
Red Hat Enterprise Linux 9

セキュリティーの強化

Red Hat Enterprise Linux 9 システムのセキュリティー強化

Last Updated: 2025-08-03

Red Hat Enterprise Linux 9 セキュリティーの強化

Red Hat Enterprise Linux 9 システムのセキュリティー強化

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat Enterprise Linux サーバーとワークステーションをローカルおよびリモートの侵入、悪
用、および悪意のある活動から保護するためのプロセスと実践を学びます。これらのアプローチと
ツールを使用することで、データセンター、職場、および家庭用のより安全なコンピューティング
環境を作成できます。

. .

. .

. .

. .

. .

. .

. .

Table of Contents

RED HAT ドキュメントへのフィードバック (英語のみ)

第1章 インストール中およびインストール直後の RHEL の保護
1.1. ディスクパーティション設定
1.2. インストールプロセス時のネットワーク接続の制限
1.3. 必要なパッケージの最小限のインストール
1.4. インストール後の手順
1.5. WEB コンソールを使用して CPU のセキュリティーの問題を防ぐために SMT を無効化する手順

第2章 FIPS モードへの RHEL の切り替え
2.1. FEDERAL INFORMATION PROCESSING STANDARDS 140 および FIPS モード
2.2. FIPS モードが有効なシステムのインストール
2.3. FIPS モードへのシステムの切り替え
2.4. コンテナーでの FIPS モードの有効化
2.5. FIPS 140-3 に準拠していない暗号化を使用している RHEL アプリケーションのリスト

第3章 システム全体の暗号化ポリシーの使用
3.1. システム全体の暗号化ポリシー
3.2. システム全体の暗号化ポリシーの変更
3.3. システム全体の暗号化ポリシーを以前のリリースと互換性のあるモードに切り替える
3.4. SHA-1 を再度有効に
3.5. WEB コンソールでシステム全体の暗号化ポリシーを設定する
3.6. システム全体の暗号化ポリシーからアプリケーションを除外する
3.7. サブポリシーを使用したシステム全体の暗号化ポリシーのカスタマイズ
3.8. システム全体のカスタム暗号化ポリシーの作成および設定
3.9. CRYPTO_POLICIES RHEL システムロールを使用した FUTURE 暗号化ポリシーによるセキュリティーの強化

第4章 PKCS #11 で暗号化ハードウェアを使用するようにアプリケーションを設定
4.1. PKCS #11 による暗号化ハードウェアへの対応
4.2. スマートカードに保存した SSH 鍵による認証
4.3. スマートカード上の証明書を使用して認証するアプリケーションの設定
4.4. APACHE で秘密鍵を保護する HSM の使用
4.5. NGINX で秘密鍵を保護する HSM の使用
4.6. 関連情報

第5章 POLKIT を使用したスマートカードへのアクセスの制御
5.1. POLKIT を介したスマートカードアクセス制御
5.2. PC/SC および POLKIT に関連する問題のトラブルシューティング
5.3. PC/SC への POLKIT 認可の詳細情報の表示
5.4. 関連情報

第6章 設定コンプライアンスおよび脆弱性スキャンの開始
6.1. RHEL における設定コンプライアンスツール
6.2. 脆弱性スキャン
6.3. 設定コンプライアンススキャン
6.4. 特定のベースラインに合わせたシステムの修正
6.5. SSG ANSIBLE PLAYBOOK を使用した特定のベースラインに合わせたシステムの修正
6.6. システムを特定のベースラインに合わせるための修復用 ANSIBLE PLAYBOOK の作成
6.7. 後でアプリケーションを修復するための BASH スクリプトの作成
6.8. SCAP WORKBENCH を使用したカスタムプロファイルでシステムのスキャン
6.9. インストール直後にセキュリティープロファイルに準拠するシステムのデプロイメント
6.10. コンテナーおよびコンテナーイメージの脆弱性スキャン

6

7
7
7
8
8
8

10
10
11

12
13
14

17
17
19

20
20
21
23
25
26

27

31
31
31

33
34
34
34

35
35
35
37
38

39
39
40
42
46
47
48
50
51
55
58

Table of Contents

1

. .

. .

. .

. .

6.11. 特定のベースラインを使用したコンテナーまたはコンテナーイメージのセキュリティーコンプライアンスの
評価
6.12. RHEL 9 でサポートされる SCAP SECURITY GUIDE プロファイル
6.13. 関連情報

第7章 KEYLIME でシステムの整合性を確保する
7.1. KEYLIME の仕組み
7.2. パッケージから KEYLIME VERIFIER をデプロイする
7.3. KEYLIME VERIFIER をコンテナーとしてデプロイする
7.4. パッケージから KEYLIME REGISTRAR をデプロイする
7.5. KEYLIME REGISTRAR をコンテナーとしてデプロイする
7.6. RHEL システムロールを使用して KEYLIME サーバーをデプロイする
7.7. KEYLIME_SERVER RHEL システムロールの変数
7.8. パッケージから KEYLIME テナントをデプロイする
7.9. パッケージから KEYLIME エージェントをデプロイする
7.10. ランタイム監視用に KEYLIME を設定する
7.11. ブート測定のアテステーション用に KEYLIME を設定する
7.12. KEYLIME の環境変数

第8章 AIDE で整合性の確認
8.1. AIDE のインストール
8.2. AIDE を使用した整合性チェックの実行
8.3. AIDE データベースの更新
8.4. ファイル整合性ツール:AIDE および IMA
8.5. AIDE RHEL システムロールを使用したファイル整合性チェックの設定
8.6. 関連情報

第9章 LUKS を使用したブロックデバイスの暗号化
9.1. LUKS ディスクの暗号化
9.2. RHEL の LUKS バージョン
9.3. LUKS2 再暗号化中のデータ保護のオプション
9.4. LUKS2 を使用したブロックデバイスの既存データの暗号化
9.5. 独立したヘッダーがある LUKS2 を使用してブロックデバイスの既存データの暗号化
9.6. LUKS2 を使用した空のブロックデバイスの暗号化
9.7. WEB コンソールでの LUKS パスフレーズの設定
9.8. WEB コンソールで LUKS パスフレーズの変更
9.9. コマンドラインを使用した LUKS パスフレーズの変更
9.10. STORAGE RHEL システムロールを使用して LUKS2 暗号化ボリュームを作成する

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定
10.1. NETWORK-BOUND DISK ENCRYPTION
10.2. ENFORCING モードの SELINUX を使用して TANG サーバーをデプロイする
10.3. TANG サーバーの鍵のローテーションおよびクライアントでのバインディングの更新
10.4. WEB コンソールで TANG キーを使用して自動ロック解除を設定する
10.5. 基本的な NBDE および TPM2 暗号化クライアント操作
10.6. LUKS 暗号化ボリュームのロックを自動解除するように NBDE クライアントを設定する
10.7. 静的な IP 設定を持つ NBDE クライアントの設定
10.8. TPM 2.0 ポリシーを使用して LUKS 暗号化ボリュームの手動登録を設定する
10.9. PKCS #11 ピンを使用して LUKS 暗号化ボリュームのロック解除を設定する
10.10. LUKS で暗号化したボリュームからの CLEVIS ピンの手動削除
10.11. キックスタートを使用して LUKS 暗号化ボリュームの自動登録を設定する
10.12. LUKS で暗号化されたリムーバブルストレージデバイスの自動ロック解除を設定する
10.13. 高可用性 NBDE システムをデプロイする
10.14. NBDE ネットワークで仮想マシンをデプロイする

59
60
72

74
74
76
79
82
84
87
89
90
92
96
99
101

114
114
115
115
116
116
118

119
119

120
121
121

124
127
128
129
130
130

134
134
136
137
139
142
144
146
147
149
151
152
154
154
156

Red Hat Enterprise Linux 9 セキュリティーの強化

2

. .

. .

. .

. .

10.15. NBDE を使用してクラウド環境用の自動登録可能な仮想マシンイメージをビルドする
10.16. コンテナーとしての TANG のデプロイ
10.17. RHEL システムロールを使用した NBDE の設定

第11章 システムの監査
11.1. LINUX の AUDIT
11.2. AUDIT システムのアーキテクチャー
11.3. 環境を保護するための AUDITD の設定
11.4. AUDITD の開始および制御
11.5. AUDIT ログファイルについて
11.6. AUDITCTL で AUDIT ルールを定義および実行
11.7. 永続的な AUDIT ルールの定義
11.8. 標準に準拠するための事前設定された監査ルールファイル
11.9. 永続ルールを定義する AUGENRULES の使用
11.10. AUGENRULES の無効化
11.11. ソフトウェアの更新を監視するための AUDIT の設定
11.12. AUDIT によるユーザーログイン時刻の監視
11.13. 関連情報

第12章 FAPOLICYD を使用したアプリケーションの拒否および許可
12.1. FAPOLICYD の概要
12.2. FAPOLICYD のデプロイ
12.3. 追加の信頼ソースを使用してファイルを信頼できるものとしてマークする
12.4. FAPOLICYD のカスタムの許可および拒否ルールの追加
12.5. FAPOLICYD 整合性チェックの有効化
12.6. FAPOLICYD に関連する問題のトラブルシューティング
12.7. FAPOLICYD RHEL システムロールを使用してユーザーによる信頼できないコードの実行を防止する
12.8. 関連情報

第13章 侵入型 USB デバイスに対するシステムの保護
13.1. USBGUARD
13.2. USBGUARD のインストール
13.3. CLI を使用した USB デバイスのブロックと許可
13.4. USB デバイスの永続的なブロックおよび許可
13.5. USB デバイス用のカスタムポリシーの作成
13.6. USB デバイス用の構造化されたカスタムポリシーの作成
13.7. USBGUARD IPC インターフェイスを使用するユーザーおよびグループの許可
13.8. LINUX 監査ログへの USBGUARD 許可イベントの記録
13.9. 関連情報

第14章 リモートロギングソリューションの設定
14.1. RSYSLOG ロギングサービス
14.2. RSYSLOG ドキュメントのインストール
14.3. TCP でのリモートロギング用のサーバーの設定
14.4. TCP 経由のサーバーへのリモートロギングの設定
14.5. TLS 暗号化リモートロギングの設定
14.6. UDP でリモートロギング情報を受信するためのサーバー設定
14.7. UDP 経由のサーバーへのリモートロギングの設定
14.8. RSYSLOG の負荷分散ヘルパー
14.9. 信頼できるリモートロギングの設定
14.10. サポート対象の RSYSLOG モジュール
14.11. カーネルメッセージをリモートホストに記録するように NETCONSOLE サービスを設定
14.12. 関連情報

156
157
158

165
165
166
167
168
169
173
174
175
175
176
177
179
180

181
181

182
184
185
188
189
191

193

194
194
194
195
196
198
199

200
201

202

203
203
203
204
206
207
212
214
215
216
217
218
218

Table of Contents

3

. .第15章 LOGGING システムロールの使用
15.1. LOGGING RHEL システムロールを使用したローカルログメッセージのフィルタリング
15.2. LOGGING RHEL システムロールを使用したリモートロギングソリューションの適用
15.3. TLS を使用した LOGGING RHEL システムロールの使用
15.4. RELP で LOGGING RHEL システムロールの使用
15.5. 関連情報

220
220
222
225
231

236

Red Hat Enterprise Linux 9 セキュリティーの強化

4

Table of Contents

5

RED HAT ドキュメントへのフィードバック (英語のみ)
Red Hat ドキュメントに関するご意見やご感想をお寄せください。また、改善点があればお知らせくだ
さい。

Jira からのフィードバック送信 (アカウントが必要)

1. Jira の Web サイトにログインします。

2. 上部のナビゲーションバーで Create をクリックします。

3. Summary フィールドにわかりやすいタイトルを入力します。

4. Description フィールドに、ドキュメントの改善に関するご意見を記入してください。ドキュ
メントの該当部分へのリンクも追加してください。

5. ダイアログの下部にある Create をクリックします。

Red Hat Enterprise Linux 9 セキュリティーの強化

6

https://issues.redhat.com/projects/RHELDOCS/issues

第1章 インストール中およびインストール直後の RHEL の保護
セキュリティーへの対応は、Red Hat Enterprise Linux をインストールする前にすでに始まっていま
す。最初からシステムのセキュリティーを設定することで、追加のセキュリティー設定を実装すること
がより簡単になります。

1.1. ディスクパーティション設定

ディスクパーティション設定の推奨プラクティスは、ベアメタルマシンへのインストールと、インス
トール済みオペレーティングシステムを含む仮想ディスクハードウェアおよびファイルシステムの調整
をサポートする仮想化環境またはクラウド環境とでは異なります。

ベアメタルインストール でデータの分離と保護を確実に行うには、/boot、/、/home、/tmp、/var/tmp/
ディレクトリー用に個別のパーティションを作成します。

/boot

このパーティションは、システムの起動時にシステムが最初に読み込むパーティションです。RHEL
9 でシステムを起動するのに使用するブートローダーとカーネルイメージはこのパーティションに
保存されます。このパーティションは暗号化しないでください。このパーティションが / に含まれて
おり、そのパーティションが暗号化されているなどの理由で利用できなくなると、システムを起動
できなくなります。

/home

ユーザーデータ (/home) が別のパーティションではなく / に保存されていると、このパーティショ
ンが満杯になり、オペレーティングシステムが不安定になる可能性があります。また、システム
を、RHEL 9 の次のバージョンにアップグレードする際に、/home パーティションにデータを保存
できると、このデータはインストール時に上書きされないため、アップグレードが非常に簡単にな
ります。root パーティション (/) が破損すると、データが完全に失われます。したがって、パーティ
ションを分けることが、データ損失に対する保護につながります。また、このパーティションを、
頻繁にバックアップを作成する対象にすることも可能です。

/tmp および /var/tmp/

/tmp ディレクトリーおよび /var/tmp/ ディレクトリーは、どちらも長期保存の必要がないデータを
保存するために使用されます。しかし、このいずれかのディレクトリーでデータがあふれると、ス
トレージ領域がすべて使用されてしまう可能性があります。このディレクトリーは / に置かれている
ため、こうした状態が発生すると、システムが不安定になり、クラッシュする可能性があります。
そのため、このディレクトリーは個別のパーティションに移動することが推奨されます。

仮想マシンまたはクラウドインスタンス の場合、/boot、/home、/tmp、および /var/tmp パーティショ
ンの分離は任意です。/ パーティションがいっぱいになり始めたら、仮想ディスクのサイズとそのパー
ティションを拡張できるためです。/ パーティションがいっぱいにならないように、その使用状況を定
期的にチェックするモニタリングを設定してから、仮想ディスクのサイズを適宜拡張してください。

注記

インストールプロセス時に、パーティションを暗号化するオプションがあります。パス
フレーズを入力する必要があります。これは、パーティションのデータを保護するのに
使用されるバルク暗号鍵を解除する鍵として使用されます。

1.2. インストールプロセス時のネットワーク接続の制限

RHEL9 をインストールする際に使用するインストールメディアは、特定のタイミングで作成されたス
ナップショットです。そのため、セキュリティー修正が最新のものではなく、このインストールメディ
アで設定するシステムが公開されてから修正された特定の問題に対して安全性に欠ける場合がありま

第1章 インストール中およびインストール直後の RHEL の保護

7

す。

脆弱性が含まれる可能性のあるオペレーティングシステムをインストールする場合には、必ず、公開レ
ベルを、必要最小限のネットワークゾーンに限定してください。最も安全な選択肢は、インストールプ
ロセス時にマシンをネットワークから切断した状態にする “ネットワークなし” ゾーンです。インター
ネット接続からのリスクが最も高く、一方で LAN またはイントラネット接続で十分な場合もありま
す。セキュリティーのベストプラクティスに従い、ネットワークから RHEL 9 をインストールする場合
は、お使いのリポジトリーに最も近いゾーンを選択してください。

1.3. 必要なパッケージの最小限のインストール

コンピューターの各ソフトウェアには脆弱性が潜んでいる可能性があるため、実際に使用するパッケー
ジのみをインストールすることがベストプラクティスになります。インストールを DVD から行う場合
は、インストールしたいパッケージのみを選択するようにします。その他のパッケージが必要になる場
合は、後でいつでもシステムに追加できます。

1.4. インストール後の手順

以下は、RHEL 9 のインストール直後に実行する必要があるセキュリティー関連の手順です。

システムを更新します。root で以下のコマンドを実行します。

dnf update

ファイアウォールサービスの firewalld は、Red Hat Enterprise Linux のインストールによって
自動的に有効になりますが、キックスタート設定などで明示的に無効になっている場合があり
ます。このような場合は、ファイアウォールを再度有効にしてください。
firewalld を開始するには、root で次のコマンドを実行します。

systemctl start firewalld
systemctl enable firewalld

セキュリティーを強化するために、不要なサービスは無効にしてください。たとえば、コン
ピューターにプリンターがインストールされていない場合は、次のコマンドを使用して、cups
サービスを無効にします。

systemctl disable cups

アクティブなサービスを確認するには、次のコマンドを実行します。

$ systemctl list-units | grep service

1.5. WEB コンソールを使用して CPU のセキュリティーの問題を防ぐために
SMT を無効化する手順

CPU SMT (Simultaneous Multi Threading) を悪用する攻撃が発生した場合に SMT を無効にします。
SMT を無効にすると、L1TF や MDS などのセキュリティー脆弱性を軽減できます。

重要

SMT を無効にすると、システムパフォーマンスが低下する可能性があります。

Red Hat Enterprise Linux 9 セキュリティーの強化

8

前提条件

RHEL 9 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

手順

1. RHEL 9 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. Overview タブで、System information フィールドを見つけて、View hardware details をク
リックします。

3. CPU Security 行で、Mitigations をクリックします。
このリンクがない場合は、システムが SMT に対応していないため、攻撃を受けません。

4. CPU Security Toggles テーブルで、Disable simultaneous multithreading (nosmt) オプショ
ンに切り替えます。

5. Save and reboot ボタンをクリックします。

システムの再起動後、CPU は SMT を使用しなくなりました。

関連情報

L1 Terminal Fault (L1TF) を使用したカーネルのサイドチャネル攻撃: CVE-2018-3620 & CVE-
2018-3646

MDS - マイクロアーキテクチャーデータサンプリング - CVE-2018-12130、CVE-2018-12126、
CVE-2018-12127、および CVE-2019-11091

第1章 インストール中およびインストール直後の RHEL の保護

9

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/security/vulnerabilities/L1TF
https://access.redhat.com/security/vulnerabilities/mds

第2章 FIPS モードへの RHEL の切り替え
連邦情報処理標準 (FIPS) 140-3 で義務付けられている暗号化モジュールの自己チェックを有効にするに
は、FIPS モードで RHEL 9 を操作する必要があります。FIPS 準拠を目指す場合は、FIPS モードでイン
ストールを開始することを推奨します。

暗号化モジュールの検証ステータスは、Red Hat カスタマーポータルの Product compliance ページの
FIPS - Federal Information Processing Standards セクションで確認できます。

2.1. FEDERAL INFORMATION PROCESSING STANDARDS 140 および
FIPS モード

Federal Information Processing Standards (FIPS) Publication 140 は、暗号化モジュールの品質を確保
するために National Institute of Standards and Technology (NIST) によって開発された一連のコン
ピューターセキュリティー標準です。FIPS 140 標準は、暗号化ツールがアルゴリズムを正しく実装でき
るようにします。ランタイム暗号アルゴリズムと整合性セルフテストは、システムが標準の要件を満た
す暗号を使用していることを確認するためのメカニズムの一部です。

FIPS モードの RHEL
RHEL システムで FIPS 承認のアルゴリズムだけを使用してすべての暗号鍵を生成および使用するに
は、RHEL を FIPS モードに切り替える必要があります。

次のいずれかの方法を使用して、FIPS モードを有効にできます。

FIPS モードでのインストールの開始

インストール後に FIPS モードにシステムを切り替えます。

FIPS 準拠を目指す場合は、FIPS モードでインストールを開始してください。これにより、デプロイ済
みのシステムの変換に伴う暗号鍵マテリアルの再生成と、変換後のシステムのコンプライアンス再評価
を行う必要がなくなります。

FIPS 準拠のシステムを運用するには、すべての暗号化キーマテリアルを FIPS モードで作成します。さ
らに、暗号鍵マテリアルは、セキュアにラップされていない限り、絶対に FIPS 環境の外部に出さない
でください。また、絶対に FIPS 以外の環境でラップを解除しないでください。

Red Hat カスタマーポータルの Product compliance ページの FIPS - Federal Information Processing
Standards セクションで、選択した RHEL マイナーリリースの暗号化モジュール検証ステータスの概要
を確認できます。

インストール後に FIPS モードに切り替える
fips-mode-setup ツールを使用してシステムを FIPS モードに切り替えても、FIPS 140 標準への準拠は
保証されません。システムを FIPS モードに設定した後にすべての暗号キーを再生成することは、可能
でない場合があります。たとえば、ユーザーの暗号キーを含む既存の IdM レルムの場合、すべてのキー
を再生成することはできません。FIPS モードでインストールを開始できない場合は、インストール後
の設定手順を実行したり、ワークロードをインストールしたりする前に、インストール後の最初の手順
として常に FIPS モードを有効にしてください。

fips-mode-setup ツールも内部的に FIPS システム全体の暗号化ポリシーを使用します。ただ
し、update-crypto-policies --set FIPS コマンドが実行する内容に加え、fips-mode-setup は、fips-
finish-install ツールを使用して FIPS dracut モジュールを確実にインストールします。また、 fips=1
ブートオプションをカーネルコマンドラインに追加し、初期 RAM ディスクを再生成します。

さらに、FIPS モードで必要な制限の適用は、/proc/sys/crypto/fips_enabled ファイルの内容によって
異なります。ファイルに 1 が含まれている場合、RHEL コア暗号化コンポーネントは、FIPS 承認の暗

Red Hat Enterprise Linux 9 セキュリティーの強化

10

https://access.redhat.com/en/compliance
https://access.redhat.com/compliance/fips
https://access.redhat.com/en/compliance
https://access.redhat.com/compliance/fips

号化アルゴリズムの実装のみを使用するモードに切り替わります。/proc/sys/crypto/fips_enabled に 0
が含まれている場合、暗号化コンポーネントは FIPS モードを有効にしません。

暗号化ポリシーにおける FIPS
FIPS システム全体の暗号化ポリシーは、より高いレベルの制限を設定するのに役立ちます。したがっ
て、暗号化の俊敏性をサポートする通信プロトコルは、選択時にシステムが拒否する暗号をアナウンス
しません。たとえば、ChaCha20 アルゴリズムは FIPS によって承認されておらず、FIPS 暗号化ポリ
シーは、TLS サーバーおよびクライアントが
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 TLS 暗号スイートをアナウンスしないよ
うにします。これは、そのような暗号を使用しようとすると失敗するためです。

RHEL を FIPS モードで操作し、独自の FIPS モード関連の設定オプションを提供するアプリケーション
を使用する場合は、これらのオプションと対応するアプリケーションのガイダンスを無視してくださ
い。FIPS モードで実行されているシステムとシステム全体の暗号化ポリシーは、FIPS 準拠の暗号化の
みを適用します。たとえば、システムが FIPS モードで実行されている場合、Node.js 設定オプション --
enable-fips は無視されます。FIPS モードで実行されていないシステムで --enable-fips オプションを
使用すると、FIPS-140 準拠の要件を満たせなくなります。

警告

FIPS モードで実行されている RHEL 9.2 以降のシステムでは、FIPS 140-3 標準の
要件に従って、TLS 1.2 接続で Extended Master Secret (EMS) 拡張機能 (RFC
7627) を使用する必要があります。したがって、EMS または TLS 1.3 をサポートし
ていないレガシークライアントは、FIPS モードで実行されている RHEL 9 サー
バーに接続できません。FIPS モードの RHEL 9 クライアントは、EMS なしで TLS
1.2 のみをサポートするサーバーに接続できません。詳細は、Red Hat ナレッジ
ベースのソリューション TLS Extension "Extended Master Secret" enforced with
Red Hat Enterprise Linux 9.2 を参照してください。

関連情報

Red Hat カスタマーポータルの Product compliance ページの FIPS - Federal Information
Processing Standards セクション

RHEL のシステム全体の暗号化ポリシー

FIPS publications at NIST Computer Security Resource Center

Federal Information Processing Standards Publication: FIPS 140-3

2.2. FIPS モードが有効なシステムのインストール

連邦情報処理規格 (FIPS) 140 で義務付けられている暗号化モジュールの自己チェックを有効にするに
は、システムのインストール時に FIPS モードを有効にします。

重要

RHEL のインストール中に FIPS モードを有効にするだけで、システムは FIPS で承認さ
れるアルゴリズムと継続的な監視テストですべての鍵を生成するようになります。



第2章 FIPS モードへの RHEL の切り替え

11

https://access.redhat.com/solutions/7018256
https://access.redhat.com/en/compliance
https://access.redhat.com/compliance/fips
https://csrc.nist.gov/publications/fips
https://doi.org/10.6028/NIST.FIPS.140-3

警告

FIPS モードのセットアップを完了した後、FIPS モードをオフにすると、システム
が必ず不整合な状態になります。このような変更が必要な場合、システムを完全に
再インストールするのが唯一の正しい方法です。

手順

1. システムのインストール時に fips=1 オプションをカーネルコマンドラインに追加します。

2. ソフトウェアの選択段階で、サードパーティーのソフトウェアをインストールしないでくださ
い。

3. インストール後に、システムは FIPS モードで自動的に起動します。

検証

システムが起動したら、FIPS モードが有効になっていることを確認します。

$ fips-mode-setup --check
FIPS mode is enabled.

関連情報

起動オプションの編集

2.3. FIPS モードへのシステムの切り替え

システム全体の暗号化ポリシーには、連邦情報処理標準 (FIPS) Publication 140 の要件に従って暗号化
アルゴリズムを有効にするポリシーレベルが含まれています。FIPS モードを有効または無効にする
fips-mode-setup ツールは、内部的に FIPS のシステム全体の暗号化ポリシーを使用します。

FIPS システム全体の暗号化ポリシーを使用してシステムを FIPS モードに切り替えても、FIPS 140 標
準への準拠は保証されません。システムを FIPS モードに設定した後にすべての暗号キーを再生成する
ことは、可能でない場合があります。たとえば、ユーザーの暗号キーを含む既存の IdM レルムの場合、
すべてのキーを再生成することはできません。

重要

RHEL のインストール中に FIPS モード を有効にするだけで、システムは FIPS で承認さ
れるアルゴリズムと継続的な監視テストですべてのキーを生成するようになります。

fips-mode-setup ツールは、FIPS ポリシーを内部的に使用します。ただし、--set FIPS オプションを
指定した update-crypto-policies コマンドが実行する内容に加え、fips-mode-setup は、fips-finish-
install ツールを使用して FIPS dracut モジュールを確実にインストールします。また、 fips=1 ブートオ
プションをカーネルコマンドラインに追加し、初期 RAM ディスクを再生成します。



Red Hat Enterprise Linux 9 セキュリティーの強化

12

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/interactively_installing_rhel_from_installation_media/optional-customizing-boot-options_rhel-installer

警告

FIPS モードのセットアップを完了した後、FIPS モードをオフにすると、システム
が必ず不整合な状態になります。このような変更が必要な場合、システムを完全に
再インストールするのが唯一の正しい方法です。

手順

1. システムを FIPS モードに切り替えるには、以下のコマンドを実行します。

fips-mode-setup --enable
Kernel initramdisks are being regenerated. This might take some time.
Setting system policy to FIPS
Note: System-wide crypto policies are applied on application start-up.
It is recommended to restart the system for the change of policies
to fully take place.
FIPS mode will be enabled.
Please reboot the system for the setting to take effect.

2. システムを再起動して、カーネルを FIPS モードに切り替えます。

reboot

検証

システムが再起動したら、FIPS モードの現在の状態を確認できます。

fips-mode-setup --check
FIPS mode is enabled.

関連情報

システム上の fips-mode-setup(8) man ページ

Red Hat カスタマーポータルの Product compliance ページの FIPS - Federal Information
Processing Standards セクション

How to enable FIPS on instances using Red Hat Unified Kernel Images (Red Hat ナレッジベー
ス)

NIST (National Institute of Standards and Technology) の Web サイトの Security Requirements
for Cryptographic Modules。

2.4. コンテナーでの FIPS モードの有効化

Federal Information Processing Standard Publication 140-2 (FIPS モード) で義務付けられている暗号化
モジュールのセルフチェックの完全なセットを有効にするには、ホストシステムのカーネルが FIPS
モードで実行されている必要があります。podman ユーティリティーは、サポートされているコンテ
ナーで FIPS モードを自動的に有効にします。



第2章 FIPS モードへの RHEL の切り替え

13

https://access.redhat.com/en/compliance
https://access.redhat.com/compliance/fips
https://access.redhat.com/solutions/7099187
https://csrc.nist.gov/publications/detail/fips/140/3/final

コンテナーで fips-mode-setup コマンドが正しく機能せず、このシナリオでこのコマンドを使用して
FIPS モードを有効にしたり確認することができません。

前提条件

ホストシステムが FIPS モードである必要があります。

手順

FIPS モードが有効になっているシステムでは、podman ユーティリティーはサポートされてい
るコンテナーで FIPS モードを自動的に有効にします。

関連情報

FIPS モードへのシステムの切り替え

FIPS モードでのシステムのインストール

Red Hat カスタマーポータルの Product compliance ページの FIPS - Federal Information
Processing Standards セクション

2.5. FIPS 140-3 に準拠していない暗号化を使用している RHEL アプリケー
ションのリスト

FIPS 140-3 などの関連するすべての暗号化認定に合格するには、コア暗号化コンポーネントセットのラ
イブラリーを使用します。これらのライブラリーは、libgcrypt を除き、RHEL システム全体の暗号化
ポリシーに従います。

コア暗号化コンポーネントの概要、そのコンポーネントの選択方法、オペレーティングシステムへの統
合方法、ハードウェアセキュリティーモジュールおよびスマートカードのサポート方法、暗号化による
認定の適用方法の概要は、Red Hat ナレッジベースの記事 RHEL core cryptographic components を参
照してください。

FIPS 140-3 に準拠していない暗号化を使用している RHEL 9 アプリケーションのリスト

Bacula

CRAM-MD5 認証プロトコルを実装します。

Cyrus SASL

SCRAM-SHA-1 認証方式を使用します。

Dovecot

SCRAM-SHA-1 を使用します。

Emacs

SCRAM-SHA-1 を使用します。

FreeRADIUS

認証プロトコルに MD5 および SHA-1 を使用します。

Ghostscript

ドキュメントを暗号化および復号化するためのカスタムの cryptography 実装 (MD5、RC4、SHA-
2、AES)

GRUB

SHA-1 を必要とするレガシーファームウェアプロトコルをサポートし、libgcrypt ライブラリーを含

Red Hat Enterprise Linux 9 セキュリティーの強化

14

https://access.redhat.com/en/compliance
https://access.redhat.com/compliance/fips
https://access.redhat.com/articles/3655361

SHA-1 を必要とするレガシーファームウェアプロトコルをサポートし、libgcrypt ライブラリーを含
みます。

iPXE

TLS スタックを実装します。

Kerberos

SHA-1 (Windows との相互運用性) のサポートを維持します。

Lasso

lasso_wsse_username_token_derive_key () 鍵導出関数 (KDF) は SHA-1 を使用します。

MariaDB、MariaDB コネクター

mysql_native_password 認証プラグインは SHA-1 を使用します。

MySQL

mysql_native_password は SHA-1 を使用します。

OpenIPMI

RAKP-HMAC-MD5 認証方式は、FIPS の使用が承認されておらず、FIPS モードでは機能しません。

OVMF (UEFI ファームウェア)、Edk2、shim

完全な暗号スタック (OpenSSL ライブラリーの埋め込みコピー)。

Perl

HMAC、HMAC-SHA1、HMAC-MD5、SHA-1、SHA-224 などを使用します。

Pidgin

DES および RC4 暗号を実装します。

PKCS #12 ファイル処理 (OpenSSL、GnuTLS、NSS、Firefox、Java)

ファイル全体の HMAC の計算に使用されるキー派生関数 (KDF) が FIPS で承認されていないため、
PKCS #12 のすべての使用は FIPS に準拠していません。そのため、PKCS #12 ファイルは、FIPS 準
拠のためにプレーンテキストと見なされます。鍵転送の目的で、FIPS 承認の暗号化方式を使用して
PKCS #12 (.p12) ファイルをラップします。

Poppler

元の PDF (MD5、RC4、SHA-1 など) に存在する場合は、許可されていないアルゴリズムに基づいて
署名、パスワード、および暗号化を使用して PDF を保存できます。

PostgreSQL

Blowfish、DES、MD5 を実装します。KDF は SHA-1 を使用します。

QAT エンジン

暗号化プリミティブのハードウェアおよびソフトウェア実装 (RSA、EC、DH、AES、…)

Ruby

安全でないライブラリー関数 MD5 および SHA-1 を提供します。

Samba

RC4 および DES (Windows との相互運用性) のサポートを維持します。

Syslinux

BIOS パスワードは SHA-1 を使用します。

SWTPM

OpenSSL の使用時に FIPS モードを明示的に無効にします。

Unbound

DNS 仕様では、DNSSEC リゾルバーが検証のために DNSKEY レコードで SHA-1 ベースのアルゴリ
ズムを使用する必要があります。

第2章 FIPS モードへの RHEL の切り替え

15

Valgrind

AES、SHA ハッシュ。[1]

zip

パスワードを使用してアーカイブを暗号化および復号化するためのカスタム暗号化実装 (セキュアで
ない PKWARE 暗号化アルゴリズム)。

関連情報

Red Hat カスタマーポータルの Product compliance ページの FIPS - Federal Information
Processing Standards セクション

RHEL core cryptographic components (Red Hat ナレッジベース)

[1] ARM 上の AES-NI、SHA-1 および SHA-2 などのソフトウェアハードウェアオフロード操作を再実装します。

Red Hat Enterprise Linux 9 セキュリティーの強化

16

https://access.redhat.com/en/compliance
https://access.redhat.com/compliance/fips
https://access.redhat.com/articles/3655361

第3章 システム全体の暗号化ポリシーの使用
システム全体の暗号化ポリシーは、コア暗号化サブシステムを設定するシステムコンポーネントで、
TLS、IPsec、SSH、DNSSec、および Kerberos の各プロトコルに対応します。これにより、管理者が
選択できる小規模セットのポリシーを提供します。

3.1. システム全体の暗号化ポリシー

システム全体のポリシーを設定すると、RHEL のアプリケーションはそのポリシーに従い、ポリシーを
満たしていないアルゴリズムやプロトコルを使用するように明示的に要求されない限り、その使用を拒
否します。つまり、システムが提供した設定で実行する際に、デフォルトのアプリケーションの挙動に
ポリシーを適用しますが、必要な場合は上書きできます。

RHEL 9 には、以下の定義済みポリシーが含まれています。

DEFAULT

デフォルトのシステム全体の暗号化ポリシーレベルで、現在の脅威モデルに対して安全なもので
す。TLS プロトコルの 1.2 と 1.3、IKEv2 プロトコル、および SSH2 プロトコルが使用できます。RSA
鍵と Diffie-Hellman パラメーターは長さが 2048 ビット以上であれば許容されます。

LEGACY

Red Hat Enterprise Linux 6 以前との互換性を最大限に確保します。攻撃対象領域が増えるため、セ
キュリティーが低下します。SHA-1 は、TLS ハッシュ、署名、およびアルゴリズムとして使用でき
ます。CBC モードの暗号は、SSH と併用できます。GnuTLS を使用するアプリケーションは、
SHA-1 で署名した証明書を許可します。TLS プロトコルの 1.2 と 1.3、IKEv2 プロトコル、および
SSH2 プロトコルが使用できます。RSA 鍵と Diffie-Hellman パラメーターは長さが 2048 ビット以
上であれば許容されます。

FUTURE

将来の潜在的なポリシーをテストすることを目的とした、より厳格な将来を見据えたセキュリ
ティーレベル。このポリシーでは、DNSSec または HMAC としての SHA-1 の使用は許可されませ
ん。SHA2-224 および SHA3-224 ハッシュは拒否されます。128 ビット暗号は無効になります。
CBC モードの暗号は、Kerberos を除き無効になります。TLS プロトコルの 1.2 と 1.3、IKEv2 プロト
コル、および SSH2 プロトコルが使用できます。RSA 鍵と Diffie-Hellman パラメーターは、ビット
長が 3072 以上だと許可されます。システムが公共のインターネット上で通信する場合、相互運用性
の問題が発生する可能性があります。

重要

カスタマーポータル API の証明書が使用する暗号化鍵は FUTURE のシステム全体の
暗号化ポリシーが定義する要件を満たさないので、現時点で redhat-support-tool
ユーティリティーは、このポリシーレベルでは機能しません。

この問題を回避するには、カスタマーポータル API への接続中に DEFAULT 暗号化ポ
リシーを使用します。

FIPS

FIPS 140 要件に準拠します。RHEL システムを FIPS モードに切り替える fips-mode-setup ツール
は、このポリシーを内部的に使用します。FIPS ポリシーに切り替えても、FIPS 140 標準への準拠は
保証されません。また、システムを FIPS モードに設定した後、すべての暗号キーを再生成する必要
があります。多くのシナリオでは、これは不可能です。
また、RHEL はシステム全体のサブポリシー FIPS:OSPP を提供します。これには、Common
Criteria (CC) 認証に必要な暗号化アルゴリズムに関する追加の制限が含まれています。このサブポ

第3章 システム全体の暗号化ポリシーの使用

17

リシーを設定すると、システムの相互運用性が低下します。たとえば、3072 ビットより短い RSA
鍵と DH 鍵、追加の SSH アルゴリズム、および複数の TLS グループを使用できません。ま
た、FIPS:OSPP を設定すると、Red Hat コンテンツ配信ネットワーク (CDN) 構造への接続が防止
されます。さらに、FIPS:OSPP を使用する IdM デプロイメントには Active Directory (AD) を統合
できません。FIPS:OSPP を使用する RHEL ホストと AD ドメイン間の通信が機能しないか、一部の
AD アカウントが認証できない可能性があります。

注記

FIPS:OSPP 暗号化サブポリシーを設定すると、システムが CC 非準拠になります。
RHEL システムを CC 標準に準拠させる唯一の正しい方法は、cc-config パッケージ
で提供されているガイダンスに従うことです。認定済み RHEL バージョン、検証レ
ポート、CC ガイドへのリンクのリストについては、Red Hat カスタマーポータルの
Product compliance ページの Common Criteria セクションを参照してください。

Red Hat は、LEGACY ポリシーを使用する場合を除き、すべてのライブラリーがセキュアなデフォル
ト値を提供するように、すべてのポリシーレベルを継続的に調整します。LEGACY プロファイルはセ
キュアなデフォルト値を提供しませんが、このプロファイルには、簡単に悪用できるアルゴリズムは含
まれていません。このため、提供されたポリシーで有効なアルゴリズムのセットまたは許容可能な鍵サ
イズは、Red Hat Enterprise Linux の存続期間中に変更する可能性があります。

このような変更は、新しいセキュリティー標準や新しいセキュリティー調査を反映しています。Red
Hat Enterprise Linux のライフサイクル全体にわたって特定のシステムとの相互運用性を確保する必要
がある場合は、そのシステムと対話するコンポーネントのシステム全体の暗号化ポリシーからオプトア
ウトするか、カスタム暗号化ポリシーを使用して特定のアルゴリズムを再度有効にする必要がありま
す。

ポリシーレベルで許可されていると記載されている特定のアルゴリズムと暗号は、アプリケーションが
それらをサポートしている場合にのみ使用できます。

表3.1 暗号化ポリシーで有効になっている暗号スイートとプロトコル

 LEGACY DEFAULT FIPS FUTURE

IKEv1 いいえ いいえ いいえ いいえ

3DES いいえ いいえ いいえ いいえ

RC4 いいえ いいえ いいえ いいえ

DH 最低 2048 ビット 最低 2048 ビット 最低 2048 ビット 最低 3072 ビット

RSA 最低 2048 ビット 最低 2048 ビット 最低 2048 ビット 最低 3072 ビット

DSA いいえ いいえ いいえ いいえ

TLS v1.1 以前 いいえ いいえ いいえ いいえ

TLS v1.2 以降 はい はい はい はい

Red Hat Enterprise Linux 9 セキュリティーの強化

18

https://access.redhat.com/en/compliance
https://access.redhat.com/en/compliance/common-criteria

デジタル署名およ
び証明書の SHA-1

はい いいえ いいえ いいえ

CBC モード暗号 はい いいえ[a] いいえ[b] いいえ[c]

256 ビットより小
さい鍵を持つ対称
暗号

はい はい はい いいえ

[a] CBC 暗号は SSH で無効になります。

[b] CBC 暗号は、Kerberos を除くすべてのプロトコルで無効になります。

[c] CBC 暗号は、Kerberos を除くすべてのプロトコルで無効になります。

 LEGACY DEFAULT FIPS FUTURE

関連情報

システム上の crypto-policies(7) および update-crypto-policies(8) man ページ

Product compliance (Red Hat カスタマーポータル)

3.2. システム全体の暗号化ポリシーの変更

update-crypto-policies ツールを使用してシステムを再起動すると、システム全体の暗号化ポリシーを
変更できます。

前提条件

システムの root 権限がある。

手順

1. オプション: 現在の暗号化ポリシーを表示します。

$ update-crypto-policies --show
DEFAULT

2. 新しい暗号化ポリシーを設定します。

update-crypto-policies --set <POLICY>
<POLICY>

<POLICY> は、設定するポリシーまたはサブポリシー (FUTURE、LEGACY、FIPS:OSPP な
ど) に置き換えます。

3. システムを再起動します。

reboot

第3章 システム全体の暗号化ポリシーの使用

19

https://access.redhat.com/en/compliance

検証

現在の暗号化ポリシーを表示します。

$ update-crypto-policies --show
<POLICY>

関連情報

システム全体の暗号化ポリシーの詳細は、システム全体の暗号化ポリシー を参照してくださ
い。

3.3. システム全体の暗号化ポリシーを以前のリリースと互換性のあるモード
に切り替える

Red Hat Enterprise Linux 9 におけるデフォルトのシステム全体の暗号化ポリシーでは、現在は古くて安
全ではないプロトコルは許可されません。Red Hat Enterprise Linux 6 およびそれ以前のリリースとの互
換性が必要な場合には、安全でない LEGACY ポリシーレベルを利用できます。

警告

LEGACY ポリシーレベルに設定すると、システムおよびアプリケーションの安全
性が低下します。

手順

1. システム全体の暗号化ポリシーを LEGACY レベルに切り替えるには、root で以下のコマンド
を実行します。

update-crypto-policies --set LEGACY
Setting system policy to LEGACY

関連情報

利用可能な暗号化ポリシーレベルのリストは、システム上の update-crypto-policies(8) man
ページを参照してください。

カスタム暗号化ポリシーの定義は、システム上の update-crypto-policies(8) man ページの
Custom Policies セクションと、crypto-policies(7) man ページの Crypto Policy Definition
Format セクションを参照してください。

3.4. SHA-1 を再度有効に

署名を作成および検証するための SHA-1 アルゴリズムの使用は、DEFAULT 暗号化ポリシーで制限され
ています。シナリオで既存またはサードパーティーの暗号署名を検証するために SHA-1 を使用する必要
がある場合は、RHEL 9 がデフォルトで提供する SHA1 サブポリシーを適用することで有効にできま
す。システムのセキュリティーが弱くなることに注意してください。



Red Hat Enterprise Linux 9 セキュリティーの強化

20

前提条件

このシステムは、DEFAULT システム全体の暗号化ポリシーを使用します。

手順

1. SHA1 サブポリシーを DEFAULT 暗号化ポリシーに適用します。

update-crypto-policies --set DEFAULT:SHA1
Setting system policy to DEFAULT:SHA1
Note: System-wide crypto policies are applied on application start-up.
It is recommended to restart the system for the change of policies
to fully take place.

2. システムを再起動します。

reboot

検証

現在の暗号化ポリシーを表示します。

update-crypto-policies --show
DEFAULT:SHA1

重要

update-crypto-policies --set LEGACY コマンドを使用して LEGACY 暗号化ポリシーに
切り替えると、署名に対して SHA-1 も有効になります。ただし、LEGACY 暗号化ポリ
シーは、他の弱い暗号化アルゴリズムも有効にすることで、システムをはるかに脆弱に
します。この回避策は、SHA-1 署名以外のレガシー暗号化アルゴリズムを有効にする必
要があるシナリオでのみ使用してください。

関連情報

SSH from RHEL 9 to RHEL 6 systems does not work (Red Hat ナレッジベース)

Packages signed with SHA-1 cannot be installed or upgraded (Red Hat ナレッジベース)

3.5. WEB コンソールでシステム全体の暗号化ポリシーを設定する

RHEL Web コンソールインターフェイスで、システム全体の暗号化ポリシーとサブポリシーのいずれか
を直接設定できます。4 つの事前定義されたシステム全体の暗号化ポリシーに加え、グラフィカルイン
ターフェイスを介して、次のポリシーとサブポリシーの組み合わせを適用することもできます。

DEFAULT:SHA1

SHA-1 アルゴリズムが有効になっている DEFAULT ポリシー。

LEGACY:AD-SUPPORT

Active Directory サービスの相互運用性を向上させる、セキュリティーの低い設定を含む LEGACY
ポリシー。

FIPS:OSPP

Common Criteria for Information Technology Security Evaluation 標準によって要求される追加の制

第3章 システム全体の暗号化ポリシーの使用

21

https://access.redhat.com/solutions/6816771
https://access.redhat.com/solutions/6868611

Common Criteria for Information Technology Security Evaluation 標準によって要求される追加の制
限を含む FIPS ポリシー。

警告

システム全体のサブポリシー FIPS:OSPP には、Common Criteria (CC) 認定に必要
な暗号化アルゴリズムに関する追加の制限が含まれています。そのため、このサブ
ポリシーを設定すると、システムの相互運用性が低下します。たとえば、3072
ビットより短い RSA 鍵と DH 鍵、追加の SSH アルゴリズム、および複数の TLS グ
ループを使用できません。また、FIPS:OSPP を設定すると、Red Hat コンテンツ
配信ネットワーク (CDN) 構造への接続が防止されます。さらに、FIPS:OSPP を使
用する IdM デプロイメントには Active Directory (AD) を統合できませ
ん。FIPS:OSPP を使用する RHEL ホストと AD ドメイン間の通信が機能しない
か、一部の AD アカウントが認証できない可能性があります。

FIPS:OSPP 暗号化サブポリシーを設定すると、システムが CC 非準拠になる こと
に注意してください。RHEL システムを CC 標準に準拠させる唯一の正しい方法
は、cc-config パッケージで提供されているガイダンスに従うことです。認定され
た RHEL バージョン、検証レポート、および National Information Assurance
Partnership (NIAP) の Web サイトでホストされる CC ガイドへのリンクのリスト
は、Red Hat カスタマーポータルページの Product compliance の Common
Criteria セクションを参照してください。

前提条件

RHEL 9 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

root 特権、または sudo を使用して管理コマンドを入力する権限がある。

手順

1. RHEL 9 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. Overview ページの Configuration カードで、Crypto policy の横にある現在のポリシー値をク
リックします。



Red Hat Enterprise Linux 9 セキュリティーの強化

22

https://www.niap-ccevs.org/
https://access.redhat.com/en/compliance
https://access.redhat.com/en/compliance/common-criteria
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

3. Change crypto policy ダイアログウィンドウで、システムで使用を開始するポリシーをクリッ
クします。

4. Apply and reboot ボタンをクリックします。

検証

再起動後、Web コンソールに再度ログインし、暗号化ポリシー の値が選択したものと一致して
いることを確認します。
あるいは、update-crypto-policies --show コマンドを入力して、現在のシステム全体の暗号化
ポリシーをターミナルに表示することもできます。

3.6. システム全体の暗号化ポリシーからアプリケーションを除外する

アプリケーションで使用される暗号化関連の設定をカスタマイズする必要がある場合は、サポートされ

第3章 システム全体の暗号化ポリシーの使用

23

アプリケーションで使用される暗号化関連の設定をカスタマイズする必要がある場合は、サポートされ
る暗号スイートとプロトコルをアプリケーションで直接設定することが推奨されます。

/etc/crypto-policies/back-ends ディレクトリーからアプリケーション関連のシンボリックリンクを削
除することもできます。カスタマイズした暗号化設定に置き換えることもできます。この設定により、
除外されたバックエンドを使用するアプリケーションに対するシステム全体の暗号化ポリシーが使用で
きなくなります。この修正は、Red Hat ではサポートされていません。

3.6.1. システム全体の暗号化ポリシーをオプトアウトする例

wget

wget ネットワークダウンローダーで使用される暗号化設定をカスタマイズするには、--secure-
protocol オプションおよび --ciphers オプションを使用します。以下に例を示します。

$ wget --secure-protocol=TLSv1_1 --ciphers="SECURE128" https://example.com

詳細は、wget(1) man ページの HTTPS (SSL/TLS) Options のセクションを参照してください。

curl

curl ツールで使用する暗号を指定するには、--ciphers オプションを使用して、その値に、コロンで区
切った暗号化のリストを指定します。以下に例を示します。

$ curl https://example.com --ciphers '@SECLEVEL=0:DES-CBC3-SHA:RSA-DES-CBC3-SHA'

詳細は、curl(1) の man ページを参照してください。

Firefox

Web ブラウザーの Firefox でシステム全体の暗号化ポリシーをオプトアウトできない場合でも、
Firefox の設定エディターで、対応している暗号と TLS バージョンをさらに詳細に制限できます。アド
レスバーに about:config と入力し、必要に応じて security.tls.version.min の値を変更します。たと
えば、security.tls.version.min を 1 に設定すると、最低でも TLS 1.0 が必要にな
り、security.tls.version.min 2 が TLS 1.1 になります。

OpenSSH

OpenSSH サーバーのシステム全体の暗号化ポリシーをオプトアウトするに
は、/etc/ssh/sshd_config.d/ ディレクトリーにあるドロップイン設定ファイルに暗号化ポリシーを指
定します。このとき、辞書式順序で 50-redhat.conf ファイルよりも前に来るように、50 未満の 2 桁の
数字接頭辞と、.conf という接尾辞を付けます (例: 49-crypto-policy-override.conf)。

詳細は、sshd_config(5) の man ページを参照してください。

OpenSSH クライアントのシステム全体の暗号化ポリシーをオプトアウトするには、次のいずれかのタ
スクを実行します。

指定のユーザーの場合は、~/.ssh/config ファイルのユーザー固有の設定でグローバルの
ssh_config を上書きします。

システム全体の場合は、/etc/ssh/ssh_config.d/ ディレクトリーにあるドロップイン設定ファ
イルに暗号化ポリシーを指定します。このとき、辞書式順序で 50-redhat.conf ファイルよりも
前に来るように、50 未満の 2 桁の接頭辞と、.conf という接尾辞を付けます (例: 49-crypto-
policy-override.conf)。

Red Hat Enterprise Linux 9 セキュリティーの強化

24

詳細は、ssh_config(5) の man ページを参照してください。

Libreswan

詳細は、Securing networks の Configuring IPsec connections that opt out of the system-wide crypto
policies を参照してください。

関連情報

システム上の update-crypto-policies(8) man ページ

3.7. サブポリシーを使用したシステム全体の暗号化ポリシーのカスタマイズ

この手順を使用して、有効な暗号化アルゴリズムまたはプロトコルのセットを調整します。

既存のシステム全体の暗号化ポリシーの上にカスタムサブポリシーを適用するか、そのようなポリシー
を最初から定義することができます。

スコープが設定されたポリシーの概念により、バックエンドごとに異なるアルゴリズムセットを有効に
できます。各設定ディレクティブは、特定のプロトコル、ライブラリー、またはサービスに限定できま
す。

また、ディレクティブでは、ワイルドカードを使用して複数の値を指定する場合にアスタリスクを使用
できます。

/etc/crypto-policies/state/CURRENT.pol ファイルには、ワイルドカードデプロイメント後に現在適用
されているシステム全体の暗号化ポリシーのすべての設定がリスト表示されます。暗号化ポリシーをよ
り厳密にするには、/usr/share/crypto-policies/policies/FUTURE.pol ファイルにリストされている値
を使用することを検討してください。

サブポリシーの例は、/usr/share/crypto-policies/policies/modules/ ディレクトリーにあります。この
ディレクトリーのサブポリシーファイルには、コメントアウトされた行に説明が含まれています。

手順

1. /etc/crypto-policies/policies/modules/ ディレクトリーをチェックアウトします。

cd /etc/crypto-policies/policies/modules/

2. 調整用のサブポリシーを作成します。次に例を示します。

touch MYCRYPTO-1.pmod
touch SCOPES-AND-WILDCARDS.pmod

重要

ポリシーモジュールのファイル名には大文字を使用します。

3. 任意のテキストエディターでポリシーモジュールを開き、システム全体の暗号化ポリシーを変
更するオプションを挿入します。次に例を示します。

vi MYCRYPTO-1.pmod

第3章 システム全体の暗号化ポリシーの使用

25

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/securing_networks/
https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/securing_networks/configuring-a-vpn-connection_securing-networks#configuring-ipsec-connections-that-opt-out-of-the-system-wide-crypto-policies_configuring-a-vpn-with-ipsec

min_rsa_size = 3072
hash = SHA2-384 SHA2-512 SHA3-384 SHA3-512

vi SCOPES-AND-WILDCARDS.pmod

Disable the AES-128 cipher, all modes
cipher = -AES-128-*

Disable CHACHA20-POLY1305 for the TLS protocol (OpenSSL, GnuTLS, NSS, and
OpenJDK)
cipher@TLS = -CHACHA20-POLY1305

Allow using the FFDHE-1024 group with the SSH protocol (libssh and OpenSSH)
group@SSH = FFDHE-1024+

Disable all CBC mode ciphers for the SSH protocol (libssh and OpenSSH)
cipher@SSH = -*-CBC

Allow the AES-256-CBC cipher in applications using libssh
cipher@libssh = AES-256-CBC+

4. 変更をモジュールファイルに保存します。

5. ポリシーの調整を、システム全体の暗号化ポリシーレベル DEFAULT に適用します。

update-crypto-policies --set DEFAULT:MYCRYPTO-1:SCOPES-AND-WILDCARDS

6. 暗号化設定を実行中のサービスやアプリケーションで有効にするには、システムを再起動しま
す。

reboot

検証

/etc/crypto-policies/state/CURRENT.pol ファイルに変更が含まれていることを確認します。
以下に例を示します。

$ cat /etc/crypto-policies/state/CURRENT.pol | grep rsa_size
min_rsa_size = 3072

関連情報

システム上の update-crypto-policies(8) man ページの Custom Policies セクション

システム上の crypto-policies(7) man ページの Crypto Policy Definition Format セクション

Red Hat ブログ記事 How to customize crypto policies in RHEL 8.2

3.8. システム全体のカスタム暗号化ポリシーの作成および設定

完全なポリシーファイルを作成して使用することで、システム全体の暗号化ポリシーを特定の状況向け
にカスタマイズできます。

Red Hat Enterprise Linux 9 セキュリティーの強化

26

https://www.redhat.com/en/blog/how-customize-crypto-policies-rhel-82

手順

1. カスタマイズのポリシーファイルを作成します。

cd /etc/crypto-policies/policies/
touch MYPOLICY.pol

または、定義されている 4 つのポリシーレベルのいずれかをコピーします。

cp /usr/share/crypto-policies/policies/DEFAULT.pol /etc/crypto-
policies/policies/MYPOLICY.pol

2. 必要に応じて、テキストエディターでファイルを編集します。以下のようにしてカスタム暗号
化ポリシーを使用します。

vi /etc/crypto-policies/policies/MYPOLICY.pol

3. システム全体の暗号化ポリシーをカスタムレベルに切り替えます。

update-crypto-policies --set MYPOLICY

4. 暗号化設定を実行中のサービスやアプリケーションで有効にするには、システムを再起動しま
す。

reboot

関連情報

システム上の update-crypto-policies(8) man ページの Custom Policies セクションと crypto-
policies(7) man ページの Crypto Policy Definition Format セクション

Red Hat ブログ記事 How to customize crypto policies in RHEL

3.9. CRYPTO_POLICIES RHEL システムロールを使用した FUTURE 暗号化ポリ
シーによるセキュリティーの強化

crypto_policies RHEL システムロールを使用して、管理対象ノードで FUTURE ポリシーを設定できま
す。このポリシーは、たとえば次のことを実現するのに役立ちます。

将来の新たな脅威への対応: 計算能力の向上を予測します。

セキュリティーの強化: 強力な暗号化標準により、より長い鍵長とよりセキュアなアルゴリズム
を必須にします。

高度なセキュリティー標準への準拠: 医療、通信、金融などの分野ではデータの機密性が高く、
強力な暗号化を利用できることが重要です。

通常、FUTURE は、機密性の高いデータを扱う環境、将来の規制に備える環境、長期的なセキュリ
ティーストラテジーを採用する環境に適しています。

第3章 システム全体の暗号化ポリシーの使用

27

https://www.redhat.com/en/blog/how-customize-crypto-policies-rhel-82

警告

レガシーのシステムやソフトウェアでは、FUTURE ポリシーによって強制され
る、より最新しく厳格なアルゴリズムやプロトコルをサポートする必要はありませ
ん。たとえば、古いシステムでは TLS 1.3 以上の鍵サイズがサポートされていない
可能性があります。これにより互換性の問題が発生する可能性があります。

また、強力なアルゴリズムを使用すると、通常、計算負荷が増加し、システムのパ
フォーマンスに悪影響が及ぶ可能性があります。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

サンプル Playbook で指定されている設定は次のとおりです。

crypto_policies_policy: FUTURE

管理対象ノードで必要な暗号化ポリシー (FUTURE) を設定します。これは、基本ポリ
シー、またはいくつかのサブポリシーを含む基本ポリシーのどちらかです。指定した基本ポ
リシーとサブポリシーが、管理対象ノードで使用可能である必要があります。デフォルト値
は null です。つまり、設定は変更されず、crypto_policies RHEL システムロールは
Ansible fact のみを収集します。

crypto_policies_reboot_ok: true

すべてのサービスとアプリケーションが新しい設定ファイルを読み取るように、暗号化ポリ
シーの変更後にシステムを再起動します。デフォルト値は false です。

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.crypto_policies/README.md ファイルを参照し
てください。



- name: Configure cryptographic policies
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure the FUTURE cryptographic security policy on the managed node
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.crypto_policies
 vars:
 - crypto_policies_policy: FUTURE
 - crypto_policies_reboot_ok: true

Red Hat Enterprise Linux 9 セキュリティーの強化

28

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

警告

システム全体のサブポリシー FIPS:OSPP には、Common Criteria (CC) 認定に必要
な暗号化アルゴリズムに関する追加の制限が含まれています。そのため、このサブ
ポリシーを設定すると、システムの相互運用性が低下します。たとえば、3072
ビットより短い RSA 鍵と DH 鍵、追加の SSH アルゴリズム、および複数の TLS グ
ループを使用できません。また、FIPS:OSPP を設定すると、Red Hat コンテンツ
配信ネットワーク (CDN) 構造への接続が防止されます。さらに、FIPS:OSPP を使
用する IdM デプロイメントには Active Directory (AD) を統合できませ
ん。FIPS:OSPP を使用する RHEL ホストと AD ドメイン間の通信が機能しない
か、一部の AD アカウントが認証できない可能性があります。

FIPS:OSPP 暗号化サブポリシーを設定すると、システムが CC 非準拠になる こと
に注意してください。RHEL システムを CC 標準に準拠させる唯一の正しい方法
は、cc-config パッケージで提供されているガイダンスに従うことです。認定され
た RHEL バージョン、検証レポート、および National Information Assurance
Partnership (NIAP) の Web サイトでホストされる CC ガイドへのリンクのリスト
は、Red Hat カスタマーポータルページの Product compliance の Common
Criteria セクションを参照してください。

検証

1. コントロールノードで、たとえば verify_playbook.yml という名前の別の Playbook を作成し
ます。

サンプル Playbook で指定されている設定は次のとおりです。

crypto_policies_active



- name: Verification
 hosts: managed-node-01.example.com
 tasks:
 - name: Verify active cryptographic policy
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.crypto_policies
 - name: Display the currently active cryptographic policy
 ansible.builtin.debug:
 var: crypto_policies_active

第3章 システム全体の暗号化ポリシーの使用

29

https://www.niap-ccevs.org/
https://access.redhat.com/en/compliance
https://access.redhat.com/en/compliance/common-criteria

crypto_policies_policy 変数で受け入れられる形式の現在アクティブなポリシー名が含まれ
ているエクスポートされた Ansible fact。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/verify_playbook.yml

3. Playbook を実行します。

$ ansible-playbook ~/verify_playbook.yml
TASK [debug] **************************
ok: [host] => {
 "crypto_policies_active": "FUTURE"
}

crypto_policies_active 変数は、管理対象ノード上のアクティブなポリシーを示します。

関連情報

/usr/share/ansible/roles/rhel-system-roles.crypto_policies/README.md ファイル

/usr/share/doc/rhel-system-roles/crypto_policies/ ディレクトリー

update-crypto-policies(8) および crypto-policies(7) man ページ

Red Hat Enterprise Linux 9 セキュリティーの強化

30

第4章 PKCS #11 で暗号化ハードウェアを使用するようにアプリ
ケーションを設定

スマートカードや、エンドユーザー認証用の暗号化トークン、サーバーアプリケーション用のハード
ウェアセキュリティーモジュール (HSM) など、専用の暗号化デバイスで秘密情報の一部を分離するこ
とで、セキュリティー層が追加されます。RHEL では、PKCS #11 API を使用した暗号化ハードウェアへ
の対応がアプリケーション間で統一され、暗号ハードウェアでの秘密の分離が複雑なタスクではなくな
りました。

4.1. PKCS #11 による暗号化ハードウェアへの対応

Public-Key Cryptography Standard (PKCS) #11 は、暗号化情報を保持し、暗号化機能を実行する暗号化
デバイスへのアプリケーションプログラミングインターフェイス (API) を定義します。

PKCS #11 では、各ハードウェアまたはソフトウェアデバイスを統一された方法でアプリケーションに
提示するオブジェクトである 暗号化トークン が導入されています。したがって、アプリケーション
は、通常はユーザーによって使用されるスマートカードなどのデバイスや、通常はコンピューターに
よって使用されるハードウェアセキュリティーモジュールを PKCS #11 暗号化トークンとして認識しま
す。

PKCS #11 トークンには、証明書、データオブジェクト、公開鍵、秘密鍵、または秘密鍵を含むさまざ
まなオブジェクトタイプを保存できます。これらのオブジェクトは、PKCS #11 Uniform Resource
Identifier (URI) スキームを通じて一意に識別できます。

PKCS #11 の URI は、オブジェクト属性に従って、PKCS #11 モジュールで特定のオブジェクトを識別す
る標準的な方法です。これにより、URI の形式で、すべてのライブラリーとアプリケーションを同じ設
定文字列で設定できます。

RHEL では、デフォルトでスマートカード用に OpenSC PKCS #11 ドライバーが提供されています。た
だし、ハードウェアトークンと HSM には、システムにカウンターパートを持たない独自の PKCS #11
モジュールがあります。この PKCS #11 モジュールは p11-kit ツールで登録できます。これは、システ
ムの登録済みスマートカードドライバーにおけるラッパーとして機能します。

システムで独自の PKCS #11 モジュールを有効にするには、新しいテキストファイルを
/etc/pkcs11/modules/ ディレクトリーに追加します。

/etc/pkcs11/modules/ ディレクトリーに新しいテキストファイルを作成すると、独自の PKCS #11 モ
ジュールをシステムに追加できます。たとえば、p11-kit の OpenSC 設定ファイルは、以下のようにな
ります。

$ cat /usr/share/p11-kit/modules/opensc.module
module: opensc-pkcs11.so

関連情報

PKCS #11 の URI スキーム

Controlling access to smart cards

4.2. スマートカードに保存した SSH 鍵による認証

スマートカードに ECDSA 鍵と RSA 鍵を作成して保存し、そのスマートカードを使用して OpenSSH ク

第4章 PKCS #11 で暗号化ハードウェアを使用するようにアプリケーションを設定

31

https://tools.ietf.org/html/rfc7512
https://access.redhat.com/blogs/766093/posts/1976313

スマートカードに ECDSA 鍵と RSA 鍵を作成して保存し、そのスマートカードを使用して OpenSSH ク
ライアントで認証することができます。スマートカード認証は、デフォルトのパスワード認証に代わる
ものです。

前提条件

クライアントで、opensc パッケージをインストールして、pcscd サービスを実行している。

手順

1. PKCS #11 の URI を含む OpenSC PKCS #11 モジュールが提供する鍵のリストを表示し、その出
力を keys.pub ファイルに保存します。

$ ssh-keygen -D pkcs11: > keys.pub

2. 公開鍵をリモートサーバーに転送します。ssh-copy-id コマンドを使用し、前の手順で作成し
た keys.pub ファイルを指定します。

$ ssh-copy-id -f -i keys.pub <username@ssh-server-example.com>

3. ECDSA 鍵を使用して <ssh-server-example.com> に接続します。鍵を一意に参照する URI の
サブセットのみを使用することもできます。次に例を示します。

$ ssh -i "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so" <ssh-server-
example.com>
Enter PIN for 'SSH key':
[ssh-server-example.com] $

OpenSSH は p11-kit-proxy ラッパーを使用し、OpenSC PKCS #11 モジュールが p11-kit ツー
ルに登録されているため、前のコマンドを簡略化できます。

$ ssh -i "pkcs11:id=%01" <ssh-server-example.com>
Enter PIN for 'SSH key':
[ssh-server-example.com] $

PKCS #11 の URI の id= の部分を飛ばすと、OpenSSH が、プロキシーモジュールで利用可能な
鍵をすべて読み込みます。これにより、必要な入力の量を減らすことができます。

$ ssh -i pkcs11: <ssh-server-example.com>
Enter PIN for 'SSH key':
[ssh-server-example.com] $

4. オプション: ~/.ssh/config ファイルで同じ URI 文字列を使用して、設定を永続的にすることが
できます。

$ cat ~/.ssh/config
IdentityFile "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so"
$ ssh <ssh-server-example.com>
Enter PIN for 'SSH key':
[ssh-server-example.com] $

ssh クライアントユーティリティーが、この URI とスマートカードの鍵を自動的に使用するよ
うになります。

Red Hat Enterprise Linux 9 セキュリティーの強化

32

関連情報

システム上の p11-kit(8)、opensc.conf(5)、pcscd(8)、ssh(1)、および ssh-keygen(1) man
ページ

4.3. スマートカード上の証明書を使用して認証するアプリケーションの設定

アプリケーションでスマートカードを使用して認証することにより、セキュリティーが強化され、自動
化が簡素化される場合があります。次の方法を使用して、Public Key Cryptography Standard (PKCS)
#11 URI をアプリケーションに統合できます。

Firefox Web ブラウザーは、p11-kit-proxy PKCS #11 モジュールを自動的にロードします。つ
まり、システムで対応しているすべてのスマートカードが自動的に検出されます。TLS クライ
アント認証を使用する場合、追加のセットアップは必要ありません。サーバーが要求したとき
にスマートカードの鍵と証明書が自動的に使用されます。

アプリケーションが GnuTLS または NSS ライブラリーを使用している場合、PKCS #11 URI は
すでにサポートされています。また、OpenSSL ライブラリーに依存するアプリケーション
は、openssl-pkcs11 パッケージによって提供される pkcs11 エンジンを通じて、スマートカー
ドを含む暗号化ハードウェアモジュールにアクセスできます。

スマートカード上の秘密鍵を操作する必要があり、NSS、GnuTLS、OpenSSL を使用しない
アプリケーションは、特定の PKCS #11 モジュールの PKCS #11 API を使用するのではな
く、p11-kit API を直接使用して、スマートカードを含む暗号化ハードウェアモジュールを操作
できます。

wget ネットワークダウンローダーを使用すると、ローカルに保存された秘密鍵と証明書へのパ
スの代わりに PKCS #11 URI を指定できます。これにより、安全に保管された秘密鍵と証明書を
必要とするタスクのスクリプトの作成が簡素化される可能性があります。以下に例を示しま
す。

$ wget --private-key 'pkcs11:token=softhsm;id=%01;type=private?pin-value=111111' --
certificate 'pkcs11:token=softhsm;id=%01;type=cert' https://example.com/

また、curl ツールを使用する場合は、PKCS #11 URI を指定することもできます。

$ curl --key 'pkcs11:token=softhsm;id=%01;type=private?pin-value=111111' --cert
'pkcs11:token=softhsm;id=%01;type=cert' https://example.com/

注記

PIN は、スマートカードに保存されている鍵へのアクセスを制御するセキュリ
ティー対策であり、設定ファイルにはプレーンテキスト形式の PIN が含まれて
いるため、攻撃者が PIN を読み取れないように追加の保護を検討してくださ
い。たとえば、pin-source 属性を使用して、ファイルから PIN を読み取るため
の file: URI を指定できます。詳細は、RFC 7512: PKCS #11 URI Scheme Query
Attribute Semantics を参照してください。コマンドパスを pin-source 属性の値
として使用することには対応していないことに注意してください。

関連情報

システム上の curl(1)、wget(1)、および p11-kit(8) man ページ

第4章 PKCS #11 で暗号化ハードウェアを使用するようにアプリケーションを設定

33

https://datatracker.ietf.org/doc/html/rfc7512#section-2.4

4.4. APACHE で秘密鍵を保護する HSM の使用

Apache HTTP サーバーは、ハードウェアセキュリティーモジュール (HSM) に保存されている秘密鍵と
連携できます。これにより、鍵の漏えいや中間者攻撃を防ぐことができます。通常、これを行うには、
ビジーなサーバーに高パフォーマンスの HSM が必要になります。

HTTPS プロトコルの形式でセキュアな通信を行うために、Apache HTTP サーバー (httpd) は
OpenSSL ライブラリーを使用します。OpenSSL は、PKCS #11 にネイティブに対応しません。HSM を
使用するには、エンジンインターフェイスを介して PKCS #11 モジュールへのアクセスを提供する
openssl-pkcs11 パッケージをインストールする必要があります。通常のファイル名ではなく PKCS #11
の URI を使用すると、/etc/httpd/conf.d/ssl.conf 設定ファイルでサーバーの鍵と証明書を指定できま
す。以下に例を示します。

SSLCertificateFile "pkcs11:id=%01;token=softhsm;type=cert"
SSLCertificateKeyFile "pkcs11:id=%01;token=softhsm;type=private?pin-value=111111"

httpd-manual パッケージをインストールして、TLS 設定を含む Apache HTTP サーバーの完全ドキュ
メントを取得します。/etc/httpd/conf.d/ssl.conf 設定ファイルで利用可能なディレクティブの詳細
は、/usr/share/httpd/manual/mod/mod_ssl.html を参照してください。

4.5. NGINX で秘密鍵を保護する HSM の使用

Nginx HTTP サーバーは、ハードウェアセキュリティーモジュール (HSM) に保存されている秘密鍵と
連携できます。これにより、鍵の漏えいや中間者攻撃を防ぐことができます。通常、これを行うには、
ビジーなサーバーに高パフォーマンスの HSM が必要になります。

Nginx は暗号化操作に OpenSSL を使用するため、PKCS #11 への対応は openssl-pkcs11 エンジンを
介して行う必要があります。Nginx は現在、HSM からの秘密鍵の読み込みのみに対応します。また、
証明書は通常のファイルとして個別に提供する必要があります。/etc/nginx/nginx.conf 設定ファイルの
server セクションで ssl_certificate オプションおよび ssl_certificate_key オプションを変更します。

ssl_certificate /path/to/cert.pem
ssl_certificate_key "engine:pkcs11:pkcs11:token=softhsm;id=%01;type=private?pin-value=111111";

Nginx 設定ファイルの PKCS #11 URI に接頭辞 engine:pkcs11: が必要なことに注意してください。こ
れは、他の pkcs11 接頭辞がエンジン名を参照するためです。

4.6. 関連情報

システム上の pkcs11.conf(5) man ページ

Red Hat Enterprise Linux 9 セキュリティーの強化

34

第5章 POLKIT を使用したスマートカードへのアクセスの制御
PIN、PIN パッド、バイオメトリックなどのスマートカードに組み込まれたメカニズムでは防ぐことが
できない脅威に対処するため、およびより詳細な制御のために、RHEL は polkit フレームワークを使用
してスマートカードへのアクセス制御を制御します。

システム管理者は、非特権ユーザーや非ローカルユーザー、サービスに対するスマートカードアクセス
など、特定のシナリオに合わせて polkit を設定できます。

5.1. POLKIT を介したスマートカードアクセス制御

PC/SC (Personal Computer/Smart Card) プロトコルは、スマートカードとそのリーダーをコンピュー
ティングシステムに統合するための標準を指定します。RHEL では、pcsc-lite パッケージが、PC/SC
の API を使用するスマートカードにアクセスするミドルウェアを提供します。このパッケージの一部で
ある pcscd (PC/SC スマートカード) デーモンにより、システムが PC/SC プロトコルを使用してス
マートカードにアクセスできるようになります。

PIN、PIN パッド、バイオメトリックなどのスマートカードに組み込まれたアクセス制御メカニズム
は、考えられるすべての脅威をカバーするものではないため、RHEL は、より強力なアクセス制御に
polkit フレームワークを使用します。polkit 認可マネージャーは、特権操作へのアクセスを許可できま
す。ディスクへのアクセスを許可することに加えて、polkit を使用して、スマートカードのセキュリ
ティーを保護するポリシーを指定することもできます。たとえば、スマートカードで操作を実行できる
ユーザーを定義できます。

pcsc-lite パッケージをインストールし、pcscd デーモンを起動すると、システム
は、/usr/share/polkit-1/actions/ ディレクトリーで定義されているポリシーを強制します。システム全
体のデフォルトのポリシーは、/usr/share/polkit-1/actions/org.debian.pcsc-lite.policy ファイルにあ
ります。Polkit ポリシーファイルは XML 形式を使用します。構文は、システム上の polkit(8) man ペー
ジで説明されています。

polkitd は、/etc/polkit-1/rules.d/ ディレクトリーおよび /usr/share/polkit-1/rules.d/ ディレクトリー
で、これらのディレクトリーに保存されているルールファイルの変更を監視します。ファイルには、
JavaScript 形式の認可ルールが含まれています。システム管理者は、両方のディレクトリーにカスタム
ルールファイルを追加し、polkitd がファイル名に基づいてアルファベット順に読み込むことができま
す。2 つのファイルが同じ名前である場合は、最初に /etc/polkit-1/rules.d/ 内のファイルが読み込まれ
ます。

System Security Services Daemon (SSSD) が root として実行されていないときにスマートカードのサ
ポートを有効にする必要がある場合は、sssd-polkit-rules パッケージをインストールする必要がありま
す。このパッケージは、SSSD と polkit の統合を提供します。

関連情報

システム上の polkit(8)、polkitd(8)、pcscd(8) man ページ

5.2. PC/SC および POLKIT に関連する問題のトラブルシューティング

pcsc-lite パッケージをインストールし、pcscd デーモンを起動した後に自動的に強制される Polkit ポ
リシーは、ユーザーがスマートカードと直接対話しない場合でも、ユーザーのセッションで認証を求め
られることがあります。GNOME では、以下のエラーメッセージが表示されます。

Authentication is required to access the PC/SC daemon

opensc などのスマートカードに関連する他のパッケージをインストールする場合は、システムが依存

第5章 POLKIT を使用したスマートカードへのアクセスの制御

35

opensc などのスマートカードに関連する他のパッケージをインストールする場合は、システムが依存
関係として pcsc-lite パッケージをインストールできることに注意してください。

スマートカードとの相互作用が必要なく、PC/SC デーモンの認可要求が表示されないようにする場合
は、pcsc-lite パッケージを削除できます。必要なパッケージを最小限にとどめることが、セキュリ
ティー上の推奨事項です。

スマートカードを使用する場合は、/usr/share/polkit-1/actions/org.debian.pcsc-lite.policy 時に、シ
ステムが提供するポリシーファイルのルールを確認して、トラブルシューティングを開始します。カス
タムルールファイルは、/etc/polkit-1/rules.d/ ディレクトリーのポリシー (03-allow-pcscd.rules など)
に追加できます。ルールファイルは JavaScript 構文を使用し、ポリシーファイルは XML 形式であるこ
とに注意してください。

システムに表示される認可要求を理解するには、以下の例のように Journal ログを確認します。

$ journalctl -b | grep pcsc
...
Process 3087 (user: 1001) is NOT authorized for action: access_pcsc
...

以前のログエントリーは、ユーザーがポリシーによるアクションを実行する権限を持っていないことを
示しています。この拒否を解決するには、対応するルールを /etc/polkit-1/rules.d/ に追加します。

polkitd ユニットに関連するログエントリーも検索できます。以下に例を示します。

$ journalctl -u polkit
...
polkitd[NNN]: Error compiling script /etc/polkit-1/rules.d/00-debug-pcscd.rules
...
polkitd[NNN]: Operator of unix-session:c2 FAILED to authenticate to gain authorization for action
org.debian.pcsc-lite.access_pcsc for unix-process:4800:14441 [/usr/libexec/gsd-smartcard] (owned
by unix-user:group)
...

この出力では、最初のエントリーがルールファイルに構文エラーが含まれていることを示しています。
2 番目のエントリーは、ユーザーが pcscd へのアクセスを取得できなかったことを示しています。

また、短いスクリプトを使用して、PC/SC プロトコルを使用するすべてのアプリケーションをリスト
表示することもできます。pcsc-apps.sh などの実行ファイルを作成し、以下のコードを挿入します。

#!/bin/bash

cd /proc

for p in [0-9]*
do
 if grep libpcsclite.so.1.0.0 $p/maps &> /dev/null
 then
 echo -n "process: "
 cat $p/cmdline
 echo " ($p)"
 fi
done

root でスクリプトを実行します。

Red Hat Enterprise Linux 9 セキュリティーの強化

36

./pcsc-apps.sh
process: /usr/libexec/gsd-smartcard (3048)
enable-sync --auto-ssl-client-auth --enable-crashpad (4828)
...

関連情報

man ページの journalctl、polkit(8)、polkitd(8)、および pcscd(8)

5.3. PC/SC への POLKIT 認可の詳細情報の表示

デフォルト設定では、polkit 認可フレームワークは、限られた情報のみをジャーナルログに送信しま
す。新しいルールを追加することで、PC/SC プロトコル関連の polkit ログエントリーを拡張できま
す。

前提条件

システムに pcsc-lite パッケージをインストールしている。

pcscd デーモンが実行中である。

手順

1. /etc/polkit-1/rules.d/ ディレクトリーに新規ファイルを作成します。

touch /etc/polkit-1/rules.d/00-test.rules

2. 選択したエディターでファイルを編集します。以下に例を示します。

vi /etc/polkit-1/rules.d/00-test.rules

3. 以下の行を挿入します。

polkit.addRule(function(action, subject) {
 if (action.id == "org.debian.pcsc-lite.access_pcsc" ||
 action.id == "org.debian.pcsc-lite.access_card") {
 polkit.log("action=" + action);
 polkit.log("subject=" + subject);
 }
});

ファイルを保存して、エディターを終了します。

4. pcscd サービスおよび polkit サービスを再起動します。

systemctl restart pcscd.service pcscd.socket polkit.service

検証

1. pcscd の認可リクエストを作成します。たとえば、Firefox の Web ブラウザーを開く
か、opensc が提供する pkcs11-tool -L を使用します。

第5章 POLKIT を使用したスマートカードへのアクセスの制御

37

2. 拡張ログエントリーを表示します。以下に例を示します。

journalctl -u polkit --since "1 hour ago"
polkitd[1224]: <no filename>:4: action=[Action id='org.debian.pcsc-lite.access_pcsc']
polkitd[1224]: <no filename>:5: subject=[Subject pid=2020481 user=user'
groups=user,wheel,mock,wireshark seat=null session=null local=true active=true]

関連情報

man ページの polkit(8) および polkitd(8)

5.4. 関連情報

スマートカードへのアクセスの制御 Red Hat ブログの記事

Red Hat Enterprise Linux 9 セキュリティーの強化

38

https://www.redhat.com/en/blog/controlling-access-smart-cards

第6章 設定コンプライアンスおよび脆弱性スキャンの開始
コンプライアンス監査は、指定したオブジェクトが、コンプライアンスポリシーに指定されているすべ
てのルールに従っているかどうかを判断するプロセスです。コンプライアンスポリシーは、コンピュー
ティング環境で使用される必要な設定を指定するセキュリティー専門家が定義します。これは多くの場
合は、チェックリストの形式を取ります。

コンプライアンスポリシーは組織により大幅に異なることがあり、同一組織内でもシステムが異なると
ポリシーが異なる可能性があります。ポリシーは、各システムの目的や、組織におけるシステム重要性
により異なります。カスタマイズしたソフトウェア設定や導入の特徴によっても、カスタマイズしたポ
リシーのチェックリストが必要になってきます。

6.1. RHEL における設定コンプライアンスツール

次の設定コンプライアンスツールを使用すると、Red Hat Enterprise Linux で完全に自動化されたコン
プライアンス監査を実行できます。このツールは SCAP (Security Content Automation Protocol) 規格
に基づいており、コンプライアンスポリシーの自動化に合わせるように設計されています。

SCAP Workbench

scap-workbench グラフィカルユーティリティーは、単一のローカルシステムまたはリモートシス
テム上で設定および脆弱性スキャンを実行するように設計されています。これらのスキャンと評価
に基づくセキュリティーレポートの生成にも使用できます。

OpenSCAP

OpenSCAP ライブラリーは、付随する oscap コマンドラインユーティリティーとともに、ローカ
ルシステムで設定スキャンと脆弱性スキャンを実行するように設計されています。これにより、設
定コンプライアンスのコンテンツを検証し、スキャンおよび評価に基づいてレポートおよびガイド
を生成します。

重要

OpenSCAP の使用中にメモリー消費の問題が発生する可能性があります。これによ
り、プログラムが途中で停止し、結果ファイルが生成されない可能性があります。詳
細は、ナレッジベース記事 OpenSCAP のメモリー消費の問題 を参照してください。

SCAP Security Guide (SSG)

scap-security-guide パッケージは、Linux システム用のセキュリティーポリシーのコレクションを
提供します。このガイダンスは、セキュリティー強化に関する実践的なアドバイスのカタログで構
成されています (該当する場合は、法規制要件へのリンクが含まれます)。このプロジェクトは、一
般的なポリシー要件と特定の実装ガイドラインとの間にあるギャップを埋めることを目的としてい
ます。

Script Check Engine (SCE)

SCAP プロトコルの拡張機能である SCE を使用すると、管理者は Bash、Python、Ruby などのスク
リプト言語を使用してセキュリティーコンテンツを作成できます。SCE 拡張機能は、openscap-
engine-sce パッケージで提供されます。SCE 自体は SCAP 標準規格の一部ではありません。

複数のリモートシステムで自動コンプライアンス監査を実行する必要がある場合は、Red Hat Satellite
用の OpenSCAP ソリューションを利用できます。

関連情報

システム上の oscap(8)、scap-workbench(8)、scap-security-guide(8) man ページ

Red Hat Security Demos: Creating Customized Security Policy Content to Automate Security

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

39

https://access.redhat.com/articles/6999111

Red Hat Security Demos: Creating Customized Security Policy Content to Automate Security
Compliance

Red Hat Security Demos: Defend Yourself with RHEL Security Technologies

Red Hat Satellite のセキュリティーコンプライアンスの管理

6.2. 脆弱性スキャン

6.2.1. Red Hat Security Advisories OVAL フィード

Red Hat Enterprise Linux のセキュリティー監査機能は、標準規格セキュリティー設定共通化手順
(Security Content Automation Protocol (SCAP)) を基にしています。SCAP は、自動化された設定、脆
弱性およびパッチの確認、技術的な制御コンプライアンスアクティビティー、およびセキュリティーの
測定に対応している多目的な仕様のフレームワークです。

SCAP 仕様は、スキャナーまたはポリシーエディターの実装が義務付けられていなくても、セキュリ
ティーコンテンツの形式がよく知られて標準化されているエコシステムを作成します。これにより、組
織は、採用しているセキュリティーベンダーの数に関係なく、セキュリティーポリシー (SCAP コンテ
ンツ) を構築するのは一度で済みます。

セキュリティー検査言語 OVAL (Open Vulnerability Assessment Language) は、SCAP に不可欠で最も
古いコンポーネントです。その他のツールやカスタマイズされたスクリプトとは異なり、OVAL は、宣
言型でリソースが必要な状態を記述します。OVAL コードは、スキャナーと呼ばれる OVAL インタープ
リターツールを使用して直接実行されることは決してありません。OVAL が宣言型であるため、評価さ
れるシステムの状態が偶然修正されることはありません。

他のすべての SCAP コンポーネントと同様に、OVAL は XML に基づいています。SCAP 標準規格は、
いくつかのドキュメント形式を定義します。この形式にはそれぞれ異なる種類の情報が記載され、異な
る目的に使用されます。

Red Hat 製品セキュリティー を使用すると、Red Hat 製品をお使いのお客様に影響を及ぼすセキュリ
ティー問題をすべて追跡して調査します。Red Hat カスタマーポータルで簡潔なパッチやセキュリ
ティーアドバイザリーを適時提供します。Red Hat は OVAL パッチ定義を作成してサポートし、マシン
が判読可能なセキュリティーアドバイザリーを提供します。

プラットフォーム、バージョン、およびその他の要因が異なるため、Red Hat 製品セキュリティーによ
る脆弱性の重大度定性評価は、サードパーティーが提供する Common Vulnerability Scoring System
(CVSS) のベースライン評価と完全に一致しているわけではありません。したがって、サードパー
ティーが提供する定義ではなく、RHSA OVAL 定義を使用することが推奨されます。

各 RHSA OVAL 定義 は完全なパッケージとして利用でき、新しいセキュリティーアドバイザリーが
Red Hat カスタマーポータルで利用可能になってから 1 時間以内に更新されます。

各 OVAL パッチ定義は、Red Hat セキュリティーアドバイザリー (RHSA) と 1 対 1 にマッピングしてい
ます。RHSA には複数の脆弱性に対する修正が含まれるため、各脆弱性は、共通脆弱性識別子
(Common Vulnerabilities and Exposures (CVE)) 名ごとに表示され、公開バグデータベースの該当箇所
へのリンクが示されます。

RHSA OVAL 定義は、システムにインストールされている RPM パッケージで脆弱なバージョンを確認
するように設計されています。この定義は拡張でき、パッケージが脆弱な設定で使用されているかどう
かを見つけるなど、さらに確認できるようにすることができます。この定義は、Red Hat が提供するソ
フトウェアおよび更新に対応するように設計されています。サードパーティーソフトウェアのパッチ状
態を検出するには、追加の定義が必要です。

注記

Red Hat Enterprise Linux 9 セキュリティーの強化

40

https://2020-summit-labs.gitlab.io/rhel-custom-security-content/
https://github.com/RedHatDemos/SecurityDemos/blob/master/2020Labs/RHELSecurity/documentation/README.adoc
https://docs.redhat.com/en/documentation/red_hat_satellite/6.15/html/managing_security_compliance/index
https://access.redhat.com/security/team/
https://www.redhat.com/security/data/oval/v2/

注記

Red Hat Insights for Red Hat Enterprise Linux コンプライアンスサービス は、IT セキュ
リティーおよびコンプライアンス管理者が Red Hat Enterprise Linux システムのセキュリ
ティーポリシーのコンプライアンスを評価、監視、およびレポートするのに役立ちま
す。また、コンプライアンスサービス UI 内で完全に SCAP セキュリティーポリシーを作
成および管理することもできます。

関連情報

Red Hat and OVAL compatibility

Red Hat and CVE compatibility

製品セキュリティーの概要 の 通知およびアドバイザリー

Security Data Metrics

6.2.2. システムの脆弱性のスキャン

oscap コマンドラインユーティリティーを使用すると、ローカルシステムのスキャン、設定コンプライ
アンスコンテンツの確認、ならびにスキャンおよび評価を基にしたレポートとガイドの生成が可能で
す。このユーティリティーは、OpenSCAP ライブラリーのフロントエンドとしてサービスを提供し、
その機能を処理する SCAP コンテンツのタイプに基づいてモジュール (サブコマンド) にグループ化し
ます。

前提条件

openscap-scanner および bzip2 パッケージがインストールされます。

手順

1. システムに最新 RHSA OVAL 定義をダウンロードします。

wget -O - https://www.redhat.com/security/data/oval/v2/RHEL9/rhel-9.oval.xml.bz2 | bzip2 -
-decompress > rhel-9.oval.xml

2. システムの脆弱性をスキャンし、vulnerability.html ファイルに結果を保存します。

oscap oval eval --report vulnerability.html rhel-9.oval.xml

検証

結果をブラウザーで確認します。以下に例を示します。

$ firefox vulnerability.html &

関連情報

システム上の oscap(8) man ページ

Red Hat OVAL 定義

OpenSCAP のメモリー消費の問題

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

41

https://docs.redhat.com/en/documentation/red_hat_insights/1-latest/html/assessing_and_monitoring_security_policy_compliance_of_rhel_systems/intro-compliance
https://access.redhat.com/articles/221883
https://access.redhat.com/articles/2123171
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/overview
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/oval/v2/RHEL9/
https://access.redhat.com/articles/6999111

6.2.3. リモートシステムの脆弱性のスキャン

SSH プロトコル経由で oscap-ssh ツールを使用して、OpenSCAP スキャナーでリモートシステムの脆
弱性をチェックできます。

前提条件

openscap-utils および bzip2 パッケージは、スキャンに使用するシステムにインストールされ
ます。

リモートシステムに openscap-scanner パッケージがインストールされている。

リモートシステムで SSH サーバーが実行している。

手順

1. システムに最新 RHSA OVAL 定義をダウンロードします。

wget -O - https://www.redhat.com/security/data/oval/v2/RHEL9/rhel-9.oval.xml.bz2 | bzip2 -
-decompress > rhel-9.oval.xml

2. リモートシステムの脆弱性をスキャンし、結果をファイルに保存します。

oscap-ssh <username>@<hostname> <port> oval eval --report <scan-report.html> rhel-
9.oval.xml

以下のように置き換えます。

<username>@<hostname> は、リモートシステムのユーザー名とホスト名に置き換えま
す。

<port> は、リモートシステムにアクセスできるポート番号 (例: 22) です。

<scan-report.html> は、oscap がスキャン結果を保存するファイル名です。

関連情報

oscap-ssh(8)

Red Hat OVAL 定義

OpenSCAP のメモリー消費の問題

6.3. 設定コンプライアンススキャン

6.3.1. RHEL の設定コンプライアンス

設定コンプライアンススキャンを使用して、特定の組織で定義されているベースラインに準拠できま
す。たとえば、米国政府と協力している場合は、システムを Operating System Protection Profile
(OSPP) に準拠させ、支払い処理業者の場合は、システムを Payment Card Industry Data Security
Standard (PCI-DSS) に準拠させなければならない場合があります。設定コンプライアンススキャンを
実行して、システムセキュリティーを強化することもできます。

Red Hat は、対象コンポーネント向けの Red Hat のベストプラクティスに従っているため、SCAP

Red Hat Enterprise Linux 9 セキュリティーの強化

42

https://www.redhat.com/security/data/oval/v2/RHEL9/
https://access.redhat.com/articles/6999111

Red Hat は、対象コンポーネント向けの Red Hat のベストプラクティスに従っているため、SCAP
Security Guide パッケージで提供される Security Content Automation Protocol (SCAP) コンテンツに
従うことを推奨します。

SCAP Security Guide パッケージは、SCAP 1.2 および SCAP 1.3 標準規格に準拠するコンテンツを提供
します。openscap scanner ユーティリティーは、SCAP Security Guide パッケージで提供される
SCAP 1.2 および SCAP 1.3 コンテンツの両方と互換性があります。

重要

設定コンプライアンススキャンを実行しても、システムが準拠しているとは限りませ
ん。

SCAP Security Guide スイートは、データストリームドキュメントの形式で、複数のプラットフォーム
のプロファイルを提供します。データストリームは、定義、ベンチマーク、プロファイル、および個々
のルールが含まれるファイルです。各ルールでは、コンプライアンスの適用性と要件を指定します。
RHEL は、セキュリティーポリシーを扱う複数のプロファイルを提供します。Red Hat データストリー
ムには、業界標準の他に、失敗したルールの修正に関する情報も含まれます。

コンプライアンススキャンリソースの構造

Data stream
 ├── xccdf
 | ├── benchmark
 | ├── profile
 | | ├──rule reference
 | | └──variable
 | ├── rule
 | ├── human readable data
 | ├── oval reference
 ├── oval ├── ocil reference
 ├── ocil ├── cpe reference
 └── cpe └── remediation

プロファイルは、OSPP、PCI-DSS、Health Insurance Portability and Accountability Act (HIPAA) など
のセキュリティーポリシーに基づく一連のルールです。これにより、セキュリティー標準規格に準拠す
るために、システムを自動で監査できます。

プロファイルを変更 (調整) して、パスワードの長さなどの特定のルールをカスタマイズできます。プロ
ファイルの調整の詳細は、SCAP Workbench を使用したセキュリティープロファイルのカスタマイズ
を参照してください。

6.3.2. OpenSCAP スキャン結果の例

OpenSCAP スキャンに適用されるデータストリームとプロファイル、およびシステムのさまざまなプ
ロパティーに応じて、各ルールから特定の結果が生成される場合があります。以下に考えられる結果と
その意味の簡単な説明を示します。

Pass

スキャンでは、このルールとの競合が見つかりませんでした。

Fail

スキャンで、このルールとの競合が検出されました。

Not checked

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

43

OpenSCAP はこのルールの自動評価を実行しません。システムがこのルールに手動で準拠している
かどうかを確認してください。

Not applicable

このルールは、現在の設定には適用されません。

Not selected

このルールはプロファイルには含まれません。OpenSCAP はこのルールを評価せず、結果にこのよ
うなルールは表示されません。

Error

スキャンでエラーが発生しました。詳細は、--verbose DEVEL オプションを指定して oscap コマ
ンドで確認できます。Red Hat カスタマーポータル でサポートケースを作成するか、Red Hat Jira
の RHEL プロジェクト でチケットを作成します。

Unknown

スキャンで予期しない状況が発生しました。詳細は、`--verbose DEVEL オプションを指定して
oscap コマンドを入力できます。Red Hat カスタマーポータル でサポートケースを作成する
か、Red Hat Jira の RHEL プロジェクト でチケットを作成します。

6.3.3. 設定コンプライアンスのプロファイルの表示

スキャンまたは修復にプロファイルを使用することを決定する前に、oscap info サブコマンドを使用し
て、プロファイルを一覧表示し、詳細な説明を確認できます。

前提条件

openscap-scanner パッケージおよび scap-security-guide パッケージがインストールされて
いる。

手順

1. SCAP Security Guide プロジェクトが提供するセキュリティーコンプライアンスプロファイル
で利用可能なファイルをすべて表示します。

$ ls /usr/share/xml/scap/ssg/content/
ssg-rhel9-ds.xml

2. oscap info サブコマンドを使用して、選択したデータストリームに関する詳細情報を表示しま
す。データストリームを含む XML ファイルは、名前に -ds 文字列で示されます。Profiles セク
ションでは、利用可能なプロファイルと、その ID のリストを確認できます。

$ oscap info /usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml
Profiles:
…
 Title: Australian Cyber Security Centre (ACSC) Essential Eight
 Id: xccdf_org.ssgproject.content_profile_e8
 Title: Health Insurance Portability and Accountability Act (HIPAA)
 Id: xccdf_org.ssgproject.content_profile_hipaa
 Title: PCI-DSS v3.2.1 Control Baseline for Red Hat Enterprise Linux 9
 Id: xccdf_org.ssgproject.content_profile_pci-dss
…

3. データストリームファイルからプロファイルを選択し、選択したプロファイルに関する追加情
報を表示します。そのためには、oscap info に --profile オプションを指定した後に、直前のコ

Red Hat Enterprise Linux 9 セキュリティーの強化

44

https://access.redhat.com/support/cases/
https://issues.redhat.com/projects/RHEL/issues
https://access.redhat.com/support/cases/
https://issues.redhat.com/projects/RHEL/issues

マンドの出力で表示された ID の最後のセクションを指定します。たとえば、HIPPA プロファイ
ルの ID は xccdf_org.ssgproject.content_profile_hipaa で、--profile オプションの値は
hipaa です。

$ oscap info --profile hipaa /usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml
…
Profile
 Title: Health Insurance Portability and Accountability Act (HIPAA)

 Description: The HIPAA Security Rule establishes U.S. national standards to protect
individuals’ electronic personal health information that is created, received, used, or
maintained by a covered entity.
…

関連情報

システム上の scap-security-guide(8) man ページ

OpenSCAP のメモリー消費の問題

6.3.4. 特定のベースラインによる設定コンプライアンスの評価

oscap コマンドラインツールを使用して、システムまたはリモートシステムが特定のベースラインに準
拠しているかどうかを判断し、結果をレポートに保存できます。

前提条件

openscap-scanner パッケージおよび scap-security-guide パッケージがインストールされて
いる。

システムが準拠する必要があるベースライン内のプロファイルの ID を知っている必要がありま
す。ID を見つけるには、設定コンプライアンスのプロファイルの表示 セクションを参照してく
ださい。

手順

1. ローカルシステムをスキャンして、選択したプロファイルへの準拠を評価し、スキャン結果を
ファイルに保存します。

$ oscap xccdf eval --report <scan-report.html> --profile <profileID>
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

以下のように置き換えます。

<scan-report.html> は、oscap がスキャン結果を保存するファイル名です。

<profileID> は、システムが準拠する必要があるプロファイル ID (例: hipaa) です。

2. オプション: リモートシステムをスキャンして、選択したプロファイルへの準拠を評価し、ス
キャン結果をファイルに保存します。

$ oscap-ssh <username>@<hostname> <port> xccdf eval --report <scan-report.html> --
profile <profileID> /usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

45

https://access.redhat.com/articles/6999111

以下のように置き換えます。

<username>@<hostname> は、リモートシステムのユーザー名とホスト名に置き換えま
す。

<port> は、リモートシステムにアクセスできるポート番号です。

<scan-report.html> は、oscap がスキャン結果を保存するファイル名です。

<profileID> は、システムが準拠する必要があるプロファイル ID (例: hipaa) です。

関連情報

システム上の scap-security-guide(8) man ページ

/usr/share/doc/scap-security-guide/ ディレクトリーにある SCAP Security Guide ドキュメ
ント

/usr/share/doc/scap-security-guide/guides/ssg-rhel9-guide-index.html - scap-security-
guide-doc パッケージでインストールされた Red Hat Enterprise Linux 9 のセキュアな設定ガイ
ド

OpenSCAP のメモリー消費の問題

6.4. 特定のベースラインに合わせたシステムの修正

特定のベースラインに合わせて RHEL システムを修正できます。SCAP Security Guide で提供されるプ
ロファイルに合わせてシステムを修正できます。使用可能なプロファイルのリストの詳細は、設定コン
プライアンスのプロファイルの表示 を参照してください。

警告

修正 オプションが有効な状態でのシステム評価は、慎重に行わないとシステムが機
能不全に陥る場合があります。Red Hat は、セキュリティーを強化した修正で加え
られた変更を元に戻す自動手段は提供していません。修復は、デフォルト設定の
RHEL システムで対応しています。インストール後にシステムが変更した場合は、
修正を実行しても、必要なセキュリティープロファイルに準拠しない場合がありま
す。

前提条件

scap-security-guide パッケージがインストールされている。

手順

1. --remediate オプションを指定した oscap コマンドを使用してシステムを修復します。

oscap xccdf eval --profile <profileID> --remediate /usr/share/xml/scap/ssg/content/ssg-
rhel9-ds.xml



Red Hat Enterprise Linux 9 セキュリティーの強化

46

https://access.redhat.com/articles/6999111

<profileID> は、システムが準拠する必要があるプロファイル ID (例: hipaa) に置き換えます。

2. システムを再起動します。

検証

1. システムがプロファイルに準拠しているかどうかを評価し、スキャン結果をファイルに保存し
ます。

$ oscap xccdf eval --report <scan-report.html> --profile <profileID>
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

以下のように置き換えます。

<scan-report.html> は、oscap がスキャン結果を保存するファイル名です。

<profileID> は、システムが準拠する必要があるプロファイル ID (例: hipaa) です。

関連情報

システム上の scap-security-guide(8) および oscap(8) の man ページ

6.5. SSG ANSIBLE PLAYBOOK を使用した特定のベースラインに合わせた
システムの修正

SCAP Security Guide プロジェクトの Ansible Playbook ファイルを使用して、特定のベースラインに合
わせてシステムを修正できます。SCAP Security Guide によって提供されるすべてのプロファイルに合
わせて修正できます。

警告

Remediate オプションが有効な状態でのシステム評価は、慎重に行わないとシス
テムが機能不全に陥る場合があります。Red Hat は、セキュリティーを強化した修
正で加えられた変更を元に戻す自動手段は提供していません。修復は、デフォルト
設定の RHEL システムで対応しています。インストール後にシステムが変更した場
合は、修正を実行しても、必要なセキュリティープロファイルに準拠しない場合が
あります。

前提条件

scap-security-guide パッケージがインストールされている。

ansible-core パッケージがインストールされている。詳細は、Ansible インストールガイド を
参照してください。

rhc-worker-playbook パッケージがインストールされている。

システムの修正に使用するプロファイルの ID がわかっている。詳細は、設定コンプライアンス
のプロファイルの表示 を参照してください。



第6章 設定コンプライアンスおよび脆弱性スキャンの開始

47

https://docs.ansible.com/ansible/latest/installation_guide/

手順

1. Ansible を使用して、選択したプロファイルに準拠するようにシステムを修正します。

ANSIBLE_COLLECTIONS_PATH=/usr/share/rhc-worker-
playbook/ansible/collections/ansible_collections/ ansible-playbook -i "localhost," -c local
/usr/share/scap-security-guide/ansible/rhel9-playbook-<profileID>.yml

このコマンドで Playbook を実行するには、ANSIBLE_COLLECTIONS_PATH 環境変数が必要
です。

<profileID> は、選択したプロファイルのプロファイル ID に置き換えます。

2. システムを再起動します。

検証

システムが選択したプロファイルに準拠しているかどうかを評価し、スキャン結果をファイル
に保存します。

oscap xccdf eval --profile <profileID> --report <scan-report.html>
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

<scan-report.html> は、oscap がスキャン結果を保存するファイル名に置き換えます。

関連情報

システム上の scap-security-guide(8) および oscap(8) の man ページ

Ansible Documentation

6.6. システムを特定のベースラインに合わせるための修復用 ANSIBLE
PLAYBOOK の作成

システムを特定のベースラインに合わせるために必要な修復のみを含む Ansible Playbook を作成できま
す。この Playbook は、すでに満たされている要件を含んでいないため、小型です。Playbook を作成し
ても、システムは一切変更されません。ここでは、後で適用するためのファイルを準備するだけです。

注記

RHEL 9 では、Ansible Engine は、組み込みモジュールのみを含む ansible-core パッ
ケージに置き換えられました。Ansible 修復の多くは、community コレクションおよび
Portable Operating System Interface (POSIX) コレクションのモジュールを使用すること
に注意してください。これは組み込みモジュールには含まれていません。この場合は、
Bash 修復を Ansible 修復の代わりに使用できます。RHEL 9.0 の Red Hat Connector に
は、修復 Playbook が Ansible Core で機能するために必要な Ansible モジュールが含まれ
ています。

前提条件

scap-security-guide パッケージがインストールされている。

ansible-core パッケージがインストールされている。詳細は、Ansible インストールガイド を
参照してください。

Red Hat Enterprise Linux 9 セキュリティーの強化

48

https://docs.ansible.com/
https://docs.ansible.com/ansible/latest/installation_guide/

rhc-worker-playbook パッケージがインストールされている。

システムの修正に使用するプロファイルの ID がわかっている。詳細は、設定コンプライアンス
のプロファイルの表示 を参照してください。

手順

1. システムをスキャンして結果を保存します。

oscap xccdf eval --profile <profileID> --results <profile-results.xml>
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

2. 結果が含まれるファイルで、結果 ID の値を見つけます。

oscap info <profile-results.xml>

3. ステップ 1 で生成されたファイルに基づいて Ansible Playbook を生成します。

oscap xccdf generate fix --fix-type ansible --result-id xccdf_org.open-
scap_testresult_xccdf_org.ssgproject.content_profile_<profileID> --output <profile-
remediations.yml> <profile-results.xml>

4. 生成された <profile-remediations.yml> ファイルに、ステップ 1 で実行したスキャンで失敗し
たルールに対する Ansible 修復が含まれていることを確認します。

5. Ansible を使用して、選択したプロファイルに準拠するようにシステムを修正します。

ANSIBLE_COLLECTIONS_PATH=/usr/share/rhc-worker-
playbook/ansible/collections/ansible_collections/ ansible-playbook -i "localhost," -c local
<profile-remediations.yml>`

このコマンドで Playbook を実行するには、ANSIBLE_COLLECTIONS_PATH 環境変数が必要
です。

警告

Remediate オプションが有効な状態でのシステム評価は、慎重に行わない
とシステムが機能不全に陥る場合があります。Red Hat は、セキュリ
ティーハードニング関連の修復によって行われた変更を自動的に元に戻す
方法は提供していません。修復は、デフォルト設定の RHEL システムで対
応しています。インストール後にシステムが変更した場合は、修正を実行
しても、必要なセキュリティープロファイルに準拠しない場合がありま
す。

検証

システムが選択したプロファイルに準拠しているかどうかを評価し、スキャン結果をファイル
に保存します。



第6章 設定コンプライアンスおよび脆弱性スキャンの開始

49

oscap xccdf eval --profile <profileID> --report <scan-report.html>
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

<scan-report.html> は、oscap がスキャン結果を保存するファイル名に置き換えます。

関連情報

システム上の scap-security-guide(8) および oscap(8) の man ページ

Ansible Documentation

6.7. 後でアプリケーションを修復するための BASH スクリプトの作成

この手順を使用して、システムを HIPAA などのセキュリティープロファイルと調整する修正を含む
Bash スクリプトを作成します。次の手順では、システムに変更を加えることなく、後のアプリケー
ション用にファイルを準備する方法を説明します。

前提条件

RHEL システムに、scap-security-guide パッケージがインストールされている。

手順

1. oscap コマンドを使用してシステムをスキャンし、結果を XML ファイルに保存します。以下
の例では、oscap は hipaa プロファイルに対してシステムを評価します。

oscap xccdf eval --profile hipaa --results <hipaa-results.xml>
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

2. 結果が含まれるファイルで、結果 ID の値を見つけます。

oscap info <hipaa-results.xml>

3. 手順 1 で生成された結果ファイルに基づいて Bash スクリプトを生成します。

oscap xccdf generate fix --fix-type bash --result-id <xccdf_org.open-
scap_testresult_xccdf_org.ssgproject.content_profile_hipaa> --output <hipaa-
remediations.sh> <hipaa-results.xml>

4. <hipaa-remediations.sh> ファイルには、手順 1 で実行されたスキャン中に失敗したルールの
修復が含まれます。この生成されたファイルを確認したら、このファイルと同じディレクト
リー内で、./<hipaa-remediations.sh> コマンドを使用してファイルを適用できます。

検証

お使いのテキストエディターで、手順 1 で実行したスキャンで失敗したルールが <hipaa-
remediations.sh> ファイルに含まれていることを確認します。

関連情報

システム上の scap-security-guide(8)、oscap(8)、bash(1) man ページ

Red Hat Enterprise Linux 9 セキュリティーの強化

50

https://docs.ansible.com/

6.8. SCAP WORKBENCH を使用したカスタムプロファイルでシステムのス
キャン

SCAP Workbench (scap-workbench) パッケージはグラフィカルユーティリティーで、1 台のローカル
システムまたはリモートシステムで設定スキャンと脆弱性スキャンを実行し、システムの修復を実行し
て、スキャン評価に基づくレポートを生成します。oscap コマンドラインユーティリティーとの比較
は、SCAP Workbench には限定的な機能しかないことに注意してください。SCAP Workbench は、
データストリームファイルの形式でセキュリティーコンテンツを処理します。

6.8.1. SCAP Workbench を使用したシステムのスキャンおよび修復

選択したセキュリティーポリシーに対してシステムを評価するには、以下の手順に従います。

前提条件

scap-workbench パッケージがシステムにインストールされている。

手順

1. GNOME Classic デスクトップ環境から SCAP Workbench を実行するには、Super キーを押
して アクティビティーの概要 を開き、scap-workbench と入力して Enterを押します。また
は、次のコマンドを実行します。

$ scap-workbench &

2. 以下のオプションのいずれかを使用してセキュリティーポリシーを選択します。

開始ウィンドウの Load Content ボタン

Open content from SCAP Security Guide

File メニューの Open Other Content で、XCCDF、SCAP RPM、またはデータストリーム
ファイルの各ファイルを検索します。

3. Remediate チェックボックスを選択して、システム設定の自動修正を行うことができます。こ
のオプションを有効にすると、SCAP Workbench は、ポリシーにより適用されるセキュリ
ティールールに従ってシステム設定の変更を試みます。このプロセスは、システムスキャン時
に失敗した関連チェックを修正する必要があります。

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

51

警告

修正 オプションが有効な状態でのシステム評価は、慎重に行わないとシス
テムが機能不全に陥る場合があります。Red Hat は、セキュリティーを強
化した修正で加えられた変更を元に戻す自動手段は提供していません。修
復は、デフォルト設定の RHEL システムで対応しています。インストール
後にシステムが変更した場合は、修正を実行しても、必要なセキュリ
ティープロファイルに準拠しない場合があります。

4. Scan ボタンをクリックし、選択したプロファイルでシステムをスキャンします。

5. スキャン結果を XCCDF ファイル、ARF ファイル、または HTML ファイルの形式で保存するに
は、Save Results コンボボックスをクリックします。HTML Report オプションを選択して、
スキャンレポートを、人間が判読できる形式で生成します。XCCDF 形式および ARF (データス
トリーム) 形式は、追加の自動処理に適しています。3 つのオプションはすべて繰り返し選択で
きます。

6. 結果ベースの修復をファイルにエクスポートするには、ポップアップメニューの Generate
remediation role を使用します。



Red Hat Enterprise Linux 9 セキュリティーの強化

52

6.8.2. SCAP Workbench を使用したセキュリティープロファイルのカスタマイズ

セキュリティープロファイルをカスタマイズするには、特定のルール (パスワードの最小長など) のパラ
メーターを変更し、別の方法で対象とするルールを削除し、追加のルールを選択して内部ポリシーを実
装できます。プロファイルをカスタマイズして新しいルールの定義はできません。

以下の手順では、SCAP Workbench を使用してプロファイルをカスタマイズ (調整) します。oscap コ
マンドラインユーティリティーで使用するようにカスタマイズしたプロファイルを保存することもでき
ます。

前提条件

scap-workbench パッケージがシステムにインストールされている。

手順

1. SCAP Workbench を実行し、Open content from SCAP Security Guide または File メニュー
の Open Other Content を使用してカスタマイズするプロファイルを選択します。

2. 選択したセキュリティープロファイルを必要に応じて調整するには、Customize ボタンをク
リックします。
これにより、元のデータストリームファイルを変更せずに現在選択されているプロファイルを
変更できる新しいカスタマイズウィンドウが開きます。新しいプロファイル ID を選択します。

3. 論理グループに分けられたルールを持つツリー構造を使用するか、Search フィールドを使用し
て変更するルールを検索します。

4. ツリー構造のチェックボックスを使用した include ルールまたは exclude ルール、または必要
に応じてルールの値を変更します。

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

53

5. OK ボタンをクリックして変更を確認します。

6. 変更内容を永続的に保存するには、以下のいずれかのオプションを使用します。

File メニューの Save Customization Only を使用して、カスタマイズファイルを別途保存
します。

File メニュー Save All を選択して、すべてのセキュリティーコンテンツを一度に保存しま
す。
Into a directory オプションを選択すると、SCAP Workbench は、データストリームファ
イルおよびカスタマイズファイルの両方を、指定した場所に保存します。これはバック
アップソリューションとして使用できます。

As RPM オプションを選択すると、SCAP Workbench に、データストリームファイル、な
らびにカスタマイズファイルを含む RPM パッケージの作成を指示できます。これは、リ
モートでスキャンできないシステムにセキュリティーコンテンツを配布したり、詳細な処
理のためにコンテンツを配信するのに便利です。

7. SCAP Workbench は、カスタマイズしたプロファイル向けの結果ベースの修正に対応してい
ないため、oscap コマンドラインユーティリティーでエクスポートした修正を使用します。

6.8.3. 関連情報

システム上の scap-workbench(8) man ページ

scap-workbench パッケージで提供される /usr/share/doc/scap-
workbench/user_manual.html ファイル

Deploy customized SCAP policies with Satellite 6.x (Red Hat ナレッジベース)

Red Hat Enterprise Linux 9 セキュリティーの強化

54

https://access.redhat.com/solutions/2377951

6.9. インストール直後にセキュリティープロファイルに準拠するシステムの
デプロイメント

OpenSCAP スイートを使用して、インストールプロセスの直後に、OSPP や PCI-DSS、HIPAA プロ
ファイルなどのセキュリティープロファイルに準拠する RHEL システムをデプロイできます。このデプ
ロイメント方法を使用すると、修正スクリプトを使用して後で適用できない特定のルール (パスワード
の強度とパーティション化のルールなど) を適用できます。

6.9.1. Server with GUI と互換性のないプロファイル

SCAP Security Guide の一部として提供される一部のセキュリティープロファイルは、Server with
GUI ベース環境に含まれる拡張パッケージセットと互換性がありません。したがって、次のいずれかの
プロファイルに準拠するシステムをインストールする場合は、Server with GUI を選択しないでくださ
い。

表6.1 Server with GUI と互換性のないプロファイル

プロファイル名 プロファイル ID 理由 注記

[ドラフト] CIS Red Hat
Enterprise Linux 9
Benchmark for Level 2 -
Server

xccdf_org.ssgprojec
t.content_profile_cis

パッケージ xorg-x11-
server-Xorg、xorg-
x11-server-
common、xorg-x11-
server-utils、xorg-
x11-server-Xwayland
は、Server with GUI
パッケージセットの一部
ですが、ポリシーにより
削除する必要がありま
す。

[ドラフト] CIS Red Hat
Enterprise Linux 9
Benchmark for Level 1 -
Server

xccdf_org.ssgprojec
t.content_profile_cis
_server_l1

パッケージ xorg-x11-
server-Xorg、xorg-
x11-server-
common、xorg-x11-
server-utils、xorg-
x11-server-Xwayland
は、Server with GUI
パッケージセットの一部
ですが、ポリシーにより
削除する必要がありま
す。

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

55

DISA STIG for Red Hat
Enterprise Linux 9

xccdf_org.ssgprojec
t.content_profile_sti
g

パッケージ xorg-x11-
server-Xorg、xorg-
x11-server-
common、xorg-x11-
server-utils、xorg-
x11-server-Xwayland
は、Server with GUI
パッケージセットの一部
ですが、ポリシーにより
削除する必要がありま
す。

RHEL システムを DISA
STIG に準拠したServer
with GUI としてインス
トールするには、DISA
STIG with GUI プロファ
イルを使用できます
(BZ#1648162)

プロファイル名 プロファイル ID 理由 注記

6.9.2. グラフィカルインストールを使用したベースライン準拠の RHEL システムのデプ
ロイメント

この手順を使用して、特定のベースラインに合わせた RHEL システムをデプロイします。この例では、
OSPP (Protection Profile for General Purpose Operating System) を使用します。

警告

SCAP Security Guide の一部として提供される一部のセキュリティープロファイル
は、Server with GUI ベース環境に含まれる拡張パッケージセットと互換性があり
ません。詳細は、GUI サーバーと互換性のないプロファイル を参照してください。

前提条件

グラフィカル インストールプログラムでシステムを起動している。OSCAP Anaconda アドオ
ン はインタラクティブなテキストのみのインストールをサポートしていないことに注意してく
ださい。

インストール概要 画面を開いている。

手順

1. インストール概要 画面で、ソフトウェアの選択 をクリックします。ソフトウェアの選択 画面
が開きます。

2. ベース環境 ペインで、サーバー 環境を選択します。ベース環境は、1 つだけ選択できます。

3. 完了 をクリックして設定を適用し、インストール概要 画面に戻ります。

4. OSPP には、準拠する必要がある厳密なパーティション分割要件があるた



Red Hat Enterprise Linux 9 セキュリティーの強化

56

https://bugzilla.redhat.com/show_bug.cgi?id=1648162
https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/security_hardening/scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening#ref_profiles-not-compatible-with-server-with-gui_deploying-systems-that-are-compliant-with-a-security-profile-immediately-after-an-installation

4. OSPP には、準拠する必要がある厳密なパーティション分割要件があるた
め、/boot、/home、/var、/tmp、/var/log、/var/tmp、および /var/log/audit にそれぞれパー
ティションを作成します。

5. セキュリティーポリシー をクリックします。セキュリティーポリシー 画面が開きます。

6. システムでセキュリティーポリシーを有効にするには、セキュリティーポリシーの適用 を ON
に切り替えます。

7. プロファイルペインで Protection Profile for General Purpose Operating Systems プロファ
イルを選択します。

8. プロファイルの選択 をクリックして選択を確定します。

9. 画面下部に表示される Changes that were done or need to be done の変更を確定します。残
りの手動変更を完了します。

10. グラフィカルインストールプロセスを完了します。

注記

グラフィカルインストールプログラムは、インストールに成功すると、対応する
キックスタートファイルを自動的に作成します。/root/anaconda-ks.cfg ファイ
ルを使用して、OSPP 準拠のシステムを自動的にインストールできます。

検証

インストール完了後にシステムの現在のステータスを確認するには、システムを再起動して新
しいスキャンを開始します。

oscap xccdf eval --profile ospp --report eval_postinstall_report.html
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

関連情報

手動パーティションの設定

6.9.3. キックスタートを使用したベースライン準拠の RHEL システムのデプロイメント

特定のベースラインに準拠した RHEL システムをデプロイできます。この例では、OSPP (Protection
Profile for General Purpose Operating System) を使用します。

前提条件

RHEL 9 システムに、scap-security-guide パッケージがインストールされている。

手順

1. キックスタートファイル /usr/share/scap-security-guide/kickstart/ssg-rhel9-ospp-ks.cfg
を、選択したエディターで開きます。

2. 設定要件を満たすように、パーティション設定スキームを更新します。OSPP に準拠するに
は、/boot、/home、/var、/tmp、/var/log、/var/tmp、および /var/log/audit の個別のパーティ
ションを保持する必要があります。パーティションのサイズのみ変更することができます。

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

57

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/interactively_installing_rhel_from_installation_media/index#storage-devices_customizing-the-system-in-the-installer

3. キックスタートを使用した自動インストールの実行 の説明に従って、キックスタートインス
トールを開始します。

重要

キックスタートファイルのパスワードでは、OSPP の要件が確認されていません。

検証

インストール完了後にシステムの現在のステータスを確認するには、システムを再起動して新
しいスキャンを開始します。

oscap xccdf eval --profile ospp --report eval_postinstall_report.html
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

関連情報

OSCAP Anaconda Add-on

キックスタートのコマンドおよびオプションのリファレンス: %addon org_fedora_oscap

6.10. コンテナーおよびコンテナーイメージの脆弱性スキャン

以下の手順を使用して、コンテナーまたはコンテナーイメージのセキュリティー脆弱性を検索します。

前提条件

openscap-utils および bzip2 パッケージがインストールされます。

手順

1. システムに最新 RHSA OVAL 定義をダウンロードします。

wget -O - https://www.redhat.com/security/data/oval/v2/RHEL9/rhel-9.oval.xml.bz2 | bzip2 -
-decompress > rhel-9.oval.xml

2. コンテナーまたはコンテナーイメージの ID を取得します。以下に例を示します。

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi9/ubi latest 096cae65a207 7 weeks ago 239 MB

3. コンテナーまたはコンテナーイメージで脆弱性をスキャンし、結果を vulnerability.html ファ
イルに保存します。

oscap-podman 096cae65a207 oval eval --report vulnerability.html rhel-9.oval.xml

oscap-podman コマンドには root 権限が必要で、コンテナーの ID は最初の引数であることに
注意してください。

検証

Red Hat Enterprise Linux 9 セキュリティーの強化

58

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/automatically_installing_rhel/index#starting-kickstart-installations_rhel-installer
https://www.open-scap.org/tools/oscap-anaconda-addon/
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/automatically_installing_rhel/index#addon-com_redhat_oscap_kickstart-commands-for-addons-supplied-with-the-rhel-installation-program

結果をブラウザーで確認します。以下に例を示します。

$ firefox vulnerability.html &

関連情報

詳細は、oscap-podman(8) および oscap(8) の man ページを参照してください。

6.11. 特定のベースラインを使用したコンテナーまたはコンテナーイメージ
のセキュリティーコンプライアンスの評価

コンテナーまたはコンテナーイメージが、Operating System Protection Profile (OSPP)、Payment
Card Industry Data Security Standard (PCI-DSS)、Health Insurance Portability and Accountability Act
(HIPAA) などの特定のセキュリティーベースラインに準拠しているかどうかを評価できます。

前提条件

openscap-utils パッケージおよび scap-security-guide パッケージがインストールされてい
る。

システムへの root アクセス権があります。

手順

1. コンテナーまたはコンテナーイメージの ID を見つけます。

a. コンテナーの ID を見つけるには、podman ps -a コマンドを入力します。

b. コンテナーイメージの ID を見つけるには、podman images コマンドを入力します。

2. コンテナーまたはコンテナーイメージがプロファイルに準拠しているかどうかを評価し、ス
キャン結果をファイルに保存します。

oscap-podman <ID> xccdf eval --report <scan-report.html> --profile <profileID>
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

以下のように置き換えます。

<ID> は、コンテナーまたはコンテナーイメージの ID です。

<scan-report.html> は、oscap がスキャン結果を保存するファイル名です。

<profileID> は、システムが準拠する必要があるプロファイル ID (例: hipaa、ospp、pci-
dss) です。

検証

結果をブラウザーで確認します。以下に例を示します。

$ firefox <scan-report.html> &

注記

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

59

注記

notapplicable とマークされたルールは、ベアメタルおよび仮想化システムにのみ適用さ
れ、コンテナーまたはコンテナーイメージには適用されません。

関連情報

oscap-podman(8) および scap-security-guide(8) の man ページ。

/usr/share/doc/scap-security-guide/ ディレクトリー。

6.12. RHEL 9 でサポートされる SCAP SECURITY GUIDE プロファイル

RHEL の特定のマイナーリリースで提供される SCAP コンテンツだけを使用してください。これは、
ハードニングに関与するコンポーネントが新しい機能で更新されることがあるためです。SCAP コンテ
ンツは、この更新を反映するように変更されますが、以前のバージョンと互換性があるとは限りませ
ん。

注記

oscap info コマンドを使用すると、システムにインストールされている scap-security-
guide RPM のバージョンに関連する情報を取得できます。詳細は、設定コンプライアン
スのプロファイルの表示 を参照してください。

以下の表では、RHEL 9 で提供されるプロファイルと、プロファイルが適合するポリシーのバージョン
を紹介しています。

表6.2 RHEL 10.0 でサポートされている SCAP Security Guide プロファイル

プロファイル名 プロファイル ID ポリシーバージョン

Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

2.0

CCN Red Hat Enterprise Linux 9 -
Advanced

xccdf_org.ssgproject.conten
t_profile_ccn_advanced

2022-10

Red Hat Enterprise Linux 9 セキュリティーの強化

60

CCN Red Hat Enterprise Linux 9 -
Basic

xccdf_org.ssgproject.conten
t_profile_ccn_basic

2022-10

CCN Red Hat Enterprise Linux 9 -
Intermediate

xccdf_org.ssgproject.conten
t_profile_ccn_intermediate

2022-10

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

2.0.0

[ドラフト] Unclassified
Information in Non-federal
Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r2

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

バージョン付けなし

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

バージョン付けなし

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

バージョン付けなし

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.3

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_pci-dss

4.0.1

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 9

xccdf_org.ssgproject.conten
t_profile_stig

V2R3

プロファイル名 プロファイル ID ポリシーバージョン

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

61

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_stig_gui

V2R3

プロファイル名 プロファイル ID ポリシーバージョン

表6.3 RHEL 9.5 でサポートされる SCAP Security Guide プロファイル

プロファイル名 プロファイル ID ポリシーバージョン

Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

2.0

CCN Red Hat Enterprise Linux 9 -
Advanced

xccdf_org.ssgproject.conten
t_profile_ccn_advanced

2022-10

CCN Red Hat Enterprise Linux 9 -
Basic

xccdf_org.ssgproject.conten
t_profile_ccn_basic

2022-10

CCN Red Hat Enterprise Linux 9 -
Intermediate

xccdf_org.ssgproject.conten
t_profile_ccn_intermediate

2022-10

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

2.0.0

Red Hat Enterprise Linux 9 セキュリティーの強化

62

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

2.0.0

[ドラフト] Unclassified
Information in Non-federal
Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r2

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

バージョン付けなし

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

バージョン付けなし

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

バージョン付けなし

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.3

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_pci-dss

RHEL9.5.0: 4.0
RHEL 9.5.1 以降: 4.0.1

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 9

xccdf_org.ssgproject.conten
t_profile_stig

V2R3

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_stig_gui

V2R3

プロファイル名 プロファイル ID ポリシーバージョン

表6.4 RHEL 9.4 でサポートされる SCAP Security Guide プロファイル

プロファイル名 プロファイル ID ポリシーバージョン

Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

2.0

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

63

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

2.0

CCN Red Hat Enterprise Linux 9 -
Advanced

xccdf_org.ssgproject.conten
t_profile_ccn_advanced

2022-10

CCN Red Hat Enterprise Linux 9 -
Basic

xccdf_org.ssgproject.conten
t_profile_ccn_basic

2022-10

CCN Red Hat Enterprise Linux 9 -
Intermediate

xccdf_org.ssgproject.conten
t_profile_ccn_intermediate

2022-10

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

RHEL 9.4.0 から RHEL 9.4.2: 1.0.0
RHEL 9.4.3 以降: 2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

RHEL 9.4.0 から RHEL 9.4.2: 1.0.0
RHEL 9.4.3 以降: 2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

RHEL 9.4.0 から RHEL 9.4.2: 1.0.0
RHEL 9.4.3 以降: 2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

RHEL 9.4.0 から RHEL 9.4.2: 1.0.0
RHEL 9.4.3 以降: 2.0.0

[ドラフト] Unclassified
Information in Non-federal
Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r2

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

バージョン付けなし

プロファイル名 プロファイル ID ポリシーバージョン

Red Hat Enterprise Linux 9 セキュリティーの強化

64

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

バージョン付けなし

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

バージョン付けなし

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.3

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_pci-dss

RHEL 9.4.0 から RHEL 9.4.4: 4.0
RHEL9.4.5: 4.0.1

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 9

xccdf_org.ssgproject.conten
t_profile_stig

V2R3

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_stig_gui

V2R3

プロファイル名 プロファイル ID ポリシーバージョン

表6.5 RHEL 9.3 でサポートされる SCAP Security Guide プロファイル

プロファイル名 プロファイル ID ポリシーバージョン

Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

2.0

CCN Red Hat Enterprise Linux 9 -
Advanced

xccdf_org.ssgproject.conten
t_profile_ccn_advanced

2022-10

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

65

CCN Red Hat Enterprise Linux 9 -
Basic

xccdf_org.ssgproject.conten
t_profile_ccn_basic

2022-10

CCN Red Hat Enterprise Linux 9 -
Intermediate

xccdf_org.ssgproject.conten
t_profile_ccn_intermediate

2022-10

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

1.0.0

[ドラフト] Unclassified
Information in Non-federal
Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r2

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

バージョン付けなし

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

バージョン付けなし

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

バージョン付けなし

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.3

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_pci-dss

RHEL 9.3.0 から RHEL 9.3.2:3.2.1
RHEL 9.3.3:4.0

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 9

xccdf_org.ssgproject.conten
t_profile_stig

RHEL 9.3.0: ドラフト[a]

RHEL 9.3.2: V1R1
RHEL 9.3.3 以降: V1R2

プロファイル名 プロファイル ID ポリシーバージョン

Red Hat Enterprise Linux 9 セキュリティーの強化

66

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_stig_gui

RHEL 9.3.0: ドラフト[a]

RHEL 9.3.2:V1R1
RHEL 9.3.3 以降:V1R2

[a] DISA は RHEL 9 の公式ベンチマークを公開していません。

プロファイル名 プロファイル ID ポリシーバージョン

表6.6 RHEL 9.2 でサポートされる SCAP Security Guide プロファイル

プロファイル名 プロファイル ID ポリシーバージョン

Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

RHEL 9.2.0 から RHEL 9.2.2: 1.2
RHEL 9.2.3 以降: 2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

RHEL 9.2.0 から RHEL 9.2.2: 1.2
RHEL 9.2.3 以降: 2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

RHEL 9.2.0 から RHEL 9.2.2: 1.2
RHEL 9.2.3 以降: 2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

RHEL 9.2.0 から RHEL 9.2.2: 1.2
RHEL 9.2.3 以降: 2.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

RHEL 9.2.0 から RHEL 9.2.10:
1.0.0
RHEL 9.2.11 以降: 2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

RHEL 9.2.0 から RHEL 9.2.10:
1.0.0
RHEL 9.2.11 以降: 2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

RHEL 9.2.0 から RHEL 9.2.10:
1.0.0
RHEL 9.2.11 以降: 2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

RHEL 9.2.0 から RHEL 9.2.10:
1.0.0
RHEL 9.2.11 以降: 2.0.0

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

67

[ドラフト] Unclassified
Information in Non-federal
Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r2

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

バージョン付けなし

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

バージョン付けなし

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

バージョン付けなし

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_pci-dss

RHEL 9.2.0 から RHEL 9.2.5: 3.2.1
RHEL 9.2.6 から RHEL 9.2.12: 4.0
RHEL 9.2.13 以降: 4.0.1

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 9

xccdf_org.ssgproject.conten
t_profile_stig

V2R3

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_stig_gui

V2R3

CCN Red Hat Enterprise Linux 9 -
Basic

xccdf_org.ssgproject.conten
t_profile_ccn_basic

2022-10

CCN Red Hat Enterprise Linux 9 -
Intermediate

xccdf_org.ssgproject.conten
t_profile_ccn_intermediate

2022-10

CCN Red Hat Enterprise Linux 9 -
Advanced

xccdf_org.ssgproject.conten
t_profile_ccn_advanced

2022-10

プロファイル名 プロファイル ID ポリシーバージョン

表6.7 RHEL 9.1 でサポートされる SCAP Security Guide プロファイル

Red Hat Enterprise Linux 9 セキュリティーの強化

68

プロファイル名 プロファイル ID ポリシーバージョン

Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

1.2

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

RHEL 9.1.0 および RHEL 9.1.1: ドラ
フト[a]

RHEL 9.1.2 以降: 1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

RHEL 9.1.0 および RHEL 9.1.1: ドラ

フト[a]

RHEL 9.1.2 以降: 1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

RHEL 9.1.0 および RHEL 9.1.1: ドラ

フト[a]

RHEL 9.1.2 以降: 1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

RHEL 9.1.0 および RHEL 9.1.1: ドラ

フト[a]

RHEL 9.1.2 以降: 1.0.0

[ドラフト] Unclassified
Information in Non-federal
Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r2

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

バージョン付けなし

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

バージョン付けなし

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

バージョン付けなし

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

69

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

[ドラフト] The Defense
Information Systems Agency
Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 9

xccdf_org.ssgproject.conten
t_profile_stig

ドラフト[a]

[ドラフト] The Defense
Information Systems Agency
Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_stig_gui

ドラフト[a]

[a] CIS は RHEL 9 の公式ベンチマークを公開していません。

プロファイル名 プロファイル ID ポリシーバージョン

表6.8 RHEL 9.0 でサポートされる SCAP Security Guide プロファイル

プロファイル名 プロファイル ID ポリシーバージョン

Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

RHEL 9.0.0 から RHEL 9.0.10:1.2
RHEL 9.0.11 以降:2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

RHEL 9.0.0 から RHEL 9.0.10:1.2
RHEL 9.0.11 以降:2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

RHEL 9.0.0 から RHEL 9.0.10:1.2
RHEL 9.0.11 以降:2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

RHEL 9.0.0 から RHEL 9.0.10:1.2
RHEL 9.0.11 以降:2.0

Red Hat Enterprise Linux 9 セキュリティーの強化

70

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

RHEL 9.0.0 から RHEL 9.0.6:

DRAFT[a]

RHEL 9.0.7 to RHEL 9.0.19:1.0.0
RHEL 9.0.20 以降: 2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

RHEL 9.0.0 から RHEL 9.0.6:

DRAFT[a]

RHEL 9.0.7 to RHEL 9.0.19:1.0.0
RHEL 9.0.20 以降: 2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

RHEL 9.0.0 から RHEL 9.0.6:

DRAFT[a]

RHEL 9.0.7 to RHEL 9.0.19:1.0.0
RHEL 9.0.20 以降: 2.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

RHEL 9.0.0 から RHEL 9.0.6:

DRAFT[a]

RHEL 9.0.7 to RHEL 9.0.19:1.0.0
RHEL 9.0.20 以降: 2.0.0

[ドラフト] Unclassified
Information in Non-federal
Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r2

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

バージョン付けなし

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

バージョン付けなし

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

バージョン付けなし

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

RHEL 9.0.0 から RHEL 9.0.2: ドラ
フト
RHEL 9.0.3 以降: 4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_pci-dss

RHEL 9.0.0 から RHEL 9.0.14:
3.2.1
RHEL 9.0.15 から RHEL 9.0.21: 4.0
RHEL 9.0.22 以降: 4.0.1

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 9

xccdf_org.ssgproject.conten
t_profile_stig

V2R3

プロファイル名 プロファイル ID ポリシーバージョン

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

71

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_stig_gui

V2R3

CCN Red Hat Enterprise Linux 9 -
Basic

xccdf_org.ssgproject.conten
t_profile_ccn_basic

RHEL 9.0.11 以降:2022-10

CCN Red Hat Enterprise Linux 9 -
Intermediate

xccdf_org.ssgproject.conten
t_profile_ccn_intermediate

RHEL 9.0.11 以降:2022-10

CCN Red Hat Enterprise Linux 9 -
Advanced

xccdf_org.ssgproject.conten
t_profile_ccn_advanced

RHEL 9.0.11 以降:2022-10

プロファイル名 プロファイル ID ポリシーバージョン

6.13. 関連情報

Supported versions of the SCAP Security Guide in RHEL

OpenSCAP プロジェクトページ では、oscap ユーティリティー、その他のコンポーネント、
および SCAP に関連するプロジェクトに関する詳細情報を提供しています。

SCAP Workbench プロジェクトページ は、scap-workbench アプリケーションに関する詳細情
報を提供します。

SCAP Security Guide (SSG) プロジェクトページ は、Red Hat Enterprise Linux の最新のセキュ
リティーコンテンツを提供します。

セキュリティーコンプライアンスと脆弱性スキャンに OpenSCAP を使用する : RHEL でのコン
プライアンスと脆弱性スキャンのための Security Content Automation Protocol (SCAP) 標準に
基づくツールの実行に関するハンズオンラボ。

Red Hat Security Demos: Creating Customized Security Policy Content to Automate Security
Compliance - RHEL に含まれるツールを使用してセキュリティーコンプライアンスを自動化
し、業界標準のセキュリティーポリシーとカスタムセキュリティーポリシーの両方に準拠する
ためのハンズオンラボ。トレーニングや、このラボ演習へのアクセスを希望する場合は、Red
Hat アカウントチームにお問い合わせください。

Red Hat Security Demos: Defend Yourself with RHEL Security Technologies - OpenSCAP を含
む RHEL で利用可能な主要なセキュリティー技術を使用して、RHEL システムの全レベルでセ
キュリティーを実装する方法を学ぶためのハンズオンラボ。トレーニングや、このラボ演習へ
のアクセスを希望する場合は、Red Hat アカウントチームにお問い合わせください。

National Institute of Standards and Technology (NIST) SCAP のページ では、SCAP の出版物、
仕様、SCAP 検出プログラムなどの SCAP 関連の資料が多数提供されます。

National Vulnerability Database (NVD) は、SCAP コンテンツおよびその他の SCAP 標準ベース
の脆弱性管理データに関する最大のリポジトリーです。

Red Hat OVAL コンテンツリポジトリー には、RHEL システムの脆弱性に対する OVAL 定義が

Red Hat Enterprise Linux 9 セキュリティーの強化

72

https://access.redhat.com/articles/6337261
http://www.open-scap.org
https://www.open-scap.org/tools/scap-workbench/
https://www.open-scap.org/security-policies/scap-security-guide/
https://lab.redhat.com/tracks/openscap
https://2020-summit-labs.gitlab.io/rhel-custom-security-content/
https://github.com/RedHatDemos/SecurityDemos/blob/master/2020Labs/RHELSecurity/documentation/README.adoc
http://scap.nist.gov/
http://nvd.nist.gov/

Red Hat OVAL コンテンツリポジトリー には、RHEL システムの脆弱性に対する OVAL 定義が
含まれています。このページは、脆弱性の情報を得るために確認が推奨されるページです。

MITRE CVE - これは、MITRE corporation が提供する既知のセキュリティー脆弱性のデータ
ベースです。RHEL の場合は、Red Hat が提供する OVAL CVE コンテンツを使用することが推
奨されます。

MITRE OVAL - このページでは、MITRE corporation が提供する OVAL 関連のプロジェクトが
紹介されています。OVAL の関連情報、たとえば OVAL 言語、数千にもなる OVAL 定義が用意
された OVAL コンテンツのリポジトリーがあります。RHEL のスキャンには、Red Hat が提供
する OVAL CVE コンテンツを使用することが推奨されます。

Red Hat Satellite のセキュリティーコンプライアンスの管理 - この一連のガイドでは、
OpenSCAP を使用して複数のシステムでシステムセキュリティーを維持する維持する方法など
が説明されています。

第6章 設定コンプライアンスおよび脆弱性スキャンの開始

73

http://www.redhat.com/security/data/oval/
http://cve.mitre.org/
http://oval.mitre.org/
https://docs.redhat.com/en/documentation/red_hat_satellite/6.15/html/managing_security_compliance/index

第7章 KEYLIME でシステムの整合性を確保する
Keylime を使用すると、リモートシステムの整合性を継続的に監視し、起動時にシステムの状態を確認
できます。また、暗号化されたファイルを監視対象システムに送信し、監視対象システムが整合性テス
トに失敗するたびにトリガーされる自動アクションを指定することもできます。

7.1. KEYLIME の仕組み

Keylime エージェントを設定すると、次の操作を 1 つ以上実行できます。

ランタイム整合性監視

Keylime のランタイム整合性監視では、エージェントがデプロイされているシステムを継続的に監視
し、許可リストに含まれるファイルと除外リストに含まれないファイルの整合性を評価します。

ブート測定

Keylime のブート測定では、起動時にシステムの状態を検証します。

Keylime の信頼の概念は、Trusted Platform Module (TPM) テクノロジーに基づいています。TPM は、
暗号化鍵が統合されたハードウェア、ファームウェア、または仮想コンポーネントです。TPM クォー
トをポーリングし、オブジェクトのハッシュを比較することで、Keylime はリモートシステムの初期監
視とランタイム監視を提供します。

重要

Keylime を仮想マシン内で実行するか、仮想 TPM を使用するかは、基盤となるホストの
整合性によって異なります。仮想環境での Keylime 測定を利用する前に、必ずホスト環
境を信頼してください。

Keylime は、次の 3 つの主要コンポーネントで構成されています。

verifier

エージェントを実行するシステムの整合性を最初から継続的に検証します。verifier は、パッケージ
からデプロイすることも、コンテナーとしてデプロイすることも、keylime_server RHEL システム
ロールを使用してデプロイすることもできます。

registrar

すべてのエージェントのデータベースを含んでおり、TPM ベンダーの公開鍵をホストします。
registrar は、パッケージからデプロイすることも、コンテナーとしてデプロイすること
も、keylime_server RHEL システムロールを使用してデプロイすることもできます。

エージェント

verifier によって測定されるリモートシステムにデプロイされます。

さらに、Keylime は、ターゲットシステムでのエージェントのプロビジョニングを含む多くの機能に
keylime_tenant ユーティリティーを使用します。

図7.1 設定による Keylime コンポーネント間の接続

Red Hat Enterprise Linux 9 セキュリティーの強化

74

図7.1 設定による Keylime コンポーネント間の接続

Keylime は、コンポーネントとテナントの間で交換される鍵と証明書を使用して、信頼の連鎖で監視対
象システムの整合性を保証します。このチェーンの安全な基盤として、信頼できる認証局 (CA) を使用
してください。

注記

エージェントが鍵と証明書を受け取らない場合は、CA の関与なしに鍵と自己署名証明書
を生成します。

図7.2 Keylime コンポーネントの証明書と鍵の間の接続

第7章 KEYLIME でシステムの整合性を確保する

75

図7.2 Keylime コンポーネントの証明書と鍵の間の接続

7.2. パッケージから KEYLIME VERIFIER をデプロイする

verifier は、Keylime で最も重要なコンポーネントです。システム整合性の初期および定期的なチェック
を行い、エージェントを使用して暗号化鍵を安全にブートストラップすることをサポートします。
verifier は、制御インターフェイスに相互 TLS 暗号化を使用します。

重要

信頼の連鎖を維持するには、verifier を実行するシステムをセキュアに管理してくださ
い。

要件に応じて、verifier を別のシステムにインストールすることも、Keylime registrar と同じシステムに
インストールすることもできます。verifier と registrar を別々のシステムで実行すると、パフォーマン
スが向上します。

Red Hat Enterprise Linux 9 セキュリティーの強化

76

注記

設定ファイルをドロップインディレクトリー内に整理するに
は、/etc/keylime/verifier.conf.d/00-verifier-ip.conf のように、2 桁の数字の接頭辞を付
けたファイル名を使用します。設定処理は、ドロップインディレクトリー内のファイル
を辞書順で読み取り、各オプションを最後に読み取った値に設定します。

前提条件

root 権限と、Keylime コンポーネントをインストールするシステムへのネットワーク接続があ
る。

認証局からの有効な鍵と証明書がある。

オプション: Keylime が verifier からのデータを保存するデータベースにアクセスできます。次
のデータベース管理システムのいずれかを使用できます。

SQLite (デフォルト)

PostgreSQL

MySQL

MariaDB

手順

1. Keylime verifier をインストールします。

dnf install keylime-verifier

2. /etc/keylime/verifier.conf.d/ ディレクトリーに、次の内容の新しい .conf ファイル
(/etc/keylime/verifier.conf.d/00-verifier-ip.conf など) を作成して、verifier の IP アドレスと
ポートを定義します。

[verifier]
ip = <verifier_IP_address>

<verifier_IP_address> は、verifier の IP アドレスに置き換えます。あるいは、 ip = * また
は ip = 0.0.0.0 を使用して、使用可能なすべての IP アドレスに verifier をバインドします。

必要に応じて、port オプションを使用して、verifier のポートをデフォルト値 8881 から変
更することもできます。

3. オプション: エージェントのリスト用に verifier のデータベースを設定します。デフォルトの設
定では、verifier の /var/lib/keylime/cv_data.sqlite ディレクトリーにある SQLite データベース
を使用します。/etc/keylime/verifier.conf.d/ ディレクトリーに次の内容の新しい .conf ファイ
ル (/etc/keylime/verifier.conf.d/00-db-url.conf など) を作成することで、別のデータベースを
定義できます。

[verifier]
database_url = <protocol>://<name>:
<password>@<ip_address_or_hostname>/<properties>

<protocol>://<name>:<password>@<ip_address_or_hostname>/<properties> は、データ

第7章 KEYLIME でシステムの整合性を確保する

77

<protocol>://<name>:<password>@<ip_address_or_hostname>/<properties> は、データ
ベースの URL (例: postgresql://verifier:UQ?nRNY9g7GZzN7@198.51.100.1/verifierdb) に置
き換えます。

使用する認証情報が、Keylime にデータベース構造を作成するための権限を提供していること
を確認してください。

4. verifier に証明書と鍵を追加します。Keylime にそれらを生成させることも、既存の鍵と証明書
を使用することもできます。

デフォルトの tls_dir =generate オプションを使用すると、Keylime は verifier、registrar、
およびテナントの新しい証明書を /var/lib/keylime/cv_ca/ ディレクトリーに生成します。

既存の鍵と証明書を設定にロードするには、verifier 設定でそれらの場所を定義します。
Keylime サービスの実行者である keylime ユーザーが証明書にアクセスできる必要があり
ます。
/etc/keylime/verifier.conf.d/ ディレクトリーに、次の内容の新しい .conf ファイル
(/etc/keylime/verifier.conf.d/00-keys-and-certs.conf など) を作成します。

[verifier]
tls_dir = /var/lib/keylime/cv_ca
server_key = </path/to/server_key>
server_key_password = <passphrase1>
server_cert = </path/to/server_cert>
trusted_client_ca = ['</path/to/ca/cert1>', '</path/to/ca/cert2>']
client_key = </path/to/client_key>
client_key_password = <passphrase2>
client_cert = </path/to/client_cert>
trusted_server_ca = ['</path/to/ca/cert3>', '</path/to/ca/cert4>']

注記

絶対パスを使用して、鍵と証明書の場所を定義します。また、相対パスは
tls_dir オプションで定義されたディレクトリーから解決されます。

5. ファイアウォールでポートを開きます。

firewall-cmd --add-port 8881/tcp
firewall-cmd --runtime-to-permanent

別のポートを使用する場合は、8881 を .conf ファイルで定義されているポート番号に置き換え
ます。

6. verifier サービスを開始します。

systemctl enable --now keylime_verifier

注記

デフォルト設定では、verifier が他の Keylime コンポーネントの CA と証明書を
作成するため、keylime_registrar サービスを起動する前に keylime_verifier を
起動します。カスタム証明書を使用する場合、この順序で起動する必要はありま
せん。

Red Hat Enterprise Linux 9 セキュリティーの強化

78

検証

keylime_verifier サービスがアクティブで実行中であることを確認します。

systemctl status keylime_verifier
● keylime_verifier.service - The Keylime verifier
 Loaded: loaded (/usr/lib/systemd/system/keylime_verifier.service; disabled; vendor preset:
disabled)
 Active: active (running) since Wed 2022-11-09 10:10:08 EST; 1min 45s ago

次のステップ

「パッケージから Keylime registrar をデプロイする」。

7.3. KEYLIME VERIFIER をコンテナーとしてデプロイする

Keylime verifier は、システム整合性の初期チェックと定期チェックを実行し、エージェントを使用した
暗号化鍵のセキュアなブートストラップをサポートします。Keylime verifier は、ホスト上にバイナリー
やパッケージがなくても、RPM 方式ではなくコンテナーとして設定できます。コンテナーとしてデプ
ロイすることにより、Keylime コンポーネントの分離性、モジュール性、再現性が向上します。

コンテナーを起動すると、Keylime verifier がデフォルトの設定ファイルとともにデプロイされます。次
の 1 つ以上の方法を使用して設定をカスタマイズできます。

設定ファイルを含むホストのディレクトリーをコンテナーにマウントします。これは、RHEL 9
のすべてのバージョンで使用できます。

コンテナーで環境変数を直接変更します。これは、RHEL 9.3 以降のバージョンで使用できま
す。環境変数を変更すると、設定ファイルの値がオーバーライドされます。

前提条件

podman パッケージとその依存関係がシステムにインストールされている。

オプション: Keylime が verifier からのデータを保存するデータベースにアクセスできます。次
のデータベース管理システムのいずれかを使用できます。

SQLite (デフォルト)

PostgreSQL

MySQL

MariaDB

認証局からの有効な鍵と証明書がある。

手順

1. オプション: 設定ファイルにアクセスするには、keylime-verifier パッケージをインストールし
ます。このパッケージがなくてもコンテナーを設定することはできますが、パッケージに付属
する設定ファイルを変更する方が簡単な場合があります。

dnf install keylime-verifier

2. /etc/keylime/verifier.conf.d/ ディレクトリーに新しい .conf ファイル (例:

第7章 KEYLIME でシステムの整合性を確保する

79

2. /etc/keylime/verifier.conf.d/ ディレクトリーに新しい .conf ファイル (例:
/etc/keylime/verifier.conf.d/00-verifier-ip.conf) を作成し、次の内容を記述して、verifier をす
べての使用可能な IP アドレスにバインドします。

[verifier]
ip = *

必要に応じて、port オプションを使用して、verifier のポートをデフォルト値 8881 から変
更することもできます。

3. オプション: エージェントのリスト用に verifier のデータベースを設定します。デフォルトの設
定では、verifier の /var/lib/keylime/cv_data.sqlite ディレクトリーにある SQLite データベース
を使用します。/etc/keylime/verifier.conf.d/ ディレクトリーに次の内容の新しい .conf ファイ
ル (/etc/keylime/verifier.conf.d/00-db-url.conf など) を作成することで、別のデータベースを
定義できます。

[verifier]
database_url = <protocol>://<name>:
<password>@<ip_address_or_hostname>/<properties>

<protocol>://<name>:<password>@<ip_address_or_hostname>/<properties> は、データ
ベースの URL (例: postgresql://verifier:UQ?nRNY9g7GZzN7@198.51.100.1/verifierdb) に置
き換えます。

使用する認証情報に、Keylime がデータベース構造を作成するための権限があることを確認し
てください。

4. verifier に証明書と鍵を追加します。Keylime にそれらを生成させることも、既存の鍵と証明書
を使用することもできます。

デフォルトの tls_dir =generate オプションを使用すると、Keylime は verifier、registrar、
およびテナントの新しい証明書を /var/lib/keylime/cv_ca/ ディレクトリーに生成します。

既存の鍵と証明書を設定にロードするには、verifier 設定でそれらの場所を定義します。
Keylime プロセスの実行者である keylime ユーザーが証明書にアクセスできる必要があり
ます。
/etc/keylime/verifier.conf.d/ ディレクトリーに、次の内容の新しい .conf ファイル
(/etc/keylime/verifier.conf.d/00-keys-and-certs.conf など) を作成します。

[verifier]
tls_dir = /var/lib/keylime/cv_ca
server_key = </path/to/server_key>
server_cert = </path/to/server_cert>
trusted_client_ca = ['</path/to/ca/cert1>', '</path/to/ca/cert2>']
client_key = </path/to/client_key>
client_cert = </path/to/client_cert>
trusted_server_ca = ['</path/to/ca/cert3>', '</path/to/ca/cert4>']

注記

絶対パスを使用して、鍵と証明書の場所を定義します。また、相対パスは
tls_dir オプションで定義されたディレクトリーから解決されます。

5. ファイアウォールでポートを開きます。

Red Hat Enterprise Linux 9 セキュリティーの強化

80

firewall-cmd --add-port 8881/tcp
firewall-cmd --runtime-to-permanent

別のポートを使用する場合は、8881 を .conf ファイルで定義されているポート番号に置き換え
ます。

6. コンテナーを実行します。

$ podman run --name keylime-verifier \
 -p 8881:8881 \
 -v /etc/keylime/verifier.conf.d:/etc/keylime/verifier.conf.d:Z \
 -v /var/lib/keylime/cv_ca:/var/lib/keylime/cv_ca:Z \
 -d \
 -e KEYLIME_VERIFIER_SERVER_KEY_PASSWORD=<passphrase1> \
 -e KEYLIME_VERIFIER_CLIENT_KEY_PASSWORD=<passphrase2> \
 registry.access.redhat.com/rhel9/keylime-verifier

-p オプションは、ホスト上とコンテナー上のデフォルトポート 8881 を開きます。

-v オプションは、コンテナーへのディレクトリーのバインドマウントを作成します。

Z オプションを指定すると、Podman がコンテンツにプライベート非共有ラベルを付け
ます。つまり、現在のコンテナーだけがプライベートボリュームを使用できます。

-d オプションは、コンテナーをデタッチしてバックグラウンドで実行します。

オプション -e KEYLIME_VERIFIER_SERVER_KEY_PASSWORD=<passphrase1> は、
サーバーの鍵のパスフレーズを定義します。

オプション -e KEYLIME_VERIFIER_CLIENT_KEY_PASSWORD=<passphrase2> は、ク
ライアントの鍵のパスフレーズを定義します。

オプション -e KEYLIME_VERIFIER_<ENVIRONMENT_VARIABLE>=<value> を指定する
と、環境変数で設定オプションをオーバーライドできます。複数のオプションを変更する
には、環境変数ごとに -e オプションを個別に挿入します。環境変数とそのデフォルト値の
完全なリストは、Keylime の環境変数 を参照してください。

検証

コンテナーが実行されていることを確認します。

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
80b6b9dbf57c registry.access.redhat.com/rhel9/keylime-verifier:latest keylime_verifier 14
seconds ago Up 14 seconds 0.0.0.0:8881->8881/tcp keylime-verifier

次のステップ

Keylime registrar をコンテナーとして設定する

関連情報

Keylime コンポーネントの詳細は、Keylime の仕組み を参照してください。

第7章 KEYLIME でシステムの整合性を確保する

81

Keylime 検証ツールの設定の詳細は、Keylime verifier の設定 を参照してください。

podman run コマンドの詳細は、システム上の podman-run(1) man ページを参照してくださ
い。

7.4. パッケージから KEYLIME REGISTRAR をデプロイする

registrar は、すべてのエージェントのデータベースを含む Keylime コンポーネントであり、TPM ベン
ダーの公開鍵をホストします。registrar の HTTPS サービスは、Trusted Platform Module (TPM) 公開
鍵を受け入れると、クォートを確認するためにこれらの公開鍵を取得するインターフェイスを提供しま
す。

重要

信頼の連鎖を維持するには、registrar を実行するシステムをセキュアに管理してくださ
い。

要件に応じて、registrar を別のシステムにインストールすることも、Keylime verifier と同じシステムに
インストールすることもできます。verifier と registrar を別々のシステムで実行すると、パフォーマン
スが向上します。

注記

設定ファイルをドロップインディレクトリー内に整理するに
は、/etc/keylime/registrar.conf.d/00-registrar-ip.conf のように、2 桁の数字の接頭辞を
付けたファイル名を使用します。設定処理は、ドロップインディレクトリー内のファイ
ルを辞書順で読み取り、各オプションを最後に読み取った値に設定します。

前提条件

Keylime verifier がインストールされ実行されているシステムへのネットワークアクセスがあ
る。詳細は、「パッケージから Keylime verifier をデプロイする」 を参照してください。

root 権限と、Keylime コンポーネントをインストールするシステムへのネットワーク接続があ
る。

Keylime が registrar からのデータを保存するデータベースにアクセスできる。次のデータベー
ス管理システムのいずれかを使用できます。

SQLite (デフォルト)

PostgreSQL

MySQL

MariaDB

認証局からの有効な鍵と証明書がある。

手順

1. Keylime registrar をインストールします。

dnf install keylime-registrar

Red Hat Enterprise Linux 9 セキュリティーの強化

82

2. /etc/keylime/registrar.conf.d/ ディレクトリーに、次の内容の新しい .conf ファイル
(/etc/keylime/registrar.conf.d/00-registrar-ip.conf など) を作成して、registrar の IP アドレス
とポートを定義します。

[registrar]
ip = <registrar_IP_address>

<registrar_IP_address> を registrar の IP アドレスに置き換えます。あるいは、 ip = * また
は ip = 0.0.0.0 を使用して、使用可能なすべての IP アドレスに registrar をバインドしま
す。

必要に応じて、port オプションを使用して、Keylime エージェントが接続するポートを変
更します。デフォルト値は 8890 です。

必要に応じて、tls_port オプションを使用して、Keylime verifier とテナントが接続する
TLS ポートを変更します。デフォルト値は 8891 です。

3. オプション: エージェントのリスト用に registrar のデータベースを設定します。デフォルト設
定では、registrar の /var/lib/keylime/reg_data.sqlite ディレクトリーにある SQLite データ
ベースを使用します。/etc/keylime/registrar.conf.d/ ディレクトリーに、次の内容の新しい
.conf ファイル (/etc/keylime/registrar.conf.d/00-db-url.conf など) を作成できます。

[registrar]
database_url = <protocol>://<name>:
<password>@<ip_address_or_hostname>/<properties>

<protocol>://<name>:<password>@<ip_address_or_hostname>/<properties> は、データ
ベースの URL (例: postgresql://registrar:EKYYX-bqY2?#raXm@198.51.100.1/registrardb) に
置き換えます。

使用する認証情報に、Keylime がデータベース構造を作成するための権限があることを確認し
てください。

4. registrar に証明書と鍵を追加します。

デフォルトの設定を使用して、鍵と証明書を /var/lib/keylime/reg_ca ディレクトリーに
ロードできます。

または、設定で鍵と証明書の場所を定義することもできま
す。/etc/keylime/registrar.conf.d/ ディレクトリーに新しい .conf ファイルを作成します
(例: /etc/keylime/registrar.conf.d/00-keys-and-certs.conf の内容は次のとおりです)。

[registrar]
tls_dir = /var/lib/keylime/reg_ca
server_key = </path/to/server_key>
server_key_password = <passphrase1>
server_cert = </path/to/server_cert>
trusted_client_ca = ['</path/to/ca/cert1>', '</path/to/ca/cert2>']

注記

絶対パスを使用して、鍵と証明書の場所を定義します。または、tls_dir オプ
ションでディレクトリーを定義し、そのディレクトリーからの相対パスを使
用することもできます。

第7章 KEYLIME でシステムの整合性を確保する

83

5. ファイアウォールでポートを開きます。

firewall-cmd --add-port 8890/tcp --add-port 8891/tcp
firewall-cmd --runtime-to-permanent

別のポートを使用する場合は、8890 または 8891 を .conf ファイルで定義されているポート番
号に置き換えます。

6. keylime_registrar サービスを起動します。

systemctl enable --now keylime_registrar

注記

デフォルト設定では、verifier が他の Keylime コンポーネントの CA と証明書を
作成するため、keylime_registrar サービスを起動する前に keylime_verifier を
起動します。カスタム証明書を使用する場合、この順序で起動する必要はありま
せん。

検証

keylime_registrar サービスがアクティブで実行中であることを確認します。

systemctl status keylime_registrar
● keylime_registrar.service - The Keylime registrar service
 Loaded: loaded (/usr/lib/systemd/system/keylime_registrar.service; disabled; vendor
preset: disabled)
 Active: active (running) since Wed 2022-11-09 10:10:17 EST; 1min 42s ago
...

次のステップ

「パッケージから Keylime テナントをデプロイする」

7.5. KEYLIME REGISTRAR をコンテナーとしてデプロイする

registrar は、すべてのエージェントのデータベースを格納する Keylime コンポーネントであり、
Trusted Platform Module (TPM) ベンダーの公開鍵をホストします。registrar の HTTPS サービスは、
TPM 公開鍵を受け入れると、クォートをチェックするために、この公開鍵を取得するためのインター
フェイスを提供します。Keylime registrar は、ホスト上にバイナリーやパッケージがなくても、RPM 方
式ではなくコンテナーとして設定できます。コンテナーとしてデプロイすることにより、Keylime コン
ポーネントの分離性、モジュール性、再現性が向上します。

コンテナーを起動すると、Keylime registrar がデフォルトの設定ファイルとともにデプロイされます。
次の 1 つ以上の方法を使用して設定をカスタマイズできます。

設定ファイルを含むホストのディレクトリーをコンテナーにマウントします。これは、RHEL 9
のすべてのバージョンで使用できます。

コンテナーで環境変数を直接変更します。これは、RHEL 9.3 以降のバージョンで使用できま
す。環境変数を変更すると、設定ファイルの値がオーバーライドされます。

前提条件

Red Hat Enterprise Linux 9 セキュリティーの強化

84

podman パッケージとその依存関係がシステムにインストールされている。

オプション: Keylime が registrar からデータを保存するデータベースにアクセスできます。次の
データベース管理システムのいずれかを使用できます。

SQLite (デフォルト)

PostgreSQL

MySQL

MariaDB

認証局からの有効な鍵と証明書がある。

手順

1. オプション: 設定ファイルにアクセスするには、keylime-registrar パッケージをインストール
します。このパッケージがなくてもコンテナーを設定することはできますが、パッケージに付
属する設定ファイルを変更する方が簡単な場合があります。

dnf install keylime-registrar

2. /etc/keylime/registrar.conf.d/ ディレクトリーに新しい .conf ファイル (例:
/etc/keylime/registrar.conf.d/00-registrar-ip.conf) を作成し、次の内容を記述して、registrar
を使用可能なすべての IP アドレスにバインドします。

[registrar]
ip = *

必要に応じて、port オプションを使用して、Keylime エージェントが接続するポートを変
更します。デフォルト値は 8890 です。

必要に応じて、tls_port オプションを使用して、Keylime テナントが接続する TLS ポート
を変更します。デフォルト値は 8891 です。

3. オプション: エージェントのリスト用に registrar のデータベースを設定します。デフォルト設
定では、registrar の /var/lib/keylime/reg_data.sqlite ディレクトリーにある SQLite データ
ベースを使用します。/etc/keylime/registrar.conf.d/ ディレクトリーに、次の内容の新しい
.conf ファイル (/etc/keylime/registrar.conf.d/00-db-url.conf など) を作成できます。

[registrar]
database_url = <protocol>://<name>:
<password>@<ip_address_or_hostname>/<properties>

<protocol>://<name>:<password>@<ip_address_or_hostname>/<properties> は、データ
ベースの URL (例: postgresql://registrar:EKYYX-bqY2?#raXm@198.51.100.1/registrardb) に
置き換えます。

使用する認証情報に、Keylime がデータベース構造を作成するための権限があることを確認し
てください。

4. registrar に証明書と鍵を追加します。

デフォルトの設定を使用して、鍵と証明書を /var/lib/keylime/reg_ca ディレクトリーに
ロードできます。

第7章 KEYLIME でシステムの整合性を確保する

85

ロードできます。

または、設定で鍵と証明書の場所を定義することもできま
す。/etc/keylime/registrar.conf.d/ ディレクトリーに新しい .conf ファイルを作成します
(例: /etc/keylime/registrar.conf.d/00-keys-and-certs.conf の内容は次のとおりです)。

[registrar]
tls_dir = /var/lib/keylime/reg_ca
server_key = </path/to/server_key>
server_cert = </path/to/server_cert>
trusted_client_ca = ['</path/to/ca/cert1>', '</path/to/ca/cert2>']

注記

絶対パスを使用して、鍵と証明書の場所を定義します。または、tls_dir オプ
ションでディレクトリーを定義し、そのディレクトリーからの相対パスを使
用することもできます。

5. ファイアウォールでポートを開きます。

firewall-cmd --add-port 8890/tcp --add-port 8891/tcp
firewall-cmd --runtime-to-permanent

別のポートを使用する場合は、8890 または 8891 を .conf ファイルで定義されているポート番
号に置き換えます。

6. コンテナーを実行します。

$ podman run --name keylime-registrar \
 -p 8890:8890 \
 -p 8891:8891 \
 -v /etc/keylime/registrar.conf.d:/etc/keylime/registrar.conf.d:Z \
 -v /var/lib/keylime/reg_ca:/var/lib/keylime/reg_ca:Z \
 -d \
 -e KEYLIME_REGISTRAR_SERVER_KEY_PASSWORD=<passphrase1> \
 registry.access.redhat.com/rhel9/keylime-registrar

-p オプションは、ホスト上とコンテナー上のデフォルトポート 8890 および 8881 を開きま
す。

-v オプションは、コンテナーへのディレクトリーのバインドマウントを作成します。

Z オプションを指定すると、Podman がコンテンツにプライベート非共有ラベルを付け
ます。つまり、現在のコンテナーだけがプライベートボリュームを使用できます。

-d オプションは、コンテナーをデタッチしてバックグラウンドで実行します。

オプション -e KEYLIME_VERIFIER_SERVER_KEY_PASSWORD=<passphrase1> は、
サーバーの鍵のパスフレーズを定義します。

オプション -e KEYLIME_REGISTRAR_<ENVIRONMENT_VARIABLE>=<value> を指定す
ると、環境変数で設定オプションをオーバーライドできます。複数のオプションを変更す
るには、環境変数ごとに -e オプションを個別に挿入します。環境変数とそのデフォルト値
の完全なリストは、「Keylime の環境変数」 を参照してください。

Red Hat Enterprise Linux 9 セキュリティーの強化

86

検証

コンテナーが実行されていることを確認します。

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
07d4b4bff1b6 localhost/keylime-registrar:latest keylime_registrar 12 seconds ago Up 12
seconds 0.0.0.0:8881->8881/tcp, 0.0.0.0:8891->8891/tcp keylime-registrar

次のステップ

「パッケージから Keylime テナントをデプロイする」。

関連情報

Keylime コンポーネントの詳細は、「Keylime の仕組み」 を参照してください。

Keylime registrar の設定の詳細は、「パッケージから Keylime registrar をデプロイする」 を参
照してください。

podman run コマンドの詳細は、システム上の podman-run(1) man ページを参照してくださ
い。

7.6. RHEL システムロールを使用して KEYLIME サーバーをデプロイする

keylime_server RHEL システムロールを使用して、Keylime サーバーのコンポーネントである verifier
と registrar をセットアップできます。keylime_server ロールは、verifier コンポーネントと registrar
コンポーネントの両方を各ノードに共にインストールして設定します。

Ansible コントロールノードで以下の手順を実行します。

Keylime の詳細は、 8.1. Keylime の仕組み を参照してください。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

この Playbook を実行する管理対象ノードまたは管理対象ノードのグループが、Ansible インベ
ントリーファイルにリストされている。

手順

1. 必要なロールを定義する Playbook を作成します。

a. 新しい YAML ファイルを作成し、これをテキストエディターで開きます。以下に例を示し
ます。

vi keylime-playbook.yml

第7章 KEYLIME でシステムの整合性を確保する

87

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/security_hardening/assembly_ensuring-system-integrity-with-keylime_security-hardening#con_how-keylime-works_assembly_ensuring-system-integrity-with-keylime
https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

b. 以下の内容を挿入します。

- name: Manage keylime servers
 hosts: all
 vars:
 keylime_server_verifier_ip: "{{ ansible_host }}"
 keylime_server_registrar_ip: "{{ ansible_host }}"
 keylime_server_verifier_tls_dir: <ver_tls_directory>
 keylime_server_verifier_server_cert: <ver_server_certfile>
 keylime_server_verifier_server_key: <ver_server_key>
 keylime_server_verifier_server_key_passphrase: <ver_server_key_passphrase>
 keylime_server_verifier_trusted_client_ca: <ver_trusted_client_ca_list>
 keylime_server_verifier_client_cert: <ver_client_certfile>
 keylime_server_verifier_client_key: <ver_client_key>
 keylime_server_verifier_client_key_passphrase: <ver_client_key_passphrase>
 keylime_server_verifier_trusted_server_ca: <ver_trusted_server_ca_list>
 keylime_server_registrar_tls_dir: <reg_tls_directory>
 keylime_server_registrar_server_cert: <reg_server_certfile>
 keylime_server_registrar_server_key: <reg_server_key>
 keylime_server_registrar_server_key_passphrase: <reg_server_key_passphrase>
 keylime_server_registrar_trusted_client_ca: <reg_trusted_client_ca_list>
 roles:
 - rhel-system-roles.keylime_server

変数の詳細は、keylime_server RHEL システムロールの変数 を参照してください。

2. Playbook を実行します。

$ ansible-playbook <keylime-playbook.yml>

検証

1. keylime_verifier サービスがアクティブであり、管理対象ホスト上で実行されていることを確
認します。

systemctl status keylime_verifier
● keylime_verifier.service - The Keylime verifier
 Loaded: loaded (/usr/lib/systemd/system/keylime_verifier.service; disabled; vendor preset:
disabled)
 Active: active (running) since Wed 2022-11-09 10:10:08 EST; 1min 45s ago

2. keylime_registrar サービスがアクティブで実行中であることを確認します。

systemctl status keylime_registrar
● keylime_registrar.service - The Keylime registrar service
 Loaded: loaded (/usr/lib/systemd/system/keylime_registrar.service; disabled; vendor
preset: disabled)
 Active: active (running) since Wed 2022-11-09 10:10:17 EST; 1min 42s ago
...

次のステップ

「パッケージから Keylime テナントをデプロイする」

Red Hat Enterprise Linux 9 セキュリティーの強化

88

7.7. KEYLIME_SERVER RHEL システムロールの変数

keylime_server RHEL システムロールを使用して Keylime サーバーをセットアップする場合、registrar
と verifier の次の変数をカスタマイズできます。

Keylime verifier を設定するための keylime_server RHEL システムロール変数のリスト

keylime_server_verifier_ip

verifier の IP アドレスを定義します。

keylime_server_verifier_tls_dir

キーと証明書が保存されるディレクトリーを指定します。デフォルトに設定されている場合、
verifier は /var/lib/keylime/cv_ca ディレクトリーを使用します。

keylime_server_verifier_server_key_passphrase

サーバーの秘密鍵を復号化するためのパスフレーズを指定します。値が空の場合、秘密鍵は暗号化
されません。

keylime_server_verifier_server_cert: Keylime verifier サーバー証明書ファイルを指定します。

keylime_server_verifier_trusted_client_ca

信頼できるクライアント CA 証明書のリストを定義します。ファイル
は、keylime_server_verifier_tls_dir オプションで設定されたディレクトリーに保存する必要があ
ります。

keylime_server_verifier_client_key

Keylime verifier のクライアントの秘密鍵を含むファイルを定義します。

keylime_server_verifier_client_key_passphrase

クライアントの秘密鍵ファイルを復号化するためのパスフレーズを定義します。値が空の場合、秘
密鍵は暗号化されません。

keylime_server_verifier_client_cert

Keylime verifier クライアント証明書ファイルを定義します。

keylime_server_verifier_trusted_server_ca

信頼できるサーバー CA 証明書のリストを定義します。ファイル
は、keylime_server_verifier_tls_dir オプションで設定されたディレクトリーに保存する必要があ
ります。

keylime_server RHEL システムロールをセットアップするための registrar 変数のリスト

keylime_server_registrar_ip

registrar の IP アドレスを定義します。

keylime_server_registrar_tls_dir

registrar のキーと証明書を保存するディレクトリーを指定します。デフォルトに設定すると、
registrar は /var/lib/keylime/reg_ca ディレクトリーを使用します。

keylime_server_registrar_server_key

Keylime registrar のプライベートサーバーキーファイルを定義します。

keylime_server_registrar_server_key_passphrase

registrar のサーバー秘密鍵を復号化するためのパスフレーズを指定します。値が空の場合、秘密鍵
は暗号化されません。

第7章 KEYLIME でシステムの整合性を確保する

89

keylime_server_registrar_server_cert

Keylime registrar サーバー証明書ファイルを指定します。

keylime_server_registrar_trusted_client_ca

信頼できるクライアント CA 証明書のリストを定義します。ファイル
は、keylime_server_registrar_tls_dir オプションで設定されたディレクトリーに保存する必要があ
ります。

7.8. パッケージから KEYLIME テナントをデプロイする

Keylime は、ターゲットシステム上でのエージェントのプロビジョニングなど、多くの機能に
keylime_tenant ユーティリティーを使用します。keylime_tenant は、要件に応じて、他の Keylime コ
ンポーネントを実行するシステムを含む任意のシステムにインストールすることも、別のシステムにイ
ンストールすることもできます。

前提条件

root 権限と、Keylime コンポーネントをインストールするシステムへのネットワーク接続があ
る。

他の Keylime コンポーネントが設定されているシステムへのネットワークアクセスがある。

verifier

詳細は、「パッケージから Keylime verifier をデプロイする」 を参照してください。

registrar

詳細は、「パッケージから Keylime registrar をデプロイする」 を参照してください。

手順

1. Keylime テナントをインストールします。

dnf install keylime-tenant

2. /etc/keylime/tenant.conf.d/00-verifier-ip.conf ファイルを編集して、Keylime verifier へのテナ
ントの接続を定義します。

[tenant]
verifier_ip = <verifier_ip>

<verifier_ip> は、verifier のシステムの IP アドレスに置き換えます。

verifier がデフォルト値 8881 とは異なるポートを使用する場合は、verifier_port =
<verifier_port> 設定を追加します。

3. /etc/keylime/tenant.conf.d/00-registrar-ip.conf ファイルを編集して、Keylime registrar へのテ
ナントの接続を定義します。

[tenant]
registrar_ip = <registrar_ip>

<registrar_ip> は、registrar のシステムの IP アドレスに置き換えます。

registrar がデフォルト値 8891 とは異なるポートを使用する場合は、registrar_port =

Red Hat Enterprise Linux 9 セキュリティーの強化

90

registrar がデフォルト値 8891 とは異なるポートを使用する場合は、registrar_port =
<registrar_port> 設定を追加します。

4. テナントに証明書と鍵を追加します。

a. デフォルトの設定を使用して、鍵と証明書を /var/lib/keylime/cv_ca ディレクトリーにロー
ドできます。

b. または、設定で鍵と証明書の場所を定義することもできます。/etc/keylime/tenant.conf.d/
ディレクトリーに、次の内容の新しい .conf ファイル (/etc/keylime/tenant.conf.d/00-
keys-and-certs.conf など) を作成します。

[tenant]
tls_dir = /var/lib/keylime/cv_ca
client_key = tenant-key.pem
client_key_password = <passphrase1>
client_cert = tenant-cert.pem
trusted_server_ca = ['</path/to/ca/cert>']

trusted_server_ca パラメーターは、verifier および registrar サーバーの CA 証明書へのパ
スを受け入れます。verifier と registrar が異なる CA を使用する場合などに、複数のコンマ
区切りのパスを指定できます。

注記

絶対パスを使用して、鍵と証明書の場所を定義します。または、tls_dir オプ
ションでディレクトリーを定義し、そのディレクトリーからの相対パスを使
用することもできます。

5. オプション: /var/lib/keylime/tpm_cert_store ディレクトリー内の証明書を使用して Trusted
Platform Module (TPM) の保証鍵 (EK) を検証できない場合は、証明書をそのディレクトリーに
追加します。これは、エミュレートされた TPM を備えた仮想マシンを使用する場合に特に発生
する可能性があります。

検証

1. verifier のステータスを確認します。

keylime_tenant -c cvstatus
Reading configuration from ['/etc/keylime/logging.conf']
2022-10-14 12:56:08.155 - keylime.tpm - INFO - TPM2-TOOLS Version: 5.2
Reading configuration from ['/etc/keylime/tenant.conf']
2022-10-14 12:56:08.157 - keylime.tenant - INFO - Setting up client TLS...
2022-10-14 12:56:08.158 - keylime.tenant - INFO - Using default client_cert option for tenant
2022-10-14 12:56:08.158 - keylime.tenant - INFO - Using default client_key option for tenant
2022-10-14 12:56:08.178 - keylime.tenant - INFO - TLS is enabled.
2022-10-14 12:56:08.178 - keylime.tenant - WARNING - Using default UUID d432fbb3-d2f1-
4a97-9ef7-75bd81c00000
2022-10-14 12:56:08.221 - keylime.tenant - INFO - Verifier at 127.0.0.1 with Port 8881 does
not have agent d432fbb3-d2f1-4a97-9ef7-75bd81c00000.

正しくセットアップされていて、エージェントが設定されていない場合、verifier は、デフォル
トのエージェント UUID を認識しないと応答します。

2. registrar のステータスを確認します。

第7章 KEYLIME でシステムの整合性を確保する

91

keylime_tenant -c regstatus
Reading configuration from ['/etc/keylime/logging.conf']
2022-10-14 12:56:02.114 - keylime.tpm - INFO - TPM2-TOOLS Version: 5.2
Reading configuration from ['/etc/keylime/tenant.conf']
2022-10-14 12:56:02.116 - keylime.tenant - INFO - Setting up client TLS...
2022-10-14 12:56:02.116 - keylime.tenant - INFO - Using default client_cert option for tenant
2022-10-14 12:56:02.116 - keylime.tenant - INFO - Using default client_key option for tenant
2022-10-14 12:56:02.137 - keylime.tenant - INFO - TLS is enabled.
2022-10-14 12:56:02.137 - keylime.tenant - WARNING - Using default UUID d432fbb3-d2f1-
4a97-9ef7-75bd81c00000
2022-10-14 12:56:02.171 - keylime.registrar_client - CRITICAL - Error: could not get agent
d432fbb3-d2f1-4a97-9ef7-75bd81c00000 data from Registrar Server: 404
2022-10-14 12:56:02.172 - keylime.registrar_client - CRITICAL - Response code 404: agent
d432fbb3-d2f1-4a97-9ef7-75bd81c00000 not found
2022-10-14 12:56:02.172 - keylime.tenant - INFO - Agent d432fbb3-d2f1-4a97-9ef7-
75bd81c00000 does not exist on the registrar. Please register the agent with the registrar.
2022-10-14 12:56:02.172 - keylime.tenant - INFO - {"code": 404, "status": "Agent d432fbb3-
d2f1-4a97-9ef7-75bd81c00000 does not exist on registrar 127.0.0.1 port 8891.", "results": {}}

正しくセットアップされていて、エージェントが設定されていない場合、registrar は、デフォ
ルトのエージェント UUID を認識しないと応答します。

関連情報

keylime_tenant ユーティリティーの追加の詳細オプションは、keylime_tenant -h コマンドを
入力します。

7.9. パッケージから KEYLIME エージェントをデプロイする

Keylime エージェントは、Keylime によって監視されるすべてのシステムにデプロイされるコンポーネ
ントです。

デフォルトでは、Keylime エージェントはすべてのデータを監視対象システムの /var/lib/keylime/ ディ
レクトリーに保存します。

注記

設定ファイルをドロップインディレクトリー内で整理するに
は、/etc/keylime/agent.conf.d/00-registrar-ip.conf のように、2 桁の数字の接頭辞を付
けたファイル名を使用します。設定処理は、ドロップインディレクトリー内のファイル
を辞書順で読み取り、各オプションを最後に読み取った値に設定します。

前提条件

監視対象システムに対する root 権限がある。

監視対象システムに Trusted Platform Module (TPM) が搭載されている。確認するに
は、tpm2_pcrread コマンドを入力します。出力が複数のハッシュを返す場合は、TPM が使用
可能です。

他の Keylime コンポーネントが設定されているシステムへのネットワークアクセスがある。

verifier

詳細は、Keylime verifier の設定 を参照してください。

Red Hat Enterprise Linux 9 セキュリティーの強化

92

registrar

詳細は、Keylime registrar の設定 を参照してください。

テナント

詳細は、Keylime テナントの設定 を参照してください。

監視対象システムで Integrity Measurement Architecture (IMA) が有効になっている。詳細
は、整合性測定アーキテクチャーと拡張検証モジュールの有効化 を参照してください。

手順

1. Keylime エージェントをインストールします。

dnf install keylime-agent

このコマンドは、keylime-agent-rust パッケージをインストールします。

2. 設定ファイルでエージェントの IP アドレスとポートを定義します。/etc/keylime/agent.conf.d/
ディレクトリーに、次の内容の新しい .conf ファイル (/etc/keylime/agent.conf.d/00-agent-
ip.conf など) を作成します。

[agent]
ip = '<agent_ip>'

注記

Keylime エージェントの設定では TOML 形式が使用されます。これは、他のコ
ンポーネントの設定に使用される INI 形式とは異なります。したがって、値は有
効な TOML 構文で入力してください。たとえば、パスは一重引用符で囲み、複
数のパスの配列は角括弧で囲みます。

<agent_IP_address> は、エージェントの IP アドレスに置き換えます。あるいは、 ip = '*'
または ip = '0.0.0.0' を使用して、使用可能なすべての IP アドレスにエージェントをバイン
ドします。

必要に応じて、port = '<agent_port>' オプションを使用して、エージェントのポートをデ
フォルト値 9002 から変更することもできます。

3. 設定ファイルで registrar の IP アドレスとポートを定義します。/etc/keylime/agent.conf.d/
ディレクトリーに、次の内容の新しい .conf ファイル (/etc/keylime/agent.conf.d/00-registrar-
ip.conf など) を作成します。

[agent]
registrar_ip = '<registrar_IP_address>'

<registrar_IP_address> を registrar の IP アドレスに置き換えます。

必要に応じて、registrar_port = '<registrar_port>' オプションを使用して、registrar の
ポートをデフォルト値 8890 から変更することもできます。

4. オプション: エージェントの汎用一意識別子 (UUID) を定義します。定義されていない場合は、
デフォルトの UUID が使用されます。/etc/keylime/agent.conf.d/ ディレクトリーに、次の内容
の新しい .conf ファイル (/etc/keylime/agent.conf.d/00-agent-uuid.conf など) を作成します。

第7章 KEYLIME でシステムの整合性を確保する

93

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/enhancing-security-with-the-kernel-integrity-subsystem_managing-monitoring-and-updating-the-kernel#enabling-integrity-measurement-architecture-and-extended-verification-module_enhancing-security-with-the-kernel-integrity-subsystem

[agent]
uuid = '<agent_UUID>'

<agent_UUID> は、エージェントの UUID に置き換えます (例: d432fbb3-d2f1-4a97-9ef7-
abcdef012345)。uuidgen ユーティリティーを使用して UUID を生成できます。

5. オプション: エージェントの既存のキーと証明書を読み込みます。エージェントが server_key
と server_cert を受信しない場合、エージェントは独自の鍵と自己署名証明書を生成します。
設定で鍵と証明書の場所を定義します。/etc/keylime/agent.conf.d/ ディレクトリーに、次の内
容の新しい .conf ファイル (/etc/keylime/agent.conf.d/00-keys-and-certs.conf など) を作成し
ます。

[agent]
server_key = '</path/to/server_key>'
server_key_password = '<passphrase1>'
server_cert = '</path/to/server_cert>'
trusted_client_ca = '[</path/to/ca/cert3>, </path/to/ca/cert4>]'

注記

絶対パスを使用して、鍵と証明書の場所を定義します。Keylime エージェントは
相対パスを受け入れません。

6. ファイアウォールでポートを開きます。

firewall-cmd --add-port 9002/tcp
firewall-cmd --runtime-to-permanent

別のポートを使用する場合は、9002 を .conf ファイルで定義されているポート番号に置き換え
ます。

7. keylime_agent サービスを有効にして起動します。

systemctl enable --now keylime_agent

8. オプション: Keylime テナントが設定されているシステムから、エージェントが正しく設定され
ており、registrar に接続できることを確認します。

keylime_tenant -c regstatus --uuid <agent_uuid>
Reading configuration from ['/etc/keylime/logging.conf']
...
==\n-----END CERTIFICATE-----\n", "ip": "127.0.0.1", "port": 9002, "regcount": 1,
"operational_state": "Registered"}}}

<agent_uuid> は、エージェントの UUID に置き換えます。
registrar と agent が正しく設定されている場合、出力にはエージェントの IP アドレスと
ポートが表示され、その後に "operational_state": "Registered" が表示されます。

9. /etc/ima/ima-policy ファイルに次の内容を入力して、新しい IMA ポリシーを作成します。

PROC_SUPER_MAGIC = 0x9fa0
dont_measure fsmagic=0x9fa0
SYSFS_MAGIC = 0x62656572

Red Hat Enterprise Linux 9 セキュリティーの強化

94

dont_measure fsmagic=0x62656572
DEBUGFS_MAGIC = 0x64626720
dont_measure fsmagic=0x64626720
TMPFS_MAGIC = 0x01021994
dont_measure fsmagic=0x1021994
RAMFS_MAGIC
dont_measure fsmagic=0x858458f6
DEVPTS_SUPER_MAGIC=0x1cd1
dont_measure fsmagic=0x1cd1
BINFMTFS_MAGIC=0x42494e4d
dont_measure fsmagic=0x42494e4d
SECURITYFS_MAGIC=0x73636673
dont_measure fsmagic=0x73636673
SELINUX_MAGIC=0xf97cff8c
dont_measure fsmagic=0xf97cff8c
SMACK_MAGIC=0x43415d53
dont_measure fsmagic=0x43415d53
NSFS_MAGIC=0x6e736673
dont_measure fsmagic=0x6e736673
EFIVARFS_MAGIC
dont_measure fsmagic=0xde5e81e4
CGROUP_SUPER_MAGIC=0x27e0eb
dont_measure fsmagic=0x27e0eb
CGROUP2_SUPER_MAGIC=0x63677270
dont_measure fsmagic=0x63677270
OVERLAYFS_MAGIC
when containers are used we almost always want to ignore them
dont_measure fsmagic=0x794c7630
MEASUREMENTS
measure func=BPRM_CHECK
measure func=FILE_MMAP mask=MAY_EXEC
measure func=MODULE_CHECK uid=0

このポリシーは、実行されたアプリケーションのランタイム監視をターゲットとしています。
このポリシーは状況に応じて調整できます。MAGIC 定数は、システム上の statfs(2) man ペー
ジを参照してください。

10. カーネルパラメーターを更新します。

grubby --update-kernel DEFAULT --args 'ima_appraise=fix ima_canonical_fmt
ima_policy=tcb ima_template=ima-ng'

11. システムを再起動して、新しい IMA ポリシーを適用します。

検証

1. エージェントが実行されていることを確認します。

systemctl status keylime_agent
● keylime_agent.service - The Keylime compute agent
 Loaded: loaded (/usr/lib/systemd/system/keylime_agent.service; enabled; preset:
disabled)
 Active: active (running) since ...

次のステップ

第7章 KEYLIME でシステムの整合性を確保する

95

監視対象のすべてのシステムでエージェントを設定したら、Keylime をデプロイして、次の機能のいず
れかまたは両方を実行できます。

ランタイム監視用に Keylime をデプロイする

ブート測定のアテステーション用に Keylime をデプロイする

関連情報

Integrity Measurement Architecture (IMA) Wiki

7.10. ランタイム監視用に KEYLIME を設定する

監視対象システムの状態が正しいことを確認するには、Keylime エージェントが監視対象システム上で
実行されている必要があります。

重要

Keylime のランタイム監視は、Integrity Measurement Architecture (IMA) を使用して多
数のファイルを測定するため、システムのパフォーマンスに重大な影響を与える可能性
があります。

エージェントをプロビジョニングするときに、Keylime が監視対象システムに送信するファイルを定義
することもできます。Keylime はエージェントに送信されたファイルを暗号化し、エージェントのシス
テムが TPM ポリシーと IMA 許可リストに準拠している場合にのみ復号化します。

Keylime の除外リストを設定することで、Keylime が特定のファイルまたは特定のディレクトリー内の
変更を無視するようにできます。ファイルを除外しても、そのファイルは引き続き IMA によって測定さ
れます。

RHEL 9.3 で提供される Keylime バージョン 7.3.0 以降、許可リストと除外リストは Keylime ランタイム
ポリシーに統合されます。

前提条件

Keylime コンポーネントが設定されているシステムへのネットワークアクセスがある。

verifier

詳細は、「パッケージから Keylime verifier をデプロイする」 を参照してください。

registrar

詳細は、「パッケージから Keylime registrar をデプロイする」 を参照してください。

テナント

詳細は、「パッケージから Keylime テナントをデプロイする」 を参照してください。

エージェント

詳細は、「パッケージから Keylime エージェントをデプロイする」 を参照してください。

手順

1. Keylime エージェントが設定され実行されている監視対象システムに、keylime-policy ツール
を含む python3-keylime パッケージをインストールします。

dnf -y install python3-keylime

Red Hat Enterprise Linux 9 セキュリティーの強化

96

https://sourceforge.net/p/linux-ima/wiki/Home/

2. エージェントシステムの現在の状態からランタイムポリシーを作成します。

keylime-policy create runtime --ima-measurement --rootfs '/' --ramdisk-dir '/boot/' --output
<policy.json>

このコマンドの詳細は次のとおりです。

<policy.json> はランタイムポリシーのファイル名に置き換えます。

次のディレクトリーは測定から自動的に除外されます。

/sys

/run

/proc

/lost+found

/dev

/media

/snap

/mnt

/var

/tmp

必要に応じて、--excludelist <excludelist.txt> オプションを追加して、追加の特定のパス
を測定から除外することもできます。除外リストでは、1 行に 1 つの Python 正規表現を使
用できます。特殊文字の完全なリストは、docs.python.org の Regular expression
operations を参照してください。

3. 生成されたランタイムポリシーを、keylime_tenant ユーティリティーが設定されているシステ
ムにコピーします。次に例を示します。

scp <policy.json> root@<tenant.ip>:/root/<policy.json>

4. Keylime テナントが設定されているシステムで、keylime_tenant ユーティリティーを使用して
エージェントをプロビジョニングします。

keylime_tenant --command add --targethost <agent_ip> --uuid <agent_uuid> --runtime-
policy <policy.json> --cert default

<agent_ip> は、エージェントの IP アドレスに置き換えます。

<agent_uuid> は、エージェントの UUID に置き換えます。

<policy.json> を Keylime ランタイムポリシーファイルへのパスに置き換えます。

--cert オプションを使用すると、テナントは、指定されたディレクトリーまたはデフォルト
の /var/lib/keylime/ca/ ディレクトリーにある CA 証明書と鍵を使用して、エージェントの

第7章 KEYLIME でシステムの整合性を確保する

97

https://docs.python.org/3/library/re.html#regular-expression-syntax

証明書を生成し、署名します。ディレクトリーに CA 証明書と鍵が含まれていない場合、
テナントは /etc/keylime/ca.conf ファイルの設定に従ってそれらを自動的に生成し、指定
されたディレクトリーに保存します。その後、テナントはこれらの鍵と証明書をエージェ
ントに送信します。
CA 証明書または署名エージェント証明書を生成するときに、CA 秘密鍵にアクセスするた
めのパスワードの入力を求められる (Please enter the password to decrypt your
keystore:) 場合があります。

注記

Keylime はエージェントに送信されたファイルを暗号化し、エージェントの
システムが TPM ポリシーと IMA 許可リストに準拠している場合にのみ復号
化します。デフォルトでは、Keylime は送信された .zip ファイルを展開しま
す。

たとえば、次のコマンドを使用すると、keylime_tenant は UUID d432fbb3-d2f1-4a97-9ef7-
75bd81c00000 を持つ新しい Keylime エージェントを 127.0.0.1 にプロビジョニング
し、policy.json というランタイムポリシーをロードします。また、デフォルトのディレクト
リーに証明書を生成し、その証明書ファイルをエージェントに送信します。Keylime
は、/etc/keylime/verifier.conf で設定された TPM ポリシーが満たされている場合にのみ、ファ
イルを復号化します。

keylime_tenant --command add --targethost 127.0.0.1 --uuid d432fbb3-d2f1-4a97-9ef7-
75bd81c00000 --runtime-policy policy.json --cert default

注記

keylime_tenant --command delete --uuid <agent_uuid> コマンドを使用し
て、Keylime によるノードの監視を停止できます。

keylime_tenant --command update コマンドを使用して、すでに登録されてい
るエージェントの設定を変更できます。

検証

1. オプション: 監視対象システムを再起動して、設定が永続的であることを確認します。

2. エージェントのアテステーションが成功することを確認します。

keylime_tenant --command cvstatus --uuid <agent.uuid>
...
{"<agent.uuid>": {"operational_state": "Get Quote"..."attestation_count": 5
...

<agent.uuid> をエージェントの UUID に置き換えます。

operational_state の値が Get Quote で、attestation_count が 0 以外の場合、このエージェ
ントのアテステーションは成功しています。

Operational_state の値が Invalid Quote か Failed の場合、アテステーションは失敗し、次の
ようなコマンド出力が表示されます。

Red Hat Enterprise Linux 9 セキュリティーの強化

98

{"<agent.uuid>": {"operational_state": "Invalid Quote", ... "ima.validation.ima-
ng.not_in_allowlist", "attestation_count": 5, "last_received_quote": 1684150329,
"last_successful_attestation": 1684150327}}

3. アテステーションが失敗した場合は、verifier ログで詳細を表示します。

journalctl --unit keylime_verifier
keylime.tpm - INFO - Checking IMA measurement list...
keylime.ima - WARNING - File not found in allowlist: /root/bad-script.sh
keylime.ima - ERROR - IMA ERRORS: template-hash 0 fnf 1 hash 0 good 781
keylime.cloudverifier - WARNING - agent D432FBB3-D2F1-4A97-9EF7-75BD81C00000
failed, stopping polling

関連情報

IMA の詳細は、カーネル整合性サブシステムによるセキュリティーの強化 を参照してくださ
い。

7.11. ブート測定のアテステーション用に KEYLIME を設定する

Keylime をブート測定のアテステーション用に設定すると、Keylime は、測定対象システム上のブート
プロセスが、定義した状態と一致しているかどうかを確認します。

前提条件

Keylime コンポーネントが設定されているシステムへのネットワークアクセスがある。

verifier

詳細は、「パッケージから Keylime verifier をデプロイする」 を参照してください。

registrar

詳細は、「パッケージから Keylime registrar をデプロイする」 を参照してください。

テナント

詳細は、「パッケージから Keylime テナントをデプロイする」 を参照してください。

エージェント

詳細は、「パッケージから Keylime エージェントをデプロイする」 を参照してください。

Unified Extensible Firmware Interface (UEFI) がエージェントシステムで有効になっている。

手順

1. Keylime エージェントが設定され実行されている監視対象システムに、keylime-policy ツール
を含む python3-keylime パッケージをインストールします。

dnf -y install python3-keylime

2. 監視対象システムで、keylime-policy ツールを使用して、システムの現在の状態を測定した
ブートログからポリシーを生成します。

keylime-policy create measured-boot --eventlog-file
/sys/kernel/security/tpm0/binary_bios_measurements --output
<./measured_boot_reference_state.json>

第7章 KEYLIME でシステムの整合性を確保する

99

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/enhancing-security-with-the-kernel-integrity-subsystem_managing-monitoring-and-updating-the-kernel

<./measured_boot_reference_state.json> は、keylime-policy によって生成されるポリ
シーが保存されるパスに置き換えます。

UEFI システムでセキュアブートが有効になっていない場合は、--without-secureboot 引数
を渡します。

重要

keylime-policy によって生成されるポリシーは、システムの現在の状態に基
づいており、非常に厳格です。カーネルの更新やシステムの更新を含め、シ
ステムに変更を加えると、ブートプロセスが変更され、システムはアテス
テーションに失敗します。

3. 生成されたポリシーを、keylime_tenant ユーティリティーが設定されているシステムにコピー
します。次に例を示します。

scp root@<agent_ip>:<./measured_boot_reference_state.json>
<./measured_boot_reference_state.json>

4. Keylime テナントが設定されているシステムで、keylime_tenant ユーティリティーを使用して
エージェントをプロビジョニングします。

keylime_tenant --command add --targethost <agent_ip> --uuid <agent_uuid> --
mb_refstate <./measured_boot_reference_state.json> --cert default

<agent_ip> は、エージェントの IP アドレスに置き換えます。

<agent_uuid> は、エージェントの UUID に置き換えます。

<./measured_boot_reference_state.json> を、ブート測定ポリシーへのパスに置き換えま
す。

ランタイム監視と一緒にブート測定を設定する場合は、keylime_tenant --command add コマ
ンドを入力するときに両方のユースケースのオプションをすべて指定します。

注記

keylime_tenant --command delete --targethost <agent_ip> --uuid
<agent_uuid> コマンドを使用して、Keylime によるノードの監視を停止できま
す。

keylime_tenant --command update コマンドを使用して、すでに登録されてい
るエージェントの設定を変更できます。

検証

1. 監視対象システムを再起動し、エージェントのアテステーションが成功することを確認しま
す。

keylime_tenant --command cvstatus --uuid <agent_uuid>
...
{"<agent.uuid>": {"operational_state": "Get Quote"..."attestation_count": 5
...

Red Hat Enterprise Linux 9 セキュリティーの強化

100

<agent_uuid> は、エージェントの UUID に置き換えます。

operational_state の値が Get Quote で、attestation_count が 0 以外の場合、このエージェ
ントのアテステーションは成功しています。

Operational_state の値が Invalid Quote か Failed の場合、アテステーションは失敗し、次の
ようなコマンド出力が表示されます。

{"<agent.uuid>": {"operational_state": "Invalid Quote", ... "ima.validation.ima-
ng.not_in_allowlist", "attestation_count": 5, "last_received_quote": 1684150329,
"last_successful_attestation": 1684150327}}

2. アテステーションが失敗した場合は、verifier ログで詳細を表示します。

journalctl -u keylime_verifier
{"d432fbb3-d2f1-4a97-9ef7-75bd81c00000": {"operational_state": "Tenant Quote Failed", ...
"last_event_id": "measured_boot.invalid_pcr_0", "attestation_count": 0,
"last_received_quote": 1684487093, "last_successful_attestation": 0}}

7.12. KEYLIME の環境変数

podman run コマンドで -e オプションを使用してコンテナーを起動するときなどに、Keylime の環境
変数を設定すると、設定ファイルの値をオーバーライドできます。

環境変数の構文は次のとおりです。

KEYLIME_<SECTION>_<ENVIRONMENT_VARIABLE>=<value>

ここでは、以下のようになります。

<SECTION> は Keylime 設定ファイルのセクションです。

<ENVIRONMENT_VARIABLE> は環境変数です。

<value> は環境変数に設定する値です。

たとえば、-e KEYLIME_VERIFIER_MAX_RETRIES=6 は、[verifier] セクションの max_retries 設定オ
プションを 6 に設定します。

verifier の設定

表7.1 [verifier] セクション

設定オプション 環境変数 デフォルト値

auto_migrate_db KEYLIME_VERIFIER_AUTO_
MIGRATE_DB

True

client_cert KEYLIME_VERIFIER_CLIENT
_CERT

default

第7章 KEYLIME でシステムの整合性を確保する

101

client_key_password KEYLIME_VERIFIER_CLIENT
_KEY_PASSWORD

client_key KEYLIME_VERIFIER_CLIENT
_KEY

default

database_pool_sz_ovfl KEYLIME_VERIFIER_DATAB
ASE_POOL_SZ_OVFL

5,10

database_url KEYLIME_VERIFIER_DATAB
ASE_URL

sqlite

durable_attestation_import KEYLIME_VERIFIER_DURAB
LE_ATTESTATION_IMPORT

enable_agent_mtls KEYLIME_VERIFIER_ENABL
E_AGENT_MTLS

True

exponential_backoff KEYLIME_VERIFIER_EXPON
ENTIAL_BACKOFF

True

ignore_tomtou_errors KEYLIME_VERIFIER_IGNOR
E_TOMTOU_ERRORS

False

ip KEYLIME_VERIFIER_IP 127.0.0.1

max_retries KEYLIME_VERIFIER_MAX_R
ETRIES

5

max_upload_size KEYLIME_VERIFIER_MAX_U
PLOAD_SIZE

104857600

measured_boot_evaluate KEYLIME_VERIFIER_MEASU
RED_BOOT_EVALUATE

once

measured_boot_imports KEYLIME_VERIFIER_MEASU
RED_BOOT_IMPORTS

[]

measured_boot_policy_nam
e

KEYLIME_VERIFIER_MEASU
RED_BOOT_POLICY_NAME

accept-all

num_workers KEYLIME_VERIFIER_NUM_W
ORKERS

0

設定オプション 環境変数 デフォルト値

Red Hat Enterprise Linux 9 セキュリティーの強化

102

persistent_store_encoding KEYLIME_VERIFIER_PERSIS
TENT_STORE_ENCODING

persistent_store_format KEYLIME_VERIFIER_PERSIS
TENT_STORE_FORMAT

json

persistent_store_url KEYLIME_VERIFIER_PERSIS
TENT_STORE_URL

port KEYLIME_VERIFIER_PORT 8881

quote_interval KEYLIME_VERIFIER_QUOTE
_INTERVAL

2

registrar_ip KEYLIME_VERIFIER_REGIST
RAR_IP

127.0.0.1

registrar_port KEYLIME_VERIFIER_REGIST
RAR_PORT

8891

request_timeout KEYLIME_VERIFIER_REQUE
ST_TIMEOUT

60.0

require_allow_list_signature
s

KEYLIME_VERIFIER_REQUI
RE_ALLOW_LIST_SIGNATU
RES

True

retry_interval KEYLIME_VERIFIER_RETRY
_INTERVAL

2

server_cert KEYLIME_VERIFIER_SERVE
R_CERT

default

server_key_password KEYLIME_VERIFIER_SERVE
R_KEY_PASSWORD

default

server_key KEYLIME_VERIFIER_SERVE
R_KEY

default

severity_labels KEYLIME_VERIFIER_SEVERI
TY_LABELS

["info", "notice", "warning",
"error", "critical", "alert",
"emergency"]

設定オプション 環境変数 デフォルト値

第7章 KEYLIME でシステムの整合性を確保する

103

severity_policy KEYLIME_VERIFIER_SEVERI
TY_POLICY

[{"event_id": ".*",
"severity_label" :
"emergency"}]

signed_attributes KEYLIME_VERIFIER_SIGNED
_ATTRIBUTES

time_stamp_authority_certs_
path

KEYLIME_VERIFIER_TIME_S
TAMP_AUTHORITY_CERTS_
PATH

time_stamp_authority_url KEYLIME_VERIFIER_TIME_S
TAMP_AUTHORITY_URL

tls_dir KEYLIME_VERIFIER_TLS_DI
R

generate

transparency_log_sign_algo KEYLIME_VERIFIER_TRANS
PARENCY_LOG_SIGN_ALG
O

sha256

transparency_log_url KEYLIME_VERIFIER_TRANS
PARENCY_LOG_URL

trusted_client_ca KEYLIME_VERIFIER_TRUST
ED_CLIENT_CA

default

trusted_server_ca KEYLIME_VERIFIER_TRUST
ED_SERVER_CA

default

uuid KEYLIME_VERIFIER_UUID default

version KEYLIME_VERIFIER_VERSIO
N

2.0

設定オプション 環境変数 デフォルト値

表7.2 [revocations] セクション

設定オプション 環境変数 デフォルト値

enabled_revocation_notificat
ions

KEYLIME_VERIFIER_REVOC
ATIONS_ENABLED_REVOC
ATION_NOTIFICATIONS

[agent]

Red Hat Enterprise Linux 9 セキュリティーの強化

104

webhook_url KEYLIME_VERIFIER_REVOC
ATIONS_WEBHOOK_URL

registrar の設定

表7.3 [registrar] セクション

設定オプション 環境変数 デフォルト値

auto_migrate_db KEYLIME_REGISTRAR_AUT
O_MIGRATE_DB

True

database_pool_sz_ovfl KEYLIME_REGISTRAR_DAT
ABASE_POOL_SZ_OVFL

5,10

database_url KEYLIME_REGISTRAR_DAT
ABASE_URL

sqlite

durable_attestation_import KEYLIME_REGISTRAR_DUR
ABLE_ATTESTATION_IMPO
RT

ip KEYLIME_REGISTRAR_IP 127.0.0.1

persistent_store_encoding KEYLIME_REGISTRAR_PER
SISTENT_STORE_ENCODIN
G

persistent_store_format KEYLIME_REGISTRAR_PER
SISTENT_STORE_FORMAT

json

persistent_store_url KEYLIME_REGISTRAR_PER
SISTENT_STORE_URL

port KEYLIME_REGISTRAR_POR
T

8890

prov_db_filename KEYLIME_REGISTRAR_PRO
V_DB_FILENAME

provider_reg_data.sqlite

server_cert KEYLIME_REGISTRAR_SER
VER_CERT

default

server_key_password KEYLIME_REGISTRAR_SER
VER_KEY_PASSWORD

default

第7章 KEYLIME でシステムの整合性を確保する

105

server_key KEYLIME_REGISTRAR_SER
VER_KEY

default

signed_attributes KEYLIME_REGISTRAR_SIGN
ED_ATTRIBUTES

ek_tpm,aik_tpm,ekcert

time_stamp_authority_certs_
path

KEYLIME_REGISTRAR_TIME
_STAMP_AUTHORITY_CERT
S_PATH

time_stamp_authority_url KEYLIME_REGISTRAR_TIME
_STAMP_AUTHORITY_URL

tls_dir KEYLIME_REGISTRAR_TLS_
DIR

default

tls_port KEYLIME_REGISTRAR_TLS_
PORT

8891

transparency_log_sign_algo KEYLIME_REGISTRAR_TRA
NSPARENCY_LOG_SIGN_A
LGO

sha256

transparency_log_url KEYLIME_REGISTRAR_TRA
NSPARENCY_LOG_URL

trusted_client_ca KEYLIME_REGISTRAR_TRU
STED_CLIENT_CA

default

version KEYLIME_REGISTRAR_VER
SION

2.0

テナント設定

表7.4 [tenant] セクション

設定オプション 環境変数 デフォルト値

accept_tpm_encryption_algs KEYLIME_TENANT_ACCEPT
_TPM_ENCRYPTION_ALGS

ecc, rsa

accept_tpm_hash_algs KEYLIME_TENANT_ACCEPT
_TPM_HASH_ALGS

sha512, sha384, sha256

accept_tpm_signing_algs KEYLIME_TENANT_ACCEPT
_TPM_SIGNING_ALGS

ecschnorr, rsassa

Red Hat Enterprise Linux 9 セキュリティーの強化

106

client_cert KEYLIME_TENANT_CLIENT_
CERT

default

client_key_password KEYLIME_TENANT_CLIENT_
KEY_PASSWORD

client_key KEYLIME_TENANT_CLIENT_
KEY

default

ek_check_script KEYLIME_TENANT_EK_CHE
CK_SCRIPT

enable_agent_mtls KEYLIME_TENANT_ENABLE
_AGENT_MTLS

True

exponential_backoff KEYLIME_TENANT_EXPONE
NTIAL_BACKOFF

True

max_payload_size KEYLIME_TENANT_MAX_PA
YLOAD_SIZE

1048576

max_retries KEYLIME_TENANT_MAX_RE
TRIES

5

mb_refstate KEYLIME_TENANT_MB_REF
STATE

registrar_ip KEYLIME_TENANT_REGIST
RAR_IP

127.0.0.1

registrar_port KEYLIME_TENANT_REGIST
RAR_PORT

8891

request_timeout KEYLIME_TENANT_REQUES
T_TIMEOUT

60

require_ek_cert KEYLIME_TENANT_REQUIR
E_EK_CERT

True

retry_interval KEYLIME_TENANT_RETRY_I
NTERVAL

2

tls_dir KEYLIME_TENANT_TLS_DIR default

tpm_cert_store KEYLIME_TENANT_TPM_CE
RT_STORE

/var/lib/keylime/tpm_cert_sto
re

第7章 KEYLIME でシステムの整合性を確保する

107

trusted_server_ca KEYLIME_TENANT_TRUSTE
D_SERVER_CA

default

verifier_ip KEYLIME_TENANT_VERIFIE
R_IP

127.0.0.1

verifier_port KEYLIME_TENANT_VERIFIE
R_PORT

8881

version KEYLIME_TENANT_VERSIO
N

2.0

CA 設定

表7.5 [ca] セクション

設定オプション 環境変数 デフォルト値

cert_bits KEYLIME_CA_CERT_BITS 2048

cert_ca_lifetime KEYLIME_CA_CERT_CA_LIF
ETIME

3650

cert_ca_name KEYLIME_CA_CERT_CA_NA
ME

Keylime Certificate Authority

cert_country KEYLIME_CA_CERT_COUNT
RY

US

cert_crl_dist KEYLIME_CA_CERT_CRL_DI
ST

http://localhost:38080/crl

cert_lifetime KEYLIME_CA_CERT_LIFETI
ME

365

cert_locality KEYLIME_CA_CERT_LOCAL
ITY

Lexington

cert_org_unit KEYLIME_CA_CERT_ORG_U
NIT

53

cert_organization KEYLIME_CA_CERT_ORGA
NIZATION

MITLL

cert_state KEYLIME_CA_CERT_STATE MA

password KEYLIME_CA_PASSWORD default

Red Hat Enterprise Linux 9 セキュリティーの強化

108

version KEYLIME_CA_VERSION 2.0

エージェント設定

表7.6 [agent] セクション

設定オプション 環境変数 デフォルト値

contact_ip KEYLIME_AGENT_CONTAC
T_IP

127.0.0.1

contact_port KEYLIME_AGENT_CONTAC
T_PORT

9002

dec_payload_file KEYLIME_AGENT_DEC_PAY
LOAD_FILE

decrypted_payload

ek_handle KEYLIME_AGENT_EK_HAND
LE

generate

enable_agent_mtls KEYLIME_AGENT_ENABLE_
AGENT_MTLS

true

enable_insecure_payload KEYLIME_AGENT_ENABLE_
INSECURE_PAYLOAD

false

enable_revocation_notificati
ons

KEYLIME_AGENT_ENABLE_
REVOCATION_NOTIFICATIO
NS

true

enc_keyname KEYLIME_AGENT_ENC_KEY
NAME

derived_tci_key

exponential_backoff KEYLIME_AGENT_EXPONEN
TIAL_BACKOFF

true

extract_payload_zip KEYLIME_AGENT_EXTRACT
_PAYLOAD_ZIP

true

ip KEYLIME_AGENT_IP 127.0.0.1

max_retries KEYLIME_AGENT_MAX_RET
RIES

4

measure_payload_pcr KEYLIME_AGENT_MEASUR
E_PAYLOAD_PCR

-1

第7章 KEYLIME でシステムの整合性を確保する

109

payload_script KEYLIME_AGENT_PAYLOA
D_SCRIPT

autorun.sh

port KEYLIME_AGENT_PORT 9002

registrar_ip KEYLIME_AGENT_REGISTR
AR_IP

127.0.0.1

registrar_port KEYLIME_AGENT_REGISTR
AR_PORT

8890

retry_interval KEYLIME_AGENT_RETRY_I
NTERVAL

2

revocation_actions KEYLIME_AGENT_REVOCA
TION_ACTIONS

[]

revocation_cert KEYLIME_AGENT_REVOCA
TION_CERT

default

revocation_notification_ip KEYLIME_AGENT_REVOCA
TION_NOTIFICATION_IP

127.0.0.1

revocation_notification_port KEYLIME_AGENT_REVOCA
TION_NOTIFICATION_PORT

8992

run_as KEYLIME_AGENT_RUN_AS keylime:tss

secure_size KEYLIME_AGENT_SECURE_
SIZE

1m

server_cert KEYLIME_AGENT_SERVER_
CERT

default

server_key_password KEYLIME_AGENT_SERVER_
KEY_PASSWORD

server_key KEYLIME_AGENT_SERVER_
KEY

default

tls_dir KEYLIME_AGENT_TLS_DIR default

tpm_encryption_alg KEYLIME_AGENT_TPM_ENC
RYPTION_ALG

rsa

設定オプション 環境変数 デフォルト値

Red Hat Enterprise Linux 9 セキュリティーの強化

110

tpm_hash_alg KEYLIME_AGENT_TPM_HAS
H_ALG

sha256

tpm_ownerpassword KEYLIME_AGENT_TPM_OW
NERPASSWORD

tpm_signing_alg KEYLIME_AGENT_TPM_SIG
NING_ALG

rsassa

trusted_client_ca KEYLIME_AGENT_TRUSTED
_CLIENT_CA

default

uuid KEYLIME_AGENT_UUID d432fbb3-d2f1-4a97-9ef7-
75bd81c00000

version KEYLIME_AGENT_VERSION 2.0

設定オプション 環境変数 デフォルト値

ロギング設定

表7.7 [logging] セクション

設定オプション 環境変数 デフォルト値

version KEYLIME_LOGGING_VERSI
ON

2.0

表7.8 [loggers] セクション

設定オプション 環境変数 デフォルト値

keys KEYLIME_LOGGING_LOGG
ERS_KEYS

root,keylime

表7.9 [handlers] セクション

設定オプション 環境変数 デフォルト値

keys KEYLIME_LOGGING_HANDL
ERS_KEYS

consoleHandler

表7.10 [formatters] セクション

第7章 KEYLIME でシステムの整合性を確保する

111

設定オプション 環境変数 デフォルト値

keys KEYLIME_LOGGING_FORM
ATTERS_KEYS

formatter

表7.11 [formatter_formatter] セクション

設定オプション 環境変数 デフォルト値

datefmt KEYLIME_LOGGING_FORM
ATTER_FORMATTER_DATE
FMT

%Y-%m-%d %H:%M:%S

format KEYLIME_LOGGING_FORM
ATTER_FORMATTER_FORM
AT

%(asctime)s.%(msecs)03d -
%(name)s - %(levelname)s -
%(message)s

表7.12 [logger_root] セクション

設定オプション 環境変数 デフォルト値

handlers KEYLIME_LOGGING_LOGG
ER_ROOT_HANDLERS

consoleHandler

level KEYLIME_LOGGING_LOGG
ER_ROOT_LEVEL

INFO

表7.13 [handler_consoleHandler] セクション

設定オプション 環境変数 デフォルト値

args KEYLIME_LOGGING_HANDL
ER_CONSOLEHANDLER_AR
GS

(sys.stdout,)

class KEYLIME_LOGGING_HANDL
ER_CONSOLEHANDLER_CL
ASS

StreamHandler

formatter KEYLIME_LOGGING_HANDL
ER_CONSOLEHANDLER_FO
RMATTER

formatter

level KEYLIME_LOGGING_HANDL
ER_CONSOLEHANDLER_LE
VEL

INFO

Red Hat Enterprise Linux 9 セキュリティーの強化

112

表7.14 [logger_keylime] セクション

設定オプション 環境変数 デフォルト値

handlers KEYLIME_LOGGING_LOGG
ER_KEYLIME_HANDLERS

level KEYLIME_LOGGING_LOGG
ER_KEYLIME_LEVEL

INFO

qualname KEYLIME_LOGGING_LOGG
ER_KEYLIME_QUALNAME

keylime

第7章 KEYLIME でシステムの整合性を確保する

113

第8章 AIDE で整合性の確認
Advanced Intrusion Detection Environment (AIDE) は、システムにファイルのデータベースを作成し、
そのデータベースを使用してファイルの整合性を確保し、システムの侵入を検出するユーティリティー
です。

8.1. AIDE のインストール

AIDE を使用してファイル整合性チェックを開始するには、対応するパッケージをインストールし、
AIDE データベースを初期化する必要があります。

前提条件

AppStream リポジトリーが有効になっている。

手順

1. aide パッケージをインストールします。

dnf install aide

2. 初期データベースを生成します。

aide --init
Start timestamp: 2024-07-08 10:39:23 -0400 (AIDE 0.16)
AIDE initialized database at /var/lib/aide/aide.db.new.gz

Number of entries: 55856

The attributes of the (uncompressed) database(s):

/var/lib/aide/aide.db.new.gz
…
 SHA512 : mZaWoGzL2m6ZcyyZ/AXTIowliEXWSZqx
 IFYImY4f7id4u+Bq8WeuSE2jasZur/A4
 FPBFaBkoCFHdoE/FW/V94Q==

3. オプション: デフォルト設定では、aide --init コマンドは、/etc/aide.conf ファイルで定義する
ディレクトリーとファイルのセットのみを確認します。ディレクトリーまたはファイルを AIDE
データベースに追加し、監視パラメーターを変更するには、/etc/aide.conf を変更します。

4. データベースの使用を開始するには、初期データベースのファイル名から末尾の .new を削除
します。

mv /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz

5. オプション: AIDE データベースの場所を変更するには、/etc/aide.conf ファイルを編集
し、DBDIR 値を変更します。追加のセキュリティーのデータベース、設定、/usr/sbin/aide バ
イナリーファイルを、読み取り専用メディアなどの安全な場所に保存します。

Red Hat Enterprise Linux 9 セキュリティーの強化

114

8.2. AIDE を使用した整合性チェックの実行

crond サービスを使用すると、AIDE で定期的なファイル整合性チェックをスケジュールできます。

前提条件

AIDE が適切にインストールされ、データベースが初期化されている。AIDE のインストール を
参照してください。

手順

1. 手動でチェックを開始するには、以下を行います。

aide --check
Start timestamp: 2024-07-08 10:43:46 -0400 (AIDE 0.16)
AIDE found differences between database and filesystem!!

Summary:
 Total number of entries: 55856
 Added entries: 0
 Removed entries: 0
 Changed entries: 1

Changed entries:

f S : /root/.viminfo

Detailed information about changes:

File: /root/.viminfo
 SELinux : system_u:object_r:admin_home_t:s | unconfined_u:object_r:admin_home
 0 | _t:s0
…

2. 少なくとも、AIDE を毎週実行するようにシステムを設定します。最適な設定としては、AIDE
を毎日実行します。たとえば、cron コマンドを使用して毎日午前 04:05 に AIDE を実行するよ
うにスケジュールするには、/etc/crontab ファイルに次の行を追加します。

 05 4 * * * root /usr/sbin/aide --check

関連情報

システム上の cron(8) man ページ

8.3. AIDE データベースの更新

パッケージの更新や設定ファイルの調整など、システムの変更が確認できたら、基本となる AIDE デー
タベースも更新します。

第8章 AIDE で整合性の確認

115

前提条件

AIDE が適切にインストールされ、データベースが初期化されている。AIDE のインストール を
参照してください。

手順

1. 基本となる AIDE データベースを更新します。

aide --update

aide --update コマンドは、/var/lib/aide/aide.db.new.gz データベースファイルを作成しま
す。

2. 整合性チェックで更新したデータベースを使用するには、ファイル名から末尾の .new を削除
します。

8.4. ファイル整合性ツール:AIDE および IMA

Red Hat Enterprise Linux は、システム上のファイルとディレクトリーの整合性をチェックおよび保持
するためのさまざまなツールを提供します。次の表は、シナリオに適したツールを決定するのに役立ち
ます。

表8.1 AIDE と IMA の比較

比較項目 Advanced Intrusion Detection
Environment (AIDE)

Integrity Measurement Architecture (IMA)

確認対象 AIDE は、システム上のファイルとディレク
トリーのデータベースを作成するユーティリ
ティーです。このデータベースは、ファイル
の整合性をチェックし、侵入を検出するのに
役立ちます。

IMA は、以前に保存された拡張属性と比較し
てファイル測定値 (ハッシュ値) をチェック
することにより、ファイルが変更されている
かどうかを検出します。

確認方法 AIDE はルールを使用して、ファイルとディ
レクトリーの整合性状態を比較します。

IMA は、ファイルハッシュ値を使用して侵入
を検出します。

理由 検出 - AIDE は、ルールを検証することによ
り、ファイルが変更されているかどうかを検
出します。

検出と防止 - IMA は、ファイルの拡張属性を
置き換えることにより、攻撃を検出および防
止します。

使用方法 AIDE は、ファイルまたはディレクトリーが
変更されたときに脅威を検出します。

誰かがファイル全体の変更を試みた時に、
IMA は脅威を検出します。

範囲 AIDE は、ローカルシステム上のファイルと
ディレクトリーの整合性をチェックします。

IMA は、ローカルシステムとリモートシステ
ムのセキュリティーを確保します。

8.5. AIDE RHEL システムロールを使用したファイル整合性チェックの設定

aide RHEL システムロールを使用すると、複数のシステムにわたり一貫して Advanced Intrusion
Detection Environment (AIDE) を設定できます。このロールは、すべての管理対象ノードに aide パッ
ケージを自動的にインストールし、設定に応じて次のアクションを実行できます。

Red Hat Enterprise Linux 9 セキュリティーの強化

116

AIDE データベースを初期化し、コントロールノードに保存する

管理対象ノードで AIDE 整合性チェックを実行する

AIDE データベースを更新し、コントロールノードに保存する

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

サンプル Playbook で指定されている設定は次のとおりです。

aide_db_fetch_dir: files

リモートノードから取得した AIDE データベースを保存するための Ansible コントロール
ノード (ACN) 上のディレクトリーを指定します。デフォルトの files 値では、Playbook と
同じディレクトリーにデータベースが保存されます。データベースファイルを別の場所に保
存するには、別のパスを指定します。

aide_check: false

リモートノードで整合性チェックを実行します。

aide_update: false

AIDE データベースを更新し、コントロールノードに保存します。

aide_cron_check: true

管理対象ノードで AIDE 整合性チェックをアクティブ化する定期的な cron ジョブを設定し
ます。

aide_cron_interval: 0 12 * * *

cron ジョブの間隔を <minute> <hour> <day_of_month> <month> <day of week> という
形式で設定します。値を 0 12 * * * にすると、毎日正午にジョブを実行するように設定され
ます。

- name: Configure system integrity
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure file integrity checks with AIDE
 ansible.builtin.include_role:
 name: rhel-system-roles.aide.aide
 vars:
 aide_db_fetch_dir: files
 aide_init: true
 aide_check: false
 aide_update: false
 aide_cron_check: true
 aide_cron_interval: 0 12 * * *

第8章 AIDE で整合性の確認

117

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.aide/README.md ファイルを参照してくださ
い。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

関連情報

/usr/share/ansible/roles/rhel-system-roles.aide/README.md ファイル

/usr/share/doc/rhel-system-roles/aide/ ディレクトリー

8.6. 関連情報

システム上の aide(1) man ページ

Kernel integrity subsystem

Red Hat Enterprise Linux 9 セキュリティーの強化

118

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/enhancing-security-with-the-kernel-integrity-subsystem_managing-monitoring-and-updating-the-kernel

第9章 LUKS を使用したブロックデバイスの暗号化
ディスク暗号化を使用すると、ブロックデバイス上のデータを暗号化して保護できます。デバイスの復
号化されたコンテンツにアクセスするには、認証としてパスフレーズまたは鍵を入力します。これは、
デバイスがシステムから物理的に取り外された場合でも、デバイスのコンテンツを保護するのに役立つ
ため、モバイルコンピューターやリムーバブルメディアにとって重要です。LUKS 形式は、Red Hat
Enterprise Linux におけるブロックデバイスの暗号化のデフォルト実装です。

9.1. LUKS ディスクの暗号化

Linux Unified Key Setup-on-disk-format (LUKS) は、暗号化されたデバイスの管理を簡素化するツール
セットを提供します。LUKS を使用すると、ブロックデバイスを暗号化し、複数のユーザーキーでマス
ターキーを復号化できるようになります。パーティションの一括暗号化には、このマスターキーを使用
します。

Red Hat Enterprise Linux は、LUKS を使用してブロックデバイスの暗号化を実行します。デフォルトで
はインストール時に、ブロックデバイスを暗号化するオプションが指定されていません。ディスクを暗
号化するオプションを選択すると、コンピューターを起動するたびにパスフレーズの入力が求められま
す。このパスフレーズは、パーティションを復号化するバルク暗号鍵のロックを解除します。デフォル
トのパーティションテーブルを変更する場合は、暗号化するパーティションを選択できます。この設定
は、パーティションテーブル設定で行われます。

Ciphers

LUKS に使用されるデフォルトの暗号は aes-xts-plain64 です。LUKS のデフォルトの鍵サイズは 512
ビットです。Anaconda XTS モードを使用した LUKS のデフォルトの鍵サイズは 512 ビットです。使用
可能な暗号は次のとおりです。

高度暗号化標準 (Advanced Encryption Standard, AES)

Twofish

Serpent

LUKS によって実行される操作

LUKS は、ブロックデバイス全体を暗号化するため、脱着可能なストレージメディアやラップ
トップのディスクドライブといった、モバイルデバイスのコンテンツを保護するのに適してい
ます。

暗号化されたブロックデバイスの基本的な内容は任意であり、スワップデバイスの暗号化に役
立ちます。また、とりわけデータストレージ用にフォーマットしたブロックデバイスを使用す
る特定のデータベースに関しても有用です。

LUKS は、既存のデバイスマッパーのカーネルサブシステムを使用します。

LUKS はパスフレーズのセキュリティーを強化し、辞書攻撃から保護します。

LUKS デバイスには複数のキースロットが含まれているため、バックアップキーやパスフレー
ズを追加できます。

重要

第9章 LUKS を使用したブロックデバイスの暗号化

119

重要

LUKS は次のシナリオには推奨されません。

LUKS などのディスク暗号化ソリューションは、システムの停止時にしかデータ
を保護しません。システムの電源がオンになり、LUKS がディスクを復号化する
と、そのディスクのファイルは、そのファイルにアクセスできるすべてのユー
ザーが使用できます。

同じデバイスに対する個別のアクセスキーを複数のユーザーが持つ必要があるシ
ナリオ。LUKS1 形式はキースロットを 8 個提供し、LUKS2 形式はキースロット
を最大 32 個提供します。

ファイルレベルの暗号化を必要とするアプリケーション。

関連情報

LUKS プロジェクトのホームページ

LUKS オンディスクフォーマットの仕様

FIPS 197: Advanced Encryption Standard (AES)

9.2. RHEL の LUKS バージョン

Red Hat Enterprise Linux では、LUKS 暗号化のデフォルト形式は LUKS2 です。古い LUKS1 形式は引き
続き完全にサポートされており、以前の Red Hat Enterprise Linux リリースと互換性のある形式で提供
されます。LUKS2 再暗号化は、LUKS1 再暗号化と比較して、より堅牢で安全に使用できる形式と考え
られています。

LUKS2 形式を使用すると、バイナリー構造を変更することなく、さまざまな部分を後に更新できま
す。LUKS2 は、内部的にメタデータに JSON テキスト形式を使用し、メタデータの冗長性を提供し、
メタデータの破損を検出し、メタデータのコピーから自動的に修復します。

重要

LUKS1 のみをサポートするシステムでは LUKS2 を使用しないでください。

Red Hat Enterprise Linux 9.2 以降では、両方の LUKS バージョンで cryptsetup reencrypt コマンドを
使用してディスクを暗号化できます。

オンラインの再暗号化

LUKS2 形式は、デバイスが使用中の間に、暗号化したデバイスの再暗号化に対応します。たとえば、
以下のタスクを実行するにあたり、デバイスでファイルシステムをアンマウントする必要はありませ
ん。

ボリュームキーの変更

暗号化アルゴリズムの変更
暗号化されていないデバイスを暗号化する場合は、ファイルシステムのマウントを解除する必
要があります。暗号化の短い初期化後にファイルシステムを再マウントできます。

LUKS1 形式は、オンライン再暗号化に対応していません。

変換

Red Hat Enterprise Linux 9 セキュリティーの強化

120

https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://gitlab.com/cryptsetup/LUKS2-docs/blob/master/luks2_doc_wip.pdf
https://doi.org/10.6028/NIST.FIPS.197-upd1

特定の状況では、LUKS1 を LUKS2 に変換できます。具体的には、以下のシナリオでは変換ができませ
ん。

LUKS1 デバイスが、Policy-Based Decryption (PBD) Clevis ソリューションにより使用されてい
るとマークされている。cryptsetup ツールは、luksmeta メタデータが検出されると、そのデ
バイスを変換することを拒否します。

デバイスがアクティブになっている。デバイスが非アクティブ状態でなければ、変換すること
はできません。

9.3. LUKS2 再暗号化中のデータ保護のオプション

LUKS2 では、再暗号化プロセスで、パフォーマンスやデータ保護の優先度を設定する複数のオプショ
ンを選択できます。resilience オプションには次のモードが用意されています。cryptsetup reencrypt
--resilience resilience-mode /dev/<device_ID> コマンドを使用すると、これらのモードのいずれかを
選択できます。<device_ID> は、デバイスの ID に置き換えてください。

checksum

デフォルトのモード。データ保護とパフォーマンスのバランスを取ります。
このモードでは、再暗号化領域内のセクターのチェックサムが個別に保存されます。チェックサム
は、LUKS2 によって再暗号化されたセクターについて、復旧プロセスで検出できます。このモード
では、ブロックデバイスセクターの書き込みがアトミックである必要があります。

journal

最も安全なモードですが、最も遅いモードでもあります。このモードでは、再暗号化領域をバイナ
リー領域にジャーナル化するため、LUKS2 はデータを 2 回書き込みます。

none

none モードではパフォーマンスが優先され、データ保護は提供されません。SIGTERM シグナルや
ユーザーによる Ctrl+C キーの押下など、安全なプロセス終了からのみデータを保護します。予期し
ないシステム障害やアプリケーション障害が発生すると、データが破損する可能性があります。

LUKS2 の再暗号化プロセスが強制的に突然終了した場合、LUKS2 は以下のいずれかの方法で復旧を実
行できます。

自動

次のいずれかのアクションを実行すると、次回の LUKS2 デバイスを開くアクション中に自動復旧ア
クションがトリガーされます。

cryptsetup open コマンドを実行する。

systemd-cryptsetup コマンドを使用してデバイスを接続する。

手動

LUKS2 デバイスで cryptsetup repair /dev/<device_ID> コマンドを使用します。

関連情報

システム上の cryptsetup-reencrypt(8) および cryptsetup-repair(8) man ページ

9.4. LUKS2 を使用したブロックデバイスの既存データの暗号化

LUKS2 形式を使用して、まだ暗号化されていないデバイスの既存のデータを暗号化できます。新しい

第9章 LUKS を使用したブロックデバイスの暗号化

121

LUKS2 形式を使用して、まだ暗号化されていないデバイスの既存のデータを暗号化できます。新しい
LUKS ヘッダーは、デバイスのヘッドに保存されます。

前提条件

ブロックデバイスにファイルシステムがある。

データのバックアップを作成している。

警告

ハードウェア、カーネル、または人的ミスにより、暗号化プロセス時に
データが失われる場合があります。データの暗号化を開始する前に、信頼
性の高いバックアップを作成してください。

手順

1. 暗号化するデバイスにあるファイルシステムのマウントをすべて解除します。次に例を示しま
す。

umount /dev/mapper/vg00-lv00

2. LUKS ヘッダーを保存するための空き容量を確認します。シナリオに合わせて、次のいずれか
のオプションを使用します。

論理ボリュームを暗号化する場合は、以下のように、ファイルシステムのサイズを変更せ
ずに、論理ボリュームを拡張できます。以下に例を示します。

lvextend -L+32M /dev/mapper/vg00-lv00

parted などのパーティション管理ツールを使用してパーティションを拡張します。

このデバイスのファイルシステムを縮小します。ext2、ext3、または ext4 のファイルシス
テムには resize2fs ユーティリティーを使用できます。XFS ファイルシステムは縮小でき
ないことに注意してください。

3. 暗号化を初期化します。

cryptsetup reencrypt --encrypt --init-only --reduce-device-size 32M /dev/mapper/vg00-lv00
lv00_encrypted

/dev/mapper/lv00_encrypted is now active and ready for online encryption.

4. デバイスをマウントします。

mount /dev/mapper/lv00_encrypted /mnt/lv00_encrypted

5. 永続的なマッピングのエントリーを /etc/crypttab ファイルに追加します。

a. luksUUID を見つけます。



Red Hat Enterprise Linux 9 セキュリティーの強化

122

cryptsetup luksUUID /dev/mapper/vg00-lv00

a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325

b. 任意のテキストエディターで /etc/crypttab を開き、このファイルにデバイスを追加しま
す。

$ vi /etc/crypttab

lv00_encrypted UUID=a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325 none

a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325 は、デバイスの luksUUID に置き換えます。

c. dracut で initramfs を更新します。

$ dracut -f --regenerate-all

6. /etc/fstab ファイルに永続的なマウントのエントリーを追加します。

a. アクティブな LUKS ブロックデバイスのファイルシステムの UUID を見つけます。

$ blkid -p /dev/mapper/lv00_encrypted

/dev/mapper/lv00-encrypted: UUID="37bc2492-d8fa-4969-9d9b-bb64d3685aa9"
BLOCK_SIZE="4096" TYPE="xfs" USAGE="filesystem"

b. 任意のテキストエディターで /etc/fstab を開き、このファイルにデバイスを追加します。
次に例を示します。

$ vi /etc/fstab

UUID=37bc2492-d8fa-4969-9d9b-bb64d3685aa9 /home auto rw,user,auto 0

37bc2492-d8fa-4969-9d9b-bb64d3685aa9 は、ファイルシステムの UUID に置き換え
ます。

7. オンライン暗号化を再開します。

cryptsetup reencrypt --resume-only /dev/mapper/vg00-lv00

Enter passphrase for /dev/mapper/vg00-lv00:
Auto-detected active dm device 'lv00_encrypted' for data device /dev/mapper/vg00-lv00.
Finished, time 00:31.130, 10272 MiB written, speed 330.0 MiB/s

検証

1. 既存のデータが暗号化されているかどうかを確認します。

cryptsetup luksDump /dev/mapper/vg00-lv00

LUKS header information
Version: 2
Epoch: 4

第9章 LUKS を使用したブロックデバイスの暗号化

123

Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 33554432 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
[...]

2. 暗号化された空のブロックデバイスのステータスを表示します。

cryptsetup status lv00_encrypted

/dev/mapper/lv00_encrypted is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/mapper/vg00-lv00

関連情報

システム上の cryptsetup(8)、cryptsetup-reencrypt(8)、lvextend(8)、resize2fs(8)、および
parted(8) man ページ

9.5. 独立したヘッダーがある LUKS2 を使用してブロックデバイスの既存
データの暗号化

LUKS ヘッダーを保存するための空き領域を作成せずに、ブロックデバイスの既存のデータを暗号化で
きます。ヘッダーは、追加のセキュリティー層としても使用できる、独立した場所に保存されます。こ
の手順では、LUKS2 暗号化形式を使用します。

前提条件

ブロックデバイスにファイルシステムがある。

データがバックアップ済みである。

警告

ハードウェア、カーネル、または人的ミスにより、暗号化プロセス時に
データが失われる場合があります。データの暗号化を開始する前に、信頼
性の高いバックアップを作成してください。



Red Hat Enterprise Linux 9 セキュリティーの強化

124

手順

1. 以下のように、そのデバイスのファイルシステムをすべてアンマウントします。

umount /dev/<nvme0n1p1>

<nvme0n1p1> は、アンマウントするパーティションに対応するデバイス識別子に置き換えま
す。

2. 暗号化を初期化します。

cryptsetup reencrypt --encrypt --init-only --header </home/header> /dev/<nvme0n1p1>
<nvme_encrypted>

WARNING!
========
Header file does not exist, do you want to create it?

Are you sure? (Type 'yes' in capital letters): YES
Enter passphrase for </home/header>:
Verify passphrase:
/dev/mapper/<nvme_encrypted> is now active and ready for online encryption.

以下のように置き換えます。

</home/header> には、独立した LUKS ヘッダーを含むファイルへのパスを指定します。
後で暗号化したデバイスのロックを解除するために、独立した LUKS ヘッダーにアクセス
できる必要があります。

<nvme_encrypted> は、暗号化後に作成されるデバイスマッパーの名前に置き換えます。

3. デバイスをマウントします。

mount /dev/mapper/<nvme_encrypted> /mnt/<nvme_encrypted>

4. 永続的なマッピングのエントリーを /etc/crypttab ファイルに追加します。

<nvme_encrypted> /dev/disk/by-id/<nvme-partition-id> none header=</home/header>

<nvme-partition-id> は、NVMe パーティションの識別子に置き換えます。

5. dracut を使用して initramfs を再生成します。

dracut -f --regenerate-all -v

6. /etc/fstab ファイルに永続的なマウントのエントリーを追加します。

a. アクティブな LUKS ブロックデバイスのファイルシステムの UUID を見つけます。

$ blkid -p /dev/mapper/<nvme_encrypted>

/dev/mapper/<nvme_encrypted>: UUID="37bc2492-d8fa-4969-9d9b-bb64d3685aa9"
BLOCK_SIZE="4096" TYPE="xfs" USAGE="filesystem"

b. テキストエディターで /etc/fstab を開き、このファイルにデバイスを追加します。次に例

第9章 LUKS を使用したブロックデバイスの暗号化

125

b. テキストエディターで /etc/fstab を開き、このファイルにデバイスを追加します。次に例
を示します。

UUID=<file_system_UUID> /home auto rw,user,auto 0

< ;file_system_UUID> は、直前の手順で見つかったファイルシステムの UUID に置き
換えます。

7. オンライン暗号化を再開します。

cryptsetup reencrypt --resume-only --header </home/header> /dev/<nvme0n1p1>

Enter passphrase for /dev/<nvme0n1p1>:
Auto-detected active dm device '<nvme_encrypted>' for data device /dev/<nvme0n1p1>.
Finished, time 00m51s, 10 GiB written, speed 198.2 MiB/s

検証

1. 独立したヘッダーがある LUKS2 を使用するブロックデバイスの既存のデータが暗号化されてい
るかどうかを確認します。

cryptsetup luksDump </home/header>

LUKS header information
Version: 2
Epoch: 88
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: c4f5d274-f4c0-41e3-ac36-22a917ab0386
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 0 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]
[...]

2. 暗号化された空のブロックデバイスのステータスを表示します。

cryptsetup status <nvme_encrypted>

/dev/mapper/<nvme_encrypted> is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/<nvme0n1p1>

関連情報

Red Hat Enterprise Linux 9 セキュリティーの強化

126

システム上の cryptsetup(8) および cryptsetup-reencrypt(8) man ページ

9.6. LUKS2 を使用した空のブロックデバイスの暗号化

LUKS2 形式を使用して、空のブロックデバイスを暗号化して、暗号化ストレージとして使用できま
す。

前提条件

空のブロックデバイス。lsblk などのコマンドを使用して、そのデバイス上に実際のデータ
(ファイルシステムなど) がないかどうかを確認できます。

手順

1. 暗号化した LUKS パーティションとしてパーティションを設定します。

cryptsetup luksFormat /dev/nvme0n1p1

WARNING!
========
This will overwrite data on /dev/nvme0n1p1 irrevocably.
Are you sure? (Type 'yes' in capital letters): YES
Enter passphrase for /dev/nvme0n1p1:
Verify passphrase:

2. 暗号化した LUKS パーティションを開きます。

cryptsetup open /dev/nvme0n1p1 nvme0n1p1_encrypted

Enter passphrase for /dev/nvme0n1p1:

これにより、パーティションのロックが解除され、デバイスマッパーを使用してパーティショ
ンが新しいデバイスにマッピングされます。暗号化されたデータを上書きしないように、この
コマンドは、デバイスが暗号化されたデバイスであり、/dev/mapper/device_mapped_name
パスを使用して LUKS を通じてアドレス指定されることをカーネルに警告します。

3. 暗号化されたデータをパーティションに書き込むためのファイルシステムを作成します。この
パーティションには、デバイスマップ名を介してアクセスする必要があります。

mkfs -t ext4 /dev/mapper/nvme0n1p1_encrypted

4. デバイスをマウントします。

mount /dev/mapper/nvme0n1p1_encrypted mount-point

検証

1. 空のブロックデバイスが暗号化されているかどうかを確認します。

cryptsetup luksDump /dev/nvme0n1p1

LUKS header information
Version: 2

第9章 LUKS を使用したブロックデバイスの暗号化

127

Epoch: 3
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: 34ce4870-ffdf-467c-9a9e-345a53ed8a25
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 16777216 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]
[...]

2. 暗号化された空のブロックデバイスのステータスを表示します。

cryptsetup status nvme0n1p1_encrypted

/dev/mapper/nvme0n1p1_encrypted is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/nvme0n1p1
 sector size: 512
 offset: 32768 sectors
 size: 20938752 sectors
 mode: read/write

関連情報

システム上の cryptsetup(8)、cryptsetup-open(8)、および cryptsetup-lusFormat(8) man
ページ

9.7. WEB コンソールでの LUKS パスフレーズの設定

システムの既存の論理ボリュームに暗号化を追加する場合は、ボリュームをフォーマットすることでし
か実行できません。

前提条件

RHEL 9 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

cockpit-storaged パッケージがシステムにインストールされている。

暗号化なしで、既存の論理ボリュームを利用できます。

Red Hat Enterprise Linux 9 セキュリティーの強化

128

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console

手順

1. RHEL 9 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. パネルで、Storage をクリックします。

3. Storage テーブルで、暗号化するストレージデバイスのメニューボタン ⋮ をクリック
し、Format をクリックします。

4. Encryption field で、暗号化仕様 LUKS1 または LUKS2 を選択します。

5. 新しいパスフレーズを設定し、確認します。

6. オプション: さらなる暗号化オプションを変更します。

7. フォーマット設定の最終処理

8. Format をクリックします。

9.8. WEB コンソールで LUKS パスフレーズの変更

Web コンソールで、暗号化されたディスクまたはパーティションで LUKS パスフレーズを変更しま
す。

前提条件

RHEL 9 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

cockpit-storaged パッケージがシステムにインストールされている。

手順

1. RHEL 9 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. パネルで、Storage をクリックします。

3. Storage テーブルで、暗号化されたデータを含むディスクを選択します。

4. ディスクページで、Keys セクションまでスクロールし、編集ボタンをクリックします。

5. パスフレーズの変更 ダイアログウィンドウで、以下を行います。

a. 現在のパスフレーズを入力します。

b. 新しいパスフレーズを入力します。

c. 新しいパスフレーズを確認します。

6. Save をクリックします。

第9章 LUKS を使用したブロックデバイスの暗号化

129

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

9.9. コマンドラインを使用した LUKS パスフレーズの変更

コマンドラインを使用して、暗号化されたディスクまたはパーティションの LUKS パスフレーズを変更
します。cryptsetup ユーティリティーを使用すると、さまざまな設定オプションと機能を使用して暗
号化プロセスを制御し、既存の自動化ワークフローにプロセスを統合できます。

前提条件

root 特権、または sudo を使用して管理コマンドを入力する権限がある。

手順

1. LUKS 暗号化デバイスの既存のパスフレーズを変更します。

cryptsetup luksChangeKey /dev/<device_ID>

<device_ID> は、デバイス指定子 (例: sda) に置き換えます。

複数のキースロットが設定されている場合は、使用するスロットを指定できます。

cryptsetup luksChangeKey /dev/<device_ID> --key-slot <slot_number>

<slot_number> は、変更するキースロットの番号に置き換えます。

2. 現在のパスフレーズと新しいパスフレーズを入力します。

Enter passphrase to be changed:
Enter new passphrase:
Verify passphrase:

3. 新しいパスフレーズを検証します。

cryptsetup --verbose open --test-passphrase /dev/<device_ID>

検証

1. 新しいパスフレーズでデバイスのロックを解除できることを確認します。

Enter passphrase for /dev/<device_ID>:
Key slot <slot_number> unlocked.
Command successful.

9.10. STORAGE RHEL システムロールを使用して LUKS2 暗号化ボリュームを
作成する

storage ロールを使用し、Ansible Playbook を実行して、LUKS で暗号化されたボリュームを作成およ
び設定できます。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい

Red Hat Enterprise Linux 9 セキュリティーの強化

130

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

手順

1. 機密性の高い変数を暗号化されたファイルに保存します。

a. vault を作成します。

$ ansible-vault create ~/vault.yml
New Vault password: <vault_password>
Confirm New Vault password: <vault_password>

b. ansible-vault create コマンドでエディターが開いたら、機密データを <key>: <value> 形
式で入力します。

c. 変更を保存して、エディターを閉じます。Ansible は vault 内のデータを暗号化します。

2. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.storage/README.md ファイルを参照してくださ
い。

3. Playbook の構文を検証します。

$ ansible-playbook --ask-vault-pass --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

luks_password: <password>

- name: Manage local storage
 hosts: managed-node-01.example.com
 vars_files:
 - ~/vault.yml
 tasks:
 - name: Create and configure a volume encrypted with LUKS
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.storage
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 fs_label: <label>
 mount_point: /mnt/data
 encryption: true
 encryption_password: "{{ luks_password }}"

第9章 LUKS を使用したブロックデバイスの暗号化

131

4. Playbook を実行します。

$ ansible-playbook --ask-vault-pass ~/playbook.yml

検証

1. LUKS 暗号化ボリュームの luksUUID 値を見つけます。

ansible managed-node-01.example.com -m command -a 'cryptsetup luksUUID
/dev/sdb'

4e4e7970-1822-470e-b55a-e91efe5d0f5c

2. ボリュームの暗号化ステータスを表示します。

ansible managed-node-01.example.com -m command -a 'cryptsetup status luks-
4e4e7970-1822-470e-b55a-e91efe5d0f5c'

/dev/mapper/luks-4e4e7970-1822-470e-b55a-e91efe5d0f5c is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/sdb
...

3. 作成された LUKS 暗号化ボリュームを確認します。

ansible managed-node-01.example.com -m command -a 'cryptsetup luksDump
/dev/sdb'

LUKS header information
Version: 2
Epoch: 3
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: 4e4e7970-1822-470e-b55a-e91efe5d0f5c
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 16777216 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]
...

関連情報

/usr/share/ansible/roles/rhel-system-roles.storage/README.md ファイル

/usr/share/doc/rhel-system-roles/storage/ ディレクトリー

Red Hat Enterprise Linux 9 セキュリティーの強化

132

LUKS を使用したブロックデバイスの暗号化

Ansible vault

第9章 LUKS を使用したブロックデバイスの暗号化

133

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_storage_devices/encrypting-block-devices-using-luks_managing-storage-devices
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/ansible-vault_automating-system-administration-by-using-rhel-system-roles

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動
ロック解除の設定

ポリシーベースの複号 (PBD) は、物理マシンおよび仮想マシンにおいて、ハードドライブで暗号化し
た root ボリュームおよびセカンダリーボリュームのロックを解除できるようにする一連の技術です。
PBD は、ユーザーパスワード、TPM (Trusted Platform Module) デバイス、システムに接続する PKCS
#11 デバイス (たとえばスマートカード) などのさまざまなロックの解除方法、もくしは特殊なネット
ワークサーバーを使用します。

PBD を使用すると、ポリシーにさまざまなロックの解除方法を組み合わせて、さまざまな方法で同じ
ボリュームのロックを解除できるようにすることができます。RHEL における PBD の現在の実装は、
Clevis フレームワークと、ピン と呼ばれるプラグインで構成されます。ピンはそれぞれ個別のロック解
除機能を提供します。現在利用できるピンは以下のとおりです。

tang

ネットワークサーバーを使用してボリュームのロックを解除できます。

tpm2

TPM2 ポリシーを使用してボリュームのロックを解除できます。

pkcs11

PKCS #11 URI を使用してボリュームのロックを解除できます。

sss

Shamir’s Secret Sharing (SSS) 暗号化スキームを使用して高可用性システムをデプロイできます。

10.1. NETWORK-BOUND DISK ENCRYPTION

Network Bound Disc Encryption (NBDE) は、ポリシーベースの復号 (PBD) のサブカテゴリーであり、
暗号化されたボリュームを特別なネットワークサーバーにバインドできるようにします。NBDE の現在
の実装には、Tang サーバー自体と、Tang サーバー用の Clevis ピンが含まれます。

RHEL では、NBDE は次のコンポーネントとテクノロジーによって実装されます。

図10.1 LUKS1 で暗号化したボリュームを使用する場合の NBDE スキーム(luksmeta パッケージは、
LUKS2 ボリュームには使用されません)

Tang は、ネットワークのプレゼンスにデータをバインドするためのサーバーです。セキュリティーが

Red Hat Enterprise Linux 9 セキュリティーの強化

134

Tang は、ネットワークのプレゼンスにデータをバインドするためのサーバーです。セキュリティーが
保護された特定のネットワークにシステムをバインドする際に利用可能なデータを含めるようにしま
す。Tang はステートレスで、TLS または認証は必要ありません。エスクローベースのソリューション
(サーバーが暗号鍵をすべて保存し、使用されたことがあるすべての鍵に関する知識を有する) とは異な
り、Tang はクライアントの鍵と相互作用することはないため、クライアントから識別情報を得ること
がありません。

Clevis は、自動化された復号用のプラグイン可能なフレームワークです。NBDE では、Clevis は、
LUKS ボリュームの自動アンロックを提供します。clevis パッケージは、クライアントで使用される機
能を提供します。

Clevis ピン は、Clevis フレームワークへのプラグインです。このようなピンの 1 つに、Tang がありま
す。これは NBDE サーバーとのやり取りを実装するプラグインです。

Clevis および Tang は、一般的なクライアントおよびサーバーのコンポーネントで、ネットワークがバ
インドされた暗号化を提供します。RHEL では、LUKS と組み合わせて使用され、ルートおよび非ルー
トストレージボリュームを暗号化および復号して、ネットワークにバインドされたディスク暗号化を実
現します。

クライアントおよびサーバーのコンポーネントはともに José ライブラリーを使用して、暗号化および
複号の操作を実行します。

NBDE のプロビジョニングを開始すると、Tang サーバーの Clevis ピンは、Tang サーバーの、アドバタ
イズされている非対称鍵のリストを取得します。もしくは、鍵が非対称であるため、Tang の公開鍵の
リストを帯域外に配布して、クライアントが Tang サーバーにアクセスしなくても動作できるようにし
ます。このモードは オフラインプロビジョニング と呼ばれます。

Tang 用の Clevis ピンは、公開鍵のいずれかを使用して、固有で、暗号論的に強力な暗号鍵を生成しま
す。この鍵を使用してデータを暗号化すると、この鍵は破棄されます。Clevis クライアントは、使いや
すい場所に、このプロビジョニング操作で生成した状態を保存する必要があります。データを暗号化す
るこのプロセスは プロビジョニング手順 と呼ばれています。

LUKS バージョン 2 (LUKS2) は、RHEL のデフォルトのディスク暗号化形式であるため、NBDE のプロ
ビジョニング状態は、LUKS2 ヘッダーにトークンとして保存されます。luksmeta パッケージによる
NBDE のプロビジョニング状態は、LUKS1 で暗号化したボリュームにのみ使用されます。

Tang 用の Clevis ピンは、規格を必要とせずに LUKS1 と LUKS2 の両方をサポートします。Clevis はプ
レーンテキストファイルを暗号化できますが、ブロックデバイスの暗号化には cryptsetup ツールを使
用する必要があります。詳細は、LUKS を使用したブロックデバイスの暗号化 を参照してください。

クライアントがそのデータにアクセスする準備ができると、プロビジョニング手順で生成したメタデー
タを読み込み、応答して暗号鍵を戻します。このプロセスは 復旧手順 と呼ばれます。

Clevis は、NBDE ではピンを使用して LUKS ボリュームをバインドしているため、自動的にロックが解
除されます。バインドプロセスが正常に終了すると、提供されている Dracut アンロックを使用して
ディスクをアンロックできます。

注記

kdump カーネルクラッシュのダンプメカニズムが、システムメモリーのコンテンツを
LUKS で暗号化したデバイスに保存するように設定されている場合には、2 番目のカーネ
ル起動時にパスワードを入力するように求められます。

関連情報

ナレッジベース記事 NBDE (Network-Bound Disk Encryption) Technology

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

135

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/security_hardening/encrypting-block-devices-using-luks_security-hardening
https://access.redhat.com/articles/6987053

システム上の tang(8)、clevis(1)、jose(1)、および clevis-luks-unlockers(7) man ページ

ナレッジベースの記事 How to set up Network-Bound Disk Encryption with multiple LUKS
devices(Clevis + Tang unlocking)

10.2. ENFORCING モードの SELINUX を使用して TANG サーバーをデプロ
イする

Tang サーバーを使用して、Clevis 対応クライアント上の LUKS 暗号化ボリュームのロックを自動的に
解除できます。最小限のシナリオでは、tang パッケージをインストールし、systemctl enable
tangd.socket --now コマンドを入力することにより、ポート 80 に Tang サーバーをデプロイします。
次の手順の例では、SELinux 強制モードの限定サービスとしてカスタムポートで実行されている Tang
サーバーのデプロイメントを示しています。

前提条件

policycoreutils-python-utils パッケージおよび依存関係がインストールされている。

firewalld サービスが実行中である。

手順

1. tang パッケージとその依存関係をインストールするには、root で以下のコマンドを実行しま
す。

dnf install tang

2. 7500/tcp などの不要なポートを選択し、tangd サービスがそのポートにバインドできるよう
にします。

semanage port -a -t tangd_port_t -p tcp 7500

ポートは 1 つのサービスのみで一度に使用できるため、すでに使用しているポートを使用しよ
うとすると、ValueError: Port already defined エラーが発生します。

3. ファイアウォールのポートを開きます。

firewall-cmd --add-port=7500/tcp
firewall-cmd --runtime-to-permanent

4. tangd サービスを有効にします。

systemctl enable tangd.socket

5. オーバーライドファイルを作成します。

systemctl edit tangd.socket

6. 以下のエディター画面で、/etc/systemd/system/tangd.socket.d/ ディレクトリーにある空の
override.conf ファイルを開き、次の行を追加して、Tang サーバーのデフォルトのポートを、
80 から、以前取得した番号に変更します。

Red Hat Enterprise Linux 9 セキュリティーの強化

136

https://access.redhat.com/articles/4500491

[Socket]
ListenStream=
ListenStream=7500

重要

Anything between here と # Lines below this で始まる行の間に以前のコー
ドスニペットを挿入します。挿入しない場合、システムは変更を破棄します。

7. 変更を保存し、エディターを終了します。デフォルトの vi エディターでこれを実行するに
は、Esc キーを押してコマンドモードに切り替え、:wq と入力して Enter キーを押します。

8. 変更した設定を再読み込みします。

systemctl daemon-reload

9. 設定が機能していることを確認します。

systemctl show tangd.socket -p Listen
Listen=[::]:7500 (Stream)

10. tangd サービスを開始します。

systemctl restart tangd.socket

tangd が、systemd のソケットアクティベーションメカニズムを使用しているため、最初に接
続するとすぐにサーバーが起動します。最初の起動時に、一組の暗号鍵が自動的に生成されま
す。鍵の手動生成などの暗号化操作を実行するには、jose ユーティリティーを使用します。

検証

NBDE クライアントで、次のコマンドを使用して、Tang サーバーが正しく動作していることを
確認します。このコマンドにより、暗号化と復号化に渡すものと同じメッセージが返される必
要があります。

echo test | clevis encrypt tang '{"url":"<tang.server.example.com:7500>"}' -y | clevis
decrypt
test

関連情報

システム上の tang(8)、semanage(8)、firewall-cmd(1)、jose(1)、systemd.unit(5) および
systemd.socket(5) man ページ

10.3. TANG サーバーの鍵のローテーションおよびクライアントでのバイン
ディングの更新

セキュリティー上の理由から、Tang サーバーの鍵をローテーションし、クライアント上の既存のバイ
ンディングを定期的に更新してください。鍵をローテートするのに適した間隔は、アプリケーション、
鍵のサイズ、および組織のポリシーにより異なります。

したがって、nbde_server RHEL システムロールを使用して、Tang 鍵をローテーションできます。詳

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

137

したがって、nbde_server RHEL システムロールを使用して、Tang 鍵をローテーションできます。詳
細は 複数の Tang サーバー設定での nbde_server システムロールの使用 を参照してください。

前提条件

Tang サーバーが実行している。

clevis パッケージおよび clevis-luks パッケージがクライアントにインストールされている。

手順

1. /var/db/tang 鍵データベースディレクトリーのすべての鍵の名前の前に . を指定して、アドバ
タイズメントに対して非表示にします。以下の例のファイル名は、Tang サーバーの鍵データ
ベースディレクトリーにある一意のファイル名とは異なります。

cd /var/db/tang
ls -l
-rw-r--r--. 1 root root 349 Feb 7 14:55 UV6dqXSwe1bRKG3KbJmdiR020hY.jwk
-rw-r--r--. 1 root root 354 Feb 7 14:55 y9hxLTQSiSB5jSEGWnjhY8fDTJU.jwk
mv UV6dqXSwe1bRKG3KbJmdiR020hY.jwk .UV6dqXSwe1bRKG3KbJmdiR020hY.jwk
mv y9hxLTQSiSB5jSEGWnjhY8fDTJU.jwk .y9hxLTQSiSB5jSEGWnjhY8fDTJU.jwk

2. 名前が変更され、Tang サーバーのアドバタイズに対してすべての鍵が非表示になっていること
を確認します。

ls -l
total 0

3. Tang サーバーの /var/db/tang で /usr/libexec/tangd-keygen コマンドを使用して新しい鍵を生
成します。

/usr/libexec/tangd-keygen /var/db/tang
ls /var/db/tang
3ZWS6-cDrCG61UPJS2BMmPU4I54.jwk zyLuX6hijUy_PSeUEFDi7hi38.jwk

4. Tang サーバーが、以下のように新規キーペアから署名キーを公開していることを確認します。

tang-show-keys 7500
3ZWS6-cDrCG61UPJS2BMmPU4I54

5. NBDE クライアントで clevis luks report コマンドを使用して、Tang サーバーでアドバタイズ
された鍵が同じままかどうかを確認します。clevis luks list コマンドを使用すると、関連する
バインディングのあるスロットを特定できます。以下に例を示します。

clevis luks list -d /dev/sda2
1: tang '{"url":"http://tang.srv"}'
clevis luks report -d /dev/sda2 -s 1
...
Report detected that some keys were rotated.
Do you want to regenerate luks metadata with "clevis luks regen -d /dev/sda2 -s 1"? [ynYN]

6. 新しい鍵の LUKS メタデータを再生成するには、直前のコマンドプロンプトで y を押す
か、clevis luks regen コマンドを使用します。

Red Hat Enterprise Linux 9 セキュリティーの強化

138

clevis luks regen -d /dev/sda2 -s 1

7. すべての古いクライアントが新しい鍵を使用することを確認したら、Tang サーバーから古い鍵
を削除できます。次に例を示します。

cd /var/db/tang
rm .*.jwk

警告

クライアントが使用している最中に古い鍵を削除すると、データが失われる場合が
あります。このような鍵を誤って削除した場合は、クライアントで clevis luks
regen コマンドを実行し、LUKS パスワードを手動で提供します。

関連情報

システム上の tang-show-keys(1)、clevis-luks-list(1)、clevis-luks-report(1)、および clevis-
luks-regen(1) man ページ

10.4. WEB コンソールで TANG キーを使用して自動ロック解除を設定する

Tang サーバーが提供する鍵を使用して、LUKS で暗号化したストレージデバイスの自動ロック解除を
設定できます。

前提条件

RHEL 9 Web コンソールがインストールされている。

cockpit サービスが有効になっている。

ユーザーアカウントが Web コンソールにログインできる。
手順は、Web コンソールのインストールおよび有効化 を参照してください。

cockpit-storaged と clevis-luks パッケージがシステムにインストールされている。

cockpit.socket サービスがポート 9090 で実行されている。

Tang サーバーを利用できる。詳細は、Deploying a Tang server with SELinux in enforcing
mode 参照してください。

root 特権、または sudo を使用して管理コマンドを入力する権限がある。

手順

1. RHEL 9 Web コンソールにログインします。
詳細は、Web コンソールへのログイン を参照してください。

2. 管理者アクセスに切り替え、認証情報を入力して、Storage をクリックします。Storage テー



第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

139

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

2. 管理者アクセスに切り替え、認証情報を入力して、Storage をクリックします。Storage テー
ブルで、自動的にロックを解除するために追加する予定の暗号化ボリュームが含まれるディス
クをクリックします。

3. 次のページに選択したディスクの詳細が表示されたら、Keys セクションの + をクリックして
Tang 鍵を追加します。

4. Key source として Tang keyserver を選択し、Tang サーバーのアドレスと、LUKS で暗号化
されたデバイスのロックを解除するパスワードを入力します。Add をクリックして確定しま
す。

以下のダイアログウインドウは、鍵ハッシュが一致することを確認するコマンドを提供しま

Red Hat Enterprise Linux 9 セキュリティーの強化

140

以下のダイアログウインドウは、鍵ハッシュが一致することを確認するコマンドを提供しま
す。

5. Tang サーバーのターミナルで、tang-show-keys コマンドを使用して、比較のためにキーハッ
シュを表示します。この例では、Tang サーバーはポート 7500 で実行されています。

tang-show-keys 7500
x100_1k6GPiDOaMlL3WbpCjHOy9ul1bSfdhI3M08wO0

6. Web コンソールと前述のコマンドの出力のキーハッシュが同じ場合は、Trust key をクリック
します。

7. RHEL 9.2 以降では、暗号化されたルートファイルシステムと Tang サーバーを選択した後、
カーネルコマンドラインへの rd.neednet=1 パラメーターの追加、clevis-dracut パッケージの
インストール、および初期 RAM ディスクイメージ (initrd) の再生成をスキップできます。非
ルートファイルシステムの場合、Web コンソールは、remote-cryptsetup.target および
clevis-luks-akspass.path systemd ユニットを有効にし、clevis-systemd パッケージをイン
ストールし、_netdev パラメーターを fstab および crypttab 設定ファイルに追加するようにな
りました。

検証

1. 新規に追加された Tang キーが Keyserver タイプの Keys セクションにリスト表示されている
ことを確認します。

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

141

2. バインディングが初期ブートで使用できることを確認します。次に例を示します。

lsinitrd | grep clevis-luks
lrwxrwxrwx 1 root root 48 Jan 4 02:56
etc/systemd/system/cryptsetup.target.wants/clevis-luks-askpass.path ->
/usr/lib/systemd/system/clevis-luks-askpass.path
…

関連情報

RHEL Web コンソールの使用

10.5. 基本的な NBDE および TPM2 暗号化クライアント操作

Clevis フレームワークは、プレーンテキストファイルを暗号化し、JSON Web Encryption (JWE) 形式
の暗号化テキストと LUKS 暗号化ブロックデバイスの両方を復号できます。Clevis クライアントは、暗
号化操作に Tang ネットワークサーバーまたは Trusted Platform Module 2.0(TPM 2.0) チップのいずれ
かを使用できます。

次のコマンドは、プレーンテキストファイルが含まれる例で Clevis が提供する基本的な機能を示してい
ます。また、NBDE または Clevis + TPM のデプロイメントのトラブルシューティングにも使用できま
す。

Tang サーバーにバインドされた暗号化クライアント

Clevis 暗号化クライアントが Tang サーバーにバインドサれることを確認するには、clevis
encrypt tang サブコマンドを使用します。

$ clevis encrypt tang '{"url":"http://tang.srv:port"}' < input-plain.txt > secret.jwe
The advertisement contains the following signing keys:

_OsIk0T-E2l6qjfdDiwVmidoZjA

Do you wish to trust these keys? [ynYN] y

上記の例の http://tang.srv:port URL は、 tang がインストールされているサーバーの URL と一

Red Hat Enterprise Linux 9 セキュリティーの強化

142

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console

上記の例の http://tang.srv:port URL は、 tang がインストールされているサーバーの URL と一
致するように変更します。secret.jwe 出力ファイルには、JWE 形式で暗号化した暗号文が含ま
れます。この暗号文は input-plain.txt 入力ファイルから読み込まれます。

また、設定に SSH アクセスなしで Tang サーバーとの非対話型の通信が必要な場合は、アドバ
タイズメントをダウンロードしてファイルに保存できます。

$ curl -sfg http://tang.srv:port/adv -o adv.jws

adv.jws ファイル内のアドバタイズメントは、ファイルやメッセージの暗号化など、後続のタ
スクに使用します。

$ echo 'hello' | clevis encrypt tang '{"url":"http://tang.srv:port","adv":"adv.jws"}'

データを複号するには、clevis decrypt コマンドを実行して、暗号文 (JWE) を提供します。

$ clevis decrypt < secret.jwe > output-plain.txt

TPM 2.0 を使用する暗号化クライアント

TPM 2.0 チップを使用して暗号化するには、JSON 設定オブジェクト形式の引数のみが使用さ
れている clevis encrypt tpm2 サブコマンドを使用します。

$ clevis encrypt tpm2 '{}' < input-plain.txt > secret.jwe

別の階層、ハッシュ、および鍵アルゴリズムを選択するには、以下のように、設定プロパ
ティーを指定します。

$ clevis encrypt tpm2 '{"hash":"sha256","key":"rsa"}' < input-plain.txt > secret.jwe

データを復号するには、JSON Web Encryption (JWE) 形式の暗号文を提供します。

$ clevis decrypt < secret.jwe > output-plain.txt

ピンは、PCR (Platform Configuration Registers) 状態へのデータのシーリングにも対応します。このよ
うに、PCR ハッシュ値が、シーリング時に使用したポリシーと一致する場合にのみ、データのシーリン
グを解除できます。

たとえば、SHA-256 バンクに対して、インデックス 0 および 7 の PCR にデータをシールするには、以
下を行います。

$ clevis encrypt tpm2 '{"pcr_bank":"sha256","pcr_ids":"0,7"}' < input-plain.txt > secret.jwe

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

143

警告

PCR のハッシュは書き換えることができ、暗号化されたボリュームのロックを解除
することはできなくなりました。このため、PCR の値が変更された場合でも、暗号
化されたボリュームのロックを手動で解除できる強力なパスフレーズを追加しま
す。

shim-x64 パッケージのアップグレード後にシステムが暗号化されたボリュームの
ロックを自動的に解除できない場合は、Red Hat ナレッジベースソリューション
Clevis TPM2 no longer decrypts LUKS devices after a restart を参照してください。

関連情報

システム上の clevis-encrypt-tang(1)、clevis-luks-unlockers(7)、clevis(1)、および clevis-
encrypt-tpm2(1) man ページ

以下のように引数指定せずに clevis、clevis decrypt および clevis encrypt tang コマンドを
入力したときに表示される組み込み CLI。

$ clevis encrypt tang
Usage: clevis encrypt tang CONFIG < PLAINTEXT > JWE
...

10.6. LUKS 暗号化ボリュームのロックを自動解除するように NBDE クライ
アントを設定する

Clevis フレームワークを使用すると、選択した Tang サーバーが使用可能な場合に、LUKS 暗号化ボ
リュームのロックを自動解除するようにクライアントを設定できます。これにより、Network-Bound
Disk Encryption (NBDE) デプロイメントが作成されます。

前提条件

Tang サーバーが実行されていて、使用できるようにしてある。

手順

1. 既存の LUKS 暗号化ボリュームのロックを自動的に解除するには、clevis-luks サブパッケージ
をインストールします。

dnf install clevis-luks

2. PBD 用 LUKS 暗号化ボリュームを特定します。次の例では、ブロックデバイスは /dev/sda2
と呼ばれています。

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 12G 0 disk
├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 11G 0 part



Red Hat Enterprise Linux 9 セキュリティーの強化

144

https://access.redhat.com/solutions/6175492

 └─luks-40e20552-2ade-4954-9d56-565aa7994fb6 253:0 0 11G 0 crypt
 ├─rhel-root 253:0 0 9.8G 0 lvm /
 └─rhel-swap 253:1 0 1.2G 0 lvm [SWAP]

3. clevis luks bind コマンドを使用して、ボリュームを Tang サーバーにバインドします。

clevis luks bind -d /dev/sda2 tang '{"url":"http://tang.srv"}'
The advertisement contains the following signing keys:

_OsIk0T-E2l6qjfdDiwVmidoZjA

Do you wish to trust these keys? [ynYN] y
You are about to initialize a LUKS device for metadata storage.
Attempting to initialize it may result in data loss if data was
already written into the LUKS header gap in a different format.
A backup is advised before initialization is performed.

Do you wish to initialize /dev/sda2? [yn] y
Enter existing LUKS password:

このコマンドは、以下の 4 つの手順を実行します。

a. LUKS マスター鍵と同じエントロピーを使用して、新しい鍵を作成します。

b. Clevis で新しい鍵を暗号化します。

c. LUKS2 ヘッダートークンに Clevis JWE オブジェクトを保存するか、デフォルト以外の
LUKS1 ヘッダーが使用されている場合は LUKSMeta を使用します。

d. LUKS を使用する新しい鍵を有効にします。

注記

バインド手順では、空き LUKS パスワードスロットが少なくとも 1 つあることが
前提となっています。そのスロットの 1 つを clevis luks bind コマンドが使用し
ます。

ボリュームは、現在、既存のパスワードと Clevis ポリシーを使用してロックを解除できます。

4. システムの起動プロセスの初期段階でディスクバインディングを処理するには、インストール
済みのシステムで dracut ツールを使用します。RHEL では、Clevis はホスト固有の設定オプ
ションを指定せずに汎用 initrd (初期 RAM ディスク) を生成し、カーネルコマンドラインに
rd.neednet=1 などのパラメーターを自動的に追加しません。初期の起動時にネットワークを必
要とする Tang ピンを使用する場合は、--hostonly-cmdline 引数を使用し、dracut が Tang バ
インディングを検出すると rd.neednet=1 を追加します。

a. clevis-dracut パッケージをインストールします。

dnf install clevis-dracut

b. 初期 RAM ディスクを再生成します。

dracut -fv --regenerate-all --hostonly-cmdline

c. または、/etc/dracut.conf.d/ ディレクトリーに .conf ファイルを作成し、そのファイルに

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

145

c. または、/etc/dracut.conf.d/ ディレクトリーに .conf ファイルを作成し、そのファイルに
hostonly_cmdline=yes オプションを追加します。すると、--hostonly-cmdline なしで
dracut を使用できます。次に例を示します。

echo "hostonly_cmdline=yes" > /etc/dracut.conf.d/clevis.conf
dracut -fv --regenerate-all

d. Clevis がインストールされているシステムで grubby ツールを使用して、システム起動時の
早い段階で Tang ピンのネットワークを利用できるようにすることができます。

grubby --update-kernel=ALL --args="rd.neednet=1"

検証

1. Clevis JWE オブジェクトが LUKS ヘッダーに正常に配置されていることを確認します。clevis
luks list コマンドを使用します。

clevis luks list -d /dev/sda2
1: tang '{"url":"http://tang.srv:port"}'

2. バインディングが初期ブートで使用できることを確認します。次に例を示します。

lsinitrd | grep clevis-luks
lrwxrwxrwx 1 root root 48 Jan 4 02:56
etc/systemd/system/cryptsetup.target.wants/clevis-luks-askpass.path ->
/usr/lib/systemd/system/clevis-luks-askpass.path
…

関連情報

システム上の clevis-luks-bind(1) および dracut.cmdline(7) man ページ

ネットワークのブートオプション

Looking forward to Linux network configuration in the initial ramdisk (initrd) (Red Hat Enable
Sysadmin)

10.7. 静的な IP 設定を持つ NBDE クライアントの設定

(DHCP を使用しない) 静的な IP 設定を持つクライアントに NBDE を使用するには、ネットワーク設定
を dracut ツールに手動で渡す必要があります。

前提条件

Tang サーバーが実行されていて、使用できるようにしてある。

Tang サーバーによって暗号化されたボリュームのロックを自動解除するように NBDE クライ
アントが設定されている。
詳細は、LUKS 暗号化ボリュームのロックを自動解除するように NBDE クライアントを設定す
る を参照してください。

手順

1. 静的ネットワーク設定を、dracut コマンドの kernel-cmdline オプションの値として指定でき

Red Hat Enterprise Linux 9 セキュリティーの強化

146

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html-single/interactively_installing_rhel_over_the_network/index#network-boot-options_custom-boot-options
https://www.redhat.com/sysadmin/network-confi-initrd

1. 静的ネットワーク設定を、dracut コマンドの kernel-cmdline オプションの値として指定でき
ます。次に例を示します。

dracut -fv --regenerate-all --kernel-cmdline
"ip=192.0.2.10::192.0.2.1:255.255.255.0::ens3:none nameserver=192.0.2.100"

2. または、静的ネットワーク情報を含む .conf ファイルを /etc/dracut.conf.d/ ディレクトリーに
作成し、初期 RAM ディスクイメージを再生成します。

cat /etc/dracut.conf.d/static_ip.conf
kernel_cmdline="ip=192.0.2.10::192.0.2.1:255.255.255.0::ens3:none
nameserver=192.0.2.100"
dracut -fv --regenerate-all

10.8. TPM 2.0 ポリシーを使用して LUKS 暗号化ボリュームの手動登録を設
定する

Trusted Platform Module 2.0 (TPM 2.0) ポリシーを使用して、LUKS 暗号化ボリュームのロック解除を
設定できます。

前提条件

アクセス可能な TPM2.0 互換デバイス。

システムが 64 ビット Intel アーキテクチャー、または 64 ビット AMD アーキテクチャーであ
る。

手順

1. 既存の LUKS 暗号化ボリュームのロックを自動的に解除するには、clevis-luks サブパッケージ
をインストールします。

dnf install clevis-luks

2. PBD 用 LUKS 暗号化ボリュームを特定します。次の例では、ブロックデバイスは /dev/sda2
と呼ばれています。

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 12G 0 disk
├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 11G 0 part
 └─luks-40e20552-2ade-4954-9d56-565aa7994fb6 253:0 0 11G 0 crypt
 ├─rhel-root 253:0 0 9.8G 0 lvm /
 └─rhel-swap 253:1 0 1.2G 0 lvm [SWAP]

3. clevis luks bind コマンドを使用して、ボリュームを TPM 2.0 デバイスにバインドします。以
下に例を示します。

clevis luks bind -d /dev/sda2 tpm2 '{"hash":"sha256","key":"rsa"}'
...
Do you wish to initialize /dev/sda2? [yn] y
Enter existing LUKS password:

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

147

このコマンドは、以下の 4 つの手順を実行します。

a. LUKS マスター鍵と同じエントロピーを使用して、新しい鍵を作成します。

b. Clevis で新しい鍵を暗号化します。

c. LUKS2 ヘッダートークンに Clevis JWE オブジェクトを保存するか、デフォルト以外の
LUKS1 ヘッダーが使用されている場合は LUKSMeta を使用します。

d. LUKS を使用する新しい鍵を有効にします。

注記

バインド手順では、空き LUKS パスワードスロットが少なくとも 1 つあるこ
とが前提となっています。そのスロットの 1 つを clevis luks bind コマンド
が使用します。

あるいは、特定の Platform Configuration Registers (PCR) の状態にデータをシールする場
合は、clevis luks bind コマンドに pcr_bank と pcr_ids 値を追加します。以下に例を示し
ます。

clevis luks bind -d /dev/sda2 tpm2
'{"hash":"sha256","key":"rsa","pcr_bank":"sha256","pcr_ids":"0,1"}'

重要

PCR ハッシュ値がシール時に使用されるポリシーと一致し、ハッシュを書き
換えることができる場合にのみ、データをアンシールできるため、PCR の値
が変更された場合、暗号化されたボリュームのロックを手動で解除できる強
力なパスフレーズを追加します。

shim-x64 パッケージをアップグレードした後、システムが暗号化されたボ
リュームのロックを自動的に解除できない場合は、Red Hat ナレッジベース
ソリューション Clevis TPM2 no longer decrypts LUKS devices after a restart
を参照してください。

4. ボリュームは、現在、既存のパスワードと Clevis ポリシーを使用してロックを解除できます。

5. システムの起動プロセスの初期段階でディスクバインディングを処理するようにするには、イ
ンストール済みのシステムで dracut ツールを使用します。

dnf install clevis-dracut
dracut -fv --regenerate-all

検証

1. Clevis JWE オブジェクトが LUKS ヘッダーに適切に置かれていることを確認するには、clevis
luks list コマンドを使用します。

clevis luks list -d /dev/sda2
1: tpm2 '{"hash":"sha256","key":"rsa"}'

関連情報

Red Hat Enterprise Linux 9 セキュリティーの強化

148

https://access.redhat.com/solutions/6175492

関連情報

システム上の clevis-luks-bind(1)、clevis-encrypt-tpm2(1)、dracut.cmdline(7) man ページ

10.9. PKCS #11 ピンを使用して LUKS 暗号化ボリュームのロック解除を設定
する

PKCS #11 と互換性のあるデバイス (スマートカードまたはハードウェアセキュリティーモジュール
(HSM)) を使用して、LUKS で暗号化されたボリュームのロック解除を設定できます。

Clevis PKCS #11 ピンを使用して暗号化されたボリュームを自動的にロック解除するには、/etc/crypttab
ファイルの変更も必要です。この変更により、コンソールでユーザーにプロンプトを表示する代わり
に、AF_UNIX ソケットを使用して、ボリュームのロックを解除するためのキーフレーズを待機するよ
うに systemd マネージャーを設定します。

Clevis PKCS #11 のユニットファイルは、ディスクのロック解除に関する情報を送受信するためのソケッ
トを /run/systemd/clevis-pkcs11.sock ファイル内に設定します。Clevis PKCS #11 ピンによってロッ
ク解除されるディスクの場合は、ソケットファイルをキーファイルとして設定する必要があります。

前提条件

PKCS #11 デバイスがすでに設定されており、アクセス可能である。

clevis-pin-pkcs11 パッケージがインストールされている。

clevis luks bind コマンド用に、LUKS パスワードの空きスロットが少なくとも 1 つある。

手順

1. PBD 用 LUKS 暗号化ボリュームを特定します。次の例では、ブロックデバイスは /dev/sda2
と呼ばれています。

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 12G 0 disk
├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 11G 0 part
 └─luks-40e20552-2ade-4954-9d56-565aa7994fb6 253:0 0 11G 0 crypt
 ├─rhel-root 253:0 0 9.8G 0 lvm /
 └─rhel-swap 253:1 0 1.2G 0 lvm [SWAP]

2. ボリュームのロック解除に使用する PKCS #11 デバイスの URI を特定します。次に例を示しま
す。

$ pkcs11-tool -L | grep uri
uri :
pkcs11:model=PKCS%2315%20emulated;manufacturer=piv_II;serial=42facd1f749ece7f;token=
clevis
uri :
pkcs11:model=PKCS%2315%20emulated;manufacturer=OpenPGP%20project;serial=000f060
80f4f;token=OpenPGP%20card%20%28User%20PIN%29

3. clevis luks bind コマンドを使用してボリュームを PKCS #11 デバイスにバインドします。次に
例を示します。

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

149

clevis luks bind -d /dev/sda2 pkcs11
'{"uri":"pkcs11:model=PKCS%2315%20emulated;manufacturer=OpenPGP%20project;serial=0
00f06080f4f;token=OpenPGP%20card%20%28User%20PIN%29;id=%03;object=Authenticatio
n%20key;type=public"}'
…
Do you wish to initialize /dev/sda2? [yn] y
Enter existing LUKS password:

このコマンドは、次の手順を実行します。

a. LUKS マスター鍵と同じエントロピーを使用して、新しい鍵を作成します。

b. Clevis で新しい鍵を暗号化します。

c. LUKS2 ヘッダートークンに Clevis JWE オブジェクトを保存するか、デフォルト以外の
LUKS1 ヘッダーが使用されている場合は LUKSMeta を使用します。

d. LUKS を使用する新しい鍵を有効にします。

4. オプション: 使用するモジュールを指定する必要がある場合は、module-path URI パラメーター
を追加します。

clevis luks bind -d /dev/sda2 pkcs11 '{"uri":"pkcs11:module-
path=/usr/lib64/libykcs11.so.2";model=PKCS%2315%20emulated;manufacturer=OpenPGP%2
0project;serial=000f06080f4f;token=OpenPGP%20card%20%28User%20PIN%29;id=%03;obj
ect=Authentication%20key;type=public}'

5. clevis-luks-pkcs11-askpass.socket ユニットを有効にします。

systemctl enable --now clevis-luks-pkcs11-askpass.socket

6. テキストエディターで /etc/crypttab ファイルを開き、PKCS #11 ピンでロックを解除する
LUKS 暗号化ボリュームを含む行を特定します。次に例を示します。

luks-6e38d5e1-7f83-43cc-819a-7416bcbf9f84 UUID=6e38d5e1-7f83-43cc-819a-
7416bcbf9f84 - -

7. ダッシュを /run/systemd/clevis-pkcs11.sock ファイルパスと keyfile-timeout オプションに
置き換えます。

luks-6e38d5e1-7f83-43cc-819a-7416bcbf9f84 UUID=6e38d5e1-7f83-43cc-819a-
7416bcbf9f84 /run/systemd/clevis-pkcs11.sock keyfile-timeout=30s

keyfile-timeout オプションは、ロック解除エラーが発生し、システムがコンソールからパスフ
レーズを手動で入力する必要がある場合に、次の処理に移行する仕組みを提供します。

8. 変更を保存し、エディターを終了します。

9. システムの起動プロセスの初期段階で、ルートファイルシステムのロックを解除するために必
要なディスクバインディングを処理するには、インストール済みのシステムで dracut ツールを
使用します。

dracut -fv --regenerate-all

Red Hat Enterprise Linux 9 セキュリティーの強化

150

10. システムを再起動します。
次回のブートプロセス中に、PKCS #11 デバイス PIN の入力が要求されます。正しい PIN を入
力した場合にのみ、対応する設定済みの暗号化ディスクが復号化されます。

検証

1. ブートプロセスを手動でテストする代わりに、次のコマンドを使用してテキストメッセージを
暗号化および復号化できます。

echo "top secret" | clevis encrypt pkcs11 '{"uri":"pkcs11:module-
path=/usr/lib64/libykcs11.so.2?pin-value=<PIN>"}' | clevis decrypt

<PIN> は PIN 値に置き換えます。メッセージを復号化するには、この PIN 値を入力する必要が
あります。

2. Clevis JWE オブジェクトが LUKS ヘッダーに正常に配置されていることを確認するに
は、clevis luks list コマンドを使用します。次に例を示します。

clevis luks list -d /dev/sda2
1: pkcs11 '{"uri": "pkcs11:model=PKCS%2315%20emulated;manufacturer=piv_II;
serial=0a35ba26b062b9c5;token=clevis;id=%02;object=Encryption%20Key?
module-path=/usr/lib64/libykcs11.so.2"}'

関連情報

システム上の clevis-luks-bind(1)、clevis-encrypt-pkcs11(1)、および dracut.cmdline(7) man
ページ

10.10. LUKS で暗号化したボリュームからの CLEVIS ピンの手動削除

clevis luks bind コマンドで作成されたメタデータを手動で削除する場合や、Clevis が追加したパスフ
レーズを含む鍵スロットを一掃するには、以下の手順を行います。

重要

LUKS で暗号化したボリュームから Clevis ピンを削除する場合は、clevis luks unbind
コマンドを使用することが推奨されます。clevis luks unbind を使用した削除手順は、1
回のステップで構成され、LUKS1 ボリュームおよび LUKS2 ボリュームの両方で機能しま
す。次のコマンド例は、バインド手順で作成されたメタデータを削除し、/dev/sda2 デ
バイスの鍵スロット 1 を削除します。

clevis luks unbind -d /dev/sda2 -s 1

前提条件

Clevis バインディングを使用した LUKS 暗号化ボリューム。

手順

1. /dev/sda2 などのボリュームがどの LUKS バージョンであるかを確認し、Clevis にバインドさ
れているスロットおよびトークンを特定します。

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

151

cryptsetup luksDump /dev/sda2
LUKS header information
Version: 2
...
Keyslots:
 0: luks2
...
1: luks2
 Key: 512 bits
 Priority: normal
 Cipher: aes-xts-plain64
...
 Tokens:
 0: clevis
 Keyslot: 1
...

上記の例では、Clevis トークンは 0 で識別され、関連付けられたキースロットは 1 です。

2. LUKS2 暗号化の場合は、トークンを削除します。

cryptsetup token remove --token-id 0 /dev/sda2

3. デバイスを LUKS1 で暗号化し、cryptsetup luksDump コマンドの出力に Version: 1 文字列が
示されている場合は、luksmeta wipe コマンドでこの追加手順を行います。

luksmeta wipe -d /dev/sda2 -s 1

4. Clevis パスフレーズを含む鍵スロットを削除します。

cryptsetup luksKillSlot /dev/sda2 1

関連情報

システム上の clevis-luks-unbind(1)、cryptsetup(8)、luksmeta(8) man ページ

10.11. キックスタートを使用して LUKS 暗号化ボリュームの自動登録を設定
する

この手順に従って、LUKS で暗号化されたボリュームの登録に Clevis を使用する自動インストールプロ
セスを設定します。

手順

1. 一時パスワードを使用して、LUKS 暗号化が有効になっているディスクを、/boot 以外のすべて
のマウントポイントで分割するように、キックスタートに指示します。パスワードは、登録プ
ロセスの手順に使用するための一時的なものです。

part /boot --fstype="xfs" --ondisk=vda --size=256
part / --fstype="xfs" --ondisk=vda --grow --encrypted --passphrase=temppass

OSPP 準拠のシステムには、より複雑な設定が必要であることに注意してください。次に例を

Red Hat Enterprise Linux 9 セキュリティーの強化

152

OSPP 準拠のシステムには、より複雑な設定が必要であることに注意してください。次に例を
示します。

part /boot --fstype="xfs" --ondisk=vda --size=256
part / --fstype="xfs" --ondisk=vda --size=2048 --encrypted --passphrase=temppass
part /var --fstype="xfs" --ondisk=vda --size=1024 --encrypted --passphrase=temppass
part /tmp --fstype="xfs" --ondisk=vda --size=1024 --encrypted --passphrase=temppass
part /home --fstype="xfs" --ondisk=vda --size=2048 --grow --encrypted --
passphrase=temppass
part /var/log --fstype="xfs" --ondisk=vda --size=1024 --encrypted --passphrase=temppass
part /var/log/audit --fstype="xfs" --ondisk=vda --size=1024 --encrypted --
passphrase=temppass

2. 関連する Clevis パッケージを %packages セクションに追加して、インストールします。

%packages
clevis-dracut
clevis-luks
clevis-systemd
%end

3. オプション: 必要に応じて暗号化されたボリュームのロックを手動で解除できるようにするに
は、一時パスフレーズを削除する前に強力なパスフレーズを追加します。詳細は、Red Hat ナ
レッジベースソリューション How to add a passphrase, key, or keyfile to an existing LUKS
device を参照してください。

4. clevis luks bind を呼び出して、%post セクションのバインディングを実行します。その後、
一時パスワードを削除します。

%post
clevis luks bind -y -k - -d /dev/vda2 \
tang '{"url":"http://tang.srv"}' <<< "temppass"
cryptsetup luksRemoveKey /dev/vda2 <<< "temppass"
dracut -fv --regenerate-all
%end

設定が起動初期にネットワークを必要とする Tang ピンに依存している場合、または静的 IP 設
定の NBDE クライアントを使用している場合は、Configuring manual enrollment of LUKS-
encrypted volumesに従って dracut コマンドを変更する必要があります。

clevis luks bind コマンドの -y オプションは、RHEL 8.3 から使用できることに注意してくだ
さい。RHEL 8.2 以前では、clevis luks bind コマンドで -y を -f に置き換え、Tang サーバーか
らアドバタイズメントをダウンロードします。

%post
curl -sfg http://tang.srv/adv -o adv.jws
clevis luks bind -f -k - -d /dev/vda2 \
tang '{"url":"http://tang.srv","adv":"adv.jws"}' <<< "temppass"
cryptsetup luksRemoveKey /dev/vda2 <<< "temppass"
dracut -fv --regenerate-all
%end

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

153

https://access.redhat.com/solutions/230993

警告

cryptsetup luksRemoveKey コマンドは、それを適用する LUKS2 デバイ
スがそれ以上に管理されるのを防ぎます。LUKS1 デバイスに対してのみ
dmsetup コマンドを使用して、削除されたマスターキーを回復できます。

Tang サーバーの代わりに TPM 2.0 ポリシーを使用する場合は、同様の手順を使用できます。

関連情報

システム上の clevis(1)、clevis-luks-bind(1)、cryptsetup(8)、および dmsetup(8) man ページ

RHEL の自動インストール

10.12. LUKS で暗号化されたリムーバブルストレージデバイスの自動ロック
解除を設定する

LUKS 暗号化 USB ストレージデバイスの自動ロック解除プロセスを設定できます。

手順

1. USB ドライブなど、LUKS で暗号化したリムーバブルストレージデバイスを自動的にアンロッ
クするには、clevis-udisks2 パッケージをインストールします。

dnf install clevis-udisks2

2. システムを再起動し、LUKS で暗号化したボリュームの手動登録の設定 に従って、clevis luks
bind コマンドを使用したバインディング手順を実行します。以下に例を示します。

clevis luks bind -d /dev/sdb1 tang '{"url":"http://tang.srv"}'

3. これで、LUKS で暗号化されたリムーバブルデバイスを、GNOME デスクトップセッションで
自動的にロック解除できるようになりました。Clevis ポリシーにバインドするデバイス
は、clevis luks unlock コマンドでアンロックできます。

clevis luks unlock -d /dev/sdb1

Tang サーバーの代わりに TPM 2.0 ポリシーを使用する場合は、同様の手順を使用できます。

関連情報

システム上の clevis-luks-unlockers(7) man ページ

10.13. 高可用性 NBDE システムをデプロイする

Tang は、高可用性デプロイメントを構築する方法を 2 つ提供します。



Red Hat Enterprise Linux 9 セキュリティーの強化

154

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/automatically_installing_rhel/index

クライアントの冗長性 (推奨)

クライアントは、複数の Tang サーバーにバインドする機能を使用して設定する必要があります。こ
の設定では、各 Tang サーバーに独自の鍵があり、クライアントは、このサーバーのサブセットに接
続することで復号できます。Clevis はすでに、sss プラグインを使用してこのワークフローに対応し
ています。Red Hat は、高可用性のデプロイメントにこの方法を推奨します。

鍵の共有

冗長性を確保するために、Tang のインスタンスは複数デプロイできます。2 つ目以降のインスタン
スを設定するには、tang パッケージをインストールし、SSH 経由で rsync を使用してその鍵ディ
レクトリーを新規ホストにコピーします。鍵を共有すると鍵への不正アクセスのリスクが高まり、
追加の自動化インフラストラクチャーが必要になるため、Red Hat はこの方法を推奨していませ
ん。

シャミアの秘密分散を使用した高可用性 NBDE
シャミアの秘密分散 (SSS) は、秘密を複数の固有のパーツに分割する暗号スキームです。秘密を再構築
するには、いくつかのパーツが必要になります。数値はしきい値と呼ばれ、SSS はしきい値スキームと
も呼ばれます。

Clevis は、SSS の実装を提供します。鍵を作成し、これをいくつかのパーツに分割します。各パーツ
は、SSS も再帰的に含む別のピンを使用して暗号化されます。また、しきい値 t も定義します。NBDE
デプロイメントで少なくとも t の部分を復号すると、暗号化鍵が復元され、復号プロセスが成功しま
す。Clevis がしきい値で指定されている数よりも小さい部分を検出すると、エラーメッセージが出力さ
れます。

例 1: 2 台の Tang サーバーを使用した冗長性
次のコマンドは、2 台の Tang サーバーのうち少なくとも 1 台が使用可能な場合に、LUKS で暗号化され
たデバイスを復号します。

clevis luks bind -d /dev/sda1 sss '{"t":1,"pins":{"tang":[{"url":"http://tang1.srv"},
{"url":"http://tang2.srv"}]}}'

上記のコマンドでは、以下の設定スキームを使用していました。

{
 "t":1,
 "pins":{
 "tang":[
 {
 "url":"http://tang1.srv"
 },
 {
 "url":"http://tang2.srv"
 }
]
 }
}

この設定では、リストに記載されている 2 台の tang サーバーのうち少なくとも 1 つが利用可能であれ
ば、SSS しきい値 t が 1 に設定され、clevis luks bind コマンドが秘密を正常に再構築します。

例 2: Tang サーバーと TPM デバイスで共有している秘密
次のコマンドは、tang サーバーと tpm2 デバイスの両方が利用可能な場合に、LUKS で暗号化したデバ
イスを正常に復号します。

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

155

clevis luks bind -d /dev/sda1 sss '{"t":2,"pins":{"tang":[{"url":"http://tang1.srv"}], "tpm2":
{"pcr_ids":"0,7"}}}'

SSS しきい値 't' が '2' に設定されている設定スキームは以下のようになります。

{
 "t":2,
 "pins":{
 "tang":[
 {
 "url":"http://tang1.srv"
 }
],
 "tpm2":{
 "pcr_ids":"0,7"
 }
 }
}

関連情報

システム上の tang(8) (High Availability セクション)、clevis(1) (Shamir’s Secret Sharing セ
クション)、および clevis-encrypt-sss(1) man ページ

10.14. NBDE ネットワークで仮想マシンをデプロイする

clevis luks bind コマンドは、LUKS マスター鍵を変更しません。これは、仮想マシンまたはクラウド
環境で使用する、LUKS で暗号化したイメージを作成する場合に、このイメージを実行するすべてのイ
ンスタンスがマスター鍵を共有することを意味します。これにはセキュリティーの観点で大きな問題が
あるため、常に回避する必要があります。

これは、Clevis の制限ではなく、LUKS の設計原理です。シナリオでクラウド内のルートボリュームを
暗号化する必要がある場合は、クラウド内の Red Hat Enterprise Linux の各インスタンスに対しても (通
常はキックスタートを使用して) インストールプロセスを実行します。このイメージは、LUKS マス
ター鍵を共有しなければ共有できません。

仮想化環境で自動ロック解除をデプロイメントするには、lorax や virt-install などのシステムとキック
スタートファイル (キックスタートを使用した LUKS 暗号化ボリュームの自動登録の設定参照) または
その他の自動プロビジョニングツールを使用して、各暗号化 VM に固有のマスターキーを確実に付与し
ます。

関連情報

システム上の clevis-luks-bind(1) man ページ

10.15. NBDE を使用してクラウド環境用の自動登録可能な仮想マシンイメー
ジをビルドする

自動登録可能な暗号化イメージをクラウド環境にデプロイすると、特有の課題が発生する可能性があり
ます。他の仮想化環境と同様に、LUKS マスター鍵を共有しないように、1 つのイメージから起動する
インスタンス数を減らすことが推奨されます。

したがって、ベストプラクティスは、どのパブリックリポジトリーでも共有されず、限られたインスタ

Red Hat Enterprise Linux 9 セキュリティーの強化

156

ンスのデプロイメントのベースを提供するように、イメージをカスタマイズすることです。作成するイ
ンスタンスの数は、デプロイメントのセキュリティーポリシーで定義する必要があります。また、
LUKS マスター鍵の攻撃ベクトルに関連するリスク許容度に基づいて決定する必要があります。

LUKS に対応する自動デプロイメントを構築するには、Lorax、virt-install などのシステムとキックス
タートファイルを一緒に使用し、イメージ構築プロセス中にマスター鍵の一意性を確保する必要があり
ます。

クラウド環境では、ここで検討する 2 つの Tang サーバーデプロイメントオプションが利用できます。
まず、クラウド環境そのものに Tang サーバーをデプロイできます。もしくは、2 つのインフラストラ
クチャー間で VPN リンクを使用した独立したインフラストラクチャーで、クラウドの外に Tang サー
バーをデプロイできます。

クラウドに Tang をネイティブにデプロイすると、簡単にデプロイできます。ただし、別のシステムの
暗号文のデータ永続化層でインフラストラクチャーを共有します。Tang サーバーの秘密鍵および
Clevis メタデータは、同じ物理ディスクに保存できる場合があります。この物理ディスクでは、暗号文
データへのいかなる不正アクセスが可能になります。

重要

データを保存する場所と Tang を実行するシステムを、常に物理的に分離してくださ
い。クラウドと Tang サーバーを分離することで、Tang サーバーの秘密鍵が、Clevis メ
タデータと誤って結合することがないようにします。さらに、これにより、クラウドイ
ンフラストラクチャーが危険にさらされている場合に、Tang サーバーのローカル制御を
提供します。

10.16. コンテナーとしての TANG のデプロイ

tang コンテナーイメージは、OpenShift Container Platform (OCP) クラスターまたは別の仮想マシンで
実行する Clevis クライアントの Tang-server 復号化機能を提供します。

前提条件

podman パッケージとその依存関係がシステムにインストールされている。

podman login registry.redhat.io コマンドを使用して registry.redhat.io コンテナーカタログ
にログインしている。詳細は、Red Hat コンテナーレジストリーの認証 を参照してください。

Clevis クライアントは、Tang サーバーを使用して、自動的にアンロックする LUKS で暗号化し
たボリュームを含むシステムにインストールされている。

手順

1. registry.redhat.io レジストリーから tang コンテナーイメージをプルします。

podman pull registry.redhat.io/rhel9/tang

2. コンテナーを実行し、そのポートを指定して Tang 鍵へのパスを指定します。上記の例で
は、tang コンテナーを実行し、ポート 7500 を指定し、/var/db/tang ディレクトリーの Tang
鍵へのパスを示します。

podman run -d -p 7500:7500 -v tang-keys:/var/db/tang --name tang
registry.redhat.io/rhel9/tang

Tang はデフォルトでポート 80 を使用しますが、Apache HTTP サーバーなどの他のサービス

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

157

https://access.redhat.com/RegistryAuthentication

Tang はデフォルトでポート 80 を使用しますが、Apache HTTP サーバーなどの他のサービス
と共存する可能性があることに注意してください。

3. オプション: セキュリティーを強化する場合は、Tang 鍵を定期的にローテーションしま
す。tangd-rotate-keys スクリプトを使用できます。以下に例を示します。

podman run --rm -v tang-keys:/var/db/tang registry.redhat.io/rhel9/tang tangd-rotate-keys -
v -d /var/db/tang
Rotated key 'rZAMKAseaXBe0rcKXL1hCCIq-DY.jwk' -> .'rZAMKAseaXBe0rcKXL1hCCIq-
DY.jwk'
Rotated key 'x1AIpc6WmnCU-CabD8_4q18vDuw.jwk' -> .'x1AIpc6WmnCU-
CabD8_4q18vDuw.jwk'
Created new key GrMMX_WfdqomIU_4RyjpcdlXb0E.jwk
Created new key _dTTfn17sZZqVAp80u3ygFDHtjk.jwk
Keys rotated successfully.

検証

Tang サーバーが存在しているために自動アンロック用に LUKS で暗号化したボリュームが含ま
れているシステムで、Clevis クライアントが Tang を使用してプレーンテキストのメッセージ
を暗号化および復号化できることを確認します。

echo test | clevis encrypt tang '{"url":"http://localhost:7500"}' | clevis decrypt
The advertisement contains the following signing keys:

x1AIpc6WmnCU-CabD8_4q18vDuw

Do you wish to trust these keys? [ynYN] y
test

上記のコマンド例は、localhost URL で Tang サーバーが利用できる場合にその出力の最後に
テスト 文字列を示し、ポート 7500 経由で通信します。

関連情報

システム上の podman(1)、clevis(1)、および tang(8) man ページ

10.17. RHEL システムロールを使用した NBDE の設定

nbde_client および nbde_server RHEL システムロールを使用すると、Clevis および Tang を使用した
Policy-Based Decryption (PBD) ソリューションを自動でデプロイできます。rhel-system-roles パッ
ケージには、これらのシステムロール、関連する例、リファレンスドキュメントが含まれます。

10.17.1. 複数の Tang サーバーのセットアップに nbde_server RHEL システムロールを使
用する

nbde_server システムロールを使用すると、自動ディスク暗号化ソリューションの一部として、Tang
サーバーをデプロイして管理できます。このロールは以下の機能をサポートします。

Tang 鍵のローテーション

Tang 鍵のデプロイおよびバックアップ

Red Hat Enterprise Linux 9 セキュリティーの強化

158

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

このサンプル Playbook により、Tang サーバーのデプロイと鍵のローテーションが実行されま
す。

サンプル Playbook で指定されている設定は次のとおりです。

nbde_server_manage_firewall: true

firewall システムロールを使用して、nbde_server ロールで使用されるポートを管理しま
す。

nbde_server_manage_selinux: true

selinux システムロールを使用して、nbde_server ロールで使用されるポートを管理しま
す。
Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.nbde_server/README.md ファイルを参照し
てください。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

検証

NBDE クライアントで、次のコマンドを使用して、Tang サーバーが正しく動作していることを

- name: Deploy a Tang server
 hosts: tang.server.example.com
 tasks:
 - name: Install and configure periodic key rotation
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.nbde_server
 vars:
 nbde_server_rotate_keys: yes
 nbde_server_manage_firewall: true
 nbde_server_manage_selinux: true

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

159

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

NBDE クライアントで、次のコマンドを使用して、Tang サーバーが正しく動作していることを
確認します。このコマンドにより、暗号化と復号化に渡すものと同じメッセージが返される必
要があります。

ansible managed-node-01.example.com -m command -a 'echo test | clevis encrypt tang
'{"url":"<tang.server.example.com>"}' -y | clevis decrypt'
test

関連情報

/usr/share/ansible/roles/rhel-system-roles.nbde_server/README.md ファイル

/usr/share/doc/rhel-system-roles/nbde_server/ ディレクトリー

10.17.2. nbde_client RHEL システムロールを使用して DHCP を使用する Clevis クライア
ントを設定する

nbde_client システムロールにより、複数の Clevis クライアントを自動的にデプロイできます。

このロールを使用すると、LUKS で暗号化されたボリュームを 1 つ以上の Network-Bound (NBDE) サー
バー (Tang サーバー) にバインドすることが可能です。パスフレーズを使用して既存のボリュームの暗
号化を保持するか、削除できます。パスフレーズを削除したら、NBDE だけを使用してボリュームの
ロックを解除できます。これは、システムのプロビジョニング後に削除する必要がある一時鍵またはパ
スワードを使用して、ボリュームが最初に暗号化されている場合に役立ちます。

パスフレーズと鍵ファイルの両方を指定する場合には、ロールは最初に指定した内容を使用します。有
効なバインディングが見つからない場合は、既存のバインディングからパスフレーズの取得を試みま
す。

Policy-Based Decryption (PBD) では、デバイスとスロットのマッピングの形でバインディングを定義
します。そのため、同じデバイスに対して複数のバインドを設定できます。デフォルトのスロットは 1
です。

注記

nbde_client システムロールは、Tang バインディングのみをサポートします。したがっ
て、TPM2 バインディングには使用できません。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

LUKS を使用してすでに暗号化されているボリューム。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

Red Hat Enterprise Linux 9 セキュリティーの強化

160

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

このサンプル Playbook は、2 台の Tang サーバーのうち少なくとも 1 台が利用可能な場合に、
LUKS で暗号化した 2 つのボリュームを自動的にアンロックするように Clevis クライアントを
設定します。

サンプル Playbook で指定されている設定は次のとおりです。

state: present

state の値は、Playbook を実行した後の設定を示します。新しいバインディングを作成する
か、既存のバインディングを更新する場合は、present を使用します。clevis luks bind と
は異なり、state: present を使用してデバイススロットにある既存のバインディングを上書
きすることもできます。absent に設定すると、指定したバインディングが削除されます。

nbde_client_early_boot: true

nbde_client ロールは、デフォルトで、起動初期段階で Tang ピン用のネットワークを利用
可能にします。この機能を無効にする必要がある場合は、Playbook に
nbde_client_early_boot: false 変数を追加します。
Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.nbde_client/README.md ファイルを参照し
てください。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

検証

1. NBDE クライアントで、Tang サーバーによって自動的にロック解除される暗号化ボリュームの

- name: Configure clients for unlocking of encrypted volumes by Tang servers
 hosts: managed-node-01.example.com
 tasks:
 - name: Create NBDE client bindings
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.nbde_client
 vars:
 nbde_client_bindings:
 - device: /dev/rhel/root
 encryption_key_src: /etc/luks/keyfile
 nbde_client_early_boot: true
 state: present
 servers:
 - http://server1.example.com
 - http://server2.example.com
 - device: /dev/rhel/swap
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

161

1. NBDE クライアントで、Tang サーバーによって自動的にロック解除される暗号化ボリュームの
LUKS ピンに、対応する情報が含まれていることを確認します。

ansible managed-node-01.example.com -m command -a 'clevis luks list -d /dev/rhel/root'
1: tang '{"url":"<http://server1.example.com/>"}'
2: tang '{"url":"<http://server2.example.com/>"}'

2. nbde_client_early_boot: false 変数を使用しない場合は、起動初期にバインディングが使用で
きることを確認します。次に例を示します。

ansible managed-node-01.example.com -m command -a 'lsinitrd | grep clevis-luks'
lrwxrwxrwx 1 root root 48 Jan 4 02:56
etc/systemd/system/cryptsetup.target.wants/clevis-luks-askpass.path ->
/usr/lib/systemd/system/clevis-luks-askpass.path
…

関連情報

/usr/share/ansible/roles/rhel-system-roles.nbde_client/README.md ファイル

/usr/share/doc/rhel-system-roles/nbde_client/ ディレクトリー

10.17.3. nbde_client RHEL システムロールを使用して静的 IP Clevis クライアントを設定
する

nbde_client RHEL システムロールは、Dynamic Host Configuration Protocol (DHCP) を使用する環境
にのみ対応しています。静的 IP 設定の NBDE クライアントでは、ネットワーク設定をカーネルブート
パラメーターとして渡す必要があります。

通常、管理者は Playbook を再利用します。Ansible が起動初期段階で静的 IP アドレスを割り当てるホ
ストごとに、個別の Playbook を管理することはありません。そうすることにより、Playbook 内の変数
を使用し、外部ファイルで設定を提供できます。そのため、必要なのは Playbook 1 つと設定を含むファ
イル 1 つだけです。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

LUKS を使用してすでに暗号化されているボリューム。

手順

1. ホストのネットワーク設定を含むファイル (例: static-ip-settings-clients.yml) を作成し、ホス
トに動的に割り当てる値を追加します。

clients:
 managed-node-01.example.com:
 ip_v4: 192.0.2.1
 gateway_v4: 192.0.2.254

Red Hat Enterprise Linux 9 セキュリティーの強化

162

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

2. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

この Playbook は、~/static-ip-settings-clients.yml ファイルにリストされている各ホストの特
定の値を動的に読み取ります。

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.network/README.md ファイルを参照してくださ
い。

3. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない

 netmask_v4: 255.255.255.0
 interface: enp1s0
 managed-node-02.example.com:
 ip_v4: 192.0.2.2
 gateway_v4: 192.0.2.254
 netmask_v4: 255.255.255.0
 interface: enp1s0

- name: Configure clients for unlocking of encrypted volumes by Tang servers
 hosts: managed-node-01.example.com,managed-node-02.example.com
 vars_files:
 - ~/static-ip-settings-clients.yml
 tasks:
 - name: Create NBDE client bindings
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.network
 vars:
 nbde_client_bindings:
 - device: /dev/rhel/root
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com
 - device: /dev/rhel/swap
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com

 - name: Configure a Clevis client with static IP address during early boot
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.bootloader
 vars:
 bootloader_settings:
 - kernel: ALL
 options:
 - name: ip
 value: "{{ clients[inventory_hostname]['ip_v4'] }}::{{ clients[inventory_hostname]
['gateway_v4'] }}:{{ clients[inventory_hostname]['netmask_v4'] }}::{{
clients[inventory_hostname]['interface'] }}:none"

第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定

163

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

4. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

関連情報

/usr/share/ansible/roles/rhel-system-roles.nbde_client/README.md ファイル

/usr/share/doc/rhel-system-roles/nbde_client/ ディレクトリー

Looking forward to Linux network configuration in the initial ramdisk (initrd) (Red Hat Enable
Sysadmin)

Red Hat Enterprise Linux 9 セキュリティーの強化

164

https://www.redhat.com/sysadmin/network-confi-initrd

第11章 システムの監査
監査はシステムのセキュリティーを強化するものではありませんが、システム上のセキュリティーポリ
シー違反を検出するために使用できます。検出後、SELinux などの追加のセキュリティー対策を設定す
ることで、同じ違反の再発を防ぐことができます。

11.1. LINUX の AUDIT

Linux の Audit システムは、システムのセキュリティー関連情報を追跡する方法を提供します。事前設
定されたルールに基づき、Audit は、ログエントリーを生成し、システムで発生しているイベントに関
する情報をできるだけ多く記録します。この情報は、ミッションクリティカルな環境でセキュリティー
ポリシーの違反者と、違反者によるアクションを判断する上で必須のものです。

以下は、Audit がログファイルに記録できる情報の概要です。

イベントの日時、タイプ、結果

サブジェクトとオブジェクトの機密性のラベル

イベントを開始したユーザーの ID とイベントの関連性

Audit 設定の全修正および Audit ログファイルへのアクセス試行

SSH、Kerberos などの認証メカニズムのすべての使用

信頼できるデータベース (/etc/passwd など) への変更

システムからの情報のインポート、およびシステムへの情報のエクスポートの試行

ユーザー ID、サブジェクトとオブジェクトのラベルなどの属性に基づくイベントの追加と除外

Audit システムの使用は、多くのセキュリティー関連の認定における要件でもあります。Audit は、以下
の認定またはコンプライアンスガイドの要件に合致するか、それを超えるように設計されています。

Controlled Access Protection Profile (CAPP)

Labeled Security Protection Profile (LSPP)

Rule Set Base Access Control (RSBAC)

NISPOM (National Industrial Security Program Operating Manual)

Federal Information Security Management Act (FISMA)

Payment Card Industry - Data Security Standard (PCI-DSS)

Security Technical Implementation Guides (STIG)

監査は、National Information Assurance Partnership (NIAP) および Best Security Industries (BSI) に
よっても評価されています。

ユースケース

ファイルアクセスの監視

Audit は、ファイルやディレクトリーがアクセス、修正、または実行されたか、もしくはファイル属

第11章 システムの監査

165

Audit は、ファイルやディレクトリーがアクセス、修正、または実行されたか、もしくはファイル属
性が変更されたかを追跡できます。これはたとえば、重要なファイルへのアクセスを検出し、これ
らのファイルが破損した場合に監査証跡を入手可能とする際に役に立ちます。

システムコールの監視

Audit は、一部のシステムコールが使用されるたびにログエントリーを生成するように設定できま
す。これを使用すると、settimeofday や clock_adjtime、その他の時間関連のシステムコールを監
視することで、システム時間への変更を追跡できます。

ユーザーが実行したコマンドの記録

Audit はファイルが実行されたかどうかを追跡できるため、特定のコマンドの実行を毎回記録するよ
うにルールを定義できます。たとえば、/bin ディレクトリー内のすべての実行可能ファイルにルー
ルを定義できます。これにより作成されるログエントリーをユーザー ID で検索すると、ユーザーご
とに実行されたコマンドの監査証跡を生成できます。

システムのパス名の実行の記録

ルールの呼び出し時にパスを inode に変換するファイルアクセスをウォッチする以外に、ルールの
呼び出し時に存在しない場合や、ルールの呼び出し後にファイルが置き換えられた場合でも、Audit
がパスの実行をウォッチできるようになりました。これにより、ルールは、プログラム実行ファイ
ルをアップグレードした後、またはインストールされる前にも機能を継続できます。

セキュリティーイベントの記録

pam_faillock 認証モジュールは、失敗したログイン試行を記録できます。Audit で失敗したログイ
ン試行も記録するように設定すると、ログインを試みたユーザーに関する追加情報が提供されま
す。

イベントの検索

Audit は ausearch ユーティリティーを提供します。これを使用すると、ログエントリーをフィル
ターにかけ、いくつかの条件に基づく完全な監査証跡を提供できます。

サマリーレポートの実行

aureport ユーティリティーを使用すると、記録されたイベントのデイリーレポートを生成できま
す。システム管理者は、このレポートを分析し、疑わしいアクティビティーをさらに調べることが
できます。

ネットワークアクセスの監視

nftables、iptables、および ebtables ユーティリティーは、Audit イベントを発生するように設定
できるため、システム管理者がネットワークアクセスを監視できるようになります。

注記

システムのパフォーマンスは、Audit が収集する情報量によって影響される可能性があり
ます。

11.2. AUDIT システムのアーキテクチャー

Audit システムは、ユーザー空間アプリケーションおよびユーティリティーと、カーネル側のシステム
コール処理という 2 つの主要部分で構成されます。カーネルコンポーネントは、ユーザー空間アプリ
ケーションからシステムコールを受け、これを user、task、fstype、または exit のいずれかのフィル
ターで振り分けます。

システムコールが exclude フィルターを通過すると、前述のフィルターのいずれかに送られます。この
フィルターにより、Audit ルール設定に基づいてシステムコールが Audit デーモンに送信され、さらに
処理されます。

ユーザー空間の Audit デーモンは、カーネルから情報を収集し、ログファイルのエントリーを作成しま

Red Hat Enterprise Linux 9 セキュリティーの強化

166

ユーザー空間の Audit デーモンは、カーネルから情報を収集し、ログファイルのエントリーを作成しま
す。他のユーザー空間ユーティリティーは、Audit デーモン、カーネルの Audit コンポーネント、また
は Audit ログファイルと相互作用します。

auditctl Audit 制御ユーティリティーはカーネル Audit コンポーネントと相互作用し、ルールを
管理するだけでなくイベント生成プロセスの多くの設定やパラメーターも制御します。

残りの Audit ユーティリティーは、Audit ログファイルのコンテンツを入力として受け取り、
ユーザーの要件に基づいて出力を生成します。たとえば、aureport ユーティリティーは、記録
された全イベントのレポートを生成します。

RHEL 9 では、Audit dispatcher デーモン (audisp) 機能は、Audit デーモン (auditd) に統合されていま
す。監査イベントと、リアルタイムの分析プログラムの相互作用に使用されるプラグイン設定ファイル
は、デフォルトで /etc/audit/plugins.d/ ディレクトリーに保存されます。

11.3. 環境を保護するための AUDITD の設定

デフォルトの auditd 設定は、ほとんどの環境に適しています。ただし、環境が厳格なセキュリティー
ポリシーを満たす必要がある場合は、/etc/audit/auditd.conf ファイル内の Audit デーモン設定の次の設
定を変更できます。

log_file

Audit ログファイル (通常は /var/log/audit/) を保持するディレクトリーは、別のマウントポイントに
マウントされている必要があります。これにより、その他のプロセスがこのディレクトリー内の領
域を使用しないようにし、Audit デーモンの残りの領域を正確に検出します。

max_log_file

1 つの Audit ログファイルの最大サイズを指定します。Audit ログファイルを保持するパーティショ
ンで利用可能な領域をすべて使用するように設定する必要があります。max_log_file` パラメーター
は、最大ファイルサイズをメガバイト単位で指定します。指定する値は、数値にする必要がありま
す。

max_log_file_action

max_log_file に設定した制限に達すると実行するアクションを指定します。Audit ログファイルが
上書きされないように keep_logs に設定する必要があります。

space_left

space_left_action パラメーターに設定したアクションが発生するディスクの空き容量を指定しま
す。管理者は、ディスクの領域を反映して解放するのに十分な時間を設定する必要がありま
す。space_left の値は、Audit ログファイルが生成される速度によって異なります。space_left の値
が整数として指定されている場合は、メガバイト (MiB) 単位の絶対サイズとして解釈されます。値
が 1 〜 99 の数値の後にパーセント記号を付けて指定されている場合 (5% など)、Audit デーモン
は、log_file を含むファイルシステムのサイズに基づいて、メガバイト単位で絶対サイズを計算しま
す。

space_left_action

space_left_action パラメーターは、適切な通知方法 (email または exec) に設定することが推奨さ
れます。

admin_space_left

admin_space_left_action パラメーターに設定したアクションが発生するディスクの空き領域の最
小サイズ。管理者が実行するアクションのログを記録するのに十分なサイズを残す必要がありま
す。このパラメーターの数値は、space_left の数値より小さくする必要があります。また、数値に
パーセント記号を追加 (1% など) して、Audit デーモンが、ディスクパーティションサイズに基づい
て、数値を計算するようにすることもできます。

第11章 システムの監査

167

admin_space_left_action

single を、システムをシングルユーザーモードにし、管理者がディスク領域を解放できるようにし
ます。

disk_full_action

Audit ログファイルが含まれるパーティションに空き領域がない場合に発生するアクションを指定し
ます (halt または single に設定する必要があります)。これにより、Audit がイベントをログに記録
できなくなると、システムは、シングルユーザーモードでシャットダウンまたは動作します。

disk_error_action

Audit ログファイルが含まれるパーティションでエラーが検出された場合に発生するアクションを指
定します。このパラメーターは、ハードウェアの機能不全処理に関するローカルのセキュリティー
ポリシーに基づいて、syslog、single、halt のいずれかに設定する必要があります。

flush

incremental_async に設定する必要があります。これは freq パラメーターと組み合わせて機能しま
す。これは、ハードドライブとのハード同期を強制する前にディスクに送信できるレコードの数を
指定します。freq パラメーターは 100 に設定する必要があります。このパラメーターにより、アク
ティビティーが集中した際に高いパフォーマンスを保ちつつ、Audit イベントデータがディスクのロ
グファイルと確実に同期されるようになります。

残りの設定オプションは、ローカルのセキュリティーポリシーに合わせて設定します。

11.4. AUDITD の開始および制御

auditd が設定されたら、サービスを起動して Audit 情報を収集し、ログファイルに保存します。root
ユーザーで次のコマンドを実行し、auditd を起動します。

service auditd start

システムの起動時に auditd が起動するように設定するには、次のコマンドを実行します。

systemctl enable auditd

auditctl -e 0 で auditd を一時的に無効にし、# auditctl -e 1 で再度有効にできます。

service auditd <action> コマンドを使用すると、auditd で他のアクションを実行できます。<action>
は次のいずれかです。

stop

auditd を停止します。

restart

auditd を再起動します。

reload または force-reload

/etc/audit/auditd.conf ファイルから auditd の設定を再ロードします。

rotate

/var/log/audit/ ディレクトリーのログファイルをローテーションします。

resume

Audit イベントのログが一旦停止した後、再開します。たとえば、Audit ログファイルが含まれる
ディスクパーティションの未使用領域が不足している場合などです。

Red Hat Enterprise Linux 9 セキュリティーの強化

168

condrestart または try-restart

auditd がすでに起動している場合にのみ、これを再起動します。

status

auditd の稼働状況を表示します。

注記

service コマンドは、auditd デーモンと正しく相互作用する唯一の方法です。auid 値が
適切に記録されるように、service コマンドを使用する必要があります。systemctl コマ
ンドは、2 つのアクション (enable および status) にのみ使用できます。

11.5. AUDIT ログファイルについて

デフォルトでは、Audit システムはログエントリーを /var/log/audit/audit.log ファイルに保存します。
ログローテーションが有効になっていれば、ローテーションされた audit.log ファイルは同じディレク
トリーに保存されます。

下記の Audit ルールを追加して、/etc/ssh/sshd_config ファイルの読み取りまたは修正の試行をすべて
ログに記録します。

auditctl -w /etc/ssh/sshd_config -p warx -k sshd_config

auditd デーモンが実行している場合は、たとえば次のコマンドを使用して、Audit ログファイルに新し
いイベントを作成します。

$ cat /etc/ssh/sshd_config

このイベントは、audit.log ファイルでは以下のようになります。

type=SYSCALL msg=audit(1364481363.243:24287): arch=c000003e syscall=2 success=no exit=-13
a0=7fffd19c5592 a1=0 a2=7fffd19c4b50 a3=a items=1 ppid=2686 pid=3538 auid=1000 uid=1000
gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts0 ses=1
comm="cat" exe="/bin/cat" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
key="sshd_config"
type=CWD msg=audit(1364481363.243:24287): cwd="/home/shadowman"
type=PATH msg=audit(1364481363.243:24287): item=0 name="/etc/ssh/sshd_config" inode=409248
dev=fd:00 mode=0100600 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:etc_t:s0
nametype=NORMAL cap_fp=none cap_fi=none cap_fe=0 cap_fver=0
type=PROCTITLE msg=audit(1364481363.243:24287) :
proctitle=636174002F6574632F7373682F737368645F636F6E666967

上記のイベントは 4 つのレコードで構成されており、タイムスタンプとシリアル番号を共有します。レ
コードは、常に type= で始まります。各レコードは、スペースまたはコンマで区切られた複数の名前と
値のペア (name=value) で構成されます。上記のイベントの詳細な分析は以下のようになります。

1 つ目のレコード

type=SYSCALL

type フィールドには、レコードのタイプが記載されます。この例の SYSCALL 値は、カーネルへの
システムコールによりこれが記録されたことを示しています。

第11章 システムの監査

169

msg=audit(1364481363.243:24287):

msg フィールドには以下が記録されます。

audit(time_stamp:ID) 形式のレコードのタイムスタンプおよび一意の ID。複数のレコード
が同じ Audit イベントの一部として生成されている場合は、同じタイムスタンプおよび ID
を共有できます。タイムスタンプは Unix の時間形式です (1970 年 1 月 1 日 00:00:00 UTC
からの秒数)。

カーネル空間およびユーザー空間のアプリケーションが提供するさまざまなイベント固有の
name=value ペア。

arch=c000003e

arch フィールドには、システムの CPU アーキテクチャーに関する情報が含まれます。c000003e の
値は 16 進数表記で記録されます。ausearch コマンドで Audit レコードを検索する場合は、 -i オプ
ションまたは --interpret オプションを使用して、16 進数の値を人間が判読できる値に自動的に変換
します。c000003e 値は x86_64 として解釈されます。

syscall=2

syscall フィールドは、カーネルに送信されたシステムコールのタイプを記録します。値が 2 の場合
は、/usr/include/asm/unistd_64.h ファイルに、人間が判読できる値を指定できます。この場合の 2
は、オープン なシステムコールです。ausyscall ユーティリティーでは、システムコール番号を、
人間が判読できる値に変換できます。ausyscall --dump コマンドを使用して、システムコールのリ
ストとその数字を表示します。詳細は、ausyscall(8) の man ページを参照してください。

success=no

success フィールドは、その特定のイベントで記録されたシステムコールが成功したかどうかを記
録します。この例では、呼び出しが成功しませんでした。

exit=-13

exit フィールドには、システムコールが返した終了コードを指定する値が含まれます。この値は、
システムコールにより異なります。次のコマンドを実行すると、この値を人間が判読可能なものに
変換できます。

ausearch --interpret --exit -13

この例では、監査ログに、終了コード -13 で失敗したイベントが含まれていることが前提となりま
す。

a0=7fffd19c5592, a1=0, a2=7fffd19c5592, a3=a

a0 から a3 までのフィールドは、このイベントにおけるシステムコールの最初の 4 つの引数を、16
進法で記録します。この引数は、使用されるシステムコールにより異なります。ausearch ユーティ
リティーで解釈できます。

items=1

items フィールドには、システムコールのレコードに続く PATH 補助レコードの数が含まれます。

ppid=2686

ppid フィールドは、親プロセス ID (PPID) を記録します。この例では、 2686 は、bash などの親プ
ロセスの PPID です。

pid=3538

pid フィールドは、プロセス ID (PID) を記録します。この例の 3538 は cat プロセスの PID です。

auid=1000

auid フィールドには、loginuid である Audit ユーザー ID が記録されます。この ID は、ログイン時

Red Hat Enterprise Linux 9 セキュリティーの強化

170

auid フィールドには、loginuid である Audit ユーザー ID が記録されます。この ID は、ログイン時
にユーザーに割り当てられ、ユーザーの ID が変更した後でもすべてのプロセスに引き継がれます
(たとえば、su - john コマンドでユーザーアカウントを切り替えた場合)。

uid=1000

uid フィールドは、解析しているプロセスを開始したユーザーのユーザー ID を記録します。ユー
ザー ID は、ausearch -i --uid UID のコマンドを使用するとユーザー名に変換されます。

gid=1000

gid フィールドは、解析しているプロセスを開始したユーザーのグループ ID を記録します。

euid=1000

euid フィールドは、解析しているプロセスを開始したユーザーの実効ユーザー ID を記録します。

suid=1000

suid フィールドは、解析しているプロセスを開始したユーザーのセットユーザー ID を記録します。

fsuid=1000

fsuid フィールドは、解析しているプロセスを開始したユーザーのファイルシステムユーザー ID を
記録します。

egid=1000

egid フィールドは、解析しているプロセスを開始したユーザーの実効グループ ID を記録します。

sgid=1000

sgid フィールドは、解析しているプロセスを開始したユーザーのセットグループ ID を記録します。

fsgid=1000

fsgid フィールドは、解析しているプロセスを開始したユーザーのファイルシステムグループ ID を
記録します。

tty=pts0

tty フィールドは、解析しているプロセスが開始したターミナルを記録します。

ses=1

ses フィールドは、解析しているプロセスが開始したセッションのセッション ID を記録します。

comm="cat"

comm フィールドは、解析しているプロセスを開始するために使用したコマンドのコマンドライン
名を記録します。この例では、この Audit イベントを発生するのに、cat コマンドが使用されまし
た。

exe="/bin/cat"

exe フィールドは、解析しているプロセスを開始するために使用した実行可能ファイルへのパスを
記録します。

subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

subj フィールドは、解析しているプロセスの実行時にラベル付けされた SELinux コンテンツを記録
します。

key="sshd_config"

key フィールドは、Audit ログでこのイベントを生成したルールに関連付けられている管理者による
定義の文字列を記録します。

2 つ目のレコード

type=CWD

2 つ目のレコードの type フィールドの値は、CWD (現在の作業ディレクトリー) です。このタイプ

第11章 システムの監査

171

2 つ目のレコードの type フィールドの値は、CWD (現在の作業ディレクトリー) です。このタイプ
は、最初のレコードで指定されたシステムコールを開始したプロセスの作業ディレクトリーを記録
するために使用されます。
この記録の目的は、相対パスが関連する PATH 記録に保存された場合に、現行プロセスの位置を記
録することにあります。これにより、絶対パスを再構築できます。

msg=audit(1364481363.243:24287)

msg フィールドは、最初のレコードと同じタイムスタンプと ID の値を保持します。タイムスタンプ
は Unix の時間形式です (1970 年 1 月 1 日 00:00:00 UTC からの秒数)。

cwd="/home/user_name"

cwd フィールドは、システムコールが開始したディレクトリーのパスになります。

3 つ目のレコード

type=PATH

3 つ目のレコードでは、type フィールドの値は PATH です。Audit イベントには、システムコール
に引数として渡されたすべてのパスに PATH タイプのレコードが含まれます。この Audit イベント
では、1 つのパス (/etc/ssh/sshd_config) のみが引数として使用されます。

msg=audit(1364481363.243:24287):

msg フィールドは、1 つ目と 2 つ目のレコードと同じタイムスタンプと ID になります。

item=0

item フィールドは、SYSCALL タイプレコードで参照されているアイテムの合計数のうち、現在の
レコードがどのアイテムであるかを示します。この数はゼロベースで、0 は最初の項目であることを
示します。

name="/etc/ssh/sshd_config"

name フィールドは、システムコールに引数として渡されたファイルまたはディレクトリーのパス
を記録します。この場合、これは /etc/ssh/sshd_config ファイルです。

inode=409248

inode フィールドには、このイベントで記録されたファイルまたはディレクトリーに関連する inode
番号が含まれます。以下のコマンドは、inode 番号 409248 に関連するファイルまたはディレクト
リーを表示します。

find / -inum 409248 -print
/etc/ssh/sshd_config

dev=fd:00

dev フィールドは、このイベントで記録されたファイルまたはディレクトリーを含むデバイスのマ
イナーおよびメジャーの ID を指定します。ここでは、値が /dev/fd/0 デバイスを示しています。

mode=0100600

mode フィールドは、ファイルまたはディレクトリーのパーミッションを、st_mode フィールドの
stat コマンドが返す数字表記で記録します。詳細は、stat(2) の man ページを参照してください。こ
の場合、0100600 は -rw------- として解釈されます。つまり、root ユーザーにの
み、/etc/ssh/sshd_config ファイルに読み取りおよび書き込みのパーミッションが付与されます。

ouid=0

ouid フィールドは、オブジェクトの所有者のユーザー ID を記録します。

ogid=0

Red Hat Enterprise Linux 9 セキュリティーの強化

172

ogid フィールドは、オブジェクトの所有者のグループ ID を記録します。

rdev=00:00

rdev フィールドには、特定ファイルにのみ記録されたデバイス識別子が含まれます。ここでは、記
録されたファイルは通常のファイルであるため、このフィールドは使用されません。

obj=system_u:object_r:etc_t:s0

obj フィールドは、実行時に、記録されているファイルまたはディレクトリーにラベル付けする
SELinux コンテキストを記録します。

nametype=NORMAL

nametype フィールドは、指定したシステムコールのコンテキストで各パスのレコード操作の目的
を記録します。

cap_fp=none

cap_fp フィールドは、ファイルまたはディレクトリーオブジェクトで許可されたファイルシステム
ベースの機能の設定に関連するデータを記録します。

cap_fi=none

cap_fi フィールドは、ファイルまたはディレクトリーオブジェクトの継承されたファイルシステム
ベースの機能の設定に関するデータを記録します。

cap_fe=0

cap_fe フィールドは、ファイルまたはディレクトリーオブジェクトのファイルシステムベースの機
能の有効ビットの設定を記録します。

cap_fver=0

cap_fver フィールドは、ファイルまたはディレクトリーオブジェクトのファイルシステムベースの
機能のバージョンを記録します。

4 つ目のレコード

type=PROCTITLE

type フィールドには、レコードのタイプが記載されます。この例の PROCTITLE 値は、このレコー
ドにより、カーネルへのシステムコールにより発生するこの監査イベントを発生させた完全なコマ
ンドラインを提供することが指定されることを示しています。

proctitle=636174002F6574632F7373682F737368645F636F6E666967

proctitle フィールドは、解析しているプロセスを開始するために使用したコマンドのコマンドライ
ンを記録します。このフィールドは 16 進数の表記で記録され、Audit ログパーサーに影響が及ばな
いようにします。このテキストは、この Audit イベントを開始したコマンドに復号しま
す。ausearch コマンドで Audit レコードを検索する場合は、 -i オプションまたは --interpret オプ
ションを使用して、16 進数の値を人間が判読できる値に自動的に変換しま
す。636174002F6574632F7373682F737368645F636F6E666967 値は、cat /etc/ssh/sshd_config
として解釈されます。

11.6. AUDITCTL で AUDIT ルールを定義および実行

Audit システムは、ログファイルで取得するものを定義する一連のルールで動作します。Audit ルール
は、auditctl ユーティリティーを使用してコマンドラインで設定するか、/etc/audit/rules.d/ ディレクト
リーで設定できます。

auditctl コマンドを使用すると、Audit システムの基本的な機能を制御し、どの Audit イベントをログ
に記録するかを指定するルールを定義できます。

第11章 システムの監査

173

ファイルシステムのルールの例

1. すべての書き込みアクセスと /etc/passwd ファイルのすべての属性変更をログに記録するルー
ルを定義するには、次のコマンドを実行します。

auditctl -w /etc/passwd -p wa -k passwd_changes

2. すべての書き込みアクセスと、/etc/selinux/ ディレクトリー内の全ファイルへのアクセスと、
その属性変更をすべてログに記録するルールを定義するには、次のコマンドを実行します。

auditctl -w /etc/selinux/ -p wa -k selinux_changes

システムロールのルールの例

1. システムで 64 ビットアーキテクチャーが使用され、システムコールの adjtimex または
settimeofday がプログラムにより使用されるたびにログエントリーを作成するルールを定義す
るには、次のコマンドを実行します。

auditctl -a always,exit -F arch=b64 -S adjtimex -S settimeofday -k time_change

2. ユーザー ID が 1000 以上のシステムユーザーがファイルを削除したりファイル名を変更するた
びに、ログエントリーを作成するルールを定義するには、次のコマンドを実行します。

auditctl -a always,exit -S unlink -S unlinkat -S rename -S renameat -F auid>=1000 -F
auid!=4294967295 -k delete

-F auid!=4294967295 オプションが、ログイン UID が設定されていないユーザーを除外するた
めに使用されています。

実行可能なファイルルール

/bin/id プログラムのすべての実行をログに取得するルールを定義するには、次のコマンドを実行しま
す。

auditctl -a always,exit -F exe=/bin/id -F arch=b64 -S execve -k execution_bin_id

関連情報

システム上の auditctl(8) man ページ

11.7. 永続的な AUDIT ルールの定義

再起動後も持続するように Audit ルールを定義するには、/etc/audit/rules.d/audit.rules ファイルに直
接追加するか、/etc/audit/rules.d/ ディレクトリーにあるルールを読み込む augenrules プログラムを
使用する必要があります。

auditd サービスを開始すると、/etc/audit/audit.rules ファイルが生成されることに注意してくださ
い。/etc/audit/rules.d/ のファイルは、同じ auditctl コマンドライン構文を使用してルールを指定しま
す。ハッシュ記号 (#) に続く空の行とテキストは無視されます。

また、auditctl コマンドは、以下のように -R オプションを使用して指定したファイルからルールを読
み込むのに使用することもできます。

Red Hat Enterprise Linux 9 セキュリティーの強化

174

auditctl -R /usr/share/audit/sample-rules/30-stig.rules

11.8. 標準に準拠するための事前設定された監査ルールファイル

特定の認定標準 (OSPP、PCI DSS、STIG など) に準拠するように Audit を設定するには、audit パッ
ケージとともにインストールされる事前設定済みルールファイルのセットを出発点として使用できま
す。サンプルルールは、/usr/share/audit/sample-rules ディレクトリーにあります。

警告

セキュリティー標準は動的であり、変更される可能性があるため、sample-rules
ディレクトリー内の Audit サンプルルールは網羅的なものではなく、最新のもので
もありません。これらのルールは、Audit ルールがどのように構造化および記述さ
れるかを示すためにのみ提供されています。これらは、最新のセキュリティー標準
に即時に準拠することを保証するものではありません。特定のセキュリティーガイ
ドラインに従ってシステムを最新のセキュリティー標準に準拠させるには、SCAP
ベースのセキュリティーコンプライアンスツール を使用してください。

30-nispom.rules

「National Industrial Security Program Operating Manual」の「Information System Security」の章
で指定されている要件を満たす監査ルール設定

30-ospp-v42*.rules

OSPP (Protection Profile for General Purpose Operating Systems) プロファイルバージョン 4.2 に
定義されている要件を満たす監査ルール設定

30-pci-dss-v31.rules

PCI DSS (Payment Card Industry Data Security Standard) v3.1 に設定されている要件を満たす監査
ルール設定

30-stig.rules

Security Technical Implementation Guides (STIG) で設定されている要件を満たす監査ルール設定

上記の設定ファイルを使用するには、/etc/audit/rules.d/ ディレクトリーにコピーして、以下のように
augenrules --load コマンドを使用します。

cd /usr/share/audit/sample-rules/
cp 10-base-config.rules 30-stig.rules 31-privileged.rules 99-finalize.rules /etc/audit/rules.d/
augenrules --load

番号指定スキームを使用して監査ルールを順序付けできます。詳細は、/usr/share/audit/sample-
rules/README-rules ファイルを参照してください。

関連情報

システム上の audit.rules(7) man ページ

11.9. 永続ルールを定義する AUGENRULES の使用



第11章 システムの監査

175

augenrules スクリプトは、/etc/audit/rules.d/ ディレクトリーにあるルールを読み込み、audit.rules
ファイルにコンパイルします。このスクリプトは、自然なソート順序の特定の順番で、.rules で終わる
すべてのファイルを処理します。このディレクトリーのファイルは、以下の意味を持つグループに分類
されます。

10

カーネルと auditctl の設定

20

一般的なルールと一致する可能性があるが、別の一致が必要なルール

30

主なルール

40

オプションのルール

50

サーバー固有のルール

70

システムのローカルルール

90

ファイナライズ (イミュータブル)

ルールは、すべてを一度に使用することは意図されていません。ルールは考慮すべきポリシーの一部で
あり、個々のファイルは /etc/audit/rules.d/ にコピーされます。たとえば、STIG 設定でシステムを設定
し、10-base-config、30-stig、31-privileged、99-finalize の各ルールをコピーします。

/etc/audit/rules.d/ ディレクトリーにルールを置いたら、--load ディレクティブで augenrules スクリ
プトを実行することでそれを読み込みます。

augenrules --load
/sbin/augenrules: No change
No rules
enabled 1
failure 1
pid 742
rate_limit 0
...

関連情報

システム上の audit.rules(8) および augenrules(8) man ページ

11.10. AUGENRULES の無効化

augenrules ユーティリティーを無効にするには、以下の手順に従います。これにより、Audit が
/etc/audit/audit.rules ファイルで定義されたルールを使用するように切り替えます。

手順

1. /usr/lib/systemd/system/auditd.service ファイルを /etc/systemd/system/ ディレクトリーに
コピーします。

Red Hat Enterprise Linux 9 セキュリティーの強化

176

cp -f /usr/lib/systemd/system/auditd.service /etc/systemd/system/

2. 任意のテキストエディターで /etc/systemd/system/auditd.service ファイルを編集します。以
下に例を示します。

vi /etc/systemd/system/auditd.service

3. augenrules を含む行をコメントアウトし、auditctl -R コマンドを含む行のコメント設定を解
除します。

#ExecStartPost=-/sbin/augenrules --load
ExecStartPost=-/sbin/auditctl -R /etc/audit/audit.rules

4. systemd デーモンを再読み込みして、auditd.service ファイルの変更を取得します。

systemctl daemon-reload

5. auditd サービスを再起動します。

service auditd restart

関連情報

システム上の augenrules(8) および audit.rules(8) man ページ

Auditd service restart overrides changes made to /etc/audit/audit.rules (Red Hat ナレッジベー
ス)

11.11. ソフトウェアの更新を監視するための AUDIT の設定

事前設定されたルール 44-installers.rules を使用して、ソフトウェアをインストールする次のユーティ
リティーを監視するように Audit を設定できます。

dnf [2]

yum

pip

npm

cpan

gem

luarocks

rpm ユーティリティーを監視するには、rpm-plugin-audit パッケージをインストールします。その
後、Audit は、パッケージをインストールまたは更新するときに SOFTWARE_UPDATE イベントを生
成します。これらのイベントをリスト表示するには、コマンドラインで ausearch -m
SOFTWARE_UPDATE と入力します。

注記

第11章 システムの監査

177

https://access.redhat.com/solutions/1505033

注記

事前設定されたルールファイルは、ppc64le および aarch64 アーキテクチャーを備えた
システムでは使用できません。

前提条件

auditd が、環境を保護するための auditd の設定で提供される設定に従って定義されている。

手順

1. 事前設定されたルールファイル 44-installers.rules を /usr/share/audit/sample-rules/ ディレ
クトリーから /etc/audit/rules.d/ ディレクトリーにコピーします。

cp /usr/share/audit/sample-rules/44-installers.rules /etc/audit/rules.d/

2. 監査ルールを読み込みます。

augenrules --load

検証

1. 読み込まれたルールをリスト表示します。

auditctl -l
-p x-w /usr/bin/dnf-3 -k software-installer
-p x-w /usr/bin/yum -k software-installer
-p x-w /usr/bin/pip -k software-installer
-p x-w /usr/bin/npm -k software-installer
-p x-w /usr/bin/cpan -k software-installer
-p x-w /usr/bin/gem -k software-installer
-p x-w /usr/bin/luarocks -k software-installer

2. インストールを実行します。以下に例を示します

dnf reinstall -y vim-enhanced

3. Audit ログで最近のインストールイベントを検索します。次に例を示します。

ausearch -ts recent -k software-installer
––––
time->Thu Dec 16 10:33:46 2021
type=PROCTITLE msg=audit(1639668826.074:298):
proctitle=2F7573722F6C6962657865632F706C6174666F726D2D707974686F6E002F75737
22F62696E2F646E66007265696E7374616C6C002D790076696D2D656E68616E636564
type=PATH msg=audit(1639668826.074:298): item=2 name="/lib64/ld-linux-x86-64.so.2"
inode=10092 dev=fd:01 mode=0100755 ouid=0 ogid=0 rdev=00:00
obj=system_u:object_r:ld_so_t:s0 nametype=NORMAL cap_fp=0 cap_fi=0 cap_fe=0
cap_fver=0 cap_frootid=0
type=PATH msg=audit(1639668826.074:298): item=1 name="/usr/libexec/platform-python"
inode=4618433 dev=fd:01 mode=0100755 ouid=0 ogid=0 rdev=00:00
obj=system_u:object_r:bin_t:s0 nametype=NORMAL cap_fp=0 cap_fi=0 cap_fe=0
cap_fver=0 cap_frootid=0
type=PATH msg=audit(1639668826.074:298): item=0 name="/usr/bin/dnf" inode=6886099

Red Hat Enterprise Linux 9 セキュリティーの強化

178

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/security_hardening/auditing-the-system_security-hardening#configuring-auditd-for-a-secure-environment_auditing-the-system

dev=fd:01 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:rpm_exec_t:s0
nametype=NORMAL cap_fp=0 cap_fi=0 cap_fe=0 cap_fver=0 cap_frootid=0
type=CWD msg=audit(1639668826.074:298): cwd="/root"
type=EXECVE msg=audit(1639668826.074:298): argc=5 a0="/usr/libexec/platform-python"
a1="/usr/bin/dnf" a2="reinstall" a3="-y" a4="vim-enhanced"
type=SYSCALL msg=audit(1639668826.074:298): arch=c000003e syscall=59 success=yes
exit=0 a0=55c437f22b20 a1=55c437f2c9d0 a2=55c437f2aeb0 a3=8 items=3 ppid=5256
pid=5375 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=3
comm="dnf" exe="/usr/libexec/platform-python3.6"
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key="software-installer"

11.12. AUDIT によるユーザーログイン時刻の監視

特定の時刻にログインしたユーザーを監視するために、特別な方法で Audit を設定する必要はありませ
ん。同じ情報を表示する異なる方法を提供する ausearch または aureport ツールを使用できます。

前提条件

auditd が、環境を保護するための auditd の設定で提供される設定に従って定義されている。

手順

ユーザーのログイン時刻を表示するには、次のいずれかのコマンドを使用します。

監査ログで USER_LOGIN メッセージタイプを検索します。

ausearch -m USER_LOGIN -ts '12/02/2020' '18:00:00' -sv no
time->Mon Nov 22 07:33:22 2021
type=USER_LOGIN msg=audit(1637584402.416:92): pid=1939 uid=0 auid=4294967295
ses=4294967295 subj=system_u:system_r:sshd_t:s0-s0:c0.c1023 msg='op=login acct="
(unknown)" exe="/usr/sbin/sshd" hostname=? addr=10.37.128.108 terminal=ssh res=failed'

-ts オプションを使用して日付と時刻を指定できます。このオプションを使用しない場
合、ausearch は今日の結果を提供し、時刻を省略すると、ausearch は午前 0 時からの結
果を提供します。

成功したログイン試行を除外するには -sv yes オプションを、失敗したログイン試行を除
外するには -sv no を、それぞれ使用することができます。

ausearch コマンドの生の出力を aulast ユーティリティーにパイプで渡します。このユーティ
リティーは、last コマンドの出力と同様の形式で出力を表示します。以下に例を示します。

ausearch --raw | aulast --stdin
root ssh 10.37.128.108 Mon Nov 22 07:33 - 07:33 (00:00)
root ssh 10.37.128.108 Mon Nov 22 07:33 - 07:33 (00:00)
root ssh 10.22.16.106 Mon Nov 22 07:40 - 07:40 (00:00)
reboot system boot 4.18.0-348.6.el8 Mon Nov 22 07:33

--login -i オプションを指定して aureport コマンドを使用し、ログインイベントのリストを表
示します。

aureport --login -i

Login Report

第11章 システムの監査

179

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/security_hardening/auditing-the-system_security-hardening#configuring-auditd-for-a-secure-environment_auditing-the-system

==
date time auid host term exe success event
==
1. 11/16/2021 13:11:30 root 10.40.192.190 ssh /usr/sbin/sshd yes 6920
2. 11/16/2021 13:11:31 root 10.40.192.190 ssh /usr/sbin/sshd yes 6925
3. 11/16/2021 13:11:31 root 10.40.192.190 ssh /usr/sbin/sshd yes 6930
4. 11/16/2021 13:11:31 root 10.40.192.190 ssh /usr/sbin/sshd yes 6935
5. 11/16/2021 13:11:33 root 10.40.192.190 ssh /usr/sbin/sshd yes 6940
6. 11/16/2021 13:11:33 root 10.40.192.190 /dev/pts/0 /usr/sbin/sshd yes 6945

関連情報

システム上の ausearch(8)、aulast(8)、aureport(8) man ページ

11.13. 関連情報

RHEL Audit System Reference (Red Hat ナレッジベース)

Auditd execution options in a container (Red Hat ナレッジベース)

Linux Audit Documentation Project のページ (Github.com)

audit パッケージによって提供される /usr/share/doc/audit/ ディレクトリー内のドキュメント

システム上の
auditd(8)、auditctl(8)、ausearch(8)、audit.rules(7)、audispd.conf(5)、audispd(8)、auditd.
conf(5)、ausearch-
expression(5)、aulast(8)、aulastlog(8)、aureport(8)、ausyscall(8)、autrace(8)、および
auvirt(8) man ページ

[2] dnf は RHEL ではシンボリックリンクであるため、dnf Audit ルールのパスにはシンボリックリンクのターゲッ
トが含まれている必要があります。正しい Audit イベントを受信するには、path=/usr/bin/dnf パスを
/usr/bin/dnf-3 に変更して、44-installers.rules ファイルを変更します。

Red Hat Enterprise Linux 9 セキュリティーの強化

180

https://access.redhat.com/articles/4409591
https://access.redhat.com/articles/4494341
https://github.com/linux-audit/audit-documentation/wiki

第12章 FAPOLICYD を使用したアプリケーションの拒否および許
可

ルールセットに基づいてアプリケーションの実行を許可または拒否するポリシーを設定して有効にする
ことで、効率的に悪意のある一般的に知られていないソフトウェアや、害を及ぼす可能性のあるソフト
ウェアの実行を回避できます。

12.1. FAPOLICYD の概要

fapolicyd ソフトウェアフレームワークは、ユーザー定義のポリシーに基づいてアプリケーションの実
行を制御します。このフレームワークは、最適な方法で、システム上で信頼されていないアプリケー
ションや悪意のあるアプリケーションを実行されないようにします。

fapolicyd フレームワークは、以下のコンテンツを提供します。

fapolicyd サービス

fapolicyd コマンドラインユーティリティー

fapolicyd RPM プラグイン

fapolicyd ルール言語

fagenrules スクリプト

管理者は、パス、ハッシュ、MIME タイプ、信頼に基づいて、すべてのアプリケーションに実行ルール
allow および deny の両方を監査する定義できます。

fapolicyd フレームワークにより、信頼の概念が導入されます。アプリケーションは、システムパッ
ケージマネージャーによって適切にインストールされると信頼されるため、システムの RPM データ
ベースに登録されます。fapolicyd デーモンは、RPM データベースを信頼できるバイナリーとスクリプ
トのリストとして使用します。fapolicyd RPM プラグインは、DNF Package Manager または RPM
Package Manager のいずれかで処理されるシステム更新をすべて登録するようになりました。プラグイ
ンは、このデータベースの変更を fapolicyd デーモンに通知します。アプリケーションを追加する他の
方法では、カスタムルールを作成し、fapolicyd サービスを再起動する必要があります。

fapolicyd サービス設定は、次の構造を持つ /etc/fapolicyd/ ディレクトリーにあります。

/etc/fapolicyd/fapolicyd.trust ファイルには、信頼できるファイルのリストが含まれていま
す。/etc/fapolicyd/trust.d/ ディレクトリーで複数の信頼ファイルを使用することもできます。

allow および deny の実行ルールを含むファイルの /etc/fapolicyd/rules.d/ ディレクト
リー。fagenrules スクリプトは、これらのコンポーネントルールファイルを
/etc/fapolicyd/compiled.rules ファイルにマージします。

fapolicyd.conf ファイルには、デーモンの設定オプションが含まれています。このファイル
は、主にパフォーマンス調整の目的で役に立ちます。

/etc/fapolicyd/rules.d/ のルールは、それぞれ異なるポリシーゴールを表す複数のファイルで整理され
ます。対応するファイル名の先頭の数字によって、/etc/fapolicyd/compiled.rules での順序が決まりま
す。

10

言語ルール

第12章 FAPOLICYD を使用したアプリケーションの拒否および許可

181

20

dracut 関連のルール

21

アップデーターのルール

30

パターン

40

ELF ルール

41

共有オブジェクトルール

42

信頼された ELF ルール

70

信頼された言語ルール

72

シェルルール

90

実行拒否ルール

95

オープン許可ルール

fapolicyd 整合性チェックには、次のいずれかの方法を使用できます。

File-size チェック

SHA-256 ハッシュの比較

Integrity Measurement Architecture (IMA) サブシステム

デフォルトでは、fapolicyd は整合性チェックを行いません。ファイルサイズに基づいた整合性チェッ
クは高速ですが、攻撃者はファイルの内容を置き換え、そのバイトサイズを保持することができます。
SHA-256 チェックサムの計算とチェックがより安全ですが、システムのパフォーマンスに影響しま
す。fapolicyd.conf の integrity = ima オプションでは、実行可能ファイルを含むすべてのファイルシス
テムでファイル拡張属性 (xattr とも呼ばれます) のサポートが必要です。

関連情報

fapolicyd(8)、fapolicyd.rules(5)、fapolicyd.conf(5)、fapolicyd.trust(13)、fagenrules(8)、
および fapolicyd-cli(1) man ページ

カーネルの管理、監視、および更新 ドキュメントの カーネル整合性サブシステムによるセキュ
リティーの強化 の章

fapolicyd パッケージとともに /usr/share/doc/fapolicyd/ ディレクトリーにインストールされ
るドキュメントと /usr/share/fapolicyd/sample-rules/README-rules ファイル

12.2. FAPOLICYD のデプロイ

fapolicyd アプリケーションの許可リストフレームワークをデプロイする場合は、最初に permissive

Red Hat Enterprise Linux 9 セキュリティーの強化

182

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/
https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/enhancing-security-with-the-kernel-integrity-subsystem_managing-monitoring-and-updating-the-kernel

fapolicyd アプリケーションの許可リストフレームワークをデプロイする場合は、最初に permissive
モードで設定を最初に試すか、デフォルト設定でサービスを直接有効にできます。

手順

1. fapolicyd パッケージをインストールします。

dnf install fapolicyd

2. オプション: 最初に設定を試すには、モードを permissive に変更します。

a. 任意のテキストエディターで /etc/fapolicyd/fapolicyd.conf ファイルを開きます。以下に
例を示します。

vi /etc/fapolicyd/fapolicyd.conf

b. permissive オプションの値を 0 から 1 に変更し、ファイルを保存してエディターを終了し
ます。

permissive = 1

または、サービスを開始する前に fapolicyd --debug-deny --permissive コマンドを使用し
て設定をデバッグできます。詳細は、fapolicyd に関連する問題のトラブルシューティング
セクションを参照してください。

3. fapolicyd サービスを有効にして開始します。

systemctl enable --now fapolicyd

4. /etc/fapolicyd/fapolicyd.conf を使用して permissive モードを有効にした場合:

a. fapolicyd イベントを記録する Audit サービスを設定します。

auditctl -w /etc/fapolicyd/ -p wa -k fapolicyd_changes
service try-restart auditd

b. アプリケーションを使用します。

c. 監査ログで fanotify 拒否を確認します。以下に例を示します。

ausearch -ts recent -m fanotify

d. デバッグしたら、対応する値を permissive = 0 に戻して permissive モードを無効にし、
サービスを再起動します。

systemctl restart fapolicyd

検証

1. fapolicyd サービスが正しく実行されていることを確認します。

systemctl status fapolicyd
● fapolicyd.service - File Access Policy Daemon

第12章 FAPOLICYD を使用したアプリケーションの拒否および許可

183

 Loaded: loaded (/usr/lib/systemd/system/fapolicyd.service; enabled; preset: disabled)
 Active: active (running) since Tue 2024-10-08 05:53:50 EDT; 11s ago
…
Oct 08 05:53:51 machine1.example.com fapolicyd[4974]: Loading trust data from rpmdb
backend
Oct 08 05:53:51 machine1.example.com fapolicyd[4974]: Loading trust data from file
backend
Oct 08 05:53:51 machine1.example.com fapolicyd[4974]: Starting to listen for events

2. root 権限のないユーザーとしてログインし、以下のように fapolicyd が機能していることを確
認します。

$ cp /bin/ls /tmp
$ /tmp/ls
bash: /tmp/ls: Operation not permitted

12.3. 追加の信頼ソースを使用してファイルを信頼できるものとしてマーク
する

fapolicyd フレームワークは、RPM データベースに含まれるファイルを信頼します。対応するエント
リーを /etc/fapolicyd/fapolicyd.trust プレーンテキストファイルまたは /etc/fapolicyd/trust.d/ ディレ
クトリーに追加することにより、追加のファイルを信頼済みとしてマークできます。fapolicyd.trust ま
たは /etc/fapolicyd/trust.d 内のファイルは、テキストエディターを直接使用するか、fapolicyd-cli コ
マンドを使用して変更できます。

注記

fapolicyd.trust または trust.d/ を使用してファイルを信頼済みとしてマークすること
は、パフォーマンス上の理由から、カスタムの fapolicyd ルールを記述するよりも優れ
ています。

前提条件

fapolicyd フレームワークがシステムにデプロイされます。

手順

1. カスタムバイナリーを必要なディレクトリーにコピーします。以下に例を示します。

$ cp /bin/ls /tmp
$ /tmp/ls
bash: /tmp/ls: Operation not permitted

2. カスタムバイナリーを信頼済みとしてマークし、対応するエントリーを /etc/fapolicyd/trust.d/
の myapp ファイルに保存します。

fapolicyd-cli --file add /tmp/ls --trust-file myapp

--trust-file オプションをスキップすると、前のコマンドは対応する行を
/etc/fapolicyd/fapolicyd.trust に追加します。

ディレクトリー内のすべての既存ファイルを信頼済みとしてマークするには、--file オプ

Red Hat Enterprise Linux 9 セキュリティーの強化

184

ディレクトリー内のすべての既存ファイルを信頼済みとしてマークするには、--file オプ
ションの引数としてディレクトリーパスを指定します。たとえば、fapolicyd-cli --file
add/tmp/my_bin_dir/--trust-file myapp です。

3. fapolicyd データベースを更新します。

fapolicyd-cli --update

注記

信頼されたファイルまたはディレクトリーの内容を変更すると、それらのチェックサム
が変更されるため、fapolicyd はそれらを信頼済みと見なしなくなります。

新しいコンテンツを再び信頼できるようにするには、fapolicyd-cli --file update コマン
ドを使用してファイル信頼データベースを更新します。引数を何も指定しない場合、
データベース全体が更新されます。または、特定のファイルまたはディレクトリーへの
パスを指定できます。次に、fapolicyd-cli --update を使用してデータベースを更新しま
す。

検証

1. たとえば、カスタムバイナリーが実行できることを確認します。

$ /tmp/ls
ls

関連情報

fapolicyd.trust(13) man ページ

12.4. FAPOLICYD のカスタムの許可および拒否ルールの追加

fapolicyd パッケージのデフォルトのルールセットは、システム機能に影響しません。バイナリーやス
クリプトを標準以外のディレクトリーに保存する、または dnf または rpm インストーラーを使用せず
にアプリケーションを追加するなどのカスタムシナリオでは、追加のファイルを信頼済みとしてマーク
するか、新しいカスタムルールを追加する必要があります。

基本的なシナリオでは、信頼の追加ソースを使用してファイルを信頼済みとしてマークする ことを推奨
します。特定のユーザーおよびグループ ID に対してのみカスタムバイナリーの実行を許可するなど、
より高度なシナリオでは、新しいカスタムルールを /etc/fapolicyd/rules.d/ ディレクトリーに追加しま
す。

次の手順は、新しいルールを追加してカスタムバイナリーを許可する方法を示しています。

前提条件

fapolicyd フレームワークがシステムにデプロイされます。

手順

1. カスタムバイナリーを必要なディレクトリーにコピーします。以下に例を示します。

第12章 FAPOLICYD を使用したアプリケーションの拒否および許可

185

$ cp /bin/ls /tmp
$ /tmp/ls
bash: /tmp/ls: Operation not permitted

2. fapolicyd サービスを停止します。

systemctl stop fapolicyd

3. デバッグモードを使用して、対応するルールを識別します。fapolicyd --debug コマンドの出力
は冗長で、Ctrl+C を押すか、対応するプロセスを強制終了するだけで停止できるため、エラー
出力をファイルにリダイレクトします。この場合、--debug の代わりに --debug-deny オプ
ションを使用して、アクセス拒否のみに出力を制限できます。

fapolicyd --debug-deny 2> fapolicy.output &
[1] 51341

または、別の端末で fapolicyd デバッグモードを実行できます。

4. fapolicyd が拒否したコマンドを繰り返します。

$ /tmp/ls
bash: /tmp/ls: Operation not permitted

5. デバッグモードをフォアグラウンドで再開し、Ctrl+C を押して停止します。

fg
fapolicyd --debug 2> fapolicy.output
^C
...

または、fapolicyd デバッグモードのプロセスを強制終了します。

kill 51341

6. アプリケーションの実行を拒否するルールを見つけます。

cat fapolicy.output | grep 'deny_audit'
...
rule=13 dec=deny_audit perm=execute auid=0 pid=6855 exe=/usr/bin/bash : path=/tmp/ls
ftype=application/x-executable trust=0

7. カスタムバイナリーの実行を妨げたルールを含むファイルを見つけます。この場
合、deny_audit perm=execute ルールは 90-deny-execute.rules ファイルに属します。

ls /etc/fapolicyd/rules.d/
10-languages.rules 40-bad-elf.rules 72-shell.rules
20-dracut.rules 41-shared-obj.rules 90-deny-execute.rules
21-updaters.rules 42-trusted-elf.rules 95-allow-open.rules
30-patterns.rules 70-trusted-lang.rules

cat /etc/fapolicyd/rules.d/90-deny-execute.rules
Deny execution for anything untrusted

Red Hat Enterprise Linux 9 セキュリティーの強化

186

deny_audit perm=execute all : all

8. /etc/fapolicyd/rules.d/ ディレクトリー内のカスタムバイナリーの実行を拒否するルールを含む
ルールファイルよりも辞書順で 前にある ファイルに、新しい allow ルールを追加します。

touch /etc/fapolicyd/rules.d/80-myapps.rules
vi /etc/fapolicyd/rules.d/80-myapps.rules

以下のルールを 80-myapps.rules ファイルに挿入します。

allow perm=execute exe=/usr/bin/bash trust=1 : path=/tmp/ls ftype=application/x-executable
trust=0

または、/etc/fapolicyd/rules.d/ のルールファイルに次のルールを追加して、/tmp ディレクト
リー内のすべてのバイナリーの実行を許可することもできます。

allow perm=execute exe=/usr/bin/bash trust=1 : dir=/tmp/ trust=0

重要

指定したディレクトリーの下にあるすべてのディレクトリーに対してルールを再
帰的に有効にするには、ルール内の dir= パラメーターの値に末尾のスラッシュ
を追加します (上記の例の /tmp/)。

9. カスタムバイナリーのコンテンツの変更を防ぐには、SHA-256 チェックサムを使用して必要な
ルールを定義します。

$ sha256sum /tmp/ls
780b75c90b2d41ea41679fcb358c892b1251b68d1927c80fbc0d9d148b25e836 ls

ルールを以下の定義に変更します。

allow perm=execute exe=/usr/bin/bash trust=1 :
sha256hash=780b75c90b2d41ea41679fcb358c892b1251b68d1927c80fbc0d9d148b25e83
6

10. コンパイル済みのリストが /etc/fapolicyd/rules.d/ に設定されているルールと異なることを確
認し、/etc/fapolicyd/compiled.rules ファイルに保存されているリストを更新します。

fagenrules --check
/usr/sbin/fagenrules: Rules have changed and should be updated
fagenrules --load

11. カスタムルールが、実行を妨げたルールの前に fapolicyd ルールのリストにあることを確認し
ます。

fapolicyd-cli --list
...
13. allow perm=execute exe=/usr/bin/bash trust=1 : path=/tmp/ls ftype=application/x-

第12章 FAPOLICYD を使用したアプリケーションの拒否および許可

187

executable trust=0
14. deny_audit perm=execute all : all
...

12. fapolicyd サービスを開始します。

systemctl start fapolicyd

検証

1. たとえば、カスタムバイナリーが実行できることを確認します。

$ /tmp/ls
ls

関連情報

システム上の fapolicyd.rules(5) および fapolicyd-cli(1) man ページ

/usr/share/fapolicyd/sample-rules/README-rules ファイルの fapolicyd パッケージでインス
トールされるドキュメント。

12.5. FAPOLICYD 整合性チェックの有効化

デフォルトでは、fapolicyd は整合性チェックを実行しません。ファイルサイズまたは SHA-256 ハッ
シュのいずれかを比較して整合性チェックを実行するように fapolicyd を設定できます。Integrity
Measurement Architecture (IMA) サブシステムを使用して整合性チェックを設定することもできます。

前提条件

fapolicyd フレームワークがシステムにデプロイされます。

手順

1. 任意のテキストエディターで /etc/fapolicyd/fapolicyd.conf ファイルを開きます。以下に例を
示します。

vi /etc/fapolicyd/fapolicyd.conf

2. 整合性 オプションの値を none から sha256 に変更し、ファイルを保存してエディターを終了
します。

integrity = sha256

3. fapolicyd サービスを再起動します。

systemctl restart fapolicyd

検証

1. 検証に使用するファイルのバックアップを作成します。

Red Hat Enterprise Linux 9 セキュリティーの強化

188

cp /bin/more /bin/more.bak

2. /bin/more バイナリーの内容を変更します。

cat /bin/less > /bin/more

3. 変更したバイナリーを一般ユーザーとして使用します。

su example.user
$ /bin/more /etc/redhat-release
bash: /bin/more: Operation not permitted

4. 変更を元に戻します。

mv -f /bin/more.bak /bin/more

12.6. FAPOLICYD に関連する問題のトラブルシューティング

fapolicyd アプリケーションフレームワークは、最も一般的な問題のトラブルシューティングを行う
ツールを提供します。また、rpm コマンドでインストールされたアプリケーションを信頼データベース
に追加することもできます。

rpm を使用したアプリケーションのインストール

rpm コマンドを使用してアプリケーションをインストールする場合は、fapolicyd RPM データ
ベースを手動で更新する必要があります。

1. アプリケーション をインストールします。

rpm -i application.rpm

2. データベースを更新します。

fapolicyd-cli --update

この手順を飛ばすとシステムがフリーズする可能性があるため、再起動する必要がありま
す。

サービスのステータス

fapolicyd が正しく機能しない場合は、サービスステータスを確認します。

systemctl status fapolicyd

fapolicyd-cli チェックとリスト

--check-config、--check-watch_fs、および --check-trustdb オプションは、構文エラー、ま
だ監視されていないファイルシステム、およびファイルの不一致を見つけるのに役立ちます。
次に例を示します。

fapolicyd-cli --check-config
Daemon config is OK

第12章 FAPOLICYD を使用したアプリケーションの拒否および許可

189

fapolicyd-cli --check-trustdb
/etc/selinux/targeted/contexts/files/file_contexts miscompares: size sha256
/etc/selinux/targeted/policy/policy.31 miscompares: size sha256

--list オプションを使用して、ルールの現在のリストとその順序を確認します。

fapolicyd-cli --list
...
9. allow perm=execute all : trust=1
10. allow perm=open all : ftype=%languages trust=1
11. deny_audit perm=any all : ftype=%languages
12. allow perm=any all : ftype=text/x-shellscript
13. deny_audit perm=execute all : all
...

デバッグモード

デバッグモードは、一致したルール、データベースステータスなどに関する詳細情報を提供し
ます。fapolicyd をデバッグモードに切り替えるには、以下を行います。

1. fapolicyd サービスを停止します。

systemctl stop fapolicyd

2. デバッグモードを使用して、対応するルールを識別します。

fapolicyd --debug

fapolicyd --debug コマンドの出力は冗長であるため、エラー出力をファイルにリダイレク
トできます。

fapolicyd --debug 2> fapolicy.output

または、fapolicyd がアクセスを拒否した場合にのみ出力をエントリーに制限するには、--
debug-deny オプションを使用します。

fapolicyd --debug-deny

また、アプリケーションの実行を防止する Permissive モードを使用することもできます
が、一致した fapolicyd ルールのみが記録されます。

fapolicyd --debug-deny --permissive

fapolicyd データベースの削除

fapolicyd データベースに関連する問題を解決するには、データベースファイルを削除してくだ
さい。

systemctl stop fapolicyd
fapolicyd-cli --delete-db

Red Hat Enterprise Linux 9 セキュリティーの強化

190

警告

/var/lib/fapolicyd/ ディレクトリーを削除しないでください。fapolicyd フ
レームワークは、このディレクトリー内のデータベースファイルのみを自
動的に復元します。

fapolicyd データベースのダンプ

fapolicyd には、有効なすべての信頼ソースからのエントリーが含まれます。データベースをダ
ンプした後にエントリーを確認できます。

fapolicyd-cli --dump-db

アプリケーションパイプ

まれに、fapolicyd パイプファイルを削除するとロックアップが解決する場合があります。

rm -f /var/run/fapolicyd/fapolicyd.fifo

関連情報

システム上の fapolicyd-cli(1) man ページ

12.7. FAPOLICYD RHEL システムロールを使用してユーザーによる信頼できな
いコードの実行を防止する

fapolicyd RHEL システムロールを使用すると、 fapolicyd サービスのインストールと設定を自動化でき
ます。このロールを使用すると、RPM データベースや許可リストに指定されているアプリケーション
など、信頼できるアプリケーションのみをユーザーが実行できるようにサービスをリモートで設定でき
ます。さらに、サービスは許可されたアプリケーションを実行する前に整合性チェックを実行できま
す。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。



- name: Configuring fapolicyd
 hosts: managed-node-01.example.com

第12章 FAPOLICYD を使用したアプリケーションの拒否および許可

191

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

サンプル Playbook で指定されている設定は次のとおりです。

fapolicyd_setup_permissive: <true|false>

ポリシーの決定をカーネルに送信して適用することを有効または無効にします。デバッグお
よびテスト目的の場合、この変数を false に設定します。

fapolicyd_setup_integrity: <type_type>

整合性チェック方法を定義します。次のいずれかの値を設定できます。

none (デフォルト): 整合性チェックを無効にします。

size: サービスにより、許可されたアプリケーションのファイルサイズのみを比較しま
す。

ima: サービスにより、カーネルの Integrity Measurement Architecture (IMA) がファイ
ルの拡張属性に保存した SHA-256 ハッシュをチェックします。さらに、サイズチェッ
クも実行します。ロールは IMA カーネルサブシステムを設定しないことに注意してくだ
さい。このオプションを使用するには、IMA サブシステムを手動で設定する必要があり
ます。

sha256: サービスにより、許可されたアプリケーションの SHA-256 ハッシュを比較し
ます。

fapolicyd_setup_trust: <trust_backends>

信頼バックエンドのリストを定義します。file バックエンドを含める場合
は、fapolicyd_add_trusted_file リストで許可されている実行可能ファイルを指定します。

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.fapolicyd.README.md ファイルを参照してくだ
さい。

2. Playbook の構文を検証します。

$ ansible-playbook ~/playbook.yml --syntax-check

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

 tasks:
 - name: Allow only executables installed from RPM database and specific files
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.fapolicyd
 vars:
 fapolicyd_setup_permissive: false
 fapolicyd_setup_integrity: sha256
 fapolicyd_setup_trust: rpmdb,file
 fapolicyd_add_trusted_file:
 - <path_to_allowed_command>
 - <path_to_allowed_service>

Red Hat Enterprise Linux 9 セキュリティーの強化

192

検証

許可リストにないバイナリーアプリケーションをユーザーとして実行します。

$ ansible managed-node-01.example.com -m command -a 'su -c
"/bin/not_authorized_application " <user_name>'
bash: line 1: /bin/not_authorized_application: Operation not permitted non-zero return code

関連情報

/usr/share/ansible/roles/rhel-system-roles.fapolicyd/README.md ファイル

/usr/share/doc/rhel-system-roles/fapolicyd/ ディレクトリー

12.8. 関連情報

システム上の fapolicyd 関連の man ページ (man -k fapolicyd コマンドでリスト表示されるも
の)

FOSDEM 2020 fapolicyd プレゼンテーション

第12章 FAPOLICYD を使用したアプリケーションの拒否および許可

193

https://rsroka.fedorapeople.org/fapolicyd-fosdem.pdf

第13章 侵入型 USB デバイスに対するシステムの保護
USB デバイスには、スパイウェア、マルウェア、またはトロイの木馬が読み込まれ、データを盗んだ
り、システムを損傷する可能性があります。Red Hat Enterprise Linux 管理者は、USBGuard でこのよ
うな USB 攻撃を防ぐことができます。

13.1. USBGUARD

USBGuard ソフトウェアフレームワークを使用すると、カーネルの USB デバイス許可機能に基づいて
許可されたデバイスおよび禁止されているデバイスの基本リストを使用して、侵入型 USB デバイスか
らシステムを保護できます。

USBGuard フレームワークは、次を提供します。

動的対話およびポリシー強制向けの IPC (inter-process communication) インターフェイスを使
用したシステムサービスコンポーネント

実行中の usbguard システムサービスと対話するコマンドライン

USB デバイス許可ポリシーを記述するルール言語

共有ライブラリーに実装されたシステムサービスコンポーネントと対話する C++ API

usbguard システムサービス設定ファイル (/etc/usbguard/usbguard-daemon.conf) には、IPC イン
ターフェイスを使用するためのユーザーおよびグループを認可するオプションが含まれます。

重要

システムサービスは、USBGuard パブリック IPC インターフェイスを提供します。Red
Hat Enterprise Linux では、このインターフェイスへのアクセスはデフォルトで root ユー
ザーに限定されています。

IPC インターフェイスへのアクセスを制限するには、IPCAccessControlFiles オプショ
ン (推奨)、IPCAllowedUsers オプション、および IPCAllowedGroups オプションを設
定することを検討してください。

アクセス制御リスト (ACL) を未設定のままにしないでください。設定しないと、すべて
のローカルユーザーに IPC インターフェイスが公開され、USB デバイスの許可状態を操
作して USBGuard ポリシーを変更できるようになります。

13.2. USBGUARD のインストール

この手順を使用して、USBGuard フレームワークをインストールして開始します。

手順

1. usbguard パッケージをインストールします。

dnf install usbguard

2. 初期ルールセットを作成します。

usbguard generate-policy > /etc/usbguard/rules.conf

Red Hat Enterprise Linux 9 セキュリティーの強化

194

3. usbguard デーモンを起動し、システムの起動時に自動的に起動することを確認します。

systemctl enable --now usbguard

検証

1. usbguard サービスが実行中であることを確認します。

systemctl status usbguard
● usbguard.service - USBGuard daemon
 Loaded: loaded (/usr/lib/systemd/system/usbguard.service; enabled; vendor preset:
disabled)
 Active: active (running) since Thu 2019-11-07 09:44:07 CET; 3min 16s ago
 Docs: man:usbguard-daemon(8)
 Main PID: 6122 (usbguard-daemon)
 Tasks: 3 (limit: 11493)
 Memory: 1.2M
 CGroup: /system.slice/usbguard.service
 └─6122 /usr/sbin/usbguard-daemon -f -s -c /etc/usbguard/usbguard-daemon.conf

Nov 07 09:44:06 localhost.localdomain systemd[1]: Starting USBGuard daemon...
Nov 07 09:44:07 localhost.localdomain systemd[1]: Started USBGuard daemon.

2. USBGuard が認識する USB デバイスのリストを表示します。

usbguard list-devices
4: allow id 1d6b:0002 serial "0000:02:00.0" name "xHCI Host Controller" hash...

関連情報

usbguard(1) および usbguard-daemon.conf(5) の man ページ

13.3. CLI を使用した USB デバイスのブロックと許可

ターミナルで usbguard コマンドを使用すると、USB デバイスを許可およびブロックするように
USBGuard を設定できます。

前提条件

usbguard サービスがインストールされ、実行中である。

手順

1. USBGuard が認識する USB デバイスのリストを表示します。以下に例を示します。

usbguard list-devices
1: allow id 1d6b:0002 serial "0000:00:06.7" name "EHCI Host Controller" hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" parent-hash
"4PHGcaDKWtPjKDwYpIRG722cB9SlGz9l9Iea93+Gt9c=" via-port "usb1" with-interface
09:00:00
...
6: block id 1b1c:1ab1 serial "000024937962" name "Voyager" hash

第13章 侵入型 USB デバイスに対するシステムの保護

195

"CrXgiaWIf2bZAU+5WkzOE7y0rdSO82XMzubn7HDb95Q=" parent-hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" via-port "1-3" with-interface
08:06:50

2. デバイス <6> がシステムと対話することを許可します。

usbguard allow-device <6>

3. デバイス <6> の許可を解除し、デバイスを削除します。

usbguard reject-device <6>

4. デバイス <6> の許可を解除し、デバイスを保持します。

usbguard block-device <6>

注記

USBGuard では、block および reject は以下の意味で使用されます。

block

今はこのデバイスとやり取りしません。

reject

このデバイスは存在しないものとして無視します。

関連情報

システム上の usbguard(1) man ページ

usbguard --help コマンド

13.4. USB デバイスの永続的なブロックおよび許可

-p オプションを使用すると、USB デバイスを永続的にブロックおよび許可できます。これにより、デ
バイス固有のルールが現在のポリシーに追加されます。

前提条件

usbguard サービスがインストールされ、実行中である。

手順

1. usbguard デーモンがルールの書き込みを許可するように SELinux を設定します。

a. usbguard に関連する semanage ブール値を表示します。

semanage boolean -l | grep usbguard
usbguard_daemon_write_conf (off , off) Allow usbguard to daemon write conf
usbguard_daemon_write_rules (on , on) Allow usbguard to daemon write rules

b. 必要に応じて、usbguard_daemon_write_rules のブール値が無効になっている場合は、

Red Hat Enterprise Linux 9 セキュリティーの強化

196

b. 必要に応じて、usbguard_daemon_write_rules のブール値が無効になっている場合は、
有効にします。

semanage boolean -m --on usbguard_daemon_write_rules

2. USBGuard が認識する USB デバイスのリストを表示します。

usbguard list-devices
1: allow id 1d6b:0002 serial "0000:00:06.7" name "EHCI Host Controller" hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" parent-hash
"4PHGcaDKWtPjKDwYpIRG722cB9SlGz9l9Iea93+Gt9c=" via-port "usb1" with-interface
09:00:00
...
6: block id 1b1c:1ab1 serial "000024937962" name "Voyager" hash
"CrXgiaWIf2bZAU+5WkzOE7y0rdSO82XMzubn7HDb95Q=" parent-hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" via-port "1-3" with-interface
08:06:50

3. デバイス 6 がシステムと対話することを永続的に許可します。

usbguard allow-device 6 -p

4. デバイス 6 の許可を永続的に解除し、デバイスを削除します。

usbguard reject-device 6 -p

5. デバイス 6 の許可を永続的に解除し、デバイスを保持します。

usbguard block-device 6 -p

注記

USBGuard では、block および reject は以下の意味で使用されます。

block

今はこのデバイスとやり取りしません。

reject

このデバイスは存在しないものとして無視します。

検証

1. USBGuard ルールに加えた変更が含まれていることを確認します。

usbguard list-rules

関連情報

システム上の usbguard(1) man ページ

usbguard --help コマンドを使用してリスト表示される組み込みヘルプ。

第13章 侵入型 USB デバイスに対するシステムの保護

197

13.5. USB デバイス用のカスタムポリシーの作成

以下の手順では、シナリオの要件を反映する USB デバイス用のルールセットを作成する手順を説明し
ます。

前提条件

usbguard サービスがインストールされ、実行中である。

/etc/usbguard/rules.conf ファイルに、usbguard generate-policy コマンドによって生成され
た初期ルールセットが含まれている。

手順

1. 現在接続している USB デバイスを許可するポリシーを作成し、生成されたルールを rules.conf
ファイルに保存します。

usbguard generate-policy --no-hashes > ./rules.conf

--no-hashes オプションは、デバイスのハッシュ属性を生成しません。設定のハッシュ属性は
永続的ではない可能性があるため、回避してください。

2. 選択したテキストエディターで rules.conf ファイルを編集します。次に例を示します。

vi ./rules.conf

3. 必要に応じて、ルールを追加、削除、または編集します。たとえば、以下のルールを使用する
と、大容量ストレージインターフェイスが 1 つあるデバイスのみがシステムと対話できます。

allow with-interface equals { 08:*:* }

詳細なルール言語の説明とその他の例は、usbguard-rules.conf(5) の man ページを参照してく
ださい。

4. 更新したポリシーをインストールします。

install -m 0600 -o root -g root rules.conf /etc/usbguard/rules.conf

5. usbguard デーモンを再起動して、変更を適用します。

systemctl restart usbguard

検証

1. カスタムルールがアクティブポリシーにあることを確認します。以下に例を示します。

usbguard list-rules
...
4: allow with-interface 08:*:*
...

関連情報

Red Hat Enterprise Linux 9 セキュリティーの強化

198

システム上の usbguard-rules.conf(5) man ページ

13.6. USB デバイス用の構造化されたカスタムポリシーの作成

/etc/usbguard/rules.d/ ディレクトリー内の複数の .conf ファイルで、カスタムの USBGuard ポリシー
を整理できます。usbguard-daemon により、メインの rules.conf ファイルとディレクトリー内の
.conf ファイルがアルファベット順に結合されます。

前提条件

usbguard サービスがインストールされ、実行中である。

手順

1. 現在接続している USB デバイスを許可するポリシーを作成し、生成されたルールを、新しい
.conf ファイル (例: policy.conf) ファイルに保存します。

usbguard generate-policy --no-hashes > ./policy.conf

--no-hashes オプションは、デバイスのハッシュ属性を生成しません。設定のハッシュ属性は
永続的ではない可能性があるため、回避してください。

2. 任意のテキストエディターで policy.conf ファイルを編集します。次に例を示します。

vi ./policy.conf
...
allow id 04f2:0833 serial "" name "USB Keyboard" via-port "7-2" with-interface { 03:01:01
03:00:00 } with-connect-type "unknown"
...

3. 選択した行を別の .conf ファイルに移動します。

注記

ファイル名の先頭にある 2 つの数字は、デーモンが設定ファイルを読み込む順序
を指定します。

たとえば、キーボードのルールを新規 .conf ファイルにコピーします。

grep "USB Keyboard" ./policy.conf > ./10keyboards.conf

4. 新しいポリシーを /etc/usbguard/rules.d/ ディレクトリーにインストールします。

install -m 0600 -o root -g root 10keyboards.conf /etc/usbguard/rules.d/10keyboards.conf

5. 残りの行をメインの rules.conf ファイルに移動します。

grep -v "USB Keyboard" ./policy.conf > ./rules.conf

6. 残りのルールをインストールします。

第13章 侵入型 USB デバイスに対するシステムの保護

199

install -m 0600 -o root -g root rules.conf /etc/usbguard/rules.conf

7. usbguard デーモンを再起動して、変更を適用します。

systemctl restart usbguard

検証

1. アクティブな USBGuard ルールをすべて表示します。

usbguard list-rules
...
15: allow id 04f2:0833 serial "" name "USB Keyboard" hash
"kxM/iddRe/WSCocgiuQlVs6Dn0VEza7KiHoDeTz0fyg=" parent-hash
"2i6ZBJfTl5BakXF7Gba84/Cp1gslnNc1DM6vWQpie3s=" via-port "7-2" with-interface {
03:01:01 03:00:00 } with-connect-type "unknown"
...

2. rules.conf ファイルと、/etc/usbguard/rules.d/ ディレクトリー内の .conf ファイルの内容をす
べて表示します。

cat /etc/usbguard/rules.conf /etc/usbguard/rules.d/*.conf

3. アクティブなルールに、ファイルのすべてのルールが正しく、正しい順序で含まれていること
を確認します。

関連情報

システム上の usbguard-rules.conf(5) man ページ

13.7. USBGUARD IPC インターフェイスを使用するユーザーおよびグルー
プの許可

この手順を使用して、特定のユーザーまたはグループが USBGuard のパブリック IPC インターフェイ
スを使用するように認可します。デフォルトでは、root ユーザーだけがこのインターフェイスを使用で
きます。

前提条件

usbguard サービスがインストールされ、実行中である。

/etc/usbguard/rules.conf ファイルに、usbguard generate-policy コマンドによって生成され
た初期ルールセットが含まれている。

手順

1. 任意のテキストエディターで /etc/usbguard/usbguard-daemon.conf ファイルを編集します。

vi /etc/usbguard/usbguard-daemon.conf

2. たとえば、wheel グループの全ユーザーが IPC インターフェイスを使用できるように、ルール
がある行を追加して、ファイルを保存します。

Red Hat Enterprise Linux 9 セキュリティーの強化

200

IPCAllowGroups=wheel

3. usbguard コマンドで、ユーザーまたはグループを追加することもできます。たとえば、次の
コマンドを使用すると、joesec ユーザーが Devices セクションおよび Exceptions セクション
に完全アクセスできます。さらに、joesec は現行ポリシーのリスト表示および変更を行うこと
ができます。

usbguard add-user joesec --devices ALL --policy modify,list --exceptions ALL

joesec ユーザーに付与されたパーミッションを削除するには、usbguard remove-user joesec
コマンドを使用します。

4. usbguard デーモンを再起動して、変更を適用します。

systemctl restart usbguard

関連情報

usbguard(1) および usbguard-rules.conf(5) の man ページ

13.8. LINUX 監査ログへの USBGUARD 許可イベントの記録

以下の手順に従って、USBguard 許可イベントのログと標準の Linux 監査ログを 1 つにまとめます。デ
フォルトでは、usbguard デーモンは /var/log/usbguard/usbguard-audit.log ファイルにイベントを記
録します。

前提条件

usbguard サービスがインストールされ、実行中である。

auditd サービスが実行中である。

手順

1. usbguard-daemon.conf ファイルを、選択したテキストエディターで編集します。

vi /etc/usbguard/usbguard-daemon.conf

2. AuditBackend オプションを、FileAudit から LinuxAudit に変更します。

AuditBackend=LinuxAudit

3. usbguard デーモンを再起動して、設定変更を適用します。

systemctl restart usbguard

検証

1. audit デーモンログで USB 許可イベントを照会します。次に例を示します。

ausearch -ts recent -m USER_DEVICE

第13章 侵入型 USB デバイスに対するシステムの保護

201

関連情報

システム上の usbguard-daemon.conf(5) man ページ

13.9. 関連情報

usbguard(1)、usbguard-rules.conf(5)、usbguard-daemon(8)、および usbguard-
daemon.conf(5) の man ページ

USBGuard ホームページ

Red Hat Enterprise Linux 9 セキュリティーの強化

202

https://usbguard.github.io/

第14章 リモートロギングソリューションの設定
環境内の各種マシンからのログをロギングサーバーに集中的に記録するために、クライアントシステム
からサーバーに特定の基準に合致するログを記録するように Rsyslog アプリケーションを設定できま
す。

14.1. RSYSLOG ロギングサービス

Rsyslog アプリケーションは、systemd-journald サービスと組み合わせて、Red Hat Enterprise Linux
でローカルおよびリモートのロギングサポートを提供します。rsyslogd デーモンは、ジャーナルから
systemd-journald サービスが受信した syslog メッセージを継続的に読み取ります。rsyslogd
は、syslog イベントをフィルタリングして処理し、rsyslog ログファイルに記録するか、設定に応じて
他のサービスに転送します。

rsyslogd デーモンは、拡張されたフィルタリング、暗号化で保護されたメッセージのリレー、入出力
モジュール、TCP プロトコルおよび UDP プロトコルを使用した転送のサポートも提供します。

rsyslog の主な設定ファイルである /etc/rsyslog.conf では、どの rsyslogd がメッセージを処理するか
に応じてルールを指定できます。通常は、ソースおよびトピック (ファシリティー) 別および緊急度 (優
先度) 別にメッセージを分類し、メッセージがその基準に合致したときに実行するアクションを割り当
てることができます。

/etc/rsyslog.conf では、rsyslogd が維持するログファイルのリストも確認できます。ほとんどのログ
ファイルは /var/log/ ディレクトリーにあります。httpd、samba などの一部のアプリケーションは、ロ
グファイルを /var/log/ 内のサブディレクトリーに保存します。

関連情報

システム上の rsyslogd(8) および rsyslog.conf(5) man ページ

/usr/share/doc/rsyslog/html/index.html ファイルに rsyslog-doc パッケージでインストール
されたドキュメント。

14.2. RSYSLOG ドキュメントのインストール

Rsyslog アプリケーションには、https://www.rsyslog.com/doc/ で利用可能な詳細なオンラインドキュ
メントがありますが、rsyslog-doc ドキュメントパッケージをローカルにインストールすることもでき
ます。

前提条件

システムで AppStream リポジトリーをアクティベートしている。

sudo を使用して新規パッケージをインストールする権限がある。

手順

rsyslog-doc パッケージをインストールします。

dnf install rsyslog-doc

検証

任意のブラウザーで /usr/share/doc/rsyslog/html/index.html ファイルを開きます。次に例を

第14章 リモートロギングソリューションの設定

203

https://www.rsyslog.com/doc/

任意のブラウザーで /usr/share/doc/rsyslog/html/index.html ファイルを開きます。次に例を
示します。

$ firefox /usr/share/doc/rsyslog/html/index.html &

14.3. TCP でのリモートロギング用のサーバーの設定

Rsyslog アプリケーションを使用すると、ロギングサーバーを実行し、個別のシステムがログファイル
をロギングサーバーに送信するように設定できます。TCP 経由でリモートロギングを使用するには、
サーバーとクライアントの両方を設定します。サーバーは、クライアントシステムにより送信されたロ
グを収集し、分析します。

Rsyslog アプリケーションを使用すると、ログメッセージがネットワークを介してサーバーに転送され
る中央ロギングシステムを維持できます。サーバーが利用できない場合にメッセージが失われないよう
にするには、転送アクションのアクションキューを設定します。これにより、送信に失敗したメッセー
ジは、サーバーが再度到達可能になるまでローカルに保存されます。このようなキューは、UDP プロ
トコルを使用する接続用に設定できないことに注意してください。

omfwd プラグインは、UDP または TCP による転送を提供します。デフォルトのプロトコルは UDP で
す。このプラグインは組み込まれているため、読み込む必要はありません。

デフォルトでは、rsyslog はポート 514 で TCP を使用します。

前提条件

rsyslog がサーバーシステムにインストールされている。

サーバーに root としてログインしている。

policycoreutils-python-utils パッケージは、semanage コマンドを使用して任意の手順でイン
ストールします。

firewalld サービスが実行中である。

手順

1. 必要に応じて、rsyslog トラフィックに別のポートを使用するには、SELinux タイプ
syslogd_port_t をポートに追加します。たとえば、ポート 30514 を有効にします。

semanage port -a -t syslogd_port_t -p tcp 30514

2. 必要に応じて、rsyslog トラフィックに別のポートを使用するには、firewalld がそのポートで
の着信 rsyslog トラフィックを許可するように設定します。たとえば、ポート 30514 で TCP
トラフィックを許可します。

firewall-cmd --zone=<zone-name> --permanent --add-port=30514/tcp
success
firewall-cmd --reload

3. /etc/rsyslog.d/ ディレクトリーに新規ファイル (例: remotelog.conf) を作成し、以下のコンテ
ンツを挿入します。

Define templates before the rules that use them

Red Hat Enterprise Linux 9 セキュリティーの強化

204

Per-Host templates for remote systems
template(name="TmplAuthpriv" type="list") {
 constant(value="/var/log/remote/auth/")
 property(name="hostname")
 constant(value="/")
 property(name="programname" SecurePath="replace")
 constant(value=".log")
 }

template(name="TmplMsg" type="list") {
 constant(value="/var/log/remote/msg/")
 property(name="hostname")
 constant(value="/")
 property(name="programname" SecurePath="replace")
 constant(value=".log")
 }

Provides TCP syslog reception
module(load="imtcp")

Adding this ruleset to process remote messages
ruleset(name="remote1"){
 authpriv.* action(type="omfile" DynaFile="TmplAuthpriv")
 *.info;mail.none;authpriv.none;cron.none
action(type="omfile" DynaFile="TmplMsg")
}

input(type="imtcp" port="30514" ruleset="remote1")

4. /etc/rsyslog.d/remotelog.conf ファイルへの変更を保存します。

5. /etc/rsyslog.conf ファイルの構文をテストします。

rsyslogd -N 1
rsyslogd: version 8.1911.0-2.el8, config validation run...
rsyslogd: End of config validation run. Bye.

6. Rsyslog サービスがロギングサーバーで実行中で、有効になっていることを確認します。

systemctl status rsyslog

7. rsyslog サービスを再起動します。

systemctl restart rsyslog

8. 必要に応じて、rsyslog が有効になっていない場合は、再起動後に rsyslog サービスが自動的
に起動するようにします。

systemctl enable rsyslog

環境内の他のシステムからログファイルを受け取り、保存するように、ログサーバーが設定されていま
す。

関連情報

第14章 リモートロギングソリューションの設定

205

システム上の rsyslogd(8)、rsyslog.conf(5)、semanage(8)、および firewall-cmd(1) man ペー
ジ

/usr/share/doc/rsyslog/html/index.html ファイルに rsyslog-doc パッケージでインストール
されたドキュメント。

14.4. TCP 経由のサーバーへのリモートロギングの設定

TCP プロトコル経由でログメッセージをサーバーに転送するようにシステムを設定できます。omfwd
プラグインは、UDP または TCP による転送を提供します。デフォルトのプロトコルは UDP です。プ
ラグインは組み込まれているのでロードする必要はありません。

前提条件

rsyslog パッケージが、サーバーに報告する必要のあるクライアントシステムにインストール
されている。

リモートロギング用にサーバーを設定している。

指定したポートが SELinux で許可され、ファイアウォールで開いている。

システムには、policycoreutils-python-utils パッケージが含まれています。このパッケージ
は、標準以外のポートを SELinux 設定に追加するための semanage コマンドを提供します。

手順

1. /etc/rsyslog.d/ ディレクトリーに新規ファイル (例: 10-remotelog.conf) を作成し、以下のコン
テンツを挿入します。

. action(type="omfwd"
 queue.type="linkedlist"
 queue.filename="example_fwd"
 action.resumeRetryCount="-1"
 queue.saveOnShutdown="on"
 target="example.com" port="30514" protocol="tcp"
)

ここでは、以下のようになります。

queue.type="linkedlist" 設定は、LinkedList インメモリーキューを有効にします。

queue.filename 設定は、ディスクストレージを定義します。バックアップファイルは、前
のグローバルの workDirectory ディレクティブで指定された作業ディレクトリーに
example_fwd 接頭辞を付けて作成されます。

action.resumeRetryCount -1 設定は、サーバーが応答しない場合に接続を再試行するとき
に rsyslog がメッセージを破棄しないようにします。

queue.saveOnShutdown="on" 設定は、rsyslog がシャットダウンした場合にインメモ
リーデータを保存します。

最後の行は、受信したすべてのメッセージをロギングサーバーに転送します。ポートの指
定は任意です。
この設定では、rsyslog はメッセージをサーバーに送信しますが、リモートサーバーに到達

Red Hat Enterprise Linux 9 セキュリティーの強化

206

できない場合には、メッセージをメモリーに保持します。ディスク上にあるファイルは、
設定されたメモリーキュー領域が rsyslog で不足するか、シャットダウンする必要がある
場合にのみ作成されます。これにより、システムパフォーマンスが向上します。

注記

Rsyslog は設定ファイル /etc/rsyslog.d/ を字句順に処理します。

2. rsyslog サービスを再起動します。

systemctl restart rsyslog

検証

クライアントシステムがサーバーにメッセージを送信することを確認するには、以下の手順に従いま
す。

1. クライアントシステムで、テストメッセージを送信します。

logger test

2. サーバーシステムで、/var/log/messages ログを表示します。以下に例を示します。

cat /var/log/remote/msg/hostname/root.log
Feb 25 03:53:17 hostname root[6064]: test

hostname はクライアントシステムのホスト名です。ログには、logger コマンドを入力した
ユーザーのユーザー名 (この場合は root) が含まれていることに注意してください。

関連情報

システム上の rsyslogd(8) および rsyslog.conf(5) man ページ

/usr/share/doc/rsyslog/html/index.html ファイルに rsyslog-doc パッケージでインストール
されたドキュメント。

14.5. TLS 暗号化リモートロギングの設定

デフォルトでは、Rsyslog はプレーンテキスト形式でリモートロギング通信を送信します。シナリオで
この通信チャネルのセキュリティーを確保する必要がある場合は、TLS を使用して暗号化できます。

TLS を介した暗号化されたトランスポートを使用するには、サーバーとクライアントの両方を設定しま
す。サーバーは、クライアントシステムにより送信されたログを収集し、分析します。

ossl ネットワークストリームドライバー (OpenSSL) または gtls ストリームドライバー (GnuTLS) の
いずれかを使用できます。

注記

ネットワークに接続されていない、厳格な認可を受けているなど、セキュリティーが強
化された別のシステムがある場合は、その別のシステムを認証局 (CA) として使用しま
す。

第14章 リモートロギングソリューションの設定

207

サーバー側では global、module、input レベルで、クライアント側では global および action レベル
で、ストリームドライバーを使用して接続設定をカスタマイズできます。より具体的な設定は、より一
般的な設定よりも優先されます。そのため、たとえば、ほとんどの接続のグローバル設定で ossl を使
用し、特定の接続の入力とアクション設定で gtls を使用することができます。

前提条件

クライアントシステムとサーバーシステムの両方に root にアクセスできる。

サーバーおよびクライアントシステムに次のパッケージがインストールされている。

rsyslog パッケージ

ossl ネットワークストリームドライバー用の rsyslog-openssl パッケージ

gtls ネットワークストリームドライバー用の rsyslog-gnutls パッケージ

certtool コマンドを使用して証明書を生成するための gnutls-utils パッケージ

ログサーバーの /etc/pki/ca-trust/source/anchors/ ディレクトリーには、次の証明書があ
り、update-ca-trust コマンドを使用してシステム設定を更新します。

ca-cert.pem - ログサーバーとクライアントで鍵と証明書を検証できる CA 証明書。

server-cert.pem - ロギングサーバーの公開鍵。

server-key.pem - ロギングサーバーの秘密鍵。

ログクライアントでは、次の証明書が /etc/pki/ca-trust/source/anchors/ ディレクトリーにあ
り、update-ca-trust を使用してシステム設定を更新します。

ca-cert.pem - ログサーバーとクライアントで鍵と証明書を検証できる CA 証明書。

client-cert.pem - クライアントの公開鍵。

client-key.pem - クライアントの秘密鍵。

サーバーが RHEL 9.2 以降を実行し、FIPS モードが有効になっている場合、クライアント
が Extended Master Secret (EMS) 拡張機能をサポートしているか、TLS 1.3 を使用してい
る必要があります。EMS を使用しない TLS 1.2 接続は失敗します。詳細は、Red Hat ナ
レッジベースソリューション TLS extension "Extended Master Secret" enforced を参照し
てください。

手順

1. クライアントシステムから暗号化したログを受信するようにサーバーを設定します。

a. /etc/rsyslog.d/ ディレクトリーに、新規ファイル (securelogser.conf など) を作成しま
す。

b. 通信を暗号化するには、設定ファイルに、サーバーの証明書ファイルへのパス、選択した
認証方法、および TLS 暗号化に対応するストリームドライバーが含まれている必要があり
ます。/etc/rsyslog.d/securelogser.conf に以下の行を追加します。

Set certificate files
global(

Red Hat Enterprise Linux 9 セキュリティーの強化

208

https://access.redhat.com/solutions/7018256

 DefaultNetstreamDriverCAFile="/etc/pki/ca-trust/source/anchors/ca-cert.pem"
 DefaultNetstreamDriverCertFile="/etc/pki/ca-trust/source/anchors/server-cert.pem"
 DefaultNetstreamDriverKeyFile="/etc/pki/ca-trust/source/anchors/server-key.pem"
)

TCP listener
module(
 load="imtcp"
 PermittedPeer=["client1.example.com", "client2.example.com"]
 StreamDriver.AuthMode="x509/name"
 StreamDriver.Mode="1"
 StreamDriver.Name="ossl"
)

Start up listener at port 514
input(
 type="imtcp"
 port="514"
)

注記

GnuTLS ドライバーが必要な場合は、StreamDriver.Name="gtls" 設定オプ
ションを使用します。x509/name よりも厳密ではない認証モードの詳細
は、rsyslog-doc にインストールされているドキュメントを参照してくださ
い。

c. オプション: RHEL 9.4 で提供される Rsyslog バージョン 8.2310 からは、接続設定をカスタ
マイズできます。これを行うには、input セクションを以下に置き換えます。

input(
 type="imtcp"
 Port="50515"
 StreamDriver.Name="<driver>"
 streamdriver.CAFile="/etc/rsyslog.d/<ca1>.pem"
 streamdriver.CertFile="/etc/rsyslog.d/<server1-cert>.pem"
 streamdriver.KeyFile="/etc/rsyslog.d/<server1-key>.pem"
)

使用するドライバーに応じて、<driver> を ossl または gtls に置き換えます。

<ca1> はカスタマイズする接続の CA 証明書に、<server1-cert> は証明書
に、<server1-key> は鍵に置き換えます。

d. 変更を /etc/rsyslog.d/securelogser.conf ファイルに保存します。

e. /etc/rsyslog.conf ファイルの構文と /etc/rsyslog.d/ ディレクトリー内のすべてのファイル
を確認します。

rsyslogd -N 1
rsyslogd: version 8.1911.0-2.el8, config validation run (level 1)...
rsyslogd: End of config validation run. Bye.

f. Rsyslog サービスがロギングサーバーで実行中で、有効になっていることを確認します。

第14章 リモートロギングソリューションの設定

209

systemctl status rsyslog

g. rsyslog サービスを再起動します。

systemctl restart rsyslog

h. オプション: Rsyslog が有効になっていない場合は、再起動後に rsyslog サービスが自動的
に起動されることを確認してください。

systemctl enable rsyslog

2. 暗号化したログをサーバーに送信するようにクライアントを設定するには、以下のコマンドを
実行します。

a. クライアントシステムで、/etc/rsyslog.d/ ディレクトリーに、新規ファイル
(securelogcli.conf など) を作成します。

b. /etc/rsyslog.d/securelogcli.conf に以下の行を追加します。

Set certificate files
global(
 DefaultNetstreamDriverCAFile="/etc/pki/ca-trust/source/anchors/ca-cert.pem"
 DefaultNetstreamDriverCertFile="/etc/pki/ca-trust/source/anchors/client-cert.pem"
 DefaultNetstreamDriverKeyFile="/etc/pki/ca-trust/source/anchors/client-key.pem"
)

Set up the action for all messages
. action(
 type="omfwd"
 StreamDriver="ossl"
 StreamDriverMode="1"
 StreamDriverPermittedPeers="server.example.com"
 StreamDriverAuthMode="x509/name"
 target="server.example.com" port="514" protocol="tcp"
)

注記

GnuTLS ドライバーが必要な場合は、StreamDriver.Name="gtls" 設定オプ
ションを使用します。

c. オプション: RHEL 9.4 で提供される Rsyslog バージョン 8.2310 からは、接続設定をカスタ
マイズできます。これを行うには、action セクションを以下に置き換えます。

local1.* action(
 type="omfwd"
 StreamDriver="<driver>"
 StreamDriverMode="1"
 StreamDriverAuthMode="x509/certvalid"
 streamDriver.CAFile="/etc/rsyslog.d/<ca1>.pem"
 streamDriver.CertFile="/etc/rsyslog.d/<client1-cert>.pem"

Red Hat Enterprise Linux 9 セキュリティーの強化

210

 streamDriver.KeyFile="/etc/rsyslog.d/<client1-key>.pem"
 target="server.example.com" port="514" protocol="tcp"
)

使用するドライバーに応じて、<driver> を ossl または gtls に置き換えます。

<ca1> はカスタマイズする接続の CA 証明書に、<client1-cert> は証明書に、<client1-
key> は鍵に置き換えます。

d. 変更を /etc/rsyslog.d/securelogcli.conf ファイルに保存します。

e. /etc/rsyslog.conf ファイルの構文と /etc/rsyslog.d/ ディレクトリー内のその他のファイル
を確認します。

rsyslogd -N 1
rsyslogd: version 8.1911.0-2.el8, config validation run (level 1)...
rsyslogd: End of config validation run. Bye.

f. Rsyslog サービスがロギングサーバーで実行中で、有効になっていることを確認します。

systemctl status rsyslog

g. rsyslog サービスを再起動します。

systemctl restart rsyslog

h. オプション: Rsyslog が有効になっていない場合は、再起動後に rsyslog サービスが自動的
に起動されることを確認してください。

systemctl enable rsyslog

検証

クライアントシステムがサーバーにメッセージを送信することを確認するには、以下の手順に従いま
す。

1. クライアントシステムで、テストメッセージを送信します。

logger test

2. サーバーシステムで、/var/log/messages ログを表示します。以下に例を示します。

cat /var/log/remote/msg/<hostname>/root.log
Feb 25 03:53:17 <hostname> root[6064]: test

<hostname> はクライアントシステムのホスト名です。ログには、logger コマンドを入力した
ユーザーのユーザー名 (この場合は root) が含まれていることに注意してください。

関連情報

システム上の certtool(1)、openssl(1)、update-ca-trust(8)、rsyslogd(8)、および
rsyslog.conf(5) man ページ

/usr/share/doc/rsyslog/html/index.html に rsyslog-doc パッケージでインストールされたド

第14章 リモートロギングソリューションの設定

211

/usr/share/doc/rsyslog/html/index.html に rsyslog-doc パッケージでインストールされたド
キュメント。

TLS での logging システムロールの使用

14.6. UDP でリモートロギング情報を受信するためのサーバー設定

Rsyslog アプリケーションを使用すると、リモートシステムからロギング情報を受信するようにシステ
ムを設定できます。UDP 経由でリモートロギングを使用するには、サーバーとクライアントの両方を
設定します。受信サーバーは、クライアントシステムが送信したログの収集および分析を行います。デ
フォルトでは、rsyslog はポート 514 で UDP を使用して、リモートシステムからログ情報を受信しま
す。

以下の手順に従って、UDP プロトコルでクライアントシステムが送信したログの収集および分析を行
うサーバーを設定します。

前提条件

rsyslog がサーバーシステムにインストールされている。

サーバーに root としてログインしている。

policycoreutils-python-utils パッケージは、semanage コマンドを使用して任意の手順でイン
ストールします。

firewalld サービスが実行中である。

手順

1. 必要に応じて、デフォルトのポート 514 以外の rsyslog トラフィックに別のポートを使用する
には、次のコマンドを実行します。

a. SELinux ポリシー設定に syslogd_port_t SELinux タイプを追加し、portno は rsyslog で
使用するポート番号に置き換えます。

semanage port -a -t syslogd_port_t -p udp portno

b. rsyslog の受信トラフィックを許可するように firewalld を設定します。portno はポート
番号に、zone は rsyslog が使用するゾーンに置き換えます。

firewall-cmd --zone=zone --permanent --add-port=portno/udp
success
firewall-cmd --reload

c. ファイアウォールルールを再読み込みします。

firewall-cmd --reload

2. /etc/rsyslog.d/ ディレクトリーに .conf の新規ファイル (例: remotelogserv.conf) を作成し、
以下のコンテンツを挿入します。

Define templates before the rules that use them
Per-Host templates for remote systems
template(name="TmplAuthpriv" type="list") {

Red Hat Enterprise Linux 9 セキュリティーの強化

212

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/configuring-logging-by-using-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles#assembly_using-the-logging-system-role-with-tls_configuring-logging-by-using-rhel-system-roles

 constant(value="/var/log/remote/auth/")
 property(name="hostname")
 constant(value="/")
 property(name="programname" SecurePath="replace")
 constant(value=".log")
 }

template(name="TmplMsg" type="list") {
 constant(value="/var/log/remote/msg/")
 property(name="hostname")
 constant(value="/")
 property(name="programname" SecurePath="replace")
 constant(value=".log")
 }

Provides UDP syslog reception
module(load="imudp")

This ruleset processes remote messages
ruleset(name="remote1"){
 authpriv.* action(type="omfile" DynaFile="TmplAuthpriv")
 *.info;mail.none;authpriv.none;cron.none
action(type="omfile" DynaFile="TmplMsg")
}

input(type="imudp" port="514" ruleset="remote1")

514 は、rsyslog がデフォルトで使用するポート番号です。代わりに別のポートを指定できま
す。

3. /etc/rsyslog.conf ファイルの構文と /etc/rsyslog.d/ ディレクトリー内の全 .conf ファイルを確
認します。

rsyslogd -N 1
rsyslogd: version 8.1911.0-2.el8, config validation run...

4. rsyslog サービスを再起動します。

systemctl restart rsyslog

5. 必要に応じて、rsyslog が有効になっていない場合は、再起動後に rsyslog サービスが自動的
に起動するようにします。

systemctl enable rsyslog

関連情報

システム上の rsyslogd(8)、rsyslog.conf(5)、semanage(8)、および firewall-cmd(1) man ペー
ジ

/usr/share/doc/rsyslog/html/index.html ファイルに rsyslog-doc パッケージでインストール
されたドキュメント。

第14章 リモートロギングソリューションの設定

213

14.7. UDP 経由のサーバーへのリモートロギングの設定

UDP プロトコル経由でログメッセージをサーバーに転送するようにシステムを設定できます。omfwd
プラグインは、UDP または TCP による転送を提供します。デフォルトのプロトコルは UDP です。プ
ラグインは組み込まれているのでロードする必要はありません。

前提条件

rsyslog パッケージが、サーバーに報告する必要のあるクライアントシステムにインストール
されている。

UDP でリモートロギング情報を受信するためのサーバー設定 で説明されているように、リモー
トロギング用にサーバーを設定している。

手順

1. /etc/rsyslog.d/ ディレクトリーに .conf の新規ファイル (例: 10-remotelogcli.conf) を作成し、
以下のコンテンツを挿入します。

. action(type="omfwd"
 queue.type="linkedlist"
 queue.filename="example_fwd"
 action.resumeRetryCount="-1"
 queue.saveOnShutdown="on"
 target="example.com" port="portno" protocol="udp"
)

ここでは、以下のようになります。

queue.type="linkedlist" 設定は、LinkedList インメモリーキューを有効にします。

queue.filename 設定は、ディスクストレージを定義します。バックアップファイルは、前
のグローバルの workDirectory ディレクティブで指定された作業ディレクトリーに
example_fwd 接頭辞を付けて作成されます。

action.resumeRetryCount -1 設定は、サーバーが応答しない場合に接続を再試行するとき
に rsyslog がメッセージを破棄しないようにします。

queue.saveOnShutdown="on" 設定を有効にすると、rsyslog がシャットダウンした場合
にインメモリーデータが保存されます。

portno 値は、rsyslog で使用するポート番号です。デフォルト値は 514 です。

最後の行は受信メッセージをすべてロギングサーバーに転送します。ポートの指定は任意
です。
この設定では、rsyslog はメッセージをサーバーに送信しますが、リモートサーバーに到達
できない場合には、メッセージをメモリーに保持します。ディスク上にあるファイルは、
設定されたメモリーキュー領域が rsyslog で不足するか、シャットダウンする必要がある
場合にのみ作成されます。これにより、システムパフォーマンスが向上します。

注記

Rsyslog は設定ファイル /etc/rsyslog.d/ を字句順に処理します。

Red Hat Enterprise Linux 9 セキュリティーの強化

214

2. rsyslog サービスを再起動します。

systemctl restart rsyslog

3. 必要に応じて、rsyslog が有効になっていない場合は、再起動後に rsyslog サービスが自動的
に起動するようにします。

systemctl enable rsyslog

検証

クライアントシステムがサーバーにメッセージを送信することを確認するには、以下の手順に従いま
す。

1. クライアントシステムで、テストメッセージを送信します。

logger test

2. サーバーシステムで、/var/log/remote/msg/hostname/root.log ログを表示します。以下に例
を示します。

cat /var/log/remote/msg/hostname/root.log
Feb 25 03:53:17 hostname root[6064]: test

hostname はクライアントシステムのホスト名です。ログには、logger コマンドを入力した
ユーザーのユーザー名 (この場合は root) が含まれていることに注意してください。

関連情報

システム上の rsyslogd(8) および rsyslog.conf(5) man ページ

rsyslog-doc パッケージとともに /usr/share/doc/rsyslog/html/index.html にインストールさ
れるドキュメント

14.8. RSYSLOG の負荷分散ヘルパー

Rsyslog をクラスターで使用する場合、RebindInterval 設定を変更することで Rsyslog の負荷分散を改
善できます。

RebindInterval では、現在の接続を切断して再確立する間隔を指定します。この設定は、TCP、UDP、
および RELP のトラフィックに適用されます。ロードバランサーはこれを新しい接続と認識し、メッ
セージを別の物理ターゲットシステムに転送します。

RebindInterval は、ターゲットシステムの IP アドレスが変更された場合に役立ちます。Rsyslog アプ
リケーションは、接続の確立時に IP アドレスをキャッシュするため、メッセージは同じサーバーに送
信されます。IP アドレスが変更されると、Rsyslog サービスが再起動するまで UDP パケットが失われ
ます。接続を再確立すると、IP が DNS により再度解決されます。

TCP、UDP、および RELP トラフィックに対する RebindInterval の使用例

action(type="omfwd" protocol="tcp" RebindInterval="250" target="example.com" port="514" …)

action(type="omfwd" protocol="udp" RebindInterval="250" target="example.com" port="514" …)

第14章 リモートロギングソリューションの設定

215

action(type="omrelp" RebindInterval="250" target="example.com" port="6514" …)

14.9. 信頼できるリモートロギングの設定

Reliable Event Logging Protocol (RELP) を使用すると、メッセージ損失のリスクを大幅に軽減して
TCP で syslog メッセージを送受信できます。RELP は、信頼できるイベントメッセージを配信するの
で、メッセージ損失が許されない環境で有用です。RELP を使用するには、imrelp の入力モジュール
(サーバー上での実行とログの受信) と omrelp 出力モジュール (クライアント上での実行とロギング
サーバーへのログの送信) を設定します。

前提条件

rsyslog パッケージ、librelp パッケージ、および rsyslog-relp パッケージをサーバーおよびク
ライアントシステムにインストールしている。

指定したポートが SELinux で許可され、ファイアウォール設定で開放されている。

手順

1. 信頼できるリモートロギング用にクライアントシステムを設定します。

a. クライアントシステムの /etc/rsyslog.d/ ディレクトリーに、relpclient.conf などと名前を
指定して新しい .conf ファイルを作成し、以下のコンテンツを挿入します。

module(load="omrelp")
. action(type="omrelp" target="_target_IP_" port="_target_port_")

ここでは、以下のようになります。

target_IP は、ロギングサーバーの IP アドレスに置き換えます。

target_port はロギングサーバーのポートに置き換えます。

b. 変更を /etc/rsyslog.d/relpclient.conf ファイルに保存します。

c. rsyslog サービスを再起動します。

systemctl restart rsyslog

d. 必要に応じて、rsyslog が有効になっていない場合は、再起動後に rsyslog サービスが自
動的に起動するようにします。

systemctl enable rsyslog

2. 信頼できるリモートロギング用にサーバーシステムを設定します。

a. サーバーシステムの /etc/rsyslog.d/ ディレクトリーに、relpserv.conf などと名前を指定し
て新しい .conf ファイルを作成し、以下のコンテンツを挿入します。

ruleset(name="relp"){
. action(type="omfile" file="_log_path_")
}

Red Hat Enterprise Linux 9 セキュリティーの強化

216

module(load="imrelp")
input(type="imrelp" port="_target_port_" ruleset="relp")

ここでは、以下のようになります。

log_path は、メッセージを保存するパスを指定します。

target_port はロギングサーバーのポートに置き換えます。クライアント設定ファイル
と同じ値を使用します。

b. /etc/rsyslog.d/relpserv.conf ファイルへの変更を保存します。

c. rsyslog サービスを再起動します。

systemctl restart rsyslog

d. 必要に応じて、rsyslog が有効になっていない場合は、再起動後に rsyslog サービスが自
動的に起動するようにします。

systemctl enable rsyslog

検証

クライアントシステムがサーバーにメッセージを送信することを確認するには、以下の手順に従いま
す。

1. クライアントシステムで、テストメッセージを送信します。

logger test

2. サーバーシステムで、指定された log_path でログを表示します。以下に例を示します。

cat /var/log/remote/msg/hostname/root.log
Feb 25 03:53:17 hostname root[6064]: test

hostname はクライアントシステムのホスト名です。ログには、logger コマンドを入力した
ユーザーのユーザー名 (この場合は root) が含まれていることに注意してください。

関連情報

システム上の rsyslogd(8) および rsyslog.conf(5) man ページ

/usr/share/doc/rsyslog/html/index.html ファイルに rsyslog-doc パッケージでインストール
されたドキュメント。

14.10. サポート対象の RSYSLOG モジュール

Rsyslog アプリケーションの機能を拡張するために、特定のモジュールを使用できます。モジュール
は、追加の入力 (入力モジュール)、出力 (出力モジュール)、およびその他の機能を提供します。モ
ジュールは、モジュールの読み込み後に利用可能な設定ディレクティブを追加で提供することも可能で
す。

以下のコマンドを使用して、システムにインストールされている入出力モジュールをリスト表示できま

第14章 リモートロギングソリューションの設定

217

以下のコマンドを使用して、システムにインストールされている入出力モジュールをリスト表示できま
す。

ls /usr/lib64/rsyslog/{i,o}m*

rsyslog-doc パッケージをインストールした
後、/usr/share/doc/rsyslog/html/configuration/modules/idx_output.html ファイルで使用可能なすべ
ての rsyslog モジュールのリストを表示できます。

14.11. カーネルメッセージをリモートホストに記録するように
NETCONSOLE サービスを設定

ディスクへのログインやシリアルコンソールの使用ができない場合は、netconsole カーネルモジュー
ルおよび同じ名前のサービスを使用して、ネットワーク経由でカーネルメッセージをリモートの
rsyslog サービスに記録できます。

前提条件

rsyslog などのシステムログサービスがリモートホストにインストールされている。

リモートシステムログサービスは、このホストから受信ログエントリーを受け取るように設定
されています。

手順

1. netconsole-service パッケージをインストールします。

dnf install netconsole-service

2. /etc/sysconfig/netconsole ファイルを編集し、SYSLOGADDR パラメーターをリモートホス
トの IP アドレスに設定します。

SYSLOGADDR=192.0.2.1

3. netconsole サービスを有効にして起動します。

systemctl enable --now netconsole

検証

リモートシステムログサーバーの /var/log/messages ファイルを表示します。

14.12. 関連情報

/usr/share/doc/rsyslog/html/index.html ファイルに rsyslog-doc パッケージでインストール
されたドキュメント。

システム上の rsyslog.conf(5) および rsyslogd(8) man ページ

ナレッジベースの記事 Configuring system logging without journald

ナレッジベースの記事 Negative effects of the RHEL default logging setup on performance and

Red Hat Enterprise Linux 9 セキュリティーの強化

218

https://access.redhat.com/articles/4058681

ナレッジベースの記事 Negative effects of the RHEL default logging setup on performance and
their mitigations

logging システムロールの使用 の章

第14章 リモートロギングソリューションの設定

219

https://access.redhat.com/articles/4095141
https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/configuring-logging-by-using-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

第15章 LOGGING システムロールの使用

システム管理者は、logging システムロールを使用して、Red Hat Enterprise Linux ホストをロギング
サーバーとして設定し、多数のクライアントシステムからログを収集できます。

15.1. LOGGING RHEL システムロールを使用したローカルログメッセージの
フィルタリング

logging RHEL システムロールのプロパティーベースのフィルターを使用すると、さまざまな条件に基
づいてローカルログメッセージをフィルタリングできます。その結果、たとえば以下を実現できます。

明確なログ: トラフィック量の多い環境では、ログが急増することがあります。エラーなどの特
定のメッセージに注目することで、問題をより早く特定できるようになります。

システムパフォーマンスの最適化: ログの量が多すぎると、通常、システムパフォーマンスが低
下します。重要なイベントのみを選択的にログに記録することで、リソースの枯渇を防ぎ、シ
ステムをより効率的に運用できます。

セキュリティーの強化: システムエラーやログイン失敗などのセキュリティーメッセージを効率
的にフィルタリングすることで、関連するログのみを取得できます。これは、違反を検出し、
コンプライアンス基準を満たすために重要です。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

- name: Deploy the logging solution
 hosts: managed-node-01.example.com
 tasks:
 - name: Filter logs based on a specific value they contain
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.logging
 vars:
 logging_inputs:
 - name: files_input
 type: basics
 logging_outputs:
 - name: files_output0
 type: files
 property: msg
 property_op: contains
 property_value: error
 path: /var/log/errors.log
 - name: files_output1

Red Hat Enterprise Linux 9 セキュリティーの強化

220

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

サンプル Playbook で指定されている設定は次のとおりです。

logging_inputs

ロギングの入力ディクショナリーのリストを定義します。type: basics オプションを指定す
ると、systemd ジャーナルまたは Unix ソケットからの入力が対象になります。

logging_outputs

ロギングの出力ディクショナリーのリストを定義します。type: files オプションにより、
ローカルファイル (通常は /var/log/ ディレクトリー内) にログを保存できます。property:
msg、property: contains、および property_value: error オプションを指定すると、error
文字列を含むすべてのログが /var/log/errors.log ファイルに保存されます。property:
msg、property: !contains、および property_value: error オプションを指定すると、他の
すべてのログが /var/log/others.log ファイルに保存されます。error 値は、フィルタリング
する必要がある文字列に置き換えることができます。

logging_flows

ロギングのフローディクショナリーのリストを定義して、logging_inputs と
logging_outputs の関係を指定します。inputs: [files_input] オプションは、ログの処理を
開始する入力のリストを指定します。outputs: [files_output0, files_output1] オプション
は、ログ送信先の出力のリストを指定します。

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.logging/README.md ファイルを参照してくださ
い。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

検証

1. 管理対象ノードで、/etc/rsyslog.conf ファイルの構文をテストします。

rsyslogd -N 1
rsyslogd: version 8.1911.0-6.el8, config validation run...
rsyslogd: End of config validation run. Bye.

2. 管理対象ノードで、システムが error 文字列を含むメッセージをログに送信することを確認し

 type: files
 property: msg
 property_op: "!contains"
 property_value: error
 path: /var/log/others.log
 logging_flows:
 - name: flow0
 inputs: [files_input]
 outputs: [files_output0, files_output1]

第15章 LOGGING システムロールの使用

221

2. 管理対象ノードで、システムが error 文字列を含むメッセージをログに送信することを確認し
ます。

a. テストメッセージを送信します。

logger error

b. 以下のように /var/log/errors.log ログを表示します。

cat /var/log/errors.log
Aug 5 13:48:31 hostname root[6778]: error

hostname はクライアントシステムのホスト名に置き換えます。ログには、logger コマン
ドを入力したユーザーのユーザー名 (この場合は root) が含まれていることに注意してくだ
さい。

関連情報

/usr/share/ansible/roles/rhel-system-roles.logging/README.md ファイル

/usr/share/doc/rhel-system-roles/logging/ ディレクトリー

システム上の rsyslog.conf(5) および syslog(3) の man ページ

15.2. LOGGING RHEL システムロールを使用したリモートロギングソリュー
ションの適用

logging RHEL システムロールを使用して、1 つ以上のクライアントで systemd-journal サービスから
ログを取得し、リモートサーバーに転送するリモートロギングソリューションを設定できます。この
サーバーは、remote_rsyslog および remote_files 設定からリモート入力を受け取り、リモートホスト
名によって指定されたディレクトリー内のローカルファイルにログを出力します。

その結果、たとえば次のようなユースケースに対応できます。

ログの集中管理: 複数のマシンのログメッセージを 1 つのストレージポイントから収集、アクセ
ス、管理することで、日々の監視とトラブルシューティングのタスクが簡素化されます。ま
た、このユースケースでは、ログメッセージを確認するために個々のマシンにログインする必
要性が軽減されます。

セキュリティーの強化: ログメッセージを 1 カ所に集中して保存すると、セキュアで改ざん不可
能な環境にログを保存しやすくなります。このような環境により、セキュリティーインシデン
トをより効果的に検出して対応し、監査要件を満たすことが容易になります。

ログ分析の効率向上: 複数のマシンまたはサービスにまたがる複雑な問題を迅速にトラブル
シューティングするには、複数のシステムからのログメッセージを相関させることが重要で
す。これにより、さまざまなソースからのイベントをすばやく分析し、相互参照することがで
きます。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

Red Hat Enterprise Linux 9 セキュリティーの強化

222

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

サーバーまたはクライアントシステムの SELinux ポリシーでポートを定義し、それらのポート
のファイアウォールを開く。デフォルトの SELinux ポリシーには、ポート 601、514、6514、
10514、および 20514 が含まれます。別のポートを使用するには、クライアントおよびサーバー
システムの SELinux ポリシーの変更 を参照してください。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

- name: Deploy the logging solution
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure the server to receive remote input
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.logging
 vars:
 logging_inputs:
 - name: remote_udp_input
 type: remote
 udp_ports: [601]
 - name: remote_tcp_input
 type: remote
 tcp_ports: [601]
 logging_outputs:
 - name: remote_files_output
 type: remote_files
 logging_flows:
 - name: flow_0
 inputs: [remote_udp_input, remote_tcp_input]
 outputs: [remote_files_output]

- name: Deploy the logging solution
 hosts: managed-node-02.example.com
 tasks:
 - name: Configure the server to output the logs to local files in directories named by
remote host names
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.logging
 vars:
 logging_inputs:
 - name: basic_input
 type: basics
 logging_outputs:
 - name: forward_output0
 type: forwards
 severity: info
 target: <host1.example.com>
 udp_port: 601
 - name: forward_output1
 type: forwards
 facility: mail
 target: <host1.example.com>
 tcp_port: 601

第15章 LOGGING システムロールの使用

223

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/using_selinux/configuring-selinux-for-applications-and-services-with-non-standard-configurations_using-selinux#customizing-the-selinux-policy-for-the-apache-http-server-in-a-non-standard-configuration_configuring-selinux-for-applications-and-services-with-non-standard-configurations

サンプル Playbook の最初のプレイで指定されている設定は次のとおりです。

logging_inputs

ロギングの入力ディクショナリーのリストを定義します。type: remote オプションを指定
すると、ネットワークを介した他のロギングシステムからのリモート入力が対象になりま
す。udp_ports: [601] オプションは、監視する UDP ポート番号のリストを定義しま
す。tcp_ports: [601] オプションは、監視する TCP ポート番号のリストを定義しま
す。udp_ports と tcp_ports の両方が設定されている場合、udp_ports が使用さ
れ、tcp_ports は削除されます。

logging_outputs

ロギングの出力ディクショナリーのリストを定義します。type: remote_files オプションを
指定すると、ログの送信元であるリモートホストとプログラム名ごとに、出力がローカル
ファイルに保存されます。

logging_flows

ロギングのフローディクショナリーのリストを定義して、logging_inputs と
logging_outputs の関係を指定します。inputs: [remote_udp_input、remote_tcp_input]
オプションは、ログの処理を開始する入力のリストを指定します。outputs:
[remote_files_output] オプションは、ログ送信先の出力のリストを指定します。

サンプル Playbook の 2 番目のプレイで指定されている設定は次のとおりです。

logging_inputs

ロギングの入力ディクショナリーのリストを定義します。type: basics オプションを指定す
ると、systemd ジャーナルまたは Unix ソケットからの入力が対象になります。

logging_outputs

ロギングの出力ディクショナリーのリストを定義します。type: forwards オプションによ
り、ネットワーク経由でリモートログサーバーにログを送信できます。severity: info オプ
ションは、重大度が情報のログメッセージを示します。facility: mail オプションは、ログ
メッセージを生成するシステムプログラムの種類を示します。target:
<host1.example.com> オプションは、リモートログサーバーのホスト名を指定しま
す。udp_port: 601/tcp_port: 601 オプションは、リモートログサーバーがリッスンする
UDP/TCP ポートを定義します。

logging_flows

ロギングのフローディクショナリーのリストを定義して、logging_inputs と
logging_outputs の関係を指定します。inputs: [basic_input] オプションは、ログの処理を
開始する入力のリストを指定します。outputs: [forward_output0, forward_output1] オプ
ションは、ログ送信先の出力のリストを指定します。

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.logging/README.md ファイルを参照してくださ
い。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

 logging_flows:
 - name: flows0
 inputs: [basic_input]
 outputs: [forward_output0, forward_output1]

Red Hat Enterprise Linux 9 セキュリティーの強化

224

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

検証

1. クライアントとサーバーシステムの両方で、/etc/rsyslog.conf ファイルの構文をテストしま
す。

rsyslogd -N 1
rsyslogd: version 8.1911.0-6.el8, config validation run (level 1), master config
/etc/rsyslog.conf
rsyslogd: End of config validation run. Bye.

2. クライアントシステムがサーバーにメッセージを送信することを確認します。

a. クライアントシステムで、テストメッセージを送信します。

logger test

b. サーバーシステムで、/var/log/<host2.example.com>/messages ログを表示します。次に
例を示します。

cat /var/log/<host2.example.com>/messages
Aug 5 13:48:31 <host2.example.com> root[6778]: test

<host2.example.com> は、クライアントシステムのホスト名に置き換えます。ログには、
logger コマンドを入力したユーザーのユーザー名 (この場合は root) が含まれていることに
注意してください。

関連情報

/usr/share/ansible/roles/rhel-system-roles.logging/README.md ファイル

/usr/share/doc/rhel-system-roles/logging/ ディレクトリー

rsyslog.conf(5) および syslog(3) man ページ

15.3. TLS を使用した LOGGING RHEL システムロールの使用

Transport Layer Security (TLS) は、コンピューターネットワーク上でセキュアな通信を可能にするため
に設計された暗号化プロトコルです。

RHEL システムロールの logging を使用すると、ログメッセージのセキュアな転送を設定して、1 つ以
上のクライアントで systemd-journal サービスからログを取得し、TLS を使用してリモートサーバー
に転送できます。

通常、リモートロギングソリューションでログを転送するための TLS は、インターネットなどの信頼
性の低いネットワークやパブリックネットワーク経由で機密データを送信する場合に使用されます。ま
た、TLS で証明書を使用することで、クライアントから正しい信頼できるサーバーにログを確実に転送

第15章 LOGGING システムロールの使用

225

できます。これにより、"中間者攻撃" などの攻撃を防ぐことができます。

15.3.1. TLS を使用したクライアントロギングの設定

logging RHEL システムロールを使用すると、RHEL クライアントでのロギングを設定し、TLS 暗号化
を使用してログをリモートロギングシステムに転送できます。

この手順では、秘密鍵と証明書を作成します。その後、Ansible インベントリーのクライアントグルー
プ内の全ホストに TLS を設定します。TLS プロトコルは、メッセージ送信を暗号化し、ネットワーク
経由でログを安全に転送します。

注記

証明書を作成するために、Playbook で certificate RHEL システムロールを呼び出す必要
はありません。このロールは、logging_certificates 変数が設定されている場
合、logging RHEL システムロールによって自動的に呼び出されます。

CA が作成された証明書に署名できるようにするには、管理対象ノードが IdM ドメイン
に登録されている必要があります。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

管理対象ノードが IdM ドメインに登録されている。

管理対象ノード上で設定するロギングサーバーが RHEL 9.2 以降を実行し、FIPS モードが有効
になっている場合、クライアントが Extended Master Secret (EMS) 拡張機能をサポートしてい
るか、TLS 1.3 を使用している。EMS を使用しない TLS 1.2 接続は失敗します。詳細は、Red
Hat ナレッジベースソリューション TLS extension "Extended Master Secret" enforced を参照
してください。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

- name: Configure remote logging solution using TLS for secure transfer of logs
 hosts: managed-node-01.example.com
 tasks:
 - name: Deploying files input and forwards output with certs
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.logging
 vars:
 logging_certificates:
 - name: logging_cert
 dns: ['www.example.com']
 ca: ipa
 principal: "logging/{{ inventory_hostname }}@IDM.EXAMPLE.COM"
 logging_pki_files:

Red Hat Enterprise Linux 9 セキュリティーの強化

226

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://access.redhat.com/solutions/7018256

サンプル Playbook で指定されている設定は次のとおりです。

logging_certificates

このパラメーターの値は、certificate RHEL システムロールの certificate_requests に渡さ
れ、秘密鍵と証明書の作成に使用されます。

logging_pki_files

このパラメーターを使用すると、TLS に使用する CA、証明書、および鍵ファイルを検索す
るためにロギングで使用するパスとその他の設定 (サブパラメーター
ca_cert、ca_cert_src、cert、cert_src、private_key、private_key_src、および tls で指
定) を設定できます。

注記

logging_certificates を使用して管理対象ノードにファイルを作成する場合
は、ca_cert_src、cert_src、および private_key_src を使用しないでくださ
い。これらは、logging_certificates によって作成されていないファイルの
コピーに使用されます。

ca_cert

管理対象ノード上の CA 証明書ファイルへのパスを表します。デフォルトのパスは
/etc/pki/tls/certs/ca.pem で、ファイル名はユーザーが設定します。

cert

管理対象ノード上の証明書ファイルへのパスを表します。デフォルトのパスは
/etc/pki/tls/certs/server-cert.pem で、ファイル名はユーザーが設定します。

private_key

管理対象ノード上の秘密鍵ファイルへのパスを表します。デフォルトのパスは
/etc/pki/tls/private/server-key.pem で、ファイル名はユーザーが設定します。

ca_cert_src

ターゲットホストの ca_cert で指定された場所にコピーされる、コントロールノード上の

 - ca_cert: /local/path/to/ca_cert.pem
 cert: /local/path/to/logging_cert.pem
 private_key: /local/path/to/logging_cert.pem
 logging_inputs:
 - name: input_name
 type: files
 input_log_path: /var/log/containers/*.log
 logging_outputs:
 - name: output_name
 type: forwards
 target: your_target_host
 tcp_port: 514
 tls: true
 pki_authmode: x509/name
 permitted_server: 'server.example.com'
 logging_flows:
 - name: flow_name
 inputs: [input_name]
 outputs: [output_name]

第15章 LOGGING システムロールの使用

227

ターゲットホストの ca_cert で指定された場所にコピーされる、コントロールノード上の
CA 証明書ファイルへのパスを表します。logging_certificates を使用する場合は、これを
使用しないでください。

cert_src

ターゲットホストの cert で指定された場所にコピーされる、コントロールノード上の証明
書ファイルへのパスを表します。logging_certificates を使用する場合は、これを使用しな
いでください。

private_key_src

ターゲットホストの private_key で指定された場所にコピーされる、コントロールノード上
の秘密鍵ファイルへのパスを表します。logging_certificates を使用する場合は、これを使
用しないでください。

tls

このパラメーターを true に設定すると、ネットワーク上でログがセキュアに転送されま
す。セキュアなラッパーが必要ない場合は、tls: false に設定します。

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.logging/README.md ファイルを参照してくださ
い。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

関連情報

/usr/share/ansible/roles/rhel-system-roles.logging/README.md ファイル

/usr/share/doc/rhel-system-roles/logging/ ディレクトリー

/usr/share/ansible/roles/rhel-system-roles.certificate/README.md ファイル

/usr/share/doc/rhel-system-roles/certificate/ ディレクトリー

RHEL システムロールを使用した証明書の要求

rsyslog.conf(5) および syslog(3) man ページ

15.3.2. TLS を使用したサーバーロギングの設定

logging RHEL システムロールを使用すると、RHEL サーバーでのロギングを設定し、TLS 暗号化を使
用してリモートロギングシステムからログを受信するようにサーバーを設定できます。

この手順では、秘密鍵と証明書を作成します。その後、Ansible インベントリーのサーバーグループ内
の全ホストに TLS を設定します。

注記

Red Hat Enterprise Linux 9 セキュリティーの強化

228

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html-single/automating_system_administration_by_using_rhel_system_roles/index#requesting-certificates-using-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

注記

証明書を作成するために、Playbook で certificate RHEL システムロールを呼び出す必要
はありません。logging RHEL システムロールがこのロールを自動的に呼び出します。

CA が作成された証明書に署名できるようにするには、管理対象ノードが IdM ドメイン
に登録されている必要があります。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

管理対象ノードが IdM ドメインに登録されている。

管理対象ノード上で設定するロギングサーバーが RHEL 9.2 以降を実行し、FIPS モードが有効
になっている場合、クライアントが Extended Master Secret (EMS) 拡張機能をサポートしてい
るか、TLS 1.3 を使用している。EMS を使用しない TLS 1.2 接続は失敗します。詳細は、Red
Hat ナレッジベースソリューション TLS extension "Extended Master Secret" enforced を参照
してください。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

- name: Configure remote logging solution using TLS for secure transfer of logs
 hosts: managed-node-01.example.com
 tasks:
 - name: Deploying remote input and remote_files output with certs
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.logging
 vars:
 logging_certificates:
 - name: logging_cert
 dns: ['www.example.com']
 ca: ipa
 principal: "logging/{{ inventory_hostname }}@IDM.EXAMPLE.COM"
 logging_pki_files:
 - ca_cert: /local/path/to/ca_cert.pem
 cert: /local/path/to/logging_cert.pem
 private_key: /local/path/to/logging_cert.pem
 logging_inputs:
 - name: input_name
 type: remote
 tcp_ports: [514]
 tls: true
 permitted_clients: ['clients.example.com']
 logging_outputs:
 - name: output_name
 type: remote_files
 remote_log_path: /var/log/remote/%FROMHOST%/%PROGRAMNAME:::secpath-

第15章 LOGGING システムロールの使用

229

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://access.redhat.com/solutions/7018256

サンプル Playbook で指定されている設定は次のとおりです。

logging_certificates

このパラメーターの値は、certificate RHEL システムロールの certificate_requests に渡さ
れ、秘密鍵と証明書の作成に使用されます。

logging_pki_files

このパラメーターを使用すると、TLS に使用する CA、証明書、および鍵ファイルを検索す
るためにロギングで使用するパスとその他の設定 (サブパラメーター
ca_cert、ca_cert_src、cert、cert_src、private_key、private_key_src、および tls で指
定) を設定できます。

注記

logging_certificates を使用して管理対象ノードにファイルを作成する場合
は、ca_cert_src、cert_src、および private_key_src を使用しないでくださ
い。これらは、logging_certificates によって作成されていないファイルの
コピーに使用されます。

ca_cert

管理対象ノード上の CA 証明書ファイルへのパスを表します。デフォルトのパスは
/etc/pki/tls/certs/ca.pem で、ファイル名はユーザーが設定します。

cert

管理対象ノード上の証明書ファイルへのパスを表します。デフォルトのパスは
/etc/pki/tls/certs/server-cert.pem で、ファイル名はユーザーが設定します。

private_key

管理対象ノード上の秘密鍵ファイルへのパスを表します。デフォルトのパスは
/etc/pki/tls/private/server-key.pem で、ファイル名はユーザーが設定します。

ca_cert_src

ターゲットホストの ca_cert で指定された場所にコピーされる、コントロールノード上の
CA 証明書ファイルへのパスを表します。logging_certificates を使用する場合は、これを
使用しないでください。

cert_src

ターゲットホストの cert で指定された場所にコピーされる、コントロールノード上の証明
書ファイルへのパスを表します。logging_certificates を使用する場合は、これを使用しな
いでください。

private_key_src

ターゲットホストの private_key で指定された場所にコピーされる、コントロールノード上
の秘密鍵ファイルへのパスを表します。logging_certificates を使用する場合は、これを使
用しないでください。

replace%.log
 async_writing: true
 client_count: 20
 io_buffer_size: 8192
 logging_flows:
 - name: flow_name
 inputs: [input_name]
 outputs: [output_name]

Red Hat Enterprise Linux 9 セキュリティーの強化

230

tls

このパラメーターを true に設定すると、ネットワーク上でログがセキュアに転送されま
す。セキュアなラッパーが必要ない場合は、tls: false に設定します。

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.logging/README.md ファイルを参照してくださ
い。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

関連情報

/usr/share/ansible/roles/rhel-system-roles.logging/README.md ファイル

/usr/share/doc/rhel-system-roles/logging/ ディレクトリー

RHEL システムロールを使用した証明書の要求

rsyslog.conf(5) および syslog(3) man ページ

15.4. RELP で LOGGING RHEL システムロールの使用

Reliable Event Logging Protocol (RELP) とは、TCP ネットワークを使用する、データとメッセージロ
ギング用のネットワーキングプロトコルのことです。イベントメッセージを確実に配信するので、メッ
セージの損失が許されない環境で使用できます。

RELP の送信側はコマンド形式でログエントリーを転送し、受信側は処理後に確認応答します。RELP
は、一貫性を保つために、転送されたコマンドごとにトランザクション番号を保存し、各種メッセージ
の復旧します。

RELP Client と RELP Server の間に、リモートロギングシステムを検討することができます。RELP
Client はリモートロギングシステムにログを転送し、RELP Server はリモートロギングシステムから送
信されたすべてのログを受け取ります。このユースケースを実現するには、logging RHEL システム
ロールを使用して、ログエントリーが確実に送受信されるようにロギングシステムを設定できます。

15.4.1. RELP を使用したクライアントロギングの設定

logging RHEL システムロールを使用すると、ローカルに保存されたログメッセージを RELP を使用し
てリモートロギングシステムに転送するように設定できます。

この手順では、Ansible インベントリーの clients グループ内の全ホストに RELP を設定します。RELP
設定は Transport Layer Security (TLS) を使用して、メッセージ送信を暗号化し、ネットワーク経由で
ログを安全に転送します。

第15章 LOGGING システムロールの使用

231

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/8/html-single/automating_system_administration_by_using_rhel_system_roles/index#requesting-certificates-using-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

サンプル Playbook で指定されている設定は次のとおりです。

target

リモートロギングシステムが稼働しているホスト名を指定する必須パラメーターです。

port

リモートロギングシステムがリッスンしているポート番号です。

tls

ネットワーク上でログをセキュアに転送します。セキュアなラッパーが必要ない場合は、tls
変数を false に設定します。デフォルトでは tls パラメーターは true に設定されますが、
RELP を使用する場合には鍵/証明書およびトリプレット {ca_cert、cert、private_key} や
{ca_cert_src、cert_src、private_key_src} が必要です。

{ca_cert_src、cert_src、private_key_src} のトリプレットを設定すると、デフォルト

- name: Configure client-side of the remote logging solution using RELP
 hosts: managed-node-01.example.com
 tasks:
 - name: Deploy basic input and RELP output
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.logging
 vars:
 logging_inputs:
 - name: basic_input
 type: basics
 logging_outputs:
 - name: relp_client
 type: relp
 target: logging.server.com
 port: 20514
 tls: true
 ca_cert: /etc/pki/tls/certs/ca.pem
 cert: /etc/pki/tls/certs/client-cert.pem
 private_key: /etc/pki/tls/private/client-key.pem
 pki_authmode: name
 permitted_servers:
 - '*.server.example.com'
 logging_flows:
 - name: example_flow
 inputs: [basic_input]
 outputs: [relp_client]

Red Hat Enterprise Linux 9 セキュリティーの強化

232

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

の場所 (/etc/pki/tls/certs と /etc/pki/tls/private) が、コントロールノードからファイル
を転送するため、管理対象ノードの宛先として使用されます。この場合、ファイル名は
トリプレットの元の名前と同じです。

{ca_cert、cert、private_key} トリプレットが設定されている場合は、ファイルはロギ
ング設定の前にデフォルトのパスに配置されている必要があります。

トリプレットの両方が設定されている場合には、ファイルはコントロールノードのロー
カルのパスから管理対象ノードの特定のパスへ転送されます。

ca_cert

CA 証明書へのパスを表します。デフォルトのパスは /etc/pki/tls/certs/ca.pem で、ファイ
ル名はユーザーが設定します。

cert

証明書へのパスを表します。デフォルトのパスは /etc/pki/tls/certs/server-cert.pem で、
ファイル名はユーザーが設定します。

private_key

秘密鍵へのパスを表します。デフォルトのパスは /etc/pki/tls/private/server-key.pem で、
ファイル名はユーザーが設定します。

ca_cert_src

ローカルの CA 証明書ファイルパスを表します。これは管理対象ノードにコピーされま
す。ca_cert を指定している場合は、その場所にコピーされます。

cert_src

ローカルの証明書ファイルパスを表します。これは管理対象ノードにコピーされます。cert
を指定している場合には、その証明書が場所にコピーされます。

private_key_src

ローカルキーファイルのパスを表します。これは管理対象ノードにコピーされま
す。private_key を指定している場合は、その場所にコピーされます。

pki_authmode

name または fingerprint の認証モードを使用できます。

permitted_servers

ロギングクライアントが、TLS 経由での接続およびログ送信を許可するサーバーのリスト。

inputs

ロギング入力ディクショナリーのリスト。

outputs

ロギング出力ディクショナリーのリスト。

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.logging/README.md ファイルを参照してくださ
い。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

第15章 LOGGING システムロールの使用

233

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

関連情報

/usr/share/ansible/roles/rhel-system-roles.logging/README.md ファイル

/usr/share/doc/rhel-system-roles/logging/ ディレクトリー

rsyslog.conf(5) および syslog(3) man ページ

15.4.2. RELP を使用したサーバーログの設定

logging RHEL システムロールを使用すると、ログメッセージを RELP を使用してリモートロギングシ
ステムから受信するようにサーバーを設定できます。

以下の手順では、Ansible インベントリーの server グループ内の全ホストに RELP を設定します。
RELP 設定は TLS を使用して、メッセージ送信を暗号化し、ネットワーク経由でログを安全に転送しま
す。

前提条件

コントロールノードと管理対象ノードの準備が完了している。

管理対象ノードで Playbook を実行できるユーザーとしてコントロールノードにログインしてい
る。

管理対象ノードへの接続に使用するアカウントに、そのノードに対する sudo 権限がある。

手順

1. 次の内容を含む Playbook ファイル (例: ~/playbook.yml) を作成します。

- name: Configure server-side of the remote logging solution using RELP
 hosts: managed-node-01.example.com
 tasks:
 - name: Deploying remote input and remote_files output
 ansible.builtin.include_role:
 name: redhat.rhel_system_roles.logging
 vars:
 logging_inputs:
 - name: relp_server
 type: relp
 port: 20514
 tls: true
 ca_cert: /etc/pki/tls/certs/ca.pem
 cert: /etc/pki/tls/certs/server-cert.pem
 private_key: /etc/pki/tls/private/server-key.pem
 pki_authmode: name
 permitted_clients:
 - '*client.example.com'
 logging_outputs:

Red Hat Enterprise Linux 9 セキュリティーの強化

234

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

サンプル Playbook で指定されている設定は次のとおりです。

port

リモートロギングシステムがリッスンしているポート番号です。

tls

ネットワーク上でログをセキュアに転送します。セキュアなラッパーが必要ない場合は、tls
変数を false に設定します。デフォルトでは tls パラメーターは true に設定されますが、
RELP を使用する場合には鍵/証明書およびトリプレット {ca_cert、cert、private_key} や
{ca_cert_src、cert_src、private_key_src} が必要です。

{ca_cert_src、cert_src、private_key_src} のトリプレットを設定すると、デフォルト
の場所 (/etc/pki/tls/certs と /etc/pki/tls/private) が、コントロールノードからファイル
を転送するため、管理対象ノードの宛先として使用されます。この場合、ファイル名は
トリプレットの元の名前と同じです。

{ca_cert、cert、private_key} トリプレットが設定されている場合は、ファイルはロギ
ング設定の前にデフォルトのパスに配置されている必要があります。

トリプレットの両方が設定されている場合には、ファイルはコントロールノードのロー
カルのパスから管理対象ノードの特定のパスへ転送されます。

ca_cert

CA 証明書へのパスを表します。デフォルトのパスは /etc/pki/tls/certs/ca.pem で、ファイ
ル名はユーザーが設定します。

cert

証明書へのパスを表します。デフォルトのパスは /etc/pki/tls/certs/server-cert.pem で、
ファイル名はユーザーが設定します。

private_key

秘密鍵へのパスを表します。デフォルトのパスは /etc/pki/tls/private/server-key.pem で、
ファイル名はユーザーが設定します。

ca_cert_src

ローカルの CA 証明書ファイルパスを表します。これは管理対象ノードにコピーされま
す。ca_cert を指定している場合は、その場所にコピーされます。

cert_src

ローカルの証明書ファイルパスを表します。これは管理対象ノードにコピーされます。cert
を指定している場合には、その証明書が場所にコピーされます。

private_key_src

ローカルキーファイルのパスを表します。これは管理対象ノードにコピーされま
す。private_key を指定している場合は、その場所にコピーされます。

pki_authmode

name または fingerprint の認証モードを使用できます。

permitted_clients

 - name: remote_files_output
 type: remote_files
 logging_flows:
 - name: example_flow
 inputs: [relp_server]
 outputs: [remote_files_output]

第15章 LOGGING システムロールの使用

235

ロギングサーバーが TLS 経由での接続およびログ送信を許可するクライアントのリスト。

inputs

ロギング入力ディクショナリーのリスト。

outputs

ロギング出力ディクショナリーのリスト。

Playbook で使用されるすべての変数の詳細は、コントロールノードの
/usr/share/ansible/roles/rhel-system-roles.logging/README.md ファイルを参照してくださ
い。

2. Playbook の構文を検証します。

$ ansible-playbook --syntax-check ~/playbook.yml

このコマンドは構文を検証するだけであり、有効だが不適切な設定から保護するものではない
ことに注意してください。

3. Playbook を実行します。

$ ansible-playbook ~/playbook.yml

関連情報

/usr/share/ansible/roles/rhel-system-roles.logging/README.md ファイル

/usr/share/doc/rhel-system-roles/logging/ ディレクトリー

rsyslog.conf(5) および syslog(3) man ページ

15.5. 関連情報

RHEL システムロールを使用するためのコントロールノードと管理対象ノードの準備

rhel-system-roles パッケージでインストールされたドキュメント
は、/usr/share/ansible/roles/rhel-system-roles.logging/README.html にあります。

RHEL システムロール

システムの ansible-playbook(1) の man ページ

Red Hat Enterprise Linux 9 セキュリティーの強化

236

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://access.redhat.com/node/3050101

	Table of Contents
	RED HAT ドキュメントへのフィードバック (英語のみ)
	第1章 インストール中およびインストール直後の RHEL の保護
	1.1. ディスクパーティション設定
	1.2. インストールプロセス時のネットワーク接続の制限
	1.3. 必要なパッケージの最小限のインストール
	1.4. インストール後の手順
	1.5. WEB コンソールを使用して CPU のセキュリティーの問題を防ぐために SMT を無効化する手順

	第2章 FIPS モードへの RHEL の切り替え
	2.1. FEDERAL INFORMATION PROCESSING STANDARDS 140 および FIPS モード
	FIPS モードの RHEL
	インストール後に FIPS モードに切り替える
	暗号化ポリシーにおける FIPS

	2.2. FIPS モードが有効なシステムのインストール
	2.3. FIPS モードへのシステムの切り替え
	2.4. コンテナーでの FIPS モードの有効化
	2.5. FIPS 140-3 に準拠していない暗号化を使用している RHEL アプリケーションのリスト

	第3章 システム全体の暗号化ポリシーの使用
	3.1. システム全体の暗号化ポリシー
	3.2. システム全体の暗号化ポリシーの変更
	3.3. システム全体の暗号化ポリシーを以前のリリースと互換性のあるモードに切り替える
	3.4. SHA-1 を再度有効に
	3.5. WEB コンソールでシステム全体の暗号化ポリシーを設定する
	3.6. システム全体の暗号化ポリシーからアプリケーションを除外する
	3.6.1. システム全体の暗号化ポリシーをオプトアウトする例

	3.7. サブポリシーを使用したシステム全体の暗号化ポリシーのカスタマイズ
	3.8. システム全体のカスタム暗号化ポリシーの作成および設定
	3.9. CRYPTO_POLICIES RHEL システムロールを使用した FUTURE 暗号化ポリシーによるセキュリティーの強化

	第4章 PKCS #11 で暗号化ハードウェアを使用するようにアプリケーションを設定
	4.1. PKCS #11 による暗号化ハードウェアへの対応
	4.2. スマートカードに保存した SSH 鍵による認証
	4.3. スマートカード上の証明書を使用して認証するアプリケーションの設定
	4.4. APACHE で秘密鍵を保護する HSM の使用
	4.5. NGINX で秘密鍵を保護する HSM の使用
	4.6. 関連情報

	第5章 POLKIT を使用したスマートカードへのアクセスの制御
	5.1. POLKIT を介したスマートカードアクセス制御
	5.2. PC/SC および POLKIT に関連する問題のトラブルシューティング
	5.3. PC/SC への POLKIT 認可の詳細情報の表示
	5.4. 関連情報

	第6章 設定コンプライアンスおよび脆弱性スキャンの開始
	6.1. RHEL における設定コンプライアンスツール
	6.2. 脆弱性スキャン
	6.2.1. Red Hat Security Advisories OVAL フィード
	6.2.2. システムの脆弱性のスキャン
	6.2.3. リモートシステムの脆弱性のスキャン

	6.3. 設定コンプライアンススキャン
	6.3.1. RHEL の設定コンプライアンス
	6.3.2. OpenSCAP スキャン結果の例
	6.3.3. 設定コンプライアンスのプロファイルの表示
	6.3.4. 特定のベースラインによる設定コンプライアンスの評価

	6.4. 特定のベースラインに合わせたシステムの修正
	6.5. SSG ANSIBLE PLAYBOOK を使用した特定のベースラインに合わせたシステムの修正
	6.6. システムを特定のベースラインに合わせるための修復用 ANSIBLE PLAYBOOK の作成
	6.7. 後でアプリケーションを修復するための BASH スクリプトの作成
	6.8. SCAP WORKBENCH を使用したカスタムプロファイルでシステムのスキャン
	6.8.1. SCAP Workbench を使用したシステムのスキャンおよび修復
	6.8.2. SCAP Workbench を使用したセキュリティープロファイルのカスタマイズ
	6.8.3. 関連情報

	6.9. インストール直後にセキュリティープロファイルに準拠するシステムのデプロイメント
	6.9.1. Server with GUI と互換性のないプロファイル
	6.9.2. グラフィカルインストールを使用したベースライン準拠の RHEL システムのデプロイメント
	6.9.3. キックスタートを使用したベースライン準拠の RHEL システムのデプロイメント

	6.10. コンテナーおよびコンテナーイメージの脆弱性スキャン
	6.11. 特定のベースラインを使用したコンテナーまたはコンテナーイメージのセキュリティーコンプライアンスの評価
	6.12. RHEL 9 でサポートされる SCAP SECURITY GUIDE プロファイル
	6.13. 関連情報

	第7章 KEYLIME でシステムの整合性を確保する
	7.1. KEYLIME の仕組み
	7.2. パッケージから KEYLIME VERIFIER をデプロイする
	7.3. KEYLIME VERIFIER をコンテナーとしてデプロイする
	7.4. パッケージから KEYLIME REGISTRAR をデプロイする
	7.5. KEYLIME REGISTRAR をコンテナーとしてデプロイする
	7.6. RHEL システムロールを使用して KEYLIME サーバーをデプロイする
	7.7. KEYLIME_SERVER RHEL システムロールの変数
	7.8. パッケージから KEYLIME テナントをデプロイする
	7.9. パッケージから KEYLIME エージェントをデプロイする
	7.10. ランタイム監視用に KEYLIME を設定する
	7.11. ブート測定のアテステーション用に KEYLIME を設定する
	7.12. KEYLIME の環境変数
	verifier の設定
	registrar の設定
	テナント設定
	CA 設定
	エージェント設定
	ロギング設定

	第8章 AIDE で整合性の確認
	8.1. AIDE のインストール
	8.2. AIDE を使用した整合性チェックの実行
	8.3. AIDE データベースの更新
	8.4. ファイル整合性ツール:AIDE および IMA
	8.5. AIDE RHEL システムロールを使用したファイル整合性チェックの設定
	8.6. 関連情報

	第9章 LUKS を使用したブロックデバイスの暗号化
	9.1. LUKS ディスクの暗号化
	9.2. RHEL の LUKS バージョン
	9.3. LUKS2 再暗号化中のデータ保護のオプション
	9.4. LUKS2 を使用したブロックデバイスの既存データの暗号化
	9.5. 独立したヘッダーがある LUKS2 を使用してブロックデバイスの既存データの暗号化
	9.6. LUKS2 を使用した空のブロックデバイスの暗号化
	9.7. WEB コンソールでの LUKS パスフレーズの設定
	9.8. WEB コンソールで LUKS パスフレーズの変更
	9.9. コマンドラインを使用した LUKS パスフレーズの変更
	9.10. STORAGE RHEL システムロールを使用して LUKS2 暗号化ボリュームを作成する

	第10章 ポリシーベースの復号を使用した暗号化ボリュームの自動ロック解除の設定
	10.1. NETWORK-BOUND DISK ENCRYPTION
	10.2. ENFORCING モードの SELINUX を使用して TANG サーバーをデプロイする
	10.3. TANG サーバーの鍵のローテーションおよびクライアントでのバインディングの更新
	10.4. WEB コンソールで TANG キーを使用して自動ロック解除を設定する
	10.5. 基本的な NBDE および TPM2 暗号化クライアント操作
	10.6. LUKS 暗号化ボリュームのロックを自動解除するように NBDE クライアントを設定する
	10.7. 静的な IP 設定を持つ NBDE クライアントの設定
	10.8. TPM 2.0 ポリシーを使用して LUKS 暗号化ボリュームの手動登録を設定する
	10.9. PKCS #11 ピンを使用して LUKS 暗号化ボリュームのロック解除を設定する
	10.10. LUKS で暗号化したボリュームからの CLEVIS ピンの手動削除
	10.11. キックスタートを使用して LUKS 暗号化ボリュームの自動登録を設定する
	10.12. LUKS で暗号化されたリムーバブルストレージデバイスの自動ロック解除を設定する
	10.13. 高可用性 NBDE システムをデプロイする
	シャミアの秘密分散を使用した高可用性 NBDE
	例 1: 2 台の Tang サーバーを使用した冗長性
	例 2: Tang サーバーと TPM デバイスで共有している秘密

	10.14. NBDE ネットワークで仮想マシンをデプロイする
	10.15. NBDE を使用してクラウド環境用の自動登録可能な仮想マシンイメージをビルドする
	10.16. コンテナーとしての TANG のデプロイ
	10.17. RHEL システムロールを使用した NBDE の設定
	10.17.1. 複数の Tang サーバーのセットアップに nbde_server RHEL システムロールを使用する
	10.17.2. nbde_client RHEL システムロールを使用して DHCP を使用する Clevis クライアントを設定する
	10.17.3. nbde_client RHEL システムロールを使用して静的 IP Clevis クライアントを設定する

	第11章 システムの監査
	11.1. LINUX の AUDIT
	11.2. AUDIT システムのアーキテクチャー
	11.3. 環境を保護するための AUDITD の設定
	11.4. AUDITD の開始および制御
	11.5. AUDIT ログファイルについて
	11.6. AUDITCTL で AUDIT ルールを定義および実行
	11.7. 永続的な AUDIT ルールの定義
	11.8. 標準に準拠するための事前設定された監査ルールファイル
	11.9. 永続ルールを定義する AUGENRULES の使用
	11.10. AUGENRULES の無効化
	11.11. ソフトウェアの更新を監視するための AUDIT の設定
	11.12. AUDIT によるユーザーログイン時刻の監視
	11.13. 関連情報

	第12章 FAPOLICYD を使用したアプリケーションの拒否および許可
	12.1. FAPOLICYD の概要
	12.2. FAPOLICYD のデプロイ
	12.3. 追加の信頼ソースを使用してファイルを信頼できるものとしてマークする
	12.4. FAPOLICYD のカスタムの許可および拒否ルールの追加
	12.5. FAPOLICYD 整合性チェックの有効化
	12.6. FAPOLICYD に関連する問題のトラブルシューティング
	12.7. FAPOLICYD RHEL システムロールを使用してユーザーによる信頼できないコードの実行を防止する
	12.8. 関連情報

	第13章 侵入型 USB デバイスに対するシステムの保護
	13.1. USBGUARD
	13.2. USBGUARD のインストール
	13.3. CLI を使用した USB デバイスのブロックと許可
	13.4. USB デバイスの永続的なブロックおよび許可
	13.5. USB デバイス用のカスタムポリシーの作成
	13.6. USB デバイス用の構造化されたカスタムポリシーの作成
	13.7. USBGUARD IPC インターフェイスを使用するユーザーおよびグループの許可
	13.8. LINUX 監査ログへの USBGUARD 許可イベントの記録
	13.9. 関連情報

	第14章 リモートロギングソリューションの設定
	14.1. RSYSLOG ロギングサービス
	14.2. RSYSLOG ドキュメントのインストール
	14.3. TCP でのリモートロギング用のサーバーの設定
	14.4. TCP 経由のサーバーへのリモートロギングの設定
	14.5. TLS 暗号化リモートロギングの設定
	14.6. UDP でリモートロギング情報を受信するためのサーバー設定
	14.7. UDP 経由のサーバーへのリモートロギングの設定
	14.8. RSYSLOG の負荷分散ヘルパー
	14.9. 信頼できるリモートロギングの設定
	14.10. サポート対象の RSYSLOG モジュール
	14.11. カーネルメッセージをリモートホストに記録するように NETCONSOLE サービスを設定
	14.12. 関連情報

	第15章 LOGGING システムロールの使用
	15.1. LOGGING RHEL システムロールを使用したローカルログメッセージのフィルタリング
	15.2. LOGGING RHEL システムロールを使用したリモートロギングソリューションの適用
	15.3. TLS を使用した LOGGING RHEL システムロールの使用
	15.3.1. TLS を使用したクライアントロギングの設定
	15.3.2. TLS を使用したサーバーロギングの設定

	15.4. RELP で LOGGING RHEL システムロールの使用
	15.4.1. RELP を使用したクライアントロギングの設定
	15.4.2. RELP を使用したサーバーログの設定

	15.5. 関連情報

