hat Enterprise Linux 8 ストレージデバイスの管理

144

mdadm ツールを使用して RAID を監視するように電子メールアラートを設定できます。MAILADDR 変
数が必要な電子メールアドレスに設定されると、監視システムは追加された電子メールアドレスにア
ラートを送信します。

前提条件

mdadm パッケージがインストールされている。

メールサービスが設定されている。

手順

1. RAID の詳細をスキャンして、アレイを監視するための /etc/mdadm.conf 設定ファイルを作成
します。

mdadm --detail --scan >> /etc/mdadm.conf

ARRAY および MAILADDR は必須の変数であることに注意してください。

2. 任意のテキストエディターで /etc/mdadm.conf 設定ファイルを開き、MAILADDR 変数に通知
用のメールアドレスを追加します。たとえば、次の行を追加します。

MAILADDR example@example.com

example@example.com は、アレイの監視からアラートを受信するためのメールアドレスで
す。

3. /etc/mdadm.conf ファイルに変更を保存して、閉じます。

関連情報

システム上の mdadm.conf(5) man ページ

20.19. RAID での障害のあるディスクの置き換え

残りのディスクを使用して、故障したディスクからデータを再構築できます。データを正常に再構築す
るために最低限必要な残りのディスクの量は、RAID レベルとディスクの総数によって決まります。

この手順では、/dev/md0 RAID に 4 つのディスクが含まれています。 /dev/sdd ディスクに障害が発
生したため、/dev/sdf ディスクと交換する必要があります。

前提条件

交換用スペアディスク。

mdadm パッケージがインストールされている。

手順

1. 障害が発生したディスクを確認します。

a. カーネルログを表示します。

journalctl -k -f

第20章 RAID の管理

145

b. 次のようなメッセージを検索します。

md/raid:md0: Disk failure on sdd, disabling device.

md/raid:md0: Operation continuing on 3 devices.

c. キーボードの Ctrl+C を押して、journalctl プログラムを終了します。

2. 障害の発生したディスクに faulty のマークを付けます。

mdadm --manage /dev/md0 --fail /dev/sdd

3. オプション: 障害が発生したディスクが正しくマークされているかどうかを確認します。

mdadm --detail /dev/md0

出力の最後には、ディスク /dev/sdd のステータスが faulty の /dev/md0 RAID 内にあるディ
スクのリストが表示されます。

Number Major Minor RaidDevice State
 0 8 16 0 active sync /dev/sdb
 1 8 32 1 active sync /dev/sdc
 - 0 0 2 removed
 3 8 64 3 active sync /dev/sde

 2 8 48 - faulty /dev/sdd

4. 障害が発生したディスクを RAID から取り外します。

mdadm --manage /dev/md0 --remove /dev/sdd

警告

RAID が別のディスク障害に耐えられない場合は、新しいディスクのステー
タスが active sync になるまでディスクを取り外さないでください。watch
cat /proc/mdstat コマンドを使用すると、進捗を監視できます。

5. 新しいディスクを RAID に追加します。

mdadm --manage /dev/md0 --add /dev/sdf

/dev/md0 RAID には新しいディスク /dev/sdf が含まれるようになり、mdadm サービスは他
のディスクからデータのコピーを自動的に開始します。

検証

アレイの詳細を確認します。



Red Hat Enterprise Linux 8 ストレージデバイスの管理

146

mdadm --detail /dev/md0

このコマンドの出力の最後に表示される /dev/md0 RAID 内のディスクのリストで、新しい
ディスクのステータスが spare rebuilding である場合、データはまだ他のディスクからコピー
されています。

Number Major Minor RaidDevice State
 0 8 16 0 active sync /dev/sdb
 1 8 32 1 active sync /dev/sdc
 4 8 80 2 spare rebuilding /dev/sdf
 3 8 64 3 active sync /dev/sde

データのコピーが完了すると、新しいディスクは active sync 状態になります。

関連情報

RAID を監視するための電子メール通知の設定

20.20. RAID ディスクの修復

repair オプションを使用して、RAID アレイ内のディスクを修復できます。

前提条件

mdadm パッケージがインストールされている。

手順

1. 障害が発生したディスクの動作についてアレイを確認します。

echo check > /sys/block/md0/md/sync_action

これによりアレイがチェックされ、/sys/block/md0/md/sync_action ファイルに同期アクショ
ンが表示されます。

2. /sys/block/md0/md/sync_action ファイルを任意のテキストエディターで開き、ディスク同期
の失敗に関するメッセージがあるかどうかを確認します。

3. /sys/block/md0/md/mismatch_cnt ファイルを表示します。mismatch_cnt パラメーターが 0
でない場合は、RAID ディスクを修復する必要があることを意味します。

4. アレイ内のディスクを修復します。

echo repair > /sys/block/md0/md/sync_action

これにより、アレイ内のディスクが修復され、結果が /sys/block/md0/md/sync_action ファイ
ルに書き込まれます。

5. 同期の進行状況を表示します。

cat /sys/block/md0/md/sync_action
repair

第20章 RAID の管理

147

cat /proc/mdstat
Personalities : [raid0] [raid6] [raid5] [raid4] [raid1]
md0 : active raid1 sdg[1] dm-3[0]
 511040 blocks super 1.2 [2/2] [UU]
unused devices: <none>

Red Hat Enterprise Linux 8 ストレージデバイスの管理

148

第21章 LUKS を使用したブロックデバイスの暗号化
ディスク暗号化を使用すると、ブロックデバイス上のデータを暗号化して保護できます。デバイスの復
号化されたコンテンツにアクセスするには、認証としてパスフレーズまたは鍵を入力します。これは、
デバイスがシステムから物理的に取り外された場合でも、デバイスのコンテンツを保護するのに役立つ
ため、モバイルコンピューターやリムーバブルメディアにとって重要です。LUKS 形式は、Red Hat
Enterprise Linux におけるブロックデバイスの暗号化のデフォルト実装です。

21.1. LUKS ディスクの暗号化

Linux Unified Key Setup-on-disk-format (LUKS) は、暗号化されたデバイスの管理を簡素化するツール
セットを提供します。LUKS を使用すると、ブロックデバイスを暗号化し、複数のユーザーキーでマス
ターキーを復号化できるようになります。パーティションの一括暗号化には、このマスターキーを使用
します。

Red Hat Enterprise Linux は、LUKS を使用してブロックデバイスの暗号化を実行します。デフォルトで
はインストール時に、ブロックデバイスを暗号化するオプションが指定されていません。ディスクを暗
号化するオプションを選択すると、コンピューターを起動するたびにパスフレーズの入力が求められま
す。このパスフレーズは、パーティションを復号化するバルク暗号鍵のロックを解除します。デフォル
トのパーティションテーブルを変更する場合は、暗号化するパーティションを選択できます。この設定
は、パーティションテーブル設定で行われます。

Ciphers

LUKS に使用されるデフォルトの暗号は aes-xts-plain64 です。LUKS のデフォルトの鍵サイズは 512
ビットです。Anaconda XTS モードを使用した LUKS のデフォルトの鍵サイズは 512 ビットです。使用
可能な暗号は次のとおりです。

高度暗号化標準 (Advanced Encryption Standard, AES)

Twofish

Serpent

LUKS によって実行される操作

LUKS は、ブロックデバイス全体を暗号化するため、脱着可能なストレージメディアやラップ
トップのディスクドライブといった、モバイルデバイスのコンテンツを保護するのに適してい
ます。

暗号化されたブロックデバイスの基本的な内容は任意であり、スワップデバイスの暗号化に役
立ちます。また、とりわけデータストレージ用にフォーマットしたブロックデバイスを使用す
る特定のデータベースに関しても有用です。

LUKS は、既存のデバイスマッパーのカーネルサブシステムを使用します。

LUKS はパスフレーズのセキュリティーを強化し、辞書攻撃から保護します。

LUKS デバイスには複数のキースロットが含まれているため、バックアップキーやパスフレー
ズを追加できます。

重要

第21章 LUKS を使用したブロックデバイスの暗号化

149

重要

LUKS は次のシナリオには推奨されません。

LUKS などのディスク暗号化ソリューションは、システムの停止時にしかデータ
を保護しません。システムの電源がオンになり、LUKS がディスクを復号化する
と、そのディスクのファイルは、そのファイルにアクセスできるすべてのユー
ザーが使用できます。

同じデバイスに対する個別のアクセスキーを複数のユーザーが持つ必要があるシ
ナリオ。LUKS1 形式はキースロットを 8 個提供し、LUKS2 形式はキースロット
を最大 32 個提供します。

ファイルレベルの暗号化を必要とするアプリケーション。

関連情報

LUKS プロジェクトのホームページ

LUKS オンディスクフォーマットの仕様

FIPS 197: Advanced Encryption Standard (AES)

21.2. RHEL の LUKS バージョン

Red Hat Enterprise Linux では、LUKS 暗号化のデフォルト形式は LUKS2 です。古い LUKS1 形式は引き
続き完全にサポートされており、以前の Red Hat Enterprise Linux リリースと互換性のある形式で提供
されます。LUKS2 再暗号化は、LUKS1 再暗号化と比較して、より堅牢で安全に使用できる形式と考え
られています。

LUKS2 形式を使用すると、バイナリー構造を変更することなく、さまざまな部分を後に更新できま
す。LUKS2 は、内部的にメタデータに JSON テキスト形式を使用し、メタデータの冗長性を提供し、
メタデータの破損を検出し、メタデータのコピーから自動的に修復します。

重要

LUKS2 と LUKS1 はディスクの暗号化に異なるコマンドを使用するため、LUKS1 のみを
サポートするシステムでは LUKS2 を使用しないでください。LUKS バージョンに誤った
コマンドを使用すると、データが失われる可能性があります。

表21.1 LUKS バージョンに応じた暗号化コマンド

LUKS バージョン 暗号化コマンド

LUKS2 cryptsetup reencrypt

LUKS1 cryptsetup-reencrypt

オンラインの再暗号化

LUKS2 形式は、デバイスが使用中の間に、暗号化したデバイスの再暗号化に対応します。たとえば、
以下のタスクを実行するにあたり、デバイスでファイルシステムをアンマウントする必要はありませ
ん。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

150

https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://gitlab.com/cryptsetup/LUKS2-docs/blob/master/luks2_doc_wip.pdf
https://doi.org/10.6028/NIST.FIPS.197-upd1

ボリュームキーの変更

暗号化アルゴリズムの変更
暗号化されていないデバイスを暗号化する場合は、ファイルシステムのマウントを解除する必
要があります。暗号化の短い初期化後にファイルシステムを再マウントできます。

LUKS1 形式は、オンライン再暗号化に対応していません。

変換

特定の状況では、LUKS1 を LUKS2 に変換できます。具体的には、以下のシナリオでは変換ができませ
ん。

LUKS1 デバイスが、Policy-Based Decryption (PBD) Clevis ソリューションにより使用されてい
るとマークされている。cryptsetup ツールは、luksmeta メタデータが検出されると、そのデ
バイスを変換することを拒否します。

デバイスがアクティブになっている。デバイスが非アクティブ状態でなければ、変換すること
はできません。

21.3. LUKS2 再暗号化中のデータ保護のオプション

LUKS2 では、再暗号化プロセスで、パフォーマンスやデータ保護の優先度を設定する複数のオプショ
ンを選択できます。resilience オプションには次のモードが用意されています。cryptsetup reencrypt
--resilience resilience-mode /dev/<device_ID> コマンドを使用すると、これらのモードのいずれかを
選択できます。<device_ID> は、デバイスの ID に置き換えてください。

checksum

デフォルトのモード。データ保護とパフォーマンスのバランスを取ります。
このモードでは、再暗号化領域内のセクターのチェックサムが個別に保存されます。チェックサム
は、LUKS2 によって再暗号化されたセクターについて、復旧プロセスで検出できます。このモード
では、ブロックデバイスセクターの書き込みがアトミックである必要があります。

journal

最も安全なモードですが、最も遅いモードでもあります。このモードでは、再暗号化領域をバイナ
リー領域にジャーナル化するため、LUKS2 はデータを 2 回書き込みます。

none

none モードではパフォーマンスが優先され、データ保護は提供されません。SIGTERM シグナルや
ユーザーによる Ctrl+C キーの押下など、安全なプロセス終了からのみデータを保護します。予期し
ないシステム障害やアプリケーション障害が発生すると、データが破損する可能性があります。

LUKS2 の再暗号化プロセスが強制的に突然終了した場合、LUKS2 は以下のいずれかの方法で復旧を実
行できます。

自動

次のいずれかのアクションを実行すると、次回の LUKS2 デバイスを開くアクション中に自動復旧ア
クションがトリガーされます。

cryptsetup open コマンドを実行する。

systemd-cryptsetup コマンドを使用してデバイスを接続する。

手動

第21章 LUKS を使用したブロックデバイスの暗号化

151

LUKS2 デバイスで cryptsetup repair /dev/<device_ID> コマンドを使用します。

関連情報

システム上の cryptsetup-reencrypt(8) および cryptsetup-repair(8) man ページ

21.4. LUKS2 を使用したブロックデバイスの既存データの暗号化

LUKS2 形式を使用して、まだ暗号化されていないデバイスの既存のデータを暗号化できます。新しい
LUKS ヘッダーは、デバイスのヘッドに保存されます。

前提条件

ブロックデバイスにファイルシステムがある。

データのバックアップを作成している。

警告

ハードウェア、カーネル、または人的ミスにより、暗号化プロセス時に
データが失われる場合があります。データの暗号化を開始する前に、信頼
性の高いバックアップを作成してください。

手順

1. 暗号化するデバイスにあるファイルシステムのマウントをすべて解除します。次に例を示しま
す。

umount /dev/mapper/vg00-lv00

2. LUKS ヘッダーを保存するための空き容量を確認します。シナリオに合わせて、次のいずれか
のオプションを使用します。

論理ボリュームを暗号化する場合は、以下のように、ファイルシステムのサイズを変更せ
ずに、論理ボリュームを拡張できます。以下に例を示します。

lvextend -L+32M /dev/mapper/vg00-lv00

parted などのパーティション管理ツールを使用してパーティションを拡張します。

このデバイスのファイルシステムを縮小します。ext2、ext3、または ext4 のファイルシス
テムには resize2fs ユーティリティーを使用できます。XFS ファイルシステムは縮小でき
ないことに注意してください。

3. 暗号化を初期化します。

cryptsetup reencrypt --encrypt --init-only --reduce-device-size 32M /dev/mapper/vg00-lv00
lv00_encrypted



Red Hat Enterprise Linux 8 ストレージデバイスの管理

152

/dev/mapper/lv00_encrypted is now active and ready for online encryption.

4. デバイスをマウントします。

mount /dev/mapper/lv00_encrypted /mnt/lv00_encrypted

5. 永続的なマッピングのエントリーを /etc/crypttab ファイルに追加します。

a. luksUUID を見つけます。

cryptsetup luksUUID /dev/mapper/vg00-lv00

a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325

b. 任意のテキストエディターで /etc/crypttab を開き、このファイルにデバイスを追加しま
す。

$ vi /etc/crypttab

lv00_encrypted UUID=a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325 none

a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325 は、デバイスの luksUUID に置き換えます。

c. dracut で initramfs を更新します。

$ dracut -f --regenerate-all

6. /etc/fstab ファイルに永続的なマウントのエントリーを追加します。

a. アクティブな LUKS ブロックデバイスのファイルシステムの UUID を見つけます。

$ blkid -p /dev/mapper/lv00_encrypted

/dev/mapper/lv00-encrypted: UUID="37bc2492-d8fa-4969-9d9b-bb64d3685aa9"
BLOCK_SIZE="4096" TYPE="xfs" USAGE="filesystem"

b. 任意のテキストエディターで /etc/fstab を開き、このファイルにデバイスを追加します。
次に例を示します。

$ vi /etc/fstab

UUID=37bc2492-d8fa-4969-9d9b-bb64d3685aa9 /home auto rw,user,auto 0

37bc2492-d8fa-4969-9d9b-bb64d3685aa9 は、ファイルシステムの UUID に置き換え
ます。

7. オンライン暗号化を再開します。

cryptsetup reencrypt --resume-only /dev/mapper/vg00-lv00

Enter passphrase for /dev/mapper/vg00-lv00:
Auto-detected active dm device 'lv00_encrypted' for data device /dev/mapper/vg00-lv00.
Finished, time 00:31.130, 10272 MiB written, speed 330.0 MiB/s

第21章 LUKS を使用したブロックデバイスの暗号化

153

検証

1. 既存のデータが暗号化されているかどうかを確認します。

cryptsetup luksDump /dev/mapper/vg00-lv00

LUKS header information
Version: 2
Epoch: 4
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 33554432 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
[...]

2. 暗号化された空のブロックデバイスのステータスを表示します。

cryptsetup status lv00_encrypted

/dev/mapper/lv00_encrypted is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/mapper/vg00-lv00

関連情報

システム上の cryptsetup(8)、cryptsetup-reencrypt(8)、lvextend(8)、resize2fs(8)、および
parted(8) man ページ

21.5. 独立したヘッダーがある LUKS2 を使用してブロックデバイスの既存
データの暗号化

LUKS ヘッダーを保存するための空き領域を作成せずに、ブロックデバイスの既存のデータを暗号化で
きます。ヘッダーは、追加のセキュリティー層としても使用できる、独立した場所に保存されます。こ
の手順では、LUKS2 暗号化形式を使用します。

前提条件

ブロックデバイスにファイルシステムがある。

データがバックアップ済みである。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

154

警告

ハードウェア、カーネル、または人的ミスにより、暗号化プロセス時に
データが失われる場合があります。データの暗号化を開始する前に、信頼
性の高いバックアップを作成してください。

手順

1. 以下のように、そのデバイスのファイルシステムをすべてアンマウントします。

umount /dev/<nvme0n1p1>

<nvme0n1p1> は、アンマウントするパーティションに対応するデバイス識別子に置き換えま
す。

2. 暗号化を初期化します。

cryptsetup reencrypt --encrypt --init-only --header </home/header> /dev/<nvme0n1p1>
<nvme_encrypted>

WARNING!
========
Header file does not exist, do you want to create it?

Are you sure? (Type 'yes' in capital letters): YES
Enter passphrase for </home/header>:
Verify passphrase:
/dev/mapper/<nvme_encrypted> is now active and ready for online encryption.

以下のように置き換えます。

</home/header> には、独立した LUKS ヘッダーを含むファイルへのパスを指定します。
後で暗号化したデバイスのロックを解除するために、独立した LUKS ヘッダーにアクセス
できる必要があります。

<nvme_encrypted> は、暗号化後に作成されるデバイスマッパーの名前に置き換えます。

3. デバイスをマウントします。

mount /dev/mapper/<nvme_encrypted> /mnt/<nvme_encrypted>

4. 永続的なマッピングのエントリーを /etc/crypttab ファイルに追加します。

<nvme_encrypted> /dev/disk/by-id/<nvme-partition-id> none header=</home/header>

<nvme-partition-id> は、NVMe パーティションの識別子に置き換えます。

5. dracut を使用して initramfs を再生成します。

dracut -f --regenerate-all -v



第21章 LUKS を使用したブロックデバイスの暗号化

155

6. /etc/fstab ファイルに永続的なマウントのエントリーを追加します。

a. アクティブな LUKS ブロックデバイスのファイルシステムの UUID を見つけます。

$ blkid -p /dev/mapper/<nvme_encrypted>

/dev/mapper/<nvme_encrypted>: UUID="37bc2492-d8fa-4969-9d9b-bb64d3685aa9"
BLOCK_SIZE="4096" TYPE="xfs" USAGE="filesystem"

b. テキストエディターで /etc/fstab を開き、このファイルにデバイスを追加します。次に例
を示します。

UUID=<file_system_UUID> /home auto rw,user,auto 0

<file_system_UUID> は、前の手順で見つかったファイルシステムの UUID に置き換えま
す。

7. オンライン暗号化を再開します。

cryptsetup reencrypt --resume-only --header </home/header> /dev/<nvme0n1p1>

Enter passphrase for /dev/<nvme0n1p1>:
Auto-detected active dm device '<nvme_encrypted>' for data device /dev/<nvme0n1p1>.
Finished, time 00m51s, 10 GiB written, speed 198.2 MiB/s

検証

1. 独立したヘッダーがある LUKS2 を使用するブロックデバイスの既存のデータが暗号化されてい
るかどうかを確認します。

cryptsetup luksDump </home/header>

LUKS header information
Version: 2
Epoch: 88
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: c4f5d274-f4c0-41e3-ac36-22a917ab0386
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 0 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]
[...]

2. 暗号化された空のブロックデバイスのステータスを表示します。

cryptsetup status <nvme_encrypted>

Red Hat Enterprise Linux 8 ストレージデバイスの管理

156

/dev/mapper/<nvme_encrypted> is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/<nvme0n1p1>

関連情報

システム上の cryptsetup(8) および cryptsetup-reencrypt(8) man ページ

21.6. LUKS2 を使用した空のブロックデバイスの暗号化

LUKS2 形式を使用して、空のブロックデバイスを暗号化して、暗号化ストレージとして使用できま
す。

前提条件

空のブロックデバイス。lsblk などのコマンドを使用して、そのデバイス上に実際のデータ
(ファイルシステムなど) がないかどうかを確認できます。

手順

1. 暗号化した LUKS パーティションとしてパーティションを設定します。

cryptsetup luksFormat /dev/nvme0n1p1

WARNING!
========
This will overwrite data on /dev/nvme0n1p1 irrevocably.
Are you sure? (Type 'yes' in capital letters): YES
Enter passphrase for /dev/nvme0n1p1:
Verify passphrase:

2. 暗号化した LUKS パーティションを開きます。

cryptsetup open /dev/nvme0n1p1 nvme0n1p1_encrypted

Enter passphrase for /dev/nvme0n1p1:

これにより、パーティションのロックが解除され、デバイスマッパーを使用してパーティショ
ンが新しいデバイスにマッピングされます。暗号化されたデータを上書きしないように、この
コマンドは、デバイスが暗号化されたデバイスであり、/dev/mapper/device_mapped_name
パスを使用して LUKS を通じてアドレス指定されることをカーネルに警告します。

3. 暗号化されたデータをパーティションに書き込むためのファイルシステムを作成します。この
パーティションには、デバイスマップ名を介してアクセスする必要があります。

mkfs -t ext4 /dev/mapper/nvme0n1p1_encrypted

4. デバイスをマウントします。

mount /dev/mapper/nvme0n1p1_encrypted mount-point

第21章 LUKS を使用したブロックデバイスの暗号化

157

検証

1. 空のブロックデバイスが暗号化されているかどうかを確認します。

cryptsetup luksDump /dev/nvme0n1p1

LUKS header information
Version: 2
Epoch: 3
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: 34ce4870-ffdf-467c-9a9e-345a53ed8a25
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 16777216 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]
[...]

2. 暗号化された空のブロックデバイスのステータスを表示します。

cryptsetup status nvme0n1p1_encrypted

/dev/mapper/nvme0n1p1_encrypted is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/nvme0n1p1
 sector size: 512
 offset: 32768 sectors
 size: 20938752 sectors
 mode: read/write

関連情報

システム上の cryptsetup(8)、cryptsetup-open(8)、および cryptsetup-lusFormat(8) man
ページ

21.7. WEB コンソールでの LUKS パスフレーズの設定

システムの既存の論理ボリュームに暗号化を追加する場合は、ボリュームをフォーマットすることでし
か実行できません。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

158

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

cockpit-storaged パッケージがシステムにインストールされている。

暗号化なしで、既存の論理ボリュームを利用できます。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. パネルで、Storage をクリックします。

3. Storage テーブルで、暗号化するストレージデバイスのメニューボタン ⋮ をクリック
し、Format をクリックします。

4. Encryption field で、暗号化仕様 LUKS1 または LUKS2 を選択します。

5. 新しいパスフレーズを設定し、確認します。

6. オプション: さらなる暗号化オプションを変更します。

7. フォーマット設定の最終処理

8. Format をクリックします。

21.8. WEB コンソールで LUKS パスフレーズの変更

Web コンソールで、暗号化されたディスクまたはパーティションで LUKS パスフレーズを変更しま
す。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

cockpit-storaged パッケージがシステムにインストールされている。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. パネルで、Storage をクリックします。

3. Storage テーブルで、暗号化されたデータを含むディスクを選択します。

4. ディスクページで、Keys セクションまでスクロールし、編集ボタンをクリックします。

5. パスフレーズの変更 ダイアログウィンドウで、以下を行います。

第21章 LUKS を使用したブロックデバイスの暗号化

159

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

a. 現在のパスフレーズを入力します。

b. 新しいパスフレーズを入力します。

c. 新しいパスフレーズを確認します。

6. Save をクリックします。

21.9. コマンドラインを使用した LUKS パスフレーズの変更

コマンドラインを使用して、暗号化されたディスクまたはパーティションの LUKS パスフレーズを変更
します。cryptsetup ユーティリティーを使用すると、さまざまな設定オプションと機能を使用して暗
号化プロセスを制御し、既存の自動化ワークフローにプロセスを統合できます。

前提条件

root 特権、または sudo を使用して管理コマンドを入力する権限がある。

手順

1. LUKS 暗号化デバイスの既存のパスフレーズを変更します。

cryptsetup luksChangeKey /dev/<device_ID>

<device_ID> は、デバイス指定子 (例: sda) に置き換えます。

複数のキースロットが設定されている場合は、使用するスロットを指定できます。

cryptsetup luksChangeKey /dev/<device_ID> --key-slot <slot_number>

<slot_number> は、変更するキースロットの番号に置き換えます。

2. 現在のパスフレーズと新しいパスフレーズを入力します。

Enter passphrase to be changed:
Enter new passphrase:
Verify passphrase:

3. 新しいパスフレーズを検証します。

cryptsetup --verbose open --test-passphrase /dev/<device_ID>

検証

1. 新しいパスフレーズでデバイスのロックを解除できることを確認します。

Enter passphrase for /dev/<device_ID>:
Key slot <slot_number> unlocked.
Command successful.

21.10. STORAGE RHEL システムロールを使用して LUKS2 暗号化ボリューム

Red Hat Enterprise Linux 8 ストレージデバイスの管理

160

21.10. STORAGE RHEL システムロールを使用して LUKS2 暗号化ボリューム
を作成する

storage ロールを使用し、Ansible Playbook を実行して、LUKS で暗号化されたボリュームを作成およ
び設定できます。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

手順

1. 機密性の高い変数を暗号化されたファイルに保存します。

a. vault を作成します。

$ ansible-vault create ~/vault.yml
New Vault password: <vault_password>
Confirm New Vault password: <vault_password>

b. ansible-vault create コマンドでエディターが開いたら、機密データを <key>: <value> 形
式で入力します。

c. 変更を保存して、エディターを閉じます。Ansible は vault 内のデータを暗号化します。

2. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

luks_password: <password>

- name: Manage local storage
 hosts: managed-node-01.example.com
 vars_files:
 - ~/vault.yml
 tasks:
 - name: Create and configure a volume encrypted with LUKS
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 fs_label: <label>
 mount_point: /mnt/data
 encryption: true
 encryption_password: "{{ luks_password }}"

第21章 LUKS を使用したブロックデバイスの暗号化

161

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.storage/README.md ファイルを参照してくださ
い。

3. Playbook の構文を検証します。

$ ansible-playbook --ask-vault-pass --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

4. Playbook を実行します。

$ ansible-playbook --ask-vault-pass ~/playbook.yml

検証

1. LUKS 暗号化ボリュームの luksUUID 値を見つけます。

ansible managed-node-01.example.com -m command -a 'cryptsetup luksUUID
/dev/sdb'

4e4e7970-1822-470e-b55a-e91efe5d0f5c

2. ボリュームの暗号化ステータスを表示します。

ansible managed-node-01.example.com -m command -a 'cryptsetup status luks-
4e4e7970-1822-470e-b55a-e91efe5d0f5c'

/dev/mapper/luks-4e4e7970-1822-470e-b55a-e91efe5d0f5c is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/sdb
...

3. 作成された LUKS 暗号化ボリュームを確認します。

ansible managed-node-01.example.com -m command -a 'cryptsetup luksDump
/dev/sdb'

LUKS header information
Version: 2
Epoch: 3
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: 4e4e7970-1822-470e-b55a-e91efe5d0f5c
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt

Red Hat Enterprise Linux 8 ストレージデバイスの管理

162

 offset: 16777216 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]
...

関連情報

/usr/share/ansible/roles/rhel-system-roles.storage/README.md ファイル

/usr/share/doc/rhel-system-roles/storage/ ディレクトリー

LUKS を使用したブロックデバイスの暗号化

Ansible vault

第21章 LUKS を使用したブロックデバイスの暗号化

163

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/encrypting-block-devices-using-luks_managing-storage-devices
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/ansible-vault_automating-system-administration-by-using-rhel-system-roles

第22章 テープデバイスの管理
テープデバイスは、データの保存先で順次アクセスされる磁気テープです。データは、テープドライブ
を使用してこのテープデバイスに書き込まれます。テープデバイスにデータを保存するためにファイル
システムを作成する必要はありません。テープドライブは、SCSI、FC、USB、SATA などのさまざま
なインターフェイスを備えたホストコンピューターに接続できます。

22.1. テープデバイスの種類

以下は、さまざまなタイプのテープデバイスのリストです。

/dev/st0 は、巻き戻しありのテープデバイスです。

/dev/nst0 は、巻き戻しなしのテープデバイスです。日次バックアップには、巻き戻しなしのデ
バイスを使用します。

テープデバイスを使用するメリットは複数あります。コスト効率が高く、安定しています。テープデバ
イスは、データの破損に対しても回復力があり、データの保持に適しています。

22.2. テープドライブ管理ツールのインストール

テープドライブ操作用の mt-st パッケージをインストールします。磁気テープドライブの操作を制御す
るには mt ユーティリティーを使用します。SCSI テープドライバーを制御するには st ユーティリ
ティーを使用します。

手順

mt-st パッケージをインストールします。

yum install mt-st

関連情報

システム上の mt(1) および st(4) man ページ

22.3. テープコマンド

以下は、一般的な mt コマンドです。

表22.1 mt コマンド

コマンド 説明

mt -f /dev/st0 status テープデバイスの状態を表示します。

mt -f /dev/st0 erase テープ全体を消去します。

mt -f /dev/nst0 rewind テープデバイスを巻き戻します。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

164

mt -f /dev/nst0 fsf n テープヘッドを正引きレコードに切り替えます。こ
こでは、n はオプションのファイル数です。ファイ
ル数を指定すると、テープヘッドは n 件のレコード
をスキップします。

mt -f /dev/nst0 bsfm n テープヘッドを以前のレコードに切り替えます。

mt -f /dev/nst0 eod テープヘッドをデータの最後に切り替えます。

コマンド 説明

22.4. 巻き戻しテープデバイスへの書き込み

巻き戻しテープデバイスは、操作のたびにテープを巻き戻します。データをバックアップするには、tar
コマンドを使用できます。デフォルトでは、テープデバイスの ブロックサイズ は 10KB (bs=10k) で
す。export TAPE=/dev/st0 属性を使用して TAPE 環境変数を設定できます。代わりに -f デバイスオプ
ションを使用してテープデバイスファイルを指定します。このオプションは、複数のテープデバイスを
使用する場合に役立ちます。

前提条件

1. mt-st パッケージがインストールされている。詳細は、テープドライブ管理ツールのインス
トール を参照。

2. テープドライブが読み込まれている。

mt -f /dev/st0 load

手順

1. テープヘッドを確認します。

mt -f /dev/st0 status

SCSI 2 tape drive:
File number=-1, block number=-1, partition=0.
Tape block size 0 bytes. Density code 0x0 (default).
Soft error count since last status=0
General status bits on (50000):
 DR_OPEN IM_REP_EN

ここでは、以下のようになります。

現在の ファイル番号 は -1 です。

block number はテープヘッドを定義します。デフォルトでは、-1 に設定されます。

block size 0 は、テープデバイスのブロックサイズが固定されていないことを示します。

Soft error count は、mt status コマンドの実行後に発生したエラーの数を示します。

General status bits は、テープデバイスの統計を表示します。

第22章 テープデバイスの管理

165

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/managing-tape-devices_managing-storage-devices#installing-tape-drive-management-tool_managing-tape-devices

DR_OPEN は、ドアが開き、テープデバイスが空であることを示します。IM_REP_EN は
即時レポートモードです。

2. テープデバイスが空でない場合は、それを上書きします。

tar -czf /dev/st0 _/source/directory

このコマンドは、テープデバイスのデータを /source/directory の内容で上書きします。

3. /source/directory をテープデバイスにバックアップします。

tar -czf /dev/st0 _/source/directory
tar: Removing leading `/' from member names
/source/directory
/source/directory/man_db.conf
/source/directory/DIR_COLORS
/source/directory/rsyslog.conf
[...]

4. テープデバイスのステータスを表示します。

mt -f /dev/st0 status

検証

テープデバイスにあるすべてのファイルのリストを表示します。

tar -tzf /dev/st0
/source/directory/
/source/directory/man_db.conf
/source/directory/DIR_COLORS
/source/directory/rsyslog.conf
[...]

関連情報

システム上の mt(1)、st(4)、および tar(1) man ページ

Tape drive media detected as write protected (Red Hat ナレッジベース)

How to check if tape drives are detected in the system (Red Hat ナレッジベース)

22.5. 巻き戻しなしのテープデバイスへの書き込み

特定のコマンドの実行を完了した後、巻き戻しなしのテープデバイスはテープをその状態のままにしま
す。たとえば、巻き戻しなしのテープデバイスでは、バックアップの後にさらにデータを追加できま
す。また、これを使用して予期しない巻き戻しを回避することもできます。

前提条件

1. mt-st パッケージがインストールされている。詳細は、テープドライブ管理ツールのインス
トール を参照。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

166

https://access.redhat.com/solutions/4630931
https://access.redhat.com/solutions/45955
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/managing-tape-devices_managing-storage-devices#installing-tape-drive-management-tool_managing-tape-devices

2. テープドライブが読み込まれている。

mt -f /dev/nst0 load

手順

1. 巻き戻しなしのテープデバイス /dev/nst0 のテープヘッドを確認します。

mt -f /dev/nst0 status

2. テープのヘッドまたはテープの最後にポインターを指定します。

mt -f /dev/nst0 rewind

3. テープデバイスにデータを追加するには、次のコマンドを実行します。

mt -f /dev/nst0 eod
tar -czf /dev/nst0 /source/directory/

4. /source/directory/ をテープデバイスにバックアップします。

tar -czf /dev/nst0 /source/directory/
tar: Removing leading `/' from member names
/source/directory/
/source/directory/man_db.conf
/source/directory/DIR_COLORS
/source/directory/rsyslog.conf
[...]

5. テープデバイスのステータスを表示します。

mt -f /dev/nst0 status

検証

テープデバイスにあるすべてのファイルのリストを表示します。

tar -tzf /dev/nst0
/source/directory/
/source/directory/man_db.conf
/source/directory/DIR_COLORS
/source/directory/rsyslog.conf
[...]

関連情報

システム上の mt(1)、st(4)、および tar(1) man ページ

Tape drive media detected as write protected (Red Hat ナレッジベース)

How to check if tape drives are detected in the system (Red Hat ナレッジベース)

第22章 テープデバイスの管理

167

https://access.redhat.com/solutions/4630931
https://access.redhat.com/solutions/45955

22.6. テープデバイスでのテープヘッドの切り替え

eod オプションを使用して、テープデバイス内のテープヘッドを切り替えることができます。

前提条件

1. mt-st パッケージがインストールされている。詳細は、テープドライブ管理ツールのインス
トール を参照。

2. データはテープデバイスに書き込まれる。詳細は、Writing to rewinding tape devices または
Writing to non-rewinding tape devices を参照。

手順

テープポインターの現在の位置を表示するには、次のコマンドを実行します。

mt -f /dev/nst0 tell

データをテープデバイスに追加する際にテープヘッドを切り替えるには、次のコマンドを実行
します。

mt -f /dev/nst0 eod

前のレコードに移動するには、以下を実行します。

mt -f /dev/nst0 bsfm 1

次のレコードに移動するには、以下を行います。

mt -f /dev/nst0 fsf 1

関連情報

システム上の mt(1) man ページ

22.7. テープデバイスからのデータの復元

tar コマンドを使用して、テープデバイスからデータを復元できます。

前提条件

1. mt-st パッケージがインストールされている。詳細は、テープドライブ管理ツールのインス
トール を参照。

2. データはテープデバイスに書き込まれる。詳細は、Writing to rewinding tape devices または
Writing to non-rewinding tape devices を参照。

手順

巻き戻しありのテープデバイス /dev/st0 の場合、以下を実行します。

/source/directory/ を復元します。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

168

tar -xzf /dev/st0 /source/directory/

巻き戻しなしのテープデバイス /dev/nst0 の場合、以下を実行します。

テープデバイスを巻き戻します。

mt -f /dev/nst0 rewind

/etc ディレクトリーを復元します。

tar -xzf /dev/nst0 /source/directory/

関連情報

システム上の mt(1) および tar(1) man ページ

22.8. テープデバイスのデータの消去

erase オプションを使用して、テープデバイスからデータを消去できます。

前提条件

1. mt-st パッケージがインストールされている。詳細は、テープドライブ管理ツールのインス
トール を参照。

2. データはテープデバイスに書き込まれる。詳細は、Writing to rewinding tape devices または
Writing to non-rewinding tape devices を参照。

手順

1. テープデバイスからデータを削除します。

mt -f /dev/st0 erase

2. テープデバイスをアンロードします。

mt -f /dev/st0 offline

関連情報

システム上の mt(1) man ページ

第22章 テープデバイスの管理

169

第23章 ストレージデバイスの削除
実行中のシステムからストレージデバイスを安全に削除することで、システムメモリーのオーバーロー
ドやデータ損失を防ぐことができます。次のシステムではストレージデバイスを削除しないでくださ
い。

空きメモリーが合計メモリーの 5 % 未満 (サンプル 100 件の内 10 件以上)。

スワップが有効になっている (vmstat コマンドの出力で si と so のコラムが 0 以外の値)。

前提条件

I/O フラッシュ中にシステムメモリーの負荷が増加するため、ストレージデバイスを削除する
前に、システムメモリーが十分にあることを確認する。システムの現在のメモリー負荷と空き
メモリーを表示するには、次のコマンドを使用します。

vmstat 1 100
free

23.1. ストレージデバイスの安全な削除

稼働中のシステムからストレージデバイスを安全に取り外すには、上から下へのアプローチが必要で
す。アプリケーションやファイルシステムなどの最上位層から始め、物理デバイスなどの最下位層に向
かって作業を進めます。

ストレージデバイスは複数の方法で使用でき、物理デバイスの上層に別の仮想設定を指定できます。例
えば、デバイスの複数のインスタンスをマルチパスデバイスにグループ化したり、RAID の一部にした
り、LVM グループの一部にしたりすることが可能です。さらに、デバイスはファイルシステムを介し
てアクセスすることもできるし、“raw” デバイスのように直接アクセスすることもできます。

上から下へのアプローチを用いながら、次のことを確認する必要があります。

削除したいデバイスが使用中でないこと

デバイスへの保留中の I/O がすべてフラッシュされる

オペレーティングシステムがストレージデバイスを参照していない

23.2. ブロックデバイスと関連メタデータの削除

実行中のシステムからブロックデバイスを安全に削除するには、システムメモリーのオーバーロードと
データ損失を防ぐために、最初にブロックデバイスからメタデータを削除する必要があります。ファイ
ルシステムから始めて、スタック内の各レイヤーに対処し、ディスクに進みます。これらのアクション
により、システムが不整合な状態になるのを防ぎます。

削除するデバイスのタイプに応じて異なる特定のコマンドを使用します。

lvremove、vgremove、および pvremove は LVM に固有です。

ソフトウェア RAID の場合、mdadm を実行してアレイを削除します。詳細は、RAID の管理 を
参照してください。

LUKS を使用して暗号化されたブロックデバイスの場合、特定の追加手順があります。次の手

Red Hat Enterprise Linux 8 ストレージデバイスの管理

170

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_storage_devices/managing-raid_managing-storage-devices

LUKS を使用して暗号化されたブロックデバイスの場合、特定の追加手順があります。次の手
順は、LUKS を使用して暗号化されたブロックデバイスでは機能しません。詳細は、LUKS を使
用したブロックデバイスの暗号化 を参照してください。

警告

SCSI バスを再びスキャンしたり、ここで説明されている手順に従わずにオペレー
ティングシステムを変更する別のアクションを実行すると、I/O タイムアウトが原
因で遅延が発生したり、デバイスやデータが予期せず削除されたりする可能性があ
ります。

前提条件

ファイルシステム、論理ボリューム、およびボリュームグループを含む既存のブロックデバイ
ススタックがある。

削除するデバイスを他のアプリケーションやサービスが使用していないことを確認した。

削除するデバイスからデータをバックアップした。

オプション: マルチパスデバイスを削除する必要があり、そのパスデバイスにアクセスできない
場合は、次のコマンドを実行してマルチパスデバイスのキューイングを無効にしておく。

multipathd disablequeueing map multipath-device

無効にすることで、デバイスの I/O が失敗し、デバイスを使用しているアプリケーションが
シャットダウンできるようになります。

注記

メタデータを含むデバイスを一度に 1 レイヤーずつ削除することで、ディスクに古い署
名が残らないようにします。

手順

1. ファイルシステムをアンマウントします。

umount /mnt/mount-point

2. ファイルシステムを削除します。

wipefs -a /dev/vg0/myvol

/etc/fstab ファイルにエントリーを追加して、ファイルシステムとマウントポイントの間の永続
的な関連付けを作成した場合は、この時点で /etc/fstab を編集してそのエントリーを削除しま
す。

削除するデバイスのタイプに応じて、次の手順に進みます。

3. ファイルシステムを含む論理ボリューム (LV) を削除します。



第23章 ストレージデバイスの削除

171

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening

lvremove vg0/myvol

4. ボリュームグループ (VG) に他の論理ボリュームが残っていない場合は、デバイスを含む VG
を安全に削除できます。

vgremove vg0

5. 物理ボリューム (PV) メタデータを PV デバイスから削除します。

pvremove /dev/sdc1

wipefs -a /dev/sdc1

6. PV が含まれていたパーティションを削除します。

parted /dev/sdc rm 1

7. デバイスを完全に消去する場合は、パーティションテーブルを削除します。

wipefs -a /dev/sdc

8. デバイスを物理的に取り外す場合にのみ、次の手順を実行します。

マルチパスデバイスを削除する場合は，次のコマンドを実行します。

a. デバイスへの全パスを表示します。

multipath -l

このコマンドの出力は、後のステップで必要になります。

b. I/O をフラッシュして、マルチパスデバイスを削除します。

multipath -f multipath-device

デバイスがマルチパスデバイスとして設定されていない場合や、デバイスがマルチパスデ
バイスとして設定されていて、過去に I/O を個別のパスに渡している場合は、未処理の I/O
を、使用されている全デバイスパスにフラッシュします。

blockdev --flushbufs device

この操作は、umount コマンドまたは vgreduce コマンドで I/O がフラッシュされないデ
バイスに直接アクセスする場合に重要になります。

SCSI デバイスを取り外す場合は、以下のコマンドを実行します。

a. システム上のアプリケーション、スクリプト、またはユーティリティー
で、/dev/sd、/dev/disk/by-path、または major:minor 番号など、デバイスのパスベー
スの名前への参照をすべて削除します。参照を削除することで、今後追加される別のデ
バイスが現在のデバイスと混同されないようにします。

b. SCSI サブシステムからデバイスへの各パスを削除します。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

172

echo 1 > /sys/block/device-name/device/delete

デバイスが以前にマルチパスデバイスとして使用されていた場合、device-name
は、multipath -l コマンドの出力からの内容に置き換えます。

9. 稼働中のシステムから物理デバイスを削除します。このデバイスを削除しても、他のデバイス
への I/O は停止しないことに注意してください。

検証

削除したデバイスが lsblk コマンドの出力に表示されないことを確認します。出力例を以下に
示します。

lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 5G 0 disk
sr0 11:0 1 1024M 0 rom
vda 252:0 0 10G 0 disk
|-vda1 252:1 0 1M 0 part
|-vda2 252:2 0 100M 0 part /boot/efi
`-vda3 252:3 0 9.9G 0 part /

関連情報

システム上の
multipath(8)、pvremove(8)、vgremove(8)、lvremove(8)、wipefs(8)、parted(8)、blockdev(
8)、および umount(8) man ページ

第23章 ストレージデバイスの削除

173

第24章 STRATIS ファイルシステムの設定
Stratis は、Red Hat Enterprise Linux 用のローカルストレージ管理ソリューションです。これは、シン
プルさと使いやすさを重視し、高度なストレージ機能にアクセスできます。

Stratis は、物理ストレージデバイスのプールを管理するためにサービスとして実行され、複雑なスト
レージ設定のセットアップと管理を支援しながら、ローカルストレージ管理を使いやすく簡素化しま
す。

重要

Stratis はテクノロジープレビュー機能としてのみご利用いただけます。テクノロジープ
レビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であ
り、機能的に完全ではないことがあります。Red Hat では、実稼働環境での使用を推奨
していません。テクノロジープレビュー機能は、今後予定されている製品の機能をいち
早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくこ
とを目的としています。Red Hat のテクノロジープレビュー機能のサポート範囲の詳細
は、https://access.redhat.com/ja/support/offerings/techpreview/ を参照してくださ
い。

Stratis は、以下のために使用できます。

ストレージの初期設定

その後の変更

高度なストレージ機能の使用

Stratis の中心的な概念はストレージプールです。このプールは 1 つ以上のローカルディスクまたはパー
ティションから作成され、ファイルシステムはプールから作成されます。プールでは次のような機能が
有効になります。

ファイルシステムのスナップショット

シンプロビジョニング

キャッシュ

暗号化

24.1. STRATIS ファイルシステムのコンポーネント

外部的には、Stratis はコマンドラインと API を通じて次のファイルシステムコンポーネントを提供しま
す。

blockdev

ディスクやディスクパーティションなどのブロックデバイス。

pool

1 つ以上のブロックデバイスで構成されます。
プールの合計サイズは固定で、ブロックデバイスのサイズと同じです。

プールには、dm-cache ターゲットを使用した不揮発性データキャッシュなど、ほとんどの Stratis
レイヤーが含まれています。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

174

https://access.redhat.com/support/offerings/techpreview

Stratis は、各プールの /dev/stratis/my-pool/ ディレクトリーを作成します。このディレクトリーに
は、プール内の Stratis ファイルシステムを表すデバイスへのリンクが含まれています。

filesystem

各プールには 0 個以上のファイルシステムを含めることができます。ファイルシステムを含むプー
ルには、任意の数のファイルを保存できます。
ファイルシステムはシンプロビジョニングされており、合計サイズは固定されていません。ファイ
ルシステムの実際のサイズは、そこに格納されているデータとともに大きくなります。データのサ
イズがファイルシステムの仮想サイズに近づくと、Stratis はシンボリュームとファイルシステムを
自動的に拡張します。

ファイルシステムは XFS ファイルシステムでフォーマットされます。

重要

Stratis は、XFS が認識しない、作成されたファイルシステムに関する情報を追跡し
ます。また、XFS を使用して行われた変更によって、Stratis が自動的に更新される
ことはありません。ユーザーは、Stratis が管理する XFS ファイルシステムを再
フォーマットまたは再設定しないでください。

Stratis は、/dev/stratis/my-pool/my-fs パスにファイルシステムへのリンクを作成します。

Stratis は、dmsetup リストと /proc/partitions ファイルに表示される多くの Device Mapper デバイス
を使用します。同様に、lsblk コマンドの出力は、Stratis の内部の仕組みとレイヤーを反映します。

24.2. STRATIS と互換性のあるブロックデバイス

Stratis で使用可能なストレージデバイス。

対応デバイス
Stratis プールは、次の種類のブロックデバイスで動作するかどうかをテスト済みです。

LUKS

LVM 論理ボリューム

MD RAID

DM Multipath

iSCSI

HDD および SSD

NVMe デバイス

対応していないデバイス
Stratis にはシンプロビジョニングレイヤーが含まれているため、Red Hat はすでにシンプロビジョニン
グされているブロックデバイスに Stratis プールを配置することを推奨しません。

24.3. STRATIS のインストール

第24章 STRATIS ファイルシステムの設定

175

Stratis に必要なパッケージをインストールします。

手順

1. Stratis サービスとコマンドラインユーティリティーを提供するパッケージをインストールしま
す。

dnf install stratisd stratis-cli

2. stratisd サービスを開始し、ブート時に起動できるようにするには、以下を実行します。

systemctl enable --now stratisd

検証

stratisd サービスが有効になっていて実行されていることを確認します。

systemctl status stratisd
stratisd.service - Stratis daemon
Loaded: loaded (/usr/lib/systemd/system/stratisd.service; enabled; preset:>
Active: active (running) since Tue 2025-03-25 14:04:42 CET; 30min ago
Docs: man:stratisd(8)
Main PID: 24141 (stratisd)
Tasks: 22 (limit: 99365)
Memory: 10.4M
CPU: 1.436s
CGroup: /system.slice/stratisd.service
└─24141 /usr/libexec/stratisd --log-level debug

24.4. 暗号化されていない STRATIS プールの作成

1 つ以上のブロックデバイスから暗号化されていない Stratis プールを作成できます。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

Stratis プールを作成するブロックデバイスは、使用もマウントもされておらず、1 GB 以上の領
域がある。

IBM Z アーキテクチャーで、/dev/dasd* ブロックデバイスがパーティション設定されている。
Stratis プールの作成には、パーティションデバイスを使用します。
DASD デバイスのパーティション設定の詳細は、IBM Z での Linux インスタンスの設定 を参照
してください。

注記

Stratis プールは作成時にのみ暗号化でき、後から暗号化することはできません。

手順

1. Stratis プールで使用する各ブロックデバイスに存在するファイルシステム、パーティション

Red Hat Enterprise Linux 8 ストレージデバイスの管理

176

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/interactively_installing_rhel_over_the_network/configuring-a-linux-instance-on-ibm-z_rhel-installer

1. Stratis プールで使用する各ブロックデバイスに存在するファイルシステム、パーティション
テーブル、または RAID 署名をすべて削除します。

wipefs --all block-device

block-device の値は、ブロックデバイスへのパスです (例: /dev/sdb)。

2. 選択したブロックデバイスに新しい暗号化されていない Stratis プールを作成します。

stratis pool create my-pool block-device

block-device の値は、空または消去されたブロックデバイスへのパスです。

次のコマンドを使用して、1 行に複数のブロックデバイスを指定することもできます。

stratis pool create my-pool block-device-1 block-device-2

検証

新しい Stratis プールが作成されていることを確認します。

stratis pool list

24.5. WEB コンソールを使用した暗号化されていない STRATIS プールの作
成

Web コンソールを使用して、1 つ以上のブロックデバイスから暗号化されていない Stratis プールを作成
できます。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

Stratis プールを作成するブロックデバイスは、使用もマウントもされておらず、1 GB 以上の領
域がある。

注記

暗号化されていない Stratis プールの作成後に、当該 Stratis プールを暗号化することは
できません。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

第24章 STRATIS ファイルシステムの設定

177

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

2. Storage をクリックします。

3. Storage テーブルで、メニューボタンをクリックし、Create Stratis pool を選択します。

4. Name フィールドに、Stratis プールの名前を入力します。

5. Stratis プールの作成元となる Block devices を選択します。

6. オプション: プールに作成する各ファイルシステムの最大サイズを指定する場合は、Manage
filesystem sizes を選択します。

7. Create をクリックします。

検証

Storage セクションに移動し、Devices テーブルに新しい Stratis プールが表示されていること
を確認します。

24.6. カーネルキーリング内のキーを使用して暗号化された STRATIS プー
ルを作成する

データを保護するために、カーネルキーリングを使用して、1 つ以上のブロックデバイスから暗号化さ
れた Stratis プールを作成できます。

この方法で暗号化された Stratis プールを作成すると、カーネルキーリングはプライマリー暗号化メカ
ニズムとして使用されます。その後のシステムを再起動すると、このカーネルキーリングは、暗号化さ
れた Stratis プールのロックを解除します。

1 つ以上のブロックデバイスから暗号化された Stratis プールを作成する場合は、次の点に注意してくだ
さい。

各ブロックデバイスは cryptsetup ライブラリーを使用して暗号化され、LUKS2 形式を実装し
ます。

各 Stratis プールは、一意の鍵を持つか、他のプールと同じ鍵を共有できます。これらのキーは
カーネルキーリングに保存されます。

Stratis プールを構成するブロックデバイスは、すべて暗号化または暗号化されていないデバイ
スである必要があります。同じ Stratis プールに、暗号化したブロックデバイスと暗号化されて
いないブロックデバイスの両方を含めることはできません。

暗号化 Stratis プールのデータキャッシュに追加されるブロックデバイスは、自動的に暗号化さ
れます。

前提条件

Stratis v2.1.0 以降がインストールされ、stratisd サービスが実行されている。詳細は、Stratis
のインストール を参照してください。

Stratis プールを作成するブロックデバイスは、使用もマウントもされておらず、1 GB 以上の領
域がある。

IBM Z アーキテクチャーで、/dev/dasd* ブロックデバイスがパーティション設定されている。
Stratis プールでパーティションを使用します。

DASD デバイスのパーティション設定の詳細は、IBM Z での Linux インスタンスの設定 を参照

Red Hat Enterprise Linux 8 ストレージデバイスの管理

178

DASD デバイスのパーティション設定の詳細は、IBM Z での Linux インスタンスの設定 を参照
してください。

手順

1. Stratis プールで使用する各ブロックデバイスに存在するファイルシステム、パーティション
テーブル、または RAID 署名をすべて削除します。

wipefs --all block-device

block-device の値は、ブロックデバイスへのパスです (例: /dev/sdb)。

2. キーをまだ設定していない場合には、以下のコマンドを実行してプロンプトに従って、暗号化
に使用するキーセットを作成します。

stratis key set --capture-key key-description

key-description は、カーネルキーリングで作成されるキーへの参照になります。コマンドライ
ンで、キー値の入力を求められます。キー値をファイルに配置し、--capture-key オプションの
代わりに --keyfile-path オプションを使用することもできます。

3. 暗号化した Stratis プールを作成し、暗号化に使用すキーの説明を指定します。

stratis pool create --key-desc key-description my-pool block-device

key-description

直前の手順で作成したカーネルキーリングに存在するキーを参照します。

my-pool

新しい Stratis プールの名前を指定します。

block-device

空のブロックデバイスまたは消去したブロックデバイスへのパスを指定します。
次のコマンドを使用して、1 行に複数のブロックデバイスを指定することもできます。

stratis pool create --key-desc key-description my-pool block-device-1 block-device-2

検証

新しい Stratis プールが作成されていることを確認します。

stratis pool list

24.7. WEB コンソールを使用した暗号化された STRATIS プールの作成

データを保護するために、Web コンソールを使用して、1 つ以上のブロックデバイスから暗号化された
Stratis プールを作成できます。

1 つ以上のブロックデバイスから暗号化された Stratis プールを作成する場合は、次の点に注意してくだ
さい。

各ブロックデバイスは cryptsetup ライブラリーを使用して暗号化され、LUKS2 形式を実装し

第24章 STRATIS ファイルシステムの設定

179

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/interactively_installing_rhel_over_the_network/configuring-a-linux-instance-on-ibm-z_rhel-installer

各ブロックデバイスは cryptsetup ライブラリーを使用して暗号化され、LUKS2 形式を実装し
ます。

各 Stratis プールは、一意の鍵を持つか、他のプールと同じ鍵を共有できます。これらのキーは
カーネルキーリングに保存されます。

Stratis プールを構成するブロックデバイスは、すべて暗号化または暗号化されていないデバイ
スである必要があります。同じ Stratis プールに、暗号化したブロックデバイスと暗号化されて
いないブロックデバイスの両方を含めることはできません。

暗号化 Stratis プールのデータ層に追加されるブロックデバイスは、自動的に暗号化されます。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

Stratis v2.1.0 以降がインストールされ、stratisd サービスが実行されている。

Stratis プールを作成するブロックデバイスは、使用もマウントもされておらず、1 GB 以上の領
域がある。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. Storage をクリックします。

3. Storage テーブルで、メニューボタンをクリックし、Create Stratis pool を選択します。

4. Name フィールドに、Stratis プールの名前を入力します。

5. Stratis プールの作成元となる Block devices を選択します。

6. 暗号化のタイプを選択します。パスフレーズ、Tang キーサーバー、またはその両方を使用でき
ます。

パスフレーズ:

i. パスフレーズを入力します。

ii. パスフレーズを確定します。

Tang キーサーバー:

i. キーサーバーのアドレスを入力します。詳細は、SELinux を Enforcing モードで有効に
した Tang サーバーのデプロイメント を参照してください。

7. オプション: プールに作成する各ファイルシステムの最大サイズを指定する場合は、Manage
filesystem sizes を選択します。

8. Create をクリックします。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

180

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening#deploying-a-tang-server-with-selinux-in-enforcing-mode_configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption

検証

Storage セクションに移動し、Devices テーブルに新しい Stratis プールが表示されていること
を確認します。

24.8. WEB コンソールを使用した STRATIS プールの名前変更

Web コンソールを使用して、既存の Stratis プールの名前を変更できます。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

Stratis がインストールされ、stratisd サービスが実行されている。
Web コンソールがデフォルトで Stratis を検出してインストールしている。ただし、Stratis を
手動でインストールする場合は、Stratis のインストール を参照してください。

Stratis プールが作成されている。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. Storage をクリックします。

3. Storage テーブルで、名前を変更する Stratis プールをクリックします。

4. Stratis pool ページで、Name フィールドの横にある edit をクリックします。

5. Rename Stratis pool ダイアログボックスで、新しい名前を入力します。

6. Rename をクリックします。

24.9. STRATIS ファイルシステムでのオーバープロビジョニングモードの設
定

デフォルトでは、すべての Stratis プールはオーバープロビジョニングされており、論理ファイルシス
テムのサイズが物理的に割り当てられた領域を超える可能性があります。Stratis はファイルシステムの
使用状況を監視し、必要に応じて使用可能な領域を使用して割り当てを自動的に増やします。ただし、
すでに使用可能な領域がすべて割り当てられており、プールがいっぱいの場合は、ファイルシステムに
追加領域を割り当てることはできません。

注記

ファイルシステムの容量が不足すると、ユーザーはデータを失う可能性があります。
データ損失のリスクがオーバープロビジョニングの利点を上回るアプリケーションの場
合、この機能を無効にできます。

第24章 STRATIS ファイルシステムの設定

181

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

Stratis はプールの使用状況を継続的に監視し、D-Bus API を使用して値を報告します。ストレージ管理
者はこれらの値を監視し、容量に達しないように必要に応じてデバイスをプールに追加する必要があり
ます。

前提条件

Stratis がインストールされている。詳細は、Stratis のインストール を参照してください。

手順

プールを正しく設定するには、次の 2 つの方法があります。

1. 1 つ以上のブロックデバイスからプールを作成します。

stratis pool create pool-name /dev/sdb

2. 既存のプールにオーバープロビジョニングモードを設定します。

stratis pool overprovision pool-name <yes|no>

"yes" に設定すると、プールへのオーバープロビジョニングが有効になります。これは、
プールによってサポートされる Stratis ファイルシステムの論理サイズの合計が、利用可能
なデータ領域の量を超える可能性があることを意味します。プールがオーバープロビジョ
ニングされ、すべてのファイルシステムの論理サイズの合計がプールで使用可能な領域を
超える場合、システムはオーバープロビジョニングをオフにできず、エラーを返します。

検証

1. Stratis プールの完全なリストを表示します。

stratis pool list

Name Total Physical Properties UUID Alerts
pool-name 1.42 TiB / 23.96 MiB / 1.42 TiB ~Ca,~Cr,~Op cb7cb4d8-9322-4ac4-a6fd-
eb7ae9e1e540

2. stratis pool list の出力に、プールのオーバープロビジョニングモードフラグが表示されている
かどうかを確認します。" ~ " は "NOT" を表す数学記号であるため、~Op はオーバープロビジョ
ニングなしという意味です。

3. オプション: 特定のプールのオーバープロビジョニングを確認します。

stratis pool overprovision pool-name yes

stratis pool list

Name Total Physical Properties UUID Alerts
pool-name 1.42 TiB / 23.96 MiB / 1.42 TiB ~Ca,~Cr,~Op cb7cb4d8-9322-4ac4-a6fd-
eb7ae9e1e540

24.10. STRATIS プールの NBDE へのバインド

暗号化された Stratis プールを Network Bound Disk Encryption (NBDE) にバインドするには、Tang

Red Hat Enterprise Linux 8 ストレージデバイスの管理

182

暗号化された Stratis プールを Network Bound Disk Encryption (NBDE) にバインドするには、Tang
サーバーが必要です。Stratis プールを含むシステムが再起動すると、Tang サーバーに接続して、カー
ネルキーリングの説明を指定しなくても、暗号化したプールのロックを自動的に解除します。

注記

Stratis プールを補助 Clevis 暗号化メカニズムにバインドすると、プライマリーカーネル
キーリング暗号化は削除されません。

前提条件

Stratis v2.3.0 以降がインストールされ、stratisd サービスが実行されている。詳細は、Stratis
のインストール を参照してください。

暗号化した Stratis プールを作成し、暗号化に使用したキーの説明がある。詳細は、カーネル
キーリング内のキーを使用して暗号化された Stratis プールを作成する を参照してください。

Tang サーバーに接続できる。詳細は、SELinux を Enforcing モードで有効にした Tang サー
バーのデプロイメント を参照してください。

手順

暗号化された Stratis プールを NBDE にバインドする。

stratis pool bind nbde --trust-url my-pool tang-server

my-pool

暗号化された Stratis プールの名前を指定します。

tang-server

Tang サーバーの IP アドレスまたは URL を指定します。

関連情報

ポリシーベースの復号を使用して暗号化ボリュームの自動アンロックの設定

24.11. STRATIS プールの TPM へのバインド

暗号化された Stratis プールを Trusted Platform Module (TPM) 2.0 にバインドすると、プールを含むシ
ステムが再起動され、カーネルキーリングの説明を指定しなくても、プールは自動的にロック解除され
ます。

前提条件

Stratis v2.3.0 以降がインストールされ、stratisd サービスが実行されている。詳細は、Stratis
のインストール を参照してください。

暗号化した Stratis プールを作成し、暗号化に使用したキーの説明がある。詳細は、カーネル
キーリング内のキーを使用して暗号化された Stratis プールを作成する を参照してください。

使用しているシステムは TPM 2.0 をサポートしている。

手順

第24章 STRATIS ファイルシステムの設定

183

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening#deploying-a-tang-server-with-selinux-in-enforcing-mode_configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening

暗号化された Stratis プールを TPM にバインドします。

stratis pool bind tpm my-pool

my-pool

暗号化された Stratis プールの名前を指定します。

key-description

暗号化された Stratis プールの作成時に生成されたカーネルキーリングに存在するキーを参
照します。

24.12. カーネルキーリングを使用した暗号化 STRATIS プールのロック解除

システムの再起動後、暗号化した Stratis プール、またはこれを構成するブロックデバイスが表示され
ない場合があります。プールの暗号化に使用したカーネルキーリングを使用して、プールのロックを解
除できます。

前提条件

Stratis v2.1.0 がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のイ
ンストール を参照してください。

暗号化された Stratis プールが作成されている。詳細は、カーネルキーリング内のキーを使用し
て暗号化された Stratis プールを作成する を参照してください。

手順

1. 以前使用したものと同じキー記述を使用して、キーセットを再作成します。

stratis key set --capture-key key-description

key-description は、暗号化された Stratis プールの作成時に生成されたカーネルキーリングに
存在するキーを参照します。

2. Stratis プールが表示されることを確認します。

stratis pool list

24.13. 補助暗号化からの STRATIS プールのバインド解除

暗号化した Stratis プールを、サポート対象の補助暗号化メカニズムからバインドを解除すると、プラ
イマリーカーネルキーリングの暗号化はそのまま残ります。これは、最初から Clevis 暗号化を使用して
作成されたプールには当てはまりません。

前提条件

Stratis v2.3.0 以降がシステムにインストールされている。詳細は、Stratis のインストール を参
照してください。

暗号化された Stratis プールが作成されている。詳細は、カーネルキーリング内のキーを使用し
て暗号化された Stratis プールを作成する を参照してください。

暗号化した Stratis プールは、サポート対象の補助暗号化メカニズムにバインドされます。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

184

手順

補助暗号化メカニズムから暗号化された Stratis プールのバインドを解除します。

stratis pool unbind clevis my-pool

my-pool は、バインドを解除する Stratis プールの名前を指定します。

関連情報

暗号化された Stratis プールの NBDE へのバインド

暗号化された Stratis プールの TPM へのバインド

24.14. STRATIS プールの開始および停止

Stratis プールを開始および停止できます。この操作により、ファイルシステム、キャッシュデバイス、
シンプール、暗号化されたデバイスなど、プールの構築に使用されたすべてのオブジェクトを解体また
は停止できます。プールがデバイスまたはファイルシステムをアクティブに使用している場合は、警告
が表示され、停止できない可能性があることに注意してください。

停止状態は、プールのメタデータに記録されます。これらのプールは、プールが開始コマンドを受信す
るまで、次のブートでは開始されません。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

暗号化されていない、または暗号化された Stratis プールを作成した。詳細は、暗号化されてい
ない Stratis プールの作成 または カーネルキーリング内のキーを使用して暗号化された Stratis
プールを作成する を参照してください。

手順

次のコマンドを使用して、Stratis プールを停止します。これにより、ストレージスタックが切
断されますが、メタデータはすべて保持されます。

stratis pool stop --name pool-name

以下のコマンドを使用して Stratis プールを起動します。--unlock-method オプションは、プー
ルが暗号化されている場合にプールのロックを解除する方法を指定します。

stratis pool start --unlock-method <keyring|clevis> --name pool-name

注記

プール名またはプール UUID のいずれかを使用してプールを開始できます。

検証

次のコマンドを使用して、システム上のすべてのアクティブなプールをリスト表示します。

第24章 STRATIS ファイルシステムの設定

185

stratis pool list

次のコマンドを使用して、停止されたプールをすべてリスト表示します。

stratis pool list --stopped

次のコマンドを使用して、停止したプールの詳細情報を表示します。UUID を指定すると、この
コマンドは UUID に対応するプールに関する詳細情報を出力します。

stratis pool list --stopped --uuid UUID

24.15. STRATIS ファイルシステムの作成

既存の Stratis プールに Stratis ファイルシステムを作成します。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

Stratis プールが作成されている。詳細は、暗号化されていない Stratis プールの作成 または
カーネルキーリング内のキーの使用 を参照してください。

手順

1. プールに Stratis ファイルシステムを作成します。

stratis filesystem create --size number-and-unit my-pool my-fs

number-and-unit

ファイルシステムのサイズを指定します。仕様形式は、入力の標準サイズ指定形式 (B、
KiB、MiB、GiB、TiB、または PiB) に準拠する必要があります。

my-pool

Stratis プールの名前を指定します。

my-fs

ファイルシステムの任意名を指定します。
以下に例を示します。

例24.1 Stratis ファイルシステムの作成

stratis filesystem create --size 10GiB pool1 filesystem1

検証

プール内のファイルシステムをリスト表示して、Stratis ファイルシステムが作成されているか
どうかを確認します。

stratis fs list my-pool

Red Hat Enterprise Linux 8 ストレージデバイスの管理

186

関連情報

Stratis ファイルシステムのマウント

24.16. WEB コンソールを使用した STRATIS プール上のファイルシステムの
作成

Web コンソールを使用して、既存の Stratis プール上にファイルシステムを作成できます。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

stratisd サービスを実行している。

Stratis プールが作成されている。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. Storage をクリックします。

3. ファイルシステムを作成する Stratis プールをクリックします。

4. Stratis pool ページで、Stratis filesystems セクションまでスクロールし、Create new
filesystem をクリックします。

5. ファイルシステムの名前を入力します。

6. ファイルシステムのマウントポイントを入力します。

7. マウントオプションを選択します。

8. At boot ドロップダウンメニューで、ファイルシステムをマウントするタイミングを選択しま
す。

9. ファイルシステムを作成します。

ファイルシステムを作成してマウントする場合は、Create and mount をクリックします。

ファイルシステムの作成のみを行う場合は、Create only をクリックします。

検証

新しいファイルシステムは、Stratis pool ページの Stratis filesystems タブに表示されます。

24.17. STRATIS ファイルシステムのマウント

第24章 STRATIS ファイルシステムの設定

187

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

既存の Stratis ファイルシステムをマウントして、コンテンツにアクセスします。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

Stratis ファイルシステムが作成されます。詳細は、Stratis ファイルシステムの作成 を参照して
ください。

手順

ファイルシステムをマウントするには、/dev/stratis/ ディレクトリーに Stratis が維持するエン
トリーを使用します。

mount /dev/stratis/my-pool/my-fs mount-point

これでファイルシステムは mount-point ディレクトリーにマウントされ、使用できるようになりまし
た。

注記

プールを停止する前に、プールに属するすべてのファイルシステムをアンマウントしま
す。ファイルシステムがまだマウントされている場合、プールは停止しません。

24.18. SYSTEMD サービスを使用した /ETC/FSTAB での非ルート
STRATIS ファイルシステムの設定

systemd サービスを使用して、/etc/fstab で非ルートファイルシステムの設定を管理できます。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

Stratis ファイルシステムが作成されます。詳細は、Stratis ファイルシステムの作成 を参照して
ください。

手順

root として、/etc/fstab ファイルを編集し、非ルートファイルシステムを設定するための行を
追加します。

/dev/stratis/my-pool/my-fs mount-point xfs defaults,x-systemd.requires=stratis-fstab-
setup@pool-uuid.service,x-systemd.after=stratis-fstab-setup@pool-uuid.service dump-
value fsck_value

重要

Red Hat Enterprise Linux 8 ストレージデバイスの管理

188

重要

暗号化された Stratis プールから Stratis ファイルシステムを永続的にマウントすると、
パスワードが入力されるまでブートプロセスが停止する可能性があります。プールが
NBDE や TPM2 などの無人メカニズムを使用して暗号化されている場合、Stratis プール
は自動的にロック解除されます。そうでない場合、ユーザーはコンソールにパスワード
を入力する必要があります。

関連情報

ファイルシステムの永続的なマウント

第24章 STRATIS ファイルシステムの設定

189

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_file_systems/assembly_persistently-mounting-file-systems_managing-file-systems

第25章 追加のブロックデバイスで STRATIS プールを拡張する
Stratis ファイルシステムのストレージ容量を増やすために、追加のブロックデバイスを Stratis プール
に追加できます。手動で行うことも、Web コンソールを使用して行うこともできます。

重要

Stratis はテクノロジープレビュー機能としてのみご利用いただけます。テクノロジープ
レビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であ
り、機能的に完全ではないことがあります。Red Hat では、実稼働環境での使用を推奨
していません。テクノロジープレビュー機能は、今後予定されている製品の機能をいち
早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくこ
とを目的としています。Red Hat のテクノロジープレビュー機能のサポート範囲の詳細
は、https://access.redhat.com/ja/support/offerings/techpreview/ を参照してくださ
い。

25.1. STRATIS プールへのブロックデバイスの追加

Stratis プールに 1 つ以上のブロックデバイスを追加できます。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

Stratis プールを作成するブロックデバイスは、使用もマウントもされておらず、1 GB 以上の領
域がある。

手順

1 つ以上のブロックデバイスをプールに追加するには、以下を使用します。

stratis pool add-data my-pool device-1 device-2 device-n

関連情報

システム上の stratis(8) man ページ

25.2. WEB コンソールを使用した STRATIS プールへのブロックデバイスの
追加

Web コンソールを使用して、既存の Stratis プールにブロックデバイスを追加できます。キャッシュを
ブロックデバイスとして追加することもできます。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

190

https://access.redhat.com/support/offerings/techpreview
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console

stratisd サービスを実行している。

Stratis プールが作成されている。

Stratis プールを作成するブロックデバイスは、使用もマウントもされておらず、1 GB 以上の領
域がある。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. Storage をクリックします。

3. Storage テーブルで、ブロックデバイスを追加する Stratis プールをクリックします。

4. Stratis pool ページで、Add block devices をクリックし、ブロックデバイスをデータまたは
キャッシュとして追加する Tier を選択します。

5. パスフレーズで暗号化された Stratis プールにブロックデバイスを追加する場合は、パスフレー
ズを入力します。

6. Block devices で、プールに追加するデバイスを選択します。

7. Add をクリックします。

第25章 追加のブロックデバイスで STRATIS プールを拡張する

191

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

第26章 STRATIS ファイルシステムの監視
Stratis ユーザーは、システムにある Stratis ファイルシステムに関する情報を表示して、その状態と空
き容量を監視できます。

重要

Stratis はテクノロジープレビュー機能としてのみご利用いただけます。テクノロジープ
レビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であ
り、機能的に完全ではないことがあります。Red Hat では、実稼働環境での使用を推奨
していません。テクノロジープレビュー機能は、今後予定されている製品の機能をいち
早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくこ
とを目的としています。Red Hat のテクノロジープレビュー機能のサポート範囲の詳細
は、https://access.redhat.com/ja/support/offerings/techpreview/ を参照してくださ
い。

26.1. STRATIS ファイルシステムに関する情報の表示

stratis ユーティリティーを使用すると、Stratis ファイルシステムの合計サイズ、使用サイズ、空きサ
イズ、プールに属するファイルシステムとブロックデバイスなどに関する統計情報をリスト表示できま
す。

XFS ファイルシステムのサイズは、管理できるユーザーデータの合計量です。シンプロビジョニングさ
れた Stratis プールでは、Stratis ファイルシステムのサイズが、割り当てられた領域よりも大きいよう
に見える場合があります。XFS ファイルシステムのサイズは、この見かけのサイズに合わせて設定され
ます。つまり、通常は割り当てられた領域よりも大きくなります。df などの標準 Linux ユーティリ
ティーは、XFS ファイルシステムのサイズを報告します。この値は通常、XFS ファイルシステムに必
要な領域、つまり Stratis によって割り当てられた領域を過大評価します。

重要

オーバープロビジョニングされた Stratis プールの使用状況を定期的に監視してくださ
い。ファイルシステムの使用量が割り当てられた領域に近づくと、Stratis はプール内の
使用可能な領域を使用して割り当てを自動的に増加します。ただし、すでに使用可能な
領域がすべて割り当てられていて、プールがいっぱいの場合は、追加の領域を割り当て
ることができず、ファイルシステムの領域が不足することになります。これにより、
Stratis ファイルシステムを使用するアプリケーションでデータが失われるリスクが生じ
る可能性があります。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

手順

システムで Stratis に使用されているすべての ブロックデバイス に関する情報を表示する場合
は、次のコマンドを実行します。

stratis blockdev

Pool Name Device Node Physical Size State Tier
my-pool /dev/sdb 9.10 TiB In-use Data

Red Hat Enterprise Linux 8 ストレージデバイスの管理

192

https://access.redhat.com/support/offerings/techpreview

システムにあるすべての Stratis プール に関する情報を表示するには、次のコマンドを実行し
ます。

stratis pool

Name Total Physical Size Total Physical Used
my-pool 9.10 TiB 598 MiB

システムにあるすべての Stratis ファイルシステム に関する情報を表示するには、次のコマン
ドを実行します。

stratis filesystem

Pool Name Name Used Created Device
my-pool my-fs 546 MiB Nov 08 2018 08:03 /dev/stratis/my-pool/my-fs

関連情報

システム上の stratis(8) man ページ

26.2. WEB コンソールを使用した STRATIS プールの表示

Web コンソールを使用して、既存の Stratis プールとそれに含まれるファイルシステムを表示できま
す。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

stratisd サービスを実行している。

既存の Stratis プールがある。

手順

1. RHEL 8 Web コンソールにログインします。

2. Storage をクリックします。

3. Storage テーブルで、表示する Stratis プールをクリックします。
Stratis プールページには、プールおよびプール内に作成したファイルシステムに関するすべて
の情報が表示されます。

第26章 STRATIS ファイルシステムの監視

193

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console

第27章 STRATIS ファイルシステムでのスナップショットの使用
Stratis ファイルシステムのスナップショットを使用して、ファイルシステムの状態を任意の時点でキャ
プチャーし、後でそれを復元できます。

重要

Stratis はテクノロジープレビュー機能としてのみご利用いただけます。テクノロジープ
レビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であ
り、機能的に完全ではないことがあります。Red Hat では、実稼働環境での使用を推奨
していません。テクノロジープレビュー機能は、今後予定されている製品の機能をいち
早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくこ
とを目的としています。Red Hat のテクノロジープレビュー機能のサポート範囲の詳細
は、https://access.redhat.com/ja/support/offerings/techpreview/ を参照してくださ
い。

27.1. STRATIS スナップショットの特徴

Stratis では、スナップショットは、別の Stratis ファイルシステムのコピーとして作成した通常の
Stratis ファイルシステムです。

Stratis の現在のスナップショット実装は、次のような特徴があります。

ファイルシステムのスナップショットは別のファイルシステムです。

スナップショットと元のファイルシステムのリンクは、有効期間中は行われません。スナップ
ショットされたファイルシステムは、元のファイルシステムよりも長く存続します。

スナップショットを作成するためにファイルシステムをマウントする必要はありません。

各スナップショットは、XFS ログに必要となる実際のバッキングストレージの約半分のギガバ
イトを使用します。

27.2. STRATIS スナップショットの作成

既存の Stratis ファイルシステムのスナップショットとして Stratis ファイルシステムを作成できます。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

Stratis ファイルシステムを作成している。詳細は、Stratis ファイルシステムの作成 を参照して
ください。

手順

Stratis スナップショットを作成します。

stratis fs snapshot my-pool my-fs my-fs-snapshot

スナップショットは、中心的な Stratis ファイルシステムです。Stratis スナップショットは複数作成で
きます。単一のオリジンファイルシステム、または別のスナップショットファイルシステムのスナップ
ショットがあります。ファイルシステムがスナップショットの場合、origin フィールドには、詳細な

Red Hat Enterprise Linux 8 ストレージデバイスの管理

194

https://access.redhat.com/support/offerings/techpreview

ファイルシステムリストの元のファイルシステムの UUID が表示されます。

関連情報

システム上の stratis(8) man ページ

27.3. STRATIS スナップショットのコンテンツへのアクセス

Stratis ファイルシステムのスナップショットを、読み取りおよび書き込み操作でアクセスできるように
マウントすることができます。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

Stratis スナップショットを作成している。詳細は、Stratis スナップショットの作成 を参照して
ください。

手順

スナップショットにアクセスするには、/dev/stratis/my-pool/ ディレクトリーから通常のファ
イルシステムとしてマウントします。

mount /dev/stratis/my-pool/my-fs-snapshot mount-point

関連情報

Stratis ファイルシステムのマウント

システム上の mount(8) man ページ

27.4. STRATIS ファイルシステムを以前のスナップショットに戻す

Stratis ファイルシステムの内容を、Stratis スナップショットでキャプチャーされた状態に戻すことが
できます。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

Stratis スナップショットを作成している。詳細は、Stratis スナップショットの作成 を参照して
ください。

手順

1. オプション: 後でアクセスできるように、ファイルシステムの現在の状態をバックアップしま
す。

stratis filesystem snapshot my-pool my-fs my-fs-backup

2. 元のファイルシステムをアンマウントして削除します。

第27章 STRATIS ファイルシステムでのスナップショットの使用

195

umount /dev/stratis/my-pool/my-fs
stratis filesystem destroy my-pool my-fs

3. 元のファイルシステムの名前でスナップショットのコピーを作成します。

stratis filesystem snapshot my-pool my-fs-snapshot my-fs

4. 元のファイルシステムと同じ名前でアクセスできるようになったスナップショットをマウント
します。

mount /dev/stratis/my-pool/my-fs mount-point

my-fs という名前のファイルシステムの内容は、スナップショット my-fs-snapshot と同じになりまし
た。

関連情報

システム上の stratis(8) man ページ

27.5. STRATIS スナップショットの削除

プールから Stratis スナップショットを削除できます。スナップショットのデータは失われます。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

Stratis スナップショットを作成している。詳細は、Stratis スナップショットの作成 を参照して
ください。

手順

1. スナップショットをアンマウントします。

umount /dev/stratis/my-pool/my-fs-snapshot

2. スナップショットを破棄します。

stratis filesystem destroy my-pool my-fs-snapshot

関連情報

システム上の stratis(8) man ページ

Red Hat Enterprise Linux 8 ストレージデバイスの管理

196

第28章 STRATIS ファイルシステムの削除
既存の Stratis ファイルシステムまたはプールを削除できます。削除した Stratis ファイルシステムや
プールは復元できません。

重要

Stratis はテクノロジープレビュー機能としてのみご利用いただけます。テクノロジープ
レビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であ
り、機能的に完全ではないことがあります。Red Hat では、実稼働環境での使用を推奨
していません。テクノロジープレビュー機能は、今後予定されている製品の機能をいち
早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくこ
とを目的としています。Red Hat のテクノロジープレビュー機能のサポート範囲の詳細
は、https://access.redhat.com/ja/support/offerings/techpreview/ を参照してくださ
い。

28.1. STRATIS ファイルシステムの削除

既存の Stratis ファイルシステムを削除できます。そこに保存されているデータは失われます。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

Stratis ファイルシステムを作成している。詳細は、Stratis ファイルシステムの作成 を参照して
ください。

手順

1. ファイルシステムをアンマウントします。

umount /dev/stratis/my-pool/my-fs

2. ファイルシステムを破棄します。

stratis filesystem destroy my-pool my-fs

検証

ファイルシステムがもう存在しないことを確認します。

stratis filesystem list my-pool

関連情報

システム上の stratis(8) man ページ

28.2. WEB コンソールを使用した STRATIS プールからのファイルシステム
の削除

Web コンソールを使用して、既存の Stratis プールからファイルシステムを削除できます。

第28章 STRATIS ファイルシステムの削除

197

https://access.redhat.com/support/offerings/techpreview

注記

Stratis プールのファイルシステムを削除すると、そこに含まれるすべてのデータが消去
されます。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

Stratis がインストールされ、stratisd サービスが実行されている。
Web コンソールがデフォルトで Stratis を検出してインストールしている。ただし、Stratis を
手動でインストールする場合は、Stratis のインストール を参照してください。

既存の Stratis プールがあり、その Stratis プール上にファイルシステムが作成されている。

手順

1. RHEL 8 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. Storage をクリックします。

3. Storage テーブルで、ファイルシステムを削除する Stratis プールをクリックします。

4. Stratis pool ページで、Stratis filesystems セクションまでスクロールし、削除するファイルシ
ステムのメニューボタン ⋮ をクリックします。

5. ドロップダウンメニューから Delete を選択します。

6. Confirm deletion ダイアログボックスで、Delete をクリックします。

28.3. STRATIS プールの削除

既存の Stratis プールを削除できます。そこに保存されているデータは失われます。

前提条件

Stratis がインストールされ、stratisd サービスが実行されている。詳細は、Stratis のインス
トール を参照してください。

Stratis プールを作成している。

暗号化されていないプールを作成するには、暗号化されていない Stratis プールの作成 を参
照してください。

暗号化されたプールを作成するには、カーネルキーリング内のキーを使用して暗号化され
た Stratis プールを作成する を参照してください。

手順

Red Hat Enterprise Linux 8 ストレージデバイスの管理

198

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

1. プールにあるファイルシステムのリストを表示します。

stratis filesystem list my-pool

2. プール上のすべてのファイルシステムをアンマウントします。

umount /dev/stratis/my-pool/my-fs-1 \
 /dev/stratis/my-pool/my-fs-2 \
 /dev/stratis/my-pool/my-fs-n

3. ファイルシステムを破棄します。

stratis filesystem destroy my-pool my-fs-1 my-fs-2

4. プールを破棄します。

stratis pool destroy my-pool

検証

プールがなくなったことを確認します。

stratis pool list

関連情報

システム上の stratis(8) man ページ

28.4. WEB コンソールを使用した STRATIS プールの削除

Web コンソールを使用して、既存の Stratis プールを削除できます。

注記

Stratis プールを削除すると、そこに含まれるすべてのデータが消去されます。

前提条件

RHEL 8 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

stratisd サービスを実行している。

既存の Stratis プールがある。

手順

1. RHEL 8 Web コンソールにログインします。

第28章 STRATIS ファイルシステムの削除

199

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console

詳細は、Web コンソールへのログイン を参照してください。

2. Storage をクリックします。

3. Storage テーブルで、削除する Stratis プールのメニューボタン ⋮ をクリックします。

4. ドロップダウンメニューから Delete pool を選択します。

5. Permanently delete pool ダイアログボックスで、Delete をクリックします。

Red Hat Enterprise Linux 8 ストレージデバイスの管理

200

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

	Table of Contents
	RED HAT ドキュメントへのフィードバック (英語のみ)
	第1章 利用可能なストレージオプションの概要
	1.1. ローカルストレージの概要
	1.2. リモートストレージの概要
	1.3. GFS2 ファイルシステムの概要

	第2章 ディスクパーティション
	2.1. パーティションの概要
	2.2. パーティションテーブルの種類の比較
	2.3. MBR ディスクパーティション
	2.4. 拡張 MBR パーティション
	2.5. MBR パーティションタイプ
	2.6. GUID パーティションテーブル
	2.7. パーティションタイプ
	2.8. パーティション命名スキーム
	2.9. マウントポイントとディスクパーティション

	第3章 パーティションの使用
	3.1. PARTED でディスクにパーティションテーブルを作成
	3.2. PARTED でパーティションテーブルの表示
	3.3. PARTED を使用したパーティションの作成
	3.4. FDISK でパーティションタイプの設定
	3.5. PARTED でパーティションのサイズ変更
	3.6. PARTED でパーティションの削除

	第4章 ディスクを再設定するストラテジー
	4.1. パーティションが分割されていない空き領域の使用
	4.2. 未使用パーティションの領域の使用
	4.3. アクティブなパーティションの空き領域の使用
	4.3.1. 破壊的な再設定
	4.3.2. 非破壊的な再パーティション

	第5章 永続的な命名属性の概要
	5.1. 非永続的な命名属性のデメリット
	5.2. ファイルシステムおよびデバイスの識別子
	ファイルシステムの識別子
	デバイスの識別子
	推奨事項

	5.3. /DEV/DISK/ にある UDEV メカニズムにより管理されるデバイス名
	5.3.1. ファイルシステムの識別子
	/dev/disk/by-uuid/ の UUID 属性
	/dev/disk/by-label/ のラベル属性

	5.3.2. デバイスの識別子
	/dev/disk/by-id/ の WWID 属性
	/dev/disk/by-partuuid のパーティション UUID 属性
	/dev/disk/by-path/ のパス属性

	5.4. DM MULTIPATH を使用した WORLD WIDE IDENTIFIER
	5.5. UDEV デバイス命名規則の制約
	5.6. 永続的な命名属性のリスト表示
	5.7. 永続的な命名属性の変更

	第6章 NVDIMM 永続メモリーストレージの使用
	6.1. NVDIMM 永続メモリーテクノロジー
	6.2. NVDIMM のインターリービングおよび地域
	6.3. NVDIMM 名前空間
	6.4. NVDIMM アクセスモード
	6.5. NDCTL のインストール
	6.6. ブロックデバイスとして動作する NVDIMM 上のセクター名前空間の作成
	6.6.1. 既存の NVDIMM 名前空間のセクターモードへの再設定
	6.6.2. セクターモードでの新たな NVDIMM 名前空間の作成

	6.7. NVDIMM でのデバイス DAX 名前空間の作成
	6.7.1. デバイスのダイレクトアクセスモードの NVDIMM
	6.7.2. 既存の NVDIMM 名前空間をデバイス DAX モードに再設定
	6.7.3. デバイス DAX モードでの新しい NVDIMM 名前空間の作成

	6.8. NVDIMM でのファイルシステム DAX 名前空間の作成
	6.8.1. ファイルシステムの直接アクセスモードの NVDIMM
	6.8.2. ファイルシステム DAX モードへの既存の NVDIMM 名前空間の再設定
	6.8.3. ファイルシステム DAX モードで新しい NVDIMM 名前空間の作成
	6.8.4. ファイルシステム DAX デバイスでのファイルシステムの作成

	6.9. S.M.A.R.T. を使用した NVDIMM 正常性 (ヘルス) の監視
	6.10. 破損した NVDIMM デバイスの検出と交換

	第7章 未使用ブロックの破棄
	要件
	7.1. ブロック破棄操作のタイプ
	推奨事項

	7.2. バッチブロック破棄の実行
	7.3. オンラインブロック破棄の有効化
	7.4. STORAGE RHEL システムロールを使用してオンラインブロック破棄を有効にする
	7.5. 定期的なブロック破棄の有効化

	第8章 ISCSI ターゲットの設定
	8.1. TARGETCLI のインストール
	8.2. ISCSI ターゲットの作成
	8.3. ISCSI バックストア
	8.4. FILEIO ストレージオブジェクトの作成
	8.5. ブロックストレージオブジェクトの作成
	8.6. PSCSI ストレージオブジェクトの作成
	8.7. メモリーコピーの RAM ディスクストレージオブジェクトの作成
	8.8. ISCSI ポータルの作成
	8.9. ISCSI LUN の作成
	8.10. 読み取り専用の ISCSI LUN の作成
	8.11. ISCSI ACL の作成
	8.12. ターゲットのチャレンジハンドシェイク認証プロトコルの設定
	8.13. TARGETCLI ツールで ISCSI オブジェクトの削除

	第9章 ISCSI イニシエーターの設定
	9.1. ISCSI イニシエーターの作成
	9.2. イニシエーター用のチャレンジハンドシェイク認証プロトコルの設定
	9.3. ISCSIADM ユーティリティーを使用して ISCSI セッションを監視する
	9.4. DM MULTIPATH によるデバイスのタイムアウトのオーバーライド

	第10章 ファイバーチャネルデバイスの使用
	10.1. LUN のサイズ変更後にファイバーチャネル論理ユニットを再スキャンする
	10.2. ファイバーチャネルを使用したデバイスのリンク切れ動作の特定
	10.3. ファイバーチャネル設定ファイル

	第11章 FIBRE CHANNEL OVER ETHERNET の設定
	11.1. RHEL でハードウェア FCOE HBA の使用
	11.2. FCOE デバイスの設定

	第12章 EH_DEADLINE を使用したストレージエラーからの回復における最大時間の設定
	12.1. EH_DEADLINE パラメーター
	eh_deadline が便利なシナリオ

	12.2. EH_DEADLINE パラメーターの設定

	第13章 スワップの使用
	13.1. スワップ領域の概要
	13.2. システムの推奨スワップ領域
	13.3. スワップ用の LVM2 論理ボリュームの作成
	13.4. スワップファイルの作成
	13.5. STORAGE RHEL システムロールを使用してスワップボリュームを作成する
	13.6. LVM2 論理ボリュームでのスワップ領域の拡張
	13.7. LVM2 論理ボリュームでのスワップ領域の縮小
	13.8. スワップ用の LVM2 論理ボリュームの削除
	13.9. スワップファイルの削除

	第14章 NVME OVER FABRIC デバイスの概要
	第15章 NVME/RDMA を使用した NVME OVER FABRICS の設定
	15.1. CONFIGFS を使用した NVME/RDMA コントローラーのセットアップ
	15.2. NVMETCLI を使用した NVME/RDMA コントローラーのセットアップ
	15.3. NVME/RDMA ホストの設定
	15.4. 次のステップ

	第16章 NVME/FC を使用した NVME OVER FABRICS の設定
	16.1. BROADCOM アダプターの NVME ホストの設定
	16.2. QLOGIC アダプターの NVME ホストの設定
	16.3. 次のステップ

	第17章 NVME デバイスでのマルチパスの有効化
	17.1. ネイティブ NVME マルチパスと DM MULTIPATH
	17.2. ネイティブ NVME マルチパスの実現
	17.3. NVME デバイスでの DM MULTIPATH の有効化

	第18章 ディスクスケジューラーの設定
	18.1. 利用可能なディスクスケジューラー
	18.2. 各種ユースケースで異なるディスクスケジューラー
	18.3. デフォルトのディスクスケジューラー
	18.4. アクティブなディスクスケジューラーの決定
	18.5. TUNED を使用したディスクスケジューラーの設定
	18.6. UDEV ルールを使用したディスクスケジューラーの設定
	18.7. 特定ディスクに任意のスケジューラーを一時的に設定

	第19章 リモートディスクレスシステムの設定
	19.1. リモートディスクレスシステムの環境の準備
	19.2. ディスクレスクライアントの TFTP サービスの設定
	19.3. ディスクレスクライアントの DHCP サーバーの設定
	19.4. ディスクレスクライアントのエクスポートしたファイルシステムの設定
	19.5. リモートディスクレスシステムの再設定
	19.6. リモートディスクレスシステムのロードに関する一般的な問題のトラブルシューティング

	第20章 RAID の管理
	20.1. RAID の概要
	20.2. RAID のタイプ
	20.3. RAID レベルとリニアサポート
	20.4. サポート対象の RAID 変換
	20.5. RAID サブシステム
	20.6. インストール中のソフトウェア RAID の作成
	20.7. インストール済みシステムでのソフトウェア RAID の作成
	20.8. WEB コンソールで RAID の作成
	20.9. WEB コンソールで RAID のフォーマット
	20.10. WEB コンソールを使用した RAID 上のパーティションテーブルの作成
	20.11. WEB コンソールを使用した RAID 上のパーティションの作成
	20.12. WEB コンソールを使用した RAID 上のボリュームグループの作成
	20.13. STORAGE RHEL システムロールを使用した RAID ボリュームの設定
	20.14. RAID の拡張
	20.15. RAID を縮小
	20.16. インストール後にルートディスクを RAID1 に変換する
	20.17. 高度な RAID デバイスの作成
	20.18. RAID を監視するための電子メール通知の設定
	20.19. RAID での障害のあるディスクの置き換え
	20.20. RAID ディスクの修復

	第21章 LUKS を使用したブロックデバイスの暗号化
	21.1. LUKS ディスクの暗号化
	21.2. RHEL の LUKS バージョン
	21.3. LUKS2 再暗号化中のデータ保護のオプション
	21.4. LUKS2 を使用したブロックデバイスの既存データの暗号化
	21.5. 独立したヘッダーがある LUKS2 を使用してブロックデバイスの既存データの暗号化
	21.6. LUKS2 を使用した空のブロックデバイスの暗号化
	21.7. WEB コンソールでの LUKS パスフレーズの設定
	21.8. WEB コンソールで LUKS パスフレーズの変更
	21.9. コマンドラインを使用した LUKS パスフレーズの変更
	21.10. STORAGE RHEL システムロールを使用して LUKS2 暗号化ボリュームを作成する

	第22章 テープデバイスの管理
	22.1. テープデバイスの種類
	22.2. テープドライブ管理ツールのインストール
	22.3. テープコマンド
	22.4. 巻き戻しテープデバイスへの書き込み
	22.5. 巻き戻しなしのテープデバイスへの書き込み
	22.6. テープデバイスでのテープヘッドの切り替え
	22.7. テープデバイスからのデータの復元
	22.8. テープデバイスのデータの消去

	第23章 ストレージデバイスの削除
	23.1. ストレージデバイスの安全な削除
	23.2. ブロックデバイスと関連メタデータの削除

	第24章 STRATIS ファイルシステムの設定
	24.1. STRATIS ファイルシステムのコンポーネント
	24.2. STRATIS と互換性のあるブロックデバイス
	対応デバイス
	対応していないデバイス

	24.3. STRATIS のインストール
	24.4. 暗号化されていない STRATIS プールの作成
	24.5. WEB コンソールを使用した暗号化されていない STRATIS プールの作成
	24.6. カーネルキーリング内のキーを使用して暗号化された STRATIS プールを作成する
	24.7. WEB コンソールを使用した暗号化された STRATIS プールの作成
	24.8. WEB コンソールを使用した STRATIS プールの名前変更
	24.9. STRATIS ファイルシステムでのオーバープロビジョニングモードの設定
	24.10. STRATIS プールの NBDE へのバインド
	24.11. STRATIS プールの TPM へのバインド
	24.12. カーネルキーリングを使用した暗号化 STRATIS プールのロック解除
	24.13. 補助暗号化からの STRATIS プールのバインド解除
	24.14. STRATIS プールの開始および停止
	24.15. STRATIS ファイルシステムの作成
	24.16. WEB コンソールを使用した STRATIS プール上のファイルシステムの作成
	24.17. STRATIS ファイルシステムのマウント
	24.18. SYSTEMD サービスを使用した /ETC/FSTAB での非ルート STRATIS ファイルシステムの設定

	第25章 追加のブロックデバイスで STRATIS プールを拡張する
	25.1. STRATIS プールへのブロックデバイスの追加
	25.2. WEB コンソールを使用した STRATIS プールへのブロックデバイスの追加

	第26章 STRATIS ファイルシステムの監視
	26.1. STRATIS ファイルシステムに関する情報の表示
	26.2. WEB コンソールを使用した STRATIS プールの表示

	第27章 STRATIS ファイルシステムでのスナップショットの使用
	27.1. STRATIS スナップショットの特徴
	27.2. STRATIS スナップショットの作成
	27.3. STRATIS スナップショットのコンテンツへのアクセス
	27.4. STRATIS ファイルシステムを以前のスナップショットに戻す
	27.5. STRATIS スナップショットの削除

	第28章 STRATIS ファイルシステムの削除
	28.1. STRATIS ファイルシステムの削除
	28.2. WEB コンソールを使用した STRATIS プールからのファイルシステムの削除
	28.3. STRATIS プールの削除
	28.4. WEB コンソールを使用した STRATIS プールの削除

